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LIE IDEALS AND JORDAN TRIPLE (α, β)−DERIVATIONS IN
RINGS

NADEEM UR REHMAN AND EMINE KOÇ SÖGÜTCÜ

Abstract. In this paper we prove that on a 2-torsion free semiprime ring
R every Jordan triple (α, β)-derivation (resp. generalized Jordan triple (α, β)-
derivation) on Lie ideal L is an (α, β)-derivation on L (resp. generalized (α, β)-
derivation on L)

1. Introduction

Throughout the present paper R will denote an associative ring with center
Z(R). A ring R is n-torsion free, where n > 1 is an integer, in case nx = 0; x ∈ R,
implies x = 0. For any x, y ∈ R, we denote the commutator [x, y] = xy−yx. Recall
that R is prime if for a, b ∈ R, aRb = {0} implies that either a = 0 or b = 0, and is
semiprime if aRa = {0} implies a = 0. An additive subgroup L of R is said to be a
Lie ideal of R if [L,R] ⊆ L. A Lie ideal L is said to be square-closed if a2 ∈ L for
all a ∈ L. Recall that a derivation of a ring R is an additive map δ : R −→ R such
that (xy)

δ
= (x)δy + x(y)δ holds for all x, y ∈ R. On the other hand, δ : R −→ R

an additive mapping is called a Jordan derivation if
(
x2
)δ

= (x)δx+x(x)δ holds for
all x ∈ R. A famous result due to Herstein [11, Theorem 3.3] shows that a Jordan
derivation of a prime ring of characteristic not 2 must be a derivation. This result
was extended to 2-torsion free semiprime rings by Cusack [10] and subsequently, by
Bresar [7]. Following [6]. an additive mapping δ : R → R is called a Jordan triple
derivation if (xyx)δ = (x)δyx + x(y)δx + xy(x)δ holds for all x, y ∈ R. One can
easily prove that any Jordan derivation on an 2-torsion free ring is a Jordan triple
derivation ( see [11, Lemma 3.5]). Bresar has proved the following result.

Theorem 1.1. ([6, Theorem 4.3]) Let R be a 2-torsion free semiprime ring and
δ : R→ R be a Jordan triple derivation. In this case δ is a derivation.
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To understand our results it is better to review some generalizations of the no-
tion of derivation. An additive mapping F : R → R is said to be generalized
derivation (resp. a generalized Jordan derivation) on R if there exists a derivation
δ : R → R such that (xy)F = (x)F y + x(y)δ (resp. (x2)F = (x)Fx + x(x)δ) holds
for all x, y ∈ R. An additive mapping F : R → R is said to be generalized Jordan
triple derivation on R if there exists a Jordan triple derivation δ : R→ R such that
(xyx)F = (x)F yx+x(y)δx+xy(x)δ holds for all x, y ∈ R. In 2003, Jing and Lu [14,
Theorem 3.5] proved that every generalized Jordan triple derivation on a 2-torsion
free prime rings R is a generalized derivation. Recently, Vukman [20] extended Jing
and Lu result for 2-torsion free semiprime rings.

If δ : R −→ R is a additive and if α and β are endomorphisms of R, then δ is said
to be an (α, β)-derivation of R when for all x, y ∈ R, (xy)δ = (x)δα(y) + β(x)(y)δ.
Note that for I, the identity map on R, an (I, I)-derivation is just a derivation.
An example of (α, β)-derivation when R has a nontrivial central idempotent e is
to let δ(x) = ex, α(x) = (1 − e)x, and β = I (or δ) (formally). Here, δ is not a
derivation because (ee)δ = eee 6= 2eee = (ee)e+ e(ee) = (e)δe+ e(e)δ. In any ring
with endomorphism α, if we let d = I − α, then d is an (α, I)-derivation, but not
a derivation when R is semiprime, unless α = I. An additive mapping δ : R → R
is called Jordan triple (α, β)-derivation if (xyx)δ = (x)δα(yx) + β(x)(y)δα(x) +
α(xy)(x)δ for all x, y ∈ R. Obviously, every (α, β)-derivation on a 2-torsion free
ring is a Jordan triple (α, β)-derivation, but converse need not be true in general.
In 2007, Liu and Shiue [15, Theorem 2] show that the converse is true for 2-torsion
free semiprime rings R and probed the following result:

Theorem 1.2. Let R be a 2-torsion free semiprime rings and let α, β be auto-
morphisms of R. If δ : R → R is a Jordan triple (α, β)-derivation, then δ is an
(α, β)-derivation.

An additive map F : R −→ R is called a generalized (α, β)-derivation, for α
and β endomorphisms of R, if there exists an (α, β)-derivation δ : R −→ R such
that (xy)F = (x)Fα(y) + β(x)(y)δ holds for all x, y ∈ R. Clearly, this notion
include those of (α, β)-derivation when F = δ, of derivation when F = δ and
α = β = I, and of generalized derivation, which is the case when α = β = I.
Maps of the form (x)F = ax + xb for a, b ∈ R with (x)δ = xb − bx and α =
β = I are generalized derivations, and more generally, maps (x)δ = aα(x) + β(x)b
are generalized (α, β)-derivation. To see this observe that (xy)F = aα(x)α(y) +
β(x)β(y)b = (aα(x) + β(x)b)α(x) + β(x)(β(y)b− bα(y)), and as we have just seen
above, (x)δ = bα(x) − β(x)b is an (α, β)-derivation of R. As for derivation, a
generalized Jordan (α, β)-derivation F assumes x = y in the definition above; that
is, we assume only that (x2)F = (x)Fα(x)+β(x)(x)δ, holds for all x ∈. An additive
map F : R −→ R is called generalized Jordan triple (α, β)-derivation, for α and β
endomorphisms of R, if there exists a Jordan triple (α, β)-derivation δ : R −→ R
such that (xyx)F = (x)Fα(yx) + β(x)(y)δα(x) + β(xy)(x)δ, holds for all x, y ∈ R.
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Clearly, this notion includes those of triple (α, β)-derivation when F = δ, of triple
derivation when F = δ and α = β = I, and of generalized triple derivation which
is the case α = β = I. In 2007, Liu and Shiue [15, Theorem 3] proved the following
generalization of all above results:

Theorem 1.3. Let R be a 2-torsion free semiprime rings and α, β be automor-
phisms of R. If F : R→ R is a generalized Jordan triple (α, β)-derivation, then F
is a generalized (α, β)-derivation.

The present paper is motivated by the previous results and we here continue this
line of investigation to generalize Theorem 1.2 and Theorem 1.3 on Lie ideal of R.

2. Jordan Triple Derivations

It is obvious to see that every derivation is a Jordan triple derivation, but the
converse need not to be true in general. In [6], Bresar proved that any Jordan triple
derivation on a 2-torsion free semiprime ring is a derivation. Motivated by the result
due to Bresar, in the present section it is shown that on a 2-torsion free semiprime
ring R every Jordan triple (α, β)−derivation on Lie ideal L is an (α, β)−derivation
on L. More precisely, we prove the following:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a nonzero square-closed Lie ideal of R. If δ : R −→ L
satisfying

(aba)δ = aδα(ba) + β(a)bδα(a) + β(ab)aδ for all a, b ∈ L
and aδ, β(a) ∈ L, then δ is a (α, β)−derivation on L.

Corollary 2.1. Let R be a 2-torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a nonzero square-closed Lie ideal of R. If δ : R −→ L
satisfying

(a2)δ = aδα(a) + β(a)aδ for all a ∈ L
and aδ, β(a) ∈ L, then δ is a (α, β)−derivation on L.

To facilitate our discussion, we shall begin with the following lemmas:

Lemma 2.1 ([4], Lemma 4). If L 6⊆ Z(R) is a Lie ideal of a 2-torsion free prime
ring R and a, b ∈ R such that aLb = {0}, then a = 0 or b = 0.

Lemma 2.2 ([19], Lemma 2.4). Let R be a 2-torsion free semiprime ring, L be a
Lie ideal of R and a ∈ L such that L 6⊆ Z(R). If aLa = 0, then a2 = 0 and there
exists a nonzero ideal K = R[L,L]R of R generated by [L,L] such that [K,R] ⊆ L
and Ka = aK = 0.

Corollary 2.2 ([12], Corollary 2.1). Let R be a 2-torsion free semiprime ring, L
a Lie ideal of R such that L * Z(R) and let a, b ∈ L.
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(1) if aLa = 0, then a = 0.
(2) If aL = 0( or La = 0), then a = 0
(3) If L is square-closed and aLb = 0, then ab = 0 and ba = 0.

Lemma 2.3. Let R be a 2-torsion free semiprime ring, L be a noncentral Lie ideal
of R, β be a homomorphisms of R and a, b ∈ L. If aub+ β(bu)a = 0, for all u ∈ L
then aub = 0.

Proof. If
aub+ β(bu)a = 0, for all u ∈ L. (2.1)

Then replacing u by ubv in (2.1), we get

a(ubv)b+ β(bu)β(bv)a = 0. (2.2)

Now application of (2.1), yields that

− β(bu)avb+ β(bu)β(bv)a = 0. (2.3)

Again, by (2.1), we obtain −β(bu)avb− β(bu)avb = 0 that is β(bu)avb = 0. Again
by (2.1) aubvb = 0. Hence aubLb = 0, so aub = 0 for all u ∈ L.

Lemma 2.4 ([19], Lemma 2.7). Let G1, G2, · · · , Gn be additive groups and R be
a 2-torsion free semiprime ring and L 6⊆ Z(R) is a Lie ideal of R. Suppose that
mappings S : G1 × G2 × · · · × Gn −→ R and T : G1 × G2 × · · · × Gn −→ R are
additive in each argument. If S(a1, a2, · · · , an)xT (a1, a2, · · · , an) = 0 for all x ∈ L,
ai ∈ Gi i = 1, 2, · · ·n, then S(a1, a2, · · · , an)xT (b1, b2, · · · , bn) = 0 for all x ∈ L,
ai, bi ∈ Gi i = 1, 2, · · ·n.

Lemma 2.5. Let R be a ring, L be a Lie ideal of R and δ : R → R be a Jordan
triple (1, β)−derivation. For arbitrary a, b, c ∈ L, we have

(abc+ cba)δ = aδ(bc) + β(a)bδ(c) + β(ab)cδ + cδ(ba) + β(c)bδ(a) + β(cb)aδ.

Proof. We have

(aba)δ = aδ(ba) + β(a)bδ(a) + β(ab)aδ, for all a, b ∈ L. (2.4)

We compute, W = ((a+ c)b(a+ c))
δ in two different ways. On one hand, we

find that W = (a + c)δb(a + c) + β(a + c)bδ(a + c) + β((a + c)b)(a + c)δ, and on
the other hand W = (aba)δ + (abc+ cba)δ + (cbc)δ. Comparing two expressions we
obtain the required result.

Remark 2.1. It is easy to see that every Jordan (1, β)−derivation of a 2-torsion
free ring satisfies (2.4) ( see [1] for reference).

For the purpose of this section we shall write; ∆(a, b, c) = (abc)δ − aδ(bc) −
β(a)bδ(c)− β(ab)cδ, and Λ(a, b, c) = abc− cba. We list a few elementary properties
of δ and Λ:

(i) ∆(a, b, c) + ∆(c, b, a) = 0
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(ii) ∆((a + b), c, d) = ∆(a, c, d) + ∆(b, c, d) and Λ((a + b), c, d) = Λ(a, c, d) +
Λ(b, c, d)

(iii) ∆(a, (b + c), d) = ∆(a, b, d) + ∆(a, c, d) and Λ(a, (b + c), d) = Λ(a, b, d) +
Λ(a, c, d)

(iv) ∆(a, b, (c + d)) = ∆(a, b, c) + ∆(a, b, d) and Λ(a, b, (c + d)) = Λ(a, b, c) +
Λ(a, b, d).

Proposition 2.1. Let R be a semiprime ring and L 6⊆ Z(R) be a square-closed Lie
ideal of R. If ∆(a, b, c) = 0 holds for all a, b, c ∈ L, then δ is an (1, β)−derivation
of L.

Proof. We have ∆(a, b, c) = 0 for all a, b, c ∈ L, that is,
(abc)δ = aδ(bc) + β(a)bδ(c) + β(ab)cδ.

Let M = abxab. We have

Mδ = (a(bxa)b)δ = aδ(bxab) + β(a)bδ(xab) + β(ab)xδ(ab)

+ β(abx)aδ(b) + β(abxa)bδ for all x, a, b ∈ L. (2.5)
On the other hand,

Mδ = ((ab)x(ab))δ = (ab)δ(xab) + β(ab)xδ(ab) + β(abx)(ab)δ. (2.6)

Comparing (2.5) with (2.6) we get

{(ab)δ − aδ(b)− β(a)bδ}(xab) + β(abx){(ab)δ − aδ(b)− β(a)bδ} = 0

that is, ab(xab) + β(abx)ab = 0, where ab stands for (ab)δ − aδ(b) − β(a)bδ. Thus
by Lemma 2.3 we find that ab(xab) = 0, for all a, b, x ∈ L. Now by Lemma 2.4, we
get ab(xcd) = 0, for all a, b, c, d, x ∈ L. Hence, by using Corollary 2.2, we obtain
ab = 0 for all a, b ∈ L that is δ is a (1, β)−derivation on L.

Lemma 2.6. Let R be a ring and L be a Lie ideal of R. For any a, b, c, x ∈ L, we
have

∆(a, b, c)xΛ(a, b, c) + β(Λ(a, b, c))β(x)∆(a, b, c) = 0.

Proof. For any a, b, c, x ∈ L, suppose that N = abcxcba+ cbaxabc. Now we find

Nδ = (a(bcxcb)a+ c(baxab)c)δ = (a(bcxcb)a)δ + (c(baxab)c)δ

= aδ(bcxcba) + β(a)bδ(cxcba) + β(ab)cδ(xcba)
+β(abc)xδ(cba) + β(abcx)cδ(ba) + β(abcxc)bδ(a)
+β(abcxcb)aδ + cδ(baxabc) + β(c)bδ(axabc)
+β(cb)aδ(xabc) + β(cba)xδ(abc) + β(cbax)aδ(bc)
+β(cbaxa)bδ(c) + β(cbaxab)cδ.

On the other hand, we have

Nδ = ((abc)x(cba) + (cba)x(abc))δ

= (abc)δ(xcba) + β(abc)xδ(cba) + β(abcx)(cba)δ

+(cba)δ(xabc) + β(cba)xδ(abc) + β(cbax)(abc)δ.
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On comparing last two expressions we get

−∆(c, b, a)(xcba) + ∆(c, b, a)(xabc) + β(abcx)∆(c, b, a)− β(cbax)∆(c, b, a) = 0.

This implies that ∆(a, b, c)xΛ(a, b, c) + β(Λ(a, b, c))β(x)∆(a, b, c) = 0 for all
a, b, c ∈ L.

Lemma 2.7. Let R be a semiprime ring and L 6⊆ Z(R) be a square-closed Lie ideal
of R. Then ∆(a, b, c)xΛ(r, s, t) = 0 holds for all a, b, c, r, s, t, x ∈ L.

Proof. By Lemma 2.6, we have ∆(a, b, c)xΛ(a, b, c)+β(Λ(a, b, c))β(x)∆(a, b, c) = 0
for all a, b, c ∈ L. Thus we get ∆(a, b, c)xΛ(a, b, c) = 0 by Lemma 2.3. Now by
Lemma 2.4 we find that∆(a, b, c)xΛ(r, s, t) = 0, for all a, b, c, r, s, t ∈ L.

For an arbitrary ring R, we set S = {a ∈ C(L) | aL ⊆ C(L)} , where C(L) is
center of L.

Lemma 2.8. Let R be a semiprime ring, L be a square-closed Lie ideal of R and
a ∈ L. If axy = yxa holds for all x, y ∈ L, then a ∈ S.

Proof: Let x, y, z, w ∈ L. We get

a(wz)yx = yx(wz)a = ya(wz)x = y(awz)x = yzwax = (yzwa)x = awyzx.

This implies that

aw(zy − yz)x = 0, for all x, y, z, w ∈ L.

That is,

aw [z, y]Law [z, y] = 0, for all y, z, w ∈ L.
By Corollary 2.2, we have

aw [z, y] = 0, for all y, z, w ∈ L.

Replacing z by a in this equation, we get

aw [a, y] = 0, for all y, w ∈ L.

Hence ayw [a, y] = 0 = yaw [a, y] for all y, w ∈ L, and so [a, y] L [a, y] = 0, for all
y ∈ L. By Corollary 2.2, we have [a, y] = 0, for all y ∈ L. Therefore, axy = yxa =
yax for all x, y ∈ L. That is aL ⊆ C(L). Thus, a ∈ S.

Lemma 2.9. Let R be a semiprime ring, L be a square-closed Lie ideal of R,
a ∈ C(L), c ∈ L, β be a homomorphisms of R and β(L) ⊆ L. If (β(ab)− ab)c = 0
holds for all b ∈ L, then a(β(b)− b)c = 0.
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Proof: Replacing b by bx, x ∈ L in the hypothesis and using a ∈ C(L), we have

0 = (β(abx)− abx)c = β(ab)β(x)c− abxc
= β(ba)β(x)c− abxc = β(b)β(ax)c− abxc
= β(b)axc− abxc = aβ(b)xc− abxc
= a(β(b)− b)xc.

That is,
a(β(b)− b)xc = 0, for all b, x ∈ L.

Using β(L) ⊆ L and replacing x by cxa(β(b)− b), we obtain that
a(β(b)− b)cxa(β(b)− b)c = 0, for all b, x ∈ L.

This implies that

a(β(b)− b)cLa(β(b)− b)c = 0, for all b ∈ L.
By Corollary 2.2, we have

a(β(b)− b)c = 0, for all b ∈ L.

Lemma 2.10. Let R be a 2-torsion free semiprime ring and L be a square-closed
Lie ideal of R. If Λ(a, b, c) = 0 for all a, b, c ∈ L, then L ⊆ Z(R).

Proof. Assume that L 6⊆ Z(R). We have Λ(a, b, c) = 0 for all a, b, c ∈ L that is,
abc = cba. Replacing b by 2tb, we get 2atbc = 2ctba for all a, b, c, t ∈ L. Again
replacing t by 2tw and using the fact that R is 2-torsion free to get, atwbc = ctwba
and hence a(tw)bc = bc(tw)a = ba(tw)c = awtbc. Thus we find that a[t, w]bc = 0
for all a, b, c, t, w ∈ L. By Corollary 2.2, we get [t, w] = 0 for all t, w ∈ L, that is
L is a commutative Lie ideal of R. And so, we have [a, [a, t]] = 0 for all t ∈ R and
hence by Sublemma on page 5 of [11], a ∈ Z(R). Hence L ⊆ Z(R), a contradiction.
This completes the proof of the theorem.

Proof of Theorem 2.1. Since α−1δ is a Jordan triple (1, α−1β)-derivation, re-
placing δ by α−1δ we may assume that δ is a Jordan triple (1, β)-derivation. Then,
our goal will be to show that δ is a (1, β)−derivation of associative triple systems.
We have

Λ(∆(a, b, c), r, s)xΛ(∆(a, b, c), r, s) = (∆(a, b, c)rs− sr∆(a, b, c))xΛ(∆(a, b, c), r, s)
= ∆(a, b, c)rsxΛ(∆(a, b, c), r, s)
−sr∆(a, b, c)xΛ(∆(a, b, c), r, s).

By Lemma 2.7, the above relation reduces to

Λ(∆(a, b, c), r, s)LΛ(∆(a, b, c), r, s) = 0, for all a, b, c, r, s ∈ L.
By Corollary 2.2, we have

Λ(∆(a, b, c), r, s) = 0, for all a, b, c, r, s ∈ L.
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We obtain that

∆(a, b, c)rs− sr∆(a, b, c) = 0, for all a, b, c, r, s ∈ L.
Using ∆(a, b, c), r, s ∈ L and Lemma 2.8, we have ∆(a, b, c) ∈ S. This implies that

rs∆(a, b, c)− sr∆(a, b, c) = 0, for all a, b, c, r, s ∈ L.
That is,

[r, s]∆(a, b, c) = 0, for all a, b, c, r, s ∈ L. (2.7)

Similarly, we have

∆(a, b, c)[r, s] = 0, for all a, b, c, r, s ∈ L. (2.8)

Let a ∈ S and b, c ∈ L. Thus, a, ab, ac, abc ∈ C(L) and abc = cba. Consider
N = abcxcba. We have

Nδ = (a(bcxcb)a)δ

= aδ(bcxcba) + β(a)bδ(cxcba) + β(ab)cδ(xcba)
+β(abc)xδ(cba) + β(abcx)cδ(ba) + β(abcxc)bδ(a)
+β(abcxcb)aδ.

On the other hand, we have

Nδ = ((abc)x(cba))δ = ((abc)x(abc))δ

= (abc)δ(xabc) + β(abc)xδ(abc) + β(abcx)(abc)δ

Comparing the last two equations and using abc = cba, we have

∆(a, b, c)xabc+ β(abc)β(x)∆(c, b, a) = 0.

Using ∆(a, b, c) = −∆(c, b, a), we have

∆(a, b, c)xabc− β(abc)β(x)∆(a, b, c) = 0.

Since abc ∈ C(L), we find that

−∆(a, b, c)abcx+ β(abc)β(x)∆(a, b, c) = 0.

Using abcx ∈ C(L), we have

−(abc)x∆(a, b, c) + β(abc)β(x)∆(a, b, c) = 0.

This implies that
(β(abc)β(x)− (abc)x)∆(a, b, c) = 0.

By Lemma 2.9, we have

(abc)(β(x)− x)∆(a, b, c) = 0, for all a, b, c, x ∈ L.
Multiplying y form the right hand side, using abc ∈ C(L) and ∆(a, b, c) ∈ S, we
have

(β(x)− x)(abc)y∆(a, b, c) = 0, for all a, b, c, x, y ∈ L.
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By Lemma 2.4, we have

(β(x)− x)(srt)y∆(a, b, c) = 0, for all a, s ∈ S and x, r, t, b, c, y ∈ L.

Using ∆(a, b, c) ∈ S, we have

(β(x)− x)∆(a, b, c)2L(β(x)− x)∆(a, b, c)2 = 0, for all a ∈ S and x, b, c ∈ L.

By Corollary 2.2 and using abc = cba, for all b, c ∈ L, we have

(β(x)− x)∆(a, b, c)2 = 0, for all a ∈ S and x, b, c ∈ L.

Using ∆(a, b, c) ∈ S, we get

∆(a, b, c)2(β(x)− x) = 0, for all a ∈ S and x, b, c ∈ L. (2.9)

Using equations (2.8) and (2.9), we have

2∆(a, b, c)3 = ∆(a, b, c)2∆(a, b, c) + ∆(a, b, c)2∆(a, b, c)

= ∆(a, b, c)2∆(a, b, c)−∆(a, b, c)2∆(c, b, a)

= ∆(a, b, c)2(∆(a, b, c)−∆(c, b, a))

= ∆(a, b, c)2((abc)δ − aδ(bc)− β(a)bδc− β(ab)cδ

−(cba)δ + cδ(ba) + β(c)bδ(a) + β(cb)aδ)

= ∆(a, b, c)2(−aδ(bc)− β(a)bδc− β(ab)cδ + cδ(ba)

+β(c)bδ(a) + β(cb)aδ)

= ∆(a, b, c)2(−aδ(bc)− β(a)bδc− β(ab)cδ + cδ(ba)

+β(c)bδ(a) + β(cb)aδ

+aδβ(bc)− aδβ(bc) + aδβ(cb)− aδβ(cb) + abδc− abδc)
= ∆(a, b, c)2(aδ(β(bc)− bc)− aδ(β(bc)− β(cb)) + (β(cb)aδ − aδβ(cb))

−(β(a)− a)bδc+ (β(c)− c)bδa+ (ab− β(ab))cδ)

= ∆(a, b, c)2(aδ(β(bc)− bc)− aδ[β(b), β(c)]

+[β(cb), aδ]− (β(a)− a)bδc+ (β(c)− c)bδa+ (ab− β(ab))cδ)

= 0.

We have, 2∆(a, b, c)3 = 0. Since R is 2-torsion free, we have ∆(a, b, c)3 = 0. Using
∆(a, b, c) ∈ S, we have ∆(a, b, c)2x∆(a, b, c)2 = 0, for all x ∈ L. By Corollary 2.2,
we have ∆(a, b, c)2 = 0. Similarly, we get ∆(a, b, c) = 0, for all a ∈ S and b, c ∈ L.
Also, if a ∈ S, then aL ⊆ C(L) and β(a), β−1(a) ∈ S. Let a ∈ S and x, y, b, c ∈ L.
Using the last equation, we have

(ayxbc)δ = ((ayx)bc)δ = (ayx)δ(bc) + β(ayx)bδc+ β((ayx)b)cδ

= (aδ(yx) + β(a)yδx+ β(ay)xδ)(bc) + β(ayx)bδc+ β((ayx)b)cδ.
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On the other hand,

(ayxbc)δ = aδ(yxbc) + β(a)yδxbc+ β(ay)(xbc)δ.

Comparing the last two equations, we have

ayβ−1(∆(x, b, c)) = 0, for all a ∈ S and x, b, c ∈ L.

Replacing a by β−1(∆(x, b, c)), we have

β−1(∆(x, b, c))Lβ−1(∆(x, b, c)) = 0, for all x, b, c ∈ L.

Corollary 2.2, we find that

∆(x, b, c) = 0, for all x, b, c ∈ L.

By Proposition 2.1, we conclude that δ is an (1, β)−derivation of L. This completes
the proof of the theorem.

Example 2.1. Let S be any ring and let R =


 a 0 0

b c 0
0 0 0

 | a, b ∈ S
 and L =

 a 0 0
b 0 0
0 0 0

 | b ∈ S
. Define d : R→ R by d

 a 0 0
b 0 0
0 0 0

 =

 a 0 0
0 0 0
0 0 0

,
and β : R → R by β

 a 0 0
b 0 0
0 0 0

 =

 −a 0 0
−b 0 0
0 0 0

. It is easy to check that R
is a ring, L is a Lie ideal of R, β is an one to one, onto and d is a Jordan triple
(1, β)-derivation on L but not an (1, β)-derivation.

3. Generalized Jordan Triple (α, β)−Derivations

An additive mapping µ : R −→ R is said to be a Jordan triple left centralizer
on L if (aba)µ = aµba for all a, b ∈ L and called a Jordan left centralizer on L if
(a2)µ = aµa.
To facilitate our discussion, we shall begin with the following lemma:

Lemma 3.1 ([12], Theorem 3.1). Let R be a 2-torsion free semiprime ring and
L 6⊆ Z(R) be a square-closed Lie ideal. If µ : R→ R is Jordan triple left centralizer
on L, then µ is a Jordan left centralizer on L.

Theorem 3.1. Let R be a 2−torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a square-closed Lie ideal. If F : R → R is generalized
Jordan triple (α, β)−derivation on L such that aδ, β(a) ∈ L, then F is a generalized
(α, β)−derivation on L.



538 NADEEM UR REHMAN AND EMINE KOÇ SÖGÜTCÜ

Proof. We are given that F is a generalized Jordan triple (α, β)-derivation on L.
Therefore we have

(aba)F = aFα(ba) + β(a)bδα(a) + β(ab)aδ for all a, b ∈ L. (3.1)

In (3.1), we take δ is a Jordan triple (α, β)-derivation on L. Since R is a 2−torsion
free semiprime ring, so in view of Theorem 2.1, δ is (α, β)-derivation on L. Now we
write Γ = F − δ. Then

Γ(aba) = (aba)F−δ

= (aba)F − (aba)δ

= (aF − aδ)α(ba) for all a, b ∈ L.
Then we have Γ(aba) = Γ(a)α(ba) for all a, b ∈ L. So, α−1Γ becomes a Jordan
triple left centralizer. In other words α−1Γ is a Jordan triple left centralizer on L.
Since R is a 2−torsion free semiprime ring one can conclude that α−1Γ is a Jordan
left centralizer by Lemma 3.1. Hence

α−1Γ(ab) = α−1Γ(a)b for all a, b ∈ L.
That is, Γ(ab) = Γ(a)α(b) and hence F is of the form F = Γ + δ, where δ is an
(α, β)− derivation and Γ(ab) = Γ(a)α(b). Therefore, F is a generalized Jordan
(α, β)−derivation on L.

Since every generalized (α, β)-derivation is also a generalized Jordan Triple (α, β)
derivation, we immediately obtain

Corollary 3.1. Let R be a 2−torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a square-closed Lie ideal. If F : R → R is generalized
Jordan (α, β)−derivation on L such that aδ, β(a) ∈ L, then F is a generalized
(α, β)−derivation on L.
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