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ANALYSIS OF FRACTIONAL DIFFERENTIAL SYSTEMS
INVOLVING RIEMANN LIOUVILLE FRACTIONAL DERIVATIVE

Songul BATİK and Fulya Yoruk DEREN

Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey

Abstract. This paper is devoted to studying the multiple positive solutions
for a system of nonlinear fractional boundary value problems. Our analysis is
based upon the Avery Peterson fixed point theorem. In addition, we include
an example for the demonstration of our main result.

1. Introduction

Researchers have focused a great deal of attention on the fractional boundary
value problems due to the rapid progress in the theory and applications of fractional
calculus. Aside from various fields of mathematics, boundary value problems for
fractional differential equations have many applications in the area of chemistry,
physics, biology, aerodynamics, control theory, economics, viscoelasticity, electrical
circuits, and so forth. Driven by the numerous applications, there are many works
related to the existence of positive solutions for the nonlinear fractional boundary
value problems. For an overview of these type of study, we mention Podlubny
[12], Jiqiang Jiang, Hongchuan Wang [21], Kilbas, Srivastava, and Trujillo [9], Bai
and Sun [1], Goodrich [3], Cabrera, Harjani and Sadarangani [15], He, Zhang,
Liu, Yonghong Wu and Cui, [16], Wang, Liang and Wang [17],Kamal Shah,Salman
Zeb,Rahmat Ali Khan [25]. Goodrich [4] studied the following fractional boundary
value problem subject to the given boundary conditions

Dαu(t) + f(t, u) = 0, 0 < t < 1, n− 1 < α ≤ n,
u(i)(0) = 0, 0 ≤ i ≤ n− 2, Dδu(1) = 0, 1 ≤ δ ≤ n− 2,
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where Dα is the standard Riemann-Liouville fractional derivative of order α and
f ∈ C([0, 1] × [0,∞)), n > 3 . The existence of positive solutions was analyzed by
means of the Krasnoselskii’s fixed point theorem on cones.
In [20], C.F.Li et al. considered the following boundary value problem of frac-

tional derivative equations

Dαu(t) + f(t, u) = 0, 0 < t < 1,

u(0) = 0,

Dβu(1) = aDβu(η),

where Dα is the standard Riemann-Liouville fractional derivative of order α, 1 <
α ≤ 2, 0 < β ≤ 1, 0 ≤ a ≤ 1, η ∈ (0, 1) and f : [0, 1]×[0,∞)→ [0,∞) is continuous.
Here, the argument relies on some fixed theorems on cones.
At the same time, boundary value problems for integer order differential sys-

tems are widely studied, despite fractional differential systems have emerged as a
significant field of investigation quite recently. Thus intensive study of the existence
theory of fractional systems has been carried out by means of methods of nonlinear
analysis such as fixed point theory, lower and upper solutions, monotone iterative
methods, see [11, 13, 14, 6, 7, 8, 5, 10, 22, 23, 24] and the references therein.
In this paper, we discuss the multiple positive solutions for the following systems

of nonlinear fractional differential equations :

Dq1u(t) + f1(t, u(t), v(t)) = 0, t ∈ (0, 1), (1)

Dq2v(t) + f2(t, u(t), v(t)) = 0, t ∈ (0, 1), (2)

u(0) = u′(0) = 0, Dp1u(1) = µDp1u(η) + g1(

∫ 1

0

u(s)dA1(s),

∫ 1

0

v(s)dA1(s)), (3)

v(0) = v′(0) = 0, Dp2v(1) = µDp2v(η) + g2(

∫ 1

0

u(s)dA2(s),

∫ 1

0

v(s)dA2(s)), (4)

in which D is the Riemann-Liouville fractional derivative, 2 < qi ≤ 3 and 0 < pi ≤
1, 0 < qi − pi − 1 for i = 1, 2, 0 < η < 1, µ ∈ (0,∞), µηqi−pi−1 < 1,

∫ 1

0
u(s)dAi(s)

and
∫ 1

0
v(s)dAi(s) are the Riemann- Stieltjes integrals with positive measures, A1

and A2 are functions of bounded variation, fi ∈ C([0, 1] × [0,∞) × [0,∞), [0,∞)),
gi ∈ C([0,∞]× [0,∞), [0,∞)) for i = 1, 2.
Motivated by the above papers, our goal is to obtain the existence of multiple

positive solutions for the fractional differential system (1)-(4). Here, we employ
Riemann-Stieltjes integral boundary conditions. As they include multi-point and
integral conditions as special cases, the system (1)-(4) is more general than the
problems mentioned in some literature. Applying the Avery Peterson fixed point
theorem, multiple positive solutions are established. An example is also presented
to illustrate our main result.
In order to present our main result, we will make use of the following concepts

and the Avery Peterson fixed point theorem.
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Let ϕ and θ be nonnegative continuous convex functionals on the cone P, φ be a
nonnegative continuous concave functional on P, and ψ be a nonnegative continuous
functional on P. Then, for positive numbers a,b,c,d we define the following sets:

P (ϕ, d) = {x ∈ P : ϕ(x) < d} ,
P (ϕ, φ, b, d) = {x ∈ P : b ≤ φ(x), ϕ(x) ≤ d} ,

P (ϕ, θ, φ, b, c, d) = {x ∈ P : b ≤ φ(x), θ(x) ≤ c, ϕ(x) ≤ d} ,
R(ϕ,ψ, a, d) = {x ∈ P : a ≤ ψ(x), ϕ(x) ≤ d} .

Theorem 1. [18] Let P be a cone in a real Banach space E. and ϕ, θ, φ, ψ be
defined as above, furthermore ψ holds ψ(kx) ≤ kψ(x) for 0 ≤ k ≤ 1 such that, for
some positive numbers M and d,

φ(x) ≤ ψ(x) and ‖x‖ ≤Mϕ(x)

for all x ∈ P (ϕ, d). Assume T : P (ϕ, d) → P (ϕ, d) is completely continuous and
there exist positive numbers a,b,c with a < b, such that

(S1) : {x ∈ P (ϕ, θ, φ, b, c, d) : φ(x) > b} 6= ∅ and φ(Tx) > b for x ∈ P (ϕ, θ, φ, b, c, d),
(S2) : φ(Tx) > b for x ∈ P (ϕ, φ, b, d) with θ(Tx) > c,
(S3) : 0 /∈ R(ϕ,ψ, a, d) and ψ(Tx) < a for x ∈ R(ϕ,ψ, a, d) with ψ(x) = a.
Then, T has at least three fixed points x1, x2, x3 ∈ P (ϕ, d), such that
ϕ(xi) ≤ d , for i = 1, 2, 3; b < φ(x1), a < ψ(x2), with φ(x2) < b and

ψ(x3) < a.

2. Existence Results

During the last decade, many definitions on the fractional calculus have been
carried out. In our paper, our work is based upon the Riemann Liouville fractional
operator defined by

Dνg(t) =
1

Γ(n− ν)
(
d

dt
)
n ∫ t

0

(t− s)n−ν−1g(s)ds,

where g : (0,∞)→ R is a function, n is the smallest integer greater than or equal to
ν whenever the right hand side is defined. In particular, for ν = n,Dνg(t) = Dng(t).
In order to derive the main result of the system (1)-(4), we present the following

lemma:

Lemma 2. If h, y ∈ C[0, 1], then the fractional differential equation

Dq1u(t) + h(t) = 0, t ∈ (0, 1), (5)

Dq2v(t) + y(t) = 0, t ∈ (0, 1), (6)

with the boundary conditions (3) and (4) has the solution

u(t) =

∫ 1

0

H1(t, s)h(s)ds+
tq1−1Γ(q1 − p1)

Γ(q1)∆1
g1(

∫ 1

0

u(s)dA1(s),

∫ 1

0

v(s)dA1(s)),
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v(t) =

∫ 1

0

H2(t, s)y(s)ds+
tq2−1Γ(q2 − p2)

Γ(q2)∆2
g2(

∫ 1

0

u(s)dA2(s),

∫ 1

0

v(s)dA2(s)),

where

Hi(t, s) = Gi(t, s) +
tqi−1µ

Γ(qi)∆i
Gi(η, s), (7)

Gi(t, s) =
1

Γ(qi)

{
tqi−1(1− s)qi−pi−1 − (t− s)qi−1, 0 ≤ s ≤ t ≤ 1,

tqi−1(1− s)qi−pi−1, 0 ≤ t ≤ s ≤ 1,
(8)

Gi(η, s) =

{
ηqi−pi−1(1− s)qi−pi−1 − (η − s)qi−pi−1, 0 ≤ s ≤ η ≤ 1,

ηqi−pi−1(1− s)qi−pi−1, 0 ≤ η ≤ s ≤ 1,
(9)

and ∆i = 1− µηqi−pi−1, (i ∈ {1, 2}).

Proof. The equations (5) and (6) can be translated into the following equations:

u(t) = − 1

Γ(q1)

∫ t

0

(t− s)q1−1h(s)ds+ c1t
q1−1 + c2t

q1−2 + c3t
q1−3,

v(t) = − 1

Γ(q2)

∫ t

0

(t− s)q2−1y(s)ds+ d1t
q2−1 + d2t

q2−2 + d3t
q2−3.

Taking into account of (3)-(4) and Dσ[tq−1] = Γ(q)
Γ(q−σ) t

q−σ−1 (σ, q > 0), we obtain
c2 = c3 = 0, d2 = d3 = 0 and

c1 =
1

Γ(q1)(1− µηq1−p1−1)

∫ 1

0

(1− s)q1−p1−1h(s)ds

− µ

Γ(q1)(1− µηq1−p1−1)

∫ η

0

(η − s)q1−p1−1h(s)ds

+
Γ(q1 − p1)

Γ(q1)(1− µηq1−p1−1)
g1(

∫ 1

0

u(s)dA1(s)),

∫ 1

0

v(s)dA1(s)),

d1 =
1

Γ(q2)(1− µηq2−p2−1)

∫ 1

0

(1− s)q2−p2−1y(s)ds

− µ

Γ(q2)(1− µηq2−p2−1)

∫ η

0

(η − s)q2−p2−1y(s)ds

+
Γ(q2 − p2)

Γ(q2)(1− µηq2−p2−1)
g2(

∫ 1

0

u(s)dA2(s)),

∫ 1

0

v(s)dA2(s)).

So, the solution is

u(t) = − 1

Γ(q1)

∫ t

0

(t− s)q1−1h(s)ds

+
tq1−1

Γ(q1)(1− µηq1−p1−1)

∫ 1

0

(1− s)q1−p1−1h(s)ds
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− tq1−1µ

Γ(q1)∆1

∫ η

0

(η − s)q1−p1−1h(s)ds

+
tq1−1Γ(q1 − p1)

Γ(q1)∆1
g1(

∫ 1

0

u(s)dA1(s)),

∫ 1

0

v(s)dA1(s))

=

∫ 1

0

H1(t, s)h(s)ds+
tq1−1Γ(q1 − p1)

Γ(q1)∆1
g1(

∫ 1

0

u(s)dA1(s)),

∫ 1

0

v(s)dA1(s)),

v(t) = − 1

Γ(q2)

∫ t

0

(t− s)q2−1y(s)ds

+
tq2−1

Γ(q2)(1− µηq2−p2−1)

∫ 1

0

(1− s)q2−p2−1y(s)ds

− tq2−1µ

Γ(q2)∆2

∫ η

0

(η − s)q2−p2−1y(s)ds

+
tq2−1Γ(q2 − p2)

Γ(q2)∆2
g2(

∫ 1

0

u(s)dA2(s)),

∫ 1

0

v(s)dA2(s))

=

∫ 1

0

H2(t, s)y(s)ds+
tq2−1Γ(q2 − p2)

Γ(q2)∆2
g2(

∫ 1

0

u(s)dA2(s)),

∫ 1

0

v(s)dA2(s)).

�

Lemma 3. (See [2]) The function Gi(t, s), i ∈ {1, 2} holds the following properties :

(i) Gi(t, s) ≥ 0 for any t, s ∈ [0, 1],

(ii) pitqi−1Li(s) ≤ Gi(t, s) ≤ Li(s) for any t, s ∈ [0, 1],
where

Li(s) =
s(1− s)qi−pi−1

Γ(qi)
. (10)

One can easily obtain the following lemma.

Lemma 4. The function Hi(t, s), i ∈ {1, 2} holds the following properties :

(i) Hi(t, s) ≥ 0 for any t, s ∈ [0, 1],

(ii) pitqi−1Ki(s) ≤ Hi(t, s) ≤ Ki(s) for any t, s ∈ [0, 1],

where Ki(s) =
s(1− s)qi−pi−1

Γ(qi)
+
µGi(η, s)

Γ(qi)∆i
.
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Let us introduce the Banach space B = C[0, 1]×C[0, 1] with the norm ‖(u, v)‖ =
‖u‖+ ‖v‖ for (u, v) ∈ B and ‖u‖ = maxt∈[0,1] |u(t)|. Define a cone

P =

{
(u, v) ∈ B : u(t) ≥ 0, v(t) ≥ 0, t ∈ [0, 1], min

t∈[η,1]
(u(t) + v(t)) ≥ p‖(u, v)‖

}
where p = min

{
p1η

q1−1, p2η
q2−1

}
and operators Ti : P → B, i ∈ {1, 2}given by

T1(u, v)(t) =

∫ 1

0

H1(t, s)f1(s, u(s), v(s))ds

+
tq1−1Γ(q1 − p1)

Γ(q1)∆1
g1(

∫ 1

0

u(s)dA1(s),

∫ 1

0

v(s)dA1(s)),

T2(u, v)(t) =

∫ 1

0

H2(t, s)f2(s, u(s), v(s))ds

+
tq2−1Γ(q2 − p2)

Γ(q2)∆2
g2(

∫ 1

0

u(s)dA2(s),

∫ 1

0

v(s)dA2(s)).

Let us set

Ni = 4

∫ 1

0

Ki(s)ds,

mi = 2p

∫ 1

η

Ki(s)ds,

Li =
4Γ(qi − pi)

∫ 1

0
dAi(s)

Γ(qi)∆i
.

To prove that the system (1) − (4) has three positive solutions, the following
three functionals are defined by

φ(u, v) = min
t∈[η,1]

(u(t) + v(t)), ψ(u, v) = θ(u, v) = ϕ(u, v) = ‖u‖+ ‖v‖.

The main theorem of this paper is stated as follows :

Theorem 5. Assume that there exist constants 0 < a < b < b
p < c < d such that

b ≤ mid
Ni

and fi, gi hold the following conditions:

(C1) fi(t, u, v) ≤ d

Ni
for t ∈ [0, 1], (u+ v) ∈ [0, d],

(C2) fi(t, u, v) >
b

mi
for t ∈ [η, 1], (u+ v) ∈ [b, c],

(C3) fi(t, u, v) ≤ a

Ni
for t ∈ [0, 1], (u+ v) ∈ [0, a],

(C4) gi(u, v) ≤ u+ v

Li
for (u+ v) ∈ [0, d

∫ 1

0
dAi(s)].
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Then the system (1) − (4) has at least three positive solutions (ui, vi) (i = 1, 2, 3)
such that ‖(ui, vi)‖ ≤ d, i = 1, 2, 3; b ≤ φ(u1, v1), a < ‖ψ(u2, v2)‖ with φ(u2, v2) < b
and ‖(u3, v3)‖ < a.

Proof. Define the completely continuous operator T : P → B by

T (u, v)(t) = (T1(u, v)(t), T2(u, v)(t)).

As easily seen, the fixed point of the operator T is the solution of the system
(1) − (4). First, we check that T : P → P . Lemma 4 and the nonnegativity of
fi and gi imply that T1(u, v)(t) ≥ 0, T2(u, v)(t) ≥ 0 for t ∈ [0, 1]. Besides, for
(u, v) ∈ P

‖T1(u, v)‖ ≤
∫ 1

0

K1(s)f1(s, u(s), v(s))ds

+
Γ(q1 − p1)

Γ(q1)∆1
g1(

∫ 1

0

u(s)dA1(s),

∫ 1

0

v(s)dA1(s)),

‖T2(u, v)‖ ≤
∫ 1

0

K2(s)f2(s, u(s), v(s))ds

+
Γ(q2 − p2)

Γ(q2)∆2
g2(

∫ 1

0

u(s)dA2(s),

∫ 1

0

v(s)dA2(s))

and

min
t∈[η,1]

T1(u, v)(t) ≥ p1η
q1−1

∫ 1

0

K1(s)f1(s, u(s), v(s))ds

+
ηq1−1Γ(q1 − p1)

Γ(q1)∆1
g1(

∫ 1

0

u(s)dA1(s),

∫ 1

0

v(s)dA1(s))

≥ p1η
q1−1‖T1(u, v)‖.

In a similar manner, we obtain min
t∈[η,1]

T2(u, v)(t) ≥ p2η
q2−1‖T2(u, v)‖. Thus,

min
t∈[η,1]

{T1(u, v)(t) + T2(u, v)(t)} ≥ p1η
q1−1‖T1(u, v)‖+ p2η

q2−1‖T2(u, v)‖

≥ p[‖T1(u, v)‖+ ‖T2(u, v)‖]
= p‖T (u, v)‖,

so T : P → P . Furthermore by employing standard methods, T is a completely
continuous operator.
Now, all the conditions of Theorem 1 will be shown to be verified. First, we

indicate that T : P (ϕ, d) → P (ϕ, d). If (u, v) ∈ P (ϕ, d), then ϕ(u, v) ≤ d, ‖u‖ +
‖v‖ ≤ d . In view of C4, we can get

gi(

∫ 1

0

u(s)dAi(s),

∫ 1

0

v(s)dAi(s)) ≤
∫ 1

0
(u(s) + v(s))dAi(s)

Li
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≤
d
∫ 1

0
dAi(s)

Li
.

Hence, (C1) yields that

max
t∈[0,1]

T1(u, v)(t) = max
t∈[0,1]

∣∣∣ ∫ 1

0

H1(t, s)f1(s, u(s), v(s))ds

+
tq1−1Γ(q1 − p1)g1(

∫ 1

0
u(s)dA1(s),

∫ 1

0
v(s)dA1(s))

Γ(q1)∆1

∣∣∣
≤ d

N1

∫ 1

0

K1(s)ds+
Γ(q1 − p1)d

Γ(q1)∆1L1

∫ 1

0

dA1(s)

≤ d

2
.

In the same way, one has maxt∈[0,1] T2(u, v)(t) ≤ d
2 . So, we have T : P (ϕ, d) →

P (ϕ, d). Next, we indicate that (S1) of Theorem 1 is fulfilled. Take ( b
2p ,

b
2p ).

Then, one may verify that ( b
2p ,

b
2p ) ∈ P (ϕ, θ, φ, b, c, d) and φ(u, v) > b. Hence,

{(u, v) ∈ P (ϕ, θ, φ, b, c, d) : φ(u, v) > b} 6= ∅. Choose (u, v) ∈ P (ϕ, θ, φ, b, c, d), then
this means (u(t) + v(t)) ∈ [b, c] for any t ∈ [η, 1]. By C2 we get

φ(T (u, v)) = min
t∈[η,1]

(T1(u, v)(t) + T2(u, v)(t))

≥ p

∫ 1

η

K1(s)f1(s, u(s), v(s))ds+ p

∫ 1

η

K2(s)f2(s, u(s), v(s))ds

> p
b

m1

∫ 1

η

K1(s)ds+ p
b

m2

∫ 1

η

K2(s)ds

> b.

Thus (S1) of Theorem 1 holds.
Finally, we need to show that the last condition of Theorem 1 is fulfilled. In fact,

if (u, v) ∈ P (ϕ, φ, b, d) with θ(T (u, v)) > c, then

min
t∈[η,1]

(T1(u, v)(t) + T2(u, v)(t)) ≥ p‖T (u, v)‖

> pc > b,

so, (S2) holds.
Since a > 0, 0 is not member of R(ϕ,ψ, a, d) with ψ(u, v) = a. Let (u, v) ∈

R(ϕ,ψ, a, d) and ψ(u, v) = a, then using (C3), we get

ψ(T (u, v)) = ‖T (u, v)‖

≤
∫ 1

0

K1(s)f1(s, u(s), v(s))ds+

∫ 1

0

K2(s)f2(s, u(s), v(s))ds
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+
Γ(q1 − p1)g1(

∫ 1

0
u(s)dA1(s),

∫ 1

0
v(s)dA1(s))

Γ(q1)∆1

+
Γ(q2 − p2)g2(

∫ 1

0
u(s)dA2(s),

∫ 1

0
v(s)dA2(s))

Γ(q2)∆2

≤ a

N1

∫ 1

0

K1(s)ds+
a

N2

∫ 1

0

K2(s)ds

+
Γ(q1 − p1)a

Γ(q1)∆1L1

∫ 1

0

dA1(s) +
Γ(q2 − p2)a

Γ(q2)∆2L2

∫ 1

0

dA2(s)

= a.

Because all the condition of Theorem 1 fulfilled, the assertion of Theorem 5 is
satisfied. The proof is complete. �

Example 6. Consider


D5/2u(t) + f1(t, u(t), v(t)) = 0, t ∈ (0, 1),
D5/2v(t) + f2(t, u(t), v(t)) = 0, t ∈ (0, 1),
u(0) = u′(0) = v(0) = v′(0) = 0,

D1/2u(1) = 1/2D1/2u(1/2) + g1(
∫ 1

0
u(s)dA1(s),

∫ 1

0
v(s)dA1(s)),

D1/2v(1) = 1/2D1/2v(1/2) + g2(
∫ 1

0
u(s)dA2(s),

∫ 1

0
v(s)dA2(s)),

(11)

in which q1 = q2 = 5
2 , p1 = p2 = 1

2 , µ = 1
2 , A1(s) = A2(s) = s2, η = 1

2 ,

f1(t, u, v) =


t
7 + 4(u+v)

5 , (u+ v) ∈ [0, 10],
t
7 + 642(u+v)−6340

10 , (u+ v) ∈ [10, 20],
t
7 + 5(u+v)+37600

58 , (u+ v) ∈ [20, 600],
t
7 + 700, (u+ v) ∈ [600,∞),

f2(t, u, v) =


t

10 + 4(u+v)
5 , (u+ v) ∈ [0, 10],

t
10 + 642(u+v)−6340

10 , (u+ v) ∈ [10, 20],
t

10 + 5(u+v)+37600
58 , (u+ v) ∈ [20, 600],

t
10 + 700, (u+ v) ∈ [600,∞).

And

gi(u, v) =

{
9
√
π

64 ln(u+ v + 1), (u+ v) ∈ [0, 600],
9
√
π

64 ln(601), (u+ v) ∈ [600,∞).

It is easily seen that ∆1 = ∆2 = 3
4 . We obtain, N1 = N2 = 4

3
√
π
, then p = ( 1

2 )
5
2 ,

m1 = m2 = 1

2
5
2 3
√
π
. And L1 = L2 = 64

9
√
π
. Choosing,

f1(t, u, v) ≤ d
N1
≈ 1413, 7, for t ∈ [0, 1], (u+ v) ∈ [0, 600],
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f1(t, u, v) ≥ b

m1
≈ 601, 59, for t ∈ [ 1

2 , 1], (u+ v) ∈ [20, 200],

f1(t, u, v) ≤ a
N1
≈ 13, 29 for t ∈ [0, 1], (u+ v) ∈ [0, 10],

gi(u, v) ≤ u+v
Li

for (u+ v) ∈ [0, 600].

We conclude that all the assumptions of Theorem 5 are verified, thus the problem
(11) has at least three positive solutions.
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