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ABSTRACT 
 

In this paper, a new class of hierarchically definable graphs are proposed and they are proper 
subgraphs of Hierarchic Cubic graphs. These graphs are based on the Fibonacci series by changing 
initial conditions. When the initial conditions are changed, then the structure of obtained graph will be 
changed. Thus, we obtained a series of hierarchically definable graphs. The obtained graphs have 
logarithmic node degrees and diameters in terms of number of nodes. Thus they are comparable with 
incomplete hypercube graph. Sometimes, incomplete hypercube may include at least one node whose 
node degree is 1. This is an unwilling case, however, the obtained graphs do not have nodes of degree 1 
except initial conditions graphs. 
 
Hypercube graph and hierarchic cubic network are recursively definable graphs and the obtained 
graphs are proper subgraphs of hierarchic cubic network. Thus, it is important to verify that the 
constructed graphs are also recursively definable graphs. We prove that the obtained graphs are self-
similar graphs or decomposable in terms of lower sized graphs in the same category. 
 
Keywords: : Hypercube Graphs, Hierarchical Cubic Network, Fibonacci Cube Graphs, Extended 
Fibonacci Cube Graphs. 
 
1. INTRODUCTION 
Hypercube graph H(n) is a recursively definable 
graphs and it has been used for interconnection 
networks [1, 2, 3]. Its nice properties such as 
logarithmic diameter, regular graph, simple node 
labelling, good connectivity, recursive 
scalability, symmetry, sparesity, average distance 
and cost etc. makes it be a popular graph. 
Hierarchic cubic network graph uses H(n)s as 
building blocks and it is also recursively 
constructable graph [4]. Fibonacci and extended 
Fibonacci cube graphs are proper subgraphs of 
H(n) [5, 6, 7]. 
 

Efforts to improve some of these properties have 
lead to the evolution of hypercube variant 
graphs. Cube Connected Cycles, Folded 
Hypercube, Extended Hypercube are variants 
derived through the addition of extra nodes 
and/or links to the H(n) [3]. Another category of 
variants, which includes the Twisted n-cube 
graph [1] and the Multiply twisted cube graph 
[2], is derived by manipulating only the node-
link incidences of the hypercube graph without 
the addition of extra nodes and links. 
Hierarchical Cubic Network graphs [4] is another 
derived network from hypercube graph by 
combining hypercube graphs in a hierarchical 
fashion. 
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H(n) of dimension n connects up to 2n nodes, 
each of which can be labelled by n-bit address 
uniquely, using a direct connection between two 
nodes if and only if their n-bit addresses differ in 
exactly one bit position. The reason for the 
popularity of the H(n) can be attributed to its 
topological properties, the ability to use simple 
routing algorithms and the ability to permit the 
embedding of commonly-rewired 
interconnection patterns. 
 
Hierarchical Cubic Network graphs (HCN(n,n)) 
are constructed by using n-dimensional H(n)s  as 
basic building blocks and these blocks are 
connected in a hierarchical manner. The 
HCN(n,n) uses almost half as many links as a 
comparable H(n) and yet emulates the desirable 
properties of a H(n) very efficiently. Moreover, 
the maximum internodes routing distance in a 
HCN(n,n) is about 3/4 of that in the comparable 
H(n). 
 
A HCN(n,n) uses H(n)s as basic components and 
each such H(n) component is referred to as a 
cluster. The HCN(n,n) has 2n clusters, where 
each cluster is a n-cube. Each node in the 
HCN(n,n) has (n+1) edges incident to it. Of 
these, n edges (links) are required for local 
connections within a cluster implementing the 
normal links in an n-cube. The additional link, 
called external link, is required to interconnect 
nodes in different clusters. Each node in the 
system can thus be uniquely associated with a 
pair of numbers (I,J), where I is a n-bit cluster 
number, and J is a n-bit address of the node 
within a cluster. A new link established between 
nodes (I,J), (K,L) where I=L and J=K or I=J and 
K=L= I .  
 
It is also possible to have incomplete H(n) of 
dimension n and the derived HCN(m,m), where 
m<n, is an incomplete HCN(n,n). Thus, the 
derived interconnection network is a proper 
subgraph of HCN(n,n). Many such subgraphs 
can be obtained by changing the value of m in 
the interval [1,n-1]. In this paper, we will give a 
new class of hierarchical definable graphs based 
on Fibonacci cube and extended Fibonacci cube 
graphs, and these graphs are proper subgraphs of 
HCN(n,n) [6,7]. 
 
The H(n) is a powerful network that is able to 
perform various kinds of parallel computation 
and simulate many other networks. However, the 
number of nodes, which is a power of two limits 

its efficiency to perform a task of arbitrary size. 
Fibonacci Cube and kth order Extended Fibonacci 
Cubes (EFCk(n)s) is a special subcube of a H(n) 
based on the Fibonacci number fn=fn-1+fn-2, 
ef1(n)= ef1(n-1)+ ef1(n-2), respectively [5].   
 
In this paper, we proposed a class of graphs 
based on FC(n) and EFCk(n) from the above 
reasons and these graphs are proper subgraphs of 
HCN(n,n). We called these graphs as 
Hierarchical Fibonacci Cube HFC(n) and 
Hierarchical Extended Fibonacci Cube graphs 
(HEFCk(n), k≥1) [6, 7], and its properties and 
features are evaluated. Therefore, the objective 
of this paper is: 
 
• to represent the construction of HFC(n)s, 

HEFCk(n)s. 
• to study the self-similarity properties of 

HFC(n)s, HEFCk(n)s. 
 
The rest of this paper is organized as follows. 
Section 2 describes the notations, the definitions, 
the outlines of H(n), HCN(n,n), FC(n), EFCk(n) 
and the way to make inter-block connections. 
Section 3 shows the construction of HFC(n)s, 
HEFCk(n)s. Section 4 gives some structural 
properties of HFC(n)s, HEFCk(n)s. Section 5 
describes the decompositions of HFC(n)s, 
HEFC1(n)s, …, HEFCk(n)s in detail. Section 6 
summarizes and concludes this paper. 
 
 
2. DEFINITIONS AND NOTATIONS 
FOR H(n), HCN(n,n), FC(n), EFCk(n) 
 
First of all, we must briefly describe H(n), 
HCN(n,n), FC(n) and EFCk(n) for k<n-1. 
 
2.1. H(n) 
A H(3) can be represented as an ordinary cube in 
three dimensions where the vertices are the 8=23 
nodes of the 3-cube. In hypercube of dimension 
n, there are 2n nodes, where each node is labelled 
with a unique label in sequence 0, 1, ..., 2n-1,  
and n2n-1 edges. Two nodes i and j are directly 
connected if and only if the binary 
representations of i and j differ in exactly one bit. 
Thus in a H(n), each node is connected to n 
others. The distance between two nodes in H(n) 
is equal to the number of different bits in binary 
addresses of corresponding nodes. 
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Let u, v denote nodes u, v in H(n) or their 
addresses. Hamming distance is the exclusive-or 
operation on both addresses of nodes u, v and 
this distance is equal to Hamming distance. In 
other words, the Hamming distance between 
nodes u and v is the summation of different bit-
position in addresses of nodes u and v, and it is 
denoted as H(u,v). 
 
More generally, the definition of a H(n) of 
dimension n as a graph denoted by H(n)=(V,E) 
where V={0,1}n is the set of vertices, represented 
by all the  binary strings of length n, and the set 
of edges is 
 
E={(u,v)|u,v∈V such that u and v exactly differ 
in 1-bit position}. 
 
The node degree in H(n) is n and the diameter of 
H(n) is also n. 
 
2.2. HCN(n,n) 
HCN(n,n)s are constructed from H(n)s which are 
used as basic building blocks and addition of 
new edges between these building blocks. Each 
building block is referred to as a cluster. The 
HCN(n,n) has 2n clusters, where each cluster is 
an n-cube. So there are 22n nodes and (n+1)22n-1 
edges. The node degree in HCN(n,n) is n+1 and 

diameter of HCN(n,n) is n+ 1
3

1n
+⎥⎦

⎥
⎢⎣
⎢ + . n edges 

incident onto a node within a cluster are referred 
to as local links implementing the normal edges 
in an n-cube and the additional edges are needed 
to connect nodes within different cluster which 
are called external edges (links). The edges 
within a cluster are called non-diameter edges 
and the edges inter-clusters are called diameter 
edges. Each node in HCN(n,n) can be 
represented by a pair of numbers, (I,J) where I is 
the cluster number and J is the node number 
within a cluster. 
Two nodes (I1,J1) and (I2,J2) (I1≠I2) are connected 
if and only if one of the following conditions is 
satisfied. 
• I1=J2 and I2=J1 
• I1=J1 and I2=J2= 1I  
 
2.3. FC(n)s and EFCk(n)s 
fn denotes a Fibonacci number and fn=fn-1+fn-2 
where initial condition f2=0 and f3=2. ef1(n) is 
also a Fibonacci number and it is called first 
order Fibonacci number where ef1(n)=ef1(n-
1)+ef1(n-2) and initial condition is ef1(3)=2 and 

ef1(4)=4. kth order Fibonacci number is defined 
as efk(n) and its initial condition is different. The 
initial condition for ef2(n) is ef2(4)=4 and 
ef2(5)=8. The initial condition for efk(n) is 

efk(k+2)=|{
k

ddd }| and efk(k+3)=|{ }| 
where d∈{0,1}. 

1k

ddd
+

 
FC(n), EFC1(n), …, EFCk(n) are defined by 
using fn and efk(n), respectively. 
 
Definition 1. Assume FC(n)=(V(n),E(n)), FC(n-
1)=(V(n-1),E(n-1)) and FC(n-2)=(V(n-2),E(n-
2)). The recursion for nodes set is V(n)=0||V(n-
1)∪10||V(n-2), where || denotes the 
concatenation of two bit-strings. Two nodes in 
FC(n) are connected by an edge in E(n) if and 
only if their labels differ exactly in 1-bit position. 
The initial condition for recursion is V(2)={} and 
V(3)={0,1}. 
 
Definition 2. Let EFC1(n)=(V1(n),E1(n)) where 
V1(n) is the set of nodes and E1(n) is the set of 
edges in EFC1(n), and EFC1(n-1)= (V1(n-
1),E1(n-1)), EFC1(n-2)= (V1(n-2),E1(n-2)). 
EFC1(n) can be defined recursively by using 
EFC1(n-1) and EFC1(n-2). Then V1(n)=0||V1(n-
1)∪10||V1(n-2) where || denotes the 
concatenation of two strings. Two nodes in 
EFC1(n) are connected if and only if their 
address representations differ in exactly 1-bit 
position. An initial condition for recursion is 
V1(3)={0,1} and V1(4)={00,10,11,01}. 
 
Definition 3. Let EFCk(n)=(Vk(n),Ek(n)) where 
Vk(n) is the set of nodes and Ek(n) is the set of 
edges in EFCk(n), and EFCk(n-1)= (Vk(n-1),Ek(n-
1)), EFCk(n-2)= (Vk(n-2),Ek(n-2)). EFCk(n) can 
be defined recursively by using EFCk(n-1) and 
EFCk(n-2). Then Vk(n)=0||Vk(n-1)∪10||Vk(n-2) 
where || denotes the concatenation of two 
strings. Two nodes in EFC1(n) are connected if 
and only if their address representations differ in 
exactly 1-bit position. An initial condition for 

recursion is Vk(k+2)={ } and 

V

k

ddd

k(k+3)={
1k

ddd
+

} where d∈{0,1}. 
 
It is immediately noticeable that FC(3)=H(1) and 
FC(2)=H(0). FC(n) is a proper subcube of H(n-
2). FC(2) and FC(1) are null graphs. The node 
degree of FC(n) is between 

⎥⎦
⎥

⎢⎣
⎢ −

3
2n  and n-2 and 
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the diameter of FC(n) is n-2. The number of 
nodes in FC(n) is equal to fn and number of 
edges in FC(n) is 
 
 

5
nff)1n(2 1nn −−−  

 
The diameter of EFC1(n) is n-2 and the node 

degree of a node in EFC1(n) is between ⎥⎥
⎤

⎢⎢
⎡

3
n  and 

n-2.  The node degree of a node in EFCk(n) is 
between )1k(

3
)1k(n

−+⎥⎥

⎤
⎢⎢

⎡ −−  and n-2. The number 

of nodes in EFC1(n) is ef1(n) and the number of 
nodes in EFCk(n) is efk(n). The numbers of edges 
for EFC1(n), EFC2(n),  and so on,  respectively, 
are 
 

∑
−

=
−− −−++=

4n

1i
1i4n3n1 )1in(effff4|)n(E|  for 

n≥5 

  

for n≥6 

∑
−

=
−− −−++=

5n

1i
2i5n4n2 )1in(efff4f12|)n(E|

………….. 
 

∑
−−

=

−−−−

−−

++++=
3kn

1i
ki

3knk2knkk

)1in(eff

f|)2k(E|f|)3k(E||)n(E|

 for n≥k+4. 
 
3. STRUCTION OF HFC(n) and 
HEFCk(n)s 
A series of graphs, which proper subgraphs of 
HCN(n,n), can be built by using FC(n)s, 
EFC1(n)s, EFC2(n)s, …, EFCk(n)s as building 
blocks. All of the obtained graphs (HFC(n), 
HEFC1(n), …, HEFCk(n), k<n-1) will not be 
explained in detail and we will only explain 
HEFC1(n) and the remaining graphs have similar 
properties and similar construction process. 
The construction process can be explained on an 
example. The construction of new graph can be 
explained by using HCN(4,4). The clusters 0110, 
0111, 1100, 1101, 1110, and 1111 are removed 
from HCN(4,4) and the edges in these clusters 
are also removed from HCN(4,4). The nodes 
0110, 0111, 1100, 1101, 1110, and 1111 are 
removed from remaining clusters with incident 
edges. The last step for constructing Hierarchical 

Extended Fibonacci Cube- HEFC1(6) from 
HCN(4,4) is removing edges between the nodes 
(I,I) and nodes ( I,I ) and derived HEFC1(6) is 
shown in Figure 2. HEFC1(3) is same as 
HCN(1,1) and HEFC1(4) is same as HCN(2,2) 
and the construction of HEFC1(5) is shown in 
Figure 2. Thus, constructing HEFC1(n) from 
HCN(n-2,n-2) can be summarized as follows. 
 

• Removing the clusters whose node label 
is same as node label of node which is 
in HCN(n-2,n-2) and is not in EFC1(n). 

• Removing the nodes which are in 
HCN(n-2,n-2) and are not in EFC1(n). 

• Removing the edges of HCN(n-2,n-2) 
whose end points are (I,I) and ( I,I ). 

 
We called the obtained interconnection network 
as Hierarchical Extended Fibonacci Cube 
(HEFC1(n)) or First Order Extended Fibonacci 
Cube [6,7]. The edges within a cluster are called 
horizontal edges and the edges between clusters 
are called diagonal edges. The graphs obtained 
by using EFCk(n) are called kth Order Hierarchic 
Extended Fibonacci Cubes – HEFCk(n)s or 
simply Hierarchic Extended Fibonacci Cubes 
and the graph obtained by using FC(n) as 
building blocks is called Hierarchic Fibonacci 
Cube – HFC(n). 
 
Two nodes (I,J) and (K,L) in HEFC1(n) are 
connected if and only if one of the following 
conditions holds. 
 
• I=L and J=K. 
• I=K and H(J,L)=1. 

 
In Figure 2, dashed edges and nodes exist in 
HCN(3,3) and do not exist in HEFC1(5). 
 
In the following sections, most of theorem’s 
proofs are done for HEFC1(n) and proof for 
remaining graphs can be handled in the same 
way.   
 
HFC(n), HEFC2(n), …, HEFCk(n) can be 
constructed in the same way and the only 
difference is that their initial conditions are 
different. The definitions of the remaining 
architectures can be expressed in the same way 
by changing VH1 as VHk, 2≤k≤n+2 or VH. 
 
Definition 4. A HFC(n) is a graph  and it 
contains FC(n) as basic building blocks and the 
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node label is (I,J) where I is the label of building 
block and J is the node number in Ith block. If 
HFC(n)=(VH(n),EH(n)), then  
 
VH(n)=  {∪ ∪

1 2Vv Vu

uJandvI|)u,v(
∈∀ ∈∀

== }

}

and let (I,J), (K,L) be two nodes in HFC(n) and I, 
K are clusters’ labels and J, L are nodes’ labels, 
then 
 
EH(n)=

 

( )∪
)n(V)u,v(),u,v( 122121

21212211

H2211
uvuv1)u,u(H
uuvv|)u,v(),u,v(

∈∀ ⎭
⎬
⎫

⎩
⎨
⎧

=∧=∨=∧
≠∧=

where I=v1, J=u1, K=v2, and L=u2. 
 
Definition 5. A HEFCk(n), 1≤k≤n-2, is a graph  
and it contains EFCk(n) as basic building blocks 
and the node label is (I,J) where I is the label of 
building block and J is the node number in Ith 
block. Let G1=(V1,E1) and G2=(V2,E2) be two 
EFCk(n)s. If HEFCk(n)=(VHk(n),EHk(n)), then  
 
VHk(n)=  {∪ ∪

1 2Vv Vu

uJandvI|)u,v(
∈∀ ∈∀

==

and let (I,J), (K,L) be two nodes in HEFCk(n) 
and I, K are clusters’ labels and J, L are nodes’ 
labels, then 
 
EHk(n)=

 

( ){

}122121

2121
)n(V)u,v(),u,v(

2211

uvuv1)u,u(H

uuvv|)u,v(),u,v(
Hk2211

=∧=∨=∧

≠∧=
∈∀

∪

where I=v1, J=u1, K=v2, and L=u2.and v1, u1∈V1 
and v2,, u2∈V2. 
 
 
4. TOPOLOGICAL PROPERTIES 
OF HFC(n)s, HEFCk(n)s 
This section describes the definitions, the 
structural properties of HFC(n), HEFC1(n), …, 
HEFCk(n) such as number of nodes, number of 
edges, node degree and connectivity, diameter.   
 
The first properties of HFC(n), HEFC1(n), …, 
HEFCk(n) are the numbers of nodes and edges. 
These terms of any graph can be described as 
follows. 
 
Definition 6. Let G be an undirected graph 
G=(V,E), where V is the vertex set and |V| is the 

number of nodes, E is the edge set and |E| is the 
number of edges. The degree of a node is the 
number of edges incident on to that node. 
 
Theorem 1. The number of edges in HFC(n) is 
 

2
ff

5
nff)1n(2

f n
2
n1nn

n
−

+⎥⎦

⎤
⎢⎣

⎡ −− −  

 
and the number of nodes is ( )2

nf . 
Proof.  The number of nodes in HFC(n) can be 
found by using Fibonacci series with given initial 
conditions. Once the number of nodes in any 
FC(n) is found, then the number of nodes in 
HFC(n) is the square of the number of nodes in 
FC(n). Similar case is also valid for obtaining a 
formula for number of edges in HFC(n). 
 
A recursive formula for the number of edges in 
HFC(n) is as follows. While constructing FC(n)s 
recursively, two FC(n-1) and FC(n-2) are 
combined and a new FC(n)s is obtained so that 
all the edges in FC(n-1) and FC(n-2) are in 
constructed FC(n). The nodes in FC(n-2) are 
connected to nodes in FC(n-1) in one-to-one 
fashion. For this reason, the number of edges in 
FC(n) is 
 
 |E(n)|=|E(n-1)|+|E(n-2)|+|V(n-2)| 

  =
5

nff)1n(2 1nn −−−  

 
where initial condition |E(3)|=1, |E(4)|=2. 
 
For any HFC(n), |V(n)| FC(n)s are combined and 
a HFC(n) is yielded. All the edges in FC(n)s are 
in HFC(n) and any FC(n) in HFC(n) is connected 
to another FC(n) by the nodes (I,J) where I≠J. 
Thus, first cluster in HFC(n) is connected to all 
remaining clusters by an edge for each cluster. 
So there are |V(n)|-1 edges for first cluster. 
Second cluster is connected to all remaining 
clusters (except first cluster) by an edge and so 
there are |V(n)|-2 edges for second cluster, and so 
on. Last two clusters are connected by only one 
edge. Hence number of edges in HFC(n) is 
 
 |EH(n))|=|V(n)|.|E(n)|+|V(n)|(|V(n)|-1)/2 

     =
2

ff
5

nff)1n(2
f n

2
n1nn

n
−

+⎥⎦

⎤
⎢⎣

⎡ −− −  
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where initial condition |EH(3)|=3, |EH(4)|=9, and 
the number of nodes in HFC(n) is  ♦ ( )2

nf
 
Similar case is also valid for obtaining a formula 
for numbers of nodes and edges in HEFCk(n). 
 
Theorem 2. The number of edges in HEFCk(n) 
is 
 

[
( )

2
1)n(ef)n(ef

)1in(ef.f

f)2k(Ef)3k(E).n(ef

kk
3kn

1i
ki

3knk2knkk

−
+⎥

⎦

⎤
−−

++++

∑
−−

=

−−−−

 
 
and the number of nodes is ( )2

k )n(ef . 
 
Proof. A recursive formula for the number of 
edges in HEFC1(n) is as follows. While 
constructing EFC1(n)s recursively, two EFC1(n-
1) and EFC1(n-2) are combined and a new 
EFC1(n)s is obtained so that all the edges in 
EFC1(n-1) and EFC1(n-2) are in constructed 
EFC1(n). The nodes in EFC1(n-2) are connected 
to nodes in EFC1(n-1) in one-to-one fashion. For 
this reason, the number of edges in EFC1(n) is 
 
 |E1(n)|=|E1(n-1)|+|E1(n-2)|+|V1(n-2)| 

  =  ∑
−

=
−− −−++

2n

1i
1i4n3n )1in(ef.fff.4

 
with initial condition |E(3)|=1, |E(4)|=4 and fi 
stands for ith Fibonacci number. 
 
For any HEFC1(n), the number of combined 
EFC1(n)s is |VH1(n)|=ef1(n) and a HEFC1(n) is 
yielded. All the edges in EFC1(n)s are in 
HEFC1(n) and any EFC1(n) in HEFC1(n) is 
connected to another EFC1(n) by the nodes (I,J) 
where I≠J. Thus, first cluster in HEFC1(n) is 
connected to all remaining clusters by an edge 
for each cluster. So there are |V(n)|-1=ef1(n)-1 
edges for first cluster. Second cluster is 
connected to all remaining clusters (except first 
cluster) by an edge and so there are ef1(n)-2 
edges for second cluster, and so on. Last two 
clusters are connected by only one edge. Hence 
number of edges in HEFC1(n) is 
 
 |EH1(n))|=|V1(n)|.|E1(n)|+|V1(n)|(|V1(n)|-1)/2     
=

 

+⎥
⎦

⎤
⎢
⎣

⎡
−−++ ∑

−

=
−−

2n

1i
1i4n3n1 )1in(ef.fff.4).n(ef

   
( )

2
1)n(ef)n(ef 11 −

 

 
where initial condition |EH1(3)|=4, |EH1(4)|=22, 
and the number of nodes in HEFC1(n) is 
( )2

1 )n(ef .  The construction of HEFC2(n), …, 
HEFCk(n) are same as HFC(n) and HEFC1(n), so 
the numbers of nodes and edges can be expressed 
as follow. 
 
 |EH2(n))|=|V2(n)|.|E2(n)|+|V2(n)|(|V2(n)|-1)/2 
=

 

⎥
⎦

⎤
⎢
⎣

⎡
−−++ ∑

−

=
−−

5n

1i
2i5n4n2 )1in(ef.ff4f.12).n(ef

   
( )

2
1)n(ef)n(ef 22 −

+  

and the number of nodes is ( )2
2 )n(ef . 

 
……….. 
 
 |EHk(n))|=|Vk(n)|.|Ek(n)|+|Vk(n)|(|Vk(n)|-1)/2     
=

[ 3knk2knkk f)2k(Ef)3k(E).n(ef −−−− +++
 

( )
2

1)n(ef)n(ef)1in(ef.f kk
3kn

1i
ki

−
+⎥

⎦

⎤
−−+ ∑

−−

=

 
and the number of nodes is ( )2

k )n(ef  ♦ 
 
Theorem 3. The node degree in HFC(n) is 

between 1
3

1n
−⎥⎥

⎤
⎢⎢
⎡ +  and n-1. The node degree in 

HEFCk(n) is between )1k(
3

)1k(n
−+⎥⎥

⎤
⎢⎢

⎡ −− and 

n-1. 
 
Proof. The second property of HEFC1(n) is the 
node degrees. The node degrees of EFC1(n)s are 

between 
⎥⎥
⎤

⎢⎢
⎡

3
n  and n-2. While constructing 

HEFC1(n)s from EFC1(n)s, all nodes in each 
cluster have a diagonal link except (I,I) node for 
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each cluster. This means that the node degrees of 
each node in each cluster except node (I,I) for 
each cluster increase by 1, and lower bound for 
degree does not change and upper bound 
increases by 1. So degrees of nodes for 

HEFC1(n) are between 
⎥⎥
⎤

⎢⎢
⎡

3
n  and n-1. Similar 

proof can be done for HFC(n), HEFC2(n), …, 
HEFCk(n). Similar proof can be handled for 
HFC(n) and HEFC2(n), …, HEFCk(n) ♦ 
 

Thus, the connectivity of HEFC1(n) is
⎥⎥
⎤

⎢⎢
⎡

3
n , 

because at least removing 
⎥⎥
⎤

⎢⎢
⎡

3
n  edges from a 

node in HEFC1(n) may separate HEFC1(n) to 
two disjoint subgraphs. The connectivity of 

HFC(n) is 1
3

1n
−⎥⎥

⎤
⎢⎢
⎡ +  and connectivity of 

HEFCk(n) is )1k(
3

)1k(n
−+⎥⎥

⎤
⎢⎢

⎡ −− . 

 
In order to determine the length of diameter, let 
us consider the properties of paths in HEFC1(n) 
(remaining graphs have similar properties and 
they will be depicted in short). 
 
Definition 7. Given a graph G=(V,E), let a 
sequence of nodes P=v1, v2, ..., vk (vi∈V, 1≤i≤k) 
be a path from node v1 to vk where (vi,vi+1)∈E for 
i=1, ..., k-1. For any pair of nodes u, v∈V, the 
distance between u and v is the length of the 
shortest path from u to v. The diameter of G is 
the maximum value among distances of all pairs 
of nodes u, v∈V. The average distance of G is the 
average of distances between any pair of nodes 
u, v∈V. 
 
The properties of paths in HEFC1(n) can be 
expressed in the following theorems. Same path 
properties are held for remaining graphs 
(HFC(n), HEFC1(n), …, HEFCk(n)). 
 
Theorem 4. Let labels of source and destination 
nodes be (Sc,Sn) and (Dc,Dn), respectively in 
HEFCk(n). If Sc=Dc, then the shortest path 
between (Sc,Sn) and (Dc,Dn) does not contain 
diagonal link. 
 
Proof. Let assume that the shortest path P 
between (Sc,Sn) and (Dc,Dn) contains at least one 
diagonal link. If the routing between (Sc,Sn) and 

(Dc,Dn) nodes contains one diagonal edge in P, it 
is impossible. In order to return back to  (Sc,Sn) 
node, P has to contain at least two diagonal 
edges. Let P contains r diagonal links. If r is r≥2, 
then P will be as follows. 
 
P⇒(Sc,Sn) →…→ (Sc,S1) → (S1,Sc) → ….→ 
(S1,S2) → (S2,S1) → ….→ (S2,S3) → (S3,S2) → 
…..→ (S3,Dc) → (Dc,S3) → ….→ (Dc,Dn).  
 
This is not a shortest path and this is a 
contradiction. The longest path length in this 
case is the length of diameter of EFC1(n) which 
is n-2. This value can be evaluated by H(Sn,Dn) 
♦ 
 
Let us considered paths (path P) starting at node 
(Sc,Sn) and ending at node (Dc,Dn). All the 
following properties are considered for Sc≠Dc 
case. Proofs of these properties are not 
considered, because all of them will be proved in 
Theorem 3. 
 
Property 1. If Sc=Sn, Dc≠Dn and Sc=Dn then the 
shortest path between (Sc,Sn) and (Dc,Dn) 
contains one diagonal link and length of P is 
H(Sn,Dc)+1. 
 
Property 2. If Sc=Sn,Sc≠Dn,and Dc=Dn then the 
shortest path between (Sc,Sn) and (Dc,Dn) 
contains at most one diagonal link and length of 
P is H(Sn,Dc)+H(Sc,Dn)+1. 
 
Property 3. If Sc=Sn, Sc≠Dn,Sn≠Dc, and Dc≠Dn 
,then the shortest path between (Sc,Sn) and 
(Dc,Dn) contains at most one diagonal link and 
length of P is 2H(Sc,Dc)+1. 
 
Property 4. If Sc≠Sn and Sn=Dc, and Sc=Dn , then 
the shortest path between (Sc,Sn) and (Dc,Dn) 
consists of only one diagonal link and length of P 
is 1. 
 
Property 5. If Sc≠Sn,,Sc=Dn,Sn≠Dc and Dc≠Dn, 
then the shortest path between (Sc,Sn) and 
(Dc,Dn) contains at most one diagonal link and 
length of P is H(Sn,Dc)+1. 
 
Property 6. If Sc≠Sn and Sn=Dn, then the shortest 
path between (Sc,Sn) and (Dc,Dn) contains at 
most one diagonal link and length of P is 
H(Sc,Dn)+1. 
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Property 7. If Sc≠Sn, Sn≠Dc, Sn=Dn,and Dc≠Dn 
then the shortest path between (Sc,Sn) and 
(Dc,Dn) contains at most two diagonal links and 
length of P is H(Sc,Dc)+2. 
 
Property 8. If Sc≠Sn, Sn≠Dc, Sc≠Dn, and Dn=Dc 
then the shortest path between (Sc,Sn) and 
(Dc,Dn) contains at most one diagonal link and 
length of P is H(Sn,Dn)+H(Sc,Dn)+1. 
 
Theorem 5. Let labels of source and destination 
nodes be (Sc,Sn) and (Dc,Dn), respectively in 
HEFCk(n). Let P be the shortest path between 
nodes (Sc,Sn) and (Dc,Dn),then P contains at most 
two diagonal links (Sc≠Dc). 
 
Proof. There are eight cases (d(P) denotes the 
length of P), and when two nodes are in the same 
cluster, the shortest routing path is determined by 
conventional algorithms in EFC1(n) and denoted 
by (Sc,Sn)⇒(Dc,Dn). 
 
1- Sc=Sn, Dc≠Dn and Sc=Dn 
P: (Sc,Sn)⇒(Sc,Dc)→(Dc,Sc) and 

d(P)=H(Sn,Dc)+1. 
 

2- Sc=Sn, and Dc=Dn 
 P: (Sc,Sn)⇒(Sc,Dc)→(Dc,Sc)⇒(Dc,Dn) and 

d(P)=H(Sn,Dc)+1+H(Sc,Dn). 
 
3- Sc=Sn, Sc≠Dn,Sn≠Dc, and Dc≠Dn, 
 P:  (Sc,Sn)⇒(Sc,Dc)→(Dc,Sc)⇒(Dc,Dn) and 

d(P)=H(Sn,Dc)+1+H(Sc,Dn)=2H(Sc,Dn)+1. 
 
4- Sc≠Sn, Sn=Dc, and Sc=Dn, 
 P: (Sc,Sn)→(Sn,Sc)=(Dc,Dn) and d(P)=1. 

 
5- Sc≠Sn,,Sc=Dn,Sn≠Dc and Dc≠Dn, 
 P: (Sc,Sn)⇒(Sc,Dc)→(Dc,Sc) and 

d(P)=H(Sn,Dc)+1. 
 

6- Sc≠Sn and Sn=Dn 
 P: (Sc,Sn)→(Sn,Sc)⇒(Sn,Dn) and 

d(P)=H(Sn,Dn)+1. 
 
7- Sc≠Sn, Sn≠Dc, and Sn=Dn 
 P: (Sc,Sn)→(Sn,Sc)⇒(Sn,Dc)→(Dc,Sn) and 

d(P)=H(Sc,Dc)+1. 
 

8- Sc≠Sn, Sn≠Dc, Sc≠Dn, and Dn=Dc 
 P: (Sc,Sn)⇒(Sc,Dc)→(Dc,Sc)⇒(Dc,Dn) and 

d(P)=1+H(Sn,Dc)+H(Sc,Dn). 
 

When Sc≠Sn≠Dc≠Dn, minimizing cluster is used 
to determine routing path and finding minimizing 
cluster will be discussed in the following section 
♦ 
 
Theorem 6. The number of node disjoint paths 
between any pair of nodes in HEFCk(n) is equal 
to minimum node degree of corresponding nodes 
for n≥5. 
 
Proof. The node degree of HEFC1(n) is between 

⎥⎥
⎤

⎢⎢
⎡

3
n  and n-1. So, the number of disjoint paths 

between two nodes is at least
⎥⎥
⎤

⎢⎢
⎡

3
n .  For example, 

the number of node disjoint paths between node 
(010,010) and (*,*) (* don’t care) is equal to 2, 
since the node degree of  node (010,010) is equal 
to 2. The node degree of node (101,000) is 4 and 
the node degree of node (000,001) is 4, so, there 
must be 4 disjoint paths between these nodes.  
The node disjoint paths between these nodes are 
as follow and they are also seen in Figure 4. 
 
Path 1: (101,000)→(101,001)→(001,101)→ 
(001,100)→(001,000)→(000,001). 
 
Path 2: (101,000)→(000,101)→(000,001). 
 
Path 3: (101,000)→(101,010)→(101,011)→ 
(011,101)→(011,100)→(011,000)→(000,011)→
(000,001). 
 
Path4:(101,000)→(101,100)→(100,101)→ 
(100,100)→(100,000)→(000,100)→(000,000)→
(000,001) ♦ 
 
The fourth analysed structural property in this 
paper is the diameter of HEFC1(n). The diameter 
of an EFC1(n) is n-2 and the diameter of 
HEFC1(n) can be derived from diameter of 
EFC1(n). 
 
The maximum length of a shortest path in 
HEFC1(n) occurs in the case of source and 
destination nodes in different clusters. From 
Theorem 3, it can easily seen that cases 1, 4, 5, 6, 
and 7 may not determine the length of diameter 
of HEFC1(n), because the shortest paths in these 
cases generally have shorter length than 
diameter. The cases 2, 3, or 8 may determine the 
diameter of HEFC1(n). The diameter of 
HEFCk(n) is independent on k. 
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Theorem 7. The upper bound of diameters of 
HFC(n), HEFC1(n), …, HEFCk(n)  is 2n-3. 
 
Proof. The diameter of HEFC1(n) traverses 
between two clusters. The length of diameter can 
be derived from the following routing steps. Let 
(Sc, Sn) be source node and (Dc, Dn) be 
destination node. Routing  steps are taken from 
proof of Theorem 3. 
 
1- d(P)=H(Sn,Dc)+1≤n-2+1=n-1. 
2- d(P)=H(Sn,Dc)+1+H(Sc,Dn)≤n-2+n-2+1=2n-3. 
3- d(P)=H(Sn,Dc)+1+H(Sc,Dn)=2H(Sn,Dc)+1=2H(

Sc,Dn)+1≤2(n-2)+1=2n-3. 
4- d(P)=1. 
5- d(P)= H(Sc,Dn)+1≤n-2+1=n-1. 
6- d(P)=H(Sn,Dn)+1≤n-2+1=n-1. 
7- d(P)=H(Sc,Dc)+1≤n-2+1=n-1. 
8- d(P)=H(Sn,Dc)+1+H(Sc,Dn)≤n-2+1+n-2=2n-3. 

 
The length of shortest path in case of 
Sc≠Sn≠Dc≠Dn discussed in next section ♦ 
 
5. SELF-SIMILARITY OF HFC(n), 
HEFC1(n), …, HEFCk(n) 
In this section, most of the explanations of 
decompositions will be done on HEFC1(n) and 
HFC(n), since HEFC2(n), …, HEFCk(n) have 
similar decompositions. Because of the different 
coefficients used in decompositions of HFC(n) 
and HEFCk(n)s, some theorem for HFC(n) will 
be given. However, all explanations will be done 
on HEFC1(n). Each HEFC1(n) can be 
decomposed to lower sized HEFC1(r)s, r<n. 
Before giving decomposition of HEFC1(n)s, 
some definitions must be given. 
 
• If graphs G1 and G2 are isomorphic, then it is 

denoted as G1≈G2. If G1 is a subgraph of G2, it 
is denoted as G1⊆G2. 

• A subgraph of a graph G=(V,E) induced by a 
subset of its vertices, V’⊆V, is the graph 
(V’,E’), where E’={(i,j)∈E| i,j∈V’}. 

• We write G1∪G2 to denote the graph (V1∪V2, 
E1∪E2) and G1∩G2 to denote the graph 
(V1∩V2, E1∩E2), and 

. ∪n

1i n21i GGGG
=

∪∪∪=
• If G1∩G2=(∅,∅), then we write G3=G1∇G2, 

instead of G1∪G2 to emphasize the G3 consists 
of two disjoint subgraphs. If all graphs are 
isomorphic, then G1∇G2∇...∇Gm=m.G. 

• A graph G1 is said to be directly embedded in 
G2, denoted G1≺G2 if and only if there is a 
subgraph G=(V,E) induced by a subset of its 
vertices, V’⊆V, is the graph (V’,E’), where 
E’={(i,j)∈E:i,j∈E’}. 

•  ).n(FC)2(FC)1(FC)i(FCn
1i ∇∇∇=∇ =

• e(i) means that if i is an even number, then e(i) 
returns true, otherwise returns false, and 
similarly, o(i) returns true, if I is odd, 
otherwise returns false. 

 
Hsu  [5] developed FC(n)s and denoted that all 
FC(n)s can be decomposed into two smaller 
different FC(n)s, and he denoted these subcubes 
as LOW(n) and HIGH(n) which denote the 
subgraph induced by the set of nodes in 
{0,1,…,fn-1-1}, {fn-1,…,fn-1}, respectively. Then 
 
• LOW(n)≈FC(n-1) 
• HIGH(n) ≈FC(n-2) 
• LOW(n)∩HIGH(n)=(∅,∅) 
 
He defined another important point such as 
LINK(n)={(i,j): |i-j|=fn-1, (i,j)∈E(n)}. FC(n) can 
be decomposed into FC(n-1) and FC(n-2) and are 
connected exactly by the set of edges in 
LINK(n). It is clear that each edge (i,j) in 
LINK(n) connects a node j in HIGH(n) to a node 
i=j-fn-1 in LOW(n), and no other edges exist 
between LOW(n) and HIGH(n). 
 
Thus, FC(n) can be decomposed into a subgraph 
FC(n-1) and a subgraph FC(n-2); moreover, 
there are exactly fn-2 links between the two 
subgraphs, and this decomposition can be 
handled recursively. This property is useful when 
deriving substructures or embeddings of other 
types of graphs. 
 
FC(6) consists of FC(5) and FC(4), and FC(5) 
consists of FC(4) and FC(3). So, 
FC(6) (2.FC(4)∇FC(3)). This decomposition 
can be generalized as follows (k≤n), for all 
FC(n), n≥5. 
 
• FC(n) (fj.FC(n-j+1)∇fj-1.FC(n-j)) 

• FC(n) (fn-j+1.FC(j)∇fn-j.FC(j-1)) 

• FC(2n)   )1i2(FCn
1i −∇ =

• FC(2n+1)  )i2(FCn
1i=∇

• FC(n+2)  )i(FCn
1i=∇

 
Ali KARCI 

 

 



  
Hierarchic Graphs Based On The Fibonacci Numbers 

 

354

 
In the following, we show that HEFC1(n) 
contains disjoint subgraphs HEFC1(n-1), 
HEFC1(n-2), ef1(n-1).EFC1(n-2), and ef1(n-
2).EFC1(n-1). For example, HEFC1(5) consists of 
HEFC1(4), HEFC1(3), ef1(4).EFC1(3), and 
ef1(3).EFC1(4) as shown in Figure 5. 
 
Let us redefine LOW(n), and HIGH(n) with 
respect to HEFC1(n). Let 
HEFC1(n)=(VH1(n),EH1(n)) be a hierarchical 
Fibonacci cube of dimension n. LOWH1(n) 
denotes the subgraph induced by the set of nodes 
in the Cartesian product of the set {0,1,...,ef1(n-
1)-1} by itself,  HIGHH1(n) denotes the subgraph 
induced by the set of nodes in the Cartesian 
product of the set {ef1(n-1),..., ef1(n)-1} by itself, 
LOWF1(n) denotes the subgraph induced by the 
set of nodes in the set {ef1(n-1),..., ef1(n)-
1}X{0,1,...,ef1(n-1)-1}, and HIGHF1(n) denotes 
the subgraph induced by the set of nodes in the 
set {0,1,...,ef1(n-1)-1}X{ef1(n-1),..., ef1(n)-1}. 
 
Theorem 8. HFC(n) consists of LOWH(n), 
HIGHH(n), fn-2LOWF(n), and fn-1HIGHF(n). 
 
Proof. HFC(n) consists of fn.FC(n) and fn=fn-

1+fn-2.  
 
HFC(n)≈fn.FC(n) 
            =(fn-1+fn-2)FC(n) 
            =(fn-1+fn-2)(FC(n-1)∇FC(n-2)) 
            =fn-1.FC(n-1)∇fn-1.FC(n-2)∇fn-2.FC(n-1) 
             ∇fn-2.FC(n-2) 
        =

)n(HIGH
1n

)n(LOW
1n

FH

)2n(FC.f)1n(FC.f −∇− −−   

               ♦ 
)n(LOW

2n
)n(HIGH

2n

FH

)1n(FC.f)2n(FC.f −∇−∇ −−

 
Corollary 1. If HFC(n) consists of LOWH(n), 
HIGHH(n), fn-2LOWF(n), and fn-1HIGHF(n), then 
• LOWH(n)≈HFC(n-1) 
• LOWF(n)≈fn-2FC(n-1) 
• HIGHH(n)≈HFC(n-2) 
• HIGHF(n)≈fn-1FC(n-2) 

 
Theorem 9. HEFCk(n) consists of LOWHk(n), 
HIGHHk(n), efk(n-2).LOWFk(n), and efk(n-
1).HIGHFk(n). 
 
Proof. HEFC1(n) consists of ef1(n).EFC1(n) and 
ef1(n)=ef1(n-1)+ef1(n-2).  
HEFC1(n)≈ef1(n).EFC1(n) 
 =(ef1(n-1)+ef1(n-2))EFC1(n) 

 =( ef1(n-1)+ef1(n-2))(EFC1(n-1)∇EFC1(n-2)) 
 =ef1(n-1).EFC1(n-1)∇ef1(n-1).EFC1(n-2) 
       ∇ef1(n-2).EFC1(n-1)∇ef1(n-2).EFC1(n-2) 
=

)n(HIGH

11

)n(LOW

11

1F1H

)2n(EFC).1n(ef)1n(EFC).1n(ef −−∇−−       

  

)n(LOW

11

)n(HIGH

11

1F1H

)1n(EFC).2n(ef2n(EFC).2n(ef −−∇−−∇

 
 
HEFC2(n), …, HEFCk(n) have similar structures 

♦ 
 
Corollary 2. If HEFCk(n) consists of LOWHk(n), 
HIGHHk(n), efk(n-2).LOWFk(n), and efk(n-
1).HIGHFk(n), then 
• LOWHk(n)≈HEFCk(n-1) 
• LOWFk(n)≈efk(n-2).EFCk(n-1) 
• HIGHHk(n)≈HEFCk(n-2) 
• HIGHFk(n)≈efk(n-1).EFCk(n-2) 

 
This property of HEFC1(n) is useful 
when deriving substructures or 
embedding of other types of graphs. It is 
also a basis for divide-and-conquer 
algorithms on the HEFC1(n). So, 
HEFC1(n) can be decomposed with 
respect to Theorem 9 and Corollary 2. 
LINK(n) defined by Hsu [5] can be 
redefined for HEFC1(n), and  
 
LINKH1(n)={((I,J),(K,L)):|I-L|=0, |J-K|=0, (I,J)∈ 
{ef1(n-1),..., ef1(n)-1}X{0,1,...,ef1(n-1)-1}, 
(K,L)∈ {0,1,...,ef1(n-1)-1} X{ef1(n-1),..., ef1(n)-
1},  (I,J)∈EH1(n), (K,L)∈EH1(n)}. 
 
All HEFCk(n) contains LOWHk(n), HIGHHk(n), 
LOWFk(n), and HIGHFk(n). A node in LOWFk(n) 
is connected to a node in HIGHFk(n) by a link in 
LINKHk(n), and this case is correct for all nodes 
in LOWFk(n), and HIGHFk(n). 
 
Theorem 10. HFC(n) has the embedding for n≥5 
such as below. 
• HFC(n) (fj.HFC(n-j+1)∇fj-1.HFC(n-j)) 
                  

∇   ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇+

−

−=
+−−∪

2n

jni
1ii1in )i(FC.f)1i(FC.ff

for 2≤j≤n-3. 
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• HFC(n) (fn-j.HFC(j+1)∇fn-j-1.HFC(j)) 

                  ∇   (
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇+

−

=
+−−∪

2n

ji
1ii1in )i(FC.f)1i(FC.ff )

for 3≤j≤n-2. 
  
Proof. Proof the first case can be done by using 
induction on the pair (n,j). 
 
(Base step) When j=2,  
 
HFC(n) (f2.HFC(n-1)∇f1.HFC(n-2)∇f3(fn-

2.FC(n-1)  
              ∇fn-1.FC(n-1)). 
 
(hypothesis) Assume that given relation satisfied 
for j≤n-3, and then 
 
HFC(n) (2HFC(n-2)∇HFC(n-3)∇fn-3.FC(n-2) 
              ∇fn-2.FC(n-3)∇fn-2.FC(n-1)∇fn-1.FC(n-
2)). 
(Concluding step) Hypothesis step can be used to 
obtain result of concluding step. 
 
HFC(n) (2HFC(n-2)∇HFC(n-3)∇fn-3.FC(n-2) 
              ∇fn-2.FC(n-3)∇fn-2.FC(n-1)∇fn-1.FC(n-2) 
        ([HFC(n-2)∇HFC(n-3)∇fn-3.FC(n-
2) 
              ∇fn-2.FC(n-3)]∇HFC(n-2)∇fn-2.FC(n-1) 
              ∇fn-1.FC(n-2)) 
        (HFC(n-1)∇HFC(n-2)∇fn-2.FC(n-
1) 
              ∇fn-1.FC(n-2)). 
 
Similar proof can be done for second case ♦ 
 
Theorem 11. HEFCk(n) has the embeddings 
seen in Fig. 6 for n≥5  (1≤k≤n-2). 
 
Proof. Proof of the first case can be done by 
using induction on the pair (n,j). 
 
(Base step) When j=4,  
 
HEFC1(n) (f4.HEFC1(n-3)∇f3.HEFC1(n-4) 
                  ∇(f1.ef1(n-1)+f2.ef1(n-3))EFC1(n-2)   
                  ∇(f2.ef1(n-2)+f3.ef1(n-4))EFC1(n-3) 
      ∇f1.ef1(n-2).EFC1(n-1)∇ 
f3.ef1(n-3). 
                  EFC1(n-4)). 

 
(Hypothesis) Assume that given relation satisfied 
for j≤n-4, and then 
 
HEFC1(n) (fn-4.HEFC1(5)∇fn-5.HEFC1(4) 
                 ∇(f1.ef1(n-1)+f2.ef1(n-3))EFC1(n-2)  
                 ∇(f2.ef1(n-2)+f3.ef1(n-4))EFC1(n-3) 
     ∇ f1.ef1(n-2).EFC1(n-1)∇ 
f3.ef1(n-3). 
                 EFC1(n-4)). 
 
(Concluding step) Hypothesis step can be used to 
obtain result of concluding step. 
 
HEFC1(n) (fn-4.HEFC1(5)∇fn-5.HEFC1(4) 
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  (fn-3.HEFC1(4)∇fn-4.HEFC1(3) 
                ∇(f1.ef1(n-1)+f2.ef1(n-3))EFC1(n-2) 
                ∇(f2.ef1(n-2)+f3.ef1(n-4))EFC1(n-3) 
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                ∇(fn-5.ef1(5)+fn-4.ef1(3))EFC1(4) 
                ∇f1.ef1(n-2).EFC1(n-1) 
    ∇fn-4.ef1(4).EFC1(3)). 
Similar proof can be done for second case ♦ 
 
Theorem 12. Assume that n≥7 and HFC(n) is a 
hierarchical Fibonacci cube, then the the 
embeddings of HFC(n) depend on the value of j 
either odd or even..  When j is even, the 
embeddings in Fig. 7 can be obtrained. 
 
Proof. If we prove first case, then all other cases 
can be proved in similar way. When k is even, 
2n-j+1 is odd and 2n-j is even. Due to values of j, 
first case is based on the following recurrences. 
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All other cases can be proved in similar ways ♦ 
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Theorem 13. Assume that n≥7 and HEFCk(n) is 
a hierarchical extended Fibonacci cube, then the 
embeddings of HEFCk(n) depend on the value of 
j either odd or even. When j is even, the 
embeddings in the Fig. 8 can be obtained. 
 
Proof. If we prove first case, then all other cases 
can be proved in similar way. When j is even, 
2n-j+1 is odd and 2n-j is even. Due to values of j, 
first case is based on the following recurrences. 
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All other cases can be proved in similar ways ♦ 
 
Theorem 14. Assume that n≥5 and HFC(n) is a 
hierarchical Fibonacci cube, then the embeddings 
in Fig.9 can be obtained (j is odd). 
 
Proof. HFC(n)s are based on Fibonacci series 

. This series has the 
following recursive properties (for 2≤j≤n-3). 
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Thus, HFC(n)s can be also constructed in same 
manner (fms are used for HFC(n)s;  fs and fr are 
used for FC(n)s ) ♦ 
 
Theorem 15. Assume that n≥7 and HEFCk(n) is 
a hierarchical extended Fibonacci cube. The 
embeddings in the Fig.10 can be obtained, when 
j is odd. 

 
Proof. If we prove first case, then all other cases 
can be proved in similar way. When j is odd, 2n-
j+1 is even and 2n-j is odd. Due to the values of 
j, first case is based on the following recurrences. 
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All other cases can be proved in similar ways ♦ 
 
Theorem 16. Assume that n≥7 and HFC(n) is a 
hierarchical Fibonacci cube. Then embeddings in 
the Fig. 11 are valid, while j is odd.  
 
Proof. If we prove first case, then all other cases 
can be proved in similar way. When j is odd, 2n-
j+1 is even and 2n-j is odd. Due to values of j, 
first case is based on the following recurrences. 
 
j is odd: First case is based on the recurrence 
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All other cases can be proved in similar ways ♦ 
 
Theorem 17. Assume that n≥5 and HEFCk(n) is 
a hierarchical extended Fibonacci cube. The 
embeddings in Fig.12 are valid for HEFCk(n), 
while j is odd. 
 
 

6. CONCLUSION AND FUTURE 
RESEARCH 
The constructed graphs HFC(n), HEFC1(n), …, 
HEFCk(n) are special proper subgraphs of 
HCN(n-2,n-2) for k<n-1. HEFCk(n)s can be 
constructed recursively from HEFCk(n-1), 
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HEFCk(n-2), EFCk(n-1), and EFCk(n-2) and 
HFC(n)s can be constructed recursively from 
HFC(n-1), HFC(n-2), FC(n-1), and FC(n-2). The 
obtained graphss are more sparse than HCN(n-
2,n-2) and they have self-similarity property. The 
properties of HFC(n), HEFC1(n), …, HEFCk(n) 
can be summarized as follows. 

• The upper bound for the shortest paths in one 
of HFC(n), HEFC1(n), …, HEFCk(n) and 
diameter of HFC(n), HEFC1(n), …, HEFCk(n) 
are 2n-3. 
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Figure 1 (a) HCN(2,2), (b) HCN(3,3). 
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Figure 2. HEFC1(5)s: (a) Deriving HEFC1(5) from HCN(3,3); (b) HEFC1(5). 
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Figure 3. HEFC1(6). 
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Figure 4. Disjoint paths between nodes (101,000) and (000,001) 
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Figure 5. Decomposition of HEFC1(n): decomposition of HEFC1(5). 
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Figure 6. The embeddings of HEFCk(n) for n≥5 (Theorem 11). 
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Figure 7. Embeddings of HFC(n) for even values of j ( Theorem 12). 
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Figure 8. Embeddings of HEFCk(n) for even values of j (Theorem 13). 
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Figure 9. Embeddings of HFC(n) for odd values of j (Theorem 14). 
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Figure 10. Theorem 15. 
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Figure 11. Theorem 16. 
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Figure 12. Theorem 17. 
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