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1. Introduction

Let G be a simple connected graph with n vertices and m edges. Let V(G) = {v1, v2, · · · , vn} be the vertex set and
E(G) = {e1, e2, · · · , em} be the edge set of G. If any two vertices vi and v j of G are adjacent, that is, viv j ∈ E(G), then
we use the notation vi ∼ v j. For vi ∈ V(G), the degree of the vertex vi, denoted by di, is the number of the vertices
adjacent to vi.

Let Rα = Rα(G) =
∑

vi∼v j

(did j)α be the general Randić index ( [3]) of the graph G, where α , 0 is a fixed real number.

Note that the Randić index R−1 = R−1(G) =
∑

vi∼v j

1
did j

is also well studied in the literature. Fore more details on R−1, see

( [6, 22]).
The Laplacian matrix of the graph G is the matrix L (G) = D (G) − A (G), where A(G) and D(G) are the (0, 1)-

adjacency matrix and the diagonal matrix of vertex degrees of G, respectively. The normalized Laplacian matrix of
G is defined as l (G) = D (G)−

1
2 L (G) D (G)

1
2 ,where D (G)−

1
2 is the matrix which is obtained by taking

(
− 1

2

)
power of

each entry of D(G). Let µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0 be the Laplacian eigenvalues and λ1 ≥ λ2 ≥ · · · ≥ λn = 0
be the normalized Laplacian eigenvalues. For more details on Laplacian and normalized Laplacian eigenvalues, see
[8, 10, 18, 19].
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Among various indices in mathematical chemistry, the Kirchhoff index K f (G) and a relative of it, the degree Kirch-
hoff index K′f (G), have received a great deal of attention, recently. For a connected undirected graph G, the Kirchhoff
index was defined by Klein and Randić ( [16]) as

K f = K f (G) =
∑
i< j

ri j ,

where ri j is the effective resistance of the edge viv j. We refer the reader to the references ( [1, 16]), and their bibli-
ographies, to get a taste of the variety of approaches used to study this descriptor. In [26], Zhou et al. studied the
extremal graphs with given matching number, connectivity and the minimal Kirchhoff index. Also in [21] and [23],
the authors determined independently the extremality on the unicyclic graphs with respect to the Kirchhoff index.
Moreover, in [25], Zhou et al. presented some lower bounds for the Kirchhoff index of a connected (molecular) graph
via the number of vertices (atoms), the number of edges (bands), valency (maximum vertex degree), connectivity and
chromatic number.

The degree Kirchhoff index was proposed by Chen and Zhang in [7], is defined as

K′f (G) =
∑
i∼ j

did jri j.

The degree Kirchhoff index has been taken attention as much as the Kirchhoff index. It can been seen the reference [7]
for some bounds on the degree Kirchhoff index and for some relations on the degree Kirchhoff and Kirchhoff indices.
We finally give the reference [20] for further studies over degree Kirchhoff index.

We just want to remind the expression of Kirchhoff index in terms of the Laplacian eigenvalues (see [15]) as in the
equality

K f = K f (G) = n
n−1∑
i=1

1
µi
. (1.1)

Moreover, in [7], by considering normalized Laplacian eigenvalues, the degree Kirchhoff index is defined as

K′f = K′f (G) = 2m
n−1∑
i=1

1
λi
. (1.2)

Hence, by taking into account (1.1) and (1.2), we can easily conclude that the degree Kirchhoff index is the normalized
Laplacian analogue of the ordinary Kirchhoff index.

The number of spanning trees, t(G), of a graph G is equal to the total number of distinct spanning subgraphs of
G that are trees. This quantity is also known as the complexity of G, and is given by the following formula in terms of
the Laplacian eigenvalues ( [9]):

t(G) =
1
n

n−1∏
i=1

µi.

It is well known that the number of spanning trees of G is can be expressed by the normalized Laplacian eigenvalues
as ( [8, 9])

t(G) =

(
∆′

2m

) n−1∏
i=1

λi

where ∆′ =
n∏

i=1
di.

In the literature ( [11–13, 17, 24]), it was obtained so many bounds on t(G).
We organize this paper in the following way. In Section 2, we give some previously known results which will be

needed later. In Section 3, we obtain some bounds on the number of spanning trees of connected graphs in terms of
the number of vertices, the number of edges, degree Kirchhoff index and Randić index (R−1). We also improve some
bounds which was obtained previously for the number of spanning trees of graphs.
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2. Preliminaries

In this section, we give some useful lemmas which will be used later.
Let a1,a2,..., ar be positive real numbers. For a positive number k among the values 1 ≤ k ≤ r, let us suppose that

each Pk is defined as in the following:

P1 =
a1 + a2 + · · · + ar

r
,

P2 =
a1a2 + a1a3 + · · · + a1ar + a2a3 + · · · + ar−1ar

1
2 r(r − 1)

,

...

Pr−1 =
a1a2 · · · ar−1 + a1a2 · · · ar−2ar + · · · + a2a3 · · · ar−1ar

r
,

Pr = a1a2 · · · ar .

Hence the arithmetic mean is simply P1 while the geometric mean is P1/r
r . In fact the following famous lemma (see [2])

gives a relationship among them.

Lemma 2.1 (Maclaurin’s Symmetric Mean Inequality [2]). For a1, a2, · · · , ar ∈ R
+, it is true that

P1 ≥ P1/2
2 ≥ P1/3

3 ≥ · · · ≥ P1/r
r .

Equality among them holds if and only if a1 = a2 = · · · = ar.

Let Kn and Kp,q (p + q = n) denote the complete graph and the complete bipartite graph, respectively.

Lemma 2.2 ( [10]). Let G be a graph with n vertices and without isolated vertices. Then λ1 = λ2 = · · · = λn−1 if and
only if G is a complete graph Kn.

Lemma 2.3 ( [10]). Let G be a connected graph with n ≥ 2 vertices. Then λ2 = λ3 = · · · = λn−1 if and only if G � Kn

or G � Kp,q.

3. Main Results

Now we present our main results on t = t(G).

Theorem 3.1. Let G be a connected graph with n vertices, m edges and degree Kirchhoff index K′f . Then

(2m)n−2∆′

n − 1
K′f

n−1

≤ t(G) ≤
∆′(n − 1)

K′f

( n
n − 1

)n−2
(3.1)

with equality holding if and only if G � Kn.

Proof. Upper bound: Setting r = n − 1 and ai = λi, i = 1, 2, ..., n − 1, by Lemma 2.1, we get

P1 ≥ P1/n−2
n−2 ,

where

P1 =

n−1∑
i=1
λi

n − 1
and

Pn−2 =

n−1∑
i=1

n−1∏
j=1, j,n−i+1

λ j

n − 1

=

n−1∏
j=1
λ j

n − 1
×

n−1∑
i=1

1
λi

=

 tK′f .

∆′(n − 1)

 .
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From the above,

n
n − 1

≥

 tK′f .

∆′(n − 1)

 1
n−2

,

that is,

t ≤
∆′(n − 1).

K′f

( n
n − 1

)n−2

which gives the upper bound in (3.1). First part of the proof is over.
Lower Bound: Now setting r = n − 1 and ai = λi, i = 1, 2, ..., n − 1, in Lemma 2.1, we have

P1/n−2
n−2 ≥ P1/n−1

n−1

where

Pn−2 =

n−1∏
j=1
λ j

n − 1
×

n−1∑
i=1

1
λi

=
tK′f .

∆′(n − 1)

and

Pn−1 =

n−1∏
i=1

λi =
2mt
∆′

.

From this, we write (
2mt
∆′

) 1
n−1

≤

 tK′f
∆′(n − 1)

 1
n−2

and hence we obtain the required result.
Now suppose that both the equality holds in (3.1). Then all the inequalities in above must be equalities.
The inequality for both lower and upper bounds, λ1 = λ2 = · · · = λn−1, by Lemma 2.1. Consequently, from Lemma

2.2, we have G � Kn.
Conversely, one can see easily that the equality holds in (3.1) for complete graph Kn. �

In [4], for a non-zero real number α, it was obtained the sum of the α-th power of the non-zero normalized Laplacian
eigenvalues, sα (G) , of a graph G without isolated vertices as

sα (G) =

h∑
i=1

λαi

where h is the number of non-zero normalized Laplacian eigenvalues of G.
Now we present the following result which contains s−2 particularly for α = −2 .

Theorem 3.2. Let G be a connected graph with n vertices, m edges and degree Kirchhoff index K′f . Then

∆′

2m

 (n − 1) (n − 2)(
K′f
2m

)2
− s−2


n−1

2

≤ t(G) ≤
( n

n−1 )n−3∆′ (n − 1) (n − 2)

2m
[(

K′f
2m

)2
− s−2

] (3.2)

with equality holding if and only if G � Kn.

Proof. Upper Bound : Setting r = n − 1 and ai = λi, i = 1, 2, ..., n − 1, by Lemma 2.1, we get

P1 ≥ P1/n−3
n−3 ,

where

P1 =

n−1∑
i=1
λi

n − 1
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and

Pn−3 =

n−1∏
i=1
λi

(n − 1) (n − 2)


n−1∑

i=1

1
λi


2

−

n−1∑
i=1

1
λ2

i

 .
From the above

n
n − 1

≥

 2mt
∆′ (n − 1) (n − 2)

 K′f
2m

2

− s−2




1
n−3

,

that is,

t(G) ≤
( n

n−1 )n−3 (n − 1) (n − 2)(
K′f
2m

)2
− s−2

∆′

2m

which gives the upper bound in (3.2). First part of the proof is over.
Lower Bound: Now we take r = n − 1 and ai = λi, i = 1, 2, ..., n − 1, in Lemma 2.1, we have

P1/n−3
n−3 ≥ P1/n−1

n−1 ,

where

Pn−1 =

n−1∏
i=1

λi

and

Pn−3 =

n−1∏
i=1
λi

(n − 1) (n − 2)


n−1∑

i=1

1
λi


2

−

n−1∑
i=1

1
λ2

i

 .
From this, we write (

2mt
∆′

) 1
n−1

≤

 2mt
∆′(n − 1) (n − 2)

 K′f
2m

2

− s−2




1
n−3

where s−2 =
n−1∑
i=1

1
λ2

i
. Hence we obtain the required result.

Suppose that both the equality holds in (3.2). Then all the inequalities in above must be equalities.
The inequalitiy for both lower and upper bounds, λ1 = λ2 = · · · = λn−1, by Lemma 2.1. Consequently, from Lemma

2.2, we have G � Kn.
Conversely, one can see easily that the equality holds in (3.2) for complete graph Kn. �

Now we give an another upper bound for t(G) that we think as good result.

Theorem 3.3. Let G be a connected graph with n vertices, m edges, degree Kirchhoff index K′f and Randić index R−1.

Then

t(G) ≤
∆′ (n − 1)

K′f

[
n2 − 2 − 2R−1

(n − 1) (n − 2)

] n−2
2

(3.3)

with equality holding if and only if G � Kn.

Proof. Taking r = n − 1 and ai = λi, i = 1, 2, ..., n − 1 and using P1/2
2 ≥ P1/n−2

n−2 , by Lemma 2.1, where

P2 =
1

(n − 1) (n − 2)

n−1∑
i=1

n−1∑
j=1, j,i

λiλ j

=
1

(n − 1) (n − 2)


n−1∑

i=1

λi


2

−

n−1∑
i=1

λ2
i


=

1
(n − 1) (n − 2)

[
n2 − n − 2R−1

]
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as
n−1∑
i=1
λi = n and

n−1∑
i=1
λ2

i = n + 2R−1

and

Pn−2 =

n−1∑
i=1

n−1∏
j=1, j,n−i+1

λ j

n − 1

=

n−1∏
j=1
λ j

n − 1
×

n−1∑
i=1

λi =
t K′f

∆′ (n − 1)
,

we obtain the inequality (3.3).
The equality holds in (3.3) if and only if λ1 = λ2 = · · · = λn−1 from Lemma 2.1. Also, by Lemma 2.2, G � Kn.

Conversely the equality follows easily. �

Remark 3.4. We take r = n − 1 and ai = λi, i = 1, 2, ..., n − 1, in Lemma 2.1. If we consider the inequality
P1 ≥ P1/n−1

n−1 , we have the following result for t(G) which was obtained in [14]

t(G) ≤
∆′

2m

( n
n − 1

)n−1
. (3.4)

Similarly, if we consider the inequality P1/2
2 ≥ P1/n−2

n−2 , we get the following upper bound

∆′

2m

[
n2 − (n − 2) (n + 2R−1)

(n − 1)

] n−1
2

≤ t(G) ≤
∆′

2m

[
n2 − n − 2R−1

(n − 1) (n − 2)

] n−1
2

(3.5)

which was obtained in [5].

We now consider connected bipartite graphs.

Theorem 3.5. Let G be a connected bipartite graphs with n > 2 vertices, m edges and degree Kirchhoff index K′f . Then

∆′

m

 n − 2
K′f
2m −

1
2


n−2

≤ t(G) ≤
∆′

m

 n − 2
K′f
2m −

1
2

 (3.6)

with equality holding if and only if G � Kp,q.

Proof. Lower Bound : Setting r = n − 2 and ai = λi, i = 2, 3, ..., n − 1, by Lemma 2.1, we have

P1/n−3
n−3 ≥ P1/n−2

n−2 (3.7)

where

Pn−3 =

n−1∑
i=2

n−1∏
j=2, j,n−i+1

λ j

n − 2

=

n−1∏
j=1
λ j

n − 2

n−1

×
∑
i=2

1
λi

=
2mt

∆′λ1(n − 2)

 K′f
2m
−

1
λ1


and

Pn−2 =

n−1∏
i=2

λi =
2mt
∆′λ1

.

Since G is bipartite, we also have λ1 = 2 [8]. Then, we combine this fact and the inequality (3.7), we arrive the result.
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Upper Bound: Now using P1 ≥ P1/n−3
n−3 with r = n − 2 and ai = λi, i = 2, 3..., n − 1 from Lemma 2.1, for bipartite

graph G, where

P1 =

n−1∏
i=2
λi

n − 2
=

n − λ1

n − 2
and Pn−3 is as in the proof of lower bound, we have the result.

All equalities hold if and only if λ2 = λ3 = · · · = λn−1.
Now we suppose that all equalities hold. Then, by Lemma 2.3, we conclude that G � Kp,q.
Conversely, we can easily see that the equalities hold for the complete bipartite graph Kp,q. �

Example 3.6. Let G be a graph with VG = {1, 2, 3, 4} and EG =

{
{1, 2} , {2, 3} ,
{2, 4} , {3, 4}

}
and H be a graph with VH =

{1, 2, 3, 4} and EH = {{1, 2} , {2, 3} , {2, 4}} . For these graphs t(G) = 3 and t(H) = 1. The lower and upper bounds for
t(G) are as follows:

U pper bounds (3.1) (3.2) (3.3) (3.4) (3.5)
G 3.14 3 3 3.55 3.308
H 1.07 1 1 1.185 1.075

Lower bounds (3.1) (3.2) (3.5)
G 2.76 2.76 2.6
H 0.864 0.918 0.769

The above tablo shows that in some cases, the upper bounds (3.2) and (3.3) are the best among the above mentioned
bounds for t(G). Moreover we see that the upper bounds (3.2) and (3.3), in many graph examples, are equal to t(G).
We actually see that our results is better than the results which was obtained previously.

Now we give some results for K′f which are obtained from the bounds (3.1), (3.2) and (3.3), respectively.

Corollary 3.7. Let G be a connected graph with n vertices, m edges and t spanning trees. Then

(n − 1)
[
(2m)n−2∆′

t

]1/n−1

≤ K′f ≤
∆′(n − 1)

t

( n
n − 1

)n−2
, (3.8)

2m

√
(n − 1) (n − 2)

(
∆′

2mt

) 2
n−1

+ s−2 ≤ K′f (3.9)

K′f ≤ 2m

√√(
n

n−1

)n−3
∆′ (n − 1) (n − 2) + s−2

2mt
(3.10)

and

K′f ≤
∆′(n − 1)

t

(
n2 − n − 2R−1

(n − 1)(n − 2)

) n−2
2

. (3.11)

with equality holding if and only if G � Kn.

For trees and unicyclic graphs, we obtain the following results over K′f

Corollary 3.8. Let T be a tree of order n with m edges. Then

(n − 1)
[
(2m)n−2∆′

]1/n−1
≤ K′f (T ) ≤ ∆′(n − 1)

( n
n − 1

)n−2
,

2m

√
(n − 1) (n − 2)

(
∆′

2m

) 2
n−1

+ s−2 ≤ K′f (T )

K′f (T ) ≤ 2m

√√(
n

n−1

)n−3
∆′ (n − 1) (n − 2)

2m
+ s−2
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and

K′f (T ) ≤ ∆′(n − 1)
(

n2 − n − 2R−1

(n − 1)(n − 2)

) n−2
2

.

Proof. Since T is a tree, t = 1. From (3.8), (3.9), (3.10) and (3.11) we get the required result. �

Corollary 3.9. Let U be a unicyclic graph of order n with m edges. Then

(n − 1)
[
(2m)n−2∆′

n

]1/n−1

≤ K′f (U) ≤
∆′(n − 1)

3

( n
n − 1

)n−2
,

2m

√
(n − 1) (n − 2)

(
∆′

2mn

) 2
n−1

+ s−2 ≤ K′f (U)

K′f (U) ≤ 2m

√√(
n

n−1

)n−3
∆′ (n − 1) (n − 2)

6m
+ s−2

and

K′f (U) ≤
∆′(n − 1)

3

(
n2 − n − 2R−1

(n − 1)(n − 2)

) n−2
2

.

Proof. For unicyclic graph U, 3 ≤ t ≤ n. From (3.8), (3.9), (3.10) and (3.11), we get the required result. �

In [4] , it was obtained the following results for K′f :

K′f ≥
2m
P

+ 2(n − 2)m
(
∆′P
2mt

) 1
n−2

(3.12)

and

K′f ≥
2m
P

+
2(n − 2)2m

P
(3.13)

where P = 1 +
√

2
n(n−1) R−1.

For graphs in Example 3.6, we consider the following table where K′f (G) = 20.3 and K′f (H) = 15.

Lower
Bounds (3.8) (3.9) (3.12) (3.13)

K′f (G) 19.05 20.26 19.09 18.01
K′f (H) 14.28 14.73 14.39 13.52

U pper
bounds (3.8) (3.10) (3.11)

K′f (G) 21.3 20.33 20.33
K′f (H) 16 15 15

Finally, from (3.6), considering connected bipartite graphs, we give the following result for K′f .

Corollary 3.10. Let G be a connected bipartite graph with n vertices, m edges and t spanning trees. Then

m + 2(n − 2)m
(
∆′

mt

) 1
n−2

≤ K′f ≤ m + 2(n − 2)
∆′

t

with equality holding if and only if G � Kp,q.

Remark 3.11. We note that the lower bound which is obtained in Corollary 3.10 is same with the lower bound in [4,
Corollary 3.6].

Remark 3.12. Note that if G is a k−regular graph, then λi =
µi
k for i = 1, 2, .., n (see [8]). Hence we have K f =

n
2m

1
kn−1 K′f for any k-regular graph. Therefore, in the case of G is regular, results obtained for K′f can be immeadiately

re-stated for K f .
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