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Abstract. In this paper, we design an accurate scheme for the approxi-
mation of highly oscillatory integrals having singularity . The interval of
integration [a, b] is divided into two subintervals and then approximate
the integral over first interval by hybrid function quadrature (Qhf [g]),
while for the approximation of integrals over the second interval we use
Levin meshless method (Qm

L [g]). For the result, we find sum of both the
integrals. To check the effectiveness of method, results of some test prob-
lems are calculated by hybrid function quadrature and compared with
the results produces by proposed method.
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1 Introduction

Highly oscillatory integrals have many practical applications in physical sciences,
particularly in the field of acoustics, optics, mechanics and electromagnetics[1-3].
It is possible to represent approximate solution for many differential equations
[4-15] as oscillatory integrals. In this work, we discuss high oscillatory integrals
of the type

I =

∫ b

a

g(x)eiωh(x)dx, (1)

where g(x) is a non-oscillatory function and has a singularity at a = 0, h(x)
is phase function also known as oscillator. The parameter is a positive real
number which is responsible for the frequency of oscillations, and for ω � 1the
integrand becomes highly oscillatory. Due to singularity at x = 0 and highly
oscillatory behavior, the integrand cannot be solved analytically mostly. In such
case, we choose numerical methods.Many numerical schemes are developed in
last few decades, such as Filon-type method [16-18], Levin-type method [19-21],
Generalized quadrature rule [22,23], ClenshawCurtis method [24,25], asymptotic
method and steepest descent method [26,27] for numerical solutions of highly
oscillatory integrals.

In [28] highly oscillatory integrals with algebraic singularities are expended
into asymptotic series by two different types of transformations. Then two meth-
ods Filon-type and ClenshawCurtisFilon-type method based on asymptotic se-
ries are presented. Some examples and error analysis are discussed to check the
accuracy of the proposed methods. In [28] the authors have discussed highly
oscillatory integrals with algebraic and logarithmic singularities. Singularities at
the endpoints, an internal point only and at the end points and an internal point
at a time are discussed. The proposed method is based on expanding the ampli-
tude function into a series of Chebyshev polynomials. Some numerical examples
are also discussed. Gauss quadrature and Filon-type method are proposed in [29]
for the approximation of highly oscillatory integrals with an algebraic singular-
ity. Error bounds and numerical examples are also discussed in the paper. In [26]
an efficient numerical method is proposed for the computation of highly oscilla-
tory Fourier-type integrals with Jacobi-type singularities. The target integrand
is transformed by using Cauchys integral theorem and then a Mathematica pro-
gram is presented for evaluation of integral. The effectiveness of the method is
shown through the results of some numerical problems. [30] Proposed meshless
procedure for the approximation of highly oscillatory integrals with Bessel kernel.
To handle the case of singularity an adoptive splitting technique is introduced
and then Haar wavelet and hybrid function based multi-resolution quadrature
are used as supporting methods. Asymptotic order of convergence of the pro-
posed method is o(ω(−7/2)) which has been proved theoretically. In current work,
we follow the same approach of splitting technique with some modification.
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Table 1. Nomenclature box.

Symbols Description

ω Frequency parameter
ζ Splitting parameter
N Quadrature points
m Meshless points
Qhf [g] Hybrid function quadrature
Qm

L [g] Levin meshless method
QmL

h [g] Levin meshless with Hybrid function

2 A Levin Based Meshless Method (Qm
L [g])

For n centres x1, x2, . . . , x
ε
n, an RBF interpolation is given by [28]

P (x) =

n∑
j=1

ΨjΘ(‖x− xεj‖2, ε), x ∈ Rd. (2)

The coefficients Ψj , j = 1, 2, . . . , n are chosen by the following interpolation con-
dition

P (xi) = gi, i = 1, 2, . . . ,m.

For n=m this leads to the linear system as,

AΨ = g, (3)

which can be solved for the coefficients Ψj , j = 1, 2, , n. A is square matrix or
order n with entries

A = Θij = Θ(‖x− xεj‖2, i, j = 1, 2, . . . , n. (4)

For better result we choose maltiquadric radial basis function (MQ RBF) define
as following,

Θ(r) =
√
r2 + ε2 , where ε is a shape parameter.

Now considering the function P(x) satisfying the following ordinary differential
equation (ODE).

P ′(x) + iωh′(x)P (x) = g(x). (5)

Using (5) in (1) we get,

I =

∫ b

a

[P ′(x) + iωh′(x)P (x)] eiωh(x)dx, (6)

=

∫ b

a

d
[
P ′(x)eiωh(x)

]
,

= P (b)eiωh(b) − P (a)eiωh(a).
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3 Hybrid Function for Approximating Integral (Qhf [g])

Hybrid function formula of order 8 developed by [29], for integral of the form∫ b

a

g(x)dx, (7)

is given by,∫ b

a

g(x) ≈ (b− a)

1935360

N∑
(k=1)

[295627g(a+
(b− a)(16k − 15)

16N
) (8)

+71329 · g(a+
(b− a)(16k − 13)

16N
) + 471771 · g(a+

(b− a)(16k − 11)

16N
)

+128953 · g(a+
(b− a)(16k − 9)

16N
)

+128953 · g(a+
(b− a)(16k − 7)

16N
)

+471771 · g(a+
(b− a)(16k − 5)

16N
)

+71329 · g(a+
((b− a)(16k − 3))

16N
)

+295627 · g(a+
((b− a)(16k − 13))

16N
)]

4 Interval Splitting Procedure

Due to singularity at x = 0, the integrand (1) cannot be evaluated by QmL [g]
method. Therefore we introduce a splitting parameter, ζ ∈ (a, b) which divides
interval of integration into two subintervals. The splitting parameter ζ can be

defined as follows ζ =
(b− a)

p
, p > b.

Using this parameter in (1) as following,∫ b

a

g(x)eiωh(x)dx =

∫ ζ

a

g(x)eiωh(x)dx+

∫ b

ζ

g(x)eiωh(x)dx, (9)

= I1 + I2

The integral I1 can be approximated by Qhf [g] method, as hybrid function
quadrature, skip the singularity at x = 0. The second integral I2 is free of
singularity and can be evaluated by QmL [g] method and the final result can be
calculated as,

I = Qhf [g] +QmL [g] (10)

Eq (10) is a combination of both methods by Qhf [g] and QmL [g] which can be
further denoted by QmLh [g], i.e. (1) can be solved by QmLh [g].
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5 Error analysis

5.1 Error Bound of Hybrid Function Quadrature

Theorem 1 According to [30] error bound for I1 with phase function h(x) = xq

for q > 1, let h
′
(a) = h

′′
(a) = · · · = h(q−1)(a) = 0 and h(q)(x) 6= 0 for all

x ∈ [a, b]. Suppose ε = maxx∈[a,ζ]|h
′
(x) − h′

(a)| and ζ satisfy εp = b − a, for
p > b. Then error for evaluating I1 by Qhf [g] is given by.

Absoluteerror = |I1 −Qhf [g]| 6 σ(ζ − a)

4.54× 108
(11)

=

σ

((
b− a
p

)1/q

− a

)
4.54× 108

, p > b

where σ is a constant independent of ζ.

5.2 Error Bound of Levin Meshless Method

Theorem 2 According to [28], let g(x) and h(x) are smooth functions and
h

′
(x) 6= 0 for all x ∈ (ζ, b), then error for approximating I2 by QmL [g] is given by,

Absoluteerror = |I2 −QmL [g]| ≤ 3(1 + n)‖Ψ (n)‖∞|g(b)− g(ζ)|n

n! ω2
(12)

= o(
1

ω2
), ω ≥ 1

Where Ψ(x) = I2 −QmL [g] with Ψ(xi) = 0, i = 1, 2, . . . , n.

6 Test Problems and Discussion

In this section we discuss some test problems, results are given in term of absolute
error for different meshless points m and different frequencies . The results are
also produced by hybrid function quadrature Qhf [g] and compared with the
results evaluated by the proposed method QmLh [g]. To calculate the absolute
error, the result of imaginary part is considered in this paper. Exact solutions
are calculated by Maple 16 and numerical evaluations are done by Matlab 15.

Test problem 1. Consider the following oscillatory integral,

I1[g, ω] =

∫ 1

0

1√
x
eiωx

3

dx. (13)

Oscillatory integral I1[g, ω] is approximated by Qhf [g] and QmLh [g]. A compari-
son of absolute error produced by both methods is shown in Fig. 1, which shows
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Fig. 1. Comparison of absolute error produced by Qhf [g] and QmL
h [g] for I1[g, ω].

that the method Qhf [g] gives high accuracy for low frequency but absolute error
increases with increase in ω. While absolute error produced by the proposed
method decreases as increases. CPU time of the proposed method for this prob-
lem is shown in Fig. 2. Absolute error is evaluated by the proposed method
Qmh L[g] for fixed N = 40, p = 2, 5 and m = 5, 10, 15, 20 and results are given in
Tables 2 and 3. From Tables, it is clear that absolute error decreases as ω and
m increases.

Table 2. The absolute error produced by QmL
h [g] for different m, p = 2 and fixed

N = 40, for I1[g, ω].

ω m=5 m =10 m =15 m =20

10 4.37e-4 4.96e-6 5.09e-8 1.79e-8
20 4.36e-5 1.05e-6 2.39e-8 2.61e-8
40 1.47e-4 4.26e-6 3.41e-8 3.86e-8
60 3.70e-5 4.51e-6 1.21e-7 1.96e-7
80 2.32e-5 4.76e-6 3.64e-8 5.44e-9
100 5.75e-5 3.50e-6 7.71e-8 3.28e-10
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Table 3. The absolute error produced by QmL
h [g] for different m, p = 5 and fixed

N = 40, for I1[g, ω].

ω m =5 m =10 m =15 m =20

10 1.30e-2 2.7e-4 1.81e-6 2.36e-7
20 1.73e-2 4.56e-4 8.69e-6 2.89e-8
40 5.05e-3 1.18e-4 1.29e-5 7.88e-7
60 2.47e-2 1.90e-4 7.62e-6 1.95e-8
80 2.87e-2 3.29e-4 2.92e-6 8.16e-7
100 2.35e-2 3.33e-4 8.31e-6 8.63e-7

Fig. 2. CPU time (in seconds) of QmL
h [g] for I1[g, ω].

Test problem 2. Consider the following oscillatory integral,

I2[g, ω] =

∫ 1

0

√
1 + x

x0.2
eiωx

2

dx (14)

I2[g, ω] is evaluated by Qhf [g] and QmLh [g] methods and results in term of abso-
lute error are compared, which are shown in Fig. 3.

From Fig. 3 it is clear that absolute error increases with increase in ω for
method Qhf [g], while absolute error decreases as ω increases for the proposed
method QmLh [g]. Absolute error is evaluated by the proposed method QmLh [g] for
fixed N = 40, p = 2, 5 and m = 5, 10, 15, 20 and results are given in Tables 4 and
5.
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Table 4. The absolute error produced by QmL
h [g] for different m, p = 2 and fixed

N = 40, for I2[g, ω].

ω m=5 m =10 m =15 m =20

10 9.45e-5 1.41e-6 1.25e-8 2.63e-10
20 2.73e-5 1.61e-6 1.51e-9 5.07e-9
40 2.37e-5 1.41e-6 8.81e-9 5.52e-10
60 2.82e-5 8.94e-7 1.04e-8 5.42e-9
80 1.02e-5 6.07e-8 3.48e-9 8.18e-9
100 5.42e-6 3.89e-7 5.09e-9 3.80e-9

Table 5. The absolute error produced by QmL
h [g] for different m, p = 5 and fixed

N = 40, for I2[g, ω].

ω m=5 m =10 m =15 m =20

10 4.43e-4 7.88e-5 1.79e-6 6.2e-8
20 8.29e-3 8.33e-5 1.76e-5 1.31e-7
40 4.25e-4 3.19e-4 2.22e-5 4.76e-7
60 2.67e-3 5.83e-6 1.47e-5 7.87e-7
80 1.51e-3 2.98e-4 8.56e-6 4.27e-7
100 3.17e-5 1.63e-4 2.82e-5 1.95e-6

Fig. 3. Comparison of absolute error produced by Qhf [g]and QmL
h [g] for I2[g, ω].

From Tables, it is clear that absolute error increases some time with an in-
crease in , but this is due to the oscillatory behavior of the integrand. Considering
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Fig. 4. PU time (in seconds) of QmL
h [g] for I2[g, ω].

the overall results of Tables 4 and 5 we see that the proposed method QmLh [g]
is effective and accurate versus Qhf [g] method. CPU time (in seconds) is shown
in Fig. 4 for proposed method.

7 Conclusion

In this paper, we have combined two methods Qhf [g] and QmL [g] to propose a
new effective and accurate method Qmh L[g]. Integrals of the form (1) cannot be
approximated by QmL [g] due to singularity at x = 0, and method Qhf [g] is not
accurate for high frequency integrals. Comparison of results produced by both
methods Qhf [g] and QmLh [g] confirmed the efficiency of the proposed method.
In future work the proposed method can be extended to the integrals having
oscillatory kernel with singularities.
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