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ABSTRACT. In this paper, similarity groups in the complex plane C, polyno-
mial curves and complex Bézier curves in C are introduced. Global similarity
invariants of polynomial curves and complex Bézier curves in C are given in
terms of complex functions. The problem of similarity of two polynomial curves
in C are solved. Moreover, in case two polynomial curve (complex Bézier curve)
are similar for the similarity group, a general form of all similarity transfor-
mations, carrying one curve into the other curve, are obtained.

1. INTRODUCTION

The invariance is a very important tool in areas data registration, object recogni-
tion, computer aided design applications. In computer aided applications, the iter-
ative closest point(ICP) algorithm is an accurate and efficient method for rigid reg-
istration problem and curve matching. The aim of registration or object recognition
is to find the corresponding relationship between two point sets(or two curves) and
compute the transformation which aligns two point sets(or two curves)(see [1H4])
Generally, Euclidean invariant features are used in above mentioned methods and
a representation of polynomial curve or Bézier curve in the complex plane C are
a useful method to investigate of their global invariants. (see [5,/7H10L/16]) In [16],
taking customary rational Bézier curves in complex plane, complex rational Bézier
curves are investigated. For Bézier curves, rational curves and implicit algebraic
curves, detecting whether two plane curves are similar by an orientation preserving
similarity transformation is important. (see [11419]).
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1378 i. OREN, M. INCESU

This paper presents the similarity conditions of two point sets and the similarity
conditions of two polynomial paths(two complex Bézier curve) in the complex plane
C.

The polynomial curve Z(u), W(u),u € [0,1] in defined in terms of monomial
complex control points p;,q; € C as

Z(u) =30, pju’ and W(u) = o pju’, resp.

The complex Bézier curves Z(u), W(u),u € [0,1] in defined in terms of degree
m Bernstein polynomials B;”(u) and complex control points z;, w; € C as

Z(u) = Y7 2B (u) and W (u) = ZT:O w; B (u).

Let GM(C*) be the group of all similarities of C, GMT(C*) be the group of all
orientation-preserving similarities of C. The group of all linear similarities of C is
denoted by M (C*). The group of all orientation-preserving linear similarities of C
is denoted by M (C*).

The problem of similarity of two polynomial curves(or two complex Bézier curves)
Z(u), W (u) for the groups GM(C*) and GM*(C*) is reduced to the problem of
similarity of two polynomial curves(or two complex Bézier curves) Z(u), W (u) for
the groups M (C*) and M+ (C*), resp. Moreover, since a complex Bézier curve can
be define in terms of complex control points, these problems of similarity of two
complex Bézier curves is reduced to the problem of similarity of sets of complex
control points for these groups. Similarly, same problem can given for polynomial
curves. Otherwise, the problem of similarity of sets of complex control points for the
above mentioned groups can be applied to the point set rigid registration problem.

For the groups of Euclidean motions M (n) and Euclidean rigid motions M ¥ (n) in
the n-dimensional Euclidean space, the problems of equivalence two Bézier curves of
degree m and its global invariants are investigated in [15]. In [9], similar problem in
this paper is solved for the groups M (2) and M T (2). For orientation-preserving sim-
ilarity group Sim™(n) in similarity geometry, local differential invariants, existence
and rigidity theorems for a regular curve are obtained in |20]. For only similarity
group Sim(2) and linear similarity group LSim(2), the problems of equivalence
two Bézier curves of degree m are investigated in [18]. For orthogonal group O(2),
special orthogonal group O (2), linear similarity group LSim(2) and orientation
linear similarity group LSim™(2), the conditions of the global G-equivalence of two
regular paths are given in [10}21].

So the paper contains solutions of problems of global similarity of complex Bézier
curves and polynomial curves for the above mentioned groups without using dif-
ferential invariants of a complex Bézier curve and a polynomial curve. In order
to make this paper more self contained from a mathematical points of view, the
structure of the present paper is the following. In Sect.2, relations between complex
plane and two-dimensional Euclidean space and definitions of similarity groups in
terms of complex numbers are introduced. In Sect.3, global invariants of a polyno-
mial curve and a complex Bézier curve are given. For above mentioned similarity
groups, the problem of similarity of two complex Bézier curves are given. In Sect.4,
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conditions of similarity for two m-uples complex number sets and a general form of
all similarity transformations, carrying one set into the other set, are obtained. In
Sect.5, conditions of similarity for two complex Bézier curves and a general form of
all similarity transformations, carrying one curve into the other curve, are obtained.

2. SIMILARITY GROUPS IN THE COMPLEX PLANE

Let C be the field of complex numbers. The product of two complex numbers z;
and 2y has the form

Z129 = (a1 + ibl)(ag —+ Zbg) = (a1a2 — blbg) +i(albg —+ agbl) (21)

Consider the complex number z = a + b in the matrix form z = (Z)

Then, the equality (2.1) has the following form
aias — b1bs a; —b a
= = . 2.2
e <a1b2 +a2b1> <b1 a1 ) <52> (22)
Z for all z = a + i € C. Then
L, : C — C is a mapping and the equality (2.2]) has the form, Vz;, 25 € C,

Here we denote by L, the matrix

Z1292 = LZIZQ. (23)

The field C can be used to represents R? with the inner product < 2,29 >=
aras + b1ba, V21 = a1 + b1, 20 = as + iby € C. Here, the quadratic form on R?
is < 21,21 >= \zl|2 ,Vz1 € C. The conjugate of z;, denoted by Z7, is defined as

Z1 = a1 —ib;. Clearly, from definition we have 21 +27 = 2a1, 2121 = |21 \2, |z1| = |z1]
and < z1,%Z3 >=< 21,29 >. For |z1] # 0, the inverse of z; is defined as 2—11 = ‘ZZ;F.
1
Moreover, let A = (0 _01) Then we have z17 = Az;.
For z; = ay + iby, 20 = ag + iby, the determinant of matrix (Zl ZQ> will be
1 02

denoted by [z1 z2].

Then we put Re(Z1z2) =< 21,22 > and Im(Z122) = [21 22].

For z1,29 € C, in the case z1Z7 # 0, the element z—f exists and the following
equality hold:

)

Put C* = {z € C|z # 0}, S(C*) = {z € C|zz = 1}, MT(C*) = {L,|z € C*} and
MS(C*) ={L.|z € S(C*)}.
It is easy to see that C* is a group and S(C*) is a subgroup of C*.
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We denote the set M~ (C*) = {LZA|A = <1 _01) ,L, € M*((C*)}.

Let MT(C*) and M~ (C*) be sets generated by all orientation-preserving and
orientation-reversing linear similarities of R?, resp. Clearly, MT(C*)N M~ (C*) =
@. The set M (C*) of all linear similarities of R? can be written in the form M (C*) =
M*(C*)U M~ (C*).

The following theorem is known from [23] p.229].

Theorem 1. (i) GMT(C*) = {F : C — C|F(v) = L,v+b,L, € MT(C*),
Yv e C,b e C}.
(i) GM~(C*) ={F:C—C|F(v) = (L,A)v+b,L, € MT(C*),Yv € C,b € C}.

(iii) GM(C*) = GM™(C*)UGM*(C*).

Remark 1. For the essential notations of the group of all similarity transforma-
tions and the group of all orientation-preserving similarity transformations, see
some references [10,|18,[20].

3. ON INVARIANT FUNCTIONS OF AN COMPLEX BEZIER CURVE AND THE
THEOREM ON REDUCTION

Let G be a group GM T (C*) or GM (C*).

Definition 1. A function f(zo,21,-..,2m) of complex numbers zo, z1, ..., 2m in C
will be called G-invariant if f(Fzo, Fz1,...,Fzm) = (20,21, .., 2m) for all F € G.

Example 1. Let zy, 21 be two complex number and zo # 0. The function f(zo,21) =
Re(2t) is M(C*)-invariant. Really, let L. € M(C*). Then by the equality (2.3)), we
have L,w = zw,Vz,w € C. We consider Lzz—(l). Then, we obtain Lzle] = = ;—(1)

Hence, we obtain that Re(L.Z) = Re(2:). So, Re(Z) is M(C*)-invariant.
Similarly, the function f(z0,21) = Im(Z) is M (C*)-invariant.

Example 2. Let 2y, 21,20 be three complex number and zy # z1. The function
f(z0, 21, 22) = Re(2=22) is GM(C*)-invariant. Really, let F € GM™*(C*). Then

Z1—2Z2

by Theorem we have F(v) = Lyv +w,Vz € C* and v,w € C . We consider

?Ezf:zzg Using above the equality, we have ?EZ:EE; = %fi;;i?) = 220, By
above example, we obtain Re(2=22) is GM (C*)-invariant. Similarly, the function

z21—2
f(z0, 21, 22) = Im (=22 ) is GM“‘E(C*)-invam’ant.

A Bézier curve in C is a parametric curve(or U-path, where U = [0, 1]) whose
complex points Z(u) are defined by Z(u) = 377" 2;B}"(u), where z; € C and
Bj"(u) is the Bernstein basis polynomials.

A polynomial curve in C is a parametric curve (or U-path, where U = [0, 1])
whose complex points Z(u) are defined by Z(u) = 37" p;(u), where p; € C is
monomial complex control points( for more details, see [7},8,|16}22])

By lemma in |22} p.166], all polynomial curves can be represented in Bézier curve
form.
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Definition 2. A G-invariant function f(zo,21,...,2m) of control complex points
20521, - - -y Zm Of a Bézier curve Z(u) = Z;-n:o z; B (u) will be called a control G-
invariant of Z(u). A G-invariant function f(po,p1,...,Pm) of monomial control
complex points po,p1, - - -, Pm of a polynomial curve Z(u) = E;n:o p;u? will be called
a monomial G-invariant of Z(u).

Now we define similarity of two Bézier curves of degree m and similarity of two
m-uples of complex points in C.

Definition 3. Bézier curves Z(u) and W (u) in C will be called G -similar if there
exists ' € G such that W(u) = FZ(u) for all u € [0,1].

Definition 4. m-uples {z1,22,...,2m} and {wi,wa,...,wy,} of complex num-
bers in C are called G-similar if there is F' € G such that w; = Fz; for all
j=1,2...,m.

Since Bézier curves can be introduced by control points, the following two theo-
rems means that the problem of G-similarity of Bézier curves reduce to the problem
of G-similarity of two m-uples complex numbers.

Remark 2 Throughout paper, we consider the curves m forms Z(u) = Z;n:o z; B (u) =
Z;.n:opjuj and W(u) = Z}n:o w; B (u) = ZT:O gju’ in C of degree m, where
m > 1. Moreover, Z'(u) and W'(u) are their first derivatives.

Theorem 2. Let Z(u) and W (u) be Bézier curves. Then the following statements
are equivalent:

(i) Z(u) and W (u) are GM™(C*)-similar.

(i1) Z'(u) and W'(u) are M+(C*)-similar.
(i13) m-uples {20, 21, ..., 2m} and {wo, w1, ..., Wy} are GMT(C*)-similar.
(iv) m-uples {z1 — 20,22 — 20y -+, 2m — 20} and {wy — wg, Wo — Wo, . . . , Wy, — Wo }

are M+ (C*)-similar.
(v) {p1,p2,---,Pm} and {q1,q2,..,qm} are M*(C*)-similar.
Proof. Proof is similar to proof of Theorem 2 in [15] and Theorem 4.1 in [9]. O

Theorem 3. Let Z(u) and W (u) be Bézier curves. Then the following statements
are equivalent:

(1) Z(u) and W(u) are GM (C*)-similar.

(13) Z'(uw) and W'(u) are M(C*)-similar.
(791) m-uples {zo,21,...,2m} and {wo,w1,...,wn} are GM(C*)-similar.
(iv) m-uples {z1 — 20,22 — 20y -+, 2m — 20} and {wy — wg, Wo — Wo, . . . , Wy, — Wo }

are M(C*)-similar.
(v) {p1,p2y--,0m} and {q1,q2, ..., qm} are M(C*)-similar.

Proof. Proof is similar to proof of Theorem 1 in [15] and Theorem 4.1 in [9]. O
Remark 3. (1)
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(1) Let {z1,22,...,2m} and {wy,wa,...,wy,} in C be two m-uples such that
zrp #0 and wgy = 0. Then {z1,22,...,2m} and {wy,wa, ..., wy} are not G-
similar. In the case z, = wg = 0, we obtain the problem of G- similarity of
these m—1-uples {z1, 22, ..., 2Zk—1,2k+1s---s2m} and {wy, wa, ..., wWr_1,
Wkt1, .- -5 W}, Therefore, we put z, # 0 and wy, # 0 fork € {1,2,...,m}.

(13) Let z1 and wy in C be two complex number such that z; # 0 and wy # 0.
Then there always is an element L, in G such that wy = L,z,. Therefore,
we put m > 1 for m-uples {21, 29,...,2m} and {wy,wa,...,wy,} in C.

4. CONDITIONS OF SIMILARITY FOR TWO M-UPLE COMPLEX NUMBER SETS

Theorem 4. Let {z1,22,...,2m} and {wi,ws, ..., wy} be two m-uples in C such
that z, # 0 and wy, # 0, where k € {1,2,...,m}. Then these m-uples are M+ (C*)-
similar if and only if

Re(ZL) = Re(—2)

k ik (4.1)
Im(Z) = Im(=2)

Zk Wi

foralli=1,2,... . k—1,k+1,...,m
Furthermore, there is the unique L, € MT(C*) such that w; = L.z; for all i =

1,2,...,m, where the matriz L, can be written as
Re(“x) —Im( ) )
L — < =y =) ) (4.2)
Im (k) (*k)
Proof. =: Assume that {21, 29,..., 2} and {wy,ws,...,w,} in C are M+ (C*))-

similar. Since the funct1ons Re(Z- ) and Im(Z-) are M *(C*))-invariant, we obtain

that the equalities (4.1]) hold.
<: Assume that the equahtles (4.1) hold. By the equality (4.1]), we have

Zi w;

g = ’wik (4.3)
for all 4 = 1 2,....,k—1,k+1,...,m. Consider the element z = w’“ € C. By the
equality (|4 , we have w; = 71’k k—k =~k 2 for all i = 1, 2 Jk—1k+

1,...,m. So by the equality (2.3 .,we have w; = L 2z foralli=1,2,...,k—1,k+
1,...,m. Clearly L, € M*(C*). For uniqueness, assume that L, € M+ ((C*) exists
such that w; = Lyz; for all ¢ =1,2,...,m. Then, by this equality and the equality
, we have v € M T (C*) such that w; = vz; for alli =1,2,...,m. Since 2z # 0,
the equality wy = vz implies that v = Z’—: = z. Hence the uniqueness of L, is
proved. Moreover, using the equality the element z = Z’—: can be written as
the matrix L,, where L, has the form (4.2 ]

Denote by rank {z1, za, ..., zm} the rank of the m-uple {z1,292,...,2,} in C. It
is easy to see that rank {z1, 22, ..., 2} is M(C*)-invariant.
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Theorem 5. Let {z1,22,...,2m} and {wi,wa, ..., wy} be two m-uples in C such
that zp, #0, wy, # 0 fork € {1,2,...,m} andrank {z1, 22, ..., zm} = rank {wy,wa, ..., wy} =
1. Then these m-uples are M (C*)-similar if and only if
Z; w;
Re(—) = Re(—
e(Zk) 6(wk) (4.4)
foralli=1,2,....k—1,k+1,...,m.
Furthermore, there is the unique L, € M(C*) such that w; = L,z; for all i =
1,2,...,m, where the matriz L, can be written as the form (4.2)).

Proof. =: The proof is similar to the proof of Theorem [4
<: Assume that the equality (4.4) holds.
Since rank {z1, 29, .. ., 2m} = rank {wi,ws, ..., w,} = 1, we have Im(j—;) =1Im(74) =

0foralli=1,2,...,k—1,k+1,...,m. Hence the equalities (4.1) in Theorem
hold. Using Theorem |4, we have w; = L,z; for all i = 1,2,...,m and the matrix

L. has the form (4.2]). O
Let m-uple {z1,22,...,2m,} in C. In the case rank{z1, 2a,...,2m} = 2, denote
by

ind{z1, 22, ..., 2m} the smallest of p, 1 < p < m, such that z, # Az for all A € R
and z # 0.

Theorem 6. Let {z1,22,...,2m} and {wi,wa, ..., Wy} be two m-uples in C such
that z, # 0, wg # 0, rank{z1,22,...,2m} = rank{wi,wa,...,wyn}t = 2 and
ind{z1,22,...,2m} = ind{w1,ws,...,wn} =1 for k,1 € {1,2,...,m} and k # L.
Then these m-uples are M (C*)-similar if and only if

[Im(j}i)f - [Im(wf (145)

foralli=1,2,...,m, i #k.
Furthermore, there is the unique L, € M(C*) such that w; = L,z; for all i =
1,2,...,m. Then there exist two statements:
(i) In the case Im(Z-) = Im(yL), the element L. € M™(C*) and it can be
represented by 1)
(#4) In the case Im(ZL) = —Im(L), the element L.A € M~ (C*) and it can be

written as
Re(Z:) —Im(Z)
LA = (Im(wk’“) Re(x) ) : (4.6)

Zk Zk
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Proof. =: Let m-uples {z1,22,...,2m} and {wy,ws, ..., w,} are M(C*)-similar.

. . 2, K Im(Z%)
Since the functions Re(Z), [Im(i)} and I’m(g)
that the equalities (4.6]).

<: Assume that the equality (4.6) holds. Using the conditions zj # 0, wg # 0
and ind{z1,22,...,2m} = ind{wy,wa,...,wy} =1 for k,1 € {1,2,...,m}, k #

are M (C*)-invariant, we obtain

2 2
[ and the equality {Im(j*,i)} = [Im(;“—i)} , we have the equality {Im(j—i)] =
[Im(l%i)} or [Im(%)} = — {Im(;”—i)] Moreover, since rank{z1,z2,...,2m} =
rank {wy,ws, ..., wy} =2 and
ind{z1,22,...,2m} = ind{wi, wa, ..., wn} =1, we have Im(Z-) # 0.

(i) Assume that Im(ZL) = Im(;t). Then, using this equality and the equality

(4.1) hold. Then by Theorem [l there is the unique L, € MT(C*) such
that w; = L,z; for all i = 1,2,...,m. The element L, has the form (4.2).

; we have Im(£4) = Im(;ot) for all i # k. So the equalities

(¢1) Assume that Im(ZL) = —Im(t). Then, using this equality and the equal-
ity Im(é) = Im(;“—Z)’ we have Im(Z-) = —Im(y;t) for all i # k. Hence,
we obtain Im(j—;) = —Im(j;;). Then by this equality and the equality
Re(Z:) = Re(£), we have Re(jt) = Re(Z) and Im(5:) = Im(£).

In this case, by Theorem [4] there is the unique L, € M+(C*) such that
w; = L,Z; = L,(Az;)) = (L,A)z; for all i = 1,2,...,m. Then the element
LA has the form (4.6).

O

5. CONDITIONS OF SIMILARITY FOR TWO COMPLEX BEZIER CURVES AND ITS
APPLICATIONS

Using Theorem [2] and Theorem [4 the following corollary obtain.

Corollary 1. Let Z(u) = Y7" pju’ and W(u) = Y7 gju? be two polynomial
curves in C of degree m > 1. Then Z(u) and W (u) are GM™(C*)-similar if and
only if

Re(£L) = Re(dL)

I <];’T> I (qu) o
m\— ) =1ml—
Pm dm

foralli=1,2,...,m—1.
Furthermore, there is the unique F € GM™Y(C*) such that q; = Fp; = L,p; + b for
all i = 0,1,2,...,m, where the matriz L, € M+ (C*) and the constant b € C can
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be written as

Re(12) —Im(%x)
— Pm Pm
.= ( Im(E)  Re(4s) ) (5-2)
and
b=qo— L.po. (5.3)

Example 3. Consider two polynomial curves Z(u) = (2 + 2u,3 — 8u + 11u?) and
W (u) = (=10 + 44u — 55u?,20 — 6u + 22u?) with complex monomial control points
po=2+3i,p1 =2 —8i,p2 = 11t and qo = —10 + 204, q; = 44 — 67, g = —55 + 224
in C, resp. It is easy to see that the equalities in hold for the curves Z(u) and
W(u). Then by Theorem[l], Z(u) and W (u) are GM*(C*)-similar and L, = 2+ 5i
and b =1+ 4s.

Using Theorem [3] and Theorem [6] the following corollary obtain.

Corollary 2. Let Z(u) = E;":()pjuj and W(u) = Z;’L:O qju’ be two polynomial
curves in C of degree m > 1. Let Then Z(u) and W (u) are GM (C*)-similar if and
only if

Re(P4) = Re(i)

DPm dm
(2] = [ 1) 5.0
Im(22) _ Im(2)

Im(%) Im(%)
foralli=1,2,...,m—1and for all j =1,2,...,1—1,1+1,...,m — 1, where
ind{p1,p2,.--sPm} =nd{q1,q2,...,qgmn} =1 forl € {1,2,...,m—1}.
Furthermore, there is the unique F € GM(C*) such that ¢; = Fp; for all i =
0,1,2,...,m. There are the following two cases:

(1) In the case Im(%) = Im(%), F has the form Fp; = L,p; + by for all
1=0,1,2,...,m, where the element L, € M*(C*) and the constant by € C

can be written as and , resp.

(1) In the case Im(F-) = —Im(;-), F" has the form Fp; = L.Ap; + by for all
i=0,1,2,...,m, where the element L, € M (C*) and and the constant
by € C can be written as

Re(&m) —Tm(m)
—_ Pm Pm
b= (i) el ) 5
and
by = qo — L. Apo. (5.6)

Example 4. Consider two polynomial curves Z(u) = (2 + 2u,3 — 8u + 11u?) and
W (u) = (20 — 36u + 55u?,8 + 26u — 22u?) with complex monomial control points
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po=2+3i,p1 =2 —8i,ps = 11i and qo = 20+ 8i,q; = —36 + 267, g2 = 55 — 22i in
C, resp. It is easy to see that the equalities in hold for the curves Z(u) and
W(u). Then by Theorem 2, Z(u) and W (u) are GM (C*)-similar and L, = 2+ 51
and b =1+ 4i. But Z(u) and W (u) are not GM™(C*)-similar.

Using Theorem [2| and Theorem 4] the following corollary obtain.

Corollary 3. Let Z(u) = X270, 2;BY" and W(u) = 37" w;BJ" be two Bézier
curves in C of degree m > 1 such that z,, — zo # 0 and wy,, —wo #0 . Then Z(u)
and W (u) are GM*(C*)-similar if and only if

Re( Zi—Zo):Re(wz‘—wo)

Zm — 20 W — W (57)
Im(ZE= 20y = (10

Zm — 20 Wy — Wo

foralli=1,2,...,m—1.

Furthermore, there is the unique F € GM™(C*) such that w; = Fz; = L,z; + b for
all i =0,1,2,...,m, where the matriz L, € M (C*) and the constant b € C can
be written as

_ | Re(fm=22)  —Im(m=32)
b= ( Ity pe(uaus) (58)
and
b= Wo — LzZO~ (59)

Example 5. Consider two complex Bézier curves Z(u) = Z?:o z;B* and W (u) =

Z?:o w; B with complex control points zo = 2+ 3i,21 = 3 — 4,22 = 4 + 6i and
wy = —10420i, wy; = 12+ 175, we = —21+436¢ in C, resp. It is easy to see that the
equalities in hold for the curves Z(u) and W(u). Then by Theorem 3, Z(u)
and W (u) are GM*(C*)-similar and L, =2+ 5i and b =1 + 44.

Using Theorem [3] and Theorem [6] the following corollary obtain.

Corollary 4. Let Z(u) = X270, 2;BY* and W(u) = 37" w;BJ" be two Bézier
curves in C of degree m > 1 such that z, — zo # 0 and w,, — wo # 0. Let Then
Z(u) and W(u) are GM(C*)-similar if and only if

Zi — 20 w; — Wo
Re = Re(————
(Zm_ZO) (wm_wO)
Zl — 20 2 w; — Wo 2
I = [Im(———
{ m(—— ZO)] [ m(— wo)} (5.10)
(=) Im(zt)
Im(2=2)  Im(=0)

foralli=1,2,...,m—1and forall j=1,2,...,1—1,1+1,...,m —1, where
ind{z1 — 20,22 — 20y - -, 2m — 20} = ind{wy — wp,wy — Wp, ..., Wy —wo} =1 for
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lef{l,2,...,m—1}.
Furthermore, there is the unique F € GM(C*) such that w; = Fz; for all i =
0,1,2,...,m. There are the following two cases:

(1) In the case Im(Z=2) = Im(-2=20) F has the form Fz; = L.z; + by

L
Zm —20 Wm —Wo

foralli=0,1,2,...,m, where the element L, € M+ (C*) and the constant

by € C can be written as (5.8)) and (5.9)), resp.
(@) In the case Im(Z-=2) = —Im(==1%), F has the form Fz; = LAz + by

for all i = 0,1,2,...,m, where the element L, € MT(C*) and and the
constant by € C can be written as

L,= Im(w:t:io) Re(w7y:'iguooo) (5'11)
and
bg = Wo — LZAZO. (512)
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