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Abstract

This is a survey of results mainly in metric fixed point theory, including the Darbo–Sadovskĭi theorem
using measures of noncompactness. Various different proofs are presented for some of the most important
historical results. Furthermore many examples and remarks are added to illustrate the topics of the paper.
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1. Introduction

Fixed point theory is a major branch of nonlinear functional analysis because of its wide applicability.
Numerous questions in physics, chemistry, biology, and economics lead to various nonlinear differential and
integral equations.

There are two fundamental results, namely Banach’s fixed point theorem and Darbos’s fixed point
theorem

The classical Banach contraction principle [2] of Banach’s theorem is one of the most useful results in
metric fixed point theory. Due to its applications in mathematics and other related disciplines, this principle
has been generalized in many directions. Extensions of Banach’s contraction principle have been obtained
either by generalizing the distance properties of the underlying domain or by modifying the contractive
condition on the mappings.

Darbo’s fixed point theorem [17] of 1955 uses the condensing principle connected to Kuratowski’s measure
of noncompactness α [33] of 1930; it is a very important generalization of Schauder’s fixed point theorem,
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and includes the existence part of Banach’s fixed point theorem. Other measures of noncompactness were
introduced by Goldenštein, Goh’berg and Markus [GGM1], the ball or Hausdorff measure of noncompactness,
which was later studied by Goldenštein and Markus [GGM2] in 1968, Istrăţesku [27] in 1972, and others.
Apparently Goldenštein, Goh’berg and Markus were not aware of Kuratowski’s and Darbo’s work. It is
surprising that Darbo’s theorem was almost never noticed and applied until in the 1970’s mathematicians
working in functional analysis, operator theory and differential equations started to apply Darbo’s theorem
and developed the theory connected with measures of noncompactness. These measures of noncompactness
are studied in detail and their use is discussed, for instance, in the monographs [AKP, 53, 3, 28, 34, 35].

2. Banach contraction principle

In this section we are going to study the famous Banach fixed point theorem, usually called the Banach
contraction principle. This principle from 1922 marks the beginning of the fixed point theory in metric
spaces.

We also present several different proofs of Banach’s contraction principle

Definition 2.1. Let (X, d) be a metric space. A mapping f : X → X is a contraction if there exists some
q ∈ [0, 1) such that

d(fx, fy) ≤ q · d(x, y), for all x, y ∈ X. (2.1)

We observe that every contraction is a continuous mapping. The following theorem shows the existence
and uniqueness of a fixed point of an arbitrary contraction on a complete metric space. It is important to
mention that there exists a continuous mapping without fixed point property.

Theorem 2.2 (Banach; Banach contraction principle).
If (X, d) is a complete metric space and f : X → X is a contraction, then the mapping f has a unique fixed
point in X.

Proof. Let x0 ∈ X be arbitrary. We define a sequence (xn) in X such that xn = f(xn−1) for (n ∈ N,
and prove that (xn) is a Cauchy sequence, hence convergent in the complete metric space X.
We obtain for any n ∈ N,

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ q · d(xn−1, xn)

≤ · · · ≤ qn · d(x0, x1),

and therefore, if m > n,

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

qkd(x0, x1) ≤ qn

1− q
d(x0, x1). (2.2)

Since 0 ≤ q < 1, it follows that limn,m→∞ d(xn, xm) = 0, hence (xn) is a Cauchy sequence. Moreover, X is
a complete metric space, and so there exists some x ∈ X such that limn→∞ xn = x.
We show f(x) = x by estimating d(xn, f(x)) for n ∈ N;

0 ≤ d(xn, f(x)) = d(f(xn−1), f(x)) ≤ q · d(xn−1, x),

implies limn→∞ d(xn, f(x)) = 0, and by the uniqueness of the limit of any convergent sequence in a metric
space, we conclude f(x) = x.
It remains to prove that such x is uniquely determined. We assume f(y) = y for some y ∈ X, y 6= x, then

d(x, y) = d(f(x), f(y)) ≤ q · d(x, y)

and (1− q)d(x, y) ≤ 0, which contradicts our assumption because 0 < 1− q ≤ 1. �
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Corollary 2.3. Let f : X → X be a q–contraction on a complete metric space X and z ∈ X be the fixed
point of the function f . Then we have

(1) the sequence (fn(x)) converges for each x ∈ X and converges to z;

(2) d(x, z) ≤ 1/(1− q) · d(x, f(x));

(3) d(fn(x), z) ≤ qn/(1− q) · d(x, f(x));

(4) d(fn+1(x), z) ≤ q · d(f(x), x);

(5) d(fn+1(x), z) ≤ q/(1− q) · d(fn(x), fn+1(x)).

Proof. We only prove the second and third condition, the proofs of the other conditions are analogous.

(2) d(x, z) = lim
n→∞

d(x, fn(x))

≤ lim
n→∞

n−1∑
k=0

d(fk(x), fk+1(x))

=

∞∑
k=0

d(fk(x), fk+1(x))

≤
∞∑
k=0

qkd(x, f(x))

=
1

1− q
· d(x, f(x))

(3) It follows from f(z) = z, that

fn(z) = z, and from the first part of the prove, we have

d(fn(x), z) = d(fn(x), fn(z)) ≤ qnd(x, z) ≤ qn

1− q
· d(x, f(x)). �

Remark 2.4. There exist various approaches to the Banach fixed point theorem, but the proof above gives
a method of how to find the fixed point for a contraction f . It is also known as Picard’s iteration method or
fixed point iteration. It is based on the idea of defining a sequence of successive iterations. We start with
any x0 ∈ X and define xn = f(xn−1) for n ∈ N. The proof presented above guarantees the existence of a
limit limn→∞ xn = x ∈ X such that f(x) = x. If we let m→∞ in (2.2), then

d(xn, x) ≤ qn

1− q
d(x0, x1),

and this is an estimate for the error made by approximating the solution x by the n−th iteration xn.

We now present a few proofs of Theorem 2.2.
Proof of Theorem 2.2 (Joseph and Kwack [29]). Let c = inf{d(x, f(x)) : x ∈ X}. If c > 0, then c/q > c

and there exists x ∈ X such that

d(f(x), f(f(x))) ≤ q · d(x, f(x)) < c,

which is a contradiction. Hence we must have c = 0. Let (xn) be a sequence in X such that d(xn, f(xn))→ 0
as n→∞. We show that (xn) is a Cauchy sequence, since

d(xn, xm) ≤ d(xn, f(xn)) + d(f(xn), f(xm)) + d(f(xm, xm)

implies
(1− q)d(xn, xm) ≤ d(xn, f(xn)) + d(xm, f(xm)).
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Hence there exists p ∈ X such that limn→∞ xn = p, and limn→∞ d(xn, f(xn)) = 0 implies lim f(xn) = p. It
follows from d(f(xn), f(p)) ≤ qd(xn, p) that limn→∞ f(xn) = f(p), hence f(p) = p. The uniqueness of the
fixed point 0f the function f follows from the contractive condition of f . �

Proof of Theorem 2.2 (Palais [42]). Let x1, x2 ∈ X. Then we have

d(x1, x2) ≤ d(x1, f(x1)) + d(f(x1), f(x2)) + d(f(x2), x2),

that is,
(1− q)d(x1, x2) ≤ d(x1, f(x1)) + d(f(x2), x2).

Hence we obtain the fundamental contraction inequality

d(x1, x2) ≤ 1

1− q
· [d(x1, f(x1)) + d(x2, f(x2))], for all x1, x2 ∈ X. (2.3)

If x1 and x2 are fixed points of the function f , then it follows from (2.3) that x1 = x2, that is, the contraction
can have at most one fixed point.
Let x ∈ X, n,m ∈ N, and x1 = fn(x) and x2 = fm(x). We obtain from (2.3)

d(fn(x), fm(x)) ≤ 1

1− q
· [d(fn(x), f(fn(x))) + d(fm(x), f(fm(x)))] (2.4)

≤ qn + qm

1− q
· d(x, f(x)). (2.5)

Since 0 ≤ q < 1, it follows that limn→∞ q
n = 0, hence d(fn(x), fm(x)) → 0 as n → ∞ and m → ∞.

Therefore the Cauchy sequence (fn(x)) converges, that is, there exists p ∈ X such that limn f
n(x) = p.

Because of the continuity of the function f , we have f(p) = f(limn f
n(x)) = limn f(fn(x)) = p. We note

that letting m→∞ in (2.4), we obtain

d(fn(x), p) ≤ qn

1− q
· d(x, f(x)). � (2.6)

Proof of Theorem 2.2 (Boyd and Wong [6]). We define ϕ(x) = d(x, f(x)) for x ∈ X. Since f is a
contraction, the function ϕ : X → R is continuous and ϕ(fn(x))→ 0 as n→∞, for each x ∈ X. We put

Cm =

{
x ∈ X : ϕ(x) ≤ 1

m

}
.

It follows from the conditions above that Cm is a closed and nonempty subset of X for each m = 1, 2, . . . .
Now we estimate the diameter of the set Cm. Let x, y ∈ Cm. Then we have

d(x, y) ≤ d(x, f(x)) + d(f(x), f(y)) + d(f(y), y) ≤ 2

m
+ qd(x, y),

hence

diamCm ≤
2

m(1− q)
.

Since each Cm is a closed, nonempty subset of X, C1 ⊃ C2 ⊃ C3 ⊃ . . . and diamCm → 0 as m → ∞, it
follows by Cantor’s intersection theorem

⋂
mCm = {ξ}.

Since f(Cm) ⊂ Cm for each m, it follows that ξ is a fixed point of the function f , and clearly the fixed point
is unique. (We note f({ξ}) = f(

⋂
mCm) ⊂

⋂
m f(Cm) ⊂

⋂
mCm = {ξ}. )

We have for each x ∈ X

d(fn(x), ξ) = d(fn(x), fn(ξ)) ≤ qnd(x, ξ)→ 0 (n→∞).

Since
d(x, ξ) ≤ d(x, f(x)) + d(f(x), f(ξ)) ≤ d(x, f(x)) + qd(x, ξ),
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it follows that

d(x, ξ) ≤ d(x, f(x))

1− q
.

Hence we again have the estimate

d(fn(x), ξ) ≤ qn

1− q
· d(x, f(x)). � (2.7)

Corollary 2.5. Let S be a closed subset of a complete metric space (X, d) and f : S → S be a contraction.
For an arbitrary point x0 ∈ S, the iterative sequence xn = f(xn−1) (n ∈ N) converges to the fixed point of
the mapping f .

The following example will show that the statement in Corollary 2.5 does not hold without the assumption
that the set S is closed, in general.

Example 2.6. Let d be the natural metric on R defined by d(x, y) = |x − y| for all x, y ∈ R, and S =
B0(1) = {x ∈ R : |x| < 1}. Then the mapping

f : S → S with f(x) =
x+ 1

2
,

is a contraction without a fixed point in S.

Banach’s fixed point theorem has wide and diverse applications, for instance, in solving various kinds of
equations, inclusions, etc.

Example 2.7. If X is a Banach space, A,B ∈ B(X), A is an invertible operator and ‖B −A‖ · ‖A−1‖ < 1,
then the invertibility of B follows from Banach’s fixed point theorem.

Proof. It is sufficient to show that, for any y ∈ X, the equation Bx = y has a unique solution x ∈ X.
We choose an arbitrary point y in X. If Bx0 = y for some x0 ∈ X, then

y = Bx0 = (B −A)x0 +Ax0 and A−1y = A−1(B −A)x0 + x0.

We put z = A−1y and C = A−1(B −A). Then we have x0 = z − Cx0.
The idea is to show that the function f : X → X defined by f(x) = z − Cx for x ∈ X is a contraction and
x0 is its fixed point.
The following inequalities hold for all x, y ∈ X

‖f(x)− f(y)‖ = ‖C(x− y)‖ ≤ ‖A−1‖ · ‖B −A‖ · ‖x− y‖.

Since ‖A−1‖ · ‖B −A‖ < 1, f is a contraction and x0 is the unique fixed point of f .
Based on a few elements of an iterative sequence (fn(x)),

z − Cx, z − C(z − Cx) = z − Cx+ C2x, z − Cx+ C2x− C3x, . . .

we may assume, and then easily prove that, because of ‖C‖ < 1, this sequence converges to z−Cx+C2x−
C3x+ · · · .
We observe that if A = I and ‖C‖ < 1, then I − C + C2 − C3 + · · · is an inverse of I + C. �

The following corollary shows a relation between fn and f in the case when fn is a contraction.

Corollary 2.8 (Bryant [10]). If (X, d) is a complete metric space and f : X → X is a mapping such that
fn is a contraction for some n ≥ 1, then f has a unique fixed point in X.
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Proof. By Banach’s fixed point theorem, there exists a unique z ∈ X such that fn(z) = z. Since
fn(f(z)) = f(fn(z)) = f(z), it follows that f(z) = z. Every fixed point of f is, at the same time, a fixed
point of fn, thus z is the unique fixed point of f . �

As observed in [10], the mapping f mentioned in Corollary 2.8 need not be continuous as in Theorem
2.2.

Example 2.9 (Bryant [10]). We define f : [0, 2] → [0, 2] by f(x) = 1 for x ∈ [0, 1), and f(x) = 2 for
x ∈ [1, 2]. Then f2(x) = 2 for x ∈ [0, 2] and f2 : [0, 2]→ [0, 2] is a contraction although f is not continuous.

Since the proof of Banach’s theorem is based on an iterative sequence for a point x ∈ X, the next
reasonable step in the research was to check local properties and modify this result.

Theorem 2.10. Let (X, d) be a complete metric space and Br(x0) = {x ∈ X : d(x, x0) < r} be the open
ball in X for some x0 ∈ X and r > 0. Also let f : Br(x0)→ X be a contraction, that is,

d(f(x), f(y)) ≤ q · d(x, y), (x, y ∈ Br(x0)) for some q ∈ [0, 1) (2.8)

and
d(f(x0), x0) < (1− q)r. (2.9)

Then the mapping f has a unique fixed point in Br(x0).

Proof. We choose r0 ∈ [0, r) such that (2.9) holds. Then f : Br0(x0) → Br0(x0), where Br0(x0) is the
closure of Br0(x0), since, for any x ∈ Br0(x0),

d(f(x), x0) ≤ d(f(x), f(x0)) + d(f(x0), x0)

≤ q · d(x, x0) + (1− q)r0 ≤ r0.

Hence f has a unique fixed point z ∈ Br0(x0). It easily follows from (2.8) that z is the unique fixed point
of f in Br(x0). �

3. Darbo’s fixed point theorem

If the contractive condition of f in Theorem 2.2 is relaxed, that is, if we consider so–called nonexpansive
mappings f , that is, functions f : X → X satisfying

d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X,

then Banach’s fixed point theorem need no longer hold.
In 1965, Browder proved a fixed point theorem for nonexpansive maps.

Theorem 3.1 (Browder’s fixed point theorem). Let X be a Banach space, C be a convex and bounded
subset of X and T : C → C be a nonexpansive map. If X is either a Hilbert space, or a uniformly convex
or a reflexive Banach space, then T has a fixed point.

This result uses the convexity hypothesis which is more usual in topological fixed point theory, and the
geometric properties of Banach spaces commonly used in linear functional analysis.

The following Brouwer fixed point theorem should be considered in a different setting.

Theorem 3.2 (Brouwer’s fixed point theorem). Every continuous map from the closed unit ball of Rn into
itself has a fixed point.

Remark 3.3. In the case of one variable, the Brouwer fixed point theorem is the following:
Every continuous function of the interval [−1, 1] onto itself has a fixed point.
or equivalently
Every continuous function of the interval [−1, 1] onto itself intersects the main diagonal at some point.
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One cannot expect uniqueness of the fixed point in Brouwer’s theorem (Theorem 3.2), in general. So we
must consider the non–empty set F(f) of fixed points of a function f . If f is continuous, then the set

F(f) = ker(f − id) = (f − id)−1({0}), where id is the identity,

is closed. It is natural to study what other properties the set F(f) has. The following theorem shows that
no other special features can be inferred, since we will see that for any given non–empty closed subset of
the closed unit ball B

n
1 (0) of Euclidean Rn there exists a continuous function f : B

n
1 (0)→ B

n
1 (0) which has

F(f) as the set of its fixed points.

Theorem 3.4. Let F 6= ∅ be a closed subset of B
n
1 (0). Then there exists a continuous function f : B

n
1 (0)→

B
n
1 (0) with F = F(f).

Proof. For every x ∈ Bn
1 (0), let d(x, F ) = inf{‖x− y‖ : y ∈ F}. Obviously this function is continuous.

We define the function f : B
n
1 (0)→ B

n
1 (0) by

f(x) =


x− d(x, F )

x− x0

‖x− x0‖
(x 6= x0)

x0 (x = x0),

where x0 is an arbitrary point in F .
It is easy to show that f is well defined and continuous. Moreover F(f) = F and the theorem is proved.

An important generalization of Brouwer’s fixed point theorem was obtained by Schauder.

Theorem 3.5 (Schauder’s fixed point theorem). Every continuous map from a nonempty, compact and
convex subset C of a Banach space X into C has a fixed point.

Clearly the conditions in the hypothesis are preserved if the norm of X is replaced by an equivalent
norm, so Theorem 3.5 cannot be viewed as a metric fixed point theorem. Schauder’s fixed point theorem
can be used to prove Peano’s existence theorem for the solution of systems of first order ordinary differential
equations with initial conditions.

The situation is completely different when certain generalizations are considered, in particular those
concerning condensing maps, where a condensing map is one under which the image of any set is – in a
certain sense – more compact than the set itself. The degree of noncompactness of a set is measured by
certain functions called measures of noncompactness.

Darbo’s fixed point theorem, which uses Kuratowski’s measure of noncompactness α mentioned in the
introduction, is a generalization of Schauder’s fixed point theorem.

Theorem 3.6 (Darbo’s fixed point theorem). Let C be a non–empty bounded, closed and convex subset of a
Banach space X and α be the Kuratowski measure of noncompactness on X. If T : C → C is a continuous
map such that there exists a constant c ∈ [0, 1) with

α(T (Q)) ≤ k · α(Q) for every Q ⊂ C, (3.1)

then T has a fixed point in C.

We will prove a generalization of Theorem 3.6, namely the Darbo–Sadovskĭi theorem, in the next section.

4. Measures if noncompactness and the
Darbo–Sadovskĭi theorem

Darbo’s fixed point theorem generalizes from compact sets to bounded and closed sets in infinite dimen-
sional Banach spaces, and needs the additional hypothesis of the condensing property in (3.1). As is well
known, when we pass from finite to infinite dimensional Banach spaces, bounded and closed subsets need
not necessarily be compact. So it is natural to ask if Schauder’s fixed point theorem (Theorem 3.5) holds in
infinite dimensional Banach spaces for convex, closed and bounded subsets. The following example provides
a strong negative answer to this question.
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Example 4.1 (Kakutani). There is a fixed point free continuous map on the unit ball of

`2(Z) =

{
x = (xn) :

∑
n∈Z
|xn|2 <∞

}
.

Proof. We consider `2(Z) with the standard Schauder basis (e(n))n∈Z, where for each n ∈ N, e(n) is the

sequence with e
(n)
n = 1 and e

(n)
k = 0 for k 6= n, and with the natural norm given by

‖x‖ = ‖x‖2 =

(∑
n∈Z
|xn|2

)1/2

for all x ∈ `2(Z).

We write B`2(Z) for the closed unit ball in `2(Z). Every sequence x = (xn)n∈Z ∈ `2(Z) has a unique

representation x =
∑

n∈Z xne
(n). We define the left shift operator U : `2(Z)→ `2(Z) by

U(x) =
∑
n∈Z

xne
(n+1).

The relation
x− U(x) =

∑
n∈Z

(xn − xn−1) e(n) = c · e(0)

implies xn = x0 for all n > 0 and xn = x1 for all n < 0. For a sequence in `2(Z), this is only possible if
x0 = x1 = 0. So x− U(x) is a multiple of e(0) if and only if x = 0.
We define the map T : `2(Z)→ `2(Z) by

T (x) = (1− ‖x‖) e(0) + U(x).

Then T maps B`2(Z) into B`2(Z), since we have for ‖x‖ ≤ 1

‖T (x)‖ ≤ |1− ‖x‖ | · ‖e(0)‖+ ‖U(x)‖ = (1− ‖x‖) + ‖x‖ = 1.

Finally, T is a fixed point free map. Indeed, if

x− T (x) = (1− ‖x‖) e(0) + U(x),

then x−U(x) = (1−‖x‖)e(0), which is clearly impossible if x = 0, and impossible if x 6= 0, as we have seen
above. �

To be able to prove the Darbo–Sadovskĭi theorem we need to recall the concepts of measures of noncom-
pactness, in particular, the Kuratowski measure of noncompactness, and their most important properties.
The results presented here and their proofs can be found, for instance, in [53, 35, 36].

Since notion of a measure of noncompactness was originally introduced in metric spaces, we are going to
give our axiomatic definition in this class of spaces as given in the monograph [53]. In the books [1] and [3],
two different patterns are provided for the axiomatic introduction of measures of noncompactness in Banach
spaces.

Definition 4.2. Let (X, d) be a complete metric space. A set function φ :MX → [0,∞) is called a measure
of noncompactness on fX, if it satisfies the following conditions

(MNC.1) φ(Q) = 0 if and only if Q is relatively compact

(regularity)

(MNC.2) φ(Q) = φ(Q) for all Q ∈MX

(invariance under closure)

(MNC.3) φ(Q1 ∪Q2) = max{φ(Q1), φ(Q2)} for all Q1, Q2 ∈MX

(semi–additivity).

The number φ(Q) is called the measure of noncompactness of the set Q.
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The following properties can easily be deduced from the axioms in Definition 4.2.

Proposition 4.3. Let φ be a measure of noncompactness on a complete metric space (X, d). Then φ has
the following properties

Q ⊂ Q̃ implies φ(Q) ≤ φ(Q̃) (monotonicity); (4.1)

φ(Q1 ∩Q2) ≤ min{φ(Q1), φ(Q2)} for all Q1, Q2 ∈MX . (4.2)

If Q is finite then φ(Q) = 0 (non–singularity). (4.3)

Generalised Cantor’s intersection property
If (Qn) is a decreasing sequence of nonempty sets in Mc

X and limn→∞ φ(Qn) = 0,
then the intersection

Q∞ =
⋂
Qn 6= ∅

is compact.

(4.4)

Remark 4.4. IfX is a Banach space then a measure of noncompactness φmay have some additional properties
related to the linear structure of a normed space, for instance

φ(λQ) = |λ|φ(Q) for any scalar λ and all Q ∈MX (homogeneity) (4.5)

φ(Q1 +Q2) ≤ φ(Q1) + φ(Q2) for all Q1, Q2 ∈MX (subadditivity) (4.6)

φ(x+Q) = φ(Q) for any x ∈ X and all Q ∈MX (translation invariance). (4.7)

For every Q0 ∈ MX and for all ε > 0 there is δ > 0 such that
|φ(Q0)− φ(Q)| < ε for all Q ∈ MX with dH(Q0, Q) < δ

(continuity)
(4.8)

φ (co(Q)) = φ(Q) for all Q ∈ MX

(invariance under the passage to the convex hull).
(4.9)

The two most important measures of noncompactness are the Kuratowski and Hausdorff measures of
noncompactness

First we define the measure of noncompactness introduced by Kuratowski in 1930.

Definition 4.5. Let (X, d) be a complete metric space. The function

α :MX → [0,∞)

with

α(Q) = inf

{
ε > 0 : Q ⊂

n⋃
k=1

Sk, Sk ⊂ X, diam(Sk) < ε (k = 1, 2, . . . , n ∈ N)

}
is called the Kuratowski measure of noncompactness (KMNC), and the real number α(Q) is called the
Kuratowski measure of noncompactness of Q.

Now we define the Hausdorff or ball measure of noncompactness which was first introduced by Goldenštein,
Goh’berg and Markus in 1957 [GGM1] and later studied by Goldenštein and Markus in 1965 [GGM2].

The definition of the Hausdorff measure of noncompactness is similar to that of the Kuratowski measure
of noncompactness and the results are analogous.

Definition 4.6. Let (X, d) be a complete metric space. The function

χ :MX → [0,∞)

with

χ(Q) = inf

{
ε > 0 : Q ⊂

n⋃
k=1

Brk(xk), xk ∈ X, rk < ε (k = 1, 2, . . . , n ∈ N)

}
is called the Hausdorff, or ball measure of noncompactness, and the real number χ(Q) is called the Hausdorff
or ball measure of noncompactness of Q.
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Both the Kuratowski and the Hausdorff measure of noncompactness are a measure of noncompactness
in the sense of Definition 4.2.

Theorem 4.7. Let (X, d) be a complete metric space. Then the Kuratowski and Hausdorff measures mea-
sures of noncompactness α and χ are measures of noncompactness in the sense of Definition 4.2.

In Banach spaces the functions α and χ satisfy some additional properties related to the linear structures
of normed spaces. The statements of the following results for the Kuratowski measure of noncompactness
are due to Darbo.

Theorem 4.8. Let X be a normed space ψ denote the Kuratowski or Hausdorff measure of noncompactness,
and Q,Q1, Q2 ∈MX . Then we have

ψ(Q1 +Q2) ≤ ψ(Q1) + ψ(Q2) (subadditivity), (4.10)

ψ(Q+ x) = ψ(Q) for each x ∈ X (translation invariance), (4.11)

ψ(λQ) = |λ|ψ(Q) for each scalar λ (homogeneity), (4.12)

and
ψ(Q) = ψ(co(Q)) (invariance under the passage to the convex hull). (4.13)

Now we state and prove the Darbo–Sadovskĭi theorem.

Theorem 4.9 (Darbo–Sadovskĭı). Let X be a Banach space, φ be a measure of noncompactness which
is invariant under passage to the convex hull, C 6= ∅ be a bounded, closed and convex subset of X and
T : C → C be a φ– condensing operator, that is, T is continuous and satisfies

φ(T (Q)) < φ(Q) for all bounded non–precompact subsets Q of C. (4.14)

Then T has a fixed point.

Proof. We choose a point c ∈ C and denote by Σ the class of all closed and convex subsets K of C such
that c ∈ K and T (K) ⊂ K. Furthermore, we put

B =
⋂
K∈Σ

K and A = co (T (B) ∪ {c}) .

Obviously Σ 6= ∅, since C ∈ Σ, and B 6= ∅, since c ∈ B. We also have

T (B) = T

( ⋂
K∈Σ

K

)
⊂
⋂
K∈Σ

T (K) ⊂
⋂
K∈Σ

K = B,

and consequently T : B → B.
Moreover, we have B = A. Indeed, since c ∈ B and T (B) ⊂ B, it follows that A ⊂ B. This implies
T (A) ⊂ T (B) ⊂ A, and so A ∈ Σ, and hence B ⊂ A.
Therefore the properties of φ now imply

φ(B) = φ(C) = φ (co (T (B) ∪ {c})) = φ (co (T (B) ∪ {c})) = φ (T (B) ∪ {c})
= max {φ(T (B)), φ({c})} = φ(T (B)).

Since T is φ–condensing, it follows that φ(B) = 0, and so B is compact. Obviously B is also convex. Thus
it follows from Schauder’s fixed point theorem, Theorem 3.5, that the operator T : C → C has a fixed point.
�

The following example will show that the theorem of Darbo and Sadovskĭı fails to be true, if we assume
that T is a k–contractive operator with constant k = 1, that is, if we replace the the condensing condition
(4.14) by the condition

φ(T (Q)) ≤ φ(Q) for all bounded Q of C. (4.15)
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Example 4.10. Let B`2 be the closed unit ball in `2. We define the operator T : B`2 → B`2 by

T (x) = T ((xk)
∞
k=1) =

(√
1− ‖x‖2, x1, x2, . . .

)
Then we can write T = D + S where D is the one dimensional mapping

D(x) = D ((xk)
∞
k=1) =

√
1− ‖x‖2e(1) and S(x) = (0, x1, x2, . . . )

is an isometry. Hence T is a well–defined, continuous operator, and for every bounded subset Q of B`2 , we
have

α(T (Q)) ≤ α(D(Q) + S(Q)) ≤ α(D(Q)) + α(S(Q)) = 0 + α(Q).

So T is a k–set–contractive operator with constant k = 1. But T has no fixed points. If T had a fixed point
x ∈ B`2 , then we would have xk = xk+1 for all k ∈ N. Since x ∈ `2, this implies xk = 0 for all k ∈ N, and
then T (x) =

√
1− ‖x‖2e(0) = e(0) = (0, 0, 0, . . . ), a contradiction.

5. Edelstein’s results

For a function f : X → X on a complete metric space (X, d) which satisfies the condition

d(f(x), f(y)) < λd(x, y) for all x, y ∈ X with x 6= y, (5.1)

where 0 ≤ λ < 1, the Banach contraction principle yields the existence and uniqueness of fixed points.
If we take λ = 1 in the condition in (5.1) then we we obtain a contractive map, that is, a map which

satisfies the condition
d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y. (5.2)

In 1962, Edelstein [20] published a paper in which he studied the fixed points of contractive maps using
the next condition and assumption

The condition in (5.2) together with the assumption of the existence of x ∈ X such that the iterative
sequence (fn(x)) contains a convergent subsequence (fnk(x)) in X, that is,

there exists x ∈ X such that {fn(x)} ⊃ {fnk(x)} such that lim
k→∞

fnk(x) ∈ X, (5.3)

provides the existence of a fixed point of f .

Theorem 5.1 (Edelstein [20]). Let X be a metric space and f : X → X be a contractive map that satisfies
the condition in (5.3). Then u = limk→∞ f

nkx is the unique fixed point of f .

Proof. Let ∆ = {(x, x) : x ∈ X}, Y = (X ×X) \∆, and r : Y → R be the map defined by

r(x, y) =
d(f(x), f(y))

d(x, y)
. (5.4)

The function r is continuous on Y , and there exists a neighborhood U of points (u, f(u)) such that (x, y) ∈ U
implies

0 ≤ r(x, y) < R < 1. (5.5)

Let B1 = B1
ρ(u) and B2 = B2

ρ(f(u)) be the open balls with centers in u and f(u), and radius ρ such that

ρ <
1

3
d(u, f(u)) (5.6)

and B1 ×B2 ⊂ U .
It follows from (5.3) that there exists a natural number N such that k > N implies fnk(x) ∈ B1, and (5.2)
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implies fnk+1(x) ∈ B2.
For k > N , (5.6) implies

d(fnk(x), fnk+1(x)) > ρ, (5.7)

and it follows from (5.4) and (5.5) that

d(fnk+1(x), fnk+2(x)) < Rd(fnk(x), fnk+1(x)). (5.8)

Hence, (5.8) implies for l > j > N

d(fnl(x), fnl+1(x)) ≤ d(fnl−1+1(x), fnl−1+2(x))

< Rd(fnl−1(x), fnl−1+1(x)) ≤ . . .
< Rl−jd(fnj (x), fnj+1(x))→ 0 (l→∞),

which is a contradiction to (5.7). This we must have f(u) = u.
We assume that v 6= u is also a fixed point of the function f . Then we have

d(f(u), f(v)) = d(u, v),

which is a contradiction to (5.2). �

The condition in (5.3) is always satisfied for a compact space. Therefore we have

Theorem 5.2 (Edelstein [20]). Let (X, d) be a compact metric space and f : X → X be a map. We assume

d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y.

Then the function f has a unique fixed point.

We obtain the following result on the iteration sequence from Theorem 5.1.

Theorem 5.3 (Edelstein [20]).
We assume that the conditions of Theorem 5.1 are satisfied. If the sequence (fn(p)) for p ∈ X contains a
convergent subsequence (fnk(p)) then its limit u = limn→∞ f

n(p) in X exists and u is a fixed point of f .

Proof. By Theorem 5.1, we have u = limk→∞ f
nk(p). For given δ > 0, there exists n0 ∈ N such that

k > n0 implies d(u, fnk(p)) < δ. If m = nk + l > nk, then we have

d(u, fm(p)) = d(f l(u), fnk+l(p)) < d(u, fnk(p)) < δ. �

6. Rakotch’s results

The problem of defining a family of functions F = {α(x, y)} which satisfy the conditions 0 ≤ α < 1
and supα(x, y) = 1 such that Banach’s theorem is satisfied when the constant α is replaced by α(x, y) ∈ F
was suggested by H. Hanani, and Rakotch published a result related to this problem in 1962 [43] In this
subssection, we present some results from the mentioned paper.

Definition 6.1. Let (X, d) be a metric space. We denote by F1 the family of all functions α(x, y) which
satisfy the following conditions:

(1) α(x, y) = α(d(x, y)), that is, α depends only on the distance of x and y.

(2) 0 ≤ α(d) < 1 for all d > 0.

(3) α(d) is a monotone decreasing function of d.
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Theorem 6.2. Let (X, d) be a metric space, f : X → X be a contractive map, M ⊂ X and x0 ∈ M such
that

d(x, x0)− d(f(x), f(x0)) ≥ 2d(x0, f(x0)) for all x ∈ X \M, (6.1)

and let f(M) be a subset of a compact subset of X. Then there exists a unique fixed point of f .

Proof. We assume f(x0) 6= x0 and put xn = fn(x0) for n = 1, 2, . . . , that is,

xn+1 = f(xn) for n = 0, 1, . . . . (6.2)

By Edelstein’s theorem (Theorem 5.1), it suffices to show that xn ∈M for each n.
Since f is a contractive map, the sequence (d(xn, xn+1)) is not increasing. Hence f(x0) 6= x0 implies

d(xn, xn+1) < d(x0, x1) for n = 1, 2, . . . . (6.3)

We obtain from the triangle inequality

d(x0, xn) ≤ d(x0, x1) + d(x1, xn+1) + d(xn, xn+1).

Now (6.2) and (6.3) yield
d(x0, xn)− d(f(x0), f(xn)) < 2d(x0, f(x0)),

and (6.1) implies xn ∈M for all n. �

Corollary 6.3. Let f be a contractive map for which there exists a point x0 ∈ X such that for all x ∈ X

d(f(x), f(x0)) ≤ α(x, x0)d(x, x0), (6.4)

where α(x, y) = α(d(x, y)) ∈ F1. If Br(x0) is the open ball in X, where

r =
2d(x0, f(x0))

1− α(2d(x0, f(x0)))
,

and f(Br(x0)) is a subset of a compact subset of X, then the function f has a unique fixed point.

Proof. If we put M = B(x0, r) in Theorem 6.2, then by (6.4), the monotony of α(d) and r ≥ 2d(x0, fx0),
the condition d(x, x0) ≥ r implies

d(x, x0)− d(f(x), f(x0)) ≥ d(x, x0)− α(d(x, x0))d(x, x0)

= [1− α(d(x, x0))]d(x, x0) ≥ [1− α(r)]r

≥ [1− α(2d(x0, f(x0)))]r = 2d(x0, f(x0)),

that is, we have (6.1).

Theorem 6.4. Let f : X → X be a contractive map on a complete metric space. We assume that there
exist M ⊂ X and a point x0 ∈M such that

d(x, x0)− d(f(x), f(x0)) ≥ 2d(x0, f(x0))for each x ∈ X \M, (6.5)

d(f(x), f(y)) ≤ α(x, y)d(x, y) for all x, y ∈M, (6.6)

where
α(x, y) = α(d(x, y)) ∈ F1.

Then the function f has a unique fixed point.
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Proof. We assume f(x0) 6= x0 and define the sequence (xn) by xn = fn(x0) for n = 1, 2, . . . . As in
Theorem 6.2, we have by (6.5)

d(xn, xn+1) < d(x0, x1) for n = 1, 2, . . . (6.7)

and xn ∈M for each n.
We are going to prove that the sequence (xn) is bounded. It follows from (6.6) and the definition of the
sequence (xn) that

d(x1, xn+1) = d(f(x0), f(xn)) ≤ α(d(x0, xn))d(x0, xn), (6.8)

and, by the triangle inequality, we have

d(x0, xn) ≤ d(x0, x1) + d(x1, xn+1) + d(xn, xn+1).

Hence (6.7) and (6.8) imply
[1− α(d(x0, xn))]d(x0, xn) < 2d(x0, x1).

If d(x0, xn) ≥ d0 for some given d0, then we have by the monotony of α

α(d(x0, xn)) ≤ α(d0).

So we obtain

d(x0, xn) <
2d(x0, x1)

1− α(d(x0, xn))
≤ 2d(x0, x1)

1− α(d0)
= C.

Hence we have for R = max{d0, C}

d(x0, xn) ≤ R for n = 1, 2, . . . , (6.9)

that is, the sequence (xn) is bounded.
Let p > 0 be an arbitrary natural number. It follows from (6.6) that

d(xk+1, xk+p+1) ≤ α(xk, xk+p)d(xk, xk+p),

that is,

d(xn, xn+p) ≤ d(x0, xp)
n−1∏
k=0

α(xk, xk+p).

Now (6.9) implies

d(xn, xn+p) ≤ R
n−1∏
k=0

α(xk, xk+p). (6.10)

We prove that (xn) is a Cauchy sequence. It is enough to show that, for every ε > 0, there exists N which
depends only on ε (and not on p) such that, for all p > 0, we have d(xN , xN+p) < ε (since the sequence
(d(xn, xn+p)) is not increasing).
If d(xk, xk+p) ≥ ε for k = 0, 1, . . . , n−1, then we obtain from (6.6) (because of the monotony of the function
α)

α(xk, xk+p) = α(d(xk, xk+p)) ≤ α(ε),

and then (6.10) implies
d(xn, xn+p) ≤ R[α(ε)]n.

Since α(ε) < 1 and [α(ε)]n → 0 as n → ∞, there exists a natural number N , independent of p, such that
d(xN , xN+p) < ε for each p > 0. Hence (xn) is a Cauchy sequence.
Since X is a complete metric space, there exists u ∈ X such u = limn→∞ xn. Because of the continuity of
the function f , u is a fixed point of f . �

In particular, if M = X, we obtain the next corollary.
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Corollary 6.5. Let (X, d) be a complete metric space and

d(f(x), f(y)) ≤ α(x, y)d(x, y) for all x, y ∈ X, (6.11)

where α(x, y) ∈ F1. Then the function f has a unique fixed point.

Remark 6.6. The preceding corollary and Theorem 6.4 are generalizations of Banach’s fixed point theorem.

7. Boyd and Wong’s nonlinear contraction

In this section, we present some results by Boyd and Wong [7] in 1969. In [7], Boyd and Wong studied
fixed points for maps of the kind introduced in the next definition.

Definition 7.1. Let (X, d) be a metric space. A map f : X → X which satisfies the condition

d(f(x), f(y)) ≤ Ψ(d(x, y)) for all x, y ∈ X, (7.1)

where Ψ is a function defined on the closure of the range of d, is called a Ψ contraction.
We denote the image of d by P and the closure of P by P . Hence P = {d(x, y) : x, y ∈ X}.

Rakotch [43] proved that if Ψ(t) = α(t)t, where α is a decreasing function with α(t) < 1 for all t > 0,
then the map f satisfying (7.1) has a unique fixed point u. It can be shown that if Ψ(t) = α(t)t and α is an
increasing function with α(t) < 1 for all t ≥ 0, then the conclusion of Banach’s theorem holds true. Boyd
and Wong proved that it is enough to assume that Ψ(t) < t for all t > 0 and Ψ is semicontinuous, and if a
metric space is convex, then the last condition can be omitted.

We recall that a function ϕ : X → E (E ⊂ R) is said to be upper semi–continuous from the right at
t0 ∈ X if tn → t0+ implies lim supn→∞ ϕ(tn) ≤ ϕ(t0). A function ϕ : X 7→ E (E ⊂ R) is said to be upper
semi–continuous from the right on X if it is upper semi–continuous from the right at every t ∈ X.

Theorem 7.2. Let (X, d) be a complete metric space and f : X → X be a map satisfying (7.1), where
Ψ : P 7→ [0,∞) is upper semi–continuous from the right on P and satisfies Ψ(t) < t for all t ∈ P \ {0}.
Then the function f has a unique fixed point x0 and fn(x)→ x0 (→∞) for each x ∈ X.

Proof. Let x ∈ X and
cn = d(fn(x), fn−1(x)) for n = 1, 2, . . . . (7.2)

Then, because of (7.1), the sequence (cn) is monotone decreasing. We put limn→∞ cn = c ≥ 0, and prove
c = 0. If c > 0, then we have

cn+1 ≤ Ψ(cn), (7.3)

hence
c ≤ lim sup

t→c+
Ψ(t) ≤ Ψ(c) < c, (7.4)

which is a contradiction.
We are going to prove that (fn(x)) is a Cauchy sequence for each x ∈ X. Then the limit point of this
sequence is the unique fixed point of the function f . We assume that (fn(x)) is not a Cauchy sequence.
Then there exist ε > 0 and sequences (m(k)) and (n(k)) of natural numbers with m(k) > n(k) ≥ k such
that

dk = d(fm(k)(x), fn(k)(x)) ≥ ε for all k = 1, 2, . . . . (7.5)

We may assume that
d(fm(k)−1(x), fn(k)(x)) < ε, (7.6)

and choose m(k) as the smallest integer greater than n(k) which satisfies (7.5). It follows from (7.2) that

dk ≤ d(fm(k)(x), fm(k)−1(x)) + d(fm(k)−1(x), fn(k)(x)) ≤ cm + ε ≤ ck + ε. (7.7)
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Hence dk → ε as k →∞. Since

dk = d(fm(k)(x), fn(k)(x)) ≤ d(fm(k)(x), fm(k)+1(x)) +

+d(fm(k)+1(x), fn(k)+1(x)) + d(fn(k)+1(x), fn(k)(x))

≤ 2ck + Ψ(d(fm(k)(x), fn(k)(x))) = 2ck + Ψ(dk), (7.8)

letting k →∞ in (7.8), we obtain ε ≤ Ψ(ε). This is a contradiction, because we have Ψ(ε) < ε for ε > 0. �
The following example will show that the condition of the continuity of the function Ψ in Theorem 7.2

cannot be dropped, in general.

Example 7.3. Let X = {xn = n
√

2 + 2n : n = 0,±1,±2, . . . } have the metric d(x, y) = |x− y|. Then X is
a closed subset of the real numbers, and so complete. We assume that for each p ∈ P (p 6= 0), there exists
a unique pair (xn, xm) such that p = d(xn, xm). We assume that

d(xj , xk) = d(xm, xn) for some integers j, k,m, n with j > k and m > n.

Then we obtain
− (m− n− j + k)

√
2 = 2j − 2k − 2m + 2n. (7.9)

Since the left hand side in (7.9) is irrational or equal to zero and the right hand side is rational, it follows
that both sides are equal to zero. Hence we have for m− n = j − k = s

2n+s − 2n = 2k+s − 2k, (7.10)

which is only possible for n = k. We define the functions f by f(xn) = xn−1 and Ψ on P by

Ψ(p) = |xn−1 − xm−1| if p = |xn − xm|. (7.11)

We put Ψ(p) = 0 for p ∈ P \ P .
Then we have Ψ(t) < t for all t ∈ P \ {0} and

d(f(x), f(y)) = Ψ(d(x, y)), (7.12)

but the function f has no fixed point.

Theorem 7.2 shows that it is not possible to extend the function Ψ from the set P to the set P such that
it is upper semi–continuous from the right with Ψ(t) < t for t ∈ P \ {0}. This can directly be seen for the
point

√
2 ∈ P \ P .

If the condition Ψ(t) < t is replaced by Ψ(t0) = t0 for some value t0, then Theorem 7.2 does not hold.
This is shown in the next example.

Example 7.4. Let X = (−∞,−1] ∪ [1,∞) and d(x, y) = |x− y| for all x, y ∈ X. Also let

f1(x) =


1

2
(x+ 1) for x ≥ 1

1

2
(x− 1) for x ≤ −1.

and f2(x) = −f1(x).

Now the functions f1 and f2 satisfy (7.1), if we define

Ψ(t) =


1

2
t for t < 2

1

2
t+ 1 for t ≥ 2.

We know that the function Ψ satisfies all the conditions in Theorem 7.2, but Ψ(2) = 2. The function f1 has
two fixed points −1 and 1 and the function f2 has no fixed points.
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Theorem 7.2 is a generalization of Rakotch’s theorem. This is shown in the next example.

Example 7.5. Let X = [0, 1]
⋃
{2, 3, 4 . . . } be the complete metric space with its metric d defined by

d(x, y) =

{
|x− y| if x, y ∈ [0, 1]

x+ y if at least one of x, y /∈ [0, 1].

We define the function f : X → X by

f(x) =

x−
1

2
x2 for x ∈ [0, 1]

x− 1 for x = 2, 3, . . . .

If x, y ∈ [0, 1] for x− y = t > 0, then we have

d(f(x), f(y)) = (x− y)

(
1− 1

2
(x+ y)

)
≤ t
(

1− 1

2
t

)
,

and if x ∈ {2, 3, 4, . . . } and x > y, then we have

d(f(x), f(y)) = f(x) + f(y) < x− 1 + y = d(x, y)− 1.

We define the function Ψ by

Ψ(t) =

t−
1

2
t2 for 0 ≤ t ≤ 1

t− 1 for 1 < t <∞.

The function Ψ is upper semi–continuous from the right on the set [0,∞), Ψ(t) < t for all t > 0, and the
condition in (7.1) is satisfied.
Since

lim
n→∞

d(f(n), 0)

d(n, 0)
= 1,

there is no decreasing function α with α(t) < 1 for all t > 0 which satisfies (6.11). Furthermore, since

lim
x→0

d(f(x), 0)

d(x, 0)
= 1,

there is no increasing function α with α(t) < 1 for all t > 0 which satisfies (6.11).

8. Theorem of Meir-Keeler

In 1969, Meir and Keeler [39] proved a very interesting theorem and showed that the conclusion of
Banach’s fixed point theorem can be extended to a more general class of contractions. In this subsection,
we present some results of the paper mentioned.

Definition 8.1. Let (X, d) be a metric space. The function f : X 7→ X is said to be a weakly uniformly
strict contraction, or a Meir–Keeler contraction (MK contraction) if, for every ε > 0, there exists δ > 0 such
that

ε ≤ d(x, y) < ε+ δ implies d(f(x), f(y)) < ε. (8.1)

Theorem 8.2 (Meir and Keeler [39]). Let (X, d) be a complete metric space and f : X → X be a function.
If (8.1) is satisfied, then f has a unique fixed point u. Moreover, we have for each x ∈ X

lim
n→∞

fn(x) = u. (8.2)
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Proof. First we note that (8.1) implies that f is a contractive map, that is,

x 6= y implies d(f(x), f(y)) < d(x, y). (8.3)

Hence f is a continuous function and has at most one fixed point.
We note that if (fn(x)) is a Cauchy sequence for each x ∈ X, then the function has a unique fixed point,
and (8.2) is satisfied. This follows from the following consideration. Since X is a complete space, every
Cauchy sequence (fn(x)) has a limit u(x). The continuity of f implies

f(u(x)) = f
(

lim
n→∞

fn(x)
)

= lim
n→∞

fn+1(x) = u(x).

Hence u(x) is the unique fixed point of f .
The proof of the theorem will be complete if we show that the sequence (fn(x)) = (xn) of iterations is a
Cauchy sequence for each x ∈ X. Let x ∈ X and cn = d(xn, xn+1) for n = 1, 2, . . . . It follows from (8.3)
that (cn) is a decreasing sequence. If limn→∞ cn = ε > 0, then the implication in (8.1) is not true for cm+1,
where cm is chosen such that cm < ε+ δ. This implies limn→∞ cn = 0.
We assume that there exists a sequence (xn) which is not a Cauchy sequence. Then there exists 2ε > 0 such
that, for each m0 ∈ N, there exist n,m ∈ N with n,m > m0 and d(xm, xn) > 2ε. It follows from (8.1) that
there exists δ > 0 such that

ε ≤ d(x, y) < ε+ δ implies d(f(x), f(y)) < ε. (8.4)

The implication in (8.4) remains true if we replace δ by δ′ = min{δ, ε}. Let m0 ∈ N be such that cm0 < δ′/3,
and let m,n > m0 such that m < n and d(xm, xn) > 2ε. We prove that there exists j ∈ {m,m + 1, . . . , n}
such that

ε+
2δ′

3
< d(xm, xj) < ε+ δ′. (8.5)

To prove (8.5), we note that d(xn−1, xn) < δ/3. Since d(xm, xn) > 2ε and d(xm, xn) ≤ d(xm, xn−1) +
d(xn−1, xn), it follows that

ε+
2δ′

3
< d(xm, xn−1). (8.6)

Let k be the smallest natural number in {m,m+ 1, . . . , n}; (clearly m < k ≤ n− 1) such that

ε+
2δ′

3
< d(xm, xk) (8.7)

holds. We prove d(xm, xk) < ε+ δ′. If we assume that this is not true, then we have

ε+ δ′ ≤ d(xm, xk) ≤ d(xm, xk−1) + d(xk−1, xk) < d(xm, xk−1) +
δ′

3
,

that is,

ε+
2δ′

3
< d(xm, xk−1). (8.8)

This is a contradiction to the the minimality condition of k in the inequality in (8.7). Therefore the inequality
in (8.5) must hold.
Now

d(xm, xk) ≤ d(xm, xm+1) + d(xm+1, xk+1) + d(xk+1, xk),

(8.4) and (8.5) imply

d(xm, xj) ≤ cm + ε+ ck <
δ′

3
+ ε+

δ′

3
.

This is a contradiction to (8.5). Hence (xn) is a Cauchy sequence. �

It is well known that the Meir-Keeler theorem generalizes Banach’s contraction principle [2] and Edel-
stein’s theorem [20].
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Theorem 8.3 (Banach [2]). Let (X, d) be a complete metric space and f : X → X be a contraction, that
is, there exists q ∈ [0, 1) such that

d(f(x), f(y)) ≤ q · d(x, y) for all x, y ∈ X. (8.9)

Then f has a unique fixed point.

Proof. Let ε > 0 and δ = (1/q−1)ε. Then it follows from d(x, y) < ε+ δ and x 6= y that d(f(x), f(y)) ≤
qd(x, y) < qε+ qδ = ε. Hence the function f satisfies (8.1) and the proof follows from Theorem 8.2. �

Theorem 8.4 (Edelstein [20]). Let (X, d) be a compact metric space and f : X → X be a map. We assume
that

d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y.

Then the function f has a unique fixed point.

Proof. We assume that the function f does not satisfy the condition in (8.1). Then there exist ε > 0
and sequences (xn) and (yn) in X such that

d(xn, yn) < ε+
1

n
and d(f(xn), f(yn)) ≥ ε. (8.10)

Since X is a compact set, there exist subsequences (xnk
) and (ymk

) of the sequences (xn) and (yn), which
converge to some x0 ∈ X and some y0 ∈ X, respectively. The continuity of the function f implies

d(x0, y0) ≤ ε ≤ d(f(x0), f(y0)) < d(x0, y0).

This is a contradiction, and consequently the function f must satisfy the condition in (8.1). Now the proof
follows from Theorem 8.2. �

Rakotch [43], and Boyd and Wong [7] assumed that, among other conditions, the following inequalities
are satisfied:

d(f(x), f(y)) ≤ ψ(d(x, y)) and ψ(t) < t for all t 6= 0. (8.11)

The next example shows that the Meir–Keeler theorem holds even if the condition in (8.11) is not satisfied.

Example 8.5. Let X = [0, 1] ∪ {3, 4, 6, 7, . . . , 3n, 3n + 1, . . . } be endowed with the Euclidean metric and
the function f be defined by

f(x) =


x

2
for 0 ≤ x ≤ 1

0 for x = 3n

1− 1

n+ 2
for x = 3n+ 1.

Then the function f satisfies (8.1), and it follows from

d(f(x), f(y)) ≤ ψ(d(x, y)) for all x, y ∈ X (8.12)

that ψ(1) = 1.

9. Theorems by Kannan, Chatterje and
Zamfirescu

The first result is by Kannan [30] in 1968.

Theorem 9.1. If (X, d) is a complete metric space, 0 ≤ q < 1/2 and f : X → X be a map such that

d(f(x), f(y)) ≤ q[d(x, f(x)) + d(y, f(y))] for all x, y ∈ X, (9.1)

then f has a unique fixed point, that is, there exists one and only one u ∈ X such that f(u) = u.
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Proof. (Joseph and Kwack [29]) Let

c = inf{d(x, f(x)) : x ∈ X}.

Then we have c ≥ 0. If c > 0, then c(1−q)/q > c implies the existence of x ∈ X such d(x, f(x)) < c(1−q)/q.
Now we have

d(f(x), f2(x)) ≤ q

1− q
d(x, f(x)) < c,

which is a contradiction, and so c = 0. Hence there exists a sequence (xn) in X such that limn d(xn, f(xn)) =
0. It follows from

d(xm, xn) ≤ d(xm, f(xm)) + d(f(xm), f(xn)) + d(xn, f(xn))

≤ (1 + q)[d(xm, f(xm)) + d(xn, f(xn))],

that (xn) is a Cauchy sequence. So there exists p ∈ X such that limn→∞ xn = p. It follows that
limn→∞ f(xn) = p.
We prove f(p) = p. It follows from

d(p, f(p)) ≤ d(p, f(xn)) + d(f(xn), f(p))

≤ d(p, f(xn)) + q[d(xn, f(xn)) + d(p, f(p))],

as n→∞ that

d(p, f(p)) ≤ qd(p, f(p)),

and so p = f(p). Now (9.1) implies that the map f has a unique fixed point. �
Banach’s condition (2.1) and Kannan’s (9.1) condition are independent. The condition in (2.1) implies

the continuity of the map f , but this is not the case for the condition in (9.1). This follows from the following
example.

Example 9.2. Let X = [0, 1] and f(x) be defined by

f(x) =


x

4
for x ∈ [0, 1/2)

x

5
for x ∈ [1/2, 1].

The map f is discontinuous at the point x = 1/2 and so the condition in (2.1) is not satisfied, but the
condition in (9.1) is satisfied for q = 4/9.

Example 9.3. Let X = [0, 1] and f(x) = x/3 for x ∈ [0, 1]. Clearly, the condition in (2.1) is satisfied, but
the condition in (9.1) is not satisfied (we may take x = 1/3 and y = 0).

The next theorem was proved by Chatterje [12] in 1972.

Theorem 9.4. If (X, d) is a complete metric, 0 ≤ q < 1/2 and f : X → X is a map which satisfies the
condition

d(f(x), f(y)) ≤ q[d(x, f(y)) + d(y, f(x))] for all x, y ∈ X,

then the function f has a unique fixed point.

Proof (Fisher [23]). Let x ∈ X. Then we have

d(fn(x), fn+1(x)) ≤ q[d(fn−1(x), fn+1(x)) + d(fn(x), fn(x))]

= qd(fn−1(x), fn+1(x))

≤ q[d(fn−1(x), fn(x)) + d(fn(x), fn+1(x))],
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hence

d(fn(x), fn+1(x)) ≤ q

1− q
d(fn−1(x), fn(x))

≤
(

q

1− q

)2

d(fn−2(x), fn−1(x))

≤
(

q

1− q

)n
d(x, f(x)).

So we obtain

d(fn(x), fn+r(x)) ≤ d(fn(x), fn+1(x)) + · · ·+ d(fn+r−1x, fn+r(x))

≤
[(

q

1− q

)n
+ · · ·+

(
q

1− q

)n+r−1]
d(x, f(x))

≤
(

q

1− q

)n 1

1− q
d(x, f(x)).

Since q(1− q)−1 < 1, it follows that (fn(x)) is a Cauchy sequence in X. Since X is a complete metric space,
there exists z ∈ X such that z = limn f

n(x).
Now we have

d(z, f(z)) ≤ d(z, fn(x)) + d(fn(x), f(z))

≤ d(z, fn(x)) + q[d(fn−1(x), f(z)) + d(fn(x), z)].

Letting n→∞, we obtain
d(z, f(z)) ≤ qd(z, f(z)),

and since q < 1/2, we have
f(z) = z.

Hence z is a fixed point of the function f .
We assume that the function f has one more fixed point z′ ∈ X. Then we have

d(z, z′) = d(f(z), f(z′))

≤ q[d(z, f(z′)) + d(z′, f(z))]

= 2qd(z, z′).

Since q < 1/2, it follows that z = z′, that is, the fixed point of the function f is unique. �

In 1972, Zamfirescu [54] connected Banach’s, Kannan’s and Chatterje’s theorems.

Theorem 9.5 (Zamfirescu [54]). Let (X, d) be a complete metric space and f : X → X be a map for which
there exist real numbers 0 ≤ α < 1, 0 ≤ β < 1 and γ < 1/2 such that, for each x, y ∈ X, at least one of the
following conditions is satisfied:

(z1) d(f(x), f(y)) ≤ αd(x, y);

(z2) d(f(x), f(y)) ≤ β[d(x, f(x)) + d(y, f(y))];

(z3) d(f(x), f(y)) ≤ γ[d(x, f(y)) + d(y, f(x))].

Then the function f has a unique fixed point.

Proof. Let x, y ∈ X. Then at least one of the conditions (z1), (z2) or (z3) is satisfied. If (z2) is satisfied,
then we have

d(f(x), f(y)) ≤ β[d(x, f(x)) + d(y, f(y))]
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≤ β{d(x, f(x)) + [d(y, x) + d(x, f(x)) + d(f(x), f(y))]}.

This implies
(1− β)d(f(x), f(y)) ≤ 2βd(x, f(x)) + βd(x, y),

that is,

d(f(x), f(y)) ≤ 2β

1− β
d(x, f(x)) +

β

1− β
d(x, y).

Similarly, if (z3) is satisfied, we get the following estimate

d(f(x), f(y)) ≤ γ[d(x, f(y)) + d(y, f(x))] ≤
≤ γ[d(x, f(x)) + d(f(x), f(y)) + d(y, x) + d(x, f(x))] ≤
≤ γ[2d(x, f(x)) + d(f(x), f(y)) + d(x, y)].

Hence we have

d(f(x), f(y)) ≤ 2γ

1− γ
d(x, f(x)) +

γ

1− γ
d(x, y).

We put

λ = max

{
α,

β

1− β
,

γ

1− γ

}
.

Then we have 0 ≤ λ < 1, and if (z2) or (z3) is satisfied for each x, y ∈ X, then

d(f(x), f(y)) ≤ 2λ · d(x, f(x)) + λ · d(x, y). (9.2)

In a similar way, it can be shown that if (z2) or (z3) is satisfied, then

d(f(x), f(y)) ≤ 2λ · d(x, f(y)) + λ · d(x, y). (9.3)

Obviously, (9.2) and (9.3) follow from (z1).
It follows from (9.2) that the function f has at least one fixed point. Now we prove the existence of a fixed
point of f . Let x0 ∈ X and

xn = fn(x0) for n = 1, 2, . . .

be the Picard iteration of f .
If x = xn and y = xn−1 are two successive approximations, then it follows from (9.3) that

d(xn+1, xn) ≤ λ · d(xn, xn−1).

So (xn)∞n=0 is a Cauchy sequence, and consequently convergent. Let u ∈ X be its limit. Then we have

lim
n→∞

d(xn+1, xn) = 0.

By the triangle inequality and (9.2), it follows that

d(u, f(u)) ≤ d(u, xn+1) + d(f(xn), f(u))

≤ d(u, xn+1) + λ · d(u, xn) + 2λd(xn, f(xn)),

and letting n→∞, we obtain d(u, f(u)) = 0, hence f(u) = u. �

Remark 9.6. If a function f satisfies the condition in Theorem 9.4, we write f ∈ (Z), in particular, if f
satisfies one of the conditions in (zi) for i = 1, 2, 3 in this theorem, then we write f ∈ (zi) for i = 1, 2, 3.

We consider the conditions (Z ′): there exist nonnegative functions a, b and c satisfying the following
condition

sup
x,y∈X

(a(x, y) + 2b(x, y) + 2c(x, y)) ≤ λ < 1,
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such that, for each x, y ∈ X,

d(f(x), f(y)) ≤ a(x, y)d(x, y) + b(x, y)(d(x, f(x)) + d(y, f(y)))

+ c(x, y)(d(x, f(y)) + d(y, f(x)));

and (Z ′′): There exists a constant h with 0 ≤ h < 1 such that, for all x, y ∈ X,

d(f(x), f(y)) ≤ hmax

{
d(x, y),

d(x, f(x)) + d(y, f(y))

2
,

d(x, f(y)) + d(y, f(x))

2

}
. (9.4)

It can be proved ([49]) that the conditions in (Z), (Z ′) and (Z ′′) equivalent.
We show that (Z) implies (Z ′).

If the function f and x, y ∈ X satisfy (z1), then we define a(x, y) = α and b = c = 0. If for x, y ∈ X, for
which the function f satisfies (z2), we define b(x, y) = β and a = c = 0, and similarly, in the case of (z3),
we define c(x, y) = γ and a = b = 0.

We show that (Z ′) implies (Z ′′).
We put

M(x, y) = max

{
d(x, y),

d(x, f(x)) + d(y, f(y))

2
,

d(x, f(y)) + d(y, f(x))

2

}
. (9.5)

Let f ∈ (Z ′). Then we have

d(f(x), f(y)) ≤ [a(x, y) + 2b(x, y) + 2c(x, y)]M(x, y) ≤ λM(x, y),

and f ∈ (Z ′′).
We show that (Z ′′) implies (Z).

For each x, y ∈ X, for which M(x, y) = d(x, y), the function f satisfies (z1) with α = h. If M(x, y) =
[d(x, f(x)) + d(y, f(y))]/2, then the function f satisfies (z2) with β = h/2, and the function f satisfies (z3)
with γ = h/2, if M(x, y) = [d(x, f(y)) + d(y, f(x))]/2. �

10. Ćirić’s generalized contraction

In [13], Ćirić generalized the well-known contractive condition and introduced a concept of a generalized
contraction defined as follows.

Definition 10.1 (Ćirić [13]). Let (X, d) be a metric space. A mapping f : X → X is a λ–generalized
contraction if, for all x, y ∈ X, there exist some nonnegative numbers q(x, y), r(x, y), s(x, y) and t(x, y) such
that

sup
x,y∈X

{q(x, y) + r(x, y) + s(x, y) + 2t(x, y)} = λ < 1,

and for all x, y ∈ X,

d(f(x), f(y)) ≤ q(x, y)d(x, y) + r(x, y)d(x, f(x)) + s(x, y)d(y, f(y))

+ t(x, y)(d(x, f(y)) + d(y, f(x))). (10.1)

Obviously, this condition is equivalent to the fact that there exists a constant h ∈ (0, 1) such that, for
all x, y ∈ X,

d(f(x), f(y)) ≤ hmax

{
d(x, y), d(x, f(x)), d(y, f(y)),
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d(x, f(y)) + d(y, f(x))

2

}
. (10.2)

The next example shows that (10.1) indeed generalizes (2.1).

Example 10.2. Let X = [0, 2] ⊆ R and

f(x) =


x

9
for 0 ≤ x ≤ 1

x

10
for 1 < x ≤ 2.

The map f does not satisfy (2.1) since, for x = 999/1000 and y = 1001/1000,

d(f(x), f(y)) =
981

90000
> 5 · 180

90000
= 5d(x, y).

But (10.1) holds for q(x, y) = 1/10, r(x, y) = s(x, y) = 1/4 and t(x, y) = 1/6 for all x, y ∈ X.

Example 10.3. Let X = [0, 10] ⊂ R and f(x) = 3/4 for each x ∈ X. For x = 0 and y = 8, the function
f satisfies (9.1) with q < 3. But the condition in (10.1) is satisfied on all of X with q(x, y) = 3/4 and
r(x, y) = s(x, y) = t(x, y) = 1/20.

Definition 10.4. Let (X, d) be a metric space, f : X → X be a map, and x ∈ X. An f–orbit of the element
x is the set O(x; f) defined by

O(x; f) = {fn(x) : n ∈ N0}.

If f is given, then the usual notation is O(x). Furthermore, for all n ∈ N, we define the set

O(x, n) = {x, f(x), f2(x), . . . , fn(x)}.

The space X is said to be an f–orbitally complete metric space if any Cauchy sequence in O(x; f) for x ∈ X
converges in X.

Obviously, every complete metric space is f–orbitally complete, but the converse implication does not
hold, in general. It is clear from the proof of Banach’s theorem that it is enough to assume that (X, d)
is f–orbitally complete instead of complete. The same remark applies for λ–generalized contractions, as is
stated in the following theorem.

Theorem 10.5 (Ćirić [13]). If f : X 7→ X is a λ–generalized contraction on an f–orbitally complete metric
space X, then, for any x ∈ X, the iterative sequence (fn(x)) converges to the unique fixed point u of f , and

d(fn(x), u) ≤ λn

1− λ
· d(x, f(x)).

Proof. For an arbitrary x ∈ X, we define the sequence (xn) by x0 = x and xn = f(xn−1) for n ∈ N.
Then we obtain from (10.1)

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ q(xn−1, xn)d(xn−1, xn)

+ r(xn−1, xn)d(xn−1, f(xn−1)) + s(xn−1, xn)d(xn, f(xn))

+ t(xn−1, xn)(d(xn−1, f(xn)) + d(xn, f(xn−1)))

= q(xn−1, xn)d(xn−1, xn) + r(xn−1, xn)d(xn−1, xn)

+ s(xn−1, xn)d(xn, xn+1) + t(xn−1, xn)d(xn−1, xn+1),

and moreover

d(xn, xn+1) ≤ (q(xn−1, xn) + r(xn−1, xn))d(xn−1, xn)
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+ s(xn−1, xn)d(xn, xn+1)

+ t(xn−1, xn)(d(xn−1, xn) + d(xn, xn+1)),

so

d(xn, xn+1) ≤ q(xn−1, xn) + r(xn−1, xn) + t(xn−1, xn)

1− s(xn−1, xn)− t(xn−1, xn)
d(xn−1, xn). (10.3)

Because of
q(x, y) + r(x, y) + t(x, y) + λs(x, y) + λt(x, y) ≤ λ,

we get
q(x, y) + r(x, y) + t(x, y)

1− s(x, y)− t(x, y)
≤ λ for all x, y ∈ X

and, combined with (10.3), it follows that

d(xn, xn+1) ≤ λd(xn−1, xn). (10.4)

We remark that (10.4) allows us to consider f as a contraction under special assumptions, and

d(xn, xn+1) ≤ λd(xn−1, xn) ≤ · · · ≤ λnd(x, f(x)).

Obviously, we have for all m ≥ n

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

λkd(x, f(x)),

hence

d(xn, xn+p) ≤
λn

1− λ
d(x, f(x)). (10.5)

implies that (xn) is a Cauchy sequence in O(x). Let z ∈ X denote its limit. It remains to show f(z) = z by
estimating d(f(z), f(xn)).

d(f(z), f(xn)) ≤ q(z, xn)d(z, xn) + r(z, xn)(d(z, xn+1) + d(xn+1, f(z)))

+ s(z, xn)d(xn, xn+1) + t(z, xn)(d(z, xn+1) + d(f(z), xn))

≤ λd(z, xn) + (r(z, xn) + t(z, xn))d(z, xn+1)

+ r(z, xn)d(f(xn), f(z)) + s(z, xn)d(xn, xn+1)

+ t(z, xn)(d(f(z), f(xn)) + d(f(xn), xn))

≤ d(z, xn) + λd(z, xn+1)

+ (r(z, xn) + t(z, xn))d(f(z), f(xn)) + λd(xn, xn+1)

≤ λ(d(z, xn) + d(z, xn+1) + d(xn, xn+1)) + λd(f(z), f(xn)).

Thus we have

d(f(z), f(xn)) ≤ λ

1− λ
[d(z, xn) + d(z, xn+1) + d(xn, xn+1)] .

that is, z is a fixed point of the function f . The uniqueness easily follows from (10.1) and the estimation
inequality is implied by (10.5). �

The contractive condition (10.1) for generalized contractions implies many others, thus Theorem 10.5
has numerous consequences among which we will state two analogous to Corollaries 2.8 and 2.10 of Banach’s
theorem.
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Theorem 10.6. If f : X → X is a map of an f–orbitally complete metric space (X, d) such that, for some
k ∈ N, fk is a λ–generalized contraction for all x ∈ X, then the iterative sequence (fn(x)) converges to a
unique fixed point z of f , and

d(fn(x), z) ≤ (λ′)nρ(x, f(x)), where λ′ = λ1/k

and ρ(x, f(x)) = max{λ−1d(f r(x), f r+k(x)) : r = 0, 1, . . . , k − 1}.

Proof. The existence of a unique fixed point directly follows from Theorem 10.5. It remains to estimate
d(fn(x), z) for each n ∈ N. Since n = mk + r for m = [n/k] and 0 ≤ r < k, we have

d(fn(x), z) = d(fmk(f r(x)), z) ≤ λm

1− λ
d(f r(x), fk(f r(x)))

= (λ1/k)mk+r−rd(f r(x), fk+r(x))

≤ (λ1/k)mk+r−kd(f r(x), f r+k(x))

= (λ1/k)nλ−1d(f r(x), f r+k(x)),

hence
d(fn(x), z) ≤ (λ1/k)n max{λ−1d(f r(x), f r+k(x)) : r = 0, 1, . . . k − 1}. �

As in the case of Banach’s theorem, we may consider some local properties of Theorem 10.5.

Theorem 10.7. Let f : B → X be a map of an f–orbitally complete metric space (X, d), where B =
Br(x0) = {x ∈ X : d(x0, x) ≤ r} for some x0 ∈ X and r > 0. If f is a λ–generalized contraction on B and

d(x0, f(x0)) ≤ (1− λ) · r, (10.6)

then the sequence (fn(x0)) converges to a unique fixed point z of f in B and

d(fn(x0), z) ≤ λn · r for λ = sup
x,y∈B

[q(x, y) + r(x, y) + 2t(x, y)].

Proof It is clear that xn ∈ B for all n ∈ N, due to (10.6) and mathematical induction. Analogously as in
the proof of Theorem 10.5, it follows that (fn(x0)) is a Cauchy sequence in B and its limit is a fixed point
of f . Inequality (10.1) guarantees uniqueness. �

11. The Reich and Hardy–Rogers theorems

In 1971, Reich [44] proved the following theorem which generalizes Banach’s and Kannan’s theorems.
(We note that for a = b = 0, we obtain Banach’s theorem, Theorem 2.2, and for a = b and c = 0, we obtain
Kannan’s theorem, Theorem 9.1).

Theorem 11.1 (Reich [44]). Let (X, d) be a complete metric space and f : X → X be a map for which
there exists nonnegative numbers a, b and c with a+ b+ c < 1 such that for all x, y ∈ X,

d(f(x), f(y)) ≤ ad(x, f(x)) + bd(y, f(y)) + cd(x, y). (11.1)

Then the map f has a unique fixed point.

Proof. Let x ∈ X. We consider the sequence (fn(x)). If we put x = fn(x) and y = fn−1(x) in (11.1),
then we have for all n ≥ 1

d(f(fn(x)), f(fn−1(x))) ≤
ad(fn(x), f(fn(x))) + bd(fn−1(x), f(fn−1(x))) + cd(fn(x), fn−1(x)).
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Hence, we obtain
d(fn+1(x)), fn(x))) ≤ pd(fn(x), fn−1(x)),

where 0 ≤ p = (b+ c)/(1− a) < 1. It follows that

d(fn+1(x)), fn(x))) ≤ pnd(x, f(x)),

and for every m > n,

d(fm(x)), fn(x))) ≤ pn

1− p
· d(x, f(x)).

Thus (fn(x)) is a Cauchy sequence, and there exists z ∈ X with z = limn→∞ f
n(x).

We are going to show f(z) = z. It suffices to show limn→∞ f
n+1(x) = f(z). When we choose x = fn(x)

and y = z in (11.1), then we have for all n ≥ 1

d(fn+1(x)), f(z)) ≤ ad(fn(x), fn+1(x)) + bd(z, f(z)) + cd(fn(x), z)

≤ ad(fn(x), fn+1(x)) + bd(fn+1(x), f(z)) + bd(fn+1(x), z) + cd(fn(x), z)

≤ apnd(x, f(x)) + bd(fn+1(x), f(z)) + bd(fn+1(x), z) + cd(fn(x), z).

Thus we obtain for n→∞

d(fn+1(x)), f(z)) ≤ apnd(x, f(x)) + bd(fn+1(x), z) + cd(fn(x), z)

1− b
→ 0.

We are going to show that the mapf has a unique fixed point.
If we assume that x, y ∈ X with x 6= y are fixed points of the map f , then we have

d(x, y) = d(f(x), f(y)) ≤ ad(x, f(x)) + bd(y, f(y)) + cd(x, y) = cd(x, y),

which implies x = y. �

Example 11.2. Let X = [0, 1] have the natural metric and the map f : X → X be defined by f(x) = x/3 for
0 ≤ x < 1 and f(1) = 1/6. Then the map f does not satisfy Banach’s condition, since it is not continuous;
neither does it satisfy Kannan’s condition, since

d(f(0), f(1/3)) =
1

2
[d(0, f(0)) + d(1/3, f(1/3))] .

But the map f satisfies the condition in(11.1), for instance, for a = 1/6, b = 1/9 and c = 1/3.

Corollary 11.3 (Reich [44]). Let (X, d) be a complete metric space and fn : X → X for n = 1, 2, . . . be
a sequence of maps satisfying the condition in (11.1) with the same constants a, b and c and with the fixed
points un ∈ X. We define the map f : X → X by f(x) = limn→∞ fn(x) for x ∈ X. Then the map f has a
unique fixed point u ∈ X and u = limun→∞ = u.

Proof. Since the metric d is a continuous function, it follows that the function f satisfies the condition
in (11.1), and therefore has a unique fixed point u ∈ X. We note that

d(un, u) = d(fn(un), f(u)) ≤ d(fn(un), fn(u)) + d(fn(u), f(u))

≤ ad(un, fn(un)) + bd(u, fn(u)) + cd(un, u) + d(fn(u), f(u)).

Hence we have

d(un, u) ≤ (b+ 1)d(fn(u), f(u))

1− c
→ 0 (n→∞). �

Hardy and Rogers [25] improved some of Reich’s results [44] including the following theorem.
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Theorem 11.4 (Hardy and Rogers [25]).
Let (X, d) be metric space and f : X → X be a map such that for all x, y ∈ X,

d(f(x), f(y)) ≤ ad(x, f(x)) + bd(y, f(y))

+ cd(x, f(y)) + ed(y, f(x)) + hd(x, y), (11.2)

where a, b, c, e, h ≥ 0 and α = a+ b+ c+ e+ h.

(i) If (X, d) is a complete metric space and α < 1, then the map f has a unique fixed point.

(ii) If (X, d) is compact, f is continuous and the condition in (11.2) is replaced by

d(f(x), f(y)) < ad(x, f(x)) + bd(y, f(y))

+ cd(x, f(y)) + ed(y, f(x)) + hd(x, y), (11.3)

for all x 6= y, and α = 1, then f has a unique fixed point.

The following lemma is essential in the proof of this theorem, but for the reader’s convenience, we state
it separately.

Lemma 11.5. We assume that (11.2) is satisfied and α < 1. Then there exists β < 1 such that

d(f(x), f2(x)) ≤ βd(x, f(x)). (11.4)

If α = 1 and (11.3) is satisfied, then

x 6= f(x) implies d(f(x), f2(x)) ≤ βd(x, f(x)). (11.5)

Proof. In the first case, for α < 1, we put y = f(x), and observe

d(f(x), f2(x)) ≤ a+ h

1− b
· d(x, f(x)) +

c

1− b
· d(x, f2(x)). (11.6)

which, along with d(f(x), f2(x)) ≥ d(f2(x), x)− d(f(x), x) and (11.6), leads to

d(f2(x), x)− d(f(x), x) ≤ a+ h

1− b
· d(x, f(x)) +

c

1− b
· d(x, f2(x)), (11.7)

that is,

d(f2(x), x) ≤ 1 + a+ h− b
1− b− c

· d(x, f(x)). (11.8)

By (11.9), inserting (11.8) in (11.6), we obtain

d(f(x), f2(x)) ≤ a+ c+ h

1− b− c
· d(x, f(x)). (11.9)

and replacing a and c by b and e (which is permitted because of the symmetry of the metric d), we get

d(f(x), f2(x)) ≤ b+ e+ h

1− a− e
· d(x, f(x)). (11.10)

If we put

β = min

{
a+ c+ h

1− b− c
,
b+ e+ h

1− a− e

}
, (11.11)

then (11.4) is satisfied.
The remainder of the lemma is shown analogously. �
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Proof of Theorem 11.4. To prove Part (i), we first observe that, by (11.4), for all m > n,

d(fm(x), fn(x)) ≤ d(fm(x), fm−1(x)) + · · ·+ d(fn+1(x), fn(x))

≤ βn(l + β + · · ·+ βm−n)d(x, f(x))

≤ βn

1− β
· d(x, f(x)).

Hence (fn(x)) is a Cauchy sequence and z ∈ X is its limit. It remains to show f(z) = z. This follows
directly from limn→∞ f

n+1(x) = f(z).
he following inequality holds by (11.2)

d(z, f(z)) ≤ d(fn+1(x), f(z)) + d(fn+1(x), z) (11.12)

≤ ad(fn(x), fn+1(x)) + bd(z, f(z)) (11.13)

+ cd(fn(x), f(z)) + (e+ 1)d(fn+1(x), z) + hd(fn(x), z). (11.14)

Letting n→∞ in (11.12), we obtain

d(z, f(z)) ≤ (b+ c)d(z, f(z)),

and b+ c < 1 implies z = f(z). The uniqueness clearly follows from (11.2).
We note that, under the assumptions in (ii), there is some y ∈ X such that

inf{d(x, f(x)) : x ∈ X} = d(y, f(y)).

Because of (11.5), it follows that y = f(y). The uniqueness is shown as previously discussed. �

12. Ćirić’s quasi-contraction

In 1971, Ćirić [14] used a concept of generalized contraction to replace the linear combination of distances
in (10.1) by their maximum, and defined a new class of contractive mappings called quasi–contractions.

Definition 12.1 (Ćirić [14]). A map f : X → X of a metric space (X, d) is a quasi-contraction if there
exists some λ with 0 < λ < 1 such that

d(f(x), f(y)) ≤ λ ·max{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))} (12.1)

for all x, y ∈ X.

Obviously if a mapping f satisfies condition(2.1), then (12.1) also holds. An example presented by Ćirić
shows that the converse implication is not true, in general.

Example 12.2 (Ćirić [14]). Let

M1 =
{m
n

: m = 0, 3k, n = 3k + 1, k ∈ N0

}
M2 =

{m
n

: m = 3k, n = 3k + 2, k ∈ N0

}
and M = M1 ∪M2 be the metric space with the usual metric d(x, y) = |x − y| for all x, y ∈ M . The map
f : X → X defined by

f(x) =


3x

5
(x ∈M1)

x

8
(x ∈M2)

is a quasi-contraction for λ = 3/5, but not a contraction (x = 1, y = 1/2).
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Example 12.3. Let X = [0, 3] ∪ [4, 5] have the natural metric and the map f : X → X be defined by

f(x) =

{
0 if x ∈ [0, 3]

3 if x ∈ [4, 5].

Then, for each x ∈ [4, 5], we have d(x, f(x)) ≤ 2 and d(f(x), f2(x)) = 3. So we have d(f(x), f2(x)) >
d(x, f(x)). We show that the function f satisfies the condition in (12.1).
Let x ∈ [0, 3] and y ∈ [4, 5]. Then we have d(f(x), f(y)) = 3 and d(y, f(x)) ≥ 4. Hence it follows that
d(f(x), f(y)) = (3/4)4 ≤ (3/4) max{d(x, f(y)), d(y, f(x))}.
Thus the function f satisfies (12.1) for λ = 3/4 and all x, y ∈ X.

Example 12.4. Let f(x) = 0 for all 0 ≤ x < 1 and f(1) = 1/2. Then the function f satisfies (12.1) but
not (10.1) [49]. We note that

d

(
f

(
1

2

)
, f(1)

)
=

1

2
=
d
(

1
2 , f(1)

)
+ d

(
1, f(1

2)
)

2
,

d

(
1

2
, 1

)
= d

(
1

2
, f

(
1

2

))
= d(1, f(1)) =

1

2
,

d(f(x), f(y)) = 0 for all x 6= y and x, y 6= 1,

d(f(x), f(1)) =
1

2
≤ 3

4
· d(1, f(x)) =

3

4
for x 6= 1.

Theorem 12.5 (Ćirić [14]). If f : X → X is a quasi–contraction on an f–orbitally complete metric space
(X, d), then f has a unique fixed point z in X, and the iterative sequence (fn(x)) converges to z for any
x ∈ X. Moreover,we have

d(fn(x), z) ≤ λn

1− λ
d(x, f(x)).

Proof. We put α(x, n)=diam(O(x, n)), and α(x)=diam(O(x)) where diam denotes a diameter of a set.
Then we have

α(f(x), n− 1) = diam({f(x), f2(x), . . . , fn(x)}) ≤ λα(x, n). (12.2)

Obviously, if α(f(x), n− 1) = d(f j(x), fk(x)) for 1 ≤ j < k ≤ n, then (12.1) yields

α(f(x), n− 1) = d(f(f j−1(x)), f(fk−1(x)))

≤ λmax{d(f j−1(x), fk−1(x)), d(f j−1(x), f j(x)), d(fk−1(x), fk(x)),

d(f j−1(x), fk(x)), d(fk−1(x), f j(x))}
≤ λdiam({f j−1(x), f j(x), . . . , fk(x)})
≤ λdiam({x, f(x), . . . , fn(x)})
= λα(x, n),

and (12.2) holds.
Furthermore, we obtain from (12.2),

α(x, n) = d(x, fk(x)) for some k ≤ n. (12.3)

It follows from (12.2), (12.3) and the triangle inequality that

α(x, n) = d(x, fk(x)) ≤ d(x, f(x)) + d(f(x), fk(x))

≤ d(x, f(x)) + α(f(x), n− 1)

≤ d(x, f(x)) + λα(x, n),
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and

α(x, n) ≤ 1

1− λ
· d(x, f(x)). (12.4)

Since limn→∞ α(x, n) = α(x), (12.4) implies

α(x) ≤ 1

1− λ
· d(x, f(x)), (12.5)

so the f–orbit of x has a finite diameter.
We write βn(x) for the diameter of α(fn(x)).
The sequence (βn(x)) is non–increasing and bounded, so there exists limn→∞ βn(x) = β(x) and β(x) ≤ βn(x)
for all n ∈ N.
Letting n→∞ in (12.2), we obtain

α(f(x)) ≤ λα(x), (12.6)

hence
βn+1(x) = α(f(fn(x))) ≤ λα(fn(x)) = λβn(x) (n ∈ N)

and
β(x) ≤ λβ(x),

so β(x) = 0 and (fn(x)) is a Cauchy sequence in X.
Let z = limn→∞ f

n(x). Because of (12.1), we have

d(f(u), f(fn(x))) ≤
λmax

{
d(u, fn(x)), d(u, f(u)), d(fn(x), fn+1(x)), d(u, fn+1(x)), d(fn(x), f(u))

}
,

hence
d(f(u), u) ≤ λ d(u, f(u)),

that is, f(u) = u. The uniqueness also follows from (12.1).
We obtain from (12.6), α(fn(x)) ≤ λnα(x) and combined with (12.5)

α(fn(x)) ≤ λn

1− λ
d(x, f(x)).

If n,m ∈ N and m ≥ n, then

d(fn(x), fm(x)) ≤ α(fn(x)) ≤ λn

1− λ
d(x, f(x)),

and when m→∞, then

d(fn(x), z) ≤ λn

1− λ
d(x, f(x)). �

13. Caristi’s Theorem

There are many extensions of Banach’s contraction principle, one of the most studied ones is that by
Caristi [11], 1976. Caristi’s theorem [11] may be motivated by the following consideration. If (X, d) is a
metric space and T : X → X is a contraction with a Lipschitz constant k ∈ [0, 1), then we have

d(x, T (x)) =
1

1− k
· d(x, T (x))− k

1− k
· d(x, T (x))

≤ 1

1− k
· d(x, T (x))− 1

1− k
· d(T (x), T (T (x)))

= φ(x)− φ(T (x)),
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for all x ∈ X, where φ(x) = (1− k)−1d(x, T (x)).
It is well known that Caristi’s theorem (or the Caristi–Kirk, or the Caristi– Kirk–Browder theorem) is

equivalent to Ekeland’s variation principle [19] which is very important because of its numerous applications.
The ordinal proof of the Caristi–Kirk theorem is rather complicated and, in the literature, there are several
different proofs of that theorem.

We mention that the map ϕ : X → E (E ⊂ R) is lower semicontinuous at x ∈ X if, for every sequence (xn),
it follows from limn→∞ xn = x that ϕ(x) ≤ lim infn→∞ ϕ(xn). The map ϕ : X → E is lower semicontinuous
on X if it is lower semicontinuous at every x ∈ X.

Theorem 13.1 (Caristi [11]). Let (X, d) be a complete metric space, T : X → X and φ : X → [0,∞) be
lower semicontinuous such that

d(x, T (x)) ≤ φ(x)− φ(T (x)) for all x ∈ X. (13.1)

Then T has a fixed point.

Proof (Ćirić [15]). For each x ∈ X, we put

P (x) =
{
y ∈ X : d(x, y) ≤ φ(x)− φ(y)

}
,

α(x) = inf {φ(y) : y ∈ P (x)} .

Since x ∈ P (x), P (x) is a nonempty set and 0 ≤ α(x) ≤ φ(x).
Let x ∈ X. We define the sequence (xn) in X such that x1 = x, and if x1, x2, . . . , xn are already defined then
we define xn+1 ∈ P (xn) such that φ(xn+1) ≤ α(xn) + 1/n. Hence the sequence (xn) satisfies the following
conditions:

d(xn, xn+1) ≤ φ(xn)− φ(xn+1);

α(xn) ≤ φ(xn+1) ≤ α(xn) + 1/n. (13.2)

Since (φ(xn)) is a decreasing sequence of real numbers, there exists α ≥ 0 such that

α = lim
n→∞

φ(xn) = lim
n→∞

α(xn). (13.3)

Let k ∈ N. It follows from (13.2) that there exists Nk such that φ(xn) < α + 1/k for every n ≥ Nk. Hence
the monotonicity of the sequence (φ(xn)) for m ≥ n ≥ Nk implies α ≤ φ(xm) ≤ φ(xn < α+ 1/k, that is,

φ(xn)− φ(xm) < 1/k for each m ≥ n ≥ Nk. (13.4)

We have from the triangle inequality and the inequality in (13.2)

d(xn, xm) ≤
m−1∑
s=n

d(xs, xs+1) ≤ φ(xn)− φ(xm). (13.5)

Now (13.4) implies

d(xn, xm) < 1/k for each m ≥ n ≥ Nk.

Since (xn) is a Cauchy sequence and X is a complete metric space the sequence converges to some u ∈ X.
Since φ is lower semicontinuous, we obtain from (13.5) that

φ(u)≤ lim inf
m→∞

φ(xm)≤ lim inf
m→∞

[φ(xn)− d(xn, xm)]=φ(xn)− d(xn, u),

and so
d(xn, u) ≤ φ(xn)− φ(u).
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Hence we have u ∈ P (xn) for all n ∈ N and α(xn) ≤ φ(u). Now (13.3) implies α ≤ φ(u). On the other hand,
since φ is lower semicontinuous, (13.3) implies φ(u) ≤ lim infn→∞ φ(xn) = α. Hence we have φ(u) = α.
Since u ∈ P (xn) for each n ∈ N, (13.1) implies Tu ∈ P (u), that is,

d(xn, Tu) ≤ d(xn, u) + d(u, Tu)

≤ φ(xn)− φ(u) + φ(u)− φ(Tu)

= φ(xn)− φ(Tu).

Hence we have Tu ∈ P (xn) for each n ∈ N. It follows that

φ(Tu) ≥ α(xn) for each n ∈ N.

Now (13.3 implies
φ(Tu) ≥ α.

Since (13.1) implies φ(Tu) ≤ φ(u) and φ(u) = α, we have

φ(u) = α ≤ φ(Tu) ≤ φ(u),

and so φ(Tu) = φ(u). Now (13.1) implies

d(u, Tu) ≤ φ(u)− φ(Tu) = 0,

that is, Tu = u. �

Theorem 13.2 (Ekeland [19], 1972). Let φ : X → R be an upper semicontinuous function on the complete
metric space (X, d). If φ is bounded above then there exists u ∈ X such that

φ(u) < φ(x) + d(u, x) for x ∈ X with x 6= u. (13.6)

Proof (Ćirić [15]). We are going to show that u from the proof of Theorem 13.1 is the desired point.
Using the same notations for x 6= u we have to prove x /∈ P (u). We suppose that this is not the case, that
is, for some v 6= u, we have v ∈ P (u). Then 0 < d(u, v) ≤ φ(u)− φ(v) implies φ(v) < φ(u) = α.
Since

d(xn, v) ≤ d(xn, u) + d(u, v)

≤ φ(xn)− φ(u) + φ(u)− φ(v)

= φ(xn)− φ(v),

it follows that v ∈ P (xn). Hence we have

α(xn) ≤ φ(v) for all n ∈ N.

We obtain for n→∞
α ≤ φ(v),

which is a contradiction to φ(v) < α = φ(u). Hence we have x /∈ P (u) for x ∈ X with x 6= u, and so

x 6= u implies d(u, x) > φ(u)− φ(x). �

Proof (Brézis and Browder [8]). By Theorem 13.2 there exists u ∈ X which satisfies the condition in
(13.6). It follows that Tu = u, for Tu 6= u would imply φ(Tu)−φ(u) > −d(u, Tu), which contradicts (13.1).
We note that Theorem 13.2 can be proved by Theorem 13.1. Indeed, if we assume that the conclusion of
Theorem 13.2 is not true, then, for each x ∈ X, there exists y ∈ X with y 6= x such that φ(y) − φ(x) ≤
−d(x, y). Hence we may define a map T : X → X which satisfies (13.1), but does not have a fixed point. �

We are going to present a proof of Caristi’s theorem given by Kirk and Saliga [31]. First we prove a
result by Brézis and Browder [8], the well–known Brézis –Browder [8] principle of ordering.

Let (X,≤) be a partially ordered set. We denote S(x) = {y ∈ X : x ≤ y} for x ∈ X. A sequence (xn)
in X is said to be increasing if xn ≤ xn+1 for each n ∈ N.
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Theorem 13.3 (Brézis and Browder [8]). Let the function φ : X → R satisfy the following conditions:

(1) x ≤ y implies φ(x) ≤ φ(y);

(2) for every increasing sequence (xn) in X with φ(xn) ≤ C <∞ for each n ∈ N, there exists y ∈ X such
that xn ≤ y for each n ∈ N;

(3) for each x ∈ X there exists u ∈ X such that x ≤ u and φ(x) < φ(u).

Then φ(S(x)) is a bounded set for each x ∈ X.

Proof. For a ∈ X, let
p(a) = sup

b∈S(a)
φ(b).

We are going to show p(x) = +∞ for each x ∈ X. We assume that p(x) < ∞ for some x ∈ X. We define
a sequence (xn) by induction such that x1 = x, xn+1 ∈ S(xn) and p(xn) ≤ φ(xn+1) + (1/n) for each n ∈ N.
Since φ(xn+1) ≤ p(x) <∞, the condition in (2) implies that there exists y ∈ X such that xn ≤ y for each n.
It follows from the condition in (3) that there exists u ∈ X such that y ≤ u and φ(y) < φ(u). Since xn ≤ u,
we have φ(u) ≤ p(xn) for all n. Furthermore, we have xn+1 ≤ y, so φ(xn+1) ≤ φ(y), and so

φ(u) ≤ p(xn) ≤ φ(xn+1) + (1/n) ≤ φ(y) + (1/n) for all n ∈ N,

hence φ(u) ≤ φ(y), which is a contradiction. �

Theorem 13.4. Let (X,�) be a partially ordered set, x ∈ X and S(x) = {y ∈ X : x � y}. We assume that
the map ψ : X → R satisfies the following conditions:

(a) x � y with x 6= y implies ψ(x) < ψ(y);

(b) for each increasing sequence (xn) in X, for which ψ(xn) ≤ C <∞ for each n ∈ N, there exists y ∈ X
such that xn � y for each n ∈ N;

(c) for each x ∈ X, the set ψ(S(x)) is bounded above.

Then, for each x ∈ X there exists x′ ∈ S(x) such that x′ is maximal in X, that is, {x′} = S(x′).

Proof. We apply Theorem 13.3 to the set X = S(x); since the conditions in (1) and (2) of Theorem
13.3 are satisfied, and the conclusion of the theorem does not hold, it follows that the condition in (3) is not
satisfied for some x′ ∈ S(x). Hence we have S(x′) = {x′}. �

We remark that the map ϕ : X → R is lower semicontinuous from above if xn ∈ X for n = 1, 2, . . . ,
limn→∞ xn = x and (ϕ(xn)) ↓ r imply ϕ(x) ≤ r.

Theorem 13.5 (Kirk and Saliga [31]).
We assume that (X, d) is a complete metric space and T : X → X is an arbitrary map such that we have
for each x ∈ X

d(x, T (x)) ≤ ϕ(x)− ϕ(T (x)), (13.7)

where the map ϕ : X → R is bounded above and lower semicontinuous. Then the map T has a fixed point
in X.

Proof. We introduce Brondsted’s partial order � on X as follows: For each x, y ∈ X, we have

x � y if and only if d(x, y) ≤ ϕ(x)− ϕ(y),

and let ψ = −ϕ. Then the condition in (a) of Theorem 13.4 is satisfied, and the condition in (c) follows
from the fact that the map ϕ is bounded below. To show the condition in (b), we assume that (xn) is an
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increasing sequence in (X,�) such that ψ(xn) ≤ C <∞ for each n. Then (ϕ(xn)) is a decreasing sequence
in R, and there exists r ∈ R such that limn→∞ ϕ(xn) = r. Since (ϕ(xn)) is a decreasing sequence, we have
for each m > n

lim
n,m→∞

d(xn, xm) ≤ lim
n,m→∞

[ϕ(xn)− ϕ(xm)] = 0.

Hence (xn) is a Cauchy sequence in X. It follows that there exists x ∈ X such that limn→∞ xn = x. From
ϕ(xn) ↓ r and ϕ(x) ≤ r, it follows that

d(xn, x) ≤ lim
m
d(xn, xm) ≤ lim

m
[ϕ(xn)− ϕ(xm)]

= ϕ(xn)− r ≤ ϕ(xn)− ϕ(x).

Hence x is an upper bound for the sequence (xn) in (X,�) and so we have proved the condition in (b). Now
it follows by Theorem 13.4 that (X,�) has a maximal element x′. Since (13.7) implies x′ � T (x′), we have
T (x′) = x′. �

Siegel [52] proved in 1977 in an original way, a generalized version of Caristi’s theorem. Here we present
some of his results [52].

Let (X, d) be a complete metric space, φ : X → R+, the set of nonnegative real numbers, and g : X → X
be a not necessarily continuous map such that d(x, g(x)) ≤ φ(x)− φ(g(x)) for all x ∈ X.

If a sequence of functions fi for i ≤ 1 <∞ is given, then we define the product

∞∏
k=1

fkx = lim
k→∞

fkfk−1 · · · f1x,

if the limit exists, and call it the countable decomposition of the given sequence of functions.

Definition 13.6. Let Φ = {f : f : X → X and d(x, f(x)) ≤ φ(x) − φ(f(x))}. We put Φg = {f : f ∈
Φ and φ(f) ≤ φ(g)}.

Lemma 13.7. Let φ be an upper semi continuous function, and (xi) be a sequence in X such that d(xi, xi+1) ≤
φ(xi)−φ(xi+1) for each i. Then there exists x ∈ X such that x = limi→∞ xi and d(xi, x) ≤ φ(xi)−φ(x) for
each i.

Proof. Since the sequence (φ(xi))i is not increasing and bounded below by zero, and since d(xi, xj) ≤
φ(xi)− φ(xj) for i ≤ j, (xi) is a Cauchy sequence in X. Let x = limxi. Since φ is an upper semicontinuous
function, it follows

d(xi, x) = lim
j→∞

d(xi, xj) ≤ φ(xi)− lim
j→∞

φ(xj) ≤ φ(xi)− φ(x). �

Lemma 13.8. The sets Φ and Φg are closed by the composition of functions and if φ is an upper semicon-
tinuous function then the sets Φ and Φg are closed by the countable composition of sequences of functions.

Proof. We prove that the sets Φ and Φg are closed by the composition of functions. If f1, f2 ∈ Φ, then
we have

d(x, f2f1(x)) ≤ d(x, f1(x)) + d(f1(x), f2f1(x))

≤ (φ(x)φ(f1(x))) + (φ(f1(x))− φ(f2f1(x)))

= φ(x)− φ(f2f1(x)).

Hence we have f2f1 ∈ Φ. If f1 ∈ Φg, then φ(f1(x)) − φ(f2(f1(x))) ≥ 0 implies φ(f2f1) ≤ φ(g), and so
f2f1 ∈ Φg.
The remainder of the proof follows from the fact that, for each x ∈ X, the sequence (xi) = (fifi−1 · · · f1)(x)
satisfies the conditions of Lemma 13.7. �
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Definition 13.9. We introduce the following notations:

(1) For A ⊂ X the diameter of A is defined as

δ(A) = sup
xi,xj∈A

(d(xi, xj)).

(2) r(A) = infx∈A(φ(x));

(3) Let Φ′ ⊆ Φ. For each x ∈ X, we put Sx = {fx : f ∈ Φ′}.

Lemma 13.10. We have δ(Sx) ≤ 2(φ(x)− r(Sx)).

Proof. We have

d(f1(x), f2(x)) ≤ d(x, f1(x)) + d(x, f2(x))

≤ φ(x)− φ(f1(x)) + φ(x)− φ(f2(x))

≤ 2(φ(x)− r(Sx)).�

The main result of Siegel’s paper [52] is the following theorem.

Theorem 13.11 (Siegel [52], 1977). . Let Φ′ ⊆ Φ be sets of functions closed by the composition of functions.
Also let x0 ∈ X.

(a) If the set Φ′ is closed for the composition of a countable sequence of functions, then there exists f ∈ Φ′

such that x = f(x0) and g(x) = x for all g ∈ Φ′.

(b) If the elements of Φ′ are continuous functions, then there exists a sequence of functions fi ∈ Φ′ and
x = limi→∞ fifi−1 · · · f1(x0) such that g(x) = x for each g ∈ Φ′.

Proof. Let (εi) be a sequence of positive real numbers converging to zero and ε > 0. Then there exists
f1 ∈ Φ′ such that φ(f1(x0)) − r(Sx0) < ε/2. We put x1 = f1(x0). Since the set Φ′ is closed under the
composition of functions it follows that Sx1 ⊆ Sx0 and

δ(Sx1) ≤ 2(φ(x1)− r(Sx1)) ≤ 2(φ(f1(x0))− r(Sx0)) < ε1.

Continuing in this way, we obtain a sequence of function fi such that xi = fi(xi−1), Sxi+1 ⊆ Sxi and
δ(Sxi) < εi.
We know from the condition in (a) that there exists f =

∏∞
i=1 fi ∈ Φ′. Let x = f(x0). Since x =∏∞

j=i+1 fj(xi), it follows that x ∈ Sxi for all i. On the other hand, limi→∞ δ(Sxi) = 0 implies x = ∩∞i=0Sxi .
Now we prove that g(x) = x for each g ∈ Φ′. This is a consequence of the fact that g(x) ∈ Sxi for each i,
and because of g(x) = g(

∏∞
j=i+1 fj(xi)).

We know from the condition in (b) that there exists

x = lim
i→∞

fifi−1 · · · f1(x0) = lim
i→∞

xi.

Since (xj)j>i ⊆ Si for each i, it follows that x ∈ Si, where Si is the closure of Si. Since δ(Si) = δ(Si) it
follows that x = ∩∞i=0Si.
We are going to show g(x) = x for each g ∈ Φ′. We note that g(xi) ∈ Sxi for each i. Since g is a continuous
function, for each ε > 0, there exists an i0 such that

{x ∈ X : d(g(x), x) < ε}
⋂
Sxi 6= ∅ for all i > i0.

Hence if i > i0, it follows that d(g(x), x) < ε+εi. Now εi → 0 implies d(g(x), x) ≤ ε, and since ε is arbitrary,
we have g(x) = x. �

Remark 13.12. In the previous theorem, in the condition in (b), we may take Φ′ = {gn}, the set of continuous
functions and their finite iterations. Then we have as in Banach’s contraction theorem

x = lim
n→∞

gn(x0).
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14. A Theorem by Bollenbacher and Hicks

The following result is related to Caristi’s theorem 13.1.

Theorem 14.1 (Eisenfeld and Lakshmikantham [22]).
Let (X, d) be a metric space and f : X → X be a map. Then there exists a map φ : X 7→ [0,∞) for which

d(x, f(x)) ≤ φ(x)− φ(f(x)) for x ∈ X, (14.1)

if and only if the series
∞∑
n=0

d(fn(x), fn+1(x)) (14.2)

converges for each x ∈ X.

Proof. We assume that the condition in (14.1) is satisfied. We show that the series in (14.2) converges.
This follows from the fact that, for each n ∈ N,

n∑
k=0

d(fk(x), fk+1(x)) = d(x, f(x)) + · · ·+ d(fn−1(x), fn(x))

≤ (φ(x)− φ(fx)) + · · ·+ (φ(fn−1(x))− φ(fn(x)))

= φ(x)− φ(fn(x)) ≤ φ(x).

If the series (14.2) converges for each x ∈ X, the we define a map φ : X → [0,∞) by

φ(x) =

∞∑
k=0

d(fk(x), fk+1(x)) for all x ∈ X.

Clearly this map φ satisfies the condition in (14.1). �

Let x ∈ X and O(x,∞) = {x, f(x), f2(x), . . . } be the orbit of x. The map G : X → [0,∞) is said to be
f–orbitally upper semicontinuous at x if, for each sequence (xn) in O(x,∞), it follows from limn→∞ xn = u
that G(u) ≤ lim infn→∞G(xn).

We note that if the condition in (14.1) is satisfied for each y ∈ (x,∞), then the series (14.2) converges
for x, since the sequence of partial sums is nondecreasing and bounded by φ(x).

In 1988, Bollenbacher and Hicks [5] proved the following very interesting theorem, the corollaries of
which include many generalizations of Banach’s fixed point theorem.

Theorem 14.2 (Bollenbacher and Hicks [5]). Let (X, d) be a metric space, and f : X → X and φ : X →
[0,∞). We assume that there exists x such that

d(y, f(y)) ≤ φ(y)− φ((f(y))) for each y ∈ O(x,∞), (14.3)

and that each Cauchy sequence in O(x,∞) converges to some point in X. Then we have:

(1) limn→∞ f
n(x) = x exists;

(2) d(fn(x), x) ≤ φ(fn(x));

(3) f(x) = x if and only if G(x) = d(x, f(x)) is f–orbitally upper semicontinuous at x;

(4) d(fn(x), x) ≤ φ(x) and d(x, x) ≤ φ(x).
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Proof. It follows from Theorem 14.1 that the series

∞∑
k=0

d(fk(x), fk+1(x))

converges.
We prove that (fn(x)) is a Cauchy sequence. This follows since, for each m > n,

d(fn(x), fm(x)) ≤ d(fn(x), fn+1(x)) + · · ·+ d(fm−1(x), fm(x))

=

m−1∑
k=n

d(fk(x), fk+1(x)),

and from the fact that the series
∑∞

k=n d(fk(x), fk+1(x)) converges. Hence there exist x ∈ X such that the
condition in (1) is satisfied. Now from

0 ≤ d(fn(x), fm(x)) ≤
m−1∑
k=n

d(fk(x), fk+1(x))

≤
m−1∑
k=n

[φ(fk(x))− φ(fk+1(x))] = φ(fn(x))− φ(fm(x)) ≤ φ(fn(x)),

the condition in (2) follows as m→∞.
To prove the condition in (3), we assume that xn = fn(x) → x as (n → ∞). If G is f–orbitally upper
semicontinuous at x, then we have

0 ≤ d(x, f(x)) = G(x) ≤ lim inf
n→∞

G(xn) = lim inf
n→∞

d(fn(x), fn+1(x)) = 0,

and so f(x) = x.
Now we assume f(x) = x and that (xn) is a sequence in O(x,∞) such that limn→∞ xn = x. Then we have

G(x) = d(x, f(x)) = 0 ≤ lim inf
n→∞

d(xn, f(xn)) = lim inf
n→∞

G(xn),

and so G is an f–orbitally upper semicontinuous function at x.
The condition in (4) follows from

d(x, fn(x)) ≤ d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn−1(x), fn(x))

≤ [φ(x)− φ(f(x))] + [φ(f(x))− φ(f2(x))] + . . .

+ [φ(fn−1(x))− φ(fn(x))]

= φ(x)− φ(fn(x)) ≤ φ(x),

and since as n→∞, we get d(x, x) ≤ φ(x). �

Corollary 14.3. ([26]) Let (X, d) be a complete metric space and 0 < k < 1. We assume that, for
f : X → X, there exists x such that

d(f(y), f2(y)) ≤ kd(y, f(y)) for each y ∈ O(x,∞). (14.4)

Then we have

(1) limn→∞ f
n(x) = x exists;

(2) d(fn(x), x) ≤ kn(1− k)−1d(x, f(x));
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(3) f(x) = x if and only if G(x) = d(x, f(x)) is an f–orbitally upper semicontinuous function at x;

(4) d(fn(x), x) ≤ (1− k)−1d(x, f(x)) and d(x, x) ≤ (1− k)−1d(x, f(x)).

Proof. Let φ(y) = (1− k)−1d(y, f(y)) for all y ∈ O(x,∞). If we take y = fn(x) in (14.4), then we get

d(fn+1(x), fn+2(x)) ≤ kd(fn(x), fn+1(x)),

and so
d(fn(x), fn+1(x))− kd(fn(x), fn+1(x)) ≤ d(fn(x), fn+1(x))− d(fn+1(x), fn+2(x)).

Hence we have

d(fn(x), fn+1(x)) ≤ 1

(1− k)
· [d(fn(x), fn+1(x))− d(fn+1(x), fn+2(x))],

that is,
d(y, f(y)) ≤ φ(y)− φ(f(y)).

Now the conditions in (1), (3) and (4) follow immediately from Theorem 14.2.
We remark that (14.4) implies d(fn(x), fn+1(x)) ≤ knd(x, fx), and Theorem 14.2 implies

d(fn(x), x) ≤ φ(fn(x)) =
1

1− k
· d(fn(x), fn+1(x)) ≤ kn

1− k
· d(x, f(x)),

hence (2). �

Remark 14.4. We remark that it is not necessary for φ to be an upper semicontinuous function, but it is
enough that the condition in (14.1) is satisfied only on O(x,∞) for some x. Furthermore, it can be easier
to check that G is an upper semicontinuous function than to check this for the function φ. Even if φ is an
upper semicontinuous function and (14.1) is satisfied for each x ∈ X, it is not necessary in Caristi’s theorem
that fx = x, but only f(x0) = x0 for some x0 in X.

Example 14.5. Let X = [0, 1] and φ(x) = x for all x ∈ X. We define the map f by

f(x) =


0 for x ∈

[
0,

1

2

]
x

2
+

1

4
for x ∈

(
1

2
, 1

]
.

For each x ∈ [0, 1/2], we have d(x, f(x)) = d(x, 0) = x and φ(x) − φ(f(x)) = φ(x) − 0 = x − 0 = x. If
x ∈ (1/2, 1], then d(x, f(x)) = x/2− 1/4 = φ(x)− φ(f(x)). Hence we have d(x, f(x)) = φ(x)− φ(f(x)) for
all x ∈ X. We note that 0 is the only fixed point of the function f . If x > 1/2, then lim fn(x) = 1/2 6=
f(1/2) = 0.

Example 14.6. Let X = {(x, y) : 0 ≤ x, y ≤ 1}, d be the usual metric on X and f(x, y) = (x, 0) for all
(x, y) ∈ X. Then f(f(p)) = f(p) for all p ∈ X and 0 = d(f(p), f2(p)) ≤ (1/2)d(p, f(p)). As in Corollary
14.3, let φ(p) = 2d(p, f(p)) and d(p, f(p)) ≤ φ(p)− φ(f(p)). This example shows that, even if both maps f
and φ are continuous, then f may have more fixed points than one.

Example 14.7. We define the map f : [−1, 1]→ [−1, 1] by

f(x) =

{
−1 for x < 0
x

4
for x ≥ 0.

We note that d(f(x), f2(x)) ≤ (1/4)d(x, f(x)) for all x ∈ [−1, 1]. As in Corollary 14.3, let φ(x) =
(4/3)d(x, f(x)) for all x ∈ [−1, 1]. If x < 0, then we have limn→∞ f

n(x) = −1 = f(−1), and if x > 0,
then we have limn→∞ f

n(x) = 0 = f(0). Hence 0 and −1 are the only fixed points of the map f . In this
example, f and φ are discontinuous functions, φ(x) = (4/3)d(x, f(x)) is an upper semicontinuous function
and d(x, f(x)) ≤ φ(x)− φ(f(x)).
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15. Mann iteration

The continuous function f : [0, 1]→ [0, 1] with f(x) = −x for x ∈ [0, 1] has a unique fixed point 0. The
Picard iteration sequence (fn(x0)) diverges for all initial values x0 6= 0.

The Mann iterations are more general than the Picard iterations, that is, the Picard iterations are special
cases of the Mann iterations which Mann introduced in his paper [37] in 1953.

Let E be a convex compact subset of a Banach space X, and T : E → E be a continuous map. By
Schauder’s fixed point theorem [51], there exists at least one fixed point of the function T , that is, there
exists p ∈ E such that T (p) = p.

In 1953, Mann ([37]) studied the problem of constructing a sequence (xn) in E which converges to a
fixed point of T . Usually an arbitrary initial value x1 ∈ E is chosen, and then the sequence of successive
iterations (xn) of x1 defined by

xn+1 = T (xn) for n = 1, 2, . . . (15.1)

is considered. If this sequences converges, then its limit is a fixed point of the function T .

Definition 15.1 (Dotson [18]). Let E be a vector space, C be a convex subset of E, f : C → C be a map
and x1 ∈ C. We assume that the infinite matrix A = [anj ] satisfies the conditions

(A1) anj ≥ 0 for all j ≤ n and anj = 0 for j > n;

(A2)
∑n

j=1 anj = 1 for each n ≥ 1;

(A3) limn→∞ anj = 0 for each j ≥ 1.

We define the sequence (xn) by xn+1 = f(vn), where

vn =
n∑
j=1

anjxj .

The sequence (xn) is called the Mann iterative sequence, or simply, Mann iteration, and usually denoted by
M(x1, A, f).

Hence the matrix A in Definition 15.1 has the following form

A =


1 0 0 . . . 0 0
a21 a22 0 . . . 0 0
. . . . . .
an1 an2 . . . ann 0 0
. . . . . .

 .

Theorem 15.2 ([37]). If one of the sequences (xn) or (vn) is convergent, then they both converge. In this
case, they converge to the same limit point which is a fixed point of the function T .

Proof. Let limn→∞ xn = p. Since A is a regular matrix, it follows that limn→∞ vn = p. The continuity of
the function T implies limn→∞ T (vn) = T (p), and from T (vn) = xn+1, it follows that T (p) = p. If we assume
limn→∞ vn = q, then limn→∞ xn+1 = T (q), and the regularity of the matrix A implies limn→∞ vn = T (q).
Hence we have T (q) = q. �

If the sequences (xn) and (vn) are not convergent, then, since E is a compact set, each of the two
sequences has at least two distinct accumulation points.

Let X and V be the sets of accumulation points of the sequences (xn) and (vn), respectively.
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Theorem 15.3 ([37]). If the matrix A satisfies the conditions in (A1), (A2) and (A3) and

lim
n→∞

n∑
k=1

|an+1,k − an,k| = 0, (15.2)

then X and V are closed and connected sets.

Proof. The set V is closed and compact, and by (15.2), limn→∞(vn+1 − vn) = 0. Hence the set V is
connected. Since the function T is continuous and X = T (V ), it follows that X is a closed and connected
set. �

Theorem 15.4 ([37]). The set V is a subset of co(X), where co(X) denotes the convex hull of the set X.

Proof. By Mazur’s theorem [38], co(X) is a closed set. All but finitely many terms of the sequence (xn)
are elements of each open set that contains the set co(X). Hence for all sufficiently large n, vn are arbitrarily
close to the the set X. Hence the limit point of each convergent subsequence of the sequence (vn) is an
element of the set co(X). �

Example 15.5. Let A be the Cesàro matrix of order 1, that is,

A =



1 0 0 0 . . .

1

2

1

2
0 0 . . .

1

3

1

3

1

3
0 . . .

. . . . . . . .
1

n

1

n

1

n
. . .

1

n
0 0 . . .

. . . . . . . .


.

The matrix A satisfies all the assumptions for a matrix in this subsection. In this case, the Mann method
M(x1, A, T ) is usually referred to as the mean value method, where the initial value is x1 ∈ E and

xn+1 = T (vn) and vn =
1

n

n∑
k=1

xk for all n = 1, 2, . . . .

We note

vn+1 − vn =

n
n+1∑
k=1

xk − (n+ 1)
n∑
k=1

xk

(n+ 1)n
=
T (vn)− vn
n+ 1

. (15.3)

In many special problems, the iterative method M(x1, A, T ) converges even when the method Tnx1

diverges.

Example 15.6. Let E = {x ∈ R2 : ‖x‖ ≤ 1}, where ‖ · ‖ is the Euclidean norm. Furthermore, let A be
the Cesàro matrix of order 1 and the function T : E → E be the rotation about the center by the angle
π/4. Then the Picard iteration Tn(x1) does not converge for any x1 ∈ E \ {0}. Using Mann’s method the
M(x1, A, T ), the sequences (xn) and (vn) always converge (on a spiral) to the center, independently of the
choice of the initial value x1.

Definition 15.7 ([18]). The Mann iterative method M(x1, A, f) is called normal Mann iterative method if
the matrix A = [anj ], besides the conditions (A1), (A2) and (A3), also satisfies the next two conditions

(A4) an+1,j = (1− an+1,n+1)anj for (j = 1, 2, . . . , n;n = 1, 2, . . . );
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(A5) either ann = 1 for all n, or ann < 1 for all n > 1.

In his paper [18], Dotson proved the following theorem.

Theorem 15.8 (Dotson [18]). The following statements are true:

(a) The Mann method M(x1, A, f) is normal if and only if the matrix A = [anj ] satisfies the conditions in
(A1), (A2), (A4), (A5) and (A′3), where

∞∑
n=1

ann is a divergent series. (A′3)

(b) The matrices A = [anj ] (except for the identity matrix) in all normal Mann methods M(x1, A, f) are
constructed as follows:
Let 0 ≤ cn < 1 for all n = 1, 2, . . . and the series

∑∞
n=1 cn be divergent. Then the matrix A = (anj) is

defined by by 
a11 = 1, a1j = 0 for j > 1;
an+1,n+1 = cn for n = 1, 2, . . .
an+1,j = ajj

∏n
i=j(1− ci) for j = 1, 2, . . . , n

an+1,j = 0 for j > n+ 1 and n = 1, 2, . . .

(c) The sequence (vn) in the normal Mann method M(x1, A, f) satisfies

vn+1 = (1− cn)vn + cnf(vn) for n = 1, 2, . . . , (15.4)

where
cn = an+1,n+1 for all n. (15.5)

Proof. The statement in (a) follows from the following well–known result on infinite products, namely,
that if 0 ≤ cn < 1 for all n, then limn→∞

∏n
k=1(1− ck) = 0 if and only if the series

∑∞
k=1 ck diverges.

To prove the statement in (b), we note that if the matrix A satisfies the conditions in (A1)–(A5), then it
satisfies the condition in (b). It can be proved that if the matrix A satisfies the conditions in (b), where
cn = an+1,n+1 for all n ∈ N, then it satisfies the conditions in (A1)–(A5).
The proof of (c) follows if we use the condition in (A4) and the definitions of the sequences (vn) and (xn)
in Mann’s method M(x1, A, T ). �

Example 15.9. For each λ with 0 ≤ λ < 1, let the infinite matrix Aλ = (anj) be defined by
an1 = λn−1

anj = λn−j(1− λ) for j = 2, 3, . . . , n,
anj = 0 for j > n and n = 1, 2, 3, . . . ,

,

where, for λ = 0, we put ann = 1 for all n. Hence A0 is the infinite identity matrix. It can be shown that
for each λ with 0 ≤ λ < 1, M(x1, Aλ, T ) is a normal Mann method with cn = an+1,n+1 = 1 − λ for all
n = 1, 2, 3 . . . . Hence the sequence (vn) in the normal Mann method M(x1, Aλ, T ) is defined by

vn+1 = λvn + (1− λ)T (vn) for alln.

Let Sλ = λI + (1− λ)T (where I is the identity map). Hence we have

vn+1 = Sλ(vn) = Snλ (v1) = Snλ (x1) for all n.

We note that S0 = T and, in this case, the sequence (vn) is obtained by Picard’s iteration (Tn(x1)). The
sequence (Sn1/2(x1)) of Picard’s iterations of the map S1/2 = (1/2)(I + T ) was studied by Krasnoselskii [32]

and Edelstein [21], and the sequence (Snλ (x1)) of Picard’s iterations of the map Sλ for 0 < λ < 1 was studied
by Schäfer [50], Browder and Petryshyn [9], and Opial [40].

In the literature, mainly the normal Mann iterative method is studied.
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16. Continuous functions on [a, b] ⊂ R

Now we consider the case when the Banach space is the real line R, and the convex compact set E is a
closed interval and A is the Cesàro matrix of order 1.

Theorem 16.1 (Mann [37]). Let T : [a, b] → [a, b] be a continuous map which has a unique fixed point
p ∈ [a, b] and A be the Cesàro matrix of order 1. Then Mann’s sequence M(x1, A, T ) converges to p for each
x1 ∈ [a, b].

Proof. It follows from (15.3) that vn+1 − vn → 0 as n → ∞. Since T is a continuous function and p is
the unique fixed point of T , it follows that T (x)− x > 0 for x < p and T (x)− x < 0 for x > p. Hence, for
each δ > 0, there exists ε > 0 such that |x− p| ≥ δ implies |T (x)− x| ≥ ε. It follows from (15.3) that

vn+1 = v1 +
n∑
k=1

T (vk)− vk
k + 1

.

Now from our previous considerations, we have limn→∞ vn = p, and by Theorem 15.2, we obtain limn→∞ xn =
p. �

In higher dimensional spaces, results similar to that of Theorem 16.1 have not been obtained.

Remark 16.2. Reinermann [45] defined a summability matrix A as follows

ank =


ck
∏n
j=k+1(1− cj) for k < n

cn for k = n

0 for k > n,

(16.1)

where the real sequence (cn) satisfies the following conditions

(i) c0 = 1,

(ii) 0 < cn < 1 for n ≥ 1,

(iii)
∑∞

k=0 ck diverges.

It can be proved that A is a regular matrix, and satisfies the following conditions

0 ≤ ank ≤ 1 for n, k = 0, 1, 2, . . . (16.2)
n∑
k=0

ank = 1 for n = 0, 1, 2, . . . (16.3)

Reinermann also considered the condition cn = 1, since he included the identity matrix in his considerations.
Since the identity matrix is of no special interest, in all interesting applications, it is assumed that cn < 1.
Then he considered the iterative scheme x0 = x0 ∈ E and xn+1 =

∑n
k=0 ankf(xk), which can be written as

xn+1 = (1− cn)xn + cnf(xn). (16.4)

It is well known by Brower’s fixed point theorem that a continuous map from [a, b] to [a, b] has at least
one fixed point. Reinermann proved the following result.

Theorem 16.3 (Reinermann [45], 1969). Let a, b ∈ R, a < b, E = [a, b] and f : E → E be a continuous
map with at most one fixed point. If the matrix A is defined by (16.1) and the sequence (cn) satisfies the
conditions (i)–(iii) and lim cn = 0, then the iterative scheme (16.4), for x0 ∈ [a, b], converges to the fixed
point of f .
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Proof. Without loss of generality, we may assume a = 0 and b = 1. By Brouwer’s fixed point theorem
and our assumption, there exists a unique fixed point x ∈ [0, 1] of the function f . Now we have

for all y ∈ [0, 1] with y < x it follows that f(y)− y > 0; (16.5)

for all y ∈ [0, 1] with (y > x) it follows that f(y)− y < 0. (16.6)

If x = 0, then we obviously have (16.5). If x > 0 and if there exists y1 ∈ [0, 1] with y1 < x such that
f(y1)− y1 ≤ 0, then f(0)− 0 = f(0) ≥ 0 implies that there exists z ∈ [0, y1] such that f(z) = z. Now z 6= x,
which is a contradiction to the uniqueness of the fixed point.
The case (16.6) is proved analogously.
There are two alternatives I. and II. for the sequence (xn):
I. There exists n1 ∈ N such xn1 = x.
Then xn = x for all n ≥ n1 and the theorem is proved.
II. For each n ∈ N, we have xn 6= x.
In this case, we have the following three possibilities:

1. There exists n0 ∈ N such that xn < x for all n > n0. Then we have

xn+1 − xn = cn(f(xn)− xn),

and (16.5) implies that (xn) is a monotone increasing sequence; so the sequence converges, since xn ≤ 1
for all n. By Theorem 15.2, and since the function f has only one fixed point x ∈ [0, 1], it follows that
limn xn = x.

2. There exists m0 ∈ N such that xn > x for all n ≥ m0. In this case, it follows by (16.6) that
limn→∞ xn = x, as in Case 1..

3. We assume that the possibilities 1. and 2. are not true. Let ε > 0 be given. We choose n0 ∈ N such
that

|xn+1 − xn| < ε for all n ≥ n0.

This is possible, since
|xn+1 − xn| ≤ 2cn and lim

n→∞
cn = 0.

We are going to prove that there exists n1 ∈ N with n1 ≥ n0 such that |xn1 − x| < ε, that is,

there exists n1 ≥ n0 such that − ε < xn1 − x < ε. (16.7)

If (16.7) is not true, then

xn ≤ x− ε or xn ≥ x+ ε for each n ≥ n0. (16.8)

Now, if xn0 ≤ x− ε, then xn ≤ x− ε for all n ≥ n0 (because of |xn+1− xn| < ε), that is, the condition
in 1. is satisfied. Analogously, if xn0 ≥ x + ε, then xn ≥ x + ε for all n ≥ n0 (again because of
|xn+1 − xn| < ε), that is, the condition in 2. is satisfied. Hence, in all cases, the conditions in 1. or
2. are satisfied. So we have shown (16.7).
We are going to prove that we have |xn − x| < ε for all n ≥ n1. This is true for n = n1. If n ≥ n1 and
if |xn − x| < ε, then we have the following possibilities A. and B.:

A. x− ε < xn < x. Then we have (a) or (b) for xn+1:

(a) xn+1 < x. In this case, xn+1 − xn = cn(f(xn)− xn) and (16.5) imply xn+1 − xn > 0, Hence
we have

|xn+1 − x| = x− xn+1 < x− xn = |xn − x| < ε.
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(b) xn+1 > x. Now we have

|xn+1 − x| = xn+1 − x < xn+1 − xn = |xn+1 − xn| < ε.

B. x < xn < x+ ε. Now (16.6) implies the conclusion as in A., that is, |xn+1 − x| < ε.
Hence |xn+1− x| < ε. It follows by mathematical induction that |xn− x| < ε for all n ≥ n1, thus
limn xn = x. �

We note that if we put cn := 1/(n+ 1) for all n, then Theorem 16.3 implies Theorem 16.1.
In 1971, Franks and Marzec [24] showed that the condition of the uniqueness of the fixed point p in

Theorem 16.1 is not necessary.
We note that any continuous function f : [0, 1] → [0, 1] has at least one fixed point by Brouwer’s fixed

point theorem.

Theorem 16.4 (Franks and Marzec ([24])). Let f : [0, 1] → [0, 1] be a continuous function. Then the
iterative sequence

xn+1 = f(x̃n) for n = 1, 2, . . . (16.9)

x̃n =
n∑
k=1

xk
n

for n = 1, 2, . . . , (16.10)

x̃1 = x1 ∈ [0, 1], (16.11)

converges to a fixed point of the function f in the interval [0, 1].

Proof. It follows from (16.9) and (16.10) that

x̃n+1 =
f(x̃n)− x̃n
n+ 1

+ x̃n for n = 1, 2, . . . . (16.12)

Since x̃n and f(x̃n) ∈ [0, 1] for all n, we have

|x̃n+1 − x̃n| ≤
1

n+ 1
for n = 1, 2, . . . . (16.13)

It suffices to prove that this sequence is convergent and its limit ξ ∈ [0, 1] is a fixed point of the function f .

1. We prove that the sequence (x̃n) is convergent. The sequence (x̃n) is in [0, 1], and so has at least one
accumulation point. We assume that the sequence (x̃n) has two distinct accumulation points ξ1 and
ξ2 with ξ1 < ξ2.

a. We are going to show that we have, from the assumption above, f(x) = x for all x ∈ (ξ1, ξ2). Let
x∗ ∈ (ξ1, ξ2). If f(x∗) > x∗, then, since f is a continuous function, there exists δ ∈ (0, (x∗−ξ1)/2)
such that |x−x∗| < δ implies f(x) > x. Hence |x̃n−x∗| < δ implies f(x̃n) > x̃n. Thus we obtain
from (16.12) that

|x̃n − x∗| < δ implies x̃n+1 > x̃n. (16.14)

By (16.13), there exists N such that

|x̃n+1 − x̃n| < δ for n = N,N + 1, . . . . (16.15)

Since ξ2 > x∗ is an accumulation point of the sequence (x̃n), we can choose N such that x̃N > x̃∗.
It follows from (16.14) and (16.15) that

x̃n > x∗ − δ > ξ1 for n = N,N + 1, . . . .

Thus ξ1 is not an accumulation point of the sequence (x̃n), which contradicts our assumption.
If f(x∗) < x∗, then, similarly as above, we obtain that ξ2 is not an accumulation point of the
sequence (x̃n), which again is a contradiction. Hence f(x∗) = x∗ for each x∗ ∈ (ξ1, ξ2).
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b. Let us prove that ξ1 and ξ2 are not accumulation points of the sequence (x̃n). We note that

x̃n /∈ (ξ1, ξ2) for n = 1, 2, . . . . (16.16)

If f(x̃n) = x̃n, then (16.12) implies x̃m = x̃n for all m > n. So neither ξ1 nor ξ2 can be an
accumulation point of the sequence (x̃n). Furthermore, (16.13) and (16.16) imply that there
exists a natural number M such that x̃M ≥ ξ2 for all n > M . Hence ξ is not an accumulation
point of the sequence (x̃n). It follows from x̃M ≤ ξ1 that x̃n < ξ1 < ξ2 for all n > M . Hence ξ2

is not an accumulation point of the sequence (x̃n). Consequently the sequence (x̃n) cannot have
two distinct accumulation points, and so this sequence is convergent. We put limn x̃n = ξ ∈ [0, 1].

2. We show f(ξ) = ξ. We assume f(ξ) > ξ. Let

ε =
f(ξ)− ξ

2
> 0.

Since the sequence (x̃n) converges to ξ and the function f is continuous, there exists a natural number
N such that f(x̃n)− x̃n > ε for each n > N . It follows from (16.12) that

x̃n+1 − x̃n =
f(x̃n)− x̃n
n+ 1

>
ε

n+ 1
.

Hence we have

lim
m→∞

(x̃N+m − x̃N ) = lim
m→∞

m−1∑
n=N

(x̃n+1 − x̃n)

≥ lim
m→∞

m−1∑
n=N

ε

n+ 1
=∞.

So x̃n → ∞ as n → ∞, which contradicts the fact that x̃m ∈ [0, 1] for all m. If f(ξ) < ξ, then it can
be shown that x̃n → −∞ as n→∞, which again is a contradiction. So we have f(ξ) = ξ. �

Rhoades ([48], [47] and [16]), among other things, generalized many results presented in this section. He
noted the importance of the condition in (15.2).

Let X be a normed space, E be a nonempty, closed, bounded and convex, subset of X and f : E → E
be a map which has at least one fixed point in E, and let A be an infinite matrix. We consider the iterative
scheme

x0 = x0 ∈ E (16.17)

xn+1 = f(xn) for n = 0, 1, 2, . . . (16.18)

xn =

n∑
k=0

ankxk for n = 1, 2, 3, . . . . (16.19)

The question is which are the necessary and sufficient conditions for the matrix A such that the above
iterative scheme converges to a fixed point of the function f?

Many results were obtained by the use of the iterative scheme of the form above (16.17)–(16.19) for
various classes of infinite matrices.

An infinite matrix A is said to be regular if x ∈ c and xn → l as n→∞ implies An(x) =
∑∞

k=0 ankxk → l
as n→∞. The matrix A is triangular if all entries below the main diagonal are equal to zero. We consider
regular triangular matrices A which satisfy

0 ≤ ank ≤ 1 for all n, k = 0, 1, 2, . . . (16.20)
n∑
k=0

ank = 1 for all n = 0, 1, 2, . . . . (16.21)
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The conditions in (16.20) and (16.21) are necessary for xn, xn ∈ E. The scheme (16.17)–(16.19) is a Mann
method [37].

Barone proved in [4] (see (15.2)) that a necessary condition that a regular matrix A maps all bounded
sequence into sequences with the property that the set of their accumulation points is connected is the
following

lim
n

∞∑
k=0

|ank − an−1,k| = 0. (16.22)

In [46], Rhoades made the following assumption.
Assumption Let f : [a, b] → [a, b] be a continuous function, A be a regular matrix which satisfies the
conditions in (16.20)–(16.22). Then the iterative scheme defined by (16.17)–(16.19) converges to a fixed
point of the function f .

In the next example, he showed that the assumption above does not hold if the condition (16.22) removed.

Example 16.5. Let A be be the identity matrix, [a, b] = [0, 1], f(x) = 1− x and x0 = 0.

Rhoades showed that the statement above is true for the large class of weighted means matrices. (For
the definition and properties of these matrices see [25, p. 57].)

The weighted means method is a triangular method of the matrix A = (ank) defined by ank = pk/Pn,
where p0 > 0, pn ≥ 0 for n > 0, Pn =

∑n
k=0 pk and Pn → ∞ as n → ∞. Then the matrix A satisfies the

condition in (16.22) if and only if pn/Pn → 0 as n→∞.

Theorem 16.6 (Rhoades [48]).Let A be the matrix of a regular weighted means method which satisfies the
condition in (16.22). Let E = [a, b] and f : E 7→ E be a continuous map. Then the iterative scheme (16.17)–
(16.19) converges to a fixed point of the function f .

Proof. Without loss of generality, we may suppose that [a, b] = [0, 1]. Every regular weighted means
method satisfies the conditions in (16.20) and (16.21). By (16.19), we have

xn+1 =
pn+1

Pn+1
(f(xn)− xn) + xn for all n. (16.23)

Since xn, f(xn) ∈ [0, 1], it follows from (16.23) that

|xn+1 − xn| ≤
pn+1

Pn+1
→ 0 (n→∞).

Now, by the proof of Theorem 16.4, the sequence (xn) is convergent.
We have to show that the sequence converges to a fixed point of the function f . Let z = limn→∞ xn. Then
we have limn→∞ f(xn) = f(z). It follows from xn+1 = f(xn) for each n ∈ N that limn→∞ xn = f(z). Since
A is a regular matrix, we obtain z = limn→∞ xn = limn→∞An(x) = f(z). �

Theorem 16.4 can be proved by taking pn = 1 in Theorem 16.6.
Theorem 16.6 implies Theorem 16.3. Furthermore the mentioned iterative schemes were defined inde-

pendently by Outlaw and Groetsch [41], and Dotson [18]. We note that Theorem 15.8 (that is, [18, Theorem
2]) characterizes the method in (16.1) and (i)–(iii).

If we choose cn = (n+ 1)−1, the previous statement is Theorem 16.1.
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[13] Lj. B. Ćirić. Generalized contractions and fixed point theorems. Publ. Inst. Math., 12(26):19–26, 1971. 10, 10.1, 10.5
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Abstract

In the setting of a complete quasi-metric-like spaces we investigate some fixed point problems via admissi-
ble mappings. Contractive condition includes (c)-comparison function. Definition of (α,ψ)-contraction is
generalized and continuity of f is replaced with regularity of observed space. Presented results improve and
extend several results on quasi-metric-like spaces.
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1. Introduction and Preliminaries

Among various generalizations of concept of metric, Matthews ([19]) introduced special kind of a partial
metric space where the self-distance d(x, x) is not necessarily zero. He studied denotational semantics of
dataflow networks and proved generalization of Banach theorem for applications in program verification. On
the other hand, Amini-Harandi ([2]) redefined a dislocated metric of Hitzler and Seda ([13]) and introduced
metric-like spaces. Combining these two concepts we get quasi-metric-like spaces. The study of partial
metric spaces has wide area of application, especially in computer science ([17, 22]). Therefore, we can
find many fixed point results in the setting of partial metric spaces ([1, 2, 4], [5], [7, 9], [12], [16], [24, 25],
[26, 27]).
In 2012., Samet et al. ([23]) introduced the concept of α-admissible mappings and, one year later, Karapınar
et al. ([14]) improved this notion with triangular α-admissible mappings. In that manner, study of ψ-
contractions was extended and broadly researched ([3], [11], [14, 15], [23]).
In this paper, we discuss on existence and uniqueness of a fixed point of (α,ψ)-contractive mappings on quasi-
metric-like space. Moreover, we generalize some fixed point results regarding (α,ψ)-contractive mappings.
Obtained results are discussed, compared and substantiated with several examples.
Let us recall some definitions that will be needed in the sequel.
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Definition 1.1. Let X be a nonempty set. A mapping d : X ×X → [0,+∞) is said to be a metric-like if
for all x, y, z ∈ X, the following conditions are satisfied:

(d1) d(x, y) = 0 =⇒ x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric-like space.

Omitting symmetry property of metric, we get a quasi-metric. If that condition is combined with a
notion of metric-like, we get the following definition:

Definition 1.2. Let X be a nonempty set. A mapping d : X×X → [0,+∞) is said to be a quasi-metric-like
if for all x, y, z ∈ X, the following conditions are satisfied:

(q1) d(x, y) = 0 =⇒ x = y;

(q2) d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a quasi-metric-like space.

Example 1.3. Let X = [0,∞) and d : X ×X 7→ [0,∞) defined with

d(x, y) = max{x, y}, x, y ∈ X.

Then (X, d) is a metric-like space. Obviously, (d2) holds, so it is not a quasi-metric-like space.

Example 1.4. Let X = [0,∞) and d : X ×X 7→ [0,∞) defined with

d(x, y) =

{
x− y, if y ≤ x,
1, otherwise.

Then (X, d) is a quasi-metric-like space.

In order to study fixed point problems on quasi-metric-like spaces, we need to give basic definitions
regarding continuity and convergence.

Definition 1.5. Let (X, d) be a quasi-metric-like space and {xn} ⊆ X. A sequence {xn} is a Cauchy
sequence if both lim

m,n→∞,m>n
d(xn, xm) and lim

m,n→∞,m>n
d(xm, xn) exist and are finite.

Definition 1.6. Let (X, d) be a quasi-metric-like space and {xn} ⊆ X. A sequence {xn} is convergent
sequence in X if there exists some x ∈ X such that lim

n→∞
d(xn, x) = lim

n→∞
d(x, xn) = d(x, x).

If {xn} converges to x, we denote that whit lim
n→∞

xn = x or xn → x, n→∞.

Definition 1.7. A quasi-metric-like space (X, d) is complete if, for any Cauchy sequence {xn} ⊆ X, there
exists some x ∈ X such that

d(x, x) = lim
n→∞

d(x, xn)

= lim
n→∞

d(xn, x)

= lim
m,n→∞,m>n

d(xn, xm)

= lim
m,n→∞,m>n

d(xm, xn).
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Definition 1.8. Let (X, d) be a quasi-metric-like space and {xn} ⊆ X. A sequence {xn} is a Cauchy
sequence if both lim

m,n→∞,m>n
d(xn, xm) and lim

m,n→∞,m>n
d(xm, xn) exist and are finite.

The main difference between metric and quasi-metric like spaces is reflected in topology and properties
of a convergence:

• This kind of generalized metric needs not to be continuous.

• Topology of quasi-metric-like space is not necessarily Hausdorff, so the limit of convergent sequence is
not always unique.

• There are convergent sequences in quasi-metric-like spaces that are not Cauchy sequences.

Example 1.9. Let X = {a, b}, a 6= b, and d : X ×X 7→ [0,∞) defined with d(x, y) = 1, x, y ∈ X. Then
(X, d) is a metric like space and any constant sequence is convergent with both a and b as limits since

d(a, b) = d(b, a) = d(a, a) = d(b, b).

Example 1.10. Let X = {0, 1, 2} and d : X ×X 7→ [0,∞) defined with

HHH
HHHx

y
0 1 2

0 1 1 2

1 2 1 2

2 2 2 2

Thus, (X, d) is a quasi-metric-like space. Observe the sequence x2n = 1, x2n−1 = 0, n ∈ N. Obviously, {xn}
is not a Cauchy sequence, but

lim
n→∞

d(xn, 2) = lim
n→∞

d(2, xn) = d(2, 2),

implying that lim
n→∞

xn = 2.

Definition 1.11. Let (X, d) and (Y, q) be quasi-metric-like spaces. A mapping f : X → Y is a continuous
mapping if, for any {xn} ⊆ X,

lim
n→∞

xn = x∗ ∈ X ⇒ lim
n→∞

fxn = fx∗,

where the limit is taken according to the observed metrics and induced topologies.

Definition 1.12. [23] For some α : X×X → [0,+∞), a mapping f : X 7→ X is an α-admissible mapping if

α(x, y) ≥ 1 =⇒ α(fx, fy) ≥ 1,

for any x, y ∈ X.

Very recently, Popescu [21] introduced notions as follows:

Definition 1.13. ([21]) Let α : X ×X → [0,∞) be a function. If f : X → X satisfies the condition

(T1)′ α(x, fx) ≥ 1⇒ α(fx, f2x) ≥ 1,

for all x ∈ X, then it is called right-α-orbital admissible mapping. If f satisfies the condition

(T1)′′ α(fx, x) ≥ 1⇒ α(f2x, fx) ≥ 1,

for all x ∈ X, then it is called left-α-orbital admissible mapping. Furthermore, if it is both right-α-orbital
admissible and left-α-orbital admissible, then a mapping f is called α-orbital admissible.
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Karapinar ([14]) and Popescu ([21])extended notion of α-admissability by defining triangular α-admissability
and, respectively, triangular α-orbital admissability.

Class of (b)-comparison functions was introduced by Berinde ([9]) in order to extend some fixed point
results integrating comparison functions and c-comparison functions ([8]):

Definition 1.14. [9] Let s ≥ 1 be a real number. A mapping ψ : R+
0 → R+

0 is called a (b)-comparison
function if the following conditions are fulfilled

(1) ψ is a nondecreasing;

(2) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∞∑
k=1

vk such that sk+1ψk+1(t) ≤

askψk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

The class of (b)-comparison functions will be denoted by Ψb. Notice that the notion of (b)-comparison
function reduces to the concept of (c)-comparison function if s = 1 and therefore includes a set of comparison
functions. The following lemma will be used in the proof of our main result.

Lemma 1.15. [6, 7] Let s ≥ 1 be a real number. If ψ : R+
0 → R+

0 is a (b)-comparison function, then

(1) the series
∞∑
k=0

skψk(t) converges for any t ∈ R+
0 ;

(2) the function ps : [0,∞)→ [0,∞) defined by

ps(t) =
∞∑
k=0

skψk(t), for all t ∈ [0,∞),

is increasing and continuous at 0.

Remark 1.16. Evidently, if ψ ∈ Ψb, then ψ(t) < t for all t > 0.

Application of (b)-comparison function is familiar for the setting of b-metric spaces due to the existence
of a constant s. Nevertheless, Ψc ⊆ Ψb, thus we may assume ψ ∈ Ψb.

2. Main result

In this section we define (α,ψ)-contractions and prove existence and uniqueness of fixed point for this
class of mappings under different assumptions. One kind of generalization of (α,ψ)-contractive mappings is
given in the sequel with accompanying fixed point results.

Definition 2.1. Let (X, d) be a complete quasi-metric-like space. A self-mapping f : X → X is called
(α,ψ)-contractive mapping if there exist ψ ∈ Ψb and α : X ×X → [0,∞) satisfying the following condition:

α(x, y)d(fx, fy) ≤ ψ(d(x, y)), x, y ∈ X. (2.1)

Theorem 2.2. Let (X, d) be a complete quasi-metric-like space and let f : X → X be an (α,ψ)-contractive
mapping. Suppose also that

(i) f is α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1;

(iii) f is continuous.
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Then f has a fixed point x∗ in X and d(x∗, x∗) = 0.

Proof. Choose x0 such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1 and define an iterative sequence {xn} in X
by xn+1 = fxn, n ∈ N0. If there is some n0 ∈ N0 such that xn0 = xn0+1, then xn0 is a fixed point of f .
Therefore, suppose that xn 6= xn+1 for all n ∈ N0. α-orbital admissibility of f , from (ii), inductively implies

α(xn, xn+1) ≥ 1, n ∈ N0,

and, analogously,
α(xn+1, xn) ≥ 1, n ∈ N0.

Observe that
d(xn+1, xn) = d(fxn, fxn−1)

≤ α(xn, xn−1)d(fxn, fxn−1)
≤ ψ(d(xn, xn−1)),

leads to
d(xn+1, xn) ≤ ψ(d(xn, xn−1)) < d(xn, xn−1), n ∈ N, (2.2)

and
d(xn, xn+1) = d(fxn−1, fxn)

≤ α(xn−1, xn)d(fxn−1, fxn)
≤ ψ(d(xn−1, xn))

gives
d(xn, xn+1) ≤ ψ(d(xn−1, xn)) < d(xn−1, xn), n ∈ N. (2.3)

Continuing in the same manner, after n− 1 more steps, we get

d(xn, xn+1) ≤ ψn(d(x0, x1)) and d(xn+1, xn) ≤ ψn(d(x1, x0)), n ∈ N. (2.4)

By letting n→∞, lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn+1, xn) = 0.

Let n,m ∈ N such that m > n. Then,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
m−1∑
i=n

α(xi−1, xi)d(xi, xi+1)

=
m−1∑
i=n

ψi(d(x0, x1)).

If n,m→∞, we get that
lim

n,m→∞
d(xn, xm) = 0.

Likewise,
lim

n,m→∞
d(xm, xn) = 0.

Hence, the sequence {xn} is a Cauchy sequence. Since (X, d) is a complete metric space, there is some
x∗ ∈ X such that

lim
n→∞

d(x∗, xn) = lim
n→∞

d(xn, x
∗) = d(x∗, x∗) = lim

n,m→∞
d(xn, xm) = lim

n,m→∞
d(xm, xn) = 0. (2.5)

Since f is continuous,
x∗ = lim

n→∞
xn+1 = lim

n→∞
fxn = fx∗.
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Example 2.3. Let X = {0, 1, 2} and d : X ×X 7→ [0,∞) defined with

H
HHH

HHx
y

0 1 2

0 0 1 2

1 1 1 2

2 2 3 4

Then (X, d) is a quasi-metric-like space. Define a mapping f : X 7→ X with

f :

(
0 1 2
0 2 0

)
.

Let α : X ×X 7→ [0,∞) such that

α(x, y) =

{
0, x = 1 or y = 1
1, otherwise

,

and ψ(t) = t
2 , t ≥ 0. The mapping f is then (α,ψ)-contractive mapping, but it is not a contraction due to

x = y = 1. Furthermore, all requirements of Theorem 2.2 are fulfilled, thus f has a unique fixed point in X.

Remark 2.4. Observe that in Example 2.3 f is α-admissible. The same would hold if f(1) = 2 and f(2) = 1,
and it still would not be a contraction. But in case f(1) = 0 and f(2) = 1, we would get a contractive
mapping on a quasi-metric-like space. Obviously, f(0) stays 0, due to Theorem 2.2 because d(0, 0) = 0.

Omitting continuity condition in Theorem 2.2 is possible if we introduce notion of α-regularity as pre-
sented in [21].

Definition 2.5. ([21]) Quasi-metric-like space (X, d) is α-regular for some α : X ×X 7→ [0,∞), if for every
sequence {xn} ⊆ X such that α(xn, xn+1) ≥ 1(α(xn+1, xn) ≥ 1), n ∈ N, and lim

n→∞
xn = x ∈ X, then there

exists a subsequence {xnk
} of {xn} such that α(xnk

, x) ≥ 1(α(x, xnk
) ≥ 1), for all k ∈ N.

Theorem 2.6. Let (X, d) be a complete quasi-metric-like space and let f : X → X be an (α,ψ)-contractive
mapping. If

(i) f is α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1;

(iii) X is α-regular.

Then f has a fixed point x∗ in X and d(x∗, x∗) = 0.

Proof. Similarly as in the proof of Theorem 2.2, we define an iterative sequence {xn} which converges to
a point x∗ ∈ X such that (2.5) holds. Hence, there exists some subsequence {xnk

} ⊆ {xn} such that
α(xnk

, x∗) ≥ 1 and α(x∗, xnk
) ≥ 1, k ∈ N. Thus,

d(xnk+1, fx
∗) ≤ αxnk

, x∗)d(xnk+1, fx
∗)

≤ ψ(d(xnk
, x∗))

≤ d(xnk
, x∗)

along with
d(fx∗, xnk+1) ≤ d(x∗, xnk

), k ∈ N,

and (2.5) lead to the conclusion lim
k→∞

d(xnk+1, fx
∗) = lim

k→∞
d(fx∗, xnk+1) = 0.

On the other hand, triangle inequality

d(x∗, fx∗) ≤ d(x∗, xnk+1) + d(xnk+1, fx
∗), k ∈ N,

when k →∞, implies d(x∗, fx∗) = 0, so fx∗ = x∗.
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Through the following example we will consider uniqueness of a fixed point of a (α,ψ)-contractive
mapping on a complete quasi-metric-like space.

Example 2.7. Let (X, d) be the quasi-metric-like space defined in Example 2.3. Also we will use α and ψ
defined therein.
If f : X 7→ X is defined with (

0 1 2
0 1 0

)
,

then f is α-admissible mapping. Additionally, f is (α,ψ)-contractive mapping. On the other hand, f has
two fixed points.

The counterexample indicates, along with previously made comment, that uniqueness of fixed point is
related to the absence of the indiscernibility of identicals characteristic for quasi-metric. We notice that we
need to add an additional condition to guarantee the uniqueness.

Theorem 2.8. In addition to Theorem 2.2 (Theorem 2.6) assume that, if x∗ ∈ X is a fixed point obtained
as a limit of determined iterative sequence, for all y ∈ X, either α(x∗, y) ≥ 1 or α(y, x∗) ≥ 1, then x∗ is a
unique fixed point of f .

Proof. Suppose that z ∈ X is such that fz = z.
If, without loss of generality, α(x∗, z) ≥ 1, then

d(x∗, z) = d(fx∗, fz)

≤ α(x∗, z)d(fx∗, fz)

≤ ψ(d(x∗, z)),

If d(x∗, z) 6= 0, then ψ(d(x∗, z)) < d(x∗, z) which leads to a contradiction with presented inequality. There-
fore, z = x∗ and it is a unique fixed point of f .

Remark 2.9. On several papers studying (α,ψ)-contractions, uniqueness is obtained by adding the condition:

(U) For all x, y ∈ Fix(f), either α(x, y) ≥ 1 or α(y, x) ≥ 1.

where Fix(f) denotes the set of all fixed points of f . But if we know elements of this set, than we assume
knowing its cardinality.
Otherwise, if we assume α(x, y) ≥ 1, x, y ∈ X, than we lose any impact of α-admissability and we get just
ψ-contraction.

Definition 2.10. Let (X, d) be a complete quasi-metric-like space. A mapping f : X → X is called gener-
alized (α,ψ)-contractive mapping if there exist two functions ψ ∈ Ψb and α : X ×X → [0,∞) satisfying the
following condition:

α(x, y)d(fx, fy) ≤ ψ(M(x, y)) (2.6)

for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

(x, fy) + d(y, fx)

2

}
. (2.7)

Theorem 2.11. Let (X, d) be a complete quasi-metric-like space and let f : X → X be a generalized
(α,ψ)-contractive mapping. Assume that

(i) f is α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1;
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(iii) f is continuous.

Then f has a fixed point x∗ in X and d(x∗, x∗) = 0.

Proof. Analogously to the proof of Theorem 2.2, there exists an iterative sequence xn+1 = fxn, n ∈ N0,
where x0 ∈ X is chosen with respect to (ii), such that

α(xn, xn+1) ≥ 1, and α(xn+1, xn) ≥ 1, for all n ∈ N0, (2.8)

assuming xn 6= xn+1, n ∈ N0,, since otherwise we would directly obtain fixed point of f .
Therfore,

d(xn, xn+1) ≤ α(xn−1, xn)d(fxn−1, fxn)
≤ ψ(M(xn−1, xn)),

for all n ∈ N and

M(xn−1, xn) = max
{
d(xn−1, xn), d(xn, fxn), d(xn−1, fxn−1),

d(xn−1,xn+1)+d(xn,xn)
2

}
≤ max

{
d(xn−1, xn), d(xn, fxn), d(xn−1, fxn−1),

d(xn−1,xn)+d(xn,xn+1)
2

}
= max {d(xn−1, xn), d(xn, xn+1)} .

Since the equality M(xn−1, xn) = d(xn, xn+1) do not hold due to previous assumption xn 6= xn+1, it follows
M(xn−1, xn) = d(xn−1, xn), n ∈ N.
Thus,

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) < d(xn−1, xn), for all n ∈ N,

and
d(xn, xn+1) ≤ ψn(d(x0, x1)), n ∈ N. (2.9)

Analogously, by letting x = xn and y = xn−1 in (2.6), it follows

d(xn+1, xn) ≤ α(xn, xn−1)d(fxn, fxn−1) (2.10)

≤ ψ(M(xn, xn−1)),

where,

M(xn, xn−1) = max
{
d(xn, xn−1), d(xn, fxn), d(xn−1, fxn−1),

d(xn,xn)+d(xn−1,xn+1)
2

}
≤ max

{
d(xn, xn−1), d(xn, fxn), d(xn−1, fxn−1),

d(xn−1,xn)+d(xn,xn+1)
2

}
= max {d(xn, xn−1), d(xn, xn+1), d(xn−1, xn)} .

If M(xn, xn−1) = d(xn−1, xn), then, by (2.9) and (2.10),

d(xn+1, xn) ≤ ψ(d(xn−1, xn)) ≤ ψn(d(x0, x1)). (2.11)

If M(xn, xn−1) = d(xn, xn+1), then by

d(xn+1, xn) ≤ ψ(d(xn, xn+1)).

along with (2.9), it follows

d(xn+1, xn) ≤ ψ(d(xn, xn+1)) < ψn+1 (d(x0, x1)) .

In the last case, M(xn, xn−1) = d(xn, xn−1), so

d(xn+1, xn) ≤ ψ(d(xn, xn−1)). (2.12)
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If we denote max {d(x0, x1), d(x1, x0)} with ω, we get d(xn+1, xn) ≤ ψn(ω) and d(xn, xn+1) ≤ ψn(ω), for
any n ∈ N, thus

lim
n→∞

d(xn+1, xn) = lim
n→∞

d(xn, xn+1) = 0.

If n,m ∈ N, m > n,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
m−1∑
i=n

ψi(ω).

Hence, lim
n,m→∞

d(xn, xm) = 0 and lim
n,m→∞

d(xm, xn) = 0. Since, X is a complete space, there exists x∗ ∈ X
such that lim

n→∞
xn = x∗ and

lim
n→∞

d(x∗, xn) = lim
n→∞

d(xn, x
∗) = d(x∗, x∗) = 0. (2.13)

Then x∗ = lim
n→∞

xn = lim
n→∞

fxn−1 = fx∗, because f is continuous, and x∗ is a fixed point of f .

Theorem 2.12. Let (X, d) be a complete quasi-metric-like space and let f : X → X be a generalized
(α,ψ)-contractive mapping. Assume that

(i) f is α-orbital admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1;

(iii) X is α-regular.

Then f has a fixed point x∗ in X and d(x∗, x∗) = 0.

Proof. As in the proof of Theorem 2.11, there is an iterative sequence therein defined such that lim
n→∞

xn = x∗.

Also, α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1, n ∈ N0, therefore, there exists some subsequence {xnk
} ⊆ {xn}

such that α(xnk
, x∗) ≥ 1 and α(x∗, xnk

) ≥ 1.
For arbitrary ε > 0, choose nk0 ∈ N such that d(x∗, xn), d(xn, x

∗), d(xn, xm), d(xm, xn) < ε
2 for any m > n ≥

nk0 .
Accordingly, for any k ≥ k0,

d(x∗, fx∗) ≤ d(x∗, xnk+1) + d(xnk+1, fx
∗)

≤ ε

2
+ αxnk

, x∗)d(xnk+1, fx
∗)

≤ ε

2
+ ψ(M(xnk

, x∗)),

where

ψ(M(xnk
, x∗)) = max

{
d(xnk

, x∗), d(xnk
, xnk+1), d(x∗, fx∗),

d(xnk
, fx∗) + d(x∗, xnk+1)

2

}
≤ max

{
ε

2
, d(x∗, fx∗),

d(xnk
, x∗) + d(x∗, fx∗) + ε/2

2

}
≤ ε+ d(x∗, fx∗)

2
.

Hence,

d(x∗, fx∗) ≤ ε+
d(x∗, fx∗)

2
≤ 2ε.

Since ε > 0 was arbitrary, d(x∗, fx∗) = 0, so x∗ is a fixed point of f .
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Uniqueness issue could be solve as for Theorem 2.2 or Theorem 2.6, respectively, but with stronger
assumptions.

Theorem 2.13. In addition to conditions of Theorem 2.11 (Theorem 2.12) assume that, if x∗ ∈ X is a
fixed point obtained as a limit of determined iterative sequence, for all y ∈ X, α(x∗, y) ≥ 1 or α(y, x∗) ≥ 1,
then x∗ is a unique fixed point of f .

Proof. If fy = y, without loss of generality, assume that d(y, x∗) ≥ d(x∗, y), then

d(y, x∗) ≤ α(y, x∗)d(y, x∗)

≤ ψ (M(y, x∗))

≤ maxψ (d(y, x∗)) , ψ

(
d(y, x∗) + d(x∗, y)

2

)
= ψ (d(y, x∗)) .

Thus, y = x∗. On contrary, we would get d(y, x∗) < d(y, x∗).

Similar result for (α,ψ)-contraction could be formulated on metric-like space endowed with a partial
ordering. Thus as a consequence we get Corollary 3.8 and Corollary 3.9 of [11], as well as results of Ran
and Reurings regarding contractions on partially ordered metric spaces.

Definition 2.14. Let (X,�) be a partially ordered set. The mapping f : X → X is nondecreasing with
respect to � if for all x, y ∈ X

x � y =⇒ fx � fy.

Analogously we would define nonincreasing mapping with respect to �.

Definition 2.15. Let (X,�) be a partially ordered set. A sequence {xn} ⊆ X is said to be nondecreasing
(respectively nonincreasing) with respect to � if xn � xn+1, n ∈ N (respectively xn+1 � xn, n ∈ N).

Definition 2.16. Let (X, d) be a metric-like space with a partial ordering �. The space (X,�, d) is regular
with respect to � if for every nondecreasing (respectively, nonincreasing ) sequence {xn} ⊆ X such that
lim
n→∞

xn = x ∈ X, there exists a subsequence {xnk
} of {xn} such that xnk

� x (respectively, x � xnk
) for

all k ∈ N.

We have the following result.

Corollary 2.17. Let (X,�) be a partially ordered set (which does not contain an infinite totally unordered
subset) and (X, d) be a complete metric-like space. Let f : X → X be a nondecreasing mapping with respect
to �. Suppose that there exist ψ ∈ Ψb, such that

d(fx, fy) ≤ ψ(d(x, y)), x, y ∈ X,x � y. (2.14)

Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � fx0 or fx0 � x0;

(ii) f is continuous or

(ii)
′

(X,�, d) is regular.

Then f has a fixed point x∗ ∈ X with d(x∗, x∗) = 0.
Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z and y � z, than f has a unique fixed point.
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Proof. Choose x0 ∈ X as described in (i) and, without loss of generality, assume that x0 � fx0. If
xn = fxn−1, n ∈ N0, then xn � xn+1, n ∈ N0. Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1, if x � y or x � y,
0, otherwise.

It is easy to obtain that f is α-admissible mapping. Moreover, it is (α,ψ)-contractive mapping, so the
existence of fixed point follows from Theorem 2.2 or Theorem 2.6, respectively.
If fx = x and fy = y, observe z such that x � z and y � z. Then, x � fnz and y � fnz, n ∈ N, so

d(x, y) � d(x, fnz) + d(fnz, y)

� ψn(d(x, z)) + ψn(d(z, y)),

and x = y that guarantees uniqueness of a fixed point.
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Abstract

This is an expository paper containing remarks on solutions to some functional equations of a form,
that could be called of the radical type. Simple natural examples of them are the following two functional
equations

f
(

n
√
xn + yn

)
= f(x) + f(y),

f
(

n
√
xn + yn

)
+ f

(
n
√
|xn − yn|

)
= 2f(x) + 2f(y)

considered recently in several papers, for real functions and with given positive integer n, in connection with
the notion of Ulam (or Hyers-Ulam) stability. We provide a general method allowing to determine solutions
to them.

Keywords: functional equation, radical type, Cauchy equation, quadratic equation.
2010 MSC: 39B52.

1. Introduction and preliminaries

During the 16th International Conference on Functional Equations and Inequalities (Będlewo, Poland,
May 17-23, 2015), W. Sintunavarat presented a talk concerning the Ulam type stability (for information and
further references concerning this notion see, e.g., [4]) of the so-called radical functional equation

f
(√

x2 + y2
)
= f(x) + f(y), (1.1)
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in the class of real functions. A question of J. Schwaiger about the general solution of the equation was
answered a bit later by the author of this paper (see [14, p. 196]). Namely, a function f : R→ R (R stands
for the set of reals) satisfies equation (1.1) if and only if it is of the form:

f(x) = a(x2), x ∈ R,

with a function a : R → R that is additive (i.e., satisfies the condition: a(x + y) = a(x) + a(y) for every
x, y ∈ R). This paper contains some remarks on extensions and generalizations of this result.

Clearly, equation (1.1) is a particular case of the functional equation

f
(

n
√
xn + yn

)
= f(x) + f(y), (1.2)

which for k = 2, 3, 4 have been considered in [2, 3, 5, 7, 8, 9, 12, 15], and some descriptions of solutions to it
have been proposed (not always complete and correct). Moreover, the solutions and the Ulam type stability
of the equation

f
(√

ax2 + by2
)
= af(x) + bf(y) (1.3)

have been considered in [9, 10], for functions f mapping R into a real linear space X, with real a, b > 0 such
that a+ b 6= 1. The authors have proved that every such solution to (1.3) must be a quadratic function, i.e.,
a solution to the quadratic functional equation

q(x+ y) + q(x− y) = 2q(x) + 2q(y). (1.4)

A somewhat similar is the Pythagorean mean functional equation

f
(√

x2 + y2
)
=

f(x)f(y)

f(x) + f(y)
, (1.5)

considered in [13] for f : (0,∞)→ R. It is clear that the cases when

f(x) + f(y) = 0

must be somehow excluded in (1.5) (which has not been done explicitly in [13]).
Moreover, the equation

f
(√

x2 + y2
)
+ f

(√
|x2 − y2|

)
= 2f(x) + 2f(y) (1.6)

and its generalized form

f
(√

ax2 + by2
)
+ f

(√
|ax2 − by2|

)
= 2a2f(x) + 2b2f(y) (1.7)

have been considered in [5, 9, 10, 15] for functions f mapping R into a real linear space X, with real a, b > 0
such that a+ b 6= 1.

It seems that a useful simple description of solutions to functional equations of similar type is of interest
and has not been published so far. Therefore we would like to present some general remarks on the issue
of solving such equations and obtain in this way much stronger versions and complements of some of the
results presented in [2, 3, 5, 7, 10, 9]. The reasonings that we use are well known and some of them can be
even considered to be routine (cf., e.g., [1, 11]).

Note that all those equations are simple particular cases of the following general functional equation

H
(
f
(

n

√
F1(xn1 , . . . , x

n
m)
)
, . . . , f

(
n

√
Fk(x

n
1 , . . . , x

n
m)
))

(1.8)

= G
(
f(x1), . . . , f(xm)

)
for the unknown functions f : R→ D, with given functions H : Dk → T , G : Dm → T , F1, . . . , Fk : Pm → P ,
where n, k and m are fixed positive integers with n > 1, T and D are nonempty sets, and

P := {xn : x ∈ R}.
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2. Main results

In the whole paper n, k, m, P , D, T , H, G, and F1, . . . , Fk have the same meaning as described at the
end of the previous section.

The next theorem is the main result of this paper. Namely, we have the following description of the
general solution f : R→ D to functional equation (1.8).

Theorem 2.1. Let f be a function mapping R into D. Assume that one of the following two conditions is
valid:

(i) n is odd;

(ii) there are e1, . . . , em−1 ∈ f(R) such that

G(e1, . . . , em−1, u) 6= G(e1, . . . , em−1, v), u, v ∈ D,u 6= v. (2.1)

Then f satisfies functional equation (1.8) if and only if there exists a solution h : P → D of the equation

H
(
h
(
F1(x1, . . . , xm)

)
, . . . , h

(
Fk(x1, . . . , xm)

))
(2.2)

= G
(
h(x1), . . . , h(xm)

)
,

such that

f(x) = h(xn), x ∈ R. (2.3)

Proof. Assume that f fulfils (1.8). Let

h(x) = f
(

n
√
x
)
, x ∈ P. (2.4)

We show that (2.2) holds.
To this end take x1, . . . , xm ∈ P and write

yi := n
√
xi, i = 1, . . . ,m.

Then, by (1.8),

H
(
h
(
F1(x1, . . . , xm)

)
, . . . , h

(
Fk(x1, . . . , xm)

))
(2.5)

= H
(
f
(

n

√
F1(yn1 , . . . , y

n
m)
)
, . . . , f

(
n

√
Fk(y

n
1 , . . . , y

n
m)
))

= G
(
f(y1), . . . , f(ym)

)
= G

(
f
(

n
√
x1
)
, . . . , f

(
n
√
xm
))

= G
(
h(x1), . . . , h(xm)

)
.

Clearly, if n is odd, then P = R and consequently, by (2.4),

f(x) = h(xn), x ∈ R.

So, assume that n is even. Then P = [0,∞) and, according to (2.4),

f(x) = h(xn), x ∈ [0,∞). (2.6)

Next, according to (ii), there exist e1, . . . , em−1 ∈ f(R) such that (2.1) is valid. Let v1, . . . , vm−1 ∈ f(R) be
such that

ei = f(vi), i = 1, . . . ,m.
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It is easily seen that, for each x ∈ R,

G
(
e1, . . . , em−1, f(−x)

)
= G

(
f(v1), . . . , f(vm−1), f(−x)

)
= H

(
f
(

n

√
F1

(
vn1 , . . . , v

n
m−1, x

n
) )

, . . . , f
(

n

√
Fk

(
vn1 , . . . , v

n
m−1, x

n
) ))

= G
(
f(v1), . . . , f(vm−1), f(x)

)
= G

(
e1, . . . , em−1, f(x)

)
.

Thus, in view of (2.1), we have proved that

f(−x) = f(x), x ∈ R, (2.7)

whence (on account of (2.6))
f(x) = h(xn), x ∈ R.

Now, assume that f(x) = h(xn) for every x ∈ R, with some solution h : P → D of equation (2.2). Then
(2.4) holds. We are to show that f is a solution to functional equation (1.8). So, take y1, . . . , ym ∈ R. Then
yn1 , . . . , y

n
m ∈ P and consequently

H
(
f
(

n

√
F1(yn1 , . . . , y

n
m)
)
, . . . , f

(
n

√
Fk(y

n
1 , . . . , y

n
m)
))

= H
(
h
(
F1

(
yn1 , . . . , y

n
m

))
, . . . , h

(
Fk

(
yn1 , . . . , y

n
m

)))
= G

(
h
(
yn1
)
, . . . , h

(
ynm
))

= G
(
f(y1), . . . , f(ym)

)
.

Let F be a field, D = T = F, k = 1, m = 2, F1(x1, x2) ≡ x1 + x2, G(u, v) ≡ uv and H(u) ≡ u. Then
functional equation (1.8) takes the form

f
(

n
√
xn + yn

)
= f(x)f(y) (2.8)

and Theorem 2.1 implies the following very simple corollary.

Corollary 2.2. A function f : R→ F satisfies functional equation (2.8) if and only if there exists a solution
g : P → F to the equation

g(x+ y) = g(x)g(y), (2.9)

such that f(x) = g(xn) for x ∈ R.

Proof. Let f be a solution to (2.8). If f(x) ≡ 0, then it is enough to take g(x) ≡ 0. If there is x ∈ R with
f(x) 6= 0, then condition (ii) holds and we can use Theorem 2.1.

The converse also follows from Theorem 2.1.

Let X denote a linear space over a field K with 2 6= 0, α, β ∈ K, and a, b ∈ R+. Let D = T = X, k = 1,
F1(x1, x2) ≡ ax1 + bx2, H(u) ≡ u and G(u, v) ≡ αu+ βv. Then functional equation (1.8) has the form

f
(

n
√
axn + byn

)
= αf(x) + βf(y), (2.10)

which generalizes simultaneously equations (1.2) and (1.3). Note that Theorem 2.1 implies at once the
following:

Corollary 2.3. Assume that α 6= 0 or β 6= 0. A function f : R → X satisfies functional equation (2.10) if
and only if there exists a solution g : P → X to the equation

g(ax+ by) = αg(x) + βg(y) (2.11)

such that f(x) = g(xn) for x ∈ R.



Janusz Brzdęk, Adv. Theory Nonlinear Anal. Appl. 1 (2017), 125-135 129

The next proposition describes solutions g : P → X to (2.11) (R+ stands for the set of nonnegative reals).

Proposition 2.4. Let P0 ∈ {R+,R}. Assume that α 6= 0 or β 6= 0. Then a function g : P0 → X satisfies
equation (2.11) if and only if,

(a) in the case α+ β 6= 1, there exists a solution h : R→ X to the additive Cauchy equation

h(x+ y) = h(x) + h(y), (2.12)

such that

h(ax) = αh(x), h(by) = βh(y), x ∈ R, (2.13)

and

g(x) = h(x), x ∈ P0. (2.14)

(b) in the case α + β = 1, there are w ∈ X and a solution h : R→ X to equation (2.12) such that (2.13)
holds and

g(x) = h(x) + w, x ∈ P0. (2.15)

Proof. Let g0 : P0 → X satisfy functional equation (2.11) and g0(0) = 0. Taking x = 0 and next y = 0 in
(2.11), we get

g0(ax) = αg0(x), g0(by) = βg0(y), x ∈ P0, (2.16)

whence

g0(ax+ by) = αg0(x) + βg0(y) = g0(ax) + g0(by), x ∈ P0. (2.17)

Clearly, (2.17) means that

g0(x+ y) = g0(x) + g0(y), x ∈ P0. (2.18)

Take x, y, z, w ∈ P0 with x− w = z − y. Then x+ y = z + w and, by (2.18),

g0(x) + g0(y) = g0(x+ y) = g0(z + w) = g0(z) + g0(w),

which implies that
g0(x)− g0(w) = g0(z)− g0(y).

Consequently, we can define h : R→ X by

h(x− y) = g0(x)− g0(y), x, y ∈ P0.

Note that

h(x) = h(x− 0) = g0(x)− g0(0) = g0(x), x ∈ P0, (2.19)

and

h(−x) = h(0− x) = g0(0)− g0(x) = −g0(x), x ∈ P0. (2.20)

Hence, by (2.16), we get

h(ax) = αh(x), h(by) = βh(y), x ∈ R. (2.21)
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We are yet to show that h fulfils the additive Cauchy equation (2.12). To this end take u, v ∈ R. There
exist x1, x2, y1, y2 ∈ P0 with u = x1 − x2 and v = y1 − y2. Note that x1 + y1, x2 + y2 ∈ P0 and, by (2.18),

h(u+ v) = h(x1 − x2 + y1 − y2)
= h(x1 + y1 − (x2 + y2))

= g0(x1 + y1)− g0(x2 + y2)

= g0(x1) + g0(y1)− (g0(x2) + g0(y2))

= g0(x1)− g0(x2) + g0(y1)− g0(y2)
= h(x1 − x2) + h(y1 − y2) = h(u) + h(v).

Now, assume that g : P0 → X satisfies equation (2.11). First consider the case α + β 6= 1. Then, with
x = y = 0 in (3.2), we deduce that g(0) = 0. Consequently the reasoning presented above, with g0 = g, ends
the proof of the necessary condition.

If α+ β = 1, we write
g0(x) := h(x)− h(0), x ∈ R+.

Then g0(0) = 0 and, as we have shown above, there is a solution h : R → X to equation (2.12) such that
(2.13) holds. Hence statement (b) is true with w := g0(0).

The converse is easy to check.

Remark 2.5. If K = R and a function h : R → X satisfies equation (2.12) and conditions (2.13), then it is
easily seen that

h(anx) = αnh(x), h(bny) = βnh(y), x ∈ R, n ∈ N.

Consequently, if r := an0 ∈ Q (rationals) for some n0 ∈ N, then

rh(x) = h(rx) = h(an0x) = αn0h(x), x ∈ R.

Hence an0 = r = αn0 or h(x) ≡ 0. The same is true for b and β.
For some further comments and references concerning similar issues we refer to [11, ch. XIII, §10].

Remark 2.6. As far as we know, the only published description of solutions h : R → X (with K = R) to
functional equation (1.3) (i.e., to (2.10) with n = 2, α = a and β = b) states that if a+ b 6= 1, then f must
be a quadratic function (see [9, Theorem 2.3]). Clearly, this description follows at once from Proposition 2.4
(a). Certainly, Proposition 2.4 provides much more general and precise information.

3. Further applications

In this section, as before, R+ stands for the set of nonnegative reals, P := {xn : x ∈ R}, X denotes a
linear space over a field K with 2 6= 0, α, β ∈ K, a, b ∈ (0,∞), and n ∈ N. We always assume that α 6= 0 or
β 6= 0.

Clearly, if D = T = X, k = 2, F1(x1, x2) ≡ ax1 + bx2, F2(x1, x2) ≡ |ax1 − bx2|, H(u, v) ≡ u + v and
G(u, v) ≡ αu+ βv, then functional equation (1.8) takes the form

f
(

n
√
axn + byn

)
+ f

(
n
√
|axn − byn|

)
= αf(x) + βf(y), (3.1)

which is a generalization of equations (1.6) and (1.7). Consequently, Theorem 2.1 implies the following:

Corollary 3.1. A function f : R→ X satisfies functional equation (3.1) if and only if there exists a solution
h : P → X to the equation

h(ax+ by) + h(|ax− by|) = αh(x) + βh(y) (3.2)

such that f(x) = h(xn) for x ∈ R.
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We provide descriptions of solutions to (3.2) in the next proposition and corollary. To this end, let us
recall that q : R→ X is quadratic if it satisfies functional equation (1.4) (see also Remark 3.6).

Theorem 3.2. Let P0 ∈ {R+,R} and h : P0 → X be such that h(0) = 0. Then h satisfies functional equation
(3.2) if and only if there is a quadratic function q : R→ X such that

q(ax) =
α

2
q(x), q(bx) =

β

2
q(x), x ∈ R, (3.3)

and

h(x) = q(x), x ∈ P0. (3.4)

Proof. Taking x = 0 and next y = 0 in (3.2), we get

h(ax) =
α

2
h(x), h(bx) =

β

2
h(x), x ∈ R+. (3.5)

Consequently

h(ax+ by) + h(|ax− by|) = 2
α

2
h(x) + 2

β

2
h(y)

= 2h(ax) + 2h(by), x, y ∈ R+,

whence

h(u+ v) + h(|u− v|) = 2h(u) + 2h(v), u, v ∈ R+. (3.6)

Define q : R→ X by

q(x) = h(|x|), x ∈ R. (3.7)

Clearly,

h(x) = q(x), x ∈ R+, (3.8)

and (3.5) implies

q(ax) =
α

2
q(x), q(bx) =

β

2
q(x), x ∈ R+. (3.9)

Next, q is even (in view of (3.7)), so (3.9) implies (3.3) also when P0 = R. We show that q is quadratic.
So, fix u, v ∈ R. If u, v ∈ R+, then

q(u+ v) + q(u− v) = h(u+ v) + h(|u− v|)
= 2h(u) + 2h(v) = 2q(u) + 2q(v).

If u, v ∈ (−∞, 0), then

q(u+ v) + q(u− v) = h(−u− v) + h(| − u− (−v)|)
= 2h(−u) + 2h(−v) = 2q(u) + 2q(v).

Further, if u ≥ 0 and v < 0, then

q(u+ v) + q(u− v) = q(u− (−v)) + q(u+ (−v))
= h(|u− (−v)|) + h(u+ (−v))
= 2h(u) + 2h(−v) = 2q(u) + 2q(v).
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Finally, if u < 0 and v ≥ 0, then q(u− v) = h(|u− v|) = q(v − u), whence

q(u+ v) + q(u− v) = q(v + u) + q(v − u)
= q(v − (−u)) + q(v + (−u))
= h(|v − (−u)|) + h(v + (−u))
= 2h(v) + 2h(−u) = 2q(u) + 2q(v).

If P0 = R+, then (3.8) is just equality (3.4), whence this finishes the proof of the necessary condition.
So, it remains to prove that (3.4) holds also in the case P0 = R. To this end fix y ∈ (−∞, 0). There is

x ∈ R+ with ax+ by > 0 and ay + bx > 0 and consequently, by (3.2), (3.3) and (3.8),

βh(y) = h(ax+ by) + h(|ax− by|)− αh(x)
= q(ax+ by) + q(ax− by)− αq(x)
= q(ax+ by) + q(ax− by)− 2q(ax)

= 2q(by) = βq(y),

αh(y) = h(ay + bx) + h(|ay − bx|)− βh(x)
= q(ay + bx) + q(ay − bx)− βq(x)
= q(ay + bx) + q(ay − bx)− 2q(bx)

= 2q(ay) = αq(y),

which means that h(y) = q(y) (whether α = 0 or β = 0). This completes the proof of the necessary condition
also for P0 = R.

Now, we prove the sufficient condition. So, assume that there is a quadratic function q : R → X such
that (3.3) and (3.4) are valid. Then, with x = 0 in (1.4), we get

q(y) = q(−y), y ∈ R, (3.10)

and consequently

h(ax+ by) + h(|ax− by|) = q(ax+ by) + q(|ax− by|)
= q(ax+ by) + q(ax− by)
= 2q(ax) + 2q(by) = αq(x) + βq(y)

= αh(x) + βh(y), x, y ∈ P0.

Corollary 3.3. Let P0 ∈ {R+,R}. Then h : P0 → X satisfies functional equation (3.2) if and only if,

(a) in the case α+ β 6= 2, there is a quadratic function q : R→ X such that (3.3) and (3.4) are valid;

(b) in the case α+ β = 2, there are w ∈ X and a quadratic function q : R→ X such that (3.3) holds and

h(x) = q(x) + w, x ∈ P0. (3.11)

Proof. Let h : P0 → X be a solution to (3.2).
First consider the case α + β 6= 2. Then x = y = 0 in (3.2) yield f(0) = 0. Hence we can simply apply

Theorem 3.2.
So, assume that α+ β = 2 and write

h0(x) := h(x)− h(0), x ∈ P0.
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Then h0(0) = 0 and

h0(ax+ by) + h0(|ax− by|) = h(ax+ by)− h(0) + h(|ax− by|)− h(0)
= αh(x) + βh(y)− 2h(0)

= α(h(x)− h(0)) + β(h(y)− h(0))
= αh0(x) + βh0(y), x, y ∈ P0.

Hence using again Theorem 3.2, but with h replaced by h0, we obtain (3.11) with w = h(0).
The converse is easy to check in view of (3.10).

Corollary 3.4. A function h : R→ R satisfies functional equation (3.2) if and only if it is a solution to the
equation

h(ax+ by) + h(ax− by) = αh(x) + βh(y). (3.12)

Proof. Let h0 : R→ R be a solution to equation (3.12) with h0(0) = 0. Taking first x = 0 and next y = 0 in
(3.12) gives

h0(ax) =
α

2
h0(x), h0(ax) =

β

2
h0(x), x ∈ R. (3.13)

Hence

h0(ax+ by) + h0(ax− by) = αh0(x) + βh0(y)

= 2h0(ax) + 2h0(ay), x, y ∈ R,

which means that

h0(x+ y) + h0(x− y) = 2h0(x) + 2h0(y), x, y ∈ R. (3.14)

Suppose that h : R→ R is a solution to equation (3.12). If α+ β 6= 2, then (3.12) with x = y = 0 gives
h(0) = 0, whence (3.14) holds for h0 = h. Consequently, by Corollary 3.3, h is a solution to (3.2).

If α+ β = 2, then the function h0 : R→ R, given by h0(x) := h(x)− h(0) for x ∈ R, also is a solution to
(3.12) and h0(0) = 0. Hence (3.14) is valid, which means that h0 is quadratic. Since h(x) ≡ h0(x) + h(0), h
is a solution to (3.2) (again by Corollary 3.3).

If h : R→ R is a solution to equation (3.2), then it has the form described in Corollary 3.3 and it is easy
to check that h fulfils also (3.12).

Corollary 3.5. Let n be odd. A function f : R→ X fulfils the equation

f
(

n
√
axn + byn

)
+ f

(
n
√
|axn − byn|

)
= αf(x) + βf(y) (3.15)

if and only if it is a solution to the functional equation

f
(

n
√
axn + byn

)
+ f

(
n
√
axn − byn

)
= αf(x) + βf(y). (3.16)

Proof. According to Corollary 3.1, a function f : R → X satisfies functional equation (3.15) if and only if
there exists a solution g : R→ X to the equation (3.2) such that f(x) ≡ g(xn).

Analogously, by Theorem 2.1, a function f : R → X satisfies functional equation (3.16) if and only if
there exists a solution g : R→ X to the equation (3.12) such that f(x) ≡ g(xn).

Since, in view of Corollary 3.4, equations (3.2) and (3.12) have the same solutions g : R → X, this
completes the proof.
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Remark 3.6. It is well known (see, e.g., [1]) that a function q : R→ X is quadratic if and only if there exists
L : R2 → X that is symmetric (i.e., L(x, y) = L(y, x) for all x, y ∈ R) and biadditive (i.e., L(x, y + z) =
L(x, y) + L(x, z) for all x, y, z ∈ R) such that

q(x) = L(x, x), x ∈ R.

Clearly, conditions (3.3) are equivalent to

L(ax, ax) =
α

2
L(x, x), L(bx, bx) =

β

2
L(x, x), x ∈ R. (3.17)

Next, note that

4L(x, y) = L(x+ y, x+ y)− L(x− y, x− y), x, y ∈ R.

Hence (3.3) (or (3.17)) implies the following two conditions

4L(ax, ay) = q(a(x+ y))− q(a(x− y)) (3.18)

=
α

2
(q(x+ y)− q(x− y))

= 2αL(x, y), x, y ∈ R,

4L(bx, by) = 2βL(x, y), x, y ∈ R. (3.19)

So, conditions (3.18) and (3.19) are equivalent to (3.17) and, in view of Corollary 3.3, we can state the
following:

Corollary 3.7. Let P0 ∈ {R+,R}. Then h : P0 → X satisfies functional equation (3.2) if and only if,

(a) in the case α+ β 6= 2, there is a symmetric and biadditive function L : R2 → X such that

L(ax, ay) =
α

2
L(x, y), L(bx, by) =

β

2
L(x, y), x, y ∈ R, (3.20)

and

h(x) = L(x, x), x ∈ P0; (3.21)

(b) in the case α+ β = 2, there are w ∈ X and a symmetric and biadditive function L : R2 → X such that
(3.20) is valid and

h(x) = L(x, x) + w, x ∈ P0. (3.22)

Finally, let us observe that from Corollaries 3.1 and 3.7 we can easily deduce the following:

Corollary 3.8. A function f : R→ X satisfies functional equation (3.1) if and only if,

(a) in the case α + β 6= 2, there is a symmetric and biadditive function L : R2 → X such that (3.20) is
valid and

f(x) = L(xn, xn), x ∈ R; (3.23)

(b) in the case α+ β = 2, there are w ∈ X and a symmetric and biadditive function L : R2 → X such that
(3.20) is valid and

f(x) = L(xn, xn) + w, x ∈ R. (3.24)
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Note that from Corollary 3.8 it results that the description of solutions for the equation

f
(

n
√
xn + yn

)
+ f

(
n
√
|xn − yn|

)
= 2f(x) + 2f(y), (3.25)

which is a generalization of (1.6), is quite simple. Namely, we have the following:

Corollary 3.9. A function f : R→ X satisfies functional equation (3.25) if and only if there is a symmetric
and biadditive function L : R2 → X such that f(x) = L(xn, xn) for x ∈ R.

Remark 3.10. According to our best knowledge, the only published so far description (see [9, Theorem 2.3])
of solutions f : R → X (with K = R) of functional equation (1.7) (i.e., of (3.1) with n = 2, α = 2a2 and
β = 2b2) states that if a2 + b2 6= 1, then f must be a solution to the functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y). (3.26)

It is easy to check that this description (with n = 2) follows from Corollary 3.8 (a), which provides much
more general and precise information.
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Abstract

In this paper we investigate the existence of weak solutions under the Pettis integrability assumption for a
coupled system of partial integral equations via Hadamard’s fractional integral, by applying the technique
of measure of weak noncompactness and Mönch’s fixed point theorem.
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1. Introduction

In this paper N and R denote the sets of positive integers, respectively the set of real numbers, while
N0 := N ∪ {0} and R+

0 := [0,∞).
The fractional calculus represents a powerful tool in applied mathematics to study many problems from

different fields of science and engineering, with many break-through results found in mathematical physics, fi-
nance, hydrology, biophysics, thermodynamics, control theory, statistical mechanics, astrophysics, cosmology
and bioengineering [25, 40]. There has been a significant development in fractional differential and integral
equations in recent years; see the monographs of Abbas et al. [1, 2], Kilbas et al. [26], Miller and Ross [28],
and the papers of Abbas et al. [3], Darwish et al. [16, 17, 18, 19, 20, 21], Vityuk et al. [41, 42], and the
references therein.
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In [14], Butzer et al. investigated properties of the Hadamard fractional integral and derivative. In [15],
they obtained the Mellin transform of the Hadamard fractional integral and differential operators, and in [36],
Pooseh et al. obtained expansion formulas of the Hadamard operators in terms of integer order derivatives.
Many other interesting properties of those operators and others are summarized in [37], and the references
therein.

The measure of weak noncompactness was introduced by De Blasi [22]. The strong measure of noncom-
pactness was developed first by Banas̀ and Goebel [6] and subsequently developed and used in many papers;
see for example, Akhmerov et al. [4], Alvàrez [5], Benchohra et al. [10, 12], Guo et al. [23], Mönch et al.
[30, 31], Szufla [38], and the references therein. Recently in [7, 8] Benchohra et al. used the measure of weak
noncompactness for some classes of fractional differential equations and inclusions, while in [9], a class of hy-
perbolic differential equations involving the Caputo fractional derivative was considered. Some applications
of the measure of weak noncompactness to ordinary differential and integral equations in Banach spaces are
reported in [11, 27, 33, 39] and the references therein. Some recent results on coupled systems of operator
equations in b-metric spaces are given in [34].

This paper deals with the existence of weak solutions to the following coupled system of Hadamard partial
fractional integral equations of the form, for (x, y) ∈ J,

u(x, y) = µ1(x, y) +
∫ x

1

∫ y
1

(
ln x

s

)r1−1 (
ln y

t

)r2−1 f1(s,t,u(s,t),v(s,t))
stΓ(r1)Γ(r2) dtds,

v(x, y) = µ2(x, y) +
∫ x

1

∫ y
1

(
ln x

s

)ρ1−1 (
ln y

t

)ρ2−1 f2(s,t,u(s,t),v(s,t))
stΓ(ρ1)Γ(ρ2) dtds,

(1.1)

where J := [1, a] × [1, b], a, b > 1, r1, r2, ρ1, ρ2 > 0, µ1, µ2 : J → E and f1, f2 : J × E × E → E are given
continuous functions, Γ(·) is the Euler gamma function and E is a real (or complex) Banach space with norm
‖ · ‖E and dual E∗, such that E is the dual of a weakly compactly generated Banach space X.

The present paper initiates the use of the measure of weak noncompactness and Mönch’s fixed point
theorem to the coupled system (1.1).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this
paper.
Let C := C(J,E) be the Banach space of continuous functions u : J → E with the norm

‖u‖C = sup
(x,y)∈J

‖u(x, y)‖E .

It is clear that the product space C := C × C is a Banach space with the norm

‖(u, v)‖C = ‖u‖C + ‖v‖C .

Denote by L∞(J,E), the Banach space of essentially bounded measurable functions u : J → E equipped
with the norm

‖u‖L∞ = inf{c > 0 : ‖u(x, y)‖E ≤ c, a.e. (x, y) ∈ J}.

Let (E,w) = (E, σ(E,E∗)) denote the Banach space E with its weak topology.

Definition 2.1. A Banach space X is called weakly compactly generated (WCG, in short) if it contains a
weakly compact set whose linear span is dense in X.

Definition 2.2. A function h : E → E is said to be weakly sequentially continuous if h takes each weakly
convergent sequence in E to a weakly convergent sequence in E (i.e., for any (un) in E with un → u in
(E,w) then h(un)→ h(u) in (E,w)).
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Definition 2.3. [35] The function u : J → E is said to be Pettis integrable on J if and only if there
is an element uj ∈ E corresponding to each j ⊂ J such that φ(uj) =

∫ ∫
j φ(u(s, t))dtds for all φ ∈ E∗,

where the integral on the right hand side is assumed to exist in the sense of Lebesgue, (by definition,
uj =

∫ ∫
j u(s, t)dtds).

Let P (J,E) be the space of all E-valued Pettis integrable functions on J, and L1(J,R), be the Banach
space of Lebesgue integrable functions u : J → R. Define the class P1(J,E) by

P1(J,E) = {u ∈ P (J,E) : ϕ(u) ∈ L1(J,R) for every ϕ ∈ E ∗}.

The space P1(J,E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ a

1

∫ b

1
|ϕ(u(x, y))|dλ(x, y),

where λ stands for the Lebesgue measure on J.

The following result is due to Pettis (see [[35], Theorem 3.4 and Corollary 3.41]).

Proposition 2.4. [35] If u ∈ P1(J,E) and h is a measurable and essentially bounded E−valued function,
then uh ∈ P1([0, a], E).

For all that follows, the sign “
∫

” denotes the Pettis integral.

Let us recall the definitions of Pettis integral and Hadamard integral of fractional order.

Definition 2.5. [24, 26] The left sided mixed Pettis Hadamard integral of order q > 0, for a function
g ∈ P1([1, a], E), is defined as

(HIr1g)(x) =
1

Γ(q)

∫ x

1

(
ln
x

s

)q−1 g(s)

s
ds.

Remark 2.6. Let g ∈ P1([1, a], E). For every ϕ ∈ E∗, we have

ϕ(HIr1g)(x) = (HIr1ϕg)(x); for a.e. x ∈ [1, a].

Definition 2.7. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For w ∈ P1(J,E), define the left sided mixed
Pettis Hadamard partial fractional integral of order r by the expression

(HIrσw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 w(s, t)

st
dtds.

Definition 2.8. [22] Let E be a Banach space, ΩE the bounded subsets of E and B1 the unit ball of E.
The De Blasi measure of weak noncompactness is the map β : ΩE → [0,∞) defined by

β(X) := inf{ε > 0 : there exists a weakly compact subset Ω of E

such that X ⊂ εB1 + Ω}.

The De Blasi measure of weak noncompactness satisfies the following properties:

(a) A ⊂ B ⇒ β(A) ≤ β(B),

(b) β(A) = 0⇔ A is relatively weakly compact,

(c) β(A ∪B) = max{β(A), β(B)},
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(d) β(A
ω
) = β(A), (Aω denotes the weak closure of A),

(e) β(A+B) ≤ β(A) + β(B),

(f) β(λA) = |λ|β(A),

(g) β(conv(A)) = β(A),

(h) β(∪|λ|≤hλA) = hβ(A).

The next result follows directly from the Hahn-Banach theorem.

Proposition 2.9. Let E be a normed space, and x0 ∈ E with x0 6= 0. Then, there exists ϕ ∈ E∗ with
‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For a given set V of functions v : J → E let us denote by

V (x, y) = {v(x, y) : v ∈ V }; (x, y) ∈ J,

and
V (J) = {v(x, y) : v ∈ V, (x, y) ∈ J}.

Lemma 2.10. [23] Let H ⊂ C be a bounded and equicontinuous. Then the function (x, y)→ β(H(x, y)) is
continuous on J , and

βC(H) = max
(x,y)∈J

β(H(x, y)),

and
β

(∫ ∫
J
u(s, t)dtds

)
≤
∫ ∫

J
β(H(s, t))dtds,

where H(s, t) = {u(s, t) : u ∈ H, (s, t) ∈ J}, and βC is the De Blasi measure of weak noncompactness defined
on the bounded sets of C.

For our purposes, we will need the following fixed point theorem:

Theorem 2.11. [32] Let Q be a nonempty, closed, convex and equicontinuous subset of a metrizable locally
convex vector space C(J,E) such that 0 ∈ Q. Suppose T : Q → Q is weakly sequentially continuous. If the
implication

V = conv({0} ∪ T (V ))⇒ V is relatively weakly compact, (2.1)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3. Existence Results

Let us start by defining what we mean by a solution of the integral equation (1.1).

Definition 3.1. A pair (u, v) ∈ C is said to be a solution of (1.1) if (u, v) satisfies equation (1.1) on J .

Further, we present conditions for the existence of a solution of equation (1.1).

Theorem 3.2. Assume that the following hypotheses hold:

(H1) For a.e. (x, y) ∈ J, the functions u→ fi(x, y, u, v), v → fi(x, y, u, v), i = 1, 2, are weakly sequentially
continuous,

(H2) For a.e. u, v ∈ E, the functions (x, y)→ fi(x, y, u, v); i = 1, 2 are Pettis integrable a.e. on J,
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(H3) There exist functions Pi ∈ C(J, [0,∞)); i = 1, 2 such that for all ϕ ∈ E∗, we have

|ϕ(fi(x, y, u, v))| ≤ Pi(x, y)‖ϕ‖
1 + ‖ϕ‖+ ‖u‖E + ‖v‖E

, for a.e. (x, y) ∈ J, and u, v ∈ E,

(H4) For each bounded set B ⊂ E and for each (x, y) ∈ J, we have

β(fi(x, y,B)) ≤ Pi(x, y)β(B); i = 1, 2.

If

L :=
P ∗1 (ln a)r1(ln b)r2

Γ(1 + r1)Γ(1 + r2)
+

P ∗2 (ln a)ρ1(ln b)ρ2

Γ(1 + ρ1)Γ(1 + ρ2)
< 1, (3.1)

where P ∗i = ‖Pi‖L∞ ; i = 1, 2, then the coupled system (1.1) has at least one solution defined on J.

Proof. Define the operators Ni : C → C; i = 1, 2 by

(N1u)(x, y) = µ1(x, y)

+
∫ x

1

∫ y
1

(
ln x

s

)r1−1 (
ln y

t

)r2−1 f1(s,t,u(s,t),v(s,t))
s tΓ(r1)Γ(r2) dtds,

(3.2)

and
(N2v)(x, y) = µ2(x, y)

+
∫ x

1

∫ y
1

(
ln x

s

)ρ1−1 (
ln y

t

)ρ2−1 f2(s,t,u(s,t),v(s,t))
s tΓ(ρ1)Γ(ρ2) dtds.

(3.3)

Consider the continuous operator N : C → C defined by

(N(u, v))(x, y) = ((N1u)(x, y), (N2v)(x, y)). (3.4)

First notice that, the hypothesis (H2) implies that

∀u, v ∈ C, f(·, ·, u(·, ·), v(·, ·)) ∈ P (J,E).

From (H3) we have that for all (x, y) ∈ J, the functions(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f1(s, t, u(s, t), v(s, t))

st

and (
ln
x

s

)ρ1−1 (
ln
y

t

)ρ2−1 f2(s, t, u(s, t), v(s, t))

st

are Pettis integrable and thus, the operator N makes sense.

Let R,Ri > 0; i = 1, 2 be such that

R1 > ‖µ1‖C +
P ∗1 (ln a)r1(ln b)r2

Γ(1 + r1)Γ(1 + r2)
, R2 > ‖µ2‖C +

P ∗2 (ln a)ρ1(ln b)ρ2

Γ(1 + ρ1)Γ(1 + ρ2)
,

and R = R1 +R2,
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and consider the set

Q = {(u, v) ∈ C : ‖(u, v)‖C ≤ R and ‖(u, v)(x1, y1)− (u, v)(x2, y2)‖E
≤ ‖µ1(x1, y1)− µ1(x2, y2)‖E + ‖µ2(x1, y1)− µ2(x2, y2)‖E

+
P ∗1

Γ(1 + r1)Γ(1 + r2)

×[2(ln y2)r2(lnx2 − lnx1)r1 + 2(lnx2)r1(ln y2 − ln y1)r2

+(lnx1)r1(ln y1)r2 − (lnx2)r1(ln y2)r2

−2(lnx2 − lnx1)r1(ln y2 − ln y1)r2 ]

+
P ∗2

Γ(1 + ρ1)Γ(1 + ρ2)

×[2(ln y2)ρ2(lnx2 − lnx1)ρ1 + 2(lnx2)ρ1(ln y2 − ln y1)ρ2

+(lnx1)ρ1(ln y1)ρ2 − (lnx2)ρ1(ln y2)ρ2

−2(lnx2 − lnx1)ρ1(ln y2 − ln y1)ρ2 ]}.

Clearly, the subset Q is closed, convex and equicontinuous. We shall show that the operator N satisfies all
the assumptions of Theorem 2.11. The proof will be given in several steps.

Step 1. N maps Q into itself.
Let u, v ∈ Q, (x, y) ∈ J and assume that (Niu)(x, y) 6= 0; i = 1, 2. Then there exists φi ∈ E∗; i = 1, 2 such
that ‖(Niu)(x, y)‖E = φi((Nu)(x, y)). Thus

‖(N1u)(x, y)‖E

= φ1

(
µ1(x, y) +

1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1

×f1(s, t, u(s, t), v(s, t))

st
dtds

)
= φ1(µ1(x, y)) + φ1

(
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1

×f1(s, t, u(s, t), v(s, t))

st
dtds

)
≤ ‖µ1(x, y)‖E +

1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 P1(s, t)

st
dtds

≤ ‖µ1‖C +
P ∗1 (ln a)r1(ln b)r2

Γ(1 + r1)Γ(1 + r2)

≤ R1.
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Also, we get

‖(N2v)(x, y)‖E

= φ2

(
µ2(x, y) +

1

Γ(ρ1)Γ(ρ2)

∫ x

1

∫ y

1

(
ln
x

s

)ρ1−1 (
ln
y

t

)ρ2−1

×f2(s, t, u(s, t), v(s, t))

st
dtds

)
= φ2(µ2(x, y)) + φ2

(
1

Γ(ρ1)Γ(ρ2)

∫ x

1

∫ y

1

(
ln
x

s

)ρ1−1 (
ln
y

t

)ρ2−1

×f2(s, t, u(s, t), v(s, t))

st
dtds

)
≤ ‖µ2(x, y)‖E +

1

Γ(ρ1)Γ(ρ2)

∫ x

1

∫ y

1

(
ln
x

s

)ρ1−1 (
ln
y

t

)ρ2−1 P2(s, t)

st
dtds

≤ ‖µ2‖C +
P ∗2 (ln a)ρ1(ln b)ρ2

Γ(1 + ρ1)Γ(1 + ρ2)

≤ R2.

Thus,
‖(N(u, v))(x, y)‖E ≤ R1 +R2 = R.

Next, let (x1, y1), (x2, y2) ∈ J be such that x1 < x2 and y1 < y2, and let u, v ∈ Q, with (N1u)(x1, y1)−
(N1u)(x2, y2) 6= 0 and (N2v)(x1, y1)− (N2v)(x2, y2) 6= 0. Then there exists φi ∈ E∗; i = 1, 2 with ‖ϕi‖ = 1
such that

‖(N1u)(x1, y1)− (N1u)(x2, y2)‖E = φ1((N1u)(x1, y1)− (N1u)(x2, y2))

and
‖(N2v)(x1, y1)− (N2v)(x2, y2)‖E = φ1((N2v)(x1, y1)− (N2v)(x2, y2)).

Then
‖(N1u)(x2, y2)− (N1u)(x1, y1)‖E
= φ1((N1u)(x2, y2)− (N1u)(x1, y1))
≤ ‖µ1(x1, y1)− µ1(x2, y2)‖E

+ 1
Γ(r1)Γ(r2)

∫ x1
1

∫ y1
1

[∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1 −
∣∣ln x1

s

∣∣r1−1 ∣∣ln y1
t

∣∣r2−1
]

× |φ1(f1(s,t,u(s,t),v(s,t)))|
st dtds

+ 1
Γ(r1)Γ(r2)

∫ x2
x1

∫ y2
y1

∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1 |φ1(f1(s,t,u(s,t),v(s,t)))|
st dtds

+ 1
Γ(r1)Γ(r2)

∫ x1
1

∫ y2
y1

∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1 |φ1(f1(s,t,u(s,t),v(s,t)))|
st dtds

+ 1
Γ(r1)Γ(r2)

∫ x2
x1

∫ y1
1

∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1 |φ1(f(s,t,u(s,t),v(s,t)))|
st dtds.

This gives
‖(N1u)(x2, y2)− (N1u)(x1, y1)‖E ≤ ‖µ1(x1, y1)− µ1(x2, y2)‖E

+ 1
Γ(r1)Γ(r2)

∫ x1
1

∫ y1
1

[∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1

−
∣∣ln x1

s

∣∣r1−1 ∣∣ln y1
t

∣∣r2−1
]
P ∗1
st dtds

+ 1
Γ(r1)Γ(r2)

∫ x2
x1

∫ y2
y1

∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1 P ∗1
st dtds

+ 1
Γ(r1)Γ(r2)

∫ x1
1

∫ y2
y1

∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1 P ∗1
st dtds

+ 1
Γ(r1)Γ(r2)

∫ x2
x1

∫ y1
1

∣∣ln x2
s

∣∣r1−1 ∣∣ln y2
t

∣∣r2−1 P ∗1
st dtds

≤ ‖µ1(x1, y1)− µ1(x2, y2)‖E
+

P ∗1
Γ(1+r1)Γ(1+r2) [2(ln y2)r2(lnx2 − lnx1)r1 + 2(lnx2)r1(ln y2 − ln y1)r2

+(lnx1)r1(ln y1)r2 − (lnx2)r1(ln y2)r2

−2(lnx2 − lnx1)r1(ln y2 − ln y1)r2 ].
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Also,
‖(N2v)(x2, y2)− (N2v)(x1, y1)‖E ≤ ‖µ2(x1, y1)− µ2(x2, y2)‖E

+
P ∗2

Γ(1+ρ1)Γ(1+ρ2) [2(ln y2)ρ2(lnx2 − lnx1)ρ1 + 2(lnx2)ρ1(ln y2 − ln y1)ρ2

+(lnx1)ρ1(ln y1)ρ2 − (lnx2)ρ1(ln y2)ρ2

−2(lnx2 − lnx1)ρ1(ln y2 − ln y1)ρ2 ].

Thus,
‖(N(u, v))(x2, y2)− (N(u, v))(x1, y1)‖E
≤ ‖µ1(x1, y1)− µ1(x2, y2)‖E + ‖µ2(x1, y1)− µ2(x2, y2)‖E

+
P ∗1

Γ(1+r1)Γ(1+r2) [2(ln y2)r2(lnx2 − lnx1)r1 + 2(lnx2)r1(ln y2 − ln y1)r2

+(lnx1)r1(ln y1)r2 − (lnx2)r1(ln y2)r2

−2(lnx2 − lnx1)r1(ln y2 − ln y1)r2 ]

+
P ∗2

Γ(1+ρ1)Γ(1+ρ2) [2(ln y2)ρ2(lnx2 − lnx1)ρ1 + 2(lnx2)ρ1(ln y2 − ln y1)ρ2

+(lnx1)ρ1(ln y1)ρ2 − (lnx2)ρ1(ln y2)ρ2

−2(lnx2 − lnx1)ρ1(ln y2 − ln y1)ρ2 ].

Hence N(Q) ⊂ Q.

Step 2. N is weakly-sequentially continuous.
Let (un, vn) be a sequence in Q and let (un(x, y)) → u(x, y) and (vn(x, y)) → v(x, y) in (E,ω) for each
(x, y) ∈ J. Fix (x, y) ∈ J. Since fi; i = 1, 2 satisfy the assumption (H1), then for each i ∈ {1, 2} the function
fi(x, y, un(x, y), vn(x, y)) converges weakly uniformly to fi(x, y, u(x, y), v(x, y)). Hence the Lebesgue domi-
nated convergence theorem for Pettis integral implies that for each (x, y) ∈ J, the sequence (N1un)(x, y) con-
verges weakly uniformly to (N1u)(x, y) in (E,ω), and (N2vn)(x, y) converges weakly uniformly to (N2v)(x, y)
in (E,ω). So N(un)→ N(u). Then N : Q→ Q is weakly-sequentially continuous.

Step 3. The implication (2.1) holds.
Let V be a subset of Q such that V = conv(N(V ) ∪ {0}). Obviously

V (x, y) ⊂ conv(NV )(x, y)) ∪ {0}), (x, y) ∈ J.

Further, as V is bounded and equicontinuous, by Lemma 3 in [13] the function (x, y)→ v(x, y) = β(V (x, y))
is continuous on J. Since the functions µi; i = 1, 2 are continuous on J, the set {µ(x, y); (x, y) ∈ J} ⊂ E is
compact. From (H3), Lemma 2.10 and the properties of the measure β, for any (x, y) ∈ J, we have

v(x, y) ≤ β((NV )(x, y) ∪ {0})
≤ β((NV )(x, y))

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣ln x
s

∣∣∣r1−1 ∣∣∣ln y
t

∣∣∣r2−1 P1(s, t)β(V (s, t))

st
dtds

+
1

Γ(ρ1)Γ(ρ2)

∫ x

1

∫ y

1

∣∣∣ln x
s

∣∣∣ρ1−1 ∣∣∣ln y
t

∣∣∣ρ2−1 P2(s, t)β(V (s, t))

st
dtds

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣ln x
s

∣∣∣r1−1 ∣∣∣ln y
t

∣∣∣r2−1 P1(s, t)v(s, t)

st
dtds

+
1

Γ(ρ1)Γ(ρ2)

∫ x

1

∫ y

1

∣∣∣ln x
s

∣∣∣ρ1−1 ∣∣∣ln y
t

∣∣∣ρ2−1 P2(s, t)v(s, t)

st
dtds

≤ ‖v‖C
Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣ln x
s

∣∣∣r1−1 ∣∣∣ln y
t

∣∣∣r2−1 P1(s, t)

st
dtds

+
‖v‖C

Γ(ρ1)Γ(ρ2)

∫ x

1

∫ y

1

∣∣∣ln x
s

∣∣∣ρ1−1 ∣∣∣ln y
t

∣∣∣ρ2−1 P2(s, t)

st
dtds

≤
(
P ∗1 (ln a)r1(ln b)r2

Γ(1 + r1)Γ(1 + r2)
+

P ∗2 (ln a)ρ1(ln b)ρ2

Γ(1 + ρ1)Γ(1 + ρ2)

)
‖v‖C .
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Thus
‖v‖ ≤ L‖v‖C .

From (3.1), we get ‖v‖C = 0, that is, v(x, y) = β(V (x, y)) = 0, for each (x, y) ∈ J and then by Theorem 2
in [29], V is weakly relatively compact in C. Applying now Theorem 2.11, we conclude that N has a fixed
point which is a solution of the coupled system (1.1).

4. An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖E =

∞∑
n=1

|un|.

We consider the following coupled system of partial Pettis Hadamard integral equations, for (x, y) ∈ [1, e]2,
un(x, y) = µ1(x, y) +

∫ x
1

∫ y
1

(
ln x

s

)r1−1 (
ln y

t

)r2−1 fn(s,t,u(s,t),v(s,t))
stΓ(r1)Γ(r2) dtds,

vn(x, y) = µ2(x, y) +
∫ x

1

∫ y
1

(
ln x

s

)ρ1−1 (
ln y

t

)ρ2−1 gn(s,t,u(s,t),v(s,t))
stΓ(ρ1)Γ(ρ2) dtds,

(4.1)

where r1, r2, ρ1, ρ2 > 0, µ1(x, y) = x+ y2, µ2(x, y) = x2 + y,

fn(x, y, u(x, y), v(x, y)) =
cxy2

1 + ‖u(x, y)‖E + ‖v(x, y)‖E

(
e−7 +

1

ex+y+5

)
un(x, y)

and

gn(x, y, u(x, y), v(x, y)) =
2cx2y−6

1 + ‖u(x, y)‖E + ‖v(x, y)‖E
vn(x, y),

with
u = (u1, u2, . . . , un, . . .), v = (v1, v2, . . . , vn, . . .),

and

c :=
e4

8
Γ(1 + r1)Γ(1 + r2).

Set
f = (f1, f2, . . . , fn, . . .), g = (g1, g2, . . . , gn, . . .).

Clearly, the functions f and g are continuous.
For each u, v ∈ E and (x, y) ∈ [1, e]× [1, e], we have

‖f(x, y, u(x, y), v(x, y))‖E ≤ cxy2

(
e−7 +

1

ex+y+5

)
.

and
‖g(x, y, u(x, y), v(x, y))‖E ≤ cx2y−6.

Hence, the hypothesis (H3) is satisfied with P ∗1 = P ∗2 = 2ce−4. We shall show that condition (3.1) holds with
a = b = e. Indeed,

P ∗1 (ln a)r1(ln b)r2

Γ(1 + r1)Γ(1 + r2)
+

P ∗2 (ln a)ρ1(ln b)ρ2

Γ(1 + ρ1)Γ(1 + ρ2)
=

2c

e4Γ(1 + r1)Γ(1 + r2)

+
2c

e4Γ(1 + ρ1)Γ(1 + ρ2)

=
1

2
< 1.
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A simple computation shows that all conditions of Theorem 3.2 are satisfied. It follows that the coupled
system (4.1) has at least one solution on [1, e]× [1, e].
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Abstract

In this paper fixed points of α-admissible contraction mappings of Geraghty type defined on Branciari b-
metric spaces are studied. Existence and uniqueness theorems for these types of mappings of are proved.
Some consequences of these theorems are given and specific examples are presented.
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1. Introduction and preliminaries

Branciari metric spaces are among the recent generalizations of metric spaces and have been defined
by Branciari [3]. The main feature of these spaces is the replacement of the triangular inequality by a
rectangular inequality. The Branciari metric spaces are also referred to as rectangular or generalized metric
spaces. Another recent generalization of the metric spaces called b-metric spaces has been introduced by
Czerwik [4] and Bakhtin [2]. The difference between metric and b-metric shows itself in the triangle inequality
which contains a constant s ≥ 1. Combining these two concepts, George et.al. [5] defined Branciari b-metric
spaces. This new metric space is also referred to as rectangular b-metric spaces. Several articles related with
this new metric space have been published recently [5, 11, 7].

In this paper we discuss the problem of existence and uniqueness of fixed points for contraction mappings
of Geraghty type defined on Branciari b-metric spaces.

We first introduce the basic notions used throughout the paper.
Branciari metric spaces are defined as follows [3].

Email address: inci.erhan@atilim.edu.tr (İnci M. Erhan)

Received August 22, 2017, Accepted December 9, 2017.



Erhan, Adv. Theory Nonlinear Anal. Appl. 1 (2017) , 147-160 148

Definition 1.1. [3] Let X be a nonempty set and let d : X × X → [0,+∞) be a function such that for
all x, y ∈ X and all distinct u, v ∈ X each of which is different from x and y, the following conditions are
satisfied:

(1.) d(x, y) = 0 if and only if x = y;

(2.) d(x, y) = d(y, x);

(3.) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).
The map d is called a Branciari metric and the pair (X, d) is called a Branciari metric space.

Czerwik [4] and Bakhtin [2] defined the b-metric spaces as follows.

Definition 1.2. [2, 4] Let X be a nonempty set and let d : X ×X → [0,+∞) be a mapping satisfying the
following conditions for all x, y, z ∈ X:

(1.) d(x, y) = 0 if and only if x = y;

(2.) d(x, y) = d(y, x);

(3.) d(x, y) ≤ s[d(x, z) + d(z, y)] for some real number s ≥ 1.
Then the mapping d is called a b-metric and the pair (X, d) is called a b-metric space with a constant

s ≥ 1.

Combination of the Branciari and b-metric spaces results in the following definition of the Branciari
b-metric spaces.

Definition 1.3. [5] Let X be a nonempty set and let d : X × X → [0,+∞) be a function such that for
all x, y ∈ X and all distinct u, v ∈ X each of which is different from x and y, the following conditions are
satisfied:

(1.) d(x, y) = 0 if and only if x = y;

(2.) d(x, y) = d(y, x);

(3.) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] for some real number s ≥ 1.
The map d is called a Branciari b-metric and the pair (X, d) is called a Branciari b-metric space with a

constant s ≥ 1.

Convergent sequence, Cauchy sequence, completeness and continuity on Branciari b-metric space are
defined as follows.

Definition 1.4. [5] Let (X, d) be a Branciari b-metric space, {xn} be a sequence in X and x ∈ X. Then

1. A sequence {xn} ⊂ X is said to converge to a point x ∈ X if, for every ε > 0 there exists n0 ∈ N such
that d(xn, x) < ε for all n > n0. The convergence is also represented as

lim
n→∞

xn = x or xn → x as n→∞.

2. A sequence {xn} ⊂ X is said to be a Cauchy sequence if, for every ε > 0 there exists n0 ∈ N such that
d(xn, xn+p) < ε for all n > n0, p > 0 or equivalently, if limn→∞ d(xn, xn+p) = 0 for all p > 0.

3. (X, d) is said to be a complete Branciari b-metric space if every Cauchy sequence in X converges to
some x ∈ X.

4. A mapping T : X → X on is said to be continuous with respect to the Branciari b-metric d if,
for any sequence {xn} ⊂ X which converges to some x ∈ X, that is lim

n→∞
d(xn, x) = 0 we have

lim
n→∞

d(Txn, Tx) = 0.

One should be careful when working with the Branciari and Branciari b-metric spaces due to some of
their properties listed below.
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Remark 1.5. Let (X, d) be a Branciari or Branciari b-metric space.

1. If we denote an open ball of radius r centered at x ∈ X as

Br(x, r) = {y ∈ X : |d(x, y) < r},

such an open ball in (X, d) is not always an open set.
2. If T is the collection of all subsets Y of X such that for each y ∈ Y there exist r > 0 with Br(y) ⊆ Y,

then T defines a topology for (X, d), which is not necessarily Hausdorff.
3. The limit of a convergent sequence {xn} ∈ X is not necessarily unique.
4. A convergent sequence in X is not necessarily a Cauchy sequence.
5. Branciari or Branciari b-metric is not necessarily continuous.

All these drawbacks are illustrated in the following example inspired by [5].

Example 1.6. [5] Let A =

{
1

n
, n ∈ N

}
, B = {0, 3} and X = A∪B. Define the function d(x, y) : X ×X →

[0,∞) such that d(x, y) = d(y, x) in the following way.

d(x, y) =


0 if x = y,
4 if x, y ∈ A,
1

n
if x ∈ A, y ∈ B,

2 if x, y ∈ B.

It is not difficult to see that the function d(x, y) is not a metric, not a b-metric, not a Branciary metric
but only a Branciari b-metric with s = 2. It is also clear that

lim
n→∞

d(
1

2n
, 0) = lim

n→∞

1

2n
= 0,

and
lim
n→∞

d(
1

2n
, 3) = lim

n→∞

1

2n
= 0,

that is, the sequence { 1

2n
} has two different limits, the numbers 0 and 3.

In addition, the sequence { 1

2n
} is convergent, but not a Cauchy sequence because

lim
p→∞

d(xn, xn+p) = lim
p→∞

d(
1

2n
,

1

2n+ 2p
) = lim

n→∞
4 = 4.

Finally, note that the open set B1(
1
3) contains 0, that is B1(

1
3) = {0, 3,

1
3}, but there is no positive r for

which Br(0) ⊂ B1(
1
3).

Therefore, when working on Branciari metric space, we need the following property stated in proved in
[10].

Proposition 1.7. [10] Let {xn} be a Cauchy sequence in a Branciari metric space (X, d) such that limn→∞ d(xn, x) =
0, where x ∈ X. Then limn→∞ d(xn, y) = d(x, y), for all y ∈ X. In particular, the sequence {xn} does not
converge to y if y 6= x.

Remark 1.8. The Proposition 1.7 is valid if we replace Branciari metric space by a Branciari b-metric space.
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Geraghty type contraction mappings have been introduced by Geraghty [6] who defined a class F of
functions β : [0,∞)→ [0, 1) satisfying

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0,

and with the help of these functions defined contraction mappings in the following manner.
Let (X, d) be a metric space and let T : X → X be a mapping satisfying

d(Tx, Ty) ≤ β(d(x, y))d(x, y), (1.1)

for all x, y ∈ X and some function β ∈ F . He proved the existence and uniqueness of fixed points of such
contractions on metric spaces.

In the context of b-metric spaces, Geraghty type contractions have been modified as follows [7]. Let Fs

be the class of functions β : [0,∞)→ [0,
1

s
) for which

lim
n→∞

β(tn) =
1

s
implies lim

n→∞
tn = 0, (1.2)

holds for some s ≥ 1. On a b-metric space (X, d) with a constant s ≥ 1 Geraghty type contraction is a self
mapping T : X → X satisfying

d(Tx, Ty) ≤ β(d(x, y))d(x, y), (1.3)

for all x, y ∈ X and some function β ∈ Fs.
As examples of functions from the class Fs we can give the following functions.

Example 1.9.

The function β : [0,∞)→ [0,
1

s
) defined as β(t) = exp(−t)

s for some s ≥ 1is in the class Fs .

The function β : [0,∞)→ [0,
1

s
) defined as β(t) = 1

s(1+t2)
is in the class Fs.

Finally, we recall the concept of α-admissible mappings defined by Samet et al [12].

Definition 1.10. A mapping T : X → X is called α-admissible if for all x, y ∈ X we have

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1, (1.4)

where α : X ×X → [0,∞) is a given function.

2. Geraghty contractions on Branciari b-metric spaces

In many recent publications on fixed point on b-metric, quasi b-metric, Branciari b-metric, b-metric
like spaces etc., the authors modify the contractive condition and the auxiliary functions involved in these
conditions by taking into account the constant s ≥ 1 of the space. In this sense, the Banach contractive
condition on b-metric and related spaces becomes

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X

where 0 < k < 1
s .

In this paper, we deal with contractions of Geraghty type on Branciari b-metric spaces.
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Definition 2.1. Let (X, d) be a Branciari b-metric space with a constant s ≥ 1 and let α : X ×X → [0,∞)
and β ∈ Fs be two given functions. A generalized Geraghty type α-admissible contractive mapping
T : X → X is of type (I) if it is α-admissible and satisfies

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X, (2.1)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

We will first prove an existence theorem for fixed point of the class of contractive mappings given in
Definition 2.1.

Theorem 2.2. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and α : X ×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be a continuous α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X, (2.2)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1. Then T has a fixed point.

Proof. Choosing x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1 we define the sequence {xn} as

xn+1 = Txn for n ∈ N.

Suppose that xn 6= xn+1 for all n ≥ 0. Otherwise, for some k ∈ N we would have xk = xk+1 = Txk, that is,
xk would be a fixed point of T and the proof would be completed.

Since T is α-admissible, from α(x0, Tx0) ≥ 1 we have

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1,

and inductively,
α(xn, xn+1) ≥ 1, for all n ∈ N. (2.3)

Also, from the condition α(x0, T 2x0) ≥ 1 we have

α(x0, x2) = α(x0, T
2x0) ≥ 1⇒ α(Tx0, Tx2) = α(x1, x3) ≥ 1,

and hence,
α(xn, xn+2) ≥ 1, for all n ∈ N. (2.4)

We define the sequences {dn} and {en} as

dn = d(xn−1, xn), en = d(xn−1, xn+1). (2.5)

We will prove that both the sequence {dn} and {en} converge to 0, that is,

lim
n→∞

d(xn−1, xn) = lim
n→∞

d(xn−1, xn+1) = 0 (2.6)

Regarding (2.3) and the fact that 0 ≤ β(t) <
1

s
, the contractive condition (2.23) with x = xn and

y = xn+1 becomes

d(xn, xn+1) = d(Txn−1, Txn)
≤ α(xn−1, xn)d(Txn−1, Txn)
≤ β(M(xn−1, xn))M(xn−1, xn) <

1

s
M(xn−1, xn),

(2.7)
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for all n ≥ 1, where

M(xn−1, xn) = max {d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)}
= max {d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}
= max {d(xn−1, xn), d(xn, xn+1)} .

Suppose that M(xn−1, xn) = d(xn, xn+1) for some n ≥ 1. Then we have

d(xn, xn+1) ≤ β(d(xn, xn+1))d(xn, xn+1) <
1

s
d(xn, xn+1),

which is not possible. Therefore, for all n ≥ 1 M(xn−1, xn) = d(xn−1, xn). In this case, the inequality (2.7)
implies

d(xn, xn+1) ≤ β(d(xn−1, xn))d(xn−1, xn) <
1
sd(xn−1, xn)

≤ d(xn−1, xn), for all n ≥ 1.
(2.8)

In other words, the sequence {dn} = {d(xn−1, xn)} is positive and decreasing and hence, converges to
some d ≥ 0. If we take limit as n→∞ in (2.8) we obtain

d = lim
n→∞

dn+1 ≤ lim
n→∞

β(dn)dn = d lim
n→∞

β(dn) ≤
1

s
d. (2.9)

This implies limn→∞ β(dn) =
1

s
and hence, by (1.2),

lim
n→∞

dn = lim
n→∞

d(xn−1, xn) = 0. (2.10)

On the other hand, we observe that repeated application of (2.8) leads to

dn+1 <
1

s
dn <

1

s2
dn−1 < · · · <

1

sn+1
d0. (2.11)

Now, taking into account (2.4), we substitute x = xn−1 and x = xn+1 in (2.23). This yields

d(xn, xn+2) = d(Txn−1, Txn+1)
≤ α(xn−1, xn+1)d(Txn−1, Txn+1)

≤ β(M(xn−1, xn+1))M(xn−1, xn+1) <
1

s
M(xn−1, xn+1),

(2.12)

for all n ≥ 1, where

M(xn−1, xn+1) = max {d(xn−1, xn+1), d(xn−1, Txn−1), d(xn+1, Txn+1)}
= max {d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)} ,

(2.13)

Regarding (2.8), the maximum M(xn−1, xn+1) is either d(xn−1, xn+1) or d(xn−1, xn), that is, either en or
dn. From the inequality (2.12) we have

en+1 = d(xn, xn+2) <
1

s
M(en) =

1

s
max{en, dn} (2.14)

for all n ∈ N. In addition, from (2.8) we have

dn+1 < dn ≤ max{en, dn},

from which we deduce
max{en+1, dn+1} ≤ max{en, dn} for all n ≥ 1,
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that is, the sequence {max{en, dn}} is non increasing and hence, it converges to some l ≥ 0. Assume that
l > 0. Taking into account (2.10) we obtain

l = limn→∞max{en, dn} = max{limn→∞ en, limn→∞ dn}
= max{limn→∞ en, 0} = limn→∞ en.

On the other hand, letting n→∞ in (2.14) we conclude

l = lim
n→∞

en+1 < lim
n→∞

max{en, dn} = l,

which contradicts the assumption l > 0. Hence, l = 0, and then we have

lim
n→∞

en = lim
n→∞

d(xn−1, xn+1) = 0. (2.15)

Next, we will prove that xn 6= xm for all n 6= m. Assume that xn = xm for some m,n ∈ N with n 6= m.
By the initial assumption, we have d(xn, xn+1) > 0 for each n ∈ N. Without loss of generality we may take
m > n+ 1. The assumption xn = xm implies

d(xn, Txn) = d(xm, Txm).

Recalling the inequality (2.7) we have

d(xn, xn+1) = d(xn, Txn) = d(xm, Txm)
= d(Txm−1, Txm) ≤ α(xm−1, xm)d(Txm−1, Txm)

≤ β(M(xm−1, xm))M(xm−1, xm) <
1

s
M(xm−1, xm),

(2.16)

where
M(xm−1, xm) = max {d(xm−1, xm), d(xm−1, Txm−1), d(xm, Txm)}

= max {d(xm−1, xm), d(xm−1, xm), d(xm, xm+1)}
= max {d(xm−1, xm), d(xm, xm+1)} = d(xm−1, xm),

(2.17)

because of (2.8). Then we have,

d(xm, xm+1) <
1

s
d(xm−1, xm) ≤ d(xm−1, xm),

for all m > n+ 1. Continuing the process we conclude,

d(xm, xm+1) < d(xm−1, xm) < d(xm−1, xm) < . . . < d(xn, xn+1), (2.18)

which contradicts the assumption xn = xm for some m 6= n. Therefore, our initial assumption is incorrect
and we should have xn 6= xm for all m 6= n.

Now we will prove that {xn} is a Cauchy sequence, that is,

lim
n→∞

d(xn, xn+k) = 0, for all k ∈ N. (2.19)

Notice that (2.19) holds for k = 1 and k = 2 due to (2.10) and (2.15). Therefore, we assume that k ≥ 3. We
consider separately the cases with odd and even k ∈ N.

Case 1. Let k = 2m+ 1 where m ≥ 1. We have xl 6= xs for all l 6= s and xl 6= xl+1 for all l ≥ 0, so that
we can apply repeatedly the condition 3. in Definition 1.3 which implies

d(xn, xn+k) = d(xn, xn+2m+1) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)]
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]
...
≤ s[d(xn, xn+1) + d(xn+1, xn+2)] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)]
+ s3[d(xn+4, xn+5) + d(xn+5, xn+6)] + . . .+ sm+1[d(xn+2m, xn+2m+1)]
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)
+ . . .+ sn+2m−1d(xn+2m, xn+2m+1).
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Then, by the inequality (2.11) we conclude

d(xn, xn+k) ≤
1

sn−1
d(x0, x1) +

1

sn
d(x0, x1) + . . .+

1

sn+2m
d(x0, x1)

= d(x0, x1)

[
n+2m∑
k=0

1

sk
−

n−2∑
k=0

1

sk

]
= d(x0, x1)

[
sn+2m+1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
.

Letting n→∞ in the last inequality we obtain

0 ≤ lim
n→∞

d(xn, xn+k) ≤ lim
n→∞

d(x0, x1)

[
sn+2m+1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
= 0. (2.20)

Case 2. Let k = 2m where m ≥ 2. Again, repeated application of the inequality 3. in Definition 1.3 yields

d(xn, xn+k) = d(xn, xn+2m) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]
+ s2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m)]
...
≤ s[d(xn, xn+1) + d(xn+1, xn+2)] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)]
+ . . .+ sm−1 [d(xn+2m−4, xn+2m−3) + d(xn+2m−3, xn+2m−2)
+ d(xn+2m−2, xn+2m)]
≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)
+ . . .+ sn+2m−3d(xn+2m−3, xn+2m−2) + sm−1d(xn+2m−2, xn+2m).

By the inequality in (2.11), we have

d(xn, xn+k) ≤
1

sn−1
d(x0, x1) +

1

sn
d(x0, x1) + . . .+

1

sn+2m−2d(x0, x1)

+ sm−1d(xn+2m−2, xn+2m)

= d(x0, x1)

[
n+2m−2∑

k=0

1

sk
−

n−2∑
k=0

1

sk

]
+ sm−1d(xn+2m−2, xn+2m)

= d(x0, x1)

[
sn+2m−1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
+ sm−1d(xn+2m−2, xn+2m).

(2.21)

From (2.15) we have lim
n→∞

sm−1d(xn+2m−2, xn+2m) = 0 and hence, letting n→∞ in (2.21) we deduce

0 ≤ lim
n→∞

d(xn, xn+k)

= limn→∞

{
d(x0, x1)

[
sn+2m−1 − 1

sn+2m(s− 1)
− sn−1 − 1

sn−2(s− 1)

]
+ sm−1d(xn+2m−2, xn+2m)

}
= 0.

As a result, for any k ∈ N, we have
lim
n→∞

d(xn, xn+k) = 0,

that is, the sequence {xn} is a Cauchy sequence in (X, d). Since (X, d) is a complete Branciari b-metric
space, there exists u ∈ X such that

lim
n→∞

d(xn, u) = 0. (2.22)

Since T is a continuous mapping, then, from (2.22) we have

lim
n→∞

d(Txn, Tu) = lim
n→∞

d(xn+1, Tu) = 0,
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that is, the sequence {xn} converges to Tu. Then the Proposition 1.7 implies that Tu = u, that is, u is a
fixed point of T .

Adding an additional condition to the statement of the Theorem 2.2, we can prove the uniqueness of the
fixed point.

Theorem 2.3. Let all the conditions of Theorem 2.2 hold. Assume that for every pair x and y of fixed points
of T , α(x, y) ≥ 1. Then the fixed point of the mapping T is unique.

Proof. Since the existence of a fixed point is already proved in Theorem 2.2, we need to prove only the
uniqueness. Assume that the map T has two distinct fixed points, say x, y ∈ X, such that x 6= y, or
d(x, y) > 0. We put these two points in the contractive condition (2.23) and use the fact that α(x, y) ≥ 1
which gives

d(x, y) = α(x, y)d(Tx, Ty) ≤ β(M(x, y))M(x, y) <
1

s
M(x, y),

where,
M(x, y) = max{d(x, y), d(Tx, x), d(Ty, y)} = d(x, y).

This implies

d(x, y) <
1

s
d(x, y),

which is a contradiction and hence, d(x, y) = 0, or, x = y. This completes the proof of the uniqueness.

In the next theorem we replace the continuity of the mapping T by the so-called α-regularity of the
Branciari b-metric space.

Theorem 2.4. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and α : X ×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X, (2.23)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) For any sequence {xn} ⊂ X such that limn→∞ d(xn, x) = 0 and satisfying α(xn, xn+1) ≥ 1 for all

n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

Proof. Taking x0 ∈ X as the element satisfying the condition (i), we construct the sequence {xn} as usual,
that is, xn = Txn−1, for n ∈ N.

The convergence of this sequence can be shown exactly as in the proof of Theorem 2.2.
Let u be the limit of {xn}, that is,

lim
n→∞

d(xn, u) = 0.

We will show that u is a fixed point of T . For the sequence {xn} which converges to u we have from (2.3)
that α(xn, xn+1) ≥ 1 for all n ∈ N0. Then, the condition (ii) in the statement of the theorem implies that

α(xn, u) ≥ 1, for all n ∈ N0.
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We write the contractive inequality (2.23) for xn and u, that is,

d(xn+1, Tu) = d(Txn, Tu) ≤ α(xn, u)d(Txn, Tu)
≤ β(M(xn, u))M(xn, u) <

1

s
M(xn, u),

(2.24)

where
M(xn, u) = max{d(xn, u), d(xn, xn+1), d(u, Tu)}.

Since the sequence {xn} is Cauchy and limn→∞ d(xn, u) = 0, by the Proposition 1.7 we have,

lim
n→∞

d(xn+1, Tu) = d(u, Tu). (2.25)

On the other hand,

lim
n→∞

M(xn, u) = lim
n→∞

max{d(xn, u), d(xn, xn+1), d(u, Tu)} = d(u, Tu). (2.26)

Therefore, by letting n→∞ in (2.24) and regarding (2.25) and (2.26) we obtain

d(u, Tu) = lim
n→∞

d(xn+1, Tu) <
1

s
lim
n→∞

M(xn, u) =
1

s
d(u, Tu). (2.27)

This yields d(u, Tu) = 0, hence, u is a fixed point of T . We skip the uniqueness proof since it is identical to
the proof of Theorem 2.3.

We next define another class of Geraghty type mappings on Branciari b-metric spaces.

Definition 2.5. Let (X, d) be a Branciari b-metric space with a constant s ≥ 1 and let α : X ×X → [0,∞)
and β ∈ Fs be two given functions. A generalized Geraghty type α-admissible contractive mapping
T : X → X is of type (II) if it is α-admissible and satisfies

α(x, y)d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X, (2.28)

where
N(x, y) = max{d(x, y), 1

2s
[d(x, Tx) + d(y, Ty)]}.

Remark 2.6. For all x, y ∈ X the relation d(x, y) ≤ N(x, y) ≤M(x, y) holds.

An existence-uniqueness theorem for the class of contraction mappings introduced in Definition 2.5 is
stated below. We observe that the proof of this theorem is trivial once we take into account the Remark 2.6.

Theorem 2.7. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let α : X×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X,

where
N(x, y) = max{d(x, y), 1

2s
[d(x, Tx) + d(y, Ty)]}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or, for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and α(xn, xn+1) ≥ 1

for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.
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By the Remark 2.6 we also easily conclude the following existence-uniqueness result.

Theorem 2.8. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let α : X×X →
[0,∞) and β ∈ Fs be two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (d(x, y)) d(x, y), for all x, y ∈ X.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

3. Consequences

In this section, we give some consequences of the Theorem2.2. First, we notice that a Branciari b-metric
spaces with s = 1 is simply a Branciari metric space.

Corollary 3.1. Let (X, d) be a complete Branciari metric space and let α : X ×X → [0,∞) and β ∈ F be
two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

Corollary 3.2. Let (X, d) be a complete Branciari metric space and let α : X ×X → [0,∞) and β ∈ F be
two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X,

where
N(x, y) = max{d(x, y), 1

2
[d(x, Tx), d(y, Ty)]}.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.
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Corollary 3.3. Let (X, d) be a complete Branciari metric space and let α : X ×X → [0,∞) and β ∈ F be
two given functions. Let T : X → X be an α-admissible mapping satisfying

α(x, y)d(Tx, Ty) ≤ β (d(x, y)) d(x, y), for all x, y ∈ X.

Suppose also that

(i) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T 2x0) ≥ 1.
(ii) Either T is continuous or for any sequence {xn} ⊂ X with limn→∞ d(xn, x) = 0 and satisfying

α(xn, xn+1) ≥ 1 for all n ∈ N, we have α(xn, x) ≥ 1 for all n ∈ N.
(iii) For every pair x and y of fixed points of T , α(x, y) ≥ 1.

Then T has a unique fixed point.

Also the choice α(x, y) = 1 gives fixed point results for self mappings on Branciari b-metric spaces. We
list some of these consequences below.

Corollary 3.4. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let β ∈ Fs be
a given function. Let T : X → X be a continuous self mapping satisfying

d(Tx, Ty) ≤ β (M(x, y))M(x, y), for all x, y ∈ X,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Then T has a unique fixed point.

Corollary 3.5. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let β ∈ Fs be
a given function. Let T : X → X be a continuous self mapping satisfying

d(Tx, Ty) ≤ β (N(x, y))N(x, y), for all x, y ∈ X,

where
N(x, y) = max{d(x, y), 1

2s
[d(x, Tx), d(y, Ty)]}.

Then T has a unique fixed point.

Corollary 3.6. Let (X, d) be a complete Branciari b-metric space with a constant s ≥ 1 and let β ∈ Fs be
a given function. Let T : X → X be a continuous self mapping satisfying

d(Tx, Ty) ≤ β (d(x, y)) d(x, y), for all x, y ∈ X,

Then T has a unique fixed point.

Finally, we give the following example which illustrates the theoretical results discussed above.

Example 3.7. Let X = A ∪ B where A =

{
1

2
,
1

4
,
1

6
,
1

8

}
and B = [1, 2]. Define the function d : X ×X →

[0,∞) such that d(x, y) = d(y, x) as follows.

For x, y ∈ B, or x ∈ A and y ∈ B, d(x, y) = |x− y| and

d(12 ,
1
4) = d(16 ,

1
8) = 0.2

d(12 ,
1
6) = d(14 ,

1
6) = d(14 ,

1
8) = 0.1

d(12 ,
1
8) = 1
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Clearly, d is a Branciari b-metric with s =
10

3
.

Let T : X → X be defined as

Tx =


x
8 if x ∈ B

1
6 if x ∈ A

We see that

d(Tx, Ty =


0 if x, y ∈ A
0.2 if x ∈ A, y = 1
0.1 if x ∈ A, y = 2
0.1 if x, y ∈ B

.

Then, for all x, y ∈ X the mapping T satisfies the condition

d(Tx, Ty) ≤ 3

20
d(x, y) =

1/2

10/3
d(x, y),

Hence, the conditions of the Corollary 3.6 hold with β(t) =
1

2s
=

3

20
and T has a unique fixed point which

is x = 1
6 .

4. Concluding Remarks

The general structure of the mappings discussed in this paper makes it possible to deduce many particular
existence and uniqueness results.

As it was already mentioned, by taking s = 1 and/or α(x, y) = 1 in all the theorems and corollaries,
various existing results on Branciari b-metric and Branciari metric spaces can be obtained.

On the other hand, it should be noticed that by choosing the function α in the definition of α-admissible
mappings in a particular way, it is possible to obtain existence and uniqueness results for maps defined on
partially ordered Branciari or Branciari b-metric space.

Indeed, if we define a partial ordering � on a Branciari b-metric space (X, d) and take T : X → X as an
increasing mapping, we can easily proof the following fixed point theorem.

Theorem 4.1. Let (X, d,�) be a complete Branciari b-metric space with a constant s ≥ 1 on which a partial
ordering � is defined. Suppose that T : X → X is an increasing mapping satisfying the following:

(i)
d(Tx, Ty) ≤ β(M(x, y))M(x, y),

for all x, y in X with x � y and some function β ∈ Fs where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

(ii) There exists x0 ∈ X such that x0 � Tx0 and x0 � T 2x0.
(iii) Either T is continuous or, for any increasing sequence {xn} ∈ X which converges to x we have xn � x

for all n ∈ N.

Then T has a fixed point. If, in addition any two fixed points of T are comparable, that is, x � y or y � x,
then the fixed point of T is unique.

Proof. Observe that all the conditions of Theorems 2.2, 2.3 and 2.4 hold if we choose the function α as

α(x, y) =

{
1 if x � y or y � x
0 if otherwise .

Then, the mapping T has a unique fixed point.

Finally, we note that all the consequent results of Theorems 2.2, 2.3 and 2.4 can be written on Branciari
b-metric spaces with a partial ordering and proved in a similar way.
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