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Abstract: In this paper, an algorithm has been proposed to design lumped element delay equalizers which is 

considered as a single block as opposed to the existing methods in literature. Then after obtaining the desired 

delay performance, the designed delay equalizer is divided and realized as cascaded first-order and/or second-

order all-pass circuits. An example is given to illustrate the utilization of the proposed algorithm. 
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1. Introduction 
 

One of the very important parts of analog filter 

design is the group delay correction. In modern 

communications and signal processing 

applications often filters are required, which must 

satisfy group delay specifications. In literature, 

there are several approaches to design group delay 

equalizers for analog filters [1-2]. One of the most 
common methodologies is to employ a group 

delay equalizer (all-pass) to correct the group 

delay of an amplitude function. 

For practical applications, first and second 

order group delay equalizer tables are often used 

[3], analytical methods are not often preferred. 

In literature, different design procedures 

have been developed to get the optimum group 

delay response, such as genetic algorithms [4], 

adaptive filters [5], quasi-all-pass filters [6] and 

all-pass based equalizers [7], [8-13]. All-pass 

filters are very important and useful circuits 
employed in several applications [8], [14]. 

In this paper, a semi-analytic approach (real 

frequency technique, RFT) has been utilized to 

design delay equalizers. After obtaining describing 

polynomials, delay equalizer has been realized as 

cascaded first-order and/or second-order all-pass 

two-port circuits. So in the next section, 

characterization of lossless two-ports is 

summarized, then realization of all-pass sections is 

explained. 

2. Characterization of lossless two-ports 
 

Assume that the delay equalizer is a lumped-

element lossless two-port like the one shown in Fig. 1, 

then the scattering matrix can be written as [15]: 

)()(

)()(

)(

1

)()(

)()(
)(

2221

1211

phpf

pfph

pgpSpS

pSpS
pS        (1) 

where )(),( phpg  and )(pf  are real polynomials in 

complex frequency jp ,  is a constant and 

)(pg  is a strictly Hurwitz polynomial. The three 

polynomials )(),( phpg , )(pf  are related by the 

Feldtkeller equation as 

)()()()()()( pfpfphphpgpg .               (2) 

 

 
Figure 1. Lossless two-port terminated by resistance R 

 

From (1), the transfer scattering coefficient )(21 pS  

is written as 
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where the polynomial )(pf  is formed by using the 

transmission zeros of the two-port. 
     An all-pass circuit has a constant gain curve for all 

frequencies. To be able to realize this property, the 

poles and zeros of the transfer function must be placed 
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symmetrically about the j -axis. There is a zero 

in the right-half plane for each pole in the left-half 

plane. Namely all-pass circuits are non-minimum 

phase. 

     Since a delay equalizer is an all-pass circuit, 

then the polynomial )(pf  must be selected as 

)()( pgpf . As a result, the polynomial )(ph  is 

zero from (2), i.e., 0)(ph . So to be able to 

completely describe a delay equalizer, it is enough 

to have the Hurwitz polynomial )(pg , then the 

element values of the delay equalizer can be 

calculated via the polynomial )(pg . So in the next 

section, let us see the realizations of all-pass 

transfer functions. 

 

3. Realizations of all-pass transfer 

functions 
 

Consider the circuit of Fig. 2. Let the all-

pass transfer function )(21 pS  be written as from 

(3) under the condition of )()( pgpf : 

 

 
Figure 2. Lossless two-port as an all-pass circuit 
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where A  is the gain, )(pg  is a strictly Hurwitz 

polynomial; ia , ib  and ic  are positive real 

constants; and m  and n  are the even and odd 

parts of )(pg , respectively. 

    Let us calculate the frequency response of the 

circuit as: 
)()(

2121 )()( jj AeejSjS  

with the phase given by: 
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where 

jpm

n
jX )( .         (6) 

Since mn /  is an LC  impedance function 

[16], )(X  is the reactance function of mn / . 

The group delay can easily be found as: 
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Figure 3. Lossless two-port as an all-pass circuit 

 

   In literature, there are standard circuit configurations 

to realize all-pass transfer functions. One of them is 
the constant-resistance lattice arrangement seen in Fig. 

3. If the condition 2RZZ BA  is satisfied, then the 

transfer function can be written as: 

A
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ZR
pS

2

1
)(21 .                (8) 

    If the impedance )(pZ A  is LC , then the transfer 

function is all-pass type. For this circuit, the input 

impedance is R  when output is terminated in R . As a 
result, any number of such lattice circuits can be 

cascaded and the overall transfer function is simply the 

multiplication of individual all-pass transfer functions. 

    A first-order section is realized, if AZ  is an inductor 

and BZ  is a capacitor with the following conditions: 
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and in this case, the all-pass transfer function is 

pLR

pLR
pS

2
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    A second-order section can be realized, if AZ  is an 

inductor AL  in parallel with a capacitor AC , and BZ  

is an inductor BL  in series with a capacitor BC , then 

the all-pass transfer function is 
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and the elements have the following relations 

2RCL AB ,  
2R

L
C A

B .            (12) 

   The constant-resistance lattice has one disadvantage; 

its input and output do not have a common ground. But 

a constant-resistance bridged-T shown in Fig. 4 is a 

second-order all-pass circuit, and its input and output 
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have a common ground, where the elements are 

related to those of the constant-resistance lattice as 

follows: 

ALL1 , 2/)( 2
2 AA LRCL     (13a) 

2/1 ACC , 2
2 /2 RLC A     (13b) 

 

 
Figure 4. Second-order, constant-resistance bridged-T 

all-pass arrangement 

 

    In some situations, the inductor 2L  can be 

negative. In those cases, the three inductors must 

be replaced by coupled inductors. The bridged-T 

circuit is also a constant-resistance two-port. 

Namely any number of them can be cascaded in 

the same way as constant-resistance lattice. 

     

Now we are ready to propose the following RFT 

based delay equalizer design algorithm. A similar 

approach can be developed to design distributed 

element delay equalizers, if the frequency variable 

p  is changed with the frequency variable  via 

Richards’ transform ptanh , where  is the 

delay of the distributed element. 

 

4. Proposed design algorithm 
 

Inputs: 

 

 tdc  : Delay data of the circuit in the interested 

frequency band. 

 nGGGG ,,,, 420   : Coefficients of the even 

polynomial 
n

n pGpGGpgpgpG 2
20

2 )()()( . 

 td  : Desired total delay of the cascaded overall 

system in the interested frequency band. 

 LL f2  and HH f2  : Lower and 

upper frequencies of the band where td  is 

desired. 

 normf  and normR  : Frequency and impedance 

normalization number, respectively. 

  : The stopping criteria of the sum of the 

squared errors. 

 

Computational Steps: 

Step 1: Normalize the frequency band as follows: 

norm

L
normalizedL

f

f
)(  and 

norm

H
normalizedH

f

f
)( . 

Step 2: Form polynomial )( pg  from initialized even 

polynomial )()()( 2 pgpgpG . Since )(pg  is a 

strictly Hurwitz polynomial, it is constructed from the 

left-half plane roots of )( 2pG . 

Step 3: Form the even ( m ) and odd ( n ) parts of )(pg  

Step 4: Calculate 
jpm

n
jX )( . Then 

)(arctan2)( X  and 
d

d
D )( . 

Alternatively, delay of the equalizer can be calculated 

as 
d

dX

X
D

)(

)(1

1
2)(

2
. 

Step 5: Calculate )( Dtdctd , and 
2

c . 

If c , calculate the element values as follows: 

Here the crux of the idea is based on the well-known 

theorem [17,18] on all-pass circuits: Any all-pass 

circuit is equivalent to a number of first- and second-

order all-pass circuits in cascade. 

So if the order of the polynomial )(pg  is even, it can 

be realized as cascaded second-order bridged-T all-

pass circuits. If the order is odd, a first-order all-pass 

circuit must also be cascaded. Element values are 

calculated via (11), (12) and (13) for second-order 

bridged-T all-pass circuits, and via (9) and (10) for 

first-order all-pass circuits. Now it is necessary to 

denormalize the element values as 

norm

normn

f

RL
L

2
 and 

normnorm

n

Rf

C
C

2
, where nL  and 

nC  are normalized inductor and capacitor values, 

respectively. If c , go to the next step, otherwise, 

stop. 

Step 6: Change the initial coefficients of polynomial 

)( 2pG  via any optimization routine (in the example, 

Nelder–Mead optimization method is used. This method 

is a commonly used nonlinear optimization technique, 
which is a well-defined numerical method for 

minimizing an objective function in a many-

dimensional space), and go to Step 2. 

 

5. Example 

 
Figure 5. A third-order band-pass filter [16] 

     

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Numerical_method
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Space
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In this example, delay equalization of a band-pass 

filter given in [16] is solved via the proposed 

algorithm. As in [16], two second-order bridged-T 

all-pass circuits are connected to the filter to correct 

the delay. Lower and upper normalized corner 

frequencies are 5.3)(normalizedL  and 

5.4)(normalizedH , respectively. Delay data of the 

filter ( tdc ) in the frequency band is given in Table 

I. 

 
Table I. Delay data of the given band-pass filter 

 (sec)tdc  

3.5 5.3079 

3.6 6.1171 

3.7 5.5152 
3.8 4.6687 

3.9 4.1947 

4.0 4.0000 

4.1 3.9855 

4.2 4.1787 

4.3 4.6021 

4.4 4.9738 

4.5 4.6942 

 

    Desired total delay ( td ) in this band is selected 

as 9.4 second. Initial coefficients of the 

polynomial )( 2pG  are calculated from the initials 

used in [16], so 

13159026705

3.20751604.73)(

2

462

p

pppG
. 

After applying the proposed algorithm, the 

following polynomial )(pg  is obtained, 

8405.3620009.51

3879.407603.2)( 234

p

ppppg
. 

This polynomial can be written as a 

multiplication of two second-order polynomials as 

)1539.160164.1(

)4614.227439.1()(

2

2

pp

pppg
. 

   

 

 So element values of the constant-resistance 

bridged-T all-pass circuits can be calculated as 

explained in Section III. Element values of the first 

section are 0776.01L , 2479.02L , 

2867.01C , 1552.02C , and those of the 

second section are 0629.01L , 4605.02L , 

4920.01C , 1258.02C  . Element values found 

in [16] are as follows: For section 1: 0777.01L , 

248.02L , 2869.01C , 1554.02C , and for 

section 2: 0623.01L , 4653.02L , 

4965.01C , 1246.02C . The given filter and the 

designed all-pass circuits are connected as seen in Fig. 

6. 

 

 
Figure 6. Band-pass filter and cascaded all-pass circuits 

 

   Delay curves of the band-pass filter and overall 

system are given in Fig. 7. In the same figure, 
performance of the overall system given in [16] is added 

for comparison. It is seen that the delay in the pass-band 

is nearly constant with a maximum fluctuation less than 

10% of the average delay in the pass-band as in [16]. 

 

 
Figure 7. Delay responses of the band-pass filter and overall 

system 

 

6. Conclusions 
 

    Here an alternative approach to design lumped-

element delay equalizer is proposed. During the 

design, delay equalizer is assumed to be a lossless two-

port. The describing polynomial )(pg  is optimized 

until getting the desired total delay performance of the 

overall cascaded system. Then the polynomial )(pg  is 

written as the product of second-order and/or first-

order polynomials. Finally the element values are 
calculated. 

 

    In literature, first-order and/or second-order all-pass 

sections are designed separately. Namely their delay 

responses calculated separately. But in the proposed 

approach, the delay equalizer is considered as a single 

block, so only one delay response is calculated during 

the optimization process. After obtaining the desired 

performance, the single block is divided as first-order 

and/or second-order sections. 
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