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1. Introduction

Difference equations are the discrete analogues of differential equations and usually describe certain phenomena
over the course of time. For a homogeneous linear difference equation, the stability of the or equilibrum point (or
steady-state) zero is equivalent to the boundedness of all solutions for n ≥ 0. For the asymptotic stability of the
equilibrum point zero is equivalent to all solutions having zero limit as n → ∞, which is true if and only if every root
of the characteristic equation of homogeneous linear difference equation lies in the open disk |λ| < 1.

The basic theory of difference equations is based on the difference operator ∆ defined as

∆y (n) = y (n + 1) − y (n) , n ∈ N
where N = {1, 2, ...} .

In [1, 7, 13] authors suggested the definition of ∆ as

∆y (n) = y (n + l) − y (n) , l ∈ N.
In [14, 15] authors defined ∆α as

∆αy (k) = y (k + 1) − αy (k)
where α is a fixed real constant and k ∈ {n0, n0 + 1, ...} and n0 is a given nonnegative integer.

Throughout this paper we define the operator ∆l,a as
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∆l,ay (n) = y (n + l) − ay (n) , n, l ∈ N, a ∈ R.

Stability of solutions of linear difference equations with constant coofficients requires analysis of root of character-
istic equation. In [2, 4, 5, 8–12] authors found some stability results using root analysis. In our study firstly we will
consider the asymptotic stability of the zero solution of the difference equation involving generalized difference of the
form

∆m
l,ay(n − l) + r∆l,ay(n) + sy(n) = 0 (1.1)

with the initial conditions
y (i) = ϕi , i = 0, 1, 2, · · · , (m − 1)l − 1 (1.2)

where a, r, s, ∈ R, l,m, n ∈ N. By solution of equation (1.1) we mean a real sequence y(n) which is defined for n =

0, 1, 2, · · · , (m − 1)l − 1 and reduce equation (1.1) to an identity over N. Later we will consider the asymptotic stability
of the zero solution of the delay difference equation involving generalized difference of the form

∆m
l,ay(n − l) + r∆l,ay(n) + sy(n − kl) = 0 (1.3)

with the initial conditions
y (i) = ϕi , i = −kl,−kl + 1, · · · , (m − 1) l − 1 (1.4)

where a, r, s, ∈ R, k, l,m, n ∈ N and k > 1. Similarly by solution of equation (1.3) we mean a real sequence y(n) which
is defined for n = −kl,−kl + 1, · · · , (m − 1) l − 1 and reduce equation (1.3) to an identity over N.

Paper is organized as follows: In Section 2 we give some definitions, properties of generalized difference operator
and some basic lemmas and theorems. We will give stability results for equations (1.1) and (1.3) in section 3. Also we
will give illustrative examples which verify the results obtained.

2. Some Definitions, Auxiliary Lemmas and Theorems

In this section we will give some definitions, auxiliary lemmas and theorems which we use throughout this study.
For each positive integer m, we define the iterates ∆m

l,a by

∆m
l,ay(n) = ∆l,a

(
∆m−1

l,a y(n)
)
.

Basic property of the operator ∆l,a is shown below.

Lemma 2.1. For each positive integer m

∆m
l,ay(n) =

m∑
i=0

(−1)i
(
m
i

)
aiy (n + (m − i) l) . (2.1)

Proof. The proof can be easily done by induction, so we omit it. �

Definition 2.2 ( [3]). Let I be some intervals of real numbers and consider the difference equation

xn+1 = F(xn, xn−1, ..., xn−k) (2.2)
where F is a function that maps some set Ik+1 into I. Then a point x is called an equilibrium point of equation (2.2) if

xn = x for all n ≥ −k.

Definition 2.3 ( [3]). Let x be an equilibrium point of equation (2.2).
(a) An equilibrium point x of equation (2.2) is called locally stable if, for every ε > 0, there exists δ > 0 such that if

{xn}
∞
n=−kis a solution of equation (2.1) with∣∣∣x−k − x

∣∣∣ +
∣∣∣x−k+1 − x

∣∣∣ + ... +
∣∣∣x0 − x

∣∣∣ < δ,
then ∣∣∣xn − x

∣∣∣ < ε, for all n ≥ 0.

(b) An equilibrium point x of equation (2.2) is called locally asymptotically stable if x is locally stable, and if in
addition there exists γ > 0 such that if {xn}

∞
n=−kis a solution of equation (2.2) with
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∣∣∣x−k − x
∣∣∣ +

∣∣∣x−k+1 − x
∣∣∣ + ... +

∣∣∣x0 − x
∣∣∣ < γ,

then
lim
n→∞

xn = x.

(c) An equilibrium point x of equation (2.2) is called global attractor if, for every solution {xn}
∞
n=−k of equation (2.2)

we have
lim
n→∞

xn = x

(d) An equilibrium point x of equation (2.2) is called globally asymptotically stable if x is locally stable, and x is
also a global attractor of equation (2.2).

(e)An equilibrium point x of equation (2.2) is called unstable if it is not stable.

Consider the linear difference equation

xn+1 = a0xn + a1xn−1 + · · · + ak xn−k (2.3)

where ai ∈ R, i = 0, 1, ..., k, k ∈ N.
As is customary, a zero solution of (2.3) is said to be asymptotically stable iff all zeros of the corresponding charac-

teristic equation are in the unit disk. Otherwise the zero solution is called unstable.
As it is well known, the asymptotic stability of the zero solution of the linear difference equation is determined by

the location of the roots of the associated characteristic equation

λk+1 −

k∑
i=0

aiλ
k−i = 0.

Thus, for each particular choice of the coefficients ai, i = 0, ..., k, one can use the so called Schur–Cohn criterion.
However, with this method, it is very difficult to get explicit conditions for a general form of (2.3) depending on the
coefficients. This kind of explicit conditions are of special importance in the applications, where the coefficients are
meaningful parameters of the model [10].

Definition 2.4 (Inners of a matrix [6]). The inners of a matrix are the matrix itself and all the matrices obtained by
omitting successively the first and the last rows and the first and the last columns.

The inners of the following matrix A are shown below.

A =


b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55

 ,
 b22 b23 b24

b32 b33 b34
b42 b43 b44

 , [b33]

Definition 2.5 ( [6]). A matrix is said to be innerwise if the determinants of all of its inners are positive.

Consider the linear homogeneous difference equation with constant coefficient

y(n + k) + p1y(n + k − 1) + p2y(n + k − 2) + · · · + pky(n) = 0 (2.4)
where p1, p2, · · ·, pk are real numbers. Then the zero solution of (2.4) is asymptotically stable iff |λ| < 1 for all
characteristic roots λ of (2.4), that is for every zero λ of the characteristic polynomial

p(λ) = λk + p1λ
k−1 + p2λ

k−2 + · · · + pk. (2.5)
Now the following theorem gives a necessary and sufficient conditions for the zeros of the polynomial (2.5) lie inside
the unit disk |λ| < 1 [6, sec 5.1, page 246].

Theorem 2.6 (Schur-Cohn Criterion [6]). The zeros of the characteristic polynomial (2.5) lie inside the unit disk if and
only if the following hold:

p(1) > 0 , (−1)k p(−1) > 0
and (k − 1) × (k − 1) matrices
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A±k−1 =



1 0 · · · 0 0
p1 1 · · · 0 0
...

...
pk−3 pk−4 · · · 1 0
pk−2 pk−3 · · · p1 1


±



0 0 · · · 0 pk

0 0 · · · pk pk−1
...

...
...

0 pk · · · p3
pk pk−1 · · · p3 p2


are innervise.

In [6] using the Schur-Cohn Criterion (Theorem 2.1), necessary and sufficient conditions are given on the coefficients
pi such that the zero solution of (2.4) is asymptotically stable. Some compact necessary and sufficient conditions for the
zero solutions of (2.4) to be asymptotically stable are available for lower order difference equations. Hence conditions
for second and third order difference equations are given below.

For the second order difference equation

x(n + 2) + p1x(n + 1) + p2x(n) = 0

the zero solution is asymptotically stable if and only if

|p1| < 1 + p2 < 2. (2.6)
For the third order difference equation

x(n + 3) + p1x(n + 2) + p2x(n + 1) + p3x(n) = 0

a necessary and sufficient condition for the zero solution to be asymptotically stable is concluded as [6]

|p1 + p3| < 1 + p2 and |p2 − p1 p3| < 1 − p2
3 (2.7)

3. Main Results

In this section we will give some stability results for the difference equation (1.1) with initial conditions (1.6),
the difference equation (1.3) with initial conditions (1.4) and illustrative examples. For this we will use Schur-Cohn
criterion .

Theorem 3.1. Consider the difference equation (1.1) with initial conditions (1.2) Then the following statements are
equivalent.

(a) The zero solution of (1.1) is asymptotically stable.
(b) Followings hold;

m−3∑
i=0

(−1)i
(
m
i

)
ai + (−1)m−2

(
m
2

)
am−2 + r + (−1)m−1 mam−1 − ar+

s + (−1)m am > 0,

m−3∑
i=0

(
m
i

)
ai +

(
m
2

)
am−2 + (−1)m r + mam−1+

(−1)m (ar − s) + am > 0,

A±m−1 =



1 0 . . . 0 0
−
(

m
1

)
a 1 0 . . . 0(

m
2

)
a2 −

(
m
1

)
a

. . . 0 . . . 0
... 1

(−1)m−2
(

m
m−2

)
am−2 + r (−1)m−3

(
m

m−3

)
am−3 · · · 1


±
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

0 0 · · · 0 (−1)m am

0 . . . 0 (−1)m am (−1)m−1 mam−1 − ar + s
... .�

�
(−1)m−1 mam−1 − ar + s

...

0 (−1)m am .�
� ...

(−1)m am (−1)m−1 mam−1 − ar + s · · · . . .
(

m
2

)
a2


matrices of dimension (m − 1) × (m − 1) are innerwise. Here entries of A±m−1 is formed by the coefficients of p(t) where

p(t) =

m−3∑
i=0

(−1)i
(
m
i

)
aitm−i +

(
(−1)m−2

(
m
2

)
am−2 + r

)
t2 +

(
(−1)m−1 mam−1 − ar + s

)
t + (−1)m am

Proof. (a) =⇒ (b) . Suppose that zero solution of (1.1) is asymptotically stable. Since (1.1) is a linear difference
equation with constant coefficients then the roots of the corresponding characteristic equation must be in the unit disk.
Using Lemma 1.1 we reduce (1.1) to

m∑
i=0

(−1)i
(
m
i

)
aiy (n + (m − 1 − i) l) + ry(n + l) − ary(n) + sy(n) = 0. (3.1)

Rearranging (3.1) we get

m−3∑
i=0

(−1)i
(
m
i

)
aiy (n + (m − 1 − i) l) +

(
(−1)m−2

(
m
2

)
am−2 + r

)
y (n + l) +

(
(−1)m−1 mam−1 − ar + s

)
y(n) + (−1)m amy(n − l) = 0. (3.2)

The characteristic equation of (3.2) is

m−3∑
i=0

(−1)i
(
m
i

)
aiλ(m−i)l +

(
(−1)m−2

(
m
2

)
am−2 + r

)
λ2l+

(
(−1)m−1 mam−1 − ar + s

)
λl + (−1)m am = 0. (3.3)

Getting λl = t in (3.3) we obtain

m−3∑
i=0

(−1)i
(
m
i

)
aitm−i +

(
(−1)m−2

(
m
2

)
am−2 + r

)
t2+

(
(−1)m−1 mam−1 − ar + s

)
t + (−1)m am = 0. (3.4)

In (3.4) taking

p(t) =

m−3∑
i=0

(−1)i
(
m
i

)
aitm−i +

(
(−1)m−2

(
m
2

)
am−2 + r

)
t2+

(
(−1)m−1 mam−1 − ar + s

)
t + (−1)m am, (3.5)

pi = (−1)i
(

m
i

)
ai for 1 ≤ i ≤ m − 3, pm−2 = (−1)m−2

(
m
2

)
am−2 + r , pm−1 = (−1)m−1 mam−1 − ar + s and pm = (−1)m am. In

view of Theorem 2.1 following conditions are necessary and sufficient conditions for the roots of polynomial in (3.5)
to be inside the unit disk |t| < 1.

p(1) =

m−3∑
i=0

(−1)i
(
m
i

)
ai + (−1)m−2

(
m
2

)
am−2 + r + (−1)m−1 mam−1 − ar + s + (−1)m am > 0,
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lll (−1)m p(−1) = (−1)m
m−3∑
i=0

(−1)i
(
m
i

)
ai(−1)m−i + (−1)m

(
(−1)m−2

(
m
2

)
am−2 + r

)
+ (−1)m

(
(−1)m−1 mam−1 − ar + s

)
(−1) + (−1)m (−1)m am

=

m−3∑
i=0

(
m
i

)
ai +

(
m
2

)
am−2 + (−1)m r + mam−1 + (−1)m (ar − s) + am > 0, (3.6)

and the matrices A±m−1 whose entries are formed the coefficients of p(t) must be innerwise where

A±m−1 =



1 0 . . . 0 0
−
(

m
1

)
a 1 0 . . . 0(

m
2

)
a2 −

(
m
1

)
a

. . . 0 . . . 0
... 1

(−1)m−2
(

m
m−2

)
am−2 + r (−1)m−3

(
m

m−3

)
am−3 · · · 1


±



0 0 · · · 0 (−1)m am

0 . . . 0 (−1)m am (−1)m−1 mam−1 − ar + s
... .�

�
(−1)m−1 mam−1 − ar + s

...

0 (−1)m am .�
� ...

(−1)m am (−1)m−1 mam−1 − ar + s · · ·
(

m
2

)
a2


.

Since |t| =
∣∣∣λl

∣∣∣ < 1 and l > 0 we can see that |λ| < 1. Hence (b) is satisfied.
(b) =⇒ (a) . If (3.1), (3.1) and (3.1) hold then for characteristic polynomial of (1.1) conditions of Schur-Cohn

criteria are satisfied. So roots of characteristic polynomial be inside the unit disk. Hence the zero solution of (1.1) is
asymptotically stable. �

Corollary 3.2. Consider the difference equation involving generalized difference

∆2
l,ay(n − l) + r∆l,ay(n) + sy(n) = 0

with the initial conditions
y (i) = ϕi , i = −l,−l + 1, · · · , l − 1

where a, r, s, ∈ R, r , −1, l, n ∈ N. Then the following statements are equivalent.
(a) The zero solution of (3.2) is asymptotically stable.
(b)

∣∣∣ s−ar−2a
1+r

∣∣∣ < a2

1+r + 1 < 2 holds.

Proof. (a) =⇒ (b) . Suppose that the zero solution of (3.2) is asymptotically stable. For m = 2 equation (1.1) reduces
to equation (3.2). Using definition of ∆l,a (3.2) reduces to

(1 + r)y(n + l) + (s − ar − 2a) y(n) + a2y(n − l) = 0,

which is equivalent to

y(n + l) +
s − ar − 2a

1 + r
y(n) +

a2

1 + r
y(n − l) = 0. (3.7)

In view of Theorem 3.1 and (2.6) , the roots of the characteristic polynomial of (3.7) be inside the unit disk |λ| < 1
if and only if ∣∣∣∣∣ s − ar − 2a

1 + r

∣∣∣∣∣ < a2

1 + r
+ 1 < 2

holds. Hence (b) is satisfied.
(b) =⇒ (a) . If

∣∣∣ s−ar−2a
1+r

∣∣∣ < a2

1+r + 1 < 2 holds then for characteristic polynomial of (3.2), conditions of Schur-Cohn
criteria are satisfied. So roots of characteristic polynomial be inside the unit disk. Hence the zero solution of (3.2) is
asymptotically stable. �
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Example 3.3. Consider the generalized difference equation of the form

∆2
5,1/2y(n − 5) + 2∆5,1/2y(n) +

1
4

y(n) = 0 (3.8)

where l = 5, a = 1/2, r = 2, s = 1/4. For m = 2 all the conditions of Corollary 3.2 are satisfied. Hence the zero
solution of equation (3.8) is asymptotically stable.

Corollary 3.4. Consider the difference equation involving generalized difference

∆3
l,ay(n − l) + r∆l,ay(n) + sy(n) = 0 (3.9)

with the initial conditions
y (i) = ϕi f or i = −l,−l + 1, · · · , 2l − 1

where a, r, s, ∈ R, n, l ∈ N. Then the following statements are equivalent.
(a) The zero solution of (3.9) is asymptotically stable.
(b)

∣∣∣r − 3a − a3
∣∣∣ < 1 + 3a2 − ar + s and

∣∣∣3a2 − ar + s + ra3 − 3a4
∣∣∣ < 1 − a6 hold.

Proof. (a) =⇒ (b) . Suppose that the zero solution of (3.2) is asymptotically stable. For m = 3 equation (1.1) reduces
to equation (3.9) which is equivalent to

y(n + 2l) + (r − 3a) y(n + l) +
(
3a2 − ar + s

)
y(n) − a3y(n − l) = 0. (3.10)

In view of Theorem 3.1 and (2.7), the roots of the characteristic polynomial of (3.10) be inside the unit disk |λ| < 1
if and only if ∣∣∣r − 3a − a3

∣∣∣ < 1 + 3a2 − ar + s

and ∣∣∣3a2 − ar + s + ra3 − 3a4
∣∣∣ < 1 − a6

hold. Hence (b) is satisfied.
(b) =⇒ (a) . Proof is same as in proof of Corollary 3.2. �

Example 3.5. Consider the generalized difference equation of the form

∆3
4, 1

4
y(n − 4) −

1
8

∆4, 1
4
y(n) = 0, (3.11)

where l = 4, a = 1/4, r = −1/8, s = 0. For m = 3 all the conditions of Corollary 3.4 are satisfied. Hence the zero
solution of equation (3.11) is asymptotically stable.

Theorem 3.6. Consider the delay difference equation (1.3) with initial conditions (1.4). Then the following statements
are equivalent.

(a) The zero solution of (1.3) is asymptotically stable.
(b) Followings hold ;

p(1) =

m−3∑
i=0

(−1)i
(
m
i

)
ai + (−1)m−2

(
m
2

)
am−2 + r + (−1)m−1 mam−1

−ar + (−1)m am + s > 0,

(−1)m+k−1 p(−1) =

m−3∑
i=0

(
m
i

)
ai + (−1)m

[
(−1)m−2

(
m
2

)
am−2 + r

]

+ (−1)m−1
[
(−1)m−1 mam−1 − ar

]
+ (−1)m+k−1 am + s > 0,
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A±m+k−2 =



1 0 0 · · · · · · 0 0
−
(

m
1

)
a 1 0 · · · 0 0(

m
2

)
a2 −
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matrices of dimension (m + k − 2) × (m + k − 2) are innerwise. Here entries of A±m−1 is formed by the coefficients of
p(t) where

p(t) =

m−3∑
i=0

(−1)i
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m
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)
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(
(−1)m−2

(
m
2

)
am−2 + r

)
t2+(

(−1)m mam−1 − ar
)

t + (−1)m am + s.

Proof. The proof is similar to the proof of Theorem 3.1, so we omit it. �
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