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Abstract 

 

In this study general and classical coupled systems of nonlinear time-space fractional 

Schrödinger equations (TSFSDE) with trapping potentials are investigated with a 

numerical approach. Theorems on stability of the finite difference schemes for such 

problems are established and presented with their proofs. Numerical solutions are 

investigated for one and two-dimensional cases. Convergence rates are proved by 

numerical experiments. Effect of a trapping potential on such systems is searched 

throughout the paper. 

 

Keywords: Coupled system, trapping potential, finite difference method. 

 

 

Tuzaklama potansiyelli iki-boyutlu zaman-yer kesirli türevli 

Schrödinger denklemlerinin bağlı sistemlerinin sayısal analizi 
 

 

Öz 

 

Bu çalışmada zaman ve yer boyutlarında kesirli türevli Schrödinger diferansiyel 

denklemlerinin bağıl sistemlerinin genel ve klasik formları tuzaklama potansiyeli 

altında sayısal bir yaklaşımla ele alınmıştır. Bu tip problemlerin fark şemalarının 

kararlılıkları üzerine teoremler kurulmuş ve ispatlarıyla sunulmuştur. Sayısal sonuçlar 

tek ve iki boyutlu durumlar için incelenmiştir. Yaklaşım mertebeleri sayısal deneylerle 

ispatlanmıştır. Çalışma boyunca tuzaklama potansiyelinin bu tip sistemler üzerine etkisi 

araştırılmıştır.  

 

Anahtar kelimeler: Bağlı sistem, tuzaklama potansiyeli, sonlu farklar metodu. 

                                                 
* Betül HİÇDURMAZ, betul.hicdurmaz@medeniyet.edu.tr, https://orcid.org/0000-0001-6797-246X 

https://orcid.org/0000-0001-6797-246X


HİÇDURMAZ B. 

 2 

 

1. Introduction 

 

Fractional Schrödinger differential equations in general form are analyzed with different 

techniques throughout the literature (see [1]-[6]). Presented problems differ according to 

the variable where fractional order derivative appears. In the present paper a coupled 

system of time fractional Schrödinger equations will be pointed out. The problem will 

be considered in both classical and general forms. General form of the model is able to 

include terms representing the four wave mixing effect as [7] 
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Here, a and c are real constants scaling self-phase modulation and cross-phase 

modulation respectively, whereas complex constant b denotes four wave mixing effect 

[8] and V(x,y) is a real valued trapping potential. The four-wave mixing effect can be 

defined as an inter modulation phenomenon in nonlinear optics, whereby the 

interactions between the two or three wavelengths produce one or two new wavelengths 

[9]. 

 

Here, it may be useful to remind that the classical form is presented like that: 
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. 

 

For both cases, we consider the trapping potential V as a time-independent potential. 

Physical properties for a trapping potential can be seen in [10] with more detail. 

 

These equations are studied by Fractional Reduced Differential Transformation, 

Homotopy Analysis Method, Reduced Differential Transform Method in [11-13]. In 

[14], general coupled systems of time fractional Schrödinger equations are considered 

with both theoretical and numerical approaches. 

 

Numerical methods which are listed above lack the stability properties. Classical 

methods are more advantageous at this point with providing stable difference schemes 

for many problems. Finite difference method is not studied extensively in these type of 

problems. This paper will fill a gap by presenting stable difference schemes for Coupled 

Systems of Two-Dimensional Time-Space Fractional Schrödinger Equations with 

Trapping Potentials. 

 

Furthermore, [15-17] search and present the results on the dynamics and decoherence of 

fractional Schrödinger equations with trapping potential. 
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To remind some important terms, we will give definition for Riemann-Liouville 

fractional derivative with order  as 
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whereas the spatial fractional derivatives are Riesz type as  
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where RLDβ
a,xu(t,x)  and  RLDβ

x,bu(t,x)  are left and right Riemann-Liouville derivatives. 

We can use the term Caputo fractional derivative instead of Riemann-Louville time 

fractional derivative in the case of homogeneous initial condition. 

 

Paper is organized as follows: First section is introduction. Second section is on 

theoretical findings for the most general case which is general coupled system of 

TSFSDEs with a trapping potential in two dimensional case. Third section is on 

numerical analysis for four different cases of the general problem which is considered in 

second section. Fourth section is conclusion. 

 

 

2. Theoretical findings 

 

In the present section, we will present the difference scheme for a two dimensional 

mixed problem for general coupled systems of time-space fractional Schrödinger 

equations with the required theoretical analysis. Due to the fact that the theoretical 

findings can easily be extended to m-dimensional case. A two dimensional problem for 

general coupled systems of time-space fractional Schrödinger equations can be given 

with mixed conditions as: 
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Then, problem (1) has a unique {u, v} solution in space of all continuous functions [18]: 
2([0, ], ( )).C T L    

 

To carry out the time discretization for problems above, the grid set 

[0, ] ,kT t t k = = = 0,1,..., , /k N T N= =  

 

is considered. Space discretization is provided by introduction of the grid set: 
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Throughout the paper, step size quantities Mr  are considered equal for every dimension 

as Mr=M  for    So,  hr  step sizes are also equal as hr=h=1/M  for every  

.  Here,  m=2  is the dimension of space variable  . 

Prior to the discretization of problem (1), we introduce the     space 

for the grid functions  with the norm 
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Here, we implement discretization formulas in [14] to obtain a  order of 

accurate difference scheme. 

 

Using following formula from [19] 
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with the approximation which is presented for  fractional spacial derivative in [20] as 
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where 
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we can construct the implicit difference scheme as 
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Theorem 1. The finite difference scheme (2) is convergent with the order of accuracy  
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This will be repeated for the second part of the coupled system (2). So, this is the end of 

the proof. 

 

Theorem 2. The finite difference scheme (2) is unconditionally stable. 

 

Proof. Using a similar procedure with [14], we get 
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Then, we get inner product of equations in (2) with uk+1
j,q. When we consider imaginary 

part of the established equation and induction method, we get  
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Then, these formulas constitute the proof of the stability for difference scheme (2). 

Following the same procedure one can construct the difference schemes and prove the 

stability and convergence theorems for m-dimensional case of problem (1) for any 

positive integer m. 

 

 

3. Numerical Analysis 

 

In the present part, one/two dimensional general/classical coupled systems of time-

space fractional Schrödinger equations with trapping potentials will be investigated 

numerically. 

 

3.1.  Two-dimensional general TSFSDE 

Two-dimensional problem for general coupled systems of time-space fractional 

Schrödinger equations can be stated as  
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 Lastly, difference scheme (2) is implemented on problem (3) and the errors of 

numerical experiments are presented in Tables 1 and 2. Throughout the paper, errors are 

computed by the following maximum norm formula which can be given for two 

dimensional case as:  

 

( ),
0 0 ,
max max k

j q
k N j q M

E u
   

=  

 

Convergence rates (C) are also computed and presented. Throughout the paper,  h  

denotes the equal step length for all dimensions of the  m-dimensional spatial variables. 

To get the solutions of problem, we convert the problem into a system of matrices and 

we use MATLAB. Throughout the experiments for implicit difference schemes, 

iterations start with =0  and terminate when the error between each iteration 

becomes less than 10-7  in the given norm. Numerical analysis supports that theoretical 

findings are applicable and the convergence rates are valid when difference scheme (2) 

is applied on two dimensional general coupled systems of time-space fractional 

Schrödinger problem with a trapping potential (3). 

 

Table 1. Errors of difference scheme (2) for problem (3) when N=100. 

α β₁ β₂ M E                                    C 

0.20 1.70 1.50 4 1.4972×10⁻³                        1.97 

   8 3.8157×10⁻⁴                        1.77 

   16 1.1158×10⁻⁴   - 

α β₁ β₂ N E    C  

0.70 1.20 1.70 4 1.4586×10⁻³   1.96 
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   8 3.47618×10⁻⁴   1.72 

   16 1.1400×10⁻⁴    - 

α β₁ β₂ N E    C  

0.50 1.50 1.50 4 1.4944×10⁻³   1.97 

   8 3.8266×10⁻⁴   1.74 

   16 1.1491×10⁻⁴      - 

      

Table 2. Errors of difference scheme (2) for problem (3) when M=80. 

α β₁ β₂ N E    C 

0.50 1.25 1.50 4 6.2474×10⁻5   0.94 

   8 3.2574×10⁻5   0.95 

   16 1.6837×10⁻5   0.92 

   32 8.8981×10⁻6   - 

  

3.2.  Two-dimensional classical TSFSDE 

Two dimensional problem for classical coupled systems of time-space fractional 

Schrödinger equations can be given as  

 

( )
1 2

1 2

2 2 2 2

1( , , ) (1 sin sin ) ,
u u u

i u v u g t x y x x u
t x y

 

 

  
= − − − + + − −

  
 

( )
1 2

1 2

2 2 2 2

2 ( , , ) (1 sin sin ) ,
v v v

i u v v g t x y x x v
t x y

 

 

  
= − − − + + − −

  

0 ,0 1,x L t                                                                                                   (4) 

(0, ) 0, (0, ) 0,0 , ( ,0, ) ( ,1, ) 0,u x v x x L u t y u t y= =   = =

( ,0, ) ( ,1, ) 0,0 1,0 1,v t y v t y t y= =      

( , ,0) ( , ,1) 0,0 1,0 1,u t x u t x t x= =      

( , ,0) ( , ,1) 0,0 1,0 1.v t x v t x t x= =      

 

 Here,   

 
3 2 2 2 2(1 )( ) (1 ) (1 ) ,u i t x x y y= + − − 4 2 2 2 2( ) (1 ) (1 ) .v i t x x y y= − −  

 

 Lastly, difference scheme (2) is implemented on problem (4). Total maximum errors 

and convergence rates are presented in Tables 3.  

 

Table 3. Errors of difference scheme (2) for problem (4) when N=100. 

α β₁ β₂ M E    C 

0.50 1.25 1.50 4 1.4643×10⁻³   1.95 

   8 3.7923×10⁻⁴   1.70 

   16 1.1882×10⁻⁴   - 
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3.3.  One-dimensional general TSFSDE 

In the present section, we present the following general coupled system of one 

dimensional TSFSDE with a trapping potential. Here, we consider the exact solution as 

 
3 2 2 4 2 2(1 )( ) (1 ) , ( ) (1 ) .u i t x x v i t x x= + − = −  

 

A one dimensional mixed problem for general coupled systems of time-space fractional 

Schrödinger equations can be stated as  

 

( )2 2 2

1cos ( , ),
u u

i u v buv bvu u xu f t x
t x

 



 
= − − + + + − +

 
 

( )2 2 2

2cos ( , )
v v

i u v buv bvu v xv f t x
t x

 



 
= − − + + + − +

 
 

0 ,0 1,x L t                                                                                                             (5) 

(0, ) 0, (0, ) 0, 0 ,u x v x x L= =    

( ,0) ( ,1) 0, ( ,0) ( ,1) 0, 0 1u t u t v t v t t= = = =    

 

 where  

 

( )
3

3 2 2 3 2 2

1

(4)
( , ) ( 1) (1 ) (1 ) (1 )

(4 )
f t x i t x x i t x x



−
= − − + + −

 −
 

( )3 2 2 2
2 2

(1 ) sec (1 ) 12 (1 )
( 6 )

(5 ) (1 ) (1 )

i t x x x x x x
x

x x

   

 
  



−+  − −
− + − − +

 − − −
 

)2 2 2 2 3 2 2(12(1 ) 7 6 ) cos (1 )( ) (1 )x x x x i t x x  + − − + + − + −  

 

and  

 

( )
3

4 2 2 4 2 2

2

(5)
( , ) (1 ) (1 )

(5 )
f t x t x x it x x



−
= − − + −

 −
 

( )4 2 2 2
2 2

sec (1 ) 12 (1 )
( 6 )

(5 ) (1 ) (1 )

it x x x x x x
x

x x

   

 
  



−
 − −

− + − − +
 − − −

 

)2 2 2 2 4 2 2(12(1 ) 7 6 ) cos ( ) (1 )x x x i x t x x  + − − + + − −  

 

Problem (5) is solved by difference scheme (2) and Tables 4 and 5 are constructed for 

the obtained errors. This experiment shows that the obtained theoretical results for 

difference scheme (2) are valid when  m=1. 

 

Table 4. Errors of difference scheme (2) for problem (5) when N=1000. 

α β M E    C 

0.70 1.50 4 2.5122×10⁻²   2.05 

  8 6.0407×10⁻³   2.06 

  16 1.4422×10⁻³   2.07 

  32 3.4166×10⁻⁵   - 
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Table 5. Errors of difference scheme (2) for problem (5) when M=1000. 

α β N E    C 

0.70 1.50 10 3.9424×10⁻³   0.96 

  20 2.0324×10⁻³   0.98 

  40 1.0322×10⁻³   0.99 

  80 5.2022×10⁻⁴   - 

 

3.4.  One-dimensional classical TSFSDE 

In the present section, we present the following classical coupled system of one 

dimensional TSFSDE with a trapping potential with the following exact solution:  

 
3 2 2 4 2 2(1 )( ) (1 ) , ( ) (1 ) .u i t x x v i t x x= + − = −  

 

The following mixed problem for classical coupled systems of TSFSDE will be 

considered:  

 

( )2 2 2

1cos ( , ),
u u

i u v u xu f t x
t x

 



 
= − − + − +

 
 

( )2 2 2

2cos ( , ),
v v

i u v v xv f t x
t x

 



 
= − − + − +

 
 

0 ,0 1,x L t     

(0, ) 0, (0, ) 0, 0 ,u x v x x L= =                                                                                     (6) 

( ,0) ( ,1) 0, ( ,0) ( ,1) 0, 0 1u t u t v t v t t= = = =    

 

 Problem (6) is solved by difference scheme (2) and Tables 6 and 7 are constructed for 

the obtained errors. 

  

Table 6. Errors of difference scheme (2) for problem (5) when N=1000. 

α β M E     C 

0.70 1.50 4 2.5059×10⁻²    2.05 

  8 6.0290×10⁻³    2.06 

  16 1.4396×10⁻³    2.07 

  32 3.4105×10⁻⁴    - 

  

    

Table 7. Errors of difference scheme (2) for problem (5) when M=100. 

α β N E     C 

0.70 1.50 4 9.0170×10⁻³    0.90 

  8 4.8486×10⁻³    0.95 

  16 2.5178×10⁻³    0.97 

  32 1.2834×10⁻³    0.99 

  64 6.4800×10⁻⁴    - 
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4. Conclusion 

 

In the present paper, finite difference scheme is constructed for multi-dimensional 

general coupled systems of time-space fractional Schrödinger equations with a trapping 

potential. Numerical results in error analysis table prove that the constrtucted difference 

schemes have accurately the same convergence rate which is proved in convergence and 

stability theorems. Space variable discretization has second order convergence and time 

variable discretization has convergence rate which is approximately one. 

 

Convergence and stability theorems are presented theoretically. Obtained theoretical 

results are supported by numerical experiments on one and two dimensional general and 

classical coupled systems of time-space fractional Schrödinger equations with trapping 

potentials. 
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