https://communications.science.ankara.edu.tr

# RECOGNITION OF COMPLEX POLYNOMIAL BÉZIER CURVES UNDER SIMILARITY TRANSFORMATIONS 

İdris ÖREN and Muhsin İNCESU ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, Faculty of Science, Karadeniz Technical University, 61080,Trabzon, TURKEY.<br>${ }^{2}$ Education Faculty, Muş Alparslan University, 49100, Muş, TURKEY


#### Abstract

In this paper, similarity groups in the complex plane $\mathbb{C}$, polynomial curves and complex Bézier curves in $\mathbb{C}$ are introduced. Global similarity invariants of polynomial curves and complex Bézier curves in $\mathbb{C}$ are given in terms of complex functions. The problem of similarity of two polynomial curves in $\mathbb{C}$ are solved. Moreover, in case two polynomial curve (complex Bézier curve) are similar for the similarity group, a general form of all similarity transformations, carrying one curve into the other curve, are obtained.


## 1. Introduction

The invariance is a very important tool in areas data registration, object recognition, computer aided design applications. In computer aided applications, the iterative closest point(ICP) algorithm is an accurate and efficient method for rigid registration problem and curve matching. The aim of registration or object recognition is to find the corresponding relationship between two point sets(or two curves) and compute the transformation which aligns two point sets(or two curves)(see $[1-4]$ ) Generally, Euclidean invariant features are used in above mentioned methods and a representation of polynomial curve or Bézier curve in the complex plane $\mathbb{C}$ are a useful method to investigate of their global invariants. (see [5, 7-10, 16] ) In 16], taking customary rational Bézier curves in complex plane, complex rational Bézier curves are investigated. For Bézier curves, rational curves and implicit algebraic curves, detecting whether two plane curves are similar by an orientation preserving similarity transformation is important. (see $11-19$ ).

[^0]This paper presents the similarity conditions of two point sets and the similarity conditions of two polynomial paths(two complex Bézier curve) in the complex plane $\mathbb{C}$.

The polynomial curve $Z(u), W(u), u \in[0,1]$ in defined in terms of monomial complex control points $p_{j}, q_{j} \in \mathbb{C}$ as
$Z(u)=\sum_{j=0}^{m} p_{j} u^{j}$ and $W(u)=\sum_{j=0}^{m} p_{j} u^{j}$, resp.
The complex Bézier curves $Z(u), W(u), u \in[0,1]$ in defined in terms of degree $m$ Bernstein polynomials $B_{j}^{m}(u)$ and complex control points $z_{j}, w_{j} \in \mathbb{C}$ as
$Z(u)=\sum_{j=0}^{m} z_{j} B_{j}^{m}(u)$ and $W(u)=\sum_{j=0}^{m} w_{j} B_{j}^{m}(u)$.
Let $G M\left(\mathbb{C}^{*}\right)$ be the group of all similarities of $\mathbb{C}, G M^{+}\left(\mathbb{C}^{*}\right)$ be the group of all orientation-preserving similarities of $\mathbb{C}$. The group of all linear similarities of $\mathbb{C}$ is denoted by $M\left(\mathbb{C}^{*}\right)$. The group of all orientation-preserving linear similarities of $\mathbb{C}$ is denoted by $M^{+}\left(\mathbb{C}^{*}\right)$.

The problem of similarity of two polynomial curves(or two complex Bézier curves) $Z(u), W(u)$ for the groups $G M\left(\mathbb{C}^{*}\right)$ and $G M^{+}\left(\mathbb{C}^{*}\right)$ is reduced to the problem of similarity of two polynomial curves(or two complex Bézier curves) $Z(u), W(u)$ for the groups $M\left(\mathbb{C}^{*}\right)$ and $M^{+}\left(\mathbb{C}^{*}\right)$, resp. Moreover, since a complex Bézier curve can be define in terms of complex control points, these problems of similarity of two complex Bézier curves is reduced to the problem of similarity of sets of complex control points for these groups. Similarly, same problem can given for polynomial curves. Otherwise, the problem of similarity of sets of complex control points for the above mentioned groups can be applied to the point set rigid registration problem.

For the groups of Euclidean motions $M(n)$ and Euclidean rigid motions $M^{+}(n)$ in the $n$-dimensional Euclidean space, the problems of equivalence two Bézier curves of degree $m$ and its global invariants are investigated in [15]. In [9], similar problem in this paper is solved for the groups $M(2)$ and $M^{+}(2)$. For orientation-preserving similarity group $\operatorname{Sim}^{+}(n)$ in similarity geometry, local differential invariants, existence and rigidity theorems for a regular curve are obtained in 20. For only similarity group $\operatorname{Sim}(2)$ and linear similarity group $\operatorname{LSim}(2)$, the problems of equivalence two Bézier curves of degree $m$ are investigated in [18]. For orthogonal group $O(2)$, special orthogonal group $O^{+}(2)$, linear similarity group $\operatorname{LSim}(2)$ and orientation linear similarity group $\operatorname{LSim}^{+}(2)$, the conditions of the global G-equivalence of two regular paths are given in 10,21 .

So the paper contains solutions of problems of global similarity of complex Bézier curves and polynomial curves for the above mentioned groups without using differential invariants of a complex Bézier curve and a polynomial curve. In order to make this paper more self contained from a mathematical points of view, the structure of the present paper is the following. In Sect.2, relations between complex plane and two-dimensional Euclidean space and definitions of similarity groups in terms of complex numbers are introduced. In Sect.3, global invariants of a polynomial curve and a complex Bézier curve are given. For above mentioned similarity groups, the problem of similarity of two complex Bézier curves are given. In Sect.4,
conditions of similarity for two $m$-uples complex number sets and a general form of all similarity transformations, carrying one set into the other set, are obtained. In Sect.5, conditions of similarity for two complex Bézier curves and a general form of all similarity transformations, carrying one curve into the other curve, are obtained.

## 2. Similarity groups in the complex plane

Let $\mathbb{C}$ be the field of complex numbers. The product of two complex numbers $z_{1}$ and $z_{2}$ has the form

$$
\begin{equation*}
z_{1} z_{2}=\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right) \tag{2.1}
\end{equation*}
$$

Consider the complex number $z=a+i b$ in the matrix form $z=\binom{a}{b}$.
Then, the equality (2.1) has the following form

$$
z_{1} z_{2}=\binom{a_{1} a_{2}-b_{1} b_{2}}{a_{1} b_{2}+a_{2} b_{1}}=\left(\begin{array}{cc}
a_{1} & -b_{1}  \tag{2.2}\\
b_{1} & a_{1}
\end{array}\right)\binom{a_{2}}{b_{2}} .
$$

Here we denote by $L_{z}$ the matrix $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ for all $z=a+i b \in \mathbb{C}$. Then $L_{z}: \mathbb{C} \rightarrow \mathbb{C}$ is a mapping and the equality 2.2 has the form, $\forall z_{1}, z_{2} \in \mathbb{C}$,

$$
\begin{equation*}
z_{1} z_{2}=L_{z_{1}} z_{2} \tag{2.3}
\end{equation*}
$$

The field $\mathbb{C}$ can be used to represents $\mathbb{R}^{2}$ with the inner product $<z_{1}, z_{2}>=$ $a_{1} a_{2}+b_{1} b_{2}, \forall z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2} \in \mathbb{C}$. Here, the quadratic form on $\mathbb{R}^{2}$ is $\left\langle z_{1}, z_{1}\right\rangle=\left|z_{1}\right|^{2}, \forall z_{1} \in \mathbb{C}$. The conjugate of $z_{1}$, denoted by $\overline{z_{1}}$, is defined as $\overline{z_{1}}=a_{1}-i b_{1}$. Clearly, from definition we have $z_{1}+\overline{z_{1}}=2 a_{1}, z_{1} \overline{z_{1}}=\left|z_{1}\right|^{2},\left|z_{1}\right|=\left|\overline{z_{1}}\right|$ and $<\overline{z_{1}}, \overline{z_{2}}>=<z_{1}, z_{2}>$. For $\left|z_{1}\right| \neq 0$, the inverse of $z_{1}$ is defined as $\frac{1}{z_{1}}=\frac{\overline{z_{1}}}{\left|z_{1}\right|^{2}}$. Moreover, let $\Lambda=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then we have $\overline{z_{1}}=\Lambda z_{1}$.

For $z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2}$, the determinant of matrix $\left(\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right)$ will be denoted by $\left[z_{1} z_{2}\right]$.

Then we put $\operatorname{Re}\left(\overline{z_{1}} z_{2}\right)=<z_{1}, z_{2}>$ and $\operatorname{Im}\left(\overline{z_{1}} z_{2}\right)=\left[z_{1} z_{2}\right]$.
For $z_{1}, z_{2} \in \mathbb{C}$, in the case $z_{1} \overline{z_{1}} \neq 0$, the element $\frac{z_{2}}{z_{1}}$ exists and the following equality hold:

$$
L_{\frac{z_{2}}{z_{1}}}=\left(\begin{array}{cc}
\operatorname{Re}\left(\frac{z_{2}}{z_{1}}\right) & -\operatorname{Im}\left(\frac{z_{2}}{z_{1}}\right)  \tag{2.4}\\
\operatorname{Im}\left(\frac{z_{2}}{z_{1}}\right) & \operatorname{Re}\left(\frac{z_{2}}{z_{1}}\right)
\end{array}\right) .
$$

Put $\mathbb{C}^{*}=\{z \in \mathbb{C} \mid z \neq 0\}, S\left(\mathbb{C}^{*}\right)=\{z \in \mathbb{C} \mid z \bar{z}=1\}, M^{+}\left(\mathbb{C}^{*}\right)=\left\{L_{z} \mid z \in \mathbb{C}^{*}\right\}$ and $M S\left(\mathbb{C}^{*}\right)=\left\{L_{z} \mid z \in S\left(\mathbb{C}^{*}\right)\right\}$.

It is easy to see that $\mathbb{C}^{*}$ is a group and $S\left(\mathbb{C}^{*}\right)$ is a subgroup of $\mathbb{C}^{*}$.

We denote the set $M^{-}\left(\mathbb{C}^{*}\right)=\left\{L_{z} \Lambda \left\lvert\, \Lambda=\left(\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right)\right., L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)\right\}$.
Let $M^{+}\left(\mathbb{C}^{*}\right)$ and $M^{-}\left(\mathbb{C}^{*}\right)$ be sets generated by all orientation-preserving and orientation-reversing linear similarities of $\mathbb{R}^{2}$, resp. Clearly, $M^{+}\left(\mathbb{C}^{*}\right) \cap M^{-}\left(\mathbb{C}^{*}\right)=$ $\varnothing$. The set $M\left(\mathbb{C}^{*}\right)$ of all linear similarities of $\mathbb{R}^{2}$ can be written in the form $M\left(\mathbb{C}^{*}\right)=$ $M^{+}\left(\mathbb{C}^{*}\right) \cup M^{-}\left(\mathbb{C}^{*}\right)$.

The following theorem is known from [23, p.229].
Theorem 1. (i) $G M^{+}\left(\mathbb{C}^{*}\right)=\left\{F: \mathbb{C} \rightarrow \mathbb{C} \mid F(v)=L_{z} v+b, L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)\right.$, $\forall v \in \mathbb{C}, b \in \mathbb{C}\}$.
(ii) $G M^{-}\left(\mathbb{C}^{*}\right)=\left\{F: \mathbb{C} \rightarrow \mathbb{C} \mid F(v)=\left(L_{z} \Lambda\right) v+b, L_{z} \in M^{+}\left(\mathbb{C}^{*}\right), \forall v \in \mathbb{C}, b \in \mathbb{C}\right\}$.
(iii) $G M\left(\mathbb{C}^{*}\right)=G M^{+}\left(\mathbb{C}^{*}\right) \cup G M^{+}\left(\mathbb{C}^{*}\right)$.

Remark 1. For the essential notations of the group of all similarity transformations and the group of all orientation-preserving similarity transformations, see some references [10, 18, 20].

## 3. On invariant functions of an complex Bézier curve and the THEOREM ON REDUCTION

Let $G$ be a group $G M^{+}\left(\mathbb{C}^{*}\right)$ or $G M\left(\mathbb{C}^{*}\right)$.
Definition 1. A function $f\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ of complex numbers $z_{0}, z_{1}, \ldots, z_{m}$ in $\mathbb{C}$ will be called $G$-invariant if $f\left(F z_{0}, F z_{1}, \ldots, F z_{m}\right)=f\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ for all $F \in G$.

Example 1. Let $z_{0}, z_{1}$ be two complex number and $z_{0} \neq 0$. The function $f\left(z_{0}, z_{1}\right)=$ $\operatorname{Re}\left(\frac{z_{1}}{z_{0}}\right)$ is $M\left(\mathbb{C}^{*}\right)$-invariant. Really, let $L_{z} \in M\left(\mathbb{C}^{*}\right)$. Then by the equality $\sqrt{2.3}$, we have $L_{z} w=z w, \forall z, w \in \mathbb{C}$. We consider $L_{z} \frac{z_{1}}{z_{0}}$. Then, we obtain $L_{z} \frac{z_{1}}{z_{0}}=\frac{z \mathcal{L I}_{1}}{z z_{0}}=\frac{z_{1}}{z_{0}}$. Hence, we obtain that $\operatorname{Re}\left(L_{z} \frac{z_{1}}{z_{0}}\right)=\operatorname{Re}\left(\frac{z_{1}}{z_{0}}\right)$. So, $\operatorname{Re}\left(\frac{z_{1}}{z_{0}}\right)$ is $M\left(\mathbb{C}^{*}\right)$-invariant.

Similarly, the function $f\left(z_{0}, z_{1}\right)=\operatorname{Im}\left(\frac{z_{1}}{z_{0}}\right)$ is $M^{+}\left(\mathbb{C}^{*}\right)$-invariant.
Example 2. Let $z_{0}, z_{1}, z_{2}$ be three complex number and $z_{0} \neq z_{1}$. The function $f\left(z_{0}, z_{1}, z_{2}\right)=\operatorname{Re}\left(\frac{z_{2}-z_{0}}{z_{1}-z_{0}}\right)$ is $G M\left(\mathbb{C}^{*}\right)$-invariant. Really, let $F \in G M^{+}\left(\mathbb{C}^{*}\right)$. Then by Theorem 1, we have $F(v)=L_{z} v+w, \forall z \in \mathbb{C}^{*}$ and $v, w \in \mathbb{C}$. We consider $\frac{F\left(z_{2}-z_{0}\right)}{F\left(z_{1}-z_{0}\right)}$. Using above the equality, we have $\left.\frac{F\left(z_{2}-z_{0}\right)}{F\left(z_{1}-z_{0}\right)}=\frac{L_{z}\left(z_{2}-z_{0}\right)}{L_{z}\left(z_{1}-z_{0}\right.}\right)=\frac{z_{2}-z_{0}}{z_{1}-z_{0}}$. By above example, we obtain $\operatorname{Re}\left(\frac{z_{2}-z_{0}}{z_{1}-z_{0}}\right)$ is $G M\left(\mathbb{C}^{*}\right)$-invariant. Similarly, the function $f\left(z_{0}, z_{1}, z_{2}\right)=\operatorname{Im}\left(\frac{z_{2}-z_{0}}{z_{1}-z_{0}}\right)$ is $G M^{+}\left(\mathbb{C}^{*}\right)$-invariant.

A Bézier curve in $\mathbb{C}$ is a parametric curve(or $U$-path, where $U=[0,1]$ ) whose complex points $Z(u)$ are defined by $Z(u)=\sum_{j=0}^{m} z_{j} B_{j}^{m}(u)$, where $z_{j} \in \mathbb{C}$ and $B_{j}^{m}(u)$ is the Bernstein basis polynomials.

A polynomial curve in $\mathbb{C}$ is a parametric curve (or $U$-path, where $U=[0,1]$ ) whose complex points $Z(u)$ are defined by $Z(u)=\sum_{j=0}^{m} p_{j}(u)$, where $p_{j} \in \mathbb{C}$ is monomial complex control points( for more details, see [7,8, 16, 22])

By lemma in 22, p.166], all polynomial curves can be represented in Bézier curve form.

Definition 2. A G-invariant function $f\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ of control complex points $z_{0}, z_{1}, \ldots, z_{m}$ of a Bézier curve $Z(u)=\sum_{j=0}^{m} z_{j} B_{j}^{m}(u)$ will be called a control $G$ invariant of $Z(u)$. A $G$-invariant function $f\left(p_{0}, p_{1}, \ldots, p_{m}\right)$ of monomial control complex points $p_{0}, p_{1}, \ldots, p_{m}$ of a polynomial curve $Z(u)=\sum_{j=0}^{m} p_{j} u^{j}$ will be called a monomial $G$-invariant of $Z(u)$.

Now we define similarity of two Bézier curves of degree $m$ and similarity of two $m$-uples of complex points in $\mathbb{C}$.

Definition 3. Bézier curves $Z(u)$ and $W(u)$ in $\mathbb{C}$ will be called $G$-similar if there exists $F \in G$ such that $W(u)=F Z(u)$ for all $u \in[0,1]$.
Definition 4. m-uples $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ of complex numbers in $\mathbb{C}$ are called $G$-similar if there is $F \in G$ such that $w_{j}=F z_{j}$ for all $j=1,2, \ldots, m$.

Since Bézier curves can be introduced by control points, the following two theorems means that the problem of $G$-similarity of Bézier curves reduce to the problem of $G$-similarity of two $m$-uples complex numbers.
Remark 2. Throughout paper, we consider the curves in forms $Z(u)=\sum_{j=0}^{m} z_{j} B_{j}^{m}(u)=$ $\sum_{j=0}^{m} p_{j} u^{j}$ and $W(u)=\sum_{j=0}^{m} w_{j} B_{j}^{m}(u)=\sum_{j=0}^{m} q_{j} u^{j}$ in $\mathbb{C}$ of degree $m$, where $m \geq 1$. Moreover, $Z^{\prime}(u)$ and $W^{\prime}(u)$ are their first derivatives.

Theorem 2. Let $Z(u)$ and $W(u)$ be Bézier curves. Then the following statements are equivalent:
(i) $Z(u)$ and $W(u)$ are $G M^{+}\left(\mathbb{C}^{*}\right)$-similar.
(ii) $Z^{\prime}(u)$ and $W^{\prime}(u)$ are $M^{+}\left(\mathbb{C}^{*}\right)$-similar.
(iii) m-uples $\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$ and $\left\{w_{0}, w_{1}, \ldots, w_{m}\right\}$ are $G M^{+}\left(\mathbb{C}^{*}\right)$-similar.
(iv) m-uples $\left\{z_{1}-z_{0}, z_{2}-z_{0}, \ldots, z_{m}-z_{0}\right\}$ and $\left\{w_{1}-w_{0}, w_{2}-w_{0}, \ldots, w_{m}-w_{0}\right\}$ are $M^{+}\left(\mathbb{C}^{*}\right)$-similar.
(v) $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$ are $M^{+}\left(\mathbb{C}^{*}\right)$-similar.

Proof. Proof is similar to proof of Theorem 2 in [15] and Theorem 4.1 in 9$].$
Theorem 3. Let $Z(u)$ and $W(u)$ be Bézier curves. Then the following statements are equivalent:
(i) $Z(u)$ and $W(u)$ are $G M\left(\mathbb{C}^{*}\right)$-similar.
(ii) $Z^{\prime}(u)$ and $W^{\prime}(u)$ are $M\left(\mathbb{C}^{*}\right)$-similar.
(iii) m-uples $\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$ and $\left\{w_{0}, w_{1}, \ldots, w_{m}\right\}$ are $G M\left(\mathbb{C}^{*}\right)$-similar.
(iv) m-uples $\left\{z_{1}-z_{0}, z_{2}-z_{0}, \ldots, z_{m}-z_{0}\right\}$ and $\left\{w_{1}-w_{0}, w_{2}-w_{0}, \ldots, w_{m}-w_{0}\right\}$ are $M\left(\mathbb{C}^{*}\right)$-similar.
(v) $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ and $\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}$ are $M\left(\mathbb{C}^{*}\right)$-similar.

Proof. Proof is similar to proof of Theorem 1 in 15 and Theorem 4.1 in 9 .
Remark 3.
(i) Let $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ in $\mathbb{C}$ be two $m$-uples such that $z_{k} \neq 0$ and $w_{k}=0$. Then $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ are not $G$ similar. In the case $z_{k}=w_{k}=0$, we obtain the problem of $G$ - similarity of these $m-1$-uples $\left\{z_{1}, z_{2}, \ldots, z_{k-1}, z_{k+1}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{k-1}\right.$, $\left.w_{k+1}, \ldots, w_{m}\right\}$, Therefore, we put $z_{k} \neq 0$ and $w_{k} \neq 0$ for $k \in\{1,2, \ldots, m\}$.
(ii) Let $z_{1}$ and $w_{1}$ in $\mathbb{C}$ be two complex number such that $z_{1} \neq 0$ and $w_{1} \neq 0$. Then there always is an element $L_{z}$ in $G$ such that $w_{1}=L_{z} z_{1}$. Therefore, we put $m>1$ for $m$-uples $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ in $\mathbb{C}$.

## 4. Conditions of similarity for two m-uple complex number sets

Theorem 4. Let $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be two $m$-uples in $\mathbb{C}$ such that $z_{k} \neq 0$ and $w_{k} \neq 0$, where $k \in\{1,2, \ldots, m\}$. Then these $m$-uples are $M^{+}\left(\mathbb{C}^{*}\right)$ similar if and only if

$$
\left\{\begin{array}{l}
\operatorname{Re}\left(\frac{z_{i}}{z_{k}}\right)=\operatorname{Re}\left(\frac{w_{i}}{w_{k}}\right)  \tag{4.1}\\
\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)=\operatorname{Im}\left(\frac{w_{i}}{w_{k}}\right)
\end{array}\right.
$$

for all $i=1,2, \ldots, k-1, k+1, \ldots, m$.
Furthermore, there is the unique $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ such that $w_{i}=L_{z} z_{i}$ for all $i=$ $1,2, \ldots, m$, where the matrix $L_{z}$ can be written as

$$
L_{z}=\left(\begin{array}{cc}
\operatorname{Re}\left(\frac{w_{k}}{z_{k}}\right) & -\operatorname{Im}\left(\frac{w_{k}}{z_{k}}\right)  \tag{4.2}\\
\operatorname{Im}\left(\frac{w_{k}}{z_{k}}\right) & \operatorname{Re}\left(\frac{w_{k}}{z_{k}}\right)
\end{array}\right) .
$$

Proof. $\Rightarrow$ : Assume that $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ in $\mathbb{C}$ are $M^{+}\left(\mathbb{C}^{*}\right)$ )similar. Since the functions $\operatorname{Re}\left(\frac{z_{i}}{z_{k}}\right)$ and $\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)$ are $\left.M^{+}\left(\mathbb{C}^{*}\right)\right)$-invariant, we obtain that the equalities (4.1) hold.
$\Leftarrow$ : Assume that the equalities (4.1) hold. By the equality 4.1), we have

$$
\begin{equation*}
\frac{z_{i}}{z_{k}}=\frac{w_{i}}{w_{k}} \tag{4.3}
\end{equation*}
$$

for all $i=1,2, \ldots, k-1, k+1, \ldots, m$. Consider the element $z=\frac{w_{k}}{z_{k}} \in \mathbb{C}$. By the equality 4.3, we have $w_{i}=w_{k} \frac{w_{i}}{w_{k}}=w_{k} \frac{z_{i}}{z_{k}}=\frac{w_{k}}{z_{k}} z_{i}$ for all $i=1,2, \ldots, k-1, k+$ $1, \ldots, m$. So, by the equality (2.3), we have $w_{i}=L_{z} z_{i}$ for all $i=1,2, \ldots, k-1, k+$ $1, \ldots, m$. Clearly $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$. For uniqueness, assume that $L_{v} \in M^{+}\left(\mathbb{C}^{*}\right)$ exists such that $w_{i}=L_{v} z_{i}$ for all $i=1,2, \ldots, m$. Then, by this equality and the equality (2.3), we have $v \in M^{+}\left(\mathbb{C}^{*}\right)$ such that $w_{i}=v z_{i}$ for all $i=1,2, \ldots, m$. Since $z_{k} \neq 0$, the equality $w_{k}=v z_{k}$ implies that $v=\frac{w_{k}}{z_{k}}=z$. Hence the uniqueness of $L_{z}$ is proved. Moreover, using the equality (2.3), the element $z=\frac{w_{k}}{z_{k}}$ can be written as the matrix $L_{z}$, where $L_{z}$ has the form (4.2).

Denote by $\operatorname{rank}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ the rank of the m-uple $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ in $\mathbb{C}$. It is easy to see that $\operatorname{rank}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ is $M\left(\mathbb{C}^{*}\right)$-invariant.

Theorem 5. Let $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be two $m$-uples in $\mathbb{C}$ such that $z_{k} \neq 0, w_{k} \neq 0$ for $k \in\{1,2, \ldots, m\}$ and $\operatorname{rank}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=\operatorname{rank}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=$ 1. Then these $m$-uples are $M\left(\mathbb{C}^{*}\right)$-similar if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z_{i}}{z_{k}}\right)=\operatorname{Re}\left(\frac{w_{i}}{w_{k}}\right) \tag{4.4}
\end{equation*}
$$

for all $i=1,2, \ldots, k-1, k+1, \ldots, m$.
Furthermore, there is the unique $L_{z} \in M\left(\mathbb{C}^{*}\right)$ such that $w_{i}=L_{z} z_{i}$ for all $i=$ $1,2, \ldots, m$, where the matrix $L_{z}$ can be written as the form 4.2.

Proof. $\Rightarrow$ : The proof is similar to the proof of Theorem 4
$\Leftarrow$ : Assume that the equality (4.4) holds.
Since $\operatorname{rank}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=\operatorname{rank}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=1$, we have $\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)=\operatorname{Im}\left(\frac{w_{i}}{w_{k}}\right)=$ 0 for all $i=1,2, \ldots, k-1, k+1, \ldots, m$. Hence the equalities 4.1) in Theorem 4 hold. Using Theorem 4, we have $w_{i}=L_{z} z_{i}$ for all $i=1,2, \ldots, m$ and the matrix $L_{z}$ has the form 4.2.

Let $m$-uple $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ in $\mathbb{C}$. In the case $\operatorname{rank}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=2$, denote by
ind $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ the smallest of $p, 1 \leq p \leq m$, such that $z_{p} \neq \lambda z_{k}$ for all $\lambda \in \mathbb{R}$ and $z_{k} \neq 0$.

Theorem 6. Let $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be two $m$-uples in $\mathbb{C}$ such that $z_{k} \neq 0, w_{k} \neq 0, \operatorname{rank}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=\operatorname{rank}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=2$ and ind $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=\operatorname{ind}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=l$ for $k, l \in\{1,2, \ldots, m\}$ and $k \neq l$. Then these $m$-uples are $M\left(\mathbb{C}^{*}\right)$-similar if and only if

$$
\left\{\begin{align*}
\operatorname{Re}\left(\frac{z_{i}}{z_{k}}\right) & =\operatorname{Re}\left(\frac{w_{i}}{w_{k}}\right)  \tag{4.5}\\
{\left[\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)\right]^{2} } & =\left[\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)\right]^{2} \\
\frac{\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)}{\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)} & =\frac{\operatorname{Im}\left(\frac{w_{i}}{w_{k}}\right)}{\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)}
\end{align*}\right.
$$

for all $i=1,2, \ldots, m, i \neq k$.
Furthermore, there is the unique $L_{z} \in M\left(\mathbb{C}^{*}\right)$ such that $w_{i}=L_{z} z_{i}$ for all $i=$ $1,2, \ldots, m$. Then there exist two statements:
(i) In the case $\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)=\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)$, the element $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ and it can be represented by (4.2).
(ii) In the case $\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)=-\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)$, the element $L_{z} \Lambda \in M^{-}\left(\mathbb{C}^{*}\right)$ and it can be written as

$$
L_{z} \Lambda=\left(\begin{array}{cc}
\operatorname{Re}\left(\frac{w_{k}}{z_{k}}\right) & -\operatorname{Im}\left(\frac{w_{k}}{z_{k}}\right)  \tag{4.6}\\
\operatorname{Im}\left(\frac{w_{k}}{z_{k}}\right) & \operatorname{Re}\left(\frac{w_{k}}{z_{k}}\right)
\end{array}\right) .
$$

Proof. $\Rightarrow$ : Let $m$-uples $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ are $M\left(\mathbb{C}^{*}\right)$-similar. Since the functions $\operatorname{Re}\left(\frac{z_{i}}{z_{k}}\right),\left[\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)\right]^{2}$ and $\frac{\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)}{\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)}$ are $M\left(\mathbb{C}^{*}\right)$-invariant, we obtain that the equalities (4.6).
$\Leftarrow$ : Assume that the equality 4.6 holds. Using the conditions $z_{k} \neq 0, w_{k} \neq 0$ and $\operatorname{ind}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=\operatorname{ind}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=l$ for $k, l \in\{1,2, \ldots, m\}, k \neq$ $l$ and the equality $\left[\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)\right]^{2}=\left[\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)\right]^{2}$, we have the equality $\left[\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)\right]=$ $\left[\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)\right]$ or $\left[\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)\right]=-\left[\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)\right]$. Moreover, since $\operatorname{rank}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=$ $\operatorname{rank}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=2$ and
ind $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}=$ ind $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}=l$, we have $\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right) \neq 0$.
(i) Assume that $\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)=\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)$. Then, using this equality and the equality $\frac{\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)}{\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)}=\frac{\operatorname{Im}\left(\frac{w_{i}}{w_{k}}\right)}{\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)}$, we have $\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)=\operatorname{Im}\left(\frac{w_{i}}{w_{k}}\right)$ for all $i \neq k$. So the equalities (4.1) hold. Then by Theorem 4, there is the unique $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ such that $w_{i}=L_{z} z_{i}$ for all $i=1,2, \ldots, m$. The element $L_{z}$ has the form (4.2).
(ii) Assume that $\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)=-\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)$. Then, using this equality and the equality $\frac{\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)}{\operatorname{Im}\left(\frac{z_{l}}{z_{k}}\right)}=\frac{\operatorname{Im}\left(\frac{w_{k}}{w_{k}}\right)}{\operatorname{Im}\left(\frac{w_{l}}{w_{k}}\right)}$, we have $\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)=-\operatorname{Im}\left(\frac{w_{i}}{w_{k}}\right)$ for all $i \neq k$. Hence, we obtain $\operatorname{Im}\left(\frac{z_{i}}{z_{k}}\right)=-\operatorname{Im}\left(\frac{\overline{z_{i}}}{\overline{z_{k}}}\right)$. Then by this equality and the equality $\operatorname{Re}\left(\frac{z_{i}}{z_{k}}\right)=\operatorname{Re}\left(\frac{\overline{z_{i}}}{\overline{z_{k}}}\right)$, we have $\operatorname{Re}\left(\frac{w_{i}}{w_{k}}\right)=\operatorname{Re}\left(\frac{\overline{z_{i}}}{\overline{z k}}\right)$ and $\operatorname{Im}\left(\frac{w_{i}}{w_{k}}\right)=\operatorname{Im}\left(\frac{\overline{z_{i}}}{\overline{z_{k}}}\right)$. In this case, by Theorem 4, there is the unique $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ such that $w_{i}=L_{z} \overline{z_{i}}=L_{z}\left(\Lambda z_{i}\right)=\left(L_{z} \Lambda\right) z_{i}$ for all $i=1,2, \ldots, m$. Then the element $L_{z} \Lambda$ has the form 4.6).

## 5. Conditions of similarity for two complex Bézier curves and its APPLICATIONS

Using Theorem 2 and Theorem 4, the following corollary obtain.
Corollary 1. Let $Z(u)=\sum_{j=0}^{m} p_{j} u^{j}$ and $W(u)=\sum_{j=0}^{m} q_{j} u^{j}$ be two polynomial curves in $\mathbb{C}$ of degree $m>1$. Then $Z(u)$ and $W(u)$ are $G M^{+}\left(C^{*}\right)$-similar if and only if

$$
\left\{\begin{array}{l}
\operatorname{Re}\left(\frac{p_{i}}{p_{m}}\right)=\operatorname{Re}\left(\frac{q_{i}}{q_{m}}\right)  \tag{5.1}\\
\operatorname{Im}\left(\frac{p_{i}}{p_{m}}\right)=\operatorname{Im}\left(\frac{q_{i}}{q_{m}}\right)
\end{array}\right.
$$

for all $i=1,2, \ldots, m-1$.
Furthermore, there is the unique $F \in G M^{+}\left(\mathbb{C}^{*}\right)$ such that $q_{i}=F p_{i}=L_{z} p_{i}+b$ for all $i=0,1,2, \ldots, m$, where the matrix $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ and the constant $b \in \mathbb{C}$ can
be written as

$$
L_{z}=\left(\begin{array}{cc}
\operatorname{Re}\left(\frac{q_{m}}{p_{m}}\right) & -\operatorname{Im}\left(\frac{q_{m}}{p_{m}}\right)  \tag{5.2}\\
\operatorname{Im}\left(\frac{q_{m}}{p_{m}}\right) & \operatorname{Re}\left(\frac{q_{m}}{p_{m}}\right)
\end{array}\right)
$$

and

$$
\begin{equation*}
b=q_{0}-L_{z} p_{0} \tag{5.3}
\end{equation*}
$$

Example 3. Consider two polynomial curves $Z(u)=\left(2+2 u, 3-8 u+11 u^{2}\right)$ and $W(u)=\left(-10+44 u-55 u^{2}, 20-6 u+22 u^{2}\right)$ with complex monomial control points $p_{0}=2+3 i, p_{1}=2-8 i, p_{2}=11 i$ and $q_{0}=-10+20 i, q_{1}=44-6 i, q_{2}=-55+22 i$ in $\mathbb{C}$, resp. It is easy to see that the equalities in (5.1) hold for the curves $Z(u)$ and $W(u)$. Then by Theorem 1, $Z(u)$ and $W(u)$ are $G M^{+}\left(C^{*}\right)$-similar and $L_{z}=2+5 i$ and $b=1+4 i$.

Using Theorem 3 and Theorem 6, the following corollary obtain.
Corollary 2. Let $Z(u)=\sum_{j=0}^{m} p_{j} u^{j}$ and $W(u)=\sum_{j=0}^{m} q_{j} u^{j}$ be two polynomial curves in $\mathbb{C}$ of degree $m>1$. Let Then $Z(u)$ and $W(u)$ are $G M\left(C^{*}\right)$-similar if and only if

$$
\left\{\begin{align*}
\operatorname{Re}\left(\frac{p_{i}}{p_{m}}\right) & =\operatorname{Re}\left(\frac{q_{i}}{q_{m}}\right)  \tag{5.4}\\
{\left[\operatorname{Im}\left(\frac{p_{l}}{p_{m}}\right)\right]^{2} } & =\left[\operatorname{Im}\left(\frac{q_{l}}{q_{m}}\right)\right]^{2} \\
\frac{\operatorname{Im}\left(\frac{p_{j}}{p_{m}}\right)}{\operatorname{Im}\left(\frac{p_{l}}{p_{m}}\right)} & =\frac{\operatorname{Im}\left(\frac{q_{j}}{q_{m}}\right)}{\operatorname{Im}\left(\frac{q_{l}}{q_{m}}\right)}
\end{align*}\right.
$$

for all $i=1,2, \ldots, m-1$ and for all $j=1,2, \ldots, l-1, l+1, \ldots, m-1$, where ind $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}=\operatorname{ind}\left\{q_{1}, q_{2}, \ldots, q_{m}\right\}=l$ for $l \in\{1,2, \ldots, m-1\}$.
Furthermore, there is the unique $F \in G M\left(\mathbb{C}^{*}\right)$ such that $q_{i}=F p_{i}$ for all $i=$ $0,1,2, \ldots, m$. There are the following two cases:
(i) In the case $\operatorname{Im}\left(\frac{p_{l}}{p_{m}}\right)=\operatorname{Im}\left(\frac{q_{l}}{q_{m}}\right)$, $F$ has the form $F p_{i}=L_{z} p_{i}+b_{1}$ for all $i=0,1,2, \ldots, m$, where the element $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ and the constant $b_{1} \in \mathbb{C}$ can be written as (5.2) and (5.3), resp.
(ii) In the case $\operatorname{Im}\left(\frac{p_{l}}{p_{m}}\right)=-\operatorname{Im}\left(\frac{q_{l}}{q_{m}}\right), F$ has the form $F p_{i}=L_{z} \Lambda p_{i}+b_{2}$ for all $i=0,1,2, \ldots, m$, where the element $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ and and the constant $b_{2} \in \mathbb{C}$ can be written as

$$
L_{z}=\left(\begin{array}{cc}
\operatorname{Re}\left(\frac{q_{m}}{p_{m}}\right) & -\operatorname{Im}\left(\frac{q_{m}}{p_{m}}\right)  \tag{5.5}\\
\operatorname{Im}\left(\frac{q_{m}}{\overline{p_{m}}}\right) & \operatorname{Re}\left(\frac{q_{m}}{p_{m}}\right)
\end{array}\right)
$$

and

$$
\begin{equation*}
b_{2}=q_{0}-L_{z} \Lambda p_{0} \tag{5.6}
\end{equation*}
$$

Example 4. Consider two polynomial curves $Z(u)=\left(2+2 u, 3-8 u+11 u^{2}\right)$ and $W(u)=\left(20-36 u+55 u^{2}, 8+26 u-22 u^{2}\right)$ with complex monomial control points
$p_{0}=2+3 i, p_{1}=2-8 i, p_{2}=11 i$ and $q_{0}=20+8 i, q_{1}=-36+26 i, q_{2}=55-22 i$ in $\mathbb{C}$, resp. It is easy to see that the equalities in 5.4) hold for the curves $Z(u)$ and $W(u)$. Then by Theorem 2, $Z(u)$ and $W(u)$ are $G M\left(C^{*}\right)$-similar and $L_{z}=2+5 i$ and $b=1+4 i$. But $Z(u)$ and $W(u)$ are not $G M^{+}\left(C^{*}\right)$-similar.

Using Theorem 2 and Theorem 4, the following corollary obtain.
Corollary 3. Let $Z(u)=\sum_{j=0}^{m} z_{j} B_{j}^{m}$ and $W(u)=\sum_{j=0}^{m} w_{j} B_{j}^{m}$ be two Bézier curves in $\mathbb{C}$ of degree $m>1$ such that $z_{m}-z_{0} \neq 0$ and $w_{m}-w_{0} \neq 0$. Then $Z(u)$ and $W(u)$ are $G M^{+}\left(C^{*}\right)$-similar if and only if

$$
\left\{\begin{align*}
\operatorname{Re}\left(\frac{z_{i}-z_{0}}{z_{m}-z_{0}}\right) & =\operatorname{Re}\left(\frac{w_{i}-w_{0}}{w_{m}-w_{0}}\right)  \tag{5.7}\\
\operatorname{Im}\left(\frac{z_{i}-z_{0}}{z_{m}-z_{0}}\right) & =\operatorname{Im}\left(\frac{w_{i}-w_{0}}{w_{m}-w_{0}}\right)
\end{align*}\right.
$$

for all $i=1,2, \ldots, m-1$.
Furthermore, there is the unique $F \in G M^{+}\left(\mathbb{C}^{*}\right)$ such that $w_{i}=F z_{i}=L_{z} z_{i}+b$ for all $i=0,1,2, \ldots, m$, where the matrix $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ and the constant $b \in \mathbb{C}$ can be written as

$$
L_{z}=\left(\begin{array}{cc}
\operatorname{Re}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right) & -\operatorname{Im}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right)  \tag{5.8}\\
\operatorname{Im}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right) & \operatorname{Re}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right)
\end{array}\right)
$$

and

$$
\begin{equation*}
b=w_{0}-L_{z} z_{0} . \tag{5.9}
\end{equation*}
$$

Example 5. Consider two complex Bézier curves $Z(u)=\sum_{j=0}^{2} z_{j} B_{j}^{m}$ and $W(u)=$ $\sum_{j=0}^{2} w_{j} B_{j}^{m}$ with complex control points $z_{0}=2+3 i, z_{1}=3-i, z_{2}=4+6 i$ and $w_{0}=-10+20 i, w_{1}=12+17 i, w_{2}=-21+36 i$ in $\mathbb{C}$, resp. It is easy to see that the equalities in 5.7) hold for the curves $Z(u)$ and $W(u)$. Then by Theorem 3, $Z(u)$ and $W(u)$ are $G M^{+}\left(C^{*}\right)$-similar and $L_{z}=2+5 i$ and $b=1+4 i$.

Using Theorem 3 and Theorem 6, the following corollary obtain.
Corollary 4. Let $Z(u)=\sum_{j=0}^{m} z_{j} B_{j}^{m}$ and $W(u)=\sum_{j=0}^{m} w_{j} B_{j}^{m}$ be two Bézier curves in $\mathbb{C}$ of degree $m>1$ such that $z_{m}-z_{0} \neq 0$ and $w_{m}-w_{0} \neq 0$. Let Then $Z(u)$ and $W(u)$ are $G M\left(C^{*}\right)$-similar if and only if

$$
\left\{\begin{align*}
\operatorname{Re}\left(\frac{z_{i}-z_{0}}{z_{m}-z_{0}}\right) & =\operatorname{Re}\left(\frac{w_{i}-w_{0}}{w_{m}-w_{0}}\right)  \tag{5.10}\\
{\left[\operatorname{Im}\left(\frac{z_{l}-z_{0}}{z_{m}-z_{0}}\right)\right]^{2} } & =\left[\operatorname{Im}\left(\frac{w_{l}-w_{0}}{w_{m}-w_{0}}\right)\right]^{2} \\
\frac{\operatorname{Im}\left(\frac{z_{j}-z_{0}}{z_{m}-z_{0}}\right)}{\operatorname{Im}\left(\frac{z_{l}-z_{0}}{z_{m}-z_{0}}\right)} & =\frac{\operatorname{Im}\left(\frac{w_{j}-w_{0}}{w_{m}-w_{0}}\right)}{\operatorname{Im}\left(\frac{w_{l}-w_{0}}{w_{m}-w_{0}}\right)}
\end{align*}\right.
$$

for all $i=1,2, \ldots, m-1$ and for all $j=1,2, \ldots, l-1, l+1, \ldots, m-1$, where $\operatorname{ind}\left\{z_{1}-z_{0}, z_{2}-z_{0}, \ldots, z_{m}-z_{0}\right\}=\operatorname{ind}\left\{w_{1}-w_{0}, w_{2}-w_{0}, \ldots, w_{m}-w_{0}\right\}=l$ for
$l \in\{1,2, \ldots, m-1\}$.
Furthermore, there is the unique $F \in G M\left(\mathbb{C}^{*}\right)$ such that $w_{i}=F z_{i}$ for all $i=$ $0,1,2, \ldots, m$. There are the following two cases:
(i) In the case $\operatorname{Im}\left(\frac{z_{l}-z_{0}}{z_{m}-z_{0}}\right)=\operatorname{Im}\left(\frac{w_{l}-w_{0}}{w_{m}-w_{0}}\right)$, $F$ has the form $F z_{i}=L_{z} z_{i}+b_{1}$ for all $i=0,1,2, \ldots, m$, where the element $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ and the constant $b_{1} \in \mathbb{C}$ can be written as (5.8) and (5.9), resp.
(ii) In the case $\operatorname{Im}\left(\frac{z_{l}-z_{0}}{z_{m}-z_{0}}\right)=-\operatorname{Im}\left(\frac{w_{l}-w_{0}}{w_{m}-w_{0}}\right)$, $F$ has the form $F z_{i}=L_{z} \Lambda z_{i}+b_{2}$ for all $i=0,1,2, \ldots, m$, where the element $L_{z} \in M^{+}\left(\mathbb{C}^{*}\right)$ and and the constant $b_{2} \in \mathbb{C}$ can be written as

$$
L_{z}=\left(\begin{array}{cc}
\operatorname{Re}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right) & -\operatorname{Im}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right)  \tag{5.11}\\
\operatorname{Im}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right) & \operatorname{Re}\left(\frac{w_{m}-w_{0}}{z_{m}-z_{0}}\right)
\end{array}\right)
$$

and

$$
\begin{equation*}
b_{2}=w_{0}-L_{z} \Lambda z_{0} \tag{5.12}
\end{equation*}
$$

Acknowledgements. The authors are very grateful to the reviewers for helpful comments and valuable suggestions.

## References

[1] Zhang, C., Du, S., Liu, J.,Li, Y., Xue,J., Liu, Y., Robust iterative closest point algorithm with bounded rotation angle for 2D registration, Neurocomputing, 195(2016),172-180.
[2] Besl, P. J., McKay, N. D., A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2) (1992), 239-256.
[3] Du, S., Zheng, N., Ying, S., Liu, J., Affine iterative closest point algorithm for point set registration, Pattern Recognition Letters, 31(2010),791-799.
[4] Chen, H., Zhang, X., Du, S., Wu, Z., Zheng, N., A Correntropy-based affine iterative closest point algorithm for robust point set registration, IEEE/CAA J. Autom. Sin., 6 (4) (2019), 981-991.
[5] Weiss, I., Geometric invariants and object recognition, J. Math. Imaging Vision, 10 (3) (1993), 201-231.
[6] Sanchez-Reyes, J., Complex rational Bézier curves, Comput. Aided Geom. Design, 26(8) (2009), 865-876.
[7] Tsianos, K. I., Goldman, R., Bézier and B-spline curves with knots in the complex plane, Fractals, 19(1) (2011), 67-86.
[8] Ait-Haddou, R., Herzog, W., Nomura, T., Complex Bézier curves and the geometry of polygons, Comput. Aided Geom. Design, 27(7) (2010), 525-537.
[9] Ören, İ., On the control invariants of planar Bézier curves for the groups $\mathrm{M}(2)$ and $\mathrm{SM}(2)$, Turk. J. Math. Comput. Sci.,10 (2018), 74-81.
[10] Khadjiev, D., Ören, İ., Pekșen,Ö., Global invariants of paths and curves for the group of all linear similarities in the two-dimensional Euclidean space, Int. J. Geom. Methods Mod. Phys., 15(6)(2018), 1-28.
[11] Alcazar, J. G., Hermoso, C., Muntingh, G., Detecting similarity of rational plane curves, J. Comput. Appl. Math., 269 (2014), 1-13.
[12] Alcazar, J. G., Hermoso, C,, Muntingh, G., Similarity detection of rational space curves, J. Symbolic Comput., 85 (2018), 4-24.
[13] Alcazar, J. G., Gema, M. Diaz-Toca, Hermoso, C., On the problem of detecting when two implicit plane algebraic curves are similar, Internat. J. Algebra Comput, 29 (5) (2019),775793.
[14] Hauer, M., Jüttler, B., Detecting affine equivalences of planar rational curves, EuroCG 2016, Lugano, Switzerland, March 30-April 1, 2016.
[15] Ören, İ., Equivalence conditions of two Bézier curves in the Euclidean geometry, Iran J Sci Technol Trans Sci, 42(3) (2016),1563-1577.
[16] Reyes, J. S., Detecting symmetries in polynomial Bézier curves, J. Comput. Appl. Math., 288 (2015), 274-283.
[17] Mozo-Fernandez, J., Munuera, C., Recognition of polynomial plane curves under affine transformations, $A A E C C, 13$ (2002), 121-136.
[18] Gürsoy, O., İncesu, ., LS(2)-Equivalence conditions of control points and application to planar Bézier curves, New Trends in Mathematical Science, 3 (2017), 70-84.
[19] Bez, H.E., Generalized invariant-geometry conditions for the rational Bézier paths, Int J Comput Math, 87 (2010), 793-811 .
[20] Encheva, R. P., Georgiev, G. H., Similar Frenet curves, Result. Math, 55 (2009), 359-372.
[21] Khadjiev, D., Ören, İ., Global invariants of paths and curves for the group of orthogonal transformations in the two-dimensional Euclidean space, An. Ştiint. Univ. "Ovidius" Constanţa Ser. Mat., 27(2) (2019), 37-65.
[22] Marsh, D., Applied Geometry For Computer Graphics and CAD, Springer-Verlag, London, 1999.
[23] Berger, M., Geometry I, Springer-Verlag, Berlin, Heidelberg, 1987.


[^0]:    2020 Mathematics Subject Classification. Primary 51M05; Secondary 53A55.
    Keywords and phrases. Bézier curve,. invariant, similarity.
    oren@ktu.edu.tr-Corresponding author; m.incesu@alparslan.edu.tr
    (D) 0000-0003-2716-3945; 0000-0003-2515-9627.

