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ABSTRACT

In this work, the exponential and the Cayley maps, from the Lie algebra se(2) of the planar motion
group SE(2), to the group itself are studied. The comparison between these maps on SE(2) is given
by using the Rodrigues vector. A three joint mechanism is discussed as an application.
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1. Introduction

Technological advancements force us to use computers in many fields. The usage of matrices in computer
sciences is extremely important, since the mathematical algorithms in computer programmings are widely
done by matrices. However the classical kinematic works are oftenly ’handmade’ procedures. In simple terms
the steps are; finding proper equations to a given problem, derivations of these equations, and obtain solutions
to the problem. It is natural to use computer programs in these steps. ’Lie Group’ and ’Lie Algebra’ structures
use direct matrix methods. If we introduce these structures to kinematics, computer methods may be applicaple
for kinematic problems.

In this sense, the comparison between Cayley and Exponential maps in planar motion is given in terms of
a well known subject, the Rodrigues vector[2,6,14]. The maps are defined from se(2) to SE(2). As it is known,
Rodrigues vector characterizes the spatial motion (it is the direction of axis of rotation at that moment). For this
reason planar motion group is examined by means of Rodrigues vector by extanding the plane to the Euclidean
three space.

Some applications of Lie groups and Lie algebras to robotics are discussed in the following references.
Selig’s lecture notes [11] contains the basic knowledge from Chasles’s theorem, lower Reuleaux’s pairs to
the Rodrigues formula. For the usage of Lie groups to the large rotations, it is worth to see [1]. The relation
between the derivatives in Lie algebra and classical centrode curves of a rigid body motion is established
in [8] and point-plane constraints are studied in [12]. The Lie group theory applications in computer science
is constituted in [5, 9]. One can examine the configuration manifolds for mobile robots [13, 15, 16], for the
extensive usage of this context. Cayley transformation is well known in SO(3), and it is generalized to SE(3)
by Selig. He expressed the comparison between the Cayley map and the exponential map in SE(3) [7].

In the view of Selig’s work [7] we investigated similar decisions in the planar motion group SE(2) and a new
result, equation (4.7), is derived. In the last section, as an application, the length of Rodrigues vector and the
position of end effector in a three joint mechanism are graphically signified.

2. The Matrix Lie Group in the Plane Kinematics

Planar motion group SE(2) is the matrix Lie group in the plane kinematics. It can be represented as,
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S =

 cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 =

(
R t
0 1

)
.

where R is a rotation matrix and t is translation vector in Euclidean space E2. Here S defines a general rigid
transformation, which is a rotation about a fixed point, the center of rotation and a traslation along a vector
~t = (tx, ty)T .

If ~q = (qx, qy)T , is the center of rotation, then rotation about this point is given by the conjugation,

S =

(
I2 q
0 1

)(
R 0
0 1

)(
I2 −q
0 1

)
=

(
R (I2 −R)q
0 1

)

=

 cos θ − sin θ qy sin θ + qx(1− cos θ)
sin θ cos θ qy(1− cos θ)− qx sin θ

0 0 1

 =

(
R t
0 1

)
,

where I2 is the 2× 2 identity matrix. Thus,

(I2 −R)~q = ~t,

yields the fixed point or center of rotation q, where we avoid taking a pure translation, i.e. R 6= I2(for details
see [8, 9]).

3. The Exponential and The Cayley Maps

Let G be a matrix Lie group and g be its Lie algebra.

Definition 3.1. The exponential map, exp : g→ G, can be defined by the ordinary series;

eΩ =

∞∑
k=0

Ωk

k!
.

where Ω is an n× n matrix.

Consider the exponential map on rotation group SO(2), which is the set of 2× 2 real orthogonal matrices
with determinant +1. Its Lie algebra so(2) consists of 2× 2 real skew-symmetric matrices. Let

Ω =

(
0 −θ
θ 0

)
be an element of so(2). We need to find inductive formula expressing the powers Ωn. If(

0 −θ
θ 0

)
= θ

(
0 −1
1 0

)
then

Ω2 = −θ2I2,

Ω3 = −θ3J2,

Ω4 = θ4I2,

where

J2 =

(
0 −1
1 0

)
,
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Therefore,

Ω4n = θ4nI2,

Ω4n+1 = θ4n+1J2,

Ω4n+2 = −θ4n+2I2,

Ω4n+3 = −θ4n+3J2.

So one can obtain the Lie group element,

eΩ = I2 +
θ

1!
J2 −

θ2

2!
I2 −

θ3

3!
J2 +

θ4

4!
I2 +

θ5

5!
J2 −

θ6

6!
I2 −

θ7

7!
J2....

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ ...

)
I2 +

(
θ

1!
− θ3

3!
+
θ5

5!
− θ7

7!
+ ...

)
J2

= cos θI2 + sin θJ2 =

(
cos θ − sin θ
sin θ cos θ

)
.

eΩ is an orthogonal matrix of determinant +1, which defines rotation as it is expected.
To investigate the exponential map on SE(2) we have to find the Lie algebra element close to the identity by

differentiating the Lie group element S at θ = 0. Hence

d

dθ
S
∣∣
θ=0

= K,

or

K =
d

dθ

 cos θ − sin θ qy sin θ + qx(1− cos θ)
sin θ cos θ qy(1− cos θ)− qx sin θ

0 0 1

∣∣∣∣
θ=0

=

 0 −1 qy
1 0 −qx
0 0 0

 =

(
J2 −J2q
0 0

)
,

where K satisfies the following cubic equation;

K3 +K = 0.

A general element of the Lie algebra can be written as θK (see [9]). Thus

eθK = I3 +
θ

1!
K +

θ2

2!
K2 − θ3

3!
K − θ4

4!
K2 +

θ5

5!
K +

θ6

6!
K2 − θ7

7!
K....

= I3 +

(
θ

1!
− θ3

3!
+
θ5

5!
− θ7

7!
+ ...

)
K +

(
1− 1 +

θ2

2!
− θ4

4!
+
θ6

6!
− ...

)
K2

= I3 + sin θK + (1− cos θ)K2,

where I3 is the 3× 3 identity matrix and this formula obeys the familiar form of the Rodrigues formula in
SO(3). Hence we obtain,

eθK =

 cos θ − sin θ qy sin θ + qx(1− cos θ)
sin θ cos θ qy(1− cos θ)− qx sin θ

0 0 1

 . (3.1)

Similar to the exponential map, there exists a rational polynomial map from the skew-symmetric matrices to
the orthogonal matrices, which is known as the Cayley map.

Definition 3.2. Let A ∈ g be an n× n skew-symmetric matrix then the map, Cay : g→ G, to the group of
orthogonal matrices is called the Cayley map, where

Cay(A) = (In +A)(In −A)−1,

and In is an n× n identity matrix.
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Let us define a skew symmetric matrix A as,

A =

(
0 −a12

a12 0

)
, (3.2)

then
Cay(A) = (I2 +A)(I2 −A)−1, (3.3)

and the inverse of (I2 −A) can be written as

(I2 −A)−1 = I2 +A+A2 +A3 + ..., (3.4)

(3.4) converges in some neighborhood of A = 0. Since A satisfies its charachteristic equation,

A2 + a2
12I2 = 0. (3.5)

From (3.4) and (3.5) we have

(I2 −A)−1 =
1

1 + a2
12

(I2 +A).

Therefore

Cay(A) = (I2 +A)(I2 +A)
1

1 + a2
12

=

(
1− a2

12

1 + a2
12

)
I2 +

(
2

1 + a2
12

)
A.

(3.6)

The result (3.6) in SO(2) can be extended to the group of planar motion SE(2). Let M be an element of SE(2);

M =

(
< u
0 1

)
,

where < is a 2× 2 rotation matrix and u = (u1, u2)T is a translation vector in E2. On the other hand a Lie algebra
element can be written as,

m =

(
A v
0 0

)
,

where A is an 2× 2 skew-symmetric matrix and v = (v1, v2)T is a velocity vector. Cayley map is originally
defined on skew-symmetric matrices. Hovewer using formula (3.3) one can extend Cayley map to SE(2), by

Cay3(m) = (I3 +m)(I3 −m)−1,

subscript 3 denotes the 2× 2 representation of SE(2). m satisfies its charachteritic equation,

m3 + a2
12m = 0,

This leads to the formula,

Cay3(m) = (I3 +m)(I3 −m)−1

= I3 +
2

1 + a2
12

(
m+m2

)

=


1− 2a212

1+a212
− 2a12

1+a212

v1 − a12v2

1 + a2
12

2a12
1+a212

1− 2a212
1+a212

a12v1 + v2

1 + a2
12

0 0 1

 .
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4. Comparison Between The Exponential Map and The Cayley Map

The equivalance of the range spaces of Cayley and exponential maps motivates us to compare them.
Therefore eθK = Cay3(m). This implies

 cos θ − sin θ qy sin θ + qx(1− cos θ)
sin θ cos θ qy(1− cos θ)− qx sin θ

0 0 1

 =


1− 2a212

1+a212
− 2a12

1+a212

v1 − a12v2

1 + a2
12

2a12
1+a212

1− 2a212
1+a212

a12v1 + v2

1 + a2
12

0 0 1

 .

Hence from the rotation parts of the matrices;

1− 2a2
12

1 + a2
12

= cos θ

2a12

1 + a2
12

= sin θ.

Thus,

a12 = tan(
θ

2
). (4.1)

As a result we obtain the relation between the magnitude of the eigenvalue of a skew symmetric matrix A
(which is used in the Cayley map), and the tangent of the half of the relation angle θ.

From the translation parts;

v1 − a12v2

1 + a2
12

= qy sin θ + qx(1− cos θ)

a12v1 + v2

1 + a2
12

= qy(1− cos θ)− qx sin θ.

Hence we obtain,

qx = − v2

2a12

qy =
v1

2a12
.

This is the result which gives the center of rotation, (qx, qy), of the planar motion group SE(2) in terms of the
velocity vector (v1, v2) and a12 , of the tangent space se(2).

At this moment we would like to discuss the kinematic meaning of a12. If we take a rigid body which moves
on a plane (for simplicity let us take xy-plane), like a mobile robot, then the motion of this rigid body only
relates with SE(2). So any point with position vector ~r1 on the rigid body rotates to ~r2 around the rotation axis
by the angle θ,while the projection ~r′1 rotates to ~r′2 with the same angle θ where ~r′1 and ~r′2 are projections of ~r1

and ~r2 on to the xy-plane respectively.
Now we import a vector~b, which is parallel to the rotation axis (z-axis here) and well known by the Rodrigues

vector, to our computations [6]. From Fig.1 it follows that

tan

(
θ

2

)
=

|~r′2−~r′1|
2

|~r′1+~r′2|
2

=
|~r′2 − ~r′1|
|~r′1 + ~r′2|

. (4.2)

Since the diagonals of the rhombus are perpendicular to each other

(~r′1 − ~r′2)T .(~r′1 + ~r′2) = 0, (4.3)

where ~r′2 = R~r′1. So
~r′2 − ~r′1 = R~r′1 − ~r′1 = (R− I)~r′1,

~r′2 + ~r′1 = (R+ I)~r′1,
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θ

b⃗

r⃗2

r⃗1

r⃗′
2

r⃗′
1

θ

Figure 1. The instantaneous rotation axis for a rigid body and the rhombuses drawn by ~r1, ~r2 and ~r′1, ~r′2.

~r′1 = (R+ I)−1(~r′2 + ~r′1),

(~r′2 − ~r′1) = (R− I)(R+ I)−1(~r′2 + ~r′1). (4.4)

The matrix A = (R− I)(R+ I)−1 in (4.4) has the property that for a general vector ~n on xy-plane (it is easy to
find ~r′1 and ~r′2 such that ~r′1 + ~r′2 = ~n)). A.~n is perpendicular to ~n by (4.3).

Hence
~nTA~n =

∑
i,j

(aij + aji)ninj = 0, ∀~n ∈ E2, (4.5)

where aij are the entries of A. So aij = −aji, that is A is skew symmetric and can be taken as (3.2).
If we extend A to 3x3 matrix space and ~n to E3 by

A′ =

 0 −a12 0
a12 0 0
0 0 0

, n′ =

 n1

n2

0

 then

A′.~n′ = ~b× ~n′, (4.6)

where~b = (0, 0, a12) is the Rodrigues vector.
Finally from (4.1), (4.2) and (4.6)

|~b| = tan

(
θ

2

)
= |a12|. (4.7)

(4.7) is the relation which combines Rodrigues vector, the exponential map and the Cayley map.
On the other hand

~r′2 − ~r′1
|~r′2 − ~r′1|

= ~s×
~r′2 + ~r′1
|~r′2 + ~r′1|

~r′2 − ~r′1 =
|~r′2 − ~r′1|
|~r′2 + ~r′1|

~s× (~r′2 + ~r′1)

= |~b|~s× (~r′2 + ~r′1)

= (tan

(
θ

2

)
~s)× (~r′1 + ~r′2)

= |a12|~s× (~r′1 + ~r′2),

where ~s is the unit vector along ~b and the equation (4) is the Rodrigues formula for a planar displacement (for
the dual form see also [3, 4]).
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4.1. Application (Three-Link Mechanism)

Consider the three-link mechanism shown in Fig.2. This planar mechanism has three degrees of freedom to
specify the position of a link in a plane. We can use one point (x, y) ∈ E2 and angle θ to represent the position
and orientation of a link. The joint variables are θ1, θ2, θ3, and length of the links are just q1, q2, q3. By taking
θ1 = θ2 = θ3 = 0 we define a convenient home configuration. For a final position of manipulator the following
rotations are taken;

θ1

q1

θ2

q2

θ3

q3

Figure 2. A three-link planar manipulator

First rotate joint 3 by θ3 with center of rotation ((q1 + q2), 0);

A(θ3) =

 cos θ3 − sin θ3 (q1 + q2)(1− cos θ3)
sin θ3 cos θ3 −(q1 + q2) sin θ3

0 0 1

 .

Rotate joint 2 by θ2 with center of rotation (q1, 0);

A(θ2) =

 cos θ2 − sin θ2 q1(1− cos θ2)
sin θ2 cos θ2 −q1 sin θ2

0 0 1

 .

Finally rotate joint 1 by θ1 with center of rotation (0, 0);

A(θ1) =

 cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1

 .

Thus the effect of such a movement is given by the product of the three matrices;

A(θ1)A(θ2)A(θ3) =

 cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) lx
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) ly

0 0 1

 .

where the unknown variables lx and ly are given by;

lx = q1 cos θ1 + q2 cos(θ1 + θ2)− (q1 + q2) cos(θ1 + θ2 + θ3)

ly = q1 sin θ1 + q2 sin(θ1 + θ2)− (q1 + q2) sin(θ1 + θ2 + θ3).

The forward kinematics of the mechanism can be derived by the product of A(θ1)A(θ2)A(θ3), x
y
1

 =

 cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) lx
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) ly

0 0 1

 q1 + q2 + q3

0
1

 .
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Hence we find the kinematic equations;

x = q1 cos(θ1) + q2 cos(θ1 + θ2) + q3 cos(θ1 + θ2 + θ3)

y = q1 sin(θ1) + q2 sin(θ1 + θ2) + q3 sin(θ1 + θ2 + θ3)

θ = θ1 + θ2 + θ3.

Since the matrix multiplicationA(θ1)A(θ2)A(θ3) is the exponential matrix as the equation (3.1), we can compare
the matrix A(θ1)A(θ2)A(θ3) and the Cayley matrix (3). Then

a12 = tan

(
(θ1 + θ2 + θ3)

2

)
,

as in (4.1), and

u1 = q1 cos θ1 + q2 cos(θ1 + θ2)− (q1 + q2) cos(θ1 + θ2 + θ3)

u2 = q1 sin θ1 + q2 sin(θ1 + θ2)− (q1 + q2) sin(θ1 + θ2 + θ3), (4.8)

as in (4). The equation (4.7) gives the length of the Rodrigues vector and the equation (4.8) yields the position
of joints in the plane.

For a 3D-graph of length of the Rodrigues vector and the joint positions of three-link planar mechanism we
need two free variables. Taking θ1 constant we have θ2, θ3 free variables. Let we choose θ1 = π

4 , q1 = 8 ,q2 = 4,
q3 = 2, θ2, θ3 ∈

[
−π2 ,

π
4

]
. Hence we get

x = 4
√

2 + 4 cos(
π

4
+ θ2) + 2 cos(

π

4
+ θ2 + θ3)

y = 4
√

2 + 4 sin(
π

4
+ θ2) + 2 sin(

π

4
+ θ2 + θ3)

θ =
π

4
+ θ2 + θ3. (4.9)

(a) Length of Rodrigues vector (b) Joint positions

Figure 3. The length of Rodrigues vector and the location of joint positions with−π
2 ≤ θ2 ≤ π

4 (dark) and−π
2 ≤ θ3 ≤ π

4 (light).

Figure 3(a) represents the length of the Rodrigues vector~b depending on θ2 and θ3, and also figure 3(b) is the
joint positions with the same variables, θ2 and θ3. These two figures have information about the eigenvalue of
the Lie algebra element a12 and the position of the center of rotation, u1, u2, in the plane respectively.

5. Conclusions

Given a skew symmetric matrix, a Lie algebra element, one can obtain an orthogonal matrix, a Lie group
element, in the real n-space[2, 6, 14]. This is known as the Cayley transform. Also it is well known that the
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exponential map is another way to obtain orthogonal matrices from the skew symmetric matrices. So it is
natural way to think about a relation between the Cayley map and the exponential map. This is done in SE(3)
by Selig [7].

In this study we have found the comparison of the Cayley map and exponential map in SE(2) and also a
relation between the eigenvalue of the skew symmetric matrix and the Rodrigues vector is obtained and as an
application three joint mechanism is discussed graphically.
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