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TÜRKİYE

i



Stojan Radenovic
University of Belgrade,
SERBIA

Mujahid Abbas
University of Pretoria,

SOUTH AFRICA

Soley Ersoy
Sakarya University,
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Düzce-TÜRKİYE
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Abstract

The concept of UP-algebras was introduced and analyses by A. Iampan. In our recently

published article we introduced the concept of proper UP-filter in UP-algebras in a somewhat

different way than it is usual in literature. In this paper we analyse some fundamental

properties of such determined proper UP-filters in UP-algebras.

1. Introduction

The concepts of UP-algebra are introduced and analyzed in [1]. The author in his article has introduced and analyzed the concepts of

UP-algebra, UP-subalgebra and UP-ideal and their mutual connections. This author introduced in [2] the concept of proper UP-filter in

UP-algebras on something different way then it is common in the available literature. In addition, in [2] he established the connection

between UP-ideals and proper UP-filters.

In this article, the author further develops the idea of a proper UP-filter by identifying some of the fundamental features of this concept.

First, we have shown two criteria (Theorem 3.1 and Theorem 3.2) that allow us to estimate whether a certain subset of UP-algebra is proper

UP-filter or not. Other claims relate to a link between the proper UP-filters and UP-homomorphisms. Theorem 3.5 can be viewed as the first

isomorphism theorem. For more details, see [3, 4].

The notations and notions appearing in this text are not predefined, the reader can find in the articles [1, 2, 3, 4].

2. Preliminaries

Let us recall the definition of UP-algebra.

Definition 2.1. [[1], Definition 1.3] An algebra A = (A, ·,0) of type (2,0) is called a UP- algebra if it satisfies the following axioms:

(UP - 1): (∀x,y,z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),
(UP - 2): (∀x ∈ A)(0 · x = x),
(UP - 3): (∀x ∈ A)(x ·0 = 0),
(UP - 4): (∀x,y ∈ A)((x · y = 0 ∧ y · x = 0) =⇒ x = y).

In the following we give definition of the concept of UP-ideals of UP-algebra.

Definition 2.2. [[1], Definition 2.1] Let A be a UP-algebra. A subset J of A is called a UP-ideal of A if it satisfies the following properties:

1. 0 ∈ J, and

2. (∀x,y,z ∈ A)(x · (y · z) ∈ J ∧ y ∈ J =⇒ x · z ∈ J).

One of fundamental properties of UP-ideals is given in statement (1) of Proposition 2.7 in the article [1]:

Proposition 2.3. Let A be a UP-algebra and B a UP-ideal of A. Then

∀x,y ∈ A)((x ∈ B ∧ x ≤ y) =⇒ y ∈ B).

Email address and ORCID number: bato49@hotmail.com, 0000-0003-1148-3258 (D. A.Romano)
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Our intention in short notice [2] was to construct a substructure G in UP-algebras that will have the following property

(∀x,y ∈ A)((y ∈ G ∧ x ≤ y) =⇒ x ∈ G)

and has a standard attitude toward the UP-ideal. This was done by introducing the concept of a proper UP-filter by the following way.

Definition 2.4 ([2], Definition 3.1). Let A be a UP-algebra. A subset G of A is called a proper UP-filter of A if it satisfies the following

properties:

3. ¬(0 ∈ G), and

4. (∀x,y,z ∈ A)((¬(x · (y · z) ∈ G) ∧ x · z ∈ G) =⇒ y ∈ G)

In the mentioned article it was shown

Proposition 2.5. Let A be a UP-algebra and G a proper UP-filter of A. Then

5. (∀x,y ∈ A)((¬(x · y ∈ G) ∧ y ∈ G) =⇒ x ∈ G).
6. (∀x,y ∈ A)(x · y ∈ G =⇒ y ∈ G).
7. (∀x,y ∈ A)((x 6 y ∧ y ∈ G) =⇒ x ∈ G).

Proposition 2.6. A subset G of a UP-algebra A is a proper UP-filter of A if and only if the set A\G is a UP-ideal of A.

Proposition 2.7. The family GA of all proper UP-filters in a UP-algebra A forms a completely lattice.

Finally, the concept of UP-homomorphisms is defined by the following

Definition 2.8 ([1], Definition 4.1). Let (A, ·,0A) and (B,◦,0B) be UP-algebras. A mapping f from A to B is called a UP-homomorphism if

holds

(∀x,y ∈ A)( f (x · y) = f (x)◦ f (y)).

In [1] it was shown that f (A) is a subalgebra of algebra B (Theorem 4.5 (3)) and that Ker f is an UP-ideal in A (Theorem 4.5 (6)).

3. The main results

First, for a subset G of UP-algebra A we show that from (5) and (6) follows (3) and (4) if we assume that G 6= A.

Theorem 3.1. For a subset G of a UP-algebra A (5) and (6) implies (3) and (4) if we assume that G 6= A

Proof. Let formulas (5) and (6) be valid for the proper subset G in A. Suppose that ¬(x · (y · z) ∈ G) and x · z ∈ G is valid for arbitrary

elements x,y,z ∈ A.

If we put y = x in (6) we get that 0 = x · x ∈ G implies x ∈ G for any element x ∈ A. This is in a contradiction with G 6= A. The resulting

contradiction yields ¬(0 ∈ G). Thus, (3) is proven. From here it follows immediately that the subset G satisfies the formula (7). Indeed, if

x 6 y and y ∈ G, then we have¬(x · y = 0 ∈ G) and y ∈ G. From here follows x ∈ G according to (5).

First, from x · z ∈ G we have z ∈ G by (6). Second, suppose it is ¬(y ∈ G) holds. Thus, from ¬(y ∈ G) and z ∈ G follows y · z ∈ G by the

contraposition of (5). Third, we have y · z 6 x · (y · z) by statement (6) in Theorem 1.8 in the article [1]. Now, from this and y · z ∈ G we

conclude x · (y · z) ∈ G by (7). This is in a contradiction with the first hypothesis. So, it has to be y ∈ G. Therefore, (4) is proven.

Our second proposition is one more criterion for determining whether a subset G of A is a proper UP-filter or not.

Theorem 3.2. Let A be a UP-algebra and G ⊆ A such that ¬(0 ∈ G). Then G is a proper UP-filter in A if and only if

8. (∀x,y,z ∈ A)((¬(y ∈ G) ∧ x · z ∈ G) =⇒ x · (y · z) ∈ G).

Proof. Let G be a proper UP-filter in a UP-algebra A and x,y,z be arbitrary elements of A. Suppose ¬(y ∈ G) and x · z ∈ G. If there were

¬(x · (y · z) ∈ G) then from this and x · z ∈ G would have y ∈ G. The resulting result is in contradiction with the first hypothesis. Therefore, it

must be x · (y · z) ∈ G.

Opposite, let for subset G of A (3) and (8) be hold for any x,y,z ∈ A. Suppose ¬(x · (y · z) ∈ G) and x · z ∈ G are valid. If there were ¬(y ∈ G)
then from this and the second hypothesis would have x · (y · z) ∈ G by (8). The resulting result is in contradiction with the first hypothesis.

Therefore, it must be y ∈ G.

Corollary 3.3. Let G be a proper UP-filter in a UP-algebra A. Then

9. (∀x,y ∈ A)((¬(x ∈ G) ∧ y ∈ G) =⇒ x · y ∈ G).

Proof. If we put x = 0, y = x and z = y in (8) we will got (9).

Theorem 3.4. Let (A, ·,0A) and (B,◦,0B) be UP-algebras and let f : A −→ B be a UP-homomorphism. Then the following statements hold:

(a) If F is a proper UP-filter in a UP-algebra A, then f (F) is a proper UP-filter in a UP-algebra f (A).

(b) If G is a proper UP-filter of B, then f−1(G) is a proper UP-filter of A.
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Proof. (a) Assume that F is a proper UP-filter of A. Since ¬(0A ∈ F) and the statement (1) of Theorem 4.5 in article [1], we have

¬(0B = f (0A) ∈ f (F)).
Let a,b,c∈ f (A) be arbitrary elements such that ¬(a◦(b◦c)∈ f (F)) and a◦c∈ f (F). Then there exist elements x,y,z∈A such that f (x) = a,

f (y) = b and f (z) = c and ¬( f (x)◦ ( f (y)◦ f (z)) ∈ f (F)) and f (x)◦ f (z) ∈ f (F). This means ¬( f (x · (y · z) ∈ f (F)) and f (x · z) ∈ f (F).
So, we conclude ¬(x · (y · z) ∈ F) and x · z ∈ F . Thus y ∈ F by (4). Therefore, c = f (y) ∈ f (F).
(b) Assume that G is a proper UP-filter of B. Since ¬(0B ∈ G), we have ¬( f (0A) = 0B ∈ G). Thus ¬(0A ∈ f−1(G)).
Let x,y,z ∈ A be arbitrary elements of A such that ¬(x · (y · z) ∈ f−1(G)) and x · z ∈ f−1(G). Then ¬( f (x · (y · z)) ∈ G) and f (x · z) ∈ G. Since

f is a UP-homomorphism, we have ¬( f (x)◦ ( f (y)◦ f (z))) ∈ G) and f (x)◦ f (z) ∈ G. Since G is a proper UP-filter of B, we have f (y) ∈ G.

Thus y ∈ f−1(G).

Without major difficulties, it can be proved that if J is a UP-ideal in a UP-algebra A and ′ ∼ ′ the congruence on A determined by the ideal J

([1], Proposition 3.5), then A/J ≡ A/∼= {[x]∼ : x ∈ A} is also UP-algebra with the internal operation ′ ∗ ′ defined by

(∀x,y ∈ A)([x]∼ ∗ [y]∼ = [x · y]∼)

and the fixed element J. The following claims is proven by direct verification.

Theorem 3.5. Let f : A −→ B be a UP-homomorphism between UP-algebras. Then there exists the UP-isomorphism g : A/Ker( f )−→ f (A)
such that f = g◦π where π : A −→ A/Ker( f ) is the canonical UP-epimorphism.

Theorem 3.6. Let f : A −→ B be a UP-homomorphism between UP-algebras and J be a UP-ideal in A.

If K is a UP-ideal in a UP-algebra A such that J ⊆ K, then the set K/J = {[x]J ∈ A/J : x ∈ K} is a UP-ideal in UP-algebra A/J.

If G is a proper UP-filter in a UP-algebra A such that G ⊆ A\J, then the set G/J = {[x]J : x ∈ G} is a proper UP-filter in a UP-algebra A/J.

Proof. (a) It is clear that J = [0]J ∈ A/J is the fixed element in a UP-algebra A/J. Let x,y,z ∈ A be arbitrary elements such that [x]J ∗
([y]J ∗ [z]J) ∈ K/J and [y]J ∈ H/L. Since x · (y · z) ∈ K and y ∈ K and since K is a UP-ideal in a UP-algebra A we conclude x · z ∈ K. Thus

[x]J ∗ [z]J ∈ K/J. Therefore, the set K/J is a UP-ideal in a UP-algebra A/J.

(b) If there were [0]J ∈ G/J, they would have 0 ∈ G, which is a contradiction. So, we have ¬([0]J ∈ G/J). Let x,y,z ∈ A be arbitrary elements

such that ¬([x]J ∗ ([y]J ∗ [z]J) ∈ G/J) and [x]J ∗ [z]J ∈ G/J. This means that ¬(x · (y · z) ∈ G) and x · z ∈ G. Since G is a proper UP-filter in a

UP-algebra A, we have y ∈ G. Thus [y]J ∈ G/J. Therefore, the set G/J is a proper UP-filter in a UP-algebra A/J.

Corollary 3.7. There is a mutually unambiguous correspondence between the family FA/J of all proper UP-filters in a UP-algebra A/J and

the family of all proper UP-filters contained in A\ J.

4. Final observation

In the present paper, in order to continue developing the theory of proper UP-filters and UP-algebras, we given some fundamental properties

of proper UP-filters in UP-algebra. The author believes that this new properties of proper UP-filters in UP-algebras enrich our knowledge

about UP-algebras.
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Abstract

We define trans-Sasakian Finsler manifold F̄2n+1 = ( ¯N ,N̄ ′, F̄) and semi-invariant sub-

manifold Fm = (N ,N ′,F) of a trans-Sasakian Finsler manifold F̄2n+1. Then we study

mixed totally geodesic and totally umbilical semi-invariant submanifolds of trans Sasakian

Finsler manifold.

1. Introduction

Oubina [1] introduced trans-Sasakian manifolds that reduced to α-Sasakian and β−Kenmotsu manifolds, in 1985. Then, trans-Sasakian

manifolds are studied by many geometers like in [2]. Besides, Kobayashi studied semi-invariant submanifolds for a certain class of almost

contact manifolds in [3] in 1986. Afterwards, semi invariant submanifolds of several structures are discussed like nearly trans-Sasakian

and nearly Kenmotsu manifolds in [4], in 2004 and in [5], in 2009. Also, Shahid got some fundamental results on almost semi-invariant

submanifolds of trans-Sasakian manifolds in [6], in 1993. Besides, Shahid et al. discussed submersion and cohomology class of semi-invariant

submanifolds of trans-Sasakian manifolds in [7], in 2013.

B.B. Sinha and R. K. Yadav introduced almost Sasakian Finsler manifold and determined the set of all almost Sasakian Finsler h-connection

on almost Sasakian Finsler manifold [8], In 1991. Then Yaliniz and Caliskan studied Sasakian Finsler manifolds in [9] in 2013. In this paper,

we discussed mixed totally geodesic and totally umbilical semi- invariant submanifolds of trans-Sasakian Finsler manifolds.

2. Trans-Sasakian Finsler manifolds

Definition 2.1. Suppose that ¯N be an (2n+1)-dimensional Finsler manifold. Then an almost contact metric structure
(

φV ,ηV ,ξV ,GV
)

on (N̄ ′)v is called trans-Sasakian Finsler if the following relation is satisfied:

2(∇̄V
X φ)YV = α

{

GV (XV ,YV )ξV −ηV
(

YV
)

XV
}

+β
{

GV (φXV ,YV )ξV −ηV
(

YV
)

φXV
}

where α and β are functions on ( ¯N ′)v, ∇̄ is the Finsler connection with respect to GV . So, ( ¯N ′)v is called trans-Sasakian Finsler manifold.

2.1. Semi-invariant submanifolds of trans-Sasakian Finsler manifolds

Definition 2.2. An m-dimensional Finsler submanifold (N ′)v of a trans-Sasakian Finsler manifold ( ¯N ′)v is called a semi-invariant

submanifold if ξV ∈V(u,v)N
′ and there exist on ( ¯N ′)v a pair of orthogonal distribution (D,D⊥) such that

(i) VN ′ = D⊕D⊥⊕
{

ξV
}

(ii) φD(u,v) = D(u,v), ∀(u,v)∈ (N ′)v,∀u ∈ N

Email addresses and ORCID numbers: aysefunda.saglamer@dpu.edu.tr, 0000-0001-5162-6378 (A. F. Sağlamer), nesrin.caliskan@usak.edu.tr, 0000-0002-3189-177X (N.

Çalışkan)
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(iii) φ
(

D⊥
(u,v)

)

⊂
(

V(u,v)N
′
)⊥

for all (u,v) ∈ (N ′)v, for tangential space V(u,v)N
′ and normal space

(

V(u,v)N
′
)⊥

of (N ′)v at V with

the following decomposition :

V(x,y)N̄
′ = (V(u,v)N

′)⊕ (V(u,v)N
′)⊥

The distribution D (resp. D⊥) is called the horizontal (resp. vertical) distribution. A semi-invariant Finsler submanifold (N ′)v is said

to be an invariant (resp. anti-invariant) submanifold if we have D⊥
(u,v) = {0} (resp. D(u,v) = {0}) for each (u,v) ∈ (N ′)v. We also call

(N ′)v proper if neither D nor D⊥ is null. It is easy to check that each hypersurface of (N ′)v which is tangent to ξV inherits a structure of

semi-invariant Finsler submanifold of (N ′)v.

We denote by G the metric tensor field of ( ¯N ′)v as well as that ınduced on (N ′)v. Let ∇̄ be a Finsler connection on F̄2n+1 = ( ¯N ,N̄ ′, F̄).
Thus ∇ is a Finsler connection on Fm = (N ,N ′,F) which we call the induced Finsler connection. Also B is an ℑ(N ′)-bilinear mapping

on Γ(VN ′)×Γ(VN ′) and Γ(VN
′⊥)-valued, which we call the second fundamental form of Fm.

Using B define the ℑ(N ′)-bilinear mapping:

hV : Γ(VN
′)×Γ(VN

′)→ Γ(VN
′)⊥

h(XV ,YV ) = B(XV ,YV )

for any X ,Y ∈ Γ(TN ′). We call hV the v-second fundamental form of Fm = (N ,N ′,F). From Gauss formula we get;

∇̄V
XYV = ∇V

XYV +hV (XV ,YV ) (2.1)

for any X ,Y ∈ Γ(TN ′).(XV ,YV ∈ Γ(VN ′)).
Now, for any X ∈ Γ(TN ′) and N ∈ Γ(VN

′⊥), we set

∇̄X N =−ANX +∇⊥
X N (2.2)

where ANX ∈ Γ(VN ′) and ∇⊥
X N ∈ Γ(VN ′)⊥ .

It follows that ∇⊥ is a linear connection on the Finsler normal bundle (VN ′)⊥ of Fm. Therefore ∇⊥ is a vectorial Finsler connection on

VN
′⊥. We call the normal Finsler connection with respect to ∇̄.

AV : Γ(VN
′⊥)×Γ(VN

′)→ Γ(VN
′)

AV (NV ,XV ) = ANV XV

is an ℑ(N ′)− bilinear mapping for any NV ∈ Γ(VN
′⊥). We call AN the shape operator (the Weingarten operator) with respect to NV .

As in the case of the second fundamental form, by means of A we define for any NV ∈ Γ(VN ′)⊥ the ℑ(N ′)− linear mappings;

AV
N : Γ(VN

′)→ Γ(VN
′)

AV
NXV = ANV XV

and call the v-shape operator. Thus from the Weingarten formula we deduce that

∇̄XV NV =−AV
NXV +∇⊥

XV NV

for any X ∈ Γ(TN ′) XV ∈ Γ(VN ′) and NV ∈ Γ(VN
′⊥).

Moreover we have

G(hV (XV ,YV ),NV ) = G(AV
NXV ,YV ) (2.3)

for a vector field XV ∈VN ′. We put

XV = PXV +QXV +ηV
(

XV
)

ξV (2.4)

where PXV and QXV belong to the distribution D and D⊥ respectively.

For any vector field NV ∈ Γ(VN ′⊥), we put

φNV = f NV +qNV

where f NV (resp. qNV ) denotes the tangential (resp. normal) component of φNV .
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3. Mixed totally geodesic semi-invariant submanifolds of trans-Sasakian Finsler manifolds

Definition 3.1. A semi-invariant Finsler submanifold is said to be mixed totally geodesic if h(XV ,ZV ) = 0 for all XV ∈ D and ZV ∈ D⊥.

Theorem 3.2. Let (N ′)v be a semi-invariant submanifold of trans-Sasakian Finsler manifold (N ′)v. Then

P∇XV ( f NV )−PAV
qNV XV +φPAV

NV XV = 0 (3.1)

Q∇XV ( f NV )−QAV
qNV XV − f ∇⊥

XV NV = 0 (3.2)

hV (XV , f NV )+∇⊥
XV (qNV )+φQAV

NV XV −q∇⊥
XV NV = 0 (3.3)

∀XV ∈ D and ∀NV ∈ (V(u,v)N
′⊥).

Proof.

∇̄XV (φNV ) = ∇̄XV ( f NV +qNV ) = ∇̄XV ( f NV )+ ∇̄XV (qNV ) (3.4)

All NV ∈ (V(u,v)N
′⊥), ∀XV ∈ D.

For f N ∈V(u,v)N
′, we have from (2.1)

∇̄XV ( f NV ) = ∇XV ( f NV )+hV (XV , f NV ) (3.5)

for qN ∈ (V(u,v)N
′⊥); we have from (2.2)

∇̄XV (qNV ) =−AV
qNV XV +∇⊥

XV (qNV ) (3.6)

By using (3.5) and (3.6) in (3.4), we get

∇̄XV (φNV ) = ∇XV ( f NV )+hV (XV , f NV )−AV
qNV XV +∇⊥

XV (qNV ) (3.7)

where ∇XV ( f NV ) ∈
(

V(u,v)N
′
)

and AV
qNV XV ∈

(

V(u,v)N
′
)

, We have from (2.3)

∇XV ( f NV ) = P∇XV ( f NV )+Q∇XV ( f NV )+ηV (∇XV ( f NV ))ξV (3.8)

and

AV
qNV XV = PAV

qNV XV +QAV
qNV XV +ηV (AV

qNV XV )ξV (3.9)

by using (3.8) and (3.9) in (3.7) we obtain

∇̄XV (φNV ) = (∇̄XV φ)NV +φ(∇̄XV NV )

= P∇XV ( f NV )+Q∇XV ( f NV )+ηV (∇XV ( f NV ))ξV

+hV (XV , f NV )−PAV
qNV XV −QAV

qNV XV

−η(AV
qNV XV )ξV +∇⊥

XV (qNV )

where

(∇̄XV φ)NV =
α

2

{

G(XV ,NV )ξV −ηV (NV )XV
}

+
β

2

{

G(φXV ,NV )ξV −ηV (NV )φXV
}

Since G(XV ,NV ) = 0 = G(NV ,ξV ) = G(φXV ,NV ), we get
(

∇̄X φ
)

N = 0. Thus, we using (2.3) and (2.4) from (3.10) then we obtain

∇̄XV (φNV ) = φ(∇̄XV NV ) = φ(−AV
NV XV + ∇̄⊥NV

XV )

= −φAV
NV XV +φ∇⊥

XV NV (3.10)

= −φPAV
NV XV −φQφAV

NV XV + f ∇⊥
XV NV +q∇⊥

XV NV

where AN ∈V(u,v)N
′and∇⊥

XV NV ∈ (V(u,v)N
′⊥). By seperating the components of D D⊥ and (V(u,v)N

′⊥) from (3.10) and (3.10) we get

(3.1),(3.2) and (3.3).

Theorem 3.3. Let (N ′)v be a semi-invariant submanifold of trans-Sasakian Finsler manifold ( ¯N ′)v. Then the following propositions are

equivalent:

(a) (N ′)v is a totally geodesic.

(b) ∇⊥
XV NV ∈ φ D⊥ and D is invariant with respect to AV

N ( all NV ∈ φ D⊥), that is ∇⊥
D(φ D⊥)⊂ φ D⊥ and AV

φD⊥D ⊂ D.
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Proof. From (2.4) we know that,

φNV = f NV = YV , all YV ∈ D⊥,N ∈ φD⊥ ⊂ (V(u,v)N
′⊥)

by using (3.2) from (3.3) we have

hV (XV ,YV )+∇⊥
XV (qNV )−φQAV

NV XV −q∇⊥
XV NV = 0 (3.11)

where, since YV ∈ D⊥,N ∈ φD⊥ , we can write qNV = 0. Thus from (3.11) we have

hV (XV ,YV ) = q∇⊥
XV NV −φQAV

NV XV (3.12)

Now, suppose that (N ′)v a total geodesic. Because of hV (XV ,YV ) = 0, ∀XV ∈ D and YV ∈ D⊥, from (3.12) we get

0 = q∇⊥
XV NV −φQAV

NV XV

where AV
NV XV ∈ (V(u,v)N

′⊥), QAV
NV XV ∈ D⊥ and φQAV

NV XV ∈ φD⊥ ⊂ (V(u,v)N
′⊥). If q∇⊥

XV NV ∈ φD⊥, it must be φNV = f NV = YV ∈

D⊥, ∀NV ∈ φD⊥. Thus we have φ(q∇⊥
XV NV ) ∈ D⊥. Also from (2.4) we can write

φ∇⊥
XV NV = f ∇⊥

XV NV +q∇⊥
XV NV ,∇⊥

X N ∈ (V(u,v)N
′⊥)

if we apply φ on both sides of the equation we get

−∇⊥
XV NV = φ( f ∇⊥

XV NV )+φ(q∇⊥
XV NV ) (3.13)

where if f ∇⊥
XV NV ∈ D⊥ ⊂ V(u,v)N

′, then it means φ f ∇⊥
XV NV ∈ φD⊥ ⊂ (V(u,v)N

′⊥). In equation (3.13), since ∇⊥
XV NV ∈ (V(u,v)N

′⊥)

and φ
(

f ∇⊥
XV NV

)

∈ φD⊥, it means that φ
(

q∇⊥
XV NV

)

/∈ D⊥.(φ(q∇⊥
X N) ∈ (V(u,v)N

′⊥)). If f ∇⊥
XV NV /∈ D⊥, then φ( f ∇⊥

X N) ∈VN ′
v , while

∇⊥
X N ∈ (V(u,v)vN

′⊥) and φ( f ∇⊥
X N) ∈ V(u,v)Y

′ either φ(q∇⊥
X N) ∈

(

V(u,v)N
′⊥
)

or φ(q∇⊥
X N) ∈ V(u,v)N

′. If φ(q∇⊥
X N) ∈ V(u,v)N

′, we

get the following contradiction

φ(q∇⊥
X N) = φ( f ∇⊥

X N) (3.14)

q∇⊥
X N = f ∇⊥

X N

In that case φ(q∇⊥
XV NV ) /∈V(u,v)N

′
(

/∈ D⊥
)

. Thus we get q∇⊥
X N ∈

(

V(u,v)N
′⊥−φD⊥

)

in (3.14). Since q∇⊥
XV NV ∈

{

(V M′⊥
v )−φD⊥

}

and φQAV
NV XV ∈ φD⊥, it must be q∇⊥

XV NV = 0 and φQAV
NV XV = 0. Since q∇⊥

XV NV = 0, it means that ∇⊥
X N ∈ φD⊥ and since QAV

NV XV = 0,

then AV
NV XV ∈ D. Thus we get ∇⊥

DφD⊥ and AφD⊥D ⊂ D.

Theorem 3.4. Let (N ′)v be a semi-invariant submanifolds of trans-Sasakian Finsler manifold ( ¯N ′)v. If β 6= 0, then each M′⊥
v leaf of D⊥

is not totally geodesic at (N ′)v.

Proof. Suppose that ((N ′)v)⊥ is totally geodesic in (N ′)v. Then ∇XV YV ∈ D⊥, for each XV ,YV ∈ D⊥ or equivalent to G(∇XV YV ,ZV ) = 0,
for each ZV ∈ D⊕

{

ξV
}

. Using the

∇V
Y ξV =

β

2
YV and hV (YV ,ξV ) =−

α

2
φYV

we get

G(∇XV YV ,ξV ) =−G(YV ,∇XV ξV ) =−G(YV ,
β

2
XV ) =−

β

2
G(YV ,XV )

Thus, we find the following contradiction

0 = G(∇XV XV ,ξV ) =−
β

2
G(XV ,XV )

That is, ((N ′)v)⊥ is not total geodesic at (N ′)v.
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4. Totally umbilical semi-invariant submanifolds of trans- Sasakian Finsler manifolds

Definition 4.1. ∀XV ,YV ∈VN ′ and NV ∈VN ′⊥

(1) If AV
NV = aI (for a ∈ ℑ(N ′)v), NV is called umbilical section of (N ′)v. (2) If NV is umbilical section of (N ′)v then (N ′)v is umbilical

with respect to NV . (3) If (N ′)v is umbilical for each NV ∈V(u,v)N
′⊥ then (N ′)v is called totally umbilical submanifold of (N ′)v. (4)

Suppose that
{

EV
1 , ...,E

V
m

}

orthonormal base of V(u,v)N
′. Then

H =
1

m
iz(h(u,v)) =

1

m

m

∑
i=1

hV (EV
i ,E

V
i )

is called mean curvature vector of (N ′)v at u ∈ (N ′)v.

If
{

EV
m+1, ...,E

V
2n+1

}

is orthonormal base of V(u,v)N
′⊥, then we can write

H =
1

m

2n+1

∑
a=m+1

iz(AV
a )E

V
a , AV

a = AV
EV

a
(4.1)

Let (N ′)v be a semi-invariant submanifold of trans-Sasakian Finsler manifold ( ¯N ′)v. Since

hV (XV ,YV ) =
2n+1

∑
a=m+1

G(hV (XV ,YV ),EV
a )E

V
a

and

G(hV (XV ,YV ),EV
a ) = G(AV

EV
a

XV ,YV )

we have

hV (XV ,YV ) =
2n+1

∑
a=m+1

G(AV
EV

a
XV ,YV )EV

a

Since (N ′)v is totally umbilical submanifold of ( ¯N ′)v, we have

AV
EV

a
XV =CaXV , Ca ∈ ℑ(N ′)v (4.2)

Thus we get

hV (XV ,YV ) =
2n+1

∑
a=m+1

G(CaXV ,YV )EV
a

=
2n+1

∑
a=m+1

CaG(XV ,YV )EV
a

= G(XV ,YV )

(

2n+1

∑
a=m+1

CaEV
a

)

(4.3)

by using (4.1) and (4.2), we get

H =
1

m

2n+1

∑
a=m+1

iz(AV
EV

a
)EV

a =
1

m

2n+1

∑
a=m+1

iz(CaI)EV
a

=
1

m

2n+1

∑
a=m+1

(mCa)EV
a =

2n+1

∑
a=m+1

CaEV
a (4.4)

from (4.3) and (4.4) we obtain

hV (XV ,YV ) = G(XV ,YV )H (4.5)

Theorem 4.2. Let (N ′)v be a semi-invariant submanifolds of trans-Sasakian Finsler manifold ( ¯N ′)v. Then

(a) (N ′)v is a totally geodesic.

(b) If α 6= 0 for every point of (N ′)v, then (N ′)v is an invariant submanifold, that is D⊥ = 0.

Proof. For XV = ξV , from (3.1) we get ∇̄ξV ξV = 0. Later, we take ξV instead of XV and YV from (2.1), we obtain

∇̄ξV ξV = ∇ξV ξV +hV (ξV ,ξV )

since ∇̄ξV ξV = 0, we have

0 = ∇ξV ξV +hV (ξV ,ξV )
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that is ∇ξV ξV = 0 and hV (ξV ,ξV ) = 0. Since (N ′)v is totally umbilical submanifold, we have from (4.5)

0 = hV (ξV ,ξV ) = G(ξV ,ξV )H

since G(ξV ,ξV ) 6= 0, it must be H = 0. Thus we have

hV (XV ,YV ) = GV (XV ,YV )0 = 0

This means that (N ′)v is totally geodesic. We know that ∇V
Y ξV = β

2 YV and hV (YV ,ξV ) =−α
2 φYV for all YV ∈ D⊥. Since (N ′)v is totally

geodesic and totally umbilical, we get

−
α

2
φYV = GV (YV ,ξV )0 = 0

Since α 6= 0, this means that

φYV = 0 → YV = 0 → D⊥ = 0
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Abstract

We use the BN-pair structure for the general linear group to write a suitable listing of the

elements of the finite group GL(2,q) which is then used to determine its ring of matrices.

This approach of identifying finite group ring with ring of matrices has been used effectively

to construct linear codes, benefiting from the ring-theoretic structure of both group rings

and the ring of matrices.

1. Introduction

Group rings of finite groups became a rich source for constructing error-correcting codes and investigation, their properties since F.J.

MacWilliams [1] and S.D Berman [2] considered cyclic codes as ideals in the group algebra of finite cyclic groups. R. Ferraz and Polcino

Milies [3] brought the techniques and deep structure of the group algebras into play by studying idempotents which generate codes. In

[4] T. Hurley proved that the group ring RG of a finite group G of order n over a ring R is isomorphic to a ring of G-matrices of size n×n

over R, and this was used in many later papers to construct and analyse codes from units and zero-divisors. When R has an identity and no

zero-divisors (e.g. when R is a field), Hurley used this identification to describe the unit group U(RG) and zero-divisors of RG in terms

of the properties of their corresponding matrices. The first (and main) step towards getting codes from a group ring RG is to choose an

appropriate listing for the elements of G upon which depend other steps namely; finding the matrix of G (relative to the listing), the ring

of matrices of RG and constructing unit-type and zero-divisor-type codes (all this steps are explained in [5]). The types of matrices have

been determined for several classes of finite groups such as cyclic, elementary abelian and dihedral groups [4]. Matrices which appear

in this identification include several types such as circulant, Toeplitz, Walsh-Toeplitz and Hankel Matrices. In this paper the linear group

G = GL(2,q) is considered; we shall use the BN-pair structure of G (see [6], section 69) to choose a listing for its elements suitable for

determining the matrix of G and hence the ring of matrices of RG. Being the first linear group to be considered in this manner we hope this

will lead to constructing new linear (unit-type and zero-divisor-type) codes.

2. The ring of matrices of a group

Let G be a finite group of order n with a given listing G = {g1 , g2 , . . . , gn}, and let R be a ring. Consider the matrix of the group G

relative to its listing, say M(G), which has the following form:

M(G) =
⎛⎜⎜⎜⎜⎝

g−1
1 g1 g−1

1 g2 . . . g−1
1 gn

g−1
2 g1 g−1

2 g2 . . . g−1
2 gn⋮ ⋮ ⋮ ⋮

g−1
n g1 g−1

n g2 . . . g−1
n gn

⎞⎟⎟⎟⎟⎠

Email addresses and ORCID numbers: s43680422@st.uqu.edu.sa, 0000-0003-1855-6261 (M. M. Hamed), aakhammash@uqu.edu.sa, 0000-0001-9404-1732 (A. A. Kham-

mash)
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Now let u = ∑n
i=1 αgi gi be an element in the group ring RG. Then the RG-matrix which corresponds to u in R(n×n), the ring of (n×n)-matrices,

is given by:

M(RG,u) =
⎛⎜⎜⎜⎜⎝

αg−1
1

g1
αg−1

1
g2

. . . αg−1
1

gn

αg−1
2

g1
αg−1

2
g2

. . . αg−1
2

gn⋮ ⋮ ⋮ ⋮
g−1

n g1 g−1
n g2 . . . g−1

n gn

⎞⎟⎟⎟⎟⎠
n×n

Theorem 2.1. [4] Given a listing of the elements of a group G of order n. There is a bijective ring homomorphism σ ∶ uz→M(RG,u)
between the group ring RG and the ring of (n×n) RG-matrices over R.

There are several types of the RG-matrix which appear as isomorphic to a certain group rings. These types include Toeplitz-type matrices,

Walsh-Toeplitz matrices, circulant matrices, Toeplitz combined with Hankel-type matrices and block-type circulant matrices; see [4] for

more specifics and examples.

3. BN-pair structure of G = GL(2,q)

Definition 3.1. [6] A finite group G = (G,B,N,U,R,W) is said to have a split BN-pair of rank n if the following conditions are satisfied:

• G has a BN-pair of rank n, such that:

– G = < B,N >,
– B∩N =H ⊴ N,

– W = N/H, is the corresponding Coxeter (Weyl) group which is generated by involutions, W = < w1,w2, . . . ,wr >.
• There exist a normal subgroup U ⊴ B such that B =U ⋊H (semidirect product),

• U =Op(G), and H is an abelian p′-group.

We have the Bruhat decomposition ,see[6]

G = ⊍
w∈W

BwB,

On the other hand U = U+w .U−w , where U+w = U ∩Uw and U−w = U ∩Uwow, where wo is the unique element of the coxeter group W of

maximal length.

Also we have,

BwB = BwU
−
w , f or each w ∈W.

Therefore,

G = ⊍
w∈W

BwB = ⊍
w∈W

BwU
−
w ,

and each element in G can be written uniquely in the form bnu, where b ∈ B , u ∈U−w , n is the coset representative of an element w ∈W .

Now, for example, if G =GL(n,q) then G has the structure of split BN-pair, where B is the subgroup of an upper triangular matrices, N

is the subgroup of monomial matrices, and H is the subgroup of the diagonal matrices. In fact, the Coxeter group W of G = GL(n,q) is

isomorphic to the symmetric group Sn.

W = N/H ≅ Sn.

We shall concentrate on the case when n = 2. From the split BN-pair setting, we have

GL(2,q) = B⋃BwB, where

U = {( 1 λ

0 1
)∣ λ ∈ Fq} , H = {( x 0

0 y
)∣ x,y ∈ F∗q} .

Since we have BwB = BwU−w , ∀w ∈W , where U−w = U ∩Uwow, and since the Coxeter group W in this case is isomorphic to S2 = {e , (12)}.
Then w = wo = (12), and U−w = U ∩Uwowo = U . Thus,

G = B ∪BwoU = B ∪BnoU,

where noH = Hno = wo. The monomial subgroup N in our case have the form;

N = ( ∗ 0

0 ∗ )⋃( 0 ∗∗ 0
) ,

and for no ∈ N, take no = ( 0 1

1 0
) which corresponds to the permutation (12) in S2.

Therefore,

G = GL(2,q) = HU ∪HUnoU

= {(x 0

0 y
)(1 λ

0 1
)∪(x′ 0

0 y′
)(1 α

0 1
)(0 1

1 0
)(1 β

0 1
)∣λ ,α,β ∈ Fq,and x,y ∈ F∗q} ,
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Counting the elements we have,

RRRRRRRRRRR{(
x 0

0 y
)(1 λ

0 1
)∪(x′ 0

0 y′
)(1 α

0 1
)(0 1

1 0
)(1 β

0 1
)∣λ ,α,β ∈ Fq,and x,y ∈ F∗q}

RRRRRRRRRRR
= (q−1)2. q + (q−1)2. q

2 = (q−1)2. (q+q
2) = ∣GL(2,q)∣.

Notation :

We write h(x , y) = (x 0

0 y
) ∈H; x,y ∈ F∗q and u(λ) = (1 λ

0 1
) ∈U ; λ ∈ Fq.

4. Multiplications

In the light of the coset decomposition of GL(2,q) = B∪BnoU =HU ∪HUnoU , we shall discuss four cases of element multiplication in

G =GL(2,q):
∗ HU HUnoU

HU CASE 1 CASE 2

HUnoU CASE 3 CASE 4

Proposition 4.1. For each x,x′,y,y′ ∈ F∗q and λ ,λ ′,β ′β ′ ∈ Fq we define the multiplication as the following:

Case 1:

h(x′ , y′) u(λ ′) ⋅h(x , y) u(λ) = h(x′x , y′y) u(λ +x−1λ ′y)
Case 2:

h(x′ , y′) u(λ ′) ⋅h(x , y) u(λ) no u(β) = h(x′x , y′y) u(λ +x−1λ ′y) no u(β)
Case 3:

h(x′ , y′) u(λ ′) no u(β ′) ⋅h(x , y) u(λ) = h(x′y , y′x) u(y−1λ ′x) no u(λ + x−1β ′y)
Case 4:

h(x′,y′)u(λ ′) no u(β ′) ⋅h(x,y) u(λ) no u(β) = h(−x′yα−1
,y′xα) u(−α −α2y−1λ ′x) no u(β +α−1)

where, α = λ + x−1β ′y.

Special case :

If α = λ + x−1β ′y = 0 the multiplication will be as :

h(x′,y′)u(λ ′) no u(β ′) ⋅h(x,y) u(λ) no u(β) = h(x′y , y′x) u(β + y−1λ ′x)

5. Inverses

The following proposition gives the rule for getting the inverses of the elements of GL(2,q).
Proposition 5.1. For each x,y ∈ F∗q and λ ,β ∈ Fq there are two cases for getting the inverse:

1- The element of the form h(x , y) u(λ) :

[h(x , y) u(λ)]−1 = h(x−1
,y−1) u(−xλy−1)

2- The element of the form h(x , y) u(λ) no u(β) :

[h(x , y) u(λ) no u(β)]−1 = h(y−1
,x−1) u(−x−1βy) no u(−xλy−1)

6. Elements listing of G = GL(2,q)

The listing of this group depends on the number q and we discuss two cases:

Case1: when q = p is an odd-prime (q = p > 3):

In this case, the linear group G =GL(2, p) has (p2
−1) blocks, each consists of ( p−1

2
) matrices each of size (2p), (note that

(p2
−1)( p−1

2
)(2p) = (p−1)2(p2

+ p) = ∣GL(2, p)∣) obtained by the following listing:

Type (x,x); x ∈ Z∗p gives (p+1) blocks:

(1) THE BLOCK B(x,x); x ∈ Z∗p , obtained from the following listing subset:

T(x,x) ∶ h(x,x), h(p−x, p−x)u(p−1), h(x,x)u(p−2),h(p−x, p−x)u(p−3), ⋯, ⋯, h(x,x)u(1), ⋯, ⋯, ⋯, h(x,x)u(2),
h(p−x, p−x)u(1).
such that, x = 1,2,⋯,

p−1

2
.

THE BLOCKS B(x,x)(λ ); λ = 0,1,2,⋯, p−1, obtained from the listing subsets:

T(x,x)nou(λ); λ = 0,1,2,⋯, p−1.

Type (x,y);x ≠ y gives the following (p2
− p−2) blocks:

THE BLOCKS Bi(x,y); i = 1,2,⋯, p−2, obtained from the listing subsets:
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Ti(x,y)( j); 1 ≤ i ≤ p−2, 1 ≤ j ≤ p−1

2
; where,

Ti(x,y)( j) ∶ h( j, j(p− i)), h( j(p−1), ji)u(i), h( j, j(p− i))u(2i),h( j(p−1), ji)u(3i), ⋯, ⋯, h( j(p−1), ji)u((p−3)i),
h( j, j(p− i))u((p−2)i), h( j(p−1), ji)u((p−1)i).
THE BLOCKS Bi(x,y)(λ); x ≠ y, i = 1,2,⋯, p−2, 0 ≤ λ ≤ p−1, obtained from the listing subsets:

Ti(x,y)( j)nou(λ); 1 ≤ i ≤ p−2, 1 ≤ j ≤ p−1

2
.

The total number of blocks in this case:

(p+1)+(p2− p−2) = p2−1.

Case2, when q is a power of p (q = pn), and (n ≥ 2, p ≥ 2) :

In this case we take F
∗
q = < a∣aq−1 = 1 >, then the matrix of G =GL(2,q) has (q2−1) blocks each block consists of ( q

p
) matrices each of

size p(q−1) (note that (q2−1)( q

p
)p(q−1) = (q−1)2(q2+q) = ∣GL(2,q)∣) obtained by the following listing:

Type (ai
,ai) gives the following (q+1) blocks:

THE BLOCK B(ai
,ai); i = 1,2,⋯,q−1 obtained by the following listing subset:

T(ai
,ai), T(ai

,ai)(1), T(ai
,ai)(2), ⋯, T(ai

,ai)((q/p)−1).
Where,

T(ai
,ai) ∶ h(1,1), h(aq−2

, aq−2) u(aq−2) , h(aq−3
, aq−3) u(2(aq−2)) , ⋯, ⋯, ⋯, h(aq−p

, aq−p) u((p−1)(aq−2)) ,
h(aq−(p+1)

, aq−(p+1)) , h(aq−(p+2)
, aq−(p+2)) u(aq−2) , ⋯, ⋯, h(a , a) u((p−2)(aq−2)) , h(1 , 1) u((p−1)(aq−2)) ,

h(aq−2
,aq−2) ,⋯, ⋯, h(a,a)u((p−1)(aq−2)).

Such that, T(ai
,ai)(s) = T(ai

,ai)u(aks); s = 1,2,⋯,(q/p)−1, and aks ∈ {a,a2
,⋯,aq−3}.

THE BLOCKS B(ai
,ai)(λ); λ = 0,1,2,⋯,aq−2, obtained by the following listing subsets:

T(ai
,ai)nou(λ), T(ai

,ai)(1)nou(λ), ⋯, T(ai
,ai)((q/p)−1)nou(λ).

Type (ai
,a j); i ≠ j gives the following (q2−q−2) blocks:

THE BLOCKS Br(ai
,a j); r = 1,2,⋯,q−2, obtained from the listing subsets:

Tr(ai
,a j), Tr(ai

,a j)(1), Tr(ai
,a j)(2), ⋯, Tr(ai

,a j)((q/p)−1), such that:

Tr(ai
,a j)(s) = Tr(ai

,a j)u(aks); s = 1,2,⋯,(q/p)−1.

Where:

Tr(ai
,a j) ∶ h(1,ar) , h(aq−2

,ar−1)u(ar−1) , h(aq−3
,ar−2)u(2ar−1) , h(aq−4

,ar−3)u(3ar−1) , ⋯ , ⋯ , h(aq−p
,a(q−p)+r)u((p−1)ar−1) ,

h(a(q−p)−1
,a(q−p)+(r−1)) , h(a(q−p)−2

,a(q−p)+(r−2))u(ar−1) ,⋯⋯, ⋯ , h(a,ar+1)u((p−1)ar−1).
THE BLOCKS Br(ai

,a j)(λ); r = 1,2,⋯,q−2, 0 ≤ λ ≤ aq−2, obtained from the listing subsets:

Tr(ai
,a j)nou(λ), Tr(ai

,a j)(1)nou(λ), Tr(ai
,a j)(2)nou(λ), ⋯ ⋯, Tr(ai

,a j)((q/p)−1)nou(λ).
The total number of blocks in this case:

(q+1)+(q2−q−2) = q2−1.

Example 6.1. The special case when (q = 3, G =GL(2,3)) :

From the general theory, the matrix of this group has 32−1 = 8 blocks each block consists of
3−1

2
= 1 matrix of size 2×3 = 6 obtained from

the following listing:

Block B(x,x):
h(1,1), h(2,2)u(2), h(1,1)u(1), h(2,2), h(1,1)u(2), h(2,2)u(1),
Block B(x,x)(λ = 0):
h(1,1)no, h(2,2)u(2)no, h(1,1)u(1)no, h(2,2)no, h(1,1)u(2)no, h(2,2)u(1)no,

Block B(x,x)(λ = 1):
h(1,1)nou(1), h(2,2)u(2)nou(1), h(1,1)u(1)nou(1), h(2,2)nou(1), h(1,1)u(2)nou(1),
h(2,2)u(1)nou(1),
Block B(x,x)(λ = 2):
h(1,1)nou(2), h(2,2)u(2)nou(2), h(1,1)u(1)nou(2), h(2,2)nou(2), h(1,1)u(2)nou(2),
h(2,2)u(1)nou(2),
Block B1(x,y):
h(1,2), h(2,1)u(1), h(1,2)u(2), h(2,1), h(1,2)u(1), h(2,1)u(2),
Block B1(x,y)(λ = 0):
h(1,2)no, h(2,1)u(1)no, h(1,2)u(2)no, h(2,1)no, h(1,2)u(1)no, h(2,1)u(2)no,

Block B1(x,y)(λ = 1):
h(1,2)nou(1), h(1,2)u(1)nou(1), h(2,1)u(2)nou(1), h(2,1)nou(1), h(2,1)u(1)nou(1), h(1,2)u(2)nou(1),
Block B1(x,y)(λ = 2):
h(1,2)nou(2), h(1,2)u(1)nou(2), h(2,1)u(2)nou(2), h(2,1)nou(2), h(2,1)u(1)nou(2), h(1,2)u(2)nou(2).
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7. The matrix of G = GL(2,q)

Now we shall determine the G-matrix of the group GL(2,q) with respect to the listing which obtained in the previous section:

We start with the first case when q = p. Consider T(1,1) in the first block B(x,x) which has the elements g1,g2,⋯,⋯,g2p−2,g2p−1,g2p with

their inverses. Then the resulting matrix will have the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 g2 g3 g4 g5 . . . g2p−3 g2p−2 g2p−1 g2p

g2p g1 g2 g3 g4 . . . g2p−4 g2p−3 g2p−2 g2p−1

g2p−1 g2p g1 g2 g3 . . . . . . g2p−4 g2p−3 g2p−2

g2p−2 g2p−1 g2p g1 g2 . . . . . . . . . g2p−4 g2p−3

g2p−3 g2p−2 g2p−1 g2p g1 . . . . . . . . . . . . g2p−4

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
g5 . . . . . . . . . . . . . . . g1 g2 g3 g4

g4 g5 . . . . . . . . . . . . g2p g1 g2 g3

g3 g4 g5 . . . . . . . . . g2p−1 g2p g1 g2

g2 g3 g4 g5 . . . . . . g2p−2 g2p−1 g2p g1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This is a circulant matrix type.

Now for any subset in the the block B(x,x). Consider the elements of T(t,t): gt1 ,gt2 ,⋯,⋯,gt2p−1 ,gt2p with the inverses of the elements in

T(1,1), then we will get the following matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gt1 gt2 gt3 gt4 gt5 . . . gt2p−3 gt2p−2 gt2p−1 gt2p

gt2p gt1 gt2 gt3 gt4 . . . gt2p−4 gt2p−3 gt2p−2 gt2p−1

gt2p−1 gt2p gt1 gt2 gt3 . . . . . . gt2p−4 gt2p−3 gt2p−2

gt2p−2 gt2p−1 gt2p gt1 gt2 . . . . . . . . . gt2p−4 gt2p−3

gt2p−3 gt2p−2 gt2p−1 gt2p gt1 . . . . . . . . . . . . gt2p−4

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
gt5 . . . . . . . . . . . . . . . gt1 gt2 gt3 gt4

gt4 gt5 . . . . . . . . . . . . gt2p gt1 gt2 gt3

gt3 gt4 gt5 . . . . . . . . . gt2p−1 gt2p gt1 gt2

gt2 gt3 gt4 gt5 . . . . . . gt2p−2 gt2p−1 gt2p gt1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Furthermore, if we get the elements of T(t,t) as above with inverses of an arbitrary subset in B(x,x), say T( j, j), we will get the following

matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gk1
gk2

gk3
gk4

gk5
. . . gk2p−3

gk2p−2
gk2p−1

gk2p

gk2p
gk1

gk2
gk3

gk4
. . . gk2p−4

gk2p−3
gk2p−2

gk2p−1

gk2p−1
gk2p

gk1
gk2

gk3
. . . . . . gk2p−4

gk2p−3
gk2p−2

gk2p−2
gk2p−1

gk2p
gk1

gk2
. . . . . . . . . gk2p−4

gk2p−3

gk2p−3
gk2p−2

gk2p−1
gk2p

gk1
. . . . . . . . . . . . gk2p−4

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
gk5

. . . . . . . . . . . . . . . gk1
gk2

gk3
gk4

gk4
gk5

. . . . . . . . . . . . gk2p
gk1

gk2
gk3

gk3
gk4

gk5
. . . . . . . . . gk2p−1

gk2p
gk1

gk2

gk2
gk3

gk4
gk5

. . . . . . gk2p−2
gk2p−1

gk2p
gk1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where, gti ∗g ji
−1 = gki

, 1 ≤ i ≤ 2p, such that:

gk1
= h( j−1t, j−1t) , gk2

= h( j−1(p− t), j−1(p− t)) u(p−1) , gk3
= h( j−1t, j−1t) u(p−2) ,

gk4
= h( j−1(p− t), j−1(p− t)) u(p−3) , gk5

= h( j−1t, j−1t) u(p−4) ,
⋮
, gk2p−4

= h( j−1(p− t), j−1(p− t)) u(5) , gk2p−3
= h( j−1t, j−1t) u(4) ,

gk2p−2
= h( j−1(p− t), j−1(p− t)) u(3) , gk2p−1

= h( j−1t, j−1t) u(2) ,
gk2p
= h( j−1(p− t), j−1(p− t)) u(1),

This obtained using these tow following equations :

(1) (p− j)−1t = j−1(p− t)
(2) (p− j)−1(p− t) = j−1t .

Now, if we take the elements of Ti(x,y)(1)(λ =w) from the block Bi(x,y)(λ =w), gi1 ,gi2 ,⋯,⋯,gi2p−1
,gi2p

, with the inverses of elements of

Tj(x,y)(1)(λ = k) from block B j(x,y)(λ = k), g−1
j1
,g−1

j2
,⋯,⋯,g−1

js−1
,g−1

js
. The resulting matrix will have the following form:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 l2 l3 l4 l5 . . . l2p−3 l2p−2 l2p−1 l2p

l2p l1 l2 l3 l4 . . . ⋯ l2p−3 l2p−2 l2p−1

l2p−1 l2p l1 l2 l3 . . . . . . ⋯ l2p−3 l2p−2

l2p−2 l2p−1 l2p l1 l2 . . . . . . . . . ⋯ l2p−3

l2p−3 l2p−2 l2p−1 l2p l1 . . . . . . . . . . . . ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
l5 . . . . . . . . . . . . . . . l1 l2 l3 l4
l4 l5 . . . . . . . . . . . . l2p l1 l2 l3
l3 l4 l5 . . . . . . . . . l2p−1 l2p l1 l2
l2 l3 l4 l5 . . . . . . l2p−2 l2p−1 l2p l1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Where, gis ∗g−1

js
= ls , 1 ≤ s ≤ 2p.

Also, for another matrix in the same Block. We can get the elements of Ti(x,y)(n)(λ = w) from the Block Bi(x,y)(λ = w) with the

inverses of the elements of Tj(x,y)(n)(λ = k) in the block B j(x,y)(λ = k). Then we will get the same circulant matrix which we obtained

when we take the elements from the first subsets of these certain blocks. We find in this case the G−matrix of the group GL(2,q) with

respect to the above proposed listing form (q2−1 × q2−1)- Block Circulant matrix.

Now, for the other case when q is a power of p :

For the elements from the coset(B) consider Tb(ai
,a j) from the block Bb(ai

,a j), b1,b2,⋯,⋯,bs−2,bs−1,bs, where s = p(q−1) is the number

of the elements in each subsets in this type, and a is the generator of the multiplicative group of the field Fq ). Together with the inverses of

elements in T(ai
,ai) from the block B(ai

,ai). The resulting matrix will have the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 b3 b4 b5 . . . bs−3 bs−2 bs−1 bs

bs b1 b2 b3 b4 . . . ⋯ bs−3 bs−2 bs−1

bs−1 bs b1 b2 b3 . . . . . . ⋯ bs−3 bs−2

bs−2 bs−1 bs b1 b2 . . . . . . . . . ⋯ bs−3

bs−3 bs−2 bs−1 bs b1 . . . . . . . . . . . . ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
b5 . . . . . . . . . . . . . . . b1 b2 b3 b4

b4 b5 . . . . . . . . . . . . bs b1 b2 b3

b3 b4 b5 . . . . . . . . . bs−1 bs b1 b2

b2 b3 b4 b5 . . . . . . bs−2 bs−1 bs b1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The same matrix will appear when we take the elements of Tb(ai

,a j)(n) from the block Bb(ai
,a j), with the inverses of elements in

T(ai
,ai)(n) from the block B(ai

,ai).
Finally for the elements from the double coset (BnoU) consider Tx(ai

,a j)(λ = az) from the block Bx(ai
,a j)(λ = az), c1,c2,⋯,⋯,cs−1,cs,

with the inverses of elements of Ty(ai
,a j)(λ = aβ ) from the block By(ai

,a j)(λ = aβ ) d−1
1 ,d−1

2 ,⋯,⋯,d−1
s−1,d

−1
s . Then the matrix will be as

the following :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 z2 z3 z4 z5 . . . zs−3 zs−2 zs−1 zs

zs z1 z2 z3 z4 . . . ⋯ zs−3 zs−2 zs−1

zs−1 zs z1 z2 z3 . . . . . . ⋯ zs−3 zs−2

zs−2 zs−1 zs z1 z2 . . . . . . . . . ⋯ zs−3

zs−3 zs−2 zs−1 zs z1 . . . . . . . . . . . . ⋯
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
z5 . . . . . . . . . . . . . . . z1 z2 z3 z4

z4 z5 . . . . . . . . . . . . zs z1 z2 z3

z3 z4 z5 . . . . . . . . . zs−1 zs z1 z2

z2 z3 z4 z5 . . . . . . zs−2 zs−1 zs z1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Where, ck ∗ d−1

k = zk , 1 ≤ k ≤ s. The same matrix will obtained when we take the elements of Tx(ai
,a j)(m)(λ = az) from the block

Bx(ai
,a j)(λ = az), with the inverses of elements of Ty(ai

,a j)(m)(λ = aβ ) from the block By(ai
,a j)(λ = aβ ).

Note that :

When the matrix is appear again in a certain block (with the same elements) the order of the element maybe change (they permute) not

always the same (as in the example of GL(2,5)) .

We find the G-matrix of the group GL(2,q) with respect to the above proposed listing using the multiplication table as well as the rule for

getting the inverses explained above. It turns out that the G-matrix (and hence the coding matrices) is a (q2−1×q2−1)-block circulant

matrix.

Remark 7.1. When q = 2, the general linear group G =GL(2,q) ≅ S3 and the matrix of this group is actually a block circulant matrix as

well. Also, when q = 3, the matrix of GL(2,3) with respect to the listing given in [example (6.1)] is a block circulant matrix.

Summarizing we have the following,

Theorem 7.2. : With respect to the elements listing for the group G =GL(2,q), the G-matrix has the form of block circulant matrix.
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8. Examples of the G-matrices

Here we have two examples of the matrix of G = GL(2,q) :

1- The listing of elements of GL(2,5) :

∣Gl(2,5)∣= 480. This will divide in to 24 blocks with 20 elements in each block .

Type (x , x) :

Block B(x,x):
T (1,1):

l1 = h(1,1) , l2 = h(4,4) u(4) , l3 = h(1,1) u(3) , l4 = h(4,4) u(2) , l5 = h(1,1) u(1) ,
l6 = h(4,4) , l7 = h(1,1) u(4) , l8 = h(4,4) u(3) , l9 = h(1,1) u(2) , l10 = h(4,4) u(1).
T (2,2):

l11 = h(2,2) , l12 = h(3,3) u(4) , l13 = h(2,2) u(3) , l14 = h(3,3) u(2) , l15 = h(2,2) u(1) ,
l16 = h(3,3) , l17 = h(2,2) u(4) , l18 = h(3,3) u(3) , l19 = h(2,2) u(2) , l20 = h(3,3) u(1).
Block B(x,x)(λ = 0):

T (1,1)(λ = 0):

l21 = h(1,1) no , l22 = h(4,4) u(4) no , l23 = h(1,1) u(3) no , l24 = h(4,4) u(2) no ,

l25 = h(1,1) u(1) no , l26 = h(4,4) no , l27 = h(1,1) u(4) no , l28 = h(4,4) u(3) no ,

l29 = h(1,1) u(2) no , l30 = h(4,4) u(1) no.

T (2,2)(λ = 0):

l31 = h(2,2)no, l32 = h(3,3)u(4)no, l33 = h(2,2)u(3)no, l34 = h(3,3)u(2)no, l35 = h(2,2)u(1)no,

l36 = h(3,3)no, l37 = h(2,2)u(4)no, l38 = h(3,3)u(3)no, l39 = h(2,2)u(2)no, l40 = h(3,3)u(1)no, .

Block B(x,x)(λ = 1):
T (1,1)(λ = 1):

l41 = h(1,1)nou(1), l42 = h(4,4)u(4)nou(1), l43 = h(1,1)u(3)nou(1), l44 = h(4,4)u(2)nou(1),
l45 = h(1,1)u(1)nou(1), l46 = h(4,4)nou(1), l47 = h(1,1)u(4)nou(1), l48 = h(4,4)u(3)nou(1),
l49 = h(1,1)u(2)nou(1), l50 = h(4,4)u(1)nou(1).
T (2,2)(λ = 1):

l51 = h(2,2)nou(1), l52 = h(3,3)u(4)nou(1), l53 = h(2,2)u(3)nou(1), l54 = h(3,3)u(2)nou(1),
l55 = h(2,2)u(1)nou(1), l56 = h(3,3)nou(1), l57 = h(2,2)u(4)nou(1), l58 = h(3,3)u(3)nou(1),
l59 = h(2,2)u(2)nou(1), l60 = h(3,3)u(1)nou(1).
Block B(x,x)(λ = 2):
T (1,1)(λ = 2):

l61 = h(1,1)nou(2), l62 = h(4,4)u(4)nou(2), l63 = h(1,1)u(3)nou(2), l64 = h(4,4)u(2)nou(2),
l65 = h(1,1)u(1)nou(2), l66 = h(4,4)nou(2), l67 = h(1,1)u(4)nou(2), l68 = h(4,4)u(3)nou(2),
l69 = h(1,1)u(2)nou(2), l70 = h(4,4)u(1)nou(2).
T (2,2)(λ = 2):

l71 = h(2,2)nou(2), l72 = h(3,3)u(4)nou(2), l73 = h(2,2)u(3)nou(2), l74 = h(3,3)u(2)nou(2),
l75 = h(2,2)u(1)nou(2), l76 = h(3,3)nou(2), l77 = h(2,2)u(4)nou(2), l78 = h(3,3)u(3)nou(2),
l79 = h(2,2)u(2)nou(2), l80 = h(3,3)u(1)nou(2).
Block B(x,x)(λ = 3):
T (1,1)(λ = 3):

l81 = h(1,1)nou(3), l82 = h(4,4)u(4)nou(3), l83 = h(1,1)u(3)nou(3), l84 = h(4,4)u(2)nou(3),
l85 = h(1,1)u(1)nou(3), l86 = h(4,4)nou(3), l87 = h(1,1)u(4)nou(3), l88 = h(4,4)u(3)nou(3),
l89 = h(1,1)u(2)nou(3), l90 = h(4,4)u(1)nou(3).
T (2,2)(λ = 3):

l91 = h(2,2)nou(3), l92 = h(3,3)u(4)nou(3), l93 = h(2,2)u(3)nou(3), l94 = h(3,3)u(2)nou(3),
l95 = h(2,2)u(1)nou(3), l96 = h(3,3)nou(3), l97 = h(2,2)u(4)nou(3), l98 = h(3,3)u(3)nou(3),
l99 = h(2,2)u(2)nou(3), l100 = h(3,3)u(1)nou(3).
Block B(x,x)(λ = 4):
T (1,1)(λ = 4):

l101 = h(1,1)nou(4), l102 = h(4,4)u(4)nou(4), l103 = h(1,1)u(3)nou(4), l104 = h(4,4)u(2)nou(4),
l105 = h(1,1)u(1)nou(4), l106 = h(4,4)nou(4), l107 = h(1,1)u(4)nou(4), l108 = h(4,4)u(3)nou(4),
l109 = h(1,1)u(2)nou(4), l110 = h(4,4)u(1)nou(4).
T (2,2)(λ = 4):

l111 = h(2,2)nou(4), l112 = h(3,3)u(4)nou(4), l113 = h(2,2)u(3)nou(4), l114 = h(3,3)u(2)nou(4),
l115 = h(2,2)u(1)nou(4), l116 = h(3,3)nou(4), l117 = h(2,2)u(4)nou(4), l118 = h(3,3)u(3)nou(4),
l119 = h(2,2)u(2)nou(4), l120 = h(3,3)u(1)nou(4), .

Type (x , y) :

Block B1(x,y) :

T1(x,y)(1):
l121 = h(1,4), l122 = h(4,1)u(1), l123 = h(1,4)u(2), l124 = h(4,1)u(3), l125 = h(1,4)u(4),
l126 = h(4,1), l127 = h(1,4)u(1), l128 = h(4,1)u(2), l129 = h(1,4)u(3), l130 = h(4,1)u(4).
T1(x,y)(2):
l131 = h(2,3), l132 = h(3,2)u(1), l133 = h(2,3)u(2), l134 = h(3,2)u(3), l135 = h(2,3)u(4),
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l136 = h(3,2), l137 = h(2,3)u(1), l138 = h(3,2)u(2), l139 = h(2,3)u(3), l140 = h(3,2)u(4).
Block B1(x,y)(λ = 0) :

T1(x,y)(1)(λ = 0):
l141 = h(1,4)no, l142 = h(4,1)u(1)no, l143 = h(1,4)u(2)no, l144 = h(4,1)u(3)no, l145 = h(1,4)u(4)no,

l146 = h(4,1)no, l147 = h(1,4)u(1)no, l148 = h(4,1)u(2)no, l149 = h(1,4)u(3)no, l150 = h(4,1)u(4)no.

T1(x,y)(2)(λ = 0):
l151 = h(2,3)no, l152 = h(3,2)u(1)no, l153 = h(2,3)u(2)no, l154 = h(3,2)u(3)no, l155 = h(2,3)u(4)no,

l156 = h(3,2)no, l157 = h(2,3)u(1)no, l158 = h(3,2)u(2)no, l159 = h(2,3)u(3)no, l160 = h(3,2)u(4)no.

Block B1(x,y)(λ = 1) :

T1(x,y)(1)(λ = 1):
l161 = h(1,4)nou(1), l162 = h(4,1)u(1)nou(1), l163 = h(1,4)u(2)nou(1), l164 = h(4,1)u(3)nou(1),
l165 = h(1,4)u(4)nou(1), l166 = h(4,1)nou(1), l167 = h(1,4)u(1)nou(1), l168 = h(4,1)u(2)nou(1),
l169 = h(1,4)u(3)nou(1), l170 = h(4,1)u(4)nou(1).
T1(x,y)(2)(λ = 1):
l171 = h(2,3)nou(1), l172 = h(3,2)u(1)nou(1), l173 = h(2,3)u(2)nou(1), l174 = h(3,2)u(3)nou(1),
l175 = h(2,3)u(4)nou(1), l176 = h(3,2)nou(1), l177 = h(2,3)u(1)nou(1), l178 = h(3,2)u(2)nou(1),
l179 = h(2,3)u(3)nou(1), l180 = h(3,2)u(4)nou(1).
Block B1(x,y)(λ = 2) :

T1(x,y)(1)(λ = 2):
l181 = h(1,4)nou(2), l182 = h(4,1)u(1)nou(2), l183 = h(1,4)u(2)nou(2), l184 = h(4,1)u(3)nou(2),
l185 = h(1,4)u(4)nou(2), l186 = h(4,1)nou(2), l187 = h(1,4)u(1)nou(2), l188 = h(4,1)u(2)nou(2),
l189 = h(1,4)u(3)nou(2), l190 = h(4,1)u(4)nou(2).
T1(x,y)(2)(λ = 2):
l191 = h(2,3)nou(2), l192 = h(3,2)u(1)nou(2), l193 = h(2,3)u(2)nou(2), l194 = h(3,2)u(3)nou(2),
l195 = h(2,3)u(4)nou(2), l196 = h(3,2)nou(2), l197 = h(2,3)u(1)nou(2), l198 = h(3,2)u(2)nou(2),
l199 = h(2,3)u(3)nou(2), l200 = h(3,2)u(4)nou(2).
Block B1(x,y)(λ = 3) :

T1(x,y)(1)(λ = 3):
l201 = h(1,4)nou(3), l202 = h(4,1)u(1)nou(3), l203 = h(1,4)u(2)nou(3), l204 = h(4,1)u(3)nou(3),
l205 = h(1,4)u(4)nou(3), l206 = h(4,1)nou(3), l207 = h(1,4)u(1)nou(3), l208 = h(4,1)u(2)nou(3),
l209 = h(1,4)u(3)nou(3), l210 = h(4,1)u(4)nou(3).
T1(x,y)(2)(λ = 3):
l211 = h(2,3)nou(3), l212 = h(3,2)u(1)nou(3), l213 = h(2,3)u(2)nou(3), l214 = h(3,2)u(3)nou(3),
l215 = h(2,3)u(4)nou(3), l216 = h(3,2)nou(3), l217 = h(2,3)u(1)nou(3), l218 = h(3,2)u(2)nou(3),
l219 = h(2,3)u(3)nou(3), l220 = h(3,2)u(4)nou(3).
Block B1(x,y)(λ = 4) :

T1(x,y)(1)(λ = 4):
l221 = h(1,4)nou(4), l222 = h(4,1)u(1)nou(4), l223 = h(1,4)u(2)nou(4), l224 = h(4,1)u(3)nou(4),
l225 = h(1,4)u(4)nou(4), l226 = h(4,1)nou(4), l227 = h(1,4)u(1)nou(4), l228 = h(4,1)u(2)nou(4),
l229 = h(1,4)u(3)nou(4), l230 = h(4,1)u(4)nou(4).
T1(x,y)(2)(λ = 4):
l231 = h(2,3)nou(4), l232 = h(3,2)u(1)nou(4), l233 = h(2,3)u(2)nou(4), l234 = h(3,2)u(3)nou(4),
l235 = h(2,3)u(4)nou(4), l236 = h(3,2)nou(4), l237 = h(2,3)u(1)nou(4), l238 = h(3,2)u(2)nou(4),
l239 = h(2,3)u(3)nou(4), l240 = h(3,2)u(4)nou(4).
Block B2(x,y):
T2(x,y)(1):
l241 = h(1,3), l242 = h(4,2)u(2), l243 = h(1,3)u(4), l244 = h(4,2)u(1), l245 = h(1,3)u(3),
l246 = h(4,2) , l247 = h(1,3)u(2), l248 = h(4,2)u(4), l249 = h(1,3)u(1), l250 = h(4,2)u(3).
T2(x,y)(2):
l251 = h(2,1), l252 = h(3,4)u(2), l253 = h(2,1)u(4), l254 = h(3,4)u(1), l255 = h(2,1)u(3),
l256 = h(3,4), l257 = h(2,1)u(2), l258 = h(3,4)u(4), l259 = h(2,1)u(1), l260 = h(3,4)u(3).
Block B2(x,y)(λ = 0) :

T2(x,y)(1)(λ = 0):
l261 = h(1,3)no, l262 = h(4,2)u(2)no, l263 = h(1,3)u(4)no, l264 = h(4,2)u(1)no, l265 = h(1,3)u(3)no,

l266 = h(4,2)no, l267 = h(1,3)u(2)no, l268 = h(4,2)u(4)no, l269 = h(1,3)u(1)no, l270 = h(4,2)u(3)no.

T2(x,y)(2)(λ = 0):
l271 = h(2,1)no, l272 = h(3,4)u(2)no, l273 = h(2,1) u(4)no, l274 = h(3,4)u(1)no, l275 = h(2,1)u(3)no,

l276 = h(3,4)no, l277 = h(2,1)u(2)no, l278 = h(3,4)u(4)no, l279 = h(2,1)u(1)no, l280 = h(3,4)u(3)no.

Block B2(x,y)(λ = 1) :

T2(x,y)(1)(λ = 1):
l281 = h(1,3)nou(1), l282 = h(4,2)u(2)nou(1), l283 = h(1,3)u(4)nou(1), l284 = h(4,2)u(1)nou(1),
l285 = h(1,3)u(3)nou(1), l286 = h(4,2)nou(1), l287 = h(1,3)u(2)nou(1), l288 = h(4,2)u(4)nou(1),
l289 = h(1,3)u(1)nou(1), l290 = h(4,2)u(3)nou(1).
T2(x,y)(2)(λ = 1):
l291 = h(2,1)nou(1), l292 = h(3,4)u(2)nou(1), l293 = h(2,1)u(4)nou(1), l294 = h(3,4)u(1)nou(1),
l295 = h(2,1)u(3)nou(1), l296 = h(3,4)nou(1), l297 = h(2,1)u(2)nou(1), l298 = h(3,4)u(4)nou(1),
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l299 = h(2,1)u(1)nou(1), l300 = h(3,4)u(3)nou(1).
Block B2(x,y)(λ = 2) :

T2(x,y)(1)(λ = 2):
l301 = h(1,3)nou(2), l302 = h(4,2)u(2)nou(2), l303 = h(1,3)u(4)nou(2), l304 = h(4,2)u(1)nou(2),
l305 = h(1,3)u(3)nou(2), l306 = h(4,2)nou(2), l307 = h(1,3)u(2)nou(2), l308 = h(4,2)u(4)nou(2),
l309 = h(1,3)u(1)nou(2), l310 = h(4,2)u(3)nou(2).
T2(x,y)(2)(λ = 2):
l311 = h(2,1)nou(2), l312 = h(3,4)u(2)nou(2), l313 = h(2,1)u(4)nou(2), l314 = h(3,4)u(1)nou(2),
l315 = h(2,1)u(3)nou(2), l316 = h(3,4)nou(2), l317 = h(2,1)u(2)nou(2), l318 = h(3,4)u(4)nou(2),
l319 = h(2,1)u(1)nou(2), l320 = h(3,4)u(3)nou(2).
Block B2(x,y)(λ = 3) :

T2(x,y)(1)(λ = 3):
l321 = h(1,3)nou(3), l322 = h(4,2)u(2)nou(3), l323 = h(1,3)u(4)nou(3), l324 = h(4,2)u(1)nou(3),
l325 = h(1,3)u(3)nou(3), l326 = h(4,2)nou(3), l327 = h(1,3)u(2)nou(3), l328 = h(4,2)u(4)nou(3),
l329 = h(1,3)u(1)nou(3), l330 = h(4,2)u(3)nou(3).
T2(x,y)(2)(λ = 3):
l331 = h(2,1)nou(3), l332 = h(3,4)u(2)nou(3), l333 = h(2,1)u(4)nou(3), l334 = h(3,4)u(1)nou(3),
l335 = h(2,1)u(3)nou(3), l336 = h(3,4)nou(3), l337 = h(2,1)u(2)nou(3), l338 = h(3,4)u(4)nou(3),
l339 = h(2,1)u(1)nou(3), l340 = h(3,4)u(3)nou(3).
Block B2(x,y)(λ = 4) :

T2(x,y)(1)(λ = 4):
l341 = h(1,3)nou(4), l342 = h(4,2)u(2)nou(4), l343 = h(1,3)u(4)nou(4), l344 = h(4,2)u(1)nou(4),
l345 = h(1,3)u(3)nou(4), l346 = h(4,2)nou(4), l347 = h(1,3)u(2)nou(4), l348 = h(4,2)u(4)nou(4),
l349 = h(1,3)u(1)nou(4), l350 = h(4,2)u(3)nou(4).
T2(x,y)(2)(λ = 4):
l351 = h(2,1)nou(4), l352 = h(3,4)u(2)nou(4), l353 = h(2,1)u(4)nou(4), l354 = h(3,4)u(1)nou(4),
l355 = h(2,1)u(3)nou(4), l356 = h(3,4)nou(4), l357 = h(2,1)u(2)nou(4), l358 = h(3,4)u(4)nou(4),
l359 = h(2,1)u(1)nou(4), l360 = h(3,4)u(3)nou(4).
Block B3(x,y):
T3(x,y)(1):
l361 = h(1,2), l362 = h(4,3)u(3), l363 = h(1,2)u(1), l364 = h(4,3)u(4), l365 = h(1,2)u(2),
l366 = h(4,3), l367 = h(1,2)u(3), l368 = h(4,3)u(1), l369 = h(1,2)u(4), l370 = h(4,3)u(2).
T3(x,y)(2):
l371 = h(2,4), l372 = h(3,1)u(3), l373 = h(2,4)u(1), l374 = h(3,1)u(4), l375 = h(2,4)u(2),
l376 = h(3,1), l377 = h(2,4)u(3), l378 = h(3,1)u(1), l379 = h(2,4)u(4), l380 = h(3,1)u(2).
Block B3(x,y)(λ = 0):
T3(x,y)(1)(λ = 0):
l381 = h(1,2)no, l382 = h(4,3)u(3)no, l383 = h(1,2)u(1)no, l384 = h(4,3)u(4)no, l385 = h(1,2)u(2)no,

l386 = h(4,3)no, l387 = h(1,2)u(3)no, l388 = h(4,3)u(1)no, l389 = h(1,2)u(4)no, l390 = h(4,3)u(2)no.

T3(x,y)(2)(λ = 0):
l391 = h(2,4)no, l392 = h(3,1)u(3)no, l393 = h(2,4)u(1)no, l394 = h(3,1)u(4)no, l395 = h(2,4)u(2)no,

l396 = h(3,1)no, l397 = h(2,4)u(3)no, l398 = h(3,1)u(1)no, l399 = h(2,4)u(4)no, l400 = h(3,1)u(2)no.

Block B3(x,y)(λ = 1):
T3(x,y)(1)(λ = 1):
l401 = h(1,2)nou(1), l402 = h(4,3)u(3)nou(1), l403 = h(1,2)u(1)nou(1), l404 = h(4,3)u(4)nou(1),
l405 = h(1,2)u(2)nou(1), l406 = h(4,3)nou(1), l407 = h(1,2)u(3)nou(1), l408 = h(4,3)u(1)nou(1),
l409 = h(1,2)u(4)nou(1), l410 = h(4,3)u(2)nou(1).
T3(x,y)(2)(λ = 1):
l411 = h(2,4)nou(1), l412 = h(3,1)u(3)nou(1), l413 = h(2,4)u(1)nou(1), l414 = h(3,1)u(4)nou(1),
l415 = h(2,4)u(2)nou(1), l416 = h(3,1)nou(1), l417 = h(2,4)u(3)nou(1), l418 = h(3,1)u(1)nou(1),
l419 = h(2,4)u(4)nou(1), l420 = h(3,1)u(2)nou(1).
Block B3(x,y)(λ = 2):
T3(x,y)(1)(λ = 2):
l421 = h(1,2)nou(2), l422 = h(4,3)u(3)nou(2), l423 = h(1,2)u(1)nou(2), l424 = h(4,3)u(4)nou(2),
l425 = h(1,2)u(2)nou(2), l426 = h(4,3)nou(2), l427 = h(1,2)u(3)nou(2), l428 = h(4,3)u(1)nou(2),
l429 = h(1,2)u(4)nou(2), l430 = h(4,3)u(2)nou(2).
T3(x,y)(2)(λ = 2):
l431 = h(2,4)nou(2), l432 = h(3,1)u(3)nou(2), l433 = h(2,4)u(1)nou(2), l434 = h(3,1)u(4)nou(2),
l435 = h(2,4)u(2)nou(2), l436 = h(3,1)nou(2), l437 = h(2,4)u(3)nou(2), l438 = h(3,1)u(1)nou(2),
l439 = h(2,4)u(4)nou(2), l440 = h(3,1)u(2)nou(2).
Block B3(x,y)(λ = 3):
T3(x,y)(1)(λ = 3):
l441 = h(1,2)nou(3), l442 = h(4,3)u(3)nou(3), l443 = h(1,2)u(1)nou(3), l444 = h(4,3)u(4)nou(3),
l445 = h(1,2)u(2)nou(3), l446 = h(4,3)nou(3), l447 = h(1,2)u(3)nou(3), l448 = h(4,3)u(1)nou(3),
l449 = h(1,2)u(4)nou(3), l450 = h(4,3)u(2)nou(3).
T3(x,y)(2)(λ = 3):
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l451 = h(2,4)nou(3), l452 = h(3,1)u(3)nou(3), l453 = h(2,4)u(1)nou(3), l454 = h(3,1)u(4)nou(3),
l455 = h(2,4)u(2)nou(3), l456 = h(3,1)nou(3), l457 = h(2,4)u(3)nou(3), l458 = h(3,1)u(1)nou(3),
l459 = h(2,4)u(4)nou(3), l460 = h(3,1)u(2)nou(3).
Block B3(x,y)(λ = 4):
T3(x,y)(1)(λ = 4):
l461 = h(1,2)nou(4), l462 = h(4,3)u(3)nou(4), l463 = h(1,2)u(1)nou(4), l464 = h(4,3)u(4)nou(4),
l465 = h(1,2)u(2)nou(4), l466 = h(4,3)nou(4), l467 = h(1,2)u(3)nou(4), l468 = h(4,3)u(1)nou(4),
l469 = h(1,2)u(4)nou(4), l470 = h(4,3)u(2)nou(4).
T3(x,y)(2)(λ = 4):
l471 = h(2,4)nou(4), l472 = h(3,1)u(3)nou(4), l473 = h(2,4)u(1)nou(4), l474 = h(3,1)u(4)nou(4),
l475 = h(2,4)u(2)nou(4), l476 = h(3,1)nou(4), l477 = h(2,4)u(3)nou(4), l478 = h(3,1)u(1)nou(4),
l479 = h(2,4)u(4)nou(4), l480 = h(3,1)u(2)nou(4).

The matrix of GL(2,5) :

We will discuss some blocks of the G−matrix for G =GL(2,5) .

First we take the first block B(x,x). That is :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

l1 l2 l3 l4 l5 l6 l7 l8 ⋯ l11 l12 l13 l14 l15 l16 l17 l18 ⋯
l10 l1 l2 l3 l4 l5 l6 l7 ⋯ l20 l11 l12 l13 l14 l15 l16 l17 ⋯
l9 l10 l1 l2 l3 l4 l5 l6 ⋯ l19 l20 l11 l12 l13 l14 l15 l16 ⋯
l8 l9 l10 l1 l2 l3 l4 l5 ⋯ l18 l19 l20 l11 l12 l13 l14 l15 ⋯
l7 l8 l9 l10 l1 l2 l3 l4 ⋯ l17 l18 l19 l20 l11 l12 l13 l14 ⋯
l6 l7 l8 l9 l10 l1 l2 l3 ⋯ l16 l17 l18 l19 l20 l11 l12 l13 ⋯
l5 l6 l7 l8 l9 l10 l1 l2 ⋯ l15 l16 l17 l18 l19 l20 l11 l12 ⋯
l4 l5 l6 l7 l8 l9 l10 l1 ⋯ l14 l15 l16 l17 l18 l19 l20 l11 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

l16 l17 l18 l19 l20 l11 l12 l13 ⋯ l1 l2 l3 l4 l5 l6 l7 l8 ⋯
l15 l16 l17 l18 l19 l20 l11 l12 ⋯ l10 l1 l2 l3 l4 l5 l6 l7 ⋯
l14 l15 l16 l17 l18 l19 l20 l11 ⋯ l9 l10 l1 l2 l3 l4 l5 l6 ⋯
l13 l14 l15 l16 l17 l18 l19 l20 ⋯ l8 l9 l10 l1 l2 l3 l4 l5 ⋯
l12 l13 l14 l15 l16 l17 l18 l19 ⋯ l7 l8 l9 l10 l1 l2 l3 l4 ⋯
l11 l12 l13 l14 l15 l16 l17 l18 ⋯ l6 l7 l8 l9 l10 l1 l2 l3 ⋯
l20 l11 l12 l13 l14 l15 l16 l17 ⋯ l5 l6 l7 l8 l9 l10 l1 l2 ⋯
l19 l20 l11 l12 l13 l14 l15 l16 ⋯ l4 l5 l6 l7 l8 l9 l10 l1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Now for another block we take the elements of block B2(x,y)(λ = 2) with inverses of the elements of the block B(x,x). So, we get :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

l301 l302 l303 l304 l305 l306 l307 ⋯ l311 l312 l313 l314 l315 l316 l317 ⋯
l310 l301 l302 l303 l304 l305 l306 ⋯ l320 l311 l312 l313 l314 l315 l316 ⋯
l309 l310 l301 l302 l303 l304 l305 ⋯ l319 l320 l311 l312 l313 l314 l315 ⋯
l308 l309 l310 l301 l302 l303 l304 ⋯ l318 l319 l320 l311 l312 l313 l314 ⋯
l307 l308 l309 l310 l301 l302 l303 ⋯ l317 l318 l319 l320 l311 l312 l313 ⋯
l306 l307 l308 l309 l310 l301 l302 ⋯ l316 l317 l318 l319 l320 l311 l312 ⋯
l305 l306 l307 l308 l309 l310 l301 ⋯ l315 l316 l317 l318 l319 l320 l311 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

l316 l317 l318 l319 l320 l311 l312 ⋯ l301 l302 l303 l304 l305 l306 l307 ⋯
l315 l316 l317 l318 l319 l320 l311 ⋯ l310 l301 l302 l303 l304 l305 l306 ⋯
l314 l315 l316 l317 l318 l319 l320 ⋯ l309 l310 l301 l302 l303 l304 l305 ⋯
l313 l314 l315 l316 l317 l318 l319 ⋯ l308 l309 l310 l301 l302 l303 l304 ⋯
l312 l313 l314 l315 l316 l317 l318 ⋯ l307 l308 l309 l310 l301 l302 l303 ⋯
l311 l312 l313 l314 l315 l316 l317 ⋯ l306 l307 l308 l309 l310 l301 l302 ⋯
l320 l311 l312 l313 l314 l315 l316 ⋯ l305 l306 l307 l308 l309 l310 l301 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Now, if we take the elements of block B1(x,y) with the inverses of the elements of block B2(x,y)(λ = 0) we get the following :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l396 l411 l436 l451 l476 l391 l416 ⋯ l381 l406 l421 l446 l461 l386 l401 ⋯
l471 l396 l411 l436 l451 l476 l391 ⋯ l466 l381 l406 l421 l446 l461 l386 ⋯
l456 l471 l396 l411 l436 l451 l476 ⋯ l441 l466 l381 l406 l421 l446 l461 ⋯
l431 l456 l471 l396 l411 l436 l451 ⋯ l426 l441 l466 l381 l406 l421 l446 ⋯
l416 l431 l456 l471 l396 l411 l436 ⋯ l401 l426 l441 l466 l381 l406 l421 ⋯
l391 l416 l431 l456 l471 l396 l411 ⋯ l386 l401 l426 l441 l466 l381 l406 ⋯
l476 l391 l416 l431 l456 l471 l396 ⋯ l461 l386 l401 l426 l441 l466 l381 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

l386 l401 l426 l441 l466 l381 l406 ⋯ l396 l411 l436 l451 l476 l391 l416 ⋯
l461 l386 l401 l426 l441 l466 l381 ⋯ l471 l396 l411 l436 l451 l476 l391 ⋯
l446 l461 l386 l401 l426 l441 l466 ⋯ l456 l471 l396 l411 l436 l451 l476 ⋯
l421 l446 l461 l386 l401 l426 l441 ⋯ l431 l456 l471 l396 l411 l436 l451 ⋯
l406 l421 l446 l461 l386 l401 l426 ⋯ l416 l431 l456 l471 l396 l411 l436 ⋯
l381 l406 l421 l446 l461 l386 l401 ⋯ l391 l416 l431 l456 l471 l396 l411 ⋯
l466 l381 l406 l421 l446 l461 l386 ⋯ l476 l391 l416 l431 l456 l471 l396 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2- The listing of elements of GL(2,4) :

∣Gl(2,4)∣=180, and this will divide into 15 blocks with 12 elements in each block .

Type (ai
, ai) :

Block B(ai
,ai):

T(ai
,ai):

g1 = h(1,1), g2 = h(a2
,a2)u(a2), g3 = h(a,a), g4 = h(1,1)u(a2), g5 = h(a2

,a2),
g6 = h(a,a)u(a2).
T(ai

,ai)(1):
g7 = h(1,1)u(a), g8 = h(a2

,a2)u(1), g9 = h(a,a)u(a), g10 = h(1,1)u(1),
g11 = h(a2

,a2)u(a), g12 = h(a,a)u(1).
Block B(ai

,ai)(λ = 0):

T(ai
,ai)(λ = 0):

g13 = h(1,1)no, g14 = h(a2
,a2)u(a2)no, g15 = h(a,a)no, g16 = h(1,1)u(a2)no,

g17 = h(a2
,a2)no, g18 = h(a,a)u(a2)no.

T(ai
,ai)(1)(λ = 0):

g19 = h(1,1)u(a)no, g20 = h(a2
,a2)u(1)no, g21 = h(a,a)u(a)no,

g22 = h(1,1)u(1)no, g23 = h(a2
,a2)u(a)no, g24 = h(a,a)u(1)no.

Block B(ai
,ai)(λ = 1):

T(ai
,ai)(λ = 1):

g25 = h(1,1)nou(1), g26 = h(a2
,a2)u(a2)nou(1), g27 = h(a,a)nou(1),

g28 = h(1,1)u(a2)nou(1), g29 = h(a2
,a2)nou(1), g30 = h(a,a)u(a2)nou(1).

T(ai
,ai)(1)(λ = 1):

g31 = h(1,1)u(a)nou(1), g32 = h(a2
,a2)u(1)nou(1), g33 = h(a,a)u(a)nou(1),

g34 = h(1,1)u(1)nou(1), g35 = h(a2
,a2)u(a)nou(1), g36 = h(a,a)u(1)nou(1).

Block B(ai
,ai)(λ = a):

T(ai
,ai)(λ = a):

g37 = h(1,1)nou(a), g38 = h(a2
,a2)u(a2)nou(a), g39 = h(a,a)nou(a),

g40 = h(1,1)u(a2)nou(a), g41 = h(a2
,a2)nou(a), g42 = h(a,a)u(a2)nou(a).

T(ai
,ai)(1)(λ = a):

g43 = h(1,1)u(a)nou(a), g44 = h(a2
,a2)u(1)nou(a), g45 = h(a,a)u(a)nou(a),

g46 = h(1,1)u(1)nou(a), g47 = h(a2
,a2)u(a)nou(a), g48 = h(a,a)u(1)nou(a).

Block B(ai
,ai)(λ = a2):

T(ai
,ai)(λ = a2):

g49 = h(1,1)nou(a2), g50 = h(a2
,a2)u(a2)nou(a2), g51 = h(a,a)nou(a2),

g52 = h(1,1)u(a2)nou(a2), g53 = h(a2
,a2)nou(a2), g54 = h(a,a)u(a2)nou(a2).

T(ai
,ai)(1)(λ = a2):

g55 = h(1,1)u(a)nou(a2), g56 = h(a2
,a2)u(1)nou(a2), g57 = h(a,a)u(a)nou(a2),

g58 = h(1,1)u(1)nou(a2), g59 = h(a2
,a2)u(a)nou(a2), g60 = h(a,a)u(1)nou(a2).

Type h(ai
, a j) :

Block B1(ai
,a j):

T1(ai
,a j):

g61 = h(1,a), g62 = h(a2
,1)u(1), g63 = h(a,a2), g64 = h(1,a)u(1), g65 = h(a2

,1),
g66 = h(a,a2)u(1).
T1(ai

,a j)(1):
g67 = h(1,a)u(a2), g68 = h(a2

,1)u(a), g69 = h(a,a2)u(a2), g70 = h(1,a)u(a),
g71 = h(a2

,1)u(a2), g72 = h(a,a2)u(a).
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Block B1(ai
,a j)(λ = 0):

T1(ai
,a j)(λ = 0):

g73 = h(1,a)no, g74 = h(a2
,1)u(1)no, g75 = h(a,a2)no, g76 = h(1,a)u(1)no,

g77 = h(a2
,1)no, g78 = h(a,a2)u(1)no.

T1(ai
,a j)(1)(λ = 0):

g79 = h(1,a)u(a2)no, g80 = h(a2
,1)u(a)no, g81 = h(a,a2)u(a2)no,

g82 = h(1,a)u(a)no, g83 = h(a2
,1)u(a2)no, g84 = h(a,a2)u(a)no.

Block B1(ai
,a j)(λ = 1):

T1(ai
,a j)(λ = 1):

g85 = h(1,a)nou(1), g86 = h(a2
,1)u(1)nou(1), g87 = h(a,a2)nou(1),

g88 = h(1,a)u(1)nou(1), g89 = h(a2
,1)nou(1), g90 = h(a,a2)u(1)nou(1).

T1(ai
,a j)(1)(λ = 1):

g91 = h(1,a)u(a2)nou(1), g92 = h(a2
,1)u(a)nou(1), g93 = h(a,a2)u(a2)nou(1),

g94 = h(1,a)u(a)nou(1), g95 = h(a2
,1)u(a2)nou(1), g96 = h(a,a2)u(a)nou(1).

Block B1(ai
,a j)(λ = a):

T1(ai
,a j)(λ = a):

g97 = h(1,a)nou(a), g98 = h(a2
,1)u(1)nou(a), g99 = h(a,a2)nou(a),

g100 = h(1,a)u(1)nou(a), g101 = h(a2
,1)nou(a), g102 = h(a,a2)u(1)nou(a).

T1(ai
,a j)(1)(λ = a):

g103 = h(1,a)u(a2)nou(a), g104 = h(a2
,1)u(a)nou(a), g105 = h(a,a2)u(a2)nou(a),

g106 = h(1,a)u(a)nou(a), g107 = h(a2
,1)u(a2)nou(a), g108 = h(a,a2)u(a)nou(a).

Block B1(ai
,a j)(λ = a2):

T1(ai
,a j)(λ = a2):

g109 = h(1,a)nou(a2), g110 = h(a2
,1)u(1)nou(a2), g111 = h(a,a2)nou(a2),

g112 = h(1,a)u(1)nou(a2), g113 = h(a2
,1)nou(a2), g114 = h(a,a2)u(1)nou(a2).

T1(ai
,a j)(1)(λ = a2):

g115 = h(1,a)u(a2)nou(a2), g116 = h(a2
,1)u(a)nou(a2), g117 = h(a,a2)u(a2)nou(a2),

g118 = h(1,a)u(a)nou(a2), g119 = h(a2
,1)u(a2)nou(a2), g120 = h(a,a2)u(a)nou(a2).

Block B2(ai
,a j):

T2(ai
,a j):

g121 = h(1,a2), g122 = h(a2
,a)u(a), g123 = h(a,1), g124 = h(1,a2)u(a),

g125 = h(a2
,a), g126 = h(a,1)u(a).

T2(ai
,a j)(1):

g127 = h(1,a2)u(1), g128 = h(a2
,a)u(a2), g129 = h(a,1)u(1), g130 = h(1,a2)u(a2),

g131 = h(a2
,a)u(1), g132h(a,1)u(a2).

Block B2(ai
,a j)(λ = 0):

T2(ai
,a j)(λ = 0):

g133 = h(1,a2)no, g134 = h(a2
,a)u(a)no, g135 = h(a,1)no, g136 = h(1,a2)u(a)no,

g137 = h(a2
,a)no, g138 = h(a,1)u(a)no.

T2(ai
,a j)(1)(λ = 0):

g139 = h(1,a2)u(1)no, g140 = h(a2
,a)u(a2)no, g141 = h(a,1)u(1)no,

g142 = h(1,a2)u(a2)no, g143 = h(a2
,a)u(1)no, g144 = h(a,1)u(a2)no.

Block B2(ai
,a j)(λ = 1):

T2(ai
,a j)(λ = 1):

g145 = h(1,a2)nou(1),g146 = h(a2
,a)u(a)nou(1), g147 = h(a,1)nou(1),

g148 = h(1,a2)u(a)nou(1), g149 = h(a2
,a)nou(1), g150 = h(a,1)u(a)nou(1).

T2(ai
,a j)(1)(λ = 1):

g151 = h(1,a2)u(1)nou(1), g152 = h(a2
,a)u(a2)nou(1), g153 = h(a,1)u(1)nou(1),

g154 = h(1,a2)u(a2)nou(1), g155 = h(a2
,a)u(1)nou(1), g156 = h(a,1)u(a2)nou(1).

Block B2(ai
,a j)(λ = a):

T2(ai
,a j)(λ = a):

g157 = h(1,a2)nou(a), g158 = h(a2
,a)u(a)nou(a), g159 = h(a,1)nou(a),

g160 = h(1,a2)u(a)nou(a), g161 = h(a2
,a)nou(a), g162 = h(a,1)u(a)nou(a).

T2(ai
,a j)(1)(λ = a):

g163 = h(1,a2)u(1)nou(a), g164 = h(a2
,a)u(a2)nou(a), g165 = h(a,1)u(1)nou(a),

g166 = h(1,a2)u(a2)nou(a), g167 = h(a2
,a)u(1)nou(a), g168 = h(a,1)u(a2)nou(a).

Block B2(ai
,a j)(λ = a2):

T2(ai
,a j)(λ = a2):

g169 = h(1,a2)nou(a2), g170 = h(a2
,a)u(a)nou(a2), g171 = h(a,1)nou(a2),

g172 = h(1,a2)u(a)nou(a2), g173 = h(a2
,a)nou(a2), g174 = h(a,1)u(a)nou(a2).

T2(ai
,a j)(1)(λ = a2):

g175 = h(1,a2)u(1)nou(a2), g176 = h(a2
,a)u(a2)nou(a2), g177 = h(a,1)u(1)nou(a2),

g178 = h(1,a2)u(a2)nou(a2), g179 = h(a2
,a)u(1)nou(a2), g180 = h(a,1)u(a2)nou(a2).
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Where, F4 is the unique field (up to the isomorphism) with four elements such that;

F4 ≅ F2[x]
< x2+x+1 > ,

where (x2+x+1) is an irreducible polynomial in F2[x].
Now we examine some blocks of the G−matrix of GL(2,4). For the first block in the G-matrix we get the elements in the block B(ai

,ai)
with its inverses and we get the following :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12

g6 g1 g2 g3 g4 g5 g12 g7 g8 g9 g10 g11

g5 g6 g1 g2 g3 g4 g11 g12 g7 g8 g9 g10

g4 g5 g6 g1 g2 g3 g10 g11 g12 g7 g8 g9

g3 g4 g5 g6 g1 g2 g9 g10 g11 g12 g7 g8

g2 g3 g4 g5 g6 g1 g8 g9 g10 g11 g12 g7

g7 g8 g9 g10 g11 g12 g1 g2 g3 g4 g5 g6

g12 g7 g8 g9 g10 g11 g6 g1 g2 g3 g4 g5

g11 g12 g7 g8 g9 g10 g5 g6 g1 g2 g3 g4

g10 g11 g12 g7 g8 g9 g4 g5 g6 g1 g2 g3

g9 g10 g11 g12 g7 g8 g3 g4 g5 g6 g1 g2

g8 g9 g10 g11 g12 g7 g2 g3 g4 g5 g6 g1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Now, if we consider the elements of block B2(ai

,a j)(λ = 0) with the inverses of the elements of block B1(ai
,a j), we will get the following

matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g73 g80 g75 g82 g77 g84 g76 g83 g78 g79 g74 g81

g84 g73 g80 g75 g82 g77 g81 g76 g83 g78 g79 g74

g77 g84 g73 g80 g75 g82 g74 g81 g76 g83 g78 g79

g82 g77 g84 g73 g80 g75 g79 g74 g81 g76 g83 g78

g75 g82 g77 g84 g73 g80 g78 g79 g74 g81 g76 g83

g80 g75 g82 g77 g84 g73 g83 g78 g79 g74 g81 g76

g76 g83 g78 g79 g74 g81 g73 g80 g75 g82 g77 g84

g81 g76 g83 g78 g79 g74 g84 g73 g80 g75 g82 g77

g74 g81 g76 g83 g78 g79 g77 g84 g73 g80 g75 g82

g79 g74 g81 g76 g83 g78 g82 g77 g84 g73 g80 g75

g78 g79 g74 g81 g76 g83 g75 g82 g77 g84 g73 g80

g83 g78 g79 g74 g81 g76 g80 g75 g82 g77 g84 g73

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Also, if we get the elements of block B1(ai

,a j)(λ = a) with the inverses of the elements of block B2(ai
,a j)(λ = a2), then the resulting

matrix will have the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g71 g111 g67 g113 g69 g109 g139 g34 g141 g36 g143 g32

g109 g71 g111 g67 g113 g69 g32 g139 g34 g141 g36 g143

g69 g109 g71 g111 g67 g113 g143 g32 g139 g34 g141 g36

g113 g69 g109 g71 g111 g67 g36 g143 g32 g139 g34 g141

g67 g113 g69 g109 g71 g111 g141 g36 g143 g32 g139 g34

g111 g67 g113 g69 g109 g71 g34 g141 g36 g143 g32 g139

g139 g34 g141 g36 g143 g32 g71 g111 g67 g113 g69 g109

g32 g139 g34 g141 g36 g143 g109 g71 g111 g67 g113 g69

g143 g32 g139 g34 g141 g36 g69 g109 g71 g111 g67 g113

g36 g143 g32 g139 g34 g141 g113 g69 g109 g71 g111 g67

g141 g36 g143 g32 g139 g34 g67 g113 g69 g109 g71 g111

g34 g141 g36 g143 g32 g139 g111 g67 g113 g69 g109 g71

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Erhan Pişkina* and Turgay Uysala

aDicle University, Department of Mathematics, 21280 Diyarbakır, Turkey
*Corresponding author

Article Info

Keywords: Fractional damping term,

Global nonexistence, Kirchhoff-type

equation

2010 AMS: 35B44, 35L72

Received: 31 October 2018

Accepted: 6 December 2018

Available online: 25 December 2018

Abstract

In this work, we investigate the Kirchhoff-type equation with a fractional damping term in a

bounded domain. The fractional damping term plays a quenching role, which is weaker

than strong damping and stronger than weak damping term. We prove a nonexistence of

global solutions with negative inital energy. This result extends and improves some results

in the literature.

1. Introduction

In this work, we deal with the nonexistence of solutions following Kirchhoff-type equation:










utt −M
(

‖∇u‖2
)

∆u+∂ 1+α
t u = |u|p−1 u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ Ω

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, and M (s) = β1 +β2sγ . The constants p > 1 real number, γ ≥ 0, β1,β2 > 0

and −1 < α < 1. Without loss of generality, we choose β1 = β2 = 1 in (1.1) in this paper. The notation ∂ 1+α
t stands for the Caputo’s

fractional derivative of order 1+α with respect to the time variable [1, 2]. It is defined as follows

∂ 1+α
t w(t) =

{

I−α d
dt w(t) for −1 < α < 0

I1−α d2

dt2 w(t) for 0 < α < 1

where Iβ ,β > 0 is fractional integral

Iβ d

dt
w(t) =

1

Γ(β )

t
∫

0

(t − τ)β−1wτ (τ)dτ.

The fractional damping term plays a quenching role, which is weaker than strong damping and stronger than weak damping term [3]. The

problem (1.1) is a generalization of a model introduced by Kirchhoff [4].

Ono [5] considered equation (1.1) for α = 0. He proved that the solution blows up with negative initial energy. Later, Wu and Tsai [6]

proved the blow up of the solution with positive upper bounded initial energy.

In [7] Yang et al. studied the following equation

utt −M
(

‖∇u‖2
)

∆u+(−∆)α
u+ f (u) = g(x) .

They proved the attractors for 1/2 < α < 1.
There are many literatures on the nonexistence of solutions for the Kirchhoff-type equation.

This work is organized as follows. In Section 2, we give some notations and lemmas needed for our paper. In Section 3, we prove the

nonexistence of the solution for the problem (1.1) with negative initial energy. We use improved the method of [8].

Email addresses and ORCID numbers: episkin@dicle.edu.tr, 0000-0001-6587-4479 (E. Pişkin), turgayuysal33@hotmail.com, 0000-0002-9277-880X (T. Uysal)
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2. Preliminaries

In this part, we give some notations and material needed in our main result. Without loss of generality, we get only the case −1 < α < 0.
We define the energy with problem (1.1) is

E(t) =
1

2
‖ut‖

2 +
1

2
‖∇u‖2 +

1

2(γ +1)
‖∇u‖2(γ+1)−

1

p+1
‖u‖

p+1
p+1 .

Then,

E ′ (t) =−
1

Γ(−α)

∫

Ω

ut

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx.

Now, we define modified energy functional as

Eε (t) = E (t)− ε

∫

Ω

uutdx (2.1)

where 0 < ε < 1 is the constant which is specified later. Now a differentiation of Eε (t) , with respect to time t gives

E ′
ε (t) = −

1

Γ(−α)

∫

Ω

ut

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx

−ε

∫

Ω

|ut |
2 dx− ε

∫

Ω

|u|p+1 dx+ ε

∫

Ω

|∇u|2 dx+ ε

∫

Ω

|∇u|2(γ+1) dx

+
ε

Γ(−α)

∫

Ω

u

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx. (2.2)

Also, we define the following functionals

H (t) =−
(

e−σεtEε (t)+µF (t)+d
)

, (2.3)

F (t) =

t
∫

0

∫

Ω

G(t − τ)e−σετ u2
τ dxdτ (2.4)

and

G(t) = eβ t

∞
∫

t

e−βτ τ−(α+1)dτ

where σ = p+1
2 and β ,µ,d are positive consants.

Lemma 2.1. Let p be sufcifiently large and Eε (0)< 0. Then H ′ (t)> 0 and H (t)> 0.

Proof. By taking a derivative of (2.3) and (2.4), we get

H ′ (t) = σεe−σεtEε (t)− e−σεtE ′
ε (t)−µF ′ (t) , (2.5)

F ′ (t) = β α
Γ(−α)e−σεt

∫

Ω

u2
t dx−

t
∫

0

∫

Ω

(t − τ)−(α+1)
e−σετ u2

τ dxdτ +βF (t) . (2.6)

Taking into account (2.6), (2.1) and (2.2) in (2.5), we obtain

H ′ (t) = e−σεt
(σε

2
+ ε −µβ α

Γ(−α)
)

∫

Ω

|ut |
2 dx+ εe−σεt

(σ

2
−1
)

∫

Ω

|∇u|2 dx

+εe−σεt

(

σ

2(γ +1)
−1

)

∫

Ω

|∇u|2(γ+1) dx+ εe−σεt

(

1−
σ

p+1

)

∫

Ω

|u|p+1 dx

−εσεe−σεt
∫

Ω

uutdx+
e−σεt

Γ(−α)

∫

Ω

ut

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx

−
εe−σεt

Γ(−α)

∫

Ω

u

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx

+µ

t
∫

0

∫

Ω

(t − τ)−(α+1)
e−σετ u2

τ dxdτ −µβF (t) . (2.7)
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Next, we estimate some terms in the right hand side of (2.7). For the sixth term on the right hand side of (2.7), using Young’s inequality, we

obtain

e−σεt
∫

Ω

ut

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx

≤ δ1e−σεt
∫

Ω

u2
t dx+

1

4δ1
e−σεt

∫

Ω





t
∫

0

(t − τ)−(α+1)uτ (τ)dτ





2

dx.

Writing −(α +1) =−α+1
2 − α+1

2 and thanks to the Cauchy-Schwarz inequality, we have

e−σεt .
∫

Ω

ut

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx

≤ δ1e−σεt
∫

Ω

u2
t dx+

(σε)α
Γ(−α)

4δ1

∫

Ω

t
∫

0

(t − τ)−(α+1)e−σετ u2
τ dτdx. (2.8)

Smilarly, we have

e−σεt .
∫

Ω

u

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx

≤ δ2e−σεt .
∫

Ω

|u|2 dx+
1

4δ2
e−σεt

∫

Ω





t
∫

0

(t − τ)−(α+1)e
−σεt

2 uτ (τ)dτ





2

dx.

Using Sobolev-Poincare’s inequality, we arrive at

e−σεt
∫

Ω

u

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx

≤ δ2e−σεtCp1

∫

Ω

|∇u|2 dx

+
(σε)α

Γ(−α)

4δ2

∫

Ω

t
∫

0

(t − τ)−(α+1)e−σετ u2
τ dτdx. (2.9)

Now, we estimate the fifth term in the right side of (2.7), thanks to the Young’s and Sobolev-Poincare’s inequalities, we have

∫

Ω

uutdx ≤ δ3

∫

Ω

|u|2 dx+
1

4δ3

∫

Ω

|ut |
2 dx

≤ δ3Cp2

∫

Ω

|∇u|2 dx+
1

4δ3

∫

Ω

|ut |
2 dx. (2.10)

By (2.7), (2.8), (2.9) and (2.10), we have

H ′ (t) ≥ e−σεt

(

σε

2
+ ε −µβ α

Γ(−α)−
ε2σ

4δ3
−

δ1

Γ(−α)

)

∫

Ω

|ut |
2 dx

+εe−σεt

(

σ

2
−1−δ3Cp2

εσ −
δ2Cp1

Γ(−α)

)

∫

Ω

|∇u|2 dx

+εe−σεt

(

σ

2(γ +1)
−1

)

∫

Ω

|∇u|2(γ+1) dx+ εe−σεt

(

1−
σ

p+1

)

∫

Ω

|u|p+1 dx

+

(

µ −
(σε)α

4δ1
−

(σε)α ε

4δ2

)

∫

Ω

t
∫

0

(t − τ)−(α+1)e−σετ u2
τ dτdx−µβF (t) .
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Subtracting and adding C1H (t) on the right hand side of above inequality, we get

H ′ (t) ≥ C1H (t)+ e−σεt

(

σε

2
+ ε −µβ α

Γ(−α)−
ε2σ

4δ3
−

δ1

Γ(−α)
+

C1

2
−

C1

4δ3

)

∫

Ω

u2
t dx

+εe−σεt

(

σ

2
−1−δ3Cp2

εσ −
δ2Cp1

Γ(−α)
+

C1

2
−C1δ3Cp2

)

∫

Ω

|∇u|2 dx

+e−σεt

(

εσ

2(γ +1)
− ε +

C1

2(γ +1)

)

∫

Ω

|∇u|2(γ+1) dx

+e−σεt

(

ε −
σε

p+1
−

C1

p+1

)

∫

Ω

|u|p+1 dx

+

(

µ −
(σε)α

4δ1
−

(σε)α ε

4δ2

)

∫

Ω

t
∫

0

(t − τ)−(α+1)e−σετ u2
τ dτdx

+µ (C1 −β )F (t)+C1d.

We choose C1 =
p+1

2 ε, δ1 = δ2 =
Γ(−α)ε

2 , δ3 =
1
2 and β = 1, we obtain

H ′ (t) ≥
p+1

2
εH (t)+ e−σεt

(

p+1

4
ε (1− ε)−µΓ(−α)

)

∫

Ω

u2
t dx

+εCp3
e−σεt

(

p−3+ ε
(

p+1−Cp (2p+4)
)

4

)

∫

Ω

|∇u|2 dx

+εe−σεt

(

p+1

2(γ +1)
−1

)

∫

Ω

|∇u|2(γ+1) dx

+

(

µ −
(p+1)α εα−1

2α+1Γ(−α)
(1+ ε)

)

∫

Ω

t
∫

0

(t − τ)−(α+1)e−σετ u2
τ dτdx

+µ

(

p+1

2
ε −1

)

F (t)+
p+1

2
εd.

We choose

ε < ε1 = min

{

1,
p−3

2
[

2(p+2)Cp − (p+1)
]

}

.

Where Cp >
p+1

2(p+2)
, it appears that the third coefficient is nonnegative. Observe if that Cp <

3
4 ve p ≥

1+8Cp

1−4Cp
, than

p−3
2[2(p+2)Cp−(p+1)]

≥ 1

and this condition reduces to ε < 1. We can take µ so that the second coefficient is nonnegative and the forth coefficient is greater than
(p+1)α

2α+1ε1−α Γ(−α)
. Also, if p is sufficiently large

p+1
2 ε −1 is positive. Consequently, we get

H ′ (t) ≥
p+1

2
εH (t)+

p−3

8
εe−σεt .

∫

Ω

|∆u|2 dx

+
(p+1)α

2α+1ε1−α Γ(−α)

∫

Ω

t
∫

0

(t − τ)−(α+1)e−σετ u2
τ dτdx. (2.11)

If we select Eε (0)<−d, then H (0)> 0. This completes the proof.

3. Nonexistence of global solutions

In this part, we obtain the nonexistence of global solutions of the problem (1.1).

Theorem 3.1. Suppose that −1 < α < 0,

E (0)< 0 and

∫

Ω

u1u0dx ≥ 0.

Then the solution of (1.1) blows up in finite time.

Proof. We define an auxiliary function

Ψ(t) = H1−γ (t)+ϕe−σεt .
∫

Ω

uutdx

where γ = p−1
2(p+1)

and ϕ is a positive constant to be specified later. Our aim is to show that Ψ(t) satisfies the following differential inequality:

Ψ
1

1−γ (t)≤ kΨ
′ (t) .
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By differentiating Ψ(t) with respect to t and using (1.1), we obtain

Ψ
′ (t) = (1− γ)H−γ (t)H ′ (t)−ϕσεe−σεt .

∫

Ω

uutdx+ϕe−σεt .

(

∫

Ω

u2
t dx+

∫

Ω

uuttdx

)

= (1− γ)H−γ (t)H ′ (t)−ϕσεe−σεt .
∫

Ω

uutdx

+ϕe−σεt





∫

Ω

|u|p+1 dx+
∫

Ω

|∆u|2 dx−
1

Γ(−α)

∫

Ω

u

t
∫

0

(t − τ)−(α+1)uτ (τ)dτdx





+ϕe−σεt
∫

Ω

u2
t dx.

By using the inequalities (2.10) and (2.9) with the constant δ4,δ5 > 0, we get

Ψ
′ (t) = (1− γ)H−γ (t)H ′ (t)−ϕσεδ4e−σεt .

∫

Ω

|u|2 dx+ϕe−σεt .
∫

Ω

|u|p+1 dx

−
ϕσεe−σεt

4δ4

∫

Ω

u2
t dx+ϕe−σεt .

∫

Ω

u2
t dx+ϕe−σεt .

∫

Ω

|∆u|2 dx

−
ϕδ5e−σεt

Γ(−α)

∫

Ω

|u|2 dx−
ϕ (σε)α

4δ5

∫

Ω

t
∫

0

(t − τ)−(α+1)e−σετ u2
τ dτdx.

By (2.11), we have

Ψ
′ (t) ≥

(

(1− γ)H−γ (t)−
ϕεΓ(−α)

2δ5

)

H ′ (t)

+
ϕ (p+1)Γ(−α)ε2

4δ5
H (t)

+ϕe−σεt

(

1+
(p−3)Γ(−α)

8δ5
ε2 −

(

σεδ4 +
δ5

Γ(−α)

)

Cp

)

∫

Ω

|∆u|2 dx

+ϕe−σεt

(

1−
σε

4δ4

)

∫

Ω

u2
t dx+ϕe−σεt .

∫

Ω

|u|p+1 dx.

If we take δ5 = LΓ(−α)Hγ (t) , we get

Ψ
′ (t) ≥

(

(1− γ)−
ϕε

2L

)

H−γ (t)H ′ (t)+
ϕ (p+1)ε2

4L
H−γ (t)H (t)

+ϕe−σεt

(

1+
(p−3)H−γ (t)

8L
ε2 − (σεδ4 +LHγ (t))Cp

)

∫

Ω

|∆u|2 dx

+ϕe−σεt

(

1−
σε

4δ4

)

∫

Ω

u2
t dx+ϕe−σεt .

∫

Ω

|u|p+1 dx.

If we substitute and add H (t) to the right side of the equation, we arrive at

Ψ
′ (t) ≥

(

1− γ −
ϕε

2L

)

H−γ (t)H ′ (t)

+

(

ϕ (p+1)ε2

4L
H−γ (t)+1

)

H (t)

+ϕe−σεt

[

ϕ +
(p−3)H−γ (t)ϕ

8L
ε2 −ϕ (εσδ4 +LHγ (t))Cp

−Cp

(

εδ6C∗+
1

2

)]

∫

Ω

|∆u|2 dx

+e−σεt

(

ϕ −
ϕ (p+1)ε

8δ4
+

1

2
−

ε

4δ6

)

∫

Ω

u2
t dx

+e−σεt

(

ϕ −
1

p+1

)

.
∫

Ω

|u|p+1 dx+
e−σεt

2(γ +1)

∫

Ω

|∇u|2(γ+1) dx+µF (t)+d. (3.1)

We take 1− γ − ϕε
2L ≥ 0 and ε ≤ ε2 =

2L(1−γ)
ϕ , we have

ϕ (p+1)ε2

4L
H−γ (t)≥ 0.

Also, we take ϕ = p+3
p+1 , δ4 = δ6 =

1
2 and ε < ε3 =

4(p+3)
(p+1)(p+5)

, we have

ϕ −
ϕ (p+1)ε

8δ4
−

ε

4δ6
≥ 0,
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The fifth coefficient is nonnegative as soon as ε and Cp is chosen small enough, we have

ϕ +
(p−3)H−γ (t)ϕ

8L
ε2 −ϕ (εσδ4 +LHγ (t))Cp −Cp

(

εδ6C∗+
1

2

)

≥ 0

and

p+3

p+1
+

(p−3)(p+3)H−γ (t)

8L(p+1)
ε2

−
1

2
Cp

(

p+3

p+1

(

ε
p+1

2
+2LHγ (t)

)

+ εC∗+1

)

≥ 0.

Therefore (3.1) takes the form

Ψ
′ (t)≥ H (t)+

1

2

∫

Ω

u2
t dx+

p+2

p+1

∫

Ω

|u|p+1 dx. (3.2)

By the defination Ψ(t) , we deduce that

Ψ
1

1−γ (t)≤ 2
γ

1−γ

[

H (t)+ϕ
1

1−γ

(

∫

Ω

uutdx

) 1
1−γ

]

.

By the Cauchy-Schwarz and Hölder’s inequalities, we arrive at

Ψ
1

1−γ (t)≤ 2
γ

1−γ

[

H (t)+ϕ
1

1−γ b

(

∫

Ω

|ut |
2 dx+

∫

Ω

|u|p+1 dx

)]

. (3.3)

If we take k is large enough

2
γ

1−γ ≤ k,

2
γ

1−γ ϕ
1

1−γ b ≤
k

2
,

2
γ

1−γ ϕ
1

1−γ b ≤
p+2

p+1
k.

That is k has to be chosen so that

k ≥ 2
γ

1−γ max

{

1,2ϕ
1

1−γ b,
p+1

p+2
ϕ

1
1−γ b

}

.

Combining (3.2) and (3.3), we have

Ψ
1

1−γ (t)≤ kΨ
′ (t) . (3.4)

From (3.2) it is clear that Ψ
′ (t)≥ 0 . Therefore, by the definition of Ψ(t) and the hypotheses on the initial data, we get

Ψ(t)≥ Ψ(0)> ϕ

∫

Ω

u1u0dx ≥ 0.

Thus Ψ(t)> 0. Integrating (3.4) over (0, t) , we get

Ψ

γ
1−γ (t)≥

1

Ψ

−γ
1−γ (0)− γ

k(1−γ)
t
. (3.5)

Therefore (3.5) shows that Ψ(t) blows up in finite time

T ∗ ≤
k (1− γ)Ψ

−γ
1−γ (0)

γ
.

This completes the proof.

Remark 3.2. The larger Ψ(0) is the quicker the blow up takes place.
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Abstract

We present new sufficient convergence conditions for a two step Newton method (TSNM)

to solve nonlinear equations in a Banach space setting. The new conditions depend on the

center-Lipschitz constant instead of the Lipschitz constant. This way the applicability of

(TSNM) is expanded in cases not covered before. Numerical examples are also provided in

this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x∗ of nonlinear equation

F(x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space X with values in a Banach space Y.

Many problems from computational sciences and other disciplines can be brought in a form similar to equation (1.1) using mathematical

modeling [5, 13, 18, 26, 29, 30]. The solution of these equations can rarely be found in closed form. That is why most solution methods for

these equations are iterative. In applied sciences the practice of Numerical Analysis for finding solutions x∗ of equation (1.1) is essentially

connected to variants of Newton’s method [1]-[46].

The basic idea of Newton’s method is linearization. Starting from an initial guess, we can have the linear approximation of F(x) in the

neighborhood of x0 : F(x0 +h) ≈ F(x0)+F ′(x0)h, and solve the resulting linear equation F(x0)+F ′(x0)h = 0, leading to the recurrent

Newton method (NM)

xn+1 = xn −F ′(xn)
−1F(xn) (1.2)

for each n = 0,1,2, · · · . This is Newton’s method as proposed in 1669 by I.Newton (for polynomial only) defined on the real line. It was J.

Raphson, who proposed the usage of Newton’s method for general functions. That is why the method is often called the Newton-Raphson

method. Later in 1818, Fourier proved that the method converges quadratically in a neighborhood of the root, while Cauchy (1829, 1847)

provided the multidimensional extension of Newton’s method (1.3). In 1948, L.V. Kantorovich published an important paper [26], extending

Newton’s method for functional spaces (the Newton-Kantorovich method (NKM)). Ever, since thousands of papers have been written in a

Banach space setting for the (NM) as well as Newton-type methods, and their applications. We refer the reader to the publications [5, 13] for

recent results (see also, the references therein).

The study about convergence matter of iterative procedures is usually based on two types: semilocal and local convergence analysis. The

semilocal convergence matter is, based on the information around an initial point, to give conditions ensuring the convergence of the iterative

procedure; while the local one is, based on the information around a solution, to find estimates of the radii of convergence balls.
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In order to increase the order of convergence the two step Newton method (TSNM)

yn = xn −F ′(xn)
−1F(xn)

xn+1 = yn −F ′(yn)
−1F(yn)

for each n = 0,1,2, · · · has been used to approximate x∗ [1]-[46]. (TSNM) has convergence order four. Let U(x,r) denote an open ball with

center x ∈ X and of radius r > 0. Let U(x,r) denote the closure of U(x,r). Let also L(X ,Y ) denote the space of bounded linear operators

from X into Y.
The Newton-Kantorovich theorem is a semilocal convergence result for solving nonlinear equations using (NM) or (TSNM) asserts that if

there exist x0 ∈ D, η > 0 and L > 0 such that

F ′(x0)
−1 ∈ L(Y,X), ‖F ′(x0)

−1F ′(x0)‖ ≤ η (1.3)

‖F ′(x0)
−1(F ′(x)−F ′(y))‖ ≤ L‖x− y‖ (1.4)

for each x and y in D

h = 2Lη ≤ 1 (1.5)

and

U(x0,R)⊆ D, (1.6)

where

R =
1−

√
1−h

L
(1.7)

then, (NM) or (TSNM) converges to x∗. Error estimates on the distances can be found in [5, 6, 13], [19]-[24] and the references therein.

However, there are simple examples (see numerical examples at the end of the study) where (1.4) or (1.5) are not satisfied. In these cases the

Newton-Kantorovich theorem cannot guarantee that (NM) or (TSNM) converge although these methods may converge. This is happening

because (1.5) is only a sufficient convergence condition for (NM) or (TSNM). In the present paper we expand the applicability of (TSNM) by

weakening (1.4) or (1.5). Relevant work for (NM) or (TSNM) can be found in [1]- [24].

In particular we replace Lipschitz condition (1.4) by the center-Lipschitz condition

‖F ′(x0)
−1(F ′(x)−F ′(x0))‖ ≤ L0‖x− x0‖ (1.8)

for each x ∈ D, (1.5) by

h0 = (9+4
√

5)L0η ≤ 1 (1.9)

and (1.6) by

U(x0,r)⊆ D, (1.10)

where

r =
2η

1+L0η +
√

(1+L0η)2 −20L0η
. (1.11)

Note that

L0 ≤ L (1.12)

holds in general and L0

L can be arbitrarily small (see Example 3.3).

We also have

h ≤ 1 and (9+4
√

5)L0 ≤ 2L ⇒ h0 ≤ 1 (1.13)

and

h0

h
→ 0 as

L0

L
→ 0. (1.14)

Hence, in these cases the applicability of (TSNM) is extended under weaker hypotheses since the computation of constant L0 is less expensive

than the computation of constant L. Note also that we may have

h0 ≤ 1 and (9+4
√

5)L0 ≥ 2L ⇒ h ≤ 1 (1.15)

Therefore, in practice we shall choose the condition that is satisfied (if any).

The paper is organized as follows. In Section 2 we present the semilocal convergence of (TSNM). The numerical examples are given in

Section 3.
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2. Semilocal Convergence of (TSNM)

We need the following Ostrowski-type representations for (TSNM).

Lemma 2.1. Suppose that sequences {xn},{yn} generated by (TSNM) are well defined for each n= 0,1,2, · · · . Then, the following assertions

hold for each n = 1,2, · · ·

xn − yn−1 = Γ1 +Γ2, (2.1)

where

Γ1 = F ′(yn−1)
−1[F ′(yn−1)(yn−1 − xn−1)−F(yn−1)+F(xn−1)]

= F ′(yn−1)
−1
∫ 1

0
[F ′(yn−1 + t(xn−1 − yn−1))−F ′(yn−1)]

×(xn−1 − yn−1)dt (2.2)

Γ2 = F ′(yn−1)
−1(F ′(yn−1)−F ′(xn−1))(xn−1 − yn−1) (2.3)

and

yn − xn = Γ3 +Γ4, (2.4)

where

Γ3 = F ′(xn−1)
−1[F ′(xn)(xn − yn−1)−F(xn)+F(yn−1)]

= F ′(xn−1)
−1
∫ 1

0
[F ′(xn + t(yn−1 − xn))−F ′(xn)]

×(yn−1 − xn)dt (2.5)

Γ4 = F ′(xn)
−1(F ′(xn)−F ′(yn−1))(yn−1 − xn). (2.6)

Proof. Use (TSNM) and Taylor’s formula.

We can show the main semilocal convergence results for (TSNM).

Theorem 2.2. Let F : D → Y be Fréchet differentiable. Suppose that (1.3), (1.8)- (1.11) hold. Then, sequence {xn},{yn} generated by

(TSNM) are well defined, remain in U(x0,r) for each n = 0,1,2, · · · and converge to a solution x∗ ∈U(x0,r) of equation F(x) = 0. Moreover,

the following estimates hold for each n = 1,2, · · ·

‖xn − yn−1‖ ≤ L0

2(1−L0‖yn−1 − x0‖)
[5‖yn−1 − x0‖

+3‖xn−1 − x0‖]‖xn−1 − yn−1‖, (2.7)

‖xn − xn−1‖ ≤ [1+
L0

2(1−L0‖yn−1 − x0‖)
(5‖yn−1 − x0‖

+3‖xn−1 − x0‖)]‖xn−1 − yn−1‖, (2.8)

‖xn − yn‖ ≤ L0

2(1−L0‖xn−1 − x0‖)
[5‖xn−1 − x0‖

+3‖yn−1 − x0‖]‖xn − yn−1‖, (2.9)

and

‖x∗− xn‖ ≤ (1+b)b2n

1−b2
η , (2.10)

where

b = b(r) =
4L0r

1−L0r
< 1. (2.11)

Furthermore, if there exists R ≥ r such that

U(x0,R)⊆ D (2.12)

and

L0(R+ r)< 2, (2.13)

then the solution x∗ is unique in U(x0,R).
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Proof. We have by (TSNM) for n = 0, (1.3) and (1.10) that ‖y0 −x0‖ ≤ η ≤ r, which shows that y0 ∈U(x0,r). Let x ∈U(x0,r). Then, using

the center-Lipschitz condition we get that

‖F ′(x0)
−1(F ′(x)−F ′(x0))‖ ≤ L0‖x− x0‖ ≤ L0r < 1 (2.14)

by the choice of r. It follows from (2.14) and Banach Lemma on invertible operators [5]-[26] that F ′(x)−1 ∈ L(Y,X) and

‖F ′(x)−1F ′(x0)‖ ≤
1

1−L0‖x− x0‖
≤ 1

1−L0r
. (2.15)

In particular (2.15) holds for x = y0. Then, by (TSNM) x1 is well defined. Let us assume that xk,yk ∈U(x0,r). Then, we have using Lemma

2.1, the center-Lipschitz condition and (2.15) that

‖Γ1‖ ≤ ‖F ′(yk−1)
−1F ′(x0)‖‖F ′(x0)

−1
∫ 1

0
{[F ′(xk−1 + t(yk−1 − xk−1))

−F ′(x0)]+ [F ′(x0)−F ′(yk+1)]}(xk−1 − yk−1)dt‖

≤ L0

1−L0‖yk−1 − x0‖
[
‖yk−1 − x0‖+‖xk−1 − x0‖

2

+‖yk−1 − x0‖]‖xk−1 − yk−1‖

≤ L0

2(1−L0‖yk−1 − x0‖)
(3‖yk−1 − x0‖+‖xk−1 − x0‖)

‖xk−1 − yk−1‖,
‖Γ2‖ ≤ ‖F ′(yk−1)

−1F ′(x0)‖‖F ′(x0)
−1(F ′(yk−1)−F ′(xk−1))‖

‖xk−1 − yk−1‖

≤ L0

1−L0‖yk−1 − x0‖
[‖yk−1 − x0‖+‖xk−1 − x0‖]

‖xk−1 − yk−1‖,
so, since ‖xk − yk−1‖ ≤ ‖Γ1‖+‖Γ2‖, is obtained by adding the preceding two inequalities. To show (2.8) we use (2.7) and the triangle

inequality

‖xk − xk−1‖ ≤ ‖xk − yk−1‖+‖yk−1 − xk−1‖.
As in the computation of ‖Γ1‖ and ‖Γ2‖, we get in turn that

‖Γ3‖ ≤ L0

2(1−L0‖xk−1 − x0‖)
(3‖xk−1 − x0‖+‖yk−1 − x0‖)

‖xk − yk−1‖,

‖Γ4‖ ≤ L0

1−L0‖xk−1 − x0‖
[‖xk − x0‖+‖yk−1 − x0‖]

‖xk − yk−1‖

and since ‖yk − xk‖ ≤ ‖Γ3‖+‖Γ4‖, we obtain (2.9). It then follows from (2.9) and (2.11) that

‖yk − xk‖ ≤ L0

1−L0r
8r‖xk − yk−1‖

≤ b2‖xk−1 − yk−1‖ ≤ b2k‖x0 − y0‖
≤ b2kη .

We also have that for m = 0,1,2, · · ·
‖xk+m − xk‖ ≤ ‖xk+m − xm+k−1‖+‖xk+m−1 − xm+k−2‖+ · · ·+‖xk+1 − xk‖

but

‖xk+m − xm+k−1‖ ≤ (1+b)‖xk+m−1 − ym+k−1‖ ≤ (1+b)b2(k+m−1)η ,

so,

‖xk+m − xk‖ ≤ (1+b)(b2(k+m−1)+ · · ·+b2k)η

≤ (1+b)b2k 1−b2m

1−b2
η ≤ η

1−b
= r.

It follows that sequence {xk} is complete in a Banach space X and as such it converges to some x∗ ∈U(x0,r) (since U(x0,r) is closed). By

letting m → ∞ in the preceding inequality we get (2.10). In particular the preceding inequality for k = 0 gives that sequence xm ∈U(x0,r)
for each m = 0,1,2 · · · . We also have that

‖yk − x0‖ ≤ ‖yk − xk‖+‖xk − x0‖

≤ b2kη +(1+b)
1−b2k

1−b2
η

≤ 1−b2k+1

1−b
η <

η

1−b
= r.
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That is yk ∈U(x0,r) for each k = 1,2, · · · .
In order for us to show that F(x∗) = 0, we use the approximation

F(xk+1) = F(xk+1)−F(xk)−F ′(xk)(yk − xk)

= (F(xk+1)−F(xk)−F ′(xk)(xk+1 − xk))−F ′(xk)(yk − xk+1),

so

F ′(x0)
−1F(xk+1) = F ′(x0)

−1
∫ 1

0
(F ′(xk + t(xk+1 − xk))−F ′(xk))(xk+1 − xk)dt

+(I −F ′(x0)
−1(F ′(xk)−F ′(x0)))(yk − xk+1).

Then, we get that

‖F ′(x0)
−1F(xk+1)‖ ≤ L0

2
(‖xk+1 − x0‖+3‖xk − x0‖)‖xk+1 − xk‖

+(1+L0‖xk − x0‖)‖xk+1 − yk‖
≤ 2L0r‖xk+1 − xk‖+(1+L0r)‖xk+1 − yk‖.

But {xk} is a complete sequence and ‖xk+1 − yk‖→ 0 as k → ∞ (by (2.7)). Hence, ‖F ′(x0)
−1F(xk+1)‖→ 0 as k → ∞. That is F(x∗) = 0.

Finally, to show the uniqueness part, let y∗ ∈U(x0,R) be such that F ′(y∗) = 0. Let M =
∫ 1

0 F ′(y∗+ t(x∗− y∗))dt. Then, we have that

‖F ′(x0)
−1(M−F ′(x0))‖ ≤ L0

∫ 1

0
‖y∗+ t(x∗− y∗)− x0‖dt

≤ L0

2
(‖x∗− x0‖+‖y∗− x0‖)

≤ L0

2
(r+R)< 1.

It follows that M−1 ∈ L(Y,X). Then, in view of the identity

0 = F(x∗)−F(y∗) = M(x∗− y∗)

we deduce that x∗ = y∗. The proof of the Theorem is complete.

Remark 2.3. The Newton-Kantorovich hypothesis (1.5) has been used in the literature [1]-[46], as the sufficient convergence condition for

both (NM) and the modified Newton’s method (MNM)

zn+1 = zn −F ′(z0)
−1F(zn) for each n = 0,1,2, · · · .

In [6] we showed that (1.5) can be replaced by

h1 = 2L0η ≤ 1 (2.16)

and

U(x0,r1)⊆ D, (2.17)

where

r1 =
1−

√
1−h1

L0
. (2.18)

Note that

h0 ≤ 1 ⇒ h1, h ≤ 1 ⇒ h1 ≤ 1 (2.19)

and

h1

h
→ 0 as

L0

L
→ 0. (2.20)

Hence, in cases (1.5) or (1.9) are not satisfied but (2.16) is satisfied we can start with linearly convergent (MNM) until a certain iterate zn (or

(1.5)) is satisfied, then we continue with faster (TSNM) [6].

Remark 2.4. The convergence order of (TSNM) is expected to be four. In Theorem 2.2 the error bounds are too pessimistic. That is why in

practice we shall use the computational order of convergence (COC) (see eg. [14]) defined by

ρ ≈ ln

(

‖xn+1 − xδ
α‖

‖xn − xδ
α‖

)

/ ln

(

‖xn − xδ
α‖

‖xn−1 − xδ
α‖

)

.

The (COC) ρ will then be close to 4 which is the order of convergence of (TSNM).



142 Fundamental Journal of Mathematics and Applications

3. Numerical Examples

Example 3.1. Let X = Y = R, D = [0,∞),x0 = 1 and define function F on D by

F(x) =
x1+ 1

i

1+ 1
i

+ c1x+ c2, (3.1)

where c1,c2 are real parameters and i > 2 an integer. Then F ′(x) = x1/i + c1 is not Lipschitz on D. However central Lipschitz condition

(C1)′ holds for L0 = 1.

Indeed, we have

‖F ′(x)−F ′(x0)‖ = |x1/i − x
1/i

0 |

=
|x− x0|

x
i−1

i

0 + · · ·+ x
i−1

i

≤ L0|x− x0|.

Example 3.2. We consider the integral equations

u(s) = f (s)+ τ

∫ b

a
G(s, t)u(t)1+1/ndt, n ∈ N. (3.2)

Here, f is a given continuous function satisfying f (s) > 0,s ∈ [a,b],τ is a real number, and the kernel G is continuous and positive in

[a,b]× [a,b].

For example, when G(s, t) is the Green kernel, the corresponding integral equation is equivalent to the boundary value problem

u′′ = τu1+1/n (3.3)

u(a) = f (a),u(b) = f (b). (3.4)

These type of problems have been considered in [5], [9]-[13], [18]-[22].

Equation of the form (3.2) generalize equations of the form

u(s) =
∫ b

a
G(s, t)u(t)ndt (3.5)

studied in [5], [13], [20]. Instead of (3.2) we can try to solve the equation F(u) = 0 where

F : Ω ⊆C[a,b]→C[a,b],Ω = {u ∈C[a,b] : u(s)≥ 0,s ∈ [a,b]},

and

F(u)(s) = u(s)− f (s)− τ

∫ b

a
G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.

The derivative F ′ is given by

F ′(u)v(s) = v(s)− τ(1+
1

n
)
∫ b

a
G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in Ω. Let us consider, for instance, [a,b] = [0,1],G(s, t) = 1 and

y(t) = 0. Then F ′(y)v(s) = v(s) and

‖F ′(x)−F ′(y)‖= |τ|(1+ 1

n
)
∫ b

a
x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)−F ′(y)‖ ≤ L1‖x− y‖,

or, equivalently, the inequality

∫ 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1]
x(s), (3.6)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider, for example, the functions

x j(t) =
t

j
, j ≥ 1, t ∈ [0,1].

If these are substituted into (3.6)
1

j1/n(1+1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1+1/n), ∀ j ≥ 1.

This inequality is not true when j → ∞.
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Therefore, condition (3.6) is not satisfied in this case. However, condition (1.8) holds. To show this, let x0(t)= f (t) and γ =mins∈[a,b] f (s),α >
0. Then for v ∈ Ω,

‖[F ′(x)−F ′(x0)]v‖ = |τ|(1+ 1

n
) max

s∈[a,b]
|
∫ b

a
G(s, t)(x(t)1/n − f (t)1/n)v(t)dt|

≤ |τ|(1+ 1

n
) max

s∈[a,b]
Gn(s, t)

where Gn(s, t) =
G(s,t)|x(t)− f (t)|

x(t)(n−1)/n+x(t)(n−2)/n f (t)1/n+···+ f (t)(n−1)/n ‖v‖. Hence,

‖[F ′(x)−F ′(x0)]v‖ =
|τ|(1+1/n)

γ(n−1)/n
max

s∈[a,b]

∫ b

a
G(s, t)dt‖x− x0‖

≤ L0‖x− x0‖,

where L0 =
|τ|(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]
∫ b

a G(s, t)dt.

Example 3.3. Let X = D(F) = R,x0 = 0, and define function F on D(F) by

F(x) = d0x+d1 +d2 sined3x, (3.7)

where di, i = 0,1,2,3 are given parameters. Then, it can easily be seen that for d3 sufficiently large and d2 sufficiently small, L0

L can be

arbitrarily small.

Example 3.4. Let X = Y = R,x0 = 1,D =U(x0,1− p) for p ∈ (0, 1
2 ) and define F on D by

F(x) = x3 − p. (3.8)

Then, using (1.3), (1.4), (1.8) and (3.8) we obtain that

η =
1− p

3
,L0 = 3− p < L = 2(2− p).

Hence, there is no guarantee that (TSNM) converges to x∗ in these cases. Then, by (1.5) and (1.9) we get that h > 1 and h0 > 1 for each

p ∈ (0, 1
2 ). However, using (2.16) we get that

h1 ≤ 1 for each p ∈ [0.418861170,0.5).

Note that we have that [6]

‖zn+1 − zn‖ ≤ q‖zn − zn−1‖ for each n = 1,2, · · · ,
where q = 1−

√
1−h1.

Let us choose p = 0.48. Then, we have that L0 = 2.52,L = 3.04,η = 0.17333 · · · ,h1 = 0.8735999 · · · and q = 0.644472221. Using the

estimates

‖F ′(zN)
−1(F ′(x)−F ′(y))‖ ≤ ‖F ′(zN)

−1F ′(z0)‖
×‖F ′(z0)

−1(F ′(x)−F ′(y))‖

≤ L

1−L0‖zN − z0‖
‖x− y‖

≤ L

1−L0r1
‖x− y‖

=
L√

1−h1

‖x− y‖

and

‖F ′(zN)
−1(F ′(x)−F ′(z0))‖ ≤ ‖F ′(zN)

−1F ′(z0)‖
×‖F ′(z0)

−1(F ′(x)−F ′(z0))‖

≤ L

1−L0‖zN − z0‖
‖x− z0‖

≤ L

1−L0r1
‖x− z0‖

=
L√

1−h1

‖x− z0‖

Therefore, we can set

L̄ =
L√

1−h1

and L̄0 =
L0√

1−h1

.

we then have L̄ = 8.550668013 and L̄0 = 7.088053748. Hence, estimates (1.5) and (1.9) hold, respectively, if

h̄ = 2L̄ηqN ≤ 1
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and

h̄0 = (9+4
√

5)L̄0ηqN ≤ 1.

These inequalities are satisfied, respectively for N = 3 and N = 8, since they become

h̄ = 0.793459449 < 1

and

h̄0 = 0.656097755 < 1.

Hence, we must choose x0 = z3 (under (1.5)) or x0 = z8 (under (1.9)).
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[28] G. Lukćs, The generalized inverse matrix and the surface-surface intersection problem. Theory and practice of geometric modeling, (Blaubeuren, 1988),

167-185, Springer, Berlin, 1989.
[29] L. M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic press, New York, 1970.
[30] A. M. Ostrowski, Solution of equations in Euclidean and Banach spaces, Academic press, New York, 1973.
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Abstract

Within the class of polyominoes we work on the enumeration of two subfamilies of the

family of snake polyominoes: stairs and snakes of height 2. We consider them from a graph

theoretical perspective. In the process of enumeration of these graphs, we use classical

ideas, as symmetries, and a new approach that connects these snakes with the partitions of

integers.

1. Introduction

A polyomino is a planar shape made by connecting a certain number of equal-sized squares, each joined together with at least one other

square along an edge. A snake of length n > 1, is a packing of n congruent geometrical objects, called cells, where the first and last cell have

only one neighbor and all the other cells have exactly two neighbors. A snake polyomino is a snake where all the cells are squares. In Figure

1.1 we show all the polyominoes with six cells, the snakes have been highlighted.

Figure 1.1: All polyominoes with six cells.

In this work, polyominoes are considered graphs, where every cell is a copy of the cycle C4. Moreover, these graphs are embedded in the

integral grid. This last restriction has implications on their number. Thus, snake polyominoes, or simply snakes, form a polyomino class,

which can be described by the avoidance of the polyominoes shown in Figure 1.2. This definition is slightly different of the one given in [1].

There, Battaglino et al., only consider, as forbidden substructures, the first two shapes. We included here the third one to be consistent with

the definition of snake, where the extreme cells only have one neighbor.
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Figure 1.2: Forbidden structures in snake polyominoes.

Golomb [2] introduced the concept of polyomino in 1953, since then, there has been a number of papers centered in the enumeration of

subfamilies of them. Several algorithms, that count the number of members of these subfamilies, have been created; however, the general

case remains unsolved, that is, for a given value of n, it is unknown the number of polyominoes with n cells.

In Section 2 we present some general results that are used in our counting process in the coming sections. We study two subfamilies of

snakes: stairs (Section 3) and snakes of height 2 (Section 4). In both cases, we consider the snakes inscribed into a box, i.e., the boundary of

Pa ×Pb; partitions of integers are used in the enumeration process of both subfamilies.

2. General results

2.1. Quadrilateral snakes and snake polyominoes

The problem of counting snakes has been considered by several authors. Recently, Goupil et al., [3] studied the problem not only in the

plane, they also considered higher dimensions. In that work as well as in [4], the authors accept the third structure in Figure 1.2 as a valid

substructure of a snake. Pegg Jr. [4], called these combinatorial structures, 2-sided strip polyominoes with n cells. In Table 1 we show the

first values of p(n), i.e., the number of 2-sided strip polyominoes, and p(n), the number of snakes that follow our definition. As we may

expect, the difference between p(n) and p(n) increses with n.

n 1 2 3 4 5 6 7 8 9

p(n) 1 1 2 3 7 13 31 65 154

p(n) 1 1 2 3 7 13 30 64 150

Table 1: Number of quadrilateral snakes and snake polyominoes.

In [5], the first author defined a kCn-snake as a connected graph in which the k cells are isomorphic to the cycle Cn and the block-cutpoint

graph is a path. By a quadrilateral snake we understand a kC4-snake. In [6], we established a relationship between quadrilateral snakes

and snake polyominoes, showing that for every snake polyomino there exists a quadrilateral snake of the same length. We also show that

the converse of this statement is not valid. The reason is that when the number of cells is at least 7, there exist quadrilateral snakes which

associated graph is not a snake polyomino because they have a subgraph isomorphic to the third structure in Figure 1.2. In Figure 2.1 we

show three, of the 31 quadrilateral snakes of length 7, together with their associated polyomino. We can see that in the third example, the

polyomino is not a snake according to our defintion, but it is according to the one used in [3] and [4]. Hence, p(n) actually counts the number

of quadrilateral snakes of length n. Therefore, determining a formula for p(n), as well as for p(n), is still an open problem.

Figure 2.1: Quadrilateral snakes and associated polyominoes.

2.2. Partitioning n into k parts

It is well-known that the number P(n,k) of partitions of n into k parts, where the order is taken under consideration, is given by

P(n,k) =C(n−1,k−1),

where C(n−1,k−1) is the standard binomial coefficient
(

n−1
k−1

)

.

In order to prove this fact, the number n is represented on a line formed by n balls. There are n−1 spaces in between the balls where a

bar (or separator) can be placed. So, to separate the balls into k groups we need to introduce k−1 bars. The number of ways to do this is

C(n−1,k−1).

In Figure 2.2 we show an example of this result, exhibiting all the 3-part partitions of 5.
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1+1+3

1+2+2

2+1+2

1+3+1

2+2+1

3+1+1

Figure 2.2: 3-part partitions of 5.

In the next sections we use this type of partitions to count the number of snakes considered in each case.

2.3. Snakes in a box

As we mentioned before, our snakes are subgraphs of Pa ×Pb. Suppose that a snake S of length n is a subgraph of Pa ×Pb and is not a

subgraph of Pa−1 ×Pb nor Pa ×Pb−1, then we say that S is inscribed in a box of base b−1 and height a−1, or that S has base b−1 and

height a−1. For example, the snakes in Figure 2.1 are inside the boxes P4 ×P8, P6 ×P6, and P5 ×P6, respectively. We use the symmetries of

these boxes to count the number of non-isomorphic snakes.

3. The number of stairs

By a block of cells of length t we understand the ladder Lt = P2 ×Pt+1. Let Lp1
,Lp2

, . . . ,Lpk
be a sequence of these blocks, where

p1 + p2 + · · ·+ pk = n and each pi 6= 0. The stair snake polyomino, or simply stair, formed by these blocks, is the graph obtained by placing

the first cell of Lpi
on top of the last cell of Lpi−1

, for each 2 ≤ i ≤ k. In Figure 3.1, we show the stair with base 11 and height 5 with blocks

of length 1,4,3,5,2.

2 1 1 2 1 2 1 1 1 2 1

1

4

3

5

2

Figure 3.1: A stair of length 15.

First, we must observe that p1, p2, . . . , pk is a partition of n into k parts. In addition, the construction given above establishes a bijection

between the set of partitions of n into k parts, where order matters, and the set of stairs built in this way. So, in order to determine the number

of stairs of length n with k steps (i.e., with k blocks of cells), we may count the distinct partitions of n into k parts.

Let S be a stair of length n with k steps built using the partition p1, p2, . . . , pk. Associated with this partition, there are three other partitions

that form the same graph. In the case of the example given in Figure 3.1, the numbers on the left of the picture can be read from top to

bottom forming a ”different” partition of n. The other two partitions are obtained by reading the numbers, on the bottom, from left to right

and vice versa. In general, for any given stair S, the other three partitions can be obtained using symmetries; the first one is a 180◦ rotation of

S, while the other two are reflections, of S, around the two diagonals of a square centered at the center of S. In other terms, if the stair is not

symmetric, there are two partitions of n into k parts and two partitions of n into n+1− k parts, associated with the same stair. Therefore, we

need to analyze the case where the stair is symmetric.

Consider any symmetric stair with n cells. If its first and last cell are deleted, the remaining graph is also a symmetric stair. Thus, all the

symmetric stairs with n+2 cells can be constructed using the symmetric stairs with n cells, by attaching a new cell, to both, the first and the

last cell.

It is easy to see that for n = 1,2 there is only one stair with n cells. In general, every stair with n cells can be inscribed inside a rectangle, that

can be a square, in such a way that the extreme cells are located in opposite corners of the rectangle.



148 Fundamental Journal of Mathematics and Applications

− − −

− − −

− − −

− − −

− − −

− − −

− − −

− − −

I II III IV

Figure 3.2: Extension schemes for symmetric stairs.

In Figure 3.2 we show the four ways, that exist, to extend a symmetric stair with n cells into a symmetric stair with n+2 cells. Schemes I and

II show the cases where the original stair is inscribed in a rectangle (that can be a square), and the symmetry is a 180◦ rotation around the

center of the rectangle. When the stair is inscribed in a square, schemes III and IV, the symmetry is a 180◦ rotation around the axis formed

by the main diagonal of the square.

Independently of the case, the extreme cells have one horizontal and one vertical edge where a new cell can be attached. Thus, scheme I is

the connection VV, scheme II is HH, scheme III is VH, and scheme IV is HV. Consequently, if p1, p2, . . . , pk is the partition of n into k parts

associated with a symmetric stair S, with n cells and k steps (or blocks of cells), then the partition of the new stair, for each case is shown in

Table 2.

Connection Partition Number of Steps

I: VV 1+ p1, p2, . . . ,1+ pk k

II: HH 1, p1, p2, . . . , pk,1 k+2

III: VH 1+ p1, p2, . . . , pk,1 k+1

IV: HV 1, p1, p2, . . . ,1+ pk k+1

Table 2: Types of connections and associated partitions.

One of the consequences of this property is that if s(n) is the number of symmetric stairs with n cells, then 2s(n) is the number of symmetric

stairs with n+2 cells. Since, s(1) = s(2) = 1, we may conclude that

s(n) =

{

2
n−2

2 , if n is even,

2
n−1

2 , if n is odd.

The sequence formed by the values of s(n) corresponds to the sequence A016116 in OEIS.

Summarizing, for every stair with n cells and k steps, there is a partition of n into k parts and vice versa. A non-symmetric stair is represented

by four different partitions; every symmetric stair is represented by two different partitions.

Since there are 2n−1 partitions of n into k parts, the number e(n) of non-isomorphic stairs with n ≥ 3 cells is:

When n is even:

e(n) =
1

4

(

2n−1 −2 ·2
n−2

2

)

+
1

2
·2 ·2

n−2
2

= 2n−3 −
1

2
·2

n−2
2 +2

n−2
2

= 2n−3 +
1

2
·2

n−2
2

= 2n−3 +2
n−4

2 .

When n is odd:

e(n) =
1

4

(

2n−1 −2 ·2
n−1

2

)

+
1

2
·2 ·2

n−1
2

= 2n−3 −
1

2
·2

n−1
2 +2

n−1
2

= 2n−3 +
1

2
·2

n−1
2

= 2n−3 +2
n−3

2 .

The first values of e(n) are shown in Table 3. For n ≥ 2, the consecutive values of e(n) form the sequence A005418 in OEIS [7].

We can go even further, using the diagrams in Figure 3.2, we can calculate the number σ(n,k) of symmetric stair with n cells and k steps.
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n e(n) n e(n) n e(n)

1 1 11 272 21 262656

2 1 12 528 22 524800

3 2 13 1056 23 1049600

4 3 14 2080 24 2098176

5 6 15 4160 25 4196352

6 10 16 8256 26 8390656

7 20 17 16512 27 16781312

8 36 18 32896 28 33558528

9 72 19 65792 29 67117056

10 136 20 131328 30 134225920

Table 3: Number of non-isomorphic stairs with n cells.

Recall that σ(1,1) = σ(2,1) = σ(2,2) = 1. We use the conventions that σ(n,k) = 0 when k < 1 or k > n, and C(n,k) = 0 if k is not an

integer.

Thus, from I and II in Figure 3.2, we know that for all values of n ≥ 3 and k 6= n+1
2 ,

σ(n,k) = σ(n−2,k)+σ(n−2,k−2).

When k = n+1
2 we get

σ(n,k) = σ(n−2,k)+σ(n−2,k−2)+2
n−1

2 .

The number 2
n−1

2 comes from III and IV in Figure 3.2.

Proposition 3.1. Let n be a positive even number and k ∈ {1,2, . . . ,n}. Given that σ(2,1) = σ(2,2) = 1, the number σ(n,k) of symmetric

stairs with n cells and k steps is

σ(n,k) =C

(

n−2

2
,

⌊

k−1

2

⌋)

.

Proof. By induction on n. Recall that σ(2,1) = σ(2,2) = 1; for n = 4:

σ(4,1) = σ(2,1) = σ(2,−1) = 1+0 = 1

σ(4,2) = σ(2,2) = σ(2,0) = 1+0 = 1

σ(4,3) = σ(2,3) = σ(2,1) = 0+1 = 1

σ(4,4) = σ(2,4) = σ(2,2) = 0+1 = 1

On the other side, C
(

4−2
2 ,

⌊

k−1
2

⌋)

=C
(

1,
⌊

k−1
2

⌋)

. Thus,

C

(

1,

⌊

1−1

2

⌋)

=C(1,0) = 1

C

(

1,

⌊

2−1

2

⌋)

=C(1,0) = 1

C

(

1,

⌊

3−1

2

⌋)

=C(1,1) = 1

C

(

1,

⌊

4−1

2

⌋)

=C(1,1) = 1.

Then, the proposition is correct for n = 2 and n = 4.

Suppose that the proposition is correct up to a certain value of n. We want to prove that is also correct for n+2; in other terms,

σ(n+2,k) =C

(

n

2
,

⌊

k−1

2

⌋)

.

We know that

σ(n+2,k) = σ(n,k)+σ(n,k−2)

= C

(

n−2

2
,

⌊

k−1

2

⌋)

+C

(

n−2

2
,

⌊

k−3

2

⌋)

= C

(

n

2
,

⌊

k−1

2

⌋)

.

Therefore, the proposition is true for every even value of n.
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Proposition 3.2. Let n be a positive odd number and k ∈ {1,2, . . . ,n}. Given that σ(1,1) = 1, the number σ(n,k) of symmetric stairs with

n cells and k steps is

σ(n,k) =C

(

n−1

2
,

k−1

2

)

+ ε(k),

where

ε(k) =

{

2
n−1

2 , when k = n+1
2 ,

0, otherwise.

Proof. Suppose that n ≥ 3 is odd. Note that when k is even, k−1
2 is not an integer, then C

(

n−1
2 ,

k−1
2

)

= 0. Thus, from this point we are

assuming that k is odd.

The term ε(k) is the number of symmetric stairs with n cells and k = n+1
2 steps that are originated by the corresponding stairs with n−2 cells

and n−1
2 steps. Based on the diagrams III and IV in Figure 3.2 and the fact that σ(1,1) = 1, we know that these stairs increase by a factor of

2 in the next generation, so ε
(

n+1
2

)

= 2
n−1

2 . In addition, we must observe that this ε(k) is positive only when k = n+1
2 , otherwise is 0.

For any other value of k, any symmetric stair with n−2 cells can be inscribed into a rectangle, that is not a square, implying that this stair

produces two stairs with n cells, one with k steps (diagram I) and the other one with k+2 steps (diagram II). Since σ(1,1) = 1, we can see that

the sequence of values of σ(n,k) is exactly the sequence of binomial coefficients, adjusted conveniently. Therefore, σ(n,k) =C
(

n−1
2 ,

k−1
2

)

for all odd values of n and k, except when k = n+1
2 where we need to add the power 2

n−1
2 .

In Table 4 we show the first values of σ(n,k). The triangular arrangement produced by the vales of σ(n,k) is quite similar to the one found in

the sequence A051159 in OEIS. Both triangles, only differ when n is odd and k = n+1
2 , that is when we added ε(k). Thus, T (n,k) = σ(n,k)

for all n and k except when n is odd and k = n+1
2 , where T (n,k) are the entries of the triangle in A051159.

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1
2 1 1
3 1 0+2 1
4 1 1 1 1
5 1 0 3+4 0 1
6 1 1 2 2 1 1
7 1 0 3 0+8 3 0 1
8 1 1 3 3 3 3 1 1
9 1 0 4 0 6+16 0 4 0 1

10 1 1 4 4 6 6 4 4 1 1
11 1 0 5 0 10 0+32 10 0 5 0 1
12 1 1 5 5 10 10 10 10 5 5 1 1
13 1 0 6 0 15 0 20+64 0 15 0 6 0 1
14 1 1 6 6 15 15 20 20 15 15 6 6 1 1
15 1 0 7 0 21 0 35 0+128 35 0 21 0 7 0 1
16 1 1 7 7 21 21 35 35 35 35 21 21 7 7 1 1
17 1 0 8 0 28 0 56 0 70+256 0 56 0 28 0 8 0 1
18 1 1 8 8 28 28 56 56 70 70 56 56 28 28 8 8 1 1
19 1 0 9 0 36 0 84 0 126 0+512 126 0 84 0 36 0 9 0 1
20 1 1 9 9 36 36 84 84 126 126 126 126 84 84 36 36 9 9 1 1

Table 4: σ(n,k) number of symmetric stairs with n cells and k steps.

There is another alternative to present the problem of counting stairs. We show it for the case where k = n+1
2 .

Consider the integral grid N×N. Determine the number of non-equivalent paths between the points (0,0) and (n,n). Two paths are

equivalent if one can be obtained from the other by any of the symmetries of the square where it is inscribed. In Figure 3.2 we show the first

instances of these paths, that is, for every n ∈ {1,2,3,4}.

Figure 3.3: Non-equivalent paths from (0,0) to (n,n)

Before closing this section, we want to note a connection between stairs and caterpillars. Suppose that the rows, of the box containing

the stair, are labeled 0,1, . . . ,λ from the top to the bottom, and the columns are labeled, from left to right, λ +1,λ +2, . . . ,n. Thus, this
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representation of the stair corresponds to the α-labeling of a caterpillar. This labeling scheme was given by Rosa [8]; he proved that all

caterpillars admit an α-labeling. Barrientos and Minion [9] used an extension of the adjacency matrix of α-labeled graphs and realized that

all the adjacencies lie in a rectange. In the case of Rosa’s labeling of caterpillars, the distribution of the adjacencies follows the stair pattern

of these polyominoes. This fact is ratified in [7], where one of the interpretations of the sequence A005418 is that it represents the number of

caterpillars of order n. For more information about labelings and, in particular, α-labelings, the interested reader is referred to [10].

4. Snakes in P3 ×Pt+1

In this section we determine the number of snakes that can be inscribed in a box of base t and height 2. Consider the six snakes shown in

Figure 4.1. Each of them is formed by blocks of cells of the form Lp = P2 ×Pp+1, where p ≥ 1. For example, the snake in part E is formed

by the sequence of blocks L4,L3,L5,L2. In general, when Lp1
,Lp2

, . . . ,Lpk
is the sequence of blocks of cells associated to a snake polyomino

of height 2, the last cell (from left to right) of Lpi
is adjacent to the first cell of Lpi+1

. We use the convention that the odd numbered blocks are

placed on the top row, as shown in Figure 4.1; in this figure we show all the different posibilites for the end blocks Lp1
and Lpk

. Note that for

every 2 ≤ i ≤ k−1, each Lpi
must have at least three cells, otherwise, the associated polyomino would not be a snake because it would have

a subgraph isomorphic to the second graph in Figure 1.2.

A : B : C :

D : E : F :

Figure 4.1: All general configurations for snakes of height 2.

Hence, if a snake of height 2 with n cells is represented by the sequence of blocks Lp1
,Lp2

, . . . ,Lpk
, the associated sequence p1, p2, . . . , pk is

a partition of n into k parts where p2, p3, . . . , pk−1 are at least 3. Thus, instead of counting snakes we may count partitions that satisfy these

conditions.

In [11], Deutsch showed that in the OEIS sequence A102547, the term T (n,k) is the number of compositions of n+3 with k+1 parts, all at

least 3. He calculated this number to be

T (n,k) =C(n−2k,k)

where n ≥ 0 and 0 ≤ k ≤ n
3 . Adjusting this expression to our terminology we can say that for every n ≥ 3 and 1 ≤ k ≤

⌊

n
3

⌋

, the number of

partitions of n into k parts, where every part is at least 3 is given by

π3(n,k) =C(n−2k−1,k−1).

Therefore the number of partitions of n where every part is at least three is:

⌊ n
3 ⌋

∑
k=1

π3(n,k) =
⌊ n

3 ⌋

∑
k=1

C(n−2k−1,k−1).

Table 5 shows the values of π3(n,k) from n = 3 up to n = 29.

Before completing the counting process, we need to calculate the number s3(n,k) of symmetric partitions of n into k parts where every part

is at least three.

Let p1, p2, . . . , pk be a partition of n into k parts. We say that this partition is symmetric (or reversible) if for every 1 ≤ i ≤ k, pi = pk1−i.

Proposition 4.1. If n is odd and k is even, then s3(n,k) = 0.

Proof. By contradiction. Suppose that s3(n,k) 6= 0, that is, there exists a symmetric partition of n into k parts, where each part is at least 3.

Since the partition is symmetric and k is even

k
2

∑
i=1

pi =
k

∑
i= k

2
+1

pi

and

k

∑
i=1

pi =

k
2

∑
i=1

pi +
k

∑
i= k

2
+1

pi = 2

k
2

∑
i=1

pi

which is even. But this is a contradiction because n = ∑
k
i=1 pi is odd. Therefore s3(n,k) = 0.

Proposition 4.2. If both n and k are odd, then s3(n,k) = s3(n+1,k).
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n\k 1 2 3 4 5 6 7 8 9 Total

3 1 1

4 1 1

5 1 1

6 1 1 2

7 1 2 3

8 1 3 4

9 1 4 1 6

10 1 5 3 9

11 1 6 6 13

12 1 7 10 1 19

13 1 8 15 4 28

14 1 9 21 10 41

15 1 10 28 20 1 60

16 1 11 36 35 5 88

17 1 12 45 56 15 129

18 1 13 55 84 35 1 189

19 1 14 66 120 70 6 277

20 1 15 78 165 126 21 406

21 1 16 91 220 210 56 1 595

22 1 17 105 286 330 126 7 872

23 1 18 120 364 495 252 28 1278

24 1 19 136 455 715 462 84 1 1873

25 1 20 153 560 1001 792 210 8 2745

26 1 21 171 680 1365 1287 462 36 4023

27 1 22 190 816 1820 2002 924 120 1 5896

28 1 23 210 969 2380 3003 1716 330 9 8641

29 1 24 231 1140 3060 4368 3003 792 45 12664

Table 5: Partitions of n into k parts pi, where pi ≥ 3.

Proof. Suppose that both n and k are odd numbers. Let p1, p2, . . . , pk be a symmetric partition of n into k parts where every part is at least 3.

This partition can be transformed into a symmetric partition of n+1 by adding one unit to the part p k+1
2

. Thus, every symmetric partition of

n corresponds to a symmetric partition of n+1, where each pi ≥ 3.

Let p′1, p′2, . . . , p′k be a symmetric partition of n+1 where each p′i ≥ 3. Then, for every 1 ≤ i ≤ k−1
2 , p′i = p′k+1−i. Hence, p′k+1

2

≥ 3 must be

an even number. So, by making p k+1
2

= p′k+1
2

−1 and pi = p′i for every 1 ≤ i ≤ k−1
2 , we obtain a symmetric partition of n. That is, every

symmetric partition of n+1 corresponds to a symmetric partition of n.

Therefore, s3(n,k) = s3(n+1,k) when n and k are odd.

Proposition 4.3. If both n and k are odd, then s3(n,k) = π3

(

n+3
2 ,

k+1
2

)

.

Proof. Let us assume that k = 3 and p1, p2, p3 is a symmetric partition of n where each part is at least 3. Because of the symmetry, we know

that p2 is odd; so p2 ∈ {3,5, . . . ,n− 6}. This implies that p1 = p3 and it belongs to {3,4, . . . , n−3
2 }. Then, there are n−3

2 − 3+ 1 = n−7
2

partitions of n; that is, s3(n,3) =
n−7

2 .

On the other side,

π3

(

n+3

2
,2

)

=C

(

n+3

2
−4−1,1

)

=
n+3

2
−5 =

n−7

2
.

So, s3 = (n,3) = π3

(

n+3
2 ,2

)

as we claimed.

Suppose now that k > 3. If p1, p2, . . . , pk is a symmetric partition of n into k parts where every part is at least 3. Then p k+1
2

is odd and

belongs to {3,5, . . . ,n−6}. Moreover, p1, p2, . . . , p k−1
2

is a partition of 1
2

(

n− p k+1
2

)

into k−1
2 parts. Thus,

∑
p k+1

2
∈{3,5,...,n−5}

π3

(

1

2

(

n− p k+1
2

)

,
k−1

2

)

= π3

(

n−3

2
,

k−1

2

)

+π3

(

n−5

2
,

k−1

2

)

+ · · ·+π3

(

n−n+6

2
,

k−1

2

)

= π3

(

3,
k−1

2

)

+π3

(

5,
k−1

2

)

+ · · ·+π3

(

n−3

2
,

k−1

2

)

=

n−3
2

∑
i=3

π3

(

i,
k−1

2

)

=

n+3
2
−3

∑
i=3

π3

(

i,
k+1

2
−1

)

=

n+3
2
−3

∑
i=3· k+1

2
−3

π3

(

i,
k+1

2
−1

)

= π3

(

n+3

2
,

k+1

2

)
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because π3

(

i, k+1
2 −1

)

= 0 for all the values of i such that 3 ≤ i < 3
(

k+1
2 −1

)

.

Proposition 4.4. For every n < 3k, π3(n,k) = 0.

Proof. By contradiction. Suppose that n < 3k and π3(n,k)> 0. Then, there exists a partition of n into k parts where every part is at least 3.

Let p1, p2, . . . , pk be this partition. Thus, p1+ p2+ · · ·+ pk = n. Since pi ≥ 3 for every i ∈ {1,2, . . . ,k}, we have that p1+ p2+ · · ·+ pk ≥ 3k.

Hence 3k = n, which is a contradiction.

Therefore, for every n < 3k, π3(n,k) = 0.

Proposition 4.5. If n and k are even, then s3(n,k) = π3

(

n
2 ,

k
2

)

.

Proof. Suppose that both, n and k, are even. Let p1, p2, . . . , pk be a symmetric partition of n into k parts, where each part is at least 3. Then,

for every 1 ≤ i ≤ k
2 , pi = pk+1−i and p1, p2, . . . , p k

2
is a partition of n

2 where every part is at least 3. There are π3

(

n
2 ,

k
2

)

of these partitions.

Therefore, when n and k are even, s3(n,k) = π3

(

n
2 ,

k
2

)

.

We summarize these results in the next theorem.

Theorem 4.6. Let n ≥ 3 be an integer and 1 ≤ k ≤
⌊

n
3

⌋

. The number of symmetric partitions of n into k parts where each part is at least 3 is

given by

s3(n,k) =



























0 if n is odd and k is even,

π3

(

n+3
2 ,

k+1
2

)

=C
(

n−1
2 − k, k−1

2

)

if n is odd and k is odd,

π3

(

n+2
2 ,

k+1
2

)

=C
(

n−2
2 − k, k−1

2

)

if n is even and k is odd,

π3

(

n
2 ,

k
2

)

=C
(

n−2
2 − k, k−2

2

)

if n is even and k is even.

Table 6 contains the first values of s3(n,k). This sequence of numbers can be found in the OEIS, sequence A317489. The column of totals,

obtained by adding the s3(n,k) for all possible values of k, can be also found in OEIS, sequence A226916, see [12].

n\k 1 2 3 4 5 6 7 8 9 Total

3 1 1

4 1 1

5 1 1

6 1 1 2

7 1 0 1

8 1 1 2

9 1 0 1 2

10 1 1 1 3

11 1 0 2 3

12 1 1 2 1 5

13 1 0 3 0 4

14 1 1 3 2 7

15 1 0 4 0 1 6

16 1 1 4 3 1 10

17 1 0 5 0 3 9

18 1 1 5 4 3 1 15

19 1 0 6 0 6 0 13

20 1 1 6 5 6 3 22

21 1 0 7 0 10 0 1 19

22 1 1 7 6 10 6 1 32

23 1 0 8 0 15 0 4 28

24 1 1 8 7 15 10 4 1 47

25 1 0 9 0 21 0 10 0 41

26 1 1 9 8 21 15 10 4 69

27 1 0 10 0 28 0 20 0 1 60

28 1 1 10 9 28 21 20 10 1 101

29 1 0 11 0 36 0 35 0 5 88

Table 6: Number of symmetric partitions of n into k parts, where pi ≥ 3.

Similarly to what we did in the previous section, we use the values of π3(n,k) and s3(n,k) to find the number of non-isomorphic snake

polyominoes with n cells and height 2. Note that any of these snakes must fit in exactly one of the six cases shown in Figure 4.1; so we

analyze six cases:

Case I: The snake has the shape A, i.e., every block of cells has length at least 3. Thus, the number β2(n) of snake polyominoes of length n

and height 2 is the same that the number of different partitions of n where every part is at least 3. In order to determine this number, we must
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remember that the graphs produced by the partition p1, p2, . . . , pk and its reverse, pk, pk−1, . . . , p1, are isomorphic; furthermore, some of

these partitions are symmetric, thus for a fixed value of k

1

2
(π3(n,k)− s3(n,k))

is the number of different non-symmetric partitions of n into k parts where each part is at least 3. So, adding s3(n,k) to this expression we get

1

2
(π3(n,k)+ s3(n,k)) .

Adding these numbers over all the possible values of k we obtain

β 1
2 (n) =

1

2

⌊ n
3 ⌋

∑
k=2

(π3(n,k)+ s3(n,k)).

Note that the case k = 1 cannot be used here because the resulting snake has height 1.

Case II: The snake has the shape B, i.e., every block of cells has length at least 3 except the first and the last one that have length 1. Thus,

the number of non-isomorphic snakes is the same that the number of different partitions of n−2 where every part is at least 3. Following the

same steps than the previous case, we get

β 2
2 (n) =

1

2

⌊ n−2
3 ⌋

∑
k=1

(π3(n−2,k)+ s3(n−2,k)).

Case III: The snake has the shape C, i.e., every block of cells has length 3 except the first and the last one that have length 2. Thus, the

number of non-isomorphic snakes is the same that the number of different partitions of n−4 where every part is at least 3. This number is

given by

β 3
2 (n) =

1

2

⌊ n−4
3 ⌋

∑
k=1

(π3(n−4,k)+ s3(n−4,k)).

Case IV: The snake has the shape D, i.e., every block of cells has length 3 except the first one that has length 1. Thus, the number of

non-isomorphic snakes is the same that the number of different partitions of n−1 where every part is at least 3. This number is given by

β 4
2 (n) =

⌊ n−1
3 ⌋

∑
k=1

π3(n−1,k).

Case V: The polyomino has the shape E, i.e., every block of cells has length 3 except the last one that has length 2. Thus, the number of

non-isomorphic snakes is the same that the number of partitions of n−2 whre every part is at least 3. This number is given by

β 5
2 (n) =

⌊ n−2
3 ⌋

∑
k=1

π3(n−2,k).

Case VI: The polyomino has the shape F, i.e., every block of cells has length 3 except the first one that has length 1 and the last one that has

length 2. Thus, the number of non-isomorphic snakes is the same that the number of different partitions of n−3 where every part is at least 3.

This number is given by

β 6
2 (n) =

⌊ n−3
3 ⌋

∑
k=1

π3(n−3,k).

Adding all these quantities we obtain the total number of non-isomorphic snake polyominoes of length n and width 2. In this way we have

proven the following theorem.

Theorem 4.7. The number β2(n) of non-isomorphic snake polyominoes of length n and height 2 is

β2(n) =
6

∑
i=1

β i
2(n).

In Figure 4.2 we show a complete example for the case n = 12. In this case we have: β 1
2 (12) = 11,β 2

2 (12) = 6,β 3
2 (12) = 3,β 4

2 (12) =

13,β 5
2 (12) = 9,β 6

2 (12) = 6, and β2(12) = 48.
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Figure 4.2: Non-isomorphic snake polyominoes of length 12 and height 2.

In Table 7 we show the inital values of these numbers. The last column, that corresponds to β2(n), can be obtained from A102543 in OEIS

[13]. In fact, for n ≥ 5, β2(n) = a(n+1)−1, where the values of a(n) form the sequence A102543. We must also observe that the values of

β 4
2 (n),β

5
2 (n), and β 6

2 (n) can be found, with some shiftings, in A078012 [14].

n β 1
2 (n) β 2

2 (n) β 3
2 (n) β 4

2 (n) β 5
2 (n) β 6

2 (n) β2(n)

3 0 0 0 0 0 0 0

4 0 0 0 1 0 0 1

5 0 1 0 1 1 0 3

6 1 1 0 1 1 1 5

7 1 1 1 2 1 1 7

8 2 2 1 3 2 1 11

9 3 2 1 4 3 2 15

10 5 3 2 6 4 3 23

11 7 4 2 9 6 4 32

12 11 6 3 13 9 6 48

13 15 8 4 19 13 9 68

14 23 12 6 28 19 13 101

15 32 16 8 41 28 19 144

16 48 24 12 60 41 28 213

17 68 33 16 88 60 41 306

18 101 49 24 129 88 60 451

19 144 69 33 189 129 88 652

20 213 102 49 277 189 129 959

21 306 145 69 406 277 189 1392

22 451 214 102 595 406 277 2045

23 652 307 145 872 595 406 2977

24 959 452 214 1278 872 595 4370

25 1392 653 307 1873 1278 872 6375

26 2045 960 542 2745 1873 1278 9353

27 2977 1393 653 4023 2745 1873 13664

28 4370 2046 960 5896 4023 2745 20040

29 6375 2978 1393 8641 5896 4023 29306

Table 7: β2(n) is the number of non-isomorphic snake polyominoes of length n and height 2.
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Abstract

In this paper, we define four types of convergence of a sequence of random variables,

namely, I -statistical convergence of order α , I -lacunary statistical convergence of order

α , strongly I -lacunary convergence of order α and strongly I -Cesàro summability of

order α in probability where 0 < α < 1. We establish the connection between these notions.

1. Introduction and background

Theory of statistical convergence was firstly originated by Fast [1]. After Fridy [2] and Šalát [3] statistical convergence became a notable

topic in summability theory. Lacunary statistical convergence was defined by using lacunary sequences in [4]. I -convergence was fistly

considered by Kostyrko et al. [5]. Also, Das et al. [6] gave new definitions by using ideal, such as I -statistical convergence, I -lacunary

statistical convergence. Ulusu et al. [7] also studied asymptotically I -Cesaro equivalence of sequences of sets.

Statistical convergence of order α (0 < α < 1) was introduced using the notion of natural density of order α where n is replaced by nα in

[8]. This new type convergence was different in many ways from statistical convergence. Lacunary statistical convergence of order α is

studied by Sengöl and M. Et [9], I -statistical and I -lacunary statistical convergence of order α is studied by Das and Savas [10].

In probability theory, if for n > 0, a random variable Xn given on space S, a probability function P : X → R, then we say that X1, X2,...,Xn,...

is a sequence of random variables and it is demonstrated by {Xn}n∈N.

It is important that if there exists c ∈ R for which P(|X − c|< ε) = 1, where ε > 0 is sufficiently small, that is, it is means that values of X

lie in a very small neighbourhood of c.

New concepts have begun to be studied in probability theory by Das et al. [6], and others ([11]-[15]).

2. Main results

Definition 2.1. {Xk}k∈N is said to be I -statistically convergent of order α in probability to a random variable X if for any ε , δ , γ > 0

{

n ∈ N :
1

nα
|{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}| ≥ γ

}

∈ I ,

and demonstrated by Xk
PS(I )α

→ X.

Definition 2.2. {Xn}n∈N is said to be I -lacunary statistically convergent of order α in probability to a random variable X if for any

ε,δ ,γ > 0

{

r ∈ N :
1

hα
r

|{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}| ≥ γ

}

∈ I ,

and it is demonstrated by Xk
PSθ (I )α

→ X.
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Definition 2.3. {Xk}k∈N is said to be strongly I -lacunary convergent or PVθ (I )-convergent of order α in probability to a random

variable X if for every ε , δ > 0,

{

r ∈ N :
1

hα
r

∑
k∈Ir

P(|Xk −X | ≥ ε)≥ δ

}

∈ I ,

and it is demonstrated by Xk
PVθ (I )α

→ X.

Definition 2.4. {Xk}k∈N is said to be strongly I -Cesàro summable of order α in probability to a random variable X if for every ε , δ > 0,

{

n ∈ N :
1

nα

n

∑
k=1

P(|Xk −X | ≥ ε)≥ δ

}

∈ I ,

and it is demonstrated by Xk
PC1[I ]α→ X.

Theorem 2.5. If 0 < α ≤ β ≤ 1 then PS (I )α ⊆ PS (I )β
.

Proof. From the assumption, we say that

1

nβ
|{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}| ≤ 1

nα
|{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}|

Hence,

{

n ∈ N : 1
nβ |{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}| ≥ γ

}

{

n ∈ N : 1
nα |{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}| ≥ γ

}

for γ > 0. Therefore, we obtain PS (I )α ⊆ PS (I )β .

Theorem 2.6. If liminfr qr > 1, then

Xk
PC1[I ]α→ X ⇒ Xk

PVθ (I )α

→ X .

Proof. If liminfr qr > 1, there exists γ > 0 such that qr ≥ 1+ γ for all r ≥ 1. Since hr = kr − kr−1, we have
kα

r

hα
r

≤
(

1+ γ

γ

)α

and

kα
r−1

hα
r

≤
(

1

γ

)α

. Let ε > 0 and we define set by

S =

{

kr ∈ N :
1

kα
r

kr

∑
k=1

P(|Xk −X | ≥ ε)< δ

}

.

Therefore, S ∈ F (I ).

1
hα

r
∑

k∈Ir

P(|Xk −X | ≥ ε) = 1
hα

r

kr

∑
k=1

P(|Xk −X | ≥ ε)− 1
hα

r

kr−1

∑
k=1

P(|Xk −X | ≥ ε)

=
kα

r

hα
r

.
1

kα
r

kr

∑
k=1

P(|Xk −X | ≥ ε)− kα
r−1

hα
r
.

1
kα

r−1

kr−1

∑
k=1

P(|Xk −X | ≥ ε)

≤
(

1+ γ

γ

)α

δ −
(

1

δγ

)α

δ ′

for each kr ∈ S. Choose η =

(

1+ γ

γ

)α

δ −
(

1

δγ

)α

δ ′. Therefore,

{

r ∈ N :
1

hα
r

∑
k∈Ir

P(|Xk −X | ≥ ε)< η

}

∈ F (I ).

Hence, we get Xk
PVθ (I )α

→ X .

Theorem 2.7. If {Xk} is strongly I -Cesàro summable of order α then, it is I -statistical convergent of order α in probability to a random

variable X.
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Proof. Let Xk
PC1[I ]α→ X , and ε > 0 given. Then

1
nα

n

∑
k=1

P(|Xk −X | ≥ ε) ≥ 1
nα

n

∑
k=1

P(|Xk−X|≥ε)

P(|Xk −X | ≥ ε)

≥ δ
nα . |{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}|

and so

1

δ .nα

n

∑
k=1

P(|Xk −X | ≥ ε)≥ 1

nα
|{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}| .

So for a given τ > 0,

{

n ∈ N : 1
nα |{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}| ≥ τ

}

⊆
{

n ∈ N : 1
nα

n

∑
k=1

P(|Xk −X | ≥ ε)≥ δ .τ

}

∈ I .

Therefore, Xk
PS(I )α

→ X .

Theorem 2.8. Let a bounded {Xk} is I -statistical convergent of order α to X. Hence, it is strongly I -Cesàro summable of order α to X.

Proof. Assume that {Xk} is bounded and Xk
PS(I )α

→ X . Since {Xk} is bounded, we get P(|Xk −X |> ε)≤ M for all k. For ε > 0, we have

1
nα

n

∑
k=1

P(|Xk −X | ≥ ε) = 1
nα

n

∑
k=1

P(|Xk−X|≥ε)≥δ

P(|Xk −X | ≥ ε)

+ 1
nα

n

∑
k=1

P(|Xk−X|≥ε)<δ

P(|Xk −X | ≥ ε)

≤ 1
nα M |{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}|

+
1

nα
nα δ

Then for any γ > 0,

{

n ∈ N : 1
nα

n

∑
k=1

P(|Xk −X | ≥ ε)≥ γ

}

⊆
{

n ∈ N : 1
nα |{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}| ≥ γ

M

}

∈ I .

Therefore Xk
PC1[I ]α→ X .

Theorem 2.9. For θ = {kr},

(i) If {Xk}
PVθ (I )α

→ X then {Xk}
PSθ (I )α

→ X , and

(ii) PVθ (I )α is proper subset of PSθ (I )α .

Proof. (i) Let ε,δ > 0 and {Xk}
PVθ (I )α

→ X . Then, we can write

1
hα

r
∑

k∈Ir

P(|Xk −X | ≥ ε) ≥ 1
hα

r
∑

k∈Ir

P(|Xk−X |≥ε)≥δ

P(|Xk −X | ≥ ε)

≥ δ
hα

r
. |{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}| .

Therefore

1

δhα
r

∑
k∈Ir

P(|Xk −X | ≥ ε)≥ 1

hα
r

. |{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}| .

which implies that for any γ > 0,

{

r ∈ N : 1
hα

r
|{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}| ≥ γ

}

⊆
{

r ∈ N : 1
hα

r
∑

k∈Ir

P(|Xk −X | ≥ ε)≥ δγ

}

∈ I .
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Hence we get Xk}
PSθ (I )α

→ X .

(ii) Let {Xk} be defined by

Xk =























{−1,1} , with probability 1
2 , if n is the first

[√

hα
r

]

integers in the interval Ir,

{0,1} , with probability P(Xn = 0) =
(

1− 1
n

)

and P(Xn = 1) = 1
n ,

if n is other than the first
[√

hα
r

]

integers in the interval Ir.

Let 0 < ε < 1 and δ < 1. Then, we obtain

P(|Xk −0| ≥ ε) =







1 , if n is the first
[√

hα
r

]

integers in the interval Ir,

1
n if n is other than the first

[√

hα
r

]

integers in the interval Ir.

Now

1

hα
r

|{k ∈ Ir : P(|Xk −0| ≥ ε)≥ δ}| ≤
[√

hα
r

]

hα
r

and for any γ > 0 we get

{

r ∈ N :
1

hα
r

|{k ∈ Ir : P(|Xk −0| ≥ ε)≥ δ}| ≥ γ

}

⊆
{

r ∈ N :

[√

hα
r

]

hα
r

≥ γ

}

.

Since the set
{

r ∈ N :

[√

hα
r

]

hα
r

≥ γ

}

is finite and so belongs to I , therefore, we obtain
{

r ∈ N :
1

hα
r

|{k ∈ Ir : P(|Xk −0| ≥ ε)≥ δ}| ≥ γ

}

∈ I

which means that Xk
PSθ (I )α

→ 0. Also,

1

hα
r

∑
k∈Ir

P(|Xk −0| ≥ ε) =
1

hα
r

.

[√

hα
r

]([√

hα
r

]

+1
)

2
,

then
{

r ∈ N : 1
hr

∑
k∈Ir

P(|Xk −0| ≥ ε)≥ 1
4

}

=

{

r ∈ N :
[
√

hα
r ]([

√
hα

r ]+1)
hr

≥ 1
2

}

= {m,m+1,m+2, ...} ∈ F (I )

for some m ∈ N. Hence, Xk
PSθ (I )α

9 0.

Theorem 2.10. I -statistical convergence in probability of order α implies I -lacunary statistical convergence in probability of order α

liminfr qr > 1.

Proof. By assumption liminfr qr > 1, then there exists a σ > 0 such that qr ≥ 1+σ for sufficiently large r, that is,

hr

kr
≥ σ

1+σ
⇒ 1

hα
r

≤ 1

kα
r

(

1+σ

σ

)α

If {Xk}
PS(I )α

→ X , then for ε > 0 and for r > 0, we have

1

hα
r

|{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}| ≤ 1

kα
r

(

1+σ

σ

)α

|{k ≤ kr : P(|Xk −X | ≥ ε)≥ δ}|

Then for any γ > 0, we get
{

r ∈ N : 1
hα

r
|{k ∈ Ir : P(|Xk −X | ≥ ε)} ≥ δ | ≥ γ

}

⊆
{

r ∈ N :
1

kα
r

|{k ≤ kr : P(|Xk −X | ≥ ε)} ≥ δ | ≥ γσ α

(1+σ)α

}

∈ I .
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Theorem 2.11. I -lacunary statistical convergence in probability of order α implies I -statistical convergence in probability of order α ,

0 < α < 1, if supr

r−1

∑
i=0

hα
i+1

(kr−1)
α = B < ∞.

Proof. Suppose that {Xk}
PSθ (I )α

→ X , and for ε , δ , γ1, γ2 > 0 define the sets

C =

{

r ∈ N :
1

hα
r

|{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}|< γ1

}

and

T =

{

n ∈ N :
1

nα
|{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}|< γ2

}

.

From our assumption we get C ∈ F (I ). Further observe that

K j =
1

hα
j

∣

∣

{

k ∈ I j : P(|Xk −X | ≥ ε)≥ δ
}∣

∣< γ1

for all j ∈C. Let n ∈ N be such that kr−1 < n ≤ kr for some r ∈C. Hence, we obtain

1

nα
|{k ≤ n : P(|Xk −X | ≥ ε)≥ δ}|

≤ 1

kα
r−1

|{k ≤ kr : P(|Xk −X | ≥ ε)≥ δ}|

=
1

kα
r−1

|{k ∈ I1 : P(|Xk −X | ≥ ε)≥ δ}|

+
1

kα
r−1

|{k ∈ I2 : P(|Xk −X | ≥ ε)≥ δ}|

+...+
1

kα
r−1

|{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}|

=
kα

1

kα
r−1

1

hα
1

|{k ∈ I1 : P(|Xk −X | ≥ ε)≥ δ}|

+
(k2 − k1)

α

kα
r−1

1

hα
2

|{k ∈ I2 : P(|Xk −X | ≥ ε)≥ δ}|

+...+
(kr − kr−1)

α

kα
r−1

1

hα
r

|{k ∈ Ir : P(|Xk −X | ≥ ε)≥ δ}|

=
kα

1

kα
r−1

K1 +
(k2 − k1)

α

kα
r−1

K2 + ...+
(kr − kr−1)

α

kα
r−1

Kr

≤
{

sup j∈C K j

}

supr

r−1

∑
i=0

hα
i+1

(kr−1)
α

< γ1B.

Choosing γ2 =
γ1

B
and by

⋃{n : kr−1 < n ≤ kr, r ∈C} ⊂ T where C ∈ F (I ) Then the set T belongs to F (I ) and this completes the

proof.
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[8] R. Çolak, Statistical convergence of order α , Modern methods in analysis and its applications, Anamaya Pub., New Delhi, India, (2010), 121-129.
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Abstract

This paper investigates the existence and Ulam stability of solutions for impulsive nonlinear

fractional implicit differential equations with finite delay via Katugampola fractional deriva-

tive in Caputo sense. Our results are based on some standard fixed point theorems. Some

examples are presented to illustrate the main results.

1. Introduction

The interest in the study of differential equations of fractional order lies in the fact that fractional derivatives provide an excellent tool for

the description of memory and hereditary properties of various materials and processes. With this advantage, the fractional-order models

become more realistic and practical than the classical integer-order models, in which such effects are not taken into account. As a matter of

fact, fractional differential equations arise in many engineering and scientific disciplines such as physics, chemistry, biology, economics,

control theory, signal and image processing, biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc., see [1]-[3].

For some recent development on the topic, see [4]-[10] and the references therein.

Impulsive differential equations, which provide a natural description of observed evolution processes, are regarded as important mathematical

tools for the better understanding of several real world problems in applied sciences. The theory of impulsive differential equations of integer

order has found extensive applications in realistic mathematical modeling of a wide variety of practical situations and has emerged as an

important area of investigation in recent years. For the general theory and applications of impulsive differential equations, we refer the

reader to the references [11]-[15]. On the other hand, the implicit differential equations with impulsive and delay have not been addressed so

extensively and many aspects of these problems are yet to be explored. For some recent work on impulsive differential equations of fractional

order, see [16]-[19] and the references therein. These days generalization of the derivatives of both Riemann-Liouville and Caputo types

are introduced and shown the effect of utilizing it in equations of mathematical physics or related to probability. This was done using the

definition of generalized fractional derivatives given by Katugampola [20]. The author initiated a new fractional integral, which generalizes

the Riemann-Liouville and the Hadamard integrals into a single form. Later, Katugampola [21] introduced a new fractional derivative,

which generalizes the two derivatives in question. Motivated by the papers [21]-[23], we apply Katugampola-Caputo derivative for implicit

fractional differential equations.

In this paper, we investigate the existence and Ulam stability of solutions for impulsive nonlinear fractional implicit differential equations

with delay via Katugampola fractional derivative given by,











ρ Dω
xm

u(x) = h(x,ux,
ρ Dω

xm
u(x)), for each x ∈ J := (xm,xm+1], m = 0,1, . . .k,,

∆u|xm
= Im(ux−m ), m = 1, . . . ,k,

u(x) = ψ(x), x ∈ [−r,0], r > 0,

(1.1)

Email addresses and ORCID numbers: janakimaths@gmail.com, 0000-0002-6349-4373 (M. Janaki), kanagarajank@gmail.com, 0000-0001-5556-2658 (K. Kanagarajan),

emmelsayed@yahoo.com, 0000-0003-0894-8472(E. M. Elsayed)
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where ρ Dω
xm

is the Katugampola fractional derivative in Caputo sense, 0 < ω ≤ 1, ρ ∈ R
+, h : J×PC([−r,0],R)×R → R is a given

function, Im : PC([−r,0],R)→ R, and ψ ∈PC([−r,0],R), 0 = x0 < x1 < · · · < xm < xm+1 = T . PC([−r,0],R) is a space of piecewice

functions defined on [−r,0] to be specified in Section 2.

For each function u defined on [−r,T ] and for any x ∈ J, we define by ux the element of PC([−r,0],R) defined by:

ux(θ) = u(x+θ), θ ∈ [−r,0],

ux(·) represents the history of the state from time x− r upto time x. Here ∆u|xm
= u(x+m)−u(x−m), where u(x+m) = liml→0+ u(xm + l) and

u(x−m) = liml→0− u(xm + l) denotes the right and left limits of ux at x = xm, respectively.

2. Prerequisites

In this section, we introduce notations, definitions, lemmas and theorems that are needed for the proof of the main results.

Let T > 0, J= [0,T ] and C(J,R) be the Banach space of all continuous functions from J into R with the norm

‖u‖∞ = sup{|u(x)| : x ∈ J}.

Let J0 = [x0,x1] and Jm = (xm,xm+1], where m = 1,2, . . .k.

Consider the set of functions

PC([−r,0],R) = {u : [−r,0]→ R : u ∈ C((tm, tm+1],R) ,m = 0,1, . . . ,k
′
, and there exist

u(t−m ) and u(t+m ), m = 1,2, . . . ,k with u(t−m ) = u(tm)}.

PC([−r,0],R) is a Banach space with the norm

‖u‖PC = sup
x∈[−r,0]

|u(x)| .

PC([−r,T ],R) is a Banach space with the norm

‖u‖PC1
= sup

x∈[−r,T ]
|u(x)| .

L
′
(J,R) is the space of Lebesgue-integrable functions u : J→ R with the norm

‖u‖1 =
∫ T

0
|u(s)|ds.

ACn(J) = {h : J→ R : h,h
′
, . . .h(n−1) ∈ C(J,R) and h(n−1) is absolutely continuous}.

In what follows ω > 0.

Definition 2.1. [9, 10] The fractional(arbitrary) order integral of the function h ∈ L
′
([0,T ],R+) of order ω ∈ R+ is defined by

Iω h(x) =
1

Γ(ω)

∫ x

0
(x− s)ω−1

h(s)ds,

where Γ is the Euler gamma function defined by Γ(ω) =
∫ ∞

0 xω−1e−xdx, ω > 0.

Definition 2.2. [9, 10] For a function h ∈ ACn(J), the Caputo fractional order derivative of order ω of h is defined by

(cDω
0+h)(x) =

1

Γ(n−ω)

∫ x

0
(x− s)n−ω−1

hn(s)ds,

where n = [ω]+1 and [ω] denotes the integer part of the real number ω .

Definition 2.3. [22] The generalized left-sided fractional integral ρ Iω
0+

h of order ω ∈ C(Re(ω)> 0) is defined by

(ρ Iω
0+h)(x) =

ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1h(s)ds,

for x > 0, if the integral exists.

Definition 2.4. [22] The generalized fractional derivative, corresponding to the generalized fractional integral (2.1), is defined by

(ρ Dω
0+h(x) =

ρω−n+1

Γ(n−ω)

(

x1−ρ d

dx

)n ∫ x

0
(xρ − sρ )n−ω−1sρ−1h(s)ds, (2.1)

if the integral exists.

Lemma 2.5. Let ω ≥ 0 and n = [ω]+1. Then

ρ Iω
0+

(

ρ Dω
0+h(x)

)

= h(x)−
n−1

∑
m=0

hm(0)

m!
xm

.
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Lemma 2.6. Let ω > 0, then the differential equation ρ Dω
0+

h(x) = 0 has solutions

h(x) = b0 +b1

(

xρ

ρ

)

+b2

(

xρ

ρ

)2

+ · · ·+bn−1

(

xρ

ρ

)(n−1)

,

bi ∈ R, i = 0,1,2, . . . ,n−1, n = [ω]+1.

Lemma 2.7. Let ω > 0, then

ρ Iω
0+

(

ρ Dω
0+h(x)

)

= h(x)+b0 +b1

(

xρ

ρ

)

+b2

(

xρ

ρ

)2

+ · · ·+bn−1

(

xρ

ρ

)(n−1)

,

for some bi ∈ R, i = 0,1,2, . . . ,n−1, n = [ω ]+1.

Lemma 2.8. [24] Let w : [0,T ]→ [0,+∞) be a real function and α(·) is a non-negative, locally integrable function on [0,T ] and there are

constants a > 0 and 0 < ω ≤ 1 such that

w(x)≤ α(x)+a

∫ x

0
(xρ − sρ )−ω

s−ρ w(s)ds.

Then, there exists a constant K = K(ω) such that

w(x)≤ α(x)+Ka

∫ x

0
(xρ − sρ )−ω

s−ρ α(s)ds,

for every x ∈ [0,T ].

The following integral inequality of Gronwall type for piecewise continuous functions was introduced by Bainov and Hristova [25] which

can be used in the sequel.

Lemma 2.9. Let for x ≥ x0 ≥ 0, the following inequality holds,

u(x)≤ a(x)+
∫ x

x0

g(x,s)u(s)ds+ ∑
x0<xm<x

βm(x)u(xm),

where βm(x) (m ∈ N) are non-decreasing functions for x ≥ x0, a ∈PC([x0,∞),R+), a is non-decreasing and g(x,s) is a continuous non

negative function for x,s ≥ x0 and non decreasing with respect to x for any fixed s ≥ x0. Then, for x ≥ x0, the following inequality is valid:

u(x)≤ a(x) ∏
x0<xm<x

(1+βm(x))exp

(

∫ x

x0

g(x,s)ds

)

.

Now, we consider the concepts of Wang et al. and refer some new concepts about Ulam-Hyers stability and Ulam-Hyers-Rassias stability for

considered problem (1.1). See [24, 26, 27, 28, 29].

Let u ∈PC(J,R), ε > 0, φ > 0 and α ∈PC(J,R+) is non decreasing. We consider the set of inequalities

{

|ρ Dω u(x)−h(x,ux,
ρ Dω u(x))| ≤ ε, x ∈ (xm,xm+1], m = 1, . . .k,

∣

∣∆u|xm
− Im(ux−m )

∣

∣≤ ε, m = 1, . . . ,k;
(2.2)

the set of inequalities

{

|ρ Dω u(x)−h(x,ux,
ρ Dω u(x))| ≤ α(x), x ∈ (xm,xm+1], m = 1, . . .k,

∣

∣∆u|xm
− Im(ux−m )

∣

∣≤ φ , m = 1, . . . ,k;
(2.3)

and the set of inequalities

{

|ρ Dω u(x)−h(x,ux,
ρ Dω u(x))| ≤ εα(x), x ∈ (xm,xm+1], m = 1, . . .k,

∣

∣∆u|xm
− Im(ux−m )

∣

∣≤ εφ , m = 1, . . . ,k.
(2.4)

Definition 2.10. The problem (1.1) is Ulam-Hyers stable, if there exists a real number ch,k > 0 such that for each ε > 0 and for each solution

u1 ∈PC(J,R) of the inequality (2.2), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ ch,kε, x ∈ J.

Definition 2.11. The problem (1.1) is generalized Ulam-Hyers stable, if there exists θh,k ∈ C(R+,R+), θh,k(0) = 0 such that for each

solution u1 ∈PC(J,R) of the inequality (2.2), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ θh,k(ε), x ∈ J.

Definition 2.12. The problem (1.1) is Ulam-Hyers-Rassias stable with respect to (α,φ), if there exists ch,k,α > 0 such that for each ε > 0

and for each solution u1 ∈PC(J,R) of the inequality (2.4), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ ch,k,α ε(α(x)+φ), x ∈ J.
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Definition 2.13. The problem (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (α,φ), if there exists ch,k,α > 0 such that for

each solution u1 ∈PC(J,R) of the inequality (2.3), there exists a solution u2 ∈PC(J,R) of the problem (1.1) with

|u1(x)−u2(x)| ≤ ch,k,α (α(x)+φ), x ∈ J.

Remark 2.14. From the above definitions, we

(i) De f inition 2.10 ⇒ De f inition 2.11;

(ii) De f inition 2.12 ⇒ De f inition 2.13;

(iii) De f inition 2.12 for α(x) = φ = 1 ⇒ Definition 2.10.

Remark 2.15. A function u ∈ PC(J,R) is a solution of the inequality (2.4) if and only if there is σ ∈ PC(J,R) and a sequence σm,

m = 1,2, . . .k(which depends on u) such that

(i) |σ(x)| ≤ εα(x), x ∈ (xm,xm+1], m = 1,2, . . .k and |σm| ≤ εφ , m = 1,2, . . .k;

(ii) ρ Dω u(x) = h(x,ux,
ρ Dω u(x))+σ(x), x ∈ (xm,xm+1], m = 1,2, . . .k;

(iii) ∆u|xm
= Im(ux−m )+σm, m = 1,2, . . .k.

Similarly, we can get remarks for inequalities (2.2) and (2.3).

Theorem 2.16. [8] (Ascoli-Arzela’s Theorem) Let E ⊂ C(J,R), E is relatively compact(i.e,Ē is compact), if:

(1) E is uniformly bounded, that is there exists N > 0 such that |h(x)|< N, for every h ∈ E and x ∈ J.

(2) E is equicontinuous, that is for every ε > 0, there exists δ > 0 such that for each x1,x2 ∈ J, |x1 − x2| ≤ δ implies |h(x1)−h(x2)| ≤ ε ,

for every h ∈ E.

Theorem 2.17. [30] (Banach’s fixed point theorem) Let C be a non empty closed subset of a Banach space X , then any contraction

mapping T of C into itself has a unique fixed point.

Theorem 2.18. [30] (Schaefer’s fixed point theorem) Let X be a Banach space, and M : X → X a completely continuous operator. If the

set

S = {u ∈ X : u = µMu, for some µ ∈ (0,1)}
is bounded, then M has atleast one fixed points.

3. Existence of solutions

Definition 3.1. A function u ∈PC([−r,T ],R) whose ω-derivative exists on Jm is said to be a solution of (1.1), if u satisfies the equation

ρ Dω
xm

u(x) = h(x,ux,
ρ Dω

xm
u(x)),

on Jm, and satisfies the conditions ∆u|x=xm
= Im(ux−m ), m = 1, . . . ,k and u(x) = ψ(x), x ∈ [−r,0].

The following lemma is required to prove the existence of solutions to (1.1).

Lemma 3.2. Let 0 < ω ≤ 1 and let σ : J→ R be continuous. A function u is a solution of the fractional integral equation

u(x) =























































ψ(0)+ ρ1−ω

Γ(ω)

∫ x
0 (xρ − sρ )ω−1

sρ−1 σ(s)ds, if x ∈ [0,x1],

ψ(0)+∑
m
i=1 Ii(ux−i

)

+ ρ1−ω

Γ(ω) ∑
m
i=1

∫ xi

xi−1
(x

ρ
i − sρ )

ω−1
sρ−1 σ(s)ds

+ ρ1−ω

Γ(ω)

∫ x
xm
(xρ − sρ )ω−1

sρ−1 σ(s)ds, if x ∈ (xm,xm+1],

ψ(x), x ∈ [−r,0],

(3.1)

where m = 1,2, . . .k, if and only if u is a solution of the following fractional problem










ρ Dω u(x) = σ(x), x ∈ Jm,

∆u|x=xm
= Im(ux−m ), m = 1,2, . . .k,

u(x) = ψ(x), x ∈ [−r,0].

(3.2)

Proof. Assume u satisfies (3.2). If x ∈ [0,x1], then ρ Dω u(x) = σ(x). From Lemma 2.7, we get

u(x) = ψ(0)+ ρ Iω σ(x) = ψ(0)+
ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1

sρ−1 σ(s)ds.

If x ∈ (x1,x2], then from Lemma 2.7,

u(x) = u(x+1 )+
ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1
sρ−1 σ(s)ds

= ∆u|x=x1
+u(x−1 )+

ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1
sρ−1 σ(s)ds

= ψ(0)+ I1(ux−1
)+

ρ1−ω

Γ(ω)

∫ x

0
(x

ρ
1 − sρ )

ω−1
sρ−1 σ(s)ds+

ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1
sρ−1 σ(s)ds.
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If x ∈ (x2,x3], then Lemma 2.7 implies,

u(x) = u(x+2 )+
ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1
sρ−1 σ(s)ds

= ∆u|x=x2
+u(x−2 )+

ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1
sρ−1 σ(s)ds

= I2(ux−2
)

+

[

ψ(0)+ I1(ux−1
)+

ρ1−ω

Γ(ω)

∫ x1

0
(x

ρ
1 − sρ )

ω−1
sρ−1 σ(s)ds+

ρ1−ω

Γ(ω)

∫ x2

x1

(x
ρ
2 − sρ )

ω−1
sρ−1 σ(s)ds

]

+
ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1
sρ−1 σ(s)ds.

= ψ(0)+
[

I1(ux−1
)+ I2(ux−2

)
]

+

[

ρ1−ω

Γ(ω)

∫ x1

0
(x

ρ
1 − sρ )

ω−1
sρ−1 σ(s)ds+

ρ1−ω

Γ(ω)

∫ x2

x1

(x
ρ
2 − sρ )

ω−1
sρ−1 σ(s)ds

]

+
ρ1−ω

Γ(ω)

∫ x

x2

(xρ − sρ )ω−1
sρ−1 σ(s)ds.

Continuing this process, we get the solution u(x) for x ∈ (xm,xm+1] , where m = 1,2, . . .k. Hence,

u(x) = ψ(0)+
m

∑
i=1

Ii(ux−i
)+

ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )

ω−1
sρ−1 σ(s)ds+

ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1
sρ−1 σ(s)ds.

Conversely, let us assume that u satisfies the equation (3.1). If x ∈ [0,x1], then u(0) = ψ(0) and using the concept that ρ Dω is the left inverse

of ρ Iω , we get ρ Dω u(x) = σ(x), for each x ∈ [0,x1]. If x ∈ (xm,xm+1], m = 1,2, . . .k and using the fact that ρ Dω L = 0, where L is a constant,

we get

ρ Dω u(x) = σ(x), for each x ∈ (xm,xm+1].

Also, we can show that ∆u|x=xm
= Im(ux−m ), m = 1,2, . . .k.

Now we state and prove the existence results for the problem (1.1), based on Banach’s fixed point theorem.

Theorem 3.3. Assume that

(A1) h : J×PC([−r,0],R)×R→ R is continuous.

(A2) There exist constants c1 > 0 and 0 < c2 < 1 such that

|h(x,z1,z2)−h(x, z̄1, z̄2)| ≤ c1‖z1 − z̄1‖PC+ c2 |z2 − z̄2| ,

for any z1, z̄1 ∈PC([−r,0],R), z2, z̄2 ∈ R and x ∈ J.

(A3) There exists a constant c3 > 0 such that

|Im(z1)− Im(z̄1)| ≤ c3‖z1 − z̄1‖PC,

for each z1, z̄1 ∈PC([−r,0],R) and m = 1,2, . . .k.

If

kc3 +
(k+1)c1T ρω

(1− c2)ρω Γ(ω +1)
< 1, (3.3)

then there exists a unique solution for the problem (1.1) on J.

Proof. Transform the problem (1.1) into a fixed point problem. Consider the operator

M : PC([−r,T ],R)→PC([−r,T ],R) defined by

Mu(x) =



































ψ(0)+∑0<xm<x Im(ux−i
)

+ ρ1−ω

Γ(ω) ∑0<xm<x

∫ xm

xm−1
(x

ρ
m − sρ )

ω−1
sρ−1 g(s)ds

+ ρ1−ω

Γ(ω)

∫ x
xm
(xρ − sρ )ω−1

sρ−1 g(s)ds, x ∈ [0,T ],

ψ(x), x ∈ [−r,0],

(3.4)

where g ∈ C(J,R) be such that

g(x) = h(x,ux,g(x)).

Clearly, the fixed points of operator M are solutions of the problem (1.1). Let y,z ∈PC([−r,T ],R). If x ∈ [−r,0], then

|M(y)(x)−M(z)(x)|= 0.



Fundamental Journal of Mathematics and Applications 167

For x ∈ J, we get

|M(y)(x)−M(z)(x)| ≤ ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(x
ρ
m − sρ )

ω−1
sρ−1 |g1(s)−g2(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1
sρ−1 |g1(s)−g2(s)|ds+ ∑

0<xm<x

∣

∣Im(yx−m )− Im(zx−m )
∣

∣ ,

where g1,g2 ∈ C(J,R) be such that

g1(x) = h(x,yx,g1(x)),

and

g2(x) = h(x,zx,g2(x)).

By (A2), we get

|g1(x)−g2(x)|= |h(x,yx,g1(x))−h(x,zx,g2(x))| ≤ c1‖yx − zx‖PC+ c2 |g1(x)−g2(x)| .

This implies,

|g1(x)−g2(x)| ≤
c1

1− c2
‖yx − zx‖PC.

Therefore, for each x ∈ J,

|M(y)(x)−M(z)(x)| ≤ c1ρ1−ω

(1− c2)Γ(ω)

k

∑
m=1

∫ xm

xm−1

(x
ρ
m − sρ )

ω−1
sρ−1 ‖ys − zs‖PCds

+
c1ρ1−ω

(1− c2)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1
sρ−1 ‖ys − zs‖PCds+

k

∑
m=1

c3

∥

∥yx−m − zx−m

∥

∥

PC
.

≤
[

kc3 +
kc1T ρω

(1− c2)ρω Γ(ω +1)
+

c1T ρω

(1− c2)ρω Γ(ω +1)

]

‖y− z‖PC1
.

Thus,

‖M(y)−M(z)‖PC1
≤
[

kc3 +
(k+1)c1T ρω

(1− c2)ρω Γ(ω +1)

]

‖y− z‖PC1
.

By (3.3), the operator M is a contraction. Therefore, by the Banach’s contraction principle, M has a unique fixed point which is a unique

solution of the problem (1.1).

Now, Schaefer’s fixed point theorem is used to prove the second result.

Theorem 3.4. Assume that (A1),(A2) and

(A4) There exist p1, p2, p3 ∈ C(J,R+) with p∗3 = supx∈J p3(x)< 1 such that

|h(x,y,z)| ≤ p1(x)+ p2(x)‖y‖PC + p3(x) |z| ,

where x ∈ J, y ∈PC([−r,0],R) and z ∈ R.

(A5) The functions Im : PC([−r,0],R)→ R are continuous and there exist constants M∗
1 ,M

∗
2 > 0 with kM∗

1 < 1 such that

|Im(y)| ≤ M∗
1 ‖y‖PC+M∗

2 ,

for each y ∈PC([−r,0],R), m = 1,2, . . .k. Then the problem (1.1) has at least one solution.

Proof. Let the operator M defined in (3.4). Now we shall prove that M has atleast one fixed point by using Schaefer’s fixed point theorem.

The proof contains four steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in PC([−r,T ],R). If x ∈ [−r,0], then

|M(yn)(x)−M(y)(x)|= 0.

For x ∈ J, we have

|M(yn)(x)−M(y)(x)| ≤ ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(x
ρ
m − sρ )

ω−1
sρ−1 |gn(s)−g(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1
sρ−1 |gn(s)−g(s)|ds+ ∑

0<xm<x

∣

∣Im(ynx−m )− Im(yx−m )
∣

∣ , (3.5)

where gn,g ∈ C(J,R) such that

gn(x) = h(x,ynx,gn(x)),
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g(x) = h(x,yx,g(x)).

By (A2), we have

|gn(x)−g(x)| = |h(x,ynx,gn(x))−h(x,yx,g(x))|
≤ c1 ‖ynx − yx‖PC+ c2 |gn(x)−g(x)| .

Then,

|gn(x)−g(x)| ≤
(

c1

1− c2

)

‖ynx − yx‖PC .

Since yn → y, then we get gn(x)→ g(x) as n → ∞ for each x ∈ J. And let Ω > 0 be such that, for each x ∈ J, we have |gn(x)| ≤ Ω and

|g(x)| ≤ Ω. Then, we have

(xρ − sρ )ω−1 |gn(s)−g(s)| ≤ (xρ − sρ )ω−1[|gn(s)|+ |g(s)|]
≤ 2Ω(xρ − sρ )ω−1

,

and

(x
ρ
m − sρ )ω−1 |gn(s)−g(s)| ≤ (x

ρ
m − sρ )ω−1[|gn(s)|+ |g(s)|]

≤ 2Ω(x
ρ
m − sρ )ω−1

.

For each x ∈ J, the functions s → 2Ω(xρ − sρ )ω−1 and s → 2Ω(x
ρ
m − sρ )ω−1 are integrable on [0,x], then by the Lebesgue Dominated

Convergence Theorem and (3.5) implies that

|M(yn)(x)−M(y)(x)| → 0, as n → ∞.

and hence,

‖M(yn)−M(y)‖PC1
→ 0, as n → ∞,

Consequently, M is continuous.

Step 2: M maps bounded sets into bounded sets in PC([−r,T ],R). To prove this, it is enough to show that for any Ω∗ > 0, there exists a

positive constant k̃ such that for each y ∈ BΩ∗ = {y ∈PC([−r,T ],R) : ‖y‖PC1
≤ Ω∗}, we have ‖M(y)‖PC1

≤ k̃. We have for each x ∈ J,

M(y)(x) = ψ(0)+
ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(x
ρ
m − sρ )

ω−1
sρ−1 g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1
sρ−1 g(s)ds+ ∑

0<xm<x

Im(yx−m ), (3.6)

where g ∈ C(J,R) be such that

g(x) = h(x,yx,g(x)).

By (A4), for each x ∈ J, we get

|g(x)| = |h(x,yx,g(x))|
≤ p1(x)+ p2(x)‖yx‖PC+ p3(x) |g(x)|
≤ p1(x)+ p2(x)‖y‖PC1

+ p3(x) |g(x)|
≤ p1(x)+ p2(x)Ω

∗+ p3(x) |g(x)|
≤ p∗1 + p∗2Ω∗+ p∗3 |g(x)| ,

where p∗1 = supx∈J p1(x) and p∗2 = supx∈J p2(x). Then,

|g(x)| ≤ p∗1 + p∗2Ω∗

1− p∗3
:= N.

Thus (3.6) implies

|M(y)(x)| ≤ |ψ(0)|+ kNT ρω

ρω Γ(ω +1)
+

NT ρω

ρω Γ(ω +1)
+ k

(

M∗
1

∥

∥yx−m

∥

∥

PC
+M∗

2

)

≤ |ψ(0)|+ (k+1)NT ρω

ρω Γ(ω +1)
+ k

(

M∗
1‖y‖PC1

+M∗
2

)

≤ |ψ(0)|+ (k+1)NT ρω

ρω Γ(ω +1)
+ k (M∗

1 Ω∗+M∗
2 ) := R̃.

And if x ∈ [−r,0], then

|M(y)(x)| ≤ ‖ψ‖PC ,
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thus

‖M(y)‖PC1
≤ max{R̃,‖ψ‖PC} := k̃.

Step 3: M maps bounded sets into equicontinuous sets of PC([−r,T ],R).
Let t1, t2 ∈ (0,T ], t1 < t2, BΩ∗ be a bounded set of PC([−r,T ],R) as in Step 2, and let y ∈ BΩ∗ . Then

|M(y)(t2)−M(y)(t1)| ≤ ρ1−ω

Γ(ω)

∫ t1

0

∣

∣

∣
(t

ρ
2 − sρ )ω−1 − (t

ρ
1 − sρ )ω−1

∣

∣

∣

∣

∣

∣
sρ−1

∣

∣

∣
|g(s)|ds

+
ρ1−ω

Γ(ω)

∫ t2

t1

∣

∣

∣
(t

ρ
2 − sρ )ω−1

∣

∣

∣

∣

∣

∣
sρ−1

∣

∣

∣
|g(s)|ds

+ ∑
0<xm<t2−t1

∣

∣Im(yx−m )
∣

∣

≤ N

ρω Γ(ω +1)
[2(t

ρ
2 − t

ρ
1 )

ω +(t
ρω
2 − t

ρω
1 )]

+ (t
ρ
2 − t

ρ
1 )

(

M∗
1

∥

∥yx−m

∥

∥

PC
+M∗

2

)

≤ N

ρω Γ(ω +1)
[2(t

ρ
2 − t

ρ
1 )

ω +(t
ρω
2 − t

ρω
1 )]

+ (t
ρ
2 − t

ρ
1 )

(

M∗
1 ‖y‖PC1

+M∗
2

)

≤ N

ρω Γ(ω +1)
[2(t

ρ
2 − t

ρ
1 )

ω +(t
ρω
2 − t

ρω
1 )]

+ (t
ρ
2 − t

ρ
1 )(M

∗
1 Ω∗+M∗

2 ) .

As t2 → t1, the right hand side of the above inequality tends to zero. From Step 1 to 3 together with the Ascoli-Arzela theorem, we can

conclude that M : PC([−r,T ],R)→PC([−r,T ],R) is completely continuous.

Step 4: A priori bounds. Now, we shall show that the set

G = {y ∈PC([−r,T ],R) : y = µM(y), for some 0 < µ < 1},
is bounded. Let y ∈ G, then y = µM(y), for some 0 < µ < 1. Thus, for each x ∈ J, we get

y(x) = µψ(0)+
µρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(x
ρ
m − sρ )ω−1sρ−1g(s)ds

+
µρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds+µ ∑
0<xm<x

Im(yx−m ).

And by (A4), for each x ∈ J , we get,

|g(x)| = |h(x,yx,g(x))|
≤ p1(x)+ p2(x)‖yx‖PC+ p3(x) |g(x)|
≤ p∗1 + p∗2 ‖yx‖PC+ p∗3 |g(x)| .

Thus,

|g(x)| ≤ 1

1− p∗3

(

p∗1 + p∗2 ‖yx‖PC

)

.

This implies, by (3.7) and (A5), that for each x ∈ J, we have

|y(x)| ≤ |ψ(0)|+ ρ1−ω

(1− p∗3)Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(x
ρ
m − sρ )ω−1sρ−1(p∗1 + p∗2 ‖ys‖PC)ds

+
ρ1−ω

(1− p∗3)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1(p∗1 + p∗2 ‖ys‖PC)ds

+ k
(

M∗
1

∥

∥yx−m

∥

∥

PC
+M∗

2

)

.

Now, we consider the function q defined by

q(x) = sup{|q(s)| : −r ≤ s ≤ x}, 0 ≤ x ≤ T,

then there exists x∗ ∈ [−r,T ] such that q(x) = |y(x∗)|. If x∗ ∈ [0,T ], then by the previous inequality, we have for x ∈ J,

q(x) ≤ |ψ(0)|+ ρ1−ω

(1− p∗3)Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(x
ρ
m − sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

+
ρ1−ω

(1− p∗3)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

+ k (M∗
1 q(x)+M∗

2 ) .
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Thus,

q(x) ≤ |ψ(0)|+ kM∗
2

1− kM∗
1

+
ρ1−ω

(1− kM∗
1 )(1− p∗3)Γ(ω) ∑

0<xm<x

∫ xm

xm−1

(x
ρ
m − sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

+
ρ1−ω

(1− kM∗
1 )(1− p∗3)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1(p∗1 + p∗2q(s))ds

≤ |ψ(0)|+ kM∗
2

1− kM∗
1

+
(k+1)p∗1T ρω

(1− kM∗
1 )(1− p∗3)ρ

ω Γ(ω +1)

+
(k+1)p∗2

(1− kM∗
1 )(1− p∗3)Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1q(s)ds.

Applying Lemma 2.8, we get

q(x)≤
[ |ψ(0)|+ kM∗

2

1− kM∗
1

+
(k+1)p∗1T ρω

(1− kM∗
1 )(1− p∗3)ρ

ω Γ(ω +1)

]

×
[

1+
λ (k+1)p∗2T ρω

(1− kM∗
1 )(1− p∗3)ρ

ω Γ(ω +1)

]

:= Ã,

where λ = λ (ω) a constant. If x∗ ∈ [−r,0], then q(x) = ‖ψ‖PC, thus for any x ∈ [−r,T ], ‖y‖PC1
≤ q(x), we get

‖y‖PC1
≤ max{‖ψ‖PC , Ã},

which implies the set G is bounded. From Schaefer’s fixed point theorem, we conclude that M has atleast one fixed point which is a solution

of the problem (1.1).

4. Ulam-Hyers-Rassias stability

Now, we present the following Ulam-Hyers-Rassias stable result.

Theorem 4.1. Assume that (A1)-(A3), (3.3) and

(A6) There exists a nondecreasing function α ∈PC(J,R+) and there exists µα > 0 such that for any x ∈ J:

ρ Iω α(x)≤ µα α(x),

are satisfied, then the problem (1.1) is Ulam-Hyers-Rassias stable with respect to (α,φ).

Proof. Let v ∈PC([−r,T ],R) be a solution of the inequality (2.4). Denote by u the unique solution of the problem











ρ Dω
xm

u(x) = h(x,ux,
ρ Dω

xm
u(x)), for each x ∈ (xm,xm+1], m = 1, . . .k;

∆u|x=xm
= Im(ux−m ), m = 1, . . . ,k;

u(x) = v(x) = ψ(x), x ∈ [−r,0],

using Lemma 3.2, we obtain for each x ∈ (xm,xm+1],

u(x) = ψ(0)+
m

∑
i=1

Ii(ux−i
)+

ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )ω−1sρ−1g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds, x ∈ (xm,xm+1],

where g ∈ C(J,R) be such that

g(x) = h(x,ux,g(x)).

Since v is a solution of the inequality (2.4) and by Remark 2.15, we get

{

ρ Dω
xm

v(x) = h(x,vx,
ρ Dω

xm
v(x))+σ(x), x ∈ (xm,xm+1], m = 1, . . .k;

∆v|x=xm
= Im(vx−m )+σm, m = 1, . . . ,k.

(4.1)

Clearly the solution of (4.1) is given by,

v(x) = ψ(0)+
m

∑
i=1

Ii(vx−i
)+

m

∑
i=1

σi

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )ω−1sρ−1 f (s)ds+

ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )ω−1sρ−1σ(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 f (s)ds+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1σ(s)ds, x ∈ (xm,xm+1],
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where f ∈ C(J,R) be such that f (x) = h(x,vx, f (x)). Hence for each x ∈ (xm,xm+1], we get,

|v(x)−u(x)| ≤
m

∑
i=1

|σi|+
m

∑
i=1

∣

∣

∣
Ii(vx−i

)− Ii(ux−i
)
∣

∣

∣

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )ω−1sρ−1 | f (s)−g(s)|ds

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )ω−1sρ−1 |σ(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 | f (s)−g(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 |σ(s)|ds.

Thus,

|v(x)−u(x)| ≤ kεφ +(k+1)εµα α(x)+
m

∑
i=1

c3

∥

∥

∥
vx−i

−ux−i

∥

∥

∥

PC

+
ρ1−ω

Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )ω−1sρ−1 | f (s)−g(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 | f (s)−g(s)|ds.

By (A2), we get

| f (x)−g(x)| = |h(x,vx, f (x))−h(x,ux,g(x))|
≤ c1 ‖vx −ux‖PC+ c2 | f (x)−g(x)| .

Then,

| f (x)−g(x)| ≤ c1

1− c2
‖vx −ux‖PC .

Therefore, for each x ∈ J,

|v(x)−u(x)| ≤ kεφ +(k+1)εµα α(x)+
m

∑
i=1

c3

∥

∥

∥
vx−i

−ux−i

∥

∥

∥

PC

+
c1ρ1−ω

(1− c2)Γ(ω)

m

∑
i=1

∫ xi

xi−1

(x
ρ
i − sρ )ω−1sρ−1 ‖vs −us‖PC ds

+
c1ρ1−ω

(1− c2)Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 ‖vs −us‖PC ds.

Thus,

|v(x)−u(x)| ≤ ε(φ +α(x))(k+(k+1)µα )+ ∑
0<xi<x

c3

∥

∥

∥
vx−i

−ux−i

∥

∥

∥

PC

+
c1(k+1)ρ1−ω

(1− c2)Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1 ‖vs −us‖PC ds. (4.2)

Now, we consider the function q1 defined by

q1(x) = sup{|v(s)−u(s)| : −r ≤ s ≤ x}, 0 ≤ x ≤ T,

then, there exists x∗ ∈ [−r,T ] such that q1(x) = |v(x∗)−u(x∗)|. If x∗ ∈ [−r,0], then q1(x) = 0. If x∗ ∈ [0,T ], then by the equation (4.2), we

get

q1(x) ≤ ε(φ +α(x))(k+(k+1)µα )+ ∑
0<xi<x

c3q1(x
−
i )

+
c1(k+1)ρ1−ω

(1− c2)Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1q1(s)ds.

Applying Lemma 2.9, we have,

q1(x) ≤ ε(φ +α(x))(k+(k+1)µα )×
[

∏
0<xi<x

(1+ c3)exp

(

∫ x

0

c1(k+1)ρ1−ω

(1− c2)Γ(ω)
(xρ − sρ )ω−1sρ−1ds

)

]

≤ lα ε(φ +α(x)),
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where

lα = (k+(k+1)µα )×
[

k

∏
i=1

(1+ c3)exp

(

c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)

]

= (k+(k+1)µα )

[

(1+ c3)exp

(

c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)]k

.

Thus, the problem (1.1) is Ulam-Hyers-Rassias stable with respect to (α,φ). Hence the proof is complete.

Now, we present the following Ulam-Hyers stable result.

Theorem 4.2. Assume that (A1)-(A3) and (3.3) are satisfied, then the problem (1.1) is Ulam-Hyers stable.

Proof. Let v ∈PC([−r,T ],R) be a solution of (2.2). Denote by u the unique solution of the problem.











ρ Dω
xm

u(x) = h(x,ux,
ρ Dω

xm
u(x)), x ∈ (xm,xm+1], m = 1, . . .k;

∆u|x=xm
= Im(ux−m ), m = 1, . . . ,k;

u(x) = v(x) = ψ(x), x ∈ [−r,0].

From the proof of the Theorem 4.1, we get

q1(x) ≤ ∑
0<xi<x

c3q1(x
−
i )+ kε +

ε(k+1)T ρω

ρω Γ(ω +1)
+

c1(k+1)ρ1−ω

(1− c2)Γ(ω +1)

∫ x

0
(xρ − sρ )ω−1sρ−1q1(s)ds.

Applying Lemma 2.9, we have

q1(x) ≤ ε

(

kρω Γ(ω +1)+(k+1)T ρω

ρω Γ(ω +1)

)

×
[

∏
0<xi<x

(1+ c3)exp

(

∫ x

0

c1(k+1)ρ1−ω (xρ − sρ )ω−1

(1− c2)Γ(ω)
sρ−1ds

)

]

≤ lα ε,

where,

lα =

(

kρω Γ(ω +1)+(k+1)T ρω

ρω Γ(ω +1)

)

[

k

∏
i=1

(1+ c3)exp

(

c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)

]

=

(

kρω Γ(ω +1)+(k+1)T ρω

ρω Γ(ω +1)

)[

(1+ c3)exp

(

c1(k+1)T ρω

(1− c2)ρω Γ(ω +1)

)]k

,

which completes the proof of the theorem.

Moreover, if we set γ(ε) = lα ε; γ(0) = 0, then the problem (1.1) is generalized Ulam-Hyers stable.

5. Examples

Example 5.1. Consider the following Katugampola-type impulsive problem,



























ρ D
1
2
xm

u(x) = e−x

(22+ex)

[

ux

1+ux
−

ρ D
1
2
xm u(x)

1+ρ D
1
2
xm u(x)

]

, for each x ∈ J0 ∪J1,

∆u|x= 1
2
=

u( 1
2

−
)

20+u( 1
2

−
)
,

u(x) = ψ(x), x ∈ [−r,0], r > 0,

(5.1)

where ψ ∈PC([−r,0],R), J0 = [0, 1
2 ], J1 = ( 1

2 ,1], x0 = 0, and x1 =
1
2 .

Let

h(x,u1,u2) =
e−x

(22+ ex)

[

u1

1+u1
− u2

1+u2

]

,

x ∈ [0,1], u1 ∈PC([−r,0],R) and u2 ∈ R. Clearly, the function h is jointly continuous.

Let u1, ū1 ∈PC([−r,0],R), u2, ū2 ∈ R and x ∈ [0,1]:

|h(x,u1,u2)−h(x, ū1, ū2)| ≤ e−x

22+ ex

(

‖u1 − ū1‖PC+ |u2 − ū2|
)

≤ 1

23

(

‖u1 − ū1‖PC+ |u2 − ū2|
)

.

Hence the condition (A2) is satisfied with c1 = c2 =
1
23 . And let,

I1(u1) =
u1

20+u1
, u1 ∈PC([−r,0],R)
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Let u1,u2 ∈PC([−r,0],R), then we have,

|I1(u1)− I2(u2)| =

∣

∣

∣

∣

u1

20+u1
− u2

20+u2

∣

∣

∣

∣

≤ 1

20
‖u1 −u2‖PC .

Let us assume k = 1,T = 1,ρ = 1,ω = 1
2 ,c1 = c2 =

1
23 ,c3 =

1
20 , Substitute these values in the inequality (3.3), we get

kc3 +
(k+1)c1T ρω

(1− c2)ρω Γ(ω +1)
= 0.2551 < 1,

It follows from Theorem 3.3, we get that the problem (5.1) has a unique solution on J. Now, we consider for any x ∈ [0,1], α(x) = x,

φ = 1,ρ = 1. Since

ρ Iω α(x) =
ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1ds

=
2

π

∫ x

0
(xρ − sρ )

−1
2 ds

≤ 2x√
π
,

then the condition (A6) is satisfied with µα = 2√
π

. Therefore, we get that the problem (5.1) is Ulam-Hyers-Rassias stable with respect to

(α,φ).

Example 5.2. Consider the following Katugampola-type impulsive problem,



































ρ D
1
2
xm

u(x) =
2+|ux|+

∣

∣

∣

∣

ρ D
1
2
xm u(x)

∣

∣

∣

∣

110ex+3

(

1+|ux|+
∣

∣

∣

∣

ρ D
1
2
xm u(x)

∣

∣

∣

∣

) , for each x ∈ J0 ∪J1,

∆u|x= 1
3
=

∣

∣

∣
u( 1

3

−
)
∣

∣

∣

8+
∣

∣

∣
u( 1

3

−
)
∣

∣

∣

,

u(x) = ψ(x), x ∈ [−r,0], r > 0,

(5.2)

where ψ ∈PC([−r,0],R), J0 = [0, 1
3 ], J1 = ( 1

3 ,1], x0 = 0, and x1 =
1
3 .

Let

h(x,u1,u2) =
2+ |u1|+ |u2|

110ex+3(1+ |u1|+ |u2|)
, x ∈ [0,1], u1 ∈PC([−r,0],R) and u2 ∈ R.

Clearly, the function h is jointly continuous. For any u1, ū1 ∈PC([−r,0],R), u2, ū2 ∈ R and x ∈ [0,1]:

|h(x,u1,u2)−h(x, ū1, ū2)| ≤
1

110e3

(

‖u1 − ū1‖PC+ |u2 − ū2|
)

.

Hence the condition (A2) is satisfied with c1 = c2 =
1

110e3 . We have, for each x ∈ [0,1],

|h(x,u1,u2)| ≤
1

110ex+3

(

2+‖u1‖PC+ |u2|
)

.

Thus, the condition (A4) is satisfied with p1(x) =
1

55ex+3 and p2(x) = p3(x) =
1

110ex+3 . Let

I1(u1) =
|u1|

8+ |u1|
, u1 ∈PC([−r,0],R).

We have, for each u1 ∈PC([−r,0],R),

|I1(u1)| ≤
1

8
‖u1‖PC+1.

Thus, the condition (A5) is satisfied with M∗
1 = 1

8 and M∗
2 = 1. It follows from Theorem 3.4 that the problem (5.2) has at least one solution

on J.

6. Conclusion

In this article, with the help of standard fixed point theorem of Schaefer’s and Banach contraction type, we successfully developed existence

of solutions of Katugampola-Caputo type implicit fractional differential equations with impulses. The obtained conditions ensure that the

existence of at least one solution to the proposed problem. Further different kinds of Ulam-Hyers and Ulam-Hyers-Rassias stability have

been investigated.
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[4] S. Abbas, M. Benchohra, G. M. N’Guérékata, Topics in Fractional Differential Equations, Springer Verlag, New York, 2012.
[5] A. Allaberen, D. Fadime, P. Zehra, A note on the fractional hyperbolic differential and difference equations, Appl. Math. Comput., 217(9) (2011),

4654–4664.
[6] A. Ashyralyev, F. Dal, Z. Pinar, On the numerical solution of fractional hyperbolic partial differential equations, Math. Probl. Eng., (2009), 1–11.
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Abstract

By Markowitz geometry we mean the intersection theory of ellipsoids and affine subspaces

in a real finite-dimensional linear space. In the paper we give a meticulous and self-contained

treatment of this arch-classical subject, which lays a solid mathematical groundwork of

Markowitz mean-variance theory of efficient portfolios in economics.

1. Introduction and notation

1.1. Introduction

In this paper we solve the following extremal problem: Given a positive dimensional affine subspace C ⊂ R
n, a linear form π which is not

constant on C, and a positive definite quadratic form v on R
n, find all points x0 ∈C such that

π(x0) = max
x∈C,v(x)≤v(x0)

π(x) and v(x0) = min
x∈C,π(x)≥π(x0)

v(x). (1.1)

It turns out that the locus of solutions of (1.1) is a ray E in C whose endpoint x0 is the foot of the perpendicular ρ0 from the origin O of the

coordinate system to the affine space C (perpendicularity is with respect to the scalar product obtained from v via polarization). Let hr be the

hyperplane with equation π(x) = r, r ∈ R, and let ρr be the perpendicular from O to the affine subspace C∩hr. If π(x0) = r0, v(x0) = a0,

then E = {ρr | r ≥ r0}, ρ0 = ρr0
, and the levels r = π(x) and a = v(x) are quadratically related along E: a = cr2.

Let x = t(x1, . . . ,xn) be the generic vector in R
n, let M be a proper subset of the set [n] = {1, . . . ,n} of indices, and let C = ∩ j∈Mh( j), where

h( j) are linearly independent hyperplanes with equations

π( j)(x) = τ j, τ j ∈ R, j ∈ M. (1.2)

In case the hyperplane Π = {x | x1 + · · ·+ xn = 1} is one of h( j)’s, we may interpret x ∈C as an n-assets financial portfolio, subject to the

linear constraints (1.2). Next, under certain conditions, see 4.2, we may interpret π(x) as the expected return on the portfolio x and v(x) as its

risk. Finally, we may interpret the elements of E as efficient portfolios from Markowitz mean-variance theory in economics, considered

from purely geometrical point of view. The famous pioneering work [1] is written in this fashion and the condition for nonnegativity of the

variables (due to lack of short sales) distorts the picture there and forces the use of variants of simplex method in Markowitz’s monograph [2].

Thus, instead of the ray E of efficient portfolios, we have to examine a more sophisticated piecewise set EM of linear segments enclosed in

the compact trace ∆ of the unit simplex in Π on C. If x0 ∈ EM\E ∩∆, then

π(x0)< max
x∈C,v(x)≤v(x0)

π(x) or v(x0)> min
x∈C,π(x)≥π(x0)

v(x),

that is, the maximum π(x0) of the expected return decreases or the minimum v(x0) of the risk increases, which is our point of departure.

In section 1, Theorem 2.3, we show that the trace Qa ∩C of an ellipsoid Qa with equation v(x) = a in R
n on the affine space C is again an

ellipsoid in case a ≥ γM(τ), where γM(τ) is a positive definite quadratic form in the variables τ = (τ j) j∈M ∈ R
M . The center of the ellipsoid

Qa ∩C is the foot of the perpendicular ρ0 from O to C, and, moreover, we find its equation in terms of appropriate coordinates on C.
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The inequality a ≥ γM(τ) determines an ”elliptic” cone γ̂M in R×R
M , which is the base of the bundle ξ described in Theorem 2.11. By

dragging the ellipsoids a = γM(τ) ”upward” (a is increasing) we establish a real algebraic variety ΓM which is the frontier of γ̂M and branch

locus of ξ . The fibres of ξ over the points in the interior of γ̂M are ellipsoids which degenerate into their centers over ΓM . Using this

bundle, we obtain that the image (the shadow) of an ellipsoid in R
n via projection parallel to some subspace, is again an ellipsoid — see

Proposition 2.14.

In section 2 we prove some extremal properties of the tangential points of members of a family of eccentric ellipsoids and parallel hyperplanes

in R
n. These two sections stick together in section 3 where we prove that the ray E is the locus of all efficient Markowitz portfolios and give

interpretation of the geometrical results in terms of Markowitz mean-variance theory.

1.2. Notation

For any positive integer n we identify the members of the real linear space Rn with matrices of type n×1: x = t(x1, . . . ,xn), where the sign t

means the transpose of a matrix. We set O = t(0, . . . ,0) ∈ R
n and denote by (ei)

n
i=1 the standard basis in R

n. Say that M = { j1, . . . , jm},

j1 < · · · < jm, be a proper subset of the set of indices [n] = {1, . . . ,n}. Given a vector x = t(x1, . . . ,xn), we denote by x(M) the vector
t(x j1 , . . . ,x jm) ∈ R

M . Moreover, indexed Greek letters τ(M), etc., mean vectors t(τ j1 , . . . ,τ jm), etc., from the linear space R
M . In case K is

a proper subset of the set M and we fix all τ j, j ∈ K, and vary τ j, j ∈ L, where L = M \K, then, with some abuse of notation (the fixed

components are supposed to be known), we write τ(M) = τ(L,K).

Given a symmetric n×n matrix Q, by Q(M) we denote the principal m×m submatrix of Q, obtained by suppressing the rows and columns

with indices which are not in M.

For a positive definite quadratic form v(x) = txQx on R
n with matrix Q we denote Qa = {x ∈R

n | v(x) = a}, a ≥ 0. The set Qa is an ellipsoid

with center O in R
n for all a > 0. In case n = 1 the ”ellipsoid” Qa consists of two (possibly coinciding) points. We extend this terminology

by defining the singleton {O} to be an ”ellipsoid” when a = 0 as well as in the case of zero-dimensional linear space.

For any a ≥ 0 we denote Q≤a = {x ∈ R
n | v(x)≤ a} and Q<a = {x ∈ R

n | v(x)< a}. Note that Q≤a and Q<a are strictly convex sets.

We let π(x) = p1x1 + · · ·+ pnxn be a linear form and let us denote by hr the hyperplane in R
n, defined by the equation π(x) = r, r ∈ R. Let

hr(≤) denote the half-space {x ∈ R
n | π(x)≤ r}. The meaning of notation hr(≥), hr(<), and hr(>) is clear.

The standard scalar product (x,y) = txy in R
n produces the standard norm ‖x‖ with ‖x‖2 = (x,x). We set Sn−1 = {x ∈ R

n | ‖x‖= 1} (the

unit sphere).

The scalar product 〈x,y〉 = txQy in R
n produces the Q-norm ‖x‖Q with ‖x‖2

Q = 〈x,x〉 = v(x) and the Q-distance distQ (x,y) = ‖x− y‖Q.

Thus, the ellipsoid Qa is a Q-sphere with Q-radius
√

a. Two vectors x and y are said to be Q-perpendicular, if 〈x,y〉= 0.

Throughout the rest of the paper we assume that n is a positive integer and m is a nonnegative integer with m < n. Moreover, we suppose that

if a proper subset M of the set [n] of indices is given as a list: M = { j1, . . . , jm}, then j1 < · · ·< jm.

2. Ellipsoids and affine subspaces

2.1. Intersections of quadric hypersurfaces and affine subspaces

Let M ⊂ [n] be a set of indices of size m, M = { j1, . . . , jm}, and let (h( j)) j∈M be a family of linearly independent affine hyperplanes in R
n.

The system of coordinates can be chosen in such a way that the hyperplane h( j) has equation x j = τ j, τ j ∈ R. We denote by h(τ(M)) the

intersection ∩ j∈Mh( j). The family {h(τ(M)) | τ(M) ∈ R
M} consists of all (n−m)-dimensional affine spaces in R

n, which are orthogonal to

the m-dimensional vector subspace generated by the vectors e j, j ∈ M.

Let Q = (qi j)
n
i, j=1 be a symmetric matrix. For any j ∈ M we denote by ρ

(Q;Mc)
−, j the j-th column of the (n−m)×n matrix obtained from

Q by deleting the rows indexed by the elements of M. Thus, ρ
(Q;Mc)
−, j is a vector in R

n−m with components ρ
(Q;Mc)
i, j = qi j, i ∈ Mc. Given a

vector τ(M) ∈ R
M , τ(M) = t(τ j1 , . . . ,τ jm), we set ρ

(Q;Mc)

−,τ(M) = ∑
m
k=1 τ jk ρ

(Q;Mc)
−, jk

. By

α(Q;M)(x) =
n

∑
j,k∈M

q jkx jxk

we denote the quadratic form which corresponds to the principal submatrix Q(M) of Q.

Let Mc = {i1, . . . , in−m}. In case the submatrix Q(Mc) is invertible, let

x(M
c) = t(c

(Q;Mc)
i1

(τ(M)), . . . ,c
(Q;Mc)
in−m

(τ(M)))

be the solution of the matrix equation

Q(Mc)x(M
c) =−ρ

(Q;Mc)

−,τ(M) . (2.1)

We set

c(Q;Mc)(τ(M)) = t(c
(Q;Mc)
1 (τ(M)), . . . ,c

(Q;Mc)
n (τ(M))),

where c
(Q;Mc)
j (τ(M)) = τ j for j ∈ M. In particular, c(Q;Mc)(τ(M)) ∈ h(τ(M)). In case L ⊂ M, L = {ℓ1, . . . , ℓλ }, we set

c
(Q;Mc)
L (τ(M)) = t(c

(Q;Mc)
ℓ1

(τ(M)), . . . ,c
(Q;Mc)
ℓλ

(τ(M))).

Note that if M = /0, then c(Q;[n])(τ( /0)) = 0. We write c(Q;Mc)(τ(M)) = c(M
c)(τ), and, similarly, ρ

(Q;Mc)

−,τ(M) = ρ
(Mc)
−,τ , etc., when the context allows

that.
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Since the vector ρ
(Mc)
−,τ ∈ R

n−m depends linearly on τ(M), the map

ψM : RM → R
n, τ(M) 7→ c(M

c)(τ(M)),

is an injective homomorphism of linear spaces. We set E f f (Q;Mc) = ψM

(

R
M
)

and note that E f f (Q;Mc) is an m-dimensional subspace of Rn.

Below we use also the short notation E f f (M
c) = E f f (Q;Mc) when the matrix Q is given by default.

Lemma 2.1. Let K and M be proper subsets of the set of indices [n] with K ⊂ M. Let Q(Kc) and Q(Mc) be invertible submatrices of Q. The

following two statements are equivalent:

(i) One has c(K
c)(τ) ∈ h(τ(M)).

(ii) One has c(K
c)(τ) = c(M

c)(τ).

Proof. We have h(τ(M))⊂ h(τ(K)) and let us assume K 6= M. It is enough to prove that (i) implies (ii). Let c(K
c)(τ) ∈ h(τ(M)). We remind

that the hyperplane h( j) has equation h( j) : x j = τ j for any j ∈ M. In particular, for each j ∈ Kc \Mc = M \K we obtain c
(Kc)
j (τ) = τ j.

Therefore c(K
c)(τ)Mc is a solution of the equation (2.1). The uniqueness of this solution implies c(K

c)(τ) = c(M
c)(τ).

Corollary 2.2. One has

E f f (K
c)∩h

(

τ(M)
)

⊂ E f f (Mc) .

Now, let us fix all components of τ(M) ∈ R
M , except r = τℓ for some ℓ ∈ M, so τ(M) = τ({ℓ},M\{ℓ})(r). When we vary r ∈ R, then

τ({ℓ},M\{ℓ})(r) describes a straight line in R
M and hence c(M

c)(τ({ℓ},M\{ℓ})(r)) describes a straight line in R
n which we denote by E f f

(Q;Mc)
ℓ

.

Its ray {c(M
c)(τ({ℓ},M\{ℓ})(r)) | r ≥ b}, b ∈ R, is denoted by E f f

(Q;Mc)
ℓb+ .

Let us set

γ
(Q)
M (τ) = α(Q;M)(τ)−α(Q;Mc)(c

(Q;Mc)
i1

(τ), . . . ,c
(Q;Mc)
in−m

(τ)).

Since α(Q; /0)(x) = 0 and c
(Q;[n])
1 (τ) = · · ·= c

(Q;[n])
n (τ) = 0, we obtain γ

(Q)
/0 (τ) = 0. We write γ

(Q)
M (τ) = γM(τ) when the matrix Q is known

from the context.

It follows from Lemma A.2, (i), that γM(τ) is a quadratic form in τ(M).

Let us move the origin of the coordinate system by the substitution x = z(τ(M))+ c(M
c)(τ(M)). Then the restrictions of the components of

both x(M
c) and z(M

c)(τ(M)) on h(τ(M)) are coordinate functions in this (n−m)-dimensional affine space.

Let v(x) = txQx be the quadratic form produced by the symmetric nonzero n×n-matrix Q. Thus, Qa : v(x) = a is a quadric in R
n for generic

a ∈ R and the real variety qa,τ(M) = Qa ∩h(τ(M)) is defined in h(τ(M)) by the equation

tx(M
c)Q(Mc)x(M

c)+2tρ
(Mc)
−,τ x(M

c)+αM(τ)−a = 0. (2.2)

Let us set

v(M
c)(z(τ(M))) = tz(M

c)(τ(M))Q(Mc)z(M
c)(τ(M)). (2.3)

In case the principal submatrix Q(Mc) is invertible, Lemma A.3 implies that v(x) = v(M
c)(z(τ(M)))+ γM(τ(M)) on h(M), and in terms of

z-coordinates the equation (2.2) has the form

v(M
c)(z(τ(M))) = a− γM(τ(M)). (2.4)

2.2. Intersections of ellipsoids and affine subspaces

Let v(x) = txQx be a positive definite quadratic form produced by the symmetric (positive definite) n× n-matrix Q. This being so,

Qa : v(x) = a is an ellipsoid in R
n for a > 0, Q0 = {0}, and Qa = /0 for a < 0. In particular, Q(Mc) is a principal, hence positive definite,

submatrice of Q. Thus, the quadratic form (2.3) is positive definite.

In accord with (2.2) and (2.4), we establish parts (ii), (iii), and (iv) of the next theorem. Part (i) is proved in Lemma A.2, (ii).

Theorem 2.3. Let the quadratic form v(x) = txQx be positive definite.

(i) If M 6= /0, then the quadratic form γM(τ) is positive definite.

(ii) If a > γM(τ), then qa,τ(M) is an ellipsoid in the (n−m)-dimensional vector space h(τ(M)) with center c(M
c)(τ) and Q(Mc)-radius

√

a− γM(τ).

(iii) If a = γM(τ), then qa,τ(M) = {c(M
c)(τ)}.

(iv) If a < γM(τ), then the set qa,τ(M) is empty.

Remark 2.4. We remind that ellipsoid in an one-dimensional affine subspace is a set consisting of two points and its center is the midpoint.

Remark 2.5. In accord with Lemma 3.2, the affine subspace h(τ(M)) is tangential to the ellipsoid Qa, a = γM(τ), at the point x = c(M
c)(τ).

Remark 2.6. In view of the previous remark, Lemma 2.1 has transparent geometrical meaning: If the subspace h(τ(M)) of h(τ(K)) passes

through the point x = c(K
c)(τ), then h(τ(M)) is also tangential to Qa at x.

We obtain immediately the following corollary:
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Corollary 2.7. (i) For any x ∈ h(τ(M)) one has v(x)≥ γM(τ) and an equality holds if and only if x = c(M
c)(τ).

(ii) The point c(M
c)(τ) ∈ h(τ(M)) is the foot of Q-perpendicular from the origin O to the affine subspace h(τ(M)) and one has

distQ

(

O,h
(

τ(M)
))

= c(M
c)(τ)Q =

√

γM(τ).

Corollary 2.8. Let K and L be disjoint subsets of M with K ∪L = M. One has

(i) If a= γM(τ(M)), then the trace qa,τ(K) of the ellipsoid Qa on the affine space h(τ(K)) is nonempty and the affine subspace h(τ(M))⊂ h(τ(K))

is tangential to the ellipsoid qa,τ(K) at the point c(Q;Mc)(τ(M)).

(ii) c(Q;Mc)(τ(M)) = c(Q;Kc)(τ(K))+ c(Q(Kc);Mc)(τ(L)− c
(Q;Kc)
L (τ(K)))

and

(iii) γ
(Q)
M (τ(M)) = γ

(Q)
K (τ(K))+ γ

(Q(Kc))
L (τ(L)− c

(Q;Kc)
L (τ(K))).

Proof. Both assertions hold when one of the sets M, K, or L, is empty.

(i) The equalities

qa,τ(M) = qa,τ(K) ∩h(τ(L)) = qa,τ(K) ∩h(τ(M)) = Qa ∩h(τ(M))

and Theorem 2.3, (ii) – (iv), yield that under the condition a = γM(τ(M)) we have

qa,τ (K) ∩h(τ(M)) = {c(Q;Mc)(τ(M))}. (2.5)

In particular, a ≥ γK(τ
(K)) and in this case qa,τ(K) is an ellipsoid in the vector space h(τ(K)) endowed with coordinate functions

(z
(Kc)
s (τ(K)))s∈Kc . The point {c(Q;Kc)(τ(K))} is both the origin of the coordinates and the center of the ellipsoid qa,τ(K) which has equation

tz(K
c)(τ(K))Q(Kc)z(K

c)(τ(K)) = a− γK(τ
(K)).

Therefore we have

qa,τ(K) = Q
(Kc)

a−γK(τ(K))
.

Because of (2.5), the trace h(τ(M)) of h(τ(L)) on h(τ(K)) is tangential to qa,τ(K) at the point c(Q;Mc)(τ(M)) (Note that in case qa,τ(K) =

{c(Q;Mc)(τ(M))} we have c(Q;Mc)(τ(M)) = c(Q;Kc)(τ(K)) and h(τ(M)) is also tangential to qa,τ(K) at the point c(Q;Mc)(τ(M)) — see Remark 3.1).

(ii) The affine subspace h(τ(M)) is defined in h(τ(K)) by the equations z
(Kc)
s (τ(K)) = τs − c

(Q;Kc)
s (τ(K)), s ∈ L (we have L ⊂ Kc). Hence

the difference c(Q;Mc)(τ(M))− c(Q;Kc)(τ(K)) of points in the affine subspace h(τ(K)) ⊂ R
n coincides with the vector c(Q(Kc);Mc)(τ(L) −

c
(Q;Kc)
L (τ(K))) and we have obtained part (ii). The equalities a− γK(τ

(K)) = γ
(Q(Kc))
L (τ(L)− c

(Q;Kc)
L (τ(K))) and a = γM(τ(M) yield assertion

(iii).

Remark 2.9. Since the vector c(Q(Kc))(τ(K)) is Q-perpendicular to the affine subspace h(τ(K)) and since the vector c(Q(Kc);Mc)(τ(L) −
c
(Q;Kc)
L (τ(K))) lies in this subspace, part (ii) of the above corollary is Pythagorean theorem.

Remark 2.10. It follows from Theorem of three perpendiculars that the vector c(Q(Kc);Mc)(τ(L)− c
(Q;Kc)
L (τ(K))) is Q-perpendicular to the

affine subspace h(τ(M)).

2.3. A bundle

Let us consider the (m+ 1)-dimensional space R×R
M with generic vector t(a,τ(M)), endowed with standard topology and let γ̂M =

{t(a,τ(M)) ∈ R×R
M | a ≥ γM(τ)}. The set γ̂M is the closed region in R×R

M , which consists of all points above the graph ΓM of the

quadratic function a = γM(τ) when M 6= /0 and γ̂ /0 = [0,∞)×{0}. In all cases pra(γ̂M) = [0,∞). The set ΓM is an algebraic variety (hence a

closed set) in R×R
M and the difference γ̃M = γ̂M\ΓM is an open set, both being nonempty.

Let γM(τ) = tτ(M)Rτ(M), where R is a symmetric M×M-matrix. In accord with Theorem 2.3, (i), in case M 6= /0, the matrix R is positive

definite. If M = /0, then R is the empty matrix. Given a ≥ 0, we set Ra = {τ(M) ∈R
M | γM(τ(M)) = a} and note that Ra is an ellipsoid in R

M .

Any level set Γa,M = {t(a,τ(M)) ∈ R×RM | a = γM(τ)}, a > 0, is isomorphic to the ellipsoid Ra in R
M , and Γ0,M = {(0,0)}. Given a ≥ 0,

let us denote E f f (a;Mc) =
{

x ∈ R
n | x = c(M

c)(τ), t
(

a,τ(M)
)

∈ Γa,M

}

. We define a morphism of real algebraic varieties by the rule

ϕM : Rn → R×R
M , x 7→t

(

v(x),x(M)
)

.

Theorem 2.3 yields ϕM(Rn)= γ̂M , we set ΦM =ϕ−1
M (γ̂M), and denote the restriction of ϕM on ΦM by the same letter. Since ϕ−1

M (t(a,τ(M)))=
qa,τ(M) , we establish the following:

Theorem 2.11. Let ξ = (ΦM ,ϕM , γ̂M) be the bundle defined by the map ϕM .

(i) The restriction ξ|γ̃M
is a fibration with fibres ϕ−1

M (t(a,τ(M))) = qa,τ(M) , t(a,τ(M))∈ γ̃M , which are ellipsoids in R
n−m with centers c(M

c)(τ).

(ii) The restriction ξ|ΓM
is an isomorphism of real algebraic m-dimensional varieties with inverse isomorphism ΓM → E f f (M

c), t(a,τ(M)) 7→
c(M

c)(τ), which maps any level set Γa,M onto E f f (a;Mc).

Corollary 2.12. The set E f f (a;Mc) is a real algebraic subvariety of Qa, which is isomorphic via ξ | ΓM to the ellipsoid Γa,M .

Taking into account Remark 2.5, we obtain immediately the following:

Corollary 2.13. The family {h(τ(M)) | τ(M) ∈ Γa,M} consists of all (n−m)-dimensional affine spaces in R
n, which are both orthogonal to

the m-dimensional vector subspace generated by the vectors e j, j ∈ M, and tangential to the ellipsoid Qa.
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2.4. A shadow

Let us denote by ζM the restriction of the second projection pr2 : R×R
M →R

M on γ̂M . The composition φM = ζM ◦ϕM is the restriction on

ΦM of the projection of Rn parallel to the subspace W defined by x(M) = 0: φM : Rn →W⊥, φM(x) = x(M), and, moreover, φ−1
M (τ(M)) =

h(τ(M)). Since the set E f f (a;Mc) ⊂ Qa is mapped via φM onto the ellipsoid Ra in R
M and since the internal points of Qa are mapped onto

the internal points of Ra, we can formulate the result from Corollary 2.13 as solution of a shadow problem:

Proposition 2.14. All (n−m)-dimensional affine spaces in R
n with common direction vector subspace W, which are also tangential to an

ellipsoid Qa in R
n, intersect the orthogonal complement W⊥ at the points of an ellipsoid Ra in W⊥ ≃ R

M . All affine spaces in R
n which

have nonempty intersection with the interior of Qa and are parallel to W intersect W⊥ at the internal points of Ra.

3. Ellipsoids and hyperplanes

3.1. Ellipsoids and their tangent spaces

Let v(x) = txQx be a positive definite quadratic form. The equation of the tangent space θx0
of the ellipsoid Qa : v(x) = a, a > 0, at the point

x0 ∈ Qa is

θx0
(x) = a,

where θx0
(x) = tx0Qx. For all x ∈ Qa we have x 6= 0 and since the matrix Q has rank n, we obtain Qx0 6= 0. In particular, θx0

is a hyperplane

and Qa is a smooth hypersurface in R
n.

Remark 3.1. The tangent space of the ”ellipsoid” Q0 = {O} at its only point x0 = O is Rn. In particular, any linear subspace of Rn is

tangential to Q0.

Let a > 0 and let us fix a point x0 ∈ Qa. For any vector u ∈ Sn−1 we denote for short by Lu the line {z ∈ R
n | z = x0 + tu, t ∈ R}.

Lemma 3.2. One has

Lu ∩Q≤a = {x0 + tu | 0 ≤ t ≤−2
θx0

(u)

v(u)
}, Lu ∩Qa = {x0,x0 −2

θx0
(u)

v(u)
u}.

Proof. The inequality v(x0 + tu)≤ a is equivalent to 2θx0
(u)t + v(u)t2 ≤ 0 and the equality holds if and only if t = 0 or t =−2

θx0
(u)

v(u)
.

Lemma 3.3. Let x0 ∈ Qa.

(i) One has Q≤a ⊂ θx0
(≤).

(ii) One has Q≤a ∩θx0
= Qa ∩θx0

= {x0}.

(iii) One has Q≤a\{x0} ⊂ θx0
(<).

Proof. (i) Let y ∈ Q≤a, y 6= x0, and let y ∈ Lu. In accord with Lemma 3.2, y = x0 + tu where 0 ≤ t ≤ −2
θx0

(u)

v(u)
. We have θx0

(y) =

θx0
(x0)+ tθx0

(u) = a+ tθx0
(u)≤ a−2

(θx0
(u))2

v(u)
≤ a.

(ii) Let us suppose that there exists a point y, y 6= x0, with y ∈ Q≤a ∩θx0
and let u = 1

‖y−x0‖ (y−x0). Then θx0
(u) = 0, y ∈ Lu, and Lemma 3.2

implies Lu ∩Q≤a = {x0} — a contradiction with y ∈ Lu ∩Q≤a. Now, because of the inclusions {x0} ⊂ Qa ∩θx0
⊂ Q≤a ∩θx0

= {x0}, part

(ii) is proved.

Parts (i) and (ii) yield part (iii).

We remind that hr is a hyperplane in R
n, defined by the equation π(x) = r, where π(x) is a non-zero linear form, and qa,r = Qa ∩hr.

Lemma 3.4. Let x0 ∈ qa,r.

(i) If Qa ⊂ hr(≤), then hr = θx0
.

(ii) If Q<a0
⊂ hr0

(<), then Qa ⊂ hr(≤).

Proof. (i) When y varies through Qa\{x0}, then u = 1
‖y−x0‖ (y− x0) varies bijectively through Sn−1 ∩ θx0

(<). On the other hand, since

Qa ⊂ hr(≤), then y ∈ Qa\{x0} yields π(y)≤ r, that is, π(x0 −2
θx0

(u)

v(u)
u)≤ r, and hence θx0

(u)π(u)≥ 0 for all u ∈ Sn−1 ∩θx0
(<). The last

inequality also holds for all u ∈ Sn−1 ∩θx0
(>) because θx0

(−u)π(−u)≥ 0. Thus, we have θx0
(u)π(u)≥ 0 for all u ∈ Sn−1, therefore for all

vectors u ∈ R
n. If the linear forms θx0

and π are not proportional, then after an appropriate change of the coordinates, θx0
and π can serve as

coordinate functions in R
n — a contradiction.

(ii) Let y ∈ Qa and let us set yn = (1− 1
n )y for any positive integer n. Then yn ∈ Q<a0

and limn→∞ yn = y. Since Q<a0
⊂ hr0

(<), we obtain

hr0
(yn)< r0, hence hr0

(y)≤ r0.
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3.2. Some extremal properties

Let hr : π(x) = r be a hyperplane in R
n, π(x) = p1x1 + · · ·+ pnxn, and let us set p = t(p1, . . . , pn). We denote qa,r = Qa ∩hr.

Lemma 3.5. Let x0 ∈ Rn\{0}, a > 0, and r > 0. The following four statements are equivalent:

(i) One has x0 ∈ qa,r and Qx0 ∈ Rp.

(ii) One has rQx0 = ap and a = r2(tpQ−1 p)−1.

(iii) One has x0 ∈ qa,r and θx0
= hr.

(iv) One has qa,r = {x0}.

Proof. (i) =⇒ (ii) Let Qx0 = bp, b ∈ R. We have

a = v(x0) =
t x0Qx0 =

tx0(bp) = btpx0 = bπ(x0) = br,

therefore rQx0 = ap. On the other hand, we obtain

a = tx0Qx0 =
a

r
tpQ−1 a

r
p =

a2

r2
tpQ−1 p,

hence a = r2(tpQ−1 p)−1.

(ii) =⇒ (i) We have Qx0 ∈ Rp, and, moreover, tx0 = a
r

tpQ−1. π(x0) =
tpx0 = tx0 p = a

r
tpQ−1 p = a

r
r2

a = r, hence x0 ∈ hr. Finally,

v(x0) =
tx0Qx0 =

a
r

tpQ−1Qx0 =
a
r

tpx = a
r π(x0) = a, therefore x0 ∈ Qa.

The equivalence of parts (i) and (iii) is straightforward. Part (iii) and Lemma 3.3, (ii), imply part (iv).

(iv) =⇒ (iii) Let L = {x0 + tz | t ∈ R}, z 6= 0, be a line in hr, that is, π(z) = 0. The roots of the quadratic equation v(x0 + tz) = a correspond

to the intersection points of the line L and the ellipsoid Qa. Taking into account that v(x0 + tz) = v(x0)+2θx0
(z)t + v(z)t2, we obtain the

equivalent equation 2θx0
(z)t + v(z)t2 = 0. Since qa,r = {x0}, this quadratic equation has a double root t = 0, that is, θx0

(z) = 0. Thus, we

obtain L ⊂ θx0
and therefore θx0

= hr.

Corollary 3.6. Under conditions (i) – (iv) one has θx0
(x) = a

r π(x).

Remark 3.7. If x0 = 0, then parts (i), (ii), and (iv) of Lemma 3.5 hold for a = r = 0.

Let us set cp = (tpQ−1 p)−1, E
(Q)
p = {(a,r) | a = cpr2,r ≥ 0}, x(a,r) = a

r Q−1 p for any (a,r) ∈ E
(Q)
p with r > 0, x(0,0) = 0, and

E f
(Q)
p = {x ∈ R

n | x = x(a,r), (a,r) ∈ E
(Q)
p }.

Thus, the set e f
(Q)
p consists of all vectors x ∈ R

n which satisfy the four equivalent conditions from Lemma 3.5. Note that 0 ∈ e f
(Q)
p and if

x(a,r) ∈ e f
(Q)
p , then {x(a,r)}= qa,r. In other words, Lemma 3.5 implies

Corollary 3.8. One has

e f
(Q)
p = ∪r≥0,a=cpr2 qa,r.

In case M is a singleton, Theorem 2.3 yields the following two corollaries:

Corollary 3.9. Let x,x0 ∈ e f
(Q)
p , x = x(a,r), x0 = x(a0,r0).

(i) If a = a0, then qa,r0
= {x0}.

(ii) If a > a0, then qa,r0
is an ellipsoid in the hyperplane hr0

.

(iii) If a < a0, then qa,r0
= /0.

Corollary 3.10. Let x,x0 ∈ e f
(Q)
p , x = x(a,r), x0 = x(a0,r0).

(i) If r = r0, then qa0,r = {x0}.

(ii) If r < r0, then qa0,r is an ellipsoid in the hyperplane hr0
.

(iii) If r > r0, then qa0,r = /0.

Corollaries 3.9 and (3.10) imply the following two equivalent propositions:

Proposition 3.11. Let x,x0 ∈ e f
(Q)
p , x = x(a,r), x0 = x(a0,r0). One has

r0 = max
qa0 ,r

6= /0
r and a0 = min

qa,r0
6= /0

a.

Proposition 3.12. Given x0 ∈ e f
(Q)
p , one has

π(x0) = max
x∈e f

(Q)
p ,v(x)≤v(x0)

π(x) and v(x0) = min
x∈e f

(Q)
p ,π(x)≥π(x0)

v(x).

It turns out that we can trow out the constraint condition x ∈ e f
(Q)
p from Proposition 3.12. We have the following theorem (compare, for

example, with [3, Section 2]).
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Theorem 3.13. Let x0 ∈ qa0,r0
and r0 ≥ 0. The following six statements are equivalent:

(i) One has x0 ∈ e f
(Q)
p .

(ii) One has

π(x0) = max
v(x)≤a0

π(x) and v(x0) = min
π(x)≥r0

v(x).

(iii) One has

π(x0) = max
v(x)≤a0

π(x). (3.1)

(iv) One has

π(x0) = max
v(x)=a0

π(x).

(v) One has

v(x0) = min
π(x)≥r0

v(x).

(vi) One has

v(x0) = min
π(x)=r0

v(x).

Proof. Below we prove only these implications which are not straightforward.

If r0 = 0 and x0 = x(a0,0) ∈ e f
(Q)
p , then a0 = 0, x0 = 0, and the equivalences hold. Now, let r0 > 0. In particular, we have x0 6= 0.

(i) =⇒ (ii) According to Lemma 3.5, (iii), and Corollary 3.6 we have x0 ∈ qa0,r0
and θx0

(x) = a0

r0
π(x). Let us suppose v(x)≤ a0 for x ∈ R

n.

Then Lemma 3.3, (i), imply π(x) ≤ r0. Now, let π (x) ≥ r0, that is, θx0
(x) ≥ a0 for some x ∈ R

n. In this case Lemma 3.3, (iii), yields

v(x)≥ a0.

(iii) =⇒ (i) Let x0 satisfies condition (3.1). Lemma 3.4, (i), imply θx0
= hr0

. Now Lemma 3.5, (iii), finishes the proof.

(v) =⇒ (i). Since Q<a0
⊂ hr0

(<), Lemma 3.4 yields θx0
= hr0

. In accord with Lemma 3.5, (iii), part (i) holds.

4. Markowitz geometry

In this section we unite the results from the previous two sections and give complete characterization of the tangent points of a family of

concentric ellipsoids and a family of parallel hyperplanes in an affine subspace of Rn.

4.1. The equality

Let M 6= /0, ℓ ∈ M, and let us set L = {ℓ}, K = M \ L. Let us fix all components of τ(K) ∈ R
K : τ(K) = µ(K), and set h(K) = h(µ(K)),

ρ(K) = c(Q;Kc)(µ(K)), γ(K) = γK(µ
(K)). We denote r = τℓ, ρ = ρ

(K)
ℓ

, r′ = r−ρ , so τ(M) = τ(L,K)(r). Finally, we set a = γM(τ(L,K)(r)).

We remind that after the translation z = x−ρ(K) of the coordinate system, (zs)s∈Kc , where zs = z
(Kc)
s , is a system of coordinate functions on

the affine subspace h(K) with origin ρ(K). In this case h(τ(M)) = h(τ(L,K)(r)) is a hyperplane in h(K) with equation zℓ = r′. In particular,

the corresponding ℓ-th coordinate vector p ∈ R
Kc

(the ℓ-th component of p is 1 and all other components are zeroes) is a normal vector of

h(τ(L,K)(r)) in h(K). We set π(x) = xℓ, π(Kc)(z) = zℓ, and note that the linear form π(Kc)(z) is the restriction on h(K) of the linear form π(x),
written in terms of z. It follows from Corollary 2.8, (i), that the trace qa,µ(K) of the ellipsoid Qa on affine space h(K) is nonempty and the

hyperplane h(τ(L,K)(r)) is tangential to the ellipsoid qa,µ(K) at the point c(Q;Mc)(τ(L,K)(r)).

In order to stick together notation from sections 2 and 3 in this case, we set a′ = a−γ(K), h(τ(L,K)(r)) = hr′ , qa′,r′ = qa,µ(K) ∩hr′ = Q
(Kc)
a′ ∩hr′ .

Theorem 4.1. (i) If r′ ≥ 0, then

x(a′,r′) = c(Q;Mc)(τ(L,K)(r)) (4.1)

and x(0,0) = ρ(K).

(ii) One has

e f f
(Q;Mc)
ℓρ+ = e f

(Q(Kc))
p .

Proof. (i) The affine space h(τ(L,K)(r)) is a hyperplane in h(K), which is tangential to the ellipsoid qa,µ(K) at the point c(Q;Mc)(τ(L,K)(r)). In

particular, Q
(Kc)
a′ ∩hr′ = {c(Q;Mc)(τ(L,K)(r))} and Lemma 3.5, (ii), yields a′ = cpr′2 for cp = (tpQ−1 p)−1. Therefore, when r′ ≥ 0, we have

(a′,r′) ∈ E
(Q)
p and the equality (4.1) holds. In addition, if r′ = 0, then a′ = 0, γM(τ(L,K)(r)) = γ(K), and Corollary 2.8, (ii), (iii), implies

γ
(Q(Kc))
L (τ(L)− c

(Q;Kc)
L (µ(K))) = 0, hence

c(Q(Kc);Mc)((τ(L)− c
(Q;Kc)
L (µ(K)))) = 0.

In other words,

c(Q;Mc)(τ(L,K)(ρ)) = c(Q;Kc)(µ(K)).

This shows that x(0,0) = c(Q;Kc)(µ(K)) = ρ(K) and the equality (4.1) proves part (i) which, in turn, yields part (ii).
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Theorem 4.2. Let x0 = c(Q;Mc)(τ(L,K)(r0)) ∈ e f f
(Q;Mc)
ℓρ+ . One has r0 = π(x0) and if a0 = v(x0), then

π(x0) = max
x∈h(K),v(x)≤a0

π(x) and v(x0) = min
x∈h(K),π(x)≥r0

v(x). (4.2)

Proof. According to Theorem 4.1, we have r′0 = r0 −ρ ≥ 0, hence x0 = x(a0,r0) ∈ e f
(Q(Kc))
p . Let x0 = z0 +ρ(K). Theorem 3.13, (i), (ii),

implies

π(Kc)(z0) = max
z∈h(K),v(K

c)(z)≤a′0

π(Kc)(z)

and

v(K
c)(z0) = min

z∈h(K),π(Kc)(z)≥r′0
v(K

c)(z).

Since π(Kc)(x) = π(z)+ρ , v(x) = v(K
c)(z)+ γ(K) on h(K), and since r′0 = r0 −ρ , a′0 = a0 − γ(K), we establish the extremal property (4.2).

4.2. The interpretation

Let k, m, and n be integers with n ≥ 2, 0 ≤ k < n−1, m = k+1, and let M = {n− k,n− k+1, . . . ,n}, K = {n− k+1, . . . ,n}, L = {n− k}.

Let h( j) : π( j)(y) = τ j, j ∈ M, be linearly independent affine hyperplanes in R
n. We fix h(n) : y1 + · · ·+ yn = 1, so τn = 1, and denote this

hyperplane by Π. Since π( j)(y) are linearly independent linear forms, we can change the coordinates in R
n: y = Ax, in such a way that the

hyperplane h( j) has equation x j = τ j, j ∈ M, and, moreover, xi = yi, i ∈ [n]\M.

We fix τ(K): τ(K) = µ(K) (µn = 1), and interpret h(n) = Π as the hyperplane consisting of all financial portfolios with n assets (here ys is

the relative amount of money invested in the s-th asset, s = 1, . . . ,n). The affine subspace h(n−k+1)∩ . . .∩h(n−1) (which is equal to R
n if

m = 2) represents several additional linear constrain conditions and its trace on Π is the affine space C = h(K) = h(n−k+1)∩h(n−1)∩ . . .∩Π

of linear constrain conditions on Π.

We denote ℓ= n− k, π(ℓ)(y) = π(y) and let r = τℓ be variable. When the coefficient in front of ys in the linear form π(y) is the expected

return on s-th asset, s = 1, . . . ,n, the trace of the hyperplane h = h(ℓ), h : π(y) = r, on Π may be interpreted as the set of all financial portfolios

with expected return r. Moreover, the trace of the hyperplane h on C may be interpreted as the set of all financial portfolios with expected

return r, that obey the above linear constrain conditions on Π.

On the other hand, if v(x) = txQx, where tA−1QA−1 is the n×n covariance matrix produced by the expected returns of the individual assets,

we may interpret v(x) as the risk of the portfolio x. Theorem 4.2 yields that the ray E = e f f
(Q;Mc)
ellρ+ with endpoint ρ(K) is the locus of all

Markowitz efficient portfolios which satisfy the linear constraint conditions C. It turns out that the value v(ρ(K)) is the absolute minimum of

the risk and in terms of x-coordinates the ℓ-th component of ρ(K) is the absolute minimum of the corresponding expected return r under the

given constrains.

In order to relate this approach to the classical one, we have to study the intersection E ∩∆, where ∆ is the trace of the unit simplex in Π on C,

because the members of E ∩∆ are the efficient portfolios that have no short sales. Moreover, the properties of this intersection characterize

the financial market.

A. Appendix

In this appendix we use freely notation introduced in the main body of the paper.

A.1. Three lemmas

The partition Mc ∪M = [n] of the set of indices [n] produces the following partitioned matrices: Any vector x = t(x1, . . . ,xn) ∈ R
n can be

visualized as x = t(x(M
c),x(M)) and any n×n-matrix Q can be visualized as

(

Q(Mc) Q(Mc×M)

Q(M×Mc) Q(M)

)

.

Lemma A.1. Let Q be a symmetric n×n-matrix and let v(x) = txQx be the corresponding quadratic form. One has

v(x) = tx(M
c)Q(Mc)x(M

c)+2tx(M
c)Q(Mc×M)x(M)+ tx(M)Q(M)x(M).

Proof. We have

v(x) = txQx = (tx(M
c), tx(M))

(

Q(Mc) Q(Mc×M)

tQ(Mc×M) Q(M)

)

t(x(M
c),x(M)) =

tx(M
c)Q(Mc)x(M

c)+2tx(M
c)Q(Mc×M)x(M)+ tx(M)Q(M)x(M).

Below we assume that Q(Mc) is an invertible matrix.
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Lemma A.2. Let

c
(Mc)
Mc (x(M)) =−(Q(Mc))−1Q(Mc×M)x(M), c(M

c)(x(M)) = t(c
(Mc)
Mc (x(M)),x(M)),

and let γM(x(M)) =−tc
(Mc)
Mc (x(M))Q(Mc)c

(Mc)
Mc (x(M))+ tx(M)Q(M)x(M).

(i) γM(x(M)) is a quadratic form in x(M),

γM(x(M)) = tx(M)[Q(M)− tQ(Mc×M)(Q(Mc))−1Q(Mc×M)]x(M),

and one has γM(x(M)) = v(c(M
c)(x(M))).

(ii) If v(x) is a positive definite quadratic form in x, then γM(x(M)) is a positive definite quadratic form in x(M).

Proof. (i) We begin by noting that since

tc
(Mc)
Mc (x(M))Q(Mc)c

(Mc)
Mc (x(M)) = tx(M)tQ(Mc×M)(Q(Mc))−1QMc×Mx(M),

we obtain the above expression for γM(x(M)). On the other hand, Lemma A.1 implies

v(c(M
c)(x(M))) =

tc
(Mc)
Mc (x(M))Q(Mc)c

(Mc)
Mc (x(M))+2tc

(Mc)
Mc (x(M))Q(Mc×M)x(M)+ tx(M)Q(M)x(M).

Taking into account that Q(Mc×M)x(M) =−Q(Mc)c
(Mc)
Mc (x(M)), we establish the identity.

(ii) In is enough to note that c(M
c)(x(M)) = 0 if and only if x(M) = 0.

Now, let us translate the system of coordinates by the rule

z(τ(M)) = x− c(M
c)(τ(M)).

Lemma A.3. If x(M) = τ(M), then

v(x) = tz(M
c)Q(Mc)z(M

c)+ γM(τ(M)).

Proof. In accord with Lemma A.1, we have

v(x) = tx(M
c)Q(Mc)x(M

c)+2tx(M
c)Q(Mc×M)τ(M)+ tτ(M)Q(M)τ(M) =

tx(M
c)Q(Mc)x(M

c)−2tx(M
c)Q(Mc)c

(Mc)
Mc (τ(M))+ tτ(M)Q(M)τ(M) =

t(z(M
c)+ c

(Mc)
Mc (τ(M)))Q(Mc)(z(M

c)+ c
(Mc)
Mc (τ(M)))

−2t(z(M
c)+ c

(Mc)
Mc (τ(M)))Q(Mc)c

(Mc)
Mc (τ(M))+ tτ(M)Q(M)τ(M) =

tz(M
c)Q(Mc)z(M

c)+ tc
(Mc)
Mc Q(Mc)c

(Mc)
Mc +2tz(M

c)Q(Mc)c
(Mc)
Mc −

2tz(M
c)Q(Mc)c

(Mc)
Mc −2tc

(Mc)
Mc Q(Mc)c

(Mc)
Mc + tτ(M)Q(M)τ(M) =

tz(M
c)Q(Mc)z(M

c)+ γM(τ(M)).
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Abstract

In this article, we employ Lie group analysis to obtain symmetry reduction of a class

of (3+1)-dimensional nonlinear model. This nonlinear model plays a critical role in the

study of nonlinear sciences. By the exp(−ϕ(z))-expansion method, we construct explicit

solutions for the proposed equation. Four types of explicit solutions are obtained, which are

hyperbolic, exponential, trigonometric and rational function solutions.

1. Introduction

Consider the following (3+1)-dimensional nonlinear differential equation (NLDE):

ut +b1u2ux +b2uxxx +b3uxyy +b4uxss +b5uux = 0. (1.1)

where bi (i = 1,2, · · · ,5) are arbitrary constants.

It is know that many famous NLDEs are the special cases of Eq.(1.1). For example, if b1 = b3 = b4 = 0, then Eq.(1.1) is the Korteweg-de

Vries (KdV) equation [1, 2]. If b1 = b4 = 0, then Eq.(1.1) is the Zakharov-Kuznetsov (ZK) equation [3]. If b3 = b4 = b5 = 0, then Eq.(1.1)

is the modified KdV equation [4]. If b3 = b4 = 0, then Eq.(1.1) is the Gardner equation [5]. If b4 = b5 = 0, then Eq.(1.1) is the modified ZK

equation [6].

Eq.(1.1) is a significant nonlinear model which can be used to depict important phenomena and dynamic processes in physics and engineering.

It is an interesting and meaningful subject to find exact solutions of NLDEs. During the past few years, there has been extraordinary progress

in constructing explicit solutions of NLDEs, for instance, the sine-cosine method [7], the modified simple equation method [8], the bifurcation

method of dynamic systems [9], the enhanced ( G′

G )-expansion method [10], the complex method [11]-[15], the exp(−ϕ(z))-expansion

method [16]-[18], and the Lie group method [19]-[21] and so on. More related works are in Ref. [22]-[25].

The paper is organized as follows: The algorithm of the exp(−ϕ(z))-expansion method have been introduced in Section 2. Symmetry

reduction of the mentioned (3+1)-dimensional NLDE are obtained in Section 3. By the proposed method, we gain explicit solutions of

this kind of (3+1)-dimensional NLDE in Section 4. In Section 5, some computer simulations will be given to illustrate our results, and

conclusions are presented in the last Section.

2. Algorithm of the exp(−ϕ(z))-expansion method

We consider a nonlinear PDE as follows:

F(u,ux,uy,ut ,uxx,uyy,utt , · · ·) = 0, (2.1)

where F is a polynomial of an unknown function u(x,y, t) and its derivatives, and it contains highest order derivatives and nonlinear terms

are involved.

Email addresses: gdguyongyi@163.com, 0000-0002-6651-1714 (Y. Gu)
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Step 1. Substitute traveling wave transformation

u(x,y, t) = w(z), z = kx+ ly+ rt, (2.2)

into Eq.(2.1) to convert it to the ODE,

P(w,w′
,w′′

,w′′′
, · · ·) = 0, (2.3)

where P is a polynomial of w and its derivatives, while ′ := d
dz .

Step 2. Suppose that Eq.(2.3) has the exact solutions as follows:

w(z) =
n

∑
j=0

B j(exp(−ϕ(z))) j
, (2.4)

where B j, (0 ≤ j ≤ n) are constants to be determined latter, such that Bn 6= 0 and ϕ = ϕ(z) satisfies the ODE as below:

ϕ ′(z) = γ + exp(−ϕ(z))+µ exp(ϕ(z)). (2.5)

Eq.(2.5) has the solutions as follows:

When γ2 −4µ > 0, µ 6= 0,

ϕ(z) = ln





−
√

(γ2 −4µ) tanh(

√
γ2−4µ

2 (z+a))− γ

2µ



 , (2.6)

ϕ(z) = ln





−
√

(γ2 −4µ)coth(

√
γ2−4µ

2 (z+a))− γ

2µ



 . (2.7)

When γ2 −4µ < 0, µ 6= 0,

ϕ(z) = ln





√

(4µ − γ2) tan(

√
(4µ−γ2)

2 (z+a))− γ

2µ



 , (2.8)

ϕ(z) = ln





√

(4µ − γ2)cot(

√
(4µ−γ2)

2 (z+a))− γ

2µ



 . (2.9)

When γ2 −4µ > 0, γ 6= 0, µ = 0,

ϕ(z) =− ln

(

γ

exp(γ(z+a))−1

)

. (2.10)

When γ2 −4µ = 0, γ 6= 0, µ 6= 0,

ϕ(z) = ln

(

−2(γ(z+a)+2)

γ2(z+a)

)

. (2.11)

When γ2 −4µ = 0, γ = 0, µ = 0,

ϕ(z) = ln(z+a). (2.12)

Where a is an arbitrary constant and Bn 6= 0,γ,µ are constants in Eq.(2.6)-Eq.(2.12). We determine the positive integer n through considering

the homogeneous balance between highest order derivatives and nonlinear terms of Eq.(2.3).

Step 3. Inserting Eq.(2.4) into Eq.(2.3) and then considering the function exp(−ϕ(z)) yields a polynomial of exp(−ϕ(z)). Let the coefficients

of same power about exp(−ϕ(z)) equal to zero, then we get a set of algebraic equations. We solve the algebraic equations to obtain the

values of Bn 6= 0,γ,µ and then we put these values into Eq.(2.4) along with Eq.(2.6)-Eq.(2.12) to finish the determination of the solutions for

the given PDE.
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3. Symmetry reduction

With the aim of obtaining the symmetry σ = σ(x,y,s, t,u) of Eq.(1.1), we let

σ = aux +buy + cus +dut + eu+ f , (3.1)

where u is the solution of Eq.(1.1), a,b,c,d,e, f are unknown functions of real variables x,y,s, t. By the Lie group method [19, 20], σ
satisfies

σt +b1σ2ux +b1u2σx +b2σxxx +b3σxyy +b4σxss +b5σux +b5uσx = 0. (3.2)

Putting Eq.(3.1) into Eq.(3.2), we obtain a new differential equation, where

b2uxxx =−b1u2ux −b3uxyy −b4uxss −b5uux −ut . (3.3)

By Eq.(3.1), Eq.(3.2) and Eq.(3.3), we get

a = a5,b = (a2s+a3),c = (a4 −
b4

b3
a2y),d = a1,e = 0, f = 0, (3.4)

where ai(i = 1,2, · · · ,5) are real constants. Inserting Eqs.(3.4) into Eq.(3.1), we obtain the symmetry of Eq.(1.1)

σ = a5ux +(a2s+a3)uy +(a4 −
b4

b3
a2y)us +a1ut .

To solve the above characteristic equation of σ

dx

a5
=

dy

a2s+a3
=

ds

a4 − b4

b3
a2y

=
dt

a1
=

du

0
,

we get symmetry reduced equations.

Setting a1 = a3 = a4 = a5 = 0, a2 = 1, we obtain one similarity solution of Eq.(1.1)

u = φ(ξ ,η), (3.5)

in which η = y2

2b3
+ s2

2b4
, ξ = x+ t. Substituting Eq.(3.5) into Eq.(1.1), we get one symmetry reduced equation of Eq.(1.1), which is

φξ +b1φ 2φξ +(b2 +b3)φξ ξ ξ +2φξ ηη +b5φφξ = 0.

Setting a1 = a2 = 0, a3 = a4 = a5 = 1, solving σ = 0, we obtain the other similarity solution of Eq.(1.1)

u = φ(ξ ,η), (3.6)

in which η = s, ξ = x+ y. Substituting Eq.(3.6) into Eq.(1.1), we get the other symmetry reduced equation of Eq.(1.1), which is

b1φ 2φξ +(b2 +b3)φξ ξ ξ +b4φξ ηη +b5φφξ = 0. (3.7)

4. Application of the exp(−ϕ(z))-expansion method to the nonlinear model

Substitute traveling wave transform

φ(ξ ,η) = w(z), z = kξ + lη ,

into Eq.(3.7), and integrate it with respect to z, then

(b2k2 +b3k2 +b4l2)w′′+
b5

2
w2 +

b1

3
w3 −λ = 0, (4.1)

where λ is the integration constant.

Taking the homogeneous balance between w3 and w′′ in Eq.(4.1), we have

w(z) = B0 +B1 exp(−ϕ(z)), (4.2)

where B1 6= 0, B0 are constants.

Substituting w2,w3,w′′ into Eq.(4.1) and equating the coefficients of exp(−ϕ(z)) to zero, we get

B1 b4 l2µ γ +B1 k2b3 µ γ +B1 k2b2 µ γ +
1

3
b1 B0

3 +
1

2
b5 B0

2 −λ = 0,

B1 l2b4 γ2 +B1 b2 k2γ2 +B1 b3 k2γ2 +2B1 b2 k2µ +2B1 b3 k2µ +2B1 l2b4 µ

+B0
2B1 b1 +B0 B1 b5 = 0,

3B1 b4l2γ +b1 B0 B1
2 +

1

2
b5 B1

2 +3B1 k2b2 γ +3B1 k2b3 γ = 0,

2B1b4 l2 +2B1 k2b2 +2B1 k2b3 +
1

3
b1 B1

3 = 0.



Fundamental Journal of Mathematics and Applications 187

Solving the above algebraic equations yields

λ =−

√

(4µ − γ2)3(b2 k2 +b3 k2 +b4 l2)3

18b1
,

B0 =

√

−6b1

(

b2 k2 +b3 k2 +b4 l2
)

γ −
√

2b1 (4µ − γ2)
(

b4 l2 +b3 k2 +b2 k2
)

2b1
,

B1 =

√

−6
(

b4 l2 +b3 k2 +b2 k2
)

b1
, (4.3)

where γ and µ are arbitrary constants.

We substitute Eqs.(4.3) into Eq.(4.2), then

w(z) =

√

−6b1

(

b2 k2 +b3 k2 +b4 l2
)

γ −
√

2b1 (4µ − γ2)
(

b2 k2 +b3 k2 +b4 l2
)

2b1

+

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1
exp(−ϕ(z)). (4.4)

Using Eq.(2.6) to Eq.(2.12) into Eq.(4.4) respectively, we gain traveling wave solutions to the nonlinear model in the following.

When γ2 −4µ > 0, µ 6= 0,

w1(z) =

√

−6b1

(

b2 k2 +b3 k2 +b4 l2
)

γ −
√

2b1 (4µ − γ2)
(

b2 k2 +b3 k2 +b4 l2
)

2b1

−

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1

2µ
√

(γ2 −4µ) tanh(

√
γ2−4µ

2 (z+a))+ γ

,

w2(z) =

√

−6b1

(

b2 k2 +b3 k2 +b4 l2
)

γ −
√

2b1 (4µ − γ2)
(

b2 k2 +b3 k2 +b4 l2
)

2b1

−

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1

2µ
√

(γ2 −4µ)coth(

√
γ2−4µ

2 (z+a))+ γ

.

When γ2 −4µ < 0, µ 6= 0,

w3(z) =

√

−6b1

(

b2 k2 +b3 k2 +b4 l2
)

γ −
√

2b1 (4µ − γ2)
(

b2 k2 +b3 k2 +b4 l2
)

2b1

+

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1

2µ
√

(4µ − γ2) tan(

√
4µ−γ2

2 (z+a))− γ

,

w4(z) =

√

−6b1

(

b2 k2 +b3 k2 +b4 l2
)

γ −
√

2b1 (4µ − γ2)
(

b2 k2 +b3 k2 +b4 l2
)

2b1

+

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1

2µ
√

(4µ − γ2)cot(

√
4µ−γ2

2 (z+a))− γ

.

When γ2 −4µ > 0, γ 6= 0, µ = 0,

w5(z) =

√

−6b1

(

b2 k2 +b3 k2 +b4 l2
)

γ −
√

−2b1 γ2
(

b2 k2 +b3 k2 +b4 l2
)

2b1

+

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1

γ

exp(γ(z+a))−1
.

When γ2 −4µ = 0, γ 6= 0, µ 6= 0,

w6(z) =

√

−3
(

b2 k2 +b3 k2 +b4 l2
)

2b1
γ −

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1

γ2(z+a)

2(γ(z+a)+2)
.

When γ2 −4µ = 0, γ = 0, µ = 0,

w7(z) =

√

−6
(

b2 k2 +b3 k2 +b4 l2
)

b1

1

z+a
.
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Figure 5.1: 3D profile of w1(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 4, and µ = 3.

Figure 5.2: 2D profile of w1(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 4, µ = 3 and η = 0.

Figure 5.3: 3D profile of w2(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 2, and µ = 2.
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Figure 5.4: 2D profile of w2(z) for b4 = 1, b3 = 1, b2 =−1, b1 =−6, k = 1, l = 1, γ = 2, µ = 2 and η = 0.

5. Computer simulations

In this section, the computer simulations are given to illustrate our results by the figures.

6. Conclusion

The exp(−ϕ(z))-expansion method allows us to express the explicit solutions of NLDEs as a polynomial of exp(−ϕ(z)), in which ϕ(z)
satisfies the ODE (2.5). We can determine the degree of the polynomial via the homogeneous balance and get the coefficients of the

polynomial via the simple calculation from the process of this method, and then we obtain the exact solutions.

In this article, symmetry reduction of a class of (3+1)-dimensional nonlinear model are obtained via Lie group analysis. Then, we achieve to

reduce the dimension of the NLDEs that is meaningful in engineering and mathematical physics. By the exp(−ϕ(z))-expansion method, we

obtain four kinds of explicit solutions. The results demonstrate that the applied method is direct and efficient method, which allow us to do

tedious and complicated algebraic calculation.
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Abstract

A graph is called Hamiltonian (resp. traceable) if the graph has a Hamiltonian cycle (resp.

path), a cycle (resp. path) containing all the vertices of the graph. In this note, we present

sufficient conditions involving minimum degree and size for Hamiltonian and traceable

graphs. One of the sufficient conditions strengthens the result obtained by Nikoghosyan in

[1].

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2].

For a graph G = (V, E), we use n and e to denote its order |V | and size |E|, respectively. The complement of a graph G is denoted by Gc. we

use Gr to denote any graph of order r. A graph G is empty if the graph G does not have any edge. We use G1 ∨G2 to denote the the join of

two disjoint graphs G1 and G2. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is

called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G.

A graph G is called traceable if G has a Hamiltonian path. We define

A (n) := {G : G is G n−2
2
∨ (Kc

n−2
2

∪K2)},

B(n) := {G : G is G n−2
2
∨Kc

n+2
2

},

C (n) := {G : G is G n−1
2
∨Kc

n+1
2

}

and

D(n) := S (n)∪ T (n),

where S (n) := {G : G is w∨ (P∪Q), where w is a vertex cut such that G−{w} has exactly two components of P and Q which are complete

graphs of order n−1
2 },

T (n) := {G : G has a vertex cut w such that G−{w} has exactly two components of P and Q, where P is a complete graph of order n−2
2

and w is adjacent to each vertex in P, Q is a graph of order n
2 with δ (Q)≥ n−4

2 , and δ (G)≥ n−2
2 }.

X (n) := {G : G is K n
2
∪K n

2
}.
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Y (n) := {G : G is K n−1
2
∪H, where H is a

(

n−3

2

)

− regular graph of order
n+1

2
}.

Nikoghosyan obtained the following sufficient condition for Hamiltonian graphs in [1] (also see [3]).

Theorem 1.1. Let G be a graph of order n ≥ 3, size e, and minimum degree δ . If δ 2 +δ ≥ e+1, then G is Hamiltonian.

Motivated by Nikoghosyan’s result above, we in this note strengthen Theorem 1.1 to the following Theorem 1.2 and present an analogous

sufficient condition for the traceable graphs.

Theorem 1.2. Let G be a graph of order n ≥ 3, size e, and minimum degree δ . If δ 2 + δ ≥ e, then G is empty or G is Hamiltonian or

G ∈ A (n)∪B(n)∪C (n)∪D(n)∪X (n).

Theorem 1.3. Let G be a graph of order n ≥ 2, size e, and minimum degree δ . If δ 2 + 3δ

2 ≥ e, then G is empty or G is traceable or

G ∈ X (n)∪Y (n).

2. Lemmas

In order to prove Theorem 1.1 and Theorem 1.2, we need the following results as our lemmas. The first one follows from Theorem 2 proved

by Zhao in [4].

Lemma 2.1. If G is a connected graph of order n ≥ 3 and δ ≥ n−2
2 , then G is Hamiltonian or G ∈ A (n)∪B(n)∪C (n)∪D(n).

Notice that the statements in Lemma 2.1 are slightly different from the statements in Theorem 2 in [4]. The reason for this is the convenience

when we use Lemma 2.1 in our proofs.

The second one is Theorem 2.5 proved by Cranston and O in [5].

Lemma 2.2. Every connected k-regular graph with at most 3k+3 vertices has a Hamiltonian path.

3. Proofs

Proof of Theorem 1.2 Let G be a graph satisfying the conditions in Theorem 1.2. If δ = 0, then G is empty. From now on, we assume that

δ ≥ 1. Suppose that G is not Hamiltonian. Then, from the conditions in Theorem 1.2, we have that

δ
2 +δ ≥ e ≥

∑v∈V (G) d(v)

2
≥

nδ

2
.

Therefore δ ≥ n−2
2 .

Case 1 G is disconnected.

Suppose G consists of k (k ≥ 2) components G1 of order n1, G2 of order n2, · · · , Gk of order nk. Without loss of generality, we assume that

n1 ≤ n2 ≤ ·· · ≤ nk. Then we have 2n1 ≤ ∑
k
i=1 ni = n. Thus n1 ≤

n
2 . Therefore n−2

2 ≤ δ ≤ d(x)≤ n1 −1 ≤ n−2
2 , where x is any vertex in

G1. Hence n−2
2 = δ = n1 −1 = n−2

2 . So δ 2 = n−2
2 δ and δ 2 +δ = nδ

2 . Now we have

nδ

2
≤

∑v∈V (G)

2
≤ e ≤ δ

2 +δ =
nδ

2
.

Thus G is δ -regular graph with δ = n−2
2 and e = δ 2 +δ . Notice that n

2 = n1 ≤ n2 ≤ ·· · ≤ nk. We must have k = 2, n2 =
n
2 , and G1 and G2

are complete graphs of order n
2 . Therefore G ∈ X (n).

Case 2 G is connected.

From Lemma 2.1, we have G ∈ A (n)∪B(n)∪C (n)∪D(n).

Hence, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.3 Let G be a graph satisfying the conditions in Theorem 1.3. Notice that G is empty when δ = 0 and G is empty or

traceable when n = 2 or 3. From now on, we assume that δ ≥ 1 and n ≥ 4. Suppose that G is not traceable. Then, from the conditions in

Theorem 1.2, we have that

δ
2 +

3δ

2
≥ e ≥

∑v∈V (G) d(v)

2
≥

nδ

2
.

Therefore δ ≥ n−3
2 .

Case 1 G is disconnected.

Suppose G consists of k (k ≥ 2) components G1 of order n1, G2 of order n2, · · · , Gk of order nk. Without loss of generality, we assume that

n1 ≤ n2 ≤ ·· · ≤ nk. Then we have 2n1 ≤ ∑
k
i=1 ni = n. Thus n1 ≤

n
2 . Therefore δ ≤ d(x)≤ n1 −1 ≤ n−2

2 , where x is any vertex in G1.
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Case 1.1 δ = n−2
2 .

Thus n−2
2 ≤ δ ≤ d(x)≤ n1 −1 ≤ n−2

2 , where x is any vertex in G1. Therefore n−2
2 = δ = d(x) = n1 −1 = n−2

2 , where x is any vertex in

G1. Hence G1 is a complete graph of order n
2 . Notice that n

2 = n1 ≤ n2 ≤ ·· · ≤ nk. We must have k = 2 and n2 = n
2 . Since n2 = n

2 and
n−2

2 = n2 −1 ≥ d(y)≥ δ = n−2
2 for any vertex y in G2, G2 is a complete graph of order n

2 . So G ∈ X (n).

Case 1.2 δ = n−3
2 .

Thus δ 2 = n−3
2 δ and δ 2 + 3δ

2 = nδ

2 . Now we have

nδ

2
≤

∑v∈V (G)

2
≤ e ≤ δ

2 +
3δ

2
=

nδ

2
.

Thus G is δ -regular graph with δ = n−3
2 and e = δ 2 + 3δ

2 . Notice now that n is odd. Then n1 ≤
n
2 implies that n1 ≤

n−1
2 . Thus for any vertex

x in G1 we have n−3
2 = d(x)≤ n1 −1 ≤ n−3

2 . Therefore G1 is a complete graph of order n−1
2 . Notice that n−1

2 = n1 ≤ n2 ≤ ·· · ≤ nk. We

must have k = 2 and n2 =
n+1

2 . Hence G2 is a
(

n−3
2

)

-regular graph of order n+1
2 . So G ∈ Y (n).

Case 2 G is connected.

Case 2.1 n is even.

Then δ ≥ n−3
2 implies that δ ≥ n−2

2 . From Lemma 2.1, we have G is Hamiltonian or G ∈ A (n)∪B(n)∪C (n)∪D(n).

First, we prove that it is impossible that G ∈ B(n). Suppose, to the contrary, that G ∈ B(n). Then δ = n−2
2 . Clearly, e ≥ n2−4

4 . Then we can

get a contradiction from

δ
2 +

3δ

2
≥ e ≥

n2 −4

4
.

Obviously, G is traceable when G is Hamiltonian. It is easy to verify that G is traceable when G ∈ A (n)∪C (n)∪S (n). When G ∈ T (n),

notice that δ (Q)≥
|V (Q)|

2 when n ≥ 8. Thus Q is Hamiltonian when n ≥ 8. It is easy to verify that G is traceable when n ≥ 8. When n = 4 or

6, we can also verify that G is traceable. Hence we arrive at a contradiction.

Case 2.2 n is odd.

Then δ ≥ n−3
2 +1 = n−1

2 or δ = n−3
2 .

When δ ≥ n−3
2 +1 = n−1

2 , then G 6∈ A (n)∪B(n)∪T (n). From Lemma 2.1, we have G is Hamiltonian or G ∈ C (n)∪S (n). Obviously, G

is traceable when G is Hamiltonian or G ∈ C (n)∪S (n). Hence we arrive at a contradiction.

When δ = n−3
2 , then δ 2 = n−3

2 δ and δ 2 + 3δ

2 = nδ

2 . Now we have

nδ

2
≤

∑v∈V (G)

2
≤ e ≤ δ

2 +
3δ

2
=

nδ

2
.

Thus G is δ -regular graph with δ = n−3
2 and e = δ 2 + 3δ

2 . From Lemma 2.2, we have that G is traceable, a contradiction.

Hence, the proof of Theorem 1.3 is complete.
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Abstract

Obtaining the exact solutions of most rational recursive equations is sophisticated sometimes.

Therefore, a considerable number of nonlinear difference equations is often investigated

by studying the qualitative behavior of the governing forms of these equations. The prime

purpose of this work is to analyse the equilibria, local stability, global stability character,

boundedness character and the solution behavior of the following fourth order fractional

difference equations:

xn+1 =
αxnxn−3

βxn−3 − γxn−2
, xn+1 =

αxnxn−3

−βxn−3 + γxn−2
, n = 0,1, ...,

where the constants α, β , γ ∈R
+ and the initial values x−3, x−2, x−1 and x0 are required to

be arbitrary non zero real numbers. Furthermore, some numerical figures will be obviously

shown in this paper.

1. Introduction

The present paper aims to offer a significant analysis about local asymptotic stability, global attractivity and periodicity of the following

rational recursive equations:

xn+1 =
αxnxn−3

βxn−3 − γxn−2
, xn+1 =

αxnxn−3

−βxn−3 + γxn−2
, n = 0,1, ...,

where the initial data x−3, x−2, x−1 and x0 are required to be arbitrary non zero real numbers. Moreover, the parameters α, β and γ are

required to be positive arbitrary values.

The theory of nonlinear difference equations has been extraordinarily developed in recent decades. Obviously, this development can be

evidently seen in the studies which have been published on difference equations. Take, for instance, the following ones. Avotina [1]

investigated the periodicity of three special cases from the fractional difference equation given by

xn+1 =
α +βxn + γxn−1

A+Bxn +Cxn−1
.

Bajo et al. [2] analyzed the global character of the following second order recursive equation:

xn+1 =
xn−1

a+bxnxn−1
.

Çınar [3] provided the solution of the next fractional recursive relation

xn+1 =
axn−1

1+bxnxn−1
.

Din [4] explored some qualitative behaviors such as the stability and the periodicity of the following system:

xn+1 =
ayn

b+ cyn
, yn+1 =

dyn

e+ f xn
.

Email addresses and ORCID numbers: mmutrafi@taibahu.edu.sa, 0000-0002-6859-2028 (M. S. Almatrafi), emmelsayed@yahoo.com, 0000-0003-0894-8472 (E. M. El-

sayed), faris.kau@hotmail.com, 0000-0002-4842-6137 (F. Alzahrani)
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El-Moneam et al. [5] explored the qualitative behavior of the difference equation

xn+1 = Axn +Bxn−k +Cxn−l +Dxn−σ +
bxn−k +hxn−l

dxn−k + exn−l

.

Elsayed [6] obtained the forms of the solutions of the recursive relations given on the form:

xn+1 =
xn

xn−1(xn ±1)
.

Ibrahim [7] examined the global and local stability of the second order recursive relation on the form:

xn+1 =
axn−1

−1+bxnxn−1
.

More details on this aspect can be simply found in refs. [8], [9]-[14], [15].

2. On the recursive relation xn+1 =
αxnxn−3

βxn−3−γxn−2

This section underlines widely some aspects and properties of the recursive equation

xn+1 =
αxnxn−3

βxn−3 − γxn−2
, n = 0,1,2, ... , (2.1)

where the initial values are required to be arbitrary constants. The parameters α, β and γ are as mentioned above.

2.1. Local stability analysis

The local behaviour of the fixed point of our equation will be proved under an intrinsic hypothesis in this subsection. The equilibrium point

of Eq.(2.1) can be evaluated from the following equation:

x =
αxx

βx− γx
=

αx

β − γ
.

This implies that

x = 0.

Assume that a function h : (0,∞)3 −→ (0,∞) is described by the following form:

h(t,s,z) =
αtz

β z− γs
, (2.2)

from which we can obtain that

∂h(t,s,z)

∂ t
=

αz

β z− γs
, (2.3)

∂h(t,s,z)

∂ s
=

αγtz

(β z− γs)2
,

∂h(t,s,z)

∂ z
= −

αγts

(β z− γs)2
.

These partial derivatives can be obviously calculated at x = 0, as follows:

∂h(x,x,x)

∂ t
=

αx

βx− γx
=

α

β − γ
=−p2,

∂h(x,x,x)

∂ s
=

αγxx

(βx− γx)2
=

αγ

(β − γ)2
=−p1,

∂h(x,x,x)

∂ z
= −

αγxx

(βx− γx)2
=−

αγ

(β − γ)2
=−p0.

Now, the corresponding linearized form of Eq.(2.1) about x = 0, is given by

yn+1 + p2yn + p1yn−2 + p0yn−3 = 0.

Theorem 2.1. Let

(β − γ)2 > max{α(β + γ), α(3γ −β )} .

Then, the fixed point of Eq.(2.1) is locally asymptotically stable.
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Proof. According to Theorem A in [16], Eq.(2.1) is said to be asymptotically stable if

|p0|+ |p1|+ |p2|< 1.

This expression leads to
∣

∣

∣

∣

−
αγ

(β − γ)2

∣

∣

∣

∣

+

∣

∣

∣

∣

αγ

(β − γ)2

∣

∣

∣

∣

+

∣

∣

∣

∣

α

β − γ

∣

∣

∣

∣

< 1.

• If β > γ, then

2αγ

(β − γ)2
+

α

β − γ
< 1,

which can be easily simplified as

α(β + γ)< (β − γ)2. (2.4)

• If β < γ, then

2αγ

(β − γ)2
+

α

γ −β
< 1.

Therefore,

α(3γ −β )< (β − γ)2. (2.5)

Combining condition (2.4) with condition (2.5) gives us

(β − γ)2 > max{α(β + γ), α(3γ −β )} .

This achieves the proof completely.

2.2. Global stability analysis

Here, we will present an approach to determine the global behavior of Eq.(2.1). In this equation, two different cases will emerge as illustrated

in the following fundamental theorem.

Theorem 2.2. The fixed point of Eq.(2.1) is said to be a global attractor if α 6= γ.

Proof. Suppose that r1, r2 ∈ R and let h : [r1,r2]
3 −→ [r1,r2] be a function defined by Eq.(2.2). Then, we take into consideration the

following situations.

Case 1: Let β z < γs be true. Then, equations (2.3) tell us that Eq.(2.2) is nondecreasing in s and nonincreasing in t and z. Next, let (ϕ,χ) be

a solution of the following system:

ϕ = h(χ,ϕ,χ) =
αχ2

β χ − γϕ
,

χ = h(ϕ,χ,ϕ) =
αϕ2

βϕ − γχ
.

Or,

βϕχ − γϕ2 = αχ2, (2.6)

βϕχ − γχ2 = αϕ2. (2.7)

Subtracting Eq.(2.6) from Eq.(2.7) gives

γ(χ2 −ϕ2) = α
(

χ2 −ϕ2
)

.

Now, if γ 6= α , we have

ϕ = χ.

As claimed by Theorem B in [17], the fixed point of Eq.(2.1) is a global attractor.

Case 2: This case shows the global behaviour when β z > γs. The proof of this case is similar to the previous one.

Remark 2.3. Eq.(2.1) is not prime period two.



Fundamental Journal of Mathematics and Applications 197

2.3. Special case of eq.(2.1)

In the following paragraph, we will specify an effective theorem to verify the periodicity of the solution of the following fourth order

recursive relation:

xn+1 =
xnxn−3

xn−3 − xn−2
, (2.8)

where the initial values are as illustrated above.

Theorem 2.4. Each solution of Eq.(2.8) is periodic with period eighteen.

Proof. We assume that {xn}
∞

n=−3 is a solution of Eq.(2.8), then

xn+1 =
xnxn−3

xn−3 − xn−2
,

xn+2 =
xn+1xn−2

xn−2 − xn−1
=

(

xnxn−3

xn−3−xn−2

)

xn−2

xn−2 − xn−1
=

xn−3xn−2xn

(xn−3 − xn−2)(xn−2 − xn−1)
,

xn+3 =
xn+2xn−1

xn−1 − xn
=

(

xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)

)

xn−1

xn−1 − xn

=
xn−3xn−2xn−1xn

(xn−3 − xn−2)(xn−2 − xn−1)(xn−1 − xn)
,

xn+4 =
xn+3xn

xn − xn+1
=

(

xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)

)

xn

xn −
xnxn−3

xn−3−xn−2

= −
xn−3xn−1xn

(xn−2 − xn−1)(xn−1 − xn)
,

xn+5 =
xn+4xn+1

xn+1 − xn+2
=

(

− xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)

)(

xnxn−3

xn−3−xn−2

)

xnxn−3

xn−3−xn−2
− xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)

=
xn−3xn

(xn−1 − xn)
,

xn+6 =
xn+5xn+2

xn+2 − xn+3

=

(

xn−3xn

xn−1−xn

)(

xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)

)

xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)
− xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)

=−xn−3,

xn+7 =
xn+6xn+3

xn+3 − xn+4

=
−xn−3

(

xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)

)

xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)
+ xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)

=−xn−2,

xn+8 =
xn+7xn+4

xn+4 − xn+5
=

−xn−2

(

− xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)

)

− xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)
− xn−3xn

(xn−1−xn)

=−xn−1,

xn+9 =
xn+8xn+5

xn+5 − xn+6
=

−xn−1

(

xn−3xn

xn−1−xn

)

xn−3xn

xn−1−xn
+ xn−3

=−xn,

xn+10 =
xn+9xn+6

xn+6 − xn+7
=

−xn (−xn−3)

−xn−3 + xn−2
=−

xnxn−3

xn−3 − xn−2
,

xn+11 =
xn+10xn+7

xn+7 − xn+8
=

(

− xnxn−3

xn−3−xn−2

)

(−xn−2)

−xn−2 + xn−1

= −
xn−3xn−2xn

(xn−3 − xn−2)(xn−2 − xn−1)
,
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xn+12 =
xn+11xn+8

xn+8 − xn+9
=

(

− xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)

)

(−xn−1)

−xn−1 + xn

= −
xn−3xn−2xn−1xn

(xn−3 − xn−2)(xn−2 − xn−1)(xn−1 − xn)
,

xn+13 =
xn+12xn+9

xn+9 − xn+10
=

(

− xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)

)

(−xn)

−xn +
xnxn−3

xn−3−xn−2

=
xn−3xn−1xn

(xn−2 − xn−1)(xn−1 − xn)
,

xn+14 =
xn+13xn+10

xn+10 − xn+11
=

(

xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)

)(

− xnxn−3

xn−3−xn−2

)

− xnxn−3

xn−3−xn−2
+ xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)

= −
xn−3xn

(xn−1 − xn)
,

xn+15 =
xn+14xn+11

xn+11 − xn+12

=

(

− xn−3xn

xn−1−xn

)(

− xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)

)

− xn−3xn−2xn

(xn−3−xn−2)(xn−2−xn−1)
+ xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)

= xn−3,

xn+16 =
xn+15xn+12

xn+12 − xn+13

=
xn−3

(

− xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)

)

− xn−3xn−2xn−1xn

(xn−3−xn−2)(xn−2−xn−1)(xn−1−xn)
− xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)

= xn−2,

xn+17 =
xn+16xn+13

xn+13 − xn+14
=

xn−2

(

xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)

)

xn−3xn−1xn

(xn−2−xn−1)(xn−1−xn)
+ xn−3xn

(xn−1−xn)

= xn−1,

xn+18 =
xn+17xn+14

xn+14 − xn+15
=

xn−1

(

− xn−3xn

(xn−1−xn)

)

− xn−3xn

(xn−1−xn)
− xn−3

= xn.

The proof has been completely done.

2.4. Numerical confirmation

To confirm our theoretical outcomes in the previous subsections, we will provide some concrete numerical examples in this subsection.

Example 2.5. Figure 2.1 is sketched according to the following values: α = γ = 1, β = 6, x−3 = x0 = 0.2, and x−1 =−x−2 = 0.1.
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plot of x(n+1)=(a x(n)x(n−3))/(b x(n−3)−c x(n−2))

Figure 2.1

Example 2.6. We consider α = 10, β = 2, γ = 1, x−3 = 0.5, x−2 = x0 = 1 and x−1 =−1, to depict the Figure 2.2.
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plot of x(n+1)=(a x(n)x(n−3))/(b x(n−3)−c x(n−2))

Figure 2.2

Example 2.7. This example illustrates the periodicity of the special case equation when we take x−3 = x−1 =−0.1 and x−2 = x0 = 0.1.
See Figure 2.3.

0 10 20 30 40 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

n

x
(n

)

plot of x(n+1)=( x(n)x(n−3))/( x(n−3)− x(n−2))

Figure 2.3

3. On the recursive relation xn+1 =
αxnxn−3

−βxn−3+γxn−2

This section will offer various mathematical aspects of the following recursive form:

xn+1 =
αxnxn−3

−βxn−3 + γxn−2
, n = 0,1, ... . (3.1)

The initial data and the arbitrary constants are as mentioned above.

3.1. Local stability analysis

In this part, the behaviour of the solutions in the neighbourhood of the fixed point will be established via a key theorem. The fixed point of

Eq.(3.1) can be simply found from the equation given by

x =
αxx

−βx+ γx
=

αx

−β + γ
.

This gives us

x = 0.

Assume that a function h : (0,∞)3 −→ (0,∞) is described as follows:

h(t,s,z) =
αtz

−β z+ γs
. (3.2)

Then,
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∂h(t,s,z)

∂ t
=

αz

−β z+ γs
, (3.3)

∂h(t,s,z)

∂ s
= −

αγtz

(−β z+ γs)2
,

∂h(t,s,z)

∂ z
=

αγts

(−β z+ γs)2
.

Finding these partial derivatives at x = 0, yields

∂h(x,x,x)

∂ t
=

αx

−βx+ γx
=

α

γ −β
=−p2,

∂h(x,x,x)

∂ s
= −

αγxx

(−βx+ γx)2
=−

αγ

(γ −β )2
=−p1,

∂h(x,x,x)

∂ z
=

αγxx

(−βx+ γx)2
=

αγ

(γ −β )2
=−p0.

Following, the corresponding linearized scheme of Eq.(3.1) about x = 0, is

yn+1 + p2yn + p1yn−2 + p0yn−3 = 0.

Theorem 3.1. Assume that

(γ −β )2 > max{α (β + γ) , α(3γ −β )} .

Then, the point x = 0, is locally asymptotically stable.

Proof. As stated by Theorem A in [16], Eq.(3.1) is said to be asymptotically stable if

|p0|+ |p1|+ |p2|< 1,

which implies that
∣

∣

∣

∣

αγ

(γ −β )2

∣

∣

∣

∣

+

∣

∣

∣

∣

−
αγ

(γ −β )2

∣

∣

∣

∣

+

∣

∣

∣

∣

α

γ −β

∣

∣

∣

∣

< 1.

• If β < γ, then

2αγ

(γ −β )2
+

α

γ −β
< 1.

Therefore,

α(3γ −β )< (γ −β )2. (3.4)

• If β > γ, then

2αγ

(γ −β )2
−

α

γ −β
< 1,

which can be easily reduced to

α(γ +β )< (γ −β )2. (3.5)

Finally, combining condition (3.4) with condition (3.5) leads to

(γ −β )2 > max{α (β + γ) , α(3γ −β )} ,

which is what we require to prove.
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3.2. Global stability analysis

We now turn to analyze the global attractivity of Eq.(3.1), in which two various cases are arisen.

Theorem 3.2. The fixed point of Eq.(3.1) is a global attractor.

Proof. Assume that r1, r2 ∈ R and let h : [r1,r2]
3 −→ [r1,r2] be a function defined by Eq.(3.2). Then, we examine the next two cases.

Case 1: Let β z < γs be true. Then, from equations (3.3) we observe that Eq.(3.2) is nondecreasing in t and z and nonincreasing in s. Now,

suppose that (ϕ,χ) is a solution of the following rational system:

ϕ = h(ϕ,χ,ϕ) =
αϕ2

−βϕ + γχ
,

χ = h(χ,ϕ ,χ) =
αχ2

−β χ + γϕ
.

Obviously, this system can be written as

−βϕ2 + γϕχ = αϕ2, (3.6)

−β χ2 + γϕχ = αχ2. (3.7)

Subtracting Eq.(3.6) from Eq.(3.7) leads to

β (χ2 −ϕ2) = α(ϕ2 −χ2).

Hence,

(β + γ)(χ −ϕ)(χ +ϕ) = 0.

This implies that

ϕ = χ.

As claimed by Theorem B in [17], the point x = 0, is a global attractor.

Case 2: In this case we consider β z > γs. The proof can be achieved in a similar way to the previous one.

Remark 3.3. Eq.(3.1) is not prime period two.

3.3. Special case of eq.(3.1)

Now, we will formulate the solution of the recursive equation which is given as follows:

xn+1 =
xnxn−3

xn−2 − xn−3
, n = 0,1, ... . (3.8)

The initial values are required to be nonzero real numbers.

Theorem 3.4. Suppose that {xn}
∞

n=−3 is a solution of Eq.(3.8) and satisfying x−3 = a, x−2 = b, x−1 = c and x0 = d. Then, for n = 0,1, ...

x3n−3 =
(−1)n−1

abcd

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−1c− fn−2d)
,

x3n−2 =
(−1)n

abcd

( fna− fn−1b)( fn−1b− fn−2c)( fn−1c− fn−2d)
,

x3n−1 =
(−1)n+1

abcd

( fna− fn−1b)( fnb− fn−1c)( fn−1c− fn−2d)
,

where { fn}
∞

n=−2 , is called Fibonacci sequence.

Proof. It can be clearly seen that the solution is confirmed for n = 0. Next, we assume that n > 0 and the above-mentioned results hold for

n−1. This leads to that

x3n−7 =
(−1)n−1

abcd

( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−3c− fn−4d)
,

x3n−6 =
(−1)n−2

abcd

( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−2c− fn−3d)
,

x3n−5 =
(−1)n−1

abcd

( fn−1a− fn−2b)( fn−2b− fn−3c)( fn−2c− fn−3d)
,

x3n−4 =
(−1)n

abcd

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−2c− fn−3d)
.
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Next, from Eq. (3.8) we have

x3n−3 =
x3n−4x3n−7

x3n−6 − x3n−7

=

(

(−1)n
abcd

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−2c− fn−3d)

)

(

(−1)n−1
abcd

( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−3c− fn−4d)

)





(−1)n−2
abcd

( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−2c− fn−3d)
−

(−1)n−1
abcd

( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−3c− fn−4d)





=

(−1)2n−1 (abcd)2 ( fn−2a− fn−3b)( fn−2b− fn−3c)
( fn−2c− fn−3d)( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−3c− fn−4d)

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−2c− fn−3d)( fn−2a− fn−3b)
( fn−2b− fn−3c)( fn−3c− fn−4d)(abcd)

[

(−1)n−2 ( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−3c− fn−4d)

−(−1)n−1 ( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−2c− fn−3d)

]

=
(−1)2n−1 (abcd)( fn−2a− fn−3b)( fn−2b− fn−3c)

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−2a− fn−3b)( fn−2b− fn−3c)
[

(−1)n−2 ( fn−3c− fn−4d)− (−1)n−1 ( fn−2c− fn−3d)
]

(−1)2n−1 (abcd)

( fn−1a− fn−2b)( fn−1b− fn−2c)(−1)n [( fn−3c− fn−4d)+( fn−2c− fn−3d)]

=
(−1)n−1 (abcd)

( fn−1a− fn−2b)( fn−1b− fn−2c) [( fn−1c− fn−2d)]
.

We now turn to prove the second solution of our equation. Again, from Eq. (3.8) we have

x3n−2 =
x3n−3x3n−6

−x3n−6 + x3n−5

=

(

(−1)n−1
abcd

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−1c− fn−2d)

)

(

(−1)n−2
abcd

( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−2c− fn−3d)

)





(

−
(−1)n−2

abcd

( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−2c− fn−3d)

)

+
(

(−1)n−1
abcd

( fn−1a− fn−2b)( fn−2b− fn−3c)( fn−2c− fn−3d)

)





=

(−1)2n−3 (abcd)2 ( fn−2a− fn−3b)( fn−2b− fn−3c)
( fn−2c− fn−3d)( fn−1a− fn−2b)( fn−2b− fn−3c)( fn−2c− fn−3d)

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−1c− fn−2d)( fn−2a− fn−3b)
( fn−2b− fn−3c)( fn−2c− fn−3d)(abcd)

[

−(−1)n−2 ( fn−1a− fn−2b)( fn−2b− fn−3c)( fn−2c− fn−3d)

+(−1)n−1 ( fn−2a− fn−3b)( fn−2b− fn−3c)( fn−2c− fn−3d)

]

=
(−1)2n−3 (abcd)( fn−2b− fn−3c)( fn−2c− fn−3d)

( fn−1b− fn−2c)( fn−1c− fn−2d)( fn−2b− fn−3c)( fn−2c− fn−3d)
[

−(−1)n−2 ( fn−1a− fn−2b)+(−1)n−1 ( fn−2a− fn−3b)
]

=
(−1)2n−3

abcd

( fn−1b− fn−2c)( fn−1c− fn−2d)(−1)n−1 [( fna− fn−1b)]

=
(−1)n

abcd

( fn−1b− fn−2c)( fn−1c− fn−2d)( fna− fn−1b)
.

Finally, we will show the last part of the solution. Eq.(3.8) leads to
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x3n−1 =
x3n−2x3n−5

−x3n−5 + x3n−4

=

(

(−1)n
abcd

( fn−1b− fn−2c)( fn−1c− fn−2d)( fna− fn−1b)

)

(

(−1)n−1
abcd

( fn−1a− fn−2b)( fn−2b− fn−3c)( fn−2c− fn−3d)

)

−





(−1)n−1
abcd

( fn−1a− fn−2b)( fn−2b− fn−3c)( fn−2c− fn−3d)
+

(−1)n
abcd

( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−2c− fn−3d)





=

(−1)2n−1 (abcd)2 ( fn−1a− fn−2b)( fn−2b− fn−3c)
( fn−2c− fn−3d)( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−2c− fn−3d)

( fn−1b− fn−2c)( fn−1c− fn−2d)( fna− fn−1b)( fn−1a− fn−2b)
( fn−2b− fn−3c)( fn−2c− fn−3d)(abcd)

[

−(−1)n−1 ( fn−1a− fn−2b)( fn−1b− fn−2c)( fn−2c− fn−3d)
+(−1)n ( fn−1a− fn−2b)( fn−2b− fn−3c)( fn−2c− fn−3d)

]

=
(−1)2n−1 (abcd)( fn−1a− fn−2b)( fn−2c− fn−3d)

( fna− fn−1b)( fn−1c− fn−2d)( fn−1a− fn−2b)
( fn−2c− fn−3d)(−1)n [( fn−2b− fn−3c)+( fn−1b− fn−2c)]

=
(−1)n−1

abcd

( fna− fn−1b)( fn−1c− fn−2d) [( fnb− fn−1c)]

=
(−1)n+1−2

abcd

( fna− fn−1b)( fn−1c− fn−2d) [( fnb− fn−1c)]

=
(−1)n+1

abcd

( fna− fn−1b)( fn−1c− fn−2d)( fnb− fn−1c)
.

3.4. Numerical confirmation

This subsection is included to verify and confirm the results we obtained in this work.

Example 3.5. This example pictured the stability of the fixed point when we take α = β = 1, γ = 7, x−3 =−3, x−2 = 3, x−1 =−5 and

x0 = 5. See Figure 3.1.
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Figure 3.1

Example 3.6. In Figure 3.2, we consider α = 15, β = 1, γ = 14, x−3 = 0.1, x−2 =−0.5, x−1 = 1 and x0 =−1.
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Figure 3.2

Example 3.7. The stability of Eq.(3.8) is shown in Figure 3.3, when we let x−3 = 5, x−2 =−8, x−1 = 10 and x0 =−10.
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Abstract

This paper is concerned with the following fourth-order three-point boundary value problem

BVP

u(4) (t) = f (t,u(t)) , t ∈ [0,1] ,

u′ (0) = u′′ (0) = u(1) = 0, u′′′ (η)+αu(0) = 0,

where f ∈C ([0,1]× [0,+∞) , [0,+∞)) , α ∈ [0,6) and η ∈
[

2
3 ,1

)

. Although corresponding

Green’s function is sign-changing, we still obtain the existence of monotone positive

solution under some suitable conditions on f by applying iterative method. An example is

also given to illustrate the main results.

1. Introduction

Fourth-order ordinary differential equations have attracted a lot of attention due to their applications in engineering, physics, material

mechanics, fluid mechanics and so on. Many approaches, such as the Leray– Schauder nonlinear alternative, fixed point index theory in

cones, the method of upper and lower solutions, degree theory, Guo-Krasnoselskii’s fixed point theorem, Leggett-Williams fixed-point

theorem, are used to study the existence of single or multiple positive solutions to some fourth-order boundary value problem, see [1]-[13].

However, all the above-mentioned papers are achieved when corresponding Green’s functions are nonnegative, which is a very important

condition.

Recently, the existence of positive solutions of the boundary value problems with sign-changing Green’s function has received increasing

interest.

In 2008, Palamides and Smyrlis [14] studied the existence of at least one positive solution to the singular third-order three-point BVP with an

indefinitely signed Green’s function

u′′′ (t) = a(t) f (t,u(t)) = 0, t ∈ (0,1) ,
u(0) = u(1) = u′′ (η) = 0,

where η ∈
(

17
24 ,1

)

. Their technique was a combination of the Guo-Krasnoselskii’s fixed point theorem [15, 16] and properties of the

corresponding vector field.

In 2018, Zhang et al [17] studied the existence of at least n−1 decreasing positive solutions of the problem

u(4) (t) = f (t,u(t)) = 0, t ∈ [0,1] ,
u(0) = u(1) = u′′ (η) = 0,

their main tool is the fixed point index theory.

It is worth mentioning that there are other types of works on sign-changing Green’s functions which prove the existence of sign-changing

solutions, positive in some cases; see [18]-[22].

Email addresses and ORCID numbers: djourdem.habib7@gmail.com 0000-0002-7992-581X (H. Djourdem), slimanebenaicha@yahoo.fr 0000-0002-8953-8709 (S. Be-

naicha), bouteraa-27@hotmail.fr 0000-0002-8772-1315 (N. Bouteraa)
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Motivated and inspired by the above-mentioned works, in this paper we will study the following nonlinear fourth-order three-point BVP with

sign-changing Green’s function

u(4) (t) = f (t,u(t)) t ∈ [0,1] ,
u′ (0) = u′′ (0) = u(1) = 0, u′′′ (η)+αu(0) = 0,

(1.1)

by applying iterative method. Throughout this paper, we always assume that f ∈C ([0,1]× [0,+∞) , [0,+∞)), α ∈ [0,6) and η ∈
[

2
3 ,1

)

. By

imposing some suitable conditions on f and η , we obtain the existence of monotone positive solution for the BVP (1.1). Moreover, our

iterative scheme starts off with zero function, which implies that the iterative scheme is feasible.

2. Main results

Let Banach space E =C [0,1] be equipped with the norm ‖u‖= maxt∈[0,1] |u(t)|.

Lemma 2.1. The BVP

u(4) (t) = 0 t ∈ [0,1] ,
u′ (0) = u′′ (0) = u(1) = 0, u′′′ (η)+αu(0) = 0

has only trivial solution.

Proof. It is simple to check.

Now, for any y ∈ E, we consider the BVP

u(4) (t) = y(t) t ∈ [0,1] ,
u′ (0) = u′′ (0) = u(1) = 0, u′′′ (η)+αu(0) = 0.

After a direct computation, one may obtain the expression of Green’s function G(t,s) of the BVP as follows: for s ≥ η ,

G(t,s) =







−
(6−αt3)(1−s)3

6(6−α)
, 0 ≤ t ≤ s ≤ 1

(t−s)3

6 −
(6−αt3)(1−s)3

6(6−α)
, 0 ≤ s ≤ t ≤ 1

and for s < η ,

G(t,s) =







−
(6−αt3)(1−s)3

6(6−α)
+ 1−t3

6−α , 0 ≤ t ≤ s ≤ 1

(t−s)3

6 −
(6−αt3)(1−s)3

6(6−α)
+ 1−t3

6−α , 0 ≤ s ≤ t ≤ 1.

Remark 2.2. G(t,s) has the following properties:

G(t,s)≥ 0 f or 0 ≤ s < η and G(t,s)≤ 0 f or η ≤ s ≤ 1.

Moreover, for s ≥ η ,

max{G(t,s) : t ∈ [0,1]}= G(1,s) = 0,

min{G(t,s) : t ∈ [0,1]}= G(0,s) =−
(1− s)3

6−α
≥−

(1−η)3

6−α

and for s < η ,

max{G(t,s) : t ∈ [0,1]}= G(0,s) =
s3 +3s−3s2

6−α
≤

η3 +3η −3η2

6−α
,

min{G(t,s) : t ∈ [0,1]}= G(1,s) = 0.

So, if we let M = max{|G(t,s)| : t,s ∈ [0,1]}, then

M = max

{

(1−η)3

6−α
,

η3 +3η −3η2

6−α

}

<
1

6−α
.

Let

K = {y ∈ E : y(t) is nonnegative and decreasing on [0,1]} .

Then K is a cone in E. Note that this induces an order relation ”<
∼

” in E by defining u <
∼

v if and only if v−u ∈ K. In the remainder of this

paper, we always assume that f satisfies the following two conditions:

(H1) for each u ∈ [0,+∞), the mapping t 7−→ f (t,u) is decreasing;

(H2) for each t ∈ [0,1], the mapping u 7−→ f (t,u) is increasing.

Now, we define an operator T as follows:

(Tu)(t) =
∫ 1

0
G(t,s) f (s,u(s))ds, u ∈ K, t ∈ [0,1] .

Obviously, if u is a fixed point of T in K, then u is a nonnegative and decreasing solution of the BVP (1.1).
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Lemma 2.3. T : K → K is completely continuous.

Proof. Let u ∈ K. Then, for t ∈ [0,η ], we have

(Tu)(t) =
∫ t

0

[

(t − s)3

6
+

1− t3

6−α
−

(

6−αt3
)

(1− s)3

6(6−α)

]

f (s,u(s))ds

+
∫ η

t

[

1− t3

6−α
−

(

6−αt3
)

(1− s)3

6(6−α)

]

f (s,u(s))ds+
∫ 1

η

[

−

(

6−αt3
)

(1− s)3

6(6−α)

]

f (s,u(s))ds,

which together with (H1) and (H2) implies that

(Tu)′ (t) =
∫ t

0

[

(t − s)2

2
−

3t2

6−α
+

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds+
∫ η

t

[

−
3t2

6−α
+

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds

+
∫ 1

η

[

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds

=
∫ t

0

[

t2

2
+

s2 −2ts

2
−

3t2

6−α
+

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds+
∫ η

t

[

−
3t2

6−α
+

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds

+
∫ 1

η

[

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds

=
∫ η

0

αt2
(

−3s+3s2 − s3
)

2(6−α)
f (s,u(s))ds−

t2

2

∫ η

t
f (s,u(s))ds+

∫ t

0

s2 −2ts

2
f (s,u(s))ds

−
t2

2

∫ η

t
f (s,u(s))ds+

∫ t

0

s2 −2ts

2
f (s,u(s))ds

≤ f (η ,u(η)) [
αt2

2(6−α)

∫ η

0

(

−3s+3s2 − s3
)

ds−
t2

2

∫ η

t
ds+

∫ t

0

s2 −2ts

2
ds+

αt2

2(6−α)

∫ 1

η
(1− s)3

ds ]

=
t2

2
f (η ,u(η)) [

αt2

(6−α)

(

1

4
−η

)

−η +
t

3
]

≤
t2

2
f (η ,u(η))

[

αt2 (1−4η)

(6−α)
−

2η

3

]

≤ 0.

For t ∈ [η ,1], we have

(Tu)(t) =
∫ η

0

[

(t − s)3

6
+

1− t3

6−α
−

(

6−αt3
)

(1− s)3

6(6−α)

]

f (s,u(s))

+
∫ t

η

[

(t − s)3

6
−

(

6−αt3
)

(1− s)3

6(6−α)

]

f (s,u(s))+
∫ 1

t

[

−

(

6−αt3
)

(1− s)3

6(6−α)

]

f (s,u(s)) ,

which together with (H1) and (H2) implies that

(Tu)′ (t) =
∫ η

0

[

(t − s)2

2
−

3t2

6−α
+

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds+
∫ t

η

[

(t − s)2

2
+

αt2 (1− s)3

2(6−α)

]

f (s,u(s))ds

+
∫ 1

t

αt2 (1− s)3

2(6−α)
f (s,u(s))ds

=
αt2

2(6−α)

∫ η

0

(

−3s+3s2 − s3
)

f (s,u(s))ds+
∫ η

0

(

s2 − ts

2

)

f (s,u(s))ds

+
∫ t

η

(t − s)2

2
f (s,u(s))ds+

∫ 1

η

αt2 (1− s)3

2(6−α)
f (s,u(s))ds

≤
αt2

2(6−α)
f (η ,u(η)) [

∫ η

0

(

−3s+3s2 − s3
)

ds+
∫ η

0

(

s2 − ts

2

)

ds+
∫ t

η

(t − s)2

2
ds+

∫ 1

η

αt2 (1− s)3

2(6−α)
ds ]

=
t2

2
f (η ,u(η)) [

αt2 (1−4η)

(6−α)
+

t −3η

3
]

=
t2

2
f (η ,u(η)) [

αt2 (1−4η)

(6−α)
+

1−3η

3
]

≤ 0.

So, (Tu)(t) is decreasing on [0,1]. At the same time, since (Tu)(1) = 0, we know that (Tu)(t) is nonnegative on [0,1]. This indicates that

Tu ∈ K.
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Now, we assume that D ⊂ K is a bounded set. Then there exists a constant C1 > 0 such that ‖u‖ ≤C1 for any u ∈ D. In what follows, we

will prove that T (D) is relatively compact.

Let

C2 = sup{ f (t,u) : (t,u) ∈ [0,1]× [0,C1]} .

Then for any y ∈ T (D), there exists u ∈ D such that y = Tu, and so,

|y(t)|= |(Tu)(t)|=

∣

∣

∣

∣

∫ 1

0
G(t,s) f (s,u(s))ds

∣

∣

∣

∣

≤
∫ 1

0
|G(t,s)| f (s(,u(s)))ds

≤ M

∫ 1

0
f (s,u(s))ds ≤ MC2, t ∈ [0,1] ,

which implies that T (D) is uniformly bounded. On the other hand, when ε > 0, if we choose 0 < τ < min
{

1−η ,
ε

12C2(M+1)

}

, then, for any

u ∈ D,

∫ η+τ

η−τ
f (s,u(s))ds ≤ 2C2τ <

ε

6(M+1)
. (2.1)

Since G(t,s) is uniformly continuous on [0,1]× [0,η − τ] and [0,1]× [η + τ,1], there exists δ > 0 such that for any t1, t2 ∈ [0,1] with

|t1 − t2|< δ ,

|G(t1,s)−G(t2,s)|<
ε

3(C2 +1)(η − τ)
, s ∈ [0,η − τ] (2.2)

and

|G(t1,s)−G(t2,s)|<
ε

3(C2 +1)(1−η − τ)
, s ∈ [η + τ,1] . (2.3)

In view of (2.1), (2.2) and (2.3), for any y ∈ T (D) and t1, t2 ∈ [0,1] with

|t1 − t2|< δ ,

|y(t1)− y(t2)|= |T (t1)−T (t2)|

=

∣

∣

∣

∣

∫ 1

0
(G(t1,s)−G(t2,s)) f (s,u(s))ds

∣

∣

∣

∣

≤
∫ 1

0
|(G(t1,s)−G(t2,s))| f (s,u(s))ds

=
∫ η−τ

0
|(G(t1,s)−G(t2,s))| f (s,u(s))ds+

∫ η+τ

η−τ
|(G(t1,s)−G(t2,s))| f (s,u(s))ds

+
∫ 1

η+τ
|(G(t1,s)−G(t2,s))| f (s,u(s))ds

≤C2
ε

3(C2 +1)(η − τ)
(η − τ)+

ε

3(M+1)
M+C2

ε

3(C2 +1)(1−η − τ)
(1−η − τ)

=
C2ε

3(C2 +1)
+

Mε

3(M+1)
+

C2ε

3(C2 +1)
= ε,

which implies that T (D) is equicontinuous. By Arzela-Ascoli theorem, we know that T (D) is relatively compact. Thus, we have shown that

T is a compact operator.

Finally, we prove that T is continuous. Suppose that un (n = 1,2, ...), u0 ∈ K and ‖un −u0‖→ 0 (n → 0). Then there exists C3 > 0 such that

for any n, ‖un‖ ≤C3.

Let

C4 = sup{ f (t,u) : (t,u) ∈ [0,1]× [0,C3]} .

Then for any n and t ∈ [0,1], we have

G(t,s) f (s,un (s))≤ MC4, s ∈ [0,1] .

By applying Lebesgue Dominated Convergence theorem, we obtain

lim
n→∞

(Tun)(t) = lim
n→∞

∫ 1

0
G(t,s) f (s,un (s))ds

=
∫ 1

0
G(t,s) lim

n→∞

f (s,un (s))ds

=
∫ 1

0
G(t,s) f (s,u0 (s))ds = T (u0)(t) , t ∈ [0,1] ,

which indicates that T is continuous.Therefore, T : K → K is completely continuous.
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Theorem 2.4. Assume that f (t,0) 6≡ 0 for t ∈ [0,1] and there exist two positive constants a and b such that the following conditions are

satisfied:

(H3) f (0,a)≤ (6−α)a;

(H4) b(u2 −u1)≤ f (t,u2)− f (t,u1)≤ 2b(u2 −u1), 0 ≤ t ≤ 1,

0 ≤ u1 ≤ u2 ≤ a. If we construct an iterative sequence vn+1 = T vn, n = 0,1,2, ..., where v0 (t)≡ 0 fot t ∈ [0,1], then {vn}
∞

n=1 converges to

v∗ in E and v∗ is a decreasing and positive solution of the BVP (1.1)

Proof. Let Ka = {u ∈ K : ‖u‖ ≤ a}. Then it follows from Lemma 2.3 that Tu ∈ K. In view of (H3) and 0 ≤ u(s)≤ 1 for s ∈ [0,1], we have

0 ≤ (Tu)(t) =
∫ 1

0
G(t,s) f (s,u(s))ds

≤
∫ 1

0
|G(t,s)| f (0,a)ds

≤ (6−α)aM ≤ a, t ∈ [0,1] ,

which shows that ‖Tu‖ ≤ a. So, T : Ka → Ka. Now, we prove that {vn}
∞

n=1 converges to v∗in E and v∗ is a decreasing and positive solution

of the BVP (1.1). Indeed, in view of v0 ∈ Ka and T : Ka → Ka, we have vn ∈ Ka, n = 0,1,2, .... Since the set {vn}
∞

n=0 is bounded and T

is completely continuous, we know that the set {vn}
∞

n=0 is relatively compact. In what follows, we prove that {vn}
∞

n=0 is monotone by

induction. First, it is obvious that v1 − v0 = v1 ∈ K, which shows that v0 <
∼

v1. Next, we assume that vk−1 <
∼

vk. Then it follows from (H4)

that for 0 ≤ t ≤ η , we obtain

v′k+1 (t)− v′k (t)

= (T vk)
′ (t)− (T vk−1)

′ (t)

=
∫ 1

0
∂G(t,s)

∂ t
[ f (s,vk (s))− f (s,vk−1 (s))]ds

= αt2

2(6−α)

∫ η
0

(

3s2 −3s− s3
)

[ f (s,vk (s))− f (s,vk−1 (s))]ds

+
∫ t

0

(

s2−2ts
2

)

[ f (s,vk (s))− f (s,vk−1 (s))]ds− t2

2

∫ η
t [ f (s,vk (s))− f (s,vk−1 (s))]ds

+ αt2

2(6−α)

∫ 1
η (1− s)3 [ f (s,vk (s))− f (s,vk−1 (s))]ds

≤ bαt2

2(6−α)

∫ η
0

(

3s2 −3s− s3
)

[vk (s)− vk−1 (s)]ds+b
∫ t

0

(

s2−2ts
2

)

[vk (s)− vk−1 (s)]ds

− bt2

2

∫ η
t [ f (s,vk (s))− f (s,vk−1 (s))]ds+ 2bαt2

2(6−α)

∫ 1
η (1− s)3 [vk (s)− vk−1 (s)]ds

≤ b [vk (η)− vk−1 (η)] [ αt2

2(6−α)

∫ η
0

(

3s2 −3s− s3
)

ds+
∫ t

0

(

s2−2ts
2

)

ds− t2

2

∫ η
t ds+ αt2

(6−α)

∫ 1
η (1− s)3

ds]

= t2

2 b [vk (η)− vk−1 (η)]

[

α(η4−4η3+6η2−8η+2)
4(6−α)

−η + t
3

]

≤ t2

2 b [vk (η)− vk−1 (η)]
[

α(−3η+2)
4(6−α)

− 2η
3

]

≤ t2

2 b [vk (η)− vk−1 (η)]
[

α(−3η+2)
4(6−α)

− 2η
3

]

≤ 0.

For η ≤ t ≤ 1, we get

v′k+1 (t)− v′k (t)

= (T vk)
′ (t)− (T vk−1)

′ (t)

=
∫ 1

0
∂G(t,s)

∂ t
[ f (s,vk (s))− f (s,vk−1 (s))]ds

= αt2

2(6−α)

∫ η
0

(

3s2 −3s− s3
)

[ f (s,vk (s))− f (s,vk−1 (s))]ds+
∫ η

0

(

s2−2ts
2

)

[ f (s,vk (s))− f (s,vk−1 (s))]ds

+
∫ t

η
(t−s)2

2 [ f (s,vk (s))− f (s,vk−1 (s))]ds+
∫ 1

η
αt2(1−s)3

2(6−α)
[ f (s,vk (s))− f (s,vk−1 (s))]ds

≤ bαt2

2(6−α)

∫ η
0

(

3s2 −3s− s3
)

[vk (s)− vk−1 (s)]ds+b
∫ η

0

(

s2−2ts
2

)

[vk (s)− vk−1 (s)]ds

+2b
∫ t

η
(t−s)2

2 [vk (s)− vk−1 (s)]ds+2b
∫ 1

η
αt2(1−s)3

2(6−α)
[vk (s)− vk−1 (s)]ds]

≤ b× [vk (η)− vk−1 (η)]× [ αt2

2(6−α)

∫ η
0

(

3s2 −3s− s3
)

ds+
∫ η

0

(

s2−2ts
2

)

ds+2
∫ t

η
(t−s)2

2 ds+2b
∫ 1

η
αt2(1−s)3

2(6−α)
ds]

= b× [vk (η)− vk−1 (η)]× [
αt2(η4−4η3+6η2−8η+2)

8(6−α)
− η3

6 + tη2

2 + t3

3 − t2η ]

≤ t2

2 b× [vk (η)− vk−1 (η)]× [
αt2(η4−4η3+6η2−8η+2)

4(6−α)
+ 2t

3 −η ]

≤ t2

2 b× [vk (η)− vk−1 (η)]× [
αt2(−3η+2)

4(6−α)
+ 2−3η

3 ]≤ 0,
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hence

v′k+1 (t)− v′k (t)≤ 0, t ∈ [0,1] , (2.4)

that is vk+1 (t)− vk (t) is decreasing on [0,1]. At the same time, it is easy to see that

vk+1 (1)− vk (1) =
∫ 1

0
G(1,s) [ f (s,vk (s)− vk−1 (s))]ds = 0,

the last equation implies that

vk+1 (t)− vk (t)≥ 0, t ∈ [0,1] . (2.5)

It follows from (2.4) and (2.5) that vk+1 − vk ∈ K, which indicates that vk+1 <
∼

vk. Thus, we have shown that vk+1 <
∼

vk, n = 0,1,2, ... Since

{vn}
∞

n=1 is relatively compact and monotone, there exists a v∗ ∈ Ka such that limn→∞ vn = v∗, which together with the continuity of T and

the fact that vn+1 = T vn implies that v∗ = T v∗. This indicates that v∗ is a decreasing nonnegative solution of (1.1). Moreover, in view of

f (t,0) 6= 0 for t ∈ [0,1], we know that zero function is not a solution of (1.1), which shows that is v∗ a positive solution of (1.1).

3. An example

Consider the boundary value problem

u(4) (t) = f (t,u(t)) t ∈ [0,1] ,
u′ (0) = u′′ (0) = u(1) = 0, u′′′ (η)+αu(0) = 0,

(3.1)

If we let η = 3
4 , α = 4 and f (t,u) = 1

2 u2 (t)+ t, (t,u) ∈ [0,1]× [0,+∞), then all the hypotheses of Theorem 2.4 are fulfilled with a = 3 and

b = 3
4 . Therefore, it follows from Theorem 2.4 that the BVP (3.1) has a decreasing and positive solution. Moreover, the iterative scheme is

v0 (t)≡ 0 for t ∈ [0,1] and

vn+1 (t) =































































































∫ t
0

[

(t−s)3

6 + 1−t3

2 −
(3−2t3)(1−s)3

6

]

×
[

1
2 (vn (s))

2 + s
]

ds

+
∫

3
4

t

[

1−t3

2 −
(3−2t3)(1−s)3

6

]

×
[

1
2 (vn (s))

2 + s
]

ds

+
∫ 1

3
4

[

−
(3−2t3)(1−s)3

6

]

×
[

1
2 (vn (s))

2 + s
]

ds

i f t ∈
[

0, 3
4

]

, n = 0,1,2...
∫

3
4

0

[

(t−s)3

6 + 1−t3

2 −
(3−2t3)(1−s)3

6

]

×
[

1
2 (vn (s))

2 + s
]

ds

+
∫ t

3
4

[

(t−s)3

6 −
(3−2t3)(1−s)3

6

]

×
[

1
2 (vn (s))

2 + s
]

ds

∫ 1
t

[

−
(3−2t3)(1−s)3

6

]

×
[

1
2 (vn (s))

2 + s
]

ds

i f t ∈
[

3
4 ,1

]

, n = 0,1,2...

The first, second, third, and fourth terms of this scheme are as follows:

v0 (t)≡ 0,

v1 (t) =
7t5

120
−

119t3

480
+

37

160

v2 (t) =
7t14

49420800
−

833t12

342144000
−

7427t11

20275200
−

184253t10

165888000
+

37t9

4147200

−
49069t7

102400
+

t5

60
+

1369t4

614400
−

147553086840691879t3

298491637137408000
+

143787255710603

1554643943424000

v3 (t) =
49t32

2107902249507225600000
−

833t30

794386238570496000000
−

7427t29

40798108054978560000

−
268461101t28

427325011093094400000000
+

26846981t27

6330740905082880000000
+

26815806199t26

68926409854156800000000

+
400171550569t25

179208665620807680000000
+

371462295299t24

77197579036655616000000
+

114032891993t23

10453838827880448000000

+
3453761875703t22

1727155980258508800000
+

7849798967004654729071t21

1059466770855994482229248000000
−

272903089t20

1527724965888000000
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−
1851000739420343895193t19

4750136730870832403841024000000
+

361876888294795340312089t18

115558881873816741520343040000

+
27188083251903828979787t17

1414182120833421661962240000000
−

34723371605213907361t15

516309342522414465024000000

+
977587338666778516044941t14

49565696882151788642304000000
+

8406307672322955338512400961796543t13

267291772322910140198018875392000000

−
29501725604687291t12

21276483895154442240000
−

1665986509523789947523t11

145247463390920992358400000

+
21771913436216758949940023416550641t10

449050177502489035532671710658560000000

+
143787255710603t9

141037298547425280000
+

196844753067815507t8

802345520625352704000000

−
21216253428451373750458316293037t7

194900250652121977227722096640000000
+

t5

60

+
20674774904786335034486623609t4

58006026979798207508250624000000

−
22999424791465727671649714973089070426023581506911t3

92131073987503901166490340551548382425907200000000

+
310661312414757109061653185761538923825439093587

1335232956340636248789715080457222933708800000000
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Abstract

In this article, we establish ακ−implicit contraction and provide some fixed point results in

non-AMMS. Our results progress and generalize some famous consequences in a suitable

resource. As an implementation, we study stability in the sense of Ulam-Hyers and a fixed

point problem’s well-posedness. In addition, some examples are given for new concepts.

Also, an application to integral equations is discussed.

1. Some basic concepts and definitions

In this work, we will write MMS to modular metric space and non-AMMS to non-Archimedean modular metric space. In 2010, Chistyakov

[1], [2] defined a new generalized space which is a modular metric space and introduced basic concepts and topological properties.

Let M be a nonempty set, a function κ : (0,∞)×M×M → [0,∞] be defined

κλ (ξ ,η) = κ (λ ,ξ ,η)

for all λ > 0 and ξ ,η ∈ M.

Definition 1.1. A function κ : (0,∞)×M×M → [0,∞] is named a modular metric if the following conditions are supplied:

(i) ξ = η ⇔ κλ (ξ ,η) = 0, for all λ > 0;

(ii) κλ (ξ ,η) = κλ (η ,ξ ) , for all λ > 0 and ξ ,η ∈ M;

(iii) κλ+µ (ξ ,η)≤ κλ (ξ ,ν)+κµ (ν ,η) , for all λ , µ > 0 and ξ ,η ,ν ∈ M.

Then, Mκ is named an MMS.

In the above definition, if we make use of the condition:

(i1) κλ (ξ ,ξ ) = 0 for all λ > 0 and ξ ∈ M,

instead of (i), then Mκ is a pseudomodular metric space. Mκ is called regular if the condition (i) is supplied as:

ξ = η if and only if κλ (ξ ,η) = 0 for some λ > 0.

The space Mκ is named convex if for λ , µ > 0 and ξ ,η ,ν ∈ M, the condition supplies:

κλ+µ (ξ ,η)≤
λ

λ +µ
κλ (ξ ,ν)+

µ

λ +µ
κµ (ν ,η) .

Definition 1.2. [1], [2] recognised that κ be a pseudomodular on M and ξ0 ∈ M and fixed. The sets:

Mκ = Mκ (ξ0) = {ξ ∈ M : κλ (ξ ,ξ0) as λ → ∞}

and

M∗
κ= M∗

κ (ξ0)= {ξ ∈ M : ∃λ = λ (ξ )> 0 such that κλ (ξ ,ξ0)< ∞}

are identified modular spaces (around ξ0).

Email addresses and ORCID numbers: girginekber@gmail.com, 0000-0002-8913-5416 (E. Girgin), mahpeykero@sakarya.edu.tr, 0000-0003-2946-6114 (M. Öztürk)
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It is trivial that Mκ ⊂ M∗
κ . Suppose that κ is a modular on M; from [1], [2], it can be obtained that the modular space Mκ can be settled with

a (nontrivial) metric, induced by κ and given by:

dκ (ξ ,η) = inf{λ > 0 : κλ (ξ ,η)< λ} ,

for all ξ ,η ∈ Mκ .

Consider that if κ is a convex modular on M, then specify [1], [2], the two modular space coincide, i.e., Mκ = M∗
κ , and this common set can

be defined with the metric d∗
κ given by:

d∗
κ (ξ ,η) = inf{λ > 0 : κλ (ξ ,η)< 1} ,

for all ξ ,η ∈ Mκ . These distances are named Luxemburg distances.

Definition 1.3. [3] Let Mκ be a MMS, A be a subset and (sn)n∈N be a sequence in Mκ . Therefore:

(1) (sn)n∈N is named κ−convergent to ξ ∈ Mκ if and only if κλ (sn,ξ )→ 0 as n → ∞ for all λ > 0. ξ will be called the κ−limit of (sn).
(2) If for all λ > 0, κλ (sn,sm)→ 0, as m,n → ∞, (sn)n∈N is called κ−Cauchy.

(3) A is called κ−closed if the κ−limit of κ−convergent of A always belong to A.

(4) If any κ−Cauchy sequence in A is κ−convergent, then A is named κ−complete.

(5) A is called κ−bounded if for all λ > 0, we have

δω (A) = sup{κλ (ξ ,η) ;ξ ,η ∈ A}< ∞.

Paknazar et al. [4] modified the third condition of MMS.

Definition 1.4. If in Definition 1.1, we exchange (iii) by:

(iv) κmax{λ ,µ} (ξ ,η)≤ κλ (ξ ,ν)+κµ (ν ,η) ,

for all λ , µ > 0 and ξ ,η ,ν ∈ Mκ , then, Mκ is called non-AMMS.

Now, denote N the set of positive integers, the set of real numbers R and Ψ the set of functions ψ : [0,∞)→ [0,∞) satisfying:

(ψ1) ψ is nondecreasing,

(ψ2)
∞

∑
n=1

ψn (t)< ∞ for each R+, where ψn is the nth iterate of ψ .

Remark 1.5. It is trivial that if ψ ∈ Ψ, then ψ (t)< t for any t > 0.

Definition 1.6. [5] Let Γ be the set of all functions ℘(t1, ..., t6) : R6
+ → R satisfying:

(℘1) ℘ is nondecreasing in variable t1 and nonincreasing in variable t5,

(℘2) there exists ψ ∈ Ψ such that for all u,v ≥ 0, ℘(u,v,v,u,u+ v,0)≤ 0 implies u ≤ ψ (v), and ℘(u,v,u,v,0,u+ v)≤ 0 implies u ≤ ψ (v).

Samet et al. [6] characterize a new notion by defining α−admissible mapping.

Definition 1.7. [6] Let α : M×M → [0,∞) be a function. A mapping h̄ : M → M satisfying

α (ξ ,η)≥ 1 ⇒ α (h̄ξ , h̄η)≥ 1, (1.1)

if for all ξ ,η ∈ M, is called as α−admissible mapping.

Example 1.8. [6] Let M = (0,∞) and define h̄ : M → M and α : M×M → [0,∞) by

h̄ξ = lnξ , for all ξ ∈ M

and

α (ξ ,η) =

{

2 if ξ ≥ η ,
0 if ξ < η .

Then, h̄ is an α−admissible mapping.

Such papers related to above concept imagined to obtain some fixed and common fixed point results (see [7] [8], [9], [10]).

2. ακ−implicit contraction and fixed point results

In the sequel the function κ is convex and regular.

Definition 2.1. Let Mκ be a non-AMMS. A mapping given as h̄ : Mκ → Mκ is called ακ−implicit contraction if there are two functions

α : Mκ ×Mκ → [0,∞) and Γ ∈℘ in such a way that

℘(α (ξ ,η)κλ (h̄ξ , h̄η) ,κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,
κλ (η , h̄η) ,κλ (ξ , h̄η) ,κλ (η , h̄ξ ))≤ 0,

(2.1)

for all ξ ,η ∈ Mκ .

Theorem 2.2. Let Mκ be a complete non-AMMS and h̄ : Mκ → Mκ be a ακ−implicit contraction. Assume that:

(i) h̄ satisfies (1.1),
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(ii) there is ξ0 ∈ Mκ in such a manner that α (ξ0, h̄ξ0)≥ 1,

(iii) h̄ is continuous.

Then, h̄ has a fixed point.

Proof. Let ξ0 ∈ Mκ be in such a way that α (ξ0, h̄ξ0)≥ 1 and let {ξn} be a Picard sequence starting at ξ0, that is ξn = h̄nξ0 = h̄ξn−1 for all

n ∈ N. First, imagine that κλ (ξn0
,ξn0+1) = 0 for some n0 ∈ N, since κ is regular, we get ξn0

= ξn0+1 = h̄ξn0
. So, ξn0

is a fixed point of h̄.

Hence, we approve that ξn 6= ξn+1 such that κλ (ξn,ξn+1)> 0. Now, since the mapping h̄ is α−admissible and α (ξ0,ξ1) = α (ξ0, h̄ξ0)≥ 1,

we deduce that α (h̄ξ0, h̄ξ1) = α (ξ1,ξ2)≥ 1. Using the iterative method, we achieve

α (ξn,ξn+1)≥ 1, for all n ∈ N. (2.2)

From (2.1) with ξ = ξn and η = ξn+1, we have

℘(α (ξn,ξn+1)κλ (h̄ξn, h̄ξn+1) , κλ (ξn,ξn+1) ,κλ (ξn, h̄ξn)
κλ (ξn+1, h̄ξn+1) , h̄λ (ξn, h̄ξn+1) ,κλ (ξn+1, h̄ξn))≤ 0,

that is,
℘(α (ξn,ξn+1)κλ (ξn+1,ξn+2) , κλ (ξn,ξn+1) ,κλ (ξn,ξn+1)

κλ (ξn+1,ξn+2) ,κλ (ξn,ξn+2) ,κλ (ξn+1,ξn+1))≤ 0.

By using the conditions, (iv), (2.2) and (℘1) we get

℘(κλ (ξn+1,ξn+2) , κλ (ξn,ξn+1) ,κλ (ξn,ξn+1)

κλ (ξn+1,ξn+2) ,κmax{λ ,λ} (ξn,ξn+2) ,0
)

≤ 0

=℘(κλ (ξn+1,ξn+2) , κλ (ξn,ξn+1) ,κλ (ξn,ξn+1)

κλ (ξn+1,ξn+2) ,κλ (ξn,ξn+1)+κλ (ξn+1,ξn+2) ,0)≤ 0.

Due to (℘2), we obtain

κλ (ξn+1,ξn+2)≤ ψ (κλ (ξn,ξn+1)) , for all n ∈ N. (2.3)

From (2.3), it is easy to derive that

κλ (ξn+1,ξn+2)≤ ψn+1 (κλ (ξ0,ξ1)) , for all n ∈ N. (2.4)

Next, we illustrate that {ξn} is a Cauchy sequence in Mκ . Take m > n; by the condition (iv) and (2.4), we write

κλ (ξn,ξm) = κmax{λ ,λ} (ξn,ξm)

≤ κλ (ξn,ξn+1)+κλ (ξn+1,ξm)
= κλ (ξn,ξn+1)+κmax{λ ,λ} (ξn+1,ξm)

≤ κλ (ξn,ξn+1)+κλ (ξn+1,ξn+2)+κλ (ξn+2,ξm)
...

≤ κλ (ξn,ξn+1)+κλ (ξn+1,ξn+2)+ ...+κλ (ξm−1,ξm)
≤
(

ψn +ψn−1 + ...+ψm−1
)

κλ (ξ0,ξ1)

≤
∞

∑
k=n

ψk (κλ (ξ0,ξ1)).

(2.5)

From (2.5) and (ψ2) the series
∞

∑
k=n

ψk (κλ (ξ0,ξ1)) is convergent and so {ξn} is a Cauchy sequence in Mκ . Because Mκ is a complete non-

AMMS, then there exists a point ν ∈ Mκ such that κλ (ξn,ν)→ 0 as n → ∞. Thus, κλ (h̄ξn, h̄ν)→ as n → ∞, because h̄ is a κ−continuous.

Then, by (iv) we obtain

κλ (ν , h̄ν) = κmax{λ ,λ} (ν , h̄ν)

≤ κλ (ν , h̄ξn)+κλ (h̄ξn, h̄ν)
= κλ (ν ,ξn+1)+κλ (h̄ξn, h̄ν) .

As n → ∞, we get κλ (ν , h̄ν) = 0. Since κ is regular, we deduce that h̄ν = ν and hence ν is a fixed point of h̄.

If we turn into the continuity of h̄ with the condition (H), we attain the other result.

(H) If {ξn} is a sequence in Mκ such that α (ξn,ξn+1)≥ 1 for all n ∈ N and ξn → ξ as n → ∞, there exists a subsequence {ξnk
} of {ξn}

such that α (ξnk
,ξ )≥ 1 for all k ∈ N.

Theorem 2.3. Let Mκ be a complete non-AMMS and h̄ : Mκ → Mκ be an ακ−implicit contraction. Granted that:

(i) h̄ satisfies (1.1),



Fundamental Journal of Mathematics and Applications 215

(ii) there exists ξ0 ∈ Mκ in such a way that α (ξ0, h̄ξ0)≥ 1,

(iii) (H) is supplied.

Then, h̄ has a fixed point.

Proof. Due to Theorem 2.2, we acquire that the sequence {ξn}, defined by ξn = h̄ξn−1 for all n∈N, is a Cauchy sequence with α (ξn,ξn+1)≥
1 for all n ∈ N, which converges to some ν ∈ Mκ . Next, from the condition (iii), there is a subsequence {ξnk

} of {ξn} in such a manner that

α (ξnk
,ξ )≥ 1 for all k ∈ N. We need to show that h̄ν = ν . Since h̄ is ακ−type implicit contraction with ξ = ξnk

and η = ν and (iv), we

obtain
℘(α (ξnk

,ν)κλ (h̄ξnk
, h̄ν) , κλ (ξnk

,ν) ,κλ (ξnk
, h̄ξnk

)

κλ (ν , h̄ν) ,κλ (ξnk
, h̄ν) ,κλ (ν , h̄ξnk

))≤ 0

=℘(α (ξnk
,ν)κλ (ξnk+1, h̄ν) , κλ (ξnk

,ν) ,κλ (ξnk
,ξnk+1)

κλ (ν , h̄ν) ,κmax{λ ,λ} (ξnk
, h̄ν) ,ωλ (ν ,ξnk+1)

)

≤ 0

≤℘(α (ξnk
,ν)κλ (ξnk+1, h̄ν) , κλ (ξnk

,ν) ,κλ (ξnk
,ξnk+1)

κλ (ν , h̄ν) ,κλ (ξnk
,ν)+κλ (ν , h̄ν) ,κλ (ν ,ξnk+1))≤ 0.

Letting k tends to infinity and using the continuity of ℘ and α (ξnk
,ξ )≥ 1, we get

℘(κλ (ν , h̄ν) , 0,0, κλ (ν , h̄ν) ,κλ (ν , h̄ν) ,0)≤ 0.

Finally, by condition (℘2), it follows that κλ (ν , h̄ν)≤ 0 which implies h̄ν = ν .

We need extra conditions to obtain uniqueness of fixed point.

(U) For all u,v ∈ Fix(h̄), we attain α (u,v)≥ 1, where Fix(h̄) gives the set of all fixed points of h̄.

(℘3) There exists ψ ∈ Ψ in such a way that for all u,v > 0,

℘(u,u,0,0,u,v)≤ 0 implies u ≤ ψ (v) .

Theorem 2.4. Adding conditions (U) and (℘3) to the hypotheses of Theorem 2.2 (resp Theorem 2.3), we deduce that h̄ has a unique fixed

point.

Proof. We discuss by contradiction, that is, there exist u,v ∈ Mκ in such a way that u = h̄u and v = h̄v with u 6= v. From (1.1), we obtain

℘(α (u,v) κλ (h̄u, h̄v) ,κλ (u,v) ,κλ (u, h̄u) ,

κλ (v, h̄v) ,κλ (u, h̄v) ,κλ (v, h̄u))≤ 0.

Then, by condition (U), we have

℘(κλ (u,v) , κλ (u,v) ,0, 0,κλ (u,v) ,κλ (v,u))≤ 0.

Since ℘ satisfies the property (℘3), then

κλ (u,v)≤ ψ (κλ (u,v))< κλ (u,v) ,

which is a contradiction and hence u = v.

Now, we give some corollaries from above results.

Corollary 2.5. Let Mκ be a complete non-AMMS and h̄ : Mκ → Mκ be a function. If there is a function α : Mκ ×Mκ → [0,∞) in such a

manner that
α (ξ ,η)κλ (h̄ξ , h̄η)≤ pκλ (ξ ,η)+qκλ (ξ , h̄ξ )+ rκλ (η , h̄η)

+sκλ (ξ , h̄η)+ tκλ (η , h̄ξ ) ,

for all ξ ,η ∈ Mκ , where p,q,r,s, t > 0, p+q+ r+ s+ t < 1. Assume also that:

(i) h̄ satisfies (1.1),

(ii) there is ξ0 ∈ Mκ in such a way that α (ξ0, h̄ξ0)≥ 1,

(iii) h̄ is continuous or the condition (H) holds true.

Then, h̄ has a fixed point. Additionally, if p+ r+ s < 1 and the conditions (U) and (℘3) hold true, then h̄ has a unique fixed point.

Corollary 2.6. Let Mκ be a complete non-AMMS and h̄ : Mκ → Mκ be a function. If there is a function α : Mκ ×Mκ → [0,∞) in such a

manner that
α (ξ ,η)κλ (h̄ξ , h̄η)≤ k max{κλ (ξ ,η) , κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,

κλ (ξ , h̄η) ,κλ (η , h̄ξ )} ,

for all ξ ,η ∈ Mκ , where k ∈
[

0, 1
2

)

. Furthermore:

(i) h̄ satisfies (1.1),

(ii) there is ξ0 ∈ Mκ such that α (ξ0, h̄ξ0)≥ 1,

(iii) h̄ is continuous or the property (H) is satisfied.
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Then, h̄ has a fixed point. Moreover, the conditions (U) and (℘3) hold true, then h̄ has a unique fixed point.

Example 2.7. Mκ = R endowed with the non-Archimedean modular metric κλ (ξ ,η) = 1
λ
|ξ −η |, for all ξ ,η ∈ Mκ and λ > 0. Obviously,

Mκ is an κ−complete non-AMMS.

Consider the self-map h̄ : Mκ → Mκ defined by h̄ξ = ξ
6 .

Also define

α (ξ ,η) =

{

1, if ξ ,η ∈ [0,1]
0, otherwise,

and ℘ : R6
+ → R+ defined by

℘(t1, t2, t3, t4, t5, t6) = t1 −
3

4
max

{

t2, t3, t4,
t5 + t6

2

}

.

Let α (ξ ,η)≥ 1, then ξ ,η ∈ [0,1]. Also, h̄ξ ∈ [0,1], for all ξ ∈ [0,1] and so α (h̄ξ , h̄η)≥ 1. Therefore h̄ is an α−admissible mapping. Let

ξ ,η ∈ [0,1], we have

℘
(

α (ξ ,η)κλ (h̄ξ , h̄η) ,κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,
κλ (ξ ,h̄η)+κλ (η ,h̄ξ )

2

)

= α (ξ ,η)κλ (h̄ξ , h̄η)− 3
4 max{κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,

κλ (ξ ,h̄η)+κλ (η ,h̄ξ )
2

}

≤ 1
6λ

|ξ −η |− 3
4 max

{

1
λ
|ξ −η | , 6

5λ
|ξ | , 6

5λ
|η | , 1

12λ
(|6ξ −η |+ |6η −ξ |)

}

≤ 0.

Similarly, it is obvious that contractive condition (2.1) holds in the case (ξ ,η /∈ [0,1] and ξ or η is not in [0,1].) Thus, h̄ is ακ−type implicit

contraction. Next, it is easy to illustrate that conditions h̄ is κ−continuous, (H) and (U) are satisfied.

Thus, the axioms of the Theorem 2.2, Theorem 2.3, and Theorem 2.4 are supplied and 0 is a unique fixed point.

3. Stability problem in the sense of Ulam-Hyers

Now, we obtain the stability problem in the sense of Ulam-Hyers of fixed point. That this problem correspondences to Corollary 2.5.

Let Mκ be a non-AMMS and h̄ : Mκ → Mκ be a function. Imagine the fixed point problem

ξ = h̄ξ (3.1)

and the inequality (for ε > 0)

κλ (h̄η ,η)< ε. (3.2)

We are said to be a h̄ is stable in the sense of Ulam-Hyers in non-AMMS if there are L > 0 such that for each ε > 0 and a ε−solution

v∗ ∈ Mκ , that is, v∗ supplies the condition (3.2), there is a solution u∗ ∈ Mω of the fixed point equation (3.1) such that

κλ (u∗,v∗)< Lε. (3.3)

Theorem 3.1. Let Mκ be a non-AMMS. Suppose that all the hypotheses of Corollary 2.5 hold and α (u,v)≥ 1 for all ε−solution u and v,

then the equation (3.1) is stable in the sense of Ulam-Hyers.

Proof. By Corollary 2.5, we have a unique u ∈ Mκ such that u = h̄u, that is, u ∈ Mκ is a solution of the fixed point equation (3.1). Let ε > 0

and v ∈ Mκ be an ε−solution, that is,

κλ (h̄v,v)≤ ε.

Since κλ (u, h̄u) = κλ (u,u) = 0 ≤ ε , u and v are ε−solutions. By hypotheses, we get α (u,v)≥ 1 and from (3.3), so

κλ (u,v) = κλ (h̄u,v)
= κmax{λ ,λ} (h̄u,v)

≤ κλ (h̄u, h̄v)+κλ (h̄v,v)
= α (u,v)κλ (h̄u, h̄v)+ ε
≤ aκλ (u,v)+bκλ (u, h̄u)+ cκλ (v, h̄v)
+dκλ (u, h̄v)+ eκλ (v, h̄u)+ ε
= aκλ (u,v)+bκλ (u, h̄u)+ cκλ (v, h̄v)
+dκmax{λ ,λ} (u, h̄v)+ eκmax{λ ,λ} (v, h̄u)+ ε

≤ aκλ (u,v)+bκλ (u, h̄u)+ cκλ (v, h̄v)
+d (κλ (u,v)+κλ (v, h̄v))+ e(κλ (v,u)+κλ (u, h̄u))+ ε.

We deduce

κλ (u,v)≤

(

1+ c+d

1−a−d − e

)

ε = Lε,

where L =
(

1+c+d
1−a−d−e

)

> 0. Thus, h̄ is Ulam-Hyers stable.
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4. Well posedness of the fixed point problem

Now, we show well-posedness of a function h̄ on non-AMMS.

Definition 4.1. Let Mκ be a non-AMMS and let h̄ : Mκ → Mκ , α : Mκ ×Mκ → [0,∞) be two functions. h̄ is well-posedness if:

(i) u ∈ Mκ is the unique fixed point when α (u, h̄u)≥ 1,

(ii) there exists a sequence {ξn} in such a manner that κλ (ξn, h̄ξn)→ 0 as n → ∞ , then κλ (ξn,u)→ 0 as n → ∞.

We define a new condition which needs to be the following result.

(R) If {ξn} is a sequence in Mκ in such a way that κλ (ξn, h̄ξn)→ 0 as n → ∞, then α (ξn, h̄ξn)≥ 1 for all n ∈ N.

Theorem 4.2. Let Mκ be a non-AMMS. If all the conditions of Corollary 2.5 and the condition (R) hold, hence (3.1) is well posed.

Proof. By Corollary 2.5, we have a unique u ∈ Mκ in such a manner that u = h̄u and α (u, h̄u)≥ 1. Let {ξn} is a sequence in Mκ in such a

way that κλ (ξn, h̄ξn)→ 0 as n → ∞. By condition (R), we get α (ξn, h̄ξn)≥ 1. Now, we have

κλ (ξn,u) = κλ (ξn, h̄u)
= κmax{λ ,λ} (ξn, h̄u)

≤ κλ (ξn, h̄ξn)+κλ (h̄ξn, h̄u)
≤ α (ξn,u)κλ (h̄ξn, h̄u)+κλ (ξn, h̄ξn)
≤ aκλ (ξn,u)+bκλ (ξn, h̄ξn)+ cκλ (u, h̄u)+dκλ (ξn, h̄u)
+eκλ (u, h̄ξn)+κλ (ξn, h̄ξn)
≤ aκλ (ξn,u)+bκλ (ξn, h̄ξn)+ cκλ (u, h̄u)+dκmax{λ ,λ} (ξn, h̄u)

+eκmax{λ ,λ} (u, h̄ξn)+κλ (ξn, h̄ξn)

≤ aκλ (ξn,u)+bκλ (ξn, h̄ξn)+ cκλ (u, h̄u)+d (κλ (ξn,u)+κλ (u, h̄u))
+e(κλ (u,ξn)+κλ (ξn, h̄ξn))+κλ (ξn, h̄ξn) .

Hence

κλ (ξn,u)≤

(

1+b+ e

1−a−d − e

)

κλ (ξn, h̄ξn) .

Since κλ (ξn, h̄ξn)→ 0 as n → ∞, it implies that κλ (ξn,u)→ 0 as n → ∞. Thus, h̄ is well posed.

5. Consequences

Next, we will obtain non-AMMS version of some fixed point results.

In the Definition of 1.6, if we take ψ (t) = ht, h ∈ [0,1), we get Berinde’s results in [11].

Let Γ be the set of all continuous real functions ℘ : R6
+ → R+, for which we consider the following conditions:

(℘1a) F is non-increasing in the fifth variable and

℘(ξ ,η ,η ,ξ ,ξ +η ,0)≤ 0, for ξ ,η ≥ 0 ⇒ ∃h ∈ [0,1) such that ξ ≤ hη ;

(℘1b) ℘ is non-increasing in the fourth variable and

℘(ξ ,η ,0,ξ +η ,ξ ,η)≤ 0, for ξ ,η ≥ 0 ⇒ ∃h ∈ [0,1) such that ξ ≤ hη ;

(℘1c) ℘ is non-increasing in the third variable and

℘(ξ ,η ,ξ +η ,0,η ,ξ )≤ 0, for ξ ,η ≥ 0 ⇒ ∃h ∈ [0,1) such that ξ ≤ hη ;

(℘2) ℘(ξ ,ξ ,0,0,ξ ,ξ )> 0, for all ξ > 0.

Example 5.1. The function ℘∈ Γ, given by

℘(t1, t2, t3, t4, t5, t6) = t1 −at2,

where a ∈ [0,1), satisfies (℘1a)-(℘1c) and (℘2),with h = a.

Example 5.2. The function ℘∈ Γ, given by

℘(t1, t2, t3, t4, t5, t6) = t1 −b(t3 + t4) ,

where b ∈
[

0, 1
2

)

, satisfies (℘1a)-(℘1c) and (℘2),with h = b
1−b < 1.

Example 5.3. The function ℘∈ Γ, given by

℘(t1, t2, t3, t4, t5, t6) = t1 − c(t5 + t6) ,

where c ∈
[

0, 1
2

)

, satisfies (℘1a)-(℘1c) and (℘2),with h = c
1−c < 1.

Example 5.4. The function ℘∈ Γ, given by

℘(t1, t2, t3, t4, t5, t6) = t1 −amax

{

t2,
t3 + t4

2
,
t5 + t6

2

}

,

where a ∈ [0,1), satisfies (℘1a)-(℘1c) and (℘2),with h = a.
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Example 5.5. The function ℘∈ Γ, given by

℘(t1, t2, t3, t4, t5, t6) = t1 −at2 −b(t3 + t4)− c(t5 + t6) ,

where a,b,c ≥ 0 and a+2b+2c < 1 satisfies (℘1a)-(℘1c) and (℘2),with h = a+b+c
1−b−c < 1.

Corollary 5.6. Let Mκ be a non-Archimedean modular metric space, h̄ : Mκ → Mκ be a self map for which℘∈ Γ such that for all ξ ,η ∈ Mκ ,

℘(κλ (h̄ξ , h̄η) ,κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,κλ (ξ , h̄η) ,κλ (η , h̄ξ ))≤ 0.

If ℘ satisfies (℘1a) and (℘2), then h̄ has a unique fixed point.

Proof. It suffices to take α (ξ ,η) = 1 and ψ (t) = kt, k ∈ [0,1) in Theorem 2.2.

6. Application to integral equation

Next, we give implementation to show the nonlinear integral equation.

ξ (z) =

t
∫

a

K (z, p,ξ (p)) d p, (6.1)

where ξ ∈ I = [a,b] and K : I × I ×R → R is continuous. Let M =C (I,R) with the usual supremum norm, that is,

‖ξ‖= max
z∈I

|ξ (z)| ,

and the metric

κλ (ξ ,η) =
1

λ
‖ξ −η‖=

1

λ
d (ξ ,η) ,

for all ξ ,η ∈ M. For r > 0 and ξ ∈ M we denote by

Bλ (ξ ,r) = {v ∈ M : κλ (ξ ,η)≤ r} ,

the closed ball concerned at ξ and of radius r. Note that Mκ is a κ−complete non-AMMS.

Now, imagine the mapping h̄ : Mκ → Mκ

h̄ξ (z) =

z
∫

a

K (z, p,ξ (p)) d p. (6.2)

Notice that (6.1) has a solution if and only if h̄ has a fixed point in (6.2).

Theorem 6.1. Let r > 0 and we granted that the following conditions are supplied:

(i) if y ∈ Bλ (ξ ,r) , λ > 0, then

|K (z, p,ξ (p))−K (z, p,η (p))| ≤
q(z, p)

b−a
|ξ (p)−η (p)|,

for all z, p ∈ I, ξ ,η ∈ R and for some continuous function q : I × I → R+;

(ii) sup
z∈I

q(z, p) = k < 1.

Hence, (6.1) has a solution.

Proof. Since η ∈ Bλ (ξ ,r) and from (ii), we have

|h̄ξ (z)− h̄η (z)| ≤

∣

∣

∣

∣

z
∫

a
[K (z, p,ξ (p))−K (z, p,η (p))]d p

∣

∣

∣

∣

≤
t
∫

a
|K (t, p,ξ (p))−K (z, p,η (p))|d p

≤
b
∫

a
|K (z, p,ξ (p))−K (z, p,η (p))|d p

≤
b
∫

a

q(z,p)
b−a

|ξ (p)−η (p)|d p

≤ ‖ξ (p)−η (p)‖
b
∫

a

k
b−a d p

= k‖ξ (p)−η (p)‖ .

(6.3)

This implies that

κλ (h̄ξ , h̄η) = 1
λ
‖h̄ξ − h̄η‖

≤ 1
λ
|h̄ξ (z)− h̄η (z)|

≤ 1
λ

k‖ξ (p)−η (p)‖

≤ kκλ (ξ ,η) .

Now, ℘ : R6
+ → R+ defined by

℘(t1, t2, t3, t4, t5, t6) = t1 − kt2,

where k ∈ [0,1), and so the integral operator h̄ satisfies all conditions of Corollary 5.6. Thus, h̄ has a fixed point, i.e., (6.1) has a solution in

Mκ .
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Abstract

The effects of variations in flow field due to the presence of electromagnetic rotational

forces on a transient incompressible and electrically conducting fluid flow are sought. These

variations result from interactions between the electric currents with a nonuniform magnetic

field. The governing equations are coupled and nonlinear and are discretized using the finite

difference technique. Numerical results illustrating the development of secondary flows

by the rotational electromagnetic force field are displayed, as well as the effects on the

streamline axial velocity profiles by the magnetic pressure number and the flow Reynolds

numbers.

1. Introduction

Magnetohyroynamics (MHD) deals with the interaction between electrically-conducting fluids and applied electromagnetic fields. The

coupling between the two fields results in some exciting physics among which are; the development of secondary flows due to the presence

of rotational force fields, the development of electric current due to the interaction of the magnetic field and a conducting fluid, and the

generation of the Lorentz force arising from the presence of a current and a magnetic field. The effect of this force is dynamical, because it

acts on the conducting fluid and modifies its motion. The motion in turn modifies the field, which also modifies the motion.

The description of MHD flows involves the solution of the equations of fluid dynamics, the so called Navier-Stokes equations, and the

equations of electrodynamics. These two equations are mutually coupled via the Lorentz force, and the Ohm’s Law; hence it is useful to

understand the influence of an externally generated body force on a conducting fluid in various dimensions for time dependent applications.

The conversion of electrical energy directly into a body force, defines the magnetohydrodynamic concept. Fundamental to this, is the

interaction of an electromagnetic field and conducting fluid which may be gas or liquid. From a unified viewpoint, plasma physics can be

considered a special case of magnetohydrodynamics because of its strong dependence on the kinetic theory fluid model, involving gases in

the plasma regime. However for the purposes of this study, our emphasis will be concentrated more on the electromagnetic-fluid interaction

model.

MHD has always attracted a keen research interest. The stimulus for much of this interest lies in the desire to further understand the influence

of electric and magnetic fields on heat and momentum transfer as they affect fluid flow. There are a couple of applications of MHD that hold

great potential for future use for example energy conversion devices, flight and energy control of space re-entry vehicles, nuclear fusion

control, electricity generation, etc. In a coal-fired MHD power generator, gas produced by combusting coal expands through a nozzle and

interacts with a magnetic field to produce electricity. The MHD power generator is beginning to take on an added importance because of the

current global energy crisis and environmental pollution. A conducting fluid moves across a magnetic field and in the process generates

electrical energy which is tapped by making suitable connections to an external load. Some obvious advantages arising from this type of

power generation include less pollution, and cheaper operational costs. Also, the reliable prediction of MHD flows coupled with strong

magnetic fields is a key factor for the design of liquid metal blankets for use in fusion reactors.

It has been shown that the passage of electric current through a flowing conducting fluid radically alters the flow profile(Chow and Uberoi[1].

Uberoi[2] adopted a linear analysis to study the effect of an axial current on the motion of an incompressible inviscid fluid through an

insulated axisymmetric tube of varying cross-sectional area. The slowing down of the central flow when approaching the tube contraction was

attributed to the electromagnetic pinch effect. For example, when draining a current-carrying fluid from the apex of a conical tube, only the
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fluid in the narrow region near the wall can go through the apex. The oncoming flow along the tube axis experiences rapid deceleration, that

forces the fluid to become stagnant before reaching the throat (Narain and Uberoi[3]). This type of flow was found to result in recirculation

downstream of the stagnation point.

Given the vast range of MHD applications and the variability of the dimensionless numbers involved; it is not possible to arrive at complete

numerical or analytical solutions of the governing differential equations. Hence the challenge lies in developing both numerical and analytical

techniques to deal with each problem depending on the physics and accompanying rigor.

The flow of conducting fluid in pipes in the presence of electromagnetic forces has been studied analytically by various authors. A good

account of this can be found in Sherclif[4], Di Pizza and Buhler[5]. Uberoi and Chow [6] reported solutions for large scale motions

in electrical discharges. Subsequent work on channel flow can be found in the thesis by Ritter[7],and the papers by Chamkha [8]-[10],

Onyejekwe[11]. Pantokratoras[12], studied the fully developed flow between parallel plates in an electrically conducting fluid under the

action of induced magnetic field for the case where both the magnetic and electric fields are situated on the lower plate. Making some

reasonable assumptions, he obtained one-dimensional exact analytical solutions for the velocity, flow rate, and wall shear stress at the

plates for weakly electrically conducting fluids. His results though restricted in scope, could be used as adequate starting point from more

complex considerations of MHD flows. The application of MHD to microfluidic devices is another blossoming area of research. The

magnetohydrodynamic (MHD) pumping provides an efficient, cheap, reliable and easily controllable method for pumping various liquids for

the purposes of testing samples of blood, DNA and drugs in nano or microscales. Kabbani et al.[13] proposed approximate solutions for the

velocity profile of steady incompressible MHD flows in a rectangular microchannel driven by Lorentz force. Their solutions were found to

compare favorably with existing computational and analytical results.

2. Problem formulation

We consider a circular tube with screen electrodes positioned at the entrance and middle of the tube. A conducting fluid can move freely

through the end electrodes. Both of them are separated by the same distance z0 from the center of the tube. The tube axis is at the center of

the duct and its axis is parallel to the side wall and orthogonal to the streamwise direction [Fig. 4.1]. A converging and diverging current flow

is obtained by applying potential differences across the electrodes. A coordinate system is used with the origin positioned at the center of the

circular tube, and the coordinates r, and z are aligned respectively along the channel height and width. The channel surface can be taken as

nonconducting. It is our goal to determine the flow and electromagnetic fields as well as secondary flows that can exist for this configuration,

given the appropriate governing differential equations, initial and boundary conditions.

On the assumptions that (a) fluid B flow is incompressible (b) the induced magnetic field is negligibly smaller than the applied magnetic field

and hence much smaller than the total magnetic field . This is because the magnetic Reynolds number is considered small. (c) Both the

displacement current and the free charge density are also considered negligible. (d) The Lorenz force is the only body force on the fluid (e)

the velocity of flow is regarded as too small compared to the velocity of light as a consequence of this relativistic effects are ignored. The

governing differential equations of motion for an incompressible electrically conducting fluid in a tube can be expressed together with the

Maxwell equations in the following form

When an electric current is passed through the conducting fluid, a magnetic field is generated and a current density J transmits through the

fluid. Relativistic effects are ignored for cases where the velocity of flow is small compared to the velocity of light. For steady state, even if

the fluid were moving, the electromagnetic equations can be written in the form:

∂ ū

∂ t
+∇× (ū•∇)ū =−∇(

p

ρ
+gr)+ν(∇2ū)

µm

ρ
( j̄× B̄) (2.1)

The curl of equation (2.1)

∇×
∂ ū

∂ t
+∇× (ū•∇)ū =−∇×∇(

p

ρ
+gr)+∇× (ν∇

2ū)+∇× [(∇× B̄)× B̄]

where

∇× ∂ ū
∂ t

=
∂ (∇×ū)

∂ t
= ∂ω̄

∂ t

∇× (ū•∇)ū = ∇×∇(ū×u)−∇× [u× (∇ū)]
∇(ū• ū) = 2(ū•∇)ū+2ū× (∇ū)

ū( ¯u•∇) = 1
2 ∇(u2)− (ū× ω̄)

∇× (ū•∇)ū = ∇×∇( u2

2 )−∇× (ū× ω̄)
∇× (ū•∇)ū =−∇× (ū× ω̄) = ∇× (ω̄ × ū)
∇× [∇( p

ρ +gr)] = 0

∇× (ν∇
2ū) = ν∇

2(∇× ū) = ν∇
2ω

∇× [(∇× B̄)× B̄] = ∇× (h̄× B̄) = (B̄•∇)h̄− (h̄•∇)B̄+ h̄(∇• B̄)+ B̄(∇• h̄)

The system of Maxwell equations can be written in the form:

µ j̄ = ∇× B̄, ∇• j̄ = 0, ∇× Ē =−
∂ B̄

∂ t
, ∇• B̄ = 0

Ohm’s law can be written as:

j̄ = σ(Ē +µ ū× B̄)
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The body force term or the Lorentz force is given by: f̄ = j̄×µmB̄. It not only represents the force per unit volume that accounts for the

coupling between the fluid motion and the magnetic field, but also contributes in no small measure to the interesting physics of MHD flows.

Passage of electric current through a fluid will set the fluid in motion since in general, the potential; pressure forces can not be balanced by

the rotational electromagnetic forces. Because of the axisymmetric geometry of tubular flow, the streamfunction can be utilized to satisfy the

continuity equation, and is expressed as

uz =
1

r

∂ψ

∂ r
, ur =−

1

r

∂ψ

∂ z

After carrying out the chores for nondimensionalization, the governing equations are given as:

U =
1

R

∂ψ

∂R
, V =−

1

R

ψ

∂R
(2.2)

(
∂ 2ψ

∂ 2R
−

1

R

∂ψ

∂R
+

∂ 2ψ

∂R2
)

1

R
= ω (2.3)

(
∂ 2ψ

∂ 2R
−

1

R

∂ψ

∂R
+

∂ 2ψ

∂R2
)RB = 0 (2.4)

∂ω

∂ t
+

(∂Uω)

∂Z
+

∂ (V ψ)

∂R
= ζ

B

R

∂B

Z
+

1

Re
(

∂ 2ω

∂R2
+

1

R

∂ω

R
−

ω

R2
+

∂ 2ω

∂Z2
) (2.5)

An upwind scheme is used to handle the nonlinear convection terms in equation (2.5). It would seem as if the computational overhead

associated with the governing equations will be quite intense, however the computational rigor is simplified if we take into consideration

the symmetrical nature of the electromagnetic flow and find the solution in the region (−z0 ≤ z ≤ 0) to the left of the central electrode and

use the mirror image for the right of the electrode. This however does not apply to a net flow through the tube where the whole geometry

is considered because the flow pattern should not be symmetric about a center point. Our first consideration, involves the fluid dynamics

of an unsteady flow of an electrically conducting viscous fluid through orifices positioned on the left and right hand sides (z =±1) of an

insulated tube (Fig. 4.1). The tube openings at the left and the tight sides are positioned at distances 0.2r0 from the centerline. No-slip

boundary conditions are set up at the tube walls, and by assuming that the flow is purely axial, we impose a zero perpendicular velocity

(V=0) at entrance and exit. Boundary conditions for the stream functions comprise, ψ = 0 along the tube axis, and along the wall ψ = 1
2 , at

the entrance and exit
∂ψ
∂Z

= 0 respectively. We assume uniform flow through the tube axis. As a consequence, the axial velocity in this region

is specified as: Ui,1 = 2ψi,2/h.

Equations (2.2) and (2.3) as defined by the conservation of mass, show a similarity between the electromagnetic flow term RB and the stream

function . This allows for constant values of RB to behave like stream function ψ . At the tube centerline and top wall, RB=0, and RB=0.5

respectively. For the centrally placed electrode, 0 < R < r1/r0, ∂ (BR)/∂Z = 0, and for r1/r0 ≤ R ≤−r1/r0 RB=0.5 and at the left orifice

Z =−z0/r0, ∂ (RB)/∂Z = 0 Vorticity is specified at zero at the walls as well its derivative with respect to the horizontal direction at the

entrance and exit are both given zero values. To set up the initial flow conditions, uniform flow for a unit axial velocity is assumed. The fluid

can not remain stationary in the presence of a rotational electromagnetic body force and a predominantly axial motion is motivated by an

electromagnetic force per unit volume f = µmB set up in the tube. It should be noted that the this body force is rotational and can not be

balanced by viscous forces unless at steady state

The numerical strategy for solving this problem are enumerated as follows:

Non dimensional electrode and radial sizes of r1/r0 = 0.1 and z0/r0 together with a spatial increment of h= 0.1 are chosen. The

governing differential equations are replaced by appropriate difference equations. Time and spatial coordinates are approximated by forward

differencing in time and central differencing in space. Iterative procedures are adopted to approximate equations (2.3), (2.4) and (2.5). Two

additional grid lines at the entrance and exit are deployed to handle derivative boundary conditions. The unsteady nonlinear equations

together with the given boundary conditions are solved using an implicit, iterative finite difference scheme similar to the one described in

Soundalgekar et al.[14]. Square meshes are chosen to cover the problem domain. Since the absolute dimensionless distance between the

central electrode and the inlet or exit is unity, the each grid has a value of 1/(n−1). After a series of trial, a 21x11 grid was chosen for

computation for a time step ∆τ = 0.01. RB is computed by solving equation (2.4) iteratively to satisfy the boundary conditions. The RB

scalar field gives us an idea of the ‘streamlines of the current flow’ in the problem domain. Having obtained RB, the influence of the Lorentz

force on the conducting fluid is determined by computing the source term (ζ B
R

∂B
∂Z

) in equation (2.5) for all interior grid points, where the

magnetic pressure number is given as:

ζ =
µmr2J2

0
1
2 ρu2

0

The flow profile is determined by assuming a uniform flow of unit dimensionless speed and integrating equation (2.2) for all the grid points.

Since the flow field unlike the electromagnetic filed is not symmetrical, we have to pay due cognizance to the boundary conditions at the two

ends of the tube containing the orifices. At any instant in time, the velocity and vorticity distributions are obtained from the conditions at

the previous time step, eventhough at the beginning, they are obtained from a prescribed initial conditions. Streamfunction are computed

based on the vorticity distribution by solving equation(2.3). Velocity components are computed based on equation (2.2) once the values of

the streamfunction are known. These are again used to determine the vorticity field in the interior region for the next time step; and their

boundary values updated appropriately. The same process is repeated at each of the time steps until the time counter reaches an apriorily

specified value of maximum time or the computed scalar field satisfies the criterion for steady state. Our numerical results will then represent

steady state profiles induced by an unsteady converging-diverging current field.
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A second numerical experimentation involves replacing the orifices with two large screen electrodes covering the ends of the nonconducting

tube. The governing equations for the electromagnetic field and the flow are the same, but appropriate changes are made to the boundary

conditions to reflect the new configuration. Just like in the first example, the electromagnetic field is symmetrical about the central electrode

so it is computed half the horizontal direction of the nonconducting tube and then reflected on the other side. Dirichlet boundary conditions

of 0 and 0.5 are specified for the tube centerline which constitutes the lower boundary as well as the top of the nonconducting tube. This

amounts to setting up an electromagnetic barrier to the flow. We assume that the electromagnetic flow through the central electrode is

purely horizontal, this is defined by setting up a Neumann or zero flux boundary condition at this point i.e. ∂RB/∂Z = 0. To guarantee

that continuity requirements are satisfied, the total current through the central electrode (i.e. from its top the top of the tube) should be

0.5. Lastly in order to ensure that the electromagnetic field through the central electrode should be purely horizontal, a Neuman boundary

condition is imposed on the left screen electrode (∂ (RB)/∂Z = 0) Since the stream function ψ is the analog of BR by virture of equations

(2.3) and (2.4), their boundary conditions are essentially the same except that for the flow boundary conditions care must be taken to reflect

the fact the flow pattern is no longer symmetrical and hence must have to be specified for the entire problem domain. Since the stream

function essentially represents the volume of fluid per unit time between a given point and a reference plane, it is given values of 0 and

0.5 at the tubes lower boundary (the centerline) and the top boundary. The vorticity is set to zero at all boundaries. Axial flow through the

end electrodes is guaranteed by setting the derivatives of the stream function and vorticity equal to zero (∂ψ/∂Z = ∂ω/∂Z = 0). This last

equation, in combination with equations (2.2) and (2.3) determine the entire flow field (the radial and axial velocity components) in the

problem geometry. For example at the centerline flow is purely axial and ψ = 0 ⇒V = 0. At the top wall ψ = 1/2 ⇒ ∂ψ/∂R, in terms of

the velocity components V = 0, ∂U/∂R = 0 at the top wall. For the two electrodes at the exit and inlet ∂ψ/∂Z = ∂ω/∂Z = 0 [15]. We

need to interpret this in terms of the velocity components.

∂ψ

∂Z
= 0 ⇒V = 0 at Z ± z0/r0 ⇒V2, j =Vm, j j = 2,3, ...n−1 (2.6)

For the U velocity component we differentiate the above condition with respect to R

∂
∂R

( ∂ψ
∂Z

) = ∂
∂Z

( ∂ψ
∂R

) = ∂
∂Z

(RU) = R ∂U
∂Z

R ∂U
∂Z

= 0 ⇒ ∂U
∂Z

= 0;⇒ ( ∂U
∂Z

)2, j = ( ∂U
∂Z

)m, j

The second condition at the wall, ∂Ω

∂Z
= 0 can also be written in terms of the velocity components by noting that equation (2.3) can be

expressed as:

ω =
1

R
(R

∂U

∂R
−U −R

∂V

∂Z
)

Hence

∂ω
∂Z

= 1
R (

∂
∂Z

{R ∂U
∂R

}− ∂U
∂Z

)−R{ ∂ 2V
∂Z2 }) = 0

∂ω
∂Z

= R( ∂ 2V
∂Z2 ) = 0 ⇒ ( ∂ 2V

∂Z2 )2, j = ( ∂ 2V
∂Z2 )m, j = 0

(2.7)

Equations (2.6) to (2.7) are approximated by finite differences to read

U1, j =U3, j f or LHS BC and Um+1, j =Um−1, j f or RHS BC

V1, j =−V3, j f or LHS BC and Vm+1, j =−Vm−1, j f or RHS BC

Vorticity distribution is computed from equation (2.5). Along the tube axis and the walls vorticity is set to zero except at the exit, except at

the inlet and the exit where the zero gradient specification leads to a finite difference approximation expressed as

ω1, j = ω3, j, and ωm+1, j = ωm−1, j

3. Results and discutions

Fig.4.2 shows the profile of an electric current through an orifice in the presence of a conducting fluid. The electric current converges at the

central electrode where higher RB values are registered. This is in agreement with the specified boundary conditions as well as the fact

that the tube walls are non-conducting. The central electrode discharges towards the inlet and the exit, and produces an axisymmetrical

configuration of the current streamlines. Electromagnetic forces result in this process, and are vital in the modification of the flow of fluid

through the tube.

Fig.4.3 is the profile of the electromagnetic force field. The rotational electromagnetic force associated with the current is displayed as two

oppositely revolving force fields. These forces are rotational, and are not balanced by body forces arising from pressure gradient unless at

steady state. This imbalance gives rise to acceleration that impact on the dynamical features of the conducting fluid.

Rotational forces will most likely develop secondary flows when the vorticity production becomes appreciable. It can be observed from

Fig.4.4 that secondary flow is initiated in the region starting from the tip of the orifice and towards the upper wall at t= 10 for C = 0.3 and

for a Reynolds number value of 100. Fig.4.4 also depicts the axial velocity profiles of descending magnitude as the upper boundary wall

is approached. A zero velocity value corresponds to the position of the upper lip of the aperture. As the flow enters and exits through the

orifices, it impacts the solid boundaries at the inlet and exit. This results in a flow reversal which is indicated in the magnitude of the velocity

values in this vicinity.

Fig.4.5 displays the vorticity field generated with ζ given as 0.3 and Reynolds number of 50 at a time of 2.5. As the fluid enters the orifice,

and makes the first impact with the lip of the orifice, vorticity is generated along the solid wall leading to the upper boundary. We observe an

increase of vorticity away from the wall in the axial direction. At this point in time, there is more vorticity generation at the upstream of

the central electrode than in the downstream as the hydrodynamic effects of the fluid contact with the orifice has not been sufficiently felt
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downstream. Fig.4.6 displays the vorticity field at a later time (t=5). The impact of the vorticity produced by the central electrode is observed

as the fluid moves towards the exit. In addition contributions from both the solid walls and electromagnetic field are merged, with those of the

central electrode. The overall picture, indicates that more vorticity is produced closer to the walls and in the vicinity of the central electrode.

In the second experiment, it is found that the strength of the magnetic field as indicated by the magnetic pressure number and the size area of

the electrode in the middle of the nonconducting tube introduce some vital electromagnetic effects that produce different flow patterns. This

is demonstrated by the flow streamline patterns along the tube axis (Figs. 4.6 and 4.7). The increase in the gradient of the streamlines over

the central electrode with respect to the radial coordinate indicates an increase of the axial velocity. As a fact, flows of this kind mimic those

of ordinary flows when they encounter solid bodies as can be seen for flows past a plate aligned normal to the freestream direction. However

one thing that needs to be pointed out in this case is that there is a continuous decrease in flow as it moves towards the current constriction

created by the central electrode(Figs 4.8 and 4.9). Minimum speed is observed just before the central electrode as shown by the axial velocity

profile at the tube’s centerline. However in order to satisfy continuity requirements, the flow accelerates to speeds higher than the entry speed

and having made up for the continuity of mass, it decelerates once again to the speed of entry. This occurrence is noticeable as the value of

the magnetic pressure number ζ is increased. It is worthwhile to note that nonuniformities in the flow electromagnetic field enhance their

interaction with the dynamics of a conducting fluid and the eventual generation of Lorenz forces which are basically damping in nature.

Figure 4.9 shows that as the electromagnetic pressure number is increased, the flow becomes dispossessed of enough kinetic energy to flow

over the pressure hump created by the central electrode. This is shown by how far below zero the tube’s axial velocity goes just before it gets

to the central electrode.

The presence of negative values of axial velocity before the approach to the central electrode is indicative of the formation of secondary

flows. These observations show in a simple manner how the Lorenz force acts as an impediment to flow and as a consequence generates

vorticity and secondary flows. The value of ζ plays a significant role in flow configuration. For relatively small values of ζ , the flow is only

slightly deviated from its oncoming direction towards the central electrode, while an increase in ζ creates stagnation zones in front of the

central electrode. Figs.4.10 and 4.11 show that for ζ = 0.8, counter-rotating vortices appears in the region of the central electrode. Both

diagrams also show that the diffusive-convective transport of vorticity involves a considerable portion of the flow domain both upstream and

downstream of the central electrode.

The so called ’pinch effect’ in the vicinity of the obstacle (central electrode) is indicative of a non-smooth transition. It offers a region

of intense hydrodynamic activity as illustrated by a deficit in the fluid axial velocity(Figs.4.12 and 4.13) and a consequential build up of

velocity in the radial direction (Figs. 4.14 and 4.15). Figure 4.16 shows that near the central electrode, the current streamlines are distributed

uniformly and directed towards the negative radial direction before it arrives at the obstacle. This shows that the Lorentz force opposes fluid

motion in this region and as a result causes its deviation from the streamwise direction and reverses this direction immediately after the

obstacle.

4. Conclusion

Most of the flows found in scientific literature dealing with nonuniform magnetic fields are related to the magnetohydrodynamics of duct

flows in the streamwise direction arising from the interaction of electric and magnetic fields[16],[17],[18]. The current study in addition to

this, examines the variations arising from orifice flow exposed to an electromagnetic field. In all cases this study has further illustrated how

the Lorentz force produced by the interaction of electric and magnetic fields slows down the flow and generates vorticity. This may be of

practical importance where mixing or heat enhancement is needed. The governing continuum equations that comprise the balance laws of

mass and momentum are modified to include the electromagnetic effects. These have been solved numerically using the finite difference

methods. The correctness of the numerical algorithm developed herein was confirmed by noting the closeness of some of the results with

those from literature( Chow[15]). It is hoped that this work will help in further understanding of flows produced by localized forces and

nonuniform magnetic fields and their concomitant effects in providing mixing, vorticity and heat enhancement.

NOMENCLATURE

B̄ magnetic field

Ē electric field intensity

f electromagnetic body force per unit volume

g gravitational acceleration

h magnetic field intensity

hθ component of the magnetic field intensity in the azimuthal direction

j̄ current density

j̄0 reference current density

p pressure

r radial coordinate

r0 reference coordinate

r1 radius of aperture

r2 radial distance from top of aperture to upper wall

R dimensionless radial coordinate

R0 Reynolds number

RB analog of streamlines for current flow

t time coordinate

uz axial velocity

u0 reference velocity

U dimensionless axial velocity

ur radial velocity
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V dimensionless radial velocity

z axial coordinate

Z dimensionless axial coordinate

Greek Symbols

∇ gradient

µm magnetic permeability of fluid medium

ν kinematic viscosity

ψ stream function

Ψ dimensionless stream function

ρ density

τ dimensionless time

ω dimensionless vorticity

µ magnetic permeability

σ electrical conductivity

ζ magnetic pressure number

Subscripts

i,j node counters in axial and radial directions
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Figure 4.1: Problem configuration
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Figure 4.2: Current streamlines profile for orifice flow

Figure 4.3: Profile of electromagnetic force for orifice flow

Figure 4.4: Secondary flow profile for orifice flow ( ζ =0.3, Re=100, time=10)
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Figure 4.5: Vorticity field for orifice flow (ζ =0.3, Re=50, time=2.5)

Figure 4.6: Flow streamline pattern (ζ =0.3, Re=50)

Figure 4.7: Flow streamline pattern (ζ =0.8, Re=50)



228 Fundamental Journal of Mathematics and Applications

Figure 4.8: Axial velocity along tube axis (ζ =0.3, Re=50)

Figure 4.9: Axial velocity along tube axis (ζ =0.8, Re=50)

Figure 4.10: Vorticity contour (ζ =0.8, Re = 50)
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Figure 4.11: Vorticity contour (ζ =0.8, Re=60)

Figure 4.12: Horizontal velocity contour (ζ =0.8, Re=60)

Figure 4.13: Horizontal velocity mesh(ζ =0.8, Re =60)
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Figure 4.14: Vertical velocity contour (ζ =0.8, Re=60)

Figure 4.15: Vertical velocity mesh (ζ =0.8, Re=60)

Figure 4.16: Current streamlines (ζ =0.3, Re=50)
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Figure 4.17
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