
Conference Proceedings of Science and Technology, 2(3), 2019, 201–204

Conference Proceeding of 8th International Eurasian Conference on Mathematical Sciences
and Applications (IECMSA-2019).

Solutions of Singular Differential Equations
by means of Discrete Fractional Analysis

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Resat Yilmazer1,∗ Gonul Oztas 1

1Department of Mathematics, University of Firat, Elazig, Turkey, ORCID:0000-0002-5059-3882
* Corresponding Author E-mail: ryilmazer@firat.edu.tr

Abstract: Recently, many researchers demonstrated the usefulness of fractional calculus in the derivation of particular solutions
of linear ordinary and partial differential equation of the second order. In this study, we acquire new discrete fractional solutions
of singular differential equations (homogeneous and nonhomogeneous) by using discrete fractional nabla operator∇υ(0 < υ < 1).
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1 Introduction

The remarkably widely investigated subject of fractional and discrete fractional calculus has gained importance and popularity during the past
three decades or so, due chiefly to its demonstrated applications in numerous seemingly diverse fields of science and engineering [1]-[4]. The
analogous theory for discrete fractional analysis was initiated and properties of the theory of fractional differences and sums were established.
Recently, many articles related to discrete fractional analysis have been published [5]-[9]. The fractional nabla operator have been applied to
various singular ordinary and partial differential equations such as the second-order linear ordinary differential equation of hypergeometric type
[10], the Bessel equation [11], the Hermite equation [12], the non- fuchsian differential equation [13], the hydrogen atom equation [14].

The aim of this article is to obtain new dfs of the singular differential equation by means of fractional calculus operator.

2 Preliminary and properties

Here we only give a very short introduction to the basic definitions in discrete fractional calculus. For more on the subject we refer the reader
to [5, 13].

Let ζ ∈ R+, n ∈ Z, such that n− 1 ≤ ζ < n. The ζth− order fractional sum of F is defined as

∇−ζ
c F (t) =

1

Γ (ζ)

t∑
τ=c

(t− ρ (τ))ζ−1F (τ) , (1)

where t ∈ Nα = {α, α+ 1, α+ 2, ...} , α ∈ R, ρ (t) = t− 1 is the backward jump operator.
The rising factorial power and rising function is given by

tn = t (t+ 1) (t+ 2) ... (t+ n− 1) , n ∈ N, t0 = 1,

tζ =
Γ (t+ ζ)

Γ (t)
, ζ ∈ R, t ∈ R\ {...,−2,−1, 0} , 0ζ = 0. (2)

Note that

∇
(
tζ
)

= ζtζ−1, (3)

where∇φ (t) = φ (t)− φ (σ (t)) = φ (t)− φ (t− 1) .
The ζth− order fractional difference of F is defined by

∇ζcF (t) = ∇n
[
∇ζc

−(n−ζ)
F (t)

]

= ∇n
[

1

Γ (n− ζ)

t∑
τ=c

(t− σ (τ))n−ζ−1F (τ)

]
, (4)
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where F is defined on Nα.
Lemma 1. (Linearity). Let F and G be analytic and single-valued functions. Then

[c1F (t) + c2G (t)]ζ = c1Fζ (t) + c2Gζ (t) , (5)

where c1 and c2 are constants, ζ ∈ R; t ∈ C.
Lemma 2. (Index law). Let φ be an analytic and single-valued function. The following equality holds(

Fζ (t)
)
η

= Fζ+η (t) = (Fη (t))ζ
(
Fζ (t) 6= 0; Fη (t) 6= 0; ζ, η ∈ R; t ∈ C

)
. (6)

Lemma 3. (Leibniz Rule). Suppose that F and G are analytic and single-valued functions. Then

∇ζ0 (FG) (t) =

t∑
n=0

(
ζ

n

)[
∇ζ−n0 F (t− n)

] [
∇nG (t)

]
, ζ ∈ R; t ∈ C, (7)

where∇nG (t) = Gn (t) is the ordinary derivative of G of order n ∈ N0.
Definition 4. µ shift operator is given by

µnF (t) = F (t− n) (8)

where n ∈ N.

3 Main results

Theorem 1. Let F ∈ {F : 0 6= |Fυ| <∞; υ ∈ R} . Then the following homogeneous ordinary differential equation:

s (1− s) F2 + [(α− 2γ) s+ γ + σ] F1 + γ (α− γ + 1) F = 0, (s ∈ C\ {0, 1}) , (9)

has particular solutions of the forms:

F = k
{
s−(υτ+γ+σ)(1− s)−(υτ+γ−α−σ)

}
−(1+υ)

, (10)

and

F = ks1−(γ+σ)
{
s−(υτ−γ−σ+2)(1− s)−(υτ+γ−α−σ)

}
−(1+υ)

(11)

where Fn = dnF/dsn (n = 0, 1, 2) , F0 = F = F (s) , α 6= 0, γ, σ are given constants, k is an arbitrary constant and τ is a shift operator
[15].
Proof. (i) When we operate∇υ to the both sides of (9) , we readily obtain;

∇υ [F2s (1− s)] +∇υ {F1 [(α− 2γ) s+ γ + σ]}+∇υ [Fγ (α− γ + 1)] = 0. (12)

Using (5)− (7) we have

∇υ [F2s (1− s)] = F2+υs (1− s) + F1+υυτ (1− 2s)− Fυυ (υ − 1) τ2 (13)

and
∇υ {F1 [(α− 2γ) s+ γ + σ]} = F1+υ [(α− 2γ) s+ γ + σ] + Fυυτ (α− 2γ) (14)

where τ is a shift operatÃűr. By substituting (13) , (14) into the (12) , we obtain

F2+υs (1− s) + F1+υ [υτ (1− 2s) + (α− 2γ) s+ γ + σ]

+Fυ
[
υ (1− υ) τ2 + υτ (α− 2γ) + γ (α− γ + 1)

]
=0. (15)

Choose υ such that

υ (1− υ) τ2 + υτ (α− 2γ) + γ (α− γ + 1) =0,

υ =

[
(τ + α− 2γ)±

√
(τ + α− 2γ)2 + 4γ (α− γ + 1)

]
/2τ. (16)

From Eq. (16), one can easily see that [
(τ + α− 2γ)2≥4γ (−α+ γ − 1)

]
,

we have then
F2+υs (1− s) + F1+υ [υτ (1− 2s) + (α− 2γ) s+ γ + σ] = 0, (17)
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from (15) and (16) .
Next, writing:

F1+υ = f (s)
[
F = f−(1+υ)

]
, (18)

we have

f1 + f

[
υτ (1− 2s) + (α− 2γ) s+ γ + σ

s (1− s)

]
= 0, (19)

from eqs. (17) and (18) . A particular solution of linear ordinary differential equation (19) :

f = ks−(υτ+γ+σ)(1− s)−(υτ+γ−α−σ). (20)

Therefore, we obtain (10) from (18) and (20) .
(ii) Set

F = sηΦ, Φ = Φ (s) . (21)

The first and second derivatives of (21) are acquired as follows:

F1 = ηsη−1Φ + sηΦ1 (22)

and
F2 = η (η − 1) sη−2Φ + 2ηsη−1Φ1 + sηΦ2. (23)

Substitute (21)− (23) into (9) , we obtain

s (1− s) Φ2 + [(1− s) 2η + (α− 2γ) s+ γ + σ] Φ1

+
[((

η2 − η
)

+ (γ + σ) η
)
s−1 −

(
η2 − η

)
+ (α− 2γ) η + γ (α− γ + 1)

]
Φ=0. (24)

Choose η such that (
η2 − η

)
+ (γ + σ) η = 0,

that is

η = 0, η = 1− (γ + σ) .

In the case η = 0, we have the same results as i.

Let η = 1− (γ + σ) . From (21) and (24) , we have

F = s1−(γ+σ)Φ (25)

and
s (1− s) Φ2 + [(2σ + α− 2) s− (γ + σ − 2)] Φ1 + [(1− σ) (σ + α)] Φ = 0 (26)

respectively.
Applying the discrete operator∇υ to both sides of (26) , we obtain

Φ2+υs (1− s) + Φ1+υ [υτ (1− 2s) + (2σ + α− 2) s− (γ + σ − 2)]

+Φυ
[
υ (1− υ) τ2 + υτ (2σ + α− 2) + (1− σ) (α+ σ)

]
=0. (27)

Choose υ such that

υ (1− υ) τ2 + υτ (2σ + α− 2) + (1− σ) (α+ σ) =0,

υ =

[
(τ + 2σ + α− 2)±

√
(τ + 2σ + α− 2)2 − 4 (σ − 1) (α+ σ)

]
/2τ. (28)

From Eq. (28), one can get [
(τ + 2σ + α− 2)2 ≥ 4 (σ − 1) (α+ σ)

]
,

then we have
Φ2+υs (1− s) + Φ1+υ [υτ (1− 2s) + (2σ + α− 2) s− (γ + σ − 2)] = 0, (29)

from (27) and (28).
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Next, by writing

Φ1+υ = g (s) ,
[
Φ = g−(1+υ)

]
, (30)

we have

g1 + g

[
υτ (1− 2s) + (2σ + α− 2) s− (γ + σ − 2)

s (1− s)

]
= 0, (31)

from (29) and (30) . A particular solution to this linear differential equation is given by

g = ks−(υτ−γ−σ+2)(1− s)−(υτ+γ−α−σ). (32)

Thus we obtain the solution (11) from (25), (30) and (32).

4 Conclusion

In this article, we applied the nabla operator of discrete fractional analysis to the second order linear differential equations. We obtained the
discrete fractional solutions of these equations via this new operator method.
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