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Abstract: In this study, we investigate the geometric interpretation of the curvature circles of motion at the initial position in
Minkowski plane. We consider the equations of the circling-point and centering-point curves of one-parameter motion in Minkowski
plane and then determine the positions of these curves relative to each other.
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1 Introduction

The concept of instantaneous invariants was first given by Bottema to determine the geometric properties of a moving rigid body at a given
moment. Therefore, the geometric and kinematic properties of planar motions in Euclidean space are investigated according to these invariants
[1] and this method has also guided many studies in the field of kinematics [2–6]. Later, the instantaneous invariants were called B-invariants
(Bottema-invariants) by Veldkamp [7]. Besides, Veldkamp found special geometrical ground curves such as the inflection curve, the circling-
point curve and the centering-point curve with the help of B-invariants, as well as the intersection points of these curves, Ball and Burmester
points [8, 9]. The special geometrical ground curves in Minkowski (Lorentz) plane and their intersection points were analyzed by recent
studies [10, 11], however, the positions of these curves relative to each other have not been studied yet. Therefore, it is aimed to present the
geometric interpretation of curvature circles relative to each other throughout one-parameter planar motion in Minkowski plane based on the
above-mentioned studies.

2 Preliminaries

The Minkowski plane L is the plane R2 endowed with the Lorentzian scalar product given by 〈x, y〉 = x1y1 − x2y2, where x = (x1, x2)
and y = (y1, y2). The norm of a vector is defined by ‖x‖ =

√
|〈x, x〉|. An arbitrary vector x ∈ L is called timelike if 〈x, x〉 < 0, spacelike

if 〈x, x〉 > 0 or x = 0, lightlike if 〈x, x〉 = 0 whereby x 6= 0. Two vectors x and y are said to be orthogonal if 〈x, y〉 = 0. Let Lm be a
Minkowski plane in continuous motion relative to a fixed Minkowski plane Lf . Then one-parameter planar motion Lm with respect to Lf is
represented by

X = x cosh θ + y sinh θ + a
Y = x sinh θ + y cosh θ + b

(1)

with respect to Cartesian frames of reference xoy and XOY in Lm and Lf , respectively. Here a, b and θ are functions depending on time t.
The position corresponding to ϕ = 0 of Lm is called initial position. The values for the initial position of the nth (n = 0, 1, 2, . . .) derivative
of a function f of ϕ with respect to ϕ is denoted by fn.

The Minkowski plane Lm is chosen to rotate with a constant angular velocity relative to the fixed Minkowski plane Lf , that is, θ = t. The
canonical relative system of motion is constructed by

a0 = b0 = a1 = b1 = a2 = 0 (2)

and the instantaneous invariants an and bn characterize completely the infinitesimal properties of motion of Minkowski planes up the n-th
order as

X = x, X ′ = y, X ′′ = x, X ′′′ = y + a3,
Y = y, Y ′ = x, Y ′′ = y + b2, Y ′′′ = x+ b3

(3)

for t = 0 [10, 11].

3 The curvature circles in Minkowski plane

In this section, let’s first recall the definitions of curvature circles in Minkowski plane.
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Definition 1. The locus of the points of moving Minkowski plane Lm, whose curvature of the trajectory is constant at initial position, is called
circling-point curve in Minkowski plane and denoted by cp.

The equation of the circling-point curve cp in Minkowski plane is(
x2 − y2

)
(a3x− b3y) + 3x

(
x2 − y2 + y

)
= 0, (x, y) 6= (0, 0) (4)

where (x, y) 6= (0, 0) or x 6= ∓y, [10, 11].

Definition 2. The locus of the curvature centers of the points of moving Minkowski plane Lm is called centering-point curve in Minkowski
plane and denoted by cp̃.

The equation of the centering-point curve cp̃ in Minkowski plane is(
x2 − y2

)
(a3x− b3y) + 3xy = 0 (5)

where (x, y) 6= (0, 0) or x 6= ∓y, [10, 11].
Now, let us examine the positions of circling-point and centering-point curves relative to each other in Minkowski plane. The curve cp given

by equation (4) and the curve cp̃ given by equation (5) can be arranged as(
x2 − y2

)(
(a3+3)

3 x− b3
3 y
)

+ xy = 0

and (
x2 − y2

)(
a3
3 x−

b3
3 y
)

+ xy = 0,

respectively.
On the other hand, a third-order cubic curve γ in Minkowski plane can be given by

(αx+ βy)
(
x2 − y2

)
+ xy = 0. (6)

Let γ be an irreducible curve, this means that αβ 6= 0.
If α = a3+3

3 and β = − b33 are satisfied, then the curve given by the equation (6) corresponds to the circling-point curve cp according to the
canonical system in Minkowski plane.

Moreover, if there are the relations α = a3
3 and β = − b33 , then the curve given by the equation (6) corresponds to the centering-point curve

cp̃ according to the canonical system in Minkowski plane.

Theorem 1. The parametric equation of the curve γ is given by

x =
u

(u2 − 1) (α+ βu)
, y =

u2

(u2 − 1) (α+ βu)
(7)

where u 6= ±1.

Proof: If we substitute y = ux, such that u 6= ±1, in the equation (6), then we get x3 (α+ βu)
(

1− u2
)

+ ux2 = 0. Afterwards, some direct
calculations completes the proof. �

Specifically, the parametric value −αβ corresponds to the infinity point of the curve γ. We can examine the reducible states of this curve in
the following corollaries:

Corollary 1. In Minkowski plane, the parametric equation of the curvature circle Γ0, which is tangent to the curve γ along the axis y, is
represented by

x =
1

β (u2 − 1)
, y =

u

β (u2 − 1)
. (8)

Proof: If α = 0 is taken in the equation (7) then the proof is obvious. �

Corollary 2. In Minkowski plane, the parametric equation of the curvature circle Γ1, which is tangent to the curve γ along the axis x, is given
by

x =
u

α (u2 − 1)
, y =

u2

α (u2 − 1)
. (9)

Proof: Taking β = 0 in the equation (7) completes the proof. �
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From the equation (8), the Cartesian equation of the curvature circle Γ0 in Minkowski plane is represented as

β
(
x2 − y2

)
+ x = 0. (10)

Similarly, by taking the equation (9) the Cartesian equation of the curvature circle Γ1 in Minkowski plane is given by

α
(
x2 − y2

)
+ y = 0. (11)

Let the points Ai (i = 1, 2, 3) be on the curve γ. In that case, these points are given as

Ai =

(
ui

(ui2 − 1) (α+ βui)
,

ui
2

(ui2 − 1) (α+ βui)

)
, (i = 1, 2, 3) .

Theorem 2. The points Ai (i = 1, 2, 3) with parametric value ui (i = 1, 2, 3) are on the same line does not pass through the origin if and
only if

u3u2u1 =
α

β
. (12)

Proof: The points Ai are on the same line that does not pass through the origin if and only if the slopes of the lines A1A2 and A2A3 are equal
the each other. Thus, there is the relationship

−u3
2

(1−u3
2)(α+βu3)

+ u2
2

(1−u2
2)(α+βu2)

−u3

(1−u3
2)(α+βu3)

+ u2

(1−u2
2)(α+βu2)

=

−u2
2

(1−u2
2)(α+βu2)

+ u1
2

(1−u1
2)(α+βu1)

−u2

(1−u2
2)(α+βu2)

+ u1

(1−u1
2)(α+βu1)

.

In this manner, we get
β2u1u2

2u3 + βα (u2 (u1u3 − 1))− α2.

If this equation is factored, we find

(βu1u2u3 − α) = 0 or (βu2 + α) = 0.

So, we can write

u1u2u3 = α
β or u2 = −α

β .

Here u2 6= −α
β must be satisfied since the parametric value −αβ corresponds to the infinity point of the curve γ. �

If one of these three points is at the infinity, i.e., u∗3 = −α
β , this means that this line is parallel to the asymptotes of the curve γ and cuts the

curve at two points with the parameters u∗1 and u∗2. Then the correlation between the parameters u∗1 and u∗2 is given by

u∗1u
∗
2 = −1. (13)

If the points A1 and A2 of the curve γ are represented with respect to the parameters u1 and u2, then the equation of the line A1A2 is found as

(α (u2 + u1) + βu1u2 (u1u2 + 1))x− (α (u1u2 + 1) + βu1u2 (u2 + u1)) y + u1u2 = 0. (14)

After the formation this equation we have

α ((u1 + u2)x− (u1u2 + 1) y)− βu1u2
(
− (u1u2 + 1)x+ (u2 + u1) y − 1

β

)
= 0. (15)

If we denote the slopes of the lines d1 and d2 given by the equations

(u1 + u2)x− (u1u2 + 1) y = 0 (16)

and
−β (u1u2 + 1)x+ β (u2 + u1) y − 1 = 0 (17)

by md1 and md2 , respectively, we see that these lines are perpendicular in Minkowski plane since there is the relationship md1md2 = 1.
Hence, we can interpret that the line given by the equation (14) passes through the intersection of the lines d1 and d2 which are perpendicular
to each other in the Minkowski plane.

Also, considering the equation of distance from a point to a line in the Minkowski plane we find the equation of the distance from origin to
the line A1A2 as

d =
|u1u2|√∣∣(−α2 + β2u21u
2
2

) (
u21 − 1

) (
u22 − 1

)∣∣ (18)

where ui 6= ±1, i = 1, 2.
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Let A3 be a point with the parameter −u1 on the curve γ. From the equation (18), the lines A2A1 and A2A3 have equal distance from
origin, that is, the lines A2A1 and A2A3 are symmetrical according to the point A2.

Now let’s give the formation of the circles Γ0 and Γ1. Since the geometric location of the curvature centers of the curve cp is the centering-
point curve cp̃, the curvature center of a point with the parameter u of the curve cp coincides with the same parameter point of the curve cp̃,
[11]. Let A1 and A2 be two points on the curve cp. Also, let α1 and α2 be the centers of curvature of these points. If the points A1 and A2

are given by the parameters u1 and u2 , respectively, the equation of line A1A2 is found by writing α = a3+3
3 , β = − b33 in the equation (14)

and the equation of line α1α2 is found by writing α = a3
3 , β = − b33 in the equation (14).

Thus, we get the equations of A1A2 and α1α2 lines as

((3 + a3) (u1 + u2)− b3u1u2 (1 + u1u2))x− ((3 + a3) (1 + u1u2)− b3u1u2 (u1 + u2)) y − 3u1u2 = 0

and

(a3 (u1 + u2)− b3u1u2 (1 + u1u2))x− (a3 (1 + u1u2)− b3u1u2 (u1 + u2)) y − 3u1u2 = 0,

respectively. Here, the lines A1A2 and α1α2 pass through the intersection of the lines given by the equations (16) and (17), which are
perpendicular to each other in the Minkowski plane. Here, the equation (16) indicates a line and this line passes through the pole point P and
the intersection point Q of the lines α1α2 and A1A2. The equation (17) refers to the equation of the line perpendicular to the line PQ passing
through the point Q.

In case of α = 0, by substituting the parameter equation (18) into the equation (17), for Γ0 we get

u2 − (u2 + u1)u+ u1u2 = 0. (19)

Corollary 3. u1 and u2 (the roots of the equation (19)) give the parametric expression of the intersection points of circle Γ0 with the line
given by the equation (17).

In addition, these points are on the PA1 and PA2 lines. Similarly, the above statements can be investigated for the curvature circle Γ1 in
Minkowski plane. For this, let’s first examine the line passing through the pole point P perpendicular to the line PQ. This line is given by the
following equation taking into consideration the equation (16) such that the product of the slopes of these lines is 1 and these lines pass from
pole P :

(u1 + u2) y − (u1u2 + 1)x = 0.

If the above equation and (14) are considered together, the intersection point (is denoted by R ) of this line with line A1A2 is on the line below

α ((u1 + u2)x− (u1u2 + 1) y) + u1u2 = 0. (20)

So the line passing through the point R is parallel to the line PQ. By substituting the parameter equation of circle Γ1 into the equation (20),
we get

u2 − (u2 + u1)u+ u1u2 = 0. (21)

The equation (21) is the previously obtained equation (19).

Corollary 4. u1 and u2 (the roots of the equation (21)) give the parametric expression of the intersection point of the circle Γ1 and the line
given by equation (20).
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