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Abstract. In this paper, similarity groups in the complex plane C, polyno-
mial curves and complex Bézier curves in C are introduced. Global similarity
invariants of polynomial curves and complex Bézier curves in C are given in
terms of complex functions. The problem of similarity of two polynomial curves
in C are solved. Moreover, in case two polynomial curve (complex Bézier curve)
are similar for the similarity group, a general form of all similarity transfor-
mations, carrying one curve into the other curve, are obtained.

1. Introduction

The invariance is a very important tool in areas data registration, object recogni-
tion, computer aided design applications. In computer aided applications, the iter-
ative closest point(ICP) algorithm is an accurate and effi cient method for rigid reg-
istration problem and curve matching. The aim of registration or object recognition
is to find the corresponding relationship between two point sets(or two curves) and
compute the transformation which aligns two point sets(or two curves)(see [1—4])
Generally, Euclidean invariant features are used in above mentioned methods and
a representation of polynomial curve or Bézier curve in the complex plane C are
a useful method to investigate of their global invariants. (see [5, 7—10, 16]) In [16],
taking customary rational Bézier curves in complex plane, complex rational Bézier
curves are investigated. For Bézier curves, rational curves and implicit algebraic
curves, detecting whether two plane curves are similar by an orientation preserving
similarity transformation is important. (see [11—19]).
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This paper presents the similarity conditions of two point sets and the similarity
conditions of two polynomial paths(two complex Bézier curve) in the complex plane
C.
The polynomial curve Z(u),W (u), u ∈ [0, 1] in defined in terms of monomial

complex control points pj , qj ∈ C as
Z(u) =

∑m
j=0 pju

j and W (u) =
∑m

j=0 pju
j , resp.

The complex Bézier curves Z(u),W (u), u ∈ [0, 1] in defined in terms of degree
m Bernstein polynomials Bmj (u) and complex control points zj , wj ∈ C as
Z(u) =

∑m
j=0 zjB

m
j (u) and W (u) =

∑m
j=0 wjB

m
j (u).

Let GM(C∗) be the group of all similarities of C, GM+(C∗) be the group of all
orientation-preserving similarities of C. The group of all linear similarities of C is
denoted by M(C∗). The group of all orientation-preserving linear similarities of C
is denoted by M+(C∗).
The problem of similarity of two polynomial curves(or two complex Bézier curves)

Z(u),W (u) for the groups GM(C∗) and GM+(C∗) is reduced to the problem of
similarity of two polynomial curves(or two complex Bézier curves) Z(u),W (u) for
the groups M(C∗) and M+(C∗), resp. Moreover, since a complex Bézier curve can
be define in terms of complex control points, these problems of similarity of two
complex Bézier curves is reduced to the problem of similarity of sets of complex
control points for these groups. Similarly, same problem can given for polynomial
curves. Otherwise, the problem of similarity of sets of complex control points for the
above mentioned groups can be applied to the point set rigid registration problem.
For the groups of Euclidean motionsM(n) and Euclidean rigid motionsM+(n) in

the n-dimensional Euclidean space, the problems of equivalence two Bézier curves of
degree m and its global invariants are investigated in [15]. In [9], similar problem in
this paper is solved for the groupsM(2) andM+(2). For orientation-preserving sim-
ilarity group Sim+(n) in similarity geometry, local differential invariants, existence
and rigidity theorems for a regular curve are obtained in [20]. For only similarity
group Sim(2) and linear similarity group LSim(2), the problems of equivalence
two Bézier curves of degree m are investigated in [18]. For orthogonal group O(2),
special orthogonal group O+(2), linear similarity group LSim(2) and orientation
linear similarity group LSim+(2), the conditions of the global G-equivalence of two
regular paths are given in [10,21].
So the paper contains solutions of problems of global similarity of complex Bézier

curves and polynomial curves for the above mentioned groups without using dif-
ferential invariants of a complex Bézier curve and a polynomial curve. In order
to make this paper more self contained from a mathematical points of view, the
structure of the present paper is the following. In Sect.2, relations between complex
plane and two-dimensional Euclidean space and definitions of similarity groups in
terms of complex numbers are introduced. In Sect.3, global invariants of a polyno-
mial curve and a complex Bézier curve are given. For above mentioned similarity
groups, the problem of similarity of two complex Bézier curves are given. In Sect.4,
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conditions of similarity for two m-uples complex number sets and a general form of
all similarity transformations, carrying one set into the other set, are obtained. In
Sect.5, conditions of similarity for two complex Bézier curves and a general form of
all similarity transformations, carrying one curve into the other curve, are obtained.

2. Similarity groups in the complex plane

Let C be the field of complex numbers. The product of two complex numbers z1
and z2 has the form

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1) (2.1)

Consider the complex number z = a+ ib in the matrix form z =

(
a
b

)
.

Then, the equality (2.1) has the following form

z1z2 =

(
a1a2 − b1b2
a1b2 + a2b1

)
=

(
a1 −b1
b1 a1

)(
a2
b2

)
. (2.2)

Here we denote by Lz the matrix
(
a −b
b a

)
for all z = a + ib ∈ C. Then

Lz : C→ C is a mapping and the equality (2.2) has the form, ∀z1, z2 ∈ C,

z1z2 = Lz1z2. (2.3)

The field C can be used to represents R2 with the inner product < z1, z2 >=
a1a2 + b1b2,∀z1 = a1 + ib1, z2 = a2 + ib2 ∈ C. Here, the quadratic form on R2
is < z1, z1 >= |z1|2 ,∀z1 ∈ C. The conjugate of z1, denoted by z1, is defined as
z1 = a1−ib1. Clearly, from definition we have z1+z1 = 2a1, z1z1 = |z1|2, |z1| = |z1|
and < z1, z2 >=< z1, z2 >. For |z1| 6= 0, the inverse of z1 is defined as 1

z1
= z1
|z1|2

.

Moreover, let Λ =

(
1 0
0 −1

)
. Then we have z1 = Λz1.

For z1 = a1 + ib1, z2 = a2 + ib2, the determinant of matrix
(
a1 a2
b1 b2

)
will be

denoted by [z1 z2].
Then we put Re(z1z2) =< z1, z2 > and Im(z1z2) = [z1 z2].
For z1, z2 ∈ C, in the case z1z1 6= 0, the element z2

z1
exists and the following

equality hold:

L z2
z1

=

(
Re( z2z1 ) −Im( z2z1 )

Im( z2z1 ) Re( z2z1 )

)
. (2.4)

Put C∗ = {z ∈ C|z 6= 0}, S(C∗) = {z ∈ C|zz = 1}, M+(C∗) = {Lz|z ∈ C∗} and
MS(C∗) = {Lz|z ∈ S(C∗)}.
It is easy to see that C∗ is a group and S(C∗) is a subgroup of C∗.
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We denote the set M−(C∗) =

{
LzΛ|Λ =

(
1 0
1 −1

)
, Lz ∈M+(C∗)

}
.

Let M+(C∗) and M−(C∗) be sets generated by all orientation-preserving and
orientation-reversing linear similarities of R2, resp. Clearly, M+(C∗) ∩M−(C∗) =
∅. The setM(C∗) of all linear similarities of R2 can be written in the formM(C∗) =
M+(C∗) ∪M−(C∗).
The following theorem is known from [23, p.229].

Theorem 1. (i) GM+(C∗) = {F : C → C|F (v) = Lzv + b, Lz ∈ M+(C∗),
∀v ∈ C, b ∈ C}.

(ii) GM−(C∗) = {F : C→ C|F (v) = (LzΛ)v + b, Lz ∈M+(C∗),∀v ∈ C, b ∈ C}.
(iii) GM(C∗) = GM+(C∗) ∪GM+(C∗).

Remark 1. For the essential notations of the group of all similarity transforma-
tions and the group of all orientation-preserving similarity transformations, see
some references [10,18,20].

3. On invariant functions of an complex Bézier curve and the
theorem on reduction

Let G be a group GM+(C∗) or GM(C∗).

Definition 1. A function f(z0, z1, . . . , zm) of complex numbers z0, z1, . . . , zm in C
will be called G-invariant if f(Fz0, Fz1, . . . , F zm) = f(z0, z1, . . . , zm) for all F ∈ G.
Example 1. Let z0, z1 be two complex number and z0 6= 0. The function f(z0, z1) =
Re( z1z0 ) is M(C∗)-invariant. Really, let Lz ∈M(C∗). Then by the equality (2.3), we
have Lzw = zw,∀z, w ∈ C. We consider Lz z1z0 . Then, we obtain Lz

z1
z0

= zz1
zz0

= z1
z0
.

Hence, we obtain that Re(Lz z1z0 ) = Re( z1z0 ). So, Re( z1z0 ) is M(C∗)-invariant.
Similarly, the function f(z0, z1) = Im( z1z0 ) is M+(C∗)-invariant.

Example 2. Let z0, z1, z2 be three complex number and z0 6= z1. The function
f(z0, z1, z2) = Re( z2−z0z1−z0 ) is GM(C∗)-invariant. Really, let F ∈ GM+(C∗). Then
by Theorem 1, we have F (v) = Lzv + w,∀z ∈ C∗ and v, w ∈ C . We consider
F (z2−z0)
F (z1−z0) . Using above the equality, we have

F (z2−z0)
F (z1−z0) = Lz(z2−z0)

Lz(z1−z0 ) = z2−z0
z1−z0 . By

above example, we obtain Re( z2−z0z1−z0 ) is GM(C∗)-invariant. Similarly, the function
f(z0, z1, z2) = Im( z2−z0z1−z0 ) is GM+(C∗)-invariant.

A Bézier curve in C is a parametric curve(or U -path, where U = [0, 1]) whose
complex points Z(u) are defined by Z(u) =

∑m
j=0 zjB

m
j (u), where zj ∈ C and

Bmj (u) is the Bernstein basis polynomials.
A polynomial curve in C is a parametric curve (or U -path, where U = [0, 1])

whose complex points Z(u) are defined by Z(u) =
∑m

j=0 pj(u), where pj ∈ C is
monomial complex control points( for more details, see [7, 8, 16,22])
By lemma in [22, p.166], all polynomial curves can be represented in Bézier curve

form.
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Definition 2. A G-invariant function f(z0, z1, . . . , zm) of control complex points
z0, z1, . . . , zm of a Bézier curve Z(u) =

∑m
j=0 zjB

m
j (u) will be called a control G-

invariant of Z(u). A G-invariant function f(p0, p1, . . . , pm) of monomial control
complex points p0, p1, . . . , pm of a polynomial curve Z(u) =

∑m
j=0 pju

j will be called
a monomial G-invariant of Z(u).

Now we define similarity of two Bézier curves of degree m and similarity of two
m-uples of complex points in C.

Definition 3. Bézier curves Z(u) and W (u) in C will be called G -similar if there
exists F ∈ G such that W (u) = FZ(u) for all u ∈ [0, 1].

Definition 4. m-uples {z1, z2, . . . , zm} and {w1, w2, . . . , wm} of complex num-
bers in C are called G-similar if there is F ∈ G such that wj = Fzj for all
j = 1, 2, . . . ,m.

Since Bézier curves can be introduced by control points, the following two theo-
rems means that the problem of G-similarity of Bézier curves reduce to the problem
of G-similarity of two m-uples complex numbers.

Remark 2. Throughout paper, we consider the curves in forms Z(u) =
∑m

j=0 zjB
m
j (u) =∑m

j=0 pju
j and W (u) =

∑m
j=0 wjB

m
j (u) =

∑m
j=0 qju

j in C of degree m, where
m ≥ 1. Moreover, Z ′(u) and W ′(u) are their first derivatives.

Theorem 2. Let Z(u) and W (u) be Bézier curves. Then the following statements
are equivalent:

(i) Z(u) and W (u) are GM+(C∗)-similar.
(ii) Z ′(u) and W ′(u) are M+(C∗)-similar.

(iii) m-uples {z0, z1, . . . , zm} and {w0, w1, . . . , wm} are GM+(C∗)-similar.
(iv) m-uples {z1 − z0, z2 − z0, . . . , zm − z0} and {w1 − w0, w2 − w0, . . . , wm − w0}

are M+(C∗)-similar.
(v) {p1, p2, . . . , pm} and {q1, q2, . . . , qm} are M+(C∗)-similar.

Proof. Proof is similar to proof of Theorem 2 in [15] and Theorem 4.1 in [9]. �
Theorem 3. Let Z(u) and W (u) be Bézier curves. Then the following statements
are equivalent:

(i) Z(u) and W (u) are GM(C∗)-similar.
(ii) Z ′(u) and W ′(u) are M(C∗)-similar.

(iii) m-uples {z0, z1, . . . , zm} and {w0, w1, . . . , wm} are GM(C∗)-similar.
(iv) m-uples {z1 − z0, z2 − z0, . . . , zm − z0} and {w1 − w0, w2 − w0, . . . , wm − w0}

are M(C∗)-similar.
(v) {p1, p2, . . . , pm} and {q1, q2, . . . , qm} are M(C∗)-similar.

Proof. Proof is similar to proof of Theorem 1 in [15] and Theorem 4.1 in [9]. �
Remark 3. (1)
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(i) Let {z1, z2, . . . , zm} and {w1, w2, . . . , wm} in C be two m-uples such that
zk 6= 0 and wk = 0. Then {z1, z2, . . . , zm} and {w1, w2, . . . , wm} are not G-
similar. In the case zk = wk = 0, we obtain the problem of G- similarity of
these m−1-uples {z1, z2, . . . , zk−1, zk+1, . . . , zm} and {w1, w2, . . . , wk−1,
wk+1, . . . , wm}, Therefore, we put zk 6= 0 and wk 6= 0 for k ∈ {1, 2, . . . ,m}.

(ii) Let z1 and w1 in C be two complex number such that z1 6= 0 and w1 6= 0.
Then there always is an element Lz in G such that w1 = Lzz1. Therefore,
we put m > 1 for m-uples {z1, z2, . . . , zm} and {w1, w2, . . . , wm} in C.

4. Conditions of similarity for two m-uple complex number sets

Theorem 4. Let {z1, z2, . . . , zm} and {w1, w2, . . . , wm} be two m-uples in C such
that zk 6= 0 and wk 6= 0, where k ∈ {1, 2, . . . ,m}. Then these m-uples are M+(C∗)-
similar if and only if 

Re(
zi
zk

) = Re(
wi
wk

)

Im(
zi
zk

) = Im(
wi
wk

)
(4.1)

for all i = 1, 2, . . . , k − 1, k + 1, . . . ,m.
Furthermore, there is the unique Lz ∈ M+(C∗) such that wi = Lzzi for all i =
1, 2, . . . ,m, where the matrix Lz can be written as

Lz =

(
Re(wkzk ) −Im(wkzk )

Im(wkzk ) Re(wkzk )

)
. (4.2)

Proof. ⇒: Assume that {z1, z2, . . . , zm} and {w1, w2, . . . , wm} in C are M+(C∗))-
similar. Since the functions Re( zizk ) and Im( zizk ) are M+(C∗))-invariant, we obtain
that the equalities (4.1) hold.
⇐: Assume that the equalities (4.1) hold. By the equality (4.1), we have

zi
zk

=
wi
wk

(4.3)

for all i = 1, 2, . . . , k − 1, k + 1, . . . ,m. Consider the element z = wk
zk
∈ C. By the

equality (4.3), we have wi = wk
wi
wk

= wk
zi
zk

= wk
zk
zi for all i = 1, 2, . . . , k − 1, k +

1, . . . ,m. So, by the equality (2.3),we have wi = Lzzi for all i = 1, 2, . . . , k− 1, k+
1, . . . ,m. Clearly Lz ∈M+(C∗). For uniqueness, assume that Lv ∈M+(C∗) exists
such that wi = Lvzi for all i = 1, 2, . . . ,m. Then, by this equality and the equality
(2.3), we have v ∈M+(C∗) such that wi = vzi for all i = 1, 2, . . . ,m. Since zk 6= 0,
the equality wk = vzk implies that v = wk

zk
= z. Hence the uniqueness of Lz is

proved. Moreover, using the equality (2.3), the element z = wk
zk
can be written as

the matrix Lz, where Lz has the form (4.2). �

Denote by rank {z1, z2, . . . , zm} the rank of the m-uple {z1, z2, . . . , zm} in C. It
is easy to see that rank {z1, z2, . . . , zm} is M(C∗)-invariant.
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Theorem 5. Let {z1, z2, . . . , zm} and {w1, w2, . . . , wm} be two m-uples in C such
that zk 6= 0, wk 6= 0 for k ∈ {1, 2, . . . ,m} and rank {z1, z2, . . . , zm} = rank {w1, w2, . . . , wm} =
1. Then these m-uples are M(C∗)-similar if and only if

Re(
zi
zk

) = Re(
wi
wk

) (4.4)

for all i = 1, 2, . . . , k − 1, k + 1, . . . ,m.
Furthermore, there is the unique Lz ∈ M(C∗) such that wi = Lzzi for all i =
1, 2, . . . ,m, where the matrix Lz can be written as the form (4.2).

Proof. ⇒: The proof is similar to the proof of Theorem 4.
⇐: Assume that the equality (4.4) holds.
Since rank {z1, z2, . . . , zm} = rank {w1, w2, . . . , wm} = 1, we have Im( zizk ) = Im( wiwk ) =

0 for all i = 1, 2, . . . , k − 1, k + 1, . . . ,m. Hence the equalities (4.1) in Theorem 4
hold. Using Theorem 4, we have wi = Lzzi for all i = 1, 2, . . . ,m and the matrix
Lz has the form (4.2). �

Let m-uple {z1, z2, . . . , zm} in C. In the case rank {z1, z2, . . . , zm} = 2, denote
by
ind {z1, z2, . . . , zm} the smallest of p, 1 ≤ p ≤ m, such that zp 6= λzk for all λ ∈ R
and zk 6= 0.

Theorem 6. Let {z1, z2, . . . , zm} and {w1, w2, . . . , wm} be two m-uples in C such
that zk 6= 0, wk 6= 0, rank {z1, z2, . . . , zm} = rank {w1, w2, . . . , wm} = 2 and
ind {z1, z2, . . . , zm} = ind {w1, w2, . . . , wm} = l for k, l ∈ {1, 2, . . . ,m} and k 6= l.
Then these m-uples are M(C∗)-similar if and only if

Re(
zi
zk

) = Re(
wi
wk

)[
Im(

zl
zk

)

]2
=

[
Im(

wl
wk

)

]2
Im( zizk )

Im( zlzk )
=
Im( wiwk )

Im( wlwk )

(4.5)

for all i = 1, 2, . . . ,m, i 6= k.
Furthermore, there is the unique Lz ∈ M(C∗) such that wi = Lzzi for all i =
1, 2, . . . ,m. Then there exist two statements:

(i) In the case Im( zlzk ) = Im( wlwk ), the element Lz ∈ M+(C∗) and it can be
represented by (4.2).

(ii) In the case Im( zlzk ) = −Im( wlwk ), the element LzΛ ∈M−(C∗) and it can be
written as

LzΛ =

(
Re(wkzk ) −Im(wkzk )

Im(wkzk ) Re(wkzk )

)
. (4.6)
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Proof. ⇒: Let m-uples {z1, z2, . . . , zm} and {w1, w2, . . . , wm} are M(C∗)-similar.

Since the functions Re( zizk ),
[
Im( zlzk )

]2
and

Im(
zi
zk
)

Im(
zl
zk
)
are M(C∗)-invariant, we obtain

that the equalities (4.6).
⇐: Assume that the equality (4.6) holds. Using the conditions zk 6= 0, wk 6= 0

and ind {z1, z2, . . . , zm} = ind {w1, w2, . . . , wm} = l for k, l ∈ {1, 2, . . . ,m} , k 6=
l and the equality

[
Im( zlzk )

]2
=
[
Im( wlwk )

]2
, we have the equality

[
Im( zlzk )

]
=[

Im( wlwk )
]
or
[
Im( zlzk )

]
= −

[
Im( wlwk )

]
. Moreover, since rank {z1, z2, . . . , zm} =

rank {w1, w2, . . . , wm} = 2 and
ind {z1, z2, . . . , zm} = ind {w1, w2, . . . , wm} = l, we have Im( zlzk ) 6= 0.

(i) Assume that Im( zlzk ) = Im( wlwk ). Then, using this equality and the equality
Im(

zi
zk
)

Im(
zl
zk
)

=
Im(

wi
wk

)

Im(
wl
wk

)
, we have Im( zizk ) = Im( wiwk ) for all i 6= k. So the equalities

(4.1) hold. Then by Theorem 4, there is the unique Lz ∈ M+(C∗) such
that wi = Lzzi for all i = 1, 2, . . . ,m. The element Lz has the form (4.2).

(ii) Assume that Im( zlzk ) = −Im( wlwk ). Then, using this equality and the equal-

ity
Im(

zi
zk
)

Im(
zl
zk
)

=
Im(

wi
wk

)

Im(
wl
wk

)
, we have Im( zizk ) = −Im( wiwk ) for all i 6= k. Hence,

we obtain Im( zizk ) = −Im( zizk ). Then by this equality and the equality

Re( zizk ) = Re( zizk ), we have Re( wiwk ) = Re( zizk ) and Im( wiwk ) = Im( zizk ).
In this case, by Theorem 4, there is the unique Lz ∈ M+(C∗) such that
wi = Lzzi = Lz(Λzi) = (LzΛ)zi for all i = 1, 2, . . . ,m. Then the element
LzΛ has the form (4.6).

�

5. Conditions of similarity for two complex Bézier curves and its
applications

Using Theorem 2 and Theorem 4, the following corollary obtain.

Corollary 1. Let Z(u) =
∑m

j=0 pju
j and W (u) =

∑m
j=0 qju

j be two polynomial
curves in C of degree m > 1. Then Z(u) and W (u) are GM+(C∗)-similar if and
only if 

Re(
pi
pm

) = Re(
qi
qm

)

Im(
pi
pm

) = Im(
qi
qm

)
(5.1)

for all i = 1, 2, . . . ,m− 1.
Furthermore, there is the unique F ∈ GM+(C∗) such that qi = Fpi = Lzpi + b for
all i = 0, 1, 2, . . . ,m, where the matrix Lz ∈ M+(C∗) and the constant b ∈ C can
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be written as

Lz =

(
Re( qmpm ) −Im( qmpm )

Im( qmpm ) Re( qmpm )

)
(5.2)

and
b = q0 − Lzp0. (5.3)

Example 3. Consider two polynomial curves Z(u) = (2 + 2u, 3− 8u+ 11u2) and
W (u) = (−10 + 44u− 55u2, 20− 6u+ 22u2) with complex monomial control points
p0 = 2 + 3i, p1 = 2− 8i, p2 = 11i and q0 = −10 + 20i, q1 = 44− 6i, q2 = −55 + 22i
in C, resp. It is easy to see that the equalities in (5.1) hold for the curves Z(u) and
W (u). Then by Theorem 1, Z(u) and W (u) are GM+(C∗)-similar and Lz = 2+5i
and b = 1 + 4i.

Using Theorem 3 and Theorem 6, the following corollary obtain.

Corollary 2. Let Z(u) =
∑m

j=0 pju
j and W (u) =

∑m
j=0 qju

j be two polynomial
curves in C of degree m > 1. Let Then Z(u) and W (u) are GM(C∗)-similar if and
only if 

Re(
pi
pm

) = Re(
qi
qm

)[
Im(

pl
pm

)

]2
=

[
Im(

ql
qm

)

]2
Im(

pj
pm

)

Im( plpm )
=
Im(

qj
qm

)

Im( qlqm )

(5.4)

for all i = 1, 2, . . . ,m− 1 and for all j = 1, 2, . . . , l − 1, l + 1, . . . ,m− 1, where
ind {p1, p2, . . . , pm} = ind {q1, q2, . . . , qm} = l for l ∈ {1, 2, . . . ,m− 1}.
Furthermore, there is the unique F ∈ GM(C∗) such that qi = Fpi for all i =
0, 1, 2, . . . ,m. There are the following two cases:

(i) In the case Im( plpm ) = Im( qlqm ), F has the form Fpi = Lzpi + b1 for all
i = 0, 1, 2, . . . ,m, where the element Lz ∈M+(C∗) and the constant b1 ∈ C
can be written as (5.2) and (5.3), resp.

(ii) In the case Im( plpm ) = −Im( qlqm ), F has the form Fpi = LzΛpi + b2 for all
i = 0, 1, 2, . . . ,m, where the element Lz ∈ M+(C∗) and and the constant
b2 ∈ C can be written as

Lz =

(
Re( qmpm ) −Im( qmpm )

Im( qmpm ) Re( qmpm )

)
(5.5)

and
b2 = q0 − LzΛp0. (5.6)

Example 4. Consider two polynomial curves Z(u) = (2 + 2u, 3− 8u+ 11u2) and
W (u) = (20 − 36u + 55u2, 8 + 26u − 22u2) with complex monomial control points
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p0 = 2 + 3i, p1 = 2− 8i, p2 = 11i and q0 = 20 + 8i, q1 = −36 + 26i, q2 = 55− 22i in
C, resp. It is easy to see that the equalities in (5.4) hold for the curves Z(u) and
W (u). Then by Theorem 2, Z(u) and W (u) are GM(C∗)-similar and Lz = 2 + 5i
and b = 1 + 4i. But Z(u) and W (u) are not GM+(C∗)-similar.

Using Theorem 2 and Theorem 4, the following corollary obtain.

Corollary 3. Let Z(u) =
∑m

j=0 zjB
m
j and W (u) =

∑m
j=0 wjB

m
j be two Bézier

curves in C of degree m > 1 such that zm − z0 6= 0 and wm − w0 6= 0 . Then Z(u)
and W (u) are GM+(C∗)-similar if and only if

Re(
zi − z0
zm − z0

) = Re(
wi − w0
wm − w0

)

Im(
zi − z0
zm − z0

) = Im(
wi − w0
wm − w0

)
(5.7)

for all i = 1, 2, . . . ,m− 1.
Furthermore, there is the unique F ∈ GM+(C∗) such that wi = Fzi = Lzzi + b for
all i = 0, 1, 2, . . . ,m, where the matrix Lz ∈ M+(C∗) and the constant b ∈ C can
be written as

Lz =

(
Re(wm−w0zm−z0 ) −Im(wm−w0zm−z0 )

Im(wm−w0zm−z0 ) Re(wm−w0zm−z0 )

)
(5.8)

and
b = w0 − Lzz0. (5.9)

Example 5. Consider two complex Bézier curves Z(u) =
∑2

j=0 zjB
m
j and W (u) =∑2

j=0 wjB
m
j with complex control points z0 = 2 + 3i, z1 = 3 − i, z2 = 4 + 6i and

w0 = −10 + 20i, w1 = 12 + 17i, w2 = −21 + 36i in C, resp. It is easy to see that the
equalities in (5.7) hold for the curves Z(u) and W (u). Then by Theorem 3, Z(u)
and W (u) are GM+(C∗)-similar and Lz = 2 + 5i and b = 1 + 4i.

Using Theorem 3 and Theorem 6, the following corollary obtain.

Corollary 4. Let Z(u) =
∑m

j=0 zjB
m
j and W (u) =

∑m
j=0 wjB

m
j be two Bézier

curves in C of degree m > 1 such that zm − z0 6= 0 and wm − w0 6= 0. Let Then
Z(u) and W (u) are GM(C∗)-similar if and only if

Re(
zi − z0
zm − z0

) = Re(
wi − w0
wm − w0

)[
Im(

zl − z0
zm − z0

)

]2
=

[
Im(

wl − w0
wm − w0

)

]2
Im(

zj−z0
zm−z0 )

Im( zl−z0zm−z0 )
=
Im(

wj−w0
wm−w0 )

Im( wl−w0wm−w0 )

(5.10)

for all i = 1, 2, . . . ,m− 1 and for all j = 1, 2, . . . , l − 1, l + 1, . . . ,m− 1, where
ind {z1 − z0, z2 − z0, . . . , zm − z0} = ind {w1 − w0, w2 − w0, . . . , wm − w0} = l for
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l ∈ {1, 2, . . . ,m− 1}.
Furthermore, there is the unique F ∈ GM(C∗) such that wi = Fzi for all i =
0, 1, 2, . . . ,m. There are the following two cases:

(i) In the case Im( zl−z0zm−z0 ) = Im( wl−w0wm−w0 ), F has the form Fzi = Lzzi + b1
for all i = 0, 1, 2, . . . ,m, where the element Lz ∈M+(C∗) and the constant
b1 ∈ C can be written as (5.8) and (5.9), resp.

(ii) In the case Im( zl−z0zm−z0 ) = −Im( wl−w0wm−w0 ), F has the form Fzi = LzΛzi + b2
for all i = 0, 1, 2, . . . ,m, where the element Lz ∈ M+(C∗) and and the
constant b2 ∈ C can be written as

Lz =

(
Re(wm−w0

zm−z0
) −Im(wm−w0

zm−z0
)

Im(wm−w0
zm−z0

) Re(wm−w0
zm−z0

)

)
(5.11)

and
b2 = w0 − LzΛz0. (5.12)
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