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Abstract
In this note, we construct Rota-Baxter (coalgebras) bialgebras by (co-)quasi-idempotent
elements and prove that every finite dimensional Hopf algebra admits nontrivial Rota-
Baxter bialgebra structures and tridendriform bialgebra structures. We give all the forms
of (co)-quasi-idempotent elements and related structures of tridendriform (co, bi)algebras
and Rota-Baxter (co, bi)algebras on the well-known Sweedler’s four-dimensional Hopf
algebra.
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1. Introduction
Rota-Baxter algebras were introduced in [11] in the context of differential operators on

commutative Banach algebras and since [1], intensively studied in probability and combi-
natorics, and more recently in mathematical physics, such as free Rota-Baxter algebras,
Lie algebras, multiple zeta values, differential algebras and Connes-Kreimer renormaliza-
tion theory in quantum field theory, see ([2–7], etc.). One can refer to the book [2] for the
detailed theory of Rota-Baxter algebras.

In 2014, based on the dual method in the Hopf algebra theory, Jian and Zhang in
[8] defined the notion of Rota-Baxter coalgebras and also provided various examples of
the new object. Then Rota-Baxter bialgebras were presented in [9] whose examples can
be constructed from the well-known Radford biproduct. In 2017, Jian construct quasi-
idempotent Rota-Baxter operators by quasi-idempotent elements and show that every
finite dimensional Hopf algebra admits nontrivial Rota-Baxter algebra structures and tri-
dendriform algebra structures (see [7]).

So it is natural to consider if every finite dimensional Hopf algebra admits nontrivial
Rota-Baxter bialgebra structure and tridendriform bialgebra structure. In this paper, we
give a positive answer to this question. This is the motivation to write this paper.

This paper is organized as follows. In Section 2, we list some definitions that will be
used later. In Section 3, we present the notions of tridendriform coalgebras, tridendriform
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bialgebras, and co-quasi-idempotent element in a coalgebra. We use (co-)quasi-idempotent
element to construct Rota-Baxter coalgebras and bialgebras. And then we prove that every
finite dimensional Hopf algebra admits nontrivial Rota-Baxter bialgebra structures and
tridendriform bialgebra structures. All the forms of (co)-quasi-idempotent elements and
related structures of tridendriform (co, bi)algebras and Rota-Baxter (co, bi)algebras on
the well-known Sweedler’s four-dimensional Hopf algebra are provided in Section 4.

2. Preliminaries
For simplicity, we fix our ground field to be the complex number field C throughout

this paper. All the objects we discuss are defined over C unless otherwise specified. For
an algebra A, we denote its multiplication µA (or simply µ) by µA(a ⊗ b) = ab.

In what follows, we recall some useful definitions which will be used later (see [2,7,9]).

Definition 2.1. For λ ∈ C, a Rota-Baxter algebra of weight λ is an associative
algebra A together with a linear map R : A −→ A such that

R(a)R(b) = R(aR(b)) + R(R(a)b) + λR(ab) (2. 1)

for all a, b ∈ A. Such a linear operator is called a Rota-Baxter operator of weight λ
on A.

Remark 2.2. If R is a Rota-Baxter operator of weight 1, then λR is a Rota-Baxter
operator of weight λ. Conversely, if R is a Rota-Baxter operator of weight λ and λ is
invertible, then λ−1R is a Rota-Baxter operator of weight 1.

Definition 2.3. Let C be a vector space and ∆C : C −→ C ⊗ C (here we use Sweedler’s
notation and denote ∆C(c) by c1 ⊗ c2), εC : C −→ C two linear maps. Then C is a
coassociative coalgebra if

c11 ⊗ c12 ⊗ c2 = c1 ⊗ c21 ⊗ c22 and εC(c1)c2 = c1εC(c2) = c

hold for all c ∈ C.
Let γ be an element in C. A pair (C, Q) is called a Rota-Baxter coalgebra of weight

γ if C is a coassociative coalgebra and Q is a linear endomorphism of C satisfying that
for all c ∈ C,

Q(c1) ⊗ Q(c2) = Q(c)1 ⊗ Q(Q(c)2) + Q(Q(c)1) ⊗ Q(c)2 + γQ(c)1 ⊗ Q(c)2. (2. 2)

The map Q is called a Rota-Baxter operator weight γ on C.

Remark 2.4. If Q is a Rota-Baxter operator of weight 1, then γQ is a Rota-Baxter
operator of weight γ. Conversely, if Q is a Rota-Baxter operator of weight γ and γ is
invertible, then γ−1Q is a Rota-Baxter operator of weight 1.

Definition 2.5. Let H be a vector space. H is a bialgebra if (H, µH) is an associative
algebra and (H, ∆H) is a coassociative coalgebra such that ∆H and εH are algebra maps.

Let λ, γ be elements in C and H a bialgebra (maybe without unit and counit). A triple
(H, R, Q) is called a Rota-Baxter bialgebra of weight (λ, γ) if (H, R) is a Rota-Baxter
algebra of weight λ and (H, Q) is a Rota-Baxter coalgebra of weight γ.

Remark 2.6. If (H, R, Q) is a Rota-Baxter bialgebra of weight (1, 1), then (H, λR, γQ)
is a Rota-Baxter bialgebra of weight (λ, γ). Conversely, if (H, R, Q) is a Rota-Baxter
bialgebra of weight (λ, γ) and λ, γ are invertible, then (H, λ−1R, γ−1Q) is a Rota-Baxter
bialgebra of weight (1, 1).

Definition 2.7. Let A be an associative algebra and λ ∈ C. A linear endomorphism ϕ of
A is called a quasi-idempotent operator of weight λ on A if ϕ2 = −λϕ. A nonzero
element ξ ∈ A is called a quasi-idempotent element of weight λ if ξ2 = −λξ.
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Definition 2.8. Let V be a vector space, and ≺, ≻, · : V ⊗ V −→ V be three linear maps.
The quadruple (V, ≺, ≻, ·) is called a tridendriform algebra if the following conditions
are satisfied: for all x, y, z ∈ V ,

(x ≺ y) ≺ z = x ≺ (y ∗ z), (x ≻ y) ≺ z = x ≻ (y ≺ z),
(x ∗ y) ≻ z = x ≻ (y ≻ z), (x ≻ y) · z = x ≻ (y · z),
(x ≺ y) · z = x · (y ≻ z), (x · y) ≺ z = x · (y ≺ z), (x · y) · z = x · (y · z),

where x ∗ y = x ≺ y + x ≻ y + x · y.

Remark 2.9. Given a Rota-Baxter algebra (A, R) of weight 1, we define
a ≺ b = a · R(b), a ≻ b = R(a) · b,

for all a, b ∈ A. Then (V, ≺, ≻, µA) is a tridendriform algebra.

3. Construction of tridendriform co(bi)algebra and Rota-Baxter bialge-
bras

In this section, based on the dual method in Hopf algebra theory, we define tri-
dendriform co(bi)algebras, co-quasi-idempotent elements, then construct tridendriform
co(bi)algebras and Rota-Baxter co(bi)algebras through (co-)quasi-idempotent elements.

Definition 3.1. Let V be a vector space, and ∆≺, ∆≻, ∆· : V −→ V ⊗ V be three linear
maps (write ∆≺(x) = x1 ⊗ x2, ∆≻(x) = x(1) ⊗ x(2), ∆·(x) = x[1] ⊗ x[2]). The quadru-
ple (V, ∆≺, ∆≻, ∆·) is called a tridendriform coalgebra if the following conditions are
satisfied: for all x ∈ V ,

x11 ⊗ x12 ⊗ x2 = x1 ⊗ (x21 ⊗ x22 + x2(1) ⊗ x2(2) + x2[1] ⊗ x2[2]),
x1(1) ⊗ x1(2) ⊗ x2 = x(1) ⊗ x(2)1 ⊗ x(2)2,

(x(1)1 ⊗ x(1)2 + x(1)(1) ⊗ x(1)(2) + x(1)[1] ⊗ x(1)[2]) ⊗ x(2) = x(1) ⊗ x(2)(1) ⊗ x(2)(2),

x[1](1) ⊗ x[1](2) ⊗ x[2] = x(1) ⊗ x(2)[1] ⊗ x(2)[2],

x[1]1 ⊗ x[1]2 ⊗ x[2] = x[1] ⊗ x[2](1) ⊗ x[2](2),

x1[1] ⊗ x1[2] ⊗ x2 = x[1] ⊗ x[2]1 ⊗ x[2]2,

x[1][1] ⊗ x[1][2] ⊗ x[2] = x[1] ⊗ x[2][1] ⊗ x[2][2].

Rota-Baxter coalgebras are closely related to tridendriform coalgebras.

Lemma 3.2. Given a Rota-Baxter coalgebra (C, Q) of weight 1, we define
∆≺(c) = c1 ⊗ Q(c2), ∆≻(c) = Q(c1) ⊗ c2.

Then (C, ∆≺, ∆≻, ∆C) is a tridendriform coalgebra.

Proof. It can be proved by direct computation. �
Definition 3.3. Let V be a vector space. A seven-tuple (V, ≺, ≻, ·, ∆≺, ∆≻, ∆·) is called
a tridendriform bialgebra if (V, ≺, ≻, ·) is a tridendriform algebra and at the same time
(V, ∆≺, ∆≻, ∆·) is a tridendriform coalgebra.

Proposition 3.4. Let H be a bialgebra and (H, R, Q) a Rota-Baxter bialgebra of weight
(1, 1). Define

x ≺ y = xR(y), x ≻ y = R(x)y,

∆≺(x) = x1 ⊗ Q(x2), ∆≻(x) = Q(x1) ⊗ x2,

for all x, y ∈ H. Then (V, ≺, ≻, µH , ∆≺, ∆≻, ∆H) is a tridendriform bialgebra.

Proof. It is a consequence of Lemma 3.2 and the Remark 2.9. �
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Definition 3.5. Let C be a coassociative coalgebra and γ ∈ C. A linear endomorphism ϑ
of C is called a quasi-idempotent operator of weight γ on C if ϑ2 = −γϑ. A nonzero
element τ ∈ C∗ is called a co-quasi-idempotent element of weight γ if τ(c1)τ(c2) = −γτ(c)
for all c ∈ C.

Proposition 3.6. Let C be a coalgebra. Given a co-quasi-idempotent element τ ∈ C∗

of weight γ ̸= 0. Three linear maps ∆≺, ∆≻, ∆· : C −→ C ⊗ C defined below endow a
tridendriform coalgebra structure on C: for all c ∈ C,

∆≺(c) = γ−1c1 ⊗ τ(c2)c3, ∆≻(c) = γ−1τ(c1)c2 ⊗ c3, ∆·(c) = c1 ⊗ c2.

Proof. We only check the first equality in the definition of tridendreform coalgebra as
follows. For all c ∈ C, we can get

c1 ⊗ (c21 ⊗ c22 + c2(1) ⊗ c2(2) + c2[1] ⊗ c2[2])
= γ−2c1τ(c2)τ(c32) ⊗ c31 ⊗ c33 + γ−2c1τ(c2)τ(c31) ⊗ c32 ⊗ c33

+γ−1c1τ(c2) ⊗ c31 ⊗ c32

= γ−2c1τ(c2)τ(c32) ⊗ c31 ⊗ c33 − γ−1c1τ(c2) ⊗ c31 ⊗ c32

+γ−1c1τ(c2) ⊗ c31 ⊗ c32

= γ−2c1τ(c2)τ(c32) ⊗ c31 ⊗ c33

= c11 ⊗ c12 ⊗ c2,

finishing the proof. �
Theorem 3.7. Let H be a bialgebra. Given a quasi-idempotent element ξ ∈ H of weight
λ ̸= 0 and a co-quasi-idempotent element τ ∈ H∗ of weight γ ̸= 0. Six linear maps
≺, ≻, · : H⊗H −→ H and ∆≺, ∆≻, ∆· : H −→ H⊗H defined below endow a tridendriform
bialgebra structure on H: for all x, y ∈ H,

x ≺ y = λ−1xξy, x ≻ y = λ−1ξxy, x · y = xy,

and
∆≺(x) = γ−1x1 ⊗ τ(x2)x3, ∆≻(x) = γ−1τ(x1)x2 ⊗ x3, ∆·(x) = x1 ⊗ x2.

Proof. We can finish the proof by [7, Corollary 2.4] and Proposition 3.6. �
Now we use co-quasi-idempotent elements to construct quasi-idempotent Rota-Baxter

operators.

Proposition 3.8. For a fixed co-quasi-idempotent element τ ∈ C∗ of weight γ, we define
linear map Qτ : C −→ C by Qτ (c) = τ(c1)c2 for any c ∈ C. Then Qτ is a quasi-idempotent
Rota-Baxter operator of weight γ on C.

Proof. It is direct to prove that Q2
τ = −γQτ by the definition of co-quasi-idempotent

element. Next for any c ∈ C, we have
Qτ (c)1 ⊗ Qτ (Qτ (c)2) + Qτ (Qτ (c)1) ⊗ Qτ (c)2 + γQτ (c)1 ⊗ Qτ (c)2

= τ(c1)c21 ⊗ τ(c221)c222 + τ(c1)τ(c211)c212 ⊗ c22 + γτ(c1)c21 ⊗ c22

= τ(c1)c21 ⊗ τ(c221)c222 − γτ(c1)c21 ⊗ c22 + γτ(c1)c21 ⊗ c22

= τ(c11)c12 ⊗ τ(c21)c22

= Qτ (c1) ⊗ Qτ (c2),
finishing the proof. �
Theorem 3.9. Let H be a bialgebra. Suppose that ξ ∈ H is a quasi-idempotent of
weight of λ and τ ∈ H∗ is a co-quasi-idempotent element of weight γ, then (H, Rξ, Qτ ) is
a Rota-Baxter bialgebra of weight (λ, γ), where

Rξ(x) = ξx, Qτ (x) = τ(x1)x2,
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for all x ∈ H.

Proof. By [7, Prosition 2.2] and Proposition 3.8, we can finish the proof. �

Let recall the following result from [10] on finite dimensional Hopf algebra. As we know,
a Hopf algebra H is a bialgebra H with an antipode S, where the linear map S : H −→ H
is the convolution inverse of identity map idH in convolution algebra Hom(H, H).

Let H be a finite dimensional Hopf algebra. Then there is a unique element xH such
that

⟨a∗, xH⟩ = Tr(la∗), ∀ a∗ ∈ H∗.

Furthermore, the element xH has the following properties.

ε(xH) = dim(H), x2
H = ε(xH)xH .

that is to say, xH ∈ H is a quasi-idempotent element of weight −dim(H) on H.
When H is finite dimensional, H∗ is also a finite dimensional Hopf algebra and

dim(H∗)=dim(H). So using the above result to finite dimensional Hopf algebra H∗, we
can get: there is a unique element χH ∈ H∗ such that

⟨χH , a⟩ = Tr(la), ∀ a ∈ H.

Furthermore, the element χH has the following properties.

εH∗(χH) = ⟨χH , 1H⟩ = dim(H), χ2
H = εH∗(χH)χH

i.e., χH(a1)χH(a2) = ⟨χH , 1H⟩χH(a) = dim(H)χH(a),
that is to say, χ ∈ H∗ is a co-quasi-idempotent element of weight −dim(H) on H.

Also we know the integral Λ and cointegral
∧

(i.e. integral of H∗) for finite dimensional
Hopf algebra H must exist, and Λ is a quasi-idempotent element and

∧
is a co-quasi-

idempotent element.
By combining the discussions above, we see that RxH , RΛ and Qχ, Q∧ are Rota-Baxter

operators on H. As a consequence, we have

Theorem 3.10. Every finite dimensional Hopf algebra admits nontrivial Rota-Baxter
coalgebra and bialgebra structures and tridendriform coalgebra and bialgebra structures.

4. An example
The well-known Sweedler’s four-dimensional Hopf algebra H4 is a very popular exam-

ple in the theory of Hopf algebras, and many researchers pay their attention to it because
there are many nice properties on it. In this section, we will apply the above results in
Section 3 to H4, and give all the forms of (co)-quasi-idempotent elements and related
structures of tridendriform (co, bi)algebras and Rota-Baxter (co, bi)algebras.

Let H4 be the algebra generated by two elements x and y subject to

x2 = 1, y2 = 0, yx = −xy.

Then H4 is a four-dimensional algebra with a linear basis {1, x, y, xy} (see [10, 12]), ex-
plicitly, its multiplication is

µH4 1 x y xy
1 1 x y xy
x x 1 xy y
y y −xy 0 0

xy xy −y 0 0

.
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Moreover it is a Hopf algebra equipped with the following operations:

∆(x) = x ⊗ x, ∆(y) = 1 ⊗ y + y ⊗ x,

ε(x) = 1, ε(y) = 0,

S(x) = x, S(y) = xy.

Denote by {f1, f2, f3, f4} the dual basis of {1, x, y, xy}, i.e.,
1 x y xy

f1 1 0 0 0
f2 0 1 0 0
f3 0 0 1 0
f4 0 0 0 1

.

Then the multiplication of H4
∗ is

µH4
∗ f1 f2 f3 f4

f1 f1 0 f3 0
f2 0 f2 0 f4
f3 0 f3 0 0
f4 f4 0 0 0

.

Thus by the definitions of (co-)quasi-idempotent element, we have

quasi-idempotent element ξ weight λ
ξ1 l1(1 + x) + l2y + l3xy −2l1
ξ2 l1(1 − x) + l2y + l3xy −2l1
ξ3 l11 −l1

co-quasi-idempotent element τ weight γ
τ1 k1f2 + k2f3 + k3f4 −k1
τ2 k1f1 + k2f3 + k3f4 −k1
τ3 k1f1 + k1f2 −k1
τ4 k1f3 + k2f4 0

where ki, lj ∈ C, i, j = 1, 2, 3.
Next we assume that k1 ̸= 0 and l1 ̸= 0.
By [7, Corollary 2.4], if we set l = (−2l1)−1, then the tridendriform algebra structures

on H4 are given by (H4, ≺i, ≻i, µH4), i = 1, 2, 3, where

≺1 1 x y xy

1 lξ1 l(l1(1 + x) − l3y − l2xy) −1
2(y + xy) −1

2(y + xy)
x l(l1(1 + x) + l3y + l2xy) l(l1(1 + x) − l2y − l3xy) −1

2(y + xy) −1
2(y + xy)

y −1
2(y − xy) −1

2(y − xy) 0 0
xy 1

2(y + xy) 1
2(y + xy) 0 0

≻1 1 x y xy

1 lξ1 l(l1(1 + x) − l3y − l2xy) −1
2(y + xy) −1

2(y + xy)
x l(l1(1 + x) − l3y − l2xy) lξ1 −1

2(y + xy) −1
2(y + xy)

y −1
2(y + xy) 1

2(y + xy) 0 0
xy −1

2(y + xy) 1
2(y + xy) 0 0
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≺2 1 x y xy

1 lξ2 l(l1(−1 + x) − l3y − l2xy) −1
2(y − xy) −1

2(−y + xy)
x l(l1(−1 + x) + l3y + l2xy) l(l1(1 − x) − l2y − l3xy) 1

2(y − xy) −1
2(y − xy)

y −1
2(y + xy) 1

2(y + xy) 0 0
xy −1

2(y + xy) 1
2(y + xy) 0 0

≻2 1 x y xy

1 lξ2 l(l1(−1 + x) − l3y − l2xy) −1
2(y − xy) 1

2(y − xy)
x l(l1(−1 + x) − l3y − l2xy) lξ2

1
2(y − xy) −1

2(y − xy)
y −1

2(y − xy) −1
2(y − xy) 0 0

xy 1
2(y − xy) 1

2(y − xy) 0 0
and ≺3=≻3= µH4 .

By Proposition 3.6, if we set k = (−k1)−1, then the tridendriform coalgebra structures
on H4 are given by (H4, ∆≺j , ∆≻j , ∆H4), j = 1, 2, 3, where

∆≺1(1) = 0 ∆≻1(1) = 0
∆≺1(x) = −x ⊗ x ∆≻1(x) = −x ⊗ x

∆≺1(y) = lk21 ⊗ x − y ⊗ x ∆≻1(y) = lk2x ⊗ x
∆≺1(xy) = −x ⊗ xy + lk3x ⊗ 1 ∆≻1(xy) = −x ⊗ xy − xy ⊗ 1 + lk31 ⊗ 1

∆≺2(1) = −1 ⊗ 1 ∆≻2(1) = −1 ⊗ 1
∆≺2(x) = 0 ∆≻2(x) = 0

∆≺2(y) = −1 ⊗ y + lk21 ⊗ x ∆≻2(y) = −1 ⊗ y − y ⊗ x + lk2x ⊗ x
∆≺2(xy) = lk3x ⊗ 1 − xy ⊗ 1 ∆≻2(xy) = lk31 ⊗ 1

and

∆≺3(1) = ∆≻3(1) = −1 ⊗ 1,

∆≺3(x) = ∆≻3(x) = −x ⊗ x,

∆≺3(y) = ∆≻3(y) = −1 ⊗ y − y ⊗ x,

∆≺3(xy) = ∆≻3(xy) = −x ⊗ xy − xy ⊗ 1.

With notations above, then by Theorem 3.7, the tridendriform bialgebra structures on H4
are given by (H4, ≺i, ≻i, µH4 , ∆≺j , ∆≻j , ∆H4), i, j = 1, 2, 3.

By [7, Prosition 2.2], (H, Rξi
), i = 1, 2, 3 are Rota-Baxter algebras of weight λi, i =

1, 2, 3, where λ1 = λ2 = −2l1, λ3 = −l1 and

Rξ1 Rξ2 Rξ3

1 ξ1 ξ2 ξ3
x l1(1 + x) − l3y − l2xy l1(−1 + x) − l3y − l2xy l1x
y l1(y + xy) l1(y − xy) l1y

xy l1(y + xy) l1(−y + xy) l1xy

.

By Proposition 3.8, (H, Qτj ), j = 1, 2, 3, 4 are Rota-Baxter coalgebras of weight γj , j =
1, 2, 3, 4, where γ1 = γ2 = γ3 = −k1, γ4 = 0 and

Qτ1 Qτ2 Qτ3 Qτ4

1 0 k11 k11 0
x k1x 0 k1x 0
y k2x k1y k1y 0

xy k1xy + k31 k31 k1xy k21

.
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With notations above, then by Theorem 3.9, (H, Rξi
, Qτj ), i = 1, 2, 3, j = 1, 2, 3, 4 are

Rota-Baxter bialgebras of weight (λi, γj), i = 1, 2, 3, j = 1, 2, 3, 4.
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