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Abstract 

 

In this work, first, Theorem 2 in [1] [Yao, H., Sun, Y., Xu, C., and Bu, C., A note on 

linear combinations of an idempotent matrix and a tripotent matrix, J. Appl. Math.  

Informatics, 27 (5-6), 1493-1499, 2009] and Theorem 2.2 in [2][Özdemir H., Sarduvan 

M., Özban A.Y., Güler N., On idempotency and tripotency of linear combinations of two 

commuting tripotent matrices, Appl. Math. Comput., 207 (1), 197-201, 2009] are 

reconsidered in different ways under the condition that the matrices involved in the 

linear combination are commutative. Thus, it is seen that there are some missing results 

in Theorem 2 in [1]. Then, by considering the obtained results and doing some detailed 

investigations, it is given a new characterization, without any restriction on the involved 

matrices except for commutativity, of a linear combination of an idempotent and a 

tripotent matrix that commute.  
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Değişmeli bir idempotent ve bir tripotent matrisin bazı lineer 

kombinasyonlarının alternatif karakterizasyonları 

 

 
Öz 

 

Bu çalışmada ilk olarak [1][Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear 

combinations of an idempotent matrix and a tripotent matrix, J. Appl. Math. 

Informatics, 27 (5-6), 1493-1499, 2009]’deki Teorem 2 ve [2][Özdemir H., Sarduvan 

M., Özban A.Y., Güler N., On idempotency and tripotency of linear combinations of two 
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commuting tripotent matrices, Appl. Math. Comput., 207 (1), 197-201, 2009]’deki 

Teorem 2.2, lineer kombinasyonda içerilen matrislerin değişmeli olması koşulu altında  

farklı tarzlarda yeniden ele alınmaktadır. Böylece, [1]’deki Teorem 2’de bazı eksik 

sonuçların mevcut olduğu görülmüştür. Daha sonra elde edilen sonuçları göz önüne 

alarak ve bazı detaylı incelemeler yaparak, değişmeli bir idempotent ve bir tripotent 

matrisin bir lineer kombinasyonunun, içerilen matrisler üzerinde değişmelilik dışında 

herhangi bir kısıtlama olmaksızın, yeni bir karakterizasyonu verilmektedir. 

 

Anahtar kelimeler: İdempotent matris, tripotent matris, lineer kombinasyon, 

değişmelilik. 

 

 

1. Introduction   

 

Let ℂ be the field of complex numbers and ℂ ∗ be the set of nonzero complex numbers.  

For a positive integer 𝑛, let ℂ𝑛 be the set of all 𝑛 × 𝑛 complex matrices over ℂ.  The 

symbols 𝐼 and 𝟎 stand for the identity and zero matrices of appropriate sizes, 

respectively.  Also, the similarity and the direct sum of two matrices 𝐴 and 𝐵 are 

denoted by 𝐴~𝐵 and 𝐴 ⊕ 𝐵, respectively. 

  

Let us recall some definitions and concepts from the matrix algebra.  A matrix 𝐴 ∈ ℂ𝑛 is 

called an idempotent matrix if 𝐴2 = 𝐴.  Also, if 𝐴2 = −𝐴, then the matrix 𝐴 is defined 

as a skew-idempotent matrix.  Note that 𝐴 is idempotent if and only if −𝐴 is a skew-

idempotent.  In addition, a matrix 𝐴 ∈ ℂ𝑛 is called a tripotent matrix if 𝐴3 = 𝐴.  And 

also, if 𝐴3 = 𝐴 and 𝐴2 ≠ ±𝐴, then the matrix 𝐴 ∈ ℂ𝑛 is called an essentially tripotent 

matrix.  So, an essentially tripotent matrix is a tripotent matrix which is not idempotent 

or skew-idempotent. 

 

It has been extensively studied the problem of characterization of a linear combination 

of special types of matrices since 2000 [3].  Baksalary et al. have established all 

situations for idempotency of linear combinations of an idempotent matrix and an 

essentially tripotent matrix in 2002 [4].  In that work, it has been used the fact that for 

an essentially tripotent matrix A , there exist two disjoint idempotent matrices 𝐵1 and 𝐵2 

such that 𝐴 = 𝐵1 − 𝐵2.  So, in that study, the results have been stated in terms of the 

idempotents.  Then Yao et al. have considered the same problem in a different way in 

2009 [1].  They have stated the results in terms of the matrices involved in the linear 

combination.  Özdemir et al. in 2009, have obtained the sets of necessary and sufficient 

conditions for the idempotency or tripotency of a linear combination of two commuting 

tripotent matrices [2]. Actually, the first two studies above consist of different 

characterizations of the same problem.  In the third study, unlike previous ones, both of 

the matrices in the linear combination belong to the set of tripotent matrices while in the 

preceding two works, one of the matrices is idempotent and the other is tripotent.  There 

are a lot of studies related to these subjects in the literature. For details, it can be seen 

the references [1-14]. 

 

In this work, first, Theorem 2 in [1] is given by restricting to the case 𝐴1𝐴2 = 𝐴2𝐴1 in a 

different way.  And then, implicit results in this theorem are stated in explicit forms.  To 

do so, block forms of matrices are used, and then all items of the theorem are partitioned 

to the subcases.  The purpose of doing so is to do the characterization more distinctive.  

Next, Theorem 2.2 of [2] is stated by restricting to the case 𝐴2
2 = 𝐴2.  This restriction is 
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done by keeping in mind the different hypotheses of the theorems.  And then, Theorem 

1 (a) of [4] is considered.  This theorem is stated in terms of an idempotent and a 

tripotent while Baksalary et al. have stated in terms of three idempotents.  To do so, it is 

used the fact that a tripotent matrix 𝐴 can be written as 𝐴 =
1

2
(𝐴2 + 𝐴) −

1

2
(𝐴2 − 𝐴).  It 

is seen that the results emerging after these discussions are compatible with each other.  

Finally, it is established a result related to the idempotency of a linear combination of an 

idempotent and a tripotent matrix without any conditions other than commutativity.  

And the items of the theorem is partitioned to the subcases.  These subcases divide the 

results according to the form of tripotent matrix involved in the linear combination.  

Thanks to this, the results about the characterization can be examined in detail. 

 

 

2. Results 

 

Yao et al. have established in [1] all cases for the characterization of the idempotency of 

linear combinations of an idempotent and a tripotent matrix as follows: 

 

Theorem 2.1. ([1], Page 1496) Let 𝐴1 and 𝐴2 be a nonzero complex tripotent matrix 

and an idempotent matrix, respectively.  Let 𝐴 be a linear combination of the form 

𝑎1𝐴1 + 𝑎2𝐴2 with 𝑎1, 𝑎2 ∈ ℂ∗.  Then the following list comprises characterization of all 

cases in which 𝐴 is an idempotent matrix: 

 

(i)  𝐴1𝐴2 + 𝐴2𝐴1 + 𝑎1𝐴1
2 − 𝐴1 = 𝟎 holds along with 𝑎1 ∈ ℂ∗, 𝑎2 = 1, and when 

𝑎1 ≠ ±1, 𝑝 = 𝑞 where 𝑝 + 𝑞 = 𝑟𝑎𝑛𝑘𝐴1; 

(ii)  𝐴1𝐴2 + 𝐴2𝐴1 = 𝐴2 +
1

2
(𝐴1

2 + 𝐴1) holds along with 𝑎1 = −1, 𝑎2 = 2; 

(iii)  𝐴1𝐴2 + 𝐴2𝐴1 = 𝐴2 + 2𝐴1 − 𝐴1
2 holds along with 𝑎1 =

1

2
 , 𝑎2 =

1

2
; 

(iv)  𝐴1𝐴2 + 𝐴2𝐴1 = −𝐴2 +
1

2
(𝐴1 − 𝐴1

2) holds along with  𝑎1 = 1, 𝑎2 = 2; 

(v)  𝐴1𝐴2 + 𝐴2𝐴1 = 𝐴1
2 + 2𝐴1−𝐴2 holds along with 𝑎1 = −

1

2
 , 𝑎2 =

1

2
. 

 

If 𝐴1𝐴2 = 𝐴2𝐴1, then the preceeding theorem turns into the following. 

 

Theorem 2.2. Let 𝐴1 and 𝐴2 be a nonzero complex tripotent matrix and an idempotent 

matrix, respectively.  Let 𝐴 be a linear combination of the form 𝑎1𝐴1 + 𝑎2𝐴2 with 

𝑎1, 𝑎2 ∈ ℂ∗.  If 𝐴1𝐴2 = 𝐴2𝐴1, then the following list comprises characterization of all 

cases in which 𝐴 is an idempotent matrix: 

 

(i) 2𝐴1𝐴2 + 𝑎1𝐴1
2 − 𝐴1 = 𝟎 holds along with  𝑎1 ∈ {−1,1}, 𝑎2 = 1; 

(ii) 2𝐴1𝐴2 = 𝐴2 +
1

2
(𝐴1

2 + 𝐴1) holds along with 𝑎1 = −1, 𝑎2 = 2; 

(iii) 2𝐴1𝐴2 = 𝐴2 + 2𝐴1 − 𝐴1
2 holds along with  𝑎1 =

1

2
 , 𝑎2 =

1

2
; 

(iv) 2𝐴1𝐴2 = −𝐴2 +
1

2
(𝐴1 − 𝐴1

2) holds along with  𝑎1 = 1, 𝑎2 = 2; 

(v) 2𝐴1𝐴2 = 𝐴1
2 + 2𝐴1−𝐴2 holds along with 𝑎1 = −

1

2
 , 𝑎2 =

1

2
. 

 

Notice that 𝑎1 = −1 or 𝑎1 = 1 in Theorem 2.2 (i), while 𝑎1 ∈ ℂ∗ in Theorem 2.1 (i).  

Now, we shall prove this case. 
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Since 𝐴2 is a nonzero complex idempotent matrix, there exists a nonsingular matrix 𝑆 

such that 

 

𝐴2 = 𝑆 (
𝐼 𝟎
𝟎 𝟎

) 𝑆−1.                (1) 

 

Let us write the matrix 𝐴1 as follows: 

 

𝐴1 = 𝑆 (
𝐾 𝐿
𝑀 𝑁

) 𝑆−1,  (2) 

 

where the sizes of the blocks of 𝐴1 are suitable with the sizes of the blocks of  𝐴2.  

Considering the condition 𝐴1𝐴2 = 𝐴2𝐴1 together with (1) and (2) leads to 𝐿 = 𝟎 

and 𝑀 = 𝟎.  So, we get 

 

𝐴1 = 𝑆 (
𝐾 𝟎
𝟎 𝑁

) 𝑆−1                            (3) 

 

if 𝐴1𝐴2 = 𝐴2𝐴1.  Notice that 𝐾3 = 𝐾 and 𝑁3 = 𝑁 since 𝐴1
3 = 𝐴1.  On the other hand, 

from (i), we know that 2𝐴1𝐴2 + 𝑎1𝐴1
2 − 𝐴1 = 𝟎.  If (1) and (3) are substituted into the 

last equality, then it is obtained 

 

𝐾 + 𝑎1𝐾2 = 𝟎 and 𝑎1𝑁2 − 𝑁 = 𝟎.              (4) 

 

If we postmultiply the first equality of (4) by 𝑎1𝐾 and use the equality 𝐾3 = 𝐾, then we 

get 

 

𝑎1𝐾2 + 𝑎1
2𝐾 = 𝟎.                (5) 

 

Since 𝑎1𝐾2 = −𝐾 by (4), it is obvious from (5) that −𝐾 + 𝑎1
2𝐾 = 𝟎, that is 𝐾 = 𝑎1

2𝐾.  

On the other hand, postmultiplying the second equality of (4) by 𝑎1𝑁 in view of 𝑁3 =
𝑁 leads to 

 

𝑎1
2𝑁 − 𝑎1𝑁2 = 𝟎.                (6) 

 

From the second equality of (4) and (6), we get 𝑎1𝑁2 = 𝑁.  So, from the equalities of 

(4), we arrive at 

 

𝐾 = 𝑎1
2𝐾 and 𝑁 = 𝑎1

2𝑁.                     (7) 

 

Then, we have 𝐾 ≠ 𝟎 or 𝑁 ≠ 𝟎 since 𝐴1 ≠ 𝟎.  If 𝐾 ≠ 𝟎, then 𝑎1
2 = 1, that is 𝑎1 = ±1 

from the first equality of (7).  Similarly, if 𝑁 ≠ 𝟎, then 𝑎1
2 = 1, therefore 𝑎1 = ±1 from 

the second equality of (7).  So, in both situation, we get 𝑎1 = ±1. 

 

Now, we shall examine, in great detail, the matrix equalities in Theorem 2.2.  

 

In case 𝑎1 = 1, Theorem 2.2 (i) turns into the equality 

 

2𝐴1𝐴2 + 𝐴1
2 − 𝐴1 = 𝟎.               (8) 
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Since 𝑎1 = 1, it is obvious that 

 

𝐾2 = −𝐾 and 𝑁2 = 𝑁                 (9) 

 

from the equalities of (4).  The equalities of (9) state that 𝐾 is a skew-idempotent matrix 

and N is an idempotent matrix.  It is seen that studying with diagonal forms of these 

matrices is enough since the matrices 𝐾 and 𝐼 (of 𝐴2) are commutative, and similarly, 

the matrices 𝑁 and 𝟎 (of 𝐴2) are commutative.  For that reason, we shall proceed by 

taking the diagonal forms of 𝐾 and  𝑁. 

 

The diagonal form of 𝐾 can be 𝟎, −𝐼, or −𝐼 ⊕ 𝟎.  Similarly, the diagonal form of 𝑁 can 

be 𝟎, 𝐼, or 𝐼 ⊕ 𝟎.  On the other hand, we know that at least one of the matrices 𝐾 and 𝑁 

must be nonzero.  So, the possible cases for the pair (𝐾, 𝑁) are 

 

(𝐾, 𝑁)~(𝟎, 𝐼), 

(𝐾, 𝑁)~(𝟎, 𝐼 ⊕ 𝟎), 

(𝐾, 𝑁)~(−𝐼, 𝟎), 

(𝐾, 𝑁)~(−𝐼, 𝐼), 

(𝐾, 𝑁)~(−𝐼, 𝐼 ⊕ 𝟎), 

(𝐾, 𝑁)~(−𝐼 ⊕ 𝟎, 𝟎), 

(𝐾, 𝑁)~(−𝐼 ⊕ 𝟎, 𝐼), 

(𝐾, 𝑁)~(−𝐼 ⊕ 𝟎, 𝐼 ⊕ 𝟎). 

 

If each of these cases together with (1), (3), and (8) are considered, then the following 

matrix equalities, respectively, are obtained: 

 

𝐴1 + 𝐴2 = 𝐼, 𝐴1
2 = 𝐴1, 

𝐴1
2 = 𝐴1, 𝐴1𝐴2 = 𝟎, 

𝐴1
2 = −𝐴1 = 𝐴2, 

𝐴1
2 = 𝐼, 𝐴2 =

1

2
 (𝐼 − 𝐴1),             (10) 

𝐴2 =
1

2
 (𝐴1

2 − 𝐴1), 

𝐴1
2 = −𝐴1 = −𝐴1𝐴2, 

−𝐴1𝐴2 =
1

2
 (𝐴1

2 − 𝐴1), 

−𝐴1𝐴2 =
1

2
 (𝐴1

2 − 𝐴1). 

 

Thus, in Theorem 2.2 (i), in case (𝑎1, 𝑎2) = (1,1), we get the matrix equalities given 

above. 

 

Now, we shall consider the case 𝑎1 = −1.  In this case, we have 

 

𝐾2 = 𝐾 and 𝑁2 = −𝑁               (11) 

 

from the equalities of (4).  The last equalities satates that 𝐾 is an idempotent matrix and 

𝑁 is a skew-idempotent matrix.  So, if we consider the fact that at least one of the 

matrices 𝐾 and 𝑁 is nonzero, then all possible diagonal forms of 𝐾 and 𝑁 are as in the 

following: 

 

𝐾~𝟎              ; 𝑁~ − 𝐼, 
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𝐾~𝟎              ; 𝑁~(−𝐼 ⊕ 𝟎), 

𝐾~𝑰               ; 𝑁~𝟎, 

𝐾~𝑰               ; 𝑁~ − 𝐼 , 
𝐾~𝑰               ; 𝑁~(−𝐼 ⊕ 𝟎),             (12) 

𝐾~(𝑰 ⊕ 𝟎)  ; 𝑁~𝟎, 

𝐾~(𝑰 ⊕ 𝟎)  ; 𝑁~ − 𝐼, 

𝐾~(𝑰 ⊕ 𝟎)  ; 𝑁~(−𝐼 ⊕ 𝟎). 

 

Considering these cases together with (1), (3), and (8) yield the following matrix 

equalities, respectively. 

 

−𝐴1 + 𝐴2 = 𝐼, 𝐴1
2 = −𝐴1, 

𝐴1
2 = −𝐴1, 𝐴1𝐴2 = 𝟎, 

𝐴1
2 = 𝐴1 = 𝐴2, 

𝐴1
2 = 𝐼, 𝐴2 =

1

2
 (𝐼 + 𝐴1),             (13) 

𝐴2 =
1

2
 (𝐴1

2 + 𝐴1), 

𝐴1
2 = 𝐴1 = 𝐴1𝐴2, 

𝐴1𝐴2 =
1

2
 (𝐴1

2 + 𝐴1), 

𝐴1𝐴2 =
1

2
 (𝐴1

2 + 𝐴1). 

 

Thus, if (𝑎1, 𝑎2) = (−1,1) in Theorem 2.2 (i), then we get the matrix equailities given 

above.  Note that the last two equalities of (10) are the same.  And, similarly, the last 

two equalities of (13) are the same. 

 

Now, we shall consider Theorem 2.2 (ii). If the equality 

 

2𝐴1𝐴2 = 𝐴2 +
1

2
(𝐴1

2 + 𝐴1)             (14) 

 

is premultiplied by 2𝐴1 leads to 

 

4𝐴1
2𝐴2 = 2𝐴1𝐴2 + 𝐴1 + 𝐴1

2.             (15) 

 

If we postmultiply the equality (15) by 𝐴2, then we arrive at 4𝐴1
2𝐴2 = 2𝐴1𝐴2 + 𝐴1𝐴2 +

𝐴1
2𝐴2, that is, 𝐴1

2𝐴2 = 𝐴1𝐴2.  From (1) and (3), we obtain 𝐾2 = 𝐾 since 𝐴1
2𝐴2 = 𝐴1𝐴2.  

On the other hand, from (1), (3), and (14), it is seen that  𝐾 = 𝐼 (because 𝐾2 = 𝐾) and 

𝑁2 = −𝑁.  Thus, we get 

 

𝐴1 = 𝑆 (
𝐼 𝟎
𝟎 𝑁

) 𝑆−1,  𝑁2 = −𝑁 .            (16) 

 

Since the matrix N is a skew-idempotent matrix, all the possible diagonal forms of 𝑁 

are 

 

𝟎,          − 𝐼,           − 𝐼 ⊕ 𝟎.             (17) 

 

Considering (14) together with (1), (16), and (17) yields the following matrix equalities, 

respectively. 
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𝐴1
2 = 𝐴1 = 𝐴2,            𝐴1

2 = 𝐼, 𝐴2 =
1

2
 (𝐼 + 𝐴1),           𝐴2 =

1

2
 (𝐴1

2 + 𝐴1).        (18) 

 

Thus, the item (ii) of Theorem 2.2 is partitioned into the subequalities of (18). 

 

Now, we deal with Theorem 2.2 (iii). If (1) and (3) are substituted into the equality 

 

2𝐴1𝐴2 = 𝐴2 + 2𝐴1 − 𝐴1
2,             (19) 

 

then we get 𝐾2 = 𝐼 and 𝑁2 = 2𝑁.  On the other hand, since the matrix 𝑁 is tripotent, 

the equalities 𝑁3 = 𝑁 and 𝑁2 = 2𝑁 lead to 𝑁 = 𝟎.  Hence, we can write 

 

𝐴1 = 𝑆 (
𝐾 𝟎
𝟎 𝟎

) 𝑆−1,  𝐾2 = 𝐼.           (20) 

 

Because of the involutivenees of the matrix  𝐾, all the possible diagonal forms of 𝑁 are 

 

𝐼,         − 𝐼,          𝐼 ⊕ −𝐼.             (21) 

 

If we consider (19) together with (1), (20), and (21), then we arrive at the following 

matrix equalities, respectively. 

 

𝐴1
2 = 𝐴1 = 𝐴2,                𝐴1

2 = −𝐴1 = 𝐴2,                 𝐴1
2 = 𝐴2.        (22) 

     
Notice that the equalities of (22) are the partitioned subversions of the item (iii) of 

Theorem 2.2. 

 

Now, we consider item (iv) of Theorem 2.2.  From the equality 

 

2𝐴1𝐴2 = −𝐴2 +
1

2
(𝐴1 − 𝐴1

2) ,            (23) 

 

we get 4𝐴1𝐴2 = −2𝐴2 + 𝐴1 − 𝐴1
2.  Premultiplying the last equality by 𝐴1 and 

considering  𝐴1
3 = 𝐴1; and similarly, postmultiplying by 𝐴2 on account of 𝐴2

2 = 𝐴2 lead 

to 4𝐴1
2𝐴2 = −2𝐴1𝐴2 + 𝐴1

2𝐴2 − 𝐴1𝐴2, that is 𝐴1
2𝐴2 = −𝐴1𝐴2.  Substituting the 

equalities (1) and (3) into the equality 𝐴1
2𝐴2 = −𝐴1𝐴2 yields  𝐾2 = −𝐾.  On the other 

hand, by taking into account (23) together with (1), (3), and  𝐾2 = −𝐾, we arrive at 

𝐾 = −𝐼 and  𝑁2 = 𝑁.  So, we get 

 

𝐴1 = 𝑆 (
−𝐼 𝟎
𝟎 𝑁

) 𝑆−1,  𝑁2 = 𝑁.            (24) 

 

Since N  is an idempotent, all the possible cases are 

 

𝑁~𝟎,         𝑁~𝐼,        𝑁~(𝐼 ⊕ 𝟎).            (25) 

 

If we first put the forms of (25) into (24), and then, consider (1) together with (23), then 

we get the following matrix equalities, respectively. 

 

𝐴1
2 = −𝐴1 = 𝐴2,       𝐴1

2 = 𝐼, 𝐴2 =
1

2
(𝐼 − 𝐴1),       𝐴2 =

1

2
(𝐴1

2 − 𝐴1).       (26) 
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The matrix equalities (26) are the partitioned statements of (23). 

 

Finally, we shall consider the item (v) of Theorem 2.2.  If the statements of 𝐴1 and 𝐴2 

in (3) and (1), respectively, are used in the equality 

 

2𝐴1𝐴2 = 𝐴1
2 + 2𝐴1−𝐴2,             (27) 

 

then it is obtained  𝐾2 = 𝐼 and  𝑁2 = −2𝑁.  Hence, we get 𝑁 = 𝟎 because of  𝑁3 = 𝑁.  

Since 𝐾 is an involutive matrix, all the possible cases for 𝐾 are 

 

𝐾~𝐼,         𝐾~ − 𝐼,         𝐾~(𝐼 ⊕ −𝐼).           (28) 

 

Since 𝑁 = 𝟎, from (3), we have 

 

𝐴1 = 𝑆 (
𝐾 𝟎
𝟎 𝟎

) 𝑆−1,  𝐾2 = 𝐼.            (29) 

 

If, we first consider statements (28) and (29) together and then use expressions (1) and 

(27), then we get the following matrix equalities, respectively. 

 

𝐴1
2 = 𝐴1 = 𝐴2,       𝐴1

2 = −𝐴1 = 𝐴2,            𝐴1
2 = 𝐴2.         (30) 

 

Note that the equalities of (30) are the partitioned version of the item (v) of Theorem 

2.2. 

 

The detailed examination of the results of Theorem 2 in [1] under the condition 𝐴1𝐴2 =
𝐴2𝐴1 are listed in Table 1. 

 

We notice that there are some missing results in Theorem 2 in [1], and therefore in 

Table 1.  To see one of these missing results, we consider Theorem 2.2 of [2]. 

 

Özdemir et al. have established the necessary and sufficient conditions for the 

idempotency of two nonzero commuting tripotent matrices 𝐴1 and 𝐴2 with 𝐴1 ≠ ±𝐴2 in 

Theorem 2.2 of [2].  On the other hand, we know that every idempotent matrix is a 

tripotent matrix.  So, if we take 𝐴2
2 = 𝐴2 in Theorem 2.2 of [2], then we get the 

following theorem: 

 

Theorem 2.3. Let 𝐴1, 𝐴2 ∈ ℂ𝑛 be a tripotent and an idempotent matrix, respectively, 

such that 𝐴1𝐴2 = 𝐴2𝐴1, 𝐴1 ≠ ±𝐴2, and let 𝐴 = 𝑎1𝐴1 + 𝑎2𝐴2 where 𝑎1, 𝑎2 ∈ ℂ∗. Then 

𝐴 is an idempotent matrix if and only if 

 

(a) (𝑎1, 𝑎2) ∈ {(
1

2
,

1

2
) , (−

1

2
,

1

2
)}  and 𝐴1

2 = 𝐴2, 

(b) (𝑎1, 𝑎2) = (−1, −1) and 
1

2
(𝐴1

2 + 𝐴1) + 𝐴2 + 𝐴1𝐴2 = 𝟎, 

(c) (𝑎1, 𝑎2) = (1,1) and 
1

2
(𝐴1 − 𝐴1

2) = 𝐴1𝐴2, 

(d) (𝑎1, 𝑎2) = (−1,1) and  
1

2
(𝐴1

2 + 𝐴1) = 𝐴1𝐴2, 

(e) (𝑎1, 𝑎2) = (1, −1) and 
1

2
(𝐴1

2 − 𝐴1) + 𝐴2 − 𝐴1𝐴2 = 𝟎, 

(f) (𝑎1, 𝑎2) = (1,2) and 𝐴2 =
1

2
(𝐴1

2 − 𝐴1), 
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(g) (𝑎1, 𝑎2) = (−1,2) and 𝐴2 =
1

2
(𝐴1

2 + 𝐴1). 

 

Note that in case  𝐴2
2 = 𝐴2, the remaining cases of Theorem 2.2 in [2] lead to some 

contradictions such as 𝐴1 = ±𝐴2, 𝐴1 = 𝟎, or 𝐴2 = 𝟎.  So, we eliminate these cases in 

the theorem above.  Observe that the item (a) of Theorem 2.3 is an implicit form of the 

matrix equalities, except for 𝐴1 = ±𝐴2, in the 5th cell in Table 1.  Similarly, the items 

(c) and (d) of Theorem 2.3 correspond to the matrix equalities, except for 𝐴1 = ±𝐴2, in 

the cells 1 and 2, respectively, in Table 1.  And finally, the items (f) and (g) of Theorem 

2.3 are implicit forms of the matrix equalities, except for 𝐴1 = ±𝐴2, in the cells 4 and 3, 

respectively, in Table1. Notice that the items (b) and (e) in Theorem 2.3 are not seen in 

Table 1.  So, it is seen that these results have been overlooked in Theorem 2 of [1]. 

 

Now, let us consider the item (b) of Theorem 2.3.  We know that the matrices 1A  and 

2A  can be written as in (3) and (1), respectively. 

 

On the other hand, since 

 
1

2
(𝐴1

2 + 𝐴1) + 𝐴2 + 𝐴1𝐴2 = 𝟎,            (31) 

 

we obtain 𝐴2 = 𝐴1
2𝐴2.  If (1) and (3) are substituted into the equality 𝐴2 = 𝐴1

2𝐴2, then 

we get 𝐾 = 𝐼.  Also, using the equality (31) together with 𝐾2 = 𝐼, (1), and (3) yields 

𝐾 = −𝐼 and 𝑁2 = −𝑁.  So, it can be written 

 

𝐴1 = 𝑆 (
−𝐼 𝟎
𝟎 𝑁

) 𝑆−1,  𝑁2 = −𝑁.            (32) 

 

Since 𝑁 is an involutive matrix and 𝐴1 ≠ −𝐴2, all the possible cases for 𝑁 are 

 

𝑁~ − 𝐼,            𝑁~(−𝐼 ⊕ 𝟎).             (33) 

 

At first, if the statements of (33) are considered together with (32), and then (1) and (31) 

are used, then we get the following matrix equalities, respectively.  

 

𝐴1 = −𝐼,                   𝐴1𝐴2 = −𝐴2, 𝐴1
2 = −𝐴1 .          (34) 

 

Similarly, let us handle item (e) of Theorem 2.3. Since 

 
1

2
(𝐴1

2 − 𝐴1) + 𝐴2 − 𝐴1𝐴2 = 𝟎,            (35) 

 

we get 𝐴1
2𝐴2 = 𝐴2. Considering (1), (3), and the equality 𝐴1

2𝐴2 = 𝐴2 leads to  𝐾2 = 𝐼.  

And then, if it is used the equality (35) together with  𝐾2 = 𝐼, (1) and (3), then it is 

obtained 𝐾 = 𝐼 and  𝑁2 = 𝑁.  So, we can write 

 

𝐴1 = 𝑆 (
𝐼 𝟎
𝟎 𝑁

) 𝑆−1,  𝑁2 = 𝑁.            (36) 

 

From the idempotency of 𝑁 and 𝐴1 ≠ 𝐴2, we have 
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𝑁~𝐼,             𝑁~(𝐼 ⊕ 𝟎).             (37) 

 

Considering the statements (37) in view of (36), and then using (1) and (35) yield the 

following matrix equalities, respectively. 

 

𝐴1 = 𝐼,               𝐴1𝐴2 = 𝐴2, 𝐴1
2 = 𝐴1           (38) 

 

Consequently, (34) and (38) are the partitioned versions of the matrix equalities in the 

items (b) and (e), respectively, of Theorem 2.3.  Notice that while the condition 

𝐴1 ≠ ±𝐴2 must hold in Theorem 2.2 of [2], it is not necessary to be 𝐴1 ≠ ±𝐴2 in 

Theorem 2 of [1]. 

 

So, in Theorem 2.2, which is derived from Theorem 2 of [1] in case 𝐴1𝐴2 = 𝐴2𝐴1, it is 

not considered the condition 𝐴1 ≠ ±𝐴2. 

 

Now, what would happen in cases 𝐴1 = 𝐴2 or 𝐴1 = −𝐴2? 

 

Let us find 𝑎1, 𝑎2 ∈ ℂ∗ such that 

 

(𝑎1𝐴1 + 𝑎2𝐴2)2 = 𝑎1𝐴1 + 𝑎2𝐴2            (39) 

 

in case 𝐴1 = 𝐴2.  Since 𝐴1 = 𝐴2, from (39), we get 

 

((𝑎1 + 𝑎2)𝐴1)
2

= (𝑎1 + 𝑎2)𝐴1.            (40) 

 

Idempotency of 𝐴1 and (40) lead to (𝑎1 + 𝑎2)2𝐴1 = (𝑎1 + 𝑎2)𝐴1.  From this, we obtain 
(𝑎1 + 𝑎2)(𝑎1 + 𝑎2 − 1)𝐴1 = 𝟎.  In view of 𝐴1 ≠ 𝟎, the last equality yields  

 

𝑎1 + 𝑎2 = 0  or  𝑎1 + 𝑎2 = 1.            (41) 

 

In case 𝐴1 = −𝐴2, from (39), we get 2

2 1 2 2 1 2(( ) ) ( )a a A a a A− = − .  From this, 

considering that 2

2 2A A= , it is obtained 2

2 1 2 2 1 2( ) ( )a a A a a A− = − .  The last equality 

leads to (𝑎2 − 𝑎1)(𝑎2 − 𝑎1 − 1)𝐴2 = 𝟎.  Hence, we get 

 

𝑎2 − 𝑎1 = 0  or  𝑎2 − 𝑎1 = 1            (42) 

 

since 𝐴2 ≠ 𝟎.  However, in Theorem 2.2, which is obtained from Theorem 2 of [1],  it is 

not seen the results (41) and (42), while there is no the condition 𝐴1 ≠ ±𝐴2.  If it is 

considered Table 1 together with (34), (38), (41), and (42), then it is arrived at the 

following result. 

 

Theorem 2.4. Let 𝐴1, 𝐴2 ∈ ℂ𝑛 be a tripotent and an idempotent matrix, respectively, 

such that 𝐴1𝐴2 = 𝐴2𝐴1, and let 𝐴 = 𝑎1𝐴1 + 𝑎2𝐴2, where 𝑎1, 𝑎2 ∈ ℂ∗. Then 𝐴 is an 

idempotent matrix if and only if any of the following sets of conditions holds: 

 

(a)  (𝑎1, 𝑎2) = (1,1)  and one of the following matrix equalities: 

(a1) 𝐴1 +  𝐴2 = 𝐼,   𝐴1
2 = 𝐴1 

(a2) 𝐴1
2 = 𝐴1, 𝐴1𝐴2 = 𝟎 
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(a3) 𝐴1
2 = 𝐼, 𝐴2 =

1

2
(𝐼 − 𝐴1) 

(a4) 𝐴2 =
1

2
(𝐴1

2 − 𝐴1) 

(a5) 𝐴1
2 = −𝐴1 = −𝐴1𝐴2 

(a6) −𝐴1𝐴2 =
1

2
(𝐴1

2 − 𝐴1) 

 

(b) (𝑎1, 𝑎2) = (−1,1)  and one of the following matrix equalities: 

(b1) −𝐴1 +  𝐴2 = 𝐼,   𝐴1
2 = −𝐴1 

(b2) 𝐴1
2 = −𝐴1, 𝐴1𝐴2 = 𝟎 

(b3) 𝐴1
2 = 𝐼, 𝐴2 =

1

2
(𝐼 + 𝐴1) 

(b4) 𝐴2 =
1

2
(𝐴1

2 + 𝐴1) 

(b5) 𝐴1
2 = 𝐴1 = 𝐴1𝐴2 

(b6) 𝐴1𝐴2 =
1

2
(𝐴1

2 + 𝐴1) 

 

(c) (𝑎1, 𝑎2) = (−1, −1)  and one of the following matrix equalities: 

(c1) 𝐴1 = −𝐼 

(c2) 𝐴1𝐴2 = −𝐴2, 𝐴1
2 = −𝐴1 

 

(d) 1 2( , ) (1, 1)a a = − and one of  the following matrix equalities: 

(d1) 𝐴1 = 𝐼 

(d2) 𝐴1𝐴2 = 𝐴2, 𝐴1
2 = 𝐴1 

 

(e) (𝑎1, 𝑎2) = (−1,2) and one of  the following matrix equalities: 

(e1) 𝐴1
2 = 𝐼, 𝐴2 =

1

2
(𝐼 + 𝐴1) 

(e2) 𝐴2 =
1

2
(𝐴1

2 + 𝐴1) 

 

(f) (𝑎1, 𝑎2) = (1,2) and one of the following matrix equalities: 

(f1) 𝐴1
2 = 𝐼, 𝐴2 =

1

2
(𝐼 − 𝐴1) 

(f2) 𝐴2 =
1

2
(𝐴1

2 − 𝐴1) 

 

(g)  (𝑎1, 𝑎2) ∈ {(
1

2
,

1

2
) , (−

1

2
,

1

2
)} and 𝐴1

2 = 𝐴2 

(h) 𝑎1, 𝑎2 ∈ ℂ∗ with 𝑎1 + 𝑎2 = 0 or 𝑎1 + 𝑎2 = 1; 𝐴1 = 𝐴2 

(i) 𝑎1, 𝑎2 ∈ ℂ∗ with 𝑎1 − 𝑎2 = 0 or 𝑎1 − 𝑎2 = −1;  𝐴1 = −𝐴2. 

 

Note that there are matrix equalities such as 𝐴1 = 𝐴2 or 𝐴1 = −𝐴2 in the each cells of 

Table 1.  However, these matrix equalities are special cases of Theorem 2.4 (h) and (i).  

So, it is not taken into consideration these type of matrix equalities when it is moved the 

results in Table 1 to Theorem 2.4. 

 

Baksalary et al. have established all situations for the idempotency of a linear 

combination of as essentially tripotent matrix and an idempotent matrix in [4].  Now, 

we shall state that theorem in case the matrices involved in the linear combination are 

commutative. 
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If 𝐴1 is an essentially tripotent matrix, there exist two nonzero disjoint idempotent 

matrices 𝐵1 and 𝐵2 such that 𝐴1 = 𝐵1 − 𝐵2.  Let 𝐴2 be an idempotent matrix and 

suppose that 𝐴1𝐴2 = 𝐴2𝐴1.  We know that 𝐵1 and 𝐵2 can be written as 

𝐵1 =
1

2
(𝐴1

2 + 𝐴1) and 𝐵2 =
1

2
(𝐴1

2 − 𝐴1).           (43) 

 

So, the condition 𝐴1𝐴2 = 𝐴2𝐴1 is equivalent to the equalities 𝐴2𝐵1 = 𝐵1𝐴2 

and 𝐴2𝐵2 = 𝐵2𝐴2.  So, in case 𝐴1𝐴2 = 𝐴2𝐴1, we shall only considered Theorem 1 (a) 

in [4].  If the six items of Theorem 1(a) are stated in terms of the matrices 𝐴1 and 𝐴2 in 

view of (43), then the following result is obtained: 

 

Corollary 2.5. Let 𝐴1 be an essentially tripotent matrix and let 𝐴2 be an idempotent 

matrix such that 𝐴1𝐴2 = 𝐴2𝐴1.  The linear combination of the form 𝑎1𝐴1 + 𝑎2𝐴2 is an 

idempotent matrix if and only if any of the following sets of conditions holds: 

 

(i) (𝑎1, 𝑎2) = (1,1) and 𝐴1𝐴2 =
1

2
(𝐴1 − 𝐴1

2), 

(ii) (𝑎1, 𝑎2) = (1,2) and 𝐴2 =
1

2
(𝐴1

2 − 𝐴1), 

(iii) (𝑎1, 𝑎2) = (−1,1) and 𝐴1𝐴2 =
1

2
(𝐴1 + 𝐴1

2), 

(iv) (𝑎1, 𝑎2) = (−1,2) and 𝐴2 =
1

2
(𝐴1

2 + 𝐴1), 

(v) (𝑎1, 𝑎2) = {(
1

2
,

1

2
) , (−

1

2
,

1

2
)} and 𝐴2 = 𝐴1

2. 

 

Observe that the items (i) and (iii) of Corollary 2.5 correspond to the items (a6) and (b6) 

in Theorem 2.4, respectively.  (Notice that the items (a3) and (a4) are special cases of 

the item (a6).  And also, in the remaining cases of (a), the matrix 𝐴1 is an idempotent or 

a skew-idempotent matrix, that is, 𝐴1 is not an essentially tripotent matrix.  Similarly, 

(b3) and (b4) in Theorem 2.4 are special cases of (b6).  And also, in the remaining cases 

of (b), the matrix 1A  is an idempotent or a skew-idempotent, that is, 𝐴1 is not an 

essentially tripotent matrix.) 

 

On the other hand, items (ii) and (iv) of Corollary 2.5 correspond to items (f2) and (e2), 

respectively, in Theorem 2.4. (Notice that (f1) and (e1) are special cases of (f2) and 

(e2), respectively). The item (v) of Corollary 2.5 corresponds to the item (g) of Theorem 

2.4.  Note that since 𝐴1 = ±𝐴2, that is the tripotent matrix 𝐴1 is particularly an 

idempotent or a skew-idempotent matrix, in the items (h) and (i),  there is no items in 

Corollary 2.5 corresponding to these items. 
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Table 1. The summary of the results (10), (13), (18), (22), (26), and (30). 

 

(𝑎1, 𝑎2) Matrix Equalities 

(1,1) 

𝐴1 + 𝐴2 = 𝐼, 𝐴1
2 = 𝐴1 

𝐴1
2 = 𝐴1, 𝐴1𝐴2 = 𝟎 

𝐴1
2 = −𝐴1 = 𝐴2 

𝐴1
2 = 𝐼, 𝐴2 =

1

2
 (𝐼 − 𝐴1) 

𝐴2 =
1

2
 (𝐴1

2 − 𝐴1) 

𝐴1
2 = −𝐴1 = −𝐴1𝐴2 

−𝐴1𝐴2 =
1

2
 (𝐴1

2 − 𝐴1) 

 

(−1,1) 

−𝐴1 + 𝐴2 = 𝐼, 𝐴1
2 = −𝐴1 

𝐴1
2 = −𝐴1, 𝐴1𝐴2 = 𝟎 

𝐴1
2 = 𝐴1 = 𝐴2 

𝐴1
2 = 𝐼, 𝐴2 =

1

2
 (𝐼 + 𝐴1) 

𝐴2 =
1

2
 (𝐴1

2 + 𝐴1) 

𝐴1
2 = 𝐴1 = 𝐴1𝐴2 

𝐴1𝐴2 =
1

2
 (𝐴1

2 + 𝐴1) 

 

(−1,2) 

𝐴1
2 = 𝐴1 = 𝐴2 

𝐴1
2 = 𝐼, 𝐴2 =

1

2
 (𝐼 + 𝐴1) 

𝐴2 =
1

2
 (𝐴1

2 + 𝐴1) 

 

(1,2) 

𝐴1
2 = −𝐴1 = 𝐴2 

𝐴1
2 = 𝐼, 𝐴2 =

1

2
 (𝐼 − 𝐴1) 

𝐴2 =
1

2
 (𝐴1

2 − 𝐴1) 

 

(
1

2
,
1

2
) , (−

1

2
,
1

2
) 

𝐴1
2 = 𝐴1 = 𝐴2 

𝐴1
2 = −𝐴1 = 𝐴2 

𝐴1
2 = 𝐴2 
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