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Abstract— Wireless sensor networks (WSN) has been a 

prominent topic for the past decade. WSN consist of multiple 
sensor nodes, which collect and convey data to the base station(s). 
Sensor nodes are expected to run on batteries, and it makes energy 
the scarce resource for sensor nodes. The energy expenditure of a 
sensor node mainly depends on data transmission, which is 
exponentially affected by transmission distance. Consequently, if 
sensor nodes forward their data to the base station directly, distant 
sensor nodes will exhaust quickly. On contrary, minimization of 
transmission distance for each sensor node, i.e., each node 
transmits its data to the closest sensor node on its path to the base 
station, depletes the energy of sensor nodes that are closer to the 
base station fast.  As a result, the flow balance in the network must 
be optimized. In this study, we investigate the effect of 
optimization of the base station location along with flow balance 
optimization. For this purpose, we compare five different 
localization methods on different topologies; three statically 
located linear programming approaches, a dynamically located 
nonlinear programming approach and a heuristic-based hybrid 
approach. Experimental results indicate that lifetime 
improvement of up to 42% is possible in selected scenarios.  
 

 
Index Terms—lifetime optimization, linear programming, 

wireless sensor networks.  
 

I. INTRODUCTION 
IRELESS SENSOR NETWORKS (WSN) has gained 
much attention recently. The emergence of cheap 

devices and the functionalities it provides make WSN an 
interesting field of topic. Even though military and/or 
emergency applications were the main causes in its appearance, 
it has become a common concept in academia, commercial 
market, and even among hobbyists [1]. Anyone can deploy their 
WSN at their homes, offices, etc. as of today [2]. Moreover, 
insights on the Internet of Things and urban computing raise 
interest in WSN [3]. 

A typical WSN consists of multiple sensor nodes and at least 
one sink called the base station. A sensor node is responsible 
for two actions: i) sensing, which is collecting data using its 
sensor. Any type of sensors may be used for data collection, e.g. 
humidity, air temperature, pressure, acoustic, magnetic, etc. 
ii) conveying its data to the base station. For this purpose, 
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A possible drawback of WSN is that the number of sensors 
in a WSN topology could increase up to hundreds or thousands, 
and all sensor nodes are assumed to work on a battery, hence, 
they have limited and nonrenewable energy. Since energy is the 
scarce resource for a sensor node, the energy expenditure of the 
nodes must be optimized. Even though energy dissipation for 
sensing may be application or sensor type-specific; in general, 
a sensor node uses most of its energy for data transmission. As 
a result, minimization of the amount of energy used for data 
transmission helps to maximize the lifetime of the WSN. 

Energy usage for data transmission is highly bound to the 
distance between communicating parties. Amount of energy 
required to transmit one-bit data increases exponentially as 
distance increases. However, selecting the closest sensor node 
as the relay causes the sensor nodes that are closer to the base 
station to exhaust all of its energy very quickly. Since we define 
the lifetime as the period until the first sensor node depletes its 
whole energy, the lifetime would be short in such a case. As a 
result, flows between sensor nodes must be optimized in such a 
way that it does not exhaust the nodes that are either close to or 
far from the base station. 

Given the sensor node and base station locations, optimizing 
the flows between parties has been a resolved issue [4]. Since 
distance is the key factor for energy expenditure, there have 
been several studies for optimizing sensor node locations in 
literature [5, 6, 7]. The mentioned studies proposed different 
methods for sensor node deployment that increases lifetime and 
ensures coverage. 

In this study, we look at the problem from a different angle. 
The main purpose of this study is to investigate the effects of 
using different base station localization methods over the 
lifetime in the WSN domain. For this purpose, we utilize the 
model proposed in [4] and compare five base station 
localization methods, in terms of their effect on the lifetime of 
the network and their execution times, with empirical results.  

The rest of the paper is organized as follows. The literature 
review is given in Section 2. The model is described in 
Section 3, and experimental results are given in Section 4. We 
conclude the paper with concluding remarks in Section 5. 
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sensor nodes may directly communicate with the base station, 
or they may choose to use other sensor nodes as a relay. 
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II. RELATED WORK 
In this section, related work about base station location 

optimization in literature is given.  
Oyman and Ersoy [8] proposed an iterative search for finding 

the optimal number and locations of base stations. After the 
sensor nodes are deployed, their model initiates with one base 
station. At each iteration, they apply the k-means clustering 
algorithm to locate the base stations at the center of each cluster 
and estimate a lifetime value accordingly. Iterations continue to 
increase the number of the base station until the estimated 
lifetime reaches a predetermined threshold value. Kim et al. [9] 
proposed a mixed-integer linear programming model for 
optimal multi-sink positioning and routing. In their model, 
sensor nodes are located into a topology first, and then some of 
them are selected as base stations during the optimization 
phase. Experiment results indicate improvement in lifetime and 
fairness when compared to multi-sink aware Minimum Depth 
Tree model. 

In 2010, Güney et al. [10] proposed mixed-integer linear 
programming models for optimal base station location and 
routing in heterogeneous WSN for two separate objectives: 
minimizing energy expenditure, and minimizing financial cost. 
Also, they provided such techniques to find lower bounds. Later 
in 2012, the authors proposed a hybrid approach utilizing 
mixed-integer linear programming and Tabu Search to search 
for the optimal base station location [11]. In both models, 
sensor nodes and the base station(s) can only be located at 
predefined locations. Random deployment of the sensor nodes 
is also investigated in the latter study [11]. Different heuristic 
approaches also exist. Tripathi et al. [12] proposed a heuristic 
approach for finding the optimal base station location in two-
tiered WSN. In their approach, they begin from the centroid of 
the nodes, assign link weights with respect to distances, and 
deploy the base station to the weighted average of the sensor 
nodes. Experimental results indicate that their proposed 
algorithm improves lifetime, yet the authors state that it does 
not find the theoretically optimal location. Fouad et al. [13] 
proposed a Particle Swarm Optimization (PSO) based heuristic 
method for finding the optimal base station location. According 
to experimental results, their method improves the performance 
of both topology construction and maintenance phases, and 
hence improves lifetime. Pan et al. [14] proposed a compact 
PSO method to find the optimal base station location. This 
method approximates the genetic algorithm and conventional 
PSO in terms of obtained results, but it requires less resources. 

The work by Tung and Binh [15] is the most similar to this 
study. They use the same mathematical model, and they also 
compare five different base station localization methods. Their 
proposed method, integrated greedy method, improves the 
lifetime by 10%. Similarly, a recent study by Saha et al. [16] 
shows that their probabilistic localization method performs 
well. 

The mobility of the base stations has attracted interest 
recently. Cayirpunar et al. [17] analyzed possible mobility 
patterns for multiple base stations, whereas Cicek et al. [18] 
provided mathematical formulations for flying base stations. 

III. MODEL 
In this section, we describe the employed energy model and 

base station localization methods separately, and in the 
specified order, in the following subsections. 
 

A. Energy Model 
In this study, we utilize the linear programming (LP) based 

energy model described in [4]. The model takes positions of the 
sensor nodes and the base station as input and optimizes the 
flow balance to maximize the lifetime of the network 
accordingly.  

The energy model used in this study is as follows: 
 

Maximize t 
 
Subject to: 
 

𝑓"# ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝐴 1  
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𝐸A6,"# + 𝑓":𝐸A6,": ≤ 𝑒𝑛𝑒𝑟𝑔𝑦", ∀𝑖 ∈ 𝑉 4  

 
 In this model, the objective is to maximize lifetime, t, with 
respect to the constraints given with equations (1) through (4). 
We would like to mention that, B represents the base station, 
whereas V and A represent all sensor nodes and all edges (links) 
in the network, respectively. Moreover, data transmission 
(flow) from node i to node j is shown with fij. Among the 
constraints, Eq. (1) indicates that all flows must be non-
negative. Flow in the network can either be positive, indicating 
that flow between sensor nodes exists; or zero, indicating that 
there is no flow between sensor nodes. In Eq. (2), we introduce 
additional constraints on flow. According to these additional 
constraints: i) base station cannot transmit data, ii) a sensor 
node cannot transmit data to itself, and iii) a sensor node cannot 
transmit data to another sensor node that is located further than 
dmax meters, which is 82.92 m. Flow balance at each sensor node 
is guaranteed with Eq. (3), that is, each node must transmit all 
the data they receive and produce. In this constraint, si 
represents the amount of data produced by each sensor node at 
a unit time interval (1 bps). Finally, Eq. (4) is a constraint for 
energy. The total amount of energy used by each sensor node 
cannot exceed its initial energy. In this model, sensor nodes are 
only responsible for collecting and conveying data. Complex 
tasks such as data aggregation or compression is not a concern. 
Also, the energy used for sensing and/or sleeping is considered 
as negligible. As a result, they only use energy for transmitting 
and receiving information. Energy used for receiving one bit of 
information is constant, Erx = ρ, and equal to the electronics 
energy (50nJ). On the other hand, sensor nodes spend a variable 
amount of energy to transmit one bit of information, which is 
calculated with respect to the distance of the receiving node or 
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base station: Etx,ij = ρ + ε dij
α. In this formula, ε represents the 

B. Base Station Localization Methods 
In this study, we compare five different base station 

localization methods. Three of these methods employ static 
approaches, meaning that the base station is localized initially, 
and the network's lifetime is maximized with the given energy 
model. Another method dynamically searches for the best 
location for the base station, that maximizes the lifetime. The 
remaining approach is hybrid, and it utilizes a heuristic search 
algorithm, namely Particle Swarm Optimization (PSO). All the 
methods are described in detail as follows. 

center: This is a static approach. The base station is simply 
located at the center of the area of interest, e.g. at the center of 
a circular topology. This approach is common in the literature. 

mean: This is, again, a static approach. The base station is 
located at the mean values of x- and y-coordinates of the sensor 
nodes. Intuitively, this method seems to be a simple yet 
effective improvement to localization at the center.  

random: Third and the final static approach. The base station 
is located at a random location inside the area of interest. A 
possible scenario for this model could be deploying both sensor 
nodes and the base station into a danger zone by throwing them 
from an airplane. In this scenario, the base station could be 
designed as a more powerful computing device with large 
enough energy, and a GSM connector. 

dynamic: This method introduces two new variables to the 
model: x- and y-coordinates (position) of the base station. 
Rather than statically locating the base station, this method 
searches for the optimal location for the base station that 
maximizes the network's lifetime. The introduction of these two 
variables and their effects on the energy model (dynamically 
calculating the Euclidean distance between each sensor node 
and the base station) make it more complex, hence, the energy 
model becomes a nonlinear programming (NLP) model. Unlike 
an LP model, an NLP model may get stuck in a local optimum 
and cannot ensure global optima. Moreover, an NLP model may 
require more time to solve than an LP model. Nonetheless, it 
may still be valuable in this domain and it is worth testing it as 
a possible method.  

hybrid: This hybrid approach utilizes PSO, a heuristic search 
algorithm. PSO algorithm consists of several particles 
searching for the best solution, i.e. x- and y-coordinates 
(position) of the base station that maximizes the fitness value, 
the lifetime. Each particle represents a possible solution. 
Initially, the particles are initialized randomly. Then, the fitness 
value for each particle is calculated. The fitness value is 
calculated as similar to the static approaches: the particle 
provides the position of the base station, and the LP energy 
model maximizes the lifetime. Once fitness calculation for each 
particle is complete, the particle having the best fitness value is 

determined and all particles begin searching towards the best 
particle. Fitness evaluation, the best particle's determination, 
and updating each particle's new search location is called a 
generation in PSO. The algorithm continues until a termination 
criterion, i.e. completing a predefined number of generations, is 
met. Finally, the overall best particle through all generations is 
reported as the solution of the algorithm. 

To eliminate any bias, all base station localization methods 
are tested on equal terms; that is, all sensor nodes are initially 
deployed randomly in a circular topology, then the base station 
is localized separately for each method on this network, and 
finally, the energy model maximized the network's lifetime. As 
a result, any deviation in the lifetime solely depends on the 
location of the base station, which is only affected by the 
localization method. 

IV. EXPERIMENTAL RESULTS 
We use GAMS [19] to solve our proposed model. We use the 

energy model described in the previous section, with each 
sensor node having an initial energy of 2W. However, we would 
like to note that, initial energy and energy dissipation for 
transmitting and/or receiving data is hardware and application-
specific; hence may vary in different hardware or applications. 
As a result, obtained lifetime results should not be evaluated as 
exact timespan in seconds, but should be considered as a ratio. 
Hence, we give normalized result values, i.e., all lifetime values 
are divided by the maximum lifetime value of the same context. 

The hybrid method employs the PSO algorithm, which 
requires the determination of algorithm-specific and execution 
parameters. Algorithm specific parameters are obtained 
from [13], as follows: inertia weight w is 0.8, cognitive 
coefficient c1 and social coefficient c2 are 2, and the random 
numbers r1 and r2 are selected in the range [0,1]. The two 
execution parameters, population size and the number of 
generations, are selected as 5 and 12, respectively. 

A sample topology depicting base station locations in all five 
localization methods are given in Fig. 1. 

 
Fig.1. A sample topology with 25 sensor nodes, depicting base station 

locations for all localization methods. 
 
In our experiments, we randomly deployed sensor nodes 

inside a circular topology having a radius of 100 m. We used 
varying numbers of sensors (25, 50, 100, 250 and 500) to 
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amplifier energy (100pJ), dij represents the Euclidean distance 
between sensor nodes i and j, and α represents path loss 
exponent. The Etx,iB value in Eq. (4) is a special case of Etx,ij, 
where the receiver is not a sensor node but the base station. 
Finally, the path loss exponent, α, is considered low (α=2) on a 
free space propagation topology without any obstacles, but it 
increases (α=4) as propagation gets harder due to physical 
obstacles, such as rock, building, etc. 
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simulate sparse and dense topologies. Also, we chose two 
different values for path loss exponent, α = 2 and α = 4, to 
simulate free space and multi-path propagation, respectively. 
Finally, to eliminate possible bias due to randomness, we share 
the average results of 1000 different sensor node deployments 
when the number of sensors is 25, 50 or 100. Topologies having 
250 or 500 sensor nodes are averaged over a smaller number of 
deployments (100 and 30, respectively) due to their larger 
execution time (see Table 1). 

Experimental results for the two path loss exponents, α = 2 
and α = 4, are given in Fig. 2 and Fig. 3, respectively. In both 
figures, normalized lifetime values are plotted as the number of 
nodes increases. From the figures, it is clear that random 
deployment of the base station is a bad choice, for all cases. On 
free space propagation, where α = 2, base station localization is 
more important for sparse topologies than it is for dense 
topologies. The dynamic method improves the lifetime for up 
to 7.1% in a sparse topology (where the number of sensor nodes 
is 25). On the other hand, as the network gets denser, the 
lifetime of all methods (except for the random method) 
approximates to the maximum. The hybrid method, contrary to 
its good lifetime improvement performance, is not a viable 
option due to its huge execution time. In topologies where 
multi-path fading is a concern, α = 4, the huge execution time 
of the hybrid method may be negligible due to its fruitful 
solutions. In sparse topologies with multi-path fading, the 
hybrid method improves lifetime by 27.5%, 27.0% and 4.4% as 
compared to the center, mean and dynamic methods, 
respectively. Lifetime improvement becomes even more critical 
as the topology gets denser. The hybrid method improves 
lifetime by 42.6% as compared to the center and mean methods, 
and by 15.1% as compared to the dynamic method when the 
network consists of 500 sensor nodes. 

 
Fig.2. Normalized lifetime values with varying numbers of sensor nodes on 

free-space propagation topology (α=2). 

 

 
Fig.3. Normalized lifetime values with varying numbers of sensor nodes on 

multi-path propagation topology (α=4). 
 
We also provide average execution time for solving a problem 

in each model in Table 1. All static approaches require the same 
and minimum amount of the time, in all cases. The hybrid 
method requires roughly 60 times more amount of time as 
compared to the static methods, in all cases. This outcome is 
natural due to its implementation and the selected execution 
parameters (population size and the number of generations). In 
its comparison to the dynamic method, it requires more time in 
all cases, yet, the difference is negligible for dense topologies 
with multi-path fading. The dynamic method requires a similar 
amount of time to those of static methods for sparse and 
medium-sized topologies (up to 100 nodes). For dense 
topologies, however, its execution time increases massively. 

Our findings on the lifetime and the execution times are 
summarized as follows. 

• The base station should not be located randomly, if 
possible.  

• On free space propagation, where α = 2, the dynamic 
method can be executed in less than 5 seconds for sparse and 
medium-sized topologies, and it improves lifetime. For dense 
topologies, however, the base station can simply be located at 
the mean or the center. 

• On multi-path propagation, where α = 4, the hybrid 
method dominates all other methods in terms of improving 
lifetime. For sparse topologies, the dynamic method may still 
be a viable option considering its low execution time (under 5 
seconds). For dense topologies, however, the hybrid method 
performs better and its usage is crucial. 
 

 

 
TABLE I 

AVERAGE EXECUTION TIMES OF SOLVING A PROBLEM FOR EACH TYPE OF TOPOLOGY AND LOCALIZATION METHOD (IN SECONDS). 
 α = 2 α = 4 

# of nodes 25 50 100 250 500 25 50 100 250 500 
center 0.55 0.57 0.75 3.92 40.14 0.52 0.57 0.66 3.38 37.59 
mean 0.54 0.56 0.75 3.94 40.89 0.53 0.56 0.66 3.27 34.60 

random 0.54 0.55 0.75 3.96 41.79 0.52 0.56 0.67 3.42 32.91 
dynamic 0.59 0.81 3.55 91.53 992.60 0.56 0.87 4.12 185.30 2114.65 
hybrid 30.55 32.13 46.45 235.68 2517.39 29.96 31.54 44.11 197.82 2120.15 
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V. CONCLUSION 
Energy is the scarce resource of sensor nodes in wireless 

sensor networks (WSN), and it directly affects the lifetime of 
the network. The main factor in energy depletion is data 
transmission, which is highly dependent on transmission 
distance. Linear programming models have been employed so 
far to balance flows in a given WSN topology, to prevent 
premature energy depletion of a specific sensor node. These 
models work well, however, most of these studies assign a static 
location for the base station, e.g. the center. In this study, we 
analyze the effects of employing different base station 
localization methods on lifetime.  

We evaluate five localization methods on different types of 
topologies: sparse or dense topologies on a free space channel 
or multi-path propagation. We compare the obtained results in 
terms of their effects on the lifetime and their execution time. 
Experimental results show that the dynamic method provides 
viable solutions in sparse and medium-sized topologies. It 
improves lifetime in a considerable amount of time (in under 5 
seconds). In dense topologies, however, it becomes 
incompetent. Dense topologies having free space channel 
should employ the center or mean methods, whereas, the use of 
the hybrid method is crucial in dense topologies with multi-path 
propagation. 

The main advantages and disadvantages of these methods are 
as follows. Among these methods, the random and center 
methods require no additional information and calculation of 
the base station location is imminent. The remaining methods 
require the knowledge of the sensor node locations, which may 
be hard or even impossible to acquire in a danger zone, e.g. 
natural disaster site. Moreover, the calculation time may be 
considered as a disadvantage, especially for the dynamic and 
hybrid methods. The most outstanding advantage is lifetime 
improvement, which is up to 42% in specific scenarios. 
Additionally, these methodologies are directly related, hence 
applicable to Internet of Things (IoT) studies, as WSN is a 
specialized form of it. Briefly, WSN may be considered as a 
more controlled and compact version of IoT, as IoT may consist 
of heterogeneous and geographically distributed devices. 

Possible future work for this study could be making a similar 
analysis for networks having multiple base stations. Also, the 
effects of these methods on topologies combining different 
propagation channels could be investigated, e.g. α = 2 for 
communication between some nodes, and α = 4 for others. 
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