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Abstract

In this study, we consider weighted stochastic field exponent function spaces Lp(.,.)
ϑ (D × Ω)

and W
k,p(.,.)
ϑ (D × Ω). Also, we study some basic properties and embeddings of these

spaces. Finally, we present an application for defined spaces to the stochastic partial
differential equations with stochastic field growth.
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1. Introduction
Nonlinear partial differential equations arise in chemical and biological problems, in

formulating fundamental laws of nature, in different areas of physics, applied mathematics
and engineering (such as solid mechanics, fluid dynamics, acoustics, nonlinear optics,
plasma physics, quantum eld theory) and numerous applications. To study these equations
is a very difficult task because there are no general methods to solve such equations.
Moreover, the existence and the uniqueness of the solutions are fundamental, hard-to-
prove questions for any nonlinear equation with given boundary conditions.

In various applications (such as elasticity, non-Newtonian fluids and electrorheological
fluids, see [13]), it can be seen the boundary value obstacle problems for elliptic equations.
Many of these type equations have been investigated for constant exponents of nonlinearity
but it seems to be more realistic to assume the variable exponent, see [4].

Harjulehto et. al [8] investigate an overview of applications to differential equations
with non-standard growth. Also, Aoyama [1] considered the some properties of variable
exponent Lebesgue spaces on a probability space. In 2014, Tian et. al [15] introduced
stochastic field exponent function spaces Lp(.,.) (D × Ω) and W k,p(.,.) (D × Ω). They gave
also an application to the stochastic partial differential equations with stochastic field
growth in these spaces. Moreover, Lahmi et. al [10] proved the existence of solutions
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for the nonlinear p(.)-degenerate problems involving nonlinear operators. This study is a
generalization of [10,14,15].

In this paper, we define weighted stochastic field exponent function spaces Lp(.,.)
ϑ (D × Ω)

and W k,p(.,.)
ϑ (D × Ω), and discuss some basic properties of these spaces. Finally, we discuss

the existence and uniqueness of the weak solution for the nonlinear degenerated weighted
p(., .) elliptic problem{

−divA (x, t, u,∇u) +A0 (x, t, u,∇u) = f (x, t) , (x, t) ∈ D × Ω
u = 0, (x, t) ∈ ∂D × Ω (1.1)

where A (x, t, s, ξ) and A0 (x, t, s, ξ) are Carathéodory functions, which are measurable
stochastic fields on D × Ω and continuous for s and ξ under some conditions. Moreover,
f (x, t) is an integrable stochastic field on D × Ω. The measurable stochastic field p (., .) :
D × Ω −→ [1,∞) satisfies 1 < p− ≤ p (., .) ≤ p+ < ∞.

It is known that pseudo-monotone operators have been many applications in nonlinear
elliptic equations. As an example, we can refer Browder [2]. Here, the author investigated
a class of pseudo-monotone operators and applied it to a kind of boundary value problems
for nonlinear elliptic equations.

By the theory of pseudo-monotone operators, our aim is to show the compactness
techniques and the existence of a least weak solution of (1.1). The special case of the
equation of (1.1) is the following equation{

−div
(
ϑ(x, t) |∇u|p(x,t)−2 ∇u

)
+ ϑ(x, t)g(u) |∇u|p(x,t)−1 = f (x, t) , (x, t) ∈ D × Ω
u = 0, (x, t) ∈ ∂D × Ω

.

Now, suppose that λ is a product measure on D× Ω and u(x, t) is a Lebesgue measurable
stochastic field on D× Ω, where D is a bounded open subset of Rd (d > 1), and (Ω,Λ, P )
is a complete probability space.

2. Weighted stochastic field exponent Lebesgue and Sobolev spaces
Definition 2.1. We denote the family of all measurable functions p (., .) : D×Ω −→ [1,∞)
(called a stochastic field exponent). In this paper, the function p (., .) always denotes a
stochastic field exponent. Moreover, we put

p− = essinf
(x,t)∈D×Ω

p(x, t), p+ = esssup
(x,t)∈D×Ω

p(x, t).

A positive, measurable and locally integrable function ϑ defined on D×Ω is called a weight
function. Now, we introduce the integrability conditions used on the weighted variable
Lebesgue and Sobolev spaces

(H1) : ϑ ∈ L1
loc (D × Ω) and ϑ

− 1
p(.,.)−1 ∈ L1

loc (D × Ω)
(H2) : ϑ−s(.,.) ∈ L1 (D × Ω) ,

with s (., .) ∈
(

d
p(.,.) ,∞

)
∩
[

1
p(.,.)−1 ,∞

)
. The weighted modular function ρp(.,.),ϑ on D × Ω

is defined by

ρp(.,.),ϑ (u) = E

∫
D

|u (x, t)|p(x,t) ϑ (x, t) dx

 =
∫

D×Ω

|u (x, t)|p(x,t) ϑ (x, t) dλ,

where dλ = dλ (x, t) = dxdt.
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The spaces Lp(.,.)
ϑ (D × Ω) consist of all measurable stochastic fields (functions) u on

D × Ω such that
∫

D×Ω
|u(x, t)|p(x,t) ϑ(x, t)dλ < ∞ and endowed with the Luxemburg norm

∥u∥p(.,.),ϑ = inf

τ > 0 :
∫

D×Ω

∣∣∣∣u (x, t)
τ

∣∣∣∣p(x,t)
dxdt ≤ 1

 .

It is well known that u ∈ L
p(.,.)
ϑ (D × Ω) if and only if the norm ∥u∥p(.,.),ϑ =

∥∥∥∥uϑ 1
p(.,.)

∥∥∥∥
p(.,.)

is finite. Moreover, it is clear that, if the inequality 0 < C ≤ ϑ is satisfied, then
L

p(.,.)
ϑ (D × Ω) ↪→ Lp(.,.) (D × Ω) . In this study, we assume that 1 < p− ≤ p(., .) ≤ p+ < ∞

and (H1), (H2). Moreover, we will use the abbreviations and symbols; a.e., −→ and ⇀ for
almost everywhere, strong convergence and weak convergence, respectively.

It can be seen that the space Lp(.,.)
ϑ (D × Ω) is uniformly convex, so it is reflexive, see

[5]. Moreover, we denote by L
q(.,.)
ϑ∗ (D × Ω) as the dual space of Lp(.,.)

ϑ (D × Ω) where
1

p(.,.) + 1
q(.,.) = 1 and ϑ∗ = ϑ1−q(.,.).

Proposition 2.2 (Hölder-type inequality, see [5]). Let p (.) ∈ L∞
+ (Ω) . The conjugate

space to Lp(.) (Ω) is Lp′(.) (Ω) , where 1
p(x) + 1

p′(x) = 1 for almost every x ∈ Ω. Moreover,
the following inequality hold∣∣∣∣∣∣

∫
Ω

j (x)h (x) dx

∣∣∣∣∣∣ ≤
(

1 + 1
p− − 1

p+

)
∥j∥p(.) ∥h∥p′(.)

for all j ∈ Lp(.) (Ω) and h ∈ Lp′(.) (Ω) .

Now, we present the relationships between ∥.∥p(.,.),ϑ and ρp(.,.),ϑ as follows. The proof
is clear.

Proposition 2.3 (see [15]). If u ∈ L
p(.,.)
ϑ (D × Ω), then we have

(i) ∥u∥p−

p(.,.),ϑ ≤ ρp(.,.),ϑ (u) ≤ ∥u∥p+

p(.,.),ϑ with ∥u∥p(.,.),ϑ ≥ 1.

(ii) ∥u∥p+

p(.,.),ϑ ≤ ρp(.,.),ϑ (u) ≤ ∥u∥p−

p(.,.),ϑ with ∥u∥p(.,.),ϑ ≤ 1.

Theorem 2.4. Let 1
p(.,.) + 1

q(.,.) = 1 and ϑ∗ = ϑ1−q(.). Then we have

E

∫
D

|f(x, t)g(x, t)| dx

 ≤ C ∥f∥p(.,.),ϑ ∥g∥q(.,.),ϑ∗

for every f ∈ L
p(.,.)
ϑ (D × Ω) and g ∈ L

q(.,.)
ϑ∗ (D× Ω) with the constant C depends on p(., .).

Proof. If we consider the Hölder inequality, then we get

E

∫
D

|f(x, t)g(x, t)| dx

 = E

∫
D

|f(x, t)g(x, t)| (ϑ(x, t))
1

p(x,t) − 1
p(x,t) dx


≤ C

∥∥∥∥fϑ 1
p(.,.)

∥∥∥∥
p(.,.)

∥∥∥∥gϑ− 1
p(.,.)

∥∥∥∥
q(.,.)

for some C > 0. �

Theorem 2.5 (see [14, 15]). The space L
p(.,.)
ϑ (D × Ω) is a reflexive Banach space with

respect to norm ∥.∥p(.,.),ϑ.
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Proposition 2.6. The space L
p(.,.)
ϑ (D × Ω) is continuously embedded in L1

loc (D × Ω).
This means that every function in L

p(.,.)
ϑ (D × Ω) has distributional (weak) derivative.

Proof. Suppose that u ∈ L
p(.,.)
ϑ (D × Ω) and let K = K1 ×K2 ⊂ D× Ω be a compact set.

By the Hölder inequality, there is an AK > 0 such that

ρp(.,.),K (u) = E

∫
K1

|u(x, t)|ϑ
1

p(x,t)ϑ
− 1

p(x.t)dx


≤ AK

∥∥∥∥uϑ 1
p(.,.)

∥∥∥∥
p(.,.),K

∥∥∥∥ϑ− 1
p(.,.)

∥∥∥∥
q(.,.),K

(2.1)

where 1
p(.,.) + 1

q(.,.) = 1. It is obvious that
∥∥∥∥ϑ− 1

p(.,.)

∥∥∥∥
q(.,.),K

< ∞ if and only if

ρq(.,.),K

(
ϑ

− 1
p(.,.)

)
< ∞. Since ϑ− 1

p(.,.)−1 ∈ L1
loc (D × Ω) , we have

ρq(.,.),K(ϑ− 1
p(.,.) ) = E

∫
K1

ϑ
− q(x,t)

p(x,t)dx

 =
∫
K

ϑ
− 1

p(x,t)−1dλ = BK < ∞. (2.2)

If we consider (2.1) and (2.2), then we have the desired result. �

Remark 2.7. If ϑ− 1
p(.,.)−1 /∈ L1

loc (D × Ω), then the space L
p(.,.)
ϑ (D × Ω) might not be

continuously embedded in L1
loc (D × Ω).

Theorem 2.8. Let u ∈ L
p(.,.)
ϑ (D × Ω) and un ∈ L

p(.,.)
ϑ (D × Ω) with ∥un∥p(.,.),ϑ ≤ C for

some C > 0. If un −→ u a.e. in D × Ω, then un ⇀ u in L
p(.,.)
ϑ (D × Ω).

Proof. Since the space Lp(.,.)
ϑ (D × Ω) is reflexive, we only need to see that

E

∫
D

ungdx

 −→ E

∫
D

ugdx


for every g ∈ L

q(.,.)
ϑ∗ (D× Ω) where 1

p(.,.) + 1
q(.,.) = 1 and ϑ∗ = ϑ1−q(.,.). It is well known that

∥un∥p(.,.),ϑ ≤ C if and only if ρp(.,.),ϑ
(un

C

)
≤ 1 for every n ∈ N. This follows by the Fatou’s

Lemma that

E

∫
D

∣∣∣∣ uC
∣∣∣∣p(x,t)

ϑ(x, t)dx

 ≤ lim inf
n−→∞

E

∫
D

∣∣∣∣un

C

∣∣∣∣p(x,t)
ϑ(x, t)dx

 ≤ 1.

Thus, we get ∥u∥p(.,.),ϑ ≤ C. By the absolute continuity of the Lebesgue integral, we have

lim
meas(K)−→0

∫
D×Ω

|gχK |q(x,t) ϑ∗(x, t)dλ = 0

where g ∈ L
q(.,.)
ϑ∗ (D × Ω) and K ⊂ D × Ω. This yields that lim

meas(K)−→0
∥gχK∥q(.,.),ϑ∗ = 0,

and there is a δ > 0 such that

∥gχK∥q(.,.),ϑ∗ <
ε

4C

(
1 + 1

p− − 1
p+

)−1
(2.3)

for meas(K) < δ. If we consider the Egorov theorem, then there is a set L ⊂ D × Ω such
that un −→ u uniformly on L with meas ((D × Ω) − L) < δ. Moreover, if we choose n0
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such that n ≥ n0, then we have

max
(x,t)∈L

|un − u| ∥g∥q(.,.),ϑ∗ ∥χL∥p(.,.),ϑ

(
1 + 1

p− − 1
p+

)
<
ε

2
. (2.4)

Let us denote K = (D × Ω) − L. By (2.3) and (2.4), we have∣∣∣∣∣∣E
∫

D

ungdx

− E

∫
D

ugdx

∣∣∣∣∣∣
≤
∫
L

|un − u| |g| dλ+
∫
K

|un − u| |g| dλ

≤ max
(x,t)∈L

|un − u|E

∫
D

|gχL| dx

+ E

∫
D

|un − u| |gχK | dx


≤ max

(x,t)∈L
|un − u| ∥g∥q(.,.),ϑ∗ ∥χL∥p(.,.),ϑ

(
1 + 1

p− − 1
p+

)
+ ∥un − u∥p(.,.),ϑ ∥gχK∥q(.,.),ϑ∗

(
1 + 1

p− − 1
p+

)
< ε.

That is the desired result. �
Definition 2.9. The weighted stochastic field variable Sobolev spaces W k,p(.,.)

ϑ (D × Ω)
defined by

W
k,p(.,.)
ϑ (D × Ω) =

{
u ∈ L

p(.,.)
ϑ (D × Ω) : Dαu ∈ L

p(.,.)
ϑ (D × Ω) , 0 ≤ |α| ≤ k

}
equipped with the norm

∥u∥
W

k,p(.,.)
ϑ

(D×Ω) =
∑

0≤|α|≤k

∥Dαu∥p(.,.),ϑ ,

where α ∈ Nd
0 is a multi-index, |α| = α1 +α2 + ...+αd and Dα = ∂|α|

∂
α1
x1 ...∂

αd
xd

. It is clear that

the space
(
W

k,p(.,.)
ϑ (D × Ω) , ∥.∥

W
k,p(.,.)
ϑ

(D×Ω)

)
is a reflexive Banach space by [15, Theorem

2.5].
Moreover, the space W 1,p(.,.)

ϑ (D × Ω) is defined by

W
1,p(.,.)
ϑ (D × Ω) =

{
u ∈ L

p(.,.)
ϑ (D × Ω) : |∇u| ∈ L

p(.,.)
ϑ (D × Ω)

}
with the norm ∥u∥

W
1,p(.,.)
ϑ

(D×Ω) = ∥u∥p(.,.),ϑ + ∥∇u∥p(.,.),ϑ.

The space W 1,p(.,.)
0,ϑ (D × Ω) is the closure of

C (D × Ω) = {u : u (., t) ∈ C∞
0 (D) for every t ∈ Ω}

in W
1,p(.,.)
ϑ (D × Ω). Also, it is obvious that C (D × Ω) is a subspace of W 1,p(.,.)

0,ϑ (D × Ω),
and the dual space of W 1,p(.,.)

0,ϑ (D × Ω) is W−1,q(.,.)
0,ϑ∗ (D × Ω), where 1

p(.,.) + 1
q(.,.) = 1 and

ϑ∗ = ϑ1−q(.,.).
The following theorem present the Poincaré inequality for the weighted Sobolev spaces

W
k,p(.,.)
0,ϑ (D × Ω). For the proof, it can be used the similar method in [16, Theorem 7].

Theorem 2.10. Assume that p (., .) satisfies the jump condition (see [7]) in D× Ω. Then
there is a C > 0 such that the inequality

∥u∥p(.,.),ϑ ≤ C ∥∇u∥p(.,.),ϑ (2.5)
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holds for every u ∈ W
k,p(.,.)
0,ϑ (D × Ω) (or u ∈ C (D × Ω)).

Therefore, the space W 1,p(.,.)
0,ϑ (D × Ω) equipped with the norm

∥|u|∥
W

1,p(.,.)
0,ϑ

(D×Ω) = ∥∇u∥p(.,.),ϑ

for u ∈ W
1,p(.,.)
0,ϑ (D × Ω) . It is note that the norms ∥.∥

W
1,p(.,.)
ϑ

(D×Ω) and ∥|.|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

are equivalent on W
1,p(.,.)
ϑ (D × Ω) . Then, W 1,p(.,.)

ϑ (D × Ω) is continuously embedded in
L

p(.,.)
ϑ (D × Ω) if and only if the inequality (2.5) is satisfied for every u ∈ W

1,p(.,.)
0,ϑ (D × Ω) .

3. Compact embedding theorems
In this section, we present several compact embeddings between the weighted stochas-

tic field variable Lebesgue and Sobolev spaces. Because, we need these embeddings to
investigate weak solutions of stochastic partial differential equation (1.1). Now, we will
introduce the function p∗ (., .) and ps (., .) defined by

p∗ (x, t) =
{

dp(x,t)
d−p(x,t) if p (x, t) < d,

∞ if p (x, t) ≥ d,
,

ps (x, t) = p(x, t)s(x, t)
s(x, t) + 1

< p(x, t),

and we have

p∗
s (x, t) =

{
dps(x,t)

d(s(x,t)+1)−p(x,t)s(x,t) if ps (x, t) < d,

arbitrary if ps (x, t) ≥ d,

for almost all (x, t) ∈ D × Ω.
If we use the similar method in [11, Proposition 2.5], then we have the following result.

Proposition 3.1. Assume that the boundary of D × Ω possesses the cone property and
p (., .) ∈ C

(
D × Ω

)
. Moreover, let q(., .) ∈ C

(
D × Ω

)
and 1 ≤ q(x, t) ≤ p∗ (x, t) for

(x, t) ∈ D × Ω. Then the space W 1,p(.,.) (D × Ω) is compactly embedded in Lq(.,.) (D × Ω).

Theorem 3.2. Assume that the boundary of D × Ω possesses the cone property, p(., .) ∈
C
(
D × Ω

)
and 1 < p(x, t) for all (x, t) ∈ D × Ω. Suppose that

(i) 0 < ϑ(x, t) ∈ Lα(.,.) (D × Ω) with (x, t) ∈ D × Ω, α(., .) ∈ C
(
D × Ω

)
and 1 < α−.

(ii) 1 < q(x, t) < α(x,t)−1
α(x,t) p∗ (x, t) for all (x, t) ∈ D × Ω.

Then, there is a compact embedding from W 1,p(.,.) (D × Ω) to Lq(.,.)
ϑ (D × Ω).

Proof. For the proof, we use similar method in [6, Theorem 2.1]. Assume that
u ∈ W 1,p(.,.) (D × Ω) and set r(x, t) = α(x,t)

α(x,t)−1q(x, t) = α0(x, t)q(x, t). Then (ii) implies
r(x, t) < p∗ (x, t) . This follows that W 1,p(.,.) (D × Ω) ↪→↪→ Lr(.,.) (D × Ω) by Proposition
3.1. Moreover, for u ∈ W 1,p(.,.) (D × Ω) , we get |u|q(x,t) ∈ Lα0(x,t) (D × Ω). By the Hölder
inequality

E

∫
D

ϑ(x, t) |u|q(x,t) dx

 ≤
(

1 + 1
p− − 1

p+

)
∥ϑ∥α(.,.)

∥∥∥|u|q(.,.)
∥∥∥

α0(.,.)
< ∞.

Therefore, we have W 1,p(.,.) (D × Ω) ⊂ L
q(.,.)
ϑ (D × Ω). Now, assume that (un)n∈N ⊂

W 1,p(.,.) (D × Ω) and un ⇀ 0 in W 1,p(.,.) (D × Ω). Since W 1,p(.,.) (D × Ω) is compactly
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embedded in Lr(.,.) (D × Ω) by the Proposition 3.1, we get un −→ 0 in Lr(.,.) (D × Ω),
that is, ∥un∥r(.,.) −→ 0. This yields ρr(.,.)(un) −→ 0 and

E

∫
D

|un(x, t)|r(x,t) dx

 = ρα0(.,.)(|un(x, t)|q(x,t)) −→ 0

or equivalently ∥∥∥|un|q(.,.)
∥∥∥

α0(.,.)
−→ 0.

Thus, we have

E

∫
D

ϑ(x, t) |un|q(x,t) dx

 ≤
(

1 + 1
p− − 1

p+

)
∥ϑ∥α(.,.)

∥∥∥|un|q(.,.)
∥∥∥

α0(.,.)
−→ 0

which implies ∥un∥q(.,.),ϑ −→ 0. That is the desired result. �

Theorem 3.3. Let all conditions in Proposition 3.1 be hold. Moreover, assume that the
assumptions in Theorem 3.2 replacing p (., .) by ps (., .) are also satisfied. Thus we obtain

W
1,p(.,.)
ϑ (D × Ω) ↪→↪→ L

r(.,.)
ϑ (D × Ω) ,

where r(x, t) ≤ p∗
s (x, t) for all (x, t) ∈ D × Ω and 0 < C ≤ ϑ.

Proof. First of all, we will show that W
1,p(.,.)
ϑ (D × Ω) is continuously embedded in

W 1,ps(.,.) (D × Ω). Let u ∈ W
1,p(.,.)
ϑ (D × Ω). Then it is clear that u, |∇u| ∈ L

p(.,.)
ϑ (D × Ω).

If we consider the Hölder inequality, Proposition 2.3 and ϑ−s(.,.) ∈ L1 (D × Ω), then we
have

E

∫
D

|∇u|ps(x,t) dx

 = E

∫
D

|∇u|ps(x,t) ϑ
ps(x,t)
p(x,t) ϑ

− ps(x,t)
p(x,t) dx


≤ C

∥∥∥∥|∇u|ps(.,.) ϑ
ps(.,.)
p(.,.)

∥∥∥∥ p(.,.)
ps(.,.)

∥∥∥∥ϑ− s(.,.)
s(.,.)+1

∥∥∥∥
s(.,.)+1

≤ C
(
ρp(.,.),ϑ (|∇u|)

) 1
γ1
(
ρs(.,.)

(
ϑ−1

)) 1
γ2

≤ CC1
(
ρp(.,.),ϑ (|∇u|)

) 1
γ1

where

γ1 =


(

p
ps

)−
, if

∥∥∥∥|∇u|ps(.,.) ϑ
ps(.,.)
p(.,.)

∥∥∥∥ p(.,.)
ps(.,.)

≥ 1(
p
ps

)+
, if

∥∥∥∥|∇u|ps(.,.) ϑ
ps(.,.)
p(.,.)

∥∥∥∥ p(.,.)
ps(.,.)

≤ 1

and

γ2 =


s− + 1, if

∥∥∥∥ϑ− s(.,.)
s(.,.)+1

∥∥∥∥
s(.,.)+1

≥ 1

s+ + 1, if
∥∥∥∥ϑ− s(.,.)

s(.,.)+1

∥∥∥∥
s(.,.)+1

≤ 1.

Hence, we get

∥∇u∥γ3
ps(.,.) ≤ E

∫
D

|∇u|ps(x,t) dx

 ≤ CC1
(
ρp(.,.),ϑ (|∇u|)

) 1
γ1

≤ CC1 ∥∇u∥
γ4
γ1
p(.,.),ϑ
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where

γ3 =
{
p−

s , if ∥∇u∥ps(.,.) ≥ 1
p+

s , if ∥∇u∥ps(.,.) ≤ 1
and

γ4 =
{
p+, if ∥∇u∥p(.,.),ϑ ≥ 1
p−, if ∥∇u∥p(.,.),ϑ ≤ 1 .

Therefore, we obtain

∥∇u∥ps(.,.) ≤ C∗ ∥∇u∥
γ4

γ1γ3
p(.,.),ϑ . (3.1)

Since ps (., .) < p(., .), we have Lp(.,.)
ϑ (D × Ω) ↪→ Lp(.,.) (D × Ω) ↪→ Lps(.,.) (D × Ω), see

[9, Theorem 2.8]. Then there exists C∗∗ > 0 such that
∥u∥ps(.,.) ≤ C∗∗ ∥u∥p(.,.),ϑ (3.2)

for almost everywhere in D× Ω. By (3.1) and (3.2), we conclude that W 1,p(.,.)
ϑ (D × Ω) ⊂

W 1,ps(.,.) (D × Ω). If we consider the Banach theorem in [3], we get W 1,p(.,.)
ϑ (D × Ω) ↪→

W 1,ps(.,.) (D × Ω). This follows from Theorem 3.2 that

W 1,ps(.,.) (D × Ω) ↪→↪→ L
r(.,.)
ϑ (D × Ω) .

That is the desired result. �
Now, we reveal several required assumptions for the equation (1.1). Assume that A :

Rd × Ω × R × Rd −→ Rd and f : Rd × Ω −→ R satisfy the following growth conditions:

(H3) |A (x, t, s, ξ)| ≤ βϑ
1

p(x,t)

[
k(x, t) + ϑ

1
q(x,t) |ξ|p(x,t)−1

]
(H4) (A (x, t, s, ξ) −A (x, t, s, µ)) (ξ − µ) > 0, ξ ̸= µ

(H5) A (x, t, s, ξ) |ξ| ≥ αϑ(x, t) |ξ|p(x,t)

where k(x, t) is a positive function in Lq(.,.)(D× Ω) where 1
p(.,.) + 1

q(.,.) = 1 and α, β are
positive constants.

Let A0 (x, t, s, ξ) : Rd × Ω ×R×Rd −→ R be a Carathéodory function such that for a.e.
(x, t) ∈ Rd × Ω and for every s ∈ R, ξ ∈ Rd, the growth condition

|A0 (x, t, s, ξ)| ≤ γ (x, t) + g(s)ϑ(x, t) |ξ|p(x,t)−1

holds where g : R −→ R+ is a continuous function that belongs to L1 (R) and γ (x, t)
belongs to Lq(.,.)

ϑ∗ (D × Ω). Finally, we assume that f ∈ W
−1,q(.,.)
ϑ∗ (D × Ω) .

Lemma 3.4 (see [10]). Assume that (H3) − (H5) hold and suppose that {un}n∈N is a
sequence in W

1,p(.,.)
0,ϑ (D × Ω) such that un ⇀ u in W

1,p(.,.)
0,ϑ (D × Ω) and

E

∫
D

[A (x, t, un,∇un) −A (x, t, un,∇u)] ∇ (un − u) dx

 −→ 0.

Then un −→ u in W
1,p(.,.)
0,ϑ (D × Ω).

4. Existence of weak solution of stochastic partial differential equations
with stochastic field growth

Definition 4.1. A function u ∈ W
1,p(.,.)
0,ϑ (D × Ω) is said to be a weak solution (1.1), if

E

∫
D

[A (x, t, u,∇u) ∇ϕ+A0 (x, t, u,∇u)ϕ] dx

 = E

∫
D

f (x, t)ϕdx


for all ϕ ∈ W

1,p(.,.)
0,ϑ (D × Ω).
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Definition 4.2. A bounded operator T fromW
1,p(.,.)
0,ϑ (D × Ω) to its dualW−1,q(.,.)

ϑ∗ (D × Ω)
is called pseudo-monotone if for any sequences (uk)k∈N in W

1,p(.,.)
0,ϑ (D × Ω) satisfying

(i) uk ⇀ u in W
1,p(.,.)
0,ϑ (D × Ω) as k −→ ∞,

(ii) lim sup
k−→∞

⟨T (uk) , uk − u⟩ ≤ 0,

T (uk) ⇀ T (u) and ⟨T (uk) , uk⟩ −→ ⟨T (u) , u⟩.

Definition 4.3. Assume that X is a reflexive Banach space and X∗ denotes dual of X.
Also, let ⟨., .⟩ be a pair between X and X∗. Then a mapping Γ : X −→ X∗ is called
coercive if there exists a u ∈ X such that

⟨Γ(u), u⟩
∥u∥X

−→ ∞ as ∥u∥X −→ ∞.

Let us define the operator Γ : W 1,p(.,.)
0,ϑ (D × Ω) −→ W

−1,q(.,.)
ϑ∗ (D × Ω) by

⟨Γ(u), ϕ⟩ = E

∫
D

[A (x, t, u,∇u) ∇ϕ+A0 (x, t, u,∇u)ϕ] dx


for all ϕ ∈ W

1,p(.,.)
0,ϑ (D × Ω) and 1

p(.,.) + 1
q(.,.) = 1. Hence, we can write the equation (1.1)

as ⟨Γ(u), ϕ⟩ = ⟨f, ϕ⟩.

Proposition 4.4 (Weak compactness of bounded set, see [12]). Suppose that X is a
reflexive Banach space. Moreover, assume that (uk)k∈N is a sequence such that

(i) uk ∈ X
(ii) ∥uk∥X ≤ C for all k ∈ N,

that is, (uk)k∈N is a bounded sequence in X, then there exists a subsequence (ukl
)l∈N and

an element u0 ∈ X such that ukl
⇀ u0 in X.

Theorem 4.5 (see [12]). Let X be a reflexive Banach space and assume that Γ : X −→ X∗

is continuous (bounded), coercive and pseudo-monotone. Then for every g ∈ X∗ there
exists a solution u ∈ X of the equation Γ (u) = g.

Now, we are ready to give our main motivation of the paper.

Theorem 4.6. If the conditions (H1)−(H5) hold, then there exists at least a weak solution
of (1.1) in W

1,p(.,.)
0,ϑ (D × Ω) .

Proof. The proof is based on three parts.
Step 1. First of all, we will show that the operator Γ is bounded. The operator Γ is

equal to the sum of two operators such that Γ = Γ1 + Γ2 where

⟨Γ1(u), ϕ⟩ = E

∫
D

A (x, t, u,∇u) ∇ϕdx


and

⟨Γ2(u), ϕ⟩ = E

∫
D

A0 (x, t, u,∇u)ϕdx

 .
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If we consider (H3), Proposition 2.3 and Hölder inequality, then we have

|⟨Γ1(u), ϕ⟩| ≤ C

∥∥∥∥A (x, t, u,∇u)ϑ− 1
p(x,t)

∥∥∥∥
q(.,.)

∥∥∥∥∇ϕϑ 1
p(x,t)

∥∥∥∥
p(.,.)

= C

∥∥∥∥A (x, t, u,∇u)ϑ− 1
p(x,t)

∥∥∥∥
q(.,.)

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C

E
∫

D

|A (x, t, u,∇u)|q(x,t) ϑ
− q(x,t)

p(x,t)dx

θ

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C

E
∫

D

∣∣∣∣βϑ 1
p(x,t) [k(x, t)

+ϑ
1

q(x,t) |∇u|p(x,t)−1
]∣∣∣∣q(x,t)

ϑ
− q(x,t)

p(x,t)dx

)]θ

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C∗
(
max

{
βq−

, βq+})θ

E
∫

D

[
|k(x, t)|q(x,t)

+ |∇u|p(x,t) ϑ
]
dx
)]θ

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C∗
(
C1 + ρp(.,.),ϑ(∇u)

)θ
∥|ϕ|∥

W
1,p(.,.)
0,ϑ

(D×Ω)

where

θ =
{ 1

q− , if ∥A (x, t, u,∇u)∥q(.,.),ϑ∗ ≥ 1,
1

q+ , if ∥A (x, t, u,∇u)∥q(.,.),ϑ∗ ≤ 1 ,

and 1
p(.,.) + 1

q(.,.) = 1. This yields that Γ1 is bounded. In a similar way, since γ ∈
L

q(.,.)
ϑ∗ (D × Ω) , we get

|⟨Γ2(u), ϕ⟩| ≤ C

∥∥∥∥A0 (x, t, u,∇u)ϑ− 1
p(x,t)

∥∥∥∥
q(.,.)

∥∥∥∥ϕϑ 1
p(x,t)

∥∥∥∥
p(.,.)

≤ C

∥∥∥∥A0 (x, t, u,∇u)ϑ− 1
p(x,t)

∥∥∥∥
q(.,.)

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C

E
∫

D

|A0 (x, t, u,∇u)|q(x,t) ϑ
− q(x,t)

p(x,t)dx

η

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C

E
∫

D

∣∣∣γ (x, t) + g (u)ϑ |∇u|p(x,t)−1
∣∣∣q(x,t)

ϑ
− q(x,t)

p(x,t)dx

η

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C∗

E
∫

D

|γ (x, t)|q(x,t) ϑ
− q(x,t)

p(x,t)dx


+E

∫
D

|g (u)|q(x,t) |∇u|p(x,t) ϑdx

η

∥|ϕ|∥
W

1,p(.,.)
0,ϑ

(D×Ω)

≤ C∗
[
ρq(.,.),ϑ∗ (γ) + max

{
∥g∥q−

∞ , ∥g∥q+

∞

}
ρp(.,.),ϑ (∇u)

]η
∥|ϕ|∥

W
1,p(.,.)
0,ϑ

(D×Ω)
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where

η =
{ 1

q− , if ∥A0 (x, t, u,∇u)∥q(.,.),ϑ∗ ≥ 1
1

q+ , if ∥A0 (x, t, u,∇u)∥q(.,.),ϑ∗ ≤ 1 ,

and 1
p(.,.) + 1

q(.,.) = 1. Thus, we obtain that Γ2 is bounded. Therefore, we get that Γ is
bounded.

Step 2. Now, we will show that the operator Γ is coercive. By (H5), we have

⟨Γ1(u), u⟩
∥|u|∥

W
1,p(.,.)
0,ϑ

(D×Ω)
≥

E

(∫
D
α |∇u|p(x,t) ϑ(x, t)dx

)
∥∇u∥p(.,.),ϑ

=
αρp(.,.),ϑ(∇u)
∥∇u∥p(.,.),ϑ

≥ C ∥∇u∥r
p(.,.),ϑ

for some r > 1. On the other hand, since the norm ∥A0 (x, t, u,∇u)∥q(.,.),ϑ∗ is bounded,
then we have

|⟨Γ2(u), u⟩| ≤ C ∥A0 (x, t, u,∇u)∥q(.,.),ϑ∗ ∥u∥p(.,.),ϑ

≤ C∗ ∥|u|∥
W

1,p(.,.)
0,ϑ

(D×Ω) .

This follows that

⟨Γ(u), u⟩
∥|u|∥

W
1,p(.,.)
0,ϑ

(D×Ω)
−→ ∞ as ∥|u|∥

W
1,p(.,.)
0,ϑ

(D×Ω) −→ ∞.

Step 3. Now, we will obtain that the operator Γ is pseudo-monotone fromW
1,p(.,.)
0,ϑ (D × Ω)

to W−1,q(.,.)
ϑ∗ (D × Ω). Let uk ⇀ u in W

1,p(.,.)
0,ϑ (D × Ω) and

lim sup
k−→∞

⟨Γ (uk) , uk − u⟩ ≤ 0. Since Γ is bounded and uk ⇀ u, then we have

Γ (uk) ⇀ h in W
−1,q(.,.)
ϑ∗ (D × Ω) . (4.1)

By (4.1), we can write that

lim sup
k−→∞

⟨Γ (uk) , uk⟩ ≤ ⟨h, u⟩. (4.2)

By the growth condition (H3) and Proposition 4.4, the sequence (A (x, t, uk,∇uk))k∈N is

bounded in
(
L

q(.,.)
ϑ∗ (D × Ω)

)d
such that

A (x, t, uk,∇uk) ⇀ ϕ in
(
L

q(.,.)
ϑ∗ (D × Ω)

)d
(4.3)

as k −→ ∞. Similarly, since (A0 (x, t, uk,∇uk))k is bounded in L
q(.,.)
ϑ∗ (D × Ω), then there

exists a function ψ ∈ L
q(.,.)
ϑ∗ (D × Ω) such that

A0 (x, t, uk,∇uk) ⇀ ψ in L
q(.,.)
ϑ∗ (D × Ω) (4.4)
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as k −→ ∞. For all v ∈ W
1,p(.,.)
0,ϑ (D × Ω) , we have

⟨h, v⟩ = lim
k−→∞

⟨Γ (uk) , v⟩

= lim
k−→∞

E

∫
D

A (x, t, uk,∇uk) ∇vdx


+ lim

k−→∞
E

∫
D

A0 (x, t, uk,∇uk) vdx


= E

∫
D

ϕ∇vdx

+ E

∫
D

ψvdx

 . (4.5)

Since W 1,p(.,.)
0,ϑ (D × Ω) is compactly embedded in L

p(.,.)
ϑ (D × Ω) by Theorem 3.3, we get

uk −→ u in L
p(.,.)
ϑ (D × Ω) and a.e. in D × Ω. (4.6)

By (4.4) and (4.6), we have

E

∫
D

A0 (x, t, uk,∇uk)ukdx

 −→ E

∫
D

ψudx

 (4.7)

as k −→ ∞. On the other hand, if we consider (4.2) and (4.5), then we have

lim sup
k−→∞

⟨Γ (uk) , uk⟩

= lim sup
k−→∞

E
∫

D

A (x, t, uk,∇uk) ∇ukdx

+ E

∫
D

A0 (x, t, uk,∇uk)ukdx


≤ E

∫
D

ϕ∇udx

+ E

∫
D

ψudx

 .
Hence we obtain

lim sup
k−→∞

E

∫
D

A (x, t, uk,∇uk) ∇ukdx

 ≤ E

∫
D

ϕ∇udx

 . (4.8)

Due to (H4), we have

E

∫
D

(A (x, t, uk,∇uk) −A (x, t, uk,∇u)) (∇uk − ∇u) dx

 > 0

and

E

∫
D

A (x, t, uk,∇uk) ∇ukdx


≥ −E

∫
D

A (x, t, uk,∇u) ∇udx

+ E

∫
D

A (x, t, uk,∇uk) ∇udx


+E

∫
D

A (x, t, uk,∇u) ∇ukdx

 .
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Moreover, by (4.3), we get

lim inf
k−→∞

E

∫
D

A (x, t, uk,∇uk) ∇ukdx

 ≥ E

∫
D

ϕ∇udx

 .
It is obtained that

lim
k−→∞

E

∫
D

A (x, t, uk,∇uk) ∇ukdx

 = E

∫
D

ϕ∇udx

 (4.9)

by (4.8). If we consider (4.5), (4.7) and (4.9), then we have
lim

k−→∞
⟨Γ (uk) , uk⟩ = ⟨h, u⟩.

This follows from (4.6) and (H3) that
A (x, t, uk,∇u) −→ A (x, t, u,∇u)

in
(
L

q(.,.)
ϑ∗ (D × Ω)

)d
. Hence, we get

lim
k−→∞

E

∫
D

(A (x, t, uk,∇uk) −A (x, t, uk,∇u)) (∇uk − ∇u) dx

 = 0.

By Lemma 3.4, we obtain
uk −→ u in W

1,p(.,.)
0,ϑ (D × Ω)

and then ∇uk −→ ∇u a.e. in D × Ω for a subsequence denoted by (uk)k∈N. Since A and
A0 are Carathéodory functions, we have

A (x, t, uk,∇uk) −→ A (x, t, uk,∇u)
A0 (x, t, uk,∇uk) −→ A0 (x, t, uk,∇u) .

This yields that h = Γ (u) and the operator Γ is pseudo-monotone. Finally, if we consider
the Theorem 4.5, then there exists at least a weak solution of (1.1). �
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