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Düzce-TÜRKİYE
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Abstract

Rational solutions to the Boussinesq equation are constructed as a quotient of two poly-

nomials in x and t. For each positive integer N, the numerator is a polynomial of degree

N(N+1)−2 in x and t, while the denominator is a polynomial of degree N(N+1) in x and

t. So we obtain a hierarchy of rational solutions depending on an integer N called the order

of the solution. We construct explicit expressions of these rational solutions for N = 1 to 4.

1. Introduction

We consider the Boussinesq equation (B) which can be written in the form

utt −uxx +(u2)xx +
1

3
uxxxx = 0, (1.1)

where the subscripts x and t denote partial derivatives.

This equation first appears first in 1871, in a paper written by Boussinesq [1, 2]. It is well known that the Boussinesq equation (1.1) is an

equation solvable by inverse scattering [3, 4]. It gives the description of the propagation of long waves surfaces in shallow water. It appears

in several physical applications as one-dimensional nonlinear lattice-waves [5], vibrations in a nonlinear string [6] and ion sound waves in

plasma [7].

The first solutions were founded in 1977 by Hirota [8] by using Bäcklund transformations. Among the various works concerning this

equation, we can mention the following studies. Ablowitz and Satsuma constructed non-singular rational solutions in 1978 by using the

Hirota bilinear method [9]. Freemann and Nimmo expressed solutions in terms of wronskians in 1983 [10]. An algebra-geometrical

method using trigonal curve was given by Matveev et al. in 1987 [11]. The same author constructed other types of solutions using Darboux

transformation [12]. Bogdanov and Zakharov in 2002 constructed solutions by the ∂ dressing method [13]. In 2008− 2010, Clarkson

obtained solutions in terms of the generalized Okamoto, generalized Hermite or Yablonski Vorob’ev polynomials [14, 15].

Recently, in 2017, Clarkson et al. constructed new solutions as second derivatives of polynomials of degree n(n+1) in x and t in [16].

In this paper, we study rational solutions of the Boussinesq equation. We present rational solutions as a quotient of two polynomi-

als in x and t. These following solutions belong to an infinite hierarchy of rational solutions written in terms of polynomials for each positive

integer N. The study here is limited to the simplest cases where N = 1, 2, 3, 4.

2. First order rational solutions

We consider the Boussinesq equation

utt −uxx +(u2)xx +
1

3
uxxxx = 0,

We have the following result at order N = 1 :

Email address and ORCID number: Pierre.Gaillard@u-bourgogne.fr, 0000-0002-7073-8284, (P. Gaillard)
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Theorem 2.1. The function v defined by

v(x, t) =
−2

(−x+ t +a1)2
,

is a solution to the Boussinesq equation (1.1) with a1 an arbitrarily real parameter.

Proof It is straightforward.

�

The parameter a1 is only a translation parameter; it is not crucial. In the following solutions, we will omit it.

Figure 1. Solution of order 1 to (1.1), on the left a1 = 0; on the right a1 = 100.

In Figures 1., the singularity lines of respective equations t = x and t = x+a1 are clearly shown.

3. Second order rational solutions

The Boussinesq equation defined by (1.1) is always considered. We obtain the following solutions :

Theorem 3.1. The function v defined by

v(x, t) =−2
n(x, t)

d(x, t)(2)
, (3.1)

with

n(x, t) = 3x4 +(−12 t −4)x3 +(18 t2 +2+12 t)x2 +(−12 t2 +8 t −12 t3)x−4 t +4 t3
−10 t2 +3 t4

and

d(x, t) =−x3 +(3 t +1)x2 +(−3 t2
−2 t)x+ t3 + t2 +2 t

is a rational solution to the Boussinesq equation (1.1), a quotient of two polynomials with the numerator of order 4 in x and t, the denominator

of degree 6 in x and t.

Proof It is sufficient to replace the expression of the solution given by (3.1) and check that (1.1) is verified.

�

Figure 2. Solution of order 2 to (1.1).

This Figure 2. shows clearly the singularity in (0;0).
The previous solution (3.1) can be rewritten as

−2
3(t − x)4 +4(t − x)3

−4(t − x)2
−6 t2 +6x2

−4 t

((t − x)3 +(t − x)2 +2 t)2
.

So, with this expression, it is obvious to show that (0;0) is a singularity as it can be seen in figure (2).
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4. Rational solutions of order three

We obtain the following rational solutions to the Boussinesq equation defined by (1.1) :

Theorem 4.1. The function v defined by

v(x, t) =−2
n(x, t)

d(x, t)(2)
,

with

n(x, t) = 6x10 + (−40 − 60 t)x9 + (270 t2 + 110 + 360 t)x8 + (−1440 t2
− 720 t3

− 160 − 880 t)x7 + (1260 t4 + 100 + 3080 t2 + 1120 t +
3360 t3)x6 +(−740 t −1512 t5

−5040 t4
−3360 t2

−6160 t3)x5 +(200 t +5040 t5 +3100 t2 +1260 t6 +5600 t3 +7700 t4)x4 +(−6160 t5
−

720 t7
−3360 t6

−7000 t3
−3200 t2

−5600 t4)x3+(2000 t2+1440 t7+3080 t6+270 t8+8300 t4+8400 t3+3360 t5)x2+(−880 t7
−5200 t3

−

8000 t4
−60 t9

−360 t8
−4900 t5

−1120 t6)x+3200 t4 +2600 t5 +800 t3 +160 t7 +6 t10 +40 t9 +110 t8 +1140 t6

and

d(x, t) = x6+(−6 t−4)x5+(15 t2+20 t+5)x4+(−20 t3
−40 t2

−30 t)x3+(15 t4+40 t3+60 t2+20 t)x2+(−6 t5
−20 t4

−50 t3
−40 t2)x+

t6 +4 t5 +15 t4 +20 t3
−20 t2

is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 10 in x and t, denominator of

degree 12 in x and t.

Proof Replacing the expression of the solution given by (3.1), we check that the relation (1.1) is verified.

�

Figure 3. Solution of order 3 to (1.1).

The figure 3 clearly shows the singularity in (0;0).

5. Rational solutions of fourth order

The following solutions of order 4 to the Boussinesq equation defined by (1.1) are obtained :

Theorem 5.1. The function v defined by

v(x, t) =−2
n(x, t)

d(x, t)(2)
, (5.1)

with

n(x, t) = 10x18 + (−180 t − 180)x17 + (1460+ 3060 t + 1530 t2)x16 + (−23600 t − 8160 t3
− 6960− 24480 t2)x15 + (30600 t4 + 21200+

108000 t+122400 t3+178800 t2)x14+(−781200 t2
−842800 t3

−428400 t4
−321300 t−41300−85680 t5)x13+(1113840 t5+2254000 t2+

48300+2766400 t4+632800 t+3494400 t3+185640 t6)x12+(−9703400 t3
−4447800 t2

−10810800 t4
−318240 t7

−805000 t−2227680 t6
−

29400− 6704880 t5)x11 +(18972800 t3 + 28644000 t4 + 3500640 t7 + 24504480 t5 + 630000 t + 12412400 t6 + 6013000 t2 + 437580 t8 +
7350)x10+(−4375800 t8

−17903600 t7
−5467000 t2

−26383000 t3
−42042000 t6

−54785500 t4
−61345900 t5

−294000 t−486200 t9)x9+
(98313600 t6+20334600 t8+113097600 t5+24822000 t3+4375800 t9+55598400 t7+3228750 t2+73500 t+75778500 t4+437580 t10)x8+
(−318240 t11

− 3500640 t10
− 18246800 t9

− 57142800 t8
− 1176000 t2

− 150603600 t5
− 12544000 t3

− 67662000 t4
− 119790000 t7

−

171771600 t6)x7+(−882000 t3+45645600 t9+2227680 t11+185640 t12+119128800 t5+213150000 t6+111526800 t8+12892880 t10+
294000 t2+194409600 t7+19379500 t4)x6+(−78963500 t9

−217182000 t7
−85680 t13+3920000 t3

−1113840 t12
−7098000 t11

−140238000 t6
−

28108080 t10 +32928000 t4
−164033100 t8 +1528800 t5)x5 +(13104000 t11 +41857200 t10 +158560500 t8

−39690000 t4
−980000 t3 +

30600 t14 +111132000 t7 +101948000 t9 +428400 t13 +2984800 t12
−115395000 t5

−49808500 t6)x4 +(−58107000 t8
−45383800 t10 +

19600000 t4+78400000 t7
−122400 t14

−4477200 t12+186984000 t6
−16109800 t11+113680000 t5

−926800 t13
−81081000 t9

−8160 t15)x3+
(−146510000 t6

−52920000 t5+13708800 t11+1530 t16+1058400 t13
−59057250 t8+4256000 t12+27617800 t10+18942000 t9+200400 t14

−

4900000 t4+24480 t15
−161994000 t7)x2+(89376000 t7+7840000 t5

−690900 t13
−3389400 t10

−154800 t14
−180 t17+50960000 t6

−

2519300 t12+72912000 t8
−26960 t15+22778000 t9

−3060 t16
−5635000 t11)x−16660000 t7

−980000 t6
−21070000 t8

−13450500 t9+
10 t18

−1960000 t5 +180 t17 +1700 t16 +10560 t15 +52000 t14 +212800 t13 +521500 t12 +238000 t11
−3618650 t10

and

d(x, t) = x10 + (−10 t − 10)x9 + (45 t2 + 90 t + 40)x8 + (−120 t3
− 360 t2

− 350 t − 70)x7 + (210 t4 + 840 t3 + 1330 t2 + 700 t + 35)x6 +
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(−252 t5
−1260 t4

−2870 t3
−2730 t2

−700 t)x5+(210 t6+1260 t5+3850 t4+5600 t3+2975 t2+350 t)x4+(−120 t7
−840 t6

−3290 t5
−

6650 t4
− 5600 t3

− 1400 t2)x3 +(45 t8 + 360 t7 + 1750 t6 + 4620 t5 + 5425 t4 + 2100 t3 + 700 t2)x2 +(−10 t9
− 90 t8

− 530 t7
− 1750 t6

−

2660 t5
−1400 t4

−2800 t3)x+ t10 +10 t9 +70 t8 +280 t7 +525 t6 +350 t5 +2100 t4 +1400 t3

is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 18 in x and t, denominator of

degree 20 in x and t.

Proof We have to check that the relation (1.1) is verified when we replace the expression of the solution given by (5.1).

�

Figure 4. Solution of order 4 to (1.1).

As in the preceding cases, the figure 4 clearly shows the singularity in (0;0).

6. Conclusion

Rational solutions to the Boussinesq equation of order 1, 2, 3, 4 have been constructed here. The following asymptotic behavior has been

highlighted : limt→∞ v(x, t) = 0, limx→±∞ v(x, t) = 0.

It will relevant to construct rational solutions to the Boussinesq equation at order N and to give a representation of these solutions in terms of

determinants. Namely, for every integer N, these solutions can be written as a quotient of determinants of order N, where the numerator is a

polynomial of degree N(N +1)−2 in x, t, and the denominator is a polynomial of degree N(N +1) in x, t.
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Abstract

The objective of this study is to extend the usage of Newton’s method for Banach space

valued operators. We use our new idea of restricted convergence domain in combination

with the center Lipschitz hypothesis on the Fréchet-derivatives where the center is not

necessarily the initial point. This way our semi-local convergence analysis is tighter than in

earlier works (since the new majorizing function is at least as tight as the ones used before)

leading to weaker criteria, better error bounds more precise information on the solution.

These improvements are obtained under the same computational effort.

1. Introduction

Let X ,Y denote Banach spaces and Ω ⊆ X be a convex set. Numerous problems in diverse areas are written as an equation like

F(x) = 0, (1.1)

where F : Ω −→ Y is a twice continuously Fréchet-differentiable operator. One wishes that a solution x∗ of equation (1.1) can be found

in closed form [1]-[10]. However, this is done only in special cases. This is why most researchers use iterative procedures to generate a

sequence {xn} approximating x∗. The most popular iterative procedure is undoubtedly Newton’s method defined for some given initial point

x0 ∈ Ω by

xn+1 = xn −F ′(xn)
−1F(xn),

for each n = 0,1,2, . . . . There is literature on convergence results for Newton’s method, see [3, 8, 9, 10] and the references therein. The

convergence domain of Newton’s method is small in general under generalized-type Lipschitz conditions. This fact limits the applicability of

Newton’s method. Therefore, techniques that will enlarge the convergence domain without additional hypotheses are useful. In particular,

we are motivated by the work of Ezquerro and Hernandez in [5, 6], where the center-Lipschitz on the second Fréchet-derivative was used but

the center is not necessarily the starting point for Newton’s method. This idea has also been used but on the first Fréchet-derivative. Using

this technique in connection to majorizing functions and sequences a semi-local convergence analysis was given in [6] for the special case,

when X = Y = R
m, where m is a positive integer. The choice of a point other than x0 in the center-Lipschitz condition allows more flexibility

in the choice of majorizing functions and sequences. Moreover, the convergence domain may be extended in some cases as it was shown in

[6] for a certain class of nonlinear integral equations.

In the present study we also use the center Lipschitz condition at x0 as well as at a point other than x0. This way we locate a smaller domain

Ω where the iterates {xn} are located. Then, the majorizing function related to the smaller domain U0 is always at least as small as the

majorizing function in [5, 6] derived using the set Ω. We then provide a semi-local convergence analysis along the lines of the work in [5, 6]

but with the center-Lipschitz condition on the first derivative instead of the second leading to tighter error estimates on ‖F ′(xn)
−1‖. This

Email address and ORCID number: ioannisa@cameron.edu, https://orcid.org/0000-0002-9189-9298 (I. K. Argyros),sgeorge@nitk.ac.in, https://orcid.org/0000-0002-3530-

5539 (S. George)
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modification together with the usage of the new majorant function instead of the old one leads to an at least tighter semi-local convergence.

Some of the advantages include weaker sufficient semi-local convergence criteria (i.e., larger convergence domain than before, tighter error

estimates on the distances ‖xn+1 − xn‖, ‖xn − x∗‖ and more precise information on the location of the solution x∗. The interesting part of

this new technique is the fact that no additional conditions are utilized since the computation of the old majorant function requires the

computation of the new majorant function as a special case. Our idea can be extended in the case F(i) is center-Lipschitz continuous where

i ≥ 2 [2]-[4].

The lay out of the rest of the paper contains: The semi-local convergence of Newton’s method in Section 2. Section 3 has the examples on

which the theoretical results are tested.

2. Semi-local convergence

Let γ ≥ 0. Define R = sup{t ≥ γ : U(x0, t)⊆ Ω}. Throughout this paper U(x0,r),Ū(x0,r), stand respectively for the open and closed balls

in X with center at x0 and radius r. We base the semi-local convergence analysis of Newton’s method on the conditions (A ):

(A0) Operator F : Ω ⊆ X −→ Y is twice Fréchet differentiable in the Fréchet sense.

(A1) Let x0 ∈ Ω. There exist z ∈ D, and δ ≥ 0 such that ‖x0 − z‖= δ . Set t0 = γ +δ .

(A2) There exist operator Γ0 = F ′(x0)
−1 ∈ L(Y,X), b1 > 0 such that ‖Γ0‖ ≤ b1 and a function g1 : [γ,+∞)−→ [0,+∞) continuous and

nondecreasing such that

b1‖F ′(x0)−F ′(x)‖ ≤ g1(‖x0 − x‖)
for each x ∈U(x0,R− t0). Equation g1(t − t0)−1 = 0 has positive solutions t ≥ t0. Denote by ρ1 the smallest such solution.

Or

(A ′
2 ) there exist operator ∆ = F ′(z)−1 ∈ L(Y,X),b2 > 0 such that ‖∆‖ ≤ b2 and a function g2 : [γ,+∞) −→ [0,+∞) continuous and

nondecreasing such that

b2‖F ′(z)−F ′(x)‖ ≤ g2(‖z− x‖)
for each x ∈U(x0,R− t0). Equation b2g2(t − γ)−1 = 0 has a minimal solutions ρ2 ≥ γ . Notice that if g1 or g2 are strictly increasing,

then ρ1 = g−1
1 ( 1

b1
)+ t0 and ρ2 = g2(

1
b2
)+ γ.

(A3) There exists f : [γ,+∞)−→ [0,+∞) twice continuously differentiable such that

‖F ′′(z)‖ ≤ f ′′(γ)

and

‖Γ0F(x0)‖ ≤ − f (t0)

f ′(t0)
.

(A4) b1

1−b1g1(t)
≤− 1

f ′(t) for all t ∈ [t0,ρ1].
or

(A ′
4 ) b2

1−b2g2(t)
≤− 1

f ′(t) for all t ∈ [γ,ρ2].

(A5) ‖F ′′(x)−F ′′(z)‖ ≤ f ′′(t)− f ′′(γ) for all x ∈U0, t ∈ [γ,R), where U0 = Ω∩U(x0,ρ1 − t0).
(A ′

5 ) ‖F ′′(x)−F ′′(z)‖ ≤ f ′′(t)− f ′′(γ) for all x ∈U1, t ∈ [γ,R), where U1 = Ω∩U(x0,ρ2 − γ).

(A6) b1 ≤− 1
f ′(t0)

or

(A ′
6 ) b2 ≤− 1

f ′(t0)
.

We shall use the majorizing Newton iteration function f defined by,

tn = N f (tn−1) = tn−1 −
f (tn−1)

f ′(tn−1)
for all n = 1,2, . . . , (2.1)

where t0 is given. Conditions (A0), (A1)–(A6) or conditions (A0), (A1), (A ′
2 ), (A3), (A ′

4 ), (A ′
5 ) and (A ′

6 ) shall be called the conditions

(A ).

Remark 2.1. The following conditions were used in [5]-[10] for the special case X = Y = R
m:

(C1) There exists z ∈ Ω and δ ≥ 0 such that ‖x0 − z‖= δ and ‖F ′′(z)‖ ≤ f ′′1 (γ).

(C2) There exists the operator Γ0 = F ′(x0)
−1 ∈ L(Rm,Rm) with ‖Γ0‖ ≤ − 1

f ′(t0)
and ‖Γ0F(x0)‖ ≤ − f1(t0)

f ′1(t0)
.

(C3) ‖F ′′(x)−F ′′(z)‖ ≤ f ′′1 (t)− f ′′1 (γ) for ‖x− z‖ ≤ t − γ, x ∈ Ω and t ∈ [γ,+∞) and the majorizing Newton sequence is defined by t̄0
given,

t̄n = N f1
(t̄n−1) = t̄n−1 −

f1(t̄n−1)

f ′1(t̄n−1)

for each n = 1,2,3, . . . and t̄0 = t0.

Notice that U0 ⊆ Ω and U1 ⊆ Ω. Therefore f is at least as tight as f1, i.e.,

f (t)≤ f1(t)

− 1

f ′(t)
≤− 1

f ′1(t)

and

f ′′(t)− f ′′(γ)≤ f ′′1 (t)− f ′′1 (γ).
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Next, we state a well known result [9, 10].

Lemma 2.2. Suppose that there exists a nonnegative scalar sequence {tn} majorizing a sequence {xn} ⊆ Ω. Moreover, suppose that

limn−→+∞ tn = t∗ for some t∗ ≥ 0. Then, there exists x∗ ∈ Ω such that limn−→∞ xn = x∗ and ‖x∗− xn‖ ≤ t∗− tn for each n = 0,1,2,3, . . . .

The proof of the next two results are skipped, since these are immediately obtained from the ones in [5, 6] by using function f , iteration {tn},
condition (A ) instead of function f1, iterate {t̄n} and conditions (C1)–(C3), respectively. Moreover, these results involve solutions of scalar

equations related to Newton’s sequence {tn}.

Proposition 2.3. Assume that there exists a twice continuously differentiable function f : [γ,+∞) −→ R with γ ∈ R such that the (A )

conditions are satisfied.

(1) If there exists a solution δ ∈ (γ,+∞) of equation f ′(t) = 0, then δ is the minimum value of f in [γ,+∞) and f is non-increasing in

[t0,δ ).
(2) If f (δ )≤ 0, then the equation f (t) = 0 has a unique solution t∗ in (γ,δ ) satisfying t0 < t∗ < δ .

Proposition 2.4. Assume that there exists a twice continuously differentiable function f : [γ,+∞)−→ R with γ ∈ R such that condition (A )

are satisfied. If there exist a solution δ ∈ [γ,+∞) of equation f ′(t) = 0 satisfying f (δ )≤ 0, then the scalar sequence {tn} given by (2.1) is

nondecreasing and converges to the minimal solution t∗ of f (t) = 0.

Next, the semi-local convergence of Newton’s method follows.

Theorem 2.5. Let F : Ω ⊆ X −→ Y be a twice continuously differentiable operator in the Fréchet sense. Assume that there exist a function

f : [γ,+∞)−→ R twice continuously differentiable with γ ∈ R such that conditions (A ) are satisfied and a solution δ ∈ (γ,+∞) of equation

f ′(t) = 0 satisfying f (δ ) ≤ 0 and U(x0, t∗ − t0) ⊂ Ω. Then, the sequence {xn} generated by Newton’s method is well defined stays in

Ū(x0, t∗− t0), and converges to a solution x∗ ∈ Ū(x0, t∗− t0) of equation F(x) = 0, so that

‖x∗− xn‖ ≤ t∗− tn for each n = 0,1,2, . . .

where sequence {tn} is given in (2.1).

Proof. We use (A2) instead of (C3) used in [5, 6] to obtain

‖F ′(xi)
−1‖ ≤ b1

1−b1g1(ti)

or under (A ′
2 )

‖F ′(xi)
−1‖ ≤ b2

1−b2g2(ti)

instead of

‖F ′(xi)
−1‖ ≤ − 1

f ′(ti)
.

Then, by (A4) or (A ′
4 ) we get that the preceding estimate also holds in our setting. Using this modification, the rest of proof follows as in

[5, 6] with sequence {tn} replacing {t̄n}.

�

The next result provides information about the location of the solution.

Proposition 2.6. Assume that the condition (A ) are satisfied. If the equation f (t) = 0 has two solutions such that t0 < t∗ ≤ t∗∗, then x∗ is

unique in U(x0, t∗∗− t0)∩Ω provided that t∗ < t∗∗ or in Ū(x0, t∗− t0), provided that t∗ = t∗∗.

Proof. Simply replace f1, t̄∗, t̄∗∗,Rm,Rm by f , t∗, t∗∗,X ,Y, respectively in [5, 6, Theorem 7].

�

The following error bounds are also available:

Proposition 2.7. Assume that the hypotheses of Proposition 2.6 are satisfied.

(1) For t∗ < t∗∗, suppose there exist a1 > 0 and b1 > 0 such that a1 ≤ min{ϕ(t) : t ∈ [t0, t∗]} and b1 ≥ max{ϕ(t) : t ∈ [t0, t∗]}, then

(t∗∗− t∗)τ2n

a1 − τ2n ≤ t∗− tn ≤ (t∗∗− t∗)c2n

for all n = 0,1,2, . . . where ϕ(t) =
(t∗∗−t)h′(t)−h(t)
(t∗−t)h′(t)−h(t)

, f (t) = (t − t∗)(t − t∗∗)h(t),h(t∗) 6= 0, h(t∗∗) = 0 and τ = t∗
t∗∗

a1, provided that

τ < 1 and c < 1.

(2) For t∗ = t∗∗, suppose there exists b3 > 0 such that b3 ≤ min{ψ(t) : t ∈ [t0, t∗]}, then

an
2t∗ ≤ t∗− tn ≤ bn

3t∗

for all n = 0,1,2, . . . provided that a2 < 1 and b3 < 1, where ψ(t) =
(t∗−t)h′(t)−h(t)
(t∗−t)h′(t)−2h(t)

.

Proof. Simply replace f1, t̄n, t̄∗, t̄∗∗ by f , tn, t∗, t∗∗ in [5, 6, Theorem 8].

Remark 2.8. (i) It follows from Proposition 2.7 that the convergence order is quadratic for t∗ < t∗∗, and linear, for t∗ = t∗∗.



8 Fundamental Journal of Mathematics and Applications

(ii) The uniqueness of the solution x∗ is more precise under the new conditions. Notice that f (t̄∗)≤ f1(t̄∗) = 0 so t∗ ≤ t̄∗. Let us suppose

that for t0 = 0 [3, 5]-[10]

f (t) =
p

2
t2 − t

b
+

η

b
,

f1(t) =
q

2
t2 − t

b
+

η

b
,

then 0 < p ≤ q (provided that 2bqη ≤ 1), we have that t∗ ≤ t̄∗ and t∗∗ ≤ t̄∗∗. Hence, the uniqueness of the solution x∗ is improved.

Similar favorable comparisons are given for the lower and upper bounds given in Proposition 2.7.

(iii) The construction of function f defined on U0 as identical to the construction of function f1 on Ω in [5, 6] is omitted. See also preceding

case (ii) and the example in the next Section.

3. Numerical example

We present an example where our results apply to solve an equation but not earlier ones [5, 6].

Example 3.1. Let X = Y = R,Ω = Ū(x0,1− p), x0 = 1, p ∈ I0 = [2−
√

3, 1
2 ] and z = x0. Define function F on Ω by

F(x) =
x3

3
− px+

2p

3
.

Under the approach in [5, 6],

‖F ′′(x)‖= 2‖x‖ ≤ 2(‖x− x0‖+‖x0‖)≤ 2(1− p+1) = 2(2− p), (3.1)

‖F ′′(x0)−F ′′(x)‖= 2‖x0 − x‖ ≤ 2, (3.2)

b = ‖F ′(x0)
−1‖= 1 (3.3)

and

‖F ′(x0)
−1F(x0)‖=

1

3
(1− p) = η . (3.4)

If polynomial f (or fold) satisfies f (µ2) ≤ 0 (or fold(µ4) ≤ 0), then it has a negative solution and two positive solutions. In view of

(3.1)–(3.4), the old function fold satisfying the conditions of Theorem 13 in [5, 6] is given by

fold(t) =
1

3
t3 +(2− p)t2 − t +

1

3
(1− p) (3.5)

Polynomial in (3.5) has a maximum at t = µ3 = 1

2−p−
√

(2−p)2+1
< 0 and a minimum at t = µ4 = 1

2−p+
√

(2−p)2+1
> 0 and fold(µ4) >

0, for all p ∈ I0.

Hence, the old results cannot guarantee that limn−→+∞ xn = x∗. Under the new approach, since g1(t) = (3− p)t,U0 = Ω∩U(x0,
1

3−p ) =

U(x0,
1

3−p ),ρ1 =
1

3−p , so U0 is a strict subset of Ω and,

‖F ′′(x)‖= 2‖x‖ ≤ 2[‖x− x0‖+‖x0‖]≤ 2(
1

3− p
+1).

Then, the new function f is defined by

f (t) =
1

3
t3 +

4− p

3− p
t2 − t +

1

3
(1− p). (3.6)

Polynomial given in (3.6) has a maximum at t = µ1 =
1

4−p

3−p
−
√

( 4−p

3−p
)2+1

< 0 and a minimum at t = µ2 =
1

4−p

3−p
+
√

( 4−p

3−p
)2+1

> 0.

Notice that (A4) holds, if p ∈ I0, t ≥ 0 since it reduces to

1

1− (3− p)t
≤− 1

t2 +2( 4−p
3−p )t −1

or
p2 −4p+1

3− p
≤ t

or

p2 −4p+1 ≤ 0,

which is true for p ∈ I0. Moreover, we have that
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f (µ2)≤ 0, for all p ∈ I0.

Therefore, under our approach limn−→∞ xn = x∗. Furthermore, although the old results do not apply, we also have that for each t, t̄ ∈ [0,ρ1]
with t < t̄, f (t)≤ fold(t̄) and f ′(t)≤ f ′old(t̄)< 0 so

− f (t)

f ′(t)
≤− fold(t̄)

f ′
old

(t̄)

leading to

tn ≤ t̄n,

tn+1 − tn ≤ t̄n+1 − t̄n

and

t∗ ≤ t̄∗.

Hence, the error bounds on ‖xn+1 − xn‖,‖xn − x∗‖ are improved as well as the location of the solution.
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[7] J. M. Gutiérrez, A. A. Magreñán, N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl.

Math. Comput., 221 (2013), 79–88.
[8] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
[9] L. B. Rall, Computational Solution of Nonlinear Operator equations, Robert E. Kreger Publishing Company, Michigan, 1979.

[10] T. Yamamoto, Historical developments in convergence analysis for Newton’s and Newton-like methods, J. Comput. Appl. Math., 124 (2000), 1–23.



Fundamental Journal of Mathematics and Applications, 2 (1) (2019) 10-17

Research Article

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma

ISSN: 2645-8845

DOI: https://dx.doi.org/10.33401/fujma.503688

Order-Preserving Variants of the Basic Principles of Functional

Analysis

A. A. Zaitov

Tashkent institute of architecture and civil engineering, Tashkent, Uzbekistan

Article Info

Keywords: Functional analysis, Order-

preserving functional, Vector space

with an order unit

2010 AMS: 46B40, 46T99, 47H07

Received: 27 December 2018

Accepted: 20 February 2019

Available online: 17 June 2019

Abstract

We will establish order-preserving versions of the basic principles of functional analysis

such as Hahn-Banach, Banach-Steinhaus, open mapping, and Banach-Alaoglu theorems.

1. Introduction

Recently researches in the field of idempotent mathematics and also Choquet integrals intensively develop. Since its introduction in 1974

by Sugeno, the concept of fuzzy measure has been often used in multicriteria decision making. Later in [1], the authors explained the

methodology of using the Choquet integral in multicriteria decision making. The notion of idempotent measure (Maslov integral) finds

important applications in different part of mathematics, fuzzy topology, mathematical physics, and economics (see the article [2] and the

bibliography therein). As well known idempotent measures and Choquet integrals are weakly additive, order-preserving functionals. But

for this functionals there not establish yet the basic principles (analogous principles of Functional Analysis, see, for example, [3]). In

the present paper, we will establish order-preserving versions of the basic principles of Functional Analysis such as the Hahn-Banach,

Banach-Steinhaus, open mapping and Banach-Alaoglu theorems. Recently, in [4] the uniform boundedness principle for nonlinear operators

on cones of functions was investigate. In works [5]-[7] by the author announced open mapping theorem for order-preserving operators and

Banach-Alaoglu theorem for order-preserving functionals, in particular case, on the function spaces.

Remind that partially ordered vector space is a pair (L,6) where L is a vector space over the field R of real numbers, 6 is an order satisfying

the following conditions:

1) if x 6 y, then x+u 6 y+u for all x, y, u ∈ L;

2) if x 6 y, then λx 6 λy for all x, y ∈ L and λ ∈ R+.

If the conditions 1) and 2) hold then they say that 6 is a linear order. A formation of a vector space L with a linear order 6 over R is

equivalent to indicate a set L+ ⊂ L called a positive cone in L and owning the properties:

L++L+ ⊂ L+; λL+ ⊂ L+, λ ∈ R+; L+∩ (−L+) = {0}.

In this case, the order 6 and the positive cone L+ are connected by a relation

x 6 y ⇔ y− x ∈ L+, x, y ∈ L.

Elements of L+ is called positive vectors of L.

Let (L, L+) be a partially ordered vector space. We say [8] that L+ is full (or that L+ is a full cone) if L = L+−L+.

Let L be a partially ordered vector space over the field R of real numbers, and L+ be a full cone in it. Let x1, x2 ∈ L be arbitrary various

points. The set [x1, x2] = {αx1 +(1−α)x2 : α ∈ [0, 1]} is called a segment connecting points x1 and x2. A point x ∈ [x1, x2] is an inner

point of the segment [x1, x2] if x1 6= x 6= x2.

Email addresses and ORCID numbers: adilbek zaitov@mail.ru, 0000-0002-2248-0442, (A. A. Zaitov)
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Let x ∈ L+. The point x is said to be an inner point of the cone L+ if for any segment [x1, x2] containing x as an inner point, the segment

[x1, x2]∩L+ also contains it as an inner point. The set of all inner points of the cone L+ is called an interior of this cone, and it denotes as

IntL+.

Fix an inner point x0 ∈ L+. For a δ > 0 we determine a δ -neighbourhood (with respect to the cone L+ and the point x0) of zero 0 ∈ L as

following:

〈0; δ 〉= {x ∈ L : (δx0 ± x) ∈ IntL+}. (1.1)

It is easy to see that a family of the sets of the view (1.1) forms a base of neighbourhoods of zero. A neighbourhood of an arbitrary point

z ∈ L can be defined by the shifts of the neighbourhoods of zero:

〈z; δ 〉= 〈0; δ 〉+ z = {x+ z ∈ L : x ∈ 〈0; δ 〉}= {x+ z ∈ L : (δx0 ± x) ∈ IntL+}= {y ∈ L : (δx0 ± (y− z)) ∈ IntL+}.

Proposition 1.1. A collection

{〈z; δ 〉 : z ∈ L, δ > 0}

forms a base of a Hausdorff topology on L. Further, L equipped with this topology becomes a topological vector space.

Proof. The proof consists of direct checking.

An element 1 ∈ L of a partially ordered vector space L is called (strongly) order unit if L =
∞
⋃

n=1

[−n1, n1]. This is equivalent to what for

every x ∈ L there exists λ > 0 such that −λ1 6 x 6 λ1. Let x ∈ L. A partially ordered vector space L is called Archimedean if the inequality

nx 6 1 executed for all n = 1, 2, . . . , implies x 6 0. In this case on L one can define a norm by the equality

‖x‖= inf{λ > 0: −λ1 6 x 6 λ1}.

The obtained norm is said to be an order norm. A partially ordered vector space L is called a vector space with an order unit if L has an

order unit and L is an Archimedean space. A topology on L generated by the norm (1.2) is called order (vector) topology. For a subset X ⊂ L

by IntX we denote the interior of X according to the order topology on L. We accept the following agreement

x < y ⇔ y− x ∈ IntL+.

A set U(0E ,ε) = {x ∈ E : −ε1E < x < ε1E} is an open neighbourhood of zero 0E concerning to the order topology. As vector topology is

translation invariance then for every point x ∈ E a set U(x,ε) = {y ∈ E : −ε1E < y− x < ε1E} is an open neighbourhood of x with respect

to the order topology.

Proposition 1.2. The order topology and the topology introduced by Proposition 1.1 on a vector space with an order unit coincide.

Proof. Proof is trivial.

2. Extensions of order-preserving functionals

In this section, we will prove the order-preserving functional’s variant of the Hahn-Banach theorem, one of the basic principles of functional

analysis.

Definition 2.1. A subset B of a partially ordered vector space L is said to be an A-subspace concerning to a fixed inner point x0 of a full

cone L+ ⊂ L if 0 ∈ B, and x ∈ B implies (x+λx0) ∈ B for each λ ∈ R.

The following assertion is evident.

Lemma 2.2. A subspace B of the partially ordered vector space L is an A-subspace according to x0 iff it contains x0.

Note that the space L and its subspace {λx0 : λ ∈ R} are trivial A-subspaces. As distinct from the linear case the set {0} is not A-subspace.

It is easy to see that an intersection of any collection of A-subspaces is a A-subspace. In particular, an intersection of all A-subspaces

containing a given set X is the minimal A-subspace, containing X ; this A-subspace we call as a weakly additive span of X , and designate

through A(X). The following statement describes a structure of the weakly additive span of a given set.

Proposition 2.3. A weakly additive span A(X) of a subset X of a partially ordered linear space L consists of a (set-theoretic) union of

{λx0 : λ ∈ R} and the collection of all sums of the look x+λx0, x ∈ X, λ ∈ R, i.e.

A(X) = {λx0 : λ ∈ R}∪
⋃

x∈X ,

λ∈R

{x+λx0}=
⋃

x∈X∪{0},
λ∈R

{x+λx0},

in particular, if x0 ∈ X then

A(X) =
⋃

x∈X ,

λ∈R

{x+λx0}.

Proof. The proof is obvious.
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Let’s denote

Λ = {λx0; λ ∈ R}.

Then we have

A(X) =
⋃

x∈X∪{0}

(x+Λ).

The last equality explains the name ‘A-subspace’. Every A-subspace A(X) consists of the union of one-dimensional subspace Λ ⊂ L and

affine subsets x+Λ ⊂ L, x ∈ X .

Definition 2.4. A functional f : L → R is called:

1) weakly additive (according to the point x0) if

f (x+λx0) = f (x)+λ f (x0), x ∈ L, λ ∈ R;

2) order-preserving (concerning to the cone L+) if for every pair x, y ∈ L belonging y− x ∈ L+ implies the inequality

f (x)6 f (y);

3) normed (with respect to the point x0) if f (x0) = 1.

From the definition immediately follows that weakly additive functional is linear on the one-dimensional subspace {λx0; λ ∈ R} of L. From

here we have f (0) = 0.

Let (L, L+) be a partially ordered real vector space. A functional f : L → R is called positive if f (L+)⊆ [0,+∞). Each weakly additive,

order-preserving functional is positive. Really, let x ∈ L+. Then x− 0 ∈ L+. Since f is order-preserving functional, then f (x) > f (0).
Consequently, f (x)> 0. There exists a function which is weakly additive, positive but does not order-preserving.

Example 2.5. Let L = R2 = {(x1, x2) : xi ∈ R, i = 1, 2} be a partially ordered vector space with respect to the usual linear operations ‘·’ –

the multiplication by real numbers, ‘+’ – the sum of elements of L, and to the pointwise order 6 on L, which defines as (x1, x2)6 (y1, y2)⇔
x1 6 y1 and x2 6 y2. The set L+ = {(x1, x2) ∈ R2 : xi > 0, i = 1, 2} is a full positive cone in L. Fix an inner point 1 = (1, 1) ∈ L+ and

define a functional f : R2 → R by the rule

f (x1, x2) =
1

2

(

x1 + x2 +
√

|x2 − x1|
)

, (x1, x2) ∈ R2
.

It is clear that f is a positive functional. Moreover, for every (x1, x2) ∈ R2 and λ ∈ R we have

f (x1 +λ , x2 +λ ) =
1

2

(

(x1 +λ )+(x2 +λ )+
√

|(x2 +λ )− (x1 +λ )|
)

=

=
1

2

(

x1 + x2 +
√

|x2 − x1|
)

+λ = f (x1, x2)+λ f (1, 1),

i.e. f is a weakly additive (according to the inner point (1, 1)) functional. But we have f
(

1
2 ,

1
2

)

< f
(

1
4 ,

1
2

)

though
(

1
2 ,

1
2

)

−
(

1
4 ,

1
2

)

∈ L+.

Thus, f is weakly additive, positive but does not order-preserving functional.

Proposition 2.6. If an order-preserving, weakly additive functional f : L → R is continuous at zero 0 then it is continuous on the whole L.

Proof. Let for every ε > 0 there exists δ > 0 such that | f (x)|< ε for all x ∈ 〈0; δ 〉 ⊂ L. Let y ∈ L be an arbitrary nonzero element. Consider

a neighbourhood

〈

y;
δ

2

〉

=

{

z ∈ L :

(

δ

2
x0 ± (z− y)

)

∈ IntL+

}

.

For every z ∈
〈

y; δ
2

〉

we have:

1) f ( δ
2 x0)+ f (y)> f (z) since

(

δ
2 x0 + y

)

− z ∈ IntL+;

2) f ( δ
2 x0)+ f (z)> f (y) since

(

δ
2 x0 + z

)

− y ∈ IntL+.

From here follows that

| f (z)− f (y)|6 f

(

δ

2
x0

)

. (2.1)

Now we take x ∈ L such that x− δ
2 x0 ∈ L+ and 3δ

4 x0 − x ∈ L+. Then f ( δ
2 x0)6 f (x) and f (x)6 f ( 3δ

4 x0). On the other hand f ( 3δ
4 x0)< ε

so far as 3δ
4 x0 ∈ 〈0; δ 〉. Consequently | f (z)− f (y)|< ε for each z ∈

〈

y; δ
2

〉

. So f is continuous at y ∈ L. Thus f is continuous on the whole

L owing to arbitrariness of y ∈ L.

A weakly additive, order-preserving functional f : L → R is called bounded if sup{| f (x)| : x ∈ 〈0; 1〉}< ∞.

Proposition 2.7. A weakly additive, order-preserving functional is bounded if and only if it is continuous.
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Proof. Let f : L →R be weakly additive, order-preserving bounded functional. Let f (x0) = a < ∞ and δx0±(z−y)∈ IntL+. Then similarly

to (2.1) one can show that | f (z)− f (y)|< δ f (x0) = δa, and consequently f is continuous.

Conversely, let a weakly additive, order-preserving functional f : L → R be continuous. Then there exists δ > 0 such that | f (x)|< 1 at all

x ∈ 〈0; δ 〉. In particular,

∣

∣

∣

δ
2 f (x0)

∣

∣

∣
< 1 so far as δ

2 x0 ∈ 〈0; δ 〉. Hence, | f (x0)|<
2
δ
< ∞, i.e. sup{| f (x)| : x ∈ 〈0; 1〉}< 2

δ
< ∞.

Corollary 2.8. A weakly additive, order-preserving, normed functional is continuous (or, the same, bounded).

The following statement is an analog of Hahn-Banach theorem for weakly additive, order-preserving functionals.

Theorem 2.9. Let B be an A-subspace of the space L. Then for every weakly additive, order-preserving functional f : B → R there exists a

weakly additive, order-preserving functional f0 : L → R such that f0|B = f .

Proof. Let y ∈ L\B. Put B′ = B∪{y+λx0 : λ ∈ R}. Obviously that B′ is an A-subspace of L. Put

B+ = {z ∈ B : z− y ∈ B} and B− = {z ∈ B : y− z ∈ B}.

The obtained sets B+ and B− are not empty. Indeed, take λ > 0 such that y ∈ 〈0; λ 〉. Then evidently that 2λx0 ∈ B+ and −2λx0 ∈ B−.

Put

p+ = inf{ f (z) : z ∈ B+}, p− = sup{ f (z) : z ∈ B−}.

We have p− 6 p+. Indeed, y− z1 ∈ L+ if provided z1 ∈ B−, and z2 − y ∈ L+ if provided z2 ∈ B+. From here we get z2 − z1 ∈ L+.

Consequently f (z1)6 f (z2) for all z1 ∈ B− and z2 ∈ B+, i.e. p− 6 p+. Take a number p such that p− 6 p 6 p+ and put

f ′(y+λx0) = p+λ f (x0).

In such a way we define an extension f ′ of f from B on B′. From the definition directly implies that f ′ is a weakly additive functional. We

will show that f ′ is order-preserving. It is order-preserving on B owing to f ′|B = f . Besides it is evident that f ′ is order-preserving on

{y+λx0 : λ ∈ R}. Let now z− (y+λx0) ∈ L+, where z ∈ B. Then (z−λx0)− y ∈ L+, i.e. (z−λx0) ∈ B+. That is why

f ′(z−λx0) = f (z−λx0) = f (z)−λ f (x0)> p+ > p = f ′(y),

i.e. f ′(z)> f ′(y+λx0). In the case when (y+λx0)− z ∈ L+ one can similarly show that f ′(z)6 f ′(y+λx0).
Thus, a weakly additive, order-preserving continuous functional f : B →R defining on an A-subspace B can be extended to a weakly additive,

order-preserving continuous functional f ′ : B′ → R on a wider A-subspace B′ of L. At the same time the equality f ′(x0) = f (x0) holds.

Consider the set of all pairs (B′, f ′) such that B ⊂ B′ ⊂ L where B′ is an A-subspace, f ′ : B′ → R is a weakly additive, order-preserving

continuous extension of f . The relation (B′, f ′)6 (B′′, f ′′) meaning that f ′′ : B′′ → R is a weakly additive, order-preserving continuous

extension of f ′ on a subspace B′′, B′ ⊂ B′′ ⊂ L, turns this set into a partially ordered set in which all chains are bounded. By Zorn’s lemma,

there is the maximal element (B0, f0) of this set. We will show that B0 = L.

Suppose that B0 6= L. Take any point y ∈ L \B0 and put B1 = B0 ∪{y+ λx0 : λ ∈ R}. Then f0 can be extended to f1 : B1 → R, and

consequently, (B0, f0)6 (B1, f1). We got a contradiction with maximality of B0. So, B0 = L.

3. Uniform boundedness principle for order-preserving operators

Let (E,6) and (F,6) be partially ordered vector spaces.

Definition 3.1. A map T : E → F is said to be an order-preserving operator if for arbitrary points x,y ∈ E the inequality x 6 y implies

T (x)6 T (y).

Let (E,6) be a partially ordered vector space with an order unit 1E and (F,6) be a partially ordered vector space.

Definition 3.2. A map T : E → F is said to be a weakly additive operator if T (x+λ1E) = T (x)+λT (1E) takes place for each x ∈ E and

λ ∈ R.

The last definition immediately implies T (0E) = T (1E − 1E) = T (1E)− T (1E) = 0F , i.e. T (0E) = 0F for a weakly additive operator

T : E → F .

The following statement shows weakly additive, order-preserving operators of vector spaces with an order unit are automatical continuous.

Proposition 3.3. If E and F are vector spaces with an order unit then each weakly additive, order-preserving operator T : E → F is

continuous.

Proof. We will show the operator T is continuous at zero 0E . At first we note the following case. If T (1E) = 0F then T (x) = 0F for all x ∈ E

since T is a weakly additive and order-preserving operator, and for every x there exists λ > 0 such that −λ1E 6 x 6 λ1E . So T (E)⊂ {0F}.

This case we will not consider, i.e. suppose T (1E) 6= 0F . Then ‖T (1E)‖ 6= 0.

Let V (0F ,ε) = {y ∈ F : − ε1F < y < ε1F} be a neighbourhood of zero 0F in F , where ε > 0. Take the neighbourhood U
(

0E ,
ε

‖T (1E )‖

)

of zero 0E in E. For each vector x ∈U we have − ε
‖T (1E )‖

1E < x < ε
‖T (1E )‖

1E . Then − ε
‖T (1E )‖

T (1E)< T (x)< ε
‖T (1E )‖

T (1E) since T is a

weakly additive, order-preserving operator. From here we get ‖T (x)‖< ε , i.e. T (U)⊂V . Thus T is continuous at 0E .

The remaining part of the proof is similar to the Proof of Proposition 2.6.
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Remark 3.4. It is obvious that each linear non-negative operator on spaces with an order unit is weakly additive and order-preserving. The

converse, in general, is not true. But, nevertheless, such operators are linear on a one-dimensional subspace {λ1E : λ ∈R} ⊂ E. In this case

the image of the subspace {λ1E : λ ∈ R} under the map T is, as clearly, a one-dimensional subspace {λT (1E) : λ ∈ R} ⊂ F . We have

T (1E) ∈ F+ but it is optional T (1E) ∈ IntF+. Therefore T (1E) is an order unit in T (E) but it is optional to be an order unit in F . From

here and Proposition 3.3 follows that for every weakly additive, order-preserving operator T : E → F on spaces E, F with an order unit the

inequality ‖T (1E)‖< ∞ takes place.

Remind the following notions. A set A in a normed space E is called bounded if there exists R > 0 such that A can be placed into the ball

{x ∈ E : ‖x‖6 R}. A map T : E → F of normed spaces is called bounded if it carries over a bounded set in E to a bounded set in F . It is

obvious that the boundedness of the map T is equivalent to limitation of the set {‖T (x)‖ : x ∈ E,‖x‖6 R} for every R > 0. In other words,

sup{‖T (x)‖ : x ∈ E,‖x‖6 R}< ∞ for every bounded map T and for each R > 0.

The following statement shows weakly additive, order-preserving operators of vector spaces with an order unit are automatical bounded.

Proposition 3.5. Each weakly additive, order-preserving operator T : E → F of spaces with an order unit is bounded.

Proof. The proof follows from Remark 3.4.

Let E and F be vector spaces with an order unit, 1E and 1F , respectively. A collection H of weakly additive, order-preserving operators

T : E → F is said to be equicontinuous if to every neighbourhood V of zero in F there corresponds a neighbourhood U of zero in E such that

T (U)⊂V for all T ∈ H . If the collection H consists only one weakly additive, order-preserving operator T , then H is equicontinuous

as T is continuous, and H is uniformly bounded owing to boundedness of T . The following statement shows that each equicontinuous

collection of weakly additive, order-preserving operators on vector spaces with an order unit is uniformly bounded.

Proposition 3.6. Let E and F be vector spaces with an order unit, H an equicontinuous collection of weakly additive, order-preserving

operators from E into F, and A a bounded subset of E. Then F has a bounded subset B such that T (A)⊂ B for every T ∈ H .

Proof. Put B =
⋃

T∈H

T (A). Since the collection H is equicontinuous then for every neighbourhood V =V (0F ,ε) of zero in F there exists a

neighbourhood U =U(0E ,δ ) of zero in E that T (U)⊂V for all T ∈ H . So far as A is bounded for enough big t ∈ R we have A ⊂ tU . It

is clear, that T (A)⊂ T (tU). Assume that x ∈ tU . Then ‖x‖< tδ , i.e. −tδ1E < x < tδ1E . As T is weakly additive and order-preserving

we have −tδT (1E)< T (x)< tδT (1E), ‖T (x)‖< tδ‖T (1E)‖, consequently, ‖ 1
t T (x)‖< δ‖T (1E)‖= ‖T (δ1E)‖6 ε . Hence, T (tU)⊂ tV .

Thus T (A)⊂ tV for all T ∈ H . It means that B ⊂ tV , i.e. the set B is bounded.

The following result is a weakly additive, order-preserving operators’ variant of the Banach-Steinhaus theorem.

Theorem 3.7. Let E and F be vector spaces with an order unit, H be a collection of weakly additive, order-preserving operators T : E → F,

and A be a set consisting of all points x ∈ E whose orbits H (x) = {T (x) : T ∈ H } are bounded in F. If A is a set of the second category

then A = E and the collection H is equicontinuous.

Proof. Let V = V (0F ,ε) and W =W (0F ,ε
′) be neighbourhoods such that V +V ⊂W where V is the closure of V with respect to order

topology in F . Put B =
⋂

T∈H

T−1(V ). Let x ∈ A. Then for some positive integer n we have H (x)⊂ nV by virtue of boundedness of H (x).

Hence T (x) ∈ nV or x ∈ nT−1(V ) for all T ∈ H . It means that x ∈ nB. Thus A ⊂
∞
⋃

n=1

nB. Thence at least one of the sets nB is the second

category owing to A is so. A map x 7→ nx is a homeomorphism E onto itself. Consequently the set B is the second category. Continuity

of operators T ∈ H implies B is closed in E. As B is the second category set, it has an inner point. By the construction of B one can see

that δ1E lies in B as an inner point for enough small δ ∈ R. Let δ1E be such an inner point in B. Then a set B−δ1E = {x−δ1E : x ∈ B}
contains some neighborhood U =U(0E ,δ

′) of zero and

T (U)⊂ T (B−δ1E) = {T (x−δ1E) : x ∈ B}= {T (x)−δT (1E) : x ∈ B}= T (B)−δT (1E)⊂V −V ⊂W

for all T ∈ H . It means that H is a equicontinuous collection. Then H is uniform bounded by Proposition 3.6. That is why an orbit H (x)
is bounded for each x ∈ E. Consequently, since A consists of points of E whose orbits H (x) = {T (x) : T ∈ H } are bounded in F we have

E ⊂ A. Therefore A = E.

If a vector space with an order unit is a Banach space with respect to order norm then it said to be a complete space with an order unit. As

each Banach space is a set of the second category then Theorem 3.7 directly implies

Corollary 3.8. Let E be a complete space with an order unit and F a vector space with an order unit, H a collection of weakly

additive, order-preserving operators T : E → F, and a collection H (x) = {T (x) : T ∈ H } bounded in F for each x ∈ E. Then H is an

equicontinuous collection.

As Proposition 3.6 holds then Corollary 3.8 means that pointwise boundedness of an arbitrary collection weakly additive, order-preserving

operators from a complete space with an order unit into a vector space with an order unit implies uniform boundedness of this collection.

Let E and F be vector spaces with an order unit, {Tn} a sequence of weakly additive, order-preserving operators Tn : E → F . If for every

x ∈ E there exists a limit lim
n→∞

Tn(x) then putting

T (x) = lim
n→∞

Tn(x), x ∈ E, (3.1)

we have a weakly additive, order-preserving operator. Indeed,

T (x+λ1E) = lim
n→∞

Tn(x+λ1E) = lim
n→∞

(Tn(x)+λTn(1E)) = T (x)+λT (1E),
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and if x 6 y then

T (x) = lim
n→∞

Tn(x)6 lim
n→∞

Tn(y) = T (y).

Corollary 3.9. Let E and F be vector spaces with an order unit, {Tn} a sequence of weakly additive, order-preserving operators Tn : E → F.

If there exists a limit lim
n→∞

Tn(x), x ∈ E, then an operator T : E → F defined by (3.1) is also a weakly additive, order-preserving operator.

4. Order-preserving variant of open mapping theorem

Remind that a map f : X → Y of topological spaces is called open at x0 ∈ X if for every open neighbourhood of x0 in X there exists an open

neighbourhood V of f (x0) in Y such that V ⊂ f (U). A map is open on a topological space X if it is open at every point of X .

Lemma 4.1. Let E and F be vector spaces with an order unit, T : E → F a weakly additive, order-preserving onto operator. If T is open at

zero then it is open on all E.

Proof. Let for every neighbourhood U =U(0E ,ε) of 0E its image T (U) = {T (x) : x ∈U} be open. We have 0F ∈ T (U) as T (0E) = 0F .

Thence there exists an open neighbourhood V =V (0F ,δ ) of 0F such that V ⊂ T (U).
Now let x0 ∈ E be an arbitrary point and U(x0,ε) a neighbourhood of x0 got by shifting U(0E ,ε) on vector x0. Besides let V (T (x0), δ ) be a

neighbourhood of T (x0) got by shifting V (0F ,δ ) on vector T (x0). The proof of the Lemma will finish if we show that the following diagram

is true

y ∈V (T (x0), δ )
(1)
⇐⇒ y−T (x0) ∈V (0F ,δ )

(2) ⇓

y ∈ T (U(x0,ε))
(3)
⇐⇒ y−T (x0) ∈ T (U(x0,ε)).

The equivalence of the double inequalities −δ1F < y−T (x0)< δ1F and T (x0)−δ1F < y < δ1F +T (x0) implies (1). Since V ⊂ T (U)
we have (2). And the equivalence of the double inequalities −εT (1E)< y−T (x0)< εT (1E) and T (x0)− εT (1E)< y < εT (1E)+T (x0)
implies (3).
Thus for an arbitrary point x ∈ E and its arbitrary neighbourhood U =U(x,ε) there exists open neighbourhood V =V (T (x), δ ) such that

V ⊂ T (U).

Remind that a metric d on a vector space E is invariant concerning to a shift of points of E if d(x+ z,y+ z) = d(x,y) for all x,y,z ∈ E. Define

an order metric by the rule

d(x,y) = ‖y− x‖= inf{λ > 0 : −λ1E < y− x < λ1E}.

It is easy to see that the following assertion holds.

Lemma 4.2. The order metric on a vector space with an order unit is invariant according to a shift of points.

Let E and F be vector spaces with an order unit. A product E ×F over (0E ,0F ) becomes a vector space with an order unit if we will

introduce to it coordinatewise operations of sum and multiplication by number

α(x1, x2)+β (y1, y2) = (αx1 +βy1, αx2 +βy2),

and coordinatewise partially order

(x1, x2)6 (y1, y2)⇔ (x1 6 y1 and x2 6 y2).

Order norm on E ×F is defined by the rule

‖(x1, x2)‖= inf{λ > 0 : −λ (1E ,1F )6 (x1, x2)6 λ (1E ,1F )}.

Here (1E ,1F ) is one of inner points of (E ×F)+ = E+×F+ that is why without losing generality we assume (1E ,1F ) is an order unit in the

product. Denote 1E×F = (1E ,1F ).
Let T : E → F be a weakly additive, order-preserving operator. The set of all pairs (x,T (x)), x ∈ E, is called a graph of T .

Lemma 4.3. Let E and F be vector spaces with an order unit, 1E an order unit in E, T : E → F a weakly additive, order-preserving operator.

Then the graph G of T is an A-subspace of E ×T (E) with an order unit 1E×T (E).

Proof. We have (0E ,0F ) ∈ G ⊂ E ×T (E) since T (0E) = 0F . Consider (x1, x2) ∈ E ×T (E) and λ ∈ R. Then

(x1, x2)+λ1E×T (E) = (x1,T (x1))+(λ1E ,λ1T (E)) = (x1 +λ1E ,T (x1)+λ1T (E))

= (x1 +λ1E ,T (x1)+λT (1E)) = (x1 +λ1E ,T (x1 +λ1E)),

i.e. (x1, x2)+λ1E×T (E) ∈ G.

Lemma 4.3 and Remark 3.4 imply
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Corollary 4.4. Let E, F be vector spaces with an order unit, 1E an order unit in E, T : E → F a weakly additive, order-preserving operator.

Then the image T (E) is A-subspace of F if and only if T (1E) ∈ IntF+.

Remark 4.5. Further, during the current section, without loss of generality, we will consider such weakly additive, order-preserving

operators T for which T (1E) ∈ IntF+. Then we may assume that T (1E) is an order unit in F . Put 1F = T (1E).

At last, we will form a variant of the Open Mapping Theorem for weakly additive, order-preserving operators.

Theorem 4.6. Let E be a complete space with an order unit, F a vector space with an order unit, and T : E → F a weakly additive,

order-preserving operator such that T (E) = F and F is a set of the second category. Then

(i) the map T is open;

(ii) F is a complete space with an order unit.

Proof. Let U(0E ,ε) be an open neighbourhood. Then according to Remark 4.5 we have

T (U(0E ,ε)) = {T (x) ∈ F : −ε1E < x < ε1E}=

= {T (x)∈ F :−ε1F < T (x)< ε1F}= {y∈ F : there exists x∈U(0E ,ε) such that y= T (x) and −ε1F < y< ε1F}=U(0F ,ε).

It reminds to show that (ii) takes place.

Let {yn} ⊂ F be a fundamental (Cauchy) sequence. Then for every ε > 0 there exists a number n such that at all k > n, m > n the double

inequalities

−ε1F < ym − yk < ε1F

hold. One may assume ε = 1
n . Then − 1

n 1F < ym − yk <
1
n 1F . Since T (U(0E ,

1
n )) =U(0F ,

1
n ) there exists xm,xk ∈ E such that T (xm) = ym,

T (xk) = yk and − 1
n 1E < xm − xk <

1
n 1E . So we have constructed a fundamental sequence {xn} ⊂ E. By completeness of E the sequence

have a limit x = lim
n→∞

xn. As T is continuous from Proposition 3.3 we have T (x) = lim
n→∞

T (xn) = lim
n→∞

yn. Then lim
n→∞

yn ∈ T (E) = F . Thus, F

is complete space with an order unit.

Remark 4.7. Note that open mapping principle for weakly additive, order-preserving operators it is impossible to form as the linear case. In

the distinguishing from the linear case, weakly additivity and order-preserving of T , and being of T (E) the second category set does not

imply the equality T (E) = F . On the other hand T (E) must not be open in F . At last, if T is not onto in Lemma 4.1 then openness of T at

zero does not provide it openness on all the space.

Note that in linear topological spaces there is no open subspace different the whole space. But an A-subspace, distinguished from the

subspace, may be open, closed or everywhere dense in the vector space with order unit.

Example 4.8. Let L = R2 = {(x1, x2) : xi ∈ R, i = 1, 2} be the vector space with an order unit considered in Example 2.5. Then

L+ = {(x1, x2) ∈ R2 : xi > 0, i = 1, 2} is a positive cone in L. Fix 1 = (1,1) ∈ IntR2
+ = {(x1, x2) ∈ R2 : x1 > 0,x2 > 0} as an order unit in

it.

a) It is easy to see that the set B = {(x1, x1 +a) ∈ R2 : −1 < a < 1} is an open (with respect to order topology) A-subspace, but B 6= R2.

b) Let Q be the set of rational numbers. Then C = {(x1, x1 + r) ∈ R2;r ∈Q} is an everywhere dense A-subspace in R2.

c) The set D = {(x1, x1 +a) ∈ R2 : −1 6 a 6 1} is a closed A-subspace in R2.

d) Define a map T : R2 → R2 by the rule

T (x1, x2) =











(x1, x1 −1), at x2 6 x1 −1,

(x1, x2), at x1 −1 < x2 < x1 +1,

(x1, x1 +1), at x2 > x1 +1.

It is easy to check that T is a weakly additive map. Let us show that the map T is order-preserving. It clear that T is order-preserving on B by

T = idB.

Let x2 > x1 +1. Take a vector (y1, y2) ∈ R2 such that (x1, x2)6 (y1, y2). The following three cases possible.

Case 1) y2 > y1 +1. Then

T (x1, x2) = (x1, x1 +1)6 (y1, y1 +1) = T (y1, y2).

Case 2) y1 −1 6 y2 6 y1 +1. Then x1 +1 6 y2. That is why

T (x1, x2) = (x1, x1 +1)6 (y1, y2) = T (y1, y2).

Case 3) y2 6 y1 −1. Then x1 +1 6 y1 −1. Censequently

T (x1, x2) = (x1, x1 +1)6 (y1, y1 −1) = T (y1, y2).

Similarly, one may show that T is order-preserving when x2 6 x1 −1. Thus T is order-preserving on the whole R2.

We have T (R2) = D 6= R2 through the operator T is weakly additive and order-preserving, and the image T (R2) is the second category.

Clearly the image T (R2) is closed in R2 and it is not open. Moreover T is open at zero but it is not open on R2. Really for the open

neighbourhood U((2, 4), 1) = {(x1, x2)∈R2 : 1 < x1 < 3, 3 < x2 < 5} of the point (2, 4)∈R2 its image T (U) = {(x1, x1+1) : 1 < x1 < 3}
is not open in T (R2).
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5. Order-preserving variant of Banach-Alaoglu theorem

Let E be a vector space with an order unit. Fix 1E as an order unit. By EW
+ we denote the set of all weakly additive, order-preserving

functionals f : E → R. On EW
+ define algebraic operations pointwise. Then EW

+ −EW
+ turns to a vector space with an order unit. Denote

EW = EW
+ −EW

+ . Put EO = { f ∈ EW
+ : f (1E) = 1}. Provide EW with the pointwise convergence topology. A collection of the sets of the

view

〈 f ;x1, . . . ,xn;ε〉= {g ∈ EW : | f (xi)−g(xi)|< ε, i = 1, . . . ,n}

forms a base of open neighbourhoods of f ∈ EW , where ε > 0, xi ∈ E, i = 1, . . . ,n.

The main result of the section is the following variant of the Banach-Alaoglu theorem for weakly additive, order-preserving functionals.

Theorem 5.1. If V is a neighbourhood of zero in E then the set

K = { f ∈ EO : | f (x)|6 1 for every x ∈V}

is a compact in the pointwise convergence topology.

Proof. Since neighbourhoods of zero are absorbing sets, for every point x ∈ E there exists γ(x) ∈ R+ such that x ∈ γ(x)V . That is why

| f (x)| 6 γ(x) for all f ∈ EW and x ∈ E. For every x ∈ E denote Dx = [−γ(x), γ(x)] and assume that τ is the Tychonoff topology in the

product P = ∏
x∈E

Dx. It is well known that P is a Hausdorff compact space. By the construction we have K ⊂ P∩EW . We will show

that K is closed in P. Let f0 ∈ P and f0 = f+0 − f−0 , where f+0 , f−0 ∈ P∩EW
+ . Suppose { f+α } ⊂ P∩EW

+ and { f−θ } ⊂ P∩EW
+ are nets

converging to f+0 and f−0 respectively. Then owing to Corollary 3.9 we have f+0 , f−0 ∈ EW , and therefore f0 ∈ EW . On the other hand

| f0(x)| = |( f+0 (x)− f−0 (x))| 6 max{| f+0 (x)|, | f−0 (x)|} 6 γ(x) by | f+α (x)| 6 γ(x) and | f−θ (x)| 6 γ(x) for all x ∈ E, α and θ . Therefore

| f+0 (x)|6 γ(x) for all x ∈ E and | f+0 (x)|6 1 so far as x ∈V . It means that f0 ∈ K.

Corollary 5.2. EO is a compact in the pointwise convergence topology.

If E is a separable vector space with an order unit then Theorem 5.1 improves as

Theorem 5.3. If E is a separable vector space with an order unit, and K is a compact (with respect to pointwise convergence topology)

subspace of EW then K is metrizable.

Proof. Let {xn} be countable everywhere dense subset of E. For every f ∈ EW put Mn( f ) = f (xn). By the definition of pointwise

convergence topology, every Mn is a continuous function on EW . If Mn( f ) = Mn( f ′) for all n then continuous functions f and f ′ coincide

on everywhere dense subset. Thus {Mn} is a countable family of continuous functions which separate points of the space EW , in particular

of K. Hence K is metrizable as each Hausdorff compact space which has a countable sequence of real-valued functions separating its points

is metrizable.

Corollary 5.4. If E is separable vector space with an order unit then EO is a metrizable compact in the pointwise convergence topology.
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specified remarks, corrections and useful advices.

References

[1] M. Grabisch, M. Roubens, Application of the Choquet Integral in Multicriteria Decision Making, In the book ‘Fuzzy Measures and Integrals – Theory
and Applications’ (eds M. Grabisch, T. Murofushi, M. Sugeno), Physica Verlag, (2000), 348-374.

[2] T. Radul, Idempotent measures: Absolute retracts and soft maps, (2018), arXiv:1810.09140v1 [math.GN].
[3] W. Rudin, Functional Analysis (2nd edition), International Editions (McGraw-Hill Book Co – Singapore for manufacture and export), 1991.
[4] A. Peperko, Uniform boundedness principle for nonlinear operators on cones of functions, Hindawi J. Func. Spaces, 2018, Article ID 6783748, 5 pages,

available at https://doi.org/10.1155/2018/6783748
[5] A. Zaitov, On extension of order-preserving functionals, Doklady Akademii Nauk Uzbekistan, 5 (2005), 3-7.
[6] A. Zaitov, Banach-Alaoglu theorem for order-preserving functionals, Theses of reports of the international scientific conference ”Operator Algebras and

Quantum Probability Theory”, Tashkent, (2005), 81-83.
[7] A. Zaitov, Open mapping theorem for order-preserving operators, The collection of theses of the International conference of young scientists devoted

1000 to the anniversary of Mamun Academy of Khwarezm, Tashkent, (2006), 4-5.
[8] V. Paulsen, M. Tomforde, Vector spaces with an order unit, Indiana Univ. Math. J., 58(3) (2009), 1319-1359.



Fundamental Journal of Mathematics and Applications, 2 (1) (2019) 18-23

Research Article

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma

ISSN: 2645-8845

DOI: https://dx.doi.org/10.33401/fujma.543712

On generalized Γ-hyperideals in ordered Γ-semihypergroups

Abul Basar1*, Mohammad Yahya Abbasi1 and Satyanarayana Bhavanari2

1Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110 025, India
2Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur - 522 510, Andhra Pradesh, India

*Corresponding author E-mail: basar.jmi@gmail.com

Article Info

Keywords: Ordered bi-Γ-hyperideal,

Ordered Γ-semihypergroup, Ordered

(m,n)-Γ-hyperideal, Regular ordered Γ-

semihypergroup

2010 AMS: 16D25, 06F05, 06F99,

20N20, 16Y99.

Received: 23 March 2019

Accepted: 15 May 2019

Available online: 17 June 2019

Abstract

In this article, we deal with ordered generalized Γ-hyperideals in ordered Γ-

semihypergroups. In particular, we study (m,n)-regular ordered Γ-semihypergroups in

terms of ordered (m,n)-Γ-hyperideals. Moreover, we obtain some ideal theoretic results in

ordered Γ-semihypergroups.

1. Introduction

A semigroup is an algebraic structure together with a nonempty set and an associative binary operation. The systematic study of semigroups

started in the early 20th century. Semigroups are important in different areas of Mathematics. The concept of hyperstructures was introduced

in 1934 as a suitable generalization of classical algebraic structures by Marty [1]. He obtained various results on hypergroups and applied

them in different areas, for instance, in algebraic rational fractions, functions, and noncommutative groups. Thereafter, many research papers

have been published on this subject and has been studied recently by many algebraists such as: Prenowitz, Corsini, Jantosciak, Leoreanu,

Heideri, Davvaz, Hila, Gutan, Griffiths and Halzen.

It is a well known fact that, in a semigroup, the composition of two elements is an element, while in a semihypergroup, the composition

of two elements is a nonempty set. In fact, semihypergroups are the simplest algebraic hyperstructures with the properties of closure and

associativity. They are very important in certain applications. Around the 1940s, the general notions of the theory and some applications

in Geometry, Physics and Chemistry were studied. Various classical notions of semigroups have been extended to semihypergroups and

Γ-semihypergroups and a lot of results on ordered Γ-semihypergroups are obtained by many algebraists all over the world.

The monograph on application of hyperstructures to various area of study has been written by Corsini et al. [2]. Prenowitz et al. investigated

its applications in Geometry [3]. Davvaz et al. wrote a book beginning with some basic notions related to ring theory and algebraic

hyperstructures [4]. Various types of hyperrings are introduced and discussed in this book. For application in Chemistry and Physics, we

refer [5]-[12]. It describes various types of hyperstructures: e-hyperstructures and transposition hypergroups. Heideri et al. studied ordered

hyperstructures [11]. For semihypergroups, we refer [6, 7, 8]. Hila and Davvaz studied quasi-hyperideals of ordered semihypergroups [13].

Corsini also studied hypergroup theory [14]- [15]. The notion of a Γ-hyperideal of a Γ-semihypergroup was introduced by Anvariyeh et al.

[16]. Hila et al. studied the structure of Γ-semihypergroups [17]. Recently, Basar et.al. obtained various types of hyperideals in ordered

semihypergroups, ordered LA-Γ-semigroups and LA-Γ-semihypergroups [18]- [20].

In the second part of this paper, we recollect some basic definitions and then, we define the concepts of (m,n)-Γ-hyperideal (resp. generalized

(m,n)-Γ-hyperideal) and (m,n)-regular ordered Γ-semihypergroup, where m,n are non-negative integers. In the third part of this paper, we

study ordered generalized Γ-hyperideals in ordered Γ-semihypergroups. In particular, we study (m,n)-regular ordered Γ-semihypergroups in

terms of ordered (m,n)-Γ-hyperideals and obtain some ideal theoretic results in ordered Γ-semihypergroups.

Email addresses and ORCID numbers: basar.jmi@gmail.com, https://orcid.org/0000-0003-2740-0322 (A. Basar), mabbasi@jmi.ac.in, https://orcid.org/ 0000-0002-3283-

1410) (M. Y. Abbasi), bhavanari2002@yahoo.co.in, https://orcid.org/0000-0003-0928-0582) (S. Bhavanari)
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2. Basic definitions

Let H be a nonempty set, then the mapping ◦ : H ×H → H is called a hyperoperation or a join operation on H, where P⋆(H) = P(H)\{0}
is the set of all nonempty subsets of H. Let A and B be two nonempty sets. Then, a hypergroupoid (S,◦) is called a Γ-semihypergroups if for

every x,y,z ∈ S and α,β ∈ Γ,

x◦α ◦ (y◦β ◦ z) = (x◦α ◦ y)◦β ◦ z,

i.e., ⋃

u∈y◦α◦z

x◦α ◦u =
⋃

v∈x◦α◦y

v◦β ◦ z.

A Γ-semihypergroup (S,◦) together with a partial order ” ≤ ” on S that is compatible with Γ-semihypergroup operation such that for all

x,y,z ∈ S, we have

x ≤ y ⇒ z◦α ◦ x ≤ z◦β ◦ y and x◦α ◦ z ≤ y◦β ◦ z,

is called an ordered Γ-semihypergroup. For subsets A,B of an ordered Γ-semihypergroup S, the product set A◦Γ◦B of the pair (A,B) relative

to S is defined as below:

A◦Γ◦B = {a◦ γ ◦b : a ∈ A,b ∈ B,γ ∈ Γ},

and for A ⊆ S, the product set A◦Γ◦A relative to S is defined as A2 = A◦Γ◦A.

For M ⊆ S, (M] = {s ∈ S | s ≤ m for some m ∈ M}. Also, we write (s] instead of ({s}] for s ∈ S.

Let A ⊆ S. Then, for a non-negative integer m, the power of A is defined by Am = A◦Γ◦A◦Γ◦A◦Γ◦A · · · , where A occurs m times. Note

that the power vanishes if m = 0. So, A0 ◦Γ◦S = S = S◦Γ◦A0.

In what follows, we denote ordered Γ-semihypergroup (S,◦,Γ,≤) by S unless otherwise specified.

Suppose S is an ordered Γ-semihypergroup and I is a nonempty subset of S. Then, I is called an ordered right (resp. left) Γ-hyperideal of S if

(i) I ◦Γ◦S ⊆ I(resp. S◦Γ◦ I ⊆ I),
(ii) a ∈ I,b ≤ a for b ∈ S ⇒ b ∈ I.

We now define the concepts of (m,n)-Γ-hyperideal (resp. generalized (m,n)-Γ-hyperideal) and (m,n)-regular ordered Γ-semihypergroup,

where m,n are non-negative integers.

Definition 2.1. Suppose B is a sub-Γ-semihypergroup (resp. nonempty subset) of an ordered Γ-semihypergroup S. Then, B is called an

(m,n)-Γ-hyperideal (resp. generalized (m,n)-Γ-hyperideal) of S, where m,n are non-negative integers if (i) Bm ◦Γ◦S◦Γ◦Bn ⊆ B, and (ii)

for b ∈ B, s ∈ S, s ≤ b ⇒ s ∈ B.

Note that in the above Definition 2.1, if we set m = n = 1, then B is called a (generalized) bi-Γ-hyperideal of S.

Definition 2.2. Suppose (S,Γ,◦,≤) is an ordered Γ-semihypergroup and m,n are non-negative integers. Then, S is called (m,n)-regular if for

any s ∈ S, there exists x ∈ S such that s ≤ sm ◦γ1 ◦x◦γ2 ◦ sn for γ1,γ2 ∈ Γ. Equivalently: (S,Γ,◦,≤) is (m,n)-regular if s ∈ (sm ◦Γ◦S◦Γ◦ sn]
for all s ∈ S.

3. Ordered (m,n)-Γ-hyperideals

In this part, some classical notions of semigroups and semihypergroups have been extended to ordered Γ-semihypergroups and some results

on generalized ordeded (m,n)-Γ-hyperideals and (m,n)-regular ordered Γ-semihypergroups are obtained. The results concern with ordered

Γ-semihypergroup theory which represent the most general algebraic context in which these results are studied. We begin with the following:

Lemma 3.1. Suppose (S,Γ,◦,≤) is an ordered Γ-semihypergroup and s ∈ S. Let m,n be non-negative integers. Then, the intersection of

all ordered (generalized) (m,n)-Γ-hyperideals of S containing s, denoted by [s]m,n, is an ordered (generalized) (m,n)-Γ-hyperideal of S

containing s.

Proof. Let {Ai : i ∈ I} be the set of all ordered (generalized) (m,n)-Γ-hyperideals of S containing s. Obviously,
⋂

i∈I Ai is a sub-Γ-

semihypergroup of S containing s. Let j ∈ I. As
⋂

i∈I Ai ⊆ A j , we have

(
⋂

i∈I

Ai)
m ◦Γ◦S◦Γ◦ (

⋂

i∈I

Ai)
n ⊆ Am

j ◦Γ◦S◦Γ◦An
j ⊆ A j.

Therefore,

(
⋂

i∈I

Ai)
m ◦Γ◦S◦Γ◦ (

⋂

i∈I

Ai)
n ⊆

⋂

i∈I

Ai.

Let a ∈
⋂

i∈I Ai and b ∈ S so that b ≤ a. Therefore, b ∈
⋂

i∈I Ai.

Hence,
⋂

i∈I Ai is an ordered (generalized) (m,n)-Γ-hyperideal of S containing s.

Theorem 3.2. Suppose (S,Γ,◦,≤) is an ordered Γ-semihypergroup and s ∈ S. Then, we have the following:

(i) [s]m,n = (
⋃m+n

i=1 si ∪ sm ◦Γ◦S◦Γ◦ sn] for any positive integers m,n.

(ii) [s]m,0 = (
⋃m

i=1 si ∪ sm ◦Γ◦S] for any positive integer m.

(iii) [s]0,n = (
⋃n

i=1 si ∪ sn] for any positive integer n.
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Proof. (i) (
⋃m+n

i=1 si ∪ sm ◦ Γ ◦ S ◦ Γ ◦ sn] 6= /0. Let a,b ∈ (
⋃m+n

i=1 si ∪ sm ◦ Γ ◦ S ◦ Γ ◦ sn] be such that a ≤ x and b ≤ y for some x,y ∈
(
⋃m+n

i=1 si ∪ sm ◦Γ ◦ S ◦Γ ◦ sn]. If x,y ∈ sm ◦Γ ◦ S ◦Γ ◦ sn or x ∈
⋃m+n

i=1 si, y ∈ sm ◦Γ ◦ S ◦Γ ◦ sn or x ∈ sm ◦Γ ◦ S ◦Γ ◦ sn, y ∈
⋃m+n

i=1 si, then,

x◦γ ◦y⊆ sm ◦Γ◦S◦Γ◦sn, and therefore, x◦γ ◦y⊆
⋃m+n

i=1 si∪sm ◦Γ◦S◦Γ◦sn for γ ∈Γ. It follows that a◦γ ◦b⊆ (
⋃m+n

i=1 si∪sm ◦Γ◦S◦Γ◦sn].
Let x,y ∈

⋃m+n
i=1 si. Then, x = sp,y = sq for some 1 ≤ p,q ≤ m+n. Now, two cases arise: If 1 ≤ p+q ≤ m+n, then, x◦ γ ◦ y ⊆

⋃m+n
i=1 si. If

m+n < p+q, then, x◦ γ ◦ y ⊆ sm ◦Γ◦S◦Γ◦ sn. So, x◦ γ ◦ y ⊆ (
⋃m+n

i=1 si ∪ sm ◦Γ◦S◦Γ◦ sn]. This implies that (
⋃m+n

i=1 si ∪ sm ◦Γ◦S◦Γ◦ sn]
is a sub-Γ-semihypergroup of S. Moreover, we have

(
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m ◦Γ◦S = (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−1 ◦Γ◦ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]◦Γ◦S

⊆ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−1 ◦Γ◦ (
m+n⋃

i=1

si ◦Γ◦S∪ sm ◦Γ◦S◦Γ◦S]

⊆ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−1 ◦Γ◦ (s◦Γ◦S]

= (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−2 ◦Γ◦ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]◦Γ◦ (s◦Γ◦S]

⊆ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−2 ◦Γ◦ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S◦Γ◦ (s◦Γ◦S]

⊆ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−2 ◦Γ◦ (s2 ◦Γ◦S]

·

·

·

⊆ (sm ◦Γ◦S].

In a similar fashion, S ◦Γ ◦ (
⋃m+n

i=1 si ∪ sm ◦Γ ◦ S ◦Γ ◦ sn]n ⊆ (S ◦Γ ◦ sn]. Therefore, (
⋃m+n

i=1 si ∪ sm ◦Γ ◦ S ◦Γ ◦ sn]m ◦Γ ◦ S ◦Γ ◦ (
⋃m+n

i=1 si ∪
sm ◦Γ ◦ S ◦Γ ◦ sn]n ⊆ (sm ◦Γ ◦ S ◦Γ ◦ sn] ⊆ (

⋃m+n
i=1 si ∪ sm ◦Γ ◦ S ◦Γ ◦ sn]. So, (

⋃m+n
i=1 si ∪ sm ◦Γ ◦ S ◦Γ ◦ sn] is an (m,n)-Γ-hyperideal of S

containing s; hence, [s]m,n ⊆ (
⋃m+n

i=1 si ∪ sm ◦Γ◦S◦Γ◦ sn]. For the reverse inclusion, suppose a ∈ (
⋃m+n

i=1 si ∪ sm ◦Γ◦S◦Γ◦ sn] is such that

a ≤ t for some t ∈ (
⋃m+n

i=1 si∪sm ◦Γ◦S◦Γ◦sn]. If t = s j for some 1 ≤ j ≤ m+n, then, t ∈ [s]m,n, therefore, a ∈ [s]m,n. If t ∈ sm ◦Γ◦S◦Γ◦sn,

by

sm ◦Γ◦S◦Γ◦ sn ⊆ ([s]m,n)
m ◦Γ◦S◦Γ◦ ([s]m,n)

n ⊆ [s]m,n,

then, t ∈ [s]m,n; hence, a ∈ [s]m,n. This implies that (
⋃m+n

i=1 si ∪ sm ◦Γ◦S◦Γ◦ sn]⊆ [s]m,n.

Hence, [s]m,n = (
⋃m+n

i=1 si ∪ sm ◦Γ◦S◦Γ◦ sn].
(ii) and (iii) can be proved in a similar fashion.

Lemma 3.3. Suppose (S,Γ,◦,≤) is an ordered Γ-semihypergroup and s ∈ S. Suppose m,n are non-negative integers. Then, we have the

following:

(i) ([s]m,0)
m ◦Γ◦S ⊆ (sm ◦Γ◦S].

(ii) S◦Γ◦ ([s]0,n)
n ⊆ (S◦Γ◦ sn].

(iii) ([s]m,n)
m ◦Γ◦S◦Γ◦ ([s]m,n)

n ⊆ (sm ◦Γ◦S◦Γ◦ sn].

Proof. (i) Using Theorem 3.2, we have

([s]m,0)
m ◦Γ◦S = (

m+n⋃

i=1

si ∪ sm ◦Γ◦S]m ◦Γ◦S

= (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−1 ◦Γ◦ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]◦Γ◦S

⊆ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−1 ◦Γ◦ (
m+n⋃

i=1

si ◦Γ◦S∪ sm ◦Γ◦S◦Γ◦S]

⊆ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S]m−1 ◦Γ◦ (s◦Γ◦S]

·

·

·

⊆ (sm ◦Γ◦S].

Hence, ([s]m,0)
m ◦Γ◦S ⊆ (sm ◦Γ◦S].

(ii) can be proved similarly as (i).
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(iii) Applying Theorem 3.2, we have

([s]m,n)
m ◦Γ◦S = (

m+n⋃

i=1

si ∪ sm ◦Γ◦S◦Γ◦ sn]m ◦Γ◦S

= (
m+n⋃

i=1

si ∪ sm ◦Γ◦S◦Γ◦ sn]m−1 ◦Γ◦ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S◦Γ◦ sn]◦Γ◦S

⊆ (
m+n⋃

i=1

si ∪ sm ◦Γ◦S◦Γ◦ sn]m−1 ◦Γ◦ (
m+n⋃

i=1

si ◦Γ◦S∪ sm ◦Γ◦S◦Γ◦ sn ◦Γ◦S]

= (
m+n⋃

i=1

si ∪ sm ◦Γ◦S◦Γ◦ sn]m−1 ◦Γ◦ (s◦Γ◦S]

·

·

·

= (sm ◦Γ◦S].

Therefore, ([s]m,n)
m ◦Γ◦S ⊆ (sm ◦Γ◦S]. In a similar fashion, S◦Γ◦ ([s]m,n)

n ⊆ (S◦Γ◦ sn]. So,

([s]m,n)
m ◦Γ◦S◦Γ◦ ([s]m,n)

n ⊆ (sm ◦Γ◦S]◦Γ◦ ([s]m,n)
n

⊆ (sm ◦Γ◦ (S◦Γ◦ ([s]m,n)
n)]

⊆ (sm ◦Γ◦ (S◦Γ◦ sn]]

⊆ (sm ◦Γ◦S◦Γ◦ sn].

Hence, (iii) holds.

Theorem 3.4. Suppose (S,Γ,◦,≤) is an ordered Γ-semihypergroup and m,n are non-negative integers. Let R(m,0) and L(0,n) be the set of

all ordered (m,0)-Γ-hyperideals and the set of all ordered (0,n)-Γ-hyperideals of S, respectively. Then,

(i) S is (m,0)-regular if and only if for all R ∈ R(m,0),R = (Rm ◦Γ◦S].
(ii) S is (0,n)-regular if and only if for all L ∈ R(0,n),L = (S◦Γ◦Ln].

Proof.(i) Suppose S is (m,0)-regular. Then,

for all s ∈ S,s ∈ (sm ◦Γ◦S]. (3.1)

Suppose R ∈ R(m,0). As Rm ◦Γ◦S ⊆ R, and R = (R], we have (Rm ◦Γ◦S] ⊆ R. If s ∈ R, by Equation (3.1), we obtain s ∈ (sm ◦Γ◦S] ⊆
(Rm ◦Γ◦S], therefore, R ⊆ (Rm ◦Γ◦S]. So, (Rm ◦Γ◦S] = R.

Conversely, suppose

for all R ∈ R(m,0),R = (Rm ◦Γ◦S]. (3.2)

Suppose s ∈ S. Therefore, [s]m,0 ∈ R(m,0). By Equation (3.2), we obtain

[s]m,o = (([s]m,0)
m ◦Γ◦S].

Applying Lemma 3.3, we obtain

[s]m,o ⊆ (sm ◦Γ◦S].

Therefore, s ∈ (sm ◦Γ◦S].
Hence, S is (m,0)-regular.

(ii) It can be proved analogously.

Theorem 3.5. Suppose (S,Γ,◦,≤) is an ordered Γ-semihypergroup and m,n are non-negative integers. Suppose A(m,n) is the set of all

ordered (m,n)-Γ-hyperideals of S. Then,

S is (m,n)− regular ⇐⇒ for all A ∈ A(m,n),A = (Am ◦Γ◦S◦Γ◦An]. (3.3)

Proof. Consider the following four conditions:

Case (i): m = 0 and n = 0. Then, Equation (3.3) implies

S is (0, 0)-regular ⇐⇒ for all A ∈ A(0,0),A = S because A(0,0) = {S} and S is (0, 0)-regular.

Case (ii): m = 0 and n 6= 0. Therefore, Equation (3.3) implies

S is (0, n)-regular⇐⇒ for all A ∈ A(0,n),A = (S◦Γ◦An]. This follows by Theorem 3.4(ii).

Case (iii): m 6= 0 and n = 0. This can be proved applying Theorem 3.4(i).

Case (iv): m 6= 0 and n 6= 0. Suppose S is (m, n)-regular. Therefore,

for all s ∈ S,s ∈ (sm ◦Γ◦S◦Γ◦ sn]. (3.4)

Let A ∈ A(m,n). As Am ◦Γ ◦ S ◦Γ ◦An ⊆ A and A = (A], we obtain (Am ◦Γ ◦ S ◦Γ ◦An] ⊆ A. Suppose s ∈ A. Applying Equation (3.4),

s ∈ (sm ◦Γ◦S◦Γ◦ sn]⊆ (Am ◦Γ◦S◦Γ◦An]. Therefore, A ⊆ (Am ◦Γ◦S◦Γ◦An]. Hence, A = (Am ◦Γ◦S◦Γ◦An].
Conversely, suppose A = (Am ◦Γ◦S◦Γ◦An] for all A ∈ A(m,n). Suppose s ∈ S. As [s]m,n ∈ A(m,n), we have

[s]m,n = (([s]m,n)
m ◦Γ◦S◦Γ◦ ([s]m,n)

n].

Applying Lemma 3.3(iii), we obtain [s]m,n ⊆ (sm ◦Γ◦S◦Γ◦ sn], therefore, s ∈ (sm ◦Γ◦S◦Γ◦ sn].
Hence, S is (m,n)-regular.
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Theorem 3.6. Suppose (S,Γ,◦,≤) is an ordered Γ-semihypergroup and m,n are non-negative integers. Suppose R(m,0) and L(0,n) is the set

of all (m,0)-Γ-hyperideals and (0,n)-Γ-hyperideals of S, respectively. Then,

S is (m,n)−regular ordered Γ− semihypergroup ⇐⇒ for all R ∈ R(m,0), for all L ∈ L(0,n),

R∩L = (Rm ◦Γ◦L∩R◦Γ◦Ln].
(3.5)

Proof. Consider the following four cases:

Case (i): m = 0 and n = 0. Therefore, Equation (3.5) implies

S is (0, 0)-regular ⇐⇒ for all R ∈ R(0,0) for all L ∈ L(0,0),R∩L = (L∩R] because R(0,0) = L(0,0) = {S} and S is (0,0)-regular.

Case (ii): m = 0 and n = 0. Therefore, Equation (3.5) implies

S is (0,n)-regular ⇐⇒ for all R ∈ R(0,n) for all L ∈ L(0,n),R∩L = (L∩R◦Γ◦Ln]. Suppose S is (0,n)-regular. Suppose R ∈ R(0,0) and

L ∈ L(0,n). By Theorem 3.4(ii), L = (S◦Γ◦Ln]. As R ∈ R(0,0), we have R = S, therefore, R∩L = L. Therefore,

(L∩R◦Γ◦Ln] = (L∩S◦Γ◦Ln] = ((S◦Γ◦Ln]∩S◦Γ◦Ln] = (S◦Γ◦Ln] = L = R∩L.

Conversely, suppose

for all R ∈ R(0,0), for all L ∈ L(0,n),R∩L = (L∩R◦Γ◦Ln]. (3.6)

If R ∈ R(0,0), then R = S. If L ∈ L(0,n), S◦Γ◦Ln ⊆ L and L = (L]. Therefore, Equation (3.6) implies

for all L ∈ L(0,n),L = (S◦Γ◦Ln].

Applying Theorem 3.4(ii), S is (0,n)-regular.

Case (iii): m 6= 0 and n = 0. This can be proved as before.

Case (iv): m 6= 0 and n 6= 0. Suppose that S is (m,n)-regular. Suppose R ∈ R(m,0) and L ∈ L(0,n). To prove that R∩L ⊆ (Rm ◦Γ◦L]∩ (R◦
Γ◦Ln], suppose s ∈ R∩L. We have

s ∈ (sm ◦Γ◦S◦Γ◦ sn]⊆ (sm ◦Γ◦L]⊆ (Rm ◦Γ◦L] and s ∈ (sm ◦Γ◦S◦Γ◦ sn]⊆ (R◦Γ◦ sn]⊆ (R◦Γ◦Ln].

Hence, R∩L ⊆ (Rm ◦Γ◦L]∩ (R◦Γ◦Ln]. As

(Rm ◦Γ◦L]⊆ (Rm ◦Γ◦S]⊆ (R] = R and (R◦Γ◦Ln]⊆ (S◦Γ◦Ln]⊆ (L] = L.

This implies that (Rm ◦Γ◦L]∩ (R◦Γ◦Ln]⊆ R∩L, therefore, R∩L = (Rm ◦Γ◦L]∩ (R◦Γ◦Ln].
Conversely, suppose

for all R ∈ R(m,0), for all L ∈ L(0,n),R∩L = (Rm ◦Γ◦L∩R◦Γ◦Ln]. (3.7)

Suppose R = [s]m,0 and L = S. Applying Equation (3.7), we obtain [s]m,0 ⊆ (([s]m,0)
m ◦Γ◦S]. Applying Lemma 3.3, we obtain

[s]m,0 ⊆ (sm ◦Γ◦S]. (3.8)

In a similar fashion, we obtain

[s]0,n ⊆ (S◦Γ◦ sn]. (3.9)

As Rm ⊆ R and Ln ⊆ L, by Equation (3.7), we have

for all R ∈ R(m,0), for all L ∈ L(0,n),R∩L ⊆ (R◦Γ◦L].

As (sm ◦Γ◦S] ∈ R(m,0) and (S◦Γ◦ sn] ∈ L(0,n), we obtain

(sm ◦Γ◦S]∩ (S◦Γ◦ sn]⊆ ((sm ◦Γ◦S]◦Γ◦ (S◦Γ◦ sn]]⊆ (sm ◦Γ◦S◦Γ◦ sn].

Applying Equations (3.8) and (3.9), we obtain

[s]m,0 ∩ [s]0,n ⊆ (sm ◦Γ◦S◦Γ◦ sn].

Hence, S is (m,n)-regular.

4. Conclusion

In this paper, we introduced the concepts of (m,n)-Γ-hyperideal (resp. generalized (m,n)-Γ-hyperideal) and (m,n)-regular ordered Γ-

semihypergroup, where m,n are non-negative integers and studied some properties of (m,n)-Γ-hyperideals in ordered Γ-semihypergroups. In

particular, we studied (m,n)-regular ordered Γ-semihypergroups. We proved that if (S,Γ,◦,≤) is an ordered Γ-semihypergroup, where m,n are

non-negative integers and if A(m,n) is the set of all ordered (m,n)-Γ-hyperideals of S. Then, S is (m,n)−regular ⇐⇒ for all A∈A(m,n),A=
(Am ◦Γ◦S◦Γ◦An]. We also proved that if (S,Γ,◦,≤) is an ordered Γ-semihypergroup, where m,n are non-negative integers; and if R(m,0),

L(0,n) is the set of all (m,0)-Γ-hyperideals and (0,n)-Γ-hyperideals of S, respectively. Then,

S is (m,n)−regular ordered Γ− semihypergroup ⇐⇒ for all R ∈ R(m,0), for all L ∈ L(0,n),R∩L = (Rm ◦Γ◦L∩R◦Γ◦Ln]. The results

of this article can also be applied on semihypergroups and on ordered semihypergroups by some suitable modifications. We hope that this

work will provide the basis for further study on ordered Γ-semihypergroups.
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Abstract

The concept of UP-bialgebras was introduced and analyzed by Mosrijai and Iampan at the

beginning of 2019. Theorem that we can look at as the First theorem on UP-biisomorphism

between the UP-bialgebras is given in our forthcoming text [9]. In this article we construct

a form of the third theorem on UP-biisomorphism between UP-bialgebras.

1. Introduction

The concept of UP-algebras developed by Iampan in [1]. Examining the substructures in this algebra are done for example in articles [2, 3].

This author took part in analyzing the properties of UP-algebras and their substructures, also [4]-[6]. Some forms of the isomorphism

theorem between UP-algebras can be found in [2, 3, 5, 6].

The concept of bi-algebraic structures was studied by Vasantha Kandasamy in 2003 [7]. The concept of UP-bialgebras with the associated

substructures and their mutual connections can be found in [8]. In the forthcoming article [9], this author offered one form the first theorem

of the isomorphism between the UP-bialgebras.

In this article we expose a form of the second isomorphism theorem between UP-bialgebras.

2. Preliminaries

In this section, we will present the necessary previous concepts of UP-algebras, their substructures and UP-homomorphisms taken from texts

[1, 2, 3, 8]. We will also expose their mutual relationships in the form of proclaims necessary for our intention.

2.1. UP-algebras

In this subsection we will describe some elements of UP-algebras and their substructures necessary for our intentions in this text.

Definition 2.1 ([1]). An algebra L = (L, ·,0) of type (2,0) is called a UP-algebra where L is a nonempty set, ′ · ′ is a binary operation on L,

and 0 is a fixed element of L (i.e. a nullary operation) if it satisfies the following axioms:

(UP-1) (∀x,y ∈ L)((y · z) · ((x · y) · (x · z)) = 0),
(UP-2) (∀x ∈ L)(0 · x = x),
(UP-3) (∀x ∈ L)(x ·0 = 0), and

(UP-4) (∀x,y ∈ L)((x · y = 0 ∧ y · x = 0) =⇒ x = y).

Definition 2.2 ([1]). A nonempty subset J of a UP-algebra (L, ·,0) is called

(1) a UP-subalgebra of L if (∀x,y ∈ J)(x · y ∈ J).
(2) a UP-ideal of L if

(i) 0 ∈ J; and

(ii) (∀x,y,z ∈ L)((x · (y · z) ∈ J ∧ y ∈ J) =⇒ x · z ∈ J).

Email addresses and ORCID numbers: bato49@hotmail.com, https://orcid.org/0000-0003-1148-3258 (D. A. Romano)
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The set {0} is a trivial UP-subalgebra (trivial UP-ideal) of L.

In the article [6], Theorem 3.3, it has been shown that the conditions (i) and (ii) in the preceding definition are equivalent to the following

conditions

(iii) (∀x,y ∈ L)((x · y ∈ J ∧ x ∈ J) =⇒ y ∈ J),
(iv) (∀x,y ∈ L)(y ∈ J =⇒ x · y ∈ J).

Definition 2.3 ([1]). Let (L, ·,0L) and (M, ·
′
,0M) be two UP-algebras. A mapping f : L −→ M is called a UP-homomorphism if

(∀x,y ∈ L)( f (x · y) = f (x) ·
′

f (y)).

A UP-homomorphism f : L −→ M is called

(3) a UP-epimorphism if f is surjective,

(4) a UP-monomorphism if f is injective, and

(5) a UP-isomorphism if f is bijective.

Let f be a mapping form UP-algebra L to UP-algebra M, and let A and B be nonempty subsets of L and of M, respectively. The set

f (A) = { f (x)|x ∈ A} is called the image of A under f . In particular, f (L) which denoted by Im( f ) is called the image of f . The dually set

f−1(B) = {x ∈ L| f (x) ∈ B} is called the inverse image of B under f . Especially, the set Ker( f ) = f−1({0M}) = {x ∈ L : f (x) = 0M} is

called the kernel of f .

A relation of congruence on UP-algebras is introduced in [1] by Definition 3.1 and Proposition 3.5 on this way: If J is a UP-ideal of a

UP-algebra L, then the relation ∼J defined by

(∀x,y ∈ L)(x ∼J y ⇐⇒ (x · y ∈ J ∧ y · x ∈ J))

is a UP-congruence on L. Further on, any relation of congruence on UP-algebras has this form according to the claim (1) of Theorem 3.6

and the claim (1) of Theorem 3.7 in [1]. In particular, if f : L −→ M is a UP-homomorphism between UP-algebras, then the relation ∼ f

determined by Ker( f ) is a UP-congruence in L. The factor-set L/∼J= {[x]∼J
: x ∈ L} is a UP-algebra according to the claim (4) of Theorem

3.7 in [1]. We also use the following notion L/J = {[x]J : x ∈ L} to denote this factor algebra.

2.2. UP-bialgebras

The concept of UP-bialgebras and some their substructures were introduced and analyzed by Mosrijai and Iampan in the recently published

work [8]. In this subsection, taking into account their determinations, we describe the concept of UP-bialgebras and some notions connected

with them. So, in this subsection, we will repeat the concept of UP-bialgebras and the notions of UP-bisubalgebras and UP-biideals of

UP-bialgebras, and will expose some results related to substructures of such algebras.

Definition 2.4 ([8], Definition 3.1). An algebra L = (L, ·,∗,0) of type (2,2,0) is called a UP-bialgebra where L is a nonempty set, · and ∗
two are binary internal operations on L, and 0 is a fixed element of L if there exist two distinct proper subsets L1 and L2 of L with respect to ·
and ∗, respectively, such that

(UPB-1) L = L1 ∪L2;

(UPB-2) (L1, ·,0) is a UP-algebra, and

(UPB-3) (L2,∗,0) is a UP-algebra.

We will denote the UP-bialgebra by L = L1 ⊎L2. In case of L1 ∩L2 = {0}, we call L zero disjoint.

Definition 2.5 ([8], Definition 3.7). A nonempty subset J of a UP-bialgebra L = L1 ⊎L2 is called a UP-biideal (UP-bisubalgebra) of L if

there exist subsets J1 of L1 and J2 of L2 with respect to · and ∗, respectively, such that

(6) J1 6= J2 and J = J1 ∪ J2;

(7) (J1, ·,0) is a UP-ideal (UP-subalebra) of (L1, ·,0), and

(8) (J2,∗,0) is a UP-ideal (UP-subalgebra) of (L2,∗,0).
In case of J1 ∩L2 = {0}= L1 ∩ J2, we call S zero disjoint.

The important relationship between these notions is the following:

Proposition 2.6 ([9]). If J ⊃ {0} is a UP-subalgebra (resp., UP-ideal) of UP-algebra L1 (of UP-algebra L2, respectively), such that {0} 6= J,

then on J can be seen as a zero disjoint UP-bisubgebra (resp., UP-biideal) of UP-bialgebra L = L1 ⊎L2.

2.3. UP-bihomomorphisms

Let f : L −→ M be a function from a set L to a set M and C ⊆ L. Then the restriction of f to C is the function f[C] : C −→ M.

Definition 2.7 ([8], Definition 4.1). Let L = L1 ⊎L2 be a UP-bialgebra with two binary operations · and ∗, and let M = M1 ⊎M2 be a

UP-bialgebra with two binary operations ·
′

and ∗
′
. A mapping f form L = L1 ⊎L2 to M = M1 ⊎M2 is called a UP-bihomomorphism if it

satisfies the following properties:

(9) f[L1] : L1 −→ M1 is a UP-homomorphism, and

(10) f[L2] : L2 −→ M2 is a UP-homomorphism.

We say that these restrictions are natural restrictions. A UP-bihomomorphism f : L −→ M is called

- a UP-biepimorphism if the natural restriction are UP-epimorphisms,

- a UP-bimonomorphism if the natural restriction are UP-monomorphisms, and

- a UP-biisomorphism if the natural restriction are UP-isomorphisms.
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Proposition 2.8 ([8]). let f : L1 ⊎L2 −→ M1 ⊎M2 be a UP-bihomomorphism. Then the following statements hold:

(11) f (0L) = 0M , and

(12) Ker( f ) = {0L} if and only if f is an injective mapping;

(13) if J is a UP-bisubalgebra of L, then the image f (J) is a UP-bisubalgebra of B;

(14) if J = J1 ∪ J2 is a UP-biideal of L, and J1 and J2 are subsets of L1 and of L2, respectively, with Ker( f )⊆ J1 ∩ J2, then the image f (J) is

a UP-biideal of M;

(15) if D is a UP-bisubalgebra of M, then the inverse image f−1(D) is a a UP-bisubalgebra of L; and

(16) if D is a UP-biideal of M, then the inverse image f−1(D) is a UP-biideal of L.

3. The main results

In our forthcoming article [9], we formulated and proved a form of the first isomorphism theorem between UP-bialgebras. To this direction,

we used the following lemma.

Lemma 3.1 ([9]). Let L = L1 ⊎L2 and M = M1 ⊎M2 be two UP-bialgebras and let f : L −→ M be a UP-bihomomorphism. Then the set

Ker( f[A1])∪Ker( f[A2]) is a UP-biideal of L and Ker( f ) = Ker( f[L1])⊎Ker( f[L2]) holds.

Let L = L1 ⊎L2 be a UP-bialgebra with two binary operations · and ∗, and let M = M1 ⊎M2 be a UP-bialgebra with two binary operations ·
′

and ∗
′

and let f : L −→ M be a UP-bihomomorphism. Let ∼1 is the congruence on L1 generated by the UP-ideal Ker( f[L1])

∀x,y ∈ L1)(x ∼1 y ⇐⇒ (x · y ∈ Ker( f[L1]) ∧ y · x ∈ Ker( f[L1])))

and let ∼2 be the congruence on L2 generated by the UP-ideal Ker( f[L2])

(∀x,y ∈ L2)(x ∼2 y ⇐⇒ (x∗ y ∈ Ker( f[L2]) ∧ y∗ x ∈ Ker( f[L2]))).

Then we can construct the factor-UP-algebra L1/∼1 and the factor-UP-algebra L2/∼2. So, L1/∼1 ⊎L2/∼2 is a UP-bialgebra with two

binary operation ′⊙ ′ and ′
⊛

′ defined by

(∀ [x]∼1
, [y]∼1

∈ L1/∼1))([x]∼1
⊙ [y]∼1

= [x · y]∼1
)

and

(∀ [x]∼2
, [y]∼2

∈ L2/∼2))([x]∼2
⊛ [y]∼2

= [x∗ y]∼2
).

Previous analysis enables us to introduce the following determination: Let L = L1 ⊎L2 be a UP-bialgebra. For a pair (∼1,∼2) the relation of

congruence ∼1 on L1 and ∼2 on L2 we write L1 ⊎L2/(∼1,∼2) instead of L1/∼1 ⊎ L2/∼2. If π1 : L1 −→ L1/∼1 and π2 : L2 −→ L2/∼2

are canonical UP-epimorphisms, then there is a unique canonical UP-epimorphism π : L1 ⊎L2 −→ L1 ⊎L2/(∼1,∼2) such that π[L1] = π1

and π[L2] = π2 . Particulary, there is a unique UP-epimorphism π : L1 ⊎L2 −→ (L1 ⊎L2)/(Ker( f[L1]),Ker( f[L2])). The first theorem of

isomorphism between UP-bialgebras has the form in which for simplicity we write A/Ker( f ) instead of A/(Ker( f[A1]),Ker( f[A2])).

Theorem 3.2 ([9]). Let f : L −→ M be a UP-bihomomorphism. Then there exists the unique UP-bihomomorphism g : L/Ker( f ) −→ M

such that f = g◦π . In addition, for the UPB-subalgebra f (L) of M holds L/Ker( f )∼= f (L).

Let us analyze now the following situation:

Let J and K be UP-biideals of a UP-bialgebra L such that J ⊆ K. Then there exist UP-ideals J1 and K1 of the UP-algebra L1 and there

exist UP-ideals J2 and K2 of the UP-algebra L2 such that J1 6= J2 and J = J1 ∪ J2, and K1 6= K2 and K = K1 ∪K2, by Definition 2.5. If

J1 ⊆ K1 and J2 ⊆ K2 hold, then K1/J1 is a UP-ideal of UP-algebra L1/J1 and K2/J2 is a UP-ideal of UP-algebra L2/J2. From here follows

L1/K1
∼= (L1/J1)/(K1/J1) according to Theorem 3.10 in [6]. We also have it L2/K2

∼= (L2/J2)/(K2/J2) according to same theorem. So,

the set K1/J1 ⊎ K2/J2 is a UP-biideal of the UP-bialgebra L1/J1 ⊎ L2/J2. Thus, the mapping g1 : L1/J1 −→ L1/K1 has Ker(g1) = K1/J1.

Analogously, the mapping g2 : L2/J2 −→ L2/K2 has Ker(g2) = K2/J2 as core. Therefore, the homomorphism g : L/(J1,J2) −→ L/(K1,K2),
determined by g[L1/J1] = g1 and g[L2/J2] = g2 has the core exactly K1/J1 ⊎K2/J2.

The previous analysis is a motivation for the following theorem can be seen as the Third isomorphism theorem between UP-bialgebras.

Theorem 3.3. Let L = L1 ⊎L2 be a UP-bialgebra and let J = J1 ⊎ J2 and K = K1 ⊎K2 be UP-biideals such that J1 ⊆ K1 and J2 ⊆ K2.

Then

L/(K1,K2) ∼= (L/(J1,J2))/(K1/J1,K2/J2)

holds.

Final Observation

The concept of UP-algebras introduced and first results on them given by Iampan 2017 [1]. This author took part in analyzing the properties

of UP-algebras and their substructures, also [4, 5, 6]. Algebraic bi-strukture was analyzed by Vasantha Kandasamy in 2003 [7]. The concept

of UP-bialgebras introduced and the first results ware given by Mosrijai and Iampan at the beginning of 2019 [8]. Using by the concept of

UP-bihomorphisms, introduced in [8], in this article we formulated and proved the theorem (Theorem 3.3) , which can be viewed as the

Third isomorphism theorem between the UP-bialgebras.

Of course, there remains an open possibility of formulating and trying to prove other forms of these two isomorphism theorems between the

UP-bialgebra.
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Abstract

In this paper, the efficient numerical solutions of a class of system of Fredholm integral

equations are solved by the Nyström method, which discretizes the system of integral

equations into solving a linear system. The existence and uniqueness of the exact solutions

are proved by the Banach fixed point theorem. The format of the Nyström solutions is

given, especially with the composite Trapezoidal and Simpson rules. The results of error

estimation and convergence analysis are obtained in the infinite norm sense. The validity

and reliability of the theoretical analysis are verified by numerical experiments.

1. Introduction

In this paper, we consider a class of system of Fredholm integral equations of the form

{

u(x) = f (x)+
∫ b

a [k11(x,y)u(y)+ k12(x,y)v(y)]dy

v(x) = g(x)+
∫ b

a [k21(x,y)u(y)+ k22(x,y)v(y)]dy,
(1.1)

where the known functions f (x),g(x) ∈C[a,b], kpq(x,y) ∈C([a,b]× [a,b]), p,q = 1,2, u(x), v(x) ∈C[a,b] are the unknown functions.

The integral equation problem has been two hundred years old, and the integral equation is widely used in the study of physics, especially in

mechanics, magnetism, architecture and etc. Since the exact solution of the integral equation problem is difficult to find, its high-precision

numerical solutions are often studied. Many numerical methods are used for numerical solution of Fredholm integral equation, for instance,

Taylor collocation method [1], Galerkin projection and Least squares approximation method [2], variational iteration and fixed point iterative

method [3], Nyström method and mechanical quadrature method [4]-[7], meshless methods [8] and multiscale methods [9], and so on.

However, there is not much paper about solving the system of integral equations. This paper will study the Nyström method of the system of

Fredholm integral equations.

2. A sufficient condition for the existence and uniqueness of exact solutions

According to Banach fixed point theorem, a sufficient condition for the existence and uniqueness of exact solution of system of Fredholm

integral equations (1.1) is proposed. First, for (1.1), we structure a function vector space

V 2[a,b] = {s(x) = [s1(x),s2(x)]
T
,si(x) ∈C[a,b], i = 1,2}

and a functional matrix space

V 2×2([a,b]× [a,b]) = {(si j(x,y))2×2,si j(x,y) ∈C([a,b]× [a,b]), i, j = 1,2}.

For

K(x,y) = (kpq(x,y))2×2 ∈V 2×2([a,b]× [a,b]), p,q = 1,2
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and

U(x) = [u(x),v(x)]T ∈V 2[a,b],

we write the numerical integral operator K defined as

(K U)(x) =
∫ b

a
K(x,y)U(y)dy.

The norm of the numerical integral operator K discussed in this paper is defined as

‖K ‖∞ = max
1≤p≤2

[
2

∑
q=1

max
a≤x≤b

∫ b

a
|kpq(x,y)|dy].

Theorem 2.1. If ‖K ‖∞ < 1 holds, then the exact solutions of the system of Fredholm integral equations (1.1) is existential and unique.

Proof. For all Ui(x) ∈V 2[a,b], i = 1,2, one has

TUi = F(x)+
∫ b

a
K(x,y)U(y)dy, i = 1,2.

Then we have

‖TU1 −TU2‖∞ = ‖
∫ b

a K(x,y)U1(y)dy−
∫ b

a K(x,y)U2(y)dy‖∞

= ‖
∫ b

a K(x,y)[U1(y)−U2(y)]dy‖∞

≤ ‖
∫ b

a K(x,y)dy‖∞ �‖U1 −U2‖∞

≤ ‖K ‖∞ �‖U1 −U2‖∞.

Since ‖K ‖∞ < 1, T is a contraction mapping. Consider that Banach fixed point theorem, then (1.1) exists a unique solution U∗ ∈V 2[a,b]
such that TU∗ =U∗ holds.

3. The Nyström method

In this section, we use the numerical quadrature scheme to obtain a general algorithm for the Nyström method of the system of Fredholm

integral equations.

Applying numerical quadrature scheme to integral terms of (1.1), we can have

∫ b

a
[kp1(x,y)u(y)+ kp2(x,y)v(y)]dy

=
n

∑
i=0

ωi[kp1(x,xi)u(xi)+ kp2(x,xi)v(xi)]+R
(n)
p , p = 1,2,

where ωi(i = 0,1, ...,n) are coefficients of quadrature and xi(i = 0,1, ...,n) are the quadrature node points and R
(n)
1 ,R

(n)
2 are remainder terms,

such that (1.1) can be rewritten as

{

u(x) = f (x)+∑
n
i=0 ωi[k11(x,xi)u(xi)+ k12(x,xi)v(xi)]+R

(n)
1

v(x) = g(x)+∑
n
i=0 ωi[k21(x,xi)u(xi)+ k22(x,xi)v(xi)]+R

(n)
2 .

(3.1)

We take the collocation points x = xi, and let f (xi) = fi, g(xi) = gi, kpq(xi,x j) = k
i j
pq, u(xi) = ui, v(xi) = vi, i = 0,1, ...,n; p,q = 1,2.

Then we ignore the remainder terms and obtain the approximating linear system with respect to u0, v0, u1, v1, ... , un, vn as

{

ui = fi +∑
n
j=0 ω j(k

i j
11u j + k

i j
12v j)

vi = gi +∑
n
j=0 ω j(k

i j
21u j + k

i j
22v j).

(3.2)

Remove the terms of (3.2), then we obtain
{

−∑ j 6=i ω jk
i j
11u j +(1−ωik

ii
11)ui −∑

n
j=0 ω jk

i j
12v j = fi

−∑
n
j=0 ω jk

i j
21u j −∑ j 6=i ω jk

i j
22v j +(1−ωik

ii
22)vi = gi.

(3.3)

Solve linear system (3.3), we can get ui = u∗i , vi = v∗i , i = 0,1, ...,n.

Take u∗i , v∗i into (3.1) omitting the remainder terms, we have

{

un(x) = f (x)+∑
n
i=0 ωi[k11(x,xi)u

∗
i + k12(x,xi)v

∗
i ]

vn(x) = g(x)+∑
n
i=0 ωi[k21(x,xi)u

∗
i + k22(x,xi)v

∗
i ].

(3.4)

Thus un(x), vn(x) can be called the Nyström solutions with numerical quadrature scheme (3.1).

Meanwhile, it can be noted that
{

un(xi) = u∗i
vn(xi) = v∗i ,

(3.5)

so un(x), vn(x) are also the Nyström interpolation functions under the interpolation condition (3.2).
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4. Error estimation

To carry out an error analysis for the Nyström method, we first give the following useful Lemma.

Lemma 4.1. Let a1, a2, b1, b2, c1, c2, and x, y are positive real numbers. Assume
{

x ≤ a1 +b1x+ c1y

y ≤ a2 +b2x+ c2y.

For b1 + c2 < 1 and (1−b1)(1− c2)> b2c1, then

x+ y ≤
(1+b2 − c2)a1 +(1+ c1 −b1)a2

(1−b1)(1− c2)−b2c1
.

The proof of this Lemma can be given directly and we omit it. The result of error estimation is given below.

Theorem 4.2. Let u(x), v(x) are the exact solutions and let un(x), vn(x) are the Nyström solutions of system of Fredholm integral equations

(1.1). Assume M11 +M22 < 1, and (1−M11)(1−M22)> M12M21, then

‖u−un‖∞ +‖v− vn‖∞ ≤
(1−M22 +M21)‖R

(n)
1 ‖∞ +(1−M11 +M12)‖R

(n)
2 ‖∞

(1−M11)(1−M22)−M21M12
,

where Mpq = (b−a)‖kpq(x,y)‖∞, p,q = 1,2.

Proof. Consider (3.5) and subtract (3.4) from (3.1) to get

u−un = ∑
n
i=0 ωi[k11(x,xi)(u(xi)−u∗i )+ k12(x,xi)(v(xi)− v∗i )]+R

(n)
1

= ∑
n
i=0 ωi[k11(x,xi)(u(xi)−un(xi))+ k12(x,xi)(v(xi)− vn(xi))]+R

(n)
1 ,

then

‖u−un‖∞ ≤ ‖R
(n)
1 ‖∞ +‖

n

∑
i=0

|ωik11(x,xi)|‖∞ �‖u−un‖∞ +‖
n

∑
i=0

|ωik12(x,xi)|‖∞ �‖v− vn‖∞.

Similarly, we have

‖v− vn‖∞ ≤ ‖R
(n)
2 ‖∞ +‖

n

∑
i=0

|ωik21(x,xi)|‖∞ �‖u−un‖∞ +‖
n

∑
i=0

|ωik22(x,xi)|‖∞ �‖v− vn‖∞.

From the intermediate value theorem of continuous function, we can get

‖∑
n
i=0 |ωikpq(x,xi)|‖∞ = (b−a)‖kpq(x,ηpq)|‖∞

≤ (b−a)‖kpq(x,y)|‖∞

= Mpq,

where ηpq ∈ [a,b], p,q = 1,2.

It follows that a system of inequalities
{

‖u−un‖∞ ≤ ‖R
(n)
1 ‖∞ +M11‖u−un‖∞ +M12‖v− vn‖∞

‖v− vn‖∞ ≤ ‖R
(n)
2 ‖∞ +M21‖u−un‖∞ +M22‖v− vn‖∞.

From Lemma 4.1, we can obtain






‖u−un‖∞ ≤
(1−M22)‖R

(n)
1 ‖∞+M12‖R

(n)
2 ‖∞

(1−M11)(1−M22)−M21M12

‖v− vn‖∞ ≤
M21‖R

(n)
1 ‖∞+(1−M11)‖R

(n)
2 ‖∞

(1−M11)(1−M22)−M21M12
,

when M11 +M22 < 1 and (1−M11)(1−M22)> M21M12.

In particular, for the composite trapezoidal rules, we have














h = b−a
n

ω0 = ωn =
h
2

ω1 = ω2 = ...= ωn−1 = h

xi = x0 +nh, i = 0,1, ...,n,

so

∑
n
i=0 |ωikpq(x,xi)| = b−a

n [ 1
2 (|kpq(x,x0)|+ |kpq(x,xn)|)+∑

n−1
i=1 |kpq(x,xi)|]

= (b−a)|kpq(x,ηpq)|, ηpq ∈ [a,b].

Conseqently, ‖∑
n
i=0 |ωikpq(x,xi)|‖∞ = Mpq, p,q = 1,2.

Let
{

k1(x,ξ ) =
∂ 2

∂y2 [k11(x,y)u(y)+ k12(x,y)v(y)]y=ξ ,a < ξ < b

k2(x,η) = ∂ 2

∂y2 [k21(x,y)u(y)+ k22(x,y)v(y)]y=η ,a < η < b.

To sum up, we can draw the following corollary.
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Corollary 4.3. If M11 +M22 < 1 and (1−M11)(1−M22)> M12M21, then the Nyström solutions with the composite trapezoidal quadrature

formula have the following error estimation:

‖u−un‖∞ +‖v− vn‖∞ ≤
b−a

12

(1−M22 +M21)‖k1(x,y)‖∞ +(1−M11 +M12)‖k2(x,y)‖∞

(1−M11)(1−M22)−M21M12
h2
.

By a similar argument, for the composite Simpson rules, we have























h = b−a
n

ω0 = ω2n =
h
6

ω1 = ω3 = ...= ω2n−1 =
2
3 h

ω2 = ω4 = ...= ω2n−2 =
1
3 h

xi = x0 + i h
2 , i = 0,1, ...,2n,

hence

∑
2n
i=0 |ωikpq(x,xi)| = b−a

n [ 1
6 (|kpq(x,x0)+ kpq(x,x2n)|)+

1
3 ∑

n−1
i=1 |kpq(x,x2i)|+

2
3 ∑

n
i=1 |kpq(x,x2i−1)|]

= (b−a)kpq(x,ηpq), ηpq ∈ [a,b].

Then ‖∑
2n
i=0 |ωikpq(x,xi)|‖∞ = Mpq, p,q = 1,2.

Let
{

k1(x,ξ ) =
∂ 4

∂y4 [k11(x,y)u(y)+ k12(x,y)v(y)]y=ξ ,a < ξ < b

k2(x,η) = ∂ 4

∂y4 [k21(x,y)u(y)+ k22(x,y)v(y)]y=η ,a < η < b.

Again, we can draw the following corollary.

Corollary 4.4. If M11 +M22 < 1 and (1−M11)(1−M22)> M12M21, then the Nyström solutions with the composite Simpson quadrature

formula have the following error estimation:

‖u−un‖∞ +‖v− vn‖∞ ≤
b−a

180

(1−M22 +M21)‖k1(x,y)‖∞ +(1−M11 +M12)‖k2(x,y)‖∞

(1−M11)(1−M22)−M21M12
(

h

2
)4
.

5. Numerical examples

In order to verify the validity of the proposed numerical method, two numerical examples are given and the exact solutions are compared

with the approximate solutions by using Matlab.R2015a. The convergence rate is defined by

Ratio =
‖u−un‖∞ +‖v− vn‖∞

‖u−u2n‖∞ +‖v− v2n‖∞
.

Example 5.1. Consider the following system of Fredholm integral equations

{

u(x) = x2 + 5
24 x− 7

24 +
∫ 1

0 [(−
1
2 x+ 1

2 y)u(y)+( 1
12 x− y)v(y)]dy

v(x) = 7
9 x− 19

18 +
∫ 1

0 [xyu(y)+ 1
6 (xy−2y)v(y)]dy,

with 0 ≤ x ≤ 1 and the exact solutions u(x) = x2, v(x) = x−1.

We choose n = 4,8,16,32 along with h = 1
n and get xi = ih, i = 0,1, ...,n. The curve graph of the exact solutions u(x) = x2, v(x) =

x− 1 and the approximations un(x), vn(x) obtained using the Nyström method are given in Figure 5.1(a), and then the maximum error

‖u−un‖∞ +‖v− vn‖∞ listed in Table 1.

Composite trapezoidal Composite Simpson

n ‖u−un‖∞ +‖v− vn‖∞ Ratio ‖u−un‖∞ +‖v− vn‖∞ Ratio

4 1.7800e-02 0

8 4.5000e-03 3.9556 0 0

16 1.1000e-03 4.0909 5.7465e-19 0

32 2.7778e-04 3.9600 0 0

Table 1: Error calculation result of Example 5.1.

Example 5.2. Consider the following system of Fredholm integral equations

{

u(x) = sinx+
∫ 2π

0 [( 1
20 sinx− cosy)u(y)+( 1

40 ysinx)v(y)]dy

v(x) = cosx− 11π
20 +

∫ 2π
0 [( 1

50 sinx− 1
40 y)u(y)+( 1

18 sinx+ 1
2 cosy)v(y)]dy,

with 0 ≤ x ≤ 2π and the exact solutions u(x) = sinx, v(x) = cosx.

We also choose n = 4,8,16,32 along with h = 1
n and get xi = ih, i = 0,1, ...,n. The curve graph of the exact solutions u(x) = sinx,

v(x) = cosx and the approximations un(x), vn(x) obtained using the Nyström method are given in Figure 5.1(b), and then the maximum

errors ‖u−un‖∞ +‖v− vn‖∞ listed in Table 2.
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(a) Example 5.1 (b) Example 5.2

Figure 5.1: The exact solutions and the Nyström solutions of Example 5.1 and Example 5.2 when n=16

Composite trapezoidal Composite Simpson

n ‖u−un‖∞ +‖v− vn‖∞ Ratio ‖u−un‖∞ +‖v− vn‖∞ Ratio

4 6.4300e-02 6.8765e-04

8 1.5700e-02 4.0955 4.0590e-05 16.9414

16 3.9000e-03 4.0256 2.5019e-06 16.2237

32 9.6947e-04 4.0228 1.5583e-07 16.0553

Table 2: Error calculation result of Example 5.2.

6. Conclusion

In this paper, The Nyström method is proposed to handle approximate solutions of system of Fredholm integral equations and two numerical

examples are provided to illustrate the validity and feasibility of the present method. For the simple system of integral equations such as

polynomial integral equations, we appear to get the exact solutions directly by the Nyström method with the composite Simpson rule.

In the future, the Nyström method can be extended to solve Hammerstein integral equations. A two-grid iteration method for the Nyström

method for system of Fredholm integral equations will also be further studied.
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Abstract

In this paper we study three-dimensional quasi-Sasakian manifolds admitting the Schouten-

van Kampen connection. Also, we study D-homothetic deformations on three-dimensional

quasi-Sasakian manifolds admitting Schouten-van connection and projectively flat three-

dimensional quasi-Sasakian manifolds admitting scv connection.

1. Introduction

An important class of almost contact metric (shortly a.c.m.) manifolds is the class consisting of those which are normal. However, the

curvature nature of such manifolds is not known in general, except for Sasakian or cosymplectic manifolds. If the almost contact structure

(shortly a.c.s.) is normal and the fundamental 2-form is closed then the manifold M is called a quasi-Sasakian manifold (shortly q.S.).

First examples of q.S. manifolds were given by D. E. Blair [1]. Also, some remarks on q.S. structures given by S. Tanno [2]. Then, on a

three-dimensional q.S. manifold the structure function γ was introduced by Z. Olszak [3].

The Schouten-van Kampen connection (shortly S.K.con.) has been introduced of non-holomorphic manifolds. Then the S.K.con. was

applied to a.c.m. structure by Z. Olszak and he characterized some classes of a.c.m manifolds [4]. Also, A. Yildiz studied three-dimensional

f -Kenmotsu manifolds according to this connection [5].

In the present paper, we study three-dimensional q.S. manifolds with a Dα -homothetic deformation admitting the S.K.con..

2. Preliminaries

Let ϕ is (1,1)-type tensor field, ξ is a locally defined vector field tangent to M and η is a 1-form on M. Then M(ϕ,ξ ,η ,g) is called an

a.c.m. manifold whose elementary properties are [6]-[8]

ϕ2 =−I +η ⊗ξ , η(ξ ) = 1,

g(ϕU,ϕV ) = g(U,V )−η(U)η(V ).

ϕξ = 0, η ◦ϕ = 0, η(U) = g(U,ξ ).

The fundamental 2-form θ is defined by

θ(U,V ) = g(U,ϕV ).

Thus θ(U,ξ ) = 0, for U ∈ T M. If the a.c.s. (ϕ,ξ ,η) is normal, i.e., [ϕ,ϕ](U,U)+dη(U,V )ξ = 0 and the fundamental 2-form θ is closed,

i.e. dθ = 0, then M is called a q.S. manifold. An a.c.m. manifold M is a three-dimensional q.S. manifold if and only if [9]

∇U ξ =−γϕU, (2.1)

Email addresses and ORCID: a.sazak@alparslan.edu.tr, https://orcid.org/0000-0002-5620-6441 (Ahmet Sazak), a.yildiz@inonu.edu.tr, https://orcid.org/0000-0002-9799-

1781 (Ahmet Yıldız)
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for a function γ on M satisfying ξ γ = 0. Also if γ = 0 then a q.S. manifold is a cosymplectic manifold [10], the converse is true. From (2.1),

we have [9]

(∇U ϕ)V = γ{g(U,V )ξ −η(U)V}. (2.2)

Again from (2.1) and (2.2), we get

R(U,V )ξ =−U [γ]ϕV +V [γ]ϕU + γ2{η(V )U −η(U)V}.

Using (2.1) and (2.2), we obtain

R(U,ξ )ξ = γ2{U −η(U)ξ},

and

R(U,ξ )V =−U [γ]ϕV − γ2{g(U,V )ξ −η(V )U}.

In a three-dimensional Riemannian manifold, the curvature tensor is written

R(U,V )W = g(V,W )QU −g(U,W )QV +S(V,W )U −S(U,W )V −
r

2
{g(V,W )U −g(U,W )V}.

Let M be a three-dimensional q.S. manifold. The Ricci tensor S of M is

S(V,W ) = (
r

2
− γ2)g(V,W )+(3γ2 −

r

2
)η(V )η(W )−η(V )dγ(ϕW )−η(W )dγ(ϕV ). (2.3)

From (2.3), we get

QV = (
r

2
− γ2)V +(3γ2 −

r

2
)η(V )ξ +η(V )(ϕ gradγ)−dγ(ϕV )ξ ,

where dγ(V ) = g(gradγ,V ). Again from (2.3), we obtain

S(U,ξ ) = 2γ2η(U)−dγ(ϕU).

As a consequence of (2.1), we have

(∇U η)W = g(∇U ξ ,W ) =−γg(ϕU,V ). (2.4)

3. Three-dimensional q.S. manifolds admitting S.K.con.

For an a.c.m. manifold M, the S.K.con. ∇̃ is given by [4]

∇̃UV = ∇UV −η(V )∇U ξ +(∇U η)(V )ξ . (3.1)

Let M3 be a q.S. manifold. Then using (3.1), we have

∇̃UV = ∇UV + γη(V )ϕU + γg(U,ϕV )ξ . (3.2)

Now we put equation (3.1) in the definition of the Riemannian curvature tensor, we can write

R̃(U,V )W = ∇̃U ∇̃VW − ∇̃V ∇̃UW − ∇̃[U,V ]W. (3.3)

Using (3.2) in (3.3), we obtain

R̃(U,V )W = ∇̃U (∇VW + γη(W )ϕV + γg(V,ϕW )ξ )

−∇̃V (∇UW + γη(W )ϕU + γg(U,ϕW )ξ ) (3.4)

−(∇[U,V ]W + γη(W )ϕ[U,V ]+ γg([U,V ],ϕW )ξ .

Again using (2.2) and (2.4) in (3.4), we have

R̃(U,V )W = R(U,V )W +U [γ]{g(V,ϕW )ξ +η(W )ϕV}

−V [γ]{g(U,ϕW )ξ +η(W )ϕU}

+γ2{g(U,W )η(V )ξ −g(V,W )η(U)ξ +η(U)η(W )V (3.5)

−η(V )η(W )U +g(U,ϕW )ϕV −g(V,ϕW )ϕU},

which gives

g(R̃(U,V )W,Z) = g(R(U,V )W,Z)

+U [γ]{g(V,ϕW )η(Z)+g(ϕV,Z)η(W )}

−Y [γ]{g(U,ϕW )η(Z)+g(ϕU,Z)η(W )} (3.6)

+γ2{g(U,W )η(V )η(Z)−g(V,W )η(U)η(Z)

+g(V,Z)η(U)η(W )−g(U,Z)η(V )η(W )

+g(U,ϕW )g(ϕV,Z)−g(V,ϕW )g(ϕU,Z)}.
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Putting U = Z = ei ,{i = 1,2,3}, in (3.6), we get

S̃(V,W ) = S(V,W )+(ϕV )[γ]η(W )−2γ2η(V )η(W ). (3.7)

From (3.7), we have

Q̃V = QV +(ϕV )[γ]ξ −2γ2η(V )ξ .

Again putting V =W = ei in (3.7), then we obtain

r̃ = r−2γ2
,

From (3.5) and (3.6), we have

R̃(U,V )W + R̃(V,U)W = 0,

g(R̃(U,V )W,Z)+g(R̃(U,V )Z,W ) = 0.

and

R̃(U,V )W + R̃(V,W )U + R̃(W,U)V = U [γ]{2g(V,ϕW )ξ +η(W )ϕV −η(V )ϕW}

+V [γ]{2g(W,ϕU)ξ +η(U)ϕW −η(W )ϕU}

+W [γ]{2g(U,ϕV )ξ +η(V )ϕU −η(U)ϕV}.

If γ is a constant, then we have

R̃(U,V )W + R̃(V,W )U + R̃(W,U)V = 0.

4. Three-dimensional q.S. manifolds and Dα -homothetic deformations

In this section, we study a Dα -homothetic deformation on a q.S. manifold M3.

For a (2n+ 1)-dimensional a.c.m. manifold (M, ϕ,ξ ,η ,g) if η = 0, then there is an 2n-dimensional distribution Dα on M. Also an

2n-dimensional homothetic deformation or a Dα -homothetic deformation is defined by

ηα = αη , ξ α =
1

α
ξ , ϕα = ϕ, (4.1)

gα = αg+α(α −1)η ⊗η ,

where α = constant > 0. If (M, ϕ,ξ ,η ,g) is an a.c.m. structure then (M, ϕα ,ξ α ,ηα ,gα ) is also an a.c.m. structure [2].

Now we have the followings:

Lemma 4.1. Let M3 be a q.S. manifold admitting a Dα -homothetic deformation. Then

∇
α
UV = ∇UV − (α −1)γ{η(U)ϕV +η(V )ϕU}. (4.2)

Proof. From Kozsul’s formula, we have

2gα (∇α
UV,W ) = Ugα (V,W )+V gα (U,W )−Wgα (U,V )−gα (U, [V,W ])−gα (V, [U,W ])+gα (W, [U,V ]),

for any vector fields U,V,W. From (4.1), we obtain

2{αg(∇α
UV,W )+α(α −1)η(∇α

UV )η(W )} = U{αg(V,W )+α(α −1)η(U)η(W )}

+V{αg(U,W )+α(α −1)η(U)η(W )}

−W{αg(U,V )+α(α −1)η(U)η(V )}

−α{g(U, [V,W ])+(α −1)η(U)η([V,W ])}

−α{g(V, [U,W ])+(α −1)η(V )η([U,W ])}

+α{g(W, [U,V ])+(α −1)η(W )η([U,V ])}.

After some calculations, we get

2{αg(∇α
UV,W )+α(α −1)η(∇α

UV )η(W )} = α{g(∇UV,W )+g(V,∇UW )}

+α(α −1){U(η(V )η(W ))+V (η(U)η(W ))

−W (η(U)η(V ))−η(U)η(∇VW )+η(U)η(∇WV )

−η(V )η(∇UW )+η(V )η(∇WU)

+η(W )η(∇UV )−η(W )η(∇VU)}.

Thus we have

2{αg(∇α
UV,W )+α(α −1)η(∇α

UV )η(W )} = 2αg(∇UV,W )+2a(a−1)η(∇UV )η(W )

+a(a−1){g(V,∇U ξ )η(W )+g(W,∇U ξ )η(V ) (4.3)

+g(U,∇V ξ )η(W )+g(W,∇V ξ )η(U)

−g(U,∇W ξ )η(V )−g(V,∇W ξ )η(U)}.
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Using (2.1) in (4.3), we get

2{αg(∇α
UV,W )+α(α −1)η(∇α

UV )η(W )} = 2αg(∇UV,W )+2a(a−1)η(∇UV )η(W )

−α(α −1)γ{g(V,ϕU)η(W )+g(W,ϕU)η(V )

+g(ϕV,U)η(W )+g(W,ϕV )η(U)

−g(U,ϕW )η(V )−g(V,ϕW )η(U)}.

After some calculations, we obtain

g(∇α
UV,W )+(α −1)η(∇α

UV )η(W ) = g(∇UV,W )+(α −1)η(∇UV )η(W )− (α −1)γ{g(W,ϕU)η(V )+g(W,ϕV )η(U)},

which implies (4.2).

Proposition 4.2. Let M3 be a q.S. manifold with a Da-homothetic deformation. Then

Rα (U,V )W = R(U,V )W

−(α −1)U [γ]{η(V )ϕW +η(W )ϕV}

+(α −1)V [γ]{η(U)ϕW +η(W )ϕU}

−(α −1)γ2{η(U)η(W )V −η(V )η(W )U}

+(α −1)γ2{g(V,W )η(U)ξ −g(U,W )η(V )ξ (4.4)

−2η(U)η(W )V +2η(V )η(W )U −2g(U,ϕV )ϕW

−g(U,ϕW )ϕV +g(V,ϕW )ϕU}.

Proof. The definition of the Riemannian curvature tensor, we can write

Rα (U,V )W = ∇
α
U ∇

α
V W −∇

α
V ∇

α
UW −∇

α
[U,V ]W. (4.5)

Using (4.2) in (4.5) and after long calculations, we have

Rα (U,V )W = R(U,V )W

−(α −1)γ[η(U)ϕ∇VW −η(U)∇V ϕW −η(V )ϕ∇UW

+η(V )∇U ϕW −η(W )ϕ∇UV +η(W )∇U ϕV

+η(W )ϕ∇VU −η(W )∇V ϕU (4.6)

+aγ{2g(U,ϕV )ϕW +g(U,ϕW )ϕV −g(V,ϕW )ϕU}

+(α −1)γ{η(U)η(W )V −η(V )η(W )U}]

−(α −1){(U(γ))(η(V )ϕW +η(W )ϕV )

−(V (γ))(η(U)ϕW +η(W )ϕU)}.

Using (2.2) in (4.6), we obtain (4.4).

From (4.4), we have

Rα (U,V )W +Rα (V,U)W = 0,

and

Rα (U,V )W +Rα (V,W )U +Rα (W,U)V = 0.

5. Dα -homothetic deformations on three-dimensional q.S. manifolds admitting the S.K.con.

In this section, we study how a Dα -homothetic deformation affects a three-dimensional q.S. manifold M admitting the S.K.con..

Lemma 5.1. Let M3 be a q.S. manifold with a Dα -homothetic deformation admitting the S.K.con.. Then

∇̃
α
UV = ∇UV − (α −1)γη(U)ϕV + γη(V )ϕU + γg(U,ϕV )ξ . (5.1)

Proof. Using (3.1) and (4.2), we obtain

∇̃
α
UV = ∇UV − γηα (V )ϕαU + γgα (U,ϕV )ξ α

= ∇UV − (α −1)γ{η(U)ϕV +η(V )ϕU}− γαη(V )ϕU

+γ[g(U,ϕV )+(α −1)η(U)η(ϕV )]ξ

= ∇UV − (α −1)γη(U)ϕV + γη(V )ϕU + γg(U,ϕV )ξ .
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Proposition 5.2. Let M3 be a q.S. manifold with a Dα -homothetic deformation admitting the S.K.con.. Then

R̃α (U,V )W = R(U,V )W

+U [γ]{g(V,ϕW )ξ +η(W )ϕV − (α −1)η(V )ϕW}

−V [γ]{g(U,ϕW )ξ +η(W )ϕU − (α −1)η(U)ϕW} (5.2)

+γ2{g(U,W )η(V )ξ −g(V,W )η(U)ξ +g(U,ϕW )ϕV

−g(V,ϕW )ϕU +η(U)η(W )V −η(V )η(W )U}

−2(α −1)γ2g(U,ϕV )ϕW.

Proof. Using (4.1), (3.5) and (4.4), we have

R̃α (U,V )W = Rα (U,V )W +U [γ]{gα (V,ϕαW )ξ α +ηα (W )ϕαV}

−V [γ]{gα (U,ϕαW )ξ α +ηα (W )ϕαU}

+γ2{gα (U,W )ηα (V )ξ α −gα (V,W )ηα (U)ξ α (5.3)

+ηα (U)ηα (W )V −ηα (V )ηα (W )U

+gα (U,ϕαW )ϕαV −gα (V,ϕαW )ϕαU}.

Using (4.2) in (5.3), we obtain (5.2).

Now taking the inner product with Z and putting V =W = ei, {i = 1,2,3}, in (5.2), we get

S̃α (U,Z) = S(U,Z)+(ϕU)[γ]η(Z)+(α −1)(ϕZ)[γ]η(U)−2γ2η(U)η(Z). (5.4)

If we use (2.3) in (5.4), we have

S̃α (U,Z) = (
r

2
− γ2)g(U,Z)+(3γ2 −

r

2
)η(U)η(Z)

−(ϕU)[γ ]η(Z)− (ϕZ)[γ]η(U)

+(ϕU)[γ ]η(Z)+(α −1)(ϕZ)[γ]η(U)

−2γ2η(U)η(Z),

i.e.,

S̃α (U,Z) = (
r

2
− γ2){g(U,Z)−η(U)η(Z)}+(α −2)(ϕZ)[γ]η(U).

Also we take U = Z = ei in (5.4), we get

r̃α = r−2γ2
.

6. Main result

In this section, we study a projectively flat q.S. manifold M3 with a Dα -homothetic deformation admitting the S.K.con..

In a q.S. manifold M3 with a Dα -homothetic deformation admitting the S.K.con. ∇̃a, the projective curvature tensor P̃a is given by

P̃α (U,V )W = R̃α (U,V )W −
1

2
{S̃α (V,W )U − S̃α (U,W )V}.

Now let M3 be a projectively flat q.S. manifold with a Dα -homothetic deformation admitting the S.K.con. ∇̃a (i.e. P̃a = 0). Then we have

R̃α (U,V )W =
1

2
{S̃α (V,W )U − S̃α (U,W )V}. (6.1)

Using (5.2) and (5.4) in (6.1), we get

R(U,V )W

+U [γ]{g(V,ϕW )ξ +η(W )ϕV − (α −1)η(V )ϕW}

−V [γ]{g(U,ϕW )ξ +η(W )ϕU − (α −1)η(U)ϕW}

+γ2{g(U,W )η(V )ξ −g(V,W )η(U)ξ +g(U,ϕW )ϕV

−g(V,ϕW )ϕU +η(U)η(W )V −η(V )η(W )U}

+2(α −1)γ2g(U,ϕV )ϕW

=
1

2
[S(V,W )U +(ϕV )[γ]η(W )U +(α −1)(ϕW )[γ]η(V )U

−2γ2η(V )η(W )U −S(U,W )V − (ϕU)[γ]η(W )V

−(α −1)(ϕW )[γ]η(U)V +2γ2η(U)η(W )W ],



38 Fundamental Journal of Mathematics and Applications

which gives

g(R(U,V )W,Z)

+U [γ]{g(V,ϕW )η(Z)+η(W )g(ϕV,Z)− (α −1)η(V )g(ϕW,Z)}

−V [γ]{g(U,ϕW )η(Z)+η(W )g(ϕU,Z)− (α −1)η(U)g(ϕW,Z)}

+γ2{g(U,W )η(V )η(Z)−g(V,W )η(U)η(Z)+g(U,ϕW )g(ϕV,Z)

−g(V,ϕW )g(ϕU,Z)+η(U)η(W )g(V,Z)−η(V )η(W )g(U,Z)} (6.2)

+2(α −1)γ2g(U,ϕV )g(ϕW,Z)

=
1

2
[S(V,W )g(U,Z)+(ϕV )[γ]η(W )g(U,Z)

+(α −1)(ϕW )[γ]η(V )g(U,Z)−2γ2η(V )η(W )g(U,Z)

−S(U,W )g(V,Z)− (ϕU)[γ]η(W )g(V,Z)

−(α −1)(ϕW )[γ]η(U)g(V,Z)+2γ2η(U)η(W )g(V,Z)].

Putting U = Z = ξ in (6.2), we have

S(V,W ) = 2γ2η(V )η(W )− (ϕW )[γ]η(V )− (ϕV )[γ]η(W ). (6.3)

If we put (6.3) in (5.4), we get

S̃α (V,W ) = (α −2)(ϕW )[γ]η(V ). (6.4)

Clearly, if γ is a constant or α = 2, then from (6.4), we have S̃α = 0. If S̃α = 0, then from (6.1), we get R̃α = 0. Conversely if R̃α = 0 then

we have S̃α = 0 and from (6.4) we obtain γ is a constant or α = 2.

Thus the above discussion leads us to state the following:

Theorem 6.1. Let M3 be a projectively flat q.S. manifold with a Dα -homothetic deformation admitting the S.K.con.. Then the followings

hold: (i) γ is a constant or α = 2. (ii) The manifold M is a Ricci-flat manifold, (iii) The manifold M is a flat manifold.

7. Example

In this section, we give an example of three-dimensional q.S. manifolds with a Dα -homothetic deformation admitting the S.K.con..

Let M = {(x,y,z) ∈ ℜ3 : x 6= 0} be a three-dimensional manifold, where (x,y,z) are standard coordinates in ℜ3and {ẽ1, ẽ2, ẽ3} be linearly

independent global frame on M is given by

ẽ1 = 2
∂

∂y
, ẽ2 = 2

∂

∂x
−4

∂

∂y
+ y

∂

∂ z
, ẽ3 =

∂

∂ z
.

Let g be the Riemannian metric, η be the 1-form and ϕ be the (1,1)-type tensor field given by

g(ẽ1, ẽ3) = g(ẽ1, ẽ2) = g(ẽ2, ẽ3) = 0, (7.1)

g(ẽ1,e1) = g(ẽ2, ẽ2) = g(ẽ3, ẽ3) = 1,

η(W ) = g(W, ẽ3), (7.2)

ϕ ẽ1 = ẽ2, ϕ ẽ2 =−ẽ1, ϕ ẽ3 = 0, (7.3)

respectively. Using the linearity of ϕ and g, we have

η(ẽ3) = 1, ϕ2W =−W +η(W )ẽ3,

and

g(ϕW,ϕZ) = g(W,Z)−η(W )η(Z).

Thus for ẽ3 = ξ , (ϕ,ξ ,η ,g) defines a c.m.s. on M3. Thus we have

[ẽ1, ẽ2] = 2ẽ3, [ẽ1, ẽ3] = 0, [ẽ2, ẽ3] = 0.

Recall Koszul’s formula

2g(∇UV,W ) = Ug(V,W )+V g(U,W )−Wg(U,V )−g(U, [V,W ])−g(V, [U,W ])+g(W, [U,V ]),

Taking ẽ3 = ξ and using the above formula for Riemannian metric g, we get

∇ẽ1
ẽ3 = −ẽ2, ∇ẽ2

ẽ3 = ẽ1, ∇ẽ3
ẽ3 = 0, (7.4)

∇ẽ3
ẽ1 = −ẽ2, ∇ẽ1

ẽ2 = ẽ3, ∇ẽ2
ẽ1 =−ẽ3,

∇ẽ2
ẽ2 = 0, ∇ẽ3

ẽ2 = ẽ1, ∇ẽ1
ẽ1 = 0.
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Hence from (2.1), the manifold M3 is a q.S. manifold with γ = 1. Using (7.1), (7.2), (7.3) and (7.4) in (5.1), we have Da-homothetic

deformation of the manifold M3 admitting the S.K.con. given by

∇̃
α
ẽ1

ẽ3 = 0, ∇̃
α
ẽ2

ẽ3 = 0, ∇̃
α
e3

ẽ3 = 0,

∇̃
α
ẽ3

ẽ1 = −α ẽ2, ∇̃
α
ẽ1

ẽ2 = 0, ∇̃
α
ẽ2

ẽ1 = 0, (7.5)

∇̃
α
ẽ2

ẽ2 = 0, ∇̃
α
ẽ3

ẽ2 = αe1, ∇̃
α
ẽ1

ẽ1 = 0.

Using (7.5), we obtain

R̃α (ẽ1, ẽ2)ẽ1 = 2α ẽ2, R̃α (ẽ1, ẽ2)ẽ2 =−2α ẽ2, R̃α (ẽ1, ẽ2)ẽ3 = 0,

R̃α (ẽ1, ẽ3)ẽ1 = 0, R̃α (ẽ1, ẽ3)ẽ2 = 0, R̃α (ẽ1, ẽ3)ẽ3 = 0, (7.6)

R̃α (ẽ2, ẽ3)ẽ1 = 0, R̃α (ẽ2, ẽ3)ẽ2 = 0, R̃α (ẽ2, ẽ3)ẽ3 = 0.

Thus from (7.6), the manifold M3 is a flat manifold. Since a flat manifold is a Ricci flat manifold, from the Theorem 6.1 the manifold M3 is a

projectively flat manifold.

References

[1] D. E. Blair, The theory of quasi-Sasakian structure, J. Differential Geo., 1(3-4) (1967), 331-345.
[2] S. Tanno, Quasi-Sasakian structure of rank 2p+1, J. Differential Geom., 5(3-4) (1971), 317-324.
[3] Z. Olszak, On three dimensional conformally flat quasi-Sasakian manifolds, Period Math. Hungar., 33(2) (1996), 105-113.
[4] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L’inst. Math., 94(108) (2013),

31-42.
[5] A. Yıldız, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. De L’Inst. Math., 102(116) (2017), 93-105.
[6] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics Vol. 509, Springer-Verlag, Berlin-New York, 1976.
[7] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203, Birkhäuser, Boston, 2002.
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Abstract

In this paper, we investigate the bifurcation of a third order rational difference equation.

Firstly, we show that the equation undergoes a Neimark-Sacker bifurcation when the

parameter reaches a critical value. Then, we consider the direction of the Neimark-Sacker

bifurcation. Finally, we give some numerical simulations of our results.

1. Introduction

Bifurcation is an important dynamic behavior of some dynamical systems. Some difference equations exhibits different kinds of bifurcation

including period-doubling bifurcation, saddle-node bifurcation and Neimark-Sacker bifurcation. In this paper, we show that a third order

rational difference equation exhibits Neimark-Sacker bifurcation. This type of bifurcation exits when the Jacobian matrix of a system of

difference equations has complex eigenvalues of modulus one. In [1], the author studied the dynamics of the third order difference equation

xn+1 =
βxn +δxn−2

A+Bxn +Cxn−1
(1.1)

Using appropriate change of variables, equation (1.1) becomes

xn+1 =
βxn + xn−2

A+Bxn + xn−1

where A ≥ 0,β ,B > 0. The author gives dynamic properties of solutions of this equation. In [2], the authors considered the difference

equation

xn+1 =
βxn +αxn−2

1+ xn−1

They show that this equation undergoes a Neimark-Sacker bifurcation and give the direction of the bifurcation. In this paper, we consider the

third order rational difference equation

xn+1 =
βxn + xn−2

A+ xn−1
(1.2)

where A ∈ (0,1), β > 0 and nonnegative initial conditions x−2,x−1 and x0. Firstly, we show that the unique positive equilibrium X∗ =
β −A+1 is locally asymptotically stable if β > (1−A)/(1+A). Then, we show that equation (1.2) undergoes a Neimark-Sacker bifurcation

by converting this equation to a first order system and showing that the Jacobian matrix of the linearized system has a pair of complex

Email addresses and ORCID numbers: asma aqel@yahoo.com, https://orcid.org/0000-0001-8109-5811 (A. Shareef), https://orcid.org/0000-0002-9030-1717 (M. Alo-

qeili),maloqeili@birzeit.edu
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conjugated eigenvalues of modulus one and a real eigenvalue in the interval (0,1). Equation (1.2) is a special case of the following one

which was considered in [3]

xn+1 =
α +βxn + γxn−1 + xn−2

A+ xn−1
(1.3)

setting α = γ = 0, we get equation (1.2). The authors in [3] proved that every solution of equation (1.3) is bounded.

The rest of the article is organized as follows: in section 2, we give condition for local asymptotic stability. Then, we show in section 3 that

equation (1.2) undergoes a Neimark-Sacker bifurcation. In section 4, the direction of bifurcation is considered. Finally, some numerical

simulations are given.

2. Local stability

In this section, we study local stability of the unique positive equilibrium of equation (1.2). We apply Jury’s test to the characteristic

polynomial of the linearized equation. Jury’s conditions provide an algebraic test that determines whether the roots of a polynomial lie

within the unit circle. Jury’s conditions consist of a test for necessary conditions and a test for sufficient conditions. For a polynomial of the

form:

f (z) = anzn +an−1zn−1 + · · ·+a1z+a0

The necessary conditions for stability are: f (1)> 0 and (−1)n f (−1)> 0, while the sufficient conditions for stability are given by:

|a0|< an, |b0|> |bn−1|, |c0|> |cn−2|, · · ·

where bk =

∣

∣

∣

∣

a0 an−k

an ak

∣

∣

∣

∣

, ck =

∣

∣

∣

∣

b0 bn−1−k

bn−1 bk

∣

∣

∣

∣

We need the following theorem

Theorem 2.1. (Viète Theorem [4]) Consider the following polynomial of degree n

f (z) = anzn +an−1zn−1 + · · ·+a1z+a0

Then, the n roots of f (counting multiplicities) z1,z2, · · · ,zn satisfy the following relations

z1 + z2 + · · ·+ zn−1 + zn =
−an−1

an

(z1z2 + z1z3 + · · ·+ z1zn)+(z2z3 + z2z4 + · · ·+ z2zn)+ · · ·+ zn−1zn =
an−2

an

...

z1z2 · · ·zn = (−1)n a0

an

Firstly, we convert the third order equation (1.2) to the first order system

xn+1 =
βxn + zn

A+ yn

yn+1 = xn

zn+1 = yn

The system has two fixed points, the first one is the zero fixed point (0,0,0) and a positive fixed point

X∗ = (β −A+1,β −A+1,β −A+1), β +1 > A

Viète’s theorem will be used to show that the Jacobian matrix of the above system has a pair of complex eigenvalues of modulus one.

The following theorem gives a condition for local stability of X∗. Let

β ∗ =
1−A

1+A

Theorem 2.2. The positive fixed point is stable if β > β ∗ and unstable if β < β ∗

Proof. The Jacobian matrix of the system is

J =







β
A+yn

−(βxn+zn)
(A+yn)2

1
A+yn

1 0 0

0 1 0







At the positive fixed point

J =







β
β+1

−(β−A+1)
β+1

1
β+1

1 0 0

0 1 0
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The characteristic equation of the Jacobian matrix J is

p(λ ) = |λ I − J|= λ 3 −
β

β +1
λ 2 +

β −A+1

β +1
λ −

1

β +1
(2.1)

To study the stability of X∗ we use Jury’s conditions

p(1) =
β −A+1

β +1
> 0

(−1)3 p(−1) = 2+
β −A+1

β +1
> 0

The sufficient conditions are, |a0|< a3 and |b0|> |b2| where

a0 =
−1

β +1
, a1 =

β −A+1

β +1
, a2 =

−β

β +1
, a3 = 1

and

b0 =

∣

∣

∣

∣

a0 a3

a3 a0

∣

∣

∣

∣

, b2 =

∣

∣

∣

∣

a0 a1

a3 a2

∣

∣

∣

∣

The condition |a0|< a3 is trivially satisfied. Now,

b0 =
1

(β +1)2
−1, thus |b0|= 1−

1

(β +1)2
=

β 2 +2β

(β +1)2

and

b2 =

∣

∣

∣

∣

∣

−1
β+1

β−A+1
β+1

1
−β

β+1

∣

∣

∣

∣

∣

=
−β 2 −β −1+Aβ +A

(β +1)2

We consider two cases. The first case is

−β 2 −β −1+Aβ +A

(β +1)2
> 0

then |b2|=
−β 2−β−1+Aβ+A

(β+1)2 . The condition |b0|> |b2| is satisfied if and only if

β 2 +2β

(β +1)2
>

−β 2 −β −1+Aβ +A

(β +1)2

which is equivalent to

2β +1−A

β +1
> 0

the last inequality is satisfied since β −A+1 > 0. The second case is when

−β 2 −β −1+Aβ +A

(β +1)2
< 0

So

|b2|=
β 2 +β +1−Aβ −A

(β +1)2

Now, |b0|> |b2| if

β 2 +2β

(β +1)2
>

β 2 +β +1−Aβ −A

(β +1)2

which is satisfied if and only if

β >
1−A

1+A

The proof is complete. �
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3. Existence of Neimark-Sacker bifurcation

In this section, we show that equation (1.2) undergoes a Neimark-Sacker bifurcation by proving the existence of a pair of complex conjugate

eigenvalues of modulus one.

Theorem 3.1. When β = β ∗ = 1−A
1+A , polynomial (2.1) has two complex conjugate roots of modulus one and another real root that lies inside

the unit circle. Moreover for A ∈ (0,1) the Neimark Sacker bifurcation conditions are satisfied.

The theorem will be proved through the following lemmas

Lemma 3.1. The characteristic polynomial (2.1) has two complex roots, λ1,λ2 = λ̄1 and a real root λ3 in the interval (0,1).

Proof. The derivative of p(λ ) is given by

p′(λ ) = 3λ 2 −
2β

β +1
λ +

β −A+1

β +1

If the discriminant of p′(λ ) is negative then p(λ ) has complex roots,

∆p′(λ ) =
−8β 2 +12(βA+A−1)−24β

(β +1)2

Using the condition β (A+1)+A−1 = 0, we find that

∆p′(λ ) =
−8β 2 −36β

(β +1)2
< 0

So p′(λ ) has complex roots. Hence, p(λ ) has complex roots as well. Since p(0) = −1
β+1

< 0 and p(1)> 0, then there exists λ3 ∈ (0,1) such

that p(λ3) = 0, this is the unique real root inside the unit circle. �

Lemma 3.2. The complex roots of polynomial (2.1) have modulus one when β = β ∗. Moreover, the real root λ3 =
1

1+β
.

Proof. Suppose that λ1,λ2,λ3 are the roots of p(λ ) where λ2 = λ̄1 and λ3 = r0. We apply Viète theorem to the polynomial p(λ ). If

|λ1|= |λ2|= 1 and λ3 = r0 then

λ1 +λ2 +λ3 =
−a2

a3
=

β

β +1
(3.1)

λ1λ2 +λ1λ3 +λ2λ3 =
a1

a3
=

β −A+1

β +1
(3.2)

λ1λ2λ3 =
−a0

a3
=

1

β +1

It follows that

λ1λ2λ3 = λ3 =
1

β +1

Plugging this value of λ3 into (3.2) and using the fact that λ1λ2 = 1, we find

λ1 +λ2 =−A

Then substitute for λ3 in (3.1) to get

λ1 +λ2 =
β

β +1
−

1

β +1
=

β −1

β +1

Therefore,

λ1 +λ2 =
β −1

β +1
=−A

which implies that

β =
1−A

1+A

It follows, from the above argument, that there exist a conjugate pair of complex roots on the unit circle. �

The roots of the characteristic polynomial depend on the parameters A and β . Hence, at β ∗ = (1−A)/(1+A), these roots are functions of A,

and will be denoted by λ ∗
1 (A) = λ1(A,β

∗(A)),λ ∗
2 (A) = λ2(A,β

∗(A)) and λ ∗
3 = λ3(A,β

∗(A))
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Lemma 3.3. The complex roots of polynomial (2.1) are λ ∗
1,2(A) = exp±iθ∗ where

θ∗ = arccos

(

−A

2

)

Proof. Let eiθ ,e−iθ be the roots of p(λ ), then

e3iθ −
β

β +1
e2iθ +

β −A+1

β +1
eiθ −

1

β +1
= 0

cos3θ + isin3θ −
β

β +1
(cos2θ + isin2θ)+

β −A+1

β +1
(cosθ + isinθ)−

1

β +1
= 0

Separation of real and imaginary parts gives

cos3θ −
β

β +1
cos2θ =−

β −A+1

β +1
cosθ +

1

β +1

and

sin3θ −
β

β +1
sin2θ =−

β −A+1

β +1
sinθ

Square both sides of previous equations and add them up, we find that

cos2 3θ + sin2 3θ +

(

β

β +1

)2

(cos2 2θ + sin2 2θ)−
2β

β +1
(cos2θ cos3θ + sin2θ sin3θ)

=

(

1

β +1

)2

+

(

β −A+1

β +1

)2

(cos2 θ + sin2 θ)−
2(β −A+1)

(β +1)2
cosθ

It follows that

1+

(

β

β +1

)2

−

(

1

β +1

)2

−

(

β −A+1

β +1

)2

=

(

2β

β +1
−

2(β −A+1)

(β +1)2

)

cosθ

Simplifying we get

cosθ =
(β +A−1)

2β

Then, evaluating at β = β ∗ = 1−A
1+A

cosθ =
−A

2

Hence for A ∈ (0,1), −1
2 < cosθ < 0. Therefore, there exists θ∗ ∈ ( π

2 ,
2π
3 ) such that

θ∗ = arccos

(

−A

2

)

Moreover, θ∗ 6= 0,± π
2 ,±

2π
3 ,±π . Consequently, eikθ ∗

6= 1 for k ∈ {1,2,3,4}. �

Lemma 3.4. The condition
d|λ |2

dβ
|β=β ∗ 6= 0 is fulfilled at β = β ∗.

Proof. Note that

p(λ ) = λ 3 −
β

β +1
λ 2 +

β −A+1

β +1
λ −

1

β +1

d|λ |2

dβ
|β=β ∗=

d(λλ̄ )

dβ
= λ

∂ λ̄

∂β
+ λ̄

∂λ

∂β

d|λ |2

dβ
= λ

(

∂ p(λ̄ )

∂β

∂ λ̄

∂ p(λ̄ )

)

+ λ̄

(

∂ p(λ )

∂β

∂λ

∂ p(λ )

)

= λ





−λ̄ 2 +Aλ̄ +1

(β +1)2(3λ̄ 2 − 2β
β+1

λ̄ + β−A+1
β+1



+ λ̄





−λ 2 +Aλ +1

(β +1)2(3λ 2 − 2β
β+1

λ + β−A+1
β+1





After some calculations, the right hand side of the last equation can be written as

3A(β +1)(λ̄ 2 +λ 2)−2βA(λ + λ̄ )+6i(β +1)sinθ(λ 2 − λ̄ 2)+4iβ sinθ(λ̄ −λ )+2AX

(β +1)(3(β +1)λ̄ 2 −2βλ̄ +X)(3(β +1)λ 2 −2βλ +X)
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where X = β −A+1. But

λ + λ̄ = (cosθ + isinθ)+(cosθ − isinθ) = 2cosθ

λ 2 + λ̄ 2 = (cosθ + isinθ)2 +(cosθ − isinθ)2 = 2(cos2 θ − sin2 θ) = 2cos(2θ)

λ 2 − λ̄ 2 = (cosθ + isinθ)2 − (cosθ − isinθ)2 = 4icosθ sinθ = i2sin(2θ)

Consequently, we have

d|λ |2

dβ
=

6A(β +1)cos(2θ)−4βAcosθ +(−24(β +1)cosθ +8β )sin2 θ +2AX

(β +1)(3(β +1)λ̄ 2 −2βλ̄ +X)(3(β +1)λ 2 −2βλ +X)

Now, at θ = θ∗, β = β ∗, the last expression becomes

d|λ |2

dβ
|β=β ∗=

8A 2
1+A −2A2 +8 1−A

1+A

(β ∗+1)(3(β ∗+1)λ̄ 2 −2βλ̄ +X∗)(3(β ∗+1)λ 2 −2β ∗λ +X∗)

=
−2(A−2)(A+2)(A+1)

(1+A)(β ∗+1)(3(β ∗+1)λ̄ 2 −2β ∗λ̄ +X∗)(3(β ∗+1)λ 2 −2β ∗λ +X∗)

where X∗ = β ∗−A+1. It follows that

d|λ |2

dβ
|β=β ∗=−

(A−2)(A+2)(A+1)

α2
1 +α2

2

where

α1 = 3(β ∗+1)cos(2θ∗)−2β ∗ cosθ∗+(β ∗−A+1)

α2 = 3(β ∗+1)sin(2θ∗)−2β ∗ sinθ∗

We conclude that
d|λ |2

dβ
|β=β ∗ 6= 0 for A ∈ (0,1) which is the required result. �

This completes also the proof of theorem (3.1).

4. Direction of Neimark-Sacker bifurcation

We have shown that system (2.1) undergoes a Neimark-Sacker bifurcation. In this section, we determine the direction of stability of the

invariant closed curve bifurcating from the positive fixed point. We follow the the normal form theory of Neimark-Sacker bifurcation as in

Kuznetsove, [5], see also [2].

Now, we shift the fixed point to the origin by taking un = xn − x∗, vn = yn − y∗, wn = zn − z∗. System (2.1) takes the form

un+1 =
B(un +X∗)+wn +X∗

A+ vn +X∗
−X∗

vn+1 = un

wn+1 = vn

Which can be written as

Yn+1 = JYn +G(Yn)+O(‖Y‖4) (4.1)

where

G(Y ) =
1

2
B(Y,Y )+

1

6
C(Y,Y,Y ), and Yn = (un,vn,wn)

T ∈ R
3

and

B(Y,Y ) = (B1(Y,Y ),0,0)
T and C(Y,Y,Y ) = (C1(Y,Y,Y ),0,0)

T

where

Bi(ξ ,ζ ) =
n

∑
j,k=1

∂ 2Yi(φ)

∂φ j∂φk

∣

∣

∣

∣

φ=0

ξ jζk

and

Ci(ξ ,ζ ,η) =
n

∑
j,k,l=1

∂ 3Yi(φ)

∂φ j∂φk∂φl

∣

∣

∣

∣

φ=0

ξ jζkηl
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B1(ξ ,ζ ) =
−β

(β +1)2
(ξ2ζ1 +ξ1ζ2)+

2(β −A+1)

(β +1)2
ξ2ζ2 −

1

(β +1)2
(ξ3ζ2 +ξ2ζ3)

C1(ξ ,ζ ,η) =
2

(β +1)3
(ξ1ζ2η2 +ξ2η1ζ2 +ξ2ζ2η1)

+
2β

(β +1)3
(ξ2ζ2η3 +ξ2ζ3η2 +ξ3ζ2η2)−

6(β −A+1)

(β +1)3
ξ2ζ2η2

Let q∗ ∈C
3 be an eigenvector of J corresponding to the eigenvalue eiθ ∗

and p∗ ∈C
3 be an eigenvector of JT corresponding to the eigenvalue

e−iθ ∗
; that is,

Jq∗ = eiθ ∗

q∗,JT p∗ = e−iθ ∗

p∗

Solving (J − λ I)q∗ = (J − eiθ I)q∗ = 0, we get q∗ ∼ (1,e−iθ ∗
,e−2iθ ∗

)T and solving (J − λ I)T p∗ = (J − e−iθ ∗
I)T p∗ = 0 we get p∗ ∼

(1,e−iθ ∗
− β

β+1
, eiθ∗

β+1
)T . Now, we want to normalize p∗ and q∗ so that 〈q∗, p∗〉= 1, where 〈., .〉 is the standard scalar product in C

3. Note

that

〈q∗, p∗〉=
3

∑
i=1

qi pi = 2−
βeiθ ∗

β +1
+

e3iθ ∗

β +1

So let q = ϕq∗ where ϕ = (2− βeiθ∗

β+1
+ e3iθ∗

β+1
)−1 and p = p∗. The real eigenspace T c corresponding to λ1,2 is two-dimensional and is spanned

by {Re(q), Im(q)}. The real eigenspace T s corresponding to the real eigenvalue of J is one-dimensional. Any vector x ∈ R
3 may be

decomposed as

x = zq+ z̄q̄+ y

where z ∈ C
1, and z̄q̄ ∈ T c, y ∈ T su. The complex variable z is a coordinate on T c. We have

z = 〈p,x〉

y = x−〈p,x〉q−〈 p̄,x〉q̄

In these coordinates, the map (4.1) takes the form

z 7→ eiθ ∗

z+ 〈p,G(zq+ z̄q̄+ y)〉

y 7→ Jy+G(zq+ z̄q̄+ y)−〈p,G(zq+ z̄q̄+ y)〉q−〈 p̄,G(zq+ z̄q̄+ y)〉q̄

Using Taylor expansions, the previous system can be written in the form:

z 7→ eiθ ∗

z+
1

2
G20z2 +G11zz̄+

1

2
G02z̄2 +

1

2
G21z2z̄+ · · ·

y 7→ Jy+
1

2
H20z2 +H11zz̄+

1

2
H02z̄2 + · · ·

Where

G20 = 〈p,B(q,q)〉,G11 = 〈p,B(q, q̄)〉,G02 = 〈p,B(q̄, q̄)〉 (4.2)

and

G21 = 〈p,C(q,q, q̄)〉 (4.3)

H20 = B(q,q)−〈p,B(q,q)〉q−〈 p̄,B(q,q)〉q̄ (4.4)

H11 = B(q, q̄)−〈p,B(q, q̄)〉q−〈 p̄,B(q, q̄)〉q̄ (4.5)

and the scalar product in C
3 is used. From the center manifold theorem, there exists a center manifold W c which can be approximated as

Y =V (z, z̄) =
1

2
w20z2 +w11zz̄+

1

2
w02z̄2 +O(|z|3)

where < p,wi j >= 0. The vectors wi j ∈ C
3 can be found from the linear equations

w20 = (e2iθ ∗

I3 − J)−1H20

w11 = (I3 − J)−1H11

w02 = (e−2iθ ∗

I3 − J)−1H02

So z can be expressed as

z 7→ eiθ ∗

z+
1

2
G20z2 +G11zz̄+

1

2
G02z̄2 +

1

2
(G21 +2〈p,B(q,(I − J)−1H11)〉
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+〈p,B(q̄,(e2iθ ∗

I − J)−1H20)〉)z
2z̄ (4.6)

Substituting equations (4.2)-(4.5) into (4.6) and taking into account the identities

(I − J)−1q =
1

1− eiθ ∗ q, (e2iθ ∗

I − J)−1q =
e−iθ ∗

eiθ ∗
−1

q

and

(I − J)−1q̄ =
1

1− e−iθ ∗ q̄, (e2iθ ∗

I − J)−1q̄ =
eiθ ∗

e3iθ ∗
−1

q̄

We can express z using the map

z 7→ eiθ ∗

z+ ∑
k+l≥2

1

k! j!
gk jz

k z̄ j

Finally, the restricted map can be written as

z 7→ eiθ ∗

z(1+d(β ∗))|z|2 +O(|z|4)

where the real number A(β ∗) = Re(d(β ∗)) determines the direction of bifurcation of the closed invariant curve and can be computed using

the formula

A(β ∗) = Re

(

e−iθ ∗
g21

2

)

−Re

(

(1−2eiθ ∗
)e−2iθ ∗

2(1− eiθ ∗
)

g20g11

)

−
1

2
|g11|

2 −
1

4
|g02|

2

The coefficients g20,g11,g02 and g21 can be readily calculated using simple, but tedious, calculations. Firstly, we have

B(q,q) =







2(β−A+1)e−2iθ∗−2βe−iθ∗−2e−3iθ∗

(β+1)2

0

0







It follows that

g20 = 〈p,B(q,q)〉=
2(β −A+1)e−2iθ ∗

−2βe−iθ ∗
−2e−3iθ ∗

(β +1)
(

2(β +1)−βeiθ ∗
+ e3iθ ∗

)

whereas

B(q, q̄) =







2(β−A+1)−2(β+1)cosθ ∗

(β+1)2

0

0







Hence,

g11 = 〈p,B(q, q̄)〉=
2(β −A+1)−2(β +1)cosθ∗

(β +1)
(

2(β +1)−βeiθ ∗
+ e3iθ ∗

)

and

B(q̄, q̄) =







2(β−A+1)e2iθ∗−2βeiθ∗−2e3iθ∗

(β+1)2

0

0







Then

g02 = 〈p,B(q̄, q̄)〉=
2(β −A+1)e2iθ ∗

−2βeiθ ∗
−2e3iθ ∗

(β +1)
(

2(β +1)−βeiθ ∗
+ e3iθ ∗

)

Finally, to find g21 we use the formula

g21 = 〈p,C(q,q, q̄)〉+2〈p,B(q,(I − J)−1B(q, q̄))〉+

〈p,B(q̄,(e2iθ ∗

I − J)−1B(q,q))〉+
e−iθ ∗

(1−2eiθ ∗
)

1− eiθ ∗ 〈p,B(q,q)〉〈p,B(q, q̄)〉

−
2

1− e−iθ ∗ |〈p,B(q, q̄)〉|2 −
eiθ ∗

e3iθ ∗
−1

|〈p,B(q̄, q̄)〉|2

where

C(q,q, q̄) =







−6(B−A+1)e−iθ∗+2B(1+2e−2iθ∗ )+2(2+e−2iθ∗ )
(B+1)3

0

0
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So

〈p,C(q,q, q̄)〉=
−6(β −A+1)e−iθ ∗

+2β (1+2e−2iθ ∗
)+2(2+ e−2iθ ∗

)

(β +1)2
(

2(β +1)−βeiθ ∗
+ e3iθ ∗

)

and

〈p,B(q̄,(e2iθ ∗

I − J)−1B(q,q)〉=
L
(

2(β −A+1)e3iθ ∗
−β (e2iθ ∗

+ e5iθ ∗
)− (eiθ ∗

+ e4iθ ∗
)
)

K(2(β +1)−βeiθ ∗
+ e3iθ ∗

)

where

K = (β +1)e6iθ9 −βe4iθ ∗

+(β −A+1)e2iθ ∗

−1, L =
2(β −A+1)−2(β +1)cosθ∗

(β +1)2

Depending on the above calculation, we find that A(β ∗) = −0.91 < 0 when A = 0.5,β = β ∗ = 1/3, so the closed invariant curve is

supercritical (stable) according to the following theorem.

Theorem 4.1. If A(β ∗)< 0 (respectively, > 0), then the Neimark-Sacker bifurcation at β = β ∗ is supercritical (respectively, subcritical)

and there exists a unique invariant closed curve bifurcates from the fixed point which is asymptotically stable (respectively, unstable).

5. Computer simulation

In this section, we present some numerical simulations of equation (1.2) that supports our analytical results. The first figure is a bifurcation

diagram for equation (1.2) when A = 0.5, x−2 = x−1 = x0 = 0.2. In this case, the positive equilibrium point is stable if β > 1
3 and unstable if

β < 1
3 . In figures 2 and 3, we plot phase portraits in the (x(n),x(n−2)) plane. In Figure 2, A = 0.5,β = β ∗, and x−2 = x−1 = x0 = 0.2.

Notice the existence of a closed invariant curve at the bifurcation value. In figure 3, A = 0.5,β = 0.4, and x−2 = x−1 = x0 = 0.5.
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Figure 1: Bifurcation diagram of Eq.(1.2) in (β ,X) plane for A = 0.5
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Figure 2: Phase portrait of Eq.(1.2) in (x(n),x(n−2)) plane for A = 0.5, β = 1/3
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Figure 3: Phase portrait of Eq.(1.2) in (x(n),x(n−2)) plane for A = 0.5, β = 0.4

6. Conclusion

In this paper, we have used normal form theory to show that a third order difference equation undergoes a Neimar-Sacker bifurcation. All

conditions for the existence of A Neimark-Sacker bifurcation have been checked. In the last section, we gave some numerical simulations

that support our analytical results. Notice the stability of the invariant curve and the fixed point in figure 2 and figure 3, respectively, as

predicted by Theorem 4.1.
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Abstract

In this paper, the problem of simultaneous diagonalization of m-tuples of n-order square

complex matrices, is analyzed and some necessary and some necessary and sufficient

conditions for this property to be fulfilled are presented. This study has an interest in its

applications in different areas as for example in engineering and physical sciences. For

example, they appear founding when we must give the instanton solution of Yang-Mills field

presented in an octonion form, and it can be represented by triples of traceless matrices.

In the case where the m-tuple does not simultaneously diagonalize, the possibility of to find

near of the given m-tuple, an m-tuple that diagonalize simultaneously is studied.

1. Introduction

Let M be the manifold of m-tuples of n-order square complex matrices T = (X1, . . . ,Xm) representing polynomial matrices PT (x) =
X1 + xX2 + . . .+ xm−1Xm that appear in a natural way modeling tools in several research areas of applied mathematics, sciences and

engineering, and in a special manner in systems theory ([1]-[3]). Studying control problems by means the polynomial matrix approach, the

solution of these problems are reformulated in terms of polynomial matrix equations, where solutions are based on structural properties of the

involved matrices, where the simultaneous diagonalization of each and every one of the matrices is a great advantage for solving the problem.

The simultaneously diagonalization is related to sets of commuting matrices and it can be found some results (see [4], [5], for example).

Among families of m-tuples of matrices, have some interest the families of traceless triples because the Lie algebra is related to gauge

fields because they appear in the Lagrangian describing the dynamics of the field, then they are associated to 1-forms that take values on a

certain Lie algebra. It is also of interest to note that triples of traceless matrices have some relevance for supergravity theories ([6]). Another

application is found when we must give the instanton solution of Yang-Mills field can be presented in an octonion form, and it can be

represented by triples of traceless matrices ([7]).

In the space of n-square complex matrices, it is well known that the subset of diagonalizable matrices is generic in the sense that this

subset is an open and dense set, then any no diagonalizable matrix can be diagonalized by a small perturbation of its entries. This property

cannot be generalized to the case of simultaneous diagonalization of an m-tuple of n-order complex square matrices. We are interested in

analyzing the collection of m-tuples of matrices that simultaneously diagonalize and the collection that simultaneously diagonalize under

small perturbations, some properties in this sense appear in [8].

The simultaneous diagonalization of two real symmetric matrices has long been of interest and largely studied [9]. In this paper, we generalize

to the problem of deciding whether the elements of M can be simultaneously diagonalized, and in the case where the m-tuple does not

simultaneously diagonalize, we study the possibility of to find near of the given m-tuple, an m-tuple that diagonalize simultaneously.

2. Simultaneous similarity of m-tuples of n-order matrices

Definition 2.1. Let T = (X1, . . . ,Xm),T
′ = (Y1, . . . ,Ym) ∈M be two m-tuples of matrices. Then, T is simultaneous similar to T ′ if and only

if there exists P ∈ Gl(n;R) such that

(Y1, . . . ,Ym) = (PX1P−1, . . . ,PXmP−1). (2.1)

Email addresses and ORCID numbers: maria.isabel.garcia@upc.edu, https://orcid.org/0000-0001-7418-7208, (M. I. Garcı́a-Planas)
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For simplicity, we will write PT P′ = T ′.
We are interested on the simultaneous diagonalizable m-tuples.

Definition 2.2. The m-tuples of matrices T = (X1, . . . ,Xm) ∈M is simultaneously diagonalizable if and only if there exist an equivalent

m-tuple formed by diagonal matrices.

From definition we have

Corollary 2.3. Let T = (X1, . . . ,Xm) be an m-tuple of square matrices. The m-tuple is simultaneous diagonalizable if and only if there exist

diagonal matrices Di, i = 1, . . . ,m and a invertible matrix P (the same matrix P for all i) such that

(X t
i ⊗ In − In ⊗Di)vecP = 0, ∀1 ≤ i ≤ m.

Remark 2.4. Let A = (ai j) and B, the Kronecker product is defined as A⊗B = (ai jB).

Proof. From Di = PXiP
−1 for all i = 1, . . . ,m we have PXi −DiP = 0, for all i = 1, . . . ,m

Then, computing the Kronecker product and applying the vectorizing operator we deduce the result.

Clearly, necessary conditions for simultaneous diagonalizable m-tuples are the following

Proposition 2.5. Let T = (X1, . . . ,Xm) be a simultaneous diagonalizable m-tuple. Then all matrices Xi must be diagonalizable.

Obviously, the reciprocal is false

Example 2.6. Clearly, matrices X1 =
(

1 1
0 2

)

and X2 =
(

1 0
1 2

)

are diagonalizable, but none of the matrices Pi = Q−1
i with Q1 =

(

a b
0 b

)

and

Q2 =
(

b a
b 0

)

with ab 6= 0, diagonalizing X1 can diagonalize X2.

Proposition 2.7. Let T = (X1, . . . ,Xm) be a simultaneous diagonalizable m-tuple. Then XiX j = X jXi.

Proof. Let T = (X1, . . . ,Xm) be a simultaneously diagonalizable m-tuple, then there exist P∈Gl(n;C) such that PXiP
−1 =Di for i= 1, . . . ,m.

So, taking into account that DiD j = D jDi, for all i, j = 1, . . . ,m, we have P−1DiPP−1D jP = P−1D jPP−1DiP, that is to say XiX j = X jXi,

for all i, j = 1, . . . ,m.

Theorem 2.8. Let T = (X1, . . . ,Xm) be a m-tuple of commuting n-order square matrices and suppose that the matrix X j for some j is

diagonalizable with simple eigenvalues (λk 6= λℓ for all k 6= ℓ, k, ℓ= 1, . . .n). Then T is a m-tuple of simultaneously diagonalizable matrices

Proof. For simplicity we consider X1 the diagonalizable matrix.

Let {v1, . . . ,vn} be a basis of eigenvectors corresponding to eigenvalues {λ1, . . . ,λn} of X j.

Let us consider XiX1v j for all i = 1, . . . ,m and j = 1, . . . ,n.

XiX1v j = Xiλ jv j = λ jXiv j

X jXiv j = λ jXiv j

So, if Xiv j 6= 0 it is an eigenvector of X1 of eigenvalue λ j , but condition λk 6= λℓ implies that dimKer(X1 −λ jI) = 1, then, Xiv j = µiv j , that

is to say v j is an eigenvector for Xi of eigenvalue µi. If Xiv j = 0 v j is an eigenvector of Xi of eigenvalue equal zero. That is to say {v1, . . . ,vn}
is a basis of eigenvectors for each Xi, i = 1, . . . ,m and T is m-tuple of simultaneous diagonalizable matrices with P =

(

vt
1 . . . vt

n

)−1
.

Remark 2.9. The other matrices not necessary have simple eigenvalues.

Theorem 2.10. Let T = (X1, . . . ,Xm) be an m-tuple of commuting and diagonalizable n-order square matrices. Then, they diagonalize

simultaneously.

Proof. Let P1 be an invertible matrix such that D1 = P1X1P−1 =





D1
1

. . .
D1

r1



 with D1
i = λ 1

i I ∈ Mni
(C), 1 ≤ i ≤ r and n1 + . . .+nr = n.

Let us consider v11
, . . . ,vn1

, . . . ,v1r
, . . . ,vnr

the vector columns of P−1, then

X jXℓviℓ = X jλℓviℓ = λℓX jviℓ

X jXℓviℓ = XℓX jviℓ

Consequently X jviℓ is an eigenvector of Xℓ of eigenvalue λℓ or X jviℓ = 0, in any case we have that X jviℓ ∈ [v1ℓ , . . . ,vnℓ ] = Fℓ, consequently,

the subspace Fℓ is X j invariant for all 1 ≤ ℓ≤ r and 1 ≤ j ≤ m.

So, P1X jP
−1
1 =









Y
j

1

. . .

Y
j

r









, for 2 ≤ j ≤ m.

If all matrices Y
j

k
are diagonal the proof is concluded, otherwise and taking into account that all matrices Xi diagonalize all submatrices Y

j
k

diagonalize.

Consider P2 =







P1
2

. . .

Pr
1






where P

j
2 diagonalizes Y 2

j for 1 ≤ j ≤ r.
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Obviously P2 diagonalizes D1:





P1
2

. . .
Pr

2









D1
1

. . .
D1

r









P1
2

. . .
Pr

2





−1

=





P1
2 D1

1(P
1
2 )

−1

. . .
Pr

2 D1
r (P

r
2 )

−1



=





P1
2 λ 1

1 I(P1
2 )

−1

. . .
Pr

2 λ 1
r I(Pr

2 )
−1



=





D1
1

. . .
D1

r





Then P2P1 diagonalizes X1 and X2, now partitioning the matrices P
j

2Y 2
j (P

j
2 )

−1 into blocks corresponding to the same eigenvalue (it is possible

that different blocks Y 2
j have common eigenvalues but we partition according to each block).

Now we consider P2P1X j(P2P1)
−1, if all matrices are diagonal the proof is concluded, otherwise we repeat the processus with P2P1X3(P2P1)

−1

taking into account the new partition in scalar matrices. The process ends at most when reaches to the last matrix.

After these results it is easy to obtain the following geometrical result.

Theorem 2.11. Let T = (X1, . . . ,Xm) be an m-tuple of n-order square matrices and suppose that all matrices Xi are diagonalizable, then a

necessary and sufficient condition for simultaneous diagonalization is there exist a basis {v1, . . . ,vn} of v ∈ C
n such that

v j ∈ ∩m
i=1Ker(Xi −λ

j
i )I, where λ i

j ∈ SpecXi = {λ i
1, . . . ,λ

i
n}

Corollary 2.12.

P =
(

vt
1 . . . vt

n

)−1

verifies that PXiP
−1 = Di

Example 2.13. Let T = (X1,X2,X3) be a triple with

X1 =





5.5 2 −3.5
3 3 −3

4.5 2 −2.5



 , X2 =





3 −2 2

1.5 4 −1.5
0 −2 5



 , X3 =





15.5 10 −13.5
3 7 −3

10.5 10 −8.5





SpecX1 = {1,2,3}, SpecX2 = {3,4,5}, SpecX3 = {2,5,7}
v1 = (0.6667,0.3333,0.6667) ∈ Ker(X1 −3I)∩Ker(X2 −4I)∩Ker(X3 −7I)
v2 = (−0.2294,−0.6882,−0.6882) ∈ Ker(X1 − I)∩Ker(X2 −3I)∩Ker(X3 −5I)
v3 = (0.7071,0,0.7071) ∈ Ker(X1 −2I)∩Ker(X2 −5I)∩Ker(X3 −2I)
Then there exist

P =





4.5005 3.0003 −4.5005

2.1796 0.0000 −2.1796

−2.1220 −2.8289 3.5362



=





0.6667 −0.2294 0.7071

0.3333 −0.6882 0.0000

0.6667 −0.6882 0.7071





−1

such that

PX1P−1 =





3

1

2



 , PX2P−1 =





4

3

5



 , PX3P−1 =





7

5

2





(Calculations made with MatlabR2012b).

In this case, all possible matrices P diagonalizing Xi for some i = 1, . . . ,m, (that they are such that P = Q−1 where Q is a matrix whose

columns are the eigenvectors corresponding to each of the eigenvalues of Xi for some i = 1, . . .n), are matrices that diagonalizes all matrices

simultaneously obtaining Di or permutations of this matrices. In fact, we have the following proposition.

Proposition 2.14. If the set of matrices {X1, . . . ,Xm} are simultaneously diagonalizable and for some i, Xi has simple eigenvalues, all

matrices P diagonalizing Xi diagonalize X j for all j = 1 = . . . ,m.

Remark 2.15. If no matrix has simple eigenvalues then the result fails

Example 2.16. Let T = (X1,X2,X3) be a triple with

X1 =











3 1 −2 −1 0

5 −1 −6 1 2

0 1 1 −1 0

5 −3 −6 3 2

1 −1 −2 0 3











, X2 =











7 3 −4 −3 0

13 −3 −16 3 6

0 3 3 −3 0

13 −9 −16 9 6

5 −3 −8 0 9











, X3 =











6 4 −4 −4 0

16 −6 −20 4 8

0 4 2 −4 0

16 −12 −20 10 8

8 −4 −12 0 10











This triple diagonalize simultaneously, because there exists Q ∈ Gl(n;C) with Q =













1 1 0 1 1

1 −1 1 0 1

1 1 0 1 0

1 −1 1 −1 1

1 0 1 1 −1













,

such that P = Q−1 =













−2 1 3 0 −1

2 −2 −2 1 1

3 −2 −4 1 2

0 1 0 −1 0

1 0 −1 0 0
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Di = PXiP
−1

D1 =











1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3











, D2 =











3 0 0 0 0

0 3 0 0 0

0 0 6 0 0

0 0 0 6 0

0 0 0 0 7











, D3 =











2 0 0 0 0

0 2 0 0 0

0 0 6 0 0

0 0 0 6 0

0 0 0 0 6











But, in this case not all matrices diagonalizing one of this matrices diagonalize all set of matrices of m-tuple of smultaneously diagonalizable

matrices, because taking P =













−2 1 3 0 −1

2 −2 −2 1 1

3 −2 −4 1 2

−1 1 1 −1 0

1 0 −1 0 0













Then P−1X1P =













1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 2 −1

0 0 0 0 3













, P−1X2P =













3 0 0 0 0

0 3 0 0 0

0 0 6 0 0

0 0 0 6 −1

0 0 0 0 7













, P−1X3P =













2 0 0 0 0

0 2 0 0 0

0 0 6 0 0

0 0 0 6 0

0 0 0 0 6













We observe that the matrix P only diagonalise X3

3. Approximately simultaneously diagonalizable m-tuples of matrices

It is well known that near of a squre matrix there is a diagonalizable matrix having simple eigenvalues. We ask if this result can be extended

to the case of m-tuples of square matrices. We will try to obtain an answer using geometrical tools.

3.1. Group Lie action

The equivalence relation defined in (2.1) can be seen as the action over M in the following manner

Let us consider the following map

α : Gl(n;C)×M −→M

(P,T ) −→ PT P−1 = (PX1P−1, . . . ,PXmP−1)

that verifies

i) If I ∈ Gl(n;C) is the identity element, then α(I,T ) = T for all T ∈M.

ii) If P1 and P2 are in Gl(n;C) , then α(P1,α(P2,T )) = α(P1P2,T ) for all T ∈M.

α(P1,α(P2,T )) = α(P1,P2T P−1
2 ) = P1P2T P−1

2 P−1
1 = (P1P2)T (P1P2)

−1 = α(P1P2,T )

So, the map α defines an action of Gl(n;C) over M.

Fixing T ∈M we can consider the map

αT : Gl(n;C) −→M

P −→ αT (P) = α(P,T )

We consider the following sets

ImαT = O(T ) = {(Y1, . . . ,Ym) = (PX1P−1, . . . ,PXmP−1),∀P ∈ Gl(n;C)}
Stab(T ) = {P ∈ Gl(n;C) | αT (P) = T}

Fixing P ∈ Gl(n;C) we can consider the map

αP : M −→M

T −→ αP(T ) = α(P,T )

Notice that αP is a bijection: if α(P,T1) = α(P,T2) then PT1P−1 = PT2P−1 and T1 = T2, so it is injective; for all T ∈ M, there exists

T̄ = P−1T P such that α(P, T̄ ) = T , then it is surjective.

3.2. Approximately simultaneously diagonalizability

It is well known that close to any matrix there is a nearby that diagonalizes. Then the question is: given an m-tuple of square matrices, it is

possible to found an m-tuple diagonalizing simultaneously?

In the case where that it is possible we say that the m-tuple is approximately simultaneously diagonalizable (abbreviated ASD), more

concretely

Definition 3.1. [8] The m-tuple T = (X1, . . . ,Xn) is approximately simultaneously diagonalizable if and only if for any ε > 0, there exist a

m-tuple of matrices (Y1, . . . ,Ym) which are simultaneously diagonalizable and satisfy ‖Yi −Xi‖< ε for i = 1, . . . ,m.

O’Meara and Vinsonhaler in [8], analyze approximately simultaneously diagonalizable matrices for the case where the matrices of the

m-tuple commute.

Proposition 3.2. Let T = (X1, . . . ,Xn) be an m-tuple simultaneously diagonalizable. Then, each T ′ ∈ O(T ) is an m-tuple simultaneously

diagonalizable.
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Proof. Taking into account that T = (X1, . . . ,Xn) is an m-tuple simultaneously diagonalizable there exist P ∈ Gl(n;C) such that PT P−1 =
(PX1P−1, . . . ,PXmP−1) = (D1, . . . ,Dm) = D with Di diagonal matrices for all i = 1, . . . ,m.

Let T ′ ∈ O(T ), then, there exist P′ ∈ Gl(n;C) such that T ′ = P′T (P′)−1 = (P′X1(P
′)−1, . . . ,P′Xm(P

′)−1).
So, T ′ = P′P−1DP(P′)−1 = (P′P−1D1P(P′)−1, . . . ,P′P−1DmP(P′)−1) = (P′′D1(P

′′)−1, . . . ,P′′Dm(P
′′)−1), with P′′ = P′P−1 ∈ Gl(n;C).

Consequently, and taking into account that if T ′ ∈ O(T ) is O(T ) = O(T ′), we can use miniversal deformations to study approximately

simultaneously diagonalizability.

3.3. Miniversal deformations

Definition 3.3. A deformation of an element X0 ∈ M is a family of elements of M indexed by λ ∈ Λ ϕ : Λ −→ M where Λ ⊂ F
ℓ is a

neighborhood of 0, and where ϕ(0) = X0 and ϕ depends holomorphically (smoothly) on the parameters.

Definition 3.4. A deformation ϕ(λ ) = ϕ(λ1, . . . ,λℓ) of X0 is versal if and only if for any deformation ϕ ′(µ1, . . . ,ϕk) ∈M of X0, ϕ ′(µ) is

induced by ϕ(λ ), i.e., there exists a neighborhood V of 0 in F
k, a map ψ : V −→ F

ℓ with ψ(0) = 0, and a map g : V −→ G with g(0) = I

such that ∀µ ∈V , ϕ ′(µ) = g(µ)ϕ(ψ(µ))g−1(µ) with ψ and g holomorphic (smooth).

It is obvious that if we have a versal deformation of an element automatically we have a versal deformation of any element that is equivalent

to it, since if X = α(g,X0) is an equivalent element of X0 and ϕ(λ ) is a versal deformation of X ′ then α(g−1,X(λ )) is a versal deformation

of X0.

A versal deformation having minimal number of parameters is called miniversal.

The following result was proved by Arnold [10], in the case where Gl(n;C) acts on Mn(C), and was generalized by Tannenbaum [11], in the

case where a Lie group acts on a complex manifold. It provides the relationship between a versal deformation of X0 and the local structure of

the orbit.

Theorem 3.5 ([11]). 1. A deformation ϕ(λ ) of (X0) is versal if and only if it is transversal to the orbit O(X0) at (X0).
2. Minimal number of parameters of a versal deformation is equal to the codimension of the orbit of X0 in M, ℓ= codimO(X0).

Corollary 3.6. Then ϕ(λ ) = X0 +(TX0
O(X0))

⊥ for some scalar product is a miniversal deformation.

Let dαX0
: TIG −→M be the differential of αX0

at the unit element I. It is easy to compute dαX0
(P):

dαT (P) = ([X1,P], . . . , [Xm,P]) ∈M, P ∈ TIG .

If we define scalar products in M and TIG , we can consider the adjoint application of dαX0
. The Euclidean scalar products considered in this

paper are defined as follows:

For all Ti = (X i
1, . . . ,X

i
m) ∈M and for all Pi ∈ TIG

〈T1,T2〉1 = trace(X1
1 X2

1

∗
)+ . . .+ trace(Xm

1 Xm
1
∗),

〈P1,P2〉2 = trace(P1P∗
2 ),

where X∗ denotes the conjugate transpose of a matrix X .

The adjoint linear mapping dα∗
T : M−→ TIG is defined by the relation

〈dαX0
(P),Z〉1 = 〈P,dα∗

x0
(Z)〉2, P ∈ TIG , Z ∈M.

It is straightforward to find

dα∗
X0
(W ) = ([X∗,A0]+ [Y ∗,B0]+ [Z∗,C0]) ∈ TIG , W = (X ,Y,Z) ∈M.

The mappings dαX0
and dα∗

X0
provide a simple description of the tangent spaces TX0

O(X0), TIS tab(X0) and their normal complements

(TX0
O(X0))

⊥, (TIS (X0))
⊥.

Theorem 3.7. The tangent spaces to the orbit of the m-tuple of matrices T and the corresponding normal complementary subspace can be

found in the following form

1. TT O(X0) = ImdαT ⊂M.

2. (TT O(X0))
⊥ = Kerdα∗

T ⊂M,

After this theorem, it is easy to compute these spaces.

Corollary 3.8. 1. TX0
O(X0) = {([P,A0], [P,B0], [P,C0]) | P ∈ TIG }

2. (TX0
(O(X0))

⊥ = {(X ,Y,Z) ∈M | [X∗,A0]+ [Y ∗,B0]+ [Z∗,C0] = 0}

Remark 3.9. Let X0 = (X0
1 , . . . ,X

0
m) be an n-tuple of matrices and we consider Xi = (0, . . . ,0,Xi,0, . . . ,0) an m-tuple of matrices such that

X0
i +Xi is a miniversal deformation of X0

i . Then Xi ∈ (TX0
(O(X0))

⊥ and consequently X= ∑Xi ∈ TX0
(O(X0))

⊥.

Consequently, we have the following proposition.

Proposition 3.10. Let X0 = (X0
1 , . . . ,X

0
m) be an n-tuple of matrices. Then, for all ε > 0 there exist X= (X1, . . . ,Xm) such that X0

i +Xi is

diagonalizable, for all i = 1, . . . ,m.

Remark 3.11. Given any n-tuple of matrices, we can find in a neighborhood, an n-tuple of matrices in which all matrices are diagonalizable

but not necessarily all matrices in the n-tuple diagonalize simultaneously.
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Example 3.12. Consider the following pair of matrices

((

2 0

1 2

)

,

(

3 1,
0 3

))

that they are no diagonalizable, and the following family of

perturbations of the pair:

((

2+ ε1 0

1 2+ ε2

)

,

(

3+ ε3 1,
0 3+ ε4

))

for all εi with ε1 6= ε2 and ε3 6= ε4.

Clearly, both matrices are diagonalizable.

For simultaneously diagonalization it is necessary that both matrices commute, but

(

2+ ε1 0

1 2+ ε2

)(

3+ ε3 1,
0 3+ ε4

)

6=
(

3+ ε3 1,
0 3+ ε4

)(

2+ ε1 0

1 2+ ε2

)

for all ε1, ε2, so both matrices diagonalize but not diagonalize simultaneously.

Now, we consider the following perturbation

((

2 ε1

1 2

)

,

(

3 1,
ε2 3

))

for all εi with ε1 · ε2 6= 0. Clearly, both matrices are diagonalizable.

Analyzing commutativity

(

2 ε1

1 2

)(

3 1,
ε2 3

)

=

(

3 1,
ε2 3

)(

2 ε1

1 2

)

equivalently ε1ε2 = 1

So, taking ε1 = ε2 = 1, both matrices diagonalice simultanoeulsy, (it suffices to consider P−1 =

(

1 1

1 −1

)

)

The near pair of matrices in this family diagonalizing simultaneously is with (ε1,ε2) minimizing distance of the variety V = {(ε1,ε2) |
ε1ε2 = 1}

In general, a lower bound at the distance of the a n-tuple of matrices to a one n-tuple diagonalizing simultaneously is given tn the following

proposition

Proposition 3.13. Let T = (X1, . . . ,Xm) be a n-tuple of matrices and T (λ ) = (X1(λ ), . . . ,Xm(λ )) with λ ∈C
ℓ a family of n-tuples such that

in a neigborhood of 0 ∈ C
ℓ is a miniversal deformation of the given n-tuple. A lower bound at the distance of the a n-tuple of matrices to a

one n-tuple diagonalizing simultaneously is

inf{dist(0,λ ),0,λ ∈ C
ℓ | Xi(λ )X j(λ ) = X j(λ )Xi(λ )∀1 ≤ i, j ≤ m}

Example 3.14. Let T =
((

0 0
1 0

)

,
(

0 1
0 0

)

,
(

0 0
0 1

))

be a triple of matrices no diagonalizing. Let us consider the family of triples T (ε) =
(

( ε1 ε3

1+ε2 ε4

)

,
(

ε5 1
ε6 ε7

)

,
(

ε8 0
0 1+ε9

))

in such a way that for some ε with ‖ε‖> 0 is a miniversal (no orthogonal) deformation.

The subset of the commuting triples in the family is

V =















T ∈ {T ∈ T (ε) |
ϕ1(ε) = ε3 · ε6 − ε2 −1 = 0,

ϕ2(ε) = ε1 − ε4 − ε3 · ε5 + ε3 · ε7 = 0,
ϕ3(ε) = ε4 · ε6 − ε1 · ε6 + ε5 · (ε2 +1)− ε7 · (ε2 +1) = 0,

ϕ4(ε) = ε9 − ε8 +1 = 0.















We can compute the minimal distance by means the Lagrange’s undetermined multipliers method, from the function:

f (ε,λ ) =
9

∑
i=1

ε2
i +

4

∑
i=1

λiϕi(ε)

The minimal distance is
√

3/2, a triple minimizing this distance is a triple of commuting matrices with ε2 =−1, ε8 = 1/2 =−ε9 and εi = 0

for i = 1,3,4,5,6,7 but no diagonalize simultaneously.

Taking the solution ε3 = ε6 =
√

2, ε2 = 1, ε8 =
1

2
=−ε9, and εi = 0 for i = 1,4,5,7 with distance

√

11/2 we have a triple of commuting

matrices and they diagonalize simultaneously with P−1 =

(

1 1

21/4 −21/4

)

.
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Abstract

The essential goal of this manuscript is to investigate some novel sequence spaces of p∞ (∆),
pc (∆) and p0 (∆) which are comprised by all sequence spaces whose differences are in

Pascal sequence spaces p∞, pc and p0, respectively. Furthermore, we determine both γ-,

β -, α- duals of newly defined difference sequence spaces of p∞ (∆), pc (∆) and p0 (∆). We

also obtain bases of the newly defined difference sequence spaces of pc (∆) and p0 (∆).
Finally, necessary and sufficient conditions on an infinite matrix belonging to the classes

(pc (∆) : l∞) and (pc (∆) : c) are characterized.

1. Introduction

Real or complex valued sequences spaces are represented by w along with the manuscript. Each sub-classes of real or complex valued

sequences spaces is known as a sequence space. A sequence space of null, convergent, and bounded sequences are respectively demonstrated

by c0 , c, and l∞. Moreover cs, l1, bs depict convergent, absolutely convergent, and bounded series respectively.

K space is defined by any sequence space λ with a linear topology satisfying following transformation for a continuous term of ps (m) = ms

s ∈ N such that ps : λa →C , where N = {0,1,2, ...} and C represents the set of complex number. If λ is a complete linear metric space then

K-space is named by FK- space. BK-space is defined as normable topological space of FK-space [1].

Infinite matrix of complex or real numbers A = (ank) is defined for n, k ∈ N. Let X and Y be any two sequence spaces. Then, A is defined as

a transformation between X to Y such that following equality holds.

(Ax)n = ∑
k

ankxk (1.1)

for each n ∈ N. (X : Y ), shows the family of matrices where A : X → Y . Hence series given by the (1.1) converges for every x ∈ X and each

n ∈ N iff A ∈ (X : Y ). One also has Ax = {(Ax)n} ∈ Y . Here collection of entire finite subsets on K and N is denoted by F , where N ⊂ F .

Studies on the sequence space have been mainly focused on some elementary concepts which are inclusions of sequence spaces, matrix

mapping, determination of topologies, [2]. Let X be a sequence space and A be an infinite matrix in X then the domain of matrix is determined

by

XA = {x = (xk) ∈ w : Ax ∈ X}

In general limitation matrix A produces novel sequence space XA and it is either contraction or the expansion of the original space. Indeed, it

is obviously clear that inclusion relations of X ⊂ X∆ and XS ⊂ X are decidedly satisfied for X ∈ {c, l∞,c0} [3]. In particular, the the difference

operator and sequence spaces which are fundamental samples for the matrix A and they have been investigated comprehensively through the

mentioned methods.

Let P represeents the means of Pascal which is described by the matrix of Pascal [4] then it is defined by

P = [pnk] =

{ (

n
n−k

)

,(0 ≤ k ≤ n)

0, (k > n)
,(n,k ∈ N)

Email addresses and ORCID numbers: saadettinaydin@gmail.com, https://orcid.org/0000-0002-9559-0730 (S. Aydın), h.polat@alparslan.edu.tr, https://orcid.org/0000-

0003-3955-9197 (H. Polat)
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and the inverse of matrix of Pascal Pn = (pnk) is defined by

P−1 = [pnk]
−1 =

{

(−1)n−k
(

n
n−k

)

, (0 ≤ k ≤ n)

0 , (k > n)
,(n,k ∈ N).

Pascal matrix contains some fascinating features. For instance; we can form three types of matrices: symmetric, lower triangular, and upper

triangular, for any integer n > 0. The n-th order symmetric Pascal matrix n is given by

Sn = (si j) =

(

i+ j−2

j−1

)

, for i, j = 1,2, ....,n, (1.2)

n−th order lower triangular Pascal matrix is presented by

Ln = (li j) =

{

(

i−1
j−1

)

,(0 ≤ j ≤ i)

0, ( j > i)
, (1.3)

and the n-th order upper triangular Pascal matrix of order is presented by

Un = (ui j) =

{ (

j−1
i−1

)

,(0 ≤ i ≤ j)

0, ( j > i)
. (1.4)

We notice that Un = (Ln)
T , n is any natural number.

i. Let Sn be the n-th order symmetric Pascal matrix given by (1.2), Ln be the n-th order lower triangular Pascal matrix given by (1.3), and Un

be the n-th order upper triangular Pascal matrix given by (1.4), then Sn = LnUn and det(Sn) = 1 [5].

ii. Let Sn be the n-th order symmetric Pascal matrix given by (1.2), then Sn is similar to its inverse S−1
n [5].

iii. Let A and B be n×n matrices. It is already known obviously that A is similar to B if one can define n×n invertible matrix Pi which

satisfies following

P−1AP = B [6].

iv. Let Ln be the n-th order Pascal matrix. It is also assumed that it is a lower triangular matrix which is given by (1.3), then L−1
n = ((−1)i− jli j)

[7].

Recently, Pascal sequence spaces was investigated by Polat [8] p∞, pc and p0 like as follows:

p∞ =

{

x = (xk) ∈ w : sup
n

∣

∣

∣

∣

∣

n

∑
k=0

(

n

n− k

)

xk

∣

∣

∣

∣

∣

< ∞

}

,

pc =

{

x = (xk) ∈ w : lim
n→∞

n

∑
k=0

(

n

n− k

)

xk exists

}

,

and

p0 =

{

x = (xk) ∈ w : lim
n→∞

n

∑
k=0

(

n

n− k

)

xk = 0

}

.

l∞ (∆) = {x ∈ w : (xk − xk+1) ∈ l∞}, c(∆) = {x ∈ w : (xk − xk+1) ∈ c} and c0 (∆) = {x ∈ w : (xk − xk+1) ∈ c0} are known as difference

sequence space and they are firstly defined by Kızmaz [9]. Further, various authors have defined and studied the difference sequence spaces,

which can be seen in the following papers [10]-[15].

In this manuscript, Pascal difference sequence spaces of p∞ (∆), pc (∆) and p0 (∆) are defined. They contain entire sequences whose

differences are in Pascal sequence spaces p∞, pc and p0, respectively. What is more, we determine the bases of the novel difference sequence

spaces pc (∆) and p0 (∆), and the α-, β - of the difference sequence spaces p∞ (∆), pc (∆) and p0 (∆). Finally, we give the characterization

of the necessary and sufficient conditions on an infinite matrix belonging to families of (pc (∆) : l∞) and (pc (∆) : c).

2. Inverse formula of the Pascal matrix and Pascal sequence spaces

We define the operators ∆ : w → w here and after it may be written for the sequence (xk − xk−1) that (∆x)k = ∆x. The well known difference

matrix and the inverse of the difference matrix are defined as follows:

(

∆(1)
)

nk
=

{

(−1)n−k, (n−1 ≤ k ≤ n)
0, (0 ≤ k < n−1 or k > n)

,(n,k ∈ N)

and
(

(

∆(1)
)−1

)

nk

=

{

1, (0 ≤ k ≤ n)
0, ( k > n)

,(n,k ∈ N).

Pascal difference sequence spaces are defined by p∞ (∆), pc (∆) and p0 (∆) by

p∞ (∆) = {x = (xk) ∈ w : (xk − xk−1) ∈ p∞} ,
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pc (∆) = {x = (xk) ∈ w : (xk − xk−1) ∈ pc} ,

and

p0 (∆) = {x = (xk) ∈ w : (xk − xk−1) ∈ p0} .

Let be a sequence y = {yn}, which is generally utilized as H- mapping or H- transformation of a sequence x = (xk) and H = P∆(1) i.e.,

yn = (Hx)n =
n

∑
k=0

(

n

n− k

)

(xk − xk−1) (2.1)

n

= ∑
k=0

[(

n

k

)

−

(

n

k+1

)]

xk

for each n ∈ N. It can be easily shown that p∞ (∆), pc (∆) and p0 (∆) are linear and normed spaces by the following norm:

‖x‖∆ = ‖y‖∞ = sup
n

|yn| . (2.2)

Theorem 2.1. p∞ (∆), pc (∆) and p0 (∆) sequence spaces are Banach spaces provided with the norm function given by (2.2).

Proof. In the space of p∞ (∆), let we define following sequence and suppose that it is a Cauchy sequence
{

xi
}

such that
{

xi
}

=
{

xi
k

}

=
{

x
(i)
0 ,x

(i)
1 ,x

(i)
2 , ...

}

∈ p∞ (∆) for every i ∈ N. For a given ε > 0 it may be found a positive integer N0(ε) such that
∥

∥xk
i − xn

i

∥

∥

∆
< ε for all k,

n > N0(ε). Hence

∣

∣

∣
H(xk

i − xn
i )
∣

∣

∣
< ε

for all k, n > N0(ε) and for each i ∈ N. Therefore, following sequence is a reeal Cauchy sequence
{

(Hxk)i

}

=
{

(Hx0)i,(Hx1)i,(Hx2)i, ...
}

for every fixed i ∈ N. Since real number of set R is complete, it converges, say

lim
i→∞

(Hxi)k → (Hx)k

for each k ∈ N. So, we have

lim
n→∞

∣

∣

∣
H(xk

i − xn
i )
∣

∣

∣
=
∣

∣

∣
H(xk

i − xi)
∣

∣

∣
≤ ε

for each k ≥ N0(ε). This implies that
∥

∥xk − x
∥

∥

∆
< ε for k ≥ N0(ε), that is, xi → x as i → ∞.

Now, we must show that x ∈ p∞ (∆). We have

‖x‖∆ = ‖Hx‖∞ = sup
n

∣

∣

∣

∣

∣

n

∑
k=0

(

n

n− k

)

∆xk

∣

∣

∣

∣

∣

= sup
n

∣

∣

∣

∣

∣

n

∑
k=0

(

n

n− k

)

(xk − xk−1)

∣

∣

∣

∣

∣

= sup
n

∣

∣

∣

∣

∣

n

∑
k=0

[(

n

k

)

−

(

n

k+1

)]

xk

∣

∣

∣

∣

∣

≤ sup
n

∣

∣

∣
H(xi

k − xk)
∣

∣

∣
+ sup

n

∣

∣

∣
Hxi

k

∣

∣

∣

≤
∥

∥

∥
xi − x

∥

∥

∥

∆
+
∣

∣

∣
Hxi

k

∣

∣

∣
< ∞

for all i ∈ N. This implies that x = (xi) ∈ p∞ (∆). Therefore p∞ (∆) is a Banach space.

It can be shown that pc (∆) and p0 (∆) are closed subspaces of p∞ (∆) which implies that pc (∆) and p0 (∆) are also Banach spaces. Moreover,

p∞ (∆) is a BK- space due to the fact that it is a Banach space with continuous coordinates
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3. The Bases of the sequence spaces pc(∆) and p0(∆)

In this part, it is firstly gien the Schauder basis for the spaces p0(∆) andpc(∆). In normed sequence space X , Schauder basis (or briefly bases)

is a sequnce of
{

b(k)
}

k∈N
such that x ∈ λ and (λk) of scalars such that

lim
n→∞

‖x− (λ0x0 +λ1x1 + ...+λnxn)‖= 0.

Theorem 3.1. Let b(k) =
{

b
(k)
n

}

n∈N
be the sequence of elements of the space p0 (∆) for each k ∈ N by

b
(k)
n =







0, (0 ≤ n < k)
n

∑
i=k

(−1)i−k
(

i
i−k

)

, (n ≥ k

Then the following assertions are true:

i. The sequence
{

b(k)
}

k∈N
is a basis for the space p0 (∆), and for any x ∈ p0 (∆) there exists a unique representation of the given form

x = ∑
k

λk (∆)b(k).

ii. The set
{

t,b(1),b(2),b(3), ...
}

is a basis for the space pc (∆), and for any x ∈ p0 (∆) there exists a unique representation of the given form

x = lt +∑
k

(λk (∆)− l)b(k),

where t = {tn} with tn =
n

∑
k=0

[

n

∑
i=k

(−1)i−k
(

i
i−k

)

]

, λk (∆) = (Hx)k, k ∈ N and l = lim
k→∞

(Hx)k.

Theorem 3.2. The sequence spaces p∞ (∆), pc (∆) and p0 (∆) are linearly isomorphic to given spaces l∞, c and c0 respectively, i.e., p∞ (∆)∼=
l∞, pc (∆)∼= c and p0 (∆)∼= c0.

Proof. To begin the proof of p0 (∆)∼= c0, it is firstly needed to indicate the presence of a linear bijection among spaces p0 (∆) and c0. Let

we also take the map T described by the (2.1), from p0 (∆) to c0 by x → y = T x . T is trivially linear. It is also evident that x = 0 since

T x = 0 and thus T is an injective.

Let y ∈ c0 and define the sequence x = {xn} by

xn =
n

∑
k=0

[

n

∑
i=k

(−1)i−k

(

i

i− k

)

]

yk.

Then,

lim
n→∞

(Hx)k = lim
n→∞

n

∑
k=0

(

n

n− k

)

∆xk =
n

∑
k=0

(

n

n− k

)

(xk − xk−1)

n

= ∑
k=0

[(

n

k

)

−

(

n

k+1

)]

xk = lim
n→∞

yn = 0.

Thus, we have x ∈ p0 (∆). Finally, T is is norm preserving and surjective. Thus, T is a linearly bijective. Therfore p0 (∆) and c0 spaces are

linearly isomorphic. Similarly, it might be demonstated that p∞ (∆) and pc (∆) are respectively linearly isomorphic to l∞ and c.

4. The α-, β - and γ- duals of the sequence spaces p∞ (∆) , pc (∆) and p0 (∆)

Here we present some facts together with their proofs to determine α-, β - and γ- duals of Pascal difference sequence spaces p∞ (∆), pc (∆)
and p0 (∆). Let λ and µ be two sequence space and let we determine the set S (λ ,µ) where

S (λ ,µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ} . (4.1)

From the (4.1), duals of α-, β - and γ- of the sequence space λ that are denoted severally by λ α , λ β and λ γ formed by Garling [17] as the

following manner,

λ α = S (λ , l1) , λ β = S (λ ,cs) and λ γ = S (λ ,bs) .

Following facts presented by Tietz and Stieglitz [18] are useful to prove following theorems.

Lemma 4.1. A ∈ (c0 : l1) if and only if

sup
K∈F

∑
n

∣

∣

∣

∣

∣

∑
k∈K

ank

∣

∣

∣

∣

∣

< ∞ .
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Lemma 4.2. A ∈ (c0 : c) if and only if

sup
n

∑
k

|ank|< ∞,

lim
n→∞

ank −αk = 0.

Lemma 4.3. A ∈ (c0 : l∞) if and only if

sup
n

∑
k

|ank|< ∞.

Theorem 4.4. Let a = (ak) ∈ w and the matrix B = (bnk) by

bnk =

[

n

∑
i=k

(−1)i−k

(

i

i− k

)

an

]

.

Then the α- dual of the spaces p∞ (∆), pc (∆) and p0 (∆) is the set

b =

{

a = (an) ∈ w : sup
K∈F

∑
n

∣

∣

∣

∣

∣

∑
k∈K

n

∑
i=k

(−1)i−k

(

i

i− k

)

an

∣

∣

∣

∣

∣

< ∞

}

.

Proof. Let us assume to have a = (an) ∈ w and specially defined matrix B such that rows of the given matrix are the products of the rows of

the given matrix
(

∆(1)
)−1

P−1. From the (2.1), it is derived immediately that

anxn =
n

∑
k=0

[

n

∑
i=k

(−1)i−k

(

i

i− k

)

an

]

yk =
n

∑
k=0

bnkyk = (By)n (4.2)

i, n ∈ N. We therefore see from the (4.2) that ax = (anxn) ∈ l1 when x ∈ p∞ (∆), pc (∆) and p0 (∆) iff By ∈ l1 whenever y ∈ l∞, c and c0.

Consequently, it is obtained from the first lemma that

sup
K∈F

∑
n

∣

∣

∣

∣

∣

∑
k∈K

n

∑
i=k

(−1)i−k

(

i

i− k

)

an

∣

∣

∣

∣

∣

< ∞

which yields the consequence that [p∞ (∆)]α = [pc (∆)]
α = [p0 (∆)]

α = b.

Theorem 4.5. Let a = (ak) ∈ w and the matrix C = (cnk) by

cnk =







n

∑
i=k

i

∑
j=k

(−1) j−k
(

j
j−k

)

ai if 0 ≤ k ≤ n,

0 i f k > n,

and define sets c1, c2, c3 and c4 by

c1 =

{

a = (ak) ∈ w : sup
n

∑
k

|cnk|< ∞

}

,

c2 =
{

a = (ak) ∈ w : lim
n→∞

cnk exists for each k ∈ N
}

,

c3 =

{

a = (ak) ∈ w : lim
n→∞

∑
k

|cnk|= ∑
k

∣

∣

∣
lim
n→∞

cnk

∣

∣

∣

}

,

and

c4 =

{

a = (ak) ∈ w : lim
n→∞

∑
k

cnk exists

}

.

Then [p0 (∆)]
β , [pc (∆)]

β and [p∞ (∆)]β is c1 ∩ c2, c1 ∩ c2 ∩ c4 and c2 ∩ c3, respectively.
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Proof. We solely present the proof for p0 (∆) space. Since the rest of proof is accomplished by using the similar argument for pc (∆) and

p∞ (∆). Let we take the following equation

n

∑
k=0

akxk =
n

∑
k=0

[

n

∑
i=k

i

∑
j=k

(−1) j−k

(

j

j− k

)

y j

]

ak

=
n

∑
k=0

[

n

∑
i=k

i

∑
j=k

(−1) j−k

(

j

j− k

)

ai

]

yk

= (Cy)n .

Hence, it is deduced by the second lemma and aforementioned equality that ax = (anxn) ∈ cs when x ∈ p0 (∆) iff Cy ∈ c whenever y ∈ c0.

Consequently, it may be shown due to the second lemma that {p0 (∆)}
β = c1 ∩ c2.

Theorem 4.6. The γ-dual of the spaces p∞ (∆), pc (∆) and p0 (∆) is the set c1

Proof. Proof is accomplished by utilizing the similar method as in the above case.

5. Some matrix transformations on the sequence spaces pc (∆)

We shall for brevity that

ãnk =
∞

∑
i=k

i

∑
j=k

(−1) j−k

(

j

j− k

)

ani

and

ĝnk =
n

∑
i=k

i

∑
j=k

(−1) j−k

(

j

j− k

)

ani

In this part, some classes (pc (∆) : l∞) and (pc (∆) : c) are characterized. Following proofs of theorems is finalized by considering familiar

approaches. Detais left to the reader.

Theorem 5.1. A ∈ (pc (∆) : l∞) if and only if

sup
n

∑
k

|ĝnk|< ∞, (5.1)

lim
n→∞

∑
k

ĝnk exists for all m ∈ N, (5.2)

sup
n∈N

∑
k

|ãnk|< ∞, (n ∈ N) (5.3)

and

lim
n→∞

ãnk exists for all n ∈ N. (5.4)

Theorem 5.2. A ∈ (pc (∆) : c) iff (5.1)-(5.4) hold, and

lim
n→∞

∑
k

ãnk = α,

lim
n→∞

(ãnk) = αk , (k ∈ N) .
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Abstract

The aim of this paper is to describe some connections between spectral theory in infinite

dimensional Lie algebras, deformation theory and linearization of nonlinear dynamical

systems. We explain how results from isospectral deformations, cohomology groups and

algebraic geometry can be used to obtain insight into integrable systems. Another part will

be dedicated to the study of infinite continued fractions and isospectral deformation of peri-

odic Jacobi matrices and general difference operators from an algebraic geometrical point

of view. Also, the notion of algebraically completely integrable systems is explained and

techniques to solve such systems are presented. Several nonlinear problems in mathematical

physics illustrate these results.

1. Introduction

The discovery towards the end of the 19th century by Poincaré [1] that complete integrability is an exceptional a phenomenon for Hamiltonian

dynamical systems marked the end of a long and fruitful interaction between Hamiltonian mechanics and algebraic geometry and the interest

in integrable systems disappeared almost completely; it has been a dormant subject for more than half a century. In fact many algebraic

geometrical results such that elliptic and hyperelliptic curves, Abelian integrals, Riemann surfaces, etc., have their origin in problems of

mechanics. Fortunately the discovery, 50 years ago that the Korteweg-de Vries (KdV) equation [2] could be integrated by spectral methods

have generated an enormous number of new ideas in the area of Hamiltonian completely integrable dynamical systems. The resolution of

this problem has led to unexpected connections between mechanics, spectral theory, Lie groups, algebraic geometry and even differential

geometry, which has provided new insights into the old mechanical problems of the last centuries and many new ones as well. With respect

to this, some questions arise: how do you decide about the complete integrability of a Hamiltonian system? Once you have found necessary

conditions of complete integrability on the parameters involved in a Hamiltonian system, how do you prove that the system is effectively

completely integrable and how to determine its solutions explicitly? It is well known that solving explicitly a nonlinear Hamiltonian system

by quadrature (i.e., by a finite number of algebraic operations including the inverting of functions), was a central theme in mechanics during

the 19-th century but the methods of resolution were something very unsystematic and required a great deal of luck and ingenuity. Jacobi [3]

himself was very much aware of this difficulty in his famous ”Vorlesungen über Dynamik”, in the context of geodesic flow on the ellipsoid

(before introducing the elliptic coordinates). Difficulties come from the fact that in most problems the quadratures were obtained in terms

of elliptic or hyperelliptic integrals and where it was often necessary to find remarkable coordinates algebraically related to the originally

given ones, in which the Hamilton-Jacobi equation could be solved by separation of variables. In recent years, important results have been

obtained following studies on the Korteweg-de Vries (K-dV) and Kadomtsev-Petviashvili (KP) hierarchies. The use of tau functions related

to infinite dimensional Grassmannians, Fay identities, vertex operators and the Hirota’s bilinear formalism led to obtaining important results

concerning these algebras of infinite order differential operators. In addition, many problems related to algebraic geometry, combinatorics,

probabilities and quantum gauge theory,..., have been solved explicitly by methods inspired by techniques from the study of dynamical

integrable systems. An account of these results will appear elsewhere. This circle of ideas are far from being completely understood, but it is

a gold mine of research problems.

Email addresses and ORCID numbers: lesfariahmed@yahoo.fr, https://orcid.org/0000-0001-6213-4301, (A. Lesfari)
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The purpose of this paper is to describe some connections between spectral theory, Jacobi matrices, continued fractions and difference

operators and it is organized as follows: Section 2 concerns nonlinear integrable dynamical systems which can be written as Lax equations

with a spectral parameter. Such equations have no a priori Hamiltonian content. However, through the Adler-Kostant-Symes construction, we

can produce Hamiltonian dynamical systems on coadjoint orbits in the dual space to a Lie algebra whose equations of motion take the Lax

form. We outline an algebraic-geometric interpretation of the flows of these systems, which are shown to describe linear motion on a complex

torus via the van Moerbeke-Mumford linearization method. We also present Griffith’s method of studying these problems without reference

to Kac-Moody’s algebras. These results are exemplified by several problems of dynamical integrable systems: Euler-Arnold equations for

the geodesic flow on the special orthogonal group (the rotation group), Jacobi geodesic flow on the ellipsoid, Neumann problem on the

sphere, Lagrange top, periodic infinite band matrix, n-dimensional rigid body and Toda lattice. Section 3 is devoted to the study of some

connections between continued fractions, isospectral deformation of Jacobi matrices, difference operators, Cauchy-Stieltjes transform and

Abelian integrals from an algebraic geometrical point of view. In Section 4 the notion of algebraically completely integrable Hamiltonian

systems are explained and techniques to solve such systems are presented. Some important problems will be studied such that: the periodic

5-particle Kac-van Moerbeke lattice, generalized periodic Toda systems, Ramani-Dorizzi-Grammaticos (RDG) series of integrable potentials

and a generalized Hénon-Heiles system.

2. Coadjoint orbits in Kac-Moody Lie algebras, isospectral deformations and linearization

Assume a Hamiltonian system having the Lax form (with a rational indeterminate h) :

Ȧ ≡ dA

dt
= [A,B] or [B,A], A =

n

∑
j=l

A jh
j, B =

n

∑
j=l

B jh
j, (2.1)

where A j and B j are matrices.

Theorem 2.1. For every h ∈ C, the flow (2.1) preserves the spectrum of A. For almost all (z,h) ∈ C2, the spectral curve defined by

C = {(z,h) ∈ C2 : P(z,h)≡ det(A− zI) = 0}, (2.2)

is time independent and its coefficients tr (An) are first integrals.

The matrix A− zI, has a one-dimensional null-space, defining a holomorphic line bundle on the curve C. Whenever the entries of the A j

are moving in time, the curve C does not move, inducing a motion on the set of line bundles. The set of holomorphic line bundles on an

algebraic curve form a group for the operation of tensoring ⊗ and the full set with a given topological type is parametrized by the points

of a g-dimensional complex algebraic torus, where g is the genus of the curve. This torus that we note, Jac(C), is the Jacobian or Picard

variety of the curve. When C is an elliptic curve, Jac(C) is isomorphic to C. Since the flow (2.1) induces deformations of line bundles, their

topological type remains unchanged and therefore it induces a motion on the Jacobian variety; under some checkable condition on A and B,

du to Griffiths [4] (see further for details).

We state the Adler-Kostant-Symes theorem [5]-[7] valid for any Lie algebra :

Theorem 2.2. Let G be a Lie algebra with a non-degenerate, ad-invariant metric 〈,〉. Assume that G = L ⊕K as a vector space

decomposition, where L is an ideal and K is a Lie sub-algebra.

a) Then we have the split G = G ∗ = L ⊥+K ⊥, L ⊥ ≃ K ∗ coupled with K via an induced form 〈〈,〉〉 inherits the Kostant-Kirillov

coadjoint symplectic structure. The Poisson bracket of the latter, between functions F and G on K ∗, is given by

{F,G}(A) = 〈〈A, [∇K ∗F,∇K ∗G]〉〉 , A ∈ K
∗.

b) Let M ⊂ K ∗ be an invariant manifold under the above coadjoint action of K on K ∗. Then the functions H defined on a neighborhood

of M invariants under the coadjoint action of G , lead to commuting vector fields of the Lax isospectral flows

Ȧ ≡ dA

dt
= [A, prL (∇H)] ,

where prL is the projection on L .

The reader interested in the most general form of this theorem can consult with profit the recent paper [8]. This is a general theorem for

constructing fully dynamical Hamiltonian integrable systems on the coadjoint orbits of a Lie algebra. We will see explicitly how to apply,

with some precautions, this theorem to certain Lie algebras of infinite dimension.

Any finite dimensional semi-simple Lie algebra G leads to an infinite dimensional Lie algebras, the so-called Kac-Moody extensions (that

we also note G ) :

G =

{
n

∑
−∞

A jh
j|n ∈ Z free

}
,

with bracket
[
∑Aih

i,∑B jh
j
]
= ∑

k
∑

i+ j=k

[
Ai,B j

]
hk

and ad-invariant, symmetric forms

〈
∑Aih

i,∑B jh
j
〉

k
= ∑

i+ j=−k

〈
Ai,B j

〉
,
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depending on k ∈ Z. Obviously if the form 〈,〉 is non degenerate, then the form 〈,〉k is also.

Let G s
r (r ≤ s) be the vector subspace of G , corresponding to powers of h between r and s. A first interesting class of problems is obtained

by taking G = G l(n,R) and by putting the form 〈,〉1 on the Kac-Moody extension. Then we have the decomposition into Lie sub-algebras

G = G
∞
0 +G

−1
−∞ ≡ L +K ,

with L = L
⊥, K = K

⊥ and L = K
∗.

Another class is obtained by choosing any semi-simple Lie algebra G . Then the Kac-Moody extension G equipped with the form 〈,〉= 〈,〉0

has the natural level decomposition

G = ∑
i∈Z

Gi,
[
Gi,G j

]
⊂ Gi+ j, [G0,G0] = 0, G∗

i = G−i.

Let A+ = ∑
i≥0

Gi and A− = ∑
i<0

Gi. Then the product Lie algebra G ×G has the following bracket and pairing

[(a1,a2) ,((b1,b2)] = ([a1,b1],−[a2,b2]) , 〈(a1,a2) ,(b1,b2)〉= 〈a1,b1〉−〈a2,b2〉.

It admits the decomposition into L +K with

L = {(a,−a) : a ∈ G } , L
⊥ = {(a,a) : l ∈ G } ,

K = {(c1,c2) : c1 ∈ A−,c2 ∈ A+,Pr0(c1) = Pr0(c2)} , K
⊥ = {(c1,c2) : c1 ∈ A−,c2 ∈ A+,Pr0(c2 + c1) = 0} ,

where Pr0 denotes projection onto G0. Then from the last theorem, the orbits in K ∗ = L ⊥ possesses a lot of commuting Hamiltonian

vector fields of Lax form.

We consider the invariant manifold Mn, n ≥ 1, in L = K ∗ defined by the set of

A =
n−1

∑
j=1

A jh
j +µh j, µ ≡ diag(µ1, ...,µn) fixed, diag(An−1) = 0,

as well as the K -invariant manifolds Mk
− j defined by

Mk
− j =

k

∑
i=− j

Li ⊆ G ≃ L
⊥.

We state the following theorem [9]-[11] :

Theorem 2.3. a) Let H =
〈

f (Ah− j),hk
〉

1
, be functions defined on the manifold Mn where f are differentiable functions. Then, the equations

Ȧ =
[
A,PrK ( f ′(Ah− j)hk− j)

]
, A =

n−1

∑
i=0

Aih
i +µhn,

determine integrable Hamiltonian systems whose linearization is carried out on the Jacobian of the curve C of genus (m−1)(mn−2)/2

defined by (2.2). Moreover, especially for j = n, k = n+1, the flow

Ȧ =
[
A , adν ad−1

µ An−1 +νh
]
, (2.3)

depends on f by the relation νi = f ′ (µi) only.

b) Let H(a1,a2) = f (a1), be functions defined on the manifold Mk
− j where f are differentiable functions. We have

ȧ =

[
a,(Pr+− 1

2
pr0)∇H(a)

]
,

where Pr+ is the projection onto A+ and these Lax equations are linearized on the Jacobian of a curve whose affine equation is given by the

characteristic polynomial of elements in Mk
− j, considered as functions of h.

Using the van Moerbeke-Mumford approach [11], one can construct an algebraic map from the complex invariant manifolds of linearizable

dynamical systems to the Jacobi variety Jac(C) or one of its sub-manifolds such as Prym varieties, associated with an algebraic curve

determined by the spectral curve C (2.1). The equations that linearize the dynamic system are given by

g

∑
j=1

∫ s j(t)

s j(0)
ωk = ckt, 1 ≤ k ≤ g,

where (ω1, ...,ωg) is a basis in the space of holomorphic differentials on the curve C of genus g.

1) As a first example for M1 in the above theorem, we consider A = X +µh, with X ∈ so(n). It is deduced that the Hamiltonian flow (2.3),

where µi and νi can be taken arbitrarily, is the 0th-order in h

Ẋ = [X ,Λ(X)], Λ(X)i j = λi jXi j, λi j = λ ji, λi j =
νi −ν j

µi −µ j
,
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and an identity to first order in h. This flow expresses the Euler-Arnold equations [12] for the geodesic flow on the group SO(n), for a left

invariant diagonal metric Λ. The algebraic curve

C = {(z,h) ∈ C2 : det(X +µh− zI) = 0},

has an involution

σ : C −→C, (z,h) 7−→ (−z,−h),

exchanging sheets of C over C0 =C/σ . In such a situation, this involution extends by linearity to a map (which will again be denoted by

σ ), σ : Jac(C)−→ Jac(C) and up some points of order two, the Jacobi variety Jac(C) splits into an even part, i.e., Jac(C) and an odd part

(Prym variety) denoted Prym(C/C0) and defined by

Prym(C/C0) =

(
H0
(

C,Ω1
)−)∗

/H1 (C,Z)− ,

where Ω1 is the sheaf of holomorphic 1-forms on the curve C and − means the −1 eigenspace for a vector space on which the involution σ
acts. We have

Jac(C) = Jac(C0)⊕Prym(C/C0).

The phase space for this problem is an orbit defined in the group SO(n) by [ n
2 ] orbit invariants. By Theorem 2.3, the problem linearizes on

Prym(C/C0) of dimension
n(n−1)

2
−[ n

2
]

2 .

2) For another example, consider the case of M2 in the above theorem with

A = µh2 − y⊗ y−hx∧ y, (x,y ∈ Rn),

where (x,y) ∈ R2n. In this case, equation (2.3) is reduced to the study of

Ȧ =
[
A,νh+adν ad−1

µ (y∧ x)
]
,

where νi = f ′(µi). Explicitly, we can rewrite this equation in the form of a nonlinear dynamic system :

ẋ = −∂Hν

∂y
=−νy− (adν ad−1

µ (y∧ x))x,

ẏ =
∂Hν

∂x
=−(adν ad−1

µ (y∧ x))y,

where

Hν =
1

2
∑

i

νi

(
y2

i +∑
j 6=i

(xiy j − x jyi)
2

µi −µ j

)
.

Note that in the particular case where

f (z) = logz, νi =
1

µi
,

then this problem is reduced to the study of the well known Jacobi geodesic flow on the ellipsoid :

x2
1

ν2
1

+ · · ·+ x2
n

ν2
n

= 1.

Another special case is where f (z) =
1

2
z2, νi = µi. Here the problem is reduced to the study of the Neumann movement (under the influence

of the force −µx) of a point on the sphere [13] :

Sn−1 : x2
1 + · · ·+ x2

n = 1.

According to theorem 2.3, the linearization of the problem related to these two cases is carried out on the Jacobi variety Jac(H ), where H

is a hyperelliptic curve of genus n−1. For an interesting geometric interpretation of these motions and their relationship with confocal

quadrics, theorem of Chasles, geodesic, intersection of two quadrics, K-dV equation, etc., see for example [13]-[17].

3) Another example of M2, n = 3, in the above theorem, concerns the Lagrange spinning top [18]. It expresses a particular case of the

rotational motion of a solid body around a fixed point. Here, we have

A = mh+ γ + lh2,

where m ∈ so(3) (angular momentum), γ ∈ so(3) (unit vector in the direction of gravity), l = (α +β )ε with ε ∈ so(3) (coordinates of the

center of mass) and where (α +β ,α +β ,2α) (inertia tensor in diagonalized form). Here, the linearization of the problem takes place on the

Jacobi variety of an elliptic curve, i.e., on the curve itself (see [19] and for higher-dimensional generalizations [20]).
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4) As an example of Mk
− j in theorem 2.3, b) (see [9]-[11]), we consider the periodic infinite band matrix M of period n having j+h+1

diagonals; the spectrum of M is defined by the points (z,h) ∈ C2 such that

Mv(h) = zv(h), v(h) = (...,h−1v,v,hv, ...), v ∈ Cn.

Let Mh be the square matrix obtained from M and let C be the curve whose affine equation is det(Mh − zI) = 0. Then the set of infinite band

matrices with j+ k+1 diagonals, in higher dimensions many partial results seem to lead to rigidity. In fact, it was shown that a discrete

2-dimensional Laplacian cannot be deformed, given its periodic spectrum; the proof can be summarized by the observation that the Picard

variety of most algebraic surfaces are trivial; the proof that the specific spectral surface defined by the 2-dimensional Laplacian has trivial

Picard variety is based on the technique of toroidal embedding, which reduces cohomological computations to combinatorial questions.

Finally, inspired by the dynamical systems, Mumford [21] has given a beautiful description of hyperelliptic Jacobians of dimension g.

Griffiths [4] has given a necessary and sufficient condition on B (easily checkable), for an equation of the type (2.1) to be linearizable on

the Jacobi variety Jac(C) of its spectral curve defined by (2.2) (although, without reference to Kac-Moody Lie algebras). Indeed, suppose

that for every p(z,h) belonging to the curve C of affine equation (2.2), with dimker(A− zI) = 1 (i.e., the corresponding eigenspace of A

is one-dimensional) and generated by a vector v(t, p) ∈ Cn. So, we can find a family of holomorphic mappings which send (z,h) ∈C to

ker(A− zI) :

φt : C −→ Pn(C), p 7−→ Cv(t, p),

called the eigenvector map associated to the equation (2.1). Let

Ψ(t) = φ∗
t

(
OPn(C)(1)

)
∈ Pics(C), s = deg φt(C),

where Pics(C)∼= Jac(C) is the Picard variety of the curve C and OPn(C)(1) is the hyperplane line bundle in Pn(C). Obviously the degree of

Ψ(t) does not vary with t Let H be the hyperplane class in Pn(C). The Poincaré dual of the class [C] of C coincides with the degree of C,

deg Ψ(t) =
∫

C
φ∗

t H =
∫

φt (C)
H = deg(C).

Since Ψ(t) moves in Pics(C) when t varies, then by fixing a line bundle Ψ(0) ∈ Pics(C), the line bundle Ψ(0)−1 ⊗Ψ(t) moves in the

Jacobian variety Jac(C). We will determine a necessary and sufficient condition of a cohomological nature on B so that the flow

t 7−→ Ψ(t), (2.4)

is linearizing on Jac(C). By applying cohomological techniques of the theory of deformation, we can find necessary and sufficient conditions

to linearize the flow (2.4). Indeed, this is because the tangent space for any deformation is in a proper cohomology group, and according to

the theory of duality on algebraic curves, the higher cohomology can always be eliminated. Let’s see that with a little more detail. Let X be a

complex manifold and

φ : C −→ X , (2.5)

a non-constant holomorphic map. Let θC, θX be the respective tangent sheaves and φ∗ the differential of φ . The normal sheaf of C in X is

defined by the following exact sequence

0 −→ θC
φ∗−→ φ∗θX −→ Nφ −→ 0 (2.6)

and let H0(C,Nφ ) (that we also note H0(Nφ )) be the Kodaira-Spencer tangent space [22] to the moduli space of (2.5). Let φt : C −→ X ,

φ0 = φ , be a deformation of (2.5). In local product coordinates (z, t) on
⋃

t Ct , w = (w1,w2, ...,wn) ∈ X , we show that φt is given by

(t,ξ ) 7−→ w(t,ξ ), i.e., the section φ̇ ∈ H0(Nφ ) and is locally given by

∂w(t,ξ )

∂ t

∣∣∣∣
t=0

modulo
∂w(0,ξ )

∂ z
.

The corresponding cohomological sequence of (2.6) is

H0(θC)−→ H0(φ∗θX )−→ H0(Nφ )
∂−→ H1(θC).

Consider the tangent space H1(θC) to the moduli space of the curve C as well as the tangent Ċ ≡ ∂ (φ̇) ∈ H1(θC) to the family of curves

{Ct}. Hence, H0(φ∗θX )/H0(θC)⊂ H0(Nφ ) is the tangent space to deformations of (2.5) where, according to theorem 2.1, the curve C is

independent of t.

Consider now the Euler exact sequence of vector bundles

0 −→ OPn(C)
i−→ Cn ⊗OPn(C)(1)

p−→ OPn(C) −→ 0

Therefore, the following sequences (Ψ(0) = φ∗OPn(C)(1)) :

0

↓
OC

↓v

Cn ⊗Ψ(0)
↓

0 −→ θC
φ∗−→ φ∗ΘPn(C) −→ Nφ −→ 0

↓
0
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are exact and the cohomology diagram corresponding to these sequences contains the following part :

H0(C,Cn ⊗Ψ(0))
↓τ

H0(C,θC) −→ H0(C,φ∗θPn(C))
j−→ H0(C,Nφ )

δ−→ H1(C,θC)

↓δ

H1(C,OC)

Let (t,ξ ) 7−→ v(t,ξ ) ∈ Cn\{0}, be a position vector mapping with ξ a local coordinate on C. In other words, a local lift vt (which is a

time-dependent map C −→ Cn\{0}) of the family of holomorphic maps φt : C −→ Pn(C), to Cn\{0}, such that

φt(ξ ) = C.v(t,ξ )⊂ Cn.

As this lift exists only locally, it will have to find an independent object of this lift but which exists globally. The solution is to use this lift to

determine such an object that we note v̇. Notice that the space Cvt(p) and the fibre of φ∗OPn(C)(−1) at a point p ∈C identify and define the

maps φ∗OPn(C)(−1)Cn ⊗OC and

vt : OC −→ Cn ⊗Ψ(t), φ 7−→ φvt ,

(here, v0 coincides with the application v mentioned in the previous diagram). In the case where η will be another lift such that :

η(t,ξ ) = κ(t,ξ )v(t,ξ ), κ 6= 0,

then we will have η̇ = κ v̇+ κ̇v. The inclusion OC
v→֒ Cn ⊗L, L = f ∗OPn(C)(1), is locally given by OC ∋ φ 7−→ φ .v, and then (modulo

v(t,ξ )), the expression

v̇(ξ ) =
∂v(t,ξ )

∂ t

∣∣∣∣
t=0

∈ H0(C,Cn ⊗L/OC) = H0(C, f ∗θPn(C))

is well-defined independently of the choice of the lift, and we have σ(v̇) = φ . We are interested in the tangent vector

Ψ̇(0)≡ dΨ(t)

dt

∣∣∣∣
t=0

∈ H1(C,OC).

Theorem 2.4. If v̇ is an infinitesimal variation of φt : C −→ Pn(C), then

Ψ̇(0)≡ dΨ(t)

dt

∣∣∣∣
t=0

= δ (v̇) ∈ H1(C,OC).

In addition if τ is the map mentioned in the diagram above, then there is an equivalence between the fact that Ψ̇(0) = 0 and v̇ = τ(w) for

some w ∈ H0(Cn ⊗Ψ(0)).

Let h0, h1 be homogeneous coordinates and consider h as an affine coordinate on P1(C) which is the base of the covering π : C −→ P1(C).
Note that B(t,h) can be written in the form

B(t,h) =
N

∑
k=0

Bk(t)h
k =

N

∑
k=0

Bk(t)h
N

(
h1

h0

)k

∈ H0(C,Hom(F ,F (N))),

where F is the sheaf of sections of the trivial bundle C×F . We have F (D) = F ⊗OC(D) and B(t,h) can be seen as a holomorphic

section of the bundle Hom(F ,F )⊗OC(N), OC(N) = π∗OP1(N). In other words, we visualize h = [h0 : h1] as a homogeneous coordinate

on P1(C) pulled up to C. We have
B

hK
0

∈ H0(C,Hom(F ,F (D))), v ∈ H0(V ⊗L) where D = (hN
0 ), is the divisor N.π−1(∞) on the curve C

and F (D)∼= F (N) are the sections of F ⊗OC(D). It should be noted that here
B

hN
0

is a matrix in Hom(F ,F ) with meromorphic functions

in H0(C,OC(D)) as entries, i.e.,
h1

h0
is seen as a function on HO(C,OC(D)). We deduce that

(
B

hN
0

)
.v ∈ H0(C,F ⊗Ψ(0)(D)) and the Lax

equation can be interpreted in cohomological form as follows:

Theorem 2.5. The following conditions are equivalent :

(i)

v̇ = τ

(
B

hN
0

.v

)
Ψ̇(0) = 0,

(ii) There is a meromorphic function ϕ ∈ HO(C,OC(D)) such that
B

hN
0

.v+ϕv ∈ H0(C,F ⊗L(D)) is holomorphic.
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By differentiating the eigenvalue problem Av(t, p) = zv(t, p) (in the neighborhood of the point p = (h,z) ∈C) with respect to t, and taking

into account the Lax equation in the form Ȧ = [B,A], we immediately obtain the expression A(v̇−Bv) = z(v̇−Bv). Since eigenvalues have

(generically) a multiplicity of 1, then for a some λ , we have

Bv = v̇+λv. (2.7)

This equation can be written in the form Bv = v̇+λ jv, where λ j is the main part of Laurent series expansion of λ in the neighborhood of p.

Then given the curve C defined by (2.2) and p ∈C, Griffiths defines

Lp ≡ [Laurent tail(B)]p = {main part of Laurent series expansion of λ in the neighborhood of p},

and shows that the linearization of the Lax flow takes place on the Jacobi variety Jac(C) if and only if p ∈ (h)∞ (divisor of the poles of h), we

have for any meromorphic function f on C such that : ( f )≥ n(h)∞,

dLp

dt
∈ linear combination {Lp; Laurent tail at p of f}.

Let P(h,g) ∈ C[h,g] and note that if we replace B by B+P(h,A) in equation (2.1), we see that this equals invariant which shows that B is

not unique and that its natural place is somewhere in a cohomology group.

Consider a positive divisor

D =

(
1

h

)
(∞) = ∑

j

n j p j, n j ≥ 0,

on C, where h is seen as a meromorphic function. The polynomial B(t,h) =
n

∑
k=0

Bkhk of degree n should be interpreted as an element of

H0(C,Hom(V,V (D)) where V is the sheaf of sections of the trivial bundle C×V and V (D) =V ⊗OC(D). A section of OD(D) is written

ϕ = ∑ϕ j, ϕ j =
−1

∑
k=−n j

akzk
j,

where z j is a local coordinate around p j. This is a principal part (Laurent tail) centered on p j. A question arises : Given a main part ϕ j,

determine conditions for a function ϕ ∈ H0(C,OC(D)) such that ϕ −ϕ j is holomorphic in the neighborhood of p j. The answer to this

question (known as the Mittag-Leffler problem) is provided by

Theorem 2.6. Let {ϕ j} be a Laurent tail and let D = ∑ j a j p j. The following conditions are equivalent :

(i) There exist ϕ ∈ H0(C,OC(D)) such that ϕ −ϕ j is holomorphic near p j .

(ii) For every holomorphic differential ω on C, we have

∑
j

Resp j
(ϕ j.ω) = 0.

The residue of B, denoted by ς(B) ∈ H0(C,OD(D), is the collection of Laurent tails {λ j} given above, where λ j is the main part of the

Laurent series expansion of λ around p.

We will say that the flow Ψ(t) (2.4) is linearized if there is a complex number c such that

d2Ψ(t)

dt2
= c

dΨ(t)

dt
.

The Griffiths theorem is as follows :

Theorem 2.7. 1) We have

Ψ̇(0) =
dΨ(t)

dt

∣∣∣∣
t=0

= δ1(ς(B)).

2) The following conditions are equivalent :

(i) The flow Ψ(t) (2.4) is linearized in Pics(C).

(ii) We have

ς(Ḃ) = 0 mod.(ς(B), Im res),

where Im res ⊂ H0(C,OD(D) is the Laurent tails of meromorphic functions in H0(C,OD(D)).

(iii) We have

∑
j

Resp j
(ς̇ j(B))ω) = t ∑

j

Resp j
(ς j(B))ω), ω ∈ H0(C,ΩC)
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It follows from the above theorem that the linearized flow on Jac(C) is provided by the bilinear map

(t,ω) 7−→ t ∑
j

Resp j
(ς j(B))ω) = t ∑

j

Resp j
(λ jω). (2.8)

As an example, consider Euler’s problem of a free rigid body in Rn. This one is described by the following equations :

Ṁ = [M,Ω], M = ΩJ+ JΩ ∈ so(n), Ω(t) ∈ so(n),

where J = diag(λ1, ...,λn), λ j > 0. These equations form a Hamiltonian system on each adjoint orbit of so(n) and whose Hamiltonian

is explicitly described by H(M) =
1

2
(M,Ω) =−1

4
Tr(MΩ). Manakov [23] observed that these equations admit a Lax equation with an

indeterminate parameter h,

˙

(

︷ ︸︸ ︷
M+ J2h) = [M+ J2h,Ω+ Jh].

Hence D =

(
1

h

)
(∞) = ∑ j p j, is the divisor with n distinct points p j located on h = ∞. We deduce from equation (2.7) with B = Ω+ Jh,

the following relation : ς(B) = ∑
j

λ j

z j
, where z j =

1

h
is a local coordinate on C around p j. We have ς(Ḃ) = 0 since λi are constant,

and consequently, the flow is linearized on Jac(C). Taking into account that A = M + J2h, M +M⊤ = 0, J2 − J2⊤ = 0, we obtain

P(h,z) = (−1)nP(−h,−z). The curve C has an involution σ : C −→ C, (h,z) 7−→ (−h,−z). Here the linearization of the problem

necessitates the knowledge of
1

2
dimO independent first integrals and in involution (this is because Ω moves on an adjoint orbit O ⊂ so(n)).

In general, we have

dimO =
n(n−1)

2
−
[n

2

]
, (2.9)

Let g(C) =
(n−1)(n−2)

2
be the genus of the algebraic curve C and g(C0) the genus of the quotient C0 =C/σ of C by the involution σ .

Using the Riemann-Hurwitz formula, we get

g(C)−g(C0) =
1

2

(
n(n−1)

2
−
[n

2

])
. (2.10)

Note that σ(ς(B)) =−ς(B) and the linearization of the problem in question is carried out on the Prym variety Prym(C/C0) of the curve C

for the involution σ , interchaging the sheets of the double covering C −→C0. From (2.10) it follows that

dimPrym(C/C0) =

{
n(n−2)

4 n ≡ 0 mod.2
(n−1)2

4 n ≡ 1 mod.2
(2.11)

and taking into account (2.9), we finally get dimPrym(C/C0) =
1

2
dimO . The linearization of the Euler equations is carried out on the Prym

variety Prym(C/C0) of exactly the correct dimension.

3. Infinite continued fraction and spectral theory for periodic Jacobi operators

A Jacobi matrix is a doubly infinite matrix (ai j) with entries i, j such that : ai j = 0 for |i− j| large enough. The set of these matrices is an

associative algebra and consequently a Lie algebra by anti-symmetrization. Consider the Jacobi matrix

Γ =




b1 a1 0 · · · 0

a1 b2 a2

...

0 a2

. . .
. . . 0

...
. . .

. . .

0 · · · 0




,

where all the b j are real and all the a j are positive, and let

ϕ(z) =
a2

0

z−b1 −
a2

1

z−b2 −
a2

2

z−b3−. . .

(3.1)

be the associated continued Γ-fraction, where a0 is a positive real number. By cutting off the Γ-fraction ϕ(z) at the k-th term, we obtain the

k-th Padé approximant
Ak(z)

Bk(z)
of ϕ(z), i.e.,

ϕ(z) = lim
k→∞

Ak(z)

Bk(z)
. (3.2)
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We show that ϕ(z) admits formal series expansion arount the point z = 0 (pole),

ϕ(z) =
c0

z
+

c1

z2
+

c2

z3
+ · · ·=

∞

∑
k=0

ck

zk+1
.

Note that the characteristic polynomial

Bk(z) = det




b1 − z a1 0 · · · 0

a1 b2 − z a2

...

0 a2

. . .
. . . 0

...
. . .

. . . ak−1

0 · · · 0 ak−1 bk − z




,

of Γ, is the last term of the second order recursion

Bk(z) = (bk − z)Bk−1(z)−a2
k−1Bk−2(z).

The polynomials Ak(z), Bk(z) form a pair of solutions of a finite difference equation of the second order (the eigenvectors of the Jacobi

matrix from which we remove the first row and the first column) :

ak+1yk+2 +bk+1yk+1 +akyk = zyk+1, k ∈ N

with the boundary conditions : y0 6= 0, y1 = 0, yN+1 = 0. In addition, these solutions are linearly independent and we have also the following

relation :

ak−1 (Ak−1(z)Bk(z)−Ak(z)Bk−1(z)) = 1, k ∈ N∗

The polynomials Bk form an orthogonal system with respect to the Stieltjes measure dσ(x) on R,
∫ ∞

−∞
Bk(x)Bl(x)dσ(x) = δkl .

Conversely, if a family of polynomials Pn(x) is orthogonal for dσ(x), then Pn(x) satisfies the following recurrence relation :

Pk(x)− (λkx−µ j)Pk−1(x)+ γk−1Pk−2(x) = 0,

where λk > 0, µ and γk > 0 are constants. Moreover, if we consider the continued fraction

ψ(z) =
γ0

λ1z−µ1 −
γ1

λ2z−µ2 −
γ2

λ3z−µ3−. . .

and realize an equivalent transformation

ψ(z) =
γ0

z− µ1

λ1
−

γ1

λ1λ2

z− µ2

λ2
−

γ2

λ2λ3

z− µ3

λ3
−

. . .

we reconstruct the Γ-fraction corresponding to dσ(x) (where we can put
γk

λkλk+1
= a2

k and
µk

λk

= bk). As a result, there is a one-to-one

correspondence between the set of orthogonal polynomial systems on R and that of Jacobi matrices. In fact, if the orthogonal polynomials

Pn =
γ0

∏
n−1
k=1 ak

Bn−1(x), 1 ≤ n < ∞

form a basis of the vector space consisting of all the polynomials, then the Jacobi matrix represents the multiplication by x.

As an example of V− j,k (theorem 2.3, b)), consider the infinite matrix :

A =




. . .
. . .

. . . b0 a0 0 · · · 0

a0 b1 a1

...

0 a1

. . .
. . . 0

...
. . .

. . . aN−1

0 · · · 0 aN−1 bN

. . .

. . .
. . .




, (ai,bi ∈ C) (3.3)
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The matrix A is N-periodic when

ai+N = ai, bi+N = bi,

for all i ∈ Z. We denote by f = (..., f−1, f0, f1, ...) the (infinite) column vector and by D (shift operator) the operator passage of degree +1,

D fi = fi+1. Since the matrix A is N-periodic, we have ADN = DNA. Reciprocally, this relation of commutation means that N is the period of

A. Consider the finite Jacobi matrix (symmetric tridiagonal and N-periodic) :

A(h) =




b1 a1 0 · · · aNh−1

a1 b2 a2

...

0 a2

. . .
. . . 0

...
. . .

. . . aN−1

aNh · · · 0 aN−1 bN




,

where h ∈ C∗. The determinant of the matrix

A(h)− zI =




b1 − z a1 0 · · · aNh−1

a1 b2 − z a2

...

0 a2

. . .
. . . 0

...
. . .

. . . aN−1

aNh · · · 0 aN−1 bN − z




, (3.4)

is

det(A(h)− zI) = (−1)N+1
(

α(h+h−1)−PN(z)
)
≡ F(h,h−1,z), (3.5)

where (z,h) ∈ C×C∗, α = a1a2 · · ·aN , and P(z) is given by the following polynomial of degree N (with real coefficients) :

P(z) = det




b1 − z a1 0 · · · 0

a1 b2 − z a2

...

0 a2

. . .
. . . 0

...
. . .

. . . aN−1

0 · · · 0 aN−1 bN − z




−a2
0 det




b2 − z a2 0 · · · 0

a2 b3 − z a3

...

0 a3

. . .
. . . 0

...
. . .

. . . aN−2

0 · · · 0 aN−2 bN−1 − z




= zN + · · ·

Let C be the Riemann surface defined by the set of (z,h) ∈ C×C∗ such that : A f = z f and DN f = h f . In other words, we have

C =
{
(z,h) ∈ C×C∗ : F(h,h−1,z) = 0

}
. (3.6)

Assuming that α 6= 0, we derive from (3.5) and (3.6) the following relation :

h =
P(z)±

√
P2(z)−4α2

2α
.

Note that C is a hyperelliptic curve with 2N branch points over the roots of the equation : P(z) =±2α and two points at infinity P and Q;

the point P covering the case z = ∞, h = ∞ while the point Q is relative to the case z = ∞, h = 0. The hyperelliptic involution on the curve

C maps (z,h) into (z,h−1) and C can be singular. Using Riemann-Hurwitz formula, we find g = N −1 (= genus of C). The meromorphic

function h has neither zero nor poles except in the neighborhood of z = ∞. When z ր ∞, we have

h ≃ P(z)

α
=

zN

α
+ · · · ,

on the sheet +, which shows that h has a pole of order N. Similarly, when z ր ∞, we have

h =
P(z)−

√
P2(z)−4α2

2α
=

2α

P(z)+
√

P2(z)−4α2
≃ αz−N + · · · ,

on the sheet -, and therefore h has a zero of order N. Let P be the point covering ∞ on the sheets + and Q the two point covering ∞ on the

sheets -. Therefore the divisor (h) of the function h on the curve C is

(h) =−NP +NQ.

The curve C has an antiholomorphic involution

∼: C −→C, (z,h) 7−→ (z,1/h),

i.e., the map ∼: p 7−→ p̃ is such that : P̃ = Q. Since the finite matrix A(h) for |h| = 1 is self-adjoint, then it admits a real spectrum.

Therefore, the fixed points of this involution form a set that we write C∼. The latter is determined by the set of p ∈C such that : p̃ = p, or it
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is the set of (z,h) such that : h = 1/h and z = z, or what amounts to the same, is the set of (z,h) such that : |h| = 1. Let C+ (repectively

C−) the set of p ∈C such that : |h|> 1 (repectively |h|< 1). Note that C+ contains the point P and C− contains the point Q. We have

C\C∼ =C+∪C−, which shows that the set C∼ divides C into two distinct regions C+ and C−, and so

C =C+∪C∼∪C−.

In fact, C∼ is homologous to zero because C∼ can be thought of as the boundary between C+ and C−. Moreover, the involution ∼ extends to

an involution ∗ on the field of meromorphic functions as follows: ϕ∗(p) = ϕ( p̃), and on the differential space as follows : (ϕdψ)∗ = ϕ∗dψ∗,

which shows that : h∗ =
1

h
and z∗ = z. The matrices A and DN have an eigenvector f = (..., f−1, f0, f1, ...) in common. Such a condition is

parameterized by the Riemann surface C (3.6). In the following, appropriate standardization is used by selecting f0 ≡ 1, from where FN = h.

Let us therefore f = ( f1, f2, ..., fN−1)
⊤. Since f satisfies (A(h)− zI) f = 0, then we have

fk =
C1,k

C1,l
fl =

C2,k

C2,l
fl = · · ·= CN,k

CN,l
fl , 1 ≤ k, l ≤ N,

where Ck,l is the (k, l)-cofactor of (A(h)− zI), that is to say,

Ck,l = (−1)k+lMk,l . (3.7)

where Mkl is the (k, l) minor of the matrix (A(h)− zI) , i.e., the determinant of the N −1 submatrix obtained by removing the kth-line and

the lth-column of the matrix (A(h)− zI)). In particular, we have

fk =
CN,k

CN,N
h =

Ck,k

Ck,N
h.

According to matrix (3.4), we note that

CN,1 = a1a2 · · ·aN−1 +(−1)N aN

h
PN−1,

C1,N = a1a2 · · ·aN−1 +(−1)NaNhPN−1,

where PN−1 ≡ (−z)N−2 + · · · , and similarly, CN,N = (−z)N−1 + · · · . To determine the divisor structure of fk, one proceeds as follows : for

f1, we have

( f1)∞ = (CN,1)∞ +(h)− (CN,N)∞,

= −(2N −2)Q−NP +NQ+(N −1)P +(N −1)Q,

= Q−P,

and for the other fk, we consider first the matrix (3.4) shifted by one, i.e.,




b2 − z a2 0 · · · a1h−1

a2 b3 − z a3

...

0 a3

. . .
. . . 0

...
. . . bN − z aN

a1h · · · 0 aN b1 − z




.

Hence,




b2 − z a2 0 · · · a1h−1

a2 b3 − z a3

...

0 a3

. . .
. . . 0

...
. . . bN − z aN

a1h · · · 0 aN b1 − z







f2

f1
f3

f1

...
fN

f1

h




= 0,

and as above, we have
(

f2

f1

)
∞
= Q−P , which implies that

( f2)∞ =

(
f2

f1

)

∞

+( f1)∞ = 2Q−2P,

and in general, we get

( fk)∞ = kQ− kP.

Note that the degree of a minimal positive divisor D on the curve C such that : for all k ∈ Z, ( fk)+D ≥−kP + kQ, is given by

deg D = g = N −1.
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We have

dimL (D+ kP − (k+1)Q) = 0,

for all k ∈ Z, i.e., the divisor D is regular. To be convinced of this, it suffices to show that the divisor D is general. It means that

(ω1(p1), ...,ωg(pg)) 6= (0, ...,0) where (ω1, ...,ωg) is a normalized base of differential forms on C and p1, , ..., pg ∈C, or what is equivalent

if dimL (D) = 1 where L (D) denotes the set of meromorphic functions f such that : ( f )+D ≥ 0, or what amounts to the same if

dimΩ(−D) = 0 where Ω(D) denotes the set of meromorphic differential forms ω such that the divisor (ω)+D ≥ 0. From the regularity of

the divisor D and the Riemann-Roch theorem, we deduce

dimL (D+ kP) = dimΩ(−D− kP)+g+ k−g+1,

= dimΩ(−D− kP)+ k+1,

for an integer k > g−2. Therefore, we have dimL (D+ kP) = k+1, because dimΩ(−D− kP) = 0. Moreover, L (D+ jP) is strictly

larger than L (D+( j − 1)P), and therefore by lowering the index j down to 0, it follows that dimL (D) = 1, which shows that the

divisor D is general. Let’s show now that D is regular. It suffices to proceed by induction. We have just shown that dimL (D) = 1. Since

f0 = 1 /∈ L (D−Q), it means that L (D−Q)$ L (D) and that the function f0 = 1 does not belong to the first space but belongs to the

second and then, dimL (D−Q) = 0. Assuming that dimL (D+ kP(k+1)Q) = 0, we obtain (taking into account the Riemann-Roch

theorem) immediately

dimL (D+(k+1)P − (k+2)Q)≤ dimL (D+ kP − (k+1)Q)+1 = 1,

which implies equality because fk+1 belongs to the first space. In addition, we have

dimL (D+(k+1)P − (k+2)Q) = 0,

because fk+1 does not belong to the space L (D+(k+1)P − (k+2)Q), but belongs to the space L (D+(k+1)P − (k+1)Q).

Consider now, the differential of F (3.5) while taking into account that z appears only on the diagonal of the matrix A(h)− zI. Therefore, we

have

−
N

∑
i=1

Ciidz+h
∂F

∂h

dh

h
= 0,

and either

ω =
−iCNNdz

h ∂F
∂h

.

We have

ω =
−i dh

h

∑
N
i=1

Cii

CNN

,

=
−i dh

h

∑
N
i=1

Cii

CiN
. CiN

CNN

,

=
−i dh

h

∑
N
i=1

CNi

CNN
. CiN

CNN

.

Taking into account that CiN =C∗
Ni, 1 ≤ i ≤ N, we obtain

ω =
−i dh

h

∑
N
i=1

CNi

CNN
.
(

CiN

CNN

)∗ ,

=
−i dh

h

∑
N
i=1 fi f ∗i

,

= ± CNNdz√
P2(z)−4α2

.

From this we deduce that ω∗ = ω and in addition, we have ω ≥ 0 on C∼. We also have a relation which shows that the scalar product

between fk and fl is

〈 fk, fl〉=
∫

C ∼
fk. f

∗
l ω =

{
0 si k 6= l

> 0 si k = l

That is, the functions fk, k ∈ Z, are orthogonal to C∼ with respect to ω . We deduce from these properties that the divisor of ω is

(ω) = D+ D̃−P −Q, for the involution ∼ introduced previously. Given a matrix of the form A (3.3), we have obtained a series of data

{C,z,h,D,ω}. What is remarkable is that the reverse is also true (for further information, see [11]) :
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Theorem 3.1. Consider the following two sets of data :

1) Let ai,bi ∈ C, ai 6= 0, where ai+N = ai, bi+N = bi, −∞ < i <+∞. An infinite N-periodic matrix




. . .
. . .

. . . b0 a0 0 · · · 0

a0 b1 a1

...

0 a1

. . .
. . . 0

...
. . .

. . . aN−1

0 · · · 0 aN−1 bN

. . .

. . .
. . .




,

modulo conjugation by N-periodic diagonal matrices with real entries.

2) Let P and Q two points on a curve of genus N −1 and D be a divisor of degree N −1 on C such that:

(h) =−NP +NQ, (z) =−P −Q+S,

where h, z are two meromorphic functions on C and S is a positive divisor not containing the points P and Q. The curve C is equipped with

an antiholomorphic involution ∼: (z,h) 7−→ (z, 1

h
), for which C = C+∪C∼∪C−, where C∼ is the set of p ∈C such that : p̃ = p, i.e., the set

of (z,h) such that : |h|= 1, and C+ (repectively C−) is the set of p ∈C such that : |h|> 1 (repectively |h|< 1) containing P (repectively Q).

By introducing an involution ⋆ acting on the space of all meromorphic functions on C and on the differential space in a way ϕ⋆(p) = ϕ̃(p̃)
and (ϕdψ)⋆ = ϕ⋆dψ⋆, then h⋆ = h−1 and z⋆ = z and the divisor of a differential form ω on C is

(ω) = D+ D̃−P −Q.

Then, there is a one-to-one correspondence and equivalence of these sets of data.

For any difference operator X , we define

(X+)i j =





Xi j si i < j,
1
2 Xi j si i = j,

0 si i > j,
, X− = X −X [+].

Let M be the vector space of infinite N-periodic matrices A such that for some k, ai j = 0 if |i− j|> K. On M , we introduce the following

scalar product :

〈A,B〉= Tr(AB⊤) = ∑
(i, j)∈Z2

ai jbi j.

We call a functional F differentiable if there exists a matrix
∂F

∂A
in M such that :

lim
ε→0

F(A+ εB)−F(A)

ε
=

〈
∂F

∂A
,B

〉
,

for every B. The following bracket

{F,G}=
〈[(

∂F

∂X

)

+

,

(
∂G

∂X

)

+

]
−
[(

∂F

∂X

)

−
,

(
∂G

∂X

)

−

]
,X

〉
, (F,G ∈ M ),

satisfies the Jacobi identity. Let P(A,S,S−1) be a polynomial in S+S−1 and A with real coefficients. Consider the following Lax equation:

Ȧ =
[
P(A,S,S−1)+−P(A,S,S−1)−,A

]
. (3.8)

When the matrix A(t) deforms with t, then only the divisor D varies while {C,z,h,P,Q} remain fixed. As we have already shown, the

coefficients of zih j in equation (3.5) are invariants of this motion. The divisor D(t) evolves linearly on the Jacobi variety Jac(C). Any linear

flow over Jac(C) is equivalent to equation (3.8) and can be written in the form of a Hamitonian vector field with respect to the above bracket.

For example,, the flow

Ȧ =
[
A,(S−kAl ]+

]
,

is written as follows :

ȧi j = {F,ai j}, F =
1

l +1
Tr
(

S−kAl+1
)
.
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The (Poisson) bracket of two functional of the form Tr
(
S−kAl+1

)
is zero, which means that we have a set of integrals in involution. Let

(ω1, ...,ωg) be a holomorphic differential basis on the hyperelliptic curve C. We have

ωk =
zk−1

√
P2(z)−4Q2

, k = 1,2, ...,g

and let ck = Resp(ωkz j), 1 ≤ j ≤ g. Since the order of the zeros of ωk at the points at infinity P , Q is equal to g− k, then ck = 0 for

k = 1,2, ...,g− j+1 and ck 6= 0 for k = g− j+1. Therefore, the flow which leaves invariant the spectrum of A and X is given by a polynomial

P(z) of degree at most equal to g :

Ȧ =
1

2
[A,P(A)+−P(A)−] ,

where P(A)+ is the upper triangular part of P(A) and −P(A)− is the lower triangular part of P(A), including the diagonal of P(A).
The (Poisson) bracket between two functional F and G can still be written in the form

{F,G}=
〈(

∂F

∂a

∂F

∂b

)
,J




∂G

∂a
∂G

∂b



〉
,

where
∂F

∂a
=

(
∂F

∂ai

)
and

∂F

∂b
=

(
∂F

∂b i

)
are the column vectors, while J is the following 2n-order antisymmetric matrix :

J =

(
O A

−A ⊤ O

)
, A = 2




a1 0 0 ... −aN

−a1 a2 0
...

0 −a2 a3

...

...
...

0 ... ... −aN−1 aN




.

The symplectic structure [24] is given by

ω =
N

∑
j=2

db j ∧ ∑
j≤i≤N

dai

ai
. (3.9)

Flaschka variables [25] :

a j =
1

2
ex j−x j+1 , b j =−1

2
y j,

applied to the form (3.9) with xN+1 = 0, leads to the symplectic structure

ω =
1

2

N

∑
j=2

dx j ∧dy j,

used by Moser [26, 27] in the study of a dynamic system describing the motion of N −1 particles on a line, interacting under an exponential

potential. See also the example below concerning the study of Toda lattice. We have

det(Ah − zI)|h=i = (−1)NzN +β1zN−1 +β2zN−2 + · · ·+βN ,

where β2, ...,βN are the g invariant, functionally independent and in involution. These are given by the branch points on the hyperelliptic

curve C or by the quantities TrAk for k = 2,3, ...,N, i.e., by the g = N −1 points chosen from the spectrum of A1 and A−1. With Jacobi’s

matrix, we can associate an operator T on a separable Hilbert space E as follows,

Te0 = b0e0 +a0e1, Tei = bie j +ai−1ei−1 +aiei+1, i = 1,2, ...

where (e1,e2, ...) is an orthonormal basis in E. The operator T is symmetric. Indeed, we have 〈Tu1,u2〉 = 〈u1,Tu2〉 for any two finite

vectors, according to the symmetry of the Jacobi matrix. Moreover, if the Carleman’s condition :

1

a0
+

1

a1
+ · · ·+ 1

an
+ · · ·=+∞

is satisfied, then the spectrum of the self-adjoint operator T (with e0 a generating element) is simple. In this case, the information about the

spectrum of T is contained in the following function,

ϕ(z) =
〈
(T − zI)−1e0,e0

〉
=
∫ ∞

−∞

dσ(x)

z− x
, (3.10)

defined at z /∈ σ(T ) where σ(x) = 〈Ixe0,e0〉 and Ix is the resolution of the identity operator T . Recall that the infinite continued fraction

converges if the limit (3.2) exists. If the operator T is self-adjoint, then the continued fraction ϕ(z) converges uniformly in any closed

bounded domain of z without common points with real axis, to the analytic function defined by (3.10). If the support of dσ(x) is bounded,
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then the sequence

(
Ak(z)

Bk(z)

)
converges uniformly to a holomorphic function near z = ∞. Moreover, if a Jacobi matrix is bounded, i.e., if

there exists ρ > 0 such that, for all j, |a j| ≤
ρ

3
, |b j| ≤

ρ

3
, then the associated Γ-fraction converges uniformly on the domain {z : |z| ≥ ρ}

and the support of dσ(x) is included in [−ρ,ρ]. The fraction Γ associated with a periodic Jacobi matrix (this case is obviously bounded )

converges near z = ∞. In addition, the function ϕ(z) is written in the form (3.10) (Cauchy-Stieltjes transform of dσ(x)), which shows that

ϕ(z) has a first-order zero at z = ∞ and for any point z belonging the upper-half plane, the imaginary part of ϕ(z) is non positive.

We will now extend the Jacobi matrix Γ to the infinite symmetric, tridiagonal and N-periodic Jacobi matrix A (3.3) and use the results

obtained previously. We consider ϕ(z) (3.1) as being the associated N-periodic Γ-fraction. The latter converges near the infinite point

z = ∞. An analytic extension of the function ϕ(z) allows us to see that this coincides with the meromorphic function a0 f1 on the genus

(N −1)-hyperelliptic curve C (3.6). This curve is branched at the 2N real zeroes ξ1, ξ2,...,ξ2N of the polynomial P2(z)−4α2. We define the

stable band as being the interval [ξ2 j−1,ξ2 j], 1 ≤ j ≤ N, and the unstable band the interval [ξ2 j,ξ2 j+1], 1 ≤ j ≤ N −1.

Theorem 3.2. Each zero σ1 < σ2 < · · ·< σN−1 of Ck,l (3.7), belongs to the j-th finite unstable band [λ2 j,λ2 j+1], 1 ≤ j ≤ N −1.

We will see below (theorem 3.3) how to express the function ϕ(z) in terms of Abelian integrals on the hyperelliptic curve C (3.6). Note that

for N = 1, Bk(x) is the well-known Chebyshev polynomial of the second kind. In addition, Kato [28, 29] discovered, for N > 1, new results

related to discrete measurements. We have seen that

ϕ(z) = a0 f1 = a0

CN,1

CN,N
h,

belonging to L (D+P −Q). Then, we have

Theorem 3.3. We have

ϕ(z) =
Resσ−

1
ϕ(z)

z−σ1
+ · · ·+

Resσ−
N−1

ϕ(z)

z−σN−1
+

(−1)N+1

2πi

(∫ ξ2

ξ1

√
P2(x)−4α2

(z− x)CN,N(x)
dx+ · · ·+

∫ ξ2N

ξ2N−1

√
P2(x)−4α2

(z− x)CN,N(x)
dx

)
, (3.11)

where,

Resσ−
j

ϕ(z)≡
αh(σ−

j )+(−1)Na2
0.∆

∏l 6= j(σ j −σl)
, j = 1,2, ...,N −1

and

∆ ≡ det




b2 −σ j a2 0 · · · 0

a2 b3 −σ j a3

...

0 a3

. . .
. . . 0

...
. . .

. . . aN−2

0 · · · 0 aN−2 bN−1 −σ j




.

The differentials obtained in the previous section,

a
CN,N(x)√

P2(x)−4α2
dx, b

√
P2(x)−4α2

CN,N(x)
dx,

(a and b are constants) are positive mesures on each stable band [ξ2 j−1,ξ2 j]. Therefore, the expression (3.11) means that ϕ(z) can be

obtained by the Cauchy-Stieltjes transform of

dσ =
N−1

∑
j=1

Resσ−
j

ϕ(z),σ−
j ).C(x−σ j)dx+

(−1)N+1

2πi
.

√
P2(x)−4α2

CN,N(x)
dx = discrete mesure + continuous mesure,

as follows,

ϕ(z) =
∫ ∞

−∞

dσ

z− x
.

The function ϕ(z) belongs to L (D′+P −Q) where D′ = σ+
1 + · · ·+σ+

N−1 is contained in C+ = {p ∈C : |h|> 1} (see previous section).

From expression (3.11), we have

D = σ−
j1
+ · · ·+σ−

jl
+σ+

jl+1
+ · · ·+σ+

jN−1
,

where j1 < j2 < ... < jl denote the numbers for which Resσ−
j

ϕ(z)> 0 and jl+1 < jl+2 < ... < jN−1 the numbers for which Resσ−
j

ϕ(z) = 0.

Hence,

Resσ−
j

ϕ(z) = 0 or −

√
P2(σ−

j )−4α2

∏l 6= j(σ j −σl)
.
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The Toda lattice equations [30] describe the motion of n masses with exponential restoring forces :

H =
1

2

N

∑
j=1

y2
j +

N

∑
j=1

ex j−x j+1 , (Hamiltonian).

We noted above that Flaschka variables [25] : a j =
1

2
ex j−x j+1 , b j =−1

2
y j , can be used to express the symplectic structure ω (3.9) in terms

of x j and y j,

da j = a j(dx j −dx j+1), 2db j =−dy j,

then

ω =
1

2

N

∑
j=2

dx∗j ∧dy∗j , (x∗j ≡ x j − x1, y∗j ≡ y j).

We will study the integrability of this problem with the Griffiths approach. There are two cases :

(i) The non-periodic case, i.e., x0 =−∞, xN+1 =+∞, where the masses are arranged on a line. In term of the Flaschka variables above,

Toda’s equations take the following form

ȧ j = a j

(
b j+1 −b j

)
,

ḃ j = 2(a2
j −a2

j+1),

with aN+1 = a1 and bN+1 = b1. To show that this system is completely integrable, one should find N independent first integrals in involution.

From the second equation, we have

˙︷ ︸︸ ︷
(b1 +b2 + · · ·+bN) = ḃ1 + ḃ2 + · · ·+ ḃN = 0,

and we normalize bi’s by requiring that b1 +b2 + · · ·+bN = 0. Applying this fact to (3.9), leads to the following symplectic form :

ω =
1

2

N

∑
j=2

dx j ∧dy j.

We have obtained a first integral of the system and it will be necessary to determine N −1 other integrals that are functionally independent

and in involution. We further define N ×N matrices A and B with

A =




b1 a1 0 · · · aN

a1 b2

...
...

0
. . .

. . .
. . . 0

...
. . . bN−1 aN−1

aN · · · 0 aN−1 bN




, B =




0 a1 · · · · · · −aN

−a1 0
...

...

...
. . .

. . .
. . .

...

...
. . .

. . . aN−1

aN · · · · · · −aN−1 0




.

The system in question is written in the form Ȧ = [B,A]. Since Ik =
1

k
trAk, k = 1,2, ...,N, are first integrals (see theorem 2.1), then

İk = tr(Ȧ.Ak−1) = tr([B,A].Ak−1) = tr(BAk −ABAk−1) = 0.

Notice that I1 is the first integral already know. These N first integrals are functionally independent and in involution, the system in question

is thus completely integrable.

(ii) The periodic case, i.e., y j+N = y j , x j+N = x j , the connected masses will be arranged on a circle. We show that in this case, the spectrum

of the periodic matrix

A(h) =




b1 a1 0 · · · aNh−1

a1 b2

...
...

0
. . .

. . .
. . . 0

...
. . . bN−1 aN−1

aNh · · · 0 aN−1 bN




,

remains invariant in time. The matrix B(h) depending on the spectral parameter h, has the form

B(h) =




0 a1 · · · · · · −aNh−1

−a1 0
...

...

...
. . .

. . .
. . .

...

...
. . .

. . . aN−1

aNh · · · · · · −aN−1 0




,
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and the rest follows from the general theory. Note that if a j(0) 6= 0, then a j(t) 6= 0 for all t. Since A⊤(h) = A(h−1), the spectral curve C is

given by

0 = det(A(h)− zI) = P

(
1

h
,z

)
≡ P(h,z).

By the antisymmetry of A, the curve C has an involution

τ : C −→C, (h,z) 7−→
(

1

h
,z

)
. (3.12)

We choose

A(h) =




0 ... aN

...
. . .

...

0 ... 0


h−1 +




b1 a1

a1 b2

. . .

bN−1 aN−1

bN aN




+




0 ... 0

...
. . .

...

aN ... 0


h.

Note that here the matrix A is meromorphic (whereas previously we considered it to be a polynomial in h) but we will see that we can adopt

the theory explained in this section, to this situation too . We have

P(h,z) =−a1.a2...aN−1.

(
h+

1

h

)
+ zN + c1zN−1 + · · ·+ cN .

Let us assume that a1.a2...aN−1 6= 0 and pose

Q(h,z)≡ P(h,z)

∏
N−1
j=1 a j

= h+
1

h
+

zN + c1zN−1 + · · ·+ cN

∏
N−1
j=1 a j

= h+
1

h
+d0zN +d1zN−1 + · · ·+dN .

In P2(C), the affine algebraic curve of equation Q(h,z) = 0, is singular at infinity and to determine the genus g of its normalization, we

proceed as follows : note that the curve C appears as a double sheeted covering of P1(C) branched into 2N points coinciding with the fixed

points of involution σ (3.12), that is, points where h =±1. Using the Riemann-Hurwitz formula, we obtain

g = 2
(

g(P1(C))−1
)
+1+

2N

2
= N −1.

Consider the covering C −→ P1(C) below and P , Q located on two separate sheets. By putting
1

z
(∞) = P +Q, we see from the

equation Q(h,z) = 0, that the divisor of h is (h) = NP −NQ and in that case, the divisor D is written D = NP +NQ, which implies

that B ∈ H0(D,Hom(V,V (D)). The residue ς(B) ∈ H0(D,OD(D) satisfies the conditions of theorem 2.7, and consequently the linear flow

is given by the application (2.8). To compute the residue ς(B) of B, we will determine a set of holomorphic eigenvectors, using the van

Moerbeke-Mumford method described above. Let us calculate the residue in Q and the result will be similarly deduced in P . Consider a

general divisor E of degree g, of the form E =
g

∑
j=1

r j such that : dimL (E+(k−1)P−kQ) = 0, for all k. We deduce from Riemann-Roch’s

theorem that dimL (E + kP − kQ)≥ 1, and therefore dimL (E + kP − kQ) = 1, for all k. Let

( fk) ∈ L (E + kP − kQ) = H0(C,OC(E + kP − kQ)), 1 ≤ k ≤ N

be a basis with fN = h. We can choose a vector v of the following form v = ( f1, ..., fN)
⊤, such that v is an eigenvector of A, i.e., Av = zv,

(h,z) ∈C. Hence, V = h−1v is a holomorphic eigenvector. Without restricting generality, we take N = 3. The system Av = zv, is written

explicitly

b1 f1 +a2 f2 +a3 = z f1,

a1 f1 +b2 f2 +a2h = z f2,

a3h f1 +a2 f2 +b3h = zh.

By multiplying each equation of this system by
1

h
, everything becomes holomorphic except the last equation, i.e., a3 f1 = z+Taylor. Recall

that the section of OD(D) induced by λ in the equation (2.7) : Bv = v̇+λv, is the residue ς(B) of B. In other words,

Bv = ς(B)v+Taylor,

and therefore



a1 f2

h − a3

h

− a1 f1

h +a2

a3 f1 − a2 f2

h


=




0

0

z


+Taylor.

We deduce that ς(B) =
z

h
, and ς(Ḃ) = 0. The same conclusion holds for the residue in P . Consequently, the flow in question linearizes on

the Jacobian variety of C.
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4. Algebraically integrable systems

Consider the nonlinear system of differential equations :

dz1

dt
= f1 (t,z1, ...,zn) ,

... (4.1)

dzn

dt
= fn (t,z1, ...,zn) ,

where f1, ..., fn are functions of n+1 complex variables t,z1, ...,zn and which apply a domain of Cn+1 into C. The Cauchy problem is the

search for a solution (z1(t), ...,zn(t)) in a neighborhood of a point t0, satisfying the initial conditions : z1(t0) = z0
1, ...,zn(t0) = z0

n. The system

(4.1) can be written in vector form in Cn,

dz

dt
= f (t,z(t)), z = (z1, ...,zn), f = ( f1, ..., fn).

In this case, the Cauchy problem will be to determine the solution z(t) such that z(t0) = z0 = (z0
1, ...,z

0
n). When the functions f1, ..., fn are

holomorphic in the neighborhood of
(
t0,z

0
1, ...,z

0
n

)
, then the Cauchy problem admits a holomorphic solution and only one. A question arises

: can the Cauchy problem admits some non-holomorphic solution around
(
t0,z

0
1, ...,z

0
n

)
? When f1, ..., fn are holomorphic, the answer is

negative. Other circumstances may arise for the Cauchy problem concerning the system of differential equations (4.1), when the holomorphic

hypothesis relative to the functions f1, ..., fn is no longer satisfied in the neighborhood of a point. In such a case, it can be seen that the

behavior of the solutions can take on the most diverse aspects. In general, the singularities of the solutions are of two types : mobile or fixed,

depending on whether or not they depend on the initial conditions. Important results have been obtained by Painlevé [31]. Suppose that the

system (4.1) is written in the form

dz1

dt
=

P1(t,z1, ...,zn)

Q1(t,z1, ...,zn)
,

...

dzn

dt
=

Pn(t,z1, ...,zn)

Qn(t,z1, ...,zn)
,

where

Pk (t,z1, ...,zn) = ∑
0≤i1,...,in≤p

A
(k)
i1,...,in

(t)z
i1
1 ...z

in
n , 1 ≤ k ≤ n,

Qk (t,z1, ...,zn) = ∑
0≤ j1,..., jn≤q

B
(k)
j1,..., jn

(t)z
j1
1 ...z

jn
n , 1 ≤ k ≤ n,

polynomials with several indeterminate z1, ...,zn and algebraic coefficients in t. There are two cases: (i) the fixed singularities are

constituted by four sets of points. The first set contains the singular points of the coefficients A
(k)
i1,...,in

(t), B
(k)
j1,..., jn

(t) intervening in

the polynomials Pk (t,z1, ...,zn) and Qk (t,z1, ...,zn). In general this set contains t = ∞. The second set consists of the points α j such

that : Qk (t,z1, ...,zn) = 0, which occurs if all the coefficients B
(k)
j1,..., jn

(t) vanish for t = α j. The third is the set of points βl such that

for some values (z1′ , ...,zn′) of (z1, ...,zn), we have Pk (βl ,z1′ , ...,zn′) = Qk (βl ,z1′ , ...,zn′) = 0. Then the second members of the above

system are presented in the indeterminate form
0

0
at the points (βl ,z1′ , ...,zn′). Finally, the set of points γn such that there exist u1, ...,un,

for which Rk (γn,u1, ...,un) = Sk (γn,u1, ...,un) = 0, where Rk and Sk are polynomials in u1, ...,un obtained from Pk and Qk by setting

z1 =
1

u1
, . . . ,zn =

1

un
. Each of these sets contains only a finite number of elements. The system in question has a finite number of fixed

singularities. (ii) the mobile singularities of solutions of this system are algebraic : poles and (or) algebraic critical points. There are no

essential singular points for the solution (z1, ...,zn).
We will use the method of indeterminate coefficients to find sufficient conditions for the existence and uniqueness of the meromorphic

solution of the Cauchy problem concerning the system (4.1). The solution will be expressed in the form of Laurent expansions in t and such

a solution is formal because we obtain it by performing on various series, which we assume a priori convergent, various operations whose

validity remains to be justified. The problem of convergence will therefore arise. The result will therefore be established as soon as we

have verified that these series are convergent. This will be done using the majorant method [32]-[34]. Without restricting the generality, we

consider the Cauchy problem relative to the normal system (4.1) where f1, ..., fn do not depend explicitly on t, i.e.,

dz1

dt
= f1 (z1, ...,zn) ,

... (4.2)

dzn

dt
= fn (z1, ...,zn) .

We suppose that f1, ..., fn are rational functions in z1, ...,zn and that the system (4.2) is weight-homogeneous, i.e., there exist positive integers

l1, ..., ln such that :

fi(α
l1 z1, ...,α

ln zn) = α li+1 fi(z1, ...,zn), 1 ≤ i ≤ n,
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for each non-zero constant α . Note that if the determinant det

(
z j

∂ fi

∂ z j
−δi j fi

)

1≤i, j≤n

6≡ 0, then the numbers s1, ...,sn are unique. In order

to facilitate the notations, we will assume (without loss of generalities) that t0 = z0 = 0.

Theorem 4.1. Suppose that

zi =
1

tki

∞

∑
k=0

z
(k)
i tk, 1 ≤ i ≤ n, z(0) 6= 0 (4.3)

(ki ∈ Z, some ki > 0) is the formal solution (Laurent series), obtained by the method of undetermined coefficients of the weight-homogeneous

system (4.2). Then the coefficients z
(0)
i satisfy the nonlinear equation

kiz
(0)
i + fi(z

(0)
1 , ...,z

(0)
n ) = 0, 1 ≤ i ≤ n,

while z
(1)
i ,z

(2)
i , ... are solution of the following system of linear equations :

(L− kI )z(k) = some polynomial in the z( j), 0 ≤ j ≤ k,

where z(k) = (z
(k)
1 , ...,z

(k)
n )⊤ and L ≡

(
∂ fi

∂ z j
(z(0))+δi jki

)
1≤i, j≤n

, is the Jacobian matrix. Moreover, the formal series (4.3) are convergent.

The coefficients z
(k)
i are determined unequivocally with the adopted method of calculation which explains why the series (4.3) is the only

meromorphic solution. Moreover, the result of the previous theorem applies to the following quasi-homogeneous differential equation of

order n :

dnz

dtn
= f

(
z,

dz

dt
, ...,

dn−1z

dtn−1

)
.

f being a rational function in z,
dz

dt
, ...,

dn−1z

dtn−1
and z(0) = z0

1,
dz

dt
(0) = z0

2,...,
dn−1z

dtn−1
(0) = z0

n. Indeed, the differential equation above reduces

to the following system :

z(t) = z1 (t) ,
dz

dt
(t) = z2 (t) , ...,

dn−1z

dtn−1
(t) = zn (t) .

We thus obtain

dz1

dt
= z2,

dz2

dt
= z3, ...,

dzn−1

dt
= zn,

dzn

dt
= f (z1,z2, ...,zn) .

Such a system constitutes a particular case of the normal system (4.2).

Let XH be a Hamiltonian vector field defined by

ż ≡ dz

dt
= J

∂H

∂ z
≡ f (z), z ∈ Rm (4.4)

where J = J(z) is a skew-symmetric matrix polynomial in z of rank 2n, such that the Poisson bracket {H,F}=
〈

∂H

∂ z
,J

∂F

∂ z

〉
satisfies the

Jacobi identity. The system (4.4) is algebraic complete integrable (in abbreviated form : a.c.i.) when J has polynomial entries and when the

following conditions hold :

i) The system is completely integrable with polynomial invariants H1, ...,Hn+k. It means that besides the k invariants H1, ...,Hk (Casimir

functions), i.e., such that J
∂Hi

∂ z
(z) = 0, 1 ≤ i ≤ k, the system admits n =

m− k

2
invariants Hk+1 = H,...,Hk+n in involution, i.e., such that

{
Hi,H j

}
= 0. These give rise to n commuting vector fields. For generic ci, the invariant manifolds (level surfaces)

n+k⋂

i=1

{z ∈ Rm : Hi = ci} ,

are compact, connected and therefore real tori according to the Arnold-Liouville theorem [12].

ii) The invariant manifolds (level surfaces) thought of as lying in Cm,

n+k⋂

i=1

{z ∈ Cm : Hi = ci},

are related, for generic ci, to Abelian varieties T n = Cn/Lattice (complex algebraic tori) as follows :

n+k⋂

i=1

{z ∈ Cm : Hi = ci}= T n\D,

where D is a divisor (codimension one subvarieties) in T n. The coordinates zi are meromorphic on T n and D is the minimal divisor on T n

where the variables zi blow up. The flows (4.4) run with complex time are straight-line motions on T n.
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As the reader has surely noted, we have insisted in the above definition that invariants must be polynomials. But it must be understood that

the existence of a sufficient number of polynomial invariants does not necessarily imply the algebraic complete integrability of the system in

question. To convince ourselves of this, it is enough to consider the following Hamiltonian system whose Hamiltonian is

H((x,y) =
x2

2
+Pn(y),

where Pn(y) is a polynomial in y of degree n. We show that such a system is algebraically completely integrable if and only if n = 3 or 4, and

the explicit resolution of the system is done using elliptic functions. So a natural question arises : given a completely integrable system with

polynomial invariants, what makes it algebraically completely integrable? Mumford gives in his book [21] a definition of the algebraic

complete integrability including also non compact and explains (although it has nothing to do with the system above) this extra feature as

follows : the vector fields XH1
, ...,XHn

define on the real torus Mc =
n+k⋂

i=1

{Hi = ci} ⊂ R2n an addition law

⊕ : Mc ×Mc −→ Mc, (x,y) 7−→ x⊕ y = gt+s(p), p ∈ Mc,

with x = gt(p), y = gs(p), gt(p) = g
X1
t1
...gXn

tn
(p), where g

Xi
ti
(p) denote the flow of XHi

. From the polynomial nature of the vector fields X, this

addition law will always be real analytic. The algebraic complete integrability of the system in question means that this law of addition is

rational. In other words, we have (x⊕ y) j = R j(xi,yi,c), where R j(xi,yi,c) is a rational function of the coordinates xi, yi for all i = 1,2, ...,n.

Putting x = p, y = g
Xi
t (p), in the above formula, we notice that on the real torus Mc, the flows g

Xi
t (p) depend rationally on the initial condition

p. Moreover, a Weierstrass theorem on the functions admitting a law of addition, affirms that the coordinates xi restricted to the real torus :

Rn/lattice −→ Mc, (t1, ..., tn) 7−→ zi (t1, ..., tn) ,

are Abelian functions. Geometrically, this means that the real torus Mc ≈ Rn/lattice is the affine part of an algebraic complex torus

(Abelian variety) T n ≃Cn/lattice and the real functions zi (t1, ..., tn), (ti ∈ R), are the restrictions to this real torus of meromorphic functions

zi (t1, ..., tn), (ti ∈ C) of n complex variables, with 2n real periods (of which n real periods and n imaginary periods). It must be said that

Mumford’s explanation of the algebraic complete integrability of a completely integrable Hamiltonian system with polynomial invariants, is

of purely theoretical interest. Indeed, how do you recognise from the differential equations that, on a given level manifold, the commuting

vector fields define a rational addition law ? Painlevé [31] provides the following provocative example, among many others not necessarily in

the context of Hamiltonian mechanics. Consider on C2 the two polynomial commuting vector fields :

X1 : ẋ = x, ẏ = xy,

X2 : ẋ = 0, ẏ = y.

The flow

g
X1
t (x0,y0) =

(
x0et ,y

x0(e
t−1)

0

)
,

doest not depend rationally on the initial condition (x0,y0). Therefore, simply looking at the face of the equations does not answer the

question of whether the problem is algebraically completely integrable. The only method was to solve the problem explicitly in terms of

Abelian integrals.

Now if the system (4.4) is algebraically completely integrable, it means that the variables zi restricted to a generic complex invariant manifold

of the flows, are meromorphic functions on a complex torus Cn/lattice; in fact these are Abelian functions. By compactness, these functions

must blow up along a divisor (a codimension one subvariety) D ⊂ Cn/lattice. Expanding the solutions of the system (4.4) near this divisor

and allowing the constants of the motion to vary, one gets meromorphic solutions depending on dimD+ ♯Hi = m−1 parameters, because

dimD = n− 1 and ♯Hi = n+ k is the number of constants of the motion. The fact that algebraic complete integrable systems possess

(m−1)-dimensional families of Laurent solutions, was implicitly used by Kowalewski [35] in her classification of integrable rigid body

motions. The following necessary condition was developed and used by Adler-van Moerbeke [36] :

Theorem 4.2. Suppose that the Hamiltonian system (4.4) is algebraically completely integrable with Abelian functions zi and for generic c,

the invariant tori related to this system do not contain elliptic curves. Then this system must admit enough meromorphic Laurent expansion

solutions in t ∈ C such that : each zi blows up at least once and Laurent expansion of zi, depend on m−1, free parameters. In addition, the

system in question has families of Laurent solutions depending on m−2, m−3, ..., m−n, parameters and the coefficients of each of these

solutions are rational functions on affine algebraic varieties of dimensions m−1, m−2, m−3,...,m−n.

The question is whether this criterion is sufficient and how it can be used to detect algebraically completely integrable systems. The idea of

the direct proof given by Adler-van Moerbeke[37, 38] is closely related to the geometric spirit of the real Arnold-Liouville theorem [12].

Namely, a compact complex n-dimensional variety on which there exist n holomorphic commuting vector fields which are independent

at every point is analytically isomorphic to a n-dimensional complex torus Cn/Lattice and the complex flows generated by the vector

fields are straight lines on this complex torus. Now a complex affine algebraic variety is never compact, unless it is 0-dimensional. So the

main problem will be to complete the affine variety Mc =
n+k⋂
i=1

{z ∈ Cm,Hi = ci}, into a non-singular compact complex algebraic variety

Mc = Mc ∪D in such a way that the vector fields extend holomorphically along D and remain independent there. If this is possible, Mc is

an Abelian variety (an algebraic complex torus) and the coordinates zi restricted to Mc are Abelian functions. To compactifize Mc into an

algebraic complex torus, a naive guess would be to take the natural compactification

Mc =
n+k⋂

i=1

{
Z ∈ Pm(C),Hi(Z) = ciZ

deg Hi

0

}
,
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of Mc by projectivizing the equations. Indeed, this can never work for a general reason: an Abelian variety M̃c of dimension bigger or equal

than two is never a complete intersection, that is it can never be described in some projective space Pn(C) by n-dim M̃c global polynomial

homogeneous equations. In other words, if Mc is to be the affine part of an Abelian variety, Mc must have a singularity somewhere along the

locus at infinity, i.e., along all or part of the hyperplane section {Z0 = 0} at infinity. The trajectories of the vector fields (4.4) hit every point

of the singular locus at infinity and ignore the smooth locus at infinity. In fact, the existence of meromorphic solutions to the differential

equations (4.4) depending on some free parameters can be used to manufacture the tori, without ever going through the delicate procedure of

blowing up and down. Information about the tori can then be gathered from the divisor. A partial converse to theorem 4.2, can be formulated

as follows [36] :

Theorem 4.3. We assume that condition i) in the above definition of the algebraic complete integrability is satisfied. In addition, suppose

that the system (4.4) with k+n polynomial invariants have a coherent tree of Laurent solutions, i.e., it possesses families of Laurent solutions

in t, depending on n−1, n−2,..., m−n, free parameters. Then, this system is algebraic complete integrable and moreover, there are no

other Laurent solutions of m−1 dimension than those provided by the coherent set.

The study of the algebraic complete integrability of Hamiltonian systems, includes several passages to prove rigorously. Here we mention

the main passages. We saw that if the flow is algebraically completely integrable, the differential equations (4.4) must admits Laurent series

solutions

zi(t) =
1

tki

(
z
(0)
i + z

(1)
i + · · ·

)
, ki ∈ Z, i = 1,2, ...

where z
(0)
i ,z

(1)
i , ... are rational functions depending on m−1, free parameters. We must have ki = li and coefficients in the series must satisfy

at the 0thstep nonlinear equations,

fi

(
z
(0)
1 , ...,z

(0)
m

)
+giz

(0)
i = 0, 1 ≤ i ≤ m, (4.5)

and at the kthstep, linear systems of equations :

(M − kI)z(k) =

{
0 for k = 1

polynomials in z(1), ...,z(k−1) for k > 1,
(4.6)

where M =
∂ f

∂ z
+gI |z=z(0) is the Jacobian matrix of the equations (4.5). If m− 1, free parameters are to appear in the Laurent series,

they must either come from the nonlinear equations (4.5) or from the eigenvalue problem (4.6), i.e., M must have at least m−1, integer

eigenvalues. These are much less conditions than expected, because of the fact that the homogeneity k of the constant H must be an

eigenvalue of L. The formal series solutions are convergent as a consequence of the majorant method. By substituting these series solutions

into the constants of motion Hi(z), 1 ≤ i ≤ n+ k, one eliminates some parameters linearly, leading to an algebraic relation between the

remaining parameters, which is nothing but the equation of the divisor D along which the zi blow up; if the differential equations admit l

families of Laurent meromorphic solutions of the form above, it means that D is formed by l algebraic curves. More precisely, you have to

prove that the set

D ≡
{

zi(t),1 ≤ i ≤ m, Laurent solutions such that : H j (zi(t)) = c j +Taylor part
}

defines one or several n−1 dimensional algebraic varieties (”Painlevé” divisor) having the property that
n+k⋂
i=1

{z ∈ Cm : Hi = ci}∪D, is a

smooth compact, connected variety with n commuting vector fields independent at every point, i.e., a complex algebraic torus Cn/lattice.

Note that the system of coordinates z1, ...,zm can be enlarged to a new set z0 = 1,z1, ...,zN having the property that for fixed but arbitrary

0 ≤ j ≤ N, we have

˙︷ ︸︸ ︷(
zi

z j

)
=

żiz j − ziż j

z2
j

= ∑
k,l

ak,l

(
zk

z j

)(
zl

z j

)
,

i.e., the ratios
zi

z j
form a closed system of coordinates under differentiation. Indeed, consider a point p ∈ D, a chart U j around p on the torus

and a function z j in L(D) having a pole of maximal order at p. Then the vector

(
1

z j
,

z1

z j
, . . . ,

zN

z j

)
provides a good system of coordinates

in U j. Then taking the derivative with regard to one of the flows

˙︷ ︸︸ ︷(
zi

z j

)
are finite on U j as well. Therefore, since z2

j has a double pole

along D, the numerator must also have a double pole (at worst), i.e., żiz j − ziż j ∈ L(2D). Hence, when the divisor D is projectively normal,

i.e., whenever L(kD) = L(D)⊗k which means that the space L(kD) is generated by homogeneous polynomials of degree k in some basis

elements of L(D). At the bad points, the concept of projective normality play an important role: this enables one to show that
zi

z j
is a

bona fide Taylor series starting from every point in a neighborhood of the point in question. Therefore, the flows J
∂Hk+i

∂ z
,..., J

∂Hk+n

∂ z
are straight line motions on this torus (for concrete applications, see for example [32, 36, 39, 40, 41, 42, 43]). Let’s point out that having

computed the space of functions L (D) with simple poles at worst along with the expansions, it is often important to compute the space of

functions L (kD) of functions having k-fold poles at worst along with the expansions. These functions play a crucial role in the study of

the procedure for embedding the invariant tori into projective space. As mentioned previously, the idea of the Adler-van Moerbeke’s proof

[37, 38] consists of using arguments similar to those used in the proof of the real Arnold-Liouville theorem [12], and we can call this result

the Liouville-Arnold-Adler-van Moerbeke theorem:
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Theorem 4.4. Let M̃ be an n-dimensional complex compact manifold with n independent meromorphic functions. Assume that :

(i) For some divisor D, there exist n non-vanishing holomorphic vector fields X1, ...,Xn on the affine variety M̃\D = M which commute and

are independent at every point.

(ii) One vector field, say Xk (where 1 ≤ k ≤ n), extends holomorphically on M̃ and having the property that, for all p ∈ D,

{
g

Xk
tk
(p) : 0 <| t |< ε, t ∈ C

}
⊂ M,

where g
Xk
tk

denote the flow of Xk. This condition means that the orbits of Xk through D go immediately into the affine part M and in particular,

the vector field Xk does not vanish on any point of D.

Then, M̃ is an Abelian variety and the vector fields X1, ...,Xn extend holomorphically and remain independent on M̃.

1) As an example, consider the Kac-van Moerbeke periodic lattice [44] given by the following system :

.
x j = x j(x j−1 − x j+1), j = 1, ...,5

where (x1, ...,x5) ∈ C5 and x j = x j+5. This vector field forms a Hamiltonian system for the Poisson structure

{x j,xk}= x jxk(δ j,k+1 −δ j+1,k), 1 ≤ j,k ≤ 5

and admits three independent first integrals

H1 = x1x3 + x2x4 + x3x5 + x4x1 + x5x2,

H2 = x1 + x2 + x3 + x4 + x5,

H3 = x1x2x3x4x5.

Note that H1 and H2 are involution while H3 is a Casimir, and the system in question is therefore integrable. The affine manifold

3⋂

j=1

{
x = (x1,x2,x3,x4,x5) ∈ C5 : H j(x) = c j

}
, (c1,c2,c3) ∈ C3, c3 6= 0

is isomorphic to Jac(C)\D where C is a curve of genus 2 given by the equation.

w2 =
(

z3 − c1z2 + c2z
)2

−4z,

and D consists of five copies of C in the Jacobian variety Jac(C). The flows generated by H1 et H2 are linearized on Jac(C) and the system is

algebraically completely integrable. The reader interested in the study of this system via various methods can find further information with

more detail in [39] as well as in [45].

2) The problem we are going to study now is the generalized periodic Toda systems. We consider l +1 vectors e0, ...,el in the Euclidean

vector space (Rl+1,〈.|.〉), l ≥ 1, linearly dependent and such that they are l to l linearly independent (i.e, for all j, the vectors e0, ..., ê j, ...,el

are linearly independent). Suppose that the non-zero reals ξ0, ...,ξl satisfying
l

∑
j=0

ξ je j = 0 are non-zero sum; that is,
l

∑
j=0

ξ j 6= 0. Let

Ω = (ai j)0≤i, j≤l be the matrix where

ai j = 2
〈ei|e j〉
〈e j|e j〉

, 0 ≤ i, j ≤ l.

We consider the vector field XΩ on C2(l+1), defined by

.
x = x.y

.
y = Ax, (x,y ∈ Cl+1),

where x.y = (x0y0, ...,xlyl). It has been shown [32] that if XΩ is an integrable vector field of an irreducibly algebraically completely integrable

system, then Ω is the Cartan matrix of a twisted affine Lie algebra. Specific detailed results concerning this problem can be found on the

technical paper [39] and also in [32, 46] and references therein, about link between Abelian varieties, Dynkin diagrams, singularities and

Toda lattice. The periodic l +1 particle Toda lattices are associated to extended Dynkin diagrams. They are completely integrable and have

as many polynomial invariants as points in the Dynkin diagram. The affine variety defined by the intersections of the constants of the motion

is completed into an Abelian variety by the addition of a specific divisor D. The latter consists of l +1 irreducible components D j each

associated with a root α j of the extended Dynkin diagram ∆. The intersection of k components D j1 , ...,D jk satisfies the following relation :

the intersection multiplicity of the intersection of k components of the divisor equals
order(W )

det(Ω)
where W and A are the Weyl group and the

Cartan matrix going with the sub-Dynkin diagram α j1 , ...,α jk associated with the k components. The intersection of all the divisors except

one is a discrete set of points whose number is explicitly determined, but on the other hand the intersection of all the divisors are empty. The

set-theoretical number of points is given (in terms of the Dynkin diagram) by

Number of


 ⋂

β 6=α

Dβ


=

pα

p0

(
order(Weyl group of the Dynkin diagram ∆\α0)

order(Weyl group of the Dynkin diagram ∆\α)

)
,

where the integers pα , are given by the null vector of the Cartan matrix (going with the extended Dynkin diagram ∆). The singularities of the

divisor are canonically associated to semi-simple Dynkin diagrams and those of each component occur only at the intersections with other



Fundamental Journal of Mathematics and Applications 85

components and their multiplicities at the intersection with other divisors are expressed in terms of how a corresponding root is located in the

sub-Dynkin diagram determined by this root and those of the members of the above divisor intersection. We have

sing(Dk)⊆ Dk ∩ ∑
0≤ j≤l

j 6=k

D j, k = 0, ..., l

and this inclusion is valid for the singular locus sing(Dk) of Dk. The multiplicity of the singularity of a particular component Dk, at

its intersection with m other divisors is entirely specified by the way the corresponding root αk are located in the sub-Dynkin diagram

αk,α j1 , ...,α jm . (See [39], for proof of these results as well as other information).

There are many examples of Hamiltonian systems, called algebraic completely integrable in the generalized sense, for which all movable

singularities of the general solution have only a finite number of branches and the complex invariant manifolds are coverings of Abelian

varieties. These systems of differential equations possess solutions which are Laurent expansions containing n-th root terms of type n
√

t (t

being complex time) and whose coefficients depend rationally on certain algebraic parameters. In other words, for these systems just replace

in the above definition of the complete algebraic integrability of Hamiltoian systems, the condition ii) by by this one,

iii) the invariant manifolds

n+k⋂

i=1

{z ∈ Cm : Hi = ci} are related to an l-fold cover T̃ n of the torus T n ramified along a divisor D in T n as follows

:

n+k⋂

i=1

{z ∈ Cm : Hi = ci}= T̃ n\D.

Let Hm be a family of Hamiltonians [47, 48] :

Hm(x,y) =
1

2
(p2

x + p2
y)+αmVm(x,y), m = 1,2, ...

where

Vm(x,y) =
[m/2]

∑
k=0

(m− k)!2m−2k

k!(2k−m)!
x2kym−2k, m = 1,2, ...

It is easy to verify that the associated Hamiltonian systems have a second first integral :

Fm(x,y) = px(xpy − ypx)+αmx2Vm−1(x,y), m = 1,2, ...

and they are Liouville integrable. The study of the systems corresponding to the cases m ≥ 3 is not obvious contrary to the cases m = 1 and

m = 2 whose study is immediate. For m = 3, the study is reduced to that of the Hénon-Heiles system [49]:

.
y1 = x1,
.
y2 = x2, (4.7)
.
x1 = −εy1 −2y1y2,
.
x2 = −y2

1 −16εy2 −16y2
2,

corresponding to a generalized Hénon-Heiles Hamiltonian

H =
1

2
(x2

1 + x2
2)+

ε

2
(y2

1 +16y2
2)+ y2

1y2 +
16

3
y3

2,

where y1,y2,x1,x2 are canonical coordinates and momenta respectively and ε a constant parameter. The associated Hamiltonian system has

the following second constant of motion :

F = 3x4
1 +6εx2

1y2
1 +12x2

1y2
1y2 −4x1x2y3

1 −4εy4
1y2 −4y4

1y2
2 +3ε2y4

1 −
2

3
y6

1.

The functions H and F commute : {H,F}=
2

∑
k=1

(
∂H

∂xk

∂F

∂yk

− ∂H

∂yk

∂F

∂xk

)
= 0. The system (4.7) admits Laurent solutions in

√
t, depending

on three free parameters : α , β , γ and they are explicitly given as follows

y1 =
α√

t
+β t

√
t − α

18
t2
√

t +
αε2

10
t3
√

t − α2β

18
t4
√

t + · · · ,

y2 = − 3

8t2
− ε

2
+

α2

12
t − 2ε2

5
t2 +

αβ

3
t3 − γt4 + · · · , (4.8)

x1 = −1

2

α

t
√

t
+

3

2
β
√

t − 5

36
αt

√
t +

7

20
αε2t2

√
t − 1

4
α2β t3

√
t + · · · ,

x2 =
3

4t3
+

1

12
α2 − 4

5
ε2t +αβ t2 −4γt3 + · · ·
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As previously mentioned, the convergence of these series results from the majorant method. By replacing these series in the equations H = a,

F = b, one eliminates one parameter linearly, leading to an algebraic relation between the two remaining parameters, which is nothing but

the equation of an algebraic curve D along which the (y1(t),y2(t),x1(t),x2(t)) blow up. To be more precise, we have

H =
1

9
α2 − 21

4
γ +

13

288
α4 +

4

3
ε3 = a,

F = −144αβ 3 +
294

5
α3βε2 +

8

9
α6 −33γα4 = b,

which implies that

144αβ 3 − 294ε2

5
α3β +

143

504
α8 − 4

21
α6 +

44

21

(
4ε3 −3a

)
α4 +b = 0.

Let

A =
2⋂

k=1

{(y1,y2,x1,x2) ∈ C4 : H(y1,y2,x1,x2) = a,F(y1,y2,x1,x2) = b}, (4.9)

be the smooth affine surface defined by putting the two invariants H and F equal to generic constants a and b. The Laurent expansions above

where (y1(t),y2(t),x1(t),x2(t)) blow up contain square root terms of the type
√

t and admit three free parameters and in addition these

solutions restricted to the surface A are parameterized by the curve D. We will see that (4.7) is in fact a generalized algebraic completely

integrable system but is part of a new system that is algebraically completely integrable. This latter is a system of five nonlinear differential

equations with five unknowns having three first integrals, two of which are cubic and one is quartic. By inspection of the expansions (4.8),

we look for polynomials in (y1,y2,x1,x2) without fractional exponents, which suggests considering the following change of variables :

z1 = y2
1, z2 = y2, z3 = x2, z4 = y1x1, z5 = 3x2

1 +2y2
1y2. (4.10)

Note that this change of variables determines a morphism on the affine variety A (4.9). Using the two first integrals H, F and differential

equations (4.7), we obtain the following system :

ż1 = 2z4,

ż2 = z3,

ż3 = −z1 −16εz2 −16z2
2, (4.11)

ż4 = −εz1 −
8

3
z1z2 +

1

3
z5,

ż5 = 2z1z3 −8z2z4 −6εz4,

having two cubic and one quartic invariants (constants of motion),

G1 =
1

2
εz1 +

1

6
z5 +8εz2

2 +
1

2
z2

3 +
2

3
z1z2 +

16

3
z3

2,

G2 = 9ε2z2
1 + z2

5 +6εz1z5 −2z3
1 −24εz2

1z2 −12z1z3z4 +24z2z2
4 −16z2

1z2
2,

G3 = z1z5 −3z2
4 −2z2

1z2.

This new system is a completely integrable Hamiltonian system where G1 is the Hamiltonian whose structure is determined by the bracket

{H,F}=
〈

∂H

∂ z
,J

∂F

∂ z

〉
,

the anti-symmetric matrix J defines a Poisson structure for which the corresponding Poisson bracket satisfies the Jacobi identity. The two

first integrals G1 and G2 are in involution while the latter G3 is trivial (i.e., a Casimir function). For generic values of constants c1, c2 and c3,

the invariant variety

B =
3⋂

k=1

{(z1,z2,z3,z4,z5) ∈ C5 : Gk(z1,z2,z3,z4,z5) = ck}, (4.12)

is a smooth affine surface. The differential equations (4.11) admit Laurent series expansions restricted to the surface B (4.12); these solutions

can be read off from (4.8) and the change of variable (4.10) and depend on four free parameters. We have shown that the change of variables

(4.10) transforms the system (4.7) into an algebraic completely integrable system (4.11) of five differential equations in five unknowns and

parallel to that, the affine variety A (4.9) is transformed into the affine part B (4.12) of an Abelian variety B̃. The Hamiltonian system (4.7) is

a generalized algebraic complete integrable system, the invariant surface A (4.9) can be completed as a cyclic double cover A of an Abelian

surface B̃ and in addition, A is smooth except at the point lying over the singularity of type A3 whose resolution Ã of A is a surface of general

type. This explains (among other) why the asymptotic solutions to the differential equations (4.7) contain fractional powers. All this is

summarized as follows [50] :

Theorem 4.5. The system (4.7) admits Laurent solutions with fractional powers depending on three free parameters and is algebraic

complete integrable in the generalized sense. In addition, this system is part of a new system of differential equations (4.11) in five unknowns

having two cubic and one quartic invariants (constants of motion). This last system possesses Laurent expansions (but without fractional

powers) depending on four free parameters and it is algebraically completely integrable.
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The case m = 4 corresponds to Ramani-Dorizzi-Grammaticos (RDG) potential [47, 48], whose corresponding system is given by

q̈1 −q1

(
q2

1 +3q2
2

)
= 0, q̈2 −q2

(
3q2

1 +8q2
2

)
= 0. (4.13)

These equations can be written in the form of an integrable Hamiltonian system whose Hamiltonian is given by

H1 =
1

2
(p2

1 + p2
2)−

3

2
q2

1q2
2 −

1

4
q4

1 −2q4
2.

The second first integral being

H2 = p4
1 −6q2

1q2
2 p2

1 +q4
1q4

2 −q4
1 p2

1 +q6
1q2

2 +4q3
1q2 p1 p2 −q4

1 p2
2 +

1

4
q8

1.

The first integrals H1 and H2 are obviously in involution. For generic (b1,b2) ∈ C2, the affine variety B defined by

B =
2⋂

k=1

{z ∈ C4 : Hk(z) = bk}, (4.14)

is a smooth surface. The solutions of the differential equations (4.13) in the form of Laurent’s series depend on three free parameters u,v,w.

and are written

q1 =
1√
t

(
u− 1

4
u3t + vt2 − 5

128
u7t3 +

1

8
u(

3

4
u3v− 7

256
u8 +3κw)t4 + · · ·

)
,

q2 =
1

t

(
1

2
κ − 1

4
κu2t +

1

8
κu4t2 +

1

4
κu(

1

32
u5 −3v)t3 +wt4 + · · ·

)
, (4.15)

p1 =
1

2t
√

t

(
−u− 1

4
u3t +3vt2 − 25

128
t3u7 +

7

8
u

(
3

4
u3v− 7

256
u8 +3κw

)
t4 + · · ·

)
,

p2 =
1

t2

(
−1

2
κ +

1

8
κu4t2 +

1

2
κu

(
1

32
u5 −3v

)
t3 +3wt4 + · · ·

)
,

where κ =±1. The convergence of these series derives from the the majorant method. Note that these solutions contain square root terms of

type
√

t, and we will see that these terms can be removed by introducing the variables z1,z2,z3,z4,z5 (4.17) which restores the Painlevé

property (that is, the only singularities are poles) of the system in question. Substituting (4.15) in the invariants H1 = b1 and H2 = b2, after

eliminating the parameter w, we obtain the following equation (of a curve of genus 16 denoted Γ) connecting the parameters u and v :

a1uv3 +a2u6v2 −a3u11v+a4b1u3v−a5u16 −a6b1u8 +b2 +a7 = 0. (4.16)

where a1 = 65
4 , a2 = 93

64 , a3 = 29487
8192 , a4 = 78336

8192 , a5 = 10299
65536 , a6 = 123

256 , a7 = 1536298731
52 . Consider on the variety B (4.14), the following

morphism

ψ : B −→ C5, (q1,q2, p1, p2) 7−→ (z1,z2,z3,z4,z5),

where

z1 = q2
1, z2 = q2, z3 = p2, z4 = q1 p1, z5 = p2

1 −q2
1q2

2. (4.17)

These variables are easily obtained by simple inspection of the series (4.15). By using the variables (4.17) and differential equations (4.13),

one obtains

ż1 = 2z4,

ż2 = z3,

ż3 = z2(3z1 +8z2
2), (4.18)

ż4 = z2
1 +4z1z2

2 + z5,

ż5 = 2z1z4 +4z2
2z4 −2z1z2z3.

This new system on C5 admits the following three first integrals

F1 =
1

2
z5 − z1z2

2 +
1

2
z2

3 −
1

4
z2

1 −2z4
2,

F2 = z2
5 − z2

1z5 +4z1z2z3z4 − z2
1z2

3 +
1

4
z4

1 −4z2
2z2

4, (4.19)

F3 = z1z5 + z2
1z2

2 − z2
4.

The first integrals F1 and F2 are in involution , while F3 is trivial (Casimir function). The invariant variety A defined by

A =
3⋂

k=1

{(z1,z2,z3,z4,z5) ∈ C5 : Fk(z1,z2,z3,z4,z5) = ck}, (4.20)
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is a smooth affine surface for generic values of (c1,c2,c3) ∈ C3. The system (4.18) is completely integrable and possesses Laurent series

solutions which depend on four free parameters α,β ,γ et θ :

z1 =
1

t
α − 1

2
α2 +β t − 1

16
α
(

α3 +4β
)

t2 + γt3 + · · · ,

z2 =
1

2t
κ − 1

4
κα +

1

8
κα2t − 1

32
κ
(
−α3 +12β

)
t2 +θ t3 + · · · ,

z3 = − 1

2t2
κ +

1

8
κα2 − 1

16
κ
(
−α3 +12β

)
t +3θ t2 + · · · , (4.21)

z4 = − 1

2t2
α +

1

2
β − 1

16
α
(

α3 +4β
)

t +
3

2
γt2 + · · · ,

z5 =
1

2t2
α2 − 1

4t

(
α3 +4β

)
+

1

4
α
(

α3 +2β
)
−
(

α2β −2γ +4κθα
)

t + · · · ,

where κ =±1. The convergence of these series is guaranteed by the majorant method. By replacing these series in the equations F1 = c1,

F2 = c2, F3 = c3 one eliminates two parameters γ and θ linearly, leading to an algebraic relation between the two remaining parameters,

which is the equation of an algebraic curve C of genus 7,

64β 3 −16α3β 2 −4
(

α6 −32α2c1 −16c3

)
β +α

(
32c2 −32α4c1 +α8 −16α2c3

)
= 0. (4.22)

The Laurent solutions restricted to the surface A (4.20) are thus parameterized by two copies C−1 and C1 of the same Riemann surface C

(4.22) and we embed these curves in a hyperplane of P15(C) using the sixteen functions :

1, z1, z2, 2z5 − z2
1, z3 +2κz2

2, z4 +κz1z2, W ( f1, f2), f1( f1 +2κ f4), f2( f1 +2κ f4), z4( f3 +2κ f6),

z5( f3 +2κ f6), f5( f1 +2κ f4), f1 f2( f3 +2κ f6), f4 f5 +W ( f1, f4), W ( f1, f3)+2κW ( f1, f6), f3 −2z5 +4 f 2
4 ,

where W (s j,sk)≡ ṡ jsk − s j ṡk is the Wronskian. The curves C1 and C−1 have double points in common where they are tangent to each other

and which are a singularity of type A3 of C1 +C−1. The Hamiltonian system (4.13) is algebraic complete integrable in the generalized sense

and the invariant surface B (4.14) is completed as a cyclic double cover B of the Abelian surface Ã, ramified along the divisor C1 +C−1.

In addition, B is smooth except at the singularity above and the resolution B̃ of B is a surface of general type. Let G be a cyclic group of

two elements {−1,1} on V
j

ε =U
j

ε ×{τ ∈ C : 0 < |τ|< δ}, where τ =
√

t and U
j

ε is an affine chart of Γε for which the Laurent expansions

(4.21) are well defined. Since the action of G is defined by (−1)◦ (u,v,τ) = (−u,−v,−τ) and is without fixed points in V
j

ε , then the quotient

V
j

ε /G identifies itself with the image of the smooth map h
j
ε : V

j
ε −→ B defined by the Laurent series (4.21). We have

(−1,1).(u,v,τ) = (−u,−v,τ), (1,−1).(u,v,τ) = (u,v,−τ),

which means that G×G acts separately on each coordinate and so,, identifying V
j

ε /G2 with the image of ψ ◦h
j
ε in A. Note that, except for a

finite number of points, B
j
ε = V

j
ε /G is smooth and the coherence of the B

j
ε follows from the coherence of V

j
ε and the action of G. After

gluing various varieties B
j
ε\{some points} on B, we obtain a smooth complex manifold B̂ which is a double cover of the Abelian variety Ã

ramified along C1 +C−1, and therefore can be completed to an algebraic cyclic cover of Ã. We would like to know information on the points

that are missing. For this, we must examine the image of Γ×{0} in ∪B
j
ε . The quotient Γ×{0}/G is birationally equivalent to the curve ϒ

defined by the equation :

a1y3 +a2x3y2 −a3x6y+a4b1x2y−
(

a5x8 +a6b1x4 −b2 −a7

)
x = 0,

and its genus is 7, where a1, ...,a7, have been defined above and y = uv,x = u2. The curve ϒ is birationally equivalent to C and the

only points of ϒ fixed under (u,v) 7−→ (−u,−v) are the points at ∞. These correspond to the (double) ramification points of the map

Γ×{0} −→ ϒ : (u,v) 7−→ (x,y), and coincide with the points at ∞ of the curve C. The variety B̂ constructed above is birationally equivalent

to the compactification B of B and B is a cyclic double cover of the Abelian surface Ã. The system (4.13) is algebraic complete integrable in

the generalized sense and B is smooth except at the point lying over the singularity (of type A3) of C1 +C−1. The resolution B̃ of singularities

of B, is a surface of general type with invariants : Euler characteristic of B̃ =1 and geometric genus of B̃=2. In conclusion, we have [51],

Theorem 4.6. The Hamiltonian system (4.13) is algebraic complete integrable in the generalized sense and possess Laurent expansions

depending on three free parameters : u,v,w, and containing square root terms of type
√

t. These Laurent solutions restricted to the affine

manifold B (4.14) are parameterized by two copies Γ1 and Γ−1 of an algebraic curve Γ (4.16) of genus 16. This system is part of a new

algebraically completely integrable system (4.18) in five unknowns and having three quartics invariants (4.19). The complex invariant

manifold A (4.20) defined by putting these polynomial invariants equal to generic constants is the affine part of an Abelian surface Ã with

Ã\A =C1 +C−1, where the divisor C1 +C−1 is very ample and consists of two components C1 and C−1 of a genus 7 curve C (4.22). In

addition, the invariant manifold B is completed into a cyclic double cover B of the Abelian surface Ã, ramified along the divisor C1 +C−1 in

such a way that the vector fields extend holomophically alond this divisor and remain independent there. Moreover, B is smooth except at

the point lying over the singularity (of type A3) of C1 +C−1 and the resolution B̃ of B is a surface of general type with invariants : Euler

characteristic of B̃=1 and geometric genus of B̃=2.

5. Conclusion

At the end of this paper, it is worth to mention some similar problems as well as recent results. Abelian varieties, very heavily studied by

algebraic geometers, enjoy certain algebraic properties which can then be translated into differential equations and their Laurent solutions.

Among the results presented in this paper, there is an explicit calculation of invariants for Hamiltonian systems which cut out an open set in
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an Abelian variety and various algebraic curves related to these systems are given explicitly. The integrable systems presented here are

interesting problems, particular to experts of Abelian varieties who may want to see explicit examples of correspondence for varieties defined

by different algebraic curves. The methods used are primarily analytical but heavily inspired by algebraic geometrical methods. The concept

of algebraic complete integrability is quite effective in small dimensions and has the advantage to lead to global results, unlike the existing

criteria for real analytic integrability, which, at this stage are perturbation results. In fact, the overwhelming majority of dynamical systems,

Hamiltonian or not, are non-integrable and possess regimes of chaotic behavior in phase space. The methods used are primarily analytical

but heavily inspired by algebraic geometrical methods. Abelian varieties and cyclic coverings of Abelian varieties, very heavily studied by

algebraic geometers, enjoy certain algebraic properties which can be translated into differential equations and their Laurent solutions.

In recent years, other important results have been obtained following studies on the KP and KdV hierarchies. The use of tau functions related

to infinite dimensional Grassmannians, Fay identities, vertex operators and the Hirota’s bilinear formalism led to obtaining remarkable

properties concerning these algebras of infinite order differential operators as for example the existence of an infinite family of first integrals

functionally independent and in involution. The elaboration of powerful methods and the discovery of their common algebraic structures

led to important developments concerning the study of nonlinear problems. The functions τ(t) are specific functions of time, constructed

from sections of a determinant bundle on an infinite-dimensional Grassmannian manifold. These functions generalize the Riemann theta

functions and they are solutions of the KP hierarchy, i.e, solutions of an infinite series of nonlinear partial differential equations connecting

infinity of functions of infinity variables. The functions τ(t) can be Schur polynomials, falling within Fredholm’s group representation

theory or determinants. Recently, a new type of tau function has appeared, within the framework of quantum gauge theory with gauge group

SU(N) when N is large. This led to the so-called matrix models (quantum gravity) for counting triangulations on certain surfaces (topology).

The underlying models have remained relatively intractable except in two space-time dimensions; although being physically toy models,

their structure is still very rich. The first tau function was introduced by Sato, Miwa, and Jimbo in relation to the theory of isomonodromic

deformations. It has been defined as a correlation function of certain quantum fields associated with the poles of a Fuchsian system on the

Riemann sphere. These functions give information on the topology of moduli spaces of Riemann surfaces and are closely related to the

theory of representations of Virasoro algebras and W-algebras. The τ(t) functions play an important role in a large number of branches of

mathematics and theoretical physics, such as integrable systems, string theories, quantum-gauge theories, isomonodromic deformations,

matrix models (quantum gravity), the associated matrix integrals which have power series expansions (perturbative series) and whose terms

count the triangulations on surfaces (Feynman graphs), the module problems and in many other domains. Many problems related to algebraic

geometry, combinatorics, probabilities and quantum gauge theory,..., have been solved explicitly by methods inspired by techniques from the

study of integrable systems. In particular, the study of random matrices, a domain that establishes links with several problems, for example

with combinatorics, probabilities, number theory, models of growth and random tailings and questions of communication technology. The

functions τ(t) are the source of inspiration for many mathematicians and physicists in search of new algebraic structures appearing in

mathematics and physics. The vertex operators give a good device to the investigation of the matrix models and the spectrum of the stochastic

matrices. An account of these results will appear elsewhere.
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Springer-Verlag, 2004.
[33] J.-P. Françoise, Integrability of quasi-homogeneous vector fields, Unpublished preprint.



90 Fundamental Journal of Mathematics and Applications

[34] E. Hille, Ordinary Differential Equations in the Complex Domain, Wiley-Interscience, New-York, 1976.
[35] S. Kowalewski, Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta Math., 12 (1889), 177-232.
[36] M. Adler, P. van Moerbeke, The complex geometry of the Kowalewski-Painlevé analysis, Invent. Math., 97 (1989), 3-51.
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Abstract

In this paper, we seek to investigate the effect of inflation on the optimal investment strategies

for DC Pension. Our model permits the plan member to make a defined contribution, as

provided in the Nigerian Pension Reform Act of 2004. The plan member is free to invest in

risk-free asset and two risky assets. A stochastic differential equation of the pension wealth

that takes into account certainly agreed proportions of the plan member’s salary, paid as a

contribution towards the pension fund, is presented. The Hamilton-Jacobi-Bellman (H-J-B)

equation, Legendre transformation, and dual theory are used to obtain the explicit solution

of the optimal investment strategies for CRRA utility function. Our investigation reveals

that the inflation has significant negative effect on optimal investment strategy, particularly,

the CCRA is not constant with the investment strategy since the inflation parameters and

coefficient of CRRA utility function have insignificant input on the investment strategy.

1. Introduction

There are two major designs of pension plan, namely, the defined benefit (DB) pension, and the defined contribution (DC) pension plan. As

the names implies, in that of the DB, the benefits of the plan member are defined, and the sponsor bears the financial risk. Whereas, in the

DC pension plan, the contributions are defined, the retirement benefits depends on the contributions and the investment returns, and the

contributors (the plan members) bears the financial risk. Recently, the DC pension has taken dominance over the DB pension plan in the

pension scheme, since DC pension plan is fully funded, which makes it easier for the plan managers (Pension Fund Administrators (PFAs’)

and the Pension Fund Custodians (PFCs’) to invest equitably in the market, and also makes it easier for the plan members to receive their

retirement benefit as and when due.

Investment strategies of the contributions, which in turn is a strong determinant of the investment returns vis-a-vis the benefits of the

contributors at retirement must be given optimum attention. Recent publications in economic Journals and other reputable Mathematics and

Science Journals have brought to light, a variety of methods of optimizing investment strategies and returns. For instance, some researchers

have made various contributions in this direction, particularly, in DC Pension Plan. [1] did work on, “stochastic life styling: optimal dynamic

asset allocation for defined contribution pension plans. In their work, various properties and characteristics of the optimal asset allocation

strategy, both with and without the presence of non-hedge able salary risk were discussed. The significance of alternative optimal strategy by

pension providers was established.

In order to deal with optimal investment strategy, the need for maximization of the expected utility of the terminal wealth became necessary.

Example, the Constant Relative Risk Aversion (CRRA) utility function, and (or) the Constant Absolute Risk Aversion (CARA) utility

function were used to maximize the terminal wealth. [1]-[4], and [5] used CRRA to maximize terminal wealth. However, [6] used the CRRA

and the CARA to maximize terminal wealth.

[7] applied the well-known H-J-B equation, Legend transform, and dual theory to obtain the explicit solutions of CRRA and CARA utility

function, for the maximization of the terminal wealth. In 2012, Nan-wei Han et al took a different direction. The investigated optimal asset

allocation for DC pension plans under inflation. In their work, the retired individuals receive an annuity that is indexed by inflation and a

Email addresses: kevinnjoku60@yahoo.com, 0000-0002-4430-4159 (K. N. C. Njoku) Osu.bright@mouau.edu.ng, 0000-0003-2463-430X (B. O. Osu)
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downside protection on the amount of this annuity is considered. More so, in 2015, [1] considered an Inflationary market. In their work, the

plan member made extra contribution to amortize the pension fund. The CRRA utility function was used to maximize the terminal wealth.

This triggered our research. Ours is to investigate and view the extent of damage the inflation may have caused to enable us to introduce, not

just an amortization fund, but an optimum amortization fund that would sufficiently dampen the effect of inflation. The approach used here is

similar to that of [5]. The models we used is that of [8], though, we considered inflation of globally competing goods, and some real life

assumptions are made to buttress this fact.

2. Preliminaries

We start with a complete and frictionless financial market that is continuously open over the fixed time interval [0,T ], for T > 0, representing

the retirement time of any plan member.

We assume that the market is composed of the risk-free asset (cash), the inflation-linked bond, and risky asset (the stock price subject to

inflation). Let (Ω, F,P) be a complete probability space, where Ω is a real space and P is a probability measure, {Ws (t) , WI(t)} are two

standard orthogonal Brownian motions, {FI (t) , Fs(t)} are right continuous filtrations whose information are generated by the two standard

Brownian motions {Ws (t) , WI(t)}, whose sources of uncertainties are respectively to the inflation rate and the stock market. We assume also

that at the early stage of the inflation, before government intervention policy, {WR (t) , WI(t)}, {Ws (t) , WR(t)} are two standard orthogonal

Brownian motions, respectively.

Let C(t) denote the price of the risk free asset at time t and it is modeled as follows

dC (t)

C (t)
= rR(t)dt,C(0) = 1

r(t) is the real interest rate process and is given by the stochastic differential equation (SDE)

drR(t) = (a − brR (t)) dt − σRdWR(t),

σR =
√

k1rR(t) + k2 , t ≥ 0,

where rR is a real interest rate, rR(0), k1, and k2 are positive real numbers. If k1 (resp., k2) is equal to zero, we have a special case, as in [9],

[10] dynamics. So under these dynamics, the term structure of the real interest rates is affine, which has been studied by [7], [4], [11] and [2].

Let S(t) denote the price of the risky asset subject to inflation and its dynamics is given based on a continuous time stochastic process at

t ≥ 0 and the dynamics of the price process is described as follows

dS(t)

S (t)
= ( rR (t)+λ 1σs

s +λ 2σ I
sθI)dt + σ s

sdWs +σ I
sdWI , S (0) = 1 (2.1)

premium associated with the positive volatility constants σs
s and σ I

s , respectively, see [4]. θI represents the inflation price m with λ1 and λ2

represents the instantaneous market risk.

An inflation-linked bond with maturity T , whose price at time t is denoted by B(t, I (t)) , t ≥ 0 , and its evolution is given by the SDE below

(see [8])

dB(t, I(t)), )

B(t, I(t)),
= (rR (t)+ σIθI)dt +σIdWI(t), B(T, I(T )) = 1 (2.2)

Let us denote the stochastic wage of the plan member, at time t, by P(t) which is described by

dP(t)

P(t)
= µP(t) dt + σ s

pdWs(t)+σ I
pdWI(t),

where, µp (t) denotes the expected instantaneous rate of the wage, while σ s
p and σ I

p denote the two volatility scale factors of stock and

inflation, respectively. Since the wage is stochastic, we let the instantaneous mean of the wage to be µP (t, r (t))=r (t)+ up, where mp is a

real constant.

3. Methodology

3.1. Hamilton-Jacobi-Bellman (HJB) equation

Suppose, we represent u = (uB,uS) as the strategy and we define the utility attained by the contributor from a given state y at time t as

Gu (t,rR,y) = Eu V (X (T )) | rR (t) = rR,Y (t) = y] , (3.1)

where t is the time, rR is the real interest rate and y is the wealth. Our interest here is to find the optimal value function

G(t,rR,y) = sup
u

Gu(t,rR,y)

and the optimal strategy u∗ = (uB
∗,uS

∗) such that

Gu∗ (t,rR,y) = G(t,rR,y) .
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3.2. Legendre transformation

The nonlinear partial differential equation obtained in (3.1) above is transformed into a linear partial differential equation, using the Legendre

transform method and Dual theory.

Theorem 3.1. [12] Let f : Rn → R be a convex function for z > 0, define the Legendre transform

L(z) = max
y

{ f (y)− zy} , (3.2)

where L(z) is the Legendre dual of f (y). Suppose, f (y) is strictly convex, then the supremum (3.2) would be attained at one point, denoted

by y0 (i.e, the sup. exist). We write

L(z) = supy { f (y)− zy}= f (y0)− zy0

By Theorem 3.1 and the assumption of convexity of the value function G(t,rR,y), we define the Legendre transform

Ĝ(t,rR,z) = sup
y>0

G(t,rR,y)− zy | 0 < y < ∞} 0 < t < T. (3.3)

Where z > 0 denotes the dual variable to y and Ĝ is the dual function of G.

The value of y where this optimum is attained is denoted by h(t,r,z) , so that

h(t,rR,z) = inf
y>0

y
∣∣ G(t,rR,y)≥ zy+ Ĝ(t,rR,z)

}
0 < t < T. (3.4)

from (3.4), we see that the function h and Ĝ are closely related, hence we write either of them as dual of G. To see this relationship,

Ĝ(t,rR,z) = G(t,rR,h)− zh.

where

h(t,rR,z) = y, Gy = z, and relating Ĝ to h by h =−Ĝz.

Replicating the idea in (3.3) and (3.4), above, we define the Legendre transform of the utility function U(y), at terminal time, thus

Û (z) = supx>0 U (x)− zx | 0 < x < ∞} ,

where z > 0 denotes the dual variable to y, and Û is the dual of U .

Similarly, the value of y where this optimum is attained is denoted by G(z), such that

G(z) = supx>0

{
w |U(x)≥ zx+Û (z)

}
.

Consequently, we have

G(z) = (U ′)−1 (z)

where G is the inverse of the marginal utility U.

Since h(T,rR,y) =U (y) , then at the terminal time, T , we can define

h(T,rR,z) = inf
y>0

{
y|U (y)≥ zy+ ĥ(T,rR,z)

}

and

ĥ(T,rR,z) = sup
y>0

{U (y)− zy}

so that

h(T,rR,z) = (U ′)−1 (z) . (3.5)
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4. Model formulation

Here, the contributions are continuously paid into the pension fund at the rate of KP(t) where K is the mandatory rate of contribution. Let

W (t) denote the wealth of pension fund at time t ∈ [0,T ]. uB (t) and uS (t) represent the proportion of the pension fund invested in the bond

and the stock respectively. This implies that the proportion of the pension fund invested in the risk-free asset uC (t) = 1−uB (t)−uS (t). The

dynamics of the pension wealth is given by

dW (t) = uCW (t)
dC (t)

C (t)
+uBW (t)

dB(t, I(t))

B(t, I(t))
+uSW (t)

dS (t)

S (t)
+KP(t)dt (4.1)

Substituting f(1), (2.1) and (2.2) in (4.1) we have

dW (t) =W (t)
[
rR (t)+σIθIuB +

(
λ1σ s

s +λ2σ I
sθI

)
uS

]
dt +KP(t)dt +W (t)(σIuB +σ I

suS)dWI (t)+W (t)σ s
suSdWS (t) (4.2)

Let the relative wealth (t)tbe defined as follows

Y (t) =
W (t)

P(t)
(4.3)

Applying product rule and Ito’s formula to (4.3) and making use of (2.3) and (4.2) we arrive at the following equation

dY (t) = Y (t)

{
r (t)−µp +(σ s

p)
2 +(σ I

p)
2
+

[(
λ1σ s

s +λ2σ I
sθI

)
−

1

2
σ I

sσ
I

p −
1

2
σ s

sσ
s

p

]
uS +

(
σIθI −

1

2
σIσ

I
p

)
uB

}
dt

+ Kdt +Y (t)
(

σIuB +σ I
sus −σ I

p

)
dWI +Y (t)

(
σ s

sus −σ s
p

)
dWs Y (0) =W (0)/P(0)

Simplifying,

dY (t) = X(c1 + c2us + c3uB)dt +Kdt +Y (t)
(

σIuB +σ I
suS −σ I

p

)
dWI (t)+Y (t)

(
σ s

suS −σ s
p

)
dWS (t) , (4.4)

where

c1 = rR (t)−µp +(σ s
p)

2 +(σ I
p)

2

c2 =
(

λ1σ s
s +λ2σ I

sθI

)
−

1

2
σ I

sσ
I

p −
1

2
σ s

sσ
s

p

c3 = σIθI −
1

2
σIσ

I
p

The Hamilton-Jacobi-Bellman (HJB) equation associated with (4.4) is

Gt +(a−brR)Gr +
1

2
σrR

2GrRrR
+ sup

u

{
{y(c1 +usc2 +uBc3)Gy +KGy

+ 1
2 y2[

((
σIuB +σ I

sus −σ I
p

))2
+
(
σ s

sus −σ s
p

)2
]Gyy = 0

}
(4.5)

where Gt , Gy, GrRrR
, Gy and Gyy are partial derivatives of first and second orders with respect to time, real interest rate, and relative wealth.

Differentiating (4.5) with respect to uB and uS, we obtain the first-order maximizing conditions for the optimal strategies uB
∗ and uS

∗ , thus

c3Gy + yσI

(
σIuB

∗+σ I
suS

∗−σ I
p

)
Gyy = 0 (4.6)

c2Gy + xσ I
s

(
σIuB

∗+σ I
suS

∗−σ I
p

)
Gyy + yσ s

s

(
σ s

suS
∗−σ s

p

)
Gyy = 0 (4.7)

Solving (4.6) and (4.7) simultaneously we have

uS
∗ =

σ I
sc3 − c2σI

(σ s
s)

2σIy

Gy

Gyy
+

(
σ s

pσ I
s +σ s

pσ s
s −σ I

pσ I
s

(σ s
s)

2

)
(4.8)

uB
∗ =

σ I
p

σI
−

σ I
s(σ

s
pσ I

s +σ s
pσ s

s −σ I
pσ I

s)

(σ s
s)

2σI

−
σ I

s(σ
I
sc3 − c2σI)

(σ s
s)

2
y

Gy

Gyy
−

c3

σI
2y

Gy

Gyy
(4.9)

Substituting (4.8) and (4.9) into (4.5), and assuming independent and identically distributed volatility scale of salary for stock and inflation

(i.e., σ I
p = σ s

p), we have

Gt +(a−brR)GrR
+ 1

2 σrR

2GrRrR
+
(
K + y( 1

2 ρ5 +ρ1)
)

Gy

+
(

2θI
2 + 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4

)
Gy

2

Gyy
+ 1

2 y2ρ3 = 0,
(4.10)
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ρ1 =
3
2 (σ

I
p)

2 +λ1σ s
sσ

I
sσIθI +λ2(σ

I
s)

2θI
2σI −

1
2 λ1σ s

sσ
I
sσIσ

I
p −

1
2 λ2(σ

I
s)

2θIσIσ
I

p

− 1
2 (σ

I
s)

2θIσIσ
I

p −
1
2 σ s

sσ
I

pσ I
sσIθI +

1
4 (σ

I
s)

2(σ I
p)

2σI +
1
4 σ s

s(σ
I
s)

2σ I
sσI

+λ1σ s
p +

λ2(σ
I
s)

2
θI σ

I
p

(σ s
s)

2 +
λ2σ I

sθI σ
I

p

σ s
s

−
θI λ2(σ

I
s)

2
(σ I

p)
2

(σ s
s)

2 −
(σ I

p)
2
σ I

s

2σ s
s

−up

ρ2 =
λ1σ I

sσ
I

p

2σ s
s

− 2λ1λ2σ I
sθI

σ s
s

−
λ2

2(σ I
s)

2
θI

2

(σ s
s)

2 +
λ2(σ

I
s)

2
θI σ

I
p

(σ s
s)

2 +
λ2σ I

sθI σ
I

p

σ s
s

−
3(σ I

s)
2
(σ I

p)
2

4σ s
s
2

− 3
2

θI(σ
I
s)

2
σ I

p

(σ s
s)

2 −
θ1σ I

pσ I
s

2σ s
s

−
θI

2(σ I
s)

2

(σ s
s)

2 + θI σ
I
sλ1

σ s
s

+
(σ I

p)
2
(σ I

s)
2

2(σ s
s)

2 +
(σ s

p)
2σ I

s

4σ s
s

ρ3 = (σ I
s)

4σIθI
2 − (σ I

s)
4σI

2θIσ
I

p +
(σ I

s)
4
σI

2(σ I
p)

2

4 +(σ s
s)

2(σ I
s)

2σI
2θI

2 − (σ s
s)

2σ I
sσI

2θIσ
I

p

+2σ I
sσIθIσ

I
p −2σ s

sσ
I
sσIθIσ

I
p +

(σ s
s)

2(σ I
s)

2
σI

2(σ I
p)

2

4 −
2(σ I

p)
2
(σ I

s)
2

(σ s
s)

2

ρ4 =
(σ I

s)
4
θI

2

(σ s
s)

4 +
(σ I

s)
3
θI σ

I
p

(σ s
s)

4 +
(σ I

s)
2
(σ I

p)
2

4(σ s
s)

4 −
2θI

2(σ I
s)

2

(σ s
s)

2 +
σ I

sσ
I

pθI

(σ s
s)

2 +
σ I

p(σ
I
s)

2
θI

(σ s
s)

2 −
σ I

s(σ
I

p)
2

2(σ s
s)

2

+ 2λ1λ2σ I
sθI

σ s
s

−
λ1σ I

sσ
I

p

σ s
s

+
λ1

2(σ I
s)

2
θI

2

(σ s
s)

2 −
λ2(σ

I
s)

2
θI σ

I
p

(σ s
s)

2 −
λ2σ I

sθI σ
I

p

σ s
s

+
(σ I

s)
2
(σ I

p)
2

4(σ s
s)

2 +
σ I

s(σ
I

p)
2

2σ s
s

ρ5 =
(σ I

s)
3
σIθIσ

I
p

(σ s
s)

2
−

2(σ I
s)

4
σIθI

2

(σ s
s)

2
+

(σ I
s)

4
σIσ

I
pθI

(σ s
s)

2
−

(σ I
s)

3
σI(σ

I
p)

2

2(σ s
s)

2
+2θI

2σI(σ
I
s)

2 −θI(σ
I
s)

2σIσ
I

p

+
(σ I

p)
2
(σ I

s)
2
σI

2
−2σ s

sσ
I
sσIθIλ1 −2(σ I

s)
2σIθI

2λ2 +σ s
sσ

I
sσIθIσ

I
p +σ s

sσ
I
sσIθIσ

I
pλ1 +(σ I

s)
2σIσ

I
pλ2θI

−
(σ I

s)
2
σI(σ

I
p)

2

2
−

σ s
sσ

I
sσI(σ

I
p)

2

2
−2σ s

sλ2σ I
sθIσ

I
p +

2λ2σ I
sθIσ

I
p

σ s
s

with G(T,rRy,) =U(y).
Applying Legendre transform to (4.10), we have

Ĝt +(a−brR(t)) ĜrR
+

1

2
σrR

2ĜrRrR
+[K + y(

1

2
ρ

5
+ρ1)]Z −

(
2θI

2 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4

)
Z2Ĝzz −

1

2
y2ρ3

1

Ĝzz

= 0,

ρ1 =
3
2 (σ

I
p)

2 +λ1σ s
sσ

I
sσIθI +λ2(σ

I
s)

2θI
2σI −

1
2 λ1σ s

sσ
I
sσIσ

I
p −

1
2 λ2(σ

I
s)

2θIσIσ
I

p

− 1
2 (σ

I
s)

2θIσIσ
I

p −
1
2 σ s

sσ
I

pσ I
sσIθI +

1
4 (σ

I
s)

2(σ I
p)

2σI +
1
4 σ s

s(σ
I
s)

2σ I
sσI +λ1σ s

p

+
λ2(σ

I
s)

2
θI σ

I
p

(σ s
s)

2 +
λ2σ I

sθI σ
I

p

σ s
s

−
θI λ2(σ

I
s)

2
(σ I

p)
2

(σ s
s)

2 −
(σ I

p)
2
σ I

s

2σ s
s

−up

ρ2 =
λ1σ I

sσ
I

p

2σ s
s

− 2λ1λ2σ I
sθI

σ s
s

−
λ2

2(σ I
s)

2
θI

2

(σ s
s)

2 +
λ2(σ

I
s)

2
θI σ

I
p

(σ s
s)

2 +
λ2σ I

sθI σ
I

p

σ s
s

−
3(σ I

s)
2
(σ I

p)
2

4σ s
s
2

− 3
2

θI(σ
I
s)

2
σ I

p

(σ s
s)

2 −
θ1σ I

pσ I
s

2σ s
s

−
eI

2(σ I
s)

2

(σ s
s)

2 + θI σ
I
sλ1

σ s
s

+
(σ I

p)
2
(σ I

s)
2

2(σ s
s)

2 +
(σ s

p)
2σ I

s

4σ s
s

ρ3 = (σ I
s)

4σIθI
2 − (σ I

s)
4σI

2θIσ
I

p +
(σ I

s)
4
σI

2(σ I
p)

2

4 +(σ s
s)

2(σ I
s)

2σI
2θI

2 − (σ s
s)

2σ I
sσI

2θIσ
I

p

+2σ I
sσIθIσ

I
p −2σ s

sσ
I
sσIθIσ

I
p +

(σ s
s)

2(σ I
s)

2
σI

2(σ I
p)

2

4 −
2(σ I

p)
2
(σ I

s)
2

(σ s
s)

2

ρ4 =
(σ I

s)
4
θI

2

(σ s
s)

4 +
(σ I

s)
3
θI σ

I
p

(σ s
s)

4 +
(σ I

s)
2
(σ I

p)
2

4(σ s
s)

4 −
2θI

2(σ I
s)

2

(σ s
s)

2 +
σ I

sσ
I

pθI

(σ s
s)

2 +
σ I

p(σ
I
s)

2
θI

(σ s
s)

2 −
σ I

s(σ
I

p)
2

2(σ s
s)

2

+ 2λ1λ2σ I
sθI

σ s
s

−
λ1σ I

sσ
I

p

σ s
s

+
λ1

2(σ I
s)

2
θI

2

(σ s
s)

2 −
λ2(σ

I
s)

2
θI σ

I
p

(σ s
s)

2 −
λ2σ I

sθI σ
I

p

σ s
s

+
(σ I

s)
2
(σ I

p)
2

4(σ s
s)

2 +
σ I

s(σ
I

p)
2

2σ s
s

ρ5 =
(σ I

s)
3
σIθIσ

I
p

(σ s
s)

2
−

2(σ I
s)

4
σIθI

2

(σ s
s)

2
+

(σ I
s)

4
σIσ

I
pθI

(σ s
s)

2
−

(σ I
s)

3
σI(σ

I
p)

2

2(σ s
s)

2
+2θI

2σI(σ
I
s)

2 −θI(σ
I
s)

2σIσ
I

p

+
(σ I

p)
2
(σ I

s)
2
σI

2
−2σ s

sσ
I
sσIθIλ1 −2(σ I

s)
2σIθI

2λ2 +σ s
sσ

I
sσIθIσ

I
p +σ s

sσ
I
sσIθIσ

I
pe1 +(σ I

s)
2σIσ

I
pλ2θI

−
(σ I

s)
2
σI(σ

I
p)

2

2
−

σ s
sσ

I
sσI(σ

I
p)

2

2
−2σ s

sλ2σ I
sθIσ

I
p +

2λ2σ I
sθIσ

I
p

σ s
s

Differentiating equation (4.9) for Ĝ with respect to z we obtain a linear PDE in terms of h and its derivatives and using y = h =−Ĝz, we have
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ht +(a−br)hrR
+

1

2
σrR

2hrRrR
−Zh2

(
1

2
ρ5 +ρ1

)
−

[
k+h

(
1

2
ρ5 +ρ1

)]
−

(
2θI

2 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4

)(
hz2z+ z2hzz

)
+

1

2
ρ3

(
2h+

h 2hhzz

hz
2

)
= 0

(4.11)

where

ρ1 =
3
2 (σ

I
p)

2 +λ1σ s
sσ

I
sσIθI +λ2(σ

I
s)

2θI
2σI −

1
2 λ1σ s

sσ
I
sσIσ

I
p −

1
2 λ2(σ

I
s)

2θIσIσ
I

p

− 1
2 (σ

I
s)

2θIσIσ
I

p −
1
2 σ s

sσ
I

pσ I
sσIθI +

1
4 (σ

I
s)

2(σ I
p)

2σI +
1
4 σ s

s(σ
I
s)

2σ I
sσI

+λ1σ s
p +

λ2(σ
I
s)

2
θI σ

I
p

(σ s
s)

2 +
λ2σ I

sθI σ
I

p

σ s
s

−
θI λ2(σ

I
s)

2
(σ I

p)
2

(σ s
s)

2 −
(σ I

p)
2
σ I

s

2σ s
s

−up

ρ2 =
λ1σ I

sσ
I

p

2σ s
s

− 2λ1λ2σ I
sθI

σ s
s

−
λ2

2(σ I
s)

2
θI

2

(σ s
s)

2 +
λ2(σ

I
s)

2
θI σ

I
p

(σ s
s)

2 +
λ2σ I

sθI σ
I

p

σ s
s

−
3(σ I

s)
2
(σ I

p)
2

4σ s
s
2

− 3
2

θI(σ
I
s)

2
σ I

p

(σ s
s)

2 −
θ1σ I

pσ I
s

2σ s
s

−
θI

2(σ I
s)

2

(σ s
s)

2 + θI σ
I
sλ1

σ s
s

+
(σ I

p)
2
(σ I

s)
2

2(σ s
s)

2 +
(σ s

p)
2σ I

s

4σ s
s

ρ3 = (σ I
s)

4σIθI
2 − (σ I

s)
4σI

2θIσ
I

p +
(σ I

s)
4
σI

2(σ I
p)

2

4 +(σ s
s)

2(σ I
s)

2σI
2θI

2 − (σ s
s)

2σ I
sσI

2θIσ
I

p

+2σ I
sσIθIσ

I
p −2σ s

sσ
I
sσIθIσ

I
p +

(σ s
s)

2(σ I
s)

2
σI

2(σ I
p)

2

4 −
2(σ I

p)
2
(σ I

s)
2

(σ s
s)

2

ρ4 =
(σ I

s)
4
θI

2

(σ s
s)

4 +
(σ I

s)
3
θI σ

I
p

(σ s
s)

4 +
(σ I

s)
2
(σ I

p)
2

4(σ s
s)

4 −
2θI

2(σ I
s)

2

(σ s
s)

2 +
σ I

sσ
I

pθI

(σ s
s)

2 +
σ I

p(σ
I
s)

2
θI

(σ s
s)

2 −
σ I

s(σ
I

p)
2

2(σ s
s)

2

+ 2λ1λ2σ I
sθI

σ s
s

−
λ1σ I

sσ
I

p

σ s
s

+
λ1

2(σ I
s)

2
θI

2

(σ s
s)

2 −
λ2(σ

I
s)

2
θI σ

I
p

(σ s
s)

2 −
λ2σ I

sθI σ
I

p

σ s
s

+
(σ I

s)
2
(σ I

p)
2

4(σ s
s)

2 +
σ I

s(σ
I

p)
2

2σ s
s

ρ5 =
(σ I

s)
3
σI θI σ

I
p

(σ s
s)

2 −
2(σ I

s)
4
σI θI

2

(σ s
s)

2 +
(σ I

s)
4
σI σ

I
pθI

(σ s
s)

2 −
(σ I

s)
3
σI(σ

I
p)

2

2(σ s
s)

2 +2θI
2σI(σ

I
s)

2 −θI(σ
I
s)

2σIσ
I

p +
(σ I

p)
2
(σ I

s)
2
σI

2 −2σ s
sσ

I
sσIθIλ1

−2(σ I
s)

2σIθI
2λ2 +σ s

sσ
I
sσIθIσ

I
p +σ s

sσ
I
sσIθIσ

I
pλ1 +(σ I

s)
2σIσ

I
pλ2θI −

(σ I
s)

2
σI(σ

I
p)

2

2

−
σ s

sσ
I
sσI(σ

I
p)

2

2 −2σ s
sλ2σ I

sθIσ
I

p +
2λ2σ I

sθI σ
I

p

σ s
s

,σ I
p = σ s

p

uC = 1−uB −uS

uS
∗ =

σ I
p

σ s
s
−


−λ1σ s

s −λ2σ I
sθ2 +σ I

sσ
I

p +σ I
s(θI −

σ I
p

2 )

y(σ s
s)

2


zhz (4.12)

uB
∗ =

σ I
p

σI
−

σ I
pσ I

s

σ s
sσI

+
[
(
σ I

s

)2
θI −σ I

sσIσ
I

p −σ I
sλ1σ s

s −
(
σ I

s

)2
λ2θI +

(σ I
s)

2
σ I

p

2 +
σ s

sσ
I
sσ

I
p

2 ]

h(σ s
s)

2
zhz +

θIzhz

hσI
, (4.13)

σ I
p = σ s

p

We will now solve (4.11) for h and substitute into (4.12) and (4.13) to obtain the optimal investment strategies.

5. Explicit Solution of the optimal investment strategies for The CRRA Utility Function

Assume the investor takes a power utility function

U (x) =
yp

p
, p < 1, p 6= 0 (5.1)

The relative risk aversion of an investor with utility described in (5.1) is constant and (5.1) is a CRRA utility.

From (3.5) we have h(T,r,z) = (V ′)−1 (z) and from (5.1), we have

h(T,rR,z) = z
1

p−1

We assume a solution to (4.11) with the following form

h(t,r,z) = g(t,r)
[
z

1
p−1

]
+ v(t) , v(T ) = 0, g(T,s) = 1.

Then

ht = gtz
1

p−1 + v′, hz =−
g

1− p
z

(
1

p−1
−1
)

, hrRz =−
grR

1− p
z

(
1

p−1
−1
)

(5.2)
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hzz =
(2− p)g

(1− p)2
z
( 1

p−1
−1), hrR

= grR
z

1
p−1 , hrRrR

= grRrR
z

1
p−1 .

Substituting (5.2) into (4.11), we have





gt +(a−brR)grR
−

g
rRrRσrR

2

2 +
g(

ρ5
2
+ρ1)

1−p − gρ5

2 −gρ1 +
2g(2θI

2 1
2 (σ I

p)
2
−θI σ

I
p+ρ2+ρ4)

1−p

−
(2−p)g(2θI

2 1
2 (σ I

p)
2
−θI σ

I
p+ρ2+ρ4)

(1−p)2





z
1

p−1 + vI (t)− k−
1

2
vρ5 − vρ1 = 0

+ yI (t)−ρ1y(t)− ρ0 = 0 (5.3)

Splitting (5.3), we have

vI (t)− (
1

2
ρ5 +ρ1)v(t)− k = 0

gt +(a−brR)grR
−

g
rRrRσrR

2

2 +
g(

ρ5
2
+ρ1)

1−p − gρ5

2 −gρ1 +
2g(2θI

2 1
2 (σ I

p)
2
−θI σ

I
p+ρ2+ρ4)

1−p −
(2−p)g(2θI

2 1
2 (σ I

p)
2
−θI σ

I
p+ρ2+ρ4)

(1−p)2 = 0 (5.4)

Considering the boundary condition,

v(T ) = 0,

yields the solution

v(t) =−
k

ρ∗
(1− e

−ρ∗(T−t)),

where ρ3 = 0, ρ∗ =
1
2 ρ5 +ρ1

Next, obtain the solution of (5.4), by assuming, a solution of the form

g(t,rR) = M(t) eN(t)rR M (T ) = 1, N (T ) = 0

grR
= M (t)N (t)eN(t)rR , grRrR

= M (t)N2 (t)eN(t)rR and gt = rRM (t)NI (t) eN(t)rR +MI (t) eN(t)rR (5.5)

Substituting (5.5) into (5.4), we have

NtrR +
Mt

M
+Na−NbrR +

1

2
N2k1rR +

1

2
N2k2 +

ρ5

2(1− p)
+

ρ1

1− p
−

1

2
ρ5 −

1

2
ρ1

+
2(2θI

2 1
2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4)

1− p
−

(2− p)(2θI
2 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4)

(1− p)2
= 0,ρ3

Splitting (5.6), we have

Mt

M +Na+ 1
2 N2k1 +

ρ5

2(1−p)
+ ρ1

1−p −
1
2 ρ5 −

1
2 ρ1

+
2(2θI

2 1
2 (σ I

p)
2
−θI σ

I
p+ρ2+ρ4)

1−p −
(2−p)(2θI

2 1
2 (σ I

p)
2
−θI σ

I
p+ρ2+ρ4)

(1−p)2 = 0
(5.6)

Nt −Nb+
1

2
N2k1 = 0 (5.7)

Solving (5.6) and (5.7), we obtain

N (t) =
2b[t −T ]

k1

M (t) = c1e

{
a±(a2−2k2H)

1
2 k2

−1t

}

, c1 = ec,

H =
ρ5

2(1− p)
+

ρ1

1− p
−

1

2
ρ5 −

1

2
ρ1 +

2(2θI
2 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4)

1− p
−

(2− p)(2θI
2 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4)

(1− p)2
M (T ) = 1

where

d1 =
4b

2k1

d2 = 0
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g(rR, t) =
e

{
a±(a2−2k2H)

1
2 k2

−1t

}

e

{
a±(a2−2k2H)

1
2 k2

−1T

} exp
2b(t −T )

k1
rR

Therefore, the solution of (4.11) becomes

h(t,rR,z) =
e

{
a±(a2−2k2H)

1
2 k2

−1t

}

e

{
a±(a2−2k2H)

1
2 k2

−1T

} z
1

p−1 −
k

ρ∗
(1− e

−ρ∗(T−t)),

where ρ3 = 0, ρ∗ =
1
2 ρ5 +ρ1

Theorem 5.1. Let the optimal investment strategies for cash, bond and stock be given as follows

uC
∗ = 1−uB

∗−uS
∗.Then N (t) =

2b[t−T ]
k1

with d1 =
4b
2k1

and d2 = 0 .

Proof. Let

uS
∗ =

σ I
p

σ s
s
−


−λ 1σ s

s −λ2σ I
sθ2+σ I

sσ
I

p +σ I
s(θI −

σ I
p

2 )

σ s
s


 1

p−1
(5.8)

×
e

{
a±(a2−2k2H)

1
2 k2

−1t

}

e

{
a±(a2−2k2H)

1
2 k2

−1T

} (
e

{
a±(a2−2k2H)

1
2 k2

−1T

}

e

{
a±(a2−2k2H)

1
2 k2

−1t

} −
ρ∗z

1
p−1

k(1− e
−ρ∗(T−t))

)

and

uB
∗ =

σ I
p

σI
−

σ I
pσ I

s

σ s
sσI

+

[(
σ I

s

)2
θI −σ I

sσ Iσ
I

p −σ I
sλ1σ s

s −
(
σ I

s

)2
λ2θI +

(σ I
s)

2
σ I

p

2 +
σ s

sσ
I
sσ

I

p

2

]

(σ s
s)

2
(5.9)

×
1

p−1

e

{
a±(a2−2k2H)

1
2 k2

−1t

}

e

{
a±(a2−2k2H)

1
2 k2

−1T

} (
e

{
a±(a2−2k2H)

1
2 k2

−1T

}

e

{
a±(a2−2k2H)

1
2 k2

−1t

} −
ρ∗z

1
p−1

k(1− e
−ρ∗(T−t))

)

+
θI

p−1

e

{
a±(a2−2k2H)

1
2 k2

−1t

}

e

{
a±(a2−2k2H)

1
2 k2

−1T

} (
e

{
a±(a2−2k2H)

1
2 k2

−1T

}

e

{
a±(a2−2k2H)

1
2 k2

−1t

} −
ρ∗z

1
p−1

σIk(1− e
−ρ∗(T−t))

,

ρ3 = 0, ρ∗ =
1

2
ρ5 +ρ1, σ I

p = σ s
p

Then

H =
ρ5

2(1− p)
+

ρ1

1− p
−

1

2
ρ5 −

1

2
ρ1 +

2(2θI
2 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4)

1− p
−

(2− p)(2θI
2 1

2

(
σ I

p

)2
−θIσ

I
p +ρ2 +ρ4)

(1− p)2
(5.10)

ρ1 =
3

2
(σ I

p)
2
+λ1σ s

sσ
I
sσIθI +λ2(σ

I
s)

2
θI

2σI −
1

2
λ1σ s

sσ
I
sσIσ

I
p −

1

2
λ2(σ

I
s)

2
θIσIσ

I
p −

1

2
(σ I

s)
2
θIσIσ

I
p

−
1

2
σ s

sσ
I

pσ I
sσIθ ...I +

1

4
(σ I

s)
2
(σ I

p)
2
σI +

1

4
σ s

s(σ
I
s)

2
σ I

sσI +λ1σ s
p +

λ2(σ
I
s)

2
θIσ

I
p

(σ s
s)

2

+
λ2σ I

sθIσ
I

p

σ s
s

−
θIλ2(σ

I
s)

2
(σ I

p)
2

(σ s
s)

2
−

(σ I
p)

2
σ I

s

2σ s
s

−up.

And

ρ2 =
λ1σ I

sσ
I

p

2σ s
s

−
2λ1λ2σ I

sθI

σ s
s

−
λ2

2(σ I
s)

2
θI

2

(σ s
s)

2
+

λ2(σ
I
s)

2
θIσ

I
p

(σ s
s)

2
+

λ2σ I
sθIσ

I
p

σ s
s

−
3(σ I

s)
2
(σ I

p)
2

4σ s
s
2

−
3

2

θI(σ
I
s)

2
σ I

p

(σ s
s)

2
−

θ1σ I
pσ I

s

2σ s
s

−
θI

2(σ I
s)

2

(σ s
s)

2
+

θIσ
I
sλ1

σ s
s

+
(σ I

p)
2
(σ I

s)
2

2(σ s
s)

2
+

(σ s
p)

2σ I
s

4σ s
s

.

ρ3 = (σ I
s)

4
σIθI

2 − (σ I
s)

4
σI

2θIσ
I

p +
(σ I

s)
4
σI

2(σ I
p)

2

4
+(σ s

s)
2(σ I

s)
2
σI

2θI
2 − (σ s

s)
2σ I

sσI
2θIσ

I
p

+ 2σ I
sσIθIσ

I
p −2σ s

sσ
I
sσIθIσ

I
p +

(σ s
s)

2(σ I
s)

2
σI

2(σ I
p)

2

4
−

2(σ I
p)

2
(σ I

s)
2

(σ s
s)

2
,
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ρ4 =
(σ I

s)
4
θI

2

(σ s
s)

4
+

(σ I
s)

3
θIσ

I
p

(σ s
s)

4
+

(σ I
s)

2
(σ I

p)
2

4(σ s
s)

4
−

2θI
2(σ I

s)
2

(σ s
s)

2
+

σ I
sσ

I
pθ

I

(σ s
s)

2
+

σ I
p(σ

I
s)

2
θI

(σ s
s)

2
−

σ I
s(σ

I
p)

2

2(σ s
s)

2
+

2λ1λ2σ I
sθI

σ s
s

−
λ1σ I

sσ
I

p

σ s
s

+
λ1

2(σ I
s)

2
θI

2

(σ s
s)

2
−

λ2(σ
I
s)

2
θIσ

I
p

(σ s
s)

2
−

λ2σ I
sθIσ

I
p

σ s
s

+
(σ I

s)
2
(σ I

p)
2

4(σ s
s)

2
+

σ I
s(σ

I
p)

2

2σ s
s

and

ρ5 =
(σ I

s)
3
σI θI σ

I
p

(σ s
s)

2 −
2(σ I

s)
4
σI θI

2

(σ s
s)

2 +
(σ I

s)
4
σI σ

I
pθI

(σ s
s)

2 −
(σ I

s)
3
σI(σ

I
p)

2

2(σ s
s)

2 +2θI
2σI(σ

I
s)

2

−θI(σ
I
s)

2σIσ
I

p +
(σ I

p)
2
(σ I

s)
2
σI

2 −2σ s
sσ

I
sσIθIλ1 −2(σ I

s)
2σIθI

2λ2 +σ s
sσ

I
sσIθIσ

I
p

+σ s
sσ

I
sσIθIσ

I
pλ1 +(σ I

s)
2σIσ

I
pλ2θI −

(σ I
s)

2
σI(σ

I
p)

2

2 −
σ s

sσ
I
sσI(σ

I
p)

2

2 −2σ s
sλ2σ I

sθIσ
I

p +
2λ2σ I

sθI σ
I

p

σ s
s

.

(5.11)

It therefore follows that

N (t) =
2b[t −T ]

k1

d1 =
4b

2k1

d2 = 0.

Remark 5.1

If we let σ I
p = σ I

p = θI = 0, the optimal strategies (5.8) and (5.9) would be of the form of the [7]

Recall from [7], the coefficients d1, d2 degenerates to 4b
2k1

and zero, in the absence of the coefficient of the CRRA (i.e, as p → 0), however,

in this work, even in the presence of the coefficient of CRRA the coefficients d1, d2 are already degenerate. We therefore, conclude that,

under the inflationary market, the CRRA utility function has little or no effect on the investment strategy.

The associated optimal investment strategy for a logarithmic utility function, as p → 0 is given by
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s
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6. Discussion and conclusion

6.1. Discussion

From Proposition 5.1, we deduced that in the absence of inflation, proportions of the pension wealth invested in stock and bond would be at

least at minimal returns, and the optimal investment strategy, with CRRA utility function, would be constant. From (5.10) and (5.11), we

observe that the optimal investment process is lumped with a lot of inflation radicals. More so, from remark 5.1, we discovered that the

CRRA utility function does not have much effect on inflation and its effect on wealth investment. From the analysis, we see that the returns

on investment of the pension wealth will reduce drastically, therefore, the contributor require the extra measure to dampen the effect of

inflation on the investment strategy. From this analysis, we deduce also that the more the returns on optimal investment degenerates, which is

as a result of inflation-affected optimal investment strategy, the more the price of stock becomes non-increasing, then the need for more

wealth investment in both stock and bond becomes necessary, in order to recover for the lost times, and pull down the price of stock, hence

the need for an amortization fund by the plan member becomes necessary.
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6.2. Conclusion

The optimal investment strategy for a prospective investor in a DC pension scheme, under the inflationary market, with stochastic salary,

under the affine interest rate model has been studied. Relevant to this work, the CRRA utility function was used and we obtained the optimal

investment strategies for cash, bond and stock using the Legendre transform and dual theory. More so, the effects of inflation parameters and

the coefficient of CRRA utility function were analyzed, with insignificant input on the investment strategy. We conclude, therefore, inflation

has significant negative effect on optimal investment strategy, particularly, the CRRA utility function is not constant with the investment

strategy.

6.3. Recommendation

From the result obtained in this work, we recommend the investigation of the effect of extra contribution on optimal investment strategy, in

DC pension scheme, under inflationary market.
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