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Abstract  
 

Many systems in physics, engineering, and natural sciences are nonlinear and modeled with nonlinear equations. 

Wave propagation, as a branch of nonlinear science, is one of the most widely studied subjects in recent years. 

Nonlocal elasticity theory represents a common growing technique used for conducting the mechanical analysis 

of microelectromechanical and nanoelectromechanical systems. In this study, nonlinear wave modulation in 

nanorods was examined by means of nonlocal elasticity theory.  The nonlocal constitutive equations of Eringen 

were utilized in the formulation, and the nonlinear equation of motion of nanorods was obtained. By applying the 

multiple scale formalism, the propagation of weakly nonlinear and strongly dispersive waves was investigated, 

and the Nonlinear Schrödinger (NLS) equation was obtained as the evolution equation. A part of spacial solutions 

of the NLS equation, i.e. nonlinear plane wave, solitary wave and phase jump solutions, were presented. In order 

to investigate the nonlocal impacts on the NLS equation numerically, whether envelope solitary wave solutions 

exist was investigated by utilizing the physical and geometric features of carbon nanotubes (CNTs). 

Keywords: Nanorods, nonlinear wave modulation, nonlocal elasticity theory, multiple-scale method. 

1. Introduction 

The accurate characterization of the actual mechanical behavior of nanoscale devices is 

significant in the design of the devices in question, including CNTs. However, the application 

of a classical continuum theory is questionable while carrying out the mechanical analysis of 

carbon nanotubes. The classical continuum theory (classical elasticity theory) is length scale-

free. Hence, it cannot accurately account for very small-sized effects. To eliminate the 

deficiencies of the classical continuum theory, different higher-order continuum theories, such 

as micro-polar elasticity theory [1-4], nonlocal elasticity theory [5-7], couple stress theory [8] 

and the modified couple stress approach [9, 10], have received significant attention in the 

analysis of micro- and nanostructures. Due to the high cost of experiments that operate on the 

nanoscale, it is of vital importance to introduce suitable physical models for nanobeams (carbon 

nanotubes) for the establishment of an appropriate theoretical and mathematical framework for 

nanosized structures [11-13]. Eringen [14] and Eringen and Edelen [15] proposed nonlocal 

elasticity theory in the 1970s for the purpose of overcoming the deficiencies of classical 
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elasticity models. Unlike the conventional theory of elasticity, in the nonlocal theory of 

elasticity, it is assumed that the strain at a particular point in a continuous domain and the strain 

at all points in the domain determine the stress at the point in question. Several studies have 

been performed using this nonlocal model to conduct the analysis of the mechanical behavior 

of nanosized structures [16-18]. 

Wave propagation is a very effective, nondestructive method used for the characterization of 

nanostructures. Nanosensor transducers also work on the wave propagation principle. The wave 

propagation issue has attracted attention around the world [19-25] in various domains of science 

and engineering due to its importance. In the study carried out by Lim and Yang [19], the 

researchers investigated wave propagation in CNTs based on nonlocal elastic stress field theory 

and Timoshenko beam theory and acquired a novel dispersion and spectrum correlation. In the 

study of Hu et al. [20], transverse and torsional waves in single-walled carbon nanotubes 

(SWCNTs) and double-walled carbon nanotubes (DWCNTs) were investigated on the basis of 

nonlocal elastic cylindrical shell theory. The researchers compared the wave dispersion that 

was estimated by utilizing their model with molecular dynamics simulations in the terahertz 

area and concluded that it was possible to acquire a better prediction of dispersion relations by 

the nonlocal model. Wu and Dzenis [26] investigated wave propagation in nanofibers. The 

researchers studied longitudinal and flexural wave propagation in nanofibers by employing 

local theories in terms of surface impacts. Challamel [27] suggested a dispersive wave equation 

by utilizing nonlocal elasticity. The researcher introduced a mixture theory of a local and 

nonlocal strain. Narendar and Gopalakrishnan [28] investigated the nonlocal scale impacts on 

the ultrasonic wave feature of nanorods by employing the nonlocal Love rod theory. In the 

study of Narendar [29], the nonlocal Love-Rayleigh rod theory was used to examine wave 

propagation in uniform nanorods.  

It is well-known that in the case of a sufficiently small amplitude of a wave, a lot of nonlinear 

systems allow for harmonic wave solutions with sufficiently small nonlinear terms for ignoring 

them, and the amplitude stays unchanged over time. In case of a small-but-finite amplitude of 

the wave, it is not possible to ignore the nonlinear terms, which causes an alteration in amplitude 

in space as well as time. In case of the slow variation of the amplitude during the period of 

oscillation, a stretching transformation allows the separation of the system into a quickly 

changing component related to the oscillation and a slowly changing component, for example, 

the amplitude. It is possible to present a formal solution as an asymptotic expansion, and it is 

possible to derive an equation that identifies the modulation of the first order amplitude. For 

example, the nonlinear Schrödinger (NLS) equation represents the most elementary 

representative equation that defines the self-modulation of one-dimensional monochromatic 

plane waves in dispersive media. The equilibrium between dispersion and nonlinearity is 

presented by it. The problem of nonlinear wave modulation was studied by Erbay, Erbay, and 

Dost [30] in micropolar elastic media longitudinal waves. They showed that the nonlinear 

Schrödinger (NLS) equation, originating from the equilibrium between nonlinearity and 

dispersion, governs the nonlinear self-modulation of a longitudinal microrotation wave in 

micropolar elastic media. Erbay and Erbay [31] studied nonlinear self-modulation in distensible 

tubes filled with fluid by utilizing the nonlinear equations of a thin viscoelastic tube and the 

approximate fluid equations. As a result of the study, the researchers indicated that the 

dissipative NLS equation governs the nonlinear modulation of pressure waves. The amplitude 

modulation of the fluid-filled viscoelastic tube was investigated in the study of Akgun and 

Demiray [32], and the dissipative NLS equation was acquired. Furthermore, Akgun and 

Demiray [33] studied the modulation of non-linear axial and transverse waves in a thin elastic 
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tube filled with fluid and obtained nonlinear Schrödinger equation which corresponds to two 

nonlinear equations related to the axial and transverse motions of the tube material. Erbay, 

Erbay, and Erkip [34] studied a unidirectional wave motion in a nonlocally and nonlinearly 

elastic medium. Duruk, Erbay, and Erkip [35] investigated the blow-up and global existence 

for a general class of nonlocal nonlinear coupled wave equations. In the previous studies, 

nonlinear wave modulation in nanotubes has not been considered. 

In this study, the amplitude modulation of nonlinear wave propagation in nanorods based on 

the nonlocal theory was studied by employing the reductive perturbation technique. Firstly, a 

one-dimensional nonlinear field equation was obtained. The linear dispersion relation of axial 

waves was also presented for observing the dispersive characteristic of the medium. It is shown 

that the nonlinear Schrödinger (NLS) equation governs the nonlinear self-modulation of axial 

waves in nonlocal elastic media and it is given as an analytical plane wave, envelope solitary 

wave and a phase jump solution for the NLS equation. For the purpose of numerical 

investigation of the nonlocal impacts on the NLS equation, whether envelope solitary wave 

solutions exist was investigated by utilizing the physical and geometric features of carbon 

nanotubes. 

The organization of the current study is presented below. Section 2 contains information on 

nonlocal elasticity theory and the governing equation of the system. The basics of the method 

of multiple scale formalism and self-modulation of nonlinear waves are discussed in Section 3. 

Section 4 contains the numerical and graphical presentation of the findings. In Section 5, some 

discussions and conclusions are given. 

2. Basic equations and theoretical preliminaries 

In the present section, the basic equation that governs the motion of nanorods in nonlocal elastic 

media should be derived. The constitutive equation of the nonlocal linear vibration of a nanorod 

which is provided by Eringen [15], Aydogdu [17] is as follows;  

[1 − (e0𝑎)2 𝜕

𝜕x2] 𝜏𝑘𝑙 = 𝜆𝐿 εrrδ𝑘𝑙 + 2 𝜇𝐿 ε𝑘𝑙          (1) 

where 𝜏𝑘𝑙 represents the nonlocal stress tensor, ԑ𝑘𝑙 represents the strain tensor, 𝜆𝐿 and 

𝜇𝐿 represent Lame constants, 𝑎 represents the internal characteristic length, and e0 represents a 

constant. From now on, the nonlocal parameter µ will be used as (e0𝑎)2 = µ. 

Selection of the  e0 parameter (in a unit of length) is very important in ensuring the accuracy of 

nonlocal models. It is possible to write Eq.(1) for one-dimensional rod case as follows; 

[1 − µ
𝜕

𝜕x2
] τkl = EE ε𝑘𝑙                       (2) 
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where ΕΕ represents the modulus of elasticity. It is possible to write the equation of motion for 

a rod with axial vibration motion as follows; 

𝜕NL

∂x
= m

∂2u(x,t)

∂t2
                                      (3) 

where u(x,t) denotes the axial displacement, and m gives the mass per unit length, while NL 

provides the axial force per unit length for local elasticity and is presented as follows;  

NL = ∫ σxxdA
 

A
           (4) 

where A represents the cross-sectional area, σxx represents the local stress component in the x-

direction. By taking the area integral of equation (2), the following equation can be obtained;

  

N − µ
𝜕2

𝜕x2 N = NL                   (5) 

Here N = ∫ σxxdA   
 

A
indicates axial force per unit length in nonlocal elasticity. The axial 

vibration equation of the rod in nonlocal elasticity may be reached using equations (3) and (5)  

in terms of the displacement component as follows; 

EEA
𝜕2u

𝜕x2 = [1 − µ
𝜕

𝜕x2]m
∂2u(x,t)

∂t2
           (6) 

The equation above represents the basic equation of the nonlocal rod model for axial vibration 

in a thin rod. In case of µ = e0𝑎 = 0, the reduction of the equation to the equation of the 

classical rod model is performed. To obtain the nonlinear vibration equation of the nanotube in 

an elastic medium, first we introduce the deformation gradient tensor that was described by 

Malvern [36] as follows;                                

F = ∇⃗⃗ u + I                    (7)    

Here, u represents the displacement component of the motion, while I is the unit matrix. If body 

forces on the element are absent in a medium exposed to a finite extension, in terms of material 

coordinates, it is possible to write the equations of motion as follows; 

 ∇. [SFT] = ρ0
∂2u

∂t2
           (8) 

Here ρ0 is the non-deformed density of the medium, while S is the second Piola-Kirchoff stress 

tensor. The second Piola-Kirchoff stress tensor represents a conjugate of the Green strain tensor 
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in terms of energy. Therefore, Hook’s law can be used as the governing equation. The equation 

is written as follows; 

S = cE                                          (9) 

Here, c denotes the fourth-order tensor that represents the elastic behavior of the material, while 

E denotes the Green strain tensor written as follows; 

E =
1

2
[FTF − 1]      (10) 

If limiting the boundary conditions of the rod and assuming only the radial deformation U(x,t) 

take place in the medium, the gradient deformation tensor in the cartesian coordinates becomes 

a diagonal matrix.          

Fxx = 1 +
∂U

∂x
                  (11) 

Fzz = 1                         (12) 

Fyy = 1                                          (13) 

By referring only to the non-zero element in the Green strain tensor, the following equation can 

be obtained: 

Exx = (1 +
1

2

∂U

∂x
)

∂U

∂x
.      (14) 

The stress-strain relations of isotropic materials with the modulus of elasticity EE and Poisson’s 

ratio ν become as follows; 

Sij =
𝐸𝐸

(1+𝜈)
[Eij +

ν

1−2ν
Ekkδij]       (15) 

δij denotes the Kronecker delta. If we replace equation (14) into equation (15), it is observed 

that shear stresses are eliminated, while normal stress elements are shown as below:                      

Sxx =
𝐸𝐸 (1−ν)

(1+ν)(1−2ν)
(1 +

1

2

∂U

∂x
)

∂U

∂x
            (16) 

Syy = Szz =
𝐸𝐸 ν

(1+ν)(1−2ν)
(1 +

1

2

∂U

∂x
)

∂U

∂x
            (17) 
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Equation (8) can be obtained as follows by rearranging equations (16), (17) and using equations 

(11), (12), (13): 

 [(
∂U

∂x
)
2

+ 2
∂U

∂x
+

2

3
]

∂2U

∂x2 =
2ρ0(1+ν)(1−2ν)

3 𝐸𝐸 (1−ν)

∂2U

∂t2
                   (18) 

In a special case, the infinite deformation of the medium, the nonlinear terms in equation (18) 

become insignificant, and equation (18) is reduced to the following equation. 

∂2U

∂x2 =
ρ0(1+ν)(1−2ν)

 𝐸𝐸 (1−ν)

∂2U

∂t2
           (19) 

By making the equation non-dimensional, let us introduce the following non-dimensional 

variables:  

Ψ =
U

𝑟0
                        (21) 

     ζ =
x

𝑟0
         (22) 

here 𝑟0 defines the radius of the rod. If equations (18) and (19) are reorganized by using 

equations (21) and (22), the following non-dimensional equations can be obtained as has been 

described by Mousavi and Fariborz [37] ; 

[(
∂ψ

∂ζ
)
2

+ 2(
∂ψ

∂ζ
) +

2

3
]

∂2ψ

∂ζ2
=

2

3
δ

∂2ψ

∂t2
              (23) 

and 

∂2ψ

∂ζ2
= δ

∂2ψ

∂t2
     (24) 

where the coefficient δ is defined as follows: 

𝛿 =
ρ0 𝑟0

2(1+ν)(1−2ν)

 𝐸𝐸 (1−ν)
.          (25) 

By using Eqs. (2), (8), (16) and (17), the following nonlinear equation of motion in terms of 

nonlocal elasticity is obtained: 
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[(
∂ψ

∂ζ
)
2

+ 2(
∂ψ

∂ζ
) +

2

3
]

∂2ψ

∂ζ2
=

2

3
δ

∂2ψ

∂t2
−

2

3
δ μ 

δ4ψ

δζ2δt2
.      (26) 

A similar equation was obtained by Fernandes et al. [38]. The main difference is that they 

neglected y and z component contributions. 

Setting μ = 0 leads to the nonlinear equation of motion of classical elasticity. 

3. Nonlinear wave modulation in nanorods by using the multiple-scale method 

Finding precise solutions for nonlinear problems is usually hard. This especially applies to 

nonlinear dynamics under the nonlocal elasticity theory due to the apparent complexity of the 

governing equations. Nevertheless, handling nonlinear problems in case of sufficiently weak 

nonlinearity is relatively straightforward. In this situation, evolution equations originating from 

the equilibrium between dispersion and nonlinearity can be obtained using the dispersive nature 

of the medium. As a result of the above-mentioned characteristic, it is possible to apply the far-

field theory of weakly nonlinear waves, the complete development of which has been performed 

in different areas of engineering and physics, to nonlocal elasticity theory in case of equilibrium 

between nonlinearity and dispersion.        

In the present section, the modulation of the axial waves in nonlocal elastic media due to 

nonlinear effects is examined. Therefore, the multiple scale technique [39] is used, and the 

coordinate stretching below is presented: 

𝜁𝑛 = 𝜀𝑛𝜁     ,    𝑡𝑛 = 𝜀𝑛𝑡     ,     (𝑛 = 0,1,2, … )  (27) 

where 𝜀 represents a small parameter measuring the weakness of non-linearity. 

It should be assumed that the field quantities represent the functions of fast variables (ζ, t), as 

well as slow variables (𝜁
0
, 𝜁

1
, 𝜁

2
 , … ; 𝑡0, 𝑡1, 𝑡2, … . ). Therefore, the substitution presented below 

can be performed: 

𝜕

𝜕𝜁
= ∑ 𝜀𝑛 𝜕

𝜕𝜁𝑛

𝑁
𝑛=0           ,         

𝜕

𝜕𝑡
= ∑ 𝜀𝑛 𝜕

𝜕𝑡𝑛

𝑁
𝑛=0                   (28) 

By performing the expansion of the field quantities into an asymptotic series of 𝜀 as: 

ψ = ∑ 𝜀𝑛ψ𝑛
∞
𝑛=1 (𝜁0, 𝜁1, 𝜁2 , … ; 𝑡0, 𝑡1, 𝑡2, … . ) = 𝜀ψ1 + 𝜀2ψ2 + 𝜀3ψ3+…               

(29)  
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and introducing the above-mentioned expansion into Eq. (26), the differential equation 

presented below is acquired. 

[(𝜀
𝜕ψ1

𝜕𝜁0
)
2

+ 2𝜀3 𝜕ψ1

𝜕𝜁0

𝜕ψ1

𝜕𝜁1
+ 2𝜀

𝜕ψ1

𝜕𝜁0
+ 2𝜀2 𝜕ψ2

𝜕𝜁0
+ 2𝜀2 𝜕ψ1

𝜕𝜁1
+ ⋯

2

3
] × [𝜀

𝜕2ψ1

𝜕𝜁0
2 + 𝜀2 𝜕2ψ2

𝜕𝜁0
2 +

𝜀3 𝜕2ψ3

𝜕𝜁0
2 + 2𝜀2 𝜕2ψ1

𝜕𝜁0 𝜕𝜁1
+ 2𝜀3 𝜕2ψ2

𝜕𝜁0 𝜕𝜁1
+ 2𝜀3 𝜕2ψ1

𝜕𝜁0 𝜕𝜁2
+ 𝜀3 𝜕2ψ1

𝜕𝜁1
2 ] =

2𝛿

3
[𝜀

𝜕2ψ1

𝜕𝑡0
2 + 𝜀2 𝜕2ψ2

𝜕𝑡0
2 + 𝜀3 𝜕2ψ3

𝜕𝑡0
2 +

2𝜀2 𝜕2ψ1

𝜕𝑡0 𝜕𝑡1
+ 2𝜀3 𝜕2ψ2

𝜕𝑡0 𝜕𝑡1
+ 2𝜀3 𝜕2ψ1

𝜕𝑡0 𝜕𝑡2
+ 𝜀3 𝜕2ψ1

𝜕𝑡1
2 ] −

2𝛿𝜇

3
 [𝜀

𝜕4ψ1

𝜕𝑡0
2𝜕𝜁0

2 + 𝜀2 𝜕4ψ2

𝜕𝑡0
2𝜕𝜁0

2 +

𝜀3 𝜕4ψ3

𝜕𝑡0
2𝜕𝜁0

2 + 2𝜀2 𝜕4ψ1

𝜕𝑡0
2𝜕𝜁0 𝜕𝜁1

+ 2𝜀3 𝜕4ψ2

𝜕𝑡0
2𝜕𝜁0 𝜕𝜁1

+2𝜀3 𝜕4ψ1

𝜕𝑡0
2𝜕𝜁0 𝜕𝜁1

+ 𝜀3 𝜕4ψ1

𝜕𝑡0
2𝜕𝜁1

2 +

2𝜀2 𝜕4ψ1

𝜕𝜁0
2𝜕𝑡0 𝜕𝑡1

+ 2𝜀3 𝜕4ψ2

𝜕𝜁0
2𝜕𝑡0 𝜕𝑡1

+ 4𝜀3 𝜕4ψ1

𝜕𝑡0 𝜕𝑡1𝜕𝜁0 𝜕𝜁1
+ 2𝜀3 𝜕4ψ1

𝜕𝜁0
2𝜕𝑡0 𝜕𝑡2

+ 𝜀3 𝜕4ψ1

𝜕𝑡1
2𝜕𝜁0

2]  (30) 

The set of differential equations presented below is acquired as a result of setting the 

coefficients of like powers of  ε  equal to zero;      

        

First-order, O(𝜀), equation: 

 
∂2ψ1

∂ζ0
2 = δ

∂2ψ1

∂t0
2 − δμ

∂4ψ1

∂t0
2 ∂ζ0

2     (31) 

Second-order, O(𝜀2),equation: 

2
𝜕ψ1

𝜕𝜁0

𝜕2ψ1

𝜕𝜁0
2 +

2

3

𝜕2ψ2

𝜕𝜁0
2 +

4

3

𝜕2ψ1

𝜕𝜁0 𝜕𝜁1
=

2δ

3

𝜕2ψ2

𝜕𝑡0
2 +

4δ

3

𝜕2ψ1

𝜕𝑡0 𝜕𝑡1
−

2𝛿𝜇

3
 

𝜕4ψ2

𝜕𝑡0
2𝜕𝜁0

2 −
4𝛿𝜇

3

𝜕4ψ1

𝜕𝑡0
2𝜕𝜁0 𝜕𝜁1

−

4𝛿𝜇

3

𝜕4ψ1

𝜕𝜁0
2𝜕𝑡0 𝜕𝑡1

     (32) 

Third-order, O(𝜀3),equation: 

(
𝜕ψ1

𝜕𝜁0
)
2 𝜕2ψ1

𝜕𝜁0
2 + 2

𝜕ψ1

𝜕𝜁0

𝜕2ψ2

𝜕𝜁0
2 + 2

𝜕ψ2

𝜕𝜁0

𝜕2ψ1

𝜕𝜁0
2 + 2

𝜕ψ1

𝜕𝜁1

𝜕2ψ1

𝜕𝜁0
2 +

4

3

𝜕2ψ1

𝜕𝜁0 𝜕𝜁1
+

2

3

𝜕2ψ3

𝜕𝜁0
2 +

4

3

𝜕2ψ2

𝜕𝜁0 𝜕𝜁1
+

2

3

𝜕2ψ1

𝜕𝜁1
2 +

4
𝜕ψ1

𝜕𝜁0

𝜕2ψ1

𝜕𝜁0 𝜕𝜁1
=

2δ

3

𝜕2ψ3

𝜕𝑡0
2 +

4δ

3

𝜕2ψ2

𝜕𝑡0 𝜕𝑡1
+

4δ

3

𝜕2ψ1

𝜕𝑡0 𝜕𝑡2
+

2δ

3

𝜕2ψ1

𝜕𝑡1
2 −

2δμ

3

𝜕4ψ3

𝜕𝑡0
2𝜕𝜁0

2 −
4𝛿𝜇

3

𝜕4ψ2

𝜕𝑡0
2𝜕𝜁0 𝜕𝜁1

−

4𝛿𝜇

3

𝜕4ψ1

𝜕𝑡0
2𝜕𝜁0 𝜕𝜁2

−
4𝛿𝜇

3

𝜕4ψ2

𝜕𝜁0
2𝜕𝑡0 𝜕𝑡1

−
8𝛿𝜇

3

𝜕4ψ1

𝜕𝑡0 𝜕𝑡1𝜕𝜁0 𝜕𝜁1
−

4𝛿𝜇

3

𝜕4ψ1

𝜕𝜁0
2𝜕𝑡0 𝜕𝑡2

−
2𝛿𝜇

3

𝜕4ψ1

𝜕𝑡0
2𝜕𝜁1

2 −

2𝛿𝜇

3

𝜕4ψ1

𝜕𝑡1
2𝜕𝜁0

2                             

               (33) 

where  ψ1  is the function of fast as well as slow variables. 
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3.1 The solution of field equations: 

In the present section, an attempt should be made to acquire the solution of the field equations 

that govern different order terms in the perturbation expansion. 

3.1.1 The solution of O(𝜺) order equation:  

The form of the differential equation presented in Eq. (31) indicates that we should look for the 

type of solution presented below: 

ψ1 = φ( 𝜁1, 𝜁2 , … ;  𝑡1, 𝑡2, … . ) 𝑒𝑥𝑝[ i(ω 𝑡0 − 𝑘 𝜁0)] + c. c.     (34) 

where ω denotes the angular frequency, 𝑘 denotes the wave number, φ( 𝜁1, 𝜁2 , … ;  𝑡1, 𝑡2, … . )  
denotes the amplitude function depending on the slow variables, and c. c. denotes the complex 

conjugate of the equivalent quantity. As a result of introducing Eq. (34) into Eq. (31) and 

requiring the non-vanishing solution for φ( 𝜁1, 𝜁2 , … ;  𝑡1, 𝑡2, … . ),  the following dispersion 

relation is obtained: 

D(ω, k) = k2 − δω2 − δμk2ω2 = 0 .         (35) 

Here φ( 𝜁1, 𝜁2 , … ;  𝑡1, 𝑡2, … . )  stands for an unknown function, the governing equation of 

which will be acquired afterwards. 

3.1.2 The solution of O(𝜺𝟐),  order equation: 

The form of Eq. (32) indicates that it is necessary to look for the type of solution for ψ2 

presented below: 

ψ2 = ∑ 𝛹2
(𝛼)

𝑒𝑖𝛼𝜃 + 𝑐. 𝑐.2
α=1        (36) 

Here, the phasor 𝜃 is defined by 𝜃 =  ω 𝑡0 − 𝑘 𝜁0 and  𝛹2
(1)

, . . , 𝛹2
(−2)

 are functions of slow 

variables of  𝜁0  and 𝑡0. The equation for α=1 mode presented below is acquired by introducing 

Eq. (34) and Eq. (36) into Eq. (32); 

[k2 − δω2(1 + μk2)]𝛹2
(1)

+ 2𝑖𝑘(1 −  δμω2)
∂φ

∂𝜁1
 + 2𝑖δω(1 + μk2]

∂φ

∂𝑡1
 = 0 (37) 

Here, the coefficient of 𝛹2
(1)

 is the dispersion relation and must be zero. The following is 

obtained by employing the dispersion relation:  
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2𝑖𝑘(1 −  δμω2)
∂φ

∂𝜁1
 + 2𝑖δω(1 + μk2]

∂φ

∂𝑡1
 = 0    (38) 

For obtaining non-zero solution for φ that satisfies Eq. (38), it should have the form below:  

φ = φ( ξ , 𝜁2 , … ;  𝑡2, … . )      ,       ξ = 𝜁1 − λ 𝑡1      (39) 

Here, 𝜆 stands for the group velocity of the wave, and it is described by: 

𝑣𝑔 = 𝜆 =
𝑘

𝜔 δ (1+μ𝑘2)2
.      (40) 

Here, the function  𝛹2
(1)

 represents another function, the governing equation of which is 

acquired from the higher-order expansion of the field quantities. The solution of Eq. (32) for 

α=2 mode is obtained as follows:  

𝛹2
(2)

= 
3𝑖𝑘3

[4k2−4δω2−16δμk2ω2]
φ2 =

3𝑖𝑘3

𝐷(2𝑘,2𝜔)
φ2.    (41) 

Here 𝐷(𝑙𝑘, 𝑙𝜔) ≠  0 for 𝑙 = 2,3, ..  . 

3.1.3 The solution of O(𝜺𝟑),  order equation: 

It is generally possible to express the solution for the order in question in terms of the phasor 

as follows: 

ψ3 = ∑ 𝛹3
(𝛼)

𝑒𝑖𝛼𝜃 + 𝑐. 𝑐.3
α=1       , 𝜃 =  ω 𝑡0 − 𝑘 𝜁0   (42) 

Only the first order equation in terms of the phasor is required for completing the solution for 

the unknown function φ( ξ , 𝜁2 , … ;  𝑡2, … . ). By introducing Eqs. (34), (36) and (42) into Eq. 

(33), we obtain: 

2

3
[𝑘2 − δω2(1 + μ𝑘2)]𝛹3

(1)
 +

4𝑖δω

3
[1 + μ𝑘2 ]

∂𝛹2
(1)

∂𝑡1
+

4𝑖𝑘

3
[1 − δμω2 ]

∂𝛹2
(1)

∂𝜁1
+

4𝑖δω

3
[1 + μ𝑘2 ]

∂φ

∂𝑡2
+

4𝑖𝑘

3
[1 − δμω2 ]

∂φ

∂𝜁2
 +

2

3
δ(1 + μ𝑘2)

∂2φ

∂𝑡1
2 −

8

3
δμ𝑘ω

∂2φ

∂𝑡1 ∂𝜁1
−

−
2

3
[1 − δμω2 ]

∂2φ

∂𝜁1
2 − 𝑘4|φ|2φ +  4𝑖𝑘3𝛹2

(2)
φ∗ =  0.            (43) 

Here, the coefficient of  𝛹3
(1)

 is the dispersion relation and must be zero. By rearranging Eq. 

(43), we have: 
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4δω

3
[1 + μ𝑘2 ] × {𝑖 (

∂𝛹2
(1)

∂𝑡1
+ 𝜆

∂𝛹2
(1)

∂𝜁1
) + 𝑖 (

∂φ

∂𝑡2
+ 𝜆

∂φ

∂𝜁2
)} −

2

3
[1 − δμω2 − 4δμλkω − δλ2(1 +

μ𝑘2) ]
∂2φ

∂ξ2
− 𝑘4|φ|2φ + 4𝑖𝑘3𝛹2

(2)
φ∗ =  0.                                                   (44) 

Here, the dependence of φ on ξ has been already utilized. Furthermore, in case of assuming that 

𝛹2
(1)

 depends on 𝑡1 and 𝜁1 through ξ, then the drop occurs in the first terms in (44). As a result 

of presenting a new variable τ as 𝑡2 = τ  , 𝜁2 = 𝜀ξ + 𝜆τ , it is possible to read the second term 

in Eq. (44) as follows: 

∂φ

∂𝑡2
+ 𝜆

∂φ

∂𝜁2
=

1

𝜀

∂φ

∂ξ
−

1

𝜀

∂φ

∂ξ
+

∂φ

∂τ 
=

∂φ

∂τ 
      (45) 

By introducing the expression of 𝛹2
(2)

 into (44), the nonlinear Schrödinger equation presented 

below is acquired: 

𝑖
∂φ

∂τ
+ 𝜈1  

∂2φ

∂ξ2 + 𝜈2 |φ|2φ = 0                               (46) 

where the coefficients 𝜈1 and 𝜈2 are defined by:  

𝜈1 =
1

2

∂𝑣𝑔

∂𝑘
=  −

1

2

[1 − δμω2 − 4δμλkω − δλ2(1 + μ𝑘2) ]

δω(1 + μ𝑘2)
 

𝜈2 = 
3

4
𝜆𝑘3(1 + μ𝑘2) {1 −

3𝑘2

[k2−δω2−4δμk2ω2]
}    (47) 

The NLS equation appears in different fields as an equation that defines the self-modulation of 

one-dimensional monochromatic plane waves in dispersive media. The steady-state solution of 

the NLS equation, usually representing the wave trains that can be expressed in terms of 

Jacobian elliptic functions, contains bright and dark envelope solitons, a phase jump, and a 

plane wave with a constant amplitude as special cases. In order to determine how the presented 

initial data will develop in the long term for the asymptotic NLS equation in the form [40], the 

criterion of whether 𝜈1𝜈2 > 0 or 𝜈1𝜈2 < 0 is significant: 

A(ξ, τ) = V(η) exp[ 𝑖 (𝐾 𝜉 − 𝛺 𝜏)],    η = ξ − 𝑣0 𝜏 ,    𝑣0 = 𝑐𝑜𝑛𝑠𝑡,             (48) 

where V(η) stands for a real function of η. In the mentioned situation, in case of |φ| 
approaching a constant 𝑉0 at infinity, the solution is presented by a non-linear plane wave:  

φ(η) = 𝑉0 exp[ 𝑖 (𝐾 𝜉 − 𝛺 𝜏)],                    (49) 
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where 𝛺 = 𝜎1 𝐾
2 −   𝜎2 𝑉0

2. It is generally possible to acquire the solution in terms of the 

Jacobian elliptic functions by assuming that 𝑣0 = 2𝜎1𝐾. The specific functional form of the 

solution in question will be presented only for the limiting cases below. If there is an assumption 

that 𝑉 → 0 and 
∂V

∂η
→ 0  

as  |𝜂|  → ∞, for 𝜎1𝜎2 > 0, the solution is presented by: 

V(η) = 𝐴0 sech [(
𝜈2

2𝜈1
)
1/2

𝐴0η]    (46) 

where  𝛺 = 𝜎1 𝐾
2 −   𝜎2 𝐴0

2/2. For 𝜈1𝜈2 < 0, if φ → 𝑉0 and 
∂φ

∂η
→ 0 as  |𝜂|  → ∞, the 

solution is given as follows:  

V = 𝑉0 tanh [(−
𝜈2

2𝜈1
)
1/2

𝑉0η]     (47)        

where  𝛺 = 𝜎1 𝐾
2 −   𝜎2 𝑉0

2. The mentioned solutions correlate to an envelope solitary wave 

and a phase jump, respectively. On the contrary, it is a well-known fact that the plane wave 

solution of the NLS equation is modulationally unstable in case of  𝜈1𝜈2 > 0 or stable in case 

of 𝜈1𝜈2 < 0.  

4. Numerical Results and Discussion 

This study examines nonlinear wave modulation in nanorods on the basis of nonlocal elasticity 

theory. In this study, numerical results are given for SWCNT with material and geometrical 

properties. In the light of the open literature, no consensus has been achieved on Poisson’s ratio 

of nanotubes. The suggested values vary in a wide band 0.19 ⁓ 0.34 [41]. Therefore, in the 

present study, ν is selected as 0.3, and the nonlocal parameter μ is taken as 0 ~ 4x10−18𝑛𝑚2. 

Some material properties are taken as ρ0 = 2300 𝑘𝑔 𝑚3⁄  , 𝑟0 = 10−9𝑚 , E = 1 𝑇𝑃𝑎.  

As mentioned previously, the features of both solutions of the NLS equation and the stability 

of the plane wave solution significantly depend on the sign of 𝜈1𝜈2. Thus, giving more details 

on the change of 𝜈1𝜈2 with the wave number will be interesting. The variation in 𝜈1 for axial 

waves by wave number for three nonlocal parameter values are depicted in Fig 1. As is seen 

from this figure for each selected values of μ, 𝜈1 values remain positive (𝜈1 > 0). To clearly 

see the effect of μ on 𝜈2 , the graphs of 𝜈2 by wave number are plotted in Fig 2. This figure also 

shows that for each selected values of μ, 𝜈2 values remain positive (𝜈2 > 0). The alterations of 

𝜈1𝜈2 for axial (longitudinal) waves and the wave number are presented in Fig 3. As is seen from 

the mentioned figure, the plane wave solution for the wave in question is unstable for all values 

of the wave number for all nonlocal parameter values.  
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Fig. 1. Variation in the 𝜈1 for axial waves by wave number for three nonlocal parameter 

values. 

 

 
Fig. 2. Variation in the 𝜈2 for axial waves by wave number for three nonlocal parameter 

values. 

 

 
 

Fig. 3. Variation in the 𝜈1𝜈2 for axial waves by wave number for three nonlocal parameter 

values. 
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Regarding the alteration of the solution profile of the nonlinear Schrödinger equation, the split-

step Fourier method [42] was utilized, and the evolution equation was solved numerically. The 

change of the solution profile with variable η at spatial time is presented in Fig. 4. Here, the 

nonlocal parameter was taken as 𝜇 = 10−18. For μ = 0,  there is no solitary wave profile 

because of non-dispersion. 

 

 
Fig. 4. Variation in the solution profile of the NLS equation by variable η (at 𝜇 = 10−18) 

The variation of wave frequency with the nonlocal parameter μ for various values of the wave 

number is given in Fig. 5. From the mentioned figure, it can be observed that a decrease in 

frequencies occurs with an increase in the nonlocal parameter. The frequency curves get closer 

to each other with an increase in nonlocal parameters. 

 

 
 

Fig. 5.  Variation of wave frequency with the nonlocal parameter values for various values of 

the wave numbers 
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Fig. 6. Variation of phase and group velocities by the wave numbers for different nonlocal 

parameter values. 

The impact of the nonlocal parameter on the velocities of nanotubes is plotted in Fig.6. From 

this figure, it can be observed that group and phase velocities decrease with increasing nonlocal 

parameters and wave numbers. For  μ=0, the group velocity is equal to phase velocity, which 

shows the non-dispersive situation. 

 

 
Fig. 7. Variation of group velocity with the radius for some different values of wave numbers. 

The variation of group velocity with the radius for some different values of the wave number is 

presented in Fig.7. As is seen from the figure in question, with the increasing values of the 

radius, it is observed that group velocities decrease rapidly for different wave numbers.  
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5. Conclusions 

In the present study, the self-modulation of weakly nonlinear and strongly dispersive waves in 

nanorods was examined, and the nonlinear Schrödinger (NLS) equation was obtained as an 

evolution equation of a slowly changing amplitude of the carrier wave. Solutions for the NLS 

equation for nonlinear plane waves, envelope solitary waves, and phase jump solutions are also 

provided. In addition to these, in the present study, due to nonlocality, the elastic medium has 

a dispersive character. The nonlocal parameter μ represents the dispersive character of the 

medium. If μ = 0, this leads to the nonlinear motion of classical elasticity. In the wave 

propagation analysis, together a linear and local situation represents a non-dispersive character. 

A linear and non-local situation represents a dispersive character. Besides, the nonlinear and 

local situation represents a non-dispersive character. However, in case of a non-linear and 

nonlocal situation, nonlinearity and dispersion balance with each other and a solitary wave 

profile arise.  

In numerical calculations, it is shown that the plane wave solution of the NLS equation is 

modulationally unstable in case of  𝜈1𝜈2 > 0 for all values of the wave number for all nonlocal 

parameter values. This situation corresponds to the envelope solitary wave solution. For μ = 0,  
there is no solitary wave profile because of a non-dispersion. Wave frequency curves and group 

velocity curves are plotted with the wave number, and it is shown that nonlocal frequency and 

velocity curves are approximately the same with the literature [24,43]. To see the small-scale 

effect of nanorods, the variation of wave frequencies was examined, and group velocities 

changed with the radius of a nanorod. It is shown that frequencies and group velocities are 

decreasing with the increasing nanorod radius. It is observed that the nonlocal parameter has an 

obvious effect on wave frequencies and velocities. It is expected that the nonlinear modulation 

introduced herein will be useful for studies on the nanostructure. 
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Abstract 

This study aims to derive approximate closed-form solutions for critical loads of straight beams with variable 

cross-section. The governing equations are derived for purely flexible beam for small displacements and rotation 

and turned into non-dimensional form. Approximate solutions to the set of equations for stability problems are 

searched by Variational Iteration Method with Generalized Lagrange Multipliers. It turns out that highly 

accurate approximate buckling loads for cantilever beams with constant or variable section can be obtained in 

closed-form. Many novel closed-form solutions for critical load of such structures, which may serve as 

benchmark solutions, are presented. 

Keywords: beam theory, closed-form solutions, variational iteration method, buckling. 

1. Introduction 

Closed-form solutions are of practical importance to engineers and designers as they help to 

better understand the contributions of different physical parameters involved in a problem to 

the output, which may be static deflection, state of stress at a point, natural frequency, etc. 

This is important as it paves the way to essential elements of modern engineering, such as of 

optimum design and monitoring of structures. In addition, closed-form solutions may serve as 

benchmark solutions to numerical methods which are frequently used in modern time. 

Unfortunately, it is possible to obtain exact solutions in closed-form only for very special 

cases.  

Not surprisingly, majority of closed-form solutions are presented in the literature for one 

dimensional structures [1], which is a reduced representation of 3-dimensional continua under 

reasonable assumptions and simplifications [2, 3]. There are, of course, almost countless 

contributions on the field of mechanics of beam-like structures since the middle of 18th 

century, but reviewing the entire bibliography would be out of the scope of this study. Rather, 

dedicated readers are kindly referred to the monographs by Love [3] and Timoshenko [4], to 

have a better insight about especially early works on this subject, which eventually formed the 

basis of structural engineering. 
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Earliest investigation on the buckling of columns is due to Euler [5,6]. Without being 

exhaustive, one may quote Engesser [7], Dinnik [8], and Duncan [9] as other early 

contributors in the field. Moving on to the more recent investigations, one may quote 

contributions by Elishakoff and his co-workers [1, 10-14] concerning semi-inverse solutions 

for buckling of straight beams with continuously varying bending rigidity. These solutions 

make sense considering the introduction of functionally graded materials [15], and advances 

in their manufacturing [16]. Indeed, variation of bending rigidity along the beam axis may be 

due to smooth variation of cross-section, functional grading of the material, or both. 

Nevertheless, solution of a direct problem in closed-form, i.e. determination of critical load 

for a known material property and geometry, is still a challenging one. Yet, there are valuable 

contributions in the modern literature, such as the ones by Ruta et al. [17, 18], based on a one-

dimensional model for thin-walled beams [19], which provides exact solution to critical loads 

in closed-form, by Gupta et al. [20] for post-buckling behavior of laminated beams, Mercan 

and Civalek [21] for critical load of nanobeams, and Abbondanza et al. [22] for vibration 

frequencies and buckling loads of nanobeams. In addition, there are numerous studies which 

focus on numerical solutions of such problems, which ensures required accuracy for 

engineering applications when tackled the numerical problems, such as locking, but lack 

generality as they require the numerical values of the parameters of the problem. Instead, an 

approximate solution is aimed here. For this purpose, Variational Iteration Method (VIM), 

which has been shown to be a very simple and effective semi-analytical technique, is utilized. 

This method is developed by He [23-25], basically for solutions of non-linear problems. 

Reviews and more detailed explanations about the method can be seen in [26,27]. Since the 

initiation of the method, there have been many modifications and improvements introduced to 

it [28-32], for the reviews of which we refer to the note by He [33]. VIM is recently used for 

solutions of many different structural problems, see for example [34-38]. 

In this contribution, the aim is to present some approximate, yet accurate, solutions for 

buckling loads of straight beams of variable section. For this purpose, the system of equations 

is briefly derived and turned into non-dimensional form. As the solution technique, 

Variational Iteration Method with Generalized Lagrange Multiplier, which has been shown 

recently to be a very neat procedure for linear differential equation systems, is used. Amongst 

the classical boundary conditions, we focus on cantilevered beams as it is the only case that 

one can obtain real roots of the characteristic equation in closed-form. This may seem 

limiting, however, cantilevered beams of variable section may be an accurate model for many 

practical engineering problems. Moreover, being in closed-form, presented results may be 

used for benchmark purposes for different approximate and numerical techniques. To this 

aim, considering different variations of the cross-section, some new closed-form solutions for 

cantilevered beams are presented. 

2. Governing Equations 

Consider copies of a plane region, 2 , attached orthogonally to a line of length L, 
0C , 

through their centroids. The region occupied by this construction represents the reference 

configuration of the beam, 0B , for parameterization of which a Cartesian coordinate system, 

 , ,x y z , with base vectors  , ,i j k  is introduced. With proper selection of an origin, it is 

assumed that 
0C  is along k, and, therefore,   lies on coordinate plane  ,i j , which yields 
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 0 0,B L . Furthermore, principal axes of   is assumed to be coincident with axes x and 

y, for simplicity in constitutive modelling. 

Current configuration of the beam, B, is described by regular vector field     z z r k u  

which represents the positions of each point, C, initially on 
0C  and with coordinate z, and an 

orthogonal tensor  zR , providing the rotation of cross-sections, assumed to remain planar. 

The expressions of finite deformation measures in current configuration [17,18], 

         
 

 , ,T
d zd

z z z z z z
dz dz

   
R

ε k u R k χ R   (1) 

where  zε  is the difference between the tangents of C and 
0C , pushed-forward from 0B  to 

B, and  zχ  presents the curvature of C. 

The balance equations in actual configuration reads [2, 18], 

 
 

 
 

      0, 0
d z d z d

z z z z z
dz dz dz

      
F M

p k u F m   (2) 

where      , ,z z zF M p  and  zm  stand for internal force, internal couple, distributed 

external force and distributed external couple, respectively. 

The analysis herein is limited such that the curve C remains at  ,j k  plane. Then,  
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 
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 

    
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 

 
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R

ε j k

χ j k

F j k

M i

  (3) 

where the dependence of each field on z is omitted for simplicity of the notation. 
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Let us assume vanishing of the axial strain and shear strain, and a linear relation between the 

curvature of the deformed beam axis and the bending couple in the form, 

      
 

 
0, 0,

x

z y x

x

M z
z z z

EI z
       (4) 

where E is the modulus of elasticity of the material and Ix is the moment of inertia of the 

cross-sections about the axis x. The bending rigidity     0x xEI z EI f z  is assumed to 

depend on the position along the axis, z, which may be due to variation of material properties, 

or smooth variation of cross-sectional dimensions, or both. 

Let us further assume that 0B  is pre-loaded by what results an axial compressive force  N z , 

which is assumed to be known and may be due to self-weight or an external action. 

The system of differential equation for determination of configuration B which is assumed to 

be in the neighborhood of  0B , thus linearized, by static perturbation technique [17, 18, 39], 

reads, 

 

0,

0, ,

x xz
x

x

y x
y x

d Mdu

dz dz EI

dF dM
F N

dz dz


  

  

  (5) 

where, superimposed bar denotes the first order derivative of indicated field with respect to an 

evolution parameter, hence the first order increments to the fields given in (3) [17, 18, 39]. 

Equation system (5) is identical to that given in [40]. With the following non-dimensional 

quantities, 

 

2 2

0 0

0

, ,

, , ,

y

x x

x z
x

x

F Lz NL
Z T P

L EI EI

M L u
M U

EI L


  

   

  (6) 

System of equations given in (6) may be represented in matrix form as below. 
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   

   

T
,

0 1 0 0

1
0 0 0

.

0 0 0 0

0 1 0

d
Z U T M

dZ

f ZZ

P

 

 
 
 
 
 
 
  

y
A y y

A

  (7) 

with solution, 

    0 0,Z Z Zy Y y   (8) 

where  0,Z ZY  is the matricant of system (7)1 about an initial point Z0, and  0Zy  lists the 

initial values of field functions [41]. Note that when the coefficients matrix A consists of 

constant components, matricant of Eq. (7)1 is given by matrix exponential of zA, which may 

be obtained exactly by Cayley-Hamilton theorem [42], or approximately by power series 

expansion. If the matrix A can be reduced into a triangular form, then again an exact solution 

may be found to Eq.(7) by successive integrations of the equations [43], similar to solution of 

an algebraic equation system by Gauss elimination method. Neither of these conditions hold 

in our case. Even in such situations, it might be possible to find an exact solution to the 

system of equations which requires a commutativity between A and matrix exponential of its 

integral. This is a very restrictive condition in practical point of view hence, search for 

approximate solution to Eq. (7) becomes inevitable.  

3. Variational Iteration Method 

A kind of VIM with a suitably modified Lagrange Multipliers for system of differential 

equations proposed by Altintan and Ugur [32] will be followed here. Even if the essence of 

the method is to tackle the nonlinear problems, here we will apply restricted variation to the 

part of matrix A which makes an exact solution to Eq.(7) impossible.  

      
 

   
0

1 1 2;

Z

k

k k k k

Z

d
Z Z Z L L d

d


   




 
    

 


y
y y Λ y y   (9) 

where subscript k denotes the order of approximation, and superimposed tilde denotes the 

variation of the indicated field is restricted. 1L  and 2L  are linear operators defined as below. 

 
1 1 2 2, ,L L y A y y A y   (10) 
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where, 

  
1 2

0 1 0 0
0 0 0 0

1
0 0 0 0 0 0 0

, .
0 0 0 0

0 0 0 0
0 0 0

0 0 1 0

f Z

P

 
  
  
   
  
     

 

A A   (11) 

With those definitions at hand, the so-called Generalized Lagrange Multiplier in Eq. (9), 

 ;ZΛ  becomes [32], 

    ; ,Z Z  Λ Ψ   (12) 

Where  ,ZΨ  is the matricant of system 1d d y A y , about Z. Properties of matricant 

yields [32, 42], 

      1

0 0; , , .Z Z Z Z Λ Ψ Ψ   (13) 

A recent contribution by Yildirim [44] provides the components of matricant, also known as 

fundamental matrix or transfer matrix, for constant cross-section.  

If (k+1)th approximation of y is written similar to Eq. (8), 

      1 1 0 0, ,k kZ Z Z Z y Y y   (14) 

where, with the help of Eqs. (7, 12, 13),  

        
 

 
0

01

1 0 0 0 0

,
, , , , .

Z

k

k k

Z

d Z
Z Z Z Z Z Z d

d


   







 
   

 


Y
Y Y Ψ Ψ A   (15) 

Once an initial approximation to the matricant,  0 0,Z ZY , is made, successive iterations 

provided in Eq. (15) will yield the approximate matricant of the system (7)1. Then, it is a 

matter of solving the initial values  0Zy , or looking for mathematical requirements for a 

non-trivial solution of them. In our case the latter holds true. These conditions for classical 

boundary conditions are listed below. 
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   

   

   

   

   

   

33, 34,

43, 44,

12, 13,

42, 43,

13, 14,

23, 24,

0 0, 0 0,
0

1 0, 1 0.

0 0, 0 0,
0

1 0, 1 0.

0 0, 0 0,
0

1 0, 1 0.

k k

k k

k k

k k

k k

k k

U Y Y
Clamped free

Y YT M

U M Y Y
Pinned pinned

Y YU M

U Y Y
Clamped clamped

Y YU







 
 

 

 
 

 

 
 

 

  (16) 

where 
,ij kY  denote the components of kth order of approximation to matricant at ith row and jth 

column. It turns out it is possible to find closed form solutions only for clamped-free column 

as that is the only case yielding a characteristic equation of third order with real roots.  

In the next section, we will search for closed form expressions exploiting Eq. (15) for 

different variations of cross-section. 

4. Closed-Form Solutions 

As the initial approximation of the matricant, we will use the solution of (7)1 for A2 = 0, that 

is, the elastic curve in the absence of pre-loads: 

    0 0 0, , .Z Z Z ZY Ψ   (17) 

A suitable selection of the initial point is Z0 = 0, for the simplicity of solutions. The explicit 

expressions of matricant components at each iteration are provided for specific variations of 

cross-section and pre-load in the following sub-sections. 

4.1 Polynomial Bending Rigidity 

Here we present some solutions bending rigidity given by a polynomial function specified as 

below. 

     
3

1 21 1f Z Z Z      (18) 

This variation of the bending rigidity may be interpreted as that of a rectangular cross-section 

with linearly varying height and width, and has been considered recently in [45]. 
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For such a variation of bending rigidity, components of the zeroth order of approximation to 

matricant are listed below. 

 

1 2 1 2 1 2 1 1 2 2

3

1 2 2

2

1

11,0 12,0

13,
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2( - ) ( -1)

( - ) (3 -2)- 2 ( -1)( -1) ln(1- )+2 ( -1)( -1) ln(1-

1

)

-

, ,

2(

Y Y Z
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Y

Z

Z
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Y
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            












 



3

2 2

21,0 22,0

,
) ( -1)
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Y Y

 
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(19) 
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2( - ) ( -1)
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Y Y

Z Z Z Z Z Z Z
Y

Z

            

  

           

  

   




 


2,0 33,0 34,0

41,0 42,0 43,0 44,0

0, 1, 0

0, 0, , 1

Y Y

Y Y Y Z Y

  

   

 

We list below the characteristic equations of different orders of approximations for clamped-

free column with polynomial bending rigidity. 

  3 2

2 1 2 1 2 1 2 2 1 1 2 1 22( -1)( - ) ( - ) (2-3 )+ 2( -1) ( -1)(ln(1- )-ln(1- )1: 0)k P             

  (20) 

  

  

2 5 2 2

2 1 2 1 1 2 1 2 1 2

3 2 2

2 1 2 1 2 2 1 2 1 2 1 2 2

2

2 2 2 1 2 1 2 1 1 2

2

2 1

2

12( -1) ( - ) 12( -1) ( -1) ( - ) (ln(1- )- ln(1- ))

-6( -1)( - ) (3 -2)- ( - ) (16 -15)-2 ( ( +9)-9)

+ ((9-2 ) -6) 6( -1)( -1) 2 +( -3) - + (l

:

n(1 )

k

P

P

         

            

           

  



 

 

 2- ln(1- )) 0  


 

 (21) 
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  



3 7 3 4

2 1 2 1 1 2 1 2 1 2

2 5 2 2 3 2

2 1 2 1 2 2 2 1 2 1 2

2 2

1 2 2 2 2 2 1 2 1 2 1 2

144( -1) ( - ) 144( -1) ( -1) ( - ) (ln(1- )- log(1- ))

-72( -1) ( - ) (3 -2)- 12( -1)( - ) (16 -15)

-2 ( ( +9)-9)+ ((9-2 ) -6) 72( -1)( -1) ( 2
3

) +
:

-

P

P

k

         

          

           

 















  

 



1 1

2 3 3 2

2 2 1 2 2 1 1 2 1 2 2

3

1 2 2 2 2 2 2 2 1 2 1

2

1 2 1 2 2 2 2 1

( -3)

- + ln(1 )- ln(1- ) ( - ) (41 -40)+ ( (65 -224)+156)

+ ( ((28-43 ) +138)-120)+ ( ((56-3 ) -114)+60) 12( -1)( -1)

+ (6 -8)+ (10-9 )+ ((7-2 ) -5) ln(1 )- l

P

 

          

          

       

  
 



 2n(1- ) 0  


  (22) 

Solutions of Eqs.(20-22) provide the critical buckling loads at kth order, 
,cr kP . 

 

 

3

2 1 2
,1

2 1
1 2 1 2 2 1 1 2

2

2( -1)( - )

-1
( - ) (2-3 )+ 2( -1) ( -1) ln

-1

crP
  


       



 
 

  
 

  (23) 

 
 2 2 2

2 2 2 2 2 2 2 2 2

21 ,

2

2

2 2 2 2

( -1) 3 - 3 ( ( (3 +8)-36)+24)+72( -1) ln(1- )

( (2 -9)+6)+6( -1) ln(1- )
0 crP

        

 


  
      (24) 

 
2

1

1 1 1 1 1 1

,2

1

2

1 1

2

( -1)(6 +ln(1- )(-4 +( -1) ln(1- )+6)) -( -1) ln(1- )
0 crP



    


   
     (25) 

 

 

   



2 4
2 2 4 22 2

2 2 2 2 2 2 2
3

2 4 3 2 2 23
2 2 2 2 2 2 2 2

1 ,3

2 2 2

2 2

2

2

1

2( -1)
12 2 +3 -12 ( -1) ln(1- )-72( -1) ln (1- )

+ -96 +132 +36 -72 2( -1) 2 -9 +6

+6( -1) ln(1 )

2

-

0 crP
c c

c

 
      

     



   

 


   













 (26) 

   

 

  

4
2 2 3 21
1 1 1 1 1 1 1 1

3

2 2 23

2 ,3

1 1 1 1 1 1

2

1

4

4

1

3

1

3
-35 +24 +12 +8 - -3 +3 ln(1- )

-12( -1) (2 -1) ln (1- ) 3 (6-5 )

+2 -4 +3 ln 1 )

1

( -

0 crP
c c

c


       

     

  




   

 








  (27) 

  3 2 2

2 2 2 2 21 2 23 -56 +114 -60 +12(2 -5)( -1) ln(1- )c          (28) 
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 

 

7 5 4 3 2 5

2 2 2 2 2 2 2 2

6 3 2 7 2 8 9 6 9 3

2 2 2 2 2 2 2 2 2 2 2

11 12 13

2

2

2 2

10

2-36 17 -156 -498 +3120 -4284 +1800 ( -1) ln(1- )

-432 2 +15 -72 +75 ( -1) ln (1- ) 32400 222048 1728 ( -1) ln (1- )

1052676 1008324 557424 146079

650484c        

          

  



  

   

 

 

 

14 15 16 17 18

2 2 2 2 2

4 3 2 4 2 6 3

2 2 2 2 2 2 2 2

6 5 4 3 2 2

2 2 2 2 2 2 2 2 2

2 8 7 6

2 2 2 2

4031 10815 1689 44

3 -432 -4 -18 +84 -75 ( -1) ln (1- )-3456( -1) ln (1- )

+72 4 +15 -186 -117 +1596 -2214 +900 ( -1) ln(1- )

24 -824 -1719 +14904

    

       

        

    

   










   

5 4 3 2

2 2 2 2

2
6 12 3 2 2

2 2 2 2 2 2 2 2 2 2

1/2

+2628 -100872 +180036

-126576 +32400 ( -1) 3 -56 +114 -60 +12(2 -5)( -1) ln(1- )

  

          


 (29) 

    2 3 2

1 1 1 1 1 1 13 -10 +39 -30 +3 -9 +18 -10 ln(1- )c          (30) 

 



  

 

12 11 10 9 8 3 3 2

1 1 1 1 1 1 1 1

6 3 2 4 3 2 6 2

1 1 1 1 1 1 1 1 1 1

5 4 3 2 7 12

1 1 1 1 1 1 1 1

4

1

375 +5220 -14778 +15336 -5400 +36( -1) -15

48 -36 ln (1- )-36( -1) 7 -87 +279 -348 +150 ln (1- )

+36 15 -197 +786 -1342 +1038 -300 ln(1- ) -

3

2 3

c        

         

        





 





     
  



2

1

2
3 2 3 2 3 3

1 1 1 1 1 1 1 1 1 1

2 4 3 2 5 4 4 3

1 1 1 1 1 1 1 1 1 1

2 2 2

1 1 1 1 1

10

+39 -30 +3 -9 +18 -10 ln(1- ) -8 11 -141 +294 -162 ( -1) ln (1- )

+ 10 -2964 +8571 -8316 +2700 +12( -13)( -1) ln (1- ) 12 19 -288

+726 -684 +225 ( -1) ln (1- ) 6 ln(1-



         

         

    



 



5 4 3 2

1 1 1 1 1

1/2

1

) 43 -848 +3207 -4940

+3438 -900

    

 


  (31) 

Note that Eqs.(23-27) are the lowest roots of the characteristic equations for 
1 21 , 0   . 

Table 1. Critical loads for variable height (α1 = 0) 

α2 
Present 

[45] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.2 1.6 2.101 2.023 2.023 

0.4 1.2 1.660 1.565 1.569 

0.6 0.8 1.218 1.093 1.098 

0.8 0.4 - 0.588 0.597 

Numerical results are given for constant width, variable height and constant height, variable 

width, in Table 1 and Table 2, respectively, from which one may see their convergence and 

accuracy. Very simple first order approximations of the critical loads seem to be impractical, 

while third order solutions are very accurate. The simplicity versus the relatively low 

accuracy of second order approximations may be debated; but the effects of geometrical 

parameters on the critical load are well represented. On the other hand, solution of second 
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order approximation yields an imaginary root for α1 = 0, α2 = 0.8, which is possibly due to 

inability of the approximate displacement function to represent the actual mode shape. 

Table 2. Critical loads for variable width (α2 = 0) 

α1 
Present 

[45] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.2 1.862 2.387 2.314 2.316 

0.4 1.711 2.227 2.148 2.151 

0.6 1.542 2.052 1.964 1.968 

0.8 1.339 1.855 1.747 1.752 

In case of a square cross-section, i.e. 
1 2    , 

 ,

2

1

6( 1 )

3 2
crP





 


 
   (32) 

 2

4

,

10 ( (2 7) 8) 2 5 ( 1) (4 (5 9) 15) 30

4 5
crP

     



      


   (33) 

 
2 1/3 2/3 1/3 2

,3
5 5 5

1/3

5

2( 1 ) ( 128.076 35 1.913 146.372 28 29.274 )

( 7 6 )
crP

c

c c c   



       





   (34) 

 
2 3 2 3 4

2

5

3 4

(6360 1904 7(385 10 15435 54180 72600 43904 10080 )

6 (1190 10 15435 54180 72600 43904 10080 ))

c      

    

      

   



 

  (35) 

Table 3. Critical loads of column with square cross-section (α1 = α2 = α) 

α 
Present 

[45] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.2 1.477 1.963 1.880 1.884 

0.4 0.982 1.406 1.304 1.309 

0.6 0.533 0.894 0.750 0.757 

0.8 0.171 - 0.259 0.265 

Critical loads of different orders of approximations for variable square section is presented in 

Table 3. The outlook is very similar to first two tables: first order solutions are not accurate 

while the third order solutions are in a very good agreement with the literature. Second order 

solution in case of a very sharp change in cross-section results an imaginary root, again 

possibly due to inadequate prediction of the mode shape. This situation may be seen as a 
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drawback but the use of classical beam theories for structures with rapid change of section can 

also be debated. 

4.2 Exponential Bending Rigidity 

Here the bending rigidity is assumed to vary exponentially, as it is common in the literature 

[34, 46]. 

   Zf Z e    (36) 

For such a variation of bending rigidity, components of the zeroth order of approximation to 

matricant are listed below. 

 

14,03 2

22,0 23,0 24,02

33,0

11,0 12,0 1

43,0 44,0

3,0

( ) (2 ) 2 1
,

( 1) 1 1
1, ,

1

1 ,

,

,

, 1

Z Z

Z Z

Z e Z Z e
Y

e Z e
Y Y

Y Y

Y

Y Y Z Y

Z Y
 

 

  

 



 

     


  
  

 

  





  (37) 

We list below the characteristic equations of different orders of approximations for clamped-

free column with exponential bending rigidity. 

  2 11: 0e Pk        (38) 

    2 2 2 44 ( 12: ) 5 4 1 4 02e e P Pk e                  (39) 

 
 

   

2 3 3

2 2 2 4 6

9 ( 2) 3 9 (2 1) 10

9 4 ( 1) 2 5 36 1 3
3:

06

e e e P

e e P P
k

e

  

  

  

     

     

        



  (40) 

Solutions of Eqs.(38-40) provide the critical buckling loads at kth order, 
,cr kP . 

 
2

,1
1

cr
e

P




 



  (41) 

 
2

,2

2

(1 ) (6 2 ( 3 ) (4 ))
cr

e e
P

 



   


      



  (42) 
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,3

6 7

2
2/3 2/3 2 2 2 33

7
3

4

7

23

3 3 6 2 21 4 6 6 29 (44 16 )

8 35 3 4 ( 1) 2 5

crP c e e e

e

c

e e

c

c

  

  


   

  

      




        


  (43) 

where, 

  2 3

6 9 ( 2) 3 9 (2 1) 10c e e e             (44) 

 

   

   

  

 

3 2 4 2 3 3 2

7

3 2 2 3 2

6 5 2 3 5

4 2 3 3 2

3 12 84 3 4 68 165 4 6 69 396 77

6 24 118 214 165 3 84 240 104 633 180

6 (2 3) 125 2 3 9 ( 2) 3 9 (2 1) 10 12 ( 2)

6 4 25 52 8 2 30 201 4

c e e

e e

e e e e e e

e e

 

 

     

 

      

      

    

    

         

        

            

         

    

2 3 2

1/2
4 3 2 4 3 2 6

34 3 120 96 776 2033

2 6 44 114 129 5 12 12 72 212 295 242

e

e e



 

  

       

   

          

 

 (45) 

The numerical results for different geometries with comparison are given in Table 4. Very 

similar to the previous problem, convergence of the numerical results with the order of 

approximations are apparent. Also, agreement of the results with the literature are 

encouraging. 

Table 4.  Critical loads of clamped-free column with exponentially varying bending rigidity 

α 
Present 

[46] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.1 1.934 2.464 2.392 2.394 

0.5 1.681 2.187 2.109 2.110 

1.0 1.392 1.861 1.778 1.782 

1.5 1.135 1.531 1.476 1.480 

2.0 0.911 1.294 1.205 1.209 

The essence and practical importance of the results provided herein is evident from the very 

good agreement of the numerical results with the existing literature. It must be noted that this 

approach to the solution of critical buckling load of columns provides very accurate closed-

form solutions by very simple integrations and determination of roots of polynomial 

equations. Classical VIM approaches to this problem may require dealing with heavy 

integrations, and consideration of higher order of approximations for convergence, which 

inevitably require numerical solution techniques to solve the characteristic equation. Indeed, it 

is reported in [34], for a very similar problem, that nine iterations are conducted, and series 

expansions of the variations of bending rigidity up to nine terms are used to obtain the 
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numerical results. Even though their results are almost overlap with the exact solutions, the 

heavy integrations and computational cost must be taken into consideration.  

5. Conclusions 

This paper aims to derive some closed-form solutions for critical loads of columns with 

variable section. To this aim, Variational Iteration Method, modified for the system of linear 

differential equations, is utilized. It is found that the solutions to the approximate 

characteristic equations of up to third order are highly accurate for cantilevered beams, while 

other boundary conditions require the consideration of higher order approximations. Hence, 

some approximate closed-form solutions are presented, for the first time, for cantilevered 

columns of variable cross-section. The accuracy and versatility of the solution procedure are 

demonstrated by comparing the results presented in the literature, and a very good agreement 

is observed. The closed-form solutions presented herein, therefore, may well be used as 

benchmark solutions for other approximate solution procedures. Further approximations by 

selecting different trial functions, which may enlarge the present investigation also to the 

other boundary conditions, are possible. In addition, even one confines oneself to the trial 

functions used herein, many other closed-form solutions to direct problem of clamped-free 

column buckling seem to be at ease. This contribution may also be interpreted as the first step 

towards the closed-form solutions of eigenvalue problems of structural elements in closed-

form, which may be used in their monitoring and identification. 
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Abstract 

This paper presents free vibration analysis of a cross-ply laminated plate under temperature rising with 

considering temperature-dependent physically properties. Material properties of laminas are orthotropic and 

temperature-dependent. In the kinematic model of the plate, first-order shear deformation plate theory is used. In 

solution method, the Navier procedure is used for a simply supported plate. The vibration frequencies of the 

laminated plate are obtained and discussed for different values of temperature, sequence of laminas and 

orientation angle of layers. Also, the difference between temperature dependent and independent physical 

properties is investigated. 

Keywords: Composite Materials; Laminated Plates; Free Vibration; Temperature Rising.  

1. Introduction 

 

Laminated composite structures have been used a lot of engineering applications, for example; 

aircrafts, space vehicles, automotive engineering, defence industries and civil engineering 

applications because these structures have higher strength-weight ratios, more lightweight and 

ductile properties than classical materials. In generally, laminated composite structures are used 

in higher thermal systems. Hence, the temperature effect is very important issue of laminated 

composite structures and their design. In the literature, studies about temperature problems in 

composite plates are; Pal [1] analyzed nonlinear vibrations of plates under thermal loading. 

Chen and Chen [2] examined thermal buckling of laminated plates by finite element method. 

Chen and Chen [3] studied thermal post-buckling of laminated plates under thermal loading. 

Liu and Huang [4] analyzed vibration of laminated plates under thermal loading with first shear 

deformation plate theory (FSDPT). F. Lee et al. [5] studied free vibration of symmetrically 

laminated plates with FSDPT. Reddy and Chin [6] investigated dynamic thermo-elastic analysis 

of functionally graded cylinders and plates. Lee and Saravanos [7] studied thermo-piezoelectric 

composite materials with thermal effects with temperature dependent material properties. 

Reddy [8] performed static analysis of functionally graded plates by using FSDPT. Jane and 

Hong [9] investigated thermal problems of thin laminated rectangular orthotropic plates by 
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using generalized differential quadrature method. Shen [10] examined thermal post-buckling of 

laminated plate resting on elastic foundation. Singha et al. [11] studied thermal postbuckling of 

graphite/epoxy laminated plates of various by finite element method. Sayman [12] analyzed 

elastic-plastic behavior of aluminum metal-matrix laminated plate under temperature effect. 

Patel et al. [13] examined flexural analysis of laminated plates of bimodulus materials under 

temperature effect. Shukla et al. [14] investigated postbuckling of laminated plates under 

temperature effect. Liew et al. [15] examined thermal buckling/post-buckling of thick laminated 

plates uniform temperature rising. Emery et al. [16] investigated thermoelastic stress analysis 

of laminated orthotropic plates. Shen [17] examined nonlinear analysis of functionally graded 

nanocomposite plates reinforced by single-walled carbon nanotubes under temperature effect. 

Zenkour and Alghamdi [18] examined bending of functional graded layered plates under 

thermal and mechanical loads. Vosoughi et al. [19] examined thermal postbuckling thermal 

postbuckling behavior of laminated composite skew with temperature dependent material 

properties. Kishore et al. [20] investigated nonlinear analysis of magnetostrictive layered plate 

by using third order shear deformation theory. Sahoo and Singh [21] presented static analysis 

of layered plates by using the hyperbolic zigzag theory. Carrera et al. [22] analyzed static stress 

problems in multi-layer plates. Sahoo and Singh [23] examined static analysis of layered plates 

by using a new inverse trigonometric ZigZag theory. Chen et al. [24] investigated thermal 

buckling and vibration of composite plates with temperature-dependent material properties and 

initially stressed. Torabizadeh and Fereidoon [25] solved general laminated composite plates 

under mechanical and thermal loading. Houmat [26] investigated the geometrically nonlinear 

free vibration of laminated composite rectangular plates with curvilinear fibers. Khorshid and 

Farhadi [27] investigated hydrostatic vibration analysis of a laminated composite rectangular 

plate partially contacting with a bounded fluid. Akbaş [28,29,30,31,32,33,34,35,36,37,38] 

investigated dynamics and stability of functionally graded composite beams by using finite 

element method. Sayyad et al. [39,40] solved thermoelastic analysis of laminated plates under 

thermal loading. Li and Qiao [41,42] examined thermal postbuckling analysis of laminated 

composite beams under thermal loading. Akbaş [43] examined a nano-plate by using 

generalized differential quadrature method. Ramos et al. [44] investigated thermoelastic static 

analysis of composite plates by using a new combined trigonometric equation. Akbaş [45,46] 

investigated functionally graded porous plates. Choudhury et al. [47] solved stress analysis of 

composite plate under thermo mechanical loads. Akbaş [48,49,50] investigated thee laminated 

beams with nonlinear behavior. Akbaş [51] examined bi-material composite beams by using 

finite element method. Yüksel et al. [52] examined temperature dependent vibration of a simply 

supported plate by using the Navier method. Yüksel and Akbaş [53] investigated the stress 

analysis of a laminated composite plate under temperature rising. Also, many researchers 

investigated vibration, buckling, post-buckling analysis of nano composites, functionally 

graded composite structures in thermal and mechanical loads [54-73]. 

 

In this paper, free vibration of cross-play laminated plate examined under thermal effects. In 

constitute model of laminas, orthotropic and temperature-dependent properties are used. 

FSDPT is used in plate model. The Navier procedure is used for a simply supported plate. 

Effects of temperature, sequence of laminas and orientation angle of layers on the vibration 

characterises of laminated plate are investigated in temperature-dependent physically property. 
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2. Theory and Formulations 

In figure 1, a simply supported rectangular cross-ply laminated composite plate with thickness 

h, the length of 𝐿𝑋1 and 𝐿𝑋2 is displayed. Laminated composite plate is subjected to a non-

uniform temperature rising with temperature rising values at the bottom surface ΔTB and top 

surface ΔTT. Height of face sheet layers is equal to each other. In this study, numbers of the 

laminas are selected as two and three. 

 

 
Fig. 1. A simply supported laminated rectangular composite plate under non-uniform temperature 

rising for a) two layer and b) three layer. 

 

Based on FSDPT, the strain-displacement relations are expressed as;  

 

𝜀𝑋1𝑋1 =
𝜕𝑢01

𝜕𝑋1
+ 𝑋3

𝜕∅𝑋1

𝜕𝑋1
        𝜀𝑋2𝑋2 =

𝜕𝑢02

𝜕𝑋2
+ 𝑋3

𝜕∅𝑋2

𝜕𝑋2
                                      (1) 

                          𝛾𝑋1𝑋2 =
𝜕𝑢02

𝜕𝑋2
+
𝜕𝑢02 

𝜕𝑋1
+ 𝑋3 (

𝜕∅𝑋1

𝜕𝑋2
+
𝜕∅𝑋2

𝜕𝑋1
)                       (2) 

                          𝛾𝑋1𝑋3 =
𝜕𝑢03

𝜕𝑋1
+ ∅𝑋1  , 𝛾𝑋2𝑋3 =

𝜕𝑢03

𝜕𝑋2
+ ∅𝑋2  , 𝜀𝑋3𝑋3 = 0                      (3) 

 

where 𝑢01, 𝑢02, 𝑢03 indicate displacements in 𝑋1, 𝑋2 and 𝑋3 directions, respectively. 

Constitutive expressions of orthotropic laminated plate for nth layer with temperature effect are 

given as follows: 

                     {
𝜎𝑋1𝑋1
𝜎𝑋2𝑋2
𝜎𝑋1𝑋2

}

(𝑛)

= [

𝑄11(𝑇) 𝑄12(𝑇) 𝑄16(𝑇)

𝑄12(𝑇) 𝑄22(𝑇) 𝑄26(𝑇)

𝑄16(𝑇) 𝑄26(𝑇) 𝑄66(𝑇)

]

(𝑛)

{
 
 

 
 

𝜕𝑢01

𝜕𝑋1
− 𝑋3

𝜕2𝑢03

𝜕𝑋1
2 − 𝛼̅11(𝑇)𝛥𝑇

𝜕𝑢02

𝜕𝑋2
− 𝑋3

𝜕2𝑢03

𝜕𝑋2
2 − 𝛼̅22(𝑇)𝛥𝑇

𝜕𝑢01

𝜕𝑋2
+
𝜕𝑢02 

𝜕𝑋1
− 𝑋3

𝜕2𝑢03

𝜕𝑋2
2 − 𝑋3

𝜕2𝑢03

𝜕𝑋1
2 − 2𝛼̅12(𝑇)𝛥𝑇}

 
 

 
 
(𝑛)

    (4a) 

                                           {
𝜎𝑋2𝑋3
𝜎𝑋1𝑋3

}
(𝑛)

= [
𝑄̅44(𝑇) 𝑄̅45(𝑇)

𝑄̅45(𝑇) 𝑄̅55(𝑇)
]

(𝑛)

{

𝜕𝑢02
𝜕𝑋2

−
𝜕𝑢03
𝜕𝑋2

𝜕𝑢03
𝜕𝑋1

−
𝜕𝑢03
𝜕𝑋1

}

(𝑛)

                                                      (4b) 

 where 𝑄̅𝑖𝑗(T) is the transformed reduced material properties which depends the temperature (T) 

are given as follows: 
 

          𝑄
11
(𝑇) = 𝑄11(𝑇)𝑐𝑜𝑠

4𝜃 + 2(𝑄12(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22(𝑇)𝑠𝑖𝑛

4𝜃                 

          𝑄12(𝑇) = (𝑄11(𝑇) + 𝑄22(𝑇) − 4𝑄66(𝑇))𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄12(𝑇)(𝑠𝑖𝑛

4𝜃 + 𝑐𝑜𝑠4𝜃)  

          𝑄22(𝑇) = 𝑄11(𝑇)𝑠𝑖𝑛
4𝜃 + 2(𝑄12(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22(𝑇)𝑐𝑜𝑠
4𝜃  

          𝑄16(𝑇) = (𝑄11(𝑇) − 𝑄12(𝑇) − 2𝑄66(𝑇))𝑠𝑖𝑛𝜃𝑐𝑜𝑠
3𝜃 + (𝑄12(𝑇) − 𝑄22(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛

3𝜃𝑐𝑜𝑠𝜃  

          𝑄26(𝑇) = (𝑄11(𝑇) − 𝑄12(𝑇) − 2𝑄66(𝑇))𝑠𝑖𝑛
3𝜃𝑐𝑜𝑠𝜃 + (𝑄12(𝑇) − 𝑄22(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛𝜃𝑐𝑜𝑠

3𝜃  
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          𝑄
66
(𝑇) = (𝑄11(𝑇) + 𝑄22(𝑇) − 2𝑄12(𝑇) − 2𝑄66(𝑇))𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2 + 𝑄66(𝑇)(𝑠𝑖𝑛
4𝜃 + 𝑐𝑜𝑠4𝜃)                   

          𝑄̅44(𝑇) = 𝑄44(𝑇) cos
2 𝜃 + 𝑄55(𝑇) sin

2 𝜃  

              𝑄̅45(𝑇) = (𝑄55(𝑇) − 𝑄44(𝑇)) cos 𝜃 sin 𝜃 

              𝑄̅55(𝑇) = 𝑄44(𝑇) sin
2 𝜃 + 𝑄55(𝑇) cos

2 𝜃                                                                                               (5) 
 

where, 𝜃 is the fiber orientation angle. Components of the 𝑄𝑖𝑗 are given as follows;  

                                                     𝑄11(𝑇) =
𝐸1(𝑇)

1−𝜈12𝜈21
  ,        𝑄22(𝑇) =

𝐸2(𝑇)

1−𝜈12𝜈21
                 

    𝑄12(𝑇) =
𝜈12𝐸2(𝑇)

1−𝜈12𝜈21
=  

𝜈21𝐸1(𝑇)

1−𝜈12𝜈21
               𝑄44

(𝑛)(𝑇) = 𝐺23
(𝑛)(𝑇)                 𝑄55

(𝑛)(𝑇) = 𝐺13
(𝑛)(𝑇)                           

                                                     𝑄21(𝑇) =
𝜈12𝐸2(𝑇)

1−𝜈12𝜈21
=  

𝜈21𝐸1(𝑇)

1−𝜈12𝜈21
          𝑄66(𝑇) = 𝐺12(𝑇)                                   (6) 

 

The material properties of orthotropic laminated plate is a function of temperature (T) as follows 

(Shen[67]; Li and Qiao[68]). 

 
  𝐸1(𝑇) = 𝐸1(1 − 0,5 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                                         
  𝐸2(𝑇) = 𝐸2(1 − 0,2 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                                         
                                             𝐺12(𝑇) = 𝐺13(𝑇) = 𝐺 12(1 − 0,2 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                               
  𝐺23(𝑇) = 𝐺23(1 − 0,2 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                                     
  𝛼1(𝑇) =  𝛼1(1 + 0,5 ∗ 10

−3∆𝑇)/℃                                          

                                             𝛼2(𝑇) =  𝛼2(1 + 0,5 ∗ 10
−3∆𝑇)/℃                                                                         (7) 

  

The transformed the thermal expansion coefficients 𝛼𝑋1𝑋1 ,  𝛼𝑋2𝑋2 ,  𝛼𝑋1𝑋2 are given as follows; 

 

                                      𝛼𝑋1𝑋1 = 𝛼1𝑐𝑜𝑠
2𝜃 + 𝛼2𝑠𝑖𝑛

2𝜃  

                                      𝛼𝑋2𝑋2 = 𝛼2𝑐𝑜𝑠
2𝜃 + 𝛼1𝑠𝑖𝑛

2𝜃                                                                                                                                                                                                                                                                                                                                                       

                                      2𝛼𝑋1𝑋2 = 2(𝛼1 − 𝛼2)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃                                                         (8) 

 

where 𝛼1 and 𝛼2 are thermal expansion coefficients in 𝑋1 and 𝑋2 directions, respectively. Stress 

resultants are given as follows; 

 

                                                         {
{𝑁}

{𝑀}
} = [

[𝐴(𝑇)] [𝐵(𝑇)]

[𝐵(𝑇)] [𝐷(𝑇)]
] {
{𝜀0}

{𝜀1}
} − {

{𝑁𝑇}

{𝑀𝑇}
}                                              (9) 

 

where N is normal force and M is moment.  {𝑁𝑇} and {𝑀𝑇} are thermal force resultants: 
                                

                                                        {𝑁𝑇} = ∑ ∫ 𝑄𝑖𝑗(𝑇)
𝑛{𝛼̅(𝑇)}𝑛

𝑧𝑛+1
𝑧𝑛

𝑁
𝑛=1 ∆𝑇𝑑𝑋3                                            (10a) 

                                                         {𝑀𝑇} = ∑ ∫ 𝑄
𝑖𝑗
(𝑇)𝑛{𝛼̅(𝑇)}𝑛

𝑧𝑛+1
𝑧𝑛

𝑁
𝑛=1 ∆𝑇𝑋3𝑑𝑋3                                      (10b) 

 

{𝜀0} and {𝜀1} are given as follows; 

 

                                            {𝜀0} =

{
 
 

 
 

𝜕𝑢01

𝜕𝑋1
𝜕𝑢02

𝜕𝑋2
𝜕𝑢01

𝜕𝑋2
+
𝜕𝑢02

𝜕𝑋1 }
 
 

 
 

 ,   {𝜀1} =

{
 
 

 
 

𝜕∅𝑋1

𝜕𝑋1
𝜕∅𝑋2

𝜕𝑋2
𝜕∅𝑋1

𝜕𝑋2
+
𝜕∅𝑋2

𝜕𝑋1 }
 
 

 
 

                       (11) 

 

where 𝐴𝑖𝑗   is extensional stiffness,  𝐷𝑖𝑗 is bending stiffness, and  𝐵𝑖𝑗 is bending – extensional 

coupling stiffness. 𝐴𝑖𝑗,  𝐵𝑖𝑗  and  𝐷𝑖𝑗  are expressed as follows: 
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                                                    Aij = ∑ Qij
(n)
(zn+1 − zn)

n
k=1                                              (12a) 

                                                    Bij =
1

2
∑ Qij

(n)
(zn+1
2 − zn

2)n
k=1                                            (12b) 

                                                    Dij =
1

3
∑ Qij

(n)
(zn+1
3 − zn

3)n
k=1                                            (12c) 

 

The elastic strain energy (𝑈𝑖) and the kinetic energy (𝑇) of laminated plate are expressed as 

follows: 

 

                                                𝑈𝑖 =
1

2
∫ 𝜎𝑖𝑗 𝜀𝑖𝑗 𝑑𝑉𝑉

                                                              (13a) 

                                                          𝑇 =
1

2
∫ 𝜌 [(

𝜕𝑢01

𝜕𝑡
)
2

+ (
𝜕𝑢02

𝜕𝑡
)
2

+ (
𝜕𝑢03

𝜕𝑡
)
2

] 𝑑𝑉
𝑉

                       (13b) 

 

 The Hamilton’s principle of the problem is as follows; 

 

                                                 𝛿 ∫ [𝑇 − 𝑈𝑖]𝑑𝑡
𝑡

0
                                                                       (14) 

 

After using Hamilton’s principle, governing equations of the laminated plate can be obtained; 
   

                                         
𝜕𝑁𝑋1𝑋1

𝜕𝑋1
+
𝜕𝑁𝑋1𝑋2

𝜕𝑋2
= 𝐼0

𝜕2𝑢01

𝜕𝑡2
+ 𝐼1

𝜕2∅𝑋1

𝜕𝑡2
                                         (15a)      

                                          
𝜕𝑁𝑋1𝑋2

𝜕𝑋1
+
𝜕𝑁𝑋2𝑋2

𝜕𝑋2
= 𝐼0

𝜕2𝑢02

𝜕𝑡2
+ 𝐼1

𝜕2∅𝑋2

𝜕𝑡2
                                        (15b) 

                                          
𝜕𝑄𝑋1

𝜕𝑋1
+
𝜕𝑄𝑋2

𝜕𝑋2
= 𝐼0

𝜕2𝑢03

𝜕𝑡2
                                                                  (15c) 

                                   
𝜕𝑀𝑋1𝑋1

𝜕𝑋1
+
𝜕𝑀𝑋1𝑋2

𝜕𝑋2
− 𝑄𝑋1 = 𝐼2

𝜕2∅𝑋1

𝜕𝑡2
+ 𝐼1

𝜕2𝑢01

𝜕𝑡2
                                   (15d) 

                                   
𝜕𝑀𝑋1𝑋2

𝜕𝑋1
+
𝜕𝑀𝑋2𝑋2

𝜕𝑋2
− 𝑄𝑋2 = 𝐼2

𝜕2∅𝑋2

𝜕𝑡2
+ 𝐼1

𝜕2𝑢02

𝜕𝑡2
                                   (15e) 

where 

                                             {

𝑁𝑋1𝑋1
𝑁𝑋2𝑋2
𝑁𝑋1𝑋2

} = ∫ {

𝜎𝑋1𝑋1
𝜎𝑋2𝑋2
𝜎𝑋1𝑋2

} 𝑑𝑋3

ℎ

2

−
ℎ

2

                                                    (16a) 

                                              {

𝑀𝑋1𝑋1

𝑀𝑋2𝑋2

𝑀𝑋1𝑋2

} = ∫ {

𝜎𝑋1𝑋1
𝜎𝑋2𝑋2
𝜎𝑋1𝑋2

}𝑋3𝑑𝑋3

ℎ

2

−
ℎ

2

                                             (16b) 

                                       {
𝑄𝑋2
𝑄𝑋1

} = 𝐾 [
𝐴44(𝑇) 𝐴45(𝑇)

𝐴45(𝑇) 𝐴55(𝑇)
] [

𝜕𝑢03

𝜕𝑋2
+ ∅𝑋2

𝜕𝑢03

𝜕𝑋1
+ ∅𝑋1

]                                (16c) 

                                                                {
𝐼0
𝐼1
𝐼2

} = ∫ {

1
𝑋3
𝑋3

2
}𝜌0𝑑𝑋3

ℎ

2

−
ℎ

2

                                     (16d) 

 

In solution of problem, Navier method is implemented in the solution of the problem. In Navier 

solution, boundary conditions and displacement fields the plate are given the following 

equations: 
 

𝑢01(𝑋1, 0, 𝑡) = 0,    𝑢01(𝑋1, 𝑏, 𝑡) = 0,    𝑢02(0, 𝑋2, 𝑡) = 0,    𝑢02(𝑎, 𝑋2, 𝑡) = 0,               (17a) 
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𝑢03(𝑋1, 0, 𝑡) = 0,    𝑢03(𝑋1, 𝑏, 𝑡) = 0,    𝑢03(0, 𝑋2, 𝑡) = 0,    𝑢03(𝑎, 𝑋2, 𝑡) = 0,                  (17b) 

 ∅𝑋1(𝑋1, 0, 𝑡) = 0,    ∅𝑋1(𝑋1, 𝑏, 𝑡) = 0,    ∅𝑋2(0, 𝑋2, 𝑡) = 0,    ∅𝑋2(𝑎, 𝑋2, 𝑡) = 0,                (17c) 

𝑁𝑋1𝑋1
𝑇 (0, 𝑋2, 𝑡) = 0,    𝑁𝑋1𝑋1

𝑇 (𝑎, 𝑋2, 𝑡) = 0,    𝑁𝑋2𝑋2
𝑇 (𝑋1, 0, 𝑡) = 0,      𝑁𝑋2𝑋2

𝑇 (𝑋1, 𝑏, 𝑡) = 0   (17d) 

𝑀𝑋1𝑋1
𝑇 (0, 𝑋2, 𝑡) = 0,    𝑀𝑋1𝑋1

𝑇 (𝑎, 𝑋2, 𝑡) = 0,    𝑀𝑋2𝑋2
𝑇 (𝑋1, 0, 𝑡) = 0,      𝑀𝑋2𝑋2

𝑇 (𝑋1, 𝑏, 𝑡) = 0 (17e) 

 

                           𝑢01(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑈1𝑚𝑛(𝑡)𝑐𝑜𝑠𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2
∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                      (18a) 

                           𝑢02(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑈2𝑚𝑛(𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑐𝑜𝑠𝑙𝑋2
∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                      (18b) 

                           𝑢03(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑈3𝑚𝑛(𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2
∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                       (18c) 

                           ∅𝑋1(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑋𝑋1𝑚𝑛
(𝑡)𝑐𝑜𝑠𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2

∞
𝑚=1

∞
𝑛=1  𝑒−𝑖β𝑡                    (18d) 

                           ∅𝑋2(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑌𝑋2𝑚𝑛
(𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑐𝑜𝑠𝑙𝑋2

∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                     (18e) 

 

where 𝑈1𝑚𝑛, 𝑈2𝑚𝑛, 𝑈3𝑚𝑛, 𝑋𝑋1𝑚𝑛, 𝑌𝑋2𝑚𝑛 are displacement coefficients, 𝑘 = 𝑚𝜋/𝐿𝑋1, 𝑙 =

𝑛𝜋/𝐿𝑋2, 𝛽 is the natural frequency and 𝑖 = √−1. The temperature rising is defined as follows 

in the Navier solution; 
 

                                ∆𝑇(𝑋1, 𝑋2, 𝑋3, 𝑡) = ∑ ∑
 

𝑇𝑚𝑛(𝑋3, 𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2
∞
𝑚=1

∞
𝑛=1                   (19a) 

                               𝑇𝑚𝑛(𝑋3, 𝑡) =
4

𝐿𝑋𝐿𝑌
∫ ∫ ∆𝑆(𝑋1, 𝑋2, 𝑋3, 𝑡)𝑠𝑖𝑛𝑘𝑋1𝑠𝑖𝑛𝑙𝑋2 𝑑𝑋1𝑑𝑋2

𝑏

0

𝑎

0
        (19b) 

 

Substituting Eqs. (17-19) into Eqs. (15), and then using matrix procedure, the algebraic 

equations of free vibration problem can be expressed as follows;  

 

           

(

 
 

[
 
 
 
 
𝑝11 𝑝12 0 𝑝14 𝑝15
𝑝12 𝑝22 0 𝑝24 𝑝25
0 0 𝑝33 𝑝34 𝑝35
𝑝14 𝑝24 𝑝34 𝑝44 𝑝45
𝑝15 𝑝25 𝑝35 𝑝45 𝑝55]

 
 
 
 

− 𝜔2

[
 
 
 
 
𝑚11 0 0 0 0
0 𝑚22 0 0 0
0 0 𝑚33 0 0
0 0 0 𝑚44 0
0 0 0 0 𝑚55]

 
 
 
 

)

 
 

{
 
 

 
 
𝑈1𝑚𝑛
𝑈2𝑚𝑛
𝑈3𝑚𝑛
𝑋𝑋1𝑚𝑛
𝑌𝑋2𝑚𝑛}

 
 

 
 

=

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

(20) 

where 

                     𝑝11 = (𝐴11(𝑇)𝑘
2 + 𝐴66(𝑇)𝑙

2),   𝑝12 = (𝐴12(𝑇) + 𝐴66(𝑇))𝑘𝑙      
                     𝑝14 = (𝐵11(𝑇)𝑘

2 − 𝐵66(𝑇)𝑙
2), 𝑝15 = (𝐵12(𝑇) + 𝐵66(𝑇))𝑘𝑙,  

                    𝑝22 = (𝐴66(𝑇)𝑘
2 + 𝐴22(𝑇)𝑙

2), 𝑝24 = 𝑝15,   
                    𝑝25 = (𝐵66(𝑇)𝑘

2 + 𝐵22(𝑇)𝑙
2), 𝑝33 = 𝐾(𝐴55(𝑇)𝑘

2 + 𝐴44(𝑇)𝑙
2),   

                    𝑝34 = 𝐾𝐴55(𝑇)𝑘,   𝑝35 = 𝐾𝐴44(𝑇)𝑙,             
                     𝑝44 = (𝐷11(𝑇)𝑘

2 + 𝐷22(𝑇)𝑙
2 + 𝐾𝐴55(𝑇))    

                    𝑝45 = (𝐷12(𝑇) + 𝐷66(𝑇))𝑘𝑙, 𝑝55 = (𝐷66(𝑇)𝑘
2 + 𝐷22(𝑇)𝑙

2 + 𝐾𝐴44(𝑇))𝑘    
                    𝑚11 = 𝐼0, 𝑚22 = 𝐼0, 𝑚33 = 𝐼0, 𝑚44 = 𝐼2, 𝑚55 = 𝐼2                                     (21)        

 

where K is shear correction factor. Dimensionless fundamental frequency 𝜔̅ is defined as 

follows; 

 

                                             𝜔̅𝑚𝑛 = 𝜔𝑚𝑛(𝐿𝑋2
2/𝜋2)√𝜌ℎ/𝐷22                                               (22) 

 

 

 



Y.Z. Yüksel, Ş.D.Akbaş  

182 

 

3. Numerical Results 

In numerical study, dimensionless frequencies of cross-ply laminated simply-supported plate  

are calculated obtained in figures for different temperature values, orientation angles and 

sequence of laminas in temperature-dependent physically property. The mechanical properties 

of manufactured using graphite epoxy and its material parameters are; E1=150 GPa, E2=9 GPa, 

E3=9 GPa, G12=7,1 GPa, G23=2,5 GPa, G13=7,1 GPa, ρ=1600 kg/m3, ν12= ν21=0.3, 𝛼1 =
1,1. 10−6, 𝛼1 = 25,2. 10

−6 at 30 ̊ 𝐶 (Li and Qiao [68], Oh vd. [69]). The dimensions of plate 

are considered as follows: 𝐿𝑋1 = 4m , 𝐿𝑋2 = 4m, h=0.2 m. In the obtaining the numerical 

results and figures, MATLAB program is used. It is noted that temperature rising of bottom 

surface 𝛥𝑇𝐵 is changed and the temperature of the top surface 𝛥𝑇𝑇 is constant 𝛥𝑇𝑇 = 20 ̊𝐶 in 

the numerical calculations. 

In the numerical results, the relation between temperature rising and dimensionless natural 

frequencies is presented for different orientation angles and sequence of laminas. Also the 

difference between temperature dependent and independent physical properties on the 

dimensionless natural frequencies of laminated composite plate is discussed. For this purpose, 

figures 2,3,4 and 5 show the effect of the temperature rising on the first three lower 

dimensionless natural frequencies of the laminated plate for 0/0, 0/90, 90/0 and 90/90, 

respectively in two layer sequence in both temperature dependent and independent physical 

properties. Also, figures 6,7,8,9 and 10 show effect of temperature rising on first three lower 

dimensionless natural frequencies of the laminated plate for 0/0/0, 0/90/0, 90/0/90, 0/90/90 and 

90/90/90, respectively in three layer sequence in both temperature dependent and independent 

physical properties.  

 

 

Fig. 2. The natural frequencies versus temperature rising for the two layers for stacking sequence 0/0 

for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 
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Fig. 3. The natural frequencies versus temperature rising for the two layers for stacking sequence 0/90 

for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 
 

 

 

Fig. 4. The natural frequencies versus temperature rising for the two layers for stacking sequence 90/0 

for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 

 

 

 

Fig. 5. The natural frequencies versus temperature rising for the two layers for stacking sequence 

90/90 for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 
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Fig. 6. The natural frequencies versus temperature rising for the three layers for stacking sequence 

0/0/0 for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 

 

 

Fig. 7. The natural frequencies versus temperature rising for the three layers for stacking sequence 

0/90/0 for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 

 

    

Fig. 8. The natural frequencies versus temperature rising for the three layers for stacking sequence 

90/0/90 for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 
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Fig. 9. The natural frequencies versus temperature rising for the three layers for stacking sequence 

0/90/90 for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 

 

 

Fig. 10. The natural frequencies versus temperature rising for the three layers for stacking sequence 

90/90/90 for a) 𝜔̅11  b) 𝜔̅22 and c) 𝜔̅33. 

 

Figures 2-10 display that increasing in temperature, dimensionless frequency of laminated plate 

decreases significantly. With increasing temperature, the results of difference between 

temperature dependent and independent properties increase considerably.  

 

Frequencies of temperature dependent are smaller than the frequencies of temperature 

independent. This is because; with the temperature increase, the strength of laminated plate 

decreases in the temperature dependent physical properties, so the frequencies decrease 

naturally. However, the strength of the laminated plate does not change with temperature 

increase in the temperature independent physical properties. 

 

With changing the orientation angles, the dimensionless frequency change significantly. With 

increasing the orientation angles from 0 degree, the dimensionless frequency decrease 

considerably. Also, the stacking sequence play important role on vibration characterises of the 

laminated composite plate. In is observed from these figures that stacking sequence is very 

effective on thermal vibration responses.  
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4. Conclusions 

In the presented paper, free vibration of a laminated plate is studied under thermal loading by 

using FSDPT in temperature-dependent physically properties. Cross-ply laminated sequence 

and simply-supported boundary conditions are considered. The Navier solution is implemented 

in the solution method. Effects of temperature, sequence of laminas and orientation angle of 

layers on the vibration characterises of laminated plate are investigated in temperature 

dependent physical properties. Also, difference between temperature dependent and 

independent are examined on the vibration results. As seen from the graphs that increasing 

temperature yields to increasing difference between the temperature dependent and independent 

results. Increasing fiber orientation angles and temperature yields to decreasing the frequency 

values. Frequencies of temperature dependent physical properties are smaller than those of 

temperature independent's. Stacking sequence and orientation angle of layers play important 

role on vibration behavior of composite laminated plates. 
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Abstract 

This paper analyzes the thermo-vibration response of a graphene sheet excited with a uniform harmonic The 

problem is here tackled with a novel approach combined with a nonlocal strain gradient theory (NSGT), in 

order to include the size-dependence and the nonlocality effect on impacts. Simply-supported plates are here 

studied analytically, according to the Navier’s method. Thus, the thermo-forced vibration equations of the 

problem are here written and solved numerically for graphene sheets. The accuracy of the proposed theory is 

checked by means of several comparative evaluations with respect to the available results from literature. 

Another key aspect of the works is the sensitivity of the thermo-mechanical response of the plate structures to 

different thermal and mechanical input parameters. This could be of great interest for design purposes for many 

engineering applications, including nanoelectromechanical systems (NEMS), biosensors, piezoelectric devices, 

biomechanical tissues, among others.   

Keywords: Thermo-forced vibrations; A novel approach; Nonlocal theory of strain gradient 

1. Introduction 

Due to large variety of applications of graphene for many electronic components at the 

nanoscale, many studies in the literature on graphene materials have enhanced the 

development of lower-volume and high-speed electronic components. Graphene exhibits 

some physical properties usually not visible at a nanoscale level, namely, the high flexibility 

[1], the high thermal-mechanical resistance and elastic modulus [2]. More recently, an 

increased attention has been paid to graphene-based semiconductor photocatalysts [3], [4]. A 

graphene material is usually classified by means of a number of stacking layers, monolayer or 

multi-layer [5]. The use of a single-layer graphene nanoplate cannot only be a high-quality 

two-dimensional photocatalyst backup, but also can be a two-dimensional current circuit with 

a potentially significant potential for full redox and electrical properties [3]. To understand the 

main properties of single-layer graphene sheets, different works in literature have studied their 

mechanical and physical behavior. Among them, Ebrahimi and Barati [6] investigated the 

damped frequencies of nanoplates, according to a modified higher-order plate approach 
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combined with a general NSGT. The differential quadrature (DQ) technique has been applied 

to get numerical outcomes for simple edges. Radic and Jeremic [7] investigated the nonlocal 

stability of bi-layered nano sheets resting on a polymer foundation under in-plane thermal 

forces. Malikan et al. [8] employed the DQ technique to examine the stability of bi-layered 

nano sheets exposed to in-plane thermal and shear forces bridged on the polymer substrate. In 

the additional works by Malikan [9],[10], the author studied a laminated plate with graphene 

covering, subjected to in-plane mechanical forces, based on a refined couple stress theory [9], 

as well as the stability of nanoplates compressed nonuniformly [10]. The stability of 

nanoplates embedded on a polymer substrate was also analyzed by Shahsavari et al. [11] in a 

hygrothermal environment, while applying different NSGTs. Additional applications of 

nonlocal methods can be found in literature for stability problems of graphene sheets in 

thermal environment [12], or frequency problems of nano sheets under axial magnetic forces 

[13], nonlinear natural frequencies of beams made of graded materials reinforced with 

nanoplatelets [14]. Moreover, Gholami and Ansari [15] studied the nonlinear vibration of 

composite rectangular plates reinforced with graphene platelets, through the application of the 

third-order shear deformation model. Further relevant works on the topic can be found in [16-

51], where different nanostructures have been considered for varying conditions.  

Differently from the available literature on the topic, here we propose a refined plate approach 

with a reduced number of variables in comparison with the first-order shear deformation 

theory. The nanoplate is excited uniformly and harmonically under a transverse load. To 

model the thermo-vibration response, the nanoplate is considered in a thermal environment. 

The nonlocal reaction between atoms is here analyzed trough a nonlocal elasticity theory, 

whereby the mechanical behavior at a microscale and nanoscale accounts for the size-

dependence of impacts and stiffness, in agreement with experimental evidences. Hence, the 

microstructural problem is here tackled with a modified couple stress method, whereas the 

nanostructural one is here studied accounting for the second order strain gradient term. A 

theoretical procedure is here proposed for the study of the thermomechanical behavior of 

simply supported nanoplates, while exploring the accuracy of the method and the sensitivity 

of the response to different input parameters.  

2. Mathematical modeling 

Fig. 1a shows an idealized and realistic model for graphene nanoplates. The plate is 

characterized by a length Lx, width Ly and thickness h in a Cartesian coordinate system, and it 

is pressured transversely by a uniform dynamic force in a thermal environment. More details 

about the dynamic force acting transversely on the body are depicted in Fig. 1b [52]. A novel 

plate model is here proposed, which assumes the following displacement field [53-59] 
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Fig.1a. Graphene nanoplate subjected to thermal environment in 3D Cartesian coordinate system 

 
Fig.1b. The dynamic load acted harmonically and uniformly 

As far as the Hamilton’s approach is concerned, the potential energy of the model, V, is 

defined as [60]  

  
0

0

t

V S T dt     (2) 

where δΩ is the variation of the external work, δT refers to the variation of the kinetic energy 

and δS is the variation of the strain energy. This last contribution is computed as 

 0ij ij

v

S dV     (3) 

Eq. (1) is substituted in the nonlinear Lagrangian strain filed, which leads to [58] 
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Furthermore, the kinetic energy is defined as [52, 60] 
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whereas its variational form reads as follows 
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The numerical terms in the Eq. (6) denote the mass moments of inertia, namely [52, 60] 
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Thus, the governing equations of the problem read as follows 
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where Ni, Qi, and Mi (i= x, y, xy) denote the stress resultants, in terms of axial forces, shear 

forces, and moments. Constants Dij (i, j = 1, 2, and 6) and H44 are described by 
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where ν is the Poisson′s ratio, E is the Young’s modulus, and G is the shear modulus for 

isotropic graphene sheets. Some detail about the NSGT, here applied for the theoretical study, 

is presented in what follows [52, 58] 
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 (11) 

where, μ0 and μ1 refer to lower and higher-order nonlocal parameters, (l) is the length scale 

parameter. The local stress resultants read 
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By combining Eqs. (4), (12)-(14), the stress resultants become 
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where NT is the axial load associated to the thermal environment, α is the thermal expansion 

of the graphene sheet, and ∆T=T2-T1 is the temperature variation in the thickness direction. 

Here we set a reference value for the temperature equal to T1=300K. Then, we can use of Eq. 
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(11) to re-formulate the stress resultants, in order to obtain their nonlocal strain gradient form, 

namely 
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The thermo-excited vibration equations, can be obtained with combining Eq. (16)-(20) whilst 

inserting them into Eq. (8). 

3. Analytical approach 

This section employs the Navier’s solution in order to study the behavior of simply-supported 

edges and solve the harvested equations, based on the following displacement equation [52, 

56] 
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In Eq. (21), m and n denote the half-wave numbers, W0mn is the displacement amplitude, and 

ωn refer to the natural frequencies. The transverse dynamic loading applied uniformly and 

harmonically on the structure, reads [52, 56] 
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where, qm represents the Fourier coefficient, q0 denotes the load amplitude, and ωex denotes 

the excitation frequency. The algebraic equations can be obtained by inserting Eq. (21) and 

(22) into thermo-excited vibration equations. Thus yields the following relation 

            2 2 2 2 2 2 4
0 0 1 0 11 , ,mnk r m W q x y t           (24) 

 ex

n

r



   (25) 

where, ∆r stands for the excitation-to-natural frequency ratio, kij (i, j=1, 2, 3) and mij (i, j=1, 2, 

3) refer to the stiffness and mass matrixes, respectively. After the enforcement of the null 

value to the determinant of the matrix coefficients, and after some mathematical 

manipulation, we can obtain the natural frequencies of the problem. Afterwards, by 

substituting the numerical frequencies into the thermo-excited vibration equations of the 

problem, the dynamic deflections can be found. 

3. Numerical results 

This section is devoted to the preliminary check for the accuracy of the proposed approach 

with respect to the available theories form the literature. Table 1 compares our results, based 

on a One Variable FSDT (OVFSDT), with respect to several well-known references [61-63] 

based on the molecular dynamics (MD), or a FSDT-DQM approach. As can be observed, 

growing the plate's length, makes the results nearer to the MD ones. Basically, the excellent 

agreement between our results and predictions from the literature verifies the high accuracy of 

the proposed theory. Further comparative evaluations of the results can be found in Table 2, 

with respect to a DQM and MD approach, in terms of mechanical stability of grapheme sheets 

compressed biaxially, while assuming μ=1.81nm2, ks=5/6, υ=0.16, E=1TPa. 
 
 

Table 1.  Validation for mechanical stability of graphene sheet compressed biaxially. μ=1.81nm2, 

ks=5/6, υ=0.16, E=1TPa. 

Stability load (nN/nm) 

OVFSDT 
FSDT-DQM 

[61] 

FSDT-DQM 

[62] 

MD results 

[63] 
x yL L (nm) 

1.0274 1.0749 1.0809 1.0837 4.99 

0.62151 0.6523 0.6519 0.6536 8.080 

0.43832 0.4356 0.4350 0.4331 10.77 

0.26122 0.2645 0.2639 0.2609 14.65 

0.17075 0.1751 0.1748 0.1714 18.51 

0.11963 0.1239 0.1237 0.1191 22.35 

0.08856 0.0917 0.0914 0.0889 26.22 

0.06918 0.0707 0.0705 0.0691 30.04 

0.05568 0.0561 0.0560 0.0554 33.85 

0.04488 0.0453 0.0451 0.0449 37.81 
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Table 2. Comparative evaluation of the mechanical stability of graphene sheet compressed biaxially 

compared to the FSDT-DQM [62] and MD [63]. μ=1.81nm2, ks=5/6, υ=0.16, E=1TPa. 

 

Stability load (nN/nm) 

OVFSDT 
FSDT-DQM 

[62] 
MD results [63] /x yL L  

0.52449 0.5115 0.5101 0.5 

0.56223 0.5715 0.5693 0.75 

0.64225 0.6622 0.6595 1.25 

0.75576 0.7773 0.7741 1.5 

1.0134 1.0222 1.0183 1.75 

1.1703 1.1349 1.1297 2 

 

Table 3. Mechanical properties of graphene sheets. 

 

 

 

To consider several cases of nonlocality against the transverse harmonic load, Figs. 2 and 3 

are displayed. First of all, the higher-order nonlocal parameter has been investigated with the 

help of different dynamic loading conditions. As it is observed, the dynamic deflections 

decreased for increasing higher-order nonlocalities. Fig. 3 shows the conditions of lower-

order NSGT by changing the lower-order nonlocal parameter. It is worth noticing that an 

increased value for the higher-order nonlocal parameter has an increased impact on the 

dynamic deflection, than the lower-order nonlocal parameter (please, compare the plots of 

Figs. 2 and 3) 
 

 

 

 

 

 

 

 

 

 

Fig.2. Transverse dynamic load vs. the higher-order nonlocal parameter. e0a=0.2 nm, l=0.5h, m=n=1, 

∆r=0.1, ∆T=200K, x0=y0=0.5Lx, c1=c2=Lx. 

Isotropic 

graphene sheet  

[8, 56] 

E=1 TPa, ν=0.3 

h=0.34 nm, Lx=Ly=10.2 nm,  

ρ=2250 kg/m3, α=1.1e-6K 
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Fig.3. Transverse dynamic load vs. the nonlocal parameter. e0a= e1a= ea, l=0.5h, ∆r=0.1, m=n=1, 

∆T=200K, x0=y0=0.5Lx, c1=c2=Lx. 

Fig. 4 considers a higher-order NSGT for the graphene sheet under different excitation 

frequencies, and varying input geometrical parameters. As can be observed by these figures, 

the resonance situation occurs when ∆r=1. Moreover, it is worth observing that after reaching 

the resonance condition, the dynamic deflections become smaller than those obtained before 

this resonance region. Naturally, if a large value of ∆r is assumed, the deflections cannot be 

significant, namely the system cannot have a vibrational response. It is interesting to note that 

a reduced distribution region for the transverse harmonic load, reduces the deformability of 

the structure. Furthermore, by comparing Fig. 4 and 5, we can observe that a farther distance 

of the centroid in the loaded region, yields meaningless deflections in the structure.  

 

Fig.4. Distributed loads vs. the frequency ratio. e0a= 0.2 nm, e1a= 0.4 nm, l=0.5h, q0=0.1GPa, 

∆T=200K. 
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Fig.5. Distributed loads vs. the frequency ratio. e0a= 0.2 nm, e1a= 0.4 nm, l=0.5h, q0=0.1GPa, 

∆T=200K. 

Fig. 6 plots the displacement response of the nanoplate vs. the temperature, while keeping 

constant the following input parameters: e0a=1nm, e1a=0.5nm, and e0a=0.5nm, e1a=1nm. 

Based on a comparative evaluation of the results, the nonlocal input parameters affect 

significantly the structural response, especially for a high temperature conditions. These 

results confirm the great impact of higher-order NSGT on the mechanical behavior of 

graphene sheets. 

 
 

Fig.6. Higher and lower-order NSGT vs. the temperature variation. l=0.5h, q0=0.05GPa, ∆r=0.1, 

m=n=1, x0=y0=0.5Lx, c1=c2=Lx. 

5. Conclusions 

This article has investigated the thermo-forced vibration of graphene nanoplates, subjected to 

a transverse dynamic loading applied both uniformly and harmonically. A new plate approach 

is here proposed to determine the equations of motion, whereas the higher-order NSGT is 
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applied to evaluate the impacts at small scales. In addition, an analytic solution is here 

employed to check for the structural response. Based on a large parametric investigation, the 

following findings can be summarized as follows: 

 The higher-order nonlocal parameter affects more significantly the structural response 

than other small scale parameters. 

 A reduced sensitivity of the dynamic deflection when using higher-order nonlocality 

factors, within a higher-order NSGT context. This sensitivity of the response is less 

remarkable when a lower-order nonlocal parameter is applied. 

 An increased value of the temperature emphasize the main differences in the structural 

results based on higher-order and lower-order nonlocal parameters. This means that, for high 

room temperatures, the higher-order nonlocal parameter play a key role. 
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Abstract 

In this study, the infection process in infectious individual is mathematically modeled by using a system of 

fractional order differential equations with multiple-orders. Qualitative analysis of the model was done. To 

mathematically examine the effects of Pseudomonas Aeruginosa and Mycobacterium tuberculosis and their 

treatment methods, the results of the proposed model are compared with numerical simulations with the help of 

datas obtained from the literature. 

Keywords: Fractional-Order Differential Equation, Infection model, Qualitative Analysis, Numerical 

Simulation. 
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1. Introduction 

In the process of forming and examining of mathematical models, the ordinary differential 

equations (ODE), the fractional-order differential equations (FDE) and the difference 

equations etc. are encountered in the literature. Especially, numerous literature on the 

application of fractional-order differential equations in nonlinear dynamics has recently been 

developed [1]. 

In the process of modeling real-life situations, the created models by using fractional-order 

differential and integration minimize the ignored errors that are caused by parameters, since 

the more general form of the concepts of integer-order differential and integration are 
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concepts of the fractional-order differential and integration. For this reason, the models 

formed by fractional-order differential equations are more realistic and feasible[2-11].  

Fractional-order differential theory is based on the notes of Leibnitz in 1695. However, the 

earliest systematic studies on this subject were made by Liouville, Riemann and Holmgren in 

the 19th century [12]. At first this topic has been useful only in mathematics, but it has 

recently gained importance in other disciplines. FDE and its system are frequently used in the 

variety applications such as fluid mechanics, economics, viscoelasticity, biology, 

thermodynamics, physics and engineering [13-21]. Particularly, biology is a very rich 

resource for such models [22]. 

Considering the change of its size of a certain specy in population, the proposed models in the 

literature base on the mathematical growth models such as Malthus [23,24], Pearl-Verhulst 

Logistic [25,26], Gompertz [27-30] and Kemostat [31]. In addition that, there are interactive 

population models such as Lotka-Volterra prey-predator [32-34], Kolmogorov [35,35] and 

Epidemic [37] etc. 

In this study, a mathematical model considering time-dependent changes of immune system 

cells, pathogen and drug concentrations in an infected individual receiving multiple drug 

treatment, is proposed. This model is in the form of fractional-order differential equations 

system. In this respect, the proposed model is mathematically different from the ones 

proposed in [38-41], since the different parameters under various scenarios have been added 

to the model in here. 

2. Formation of Model 

In this section, the infection model is introduced by giving the definitions of the used 

variables and parameters. In this sense, time-dependent changes of immune system cells and 

populations of susceptible bacteria to antibiotic and resistant bacteria to antibiotic in an 

individual receiving multiple antibiotic treatment in case of an infection have been 

investigated through mathematical modeling. 

There are two types of immune system cells. These are effector cells, namely the first 

response or non-specific response of the immune system, and memory cells, namely the 

second response or specific response of immune system cells. When a sudden infection occurs 

in the host, first the effector cells and then the memory cells respond to the pathogen until the 

pathogen completely disappeared [42,43]. The effect of the memory cells of the immune 

system is investigated in the proposed model. 

It has assumed that 𝐵(𝑡), 𝑆(𝑡), 𝑅(𝑡) and 𝐴𝑖(𝑡) for 𝑖 = 1,2, … , 𝑛 symbolize the population size 

of specific immune system cells, the population size of susceptible bacteria to antibiotic, the 

population size of resistant bacteria to antibiotic and concentrations of antibiotics at time 𝑡, 
respectively. If the orders of the derivative in the system are accepted as 𝛼𝑗 for 𝑗 =

1,2, … , 𝑛 + 3, respectively, then 𝐷𝛼𝑗 expresses fractional derivatives in the sense of Caputo 

from the 𝛼𝑗-th order. By aforementioned assumptions, the nonlinear and autonomous FDEs 

system with multiple orders composed of (𝑛 + 3) equations is 
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𝐷𝛼1𝐵 = 𝑣(𝑆 + 𝑅)𝐵 − 𝜔𝐵𝐵

𝐷𝛼2𝑆 = 𝛽𝑆𝑆 (1 −
𝑆+𝑅

𝛬
) − 𝜔𝑆𝑆 − 𝑆∑ 𝜀𝑖

𝑛
𝑖=1 𝐴𝑖 − 𝑆∑ 𝑑𝑖

𝑛
𝑖=1 𝐴𝑖 − 𝛾𝐵𝑆

𝐷𝛼3𝑅 = 𝛽𝑅𝑅 (1 −
𝑆+𝑅

𝛬
) − 𝜔𝑅𝑅 + 𝑆∑ 𝜀𝑖

𝑛
𝑖=1 𝐴𝑖 − 𝛾𝐵𝑅

𝐷𝛼𝑖+3𝐴𝑖 = 𝛿𝑖 − 𝜇𝑖𝐴𝑖 , 𝑖 = 1,2, . . . , 𝑛

 (1) 

 

for 𝑡 ≥ 0. The 𝛼𝑗 for 𝑗 = 1,2, … , 𝑛 + 3 can be any real or complex vector. In this study, it is 

taken into account that these derivatives are nonnegative real numbers, and so, 𝛼𝑗 ∊ (0,1|. 

According to 𝐵 ≡ 𝐵(𝑡), 𝑆 ≡ 𝑆(𝑡), 𝑅 ≡ 𝑅(𝑡), 𝐴1 ≡ 𝐴1(𝑡),…, 𝐴𝑛 ≡ 𝐴𝑛(𝑡), the initial 

conditions at the time 𝑡 = 𝑡0 are 𝐵(𝑡0) = 𝐵0, 𝑆(𝑡0) = 𝑆0, 𝑅(𝑡0) = 𝑅0, 𝐴1(𝑡0) =
𝐴10,…,𝐴𝑛(𝑡0) = 𝐴𝑛0. For the parameters used in the system (2.1), it is 

 

 𝛽𝑆, 𝛽𝑅 , 𝜔𝑆, 𝜔𝑅 , 𝛾, 𝛬, 𝑣, 𝑑𝑖 , 𝜀𝑖, 𝛿𝑖 , 𝜇𝑖 ∊ ℝ
+ (2) 

 

for 𝑖 = 1,2, … , 𝑛. 

The definitions of the parameters in (2) are given below. Because it is assumed that the 

bacteria have grown in accordance with the logistic rules, the parameters 𝛽𝑆 and 𝛽𝑅 are the 

growth rates of susceptible and resistant bacteria to multiple antibiotic, respectively, and the 

parameter 𝛬 indicates the carrying capacity of bacteria. Also, it is 

 

 𝛽𝑆 > 𝛽𝑅 (3) 

 

due to fitness cost [41]. Immune system cells multiply at rate of 𝑣 by the current bacterial 

load [44,45]. Susceptible bacteria, resistant bacteria and immune system cells have the natural 

death rates 𝜔𝑆, 𝜔𝑅 and 𝜔𝐵, respectively. In addition that, the susceptible and resistant bacteria 

have death rates due to immune system cells and this rates is 𝛾 [46]. During the 

administration of the 𝑖-th antibiotic, some resistant bacteria emerge due to mutations of 

susceptible bacteria exposed to this antibiotic. 𝜀𝑖 for 𝑖 = 1,2, . . . , 𝑛 is the mutation rate of 

susceptible bacteria exposured to the 𝑖-th antibiotic. Because susceptible bacteria are also 

killed by the action of antibiotics, 𝑑𝑖 for 𝑖 = 1,2, . . . , 𝑛 is the death rate of susceptible bacteria 

exposured to the 𝑖-th antibiotic [38]. Lastly, the 𝑖-th antibiotic concentration is supplied at a 

constant rate 𝛿𝑖, and is taken up at a constant per capita rate 𝜇𝑖 [39]. 

Thus, the model (1) under the above scenarios is the mathematical form of a general bacterial 

infection and the relationships among the variables used in this model have showed 

schematically in Fig.1. 
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Fig.1. Schematic representation of the interaction among bacteria, immune system cells and 

antibiotic concentrations according to the parameters used in (1). 

 

Definition 2.1. Let 𝑖 = 1,2,3,… , 𝑛 + 3. Model in (1) can be rewritting in the matris form as 

following 

 

 
𝐷𝛼𝑋(𝑡) = 𝑓(𝑋(𝑡)) = 𝑈𝑋(𝑡) + 𝑥2(𝑡)𝑁2𝑋(𝑡) + 𝑥3(𝑡)𝑁3𝑋(𝑡) + 𝑃

𝑋(0) = 𝑋0
 (4) 

 

where it is shown by 𝛼 = [𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛+3]
𝑇 the derivatives, by 𝑋(𝑡) =

[𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡)… , 𝑥𝑛+3(𝑡)]
𝑇 = [𝐵(𝑡), 𝑆(𝑡), 𝑅(𝑡), 𝐴1(𝑡)… , 𝐴𝑛(𝑡)]

𝑇 ∈ ℝ𝑛+3 the 

variables, by 𝑓 = [𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛+3]
𝑇 ∈ ℝ𝑛+3, 𝑓𝑖: [0, +∞)xℝ

𝑛+3 → ℝ the functions. Also, 

when it is considered as 𝐷𝛼 = [𝐷𝛼1 , 𝐷𝛼2 , 𝐷𝛼3 , … , 𝐷𝛼𝑛+3]𝑇, 𝐷𝛼𝑖 expresses a fractional 

derivative in the sense of Caputo from the 𝛼𝑖-th order. For 𝐷𝛼𝑋(𝑡) =
[𝐷𝛼1𝑥1(𝑡), 𝐷

𝛼2𝑥2(𝑡), 𝐷
𝛼3𝑥3(𝑡), … , 𝐷

𝛼𝑛+3𝑥𝑛+3(𝑡)]
𝑇, (4) is defined as follows:  

 



B. Daşbaşı, İ. Öztürk, N. Menekşe 

 

211 
 

 

𝑈 =

(

 
 
 

−𝜔𝐵 0 0 0 . . . 0

0 (𝛽𝑠 − 𝜔𝑆) 0 0 . . . 0

0 0 (𝛽𝑟 − 𝜔𝑅) 0 . . . 0
0 0 0 −𝜇1 . . . 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 . . . −𝜇𝑛)

 
 
 

,

𝑃 =

(

 
 
 

0
0
0
𝛿1
⋮
𝛿𝑛)

 
 
 
,𝑁2 =

(

 
 
 
 

𝑣 0 0 0 . . . 0

−𝛾 −
𝛽𝑆

𝛬
−
𝛽𝑆

𝛬
−(𝜀1 + 𝑑1) . . . −(𝜀𝑛 + 𝑑𝑛)

0 0 −
𝛽𝑅

𝛬
𝜀1 . . . 𝜀𝑛

0 0 0 0 . . . 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 . . . 0 )

 
 
 
 

,

𝑁3 =

(

 
 
 

𝑣 0 0 0 . . . 0
0 0 0 0 . . . 0

−𝛾 −
𝛽𝑅

𝛬
0 0 . . . 0

0 0 0 0 . . . 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 . . . 0)

 
 
 

 and 𝑋0 =

(

 
 
 

𝐵(0)

𝑆(0)

𝑅(0)

𝐴1(0)
⋮
𝐴𝑛(0))

 
 
 

=

(

 
 
 

𝑥1(0)

𝑥2(0)

𝑥3(0)

𝑥4(0)
⋮
𝑥𝑛+3(0))

 
 
 

.

 (5) 

 

Definition 2.2. For 𝑋(𝑡) = (𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)  𝑥4(𝑡)… 𝑥𝑛+3(𝑡))
𝑇
, let 𝐶∗[0, 𝑇] be a set of 

continuous column vectors in the interval [0, 𝑇]. Norm of the vector 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇] definited 

in (4) is shown by ‖𝑋(𝑡)‖ = ∑ 𝑠𝑢𝑝𝑡|𝑥𝑖(𝑡)|
𝑛+3
𝑖=1 . 

Proposition 2.1. We have keep in mind Definition 2.1. In this sense, let us consider 𝑋(𝑡) =

(𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)  𝑥4(𝑡) … 𝑥𝑛+3(𝑡))
𝑇
 in ℝ+

𝑛+3 = {𝑋 ∈ 𝑅𝑛+3: 𝑋 ≥ 0} and 𝐷𝛼𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] 

for 𝑓(𝑋) ∈ 𝐶[𝑎, 𝑏], 0 < 𝛼 ≤ 1. According to generalized mean value theorem, it is 𝑓(𝑥) =

𝑓(𝑎) +
1

𝛤(𝛼)
𝐷𝛼𝑓(𝜉)(𝑥 − 𝑎)𝛼 for  𝑥 ∈ [𝑎, 𝑏] and 0 ≤ 𝜉 ≤ 𝑥. Also, 

 When 𝐷𝛼𝑓(𝑥) > 0 for  𝑥 ∈ [𝑎, 𝑏], the function 𝑓(𝑥) increases for each 𝑥 ∈ [𝑎, 𝑏]. 
 When 𝐷𝛼𝑓(𝑥) < 0 for  𝑥 ∈ [𝑎, 𝑏], the function 𝑓(𝑥) decreases for each 𝑥 ∈ [𝑎, 𝑏]. 

In addition to the above mentioned, the vector field is the points in ℝ+
𝑛+3, due to 

𝐷𝛼𝑥1(𝑡)|𝑥1=𝑥2=𝑥3=𝑥𝑖+3=0 = 0, 𝐷𝛼𝑥2(𝑡)|𝑥1=𝑥2=𝑥3=𝑥𝑖+3=0 = 0, 𝐷𝛼𝑥3(𝑡)|𝑥1=𝑥2=𝑥3=𝑥𝑖+3=0 = 0 

and 𝐷𝛼𝑥𝑖+3(𝑡)|𝑥1=𝑥2=𝑥3=𝑥𝑖+3=0 = 𝛾𝑖 for 𝑖 = 1,2, … , 𝑛. 

Proposition 2.2. If 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇], then the system (4) has a single solution [47]. 

Proof Let 𝐷α𝑋(𝑡) = 𝑈𝑋(𝑡) + 𝑥2(𝑡)𝑁2𝑋(𝑡) + 𝑥3(𝑡)𝑁3𝑋(𝑡) + 𝑃. In this case, it is 𝐹(𝑋(𝑡)) ∈
𝐶∗[0, 𝑇] for the vector 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇]. For the vectors 𝑋(𝑡), 𝑌(𝑡) ∈ 𝐶∗[0, 𝑇] such that 

𝑋(𝑡) ≠  𝑌(𝑡), we have the follows: 

‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ 

= ‖(𝑈𝑋(𝑡) + 𝑥2(𝑡)𝑁2𝑋(𝑡) + 𝑥3𝑁3𝑋(𝑡) + 𝑃) − (𝑈𝑌(𝑡) + 𝑦2(𝑡)𝑁2𝑌(𝑡) + 𝑦3𝑁3𝑋(𝑡) + 𝑃)‖ 

= ‖𝑈𝑋(𝑡) + 𝑥2(𝑡)𝑁2𝑋(𝑡) + 𝑥3𝑁3𝑋(𝑡) − 𝑈𝑌(𝑡) − 𝑦2(𝑡)𝑁2𝑌(𝑡) − 𝑦3𝑁3𝑋(𝑡)‖ 

http://tureng.com/tr/turkce-ingilizce/in%20addition%20to%20these


B. Daşbaşı, İ. Öztürk, N. Menekşe 

 

212 
 

= ‖

𝑈(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥2(𝑡)𝑁2𝑋(𝑡) + 𝑥3𝑁3𝑋(𝑡) − 𝑦2(𝑡)𝑁2𝑌(𝑡) − 𝑦3𝑁3𝑋(𝑡)

−(𝑥2(𝑡)𝑁2𝑌(𝑡) − 𝑥2(𝑡)𝑁2𝑌(𝑡)⏟                  
0

) − (𝑥3(𝑡)𝑁3𝑌(𝑡) − 𝑥3(𝑡)𝑁3𝑌(𝑡)⏟                  
0

)
‖ 

= ‖
𝑈(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥2(𝑡)𝑁2(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥3(𝑡)𝑁3(𝑋(𝑡) − 𝑌(𝑡))

+(𝑥2(𝑡) − 𝑦2(𝑡))𝑁2𝑌(𝑡) + (𝑥3(𝑡) − 𝑦3(𝑡))𝑁3𝑌(𝑡)
‖ 

≤ (
‖𝑈(𝑋(𝑡) − 𝑌(𝑡))‖ + ‖𝑥2(𝑡)𝑁2(𝑋(𝑡) − 𝑌(𝑡))‖ + ‖𝑥3(𝑡)𝑁3(𝑋(𝑡) − 𝑌(𝑡))‖

+‖(𝑥2(𝑡) − 𝑦2(𝑡))𝑁2𝑌(𝑡)‖ + ‖(𝑥3(𝑡) − 𝑦3(𝑡))𝑁3𝑌(𝑡)‖
) 

≤ (
‖𝑈‖‖(𝑋(𝑡) − 𝑌(𝑡))‖ + |𝑥2(𝑡)|‖𝑁2‖‖(𝑋(𝑡) − 𝑌(𝑡))‖ + |𝑥3(𝑡)|‖𝑁3‖‖(𝑋(𝑡) − 𝑌(𝑡))‖

+‖𝑁2‖|(𝑥2(𝑡) − 𝑦2(𝑡))|‖𝑌(𝑡)‖ + ‖𝑁3‖|(𝑥3(𝑡) − 𝑦3(𝑡))|‖𝑌(𝑡)‖
) 

≤ (

(‖𝑈‖ + |𝑥2(𝑡)|‖𝑁2‖ + |𝑥3(𝑡)|‖𝑁3‖)‖(𝑋(𝑡) − 𝑌(𝑡))‖ +

‖𝑁2‖ |(𝑥2(𝑡) − 𝑦2(𝑡))|⏟          
≤‖(𝑋(𝑡)−𝑌(𝑡))‖

‖𝑌(𝑡)‖ + ‖𝑁3‖ |(𝑥3(𝑡) − 𝑦3(𝑡))|⏟          
≤‖(𝑋(𝑡)−𝑌(𝑡))‖

‖𝑌(𝑡)‖) 

≤ (
‖𝑈‖ + ‖𝑁1‖‖𝑌(𝑡)‖ + ‖𝑁2‖|𝑥2(𝑡)| +

‖𝑁2‖‖𝑌(𝑡)‖ + ‖𝑁3‖|𝑥3(𝑡)| + ‖𝑁3‖‖𝑌(𝑡)‖
) ‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

≤ (‖𝑈‖ + ‖𝑁2‖(|𝑥2(𝑡)|⏟  
≤‖𝑋(𝑡)‖

+ ‖𝑌(𝑡)‖) + ‖𝑁3‖ (|𝑥3(𝑡)|⏟  
≤‖𝑋(𝑡)‖

+ ‖𝑌(𝑡)‖))‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

≤ (‖𝑈‖ + (‖𝑁2‖ + ‖𝑁3‖)(‖𝑋(𝑡)‖ + ‖𝑌(𝑡)‖))‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

and so, 

 

 ‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ ≤ 𝐿‖(𝑋(𝑡) − 𝑌(𝑡))‖ (6) 

 

where 𝐿 = ‖𝑈‖ + (‖𝑁2‖ + ‖𝑁3‖)(𝐸1 + 𝐸2) > 0 such that 𝐸1, 𝐸2 ∊ ℝ
+and ‖𝑋(𝑡)‖ ≤ 𝐸1,

‖𝑌(𝑡)‖ ≤ 𝐸2 due to 𝑋(𝑡), 𝑌(𝑡) ∈ 𝐶∗[0, 𝑇]. Hence, there is only one solution of (4). 

3. Qualitative Analysis of Mathematical Model  

In this section, the equilibrium points of the mathematical model expressed in (1) are found 

and stability analysis of these equilibrium points is made. 

Definition 3.1. For the system (1), the threshold parameters 𝑆𝑆, 𝑅𝑅 and 𝑆𝑅 are defined as 

follows: 

 

 𝑆𝑆 =
(𝛽𝑆−𝜔𝑆−∑ (𝜀𝑖+𝑑𝑖)

𝛿𝑖
𝜇𝑖

𝑛
𝑖=1 )

𝛽𝑆
𝛬

, 𝑅𝑅 =
(𝛽𝑅−𝜔𝑅)

𝛽𝑅
𝛬

, 𝑆𝑅 =
∑ 𝜀𝑖

𝛿𝑖
𝜇𝑖

𝑛
𝑖=1

𝛽𝑅
𝛬

. (7) 
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where 𝑆𝑅 > 0 and 𝑆𝑆, 𝑅𝑅 < 𝛬 due to (2). 

Proposition 3.2. We have presumed that the general expression of the equilibrium points of 

the system (1) is 𝐸(𝐵̅, 𝑆̅, 𝑅̅, 𝐴1̅̅ ̅, 𝐴2̅̅ ̅, . . . , 𝐴𝑛̅̅̅̅ ). If the threshold parameters in Definition 3.1 are 

taken into account, then the following expressions are provided: 

 The infection-free equilibrium point is 𝐸0 (0,0,0,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
), and this point always 

exists. 

 If 𝑅𝑅 > 0, then the equilibrium point 𝐸1 (0,0, 𝑅𝑅 ,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) exists. 

 Let 𝑆𝑆 + 𝑆𝑅 ≠ 𝑅𝑅. If 𝑆𝑆 > 𝑅𝑅, then the equilibrium point 𝐸2 (0, (𝑆𝑆 −

𝑅𝑅) (
𝑆𝑆

𝑆𝑆+𝑆𝑅−𝑅𝑅
) , 𝑆𝑅

𝑆𝑆

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) exists. 

 If 𝑅𝑅 −
𝜔𝐵

𝑣
> 0, then the equilibrium point 𝐸3 (

𝑅𝑅−
𝜔𝐵
𝑣

𝛾
𝛽𝑅
𝛬

, 0,
𝜔𝐵

𝑣
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) exists. 

 Let 𝑆𝑆 > 𝑚𝑎𝑥 {𝑅𝑅 ,
𝜔𝐵

𝑣
}. In this case, the positive equilibrium point is 

𝐸4 (
𝑆𝑆−

𝜔𝐵
𝑣

𝛾
𝛽𝑆
𝛬

,
𝜔𝐵

𝑣
(

𝑆𝑆−𝑅𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
) ,

𝑆𝑅
𝜔𝐵
𝑣

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) , and it exists. 

Proof Let us remember that the equilibrium solution of (1) is denoted by 

𝐸(𝐵̅, 𝑆̅, 𝑅̅, 𝐴1̅̅ ̅, 𝐴2̅̅ ̅, . . . , 𝐴𝑛̅̅̅̅ ). This solution is obtained from 𝐷𝛼1𝐵 = 𝐷𝛼2𝑆 = 𝐷𝛼3𝑅 = 𝐷𝛼𝑖+3𝐴𝑖 =
0 for 𝑖 = 1,2, . . . , 𝑛. Therefore, we have 

 

 

𝑣(𝑆̅ + 𝑅̅)𝐵̅ − 𝜔𝐵𝐵̅ = 0

𝛽𝑆𝑆̅ (1 −
𝑆̅+𝑅̅

𝛬
) − 𝜔𝑆𝑆 − 𝑆̅ ∑ 𝜀𝑖

𝑛
𝑖=1 𝐴𝑖̅ − 𝑆̅ ∑ 𝑑𝑖

𝑛
𝑖=1 𝐴𝑖̅ − 𝛾𝐵̅𝑆̅ = 0

𝛽𝑅𝑅̅ (1 −
𝑆̅+𝑅̅

𝛬
) − 𝜔𝑅𝑅 + 𝑆̅ ∑ 𝜀𝑖

𝑛
𝑖=1 𝐴𝑖̅ − 𝛾𝐵̅𝑅̅ = 0

𝛿𝑖 − 𝜇𝑖𝐴𝑖̅ = 0, 𝑖 = 1,2, . . . , 𝑛.

 (8) 

 

Let us consider that the threshold parameters in Definition 3.1. The equilibrium value 𝐴𝑖̅ =
𝛿𝑖

𝜇𝑖
 

is founded by the equation 𝛿𝑖 − 𝜇𝑖𝐴𝑖̅ = 0, which is the fourth equation of the system (8). If 

this value is rewritten in the second and third equations in (8), then it is founded that 

 

 

𝑣(𝑆̅ + 𝑅̅)𝐵̅ − 𝜔𝐵𝐵̅ = 0

𝑆̅ (𝑆𝑆 − (𝑆̅ + 𝑅̅) −
𝛾𝛬𝐵̅

𝛽𝑆
) = 0

𝑅̅𝑅𝑅 − 𝑅̅(𝑆̅ + 𝑅̅) + 𝑆̅𝑆𝑅 −
𝛬𝛾𝐵̅𝑅̅

𝛽𝑅
= 0

 (9) 

 

By the first equation of (9), it is either 

 

 𝐵̅ = 0 or (𝑆̅ + 𝑅̅) =
𝜔𝐵

𝑣
 (10) 
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(i) Let 𝐵̅ = 0. In this case, (9) tranforms to 

 

 
𝑆̅(𝑆𝑆 − (𝑆̅ + 𝑅̅)) = 0

𝑅̅𝑅𝑅 − 𝑅̅(𝑆̅ + 𝑅̅) + 𝑆̅𝑆𝑅 = 0.
 (11) 

 

From first equation in (11), it is founded either 𝑆̅ = 0 or 𝑆̅ + 𝑅̅ = 𝑆𝑆. 

a. Let 𝑆̅ = 0. If this value is written in the second equation of (11), 𝑅̅ = 0 and 𝑅̅ = 𝑅𝑅 

are obtained. Therefore, 𝐸0 (0,0,0,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) and 𝐸1 (0,0, 𝑅𝑅 ,

𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) are 

the equilibrium points. The equilibrium point 𝐸0 is biological meaningful due to (2). 

On the other hand, the equilibrium point 𝐸1 is biological meaningful when 𝑅𝑅 > 0. 

b. Let 𝑆̅ + 𝑅̅ = 𝑆𝑆. Taking into consideration the threshold parameters in (7), if this value 

is substituted in the second equation of the system (11), then  

 

 
𝑆̅ + 𝑅̅ = 𝑆𝑆
𝑆̅𝑆𝑅 + 𝑅̅(𝑅𝑅 − 𝑆𝑆) = 0

 (12) 

 

is founded. From (12), we have 𝑆̅ =
𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
 and 𝑅̅ =

𝑆𝑆𝑆𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
 for 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠

0. For 𝑆𝑅 > 0 in (7), if 𝑆𝑆 > 𝑚𝑎𝑥{𝑅𝑅 , 0}, then the equilibrium point  

𝐸2 (0,
𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
,

𝑆𝑆𝑆𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is biological meaning. 

(ii) Let 

 

 (𝑆̅ + 𝑅̅) =
𝜔𝐵

𝑣
. (13) 

 

In this respect, the system (9) transforms to 

 

 

(𝑆̅ + 𝑅̅) =
𝜔𝐵

𝑣

𝑆̅ (𝑆𝑆 −
𝜔𝐵

𝑣
−

𝛾
𝛽𝑆
𝛬

𝐵̅) = 0

𝑅̅ (𝑅𝑅 −
𝜔𝐵

𝑣
−

𝛾
𝛽𝑅
𝛬

𝐵̅) + 𝑆̅𝑆𝑅 = 0

 (14) 

 

From the second equation in the system (14), it is clear that either 𝑆̅ = 0 or 𝐵̅ =
𝑆𝑆−

𝜔𝐵
𝑣

𝛾
𝛽𝑆
𝛬

. 

a. Let us assume 𝑆̅ = 0. In this sense, the values 𝑅̅ =
𝜔𝐵

𝑣
 and then 𝐵̅ =

𝑅𝑅−
𝜔𝐵
𝑣

𝛾
𝛽𝑅
𝛬

 are 

founded from (14), and so the equilibrium point is 𝐸3 (
𝑅𝑅−

𝜔𝐵
𝑣

𝛾
𝛽𝑅
𝛬

, 0,
𝜔𝐵

𝑣
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
). If  

 

 𝑅𝑅 −
𝜔𝐵

𝑣
> 0, (15) 
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then this point is biological meaningful due to (2). 

b. Let 𝐵̅ =
𝑆𝑆−

𝜔𝐵
𝑣

𝛾
𝛽𝑆
𝛬

. If this value is substituted in the second equation of (14), then 

 

 
(𝑆̅ + 𝑅̅) =

𝜔𝐵

𝑣

𝑆̅𝑆𝑅 + 𝑅̅(𝑅𝑅 − 𝑆𝑆) = 0
 (16) 

 

is obtained. By solving the equations in (16) for 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0, the equilibrium 

values as 𝑆̅ =
𝜔𝐵

𝑣
(

𝑆𝑆−𝑅𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
) and 𝑅̅ =

𝑆𝑅
𝜔𝐵
𝑣

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
 are obtained. Thereby, If 𝑆𝑆 >

𝑚𝑎𝑥 {𝑅𝑅 ,
𝜔𝐵

𝑣
} then, the equilibrium point 

𝐸4 (
𝑆𝑆−

𝜔𝐵
𝑣

𝛾
𝛽𝑆
𝛬

,
𝜔𝐵
𝑣
(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
,

𝜔𝐵
𝑣
𝑆𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is biological meaningful due to (2) 

and (7). 

The following table can be given with respect to the biological existence conditions depended 

on the parameters of the equilibrium points. 

Table 1. The biological meaningful condition for equilibrium points of (1). 

Equilibrium Point Biological Existence Condition 

𝐸0 (0,0,0,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) Always 

𝐸1 (0,0, 𝑅𝑅 ,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 0 < 𝑅𝑅 

𝐸2 (0,
𝑆𝑆(𝑆𝑆 − 𝑅𝑅)

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅
,

𝑆𝑆𝑆𝑅
𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅

,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 𝑚𝑎𝑥{𝑅𝑅 , 0} < 𝑆𝑆, 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0 

𝐸3 (
𝑅𝑅 −

𝜔𝐵

𝑣
𝛾
𝛽𝑅
𝛬

, 0,
𝜔𝐵
𝑣
,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 

𝜔𝐵
𝑣
< 𝑅𝑅 

𝐸4 (
𝑆𝑆 −

𝜔𝐵

𝑣
𝛾
𝛽𝑆
𝛬

,

𝜔𝐵

𝑣
(𝑆𝑆 − 𝑅𝑅)

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅
,

𝜔𝐵

𝑣
𝑆𝑅

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅
,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 𝑚𝑎𝑥 {𝑅𝑅 ,

𝜔𝐵

𝑣
} < 𝑆𝑆, 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0 

 

Definition 3.2. In the stability analysis of the equilibrium points of the system (1), we have 

assumed that 

 

 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛+3 = 𝛼 (17) 

 

for the orders of derivatives in this system. 
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Proposition 3.3. Let us assume that Definition 3.2. is provided. The following expressions for 

the equilibrium points of the system (1) are proved. 

(i) If 𝑆𝑆, 𝑅𝑅 < 0, then 𝐸0 (0,0,0,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is locally asymtotically stable. 

(ii) Let 0 < 𝑅𝑅. If 𝑆𝑆 < 𝑅𝑅 <
𝜔𝐵

𝑣
, then 𝐸1 (0,0, 𝑅𝑅 ,

𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is locally asymtotically 

stable. 

(iii)Let 𝑚𝑎𝑥{𝑅𝑅 , 0} < 𝑆𝑆 and 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0. If 𝑆𝑆 <
𝜔𝐵

𝑣
, then 

𝐸2 (0,
𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
,

𝑆𝑆𝑆𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is locally asymtotically stable. 

(iv) Let 
𝜔𝐵

𝑣
< 𝑅𝑅. If 

𝛽𝑆

𝛽𝑅
(𝑆𝑆 −

𝜔𝐵

𝑣
) < (𝑅𝑅 −

𝜔𝐵

𝑣
), then 𝐸3 (

𝑅𝑅−
𝜔𝐵
𝑣

𝛾
𝛽𝑅
𝛬

, 0,
𝜔𝐵

𝑣
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is 

locally asymtotically stable. 

(v) Let 𝑚𝑎𝑥 {𝑅𝑅 ,
𝜔𝐵

𝑣
} < 𝑆𝑆 and 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0. 

𝐸4(
𝑆𝑆−

𝜔𝐵
𝑣

𝛾
𝛽𝑆
𝛬

,
𝜔𝐵
𝑣
(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
,

𝜔𝐵
𝑣
𝑆𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is locally asymtotically stable, when 

𝑆𝑅 <
𝜔𝐵

𝑣
. 

Proof The functions obtained from the system (1) for 𝑖 = 1,2, . . . , 𝑛 are as the followings 

 

 

𝑔1(𝐵, 𝑆, 𝑅, 𝐴1, … , 𝐴𝑛) = 𝑣(𝑆 + 𝑅)𝐵 − 𝜔𝐵𝐵

𝑔2(𝐵, 𝑆, 𝑅, 𝐴1, … , 𝐴𝑛) = 𝛽𝑆𝑆 (1 −
𝑆+𝑅

𝛬
) − 𝜔𝑆𝑆 − 𝑆∑ 𝜀𝑖

𝑛
𝑖=1 𝐴𝑖 − 𝑆∑ 𝑑𝑖

𝑛
𝑖=1 𝐴𝑖 − 𝛾𝐵𝑆

𝑔3(𝐵, 𝑆, 𝑅, 𝐴1, … , 𝐴𝑛) = 𝛽𝑅𝑅 (1 −
𝑆+𝑅

𝛬
) − 𝜔𝑅𝑅 + 𝑆∑ 𝜀𝑖

𝑛
𝑖=1 𝐴𝑖 − 𝛾𝐵𝑅

𝑔4(𝐵, 𝑆, 𝑅, 𝐴1, … , 𝐴𝑛) = 𝛿𝑖 − 𝜇𝑖𝐴𝑖
⋮

𝑔𝑖+3(𝐵, 𝑆, 𝑅, 𝐴1, … , 𝐴𝑛) = 𝛿𝑖 − 𝜇𝑖𝐴𝑖

 (18) 

 

In this sense, the jacobian matrix of this system, which has the form 𝐽 =

(

 
 
 
 

(𝑔1)𝐵 (𝑔1)𝑆 (𝑔1)𝑅 (𝑔1)𝐴1 … (𝑔1)𝐴𝑛
(𝑔2)𝐵 (𝑔2)𝑆 (𝑔2)𝑅 (𝑔2)𝐴1 … (𝑔2)𝐴𝑛
(𝑔3)𝐵 (𝑔3)𝑆 (𝑔3)𝑅 (𝑔3)𝐴1 … (𝑔3)𝐴𝑛
(𝑔4)𝐵 (𝑔4)𝑆 (𝑔4)𝑅 (𝑔4)𝐴1 … (𝑔4)𝐴𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

(𝑔𝑛+3)𝐵 (𝑔𝑛+3)𝑆 (𝑔𝑛+3)𝑅 (𝑔𝑛+3)𝐴1 … (𝑔𝑛+3)𝐴𝑛)

 
 
 
 

, is 
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 𝐽 =

(

 
 
 
 
 
 
 
 

𝑣(𝑆 + 𝑅) − 𝜔𝐵 𝑣𝐵 𝑣𝐵 0 … 0

−𝛾𝑆 (
𝛽𝑠 − 𝜔𝑆 − 2

𝑆𝛽𝑠

𝛬
−
𝑅𝛽𝑠

𝛬

−∑ (𝜀𝑖
𝑛
𝑖=1 +𝑑𝑖)𝐴𝑖 − 𝛾𝐵

) −
𝑆𝛽𝑠

𝛬
−𝑆(𝜀1 + 𝑑1) … −𝑆(𝜀𝑛 + 𝑑𝑛)

−𝛾𝑅 (−
𝛽𝑅𝑅

𝛬
+ ∑ 𝜀𝑖

𝑛
𝑖=1 𝐴𝑖) (

𝛽𝑅 − 𝜔𝑅 −
𝛽𝑅𝑆

𝛬

−2
𝛽𝑅𝑅

𝛬
− 𝛾𝐵

) 0 … 0

0 0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 … −𝜇𝑛 )

 
 
 
 
 
 
 
 

(19) 

 

Let us remember that the values 𝐴𝑖̅ =
𝛿𝑖

𝜇𝑖
 for 𝑖 = 1,2, … , 𝑛 in all of the equilibrium points was 

founded in Proposition 3.2. By substituting these values in the Jacobian matrix in (19), this 

matrix transforms to 

 

 𝐽∗ =

(

 
 
 
 
 
 
 
 

𝑣(𝑆̅ + 𝑅̅) − 𝜔𝐵 𝑣𝐵̅ 𝑣𝐵̅ 0 … 0

−𝛾𝑆̅
𝛽𝑆

𝛬
(
𝑆𝑆 − 2𝑆̅ −

𝑅̅ −
𝛾
𝛽𝑆
𝛬

𝐵̅ ) −
𝑆̅𝛽𝑠

𝛬
−𝑆̅(𝜀1 + 𝑑1) … −𝑆̅(𝜀𝑛 + 𝑑𝑛)

−𝛾𝑅̅
𝛽𝑅

𝛬
(−𝑅̅ + 𝑆𝑅)

𝛽𝑅

𝛬
(
𝑅𝑅 − 𝑆̅ −

2𝑅̅ −
𝛾
𝛽𝑅
𝛬

𝐵̅) 0 … 0

0 0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 … −𝜇𝑛 )

 
 
 
 
 
 
 
 

 (20) 

 

where 𝐵̅, 𝑆̅ and 𝑅̅ are the components of the equilibrium points. From the matrix (20) 

evaluated at the equilibrium points showed in Table 3.1, it is assumed that the eigenvalues 

 are denoted by 𝜆𝑖 for 𝑖 = 1,… , 𝑛 + 3. Also, it is clear that 𝜆𝑖+3 = −𝜇𝑖 < 0, which meant that 

the stability states of the equilibrium points with respect to Routh-Hurwitz criteria do not 

affect. Therefore, it should be examined the following block matrix 

 

 𝐽∗
𝐵𝑙𝑜𝑐𝑘 =

(

 
 
 

𝑣(𝑆̅ + 𝑅̅) − 𝜔𝐵 𝑣𝐵̅ 𝑣𝐵̅

−𝛾𝑆̅
𝛽𝑆

𝛬
(𝑆𝑆 − 2𝑆̅ − 𝑅̅ −

𝛾
𝛽𝑆
𝛬

𝐵̅) −
𝛽𝑠

𝛬
𝑆̅

−𝛾𝑅̅
𝛽𝑅

𝛬
(−𝑅̅ + 𝑆𝑅)

𝛽𝑅

𝛬
(𝑅𝑅 − 𝑆̅ − 2𝑅̅ −

𝛾
𝛽𝑅
𝛬

𝐵̅)
)

 
 
 
.(21) 

 

(i) The matrix (21) evaluated at 𝐸0 (0,0,0,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is 

 

 𝐽𝐸0
∗𝐵𝑙𝑜𝑐𝑘 = (

−𝜔𝐵 0 0

0
𝛽𝑆

𝛬
𝑆𝑆 0

0
𝛽𝑅

𝛬
𝑆𝑅

𝛽𝑅

𝛬
𝑅𝑅

) (22) 
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In this sense, the eigenvalues are 𝜆1 = −𝜔𝐵, 𝜆2 =
𝛽𝑆

𝛬
𝑆𝑆 and 𝜆3 =

𝛽𝑅

𝛬
𝑅𝑅. These 

eigenvalues are real number and 𝜆1 < 0 due to (2). If 

 

 𝑆𝑆, 𝑅𝑅 < 0, (23) 

 

then 𝜆1, 𝜆2 < 0. In this case, 𝐸0 is locally asymtotically stable. 

(ii) Let 0 < 𝑅𝑅. The matrix (21) evaluated at the point 𝐸1 (0,0, 𝑅𝑅 ,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) is 

 

 𝐽𝐸1
∗𝐵𝑙𝑜𝑐𝑘 = (

𝑣𝑅𝑅 − 𝜔𝐵 0 0

0
𝛽𝑆

𝛬
(𝑆𝑆 − 𝑅𝑅) 0

−𝛾𝑅𝑅
𝛽𝑅

𝛬
(−𝑅𝑅 + 𝑆𝑅) −

𝛽𝑅

𝛬
𝑅𝑅

) (24) 

 

In this case, the eigenvalues obtained from (24) are 𝜆1 = 𝑣𝑅𝑅 − 𝜔𝐵, 𝜆2 =
𝛽𝑆

𝛬
(𝑆𝑆 − 𝑅𝑅) and 𝜆3 = −

𝛽𝑅

𝛬
𝑅𝑅. From (2) and (7), it is clear that these eigenvalues are 

real number. Moreover, if the biological existence condition of 𝐸1 is taken into 

account, then it is seen 𝜆3 < 0. According to Routh-Hurwitz criteria, If 

 

 𝑆𝑆 < 𝑅𝑅 <
𝜔𝐵

𝑣
, (25) 

 

then 𝜆1 and 𝜆2 are negatif real number, which meant that 𝐸1 is locally asymtotically 

stable. 

(iii)Let 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0 and  

 

 𝑚𝑎𝑥{𝑅𝑅 , 0} < 𝑆𝑆. (26) 

 

By the matrix (21) for 𝐸2 (0,
𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
,

𝑆𝑆𝑆𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
), it is 

 

 𝐽𝐸2
∗𝐵𝑙𝑜𝑐𝑘 =

(

 
 

𝑣𝑆𝑆 − 𝜔𝐵 0 0
−𝛾𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
−
𝛽𝑆

𝛬

𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
−
𝛽𝑠

𝛬

𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅

−𝛾𝑅̅
𝛽𝑅

𝛬

𝑆𝑅(𝑆𝑅−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅

𝛽𝑅

𝛬
(𝑅𝑅 − 𝑆𝑆 −

𝑆𝑆𝑆𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
)
)

 
 
. (27) 

 

One of the eigenvalues obtained from (27) is 𝜆1 = 𝑣𝑆𝑆 − 𝜔𝐵 and the others are 

founded by the following matrix 

 

 𝐽𝐸2
∗∗𝐵𝑙𝑜𝑐𝑘 = (

−
𝛽𝑆

𝛬
(
𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
) −

𝛽𝑠

𝛬
(
𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
)

𝛽𝑅

𝛬
𝑆𝑅 (

𝑆𝑅−𝑅𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
)

𝛽𝑅

𝛬
(𝑅𝑅 − 𝑆𝑆 −

𝑆𝑆𝑆𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
)
). (28) 
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𝜆1 is real number due to (2) and (7). Moreover, if 

 

 𝑆𝑆 <
𝜔𝐵

𝑣
, (29) 

 

then 𝜆1 < 0. To find the eigenvalues 𝜆2 and 𝜆3, the characteristic equation obtained 

from (28) is 

 

 𝜆2 − [𝑇𝑟𝐽𝐸2
∗∗𝐵𝑙𝑜𝑐𝑘]𝜆 + [𝐷𝑒𝑡𝐽𝐸2

∗∗𝐵𝑙𝑜𝑐𝑘] = 0 (30) 

 

where 

 

 
𝑇𝑟𝐽𝐸2

∗∗𝐵𝑙𝑜𝑐𝑘 = −(
𝛽𝑅

𝛬
((𝑆𝑆 − 𝑅𝑅) +

𝑆𝑆𝑆𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
) +

𝛽𝑆

𝛬
(
𝑆𝑆(𝑆𝑆−𝑅𝑅)

𝑆𝑆+𝑆𝑅−𝑅𝑅
))

𝐷𝑒𝑡𝐽𝐸2
∗∗𝐵𝑙𝑜𝑐𝑘 =

𝛽𝑠

𝛬

𝛽𝑅

𝛬
𝑆𝑆(𝑆𝑆 − 𝑅𝑅)

 (31) 

 

Let us consider (26), namely the biological existence condition of 𝐸2. In this case, 

𝑇𝑟𝐽𝐸2
∗∗𝐵𝑙𝑜𝑐𝑘 < 0 and 𝐷𝑒𝑡𝐽𝐸2

∗∗𝐵𝑙𝑜𝑐𝑘 > 0. Therefore, it can be seen that all of the 

coefficients of (30) are positive real number. According to Routh-Hurwitz criteria, if 

the inequality in (29) is met, then all eigenvalues calculated at this equilibrium point 

are either complex numbers having negative real part or negative real numbers. In this 

case, 𝐸2 is locally asymtotically stable. 

(iv) Let 
 

 
𝜔𝐵

𝑣
< 𝑅𝑅 . (32) 

 

In this respect, 𝐸3 (
𝑅𝑅−

𝜔𝐵
𝑣

𝛾
𝛽𝑅
𝛬

, 0,
𝜔𝐵

𝑣
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
) biologically exists. The Jacobian matrix 

(21) calculated at this point is 

 

 𝐽𝐸3
∗𝐵𝑙𝑜𝑐𝑘 =

(

 
 
 
 

0 𝑣
𝑅𝑅−

𝜔𝐵
𝑣

𝛾
𝛽𝑅
𝛬

𝑣
𝑅𝑅−

𝜔𝐵
𝑣

𝛾
𝛽𝑅
𝛬

0
𝛽𝑆

𝛬
((𝑆𝑆 −

𝜔𝐵

𝑣
) −

𝛽𝑅

𝛽𝑆
(𝑅𝑅 −

𝜔𝐵

𝑣
)) 0

−𝛾
𝜔𝐵

𝑣

𝛽𝑅

𝛬
(𝑆𝑅 −

𝜔𝐵

𝑣
) −

𝜔𝐵

𝑣

𝛽𝑅

𝛬 )

 
 
 
 

 (33) 

 

From (33), it is 𝜆1 =
𝛽𝑆

𝛬
((𝑆𝑆 −

𝜔𝐵

𝑣
) −

𝛽𝑅

𝛽𝑆
(𝑅𝑅 −

𝜔𝐵

𝑣
)) and the eigenvalues 𝜆2 and 𝜆3 

are obtained from the characteristic equation given as 
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 𝜆2 +
𝜔𝐵

𝑣

𝛽𝑅

𝛬
𝜆 + 𝜔𝐵

𝛽𝑅

𝛬
(𝑅𝑅 −

𝜔𝐵

𝑣
) = 0 (34) 

 

If 

 

 
𝛽𝑆

𝛽𝑅
(𝑆𝑆 −

𝜔𝐵

𝑣
) < (𝑅𝑅 −

𝜔𝐵

𝑣
), (35) 

 

then 𝜆1 is negative real number. That all coefficients in (34) are positive real number 

due to (2) and (32), which meant 𝑇𝑟𝐽𝐸3
𝐵𝑙𝑜𝑐𝑘 < 0 and 𝐷𝑒𝑡𝐽𝐸3

𝐵𝑙𝑜𝑐𝑘 > 0. In this respect, the 

eigenvalues 𝜆2 and 𝜆3 are either negative real numbers or complex numbers having 

negative real parts. In accord with Routh-Hurwitz criteria, if the inequality in (34) is 

provided, then 𝐸3 is locally asymtotically stable. 

(v) Let 𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0 and 
 

 𝑚𝑎𝑥 {𝑅𝑅 ,
𝜔𝐵

𝑣
} < 𝑆𝑆. (36) 

 

By calculating the Jacobian matrix in (21) at the point 

𝐸4 (
𝑆𝑆−

𝜔𝐵
𝑣

𝛾
𝛽𝑆
𝛬

,
𝜔𝐵

𝑣

(𝑆𝑆−𝑅𝑅)

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
,
𝜔𝐵

𝑣

𝑆𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
,
𝛿1

𝜇1
,
𝛿2

𝜇2
, . . . ,

𝛿𝑛

𝜇𝑛
), it is founded 

 

 𝐽𝐸4
∗𝐵𝑙𝑜𝑐𝑘 =

(

 

0 𝑣𝐵̅ 𝑣𝐵̅

−𝛾𝑆̅ −𝑆̅
𝛽𝑆

𝛬
−𝑆̅

𝛽𝑠

𝛬

−𝛾𝑅̅
𝛽𝑅

𝛬
(𝑆𝑅 − 𝑅̅)

𝛽𝑅

𝛬
(−𝑆𝑅

𝑆̅

𝑅̅
− 𝐵̅𝛾𝛬 (

𝛽𝑆−𝛽𝑅

𝛽𝑆𝛽𝑅
) − 𝑅̅))

 , (37) 

 

where the values 𝐵̅, 𝑆̅ and 𝑅̅ are in 𝐸4. The characteristic equation for the eigenvalues 

𝜆1, 𝜆2 and 𝜆3 obtained from the matrix (37) is 

 

 𝜆3 + 𝑐1𝜆
2 + 𝑐2 𝜆 + 𝑐3 = 0, (38) 

 

where 

 

 

𝑐1 =
1

𝛬
( 𝛽𝑆𝑆̅ + 𝛽𝑅 (𝑆𝑅

𝑆̅

𝑅̅
+ 𝐵̅𝛾𝛬 (

𝛽𝑆−𝛽𝑅

𝛽𝑆𝛽𝑅
) + 𝑅̅))

𝑐2 = (𝐵̅𝑣 𝛾
𝜔𝐵

𝑣
+

1

𝛬2
𝑆̅ 𝛽𝑅 𝛽𝑠 (𝑆𝑅 + 𝑆𝑅

𝑆̅

𝑅̅
+ 𝐵̅𝛾𝛬 (

𝛽𝑆−𝛽𝑅

𝛽𝑆𝛽𝑅
)))

𝑐3 =
𝑆̅𝐵̅𝑣 𝛾

𝛬
𝛽𝑅 (𝑆𝑅 + 𝑆𝑅

𝑆̅

𝑅̅
+ 𝐵̅𝛾𝛬 (

𝛽𝑆−𝛽𝑅

𝛽𝑆𝛽𝑅
)) .

 (39) 
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Let us recall that if 𝑐1, 𝑐3 > 0 and 𝑐1𝑐2 > 𝑐3 for the third-degreee characteristic 

polynomial in (38) according to Routh-Hurwitz criteria, then the equilibrium point is 

locally asymtotically stable. It is 

 

 𝑐1, 𝑐2, 𝑐3 > 0 (40) 

 

due to (2) and (3). Also, we have 

 

 𝑐1. 𝑐2 − 𝑐3 =
1

𝛬
((𝐿2 + 𝛽𝑅𝐿1) (𝐵̅𝑣 𝛾

𝜔𝐵

𝑣
+

1

𝛬2
𝑆̅ 𝛽𝑅 𝛽𝑠𝐿1) − 𝑆̅𝐵̅𝑣 𝛾𝛽𝑅𝐿1) (41) 

 

and so, 

 

𝑐1. 𝑐2 − 𝑐3 =
1

𝛬
(
1

𝛬2
𝑆̅ 𝛽𝑅

2 𝛽𝑠𝐿1
2 + 𝐿2𝐵̅𝑣 𝛾

𝜔𝐵

𝑣
+ [𝐿2

1

𝛬2
𝑆̅  𝛽𝑠 + 𝐵̅𝛾𝑣 [

𝜔𝐵

𝑣
− 𝑆̅ ]⏟      
∗

] 𝛽𝑅𝐿1)(42) 

 

where 

 

 
𝐿1 = (𝑆𝑅 + 𝑆𝑅

𝑆̅

𝑅̅
+ 𝐵̅𝛾𝛬 (

𝛽𝑆−𝛽𝑅

𝛽𝑆𝛽𝑅
))

𝐿2 = (𝛽𝑆𝑆̅  − 𝛽𝑅𝑆𝑅 + 𝛽𝑅𝑅̅).

 (43) 

 

In this sense, it is 

 

 0 < 𝐿1 (44) 

 

due to (3). On the other hand, we have the follows 

𝐿2 = (𝛽𝑆𝑆̅ – 𝛽𝑅𝑆𝑅 + 𝛽𝑅𝑅̅), 

𝐿2 = (𝛽𝑆
𝜔𝐵

𝑣
(

𝑆𝑆−𝑅𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
)  − 𝛽𝑅𝑆𝑅 + 𝛽𝑅

𝜔𝐵

𝑣

𝑆𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
), 

𝐿2 =
1

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
( 𝛽𝑆⏟
>𝛽𝑅 due to (2.3)

𝜔𝐵

𝑣
(𝑆𝑆 − 𝑅𝑅) − 𝛽𝑅𝑆𝑅 (𝑆𝑆 − 𝑅𝑅 + 𝑆𝑅 −

𝜔𝐵

𝑣
)), 

𝐿2 >
𝛽𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
(
𝜔𝐵

𝑣
(𝑆𝑆 − 𝑅𝑅) − 𝑆𝑅 (𝑆𝑆 − 𝑅𝑅 + 𝑆𝑅 −

𝜔𝐵

𝑣
)), 

𝐿2 >
𝛽𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
(
𝜔𝐵

𝑣
(𝑆𝑆 − 𝑅𝑅 + 𝑆𝑅) − 𝑆𝑅(𝑆𝑆 − 𝑅𝑅 + 𝑆𝑅)) = 𝛽𝑅 (

𝜔𝐵

𝑣
− 𝑆𝑅), 

𝐿2 >
𝛽𝑅

(𝑆𝑆+𝑆𝑅−𝑅𝑅)
(
𝜔𝐵

𝑣
(𝑆𝑆 − 𝑅𝑅 + 𝑆𝑅) − 𝑆𝑅(𝑆𝑆 − 𝑅𝑅 + 𝑆𝑅)) = 𝛽𝑅 (

𝜔𝐵

𝑣
− 𝑆𝑅), 

and so, 

 

 𝐿2 > 𝛽𝑅 (
𝜔𝐵

𝑣
− 𝑆𝑅). (45) 

 

If 
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 𝑆𝑅 <
𝜔𝐵

𝑣
, (46) 

 

then 

 

 0 < 𝐿2. (47) 

 

For the expression * in (42), 

 

 ∗= [
𝜔𝐵

𝑣
− 𝑆̅ ] =

𝜔𝐵

𝑣
−
𝜔𝐵

𝑣
(

𝑆𝑆−𝑅𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
) =

𝜔𝐵

𝑣
[1 − (

𝑆𝑆−𝑅𝑅

𝑆𝑆+𝑆𝑅−𝑅𝑅
)

⏟      
<1 due to (3.30)

] > 0 (48) 

 

is provided. To sum up, if (46) is provided, then it is 

 

 𝑐1. 𝑐2 − 𝑐3 > 0, (49) 

 

in (42), due to (44), (46) and (48). Let us consider (46). 𝐸4 is locally asymtotically 

stable, when (40) and (49) are met. 

As a result of this proposition, the following table can be given. 

 

Table 2. Conditions of stability and biological meaningful for equilibrium points of (1). 

Equilibrium Point 

Biological 

Existence 

Condition 

Stability Condition 

𝐸0 (0,0,0,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) Always 𝑆𝑆, 𝑅𝑅 < 0 

𝐸1 (0,0, 𝑅𝑅 ,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 0 < 𝑅𝑅 𝑆𝑆 < 𝑅𝑅 <

𝜔𝐵
𝑣

 

𝐸2 (0,
𝑆𝑆(𝑆𝑆 − 𝑅𝑅)

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅
,

𝑆𝑆𝑆𝑅
𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅

,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 

𝑚𝑎𝑥{𝑅𝑅 , 0} < 𝑆𝑆, 

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0 
𝑆𝑆 <

𝜔𝐵
𝑣

 

𝐸3 (
𝑅𝑅 −

𝜔𝐵

𝑣
𝛾
𝛽𝑅
𝛬

, 0,
𝜔𝐵
𝑣
,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 

𝜔𝐵
𝑣
< 𝑅𝑅 

𝛽𝑆
𝛽𝑅
(𝑆𝑆 −

𝜔𝐵
𝑣
) < (𝑅𝑅 −

𝜔𝐵
𝑣
) 

𝐸4 (
𝑆𝑆 −

𝜔𝐵

𝑣
𝛾
𝛽𝑆
𝛬

,

𝜔𝐵

𝑣
(𝑆𝑆 − 𝑅𝑅)

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅
,

𝜔𝐵

𝑣
𝑆𝑅

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅
,
𝛿1
𝜇1
,
𝛿2
𝜇2
, . . . ,

𝛿𝑛
𝜇𝑛
) 

𝑚𝑎𝑥 {𝑅𝑅 ,
𝜔𝐵

𝑣
} < 𝑆𝑆, 

𝑆𝑆 + 𝑆𝑅 − 𝑅𝑅 ≠ 0 
𝑆𝑅 <

𝜔𝐵
𝑣
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4. Applications of the Proposed Model in (1) 

In this section, the values obtained from the literature to the parameters used in the system (1) 

are given. The qualitative analysis of the proposed model was supported by numerical 

simulations. Two application have been done in this context. 

4.1. Application for Pseudomonas Aeruginosa 

The parameter values in the studies of Handel et al. [48] and Ternent et al. [40] are used. For 

an individual receiving Meropenem and Antivirulence drug in case of the infection caused by 

Pseudomonas Aeruginosa, they proposed a mathematical model in ODE form, based on the 

relationship among phagocyte (immune system cells), bacteria and drug concentrations.  

 

Table 3. Parameter values used in system (1) for Pseudomonas Aeruginosa 
Parameter Definition Value Reference 

𝛽𝑆 The growth rate of susceptible Pseudomonas Aeruginosa 24 day-1 [48] 

𝛽𝑅 The growth rate of resistant Pseudomonas aeruginosa 21.6 day-1 [40] 

𝛬 The carrying capacity of Pseudomonas Aeruginosa 109 bakteri [48] 

𝑣 
The growth rate of immune system cells in the presence of Pseudomonas 

Aeruginosa 
3 day-1 [40] 

𝜔𝑆 The natural death rate of susceptible Pseudomonas Aeruginosa 0.7 day-1 [40] 

𝜔𝑅 The natural death rate of resistant Pseudomonas Aeruginosa 0.7 day-1 [40] 

𝜔𝐵 The natural death rate of immune system cells 1.512 day-1 [49] 

𝛾 The death rate of Pseudomonas Aeruginosa due to immune system cells 2.4 ∗ 10−4day-1 [49] 

𝜀1 The mutation rate of Pseudomonas Aeruginosa due to Meropenem 10−6 mutxgen [50,51] 

𝜀2 The mutation rate of Pseudomonas Aeruginosa due to anti-virulence drug 0 mutxgen [40] 

𝑑1 The death rate of Pseudomonas Aeruginosa due to Meropenem 8.47 day-1 [40] 

𝑑2 The death rate of Pseudomonas Aeruginosa due to anti-virulence drug 2.93 day-1 [50,51] 

𝛿1 The daily dose of Meropenem 4 mg/kg/day [40,50,51] 

𝛿2 The daily dose of anti-virulence drug 4 mg/kg/day [40,50,51] 

𝜇1 The remove rate from the body of Meropenem 0.15 day-1 [50,51] 

𝜇2 The remove rate from the body of anti-virulence drug 0.15 day-1 [50,51] 

𝛼 The orders of the derivative in the system (1) 0.9 Hypothesis 

(𝐵0, 𝑆0, 𝑅0, 𝐴𝑖0) Initial conditions for 𝑖 = 1,2 (1,6000,2,4,4) [40,48] 

 

When parameter values in Table 3. are used, the threshold parameters in Definition 3.1. are 

𝑆𝑆 = −11695802777, 𝑅𝑅 = 967592592 and 𝑆𝑅 = 1234567901. From Proposition 3.2., 

the equilibrium points existed biologically are 𝐸0(0,0,0,26.66,26.66), 
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𝐸1(0,0,967592592,26.66,26.66) and 𝐸3(87083.33,0,0.504,26.66,26.66), respectively. 

𝐸3(87083.33,0,0.504,26.66,26.66) is locally asymtotically stable, because it is 
𝛽𝑆

𝛽𝑅
(𝑆𝑆 −

𝜔𝐵

𝑣
) = −

2923950694376

225
< (𝑅𝑅 −

𝜔𝐵

𝑣
) = 967592591.496 in the Proposition 3.3. The drug dose 

and duration of treatment for this infection is determined by type and severity of the infection 

and the patient's condition. In the study of Handel et al.[48], they have investigated in a 

treatment duration of approximately 10 days. In this sense, we have considered the same 

treatment duration for this study. Thus, we have obtained the following figures. 

 

 

Fig.2. Time-dependent changes of the immune system cells during 10 days of the drug 

treatment according to Table 3. 

 

Fig.3. Time-dependent changes of the susceptible Pseudomonas Aeruginosa population 

during 10 days of drug treatment according to Table 3. 
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Fig.4. Time-dependent changes of the resistant Pseudomonas Aeruginosa population during 

10 days of drug treatment according to Table 3. 

 

 

Fig.5. Time-dependent changes for the each drug concentrations (Meropenem or Anti-

virulence drug) during 10 days of drug treatment according to Table 3. 
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Fig.6. Time-dependent changes of the Pseudomonas Aeruginosa population during 10 days of 

drug treatment according to Table 3. 

 

The daily ranges in quantities of the specific immune system cells, the susceptible 

Pseudomonas Aeruginosa population, the resistant Pseudomonas Aeruginosa population, the 

drug concentrations (Meropenem or Anti-virulence drug) and the Pseudomonas Aeruginosa 

population during the 10-day treatment period are shown respectively in Fig.2-6. 

For ease of reviewing the daily values of the variables in these figures, the points on the graph 

were interpolated into polynomial at 9th degree (except for the initial conditions) to show the 

increase or decrease between consecutive days, due to it is a treatment method of 10 days. 

Stability of the equilibrium points 𝐸3(87083.33,0,0.504,26.66,26.66) is seen in Fig. 7. 

Within 10 days of treatment, the antibiotic-resistant Pseudomonas aeruginosa population 

approaches 0.504 (quite small value) and the antibiotic-susceptible Pseudomonas aeruginosa 

population disappears. Also, it takes a long time that specific immune system cells approach 

to the value of 87083.33. As shown in Fig.7, this is due to the local stability and the 

parameters. 
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Fig.7. According to Table 3, Stability of the equilibrium point 

𝐸3(87083.33,0,0.504,26.66,26.66). 

 

4.2. Application for Mycobacterium Tuberculosis 

The parameter values in the studies of Mondragón et al. [39] are used. For an individual 

receiving the antibiotics isoniazid (INH), rifampicin (RIF), streptomycin (SRT) and 

pyrazinamide (PZA) in case of the infection caused by Mycobacterium Tuberculosis, they 

proposed a mathematical model in ODE form, based on the relationship between bacteria and 

antibiotic concentrations. For this infection, the treatment time is about 6 months. In this 

sense, all of the antibiotics are used in the first two months and the antibiotics isoniazid and 

rifampicin are used in the remaining four months [52]. The parameter values used in the 

system (1) for numerical study are given in Table 4. 
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Table 4. Parameter values used in system (1) for Mycobacterium Tuberculosis 
Parameter Definition Value Reference 

𝛽𝑆 The growth rate of susceptible Mycobacterium Tuberculosis 0.8 day-1 [39] 

𝛽𝑅 The growth rate of resistant Mycobacterium Tuberculosis 0.4 day-1 [39] 

𝛬 The carrying capacity of Mycobacterium Tuberculosis 109 bakteri [53] 

𝑣 
The growth rate of immune system cells in the presence of Mycobacterium 

Tuberculosis 
0.0002 day-1 Hypothesis 

𝜔𝑆 The natural death rate of susceptible Mycobacterium Tuberculosis 0.312 day-1 [39] 

𝜔𝑅 The natural death rate of resistant Mycobacterium Tuberculosis 0.312 day-1 [39] 

𝜔𝐵 The natural death rate of immune system cells 0.35 day-1 [54] 

𝛾 The death rate of Mycobacterium Tuberculosis due to immune system cells 2.4 ∗ 10−4 day-1 [49] 

𝜀1 The mutation rate of Mycobacterium Tuberculosis due to isoniazid 10−6 mutxgen [55] 

𝜀2 The mutation rate of Mycobacterium Tuberculosis due to rifampicin 10−8 mutxgen [55] 

𝜀3 The mutation rate of Mycobacterium Tuberculosis due to streptomycin 0 [39] 

𝜀4 The mutation rate of Mycobacterium Tuberculosis due to pyrazinamide 0 [39] 

𝑑1 The death rate of Mycobacterium Tuberculosis due to isoniazid 0.0039 day-1 [56] 

𝑑2 The death rate of Mycobacterium Tuberculosis due to rifampicin 0.00375 day-1 [39] 

𝑑3 The death rate of Mycobacterium Tuberculosis due to streptomycin 0.0025 day-1 [53] 

𝑑4 The death rate of Mycobacterium Tuberculosis due to pyrazinamide 0.00001625 day-1 [53] 

𝛿1 The daily dose of isoniazid 5 mg/kg/day [55] 

𝛿2 The daily dose of rifampicin 10 mg/kg/day [55] 

𝛿3 The daily dose of streptomycin 15-25 mg/kg/ day [55] 

𝛿4 The daily dose of pyrazinamide 20-35 mg/kg/ day [55] 

𝜇1 The remove rate from the body of isoniazid 0.06 day-1 [57] 

𝜇2 The remove rate from the body of rifampicin 0.05 day -1 [57] 

𝜇3 The remove rate from the body of streptomycin 0.04 day -1 [57] 

𝜇4 The remove rate from the body of pyrazinamide 0.03 day -1 [57] 

𝛼 The orders of the derivative in the system (1) 0.9 Hypothesis 

(𝐵0, 𝑆0, 𝑅0, 𝐴𝑖0) Initial conditions for 𝑖 = 1,2,3,4 (1000, 6000, 20,0,0,0,0) Hypothesis 

 

Let us consider the parameter values in Table 4. and the treatment method mentioned above. 

All antibiotics are used in the first two months of this treatment. In this sense, the threshold 

parameters are obtained as 𝑆𝑆 = −1919273333, 𝑅𝑅 = 220000000 and 𝑆𝑅 = 213333. 

Considered in Table 1, the equilibrium points existing biologically are 
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𝐸0(0,0,0,83,200,375,666), 𝐸1(0,0,220000000,83,200,375,666) and 

𝐸3(0.5289575,0,1750,83,200,375,666). If the stability conditions of these equilibrium 

points with respect to Table 2. is considered, then it is obtained that 𝐸0 is unstable due to 

𝑅𝑅⏟
220000000

> 0, 𝐸1 is unstable due to 
𝜔𝐵

𝑣⏟
1750

< 𝑅𝑅⏟
220000000

 and 𝐸3 is locally asymtotically stable 

due to 
𝛽𝑆

𝛽𝑅
(𝑆𝑆 −

𝜔𝐵

𝑣
)

⏟        
−3838550166

< (𝑅𝑅 −
𝜔𝐵

𝑣
)⏟      

219998250

. During the first two months of treatment, some of the 

resistant bacteria population survives and the sensitive bacterial population disappears. 

Isoniazid and rifampicin as antibiotic are used in the last four months of this treatment. 

Therefore, the threshold parameters are recalculated as 𝑆𝑆 = −733856666, 𝑅𝑅 =
220000000 and 𝑆𝑅 = 213333. The equilibrium points existing biologically are 

𝐸0(0,0,0,83,200,0,0), 𝐸1(0,0,220000000,83,200,0,0) and 

𝐸3(0.5289575,0,1750,83,200,375,666). Similar to the calculation results in the first two 

months of treatment, the equilibrium point 𝐸3(0.5289575,0,1750,83,200,375,666) is locally 

asymtotically stable, since 
𝛽𝑆

𝛽𝑅
(𝑆𝑆 −

𝜔𝐵

𝑣
)

⏟        
−1467716832

< (𝑅𝑅 −
𝜔𝐵

𝑣
)⏟      

219998250

. 

For six months of treatment, the special immune system cells, the susceptible Mycobacterium 

Tuberculosis population and the resistant Mycobacterium Tuberculosis population approach 

to the values 0.5289575, 0 and 1750, respectively. 

These situations are evident in the following figures. 

 

Fig.8. Time-dependent changes of the special immune system cells during 6 months of 

treatment according to Table 4. 
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Fig.9 Time-dependent changes of the susceptible Mycobacterium Tuberculosis population 

during 6 months of treatment according to Table 4. 

 

Fig.10. Time-dependent changes of the resistant Mycobacterium Tuberculosis population 

during 6 months of treatment according to Table 4. 
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Fig.11. Time-dependent changes of the antibiotic concentrations during first 2 months of 

treatment according to Table 4. 

 

Fig.12. Time-dependent changes of the antibiotic concentrations during last 4 months of 

treatment according to Table 4. 

 

5. Results and Discussions 

As seen in the applications of the proposed model, while the susceptible bacteria population is 

disappeared and the resistant bacteria population is limited. Especially, the model is a useful 

model for explaining the recrudescence of a bacterial infection believed to have been 

destroyed when immune system of the individual is weakened. For example, the World 
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Health Organization explains that the rate of recurrence of Mycobacterium Tuberculosis is 5-

10%. According to researchs conducted in recent years, about 9.2 million people suffer from 

this infection every year in the world and about 1.6 million of them die due to this infection. 

This rate is increasing due to the causes such as long-term or close contact with the infectious 

people, excessive stress and weakening of the immune system etc. Therefore, the model 

proposed in this study can be considered as a very useful tool to estimate the timing and the 

magnitude of both infection and possible re-infection. 
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Abstract 

A Non-Destructive Test (NDT) technique is the fundamental strategy to look at a large portion of the materials, 

composite materials specifically. There are an excessive number of NDT techniques to assess the materials, for 

example, Visual Inspection, Liquid Penetrate Inspection, Eddy-Current Inspection, Phased Array Inspection, 

Magnetic Particle Inspection and Ultrasonic Inspection. The report delineates the Ultrasonic Test (UT) research 

centre examination that was directed with the group number 5 in the University lab, a few references and 

resources are utilised as a part of this investigation to completely exhibit the applications and deformity 

traceability of UT in covered composites. The paper finishes up the examination with the capacities and 

restrictions of the two systems and prescribes techniques to endeavour lessening the confinements. 

Keywords: Non-Destructive Testing, Ultrasonic Testing, and Composite Materials. 

1. Introduction 

Composite materials are a mix of two materials or more combined to get a specific basic 

properties, the blended materials don't break down totally in each other yet they act together 

as one strong material[1]. The reason for making composite materials is to get high pressure, 

low weight, fatigue resistance and corrosion resistance than the individual material. The 

request on composite materials has been expanded as the composite materials has expanded 

the execution and lessened the fuel utilisation particularly in aeronautics industry fields[2]. 

Since 60 years back Non-Destructive Test (NDT) has been in consistent advancement as it is 

the significant technique to decide and assess the composite materials[3]. In the most recent 

decades the vendors had an essential research for most composite materials to assess these 

sort of materials which are very surprising contrasted with ordinary materials[4]. The 

consolidated materials has supply the manufacturers with a one of a kind highlights that are 

inaccessible in typical materials. The designers advantage from the focal points offered by the 

composite materials that have light weight, hostile to consumption, high in opposition and 

incredible effectiveness proper for some applications in the mechanical area[5]. Because of 
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the complex tiny structure of these composite NDT techniques has been connected as often as 

possible to look at these entangled materials[6].  

Presently nowadays ultrasonic tasting devices has a standout amongst the most utilised 

equipment and many well-known procedures worked to perform NDT appraisal on composite 

materials utilised as a part of aeronautical industry[7]. Despite of the unnecessarily various 

sorts of NDT materials examination, ultrasonic methodology is one of the broad strategies. In 

this investigation we will centre around ultrasonic technique which are extensively using 

ultrasonic area equipment and makes it possible to choose any disfigurements in numerous 

sorts of materials[8]. For evaluating composite materials ultrasonic procedures are for the 

most part used. With only a solitary access surface ultrasonic instrument are perfect to be used 

with either point column or straight line testing methodologies[9]. 

2. Discussion 

2.1 Aims: 

To discover any deformities in the composite materials by utilizing non-destructive test 

(NDT), with the ultrasonic equipment to trace any defects in the composite materials. 

2.2 Objectives: 

 Investigate ultrasonic technique as None-destructive testing method performed to 

asses laminated composites. 

 Analyze their capabilities and limitations in tracking defects in composite structures.  

 For effective NDT experiments, it is important to understand the nature of the material 

being tasted for better results. 

In this paper we will review the carbon fibre as the ultrasonic investigation is appropriate for 

these sort of composites. In 1878 Sir Joseph Wilson Swan delivered glaring lights with carbon 

strings. Carbon fibre produced using around ten layers squeezed together under high weight, 

vacuumed and a sap topping off. Carbon fibre composite is a high temperature obstruction, 

weightless and fatigue, corrosion resistance[6]. 

A contact technique is been connected to examine composite materials by phase array method 

moved over the tasted piece[2]. A specific measure of frequency could be applied. The 

surface ought to be perfect and smooth, a medium called couplant is performed between the 

test and the inspect material to beat the power scattering which exists when the sound waves 

travel between the test and the surface of the composite and to fill the minute holes giving an 

exceptionally smooth surface to the test of the ultrasonic hardware to movement on[3]. 

In aeronautical industry NDT strategy considered as a much solid procedure to distinguish 

and recognize the deformities that can seriously influence the composite structure prompts 

terrible catastrophe particularly in formula1, ocean, aeronautical industry and more[5]. 

A specific frequency will be connected and it can shift between 5 MHz to 10 MHz through a 

test which is inside partitioned in to 64 sections to have the capacity to cover as much it 
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can[2]. This frequency will go through the composite make an interpretation of the outcome 

in to a diagram, frequency travelling would inverts if any deformity exists generally will bear 

on until the base surface of the composite, in the other word the information result of the 

ultrasonic device comes as a chart which would ready to clarified by the designers[1]. 

2.3 Literature Review: 

Because of past examinations have exhibited that the specialist and the planners dependably 

battle and striving to give best, powerful and solid devices at least conceivable cost with a 

superior execution to deliver the most precise gear that the designers could depend on to give 

a more secure condition.  

In 1929 and 1935 ultrasonic waves contemplated by Sokolov to identify metal items. In 1931 

Mulhauser obtained a patent in ultrasonic wave by utilizing two transducers to uncover 

abandons in solids. Firestone and Simons (1940) (1945) separately enhanced pulse ultrasonic 

testing by utilising a pulse-echo method. Josef Krautkrämer and Karl Deutsch 1949 in 

Germany both began in changes without the learning of each other. Josef Krautkrämer and his 

sibling the physicists Herbert working in oscilloscopes field. Karl Deutsch a mechanical 

specialist and Hans-Warner Branscheid a radar professional who had got some additional 

specialised understanding amid the second world two. The ultrasonic devices has been 

exhibited by the two organisations and as yet contending each other up to this point 

nowadays[10, 11]. 

2.4 Ultrasonic Testing (UT) Implementations in Composites: 

Notwithstanding the limitations of ultrasound testing system, this NDT strategy can give 

significant data to professionals while utilising them to assess composites[2]. At the point 

when UT is rehearsed on composites, it determines thickness estimations of composites and in 

addition mechanical deformities area and seriousness[1]. Broad inquires about and thinks 

about have been directed by a few organisations to comprehend the proliferation conduct of 

ultrasounds through laminated materials and its impact as shown in figure (1)[12].  

In ultrasonic test devices, a sonic power is changed over from electrical power by methods for 

an equipment called a transducer (probe)[4]. The reason for a transducer is to transmit bunch 

of waves all through a test piece and get signals back to decide the state of a test 

composite[1]. As it were, pulse-echo ultrasound check uses high frequency to assess the 

separation by estimating it as far as time of flight[13]. To execute ultrasonic testing procedure 

on a test piece, there are three ultrasound testing basic techniques[14]. 
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Fig. 1. The Ultrasonic Equipment 

First Technique is called Through-Transmission Manner, in this technique we need to use two 

probes, we call the first one a sender and the second one is a receiver, to determine a 

composite the two probes need to be placed on both sides, the defect position is the scanning 

result. 

Second Technique called Pitch-Catch technique, this technique in practice used for cylindrical 

materials, in this technique the ultrasonic waves travelling in shape of angle in the material 

and reflected back at the same transmitted angle.  

Third Technique called Pulse-Echo technique, in this technique one probe only to be used, 

hence from one side only and to be placed perpendicular to the material and a bunch of 

ultrasonic waves send through and they are echoed back by the delamination or by reluctant 

material.  

The reflected information of the ultrasonic waves is gathered and exhibited in different shapes 

yet, there are four general structures are presented in the NDT field as indicated by: 

 A-scan: It is a graph, it presents the amount of reflected ultrasonic waves  against the 

time as well as the depth of the defect in X and Y axis. 

 B-scan: It displays the cross-sectional image of the composite shows the depth of the 

defect from the surface and it shows the exact position of the defect as well as the capability 

to detect for any other defects might be underneath previous defect found from C-scan as the 

ultrasonic waves won’t be able to travel thorough defects.  

 C-scan: It displays the top view image of the composite shows the number of the 

defects and the exact position of each defect in term of X and Y coordinates. 

 S-scan: It displays the area only underneath the probe which is very limited but it is 

very effective as it is giving more details of every individual defect. 
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Phase Array system connected to examine laminated composites is a contact technique, where 

the test is physically moved over the examined piece[15]. A specific frequency is connected, 

which can change between 5 MHZ to 10 MHZ yet, any spectacular excess of the frequency 

can contrarily influence the ultrasonic wave reduction causing a wrong results outcomes[1]. A 

type of medium called Couplant is actualized between the probe and the surface of a material 

to beat power waste, which happens while ultrasonic waves venture out from the transducer to 

the material[3]. Ultrasonic testing NDT technique is a dependable method utilized as a part of 

composites to distinguish and recognize delamination that can severely impact the life cycle 

of the materials and lead to catastrophic disaster, particularly in aeronautical industry[12]. In 

different terms, phase array technique is a technique can be utilized to successfully in 

laminated composites and examine the depth of the sample. 

2.5 Composite Materials 

Composite materials define as two or more individual material combined together in one 

structure using pressure, heat and chemicals, as seen in figure (2). A high demand on 

materials with less weight and high rigidity particularly in aviation industry as the non-

homogenous technology has raised the uniformity and solidity of the products as shown in 

figure (3)[16]. Composite materials can be classified in to three main types[6, 17]: 

 

 Fiber Reinforced Composites (FRC) are mainly used to manufacturer bulletproof vests 

and in concrete as a hardening element by adding steel rods to increase the mechanical 

rigidity.  

 Structural Materials are mainly used in aviation industry for its light weight, 

toughness, fatigue resistance and corrosion resistance made from two or more different types 

of materials bonded together to produce a rigid laminated materials. 

 Practical-Reinforced Composite materials mainly used in civil engineering are consist 

of one or more materials such as sand and cement for example with some water place in a 

mold producing a tough material. 

 

 
Fig. 2. Composite Materials 
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Fig. 3. Composite Materials in Aviation Industry  

2.6 Capabilities: 

The ultrasonic test is appropriate for testing the composite materials for very couple of 

reasons[18,19]:  

 It can decide the size and the area of the defects.  

 Resolution modification dislikes the other devices.  

 Mobile and reduced, so it is so viable and could be conveyed to the area of the 

composite to be assessed which is extremely helpful particularly in aeronautical industry as 

the ultrasonic devices can be used in a work field without the prerequisite of research center 

condition .  

 Ultrasonic test can guarantee composite materials thickness to assure life anticipation.  

 The profundity of imperfections along the composite materials can be assessed.  

 Ultrasonic test devices can be connected from one side if there is any confinement to 

get to the composite materials.  

 The ultrasonic waves travel in both high density and low density but it will be slower 

in low density. 

2.7 Limitations: 

There are vary couple of impediments utilizing ultrasonic test on composite materials, such 

as[20,21]:  

 To carry out an effective test, understanding and practicing are required.  
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 Thin materials are extremely hard to quantify.  

 The composite surface must be spotless and smooth with couplant to be included.  

 While the signal travelling from the probe to the surface a power loss may cause an 

inaccurate outcome.  

 In some high level ends they are costly to purchase.  

 Once the waves hit the defect it will reflect and we cannot see anything pass the 

defect.  

 Ultrasonic waves won’t be able to travel through a vacuum defect as it has a no 

density.  

2.8 Ultrasonic Laboratory Experiment and Results: 

2.8.1 Method: 

At the university laboratory we were required to examine a piece of carbon-fibre material 

made from 10 layers (10*20) cm and 3mm thick with Olympus Omni equipment for any 

defects. The probe we used contains 64 elements and the more elements a higher resolution 

with 5 MHz frequency, we used a piece called wedge will hold the probe to keep the probe 

safe then we added a liquid called couplant to help the sound to transmit through different 

materials which is water based and the water is very conductive of sound plus this couplant 

would help to fill any gaps and make it smoother, after that we started to move the probe 

along the material bit by bit to cover the whole surface and get our results as explained in 

figures (4), (5), and (6). 

 

 
Fig. 4. Olympus Omni, Probe and Carbon-Fibre Spacemen   
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Fig. 5. The Probe 

 
 

 
Fig. 6. Couplant 

 

2.8.2 Results: 

In C-scan we found 5 defects, as seen in figure (7). 
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Fig. 7. 5 Defects in C-Scan 

 

Figure (8) shows the 1st defect and the details as follows: 

 A-Scan shows the defect is 0.25mm from the surface and the frequency bounced 

quicker. 

 B-Scan shows the position of the defect which is around 0.25mm from the top surface 

and around 16mm from the right hand edge. 

 C-Scan shows the number of the defects and their position. 

 S-Scan shows the size of the defect and 0.25mm from the top surface. 

 

 
Fig. 8. Defect No.1 
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Figure (9) shows the 2nd defect, details as follow: 

 A-Scan shows which is 2mm from the top surface and the frequency took much longer 

time. 

 B-Scan shows which is around 2mm from the top surface and around 83mm from the 

right hand edge. 

 C-Scan shows the number of the defects and their position. 

 S-Scan shows the size of the defect and 2mm from the top surface. 

 

 
Fig. 9. Defect No.2 

 

Figure (10) shows the 3rd defect, details as follow:  

 A-Scan shows which is around 1.3mm from the top surface and the frequency took 

even much longer time. 

 B-Scan shows which is around 1.3mm from the top surface and around 35mm from 

the left hand edge. 

 C-Scan shows the number of the defects and their position. 

 S-Scan shows the size of the defect and 1.3mm from the top surface. 
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Fig. 10. Defect No.3 

 

Figure (11) shows the 4th defect, details as follow:  

 A-Scan shows is around 1.1mm from the top surface and the frequency took enough 

time to bounce. 

 B-Scan shows which is around 1.1mm from the top surface and around 8mm from the 

right hand edge. 

 C-Scan shows the number of the defects and their position. 

 S-Scan shows the size of the defect and 1.1mm from the top surface. 

 

 
Fig. 11. Defect No.4 
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Figure (12) shows the 5th defect, details as follow:  

 A-Scan shows is around 0.02mm from the top surface and the frequency took enough 

time to bounce. 

 B-Scan shows which is around 0.02mm from the top surface and around 30mm from 

the left hand edge. 

 C-Scan shows the number of the defects and their position. 

 S-Scan shows the size of the defect and 0.02mm from the top surface. 

 

 

 
Fig. 12. Defect No.5 
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2.8.3 Omni Scan Report: 
Table 1. Omni Scan Report 

Report Date Report Version Setup File Name Inspection Date Inspection Version Save Mode 

2018 / 04 / 30 MXU - 2.0R27 3MM_COMPOSITE_5L64NW1.ops 2018 / 04 / 30 MXU - 2.0R27 Report 

OmniScan Type OmniScan Serial # Module Type Module Serial # Calibration Due Data File Name 

OmniScan MX OMNI-101144 OMNI-M-PA16128 OMNI-200577 2010 / 06 / 25 team 5.opd 
 

Group 1 

Setup  

A:00.0 Sk:090 L:001 

Beam Delay Start (Half Path) Range (Half Path) Max. PRF Type Averaging Factor 

17.76 us -1.00 mm 6.40 mm 105 PA 1 

Scale Type Scale Factor Video Filter Pretrig. Rectification Band-Pass Filter 

Compression 1 On 0.00 µs FW None (0.54 - 22 MHz) 

Voltage Gain Mode Wave Type Sound Velocity Pulse Width 

40 (Low) 0.00 dB PE (Pulse-Echo) User-Defined 4000.0 m/s 100.00 ns 

Scan Offset Index Offset Skew 
 

    

0.00 mm 0.00 mm 90.0º 
 

    

 

Gate Start Width Threshold Synchro   

I -0.72 mm 0.84 mm 37.00 % Pulse   

A 0.22 mm 2.42 mm 8.00 % Pulse   

B 3.44 mm 1.04 mm 7.00 % Pulse   

 

TCG Point Number Position (Half-Path) Gain       

1 0.00 mm 0.0 dB       
 

 

Calculator  

Used Element Qty. First Element Last Element Resolution Wave Type Material Velocity 

8 1 64 1.0 User-Defined 4000.0 m/s 

Start Angle Stop Angle Angle Resolution Focal Depth Law Configuration   

0.0º N/A N/A 20.00 mm Linear at 0°   
 

 

Part  

Material Geometry Thickness 
 

    

PLEXIGLAS Plate 4.00 mm 
 

    
 

 

Scan Area  

Scan Start Scan Length Scan Resolution Index Start Index Length Index Resolution 

0.00 mm 250.00 mm 1.00 mm 0.00 mm 285.00 mm 57.00 mm 

Synchro Max. Scan Speed         

Encoder 105.00 mm/s         
 

 

Axis Encoder Encoder Type Encoder Resolution Polarity   

Scan 2 Quadrature 13.00 step/mm  Inverse    

Index 1 Quadrature 13.00 step/mm Inverse    
 

 

A% DA/ PA/ SA/ A% DA/ ViA/ VsA/ 

5.5 % --- mm --- mm --- mm 5.5 % --- mm --- mm --- mm 
 

 

3. Conclusion and Recommendation: 

 

As should be obvious from the examination has been done that the Non-Destructive Test 

technique is the most appropriate strategy for testing any materials and the composite 

materials as we utilized the ultrasonic review strategy, yet this technique was not ideal 
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strategy for this test as it has very couple of confinements restricting this technique to be an 

extraordinary technique in NDT. Our proposal is to pick the most appropriate NDT strategy as 

each material and composite materials have its own particular properties and in addition the 

assessment strategies had its own particular capabilities and limitations. 

 

References 

 
[1] Salchak, Y., Zhvyrblya, V., Sednev, D., and Lider, A. (2016) Digitally focused array ultrasonic 

testing technique for carbon fiber composite structures, IOP Conference Series: Materials 

Science and Engineering, 135. 

[2] Nesvijski, E. (1999) Phase Ultrasonic Testing of Joints in Multilayered Composite 

Materials. Journal of Thermoplastic Composite Materials, 12(2), pp.154-162. 

[3] Gryzagoridis, J. (1989) Holographic non-destructive testing of composites, Optics & Laser 

Technology, 21(2), pp.113-116. 

[4] Shen, Q., Omar, M., and Dongri, S. (2011) Ultrasonic NDE Techniques for Impact Damage 

Inspection on CFRP Laminates. Journal of Materials Science Research, 1(1), pp.3-14. 

[5] Kamsu-Foguem, B. (2012) Knowledge-based support in Non-Destructive Testing for health 

monitoring of aircraft structures, Advanced Engineering Informatics, 26(4), pp.859-869.  

[6] Reithmaier, L. and Sterkenburg, R. (2014) Standard aircraft handbook for mechanics and 

technicians, 7th edition, McGraw-Hill Education. 

[7] Sharpe, R. (1976) Non-destructive testing, Non-Destructive Testing, 9(1), p.55. 

[8] Thabit, Thabit H. (2013) Adoption the Fuzzy Logic to Enhance the Quality of the Accounting 

Information to Operate Balanced Scorecard - Applied on Mosul Bank for Development & 

Investment in Nineveh Province, M.Sc. thesis in accounting, University of Mosul, Mosul, Iraq. 

[9] Thabit, Thabit H., and Jasim, Yaser A. (2015) A Manuscript of Knowledge Representation, 

International Journal of Social Sciences & Economic Environment, Vol.1, Issue 1, pp. 44-55. 

[10] Thabet, S., and Thabit, Thabit H. (2018) Computational Fluid Dynamics: The Science of Future, 

International Journal of Research and Engineering, Vol.5, No. 6, pp. 430-433 

[11] Thabet, Senan, and Thabit, Thabit H. (2018) CFD Simulation of the Air Flow around a Car 

Model (Ahmed Body), International Journal of Scientific and Research Publications, 8(8).  

[12] Krautkrämer, J., and Krautkrämer, H. (1983) Ultrasonic Testing of Materials, Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

[13] Raj, B., Jayakumar, T., and Thavasimuthu, M. (2008) Practical non-destructive testing, Oxford, 

U.K.: Alpha Science International. 

[14] Thabit, Thabit H., and Younus, Saif Q. (2018) Risk Assessment and Management in Construction 

Industries, International Journal of Research and Engineering, Vol. 5, No. 2, pp. 315-320. 



S. Thabet, Y. A. Jasim, T. H. Thabit  

251 

 

[15] Bouden, T., Djerfi, F., and Nibouche, M. (2015) Adaptive split spectrum processing for ultrasonic 

signal in the pulse echo test, Russian Journal of Nondestructive Testing, 51(4), pp.245-257. 

[16] Bates, C. (1969) Non-destructive testing techniques, Non-Destructive Testing, 2(1), pp.55. 

[17] Thabet, Senan, Thabit, Thabit H., and Jasim, Yaser A. (2018), CFD Analysis of a Backward 

Facing Step Flows, International Journal of Automotive Science and Technology, Vol.2 , No.3 , 

pp.10-16.  

[18] Berthelot, J. (2009) Damping Analysis of Sandwich Composite Materials, Journal of Composite 

Materials. 

[19] Halmshaw, R. (1991) Non destructive testing, London. 

[20] Hoagland (1979) Storage Technology: Capabilities and Limitations, Computer, 12(5), pp.12-18. 

[21] Schall, W. (1968) Non-destructive testing, Brighton: Machinery Pub. 

  



© 2018 M. Arda published by International Journal of Engineering & Applied Sciences. This work is licensed under a Creative 

Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

 

252 

 

Vibration Analysis of an Axially Loaded Viscoelastic Nanobeam 

 Mustafa ARDA a*
 

aTrakya University, Mechanical Engineering Department, Edirne, 22030 TURKEY 
*E-mail address:  mustafaarda@trakya.edu.tr 

 
 

 

Received date: 09.10.2018  

Accepted date: 02.11.2018 

 
 

ORCID numbers of authors:  

0000-0002-0314-3950 

Abstract 

Vibration of an axially loaded viscoelastic nanobeam has been studied in this paper. Viscoelasticity of the 

nanobeam has been modeled as a Kelvin-Voigt material. Equation of motion and boundary conditions for an 

axially compressed nanobeam has been obtained with help of Eringen’s Nonlocal Elasticity Theory. Viscoelasticity 

effect on natural frequency and damping of nanobeam and critical buckling load have been investigated. 

Nonlocality effect on nanobeam structure in the view of viscoelasticity has been discussed.  

Keywords: viscoelastic nanobeam, nonlocal elasticity, vibration, axially loaded, buckling.  

1. Introduction 

Nano-sized structures are like carbon nanotubes (CNTs) taken interests of scientists over the 

years. The concept of design of a structure with superior properties getting attention of the 

industry. Possible applications of CNTs have increased day by day. 

CNTs can be modeled by using continuum mechanics. Atomic interactions like small scale 

effect, surface stresses and long distance interaction can not be ignored in the nano-dimensional 

mechanics. Eringen [1,2] dealt with this problem and proposed the Nonlocal Elasticity Theory 

which includes the size effect and has been used in the most of the recent researches about 

modeling of CNTs. 

Most of the papers about statics and dynamics of CNTs assumed that a CNT is an elastic 

structure. However, damping characteristics of CNT structures should be accounted in the 

continuum model for more realistic approach.    

Lei et al. investigated the dynamic behavior of nonlocal viscoelastic Euler-Bernoulli [3] and 

Timoshenko nanobeams [4]. Dynamic stability and buckling of viscoelastic nanobeams studied 

by Chen et al. [5] and Pavlovic et al. [6]. Buckling of cantilever nanotubes [7,8], boron-nitride 

nanotubes [9] and silicon-carbide nanotubes [10] investigated by researchers. Karlicic et al. 

[11] carried out the free transverse vibration analysis of the multiple CNTs embedded in a 

viscoelastic polymer matrix which was affected by an axial magnetic field. Arani et al. [12] 

investigated the free and forced vibrations of double viscoelastic piezoelectric nanobeams with 

International Journal of Engineering & Applied Sciences (IJEAS) 
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the help of nonlocal viscoelasticity. Mohammadi [13] studied the vibration of rotating 

viscoelastic nanobeam with the thermal and humidity effect. Zhang et al. [14] investigated the 

transverse vibration of an axially loaded viscoelastic nanobeam embedded in elastic medium. 

Ebrahimi and Barati used the nonlocal strain gradient theory for the viscoelastic functionally 

graded (FG) nanobeams which resting on viscoelastic medium in the analysis of problems like: 

free vibration [15], hygro-thermal loading [16,17], surface and thermal effects [18] and size 

effect of nano-grains and nano-voids [19]. Attia and Mahmoud [20] modeled the viscoelastic 

nanobeam by using nonlocal couple-stress elasticity. Attia and Abdel Rahman [21] studied the 

free vibration of a FG viscoelastic nanobeams including the rotation and surface energy effects. 

Also, fractional nonlocal elasticity models have been proposed for dynamic analysis of 

viscoelastic nanobeams in recent studies [22–27] . 

Present work assumes the CNT structure as a Kelvin-Voigt type viscoelastic material. Axial 

load effect through the buckling including nonlocal effect and viscoelasticity will be 

investigated. Variation of the non-dimensional frequency and damping of the nanobeam will 

be depicted in figures. Critical buckling load characteristics will be obtained.  

2. Analysis 

Viscoelastic nanobeams with simply supported and clamped-free boundary conditions are 

considered (Fig. (1)). The governing equation of motion for an axially loaded viscoelastic 

nanobeam can be interpreted as [28]: 

 𝐸 (1 + 𝛼
𝜕

𝜕𝑡
) 𝐼

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
= −𝑚

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
− 𝑃

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
    (1)  

where E is the Young’s modulus, m is the mass per unit length, I  is the moment of inertia, w is 

the transverse displacement of the CNT, α is the viscous parameter of the viscoelastic material 

and P is the axial load. 

 

Fig. 1. Continuum Model of the Present Problem: a) Simply Supported Nanobeam b)Clamped-Free 

Nanobeam 

2.1. Nonlocal Elasticity Approach 

Nonlocal constitutive stress-strain relation can be expressed in differential form as [29]:  

 (1 − 𝜇𝛻2)𝜏𝑘𝑙 = 𝜆𝜀𝑟𝑟𝛿𝑘𝑙 + 2𝐺𝜀𝑘𝑙                            (2) 

where 𝜏𝑘𝑙 is the nonlocal stress tensor, 𝛿𝑘𝑙 is the strain tensor, 𝜆 and G are the material constants 

and 𝜇 = (𝑒0𝑎)
2 is called nonlocal parameter. Eringen obtained very close results to discrete 

theory results with a nonlocal continuum approach. With Eringen’s assumption, the nonlocal 

model comprises both discrete and continuum approaches.    
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For isotropic viscoelastic carbon nanotube, nonlocal one dimensional relation in axial direction 

can be written as: 

 (1 − 𝜇
𝜕2

𝜕𝑥2
)𝜎 = 𝐸 (1 + 𝛼

𝜕

𝜕𝑡
) 𝜀       (3) 

where 𝜀 and 𝜎 are the normal strain and the normal stress, respectively. 

2.2. Nonlocal Equation of Motion and Boundary Conditions 

If Eq. (3) is inserted into Eq. (1), one obtains [30,31]: 

 𝐸 (1 + 𝛼
𝜕

𝜕𝑡
) 𝐼

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
= −(1 − 𝜇

𝜕2

𝜕𝑥2
) (𝑚

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
+ 𝑃

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
)    (4) 

If Eq. (4) is reorganized according to D’Alambert Principle: 

 𝐸𝐼𝛼
𝜕5𝑤(𝑥,𝑡)

𝜕𝑥4𝜕𝑡
+ 𝐸𝐼

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
+𝑚

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
+ 𝑃

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
− 𝜇𝑚

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥2𝜕𝑡2
− 𝜇𝑃

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
= 0     (5) 

Eq. (5) is the equation of motion of a viscoelastic nanobeam. If the nonlocal parameter and 

viscoelasticity parameter are assumed to be zero (=0 , α=0), the classical elasticity equation 

will be obtained. The boundary condition on both edges of nanobeam considered as simply 

supported (S-S) and clamped-free (C-F) which are defined below [32]: 

 

𝑥 = 0 {
𝑤(0, 𝑡) = 0

−𝐸 (1 + 𝛼
𝜕

𝜕𝑡
) 𝐼

𝜕2𝑤(0,𝑡)

𝜕𝑥2
+ 𝜇𝑃

𝜕2𝑤(0,𝑡)

𝜕𝑥2
+ 𝜇𝑚

𝜕2𝑤(0,𝑡)

𝜕𝑡2
= 0

𝑥 = 𝐿 {
𝑤(𝐿, 𝑡) = 0

−𝐸 (1 + 𝛼
𝜕

𝜕𝑡
) 𝐼

𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2
+ 𝜇𝑃

𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2
+ 𝜇𝑚

𝜕2𝑤(𝐿,𝑡)

𝜕𝑡2
= 0

  
}
 
 

 
 

𝑆 − 𝑆   (6) 

 

𝑥 = 0 {
𝑤(0, 𝑡) = 0
𝜕𝑤(0,𝑡)

𝜕𝑥
= 0

𝑥 = 𝐿 {
−𝐸 (1 + 𝛼

𝜕

𝜕𝑡
) 𝐼

𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2
+ 𝜇𝑃

𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2
+ 𝜇𝑚

𝜕2𝑤(𝐿,𝑡)

𝜕𝑡2
= 0

−𝐸 (1 + 𝛼
𝜕

𝜕𝑡
) 𝐼

𝜕3𝑤(𝐿,𝑡)

𝜕𝑥3
− 𝑃

𝜕𝑤(𝐿,𝑡)

𝜕𝑥
+ 𝜇𝑃

𝜕3𝑤(𝐿,𝑡)

𝜕𝑥3
+ 𝜇𝑚

𝜕3𝑤(𝐿,𝑡)

𝜕𝑥𝜕𝑡2
= 0

  

}
 
 

 
 

𝐶 − 𝐹   (7) 

The transverse displacement w can be expressed as:    

 𝑤(𝑥, 𝑡) = 𝐴(𝑥)𝑒𝜆𝑡        (8) 

where A(x) and λ is the amplitude function and characteristic value for viscoelastic nanobeam 

vibration, respectively. Inserting Eq. (8) into Eq. (5) gives following dimensionless equations 

of motion with the assumption of dimensionless nanotube length (𝑥̅ =
𝑥

𝐿
): 

 
𝜕4𝐴(𝑥̅)

𝜕𝑥̅4
(1 + 𝛼𝜆 −

𝜇

𝐿2
𝑃̅) +

𝜕2𝐴(𝑥̅)

𝜕𝑥̅2
(𝑃̅ −

𝜇

𝐿2
𝛺𝜆2) + 𝐴(𝑥̅)(𝛺𝜆2) = 0         (9) 

where 𝑃̅ is the dimensionless axial load and Ω is the characteristic parameter coefficient which 

are defined as below: 
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 𝑃̅ =
𝑃𝐿2

𝐸𝐼
   ,   𝛺 =

𝑚𝐿4

𝐸𝐼
      (10) 

Eq. (9) is a forth order differential equation and general solution can be written as: 

 𝐴(𝑥̅) = 𝐶1𝑒
𝑟1𝑥̅ + 𝐶2𝑒

𝑟2𝑥̅ + 𝐶3𝑒
𝑟3𝑥̅ + 𝐶4𝑒

𝑟4𝑥̅    (11) 

where Ci and ri (i=1,2,3,4) are the integration constants and the roots of the characteristic 

equation in Eq. (9), respectively. In Eqs. (6) and (7), boundary conditions should be written in 

matrix form using amplitude function in Eq. (8) for unknown coefficients as below: 

 [

𝑃11
𝑃21
𝑃31
𝑃41

   

𝑃12
𝑃22
𝑃32
𝑃42

   

𝑃13
𝑃23
𝑃33
𝑃43

   

𝑃14
𝑃24
𝑃34
𝑃44

] [

𝐶1
𝐶2
𝐶3
𝐶4

] = 0     (12) 

Eq. (12) is an eigen-value problem and the determinant of the coefficient matrix must be equal 

to zero for a nontrivial solution. Characteristic parameter (λ) for the viscoelastic nanobeam 

vibration can be obtained from determinant equation. λ is a complex number and its imaginary 

part defines the non-dimensional frequency (NDF) and real part defines the non-dimensional 

damping (NDD) of viscoelastic nanobeam. 

Buckling is a structural stability loss and can be seen on axially loaded beams. It is a limit value 

problem that free vibration frequency of the structure drops to zero (See Eq. (13)). 

 lim
𝑁𝐷𝐹→0

𝑃̅ = 𝑃𝐶𝑅     (13)

    

3. Numerical Results and Discussion 

In this section, free transverse vibration analysis of the viscoelastic nanobeams has been carried 

out for various nonlocal parameter, viscous parameter and axial load. 

Validation of the present nonlocal elastic CNT nanobeam model has been carried out in 

previous study [33]. Lattice dynamics results have been used in order to compare the nonlocal 

elastic stress gradient model. The nonlocal theory gives close results with the lattice dynamics 

results at the end of first Brillouin Zone. 

In Fig. (2), the nonlocality and viscous effect on complex characteristic parameter of 

viscoelastic nanobeam in simply supported boundary condition can be seen. Softening effect of 

nonlocality has been addressed in previous works [34,35]. Nonlocal parameter reduces the NDF 

because of the softening. Viscous characteristics of the viscoelastic material also reduces with 

nonlocal parameter because nonlocality increases the elastic behavior of the material. Viscous 

parameter (α) decreases the NDF and increases the NDD. That is an expected result from the 

classical continuum mechanics approach. Clamped-free boundary condition results are shown 

in Fig. (3). Except one case, clamped-free boundary conditions gives same results with simply 

supported boundary case. In contrary to S-S case, clamped-free boundary condition increase 

the NDD and nanobeam buckles easily for higher nonlocal parameters. With applying 

compressive axial load, nanobeam can buckle easily in C-F boundary case and this situation 

can be seen clearly in Fig. (7).  
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In Figs. (4) and (5), axial compressive load effect on complex characteristic parameter of 

viscoelastic nanobeam can be seen. Axial load reduces the NDF and has no effect on NDD in 

simply supported boundary case. On the other hand, axial load change the vibration 

characteristics in clamped-free boundary case. Without the axial load, NDF and NDD increases 

with the help of nonlocality. With the axial load, NDF decreases and NDD increases reversely. 

In the vibration of clamped-free nanobeams, nonlocal effect shows a strengthening effect on 

the material and fundamental frequency of nanobeam increases in contrary to other boundary 

conditions. This phenomena discussed by scientists in several studies [36–38] . Li et al. [39,40] 

pointed out that, both enhancing and weakening nonlocal effects are possible and correct. 

Nonlocal integral models have been used in recent studies to overcome this paradox [41–43]. 

Buckling of viscoelastic nanobeams can be seen in Figs. (6) and (7). NDF drops to zero with 

increasing effect of axial load. NDD doesn’t change in S-S case but increases in C-F case with 

axial load. Viscoelasticity increases the NDF with nonlocal elasticity approach for a nanobeam 

without an axial load applied. This result is due to the nonlocal viscoelastic effects and 

contradicts with nonlocal elastic beam model. 

Variation of critical buckling load is shown in Fig. (8) for the both boundary cases. Critical 

buckling load changes only with nonlocal parameter. Nonlocal parameters reduces CBL 

whereas viscous parameter couldn’t change it. 

 

     

 

Fig. 2. Nonlocal and Viscous Parameter Effects on NDF and NDD in Simply Supported Boundary 

Condition (P̅ = 1) 
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Fig. 3. Nonlocal and Viscous Parameter Effects on NDF and NDD in Clamped-Free 

Boundary Condition (P̅ = 1) 

 

 

Fig. 4. Nonlocal, Viscous and Axial Load Effects on NDF and NDD in Simply Supported Boundary 

Condition 
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Fig. 5. Nonlocal, Viscous and Axial Load Effects on NDF and NDD in Clamped-Free Boundary 

Condition 

 

 

Fig. 6. Nonlocal Effect on Buckling of Viscoelastic Nanobeam in Simply Supported Boundary 

Condition (α=0.01) 
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Fig. 7. Nonlocal Effect on Buckling of Viscoelastic Nanobeam in Clamped-Free Boundary Condition 

(α=0.01) 

 

 

Fig. 8. Variation of Critical Buckling Load with Nonlocal and Viscous Parameters (NDF=NDD=0) 

4. Conclusion 

Present study deals with the vibration problem of an axially loaded viscoelastic nanobeam with 

simply supported and clamped-free boundary conditions. The nanobeam has been assumed as 

Kelvin-Voigt type viscoelastic material. Governing equations and boundary conditions have 

obtained with Eringen’s Nonlocal Elasticity Theory. The viscous effect of viscoelastic medium 

decreases the complex characteristic parameter of nanobeam in simply supported boundary 

case. But in clamped-free boundary case, viscous effect increases the complex characteristic 

parameter because of the nonlocal boundary condition. Axial load and nonlocal effect shows 
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softening effect on nanobeam lattice structure. Results could be useful in designing a nano-

mass sensor applications.  
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Abstract 

Nonlocal elasticity theory is one of the popular approaches for nano mechanic problems. In this study, nonlocal 

parameter is defined via different approach.  Nonlocal finite element formulations for axial vibration of nanorods 

have been given and some parameters are compared with the lattice dynamics. Weak form and final finite element 

formulation for axial vibration case have been derived. 
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1. Introduction 

It is known that the general forms of the nonlocality are as follows [1]: 
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If the Eq. (2) is write in Eq. (1), we obtain  
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Here, the first integral through the surface represents the surface stresses. As a result, non-

local elasticity theory includes surface physics, an important entity not included in classical 

theories. Again Eq. (3) and (4) introduce in Eq.(5), ones obtain 
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In above equations the (') means depending on x . Namely, )(xuu  . If we solve the Eq.(6) 

under the suitable boundary and initial conditions, ),( txu  displacement vector can be obtained. 

Initial conditions are depend klt not kl . So we can easily write 
lnk tn )(kl   

2. Definition of nonlocal parameter in nonlocal elasticity 

It is shown that the unit of nonlocal parameter located in Eq. (2)  ( xxα  ) is (length)-3. Thus, 

the non-local parameter will be dependent on a characteristic length ratio (a/l) in which an 

internal characteristic length a, (eg. lattice parameter, granular distance) and an external 

characteristic length l (eg, crack length, wavelength) is present. Thus it defined as 
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(7)  

Here e0  will be different constant for each material. Some properties of nonlocal parameter are 

as follows: 

 It reach the maximum value at xx  and decrease the value via xx  calculation. 

 When 0 , the statement of α  is become Dirac delta function. Hence, the boundary 

(limit) of the classical elasticity introduce the nearly zero value boundary of the internal length 

scale (a). Namely: 
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So, it is easily said that “a” is a delta array. 
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 For small internal length scale value (such as 1 ) nonlocal elasticity theory behave 

as  atomic lattice dynamics. 

By matching the wave distribution curves with the distribution curves of the atomic lattice 

dynamics (or experiments), we can determine “a”value for a certain material. Various forms 

have been obtained as a result of research [2-16]. Some of them are as follows: 
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Here 
0K is a modified Bessel function. 

Three-dimensional parameter 
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When the equation 10 is examined, it is seen that the one-dimensional plane waves based on 

the Born-Kármán model, which is based on the theory of non-local elasticity and atomic lattice 

dynamics, fits perfectly with the distribution curve. When the two-dimensional parameter is 

analyzed, it is seen that the maximum error is 1.2% [1]. It is seen that all non-local parameters 

are normalized when the integrals are taken (over the length, area or volume). In addition, for 
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0 the Dirac delta function is obtained. With this feature, it is seen that when the term Dirac 

delta function is used in Equation 2, classical theory of elasticity is reverted and Hooke's law 

becomes valid. This observation was developed by Eringen [2] as follows: 

If α is the linear differential operator Green function, we write 

    xxxxL   ,  (15)  

After used this Equation in Eq.(2), ones obtain 
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Let be consider the L is a differential operator having constant coefficients  

   kklkkl LtLt ,,
  (17)  

So, we obtain the below equation 
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Hence we obtain the differential equation instead of partial integral. For static case

0)( 11  ufL   

Finally, we can write below form  

 0, kkl  (19)  

If we sued the Eq. (19) in Eq.(3) we obtain the well-known Navier equation. So, differential 

operator as define via Eq.(3) 

 2221  lL   (20)  

 After using this equation in Eq. (17) we obtained the following form 

     tl .1 222
 (21)  

 

The accuracy of this result can be demonstrated by the atomic distribution relationship. For 

this purpose, the frequency expression obtained from the Born-Kármán model must be equal 

to the expression of non-local elasticity for plane waves. 

3. Modeling by lattice dynamics 

Lattice dynamics is known as harmonic approach provided that the displacements are small. 

In the chain, atoms can be connected with elastic springs (Figure 1). 
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Fig. 1. One-dimensional lattice model 

Therefore, force applied to the nth atom can be written as 

 )()( 11 nnnnn uuKuuKF  
 (22)  

Here K is the inter-atomic force (elastic) constant. Newton's second law applied to the nth 

atom 
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In the above expression M denotes the mass of the atom. Similarly, the equation for each atom 

in the cage should be written. N; In order to express the total number of atoms, the result is the 

N equation which must be solved simultaneously. In addition, the boundary conditions applied 

to the end of the cage must also be taken into account. The following conversion will be used 

for the solution 

 )( tkxi

n
nAeu


  (24)  

Here, 
nx  n. refers to the position of the atom and naxn  . This equation represents a moving wave 

with q wavelength where all atoms oscillate at the same frequency (q) with the same A 

amplitude. Equation (24) is written in Equation (23) 

  )2()( )1()1(2 anikanikiknaikna eeeCeM    (25)  

After some manipulation 
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So, frequency and distribution relation is 
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We expect the results obtained with the cage dynamics between the two atoms to be the same 

as the non-local elasticity results. In this case, the ratio of cage dynamics frequency distribution 

relation to bar frequency distribution relation 
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(30)  

Here angular frequency can be write as 

 22

0

2
kcoj   (31)  

Also /0 Ec  .   is the Brillouin region is the value of the upper limit of k. This value is for 

one dimensional mesh dynamics. In the light of this information Equation (31) is reorganized 
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If we write above equation as terms of cosine  
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(33)  

If the equation opens into the Maclaurin series 
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After using these equations in Eq.(32), we obtain 
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Using the first-order approach and by using the first two-term of the Eq.36 
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(37)  

After some arrangement 
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(38)  

Hence, non-dimensional frequency via nonlocal elasticity is 
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(39)  

The relation of frequency distribution via lattice dynamics is as follows with the help of 

equation (29) 
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(40)  

If the Eq. (39) and Eq. (40) are equalized for ka  
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If second-order approach Eq. (36) extract the polynomial form in three-terms as 
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And nonlocal stress equation 
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In this last equation 
klt  and 

kl , means the Fourier transforms of 
klt and 

kl ’, respectively. If 

we take the inverse Fourier transform of Eq. (43) 
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Also, the governing equation for stress in nonlocal case is 
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These equations replaced Navier's classical elasticity equations. New dimensionless frequency 

according to non-local elasticity theory is 

   2/1
444

0

222

0

0

1


 kakaeka
c

a



 

(46)  

Lazar et al. [16]. Stated that 44 4  . Frequency distribution relationship via lattice dynamics is 

as follows 
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 Eq. (46) and Eq. (47) are equalized for ka  
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Fig. 2. Convergence of frequency value 

The first and secon-order approaches of the theory of non-local elasticity, classical elasticity 

theory, and the frequency comparison of the lattice dynamics are presented in Figure 2. As 

can be seen from the figure, the frequency results for the second order approximation of non-

local elasticity theory are closer to the lattice dynamic than the first-order approach. In more 

general case (under the axial foundation effect and thermal effect) free vibration form of axial 

vibration of elastic nanorod have been given as two different forms: 
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Eq. (50) is the weak form for FEM approach of axial vibration. Some applications have also 

been listed in references related to macro, micro and nanomechanics [17-39]. 
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4.Conclusion 

Some comparison has been made for axial vibration. First and second order approach for 

nonlocal elasticity and lattice dynamics results have also been compared. Finally, weak form 

is given for axial vibration problem of nanorods. 
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