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Abstract
While aiming particularly at handling under-dispersion, we explore a type of models con-
structed conservatively using the minimum information of first two moments for the fitting
of binomial count data, which could have under, equal or over-dispersion. The extended
Altham distribution (EAD) families were presented in this study. The extended Altham
families are very close to the binomial distribution under equal dispersion setting, implying
that they are alternative models of the binomial distribution. The feature that extended
Altham families can reach the full range of dispersion outperforms some commonly used
models such as extended beta-binomial and quasi-binomial which have restricted ranges of
dispersion. Moreover, the extended Altham family can have double peaks at two bound-
aries, indicating they are feasible for fitting the double tail inflation phenomenon. This
study illustrated the modeling using extended Altham families for both under-dispersed
and over-dispersed binomial data resulted from disease cases within the same family.
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1. Introduction
Binomial count data, a type of count data with bounded supports, arise from many

disciplines such as toxicological study, medical research, ecology, agriculture, logistics
management, linguistics, electronic engineering, political science, and so on. This type
of data are often associated with an important quantity called proportion which is the
study purpose. For the binomial count data, the most commonly used model is binomial
distribution. The binomial random variable (rv) is the sum of independent and identically
distributed (iid) Bernoulli rv’s which have a fixed success probability for value 1. This
success probability is the interested population proportion.

However, the above binomial setting is too ideal and simple. In reality, there could exist
more complicated situations. For example, the success probability may be a rv instead of a
fixed constant, or the Bernoulli rv’s may positively or negative correlated (corresponding
to attraction or repulsion). The data could even result from an aggregation of subsets
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with varying upper bounds. Thus, observations could appear to be over-dispersion or
under-dispersion relative to the binomial distribution.

Handling over-dispersion has received a great deal of attention and is quite mature.
The common way is to us binomial mixture. Allowing varying success probabilities in
the binomial distribution can yield a mixture with over-dispersion relative to the binomial
distribution. A widely used model is the beta-binomial which is the binomial mixture of
the beta distribution, i.e., the success probability follows a beta distribution. Refer to
Wilcox [18] for a review of beta-binomial and its extensions.

However, in reality, the under-dispersion can occur, especially in the repulsion situation.
Bailey [4] reported the repulsion examples of function word counts, which are under-
dispersed relative to binomial due to the nature that a function word can not follow itself
in general. Assuming negative correlation among Bernoulli rv’s, the sum of them will result
in a distribution of under-dispersion relative to the binomial. See Theorem 7.1 in Joe [12].
Viveros-Aguilera, Balasubramanian and Balakrishnan [17] constructed a concrete example
using the homogeneous Markov chain for binary response. In addition, quasi-binomial and
its variations prescribe non-homogeneous dependence mechanisms for successive trials by
Chakraborty and Das [5]. We show another possibility leading to under-dispersion in
Section 2, which is a mixture of varying upper bounds of supports.

Prentice [15] extended the beta-binomial to allow limited under-dispersion. Consul [8]
proposed the quasi-binomial (type I) using an urn model, in which the success probability
of the i-th trial has an additional part proportional to i (i > 1). This additional part
in the success probability can be negative or positive, resulting in under-dispersion or
over-dispersion, but both under- and over-dispersions are bounded. Some extensions of
quasi-binomial can be found in Mishra, Tiwary and Singh [14], Dobson, Carreras and
Newman [9], Chakraborty and Das [5] and some advanced studies in Altham [2,3]. Other
models using particular mechanisms like Bailey [4] were practised in the literature too.
Although there are many attempts to handle the under-dispersion case, none of them
becomes a mature tool for a general case.

The descriptive statistics are not always as easy as might be expected, particularly
when data exhibit skewness and/or outliers. A relevant example is given by Chatfield [6]
which involves the number of issues of a particular monthly magazine read by 20 people
in a year. In this example, the data has bimodal U-shape which is even more difficult
to summarize than a skewed distribution. Therefore, the sample mean and standard
deviation are potentially very misleading. The proportion of regular readers is a useful
statistic, but it may be sensible to describe the data in words rather than with summary
statistics.

Since binomial count data can arise from complex situations, none of existing models
provides a unified way to handle them. Thus, there is a need to develop a unified model
capable of handling various dispersion situations. To this end, we construct models with
specified mean and variance using the entropy method. The resulted two-parameter models
can reach the full range of dispersion, providing a unified way for modelling binomial count
data with different dispersion case.Also, numerical comparison shows that the proposed
models are quite close to the binomial distribution in the equal-dispersion setting. Hence,
they are alternative to the binomial model in the equal-dispersion setting.

In summary, the proposed two-parameter models have the ability to better fit various
binomial count data in a unified way. Based on our proposed models, we have found
that the Altham distribution [1] is a special case by reparametrization. Thus, this finding
uncovers the feature of full dispersion of the Altham distribution. To credit Altham, the
models we proposed are named as the extended Altham distribution families (EAD).

The remainder of this paper is organized as follows. We define new exponential families
in Section 2, with the computational algorithm for the probability mass function (pmf).
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MLEs are derived in Section 3. We conduct simulation study and illustrate data examples
in Section 4. A brief discussion is given in Section 5.

2. Model construction
In this section, we shall present the construction of extended Altham distribution fam-

ilies by using Kullback-Leibler (KL) divergence measure. KL is non-symmetric measure
defined by

KL(pi||qi) =
M∑

i=0
pi log(pi

qi
) (2.1)

and it gives the distance between two probability distributions, P and Q, where Q is given
distribution and P is unknown probability distribution. The distribution Q is known as a
priori distribution.

For example, if a priori distribution Q is considered as a discrete uniform distribution
assigns equal probability 1/(M + 1) to every point in the support, then the closest distri-
bution in sense of KL measure will be the distribution that has the maximum uncertainty
in the support, leading to the maximum entropy. For a discrete distribution, denote the
probability mass function (pmf) as Pr[X = i] = pi, (i = 0, 1, . . . , M), the mean as µ
and variance as σ2. Given the information of a priori distribution Q, mean and variance,
KL optimization defines the distribution which obtain the probability distribution which
satisfy minimum KL distance. Encouraging probability assignment in the support as even
as possible, thus, taking advantage of given information in a minimum and conservative
sense. That is

min
{

M∑
i=0

pi log(pi

qi
)
}

, (2.2)

subject to three constrains
M∑

i=0
pi = 1,

M∑
i=0

ipi = µ,
M∑

i=0
i2pi = σ2 + µ2. (2.3)

There is no explicit form of pmf in terms of parameters µ and σ2, however, there is an
explicit form in terms of Lagrangian multipliers β’s:

pi = qiC(β1, β2)eiβ1+i2β2 , i = 0, 1, . . . , M, (2.4)
where C(β1, β2) is the normalizing constant.

Note that if Q is considered as a binomial distribution, the pmf will be Altham dis-
tribution [1]. Thus, we call this family as extended Altham distribution family. In the
following, we give a formal definition.

Definition 2.1. (extended Altham distribution family): A rv X is said to be from
the extended Altham distribution family, denoted as extended Altham(M, h, β1, β2) where
−∞ < β1, β2 < ∞, if its probability mass function (pmf) is of form:

pi ∝ hi exp(β1i + β2i2), i = 0, 1, . . . , M, (2.5)
where hi is an arbitrary function with positive values and β1 and β2 are real parameters
and satisfy

M∑
i=0

Pr[X = i] =
M∑

i=0
hiC(β1, β2) exp(iβ1 + i2β2) = 1, (2.6)
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E[X] =
M∑

i=0
i Pr[X = i] =

M∑
i=0

ihiC(β1, β2) exp(iβ1 + i2β2) = µ, (2.7)

E[X2] =
M∑

i=0
i2 Pr[X = i] =

M∑
i=0

i2hiC(β1, β2) exp(iβ1 + i2β2) = σ2 + µ2, (2.8)

where C(β1, β2) is the normalizing constant.

β1 and β2 seem to govern the increasing or decreasing speed of pmf, but no direct
connection with the mean and variance. The parametrization in terms of µ and σ2 has
clear explanation, however, no analytical pmf available. But this can be compensated by
numerical solution.

Since constrain (2.7) implies

C−1(β1, β2) =
M∑

i=0
hie

iβ1+i2β2 (2.9)

hence, there are only two independent parameters: β1 and β2. For any discrete distribution
on the support {0, 1, . . . , M}, since

µ =
M∑

i=1
ipi = E[1 × X] ≤ E[X2] ≤ E[M × X] = M

M∑
i=1

ipi = Mµ, (2.10)

the natural ranges of µ and σ2 are

0 ≤ µ ≤ M, max(0, µ − µ2) ≤ σ2 = E[X2] − µ2 ≤ Mµ − µ2. (2.11)

There is no restriction for parameters µ and σ2, thus, these two parameters can vary in
their full ranges shown in (2.14). However, the ranges of β1 and β2 can not be determined
in explicit forms.

When M = 1, the rv X degenerates to the Bernoulli case, and only one parameter is
needed. Thus, we exclude this extreme case for the upper bound of the support, and only
consider M ≥ 2.

When M = i, the pmf can be expressed in terms of hi and β = (β1, β2):

pi = log(hi) + β[(i + 1)α − iα], (2.12)

where α > 0 and hi are arbitrary positive valued function.
The extended Altham distribution has only two independent parameters: β1 and β2.
For any discrete distribution on the support {0, 1, . . . , M}, since

µ =
M∑

i=1
ipi = E[1 × X] ≤ E[X2] ≤ E[M × X] = M

M∑
i=1

ipi = Mµ, (2.13)

the natural ranges of µ and σ2 are

0 ≤ µ ≤ M, max(0, µ − µ2) ≤ σ2 = E[X2] − µ2 ≤ Mµ − µ2. (2.14)

There is no restriction for parameters µ and σ2, thus, these two parameters can vary in
their full ranges shown in (2.14). However, the ranges of β1 and β2 can not be determined
in explicit forms.

The binomial distribution is usually referred as the equally-dispersed distribution. As-
sume Y ∼ binomial(M, p) which has pmf

pi =
(

M

i

)
pi(1 − p)M−i, 0 ≤ p ≤ 1, i = 0, 1, . . . , M. (2.15)



Modeling under or over-dispersed binomial count data 259

Then E[Y ] = Mp and V ar[Y ] = Mp(1 − p). The ratio of variance to mean is V ar[Y ]
E[Y ] =

1−p = 1− E[Y ]
M . A discrete distribution on the same support is said to be under-dispersed

or over-dispersed if its ratio is smaller or bigger than that of the binomial distribution of
the same mean. That is, the comparison is regarded to the binomial distribution of the
same mean.

For convenience, we define the dispersion index for discrete distribution on the support
{0, 1, . . . , M} as follows

D = V ar[Y ]
E[Y ] (1 − E[Y ]/M)

. (2.16)

Then, a discrete distribution on the support {0, 1, . . . , M} is said to be under-dispersed,
equally-dispersed or over-dispersed if its dispersion index defined in (2.16) is smaller than,
equal to or bigger than 1 respectively. Obviously, the binomial distribution is equally-
dispersed. However, other distributions can be equally-dispersed too.

According to (2.14), the full range of dispersion is

max
(

0,
1 − µ

1 − µ/M

)
= max(0, µ(1 − µ))

µ(1 − µ/M)
≤ D ≤ Mµ − µ2

µ(1 − µ/M)
= M. (2.17)

Note that the lower bound is 1−µ
1−µ/M > 0 when 0 ≤ µ < 1, and 0 otherwise. When M is

large, the interval (0, 1) for under-dispersion is very narrow comparing with the interval
(1, M) for over-dispersion, one might uses log(D) as the dispersion index. But to keep
consistent with the convention, we use (2.16).

The over-dispersion is usually explained by a mixture of binomial, say the beta-binomial.
We have found that under-dispersion could be caused by a mixture too, but of varying
upper bounds of supports. Here we illustrate using a simple example of two-component
binomial mixture.

Let X1 ∼ binomial(M1, p1) and X2 ∼ binomial(M2, p2), where M1 < M2. Assume
E[X1] = E[X2] = µ < M1. Denote I ∼ Bernoulli(p), and define Y conditional on I as
follows

[Y |I = 1] ∼ binomial(M1, p1), [Y |I = 0] ∼ binomial(M2, p2). (2.18)

Note that the support of Y is {0, 1, . . . , M2}. Then

E[Y ] = E{E[Y |I]} = pE[X1] + (1 − p)E[X2] = µ, (2.19)
V ar[Y ] = E[(Y − µ)2] = E{E[(Y − µ)2|I]} (2.20)

= pV ar[X1] + (1 − p)V ar[X2]
= pµ(1 − µ/M1) + (1 − p)µ(1 − µ/M1)
= µ{1 − [pµ/M1 + (1 − p)µ/M2]}
< µ(1 − µ/M2).

Thus

D = µ{1 − [pµ/M1 + (1 − p)µ/M2]}
µ(1 − µ/M2)

<
µ(1 − µ/M2)
µ(1 − µ/M2)

= 1, (2.21)

implying that Y is under-dispersed.
In order to illustrate the extended Altham distribution family, we considered the fol-

lowing models with different hi functions:
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Model 1. hi = 1; flat (Discrete Uniform) (2.22)
Model 2. hi = log(M − X + 1) + 1; decreasing (2.23)

Model 3. hi = M !
(M − X)!(X)!

; convex (Weighted Binomial) (2.24)

Model 4. hi = (M − X)!(X)!
M !

; concave (2.25)

Model 5. hi = X + 1; increasing (2.26)

Model 6. hi = 1
(X + 1)

; decreasing (2.27)

Model 7. hi = M − X + 1; decreasing (2.28)

Model 8. hi = 1
(M − X + 1)

; increasing (2.29)

Model 9. hi = X(M − X) + 1; convex (2.30)

Model 10. hi = 1
X(M − X) + 1

; concave (2.31)

Model 11. hi = log(X + 1) + 1; increasing (2.32)

Model 12. hi = 1
log(X + 1) + 1

; decreasing. (2.33)

The dispersion index for extended Altham(µ, σ2) is D = σ2

µ(1−µ/M) , which can reach the
full range of dispersion because of no restriction on parameters µ and σ2. Since σ2 is inde-
pendent of µ, D could be smaller than, equal to or bigger than 1. Therefore, the extended
Altham family covers all dispersion situations. The extended Altham distribution family
given by 2.5 includes Binomial distribution when the function hi = 1,

Weighted Binomial distributions Zelterman [19] when the function hi is the binomial
coefficient and so Altham distribution [1] because it is known to be an example of a
weighted binomial model.

For comparison purposes, we need reparametrization so that we can fix (µ, σ2). Figure 1
and 2 displays the pmf profiles of the extended Altham distributions with hi functions given
by 2.22-2.33, mean µ = 5 and various dispersions using the developed numerical algorithm.
Comparing with Binomial distribution (red line), the under-dispersed extended Altham
distributions (green lines) seem to have larger probability masses around the mean, while
the over-dispersed extended Altham distributions (blue lines) attempt to have more masses
at two boundaries. When the dispersion large enough, the pmf shows U-shape, like that
of the beta-binomial distributions.

Since the extended Altham distribution can have equal dispersion, it is natural to
compare it with the binomial distributions under the same means.

Figure 3 and 4 demonstrate some of them on the support {0, 1, . . . , 40}. We see that
both pmf’s are very close when the mean is not close to the two boundaries. When
the mean close to two boundaries, there are slight differences among two distributions,
and the extended Altham distribution assigns more masses at 0 or M . For many values
of M , we check the maximum absolute difference of pmf of two distributions under the
same mean, and find that this maximum is no more than 3% when the mean close to
boundaries, and becomes smaller when the mean close to the center of the support. The
larger the M , the smaller the maximum of probability difference. From the viewpoint of
distribution theory, this suggests that the binomial distribution can be approximated by
the extended Altham distribution. On the other hand, for the distribution constructed
using the minimum information of mean and equal-dispersion, the binomial distribution is
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Figure 1. Probability profiles of the extended Altham distributions of mean
µ = 5 and various dispersions regarding to hi given by 2.22 and 2.27 The red
line indicates the equal dispersion. The blue lines correspond to over dispersions
of 2, 3, . . . , 9, while the green lines shows under dispersions of 0.1, 0.2, . . . , 0.9.
The most centered extended Altham distributions with the largest mass at 5 has
dispersion 0.1, and the most spread extended Altham distributions with largest
masses at two boundaries has dispersion 9.

very close to it. Thus, from the aspect of modelling, such a fact implies that the extended
Altham distribution could be an alternative of the binomial distribution if the mean is not
extremely small or large.

Note that the extended beta-binomial and quasi-binomial can handle both under-
dispersion and over-dispersion too. The beta-binomial distribution is constructed us-
ing mixture. Assume the success probability in binomial distribution p ∼ beta(a, b)
(a > 0, b > 0), the pmf of beta-binomial(M, a, b) is

pi =
(

M

i

)
B(a + i, b + M − i)

B(a, b)
, i = 0, 1, . . . , M, (2.34)

where B(x, y) is the complete beta function. See Hasemann and Kupper [11].
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Figure 2. Probability profiles of the extended Altham distributions of mean
µ = 5 and various dispersions regarding to hi given by 2.28 and 2.33. The red
line indicates the equal dispersion. The blue lines correspond to over dispersions
of 2, 3, . . . , 9, while the green lines shows under dispersions of 0.1, 0.2, . . . , 0.9.
The most centered extended Altham distributions with the largest mass at 5 has
dispersion 0.1, and the most spread extended Altham distributions with largest
masses at two boundaries has dispersion 9.

The mean and variance are

E[X] = Ma

a + b
, V ar[X] = Mab(a + b + M)

(a + b)2(a + b + 1)
, (2.35)

and it is over-dispersed. Prentice [15] extended the beta-binomial, denoted as EBB(M ; p, δ),
using the following reparametrized pmf form

pi =
(

M

i

)
i−1∏
j=0

(p + γj)
M−i−1∏

j=0
(1 − p + γj)

/M−1∏
j=0

(1 + γj), i = 0, 1, . . . , M, (2.36)

where 0 ≤ p ≤ 1, γ = δ
1−δ and

δ = γ(1 + γ)−1 ≥ max
( −p

M − p − 1
,

−q

M − q − 1

)
, q = 1 − p. (2.37)
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Figure 3. Comparison of probability profiles between extended Altham distri-
butions with hi given by 2.22 - 2.27 and binomial distributions under the same
means. The blue lines indicate the extended Altham distributions, while red lines
correspond to binomial distributions. Any close pair of the extended Altham and
binomial distributions has the same mean.

The mean and variance are
E[X] = Mp, V ar[X] = Mp(1 − p)[1 + (M − 1)δ]. (2.38)

The extended beta-binomial allows under-dispersion, but bounded when δ reaches it
lower bound. For example, if M = 10 and p = 0.5, then the lower bound of δ is −1/17,
and the lower bound of dispersion is approximately D = 0.4706.

Consul [8] proposed the quasi-binomial distribution, later termed as type I QBD(M ; p, ϕ),
with pmf

pi =
(

M

i

)
p(p + iϕ)i−1(1 − p − iϕ)M−i, i = 0, 1, . . . , M, (2.39)

where 0 ≤ p ≤ 1 and −p/M < ϕ < (1 − p)/M .
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Figure 4. Comparison of probability profiles between extended Altham distri-
butions with hi given by 2.28 - 2.33 and binomial distributions under the same
means. The blue lines indicate the extended Altham distributions, while red lines
correspond to binomial distributions. Any close pair of the extended Altham and
binomial distributions has the same mean.

As pointed by Mishra, Tiwary and Singh [14], the most unfortunate result of this
distribution (and other types QBD) is that the moments are series which are not possible
to be summed. When ϕ ̸= 0, the probability of success in the i-th trial becomes p + iϕ.
Positive or negative ϕ indicates attraction or repulsion of a trial to previous trials. This
quasi-binomial distribution has lower bound for the under-dispersion and upper bound for
the over-dispersion when ϕ reaches its lower and upper bounds respectively. For example,
let M = 10 and p = 0.5. The lower and upper bounds of ϕ will be −0.05 and 0.05
respectively, and the lower and upper bounds of dispersion D will be approximately 0.4518
and 3.1847 respectively.

The range of dispersion for both extended beta-binomial and quasi-binomial distribu-
tions can be numerically displayed. However, both can not cover the full range of dis-
persion like the extended Altham. Since the extended beta-binomial distribution can be
reparametrized in terms of mean and variance analytically, we make numerical comparison
of pmf under the same mean and dispersion between this distribution and the extended
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Altham distribution, and find that they are different, matching the fact that they are
constructed from different angles.

3. Comparison and statistical inference
The pmf (2.5) is explicit in (β1, β2) and is implicit in (µ, σ2). So, for MLE, we can solve

it either by parametrization (β1, β2) or (µ, σ2). Since extended Altham distribution is a
member of general exponential family, the MLEs for (β1, β2) can be obtained by using the
form given by

p(x|θ) = h(x)c(θ)e
∑k

i=1 wi(θ)ti(x). (3.1)
Then, the Log-likelihood function is,

L(θ) =
N∑

j=1
log[h(xj)c(θ)e

∑k

i=1 wi(θ)ti(xj)] (3.2)

and the corresponding derivative is

∂L(θ)
∂θ

= N
c′(θ)
c(θ)

+
N∑
j

k∑
i=1

wi(θ)ti(xj). (3.3)

Since p(x|θ) is a probability distribution, we can write∫
p(x|θ) =

∫
h(x)c(θ)e

∑k

i=1 wi(θ)ti(x)dx = 1 (3.4)

and we can get
c(θ) = 1∫

h(x)e
∑k

i=1 wi(θ)ti(x)dx
(3.5)

c′(θ) = −c(θ)E[
k∑
i

∂wi(θ)
∂θ

ti(x)] (3.6)

If c′(θ) is replaced in the derivative of the log-likelihood function,

− NE[
k∑

i=1

∂wi(θ)
∂θ

ti(x)] +
N∑
j

k∑
i=1

wi(θ)ti(xj) = 0. (3.7)

Finally, maximum likelihood estimator of extended Altham distribution family is found as

E[
k∑

i=1

∂wi(θ)
∂θ

ti(x)] =
∑N

j

∑k
i=1 wi(θ)ti(xj)

N
, (3.8)

which means the MLE of extended Altham distribution family coincide the moment esti-
mator.

On the other hand, we need the reparametrization of extended Altham distribution
with respect to µ and σ2 in order to be able to make appropriate comparision. First,
we derive the MLE of parameter vector by employing the maximum likelihood method.
β = (β1, β2)T , and its asymptotic normality. Then we obtain the MLE of θ = (µ, σ2)T and
its asymptotic normality according to (2.7) and (2.8). Note that the normalizing constant
is the function of β1 and β2. We establish the following key results for MLEs and their
asymptotic covariance matrix. Denote the moment mj = E[Xj ] for j = 1, 2, 3, 4.
Lemma 3.1.

∂C(β1, β2)
∂β1

= −m1,
∂C(β1, β2)

∂β2
= −m2,

∂2C(β1, β2)
∂β2

1
= m2 − m2

1,
∂2C(β1, β2)

∂β2
2

= m4 − m2
2,

∂2C(β1, β2)
∂β1∂β2

= m3 − m2m1.
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Proof. Taking the first and second order partial derivatives with respect to β1 and β2
respectively for both sides of C(β1, β2), and then simplifying the equations will yield the
results. For instance,

eC(β1,β2) × ∂C(β1, β2)
∂β1

= ∂

∂β1

(
M∑

i=0
hie

iβ1+i2β2

)
= −

M∑
i=0

ihie
iβ1+i2β2 , (3.9)

eC(β1,β2) × ∂C(β1, β2)
∂β2

= ∂

∂β2

(
M∑

i=0
hie

iβ1+i2β2

)
= −

M∑
i=0

i2hie
iβ1+i2β2 , (3.10)

eC(β1,β2) × ∂2C(β1, β2)
∂β1∂β2

+ eC(β1,β2) × ∂C(β1, β2)
∂β2

× ∂C(β1, β2)
∂β1

(3.11)

= ∂

∂β2

(
−

M∑
i=0

ihie
iβ1+i2β2

)
=

M∑
i=0

i3hie
iβ1+i2β2 , (3.12)

thus
∂C(β1, β2)

∂β1
= −

M∑
i=0

ihie
iβ1+i2β2e−C(β1,β2) = −E[X] = −m1, (3.13)

∂2C(β1, β2)
∂β1∂β2

=
M∑

i=0
i3hie

iβ1+i2β2eC(β1,β2) − ∂C(β1, β2)
∂β2

× ∂C(β1, β2)
∂β1

(3.14)

= E[X3] − E[X2]E[X] = m3 − m2m1. (3.15)
�

Suppose the observations are x1, x2, . . . , xn. The log-likelihood is

log L(β | x1, . . . , xn) =
n∑

k=1
log(Pr[Xk = xk]) (3.16)

= −nC(β1, β2) − β1

n∑
k=1

xk − β2

n∑
k=1

x2
k.

The score functions are
∂ log L

∂β1
= −n

∂C(β1, β2)
∂β1

−
n∑

k=1
xk,

∂ log L

∂β2
= −n

∂C(β1, β2)
∂β2

−
n∑

k=1
x2

k, (3.17)

leading to estimating equations
M∑

i=0
ihie

iβ1+i2β2
/ M∑

i=0
hie

iβ1+i2β2 = 1
n

n∑
k=1

xk = X̄, (3.18)

M∑
i=0

i2hie
iβ1+i2β2

/ M∑
i=0

hie
iβ1+i2β2 = 1

n

n∑
k=1

x2
k. (3.19)

Applying the quasi-Newton method used before, we can obtain the MLE β̂ numerically.
Under regularity conditions, for β in the interior of the parameter space, the asymptotic
normality holds as follows:

√
n
(
β̂ − β

)
→ N

(
0, Σ−1

)
, as n → ∞, (3.20)

where the Hessian matrix is

Σ =


−E

[
∂2 log L

∂β2
1

]
−E

[
∂2 log L
∂β1∂β2

]
−E

[
∂2 log L
∂β1∂β2

]
−E

[
∂2 log L

∂β2
2

]
 = n

 m2 − m2
1 m3 − m2m1

m3 − m2m1 m4 − m2
2

 . (3.21)
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Although β̂ does not have an explicit form, the MLE of θ = (µ, σ2)T has an explicit
form. From score functions (3.17), we also obtain estimating equations for µ and σ2:

µ = X̄, σ2 + µ2 = 1
n

n∑
k=1

x2
k, (3.22)

leading to the MLEs

µ̂ = X̄, σ̂2 = 1
n

n∑
k=1

x2
k − X̄2 = 1

n

n∑
k=1

(xk − X̄)2. (3.23)

Constrains (2.7) and (2.8) imply that µ and σ2 are functions of β1 and β2 respectively.
Denote

A =


∂µ
∂β1

∂µ
∂β2

∂σ2

∂β1
∂σ2

∂β2

 , (3.24)

where

∂µ

∂β1
= ∂

∂β1

(
M∑

i=0
ihie

C(β1,β2)+iβ1+i2β2

)
= −∂C(β1, β2)

∂β1
× E[X] − E[X2] = m2

1 − m2,

∂µ

∂β2
= ∂

∂β2

(
M∑

i=0
ihie

C(β1,β2)+iβ1+i2β2

)
= −∂log(C(β1, β2))

∂β2
× E[X] − E[X3]

= m1m2 − m3,

and

∂σ2

∂β1
= ∂

∂β1

(
M∑

i=0
i2hie

C(β1,β2)+iβ1+i2β2

)
− 2µ

∂µ

∂β1

= −∂C(β1, β2)
∂β1

× E[X2] − E[X3] − 2m1(m2
1 − m2) = 3m1m2 − 2m3

1 − m3,

∂σ2

∂β2
= ∂

∂β2

(
M∑

i=0
i2hie

C(β1,β2)+iβ1+i2β2

)
− 2µ

∂µ

∂β2

= −∂C(β1, β2)
∂β2

× E[X2] − E[X4] − 2m1(m2
1 − m2)

= m2
2 − m4 − 2m2

1m2 + 2m1m3.

Then,
√

n
(
θ̂ − θ

)
→ N

(
0, AΣ−1AT

)
, as n → ∞. (3.25)

Matrix A and Σ can be estimated by replacing mj ’s as their estimates m̂j ’s. Standard
errors of µ̂ and σ̂2 can be obtained as the square root of diagonal elements of the estimated
covariance matrix. There are two approaches to estimate mj :

(1) using the sample only, m̂j = 1
n

∑n
k=1 xj

k, or
(2) using the MLEs β̂, m̂j =

∑M
i=0 ijpi(β̂).

The former has large variation when the sample size is not large. Thus, for small sample
size, the latter is recommended.

The closed form MLEs of parameters µ and σ2 simplifies the model fitting using the
extended Altham distribution.
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Under the extended Altham model, the MLE of dispersion index D is D̂ = σ̂2

µ̂(1−µ̂/M) .

Denote B =
(

∂D
∂µ , ∂D

∂σ2

)
,where

∂D

∂µ
= ∂

∂µ

[
σ2

M2

( 1
M − µ

+ 1
µ

)]
= σ2

M2

( 1
(M − µ)2 − 1

µ2

)

= σ2(2µ − M)
Mµ2(M − µ)2 = (m2 − m2

1)(2m1 − M)
Mm2

1(M − m1)2 ,

∂D

∂σ2 = 1
µ(1 − µ/M)

= 1
m1(1 − m1/M)

.

Then, √
n
(
D̂ − D

)
→ N

(
0, BAΣ−1AT BT

)
, as n → ∞. (3.26)

Let s2
D be the estimate of asymptotic variance BAΣ−1AT BT . The standard error of D̂

is sD, and an asymptotic CI of significant level α for dispersion index D is D̂ ± zα/2sD,
where zα/2 is the 100(1 − α/2)% quantile of the standard normal distribution.
Let P denote the extended Altham family (2.5),

P =
{

fθ(x) ∝ h(x)eβ1x+β2x2 |θ = (β1, β2) : −∞ < β1, β2 < ∞, h = 1, 2, . . . , 12
}

(3.27)

where X = 0, 1, 2, . . . , M . Assume fθ = fθ̃, then the expression

log(h(x)
h̃(x)

) + (β1 − β̃1)x + (β2 − β̃2)x2 = 0 (3.28)

is satisfied for all x only when all its coefficients are equal to zero, which is only possible
when h = h̃, β1 = β̃1 and β2 = β̃2. Hence, we conclude that the extended Altham family
is identifiable iff log(h(x)

h̃(x)) ̸= β1x + β2x2, β1, β2 ≠ 0.

4. Simulation study and examination of existing examples
In the literature, some scholars tried different models. Bailey [4] proposed a particular

probabilistic model based on the Markov property to study the author’s writing style
by investigation of occurrences of function word in 5-word and 10-word samples. Two
data sets from Macaulay’s ‘Essay on Milton’ [13] and from Chesterton’s essay ‘About the
workers’ [7] respectively were fitted. Chakraborty and Das [5] fitted QBD I and QBD II
models for four data sets from other authors, these examples were actually truncated count
data, not from true binomial experiments. The observed and expected frequencies, as well
as the values of goodness-of-fit of fitted models were reported in both papers, thus, we can
compare the fitting of the extended Altham models with theirs using the the quantity of
the goodness-of-fit under the same data grouping schemes. Dispersion investigation shows
that all examples are under-dispersed in Bailey [4], and over-dispersed in Chakraborty and
Das [5]. The comparison results are reported in Table 1 and Table 2. Table 1 gives the
fitting comparison of extended Altham models with the model proposed by Bailey [4] for
5-word and 10-word samples of function word occurrence from two authors (Macaulay’s
work, Chesterton’s work*). Data sets (see Appendix Table A1) and original fittings are
referred to Bailey [4].
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Table 1. Fitting comparison of extended Altham models with the model proposed
by Bailey [4] for 5-word and 10-word samples

Model 5-word 10-word 5-word* 10-word*
(0.61, 0.35, 0.66) (1.05, 0.64, 0.68) (0.61, 0.35, 0.66) (1.05, 0.64, 0.68)

Bailey’s model 8.16 6.38 2.76 4.93
1 0.0819 0.4887 0.3432 2.0268
2 0.0809 0.4869 0.3404 2.0263
3 0.1027 1.0299 0.3356 1.6936
4 0.0659 0.1549 0.3440 2.4571
5 0.0974 0.7956 0.3367 1.8095
6 0.0695 0.2599 0.3431 2.2801
7 0.0804 0.4847 0.3405 2.0307
8 0.0843 0.4925 0.3396 2.0232
9 0.2073 6.4423 0.3199 1.7605
10 0.0324 0.8428 0.3536 5.4180
11 0.1029 0.9111 0.3355 1.7519
12 0.0657 0.2019 0.3441 2.3670

Table 2. Fitting comparison of extended Altham models and the fitted QBD I
and QBD II models by Chakraborty and Das [5] for four data sets

Model Example 1 Example 2 Example 3 Example 4
(0.41, 0.51, 1.39) (0.68, 0.81, 1.37) (2.50, 3.37, 2.70) (0.92, 0.93, 1.23)

QBD I 0.075 3.608 0.457 0.941
QBD II 0.067 3.618 0.324 0.944

1 0.8834 4.0709 0.3488 2.1207
2 0.4713 4.3125 0.4443 2.4330
3 1.7661 2.5235 0.5243 0.7481
4 0.3429 6.0471 0.2100 4.5916
5 2.1230 2.8038 0.4936 0.9950
6 0.1998 5.6710 0.3157 4.1748
7 0.4870 4.3679 0.4160 2.5023
8 1.4354 3.8007 0.3871 1.8306
9 6.9637 0.5060 1.3459 3.6989
10 0.9193 15.1880 0.0016 20.2011
11 2.6102 2.4775 0.5451 0.7993
12 0.0988 6.2147 0.3025 4.9262

Table 2 gives the fitting comparison of extended Altham models and the Chakraborty
and Das [5] fitted QBD I and QBD II models for four data sets (see Appendix Tables
A2-A5). Data sets and original fittings are referred to Chakraborty and Das [5]. The
χ2-values of goodness-of-fit are obtained under the same data grouping schemes. (x̄, s2,
D̂) are given for each example, where x̄ is sample mean, s2 is sample variance and D̂ is
sample dispersion index. In all examples in Bailey [4], the extended Altham models fits
better than the model proposed by Bailey. Refering to samples from Macaulay’s work,
for the 5-word and the 10-word samples we get the appropriate extended Altham models
(2.31) with χ2 = 0.0324 and (2.25) with χ2 = 0.1549, respectively.
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Regarding to Chesterton’s work, we found that the appropriate models for the 5-word*
and for the 10*-word samples are extended Altham models (2.30) with χ2 = 0.3199 and
(2.24) with χ2 = 0.16936, respectively.

In fact, most of the extended Altham models beat the Bailey’s model. Moreover, the
χ2 testing at significant level 10% will accept the extended Altham model, but reject the
Bailey’s model. This might indicate that the original setting of probabilistic mechanism
needs further adjustment or refinement.

In Example 2, 3 and 4 in Chakraborty and Das [5], the extended Altham model is better
than QBD I and QBD II, while in first example the QBD I and QBD II are better than
the extended Altham model. However, the results of acceptance or rejection from the χ2

test at significant level 10% for all three models are the same. The above examination
shows that the extended Altham model can be a safe tool in explorative analysis without
special preference in model specification, and also can be an alternative model if other
favoured models do not fit data well.

Now we apply the proposed extended Altham model to over-dispersed binomial data re-
sulted from a survey of deaths of children in northest Brazil and the counts the frequencies
of 430 childhood deaths in 2946 families of sizes up to eight children. Maternity histories
were collected on women aged 15 to 44 over a 3-month period in 1986. The original data
was published by Sastry [16] and later it was used for demonstration of different weighted
binomial models by Zelterman [19]. We get the sample data regarding to families that has
more than three siblings (see Appendix Table A6). From this point of view, the results of
extended Altham modelling are given in Table 3.

Table 3. Fitting extended Altham models for the childhood death in Brazilian
family data

Model

Number of siblings (n)
4 5 6 7 8

x̄ = 0.49 x̄ = 0.99 x̄ = 1.34 x̄ = 1.80 x̄ = 2.33
s2 = 0.52 s2 = 1.16 s2 = 1.78 s2 = 1.48 s2 = 1.72
D̂ = 1.13 D̂ = 1.34 D̂ = 1.59 D̂ = 1.06 D̂ = 1.04

1 0.3147 1.7954 4.6315 1.4215 0.9545
2 0.3120 1.7737 4.6929 1.4044 0.9534
3 0.5310 2.2675 3.1773 2.0239 0.9450
4 0.2573 2.0807 7.2788 1.0064 1.0830
5 0.4297 2.0184 3.6284 1.7884 0.9473
6 0.2631 1.8905 6.2074 1.1332 1.0152
7 0.3100 1.7623 4.7541 1.3936 0.9555
8 0.3195 1.8329 4.5469 1.4509 0.9561
9 3.4693 9.4540 3.8744 5.2578 1.7549
10 1.1462 7.7364 25.3762 0.6005 1.8558
11 0.4698 2.0462 3.4754 1.8721 0.9594
12 0.2636 2.0075 6.5180 1.0801 1.0180

According to Table 3, it is obvious that we have huge improvement over the previously
examined models. Moreover, extended Altham model has the advantage of having only
two parameters.

The last example that we consider is the data that was collected on the sex of the first
four children carried out at the A Maxwell Evans Clinic by Elwood and Coldman [10] on
1022 newly diagnosed women with primary breast cancer who had four or fewer children
and for whom the sex of each child was known. The data shows mean ages at diagnosis
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by number and sex of children. Elwood and Coldman [10] made the analysis in order to
observe a possible relationship between the age at diagnosis in women with breast cancer
and the sex of their offspring.

Table 4. Fitting extended Altham model for diagnosis of breast cancer by number
and sex of children

Model Number of siblings (n)
3 4

x̄ = 1.51 x̄ = 1.93
s2 = 0.77 s2 = 1.15
D̂ = 0.82 D̂ = 1.16

1 3.2216 4.4021
2 2.4989 3.0160
3 3.4059 4.1389
4 3.2205 4.7523
5 4.0819 5.5094
6 2.6270 3.4797
7 2.6185 3.2717
8 3.9468 5.7224
9 5.2482 3.8781
10 4.4652 6.4805
11 4.3434 5.7529
12 2.5426 3.3352

Actually, they didn’t mention any models for their data. Since their data includes
under-dispersed and over-dispersed cases in the same experiment, we decided to use their
data (see Appendix Table A7). The number of siblings bigger than two is considered. The
summary results of fitting extended Altham model is given in Table 4. In Table 4, we can
see that the distribution of the number of diagnosis of breast cancer in the family that has
3 children is under-dispersed (D̂ = 0.82) and the similar distribution for the family that
has 4 children is over-dispersed (D̂ = 1.16). And extended Altham model (2.23) is best
fit for the both cases.

5. Discussion
The extended Altham distribution family is constructed by Kullback-Leibler divergence

measure. It turns out to be a particular type of extended Altham distribution, with simple
form of pmf from the parametrization of Lagrangian multipliers, which may rendered it
to be overlooked previously. Since the construction is very conservative, it is relatively
safer than the binomial as well other models developed based on particular probabilistic
mechanisms.

The capability to reach the full range of dispersion makes the extended Altham a flexible
model for binomial data of various dispersion situations. Thus, it can serve as an explo-
rative model first to avoid wrong specification (say using the binomial model). Because
of the conservative feature of the extended Altham, its fitting can be refined or improved
by a better model like QBD or EBB, based on revealed dispersion information.

The closed form MLEs simplify the fitting for data, thus, facilitating the application for
general end-users, although the calculation of pmf requires the numerical algorithm. The
development of a regression framework is in progress.
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Appendix

Table A1. Underdispersed word counts [4]

Occurences 0 1 2 3
5-word 45 49 6 0
10-word 27 44 26 3

Table A2. Observed and expected frequencies of European Corn borer in 1296
Corn plants [5]

No. of borers per plant 0 1 2 3 ≥ 4
Observed no. of plants 907 275 88 23 3

Table A3. Distribution of yeast cells per square in a haemacytometer [5]

No. of cells per square 0 1 2 3 4 5
Observed no. of squares 213 128 37 18 3 1

Table A4. Distribution of number of seeds by time of day [5]

Time 0 1 2 3 4 5
Observed no. seeds 7 4 5 5 4 7

Table A5. Distribution of number of hits per square [5]

No. of hits 0 1 2 3 4 5
No. of 1/4 km squares 229 211 93 35 7 1

Table A6. The frequency of childhood deaths in Brazilian families [19]

Number Number Number Number of
of siblings of families of deaths affected siblings i

n fn mn 0 1 2 3 4 5 6 7+
1 267 12 255 12
2 285 48 239 44 2
3 202 80 143 41 15 3
4 110 54 69 30 9 2 0
5 104 103 43 34 15 9 3 0
6 50 67 15 18 8 5 3 0 1
7 21 38 4 4 7 4 2 0 0 0
8 12 28 1 2 4 3 1 1 0 0

Totals 2946 430
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Table A7. Diagnosis of breast cancer by number and sex of children [10]

No of Children 0 1 2 3 4
No of boys 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

No of patients 284 93 71 65 134 83 26 71 75 26 11 21 30 28 4


