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Abstract. In this paper, we define the Padovan and Pell-Padovan octonions by using the Padovan and Pell-
Padovan numbers. We give the generating functions, Binet’s formulas, sums formulas and some properties for
these octonions. We also present the matrix representations of the Padovan and Pell-Padovan octonions.
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1. Introduction

Octonion algebra is eight dimensional, non-commutative, non-associative and normed division algebra. Let O be
the octonion algebra over the real number field R. It is known, by the Cayley-Dickson process that any p ∈ O can be
written as

p = p′ + p′′e

where p′, p′′ ∈ H = {a0 + a1i + a2 j + a3k : i2 = j2 = k2 = −1, i jk = −1, a0, a1, a2, a3 ∈ R}, the real quaternion division
algebra. The addition and multiplication of any two octonions, p = p′ + p′′e, q = q′ + q′′e , are defined by

p + q = (p′ + q′) + (p′′ + q′′)e
and

pq = (p′q′ − q′′p′′) + (q′′p′ + p′′q′)e
where q′, q′′ denote the conjugates of the quaternions q′, q′′ respectively. Thus O is an eight-dimensional non-
associative division algebra over the real numbers R. A natural basis of this algebra as a space over R is formed by the
elements

e0 = 1, e1 = i, e2 = j, e3 = k, e4 = e, e5 = ie, e6 = je, e7 = ke.
The multiplication table for the basis of O is
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https://orcid.org/0000-0002-9011-8269
https://orcid.org/0000-0001-9211-730X
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. 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

Under this notation, all octonions take the form

p =

7∑
s=0

pses

where the coefficients ps are real. Also, every p ∈ O can be simply written as p = Re(p) + Im(p), where Re(p) = p0
and Im(p) =

∑7
s=1 pses are called the real and imaginary parts, respectively. The conjugate of p is defined to be

p = p′ − p′′e = Re(p) − Im(p).
This operation satisfies

p = p, (p + q) = p + q, pq = q p

for all p, q ∈ O. The norm of p is defined to be

Np = pp = pp =

7∑
s=0

p2
s .

The inverse of non-zero octonion p ∈ O is

p−1 =
p

Np
.

For all p, q ∈ O

Npq = NpNq,

(pq)−1 = q−1 p−1.

O is non-commutative, non-associative but it is alternative

p(pq) = p2q, (qp)p = qp2, (pq)p = p(qp) := pqp,

( [2, 13, 14])
In the literature, many authors studied sequences of integer number defined by recurrence relations such as Fi-

bonacci, Lucas, Pell, Jacobsthal, Tribonacci, Tribonacci-Lucas, Padovan, Pell-Padovan, Perrin sequences and their
generalizations. For rich applications of these sequences in science and nature, one can see the citations in (see, for
example, [11, 12]).

Padovan sequence is defined by the initial values P0 = P1 = P2 = 1 and the recurrence relation

Pn = Pn−2 + Pn−3 (1.1)

for all n ≥ 3. The first few values of the Padovan numbers are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, . . . .

Binet’s formula of the nth Padovan number is given by
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Pn = αrn
1 + βrn

2 + γrn
3

where r1, r2 and r3 are the roots of the equation x3 − x − 1 = 0 and

α =
(r2 − 1)(r3 − 1)

(r1 − r2)(r1 − r3)
, β =

(r1 − 1)(r3 − 1)
(r2 − r1)(r2 − r3)

, γ =
(r1 − 1)(r2 − 1)

(r1 − r3)(r2 − r3)
.

Pell-Padovan sequence is defined by the initial values R0 = R1 = R2 = 1 and the recurrence relation

Rn = 2Rn−2 + Rn−3, (1.2)

for all n ≥ 3. The first few values of the Pell-Padovan numbers are

1, 1, 1, 3, 3, 7, 9, 17, 25, 43, 67, 111, 177, 289, . . . .

Binet’s formula of the nth Pell-Padovan number is given by

Rn = 2
 rn+1

1 − rn+1
2

r1 − r2

 − 2
(

rn
1 − rn

2

r1 − r2

)
+ rn+1

3

where r1, r2 and r3 are the roots of the equation x3 − 2x − 1 = 0 [10].
On the other hand, several authors have defined new classes of quaternion and octonion numbers associated with

these sequences of integer number. In [9] and [8], the authors defined the Fibonacci and Lucas quaternions, octonions
with the classic Fibonacci and Lucas numbers and studied the properties of these quaternions and octonions. Several
interesting and useful extensions of many of the familiar quaternions and octonions numbers such as the Pell, Pell-
Lucas, Jacobsthal and Jacobsthal-Lucas, Tribonacci quaternions and octonions have been considered by many authors.
In addition, generating functions, Binet’s formulas and identities involving these octonions have been presented (see,
for example, [1, 3–7]).

2. Main Results

In this paper, we aim at establishing new classes of octonion numbers associated with the Padovan and Pell-Padovan
numbers and introduce the Padovan and Pell-Padovan octonions by using recurrence relations of the Padovan and Pell-
Padovan sequence. It is introduced the Binet’s formulas known as the general formulas and the generating functions,
sums formulas and some properties for these octonions. We present the matrix representations of the Padovan and
Pell-Padovan octonions and the terms of these octonions are derivated by the matrix.

2.1. Padovan Octonions.

Definition 2.1. For n ≥ 0, the nth Padovan octonion is defined by

OPn =

7∑
i=0

Pn+iei

where Pn is the nth Padovan number and (e0, e1, e2, e3, e4, e5, e6, e7) is the standard octonion basis.

We now give the following theorem for the recurrence relation of the Padovan octonions.

Theorem 2.2. Let OPn be the nth Padovan octonion. The sequence {OPn} of the Padovan octonions satisfies following
second order recurrence relation

OPn = OPn−2 + OPn−3

with inital conditions OP0 =
∑7

i=0 Piei,OP1 =
∑7

i=0 P1+iei,OP2 =
∑7

i=0 P2+iei .
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Proof. Using the (1.1) and Definiton 2.1 we have

OPn−2 + OPn−3 =

7∑
i=0

Pn−2+iei +

7∑
i=0

Pn−3+iei

=

7∑
i=0

(Pn−2+i + Pn−3+i)ei

=

7∑
i=0

Pn+iei

= OPn.

So theorem is completed. �

The next theorem gives the generating function for the Padovan octonions.

Theorem 2.3. Let OPn be the nth Padovan octonion. The generating function of the Padovan octonions is

r(t) =
OP0 + OP1t + (OP2 − OP0t2)

1 − t2 − t3 .

Proof. Let

r(t) =

∞∑
n=0

OPntn

be generating function of the Padovan octonions. On the other hand, multiplying both sides of this equation by t2 and
t3, we obtain

r(t) = OP0 + OP1t + OP2t2 + OP3t3 · · · + OPntn + · · ·

t2r(t) = OP0t2 + OP1t3 + OP2t4 + OP3t5 + · · · + OPn−2tn + · · ·

t3r(t) = OP0t3 + OP1t4 + OP2t5 + OP3t6 + · · · + OPn−3tn + · · ·

and we write

(1 − t2 − t3)r(t) = OP0 + OP1t + (OP2 − OP0)t2 + (OP3 − OP1 − OP0)t3 + ... + (OPn − OPn−2 − OPn−3)tn + ...

Using the sequence {OPn} of the Padovan octonions satisfies following second order recurrence relation

OPn = OPn−2 + OPn−3

with inital conditions OP0 =
∑7

i=0 Piei,OP1 =
∑7

i=0 P1+iei,OP2 =
∑7

i=0 P2+iei. Then we obtain

r(t) =
OP0 + OP1t + (OP2 − OP0t2)

1 − t2 − t3 .

So theorem is completed. �

The next theorem gives the Binet’s formula for the Padovan octonions.

Theorem 2.4. For n ≥ 0, the Binet’s formula for the Padovan octonions is

OPn = α∗αrn
1 + β∗βrn

2 + γ∗γrn
3

where r1, r2 and r3 are the roots of the equation x3 − x − 1 = 0 and

α∗ =

7∑
i=0

ri
1ei, β

∗ =

7∑
i=0

ri
2ei, γ

∗ =

7∑
i=0

ri
3ei,

α =
(r2 − 1)(r3 − 1)

(r1 − r2)(r1 − r3)
, β =

(r1 − 1)(r3 − 1)
(r2 − r1)(r2 − r3)

, γ =
(r1 − 1)(r2 − 1)

(r1 − r3)(r2 − r3)
.
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Proof. Consider the Binet’s formula of the Padovan sequence is

Pn = αrn
1 + βrn

2 + γrn
3

where r1, r2 and r3 are the roots of the equation x3 − x − 1 = 0 and

α =
(r2 − 1)(r3 − 1)

(r1 − r2)(r1 − r3)
, β =

(r1 − 1)(r3 − 1)
(r2 − r1)(r2 − r3)

, γ =
(r1 − 1)(r2 − 1)

(r1 − r3)(r2 − r3)
.

On the other hand, from Definition 2.1 we have

OPn =

7∑
i=0

Pn+iei = Pn + Pn+1e1 + Pn+2e2 + Pn+3e3 + Pn+4e4 + Pn+5e5 + Pn+6e6 + Pn+7e7.

Then we obtain

OPn =

7∑
i=0

Pn+iei

=

7∑
i=0

[αrn+i
1 + βrn+i

2 + γrn+i
3 ]ei

= α∗αrn
1 + β∗βrn

2 + γ∗γrn
3

where α∗ =
∑7

i=0 ri
1ei, β

∗ =
∑7

i=0 ri
2ei, γ

∗ =
∑7

i=0 ri
3ei. So theorem is completed. �

Theorem 2.5. Let OPn be the nth Padovan octonion. Then we get the following sums formulas
i.

∑n
m=0 OPm = OPn+3 + OPn+2 − OP4,

ii.
∑n

m=0 OP2m = OP2n+3 − OP1,
iii.

∑n
m=0 OP2m+1 = OP2n+4 − OP2.

Proof. i. We can complete the proof by induction method on n. For n = 0 and n = 1, we obtain
0∑

m=0

OPm = OP0 = (OP1 + OP0) + OP2 − (OP2 + OP1) = OP3 + OP2 − OP4,

1∑
m=0

OPm = OP0 + OP1 = OP3 + OP4 − OP4.

We assume that it is true for n ∈ Z+, namely
n∑

m=0

OPm = OPn+3 + OPn+2 − OP4.

Now we shall show it is true for n + 1. Indeed we have
n+1∑
m=0

OPm =

n∑
m=0

OPm + OPn+1.

Using our assumption for n + 1 we have
n+1∑
m=0

OPm = OPn+3 + OPn+2 − OP4 + OPn+1.

By Theorem 2.2, since OPn+4 = OPn+2 + OPn+1 we obtain
n+1∑
m=0

OPm = OPn+4 + OPn+3 − OP4.

The proofs of ii. and iii. are obtained by induction method on n. �



Y. Taşyurdu, A. Akpinar, Turk. J. Math. Comput. Sci., 11(Special Issue)(2019), 114–122 119

Theorem 2.6. Let for n ≥ 1 be integer. We have

i.

 0 1 1
1 0 0
0 1 0


n  OP2

OP1
OP0

 =

 OPn+2
OPn+1
OPn

 ,

ii.

 0 1 1
1 0 0
0 1 0


n  OP2 OP1 OP0

OP1 OP0 OP−1
OP0 OP−1 OP−2

 =

 OPn+2 OPn+1 OPn

OPn+1 OPn OPn−1
OPn OPn−1 OPn−2


where OPn is the nth Padovan octonion.

Proof. i. We can complete the proof by induction method on n. If n = 0 and n = 1 then the result is obviosly true. We
assume that it is true for n ∈ Z+, namely 0 1 1

1 0 0
0 1 0


n  OP2

OP1
OP0

 =

 OPn+2
OPn+1
OPn

 .
Now we shall show that it is true for n + 1. For n + 1 by using our assumption, we obtain

 0 1 1
1 0 0
0 1 0


n+1  OP2

OP1
OP0

 =

 0 1 1
1 0 0
0 1 0


 0 1 1

1 0 0
0 1 0


n  OP2

OP1
OP0


=

 0 1 1
1 0 0
0 1 0


 OPn+2

OPn+1
OPn


=

 OPn+3
OPn+2
OPn+1


where OPn+3 = OPn+1 + OPn from Theorem 2.2. �

The proof of ii. is obtained by induction on n.

2.2. Pell-Padovan Octonions.

Definition 2.7. 2. For n ≥ 0, the nth Pell-Padovan octonion is defined by

ORn =

7∑
i=0

Rn+iei

where Rn is the nth Pell-Padovan number and (e0, e1, e2, e3, e4, e5, e6, e7) is the standard octonion basis.

We now give the following theorem for the recurrence relation of the Pell-Padovan octonions.

Theorem 2.8. Let ORn be the nth Pell-Padovan octonion. The sequence {ORn} of the Pell-Padovan octonions satisfies
following second order recurrence relation

ORn = 2ORn−2 + ORn−3

with inital conditions OR0 =
∑7

i=0 Riei,OR1 =
∑7

i=0 R1+iei,OR2 =
∑7

i=0 R2+iei .
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Proof. By the equation (1.2) and Definiton 2.7, we have

2ORn−2 + ORn−3 =

7∑
i=0

2Rn−2+iei +

7∑
i=0

Rn−3+iei

=

7∑
i=0

(2Rn−2+i + Rn−3+i)ei

=

7∑
i=0

Rn+iei

= ORn.

So theorem is completed. �

The next theorem gives the generating function for the Pell-Padovan octonions.

Theorem 2.9. Let ORn be the nth Pell-Padovan octonion. The generating function for the Pell-Padovan octonions is

s(t) =
OR0 + OR1t + (OR2 − 2OR0t2)

1 − 2t2 − t3 .

Proof. Let

s(t) =

∞∑
n=0

ORntn

be generating function of the Pell-Padovan octonions. On the other hand, multiplying both sides of this equation by 2t2

and t3, we obtain
s(t) = OR0 + OR1t + OR2t2 + OR3t3 + · · · + ORntn + · · ·

2t2s(t) = 2OR0t2 + 2OR1t3 + 2OR2t4 + 2OR3t5 + · · · + 2ORn−2tn + · · ·

t3s(t) = OR0t3 + OR1t4 + OR2t5 + OR3t6 · · · + ORn−3tn + · · ·

Then we write

(1 − 2t2 − t3)s(t) = OR0 + OR1t + (OR2 − 2OR0)t2 + (OR3 − 2OR1 − OR0)t3 + ... + (ORn − 2ORn−2 − ORn−3)tn + ...

where the sequence {ORn} of the Pell-Padovan octonions satisfies following second order recurrence relation,

ORn = 2ORn−2 + ORn−3

with inital conditions OR0 =
∑7

i=0 Riei,OR1 =
∑7

i=0 R1+iei,OR2 =
∑7

i=0 R2+iei. Then we obtain

s(t) =
OR0 + OR1t + (OR2 − 2OR0t2)

1 − 2t2 − t3 .

So theorem is completed. �

The next theorem gives the Binet’s formulas for the Pell-Padovan octonions.

Theorem 2.10. For n ≥ 0, the Binet’s formula for the Pell-Padovan octonions is

ORn = 2
α∗rn+1

1 − β∗rn+1
2

r1 − r2

 − 2
(
α∗rn

1 − β
∗rn

2

r1 − r2

)
+ rn+1

3 γ∗

where r1, r2 and r3 are the roots of the equation x3 − 2x − 1 = 0 and

α∗ =

7∑
i=0

ri
1ei, β

∗ =

7∑
i=0

ri
2ei, γ

∗ =

7∑
i=0

ri
3ei.
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Proof. Consider the Binet’s formula of the Pell-Padovan sequence is

Rn = 2
 rn+1

1 − rn+1
2

r1 − r2

 − 2
(

rn
1 − rn

2

r1 − r2

)
+ rn+1

3

where r1, r2 and r3 are the roots of the equation x3 − 2x − 1 = 0. On the other hand, from Definition 2.7 we have

ORn =

7∑
i=0

Rn+iei = Rn + Rn+1e1 + Rn+2e2 + Rn+3e3 + Rn+4e4 + Rn+5e5 + Rn+6e6 + Rn+7e7.

Then we obtain

ORn =

7∑
i=0

Rn+iei

=

7∑
i=0

2  rn+1+i
1 − rn+1+i

2

r1 − r2

 − 2
 rn+i

1 − rn+i
2

r1 − r2

 + rn+1+i
3

 ei

= 2
 rn+1

1 α∗ − rn+1
2 β∗

r1 − r2

 − 2
(

rn
1α
∗ − rn

2β
∗

r1 − r2

)
+ rn+1

3 γ∗

where α∗ =
∑7

i=0 ri
1ei, β

∗ =
∑7

i=0 ri
2ei, γ

∗ =
∑7

i=0 ri
3ei. So theorem is completed. �

Theorem 2.11. Let ORn be the nth Pell-Padovan octonion. Then we get
n∑

m=0

ORm =
1
2

(ORn+2 + ORn+1 + ORn − OR2 − OR1 + OR0).

Proof. We can complete the proof by induction method on n. For n = 0 and n = 1 , we obtain
0∑

m=0

ORm = OR0 =
1
2

(OR2 + OR1 + OR0 − OR2 − OR1 + OR0)

1∑
m=0

ORm = OR0 + OR1

=
1
2

(2OR1 + OR0 + OR0)

=
1
2

(OR3 + OR2 + OR1 − OR2 − OR1 + OR0)

We assume that it is true for n ∈ Z+, namely
n∑

m=0

ORm =
1
2

(ORn+2 + ORn+1 + ORn − OR2 − OR1 + OR0).

Now we shall show that it is true for n + 1. Indeed we have
n+1∑
m=0

ORm =

n∑
m=0

ORm + ORn+1.

Using our assumption for n + 1 we have
n+1∑
m=0

ORm =
1
2

(ORn+2 + ORn+1 + ORn − OR2 − OR1 + OR0 + 2ORn+1).

By Theorem 2.8, since ORn+3 = 2ORn+1 + ORn we obtain
n+1∑
m=0

ORm =
1
2

(ORn+3 + ORn+2 + ORn+1 − OR2 − OR1 + OR0).

So theorem is completed. �
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Theorem 2.12. Let for n ≥ 1 be integer. We have

i.

 0 2 1
1 0 0
0 1 0
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ii.
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 ORn+2 ORn+1 ORn

ORn+1 ORn ORn−1
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
where ORn is the nth Pell-Padovan octonion.

Proof. The theorem is proved by induction method on n. �
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