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Abstract
Let f : A → B be a ring homomorphism and K be an ideal of B. Many variations of
the notions of clean and nil-clean rings have been studied by a variety of authors. We
investigate strongly π-regular and clean-like properties of the amalgamation ring A ◃▹f K
of A with B along K with respect to f .
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1. Introduction
Throughout this paper all rings are associative with identity elements. Let f : A → B

be a ring homomorphism and K an ideal of B. In [14], M. D’Anna, C. A. Finocchiaro and
M. Fontana, initiate a systematic study of a new subring of A × B, defined by

A ◃▹f K := {(a, f(a) + k) | a ∈ A, k ∈ K}
called the amalgamation of A with B along K with respect to f . This construction finds its
roots in a paper by J. L. Dorroh appeared in 1932 and provides a general frame for studying
the amalgamated duplication of a ring along an ideal, introduced and studied by D’Anna
and Fontana in [11–13], and other classical constructions such as the A + XB[X], A +
XB[[X]], the CPI-extensions of Boisen and Sheldon [4], the D +M constructions and the
Nagatas idealization [19].

Following [21], an element a in a ring R is called a clean element if a is a sum of a unit
and an idempotent in R. A ring is clean if all its elements are clean. Clean rings were
initially developed by Nicholson [21] as a natural class of rings which have the exchange
property.

In the past ten years, there have been many investigations concerning variants of the
clean properties. Additionally, several authors have studied versions of such properties in
the case of nil-clean rings. In [15] Diesl introduced nil-clean and strongly nil-clean rings,
∗Corresponding Author.
Email addresses: neg.farshad.sci@iauctb.ac.ir; negin.farshad@gmail.com (N. Farshad),

sh_safarisabet@iauctb.ac.ir (Sh.A. Safarisabet), moussavi.a@modares.ac.ir; moussavi.a@azad.ac.ir (A.
Moussavi)
Received: 19.01.2020; Accepted: 14.04.2021

https://orcid.org/0000-0001-7906-1866
https://orcid.org/0000-0002-8568-5429
https://orcid.org/0000-0002-7775-9782


Amalgamated rings with clean-type properties 1359

and he gave some basic examples and basic results on nil-clean and strongly nil-clean
elements and rings. Following [15], an element a ∈ R is called nil-clean if there is an
idempotent e ∈ R and a nilpotent element b ∈ R such that a = b + e. The element a is
called strongly nil-clean if such an idempotent and nilpotent element can be chosen such
that be = eb. A ring R is called nil-clean (respectively, strongly nil-clean) if every one of
its elements is nil-clean (respectively, strongly nil-clean).

Following Nicholson [22], an element a in a ring R is called right π-regular if it satisfies
an ∈ an+1R for some integer n ≥ 1 or equivalently the condition that the chain aR ⊇
a2R ⊇ . . . terminates. The left π-regular elements are defined analogously. An element
a ∈ R is called strongly π-regular if it is both left and right π-regular; and R is called a
strongly π-regular ring if every element is strongly π-regular. By Diesl [15], it is shown
that, an element a ∈ R is strongly π-regular if and only if there is an idempotent e ∈ R
and a unit u ∈ R such that a = e + u, ae = ea and eae is nilpotent. An element a ∈ R
is called unipotent, if it can be written as 1 + b for some nilpotent b. One of the results
in [15] states that a ring R is strongly nil-clean if and only if R is strongly π-regular with
U(R) = 1 + nil(R).

Călugăreanu in [5] introduced and studied UU rings (rings whose units are unipotent).
It is clear that nilpotent, idempotent and unipotent elements are strongly nil-clean. Thus,
UU rings can be viewed as the strong version of unit nil-clean rings. A ring R is called
a UU ring if and only if every unit of R is strongly nil-clean. This rings have been ex-
tensively investigated in Danchev and Lam [10], where, among others, they proved that a
ring is strongly nil-clean if and only if it is an exchange (clean) UU ring.

Chen in [6] defines an element a ∈ R to be J-clean provided that there exist an idem-
potent e ∈ R and an element w in the Jacobson radical J(R) such that a = e + w. The
element a is called strongly J-clean if such elements can be chosen such that we = ew.
A ring R is J-clean (resp., strongly J-clean) in case every element in R is J-clean (resp.,
strongly J-clean), see [6]. By [28] an element r of a ring R is called semiclean if r = p + u,
where p is periodic, i.e., pk = pl, p ∈ R for some positive integers k and l (k ̸= l) and u is
a unit in R. A ring R is called a semiclean ring if every element of R is semiclean.

In [7], M. Chhiti, N. Mahdou and M. Tamekkante provided a characterization for clean
property of A ◃▹f K and in [3], C. Bakkari and M. Es-Saidi gave a characterization for
nil-clean property of A ◃▹f K, where the rings are assumed to be commutative.

In this paper, we study many ring theoretical properties of the the amalgamation ring
A ◃▹f K, in the case where the rings are not assumed to be commutative. We give charac-
terizations for the amalgamation ring A ◃▹f K to be nil-clean, strongly nil-clean, uniquely
nil-clean, strongly J-clean, semiclean, strongly π-regular and unit unipotent, respectively.
We then show that, when A and f(A) + K are NR rings, then the amalgamation ring
A ◃▹f K is NR (i.e. nil(R) is a subring of R). We also provide necessary and sufficient
conditions under which the amalgamated ring along an ideal A ◃▹f K is strongly π-regular.
Finally the exchange property of the amalgamation ring A ◃▹f K is studied. This pro-
vides a new class of examples of rings with clean-like properties. Our results extend many
existing results, e.g. Corollary 2.8 is a main result of [3].

We denote by nil(R), U(R), C(R), Idem(R) and J(R), the set of nilpotent elements,
unit elements, central elements, the set of idempotents and the jacobson radical of R,
respectively.



1360 N. Farshad, S.A. SafariSabet, A. Moussavi

2. Clean like properties of amalgamated rings
Let A, B be rings which are not assumed to be commutative, f : A → B be a ring

homomorphism and K an ideal of B. We start with the following results for Idem(A ◃▹f

K), nil(A ◃▹f K), C(A ◃▹f K) and U(A ◃▹f K), of the amalgamation A ◃▹f K of A with
B along K with respect to f . Recall that a ring R is abelian if every idempotent of R is
central, that is ae = ea for any e ∈ Idem(R), a ∈ R.

Lemma 2.1. We have
Idem(A ◃▹f K) = {(e, f(e) + k) | e ∈ Idem(A), f(e) + k ∈ Idem(f(A) + K)}.

Lemma 2.2. Let B be an abelian ring. Then
Idem(K) = 0 if and only if Idem(A ◃▹f K) = {(e, f(e)) | e ∈ Idem(A)}.

Proof. Let Idem(K) = 0 and (e, f(e)+k) ∈ Idem(A ◃▹f K). So e2 = e and (f(e)+k)2 =
f(e) + k and hence e ∈ Idem(A) and f(e) + k = f(e) + 2f(e)k + k2, since B is abelian.
Thus k − k2 = 2f(e)k. So f(e)(k − k2) = 2f(e)2k = 2f(e)k and hence −f(e)k2 = f(e)k.
Therefore, (f(e)k)4 = (f(e)2k2)2 = (f(e)k2)2 = (−f(e)k)2 = (f(e)k)2, and that f(e)k2 =
(f(e)k)2 ∈ Idem(K) = {0}. Hence f(e)k = −f(e)k2 = 0, so k − k2 = 2f(e)k = 0
and that k = k2. Therefore k ∈ Idem(K) = {0}. Consequently, k = 0. Accordingly,
Idem(A ◃▹f K) ⊆ {(e, f(e)) | e ∈ Idem(A)}.
Conversely, let Idem(K) ̸= 0. So there exists k ∈ K such that k2 = k. Then (0, k)2 =
(0, k) ∈ Idem(A ◃▹f K), which is a contradiction. �

In the following example we show that the abelian condition in the above lemma is a
necessary condition.

Example 2.3. Let R be a ring and A be the triangular matrix ring T2(R), B be the
polynomial ring T2(R) [x] and K the ideal xT2(R) [x] of B. Assume that f : A → B be
defined by f(M) = M for M ∈ A. As (( 1 0

0 0 ) + ( 0 1
0 0 ) x)2 = ( 1 0

0 0 ) + ( 0 1
0 0 ) x is an idempotent

in f(A) + K, so Idem(f(A) + K) ̸= Idem(A). On the other hand A ◃▹f K ≃ f(A) + K
so we have Idem(A ◃▹f K) ̸= {(e, f(e)) | e ∈ Idem(A)}.

According to Diesl [15], an element a ∈ R is called uniquely nil-clean if there is a unique
idempotent e such that a − e is nilpotent. A ring is called uniquely nil-clean if each of its
elements is uniquely nil-clean.

Corollary 2.4. (1) If B is abelian and K ⊆ J(B), then
Idem(A ◃▹f K) = {(e, f(e)) | e ∈ Idem(A)}.

(2) If B is uniquely nil-clean and Idem(K) = 0, then
Idem(A ◃▹f K) = {(e, f(e)) | e ∈ Idem(A)}.

Proof. (2) As every idempotent of uniquely nil-clean ring is central, [15, Lemma 5.5], so
the proof follows from Lemma 2.2. �
Lemma 2.5. We have the following statements.

(1) nil(A ◃▹f K) = {(a, f(a) + k) | a ∈ nil(A), f(a) + k ∈ nil(f(A) + K)}.
(2) U(A ◃▹f K) = {(a, f(a) + k) | a ∈ U(A), f(a) + k ∈ U(f(A) + K)}.
(3) C(A ◃▹f K) = {(a, f(a) + k) | a ∈ C(A), f(a) + k ∈ C(f(A) + K)}.

Corollary 2.6. If A and f(A) + K are nil-clean rings, then C(A ◃▹f K) is a strongly
nil-clean ring.

Proof. Let (a, f(a) + k) ∈ C(A ◃▹f K). By Lemma 2.5, a ∈ C(A) and f(a) + k ∈
C(f(A) + K). Then a and f(a) + k are strongly nil-clean elements. Hence by [24, Lemma
2.4], a − a2 ∈ nil(A) and (f(a) + k) − (f(a) + k)2 ∈ nil(f(A) + K). Thus (a, f(a) +
k) − (a, f(a) + k)2 = (a − a2, f(a) + k − (f(a) + k)2) ∈ nil(A ◃▹f K), by Lemma 2.5.
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So by [24, Lemma 2.4], (a, f(a) + k) is strongly nil-clean. Thus C(A ◃▹f K) is strongly
nil-clean. �

Proposition 2.7. For the amalgamation ring A ◃▹f K, we have:
(1) If A ◃▹f K is a nil-clean (respectively, strongly nil-clean) ring, then A and f(A)+K

are nil-clean (respectively, strongly nil-clean) rings.

(2) Assume that f(A)+K
K is a uniquely nil-clean (resp., uniquely strongly nil-clean) ring.

If A and f(A) + K are nil-clean (resp., strongly nil-clean) rings, then A ◃▹f K is
nil-clean (resp., strongly nil-clean) ring.

Proof. (1) By [14, Proposition 5.1], we have the natural projections pA : A ◃▹f K → A
defined by pA(a, f(a) + k) = a and pB : A ◃▹f K → B with pB(a, f(a) + k) = f(a) + k.
Hence, the following canonical isomorphisms hold

A ◃▹f K

{0} × K
≃ A and A ◃▹f K

f−1(K) × {0}
≃ f(A) + K. (*)

By [15, Proposition 3.13], the factor ring of nil-clean (resp., strongly nil-clean) ring is nil-
clean (resp., strongly nil-clean). So A and f(A)+K are nil-clean (resp., strongly nil-clean)
rings.
(2) Let (a, f(a) + k) ∈ A ◃▹f K. We have a = b + e, where b ∈ nil(A) and e ∈
Idem(A) and f(a) + k = f(x) + k1 + f(y) + k2 with f(x) + k1 ∈ nil(f(A) + K) and
f(y) + k2 ∈ Idem(f(A) + K). It is clear f(a) = f(a) + k ∈ f(A)+K

K , f(x) = f(x) + k1 ∈
nil(f(A)+K)+K

K ⊆ nil(f(A)+K
K ) and f(y) = f(y) + k2 ∈ Idem(f(A)+K

K ). From a = b + e

we have f(a) = f(b) + f(e). So f(x) + f(y) = f(a) = f(b) + f(e). Since f(A)+K
K is

uniquely nil-clean, f(x) = f(b), f(y) = f(e). So there exist k
′
, k

′′ ∈ K such that f(x) =
f(b) + k

′
, f(y) = f(e) + k

′′ and then (a, f(a) + k) = (b, f(b) + k
′ + k1) + (e, f(e) + k

′′ + k2)
is the sum of a nilpotent and an idempotent element in A ◃▹f K. �

As a consequence of Corollary 2.6 and Proposition 2.7, we obtain the main result,
Theorem 2.1, of [3].

Corollary 2.8. Let f : A → B be a ring homomorphism of commutative rings A and B
and let K be an ideal of B. Then the following conditions are equivalent:

(1) A ◃▹f K is nil-clean.
(2) A and f(A) + K are nil-clean.

Corollary 2.9. Let A be a nil-clean ring and f(A) + K be a nil-clean reduced ring. Then
A ◃▹f K is a nil-clean ring.

Proof. Since f(A) + K is nil-clean and reduced, f(A) + K is uniquely nil-clean, by [15,
Theorem 5.8]. By [15, Corollary 5.10], every factor ring of a uniquely nil-clean ring is
uniquely nil-clean, so f(A)+K

K is uniquely nil-clean and hence the proof is complete by
Proposition 2.7(2). �

Theorem 2.10. Let K ⊆ nil(B). Then we have the following statements.
(1) If A is nil-clean, then A ◃▹f K is nil-clean.
(2) Assume that f : A → B is a ring monomorphism. If f(A) + K is nil-clean then

A ◃▹f K is nil-clean.
(3) Assume that K is nilpotent. Then A ◃▹f K is strongly nil-clean if and only if A is

strongly nil-clean.



1362 N. Farshad, S.A. SafariSabet, A. Moussavi

Proof. (1) Let (a, f(a)+k) ∈ A ◃▹f K. Since A ◃▹f K

{0} × K
≃ A is nil-clean, for (a, f(a) + k) ∈

A ◃▹f K

{0} × K
we can assume that (a, f(a) + k) = (e, f(e) + k′) + (n, f(n) + k′′), for some

idempotent (e, f(e) + k′) and some nilpotent (n, f(n) + k′′) in A ◃▹f K

{0} × K
. By [18, Theorem

21.28], we lift (e, f(e) + k′) to an idempotent (e1, f(e1)+ i) in A ◃▹f K. So ((a, f(a)+k)+
{0}×K)−((e1, f(e1)+ i)+{0}×K) = (n, f(n)+k

′′)+{0}×K. Therefore ((a, f(a)+k)−
(e1, f(e1) + i)) + {0} × K = (n, f(n) + k

′′) + {0} × K. Hence (a, f(a) + k) − (e1, f(e1) + i)
is nilpotent modulo {0} × K, since {0} × K is nil, this means (a, f(a) + k) − (e1, f(e1) + i)
is nilpotent. That is (a, f(a) + k) is nil-clean.
(2) As K ⊆ nil(B) and f is a monomorphism, f−1(K) ⊆ nil(A). On the other hand

A ◃▹f K

f−1(K) × {0}
≃ f(A) + K. The remaining proof is similar to (1).

(3) The forward direction is shown in Proposition 2.7. Now let (a, f(a) + k) ∈ A ◃▹f K.

By the fact that A ◃▹f K

{0} × K
≃ A, we get (a, f(a) + k) ∈ A ◃▹f K

{0} × K
is a strongly nil-clean

element, as A is strongly nil-clean. Thus by [15, Theorem 3.21], (a, f(a) + k) is strongly
nil-clean in A ◃▹f K, and the result follows. �
Corollary 2.11. Let K ⊆ nil(B).

(1) A ◃▹f K is nil-clean if and only if A is nil-clean.
(2) Let f : A → B be a ring monomorphism. Then A ◃▹f K is nil-clean if and only if

f(A) + K is nil-clean.

The next example shows that the condition K ⊆ nil(B) in Theorem 2.10 is not redun-
dant.

Example 2.12. Let A be a nil-clean ring, f : A → A[x], with f(a) = a for a ∈ A, be a
ring homomorphism and K be the ideal xA[x] of A[x]. It is clear that A[x] is not nil-clean
and K is not nil. So A ◃▹f K ≃ f(A) + K is not nil-clean.

By [1], the n-φ-trivial extension (simply n-trivial extension) of R by M is the set denoted
by R nφ M1 n ...nMn (simply R nn M1 n ...nMn), where R is a ring, M = (Mi)n

i=1 is a
family of R-modules, and φ = {φi,j}1≤i,j≤n−1,i+j≤n is a family of bilinear maps such that
each φi,j is written multiplicatively φi,j : Mi × Mj → Mi+j , φi,j(mi, mj) = mimj . The
underlying additive group of n-trivial extension is R ⊕ M1 ⊕ ... ⊕ Mn, and the elements of
n-trivial extension ring are multiplied as (r, m1, ..., mn)(r′, m′

1, ..., m′
n) = (rr′, m′′

1, ..., m′′
n)

where m′′
i =

∑
j+k=i

mjm′
k. Note that R nn M1 n ... n Mn is associative precisely when

(mimj)mk = mi(mjmk) for mi ∈ Mi, mj ∈ Mj and mk ∈ Mk with 1 ≤ i, j, k ≤ n − 2 and
i+j+k ≤ n. In terms of the pre-product maps, this means that φi+j,k(φi,j(mi, mj), mk) =
φi,j+k(mi, φj,k(mj , mk)). The n-trivial extension Rnn M1n ...nMn is an extension of the
classical trivial extension of rings to extensions associated to n modules for any integer
n ≥ 1.

As observed in [1], any n-trivial extension R nn M1 n ... n Mn can be seen as the
amalgamation of R with Rnn M1 n ...nMn along 0nn M1 n ...nMn with respect to the
canonical injection.

Example 2.13. Let R be a ring and M = (Mi)n
i=1 be a family of R-modules. The n-trivial

extension ring R nn M1 n ... n Mn is nil-clean if and only if R is a nil-clean ring.

Remark 2.14. (1) If f−1(K) = 0, then A ◃▹f K is nil-clean (resp., strongly nil-clean)
if and only if f(A) + K is nil-clean (resp., strongly nil-clean), see (*).
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(2) If K = 0, then A ◃▹f K is nil-clean (resp., strongly nil-clean) if and only if A is
nil-clean (resp., strongly nil-clean), see (*).

By a straight forward computation, we can determine the jacobson radical of the amal-
gamated ring A ◃▹f K with the following.

Lemma 2.15. We have
J(A ◃▹f K) = {(a, f(a) + k) | a ∈ J(A), f(a) + k ∈ J(f(A) + K)}.

Recall that an element a ∈ R is J-clean provided that there exist an idempotent e ∈ R
and an element w ∈ J(R) such that a = e + w. By Chen [6], the element a is called
strongly J-clean if such elements can be chosen such that we = ew, and a ring R is J-
clean (resp., strongly J-clean) if every element of R is J-clean (resp., strongly J-clean). A
ring R is called uniquely strongly J-clean provided that each element in R has a unique
representation as the sum of an element of J(R) and an idempotent element in R which
commute each other. Now we consider the J-clean property of the amalgamation ring
A ◃▹f K.

Proposition 2.16. For the amalgamation ring A ◃▹f K, we have
(1) If A ◃▹f K is a J-clean (resp., strongly J-clean) ring, then A and f(A) + K are

J-clean (resp., strongly J-clean) rings.
(2) Let f(A)+K

K be uniquely strongly J-clean. Then A ◃▹f K is strongly J-clean if and
only if A and f(A) + K are strongly J-clean.

Proof. The proof is similar to that of Proposition 2.7. �
Corollary 2.17. If f(A)+K and A are uniquely nil-clean rings, then A ◃▹f K is strongly
J-clean.

Proof. To prove the result, we make two claims;
Claim (1); f(A)+K and A are strongly J-clean. Indeed, as f(A)+K and A are uniquely

nil-clean rings, f(A) + K and A are uniquely clean rings, by [15, Theorem 5.9] and so by
[6, Corollary 2.4] these are strongly J-clean with all idempotents central.

Claim (2); f(A)+K
K is uniquely strongly J-clean. As f(A) + K is uniquely clean and

as every factor ring of uniquely clean ring is uniquely clean, [23, Theorem 22], f(A)+K
K

is uniquely clean, and hence by [23, Theorem 20] and [6, Corollary 2.4], it is uniquely
strongly J-clean.

Now the assumptions of Proposition 2.16 are satisfied. So A ◃▹f K is a strongly J-clean
ring. �
Theorem 2.18. Let K ⊆ nil(B). Then we have the following statements.

(1) If A is J-clean then A ◃▹f K is J-clean.
(2) Assume that f : A → B is a ring monomorphism. If f(A) + K is J-clean then

A ◃▹f K is J-clean.

Proof. The proof is similar to that of Theorem 2.10. �
Example 2.19. Let R be a ring and M = (Mi)n

i=1 be a family of R-modules. The n-trivial
extension ring R nn M1 n ... n Mn is J-clean if and only if R is a J-clean ring.

Example 2.20. Let A be a strongly J-clean ring, j : A → A [[x]] be the natural embedding
and K be the ideal xA [[x]] of A [[x]]. As every power series ring over a strongly J-clean
ring is strongly J-clean, [6], we have A [[x]] is strongly J-clean and therefore A ◃▹j K ≃
A + XA [[x]] is a strongly J-clean ring.

Ye in [28] defined semiclean rings. By [28, Proposition 2.1], every factor ring of a
semiclean ring is semiclean. Recall that a ring R is a uniquely semiclean ring provided
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that each element in R has a unique representation as the sum of a periodic element and
a unit element.
Lemma 2.21. If A and f(A) + K are periodic rings, then A ◃▹f K is a periodic ring.
Proof. Let (a, f(a) + k) ∈ A ◃▹f K. As A and f(A) + K are periodic rings so by
[28, Lemma 5.2], there exist positive integers t1 and t2 such that at1 is an idempotent
in A and (f(a) + k)t2 is an idempotent in f(A) + K. Now we have (a, f(a) + k)t1t2 =
((at1)t2 , ((f(a) + k)t2)t1) = (at1 , (f(a) + k)t2) ∈ Idem(A ◃▹f K), by Lemma 2.1. As every
idempotent element is periodic, so (a, f(a) + k) is a periodic element in A ◃▹f K. �
Proposition 2.22. We have the following statements.

(1) If A ◃▹f K is a semiclean ring, then A and f(A) + K are semiclean rings.
(2) Assume that f(A)+K

K is uniquely semiclean. If A and f(A)+K are semiclean rings,
then A ◃▹f K is semiclean.

Proof. (1) By [28, Proposition 2.1] every factor ring of a semiclean ring is semiclean, so
the proof is the same as the proof (1) in Proposition 2.7.
(2) Let (a, f(a) + k) ∈ A ◃▹f K. We have a = p + u with p a periodic element of A
and u ∈ U(A), and f(a) + k = f(q) + k1 + f(s) + k2 with f(q) + k1 a periodic element
of f(A) + K and f(s) + k2 ∈ U(f(A) + K), since A and f(A) + K are semiclean rings.
It is clear that f(a) = f(a) + k ∈ f(A)+K

K and f(q) = f(q) + k1 is a periodic element of
f(A)+K

K and f(s) = f(s) + k2 ∈ U(f(A)+K
K ). From a = p + u we have f(a) = f(p) + f(u),

so f(q) + f(s) = f(a) = f(p) + f(u). Since f(A)+K
K is a uniquely semiclean ring, f(q) =

f(p), f(s) = f(u). So there exist k
′
, k

′′ ∈ K such that f(q) = f(p) + k
′
, f(s) = f(u) + k

′′ .
Thus (a, f(a) + k) = (p, f(p) + k

′ + k1) + (u, f(u) + k
′′ + k2) is the sum of a periodic

element, by Lemma 2.21, and a unit element in A ◃▹f K. �
Let I be an ideal of a ring R. Recall that a periodic element can be lifted modulo I, if

for any a ∈ R with ak − al ∈ I, there exists b ∈ R such that bk = bl ∈ R and a − b ∈ I, see
[28].

Now we give the following characterization of semiclean amalgamated rings.
Theorem 2.23. Let K ⊆ nil(B). Then we have the following statements.

(1) Assume that periodic elements in A ◃▹f K can be lifted modulo {0} × K. If A is
semiclean then A ◃▹f K is semiclean.

(2) Assume that f : A → B is a ring monomorphism and periodic elements in A ◃▹f K
can be lifted modulo f−1(K) × {0}. If f(A) + K is semiclean then A ◃▹f K is
semiclean.

Proof. (1) Let (a, f(a) + k) ∈ A ◃▹f K. The proof follows from [28, Proposition 2.2], as
A ◃▹f K

{0} × K
≃ A is semiclean, {0} × K ⊆ J(A ◃▹f K) and the periodic elements can be lifted

modulo {0} × K.
(2) Let (a, f(a) + k) ∈ A ◃▹f K. The proof follows from [28, Proposition 2.2], as

A ◃▹f K

f−1(K) × {0}
≃ f(A) + K is semiclean, f−1(K) × {0} ⊆ J(A ◃▹f K) and the periodic

elements can be lifted modulo f−1(K) × {0}. �
Corollary 2.24. Let K ⊆ nil(B) and assume that periodic elements in A ◃▹f K can be
lifted modulo {0} × K. Then A ◃▹f K is semiclean if and only if A is semiclean.
Corollary 2.25. Let K ⊆ nil(B), f : A → B be a ring monomorphism and assume
that periodic elements in A ◃▹f K can be lifted modulo f−1(K) × {0}. Then A ◃▹f K is
semiclean if and only if f(A) + K is semiclean.
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Example 2.26. Let A be a semiclean ring and j : A → A [[x]] be the natural embedding
and K := xA [[x]]. By [28, Proposition 3.3], every power series ring over a semiclean ring
is semiclean. So A [[x]] is semiclean and therefore A ◃▹j K ≃ A + XA [[x]] is a semiclean
ring.

3. Strongly π-regular amalgamated rings
Following Nicholson [22], an element a in a ring R is called right π-regular if it satisfies

the following equivalent conditions:
(1) an ∈ an+1R for some integer n ≥ 1.
(2) anR = an+1R for some integer n ≥ 1.
(3) The chain aR ⊇ a2R ⊇ . . . terminates.

The left π-regular elements are defined analogously.

Dischinger’s Lemma. [16, Theorem 1] If every element of a ring R is right π-regular
then every element is left π-regular.

An element a ∈ R is called strongly π-regular if it is both left and right π-regular; and
R is called a strongly π-regular ring if every element is strongly π-regular. By Diesl [15], it
is shown that, an element a ∈ R is strongly π-regular if and only if there is an idempotent
e ∈ R and a unit u ∈ R such that a = e + u, ae = ea and eae is nilpotent.

Theorem 3.1. The amalgamation ring A ◃▹f K is strongly π-regular if and only if A and
f(A) + K are strongly π-regular rings.

Proof. Assume that A and f(A)+K are strongly π-regular rings and (a, f(a)+k) ∈ A ◃▹f

K. We show that the chain of ideals (a, f(a) + k)A ◃▹f K ⊇ (a, f(a) + k)2A ◃▹f K ⊇ . . .
will terminate. We have two chains aA ⊇ a2A ⊇ . . . and (f(a) + k)(f(A) + K) ⊇
(f(a) + k)2(f(A) + K) ⊇ . . . of A and f(A) + K, respectively. So there exist positive
integers n and m such that anA = an+1A = an+2A = ... and (f(a) + k)m(f(A) + K) =
(f(a) + k)m+1(f(A) + K) = ((f(a) + k)m+2(f(A) + K) = ..., since A and f(A) + K
are strongly π-regular. Set t = nm, therefore for every (b, f(b) + i) ∈ A ◃▹f K, we
get (a, f(a) + k)t(b, f(b) + i) = (at, (f(a) + k)t)(b, f(b) + i) = (atb, (f(a) + k)t(f(b) +
i)) = (at+1b, (f(a) + k)t+1(f(b) + i)) = (a, f(a) + k)t+1(b, f(b) + i). Then we have
(a, f(a) + k)tA ◃▹f K = (a, f(a) + k)t+1A ◃▹f K = ... and hence A ◃▹f K is a strongly
π-regular ring.

Conversely, let A ◃▹f K be a strongly π-regular ring. We have A ◃▹f K

{0} × K
≃ A and

A ◃▹f K

f−1(K) × {0}
≃ f(A) + K. Since by [26], every factor ring of a strongly π-regular ring is

strongly π-regular, the proof is complete. �
Next we study necessary and sufficient conditions under which the amalgamation ring

along an ideal A ◃▹f K is a UU ring (i.e; every unit of R is ring unipotent).

Theorem 3.2. We have the following statements.
(1) If A and f(A) + K are UU rings, then A ◃▹f K is a UU ring.
(2) If A ◃▹f K is a UU ring, then A is a UU ring.
(3) Let f : A → B be a ring monomorphism and K a nil ideal of B. If A ◃▹f K is a

UU ring, then f(A) + K is a UU ring.

Proof. (1) Let (u, f(u) + k) ∈ U(A ◃▹f K). So by Lemma 2.5, u ∈ U(A) and f(u) + k ∈
U(f(A) + K). Since A and f(A) + K are UU rings, u − 1 ∈ nil(A) and f(u) + k − 1 ∈
nil(f(A) + K). So (u, f(u) + k) − (1, 1) ∈ nil(A ◃▹f K). Thus A ◃▹f K is a UU ring.
(2) Let u ∈ U(A). Then (u, f(u)) ∈ U(A ◃▹f K). Since A ◃▹f K is a UU ring, (u, f(u)) −
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(1, 1) ∈ nil(A ◃▹f K) and hence by Lemma 2.5, u − 1 ∈ nil(A). So the proof is complete.
(3) Let f(u) + k ∈ U(f(A) + K). Since k ∈ K and K ⊆ nil(B) so f(u) + k − k ∈
U(f(A) + K). Hence f(u) ∈ U(f(A) + K) and that u ∈ U(A). Therefore by Lemma 2.5,
(u, f(u) + k) ∈ U(A ◃▹f K). As A ◃▹f K is UU, (u, f(u) + k) − (1, 1) ∈ nil(A ◃▹f K). So
(u−1, f(u)+k−1) ∈ nil(A ◃▹f K). Thus by Lemma 2.5, f(u)+k−1 ∈ nil(f(A)+K). �

By [15, Corollary 3.11], R is a strongly nil-clean ring if and only if R is a strongly
π-regular and UU ring. So by Theorem 3.1 and Theorem 3.2, if A and f(A) + K are UU
and strongly π-regular rings, then A ◃▹f K is a strongly nil-clean ring.
Remark 3.3. Consider the amalgamated ring A ◃▹f K of A and B.

(1) If B = K or f : A → B is an epimorphism, then A ◃▹f K is a UU ring if and only
if A and B are UU rings, since in this case A ◃▹f K = A × B.

(2) If f−1(K) = 0, then A ◃▹f K is a UU ring if and only if f(A) + K is a UU ring,
see (*).

(3) If K = 0, then A ◃▹f K is a UU ring if and only if A is a UU ring, see (*).
Recall by [8], that a ring R forms an NR ring if nil(R) is a subring of R.

Lemma 3.4. If B is an NR ring, then
nil(A ◃▹f K) = {(a, f(a) + k) | a ∈ nil(A), k ∈ nil(K)}.

Proof. Let a ∈ nil(A) and k ∈ nil(K). Since B is NR, f(a) + k ∈ nil(f(A) + K). So
by Lemma 2.5, (a, f(a) + k) ∈ nil(A ◃▹f K). Next consider (a, f(a) + k) ∈ nil(A ◃▹f K).
Therefore there exists a positive integer n such that (a, f(a) + k)n = 0. Thus an = 0 and
(f(a) + k)n = 0. Hence a ∈ nil(A) and f(a) + k ∈ nil(B). Since f(a) ∈ nil(B) and B is
NR, k ∈ nil(B). �

In [2], Antoin constructs various examples of Armendariz and related rings by review-
ing and extending some results concerning the structure of nil(R). Anyway, the set of
nilpotent elements forms a subring without unit, and this is true not only in the case of
R Armendariz, but in many of the generalizations of this condition.
Theorem 3.5. We have the following statements.

(1) If A and f(A) + K are NR rings, then A ◃▹f K is an NR ring.
(2) If A ◃▹f K is an NR ring, then so is A.
(3) Let S be the set of regular central elements of B, such that S ∩ K ̸= ∅. If A ◃▹f K

is NR, then f(A) + K is NR.

Proof. (1) Let (a, f(a)+ k), (b, f(b)+ k
′) ∈ nil(A ◃▹f K). So by Lemma 2.5, a, b ∈ nil(A)

and f(a) + k, f(b) + k
′ ∈ nil(f(A) + K). Since A and f(A) + K are NR, a − b, ab ∈ nil(A)

and (f(a) + k) − (f(b) + k
′), (f(a) + k)(f(b) + k

′) ∈ nil(f(A) + K). So (a, f(a) + k) −
(b, f(b) + k

′), (a, f(a) + k)(b, f(b) + k
′) ∈ nil(A ◃▹f K).

(2) Let a, b ∈ nil(A). We have (a, f(a)), (b, f(b)) ∈ nil(A ◃▹f K). Since A ◃▹f K is NR,
(a, f(a)) − (b, f(b)) ∈ nil(A ◃▹f K) and (a, f(a))(b, f(b)) ∈ nil(A ◃▹f K). So by Lemma
2.5, a − b ∈ nil(A), ab ∈ nil(A) and hence A is NR.
(3) Let f(a)+k, f(b)+k

′ ∈ nil(f(A)+K). We show that (f(a)+k)−(f(b)+k
′) ∈ nil(f(A)+

K) and (f(a) + k)(f(b) + k
′) ∈ nil(f(A) + K). We have (0, e(f(a) + k)), (0, e(f(b) + k

′)) ∈
nil(A ◃▹f K), for e ∈ S ∩ K. Since A ◃▹f K is NR, (0, e(f(a) + k)) − (0, e(f(b) + k

′)) ∈
nil(A ◃▹f K) and (0, e(f(a) + k))(0, e(f(b) + k

′)) ∈ nil(A ◃▹f K). So by Lemma 2.5,
e((f(a) + k) − (f(b) + k

′)) ∈ nil(f(A) + K), e2((f(a) + k)(f(b) + k
′)) ∈ nil(f(A) + K).

Therefore there are positive integers n and m, such that (e((f(a) + k) − (f(b) + k
′)))n = 0

and (e2(f(a)+k)(f(b)+k
′))m = 0. Since e is a regular central element, ((f(a)+k)−(f(b)+

k
′))n = 0 and ((f(a)+k)(f(b)+k

′))m = 0. Therefore (f(a)+k)−(f(b)+k
′) ∈ nil(f(A)+K)

and (f(a) + k)(f(b) + k
′) ∈ nil(f(A) + K). �
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Corollary 3.6. Let S be the set of regular central elements of B, such that S ∩ K ̸= ∅.
Then A ◃▹f K is NR if and only if f(A) + K and A are NR.

Example 3.7. Let R be an NR ring. Then by [8, Proposition 2.2] A = {( a 0
0 a ) |a ∈ R},

B =
{
( a b

0 a

)
|a, b ∈ R} are NR rings. Let f : A → B be defined by f ( a 0

0 a ) = ( a 0
0 a ) and

K =
{
( 0 b

0 0
)

|b ∈ R} be an ideal of B. Then A ◃▹f K ≃ f(A) + K is an NR ring.

Proposition 3.8. Let A ◃▹f K be an NR ring and K be a nil ideal of B. Then A is a
UU ring if and only if A ◃▹f K is a UU ring.

Proof. Let A be a UU ring. We have A ◃▹f K

{0} × K
≃ A. Since K is a nil ideal of B so {0}×K

is a nil ideal of A ◃▹f K. So by [5, Proposition 2.2], A ◃▹f K is a UU ring. �
Proposition 3.9. Let K be a nil ideal of B, f : A → B be a ring monomorphism and
A ◃▹f K be an NR ring. If f(A) + K is a UU ring, then A ◃▹f K is a UU ring.

Proof. Since f is monomorphism and K is a nil ideal, f−1(K) is a nil ideal of A and

hence f−1(K)×0 is a nil ideal of A ◃▹f K. On the other hand A ◃▹f K

f−1(K) × {0}
≃ f(A)+K.

So by [5, Proposition 2.2], f(A) + K is a UU ring, and this implies that A ◃▹f K is a UU
ring. �

Let R be a commutative ring with identity and f = a0 + a1x + · · · + anxn ∈ R [x]. Then
f is a unit in R [x] if and only if a0 is a unit in R and a1, a2, · · · , an are nilpotent elements
in R; and f is nilpotent in R [x] if and only if all the coefficients are nilpotent. So by
[5, Corollary 2.2], a polynomial ring R [x] over a commutative ring with identity is UU if
and only if R is UU. So we have the following.

Example 3.10. Let A be a commutative ring, j : A → A [x] the natural embedding and
set K := xA [x]. Then A is a UU ring if and only if A ◃▹j K ≃ A + xA [x] is a UU ring.

4. Exchange amalgamated rings
An element a in a ring R is called von Neumann regular if a = aba, for some b ∈ R,

equivalently if the principal right ideal aR is a direct summand of R, [18, Theorem 4.23].
A ring R is called von Neumann regular if every element of R is von Neumann regular.

Proposition 4.1. If A ◃▹f K is a von Neumann regular ring, then A and f(A) + K are
von Neumann regular rings.

Proof. Let a ∈ A. We have (a, f(a)) ∈ A ◃▹f K. Since A ◃▹f K is von Neumann
regular, there exists (b, f(b) + k) ∈ A ◃▹f K such that (a, f(a)) = (a, f(a))(b, f(b) +
k)(a, f(a)) = (aba, f(a)(f(b) + k)f(a)). So a = aba and hence A is a von Neumann
regular ring. Let f(a) + k ∈ f(A) + K. Then (a, f(a) + k) ∈ A ◃▹f K. As A ◃▹f K
is von Neumann regular, there exists (b, f(b) + l) ∈ A ◃▹f K such that (a, f(a) + k) =
(a, f(a)+k)(b, f(b)+ l)(a, f(a)+k). So (a, f(a)+k) = (aba, (f(a)+k)(f(b)+ l)(f(a)+k))
and then f(a) + k = (f(a) + k)(f(b) + l)(f(a) + k). Hence f(A) + K is von Neumann
regular. �

The following example shows that if A is a von Neumann regular ring then the amal-
gamated ring A ◃▹f K is not necessarily von Neumann regular.

Example 4.2. Let F be a field and A = {( a 0
0 a ) |a ∈ F}, B =

{
( a b

0 a

)
|a, b ∈ F} and

K =
{
( 0 b

0 0
)

|b ∈ F} be an ideal of B. Consider f : A → B defined by f ( a 0
0 a ) = ( a 0

0 a ). But
f(A) + K is not von Neumann regular, because for every ( r s

0 r ) ∈ f(A) + K where r, s ∈ F
are non-zero,

( 0 b
0 0

)
̸=

( 0 b
0 0

)
( r s

0 r )
( 0 b

0 0
)
. So A ◃▹f K ≃ f(A) + K is not von Neumann

regular.
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Lemma 4.3. Let f : A → B be a ring homomorphism. If K = 0 and A is von Neumann
regular then A ◃▹f K is von Neumann regular.

Proof. The proof is clear. �
Proposition 4.4. [20, Proposition 2.2] The following are equivalent for an element a of
a ring R.

(1) There exists e2 = e ∈ aR such that (1 − e)a ∈ J(R).
(2) There exists e2 = e ∈ aR such that a(1 − e) ∈ J(R).
(3) There exists a regular element b ∈ R with a − b ∈ J(R).
(4) There exists b ∈ R with bab = b and a − aba ∈ J(R).

By Nicholson [20], an element a of a ring R is called semiregular, if it satisfies the above
conditions. A ring is a semiregular ring if each of its elements is semiregular. Nicholson in
[20, Theorem 2.9] shows that a ring R is semiregular if R

J(R)
is von Neumann regular and

idempotents lift modulo J(R). The class of semiregular rings is very large. For example,
every von Neumann regular ring is semiregular.

Proposition 4.5. If A ◃▹f K is semiregular, then A and f(A) + K are semiregular.

Proof. Let a ∈ A. Then (a, f(a)) ∈ A ◃▹f K. As A ◃▹f K is semiregular, there exists
(e, f(e) + l)2 = (e, f(e) + l) ∈ (a, f(a))A ◃▹f K such that ((1, 1) − (e, f(e) + l))(a, f(a)) ∈
J(A ◃▹f K). So ((1 − e)a, (1 − (f(e) + l))f(a)) ∈ J(A ◃▹f K). Hence by Lemma 2.15,
(1 − e)a ∈ J(A) for some e2 = e ∈ aA.
Let f(a) + k ∈ f(A) + K. We have (a, f(a) + k) ∈ A ◃▹f K. As A ◃▹f K is semiregular,
there exists (e, f(e)+ l)2 = (e, f(e)+ l) ∈ (a, f(a)+k)A ◃▹f K such that ((1, 1)− (e, f(e)+
l))(a, f(a) + k) ∈ J(A ◃▹f K). By Lemma 2.15, (1 − (f(e) + l))(f(a) + k) ∈ J(f(A) + K)
for some (f(e) + l)2 = (f(e) + l) ∈ (f(a) + k)(f(A) + K). �
Lemma 4.6. If K is a nil ideal of B, then J(f(A)) + K ⊆ J(f(A) + K).

Proof. Let f(a) + l ∈ J(f(A)) + K. We show that f(a) + l ∈ J(f(A) + K). Assume by
contrary that f(a) + l /∈ J(f(A) + K). So there exists f(b) + t ∈ f(A) + K such that
1 − (f(a) + l)(f(b) + t) /∈ U(f(A) + K), by [18, Lemma 4.1]. As f(a) + l ∈ J(f(A)) + K
and f(a) ∈ J(f(A)), 1 − f(a)f(b) ∈ U(f(A)). So 1 − f(a)f(b) − lf(b) = 1 − (f(a) +
l)f(b) ∈ U(f(A) + K). Thus 1 − (f(a) + l))f(b) − (f(a) + l))t ∈ U(f(A) + K). Therefore
1 − (f(a) + l)(f(b) + t) ∈ U(f(A) + K), a contradiction. �

As by [20, Corollary 2.3], every homomorphic image of a semiregular ring is semiregular,
so if A is semiregular then f(A) is semiregular.

Theorem 4.7. Let K be a nil ideal of B and A be a semiregular ring. Then A ◃▹f K is
a semiregular ring.

Proof. Let (a, f(a) + k) ∈ A ◃▹f K. Since f(a) ∈ f(A) is semiregular, there exists a
von Neumann regular element b ∈ A with f(a) − f(b) ∈ J(f(A)). So f(a) − f(b) + k ∈
J(f(A)) + K ⊆ J(f(A) + K), by Lemma 4.6. Thus (f(a) + k) − f(b) ∈ J(f(A) + K), for a
von Neumann regular element f(b) ∈ f(A) + K. So for the von Neumann regular element
(b, f(b)) ∈ A ◃▹f K, (a, f(a) + k) − (b, f(b)) ∈ J(A ◃▹f K), by Lemma 2.15, and the result
follows. �
Corollary 4.8. Let K be a nil ideal of B and A be a semiregular ring. Then f(A) + K
is semiregular.

Following Crawley and Jónsson [9], a module MR is said to have the exchange property
if for every module AR and any two decompositions of AR, AR = M ′

R ⊕ NR =
⊕

i∈I Ai

with M ∼= M ′, there exist submodules A′
i ⊆ Ai such that AR = M ′

R ⊕ (
⊕

i∈I A′
i). MR
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is said to have the finite exchange property if the above condition is satisfied whenever
the index set I is finite. A ring R is said to be an exchange ring [27] if RR has the finite
exchange property introduced by [9]. Warfield in [27] proved that this property is left-right
symmetric. The class of exchange rings is quite large. It includes all semiperfect rings, all
von Neumann regular rings, and all π-regular rings; see [27], [25].

Using [21, Proposition 1.1], we conclude the following.

Proposition 4.9. Let A ◃▹f K be an exchange ring. Then A and f(A) + K are exchange
rings.

Proof. Let a ∈ A. Then (a, f(a)) ∈ A ◃▹f K. As A ◃▹f K is exchange there exists
(e, f(e) + l)2 = (e, f(e) + l) ∈ A ◃▹f K(a, f(a)) such that ((1, 1) − (e, f(e) + l)) ∈ A ◃▹f

K((1, 1) − (a, f(a)). So ((1 − e), (1 − (f(e) + l)) ∈ A ◃▹f K((1, 1) − (a, f(a)). Hence
(1 − e) ∈ A(1 − a) for some e2 = e ∈ Aa.
Let f(a) + k ∈ f(A) + K. We have (a, f(a) + k) ∈ A ◃▹f K. As A ◃▹f K is exchange there
exists (e, f(e) + l)2 = (e, f(e) + l) ∈ A ◃▹f K(a, f(a) + k) such that ((1, 1) − (e, f(e) + l)) ∈
A ◃▹f K((1, 1) − (a, f(a) + k)). So (1 − (f(e) + l)) ∈ (f(A) + K)(1 − (f(a) + k)), for some
(f(e) + l)2 = (f(e) + l) ∈ f(A) + K. �

Since by [21, Proposition 1.4], every homomorphic image of an exchange ring is ex-
change, so if A is an exchange ring then f(A) is an exchange ring.

Theorem 4.10. Let K be a nil ideal of B and A be an exchange ring. Then A ◃▹f K is
an exchange ring.

Proof. Let (a, f(a) + k) ∈ A ◃▹f K. As A is an exchange ring, f(A) is exchange. So for
(f(e))2 = f(e) ∈ f(A)f(a) and f(c) ∈ f(A), we have (f(1) − f(e)) − f(c)(f(1) − f(a)) ∈
J(f(A)). Then (f(1)−f(e))−f(c)(f(1)−f(a))+f(c)k ∈ J(f(A))+K and hence by Lemma
4.6, (1−f(e))−f(c)(1−(f(a)+k)) ∈ J(f(A)+K), for (f(e))2 = f(e) ∈ (f(A)+K)(f(a)+k)
and f(c) ∈ f(A) + K. Thus for (e, f(e))2 = (e, f(e)) ∈ A ◃▹f K and (c, f(c)) ∈ A ◃▹f K,
we have ((1, 1) − (e, f(e)) − (c, f(c)((1, 1) − (a, f(a) + k)) ∈ J(A ◃▹f K), by Lemma 2.15,
and the result follows. �

Corollary 4.11. Let K be a nil ideal of B and A be an exchange ring. Then f(A) + K
is an exchange ring.

By [17, Proposition 2.5], in an exchange ring every central element is the sum of an
idempotent and a unit. So if R is an abelian exchange ring, then C(R) is an exchange
ring, [17, Corollary 2.6]. By [21], every clean ring is exchange.

A ring with central idempotents (i.e., abelian ring) is clean if and only if it is exchange.
Now we investigate necessary and sufficient conditions under which the amalgamated ring
A ◃▹f K is abelian.

Proposition 4.12. For the amalgamated ring A ◃▹f K, we have the following statements.
(1) If A and f(A) + K are abelian rings, then so is A ◃▹f K.
(2) If A ◃▹f K is abelian, then so is A.
(3) Let f : A → B be a monomorphism. If f(A) + K is abelian, then A ◃▹f K is

abelian.
(4) Let K be an ideal with K ⊆ C(B). If A is abelian, then A ◃▹f K is abelian.
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