

Some results in metric fixed point theory

Eberhard Malkowsky ${ }^{\text {a }}$, Vladimir Rakocevic ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, State Unversity of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
${ }^{b}$ Department of Mathematics, Faculty of Mathematics and Sciences, University of Niš, Višegradska 33, 18000 Niš, Serbia

Abstract

This is a survey of results mainly in metric fixed point theory, including the Darbo-Sadovskii theorem using measures of noncompactness. Various different proofs are presented for some of the most important historical results. Furthermore many examples and remarks are added to illustrate the topics of the paper.

Keywords: Fixed point theorems, nonlinear analysis, contractions, measures of noncompactness, condensing operators
2010 MSC: 47H10, 54H25 .

1. Introduction

Fixed point theory is a major branch of nonlinear functional analysis because of its wide applicability. Numerous questions in physics, chemistry, biology, and economics lead to various nonlinear differential and integral equations.

There are two fundamental results, namely Banach's fixed point theorem and Darbos's fixed point theorem

The classical Banach contraction principle [2] of Banach's theorem is one of the most useful results in metric fixed point theory. Due to its applications in mathematics and other related disciplines, this principle has been generalized in many directions. Extensions of Banach's contraction principle have been obtained either by generalizing the distance properties of the underlying domain or by modifying the contractive condition on the mappings.

Darbo's fixed point theorem [17] of 1955 uses the condensing principle connected to Kuratowski's measure of noncompactness α [33] of 1930; it is a very important generalization of Schauder's fixed point theorem,

[^0]and includes the existence part of Banach's fixed point theorem. Other measures of noncompactness were introduced by Goldenštein, Goh'berg and Markus [GGM1], the ball or Hausdorff measure of noncompactness, which was later studied by Goldenštein and Markus [GGM2] in 1968, Istrăţesku [27] in 1972, and others. Apparently Goldenštein, Goh'berg and Markus were not aware of Kuratowski's and Darbo's work. It is surprising that Darbo's theorem was almost never noticed and applied until in the 1970's mathematicians working in functional analysis, operator theory and differential equations started to apply Darbo's theorem and developed the theory connected with measures of noncompactness. These measures of noncompactness are studied in detail and their use is discussed, for instance, in the monographs [AKP, 53, 3, 28, 34, 35].

2. Banach contraction principle

In this section we are going to study the famous Banach fixed point theorem, usually called the Banach contraction principle. This principle from 1922 marks the beginning of the fixed point theory in metric spaces.

We also present several different proofs of Banach's contraction principle
Definition 2.1. Let (X, d) be a metric space. A mapping $f: X \rightarrow X$ is a contraction if there exists some $q \in[0,1)$ such that

$$
\begin{equation*}
d(f x, f y) \leq q \cdot d(x, y), \text { for all } x, y \in X \tag{2.1}
\end{equation*}
$$

We observe that every contraction is a continuous mapping. The following theorem shows the existence and uniqueness of a fixed point of an arbitrary contraction on a complete metric space. It is important to mention that there exists a continuous mapping without fixed point property.

Theorem 2.2 (Banach; Banach contraction principle).
If (X, d) is a complete metric space and $f: X \rightarrow X$ is a contraction, then the mapping f has a unique fixed point in X.

Proof. Let $x_{0} \in X$ be arbitrary. We define a sequence $\left(x_{n}\right)$ in X such that $x_{n}=f\left(x_{n-1}\right)$ for $(n \in \mathbb{N}$, and prove that $\left(x_{n}\right)$ is a Cauchy sequence, hence convergent in the complete metric space X.
We obtain for any $n \in \mathbb{N}$,

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \leq q \cdot d\left(x_{n-1}, x_{n}\right) \\
& \leq \cdots \leq q^{n} \cdot d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

and therefore, if $m>n$,

$$
\begin{equation*}
d\left(x_{n}, x_{m}\right) \leq \sum_{k=n}^{m-1} d\left(x_{k}, x_{k+1}\right) \leq \sum_{k=n}^{m-1} q^{k} d\left(x_{0}, x_{1}\right) \leq \frac{q^{n}}{1-q} d\left(x_{0}, x_{1}\right) \tag{2.2}
\end{equation*}
$$

Since $0 \leq q<1$, it follows that $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$, hence $\left(x_{n}\right)$ is a Cauchy sequence. Moreover, X is a complete metric space, and so there exists some $x \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$.
We show $f(x)=x$ by estimating $d\left(x_{n}, f(x)\right)$ for $n \in \mathbb{N}$;

$$
0 \leq d\left(x_{n}, f(x)\right)=d\left(f\left(x_{n-1}\right), f(x)\right) \leq q \cdot d\left(x_{n-1}, x\right)
$$

implies $\lim _{n \rightarrow \infty} d\left(x_{n}, f(x)\right)=0$, and by the uniqueness of the limit of any convergent sequence in a metric space, we conclude $f(x)=x$.
It remains to prove that such x is uniquely determined. We assume $f(y)=y$ for some $y \in X, y \neq x$, then

$$
d(x, y)=d(f(x), f(y)) \leq q \cdot d(x, y)
$$

and $(1-q) d(x, y) \leq 0$, which contradicts our assumption because $0<1-q \leq 1$.

Corollary 2.3. Let $f: X \rightarrow X$ be a q-contraction on a complete metric space X and $z \in X$ be the fixed point of the function f. Then we have
(1) the sequence $\left(f^{n}(x)\right)$ converges for each $x \in X$ and converges to z;
(2) $d(x, z) \leq 1 /(1-q) \cdot d(x, f(x))$;
(3) $d\left(f^{n}(x), z\right) \leq q^{n} /(1-q) \cdot d(x, f(x))$;
(4) $d\left(f^{n+1}(x), z\right) \leq q \cdot d(f(x), x)$;
(5) $d\left(f^{n+1}(x), z\right) \leq q /(1-q) \cdot d\left(f^{n}(x), f^{n+1}(x)\right)$.

Proof. We only prove the second and third condition, the proofs of the other conditions are analogous.
(2) $d(x, z)=\lim _{n \rightarrow \infty} d\left(x, f^{n}(x)\right)$

$$
\begin{aligned}
\leq & \lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} d\left(f^{k}(x), f^{k+1}(x)\right) \\
& =\sum_{k=0}^{\infty} d\left(f^{k}(x), f^{k+1}(x)\right) \\
& \leq \sum_{k=0}^{\infty} q^{k} d(x, f(x)) \\
& =\frac{1}{1-q} \cdot d(x, f(x))
\end{aligned}
$$

(3) It follows from $f(z)=z$, that
$f^{n}(z)=z$, and from the first part of the prove, we have

$$
d\left(f^{n}(x), z\right)=d\left(f^{n}(x), f^{n}(z)\right) \leq q^{n} d(x, z) \leq \frac{q^{n}}{1-q} \cdot d(x, f(x))
$$

Remark 2.4. There exist various approaches to the Banach fixed point theorem, but the proof above gives a method of how to find the fixed point for a contraction f. It is also known as Picard's iteration method or fixed point iteration. It is based on the idea of defining a sequence of successive iterations. We start with any $x_{0} \in X$ and define $x_{n}=f\left(x_{n-1}\right)$ for $n \in \mathbb{N}$. The proof presented above guarantees the existence of a limit $\lim _{n \rightarrow \infty} x_{n}=x \in X$ such that $f(x)=x$. If we let $m \rightarrow \infty$ in 2.2 , then

$$
d\left(x_{n}, x\right) \leq \frac{q^{n}}{1-q} d\left(x_{0}, x_{1}\right)
$$

and this is an estimate for the error made by approximating the solution x by the $n-$ th iteration x_{n}.
We now present a few proofs of Theorem 2.2.
Proof of Theorem 2.2 (Joseph and Kwack [29]). Let $c=\inf \{d(x, f(x)): x \in X\}$. If $c>0$, then $c / q>c$ and there exists $x \in X$ such that

$$
d(f(x), f(f(x))) \leq q \cdot d(x, f(x))<c
$$

which is a contradiction. Hence we must have $c=0$. Let $\left(x_{n}\right)$ be a sequence in X such that $d\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. We show that $\left(x_{n}\right)$ is a Cauchy sequence, since

$$
d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, f\left(x_{n}\right)\right)+d\left(f\left(x_{n}\right), f\left(x_{m}\right)\right)+d\left(f\left(x_{m}, x_{m}\right)\right.
$$

implies

$$
(1-q) d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, f\left(x_{n}\right)\right)+d\left(x_{m}, f\left(x_{m}\right)\right)
$$

Hence there exists $p \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=p$, and $\lim _{n \rightarrow \infty} d\left(x_{n}, f\left(x_{n}\right)\right)=0 \operatorname{implies} \lim f\left(x_{n}\right)=p$. It follows from $d\left(f\left(x_{n}\right), f(p)\right) \leq q d\left(x_{n}, p\right)$ that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(p)$, hence $f(p)=p$. The uniqueness of the fixed point of the function f follows from the contractive condition of f.

Proof of Theorem 2.2 (Palais [42]). Let $x_{1}, x_{2} \in X$. Then we have

$$
d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, f\left(x_{1}\right)\right)+d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)+d\left(f\left(x_{2}\right), x_{2}\right)
$$

that is,

$$
(1-q) d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, f\left(x_{1}\right)\right)+d\left(f\left(x_{2}\right), x_{2}\right)
$$

Hence we obtain the fundamental contraction inequality

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right) \leq \frac{1}{1-q} \cdot\left[d\left(x_{1}, f\left(x_{1}\right)\right)+d\left(x_{2}, f\left(x_{2}\right)\right)\right], \text { for all } x_{1}, x_{2} \in X \tag{2.3}
\end{equation*}
$$

If x_{1} and x_{2} are fixed points of the function f, then it follows from 2.3 that $x_{1}=x_{2}$, that is, the contraction can have at most one fixed point.
Let $x \in X, n, m \in \mathbb{N}$, and $x_{1}=f^{n}(x)$ and $x_{2}=f^{m}(x)$. We obtain from (2.3)

$$
\begin{align*}
d\left(f^{n}(x), f^{m}(x)\right) & \leq \frac{1}{1-q} \cdot\left[d\left(f^{n}(x), f\left(f^{n}(x)\right)\right)+d\left(f^{m}(x), f\left(f^{m}(x)\right)\right)\right] \tag{2.4}\\
& \leq \frac{q^{n}+q^{m}}{1-q} \cdot d(x, f(x)) \tag{2.5}
\end{align*}
$$

Since $0 \leq q<1$, it follows that $\lim _{n \rightarrow \infty} q^{n}=0$, hence $d\left(f^{n}(x), f^{m}(x)\right) \rightarrow 0$ as $n \rightarrow \infty$ and $m \rightarrow \infty$. Therefore the Cauchy sequence $\left(f^{n}(x)\right)$ converges, that is, there exists $p \in X$ such that $\lim _{n} f^{n}(x)=p$. Because of the continuity of the function f, we have $f(p)=f\left(\lim _{n} f^{n}(x)\right)=\lim _{n} f\left(f^{n}(x)\right)=p$. We note that letting $m \rightarrow \infty$ in (2.4), we obtain

$$
\begin{equation*}
d\left(f^{n}(x), p\right) \leq \frac{q^{n}}{1-q} \cdot d(x, f(x)) \tag{2.6}
\end{equation*}
$$

Proof of Theorem 2.2 (Boyd and Wong [6]). We define $\varphi(x)=d(x, f(x))$ for $x \in X$. Since f is a contraction, the function $\varphi: X \rightarrow \mathbb{R}$ is continuous and $\varphi\left(f^{n}(x)\right) \rightarrow 0$ as $n \rightarrow \infty$, for each $x \in X$. We put

$$
C_{m}=\left\{x \in X: \varphi(x) \leq \frac{1}{m}\right\}
$$

It follows from the conditions above that C_{m} is a closed and nonempty subset of X for each $m=1,2, \ldots$. Now we estimate the diameter of the set C_{m}. Let $x, y \in C_{m}$. Then we have

$$
d(x, y) \leq d(x, f(x))+d(f(x), f(y))+d(f(y), y) \leq \frac{2}{m}+q d(x, y)
$$

hence

$$
\operatorname{diam} C_{m} \leq \frac{2}{m(1-q)}
$$

Since each C_{m} is a closed, nonempty subset of $X, C_{1} \supset C_{2} \supset C_{3} \supset \ldots$ and diam $C_{m} \rightarrow 0$ as $m \rightarrow \infty$, it follows by Cantor's intersection theorem $\bigcap_{m} C_{m}=\{\xi\}$.
Since $f\left(C_{m}\right) \subset C_{m}$ for each m, it follows that ξ is a fixed point of the function f, and clearly the fixed point is unique. (We note $f(\{\xi\})=f\left(\bigcap_{m} C_{m}\right) \subset \bigcap_{m} f\left(C_{m}\right) \subset \bigcap_{m} C_{m}=\{\xi\}$.)
We have for each $x \in X$

$$
d\left(f^{n}(x), \xi\right)=d\left(f^{n}(x), f^{n}(\xi)\right) \leq q^{n} d(x, \xi) \rightarrow 0(n \rightarrow \infty)
$$

Since

$$
d(x, \xi) \leq d(x, f(x))+d(f(x), f(\xi)) \leq d(x, f(x))+q d(x, \xi)
$$

it follows that

$$
d(x, \xi) \leq \frac{d(x, f(x))}{1-q}
$$

Hence we again have the estimate

$$
\begin{equation*}
d\left(f^{n}(x), \xi\right) \leq \frac{q^{n}}{1-q} \cdot d(x, f(x)) \tag{2.7}
\end{equation*}
$$

Corollary 2.5. Let S be a closed subset of a complete metric space (X, d) and $f: S \rightarrow S$ be a contraction. For an arbitrary point $x_{0} \in S$, the iterative sequence $x_{n}=f\left(x_{n-1}\right)(n \in \mathbb{N})$ converges to the fixed point of the mapping f.

The following example will show that the statement in Corollary 2.5 does not hold without the assumption that the set S is closed, in general.

Example 2.6. Let d be the natural metric on \mathbb{R} defined by $d(x, y)=|x-y|$ for all $x, y \in \mathbb{R}$, and $S=$ $B_{0}(1)=\{x \in \mathbb{R}:|x|<1\}$. Then the mapping

$$
f: S \rightarrow S \text { with } f(x)=\frac{x+1}{2}
$$

is a contraction without a fixed point in S.
Banach's fixed point theorem has wide and diverse applications, for instance, in solving various kinds of equations, inclusions, etc.

Example 2.7. If X is a Banach space, $A, B \in \mathcal{B}(X), A$ is an invertible operator and $\|B-A\| \cdot\left\|A^{-1}\right\|<1$, then the invertibility of B follows from Banach's fixed point theorem.

Proof. It is sufficient to show that, for any $y \in X$, the equation $B x=y$ has a unique solution $x \in X$. We choose an arbitrary point y in X. If $B x_{0}=y$ for some $x_{0} \in X$, then

$$
y=B x_{0}=(B-A) x_{0}+A x_{0} \text { and } A^{-1} y=A^{-1}(B-A) x_{0}+x_{0}
$$

We put $z=A^{-1} y$ and $C=A^{-1}(B-A)$. Then we have $x_{0}=z-C x_{0}$.
The idea is to show that the function $f: X \rightarrow X$ defined by $f(x)=z-C x$ for $x \in X$ is a contraction and x_{0} is its fixed point.
The following inequalities hold for all $x, y \in X$

$$
\|f(x)-f(y)\|=\|C(x-y)\| \leq\left\|A^{-1}\right\| \cdot\|B-A\| \cdot\|x-y\|
$$

Since $\left\|A^{-1}\right\| \cdot\|B-A\|<1, f$ is a contraction and x_{0} is the unique fixed point of f. Based on a few elements of an iterative sequence $\left(f^{n}(x)\right)$,

$$
z-C x, z-C(z-C x)=z-C x+C^{2} x, z-C x+C^{2} x-C^{3} x, \ldots
$$

we may assume, and then easily prove that, because of $\|C\|<1$, this sequence converges to $z-C x+C^{2} x-$ $C^{3} x+\cdots$.
We observe that if $A=I$ and $\|C\|<1$, then $I-C+C^{2}-C^{3}+\cdots$ is an inverse of $I+C$.
The following corollary shows a relation between f^{n} and f in the case when f^{n} is a contraction.
Corollary 2.8 (Bryant [10]). If (X, d) is a complete metric space and $f: X \rightarrow X$ is a mapping such that f^{n} is a contraction for some $n \geq 1$, then f has a unique fixed point in X.

Proof. By Banach's fixed point theorem, there exists a unique $z \in X$ such that $f^{n}(z)=z$. Since $f^{n}(f(z))=f\left(f^{n}(z)\right)=f(z)$, it follows that $f(z)=z$. Every fixed point of f is, at the same time, a fixed point of f^{n}, thus z is the unique fixed point of f.

As observed in [10], the mapping f mentioned in Corollary 2.8 need not be continuous as in Theorem 2.2 .

Example 2.9 (Bryant [10]). We define $f:[0,2] \rightarrow[0,2]$ by $f(x)=1$ for $x \in[0,1)$, and $f(x)=2$ for $x \in[1,2]$. Then $f^{2}(x)=2$ for $x \in[0,2]$ and $f^{2}:[0,2] \rightarrow[0,2]$ is a contraction although f is not continuous.

Since the proof of Banach's theorem is based on an iterative sequence for a point $x \in X$, the next reasonable step in the research was to check local properties and modify this result.

Theorem 2.10. Let (X, d) be a complete metric space and $B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}$ be the open ball in X for some $x_{0} \in X$ and $r>0$. Also let $f: B_{r}\left(x_{0}\right) \rightarrow X$ be a contraction, that is,

$$
\begin{equation*}
d(f(x), f(y)) \leq q \cdot d(x, y),\left(x, y \in B_{r}\left(x_{0}\right)\right) \text { for some } q \in[0,1) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(f\left(x_{0}\right), x_{0}\right)<(1-q) r \tag{2.9}
\end{equation*}
$$

Then the mapping f has a unique fixed point in $B_{r}\left(x_{0}\right)$.
Proof. We choose $r_{0} \in[0, r)$ such that 2.9 holds. Then $f: \bar{B}_{r_{0}}\left(x_{0}\right) \rightarrow \bar{B}_{r_{0}}\left(x_{0}\right)$, where $\bar{B}_{r_{0}}\left(x_{0}\right)$ is the closure of $B_{r_{0}}\left(x_{0}\right)$, since, for any $x \in \bar{B}_{r_{0}}\left(x_{0}\right)$,

$$
\begin{aligned}
d\left(f(x), x_{0}\right) \leq & d\left(f(x), f\left(x_{0}\right)\right)+d\left(f\left(x_{0}\right), x_{0}\right) \\
& \leq q \cdot d\left(x, x_{0}\right)+(1-q) r_{0} \leq r_{0}
\end{aligned}
$$

Hence f has a unique fixed point $z \in \bar{B}_{r_{0}}\left(x_{0}\right)$. It easily follows from (2.8) that z is the unique fixed point of f in $B_{r}\left(x_{0}\right)$.

3. Darbo's fixed point theorem

If the contractive condition of f in Theorem 2.2 is relaxed, that is, if we consider so-called nonexpansive mappings f, that is, functions $f: X \rightarrow X$ satisfying

$$
d(f(x), f(y)) \leq d(x, y) \text { for all } x, y \in X
$$

then Banach's fixed point theorem need no longer hold.
In 1965, Browder proved a fixed point theorem for nonexpansive maps.
Theorem 3.1 (Browder's fixed point theorem). Let X be a Banach space, C be a convex and bounded subset of X and $T: C \rightarrow C$ be a nonexpansive map. If X is either a Hilbert space, or a uniformly convex or a reflexive Banach space, then T has a fixed point.

This result uses the convexity hypothesis which is more usual in topological fixed point theory, and the geometric properties of Banach spaces commonly used in linear functional analysis.

The following Brouwer fixed point theorem should be considered in a different setting.
Theorem 3.2 (Brouwer's fixed point theorem). Every continuous map from the closed unit ball of \mathbb{R}^{n} into itself has a fixed point.

Remark 3.3. In the case of one variable, the Brouwer fixed point theorem is the following:
Every continuous function of the interval $[-1,1]$ onto itself has a fixed point.
or equivalently
Every continuous function of the interval $[-1,1]$ onto itself intersects the main diagonal at some point.

One cannot expect uniqueness of the fixed point in Brouwer's theorem (Theorem 3.2), in general. So we must consider the non-empty set $\mathcal{F}(f)$ of fixed points of a function f. If f is continuous, then the set

$$
\mathcal{F}(f)=\operatorname{ker}(f-\mathrm{id})=(f-\mathrm{id})^{-1}(\{0\}), \text { where id is the identity, }
$$

is closed. It is natural to study what other properties the set $\mathcal{F}(f)$ has. The following theorem shows that no other special features can be inferred, since we will see that for any given non-empty closed subset of the closed unit ball $\bar{B}_{1}^{n}(0)$ of Euclidean \mathbb{R}^{n} there exists a continuous function $f: \bar{B}_{1}^{n}(0) \rightarrow \bar{B}_{1}^{n}(0)$ which has $\mathcal{F}(f)$ as the set of its fixed points.
Theorem 3.4. Let $F \neq \emptyset$ be a closed subset of $\bar{B}_{1}^{n}(0)$. Then there exists a continuous function $f: \bar{B}_{1}^{n}(0) \rightarrow$ $\bar{B}_{1}^{n}(0)$ with $F=\mathcal{F}(f)$.

Proof. For every $x \in \bar{B}_{1}^{n}(0)$, let $d(x, F)=\inf \{\|x-y\|: y \in F\}$. Obviously this function is continuous. We define the function $f: \bar{B}_{1}^{n}(0) \rightarrow \bar{B}_{1}^{n}(0)$ by

$$
f(x)= \begin{cases}x-d(x, F) \frac{x-x_{0}}{\left\|x-x_{0}\right\|} & \left(x \neq x_{0}\right) \\ x_{0} & \left(x=x_{0}\right)\end{cases}
$$

where x_{0} is an arbitrary point in F.
It is easy to show that f is well defined and continuous. Moreover $\mathcal{F}(f)=F$ and the theorem is proved.
An important generalization of Brouwer's fixed point theorem was obtained by Schauder.
Theorem 3.5 (Schauder's fixed point theorem). Every continuous map from a nonempty, compact and convex subset C of a Banach space X into C has a fixed point.

Clearly the conditions in the hypothesis are preserved if the norm of X is replaced by an equivalent norm, so Theorem 3.5 cannot be viewed as a metric fixed point theorem. Schauder's fixed point theorem can be used to prove Peano's existence theorem for the solution of systems of first order ordinary differential equations with initial conditions.

The situation is completely different when certain generalizations are considered, in particular those concerning condensing maps, where a condensing map is one under which the image of any set is - in a certain sense - more compact than the set itself. The degree of noncompactness of a set is measured by certain functions called measures of noncompactness.

Darbo's fixed point theorem, which uses Kuratowski's measure of noncompactness α mentioned in the introduction, is a generalization of Schauder's fixed point theorem.

Theorem 3.6 (Darbo's fixed point theorem). Let C be a non-empty bounded, closed and convex subset of a Banach space X and α be the Kuratowski measure of noncompactness on X. If $T: C \rightarrow C$ is a continuous map such that there exists a constant $c \in[0,1)$ with

$$
\begin{equation*}
\alpha(T(Q)) \leq k \cdot \alpha(Q) \text { for every } Q \subset C \tag{3.1}
\end{equation*}
$$

then T has a fixed point in C.
We will prove a generalization of Theorem 3.6, namely the Darbo-Sadovskii theorem, in the next section.

4. Measures if noncompactness and the Darbo-Sadovskii theorem

Darbo's fixed point theorem generalizes from compact sets to bounded and closed sets in infinite dimensional Banach spaces, and needs the additional hypothesis of the condensing property in (3.1). As is well known, when we pass from finite to infinite dimensional Banach spaces, bounded and closed subsets need not necessarily be compact. So it is natural to ask if Schauder's fixed point theorem (Theorem 3.5) holds in infinite dimensional Banach spaces for convex, closed and bounded subsets. The following example provides a strong negative answer to this question.

Example 4.1 (Kakutani). There is a fixed point free continuous map on the unit ball of

$$
\ell_{2}(\mathbb{Z})=\left\{x=\left(x_{n}\right): \sum_{n \in \mathbb{Z}}\left|x_{n}\right|^{2}<\infty\right\} .
$$

Proof. We consider $\ell_{2}(\mathbb{Z})$ with the standard Schauder basis $\left(e^{(n)}\right)_{n \in \mathbb{Z}}$, where for each $n \in \mathbb{N}, e^{(n)}$ is the sequence with $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0$ for $k \neq n$, and with the natural norm given by

$$
\|x\|=\|x\|_{2}=\left(\sum_{n \in \mathbb{Z}}\left|x_{n}\right|^{2}\right)^{1 / 2} \text { for all } x \in \ell_{2}(\mathbb{Z})
$$

We write $\bar{B}_{\ell_{2}(\mathbb{Z})}$ for the closed unit ball in $\ell_{2}(\mathbb{Z})$. Every sequence $x=\left(x_{n}\right)_{n \in \mathbb{Z}} \in \ell_{2}(\mathbb{Z})$ has a unique representation $x=\sum_{n \in \mathbb{Z}} x_{n} e^{(n)}$. We define the left shift operator $U: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{2}(\mathbb{Z})$ by

$$
U(x)=\sum_{n \in \mathbb{Z}} x_{n} e^{(n+1)} .
$$

The relation

$$
x-U(x)=\sum_{n \in \mathbb{Z}}\left(x_{n}-x_{n-1}\right) e^{(n)}=c \cdot e^{(0)}
$$

implies $x_{n}=x_{0}$ for all $n>0$ and $x_{n}=x_{1}$ for all $n<0$. For a sequence in $\ell_{2}(\mathbb{Z})$, this is only possible if $x_{0}=x_{1}=0$. So $x-U(x)$ is a multiple of $e^{(0)}$ if and only if $x=0$.
We define the map $T: \ell_{2}(\mathbb{Z}) \rightarrow \ell_{2}(\mathbb{Z})$ by

$$
T(x)=(1-\|x\|) e^{(0)}+U(x) .
$$

Then T maps $\bar{B}_{\ell_{2}(\mathbb{Z})}$ into $\bar{B}_{\ell_{2}(\mathbb{Z})}$, since we have for $\|x\| \leq 1$

$$
\|T(x)\| \leq|1-\|x\|| \cdot\left\|e^{(0)}\right\|+\|U(x)\|=(1-\|x\|)+\|x\|=1 .
$$

Finally, T is a fixed point free map. Indeed, if

$$
x-T(x)=(1-\|x\|) e^{(0)}+U(x),
$$

then $x-U(x)=(1-\|x\|) e^{(0)}$, which is clearly impossible if $x=0$, and impossible if $x \neq 0$, as we have seen above.

To be able to prove the Darbo-Sadovskii theorem we need to recall the concepts of measures of noncompactness, in particular, the Kuratowski measure of noncompactness, and their most important properties. The results presented here and their proofs can be found, for instance, in [53, 35, 36].

Since notion of a measure of noncompactness was originally introduced in metric spaces, we are going to give our axiomatic definition in this class of spaces as given in the monograph [53]. In the books [1] and [3], two different patterns are provided for the axiomatic introduction of measures of noncompactness in Banach spaces.
Definition 4.2. Let (X, d) be a complete metric space. A set function $\phi: \mathcal{M}_{X} \rightarrow[0, \infty)$ is called a measure of noncompactness on $f X$, if it satisfies the following conditions

(semi-additivity).
The number $\phi(Q)$ is called the measure of noncompactness of the set Q.

The following properties can easily be deduced from the axioms in Definition 4.2,
Proposition 4.3. Let ϕ be a measure of noncompactness on a complete metric space (X, d). Then ϕ has the following properties

$$
\begin{gather*}
Q \subset \tilde{Q} \text { implies } \phi(Q) \leq \phi(\tilde{Q}) \quad \text { (monotonicity) } \tag{4.1}\\
\phi\left(Q_{1} \cap Q_{2}\right) \leq \min \left\{\phi\left(Q_{1}\right), \phi\left(Q_{2}\right)\right\} \text { for all } Q_{1}, Q_{2} \in \mathcal{M}_{X} \tag{4.2}\\
\text { If } Q \text { is finite then } \phi(Q)=0 \text { (non-singularity) } \tag{4.3}
\end{gather*}
$$

Generalised Cantor's intersection property If $\left(Q_{n}\right)$ is a decreasing sequence of nonempty sets in \mathcal{M}_{X}^{c} and $\lim _{n \rightarrow \infty} \phi\left(Q_{n}\right)=0$, then the intersection

$$
Q_{\infty}=\bigcap Q_{n} \neq \emptyset
$$

is compact.
Remark 4.4. If X is a Banach space then a measure of noncompactness ϕ may have some additional properties related to the linear structure of a normed space, for instance

$$
\begin{gather*}
\phi(\lambda Q)=|\lambda| \phi(Q) \text { for any scalar } \lambda \text { and all } Q \in \mathcal{M}_{X} \quad \text { (homogeneity) } \tag{4.5}\\
\phi\left(Q_{1}+Q_{2}\right) \leq \phi\left(Q_{1}\right)+\phi\left(Q_{2}\right) \text { for all } Q_{1}, Q_{2} \in \mathcal{M}_{X} \quad \text { (subadditivity) } \tag{4.6}\\
\phi(x+Q)=\phi(Q) \text { for any } x \in X \text { and all } Q \in \mathcal{M}_{X} \quad \text { (translation invariance). } \tag{4.7}
\end{gather*}
$$

For every $Q_{0} \in \mathcal{M}_{X}$ and for all $\varepsilon>0$ there is $\delta>0$ such that
$\left|\phi\left(Q_{0}\right)-\phi(Q)\right|<\varepsilon$ for all $Q \in \mathcal{M}_{X}$ with $d_{H}\left(Q_{0}, Q\right)<\delta$
(continuity)

$$
\begin{equation*}
\phi(\operatorname{co}(Q))=\phi(Q) \text { for all } Q \in \mathcal{M}_{X} \tag{4.9}
\end{equation*}
$$

(invariance under the passage to the convex hull).
The two most important measures of noncompactness are the Kuratowski and Hausdorff measures of noncompactness

First we define the measure of noncompactness introduced by Kuratowski in 1930.
Definition 4.5. Let (X, d) be a complete metric space. The function

$$
\alpha: \mathcal{M}_{X} \rightarrow[0, \infty)
$$

with

$$
\alpha(Q)=\inf \left\{\varepsilon>0: Q \subset \bigcup_{k=1}^{n} S_{k}, S_{k} \subset X, \operatorname{diam}\left(S_{k}\right)<\varepsilon(k=1,2, \ldots, n \in \mathbb{N})\right\}
$$

is called the Kuratowski measure of noncompactness (KMNC), and the real number $\alpha(Q)$ is called the Kuratowski measure of noncompactness of Q.

Now we define the Hausdorff or ball measure of noncompactness which was first introduced by Goldenštein, Goh'berg and Markus in 1957 [GGM1] and later studied by Goldenštein and Markus in 1965 [GGM2].

The definition of the Hausdorff measure of noncompactness is similar to that of the Kuratowski measure of noncompactness and the results are analogous.

Definition 4.6. Let (X, d) be a complete metric space. The function

$$
\chi: \mathcal{M}_{X} \rightarrow[0, \infty)
$$

with

$$
\chi(Q)=\inf \left\{\varepsilon>0: Q \subset \bigcup_{k=1}^{n} B_{r_{k}}\left(x_{k}\right), x_{k} \in X, r_{k}<\varepsilon(k=1,2, \ldots, n \in \mathbb{N})\right\}
$$

is called the Hausdorff, or ball measure of noncompactness, and the real number $\chi(Q)$ is called the Hausdorff or ball measure of noncompactness of Q.

Both the Kuratowski and the Hausdorff measure of noncompactness are a measure of noncompactness in the sense of Definition 4.2.

Theorem 4.7. Let (X, d) be a complete metric space. Then the Kuratowski and Hausdorff measures measures of noncompactness α and χ are measures of noncompactness in the sense of Definition 4.2.

In Banach spaces the functions α and χ satisfy some additional properties related to the linear structures of normed spaces. The statements of the following results for the Kuratowski measure of noncompactness are due to Darbo.

Theorem 4.8. Let X be a normed space ψ denote the Kuratowski or Hausdorff measure of noncompactness, and $Q, Q_{1}, Q_{2} \in \mathcal{M}_{X}$. Then we have

$$
\begin{array}{ll}
\psi\left(Q_{1}+Q_{2}\right) \leq \psi\left(Q_{1}\right)+\psi\left(Q_{2}\right) & \text { (subadditivity), } \\
\psi(Q+x)=\psi(Q) \text { for each } x \in X & \text { (translation invariance), } \\
\psi(\lambda Q)=|\lambda| \psi(Q) \text { for each scalar } \lambda & \text { (homogeneity), } \tag{4.12}
\end{array}
$$

and

$$
\begin{equation*}
\psi(Q)=\psi(\operatorname{co}(Q)) \quad \text { (invariance under the passage to the convex hull). } \tag{4.13}
\end{equation*}
$$

Now we state and prove the Darbo-Sadovskii theorem.
Theorem 4.9 (Darbo-Sadovskiŭ). Let X be a Banach space, ϕ be a measure of noncompactness which is invariant under passage to the convex hull, $C \neq \emptyset$ be a bounded, closed and convex subset of X and $T: C \rightarrow C$ be a ϕ - condensing operator, that is, T is continuous and satisfies

$$
\begin{equation*}
\phi(T(Q))<\phi(Q) \text { for all bounded non-precompact subsets } Q \text { of } C . \tag{4.14}
\end{equation*}
$$

Then T has a fixed point.
Proof. We choose a point $c \in C$ and denote by Σ the class of all closed and convex subsets K of C such that $c \in K$ and $T(K) \subset K$. Furthermore, we put

$$
B=\bigcap_{K \in \Sigma} K \text { and } A=\overline{\mathrm{co}}(T(B) \cup\{c\}) .
$$

Obviously $\Sigma \neq \emptyset$, since $C \in \Sigma$, and $B \neq \emptyset$, since $c \in B$. We also have

$$
T(B)=T\left(\bigcap_{K \in \Sigma} K\right) \subset \bigcap_{K \in \Sigma} T(K) \subset \bigcap_{K \in \Sigma} K=B
$$

and consequently $T: B \rightarrow B$.
Moreover, we have $B=A$. Indeed, since $c \in B$ and $T(B) \subset B$, it follows that $A \subset B$. This implies $T(A) \subset T(B) \subset A$, and so $A \in \Sigma$, and hence $B \subset A$.
Therefore the properties of ϕ now imply

$$
\begin{aligned}
\phi(B) & =\phi(C)=\phi(\overline{\mathrm{co}}(T(B) \cup\{c\}))=\phi(\operatorname{co}(T(B) \cup\{c\}))=\phi(T(B) \cup\{c\}) \\
& =\max \{\phi(T(B)), \phi(\{c\})\}=\phi(T(B))
\end{aligned}
$$

Since T is ϕ-condensing, it follows that $\phi(B)=0$, and so B is compact. Obviously B is also convex. Thus it follows from Schauder's fixed point theorem, Theorem 3.5, that the operator $T: C \rightarrow C$ has a fixed point.

The following example will show that the theorem of Darbo and Sadovskiŭ fails to be true, if we assume that T is a k-contractive operator with constant $k=1$, that is, if we replace the the condensing condition (4.14) by the condition

$$
\begin{equation*}
\phi(T(Q)) \leq \phi(Q) \text { for all bounded } Q \text { of } C \tag{4.15}
\end{equation*}
$$

Example 4.10. Let $\bar{B}_{\ell_{2}}$ be the closed unit ball in ℓ_{2}. We define the operator $T: \bar{B}_{\ell_{2}} \rightarrow \bar{B}_{\ell_{2}}$ by

$$
T(x)=T\left(\left(x_{k}\right)_{k=1}^{\infty}\right)=\left(\sqrt{1-\|x\|_{2}}, x_{1}, x_{2}, \ldots\right)
$$

Then we can write $T=D+S$ where D is the one dimensional mapping

$$
D(x)=D\left(\left(x_{k}\right)_{k=1}^{\infty}\right)=\sqrt{1-\|x\|_{2}} e^{(1)} \text { and } S(x)=\left(0, x_{1}, x_{2}, \ldots\right)
$$

is an isometry. Hence T is a well-defined, continuous operator, and for every bounded subset Q of $\bar{B}_{\ell_{2}}$, we have

$$
\alpha(T(Q)) \leq \alpha(D(Q)+S(Q)) \leq \alpha(D(Q))+\alpha(S(Q))=0+\alpha(Q)
$$

So T is a k-set-contractive operator with constant $k=1$. But T has no fixed points. If T had a fixed point $x \in \bar{B}_{\ell_{2}}$, then we would have $x_{k}=x_{k+1}$ for all $k \in \mathbb{N}$. Since $x \in \ell_{2}$, this implies $x_{k}=0$ for all $k \in \mathbb{N}$, and then $T(x)=\sqrt{1-\|x\|_{2}} e^{(0)}=e^{(0)}=(0,0,0, \ldots)$, a contradiction.

5. Edelstein's results

For a function $f: X \rightarrow X$ on a complete metric space (X, d) which satisfies the condition

$$
\begin{equation*}
d(f(x), f(y))<\lambda d(x, y) \text { for all } x, y \in X \text { with } x \neq y \tag{5.1}
\end{equation*}
$$

where $0 \leq \lambda<1$, the Banach contraction principle yields the existence and uniqueness of fixed points.
If we take $\lambda=1$ in the condition in (5.1) then we we obtain a contractive map, that is, a map which satisfies the condition

$$
\begin{equation*}
d(f(x), f(y))<d(x, y) \text { for all } x, y \in X \text { with } x \neq y \tag{5.2}
\end{equation*}
$$

In 1962, Edelstein [20] published a paper in which he studied the fixed points of contractive maps using the next condition and assumption

The condition in (5.2) together with the assumption of the existence of $x \in X$ such that the iterative sequence $\left(f^{n}(x)\right)$ contains a convergent subsequence $\left(f^{n_{k}}(x)\right)$ in X, that is,

$$
\begin{equation*}
\text { there exists } x \in X \text { such that }\left\{f^{n}(x)\right\} \supset\left\{f^{n_{k}}(x)\right\} \text { such that } \lim _{k \rightarrow \infty} f^{n_{k}}(x) \in X \tag{5.3}
\end{equation*}
$$

provides the existence of a fixed point of f.
Theorem 5.1 (Edelstein [20]). Let X be a metric space and $f: X \rightarrow X$ be a contractive map that satisfies the condition in (5.3). Then $u=\lim _{k \rightarrow \infty} f^{n_{k}} x$ is the unique fixed point of f.

Proof. Let $\Delta=\{(x, x): x \in X\}, Y=(X \times X) \backslash \Delta$, and $r: Y \rightarrow \mathbb{R}$ be the map defined by

$$
\begin{equation*}
r(x, y)=\frac{d(f(x), f(y))}{d(x, y)} \tag{5.4}
\end{equation*}
$$

The function r is continuous on Y, and there exists a neighborhood U of points $(u, f(u))$ such that $(x, y) \in U$ implies

$$
\begin{equation*}
0 \leq r(x, y)<R<1 \tag{5.5}
\end{equation*}
$$

Let $B_{1}=B_{\rho}^{1}(u)$ and $B_{2}=B_{\rho}^{2}(f(u))$ be the open balls with centers in u and $f(u)$, and radius ρ such that

$$
\begin{equation*}
\rho<\frac{1}{3} d(u, f(u)) \tag{5.6}
\end{equation*}
$$

and $B_{1} \times B_{2} \subset U$.
It follows from (5.3) that there exists a natural number N such that $k>N$ implies $f^{n_{k}}(x) \in B_{1}$, and (5.2)
implies $f^{n_{k}+1}(x) \in B_{2}$.
For $k>N$, 5.6) implies

$$
\begin{equation*}
d\left(f^{n_{k}}(x), f^{n_{k}+1}(x)\right)>\rho \tag{5.7}
\end{equation*}
$$

and it follows from (5.4) and (5.5) that

$$
\begin{equation*}
d\left(f^{n_{k}+1}(x), f^{n_{k}+2}(x)\right)<R d\left(f^{n_{k}}(x), f^{n_{k}+1}(x)\right) \tag{5.8}
\end{equation*}
$$

Hence, (5.8) implies for $l>j>N$

$$
\begin{aligned}
d\left(f^{n_{l}}(x), f^{n_{l}+1}(x)\right) & \leq d\left(f^{n_{l-1}+1}(x), f^{n_{l-1}+2}(x)\right) \\
& <R d\left(f^{n_{l-1}}(x), f^{n_{l-1}+1}(x)\right) \leq \ldots \\
& <R^{l-j} d\left(f^{n_{j}}(x), f^{n_{j}+1}(x)\right) \rightarrow 0(l \rightarrow \infty)
\end{aligned}
$$

which is a contradiction to (5.7). This we must have $f(u)=u$.
We assume that $v \neq u$ is also a fixed point of the function f. Then we have

$$
d(f(u), f(v))=d(u, v)
$$

which is a contradiction to 5.2 .
The condition in (5.3) is always satisfied for a compact space. Therefore we have
Theorem 5.2 (Edelstein [20]). Let (X, d) be a compact metric space and $f: X \rightarrow X$ be a map. We assume

$$
d(f(x), f(y))<d(x, y) \text { for all } x, y \in X \text { with } x \neq y
$$

Then the function f has a unique fixed point.
We obtain the following result on the iteration sequence from Theorem 5.1.
Theorem 5.3 (Edelstein [20]).
We assume that the conditions of Theorem 5.1 are satisfied. If the sequence $\left(f^{n}(p)\right)$ for $p \in X$ contains a convergent subsequence $\left(f^{n_{k}}(p)\right)$ then its limit $u=\lim _{n \rightarrow \infty} f^{n}(p)$ in X exists and u is a fixed point of f.

Proof. By Theorem 5.1, we have $u=\lim _{k \rightarrow \infty} f^{n_{k}}(p)$. For given $\delta>0$, there exists $n_{0} \in \mathbb{N}$ such that $k>n_{0}$ implies $d\left(u, f^{n_{k}}(p)\right)<\delta$. If $m=n_{k}+l>n_{k}$, then we have

$$
d\left(u, f^{m}(p)\right)=d\left(f^{l}(u), f^{n_{k}+l}(p)\right)<d\left(u, f^{n_{k}}(p)\right)<\delta
$$

6. Rakotch's results

The problem of defining a family of functions $F=\{\alpha(x, y)\}$ which satisfy the conditions $0 \leq \alpha<1$ and $\sup \alpha(x, y)=1$ such that Banach's theorem is satisfied when the constant α is replaced by $\alpha(x, y) \in F$ was suggested by H. Hanani, and Rakotch published a result related to this problem in 1962 [43] In this subssection, we present some results from the mentioned paper.

Definition 6.1. Let (X, d) be a metric space. We denote by F_{1} the family of all functions $\alpha(x, y)$ which satisfy the following conditions:
(1) $\alpha(x, y)=\alpha(d(x, y))$, that is, α depends only on the distance of x and y.
(2) $0 \leq \alpha(d)<1$ for all $d>0$.
(3) $\alpha(d)$ is a monotone decreasing function of d.

Theorem 6.2. Let (X, d) be a metric space, $f: X \rightarrow X$ be a contractive map, $M \subset X$ and $x_{0} \in M$ such that

$$
\begin{equation*}
d\left(x, x_{0}\right)-d\left(f(x), f\left(x_{0}\right)\right) \geq 2 d\left(x_{0}, f\left(x_{0}\right)\right) \text { for all } x \in X \backslash M \tag{6.1}
\end{equation*}
$$

and let $f(M)$ be a subset of a compact subset of X. Then there exists a unique fixed point of f.
Proof. We assume $f\left(x_{0}\right) \neq x_{0}$ and put $x_{n}=f^{n}\left(x_{0}\right)$ for $n=1,2, \ldots$, that is,

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right) \text { for } n=0,1, \ldots \tag{6.2}
\end{equation*}
$$

By Edelstein's theorem (Theorem 5.1), it suffices to show that $x_{n} \in M$ for each n.
Since f is a contractive map, the sequence $\left(d\left(x_{n}, x_{n+1}\right)\right)$ is not increasing. Hence $f\left(x_{0}\right) \neq x_{0}$ implies

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<d\left(x_{0}, x_{1}\right) \text { for } n=1,2, \ldots \tag{6.3}
\end{equation*}
$$

We obtain from the triangle inequality

$$
d\left(x_{0}, x_{n}\right) \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{n+1}\right)+d\left(x_{n}, x_{n+1}\right)
$$

Now 6.2 and 6.3 yield

$$
d\left(x_{0}, x_{n}\right)-d\left(f\left(x_{0}\right), f\left(x_{n}\right)\right)<2 d\left(x_{0}, f\left(x_{0}\right)\right)
$$

and (6.1) implies $x_{n} \in M$ for all n.
Corollary 6.3. Let f be a contractive map for which there exists a point $x_{0} \in X$ such that for all $x \in X$

$$
\begin{equation*}
d\left(f(x), f\left(x_{0}\right)\right) \leq \alpha\left(x, x_{0}\right) d\left(x, x_{0}\right) \tag{6.4}
\end{equation*}
$$

where $\alpha(x, y)=\alpha(d(x, y)) \in F_{1}$. If $B_{r}\left(x_{0}\right)$ is the open ball in X, where

$$
r=\frac{2 d\left(x_{0}, f\left(x_{0}\right)\right)}{1-\alpha\left(2 d\left(x_{0}, f\left(x_{0}\right)\right)\right)}
$$

and $f\left(B_{r}\left(x_{0}\right)\right)$ is a subset of a compact subset of X, then the function f has a unique fixed point.
Proof. If we put $M=B\left(x_{0}, r\right)$ in Theorem 6.2, then by (6.4), the monotony of $\alpha(d)$ and $r \geq 2 d\left(x_{0}, f x_{0}\right)$, the condition $d\left(x, x_{0}\right) \geq r$ implies

$$
\begin{aligned}
d\left(x, x_{0}\right)-d\left(f(x), f\left(x_{0}\right)\right) & \geq d\left(x, x_{0}\right)-\alpha\left(d\left(x, x_{0}\right)\right) d\left(x, x_{0}\right) \\
& =\left[1-\alpha\left(d\left(x, x_{0}\right)\right)\right] d\left(x, x_{0}\right) \geq[1-\alpha(r)] r \\
& \geq\left[1-\alpha\left(2 d\left(x_{0}, f\left(x_{0}\right)\right)\right)\right] r=2 d\left(x_{0}, f\left(x_{0}\right)\right)
\end{aligned}
$$

that is, we have 6.1).
Theorem 6.4. Let $f: X \rightarrow X$ be a contractive map on a complete metric space. We assume that there exist $M \subset X$ and a point $x_{0} \in M$ such that

$$
\begin{align*}
& d\left(x, x_{0}\right)-d\left(f(x), f\left(x_{0}\right)\right) \geq 2 d\left(x_{0}, f\left(x_{0}\right)\right) \text { for each } x \in X \backslash M \tag{6.5}\\
& d(f(x), f(y)) \leq \alpha(x, y) d(x, y) \text { for all } x, y \in M \tag{6.6}
\end{align*}
$$

where

$$
\alpha(x, y)=\alpha(d(x, y)) \in F_{1}
$$

Then the function f has a unique fixed point.

Proof. We assume $f\left(x_{0}\right) \neq x_{0}$ and define the sequence $\left(x_{n}\right)$ by $x_{n}=f^{n}\left(x_{0}\right)$ for $n=1,2, \ldots$ As in Theorem 6.2, we have by 6.5

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<d\left(x_{0}, x_{1}\right) \text { for } n=1,2, \ldots \tag{6.7}
\end{equation*}
$$

and $x_{n} \in M$ for each n.
We are going to prove that the sequence $\left(x_{n}\right)$ is bounded. It follows from (6.6) and the definition of the sequence $\left(x_{n}\right)$ that

$$
\begin{equation*}
d\left(x_{1}, x_{n+1}\right)=d\left(f\left(x_{0}\right), f\left(x_{n}\right)\right) \leq \alpha\left(d\left(x_{0}, x_{n}\right)\right) d\left(x_{0}, x_{n}\right) \tag{6.8}
\end{equation*}
$$

and, by the triangle inequality, we have

$$
d\left(x_{0}, x_{n}\right) \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{n+1}\right)+d\left(x_{n}, x_{n+1}\right)
$$

Hence (6.7) and 6.8 imply

$$
\left[1-\alpha\left(d\left(x_{0}, x_{n}\right)\right)\right] d\left(x_{0}, x_{n}\right)<2 d\left(x_{0}, x_{1}\right)
$$

If $d\left(x_{0}, x_{n}\right) \geq d_{0}$ for some given d_{0}, then we have by the monotony of α

$$
\alpha\left(d\left(x_{0}, x_{n}\right)\right) \leq \alpha\left(d_{0}\right)
$$

So we obtain

$$
d\left(x_{0}, x_{n}\right)<\frac{2 d\left(x_{0}, x_{1}\right)}{1-\alpha\left(d\left(x_{0}, x_{n}\right)\right)} \leq \frac{2 d\left(x_{0}, x_{1}\right)}{1-\alpha\left(d_{0}\right)}=C
$$

Hence we have for $R=\max \left\{d_{0}, C\right\}$

$$
\begin{equation*}
d\left(x_{0}, x_{n}\right) \leq R \text { for } n=1,2, \ldots, \tag{6.9}
\end{equation*}
$$

that is, the sequence $\left(x_{n}\right)$ is bounded.
Let $p>0$ be an arbitrary natural number. It follows from (6.6) that

$$
d\left(x_{k+1}, x_{k+p+1}\right) \leq \alpha\left(x_{k}, x_{k+p}\right) d\left(x_{k}, x_{k+p}\right)
$$

that is,

$$
d\left(x_{n}, x_{n+p}\right) \leq d\left(x_{0}, x_{p}\right) \prod_{k=0}^{n-1} \alpha\left(x_{k}, x_{k+p}\right)
$$

Now 6.9) implies

$$
\begin{equation*}
d\left(x_{n}, x_{n+p}\right) \leq R \prod_{k=0}^{n-1} \alpha\left(x_{k}, x_{k+p}\right) \tag{6.10}
\end{equation*}
$$

We prove that $\left(x_{n}\right)$ is a Cauchy sequence. It is enough to show that, for every $\varepsilon>0$, there exists N which depends only on ε (and not on p) such that, for all $p>0$, we have $d\left(x_{N}, x_{N+p}\right)<\varepsilon$ (since the sequence $\left(d\left(x_{n}, x_{n+p}\right)\right)$ is not increasing).
If $d\left(x_{k}, x_{k+p}\right) \geq \varepsilon$ for $k=0,1, \ldots, n-1$, then we obtain from (because of the monotony of the function α)

$$
\alpha\left(x_{k}, x_{k+p}\right)=\alpha\left(d\left(x_{k}, x_{k+p}\right)\right) \leq \alpha(\varepsilon)
$$

and then 6.10 implies

$$
d\left(x_{n}, x_{n+p}\right) \leq R[\alpha(\varepsilon)]^{n}
$$

Since $\alpha(\varepsilon)<1$ and $[\alpha(\varepsilon)]^{n} \rightarrow 0$ as $n \rightarrow \infty$, there exists a natural number N, independent of p, such that $d\left(x_{N}, x_{N+p}\right)<\varepsilon$ for each $p>0$. Hence $\left(x_{n}\right)$ is a Cauchy sequence.
Since X is a complete metric space, there exists $u \in X$ such $u=\lim _{n \rightarrow \infty} x_{n}$. Because of the continuity of the function f, u is a fixed point of f.

In particular, if $M=X$, we obtain the next corollary.

Corollary 6.5. Let (X, d) be a complete metric space and

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha(x, y) d(x, y) \text { for all } x, y \in X \tag{6.11}
\end{equation*}
$$

where $\alpha(x, y) \in F_{1}$. Then the function f has a unique fixed point.
Remark 6.6. The preceding corollary and Theorem 6.4 are generalizations of Banach's fixed point theorem.

7. Boyd and Wong's nonlinear contraction

In this section, we present some results by Boyd and Wong [7] in 1969. In [7], Boyd and Wong studied fixed points for maps of the kind introduced in the next definition.

Definition 7.1. Let (X, d) be a metric space. A map $f: X \rightarrow X$ which satisfies the condition

$$
\begin{equation*}
d(f(x), f(y)) \leq \Psi(d(x, y)) \text { for all } x, y \in X \tag{7.1}
\end{equation*}
$$

where Ψ is a function defined on the closure of the range of d, is called a Ψ contraction.
We denote the image of d by P and the closure of P by \bar{P}. Hence $P=\{d(x, y): x, y \in X\}$.
Rakotch 43] proved that if $\Psi(t)=\alpha(t) t$, where α is a decreasing function with $\alpha(t)<1$ for all $t>0$, then the map f satisfying (7.1) has a unique fixed point u. It can be shown that if $\Psi(t)=\alpha(t) t$ and α is an increasing function with $\alpha(t)<1$ for all $t \geq 0$, then the conclusion of Banach's theorem holds true. Boyd and Wong proved that it is enough to assume that $\Psi(t)<t$ for all $t>0$ and Ψ is semicontinuous, and if a metric space is convex, then the last condition can be omitted.

We recall that a function $\varphi: X \rightarrow E(E \subset \mathbb{R})$ is said to be upper semi-continuous from the right at $t_{0} \in X$ if $t_{n} \rightarrow t_{0}+\operatorname{implies} \lim \sup _{n \rightarrow \infty} \varphi\left(t_{n}\right) \leq \varphi\left(t_{0}\right)$. A function $\varphi: X \mapsto E(E \subset \mathbb{R})$ is said to be upper semi-continuous from the right on X if it is upper semi-continuous from the right at every $t \in X$.

Theorem 7.2. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a map satisfying 7.1), where $\Psi: \bar{P} \mapsto[0, \infty)$ is upper semi-continuous from the right on \bar{P} and satisfies $\Psi(t)<t$ for all $t \in \bar{P} \backslash\{0\}$. Then the function f has a unique fixed point x_{0} and $f^{n}(x) \rightarrow x_{0}(\rightarrow \infty)$ for each $x \in X$.

Proof. Let $x \in X$ and

$$
\begin{equation*}
c_{n}=d\left(f^{n}(x), f^{n-1}(x)\right) \text { for } n=1,2, \ldots \tag{7.2}
\end{equation*}
$$

Then, because of 7.1 , the sequence $\left(c_{n}\right)$ is monotone decreasing. We put $\lim _{n \rightarrow \infty} c_{n}=c \geq 0$, and prove $c=0$. If $c>0$, then we have

$$
\begin{equation*}
c_{n+1} \leq \Psi\left(c_{n}\right) \tag{7.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
c \leq \limsup _{t \rightarrow c+} \Psi(t) \leq \Psi(c)<c \tag{7.4}
\end{equation*}
$$

which is a contradiction.
We are going to prove that $\left(f^{n}(x)\right)$ is a Cauchy sequence for each $x \in X$. Then the limit point of this sequence is the unique fixed point of the function f. We assume that $\left(f^{n}(x)\right)$ is not a Cauchy sequence. Then there exist $\varepsilon>0$ and sequences $(m(k))$ and $(n(k))$ of natural numbers with $m(k)>n(k) \geq k$ such that

$$
\begin{equation*}
d_{k}=d\left(f^{m(k)}(x), f^{n(k)}(x)\right) \geq \varepsilon \text { for all } k=1,2, \ldots \tag{7.5}
\end{equation*}
$$

We may assume that

$$
\begin{equation*}
d\left(f^{m(k)-1}(x), f^{n(k)}(x)\right)<\varepsilon \tag{7.6}
\end{equation*}
$$

and choose $m(k)$ as the smallest integer greater than $n(k)$ which satisfies (7.5). It follows from (7.2) that

$$
\begin{equation*}
d_{k} \leq d\left(f^{m(k)}(x), f^{m(k)-1}(x)\right)+d\left(f^{m(k)-1}(x), f^{n(k)}(x)\right) \leq c_{m}+\varepsilon \leq c_{k}+\varepsilon \tag{7.7}
\end{equation*}
$$

Hence $d_{k} \rightarrow \varepsilon$ as $k \rightarrow \infty$. Since

$$
\begin{align*}
d_{k}=d\left(f^{m(k)}(x), f^{n(k)}(x)\right) \leq & d\left(f^{m(k)}(x), f^{m(k)+1}(x)\right)+ \\
& +d\left(f^{m(k)+1}(x), f^{n(k)+1}(x)\right)+d\left(f^{n(k)+1}(x), f^{n(k)}(x)\right) \\
\leq & 2 c_{k}+\Psi\left(d\left(f^{m(k)}(x), f^{n(k)}(x)\right)\right)=2 c_{k}+\Psi\left(d_{k}\right) \tag{7.8}
\end{align*}
$$

letting $k \rightarrow \infty$ in (7.8), we obtain $\varepsilon \leq \Psi(\varepsilon)$. This is a contradiction, because we have $\Psi(\varepsilon)<\varepsilon$ for $\varepsilon>0$.
The following example will show that the condition of the continuity of the function Ψ in Theorem 7.2 cannot be dropped, in general.

Example 7.3. Let $X=\left\{x_{n}=n \sqrt{2}+2^{n}: n=0, \pm 1, \pm 2, \ldots\right\}$ have the metric $d(x, y)=|x-y|$. Then X is a closed subset of the real numbers, and so complete. We assume that for each $p \in P(p \neq 0)$, there exists a unique pair $\left(x_{n}, x_{m}\right)$ such that $p=d\left(x_{n}, x_{m}\right)$. We assume that

$$
d\left(x_{j}, x_{k}\right)=d\left(x_{m}, x_{n}\right) \text { for some integers } j, k, m, n \text { with } j>k \text { and } m>n .
$$

Then we obtain

$$
\begin{equation*}
-(m-n-j+k) \sqrt{2}=2^{j}-2^{k}-2^{m}+2^{n} \tag{7.9}
\end{equation*}
$$

Since the left hand side in 7.9 is irrational or equal to zero and the right hand side is rational, it follows that both sides are equal to zero. Hence we have for $m-n=j-k=s$

$$
\begin{equation*}
2^{n+s}-2^{n}=2^{k+s}-2^{k} \tag{7.10}
\end{equation*}
$$

which is only possible for $n=k$. We define the functions f by $f\left(x_{n}\right)=x_{n-1}$ and Ψ on P by

$$
\begin{equation*}
\Psi(p)=\left|x_{n-1}-x_{m-1}\right| \text { if } p=\left|x_{n}-x_{m}\right| . \tag{7.11}
\end{equation*}
$$

We put $\Psi(p)=0$ for $p \in \bar{P} \backslash P$.
Then we have $\Psi(t)<t$ for all $t \in \bar{P} \backslash\{0\}$ and

$$
\begin{equation*}
d(f(x), f(y))=\Psi(d(x, y)) \tag{7.12}
\end{equation*}
$$

but the function f has no fixed point.
Theorem 7.2 shows that it is not possible to extend the function Ψ from the set P to the set \bar{P} such that it is upper semi-continuous from the right with $\Psi(t)<t$ for $t \in \bar{P} \backslash\{0\}$. This can directly be seen for the point $\sqrt{2} \in \bar{P} \backslash P$.

If the condition $\Psi(t)<t$ is replaced by $\Psi\left(t_{0}\right)=t_{0}$ for some value t_{0}, then Theorem 7.2 does not hold. This is shown in the next example.

Example 7.4. Let $X=(-\infty,-1] \cup[1, \infty)$ and $d(x, y)=|x-y|$ for all $x, y \in X$. Also let

$$
f_{1}(x)=\left\{\begin{array}{ll}
\frac{1}{2}(x+1) & \text { for } x \geq 1 \\
\frac{1}{2}(x-1) & \text { for } x \leq-1
\end{array} \quad \text { and } \quad f_{2}(x)=-f_{1}(x)\right.
$$

Now the functions f_{1} and f_{2} satisfy (7.1), if we define

$$
\Psi(t)= \begin{cases}\frac{1}{2} t & \text { for } t<2 \\ \frac{1}{2} t+1 & \text { for } t \geq 2\end{cases}
$$

We know that the function Ψ satisfies all the conditions in Theorem 7.2 , but $\Psi(2)=2$. The function f_{1} has two fixed points -1 and 1 and the function f_{2} has no fixed points.

Theorem 7.2 is a generalization of Rakotch's theorem. This is shown in the next example.
Example 7.5. Let $X=[0,1] \bigcup\{2,3,4 \ldots\}$ be the complete metric space with its metric d defined by

$$
d(x, y)= \begin{cases}|x-y| & \text { if } x, y \in[0,1] \\ x+y & \text { if at least one of } x, y \notin[0,1]\end{cases}
$$

We define the function $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}x-\frac{1}{2} x^{2} & \text { for } x \in[0,1] \\ x-1 & \text { for } x=2,3, \ldots\end{cases}
$$

If $x, y \in[0,1]$ for $x-y=t>0$, then we have

$$
d(f(x), f(y))=(x-y)\left(1-\frac{1}{2}(x+y)\right) \leq t\left(1-\frac{1}{2} t\right)
$$

and if $x \in\{2,3,4, \ldots\}$ and $x>y$, then we have

$$
d(f(x), f(y))=f(x)+f(y)<x-1+y=d(x, y)-1
$$

We define the function Ψ by

$$
\Psi(t)= \begin{cases}t-\frac{1}{2} t^{2} & \text { for } 0 \leq t \leq 1 \\ t-1 & \text { for } 1<t<\infty\end{cases}
$$

The function Ψ is upper semi-continuous from the right on the set $[0, \infty), \Psi(t)<t$ for all $t>0$, and the condition in (7.1) is satisfied.
Since

$$
\lim _{n \rightarrow \infty} \frac{d(f(n), 0)}{d(n, 0)}=1
$$

there is no decreasing function α with $\alpha(t)<1$ for all $t>0$ which satisfies 6.11). Furthermore, since

$$
\lim _{x \rightarrow 0} \frac{d(f(x), 0)}{d(x, 0)}=1
$$

there is no increasing function α with $\alpha(t)<1$ for all $t>0$ which satisfies 6.11).

8. Theorem of Meir-Keeler

In 1969, Meir and Keeler [39] proved a very interesting theorem and showed that the conclusion of Banach's fixed point theorem can be extended to a more general class of contractions. In this subsection, we present some results of the paper mentioned.

Definition 8.1. Let (X, d) be a metric space. The function $f: X \mapsto X$ is said to be a weakly uniformly strict contraction, or a Meir-Keeler contraction (MK contraction) if, for every $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
\varepsilon \leq d(x, y)<\varepsilon+\delta \text { implies } d(f(x), f(y))<\varepsilon \tag{8.1}
\end{equation*}
$$

Theorem 8.2 (Meir and Keeler [39]). Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a function. If (8.1) is satisfied, then f has a unique fixed point u. Moreover, we have for each $x \in X$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f^{n}(x)=u \tag{8.2}
\end{equation*}
$$

Proof. First we note that (8.1) implies that f is a contractive map, that is,

$$
\begin{equation*}
x \neq y \text { implies } d(f(x), f(y))<d(x, y) \tag{8.3}
\end{equation*}
$$

Hence f is a continuous function and has at most one fixed point.
We note that if $\left(f^{n}(x)\right)$ is a Cauchy sequence for each $x \in X$, then the function has a unique fixed point, and 8.2 is satisfied. This follows from the following consideration. Since X is a complete space, every Cauchy sequence $\left(f^{n}(x)\right)$ has a limit $u(x)$. The continuity of f implies

$$
f(u(x))=f\left(\lim _{n \rightarrow \infty} f^{n}(x)\right)=\lim _{n \rightarrow \infty} f^{n+1}(x)=u(x)
$$

Hence $u(x)$ is the unique fixed point of f.
The proof of the theorem will be complete if we show that the sequence $\left(f^{n}(x)\right)=\left(x_{n}\right)$ of iterations is a Cauchy sequence for each $x \in X$. Let $x \in X$ and $c_{n}=d\left(x_{n}, x_{n+1}\right)$ for $n=1,2, \ldots$ It follows from (8.3) that $\left(c_{n}\right)$ is a decreasing sequence. If $\lim _{n \rightarrow \infty} c_{n}=\varepsilon>0$, then the implication in 8.1) is not true for c_{m+1}, where c_{m} is chosen such that $c_{m}<\varepsilon+\delta$. This implies $\lim _{n \rightarrow \infty} c_{n}=0$.
We assume that there exists a sequence $\left(x_{n}\right)$ which is not a Cauchy sequence. Then there exists $2 \varepsilon>0$ such that, for each $m_{0} \in \mathbb{N}$, there exist $n, m \in \mathbb{N}$ with $n, m>m_{0}$ and $d\left(x_{m}, x_{n}\right)>2 \varepsilon$. It follows from (8.1) that there exists $\delta>0$ such that

$$
\begin{equation*}
\varepsilon \leq d(x, y)<\varepsilon+\delta \text { implies } d(f(x), f(y))<\varepsilon \tag{8.4}
\end{equation*}
$$

The implication in (8.4) remains true if we replace δ by $\delta^{\prime}=\min \{\delta, \varepsilon\}$. Let $m_{0} \in \mathbb{N}$ be such that $c_{m_{0}}<\delta^{\prime} / 3$, and let $m, n>m_{0}$ such that $m<n$ and $d\left(x_{m}, x_{n}\right)>2 \varepsilon$. We prove that there exists $j \in\{m, m+1, \ldots, n\}$ such that

$$
\begin{equation*}
\varepsilon+\frac{2 \delta^{\prime}}{3}<d\left(x_{m}, x_{j}\right)<\varepsilon+\delta^{\prime} \tag{8.5}
\end{equation*}
$$

To prove 8.5), we note that $d\left(x_{n-1}, x_{n}\right)<\delta / 3$. Since $d\left(x_{m}, x_{n}\right)>2 \varepsilon$ and $d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x_{n-1}\right)+$ $d\left(x_{n-1}, x_{n}\right)$, it follows that

$$
\begin{equation*}
\varepsilon+\frac{2 \delta^{\prime}}{3}<d\left(x_{m}, x_{n-1}\right) \tag{8.6}
\end{equation*}
$$

Let k be the smallest natural number in $\{m, m+1, \ldots, n\}$; (clearly $m<k \leq n-1$) such that

$$
\begin{equation*}
\varepsilon+\frac{2 \delta^{\prime}}{3}<d\left(x_{m}, x_{k}\right) \tag{8.7}
\end{equation*}
$$

holds. We prove $d\left(x_{m}, x_{k}\right)<\varepsilon+\delta^{\prime}$. If we assume that this is not true, then we have

$$
\varepsilon+\delta^{\prime} \leq d\left(x_{m}, x_{k}\right) \leq d\left(x_{m}, x_{k-1}\right)+d\left(x_{k-1}, x_{k}\right)<d\left(x_{m}, x_{k-1}\right)+\frac{\delta^{\prime}}{3}
$$

that is,

$$
\begin{equation*}
\varepsilon+\frac{2 \delta^{\prime}}{3}<d\left(x_{m}, x_{k-1}\right) \tag{8.8}
\end{equation*}
$$

This is a contradiction to the the minimality condition of k in the inequality in 8.7 . Therefore the inequality in (8.5) must hold.
Now

$$
d\left(x_{m}, x_{k}\right) \leq d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{k+1}\right)+d\left(x_{k+1}, x_{k}\right)
$$

(8.4) and 8.5 imply

$$
d\left(x_{m}, x_{j}\right) \leq c_{m}+\varepsilon+c_{k}<\frac{\delta^{\prime}}{3}+\varepsilon+\frac{\delta^{\prime}}{3}
$$

This is a contradiction to 8.5. Hence $\left(x_{n}\right)$ is a Cauchy sequence.
It is well known that the Meir-Keeler theorem generalizes Banach's contraction principle [2] and Edelstein's theorem [20].

Theorem 8.3 (Banach [2]). Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a contraction, that is, there exists $q \in[0,1)$ such that

$$
\begin{equation*}
d(f(x), f(y)) \leq q \cdot d(x, y) \text { for all } x, y \in X \tag{8.9}
\end{equation*}
$$

Then f has a unique fixed point.
Proof. Let $\varepsilon>0$ and $\delta=(1 / q-1) \varepsilon$. Then it follows from $d(x, y)<\varepsilon+\delta$ and $x \neq y$ that $d(f(x), f(y)) \leq$ $q d(x, y)<q \varepsilon+q \delta=\varepsilon$. Hence the function f satisfies (8.1) and the proof follows from Theorem 8.2.

Theorem 8.4 (Edelstein [20]). Let (X, d) be a compact metric space and $f: X \rightarrow X$ be a map. We assume that

$$
d(f(x), f(y))<d(x, y) \text { for all } x, y \in X \text { with } x \neq y
$$

Then the function f has a unique fixed point.
Proof. We assume that the function f does not satisfy the condition in (8.1). Then there exist $\varepsilon>0$ and sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X such that

$$
\begin{equation*}
d\left(x_{n}, y_{n}\right)<\epsilon+\frac{1}{n} \text { and } d\left(f\left(x_{n}\right), f\left(y_{n}\right)\right) \geq \epsilon \tag{8.10}
\end{equation*}
$$

Since X is a compact set, there exist subsequences $\left(x_{n_{k}}\right)$ and $\left(y_{m_{k}}\right)$ of the sequences $\left(x_{n}\right)$ and (y_{n}), which converge to some $x_{0} \in X$ and some $y_{0} \in X$, respectively. The continuity of the function f implies

$$
d\left(x_{0}, y_{0}\right) \leq \varepsilon \leq d\left(f\left(x_{0}\right), f\left(y_{0}\right)\right)<d\left(x_{0}, y_{0}\right)
$$

This is a contradiction, and consequently the function f must satisfy the condition in 8.1). Now the proof follows from Theorem 8.2.

Rakotch [43], and Boyd and Wong [7] assumed that, among other conditions, the following inequalities are satisfied:

$$
\begin{equation*}
d(f(x), f(y)) \leq \psi(d(x, y)) \text { and } \psi(t)<t \text { for all } t \neq 0 \tag{8.11}
\end{equation*}
$$

The next example shows that the Meir-Keeler theorem holds even if the condition in (8.11) is not satisfied.
Example 8.5. Let $X=[0,1] \cup\{3,4,6,7, \ldots, 3 n, 3 n+1, \ldots\}$ be endowed with the Euclidean metric and the function f be defined by

$$
f(x)= \begin{cases}\frac{x}{2} & \text { for } 0 \leq x \leq 1 \\ 0 & \text { for } x=3 n \\ 1-\frac{1}{n+2} & \text { for } x=3 n+1\end{cases}
$$

Then the function f satisfies 8.1, and it follows from

$$
\begin{equation*}
d(f(x), f(y)) \leq \psi(d(x, y)) \text { for all } x, y \in X \tag{8.12}
\end{equation*}
$$

that $\psi(1)=1$.

9. Theorems by Kannan, Chatterje and Zamfirescu

The first result is by Kannan [30] in 1968.
Theorem 9.1. If (X, d) is a complete metric space, $0 \leq q<1 / 2$ and $f: X \rightarrow X$ be a map such that

$$
\begin{equation*}
d(f(x), f(y)) \leq q[d(x, f(x))+d(y, f(y))] \text { for all } x, y \in X \tag{9.1}
\end{equation*}
$$

then f has a unique fixed point, that is, there exists one and only one $u \in X$ such that $f(u)=u$.

Proof. (Joseph and Kwack [29]) Let

$$
c=\inf \{d(x, f(x)): x \in X\}
$$

Then we have $c \geq 0$. If $c>0$, then $c(1-q) / q>c$ implies the existence of $x \in X$ such $d(x, f(x))<c(1-q) / q$. Now we have

$$
d\left(f(x), f^{2}(x)\right) \leq \frac{q}{1-q} d(x, f(x))<c
$$

which is a contradiction, and so $c=0$. Hence there exists a sequence $\left(x_{n}\right)$ in X such that $\lim _{n} d\left(x_{n}, f\left(x_{n}\right)\right)=$ 0 . It follows from

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, f\left(x_{m}\right)\right)+d\left(f\left(x_{m}\right), f\left(x_{n}\right)\right)+d\left(x_{n}, f\left(x_{n}\right)\right) \\
& \leq(1+q)\left[d\left(x_{m}, f\left(x_{m}\right)\right)+d\left(x_{n}, f\left(x_{n}\right)\right)\right]
\end{aligned}
$$

that $\left(x_{n}\right)$ is a Cauchy sequence. So there exists $p \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=p$. It follows that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=p$.
We prove $f(p)=p$. It follows from

$$
\begin{aligned}
d(p, f(p)) & \leq d\left(p, f\left(x_{n}\right)\right)+d\left(f\left(x_{n}\right), f(p)\right) \\
& \leq d\left(p, f\left(x_{n}\right)\right)+q\left[d\left(x_{n}, f\left(x_{n}\right)\right)+d(p, f(p))\right]
\end{aligned}
$$

as $n \rightarrow \infty$ that

$$
d(p, f(p)) \leq q d(p, f(p))
$$

and so $p=f(p)$. Now (9.1) implies that the map f has a unique fixed point.
Banach's condition (2.1) and Kannan's (9.1) condition are independent. The condition in 2.1 implies the continuity of the map f, but this is not the case for the condition in 9.1. This follows from the following example.

Example 9.2. Let $X=[0,1]$ and $f(x)$ be defined by

$$
f(x)= \begin{cases}\frac{x}{4} & \text { for } x \in[0,1 / 2) \\ \frac{x}{5} & \text { for } x \in[1 / 2,1]\end{cases}
$$

The map f is discontinuous at the point $x=1 / 2$ and so the condition in 2.1 is not satisfied, but the condition in 9.1 is satisfied for $q=4 / 9$.

Example 9.3. Let $X=[0,1]$ and $f(x)=x / 3$ for $x \in[0,1]$. Clearly, the condition in (2.1) is satisfied, but the condition in 9.1 is not satisfied (we may take $x=1 / 3$ and $y=0$).

The next theorem was proved by Chatterje [12] in 1972.
Theorem 9.4. If (X, d) is a complete metric, $0 \leq q<1 / 2$ and $f: X \rightarrow X$ is a map which satisfies the condition

$$
d(f(x), f(y)) \leq q[d(x, f(y))+d(y, f(x))] \text { for all } x, y \in X
$$

then the function f has a unique fixed point.
Proof (Fisher [23]). Let $x \in X$. Then we have

$$
\begin{aligned}
d\left(f^{n}(x), f^{n+1}(x)\right) & \leq q\left[d\left(f^{n-1}(x), f^{n+1}(x)\right)+d\left(f^{n}(x), f^{n}(x)\right)\right] \\
& =q d\left(f^{n-1}(x), f^{n+1}(x)\right) \\
& \leq q\left[d\left(f^{n-1}(x), f^{n}(x)\right)+d\left(f^{n}(x), f^{n+1}(x)\right)\right]
\end{aligned}
$$

hence

$$
\begin{aligned}
d\left(f^{n}(x), f^{n+1}(x)\right) & \leq \frac{q}{1-q} d\left(f^{n-1}(x), f^{n}(x)\right) \\
& \leq\left(\frac{q}{1-q}\right)^{2} d\left(f^{n-2}(x), f^{n-1}(x)\right) \\
& \leq\left(\frac{q}{1-q}\right)^{n} d(x, f(x))
\end{aligned}
$$

So we obtain

$$
\begin{aligned}
d\left(f^{n}(x), f^{n+r}(x)\right) & \leq d\left(f^{n}(x), f^{n+1}(x)\right)+\cdots+d\left(f^{n+r-1} x, f^{n+r}(x)\right) \\
& \leq\left[\left(\frac{q}{1-q}\right)^{n}+\cdots+\left(\frac{q}{1-q}\right)^{n+r-1}\right] d(x, f(x)) \\
& \leq\left(\frac{q}{1-q}\right)^{n} \frac{1}{1-q} d(x, f(x)) .
\end{aligned}
$$

Since $q(1-q)^{-1}<1$, it follows that $\left(f^{n}(x)\right)$ is a Cauchy sequence in X. Since X is a complete metric space, there exists $z \in X$ such that $z=\lim _{n} f^{n}(x)$.
Now we have

$$
\begin{aligned}
d(z, f(z)) & \leq d\left(z, f^{n}(x)\right)+d\left(f^{n}(x), f(z)\right) \\
& \leq d\left(z, f^{n}(x)\right)+q\left[d\left(f^{n-1}(x), f(z)\right)+d\left(f^{n}(x), z\right)\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain

$$
d(z, f(z)) \leq q d(z, f(z))
$$

and since $q<1 / 2$, we have

$$
f(z)=z
$$

Hence z is a fixed point of the function f.
We assume that the function f has one more fixed point $z^{\prime} \in X$. Then we have

$$
\begin{aligned}
d\left(z, z^{\prime}\right) & =d\left(f(z), f\left(z^{\prime}\right)\right) \\
& \leq q\left[d\left(z, f\left(z^{\prime}\right)\right)+d\left(z^{\prime}, f(z)\right)\right] \\
& =2 q d\left(z, z^{\prime}\right)
\end{aligned}
$$

Since $q<1 / 2$, it follows that $z=z^{\prime}$, that is, the fixed point of the function f is unique.
In 1972, Zamfirescu [54] connected Banach's, Kannan's and Chatterje's theorems.
Theorem 9.5 (Zamfirescu [54]). Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a map for which there exist real numbers $0 \leq \alpha<1,0 \leq \beta<1$ and $\gamma<1 / 2$ such that, for each $x, y \in X$, at least one of the following conditions is satisfied:
$\left(z_{1}\right) \quad d(f(x), f(y)) \leq \alpha d(x, y) ;$
$\left(z_{2}\right) \quad d(f(x), f(y)) \leq \beta[d(x, f(x))+d(y, f(y))] ;$
$\left(z_{3}\right) \quad d(f(x), f(y)) \leq \gamma[d(x, f(y))+d(y, f(x))]$.
Then the function f has a unique fixed point.
Proof. Let $x, y \in X$. Then at least one of the conditions $\left(z_{1}\right),\left(z_{2}\right)$ or $\left(z_{3}\right)$ is satisfied. If $\left(z_{2}\right)$ is satisfied, then we have

$$
d(f(x), f(y)) \leq \beta[d(x, f(x))+d(y, f(y))]
$$

$$
\leq \beta\{d(x, f(x))+[d(y, x)+d(x, f(x))+d(f(x), f(y))]\} .
$$

This implies

$$
(1-\beta) d(f(x), f(y)) \leq 2 \beta d(x, f(x))+\beta d(x, y),
$$

that is,

$$
d(f(x), f(y)) \leq \frac{2 \beta}{1-\beta} d(x, f(x))+\frac{\beta}{1-\beta} d(x, y) .
$$

Similarly, if $\left(z_{3}\right)$ is satisfied, we get the following estimate

$$
\begin{aligned}
d(f(x), f(y)) & \leq \gamma[d(x, f(y))+d(y, f(x))] \leq \\
& \leq \gamma[d(x, f(x))+d(f(x), f(y))+d(y, x)+d(x, f(x))] \leq \\
& \leq \gamma[2 d(x, f(x))+d(f(x), f(y))+d(x, y)] .
\end{aligned}
$$

Hence we have

$$
d(f(x), f(y)) \leq \frac{2 \gamma}{1-\gamma} d(x, f(x))+\frac{\gamma}{1-\gamma} d(x, y) .
$$

We put

$$
\lambda=\max \left\{\alpha, \frac{\beta}{1-\beta}, \frac{\gamma}{1-\gamma}\right\} .
$$

Then we have $0 \leq \lambda<1$, and if $\left(z_{2}\right)$ or $\left(z_{3}\right)$ is satisfied for each $x, y \in X$, then

$$
\begin{equation*}
d(f(x), f(y)) \leq 2 \lambda \cdot d(x, f(x))+\lambda \cdot d(x, y) . \tag{9.2}
\end{equation*}
$$

In a similar way, it can be shown that if $\left(z_{2}\right)$ or $\left(z_{3}\right)$ is satisfied, then

$$
\begin{equation*}
d(f(x), f(y)) \leq 2 \lambda \cdot d(x, f(y))+\lambda \cdot d(x, y) \tag{9.3}
\end{equation*}
$$

Obviously, (9.2) and 9.3) follow from $\left(z_{1}\right)$.
It follows from 9.2 that the function f has at least one fixed point. Now we prove the existence of a fixed point of f. Let $x_{0} \in X$ and

$$
x_{n}=f^{n}\left(x_{0}\right) \text { for } n=1,2, \ldots
$$

be the Picard iteration of f.
If $x=x_{n}$ and $y=x_{n-1}$ are two successive approximations, then it follows from (9.3) that

$$
d\left(x_{n+1}, x_{n}\right) \leq \lambda \cdot d\left(x_{n}, x_{n-1}\right) .
$$

So $\left(x_{n}\right)_{n=0}^{\infty}$ is a Cauchy sequence, and consequently convergent. Let $u \in X$ be its limit. Then we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 .
$$

By the triangle inequality and (9.2), it follows that

$$
\begin{aligned}
d(u, f(u)) & \leq d\left(u, x_{n+1}\right)+d\left(f\left(x_{n}\right), f(u)\right) \\
& \leq d\left(u, x_{n+1}\right)+\lambda \cdot d\left(u, x_{n}\right)+2 \lambda d\left(x_{n}, f\left(x_{n}\right)\right)
\end{aligned}
$$

and letting $n \rightarrow \infty$, we obtain $d(u, f(u))=0$, hence $f(u)=u$.
Remark 9.6. If a function f satisfies the condition in Theorem 9.4, we write $f \in(Z)$, in particular, if f satisfies one of the conditions in $\left(z_{i}\right)$ for $i=1,2,3$ in this theorem, then we write $f \in\left(z_{i}\right)$ for $i=1,2,3$.

We consider the conditions $\left(Z^{\prime}\right)$: there exist nonnegative functions a, b and c satisfying the following condition

$$
\sup _{x, y \in X}(a(x, y)+2 b(x, y)+2 c(x, y)) \leq \lambda<1,
$$

such that, for each $x, y \in X$,

$$
\begin{aligned}
d(f(x), f(y)) \leq & a(x, y) d(x, y)+b(x, y)(d(x, f(x))+d(y, f(y))) \\
& +c(x, y)(d(x, f(y))+d(y, f(x))) ;
\end{aligned}
$$

and $\left(Z^{\prime \prime}\right)$: There exists a constant h with $0 \leq h<1$ such that, for all $x, y \in X$,

$$
d(f(x), f(y)) \leq h \max \left\{d(x, y), \frac{d(x, f(x))+d(y, f(y))}{2}, ~ \begin{array}{l}
\left.\frac{d(x, f(y))+d(y, f(x))}{2}\right\} .
\end{array}\right.
$$

It can be proved (49) that the conditions in $(Z),\left(Z^{\prime}\right)$ and $\left(Z^{\prime \prime}\right)$ equivalent.
We show that (Z) implies $\left(Z^{\prime}\right)$.
If the function f and $x, y \in X$ satisfy $\left(z_{1}\right)$, then we define $a(x, y)=\alpha$ and $b=c=0$. If for $x, y \in X$, for which the function f satisfies $\left(z_{2}\right)$, we define $b(x, y)=\beta$ and $a=c=0$, and similarly, in the case of $\left(z_{3}\right)$, we define $c(x, y)=\gamma$ and $a=b=0$.

We show that (Z^{\prime}) implies $\left(Z^{\prime \prime}\right)$.
We put

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, f(x))+d(y, f(y))}{2}, \quad \begin{array}{l}
\left.\frac{d(x, f(y))+d(y, f(x))}{2}\right\} .
\end{array}\right.
$$

Let $f \in\left(Z^{\prime}\right)$. Then we have

$$
d(f(x), f(y)) \leq[a(x, y)+2 b(x, y)+2 c(x, y)] M(x, y) \leq \lambda M(x, y),
$$

and $f \in\left(Z^{\prime \prime}\right)$.
We show that $\left(Z^{\prime \prime}\right)$ implies (Z).
For each $x, y \in X$, for which $M(x, y)=d(x, y)$, the function f satisfies $\left(z_{1}\right)$ with $\alpha=h$. If $M(x, y)=$ $[d(x, f(x))+d(y, f(y))] / 2$, then the function f satisfies $\left(z_{2}\right)$ with $\beta=h / 2$, and the function f satisfies $\left(z_{3}\right)$ with $\gamma=h / 2$, if $M(x, y)=[d(x, f(y))+d(y, f(x))] / 2$.

10. Ćirić's generalized contraction

In [13], Ćirić generalized the well-known contractive condition and introduced a concept of a generalized contraction defined as follows.
Definition 10.1 (Ćirić [13]). Let (X, d) be a metric space. A mapping $f: X \rightarrow X$ is a λ-generalized contraction if, for all $x, y \in X$, there exist some nonnegative numbers $q(x, y), r(x, y), s(x, y)$ and $t(x, y)$ such that

$$
\sup _{x, y \in X}\{q(x, y)+r(x, y)+s(x, y)+2 t(x, y)\}=\lambda<1,
$$

and for all $x, y \in X$,

$$
\begin{align*}
d(f(x), f(y)) \leq & q(x, y) d(x, y)+r(x, y) d(x, f(x))+s(x, y) d(y, f(y)) \\
& +t(x, y)(d(x, f(y))+d(y, f(x))) . \tag{10.1}
\end{align*}
$$

Obviously, this condition is equivalent to the fact that there exists a constant $h \in(0,1)$ such that, for all $x, y \in X$,

$$
d(f(x), f(y)) \leq h \max \{d(x, y), d(x, f(x)), d(y, f(y))
$$

$$
\begin{equation*}
\left.\frac{d(x, f(y))+d(y, f(x))}{2}\right\} \tag{10.2}
\end{equation*}
$$

The next example shows that 10.1 indeed generalizes 2.1 .
Example 10.2. Let $X=[0,2] \subseteq \mathbb{R}$ and

$$
f(x)= \begin{cases}\frac{x}{9} & \text { for } 0 \leq x \leq 1 \\ \frac{x}{10} & \text { for } 1<x \leq 2\end{cases}
$$

The map f does not satisfy (2.1) since, for $x=999 / 1000$ and $y=1001 / 1000$,

$$
d(f(x), f(y))=\frac{981}{90000}>5 \cdot \frac{180}{90000}=5 d(x, y)
$$

But (10.1) holds for $q(x, y)=1 / 10, r(x, y)=s(x, y)=1 / 4$ and $t(x, y)=1 / 6$ for all $x, y \in X$.
Example 10.3. Let $X=[0,10] \subset \mathbb{R}$ and $f(x)=3 / 4$ for each $x \in X$. For $x=0$ and $y=8$, the function f satisfies 9.1 with $q<3$. But the condition in 10.1 is satisfied on all of X with $q(x, y)=3 / 4$ and $r(x, y)=s(x, y)=t(x, y)=1 / 20$.

Definition 10.4. Let (X, d) be a metric space, $f: X \rightarrow X$ be a map, and $x \in X$. An f-orbit of the element x is the set $O(x ; f)$ defined by

$$
O(x ; f)=\left\{f^{n}(x): n \in \mathbb{N}_{0}\right\}
$$

If f is given, then the usual notation is $O(x)$. Furthermore, for all $n \in \mathbb{N}$, we define the set

$$
O(x, n)=\left\{x, f(x), f^{2}(x), \ldots, f^{n}(x)\right\}
$$

The space X is said to be an f-orbitally complete metric space if any Cauchy sequence in $O(x ; f)$ for $x \in X$ converges in X.

Obviously, every complete metric space is f-orbitally complete, but the converse implication does not hold, in general. It is clear from the proof of Banach's theorem that it is enough to assume that (X, d) is f-orbitally complete instead of complete. The same remark applies for λ-generalized contractions, as is stated in the following theorem.

Theorem 10.5 (Ćirić [13]). If $f: X \mapsto X$ is a λ-generalized contraction on an f-orbitally complete metric space X, then, for any $x \in X$, the iterative sequence $\left(f^{n}(x)\right)$ converges to the unique fixed point u of f, and

$$
d\left(f^{n}(x), u\right) \leq \frac{\lambda^{n}}{1-\lambda} \cdot d(x, f(x))
$$

Proof. For an arbitrary $x \in X$, we define the sequence $\left(x_{n}\right)$ by $x_{0}=x$ and $x_{n}=f\left(x_{n-1}\right)$ for $n \in \mathbb{N}$. Then we obtain from 10.1

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)= & d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \leq q\left(x_{n-1}, x_{n}\right) d\left(x_{n-1}, x_{n}\right) \\
& +r\left(x_{n-1}, x_{n}\right) d\left(x_{n-1}, f\left(x_{n-1}\right)\right)+s\left(x_{n-1}, x_{n}\right) d\left(x_{n}, f\left(x_{n}\right)\right) \\
& +t\left(x_{n-1}, x_{n}\right)\left(d\left(x_{n-1}, f\left(x_{n}\right)\right)+d\left(x_{n}, f\left(x_{n-1}\right)\right)\right) \\
= & q\left(x_{n-1}, x_{n}\right) d\left(x_{n-1}, x_{n}\right)+r\left(x_{n-1}, x_{n}\right) d\left(x_{n-1}, x_{n}\right) \\
& +s\left(x_{n-1}, x_{n}\right) d\left(x_{n}, x_{n+1}\right)+t\left(x_{n-1}, x_{n}\right) d\left(x_{n-1}, x_{n+1}\right)
\end{aligned}
$$

and moreover

$$
d\left(x_{n}, x_{n+1}\right) \leq\left(q\left(x_{n-1}, x_{n}\right)+r\left(x_{n-1}, x_{n}\right)\right) d\left(x_{n-1}, x_{n}\right)
$$

$$
\begin{aligned}
& +s\left(x_{n-1}, x_{n}\right) d\left(x_{n}, x_{n+1}\right) \\
& +t\left(x_{n-1}, x_{n}\right)\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right)
\end{aligned}
$$

so

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \frac{q\left(x_{n-1}, x_{n}\right)+r\left(x_{n-1}, x_{n}\right)+t\left(x_{n-1}, x_{n}\right)}{1-s\left(x_{n-1}, x_{n}\right)-t\left(x_{n-1}, x_{n}\right)} d\left(x_{n-1}, x_{n}\right) \tag{10.3}
\end{equation*}
$$

Because of

$$
q(x, y)+r(x, y)+t(x, y)+\lambda s(x, y)+\lambda t(x, y) \leq \lambda
$$

we get

$$
\frac{q(x, y)+r(x, y)+t(x, y)}{1-s(x, y)-t(x, y)} \leq \lambda \text { for all } x, y \in X
$$

and, combined with 10.3 , it follows that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \lambda d\left(x_{n-1}, x_{n}\right) \tag{10.4}
\end{equation*}
$$

We remark that 10.4 allows us to consider f as a contraction under special assumptions, and

$$
d\left(x_{n}, x_{n+1}\right) \leq \lambda d\left(x_{n-1}, x_{n}\right) \leq \cdots \leq \lambda^{n} d(x, f(x))
$$

Obviously, we have for all $m \geq n$

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{k=n}^{m-1} d\left(x_{k}, x_{k+1}\right) \leq \sum_{k=n}^{m-1} \lambda^{k} d(x, f(x))
$$

hence

$$
\begin{equation*}
d\left(x_{n}, x_{n+p}\right) \leq \frac{\lambda^{n}}{1-\lambda} d(x, f(x)) \tag{10.5}
\end{equation*}
$$

implies that $\left(x_{n}\right)$ is a Cauchy sequence in $O(x)$. Let $z \in X$ denote its limit. It remains to show $f(z)=z$ by estimating $d\left(f(z), f\left(x_{n}\right)\right)$.

$$
\begin{aligned}
d\left(f(z), f\left(x_{n}\right)\right) \leq & q\left(z, x_{n}\right) d\left(z, x_{n}\right)+r\left(z, x_{n}\right)\left(d\left(z, x_{n+1}\right)+d\left(x_{n+1}, f(z)\right)\right) \\
& +s\left(z, x_{n}\right) d\left(x_{n}, x_{n+1}\right)+t\left(z, x_{n}\right)\left(d\left(z, x_{n+1}\right)+d\left(f(z), x_{n}\right)\right) \\
\leq & \lambda d\left(z, x_{n}\right)+\left(r\left(z, x_{n}\right)+t\left(z, x_{n}\right)\right) d\left(z, x_{n+1}\right) \\
& +r\left(z, x_{n}\right) d\left(f\left(x_{n}\right), f(z)\right)+s\left(z, x_{n}\right) d\left(x_{n}, x_{n+1}\right) \\
& +t\left(z, x_{n}\right)\left(d\left(f(z), f\left(x_{n}\right)\right)+d\left(f\left(x_{n}\right), x_{n}\right)\right) \\
\leq & d\left(z, x_{n}\right)+\lambda d\left(z, x_{n+1}\right) \\
& +\left(r\left(z, x_{n}\right)+t\left(z, x_{n}\right)\right) d\left(f(z), f\left(x_{n}\right)\right)+\lambda d\left(x_{n}, x_{n+1}\right) \\
\leq & \lambda\left(d\left(z, x_{n}\right)+d\left(z, x_{n+1}\right)+d\left(x_{n}, x_{n+1}\right)\right)+\lambda d\left(f(z), f\left(x_{n}\right)\right) .
\end{aligned}
$$

Thus we have

$$
d\left(f(z), f\left(x_{n}\right)\right) \leq \frac{\lambda}{1-\lambda}\left[d\left(z, x_{n}\right)+d\left(z, x_{n+1}\right)+d\left(x_{n}, x_{n+1}\right)\right]
$$

that is, z is a fixed point of the function f. The uniqueness easily follows from 10.1 and the estimation inequality is implied by 10.5 .

The contractive condition (10.1) for generalized contractions implies many others, thus Theorem 10.5 has numerous consequences among which we will state two analogous to Corollaries 2.8 and 2.10 of Banach's theorem.

Theorem 10.6. If $f: X \rightarrow X$ is a map of an f-orbitally complete metric space (X, d) such that, for some $k \in \mathbb{N}$, f^{k} is a λ-generalized contraction for all $x \in X$, then the iterative sequence $\left(f^{n}(x)\right)$ converges to a unique fixed point z of f, and

$$
\begin{aligned}
& d\left(f^{n}(x), z\right) \leq\left(\lambda^{\prime}\right)^{n} \rho(x, f(x)), \text { where } \lambda^{\prime}=\lambda^{1 / k} \\
& \qquad \text { and } \rho(x, f(x))=\max \left\{\lambda^{-1} d\left(f^{r}(x), f^{r+k}(x)\right): r=0,1, \ldots, k-1\right\}
\end{aligned}
$$

Proof. The existence of a unique fixed point directly follows from Theorem 10.5. It remains to estimate $d\left(f^{n}(x), z\right)$ for each $n \in \mathbb{N}$. Since $n=m k+r$ for $m=[n / k]$ and $0 \leq r<k$, we have

$$
\begin{aligned}
d\left(f^{n}(x), z\right) & =d\left(f^{m k}\left(f^{r}(x)\right), z\right) \leq \frac{\lambda^{m}}{1-\lambda} d\left(f^{r}(x), f^{k}\left(f^{r}(x)\right)\right) \\
& =\left(\lambda^{1 / k}\right)^{m k+r-r} d\left(f^{r}(x), f^{k+r}(x)\right) \\
& \leq\left(\lambda^{1 / k}\right)^{m k+r-k} d\left(f^{r}(x), f^{r+k}(x)\right) \\
& =\left(\lambda^{1 / k}\right)^{n} \lambda^{-1} d\left(f^{r}(x), f^{r+k}(x)\right)
\end{aligned}
$$

hence

$$
d\left(f^{n}(x), z\right) \leq\left(\lambda^{1 / k}\right)^{n} \max \left\{\lambda^{-1} d\left(f^{r}(x), f^{r+k}(x)\right): r=0,1, \ldots k-1\right\}
$$

As in the case of Banach's theorem, we may consider some local properties of Theorem 10.5 .
Theorem 10.7. Let $f: B \rightarrow X$ be a map of an f-orbitally complete metric space (X, d), where $B=$ $B_{r}\left(x_{0}\right)=\left\{x \in X: d\left(x_{0}, x\right) \leq r\right\}$ for some $x_{0} \in X$ and $r>0$. If f is $a \lambda$-generalized contraction on B and

$$
\begin{equation*}
d\left(x_{0}, f\left(x_{0}\right)\right) \leq(1-\lambda) \cdot r \tag{10.6}
\end{equation*}
$$

then the sequence $\left(f^{n}\left(x_{0}\right)\right)$ converges to a unique fixed point z of f in B and

$$
d\left(f^{n}\left(x_{0}\right), z\right) \leq \lambda^{n} \cdot r \text { for } \lambda=\sup _{x, y \in B}[q(x, y)+r(x, y)+2 t(x, y)]
$$

Proof It is clear that $x_{n} \in B$ for all $n \in \mathbb{N}$, due to 10.6 and mathematical induction. Analogously as in the proof of Theorem 10.5, it follows that $\left(f^{n}\left(x_{0}\right)\right)$ is a Cauchy sequence in B and its limit is a fixed point of f. Inequality (10.1) guarantees uniqueness.

11. The Reich and Hardy-Rogers theorems

In 1971, Reich 44 proved the following theorem which generalizes Banach's and Kannan's theorems. (We note that for $a=b=0$, we obtain Banach's theorem, Theorem 2.2, and for $a=b$ and $c=0$, we obtain Kannan's theorem, Theorem 9.1).

Theorem 11.1 (Reich [44). Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a map for which there exists nonnegative numbers a, b and c with $a+b+c<1$ such that for all $x, y \in X$,

$$
\begin{equation*}
d(f(x), f(y)) \leq a d(x, f(x))+b d(y, f(y))+c d(x, y) \tag{11.1}
\end{equation*}
$$

Then the map f has a unique fixed point.
Proof. Let $x \in X$. We consider the sequence $\left(f^{n}(x)\right)$. If we put $x=f^{n}(x)$ and $y=f^{n-1}(x)$ in (11.1), then we have for all $n \geq 1$

$$
d\left(f\left(f^{n}(x)\right), f\left(f^{n-1}(x)\right)\right) \leq \quad a d\left(f^{n}(x), f\left(f^{n}(x)\right)\right)+b d\left(f^{n-1}(x), f\left(f^{n-1}(x)\right)\right)+c d\left(f^{n}(x), f^{n-1}(x)\right)
$$

Hence, we obtain

$$
\left.\left.d\left(f^{n+1}(x)\right), f^{n}(x)\right)\right) \leq p d\left(f^{n}(x), f^{n-1}(x)\right)
$$

where $0 \leq p=(b+c) /(1-a)<1$. It follows that

$$
\left.\left.d\left(f^{n+1}(x)\right), f^{n}(x)\right)\right) \leq p^{n} d(x, f(x))
$$

and for every $m>n$,

$$
\left.\left.d\left(f^{m}(x)\right), f^{n}(x)\right)\right) \leq \frac{p^{n}}{1-p} \cdot d(x, f(x))
$$

Thus $\left(f^{n}(x)\right)$ is a Cauchy sequence, and there exists $z \in X$ with $z=\lim _{n \rightarrow \infty} f^{n}(x)$.
We are going to show $f(z)=z$. It suffices to show $\lim _{n \rightarrow \infty} f^{n+1}(x)=f(z)$. When we choose $x=f^{n}(x)$ and $y=z$ in 11.1, then we have for all $n \geq 1$

$$
\begin{aligned}
& \left.d\left(f^{n+1}(x)\right), f(z)\right) \leq a d\left(f^{n}(x), f^{n+1}(x)\right)+b d(z, f(z))+c d\left(f^{n}(x), z\right) \\
& \quad \leq a d\left(f^{n}(x), f^{n+1}(x)\right)+b d\left(f^{n+1}(x), f(z)\right)+b d\left(f^{n+1}(x), z\right)+c d\left(f^{n}(x), z\right) \\
& \quad \leq a p^{n} d(x, f(x))+b d\left(f^{n+1}(x), f(z)\right)+b d\left(f^{n+1}(x), z\right)+c d\left(f^{n}(x), z\right)
\end{aligned}
$$

Thus we obtain for $n \rightarrow \infty$

$$
\left.d\left(f^{n+1}(x)\right), f(z)\right) \leq \frac{a p^{n} d(x, f(x))+b d\left(f^{n+1}(x), z\right)+c d\left(f^{n}(x), z\right)}{1-b} \rightarrow 0
$$

We are going to show that the $\operatorname{map} f$ has a unique fixed point.
If we assume that $x, y \in X$ with $x \neq y$ are fixed points of the map f, then we have

$$
d(x, y)=d(f(x), f(y)) \leq a d(x, f(x))+b d(y, f(y))+c d(x, y)=c d(x, y)
$$

which implies $x=y$.
Example 11.2. Let $X=[0,1]$ have the natural metric and the map $f: X \rightarrow X$ be defined by $f(x)=x / 3$ for $0 \leq x<1$ and $f(1)=1 / 6$. Then the map f does not satisfy Banach's condition, since it is not continuous; neither does it satisfy Kannan's condition, since

$$
d(f(0), f(1 / 3))=\frac{1}{2}[d(0, f(0))+d(1 / 3, f(1 / 3))]
$$

But the map f satisfies the condition in(11.1), for instance, for $a=1 / 6, b=1 / 9$ and $c=1 / 3$.
Corollary 11.3 (Reich [44]). Let (X, d) be a complete metric space and $f_{n}: X \rightarrow X$ for $n=1,2, \ldots$ be a sequence of maps satisfying the condition in (11.1) with the same constants a, b and c and with the fixed points $u_{n} \in X$. We define the map $f: X \rightarrow X \operatorname{by} f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for $x \in X$. Then the map f has a unique fixed point $u \in X$ and $u=\lim u_{n \rightarrow \infty}=u$.

Proof. Since the metric d is a continuous function, it follows that the function f satisfies the condition in (11.1), and therefore has a unique fixed point $u \in X$. We note that

$$
\begin{aligned}
d\left(u_{n}, u\right) & =d\left(f_{n}\left(u_{n}\right), f(u)\right) \leq d\left(f_{n}\left(u_{n}\right), f_{n}(u)\right)+d\left(f_{n}(u), f(u)\right) \\
& \leq a d\left(u_{n}, f_{n}\left(u_{n}\right)\right)+b d\left(u, f_{n}(u)\right)+c d\left(u_{n}, u\right)+d\left(f_{n}(u), f(u)\right)
\end{aligned}
$$

Hence we have

$$
d\left(u_{n}, u\right) \leq \frac{(b+1) d\left(f_{n}(u), f(u)\right)}{1-c} \rightarrow 0(n \rightarrow \infty) .
$$

Hardy and Rogers [25] improved some of Reich's results 44] including the following theorem.

Theorem 11.4 (Hardy and Rogers [25]).
Let (X, d) be metric space and $f: X \rightarrow X$ be a map such that for all $x, y \in X$,

$$
\begin{align*}
d(f(x), f(y)) \leq & a d(x, f(x))+b d(y, f(y)) \\
& +c d(x, f(y))+e d(y, f(x))+h d(x, y) \tag{11.2}
\end{align*}
$$

where $a, b, c, e, h \geq 0$ and $\alpha=a+b+c+e+h$.
(i) If (X, d) is a complete metric space and $\alpha<1$, then the map f has a unique fixed point.
(ii) If (X, d) is compact, f is continuous and the condition in 11.2) is replaced by

$$
\begin{align*}
d(f(x), f(y))< & a d(x, f(x))+b d(y, f(y)) \\
& +c d(x, f(y))+e d(y, f(x))+h d(x, y) \tag{11.3}
\end{align*}
$$

for all $x \neq y$, and $\alpha=1$, then f has a unique fixed point.
The following lemma is essential in the proof of this theorem, but for the reader's convenience, we state it separately.

Lemma 11.5. We assume that (11.2) is satisfied and $\alpha<1$. Then there exists $\beta<1$ such that

$$
\begin{equation*}
d\left(f(x), f^{2}(x)\right) \leq \beta d(x, f(x)) \tag{11.4}
\end{equation*}
$$

If $\alpha=1$ and 11.3 is satisfied, then

$$
\begin{equation*}
x \neq f(x) \text { implies } d\left(f(x), f^{2}(x)\right) \leq \beta d(x, f(x)) \tag{11.5}
\end{equation*}
$$

Proof. In the first case, for $\alpha<1$, we put $y=f(x)$, and observe

$$
\begin{equation*}
d\left(f(x), f^{2}(x)\right) \leq \frac{a+h}{1-b} \cdot d(x, f(x))+\frac{c}{1-b} \cdot d\left(x, f^{2}(x)\right) \tag{11.6}
\end{equation*}
$$

which, along with $d\left(f(x), f^{2}(x)\right) \geq d\left(f^{2}(x), x\right)-d(f(x), x)$ and 11.6), leads to

$$
\begin{equation*}
d\left(f^{2}(x), x\right)-d(f(x), x) \leq \frac{a+h}{1-b} \cdot d(x, f(x))+\frac{c}{1-b} \cdot d\left(x, f^{2}(x)\right) \tag{11.7}
\end{equation*}
$$

that is,

$$
\begin{equation*}
d\left(f^{2}(x), x\right) \leq \frac{1+a+h-b}{1-b-c} \cdot d(x, f(x)) \tag{11.8}
\end{equation*}
$$

By (11.9), inserting (11.8) in 11.6), we obtain

$$
\begin{equation*}
d\left(f(x), f^{2}(x)\right) \leq \frac{a+c+h}{1-b-c} \cdot d(x, f(x)) \tag{11.9}
\end{equation*}
$$

and replacing a and c by b and e (which is permitted because of the symmetry of the metric d), we get

$$
\begin{equation*}
d\left(f(x), f^{2}(x)\right) \leq \frac{b+e+h}{1-a-e} \cdot d(x, f(x)) \tag{11.10}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\beta=\min \left\{\frac{a+c+h}{1-b-c}, \frac{b+e+h}{1-a-e}\right\} \tag{11.11}
\end{equation*}
$$

then (11.4) is satisfied.
The remainder of the lemma is shown analogously.

Proof of Theorem 11.4. To prove Part (i), we first observe that, by 11.4, for all $m>n$,

$$
\begin{aligned}
d\left(f^{m}(x), f^{n}(x)\right) & \leq d\left(f^{m}(x), f^{m-1}(x)\right)+\cdots+d\left(f^{n+1}(x), f^{n}(x)\right) \\
& \leq \beta^{n}\left(l+\beta+\cdots+\beta^{m-n}\right) d(x, f(x)) \\
& \leq \frac{\beta^{n}}{1-\beta} \cdot d(x, f(x))
\end{aligned}
$$

Hence $\left(f^{n}(x)\right)$ is a Cauchy sequence and $z \in X$ is its limit. It remains to show $f(z)=z$. This follows directly from $\lim _{n \rightarrow \infty} f^{n+1}(x)=f(z)$.
he following inequality holds by 11.2

$$
\begin{align*}
d(z, f(z)) \leq & d\left(f^{n+1}(x), f(z)\right)+d\left(f^{n+1}(x), z\right) \tag{11.12}\\
\leq & a d\left(f^{n}(x), f^{n+1}(x)\right)+b d(z, f(z)) \tag{11.13}\\
& +c d\left(f^{n}(x), f(z)\right)+(e+1) d\left(f^{n+1}(x), z\right)+h d\left(f^{n}(x), z\right) \tag{11.14}
\end{align*}
$$

Letting $n \rightarrow \infty$ in 11.12, we obtain

$$
d(z, f(z)) \leq(b+c) d(z, f(z))
$$

and $b+c<1$ implies $z=f(z)$. The uniqueness clearly follows from 11.2 .
We note that, under the assumptions in (ii), there is some $y \in X$ such that

$$
\inf \{d(x, f(x)): x \in X\}=d(y, f(y))
$$

Because of (11.5), it follows that $y=f(y)$. The uniqueness is shown as previously discussed.

12. Ćirić's quasi-contraction

In 1971, Ćirić [14] used a concept of generalized contraction to replace the linear combination of distances in 10.1 by their maximum, and defined a new class of contractive mappings called quasi-contractions.

Definition 12.1 (Ćirić [14]). A map $f: X \rightarrow X$ of a metric space (X, d) is a quasi-contraction if there exists some λ with $0<\lambda<1$ such that

$$
\begin{equation*}
d(f(x), f(y)) \leq \lambda \cdot \max \{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))\} \tag{12.1}
\end{equation*}
$$

for all $x, y \in X$.
Obviously if a mapping f satisfies condition 2.1, then 12.1) also holds. An example presented by Ćirić shows that the converse implication is not true, in general.

Example 12.2 (Ćirić [14]). Let

$$
\begin{aligned}
& M_{1}=\left\{\frac{m}{n}: m=0,3^{k}, n=3 k+1, k \in \mathbb{N}_{0}\right\} \\
& M_{2}=\left\{\frac{m}{n}: m=3^{k}, n=3 k+2, k \in \mathbb{N}_{0}\right\}
\end{aligned}
$$

and $M=M_{1} \cup M_{2}$ be the metric space with the usual metric $d(x, y)=|x-y|$ for all $x, y \in M$. The map $f: X \rightarrow X$ defined by

$$
f(x)= \begin{cases}\frac{3 x}{5} & \left(x \in M_{1}\right) \\ \frac{x}{8} & \left(x \in M_{2}\right)\end{cases}
$$

is a quasi-contraction for $\lambda=3 / 5$, but not a contraction $(x=1, y=1 / 2)$.

Example 12.3. Let $X=[0,3] \cup[4,5]$ have the natural metric and the map $f: X \rightarrow X$ be defined by

$$
f(x)= \begin{cases}0 & \text { if } x \in[0,3] \\ 3 & \text { if } x \in[4,5]\end{cases}
$$

Then, for each $x \in[4,5]$, we have $d(x, f(x)) \leq 2$ and $d\left(f(x), f^{2}(x)\right)=3$. So we have $d\left(f(x), f^{2}(x)\right)>$ $d(x, f(x))$. We show that the function f satisfies the condition in 12.1.
Let $x \in[0,3]$ and $y \in[4,5]$. Then we have $d(f(x), f(y))=3$ and $d(y, f(x)) \geq 4$. Hence it follows that $d(f(x), f(y))=(3 / 4) 4 \leq(3 / 4) \max \{d(x, f(y)), d(y, f(x))\}$.
Thus the function f satisfies 12.1 for $\lambda=3 / 4$ and all $x, y \in X$.
Example 12.4. Let $f(x)=0$ for all $0 \leq x<1$ and $f(1)=1 / 2$. Then the function f satisfies (12.1) but not (10.1) 49]. We note that

$$
\begin{gathered}
d\left(f\left(\frac{1}{2}\right), f(1)\right)=\frac{1}{2}=\frac{d\left(\frac{1}{2}, f(1)\right)+d\left(1, f\left(\frac{1}{2}\right)\right)}{2} \\
d\left(\frac{1}{2}, 1\right)=d\left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right)=d(1, f(1))=\frac{1}{2} \\
d(f(x), f(y))=0 \text { for all } x \neq y \text { and } x, y \neq 1 \\
d(f(x), f(1))=\frac{1}{2} \leq \frac{3}{4} \cdot d(1, f(x))=\frac{3}{4} \text { for } x \neq 1
\end{gathered}
$$

Theorem 12.5 (Ćirić [14]). If $f: X \rightarrow X$ is a quasi-contraction on an f-orbitally complete metric space (X, d), then f has a unique fixed point z in X, and the iterative sequence $\left(f^{n}(x)\right)$ converges to z for any $x \in X$. Moreover, we have

$$
d\left(f^{n}(x), z\right) \leq \frac{\lambda^{n}}{1-\lambda} d(x, f(x))
$$

Proof. We put $\alpha(x, n)=\operatorname{diam}(O(x, n))$, and $\alpha(x)=\operatorname{diam}(O(x))$ where diam denotes a diameter of a set. Then we have

$$
\begin{equation*}
\alpha(f(x), n-1)=\operatorname{diam}\left(\left\{f(x), f^{2}(x), \ldots, f^{n}(x)\right\}\right) \leq \lambda \alpha(x, n) \tag{12.2}
\end{equation*}
$$

Obviously, if $\alpha(f(x), n-1)=d\left(f^{j}(x), f^{k}(x)\right)$ for $1 \leq j<k \leq n$, then 12.1 yields

$$
\begin{aligned}
\alpha(f(x), n-1)= & d\left(f\left(f^{j-1}(x)\right), f\left(f^{k-1}(x)\right)\right) \\
\leq & \lambda \max \left\{d\left(f^{j-1}(x), f^{k-1}(x)\right), d\left(f^{j-1}(x), f^{j}(x)\right), d\left(f^{k-1}(x), f^{k}(x)\right)\right. \\
& \left.d\left(f^{j-1}(x), f^{k}(x)\right), d\left(f^{k-1}(x), f^{j}(x)\right)\right\} \\
\leq & \lambda \operatorname{diam}\left(\left\{f^{j-1}(x), f^{j}(x), \ldots, f^{k}(x)\right\}\right) \\
\leq & \lambda \operatorname{diam}\left(\left\{x, f(x), \ldots, f^{n}(x)\right\}\right) \\
& =\lambda \alpha(x, n)
\end{aligned}
$$

and 12.2 holds.
Furthermore, we obtain from 12.2 ,

$$
\begin{equation*}
\alpha(x, n)=d\left(x, f^{k}(x)\right) \text { for some } k \leq n \tag{12.3}
\end{equation*}
$$

It follows from $12.2,(12.3)$ and the triangle inequality that

$$
\begin{aligned}
\alpha(x, n) & =d\left(x, f^{k}(x)\right) \leq d(x, f(x))+d\left(f(x), f^{k}(x)\right) \\
& \leq d(x, f(x))+\alpha(f(x), n-1) \\
& \leq d(x, f(x))+\lambda \alpha(x, n)
\end{aligned}
$$

and

$$
\begin{equation*}
\alpha(x, n) \leq \frac{1}{1-\lambda} \cdot d(x, f(x)) . \tag{12.4}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} \alpha(x, n)=\alpha(x)$, 12.4) implies

$$
\begin{equation*}
\alpha(x) \leq \frac{1}{1-\lambda} \cdot d(x, f(x)), \tag{12.5}
\end{equation*}
$$

so the f-orbit of x has a finite diameter.
We write $\beta_{n}(x)$ for the diameter of $\alpha\left(f^{n}(x)\right)$.
The sequence $\left(\beta_{n}(x)\right)$ is non-increasing and bounded, so there exists $\lim _{n \rightarrow \infty} \beta_{n}(x)=\beta(x)$ and $\beta(x) \leq \beta_{n}(x)$ for all $n \in \mathbb{N}$.
Letting $n \rightarrow \infty$ in (12.2), we obtain

$$
\begin{equation*}
\alpha(f(x)) \leq \lambda \alpha(x), \tag{12.6}
\end{equation*}
$$

hence

$$
\beta_{n+1}(x)=\alpha\left(f\left(f^{n}(x)\right)\right) \leq \lambda \alpha\left(f^{n}(x)\right)=\lambda \beta_{n}(x)(n \in \mathbb{N})
$$

and

$$
\beta(x) \leq \lambda \beta(x)
$$

so $\beta(x)=0$ and $\left(f^{n}(x)\right)$ is a Cauchy sequence in X.
Let $z=\lim _{n \rightarrow \infty} f^{n}(x)$. Because of 12.1), we have

$$
d\left(f(u), f\left(f^{n}(x)\right)\right) \leq \quad \lambda \max \left\{d\left(u, f^{n}(x)\right), d(u, f(u)), d\left(f^{n}(x), f^{n+1}(x)\right), d\left(u, f^{n+1}(x)\right), d\left(f^{n}(x), f(u)\right)\right\},
$$

hence

$$
d(f(u), u) \leq \lambda d(u, f(u)),
$$

that is, $f(u)=u$. The uniqueness also follows from (12.1).
We obtain from 12.6, $\alpha\left(f^{n}(x)\right) \leq \lambda^{n} \alpha(x)$ and combined with 12.5)

$$
\alpha\left(f^{n}(x)\right) \leq \frac{\lambda^{n}}{1-\lambda} d(x, f(x)) .
$$

If $n, m \in \mathbb{N}$ and $m \geq n$, then

$$
d\left(f^{n}(x), f^{m}(x)\right) \leq \alpha\left(f^{n}(x)\right) \leq \frac{\lambda^{n}}{1-\lambda} d(x, f(x)),
$$

and when $m \rightarrow \infty$, then

$$
d\left(f^{n}(x), z\right) \leq \frac{\lambda^{n}}{1-\lambda} d(x, f(x))
$$

13. Caristi's Theorem

There are many extensions of Banach's contraction principle, one of the most studied ones is that by Caristi [11, 1976. Caristi's theorem [11] may be motivated by the following consideration. If (X, d) is a metric space and $T: X \rightarrow X$ is a contraction with a Lipschitz constant $k \in[0,1$), then we have

$$
\begin{aligned}
d(x, T(x)) & =\frac{1}{1-k} \cdot d(x, T(x))-\frac{k}{1-k} \cdot d(x, T(x)) \\
& \leq \frac{1}{1-k} \cdot d(x, T(x))-\frac{1}{1-k} \cdot d(T(x), T(T(x))) \\
& =\phi(x)-\phi(T(x)),
\end{aligned}
$$

for all $x \in X$, where $\phi(x)=(1-k)^{-1} d(x, T(x))$.
It is well known that Caristi's theorem (or the Caristi-Kirk, or the Caristi- Kirk-Browder theorem) is equivalent to Ekeland's variation principle [19] which is very important because of its numerous applications. The ordinal proof of the Caristi-Kirk theorem is rather complicated and, in the literature, there are several different proofs of that theorem.

We mention that the map $\varphi: X \rightarrow \mathbb{E}(\mathbb{E} \subset \mathbb{R})$ is lower semicontinuous at $x \in X$ if, for every sequence $\left(x_{n}\right)$, it follows from $\lim _{n \rightarrow \infty} x_{n}=x$ that $\varphi(x) \leq \liminf _{n \rightarrow \infty} \varphi\left(x_{n}\right)$. The map $\varphi: X \rightarrow \mathbb{E}$ is lower semicontinuous on X if it is lower semicontinuous at every $x \in X$.

Theorem 13.1 (Caristi [11]). Let (X, d) be a complete metric space, $T: X \rightarrow X$ and $\phi: X \rightarrow[0, \infty)$ be lower semicontinuous such that

$$
\begin{equation*}
d(x, T(x)) \leq \phi(x)-\phi(T(x)) \text { for all } x \in X \tag{13.1}
\end{equation*}
$$

Then T has a fixed point.
Proof (Ćirić [15]). For each $x \in X$, we put

$$
\begin{aligned}
& P(x)=\{y \in X: d(x, y) \leq \phi(x)-\phi(y)\} \\
& \alpha(x)=\inf \{\phi(y): y \in P(x)\}
\end{aligned}
$$

Since $x \in P(x), P(x)$ is a nonempty set and $0 \leq \alpha(x) \leq \phi(x)$.
Let $x \in X$. We define the sequence $\left(x_{n}\right)$ in X such that $x_{1}=x$, and if $x_{1}, x_{2}, \ldots, x_{n}$ are already defined then we define $x_{n+1} \in P\left(x_{n}\right)$ such that $\phi\left(x_{n+1}\right) \leq \alpha\left(x_{n}\right)+1 / n$. Hence the sequence $\left(x_{n}\right)$ satisfies the following conditions:

$$
\begin{align*}
& d\left(x_{n}, x_{n+1}\right) \leq \phi\left(x_{n}\right)-\phi\left(x_{n+1}\right) \\
& \alpha\left(x_{n}\right) \leq \phi\left(x_{n+1}\right) \leq \alpha\left(x_{n}\right)+1 / n \tag{13.2}
\end{align*}
$$

Since $\left(\phi\left(x_{n}\right)\right)$ is a decreasing sequence of real numbers, there exists $\alpha \geq 0$ such that

$$
\begin{equation*}
\alpha=\lim _{n \rightarrow \infty} \phi\left(x_{n}\right)=\lim _{n \rightarrow \infty} \alpha\left(x_{n}\right) . \tag{13.3}
\end{equation*}
$$

Let $k \in \mathbb{N}$. It follows from 13.2 that there exists N_{k} such that $\phi\left(x_{n}\right)<\alpha+1 / k$ for every $n \geq N_{k}$. Hence the monotonicity of the sequence $\left(\phi\left(x_{n}\right)\right)$ for $m \geq n \geq N_{k}$ implies $\alpha \leq \phi\left(x_{m}\right) \leq \phi\left(x_{n}<\alpha+1 / k\right.$, that is,

$$
\begin{equation*}
\phi\left(x_{n}\right)-\phi\left(x_{m}\right)<1 / k \text { for each } m \geq n \geq N_{k} \tag{13.4}
\end{equation*}
$$

We have from the triangle inequality and the inequality in 13.2

$$
\begin{equation*}
d\left(x_{n}, x_{m}\right) \leq \sum_{s=n}^{m-1} d\left(x_{s}, x_{s+1}\right) \leq \phi\left(x_{n}\right)-\phi\left(x_{m}\right) \tag{13.5}
\end{equation*}
$$

Now (13.4) implies

$$
d\left(x_{n}, x_{m}\right)<1 / k \text { for each } m \geq n \geq N_{k}
$$

Since $\left(x_{n}\right)$ is a Cauchy sequence and X is a complete metric space the sequence converges to some $u \in X$. Since ϕ is lower semicontinuous, we obtain from (13.5) that

$$
\phi(u) \leq \liminf _{m \rightarrow \infty} \phi\left(x_{m}\right) \leq \liminf _{m \rightarrow \infty}\left[\phi\left(x_{n}\right)-d\left(x_{n}, x_{m}\right)\right]=\phi\left(x_{n}\right)-d\left(x_{n}, u\right)
$$

and so

$$
d\left(x_{n}, u\right) \leq \phi\left(x_{n}\right)-\phi(u)
$$

Hence we have $u \in P\left(x_{n}\right)$ for all $n \in \mathbb{N}$ and $\alpha\left(x_{n}\right) \leq \phi(u)$. Now 13.3 implies $\alpha \leq \phi(u)$. On the other hand, since ϕ is lower semicontinuous, 13.3 implies $\phi(u) \leq \lim _{\inf }{ }_{n \rightarrow \infty} \phi\left(x_{n}\right)=\alpha$. Hence we have $\phi(u)=\alpha$.
Since $u \in P\left(x_{n}\right)$ for each $n \in \mathbb{N}$, 13.1) implies $T u \in P(u)$, that is,

$$
\begin{aligned}
d\left(x_{n}, T u\right) & \leq d\left(x_{n}, u\right)+d(u, T u) \\
& \leq \phi\left(x_{n}\right)-\phi(u)+\phi(u)-\phi(T u) \\
& =\phi\left(x_{n}\right)-\phi(T u)
\end{aligned}
$$

Hence we have $T u \in P\left(x_{n}\right)$ for each $n \in \mathbb{N}$. It follows that

$$
\phi(T u) \geq \alpha\left(x_{n}\right) \text { for each } n \in \mathbb{N}
$$

Now 13.3 implies

$$
\phi(T u) \geq \alpha
$$

Since (13.1) implies $\phi(T u) \leq \phi(u)$ and $\phi(u)=\alpha$, we have

$$
\phi(u)=\alpha \leq \phi(T u) \leq \phi(u)
$$

and so $\phi(T u)=\phi(u)$. Now (13.1) implies

$$
d(u, T u) \leq \phi(u)-\phi(T u)=0
$$

that is, $T u=u$.
Theorem 13.2 (Ekeland [19], 1972). Let $\phi: X \rightarrow R$ be an upper semicontinuous function on the complete metric space (X, d). If ϕ is bounded above then there exists $u \in X$ such that

$$
\begin{equation*}
\phi(u)<\phi(x)+d(u, x) \text { for } x \in X \text { with } x \neq u \tag{13.6}
\end{equation*}
$$

Proof (Ćirić [15]). We are going to show that u from the proof of Theorem 13.1 is the desired point. Using the same notations for $x \neq u$ we have to prove $x \notin P(u)$. We suppose that this is not the case, that is, for some $v \neq u$, we have $v \in P(u)$. Then $0<d(u, v) \leq \phi(u)-\phi(v)$ implies $\phi(v)<\phi(u)=\alpha$.
Since

$$
\begin{aligned}
d\left(x_{n}, v\right) & \leq d\left(x_{n}, u\right)+d(u, v) \\
& \leq \phi\left(x_{n}\right)-\phi(u)+\phi(u)-\phi(v) \\
& =\phi\left(x_{n}\right)-\phi(v)
\end{aligned}
$$

it follows that $v \in P\left(x_{n}\right)$. Hence we have

$$
\alpha\left(x_{n}\right) \leq \phi(v) \text { for all } n \in \mathbb{N}
$$

We obtain for $n \rightarrow \infty$

$$
\alpha \leq \phi(v)
$$

which is a contradiction to $\phi(v)<\alpha=\phi(u)$. Hence we have $x \notin P(u)$ for $x \in X$ with $x \neq u$, and so

$$
x \neq u \text { implies } d(u, x)>\phi(u)-\phi(x)
$$

Proof (Brézis and Browder [8]). By Theorem 13.2 there exists $u \in X$ which satisfies the condition in (13.6). It follows that $T u=u$, for $T u \neq u$ would imply $\phi(T u)-\phi(u)>-d(u, T u)$, which contradicts (13.1). We note that Theorem 13.2 can be proved by Theorem 13.1. Indeed, if we assume that the conclusion of Theorem 13.2 is not true, then, for each $x \in X$, there exists $y \in X$ with $y \neq x$ such that $\phi(y)-\phi(x) \leq$ $-d(x, y)$. Hence we may define a map $T: X \rightarrow X$ which satisfies (13.1), but does not have a fixed point.

We are going to present a proof of Caristi's theorem given by Kirk and Saliga [31]. First we prove a result by Brézis and Browder [8], the well-known Brézis - Browder [8] principle of ordering.

Let (X, \leq) be a partially ordered set. We denote $S(x)=\{y \in X: x \leq y\}$ for $x \in X$. A sequence $\left(x_{n}\right)$ in X is said to be increasing if $x_{n} \leq x_{n+1}$ for each $n \in \mathbb{N}$.

Theorem 13.3 (Brézis and Browder [8]). Let the function $\phi: X \rightarrow \mathbb{R}$ satisfy the following conditions:
(1) $x \leq y$ implies $\phi(x) \leq \phi(y)$;
(2) for every increasing sequence $\left(x_{n}\right)$ in X with $\phi\left(x_{n}\right) \leq C<\infty$ for each $n \in \mathbb{N}$, there exists $y \in X$ such that $x_{n} \leq y$ for each $n \in \mathbb{N}$;
(3) for each $x \in X$ there exists $u \in X$ such that $x \leq u$ and $\phi(x)<\phi(u)$.

Then $\phi(S(x))$ is a bounded set for each $x \in X$.
Proof. For $a \in X$, let

$$
p(a)=\sup _{b \in S(a)} \phi(b)
$$

We are going to show $p(x)=+\infty$ for each $x \in X$. We assume that $p(x)<\infty$ for some $x \in X$. We define a sequence $\left(x_{n}\right)$ by induction such that $x_{1}=x, x_{n+1} \in S\left(x_{n}\right)$ and $p\left(x_{n}\right) \leq \phi\left(x_{n+1}\right)+(1 / n)$ for each $n \in \mathbb{N}$. Since $\phi\left(x_{n+1}\right) \leq p(x)<\infty$, the condition in (2) implies that there exists $y \in X$ such that $x_{n} \leq y$ for each n. It follows from the condition in (3) that there exists $u \in X$ such that $y \leq u$ and $\phi(y)<\phi(u)$. Since $x_{n} \leq u$, we have $\phi(u) \leq p\left(x_{n}\right)$ for all n. Furthermore, we have $x_{n+1} \leq y$, so $\phi\left(x_{n+1}\right) \leq \phi(y)$, and so

$$
\phi(u) \leq p\left(x_{n}\right) \leq \phi\left(x_{n+1}\right)+(1 / n) \leq \phi(y)+(1 / n) \text { for all } n \in \mathbb{N}
$$

hence $\phi(u) \leq \phi(y)$, which is a contradiction.
Theorem 13.4. Let (X, \preceq) be a partially ordered set, $x \in X$ and $S(x)=\{y \in X: x \preceq y\}$. We assume that the map $\psi: X \rightarrow \mathbb{R}$ satisfies the following conditions:
(a) $x \preceq y$ with $x \neq y$ implies $\psi(x)<\psi(y)$;
(b) for each increasing sequence $\left(x_{n}\right)$ in X, for which $\psi\left(x_{n}\right) \leq C<\infty$ for each $n \in \mathbb{N}$, there exists $y \in X$ such that $x_{n} \preceq y$ for each $n \in \mathbb{N}$;
(c) for each $x \in X$, the set $\psi(S(x))$ is bounded above.

Then, for each $x \in X$ there exists $x^{\prime} \in S(x)$ such that x^{\prime} is maximal in X, that is, $\left\{x^{\prime}\right\}=S\left(x^{\prime}\right)$.
Proof. We apply Theorem 13.3 to the set $X=S(x)$; since the conditions in (1) and (2) of Theorem 13.3 are satisfied, and the conclusion of the theorem does not hold, it follows that the condition in (3) is not satisfied for some $x^{\prime} \in S(x)$. Hence we have $S\left(x^{\prime}\right)=\left\{x^{\prime}\right\}$.

We remark that the map $\varphi: X \rightarrow \mathbb{R}$ is lower semicontinuous from above if $x_{n} \in X$ for $n=1,2, \ldots$, $\lim _{n \rightarrow \infty} x_{n}=x$ and $\left(\varphi\left(x_{n}\right)\right) \downarrow r$ imply $\varphi(x) \leq r$.

Theorem 13.5 (Kirk and Saliga [31]).
We assume that (X, d) is a complete metric space and $T: X \rightarrow X$ is an arbitrary map such that we have for each $x \in X$

$$
\begin{equation*}
d(x, T(x)) \leq \varphi(x)-\varphi(T(x)) \tag{13.7}
\end{equation*}
$$

where the map $\varphi: X \rightarrow \mathbb{R}$ is bounded above and lower semicontinuous. Then the map T has a fixed point in X.

Proof. We introduce Brondsted's partial order \preceq on X as follows: For each $x, y \in X$, we have

$$
x \preceq y \text { if and only if } d(x, y) \leq \varphi(x)-\varphi(y)
$$

and let $\psi=-\varphi$. Then the condition in (a) of Theorem 13.4 is satisfied, and the condition in (c) follows from the fact that the map φ is bounded below. To show the condition in (b), we assume that $\left(x_{n}\right)$ is an
increasing sequence in (X, \preceq) such that $\psi\left(x_{n}\right) \leq C<\infty$ for each n. Then $\left(\varphi\left(x_{n}\right)\right)$ is a decreasing sequence in \mathbb{R}, and there exists $r \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} \varphi\left(x_{n}\right)=r$. Since $\left(\varphi\left(x_{n}\right)\right)$ is a decreasing sequence, we have for each $m>n$

$$
\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right) \leq \lim _{n, m \rightarrow \infty}\left[\varphi\left(x_{n}\right)-\varphi\left(x_{m}\right)\right]=0
$$

Hence $\left(x_{n}\right)$ is a Cauchy sequence in X. It follows that there exists $x \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. From $\varphi\left(x_{n}\right) \downarrow r$ and $\varphi(x) \leq r$, it follows that

$$
\begin{aligned}
d\left(x_{n}, x\right) & \leq \lim _{m} d\left(x_{n}, x_{m}\right) \leq \lim _{m}\left[\varphi\left(x_{n}\right)-\varphi\left(x_{m}\right)\right] \\
& =\varphi\left(x_{n}\right)-r \leq \varphi\left(x_{n}\right)-\varphi(x)
\end{aligned}
$$

Hence x is an upper bound for the sequence $\left(x_{n}\right)$ in (X, \preceq) and so we have proved the condition in (b). Now it follows by Theorem 13.4 that (X, \preceq) has a maximal element x^{\prime}. Since 13.7 implies $x^{\prime} \preceq T\left(x^{\prime}\right)$, we have $T\left(x^{\prime}\right)=x^{\prime}$.

Siegel [52] proved in 1977 in an original way, a generalized version of Caristi's theorem. Here we present some of his results 52].

Let (X, d) be a complete metric space, $\phi: X \rightarrow \mathbb{R}^{+}$, the set of nonnegative real numbers, and $g: X \rightarrow X$ be a not necessarily continuous map such that $d(x, g(x)) \leq \phi(x)-\phi(g(x))$ for all $x \in X$.

If a sequence of functions f_{i} for $i \leq 1<\infty$ is given, then we define the product

$$
\prod_{k=1}^{\infty} f_{k} x=\lim _{k \rightarrow \infty} f_{k} f_{k-1} \cdots f_{1} x
$$

if the limit exists, and call it the countable decomposition of the given sequence of functions.
Definition 13.6. Let $\Phi=\{f: f: X \rightarrow X$ and $d(x, f(x)) \leq \phi(x)-\phi(f(x))\}$. We put $\Phi_{g}=\{f: f \in$ Φ and $\phi(f) \leq \phi(g)\}$.

Lemma 13.7. Let ϕ be an upper semi continuous function, and $\left(x_{i}\right)$ be a sequence in X such that $d\left(x_{i}, x_{i+1}\right) \leq$ $\phi\left(x_{i}\right)-\phi\left(x_{i+1}\right)$ for each i. Then there exists $\bar{x} \in X$ such that $\bar{x}=\lim _{i \rightarrow \infty} x_{i}$ and $d\left(x_{i}, \bar{x}\right) \leq \phi\left(x_{i}\right)-\phi(\bar{x})$ for each i.

Proof. Since the sequence $\left(\phi\left(x_{i}\right)\right)_{i}$ is not increasing and bounded below by zero, and since $d\left(x_{i}, x_{j}\right) \leq$ $\phi\left(x_{i}\right)-\phi\left(x_{j}\right)$ for $i \leq j,\left(x_{i}\right)$ is a Cauchy sequence in X. Let $\bar{x}=\lim x_{i}$. Since ϕ is an upper semicontinuous function, it follows

$$
d\left(x_{i}, \bar{x}\right)=\lim _{j \rightarrow \infty} d\left(x_{i}, x_{j}\right) \leq \phi\left(x_{i}\right)-\lim _{j \rightarrow \infty} \phi\left(x_{j}\right) \leq \phi\left(x_{i}\right)-\phi(\bar{x})
$$

Lemma 13.8. The sets Φ and Φ_{g} are closed by the composition of functions and if ϕ is an upper semicontinuous function then the sets Φ and Φ_{g} are closed by the countable composition of sequences of functions.

Proof. We prove that the sets Φ and Φ_{g} are closed by the composition of functions. If $f_{1}, f_{2} \in \Phi$, then we have

$$
\begin{aligned}
d\left(x, f_{2} f_{1}(x)\right) & \leq d\left(x, f_{1}(x)\right)+d\left(f_{1}(x), f_{2} f_{1}(x)\right) \\
& \leq\left(\phi(x) \phi\left(f_{1}(x)\right)\right)+\left(\phi\left(f_{1}(x)\right)-\phi\left(f_{2} f_{1}(x)\right)\right) \\
& =\phi(x)-\phi\left(f_{2} f_{1}(x)\right)
\end{aligned}
$$

Hence we have $f_{2} f_{1} \in \Phi$. If $f_{1} \in \Phi_{g}$, then $\phi\left(f_{1}(x)\right)-\phi\left(f_{2}\left(f_{1}(x)\right)\right) \geq 0$ implies $\phi\left(f_{2} f_{1}\right) \leq \phi(g)$, and so $f_{2} f_{1} \in \Phi_{g}$.
The remainder of the proof follows from the fact that, for each $x \in X$, the sequence $\left(x_{i}\right)=\left(f_{i} f_{i-1} \cdots f_{1}\right)(x)$ satisfies the conditions of Lemma 13.7.

Definition 13.9. We introduce the following notations:
(1) For $A \subset X$ the diameter of A is defined as

$$
\delta(A)=\sup _{x_{i}, x_{j} \in A}\left(d\left(x_{i}, x_{j}\right)\right)
$$

(2) $r(A)=\inf _{x \in A}(\phi(x))$;
(3) Let $\Phi^{\prime} \subseteq \Phi$. For each $x \in X$, we put $S_{x}=\left\{f x: f \in \Phi^{\prime}\right\}$.

Lemma 13.10. We have $\delta\left(S_{x}\right) \leq 2\left(\phi(x)-r\left(S_{x}\right)\right)$.
Proof. We have

$$
\begin{aligned}
d\left(f_{1}(x), f_{2}(x)\right) & \leq d\left(x, f_{1}(x)\right)+d\left(x, f_{2}(x)\right) \\
& \leq \phi(x)-\phi\left(f_{1}(x)\right)+\phi(x)-\phi\left(f_{2}(x)\right) \\
& \leq 2\left(\phi(x)-r\left(S_{x}\right)\right) . \square
\end{aligned}
$$

The main result of Siegel's paper [52] is the following theorem.
Theorem 13.11 (Siegel [52], 1977). . Let $\Phi^{\prime} \subseteq \Phi$ be sets of functions closed by the composition of functions. Also let $x_{0} \in X$.
(a) If the set Φ^{\prime} is closed for the composition of a countable sequence of functions, then there exists $\bar{f} \in \Phi^{\prime}$ such that $\bar{x}=\bar{f}\left(x_{0}\right)$ and $g(\bar{x})=\bar{x}$ for all $g \in \Phi^{\prime}$.
(b) If the elements of Φ^{\prime} are continuous functions, then there exists a sequence of functions $f_{i} \in \Phi^{\prime}$ and $\bar{x}=\lim _{i \rightarrow \infty} f_{i} f_{i-1} \cdots f_{1}\left(x_{0}\right)$ such that $g(\bar{x})=\bar{x}$ for each $g \in \Phi^{\prime}$.
Proof. Let $\left(\varepsilon_{i}\right)$ be a sequence of positive real numbers converging to zero and $\varepsilon>0$. Then there exists $f_{1} \in \Phi^{\prime}$ such that $\phi\left(f_{1}\left(x_{0}\right)\right)-r\left(S_{x_{0}}\right)<\varepsilon / 2$. We put $x_{1}=f_{1}\left(x_{0}\right)$. Since the set Φ^{\prime} is closed under the composition of functions it follows that $S_{x_{1}} \subseteq S_{x_{0}}$ and

$$
\delta\left(S_{x_{1}}\right) \leq 2\left(\phi\left(x_{1}\right)-r\left(S_{x_{1}}\right)\right) \leq 2\left(\phi\left(f_{1}\left(x_{0}\right)\right)-r\left(S_{x_{0}}\right)\right)<\varepsilon_{1} .
$$

Continuing in this way, we obtain a sequence of function f_{i} such that $x_{i}=f_{i}\left(x_{i-1}\right), S_{x_{i+1}} \subseteq S_{x_{i}}$ and $\delta\left(S_{x_{i}}\right)<\varepsilon_{i}$.
We know from the condition in (a) that there exists $\bar{f}=\prod_{i=1}^{\infty} f_{i} \in \Phi^{\prime}$. Let $\bar{x}=\bar{f}\left(x_{0}\right)$. Since $\bar{x}=$ $\prod_{j=i+1}^{\infty} f_{j}\left(x_{i}\right)$, it follows that $\bar{x} \in S_{x_{i}}$ for all i. On the other hand, $\lim _{i \rightarrow \infty} \delta\left(S_{x_{i}}\right)=0$ implies $\bar{x}=\cap_{i=0}^{\infty} S_{x_{i}}$. Now we prove that $g(\bar{x})=\bar{x}$ for each $g \in \Phi^{\prime}$. This is a consequence of the fact that $g(\bar{x}) \in S_{x_{i}}$ for each i, and because of $g(\bar{x})=g\left(\prod_{j=i+1}^{\infty} f_{j}\left(x_{i}\right)\right)$.
We know from the condition in (b) that there exists

$$
\bar{x}=\lim _{i \rightarrow \infty} f_{i} f_{i-1} \cdots f_{1}\left(x_{0}\right)=\lim _{i \rightarrow \infty} x_{i} .
$$

Since $\left(x_{j}\right)_{j>i} \subseteq S_{i}$ for each i, it follows that $\bar{x} \in \overline{S_{i}}$, where $\overline{S_{i}}$ is the closure of S_{i}. Since $\delta\left(\overline{S_{i}}\right)=\delta\left(S_{i}\right)$ it follows that $\bar{x}=\cap_{i=0}^{\infty} \overline{S_{i}}$.
We are going to show $g(\bar{x})=\bar{x}$ for each $g \in \Phi^{\prime}$. We note that $g\left(x_{i}\right) \in S_{x_{i}}$ for each i. Since g is a continuous function, for each $\varepsilon>0$, there exists an i_{0} such that

$$
\{x \in X: d(g(\bar{x}), x)<\varepsilon\} \bigcap S_{x_{i}} \neq \emptyset \text { for all } i>i_{0}
$$

Hence if $i>i_{0}$, it follows that $d(g(\bar{x}), \bar{x})<\varepsilon+\varepsilon_{i}$. Now $\varepsilon_{i} \rightarrow 0$ implies $d(g(\bar{x}), \bar{x}) \leq \varepsilon$, and since ε is arbitrary, we have $g(\bar{x})=\bar{x}$.
Remark 13.12. In the previous theorem, in the condition in (b), we may take $\Phi^{\prime}=\left\{g^{n}\right\}$, the set of continuous functions and their finite iterations. Then we have as in Banach's contraction theorem

$$
\bar{x}=\lim _{n \rightarrow \infty} g^{n}\left(x_{0}\right)
$$

14. A Theorem by Bollenbacher and Hicks

The following result is related to Caristi's theorem 13.1.
Theorem 14.1 (Eisenfeld and Lakshmikantham [22]).
Let (X, d) be a metric space and $f: X \rightarrow X$ be a map. Then there exists a map $\phi: X \mapsto[0, \infty)$ for which

$$
\begin{equation*}
d(x, f(x)) \leq \phi(x)-\phi(f(x)) \text { for } x \in X, \tag{14.1}
\end{equation*}
$$

if and only if the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} d\left(f^{n}(x), f^{n+1}(x)\right) \tag{14.2}
\end{equation*}
$$

converges for each $x \in X$.
Proof. We assume that the condition in (14.1) is satisfied. We show that the series in (14.2) converges. This follows from the fact that, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{k=0}^{n} d\left(f^{k}(x), f^{k+1}(x)\right) & =d(x, f(x))+\cdots+d\left(f^{n-1}(x), f^{n}(x)\right) \\
& \leq(\phi(x)-\phi(f x))+\cdots+\left(\phi\left(f^{n-1}(x)\right)-\phi\left(f^{n}(x)\right)\right) \\
& =\phi(x)-\phi\left(f^{n}(x)\right) \leq \phi(x) .
\end{aligned}
$$

If the series (14.2) converges for each $x \in X$, the we define a map $\phi: X \rightarrow[0, \infty)$ by

$$
\phi(x)=\sum_{k=0}^{\infty} d\left(f^{k}(x), f^{k+1}(x)\right) \text { for all } x \in X .
$$

Clearly this map ϕ satisfies the condition in 14.1.
Let $x \in X$ and $O(x, \infty)=\left\{x, f(x), f^{2}(x), \ldots\right\}$ be the orbit of x. The map $G: X \rightarrow[0, \infty)$ is said to be f-orbitally upper semicontinuous at x if, for each sequence $\left(x_{n}\right)$ in $O(x, \infty)$, it follows from $\lim _{n \rightarrow \infty} x_{n}=u$ that $G(u) \leq \liminf _{n \rightarrow \infty} G\left(x_{n}\right)$.

We note that if the condition in (14.1) is satisfied for each $y \in(x, \infty)$, then the series (14.2) converges for x, since the sequence of partial sums is nondecreasing and bounded by $\phi(x)$.

In 1988, Bollenbacher and Hicks [5] proved the following very interesting theorem, the corollaries of which include many generalizations of Banach's fixed point theorem.

Theorem 14.2 (Bollenbacher and Hicks [5). Let (X, d) be a metric space, and $f: X \rightarrow X$ and $\phi: X \rightarrow$ $[0, \infty)$. We assume that there exists x such that

$$
\begin{equation*}
d(y, f(y)) \leq \phi(y)-\phi((f(y))) \text { for each } y \in O(x, \infty) \tag{14.3}
\end{equation*}
$$

and that each Cauchy sequence in $O(x, \infty)$ converges to some point in X. Then we have:
(1) $\lim _{n \rightarrow \infty} f^{n}(x)=\bar{x}$ exists;
(2) $d\left(f^{n}(x), \bar{x}\right) \leq \phi\left(f^{n}(x)\right)$;
(3) $f(\bar{x})=\bar{x}$ if and only if $G(x)=d(x, f(x))$ is f-orbitally upper semicontinuous at x;
(4) $d\left(f^{n}(x), x\right) \leq \phi(x)$ and $d(\bar{x}, x) \leq \phi(x)$.

Proof. It follows from Theorem 14.1 that the series

$$
\sum_{k=0}^{\infty} d\left(f^{k}(x), f^{k+1}(x)\right)
$$

converges.
We prove that $\left(f^{n}(x)\right)$ is a Cauchy sequence. This follows since, for each $m>n$,

$$
\begin{aligned}
d\left(f^{n}(x), f^{m}(x)\right) & \leq d\left(f^{n}(x), f^{n+1}(x)\right)+\cdots+d\left(f^{m-1}(x), f^{m}(x)\right) \\
& =\sum_{k=n}^{m-1} d\left(f^{k}(x), f^{k+1}(x)\right)
\end{aligned}
$$

and from the fact that the series $\sum_{k=n}^{\infty} d\left(f^{k}(x), f^{k+1}(x)\right)$ converges. Hence there exist $\bar{x} \in X$ such that the condition in (1) is satisfied. Now from

$$
\begin{aligned}
0 & \leq d\left(f^{n}(x), f^{m}(x)\right) \leq \sum_{k=n}^{m-1} d\left(f^{k}(x), f^{k+1}(x)\right) \\
& \leq \sum_{k=n}^{m-1}\left[\phi\left(f^{k}(x)\right)-\phi\left(f^{k+1}(x)\right)\right]=\phi\left(f^{n}(x)\right)-\phi\left(f^{m}(x)\right) \leq \phi\left(f^{n}(x)\right)
\end{aligned}
$$

the condition in (2) follows as $m \rightarrow \infty$.
To prove the condition in (3), we assume that $x_{n}=f^{n}(x) \rightarrow \bar{x}$ as $(n \rightarrow \infty)$. If G is f-orbitally upper semicontinuous at x, then we have

$$
0 \leq d(\bar{x}, f(\bar{x}))=G(\bar{x}) \leq \liminf _{n \rightarrow \infty} G\left(x_{n}\right)=\liminf _{n \rightarrow \infty} d\left(f^{n}(x), f^{n+1}(x)\right)=0
$$

and so $f(\bar{x})=\bar{x}$.
Now we assume $f(\bar{x})=\bar{x}$ and that $\left(x_{n}\right)$ is a sequence in $O(x, \infty)$ such that $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$. Then we have

$$
G(\bar{x})=d(\bar{x}, f(\bar{x}))=0 \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, f\left(x_{n}\right)\right)=\liminf _{n \rightarrow \infty} G\left(x_{n}\right)
$$

and so G is an f-orbitally upper semicontinuous function at x.
The condition in (4) follows from

$$
\begin{aligned}
d\left(x, f^{n}(x)\right) \leq & d(x, f(x))+d\left(f(x), f^{2}(x)\right)+\cdots+d\left(f^{n-1}(x), f^{n}(x)\right) \\
\leq & {[\phi(x)-\phi(f(x))]+\left[\phi(f(x))-\phi\left(f^{2}(x)\right)\right]+\ldots } \\
& \quad+\left[\phi\left(f^{n-1}(x)\right)-\phi\left(f^{n}(x)\right)\right] \\
= & \phi(x)-\phi\left(f^{n}(x)\right) \leq \phi(x)
\end{aligned}
$$

and since as $n \rightarrow \infty$, we get $d(x, \bar{x}) \leq \phi(x)$.
Corollary 14.3. ([26]) Let (X, d) be a complete metric space and $0<k<1$. We assume that, for $f: X \rightarrow X$, there exists x such that

$$
\begin{equation*}
d\left(f(y), f^{2}(y)\right) \leq k d(y, f(y)) \text { for each } y \in O(x, \infty) \tag{14.4}
\end{equation*}
$$

Then we have
(1) $\lim _{n \rightarrow \infty} f^{n}(x)=\bar{x}$ exists;
(2) $d\left(f^{n}(x), \bar{x}\right) \leq k^{n}(1-k)^{-1} d(x, f(x))$;
(3) $f(\bar{x})=\bar{x}$ if and only if $G(x)=d(x, f(x))$ is an f-orbitally upper semicontinuous function at x;
(4) $d\left(f^{n}(x), x\right) \leq(1-k)^{-1} d(x, f(x))$ and $d(\bar{x}, x) \leq(1-k)^{-1} d(x, f(x))$.

Proof. Let $\phi(y)=(1-k)^{-1} d(y, f(y))$ for all $y \in O(x, \infty)$. If we take $y=f^{n}(x)$ in (14.4), then we get

$$
d\left(f^{n+1}(x), f^{n+2}(x)\right) \leq k d\left(f^{n}(x), f^{n+1}(x)\right)
$$

and so

$$
d\left(f^{n}(x), f^{n+1}(x)\right)-k d\left(f^{n}(x), f^{n+1}(x)\right) \leq d\left(f^{n}(x), f^{n+1}(x)\right)-d\left(f^{n+1}(x), f^{n+2}(x)\right)
$$

Hence we have

$$
d\left(f^{n}(x), f^{n+1}(x)\right) \leq \frac{1}{(1-k)} \cdot\left[d\left(f^{n}(x), f^{n+1}(x)\right)-d\left(f^{n+1}(x), f^{n+2}(x)\right)\right]
$$

that is,

$$
d(y, f(y)) \leq \phi(y)-\phi(f(y))
$$

Now the conditions in (1), (3) and (4) follow immediately from Theorem 14.2 ,
We remark that (14.4) implies $d\left(f^{n}(x), f^{n+1}(x)\right) \leq k^{n} d(x, f x)$, and Theorem 14.2 implies

$$
d\left(f^{n}(x), \bar{x}\right) \leq \phi\left(f^{n}(x)\right)=\frac{1}{1-k} \cdot d\left(f^{n}(x), f^{n+1}(x)\right) \leq \frac{k^{n}}{1-k} \cdot d(x, f(x))
$$

hence (2).
Remark 14.4. We remark that it is not necessary for ϕ to be an upper semicontinuous function, but it is enough that the condition in (14.1) is satisfied only on $O(x, \infty)$ for some x. Furthermore, it can be easier to check that G is an upper semicontinuous function than to check this for the function ϕ. Even if ϕ is an upper semicontinuous function and (14.1) is satisfied for each $x \in X$, it is not necessary in Caristi's theorem that $f \bar{x}=\bar{x}$, but only $f\left(x_{0}\right)=x_{0}$ for some x_{0} in X.
Example 14.5. Let $X=[0,1]$ and $\phi(x)=x$ for all $x \in X$. We define the map f by

$$
f(x)= \begin{cases}0 & \text { for } x \in\left[0, \frac{1}{2}\right] \\ \frac{x}{2}+\frac{1}{4} & \text { for } x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

For each $x \in[0,1 / 2]$, we have $d(x, f(x))=d(x, 0)=x$ and $\phi(x)-\phi(f(x))=\phi(x)-0=x-0=x$. If $x \in(1 / 2,1]$, then $d(x, f(x))=x / 2-1 / 4=\phi(x)-\phi(f(x))$. Hence we have $d(x, f(x))=\phi(x)-\phi(f(x))$ for all $x \in X$. We note that 0 is the only fixed point of the function f. If $x>1 / 2$, then $\lim f^{n}(x)=1 / 2 \neq$ $f(1 / 2)=0$.
Example 14.6. Let $X=\{(x, y): 0 \leq x, y \leq 1\}, d$ be the usual metric on X and $f(x, y)=(x, 0)$ for all $(x, y) \in X$. Then $f(f(p))=f(p)$ for all $p \in X$ and $0=d\left(f(p), f^{2}(p)\right) \leq(1 / 2) d(p, f(p))$. As in Corollary 14.3. let $\phi(p)=2 d(p, f(p))$ and $d(p, f(p)) \leq \phi(p)-\phi(f(p))$. This example shows that, even if both maps f and ϕ are continuous, then f may have more fixed points than one.

Example 14.7. We define the map $f:[-1,1] \rightarrow[-1,1]$ by

$$
f(x)= \begin{cases}-1 & \text { for } x<0 \\ \frac{x}{4} & \text { for } x \geq 0\end{cases}
$$

We note that $d\left(f(x), f^{2}(x)\right) \leq(1 / 4) d(x, f(x))$ for all $x \in[-1,1]$. As in Corollary 14.3, let $\phi(x)=$ $(4 / 3) d(x, f(x))$ for all $x \in[-1,1]$. If $x<0$, then we have $\lim _{n \rightarrow \infty} f^{n}(x)=-1=f(-1)$, and if $x>0$, then we have $\lim _{n \rightarrow \infty} f^{n}(x)=0=f(0)$. Hence 0 and -1 are the only fixed points of the map f. In this example, f and ϕ are discontinuous functions, $\phi(x)=(4 / 3) d(x, f(x))$ is an upper semicontinuous function and $d(x, f(x)) \leq \phi(x)-\phi(f(x))$.

15. Mann iteration

The continuous function $f:[0,1] \rightarrow[0,1]$ with $f(x)=-x$ for $x \in[0,1]$ has a unique fixed point 0 . The Picard iteration sequence $\left(f^{n}\left(x_{0}\right)\right)$ diverges for all initial values $x_{0} \neq 0$.

The Mann iterations are more general than the Picard iterations, that is, the Picard iterations are special cases of the Mann iterations which Mann introduced in his paper [37] in 1953.

Let E be a convex compact subset of a Banach space X, and $T: E \rightarrow E$ be a continuous map. By Schauder's fixed point theorem [51], there exists at least one fixed point of the function T, that is, there exists $p \in E$ such that $T(p)=p$.

In 1953, Mann ([37]) studied the problem of constructing a sequence $\left(x_{n}\right)$ in E which converges to a fixed point of T. Usually an arbitrary initial value $x_{1} \in E$ is chosen, and then the sequence of successive iterations $\left(x_{n}\right)$ of x_{1} defined by

$$
\begin{equation*}
x_{n+1}=T\left(x_{n}\right) \text { for } n=1,2, \ldots \tag{15.1}
\end{equation*}
$$

is considered. If this sequences converges, then its limit is a fixed point of the function T.
Definition 15.1 (Dotson [18]). Let E be a vector space, C be a convex subset of $E, f: C \rightarrow C$ be a map and $x_{1} \in C$. We assume that the infinite matrix $A=\left[a_{n j}\right]$ satisfies the conditions
$\left(A_{1}\right) \quad a_{n j} \geq 0$ for all $j \leq n$ and $a_{n j}=0$ for $j>n ;$
$\left(A_{2}\right) \quad \sum_{j=1}^{n} a_{n j}=1$ for each $n \geq 1 ;$
$\left(A_{3}\right) \quad \lim _{n \rightarrow \infty} a_{n j}=0$ for each $j \geq 1$.
We define the sequence $\left(x_{n}\right)$ by $x_{n+1}=f\left(v_{n}\right)$, where

$$
v_{n}=\sum_{j=1}^{n} a_{n j} x_{j}
$$

The sequence $\left(x_{n}\right)$ is called the Mann iterative sequence, or simply, Mann iteration, and usually denoted by $M\left(x_{1}, A, f\right)$.

Hence the matrix A in Definition 15.1 has the following form

$$
A=\left[\begin{array}{llllll}
1 & 0 & 0 & \ldots & 0 & 0 \\
a_{21} & a_{22} & 0 & \ldots & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \ldots & a_{n n} & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

Theorem 15.2 ([37]). If one of the sequences $\left(x_{n}\right)$ or $\left(v_{n}\right)$ is convergent, then they both converge. In this case, they converge to the same limit point which is a fixed point of the function T.

Proof. Let $\lim _{n \rightarrow \infty} x_{n}=p$. Since A is a regular matrix, it follows that $\lim _{n \rightarrow \infty} v_{n}=p$. The continuity of the function T implies $\lim _{n \rightarrow \infty} T\left(v_{n}\right)=T(p)$, and from $T\left(v_{n}\right)=x_{n+1}$, it follows that $T(p)=p$. If we assume $\lim _{n \rightarrow \infty} v_{n}=q$, then $\lim _{n \rightarrow \infty} x_{n+1}=T(q)$, and the regularity of the matrix A implies $\lim _{n \rightarrow \infty} v_{n}=T(q)$. Hence we have $T(q)=q$.

If the sequences $\left(x_{n}\right)$ and $\left(v_{n}\right)$ are not convergent, then, since E is a compact set, each of the two sequences has at least two distinct accumulation points.

Let X and V be the sets of accumulation points of the sequences $\left(x_{n}\right)$ and $\left(v_{n}\right)$, respectively.

Theorem 15.3 ([37]). If the matrix A satisfies the conditions in $\left(A_{1}\right),\left(A_{2}\right)$ and $\left(A_{3}\right)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|a_{n+1, k}-a_{n, k}\right|=0 \tag{15.2}
\end{equation*}
$$

then X and V are closed and connected sets.
Proof. The set V is closed and compact, and by (15.2), $\lim _{n \rightarrow \infty}\left(v_{n+1}-v_{n}\right)=0$. Hence the set V is connected. Since the function T is continuous and $X=T(V)$, it follows that X is a closed and connected set.

Theorem 15.4 ([37). The set V is a subset of $\operatorname{co}(X)$, where $\operatorname{co}(X)$ denotes the convex hull of the set X.
Proof. By Mazur's theorem [38], $\operatorname{co}(X)$ is a closed set. All but finitely many terms of the sequence $\left(x_{n}\right)$ are elements of each open set that contains the set $\operatorname{co}(X)$. Hence for all sufficiently large n, v_{n} are arbitrarily close to the the set X. Hence the limit point of each convergent subsequence of the sequence $\left(v_{n}\right)$ is an element of the set $\operatorname{co}(X)$.

Example 15.5. Let A be the Cesàro matrix of order 1, that is,

$$
A=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & \ldots & & & \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & \ldots & & & \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \ldots & & & \\
\frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} & 0 & 0 & \cdots \\
. & . & . & . & . & . & . & .
\end{array}\right] .
$$

The matrix A satisfies all the assumptions for a matrix in this subsection. In this case, the Mann method $M\left(x_{1}, A, T\right)$ is usually referred to as the mean value method, where the initial value is $x_{1} \in E$ and

$$
x_{n+1}=T\left(v_{n}\right) \text { and } v_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \text { for all } n=1,2, \ldots
$$

We note

$$
\begin{equation*}
v_{n+1}-v_{n}=\frac{n \sum_{k=1}^{n+1} x_{k}-(n+1) \sum_{k=1}^{n} x_{k}}{(n+1) n}=\frac{T\left(v_{n}\right)-v_{n}}{n+1} \tag{15.3}
\end{equation*}
$$

In many special problems, the iterative method $M\left(x_{1}, A, T\right)$ converges even when the method $T^{n} x_{1}$ diverges.

Example 15.6. Let $E=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$, where $\|\cdot\|$ is the Euclidean norm. Furthermore, let A be the Cesàro matrix of order 1 and the function $T: E \rightarrow E$ be the rotation about the center by the angle $\pi / 4$. Then the Picard iteration $T^{n}\left(x_{1}\right)$ does not converge for any $x_{1} \in E \backslash\{0\}$. Using Mann's method the $M\left(x_{1}, A, T\right)$, the sequences $\left(x_{n}\right)$ and $\left(v_{n}\right)$ always converge (on a spiral) to the center, independently of the choice of the initial value x_{1}.

Definition 15.7 ([18]). The Mann iterative method $M\left(x_{1}, A, f\right)$ is called normal Mann iterative method if the matrix $A=\left[a_{n j}\right]$, besides the conditions $\left(A_{1}\right),\left(A_{2}\right)$ and $\left(A_{3}\right)$, also satisfies the next two conditions

$$
\begin{equation*}
a_{n+1, j}=\left(1-a_{n+1, n+1}\right) a_{n j} \text { for }(j=1,2, \ldots, n ; n=1,2, \ldots) \text {; } \tag{4}
\end{equation*}
$$

$\left(A_{5}\right) \quad$ either $a_{n n}=1$ for all n, or $a_{n n}<1$ for all $n>1$.
In his paper [18], Dotson proved the following theorem.
Theorem 15.8 (Dotson [18]). The following statements are true:
(a) The Mann method $M\left(x_{1}, A, f\right)$ is normal if and only if the matrix $A=\left[a_{n j}\right]$ satisfies the conditions in $\left(A_{1}\right),\left(A_{2}\right),\left(A_{4}\right),\left(A_{5}\right)$ and $\left(A_{3}^{\prime}\right)$, where

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n n} \text { is a divergent series. } \tag{3}
\end{equation*}
$$

(b) The matrices $A=\left[a_{n j}\right]$ (except for the identity matrix) in all normal Mann methods $M\left(x_{1}, A, f\right)$ are constructed as follows:
Let $0 \leq c_{n}<1$ for all $n=1,2, \ldots$ and the series $\sum_{n=1}^{\infty} c_{n}$ be divergent. Then the matrix $A=\left(a_{n j}\right)$ is defined by by

$$
\left\{\begin{array}{l}
a_{11}=1, a_{1 j}=0 \text { for } j>1 \\
a_{n+1, n+1}=c_{n} \text { for } n=1,2, \ldots \\
a_{n+1, j}=a_{j j} \prod_{i=j}^{n}\left(1-c_{i}\right) \text { for } j=1,2, \ldots, n \\
a_{n+1, j}=0 \text { for } j>n+1 \text { and } n=1,2, \ldots
\end{array}\right.
$$

(c) The sequence $\left(v_{n}\right)$ in the normal Mann method $M\left(x_{1}, A, f\right)$ satisfies

$$
\begin{equation*}
v_{n+1}=\left(1-c_{n}\right) v_{n}+c_{n} f\left(v_{n}\right) \text { for } n=1,2, \ldots \tag{15.4}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n}=a_{n+1, n+1} \text { for all } n \tag{15.5}
\end{equation*}
$$

Proof. The statement in (a) follows from the following well-known result on infinite products, namely, that if $0 \leq c_{n}<1$ for all n, then $\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(1-c_{k}\right)=0$ if and only if the series $\sum_{k=1}^{\infty} c_{k}$ diverges.
To prove the statement in (b), we note that if the matrix A satisfies the conditions in $(A 1)-(A 5)$, then it satisfies the condition in (b). It can be proved that if the matrix A satisfies the conditions in (b), where $c_{n}=a_{n+1, n+1}$ for all $n \in \mathbb{N}$, then it satisfies the conditions in $(A 1)-(A 5)$.
The proof of (c) follows if we use the condition in $(A 4)$ and the definitions of the sequences $\left(v_{n}\right)$ and $\left(x_{n}\right)$ in Mann's method $M\left(x_{1}, A, T\right)$.
Example 15.9. For each λ with $0 \leq \lambda<1$, let the infinite matrix $A_{\lambda}=\left(a_{n j}\right)$ be defined by

$$
\left\{\begin{array}{l}
a_{n 1}=\lambda^{n-1} \\
a_{n j}=\lambda^{n-j}(1-\lambda) \text { for } j=2,3, \ldots, n \\
a_{n j}=0 \text { for } j>n \text { and } n=1,2,3, \ldots
\end{array}\right.
$$

where, for $\lambda=0$, we put $a_{n n}=1$ for all n. Hence A_{0} is the infinite identity matrix. It can be shown that for each λ with $0 \leq \lambda<1, M\left(x_{1}, A_{\lambda}, T\right)$ is a normal Mann method with $c_{n}=a_{n+1, n+1}=1-\lambda$ for all $n=1,2,3 \ldots$ Hence the sequence $\left(v_{n}\right)$ in the normal Mann method $M\left(x_{1}, A_{\lambda}, T\right)$ is defined by

$$
v_{n+1}=\lambda v_{n}+(1-\lambda) T\left(v_{n}\right) \text { for all } n
$$

Let $S_{\lambda}=\lambda I+(1-\lambda) T$ (where I is the identity map). Hence we have

$$
v_{n+1}=S_{\lambda}\left(v_{n}\right)=S_{\lambda}^{n}\left(v_{1}\right)=S_{\lambda}^{n}\left(x_{1}\right) \text { for all } n
$$

We note that $S_{0}=T$ and, in this case, the sequence $\left(v_{n}\right)$ is obtained by Picard's iteration $\left(T^{n}\left(x_{1}\right)\right)$. The sequence $\left(S_{1 / 2}^{n}\left(x_{1}\right)\right)$ of Picard's iterations of the map $S_{1 / 2}=(1 / 2)(I+T)$ was studied by Krasnoselskii 32] and Edelstein [21], and the sequence $\left(S_{\lambda}^{n}\left(x_{1}\right)\right)$ of Picard's iterations of the map S_{λ} for $0<\lambda<1$ was studied by Schäfer [50], Browder and Petryshyn [9], and Opial 40].

In the literature, mainly the normal Mann iterative method is studied.

16. Continuous functions on $[a, b] \subset \mathbb{R}$

Now we consider the case when the Banach space is the real line \mathbb{R}, and the convex compact set E is a closed interval and A is the Cesàro matrix of order 1.

Theorem 16.1 (Mann [37]). Let $T:[a, b] \rightarrow[a, b]$ be a continuous map which has a unique fixed point $p \in[a, b]$ and A be the Cesàro matrix of order 1 . Then Mann's sequence $M\left(x_{1}, A, T\right)$ converges to p for each $x_{1} \in[a, b]$.

Proof. It follows from (15.3) that $v_{n+1}-v_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since T is a continuous function and p is the unique fixed point of T, it follows that $T(x)-x>0$ for $x<p$ and $T(x)-x<0$ for $x>p$. Hence, for each $\delta>0$, there exists $\varepsilon>0$ such that $|x-p| \geq \delta$ implies $|T(x)-x| \geq \varepsilon$. It follows from (15.3) that

$$
v_{n+1}=v_{1}+\sum_{k=1}^{n} \frac{T\left(v_{k}\right)-v_{k}}{k+1}
$$

Now from our previous considerations, we have $\lim _{n \rightarrow \infty} v_{n}=p$, and by Theorem 15.2, we obtain $\lim _{n \rightarrow \infty} x_{n}=$ p.

In higher dimensional spaces, results similar to that of Theorem 16.1 have not been obtained. Remark 16.2. Reinermann [45] defined a summability matrix A as follows

$$
a_{n k}= \begin{cases}c_{k} \prod_{j=k+1}^{n}\left(1-c_{j}\right) & \text { for } k<n \tag{16.1}\\ c_{n} & \text { for } k=n \\ 0 & \text { for } k>n\end{cases}
$$

where the real sequence $\left(c_{n}\right)$ satisfies the following conditions
(i) $c_{0}=1$,
(ii) $0<c_{n}<1$ for $n \geq 1$,
(iii) $\sum_{k=0}^{\infty} c_{k}$ diverges.

It can be proved that A is a regular matrix, and satisfies the following conditions

$$
\begin{align*}
& 0 \leq a_{n k} \leq 1 \text { for } n, k=0,1,2, \ldots \tag{16.2}\\
& \sum_{k=0}^{n} a_{n k}=1 \text { for } n=0,1,2, \ldots \tag{16.3}
\end{align*}
$$

Reinermann also considered the condition $c_{n}=1$, since he included the identity matrix in his considerations. Since the identity matrix is of no special interest, in all interesting applications, it is assumed that $c_{n}<1$. Then he considered the iterative scheme $\bar{x}_{0}=x_{0} \in E$ and $x_{n+1}=\sum_{k=0}^{n} a_{n k} f\left(x_{k}\right)$, which can be written as

$$
\begin{equation*}
x_{n+1}=\left(1-c_{n}\right) x_{n}+c_{n} f\left(x_{n}\right) \tag{16.4}
\end{equation*}
$$

It is well known by Brower's fixed point theorem that a continuous map from $[a, b]$ to $[a, b]$ has at least one fixed point. Reinermann proved the following result.

Theorem 16.3 (Reinermann [45], 1969). Let $a, b \in \mathbb{R}, a<b, E=[a, b]$ and $f: E \rightarrow E$ be a continuous map with at most one fixed point. If the matrix A is defined by 16.1) and the sequence $\left(c_{n}\right)$ satisfies the conditions (i)-(iii) and $\lim c_{n}=0$, then the iterative scheme (16.4), for $x_{0} \in[a, b]$, converges to the fixed point of f.

Proof. Without loss of generality, we may assume $a=0$ and $b=1$. By Brouwer's fixed point theorem and our assumption, there exists a unique fixed point $x \in[0,1]$ of the function f. Now we have
for all $y \in[0,1]$ with $y<x$ it follows that $f(y)-y>0$;
for all $y \in[0,1]$ with $(y>x)$ it follows that $f(y)-y<0$.
If $x=0$, then we obviously have 16.5). If $x>0$ and if there exists $y_{1} \in[0,1]$ with $y_{1}<x$ such that $f\left(y_{1}\right)-y_{1} \leq 0$, then $f(0)-0=f(0) \geq 0$ implies that there exists $z \in\left[0, y_{1}\right]$ such that $f(z)=z$. Now $z \neq x$, which is a contradiction to the uniqueness of the fixed point.
The case 16.6 is proved analogously.
There are two alternatives I. and II. for the sequence $\left(x_{n}\right)$:
I. There exists $n_{1} \in \mathbb{N}$ such $x_{n_{1}}=x$.

Then $x_{n}=x$ for all $n \geq n_{1}$ and the theorem is proved.
II. For each $n \in \mathbb{N}$, we have $x_{n} \neq x$.

In this case, we have the following three possibilities:

1. There exists $n_{0} \in \mathbb{N}$ such that $x_{n}\left\langle x\right.$ for all $n>n_{0}$. Then we have

$$
x_{n+1}-x_{n}=c_{n}\left(f\left(x_{n}\right)-x_{n}\right),
$$

and (16.5) implies that $\left(x_{n}\right)$ is a monotone increasing sequence; so the sequence converges, since $x_{n} \leq 1$ for all n. By Theorem 15.2 , and since the function f has only one fixed point $x \in[0,1]$, it follows that $\lim _{n} x_{n}=x$.
2. There exists $m_{0} \in \mathbb{N}$ such that $x_{n}>x$ for all $n \geq m_{0}$. In this case, it follows by 16.6 that $\lim _{n \rightarrow \infty} x_{n}=x$, as in Case 1 ..
3. We assume that the possibilities 1. and 2. are not true. Let $\varepsilon>0$ be given. We choose $n_{0} \in \mathbb{N}$ such that

$$
\left|x_{n+1}-x_{n}\right|<\varepsilon \text { for all } n \geq n_{0} .
$$

This is possible, since

$$
\left|x_{n+1}-x_{n}\right| \leq 2 c_{n} \text { and } \lim _{n \rightarrow \infty} c_{n}=0
$$

We are going to prove that there exists $n_{1} \in \mathbb{N}$ with $n_{1} \geq n_{0}$ such that $\left|x_{n_{1}}-x\right|<\varepsilon$, that is,

$$
\begin{equation*}
\text { there exists } n_{1} \geq n_{0} \text { such that }-\varepsilon<x_{n_{1}}-x<\varepsilon . \tag{16.7}
\end{equation*}
$$

If (16.7) is not true, then

$$
\begin{equation*}
x_{n} \leq x-\varepsilon \text { or } x_{n} \geq x+\varepsilon \text { for each } n \geq n_{0} . \tag{16.8}
\end{equation*}
$$

Now, if $x_{n_{0}} \leq x-\varepsilon$, then $x_{n} \leq x-\varepsilon$ for all $n \geq n_{0}$ (because of $\left|x_{n+1}-x_{n}\right|<\varepsilon$), that is, the condition in 1. is satisfied. Analogously, if $x_{n_{0}} \geq x+\varepsilon$, then $x_{n} \geq x+\varepsilon$ for all $n \geq n_{0}$ (again because of $\left.\left|x_{n+1}-x_{n}\right|<\varepsilon\right)$, that is, the condition in 2. is satisfied. Hence, in all cases, the conditions in 1. or 2. are satisfied. So we have shown (16.7).

We are going to prove that we have $\left|x_{n}-x\right|<\varepsilon$ for all $n \geq n_{1}$. This is true for $n=n_{1}$. If $n \geq n_{1}$ and if $\left|x_{n}-x\right|<\varepsilon$, then we have the following possibilities A. and B.:
A. $x-\varepsilon<x_{n}<x$. Then we have (a) or (b) for x_{n+1} :
(a) $x_{n+1}<x$. In this case, $x_{n+1}-x_{n}=c_{n}\left(f\left(x_{n}\right)-x_{n}\right)$ and (16.5) imply $x_{n+1}-x_{n}>0$, Hence we have

$$
\left|x_{n+1}-x\right|=x-x_{n+1}<x-x_{n}=\left|x_{n}-x\right|<\varepsilon .
$$

(b) $x_{n+1}>x$. Now we have

$$
\left|x_{n+1}-x\right|=x_{n+1}-x<x_{n+1}-x_{n}=\left|x_{n+1}-x_{n}\right|<\varepsilon .
$$

B. $x<x_{n}<x+\varepsilon$. Now (16.6) implies the conclusion as in A., that is, $\left|x_{n+1}-x\right|<\varepsilon$.

Hence $\left|x_{n+1}-x\right|<\varepsilon$. It follows by mathematical induction that $\left|x_{n}-x\right|<\varepsilon$ for all $n \geq n_{1}$, thus $\lim _{n} x_{n}=x$.
We note that if we put $c_{n}:=1 /(n+1)$ for all n, then Theorem 16.3 implies Theorem 16.1 .
In 1971, Franks and Marzec [24] showed that the condition of the uniqueness of the fixed point p in Theorem 16.1 is not necessary.

We note that any continuous function $f:[0,1] \rightarrow[0,1]$ has at least one fixed point by Brouwer's fixed point theorem.

Theorem 16.4 (Franks and Marzec ([24])). Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Then the iterative sequence

$$
\begin{gather*}
x_{n+1}=f\left(\tilde{x}_{n}\right) \text { for } n=1,2, \ldots \tag{16.9}\\
\tilde{x}_{n}=\sum_{k=1}^{n} \frac{x_{k}}{n} \text { for } n=1,2, \ldots \tag{16.10}\\
\tilde{x}_{1}=x_{1} \in[0,1] \tag{16.11}
\end{gather*}
$$

converges to a fixed point of the function f in the interval $[0,1]$.
Proof. It follows from (16.9) and 16.10) that

$$
\begin{equation*}
\tilde{x}_{n+1}=\frac{f\left(\tilde{x}_{n}\right)-\tilde{x}_{n}}{n+1}+\tilde{x}_{n} \text { for } n=1,2, \ldots \tag{16.12}
\end{equation*}
$$

Since \tilde{x}_{n} and $f\left(\tilde{x}_{n}\right) \in[0,1]$ for all n, we have

$$
\begin{equation*}
\left|\tilde{x}_{n+1}-\tilde{x}_{n}\right| \leq \frac{1}{n+1} \text { for } n=1,2, \ldots \tag{16.13}
\end{equation*}
$$

It suffices to prove that this sequence is convergent and its limit $\xi \in[0,1]$ is a fixed point of the function f.

1. We prove that the sequence $\left(\tilde{x}_{n}\right)$ is convergent. The sequence $\left(\tilde{x}_{n}\right)$ is in $[0,1]$, and so has at least one accumulation point. We assume that the sequence $\left(\tilde{x}_{n}\right)$ has two distinct accumulation points ξ_{1} and ξ_{2} with $\xi_{1}<\xi_{2}$.
a. We are going to show that we have, from the assumption above, $f(x)=x$ for all $x \in\left(\xi_{1}, \xi_{2}\right)$. Let $x^{*} \in\left(\xi_{1}, \xi_{2}\right)$. If $f\left(x^{*}\right)>x^{*}$, then, since f is a continuous function, there exists $\delta \in\left(0,\left(x^{*}-\xi_{1}\right) / 2\right)$ such that $\left|x-x^{*}\right|<\delta$ implies $f(x)>x$. Hence $\left|\tilde{x}_{n}-x^{*}\right|<\delta$ implies $f\left(\tilde{x}_{n}\right)>\tilde{x}_{n}$. Thus we obtain from (16.12) that

$$
\begin{equation*}
\left|\tilde{x}_{n}-x^{*}\right|<\delta \text { implies } \tilde{x}_{n+1}>\tilde{x}_{n} . \tag{16.14}
\end{equation*}
$$

By (16.13), there exists N such that

$$
\begin{equation*}
\left|\tilde{x}_{n+1}-\tilde{x}_{n}\right|<\delta \text { for } n=N, N+1, \ldots \tag{16.15}
\end{equation*}
$$

Since $\xi_{2}>x^{*}$ is an accumulation point of the sequence (\tilde{x}_{n}), we can choose N such that $\tilde{x}_{N}>\tilde{x}^{*}$. It follows from (16.14) and (16.15) that

$$
\tilde{x}_{n}>x^{*}-\delta>\xi_{1} \text { for } n=N, N+1, \ldots
$$

Thus ξ_{1} is not an accumulation point of the sequence (\tilde{x}_{n}), which contradicts our assumption. If $f\left(x^{*}\right)<x^{*}$, then, similarly as above, we obtain that ξ_{2} is not an accumulation point of the sequence $\left(\tilde{x}_{n}\right)$, which again is a contradiction. Hence $f\left(x^{*}\right)=x^{*}$ for each $x^{*} \in\left(\xi_{1}, \xi_{2}\right)$.
b. Let us prove that ξ_{1} and ξ_{2} are not accumulation points of the sequence $\left(\tilde{x}_{n}\right)$. We note that

$$
\begin{equation*}
\tilde{x}_{n} \notin\left(\xi_{1}, \xi_{2}\right) \text { for } n=1,2, \ldots \tag{16.16}
\end{equation*}
$$

If $f\left(\tilde{x}_{n}\right)=\tilde{x}_{n}$, then 16.12 implies $\tilde{x}_{m}=\tilde{x}_{n}$ for all $m>n$. So neither ξ_{1} nor ξ_{2} can be an accumulation point of the sequence $\left(\tilde{x}_{n}\right)$. Furthermore, 16.13 and 16.16 imply that there exists a natural number M such that $\tilde{x}_{M} \geq \xi_{2}$ for all $n>M$. Hence ξ is not an accumulation point of the sequence (\tilde{x}_{n}). It follows from $\tilde{x}_{M} \leq \xi_{1}$ that $\tilde{x}_{n}<\xi_{1}<\xi_{2}$ for all $n>M$. Hence ξ_{2} is not an accumulation point of the sequence (\tilde{x}_{n}). Consequently the sequence (\tilde{x}_{n}) cannot have two distinct accumulation points, and so this sequence is convergent. We put $\lim _{n} \tilde{x}_{n}=\xi \in[0,1]$.
2. We show $f(\xi)=\xi$. We assume $f(\xi)>\xi$. Let

$$
\varepsilon=\frac{f(\xi)-\xi}{2}>0
$$

Since the sequence (\tilde{x}_{n}) converges to ξ and the function f is continuous, there exists a natural number N such that $f\left(\tilde{x}_{n}\right)-\tilde{x}_{n}>\varepsilon$ for each $n>N$. It follows from 16.12 that

$$
\tilde{x}_{n+1}-\tilde{x}_{n}=\frac{f\left(\tilde{x}_{n}\right)-\tilde{x}_{n}}{n+1}>\frac{\varepsilon}{n+1} .
$$

Hence we have

$$
\begin{gathered}
\lim _{m \rightarrow \infty}\left(\tilde{x}_{N+m}-\tilde{x}_{N}\right)=\lim _{m \rightarrow \infty} \sum_{n=N}^{m-1}\left(\tilde{x}_{n+1}-\tilde{x}_{n}\right) \\
\geq \lim _{m \rightarrow \infty} \sum_{n=N}^{m-1} \frac{\varepsilon}{n+1}=\infty
\end{gathered}
$$

So $\tilde{x}_{n} \rightarrow \infty$ as $n \rightarrow \infty$, which contradicts the fact that $\tilde{x}_{m} \in[0,1]$ for all m. If $f(\xi)<\xi$, then it can be shown that $\tilde{x}_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, which again is a contradiction. So we have $f(\xi)=\xi$.

Rhoades (48], 47] and [16]), among other things, generalized many results presented in this section. He noted the importance of the condition in (15.2).

Let X be a normed space, E be a nonempty, closed, bounded and convex, subset of X and $f: E \rightarrow E$ be a map which has at least one fixed point in E, and let A be an infinite matrix. We consider the iterative scheme

$$
\begin{align*}
& \bar{x}_{0}=x_{0} \in E \tag{16.17}\\
& \bar{x}_{n+1}=f\left(x_{n}\right) \text { for } n=0,1,2, \ldots \tag{16.18}\\
& x_{n}=\sum_{k=0}^{n} a_{n k} \bar{x}_{k} \text { for } n=1,2,3, \ldots \tag{16.19}
\end{align*}
$$

The question is which are the necessary and sufficient conditions for the matrix A such that the above iterative scheme converges to a fixed point of the function f ?

Many results were obtained by the use of the iterative scheme of the form above 16.17$)-(16.19)$ for various classes of infinite matrices.

An infinite matrix A is said to be regular if $x \in c$ and $x_{n} \rightarrow l$ as $n \rightarrow \infty$ implies $A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k} \rightarrow l$ as $n \rightarrow \infty$. The matrix A is triangular if all entries below the main diagonal are equal to zero. We consider regular triangular matrices A which satisfy

$$
\begin{align*}
& 0 \leq a_{n k} \leq 1 \text { for all } n, k=0,1,2, \ldots \tag{16.20}\\
& \sum_{k=0}^{n} a_{n k}=1 \text { for all } n=0,1,2, \ldots \tag{16.21}
\end{align*}
$$

The conditions in (16.20) and 16.21) are necessary for $x_{n}, \bar{x}_{n} \in E$. The scheme 16.17-16.19) is a Mann method 37.

Barone proved in [4] (see (15.2) that a necessary condition that a regular matrix A maps all bounded sequence into sequences with the property that the set of their accumulation points is connected is the following

$$
\begin{equation*}
\lim _{n} \sum_{k=0}^{\infty}\left|a_{n k}-a_{n-1, k}\right|=0 . \tag{16.22}
\end{equation*}
$$

In [46], Rhoades made the following assumption.
Assumption Let $f:[a, b] \rightarrow[a, b]$ be a continuous function, A be a regular matrix which satisfies the conditions in 16.20- 16.22) Then the iterative scheme defined by 16.17)-16.19) converges to a fixed point of the function f.

In the next example, he showed that the assumption above does not hold if the condition (16.22) removed.
Example 16.5. Let A be be the identity matrix, $[a, b]=[0,1], f(x)=1-x$ and $x_{0}=0$.
Rhoades showed that the statement above is true for the large class of weighted means matrices. (For the definition and properties of these matrices see [25, p. 57].)

The weighted means method is a triangular method of the matrix $A=\left(a_{n k}\right)$ defined by $a_{n k}=p_{k} / P_{n}$, where $p_{0}>0, p_{n} \geq 0$ for $n>0, P_{n}=\sum_{k=0}^{n} p_{k}$ and $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then the matrix A satisfies the condition in (16.22) if and only if $p_{n} / P_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 16.6 (Rhoades [48]). Let A be the matrix of a regular weighted means method which satisfies the condition in 16.22). Let $E=[a, b]$ and $f: E \mapsto E$ be a continuous map. Then the iterative scheme (16.17)(16.19) converges to a fixed point of the function f.

Proof. Without loss of generality, we may suppose that $[a, b]=[0,1]$. Every regular weighted means method satisfies the conditions in (16.20) and (16.21). By (16.19), we have

$$
\begin{equation*}
x_{n+1}=\frac{p_{n+1}}{P_{n+1}}\left(f\left(x_{n}\right)-x_{n}\right)+x_{n} \text { for all } n . \tag{16.23}
\end{equation*}
$$

Since $x_{n}, f\left(x_{n}\right) \in[0,1]$, it follows from (16.23) that

$$
\left|x_{n+1}-x_{n}\right| \leq \frac{p_{n+1}}{P_{n+1}} \rightarrow 0(n \rightarrow \infty) .
$$

Now, by the proof of Theorem 16.4, the sequence $\left(x_{n}\right)$ is convergent.
We have to show that the sequence converges to a fixed point of the function f. Let $z=\lim _{n \rightarrow \infty} x_{n}$. Then we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(z)$. It follows from $\bar{x}_{n+1}=f\left(x_{n}\right)$ for each $n \in \mathbb{N}$ that $\lim _{n \rightarrow \infty} \bar{x}_{n}=f(z)$. Since A is a regular matrix, we obtain $z=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} A_{n}(\bar{x})=f(z)$.

Theorem 16.4 can be proved by taking $p_{n}=1$ in Theorem 16.6.
Theorem 16.6 implies Theorem 16.3 . Furthermore the mentioned iterative schemes were defined independently by Outlaw and Groetsch [41], and Dotson [18. We note that Theorem 15.8 (that is, [18, Theorem 2]) characterizes the method in (16.1) and (i)-(iii).

If we choose $c_{n}=(n+1)^{-1}$, the previous statement is Theorem 16.1.
Acknowledgement. The authors express their sincere gratitude to Professor M. A. Khamsi for carefully reading this paper and his many valuable suggestions and helpful remarks. We are also very grateful to Professor E. Karapınar for encouraging as to write this paper.

References

[1] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskii. Measures of Noncompactness and Condensing Operators. Birkhäuser Verlag, Basel, 1992. 4
[2] S. Banach. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fund. Math., 3:133-181, 1922. 1. 88.3
[3] J. Banás and K. Goebel. Measures of Noncompactness in Banach Spaces, volume 60 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York and Basel, 1980. 1. 4
[4] H. G. Barone. Limit points of sequences and their transforms by methods of summability. Duke Math. J., 5:740-752, 1939. 16
[5] A. Bollenbacher and T.L.Hicks. A fixed point theorem revisited. Proc. Amer. Math. Soc., 102:898-900, 1988. 1414.2
[6] D. W. Boyd and J. S. W. Wong. Another proof of contraction mapping theorem. Canad. Math. Bull., 11:605-606, 1968. 2
[7] D. W. Boyd and J. S. W. Wong. On nonlinear contractions. Proc. Amer. Math. Soc., 20:458-464, 1969. 7. 8
[8] H. Brézis and F. E. Browder. A general principle on ordered sets in nonlinear functional analysis. Advances in Mathematics, 21:355-364, 1976. 13. 13.3
[9] F. E. Browder and W. V. Petryshyn. The solution by iteration of linear functional equations in banach spaces. Bull. Amer. Math. Soc., 72:571-575, 1966. 15.9
[10] V. W. Bryant. A remark on a fixed point theorem for iterated mappings. Amer. Math. Monthly, 75:399-400, 1968. 2.8. 2 2.9
[11] J. Caristi. Fixed point theorems for mappings satisfying inwardness conditions. Trans Amer. Math. Soc., 215:241-251, 1976. 1313.1
[12] S. K. Chatterjea. Fixed point theorems. C. R. Acad. Bulgare Sci., 15:727-730, 1972. 9
[13] Lj. B. Ćirić. Generalized contractions and fixed point theorems. Publ. Inst. Math., 12(26):19-26, 1971. 10 , $10.1,10.5$
$[14] \mathrm{Lj} . \mathrm{B}$. Ćirić. A generalization of Banach's contraction principle. Proc. Amer. Math. Soc., 45:267-273, 1974. $12,12.1 .12 .2$ 12.5
[15] Lj.B. Ćirić. Some Recent Results in Metrical Fixed Point Theory. University of Belgrade, Belgrade, 2003. 13.13
[16] Conference on Computing Fixed Points with Applications, Fixed Point Algorithms and Applications. Fixed point iteration using infinite matrices, III, New York, 1977. Academic Press. 16
[17] G. Darbo. Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Math. Univ. Padova, 24:84-92, 1955. 1
[18] W. G. Dotson. On the Mann iterative methods. Trans. Amer. Math. Soc., 149:65-73, 1970. 15.1, 15.7, 15, $15.8,16$
[19] M. Edelstein. An extension of Banach's contraction principle. Proc. Amer. Math. Soc., 12:7-10, 1961. 13. 13.2
[20] M. Edelstein. On fixed and periodic points under contractive mappings. J. London Math. Soc., 37:74-79, 1962. $5,5.1,5.2$ 5.3. 8, 8.4
[21] M. Edelstein. A remark on a theorem of M. A. Krasnoselskii. Amer. Math. Monthly, 73:509-510, 1966. 15.9
[22] J. Eisenfeld and V. Lakshmikantham. Fixed point theorems on closed sets through abstract cones. Appl. Math Comput., 3:155-166, 1977. 14.1
[23] B. Fisher. A fixed point theorem. Mathematics Magazine, 48:223-225, 1975. 9
[24] R. L. Franks and R. P. Marzec. A theorem on mean-value iterations. Proc. Amer. Math. Soc., 30(20):324-326, 1971. 16 16.4
[25] G. E. Hardy and T. D. Rogers. A generalization of a fixed point theorem of Reich. Canad. Math. Bull., 16:201-206, 1973. 11 11.4 16
[26] T. L. Hicks and B. E. Rhoades. A Banach type fixed point theorem. Math. Japon., 24:327-330, 1979. 14.3
[27] V. Istrăţesku. On a measure of noncompactness. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 16:195-197, 1972. 1
[28] V. Istrăţesku. Fixed Point Theory, An Introduction. Reidel Publishing Company, Dordrecht, Boston and London, 1981. 1
[29] J. E. Joseph and M. H. Kwack. Alternative approaches to proofs of contraction mapping fixed point theorems. Missouri J. Math Sci., 11:167-175, 1999. 2, 9
[30] R. Kannan. Some results on fixed points II. Amer. Math. Monthly, 76:405-408, 1969. 9
[31] W. A. Kirk and L. M. Saliga. The Brézis-Browder order principle and extensions of Caristi's theorem. Nonlinear Analysis, 47:2765-2778, 2001. 13, 13.5
[32] M. A. Krasnoselski. Two remarks on the method of successive approximations. Uspehi Math. Nauk (N.S.), 10(1):123-127, 1955. 15.9
[33] K. Kuratowski. Sur les espaces complets. Fund. Math., 15:301-309, 1930. 1
[34] K. Kuratowski. Topologie. Warsaw, 1958. 1
[35] E. Malkowsky and V. Rakočević. An introduction into the theory of sequence spaces and measures of noncompactness, volume 9(17) of Zbornik radova, Matematčki institut SANU, pages 143-234. Mathematical Institute of SANU, Belgrade, 2000. 14
[36] E. Malkowsky and V. Rakočević. Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, chapter On some results using measures of noncompactness, pages 127-180. Springer Verlag, 2017. 4
[37] W. R. Mann. Semigroups of operators and measures of noncompactness. Proc. Amer. Math. Soc., 4:506-510, 1953. 15 15.2, 15.3 15.4, $16.1,16$
[38] S. Mazur. Uber die kleinste konvexe Menge, die eine gegebene kompakte Menge enthält. Studia Mathematica, 2:7-9, 1930. 15
[39] A. Meir and E.Keeler. A theorem on contraction mappings. J. Math. Anal. Appl., 28:326-329, 1969. 8, 8.2
[40] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc., 73:591-597, 1966. 15.9
[41] C. L. Outlaw and C. W. Groetsch. Averaging iteration in a Banach space. Bull. Amer. Math. Soc., 75:430-432, 1969. 16
[42] R. S. Palais. A simple proof of the Banach contraction principle. J. Fixed Point Theory Appl., 2:221-223, 2007. 2
[43] E. Rakotch. A note on contractive mappings. Proc. Amer. Math. Soc., 13:459-465, 1962. 6, 7, 8
[44] S. Reich. Some remarks concerning contraction mappings. Canad. Math. Bull., 14:121-124, $1971.11,11.1,11.3,11$
[45] J. Reinermann. Über Toeplitzsche Iterationsverfahren und einige ihrer Anwendungen in der konstruktiven Fixpunktheorie. Studia Math., 32:209-227, 1969. 16.216 .3
[46] B. E. Rhoades. Fixed point iterations using infinite matrices. Preliminary report. Notices Amer. Math. Soc., 19, 1972. 16
[47] B. E. Rhoades. Constructive and Computational Methods for Differential and Integral Equations, volume 430 of Lecture Notes in Mathematics, chapter Fixed point iterations using infinite matrices II, pages 390-395. Springer-Verlag, New York, Berlin, 1974. 16
[48] B. E. Rhoades. Fixed point iterations using infinite matrices. Trans. Amer. Math. Soc., 196:161-176, 1974. $16,16.6$
[49] B. E. Rhoades. A comparision of various definitions of contractive mappings. Notices Amer. Math. Soc., 26:257-290, 1977. 9.6. 12.4
[50] H. Schäfer. Über die methode sukzessiver approximation. JBer. Deutsch. Math. Verein., 59:131-140, 1957. 15.9
[51] J. Schauder. Der Fixpunktsatz in Funktionalräumen. Studia Math., 2:171-180, 1930. 15
[52] V. M. Sehgal. A new proof of Caristi's fixed point theorem. Proc. Amer. Math. Soc., 66:54-56, 1977. $13,13,13.11$
[53] J. M. Ayerbe Toledano, T. Dominguez Benavides, and G. Lopez Acedo. Measures of Noncompactness in Metric Fixed Point Theory, volume 99 of Operator Theory Advances and Applications. Birkhäuser Verlag, Basel, Boston, Berlin, 1997. 104
[54] T. Zamfirescu. Fixed point theorems in metric spaces. Archiv der Mathematik, 23:292-298, 1972. 9. 9.5

Russian References

[АКР] Р. Р. Ахмеров, М. И. Каменский, А. С. Потапов и др., Меры некомпактности и уплотняющие операторы, Новосибирск, Наука, 19861
[GGM1] Л. С. Гольденштейн, И. Ц. Гохберг и А. С. Маркус, Исследование некоторых свойств линейных ограниченных операторов в связи с их q-нормой, Уч. зап. Киuиневского гос. ун-та, 29, (1957), 29-36 1 , 4
[GGM2] Л. С. Гольденштейн, А. С. Маркус, О мере некомпактности ограниченных множеств и линейных операторов, В кн.: Исследование по алгебре и математическому анализу, Кишинев: Картя Молдавеняске (1965) 45-54.

α-admissible contractions on quasi-metric-like space

Marija Cvetkovića ${ }^{\text {, }}$ Vladimir Rakočevića ${ }^{\text {a }}$
${ }^{2}$ Department of Mathematics, Faculty of Mathematics and Sciences, University of Niš, Višegradska 33, 18000 Niš, Serbia

Abstract

In the setting of a complete quasi-metric-like spaces we investigate some fixed point problems via admissible mappings. Contractive condition includes (c)-comparison function. Definition of (α, ψ)-contraction is generalized and continuity of f is replaced with regularity of observed space. Presented results improve and extend several results on quasi-metric-like spaces.

Keywords: quasi-metric-like space, fixed point, α - admissible, (b)-comparison functions, 2010 MSC: $47 \mathrm{H} 10,54 \mathrm{C} 60,54 \mathrm{H} 25,55 \mathrm{M} 20$.

1. Introduction and Preliminaries

Among various generalizations of concept of metric, Matthews ([19]) introduced special kind of a partial metric space where the self-distance $d(x, x)$ is not necessarily zero. He studied denotational semantics of dataflow networks and proved generalization of Banach theorem for applications in program verification. On the other hand, Amini-Harandi ([2]) redefined a dislocated metric of Hitzler and Seda ([13) and introduced metric-like spaces. Combining these two concepts we get quasi-metric-like spaces. The study of partial metric spaces has wide area of application, especially in computer science ([17, 22]). Therefore, we can find many fixed point results in the setting of partial metric spaces (11, 2, 4, [5], 7, 9, [12, [16], [24, 25], [26, 27]).
In 2012., Samet et al. ([23]) introduced the concept of α-admissible mappings and, one year later, Karapinar et al. ([14]) improved this notion with triangular α-admissible mappings. In that manner, study of ψ contractions was extended and broadly researched (3], [1], [14, 15], [23).
In this paper, we discuss on existence and uniqueness of a fixed point of (α, ψ)-contractive mappings on quasi-metric-like space. Moreover, we generalize some fixed point results regarding (α, ψ)-contractive mappings. Obtained results are discussed, compared and substantiated with several examples.
Let us recall some definitions that will be needed in the sequel.

[^1]Definition 1.1. Let X be a nonempty set. A mapping $d: X \times X \rightarrow[0,+\infty)$ is said to be a metric-like if for all $x, y, z \in X$, the following conditions are satisfied:
$\left(d_{1}\right) d(x, y)=0 \Longrightarrow x=y ;$
$\left(d_{2}\right) d(x, y)=d(y, x)$;
$\left(d_{3}\right) d(x, z) \leq d(x, y)+d(y, z)$.
The pair (X, d) is called a metric-like space.
Omitting symmetry property of metric, we get a quasi-metric. If that condition is combined with a notion of metric-like, we get the following definition:

Definition 1.2. Let X be a nonempty set. A mapping $d: X \times X \rightarrow[0,+\infty)$ is said to be a quasi-metric-like if for all $x, y, z \in X$, the following conditions are satisfied:
$\left(q_{1}\right) d(x, y)=0 \Longrightarrow x=y ;$
$\left(q_{2}\right) d(x, z) \leq d(x, y)+d(y, z)$.
The pair (X, d) is called a quasi-metric-like space.
Example 1.3. Let $X=[0, \infty)$ and $d: X \times X \mapsto[0, \infty)$ defined with

$$
d(x, y)=\max \{x, y\}, x, y \in X .
$$

Then (X, d) is a metric-like space. Obviously, $\left(d_{2}\right)$ holds, so it is not a quasi-metric-like space.
Example 1.4. Let $X=[0, \infty)$ and $d: X \times X \mapsto[0, \infty)$ defined with

$$
d(x, y)= \begin{cases}x-y, & \text { if } y \leq x \\ 1, & \text { otherwise }\end{cases}
$$

Then (X, d) is a quasi-metric-like space.
In order to study fixed point problems on quasi-metric-like spaces, we need to give basic definitions regarding continuity and convergence.

Definition 1.5. Let (X, d) be a quasi-metric-like space and $\left\{x_{n}\right\} \subseteq X$. A sequence $\left\{x_{n}\right\}$ is a Cauchy sequence if both $\lim _{m, n \rightarrow \infty, m>n} d\left(x_{n}, x_{m}\right)$ and $\lim _{m, n \rightarrow \infty, m>n} d\left(x_{m}, x_{n}\right)$ exist and are finite.
Definition 1.6. Let (X, d) be a quasi-metric-like space and $\left\{x_{n}\right\} \subseteq X$. A sequence $\left\{x_{n}\right\}$ is convergent sequence in X if there exists some $x \in X$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=d(x, x)$.

$$
\text { If }\left\{x_{n}\right\} \text { converges to } x \text {, we denote that whit } \lim _{n \rightarrow \infty} x_{n}=x \text { or } x_{n} \rightarrow x, n \rightarrow \infty \text {. }
$$

Definition 1.7. A quasi-metric-like space (X, d) is complete if, for any Cauchy sequence $\left\{x_{n}\right\} \subseteq X$, there exists some $x \in X$ such that

$$
\begin{aligned}
d(x, x) & =\lim _{n \rightarrow \infty} d\left(x, x_{n}\right) \\
& =\lim _{n \rightarrow \infty} d\left(x_{n}, x\right) \\
& =\lim _{m, n \rightarrow \infty, m>n} d\left(x_{n}, x_{m}\right) \\
& =\lim _{m, n \rightarrow \infty, m>n} d\left(x_{m}, x_{n}\right) .
\end{aligned}
$$

Definition 1.8. Let (X, d) be a quasi-metric-like space and $\left\{x_{n}\right\} \subseteq X$. A sequence $\left\{x_{n}\right\}$ is a Cauchy sequence if both $\lim _{m, n \rightarrow \infty, m>n} d\left(x_{n}, x_{m}\right)$ and $\lim _{m, n \rightarrow \infty, m>n} d\left(x_{m}, x_{n}\right)$ exist and are finite.

The main difference between metric and quasi-metric like spaces is reflected in topology and properties of a convergence:

- This kind of generalized metric needs not to be continuous.
- Topology of quasi-metric-like space is not necessarily Hausdorff, so the limit of convergent sequence is not always unique.
- There are convergent sequences in quasi-metric-like spaces that are not Cauchy sequences.

Example 1.9. Let $X=\{a, b\}, a \neq b$, and $d: X \times X \mapsto[0, \infty)$ defined with $d(x, y)=1, x, y \in X$. Then (X, d) is a metric like space and any constant sequence is convergent with both a and b as limits since

$$
d(a, b)=d(b, a)=d(a, a)=d(b, b)
$$

Example 1.10. Let $X=\{0,1,2\}$ and $d: X \times X \mapsto[0, \infty)$ defined with

x	y	0	1
	2		
0	1	1	2
1	2	1	2
2	2	2	2

Thus, (X, d) is a quasi-metric-like space. Observe the sequence $x_{2 n}=1, x_{2 n-1}=0, n \in \mathbb{N}$. Obviously, $\left\{x_{n}\right\}$ is not a Cauchy sequence, but

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, 2\right)=\lim _{n \rightarrow \infty} d\left(2, x_{n}\right)=d(2,2)
$$

implying that $\lim _{n \rightarrow \infty} x_{n}=2$.
Definition 1.11. Let (X, d) and (Y, q) be quasi-metric-like spaces. A mapping $f: X \rightarrow Y$ is a continuous mapping if, for any $\left\{x_{n}\right\} \subseteq X$,

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*} \in X \Rightarrow \lim _{n \rightarrow \infty} f x_{n}=f x^{*}
$$

where the limit is taken according to the observed metrics and induced topologies.
Definition 1.12. [23] For some $\alpha: X \times X \rightarrow[0,+\infty)$, a mapping $f: X \mapsto X$ is an α-admissible mapping if

$$
\alpha(x, y) \geq 1 \Longrightarrow \alpha(f x, f y) \geq 1
$$

for any $x, y \in X$.
Very recently, Popescu [21] introduced notions as follows:
Definition 1.13. ([21]) Let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. If $f: X \rightarrow X$ satisfies the condition

$$
(T 1)^{\prime} \quad \alpha(x, f x) \geq 1 \Rightarrow \alpha\left(f x, f^{2} x\right) \geq 1
$$

for all $x \in X$, then it is called right- α-orbital admissible mapping. If f satisfies the condition

$$
(T 1)^{\prime \prime} \alpha(f x, x) \geq 1 \Rightarrow \alpha\left(f^{2} x, f x\right) \geq 1
$$

for all $x \in X$, then it is called left- α-orbital admissible mapping. Furthermore, if it is both right- α-orbital admissible and left- α-orbital admissible, then a mapping f is called α-orbital admissible.

Karapinar ([14]) and Popescu ([21])extended notion of α-admissability by defining triangular α-admissability and, respectively, triangular α-orbital admissability.

Class of (b)-comparison functions was introduced by Berinde ([9]) in order to extend some fixed point results integrating comparison functions and c-comparison functions (8]):

Definition 1.14. [9] Let $s \geq 1$ be a real number. A mapping $\psi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$is called a (b)-comparison function if the following conditions are fulfilled
(1) ψ is a nondecreasing;
(2) there exist $k_{0} \in \mathbb{N}, a \in(0,1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_{k}$ such that $s^{k+1} \psi^{k+1}(t) \leq$ $a s^{k} \psi^{k}(t)+v_{k}$, for $k \geq k_{0}$ and any $t \in[0, \infty)$.

The class of (b)-comparison functions will be denoted by Ψ_{b}. Notice that the notion of (b)-comparison function reduces to the concept of (c)-comparison function if $s=1$ and therefore includes a set of comparison functions. The following lemma will be used in the proof of our main result.

Lemma 1.15. [6, 7] Let $s \geq 1$ be a real number. If $\psi: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$is a (b)-comparison function, then
(1) the series $\sum_{k=0}^{\infty} s^{k} \psi^{k}(t)$ converges for any $t \in \mathbb{R}_{0}^{+}$;
(2) the function $p_{s}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
p_{s}(t)=\sum_{k=0}^{\infty} s^{k} \psi^{k}(t), \text { for all } t \in[0, \infty)
$$

is increasing and continuous at 0.
Remark 1.16. Evidently, if $\psi \in \Psi_{b}$, then $\psi(t)<t$ for all $t>0$.
Application of (b)-comparison function is familiar for the setting of b-metric spaces due to the existence of a constant s. Nevertheless, $\Psi_{c} \subseteq \Psi_{b}$, thus we may assume $\psi \in \Psi_{b}$.

2. Main result

In this section we define (α, ψ)-contractions and prove existence and uniqueness of fixed point for this class of mappings under different assumptions. One kind of generalization of (α, ψ)-contractive mappings is given in the sequel with accompanying fixed point results.

Definition 2.1. Let (X, d) be a complete quasi-metric-like space. A self-mapping $f: X \rightarrow X$ is called (α, ψ)-contractive mapping if there exist $\psi \in \Psi_{b}$ and $\alpha: X \times X \rightarrow[0, \infty)$ satisfying the following condition:

$$
\begin{equation*}
\alpha(x, y) d(f x, f y) \leq \psi(d(x, y)), x, y \in X \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let (X, d) be a complete quasi-metric-like space and let $f: X \rightarrow X$ be an (α, ψ)-contractive mapping. Suppose also that
(i) f is α-orbital admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\alpha\left(f x_{0}, x_{0}\right) \geq 1$;
(iii) f is continuous.

Then f has a fixed point x^{*} in X and $d\left(x^{*}, x^{*}\right)=0$.
Proof. Choose x_{0} such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\alpha\left(f x_{0}, x_{0}\right) \geq 1$ and define an iterative sequence $\left\{x_{n}\right\}$ in X by $x_{n+1}=f x_{n}, n \in \mathbb{N}_{0}$. If there is some $n_{0} \in \mathbb{N}_{0}$ such that $x_{n_{0}}=x_{n_{0}+1}$, then $x_{n_{0}}$ is a fixed point of f. Therefore, suppose that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}_{0}$. α-orbital admissibility of f, from (ii), inductively implies

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, n \in \mathbb{N}_{0}
$$

and, analogously,

$$
\alpha\left(x_{n+1}, x_{n}\right) \geq 1, n \in \mathbb{N}_{0} .
$$

Observe that

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right) & =d\left(f x_{n}, f x_{n-1}\right) \\
& \leq \alpha\left(x_{n}, x_{n-1}\right) d\left(f x_{n}, f x_{n-1}\right) \\
& \leq \psi\left(d\left(x_{n}, x_{n-1}\right)\right),
\end{aligned}
$$

leads to

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq \psi\left(d\left(x_{n}, x_{n-1}\right)\right)<d\left(x_{n}, x_{n-1}\right), n \in \mathbb{N}, \tag{2.2}
\end{equation*}
$$

and

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(f x_{n-1}, f x_{n}\right) \\
& \leq \alpha\left(x_{n-1}, x_{n}\right) d\left(f x_{n-1}, f x_{n}\right) \\
& \leq \psi\left(d\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

gives

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \psi\left(d\left(x_{n-1}, x_{n}\right)\right)<d\left(x_{n-1}, x_{n}\right), n \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Continuing in the same manner, after $n-1$ more steps, we get

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right) \text { and } d\left(x_{n+1}, x_{n}\right) \leq \psi^{n}\left(d\left(x_{1}, x_{0}\right)\right), \quad n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

By letting $n \rightarrow \infty, \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0$.
Let $n, m \in \mathbb{N}$ such that $m>n$. Then,

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{i=n}^{m-1} d\left(x_{i}, x_{i+1}\right) \\
& \leq \sum_{i=n}^{m-1} \alpha\left(x_{i-1}, x_{i}\right) d\left(x_{i}, x_{i+1}\right) \\
& =\sum_{i=n}^{m-1} \psi^{i}\left(d\left(x_{0}, x_{1}\right)\right) .
\end{aligned}
$$

If $n, m \rightarrow \infty$, we get that

$$
\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0 .
$$

Likewise,

$$
\lim _{n, m \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0 .
$$

Hence, the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is a complete metric space, there is some $x^{*} \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x^{*}, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=d\left(x^{*}, x^{*}\right)=\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=\lim _{n, m \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0 . \tag{2.5}
\end{equation*}
$$

Since f is continuous,

$$
x^{*}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f x_{n}=f x^{*} .
$$

Example 2.3. Let $X=\{0,1,2\}$ and $d: X \times X \mapsto[0, \infty)$ defined with

y	0	1	2
0	0	1	2
1	1	1	2
2	2	3	4

Then (X, d) is a quasi-metric-like space. Define a mapping $f: X \mapsto X$ with

$$
f:\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 0
\end{array}\right)
$$

Let $\alpha: X \times X \mapsto[0, \infty)$ such that

$$
\alpha(x, y)=\left\{\begin{array}{ll}
0, & x=1 \text { or } y=1 \\
1, & \text { otherwise }
\end{array},\right.
$$

and $\psi(t)=\frac{t}{2}, t \geq 0$. The mapping f is then (α, ψ)-contractive mapping, but it is not a contraction due to $x=y=1$. Furthermore, all requirements of Theorem 2.2 are fulfilled, thus f has a unique fixed point in X.
Remark 2.4. Observe that in Example $2.3 f$ is α-admissible. The same would hold if $f(1)=2$ and $f(2)=1$, and it still would not be a contraction. But in case $f(1)=0$ and $f(2)=1$, we would get a contractive mapping on a quasi-metric-like space. Obviously, $f(0)$ stays 0 , due to Theorem 2.2 because $d(0,0)=0$.

Omitting continuity condition in Theorem 2.2 is possible if we introduce notion of α-regularity as presented in [21.

Definition 2.5. ([21) Quasi-metric-like space (X, d) is α-regular for some $\alpha: X \times X \mapsto[0, \infty)$, if for every sequence $\left\{x_{n}\right\} \subseteq X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1\left(\alpha\left(x_{n+1}, x_{n}\right) \geq 1\right), n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} x_{n}=x \in X$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x\right) \geq 1\left(\alpha\left(x, x_{n_{k}}\right) \geq 1\right)$, for all $k \in \mathbb{N}$.
Theorem 2.6. Let (X, d) be a complete quasi-metric-like space and let $f: X \rightarrow X$ be an (α, ψ)-contractive mapping. If
(i) f is α-orbital admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\alpha\left(f x_{0}, x_{0}\right) \geq 1$;
(iii) X is α-regular.

Then f has a fixed point x^{*} in X and $d\left(x^{*}, x^{*}\right)=0$.
Proof. Similarly as in the proof of Theorem 2.2, we define an iterative sequence $\left\{x_{n}\right\}$ which converges to a point $x^{*} \in X$ such that (2.5) holds. Hence, there exists some subsequence $\left\{x_{n_{k}}\right\} \subseteq\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x^{*}\right) \geq 1$ and $\alpha\left(x^{*}, x_{n_{k}}\right) \geq 1, k \in \mathbb{N}$. Thus,

$$
\begin{aligned}
d\left(x_{n_{k}+1}, f x^{*}\right) & \left.\leq \alpha x_{n_{k}}, x^{*}\right) d\left(x_{n_{k}+1}, f x^{*}\right) \\
& \leq \psi\left(d\left(x_{n_{k}}, x^{*}\right)\right) \\
& \leq d\left(x_{n_{k}}, x^{*}\right)
\end{aligned}
$$

along with

$$
d\left(f x^{*}, x_{n_{k}+1}\right) \leq d\left(x^{*}, x_{n_{k}}\right), k \in \mathbb{N},
$$

and 2.5 lead to the conclusion $\lim _{k \rightarrow \infty} d\left(x_{n_{k}+1}, f x^{*}\right)=\lim _{k \rightarrow \infty} d\left(f x^{*}, x_{n_{k}+1}\right)=0$.
On the other hand, triangle inequality

$$
d\left(x^{*}, f x^{*}\right) \leq d\left(x^{*}, x_{n_{k}+1}\right)+d\left(x_{n_{k}+1}, f x^{*}\right), k \in \mathbb{N},
$$

when $k \rightarrow \infty$, implies $d\left(x^{*}, f x^{*}\right)=0$, so $f x^{*}=x^{*}$.

Through the following example we will consider uniqueness of a fixed point of a (α, ψ)-contractive mapping on a complete quasi-metric-like space.

Example 2.7. Let (X, d) be the quasi-metric-like space defined in Example 2.3. Also we will use α and ψ defined therein.
If $f: X \mapsto X$ is defined with

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 0
\end{array}\right)
$$

then f is α-admissible mapping. Additionally, f is (α, ψ)-contractive mapping. On the other hand, f has two fixed points.

The counterexample indicates, along with previously made comment, that uniqueness of fixed point is related to the absence of the indiscernibility of identicals characteristic for quasi-metric. We notice that we need to add an additional condition to guarantee the uniqueness.

Theorem 2.8. In addition to Theorem 2.2 (Theorem 2.6) assume that, if $x^{*} \in X$ is a fixed point obtained as a limit of determined iterative sequence, for all $y \in X$, either $\alpha\left(x^{*}, y\right) \geq 1$ or $\alpha\left(y, x^{*}\right) \geq 1$, then x^{*} is a unique fixed point of f.

Proof. Suppose that $z \in X$ is such that $f z=z$.
If, without loss of generality, $\alpha\left(x^{*}, z\right) \geq 1$, then

$$
\begin{aligned}
d\left(x^{*}, z\right) & =d\left(f x^{*}, f z\right) \\
& \leq \alpha\left(x^{*}, z\right) d\left(f x^{*}, f z\right) \\
& \leq \psi\left(d\left(x^{*}, z\right)\right)
\end{aligned}
$$

If $d\left(x^{*}, z\right) \neq 0$, then $\psi\left(d\left(x^{*}, z\right)\right)<d\left(x^{*}, z\right)$ which leads to a contradiction with presented inequality. Therefore, $z=x^{*}$ and it is a unique fixed point of f.

Remark 2.9. On several papers studying (α, ψ)-contractions, uniqueness is obtained by adding the condition:
(U) For all $x, y \in \operatorname{Fix}(f)$, either $\alpha(x, y) \geq 1$ or $\alpha(y, x) \geq 1$.
where $\operatorname{Fix}(f)$ denotes the set of all fixed points of f. But if we know elements of this set, than we assume knowing its cardinality.
Otherwise, if we assume $\alpha(x, y) \geq 1, x, y \in X$, than we lose any impact of α-admissability and we get just ψ-contraction.

Definition 2.10. Let (X, d) be a complete quasi-metric-like space. A mapping $f: X \rightarrow X$ is called generalized (α, ψ)-contractive mapping if there exist two functions $\psi \in \Psi_{b}$ and $\alpha: X \times X \rightarrow[0, \infty)$ satisfying the following condition:

$$
\begin{equation*}
\alpha(x, y) d(f x, f y) \leq \psi(M(x, y)) \tag{2.6}
\end{equation*}
$$

for all $x, y \in X$, where

$$
\begin{equation*}
M(x, y)=\max \left\{d(x, y), d(x, f x), d(y, f y), \frac{(x, f y)+d(y, f x)}{2}\right\} . \tag{2.7}
\end{equation*}
$$

Theorem 2.11. Let (X, d) be a complete quasi-metric-like space and let $f: X \rightarrow X$ be a generalized (α, ψ)-contractive mapping. Assume that
(i) f is α-orbital admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\alpha\left(f x_{0}, x_{0}\right) \geq 1$;
(iii) f is continuous.

Then f has a fixed point x^{*} in X and $d\left(x^{*}, x^{*}\right)=0$.
Proof. Analogously to the proof of Theorem 2.2, there exists an iterative sequence $x_{n+1}=f x_{n}, n \in \mathbb{N}_{0}$, where $x_{0} \in X$ is chosen with respect to (ii), such that

$$
\begin{equation*}
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, \text { and } \alpha\left(x_{n+1}, x_{n}\right) \geq 1, \text { for all } n \in \mathbb{N}_{0}, \tag{2.8}
\end{equation*}
$$

assuming $x_{n} \neq x_{n+1}, n \in \mathbb{N}_{0}$, since otherwise we would directly obtain fixed point of f.
Therfore,

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & \leq \alpha\left(x_{n-1}, x_{n}\right) d\left(f x_{n-1}, f x_{n}\right) \\
& \leq \psi\left(M\left(x_{n-1}, x_{n}\right)\right),
\end{aligned}
$$

for all $n \in \mathbb{N}$ and

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{\begin{array}{l}
\left.d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, f x_{n}\right), d\left(x_{n-1}, f x_{n-1}\right), \frac{d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)}{2}\right\} \\
\end{array} \leq \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, f x_{n}\right), d\left(x_{n-1}, f x_{n-1}\right), \frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{2}\right\}\right. \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} .
\end{aligned}
$$

Since the equality $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n}, x_{n+1}\right)$ do not hold due to previous assumption $x_{n} \neq x_{n+1}$, it follows $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n-1}, x_{n}\right), n \in \mathbb{N}$.
Thus,

$$
d\left(x_{n}, x_{n+1}\right) \leq \psi\left(d\left(x_{n-1}, x_{n}\right)\right)<d\left(x_{n-1}, x_{n}\right), \text { for all } n \in \mathbb{N}
$$

and

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right), n \in \mathbb{N} . \tag{2.9}
\end{equation*}
$$

Analogously, by letting $x=x_{n}$ and $y=x_{n-1}$ in (2.6), it follows

$$
\begin{align*}
d\left(x_{n+1}, x_{n}\right) & \leq \alpha\left(x_{n}, x_{n-1}\right) d\left(f x_{n}, f x_{n-1}\right) \tag{2.10}\\
& \leq \psi\left(M\left(x_{n}, x_{n-1}\right)\right),
\end{align*}
$$

where,

$$
\begin{array}{r}
M\left(x_{n}, x_{n-1}\right)=\max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, f x_{n}\right), d\left(x_{n-1}, f x_{n-1}\right), \frac{d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n+1}\right)}{2}\right\} \\
\leq \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, f x_{n}\right), d\left(x_{n-1}, f x_{n-1}\right), \frac{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)}{2}\right\} \\
=\max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\}
\end{array}
$$

If $M\left(x_{n}, x_{n-1}\right)=d\left(x_{n-1}, x_{n}\right)$, then, by (2.9) and 2.10),

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq \psi\left(d\left(x_{n-1}, x_{n}\right)\right) \leq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right) . \tag{2.11}
\end{equation*}
$$

If $M\left(x_{n}, x_{n-1}\right)=d\left(x_{n}, x_{n+1}\right)$, then by

$$
d\left(x_{n+1}, x_{n}\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right)
$$

along with 2.9), it follows

$$
d\left(x_{n+1}, x_{n}\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right)<\psi^{n+1}\left(d\left(x_{0}, x_{1}\right)\right) .
$$

In the last case, $M\left(x_{n}, x_{n-1}\right)=d\left(x_{n}, x_{n-1}\right)$, so

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq \psi\left(d\left(x_{n}, x_{n-1}\right)\right) \tag{2.12}
\end{equation*}
$$

If we denote $\max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{0}\right)\right\}$ with ω, we get $d\left(x_{n+1}, x_{n}\right) \leq \psi^{n}(\omega)$ and $d\left(x_{n}, x_{n+1}\right) \leq \psi^{n}(\omega)$, for any $n \in \mathbb{N}$, thus

$$
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 .
$$

If $n, m \in \mathbb{N}, m>n$,

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq \sum_{i=n}^{m-1} d\left(x_{i}, x_{i+1}\right) \\
& \leq \sum_{i=n}^{m-1} \psi^{i}(\omega)
\end{aligned}
$$

Hence, $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$ and $\lim _{n, m \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0$. Since, X is a complete space, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x^{*}, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, x^{*}\right)=d\left(x^{*}, x^{*}\right)=0 . \tag{2.13}
\end{equation*}
$$

Then $x^{*}=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} f x_{n-1}=f x^{*}$, because f is continuous, and x^{*} is a fixed point of f.
Theorem 2.12. Let (X, d) be a complete quasi-metric-like space and let $f: X \rightarrow X$ be a generalized (α, ψ)-contractive mapping. Assume that
(i) f is α-orbital admissible;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, f x_{0}\right) \geq 1$ and $\alpha\left(f x_{0}, x_{0}\right) \geq 1$;
(iii) X is α-regular.

Then f has a fixed point x^{*} in X and $d\left(x^{*}, x^{*}\right)=0$.
Proof. As in the proof of Theorem 2.11, there is an iterative sequence therein defined such that $\lim _{n \rightarrow \infty} x^{n}=x^{*}$. Also, $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ and $\alpha\left(x_{n+1}, x_{n}\right) \geq 1, n \in \mathbb{N}_{0}$, therefore, there exists some subsequence $\left\{x_{n_{k}}\right\} \subseteq\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x^{*}\right) \geq 1$ and $\alpha\left(x^{*}, x_{n_{k}}\right) \geq 1$.
For arbitrary $\varepsilon>0$, choose $n_{k_{0}} \in \mathbb{N}$ such that $d\left(x^{*}, x_{n}\right), d\left(x_{n}, x^{*}\right), d\left(x_{n}, x_{m}\right), d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}$ for any $m>n \geq$ $n_{k_{0}}$.
Accordingly, for any $k \geq k_{0}$,

$$
\begin{aligned}
d\left(x^{*}, f x^{*}\right) & \leq d\left(x^{*}, x_{n_{k}+1}\right)+d\left(x_{n_{k}+1}, f x^{*}\right) \\
& \left.\leq \frac{\varepsilon}{2}+\alpha x_{n_{k}}, x^{*}\right) d\left(x_{n_{k}+1}, f x^{*}\right) \\
& \leq \frac{\varepsilon}{2}+\psi\left(M\left(x_{n_{k}}, x^{*}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\psi\left(M\left(x_{n_{k}}, x^{*}\right)\right) & =\max \left\{d\left(x_{n_{k}}, x^{*}\right), d\left(x_{n_{k}}, x_{n_{k}+1}\right), d\left(x^{*}, f x^{*}\right), \frac{d\left(x_{n_{k}}, f x^{*}\right)+d\left(x^{*}, x_{n_{k}+1}\right)}{2}\right\} \\
& \leq \max \left\{\frac{\varepsilon}{2}, d\left(x^{*}, f x^{*}\right), \frac{d\left(x_{n_{k}}, x^{*}\right)+d\left(x^{*}, f x^{*}\right)+\varepsilon / 2}{2}\right\} \\
& \leq \frac{\varepsilon+d\left(x^{*}, f x^{*}\right)}{2} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
d\left(x^{*}, f x^{*}\right) & \leq \varepsilon+\frac{d\left(x^{*}, f x^{*}\right)}{2} \\
& \leq 2 \varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, $d\left(x^{*}, f x^{*}\right)=0$, so x^{*} is a fixed point of f.

Uniqueness issue could be solve as for Theorem 2.2 or Theorem 2.6, respectively, but with stronger assumptions.

Theorem 2.13. In addition to conditions of Theorem 2.11 (Theorem 2.12) assume that, if $x^{*} \in X$ is a fixed point obtained as a limit of determined iterative sequence, for all $y \in X, \alpha\left(x^{*}, y\right) \geq 1$ or $\alpha\left(y, x^{*}\right) \geq 1$, then x^{*} is a unique fixed point of f.

Proof. If $f y=y$, without loss of generality, assume that $d\left(y, x^{*}\right) \geq d\left(x^{*}, y\right)$, then

$$
\begin{aligned}
d\left(y, x^{*}\right) & \leq \alpha\left(y, x^{*}\right) d\left(y, x^{*}\right) \\
& \leq \psi\left(M\left(y, x^{*}\right)\right) \\
& \leq \max \psi\left(d\left(y, x^{*}\right)\right), \psi\left(\frac{d\left(y, x^{*}\right)+d\left(x^{*}, y\right)}{2}\right) \\
& =\psi\left(d\left(y, x^{*}\right)\right)
\end{aligned}
$$

Thus, $y=x^{*}$. On contrary, we would get $d\left(y, x^{*}\right)<d\left(y, x^{*}\right)$.
Similar result for (α, ψ)-contraction could be formulated on metric-like space endowed with a partial ordering. Thus as a consequence we get Corollary 3.8 and Corollary 3.9 of [11], as well as results of Ran and Reurings regarding contractions on partially ordered metric spaces.

Definition 2.14. Let (X, \preceq) be a partially ordered set. The mapping $f: X \rightarrow X$ is nondecreasing with respect to \preceq if for all $x, y \in X$

$$
x \preceq y \Longrightarrow f x \preceq f y
$$

Analogously we would define nonincreasing mapping with respect to \preceq.
Definition 2.15. Let (X, \preceq) be a partially ordered set. A sequence $\left\{x_{n}\right\} \subseteq X$ is said to be nondecreasing (respectively nonincreasing) with respect to \preceq if $x_{n} \preceq x_{n+1}, n \in \mathbb{N}$ (respectively $x_{n+1} \preceq x_{n}, n \in \mathbb{N}$).

Definition 2.16. Let (X, d) be a metric-like space with a partial ordering \preceq. The space (X, \preceq, d) is regular with respect to \preceq if for every nondecreasing (respectively, nonincreasing) sequence $\left\{x_{n}\right\} \subseteq X$ such that $\lim _{n \rightarrow \infty} x_{n}=x \in X$, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \preceq x$ (respectively, $x \preceq x_{n_{k}}$) for all $k \in \mathbb{N}$.

We have the following result.
Corollary 2.17. Let (X, \preceq) be a partially ordered set (which does not contain an infinite totally unordered subset) and (X, d) be a complete metric-like space. Let $f: X \rightarrow X$ be a nondecreasing mapping with respect to \preceq. Suppose that there exist $\psi \in \Psi_{b}$, such that

$$
\begin{equation*}
d(f x, f y) \leq \psi(d(x, y)), x, y \in X, x \preceq y \tag{2.14}
\end{equation*}
$$

Suppose also that the following conditions hold:
(i) there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$ or $f x_{0} \preceq x_{0}$;
(ii) f is continuous or
$(\text { ii })^{\prime}(X, \preceq, d)$ is regular.
Then f has a fixed point $x^{*} \in X$ with $d\left(x^{*}, x^{*}\right)=0$.
Moreover, if for all $x, y \in X$ there exists $z \in X$ such that $x \preceq z$ and $y \preceq z$, than f has a unique fixed point.

Proof. Choose $x_{0} \in X$ as described in (i) and, without loss of generality, assume that $x_{0} \preceq f x_{0}$. If $x_{n}=f x_{n-1}, n \in \mathbb{N}_{0}$, then $x_{n} \preceq x_{n+1}, n \in \mathbb{N}_{0}$. Define the mapping $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{l}
1, \text { if } x \preceq y \text { or } x \succeq y, \\
0, \text { otherwise } .
\end{array}\right.
$$

It is easy to obtain that f is α-admissible mapping. Moreover, it is (α, ψ)-contractive mapping, so the existence of fixed point follows from Theorem 2.2 or Theorem [2.6, respectively.
If $f x=x$ and $f y=y$, observe z such that $x \preceq z$ and $y \preceq z$. Then, $x \preceq f^{n} z$ and $y \preceq f^{n} z, n \in \mathbb{N}$, so

$$
\begin{aligned}
d(x, y) & \preceq d\left(x, f^{n} z\right)+d\left(f^{n} z, y\right) \\
& \preceq \psi^{n}(d(x, z))+\psi^{n}(d(z, y)),
\end{aligned}
$$

and $x=y$ that guarantees uniqueness of a fixed point.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Acknowledgements

This work is supported by Grant No. 174025 of the Ministry of Science, Technology and Development, Republic of Serbia.

References

[1] T. Abedeljawad, E. Karapınar and K. Taş, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011) 1894-1899. 1
[2] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. (2012), 2012:204 1
[3] H. Aydi, E. Karapınar and W. Shatanawi, Coupled fixed point results for (ψ, φ)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62 (2011) 4449-4460. 1
[4] H. Aydi, E. Karapinar and C. Vetro, On Ekeland's variational principle in partial metric spaces, Appl. Math. Inf. Sci. 9(2015), 257-262. 1
[5] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst. 30(1989), 26-37. 1
[6] V. Berinde, Une generalization de critere du dAlembert pour les series positives, Bul. St. Univ. Baia Mare, 7 (1991), 21-26. 1.15
[7] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint 3 (1993), 3-9. 1. 1.15
[8] V. Berinde, Contraçtii generalizate şi aplicattii, Editura Cub Press 22, Baia Mare, Romania 1
[9] V. Berinde, Sequences of operators and fixed points in quasimetric spaces, Stud. Univ. Babes-Bolyai Math., 16(4) (1996), 23-27. 11, 1.14
[10] N. Bourbaki, Topologie générale, Herman, Paris, 1974.
[11] M. Cvetković, E. Karapinar and V. Rakočević, Some fixed point results on quasi-b-metric like spaces, J. Inequal. Appl., 2015 (2015), 2015:374 1. 2
[12] Lj. Ćirić, B. Samet, H. Aydi and C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398-2406. 1
[13] P. Hitzler and A.K. Seda, Dislocated topologies. J. Electr. Eng. 51 (2000), 3-7. 1
[14] E. Karapınar, P. Kuman and P. Salimi, On $\alpha-\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl. (2013), 2013:94. 1 1
[15] E. Karapnar and P. Salimi, Dislocated metric space to metric spaces with some fixed point theorems, Fixed Point Theory Appl (2013), 2013:222 1
[16] E. Karapınar and B. Samet, Generalized $(\alpha-\psi)$ contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal 2012 (2012), Article ID: 7934861
[17] S. G. Matthews, Metric Domains for Completeness, Ph.D. Thesis, Research Report, Dept. Comput. Sci., University of Warwick 76 (1986) 1
[18] S. G. Matthews, The Topology of Partial Metric Spaces, Research Report RR222 (1992), University of Warwick
[19] S. G. Matthews, Partial metric spaces, Ann. New York Acad. Sci. 728 (1994), 183-197. 1
[20] S. J. O'Neill, Partial metrics, valuations, and domain theory, Papers on general topology and applications, Gorham, ME, (1995), 304-315.
[21] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl. (2014), 2014:190 1, 1.13, 1, 2, 2.5
[22] J.J.M.M. Rutten, Elements of Generalized Ultrametric Domain Theory, Theoretic. Comput. Sci. 170 (1996), 349-381. 1
[23] B. Samet, C. Vetro and P. Vetro, $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165. 1.1 .12
[24] I. R. Sarma and P. S. Kumari, On dislocated metric spaces. Int. J. Math. Arch. 3 (2012), 72-77. 1
[25] R. Shrivastava, Z. K. Ansari and M. Sharma, Some results on fixed points in dislocated and dislocated quasi-metric spaces, J. Adv. Stud. Topol. 3 (2012), 25-31.
[26] F. M. Zeyada, G. H. Hassan, and M. A. Ahmed. A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces. The Arabian J. for Sci. and Eng., 31 (2005), 111-114. 1
[27] K. Zoto, E. Hoxha and A. Isufati, Some new results in dislocated and dislocated quasi-metric spaces, Appl. Math. Sci. 71 (2012), 3519-3526. 1

1

Remarks on solutions to the functional equations of the radical type

Janusz Brzdęk ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Pedagogical University, Kraków, Poland.

Abstract

This is an expository paper containing remarks on solutions to some functional equations of a form, that could be called of the radical type. Simple natural examples of them are the following two functional equations $$
\begin{gathered} f\left(\sqrt[n]{x^{n}+y^{n}}\right)=f(x)+f(y), \\ f\left(\sqrt[n]{x^{n}+y^{n}}\right)+f\left(\sqrt[n]{\left|x^{n}-y^{n}\right|}\right)=2 f(x)+2 f(y) \end{gathered}
$$ considered recently in several papers, for real functions and with given positive integer n, in connection with the notion of Ulam (or Hyers-Ulam) stability. We provide a general method allowing to determine solutions to them.

Keywords: functional equation, radical type, Cauchy equation, quadratic equation. 2010 MSC: 39B52.

1. Introduction and preliminaries

During the $16^{\text {th }}$ International Conference on Functional Equations and Inequalities (Będlewo, Poland, May 17-23, 2015), W. Sintunavarat presented a talk concerning the Ulam type stability (for information and further references concerning this notion see, e.g., [4) of the so-called radical functional equation

$$
\begin{equation*}
f\left(\sqrt{x^{2}+y^{2}}\right)=f(x)+f(y), \tag{1.1}
\end{equation*}
$$

[^2]in the class of real functions. A question of J. Schwaiger about the general solution of the equation was answered a bit later by the author of this paper (see [14, p. 196]). Namely, a function $f: \mathbb{R} \rightarrow \mathbb{R}$ (\mathbb{R} stands for the set of reals) satisfies equation (1.1) if and only if it is of the form:
$$
f(x)=a\left(x^{2}\right), \quad x \in \mathbb{R}
$$
with a function $a: \mathbb{R} \rightarrow \mathbb{R}$ that is additive (i.e., satisfies the condition: $a(x+y)=a(x)+a(y)$ for every $x, y \in \mathbb{R})$. This paper contains some remarks on extensions and generalizations of this result.

Clearly, equation (1.1) is a particular case of the functional equation

$$
\begin{equation*}
f\left(\sqrt[n]{x^{n}+y^{n}}\right)=f(x)+f(y) \tag{1.2}
\end{equation*}
$$

which for $k=2,3,4$ have been considered in [2, 3, 5, [7, 8, 5, 12, 15], and some descriptions of solutions to it have been proposed (not always complete and correct). Moreover, the solutions and the Ulam type stability of the equation

$$
\begin{equation*}
f\left(\sqrt{a x^{2}+b y^{2}}\right)=a f(x)+b f(y) \tag{1.3}
\end{equation*}
$$

have been considered in [9, 10], for functions f mapping \mathbb{R} into a real linear space X, with real $a, b>0$ such that $a+b \neq 1$. The authors have proved that every such solution to 1.3 must be a quadratic function, i.e., a solution to the quadratic functional equation

$$
\begin{equation*}
q(x+y)+q(x-y)=2 q(x)+2 q(y) \tag{1.4}
\end{equation*}
$$

A somewhat similar is the Pythagorean mean functional equation

$$
\begin{equation*}
f\left(\sqrt{x^{2}+y^{2}}\right)=\frac{f(x) f(y)}{f(x)+f(y)} \tag{1.5}
\end{equation*}
$$

considered in [13] for $f:(0, \infty) \rightarrow \mathbb{R}$. It is clear that the cases when

$$
f(x)+f(y)=0
$$

must be somehow excluded in (which has not been done explicitly in [13]).
Moreover, the equation

$$
\begin{equation*}
f\left(\sqrt{x^{2}+y^{2}}\right)+f\left(\sqrt{\left|x^{2}-y^{2}\right|}\right)=2 f(x)+2 f(y) \tag{1.6}
\end{equation*}
$$

and its generalized form

$$
\begin{equation*}
f\left(\sqrt{a x^{2}+b y^{2}}\right)+f\left(\sqrt{\left|a x^{2}-b y^{2}\right|}\right)=2 a^{2} f(x)+2 b^{2} f(y) \tag{1.7}
\end{equation*}
$$

have been considered in [5, 9, 10, 15] for functions f mapping \mathbb{R} into a real linear space X, with real $a, b>0$ such that $a+b \neq 1$.

It seems that a useful simple description of solutions to functional equations of similar type is of interest and has not been published so far. Therefore we would like to present some general remarks on the issue of solving such equations and obtain in this way much stronger versions and complements of some of the results presented in [2, 3, 5, 7, 10, 9]. The reasonings that we use are well known and some of them can be even considered to be routine (cf., e.g., [1, 11]).

Note that all those equations are simple particular cases of the following general functional equation

$$
\begin{array}{r}
H\left(f\left(\sqrt[n]{F_{1}\left(x_{1}^{n}, \ldots, x_{m}^{n}\right)}\right), \ldots,\right.
\end{array} \begin{array}{r}
\left.\left(\sqrt[n]{F_{k}\left(x_{1}^{n}, \ldots, x_{m}^{n}\right)}\right)\right) \tag{1.8}\\
=G\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)
\end{array}
$$

for the unknown functions $f: \mathbb{R} \rightarrow D$, with given functions $H: D^{k} \rightarrow T, G: D^{m} \rightarrow T, F_{1}, \ldots, F_{k}: P^{m} \rightarrow P$, where n, k and m are fixed positive integers with $n>1, T$ and D are nonempty sets, and

$$
P:=\left\{x^{n}: x \in \mathbb{R}\right\}
$$

2. Main results

In the whole paper n, k, m, P, D, T, H, G, and F_{1}, \ldots, F_{k} have the same meaning as described at the end of the previous section.

The next theorem is the main result of this paper. Namely, we have the following description of the general solution $f: \mathbb{R} \rightarrow D$ to functional equation 1.8 .

Theorem 2.1. Let f be a function mapping \mathbb{R} into D. Assume that one of the following two conditions is valid:
(i) n is odd;
(ii) there are $e_{1}, \ldots, e_{m-1} \in f(\mathbb{R})$ such that

$$
\begin{equation*}
G\left(e_{1}, \ldots, e_{m-1}, u\right) \neq G\left(e_{1}, \ldots, e_{m-1}, v\right), \quad u, v \in D, u \neq v \tag{2.1}
\end{equation*}
$$

Then f satisfies functional equation (1.8) if and only if there exists a solution $h: P \rightarrow D$ of the equation

$$
\begin{array}{r}
H\left(h\left(F_{1}\left(x_{1}, \ldots, x_{m}\right)\right), \ldots, h\left(F_{k}\left(x_{1}, \ldots, x_{m}\right)\right)\right) \tag{2.2}\\
\\
=G\left(h\left(x_{1}\right), \ldots, h\left(x_{m}\right)\right)
\end{array}
$$

such that

$$
\begin{equation*}
f(x)=h\left(x^{n}\right), \quad x \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

Proof. Assume that f fulfils 1.8 . Let

$$
\begin{equation*}
h(x)=f(\sqrt[n]{x}), \quad x \in P \tag{2.4}
\end{equation*}
$$

We show that 2.2 holds.
To this end take $x_{1}, \ldots, x_{m} \in P$ and write

$$
y_{i}:=\sqrt[n]{x_{i}}, \quad i=1, \ldots, m
$$

Then, by (1.8),

$$
\begin{align*}
H\left(h \left(F _ { 1 } \left(x_{1},\right.\right.\right. & \left.\left.\left.\ldots, x_{m}\right)\right), \ldots, h\left(F_{k}\left(x_{1}, \ldots, x_{m}\right)\right)\right) \tag{2.5}\\
& =H\left(f\left(\sqrt[n]{F_{1}\left(y_{1}^{n}, \ldots, y_{m}^{n}\right)}\right), \ldots, f\left(\sqrt[n]{F_{k}\left(y_{1}^{n}, \ldots, y_{m}^{n}\right)}\right)\right) \\
& =G\left(f\left(y_{1}\right), \ldots, f\left(y_{m}\right)\right)=G\left(f\left(\sqrt[n]{x_{1}}\right), \ldots, f\left(\sqrt[n]{x_{m}}\right)\right) \\
& =G\left(h\left(x_{1}\right), \ldots, h\left(x_{m}\right)\right)
\end{align*}
$$

Clearly, if n is odd, then $P=\mathbb{R}$ and consequently, by (2.4),

$$
f(x)=h\left(x^{n}\right), \quad x \in \mathbb{R}
$$

So, assume that n is even. Then $P=[0, \infty)$ and, according to (2.4),

$$
\begin{equation*}
f(x)=h\left(x^{n}\right), \quad x \in[0, \infty) \tag{2.6}
\end{equation*}
$$

Next, according to (ii), there exist $e_{1}, \ldots, e_{m-1} \in f(\mathbb{R})$ such that 2.1 is valid. Let $v_{1}, \ldots, v_{m-1} \in f(\mathbb{R})$ be such that

$$
e_{i}=f\left(v_{i}\right), \quad i=1, \ldots, m
$$

It is easily seen that, for each $x \in \mathbb{R}$,

$$
\begin{aligned}
& G\left(e_{1}, \ldots, e_{m-1}, f(-x)\right)=G\left(f\left(v_{1}\right), \ldots, f\left(v_{m-1}\right), f(-x)\right) \\
& \quad=H\left(f\left(\sqrt[n]{F_{1}\left(v_{1}^{n}, \ldots, v_{m-1}^{n}, x^{n}\right)}\right), \ldots, f\left(\sqrt[n]{F_{k}\left(v_{1}^{n}, \ldots, v_{m-1}^{n}, x^{n}\right)}\right)\right) \\
& \quad=G\left(f\left(v_{1}\right), \ldots, f\left(v_{m-1}\right), f(x)\right)=G\left(e_{1}, \ldots, e_{m-1}, f(x)\right)
\end{aligned}
$$

Thus, in view of 2.1, we have proved that

$$
\begin{equation*}
f(-x)=f(x), \quad x \in \mathbb{R} \tag{2.7}
\end{equation*}
$$

whence (on account of (2.6))

$$
f(x)=h\left(x^{n}\right), \quad x \in \mathbb{R}
$$

Now, assume that $f(x)=h\left(x^{n}\right)$ for every $x \in \mathbb{R}$, with some solution $h: P \rightarrow D$ of equation 2.2). Then (2.4) holds. We are to show that f is a solution to functional equation 1.8 . So, take $y_{1}, \ldots, y_{m} \in \mathbb{R}$. Then $y_{1}^{n}, \ldots, y_{m}^{n} \in P$ and consequently

$$
\begin{aligned}
& H\left(f\left(\sqrt[n]{F_{1}\left(y_{1}^{n}, \ldots, y_{m}^{n}\right)}\right), \ldots, f\left(\sqrt[n]{F_{k}\left(y_{1}^{n}, \ldots, y_{m}^{n}\right)}\right)\right) \\
&=H\left(h\left(F_{1}\left(y_{1}^{n}, \ldots, y_{m}^{n}\right)\right), \ldots, h\left(F_{k}\left(y_{1}^{n}, \ldots, y_{m}^{n}\right)\right)\right) \\
&=G\left(h\left(y_{1}^{n}\right), \ldots, h\left(y_{m}^{n}\right)\right)=G\left(f\left(y_{1}\right), \ldots, f\left(y_{m}\right)\right)
\end{aligned}
$$

Let \mathbb{F} be a field, $D=T=\mathbb{F}, k=1, m=2, F_{1}\left(x_{1}, x_{2}\right) \equiv x_{1}+x_{2}, G(u, v) \equiv u v$ and $H(u) \equiv u$. Then functional equation 1.8 takes the form

$$
\begin{equation*}
f\left(\sqrt[n]{x^{n}+y^{n}}\right)=f(x) f(y) \tag{2.8}
\end{equation*}
$$

and Theorem 2.1 implies the following very simple corollary.
Corollary 2.2. A function $f: \mathbb{R} \rightarrow \mathbb{F}$ satisfies functional equation (2.8) if and only if there exists a solution $g: P \rightarrow \mathbb{F}$ to the equation

$$
\begin{equation*}
g(x+y)=g(x) g(y) \tag{2.9}
\end{equation*}
$$

such that $f(x)=g\left(x^{n}\right)$ for $x \in \mathbb{R}$.
Proof. Let f be a solution to 2.8 . If $f(x) \equiv 0$, then it is enough to take $g(x) \equiv 0$. If there is $x \in \mathbb{R}$ with $f(x) \neq 0$, then condition (ii) holds and we can use Theorem 2.1.

The converse also follows from Theorem 2.1.
Let X denote a linear space over a field \mathbb{K} with $2 \neq 0, \alpha, \beta \in \mathbb{K}$, and $a, b \in \mathbb{R}_{+}$. Let $D=T=X, k=1$, $F_{1}\left(x_{1}, x_{2}\right) \equiv a x_{1}+b x_{2}, H(u) \equiv u$ and $G(u, v) \equiv \alpha u+\beta v$. Then functional equation (1.8) has the form

$$
\begin{equation*}
f\left(\sqrt[n]{a x^{n}+b y^{n}}\right)=\alpha f(x)+\beta f(y) \tag{2.10}
\end{equation*}
$$

which generalizes simultaneously equations (1.2) and (1.3). Note that Theorem 2.1 implies at once the following:

Corollary 2.3. Assume that $\alpha \neq 0$ or $\beta \neq 0$. A function $f: \mathbb{R} \rightarrow X$ satisfies functional equation (2.10) if and only if there exists a solution $g: P \rightarrow X$ to the equation

$$
\begin{equation*}
g(a x+b y)=\alpha g(x)+\beta g(y) \tag{2.11}
\end{equation*}
$$

such that $f(x)=g\left(x^{n}\right)$ for $x \in \mathbb{R}$.

The next proposition describes solutions $g: P \rightarrow X$ to (2.11) (\mathbb{R}_{+}stands for the set of nonnegative reals).
Proposition 2.4. Let $P_{0} \in\left\{\mathbb{R}_{+}, \mathbb{R}\right\}$. Assume that $\alpha \neq 0$ or $\beta \neq 0$. Then a function $g: P_{0} \rightarrow X$ satisfies equation 2.11) if and only if,
(a) in the case $\alpha+\beta \neq 1$, there exists a solution $h: \mathbb{R} \rightarrow X$ to the additive Cauchy equation

$$
\begin{equation*}
h(x+y)=h(x)+h(y), \tag{2.12}
\end{equation*}
$$

such that

$$
\begin{equation*}
h(a x)=\alpha h(x), \quad h(b y)=\beta h(y), \quad x \in \mathbb{R}, \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x)=h(x), \quad x \in P_{0} . \tag{2.14}
\end{equation*}
$$

(b) in the case $\alpha+\beta=1$, there are $w \in X$ and a solution $h: \mathbb{R} \rightarrow X$ to equation (2.12) such that (2.13) holds and

$$
\begin{equation*}
g(x)=h(x)+w, \quad x \in P_{0} . \tag{2.15}
\end{equation*}
$$

Proof. Let $g_{0}: P_{0} \rightarrow X$ satisfy functional equation 2.11) and $g_{0}(0)=0$. Taking $x=0$ and next $y=0$ in (2.11), we get

$$
\begin{equation*}
g_{0}(a x)=\alpha g_{0}(x), \quad g_{0}(b y)=\beta g_{0}(y), \quad x \in P_{0} \tag{2.16}
\end{equation*}
$$

whence

$$
\begin{equation*}
g_{0}(a x+b y)=\alpha g_{0}(x)+\beta g_{0}(y)=g_{0}(a x)+g_{0}(b y), \quad x \in P_{0} . \tag{2.17}
\end{equation*}
$$

Clearly, (2.17) means that

$$
\begin{equation*}
g_{0}(x+y)=g_{0}(x)+g_{0}(y), \quad x \in P_{0} . \tag{2.18}
\end{equation*}
$$

Take $x, y, z, w \in P_{0}$ with $x-w=z-y$. Then $x+y=z+w$ and, by (2.18),

$$
g_{0}(x)+g_{0}(y)=g_{0}(x+y)=g_{0}(z+w)=g_{0}(z)+g_{0}(w),
$$

which implies that

$$
g_{0}(x)-g_{0}(w)=g_{0}(z)-g_{0}(y) .
$$

Consequently, we can define $h: \mathbb{R} \rightarrow X$ by

$$
h(x-y)=g_{0}(x)-g_{0}(y), \quad x, y \in P_{0} .
$$

Note that

$$
\begin{equation*}
h(x)=h(x-0)=g_{0}(x)-g_{0}(0)=g_{0}(x), \quad x \in P_{0}, \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
h(-x)=h(0-x)=g_{0}(0)-g_{0}(x)=-g_{0}(x), \quad x \in P_{0} . \tag{2.20}
\end{equation*}
$$

Hence, by 2.16, we get

$$
\begin{equation*}
h(a x)=\alpha h(x), \quad h(b y)=\beta h(y), \quad x \in \mathbb{R} . \tag{2.21}
\end{equation*}
$$

We are yet to show that h fulfils the additive Cauchy equation (2.12). To this end take $u, v \in \mathbb{R}$. There exist $x_{1}, x_{2}, y_{1}, y_{2} \in P_{0}$ with $u=x_{1}-x_{2}$ and $v=y_{1}-y_{2}$. Note that $x_{1}+y_{1}, x_{2}+y_{2} \in P_{0}$ and, by (2.18),

$$
\begin{aligned}
h(u+v) & =h\left(x_{1}-x_{2}+y_{1}-y_{2}\right) \\
& =h\left(x_{1}+y_{1}-\left(x_{2}+y_{2}\right)\right) \\
& =g_{0}\left(x_{1}+y_{1}\right)-g_{0}\left(x_{2}+y_{2}\right) \\
& =g_{0}\left(x_{1}\right)+g_{0}\left(y_{1}\right)-\left(g_{0}\left(x_{2}\right)+g_{0}\left(y_{2}\right)\right) \\
& =g_{0}\left(x_{1}\right)-g_{0}\left(x_{2}\right)+g_{0}\left(y_{1}\right)-g_{0}\left(y_{2}\right) \\
& =h\left(x_{1}-x_{2}\right)+h\left(y_{1}-y_{2}\right)=h(u)+h(v) .
\end{aligned}
$$

Now, assume that $g: P_{0} \rightarrow X$ satisfies equation 2.11). First consider the case $\alpha+\beta \neq 1$. Then, with $x=y=0$ in (3.2), we deduce that $g(0)=0$. Consequently the reasoning presented above, with $g_{0}=g$, ends the proof of the necessary condition.

If $\alpha+\beta=1$, we write

$$
g_{0}(x):=h(x)-h(0), \quad x \in \mathbb{R}_{+} .
$$

Then $g_{0}(0)=0$ and, as we have shown above, there is a solution $h: \mathbb{R} \rightarrow X$ to equation (2.12) such that (2.13) holds. Hence statement (b) is true with $w:=g_{0}(0)$.

The converse is easy to check.
Remark 2.5. If $\mathbb{K}=\mathbb{R}$ and a function $h: \mathbb{R} \rightarrow X$ satisfies equation (2.12) and conditions (2.13), then it is easily seen that

$$
h\left(a^{n} x\right)=\alpha^{n} h(x), \quad h\left(b^{n} y\right)=\beta^{n} h(y), \quad x \in \mathbb{R}, n \in \mathbb{N} .
$$

Consequently, if $r:=a^{n_{0}} \in \mathbb{Q}$ (rationals) for some $n_{0} \in \mathbb{N}$, then

$$
r h(x)=h(r x)=h\left(a^{n_{0}} x\right)=\alpha^{n_{0}} h(x), \quad x \in \mathbb{R} .
$$

Hence $a^{n_{0}}=r=\alpha^{n_{0}}$ or $h(x) \equiv 0$. The same is true for b and β.
For some further comments and references concerning similar issues we refer to [11, ch. XIII, §10].
Remark 2.6. As far as we know, the only published description of solutions $h: \mathbb{R} \rightarrow X$ (with $\mathbb{K}=\mathbb{R}$) to functional equation (1.3) (i.e., to (2.10) with $n=2, \alpha=a$ and $\beta=b$) states that if $a+b \neq 1$, then f must be a quadratic function (see [9, Theorem 2.3]). Clearly, this description follows at once from Proposition 2.4 (a). Certainly, Proposition 2.4 provides much more general and precise information.

3. Further applications

In this section, as before, \mathbb{R}_{+}stands for the set of nonnegative reals, $P:=\left\{x^{n}: x \in \mathbb{R}\right\}, X$ denotes a linear space over a field \mathbb{K} with $2 \neq 0, \alpha, \beta \in \mathbb{K}, a, b \in(0, \infty)$, and $n \in \mathbb{N}$. We always assume that $\alpha \neq 0$ or $\beta \neq 0$.

Clearly, if $D=T=X, k=2, F_{1}\left(x_{1}, x_{2}\right) \equiv a x_{1}+b x_{2}, F_{2}\left(x_{1}, x_{2}\right) \equiv\left|a x_{1}-b x_{2}\right|, H(u, v) \equiv u+v$ and $G(u, v) \equiv \alpha u+\beta v$, then functional equation (1.8) takes the form

$$
\begin{equation*}
f\left(\sqrt[n]{a x^{n}+b y^{n}}\right)+f\left(\sqrt[n]{\left|a x^{n}-b y^{n}\right|}\right)=\alpha f(x)+\beta f(y) \tag{3.1}
\end{equation*}
$$

which is a generalization of equations (1.6) and (1.7). Consequently, Theorem 2.1 implies the following:
Corollary 3.1. A function $f: \mathbb{R} \rightarrow X$ satisfies functional equation 3.1) if and only if there exists a solution $h: P \rightarrow X$ to the equation

$$
\begin{equation*}
h(a x+b y)+h(|a x-b y|)=\alpha h(x)+\beta h(y) \tag{3.2}
\end{equation*}
$$

such that $f(x)=h\left(x^{n}\right)$ for $x \in \mathbb{R}$.

We provide descriptions of solutions to 3.2 in the next proposition and corollary. To this end, let us recall that $q: \mathbb{R} \rightarrow X$ is quadratic if it satisfies functional equation (1.4) (see also Remark 3.6).

Theorem 3.2. Let $P_{0} \in\left\{\mathbb{R}_{+}, \mathbb{R}\right\}$ and $h: P_{0} \rightarrow X$ be such that $h(0)=0$. Then h satisfies functional equation (3.2) if and only if there is a quadratic function $q: \mathbb{R} \rightarrow X$ such that

$$
\begin{equation*}
q(a x)=\frac{\alpha}{2} q(x), \quad q(b x)=\frac{\beta}{2} q(x), \quad x \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h(x)=q(x), \quad x \in P_{0} . \tag{3.4}
\end{equation*}
$$

Proof. Taking $x=0$ and next $y=0$ in 3.2 , we get

$$
\begin{equation*}
h(a x)=\frac{\alpha}{2} h(x), \quad h(b x)=\frac{\beta}{2} h(x), \quad x \in \mathbb{R}_{+} \tag{3.5}
\end{equation*}
$$

Consequently

$$
\begin{aligned}
h(a x+b y)+h(|a x-b y|) & =2 \frac{\alpha}{2} h(x)+2 \frac{\beta}{2} h(y) \\
& =2 h(a x)+2 h(b y), \quad x, y \in \mathbb{R}_{+}
\end{aligned}
$$

whence

$$
\begin{equation*}
h(u+v)+h(|u-v|)=2 h(u)+2 h(v), \quad u, v \in \mathbb{R}_{+} \tag{3.6}
\end{equation*}
$$

Define $q: \mathbb{R} \rightarrow X$ by

$$
\begin{equation*}
q(x)=h(|x|), \quad x \in \mathbb{R} \tag{3.7}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
h(x)=q(x), \quad x \in \mathbb{R}_{+}, \tag{3.8}
\end{equation*}
$$

and (3.5) implies

$$
\begin{equation*}
q(a x)=\frac{\alpha}{2} q(x), \quad q(b x)=\frac{\beta}{2} q(x), \quad x \in \mathbb{R}_{+} \tag{3.9}
\end{equation*}
$$

Next, q is even (in view of (3.7) , so (3.9) implies (3.3) also when $P_{0}=\mathbb{R}$. We show that q is quadratic.
So, fix $u, v \in \mathbb{R}$. If $u, v \in \mathbb{R}_{+}$, then

$$
\begin{aligned}
q(u+v)+q(u-v) & =h(u+v)+h(|u-v|) \\
& =2 h(u)+2 h(v)=2 q(u)+2 q(v)
\end{aligned}
$$

If $u, v \in(-\infty, 0)$, then

$$
\begin{aligned}
q(u+v)+q(u-v) & =h(-u-v)+h(|-u-(-v)|) \\
& =2 h(-u)+2 h(-v)=2 q(u)+2 q(v)
\end{aligned}
$$

Further, if $u \geq 0$ and $v<0$, then

$$
\begin{aligned}
q(u+v)+q(u-v) & =q(u-(-v))+q(u+(-v)) \\
& =h(|u-(-v)|)+h(u+(-v)) \\
& =2 h(u)+2 h(-v)=2 q(u)+2 q(v)
\end{aligned}
$$

Finally, if $u<0$ and $v \geq 0$, then $q(u-v)=h(|u-v|)=q(v-u)$, whence

$$
\begin{aligned}
q(u+v)+q(u-v) & =q(v+u)+q(v-u) \\
& =q(v-(-u))+q(v+(-u)) \\
& =h(|v-(-u)|)+h(v+(-u)) \\
& =2 h(v)+2 h(-u)=2 q(u)+2 q(v)
\end{aligned}
$$

If $P_{0}=\mathbb{R}_{+}$, then (3.8) is just equality (3.4), whence this finishes the proof of the necessary condition.
So, it remains to prove that (3.4) holds also in the case $P_{0}=\mathbb{R}$. To this end fix $y \in(-\infty, 0)$. There is $x \in \mathbb{R}_{+}$with $a x+b y>0$ and $a y+b x>0$ and consequently, by (3.2), (3.3) and (3.8),

$$
\begin{aligned}
\beta h(y) & =h(a x+b y)+h(|a x-b y|)-\alpha h(x) \\
& =q(a x+b y)+q(a x-b y)-\alpha q(x) \\
& =q(a x+b y)+q(a x-b y)-2 q(a x) \\
& =2 q(b y)=\beta q(y), \\
\alpha h(y) & =h(a y+b x)+h(|a y-b x|)-\beta h(x) \\
& =q(a y+b x)+q(a y-b x)-\beta q(x) \\
& =q(a y+b x)+q(a y-b x)-2 q(b x) \\
& =2 q(a y)=\alpha q(y),
\end{aligned}
$$

which means that $h(y)=q(y)$ (whether $\alpha=0$ or $\beta=0$). This completes the proof of the necessary condition also for $P_{0}=\mathbb{R}$.

Now, we prove the sufficient condition. So, assume that there is a quadratic function $q: \mathbb{R} \rightarrow X$ such that (3.3) and (3.4) are valid. Then, with $x=0$ in (1.4), we get

$$
\begin{equation*}
q(y)=q(-y), \quad y \in \mathbb{R} \tag{3.10}
\end{equation*}
$$

and consequently

$$
\begin{aligned}
h(a x+b y)+h(|a x-b y|) & =q(a x+b y)+q(|a x-b y|) \\
& =q(a x+b y)+q(a x-b y) \\
& =2 q(a x)+2 q(b y)=\alpha q(x)+\beta q(y) \\
& =\alpha h(x)+\beta h(y), \quad x, y \in P_{0} .
\end{aligned}
$$

Corollary 3.3. Let $P_{0} \in\left\{\mathbb{R}_{+}, \mathbb{R}\right\}$. Then $h: P_{0} \rightarrow X$ satisfies functional equation (3.2) if and only if,
(a) in the case $\alpha+\beta \neq 2$, there is a quadratic function $q: \mathbb{R} \rightarrow X$ such that (3.3) and (3.4) are valid;
(b) in the case $\alpha+\beta=2$, there are $w \in X$ and a quadratic function $q: \mathbb{R} \rightarrow X$ such that (3.3) holds and

$$
\begin{equation*}
h(x)=q(x)+w, \quad x \in P_{0} . \tag{3.11}
\end{equation*}
$$

Proof. Let $h: P_{0} \rightarrow X$ be a solution to (3.2).
First consider the case $\alpha+\beta \neq 2$. Then $x=y=0$ in 3.2 yield $f(0)=0$. Hence we can simply apply Theorem 3.2.

So, assume that $\alpha+\beta=2$ and write

$$
h_{0}(x):=h(x)-h(0), \quad x \in P_{0} .
$$

Then $h_{0}(0)=0$ and

$$
\begin{aligned}
h_{0}(a x+b y)+h_{0}(|a x-b y|) & =h(a x+b y)-h(0)+h(|a x-b y|)-h(0) \\
& =\alpha h(x)+\beta h(y)-2 h(0) \\
& =\alpha(h(x)-h(0))+\beta(h(y)-h(0)) \\
& =\alpha h_{0}(x)+\beta h_{0}(y), \quad x, y \in P_{0} .
\end{aligned}
$$

Hence using again Theorem 3.2, but with h replaced by h_{0}, we obtain 3.11 with $w=h(0)$.
The converse is easy to check in view of 3.10 .
Corollary 3.4. A function $h: \mathbb{R} \rightarrow \mathbb{R}$ satisfies functional equation 3.2 if and only if it is a solution to the equation

$$
\begin{equation*}
h(a x+b y)+h(a x-b y)=\alpha h(x)+\beta h(y) \tag{3.12}
\end{equation*}
$$

Proof. Let $h_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be a solution to equation 3.12 with $h_{0}(0)=0$. Taking first $x=0$ and next $y=0$ in (3.12) gives

$$
\begin{equation*}
h_{0}(a x)=\frac{\alpha}{2} h_{0}(x), \quad h_{0}(a x)=\frac{\beta}{2} h_{0}(x), \quad x \in \mathbb{R} \tag{3.13}
\end{equation*}
$$

Hence

$$
\begin{aligned}
h_{0}(a x+b y)+h_{0}(a x-b y) & =\alpha h_{0}(x)+\beta h_{0}(y) \\
& =2 h_{0}(a x)+2 h_{0}(a y), \quad x, y \in \mathbb{R}
\end{aligned}
$$

which means that

$$
\begin{equation*}
h_{0}(x+y)+h_{0}(x-y)=2 h_{0}(x)+2 h_{0}(y), \quad x, y \in \mathbb{R} \tag{3.14}
\end{equation*}
$$

Suppose that $h: \mathbb{R} \rightarrow \mathbb{R}$ is a solution to equation (3.12). If $\alpha+\beta \neq 2$, then (3.12) with $x=y=0$ gives $h(0)=0$, whence (3.14) holds for $h_{0}=h$. Consequently, by Corollary 3.3, h is a solution to 3.2.

If $\alpha+\beta=2$, then the function $h_{0}: \mathbb{R} \rightarrow \mathbb{R}$, given by $h_{0}(x):=h(x)-h(0)$ for $x \in \mathbb{R}$, also is a solution to (3.12) and $h_{0}(0)=0$. Hence (3.14) is valid, which means that h_{0} is quadratic. Since $h(x) \equiv h_{0}(x)+h(0), h$ is a solution to (3.2) (again by Corollary 3.3).

If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a solution to equation (3.2), then it has the form described in Corollary 3.3 and it is easy to check that h fulfils also (3.12).

Corollary 3.5. Let n be odd. A function $f: \mathbb{R} \rightarrow X$ fulfils the equation

$$
\begin{equation*}
f\left(\sqrt[n]{a x^{n}+b y^{n}}\right)+f\left(\sqrt[n]{\left|a x^{n}-b y^{n}\right|}\right)=\alpha f(x)+\beta f(y) \tag{3.15}
\end{equation*}
$$

if and only if it is a solution to the functional equation

$$
\begin{equation*}
f\left(\sqrt[n]{a x^{n}+b y^{n}}\right)+f\left(\sqrt[n]{a x^{n}-b y^{n}}\right)=\alpha f(x)+\beta f(y) \tag{3.16}
\end{equation*}
$$

Proof. According to Corollary 3.1, a function $f: \mathbb{R} \rightarrow X$ satisfies functional equation (3.15) if and only if there exists a solution $g: \mathbb{R} \rightarrow X$ to the equation (3.2) such that $f(x) \equiv g\left(x^{n}\right)$.

Analogously, by Theorem 2.1, a function $f: \mathbb{R} \rightarrow X$ satisfies functional equation (3.16) if and only if there exists a solution $g: \mathbb{R} \rightarrow X$ to the equation (3.12) such that $f(x) \equiv g\left(x^{n}\right)$.

Since, in view of Corollary 3.4, equations (3.2) and 3.12 have the same solutions $g: \mathbb{R} \rightarrow X$, this completes the proof.

Remark 3.6. It is well known (see, e.g., [1) that a function $q: \mathbb{R} \rightarrow X$ is quadratic if and only if there exists $L: \mathbb{R}^{2} \rightarrow X$ that is symmetric (i.e., $L(x, y)=L(y, x)$ for all $x, y \in \mathbb{R}$) and biadditive (i.e., $L(x, y+z)=$ $L(x, y)+L(x, z)$ for all $x, y, z \in \mathbb{R})$ such that

$$
q(x)=L(x, x), \quad x \in \mathbb{R} .
$$

Clearly, conditions (3.3) are equivalent to

$$
\begin{equation*}
L(a x, a x)=\frac{\alpha}{2} L(x, x), \quad L(b x, b x)=\frac{\beta}{2} L(x, x), \quad x \in \mathbb{R} . \tag{3.17}
\end{equation*}
$$

Next, note that

$$
4 L(x, y)=L(x+y, x+y)-L(x-y, x-y), \quad x, y \in \mathbb{R} .
$$

Hence (3.3) (or (3.17)) implies the following two conditions

$$
\begin{align*}
& 4 L(a x, a y)=q(a(x+y))-q(a(x-y)) \tag{3.18}\\
&=\frac{\alpha}{2}(q(x+y)-q(x-y)) \\
&=2 \alpha L(x, y), \quad x, y \in \mathbb{R} \\
& \tag{3.19}\\
& 4 L(b x, b y)=2 \beta L(x, y), \quad x, y \in \mathbb{R} .
\end{align*}
$$

So, conditions (3.18) and (3.19) are equivalent to (3.17) and, in view of Corollary 3.3, we can state the following:

Corollary 3.7. Let $P_{0} \in\left\{\mathbb{R}_{+}, \mathbb{R}\right\}$. Then $h: P_{0} \rightarrow X$ satisfies functional equation (3.2) if and only if,
(a) in the case $\alpha+\beta \neq 2$, there is a symmetric and biadditive function $L: \mathbb{R}^{2} \rightarrow X$ such that

$$
\begin{equation*}
L(a x, a y)=\frac{\alpha}{2} L(x, y), \quad L(b x, b y)=\frac{\beta}{2} L(x, y), \quad x, y \in \mathbb{R}, \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
h(x)=L(x, x), \quad x \in P_{0} ; \tag{3.21}
\end{equation*}
$$

(b) in the case $\alpha+\beta=2$, there are $w \in X$ and a symmetric and biadditive function $L: \mathbb{R}^{2} \rightarrow X$ such that (3.20) is valid and

$$
\begin{equation*}
h(x)=L(x, x)+w, \quad x \in P_{0} . \tag{3.22}
\end{equation*}
$$

Finally, let us observe that from Corollaries 3.1 and 3.7 we can easily deduce the following:
Corollary 3.8. A function $f: \mathbb{R} \rightarrow X$ satisfies functional equation (3.1) if and only if,
(a) in the case $\alpha+\beta \neq 2$, there is a symmetric and biadditive function $L: \mathbb{R}^{2} \rightarrow X$ such that (3.20) is valid and

$$
\begin{equation*}
f(x)=L\left(x^{n}, x^{n}\right), \quad x \in \mathbb{R} ; \tag{3.23}
\end{equation*}
$$

(b) in the case $\alpha+\beta=2$, there are $w \in X$ and a symmetric and biadditive function $L: \mathbb{R}^{2} \rightarrow X$ such that (3.20) is valid and

$$
\begin{equation*}
f(x)=L\left(x^{n}, x^{n}\right)+w, \quad x \in \mathbb{R} \tag{3.24}
\end{equation*}
$$

Note that from Corollary 3.8 it results that the description of solutions for the equation

$$
\begin{equation*}
f\left(\sqrt[n]{x^{n}+y^{n}}\right)+f\left(\sqrt[n]{\left|x^{n}-y^{n}\right|}\right)=2 f(x)+2 f(y) \tag{3.25}
\end{equation*}
$$

which is a generalization of (1.6), is quite simple. Namely, we have the following:
Corollary 3.9. A function $f: \mathbb{R} \rightarrow X$ satisfies functional equation 3.25 if and only if there is a symmetric and biadditive function $L: \mathbb{R}^{2} \rightarrow X$ such that $f(x)=L\left(x^{n}, x^{n}\right)$ for $x \in \mathbb{R}$.

Remark 3.10. According to our best knowledge, the only published so far description (see [9, Theorem 2.3]) of solutions $f: \mathbb{R} \rightarrow X$ (with $\mathbb{K}=\mathbb{R}$) of functional equation (1.7) (i.e., of (3.1) with $n=2, \alpha=2 a^{2}$ and $\beta=2 b^{2}$) states that if $a^{2}+b^{2} \neq 1$, then f must be a solution to the functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y) \tag{3.26}
\end{equation*}
$$

It is easy to check that this description (with $n=2$) follows from Corollary 3.8 (a), which provides much more general and precise information.

References

[1] J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989. 1 . 3.6
[2] L. Aiemsomboon, W. Sintunavarat, On a new type of stability of a radical quadratic functional equation using Brzdeqk's fixed point theorem, Acta Math. Hungar. 151 (2017), 35-46. 1. 1
[3] Z. Alizadeh, A.G. Ghazanfari, On the stability of a radical cubic functional equation in quasi- β-spaces, J. Fixed Point Th. Appl. 18 (2016), 843-853. 1 1
[4] N. Brillouët-Belluot, J. Brzdęk, K. Ciepliński, On some recent developments in Ulam's type stability, Abstr. Appl. Anal. 2012, Art. ID $716936,41 \mathrm{pp}$. 1
[5] Y.J. Cho, M. Eshaghi Gordji, S.S. Kim, Y. Yang, On the stability of radical functional equations in quasi- β-normed spaces, Bull. Korean Math. Soc. 51 (2014), 1511-1525. 1. 1
[6] J. Dhombres, Some Aspects of Functional Equations, Chulalongkorn University Press, Bangkok, 1979.
[7] I. EL-Fassi, Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces, J. Math. Anal. Appl. 455 (2017), 2001-2013. 1,1
[8] I. EL-Fassi, On a new type of hyperstability for radical cubic functional equation in non-archimedean metric spaces, Results Math. 72 (2017), 991-1005. 1
[9] H. Khodaei, M. Eshaghi Gordji, S.S. Kim, Y.J. Cho, Approximation of radical functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl. 395 (2012), 284-297. 1. 1, 1, 1, 2.6, 3.10
[10] S.S. Kim, Y.J. Cho, M. Eshaghi Gordji, On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations, J. Inequal. Appl. 186 (2012), pp. 13. 1.
[11] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe \& Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985. 1. 2.5
[12] E. Movahednia, H. Mehrannia, Fixed point method and Hyers-Ulam-Rassias stability of a radical functional equation in various spaces, Intl. Res. J. Appl. Basic. Sci. 5 (8) (2013), 1067-1072. 1
[13] P. Narasimman, K. Ravi, S. Pinelas, Stability of Pythagorean mean functional equation, Global J. Math. 4 (2015), 398-411. [1]
[14] J. Olko, M. Piszczek (eds.), Report of meeting: 16th International Conference on Functional Equations and Inequalities, Będlewo, Poland, May 17-23, 2015, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 163-202. 1
[15] S. Phiangsungnoen, On stability of radical quadratic functional equation in random normed spaces, IEEE Xplore Digital Library, 2015 International Conference on Science and Technology (TICST), 450-455. DOI: 10.1109/TICST.2015.7369399 1) 1

Weak Solutions for a Coupled System of Partial Pettis Hadamard Fractional Integral Equations

Saïd Abbas ${ }^{\text {a }}$, Mouffak Benchohra ${ }^{\text {b }}$, Johnny Henderson ${ }^{\text {c }}$, Jamal E. Lazreg ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratory of Mathematics, University of Saïda, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria.
${ }^{\text {b }}$ Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, Sidi Bel-Abbès 22000, Algeria.
${ }^{c}$ Department of Mathematics, Baylor University, Waco, Texas 76798-7328, USA.

Abstract

In this paper we investigate the existence of weak solutions under the Pettis integrability assumption for a coupled system of partial integral equations via Hadamard's fractional integral, by applying the technique of measure of weak noncompactness and Mönch's fixed point theorem.

Keywords: Functional integral equation coupled system partial Pettis Hadamard fractional integral measure of weak noncompactness weak solution
2010 MSC: 26A33, 35H10, 35D30

1. Introduction

In this paper \mathbb{N} and \mathbb{R} denote the sets of positive integers, respectively the set of real numbers, while $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ and $\mathbb{R}_{0}^{+}:=[0, \infty)$.

The fractional calculus represents a powerful tool in applied mathematics to study many problems from different fields of science and engineering, with many break-through results found in mathematical physics, finance, hydrology, biophysics, thermodynamics, control theory, statistical mechanics, astrophysics, cosmology and bioengineering [25, 40]. There has been a significant development in fractional differential and integral equations in recent years; see the monographs of Abbas et al. [1, 2], Kilbas et al. [26], Miller and Ross [28], and the papers of Abbas et al. [3, Darwish et al. [16, 17, 18, 19, 20, 21, Vityuk et al. [41, 42, and the references therein.

[^3]In [14], Butzer et al. investigated properties of the Hadamard fractional integral and derivative. In [15], they obtained the Mellin transform of the Hadamard fractional integral and differential operators, and in [36], Pooseh et al. obtained expansion formulas of the Hadamard operators in terms of integer order derivatives. Many other interesting properties of those operators and others are summarized in [37], and the references therein.

The measure of weak noncompactness was introduced by De Blasi [22]. The strong measure of noncompactness was developed first by Banas̀ and Goebel [6] and subsequently developed and used in many papers; see for example, Akhmerov et al. [4, Alvàrez [5], Benchohra et al. [10, 12], Guo et al. [23], Mönch et al. [30, 31], Szufla [38], and the references therein. Recently in [7, 8] Benchohra et al. used the measure of weak noncompactness for some classes of fractional differential equations and inclusions, while in [9], a class of hyperbolic differential equations involving the Caputo fractional derivative was considered. Some applications of the measure of weak noncompactness to ordinary differential and integral equations in Banach spaces are reported in [11, 27, 33, 39] and the references therein. Some recent results on coupled systems of operator equations in b-metric spaces are given in 34.

This paper deals with the existence of weak solutions to the following coupled system of Hadamard partial fractional integral equations of the form, for $(x, y) \in J$,

$$
\left\{\begin{array}{l}
u(x, y)=\mu_{1}(x, y)+\int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1} \frac{f_{1}(s, t, u(s, t), v(s, t))}{s t \Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} d t d s \tag{1.1}\\
v(x, y)=\mu_{2}(x, y)+\int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{\rho_{1}-1}\left(\ln \frac{y}{t}\right)^{\rho_{2}-1} \frac{f_{2}(s, t, u(s, t), v(s, t))}{s t \Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} d t d s
\end{array}\right.
$$

where $J:=[1, a] \times[1, b], a, b>1, r_{1}, r_{2}, \rho_{1}, \rho_{2}>0, \mu_{1}, \mu_{2}: J \rightarrow E$ and $f_{1}, f_{2}: J \times E \times E \rightarrow E$ are given continuous functions, $\Gamma(\cdot)$ is the Euler gamma function and E is a real (or complex) Banach space with norm $\|\cdot\|_{E}$ and dual E^{*}, such that E is the dual of a weakly compactly generated Banach space X.

The present paper initiates the use of the measure of weak noncompactness and Mönch's fixed point theorem to the coupled system (1.1).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.
Let $C:=C(J, E)$ be the Banach space of continuous functions $u: J \rightarrow E$ with the norm

$$
\|u\|_{C}=\sup _{(x, y) \in J}\|u(x, y)\|_{E}
$$

It is clear that the product space $\mathcal{C}:=C \times C$ is a Banach space with the norm

$$
\|(u, v)\|_{\mathcal{C}}=\|u\|_{C}+\|v\|_{C}
$$

Denote by $L^{\infty}(J, E)$, the Banach space of essentially bounded measurable functions $u: J \rightarrow E$ equipped with the norm

$$
\|u\|_{L^{\infty}}=\inf \left\{c>0:\|u(x, y)\|_{E} \leq c, \text { a.e. }(x, y) \in J\right\} .
$$

Let $(E, w)=\left(E, \sigma\left(E, E^{*}\right)\right)$ denote the Banach space E with its weak topology.
Definition 2.1. A Banach space X is called weakly compactly generated (WCG, in short) if it contains a weakly compact set whose linear span is dense in X.

Definition 2.2. A function $h: E \rightarrow E$ is said to be weakly sequentially continuous if h takes each weakly convergent sequence in E to a weakly convergent sequence in E (i.e., for any (u_{n}) in E with $u_{n} \rightarrow u$ in (E, w) then $h\left(u_{n}\right) \rightarrow h(u)$ in $\left.(E, w)\right)$.

Definition 2.3. [35] The function $u: J \rightarrow E$ is said to be Pettis integrable on J if and only if there is an element $u_{j} \in E$ corresponding to each $j \subset J$ such that $\phi\left(u_{j}\right)=\iint_{j} \phi(u(s, t)) d t d s$ for all $\phi \in E^{*}$, where the integral on the right hand side is assumed to exist in the sense of Lebesgue, (by definition, $\left.u_{j}=\iint_{j} u(s, t) d t d s\right)$.

Let $P(J, E)$ be the space of all E-valued Pettis integrable functions on J, and $L^{1}(J, \mathbb{R})$, be the Banach space of Lebesgue integrable functions $u: J \rightarrow \mathbb{R}$. Define the class $P_{1}(J, E)$ by

$$
P_{1}(J, E)=\left\{u \in P(J, E): \varphi(u) \in L^{1}(J, \mathbb{R}) \text { for every } \varphi \in E^{*}\right\}
$$

The space $P_{1}(J, E)$ is normed by

$$
\|u\|_{P_{1}}=\sup _{\varphi \in E^{*},\|\varphi\| \leq 1} \int_{1}^{a} \int_{1}^{b}|\varphi(u(x, y))| d \lambda(x, y)
$$

where λ stands for the Lebesgue measure on J.
The following result is due to Pettis (see [[35], Theorem 3.4 and Corollary 3.41]).
Proposition 2.4. [35] If $u \in P_{1}(J, E)$ and h is a measurable and essentially bounded E-valued function, then $u h \in P_{1}([0, a], E)$.

$$
\text { For all that follows, the sign " } \int \text { " denotes the Pettis integral. }
$$

Let us recall the definitions of Pettis integral and Hadamard integral of fractional order.
Definition 2.5. [24, 26] The left sided mixed Pettis Hadamard integral of order $q>0$, for a function $g \in P_{1}([1, a], E)$, is defined as

$$
\left({ }^{H} I_{1}^{r} g\right)(x)=\frac{1}{\Gamma(q)} \int_{1}^{x}\left(\ln \frac{x}{s}\right)^{q-1} \frac{g(s)}{s} d s
$$

Remark 2.6. Let $g \in P_{1}([1, a], E)$. For every $\varphi \in E^{*}$, we have

$$
\varphi\left({ }^{H} I_{1}^{r} g\right)(x)=\left({ }^{H} I_{1}^{r} \varphi g\right)(x) ; \text { for a.e. } x \in[1, a] .
$$

Definition 2.7. Let $r_{1}, r_{2} \geq 0, \sigma=(1,1)$ and $r=\left(r_{1}, r_{2}\right)$. For $w \in P_{1}(J, E)$, define the left sided mixed Pettis Hadamard partial fractional integral of order r by the expression

$$
\left({ }^{H} I_{\sigma}^{r} w\right)(x, y)=\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1} \frac{w(s, t)}{s t} d t d s
$$

Definition 2.8. 22 Let E be a Banach space, Ω_{E} the bounded subsets of E and B_{1} the unit ball of E. The De Blasi measure of weak noncompactness is the map $\beta: \Omega_{E} \rightarrow[0, \infty)$ defined by

$$
\begin{aligned}
& \beta(X):=\inf \{\epsilon>0: \text { there exists a weakly compact subset } \Omega \text { of } E \\
&\text { such that } \left.X \subset \epsilon B_{1}+\Omega\right\} .
\end{aligned}
$$

The De Blasi measure of weak noncompactness satisfies the following properties:
(a) $A \subset B \Rightarrow \beta(A) \leq \beta(B)$,
(b) $\beta(A)=0 \Leftrightarrow A$ is relatively weakly compact,
(c) $\beta(A \cup B)=\max \{\beta(A), \beta(B)\}$,
(d) $\beta\left(\bar{A}^{\omega}\right)=\beta(A),\left(\bar{A}^{\omega}\right.$ denotes the weak closure of $\left.A\right)$,
(e) $\beta(A+B) \leq \beta(A)+\beta(B)$,
(f) $\beta(\lambda A)=|\lambda| \beta(A)$,
(g) $\beta(\operatorname{conv}(A))=\beta(A)$,
(h) $\beta\left(\cup_{|\lambda| \leq h} \lambda A\right)=h \beta(A)$.

The next result follows directly from the Hahn-Banach theorem.
Proposition 2.9. Let E be a normed space, and $x_{0} \in E$ with $x_{0} \neq 0$. Then, there exists $\varphi \in E^{*}$ with $\|\varphi\|=1$ and $\varphi\left(x_{0}\right)=\left\|x_{0}\right\|$.

For a given set V of functions $v: J \rightarrow E$ let us denote by

$$
V(x, y)=\{v(x, y): v \in V\} ;(x, y) \in J
$$

and

$$
V(J)=\{v(x, y): v \in V, \quad(x, y) \in J\}
$$

Lemma 2.10. [23] Let $H \subset C$ be a bounded and equicontinuous. Then the function $(x, y) \rightarrow \beta(H(x, y))$ is continuous on J, and

$$
\beta_{C}(H)=\max _{(x, y) \in J} \beta(H(x, y))
$$

and

$$
\beta\left(\iint_{J} u(s, t) d t d s\right) \leq \iint_{J} \beta(H(s, t)) d t d s
$$

where $H(s, t)=\{u(s, t): u \in H,(s, t) \in J\}$, and β_{C} is the De Blasi measure of weak noncompactness defined on the bounded sets of C.

For our purposes, we will need the following fixed point theorem:
Theorem 2.11. 32 Let Q be a nonempty, closed, convex and equicontinuous subset of a metrizable locally convex vector space $C(J, E)$ such that $0 \in Q$. Suppose $T: Q \rightarrow Q$ is weakly sequentially continuous. If the implication

$$
\begin{equation*}
\bar{V}=\overline{\operatorname{conv}}(\{0\} \cup T(V)) \Rightarrow V \text { is relatively weakly compact } \tag{2.1}
\end{equation*}
$$

holds for every subset $V \subset Q$, then the operator T has a fixed point.

3. Existence Results

Let us start by defining what we mean by a solution of the integral equation 1.1).
Definition 3.1. A pair $(u, v) \in \mathcal{C}$ is said to be a solution of 1.1 if (u, v) satisfies equation (1.1) on J.
Further, we present conditions for the existence of a solution of equation (1.1).
Theorem 3.2. Assume that the following hypotheses hold:
$\left(H_{1}\right)$ For a.e. $(x, y) \in J$, the functions $u \rightarrow f_{i}(x, y, u, v), v \rightarrow f_{i}(x, y, u, v), i=1,2$, are weakly sequentially continuous,
$\left(H_{2}\right)$ For a.e. $u, v \in E$, the functions $(x, y) \rightarrow f_{i}(x, y, u, v) ; i=1,2$ are Pettis integrable a.e. on J,
$\left(H_{3}\right)$ There exist functions $P_{i} \in C(J,[0, \infty)) ; i=1,2$ such that for all $\varphi \in E^{*}$, we have

$$
\left|\varphi\left(f_{i}(x, y, u, v)\right)\right| \leq \frac{P_{i}(x, y)\|\varphi\|}{1+\|\varphi\|+\|u\|_{E}+\|v\|_{E}}, \text { for a.e. }(x, y) \in J, \text { and } u, v \in E
$$

$\left(H_{4}\right)$ For each bounded set $B \subset E$ and for each $(x, y) \in J$, we have

$$
\beta\left(f_{i}(x, y, B)\right) \leq P_{i}(x, y) \beta(B) ; i=1,2 .
$$

If

$$
\begin{equation*}
L:=\frac{P_{1}^{*}(\ln a)^{r_{1}}(\ln b)^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}+\frac{P_{2}^{*}(\ln a)^{\rho_{1}}(\ln b)^{\rho_{2}}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)}<1 \tag{3.1}
\end{equation*}
$$

where $P_{i}^{*}=\left\|P_{i}\right\|_{L^{\infty}} ; i=1,2$, then the coupled system 1.1) has at least one solution defined on J.
Proof. Define the operators $N_{i}: C \rightarrow C ; i=1,2$ by

$$
\begin{align*}
\left(N_{1} u\right)(x, y)= & \mu_{1}(x, y) \\
& +\int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1} \frac{f_{1}(s, t, u(s, t), v(s, t))}{s t \Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} d t d s \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
\left(N_{2} v\right)(x, y)= & \mu_{2}(x, y) \\
& +\int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{\rho_{1}-1}\left(\ln \frac{y}{t}\right)^{\rho_{2}-1} \frac{f_{2}(s, t, u(s, t), v(s, t))}{s t \Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} d t d s . \tag{3.3}
\end{align*}
$$

Consider the continuous operator $N: \mathcal{C} \rightarrow \mathcal{C}$ defined by

$$
\begin{equation*}
(N(u, v))(x, y)=\left(\left(N_{1} u\right)(x, y),\left(N_{2} v\right)(x, y)\right) \tag{3.4}
\end{equation*}
$$

First notice that, the hypothesis $\left(H_{2}\right)$ implies that

$$
\forall u, v \in C, f(\cdot, \cdot, u(\cdot, \cdot), v(\cdot, \cdot)) \in P(J, E)
$$

From $\left(H_{3}\right)$ we have that for all $(x, y) \in J$, the functions

$$
\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1} \frac{f_{1}(s, t, u(s, t), v(s, t))}{s t}
$$

and

$$
\left(\ln \frac{x}{s}\right)^{\rho_{1}-1}\left(\ln \frac{y}{t}\right)^{\rho_{2}-1} \frac{f_{2}(s, t, u(s, t), v(s, t))}{s t}
$$

are Pettis integrable and thus, the operator N makes sense.
Let $R, R_{i}>0 ; i=1,2$ be such that

$$
\begin{gathered}
R_{1}>\left\|\mu_{1}\right\|_{C}+\frac{P_{1}^{*}(\ln a)^{r_{1}}(\ln b)^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}, R_{2}>\left\|\mu_{2}\right\|_{C}+\frac{P_{2}^{*}(\ln a)^{\rho_{1}}(\ln b)^{\rho_{2}}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)} \\
\quad \text { and } R=R_{1}+R_{2}
\end{gathered}
$$

and consider the set

$$
\begin{aligned}
Q= & \left\{(u, v) \in \mathcal{C}:\|(u, v)\|_{\mathcal{C}} \leq R \text { and }\left\|(u, v)\left(x_{1}, y_{1}\right)-(u, v)\left(x_{2}, y_{2}\right)\right\|_{E}\right. \\
\leq & \left\|\mu_{1}\left(x_{1}, y_{1}\right)-\mu_{1}\left(x_{2}, y_{2}\right)\right\|_{E}+\left\|\mu_{2}\left(x_{1}, y_{1}\right)-\mu_{2}\left(x_{2}, y_{2}\right)\right\|_{E} \\
& +\frac{P_{1}^{*}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)} \\
& \times\left[2\left(\ln y_{2}\right)^{r_{2}}\left(\ln x_{2}-\ln x_{1}\right)^{r_{1}}+2\left(\ln x_{2}\right)^{r_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{r_{2}}\right. \\
& +\left(\ln x_{1}\right)^{r_{1}}\left(\ln y_{1}\right)^{r_{2}}-\left(\ln x_{2}\right)^{r_{1}}\left(\ln y_{2}\right)^{r_{2}} \\
& \left.-2\left(\ln x_{2}-\ln x_{1}\right)^{r_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{r_{2}}\right] \\
& +\frac{P_{2}^{*}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)} \\
& \times\left[2\left(\ln y_{2}\right)^{\rho_{2}}\left(\ln x_{2}-\ln x_{1}\right)^{\rho_{1}}+2\left(\ln x_{2}\right)^{\rho_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{\rho_{2}}\right. \\
& +\left(\ln x_{1}\right)^{\rho_{1}}\left(\ln y_{1}\right)^{\rho_{2}}-\left(\ln x_{2}\right)^{\rho_{1}}\left(\ln y_{2}\right)^{\rho_{2}} \\
& \left.\left.-2\left(\ln x_{2}-\ln x_{1}\right)^{\rho_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{\rho_{2}}\right]\right\} .
\end{aligned}
$$

Clearly, the subset Q is closed, convex and equicontinuous. We shall show that the operator N satisfies all the assumptions of Theorem 2.11. The proof will be given in several steps.

Step 1. N maps Q into itself.
Let $u, v \in Q,(x, y) \in J$ and assume that $\left(N_{i} u\right)(x, y) \neq 0 ; i=1,2$. Then there exists $\phi_{i} \in E^{*} ; i=1,2$ such that $\left\|\left(N_{i} u\right)(x, y)\right\|_{E}=\phi_{i}((N u)(x, y))$. Thus

$$
\begin{aligned}
\| & \left(N_{1} u\right)(x, y) \|_{E} \\
= & \phi_{1}\left(\mu_{1}(x, y)+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1}\right. \\
& \left.\times \frac{f_{1}(s, t, u(s, t), v(s, t))}{s t} d t d s\right) \\
= & \phi_{1}\left(\mu_{1}(x, y)\right)+\phi_{1}\left(\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1}\right. \\
& \left.\times \frac{f_{1}(s, t, u(s, t), v(s, t))}{s t} d t d s\right) \\
\leq & \left\|\mu_{1}(x, y)\right\|_{E}+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1} \frac{P_{1}(s, t)}{s t} d t d s \\
\leq & \left\|\mu_{1}\right\|_{C}+\frac{P_{1}^{*}(\ln a)^{r_{1}(\ln b)^{r_{2}}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)} \\
\leq & R_{1} .
\end{aligned}
$$

Also, we get

$$
\begin{aligned}
\| & \left(N_{2} v\right)(x, y) \|_{E} \\
= & \phi_{2}\left(\mu_{2}(x, y)+\frac{1}{\Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{\rho_{1}-1}\left(\ln \frac{y}{t}\right)^{\rho_{2}-1}\right. \\
& \left.\times \frac{f_{2}(s, t, u(s, t), v(s, t))}{s t} d t d s\right) \\
= & \phi_{2}\left(\mu_{2}(x, y)\right)+\phi_{2}\left(\frac{1}{\Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{\rho_{1}-1}\left(\ln \frac{y}{t}\right)^{\rho_{2}-1}\right. \\
& \left.\times \frac{f_{2}(s, t, u(s, t), v(s, t))}{s t} d t d s\right) \\
\leq & \left\|\mu_{2}(x, y)\right\|_{E}+\frac{1}{\Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{\rho_{1}-1}\left(\ln \frac{y}{t}\right)^{\rho_{2}-1} \frac{P_{2}(s, t)}{s t} d t d s \\
\leq & \left\|\mu_{2}\right\|_{C}+\frac{P_{2}^{*}(\ln a)^{\rho_{1}(\ln b)^{\rho_{2}}}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)} \\
\leq & R_{2}
\end{aligned}
$$

Thus,

$$
\|(N(u, v))(x, y)\|_{E} \leq R_{1}+R_{2}=R
$$

Next, let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in J$ be such that $x_{1}<x_{2}$ and $y_{1}<y_{2}$, and let $u, v \in Q$, with $\left(N_{1} u\right)\left(x_{1}, y_{1}\right)-$ $\left(N_{1} u\right)\left(x_{2}, y_{2}\right) \neq 0$ and $\left(N_{2} v\right)\left(x_{1}, y_{1}\right)-\left(N_{2} v\right)\left(x_{2}, y_{2}\right) \neq 0$. Then there exists $\phi_{i} \in E^{*} ; i=1,2$ with $\left\|\varphi_{i}\right\|=1$ such that

$$
\left\|\left(N_{1} u\right)\left(x_{1}, y_{1}\right)-\left(N_{1} u\right)\left(x_{2}, y_{2}\right)\right\|_{E}=\phi_{1}\left(\left(N_{1} u\right)\left(x_{1}, y_{1}\right)-\left(N_{1} u\right)\left(x_{2}, y_{2}\right)\right)
$$

and

$$
\left\|\left(N_{2} v\right)\left(x_{1}, y_{1}\right)-\left(N_{2} v\right)\left(x_{2}, y_{2}\right)\right\|_{E}=\phi_{1}\left(\left(N_{2} v\right)\left(x_{1}, y_{1}\right)-\left(N_{2} v\right)\left(x_{2}, y_{2}\right)\right)
$$

Then

$$
\begin{aligned}
& \left\|\left(N_{1} u\right)\left(x_{2}, y_{2}\right)-\left(N_{1} u\right)\left(x_{1}, y_{1}\right)\right\|_{E} \\
& =\phi_{1}\left(\left(N_{1} u\right)\left(x_{2}, y_{2}\right)-\left(N_{1} u\right)\left(x_{1}, y_{1}\right)\right) \\
& \leq\left\|\mu_{1}\left(x_{1}, y_{1}\right)-\mu_{1}\left(x_{2}, y_{2}\right)\right\|_{E} \\
& \left.\quad+\left.\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x_{1}} \int_{1}^{y_{1}}| | \ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1}-\left|\ln \frac{x_{1}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{1}}{t}\right|^{r_{2}-1}\right] \\
& \quad \times \frac{\left|\phi_{1}\left(f_{1}(s, t, u(s, t), v(s, t))\right)\right|}{s t} d t d s \\
& \quad+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}}\left|\ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1} \frac{\left|\phi_{1}\left(f_{1}(s, t, u(s, t), v(s, t))\right)\right|}{s t} d t d s \\
& \quad+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x_{1}} \int_{y_{1}}^{y_{2}}\left|\ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1} \frac{\left|\phi_{1}\left(f_{1}(s, t, u(s, t), v(s, t))\right)\right|}{s t} d t d s \\
& \quad+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{x_{1}}^{x_{2}} \int_{1}^{y_{1}}\left|\ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1} \frac{\left|\phi_{1}(f(s, t, u(s, t), v(s, t)))\right|}{s t} d t d s
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \left\|\left(N_{1} u\right)\left(x_{2}, y_{2}\right)-\left(N_{1} u\right)\left(x_{1}, y_{1}\right)\right\|_{E} \leq\left\|\mu_{1}\left(x_{1}, y_{1}\right)-\mu_{1}\left(x_{2}, y_{2}\right)\right\|_{E} \\
& \quad+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x_{1}} \int_{1}^{y_{1}}\left[\left|\ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1}\right. \\
& \quad-\left|\ln \frac{x_{1}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{1}}{t}\right|^{r_{2}-1}{ }^{\frac{P_{1}^{*}}{s t}} d t d s \\
& \quad+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}}\left|\ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1} \frac{P_{1}^{*}}{s t} d t d s \\
& \quad+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x_{1}} \int_{y_{1}}^{y_{2}}\left|\ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1} \frac{P_{1}^{*}}{s t} d t d s \\
& \quad+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{x_{1}}^{x_{2}} \int_{1}^{y_{1}}\left|\ln \frac{x_{2}}{s}\right|^{r_{1}-1}\left|\ln \frac{y_{2}}{t}\right|^{r_{2}-1} \frac{P_{1}^{*}}{s t} d t d s \\
& \leq\left\|\mu_{1}\left(x_{1}, y_{1}\right)-\mu_{1}\left(x_{2}, y_{2}\right)\right\|_{E} \\
& \quad+\frac{P_{1}^{*}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}\left[2\left(\ln y_{2}\right)^{r_{2}}\left(\ln x_{2}-\ln x_{1}\right)^{r_{1}}+2\left(\ln x_{2}\right)^{r_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{r_{2}}\right. \\
& \quad+\left(\ln x_{1}\right)^{r_{1}}\left(\ln y_{1}\right)^{r_{2}}-\left(\ln x_{2}\right)^{r_{1}}\left(\ln y_{2}\right)^{r_{2}} \\
& \left.\quad-2\left(\ln x_{2}-\ln x_{1}\right)^{r_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{r_{2}}\right] .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \left\|\left(N_{2} v\right)\left(x_{2}, y_{2}\right)-\left(N_{2} v\right)\left(x_{1}, y_{1}\right)\right\|_{E} \leq\left\|\mu_{2}\left(x_{1}, y_{1}\right)-\mu_{2}\left(x_{2}, y_{2}\right)\right\|_{E} \\
& \quad+\frac{P_{2}^{*}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)}\left[2\left(\ln y_{2}\right)^{\rho_{2}}\left(\ln x_{2}-\ln x_{1}\right)^{\rho_{1}}+2\left(\ln x_{2}\right)^{\rho_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{\rho_{2}}\right. \\
& \quad+\left(\ln x_{1}\right)^{\rho_{1}}\left(\ln y_{1}\right)^{\rho_{2}}-\left(\ln x_{2}\right)^{\rho_{1}}\left(\ln y_{2}\right)^{\rho_{2}} \\
& \left.\quad-2\left(\ln x_{2}-\ln x_{1}\right)^{\rho_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{\rho_{2}}\right] .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left\|(N(u, v))\left(x_{2}, y_{2}\right)-(N(u, v))\left(x_{1}, y_{1}\right)\right\|_{E} \\
& \leq\left\|\mu_{1}\left(x_{1}, y_{1}\right)-\mu_{1}\left(x_{2}, y_{2}\right)\right\|_{E}+\left\|\mu_{2}\left(x_{1}, y_{1}\right)-\mu_{2}\left(x_{2}, y_{2}\right)\right\|_{E} \\
& \quad+\frac{P_{1}^{*}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}\left[2\left(\ln y_{2}\right)^{r_{2}}\left(\ln x_{2}-\ln x_{1}\right)^{r_{1}}+2\left(\ln x_{2}\right)^{r_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{r_{2}}\right. \\
& \quad+\left(\ln x_{1}\right)^{r_{1}}\left(\ln y_{1}\right)^{r_{2}}-\left(\ln x_{2}\right)^{r_{1}}\left(\ln y_{2}\right)^{r_{2}} \\
& \left.\quad-2\left(\ln x_{2}-\ln x_{1}\right)^{r_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{r_{2}}\right] \\
& \quad+\frac{P_{2}^{*}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)}\left[2\left(\ln y_{2}\right)^{\rho_{2}}\left(\ln x_{2}-\ln x_{1}\right)^{\rho_{1}}+2\left(\ln x_{2}\right)^{\rho_{1}\left(\ln y_{2}-\ln y_{1}\right)^{\rho_{2}}}\right. \\
& \quad+\left(\ln x_{1}\right)^{\rho_{1}}\left(\ln y_{1}\right)^{\rho_{2}}-\left(\ln x_{2}\right)^{\rho_{1}}\left(\ln y_{2}\right)^{\rho_{2}} \\
& \left.\quad-2\left(\ln x_{2}-\ln x_{1}\right)^{\rho_{1}}\left(\ln y_{2}-\ln y_{1}\right)^{\rho_{2}}\right] .
\end{aligned}
$$

Hence $N(Q) \subset Q$.
Step $2 . N$ is weakly-sequentially continuous.
Let $\left(u_{n}, v_{n}\right)$ be a sequence in Q and let $\left(u_{n}(x, y)\right) \rightarrow u(x, y)$ and $\left(v_{n}(x, y)\right) \rightarrow v(x, y)$ in (E, ω) for each $(x, y) \in J$. Fix $(x, y) \in J$. Since $f_{i} ; i=1,2$ satisfy the assumption $\left(H_{1}\right)$, then for each $i \in\{1,2\}$ the function $f_{i}\left(x, y, u_{n}(x, y), v_{n}(x, y)\right)$ converges weakly uniformly to $f_{i}(x, y, u(x, y), v(x, y))$. Hence the Lebesgue dominated convergence theorem for Pettis integral implies that for each $(x, y) \in J$, the sequence $\left(N_{1} u_{n}\right)(x, y)$ converges weakly uniformly to $\left(N_{1} u\right)(x, y)$ in (E, ω), and $\left(N_{2} v_{n}\right)(x, y)$ converges weakly uniformly to $\left(N_{2} v\right)(x, y)$ in (E, ω). So $N\left(u_{n}\right) \rightarrow N(u)$. Then $N: Q \rightarrow Q$ is weakly-sequentially continuous.

Step 3. The implication (2.1) holds.
Let V be a subset of Q such that $\bar{V}=\overline{\operatorname{conv}}(N(V) \cup\{0\})$. Obviously

$$
V(x, y) \subset \overline{\operatorname{conv}}(N V)(x, y)) \cup\{0\}),(x, y) \in J
$$

Further, as V is bounded and equicontinuous, by Lemma 3 in 13 the function $(x, y) \rightarrow v(x, y)=\beta(V(x, y))$ is continuous on J. Since the functions $\mu_{i} ; i=1,2$ are continuous on J, the set $\{\mu(x, y) ;(x, y) \in J\} \subset E$ is compact. From $\left(H_{3}\right)$, Lemma 2.10 and the properties of the measure β, for any $(x, y) \in J$, we have

$$
\begin{aligned}
v(x, y) & \leq \beta((N V)(x, y) \cup\{0\}) \\
& \leq \beta((N V)(x, y)) \\
& \leq \frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left|\ln \frac{x}{s}\right|^{r_{1}-1}\left|\ln \frac{y}{t}\right|^{r_{2}-1} \frac{P_{1}(s, t) \beta(V(s, t))}{s t} d t d s \\
& +\frac{1}{\Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left|\ln \frac{x}{s}\right|^{\rho_{1}-1}\left|\ln \frac{y}{t}\right|^{\rho_{2}-1} \frac{P_{2}(s, t) \beta(V(s, t))}{s t} d t d s \\
& \leq \frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left|\ln \frac{x}{s}\right|^{r_{1}-1}\left|\ln \frac{y}{t}\right|^{r_{2}-1} \frac{P_{1}(s, t) v(s, t)}{s t} d t d s \\
& +\frac{1}{\Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left|\ln \frac{x}{s}\right|^{\rho_{1}-1}\left|\ln \frac{y}{t}\right|^{\rho_{2}-1} \frac{P_{2}(s, t) v(s, t)}{s t} d t d s \\
& \leq \frac{\|v\|_{\mathcal{C}}}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left|\ln \frac{x}{s}\right|^{r_{1}-1}\left|\ln \frac{y}{t}\right|^{r_{2}-1} \frac{P_{1}(s, t)}{s t} d t d s \\
& +\frac{\|v\| \mathcal{C}}{\Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} \int_{1}^{x} \int_{1}^{y}\left|\ln \frac{x}{s}\right|^{\rho_{1}-1}\left|\ln \frac{y}{t}\right|^{\rho_{2}-1} \frac{P_{2}(s, t)}{s t} d t d s \\
& \leq\left(\frac{P_{1}^{*}(\ln a)^{r_{1}}(\ln b)^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}+\frac{P_{2}^{*}(\ln a)^{\rho_{1}}(\ln b)^{\rho_{2}}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)}\right)\|v\|_{\mathcal{C}} .
\end{aligned}
$$

Thus

$$
\|v\| \leq L\|v\|_{\mathcal{C}}
$$

From (3.1), we get $\|v\|_{\mathcal{C}}=0$, that is, $v(x, y)=\beta(V(x, y))=0$, for each $(x, y) \in J$ and then by Theorem 2 in [29], V is weakly relatively compact in \mathcal{C}. Applying now Theorem 2.11, we conclude that N has a fixed point which is a solution of the coupled system (1.1).

4. An Example

Let

$$
E=l^{1}=\left\{u=\left(u_{1}, u_{2}, \ldots, u_{n}, \ldots\right), \sum_{n=1}^{\infty}\left|u_{n}\right|<\infty\right\}
$$

be the Banach space with the norm

$$
\|u\|_{E}=\sum_{n=1}^{\infty}\left|u_{n}\right|
$$

We consider the following coupled system of partial Pettis Hadamard integral equations, for $(x, y) \in[1, e]^{2}$,

$$
\left\{\begin{array}{l}
u_{n}(x, y)=\mu_{1}(x, y)+\int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{r_{1}-1}\left(\ln \frac{y}{t}\right)^{r_{2}-1} \frac{f_{n}(s, t, u(s, t), v(s, t))}{s t \Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} d t d s \tag{4.1}\\
v_{n}(x, y)=\mu_{2}(x, y)+\int_{1}^{x} \int_{1}^{y}\left(\ln \frac{x}{s}\right)^{\rho_{1}-1}\left(\ln \frac{y}{t}\right)^{\rho_{2}-1} \frac{g_{n}(s, t, u(s, t), v(s, t))}{s t \Gamma\left(\rho_{1}\right) \Gamma\left(\rho_{2}\right)} d t d s
\end{array}\right.
$$

where $r_{1}, r_{2}, \rho_{1}, \rho_{2}>0, \mu_{1}(x, y)=x+y^{2}, \mu_{2}(x, y)=x^{2}+y$,

$$
f_{n}(x, y, u(x, y), v(x, y))=\frac{c x y^{2}}{1+\|u(x, y)\|_{E}+\|v(x, y)\|_{E}}\left(e^{-7}+\frac{1}{e^{x+y+5}}\right) u_{n}(x, y)
$$

and

$$
g_{n}(x, y, u(x, y), v(x, y))=\frac{2 c x^{2 y^{-6}}}{1+\|u(x, y)\|_{E}+\|v(x, y)\|_{E}} v_{n}(x, y)
$$

with

$$
u=\left(u_{1}, u_{2}, \ldots, u_{n}, \ldots\right), v=\left(v_{1}, v_{2}, \ldots, v_{n}, \ldots\right)
$$

and

$$
c:=\frac{e^{4}}{8} \Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)
$$

Set

$$
f=\left(f_{1}, f_{2}, \ldots, f_{n}, \ldots\right), g=\left(g_{1}, g_{2}, \ldots, g_{n}, \ldots\right)
$$

Clearly, the functions f and g are continuous.
For each $u, v \in E$ and $(x, y) \in[1, e] \times[1, e]$, we have

$$
\|f(x, y, u(x, y), v(x, y))\|_{E} \leq c x y^{2}\left(e^{-7}+\frac{1}{e^{x+y+5}}\right)
$$

and

$$
\|g(x, y, u(x, y), v(x, y))\|_{E} \leq c x^{2} y^{-6}
$$

Hence, the hypothesis $\left(H_{3}\right)$ is satisfied with $P_{1}^{*}=P_{2}^{*}=2 c e^{-4}$. We shall show that condition 3.1 holds with $a=b=e$. Indeed,

$$
\begin{aligned}
\frac{P_{1}^{*}(\ln a)^{r_{1}}(\ln b)^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}+\frac{P_{2}^{*}(\ln a)^{\rho_{1}}(\ln b)^{\rho_{2}}}{\Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)} & =\frac{2 c}{e^{4} \Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)} \\
& +\frac{2 c}{e^{4} \Gamma\left(1+\rho_{1}\right) \Gamma\left(1+\rho_{2}\right)} \\
& =\frac{1}{2}<1 .
\end{aligned}
$$

A simple computation shows that all conditions of Theorem 3.2 are satisfied. It follows that the coupled system 4.1 has at least one solution on $[1, e] \times[1, e]$.

5. Declaration of interest

The authors declare that they have no actual nor potential conflicts of interest.

References

[1] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. 1
[2] S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. 1
[3] S. Abbas, M. Benchohra and A.N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Frac. Calc. Appl. Anal. 15 (2012), 168-182. 1
[4] R.R. Akhmerov, M.I. Kamenskii, A.S. Patapov, A.E. Rodkina and B.N. Sadovskii, Measures of Noncompactness and Condensing Operators. Birkhauser Verlag, Basel, 1992. 1
[5] J.C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid 79 (1985), 53-66. 1
[6] J. Banas̀ and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980. 1 .
[7] M. Benchohra, J.R. Graef and F-Z. Mostefai, Weak solutions for nonlinear fractional differential equations on reflexive Banach spaces, Electron. J. Qual. Theory Differ. Equ. 54 (2010), 1-10. 1
[8] M. Benchohra, J. Graef and F-Z. Mostefai, Weak solutions for boundary-value problems with nonlinear fractional differential inclusions, Nonlinear Dyn. Syst. Theory 11 (3) (2011), 227-237. 1
[9] M. Benchohra, J. Henderson and F-Z. Mostefai, Weak solutions for hyperbolic partial fractional differential inclusions in Banach spaces, Comput. Math. Appl. 64 (2012), 3101-3107. 1
[10] M. Benchohra, J. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal. 12 (4) (2008), 419-428. 1
[11] M. Benchohra and F-Z. Mostefai, Weak solutions for nonlinear differential equations with integral boundary conditions in Banach spaces, Opuscula Math. 32 (1) (2012), 31-40. 1
[12] M. Benchohra, J.J. Nieto and D. Seba, Measure of noncompactness and hyperbolic partial fractional differential equations in Banach spaces, PanAmer. Math. J. 20 (3) (2010), 27-37. 1
[13] D. Bugajewski and S. Szufla, Kneser's theorem for weak solutions of the Darboux problem in a Banach space, Nonlinear Anal. 20 (2) (1993), 169-173. 3
[14] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269 (2002), 1-27. 1
[15] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270 (2002), 1-15. 1
[16] M.A. Darwish, On integral equations of UrysohnâÂŞVolterra type, Appl. Math. Comput. 136 (1) (2003), 93-98. 1
[17] M.A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional-integral equation with linear modification of the argument, Bull. Korean Math. Soc. 48 (3) (2011), 539-553. 1
[18] M.A. Darwish and S.K. Ntouyas, On a quadratic fractional HammersteinâĂŞVolterra integral equation with linear modification of the argument, Nonlinear Anal. 74 (11) (2011), 3510-3517. 1 1
[19] M.A. Darwish, On a perturbed functional integral equation of Urysohn type, Appl. Math. Comput. 218 (2012), 8800âĂŞ8805. 1
[20] M.A. Darwish and J. Henderson, Nondecreasing solutions of a quadratic integral equation of Urysohn-Stieltjes type, Rocky Mountain J. Math. 42 (2) (2012), 545-566. 1
[21] M.A. Darwish and J. Banaś, Existence and characterization of solutions of nonlinear Volterra-Stieltjes integral equations in two vriables, Abstr. Appl. Anal. 2014, Art. ID 618434, 11 pp. 1
[22] F.S. De Blasi, On the property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262. 1.2 .8
[23] D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, 1996. 1, 2.10
[24] J. Hadamard, Essai sur l'étude des fonctions données par leur développment de Taylor, J. Pure Appl. Math. 4 (8) (1892), 101-186. 2.5
[25] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. 1
[26] A.A. Kilbas, Hari M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006. 1, 2.5
[27] K. Latrach and M.A. Taoudi, Existence results for a generalized nonlinear Hammerstein equation on L^{1} spaces. Nonlinear Anal. 66 (2007), 2325-2333. 1
[28] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. 1
[29] A. R. Mitchell and Ch. Smith, Nonlinear Equations in Abstract Spaces. In: Lakshmikantham, V. (ed.) An existence theorem for weak solutions of differential equations in Banach spaces, pp. 387âĂŞ403. Academic Press, New York (1978) 3
[30] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985-999. 1
[31] H. Mönch and G.F. Von Harten, On the Cauchy problem for ordinary differential equations in Banach spaces, Archiv. Math. Basel 39 (1982), 153-160. 1
[32] D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Model. 27 (5) (1998), 1-14. 2.11
[33] D. O'Regan, Weak solutions of ordinary differential equations in Banach spaces, Appl. Math. Lett. 12 (1999), 101-105. 1
[34] A. Petrusel, G. Petrusel, A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory. J. Fixed Point Theory Appl. 19 (2017), 1793-1814. 1
[35] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. 2.3, 2, 2.4
[36] S. Pooseh, R. Almeida, and D. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative. Numer. Funct. Anal. Optim. 33 (3) (2012), 301-319. 1
[37] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. 1
[38] S. Szufla, On the application of measure of noncompactness to existence theorems, Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14. 1
[39] M.A. Taoudi, Integrable solutions of a nonlinear functional integral equation on an unbounded interval, Nonlinear Anal. 71 (2009), 4131-4136. 1
[40] V.E. Tarasov, Fractional dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010. 1
[41] A.N. Vityuk, On solutions of hyperbolic differential inclusions with a nonconvex right-hand side. (Russian) Ukran. Mat. Zh. 47 (4) (1995), 531-534; translation in Ukrainian Math. J. 47 (4) (1996), 617-621. 1
[42] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (2004), 318-325. 1

Geraghty type contraction mappings on Branciari b-metric spaces

İnci M. Erhan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Atilım University, Ankara, Turkey

Abstract

In this paper fixed points of α-admissible contraction mappings of Geraghty type defined on Branciari b metric spaces are studied. Existence and uniqueness theorems for these types of mappings of are proved. Some consequences of these theorems are given and specific examples are presented.

Keywords: fixed point, Branciari b-metric space, α-admissible contraction mappings, Geraghty contraction 2010 MSC: 47H10, 54C60, 54H25, 55M20

1. Introduction and preliminaries

Branciari metric spaces are among the recent generalizations of metric spaces and have been defined by Branciari [3]. The main feature of these spaces is the replacement of the triangular inequality by a rectangular inequality. The Branciari metric spaces are also referred to as rectangular or generalized metric spaces. Another recent generalization of the metric spaces called b-metric spaces has been introduced by Czerwik [4] and Bakhtin [2]. The difference between metric and b-metric shows itself in the triangle inequality which contains a constant $s \geq 1$. Combining these two concepts, George et.al. 5 defined Branciari b-metric spaces. This new metric space is also referred to as rectangular b-metric spaces. Several articles related with this new metric space have been published recently [5, 11, 7.

In this paper we discuss the problem of existence and uniqueness of fixed points for contraction mappings of Geraghty type defined on Branciari b-metric spaces.

We first introduce the basic notions used throughout the paper.
Branciari metric spaces are defined as follows [3].

[^4]Definition 1.1. [3] Let X be a nonempty set and let $d: X \times X \rightarrow[0,+\infty)$ be a function such that for all $x, y \in X$ and all distinct $u, v \in X$ each of which is different from x and y, the following conditions are satisfied:
(1.) $d(x, y)=0$ if and only if $x=y$;
(2.) $d(x, y)=d(y, x)$;
(3.) $d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$.

The map d is called a Branciari metric and the pair (X, d) is called a Branciari metric space.
Czerwik [4] and Bakhtin [2] defined the b-metric spaces as follows.
Definition 1.2. [2, 4] Let X be a nonempty set and let $d: X \times X \rightarrow[0,+\infty)$ be a mapping satisfying the following conditions for all $x, y, z \in X$:
(1.) $d(x, y)=0$ if and only if $x=y$;
(2.) $d(x, y)=d(y, x)$;
(3.) $d(x, y) \leq s[d(x, z)+d(z, y)]$ for some real number $s \geq 1$.

Then the mapping d is called a b-metric and the pair (X, d) is called a b-metric space with a constant $s \geq 1$.

Combination of the Branciari and b-metric spaces results in the following definition of the Branciari b-metric spaces.

Definition 1.3. [5] Let X be a nonempty set and let $d: X \times X \rightarrow[0,+\infty)$ be a function such that for all $x, y \in X$ and all distinct $u, v \in X$ each of which is different from x and y, the following conditions are satisfied:
(1.) $d(x, y)=0$ if and only if $x=y$;
(2.) $d(x, y)=d(y, x)$;
(3.) $d(x, y) \leq s[d(x, u)+d(u, v)+d(v, y)]$ for some real number $s \geq 1$.

The map d is called a Branciari b-metric and the pair (X, d) is called a Branciari b-metric space with a constant $s \geq 1$.

Convergent sequence, Cauchy sequence, completeness and continuity on Branciari b-metric space are defined as follows.

Definition 1.4. [5] Let (X, d) be a Branciari b-metric space, $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. Then

1. A sequence $\left\{x_{n}\right\} \subset X$ is said to converge to a point $x \in X$ if, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>n_{0}$. The convergence is also represented as

$$
\lim _{n \rightarrow \infty} x_{n}=x \text { or } x_{n} \rightarrow x \text { as } n \rightarrow \infty
$$

2. A sequence $\left\{x_{n}\right\} \subset X$ is said to be a Cauchy sequence if, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x_{n+p}\right)<\varepsilon$ for all $n>n_{0}, p>0$ or equivalently, if $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=0$ for all $p>0$.
3. (X, d) is said to be a complete Branciari b-metric space if every Cauchy sequence in X converges to some $x \in X$.
4. A mapping $T: X \rightarrow X$ on is said to be continuous with respect to the Branciari b-metric d if, for any sequence $\left\{x_{n}\right\} \subset X$ which converges to some $x \in X$, that is $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ we have $\lim _{n \rightarrow \infty} d\left(T x_{n}, T x\right)=0$.

One should be careful when working with the Branciari and Branciari b-metric spaces due to some of their properties listed below.

Remark 1.5. Let (X, d) be a Branciari or Branciari b-metric space.

1. If we denote an open ball of radius r centered at $x \in X$ as

$$
B_{r}(x, r)=\{y \in X: \mid d(x, y)<r\}
$$

such an open ball in (X, d) is not always an open set.
2. If \mathcal{T} is the collection of all subsets \mathcal{Y} of X such that for each $y \in \mathcal{Y}$ there exist $r>0$ with $B_{r}(y) \subseteq \mathcal{Y}$, then \mathcal{T} defines a topology for (X, d), which is not necessarily Hausdorff.
3. The limit of a convergent sequence $\left\{x_{n}\right\} \in X$ is not necessarily unique.
4. A convergent sequence in X is not necessarily a Cauchy sequence.
5. Branciari or Branciari b-metric is not necessarily continuous.

All these drawbacks are illustrated in the following example inspired by [5].
Example 1.6. [5] Let $A=\left\{\frac{1}{n}, n \in \mathbb{N}\right\}, B=\{0,3\}$ and $X=A \cup B$. Define the function $d(x, y): X \times X \rightarrow$ $[0, \infty)$ such that $d(x, y)=d(y, x)$ in the following way.

$$
d(x, y)=\left\{\begin{array}{lll}
0 & \text { if } & x=y \\
4 & \text { if } & x, y \in A \\
\frac{1}{n} & \text { if } & x \in A, y \in B \\
2 & \text { if } & x, y \in B
\end{array}\right.
$$

It is not difficult to see that the function $d(x, y)$ is not a metric, not a b-metric, not a Branciary metric but only a Branciari b-metric with $s=2$. It is also clear that

$$
\lim _{n \rightarrow \infty} d\left(\frac{1}{2 n}, 0\right)=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

and

$$
\lim _{n \rightarrow \infty} d\left(\frac{1}{2 n}, 3\right)=\lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

that is, the sequence $\left\{\frac{1}{2 n}\right\}$ has two different limits, the numbers 0 and 3 .
In addition, the sequence $\left\{\frac{1}{2 n}\right\}$ is convergent, but not a Cauchy sequence because

$$
\lim _{p \rightarrow \infty} d\left(x_{n}, x_{n+p}\right)=\lim _{p \rightarrow \infty} d\left(\frac{1}{2 n}, \frac{1}{2 n+2 p}\right)=\lim _{n \rightarrow \infty} 4=4
$$

Finally, note that the open set $B_{1}\left(\frac{1}{3}\right)$ contains 0 , that is $B_{1}\left(\frac{1}{3}\right)=\left\{0,3, \frac{1}{3}\right\}$, but there is no positive r for which $B_{r}(0) \subset B_{1}\left(\frac{1}{3}\right)$.

Therefore, when working on Branciari metric space, we need the following property stated in proved in [10.

Proposition 1.7. [10] Let $\left\{x_{n}\right\}$ be a Cauchy sequence in a Branciari metric space (X, d) such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=$ 0 , where $x \in X$. Then $\lim _{n \rightarrow \infty} d\left(x_{n}, y\right)=d(x, y)$, for all $y \in X$. In particular, the sequence $\left\{x_{n}\right\}$ does not converge to y if $y \neq x$.

Remark 1.8. The Proposition 1.7 is valid if we replace Branciari metric space by a Branciari b-metric space.

Geraghty type contraction mappings have been introduced by Geraghty [6] who defined a class \mathcal{F} of functions $\beta:[0, \infty) \rightarrow[0,1)$ satisfying

$$
\lim _{n \rightarrow \infty} \beta\left(t_{n}\right)=1 \text { implies } \lim _{n \rightarrow \infty} t_{n}=0
$$

and with the help of these functions defined contraction mappings in the following manner.
Let (X, d) be a metric space and let $T: X \rightarrow X$ be a mapping satisfying

$$
\begin{equation*}
d(T x, T y) \leq \beta(d(x, y)) d(x, y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$ and some function $\beta \in \mathcal{F}$. He proved the existence and uniqueness of fixed points of such contractions on metric spaces.

In the context of b-metric spaces, Geraghty type contractions have been modified as follows [7]. Let \mathcal{F}_{s} be the class of functions $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{s}\right)$ for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta\left(t_{n}\right)=\frac{1}{s} \text { implies } \lim _{n \rightarrow \infty} t_{n}=0 \tag{1.2}
\end{equation*}
$$

holds for some $s \geq 1$. On a b-metric space (X, d) with a constant $s \geq 1$ Geraghty type contraction is a self mapping $T: X \rightarrow X$ satisfying

$$
\begin{equation*}
d(T x, T y) \leq \beta(d(x, y)) d(x, y) \tag{1.3}
\end{equation*}
$$

for all $x, y \in X$ and some function $\beta \in \mathcal{F}_{s}$.
As examples of functions from the class \mathcal{F}_{s} we can give the following functions.

Example 1.9.

The function $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{s}\right)$ defined as $\beta(t)=\frac{\exp (-t)}{s}$ for some $s \geq 1$ is in the class \mathcal{F}_{s}.
The function $\beta:[0, \infty) \rightarrow\left[0, \frac{1}{s}\right)$ defined as $\beta(t)=\frac{1}{s\left(1+t^{2}\right)}$ is in the class \mathcal{F}_{s}.
Finally, we recall the concept of α-admissible mappings defined by Samet et al [12].
Definition 1.10. A mapping $T: X \rightarrow X$ is called α-admissible if for all $x, y \in X$ we have

$$
\begin{equation*}
\alpha(x, y) \geq 1 \Rightarrow \alpha(T x, T y) \geq 1 \tag{1.4}
\end{equation*}
$$

where $\alpha: X \times X \rightarrow[0, \infty)$ is a given function.

2. Geraghty contractions on Branciari b-metric spaces

In many recent publications on fixed point on b-metric, quasi b-metric, Branciari b-metric, b-metric like spaces etc., the authors modify the contractive condition and the auxiliary functions involved in these conditions by taking into account the constant $s \geq 1$ of the space. In this sense, the Banach contractive condition on b-metric and related spaces becomes

$$
d(T x, T y) \leq k d(x, y), \text { for all } x, y \in X
$$

where $0<k<\frac{1}{s}$.
In this paper, we deal with contractions of Geraghty type on Branciari b-metric spaces.

Definition 2.1. Let (X, d) be a Branciari b-metric space with a constant $s \geq 1$ and let $\alpha: X \times X \rightarrow[0, \infty)$ and $\beta \in \mathcal{F}_{s}$ be two given functions. A generalized Geraghty type α-admissible contractive mapping $T: X \rightarrow X$ is of type (I) if it is α-admissible and satisfies

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \leq \beta(M(x, y)) M(x, y), \text { for all } x, y \in X \tag{2.1}
\end{equation*}
$$

where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\}
$$

We will first prove an existence theorem for fixed point of the class of contractive mappings given in Definition 2.1.

Theorem 2.2. Let (X, d) be a complete Branciari b-metric space with a constant $s \geq 1$ and $\alpha: X \times X \rightarrow$ $[0, \infty)$ and $\beta \in \mathcal{F}_{s}$ be two given functions. Let $T: X \rightarrow X$ be a continuous α-admissible mapping satisfying

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \leq \beta(M(x, y)) M(x, y), \text { for all } x, y \in X \tag{2.2}
\end{equation*}
$$

where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\}
$$

Assume that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$. Then T has a fixed point.
Proof. Choosing $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$ we define the sequence $\left\{x_{n}\right\}$ as

$$
x_{n+1}=T x_{n} \text { for } n \in \mathbb{N}
$$

Suppose that $x_{n} \neq x_{n+1}$ for all $n \geq 0$. Otherwise, for some $k \in \mathbb{N}$ we would have $x_{k}=x_{k+1}=T x_{k}$, that is, x_{k} would be a fixed point of T and the proof would be completed.

Since T is α-admissible, from $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ we have

$$
\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, T x_{0}\right) \geq 1 \Rightarrow \alpha\left(T x_{0}, T x_{1}\right)=\alpha\left(x_{1}, x_{2}\right) \geq 1
$$

and inductively,

$$
\begin{equation*}
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, \text { for all } n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Also, from the condition $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$ we have

$$
\alpha\left(x_{0}, x_{2}\right)=\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1 \Rightarrow \alpha\left(T x_{0}, T x_{2}\right)=\alpha\left(x_{1}, x_{3}\right) \geq 1
$$

and hence,

$$
\begin{equation*}
\alpha\left(x_{n}, x_{n+2}\right) \geq 1, \text { for all } n \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

We define the sequences $\left\{d_{n}\right\}$ and $\left\{e_{n}\right\}$ as

$$
\begin{equation*}
d_{n}=d\left(x_{n-1}, x_{n}\right), \quad e_{n}=d\left(x_{n-1}, x_{n+1}\right) \tag{2.5}
\end{equation*}
$$

We will prove that both the sequence $\left\{d_{n}\right\}$ and $\left\{e_{n}\right\}$ converge to 0 , that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n+1}\right)=0 \tag{2.6}
\end{equation*}
$$

Regarding 2.3 and the fact that $0 \leq \beta(t)<\frac{1}{s}$, the contractive condition (2.23) with $x=x_{n}$ and $y=x_{n+1}$ becomes

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T x_{n}\right) \\
& \leq \alpha\left(x_{n-1}, x_{n}\right) d\left(T x_{n-1}, T x_{n}\right) \tag{2.7}\\
& \leq \beta\left(M\left(x_{n-1}, x_{n}\right)\right) M\left(x_{n-1}, x_{n}\right)<\frac{1}{s} M\left(x_{n-1}, x_{n}\right)
\end{align*}
$$

for all $n \geq 1$, where

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right)\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}
\end{aligned}
$$

Suppose that $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n}, x_{n+1}\right)$ for some $n \geq 1$. Then we have

$$
d\left(x_{n}, x_{n+1}\right) \leq \beta\left(d\left(x_{n}, x_{n+1}\right)\right) d\left(x_{n}, x_{n+1}\right)<\frac{1}{s} d\left(x_{n}, x_{n+1}\right)
$$

which is not possible. Therefore, for all $n \geq 1 M\left(x_{n-1}, x_{n}\right)=d\left(x_{n-1}, x_{n}\right)$. In this case, the inequality 2.7) implies

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leq \beta\left(d\left(x_{n-1}, x_{n}\right)\right) d\left(x_{n-1}, x_{n}\right)<\frac{1}{s} d\left(x_{n-1}, x_{n}\right) \tag{2.8}\\
& \leq d\left(x_{n-1}, x_{n}\right), \text { for all } n \geq 1
\end{align*}
$$

In other words, the sequence $\left\{d_{n}\right\}=\left\{d\left(x_{n-1}, x_{n}\right)\right\}$ is positive and decreasing and hence, converges to some $d \geq 0$. If we take limit as $n \rightarrow \infty$ in 2.8 we obtain

$$
\begin{equation*}
d=\lim _{n \rightarrow \infty} d_{n+1} \leq \lim _{n \rightarrow \infty} \beta\left(d_{n}\right) d_{n}=d \lim _{n \rightarrow \infty} \beta\left(d_{n}\right) \leq \frac{1}{s} d \tag{2.9}
\end{equation*}
$$

This implies $\lim _{n \rightarrow \infty} \beta\left(d_{n}\right)=\frac{1}{s}$ and hence, by (1.2),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n}=\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n}\right)=0 \tag{2.10}
\end{equation*}
$$

On the other hand, we observe that repeated application of 2.8 leads to

$$
\begin{equation*}
d_{n+1}<\frac{1}{s} d_{n}<\frac{1}{s^{2}} d_{n-1}<\cdots<\frac{1}{s^{n+1}} d_{0} \tag{2.11}
\end{equation*}
$$

Now, taking into account (2.4), we substitute $x=x_{n-1}$ and $x=x_{n+1}$ in 2.23. This yields

$$
\begin{align*}
d\left(x_{n}, x_{n+2}\right) & =d\left(T x_{n-1}, T x_{n+1}\right) \\
& \leq \alpha\left(x_{n-1}, x_{n+1}\right) d\left(T x_{n-1}, T x_{n+1}\right) \tag{2.12}\\
& \leq \beta\left(M\left(x_{n-1}, x_{n+1}\right)\right) M\left(x_{n-1}, x_{n+1}\right)<\frac{1}{s} M\left(x_{n-1}, x_{n+1}\right)
\end{align*}
$$

for all $n \geq 1$, where

$$
\begin{align*}
M\left(x_{n-1}, x_{n+1}\right) & =\max \left\{d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n+1}, T x_{n+1}\right)\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n+1}, x_{n+2}\right)\right\} \tag{2.13}
\end{align*}
$$

Regarding (2.8), the maximum $M\left(x_{n-1}, x_{n+1}\right)$ is either $d\left(x_{n-1}, x_{n+1}\right)$ or $d\left(x_{n-1}, x_{n}\right)$, that is, either e_{n} or d_{n}. From the inequality 2.12 we have

$$
\begin{equation*}
e_{n+1}=d\left(x_{n}, x_{n+2}\right)<\frac{1}{s} M\left(e_{n}\right)=\frac{1}{s} \max \left\{e_{n}, d_{n}\right\} \tag{2.14}
\end{equation*}
$$

for all $n \in \mathbb{N}$. In addition, from (2.8) we have

$$
d_{n+1}<d_{n} \leq \max \left\{e_{n}, d_{n}\right\}
$$

from which we deduce

$$
\max \left\{e_{n+1}, d_{n+1}\right\} \leq \max \left\{e_{n}, d_{n}\right\} \text { for all } n \geq 1
$$

that is, the sequence $\left\{\max \left\{e_{n}, d_{n}\right\}\right\}$ is non increasing and hence, it converges to some $l \geq 0$. Assume that $l>0$. Taking into account 2.10 we obtain

$$
\begin{aligned}
l & =\lim _{n \rightarrow \infty} \max \left\{e_{n}, d_{n}\right\}=\max \left\{\lim _{n \rightarrow \infty} e_{n}, \lim _{n \rightarrow \infty} d_{n}\right\} \\
& =\max \left\{\lim _{n \rightarrow \infty} e_{n}, 0\right\}=\lim _{n \rightarrow \infty} e_{n}
\end{aligned}
$$

On the other hand, letting $n \rightarrow \infty$ in 2.14 we conclude

$$
l=\lim _{n \rightarrow \infty} e_{n+1}<\lim _{n \rightarrow \infty} \max \left\{e_{n}, d_{n}\right\}=l
$$

which contradicts the assumption $l>0$. Hence, $l=0$, and then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e_{n}=\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n+1}\right)=0 \tag{2.15}
\end{equation*}
$$

Next, we will prove that $x_{n} \neq x_{m}$ for all $n \neq m$. Assume that $x_{n}=x_{m}$ for some $m, n \in \mathbb{N}$ with $n \neq m$. By the initial assumption, we have $d\left(x_{n}, x_{n+1}\right)>0$ for each $n \in \mathbb{N}$. Without loss of generality we may take $m>n+1$. The assumption $x_{n}=x_{m}$ implies

$$
d\left(x_{n}, T x_{n}\right)=d\left(x_{m}, T x_{m}\right)
$$

Recalling the inequality 2.7 we have

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & =d\left(x_{n}, T x_{n}\right)=d\left(x_{m}, T x_{m}\right) \\
& =d\left(T x_{m-1}, T x_{m}\right) \leq \alpha\left(x_{m-1}, x_{m}\right) d\left(T x_{m-1}, T x_{m}\right) \tag{2.16}\\
& \leq \beta\left(M\left(x_{m-1}, x_{m}\right)\right) M\left(x_{m-1}, x_{m}\right)<\frac{1}{s} M\left(x_{m-1}, x_{m}\right)
\end{align*}
$$

where

$$
\begin{align*}
M\left(x_{m-1}, x_{m}\right) & =\max \left\{d\left(x_{m-1}, x_{m}\right), d\left(x_{m-1}, T x_{m-1}\right), d\left(x_{m}, T x_{m}\right)\right\} \\
& =\max \left\{d\left(x_{m-1}, x_{m}\right), d\left(x_{m-1}, x_{m}\right), d\left(x_{m}, x_{m+1}\right)\right\} \tag{2.17}\\
& =\max \left\{d\left(x_{m-1}, x_{m}\right), d\left(x_{m}, x_{m+1}\right)\right\}=d\left(x_{m-1}, x_{m}\right)
\end{align*}
$$

because of 2.8$)$. Then we have,

$$
d\left(x_{m}, x_{m+1}\right)<\frac{1}{s} d\left(x_{m-1}, x_{m}\right) \leq d\left(x_{m-1}, x_{m}\right)
$$

for all $m>n+1$. Continuing the process we conclude,

$$
\begin{equation*}
d\left(x_{m}, x_{m+1}\right)<d\left(x_{m-1}, x_{m}\right)<d\left(x_{m-1}, x_{m}\right)<\ldots<d\left(x_{n}, x_{n+1}\right) \tag{2.18}
\end{equation*}
$$

which contradicts the assumption $x_{n}=x_{m}$ for some $m \neq n$. Therefore, our initial assumption is incorrect and we should have $x_{n} \neq x_{m}$ for all $m \neq n$.

Now we will prove that $\left\{x_{n}\right\}$ is a Cauchy sequence, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+k}\right)=0, \text { for all } k \in \mathbb{N} \tag{2.19}
\end{equation*}
$$

Notice that 2.19 holds for $k=1$ and $k=2$ due to 2.10 and 2.15 . Therefore, we assume that $k \geq 3$. We consider separately the cases with odd and even $k \in \mathbb{N}$.

Case 1. Let $k=2 m+1$ where $m \geq 1$. We have $x_{l} \neq x_{s}$ for all $l \neq s$ and $x_{l} \neq x_{l+1}$ for all $l \geq 0$, so that we can apply repeatedly the condition 3 . in Definition 1.3 which implies

$$
\begin{aligned}
d\left(x_{n}, x_{n+k}\right) & =d\left(x_{n}, x_{n+2 m+1}\right) \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m+1}\right)\right] \\
& \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right] \\
& +s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)+d\left(x_{n+4}, x_{n+2 m+1}\right)\right] \\
& \vdots \\
& \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right]+s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)\right] \\
& +s^{3}\left[d\left(x_{n+4}, x_{n+5}\right)+d\left(x_{n+5}, x_{n+6}\right)\right]+\ldots+s^{m+1}\left[d\left(x_{n+2 m}, x_{n+2 m+1}\right)\right] \\
& \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+s^{3} d\left(x_{n+2}, x_{n+3}\right) \\
& +\ldots+s^{n+2 m-1} d\left(x_{n+2 m}, x_{n+2 m+1}\right) .
\end{aligned}
$$

Then, by the inequality 2.11 we conclude

$$
\begin{aligned}
d\left(x_{n}, x_{n+k}\right) & \leq \frac{1}{s^{n-1}} d\left(x_{0}, x_{1}\right)+\frac{1}{s^{n}} d\left(x_{0}, x_{1}\right)+\ldots+\frac{1}{s^{n+2 m}} d\left(x_{0}, x_{1}\right) \\
& =d\left(x_{0}, x_{1}\right)\left[\sum_{k=0}^{n+2 m} \frac{1}{s^{k}}-\sum_{k=0}^{n-2} \frac{1}{s^{k}}\right] \\
& =d\left(x_{0}, x_{1}\right)\left[\frac{s^{n+2 m+1}-1}{s^{n+2 m}(s-1)}-\frac{s^{n-1}-1}{s^{n-2}(s-1)}\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the last inequality we obtain

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+k}\right) \leq \lim _{n \rightarrow \infty} d\left(x_{0}, x_{1}\right)\left[\frac{s^{n+2 m+1}-1}{s^{n+2 m}(s-1)}-\frac{s^{n-1}-1}{s^{n-2}(s-1)}\right]=0 \tag{2.20}
\end{equation*}
$$

Case 2. Let $k=2 m$ where $m \geq 2$. Again, repeated application of the inequality 3. in Definition 1.3 yields

$$
\begin{aligned}
d\left(x_{n}, x_{n+k}\right) & =d\left(x_{n}, x_{n+2 m}\right) \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+2 m}\right)\right] \\
& \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right] \\
& +s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)+d\left(x_{n+4}, x_{n+2 m}\right)\right] \\
& \vdots \\
& \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right]+s^{2}\left[d\left(x_{n+2}, x_{n+3}\right)+d\left(x_{n+3}, x_{n+4}\right)\right] \\
& +\ldots+s^{m-1}\left[d\left(x_{n+2 m-4}, x_{n+2 m-3}\right)+d\left(x_{n+2 m-3}, x_{n+2 m-2}\right)\right. \\
& \left.+d\left(x_{n+2 m-2}, x_{n+2 m}\right)\right] \\
& \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+s^{3} d\left(x_{n+2}, x_{n+3}\right) \\
& +\ldots+s^{n+2 m-3} d\left(x_{n+2 m-3}, x_{n+2 m-2}\right)+s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right)
\end{aligned}
$$

By the inequality in (2.11), we have

$$
\begin{align*}
d\left(x_{n}, x_{n+k}\right) & \leq \frac{1}{s^{n-1}} d\left(x_{0}, x_{1}\right)+\frac{1}{s^{n}} d\left(x_{0}, x_{1}\right)+\ldots+\frac{1}{s^{n+2 m-2}} d\left(x_{0}, x_{1}\right) \\
& +s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right) \\
& =d\left(x_{0}, x_{1}\right)\left[\sum_{k=0}^{n+2 m-2} \frac{1}{s^{k}}-\sum_{k=0}^{n-2} \frac{1}{s^{k}}\right]+s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right) \tag{2.21}\\
& =d\left(x_{0}, x_{1}\right)\left[\frac{s^{n+2 m-1}-1}{s^{n+2 m}(s-1)}-\frac{s^{n-1}-1}{s^{n-2}(s-1)}\right] \\
& +s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right) .
\end{align*}
$$

From (2.15) we have $\lim _{n \rightarrow \infty} s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right)=0$ and hence, letting $n \rightarrow \infty$ in (2.21) we deduce

$$
\begin{aligned}
0 & \leq \lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+k}\right) \\
& =\lim _{n \rightarrow \infty}\left\{d\left(x_{0}, x_{1}\right)\left[\frac{s^{n+2 m-1}-1}{s^{n+2 m}(s-1)}-\frac{s^{n-1}-1}{s^{n-2}(s-1)}\right]+s^{m-1} d\left(x_{n+2 m-2}, x_{n+2 m}\right)\right\} \\
& =0
\end{aligned}
$$

As a result, for any $k \in \mathbb{N}$, we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+k}\right)=0
$$

that is, the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete Branciari b-metric space, there exists $u \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0 \tag{2.22}
\end{equation*}
$$

Since T is a continuous mapping, then, from 2.22 we have

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T u\right)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, T u\right)=0
$$

that is, the sequence $\left\{x_{n}\right\}$ converges to $T u$. Then the Proposition 1.7 implies that $T u=u$, that is, u is a fixed point of T.

Adding an additional condition to the statement of the Theorem 2.2 , we can prove the uniqueness of the fixed point.

Theorem 2.3. Let all the conditions of Theorem 2.2 hold. Assume that for every pair x and y of fixed points of $T, \alpha(x, y) \geq 1$. Then the fixed point of the mapping T is unique.

Proof. Since the existence of a fixed point is already proved in Theorem 2.2, we need to prove only the uniqueness. Assume that the map T has two distinct fixed points, say $x, y \in X$, such that $x \neq y$, or $d(x, y)>0$. We put these two points in the contractive condition 2.23 and use the fact that $\alpha(x, y) \geq 1$ which gives

$$
d(x, y)=\alpha(x, y) d(T x, T y) \leq \beta(M(x, y)) M(x, y)<\frac{1}{s} M(x, y)
$$

where,

$$
M(x, y)=\max \{d(x, y), d(T x, x), d(T y, y)\}=d(x, y)
$$

This implies

$$
d(x, y)<\frac{1}{s} d(x, y)
$$

which is a contradiction and hence, $d(x, y)=0$, or, $x=y$. This completes the proof of the uniqueness.
In the next theorem we replace the continuity of the mapping T by the so-called α-regularity of the Branciari b-metric space.

Theorem 2.4. Let (X, d) be a complete Branciari b-metric space with a constant $s \geq 1$ and $\alpha: X \times X \rightarrow$ $[0, \infty)$ and $\beta \in \mathcal{F}_{s}$ be two given functions. Let $T: X \rightarrow X$ be an α-admissible mapping satisfying

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \leq \beta(M(x, y)) M(x, y), \text { for all } x, y \in X \tag{2.23}
\end{equation*}
$$

where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\}
$$

Suppose also that
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$.
(ii) For any sequence $\left\{x_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and satisfying $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$.
(iii) For every pair x and y of fixed points of $T, \alpha(x, y) \geq 1$.

Then T has a unique fixed point.
Proof. Taking $x_{0} \in X$ as the element satisfying the condition (i), we construct the sequence $\left\{x_{n}\right\}$ as usual, that is, $x_{n}=T x_{n-1}$, for $n \in \mathbb{N}$.

The convergence of this sequence can be shown exactly as in the proof of Theorem 2.2 ,
Let u be the limit of $\left\{x_{n}\right\}$, that is,

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0
$$

We will show that u is a fixed point of T. For the sequence $\left\{x_{n}\right\}$ which converges to u we have from (2.3) that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}_{0}$. Then, the condition (ii) in the statement of the theorem implies that

$$
\alpha\left(x_{n}, u\right) \geq 1, \text { for all } n \in \mathbb{N}_{0}
$$

We write the contractive inequality 2.23 for x_{n} and u, that is,

$$
\begin{align*}
d\left(x_{n+1}, T u\right) & =d\left(T x_{n}, T u\right) \leq \alpha\left(x_{n}, u\right) d\left(T x_{n}, T u\right) \\
& \leq \beta\left(M\left(x_{n}, u\right)\right) M\left(x_{n}, u\right)<\frac{1}{s} M\left(x_{n}, u\right) \tag{2.24}
\end{align*}
$$

where

$$
M\left(x_{n}, u\right)=\max \left\{d\left(x_{n}, u\right), d\left(x_{n}, x_{n+1}\right), d(u, T u)\right\}
$$

Since the sequence $\left\{x_{n}\right\}$ is Cauchy and $\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0$, by the Proposition 1.7 we have,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, T u\right)=d(u, T u) \tag{2.25}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(x_{n}, u\right)=\lim _{n \rightarrow \infty} \max \left\{d\left(x_{n}, u\right), d\left(x_{n}, x_{n+1}\right), d(u, T u)\right\}=d(u, T u) \tag{2.26}
\end{equation*}
$$

Therefore, by letting $n \rightarrow \infty$ in 2.24 and regarding 2.25 and 2.26) we obtain

$$
\begin{equation*}
d(u, T u)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, T u\right)<\frac{1}{s} \lim _{n \rightarrow \infty} M\left(x_{n}, u\right)=\frac{1}{s} d(u, T u) \tag{2.27}
\end{equation*}
$$

This yields $d(u, T u)=0$, hence, u is a fixed point of T. We skip the uniqueness proof since it is identical to the proof of Theorem 2.3 .

We next define another class of Geraghty type mappings on Branciari b-metric spaces.
Definition 2.5. Let (X, d) be a Branciari b-metric space with a constant $s \geq 1$ and let $\alpha: X \times X \rightarrow[0, \infty)$ and $\beta \in \mathcal{F}_{s}$ be two given functions. A generalized Geraghty type α-admissible contractive mapping $T: X \rightarrow X$ is of type (II) if it is α-admissible and satisfies

$$
\begin{equation*}
\alpha(x, y) d(T x, T y) \leq \beta(N(x, y)) N(x, y), \text { for all } x, y \in X \tag{2.28}
\end{equation*}
$$

where

$$
N(x, y)=\max \left\{d(x, y), \frac{1}{2 s}[d(x, T x)+d(y, T y)]\right\}
$$

Remark 2.6. For all $x, y \in X$ the relation $d(x, y) \leq N(x, y) \leq M(x, y)$ holds.
An existence-uniqueness theorem for the class of contraction mappings introduced in Definition 2.5 is stated below. We observe that the proof of this theorem is trivial once we take into account the Remark 2.6 .

Theorem 2.7. Let (X, d) be a complete Branciari b-metric space with a constant $s \geq 1$ and let $\alpha: X \times X \rightarrow$ $[0, \infty)$ and $\beta \in \mathcal{F}_{s}$ be two given functions. Let $T: X \rightarrow X$ be an α-admissible mapping satisfying

$$
\alpha(x, y) d(T x, T y) \leq \beta(N(x, y)) N(x, y), \text { for all } x, y \in X
$$

where

$$
N(x, y)=\max \left\{d(x, y), \frac{1}{2 s}[d(x, T x)+d(y, T y)]\right\}
$$

Suppose also that
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$.
(ii) Either T is continuous or, for any sequence $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$.
(iii) For every pair x and y of fixed points of $T, \alpha(x, y) \geq 1$.

Then T has a unique fixed point.

By the Remark 2.6 we also easily conclude the following existence-uniqueness result.
Theorem 2.8. Let (X, d) be a complete Branciari b-metric space with a constant $s \geq 1$ and let $\alpha: X \times X \rightarrow$ $[0, \infty)$ and $\beta \in \mathcal{F}_{s}$ be two given functions. Let $T: X \rightarrow X$ be an α-admissible mapping satisfying

$$
\alpha(x, y) d(T x, T y) \leq \beta(d(x, y)) d(x, y), \text { for all } x, y \in X .
$$

Suppose also that
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$.
(ii) Either T is continuous or for any sequence $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and satisfying $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$.
(iii) For every pair x and y of fixed points of $T, \alpha(x, y) \geq 1$.

Then T has a unique fixed point.

3. Consequences

In this section, we give some consequences of the Theorem 2.2 . First, we notice that a Branciari b-metric spaces with $s=1$ is simply a Branciari metric space.

Corollary 3.1. Let (X, d) be a complete Branciari metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ and $\beta \in \mathcal{F}$ be two given functions. Let $T: X \rightarrow X$ be an α-admissible mapping satisfying

$$
\alpha(x, y) d(T x, T y) \leq \beta(M(x, y)) M(x, y), \text { for all } x, y \in X,
$$

where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\} .
$$

Suppose also that
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$.
(ii) Either T is continuous or for any sequence $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and satisfying $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$.
(iii) For every pair x and y of fixed points of $T, \alpha(x, y) \geq 1$.

Then T has a unique fixed point.
Corollary 3.2. Let (X, d) be a complete Branciari metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ and $\beta \in \mathcal{F}$ be two given functions. Let $T: X \rightarrow X$ be an α-admissible mapping satisfying

$$
\alpha(x, y) d(T x, T y) \leq \beta(N(x, y)) N(x, y), \text { for all } x, y \in X,
$$

where

$$
N(x, y)=\max \left\{d(x, y), \frac{1}{2}[d(x, T x), d(y, T y)]\right\} .
$$

Suppose also that
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$.
(ii) Either T is continuous or for any sequence $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and satisfying $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$.
(iii) For every pair x and y of fixed points of $T, \alpha(x, y) \geq 1$.

Then T has a unique fixed point.

Corollary 3.3. Let (X, d) be a complete Branciari metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ and $\beta \in \mathcal{F}$ be two given functions. Let $T: X \rightarrow X$ be an α-admissible mapping satisfying

$$
\alpha(x, y) d(T x, T y) \leq \beta(d(x, y)) d(x, y), \text { for all } x, y \in X
$$

Suppose also that
(i) There exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$ and $\alpha\left(x_{0}, T^{2} x_{0}\right) \geq 1$.
(ii) Either T is continuous or for any sequence $\left\{x_{n}\right\} \subset X$ with $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and satisfying $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, we have $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$.
(iii) For every pair x and y of fixed points of $T, \alpha(x, y) \geq 1$.

Then T has a unique fixed point.
Also the choice $\alpha(x, y)=1$ gives fixed point results for self mappings on Branciari b-metric spaces. We list some of these consequences below.

Corollary 3.4. Let (X, d) be a complete Branciari b-metric space with a constant $s \geq 1$ and let $\beta \in \mathcal{F}_{s}$ be a given function. Let $T: X \rightarrow X$ be a continuous self mapping satisfying

$$
d(T x, T y) \leq \beta(M(x, y)) M(x, y), \text { for all } x, y \in X
$$

where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\}
$$

Then T has a unique fixed point.
Corollary 3.5. Let (X, d) be a complete Branciari b-metric space with a constant $s \geq 1$ and let $\beta \in \mathcal{F}_{s}$ be a given function. Let $T: X \rightarrow X$ be a continuous self mapping satisfying

$$
d(T x, T y) \leq \beta(N(x, y)) N(x, y), \text { for all } x, y \in X
$$

where

$$
N(x, y)=\max \left\{d(x, y), \frac{1}{2 s}[d(x, T x), d(y, T y)]\right\}
$$

Then T has a unique fixed point.
Corollary 3.6. Let (X, d) be a complete Branciari b-metric space with a constant $s \geq 1$ and let $\beta \in \mathcal{F}_{s}$ be a given function. Let $T: X \rightarrow X$ be a continuous self mapping satisfying

$$
d(T x, T y) \leq \beta(d(x, y)) d(x, y), \text { for all } x, y \in X
$$

Then T has a unique fixed point.
Finally, we give the following example which illustrates the theoretical results discussed above.
Example 3.7. Let $X=A \cup B$ where $A=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}\right\}$ and $B=[1,2]$. Define the function $d: X \times X \rightarrow$ $[0, \infty)$ such that $d(x, y)=d(y, x)$ as follows.

For $x, y \in B$, or $x \in A$ and $y \in B, d(x, y)=|x-y|$ and

$$
\begin{aligned}
& d\left(\frac{1}{2}, \frac{1}{4}\right)=d\left(\frac{1}{6}, \frac{1}{8}\right)=0.2 \\
& d\left(\frac{1}{2}, \frac{1}{6}\right)=d\left(\frac{1}{4}, \frac{1}{6}\right)=d\left(\frac{1}{4}, \frac{1}{8}\right)=0.1 \\
& d\left(\frac{1}{2}, \frac{1}{8}\right)=1
\end{aligned}
$$

Clearly, d is a Branciari b-metric with $s=\frac{10}{3}$.
Let $T: X \rightarrow X$ be defined as

$$
T x=\left\{\begin{array}{lll}
\frac{x}{8} & \text { if } & x \in B \\
\frac{1}{6} & \text { if } & x \in A
\end{array}\right.
$$

We see that

$$
d\left(T x, T y=\left\{\begin{array}{lll}
0 & \text { if } & x, y \in A \\
0.2 & \text { if } & x \in A, y=1 \\
0.1 & \text { if } & x \in A, y=2 \\
0.1 & \text { if } & x, y \in B
\end{array} .\right.\right.
$$

Then, for all $x, y \in X$ the mapping T satisfies the condition

$$
d(T x, T y) \leq \frac{3}{20} d(x, y)=\frac{1 / 2}{10 / 3} d(x, y)
$$

Hence, the conditions of the Corollary 3.6 hold with $\beta(t)=\frac{1}{2 s}=\frac{3}{20}$ and T has a unique fixed point which is $x=\frac{1}{6}$.

4. Concluding Remarks

The general structure of the mappings discussed in this paper makes it possible to deduce many particular existence and uniqueness results.

As it was already mentioned, by taking $s=1$ and/or $\alpha(x, y)=1$ in all the theorems and corollaries, various existing results on Branciari b-metric and Branciari metric spaces can be obtained.

On the other hand, it should be noticed that by choosing the function α in the definition of α-admissible mappings in a particular way, it is possible to obtain existence and uniqueness results for maps defined on partially ordered Branciari or Branciari b-metric space.

Indeed, if we define a partial ordering \preceq on a Branciari b-metric space (X, d) and take $T: X \rightarrow X$ as an increasing mapping, we can easily proof the following fixed point theorem.

Theorem 4.1. Let (X, d, \preceq) be a complete Branciari b-metric space with a constant $s \geq 1$ on which a partial ordering \preceq is defined. Suppose that $T: X \rightarrow X$ is an increasing mapping satisfying the following:
(i)

$$
d(T x, T y) \leq \beta(M(x, y)) M(x, y),
$$

for all x, y in X with $x \preceq y$ and some function $\beta \in \mathcal{F}_{s}$ where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\} .
$$

(ii) There exists $x_{0} \in X$ such that $x_{0} \preceq T x_{0}$ and $x_{0} \preceq T^{2} x_{0}$.
(iii) Either T is continuous or, for any increasing sequence $\left\{x_{n}\right\} \in X$ which converges to x we have $x_{n} \preceq x$ for all $n \in \mathbb{N}$.
Then T has a fixed point. If, in addition any two fixed points of T are comparable, that is, $x \preceq y$ or $y \preceq x$, then the fixed point of T is unique.
Proof. Observe that all the conditions of Theorems 2.2, 2.3 and 2.4 hold if we choose the function α as

$$
\alpha(x, y)=\left\{\begin{array}{lll}
1 & \text { if } \quad x \preceq y \text { or } y \preceq x \\
0 & \text { if } \quad \text { otherwise }
\end{array} .\right.
$$

Then, the mapping T has a unique fixed point.
Finally, we note that all the consequent results of Theorems 2.2, 2.3 and 2.4 can be written on Branciari b-metric spaces with a partial ordering and proved in a similar way.

References

[1] H. Aydi, E. Karapınar, D. Zhang, On common fixed points in the context of Brianciari metric spaces, Results Math, vol.71, 73-92, (2017).
[2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Analysis, vol. 30, 26-37, (1989). 1. 1 . 1.2
[3] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized matric spaces, Publ. Math. Debrecen, Vol. 57, 31-37, (2000). 1, 1.1
[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., Vol. 1, 5Ũ11, (1993). 1. $1,1.2$
[5] R. George, S. Radenovic, K. P. Reshma, S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., Vol. 8, 1005Ú1013, (2015). 11.3 1.4 1. 1.6
[6] M. Geraghty, On contractive mappings, Proceedings of American Math. Soc., vol. 40, 604-608, (1973). 1
[7] H. Huang, L. Paunovic and S. Radenovic, On some new fixed point results for rational Geraghty contractive mappings in ordered b-metric spaces, J. Nonlinear Science and Appl., vol.8, 800-807, (2015). 1. 1
[8] N. Hussain, Z. Kadelburg, S. Radenovitc, F. Al-Solamy, Comparison functions and fixed point results in partial metric spaces, Abstract and Applied Analysis, vol. 2012, Article ID 605781, 15 pages, (2012).
[9] E. Karapınar, B. Samet, Generalized $\alpha-\psi$ contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, vol.2012, Article ID:793486, (2012).
[10] W. A. Kirk, N. Shahzad, Generalized metrics and CaristiŠs theorem. Fixed Point Theory Appl. vol. 2013, Article ID 129 (2013). $1,1.7$
[11] Z. D. Mitrovic, On an open problem in rectangular b-metric spaces, Journal of Analysis, Vol.25, 135-137, (2017). 1
[12] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Analysis, vol.75, 21542165, (2012). 1

[^0]: Email addresses: Eberhard.Malkowsky@math.uni-giessen.de (Eberhard Malkowsky), vrakoc@sbb.rs (Vladimir Rakocevic)

[^1]: Email addresses: marijac@pmf.ni.ac.rs (Marija Cvetković), vrakoc@sbb.rs (Vladimir Rakočević)

[^2]: Email address: jbrzdek@up.krakow.pl (Janusz Brzdęk)

[^3]: Email addresses: abbasmsaid@yahoo.fr (Saïd Abbas), benchohra@univ-sba.dz (Mouffak Benchohra), johnny_henderson@baylor.edu (Johnny Henderson), lazregjamal@yahoo.fr (Jamal E. Lazreg)

[^4]: Email address: inci.erhan@atilim.edu.tr (İnci M. Erhan)

