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A NEW FAMILY OF LIFETIME DISTRIBUTIONS IN TERMS OF
CUMULATIVE HAZARD RATE FUNCTION

OMID KHARAZMI AND SHAHLA JAHANGARD

Abstract. In the present paper, a new family of lifetime distributions is intro-
duced according to cumulative hazard rate function, the well-known concept
in survival analysis and reliability engineering. Some important properties of
proposed model including survival function, quantile function, hazard func-
tion, order statistic and some results of stochastic ordering are obtained in
general setting. An especial case of this new family is introduced by consid-
ering Weibull distribution as the parent distribution; in addition estimating
unknown parameters of specialized model will be examined from the perspec-
tive of Bayesian and classic statistics. Moreover, three examples of real data
sets: complete, right-censored and progressively type-I interval-censored data
are studied; point and interval estimations of all parameters are obtained.
Finally, the superiority of proposed model in terms of parent Weibull distri-
bution over other fundamental statistical distributions is shown via complete
real observations.

1. Introduction

The statistical distribution theory has been widely explored by researchers in
recent years. Given the fact that the data from our surrounding environment follow
various statistical models, is necessary to extract and develop appropriate high-
quality models.
Recently, Nadarajah and Haghighi (2011) have introduced a new model of life-

time distributions, which the researchers refer it as NH distribution. It is an
extended form of exponential distribution and attracted the attention of some re-
searchers. We refer the reader to (Lemonte (2013), Dey et al. (2017) and Kumar et
al. (2017)). This model has a number of desirable features and is comprehensively
studied by the authors. For example, whenever the data contains zero values, NH
model can be a strong competitor for other well-known lifetime distributions such

Received by the editors: June 29, 2018; Accepted: July 11, 2019.
2010 Mathematics Subject Classification. 62E10, 62F10.
Key words and phrases. Cumulative hazard rate function, Bayesian estimation, maximum

likelihood estimation, progressively type-I interval-censored data.
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2 OMID KHARAZMI AND SHAHLA JAHANGARD

as gamma, Weibull and generalized exponential distribution. The cumulative dis-
tribution function (cdf) and probability distribution function (pdf) related to NH
model is given respectively as;

F (x) = 1− e1−(1+λx)
α

, x > 0

and

f(x) = αλ(1 + λx)α−1e1−(1+λx)
α

, x > 0

where the parameters α > 0 controls the shapes of the distribution and the pa-
rameter λ > 0 is the scale parameter. It is easy to see that the NH model has
increasing, decreasing and constant hazard shapes.
In the present paper, we introduce a New family of Lifetime distributions based

on the Cumulative Hazard rate quantity of a parent distribution G, so-called
NLCH − G distribution. One of our main motivation to introduce this new cat-
egory of distributions is that, when the parent distribution G be exponential, the
proposed model reduced to NH distribution.
The cumulative hazard rate function is a prominent concept in topics of survival

analysis and reliability engineering and plays an important role in this area of sci-
ence. Suppose that X be a random variable with density function f and cumulative
distribution function F , then hazard rate and cumulative hazard rate functions are
defined;

h(x) =
f(x)

R(x)

and

H(x) = − logR(x) = e−
∫ x
0
h(t)dt,

respectively, where R(x) = 1 − F (x) denotes the survival function of X (Barlow
and Proschan (1975)).
In the next, we first obtain the fundamental and statistical properties ofNLCH−

G in general setting and then we propose an especial case of NLCH −G model by
considering Weibull distribution instead of the parent distribution G. It is referred
as NLCH −Weibull (or NLCH −W ) distribution. We provide a comprehensive
discussion about statistical and reliability properties of new NLCH −W model.
Furthermore, we consider Maximum likelihood, Bayesian and bootstrap estimation
procedures in order to estimate the unknown parameters of the new model for
complete, right-censored and progressively type-I interval-censored data sets. In
the Bayesian discussion, we consider different types of symmetric and asymmetric
loss functions such as squared error, absolute value, Linear Exponential (LINEX)
and generalized entropy to estimate three unknown parameters of NLCH − W
model. Since the parameter space for all three parameters is positive, we use gamma
priors distributions. Bayesian %95 credible and highest posterior density (HPD)
intervals (see Chen et al. (1999)) are provided for each parameter of proposed



A NEW FAMILY OF LIFETIME DISTRIBUTIONS 3

model. In addition, the asymptotic confidence intervals and parametric and non-
parametric bootstrap confidence intervals are calculated in order to compare with
corresponding Bayesian intervals.
The rest of the paper organized as follows. In the section 2, a new category of

lifetime distributions is introduced based on the fundamental quantity H(x) and
then the main statistical and reliability properties are obtained in general setting.
In section 3, by considering the Weibull distribution as the base distribution, a
new model is presented according to the general model discussed in section 1 and
its prominent characteristics are studied. This new model refer as NLCH − W
distribution. In section 4, we examine the inferential procedures for estimation
unknown parameters of the NLCH−W model. In this Section, we provide discus-
sions about three important estimation methods maximum likelihood, Bayesian and
bootstrap. Here we use four well-known loss functions like squared error, absolute
value, LINEX and generalized entropy. Application and numerical analysis of three
real data sets (complete, right-censored and progressively type-I interval-censored)
are presented in section 5. Finally, in section 6 the paper is concluded.

2. New model and properties

In this section, first we introduce a new category of lifetime distributions and
then we obtain main statistical and reliability properties of the proposed family in
general setting.

Definition 2.1. A random variable X is said to have NLCH − G distribution if
its probability distribution function (pdf) is given by

f(x;α, γ) = αh(x)
(
γ +H(x)

)α−1
eγ−(γ+H(x))

α

, x > 0, α > 0, γ > 0, (1)

and its cumulative distribution function (cdf) is given by

F (x;α, γ) = 1− eγ−(γ+H(x))
α

, x > 0, α > 0, γ > 0 (2)

where, H(x) is cumulative hazard function of baseline distribution G(x) and h(x) =
∂H(x)
∂x .

The corresponding survival function of (1) is given as

R(x;α, γ) = eγ−(γ+H(x))
α

, x > 0, α > 0, γ > 0. (3)

Remark 2.2. Let α = 1, then we get F (x;α = 1, γ) = G(x).

In the following theorem we investigate the connection betweenNH andNLCH−
G models.

Theorem 2.3. Suppose that the random variable X be a continuous random vari-
able with cumulative hazard rate function H(x), and the random variable Y has NH
distribution with parameter α and λ. Then the transformed variable Z = H−1(λY )
has a density with pdf (1) as parameter γ = 1. H−1(.) is inverse function of H(.).
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Proof. Using the method of distribution function we have;

FZ(z) = P (Z ≤ z)
= P (H−1(λY ) ≤ z)

= P (Y ≤ 1

λ
H(z))

= 1− e1−(1+H(z))
α

,

so the proof is completed. �
Following this section, we get some fundamental properties of proposed model

such as hazard rate function, survival function, quantile function and order statistic
distribution. It is seen that all of these measures have closed expression in terms
of quantity H(x).

2.1. Hazard Rate Function. The hazard rate is a key concept in analysis of
reliability and measuring the aging process. Knowing shape and behavior of the
hazard rate in reliability theory, risk analysis, and so on, is very important. The
hazard rate function of the NLCH −G distribution is given as

hF (x, α, γ) =
f(x;α, γ)

R(x;α, γ)

= αh(x)(γ +H(x))α−1. (4)

Remark 2.4. In fact the hazard rate function of new model is a weighted version
of baseline hazard with weight w(x) = α(γ +H(x))α−1.

Lemma 2.5. By considering (4), we have
• if r(x) is increasing and α ≥ 1 then rF (x, α, γ) is increasing.
• if r(x) is decreasing and α ≤ 1 then rF (x, α, γ) is decreasing.

Proof. The proof is straightforward. �
In the following lemma we provide a result about stochastic order in hazard

function to compare proposed model and baseline distribution. First we recall the
following definition. The random variable X is said to be less than variable Y in
hazard rate order, X ≤hr Y , if hX(x) ≥ hY (x), for all x in the union of supports
of X and Y , where hX(x)(hY (x)) is the hazard rate of X(Y ). For more details see
Shaked and Shanthikumar (2007).

Lemma 2.6. Let XF and XG be two random variables corresponding with proposed
model (1) and distribution G respectively, then under the condition γ ≥ 1

• if α > 1 then XF ≤hr XG.
• if α < 1 then XG ≤hr XF .

Proof. The proof is straightforward. �
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2.2. Random variate generation. One important quantity for each probabilis-
tic model is to have the data generator function based on an explicit formula,
because the simulation studies researchers are more satisfied with the data genera-
tor functions of a given form. For generating random variables from the NLCH−G
distribution, we use the inverse transformation method. The quantile of order p of
the NLCH −G distribution is

xp = F−1(p;α, γ) = H−1((γ − log(1− p)) 1
α − γ). (5)

where H−1(x) is inverse function of quantity H(x). Let U be a random variable
generated from a uniform distribution on(0, 1), then

X = H−1((γ − log(1− U))
1
α − γ) (6)

is a random variable generated from the NLCH−G distribution by the probability
integral transform.

2.3. Order statistics. Order statistics have applications in various directions such
as statistical inference, reliability engineering, quality control and etc. Let X1, X2,
. . . , Xn be a random sample from NLCH − G distribution. Let Xi:n denote the
ith order statistic. Then the pdf of Xi:n is given by

gi:n(x) =
n!

(i− 1)!(n− i)!g(x)[G(x)]i−1[Ḡ(x)]n−i

=
n!en−i+1

(i− 1)!(n− i)!αh(x)
(
γ +H(x)

)α−1
e(n−i+1)(γ+H(x))

α

×
(
1− eγ−(γ+H(x))

α)i−1
3. NLCH-Weibull (NLCH-W) model

Without loss of generality let parameter γ = 1 and consider the Weibull distrib-
ution as a parent distribution with cdf function F (x;β, λ) = 1− e−λxβ , x > 0, β >
0, λ > 0. By replacing this model in relation (3), the pdf of the NLCH −W is
given as

f(x;α, β, λ) = αλβxβ−1(1 + λxβ)α−1e1−(1+λx
β)α (7)

and its cdf is given by

F (x;α, λ) = 1− e1−(1+λx
β)α . (8)

Remark 3.1. If α = 1, we attain the pdf of Weibull distribution and If β = 1, we
get NH distribution respectively.
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3.1. Density shape. It is easy to investigate that the shape of NLCH −W is
unimodal and

• if β > 1 then limx→0 f(x) = 0,
• if β < 1 then limx→0 f(x) =∞,

and
lim
x→∞

f(x) = 0. (9)

Figure 1. The graphs of pdf (a) and hazard rate function (b, c
and d) of the NLCH −W distribution for some selected values of
parameters.

In the next section, we consider the hazard shape of NLCH −W distribution.

3.2. Hazard rate function of NLCH-W distribution. The hazard rate func-
tion of NLCH −W distribution is

h(x) =
f(x)

1− F (x)

= αλβxβ−1(1 + λxβ)α−1.
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Determining the behavior of the hazard rate is very important in various appli-
cations, especially in reliability theory. It can easily be shown that the proposed
model (7) has a variety of hazard shapes. The hazard rate function allows for con-
stant, monotonically increasing, monotonically decreasing, unimodal and bathtub
shaped hazard rates. In summary, different types of hazard rates are as follows.

• if β > 1 and αβ > 1 then h(x) is monotonically increases with h(0) = 0.
• if β < 1 and αβ < 1 then h(x) is monotonically decreases with h(0) =∞.
• if β > 1 and αβ < 1 then h(x) is bathtub shape.
• if β < 1 and αβ > 1 then h(t) is upside down bathtub shape.
• if β = 1 and α = 1 then h(t) is constant.

Some shapes of pdf and hazard function for the selected values of parameters is
given in Figure 1.

4. Estimation procedures

Nowadays, three methods of maximum likelihood estimation, Bayesian and boot-
strap procedures are of particular importance in the theory of statistical inference
undoubtedly. In this section, we describe each of these methods separately for esti-
mating the parameters α, β and λ of the NLCH−W distribution. For all methods
we consider the case when all three parameters are unknown.

4.1. Maximum likelihood estimation. The maximum likelihood procedure is
one of the most common methods for obtaining an estimator for an unknown pa-
rameter in classic statistical inference. The likelihood function is a function that
written based on the mechanism of the observations occurrence. Here, the struc-
ture of the likelihood function is expressed for three modes of observations including
complete data, right-censored and progressive interval-censored data sets.

4.1.1. Maximum likelihood estimation for complete data set. LetX1, X2, . . . , Xn be
a random sample of size n from NLCH −W distribution. The likelihood function
is given for equation (7) by

L(x, α, β, λ) =

n∏
i=1

αλβxβ−1i (1 + λxβi )α−1e1−(1+λx
β
i )
α

. (10)

So, the log-likelihood function is written as

`(x, α, β, λ) = logL(x, α, β, λ) = n[logα+ log λ+ log β] + (β − 1)

n∑
i=1

log xi

+ (α− 1)

n∑
i=1

log(1 + λxβi ) + n−
n∑
i=1

(1 + λxβi )α.
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The normal equations are derived by differentiation of the log-likelihood function
with respect to parameters α, β and λ.

∂`

∂α
=
n

α
+

n∑
i=1

log(1 + λxβi )−
n∑
i=1

(1 + λxβi ) log(1 + λxβi ),

∂`

∂β
=
n

β
+

n∑
i=1

(1 + λxβi ) log xi + (α− 1)

n∑
i=1

λxβi log xi

1 + λxβi
−

n∑
i=1

λxβi (1 + λxβi )α log xi,

∂`

∂λ
=
n

λ
+

n∑
i=1

xβi

1 + λxβi
− α

n∑
i=1

xβi (1 + λxβi )α−1.

Setting these differentiations equal to zero and solving for α, β and λ, then we can
obtain the maximum likelihood estimator MLE of parameters α, β and λ.

4.1.2. Maximum likelihood estimation for right-censored data set. Let (X1, δ1), (X2, δ2),
. . . , (Xn, δn) be a right-censored random sample of size n from NLCH −W distri-
bution. Where δi is a censoring indicator variable, that is, δi = 1 for an observed
survival time and δi = 0 for a right-censored survival time. In the case NLCH−W
distribution the likelihood function and the corresponding log-likelihood are given
as

L(x, δ, α, β, λ) =

n∏
i=1

(
αλβxβ−1i (1 + λxβi )α−1e1−(1+λx

β
i )
α

)δi(
e1−(1+λx

β
i )
α

)1−δi
(11)

and

`(x, δ, α, β, λ) = logL(x, δ, α, β, λ)

= [logα+ log λ+ log β]

n∑
i=1

δi + (β − 1)

n∑
i=1

δi log xi

+(α− 1)

n∑
i=1

δi log(1 + λxβi ) + n−
n∑
i=1

(1 + λxβi )α,

respectively. Analogous above results the normal equations can be derived in the
case right-censored sample data.

4.1.3. Maximum likelihood estimation for progressively type-I interval-censored data
set. Let n items to be applied on a life testing simultaneously at time t = 0 and
suppose that m pre-specified times t1 < t2 < ... < tm, where tm is scheduled time
to terminate the experiment, be determined . At the ith inspection time, ti , the
number, Xi , of failures within (ti − 1, ti] is recorded and Ri surviving items are
randomly removed from the life testing for i = 1, 2, ...,m. Therefore, a progressively
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type-I interval-censored sample can be denoted as S = (Xi, Ri, ti) and sample size
is n =

∑m
i=1(Xi+Ri). The likelihood function of density (1) based on progressively

type-I interval-censored sample

S = (Xi, Ri, ti), i = 1, 2, ..., n

is given as

L(S, α, β, λ) =

m∏
i=1

[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α

]Xi[
1− e1−(1+λt

β
i )
α

]Ri
. (12)

The log-likelihood function is given as;

`(S, α, β, λ) = logL(S, α, β, λ) =

n∑
i=1

Xi log
[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α]

+

n∑
i=1

Ri log
[
1− e1−(1+λt

β
i )
α]
.

Also, here we can derive normal equations for corresponding log-likelihood function
similar complete and right-censored samples data. In practical due to the non-
linearity of corresponding normal equations in three cases that discussed above, we
use numerical algorithms to extract MLEs estimators.

4.2. Bootstrap estimation. The uncertainty in parameters of the fitted distri-
bution can be estimated by parametric (re-sampling from the fitted distribution)
or non-parametric (re-sampling with replacement from the original data set) boot-
straps re-sampling Efron and Tibshirani (1994). These two parametric and non-
parametric bootstrap procedures for complete data set are described as follows.
Parametric bootstrap procedure:

(1) Estimate θ (vector of unknown parameters), say θ̂ , by using the MLE
procedure based on a random sample.

(2) Generate a bootstrap sample {X∗1 , . . . , X∗m} , using θ and obtain the boot-
strap estimate of θ, say θ̂∗, from the bootstrap sample based on the MLE
procedure.

(3) Repeat step 2 NBOOT times.
(4) Order θ̂∗1, . . . , θ̂

∗
NBOOT as θ̂

∗
(1), . . . , θ̂

∗
(NBOOT ) . Then obtain γ-quantiles

and 100(1− α)% confidence intervals of parameters.
In case of the NLCH − W distribution, the parametric bootstrap estimators

(PBs) of α, β and λ, say α̂PB , β̂PB and λ̂PB , respectively.
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Non-parametric bootstrap procedure:

(1) Generate a bootstrap sample {X∗1 , . . . , X∗m} , with replacement from origi-
nal data set. Obtain the bootstrap estimate of θ with MLE procedure, say
θ̂∗ using the bootstrap sample.

(2) Repeat step 2 NBOOT times.
(3) Order θ̂∗1, . . . , θ̂

∗
NBOOT as θ̂

∗
(1), . . . , θ̂

∗
(NBOOT ) . Then obtain γ-quantiles

and 100(1− α)% confidence intervals of parameters.

In case of the NLCH−W distribution, the non-parametric bootstrap estimators
(NPBs) of α, β and λ, say α̂NPB , β̂NPB and λ̂NPB , respectively.
Analogous algorithms can be expressed for bootstrap estimation of right-censored
sample data.

4.3. Bayesian estimation. Bayesian inference procedure for censored data have
been taken into consideration by many statistical researchers, especially researchers
in the field of survival analysis and reliability engineering. In this section, a complete
sample data and two widely used types of censored observations, right-censored and
progressively type-I interval-censored observations are analyzed through Bayesian
point of view. We assume that the parameters α, β and λ of NLCH −W distrib-
ution have independent prior distributions as

α ∼ Gamma(a, b), β ∼ Gamma(c, d), λ ∼ Gamma(e, f),

where a,b,c,d,e and f are positive. Hence, the joint prior density function is formu-
lated as follow:

π(α, β, λ) =
badcfe

Γ(a)Γ(c)Γ(e)
αa−1βc−1λe−1e−(bα+dβ+fλ). (13)

In the Bayesian estimation, according to that we do not know the actual value of the
parameter, we may be adversely affected by loss when we choose an estimator. This
loss can be measured by a function of the parameter and corresponding estimator.
Four well-known loss functions and associated Bayesian estimators are presented
as:

• Squared error loss function and Bayesian estimator
L(γ(θ), d(x)) = (γ(θ)− d(x))2

dB(x) = E(γ(θ)|d(x))
• Absolute value loss function and Bayesian estimator

L(γ(θ), d(x)) = |γ(θ)− d(x)|
dB(x) = Median(γ(θ)|d(x))

• LINEX loss function and Bayesian estimator
L(γ(θ), d(x)) =

[
ec(γ(θ)−d(x)) − (γ(θ)− d(x))− 1

]
dB(x) = − logE

(
e−cγ(θ)|d(x)

)
c
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• Generalized entropy loss function and Bayesian estimator
L(γ(θ), d(x)) =

[
(γ(θ)d(x) )

c − log(γ(θ)d(x) )− 1

]
dB(x) =

(
E(γ−c(θ)|x)

)− 1
c

.

For more details see Calabria and Pulcini (1996).
In the next, we provide the posterior probability distributions in three modes:

complete, right-censored and progressively type-I interval-censored data sets. Let
we define the function ϕ as

ϕ(α, β, λ) = αa−1βc−1λe−1e−(bα+dβ+fλ), α > 0, β > 0, λ > 0.

The joint posterior distribution in terms of a given likelihood function L(data) and
joint prior distribution π(α, β, λ) defined as

π∗(α, β, λ|data) ∝ π(α, β, λ)L(data). (14)

Hence, we get joint posterior density of parameters α, β and λ for complete sam-
ple data by combining the likelihood function (10) and joint prior density (13).
Therefore, the joint posterior density function is given by

π∗(α, β, λ|x) = Kϕ(α, β, λ)

n∏
i=1

αβλxβ−1i (1 + λxβi )α−1e−(1+λx
β
i )
α

(15)

where K is given as

K−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, λ)

n∏
i=1

αβλxβ−1i (1 + λxβi )α−1e−(1+λx
β
i )
α

dαdβdλ.

Furthermore, by using likelihood functions (11), (12) and joint prior distribu-
tion (13) the joint posterior probability distribution functions for right-censored
(x, δ) and progressively type-I interval-censored sample data (S = (Xi, Ri, ti), i =
1, 2, ..., n) presented respectively with

π∗(a, β, λ|x, δ) = Mϕ(α, β, λ)

n∏
i=1

(
αλβxβ−1i (1 + λxβi )α−1

)δi
e−(1+λx

β
i )
α

and

π∗(a, β, λ|S) = Zϕ(α, β, λ)

n∏
i=1

[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α

]Xi[
1− e1−(1+λt

β
i )
α

]Ri
,

where M is given as

M−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, λ)

n∏
i=1

(
αλβxβ−1i (1 + λxβi )α−1

)δi
e−(1+λx

β
i )
α

dαdβdλ.
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and Z is given as

Z−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, λ)

×
n∏
i=1

[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α

]Xi[
1− e1−(1+λt

β
i )
α

]Ri
dαdβdλ.

Here we interested in obtaining Bayesian estimators for three sample data sets
(complete, right-censored and type-I progressive interval-censored data sets) under
the four loss functions described above. As it is observed, there are no closed
forms for the Bayes estimators. It is possible to simulated posterior sample data
sets by using Gibbs sampling method and Metropolis-Hasting algorithm. Thus, by
applying MCMC algorithm the corresponding Bayes estimators, Bayesian credible
and HPD intervals are calculated.

5. Application of NLCH-W distribution on the real datasets

This section aims to show applications of the NLCH − W model under the
methods discussed in the section 4 via real data examples. In order to achieve this
target, we consider three real data sets to illustrate the application of proposed
distribution in real world and the superiority of this model to some other useful
classic models. Furthermore, in this section, we provide Bayesian and bootstrap
analysis of parameter estimation of NLCH − W model for three real data sets.
The following data sets contain three modes of real world observations: complete,
right-censored and progressively type-I interval-censored.

Complete data set: Failure times of 84 Aircraft Windshield

We consider the data of service times for a particular model windshield. These
data were recently studied by Ramos et al. (2013). The data consist of 84 obser-
vations.
0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610 3.478 0.557 1.911
2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914 2.646 3.699 1.124 1.981 2.661 3.779
1.248 2.010 2.688 3.924 1.281 2.038 2.82 3 4.035 1.281 2.085 2.890 4.121 1.303 2.089
2.902 4.167 1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255 1.505 2.154 2.964 4.278
1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615 2.223 3.114 4.449 1.619 2.224
3.117 4.485 1.652 2.229 3.166 4.570 1.652 2.300 3.344 4.602 1.757 2.324 3.376 4.663

Right-censored data set: Lifetimes of 30 devices

Meeker and Escobar (2014) represented observed lifetimes of 30 devices that in-
cludes eight censored observations. 2 10 13 23 23 28 30 65 80 88 106 143 147 173
181 212 245 247 261 266 275 293 300+ 300+ 300+ 300+ 300+ 300+ 300+ 300+
The + sign indicates right-ensored observations.
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Progressively type-I interval-censored data set: 112 patients with plasma
cell myeloma

Table 1 contains a typical progressively type-I interval-censored data that de-
voted to 112 patients with plasma cell myeloma treated at the National Cancer
Institute (see Carbone et al. (1967)).

Table 1. Progressively type-I interval-censored data set

Interval in months Number at risk Number of withdrawals
[0,5.5) 112 1
[5.5,10.5) 93 1
[10.5,15.5) 76 3
[15.5,20.5) 55 0
[20.5,25.5) 45 0
[25.5,30.5) 34 1
[30.5, 40.5) 25 2
[40.5,50.5) 10 3
[50.5,60,6) 3 2
[60.5,∞) 0 0

5.1. MLE, bootstrap and Bayesian estimation of NLCH-W model and
comparing with other models in case complete data set. First, we fit the
proposed distribution to the complete real data set by MLE method and compare
the results with the gamma, Weibull, log-normal (Lnorm), generalized exponential
(GE) and weighted exponential (WE) distributions with respective densities

fgamma(x) =
1

Γ(α)
λαxα−1e−λx

fWeibull(x) =
β

λβ
xβ−1e−(

x
λ )
β

fLnorm(x) =
1

xσ
√

2π
e
−(log x−µ)2

2σ2

fGE(x) = αλe−λx(1− e−λx)α−1

fWE(x) =
α+ 1

α
λe−λx(1− e−αλx).
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Table 2 includes the MLEs of parameters, log-likelihood and Akaike information
criterion (AIC) for NLCH−W distribution and the mentioned above distributions
in the case complete real data set. The results of Table 2 shows that, theNLCH−W

Table 2: The MLEs of parameters for complete data set.
Model Estimation Log-likelihood AIC

NLCH-W (α̂, β̂, λ̂)=(3.874,1.938,0.024 ) -128.052 262.105
gamma (α̂, λ̂)=(3.492,1.365) -136.937 277.874
Weibull (β̂, λ̂)=(2.374,2.863) -130.053 264.107
Lnorm (µ̂, σ̂)=(0.789,0.687) -153.920 311.840
WE (α̂, λ̂)=(0.002,0.781) -143.025 290.049
GE (α̂, λ̂)=(3.562 ,0.758) -139.841 283.681

Figure 2. Histogram and fitted density plots, the plots of empir-
ical and fitted cdfs, P − P plots and Q−Q plots for the complete
data set.

distribution provides the best fit for the complete data set as it has lower AIC
statistic than the other competitor models. The histogram of data set, fitted pdf
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of the NLCH −W distribution and fitted pdfs of other competitor distributions
for the real data set are plotted in Figure 2. Also, the plots of empirical and fitted
cdfs functions, P − P plots and Q−Q plots for the NLCH −W and other fitted
distributions are displayed in Figure 2. These plots also support the results in Table
2.
In the rest of this subsection, we provide Bayesian and Bootstrap estimation

results. It is clear from the equation (15) that there is no closed form for the
Bayesian estimators under the four loss functions described in subsection 4.3, so we
suggest using an MCMC procedure based on 1000 replicates to compute Bayesian
estimators. The corresponding Bayesian point and interval estimation provided
in Table 3. The posterior samples extracted by using Gibbs sampling technique.
Moreover, we provide the posterior summary plots. These plots confirm that the
sampling process is of prime quality and convergence is occurred.
Also, here we obtain point and %95 confidence interval estimation of parame-

ters of the NLCH −W distribution by parametric and non-parametric bootstrap
methods for complete real data set. We provide results of bootstrap estimation
based on 10000 bootstrap replicates in Table 3. It is interesting to look at the joint
distribution of the bootstrapped values in a scatter plot in order to understand the
potential structural correlation between parameters (see Figures 3 and 4).

Table 3: Bayesian and bootstrap estimation of parameters of NLCH −W
for complete data set.

Estimation procedure Bootstrap estimation of parameters

Parametric Bootstrap âPB β̂PB λ̂PB
Point estimation 4.517 1.981 0.019
Confidence interval (0.74, 37.944) (1.584, 2.973) (0.003, 0.105)

Non-Parametric Bootstrap âNPB β̂NPB λ̂NPB
point estimation 21.481 1.859 0.005
confidence interval (0.589, 49.932) (1.507, 3.260) (0.0022, 0.088)

Bayesian procedure Bayesian estimation of parameters

Loss function âB β̂B λ̂B
Squared error 3.934 1.952 0.022

Absolute value 3.905 1.955 0.022

LINEX (c = −0.5) 4.059 1.959 0.021

Generalized entropy (c = −0.5) 3.904 1.949 0.022

Bayesian Interval âB β̂B λ̂B
Credible interval (3.444, 4.386 ) (1.845, 2.052) (0.019, 0.024)

HPD ( 2.550, 5.266) (1.624, 2.247) (0.015, 0.029)

By analyzing the results of the present table, we can see that the estimated val-
ues of parameters are similar for both Bayesian and bootstrap procedures in terms
of point and interval (quantile bootstrap, %95 credible and HPD intervals) estima-
tion. In addition, by comparing this results with MLEs estimation of parameters
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Figure 3. Parametric bootstrapped values of parameters of the
NLCH −W distribution for the complete data.

Figure 4. Non-parametric bootstrapped values of parameters of
the NLCH −W distribution for the complete data.

of NLCH−W in Table 2, it can be seen that, in general the estimation results are
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Figure 5. Plots of Bayesian analysis and performance of Gibbs
sampling for complete data set. Top panel: trace plots; Middle
panel: autocorrelation plots; Bottom panel: histograms of each
parameter of NLCH −W distribution.

similar under three estimation procedures that described in section 5. Figures 3 and
4 relate to the parametric and non-parametric bootstrap estimation of parameters
α, β and λ. Also, Figure 5 relates to the Bayesian analysis process, including his-
tory (Trace plot), autocorrelation function(acf) and histogram of three parameters
samples drown from posterior distribution (15). These plots show that convergence
was reached, no autocorrelation problems were encountered and the density of the
posterior is extracted.

5.2. MLE, bootstrap and Bayesian estimation in case right-censored data
set. Here, we provide the MLE, non-parametric bootstrap and Bayesian estima-
tion of α, β and λ, the parameters of NLCH −W distribution for right-censored
data set that given at the beginning of section 5. In order to compare different es-
timation results, we also provide interval estimation (%95 asymptotic confidence,
quantile bootstrap, %95 credible and HPD intervals) of parameters under the three
estimation procedures that considered in section 4. Table 4 shows the corresponding
results for right-censored data set. In addition, the plots of empirical and theoreti-
cal cdfs and diagrams of the Bayesian analysis process are provided in Figure 6 and
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Figure 7, respectively. Associated Bayesian procedure plots show that convergence
was reached and no autocorrelation problems there exist. Also, Figure 6 represent
the estimated lower and upper bound of cumulative probability.

Table 4: MLE, Bayesian and bootstrap estimation of parameters of
NLCH −W distribution for right-censored data set.

Estimation procedure Maximum likelihood estimation

MLE’s â β̂ λ̂
Point estimation 3.344 0.835 0.002
Confidence interval (0, 9.603) ( 0.477, 1.192) (0.001, 0.0034)

LL -142.259
AIC 290.517

Estimation procedure Bootstrap estimation of parameters

Non-Parametric Bootstrap âNPB β̂NPB λ̂NPB
point estimation 1.070 0.835 0.007
confidence interval (0.116, 9.822) (0.579, 1.831 (0.002, 0.054)

Bayesian procedure Bayesian estimation of parameters

Loss function âB β̂B λ̂B
Squared error 3.296 0.876 0.0022

Absolute value 3.129 0.873 0.002

LINEX (c = −0.5) 3.790 0.876 0.0022

Generalized entropy (c = −0.5) 3.175 0.872 0.0021

Bayesian Interval âB β̂B λ̂B
Credible interval (2.335, 4.027) (0.800, 0.949) (0.001 0.0028)

HPD ( 1.145, 5.937) (0.677, 1.089) (0.0005, 0.004)

5.3. MLE and Bayesian estimation in the case progressively type-I interval-
censored data set. Analogous two previous subsections, here we provide a sum-
mary of numerical analysis of progressively type-I interval-censored data set based
on the Bayesian and maximum likelihood methods described in section 5. Table 5
is devoted to estimation of parameters. This table provides the Bayesian estimators
and %95 credible and HPD intervals for each parameter of proposed NLCH −W
model. In addition, the maximum likelihood estimators are calculated in order to
compare with corresponding Bayesian estimators under the different loss functions.
Plots of history, acf plots and histogram of posterior samples of each parameter of
proposed distribution provided in Figures 8. These figures show that the simulation
processes of Gibbs algorithm has good quality and convergence is occurred.

6. Conclusion

In this article, a new model of lifetime distributions is introduced and main
properties of it are obtained. One of the interesting and important properties of
proposed family is that, it results the Nadarajah and Haghighi (2011) famous
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Figure 6. Plots of cdf of NLCH − W distribution for right-
censored data set.

Figure 7. Plots of Bayesian analysis and performance of Gibbs
sampling for right-censored data set. Top panel: trace plots; Mid-
dle panel: autocorrelation plots; Bottom panel: histograms of each
parameter of NLCH −W distribution.

distribution, as an especial case, when the parent distribution is exponential. An
especial example of this family is introduced by considering Weibull distribution as
the base distribution. We also show that the proposed distribution has variability
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Table 5: Bayesian estimation of parameters of NLCH −W for
progressively type-I interval-censored data set.

Estimation method
Maximum likelihood estimation â β̂ λ̂

MLE’s 0.996 1.228 0.019
LL 230.340
AIC 466.681

Bayesian estimation
Loss function âB β̂B λ̂B
Squared error 1.005 1.333 0.019

Absolute value 0.939 1.322 0.018

LINEX (c = 0.5) 0.976 1.328 0.019

Generalized entropy (c = 0.5) 0.924 1.321 0.018

Bayesian Interval âB β̂B λ̂B
Credible interval (0.758, 1.181) (1.226,1.427) (0.015,0.022)

HPD (0.429,1.728) (1.048,1.623) (0.009,0.029)

of hazard rate shapes such as increasing, decreasing, bathtub shape and upside-
down bathtub shapes. Classic and Bayesian inferences for three cases of real data
such as complete, right-censored and progressively type-I interval-censored data
sets are investigated. Bayesian estimators under the four well-known loss functions
are presented. Numerical results of maximum likelihood, Bayesian and bootstrap
procedures for each set of real data are presented in separate tables. From a practi-
cal point of view, the distribution introduced in this study was shown to be better
than some common statistical distributions for some real data sets applied as an
example.
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Figure 8. Plots of Bayesian analysis and performance of Gibbs
sampling for progressively type-I interval-censored data set. Top
panel: trace plots; Middle panel: autocorrelation plots; Bottom
panel: histograms of each parameter of NLCH −W distribution.
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APPROXIMATE TEST FOR TESTING A NULL VARIANCE
RATIO IN THE UNBALANCED ONE-WAY RANDOM MODEL

SEVGI DEMIRCIOĞLU AND BILGEHAN GÜVEN

Abstract. The approximate test for testing the significance of the random
effect is presented in the unbalanced one-way random model in which both
random effects and errors are from nonnormal universes. The test is based
on the asymptotic distribution of the F -ratio. Under the condition that the
number of groups tends to infinity while the average of powers of the group
sizes is bounded, the asymptotic distribution of the F statistic is obtained.
Robustness of the proposed test is given.

1. Introduction

We derive the approximate test for testing the significance of the random effect
in the unbalanced one-way random effects model where both random effects and
errors are from nonnormal universes. To derive the approximate test, we first obtain
the asymptotic distribution of the F -ratio.
In literature there are two different methods to obtain the asymptotic distribu-

tion of the F -ratio. Akritas and Arnold (2000) and Akritas and Papadatos (2004)
obtained asymptotic normality of the F -ratio from the differenceMSτ −MSE and
from the fact that MSE converges in probability to constant. Here, MSτ and
MSE are the mean square for the random effects and errors respectively. Westfall
(1988) first derived the joint asymptotic distribution of MSτ and MSE and then
used the delta method to obtain asymptotic normality of the F -ratio.
To get the asymptotic distribution of the F -ratio, we use the method of Westfall

and establish the following asymptotic condition. The number of groups is large
while the average of powers of the group sizes is bounded. This asymptotic condition
may be viewed as modification of the asymptotic condition established by Wesfall
(1987, 1988). He assumed that the number of groups is large while the group sizes
are from a finite set of positive integers.

Received by the editors: October 09, 2018; Accepted: July 16, 2019.
2010 Mathematics Subject Classification. 60F05, 62J10.
Key words and phrases. Asymptotic normality; F -test; robustness of the approximate F -test;

random effects.

c©2020 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

23
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Also it is implicitly shown that the presented approximate test is robust for the
size of the test in the balanced model does not depend on the fourth moment of
the error term for the balanced case. The size of the test in the non normal case is
same as it in the normal case.
This paper differs from the previous studies in three ways. A new asymptotic

condition is established by modifying Westfall’s asymptotic condition. Robustness
of the asymptotic distribution of the F -ratio is analytically shown. Different dis-
tributions having positive, null and negative kurtosis are used in simulations.
This paper is organized as follows: Sec. 2 demonstrates the asymptotic condition

and its consequences. Sec. 3 gives the asymptotic distribution of the F -ratio under
the established asymptotic condition. Sec. 4 proposes the approximate test for
testing significance of the random effects. Sec. 5 shows that the approximate test
is robust. In Sec. 6 some numerical and simulated results are given to examine the
accuracy of the approximate test.
Throughout the paper we shall use the following notations. If dN is a sequence

of N and r is a real number then dN = o(Nr) if N−rdN → 0 as N → ∞ and
dN = O(Nr) if N−rdN has a nonzero finite limit as N →∞.

2. The Model and Asymptotic

The unbalanced one-way random effects model is:

Yij = µ+ τ i + eij i = 1, 2, . . . t j = 1, 2, . . . , ni (1)

where µ is an overall mean, τ i and eij are random variables with zero means
and variances σ2τ and σ2 respectively. The model is appropriate for analyzing
data involving t random treatments. The number of observation is N where N =∑t
i=1 ni.
We shall address the problem of testing H0 : ρ = 0 vs. H1 : ρ > 0 where the

ratio of variances ρ is defined as ρ = σ2τ/σ
2. The statistic for testing H0 is based

on
FN = MSτ/MSE (2)

where MSτ = (t − 1)−1SSτ and MSE = (N − t)−1SSE. SSτ and SSE are the
sum of squares for treatment and for error respectively and they are defined as

SSτ =

t∑
i=1

ni(Y i. − Y ..)2 and SSE =

t∑
i=1

ni∑
j=1

(Yij − Y i.)2 (3)

with Y i. = n−1i
∑ni
j=1 Yij and Y .. = N−1

∑t
i=1

∑ni
j=1 Yij . Under the normality of

the random effects and the error terms, the test rejects H0 when FN > Ft−1,N−t,α
where Fν1,ν2,α denotes the 1 − α quantile of the F distribution with degrees of
freedom ν1 and ν2.
When the random effects and error terms are from nonnormal universes, the

approximate distribution of FN is used for testing problem presented above. With
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the moment conditions that E|τ i|4+δ < ∞ and E|eij |4+δ < ∞ for some positive δ
we establish the following asymptotic condition.
Asymptotic Condition. Consider a sequence of the model (1). The number of

groups t tends to infinity in such a way that the average of np1, n
p
2, . . ., n

p
t is bounded

where p ≥ 1. So there exists a real number M > 0 such that

t−1
t∑
i=1

npi < M

for all t. It is ensured by finite group sizes.
We are free to put in order the levels of the random effect among the (t + 1)

levels. The group sizes can be ordered in the ascending order,i.e., ni ≤ ni+1. Then∑t+1
i=1 n

p
i

t+ 1
−
∑t
i=1 n

p
i

t
=
tnpt+1 −

∑t
i=1 n

p
i

t(t+ 1)

where tnpt+1 >
∑t
i=1 n

p
i . The sequences t

−1∑t
i=1 n

p
i of t are bounded and monotone

and than they have a finite limit as t → ∞. The positive monotone sequence
t−1

∑t
i=1(1/n

p
i ) are bounded from both left by 0 and right by t−1

∑t
i=1 n

p
i So it

has a finite limit as t→∞.
We have shown that (1/t)

∑t
i=1 ni has a finite limit as t→∞ where (1/t)

∑t
i=1 ni =

N/t. Then t/N = O(1) implying that t and N are of the same order. So t can be
replaced by N .
Thus we are ready to define the following limits appearing in calculation of the

asymptotic covariance matrix. They are:

a = lim
N→∞

(t/N), γp = lim
N→∞

(1/N)

t∑
i=1

npi for p = −1, 2. (4)

where a ∈ (0, 1) since 0 < t < N .

3. Asymptotic Distribution of FN

In this section we derive the asymptotic distribution of FN in Eq. (2) where
a variance ratio ρ is considered to be positive. The derivation of the asymp-
totic distribution of FN is based on obtaining the joint asymptotic distribution
of
√
N(MSτ ,MSE) and then applying the delta method.

Lemma 3.1. Suppose the asymptotic condition established in Sec. 3. holds. Then
the covariance matrix of

√
N(MSτ ,MSE)

′
is:

ACOV = 2σ4
[

(γ2ρ
2 + 2ρ+ a)/a2 0

0 1/(1− a)

]
+ kτσ

4

[
γ2ρ

2/a2 0
0 0

]
+ keσ

4

[
γ−1/a

2 (a− γ−1)/a(1− a)
(a− γ−1)/a(1− a) (1− 2a+ γ−1)/(1− a)2

]
(5)
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as N → ∞ where kτ and ke are the kurtosis of the underlying distributions of τ i
and eij defined as kτ = E|τ i|4/σ4 − 3 and ke = E|eij |4/σ4 − 3, the limits a and γp
for p = −1, 2 are in Eq. (4).

Proof. We first derive the asymptotic covariance matrix of N−1/2(SSτ , SSE)
′
. Let

Y i = (Yi1, Yi2, . . . , Yini)
′
, Y = (Y

′

1,Y
′

2, . . . ,Y
′

t)
′
. We follow Searle’s notation (see

Searle 1987, p 212-213). SSτ and SSE in Eq. (3) can be expressed in a matrix
notation as SSτ = Y

′
Q1Y and SSE = Y

′
Q2Y where symmetric idempotent

matrices Q1 and Q2 are:

Q1 = {d(1/ni)Jni}ti=1 − (1/N)JN and Q2 = IN − {d(1/ni)Jni}ti=1. (6)

Here Im and Jm are matrices of identity and ones of the order m×m respectively.
The model (1) is in a matrix notation as Y = 1Nµ+Uτ + e where 1m denotes

a vector of ones of the order m × 1, τ = (τ1, τ2, . . . τ t)
′
and e is defined similarly

to Y . The matrix U of the order N × t is defined as
U = {d1ni}i=ti=1. (7)

It follows that SSτ and SSE are rewritten as

SSτ = (τ
′
, e

′
)

[
U

′
Q1U U

′
Q1

Q1U Q1

](
τ
e

)
, SSE = (τ

′
, e

′
)

[
0 0
0 Q2

](
τ
e

)
.

(8)
From Eqs. (6) and (7), the matrix U

′
Q1U of the order t× t is of the form

U
′
Q1U =

{
ni − (1/N)n2i , if i = j
−(1/N)ninj if i 6= j

(9)

and the matrix U
′
Q1 of the order t×N is equal to {Bij}i=t,j=ti=1,j=1 where the matrix

Bij of the order 1× nj is of the form

Bij =

{
(1− 1

N ni)1
′

ni if i = j

− 1
N ni1

′

nj if i 6= j
(10)

Using Lemma 1 of Westfall (1987) that simplifies calculation of covariance between
quadratic forms in a vector of mean zero random variables, we get

V ar(SSτ ) = σ4[2ρ2tr(U
′
Q1U)2 + 4ρtr(U

′
Q1U) + 2tr(Q1)

2

+ ρ2kτ tr(U
′
Q1Udiag(U

′
Q1U)) + ketr(Q1diag(Q1))], (11)

V ar(SSE) = σ4[2tr(Q2)
2 + ketr(Q2diag(Q2))], (12)

and
Cov(SSτ , SSE) = σ4ketr(Q1diag(Q2)). (13)

Using Eqs. (6) and (9), we get the following traces

tr(U
′
Q1U)2 =

t∑
i=1

n2i + bN , tr(U
′
Q1U) = N + cN , (14)
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tr(U
′
Q1Udiag(U

′
Q1U)) =

t∑
i=1

n2i +dN , tr(Q1)
2 = t− 1, tr(Q2)

2 = N − t, (15)

tr(Q1diag(Q1)) =

t∑
i=1

(1/ni) + eN , tr(Q2diag(Q2)) = N − 2t+

t∑
i=1

(1/ni), (16)

tr(Q1diag(Q2)) = t−
t∑
i=1

(1/ni) + fN (17)

where

bN = −(2/N)

t∑
i=1

n3i + (1/N2)

t∑
i=1

n4i + (1/N2)

t∑
i=1

t∑
j=1

n2in
2
j ,

cN = −(1/N)

t∑
i=1

n2i , dN = −(2/N)

t∑
i=1

n3i ,

eN = (−2t+ 1)/N, fN = −(1/N)

t∑
i=1

ni + (t/N).

Then the sequences bN , cN , dN , eN and fN are all o(N).
From the asymptotic condition given in Sec.2. and Eqs. (14)-(17), we get

lim
N→∞

(1/N)V ar(SSτ ) = σ4[2ρ2γ2 + 4ρ+ 2a+ kτρ
2γ2 + keγ−1], (18)

lim
N→∞

(1/N)V ar(SSE) = σ4[2(1− a) + ke(1− 2a+ γ−1)] (19)

and

lim
N→∞

(1/N)Cov(SSτ , SSE) = σ4(a− γ−1) (20)

where V ar(SSτ ), V ar(SSE) and Cov(SSτ , SSE) are given in Eqs. (11), (12) and
(13) respectively and the limits a and γp for lp− 1, 2 are defined by Eq. (4). From
these, the covariance matrix of N−1/2(SSτ , SSE)

′
is:

∆ = σ4
[

2ρ2γ2 + 4ρ+ 2a 0
0 2(1− a)

]
+ kτσ

4

[
ρ2γ2 0

0 0

]

+ keσ
4

[
γ−1 a− γ−1

a− γ−1 1− 2a+ γ−1

]
(21)

as N → ∞. We have the equality
√
N(MSτ ,MSE)

′
= ΛNN

−1/2(SSτ , SSE)
′

where ΛN = diag(N/(t−1), N/(N − t)). ΛN converges to Γ as N →∞ where Γ =

diag(1/a, 1/(1−a)). Thus, the asymptotic covariance matrix of
√
N(MSτ ,MSE)

′

denoted by ACOV is equal to Γ∆ Γ and its explicit form is given in Eq. (5). �
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Theorem 3.2. The sequences in random vector
√
N(MSτ − [1 + ρa−1]σ2,MSE − σ2)

′

converges in distribution to the bivariate normal distribution with zero-mean vector
and the covariance matrix ACOV given in Eq. (5).

Proof. Define QN as QN = SSτ +SSE. Then QN is written as Y
′
PY where from

Eqs. (6) and (8), the matrix P can be written as

P =

[
U

′
Q1U U

′
Q1

Q1U IN − (1/N)JN

]
Let P = {P ij}i=t,j=ti=1,j=1. Then with the aid of Eqs. (9) and (10), the (ni+1)×(nj+1)
symmetric submatrix P ij of P is written as

P ii =

[
ni − (1/N)n2i (1− (1/N))1

′

ni
(1− (1/N))1ni Ini − (1/N)Jni

]
if i = j

and

P ij = −(1/N)

[
ninj 1

′

ni
1ni Jni×nj

]
if i 6= j.

Define εi as ε
′

i = (τ i, ei1, ei2, . . . , eini). Using the projection method for quadratic
forms (see Akritas and Papadatos (2004), van der Vaart (1998) ch. 11), QN is
decomposed as QN = UN − VN where

UN =

t∑
i=1

ε
′

iP iiεi and VN =

t∑
i=1

t∑
j 6=i,j=1

ε
′

iP ijεj

It should be noted that UN is the sum of independent but not identical random
variables and UN and VN are uncorrelated.
Observe that

E|ε
′

iP iiεi − E[ε
′

iP iiεi]| = tr(P iiE|εiε
′

i − E[εiε
′

i]|)
≤ tr(P iiP ii)

1/2(E|εiε
′

i − E[εiε
′

i]|E|εiε
′

i − E[εiε
′

i]|)1/2

where the inequality is acquired by using Cauchy-Schwartz inequality. The moment
conditions E|τ i|4+δ < ∞ and E|eij |4+δ < ∞ for some positive δ ensure that there
exists a finite and positive M such that (E|εiε

′

i − E[εiε
′

i]|E|εiε
′

i − E[εiε
′

i]|)1/2 ≤
M1/2. On the other hand, tr(P iiP ii) = (1 − (ni/N))2(1 + ni)

2 +n
i −1 ≤ 6n4i . It

follows from these that
t∑
i=1

[E|ε
′

iP iiεi − E[ε
′

iP iiεi]|2+δ ≤M1+δ/261+δ/2
t∑
i=1

n4+2δi ,

where
∑t
i=1 n

4+2δ
i = O(N). Therefore

t∑
i=1

[E|ε
′

iP iiεi − E[ε
′

iP iiεi]|2+δ = o(N b) (22)
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for b > 1 when either the small or large ni assumption holds. Let c2N = V ar(UN )

where cN =
∑t
i=1 V ar(ε

′

iP iiεi). By using Lemma 1 of Westfall (1987), c2N is
calculated and it is equal to

c2N = σ4[2ρ2
t∑
i=1

(ni − (1/N)n2i )
2 + 4ρ

t∑
i=1

ni(1− (ni/N))2 + 2

t∑
i=1

ni(1− (1/N))2

+kτρ
2

t∑
i=1

(ni − (1/N)n2i )
2 + ke

t∑
i=1

ni(1− (ni/N))2].

Then, using the asymptotic condition in Sec. 2, the following limit is obtained

lim
N→∞

(1/N)c2N = (1/N)V ar(UN ) = σ4[2ρ2γ2 + 4ρ+ 2 + kτρ
2γ2 + ke]. (23)

and consequently c2N = O(N). The facts that Eq. (22) and c2+δN = O(N1+δ/2)

together imply that the Liapounov, condition as applied to ε
′

1P 11ε1, ε
′

2P 22ε2,
. . ., ε

′

tP ttεt, holds. Thus V ar(UN )−1/2(UN − E[UN ]) converges in distribution to
N(0, 1).
The expression limN→∞(1/N)V ar(QN ) can be obtained by Eqs. (18)-(20) since

QN = SSτ +SSE and it is equal to Eq. (23). From the facts that QN = UN + VN
and Cov(UN , VN ) = 0, we get limN→∞(1/N)V ar(VN ) = limN→∞(1/N)[V ar(QN )−
V ar(UN )] = 0. Consequently UN converges in probability to 0. Thus V ar(QN )−1/2

(QN − E[QN ]) converges in distribution to N(0, 1) if V ar(UN )−1/2 (UN − E[UN ])

converges in distribution toN(0, 1). Let SS = (SSτ , SSE)
′
andMS = (MSτ ,MSE)

′

. Then if V ar(QN )−1/2(QN −E[QN ]) converges in distribution to N(0, 1) where ∆

is in Eq. (21).
√
N(MS −E[MS])

′
converges in distribution to N2(0,ACOV ) if

N−1/2(SS−E[SS])
′
converges in distribution to N2(0,∆) where ACOV is in Eq.

(5). It should be noted that E[MS] = (σ2[1 + ρ(N − 1/N
∑t
i=1 n

2
i )/(t − 1)], σ2)

′

and E[MS] converges to E[Γ] = (σ2[1 + ρa−1], σ2)
′
as N → ∞. This completes

the proof of Theorem 3.2 �

Theorem 3.3. Suppose the asymptotic condition established in Sec. 2 holds. Then
√
N(FN − [1 + ρa−1])

converges in distribution to normal distribution with 0-mean and variance σ2F as
N →∞ where FN is as in Eq. (2), σ2F is:

σ2F =
2(ρ2γ2 + 2ρ+ a)

a2
+

2(1 + ρa−1)

(1− a)
+ kτ

ρ2γ2
a2

+ ke(
γ−1
a2
−

2(a− γ−1)(1 + ρa−1)

a(1− a)
+

(1− 2a+ γ−1)(1 + ρa−1)2

(1− a)2
), (24)

and the limits a and γp for p = −1, 2 are in Eq. (4).
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Proof. Let 5FN denote the vector of the partial derivatives of FN with respect
to MSτ and MSE at their expectations. Then 5FN = (1/σ2,−[1 + ρa−1]/σ2)

′
.

From the delta method,
√
N(FN − [1 + ρa−1]) converges in distribution to normal

distribution with zero mean and the variance σ2F = 5
′
FNACOV5FN where

ACOV is in (5). The explicit form of σ2F is given in Eq. (24). �

4. The Proposed Test

The α sized approximate test rejects H0 : ρ = 0 when FN > uα where FN is in
Eq. (2) and uα is the upper 1 − α quantile of the asymptotic null distribution of
FN . Then, we have

P (FN > uα|ρ = 0) = α

The asymptotic null distribution of
√
N(FN − 1) determined from Theorem 3.3 is

the normal distribution with zero mean and variance σ20 where it is written as

σ20 =
2

a(1− a)
+ ke

γ−1 − a2

a2(1− a)2
(25)

after some algebraic operation on Eq. (24). One finds uα and it is given by

uα =
σ0√
N
zα + 1 (26)

where zα is the upper 1− α quantile of the standard normal distribution.
Finally the approximate power of the proposed test for a finite sample size is:

P (FN > uα|ρ > 0) = 1− Φ(

√
N(uα − [1 + ρa−1])

σF
) (27)

where Φ denotes the cumulative standard normal distribution, σ2F and uα are in
Eqs. (24) and (26) respectively.

5. Robustness of the Test

The robustness of the asymptotic distribution of the FN statistic is valid only for
the balanced models and it is defined as follows. The asymptotic null distribution
of FN does not depend on the fourth moment of error.

Corollary 5.1. The asymptotic null distribution of FN does not depend on the
fourth moment of error in the balanced models.

Proof. To show this, it is enough to show that the asymptotic null variance σ20 in
Eq. (25) is free of the kurtosis ke of error. When ni = n for all i, where n is fixed,
we have N = tn and then

γ−1 − a2 = lim
N→∞

{(1/N)

t∑
i=1

1/ni − t2/N2} = 1/n2 − 1/n2 = 0.
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where γ−1 and a are in Eq. (4). The coeffi cient of ke appearing in the asymptotic
null variance σ20 is equal to 0. So σ20 does not include ke. �

As indicated by (Akritas and Arnold 2000, p.221), (Scheffe 1959, p.344), and
Güven (2014) the asymptotic null distribution of FN is asymptotically robust with
respect to departure from normality of error. So, for the balanced case, the size of
the test is asymptotically robust to nonnormal error.

6. Numerical and Simulation Study

The power values of the approximate test are compared with the simulated power
values for some selected distributions to τ i and eij in order to check accuracy of
the power of the approximate test.
A power value of the approximate test is obtained from Eq. (27) for a given

positive variance ratio ρ after calculation of the upper percentile point uα in Eq.
(26) for a given α and of variance σ2F in (24). The limit values a, γ−1 and γ2
appearing in σ2F are replaced with their sample encounter values.
The simulated power value is the ratio of the number of generated FN value in

(2) exceeding uα to the number of simulation runs. Generation of the FN value is
as follow
1)Set µ equal to any constant.
2)Generate τ i for i = 1, 2, . . . , t from one of three different distributions:

√
ρN(0, 1),

√
ρ(exp(1)−1) and

√
ρU(−

√
3,
√

3) for a given ρ where ρ = 0.0, 0.5, 0.7, 1.0, 1.5, 1.7.
3) Generate eij for i = 1, 2, . . . , t and j = 1, 2, . . . , ni from one of three different
distributions: N(0, 1), exp(1) − 1 and U(−

√
3,
√

3). The generation of eij’s is
separated from the generation of τ i’s.
It should be noted that the distributions N(0, 1), exp(1)− 1 and U(−

√
3,
√

3) have
zero mean and unit variance. Also note that the distributions N(0, 1), exp(1) −
1 and U(−

√
3,
√

3) have the null (0), positive (6) and negative (−6/5) kurtosis
respectively.
4) Generated Yij , values i = 1, 2, . . . t and j = 1, 2, . . . ni are obtained where Yij =
µ+ τ i + eij and then the ratio FN is obtained.
Two different design are considered. One is a small ni design for which t = 20,

n1 = . . . = n5 = 2, n6 = . . . = n10 = 3, n11 = . . . = n15 = 4 and n16 = . . . =
n20 = 5. The other one is a large ni design for which t = 4, n1 = n2 = 20 and
n3 = n4 = 25.
Simulation is based on 1000 runs. In each run, FN is calculated from generating

data. The number of FN exceeding uα is divided by 1000 to get a power value of
the approximate test. The simulated level of significance of the test is obtained
in getting simulated power value of the approximate test when ρ = 0. Simply
we skip the step 2 in generation of FN It is equivalently to simulate the level of
significance of the test for testing hypothesis of no fixed treatment effects in the
one-way ANOVA model.
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In Table 1. through 6, sizes and power values of the approximate test are very
closer to simulated sizes and power values of the test for small values of ρ. How-
ever,the differences between them values slightly increase as the value of ρ increases.
It is also observed that both approximated and simulated power values of the test
are higher for a large ni design than for a small ni design. So according to the
simulation results, the test is more appropriate for a small variance ratio and large
group sizes.
Table 1 and 4 are for the null kurtosis case while the rest of the tables are for

either the positive or negative kurtosis case. It is not detected any significant rise or
decline of power values of the approximate test in departing from the null kurtosis
case. In comparison Tables 2 and 5 with Table 3 and 6, the power values of the
test are higher for the negative kurtosis case than for the positive kurtosis case.

7. Conclusion

In the present paper we establish the approximate test for the hypothesis of zero
variance ratio in the unbalanced one way random effects model from non normal
universes. As shown in Sec. 4. calculation of both the upper percentile point and
a power value of the test can easily be accomplished. The test is robust for the
balanced one way random effects model. In the balanced case the null distribution
of the test statistics FN ratio does not depend on the fourth moment of the error
term.
The differences between the calculated and generated sizes and power values are

closer to a small design and lower variance ratios than a large design and higher
variance ratios. It follows that the approximate test is more accurate for a small
design and lower variance ratios. It is not detected any significant rise or descend
of the power from null to non null kurtosis. Thus, departing from null kurtosis does
not have an impact to the power of the approximate test.

Table 1. Approximation to power values of the α sized test for a small ni design and
the null kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
0 0 0.01 0.63 0.76 0.85 0.92 0.93

(0.03) (0.61) (0.77) (0.89) (0.97) (0.99)
0.05 0.73 0.83 0.89 0.94 0.95
(0.08) (0.74) (0.86) (0.94) (0.99) (0.99)
0.10 0.78 0.86 0.91 0.95 0.95
(0.13) (0.80) (0.90) (0.96) (0.99) (0.99)
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Table 2. Approximation to power values of the α sized test for a small ni design and
the positive kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
6 0 0.01 0.60 0.70 0.77 0.82 0.84

(0.03) (0.54) (0.69) (0.82) (0.91) (0.93)
0.05 0.69 0.76 0.81 0.85 0.85
(0.08) (0.68) (0.79) (0.88) (0.94) (0.96)
0.10 0.73 0.78 0.83 0.86 0.86
(0.13) (0.74) (0.84) (0.91) (0.97) (0.97)

0 6 0.01 0.52 0.65 0.76 0.84 0.86
(0.06) (0.50) (0.68) (0.84) (0.93) (0.95)
0.05 0.64 0.74 0.82 0.87 0.89
(0.17) (0.66) (0.80) (0.91) (0.97) (0.98)
0.10 0.70 0.78 0.83 0.86 0.86
(0.25) (0.74) (0.86) (0.93) (0.98) (0.99)

6 6 0.01 0.51 0.62 0.71 0.77 0.79
(0.05) (0.45) (0.58) (0.71) (0.85) (0.89)
0.05 0.62 0.70 0.76 0.80 0.82
(0.08) (0.58) (0.69) (0.81) (0.91) (0.93)
0.10 0.67 0.73 0.78 0.82 0.83
(0.12) (0.65) (0.76) (0.86) (0.93) (0.95)

Table 3. Approximation to power values of the α sized test for a small ni design and
the negative kurtosis case where the numbers in parentheses are simulated values

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
-6/5 0 0.01 0.63 0.78 0.88 0.95 0.96

(0.03) (0.62) (0.80) (0.92) (0.99) (0.99)
0.05 0.75 0.85 0.92 0.96 0.97
(0.08) (0.76) (0.89) (0.96) (0.99) (0.99)
0.10 0.80 0.88 0.93 0.97 0.97
(0.13) (0.83) (0.98) (0.91) (0.99) (0.99)

0 -6/5 0.01 0.66 0.78 0.88 0.93 0.95
(0.03) (0.63) (0.80) (0.92) (0.98) (0.98)
0.05 0.76 0.85 0.91 0.95 0.96
(0.07) (0.77) (0.89) (0.96) (0.99) (0.99)
0.10 0.80 0.88 0.93 0.96 0.96
(0.13) (0.83) (0.92) (0.97) (0.98) (0.99)

-6/5 -6/5 0.01 0.67 0.81 0.91 0.96 0.97
(0.03) (0.64) (0.85) (0.94) (0.99) (0.99)
0.05 0.77 0.87 0.94 0.97 0.98
(0.07) (0.80) (0.91) (0.97) (0.99) (0.99)
0.10 0.82 0.90 0.95 0.98 0.98
(0.13) (0.86) (0.94) (0.98) (0.99) (0.99)
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Table 4. Approximations to power values of the α sized test for a large ni design and
the null kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
0 0 0.01 0.86 0.88 0.89 0.90 0.90

(0.05) (0.89) (0.93) (0.96) (0.98) (0.98)
0.05 0.87 0.88 0.89 0.90 0.90
(0.10) (0.93) (0.96) (0.97) (0.99) (0.99)
0.10 0.88 0.86 0.91 0.95 0.95
(0.14) (0.93) (0.96) (0.97) (0.99) (0.99)

Table 5. Approximation to power values of the α sized test for a large ni design and the
positive kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
6 0 0.01 0.72 0.73 0.74 0.75 0.75

(0.03) (0.75) (0.81) (0.85) (0.90) (0.91)
0.05 0.73 0.74 0.74 0.75 0.75
(0.10) (0.80) (0.84) (0.88) (0.92) (0.93)
0.10 0.73 0.74 0.75 0.75 0.75
(0.14) (0.82) (0.86) (0.89) (0.92) (0.93)

0 6 0.01 0.85 0.86 0.88 0.88 0.89
(0.06) (0.87) (0.91) (0.94) (0.97) (0.98)
0.05 0.86 0.87 0.88 0.89 0.89
(0.10) (0.90) (0.93) (0.96) (0.98) (0.99)
0.10 0.86 0.88 0.88 0.89 0.89
(0.14) (0.91) (0.94) (0.97) (0.99) (0.99)

6 6 0.01 0.72 0.73 0.74 0.74 0.74
(0.06) (0.76) (0.82) (0.87) (0.90) (0.92)
0.05 0.73 0.73 0.74 0.74 0.75
(0.10) (0.81) (0.85) (0.89) (0.93) (0.94)
0.10 0.73 0.74 0.74 0.75 0.75
(0.14) (0.83) (0.87) (0.91) (0.94) (0.95)
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Table 6. Approximations to power values of the α sized test for a large ni design and
the negative kurtosis case where the numbers in parentheses are simulated values.

kτ ke α ρ = 0.5 0.7 1.0 1.5 1.7
-6/5 0 0.01 0.93 0.95 0.96 0.97 0.97

(0.05) (0.92) (0.95) (0.97) (0.99) (0.99)
0.05 0.94 0.96 0.96 0.97 0.97
(0.10) (0.94) (0.97) (0.98) (0.99) (0.99)
0.10 0.95 0.96 0.97 0.97 0.97
(0.14) (0.96) (0.97) (0.91) (0.99) (0.99)

0 -6/5 0.01 0.86 0.88 0.89 0.90 0.90
(0.05) (0.89) (0.93) (0.96) (0.97) (0.98)
0.05 0.87 0.89 0.90 0.90 0.91
(0.10) (0.92) (0.95) (0.96) (0.98) (0.99)
0.10 0.88 0.89 0.90 0.91 0.91
(0.15) (0.94) (0.96) (0.97) (0.99) (0.99)

-6/5 -6/5 0.01 0.94 0.95 0.97 0.97 0.97
(0.05) (0.92) (0.95) (0.98) (0.99) (0.99)
0.05 0.95 0.96 0.97 0.97 0.98
(0.10) (0.95) (0.96) (0.98) (0.99) (0.99)
0.10 0.95 0.96 0.97 0.98 0.98
(0.15) (0.95) (0.97) (0.99) (0.99) (0.99)
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Abstract. In this paper estimations in general form of sum of left and right
sided Riemann-Liouville (RL) fractional integrals for convex functions are stud-
ied. Also some similar fractional inequalities for functions whose derivatives
in absolute value are convex, have been obtained. Associated fractional inte-
gral inequalities provide the bounds of different known fractional inequalities.
These results may be useful in in the study of uniqueness solutions of fractional
differential equations and fractional boundary value problems.

1. Introduction

Fractional calculus is applied in almost all disciplines of engineering and mod-
ern sciences. Since nineteenth century it has been acknowledged significantly and
several new directions and subjects are invented. For example fractional geome-
try, fractional differential equations and fractional dynamics are due to fractional
calculus.
Fractional integral operators play a leading and keen role in the development

of fractional calculus. A first formulation of a fractional integral operator is due
to a continuous study of well renowned mathematicians and physicist. This frac-
tional integral is well known as Riemann-Liouville (RL) fractional integral operator.
After its existence there have been introduced many other fractional integral and
fractional derivative operators.
Now a days scientists in their diverse fields are working in the environment of

fractional calculus and new directions of respective fields are developing rapidly.
Theory of convex functions is the subject of mathematics that connects the mathe-
matical analysis with other branches of science and engineering. Convex functions
play an important role in the advancement of optimization theory, majorization
theory, probability and statistics. A real valued function f : [a, b] → R is said to
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be convex if f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) holds for all x, y ∈ [a, b] and
t ∈ [0, 1]. If −f is convex, then f is said to be concave on [a, b].
Convex functions are very close to the theory of inequalities. Many known and

useful inequalities are consequences of convex functions. Some very natural inequal-
ities for example Jensen inequality, Hadamard inequality interpret convex functions
beautifully. Fractional integral inequalities occur by default in the study of convex
and related functions due to applications of definitions of fractional integral as well
as fractional derivative operators. Fractional integral inequalities are very useful in
the study of fractional partial as well as ordinary differential equations. These are
used to establish the uniqueness and bounds of their solutions. For detailed study
suggested references are [15, 13, 9, 14, 11, 12, 17].
In this paper we study a general form of Riemann-Liouville (RL) fractional inte-

grals via convex functions. Therefore it is need to give definitions of used fractional
integrals. We start with the definition of Riemann-Liouville (RL) fractional inte-
gral.

Definition 1. Let f ∈ L[a, b]. Then the left-sided and right-sided Riemann Liou-
ville fractional integrals of order α > 0 with a ≥ 0 are defined as:

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

Iαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b,

where Γ (.) is the Gamma function.

A slight generalization of (RL) fractional integral is Riemann-Liouville (k-RL)
k-fractional integral (see, [5]).

Definition 2. Let f ∈ L[a, b]. Then the k-fractional integrals of order α, k > 0
with a ≥ 0 are defined as:

Iα,ka+ f(x) =
1

kΓk(α)

∫ x

a

(x− t)αk−1f(t)dt, x > a (1)

Iα,kb− f(x) =
1

kΓk(α)

∫ b

x

(t− x)
α
k−1f(t)dt, x < b, (2)

where Γk(.) is the k-Gamma function (see, [2]).

A more general definition of (RL) fractional integral is the Riemann-Liouville
fractional integral with respect an increasing function (see, [9]).

Definition 3. Let f : [a, b] → R be an integrable function. Also let g be an
increasing and positive function on (a, b], having a continuous derivative g′ on (a, b).
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The left-sided and right-sided fractional integrals of a function f with respect to
another function g on [a, b] of order α > 0 are defined as:

Iαg,a+f(x) =
1

Γ(α)

∫ x

a

(g(x)− g(t))α−1g′(t)f(t)dt, x > a

Iαg,b−f(x) =
1

Γ(α)

∫ b

x

(g(t)− g(x))α−1g′(t)f(t)dt, x < b.

A k-analogue of above definition is defined in the next definition [10].

Definition 4. Let f : [a, b] → R be an integrable function. Also let g be an
increasing and positive function on (a, b], having a continuous derivative g′ on (a, b).
The left-sided and right-sided fractional integrals of a function f with respect to
another function g on [a, b] of order α, k > 0 are defined as:

Iα,kg,a+f(x) =
1

kΓk(α)

∫ x

a

(g(x)− g(t))
α
k−1g′(t)f(t)dt, x > a (3)

Iα,kg,b−
f(x) =

1

kΓk(α)

∫ b

x

(g(t)− g(x))
α
k−1g′(t)f(t)dt, x < b. (4)

This is a compact form of a several fractional integral operators which are in-
dependently defined by the researchers in recent decade. The following lemma
comprises on the formation of some particular fractional integrals which one can
obtain from (3) and (4).

Remark 5. In the above Definition 4.
(i) If we take k = 1, then we get the Definition 3 of Riemann-Liouville fractional
integrals with respect to an increasing function.
(ii) If we take g(x) = x, then we get the Definition 2 of Riemann-Liouville k-
fractional integrals.
(iii) If we take g(x) = x and k = 1, then we get the Definition 1 of Riemann-
Liouville fractional integrals.
(iv) If we take g(x) = xρ

ρ , ρ > 0 and k = 1, then we get the definition of Katugam-
pola fractional integrals given in [1].
(v) If we take g(x) = xτ+s

τ+s and k = 1, then we get the definition of generalized
conformable fractional integrals defined by T. U. Khan et al. in [8].
(vi) If we take g(x) = (x−a)s

s , s > 0 in (3) and g(x) = − (b−x)
s

s , s > 0 in (4), then
we get the definition of conformable (k, s)- fractional integrals defined by Habib et
al. in [6].
(vii) If we take g(x) = x1+s

1+s , then we get the definition of generalized conformable
fractional integrals defined by Sarikaya et al. in [16].
(viii) If we take g(x) = (x−a)s

s , s > 0 in (3) and g(x) = − (b−x)
s

s , s > 0 in (4) with
k = 1, then we get the definition of conformable fractional integrals defined by F.
Jarad et al. in [7].
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The paper is organized as follows:
In Section 2, bounds of sum of the left and right sided (RL) k-fractional integrals

in general form defined in Definition 4 have been established. Some related similar
results are also obtained. These results are achieved by means of monotonicity and
convexity properties. The presented results are useful in the study of fractional
differential equations and fractional boundary value problems. Also they provide
the estimations of Riemann-Liouville fractional integrals which are published in [4]
and some results of [3]. In Section 3 applications are discussed.

2. Main Results

The first result provides the estimates of sum of the left and right sided gen-
eral (RL) fractional integral defined in Definition 4. Convexity and monotonicity
properties of real valued functions are used.

Theorem 6. Let f, g : [a, b] −→ R be real valued functions with a < b. Also let
f be positive convex, and g be differentiable and strictly increasing function with
g′ ∈ L[a, b]. Then for α, β ≥ k, the following estimate is valid

kΓk(α)Iα,kg,a+f(x) + kΓk(β)Iβ,kg,b−f(x) (5)

≤ (g(x)− g(a))
α
k−1

x− a

[
(x− a)(f(x)g(x)− f(a)g(a))− (f(x)− f(a))

∫ x

a

g(t)dt

]
+

(g(b)− g(x))
β
k−1

b− x

[
(b− x)(f(b)g(b)− f(x)g(x))− (f(b)− f(x))

∫ b

x

g(t)dt

]
.

Proof. Since the function g is differentiable and strictly increasing, therefore for
x ∈ [a, b] and t ∈ [a, x], (g(x)− g(t))

α
k−1 ≤ (g(x)− g(a))

α
k−1, α ≥ k. Also g′(x) > 0

hence g′(t)(g(x)− g(t))
α
k−1 ≤ g′(t)(g(x)− g(a))

α
k−1. From convexity of f , we have

f(t) ≤ x− t
x− af(a) +

t− a
x− af(x). From the last two inequalities one can has the

following integral inequality∫ x

a

(g(x)− g(t))
α
k−1f(t)g′(t)dt

≤ (g(x)− g(a))
α
k−1

x− a

[
f(a)

∫ x

a

(x− t)g′(t)dt+ f(x)

∫ x

a

(t− a)g′(t)dt

]
.

By using the Definition 4, we get

kΓk(α)Iα,kg,a+f(x) (6)

≤ ((g(x)− g(a))
α
k−1

x− a

[
(x− a)(f(x)g(x)− f(a)g(a))− (f(x)− f(a))

∫ x

a

g(t)dt

]
.

Now on the other hand for x ∈ [a, b], t ∈ [x, b], g′(t)(g(x)− g(t))
β
k−1 ≤ g′(t)(g(b)−

g(x))
β
k−1, β ≥ k. From convexity of f we have f(t) ≤ t− x

b− xf(b) +
b− t
b− xf(x).
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Multiplying the last two inequalities and integrating over [x, b] one can has the
integral inequality, which in addition with (6) constitutes the required estimate.

kΓk(β)Iβ,kg,b−f(x)

≤ (g(b)− g(x))
β
k−1

b− x

[
(b− x)(f(b)g(b)− f(x)g(x))− (f(b)− f(x))

∫ b

x

g(t)dt

]
.

�
A special case of above theorem is stated in the following corollary which gives

[4, Theorem 1] for k = 1, g as identity function.

Corollary 7. If the assumptions of Theorem 6 hold, then the following fractional
integral inequality holds

kΓk(α)
(
Iα,kg,a+f(x) + Iα,kg,b−f(x)

)
(7)

≤ ((g(x)− g(a))
α
k−1

x− a

[
(x− a)(f(x)g(x)− f(a)g(a))− (f(x)− f(a))

∫ x

a

g(t)dt

]
+

((g(b)− g(x))
α
k−1

b− x

[
(b− x)(f(b)g(b)− f(x)g(x))− (f(b)− f(x))

∫ b

x

g(t)dt

]
.

Next theorem is the modulus fractional inequality that derives some known re-
sults.

Theorem 8. Let f, g : [a, b] −→ R be real valued functions with a < b. Also let f be
differentiable and |f ′| is convex, and g be also differentiable and strictly increasing
with g′ ∈ L[a, b]. Then for α, β ≥ 0 and k > 0, the following modulus fractional
inequality holds∣∣∣Γk(α+ k)Iα,kg,a+f(x) + Γk(β + k)Iβ,kg,b−f(x) (8)

−
(

(g(x)− g(a))
α
k f(a) + (g(b)− g(x))

β
k f(b)

)∣∣∣
≤ (g(x)− g(a))

α
k (x− a)|f ′ βk (b− x)|f ′(b)|

2

+ |f ′(x)|

(
(g(x)− g(a))

α
k (x− a) + (g(b)− g(x))

β
k (b− x)

)
2

.

Proof. From convexity of |f ′|, we have |f ′(t)| ≤ x−t
x−a |f

′(a)|+ t−a
x−a |f

′(x)| which gives
f ′(t) ≤ x−t

x−a |f
′(a)| + t−a

x−a |f
′(x)|. Since the function g is differentiable and strictly

increasing therefore we have g(x)−g(t))
α
k ≤ (g(x)−g(a))

α
k , where as x ∈ [a, b] and

t ∈ [a, x], α ≥ 0, k > 0.
The product of last two inequalities give

(g(x)− g(t))
α
k f ′(t) ≤ (g(x)− g(a))

α
k

x− a ((x− t)|f ′(a)|+ (t− a)|f ′(x)|) .
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Integrating with respect to t over [a, x], we have∫ x

a

(g(x)− g(t))
α
k f ′(t)dt (9)

≤ (g(x)− g(a))
α
k

x− a

[
|f ′(a)|

∫ x

a

(x− t)dt+ |f ′(x)|
∫ x

a

(t− a)dt

]
= (g(x)− g(a))

α
k (x− a)

[
|f ′(a)|+ |f ′(x)|

2

]
,

and ∫ x

a

(
g(x)− g(t)

)α
k

f ′
α
k

∣∣∣x
a

+
α

k

∫ x

a

(
g(x)− g(t)

)α
k−1

f(t)g′(t)dt

= −f(a)
(
g(x)− g(a)

)α
k

+ Γk(α+ k)Iα,kg,a+f(x).

Therefore (9) takes the form

Γk(α+k)Iα,kg,a+f(x)−f(a)(g(x)−g(a))
α
k ≤ (g(x)− g(a))

α
k (x− a)

[
|f ′(a)|+ |f ′(x)|

2

]
.

(10)

Also from convexity of |f ′| one can has f(t) ≥ −
(
x−t
x−a |f

′(a)|+ t−a
x−a |f

′(x)|
)
and

following the same procedure as we did to get (10) next inequality holds

f(a)(g(x)−g(a))
α
k−Γk(α+k)Iα,kg,a+f(x) ≤ (g(x)− g(a))

α
k (x− a)

[
|f ′(a)|+ |f ′(x)|

2

]
.

(11)
Inequalities (10) and (11) provide the modulus inequality∣∣∣Γk(α+ k)Iα,kg,a+f(x)− f(a)(g(x)− g(a))

α
k

∣∣∣ (12)

≤ (g(x)− g(a))
α
k (x− a)

[
|f ′(a)|+ |f ′(x)|

2

]
.

On the other hand from convexity of |f ′| we have |f ′(t)| ≤ t−x
b−x |f

′(b)|+ b−t
b−x |f

′(x)|,
for x ∈ [a, b] and t ∈ [x, b] and β ≥ 0, k > 0. Also the inequality (g(t) − g(x))

β
k ≤

(g(b)− g(x))
β
k holds true for function g. Following the same way as we have done

to obtain (12) the following inequality holds∣∣∣Γk(β + k)Iβ,kg,b−f(x)− f(b)(g(b)− g(x))
β
k

∣∣∣ ≤ (g(b)−g(x))
β
k (b−x)

[
|f ′(b)|+ |f ′(x)|

2

]
.

(13)
From inequalities (12) and (13) via triangular inequality we get (8) which is re-
quired. �

A special case of above theorem is stated in the following corollary which gives
[4, Theorem 2] for k = 1, g as identity function.
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Corollary 9. If the assumptions of Theorem 8 hold, then the following fractional
integral inequality holds∣∣∣Γk(α+ k)(Iα,kg,a+f(x) + Iα,kg,b−f(x))−

(
(g(x)− g(a))

α
k f(a) + (g(b)− g(x))

α
k f(b)

)∣∣∣
≤ (g(x)− g(a))

α
k (x− a)|f ′αk (b− x)|f ′(b)|

2

+ |f ′(x)|
(
(g(x)− g(a))

α
k (x− a) + (g(b)− g(x))

α
k (b− x)

)
2

.

The following lemma is useful to prove the next result.

Lemma 10. [4] Let f : [a, b] −→ R, be a convex function. If f is symmetric about
a+b
2 , then the following inequality holds

f

(
a+ b

2

)
≤ f(x) x ∈ [a, b]. (14)

Theorem 11. Let f, g : [a, b] −→ R be real valued functions with a < b. Also let
f be positive convex and symmetric about a+b2 , and g be differentiable and strictly
increasing with g′ ∈ L[a, b]. Then for α, β ≥ 0 and k > 0, we have the following
fractional inequality

f

(
a+ b

2

)[
Γk(α+ k)Iα,kg,a+g(b)− Γk(β + k)Iβ,kg,b−g(a) (15)

−(g(b)− g(a))
α
k g(a) + (g(b)− g(a))

β
k g(b)

]
≤ Γk(α+ 1)Iα+1,kg,a+ f(b) + Γk(β + 1)Iβ+1,kg,b− f(a)

≤ ((g(b)− g(a))
β
k + (g(b)− g(a))

α
k )

b− a

×
[

(b− a)(f(b)g(b)− f(a)g(a))− (f(b)− f(a))

∫ b

a

g(x)dx

]
.

Proof. Since the function g is differentiable and strictly increasing therefore (g(x)−
g(a))

β
k ≤ (g(b)−g(a))

β
k , where as x ∈ [a, b], β ≥ 0, k > 0. Also g′(x) > 0 hence the

inequality g′(x)(g(x)− g(a))
β
k ≤ g′(x)(g(b)− g(a))

β
k holds true. From convexity of

f , f(x) ≤ x−a
b−a f(b) + b−x

b−af(a). The product of last two inequalities is integrated
over [a, b] to get∫ b

a

(g(x)− g(a))
β
k f(x)g′(x)dx

≤ (g(b)− g(a))
β
k

b− a

[
f(b)

∫ b

a

(x− a)g′(x)dx+ f(a)

∫ b

a

(b− x)g′(x)dx

]
.
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By using Definition (4) we get

Γk(β + 1)Iβ+1,kg,b− f(a) (16)

≤ (g(b)− g(a))
β
k

b− a

[
(b− a)(f(b)g(b)− f(a)g(a))− (f(b)− f(a))

∫ b

a

g(x)dx

]
.

Now for x ∈ [a, b], t ∈ [x, b] and α ≥ 0, k > 0, the inequality g′(x)(g(b)− g(x))
β
k ≤

g′(x)(g(b)− g(a))
β
k holds true. Following the same way as we have done to get (16)

the following inequality can be obtained

Γk(α+ 1)Iα+1,kg,a+ f(b) (17)

≤ (g(b)− g(a))
α
k

b− a

[
(b− a)(f(b)g(b)− f(a)g(a))− (f(b)− f(a))

∫ b

a

g(x)dx

]
.

From (16) and (17), we get

Γk(α+ 1)Iα+1,kg,a+ f(b) + Γk(β + 1)Iβ+1,kg,b− f(a) (18)

≤ ((g(b)− g(a))
β
k + (g(b)− g(a))

α
k )

b− a

×
[

(b− a)(f(b)g(b)− f(a)g(a))− (f(b)− f(a))

∫ b

a

g(x)dx

]
.

Using Lemma 10 and multiplying (14) with (g(x) − g(a))
β
k g′(x), then integrating

over [a, b], we have

f

(
a+ b

2

)∫ b

a

(g(x)− g(a))
β
k g′(x)dx ≤

∫ b

a

(g(x)− g(a))
β
k g′(x)f(x)dx. (19)

By using Definition 3, we get

f

(
a+ b

2

)[
(g(b)− g(a))

β
k g(b)− Γk(β + k)Iβ,kg,b−g(a)

]
≤ Γk(β+1)Iβ+1,kg,b− f(a). (20)

Similarly, using Lemma 10 and multiplying (14) with (g(b) − g(x))
β
k g′(x), then

integrating over [a, b], we have

f

(
a+ b

2

)[
Γk(α+ k)Iα,kg,a+g(b)− (g(b)− g(a))

β
k g(a)

]
≤ Γk(α+ 1)Iα+1,kg,a+ f(b).

(21)
From (20) and (21) the following inequality holds which with (18) constitute (15).

f

(
a+ b

2

)[
Γk(α+ k)Iα,kg,a+g(b)− Γk(β + k)Iβ,kg,b−g(a)

−(g(b)− g(a))
α
k g(a) + (g(b)− g(a))

β
k g(b)

]
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≤ Γk(α+ 1)Iα+1,kg,a+ f(b) + Γk(β + 1)Iβ+1,kg,b− f(a).

�

A special case of above theorem is stated in the following corollary which gives
[4, Theorem 3] for k = 1, g as identity function.

Corollary 12. If the assumptions of Theorem 11 hold, then the following fractional
integral inequality holds

f

(
a+ b

2

)[
Γk(α+ k)

(
Iα,kg,a+g(b)− Iα,kg,b−g(a)

)
−(g(b)− g(a))

α
k g(a) + (g(b)− g(a))

α
k g(b)

]
≤ Γk(α+ 1)

(
Iα+1,kg,a+ f(b) + Iα+1,kg,b− f(a)

)
≤ ((g(b)− g(a))

α
k + (g(b)− g(a))

α
k )

b− a

×
[

(b− a)(f(b)g(b)− f(a)g(a))− (f(b)− f(a))

∫ b

a

g(x)dx

]
.

3. Applications

In this section we give applications of the results proved in the previous section.
First we apply Theorem 6 and get the following result.

Theorem 13. Under the assumptions of Theorem 6, we have

kΓk(α)Iα,kg,a+f(b) + kΓk(β)Iβ,kg,b−f(a) (22)

≤
(

(g(b)− g(a))
α
k−1 + (g(b)− g(a))

β
k−1

b− a

)

×
(

(b− a)(f(b)g(b)− f(a)g(a))− (f(b)− f(a))

∫ b

a

g(t)dt

)
.

Proof. If we take x = a and x = b in (5), then adding resulting inequalities, we get
(22). �

Corollary 14. If we take α = β in (22), then we have the following fractional
integral inequality

kΓk(α)(Iα,kg,a+f(b) + Iα,kg,b−f(a)) (23)

≤ 2(g(b)− g(a))
α
k−1

b− a

(
(b− a)(f(b)g(b)− f(a)g(a))− (f(b)− f(a))

∫ b

a

g(t)dt

)
.
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Corollary 15. If we take α = k = 1 and g(x) = x in (23), then we get the following
inequality

1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
. (24)

Next we apply Theorem 8 to obtain required results.

Theorem 16. Under the assumptions of Theorem 8, we have∣∣∣∣Γk(α+ k)Iα,kg,a+f

(
a+ b

2

)
+ Γk(β + k)Iβ,kg,b−f

(
a+ b

2

)
(25)

−
((

g

(
a+ b

2

)
− g(a)

)α
k

f(a) +

(
g(b)− g

(
a+ b

2

)) β
k

f(b)

)∣∣∣∣∣
≤

(
b−a
2

)((
g
(
a+b
2

)
− g(a)

)α
k |f ′(a)|+

(
g(b)− g

(
a+b
2

)) β
k |f ′(b)|

)
2

+

∣∣∣∣f ′(a+ b

2

)∣∣∣∣
(
b−a
2

) ((
g
(
a+b
2

)
− g(a)

)α
k + (g(b)− g

(
a+b
2

)
)
β
k

)
2

.

Proof. If we take x = a+b
2 in (8), then resulting inequality (25) can be obtained. �

Corollary 17. If we take α = β in (25), then we have the following fractional
integral inequality∣∣∣∣Γk(α+ k)

(
Iα,kg,a+f

(
a+ b

2

)
+ Iα,gb− f

(
a+ b

2

))
(26)

−
((

g

(
a+ b

2

)
− g(a)

)α
k

f(a) +

(
g(b)− g

(
a+ b

2

))α
k

f(b)

)∣∣∣∣∣
≤

(
b−a
2

) ((
g
(
a+b
2

)
− g(a)

)α
k |f ′(a)|+

(
g(b)− g

(
a+b
2

))α
k |f ′(b)|

)
2

+

∣∣∣∣f ′(a+ b

2

)∣∣∣∣
(
b−a
2

) ((
g
(
a+b
2

)
− g(a)

)α
k + (g(b)− g

(
a+b
2

)
)
α
k

)
2

.

Corollary 18. If we take α = k = 1 and g(x) = x in (26), then we get the following
inequality∣∣∣∣∣ 1

b− a

∫ b

a

f(t)dt− f(a) + f(b)

2

∣∣∣∣∣ ≤ b− a
8

[
|f ′(a)|+ |f ′(b)|+ 2

∣∣∣∣f ′(a+ b

2

)∣∣∣∣] .
(27)

It is interesting to note that for f ′
(
a+b
2

)
= 0 (27) produce [3, Theorem 2.2]. If

f ′(x) ≤ 0, then (27) provides the refinement of [3, Theorem 2.2].
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Concluding Remarks

This paper gives estimates of (RL) fractional integral in general form by means
of convex functions. These estimates provide the estimations of (RL) and (kRL)
fractional integrals and also for all fractional integrals comprises in Remark 1. Some
related fractional inequalities are also obtained for differentiable functions having
convex derivatives in absolute value. Applications of Theorem 6 and Theorem 8 are
given by connecting some known results. By applying Theorem 11 similar results
can be established which are left for the reader.
Acknowledgment. This research work is supported by Higher Education Com-
mission of Pakistan under NRPU 2016, Project No. 5421.
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FURTHER INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF FUNCTIONS WITH

BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR

Abstract. Let g be a strictly increasing function on (a, b) , having a continu-
ous derivative g′ on (a, b) . For the Lebesgue integrable function f : (a, b)→ C,
we define the k-g-left-sided fractional integral of f by

Sk,g,a+f (x) =

∫ x

a
k (g (x)− g (t)) g′ (t) f (t) dt, x ∈ (a, b]

and the k-g-right-sided fractional integral of f by

Sk,g,b−f (x) =

∫ b

x
k (g (t)− g (x)) g′ (t) f (t) dt, x ∈ [a, b),

where the kernel k is defined either on (0,∞) or on [0,∞) with complex values
and integrable on any finite subinterval.

In this paper we establish some new inequalities for the k-g-fractional inte-
grals of functions of bounded variation.Examples for the generalized left- and
right-sided Riemann-Liouville fractional integrals of a function f with respect
to another function g and a general exponential fractional integral are also
provided.

1. Introduction

Assume that the kernel k is defined either on (0,∞) or on [0,∞) with complex
values and integrable on any finite subinterval. We define the function K : [0,∞)→
C by

K (t) :=


∫ t

0
k (s) ds if 0 < t,

0 if t = 0.
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As a simple example, if k (t) = tα−1 then for α ∈ (0, 1) the function k is defined on
(0,∞) and K (t) := 1

α t
α for t ∈ [0,∞) . If α ≥ 1, then k is defined on [0,∞) and

K (t) := 1
α t
α for t ∈ [0,∞) .

Let g be a strictly increasing function on (a, b) , having a continuous derivative
g′ on (a, b) . For the Lebesgue integrable function f : (a, b) → C, we define the
k-g-left-sided fractional integral of f by

Sk,g,a+f (x) =

∫ x

a

k (g (x)− g (t)) g′ (t) f (t) dt, x ∈ (a, b] (1)

and the k-g-right-sided fractional integral of f by

Sk,g,b−f (x) =

∫ b

x

k (g (t)− g (x)) g′ (t) f (t) dt, x ∈ [a, b). (2)

If we take k (t) = 1
Γ(α) t

α−1, where Γ is the Gamma function, then

Sk,g,a+f (x) =
1

Γ (α)

∫ x

a

[g (x)− g (t)]
α−1

g′ (t) f (t) dt (3)

=: Iαa+,gf(x), a < x ≤ b

and

Sk,g,b−f (x) =
1

Γ (α)

∫ b

x

[g (t)− g (x)]
α−1

g′ (t) f (t) dt (4)

=: Iαb−,gf(x), a ≤ x < b,

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function g on [a, b] as defined in [23, p. 100].
For g (t) = t in (4) we have the classical Riemann-Liouville fractional integrals

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [23, p. 111]

Hα
a+f(x) :=

1

Γ (α)

∫ x

a

[
ln
(x
t

)]α−1 f (t) dt

t
, 0 ≤ a < x ≤ b (5)

and

Hα
b−f(x) :=

1

Γ (α)

∫ b

x

[
ln

(
t

x

)]α−1
f (t) dt

t
, 0 ≤ a < x < b. (6)

One can consider the function g (t) = −t−1 and define the "Harmonic fractional
integrals" by

Rαa+f(x) :=
x1−α

Γ (α)

∫ x

a

f (t) dt

(x− t)1−α
tα+1

, 0 ≤ a < x ≤ b (7)

and

Rαb−f(x) :=
x1−α

Γ (α)

∫ b

x

f (t) dt

(t− x)
1−α

tα+1
, 0 ≤ a < x < b. (8)
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Also, for g (t) = exp (βt) , β > 0, we can consider the "β-Exponential fractional
integrals"

Eαa+,βf(x) :=
β

Γ (α)

∫ x

a

[exp (βx)− exp (βt)]
α−1

exp (βt) f (t) dt, (9)

for a < x ≤ b and

Eαb−,βf(x) :=
β

Γ (α)

∫ b

x

[exp (βt)− exp (βx)]
α−1

exp (βt) f (t) dt, (10)

for a ≤ x < b.
If we take g (t) = t in (1) and (2), then we can consider the following k-fractional

integrals

Sk,a+f (x) =

∫ x

a

k (x− t) f (t) dt, x ∈ (a, b] (11)

and

Sk,b−f (x) =

∫ b

x

k (t− x) f (t) dt, x ∈ [a, b). (12)

In [26], Raina studied a class of functions defined formally by

Fσρ,λ (x) :=

∞∑
k=0

σ (k)

Γ (ρk + λ)
xk, |x| < R, with R > 0 (13)

for ρ, λ > 0 where the coeffi cients σ (k) generate a bounded sequence of positive real
numbers. With the help of (13), Raina defined the following left-sided fractional
integral operator

J σρ,λ,a+;wf (x) :=

∫ x

a

(x− t)λ−1 Fσρ,λ (w (x− t)ρ) f (t) dt, x > a (14)

where ρ, λ > 0, w ∈ R and f is such that the integral on the right side exists.
In [1], the right-sided fractional operator was also introduced as

J σρ,λ,b−;wf (x) :=

∫ b

x

(t− x)
λ−1 Fσρ,λ (w (t− x)

ρ
) f (t) dt, x < b (15)

where ρ, λ > 0, w ∈ R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.
We observe that for k (t) = tλ−1Fσρ,λ (wtρ) we re-obtain the definitions of (14)

and (15) from (11) and (12).
In [24], Kirane and Torebek introduced the following exponential fractional in-

tegrals

T αa+f (x) :=
1

α

∫ x

a

exp

{
−1− α

α
(x− t)

}
f (t) dt, x > a (16)

and

T αb−f (x) :=
1

α

∫ b

x

exp

{
−1− α

α
(t− x)

}
f (t) dt, x < b (17)
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where α ∈ (0, 1) .
We observe that for k (t) = 1

α exp
(
− 1−α

α t
)
, t ∈ R we re-obtain the definitions of

(16) and (17) from (11) and (12).
Let g be a strictly increasing function on (a, b) , having a continuous derivative

g′ on (a, b) . We can define the more general exponential fractional integrals

T αg,a+f (x) :=
1

α

∫ x

a

exp

{
−1− α

α
(g (x)− g (t))

}
g′ (t) f (t) dt, x > a (18)

and

T αg,b−f (x) :=
1

α

∫ b

x

exp

{
−1− α

α
(g (t)− g (x))

}
g′ (t) f (t) dt, x < b (19)

where α ∈ (0, 1) .
Let g be a strictly increasing function on (a, b) , having a continuous derivative g′

on (a, b) . Assume that α > 0.We can also define the logarithmic fractional integrals

Lαg,a+f (x) :=

∫ x

a

(g (x)− g (t))
α−1

ln (g (x)− g (t)) g′ (t) f (t) dt, (20)

for 0 < a < x ≤ b and

Lαg,b−f (x) :=

∫ b

x

(g (t)− g (x))
α−1

ln (g (t)− g (x)) g′ (t) f (t) dt, (21)

for 0 < a ≤ x < b, where α > 0. These are obtained from (11) and (12) for the
kernel k (t) = tα−1 ln t, t > 0.
For α = 1 we get

Lg,a+f (x) :=

∫ x

a

ln (g (x)− g (t)) g′ (t) f (t) dt, 0 < a < x ≤ b (22)

and

Lg,b−f (x) :=

∫ b

x

ln (g (t)− g (x)) g′ (t) f (t) dt, 0 < a ≤ x < b. (23)

For g (t) = t, we have the simple forms

Lαa+f (x) :=

∫ x

a

(x− t)α−1
ln (x− t) f (t) dt, 0 < a < x ≤ b, (24)

Lαb−f (x) :=

∫ b

x

(t− x)
α−1

ln (t− x) f (t) dt, 0 < a ≤ x < b, (25)

La+f (x) :=

∫ x

a

ln (x− t) f (t) dt, 0 < a < x ≤ b (26)

and

Lb−f (x) :=

∫ b

x

ln (t− x) f (t) dt, 0 < a ≤ x < b. (27)

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2]-[17], [21]-[34] and the references therein.
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For k and g as at the beginning of Introduction, we consider the mixed operator

Sk,g,a+,b−f (x) (28)

:=
1

2
[Sk,g,a+f (x) + Sk,g,b−f (x)]

=
1

2

[∫ x

a

k (g (x)− g (t)) g′ (t) f (t) dt+

∫ b

x

k (g (t)− g (x)) g′ (t) f (t) dt

]
for the Lebesgue integrable function f : (a, b)→ C and x ∈ (a, b) .
We also define the function K : [0,∞)→ [0,∞) by

K (t) :=


∫ t

0
|k (s)| ds if 0 < t,

0 if t = 0.

In the recent paper [19] we obtained the following result for functions of bounded
variation:

Theorem 1. Assume that the kernel k is defined either on (0,∞) or on [0,∞)
with complex values and integrable on any finite subinterval. Let f : [a, b] → C be
a function of bounded variation on [a, b] and g be a strictly increasing function on
(a, b) , having a continuous derivative g′ on (a, b) . Then we have the Ostrowski type
inequality∣∣∣∣Sk,g,a+,b−f (x)− 1

2
[K (g (b)− g (x)) +K (g (x)− g (a))] f (x)

∣∣∣∣
≤ 1

2

[∫ b

x

|k (g (t)− g (x))|
t∨
x

(f) g′ (t) dt+

∫ x

a

|k (g (x)− g (t))|
x∨
t

(f) g′ (t) dt

]

≤ 1

2

[
K (g (b)− g (x))

b∨
x

(f) +K (g (x)− g (a))

x∨
a

(f)

]

≤ 1

2



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(29)

and the trapezoid type inequality∣∣∣∣Sk,g,a+,b−f (x)− 1

2
[K (g (b)− g (x)) f (b) +K (g (x)− g (a)) f (a)]

∣∣∣∣
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≤ 1

2

[∫ x

a

|k (g (x)− g (t))|
t∨
a

(f) g′ (t) dt+

∫ b

x

|k (g (t)− g (x))|
b∨
t

(f) g′ (t) dt

]

≤ 1

2

[
K (g (b)− g (x))

b∨
x

(f) +K (g (x)− g (a))

x∨
a

(f)

]

≤ 1

2



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p

×
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]

×
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(30)

for any x ∈ (a, b) , where
∨d
c (f) denoted the total variation on the interval [c, d] .

Observe that

Sk,g,x+f (b) =

∫ b

x

k (g (b)− g (t)) g′ (t) f (t) dt, x ∈ [a, b) (31)

and

Sk,g,x−f (a) =

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt, x ∈ (a, b]. (32)

We can define also the mixed operator

S̆k,g,a+,b−f (x) (33)

:=
1

2
[Sk,g,x+f (b) + Sk,g,x−f (a)]

=
1

2

[∫ b

x

k (g (b)− g (t)) g′ (t) f (t) dt+

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt

]
for any x ∈ (a, b) .
In this paper we establish some inequalities for the k-g-fractional integrals of

functions with bounded variation f : [a, b] → C that provide error bounds in ap-
proximating the composite operators Sk,g,a+,b−f and S̆k,g,a+,b−f in terms of the
double trapezoid rule

1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]
, x ∈ (a, b) .

Examples for the generalized left- and right-sided Riemann-Liouville fractional in-
tegrals of a function f with respect to another function g and a general exponential
fractional integral are also provided.
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2. Further Inequalities for Functions of BV

The following two parameters representation for the operators Sk,g,a+,b− and
S̆k,g,a+,b− hold [20]:

Lemma 2. Assume that the kernel k is defined either on (0,∞) or on [0,∞) with
complex values and integrable on any finite subinterval. Let f : [a, b] → C be an
integrable function on [a, b] and g be a strictly increasing function on (a, b) , having
a continuous derivative g′ on (a, b) . Then

Sk,g,a+,b−f (x) =
1

2
[γK (g (b)− g (x)) + λK (g (x)− g (a))] (34)

+
1

2

∫ x

a

k (g (x)− g (t)) g′ (t) [f (t)− λ] dt

+
1

2

∫ b

x

k (g (t)− g (x)) g′ (t) [f (t)− γ] dt

and

S̆k,g,a+,b−f (x) =
1

2
[λK (g (b)− g (x)) + γK (g (x)− g (a))] (35)

+
1

2

∫ x

a

k (g (t)− g (a)) g′ (t) [f (t)− γ] dt

+
1

2

∫ b

x

k (g (b)− g (t)) g′ (t) [f (t)− λ] dt

for x ∈ (a, b) and for any λ, γ ∈ C.

Proof. We have, by taking the derivative over t and using the chain rule, that

[K (g (x)− g (t))]
′

= K ′ (g (x)− g (t)) (g (x)− g (t))
′

= −k (g (x)− g (t)) g′ (t)

for t ∈ (a, x) and

[K (g (t)− g (x))]
′

= K ′ (g (t)− g (x)) (g (t)− g (x))
′

= k (g (t)− g (x)) g′ (t)

for t ∈ (x, b) .
Therefore, for any λ, γ ∈ C we have∫ x

a

k (g (x)− g (t)) g′ (t) [f (t)− λ] dt (36)

=

∫ x

a

k (g (x)− g (t)) g′ (t) f (t) dt− λ
∫ x

a

k (g (x)− g (t)) g′ (t) dt

= Sk,g,a+f (x) + λ

∫ x

a

[K (g (x)− g (t))]
′
dt

= Sk,g,a+f (x) + λ [K (g (x)− g (t))]|xa = Sk,g,a+f (x)− λK (g (x)− g (a))
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and ∫ b

x

k (g (t)− g (x)) g′ (t) [f (t)− γ] dt (37)

=

∫ b

x

k (g (t)− g (x)) g′ (t) f (t) dt− γ
∫ b

x

k (g (t)− g (x)) g′ (t) dt

= Sk,g,b−f (x)− γ
∫ b

x

[K (g (t)− g (x))]
′
dt

= Sk,g,b−f (x)− γ [K (g (t)− g (x))]|bx = Sk,g,b−f (x)− γK (g (b)− g (x))

for x ∈ (a, b) .
If we add the equalities (36) and (37) and divide by 2 then we get the desired

result (34).
Moreover, by taking the derivative over t and using the chain rule, we have that

[K (g (b)− g (t))]
′

= K ′ (g (b)− g (t)) (g (b)− g (t))
′

= −k (g (b)− g (t)) g′ (t)

for t ∈ (x, b) and

[K (g (t)− g (a))]
′

= K ′ (g (t)− g (a)) (g (t)− g (a))
′

= k (g (t)− g (a)) g′ (t)

for t ∈ (a, x) .
For any λ, γ ∈ C we have∫ b

x

k (g (b)− g (t)) g′ (t) [f (t)− λ] dt (38)

=

∫ b

x

k (g (b)− g (t)) g′ (t) f (t) dt− λ
∫ b

x

k (g (b)− g (t)) g′ (t) dt

= Sk,g,x+f (b) + λ

∫ b

x

[K (g (b)− g (t))]
′
dt

= Sk,g,x+f (b)− λK (g (b)− g (x))

and ∫ x

a

k (g (t)− g (a)) g′ (t) [f (t)− γ] dt (39)

=

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt− γ
∫ x

a

k (g (t)− g (a)) g′ (t) dt

=

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt− γ
∫ x

a

[K (g (t)− g (a))]
′
dt

=

∫ x

a

k (g (t)− g (a)) g′ (t) f (t) dt− γK (g (x)− g (a))

for x ∈ (a, b) .
If we add the equalities (38) and (39) and divide by 2 then we get the desired

result (35). �
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers
a, b ∈ I as

Mg (a, b) := g−1

(
g (a) + g (b)

2

)
.

If I = R and g (t) = t is the identity function, then Mg (a, b) = A (a, b) := a+b
2 ,

the arithmetic mean. If I = (0,∞) and g (t) = ln t, thenMg (a, b) = G (a, b) :=
√
ab,

the geometric mean. If I = (0,∞) and g (t) = 1
t , then Mg (a, b) = H (a, b) :=

2ab
a+b , the harmonic mean. If I = (0,∞) and g (t) = tp, p 6= 0, then Mg (a, b) =

Mp (a, b) :=
(
ap+bp

2

)1/p
, the power mean with exponent p. Finally, if I = R and

g (t) = exp t, then

Mg (a, b) = LME (a, b) := ln

(
exp a+ exp b

2

)
,

the LogMeanExp function.
Using the g-mean of two numbers we can introduce

Pk,g,a+,b−f := Sk,g,a+,b−f (Mg (a, b)) (40)

=
1

2

∫ Mg(a,b)

a

k

(
g (a) + g (b)

2
− g (t)

)
g′ (t) f (t) dt

+
1

2

∫ b

Mg(a,b)

k

(
g (t)− g (a) + g (b)

2

)
g′ (t) f (t) dt.

Using the representation (34) we have

Pk,g,a+,b−f = K

(
g (b)− g (a)

2

)
γ + λ

2
(41)

+
1

2

∫ Mg(a,b)

a

k

(
g (a) + g (b)

2
− g (t)

)
g′ (t) [f (t)− λ] dt

+
1

2

∫ b

Mg(a,b)

k

(
g (t)− g (a) + g (b)

2

)
g′ (t) [f (t)− γ] dt

for any λ, γ ∈ C.
Also, if

P̆k,g,a+,b−f := S̆k,g,a+,b−f (Mg (a, b)) (42)

=
1

2

∫ b

Mg(a,b)

k (g (b)− g (t)) g′ (t) f (t) dt

+
1

2

∫ Mg(a,b)

a

k (g (t)− g (a)) g′ (t) f (t) dt.
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then by (35) we get

P̆k,g,a+,b−f = K

(
g (b)− g (a)

2

)
γ + λ

2
(43)

+
1

2

∫ Mg(a,b)

a

k (g (t)− g (a)) g′ (t) [f (t)− γ] dt

+
1

2

∫ b

Mg(a,b)

k (g (b)− g (t)) g′ (t) [f (t)− λ] dt

for any λ, γ ∈ C.

Theorem 3. Assume that the kernel k is defined either on (0,∞) or on [0,∞)
with complex values and integrable on any finite subinterval. Let f : [a, b] → C
be a function of bounded variation on [a, b] and g be a strictly increasing function
on (a, b) , having a continuous derivative g′ on (a, b) . Then we have the double
trapezoid inequalities

|Sk,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

4

[
K (g (x)− g (a))

x∨
a

(f) +K (g (b)− g (x))

b∨
x

(f)

]

≤ 1

4



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(44)

and∣∣∣S̆k,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

4

[
K (g (x)− g (a))

x∨
a

(f) +K (g (b)− g (x))

b∨
x

(f)

]
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≤ 1

4



max {K (g (b)− g (x)) ,K (g (x)− g (a))}
∨b
a (f) ;

[Kp (g (b)− g (x)) +Kp (g (x)− g (a))]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[K (g (b)− g (x)) +K (g (x)− g (a))]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(45)

for x ∈ (a, b) .

Proof. Using the identity (34) for λ = f(a)+f(x)
2 and γ = f(x)+f(b)

2 we have

Sk,g,a+,b−f (x) (46)

=
1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]
+

1

2

∫ x

a

k (g (x)− g (t)) g′ (t)

[
f (t)− f (a) + f (x)

2

]
dt

+
1

2

∫ b

x

k (g (t)− g (x)) g′ (t)

[
f (t)− f (x) + f (b)

2

]
dt

for x ∈ (a, b) .
Since f is of bounded variation, then∣∣∣∣f (t)− f (a) + f (x)

2

∣∣∣∣ =

∣∣∣∣f (t)− f (a) + f (t)− f (x)

2

∣∣∣∣
≤ 1

2
[|f (t)− f (a)|+ |f (x)− f (t)|] ≤ 1

2

x∨
a

(f)

and ∣∣∣∣f (t)− f (x) + f (b)

2

∣∣∣∣ =

∣∣∣∣f (t)− f (x) + f (t)− f (b)

2

∣∣∣∣
≤ 1

2
[|f (t)− f (x)|+ |f (b)− f (t)|] ≤ 1

2

b∨
x

(f)

for x ∈ (a, b) .
Using the equality (46) we have

|Sk,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

2

∣∣∣∣∫ x

a

k (g (x)− g (t)) g′ (t)

[
f (t)− f (a) + f (x)

2

]
dt

∣∣∣∣
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+
1

2

∣∣∣∣∣
∫ b

x

k (g (t)− g (x)) g′ (t)

[
f (t)− f (x) + f (b)

2

]
dt

∣∣∣∣∣
≤ 1

2

∫ x

a

|k (g (x)− g (t))|
∣∣∣∣f (t)− f (a) + f (x)

2

∣∣∣∣ g′ (t) dt
+

1

2

∫ b

x

|k (g (t)− g (x))|
∣∣∣∣f (t)− f (x) + f (b)

2

∣∣∣∣ g′ (t) dt
≤ 1

4

[
x∨
a

(f)

∫ x

a

|k (g (x)− g (t))| g′ (t) dt+

b∨
x

(f)

∫ b

x

|k (g (t)− g (x))| g′ (t) dt
]

=: B (x) (47)

for x ∈ (a, b) .
We have, by taking the derivative over t and using the chain rule, that

[K (g (x)− g (t))]
′

= K′ (g (x)− g (t)) (g (x)− g (t))
′

= − |k (g (x)− g (t))| g′ (t)
for t ∈ (a, x) and

[K (g (t)− g (x))]
′

= K′ (g (t)− g (x)) (g (t)− g (x))
′

= |k (g (t)− g (x))| g′ (t)
for t ∈ (x, b) .
Then∫ x

a

|k (g (x)− g (t))| g′ (t) dt = −
∫ x

a

[K (g (x)− g (t))]
′
dt = K (g (x)− g (a))

and∫ b

x

|k (g (t)− g (x))| g′ (t) dt =

∫ b

x

[K (g (t)− g (x))]
′
dt = K (g (b)− g (x)) .

Therefore

B (x) =
1

4

[
x∨
a

(f)

∫ x

a

|k (g (x)− g (t))| g′ (t) dt+

b∨
x

(f)

∫ b

x

|k (g (t)− g (x))| g′ (t) dt
]

=
1

4

[
K (g (x)− g (a))

x∨
a

(f) +K (g (b)− g (x))

b∨
x

(f)

]
.

The last part of (44) is obvious by making use of the elementary Hölder type
inequalities for positive real numbers c, d, m, n ≥ 0

mc+ nd ≤


max {m,n} (c+ d) ;

(mp + np)
1/p

(cq + dq)
1/q with p, q > 1, 1

p + 1
q = 1.

Using the identity (35) for λ = f(x)+f(b)
2 and γ = f(x)+f(a)

2 we also have∣∣∣S̆k,g,a+,b−f (x)
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−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (x) + f (a)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

2

∫ x

a

|k (g (t)− g (a))|
∣∣∣∣f (t)− f (x) + f (a)

2

∣∣∣∣ g′ (t) dt
+

1

2

∫ b

x

|k (g (b)− g (t))|
∣∣∣∣f (t)− f (x) + f (b)

2

∣∣∣∣ g′ (t) dt
≤ 1

4

x∨
a

(f)

∫ x

a

|k (g (t)− g (a))| g′ (t) dt+
1

4

b∨
x

(f)

∫ b

x

|k (g (b)− g (t))| g′ (t) dt

=: C (x) .

We also have, by taking the derivative over t and using the chain rule, that

[K (g (b)− g (t))]
′

= K′ (g (b)− g (t)) (g (b)− g (t))
′

= − |k (g (b)− g (t))| g′ (t)
for t ∈ (x, b) and

[K (g (t)− g (a))]
′

= K′ (g (t)− g (a)) (g (t)− g (a))
′

= |k (g (t)− g (a))| g′ (t)
for t ∈ (a, x) .
Therefore ∫ x

a

|k (g (t)− g (a))| g′ (t) dt = K (g (x)− g (a))

and ∫ b

x

|k (g (b)− g (t))| g′ (t) dt = K (g (b)− g (x))

giving that

C (x) =
1

4

x∨
a

(f)K (g (x)− g (a)) +
1

4

b∨
x

(f)K (g (b)− g (x))

for x ∈ (a, b) , and the inequality (45) is thus proved. �

Corollary 4. With the assumptions of Theorem 3 we have∣∣∣∣Pk,g,a+,b−f −
1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣ (48)

≤ 1

4
K

(
g (b)− g (a)

2

) b∨
a

(f)

and ∣∣∣∣P̆k,g,a+,b−f −
1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣ (49)

≤ 1

4
K

(
g (b)− g (a)

2

) b∨
a

(f) .
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If we take x = a+b
2 in (44) and (45), then we get

∣∣∣∣∣Sk,g,a+,b−f

(
a+ b

2

)
−
f
(
a+b

2

)
+ f (b)

4
K

(
g (b)− g

(
a+ b

2

))

−
f (a) + f

(
a+b

2

)
4

K

(
g

(
a+ b

2

)
− g (a)

)∣∣∣∣∣
≤ 1

4

K(g(a+ b

2

)
− g (a)

) a+b
2∨
a

(f) +K

(
g (b)− g

(
a+ b

2

)) b∨
a+b
2

(f)



≤ 1

4



max
{
K
(
g (b)− g

(
a+b

2

))
,K
(
g
(
a+b

2

)
− g (a)

)}∨b
a (f) ;

[
Kp
(
g (b)− g

(
a+b

2

))
+Kp

(
g
(
a+b

2

)
− g (a)

)]1/p((∨ a+b
2

a (f)
)q

+
(∨b

a+b
2

(f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
K
(
g (b)− g

(
a+b

2

))
+K

(
g
(
a+b

2

)
− g (a)

)][
1
2

∨b
a (f) + 1

2

∣∣∣∨ a+b
2

a (f)−
∨b

a+b
2

(f)
∣∣∣]

(50)

and

∣∣∣∣∣S̆k,g,a+,b−f

(
a+ b

2

)
−
f
(
a+b

2

)
+ f (b)

4
K

(
g (b)− g

(
a+ b

2

))

−
f (a) + f

(
a+b

2

)
4

K

(
g

(
a+ b

2

)
− g (a)

)∣∣∣∣∣
≤ 1

4

K(g(a+ b

2

)
− g (a)

) a+b
2∨
a

(f) +K

(
g (b)− g

(
a+ b

2

)) b∨
x

(f)





GENERALIZED k-g-FRACTIONAL INTEGRALS 63

≤ 1

4



max
{
K
(
g (b)− g

(
a+b

2

))
,K
(
g
(
a+b

2

)
− g (a)

)}∨b
a (f) ;

[
Kp
(
g (b)− g

(
a+b

2

))
+Kp

(
g
(
a+b

2

)
− g (a)

)]1/p((∨ a+b
2

a (f)
)q

+
(∨b

a+b
2

(f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
K
(
g (b)− g

(
a+b

2

))
+K

(
g
(
a+b

2

)
− g (a)

)][
1
2

∨b
a (f) + 1

2

∣∣∣∨ a+b
2

a (f)−
∨b

a+b
2

(f)
∣∣∣]

(51)

for x ∈ (a, b) .
We use the classical Lebesgue p-norms defined as

‖h‖[c,d],∞ := essup
s∈[c,d]

|h (s)|

and

‖h‖[c,d],p :=

(∫ d

c

|h (s)|p ds
)1/p

, p ≥ 1.

Using Hölder’s integral inequality we have for t > 0 that

K (t) =

∫ t

0

|k (s)| ds ≤


t ‖k‖[0,t],∞ if k ∈ L∞ [0, t]

t1/p ‖k‖[0,t],q if k ∈ Lq [0, t] , p, q > 1, 1
p + 1

q = 1.

Therefore by the first inequality in (44) and (45) we get for p, q > 1, 1
p + 1

q = 1

|Sk,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
≤ 1

4

x∨
a

(f)


(g (x)− g (a)) ‖k‖[0,g(x)−g(a)],∞

(g (x)− g (a))
1/p ‖k‖[0,g(x)−g(a)],q

+
1

4

b∨
x

(f)


(g (b)− g (x)) ‖k‖[0,g(b)−g(x)],∞

(g (b)− g (x))
1/p ‖k‖[0,g(b)−g(x)],q

(52)

and∣∣∣S̆k,g,a+,b−f (x)

−1

2

[
f (x) + f (b)

2
K (g (b)− g (x)) +

f (a) + f (x)

2
K (g (x)− g (a))

]∣∣∣∣
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≤ 1

4

x∨
a

(f)


(g (x)− g (a)) ‖k‖[0,g(x)−g(a)],∞

(g (x)− g (a))
1/p ‖k‖[0,g(x)−g(a)],q

+
1

4

b∨
x

(f)


(g (b)− g (x)) ‖k‖[0,g(b)−g(x)],∞

(g (b)− g (x))
1/p ‖k‖[0,g(b)−g(x)],q

(53)

for x ∈ (a, b) .
From (48) and (49) we also have for p, q > 1, 1

p + 1
q = 1 that∣∣∣∣Pk,g,a+,b−f −

1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

4

b∨
a

(f)


(
g(b)−g(a)

2

)
‖k‖[0, g(b)−g(a)2 ],∞(

g(b)−g(a)
2

)1/p

‖k‖[0, g(b)−g(a)2 ],q

(54)

and∣∣∣∣P̆k,g,a+,b−f −
1

2
K

(
g (b)− g (a)

2

)[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

4

b∨
a

(f)


(
g(b)−g(a)

2

)
‖k‖[0, g(b)−g(a)2 ],∞(

g(b)−g(a)
2

)1/p

‖k‖[0, g(b)−g(a)2 ],q .

(55)

3. Applications for Generalized Riemann-Liouville Fractional
Integrals

If we take k (t) = 1
Γ(α) t

α−1, where Γ is the Gamma function, then

Sk,g,a+f (x) = Iαa+,gf(x) :=
1

Γ (α)

∫ x

a

[g (x)− g (t)]
α−1

g′ (t) f (t) dt

for a < x ≤ b and

Sk,g,b−f (x) = Iαb−,gf(x) :=
1

Γ (α)

∫ b

x

[g (t)− g (x)]
α−1

g′ (t) f (t) dt

for a ≤ x < b, which are the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a, b] as
defined in [23, p. 100].
We consider the mixed operators

Iαg,a+,b−f (x) :=
1

2

[
Iαa+,gf(x) + Iαb−,gf(x)

]
(56)
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and

Ĭαg,a+,b−f (x) :=
1

2

[
Iαx+,gf (b) + Iαx−,gf(a)

]
(57)

for x ∈ (a, b) .
We observe that for α > 0 we have

K (t) =
1

Γ (α)

∫ t

0

sα−1ds =
tα

αΓ (α)
=

tα

Γ (α+ 1)
, t ≥ 0.

If we use the inequalities (44) and (45) we get

∣∣Iαg,a+,b−f (x)

− 1

2Γ (α+ 1)

[
f (x) + f (b)

2
(g (b)− g (x))

α
+
f (a) + f (x)

2
(g (x)− g (a))

α

]∣∣∣∣
≤ 1

4Γ (α+ 1)

[
(g (x)− g (a))

α
x∨
a

(f) + (g (b)− g (x))
α

b∨
x

(f)

]

≤ 1

4Γ (α+ 1)

×



[
g(b)−g(a)

2 +
∣∣∣g (x)− g(b)+g(a)

2

∣∣∣]α∨ba (f) ;

[(g (b)− g (x))
pα

+ (g (x)− g (a))
pα

]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[(g (b)− g (x))
α

+ (g (x)− g (a))
α

]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(58)

and

∣∣∣Ĭαg,a+,b−f (x)

− 1

2Γ (α+ 1)

[
f (x) + f (b)

2
(g (b)− g (x))

α
+
f (a) + f (x)

2
(g (x)− g (a))

α

]∣∣∣∣
≤ 1

4Γ (α+ 1)

[
(g (x)− g (a))

α
x∨
a

(f) + (g (b)− g (x))
α

b∨
x

(f)

]

≤ 1

4Γ (α+ 1)
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×



[
g(b)−g(a)

2 +
∣∣∣g (x)− g(b)+g(a)

2

∣∣∣]α∨ba (f) ;

[(g (b)− g (x))
pα

+ (g (x)− g (a))
pα

]
1/p
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;

[(g (b)− g (x))
α

+ (g (x)− g (a))
α

]
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]
(59)

for x ∈ (a, b) .
From (48) and (49) we get∣∣∣∣Iαg,a+,b−f (Mg (a, b))− (g (b)− g (a))

α

2α+1Γ (α+ 1)

[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

2α+2Γ (α+ 1)
(g (b)− g (a))

α
b∨
a

(f) (60)

and∣∣∣∣Ĭαg,a+,b−f (Mg (a, b))− (g (b)− g (a))
α

2α+1Γ (α+ 1)

[
f (Mg (a, b)) +

f (a) + f (b)

2

]∣∣∣∣
≤ 1

2α+2Γ (α+ 1)
(g (b)− g (a))

α
b∨
a

(f) . (61)

4. Example for an Exponential Kernel

For α, β ∈ R we consider the kernel k (t) := exp [(α+ βi) t] , t ∈ R. We have

K (t) =
exp [(α+ βi) t]− 1

(α+ βi)
, if t ∈ R

for α, β 6= 0.
Also, we have

|k (s)| := |exp [(α+ βi) s]| = exp (αs) for s ∈ R

and

K (t) =

∫ t

0

exp (αs) ds =
exp (αt)− 1

α
if 0 < t,

for α 6= 0.
Let f : [a, b] → C be a function of bounded variation on [a, b] and g be a

strictly increasing function on (a, b) , having a continuous derivative g′ on (a, b) .
We consider the operator

Hα+βi
g,a+,b−f (x) :=

1

2

∫ x

a

exp [(α+ βi) (g (x)− g (t))] g′ (t) f (t) dt (62)
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+
1

2

∫ b

x

exp [(α+ βi) (g (t)− g (x))] g′ (t) f (t) dt

for x ∈ (a, b) .
If g = lnh where h : [a, b] → (0,∞) is a strictly increasing function on (a, b) ,

having a continuous derivative h′ on (a, b) , then we can consider the following
operator as well

κα+βi
h,a+,b−f (x) (63)

:= Hα+βi
lnh,a+,b−f (x)

=
1

2

[∫ x

a

(
h (x)

h (t)

)α+βi
h′ (t)

h (t)
f (t) dt+

∫ b

x

(
h (t)

h (x)

)α+βi
h′ (t)

h (t)
f (t) dt

]
,

for x ∈ (a, b) .
Using the inequality (44) we have for x ∈ (a, b)∣∣∣∣Hα+βi

g,a+,b−f (x)− 1

2

f (x) + f (b)

2

exp [(α+ βi) (g (b)− g (x))]− 1

(α+ βi)

−f (a) + f (x)

2

exp [(α+ βi) (g (x)− g (a))]− 1

(α+ βi)

∣∣∣∣
≤ 1

4

[
exp (α (g (x)− g (a)))− 1

α

x∨
a

(f) +
exp (α (g (b)− g (x)))− 1

α

b∨
x

(f)

]

≤ 1

4



max
{

exp(α(g(x)−g(a)))−1
α , exp(α(g(b)−g(x)))−1

α

}∨b
a (f) ;

[(
exp(α(g(x)−g(a)))−1

α

)p
+
(

exp(α(g(b)−g(x)))−1
α

)p]1/p
×
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
exp(α(g(x)−g(a)))+exp(α(g(b)−g(x)))−2

α

]
×
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]

(64)

and if we take g = lnh where h : [a, b]→ (0,∞) is a strictly increasing function on
(a, b) , having a continuous derivative h′ on (a, b) , then we get∣∣∣∣∣∣∣κα+βi

h,a+,b−f (x)− 1

2

f (x) + f (b)

2

(
h(b)
h(x)

)α+βi

− 1

(α+ βi)
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−f (a) + f (x)

2

(
h(x)
h(a)

)α+βi

− 1

(α+ βi)


∣∣∣∣∣∣∣

≤ 1

4


(
h(x)
h(a)

)α
− 1

α

x∨
a

(f) +

(
h(b)
h(x)

)α
− 1

α

b∨
x

(f)



≤ 1

4



max

{
(h(x)h(a) )

α−1

α ,
( h(b)h(x) )

α−1

α

}∨b
a (f) ;

[(
(h(x)h(a) )

α−1

α

)p
+

(
( h(b)h(x) )

α−1

α

)p]1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
(h(x)h(a) )

α
+( h(b)h(x) )

α−2

α

] [
1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣] .
(65)

If we take if we take xh := h−1
(√

h (a)h (b)
)

= h−1 (G (h (a) , h (b))) ∈ (a, b) ,

where G is the geometric mean, then from (65) we get∣∣∣∣∣∣∣∣κ̄
α+βi
h,a+,b−f −

(
h(b)
h(a)

)α+βi
2 − 1

2 (α+ βi)

[
f
(
h−1 (G (h (a) , h (b)))

)
+
f (a) + f (b)

2

]∣∣∣∣∣∣∣∣
≤ 1

4

(
h(b)
h(a)

)α
2 − 1

α

b∨
a

(f) , (66)

where κ̄α+βi
h,a+,b−f = κα+βi

h,a+,b−f (xh) .

Let f : [a, b]→ C be an integrable function on [a, b] and g be a strictly increasing
function on (a, b) , having a continuous derivative g′ on (a, b) . Also define

H̆αg,a+,b−f (x) (67)

:=
1

2

∫ b

x

exp [α (g (b)− g (t))] g′ (t) f (t) dt

+
1

2

∫ x

a

exp [α (g (t)− g (a))] g′ (t) f (t) dt

for any x ∈ (a, b) .
If g = lnh where h : [a, b] → (0,∞) is a strictly increasing function on (a, b) ,

having a continuous derivative h′ on (a, b) , then we can consider the following
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operator as well

κ̆αh,a+,b−f (x) (68)

:= H̆αlnh,a+,b−f (x)

=
1

2

[∫ b

x

(
h (b)

h (t)

)α
h′ (t)

h (t)
f (t) dt+

∫ x

a

(
h (t)

h (a)

)α
h′ (t)

h (t)
f (t) dt

]
,

for any x ∈ (a, b) .
Using the inequality (45) we have for x ∈ (a, b) that∣∣∣∣H̆α+βi

g,a+,b−f (x)− 1

2

[
f (x) + f (b)

2

exp [(α+ βi) (g (b)− g (x))]− 1

(α+ βi)

−f (a) + f (x)

2

exp [(α+ βi) (g (x)− g (a))]− 1

(α+ βi)

]∣∣∣∣
≤ 1

4

[
exp (α (g (x)− g (a)))− 1

α

x∨
a

(f) +
exp (α (g (b)− g (x)))− 1

α

b∨
x

(f)

]

≤ 1

4



max
{

exp(α(g(x)−g(a)))−1
α , exp(α(g(b)−g(x)))−1

α

}∨b
a (f) ;

[(
exp(α(g(x)−g(a)))−1

α

)p
+
(

exp(α(g(b)−g(x)))−1
α

)p]1/p
×
(

(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
exp(α(g(x)−g(a)))+exp(α(g(b)−g(x)))−2

α

]
×
[

1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣]

(69)

and if we take g = lnh where h : [a, b]→ (0,∞) is a strictly increasing function on
(a, b) , having a continuous derivative h′ on (a, b) , then we get∣∣∣∣∣∣∣κ̆α+βi

h,a+,b−f (x)− 1

2

f (x) + f (b)

2

(
h(b)
h(x)

)α+βi

− 1

(α+ βi)

−f (a) + f (x)

2

(
h(x)
h(a)

)α+βi

− 1

(α+ βi)


∣∣∣∣∣∣∣

≤ 1

4


(
h(x)
h(a)

)α
− 1

α

x∨
a

(f) +

(
h(b)
h(x)

)α
− 1

α

b∨
x

(f)
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≤ 1

4



max

{
(h(x)h(a) )

α−1

α ,
( h(b)h(x) )

α−1

α

}∨b
a (f) ;

[(
(h(x)h(a) )

α−1

α

)p
+

(
( h(b)h(x) )

α−1

α

)p]1/p (
(
∨x
a (f))

q
+
(∨b

x (f)
)q)1/q

with p, q > 1, 1
p + 1

q = 1;[
(h(x)h(a) )

α
+( h(b)h(x) )

α−2

α

] [
1
2

∨b
a (f) + 1

2

∣∣∣∨xa (f)−
∨b
x (f)

∣∣∣] .
(70)

If we take if we take xh = h−1 (G (h (a) , h (b))) ∈ (a, b) , where G is the geometric
mean, then from (65) we get∣∣∣∣∣∣∣∣¯̀

α+βi
h,a+,b−f −

(
h(b)
h(a)

)α+βi
2 − 1

2 (α+ βi)

[
f
(
h−1 (G (h (a) , h (b)))

)
+
f (a) + f (b)

2

]∣∣∣∣∣∣∣∣
≤ 1

4

(
h(b)
h(a)

)α
2 − 1

α

b∨
a

(f) , (71)

where ¯̀α+βi
h,a+,b−f = κ̆α+βi

h,a+,b−f (xh) .
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GENERALIZED FRACTIONAL MAXIMAL OPERATOR ON
GENERALIZED LOCAL MORREY SPACES

A. KUCUKASLAN, V.S. GULIYEV, AND A. SERBETCI

Abstract. In this paper, we study the boundedness of generalized fractional
maximal operator Mρ on generalized local Morrey spaces LM

{x0}
p,ϕ and gen-

eralized Morrey spaces Mp,ϕ, including weak estimates. Firstly, we prove the

Spanne type boundedness of Mρ from the space LM{x0}p,ϕ1 to another LM{x0}q,ϕ2 ,

1 < p < q <∞ and from LM
{x0}
1,ϕ1

to the weak space WLM
{x0}
q,ϕ2 for p = 1 and

1 < q <∞. Secondly, we prove the Adams type boundedness of Mρ from the
space M

p,ϕ
1
p
to anotherM

q,ϕ
1
q
for 1 < p < q <∞ and from M1,ϕ to the weak

space WM
q,ϕ

1
q
for p = 1 and 1 < q < ∞. In all cases the conditions for the

boundedness ofMρ are given in terms of supremal-type integral inequalities on
(ϕ1, ϕ2, ρ) and (ϕ, ρ), which do not assume any assumption on monotonicity
of ϕ1(x, r), ϕ2(x, r) and ϕ(x, r) in r.

1. Introduction

The classical Morrey spacesMp,λ were first introduced by Morrey in [21] to study
the local behavior of solutions to second order elliptic partial differential equations.
The generalized Morrey spaces Mp,ϕ are obtained by replacing rλ in the definition
of the Morrey space. During the last decades various classical operators, such
as maximal, singular and potential operators were widely investigated in both in
classical, generalized Morrey spaces and generalized local Morrey spaces. For the
boundedness of the Hardy—Littlewood maximal operator, the fractional integral
operator and the Calderón-Zygmund singular integral operators on these spaces,
we refer the readers to [1, 9, 15, 16, 20, 22].
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For a measurable function ρ : (0,∞)→ (0,∞) the generalized fractional maximal
operator Mρ and the generalized fractional integral operator Iρ are defined by

Mρf(x) = sup
t>0

ρ(t)

tn

∫
B(x,t)

|f(y)|dy,

Iρf(x) =

∫
Rn

ρ(|x− y|)
|x− y|n f(y)dy

for any suitable function f on Rn. If ρ(t) ≡ tα, then Mα ≡ Mtα is the fractional
maximal operator and Iα ≡ Itα is the Riesz potential.
Spanne [24] and Adams [1] studied boundedness of the Riesz potential in Morrey

spaces. Their results can be summarized as follows.

Theorem A. (Spanne, but published by Peetre [24]) Let 0 < α < n, 1 < p < n
α ,

0 < λ < n − αp. Moreover, let 1
p −

1
q =

α
n and λ

p =
µ
q . Then for p > 1, the

operator Iα is bounded from Mp,λ to Mq,µ and for p = 1, Iα is bounded from M1,λ

to WMq,µ.

Theorem B. (Adams [1]) Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp and

1
p −

1
q =

α
n−λ . Then for p > 1, the operator Iα is bounded from Mp,λ to Mq,λ and

for p = 1, Iα is bounded from M1,λ to WMq,λ.

Nakai [22] proved the boundedness of the operators Iρ and Mρ from the general-
ized Morrey spacesMp,ϕ1 to the spacesMq,ϕ2 for suitable functions ϕ1 and ϕ2. The
boundedness of Mρ and Iρ from the generalized Morrey spaces Mp,ϕ1 to the spaces
Mq,ϕ2 is studied by Nakai [23], Eridani [10], Gunawan [18], Eridani, Gunawan and
Nakai [12], Sawano, Sugano, Tanaka [25], Eridani, Gunawan, Nakai, Sawano [11],
Guliyev, Ismayilova, Kucukaslan, Serbetci [17], Kucukaslan, Hasanov, Aykol [19].
In particular, the following statement containing both Theorem A and Theorem

B was proved in [3, 4].
Theorem C. ([3, 4]) Let 1 ≤ p < q <∞, 0 < λ, µ < n and

0 < α =
n− λ
p
− n− µ

q
<
n

p
.

Then, for p > 1, the operator Iα is bounded from Mp,λ to Mq,µ, and, for p = 1, Iα
is bounded from M1,λ to WMq,µ.

In [3, 4] it was also proved that, under the assumptions of Theorem C, the
operator Iα, for p > 1, is bounded from the local Morrey space LM

{x0}
p,λ to LM{x0}q,µ ,

and, for p = 1 from LM
{x0}
1,λ to the weak local Morrey space WLM

{x0}
q,µ .

Since, for some c > 0,
(
Mαf

)
(x) ≤ c

(
Iα(|f |)

)
(x), x ∈ Rn, it follows that in

Theorems A, B, C the operator Iα can be replaced by the operator Mα (including
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also the case p = q). For the operator Mα Theorem C was, in fact, earlier proved
in [5, 6].
Guliyev [14] proved the Spanne and Adams type boundedness of Iα from the

spaces Mp,ϕ1(R
n) to Mq,ϕ2(R

n) without any assumption on monotonicity of ϕ1,
ϕ2. Paper [7] should be mentioned where for α = n

(
1
p −

1
q

)
necessary and suffi cient

conditions of ϕ1 and ϕ2 are obtained. In [17], by using the method given in [13]
the Spanne and Adams type boundedness of the operator Iρ from the generalized
local Morrey space LM{x0}p,ϕ1 to another one LM

{x0}
q,ϕ2 were proved.

The main goal of this paper is to show that the boundedness of the generalized
fractional maximal operator Mρ in generalized local Morrey spaces LM

{x0}
p,ϕ and

generalized Morrey spaces Mp,ϕ can be obtained under weaker assumptions on ρ,
namely in terms of the so-called supremal operators. More precisely, we find suffi -
cient conditions, in supremal terms, on the functions (ϕ1, ϕ2, ρ) which ensure the
boundedness of the operator Mρ from one generalized local Morrey space LM{x0}p,ϕ1

to another LM{x0}q,ϕ2 for 1 < p < q < ∞ and from LM
{x0}
1,ϕ1

to the weak space

WLM
{x0}
q,ϕ2 for p = 1 and 1 < q < ∞. We also find conditions on the pair (ϕ, ρ)

which ensure the Adams type boundedness ofMρ from the spacesM
p,ϕ

1
p
to another

M
q,ϕ

1
q
for 1 < p < q <∞ and from M1,ϕ to the weak space WM

q,ϕ
1
q
for p = 1 and

1 < q <∞.
By A . B we mean that A ≤ CB with some positive constant C independent

of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.

2. Preliminaries

For x ∈ Rn and r > 0, we denote by B(x, r) the open ball centered at x of radius
r, and by

{
B(x, r) denote its complement. Let |B(x, r)| be the Lebesgue measure

of the ball B(x, r). Therefore |B(x, r)| = wnr
n, where wn denotes the volume of

the unit ball in Rn.

Definition 2.1. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and
1 ≤ p < ∞. We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the
space of all functions f ∈ Llocp (Rn) with finite norm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈WLlocp (Rn) for which

‖f‖WMp,ϕ
= sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖WLp(B(x,r)) <∞.
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According to this definition, we recover the Morrey spaceMp,λ, the weak Morrey

space WMp,λ respectively, under the choice ϕ(x, r) = r
λ−n
p :

Mp,λ =Mp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p
, WMp,λ =WMp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p
.

Definition 2.2. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and
1 ≤ p < ∞. We denote by LMp,ϕ ≡ LMp,ϕ(Rn) the generalized local (central)
Morrey space, the space of all functions f ∈ Llocp (Rn) with finite norm

‖f‖LMp,ϕ
= sup

r>0
ϕ(0, r)−1 |B(0, r)|−

1
p ‖f‖Lp(B(0,r)).

Also by WLMp,ϕ ≡ WLMp,ϕ(Rn) we denote the weak generalized local (central)
Morrey space of all functions f ∈WLlocp (Rn) for which

‖f‖WLMp,ϕ
= sup

r>0
ϕ(0, r)−1 |B(0, r)|−

1
p ‖f‖WLp(B(0,r)) <∞.

Definition 2.3. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and
1 ≤ p < ∞. For any fixed x0 ∈ Rn we denote by LM{x0}p,ϕ ≡ LM

{x0}
p,ϕ (Rn) the

generalized local Morrey space, the space of all functions f ∈ Llocp (Rn) with finite
norm

‖f‖
LM

{x0}
p,ϕ

= ‖f(x0 + ·)‖LMp,ϕ
.

Also by WLM
{x0}
p,ϕ ≡ WLM

{x0}
p,ϕ (Rn) we denote the weak generalized local Morrey

space of all functions f ∈WLlocp (Rn) for which

‖f‖
WLM

{x0}
p,ϕ

= ‖f(x0 + ·)‖WLMp,ϕ
<∞.

According to this definition, we recover the local Morrey space LM{x0}p,λ and weak

local Morrey space WLM
{x0}
p,λ under the choice ϕ(x0, r) = r

λ−n
p :

LM
{x0}
p,λ = LM{x0}p,ϕ

∣∣∣
ϕ(x0,r)=r

λ−n
p
, WLM

{x0}
p,λ =WLM{x0}p,ϕ

∣∣∣
ϕ(x0,r)=r

λ−n
p
.

Definition 2.4. Let M(0,∞) be the set of all Lebesgue-measurable functions on
(0,∞) and M+(0,∞) its subset consisting of all non-negative functions on (0,∞).
We define a cone A by the set of the functions ϕ ∈ M+(0,∞) which are non-
decreasing on (0,∞) and such that limt→0+ ϕ(t) = 0, briefly

A =
{
ϕ ∈M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Definition 2.5. [8] Let u be a continuous and non-negative function on (0,∞).
We define the supremal operator Su on g ∈M(0,∞) by

(Sug)(r) := ‖u(t)g(t)‖L∞(r,∞) , r ∈ (0,∞).
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Let v be a non-negative measurable function on (0,∞). We denote by L∞,v(0,∞)
the space of all functions g(t), t > 0 with finite norm

‖g‖L∞,v(0,∞) = sup
t>0

v(t)g(t)

and L∞(0,∞) ≡ L∞,1(0,∞). The following lemma is proved analogously to Lemma
5.2 in [8].

Lemma 2.1. [8] Let v1 and v2 be weights and 0 < ‖v1‖L∞(t,∞) <∞ for any t > 0
and let u be a continuous non-negative function on (0,∞). Then the operator Su is
bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only if∥∥∥v2Su (‖v1‖−1L∞(·,∞))∥∥∥L∞(0,∞) <∞.
The following lemma was proved in [17].

Lemma 2.2. [17] Let v1, v2 be non-negative measurable functions satisfying 0 <
‖v1‖L∞(t,∞) < ∞ for any t > 0. Then the identity operator I is bounded from
L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only if∥∥∥v2 (‖v1‖−1L∞(·,∞))∥∥∥L∞(0,∞) <∞.

3. Spanne type result for the operator Mρ in the spaces LM
{x0}
p,ϕ

We assume that

sup
1≤t<∞

ρ(t)

tn
<∞, (3.1)

so that the fractional maximal functions Mρf are well defined, at least for charac-
teristic functions 1/|x|2n of complementary balls:

f(x) =
χRn\B(0,1)(x)

|x|2n .

In addition, we shall also assume that ρ satisfies the growth condition: there exist
constants C1 > 0 and 0 < 2k1 < k2 <∞ such that

sup
r<s≤2r

ρ(s)

sn
≤ C1 sup

k1r<t<k2r

ρ(t)

tn
, r > 0. (3.2)

This condition is weaker than the usual doubling condition for the function ρ(t)
tn

: there exists a constant C2 > 0 such that

1

C2

ρ(t)

tn
≤ ρ(r)

rn
≤ C2

ρ(t)

tn
,

whenever r and t satisfy r, t > 0 and 1
2 ≤

r
t ≤ 2.
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Remark 3.1. Typical examples of ρ(t) that we envisage are, for 0 < α < n

ρ(t) ≡
{ tα log(e/t), 0 < t ≤ 1

tα

log(et) , 1 ≤ t <∞
and, for c > 0

ρ(t) ≡
{ tα, 0 < t ≤ 1
ece−ct

2

, 1 ≤ t <∞.
The second one is used to control the Bessel potential (see also [26]).

The boundedness of the operator Iρ in the spaces Lp(Rn) can be found in [11].
Let ρ(t)

tn be almost decreasing, that is, there exists a constant C such that ρ(t)
tn ≤

C ρ(s)
sn for s < t. In this case we get

Mρf(x) = sup
t>0

ρ(t)

tn

∫
B(x,t)

|f(y)|dy

. sup
t>0

∫
B(x,t)

ρ(|x− y|)
|x− y|n |f(y)|dy

=

∫
Rn

ρ(|x− y|)
|x− y|n |f(y)|dy = Iρ(|f |)(x).

For proving our main results, we need the following estimate.

Lemma 3.3. If B0 := B(x0, r0) ⊂ B(x, r) and ρ satisfies the doubling condition.
Then ρ(r0) .MρχB0

(x) for every x ∈ B0.
Proof. Let ρ satisfy the doubling condition, then

Mρf(x) .Mρf(x), (3.3)

whereMρ(f)(x) = sup
B3x

ρ(rB)
|B|

∫
B
|f(y)|dy and rB is the center of the ball B.

Now let x ∈ B0. By using (3.3), we get

MρχB0
(x) &MρχB0

(x) = sup
B3x

ρ(rB)

|B| |B ∩B0|

& ρ(r0)

|B0|
|B0 ∩B0| = ρ(r0).

�
The following lemma is valid.

Lemma 3.4. Let 1 ≤ p < q <∞.
(1) The condition

ρ(r) ≤ Cr
n
p−

n
q (3.4)

for all r > 0, where C > 0 does not depend on r, is suffi cient for the boundedness
of Mρ from Lp(Rn) to WLq(Rn). Moreover, if p > 1, then the condition (3.4) is
suffi cient for the boundedness of Mρ from Lp(Rn) to Lq(Rn).
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(2) If ρ satisfies the doubling condition, then the condition (3.4) is necessary for
the boundedness of Mρ from Lp(Rn) to WLq(Rn) and from Lp(Rn) to Lq(Rn) for
p > 1.
(3) If ρ satisfies the doubling condition and the supremal regularity condition

sup
r<t<∞

ρ(t) t−
n
p ≤ Cρ(r)r−

n
p

holds for all r > 0, where C > 0 does not depend on r, then the condition (3.4)
is necessary and suffi cient for the boundedness of Mρ from Lp(Rn) to WLq(Rn).
Moreover, if p > 1, then the condition (3.4) is necessary and suffi cient for the
boundedness of Mρ from Lp(Rn) to Lq(Rn).

Proof. (1) Suppose ρ satisfies the condition (3.4). Then

Mρf(x) .Mn
p−

n
q
f(x). (3.5)

Since the operatorMn
p−

n
q
is bounded from Lp(Rn) toWLq(Rn) and for p > 1 from

Lp(Rn) to Lq(Rn), then from (3.5) we get the statement (1).
(2) Now we shall prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By

Lemma 3.3, we have ρ(r0) .MρχB0
(x). Therefore, we have

ρ(r0) . r
−nq
0 ‖MρχB0

‖WLq(B0) . r
−nq
0 ‖MρχB0

‖WLq(Rn)

. r−
n
q

0 ‖χB0
‖Lp(Rn) . r

n
p−

n
q

0

and for p > 1

ρ(r0) . r
−nq
0 ‖MρχB0

‖Lq(B0) . r
−nq
0 ‖MρχB0

‖Lq(Rn)

. r−
n
q

0 ‖χB0
‖Lp(Rn) . r

n
p−

n
q

0

holds for every r0 > 0, hence the proof of statement (2) is completed.
(3) From the first and second statements the third statement of the lemma

follows. �

The following lemma is valid.

Lemma 3.5. Let 1 ≤ p < q < ∞ and let ρ(t) satisfy the conditions (3.1), (3.2)
and (3.4). Then the inequality

‖Mρf‖WLq(B(x0,r)) . ‖f‖Lp(B(x0,2r)) + r
n
q sup
t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

holds for any ball B(x0, r) and for all f locp (Rn).
If p > 1, then the inequality

‖Mρf‖Lq(B(x0,r)) . ‖f‖Lp(B(x0,2r)) + r
n
q sup
t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

(3.6)

holds for any ball B(x0, r) and for all f locp (Rn).
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Proof. Let 1 ≤ p < q <∞ and let ρ(t) satisfy the conditions (3.1), (3.2) and (3.4).
For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0 and of radius r.
Write f = f1 + f2 with f1 = fχ2B and f2 = fχ {(2B)

. Hence

‖Mρf‖WLq(B) ≤ ‖Mρf1‖WLq(B) + ‖Mρf2‖WLq(B).

Since f1 ∈ Lp(Rn), Mρf1 ∈ WLq(Rn) and by Lemma 3.4 Mρ is bounded from
Lp(Rn) to WLq(Rn). Thus it follows that

‖Mρf1‖WLq(B) ≤ ‖Mρf1‖WLq(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where constant C > 0 is independent of f .
Let x be an arbitrary point from B. If B(x, t) ∩ {

(2B) 6= ∅, then t > r. Indeed,
if y ∈ B(x, t) ∩ {

(2B), then t > |x− y| ≥ |x0 − y| − |x0 − x| > 2r − r = r.
On the other hand, B(x, t) ∩ {

(2B) ⊂ B(x0, 2t). Indeed, y ∈ B(x, t) ∩ {
(2B),

then we get |x0 − y| ≤ |x− y|+ |x0 − x| < t+ r < 2t.
Hence

Mρf2(x) = sup
t>0

ρ(t)

tn

∫
B(x,t)∩ {(2B)

|f(y)|dy

. sup
t>r

ρ(2t)

(2t)n

∫
B(x0,2t)

|f(y)|dy

= sup
t>2r

ρ(t)

tn

∫
B(x0,t)

|f(y)|dy.

Therefore, for all x ∈ B we have

Mρf2(x) . sup
t>2r

ρ(t)

tn

∫
B(x0,t)

|f(y)|dy. (3.7)

Thus

‖Mρf‖WLq(B) ≤ ‖Mρf‖Lq(B) . ‖f‖Lp(2B) + |B|
1
q sup
t>2r
‖f‖L1(B(x0,t))

ρ(t)

tn

. ‖f‖Lp(2B) + r
n
q sup
t>2r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p
. (3.8)

Let p > 1. From the (p, q) boundedness of Mρ and (3.4) it follows that:

‖Mρf1‖Lq(B) ≤ ‖Mρf1‖Lq(Rn) . ‖f1‖Lp(Rn) = ‖f‖Lp(2B). (3.9)

Then by (3.8) and (3.9) we get the inequality (3.6). �

The following theorem is one of the main results of the paper in which we get
the Spanne type boundedness of the generalized fractional maximal operator Mρ

in the generalized local Morrey spaces LM{x0}p,ϕ .
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Theorem 3.1. Let x0 ∈ Rn, 1 ≤ p < q < ∞, and let the function ρ satisfy the
conditions (3.1), (3.2) and (3.4). Let also (ϕ1, ϕ2) satisfy the conditions

ess inf
t<s<∞

ϕ1(x0, s)s
n
p ≤ C ϕ2

(
x0,

t

2

)
t
n
q , (3.10)

sup
t>r

(
ess inf
t<s<∞

ϕ1(x0, s)s
n
p

)ρ(t)
t
n
p
≤ C ϕ2(x0, r),

where C does not depend on x0 and r. Then the operator Mρ is bounded from
LM

{x0}
p,ϕ1 to WLM

{x0}
q,ϕ2 and for p > 1 from LM

{x0}
p,ϕ1 to LM

{x0}
q,ϕ2 . Moreover,

‖Mρf‖WLM
{x0}
q,ϕ2

. ‖f‖
LM

{x0}
p,ϕ1

,

and for p > 1
‖Mρf‖LM{x0}q,ϕ2

. ‖f‖
LM

{x0}
p,ϕ1

.

Proof. Let the function ρ satisfy the conditions (3.1), (3.2), (3.4), and also (ϕ1, ϕ2)
satisfy the conditions (3.10) and (3.11). By Lemmas 2.1, 2.2 and 3.5 we have

‖Mρf‖WLM
{x0}
q,ϕ2

. sup
r>0

ϕ2(x0, r)
−1r−

n
q ‖f‖Lp(B(x0,2r))

+ sup
r>0

ϕ2(x0, r)
−1 sup

t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

≈ sup
r>0

ϕ1(x0, r)
−1r−

n
p ‖f‖Lp(B(x0,r)) = ‖f‖LM{x0}p,ϕ1

and for p > 1

‖Mρf‖LM{x0}q,ϕ2

. sup
r>0

ϕ2(x0, r)
−1r−

n
q ‖f‖Lp(B(x0,2r))

+ sup
r>0

ϕ2(x0, r)
−1 sup

t>r
‖f‖Lp(B(x0,t))

ρ(t)

t
n
p

≈ sup
r>0

ϕ1(x0, r)
−1r−

n
p ‖f‖Lp(B(x0,r)) = ‖f‖LM{x0}p,ϕ1

.

�

In the following corollary we get the boundedness of the generalized fractional
maximal operator Mρ on generalized Morrey spaces Mp,ϕ.

Corollary 3.1. Let 1 ≤ p < q < ∞, the function ρ satisfy the conditions (3.1),
(3.2) and (3.4). Let also (ϕ1, ϕ2) satisfy the following conditions

ess inf
r<t<∞

ϕ1(x, t)t
n
p ≤ C ϕ2

(
x,
r

2

)
r
n
q ,

sup
t>r

(
ess inf
t<s<∞

ϕ1(x, s)s
n
p

)ρ(t)
t
n
p
≤ C ϕ2(x, r),

where C does not depend on x and r. Then the operator Mρ is bounded from Mp,ϕ1
to WMq,ϕ2 and for p > 1 from Mp,ϕ1 to Mq,ϕ2 .
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In the case ρ(t) = tα from Theorem 3.1 we get new Spanne type result for
fractional maximal operator Mα on generalized local Morrey spaces.

Corollary 3.2. Let x0 ∈ Rn, 0 < α < n, 1 ≤ p < q < ∞ and 1/p − 1/q = α/n.
Let also (ϕ1, ϕ2) satisfy the condition

sup
t>r

(
ess inf
t<s<∞

ϕ1(x0, s)s
n
p

)
t−

n
q ≤ C ϕ2(x0, r), (3.11)

where C does not depend on r. Then the operator Mα is bounded from LM
{x0}
p,ϕ1 to

LM
{x0}
q,ϕ2 for p > 1 and from LM

{x0}
1,ϕ1

to WLM
{x0}
q,ϕ2 for p = 1.

Also in the case ρ(t) = tα and ϕ(x, t) = t
λ−n
p , 0 < λ < n from Theorem 3.1 we

get local Morrey space variant of Theorem A.

Corollary 3.3. Let x0 ∈ Rn, 0 < α < n, 1 < p < n
α , 0 < λ < n − αp. Moreover,

let α = n
p −

n
q and

λ
p =

µ
q . Then for p > 1, the operator Mα is bounded from

LM
{x0}
p,λ to LM{x0}q,µ and for p = 1, Mα is bounded from LM

{x0}
1,λ to WLM

{x0}
q,µ .

Remark 3.2. For this case α = n
p −

n
q necessary and suffi cient conditions for the

boundedness of Iα from Mp,ϕ1 to Mq,ϕ2 are obtained in [4].

4. Adams type result for the operator Mρ in the spaces Mp,ϕ

The following theorem was proved in [2].

Theorem D. Let 1 ≤ p <∞ and (ϕ1, ϕ2) satisfy the condition

sup
r<t<∞

t−
n
p ess inf
t<s<∞

ϕ1(x, s) s
n
p ≤ C ϕ2(x, r),

where C does not depend on x and r. Then the operator M is bounded from Mp,ϕ1
to WMp,ϕ2 and for p > 1, the operator M is bounded from Mp,ϕ1 to Mp,ϕ2 .

The following theorem is another main result of the paper, in which we get the
Adams type boundedness of the generalized fractional maximal operator Mρ in the
generalized Morrey spaces Mp,ϕ.

Theorem 4.2. Let 1 ≤ p < q < ∞, ρ(t)tn be almost decreasing, and let ρ(t) satisfy
the condition (3.2) and the inequality∫ k2r

0

ρ(s)

s
ds ≤ Cρ(r),

where k2 is given by the condition (3.2) and C does not depend on r > 0. Let also
ϕ(x, t) satisfy the conditions

sup
r<t<∞

t−n ess inf
t<s<∞

ϕ(x, s) sn ≤ C ϕ(x, r), (4.1)
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and

ρ(r)ϕ(x, r) + sup
t>r

ρ(t)ϕ(x, t) ≤ Cϕ(x, r)
p
q , (4.2)

where C does not depend on x ∈ Rn and r > 0.
Then the operator Mρ is bounded from M

p,ϕ
1
p
to WM

q,ϕ
1
q
and for p > 1 from

Mp,ϕ to M
q,ϕ

1
q
.

Proof. Let x0 ∈ Rn, 1 ≤ p < q < ∞ and f ∈ M
p,ϕ

1
p
. Write f = f1 + f2, where

B = B(x, r), f1 = fχ2B and f2 = fχ {(2B)
. Then we have

Mρf(x) ≤Mρf1(x) +Mρf2(x).

For Mρf1(y), y ∈ B(x, r), following Hedberg’s trick (see for instance [27], p. 354),
we obtain

Mρf1(y) = sup
t>0

ρ(t)

tn

∫
B(y,t)∩B(x,2r)

|f(z)|dz

. sup
t>0

∫
B(y,t)∩B(x,2r)

ρ(|y − z|)
|y − z|n |f(z)|dz

≈ sup
t>0

0∑
k=−∞

∫
B(y,t)∩

(
B(x,2k+1r)\B(x,2kr)

) ρ(|y − z|)|y − z|n |f(z)|dz

. sup
t>0

0∑
k=−∞

∫ 2kk2r

2kk1r

ρ(s)

sn+1
ds

∫
B(y,t)∩B(x,2k+1r)

|f(z)|dz

≈Mf(x) sup
t>0

0∑
k=−∞

∫ 2kk2r

2kk1r

ρ(s)

s
ds

=Mf(x)

∫ k2r

0

ρ(s)

s
ds .Mf(x)ρ(r). (4.3)

For Mρf2(y), y ∈ B(x, r) from (3.7) we have

Mρf2(y) . sup
t>2r

ρ(t)

tn

∫
B(x,t)

|f(z)|dz

. sup
t>2r
‖f‖Lp(B(x,t))

ρ(t)

t
n
p
. (4.4)

Then from condition (4.2) and inequalities (4.3), (4.4) for all y ∈ B(x, r) we get

Mρf(y) . ρ(r)Mf(x) + sup
t>r
‖f‖Lp(B(x,t))

ρ(t)

t
n
p

≤ ρ(r)Mf(x) + ‖f‖M
p,ϕ

1
p

sup
t>r

ϕ(x, t)ρ(t). (4.5)
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Thus, by (4.2) and (4.5) we obtain

Mρf(y) . min
{
ϕ(x, t)

p
q−1Mf(x), ϕ(x, t)

p
q ‖f‖M

p,ϕ
1
p

}
. sup

s>0
min

{
s
p
q−1Mf(x), s

p
q ‖f‖M

p,ϕ
1
p

}
= (Mf(x))

p
q ‖f‖1−

p
q

M
p,ϕ

1
p

,

where we have used that the supremum is achieved when the minimum parts are
balanced. Hence for all y ∈ B(x, r) , we have

Mρf(y) . (Mf(x))
p
q ‖f‖1−

p
q

M
p,ϕ

1
p

.

Consequently the statement of the theorem follows in view of the boundedness of
the maximal operator M in M

p,ϕ
1
p
provided by Theorem D in virtue of condition

(4.1).

‖Mρf‖WM
q,ϕ

1
q

= sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mρf‖WLq(B(x,t))

. ‖f‖1−
p
q

M
p,ϕ

1
p

sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mf‖

p
q

WLp(B(x,t))

= ‖f‖1−
p
q

M
p,ϕ

1
p

(
sup

x∈Rn,t>0
ϕ(x, t)−

1
p t−

n
p ‖Mf‖WLp(B(x,t))

) p
q

= ‖f‖1−
p
q

M
p,ϕ

1
p

‖Mf‖
p
q

WM
p,ϕ

1
p

. ‖f‖M
p,ϕ

1
p

,

and

‖Mρf‖M
q,ϕ

1
q

= sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mρf‖Lq(B(x,t))

. ‖f‖1−
p
q

M
p,ϕ

1
p

sup
x∈Rn,t>0

ϕ(x, t)−
1
q t−

n
q ‖Mf‖

p
q

Lp(B(x,t))

= ‖f‖1−
p
q

M
p,ϕ

1
p

(
sup

x∈Rn,t>0
ϕ(x, t)−

1
p t−

n
p ‖Mf‖Lp(B(x,t))

) p
q

= ‖f‖1−
p
q

M
p,ϕ

1
p

‖Mf‖
p
q

M
p,ϕ

1
p

. ‖f‖M
p,ϕ

1
p

,

if 1 < p < q <∞ . �

In the case ρ(t) = tα from Theorem 4.2 we get the Adams type result on gener-
alized Morrey spaces (see [16, Theorem 5.7, p. 182]).
In the case ρ(t) = tα, ϕ(x, t) = tλ−n, 0 < λ < n from Theorem 4.2 we get the

following Adams’s result for the fractional maximal operator.
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Corollary 4.4. Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp and 1

p −
1
q =

α
n−λ .

Then for p > 1, the operator Mα is bounded from Mp,λ to Mq,λ and for p = 1, Mα

is bounded from M1,λ to WMq,λ.

Remark 4.3. Note that, the condition (3.1) is weaker than the following condition
which was given in [17] for Iρ: ∫ ∞

1

ρ(t)

tn
dt

t
<∞. (4.6)

For example, the function

ρ(t) =
tn

log(e+ t)
, t > 0

satisfies (3.1), but not (4.6). This example shows that the function ρ satisfies
Theorems 3.1 and 4.2, but does not satisfy the assumptions of Theorems 16 and
22 in [17]. In other words, the condition (3.1) which satisfies our main theorems,
is better (more general and comprehensive) than the condition (4.8) which satisfies
the main theorems were given in [17].
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SPECTRAL PROPERTIES OF THE SECOND ORDER
DIFFERENCE EQUATION WITH SELFADJOINT OPERATOR

COEFFICIENTS

GÖKHAN MUTLU

Abstract. In this paper, we consider the second order difference equation
defined on the whole axis with selfadjoint operator coeffi cients. The main
objective of this study is to obtain the continuous and discrete spectrum of the
discrete operator which is generated by this difference equation. To achieve
this, we first obtain the Jost solutions of this equation explicitly and then
examine the analytical and asymptotic properties of these solutions. With
the help of these properties, we find the continuous and discrete spectrum of
this operator. Finally we obtain a suffi cient condition which ensures that this
operator has a finite number of eigenvalues.

1. Introduction

Difference equations play a very important role on modelling of problems re-
lated to physics, chemistry, biology, finance, economics, probability, engineering
etc. Difference equations also arise when approximating continuous models and
differential equations using numerical methods. Selfadjoint differential operators
such as Sturm-Liouville, Dirac and Klein-Gordon operators are used in functional
analysis and quantum mechanics and the spectral analysis of these operators have
been studied (see [14, 17, 18]). There are also many studies on the spectral analy-
sis of both selfadjoint and non-selfadjoint discrete operators defined by difference
equations (see [1, 2, 3] and references therein). Besides, spectral analysis of the
selfadjoint differential and difference equations with matrix coeffi cients are studied
in [6, 8, 10]. In particular, in [4] the authors investigated the spectral properties of
the discrete operator generated by selfadjoint matrix-valued difference equation of
second order defined on the half-axis. Namely, they considered the discrete operator
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L0 generated by the difference equation with matrix coeffi cients

An−1Yn−1 +BnYn +AnYn+1 = λYn, n ∈ N, (1)

and the boundary condition Y0 = 0, where An (n ∈ N ∪ {0}) and Bn (n ∈ N) are
m × m selfadjoint matrices (m < ∞), detAn 6= 0 (n ∈ N ∪ {0}) and λ is a spec-
tral parameter. The domain of this operator is denoted by l2 (N,Cm) which is
the Hilbert space of all vector sequences Y = (Yn)n∈N such that Yn ∈ Cm and∑∞

n=1‖Yn‖2 <∞. The inner product in l2 (N,Cm) is defined as

(Y,Z) :=

∞∑
n=1

(Yn, Zn) .

Note that Equation (1) can be written in Sturm-Liouville form

∆ (An−1∆Yn−1) +QnYn = λYn, n ∈ N,
where Qn = An−1+An+Bn and ∆ is the forward difference operator. The authors
obtained the continuous and discrete spectrum of L0 [4]. Further, in [7] the authors
considered the same difference equation with non-selfadjoint matrix coeffi cients
and examined the continuos spectrum, eigenvalues and spectral singularities of
the resulting non-selfadjoint discrete operator. They proved the finiteness of the
eigenvalues and spectral singularities of the operator under the condition

∞∑
n=1

n (‖I −An‖+ ‖Bn‖) <∞.

Furthermore, in [5] the authors extended the results in [4] to the whole axis by
considering the Equation (1) for n ∈ Z. They obtained the Jost solutions of this
equation and also the discrete and continuous spectrum of the discrete operator
generated by this equation. They proved that the operator has a finite number of
eigenvalues and spectral singularities if the coeffi cients satisfy

∞∑
n=−∞

|n| (‖I −An‖+ ‖Bn‖) <∞.

Let H be a separable Hilbert space (dimH ≤ ∞) and L2 (R+, H) denote the
space of vector-valued functions f(x) (0 ≤ x < ∞) which are strongly-integrable
in each finite subinterval of [0,∞) such that

∫∞
0
|f(x)|2 dx < ∞. Consider the

differential expression in L2 (R+, H)

l0(Y ) = −Y
′′

+Q(x)Y, 0 < x <∞, (2)

where Q(x) is a selfadjoint, completely continuous operator in H for each x ∈
(0,∞) . In [9, 12, 13, 15], the authors have studied the discrete spectrum of the
Sturm-Liouville operator l0 generated by (2) and the boundary condition Y (0) = 0.

In this paper, we consider the discrete analogue of the operator l0 and call it
the discrete Sturm-Liouville operator which will be denoted by L hereafter. We
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investigate the spectral properties of the discrete Sturm-Liouville operator L on
the whole axis with selfadjoint operator coeffi cients. In particular, we find Jost
solutions of L and obtain the continuous and point spectrum of L. We also show
that L has a finite number of eigenvalues under a condition on the coeffi cients.

2. Some properties and Jost solutions of the operator L

In this section we specify the properties of the discrete Sturm-Liouville operator
on the whole axis. Let H be a separable Hilbert space and H1 = l2 (N, H) denote
the space of vector sequences y = (yn)n∈N (yn ∈ H, n ∈ N ) such that ‖y‖1 :=
∞∑

n=−∞
‖yn‖2H <∞. H1 is a Hilbert space with inner product

(y, z)1 =

∞∑
n=−∞

(yn, zn)H .

Consider the difference expression in H1

l(y)n = An−1yn−1 +Bnyn +Anyn+1, n ∈ Z, (3)

where An, Bn (n ∈ Z) are selfadjoint operators in H and An − I,Bn (n ∈ Z) are
completely continuous operators in H. We also assume An is invertible for each
n ∈ Z. We consider the operator L generated by (3). We can also define the
operator L by using the infinite Jacobi matrix

(J)ij =


Bi, i = j,

Ai−1, i = j + 1,

Ai, i = j − 1,

0, otherwise

It is obvious that the operator L is selfadjoint in H1.We will examine the difference
equation

An−1yn−1 +Bnyn +Anyn+1 = λyn, n ∈ N. (4)

We shall also consider the equation

An−1Yn−1 +BnYn +AnYn+1 = λYn, n ∈ N, (5)

where Yn is an operator sequence i.e, Yn is an operator in H for each n ∈ N.

Lemma 1. Every sequence of solutions of (4) can be represented as an operator
sequence which satisfies (5). Conversely, one can construct a sequence of vector
sequences which satisfies (4) for a given operator solution of (5).

Proof. Since H is a separable Hilbert space, there exists an orthonormal basis
(um)m∈N . Suppose vector sequences ym =

(
yim
)
i∈Z satisfy Equation (4) for each

m ∈ N. We can construct an operator sequence Y = (Yn)n∈Z such that Ynum =
(ynm)n∈Z for everym ∈ N. It is obvious that Ynum = ym and Y satisfies the Equation
(5).
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Conversely, suppose an operator sequence Y = (Yn)n∈Z satisfies (5). Let zm :=
(znm)n∈Z = Ynum for every m ∈ N. Then it is clear that zm = (znm)n∈Z satisfy
Equation (4) for every m ∈ N. �

Note that from Lemma 1, we have one-to-one correspondence between the op-
erator solutions of Equation (5) and sequences of solutions of Equation (4). Hence
we can consider and examine both equations.
Let us assume

∞∑
n=−∞

(‖I −An‖+ ‖Bn‖) <∞. (6)

Let E(z) := (En(z))n∈Z and F (z) := (Fn(z))n∈Z denote the operator solutions of
the equation

An−1Yn−1 +BnYn +AnYn+1 =

(
z +

1

z

)
Yn, n ∈ Z, (7)

satisfying the conditions

lim
n→∞

En(z)z−n = I, z ∈ D0 := {z ∈ C : |z| = 1} ,

and

lim
n→∞

Fn(z)zn = I, z ∈ D0,

respectively. E(z) and F (z) are called the Jost solutions of Equation (7). Note
that these solutions are bounded.

Theorem 2. Under the condition (6), the solutions E(z) and F (z) exist and have
the representations

En(z) = znI +
∞∑

k=n+1

zk−n − zn−k
z − z−1 [(I −Ak−1)Ek−1(z)−BkEk(z) + (I −Ak)Ek+1(z)] ,

Fn(z) = z−nI +
∞∑

k=−n+1

zk+n − z−n−k
z − z−1 [(I −Ak−1)Fk−1(z)−BkFk(z) + (I −Ak)Fk+1(z)] .

Now, suppose that

∞∑
n=−∞

|n| (‖I −An‖+ ‖Bn‖) <∞, (8)

holds.



92 GÖKHAN MUTLU

Theorem 3. Under the condition (8), the Jost solutions (En(z)) , (Fn(z)) (n ∈ Z)
have the represantations *********************

En(z) = Tnz
n

[
I +

∞∑
m=1

Kn,mz
m

]
, n ∈ Z,

Fn(z) = Rnz
−n

[
I +

m=−1∑
−∞

Ln,mz
−m

]
, n ∈ Z,

where Tn, Rn,Kn,m and Ln,m are obtained in terms of An and Bn. Further

‖Kn,m‖ ≤ c
∞∑

p=n+[|m2 |]
(‖I −Ap‖+ ‖Bp‖) ,m ∈ Z+,

‖Ln,m‖ ≤ d
p=n+[|m2 |]∑
−∞

(‖I −Ap‖+ ‖Bp‖) ,m ∈ Z−,

hold where c, d > 0 are constants. Thus, (En(z)) and (Fn(z)) have analytic contin-
uations from D0 to D1 := {z ∈ C : |z| < 1} \ {0} .

Theorem 4. Under the condition (8), the Jost solutions satisfy the following as-
ymptotic relations for z ∈ D := {z ∈ C : |z| ≤ 1} \ {0}

En(z) = zn [I + o(1)] , n→∞,
Fn(z) = z−n [I + o(1)] , n→ −∞.

Remark 5. The proofs of above theorems are omitted since they are similar to the
matrix coeffi cient case which have been obtained in [4, 5].

3. Continuous and discrete spectrum of L

Let us introduce the equation

Yn−1An−1 + YnBn + Yn+1An =
(
z + z−1

)
Yn, n ∈ N. (9)

It can be shown similarly that equation (9) has a solution H (z) := (Hn (z))n∈Z
such that

lim
n→∞

Hn(z)zn = I, z ∈ D0

holds. Indeed, the solution H (z) is the adjoint of the operator solution F (z) i.e.,
Hn (z) = (Fn (z))

∗
, n ∈ Z.

Definition 6. Let Un and Vn be operator solutions of the Equations (5) and (9),
respectively. The Wronskian of Un and Vn is defined by

(W [U, V ])n := Vn−1An−1Un − VnAn−1Un−1.

Lemma 7. Let Un be an operator solution of (7) and Vn be an operator solution
of (9). Then, the Wronskian of these solutions is constant i.e., independent of n.
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Proof. We have the equalities

An−1Un−1 +BnUn +AnUn+1 =
(
z + z−1

)
Un,

Vn−1An−1 + VnBn + Vn+1An =
(
z + z−1

)
Vn.

If we multiply the first equality with Vn from the left and the second equality with
−Un from the right we get

VnAn−1Un−1 − Vn−1An−1Un + VnAnUn+1 − Vn+1AnUn = 0, (10)

by adding two equalities. Let Hn := (W [U, V ])n = Vn−1An−1Un − VnAn−1Un−1.
From (10), we have

∆Hn = Hn+1−Hn = VnAnUn+1− Vn+1AnUn− Vn−1An−1Un + VnAn−1Un−1 = 0,

which implies W [U, V ] is constant. �

From Lemma 7 it easily follows that

W [E (z) , H (z)] = G0 (z)A0E1 (z)−G1 (z)A0E0 (z) .

Let us define T (z) := W [E (z) , H (z)] for z ∈ D. T (z) is called the Jost function
of L. Now we obtain the continuous spectrum of L.

Theorem 8. Under the condition (8), the continuous spectrum of L is σc (L) =
[−2, 2].

Proof. Let L0 and L1 denote the operators generated in H1 = l2 (Z, H) by the
difference expressions

L0(y)n = yn−1 + yn+1, n ∈ Z,
and

L1(y)n = (An−1 − I) yn−1 +Bnyn + (An − I) yn+1, n ∈ Z,
respectively. We can also define the operators L0 and L1 by using the infinite Jacobi
matrices

(J0)ij =

{
I, i = j + 1 or i = j − 1,

0, otherwise,

and

(J1)ij =


Bi, i = j,

Ai − I, i = j − 1,

Ai−1 − I, i = j + 1,

0, otherwise

respectively. We have L = L0 + L1, L0 = L∗0 and σ(L0) = σc(L0) = [−2, 2] (see
[19]). It is well known that L1 is a compact operator iff L1 is bounded and the
set R = {L1y : ‖y‖1 ≤ 1} is compact in H1. It is obvious that L1 is bounded.
Moreover, if we use the compactness criteria in lp spaces (see [16] (p. 167)) we
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obtain the compactness of R. Indeed, let ‖y‖1 ≤ 1. Then (8) implies that for ε > 0,
there exists n0∈ N such that for n ≥ n0

∞∑
i=n+1

(‖(Ai − I)‖+ ‖Bi‖) <
ε

C
.

Now we have
∞∑

i=n+1

‖(L1y)i‖
2
H

=

∞∑
i=n+1

‖(Ai−1 − I) yi−1 +Biyi + (Ai − I) yi+1‖2H

≤
∞∑

i=n+1

(
‖(Ai−1 − I)‖2 ‖yi−1‖2H + ‖Bi‖2 ‖yi‖2H + ‖(Ai − I)‖2 ‖yi+1‖2

)
≤ ‖y‖21

∞∑
i=n+1

(
‖(Ai−1 − I)‖2 + ‖Bi‖2 + ‖(Ai − I)‖2

)
≤

∞∑
i=n+1

(
2 ‖(Ai − I)‖2 + ‖Bi‖2

)
≤

∞∑
i=n+1

(C1 ‖(Ai − I)‖+ C2 ‖Bi‖)

≤
∞∑

i=n+1

C (‖(Ai − I)‖+ ‖Bi‖)

< ε,

where

C1 =
1

2
sup
i∈N
‖(Ai − I)‖ , C2 = sup

i∈N
‖Bi‖

and C = C1 + C2. Thus, we proved L1 is a compact operator in H1. By Weyl
Theorem of Compact Perturbation [11], we have

σc(L) = σc(L0) = [−2, 2] .

�

Since the operator L is selfadjoint, all eigenvalues of L are real. Note that from
the definition of discrete spectrum and Theorem 8 we have

σd(L) ⊂ (−∞,−2] ∪ [2,∞) . (11)

Further, from the definition of eigenvalues we find

σd(L) =

{
λ : λ = z +

1

z
, z ∈ (−1, 0) ∪ (0, 1) , T (z) is not invertible

}
.

Theorem 9. Under the condition (8), L has a finite number of eigenvalues.
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Proof. From (11), it follows that the limit points of the set σd(L) could only be
±2,±∞. If λ = ±∞ is a limit point of σd(L) then it implies that L is unbounded
operator which gives a contradiction. On the other hand, if λ = 2 is a limit point of
σd(L) then there exists an eigenvalue in the neighbourhood [2− ε, 2) for suffi ciently
small ε > 0. From Theorem 8 we have σc (L) = [−2, 2] and it is well known that
for a selfadjoint operator σd(L) * σc (L). Hence there can’t be any eigenvalue
in [2− ε, 2) which means λ = 2 is not a limit point of σd(L). Similarly, λ = −2
can not be a limit point of σd(L). As a result, the set of eigenvalues has no limit
point and therefore should have a finite number of elements by Bolzano-Weierstrass
Theorem. �
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COMPACTNESS AND STABILITY IN DIFRAMES

ESRA KORKMAZ AND RIZA ERTÜRK

Abstract. The concept of diframe was introduced as a generalization of di-
topological texture spaces. The purpose of this paper is to present the results of
a study on the concepts of compactness and stability in the setting of diframes.
Further, the bitopological concepts of locally compactness and locally stability
are extended to diframes.

1. Introduction

The theory of bitopological spaces is based on the notion of open sets, and the
closed sets can be obtained easily by using the set complementation. As distinct
from bitopologies, a ditopological texture space is defined on a suitable subfamily of
subsets, which is not necessarily complemented. It can be considered as a structure
in which the open and closed sets play an equal role. Diframes were defined in
[1] as a generalization of ditopological texture spaces. Briefly, it is a 3-tuple L =
(Le, Lfr, Lcf ), where Le is both a frame and a coframe, Lfr ⊆ Le is a subset
closed under arbitrary joins and finite meets and Lcf ⊆ Le is a subset closed
under arbitrary meets and finite joins. As is well known, point-free topology has a
wide range of applications, including logic, topos theory and theoretical computer
science. The motivation behind the notion of diframe is to provide a point-free
perspective on the theory of ditopological texture spaces. We obtained a larger
family of lattices by weakening the property of complete distributivity. This paper
is self-contained but may also be considered as a continuation of the article [2],
in which we developed the diframe versions of the separation axioms and relations
between these axioms. In this study, we are interested in the notions of compactness,
stability, local compactness, local stability and their duals in diframes.
The present paper is divided into 5 sections. In Section 2, we present some nec-

essary preliminaries including the concept of compactness in ditopological texture
spaces and the separation axioms in diframes. Section 3 is devoted to the study
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of compactness and stability in diframes. The questions of whether these prop-
erties are hereditary, and whether they are preserved by any reasonable kind of
homomorphisms are discussed. As will be seen in the sequel, stability is a property
relating the frame Lfr and the coframe Lcf . Hence we replace compactness by
stability to obtain diframe versions of topological results relating separation ax-
ioms and compactness. In this section, we also give a generalization of Alexander
subbase theorem. In section 4, we define the concepts of locally compactness and
locally stability in terms of suitable binary relations. For bitopological versions of
these concepts, we refer the reader to the comprehensive paper of Kopperman [3].
As expected, the approach of Kopperman is based on the notion of neighbourhood
and hence it is dependent on points. Some of our results are parallel to those in [3]
but sometimes we need to impose some extra conditions. Finally, in Section 5, we
conclude the paper and discuss our future work.

2. Preliminaries

In this section, we briefly recall some definitions and results of ditopological
texture spaces, (co)frames and diframes which will be used throughout the paper.
We refer the reader to [4, 10] for details concerning lattice and frame theory and
[6, 7, 8] for details concerning ditopological texture spaces.
Ditopological Texture Spaces: Let S be a set and S be a subset of the powerset
P(S) with the following properties:

(1) (S,⊆) is a complete, completely distributive lattice containing S as a top
element and ∅ as a bottom element.

(2) S is point separating.
(3) Arbitrary meet coincides with intersection and finite joins coincide with

union in this lattice.

The pair (S, S) is known as a texture space.
A dichotomous topology, (briefly, ditopology) on a texture (S, S) is a pair (τ , κ)

of generally unrelated subsets of S satisfying

(T1) S, ∅ ∈ τ ,
(T2) G1, G2 ∈ τ ⇒ G1 ∩G2 ∈ τ ,
(T3) Gi ∈ τ , i ∈ I ⇒

∨
iGi ∈ τ ,

(CT1) S, ∅ ∈ κ,
(CT2) K1,K2 ∈ κ⇒ K1 ∪K2 ∈ κ,
(CT3) Ki ∈ κ, i ∈ I ⇒

⋂
iKi ∈ κ.

Loosely speaking, a ditopology is a structure in which the open and closed sets
play an equal role.
Galois Adjunctions: A pair of monotone functions f : L → M , g : M → L
between partially ordered sets is called Galois adjoint if the following condition is
satisfied for all x ∈ L and y ∈ M : f(x) ≤ y ⇔ x ≤ g(y). This fact is referred to
by saying that f is a left adjoint to g, or g is a right adjoint to f . Our notation
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for the adjoints is that of [10], that is, we will denote this adjunction by f = g∗ or
g = f∗.
One can show that a suprema (resp., infima) preserving map between complete

lattices has a right (resp., left) adjoint.
Let (f, g) be a Galois adjunction.

(1) If L and M are complete lattices, then f preserves finite joins and g pre-
serves finite meets.

(2) f is one-one if and only if g is onto.
(3) If f is onto, then fg = id, and if f is one-one, then gf = id.

Frames and coFrames A frame (resp., a coframe) is a complete lattice with the
property that binary meet (resp., join) distributes over arbitrary join (resp., meet)
and a frame (resp., a coframe) homomorphism is a function between frames (resp.,
a coframes) preserving arbitrary joins (resp., meets) and finite meets (resp., joins).
Denote by Frm the category of frames, and by Loc its opposite category. The

regular subobjects of objects of Loc, sublocales, have various kinds of characteri-
zations. Here we just recall two of them that we shall exploit in the sequel.
Let L be a frame and let S ⊆ L be a subset closed under arbitrary meets. Then

S is called a sublocale of L provided that (x → s) ∈ S for all s ∈ S and x ∈ L.
Similarly, if M is a coframe and S ⊆ M is a subset closed under arbitrary joins
then S is called a subcolocale of M if (s ← x) ∈ S for all s ∈ S and x ∈ M . Here,
“→”and “←”denote the Heyting and co- Heyting algebra operation, respectively.
A sublocale can also be represented by a nucleus which is a monotone, idempo-

tent, inflationary map preserving finite meets. Note that these two characterizations
of a sublocale are equivalent. According to [4], a sublocale S is said to be flat if it
is closed under finite joins, or equivalently, if vS preserves finite joins.
Dually, a conucleus t : M →M on a coframe M is a monotone, idempotent map

preserving finite joins and satisfying t(x) ≤ x for all x ∈ M . One can easily show
that for a given subcolocale S ⊆ M , tS(a) =

∨
{s ∈ S : s ≤ a} is a conucleus, and

conversely, for every conucleus t : M →M , t(M) is a subcolocale.
Diframes: A diframe is a 3-tuple L = (Le, Lfr, Lcf ) with the following conditions:

(1) Le is a complete lattice satisfying

x ∧ (
∨
Y ) =

∨
{x ∧ y : y ∈ Y } and x ∨ (

∧
Y ) =

∧
{x ∨ y : y ∈ Y }

for any x ∈ Le and any subset Y ⊆ Le.
(2) Lfr ⊆ Le is closed under arbitrary joins and finite meets.
(3) Lcf ⊆ Le is closed under arbitrary meets and finite joins.
Notice that Le is both a frame and a coframe, Lfr is a frame, and Lcf is a

coframe.

Example 2.1. Consider the family Ωreg(R) of regular open sets of (R, τs), where
τs is the usual topology on R. If Lfr = {(−∞, a) : a ∈ R}∪{∅,R} and Le = Lcf =
Ωreg(R) then L = (Le, Lfr, Lcf ) is a diframe.
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Let ϕ : Le → Me be a map preserving arbitrary join and finite meets and
satisfying ϕ[Lfr] ⊆ Mfr, and let ψ : Le → Me be a map preserving arbitrary
meets and finite joins and satisfying ψ[Lcf ] ⊆ Mcf . Then the pair (ϕ,ψ) is called
a diframe homomorphism.
Diframes and diframe homomorphisms form a category diFrm. The dual cate-

gory of diFrm is denoted by diLoc, and the objects of diLoc are referred to as
dilocales.
By a base of a diframe, we mean a subset β ⊆ Lfr such that for every a ∈ Lfr

there exists a βa ⊆ β with a =
∨
βa. Dually, a cobase is a subset β ⊆ Lcf such

that every k ∈ Lcf can be expressed as a meet of some elements of β.
A subset δ ⊆ Lfr (resp., δ ⊆ Lcf ) is called a subbase (resp., subcobase) of L if

the set of finite meets (resp., joins) of δ is a base (resp., cobase) of L.
A diframe homomorphism (ϕ,ψ) : (Le, Lfr, Lcf )→ (Me,Mfr,Mcf ) is called

(1) onto (resp., one-one) if both ϕ and ψ are onto (resp., one-one),
(2) open (resp., co- open) if ψ∗(a) ∈ Lfr (resp., ϕ∗(a) ∈ Lfr) for all a ∈Mfr,
(3) closed (resp., co- closed) if ψ∗(k) ∈ Lcf (resp., ϕ∗(k) ∈ Lcf ) for all k ∈Mcf .

Let us recall the non-full subcategory hdiFrm of diFrm introduced in [1]. The
objects of hdiFrm are diframes, and the morphisms are mappings ϕ : (Le, Lfr, Lcf )→
(Me,Mfr,Mcf ) preserving arbitrary meets and joins, and satisfying the properties
ϕ[Lfr] ⊆Mfr, ϕ[Lcf ] ⊆Mcf .
If ϕ is one-one and onto then the concept of openness (resp., closedness) coincides

with the concept of co- opennness (resp., co- closedness). A hdiFrm isomorphism
is an open, closed, one-one and onto hdiFrm morphism.
Recall that by a subdilocale of a diframe L, we mean a triple S = (Se, Sfr, Scf )

where Se ⊆ Le is both a sublocale and a subcolocale of Le, Sfr = vSe(Lfr) ⊆ Se
and Scf = tSe(Lcf ) ⊆ Se.
Note that Se ⊆ Le is obviously a flat sublocale, and hence the nucleus vSe

preserves finite joins. Similarly, by defining a co- flat subcolocale as subcolocale
closed under finite meets, we obtain that the co- nucleus tSe preserves finite meets.
In a diframe L = (Le, Lfr, Lcf ), we have the closure and interior of a ∈ Le given

by the formulas [a] =
∧
{c ∈ Lcf : a ≤ c} and ]a[=

∨
{b ∈ Lfr : b ≤ a}, respectively.

Now, we briefly present the separation axioms in diframes. A comprehensive
discussion on their basic properties, characterizations and the implications between
them can be found in our previous work [2].
A diframe L = (Le, Lfr, Lcf ) is called

(1) T0 if given a ∈ Le, there exist c
j
i ∈ Lfr ∪ Lcf , i ∈ I, j ∈ J such that

a =
∨
j∈J

∧
i∈I c

j
i ,

(2) co-T0 if given a ∈ Le, there exist cji ∈ Lfr ∪ Lcf , i ∈ I, j ∈ J such that
a =

∧
j∈J

∨
i∈I c

j
i ,

(3) R0 if every element of Lfr can be written as a supremum of some elements
of Lcf ,
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(4) co-R0 if every element of Lcf can be written as a infimum of some elements
of Lfr,

(5) R1 if for all a ∈ Lfr, a =
∨
j∈J

∧
i∈I c

j
i =

∨
j∈J

∧
i∈I [c

j
i ] where c

j
i ∈ Lfr,

(6) co- R1 if for all a ∈ Lcf , a =
∧
j∈J

∨
i∈I k

j
i =

∧
j∈J

∨
i∈I ]k

j
i [ where k

j
i ∈ Lcf .

Recall the following relations defined on Le. LetD = {k/2n : k, n ∈ N, k = 0, . . . 2n}
denote the set of dyadic rationals.

(1) a ≺fr b, if a, b ∈ Lfr and if there exists c ∈ Lcf such that a ≤ c ≤ b.
(2) f ≺cf k, if f, k ∈ Lcf and if there exists a ∈ Lfr such that f ≤ a ≤ k.
(3) a ≺≺fr b if a, b ∈ Lfr and if there exists aq ∈ Lfr with q ∈ D and satisfying

a0 = a, a1 = b, and aq ≺fr ar if q < r.

(4) k ≺≺cf f if k, f ∈ Lcf and if there exist kq ∈ Lcf with q ∈ D and satisfying

k0 = k, k1 = f, and kq ≺cf kr if q < r.

A diframe L = (Le, Lfr, Lcf ) is called

(1) regular if a =
∨
{x ∈ Lfr : x ≺fr a} for all a ∈ Lfr,

(2) co- regular if c =
∧
{x ∈ Lcf : c ≺cf x} for all c ∈ Lcf ,

(3) completely regular if a =
∨
{x ∈ Lfr : x ≺≺fr a} for all a ∈ Lfr,

(4) completely co- regular if c =
∧
{x ∈ Lcf : c ≺≺cf x} for all c ∈ Lcf ,

(5) normal if for any c ∈ Lcf and a ∈ Lfr such that c ≤ a there exists b ∈ Lfr
with c ≤ b ≤ [b] ≤ a.

Finally, we recall the definition of a Urysohn relation given in [9]: A Urysohn
relation on a partially ordered set (L,≤) is a binary relation C satisfying

(U1) If aC b then a ≤ b,
(U2) a ≤ bC c ≤ d implies aC d ,
(U3) aC b implies the existence of c ∈ L with aC cC b.
As was shown in [2], a diframe is completely regular if and only if there exists a

Urysohn relation C on Le with the following conditions:
(1) aC b implies [a] ≤]b[,
(2) a =

∨
{x ∈ Lfr : xC a} for every a ∈ Lfr.

3. Compactness and Stability in Diframes

The notion of compactness for bitopological spaces has several versions in the
literature. By adopting the definiton of Kopperman [3], Brown and Diker [6] gener-
alized the notion of compactness to ditopological texture spaces. It was also studied
by Brown and Gohar [7]. Here, we extend this concept to a broader setting.

Definition 3.1. Let L = (Le, Lfr, Lcf ) be a diframe and a ∈ Le. Then a subset
G ⊆ Lfr is called a cover of a if a ≤

∨
G. A subset K of Lcf is said to be a co-

cover of a if
∧
K ≤ a.

Definition 3.2. Let L = (Le, Lfr, Lcf ) be a diframe and a ∈ Le.
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(1) a is called compact (resp., Lindelöf) if for every cover G of a, there is a
finite (resp., countable) H ⊆ G such that a ≤

∨
H.

(2) a is called co- compact (resp., co- Lindelöf) if for every co- cover K of a,
there is a finite (resp., countable) F ⊆ K such that

∧
F ≤ a.

(3) L is compact if the top element 1 ∈ Le is compact, and it is Lindelöf if
1 ∈ Le is Lindelöf.

(4) L is co- compact if the bottom element 0 ∈ Le is co- compact, and it is
called co- Lindelöf if 0 ∈ Le is co- Lindelöf.

Note that for each property P, L = (Le, Lfr, Lcf ) is said to be bi- P if it is P and
co-P.

Remark 3.3. Obviously, (co-)compact implies (co-)Lindelöf but the reverse im-
plication is not necessarily true. If X is a countable set, Le = Lfr = P(X) and
Lcf = {X, ∅} then the diframe L = (Le, Lfr, Lcf ) is Lindelöf but not compact.

Proposition 3.4. Every subdilocale of a compact (resp., co- compact) diframe is
compact (resp., co- compact).

Proof. It is clear since 1Se = 1Le and Se ⊆ Le is closed under arbitrary suprema. �

Lemma 3.5. Let L = (Le, Lfr, Lcf ), M = (Me,Mfr,Mcf ) be diframes, and let
(ϕ,ψ) : L → M be a one-one, onto diframe homomorphism. Then the following
statements hold:

(1) If (ϕ,ψ) is an open (resp., co- open) homomorphism, then for all b ∈Mfr

there exists a ∈ Lfr such that ψ(a) = b (resp., ϕ(a) = b).
(2) If (ϕ,ψ) is a closed (resp., co- closed) homomorphism, then for all k ∈Mcf

there exists f ∈ Lcf such that ψ(f) = k (resp., ϕ(f) = k).

Proof. (1) Suppose that (ϕ,ψ) : Le → Me is a one-one, onto, open diframe homo-
morphism and b ∈ Mfr. Since ψ is onto, there is an a ∈ Le with ψ(a) = b. On
the other hand, ψ being one-one yields ψ∗ψ = 1Le , and hence ψ

∗ψ(a) = a = ψ∗(b).
Since (ϕ,ψ) is open, a = ψ∗(b) ∈ Lfr.
The remaining assertions can be proved similarly. �

Proposition 3.6. Suppose L = (Le, Lfr, Lcf ) andM = (Me,Mfr,Mcf ) are diframes
and (ϕ,ψ) : L→M is a one-one, onto diframe homomorphism.

(1) If (ϕ,ψ) : L→M is co- open then L is compact iff M is compact.
(2) If (ϕ,ψ) : L→M is closed then L is co- compact iff M is co- compact.

Proof. (1) Let L be a compact diframe and B ⊆ Mfr be a cover of 1Me
. By

Lemma 3.5, for each bi ∈ B, there is an ai ∈ Lfr with ϕ(ai) = bi. Since ϕ(1Le) =
1Me =

∨
i∈I ϕ(ai) = ϕ(

∨
i∈I ai) and ϕ is one-one, we have 1Le =

∨
i∈I ai. Now,

compactness of L gives k1, . . . , kn ∈ I such that 1Le =
∨n
k=1 aik . Applying the map
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ϕ to both sides of the equation gives

1Me = ϕ(1Le) = ϕ(

n∨
k=1

aik) =

n∨
k=1

ϕ(aik) =

n∨
k=1

bik

and hence M is compact.
Conversely, suppose M is compact and A = {ai : i ∈ I} ⊆ Lfr is a cover of

1Le , that is, 1Le =
∨
i∈I ai. Since ϕ preserves arbitrary joins, we have ϕ(1Le) =

1Me = ϕ(
∨
i∈I ai) =

∨
i∈I ϕ(ai). Then, by compactness of M , there is a finite

subset {aik : k = 1, . . . , n} of A such that

ϕ(1Le) = 1Me =

n∨
k=1

ϕ(aik) = ϕ(

n∨
k=1

aik).

Thus, ϕ being one-one implies 1Le =
∨n
k=1 aik , and hence L is compact. �

We now give a generalization of Alexander subbase theorem, the proof of which
runs as the same as the one given in [7].

Theorem 3.7. Let L = (Le, Lfr, Lcf ) be a diframe and δ be a subbase (resp.,
subcobase) of L. Then L is compact (resp., co- compact) if and only if for every
cover (resp., co- cover) A ⊆ δ there exists a finite cover (resp., co- cover) B ⊆ A.

Proof. We just give the sketch of the proof. As we mentioned before, the idea
repeats that of [7, Theorem 2.14].
The implication “⇒” is clear by definition of compactness. For the reverse

implication, assume that A ⊆ Lfr is a subset such that no finite subset of A covers
1. We claim that A is not a cover of 1. Now let G be the collection of all subsets
B ⊆ Lfr such that A ⊆ B, and B has no finite subset covering 1. Then (G,⊆) is
a poset and it has a maximal element H by Zorn’s Lemma. Moreover, H satisfies
the properties given below:

(1) Given any a ∈ Lfr with a /∈ H, there exists {ai : 1 ≤ i ≤ n} ⊆ H such that
a ∨ (

∨n
i=1 ai) = 1.

(2) For every subset {ai : ai /∈ H, 1 ≤ i ≤ n} ⊆ Lfr we have
∧n
i=1 ai /∈ H.

(3) For every subset C = {ai : 1 ≤ i ≤ n} of Lfr and every b ∈ H with∧n
i=1 ai ≤ b, there exists an aj ∈ C such that aj ∈ H.

We also know that no finite subset of δ ∩H covers 1 since δ ∩H ⊆ H. By using
the properties (1) − (3), we see that

∨
H =

∨
(δ ∩ H). Now, if H is a cover of 1

then
∨

(δ ∩H) = 1, which contradicts with the assumption. Thus H, and hence A,
is not a cover of 1. �

As can be easily seen from the definitions, (co-) compactness is not a property
relating Lfr and Lcf . Thus we need the following concepts that relate the frame
Lfr and the coframe Lcf .

Definition 3.8. Let L = (Le, Lfr, Lcf ) be a diframe. Then L is called
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(1) stable if every element of Lcf other than 1 is compact,
(2) co- stable if every 0 6= a ∈ Lfr is co- compact,

Example 3.9. Consider the the diframe L = (Le, Lfr, Lcf ) of Example 2.1.
(1) L is not compact since the cover {(−∞, a+ n) : n ∈ N} of R does not have

a finite subset covering R. Further, L is not co- compact. Indeed, the co-
cover {(a− 1

n , a+ 1
n ) : n ∈ N} of 0Le = ∅ proves our claim.

(2) L is not co- stable. Indeed, for any (−∞, b) ∈ Lfr, we have∧
n∈N

(a, b+
1

n
) = int

( ⋂
n∈N

(a, b+
1

n
)
)

= int(a, b] = (a, b) ⊆ (−∞, b)

but there is no finite F ⊆ {(a, b + 1
n ) : n ∈ N} such that

∧
F ⊆ (−∞, b).

(Here, “int”denotes the interior operator.) Moreover, one can easily show
that L is not stable.

The following example shows that compactness does not imply stability, and vice
versa.

Example 3.10. (1) Let Ω(R) be the open set lattice of countable comple-
ment topology on R. If Le = P(R), Lfr = Ω(R) and Lcf = {∅,R} then
(Le, Lfr, Lcf ) is a stable, non-compact diframe.

(2) Let I be the unit interval equipped with the usual topology. If Lfr =
Ω(I) and Lcf = {∅, [0, 12 ), I}, then the diframe (P(I), Lfr, Lcf ) is obviously
compact. But it is not stable since the element [0, 12 ) ∈ Lcf is not compact.
Indeed, the cover

{
[0, 12 −

1
n ) : n ≥ 2, n ∈ N

}
proves our claim.

The bitopological version of the next proposition was proved in [3]. In our case,
we shall impose a stronger condition on diframe L′ because of the lack of complete
distributivity in diframes. We replace the property of being R0 by that of being
regular. Here, it is worth reminding the reader that our R0 and R1 are given,
respectively, as pseudo-Hausdorff (pH) and weak symmetry (ws) in [3].

Proposition 3.11. If L = (Le, Lfr, Lcf ) is a co- R0, stable diframe and L′ =
(Le, Lfr, Lcf

′) is regular, then Lcf ⊆ Lcf ′. Dually, if L = (Le, Lfr, Lcf ) is R0, co-
stable and L′ = (Le, Lfr

′, Lcf ) is co- regular then Lfr ⊆ Lfr ′.

Proof. Let k ∈ Lcf . The case k = 1 being obvious, we assume k 6= 1. Since
L is co- R0, there exist ai ∈ Lfr such that k =

∧
i∈I ai. By regularity of L′,

ai =
∨
j∈J{xij ∈ Lfr : xij ≺fr ai}. Moreover, xij ≺fr ai implies the existence of

kij ∈ Lcf ′ such that xij ≤ kij ≤ ai. Now we have k ≤
∨
j∈J xij for all i ∈ I, and

hence by stability of L, there is a finite J0 ⊆ J with k ≤
∨
j∈J0 xij ≤

∨
j∈J0 kij .

Thus,
k ≤

∧
i∈I

∨
j∈J0

kij ≤
∧
i∈I

ai ≤ k

and hence k =
∧
i∈I
∨
j∈J0 kij ∈ Lcf

′.
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The dual statement can be proved in a dual manner. �
The property of being R0 (resp., co- R0) is generally not inherited by subdilocales

but it is hereditary if the diframe is co- stable (resp., stable):

Proposition 3.12. Every subdilocale of a (co-)stable diframe is (co-)stable.

Proof. Obvious, since the joins in S coincide with the joins in L. �
The following two propositions establish the connection between (co-)stability

and separation axioms.

Proposition 3.13. Every stable regular diframe is normal. Dually, every co- stable
co- regular diframe is normal.

Proof. Let c ≤ a for some c ∈ Lcf , a ∈ Lfr. We assume a 6= 1 since the case a = 1
is trivial. By regularity, c ≤ a =

∨
i∈I{xi ∈ Lfr : xi ≺fr a}. Since 1 6= c ∈ Lcf

is a compact element by stability of L, we have c ≤
∨n
i=1{xi ∈ Lfr : xi ≺fr a}.

If xi ≺fr a there exists a ki ∈ Lcf such that xi ≤ ki ≤ a. Thus, by setting
b =

∨n
i=1]ki[ we obtain

c ≤
n∨
i=1

xi ≤ b and [b] =
[ n∨
i=1

]ki[
]
≤
[ n∨
i=1

ki
]
≤

n∨
i=1

ki ≤ a.

�
Proposition 3.14. (1) A R1 co- stable diframe is regular.

(2) A co- R1 stable diframe is co- regular.

Proof. (1) Suppose that L is a R1, co- stable diframe, and take any a ∈ Lfr.
The case a = 0 is trivial, so let a 6= 0. By R1, a ∈ Lfr can be expressed as
a =

∨
i∈I
∧
j∈J c

j
i =

∨
i∈I
∧
j∈J [cji ] for c

j
i ∈ Lfr. Since, for all i,

∧
j∈J [cji ] ≤ a and L

is co- stable, there is a finite subset J0 ⊆ J of indices such that
∧
j∈J0 [c

j
i ] ≤ a. Set

xi =
∧
j∈J0 c

j
i for all i ∈ I. Then

∧
j∈J0 c

j
i ≤

∧
j∈J0 [c

j
i ] ≤ a and

∧
j∈J0 [c

j
i ] ∈ Lcf ,

and hence xi ≺fr a for all i ∈ I. Therefore,∨
i∈I

∧
j∈J0

cji ≤ a ≤
∨
i∈I

∧
j∈J

cji ≤
∨
i∈I

∧
j∈J0

cji

that is, a =
∨
i∈I{xi ∈ Lfr : xi ≺fr a}, which shows that L is regular.

The proof of (2) can be done similarly. �
Corollary 3.15. Every R1 (resp., co- R1) bi- stable (i.e., stable and co- stable)
diframe is normal.

Proof. L is regular by Proposition 3.14 and hence the statement follows from Propo-
sition 3.13. �
We end this section by discussing the preservation of (co-)stability under certain

morphisms.
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Proposition 3.16. Let (ϕ,ψ) : (Le, Lfr, Lcf )→ (Me,Mfr,Mcf ) be an onto, one-
one diframe homomorphism.

(1) If (ϕ,ψ) is a co- open, co- closed homomorphism and L is stable then M
is stable.

(2) If (ϕ,ψ) is an open, closed homomorphism and L is co- stable then M is
co- stable.

Proof. Suppose that L is stable, 1Me
6= k ∈ Mcf and {bi : i ∈ I} ⊆ Mfr is a cover

of k. By Lemma 3.5, there exists 1Le 6= f ∈ Lcf with ϕ(f) = k and ai ∈ Lfr with
ϕ(ai) = bi for all i ∈ I. Then we have ϕ(f) ≤

∨
i∈I ϕ(ai) = ϕ(

∨
i∈I ai), and hence

ϕ∗ϕ(f) ≤ ϕ∗ϕ(
∨
i∈I ai) since ϕ∗ is an order preserving map. Now, ϕ being onto

implies ϕ∗ϕ(f) = id, and hence, by stability of L, we have f ≤
∨n
k=1 aik . Thus we

obtain

ϕ(f) ≤ ϕ(

n∨
k=1

aik) =

n∨
k=1

ϕ(aik) =

n∨
k=1

bik

which shows that M is stable. �
Proposition 3.17. Let M be a stable (resp., co- stable) diframe and ϕ : L → M
be a one-one hdiFrm morphism. Then L is a stable (resp., co- stable) diframe.

Proof. Suppose that M is stable. Take any element 1Le 6= f ∈ Lcf and any cover
{ai ∈ Lfr : i ∈ I} of f . Then ϕ(f) ≤ ϕ(

∨
i∈I ai) =

∨
i∈I ϕ(ai). Since 1Me

6= ϕ(f) ∈
Mcf and ϕ(ai) ∈ Mfr for all i ∈ I, stability of M gives ϕ(f) ≤

∨n
k=1 ϕ(aik) =

ϕ(
∨n
k=1 aik). Thus, applying ϕ∗ on both sides we obtain f ≤

∨n
k=1 aik . �

4. Locally Compact Diframes

In this section, we introduce two main concepts, that of locally compactness and
locally stability in diframes. As pointed out in the introduction, their bitopological
versions use the notion of neighbourhood which is a point-based structure. Hence,
we first define the following binary relations on Le.

Definition 4.1. Let L = (Le, Lfr, Lcf ) be a diframe and x, y ∈ Le. Then,
(1) x�c y iff there exists a compact k ∈ Le with x ≤ k ≤ y.
(2) x�cc y iff there exists a co- compact a ∈ Le with x ≤ a ≤ y.
(3) x�s y iff there exists a compact k ∈ Lcf with x ≤ k ≤ y.
(4) x�cs y iff there exists a co- compact a ∈ Lfr with x ≤ a ≤ y.

Remark 4.2. It is an immediate consequence of the definitions that x�s y implies
x �c y for x, y ∈ Le and x �s y implies x ≺fr y for x, y ∈ Lfr. On the other
hand, it is obvious that x ∈ Le is compact (resp., co- compact) iff x �c x (resp.,
x �cc x), and in particular, L is compact (resp., co- compact) iff 1 �c 1 (resp.,
0�cc 0).

Note that the following concepts have no counterparts in the theory of ditopo-
logical texture spaces.



COMPACTNESS AND STABILITY IN DIFRAMES 107

Definition 4.3. A diframe L is called

(1) locally compact if a =
∨
{x ∈ Lfr : x�c a} for all a ∈ Lfr,

(2) locally co- compact if k =
∧
{x ∈ Lcf : k �cc x} for all k ∈ Lcf ,

(3) locally stable if a =
∨
{x ∈ Lfr : x�s a} for all a ∈ Lfr,

(4) locally co- stable if k =
∧
{x ∈ Lcf : k �cs x} for all k ∈ Lcf .

Example 4.4. The diframe in Example 2.1 is neither locally compact nor locally
co- compact.

Proposition 4.5. Each subdilocale of a locally (co-) compact diframe is locally
(co-) compact.

Proof. Let S be a subdilocale of a locally compact diframe L and let a ∈ Sfr. Then,
a =

∨
{x ∈ Lfr : x �c a}. If x �c a, then there is a compact k ∈ Le satisfying

x ≤ k ≤ a, and then vSe(x) ≤ vSe(k) ≤ vSe(a) = a by monotonicity of vSe . Thus,
it suffi ces to show that vSe(k) is compact, which yields

a =
∨
{vSe(x) ∈ Sfr : vSe(x)�c a}

and completes the proof.
Let {bi ∈ Sfr : i ∈ I} be a cover of vSe(k), that is, k ≤ vSe(k) ≤

∨
i∈I bi. By

compactness of k, we obtain a finite I0 ⊆ I with k ≤
∨
i∈I0 bi. Hence, applying the

nucleus vSe and using the fact that Se is a flat sublocale yield

vSe(k) ≤ vSe(
∨
i∈I0

bi) =
∨
i∈I0

vSe(bi) =
∨
i∈I0

bi

Thus, vSe(k) is compact. �

Proposition 4.6. A (co-)regular, (co-)stable, (co-)compact diframe is locally (co-)
stable.

Proof. Let a ∈ Lfr. The case a = 1 is clear by compactness of L. So, assume that
a 6= 1. Then, by regularity, a ∈ Lfr can be writen as a =

∨
{x ∈ Lfr : x ≺fr a}. If

x ≺fr a then there exists a k ∈ Lcf with x ≤ k ≤ a. Moreover, k 6= 1 since k ≤ a
and a 6= 1. Hence, k is compact since L is a stable diframe. Thus we obtain x�s a
and

a ≤
∨
{x ∈ Lfr : x ≺fr a} ≤

∨
{x ∈ Lfr : x�s a} ≤ a

which shows that L is locally stable.
The dual proof is analogous. �

Proposition 4.7. Let L be a diframe.

(1) L is locally stable iff it is regular and locally compact.
(2) L is locally co- stable iff it is co- regular and locally co- compact.
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Proof. (1) The suffi ciency is immediate by Remark 4.2. Thus, we only prove the
necessity.
Suppose that L is a regular and locally compact diframe and take an arbitrary

a ∈ Lfr. Then a ∈ Lfr can be expressed as a =
∨
{x ∈ Lfr : x �c a}. Further, if

x�c a then there exists a compact k ∈ Le such that x ≤ k ≤ a.
Claim 1: [k] ≤ a.
By regularity of L, we have k ≤ a =

∨
i∈I{xi ∈ Lfr : xi ≺fr a}. If xi ≺fr a,

then there is an fi ∈ Lcf such that xi ≤ fi ≤ a. Hence, there exists a finite I0 ⊆ I
with k ≤

∨
i∈I0 xi ≤

∨
i∈I0 fi ≤ a by compactness of k. Thus, we obtain

[k] ≤ [
∨
i∈I0

fi] =
∨
i∈I0

[fi] =
∨
i∈I0

fi ≤ a

Claim 2: [k] ∈ Lcf is a compact element.
Let {ai ∈ Lfr : i ∈ I} be a cover of [k]. By regularity of L, each ai can be

expressed as ai =
∨
j∈I{xij ∈ Lfr : xij ≺fr ai}. If xij ≺fr ai then there is an fij ∈

Lcf with xij ≤ fij ≤ ai. Moreover, the expression k ≤
∨
i∈I ai =

∨
i∈I
∨
j∈I xij ,

together with the fact that k is compact, implies the existence of finite subsets
I0 ⊆ I and J0 ⊆ J such that k ≤

∨
i∈I0

∨
j∈J0 xij . Therefore,

[k] ≤
∨
i∈I0

∨
j∈J0

[xij ] ≤
∨
i∈I0

∨
j∈J0

fij ≤
∨
i∈I0

ai

and hence [k] is compact.
Now we can conclude that, in a regular diframe, x ≤ k ≤ a and k being compact

imply x ≤ [k] ≤ a and [k] is compact. Thus,

a =
∨
{x ∈ Lfr : x�c a} =

∨
{x ∈ Lfr : x�s a}

and hence L is locally stable. �

Proposition 4.8. Every locally (co-)stable diframe is completely (co-)regular.

Proof. Let L be a locally stable diframe. We claim that the relation

aC b if there exists a compact k ∈ Le such that [a] ≤ k ≤]b[

is a Urysohn relation satisfying the following properties:
(1) aC b implies [a] ≤]b[,
(2) for every a ∈ Lfr, a =

∨
{x ∈ Lfr : xC a}.

(U1) and (U2) are obvious by definition of the given relation.
For (U3), let a C b. Then there exists a compact k ∈ Le with [a] ≤ k ≤]b[ and

further, by locally stability of L, ]b[=
∨
i∈I{ci ∈ Lfr : ci �s]b[}. But then there

exists a finite subset I0 ⊆ I of indices such that k ≤
∨
i∈I0 ci since k is compact.

Moreover, ci �s]b[ implies that there exists a compact ki ∈ Lcf with ci ≤ ki ≤]b[.
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Now set d =
∨
i∈I0 [ci]. We have,

[a] ≤ k ≤
∨
i∈I0

ci ≤
] ∨
i∈I0

ci
[
≤
] ∨
i∈I0

[ci]
[

=]d[

and hence aC d. On the other hand,

[d] =
∨
i∈I0

[ci] ≤
∨
i∈I0

ki ≤]b[

and
∨
i∈I0 ki is compact since ki is compact for all i ∈ I0. Hence we have dC b.

Now it remains to show the properties (1) and (2). The first one is clear by
definition. For (2), let a ∈ Lfr. Then by locally stability of L, it can be written
as a =

∨
{x ∈ Lfr : x �s a}. If x �s a then there is a compact k ∈ Lcf with

x ≤ k ≤ a and hence [x] ≤ k ≤ a =]a[. Thus,

a =
∨
{x ∈ Lfr : x�s a} ≤

∨
{x ∈ Lfr : xC a} ≤ a

that is, a =
∨
{x ∈ Lfr : xC a}. �

Proposition 4.9. Let L = (Le, Lfr, Lcf ), M = (Me,Mfr,Mcf ) be diframes and
(ϕ,ψ) : L → M be a one-one, onto diframe homomorphism. Then the following
statements hold:

(1) If (ϕ,ψ) is co- open then L is locally compact iff M is locally compact.
(2) If (ϕ,ψ) is closed then L is locally co- compact iff M is locally co- compact.

Proof. (1) Suppose that L is locally compact and take any b ∈ Mfr. First, by
Lemma 3.5, there is an a ∈ Lfr such that ϕ(a) = b and it can be expressed as
a =

∨
{x ∈ Lfr : x�c a} by locally compactness of L. If x�c a then there exist a

compact k ∈ Le with x ≤ k ≤ a. Then, ϕ(x) ≤ ϕ(k) ≤ ϕ(a) = b since ϕ preserves
order.
Now we claim that ϕ(k) is compact. Let {bi ∈ Mfr : i ∈ I} be an arbitrary

cover of ϕ(k). Then, for every i ∈ I there exists ai ∈ Lfr such that ϕ(ai) = bi, and
hence

ϕ(k) ≤
∨
i∈I

bi =
∨
i∈I

ϕ(ai) = ϕ(
∨
i∈I

ai).

Applying the map ϕ∗ and then using the compactness of k, we get k ≤
∨n
k=1 aik .

Thus,

ϕ(k) ≤ ϕ(

n∨
k=1

aik) =

n∨
k=1

ϕ(aik) =

n∨
k=1

bik

and hence ϕ(k) is compact.
Now, using the claim it is easy to see that

b = ϕ(a) =
∨
{ϕ(x) ∈Mfr : ϕ(x)�c b}

which means that M is locally compact.



110 ESRA KORKMAZ AND RIZA ERTÜRK

Conversely, assume that M is locally compact. Given any a ∈ Lfr, ϕ(a) ∈Mfr

and hence we have ϕ(a) =
∨
{y ∈ Mfr : y �c ϕ(a)}. Moreover, for each y ∈ Mfr,

there is an x ∈ Lfr such that ϕ(x) = y. If ϕ(x) �c ϕ(a) then there exists a
compact k ∈ Me with ϕ(x) ≤ k ≤ ϕ(a). Now we obtain x ≤ ϕ∗(k) ≤ a. We can
easily show that ϕ∗(k) is compact. Thus a =

∨
{x ∈ Lfr : x�c a}.

The second one can be proved in a similar manner. �

Proposition 4.10. Let (ϕ,ψ) : (Le, Lfr, Lcf )→ (Me,Mfr,Mcf ) be an onto, one-
one diframe homomorphism.

(1) If (ϕ,ψ) is a co- open, co- closed diframe homomorphism and M is locally
stable then L is locally stable.

(2) If (ϕ,ψ) is an open, closed diframe homomorphism and M is locally co-
stable then L is locally co- stable.

Proof. (2) Assume thatM is locally co- stable and take an arbitrary f ∈ Lcf . Then
we have ψ(f) ∈ Mcf and it can be written as ψ(f) =

∧
{y ∈ Mcf : ψ(f) �cs y}.

For all y, there is an x ∈ Lcf with ψ(x) = y, and if ψ(f) �cs ψ(x) then we have
a co- compact b ∈ Mfr such that ψ(f) ≤ b ≤ ψ(x). Moreover, for b ∈ Mfr, there
is an a ∈ Lfr with ψ(a) = b. As in the previous proof, one can see that a ∈ Lfr
is co- compact. Thus, we obtain f =

∧
{x ∈ Lcf : f �cs x}, which completes the

proof. �

Proposition 4.11. The image of a locally stable (resp., locally co- stable) diframe
under a one-one, onto, open (resp., closed) hdiFrm morphism is locally stable (resp.,
locally co- stable).

Proof. This can be proved easily in a similar way used in the proof of the previous
propositions. �

5. Conclusion

In this paper we have introduced the concept of compactness in diframes. Then
we have defined stable, locally compact and locally stable diframes and investigated
the relations between separation axioms and these properties. As a future work,
other topological and bitopological structures such as paracompactness, connect-
edness and uniformities etc. can be constructed on diframes.
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SOME NEW RESULTS ON CONVERGENCE, STABILITY AND
DATA DEPENDENCE IN n−NORMED SPACES

KADRI DOGAN, FAIK GURSOY, VATAN KARAKAYA, AND SAFEER HUSSAIN KHAN

Abstract. We introduce a new contractive condition and a new iterative
method in n− normed space setting. We employ both of these to study con-
vergence, stability, and data dependence. The results presented here extend
and improve some recent results announced in the existing literature.

1. Introduction

The theory of n-normed spaces has been introduced by Misiak [1] as a general-
ization of the theory of 2-normed spaces due to Gähler [2]. Since then, much effort
has been devoted to the development of the theory of n−normed spaces. See, e.g.
[3-5] and references therein. We recall some basic facts as follows.

Definition 1. ([1]) Let n ∈ N and X be a real vector space of dimension d, where
n ≤ d. A real-valued function ‖·, . . . , ·‖ : Xn → R which satisfies the following
conditions:
(nN1) ‖x1, . . . , xn‖ = 0 iff x1, . . . , xn are linearly dependent,
(nN2) ‖x1, . . . , xn‖ is invariant under any permutation,
(nN3) ‖αx1, . . . , xn‖ = |α| ‖x1, . . . , xn‖ for every α ∈ R,
(nN4) ‖x1 + x′1, x2 . . . , xn‖ ≤ ‖x1, x2, . . . , xn‖+ ‖x′1, x2, . . . , xn‖ .
is called an n−norm on X.The pair (X, ‖·, . . . , ·‖) is called an n−normed spaces.

Example 2. ([3]) (i) Let X = Rn with the following Euclidean n−norm:

‖x1, . . . , xn‖E = abs


∣∣∣∣∣∣∣
x11 · · · x1n
...

. . .
...

xn1 · · · xnn

∣∣∣∣∣∣∣
 ,

where xi = (xi1, . . . , xin) ∈ Rn for each i = 1, n. Then, the pair (Rn, ‖x1, . . . , xn‖E)
is an n−normed space.
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(ii) Let (X, ‖·, . . . , ·‖) be an n−normed space of dimension d ≥ n ≥ 2 and
{u1, u2, . . . , un} be a linearly independent set in X. A function ‖·, . . . , ·‖∞ on Xn−1

defined by
‖x1, . . . , xn−1‖∞ = max

{
‖x1, . . . , xn, ui‖ : i = 1, n

}
is an (n− 1) norm on X w.r.t. {u1, u2, . . . , un} .

Definition 3. ([3]) Let X be a n−normed linear space and {xn}∞n=0 a sequence in
X. We say that {xn}∞n=0 converge to some x ∈ X if

lim
n→∞

‖xn − x, u2, · · · , un‖ = 0,

for all u2, · · · , un ∈ X.

The following iterative methods were studied in [6], [7], [8], and [9] respectively,{
s0 ∈ X,

sn+1 = ansn + bnT1sn + cnT2sn, ∀n ∈ N,
(1) p0 ∈ X,

pn+1 = (1− αn) qn + αnTqn,
qn = (1− βn) pn + βnTpn, ∀n ∈ N,

(2)

 p0 ∈ X,
pn+1 = (1− αn) qn + αnT1qn,
qn = (1− βn) pn + βnT2pn, ∀n ∈ N,

(3)

 x0 ∈ X,
xn+1 = anxn + bnT1yn + cnT2xn,

yn = αnxn + (1− αn)T3xn, ∀n ∈ N,
(4)

where T, T1, T2 and T3 are self maps of an ambient space X and {an} , {bn} , {cn} ,
{αn} , and {βn}

∞
n=0 are real sequences in [0, 1] satisfying certain control conditions.

Inspired by the above iterative methods, we introduce the following iterative
method.  x0 ∈ X,

xn+1 = anyn + bnT1yn + cnT2yn,
yn = αnxn + (1− αn)T3xn, ∀n ∈ N,

. (5)

where {an} , {bn} , {cn} , {αn} ⊂ [0, 1] are real sequences satisfying an+ bn+ cn = 1
for all n ∈ N, and

∞∑
n=0

bn =∞.

Remark 4. If T3 = I (Identity operator), then iterative method (5) reduces to
iterative method (1). If T1 = I (Identity operator), T2 = T3 = T , then iterative
method (5) reduces to iterative method (1.2). If T1 = I, then the iterative method
(5) reduces to iterative method (1.3). Note that (1.4) and (5) are of independent
interest and so we would like to deal with both of these separately. However, it is
worth noticing that (1.4) does not reduce to (1.3) but (5) does. Thus, in this sense,
(5) is more general than (1.4).
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Recently, Dutta [3] introduced a generalized Z-type contractive condition as
follows: Let K be nonempty, closed, convex subset of real linear n−normed space
X and T : K → K a self map. There exists a constant L ≥ 0 such that for all
x, y, u2, · · · , un ∈ K, we have

‖Tx− Ty, u2, · · · , un‖
≤ eL‖x−Tx,u2,··· ,un‖ × (2δ ‖x− Tx, u2, · · · , un‖+ δ ‖x− y, u2, · · · , un‖) ,(6)

where δ ∈ [0, 1) and ex denotes the exponential function of x ∈ K.
In [3], some convergence results have been constructed for fixed point of the

mappings satisfying condition (6) via iterative schemes (1.1), (1.2) and (1.3).
In this paper, we introduce the following contractive condition: Let (X, ‖·, . . . , ·‖)

be an n−normed space, T : X → X a selfmap of X, with a fixed point q such that
for all x, y, u2, · · · , un ∈ X and for some δ ∈ [0, 1), we have

‖q − Ty, u2, · · · , un‖ ≤ δ ‖q − y, u2, · · · , un‖ . (7)
This is similar to the condition introduced by [10] and can be obtained from (6)
when x = q is a fixed point. We may call this kind of operators quasi-contractive
operators.
Following important observation will be used in the sequel.

‖Tx− Ty, u2, · · · , un‖ ≤ ‖Tx− q, u2, · · · , un‖+ ‖q − Ty, u2, · · · , un‖
≤ δ (‖x− q, u2, · · · , un‖+ ‖q − y, u2, · · · , un‖)
≤ δ ‖x− y, u2, · · · , un‖+ 2δ ‖q − y, u2, · · · , un‖ . (8)

In our opinion, it is better to work with the contractive condition defined by (7)
than with (6) because, as remarked above, if we suppose that T has a fixed point,
then (6) implies (7) and by using it we can avoid doing unnecessary calculations.
In this paper, we first prove some convergence results for the mappings satisfying

condition (7) via iterative methods (1.4) and (5). Next, we show that the iterative
methods (1.4) and (5) are stable with respect to (T1, T2, T3) . Finally, we prove some
data dependence results for the iterative methods (1.4) and (5).
We close this section with the following couple of results useful in proving our

main results.

Lemma 5. [11] Let {σn}∞n=0 and {ρn}
∞
n=0 be nonnegative real sequences satisfying

the following inequality:
σn+1 ≤ (1− λn)σn + ρn,

where λn ∈ (0, 1) , for all n ≥ n0,
∞∑
n=1

λn = ∞, and ρn
λn
→ 0 as n → ∞. Then

limn→∞ σn = 0.

Lemma 6. [12] Let {σn}∞n=0 be a nonnegative sequence for which one assumes
there exists n0 ∈ N, such that for all n ≥ n0 one has satisfied the inequality

σn+1 ≤ (1− µn)σn + µnγn,
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where µn ∈ (0, 1) , for all n ∈ N,
∞∑
n=0

µn = ∞ and γn ≥ 0, ∀n ∈ N. Then the
following inequality holds.

0 ≤ lim sup
n→∞

σn ≤ lim sup
n→∞

γn.

2. Convergence Results

For the sake of simplicity, from now on we assume that X is a n−normed linear
space, T1, T2 and T3 are self-maps of X satisfying the contractive condition (7) with

the set of fixed points FT1 , FT2 , FT3 respectively, and
3⋂
i=1

FTi 6= ∅.

Theorem 7. Let {xn}∞n=0 be a sequence generated by iterative method (5) with real
sequences {an} , {bn} , {cn} , {αn} ⊂ (0, 1) satisfying an+ bn+ cn = 1 for all n ∈ N,

and
∞∑
n=0

bn =∞ (or
∞∑
n=0

cn =∞). Suppose that q ∈
3⋂
i=1

FTi 6= ∅. Then the iterative

sequence {xn}n∈N converges strongly to q.

Proof. First we prove that q ∈
3⋂
i=1

FTi is the unique common fixed point of T1, T2

and T3. Suppose that there exists another common fixed point q∗ ∈
3⋂
i=1

FTi. Then

from (7), we have

‖q − q∗‖ = ‖Tiq − q∗‖ ≤ δ ‖q − q∗‖ for each i = 1, 2, 3,

which implies that q = q∗ as δ ∈ [0, 1).
Next, we prove that xn → q.
Using (5) and (7), we get

‖xn+1 − q, u2, · · · , un‖ = ‖anyn + bnT1yn + cnT2yn − q, u2, · · · , un‖
= ‖an (yn − q) + bn (T1yn − q) + cn (T2yn − q) , u2, · · · , un‖
≤ an ‖yn − q, u2, · · · , un‖+ bn ‖T1yn − q, u2, · · · , un‖

+cn ‖T2yn − q, u2, · · · , un‖
≤ [an + (bn + cn) δ] ‖yn − q, u2, · · · , un‖ (9)

and

‖yn − q, u2, · · · , un‖ = ‖αnxn + (1− αn)T3xn − q, u2, · · · , un‖
≤ αn ‖xn − q, u2, · · · , un‖+ (1− αn) ‖T3xn − q, u2, · · · , un‖
≤ [αn + (1− αn) δ] ‖xn − q, u2, · · · , un‖
≤ [αn + 1− αn] ‖xn − q, u2, · · · , un‖
= ‖xn − q, u2, · · · , un‖ . (10)
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Substituting (2.2) into (2.1)

‖xn+1 − q, u2, · · · , un‖ ≤ [1− (bn + cn) (1− δ)] ‖xn − q, u2, · · · , un‖ . (11)

Since δ ∈ [0, 1) and an + bn + cn = 1 for all n ∈ N,

0 ≤ 1− (bn + cn) (1− δ) < 1. (12)

Also, the assumption
∞∑
n=0

bn = ∞ (or
∞∑
n=0

cn = ∞ ) implies
∞∑
n=0

(bn + cn) = ∞.

Hence, an application of Lemma 1 to (2.3) lead us to limn→∞ xn = q. �

Remark 8. If T1 = I (Identity operator), T2 = T3 = T , then the iterative method
(5) reduces to the iterative method (1.2). If T1 = I, then the iterative method (5)
reduce to the iterative method (1.3). Having regard to these facts, we conclude that
Theorem 1 is a generalization and extension of both ([3], Theorem 3 and Theorem
4).

Theorem 9. Let {xn}∞n=0 be a sequence generated by iterative method (1.4) with
real sequences {an} , {bn} , {cn} , {αn} ⊂ (0, 1) satisfying an + bn + cn = 1 for all

n ∈ N, and
∞∑
n=0

bn =∞ (or
∞∑
n=0

cn =∞ ). Suppose that q ∈
3⋂
i=1

FTi 6= ∅. Then the

iterative sequence {xn}n∈N converges strongly to q.

Proof. The proof is quite similar to that of Theorem 1 above, and is thus omitted.
�

Remark 10. If T3 = I (Identity operator), then the iterative method (1.4) reduce
to the iterative method (1.1). Thus, we conclude that Theorem 2 is a generalization
and extension ([3], Theorem 2).

3. Stability Results

One of the most studied problems in fixed point theory is the stability of fixed
points iterative methods. The initiator of this kind of study seems to be Urabe
[13]. Later on, Ostrowski [14] has also put his efforts in this field. However, a
formal definition for the stability of general iterative methods was apparently given
by Harder and Hicks [15]. Continuing this trend, in the last three decades, a
large literature has emerged and developed dealing with the stability of various
well-known iterative methods for different classes of operators (see [10, 13-21] and
references therein). Below we reformulate the definition of stability given by Harder
and Hicks [15] in the context of n−normed spaces.

Definition 11. Let X be a n−normed space, T a self map of X, and {xn}∞n=0 ⊂ X
a sequence defined by

xn+1 = f (T, xn) , n = 0, 1, . . . , (13)
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where x0 ∈ X is the initial approximation and f is some function. Suppose that
the sequence {xn}∞n=0 converges to a fixed point q of T . Let {yn}

∞
n=0 ⊂ X be an

arbitrary sequence and set

εn = ‖yn+1 − f (T, yn) , u2, · · · , un‖ , n = 0, 1, . . . .
Then, iteration procedure (3.1) is said to be T−stable or stable with respect to T

if and only if limn→∞ εn = 0⇒ limn→∞ yn = q.

Theorem 12. Let {xn}∞n=0 be a sequence generated by the iterative method (5)
with real sequences {an} , {bn} , {cn} , {αn} ⊂ (0, 1) satisfying an + bn + cn = 1 for

all n ∈ N, and
∞∑
n=0

bn = ∞ (or
∞∑
n=0

cn = ∞ ). Suppose that q ∈
3⋂
i=1

FTi 6= ∅. Let

{rn}∞n=0 ⊂ X be any sequence and define a sequence {εn}∞n=0 in R+ by{
εn = ‖rn+1 − anvn − bnT1vn − cnT2vn, u2, · · · , un‖ ,
vn = αnrn + (1− αn)T3rn, ∀n ∈ N.

(14)

Then, {xn}∞n=0 is stable with respect to (T1, T2, T3).

Proof. Assume that limn→∞ εn = 0. In order to prove that {xn}∞n=0 is stable with
respect to (T1, T2, T3), it suffi ces to prove that limn→∞ rn = q.
It follows from (5) and (7) that

‖rn+1 − q, u2, · · · , un‖ ≤ ‖rn+1 − anvn − bnT1vn − cnT2vn, u2, · · · , un‖
+ ‖anvn + bnT1vn + cnT2vn − q, u2, · · · , un‖

≤ εn + an ‖vn − q, u2, · · · , un‖
+bn ‖T1vn − q, u2, · · · , un‖+ cn ‖T2vn − q, u2, · · · , un‖

≤ εn + [an + (bn + cn) δ] ‖vn − q, u2, · · · , un‖ , (15)

‖vn − q, u2, · · · , un‖ ≤ αn ‖rn − q, u2, · · · , un‖+ (1− αn) ‖T3rn − q, u2, · · · , un‖
≤ [αn + (1− αn) δ] ‖rn − q, u2, · · · , un‖ . (16)

Substituting (3.4) in (3.3), we get

‖rn+1 − q, u2, · · · , un‖ ≤ εn+[an + (bn + cn) δ] [αn + (1− αn) δ] ‖rn − q, u2, · · · , un‖ .
(17)

Since δ ∈ [0, 1) and αn ∈ [0, 1] for all n ∈ N,
αn + (1− αn) δ < 1. (18)

Using (3.6) in (3.5), we obtain

‖rn+1 − q, u2, · · · , un‖ ≤ εn + [an + (bn + cn) δ] ‖rn − q, u2, · · · , un‖
= εn + [1− (bn + cn) (1− δ)] ‖rn − q, u2, · · · , un‖ .

Now using similar arguments as in the proof of Theorem 1, we obtain limn→∞ rn = q
and hence the result. �
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Theorem 13. Let {xn}∞n=0 be a sequence generated by the iterative method (1.4)
with real sequences {an} , {bn} , {cn} , {αn} ⊂ (0, 1) satisfying an + bn + cn = 1 for

all n ∈ N, and
∞∑
n=0

bn = ∞ (or
∞∑
n=0

cn = ∞). Suppose that q ∈
3⋂
i=1

FTi 6= ∅. Let

{rn}∞n=0 ⊂ X be any sequence and define a sequence {εn}∞n=0 in R+ by{
εn = ‖rn+1 − anrn − bnT1vn − cnT2rn, u2, · · · , un‖
vn = αnrn + (1− αn)T3rn, ∀n ∈ N.

(19)

Then, {xn}∞n=0 is stable with respect to (T1, T2, T3) .

Proof. The proof is quite similar to that of Theorem 3 above, and is thus omitted.
�

Remark 14. If T2 = I (Identity operator) and T1 = T3 = T , the iterative method
(1.4) reduces to Ishikawa iterative method [22]. If T1 = T3 = I, then the iterative
method (1.4) reduce to Mann iterative method [23]. Having regard to these facts, we
conclude that Theorem 4 is a generalization and extension of both ([10], Theorem
2.2) and ([16], Theorem 2).

4. Data Dependence Results

In some cases, it is diffi cult or may even be impossible to find a fixed point
of a certain mapping. In such cases, instead of computing the fixed point of this
mapping, we approximate this mapping with another one whose fixed point can
be easily obtained. Thus we have an estimation for the approximate location of
the fixed point of this mapping without actually computing it. For this reason, the
topic of data dependency of fixed points has a great importance both from numerical
and theoretical perspectives. Consequently, the study of data dependence of fixed
points in a normed space setting has attracted several researchers; (see [12, 17, 25]
and references therein).

Definition 15. Let X be a n−normed space, T, T̃ : X → X two operators. We
say that T̃ is an approximate operator of T if for all x, u2, · · · , un ∈ X and for a
fixed ε > 0, we have ∥∥∥Tx− T̃ x, u2, · · · , un∥∥∥ ≤ ε.
Theorem 16. Let {xn}n∈N be a sequence generated by the iterative method (5)

associated to T1, T2 and T3 with a common fixed point q ∈
3⋂
i=1

FTi 6= ∅, and {x̃n}∞n=0
be the iterative sequence generated by

x̃0 ∈ X,
x̃n+1 = anỹn + bnT̃1ỹn + cnT̃2ỹn

ỹn = αnx̃n + (1− αn) T̃3x̃n, ∀n ∈ N,
(20)
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where {an} , {bn} , {cn} , {αn} ⊂ [0, 1] are real sequences satisfying an+ bn+ cn = 1
and 1

2−δ ≤ bn (or
1
2−δ ≤ cn ) for all n ∈ N. Suppose that for fixed ε1, ε2, ε3 > 0 and

for all x, u2, · · · , un ∈ X, we have
∥∥∥T1x− T̃1x, u2, · · · , un∥∥∥ ≤ ε1,∥∥∥T2x− T̃2x, u2, · · · , un∥∥∥ ≤ ε2, ∥∥∥T3x− T̃3x, u2, · · · , un∥∥∥ ≤ ε3.

If q∗ ∈
3⋂
i=1

FT̃ i 6= ∅ such that x̃n → q∗ as n→∞, then we have

‖q − q∗, u2, · · · , un‖ ≤
3ε

1− δ ,

where ε = max {ε1, ε2, ε3}.

Proof. It follows from (5), (4.1), (7), and (8) that

‖xn+1 − x̃n, u2, · · · , un‖ ≤ an ‖yn − ỹn, u2, · · · , un‖

+bn

∥∥∥T1yn − T̃1ỹn, u2, · · · , un∥∥∥
+cn

∥∥∥T2yn − T̃2ỹn, u2, · · · , un∥∥∥ , (21)∥∥∥T1yn − T̃1ỹn, u2, · · · , un∥∥∥ ≤ ‖T1yn − T1ỹn, u2, · · · , un‖

+
∥∥∥T1ỹn − T̃1ỹn, u2, · · · , un∥∥∥

≤ 2δ ‖yn − q, u2, · · · , un‖
+δ ‖yn − ỹn, u2, · · · , un‖+ ε1, (22)∥∥∥T2yn − T̃2ỹn, u2, · · · , un∥∥∥ ≤ 2δ ‖yn − q, u2, · · · , un‖

+δ ‖yn − ỹn, z2, . . . , zn‖+ ε2, (23)

‖yn − q, u2, · · · , un‖ ≤ [αn + (1− αn) δ] ‖xn − q, u2, · · · , un‖ , (24)

‖yn − ỹn, u2, · · · , un‖ ≤ αn ‖xn − x̃n, u2, · · · , un‖

+(1− αn)
∥∥∥T3xn − T̃3x̃n, u2, · · · , un∥∥∥ ,∥∥∥T3xn − T̃3x̃n, u2, · · · , un∥∥∥ ≤ 2δ ‖xn − q, u2, · · · , un‖

+δ ‖xn − x̃n, u2, · · · , un‖+ ε3. (25)

Combining (4.2)-(4.6)

‖xn+1 − x̃n, u2, · · · , un‖ ≤ [an + (bn + cn) δ] [αn + δ (1− αn)] ‖xn − x̃n, u2, · · · , un‖
+ {(bn + cn) [αn + (1− αn) δ]
+ (1− αn) [an + (bn + cn) δ]} 2δ ‖xn − q, u2, · · · , un‖
+bnε1 + cnε2 + (1− αn) [an + (bn + cn) δ] ε3, (26)
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Since δ ∈ [0, 1) and αn, an, bn, cn ∈ [0, 1] for all n ∈ N,we have 1− αn ≤ 1,
bn ≤ bn + cn,
cn ≤ bn + cn.

(27)

Using (2.4), (3.6), (4.8) and assumption 1
2−δ ≤ bn (which implies 1

2−δ ≤ bn + cn )
for all n ∈ N, (4.7) becomes

‖xn+1 − x̃n, u2, · · · , un‖ ≤ [1− (bn + cn) (1− δ)] ‖xn − x̃n, u2, · · · , un‖
+(bn + cn) (1− δ)

×{(2− αn) 2δ ‖xn − q, u2, · · · , un‖+ ε1 + ε2 + ε3}
1− δ . (28)

Define

σn = ‖xn − x̃n, u2, · · · , un‖ ,
µn = (bn + cn) (1− δ) ∈ (0, 1) ,

γn =
(2− αn) 2δ ‖xn − q, u2, · · · , un‖+ ε1 + ε2 + ε3

1− δ , for all n ∈ N.

As the assumption 1
2−δ ≤ bn (or 1

2−δ ≤ cn ) implies
∞∑
n=0

bn =∞ (or
∞∑
n=0

cn =∞ ),

we have
∞∑
n=0

(bn + cn) = ∞ as in the proof of Theorem 1. Thus all conditions in

Lemma 2 are satisfied by (4.9). Also, from Theorem 1, we know that xn → q as
n→∞. Hence, we have

‖q − q∗, u2, · · · , un‖ ≤
3ε

1− δ ,

where ε = max {ε1, ε2, ε3} . �

Theorem 17. Let {xn}n∈N be a sequence generated by the iterative method (1.4)

associated to T1, T2 and T3 with a common fixed point q ∈
3⋂
i=1

FTi 6= ∅, and {x̃n}∞n=0
be the iterative sequence generated by

x̃0 ∈ X,
x̃n+1 = anx̃n + bnT̃1ỹn + cnT̃2x̃n,

ỹn = αnx̃n + (1− αn) T̃3x̃n, ∀n ∈ N,
(29)

where {an} , {bn} , {cn} , {αn} ⊂ [0, 1] are real sequences satisfying an+ bn+ cn = 1
for all n ∈ N, and

∞∑
n=0

bn =∞ (or
∞∑
n=0

cn =∞ ). Suppose that for fixed ε1, ε2, ε3 > 0

and for all x, u2, · · · , un ∈ X, we have∥∥∥T1x− T̃1x, u2, · · · , un∥∥∥ ≤ ε1,
∥∥∥T2x− T̃2x, u2, · · · , un∥∥∥ ≤ ε2,
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If q∗ ∈
3⋂
i=1

FT̃ i 6= ∅ such that x̃n → q∗ as n→∞, then we have

‖q − q∗, u2, · · · , un‖ ≤
(2 + δ) ε

1− δ ,

where ε = max {ε1, ε2, ε3} .

Proof. The proof is quite similar to that of Theorem 5 above, and is thus omitted.
�

Remark 18. If an = 0 and T1 = T2 = T3 = T, then iterative method (1.3) reduce
to S−iterative method [24]. Also, keeping in mind Remark 3, Theorem 6 generalizes
both ([12], Theorem 3.2) and ([25], Theorem 4).
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CLASSICAL AND STRONGLY CLASSICAL 2-ABSORBING
SECOND SUBMODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

Abstract. In this paper, we will introduce the concept of classical (resp.
strongly classical) 2-absorbing second submodules of modules over a commu-
tative ring as a generalization of 2-absorbing (resp. strongly 2-absorbing)
second submodules and investigate some basic properties of these classes of
modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and “⊂"
will denote the strict inclusion. Further, Z will denote the ring of integers.
Let M be an R-module. A proper submodule P of M is said to be prime if for

any r ∈ R and m ∈M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [11]. A non-
zero submodule S of M is said to be second if for each a ∈ R, the homomorphism
S

a→ S is either surjective or zero [18]. In this case AnnR(S) is a prime ideal of R.
The notion of 2-absorbing ideals as a generalization of prime ideals was intro-

duced and studied in [7]. A proper ideal I of R is a 2-absorbing ideal of R if
whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. The authors
in [10] and [15], extended 2-absorbing ideals to 2-absorbing submodules. A proper
submodule N of M is called a 2-absorbing submodule of M if whenever abm ∈ N
for some a, b ∈ R and m ∈M , then am ∈ N or bm ∈ N or ab ∈ (N :R M).
A proper submodule N ofM is said to be completely irreducible if N =

⋂
i∈I Ni,

where {Ni}i∈I is a family of submodules of M , implies that N = Ni for some
i ∈ I. It is easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [12].
In [5], the present authors introduced the dual notion of 2-absorbing submodules

(that is, 2-absorbing (resp. strongly 2-absorbing) second submodules) of M and
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investigated some properties of these classes of modules. A non-zero submodule
N of M is said to be a 2-absorbing second submodule of M if whenever a, b ∈ R,
L is a completely irreducible submodule of M , and abN ⊆ L, then aN ⊆ L or
bN ⊆ L or ab ∈ AnnR(N). A non-zero submodule N of M is said to be a strongly
2-absorbing second submodule of M if whenever a, b ∈ R, K is a submodule of M ,
and abN ⊆ K, then aN ⊆ K or bN ⊆ K or ab ∈ AnnR(N).
In [14], the authors introduced the notion of classical 2-absorbing submodules as

a generalization of 2-absorbing submodules and studied some properties of this class
of modules. A proper submodule N of M is called classical 2-absorbing submodule
if whenever a, b, c ∈ R and m ∈ M with abcm ∈ N , then abm ∈ N or acm ∈ N or
bcm ∈ N [14].
The purpose of this paper is to introduce the concepts of classical and strongly

classical 2-absorbing second submodules of an R-module M as dual notion of clas-
sical 2-absorbing submodules and provide some information concerning these new
classes of modules. We characterize classical (resp. strongly classical) 2-absorbing
second submodules in Theorem 2.3 (resp. Theorem 3.4). Also, we consider the
relationship between classical 2-absorbing and strongly classical 2-absorbing sec-
ond submodules in Examples 3.9, 3.10, and Propositions 3.11. Theorem 2.14 (resp.
Theorem 3.15) of this paper shows that if M is an Artinian R-module, then every
non-zero submodule of M has only a finite number of maximal classical (resp.
strongly classical) 2-absorbing second submodules. Further, among other results,
we investigate strongly classical 2-absorbing second submodules of a finite direct
product of modules in Theorem 3.19.

2. Classical 2-absorbing second submodules

We frequently use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M . To prove
N ⊆ K, it is enough to show that if L is a completely irreducible submodule of M
such that K ⊆ L, then N ⊆ L.

Definition 2.2. Let N be a non-zero submodule of an R-module M . We say that
N is a classical 2-absorbing second submodule of M if whenever a, b, c ∈ R, L is a
completely irreducible submodule of M , and abcN ⊆ L, then abN ⊆ L or bcN ⊆ L
or acN ⊆ L. We say M is a classical 2-absorbing second module if M is a classical
2-absorbing second submodule of itself.

Theorem 2.3. LetM be an R-module and N be a non-zero submodule ofM . Then
the following statements are equivalent:

(a) N is a classical 2-absorbing second submodule of M ;
(b) For every a, b ∈ R and completely irreducible submodule L ofM with abN 6⊆

L, (L :R abN) = (L :R aN) ∪ (L :R bN);
(c) For every a, b ∈ R and completely irreducible submodule L ofM with abN 6⊆

L, (L :R abN) = (L :R aN) or (L :R abN) = (L :R bN);
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(d) For every a, b ∈ R, every ideal I of R, and completely irreducible submodule
L of M with abIN ⊆ L, either abN ⊆ L or aIN ⊆ L or bIN ⊆ L;

(e) For every a ∈ R, every ideal I of R, and completely irreducible submodule L
of M with aIN 6⊆ L, (L :R aIN) = (L :R IN) or (L :R aIN) = (L :R aN);

(f) For every a ∈ R, ideals I, J of R, and completely irreducible submodule L
of M with aIJN ⊆ L, either aIN ⊆ L or aJN ⊆ L or IJN ⊆ L;

(g) For ideals I, J of R, and completely irreducible submodule L of M with
IJN 6⊆ L, (L :R IJN) = (L :R IN) or (L :R IJN) = (L :R JN);

(h) For ideals I1, I2, I3 of R, and completely irreducible submodule L of M with
I1I2I3N ⊆ L, either I1I2N ⊆ L or I1I3N ⊆ L or I2I3N ⊆ L;

(i) For each completely irreducible submodule L of M with N 6⊆ L, (L :R N)
is a 2-absorbing ideal of R.

Proof. (a)⇒ (b) Let t ∈ (L :R abN). Then tabN ⊆ L. Since abN 6⊆ L, atN ⊆ L or
btN ⊆ L as needed.

(b) ⇒ (c) This follows from the fact that if an ideal is the union of two ideals,
then it is equal to one of them.

(c) ⇒ (d) Let for some a, b ∈ R, an ideal I of R, and completely irreducible
submodule L of M , abIN ⊆ L. Then I ⊆ (L :R abN). If abN ⊆ L, then we are
done. Assume that abN 6⊆ L. Then by part (c), I ⊆ (L :R bN) or I ⊆ (L :R aN)
as desired.

(d) ⇒ (e) ⇒ (f) ⇒ (g) ⇒ (h) The proofs are similar to that of the previous
implications.

(h)⇒ (a) Trivial.
(h)⇔ (i) This is straightforward. �

We recall that an R-module M is said to be a cocyclic module if SocR(M) is
a large and simple submodule of M [19]. (Here SocR(M) denotes the sum of
all minimal submodules of M .) A submodule L of M is a completely irreducible
submodule of M if and only if M/L is a cocyclic R-module [12].

Corollary 2.4. Let N be a classical 2-absorbing second submodule of a cocyclic
R-module M . Then AnnR(N) is a 2-absorbing ideal of R.

Proof. This follows from Theorem 2.3 (a) ⇒ (i), because (0) is a completely irre-
ducible submodule of M . �

Example 2.5. For any prime integer p, let M = Zp∞ as a Z-module and Gi =
〈1/pi + Z〉 for i ∈ N. Then Gi is not a classical 2-absorbing second submodule of
M for each integers i ≥ 3.

Lemma 2.6. Every 2-absorbing second submodule of M is a classical 2-absorbing
second submodule of M .

Proof. Let N be a 2-absorbing second submodule of M , a, b, c ∈ R, L a completely
irreducible submodule of M , and abcN ⊆ L. Then abN ⊆ (L :M c). Thus aN ⊆
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(L :M c) or bN ⊆ (L :M c) or abN = 0 because by [6, Lemma 2.1], (L :M c) is a
completely irreducible submodule of M . Hence acN ⊆ L or bcN ⊆ L or abN ⊆ L
as needed. �
Example 2.7. ConsiderM = Zpq ⊕Q as a Z-module, where p, q are prime integers.
ThenM is a classical 2-absorbing second module which is not a strongly 2-absorbing
second module.

Proposition 2.8. Let N be a classical 2-absorbing second submodule of an R-
module M . Then we have the following.

(a) If a ∈ R, then anN = an+1N , for all n ≥ 2.
(b) If L is a completely irreducible submodule of M such that N 6⊆ L, then√

(L :R N) is a 2-absorbing ideal of R.

Proof. (a) It is enough to show that a2N = a3N . It is clear that a3N ⊆ a2N . Let
L be a completely irreducible submodule of M such that a3N ⊆ L. Since N is a
classical 2-absorbing second submodule, a2N ⊆ L. This implies that a2N ⊆ a3N .
(b) Assume that a, b, c ∈ R and abc ∈

√
(L :R N). Then there is a positive

integer t such that atbtctN ⊆ L. By hypotheses, N is a classical 2-absorbing
second submodule of M , thus atbtN ⊆ L or btctN ⊆ L or atctN ⊆ L. Therefore,
ab ∈

√
(L :R N) or bc ∈

√
(L :R N) or ac ∈

√
(L :R N). �

Theorem 2.9. Let N be a submodule of an R-module M . Then we have the
following.

(a) If N is a classical 2-absorbing second submodule ofM , then IN is a classical
2-absorbing second submodule ofM for all ideals I of R with I 6⊆ AnnR(N).

(b) If N is a classical 2-absorbing submodule of M , then (N :R I) is a classical
2-absorbing submodule of M for all ideals I of R with I 6⊆ (N :R M).

(c) Let f : M → Ḿ be a monomorphism of R-modules. If Ń is a classical 2-
absorbing second submodule of f(M), then f−1(Ń) is a classical 2-absorbing
second submodule of M .

Proof. (a) Let I be an ideal of R with I 6⊆ AnnR(N), a, b, c ∈ R, L be a completely
irreducible submodule of M , and abcIN ⊆ L. Then acN ⊆ L or cbIN ⊆ L or
abIN ⊆ L by Theorem 2.3 (a) ⇒ (d). If cbIN ⊆ L or abIN ⊆ L, then we are
done. If acN ⊆ L, then acIN ⊆ acN implies that acIN ⊆ L, as needed. Since
I 6⊆ AnnR(N), we have IN is a non-zero submodule of M .
(b) Use the technique of part (a) and apply [14, Theorem 2].
(c) If f−1(Ń) = 0, then f(M) ∩ Ń = ff−1(Ń) = f(0) = 0. Thus Ń = 0,

a contradiction. Therefore, f−1(Ń) 6= 0. Now let a, b, c ∈ R, L be a completely
irreducible submodule of M , and abcf−1(Ń) ⊆ L. Then

abcŃ = abc(f(M) ∩ Ń) = abcff−1(Ń) ⊆ f(L).

By [5, Lemma 3.14], f(L) is a completely irreducible submodule of f(M). Thus
as Ń is a classical 2-absorbing second submodule, abŃ ⊆ f(L) or bcŃ ⊆ f(L) or
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acŃ ⊆ f(L). Therefore, abf−1(Ń) ⊆ f−1f(L) = L or bcf−1(Ń) ⊆ f−1f(L) = L

or acf−1(Ń) ⊆ f−1f(L) = L, as desired. �
An R-module M is said to be a multiplication module if for every submodule N

of M there exists an ideal I of R such that N = IM [8].
An R-module M is said to be a comultiplication module if for every submodule

N of M there exists an ideal I of R such that N = (0 :M I), equivalently, for each
submodule N of M , we have N = (0 :M AnnR(N)) [2].

Corollary 2.10. Let M be an R-module. Then we have the following.
(a) If M is a multiplication classical 2-absorbing second R-module, then every

non-zero submodule of M is a classical 2-absorbing second submodule of
M .

(b) IfM is a comultiplication module and the zero submodule ofM is a classical
2-absorbing submodule, then every proper submodule of M is a classical
2-absorbing submodule of M .

Proof. This follows from parts (a) and (b) of Lemma 2.9. �
Proposition 2.11. Let M be an R-module and {Ki}i∈I be a chain of classical 2-
absorbing second submodules ofM . Then

∑
i∈I Ki is a classical 2-absorbing second

submodule of M .

Proof. Let a, b, c ∈ R, L be a completely irreducible submodule ofM , and abc
∑
i∈I
Ki ⊆

L. Assume that ab
∑

i∈I Ki 6⊆ L and ac
∑

i∈I Ki 6⊆ L. Then there are m,n ∈ I
where abKn 6⊆ L and acKm 6⊆ L. Hence, for every Kn ⊆ Ks and every Km ⊆ Kd

we have that abKs 6⊆ L and acKd 6⊆ L. Therefore, for each submodule Kh such
that Kn ⊆ Kh and Km ⊆ Kh, we have bcKh ⊆ L. Hence bc

∑
i∈I Ki ⊆ L, as

needed. �
Definition 2.12. We say that a classical 2-absorbing second submodule N of an
R-moduleM is amaximal classical 2-absorbing second submodule of a submoduleK
of M , if N ⊆ K and there does not exist a classical 2-absorbing second submodule
T of M such that N ⊂ T ⊂ K.

Lemma 2.13. Let M be an R-module. Then every classical 2-absorbing second
submodule of M is contained in a maximal classical 2-absorbing second submodule
of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.11. �
Theorem 2.14. Let M be an Artinian R-module. Then every non-zero submodule
of M has only a finite number of maximal classical 2-absorbing second submodules.

Proof. Suppose that there exists a non-zero submodule N of M such that it has
an infinite number of maximal classical 2-absorbing second submodules. Let S be
a submodule of M chosen minimal such that S has an infinite number of maximal
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classical 2-absorbing second submodules becauseM is an Artinian R-module. Then
S is not a classical 2-absorbing second submodule. Thus there exist a, b, c ∈ R
and a completely irreducible submodule L of M such that abcS ⊆ L but abS 6⊆ L,
acS 6⊆ L, and bcS 6⊆ L. Let V be a maximal classical 2-absorbing second submodule
of M contained in S. Then abV ⊆ L or acV ⊆ L or bcV ⊆ L. Thus V ⊆ (L :M ab)
or V ⊆ (L :M ac) or V ⊆ (L :M bc). Therefore, V ⊆ (L :S ab) or V ⊆ (L :S ac)
or V ⊆ (L :S bc). By the choice of S, the modules (L :S ab), (L :S ac), and
(L :S bc) have only finitely many maximal classical 2-absorbing second submodules.
Therefore, there is only a finite number of possibilities for the module S, which is
a contradiction. �

3. Strongly classical 2-absorbing second submodules

Definition 3.1. Let N be a non-zero submodule of an R-module M . We say that
N is a strongly classical 2-absorbing second submodule of M if whenever a, b, c ∈ R,
L1, L2, L3 are completely irreducible submodules of M , and abcN ⊆ L1 ∩ L2 ∩ L3,
then abN ⊆ L1 ∩ L2 ∩ L3 or bcN ⊆ L1 ∩ L2 ∩ L3 or acN ⊆ L1 ∩ L2 ∩ L3. We
say M is a strongly classical 2-absorbing second module if M is a strongly classical
2-absorbing second submodule of itself.

Clearly every strongly classical 2-absorbing second submodule is a classical 2-
absorbing second submodule.

Question 3.2. Let M be an R-module. Is every classical 2-absorbing second
submodule of M a strongly classical 2-absorbing second submodule of M?

Example 3.3. The Z-module Z has no strongly classical 2-absorbing second sub-
module.

Theorem 3.4. LetM be an R-module and N be a non-zero submodule ofM . Then
the following statements are equivalent:

(a) N is strongly classical 2-absorbing second;
(b) If a, b, c ∈ R, K is a submodule of M , and abcN ⊆ K, then abN ⊆ K or

bcN ⊆ K or acN ⊆ K;
(c) For every a, b, c ∈ R, abcN = abN or abcN = acN or abcN = bcN ;
(d) For every a, b ∈ R and submodule K of M with abN 6⊆ K, (K :R abN) =

(K :R aN) ∪ (K :R bN);
(e) For every a, b ∈ R and submodule K of M with abN 6⊆ K, (K :R abN) =

(K :R aN) or (K :R abN) = (K :R bN);
(f) For every a, b ∈ R, every ideal I of R, and submodule K of M with abIN ⊆

K, either abN ⊆ K or aIN ⊆ K or bIN ⊆ K;
(g) For every a ∈ R, every ideal I of R, and submodule K ofM with aIN 6⊆ K,

(K :R aIN) = (K :R IN) or (K :R aIN) = (K :R aN);
(h) For every a ∈ R, ideals I, J of R, and submodule K of M with aIJN ⊆ K,

either aIN ⊆ K or aJN ⊆ K or IJN ⊆ K;
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(i) For ideals I, J of R, and submodule K ofM with IJN 6⊆ K, (K :R IJN) =
(K :R IN) or (K :R IJN) = (K :R JN);

(j) For ideals I1, I2, I3 of R, and submodule K of M with I1I2I3N ⊆ K, either
I1I2N ⊆ K or I1I3N ⊆ K or I2I3N ⊆ K;

(k) For each submodule K of M with N 6⊆ K, (K :R N) is a 2-absorbing ideal
of R.

Proof. (a)⇒ (b) Let a, b, c ∈ R, K is a submodule of M , and abcN ⊆ K. Assume
on the contrary that abN 6⊆ K, bcN 6⊆ K, and acN 6⊆ K. Then there exist
completely irreducible submodules L1, L2, L3 of M such that K is a submodule of
them but abN 6⊆ L1, bcN 6⊆ L2, and acN 6⊆ L3. Now we have abcN ⊆ L1∩L2∩L3.
Thus by part (a), abN ⊆ L1∩L2∩L3 or bcN ⊆ L1∩L2∩L3 or acN ⊆ L1∩L2∩L3.
Therefore, abN ⊆ L1 or bcN ⊆ L2 or acN ⊆ L3 which are contradictions.

(b) ⇒ (c) Let a, b, c ∈ R. Then abcN ⊆ abcN implies that abN ⊆ abcN or
bcN ⊆ abcN or acN ⊆ abcN by part (b). Thus abN = abcN or bcN = abcN or
acN = abcN because the reverse inclusions are clear.

(c) ⇒ (d) Let t ∈ (K :R abN). Then tabN ⊆ K. Since abN 6⊆ K, atN ⊆ K or
btN ⊆ K as needed.

(d) ⇒ (e) This follows from the fact that if an ideal is the union of two ideals,
then it is equal to one of them.

(e) ⇒ (f) Let for some a, b ∈ R, an ideal I of R, and submodule K of M ,
abIN ⊆ K. Then I ⊆ (K :R abN). If abN ⊆ K, then we are done. Assume that
abN 6⊆ K. Then by part (d), I ⊆ (K :R bN) or I ⊆ (K :R aN) as desired.

(g) ⇒ (h) ⇒ (i) ⇒ (h) ⇒ (j) Have proofs similar to that of the previous
implications.

(j)⇒ (a) Trivial.
(j)⇔ (k) This is straightforward. �

Let N be a submodule of an R-module M . Then Theorem 3.4 (a)⇔ (c) shows
that N is a strongly classical 2-absorbing second submodule of M if and only if N
is a strongly classical 2-absorbing second module.

Corollary 3.5. Let N be a strongly classical 2-absorbing second submodule of an
R-module M and I be an ideal of R. Then InN = In+1N , for all n ≥ 2.

Proof. It is enough to show that I2N = I3N . By Theorem 3.4, I2N = I3N . �

Example 3.6. Clearly every strongly 2-absorbing second submodule is a strongly
classical 2-absorbing second submodule. But the converse is not true in general.
For example, consider M = Z6 ⊕Q as a Z-module. Then M is a strongly classical
2-absorbing second module. But M is not a strongly 2-absorbing second module.

A non-zero submodule N of an R-module M is said to be a weakly second sub-
module of M if rsN ⊆ K, where r, s ∈ R and K is a submodule of M , implies
either rN ⊆ K or sN ⊆ K [1].
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Proposition 3.7. Let M be an R-module. Then we have the following.
(a) IfM is a comultiplicationR-module andN is a strongly classical 2-absorbing

second submodule of M , then N is a strongly 2-absorbing second submod-
ule of M .

(b) If N1, N2 are weakly second submodules of M , then N1 +N2 is a strongly
classical 2-absorbing second submodule of M .

(c) If N is a strongly classical 2-absorbing second submodule of M , then IN
is a strongly classical 2-absorbing second submodule of M for all ideals I
of R with I 6⊆ AnnR(N).

(d) If M is a multiplication strongly classical 2-absorbing second R-module,
then every non-zero submodule of M is a classical 2-absorbing second sub-
module of M .

(e) If M is a strongly classical 2-absorbing second R-module, then every non-
zero homomorphic image of M is a classical 2-absorbing second R-module.

Proof. (a) By Theorem 3.4 (a)⇒ (k), AnnR(N) is a 2-absorbing ideal of R. Now
the result follows from [5, Theorem 3.10].
(b) Let N1, N2 be weakly second submodules of M and a, b, c ∈ R. Since N1 is

a weakly second submodule, we may assume that abcN1 = aN1. Likewise, assume
that abcN2 = bN2. Hence abc(N1 +N2) = ab(N1 +N2) which implies N1 +N2 is a
classical 2-absorbing second submodule by Theorem 3.4 (c)⇒ (a).
(c) Use the technique of the proof of Theorem 2.9 (a).
(d) This follows from part (c).
(e) This is straightforward. �
For a submodule N of an R-module M the second radical (or second socle) of

N is defined as the sum of all second submodules of M contained in N and it is
denoted by sec(N) (or soc(N)). In case N does not contain any second submodule,
the second radical of N is defined to be (0) (see [9] and [3]).

Theorem 3.8. Let M be a finitely generated comultiplication R-module. If N is
a strongly classical 2-absorbing second submodule of M , then sec(N) is a strongly
2-absorbing second submodule of M .

Proof. Let N be a strongly classical 2-absorbing second submodule of M . By
Proposition 3.7 (a), AnnR(N) is a 2-absorbing ideal of R. Thus by [7, Theorem 2.1],√
AnnR(N) is a 2-absorbing ideal of R. By [4, Theorem 2.12], AnnR(sec(N)) =√
AnnR(N). Therefore, AnnR(sec(N)) is a 2-absorbing ideal of R. Now the result

follows from [5, Theorem 3.10]. �
The following examples show that the two concepts of classical 2-absorbing sub-

modules and strongly classical 2-absorbing second submodules are different in gen-
eral.

Example 3.9. The submodule 2Z of the Z-module Z is a classical 2-absorbing
submodule which is not a strongly classical 2-absorbing second module.
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Example 3.10. The submodule 〈1/p + Z〉 of the Z-module Zp∞ is a a strongly
classical 2-absorbing second module which is not a classical 2-absorbing submodule
of Zp∞ .

A commutative ring R is said to be a u-ring provided R has the property that an
ideal contained in a finite union of ideals must be contained in one of those ideals;
and a um-ring is a ring R with the property that an R-module which is equal to a
finite union of submodules must be equal to one of them [16].
In the following proposition, we investigate the relationships between strongly

classical 2-absorbing second submodules and classical 2-absorbing submodules.

Proposition 3.11. Let M be a non-zero R-module. Then we have the following.

(a) IfM is a finitely generated strongly classical 2-absorbing second R-module,
then the zero submodule of M is a classical 2-absorbing submodule.

(b) If M is a multiplication strongly classical 2-absorbing second R-module,
then the zero submodule of M is a classical 2-absorbing submodule.

(c) Let R be a um-ring. If M is a Artinian R-module and the zero submodule
of M is a classical 2-absorbing submodule, then M is a strongly classical
2-absorbing second R-module.

(d) Let R be a um-ring. If M is a comultiplication R-module and the zero
submodule ofM is a classical 2-absorbing submodule, thenM is a strongly
classical 2-absorbing second R-module.

Proof. (a) Let a, b, c ∈ R, m ∈M , and abcm = 0. By Theorem 3.4, we can assume
that abcM = acM . Since M is finitely generated, by using [13, Theorem 76],
AnnR(abM) + Rc = R. It follows that (0 :M abc) = (0 :M ab). This implies that
abm = 0, as needed.
(b) Let a, b, c ∈ R, m ∈M , and abcm = 0. Then by Theorem 3.4, we can assume

that abcM = acM . Thus

0 = abc((0 :M abc) :R M)M = (((0 :M abc) :R M)M)ab.

Since M is a multiplication module, ((0 :M abc) :R M)M = (0 :M abc). Therefore,
(0 :M abc)ab = 0. It follows that (0 :M abc) ⊆ (0 :M ab). Thus (0 :M abc) = (0 :M
ab) because the reverse inclusion is clear. Hence abm = 0, as required.
(c) Let a, b, c ∈ R. Then by [14, Theorem 4], we can assume that (0 :M abc) =

(0 :M ab). Hence (0 :M/(0:Mab) c) = 0. Since M is Artinian, it follows that
cM + (0 :M ab) = M . Therefore, abcM = abM . Thus by Theorem 3.4 (c) ⇒ (a),
M is a classical 2-absorbing second R-module.
(d) Let a, b, c ∈ R. Then by [14, Theorem 4], we can assume that (0 :M abc) =

(0 :M ab). Since M is a comultiplication R-module, this implies that

M = ((0 :M abc) :M AnnR(abcM) = ((0 :M ab) :M AnnR(abcM)) = (abcM :M ab).

It follows that abM ⊆ abcM . Thus abM = abcM because the reverse implication
is clear and this completed the proof. �
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Proposition 3.12. Let M be an R-module and {Ki}i∈I be a chain of strongly
classical 2-absorbing second submodules ofM . Then

∑
i∈I Ki is a strongly classical

2-absorbing second submodule of M .

Proof. Use the technique of Proposition 2.11. �

Definition 3.13. We say that a strongly classical 2-absorbing second submodule
N of an R-module M is a maximal strongly classical 2-absorbing second submodule
of a submodule K of M , if N ⊆ K and there does not exist a strongly classical
2-absorbing second submodule T of M such that N ⊂ T ⊂ K.

Lemma 3.14. Let M be an R-module. Then every strongly classical 2-absorbing
second submodule of M is contained in a maximal strongly classical 2-absorbing
second submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 3.12. �

Theorem 3.15. Let M be an Artinian R-module. Then every non-zero submodule
of M has only a finite number of maximal strongly classical 2-absorbing second
submodules.

Proof. Use the technique of Theorem 2.14 any apply Lemma 3.14. �

Theorem 3.16. Let f : M → Ḿ be a monomorphism of R-modules. Then we
have the following.

(a) If N is a strongly classical 2-absorbing second submodule of M , then f(N)

is a strongly classical 2-absorbing second submodule of Ḿ .
(b) If Ń is a strongly classical 2-absorbing second submodule of f(M), then

f−1(Ń) is a strongly classical 2-absorbing second submodule of M .

Proof. (a) Since N 6= 0 and f is a monomorphism, we have f(N) 6= 0. Let a, b, c ∈
R. Then by Theorem 3.4 (a)⇒ (c), we can assume that abcN = abN . Thus

abcf(N) = f(abcN) = f(abN) = abf(N).

Hence f(N) is a strongly classical 2-absorbing second submodule of Ḿ by Theorem
3.4 (c)⇒ (a).
(b) If f−1(Ń) = 0, then f(M) ∩ Ń = ff−1(Ń) = f(0) = 0. Thus Ń = 0, a

contradiction. Therefore, f−1(Ń) 6= 0. Now let a, b, c ∈ R, K be a submodule of
M , and abcf−1(Ń) ⊆ K. Then

abcŃ = abc(f(M) ∩ Ń) = abcff−1(Ń) ⊆ f(K).

Thus as Ń is a strongly classical 2-absorbing second submodule, abŃ ⊆ f(K)

or bcŃ ⊆ f(K) or acŃ ⊆ f(K). Therefore, abf−1(Ń) ⊆ f−1f(K) = K or
bcf−1(Ń) ⊆ f−1f(K) = K or acf−1(Ń) ⊆ f−1f(K) = K, as desired. �
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Let Ri be a commutative ring with identity andMi be an Ri-module for i = 1, 2.
Let R = R1 ×R2. Then M = M1 ×M2 is an R-module and each submodule of M
is in the form of N = N1 ×N2 for some submodules N1 of M1 and N2 of M2.

Theorem 3.17. Let R = R1×R2 be a decomposable ring and let M = M1×M2 be
an R-module, where M1 is an R1-module and M2 is an R2-module. Suppose that
N = N1 × N2 is a non-zero submodule of M . Then the following conditions are
equivalent:

(a) N is a strongly classical 2-absorbing second submodule of M ;
(b) Either N1 = 0 and N2 is a strongly classical 2-absorbing second submodule

ofM2 or N2 = 0 and N1 is a strongly classical 2-absorbing second submodule
of M1 or N1, N2 are weakly second submodules of M1, M2, respectively.

Proof. (a) ⇒ (b). Suppose that N is a strongly classical 2-absorbing second sub-
module ofM such that N2 = 0. From our hypothesis, N is non-zero, so N1 6= 0. Set
Ḿ = M1×0. One can see that Ń = N1×0 is a strongly classical 2-absorbing second
submodule of Ḿ . Also observe that Ḿ ∼= M1 and Ń ∼= N1. Thus N1 is a strongly
classical 2-absorbing second submodule of M1. Suppose that N1 6= 0 and N2 6= 0.
We show that N1 is a weakly second submodule of M1. Since N2 6= 0, there exists
a completely irreducible submodule L2 of M2 such that N2 6⊆ L2. Let abN1 ⊆ K
for some a, b ∈ R1 and submodule K of M1. Thus (a, 1)(b, 1)(1, 0)(N1 × N2) =
abN1 × 0 ⊆ K × L2. So either (a, 1)(b, 1)(N1 × N2) = abN1 × N2 ⊆ K × L2 or
(a, 1)(1, 0)(N1×N2) = aN1×0 ⊆ K×L2 or (b, 1)(1, 0)(N1×N2) = bN1×0 ⊆ K×L2.
If abN1 ×N2 ⊆ K × L2, then N2 ⊆ L2, a contradiction. Hence either aN1 ⊆ K or
bN1 ⊆ K which shows that N1 is a weakly second submodule of M1. Similarly, we
can show that N2 is a weakly second submodule of M2.

(b) ⇒ (a). Suppose that N = N1 × 0, where N1 is a strongly classical 2-
absorbing (resp. weakly) second submodule of M1. Then it is clear that N is a
strongly classical 2-absorbing (resp. weakly) second submodule ofM . Now, assume
that N = N1 × N2, where N1 and N2 are weakly second submodules of M1 and
M2, respectively. Hence (N1 × 0) + (0×N2) = N1 ×N2 = N is a strongly classical
2-absorbing second submodule of M , by Proposition 3.7 (b). �

Lemma 3.18. Let R = R1 × R2 × · · · × Rn be a decomposable ring and M =
M1×M2 · · · ×Mn be an R-module where for every 1 ≤ i ≤ n, Mi is an Ri-module,
respectively. A non-zero submodule N of M is a weakly second submodule of M if
and only if N = ×ni=1Ni such that for some k ∈ {1, 2, ..., n}, Nk is a weakly second
submodule of Mk, and Ni = 0 for every i ∈ {1, 2, ..., n} \ {k}.

Proof. (⇒) Let N be a weakly second submodule of M . We know N = ×ni=1Ni
where for every 1 ≤ i ≤ n, Ni is a submodule of Mi, respectively. Assume that
Nr is a non-zero submodule of Mr and Ns is a non-zero submodule of Ms for some
1 ≤ r < s ≤ n. Since N is a weakly second submodule of M ,

(0, · · · , 0, 1Rr
, 0, · · · , 0)(0, · · · , 0, 1Rs

, 0, · · · , 0)N = (0, · · · , 0, 1Rr
, 0, · · · , 0)N
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or

(0, · · · , 0, 1Rr , 0, · · · , 0)(0, · · · , 0, 1Rs , 0, · · · , 0)N = (0, · · · , 0, 1Rs , 0, · · · , 0)N.

Thus Nr = 0 or Ns = 0. This contradiction shows that exactly one of the Ni’s is
non-zero, say Nk. Now, we show that Nk is a weakly second submodule ofMk. Let
a, b ∈ Rk. Since N is a weakly second submodule of M ,

(0, · · · , 0, a, 0, · · · , 0)(0, · · · , 0, b, 0, · · · , 0)N = (0, · · · , 0, a, 0, · · · , 0)N

or
(0, · · · , 0, a, 0, · · · , 0)(0, · · · , 0, b, 0, · · · , 0)N = (0, · · · , 0, b, 0, · · · , 0)N

Thus abNk = aNk or abNk = bNk as needed.
(⇐) This is clear. �

Theorem 3.19. Let R = R1 ×R2 × · · · ×Rn (2 ≤ n <∞) be a decomposable ring
and M = M1 ×M2 · · · ×Mn be an R-module, where for every 1 ≤ i ≤ n, Mi is
an Ri-module, respectively. Then for a non-zero submodule N of M the following
conditions are equivalent:

(a) N is a strongly classical 2-absorbing second submodule of M ;
(b) Either N = ×ni=1Ni such that for some k ∈ {1, 2, ..., n}, Nk is a strongly

classical 2-absorbing second submodule of Mk, and Ni = 0 for every i ∈
{1, 2, ..., n}\{k} or N = ×ni=1Ni such that for some k,m ∈ {1, 2, ..., n}, Nk
is a weakly second submodule of Mk, Nm is a weakly second submodule of
Mm, and Ni = 0 for every i ∈ {1, 2, ..., n} \ {k,m}.

Proof. We use induction on n. For n = 2 the result holds by Theorem 3.17. Now
suppose that the result is valid when K = M1 × · · · ×Mt for each t < n. We show
that the result holds whenM = K×Mn. By Theorem 3.17, N is a strongly classical
2-absorbing second submodule ofM if and only if either N = L×0 for some strongly
classical 2-absorbing second submodule L of K or N = 0 × Ln for some strongly
classical 2-absorbing second submodule Ln of Mn or N = L× Ln for some weakly
second submodule L of K and some weakly second submodule Ln ofMn. Note that
by Lemma 3.18, a non-zero submodule L of K is a weakly second submodule of K
if and only if L = ×n−1i=1 Ni such that for some k ∈ {1, 2, ..., n − 1}, Nk is a weakly
second submodule of Mk and Ni = 0 for every i ∈ {1, 2, ..., n− 1} \ {k}. Hence the
claim is proved. �

Example 3.20. Let R be a Noetherian ring and let E = ⊕m∈Max(R)E(R/m).
Then for each 2-absorbing ideal P of R, (0 :E P ) is a strongly classical 2-absorbing
second submodule of E.

Proof. By using [17, p. 147], HomR(R/P,E) 6= 0. Now since (0 :E P ) ∼=
HomR(R/P,E), (0 :E P ) is a strongly 2-absorbing second submodule of E by
[5, Theorem 3.27]. Now the result follows from Example 3.6. �
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Theorem 3.21. Let R be a um-ring andM be an R-module. If E is an injective R-
module and N is a classical 2-absorbing submodule ofM such that HomR(M/N,E) 6=
0, then HomR(M/N,E) is a strongly classical 2-absorbing second R-module.

Proof. Let a, b, c ∈ R. Since N is a classical 2-absorbing submodule of M , we
can assume that (N :M abc) = (N :M ab) by [14, Theorem 4]. Since E is an
injective R-module, by replacing M with M/N in [1, Theorem 3.13 (a)], we have
HomR(M/(N :M r), E) = rHomR(M/N,E) for each r ∈ R. Therefore,

abcHomR(M/N,E) = HomR(M/(N :M abc), E) =

HomR(M/(N :M ab), E) = abHomR(M/N,E),

as needed �
Theorem 3.22. Let M be a strongly classical 2-absorbing second R-module and
F be a right exact linear covariant functor over the category of R-modules. Then
F (M) is a strongly classical 2-absorbing second R-module if F (M) 6= 0.

Proof. This follows from [1, Lemma 3.14] and Theorem 3.4 (a)⇒ (c). �
Corollary 3.23. Let M be an R-module, S be a multiplicative subset of R and
N be a strongly classical 2-absorbing second submodule of M . Then S−1N is a
strongly classical 2-absorbing second submodule of S−1M if S−1N 6= 0.

Proof. This follows from Theorem 3.22. �
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TRANSMUTED GUMBEL UNIVARIATE EXPONENTIAL
DISTRIBUTION

MONIREH HAMELDARBANDI AND MEHMET YILMAZ

Abstract. A functional composition of the distribution function of one prob-
ability distribution with the inverse distribution function of another is called
the transmutation map. The present paper is purported to show how the
transmuted distribution can be obtained by using the convex combination of
failure probability of two-component systems. The transmuted Gumbel uni-
variate exponential distribution is presented by changing convex combination
parameter. This new distribution is defined and studied. Some mathematical
properties of this distribution including the generating function and ordinary
moments are derived. The survival, hazard rate and mean residual life func-
tions are discussed. Finally, three applications to real data are presented.

1. Introduction

In the present paper, we will start by examining two-component (series and par-
allel) systems. The failure probabilities of these systems will be found and a new
distribution is obtained by applying convex combinations to these probabilities as
these can be ordered within themselves. In the process of proposing this distribu-
tion, the lifetimes of the components of the system which are the random variables
are considered to be both dependent on each other and non-identical. If the random
variables that represent the lifetimes of two components are identical and indepen-
dent, then this proposed distribution will emerge in the transmuted model, which
is one of the important families in the pertinent-literature in recent years. The
transmuted family has been introduced by [27] for the first time and the theory
of transmuted distribution is clearly defined by [28]. This method has led to the
development of new and more flexible distributions by many authors, proposing
many different distributions and pioneering the modeling of many real data sets
with these distributions. Aryal and Tsokos [4] and [5] studied the two forms of
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the transmuted distributions. These scholars provided the mathematical charac-
terization of transmuted extreme value and transmuted Weibull distributions and
their applications to analyze real data sets. Aryal [6] proposed the transmuted log-
logistic distribution and discussed various properties of this distribution. Merovci
[19] introduced the transmuted Lindley distribution and applied it to bladder cancer
data; Merovci [20] proposed the transmuted exponentiated exponential distribution;
Merovci and Elbatal [21] studied the transmuted Lindley-geometric distribution.
Ashour and Eltehiwy [7] discussed the applications of Transmuted Lomax Distrib-
ution and Ashour and Eltehiwy [8] proposed the transmuted exponentiated Lomax
distribution. More recently, the transmuted exponentiated modified Weibull distri-
bution has been suggested by [13] having its applications in real data. Hussian [16]
obtained the transmuted exponentiated gamma distribution and discussed their
various properties and applications. Elbatal et al. [11] discussed as various esti-
mation methods for the transmuted exponentiated Fréchet distribution. Abd El
Hady [1] obtained an extended Weibull distribution as the exponentiated trans-
muted Weibull distribution and discussed its various properties and applications.
Merovci and Puka [22] introduced the transmuted Pareto distribution. Elbatal and
Aryal [12] studied the transmuted additive Weibull distribution; Merovci [23] pro-
posed the transmuted Rayleigh distribution and discussed their various properties.
In the second part of this article, the new family will be introduced and the sur-
vival and hazard rate functions of the model under study will be found. The third
part of this article contains some main definitions as Gumbel Bivariate Exponential
Distribution and Gumbel Univariate Exponential Distribution. Later, the baseline
distributions of the proposed distribution will be taken as exponential distribution
and the proposed distribution is called the transmuted Gumbel univariate expo-
nential (TGUE) distribution. In the subsequent subsections, the analytical shapes
of the probability density, survival, cumulative hazard rate, hazard rate and mean
residual life functions of the TGUE distribution are presented. Statistical prop-
erties including moment generating function and moments, maximum likelihood
estimates and the information matrix, random number generation, Rényi entropy
and order statistics of the TGUE distribution are discussed in other subsections of
Section 3. Finally, in order to demonstrate the usefulness of the proposed distrib-
ution, three real data applications are presented in the application section.

2. The New Family

In recent literature, the transmuted family of lifetime distributions have at-
tracted the attention of the researchers for modeling the lifetime data. Firstly,
two-component (series and parallel) systems will be introduced. Let T1 and T2 be
random variables that represent the lifetime of the components. Throughout this
paper, the marginal distribution functions of T1 and T2 are represented by FT1 (.)
and FT2 (.), and the joint distribution and the joint survival functions of T1 and



TGUE DISTRIBUTION 139

T2 are indicated by FT1,T2 (., .) and ST1,T2 (., .) = 1− FT1 (.)− FT2 (.) + FT1,T2 (., .),
respectively. The series system success requires that the two parts operate success-
fully at the same time. System failure occurs if either one or more components fail.
Then, the random variable Tmin that stands for the series system lifetime is defined
as Tmin = min {T1, T2}. Hence, the probability of the failure of the series system
is given by

P (Tmin ≤ t) = 1−P (T1 > t, T2 > t) = 1−ST1,T2 (t, t) = FT1 (t)+FT2 (t)−FT1,T2 (t, t)

Parallel system is such a system that functions when at least one of its components
works and the failure of all the components is necessary for the system’s failure to
occur. Accordingly, Tmax = max {T1, T2} stands for the parallel system lifetime.
Then, the probability of the failure of the parallel system is given by

P (Tmax ≤ t) = P (max {T1, T2} ≤ t) = P (T1 ≤ t, T2 ≤ t) = FT1,T2 (t, t) .

According to axiomatic properties of probability, component lifetimes T1 and T2

can be ordered stochastically as Tmin≤ st Ti≤ st Tmax, i = 1, 2. Namely, we have
P (Tmax ≤ t) ≤ P (Ti ≤ t) ≤ P (Tmin ≤ t). Then, the lower and the upper bounds
for FTi (t) can be written as follows:

FT1,T2 (t, t) ≤ FTi (t) ≤ FT1 (t) + FT2 (t)− FT1,T2 (t, t) . (1)

In that case, FTi (t) can be represented as a convex combination of failure proba-
bilities series and parallel systems. Then, we have

λ (FT1 (t) + FT2 (t)− FT1,T2 (t, t)) + (1− λ)FT1,T2 (t, t)

= λ (FT1 (t) + FT2 (t)) + (1− 2λ)FT1,T2 (t, t) ,

where the combination parameter λ ∈ [0, 1]. This latter well-defined statement
can derive numerous univariate distribution functions with respect to combination
parameter λ.
In the latter equation, if the distributions of random variables T1 and T2 are

assumed to be identical, namely, FT1 (t) = FT2 (t), then the new distribution with
the parameter set Θ is given by

G (t; Θ) = 2λFTi (t) + (1− 2λ)FT1,T2 (t, t) .

If transformation λ = δ+1
2 is done, range will change from [0, 1] to [−1, 1]. So, for

|δ| ≤ 1, the distribution function can be written as

G (t; Θ) = (1 + δ)FTi (t)− δFT1,T2 (t, t) (2)

= (1 + δ)FTi (t)− δ (2FTi (t) + ST1,T2 (t, t)− 1)

= (1− δ) (1− STi (t)) + δ (1− ST1,T2 (t, t)) .

So, if the distributions of random variables T1 and T2 are taken independent,
namely, FT1,T2 (t, t) = (FTi (t))

2 in the first equation of (2), we can obtain the
transmuted distribution constructed by the quadratic rank transmutation method
of [27] which has become very popular in the recent years.
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In particular, for δ = 0 it gives the baseline distribution FTi (t), for δ = −1,
it gives the distribution of the maximum of dependent two random variables with
joint distribution function FT1,T2 (t, t) and for δ = 1, 2FTi (t) − FT1,T2 (t, t) is the
distribution of the minimum of two random variables T1 and T2 with identically
distributed.

Theorem 1. The probability density function (p.d.f.) of T is represented in terms
of the conditional hazard rates of the component lifetimes T1 and T2 as

g (t; Θ) = (1− δ) fTi (t) + δST1,T2 (t, t) (ψ1 (t) + ψ2 (t)) , (3)

where ψ1 (t) and ψ2 (t) denote the failure rates of the corresponding components,
given that both components are alive at time t.

Proof. The p.d.f. of this distribution can be obtained with derivation of distribution
function defined in (2) as follows

g (t; Θ) =
d

dt
G (t; Θ) = (1− δ)

(
−d
dt
STi (t)

)
+ δ

(
−d
dt
ST1,T2 (t, t)

)
and the result in (3) will be obtained from the following method.

−d
dt
ST1,T2 (t, t) =

−d
dt

∫ ∞
t

∫ ∞
t

fT1,T2 (u, v) dvdu

= −
∫ ∞
t

fT1,T2 (u, t) du−
∫ ∞
t

fT1,T2 (t, v) dv

= −fT2 (t)Pr (T1 ≤ tT2 = t)− fT1 (t)Pr (T2 ≤ tT1 = t)

=
−d
dt2

ST1,T2 (t, t2)

∣∣∣∣
t2=t

+
−d
dt1

ST1,T2 (t1, t)

∣∣∣∣
t1=t

= ψ2 (t)ST1,T2 (t, t) + ψ1 (t)ST1,T2 (t, t)

where ψ1 (t) and ψ2 (t) denote the failure rates of the corresponding components,
given that both components are alive at time t and defined as follows:

ψ1 (t) = lim
∆t→0+

Pr (t < T1 ≤ t+ ∆t |T1 > t, T2 > t )

∆t
=

−d
dt1
ST1,T2 (t1, t)

∣∣∣
t1=t

S (t, t)
, t ≥ 0

ψ2 (t) = lim
∆t→0+

Pr (t < T2 ≤ t+ ∆t |T1 > t, T2 > t )

∆t
=

−d
dt2
ST1,T2 (t, t2)

∣∣∣
t2=t

S (t, t)
. t ≥ 0

(See [26] and see [17]). �
2.1. Survival and Hazard Rate Functions of Proposed Distribution. The
survival function denoted by S (t; Θ) of this distribution is defined as follows,

S (t; Θ) = 1−G (t; Θ) = 1− (1 + δ)FTi (t) + δFT1,T2 (t, t)

= 1− (1− δ) (1− STi (t))− δ (1− ST1,T2 (t, t))
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= (1− δ)STi (t) + δST1,T2 (t, t) .

The hazard rate function (hrf) corresponding to (2) and (3) is given by

h (t; Θ) =
g (t; Θ)

S (t; Θ)
=

(1− δ)hT1 (t)STi (t) + δST1,T2 (t, t) (ψ1 (t) + ψ2 (t))

(1− δ)STi (t) + δST1,T2 (t, t)

= ψ1 (t) + ψ2 (t) +
(1− δ)STi (t) (hT1 (t)− (ψ1 (t) + ψ2 (t)))

(1− δ)STi (t) + δST1,T2 (t, t)

= hT1 (t) +
δST1,T2 (t, t) ((ψ1 (t) + ψ2 (t))− hT1 (t))

(1− δ)STi (t) + δST1,T2 (t, t)

= w1 (t)hT1 (t) + w2 (t) (ψ1 (t) + ψ2 (t)) ,

where w1 (t) =
(1−δ)STi (t)

(1−δ)STi (t)+δ ST1,T2 (t,t) and w1 (t) + w2 (t) = 1. Thus, the hrf can
be written as a weighted sum of the hrf of the random variable T1 and sum of the
conditional failure rates of the corresponding components (ψ1 (t) + ψ2 (t)).
In the next section, we will introduce a bivariate version of the exponential

distribution named the Gumbel bivariate exponential distribution. On the basis
of this, the Gumbel univariate exponential distribution is defined and examined.
Then, the transmuted Gumbel univariate exponential distribution is taken as a
special case for the proposed distribution and some mathematical properties are
studied.

3. Special Case: Transmuted Gumbel Univariate Exponential (TGUE)
Distribution

We will first introduce distributions related to setting-up a special case. Then
the baseline distribution is defined and we study on some reliability properties such
as survival, cumulative hazard rate, hazard rate and mean residual life functions.
Moment generating function and moments of proposed distribution are analyzed.
ML estimation of model parameters are performed and asymptotic distribution
of the parameters are obtained in terms of observed Fisher Information and then
asymptotic confidence intervals are also obtained. General expressions for the Rényi
entropy is presented. Furthermore, general results for the order statistics of the
TGUE random variables are derived.

3.1. Gumbel Bivariate and Univariate Exponential Distribution.

3.1.1. Gumbel Bivariate Exponential Distribution. Exponential distribution plays a
central role in life testing, reliability and analyses of survival or lifetime data. The
Gumbel bivariate exponential (GBE) distribution introduced by [15] is the most
popular model for analyzing lifetime data and its survival function is

ST1,T2 (t1, t2) = e−(α1t1+α2t2+βt1t2), t1, t2 > 0, (4)



142 MONIREH HAMELDARBANDI AND MEHMET YILMAZ

where α1 and α2 are the scale parameters representing the characteristic life and
also positive, β is dependency parameter and 0 ≤ β ≤ α1α2. The marginal sur-
vival functions of T1 and T2 respectively are e−α1t1 and e−α2t2 . Hence T1 and T2

have exponential marginals. The p.d.f. of the three-parameter GBE distribution
corresponding to (4) is given by

fT1,T2 (t1, t2) =
∂2

∂t1∂t2
ST1,T2 (t1, t2) =

∂

∂t1

(
∂

∂t2
e−(α1t1+α2t2+βt1t2)

)
= (α1 + βt2) (α2 + βt1) e−(α1t1+α2t2+βt1t2), t1, t2 > 0.

3.1.2. Gumbel Univariate Exponential Distribution. By letting α1 = α2 and consid-
ering the diagonal section of ST1,T2 (t1, t2) i.e., t1 = t2 = t in the survival function of
GBE distribution defined in (4). Then the random vector (T1, T2) has the Gumbel
univariate exponential (GUE) distribution, and the survival function of the GUE
distribution can be written as follows

ST1,T2 (t, t) = e−(2αt+βt2), t > 0, α > 0, 0 ≤ β ≤ α2. (5)

By using the known relation between ST1,T2 (t, t) and FT1,T2 (t, t), the distribution
function of the GUE random variable is given by

FT1,T2 (t, t) = 1− 2STi (t) + ST1,T2 (t, t) = 1− 2e−αt + e−(2αt+βt2),

and its p.d.f. of the GUE random variable reduces to

fT1,T2 (t, t) = 2αe−αt − (2α+ 2βt) e−(2αt+βt2)

= 2α
(
e−αt − e−(2αt+βt2)

)
− 2βte−(2αt+βt2).

The moment generating function of the GUE random variable is given as follows

MT (k) =

∫ ∞
0

ekT fT1,T2 (t, t) dt =
α+ k

α− k −
k

2

√
π

β
e
(2α−k)2

4β erfc

(
2α− k√

β

)
,

where erfc is a complementary error function and k < α.
Especially, the first four moments of the GUE random variable T are given as

E (T ) = 2

(
−te−αt

∣∣∞
0

+

∫ ∞
0

e−αtdt+te−(2αt+βt2)
∣∣∣∞

0
−
∫ ∞

0

e−(2αt+βt2)dt

)
= 2

(
−1

α
e−αt

∣∣∣∣∞
0

− e
α2

β

∫ ∞
0

e−(
√
β(t+α

β ))
2

dt

)
=

2

α
− ξ (α, β) ,

E
(
T 2
)

=
4

α2
− 1

β
+

1

β
ξ (α, β) ,

E
(
T 3
)

=
12

α3
− 3α

β2 +
3

4β

(
1 +

2α2

β

)
ξ (α, β) ,
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E
(
T 4
)

=
48

α4
− 1

2β2

(
4 + 12α− 4α2

β

)
+

(
3
α

β2 e
α2

β + 2

(
α

β

)3

ξ (α, β)

)

where ξ (α, β) =
√

π
β e

α2

β erfc
(
α√
β

)
.

3.1.3. Transmuted Gumbel Univariate Exponential Distribution. The transmuted
Gumbel univariate exponential (TGUE) distribution is an extended model to ana-
lyze more complex data. T1 and T2 have a exponential distribution with the same
shape parameter α and random vector (T1, T2) has a Gumbel univariate exponential
distribution with α and β parameters, then we can write

STi (t) = e−αt , FTi (t) = 1− e−αt

ST1,T2 (t, t) = e−(2αt+βt2), FT1,T2 (t, t) = 1− 2e−αt + e−(2αt+βt2).

By using equation (2) and (5), the distribution function of the TGUE random
variable with the parameter space Θ =

{
(α, β, δ) : α > 0, β < α2, −1 ≤ δ ≤ 1

}
,

can be obtained as

G (t; Θ) = (1− δ) (1− STi (t)) + δ (1− ST1,T2 (t, t)) , (6)

= (1− δ)
(
1− e−αt

)
+ δ

(
1− e−(2αt+βt2)

)
= 1− (1− δ) e−αt − δe−(2αt+βt2).

Henceforth, the p.d.f. corresponding to (3) and (6) becomes

g (t; Θ) =
d

dt
G (t; Θ) = (1− δ) fTi (t) + δST1,T2 (t, t) (ψ1 (t) + ψ2 (t)) ,

where ψ1 (t) =

−d
dt1

e−(αt1+αt+βt1t)
∣∣∣
t1=t

e−(2αt+βt2) = α + βt, ψ2 (t) = α + βt and β ≤ α2.
Consequently, the p.d.f. of the TGUE random variable can be written as follows

g (t; Θ) = (1− δ)αe−αt + δe−(2αt+βt2) (α+ βt+ α+ βt) , (7)

= (1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2).

The shapes of the p.d.f. of the TGUE random variable can be analyzed as follows

g′ (t; Θ) = − (1− δ)α2e−αt − δ(2α+ 2βt)
2
e−(2αt+βt2),

by examining this derivation, it is clear that when 0 ≤ δ ≤ 1, g′ (t; Θ) < 0 is
obtained and we can say that the p.d.f. is decreasing. Also, in order for p.d.f. to
be unimodal, it must be −1 ≤ δ ≤ 0.
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Figure 1. Plots of the TGUE Probability Density Function

3.1.4. Survival, Cumulative Hazard Rate and Hazard Rate Functions of the TGUE
Distribution. The survival function of the TGUE random variable is given by

S (t; Θ) = 1−G (t; Θ) = (1− δ) e−αt + δe−(2αt+βt2). (8)

Many generalized probability models have been proposed in reliability literature
through the fundamental relationship between the cumulative hazard functionH (t; Θ)
and the survival function S (t; Θ) is given by

H (t; Θ) = − logS (t; Θ) = − log
(

(1− δ) e−αt + δe−(2αt+βt2)
)
. (9)

Thus, we find the cumulative hazard function of the TGUE random variable and
this function describes how the risk of a particular outcome changes with time. We
know

H (0; Θ) = 0, lim
t→∞

H (t; Θ) =∞, H (t; Θ)

is increasing for all t ≥ 0.
The other characteristic of a random variable is the hrf. By using (7) and (8),

this function is given as follows

h (t; Θ) =
g (t; Θ)

S (t; Θ)
=

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)

(1− δ) e−αt + δe−(2αt+βt2)
(10)

=
α (1− δ) eαt+βt2 + 2δ (α+ βt)

(1− δ) eαt+βt2 + δ

= (2α+ 2βt)− (1− δ) (α+ 2βt) e−αt

(1− δ) e−αt + δe−(2αt+βt2)
.
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The hrf of the TGUE random variable has the following properties:

h (0; Θ) = (1 + δ)α,

δ 6= 1 : lim
t→∞

h (t; Θ) = lim
t→∞

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)

(1− δ) e−αt + δe−(2αt+βt2)
= α,

δ = 1 : lim
t→∞

h (t; Θ) = lim
t→∞

(2α+ 2βt) =∞.

The hazard rate function will be examined in the extreme values of the parameters:

(1) If δ = 0, the hrf is the same as the exponential distribution;

h (t; Θ) = α

(2) If δ = 1, the hrf is the same as the linear hazard rate function;

h (t; Θ) = 2 (α+ βt)

(3) If β = 0, the hrf is the same as the transmuted exponential distribution;

h (t; Θ) =
(1− δ)αe−αt + 2δα

(1− δ) e−αt + δ
.

Let’s investigate the monotonicity of hrf,

h′ (t; Θ) =
−δ (1− δ) (α+ 2βt)

2
e−(3αt+βt2)(

(1− δ) e−αt + δe−(2αt+βt2)
)2 .

It is clear from above derivation, when −1 ≤ δ ≤ 0, the hazard rate function is
increasing, that is, h′ (t; Θ) ≥ 0. When 0 ≤ δ ≤ 1, the hazard rate function is
decreasing (h′ (t; Θ) ≤ 0). Some possible shapes of hrf for selected parameter value
are shown in the following figures.

Figure 3.2 shows the hrf defined in (10) with different choices of parameters. This
distribution has an increasing hrf for −1 ≤ δ ≤ 0. If 0 ≤ δ ≤ 1, the hrf is

decreasing.

3.1.5. Mean Residual Life Function of the TGUE Random Variable. In this section,
we will find the mean residual life (mrl) function of the TGUE random variable
which is another important characteristic of a random variable.

m (t; Θ) = E (T − t |T > t ) =

∫ ∞
0

(k − t) dP (T ≤ k |T > t )

=

∫∞
t
S (k; Θ) dk

S (t; Θ)
=

(1− δ) 1
αe
−αt − δ

2

√
π
β e

α2

β erfc
(
α+βt√
β

)
(1− δ) e−αt + δe−(2αt+βt2)

. (11)

The mrl function of the TGUE random variable has the following properties:

(1) If δ = 0, the mrl function is the same as the exponential distribution;

m (t; Θ) =
1

α
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Figure 2. Plots of the TGUE Hazard Rate Function

(2) If δ = 1, the mrl function is;

m (t; Θ) = −1

2

√
π

β
erfc

(
α+ βt√

β

)
e
α2

β +2αt+βt2 ,

and some possible shapes of (11) for selected parameter values is showed in
the following figures.

3.1.6. 3.5. Moment Generating Function and moments of the TGUE Random Vari-
able. In this section, we derive the moment generating function and first four mo-
ments for the TGUE distribution. Let T have the TGUE distribution, then the
moment generating function of T is given by

MT (k) = E
(
ekT
)

= (1− δ) α

α− k+δ

(
1 +

k

2

√
π

β
e
(2α−k)2

4β erfc

(
2α− k√

β

))
, k < α

The expressions for the expected value and variance are

E (T ) = (1− δ) 1

α
− δ

(
e
α2

β

∫ ∞
0

e−(
√
β (t+ α

β ))
2

dt

)
= (1− δ) 1

α
− δξ (α, β) ,

E
(
T 2
)

= (1− δ) 2

α2
+ δ

(
1

β
− 1

β
ξ (α, β)

)
,

V ar (T ) = (1− δ) 2

α2
+ δ

(
1

β
− 1

β
ξ (α, β)

)
−
(

(1− δ) 1

α
− δξ (α, β)

)2

.
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Figure 3. Plots of the TGUE Mean Residual Life Function

Finally, the 3th and 4th moments of the TGUE random variable are obtained as

E
(
T 3
)

= (1− δ) 6

α3
+ δ

(
3α

β2 −
3

4β

(
1 +

2α2

β

)
ξ (α, β)

)
,

E
(
T 4
)

= (1− δ) 24

α4
+ δ

(
1

2β2

(
4 + 12α− 4α2

β

)
+

α

β2

(
3e

α2

β +
2α2

β
ξ (α, β)

))
.

3.1.7. Estimation by Maximum Likelihood and the Information Matrix of the TGUE
Distribution. Let (t1, t2, · · · , tn) be sample values from this distribution with para-
meters α, β and δ. The likelihood function for Θ = {α, β, δ} is given by

L (Θ; t1, t2, · · · , tn) =

n∏
i=1

(
(1− δ)αe−αti + δ (2α+ 2βti) e

−(2αti+βt
2
i )
)
.

Throughout this subsection, the log-likelihood function is denoted by
l = logL (Θ; t1, t2, · · · , tn) for brevity. We differentiate l with respect to α, β and δ
as follows

∂l

∂α
=

n∑
i=1

− (1− δ)α2e−αti + 2δ
(
1− 2αti − 2βt2i

)
e−(2αti+βt

2
i )

g (ti; Θ)
, (12)
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∂l

∂β
=

n∑
i=1

2δti
(
1− αti − βti2

)
e−(2αti+βt

2
i )

g (ti; Θ)
, (13)

∂l

∂δ
=

n∑
i=1

−αe−αti + (2α+ 2βti) e
−(2αti+βt

2
i )

g (ti; Θ)
. (14)

The maximum likelihood estimators as α̂, β̂ and δ̂ are obtained by equating these
three equations (12), (13) and (14) to zero and solving the equations simultaneously.
For these three parameters, we will get the second order derivatives of logarithms of
the likelihood function for obtaining the elements of the Fisher-Information Matrix.

Iαα =
∂2l

∂α2
= −

n∑
ı=1

(1− δ)2e−2αti − 2δ (1− δ)
(
αβt3i +

(
α2 + 2β

)
t2i − 2

)
e
−
(
3αti+βt

2
i

)
+ 4δ2e

−2
(
2αti+βt

2
i

)
(g (ti; Θ))2

Iββ =
∂2l

∂β2 = −
n∑
ı=1

2δ (1− δ) t3iα
(
2− αti − βt2i

)
e−(3αti+βt

2
i ) + 4δ2t2i e

−2(2αti+βt
2
i )

(g (ti; Θ))2 ,

Iδδ =
∂2l

∂δ2 = −
n∑
ı=1

(
αe−αti + 2 (α+ βti) e

−(2αti+βt
2
i )

g (ti; Θ)

)2

,

Iαβ = Iβα =
∂2l

∂β∂α

= −
n∑
ı=1

(
2δ (1− δ) ti

(
1 + αti −

(
α2 + β

)
t2i − αβt3i

)
e−(3αti+βt

2
i ) + 4δ2tie

−2(2αti+βt
2
i )

(g (ti; Θ))2

)
,

Iαδ = Iδα =
∂2l

∂δ∂α
= −

n∑
ı=1

2 ((α+ β) + αti) tie
−(3αti+βt

2
i )

(g (ti; Θ))
2 ,

Iβδ = Iδβ =
∂2l

∂δ∂β
= −

n∑
ı=1

−2αti
(
1− αti − βt2i

)
e−(3αti+βt

2
i )

(g (ti; Θ))
2 .

Thus, Fisher information matrix, In (Θ) of sample size n for Θ is as follows:

In (Θ) = −E

 Iαα Iαβ Iαδ
Iβα Iββ Iβδ
Iδα Iδβ Iδδ


Inverse of the Fisher-information matrix of single observation, i.e., I−1

1 (Θ) indi-
cates asymptotic variance-covariance matrix of maximum likelihood estimates of
Θ. Hence, the distribution of maximum likelihood estimator for Θ is asymptoti-
cally normal with mean Θ and variance-covariance matrix I−1

1 (Θ). Namely, α̂

β̂

δ̂

 ∼ AN
 α

β
δ

 , I−1
1 (Θ)

n

 (15)
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By solving this inverse dispersion matrix these solutions will yield asymptotic
variance and covariance of these ML estimators for these parameters.
We can approximate 100 (1− γ) % confidence intervals for α, β and δ by using

(15) are obtained respectively asα̂− z1− γ2

√
I−1
1αα

n
, α̂+ z1− γ2

√
I−1
1αα

n

 ,
β̂ − z1− γ2

√
I−1
1ββ

n
, β̂ + z1− γ2

√
I−1
1ββ

n

 ,
δ̂ − z1− γ2

√
I−1
1δδ

n
, δ̂ + z1− γ2

√
I−1
1δδ

n

 ,
where z1− γ2 is the upper 100γ the quantile of the standard normal distribution, and
I−1
1··
denotes respective diagonal elements of I−1

1 .

3.1.8. Random Number Generation from the TGUE Distribution. Remember the
distribution function defined in section 2,

G (t) = λ (FT1 (t) + FT2 (t)− FT1,T2 (t, t)) + (1− λ)FT1,T2 (t, t)

where 0 ≤ λ ≤ 1. Again, emphasize that G (t) represents a two-component mix-
ture distribution, where the distribution functions of the Tmin and Tmax are the
components of this mixture, respectively. To generate a random number from G(t),
we apply the reference Gentle [14] pp.125. Accordingly, a random number V is
generated from uniform distribution on (0,1) to decide which of the components
are chosen. As a result, when V ≤ λ, the random number will be generated from
FTmin (t) by equating as FTmin (t) = V . Otherwise, namely V > λ, the random
number will be generated from the distribution of Tmax by equating FTmax (t) = V .
First of all, we will consider how to produce component lifetimes. By citing the

method given in Gentle [14] pp.109, these component lifetimes will be generated
with the help of the conditional distribution function. Namely, FT1,T2 (t1, t2) can
be expressed as the product of the cdf of T1 and the conditional cdf of T2 with given
T1 = t1, i.e. FT1,T2 (t1, t2) = FT1 (t1)FT2|T1 (t2) .
In the first step, a random number U1 is generated from the uniform distri-

bution on the interval (0, 1). Then we generate the lifetime of the first com-
ponent t1 = F−1

T1
(U1). In the second step, again we generate a uniformly dis-

tributed random variable U2 (independent of U1) on (0, 1). Therefore, the life-
time of the second component can be generated by equating t2 = F−1

T2|T1=t1
(U2).

Hence, the random number from the TGUE is generated as for V ≤ λ, t =
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minâ{t1, t2} and for V > λ, t = maxâ{t1, t2}. Then, according to the above-
mentioned steps, t1 = −1

α ln (1− U1) and t2 = −αβ −
W−1(η)
α+βt1

are generated where

− (1− U2)
(
α2

β + αt1

)
e
−
(
α2

β +αt1
)

= η. Here W−1 (.) denotes the lower part of

Lambert W-function whose domain is
[
−e−1, 0

)
and range (−∞,−1]. A more

detailed inference about generating second component lifetime is given in the ap-
pendix.

3.1.9. Rényi Entropy of the TGUE Distribution. The entropy of a random variable
is a measure of variation of the uncertainty, see [25]. Then the Rényi entropy
function of the random variable T with p.d.f. (7) is defined by

IR (ρ) =
1

1− ρ log

∫ ∞
0

(g (t; Θ))
ρ
dt, (16)

where ρ > 0, ρ 6= 1. We have the following series representation of (g (t; Θ))
ρ by

applying the generalized Binomial theorem to obtain Rényi entropy for proposed
distribution. Accordingly,

(g (t; Θ))
ρ

=
(

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)
)ρ
.

(g (t; Θ))
ρ can be written as an infinite series representation as follows.

(g (t; Θ))
ρ

=

∞∑
j=0

(
ρ
j

)(
(1− δ)αe−αt

)ρ−j(
δ (2α+ 2βt) e−(2αt+βt2)

)j
=

∞∑
j=0

(
ρ
j

)
(1− δ)ρ−jαρ−je−(ρ−j)αtδj(2α+ 2βt)

j
e−j(2αt+βt2)

=

∞∑
j=0

(
ρ
j

)
(1− δ)ρ−jδjαρ−j(2α+ 2βt)

j
e−(ρ+j)αt−jβt2

In the latter equation, the statement e−(ρ+j)αt−jβt2 is rearranged as;

e−jβ(t+ (ρ+j)α
2jβ )

2
+
(ρ+j)2α2

4jβ and if the Binomial theorem is applied in (2α+ 2βt)
j , we

can write

(g (t; Θ))ρ =

∞∑
j=0

j∑
l=0

(
ρ
j

)(
j
l

)
(1− δ)ρ−jδj2jαρ−jαj−lβltle

−jβ
(
t+

(ρ+j)α
2jβ

)2
+
(ρ+j)2α2

4jβ

=

∞∑
j=0

j∑
l=0

(
ρ
j

)(
j
l

)
(1− δ)ρ−jδj2jαρ−lβle

(ρ+j)2α2

4jβ tle−jβ(t+ (ρ+j)α
2jβ )

2

Then, the Rényi entropy can be written as follows

IR (ρ) =
1

1− ρ
log

 ∞∑
j=0

j∑
l=0

(
ρ
j

)(
j
l

)
(1− δ)ρ−jδj2jαρ−lβle

(ρ+j)2α2

4jβ

∫ ∞
0

t
l
e
−jβ

(
t+

(ρ+j)α
2jβ

)2
dt
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if the transformation z = jβ
(
t+ (ρ+j)α

2jβ

)2

is done in above integral,

∫ ∞
0

tle−jβ(t+ (ρ+j)α
2jβ )

2

dt =

∫ ∞
(ρ+j)2α2

4jβ

1

2
√
jβz

(√
z

jβ
− (ρ+ j)α

2jβ

)l
e−zdz

and the Binomial expansion is applied for
(√

z
jβ −

(ρ+j)α
2jβ

)l
again, then the equality(√

z

jβ
− (ρ+ j)α

2jβ

)l
=

l∑
k=0

(
l
k

)(√
z

jβ

)k(− (ρ+ j)α

2jβ

)l−k
is obtained, then∫ ∞
(ρ+j)2α2

4jβ

1

2
√
jβz

(√
z

jβ
− (ρ+ j)α

2jβ

)l
e−zdz

=
1

2

l∑
k=0

(
l
k

)(
− (ρ+ j)α

2jβ

)l−k
jβ−

k+1
2

∫ ∞
(ρ+j)2α2

4jβ

z
k−1
2 e−zdz

Thus, the last integral can be expressed in terms of incomplete Gamma function as
follows, ∫ ∞

(ρ+j)2α2

4jβ

z
k−1
2 e−zdz = Γ

(
k + 1

2
,

(ρ+ j)
2
α2

4jβ

)
Now, we obtain an explicit equality for IR (ρ) as follows,

IR (ρ) =
1

1− ρ log

∞∑
j=0

j∑
l=0

l∑
k=0

(
ρ
j

)(
j
l

)(
l
k

)
(−1)

l−k
(1− δ)ρ−jδj2j+k−l−1

αρ−kβ
k−1
2 (ρ+ j)

l−k
j
k−1
2 −le

(ρ+j)2α2

4jβ Γ

(
k + 1

2
,

(ρ+ j)
2
α2

4jβ

)
3.1.10. Order Statistics of the TGUE Distribution. The order statistics are among
the most basic tools in non-parametric statistics and inference. Also, the order
statistics arise in the analysis of reliability of a system and it can represent the
lifetimes of components of a reliability system. Let T(1), T(2), . . . , T(n) denote the
order statistics of a random sample T1, T2, . . . , Tn from a continuous population
with p.d.f. g (t; Θ) and distribution function G (t; Θ), then the p.d.f. of jth order
statistics T(j) for j = 1, 2, . . . , n is given by

fT(j) (t; Θ) =
n!

(j − 1)! (n− j)!g (t; Θ) [G (t; Θ)]
j−1

[1−G (t; Θ)]
n−j

n!

(j − 1)! (n− j)!

(
(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)

)
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×
(

1− (1− δ) e−αt − δe−(2αt+βt2)
)j−1(

(1− δ) e−αt + δe−(2αt+βt2)
)n−j

,

therefore, the p.d.f. of the first order statistics T(1) is given by

fT(1) (t; Θ) = n
(

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)
)

×
[
(1− δ) e−αt + δe−(2αt+βt2)

]n−1

,

and the p.d.f. of the last order statistics T(n) is given

fT(n) (t; Θ) = n
(

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)
)

×
(

1− (1− δ) e−αt − δe−(2αt+βt2)
)j−1

.

Note that δ = 0 yields the order statistics of the exponential distribution with
parameter α and when δ = 1 yields the order statistics of the TGUE distribution
with parameter (α, β).

4. Numerical Examples

In this section, we provide three data analyses in order to assess the goodness-of-
fit of the TGUE distribution. The following tables show goodness-of-fit measures
for the different distributions.

Data Set 1. (Wheaton River Flood Data) The data consist of the exceedances
of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory,
Canada. The data consist of 72 exceedances for the years 1958—1984, rounded to
one decimal place: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 13.0, 12.0, 9.3, 1.4, 18.7,
8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0,
7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6,
5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0,
27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0, 1.9, 2.8. Firstly, these data were analyzed
by [10]. Later on, Beta-Pareto (BP) distribution was applied to these data by [2].
Merovcia and Pukab [22] made a comparison between Pareto (P) and Transmuted
Pareto (TP) distribution. They showed that better model is the transmuted Pareto
distribution. Bourguignon et al. [9] proposed Kumaraswamy Pareto (Kw-P) dis-
tribution. Tahir [30] have proposed Weibull-Pareto (WP) distribution and made
a comparison with Beta Exponentiated Pareto (BEP) distribution. Nasiru and
Luguterah [24] have proposed a different type of Weibull-Pareto (NWP) distribu-
tion. Exponential Modified Discrete Lindley (EMDL) distribution was applied to
these data by [31]. We fit data to TGUE distribution and get parameter estimates
as α̂ = 0.0672, β̂ = 0.2972, δ̂ = 0.1976ı̈ˇ. According to the model selection crite-
ria (AIC) tabulated in Table 5.1, TGUE takes the first place amongst 9 proposed
models.
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Table 5.1. K-S test values, -2LL, AIC and BIC for TGUE, P, TP, EP, BP, Kw-P,
WP, BEP, BGP and EMDL distributions

Model K-S -2LL AIC BIC
TGUE 0.089 496.3 502.3 509.1
EMDL 0.116 503.6 507.6 512.1
P 0.456 606.1 610.1 610.4
TP 0.389 572.4 578.4 580.9
EP 0.199 574.6 578.6 583.2
BP 0.175 567.4 573.4 580.3
Kw-P 0.170 542.4 548.4 555.3
WP — 498.8 502.8 507.3
BEP — 496.1 504.1 513.2

Data set 2. (Bladder Cancer Application) The second data set on the remis-
sion times (in months) of a random sample of 128 bladder cancer patients Lee and
Wang [18] is given by 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50,
2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34,
5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,
8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73,
2.07, 3.36, 6.93, 8.65, 12.63, 22.69. In this section, we test the performance of the
TGUE distribution and show it to be an improved model as compared to some of its
sub-models such as transmuted inverse Rayleigh distribution (TIRD), transmuted
inverted exponential distribution (TIED), inverse Weibull distribution (IWD) and
transmuted inverse Weibull distribution (IWD). It is clear from Table 5.2 that the
TGUE model provides better fits than other models to this data sets. For the
TGUE distribution parameter estimates are α̂ = 0.0485, β̂ = 0.0057, δ̂ = 0.7745ı̈ˇ
and this distribution has the lower AIC, BIC and K-S values.

Table 5.2. K-S test values, -2LL, AIC and BIC for TGUE, TIW, TIE, IW and
TIR distributions

Model K-S -2LL AIC BIC
TGUE 0.065 824.2 830.1 838.6
TIW 0.119 877.0 879.4 879.7
TIE 0.155 885.6 889.6 889.8
IW 0.131 888.0 892.0 892.2
TIR 0.676 1420.4 1424.4 1424.6
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Data set 3. (Bank B Data) The data set represents the waiting times (in minutes)
before customer service of 60 bank customers in Bank B. This data set is given as:
0.1, 0.2, 0.3, 0.7, 0.9, 1.1, 1.2, 1.8, 1.9, 2.0, 2.2, 2.3, 2.3, 2.3, 2.5, 2.6, 2.7, 2.7,
2.9, 3.1, 3.1, 3.2, 3.4, 3.4, 3.5, 3.9, 4.0, 4.2, 4.5, 4.7, 5.3, 5.6, 5.6, 6.2, 6.3, 6.6,
6.8, 7.3, 7.5, 7.7, 7.7, 8.0, 8.0, 8.5, 8.5, 8.7, 9.5, 10.7, 10.9, 11.0, 12.1, 12.3, 12.8,
12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0. This data was analyzed by [3] and was
also used by [29]. They fit this data to Lindley (L) and generalized Lindley (GL)
distributions. We fit data to TGUE distribution and get parameter estimates as
α̂ = 0.185, β̂ = 0.472, δ̂ = −0.222. According to the model selection criteria tab-
ulated in Table 5.3, it is said that TUGE takes first place in amongst 3 proposed
models.

Table 5.3. K-S test values, -2LL AIC and BIC for TGUE, L and Exp distributions
Model K-S -2LL AIC BIC
TGUE 0.067 336.777 342.777 349.060
L 0.080 338.203 340.203 341.759
GL 0.068 338.026 342.026 341.582

In the above three tables, it is clear that the values of the Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC) are smaller for the TGUE
distribution compared to those values of the other models; the new distribution is
a very competitive model to these data.

5. Conclusion

In this article, we propose a new model of transmuted distribution so-called the
transmuted Gumbel univariate exponential distribution. The subject distribution is
generated by using the convex combination of failure probabilities of two-component
series and systems and taking the Gumbel univariate exponential distribution as the
base distribution. Some mathematical and statistical properties including explicit
expressions for the probability density, survival, cumulative hazard rate, hazard rate
and mean residual life functions, also, moment generating function and moments are
addressed. The estimation of parameters is approached by the maximum likelihood
method. According to K-S values in Numerical Examples Section, the applications
of the transmuted Gumbel univariate exponential distribution to real data show that
the new distribution can be used to provide better fits than the other distributions.
We hope that this new distribution may attract wider applications in the lifetime
literature. Taking bivariate distributions will guide to derivation of many new
univariate distributions.
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6. Appendix

Conditional cdf of T2 with given T1 = t1 is given by

FT2|T1 (t2) =
∂
∂t1
FT1,T2 (t1, t2)

fT1 (t1)
=

∂
∂t1

(
1− e−αt1 − e−αt2 + e−α(t1+t2)−βt1t2

)
αe−αt1

=
αe−αt1 − (α+ βt2) e−α(t1+t2)−βt1t2

αe−αt1

= 1−
(

1 +
β

α
t2

)
e−(α+βt1)t2 .

Hence, by equating FT2|T1 (t2) = U2 where U2 is uniformly distributed random
variable on the interval (0, 1) we have a non linear equation to get solution for t2
as follows,

1−
(

1 +
β

α
t2

)
e−(α+βt1)t2 = U2. (17)

To solve the above equation for t2, we use Lambert W- function which is defined
as the solution of the equation W (z) eW (z) = z, where z is the complex number. If
z is any real number, then this equation has a solution on

[
−e−1, +∞) .

In equation (17), if the expression 1 + β
α t2 is taken as z, we can write

ze
−
(
α2

β +αt1
)
z
e

(
α2

β +αt1
)

= 1− U2.

Multiplying both sides of equation above by −
(
α2

β + αt1

)
, above expression can

be simplified as follows,

−
(
α2

β
+ αt1

)
ze
−
(
α2

β +αt1
)
z

= − (1− U2)

(
α2

β
+ αt1

)
e
−
(
α2

β +αt1
)
.

Substituting −
(
α2

β + αt1

)
z = W (z), we have the Lambert equation

W (z) e−W (z) = η,

where η = − (1− U2)
(
α2

β + αt1

)
e
−
(
α2

β +αt1
)
. Hence, the solution for W (z) is

−
(
α2 + αβt1

β

)
z = W−1 (η) .

So, t2 is found as follows

t2 = −α
β
− 1

α+ βt1
W−1 (η) .

To show the uniqueness of the solution for t2 we take into account the well known
inequality e−(z+1) ≥ − z and replacing z with − (α+ βt1) αβ , then η ≥ − 1

e .
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This result guarantees that η belongs to domain of negative branch of Lambert
W-function.
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ANALYSIS OF THE RAYLEIGH WAVE FIELD DUE TO A
TANGENTIAL LOAD APPLIED ON THE SURFACE OF A

COATED ELASTIC HALF-SPACE

ONUR ŞAHIN

Abstract. The paper deals with 3D dynamic response of a coated elastic
half space subject to in-plane surface loading. The problem is formulated by
a pair of elliptic equations over the interior and a two dimensional singularly
perturbed hyperbolic equation expressed in terms of shear wave potentials
along the interface. As an example, a point force acting one of the in-plane axis
is considered and the integral solution of the normal displacement along the
interface is derived through the use of the relation between the wave potentials.

1. Introduction

Propagation of surface waves has been the focus of intensive research since its
introduction by the monumental work of Rayleigh [1]. Rayleigh waves, therefore,
have been extensively studied by scientists and engineers due to their applicability
to acoustic, seismology, electromagnetism, among others. One of the most impor-
tant contribution to the Rayleigh wave was made by Friedlander who presented the
Rayleigh wave field for an elastic half plane in terms of arbitrary plane harmonic
functions [2]. In a later publication, Chadwick extended Friedlander’s analysis and
expressed the Rayleigh wave field in terms of a single harmonic function via a re-
lation between the wave potentials at the surface of the elastic half-plane [3]. This
relationship was, then, extended to three dimensions in [4].
The significance of the surface waves on an elastic half-plane or half-space mo-

tivates an alternative analysis under more general assumptions, which may help to
extract the Rayleigh wave contribution. Therefore, recent studies have generally
focused on employing approximate models to derive the Rayleigh wave contribu-
tion which is often hidden in the problem formulation, see, e.g., [5]—[8]. In [8], an
explicit model for the Rayleigh and Bleustein-Gulyaev surface waves was presented.
The derivations were based on perturbing in slow time the self-similar solution for
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Figure 1. Tangential loading on the surface of coated half-space

homogeneous surface waves given in [2] and [3]. Thus, the developed models for
the surface waves consisted of hyperbolic equation on the surface with two elliptic
equations in the interior domain. The formulation in [8] was later generalized to
the three dimensional linear, isotropic, coated elastic half-space taking into account
the effect of a thin coating [9]. The hyperbolic-elliptic model for surface wave on
an orthorhombic half space was presented in [10]. A surface wave of arbitrary pro-
file in anisotropic half-space was constructed by means of the Stroh formalism in
[11]. We also mention [12] which considered surface waves in a coated half-space
with a clamped surface because of the applicability of the hyperbolic-elliptic model
for surface wave in high frequency domain. Analysis of the Rayleigh field in a
three dimensional elastic half space subject to in-plane surface loading was given in
[13]. In addition we cite [14] summarizing the asymptotic model for Rayleigh and
Rayleigh type waves and [15] which includes a recent composite model joining both
low-frequency and high-frequency models. Along with the latest advancement of
technology, moving load problems also find various modern industrial applications
in modern engineering, see [16]-[19]. The developed hyperbolic elliptic models have
also been utilized for investigation of the near-resonant regimes of moving loads on
elastic and coated elastic half-spaces, see e.g [20]-[24].
The organization of the paper is described as follows. Section 2 contains the

statement of the problem, presenting the governing equations together with the
boundary conditions. In Section 3 an asymptotic model for the Rayleigh wave
field in the case of an elastic half-space coated with a thin layer is developed. An
illustrative example for the derived model is given in Section 4. In the last section
numerical computations based on the derived approximate formulae are presented.

2. Statement of the problem

Consider a 3D homogeneous isotropic elastic half-space coated by a thin layer of
constant thickness h, loaded with a tangential force of amplitude P , see Figure 1.
The equations of motion in 3D elasticity are written as (see, e.g. [25])

(λ+ µ)grad divu+ µ∆u = ρutt, (1)
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where u = (u1, u2, u3) is the displacement vector, ρ is the volume density and ∆ is
the 3D Laplace operator.
The constitutive relations for a linear isotropic elastic solid are given by

σij = λδijdivu+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, i = 1, 2, 3, (2)

where σij are the components of the Cauchy stress tensor, λ and µ are the Lamé
constants and δij is the Kronecker delta.
The boundary conditions at the surface x3 = 0 of the coating are specified as

(σ13, σ23, σ33) = −P. (3)

The tangential load may be decomposed through the Helmholtz theorem [25] as

P(x1, x2, t) = (∇P0 +∇× P̃) =
(
P (1), P (2), 0

)
, (4)

where

P̃ = (0, 0, P1) and
(
P (1), P (2)

)
=

(
∂P0
∂x1

+
∂P1
∂x2

,
∂P0
∂x2
− ∂P1
∂x1

)
. (5)

All of the equations above describe the substrate x3 > h. In the case of coating,
0 ≤ x3 ≤ h, subscript “0” is used for the material parameters, e.g. ρ0, λ0, µ0 etc.
Our first aim is to state the boundary conditions at the interface x3 = h. To

this end, taking into consideration the effective boundary conditions presented in
[9], the boundary conditions at the surface x3 = 0 may be carried on the surface of
the substrate. As a result, the boundary conditions at x3 = h can be written as

σi3 = µ

(
∂ui
∂x3

+
∂u3
∂xi

)
= ρ0h

{
∂2ui
∂t2

− c220

(
∂2u3
∂x2j

+ 4(1− κ−20 )
∂2ui
∂x2i

+(3− 4κ−20 )
∂2uj
∂xi∂xj

)}
− P (i),

(6)

and

σ33 = λ

(
∂ui
∂xi

+
∂uj
∂xj

)
+ (λ+ 2µ)

∂u3
∂x3

= ρ0h
∂2u3
∂t2

, i 6= j = 1, 2 (7)

where c10, c20 are the longitudinal and transverse wave speeds, ρ0 is the density of
the coating and κ0 = c10/c20.

3. Asymptotic Model

In this section an asymptotic model is established for the substrate governed by
equation (1) and subject to the effective boundary conditions (6)-(7) at the surface
x3 = h. First, on applying the Radon transform to the equations of motion (1), see
[26], the problem is reduced to a two-dimensional one and, then, the explicit model,
derived for an elastic half-plane in [8], is applied to the reduced two-dimensional
boundary value problem. Thus, an elliptic-hyperbolic model may be developed for
the considered problem.



ANALYSIS OF THE RAYLEIGH WAVE FIELD 161

Let us apply the Radon transform to eqs. (1), (6) and (7), resulting, respectively,
in

[
(λ+ µ) cos2α+ µ

]∂2u(α)1

∂χ2
+ µ

∂2u
(α)
1

∂x23

+ (λ+ µ) cosα

(
sinα

∂2u
(α)
2

∂χ2
+
∂2u

(α)
3

∂χ∂x3

)
= ρ

∂2u
(α)
1

∂t2
,

[
(λ+ µ) sin2α+ µ

]∂2u(α)2

∂χ2
+ µ

∂2u
(α)
2

∂x23
,

+ (λ+ µ) sinα

(
cosα

∂2u
(α)
1

∂χ2
+
∂2u

(α)
3

∂χ∂x3

)
= ρ

∂2u
(α)
2

∂t2
, (8)

(λ+ µ)

(
cosα

∂2u
(α)
1

∂χ∂x3
+ sinα

∂2u
(α)
2

∂χ∂x3

)
+ µ

∂2u
(α)
3

∂χ2
,

+ (λ+ 2µ)
∂2u

(α)
3

∂x23
= ρ

∂2u
(α)
3

∂t2
,

and

σ
(α)
13 = µ

(
∂u

(α)
1

∂x3
+ cosα

∂u
(α)
3

∂χ

)
= ρ0h

[
∂2u

(α)
1

∂t2
− c220

(
sin2α

∂2u
(α)
1

∂χ2

+4
(
1− κ−20

)
cos2α

∂2u
(α)
1

∂χ2
+
(
3− 4κ−20

)
sinα cosα

∂2u
(α)
2

∂χ2

)]
(9)

−
(

cosα
∂P

(α)
0

∂χ
+ sinα

∂P
(α)
1

∂χ

)
,

σ
(α)
23 = µ

(
∂u

(α)
2

∂x3
+ sinα

∂u
(α)
3

∂χ

)
= ρ0h

[
∂2u

(α)
2

∂t2
− c220

(
cos2α

∂2u
(α)
2

∂χ2

+4
(
1− κ−20

)
sin2α

∂2u
(α)
2

∂χ2
+
(
3− 4κ−20

)
sinα cosα

∂2u
(α)
1

∂χ2

)]
(10)

−
(

sinα
∂P

(α)
0

∂χ
− cosα

∂P
(α)
1

∂χ

)
,

σ
(α)
33 = λ

(
cosα

∂u
(α)
1

∂χ
+ sinα

∂u
(α)
2

∂χ

)
+ (λ+ 2µ)

∂u
(α)
3

∂x3
= ρ0h

∂2u
(α)
3

∂t2
.
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Here, the Radon transform is defined as

u
(α)
k (χ, α, x3, t) =

∞∫
−∞

uk (χ cosα− ζ sinα, χ sinα+ ζ cosα, x3, t) dζ,

where
χ = x1 cosα+ x2 sinα, ζ = −x1 sinα+ x2 cosα

with the angle α varying on the interval 0 ≤ α ≤ 2π, see Figure 2. The original

Figure 2. Rotation of Cartesian frame

displacements may be written in terms of the transformed displacements as

u1 = uαχ cos(α)− uαζ sin(α), u2 = uαχ sin(α) + uαζ cos(α). (11)

Assuming that the surface wave field is not distributed by anti-plane motion, it can
be emphasized that uαζ = 0, see [9]. Substituting eq. (11) into eq. (8) and taking
into account the assumption above , eq. (8) takes the following plane problem form:

(λ+ 2µ)
∂2u

(α)
χ

∂χ2
+ µ

∂2u
(α)
χ

∂x23
+ (λ+ µ)

∂2u
(α)
3

∂χ∂x3
= ρ

∂2u
(α)
χ

∂t2
,

(λ+ µ)
∂2u

(α)
χ

∂χ∂x3
+ µ

∂2u
(α)
3

∂χ2
+ (λ+ 2µ)

∂2u
(α)
3

∂x23
= ρ

∂2u
(α)
χ

∂t2
,

(12)

with the boundary conditions

σ
(α)
χ3 = µ

(
∂u

(α)
χ

∂x3
+
∂u

(α)
3

∂χ

)
= µ0h

[
c−220

∂2u
(α)
χ

∂t2
− 4

(
1− κ−20

) ∂2u(α)χ

∂χ2

]
− ∂P

(α)
0

∂χ
,

(13)

σ
(α)
33 = λ

∂u
(α)
χ

∂χ
+ (λ+ 2µ)

∂u
(α)
3

∂x3
= ρ0h

∂2u
(α)
3

∂t2
.

It is well known that the displacement vector u may expressed through the sum
of gradient of scaler potential φ and the curl of a vector potential ψ, that is

u = ∇φ+∇×ψ, (14)
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where ψ = (−ψ2, ψ1, 0), see [25] and [9]. Thus, the transformed displacement
components can be expressed in terms of the transformed wave potentials as

u(α)χ =
∂φ(α)

∂χ
− ∂ψ(α)

∂x3
and u

(α)
3 =

∂φ(α)

∂x3
+
∂ψ(α)

∂χ
. (15)

On inserting the transformed potentials into displacement and boundary equations
(12) and (13) we obtain

∂2φ(α)

∂χ2
+
∂2φ(α)

∂x23
− 1

c21

∂2φ(α)

∂t2
= 0,

∂2ψ(α)

∂χ2
+
∂2ψ(α)

∂x23
− 1

c22

∂2ψ(α)

∂t2
= 0,

(16)

and

µ

[
2
∂2φ(α)

∂χ∂x3
+
∂2ψ(α)

∂χ2
− ∂2ψ(α)

∂x23

]
= µ0h

[
c−220

(
∂3φ(α)

∂χ∂t2
− ∂3ψ(α)

∂x3∂t2

)

−4
(
1− κ−20

)(∂3φ(α)
∂χ3

− ∂3ψ(α)

∂x3∂χ2

)]
− ∂P

(α)
0

∂χ
,

µ

[(
κ2 − 2

) ∂2φ(α)
∂χ2

+ κ2
∂2φ(α)

∂x23
+ 2

∂2ψ(α)

∂χ∂x3

]
= µ0hc

−2
20

(
∂3φ(α)

∂x3∂t2
+
∂3ψ(α)

∂χ∂t2

)
.

(17)
where c1 and c2 are the longitudinal and shear wave speeds and κ = c1/c2. It can
easily be seen from the boundary equations that the surface wave is only induced
by gradient part of the applied load P0.
The considered three dimensional problem of elasticity, thus, is reduced to a

two dimensional plane problem with the help of the Radon transform. We can
now employ the explicit model dealing with the wave propagation along the surface
of the two dimensional elastic half-plane with the Rayleigh wave speed, see [8].
Following the same asymptotic methodology performed in [8] and [9], the wave
equations (16) are cast into a pair of elliptic equations in the interior of the half
plane, given by

∂2φ(α)

∂x23
+ k21

∂2φ(α)

∂χ2
= 0,

∂2ψ(α)

∂x23
+ k22

∂2ψ(α)

∂χ2
= 0.

(18)
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Similarly, the boundary conditions (17) give a partial differential equation along
the surface x3 = h

∂2ψ(α)

∂χ2
− 1

c2R

∂2ψ(α)

∂t2
+
bh

k2

∂3ψ(α)

∂χ2∂x3
=

(
1 + k22

)
2µB

∂P
(α)
0

∂χ
, (19)

with the relation between the wave potentials on the surface expressed through

∂ψ(α)

∂χ
= − 2

1 + k22

∂φ(α)

∂x3
, or

∂φ(α)

∂χ
=

2

1 + k22

∂ψ(α)

∂x3
, (20)

where k2i = 1− c2R/c2i ; i = 1, 2, m = µ0/µ and

B =
(
1− k21

) k2
k1

+
(
1− k22

) k1
k2
−
(
1− k42

)
,

b =
m

2B

(
1− k22

) [(
1− k220

)
(k1 + k2)− 4k2

(
1− κ−20

)]
.

(21)

By taking the inverse Radon transform of eqns. (18)-(20) we arrive at the asymp-
totic formulation given by two elliptic equations in the interior

∂2φ

∂x23
+ k21∆2φ = 0,

∂2ψi
∂x23

+ k21∆2ψi = 0, i = 1, 2, (22)

with the surface equation along the plane x3 = h

∆2ψi −
1

c2R

∂2ψi
∂t2

− bh
√
−∆2∆2ψi =

(
1 + k22

)
2µB

∂P0
∂xi

, i = 1, 2, (23)

and the relations between the potentials

∂φ

∂xi
=

2

1 + k22

∂ψi
∂x3

, (i = 1, 2),
∂ψ1
∂x1

+
∂ψ2
∂x2

= − 2

1 + k22

∂φ

∂x3
, at x3 = h, (24)

where ∆2 = ∂21 + ∂22 and
√
−∆2 is a pseudo differential operator, see [9].

4. Illustrative Example

In this section, the dynamic response of the coated elastic half space, which is
loaded by a tangential force, is evaluated within the framework of the asymptotic
formulation derived in the previous section. Consider a tangential point load acting
along the x1 axis given by

P = (Mδ(x1)δ(x2)δ(t), 0, 0) . (25)

From the decomposition introduced in (5), P may be written as

(Mδ(x1)δ(x2)δ(t), 0, 0) =

(
∂P0
∂x1

+
∂P1
∂x2

,
∂P0
∂x2
− ∂P1
∂x1

, 0

)
,

resulting in
∆2P0 = Mδ′(x1)δ(x2)δ(t), (26)
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where ∆2 = ∂21 + ∂22 is two dimensional Laplacian. On using the well-known fun-
damental solution for two dimensional Laplace operator, [27],

E (x1, x2) =
1

4π
ln
(
x21 + x22

)
, (27)

P0 may be expressed as the convolution of eq. (26) with the fundamental solution
(27), namely

P0 (x1, x2, t) = E (x1, x2) ∗Mδ′(x1)δ(x2)δ(t) =
M

2π

x1
x21 + x22

δ(t). (28)

Thus, the hyperbolic equations on the surface x3 = h are written as

∆2ψ1 −
1

c2R

∂2ψ1
∂t2

− bh
√
−∆2∆2ψ1 = M0

x22 − x21
(x21 + x22)

2 δ(t), (29)

∆2ψ2 −
1

c2R

∂2ψ2
∂t2

− bh
√
−∆2∆2ψ2 = −2M0

x1x2

(x21 + x22)
2 δ(t), (30)

where

M0 =
M(1 + k22)

4πµB
. (31)

Introducing scaled variables

η1 =
x1
b h
, η2 =

x2
b h
, τ =

cR
b h

t, (32)

the surface equations (29) and (30) take the forms

∂2ψ1
∂η21

+
∂2ψ1
∂η22

−∂
2ψ1
∂τ2

−

√
−
(
∂2

∂η21
+
∂2

∂η2

)(
∂2ψ1
∂η21

+
∂2ψ1
∂η22

)
=
M0cR
bh

η22 − η21
(η21 + η22)

2 δ(τ),

(33)

∂2ψ2
∂η21

+
∂2ψ2
∂η22
−∂

2ψ2
∂τ2

−

√
−
(
∂2

∂η21
+
∂2

∂η2

)(
∂2ψ2
∂η21

+
∂2ψ2
∂η22

)
=
-2M0cR
bh

η1η2

(η21 + η22)
2 δ(τ).

(34)

Let us first consider the surface equation of shear potential ψ1. Applying a double
Fourier and a Laplace transform to eq. (33) result in

ψFFL1 = −M0cR
bh

ξ21(
ξ21 + ξ22

)(
s2 +

(
ξ21 + ξ22

)(
1−

√
ξ21 + ξ22

)) (35)
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where (ξ1, ξ2) and s are the Fourier and Laplace transform parameters, respectively.
Taking the inverse double Fourier and Laplace transforms gives

ψ1(η1, η2, τ) = −M0cR
4π2bh


∫
ρ>1

ξ21 e−ρ
√
ρ−1 τ

2ρ3
√
ρ− 1

eiρ·rdρ

+

∫
ρ<1

ξ21 sin
(
ρ
√

1− ρ τ
)

ρ3
√

1− ρ eiρ,·rdρ

 ,

(36)

where r = (η1, η2) = (r cos θ, r sin θ) and ρ = (ξ1, ξ2) = (ρ cosω, ρ sinω) with
|r| = r and |ρ| = ρ. The above integral may then be written as

ψ1(r, θ, τ) = −M0cR
4π2bh


∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

2π∫
0

cos2 ω eirρ cos(ω−θ)dωdρ

+

1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ

2π∫
0

cos2 ω eirρ cos(ω−θ)dωdρ

 .

(37)

Using the trigonometric relation for cos2 ω the first integral in the above equation
can be written as

2π∫
0

cos2 ω eirρ cos(ω−θ)dωdρ =
1

4

2π∫
0

(
e2iω + e−2iω + 2

)
eirρ cos(ω−θ)dωdρ. (38)

Changing the variable ω − θ = γ, the first integral on the right hand side of (38)
takes the form

2π∫
0

e2iω eirρ cos(ω−θ)dω = −e2iθ
2π+θ0∫
θ0

ei(2γ−rρ sin γ)dγ = −2πe2iθJ2(rρ), (39)

where θ0 = −θ − π/2 and J2(rρ) is Bessel function of the first kind defined as

Jn(x) =
1

2π

π∫
−π

ei(x sin γ−nγ)dγ.

Similarly, the second and third integrals on the right hand side of (38) are written,
respectively, as

2π∫
0

e−i2ω eirρ cos(ω−θ)dω = −2πe−2iθJ−2(rρ), (40)
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and

2

2π∫
0

eirρ cos(ω−θ)dω = 4πJ0(rρ). (41)

The shear potential ψ1, thus, can be expressed in terms of Bessel functions of the
first kind as

ψ1(r, θ, τ) =
M0cR
4π bh


1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ (cos 2θJ2(rρ)− J0(rρ)) dρ

+

∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

(cos 2θJ2(rρ)− J0(rρ)) dρ

 .

(42)

Repeating an almost identical procedure, the shear potential ψ2 may be put in the
form

ψ2(r, θ, τ) =
M0cR
4π bh

sin 2θ


1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ J2(rρ)dρ

+

∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

J2(rρ)dρ

 .

(43)

It is known from eq. (14) that the normal displacement at the surface x3 = h may
be given in terms the wave potentials by

u3|x3=h =
∂φ

∂x3
+
∂ψ2
∂x1

+
∂ψ1
∂x2

,

which can be expressed in terms of the new variables as

u3|x3=h =
1− k22

2bh

(
cos θ

∂ψ1
∂r
− sin θ

r

∂ψ1
∂θ

+ sin θ
∂ψ2
∂r

+
cos θ

r

∂ψ2
∂θ

)
. (44)

On using the relation between the potentials (24), it is possible to write the scaled
normal displacement from the related derivative of the integral expressions of ψ1
and ψ2 as

U3(r, θ, τ) = cos θ


1∫
0

sin
(
ρ
√

1− ρ τ
)

√
1− ρ ρJ1(rρ)dρ+

∞∫
1

e−ρ
√
ρ−1 τ

2
√
ρ− 1

ρJ1(rρ)dρ

 , (45)

where

U3 =
4πb2h2

McR(1− k22)
u3. (46)

As it is formidable to calculate the integrals in equation (45) analytically we employ
numerical integration schemes to illustrate the surface displacement.
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5. Numerical Results

In this section numerical illustrations of the scaled longitudinal displacement U3
defined in (45) are presented. Fig. 3 shows the variation of the vertical displacement
U3 on the variable r depending on θ at τ = 1. As might be expected, the amplitude
of the normal displacement U3 decreases away from the surface load. Another
important point is that the dispersive effect of the coating causes smoothing of
the discontinuities, arising in the uncoated half-space problem, see [13]. It should
also be emphasized that the normal displacement becomes zero at θ = π/2, 3π/2
because of the definition of U3, see (45). Since we concerned with the tangential
load applied on the surface, a load applied perpendicular to the surface results in
nonzero displacement. The variation of the displacement U3 on the angle θ for
several values of the polar distance r at τ = 0.01 is depicted in Fig. 4. Similar to
the previous case, the magnitude of displacement decreases for the larger values of
r. It is also observed that the displacement becomes zero at θ = π/2 and θ = 3π/2
because the applied load, then, becomes perpendicular.

Figure 3. The scaled vertical displacement U3 versus r

Figure 4. The scaled vertical displacement U3 versus θ
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6. Conclusions

In this paper, a 3D problem for a coated elastic half-space loaded by a tangential
force along the surface is investigated. A long wave model for the coated half space
derived in [9] and an asymptotic model for the in-plane surface wave of elastic
half-space derived in [13] have been extended to the case of an in-plane loading
for a three-dimensional elastic half-space coated by a thin layer. The problem
is, then, formulated by two elliptic equations in the shear potentials ψ1 and ψ2
over the interior and a two-dimensional hyperbolic equation singularly perturbed
by a pseudo-differential operator given along the interface x3 = h, see (24). The
longitudinal and shear potentials are also related at x3 = h. It can be seen from
the established model that the rotational part of the tangential load does not have
any effect on the boundary equation clearly seen in (23). An integral solution of the
normal displacement is expressed for the illustrative examples of point load acting
on one of the in-plane axis. This solution shows that there is no displacement for
a load applied perpendicular to the the surface of the half-space. It can be also
observed that the presence of a coating results in smoothing the singularities arising
in the corresponding problem of an uncoated half space, see [13].
The proposed approach may be generalized to more complicated structure in-

cluding the effects of pre-stress, anisotropy, layered structures and viscosity, see
[28]—[30]. The obtained asymptotic formulation may also be applied to in-plane
moving load problems, see e.g. [20] and [21].
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ON RICCI PSEUDO-SYMMETRIC SUPER QUASI-EINSTEIN
HERMITIAN MANIFOLDS

B. B. CHATURVEDI AND B. K. GUPTA

Abstract. The present paper deals the study of a Bochner Ricci pseudo-
symmetric super quasi-Einstein Hermitian manifold and a holomorphically
projective Ricci pseudo-symmetric super quasi-Einstein Hermitian manifold.

1. Introduction

An even dimensional differentiable manifold Mn is said to be a Hermitian man-
ifold if a complex structure J of type (1, 1) and a pseudo-Riemannian metric g of
the manifold satisfy [13, 20]

J2 = −I, (1.1)

and
g(JX, JY ) = g(X,Y ), (1.2)

where X,Y ∈ χ(M) and χ(M) is Lie algebra of vector fields on the manifold.
The notion of an Einstein manifold was introduced by Albert Einstein in differ-

ential geometry and mathematical physics. An Einstein manifold is a Riemannian
or pseudo-Riemannian manifold (Mn, g)(n ≥ 2) in which Ricci tensor be a scalar
multiple of the Riemannian metric i.e.

S(X,Y ) = αg(X,Y ), (1.3)

where S denote the Ricci tensor of the manifold (Mn, g)(n ≥ 2) and α is a non-zero
scalar. According to [3], equation (1.3) is called the Einstein metric condition. An
Einstein manifold plays a important role in the study of Riemannian geometry and
general theory of relativity.
From the equation (1.3), we get

r = nα. (1.4)
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In 2000, M. C. Chaki and R.K. Maity [8] introduced a new type of a non-flat
Riemannian manifold whose non-zero Ricci tensor satisfies

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ), (1.5)

and they called it a quasi-Einstein manfold, where α, β are scalars such that β 6= 0
and A is a non-zero 1-form associated with unit vector field ρ defined by g(X, ρ) =
A(X), for every vector field X. ρ is also called generator of the manifold. An n-
dimensional quasi-Einstein manifold is denoted by (QE)n.
Contraction of the equation (1.5), gives

r = αn+ β. (1.6)

From the equations (1.2) and (1.5), we can easily write

S(X, ρ) = (α+ β)A(X), S(ρ, ρ) = (α+ β),

g(Jρ, ρ) = 0 and S(Jρ, ρ) = 0.
(1.7)

A quasi-Einstein manifold came in existence during the study of exact solutions of
Einstein fields equations as well as considerations of a quasi-umbilical hypersurfaces
of semi-Euclidean space. The Walker-space time is an example of a quasi-Einstein
manifold. Also a quasi-Einstein manifolds can be taken as a model of the perfect
fluid space time in general theory of relativity [17].
In 2001, M. C. Chaki [9] introduced the notion of generalised quasi-Einstein

manifolds. A Riemannian manifold (Mn, g)(n ≥ 2) is said to be a generalised quasi-
Einstein manifold if a non-zero Ricci tensor of type (0, 2) satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γC(X)C(Y ), (1.8)

where α, β and γ are scalars such that β 6= 0, γ 6= 0 and A, C are non-vanishing
1-forms associated with two orthogonal unit vectors ρ and µ by

g(X, ρ) = A(X), g(X,µ) = C(X),

g(ρ, ρ) = g(µ, µ) = 1.
(1.9)

An n-dimensional generalised quasi-Einstein manifold is denoted by G(QE)n.
After contraction of equation (1.8), we get

r = αn+ β + γ. (1.10)

From the equations (1.2), (1.8) and (1.9), we can easily write

S(X, ρ) = (α+ β)A(X), S(X, µ) = (α+ γ)C(X), S(µ, µ) = α+ γ,

S(ρ, ρ) = α+ β, g(Jρ, ρ) = g(Jµ, µ) = 0, and S(Jµ, µ) = S(Jρ, ρ) = 0.

(1.11)

Also in 2004, M. C. Chaki [10] introduced the notion of super quasi-Einstein man-
ifolds. A Riemannian manifold (Mn, g)(n ≥ 2) is said to be a super quasi-Einstein
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manifold if a non-zero Ricci tensor of type (0, 2) satisfies

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γ[A(X)C(Y ) + C(X)A(Y )] + δD(X,Y ),
(1.12)

where α, β, γ and δ are non-zero scalars, A, C are non-vanishing 1-forms defined
as (1.9) and ρ, µ are orthogonal unit vector fields, D is symmetric tensor of type
(0, 2) with zero trace which satisfies the condition

D(X, ρ) = 0, ∀ X. (1.13)

An n-dimensional super quasi-Einstein manifold is denoted by S(QE)n.
From the equations (1.2), (1.9), (1.12) and (1.13), we can easily write

S(X, ρ) = (α+ β)A(X) + γC(X), S(X, µ) = αC(X) + γA(X),

S(µ, µ) = α+ δD(µ, µ), S(ρ, ρ) = α+ β + δD(ρ, ρ), g(Jρ, ρ) = g(Jµ, µ) = 0,

S(Jµ, µ) = γA(Jµ) + δD(Jµ, µ), S(Jρ, ρ) = γC(Jρ) + δD(Jρ, ρ).

(1.14)

In 2009, A. A. Shaikh [1] introduced the notion of pseudo quasi-Einstein manifold.
A semi-Riemannian manifold (Mn, g)(n ≥ 2) is said to be a pseudo quasi-Einstein
manifold if a non-zero Ricci tensor of type (0, 2) satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + δD(X,Y ), (1.15)

where α, β, and δ are non-zero scalars and A is a non-zero 1-form defined by
g(X, ρ) = A(X). ρ denotes the unit vector called the generator of the manifold
and D is symmetric tensor of type (0, 2) with zero trace defined as (1.13). An
n-dimensional pseudo quasi-Einstein manifold is denoted by P (QE)n.
From the equations (1.2), (1.9) (1.13) and (1.15), we can easily write

S(X, ρ) = (α+ β)A(X), S(ρ, ρ) = α+ β,

g(Jρ, ρ) = 0 and S(Jρ, ρ) = δD(Jρ, ρ).
(1.16)

2. Semi-symmetric and Ricci pseudo-symmetric manifold

Let (Mn, g) be a Riemannian manifold and ∇ be the Levi-Civita connection on
(Mn, g) then, a Riemannian manifold is said to be locally symmetric if ∇R = 0,
where R is the Riemannian curvature tensor of (Mn, g). The locally symmetric
manifold has been studied by different geometers through different aproaches and
different notion have been developed e.g., a semi-symmetric manifold by Szabò
[18], recurrent manifold by Walker [2], conformally recurrent manifold by Adati
and Miyazawa [16].
According to Z. I. Szabò[18], if the manifold M satisfies the condition

(R(X,Y ).R)(U, V )W = 0, X, Y, U, V,W ∈ χ(M) (2.1)

for all vector fields X and Y, then the manifold is called a semi-symmetric manifold.
For a (0, k)- tensor field T on M, k ≥ 1 and a symmetric (0, 2)-tensor field A on
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M, the (0, k + 2)-tensor fields R.T and Q(A, T) are defined by

(R.T )(X1, .....Xk;X,Y ) = −T (R(X,Y )X1, X2, .......Xk)

− .......− T (X1, ..........Xk−1, R(X,Y )Xk),
(2.2)

and

Q(A, T )(X1, .....Xk;X,Y ) = −T ((X ∧A Y )X1, X2, .......Xk)

− .......− T (X1, ..........Xk−1, (X ∧A Y )Xk),
(2.3)

where X ∧A Y is the endomorphism given by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y. (2.4)

Definition 2.1. ([19]) An n-dimensional Riemannian manifold (Mn, g) is said to
be Ricci pseudo-symmetric if and only if the tensors R.S and Q(g, S) are linearly
dependent, i.e.

(R(X,Y ).S)(Z,W ) = LSQ(g, S)(Z,W ;X,Y ), (2.5)

holds on US , where US = [x ∈ M : S 6= r
ng at x] and LS is a certain function on

US .

The above developments allow to several authors for the generaliseation of the
notion of quasi Einstein manifolds. In this process generalized quasi-Einstein mani-
folds are studied by Prakasha and Venkatesha [7] and N(k)-quasi Einstein manifolds
are studied by [6, 11]. In 2012, S. K. Hui and R. S. Lemence [15] discussed gener-
alised quasi-Einstein manifold addmitting a W2- curvature tensor and they proved
that if a W2- curvature tensor satisfies W2.S = 0, then either the associated scalars
β and γ are equal or the curvature tensor R satisfies a definite condition. D. G.
Prakasha and H. Venkatesha [7] studied some results on generalised quasi-Einstein
manifolds and they proved that in generalised quasi-Einstein manifold if a conhar-
monic curvature tensor satisfies L.S = 0, then either M is a nearly quasi-Einstein
manifold N(QE)n or the curvature tensor R satisfies a definite condition. Recently
B. B. Chaturvedi and B. K. Gupta [4] studied Bochner Ricci semi-symmetric Her-
mitian manifold and B. K. Gupta, B. B. Chaturvedi and M. A. Lone [5] studied
Ricci semi-symmetric mixed super quasi-Einstein Hermitian manifold. We have
gone through the above developments in quasi-Einstein manifold (QE)n, gener-
alised quasi- Einstein manifold G(QE)n, a super quasi-Einstein manifold and decide
to study Bochner Ricci pseudo-symmetric super quasi-Einstein Hermitian manifold
and holomorphically projective Ricci pseudo-symmetric super quasi-Einstein Her-
mitian manifold.
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3. Bochner Ricci pseudo-symmetric super quasi-Einstein Hermitian
manifold

The notion of Bochner curvature tensor was introduced by S. Bochner [14]. The
Bochner curvature tensor B is defined by

B(Y, Z, U, V ) =R(Y, Z, U, V )− 1

2(n+ 2)

{
S(Y, V )g(Z,U)− S(Y,U)g(Z, V )

+ g(Y, V )S(Z,U)− g(Y,U)S(Z, V ) + S(JY, V )g(JZ,U)

− S(JY, U)g(JZ, V ) + S(JZ,U)g(JY, V )− g(JY, U)S(JZ, V )

− 2S(JY, Z)g(JU, V )− 2g(JY, Z)S(JU, V )
}

+
r

(2n+ 2)(2n+ 4)

{
g(Z,U)g(Y, V )− g(Y,U)g(Z, V )

+ g(JZ,U)g(JY, V )− g(JY, U)g(JZ, V )− 2g(JY, Z)g(JU, V )
}
,

(3.1)

where r is a scalar curvature of the manifold.
In a Hermitian manifold a Bochner curvature tensor satisfies the condition

B(X,Y, U, V ) = −B(X,Y, V, U). (3.2)

We introduce the following:

Definition 3.1. A Hermitian manifold is said to be a super quasi-Einstein Hermit-
ian manifold if it satisfies the equation (1.12). Throughout this paper, we denote
the super quasi-Einstein Hermitian manifold by S(QEH)n.

Definition 3.2. An even dimensional Hermitian manifold (Mn, g) is said to be a
Bochner Ricci pseudo-symmetric super quasi-Einstein Hermitian manifold if and
only if the tensors B.S and Q(g, S) are linearly dependent i.e.

(B(X,Y ).S)(Z,U) = LSQ(g, S)(Z,U ;X,Y ), (3.3)

holds on US , where US = [x ∈M : S 6= r
ng at x] and LS is a certain function on

US . If we take a Bochner Ricci pseudo-symmetric super quasi-Einstein Hermitian
manifold, then from equation (3.3) and (1.12), we have

S(B(X,Y )Z,U) + S(Z,B(X,Y )U)

= LS [g(Y, Z)S(X,U)− g(X,Z)S(Y, U) + g(Y, U)S(X,Z)− g(X,U)S(Y,Z)].

(3.4)
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Using equation (1.12) in equation (3.4), we get

α[g(B(X,Y )Z,U) + g(Z,B(X,Y )U)]

+ β[A(B(X,Y )Z)A(U) +A(B(X,Y )U)A(Z)]

+ γ[A(B(X,Y )Z)C(U) +A(U)C(B(X,Y )Z)

+A(Z)C(B(X,Y )U) +A(B(X,Y )U)C(Z)]

+ δ[D(B(X,Y )Z,U) +D(Z,B(X,Y )U)]

= LS

(
β[g(Y, Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+ g(Y,U)A(X)A(Z)− g(X,U)A(Y )A(Z)]

+ γ[g(Y, Z)[(A(X)C(U) +A(U)C(X)]− g(X,Z)[A(Y )C(U) +A(U)C(Y )]

+ g(Y,U)[A(X)C(Z) +A(Z)C(X)]− g(X,U)[A(Y )C(Z) +A(Z)C(Y )]]

+ δ[g(Y,Z)D(X,U)− g(X,Z)D(Y, U) + g(Y, U)D(X,Z)− g(X,U)D(Y,Z)]
)
.

(3.5)

Using equation (3.2) in equation (3.5) we infer

β[A(B(X,Y )Z)A(U) +A(B(X,Y )U)A(Z)]

+ γ[A(B(X,Y )Z)C(U) +A(U)C(B(X,Y )Z)

+A(Z)C(B(X,Y )U) +A(B(X,Y )U)C(Z)]

+ δ[D(B(X,Y )Z,U) +D(Z,B(X,Y )U)]

= LS

{
β[g(Y,Z)A(X)A(U)− g(X,Z)A(Y )A(U)

+ g(Y, U)A(X)A(Z)− g(X,U)A(Y )A(Z)]

+ γ[g(Y, Z)[(A(X)C(U) +A(U)C(X)]− g(X,Z)[A(Y )C(U) +A(U)C(Y )]

+ g(Y, U)[A(X)C(Z) +A(Z)C(X)]− g(X,U)[A(Y )C(Z) +A(Z)C(Y )]]

+ δ[g(Y, Z)D(X,U)− g(X,Z)D(Y,U)

+ g(Y, U)D(X,Z)− g(X,U)D(Y, Z)]
}
.

(3.6)

Now putting U = Z = ρ, we have

2γ
{
B(X,Y, ρ, µ)− LS [C(X)A(Y )− C(Y )A(X)]

}
= 0. (3.7)

This implies either γ = 0 or

B(X,Y, ρ, µ) = LS [C(X)A(Y )− C(Y )A(X)]. (3.8)

If γ = 0, then from equation (1.12), we obtain

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + δD(X,Y ). (3.9)

This is the condition of a pseudo quasi-Einstein manifold.
Thus we conclude:
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Theorem 3.3. A Bochner Ricci pseudo-symmetric super quasi-Einstein Hermit-
ian manifold is either a Bochner Ricci pseudo-symmetric pseudo quasi-Einstein
Hermitian manifold or

B(X,Y, ρ, µ) = LS [C(X)A(Y )− C(Y )A(X)].

From equation (3.7), we can also conclude:

Corollary 3.1. In a Bochner Ricci pseudo-symmetric super quasi-Einstein Her-
mitian manifold if γ 6= 0 then B(X,Y, ρ, µ) = 0 if and only if the vector fields ρ
and µ corresponding to 1-forms A and C respectively are codirectional.

4. Bochner flat Ricci pseudo-symmetric super quasi-Einstein
Hermitian manifold with (B(X,Y ).S)(Z,U)

= LSQ(g, S)(Z,U ;X,Y )

If we take a Bochner flat curvature tensor then from equation (3.1), we have

R(Y,Z, U, V ) =
1

2(n+ 2)

{
S(Y, V )g(Z,U)− S(Y,U)g(Z, V )

+ g(Y, V )S(Z,U)− g(Y,U)S(Z, V ) + S(JY, V )g(JZ,U)

− S(JY, U)g(JZ, V ) + S(JZ,U)g(JY, V )− g(JY, U)S(JZ, V )

− 2S(JY, Z)g(JU, V )− 2g(JY, Z)S(JU, V )
}

− r

(2n+ 2)(2n+ 4)

{
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

+ g(JZ,U)g(JY, V )− g(JY, U)g(JZ, V )− 2g(JY, Z)g(JU, V )
}
.

(4.1)

From equations (2.5) and (4.1), we infer

1

(2n+ 4)

{
S(QY, V )g(Z,U)− g(Y,U)S(QZ, V ) + S(QJY, V )g(JZ,U)

− g(JY, U)S(JQZ, V )− 2g(JY, Z)S(JQU, V )

+ S(QY,U)g(Z, V )− g(Y, V )S(QZ,U) + S(QJY,U)g(JZ, V )

− g(JY, V )S(JQZ,U)− 2g(JY, Z)S(JQV,U)
}

− r

(2n+ 2)(2n+ 4)

{
g(Z,U)S(Y, V )− g(Y, U)S(Z, V ) + g(JZ,U)S(JY, V )

− g(JY, U)S(JZ, V ) + g(Z, V )S(Y, U)− g(Y, V )S(Z,U)

+ g(JZ, V )S(JY, U)− g(JY, V )S(JZ,U)
}

= LS [g(Z,U)S(Y, V )− g(Y,U)S(Z, V ) + g(Z, V )S(Y, U)− g(Y, V )S(Z,U)].

(4.2)
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If we take λ be an eigen value of Q and JQ corresponding to eigen vectors X and
JX respectively then QX = λX and QJX = λJX i.e. S(X,U) = λg(X,U) (where
the manifold is not Einstein) and hence

S(QX,U) = λS(X,U) and S(QJX,U) = λS(JX,U). (4.3)

Using equation (4.3) in equation (4.2), we infer(
λ

(2n+ 4)
− r

(2n+ 2)(2n+ 4)

){
S(Y, V )g(Z,U)− g(Y, U)S(Z, V )

+ S(Y,U)g(Z, V )− g(Y, V )S(Z,U) + S(JY, V )g(JZ,U)

− S(JZ, V )g(JY, U) + S(JY, U)g(JZ, V )− g(JY, V )S(JZ,U)
}

= LS [g(Z,U)S(Y, V )− g(Y,U)S(Z, V ) + g(Z, V )S(Y,U)− g(Y, V )S(Z,U)].

(4.4)

Now putting V = U = ρ, we get(
λ

(2n+ 4)
− r

(2n+ 2)(2n+ 4)

)(
[S(Y, ρ)g(Z, ρ)− g(Y, ρ)S(Z, ρ)

+ S(JY, ρ)g(JZ, ρ)− S(JZ, ρ)g(JY, ρ)]
)

= LS [g(Z, ρ)S(Y, ρ)− g(Y, ρ)S(Z, ρ)].

(4.5)

Now using equations (1.9) and (1.14) in equation (4.5), we have

γ

(( λ

(2n+ 4)
− r

(2n+ 2)(2n+ 4)

)
− LS

)
[C(Y )A(Z)− C(Z)A(Y )]

= γ

(
λ

(2n+ 4)
− r

(2n+ 2)(2n+ 4)

)
[A(JY )C(JZ)−A(JZ)C(JY )].

(4.6)

If we take λ = r
(2n+2) and γ 6= 0, then

A(Z)C(Y ) = A(Y )C(Z). (4.7)

If we take λ = r
(2n+2) and γ 6= 0, then from equations (1.2) and (1.9), equation

(4.7) imply g(Z, ρ) g(Y, µ) = g(Y, ρ) g(Z, µ), therefore we can say that the vector
fields ρ and µ corresponding to 1-forms A and C respectively are codirectional.
Thus we conclude:

Theorem 4.1. In a Bochner flat Ricci pseudo-symmetric super quasi-Einstein Her-
mitian manifold if r

(2n+2) is an eigen value of the Ricci operator Q and JQ and γ 6= 0

then the vector fields ρ and µ corresponding to 1-forms A and C respectively are
codirectional.
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5. Holomorphically projective Ricci pseudo-symmetric super
quasi-Einstein Hermitian manifold

The holomorphically projective curvature tensor is defined by [20]

P (X,Y, Z,W ) = R(X,Y, Z,W )− 1

n− 2
[S(Y,Z)g(X,W )− S(X,Z)g(Y,W )

+ S(JX,Z)g(JY,W )− S(JY, Z)g(JX,W )].
(5.1)

This tensor has the following properties

P (X,Y, Z,W ) = −P (Y,X,Z,W ), P (JX, JY, Z,W ) = P (X,Y, Z,W ). (5.2)

Now we introduce the following:

Definition 5.1. An even dimensional Hermitian manifold (Mn, g) is said to be a
holomorphically projective Ricci pseudo-symmetric super quasi-Einstein Hermitian
manifold if the holomorphically projective curvature tensor of the manifold satisfies
P.S = 0, i.e.

(P (X, Y ).S)(Z,W ) = LSQ(g, S)(Z,W ;X,Y ). (5.3)

for all X,Y, Z,W ∈ χ(Mn).
If we take a holomorphically projective Ricci pseudo-symmetric super quasi-Einstein
Hermitian manifold, then from the equations (1.12) and (5.1), we have

α[P (X,Y, Z,W ) + P (X,Y,W,Z)]

+ β[A(P (X,Y )Z)A(W ) +A(Z)A(P (X,Y )W )]

+ γ[A(P (X,Y )Z)C(W ) +A(W )C(P (X,Y )Z)

+A(Z)C(P (X,Y )W ) + C(Z)A(P (X,Y )W )]

+ δ[D(P (X,Y )Z,W ) +D(Z,P (X,Y )W )]

= LS [g(Y,Z)S(X,W )− g(X,Z)S(Y,W ) + g(Y,W )S(X,Z)− g(X,W )S(Y,Z)].

(5.4)

Now putting Z = W = ρ in equation (5.4) and using equation (1.14), we have

(α+ β)P (X,Y, ρ, ρ) + γP (X,Y, ρ, µ)

= γLS [A(Y )C(X)−A(X)C(Y )].
(5.5)

Using Z = W = ρ in equation (5.1), we have

P (X,Y, ρ, ρ) = − γ

n− 2
[C(Y )A(X)−A(Y )C(X)

+ C(JX)A(JY )− C(JY )A(JX)].
(5.6)

Similarly putting Z = ρ and W = µ in equation (5.1), we get

P (X,Y, ρ, µ) = R(X,Y, ρ, µ)− (α+ β)

n− 2
[A(Y )C(X)− C(Y )A(X)

+ C(JX)A(JY )− C(JY )A(JX)].
(5.7)
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Using equations (5.6) and (5.7) in (5.5), we get

γ[R(X,Y, ρ, µ)− LS [A(Y )C(X)−A(X)C(Y )]] = 0, (5.8)

this implies that either γ = 0 or R(X,Y, ρ, µ) = LS [A(Y )C(X) − A(X)C(Y )]. If
γ = 0 then from equation (1.12), we get the condition of a pseudo quasi-Einstein
manifolds.
Thus we can conclude:

Theorem 5.2. A holomorphically projectively Ricci pseudo-symmetric super quasi-
Einstein Hermitian manifold is either a holomorphically projective Ricci semi-
symmetric pseudo quasi-Einstein Hermitian manifold or

R(X,Y, ρ, µ) = LS [A(Y )C(X)−A(X)C(Y )].

Corollary 5.1. In a holomorphically projectively Ricci pseudo-symmetric super
quasi-Einstein Hermitian manifold if γ 6= 0 then R(X,Y, ρ, µ) = 0 if and only
if the vector fields ρ and µ corresponding to one form A and C respectively are
codirectional.

Putting Z = ρ and W = µ in equation (5.4), we get

α[P (X,Y, ρ, µ) + P (X,Y, µ, ρ)] + βP (X,Y, µ, ρ)

+ γ[P (X,Y, ρ, ρ) + P (X,Y, µ, µ)] = βLS [A(X)C(Y )−A(Y )C(X)].
(5.9)

Putting Z = U = µ in (5.1), we get

P (X,Y, µ, µ)

= − γ

n− 2
[A(Y )C(X)− C(Y )A(X) + C(JY )A(JX)− C(JX)A(JY )].

(5.10)

Adding equations (5.6) and (5.10), we get

P (X,Y, µ, µ) + P (X,Y, ρ, ρ) = 0, (5.11)

from equations (5.9) and (5.11), we have

α[P (X,Y, ρ, µ) + P (X,Y, µ, ρ)] + βP (X,Y, µ, ρ) = βLS [A(X)C(Y )−A(Y )C(X)].
(5.12)

From equations (5.1), (5.7) and (5.12), we have

β[R(X,Y, µ, ρ)− LS [A(X)C(Y )−A(Y )C(X)]] = 0. (5.13)

This implies either β = 0 or R(X,Y, µ, ρ) = LS [A(X)C(Y )−A(Y )C(X)].

Theorem 5.3. In a holomorphically projective Ricci pseudo-symmetric super quasi-
Einstein Hermitian manifold if β 6= 0 then R(X,Y, µ, ρ) = 0 if and only if the vector
fields ρ and µ corresponding to one form A and C respectively are codirectional.
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GENERALIZED PROJECTIVE CURVATURE TENSOR OF
NEARLY COSYMPLECTIC MANIFOLD

NAWAF J. MOHAMMED AND HABEEB M. ABOOD

Abstract. In this paper, we concentrated our attention on geometry of gen-
eralized projective tensor of nearly cosymplectic manifold. In particular, we
studied the flatness property of generalized projective tensor. This property
helped us to find the necessary and suffi cient condition that nearly cosymplec-
tic manifold is a generalized Einstein manifold.

1. Introduction

One of the important curvature tensors is the projective tensor. According to
this importance, many authors focused on its geometrical properties. Kirichenko
[11] proved that nontrivial projective-recurrent K -space of maximal rank is 6-
dimensional manifold of constant curvature tensor. Abood [3] studied the pro-
jective tensor of nearly Kähler manifold. Abood and Mohammed [4] proved that
almost Kähler manifold is a Kähler manifold if it is a projective parakähler man-
ifold. Shashikala and Venkatesha [20] studied the generalized pseudo-projective
Φ-recurrent N(k)-contact metric manifold. Later on, Abood and Abd Ali [1] found
the necessary condition that Viasman-Grey manifold has flat generalized projec-
tive tensor. Abood and Abd Ali [2] studied the projective-recurrent Viasman-Gray
manifold. Finally, Atceken, Yildirim and Dirik [6], [7], [21], [22] studied certain cur-
vature tensors including the pseudo-projective on some contact metric manifolds.
In this paper, we obtain some results on generalized projective tensor when

it’s act on nearly cosymplectic manifold. In particular, we found the necessary
and suffi cient conditions that nearly cosymplectic manifold is generalized Einstein
manifold.
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2. Preliminaries

Let M be a smooth manifold of dimension 2n + 1 greater than 3, X(M) be
the module of smooth vector fields on M , Xc(M ) be the complexification of the
module X(M) and T cp (M ) be the complexification of tangent space Tp(M) at the
point p ∈M .
An almost contact manifold (AC-manifold) is the set (M,η, ξ,Φ, g), where η is

differential 1-form called a contact form, ξ is a vector field called a characteristic,
Φ is endomorphism of X(M) called a structure endomorphisim and g = 〈., .〉 is the
Riemannian metric on M. Moreover, the following conditions are fulfilled:

η(ξ) = 1,Φ(ξ) = 0, η ◦ Φ = 0,Φ2 = −id+ η ⊗ ξ,

and 〈ΦX,ΦY 〉 = 〈X,Y 〉 − η(X)η(Y ); X,Y ∈ X(M) [8].
In the module Xc(M ), define two endomorphisms σ and σ̄ as follows:

σ = 1
2 (id −

√
−1Φ) and σ̄ = − 1

2 (id +
√
−1Φ), then we can define two projections

as follows:

Π = σ ◦ ` = −1

2
(Φ2 −

√
−1Φ) and Π̄ = σ̄ ◦ ` =

1

2
(Φ2 +

√
−1Φ),

where σ ◦ Φ = Φ ◦ σ = iσ and σ̄ ◦ Φ = Φ ◦ σ̄ = −iσ̄. Therefore, If we denote
ImΠ = D

√
−1

Φ and ImΠ̄ = D−
√
−1

Φ , then

Xc(M ) = D
√
−1

Φ ⊕D−
√
−1

Φ ⊕D0
Φ,

where D
√
−1

Φ , D−
√
−1

Φ and D0
Φ are proper submodules of the endomorphism Φ with

proper values
√
−1,−

√
−1 and 0 respectively [13].

At each point p ∈ M , we can construct a frame in T cp (M ) by the form (p, ε0, ε1, ..., εn,

ε1̂, ..., εn̂), where εa =
√

2σp(ep), εâ =
√

2σ̄(ep) and ε0 = ξp. The frame (p, ε0, ε1, ..., εn,
ε1̂, ..., εn̂) is called A-frame [16].
The principle fiber of all A-frames with structure group {1} × U(n) is called an

G-adjoined structure space.
The matrices of the AC -structure Φp and Riemannian metric gp in A-frame are

given by the following forms:

(Φij) =

 0 0 0
0
√
−1In o

0 0 −
√
−1In

 , (gij) =


1 0 0
0 0 −In
0 In 0

 (2.1)

where In is the identity matrix of order n [14].
An almost contact manifold is called a nearly cosymplectic manifold (NC-manifold)

if the equality ∇X(Φ)Y +∇Y (Φ)X = 0; X,Y ∈ X(M) holds [9].
The following theorem explains the structure equations of NC-manifold in the

G-adjoined structure space.
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Theorem 2.1. [15] In the G-adjoined structure space, the structure equations of
NC-manifold are given by the following forms:

(1) dωa = ωab ∧ ωb +Babcωb ∧ ωc + 3
2C

abωb ∧ ω;

(2) dωa = −ωba ∧ ωb +Babcω
b ∧ ωc + 3

2Cabω
b ∧ ω;

(3) dω = Cbcωb ∧ ωc + Cbcω
b ∧ ωc;

(4) dωab = ωac ∧ ωcb + [Aadbc − 2BadhBhbc + 3
2C

adCbc]ω
c ∧ ωd,

where Babc =
√
−1
2 Φa

b̂,ĉ
, Cab =

√
−1Φa

0,b̂
, Cab = −

√
−1Φâb,0 and Babc = −

√
−1
2 Φâb,c.

The tensors B, C and A are called the first, second and third structure tensors re-
spectively.

Definition 2.1. [17] A Riemann-Christoffel tensor R of a smooth manifold M is
a tensor of type (4, 0) which is defined by

R(X,Y, Z,W ) = g(R(Z,W )Y,X),

where R(X,Y )Z = ([∇X ,∇Y ]−∇[X,Y ])Z, and has the following properties:

(1) R(X,Y, Z,W ) = −R(Y,X,Z,W );
(2) R(X,Y, Z,W ) = −R(X,Y,W,Z);
(3) R(X,Y, Z,W ) = R(Z,W,X, Y );
(4) R(X,Y, Z,W ) +R(X,Z,W, Y ) +R(X,W, Y, Z) = 0.

The components of Riemann-Christoffel tensor of NC-manifold are given in the-
orem below.

Lemma 2.1. [15] In the G-adjoined structure space, the components of Riemann-
Christoffel tensor of NC-manifold have the following forms:

(1) Râbcd = 0;
(2) Rabcd = −2Bab[cd];

(3) Râb̂cd = −2BabhBhcd;
(4) Râ0b0 = CacCbc;
(5) Râbcd̂ = Aadbc −BadhBhbc − 5

3C
adCbc.

The other components of Riemann-Christoffel tensor R can be obtained by the
property of symmetry for R or equal to zero.

Definition 2.2. [10] A generalized Riemannian curvature tensor GR on NC-manifold
M is a tensor of type (4, 0) which is defined as the following form:
GR(X,Y, Z,W ) = 1

16{3[R(X,Y, Z,W ) + R(ΦX,ΦY,Z,W ) + R(X,Y, ΦZ,ΦW ) +
R(ΦX,ΦY, ΦZ,ΦW )]−R(X,Z,ΦW,ΦY )−R(ΦX,ΦZ,W, Y )−R(X,W,ΦY, ΦZ)−
R(ΦX,ΦW, Y, Z)+R(ΦX,Z, ΦW, Y )+R(X,ΦZ,W,ΦY )+R(ΦX,W, Y, ΦZ)+R(X,ΦW,ΦY,Z)},
where R(X,Y, Z) is the Riemann-Christoffel tensor, X,Y, Z,W ∈ Tp(M) and has
the following properties:

(1) GR(X,Y, Z,W ) = −GR(Y,X,Z,W ) = −GR(X,Y,W,Z);
(2) GR(X,Y, Z,W ) = GR(Z,W,X, Y );
(3) GR(X,Y, Z,W ) +GR(X,Z,W, Y ) +GR(X,W, Y, Z) = 0;
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(4) GR(X,ΦX,ΦX,X) = R(X,ΦX,ΦX,X).

Definition 2.3. [18] A tensor Gr of type (2, 0) which is defined as (Gr)ij = (GR)kijk
is called a generalized Ricci tensor.

Remark 2.1. [18] A generalized Ricci tensor is symmetric , this follows form the
properties of symmetry of generalized Riemannian curvature tensor. This mean
(Gr)ij = (Gr)ji.

Definition 2.4. A generalized projective tensor GP is a tensor of type (4, 0) which
is defined as the form:

(GP )ijkl = (GR)ijkl −
1

2n
[(Gr)ikgjl − (Gr)jkgil].

Definition 2.5. [11] Let M be an AC-manifold, an Φ-holomorphic sectional cur-
vature (ΦHS-curvature) of a manifold M in the direction X ∈ X(M), X 6= 0 is a
function H(X) which is defined as:

H(X) = 〈R(X,ΦX)X,ΦX〉 ‖X‖−4

Definition 2.6. [11] An AC-manifold is called a manifold of point constant ΦHS-
curvature if

〈R(X,ΦX)X,ΦX〉 = c‖X‖4,
where c ∈ C∞(M), for all X ∈ X(M)

Theorem 2.2. [11] An AC-manifold is a manifold of point constant ΦHS-curvature
C0 if and only if, on the G-adjoined structure, the following equation holds:

R
(ad)
(bc) =

C0

2
δ̃
ad

bc , (2.2)

where C0 ∈ C∞(M) and δ̃
ad

bc = δabδ
d
c + δacδ

d
b .

Definition 2.7. [19] A Riemannian manifold is called an Einstein manifold, if the
Ricci tensor satisfies the equation rij = egij, where e is an cosmological constant.

Similar to the above definition, we can introduce the following definition.

Definition 2.8. A Riemannian manifold is called a generalized Einstein manifold,
if the generalized Ricci tensor satisfies the equation (Gr)ij = (Ge)gij, where Ge is
a generalized cosmological constant.

3. The main results

In this section, we calculated the components of the generalized Riemannian
curvature tensor. Moreover, the necessary and suffi cient condition that a nearly
cosymplectic manifold is generalized Einstein manifold has been found.

Lemma 3.1. In the G-adjoined structure space, the components of the generalized
Riemannian curvature tensor of NC-manifold are given by the following forms:
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(1) (GR)âbĉd = −Aacbd;
(2) (GR)âbcd̂ = − 1

2 [Aadbc − 3BadhBhbc − 5
3C

adCbc].

And the others are conjugate to the above components or equal to zero.

Proof: By using the Lemma 2.1 and Definition 2.2, we compute the components
of generalized projective tensor as the following:
1) Put i = â, j = b, k = ĉ and l = d, we have

(GR)âbĉd = 1
16{3[Râbĉd +Râbĉd +Râbĉd +Râbĉd] +Râĉdb +Râĉdb −Râdbĉ−

Râdbĉ +Râĉdb +Râĉdb −Râdbĉ −Râdbĉ}

Making use of the properties of GR, we get

(GR)âbĉd = −Aacbd.
2) Put i = â, j = b, k = ĉ and l = d, we obtain

(GR)âbĉd = 1
16{3[Râbĉd +Râbĉd +Râbĉd +Râbĉd] +Râĉdb +Râĉdb −Râdbĉ−

Râdbĉ +Râĉdb +Râĉdb −Râdbĉ −Râdbĉ}

According the the Definition 2.2, consequently we deduce

(GR)âbcd̂ = −1

2
[Aadbc − 3BadhBhbc −

5

3
CadCbc].

By the same manner, we can get the other components.

Lemma 3.2. In the G-adjoined structure space, the components of the generalized
Ricci tensor of NC-manifold are given as the following form:

(Gr)âb =
1

2
Aaccb + 3BachBhcb +

5

3
CacCcb.

And the others are conjugate to the above component or equal to zero.

Proof: By using the Lemma 2.1 and Definition 2.3, directly we obtain the above
components.

Lemma 3.3. In the G-adjoined space, the components of the generalized projective
tensor of NC-manifold take the following forms:

(1) (GP )âb̂cd = − 1
2n (( 1

2A
af
fc+3BafhBhfc+

5
3C

afCfc)δ
b
d)−( 1

2A
bf
fc−3BbfhBhfc−

5
3C

bfCfc)δ
a
d;

(2) (GP )âbĉd = −Aacbd + 1
2n ( 1

2A
cf
fb + 3BcfhBhfb + 5

3C
cfCfb)δ

a
d;

(3) (GP )âbcd̂ = − 1
2n ( 1

2A
ad
bc + 3BadhBhbc + 5

3C
adCbc) − 1

2 (Aaffc + 3BafhBhfc +
5
3C

afCfc)δ
d
b .
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The remaining components are obtained by taking the conjugated operation to
the above components or are identical equal to zero.

Proof:
1. Put i = â, j = b̂, c and l = d.
According to the Definition 2.4, we obtain

(GP )âb̂cd = (G<)âb̂cd −
1

2n [(Gr)âcgb̂d − (Gr)b̂cgâd]

By using the Lemmas 3.1, 3.2 and the matrices (2.1), we have

(GP )âb̂cd =

− 1
2n (( 1

2A
af
fc + 3BafhBhfc + 5

3C
afCfc)δ

b
d)− ( 1

2A
bf
fc − 3BbfhBhfc − 5

3C
bfCfc)δ

a
d.

2. Put i = â, j = b, k = ĉ and l = d.
Harmonize to the Definition 2.4, we get

(GP )âbĉd = (G<)âbĉd − 1
2n [(Gr)âĉgbd − (Gr)bĉgâd]

Taking into account the Lemmas 3.1, 3.2 and the matrices (2.1), we obtain

(GP )âbĉd = −Aacbd + 1
2n ( 1

2A
cf
fb + 3BcfhBhfb + 5

3C
cfCfb)δ

a
d.

By the same technique, we can compute the other components.

Theorem 3.1. If M is vanishing generalized projectively NC-manifold, then the
necessary and suffi cient condition for M to be vanishing generalized Ricci tensor is
the holomorphic tensor vanishes.

Proof: Let M be vanishing generalized projectively NC -manifold.
According to the Lemma 3.3, we have

(G<)âbĉd +
1

2n
[(Gr)bĉgâd] = 0 (3.1)

If M is vanishing generalized Ricci tensor, then directly we get

Aacbd = 0.

Conversely, if M is vanishing holomorphic tensor, then we have

1

2n
[(Gr)bĉδ

a
d] = 0 (3.2)

Contracting (3.2) by the indices (b, a) , it follows that

(Gr)dĉ = 0.

Theorem 3.2. An NC-manifold has vanishing holomorphic tensor if and only if,
M is a manifold of vanishing generalized projective tensor.

Proof: Let M be NC-manifold with vanishing generalized projective tensor.
Making use of the Lemma 3.3, we obtain

−Aacbd +
1

2n
(
1

2
Acffb + 3BcfhBhfb +

5

3
CcfCfb)δ

a
d = 0 (3.3)
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Symmetrizing and then antisymmetrizing the equation (3.3) by the indices (c, f),
we get

Aacbd = 0.

Conversely, let M be NC-manifold with vanishing holomorphic tensor, then the
equation (3.3) takes the following formula:

(GP )âbĉd =
1

2n
(3BcfhBhfb +

5

3
CcfCfb)δ

a
d (3.4)

Symmetrizing and then antisymmetrizing the equation (3.4) by the indices (c, f),
we deduce

(Gp)âbĉd = 0.

Lemma 3.4. An NC-manifold has Φ-invariant generalized Ricci tensor if and only
if,

Φ ◦Gr = Gr ◦ Φ.

Theorem 3.3. Let M be NC-manifold. Then M has Φ-invariant generalized Ricci
tensor if and only if, (Gr)

â
b = 0 hold in the G-adjoined structure space.

Proof: Suppose that M is Φ- invariant generalized Ricci tensor.
According to the Lemma 3.4, we have

Φ ◦Gr = Gr ◦ Φ
By the G-adjoined structure space, the above equation becomes

(Φ ◦Gr)ij = (Gr ◦ Φ)ij

This means

Φik(Gr)
k
j = (Gr)

i
kΦ

k
j (3.5)

Put i = â and j = b , then the equation (3.5) becomes

Φâc (Gr)
c
b + Φâĉ (Gr)

ĉ
b + Φâ0(Gr)

0
b = (Gr)

â
cΦ

c
b + (Gr)

â
ĉΦ

ĉ
b + (Gr)

â
0Φ

0
b

By using (2.1), we have

(Gr)
â
b = 0.

Theorem 3.4. Suppose that M is NC-manifold with vanishing generalize projective
tensor and Φ-invariant generalized Ricci tensor. Then the necessary and suffi cient
condition for M to be generalized Einstein manifold is Abcbd = Ge

2n δ
c
d, where Ge is a

generalized Cosmological constant.

Proof: Let M be NC -manifold with vanishing generalized projective tensor.
According to the Lemma 3.3, we have

−Aacbd +
1

2n
[(Gr)bĉgâd] = 0 (3.6)
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Making use of the Definition 2.8, the equation (3.6) becomes

Aacbd =
Ge

2n
δcbδ

a
d (3.7)

Contracting the equation (3.7) by the indices (b, a), it follows that

Abcbd =
Ge

2n
δcd (3.8)

Conversely,
Contracting the equation (3.6) by the indices (b, a), we have

−Abcbd +
1

2n
[(Gr)dĉ] = 0 (3.9)

Combining the equations (3.8) and (3.9), we conclude

(Gr)
c
d = Geδcd

Therefore, by the Definition 2.8 and Theorem 3.3, M is generalized Einstein
manifold.

Theorem 3.5. Suppose that M is NC-manifold with vanishing generalized Rie-
mannian curvature tensor and Φ-invariant generalized Ricci tensor. If M is a gen-
eralized Einstein manifold then Ge = 10

3 C
bcCbd.

Proof: LetM be NC-manifold with vanishing generalized Riemannian curvature
tensor. Then from Lemma 3.1 we have

−1

2
[Aadbc − 3BadhBhbc −

5

3
CadCbc] = 0 (3.10)

By symmetrization and antisymmetrizatin the equation (3.10) by the induces (d, h)
we get

Aadbc −
5

3
CadCbc = 0 (3.11)

Contracting the equation (3.11)by the induces (b, a), (d, c) and (c, d), we deduce

Abcbd −
5

3
CbcCbd = 0 (3.12)

Since M is generalized Einstein manifold, then from the Theorem 3.4, the equation
(3.12) becomes

Ge

2n
δcd −

5

3
CbcCbd = 0 (3.13)

Contracting the equation (3.13)by the induces (d, a), implies

Ge =
10

3
CbcCbd.
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Theorem 3.6. [5] Suppose that M is NC-manifold. Then the necessary and suffi -
cient condition that M is a manifold of point constant ΦHS-curvature C0 is

Aadbc = BadhBhbc +
5

3
CadCbc +

C0

2
δ̃
ad

bc .

Theorem 3.7. Suppose that M is NC-manifold of point constant ΦHS-curvature
C0 and vanishing generalized projective tensor with Φ-invariant generalized Ricci
tensor, then CafCfc = −C0(n+1)

10 δac .

Proof: Let M be NC-manifold of ΦHS -curvature tensor and vanishing general-
ized projective tensor.
According to the Lemma 3.3, we have

− 1

2n
((

1

2
Aaffc + 3BafhBhfc +

5

3
CafCfc)δ

b
d)− (

1

2
Abffc − 3BbfhBhfc−

− 5

3
CbfCfc)δ

a
d (3.14)

By using Theorem 3.6, the equation (3.14) becomes

− 1

2n
(
1

2
(BafhBhfc +

5

3
CafCfc +

c0
2
δ̃
af

fc ) + 3BafhBhfc +
5

3
CafCfc)δ

b
d−

− 1

2
(−2BbfhBhfc +

c0
2
δ̃
bf

fc)δ
a
d = 0 (3.15)

Symmetrizing and then antisymmetrizing the equation (3.15) by the indices (b, f)
and (f, h), we conclude that

CafCfc = −C0(n+ 1)

10
δac .
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A TYCHONOFF THEOREM FOR GRADED DITOPOLOGICAL TEXTURE

SPACES

RAMAZAN EKMEKÇI

ABSTRACT. In this paper, initial and product graded ditopologies are formulated and ac-

cordingly it is shown that dfGDitop is a topological structure over dfTex× dfTex. By

means of spectrum idea, (di)compactness in graded ditological texture spaces is defined as

a generalization of (di)compactness in ditopological case and its relation with the ditopo-

logical case is investigated. Moreover, the relations between graded difilters and dicom-

pactness of graded ditological texture spaces are studied.

1. INTRODUCTION

The idea “graded ditopology” has been introduced in [7] by Brown and Šostak. This

new structure is more comprehensive than ditopologies basically given in [2, 3] and fuzzy

topologies given independently by Šostak in [11] and Kubiak in [10]. Unlike ditopological

case, in graded ditopologies, openness and closedness are given by means of independent

grading functions.

In this work, we formulate the initial and product graded ditopologies and then we show

that dfGDitop (given in Theorem 1.15) is a topological structure over dfTex×dfTex. Note

that dfTex is the category of textures and difunctions between them [4]. Also dfTex×
dfTex is the product category whose objects are all pairs of textures ((S,S ),(V,V )) and

morphisms are all pairs of difunctions (( f ,F), (h,H)) from ((S,S ), (V,V )) to ((S′,S ′),
(V ′,V ′)) with ( f ,F) : (S,S )→ (S′,S ′), (h,H) : (V,V )→ (V ′,V ′). By using spectral

theory as in [12, 13], we define (di)compactness in graded ditopological texture spaces as

a generalization of (di)compactness in ditopological case and then a Tychonoff Theorem

for that spaces is proved. The relationship between dicompactness spectrum and diconver-

gence (diclustering) spectrum is also studied.

Textures: [2] For a set S, a subset S ⊆P(S) is called a texturing on S if it is a point

separating (i.e. for all s, t ∈ S, s 6= t there exists a set A ∈ S such that s ∈ A, t 6∈ A or

s 6∈ A, t ∈ A), completely distributive, complete lattice with respect to inclusion which
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contains /0, S and for which meet
∧

coincides with intersection
⋂

and finite joins
∨

with

unions
⋃

. In this case (S,S ) is called a texture space or simply a texture.

For any texture (S,S ), many properties are conveniently defined in terms of the p−sets

Ps =
⋂
{A ∈S | s ∈ A}

and the q− sets

Qs =
∨
{A ∈S | s 6∈ A}=

∨
{Pu | u ∈ S,s 6∈ Pu}.

A texture (S,S ) is called plain if Ps * Qs for all s ∈ S or equivalently A =
∨

i∈I Ai =⋃
i∈I Ai for all Ai ∈S , i ∈ I.

In general, a texturing of S need not be closed under set complementation, but there

may exist a mapping σ : S →S satisfying σ(σ(A)) = A and A⊆ B⇒ σ(B)⊆ σ(A) for

all A,B ∈S . In this case σ is called a complementation on (S,S ) and (S,S ,σ) is said to

be a complemented texture.

For any set A ∈S , the core of A (denoted by A[) is defined by

A[ =
⋂{⋃

{Ai | i ∈ I} |{Ai | i ∈ I} ⊆S , A=
∨
{Ai | i ∈ I}

}
.

Product of textures: [3, 4, 5] Let (S j,S j), j ∈ J be textures, S=∏ j∈J S j and Ak ∈Sk

for some k ∈ J. If we write

E(k,Ak) =∏
j∈J

Yj where Yj =

{
A j if j = k

S j otherwise

then the product texturing S =
⊗

j∈J S j of S consists of arbitrary intersections of elements

of the set

ε = {
⋃
j∈J1

E( j,A j) | J1 ⊆ J, A j ∈S j for j ∈ J1}.

Consider two textures (S,S ) and (V,V ). The p-sets and q-sets of the product texture

(S×V,P(S)⊗V ) will be denoted by P(s,v), Q(s,v) respectively.

Definition 1.1. [4] Let (S,S ) and (V,V ) be textures. Then

(1) r ∈P(S)⊗V is called a relation on (S,S ) to (V,V ) if it satisfies

R1 r * Q(s,v), Ps′ * Qs ⇒ r * Q(s′,v).
R2 r * Q(s,v)⇒∃s′ ∈ S such that Ps * Qs′ and r * Q(s′,v).

(2) R ∈P(S)⊗V is called a co-relation on (S,S ) to (V,V ) if it satisfies

CR1 P(s,v)* R, Ps * Qs′ ⇒ P(s′,v)* R.

CR2 P(s,v)* R⇒∃s′ ∈ S such that Ps′ * Qs and P(s′,v)* R.

(3) A pair (r,R), where r is a relation and R a co-relation on (S,S ) to (V,V ) is called

a direlation on (S,S ) to (V,V ).

For a texture (S,S ) the identity direlation (i(S,S ), I(S,S )) is defined by

i(S,S ) =
∨
{P(s,s) | s ∈ S} and I(S,S ) =

⋂
{Q(s,s) | s ∈ S[}.
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For A⊆ S, r→A=
⋂{Qv | ∀s,r*Q(s,v)⇒ A⊆Qs} is called the A-section of r and R→A=∨{Pv | ∀s,P(s,v) * R⇒ Ps ⊆ A} is called the A-section of R.

For B ⊆ V , r←B =
∨{Ps | ∀v,r * Q(s,v)⇒ Pv ⊆ B} is called the B-presection of r and

R←B=
⋂{Qs | ∀v,P(s,v) * R⇒ B⊆ Qv} is called the B-presection of R.

Lemma 1.2. [4] Let r,r1,r2 be relations, R,R1,R2 co-relations on (S,S ) to (V,V ) with

r1 ⊆ r2, R1 ⊆ R2, A,A1,A2 ∈S , A1 ⊆ A2, B,B1,B2 ∈ V , B1 ⊆ B2.

(1) r * Q(s,v)⇔ P(v,s) * r← and P(s,v) * R⇔ R← * Q(v,s) for all s ∈ S, v ∈V .

(2) (r←)← = r and (R←)← = R

(3) For a second direlation (m,M) from (S,S ) to (V,V ), (r,R)v (m,M)⇔ (r,R)← v
(m,M)←

(4) r→ /0= /0, A⊆ r←(r→A), r→(r←B)⊆ B

(5) R→S=V , R←(R→A)⊆ A, B⊆ R→(R←B)
(6) r→1 A1 ⊆ r→2 A2, R→1 A1 ⊆ R→2 A2, r←2 B1 ⊆ r←1 B2, R←2 B1 ⊆ R←1 B2.

Proposition 1.3. [4] If (r,R) is a direlation on (S,S ) to (V,V ) then r→(
∨

i∈I Ai)=
∨

i∈I r→Ai,

R→(
⋂

i∈I Ai) =
⋂

i∈I R→Ai, r←(
⋂

j∈J B j) =
⋂

j∈J r←B j and R←(
∨

j∈J B j) =
∨

j∈J R←B j for

any Ai ∈S , B j ∈ V , i ∈ I, j ∈ J.

Definition 1.4. [4] Let ( f ,F) be a direlation from (S,S ) to (V,V ). Then ( f ,F) is called

a difunction from (S,S ) to (V,V ) if it satisfies the following two conditions:

(DF1) For s,s′ ∈ S, Ps * Qs′ ⇒∃v ∈V with f * Q(s,v) and P(s′,v) * F.

(DF2) For v,v′ ∈V and s ∈ S, f * Q(s,v) and P(s,v′) * F ⇒ Pv′ * Qv.

It is clear that (iS, IS) is a difunction on (S,S ) and we call it the identity difunction on

(S,S ). ( f ,F) is called surjective if

∀v,v′ ∈V Pv * Qv′ ⇒∃s ∈ S with f * Q(s,v′) and P(s,v) * F.

Proposition 1.5. [4] Let ( f ,F) be a difunction on (S,S ) to (V,V ).

(1) f←B= F←B for each B ∈ V .

(2) f← /0= F← /0= /0 and f←V = F←V = S.

(3) A⊆ F←( f→A) and f→(F←B)⊆ B for all A ∈S , B ∈ V .

(4) If ( f ,F) is surjective then F→( f←B) = B= f→(F←B) for all B ∈ V .

Definition 1.6. [2] A dichotomous topology, or ditopology for short, on a texture (S,S ) is

a pair (τ,κ) of subsets of S , where the set of open sets τ satisfies

(T1) S, /0 ∈ τ

(T2) G1,G2 ∈ τ ⇒ G1∩G2 ∈ τ

(T3) Gi ∈ τ, i ∈ I⇒∨
i Gi ∈ τ

and the set of closed sets κ satisfies

(CT1) S, /0 ∈ κ

(CT2) K1,K2 ∈ κ ⇒ K1∪K2 ∈ κ

(CT3) Ki ∈ κ, i ∈ I⇒⋂
i Ki ∈ κ .
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Hence a ditopology is essentially a “topology” for which there is no a priori relation

between the open and closed sets.

Definition 1.7. [5] Let (Sk,Sk,τk,κk), k= 1,2 be ditopological texture spaces and ( f ,F) :

(S1,S1)→ (S2,S2) a difunction. ( f ,F) is called continuous if

F←A ∈ τ1, ∀A ∈ τ2

and cocontinuous if

f←A ∈ κ1, ∀A ∈ κ2.

The difunction ( f ,F) is called bicontinuous if it is both continuous and cocontinuous.

Theorem 1.8. [5] Ditopological texture spaces and bicontinuous difunctions form a cate-

gory denoted by dfDiTop.

For s= (s j)∈ S, Ps =
⋂

j∈J E( j,Ps j
) =∏ j∈J Ps j

. The jth-projection difunction (π j,Π j) :

(S,S )→ (S j,S j) is defined by

π j =
∨
{P(s,s j) | s= (s j) ∈ S}, Π j =

⋂
{Q(s,s j) | s= (s j) ∈ S[}

and it is surjective by [6].

For ditopological texture spaces (S j,S j,τ j,κ j), j ∈ J, the product ditopology on the

product texture (S,S ) has subbase {E( j,G) | G ∈ τ j, j ∈ J}, cosubbase {E( j,K) | K ∈
κ j, j ∈ J}.

Proposition 1.9. [5] Let (π j,Π j) be the jth-projection difunction of the product texture

(S,S ) of the textures (S j,S j), j ∈ J. Then

(1) If Ai ∈Si, i ∈ J and Ai 6= /0, i 6= j then π→j
⋂

j∈J E(i,Ai) = A j.

(2) If Ai ∈Si, i ∈ J and Ai 6= Si, i 6= j then Π→j
⋃

j∈J E(i,Ai) = A j.

Proposition 1.10. [15] Let (S,S ) be the product texturing of the textures (S j,S j), j ∈ J.

(S,S ) is plain if and only if (S j,S j) is plain for all j ∈ J.

Definition 1.11. [6] Let (S,S ,τ,κ) be a ditopological texture space and A ∈S . Then

(1) A is called compact if whenever {Gi | i∈ I} is an open cover of A (i.e. ∀i ∈ I Gi ∈ τ

and A⊆∨i∈I Gi) then there is a finite subset J of I with A⊆∨i∈J Gi. In particular

(S,S ,τ,κ) is called compact if S is compact.

(2) A is called cocompact if whenever {Ki | i ∈ I} is a closed cocover of A (i.e.

∀i ∈ I Ki ∈ κ and
⋂

i∈I Ki ⊆ A) then there is a finite subset J of I with
⋂

i∈J Ki ⊆ A.

In particular (S,S ,τ,κ) is called cocompact if /0 is compact.

(3) (S,S ,τ,κ) is called stable if every K ∈ κ with K 6= S is compact.

(4) (S,S ,τ,κ) is called costable if every G ∈ κ with G 6= /0 is cocompact.

(5) (S,S ,τ,κ) is called dicompact if it is compact, cocompact, stable and costable.

Theorem 1.12. [6] A product of non-empty ditopological texture space is dicompact if and

only if each component space is dicompact.
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Graded Ditopological Texture Spaces: [7] Let (S,S ), (V,V ) be textures and consider

T ,K : S → V satisfying

(GT1) T (S) =T ( /0) =V

(GT2) T (A1)∩T (A2)⊆T (A1∩A2) ∀A1,A2 ∈S
(GT3)

⋂
j∈J T (A j)⊆T (

∨
j∈J A j) ∀A j ∈S , j ∈ J

and

(GCT1) K (S) =K ( /0) =V

(GCT2) K (A1)∩K (A2)⊆K (A1∪A2) ∀A1,A2 ∈S
(GCT3)

⋂
j∈J K (A j)⊆K (

⋂
j∈J A j) ∀A j ∈S , j ∈ J

Then T is called a (V,V )-graded topology, K a (V,V )-graded cotopology and (T ,K )
a (V,V )-graded ditopology on (S,S ) and for any graded ditopological texture space

(S,S ,T ,K ,V,V ) and for each v ∈V it is defined that

T v = {A ∈S | Pv ⊆T (A)}, K v = {A ∈S | Pv ⊆K (A)}.
Then (T v,K v) is a ditopology on (S,S ) for each v ∈ V . That is, if (S,S ,T ,K ,V,V )
is any graded ditopological texture space, then there exists a ditopology (T v,K v) on the

texture space (S,S ) for each v ∈V .

If (S,S ,σ) is a complemented texture and (T ,K ) a (V,V )-graded ditopology on

(S,S ), then (K ◦σ ,T ◦σ) is also a (V,V )-graded ditopology on (S,S ). (T ,K ) is

called complemented if (T ,K ) = (K ◦σ ,T ◦σ).
Let (Tk,Kk), k = 1,2 be (V,V )-graded ditopologies on (S,S ). (T1,K1) said to be

coarser than (T2,K2) and (T2,K2) said to be finer than (T1,K1) if T1(A) ⊆ T2(A),
K1(A)⊆K2(A) for all A ∈S [8].

Example 1.13. [7] Let (S,S ,τ,κ) be a ditopological texture space and (V,V ) the discrete

texture on a singleton. Take (V,V ) = (1,P(1)) (The notation 1 denotes the set {0}) and

define τg : S → P(1) by τg(A) = 1 ⇔ A ∈ τ . Then τg is a (V,V )-graded topology

on (S,S ). Likewise, κg defined by κg(A) = 1⇔ A ∈ κ is a (V,V )-graded cotopology on

(S,S ) and (τg,κg) is called the graded ditopology on (S,S ) corresponding to ditopology

(τ,κ).

Definition 1.14. [7] Let (Sk,Sk,Tk,Kk,Vk,Vk), k = 1,2 be graded ditopological texture

spaces, ( f ,F) : (S1,S1)→ (S2,S2), (h,H) : (V1,V1)→ (V2,V2) difunctions. For the pair

(( f ,F),(h,H)), ( f ,F) is called continuous with respect to (h,H) if

H←T2(A)⊆T1(F
←A) for all A ∈S2

and cocontinuous with respect to (h,H) if

h←K2(A)⊆K1( f←A) for all A ∈S2.

The difunction ( f ,F) is called bicontinuous with respect to (h,H) if it is both continuous

and cocontinuous with respect to (h,H).

Theorem 1.15. [7] The class of graded ditopological texture spaces and relatively bicon-

tinuous difunction pairs between them form a category denoted by dfGDitop.
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2. PRODUCT GRADED DITOPOLOGY

Throughout the paper we denote the finite subset of a index set J by J0 and the finite

subfamily of a family U by U0.

Theorem 2.1. Let (S,S ), (V,V ) be textures, (S j,S j,T j,K j,Vj,V j) j∈J be graded ditopo-

logical texture spaces and ( f j,Fj) : (S,S )→ (S j,S j), (h j,H j) : (V,V )→ (Vj,V j), ( j ∈ J)
be difunctions. Then the mappings T ,K : S → V defined by

T (A) =
∨
{
⋂
j∈J0

H←j T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J, J0 is f inite}

K (A) =
∨
{
⋂
j∈J0

h←j K j(G j) | A=
⋃
j∈J0

f←j G j, J0 ⊆ J, J0 is f inite}

for all A ∈S form a (V,V )-graded ditopology on (S,S ). (T ,K ) is the coarsest (V,V )-
graded ditopology on (S,S ) that makes ( f j,Fj) bicontinuous with respect to (h j,H j) for

each j ∈ J.

Proof. Firstly, we show that K is a (V,V )-graded cotopology on (S,S ):
(i) Since S = f←j S j and h←j Vj =V for all j ∈ J by Proposition 1.5 (2), if we take a j0 ∈ J

then we have K (S) =
∨{⋂ j∈J0

h←j K j(G j) | S =
⋃

j∈J0
f←j G j, J0 ⊆ J, J0 is f inite} ⊇

h←K j0(S j0) = h←Vj0 =V and so K (S) =V .

On the other hand, since /0 = f←j /0 and h←j /0 = /0 for all j ∈ J by Proposition 1.5 (2),

if we take a j0 ∈ J then we have K ( /0) =
∨{⋂ j∈J0

h←j K j(G j) | /0 =
⋃

j∈J0
f←j G j, J0 ⊆

J, J0 is f inite} ⊇ h←K j0( /0) = h←Vj0 =V (by (GCT1)) and so K ( /0) =V .

(ii) Let A,B ∈ S be given. If there is no G j ∈ S j such that A =
⋃

j∈J0
f←j G j or B =⋃

j∈J0
f←j G j for a finite J0⊆ J then K (A)∩K (B)= /0⊆K (A∪B). So, let A=

⋃
j∈J1

f←j G j

and B=
⋃

j∈J2
f←j L j for some finite subsets J1,J2 ⊆ J and for some G j,L j ∈S j. If we re-

define

G j =

{
G j, j ∈ J1

/0, j ∈ J2

L j =

{
L j, j ∈ J2

/0, j ∈ J1

then we have
⋃

j∈J1
f←j G j =

⋃
j∈J1∪J2

f←j G j and
⋃

j∈J2
f←j L j =

⋃
j∈J1∪J2

f←j L j by the fact

that f←j /0 = /0 for all j ∈ J. Similarly, since K j( /0) = Vj and h←j Vj = V for all j ∈ J, we

have
⋂

j∈J1
h←j K j(G j) =

⋂
j∈J1∪J2

h←j K j(G j) and
⋂

j∈J2
h←j K j(L j) =

⋂
j∈J1∪J2

h←j K j(L j).
Thus we get

K (A)∩K (B)

=
∨
{
⋂
j∈J1

h←j K j(G j) | A=
⋃
j∈J1

f←j G j}∩
∨
{
⋂
j∈J2

h←j K j(L j) | B=
⋃
j∈J2

f←j L j}

=
∨
{
⋂
j∈J1

h←j K j(G j)∩
⋂
j∈J2

h←j K j(L j) | A=
⋃
j∈J1

f←j G j, B=
⋃
j∈J2

f←j L j}
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=
∨
{
⋂

j∈J1∪J2

h←j K j(G j)∩
⋂

j∈J1∪J2

h←j K j(L j) | A=
⋃

j∈J1∪J2

f←j G j, B=
⋃

j∈J1∪J2

f←j L j}

=
∨
{
⋂

j∈J1∪J2

h←j K j(G j)∩h←j K j(L j) | A=
⋃

j∈J1∪J2

f←j G j, B=
⋃

j∈J1∪J2

f←j L j}

=
∨
{
⋂

j∈J1∪J2

h←j (K j(G j)∩K j(L j)) | A=
⋃

j∈J1∪J2

f←j G j, B=
⋃

j∈J1∪J2

f←j L j}

⊆
∨
{
⋂

j∈J1∪J2

h←j (K j(G j ∪L j)) | A∪B=
⋃

j∈J1∪J2

( f←j G j ∪ f←j L j) =
⋃

j∈J1∪J2

f←j (G j ∪L j)}

=
∨
{
⋂

j∈J1∪J2

h←j K j(M j) | A∪B=
⋃

j∈J1∪J2

f←j M j}=K (A∪B)

(iii) Let Ai ∈ S for all i ∈ I where I is a nonempty index set. If for some i ∈ I, Ai

can not be written as Ai =
⋃

j∈Ji
f←j Gi

j where Ji is a finite subset of J then
⋂

i∈I K (Ai) =

/0 ⊆K (
⋂

i∈I Ai). So, for each i ∈ I let Ai =
⋃

j∈Ji
f←j Gi

j for some Gi
j ∈S j, j ∈ Ji. If we

redefine

Gi
j =

{
Gi

j, j ∈ Ji

/0, j 6∈ Ji

then considering f←j /0 = /0, K j( /0) = Vj (by (GCT1)), h←j Vj = V for all j ∈ J and “ j 6∈⋂
i∈I Ji⇒

⋂
i∈I Gi

j = /0” we have

⋂
i∈I

Ai =
⋂
i∈I

⋃
j∈Ji

f←j Gi
j =

⋂
i∈I

⋃
j∈J

f←j Gi
j =

⋃
j∈J

⋂
i∈I

f←j Gi
j

=
⋃
j∈J

f←j (
⋂
i∈I

Gi
j) =

⋃
j∈⋂i∈I Ji

f←j (
⋂
i∈I

Gi
j)

and

⋂
i∈I

(
⋂
j∈Ji

h←j K j(G
i
j)) =

⋂
i∈I

(
⋂
j∈J

h←j K j(G
i
j)) =

⋂
j∈J

h←j
⋂
i∈I

K j(G
i
j)

⊆
⋂
j∈J

h←j K j(
⋂
i∈I

Gi
j) =

⋂
j∈⋂i∈I Ji

h←j K j(
⋂
i∈I

Gi
j)

Therefore we get

⋂
i∈I

K (Ai) =
⋂
(i∈I)

(
∨

(Ai=
⋃

j∈Ji
f←j Gi

j)

(
⋂
( j∈Ji)

h←j K j(G
i
j)))

=
∨

(Ai=
⋃

j∈Ji
f←j Gi

j , i∈I)

⋂
(i∈I)

(
⋂
( j∈Ji)

h←j K j(G
i
j))

⊆
∨

(
⋂

i∈I Ai=
⋂

i∈I

⋃
j∈Ji

f←j Gi
j)

(
⋂

( j∈⋂i∈I Ji)

h←j K j(
⋂
i∈I

Gi
j))
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=
∨

(
⋂

i∈I Ai=
⋃

j∈(⋂i∈I Ji)
f←j (

⋂
i∈I Gi

j))

(
⋂

( j∈⋂i∈I Ji)

h←j K j(
⋂
i∈I

Gi
j))

=
∨

(
⋂

i∈I Ai=
⋃

j∈(⋂i∈I Ji)
f←j B j)

(
⋂

( j∈⋂i∈I Ji)

h←j K j(B j)) =K (
⋂
i∈I

Ai)

So K is a (V,V )-graded cotopology on (S,S ). By the definition of K , ( f j,Fj) is

cocontinuous with respect to (h j,H j) for each j ∈ J.

Let K ′ be a (V,V )-graded cotopology on (S,S ) that makes ( f j,Fj) cocontinuous with

respect to (h j,H j) for each j ∈ J. Then G j ∈S j implies h←j K j(G j)⊆K ′( f←j G j) for each

j ∈ J. So A=
⋃

j∈J0
f←j G j ⇒

⋂
j∈J0

h←j K j(G j)⊆
⋂

j∈J0
K ′ f←j G j ⊆K ′(

⋃
j∈J0

f←j G j) =

K ′(A) for all A ∈S . Hence,

K (A) =
∨
{
⋂
j∈J0

h←j K j(G j) | A=
⋃
j∈J0

f←j G j, J0 ⊆ J, J0 is f inite} ⊆K ′(A)

for all A∈S . Therefore K is the coarsest (V,V )-graded cotopology on (S,S ) that makes

( f j,Fj) cocontinuous with respect to (h j,H j) for each j ∈ J.

Similarly it can be shown that T is the coarsest (V,V )-graded topology on (S,S ) that

makes ( f j,Fj) cocontinuous with respect to (h j,H j) for each j ∈ J. �

Now, referring to [1], we investigate the outcomes of Theorem 2.1 in categorical aspects.

If we consider the forgetful functor U : dfGDitop→ dfTex×dfTex then (dfGDitop,U) is

a concrete category over dfTex×dfTex.

Theorem 2.2. The source

((( f j,Fj),(h j,H j)) : (S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J)

in dfGDitop is initial if and only if (T ,K ) is the graded ditopology defined as in Theorem

2.1.

Proof. Let the source

((( f j,Fj),(h j,H j)) : (S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J)

be initial. For each j ∈ J; ( f j,Fj) is bicontinuous with respect to (h j,H j) because (( f j,Fj),
(h j,H j)) is a morphism in dfGDitop. So, H←j T j(G j) ⊆ T (F←j G j) and h←j K j(G j) ⊆
K ( f←j G j) for all G j ∈S j, j ∈ J. If we denote the graded ditopology defined in Theorem

2.1 by (T ?,K ?) then we have

A=
⋂
j∈J0

F←j G j⇒
⋂
j∈J0

H←j T j(G j)⊆
⋂
j∈J0

T (F←j G j)⊆T (
⋂
j∈J0

F←j G j) =T (A)

and so, T ?(A)⊆T (A) for all A ∈S , i.e. T ? ⊆T .

Since ((iS, IS),(iV , IV )) in dfTex×dfTex makes the right hand diagram commutative, it

lifts to a morphism in dfGDitop such that the left hand diagram is commutative.
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Since ((iS, IS),(iV , IV )) is a morphism in dfGDitop, (iS, IS) is bicontinuous with respect

to (iV , IV ). Hence I←V T (A)⊆ T ?(I←S A)⇒ T (A)⊆ T ?(A) for all A ∈S , i.e. T ⊆ T ?.

Therefore we get T =T ?. Similarly it can be shown that K =K ?

Now we will show that

((( f j,Fj),(h j,H j)) : (S,S ,T ?,K ?,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J)

is initial. Let ((k,K),(l,L)) be a morphism in dfTex× dfTex that makes the right hand

diagram commutative.

Then, by using Proposition 1.3, Proposition 1.5 (1) and (GT2) we have

L←(T ?(A)) = L←(
∨
{
⋂
j∈J0

H←j T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J})

=
∨
{
⋂
j∈J0

L←(H←j T j(G j)) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J}

=
∨
{
⋂
j∈J0

(H j ◦L)←T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J}

=
∨
{
⋂
j∈J0

H ′j
←

T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J}

⊆
⋂
j∈J0

T ′(F ′j
←

G j) =
⋂
j∈J0

T ′((Fj ◦K)←G j)

=
⋂
j∈J0

T ′← ◦F←j G j)⊆T ′←(
⋂
j∈J0

F←j G j)) =T ′←A)

for all A ∈S . Hence (k,K) is continuous with respect to (l,L). Similarly it can be shown

that (k,K) is cocontinuous with respect to (l,L) and so (k,K) is bicontinuous with respect

to (l,L). Therefore ((k,K),(l,L)) is a morphism in dfGDitop, i.e. the left hand diagram is

commutative. �

Definition 2.3. The graded ditopology constructed in Theorem 2.1 is called the initial

(V,V )-graded ditopology on (S,S ) induced by

(( f j,Fj),(h j,H j)) j∈J and (S j,S j,T j,K j,Vj,V j)) j∈J .
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Corollary 2.4. dfGDitop is a topological structure over dfTex×dfTex with respect to the

functor U.

Proof. Let (S j,S j,T j,K j,Vj,V j)∈ObdfGDitop and (( f j,Fj),(h j,H j)) : ((S,S ),(V,V ))−→
((S j,S j),(Vj,V j)) is a morphism in dfTex×dfTex for all j ∈ J. If (T ,K ) is the graded

ditopology defined in Theorem 2.1 then, considering Theorem 2.2, ((( f j,Fj),(h j,H j)) :

(S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J) is the unique initial source, which sat-

isfies

U(((( f j,Fj),(h j,H j)) : (S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J))

= (( f j,Fj),(h j,H j)) : ((S,S ),(V,V ))−→ ((S j,S j),(Vj,V j)) j∈J).

�

Definition 2.5. Let (S,S ) and (V,V ) be the product textures of the textures (S j,S j) j∈J

and (Vj,V j) j∈J respectively then the initial (V,V )-graded ditopology on (S,S ) induced by

the projection difunctions (πS
j ,∏

S
j) : (S,S )→ (S j,S j) and (πV

j ,∏
V
j ) : (V,V )→ (Vj,V j)

is called the product graded ditopology of (S j,S j,T j,K j,Vj,V j) j∈J .

Example 2.6. Let (τ,κ) be the product ditopology of (S j,S j,τ j,κ j) j∈J . For each j ∈ J, if

we take (Vj,V j) = (1,P(1)) then (S j,S j,τ
g
j ,κ

g
j ,Vj,V j) is a graded ditopological texture

space where τ
g
j(A) = 1⇔ A∈ τ j and κ

g
j(A) = 1⇔ A∈ κ j, A∈S j. So, the product graded

ditopology (T ,K ) of (S j,S j,τ
g
j ,κ

g
j ,Vj,V j) j∈J equals the graded ditopology (τg,κg) cor-

responding to ditopology (τ,κ). Indeed, for all A ∈S , by the definition of T and (GT3)
we have

τ
g(A) = 1⇔ A ∈ τ

⇔ A=
∨
i∈I

Bi, Bi =
⋂
j∈Ji

(π←j G j), Ji ⊆ J f inite, G j ∈ τ j for a index set I

⇔ A=
∨
i∈I

Bi, Bi =
⋂
j∈Ji

(π←j G j), Ji ⊆ J f inite, τ
g
j(G j) = 1 for a index set I

⇔ A=
∨
i∈I

Bi, T (Bi) = 1 for a index set I ⇔T (A) = 1

3. COMPACTNESS IN GRADED DITOPOLOGICAL TEXTURE SPACES

A. P. Šostak has developed the spectral approach for the study of various topological

properties of fuzzy topological spaces in [12]. Accordingly, we use this effective approach

to study compactness notion (in accordance with fuzzy idea) in graded ditopological tex-

ture spaces as a generalization of compactness in ditopological texture spaces.

Definition 3.1. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space and A ∈
S . The families defined by

C (A) = {Pv ∈ V | [U ⊆T v, A⊆
∨

U ]⇒∃U0 ⊆U : A⊆
∨

U0}
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C ∗(A) = {Pv ∈ V | [U ⊆K v,
∧

U ⊆ A]⇒∃U0 ⊆U :
∧

U0 ⊆ A}
where U0 denotes a finite subfamily of U , are called compactness and co-compactness

spectrums of A ∈ S respectively. In particular, the compactness spectrum and the co-

compactness spectrum of (S,S ,T ,K ,V,V ) are C (S) and C ∗( /0) respectively.

Proposition 3.2. If (S,S ,T ,K ,σ ,V,V ) is a complemented graded ditopological texture

space then C (A) = C ∗(σ(A)) for all A ∈S . In particular, C (S) = C ∗( /0) i.e. the com-

pactness and co-compactness spectrums of a complemented graded ditopological texture

space are equal.

Proof. Since A⊆∨U ⇔ σ(A)⊇ σ(
∨

U ) =
∧

σ(U )⇔∧
σ(U )⊆ σ(A) and U ∈T v⇔

σ(U) ∈K v for all U ∈S we get

C (A) = {Pv ∈ V | [U ⊆T v, A⊆
∨

U ]⇒∃U0 ⊆U : A⊆
∨

U0}

= {Pv ∈ V | [σ(U )⊆K v,
∧

σ(U )⊆ σ(A)]⇒∃σ(U0)⊆ σ(U ) :
∧

σ(U0)⊆ σ(A)}

= {Pv ∈ V | [U ′ ⊆K v,
∧

U ′ ⊆ σ(A)]⇒∃U ′
0 ⊆U :

∧
U ′

0 ⊆ σ(A)}= C ∗(σ(A))

where U ′ = σ(U ) and U ′
0 = σ(U0). In particular, since S = σ( /0) we have C (S) =

C ∗( /0). �
Theorem 3.3. Let (Sk,Sk,Tk,Kk,Vk,Vk)k=1,2 be graded ditopological texture spaces and

let ( f ,F) : (S1,S1)→ (S2,S2), (h,H) : (V1,V1)→ (V2,V2) be difunctions. For all A∈S1

(1) If ( f ,F) is continuous with respect to (h,H) then,

Pv1
∈ C1(A)⇒ Pv2

∈ C2( f→A)

(2) If ( f ,F) is cocontinuous with respect to (h,H) then,

Pv1
∈ C ∗1 (A)⇒ Pv2

∈ C ∗2 (F
→A)

where Pv1
∈ V1, Pv2

∈ V2 with Pv1
⊆ h←Pv2

.

Proof. Let Pv1
∈C1(A) and Pv1

⊆ h←Pv2
. If U ⊆T v2

2 and f→A⊆∨U then A⊆F←( f→A)⊆
F←(

∨
U )=

∨
F←U =

∨
U∈U F←U . Moreover, Pv1

⊆ h←Pv2
⊆ h←(T2(U ))⊆T1(F

←U )
since ( f ,F) is continuous with respect to (h,H). Now, because of Pv1

∈ C1(A) there

exists a finite subfamily F←(U0) ⊆ F←(U ) such that A ⊆ ∨F←(U0). This follows

f→A⊆ f→
∨

F←(U0) =
∨

f→(F←(U0))⊆
∨

U0. Hence Pv2
∈ C2( f→A).

The proof of (2) is similar. �
Corollary 3.4. Let the difunction ( f ,F) in Theorem 3.3 be surjective.

(1) If ( f ,F) is continuous with respect to (h,H) then,

Pv1
∈ C1(S1)⇒ Pv2

∈ C2(S2)
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(2) If ( f ,F) is cocontinuous with respect to (h,H) then,

Pv1
∈ C ∗1 ( /0)⇒ Pv2

∈ C ∗2 ( /0)

where Pv1
∈ V1, Pv2

∈ V2 with Pv1
⊆ h←Pv2

.

Proof. Immediate from f→S1 = S2 and F→ /0= /0. �

Corollary 3.5. Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded ditopological texture

spaces and (S,S ,T ,K ,V,V ) their product graded ditopological texture space. Then for

all j ∈ J;

(1) Pv ∈ C (S)⇒ Pv j
∈ C j(S j)

(2) Pv ∈ C ∗( /0)⇒ Pv j
∈ C ∗j ( /0)

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. We have Pv ⊆ πV
j

←
(πV

j

→
Pv) = πV

j

←
(Pv j

) for all j ∈ J and v ∈V by Proposition 1.5

(3). So, the proof follows from Corollary 3.4. �

Theorem 3.6. (Tychonoff Theorem) Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded

ditopological texture spaces and (S,S ,T ,K ,V,V ) their product graded ditopological

texture space. If (Vj,V j) j∈J are plain textures then;

(1) Pv ∈ C (S)⇔∀ j ∈ J Pv j
∈ C j(S j)

(2) Pv ∈ C ∗( /0)⇔∀ j ∈ J Pv j
∈ C ∗j ( /0)

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. The necessity comes from Corollary 3.5. For sufficiency let Pv ∈ V and Pv j
=

πv
j
→Pv ∈ C j(S j) for all j ∈ J. If U ⊆T v and S=

∨
U then we get for all j ∈ J

S j = π
s
j
→(S) = π

s
j
→(
∨

U ) =
∨

U∈U
π

s
j
→

U

On the other hand, since U ⊆T v, U ∈U implies

Pv ⊆T (U) =
∨
{
⋂
j∈J0

Π
v
j
←T j(G j) |U =

⋂
j∈J0

Π
s
j
←

G j, J0 ⊆ J, J0 is finite}

Since (Vj,V j) j∈J are plain, (V,V ) is also plain by Proposition 1.10. Hence,

Pv ⊆
⋂

j∈J0
Πv

j
←T j(G

U
j ) for some U =

⋂
j∈J0

Πs
j
←GU

j with GU
j ∈S j, j ∈ J0. From Propo-

sition 1.5 (3) we have

Pv ⊆
⋂
j∈J0

Π
v
j
←T j(G

U
j )⇒∀ j ∈ J0 Pv ⊆Π

v
j
←T j(G

U
j )

⇒∀ j ∈ J0 Pv j
= π

v
j
→

Pv ⊆ π
v
j
→(Πv

j
←T j(G

U
j ))⊆T j(G

U
j )⇒ Pv j

⊆T j(G
U
j ).

Since U =
⋂

j∈J0
Πs

j
←GU

j =
⋂

j∈J0
E( j,GU

j ) we get πs
j
→U = πs

j
→(
⋂

j∈J0
E( j,GU

j )) = GU
j

by Proposition 1.9 (1). So, considering (1) we have S j =
∨

U∈U πs
j
→U =

∨
U∈U GU

j . Since
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GU
j ∈T

v j

j and Pv j
∈ C j(S j) we get

∃U0 ⊆U : S j ⊆
∨

U∈U0

GU
j ( j ∈ J0).

Thus, S=Πs
j
←S j ⊆Πs

j
←(
∨

U∈U0
GU

j )⊆
∨

U∈U0
Πs

j
←GU

j for all j ∈ J0 and so,⊗
j∈J

S j = S⊆
⋂
j∈J0

(
∨

U∈U0

Π
s
j
←

GU
j ) =

∨
U∈U0

(
⋂
j∈J0

Π
s
j
←

GU
j ) =

∨
U∈U0

(
⋂
j∈J0

E( j,GU
j )).

By the definition of E( j,GU
j );

j 6∈ J0⇒ S j = π
s
j
→

S⊆ π
s
j
→(

∨
U∈U0

⋂
j∈J0

E( j,GU
j )) = π

s
j
→(

∨
U∈U0

U)

j ∈ J0⇒ S j = π
s
j
→

S⊆ π
s
j
→(

∨
U∈U0

⋂
j∈J0

E( j,GU
j )) = π

s
j
→(

∨
U∈U0

U)

and hence, S j = πs
j
→S ⊆ πs

j
→(
∨

U∈U0
U) for all j ∈ J. That means S ⊆ ∨U∈U0

U and as a

result Pv ∈ C (S). �

Definition 3.7. For a graded ditopological texture space (S,S ,T ,K ,V,V ), the families

defined by

Ω= {Pv ∈ V | [A ∈S , A 6= S]⇒ [Pv ⊆K (A)⇒ Pv ∈ C (A)]}

Ω
∗ = {Pv ∈ V | [A ∈S , A 6= /0]⇒ [Pv ⊆T (A)⇒ Pv ∈ C ∗(A)]}

are called stableness and costableness spectrums of (S,S ,T ,K ,V,V ) respectively.

Proposition 3.8. For a complemented graded ditopological texture space

Proposition 3.9. For a complemented graded ditopological texture space

(S,S ,T ,K ,σ ,V,V ), Ω=Ω∗.

Proof. Let Pv ∈ Ω∗ and A ∈ S , A 6= S. Then, Pv ⊆K (A)⇒ Pv ⊆ (T ◦σ)(A)⇒ Pv ⊆
T (σ(A)). Since σ(A) 6= /0 and Pv ∈ Ω∗ we have Pv ∈ C ∗(σ(A)) = C (A) by Proposition

3.2. So, Pv ∈Ω. The other direction of the proof can be shown similarly. �

Proposition 3.10. Let (Sk,Sk,Tk,Kk,Vk,Vk)k=1,2 be graded ditopological texture spaces

with stableness (costableness) spectrums Ω1, Ω2 (Ω∗1, Ω∗2) respectively. If ( f ,F) : (S1,S1)→
(S2,S2), (h,H) : (V1,V1)→ (V2,V2) are surjective difunctions and ( f ,F) is bicontinuous

with respect to (h,H) then Pv1
∈Ω1⇒ Pv2

∈Ω2 and Pv1
∈Ω∗1⇒ Pv2

∈Ω∗2 where v1 ∈V1,

v2 ∈V2 with Pv1
⊆ h←Pv2

.

Proof. Let ( f ,F) be bicontinuous with respect to (h,H) and Pv1
∈ Ω1 with Pv1

⊆ h←Pv2
.

For a set A ∈ S2 with A 6= S2 we have; Pv2
⊆ K2(A) ⇒ Pv1

⊆ h←Pv2
⊆ h←K2(A) ⊆

K1( f←A) by the bicontinuity of ( f ,F)with respect to (h,H). On the other hand, f←A 6= S1

since ( f ,F) is surjective and A 6= S2. So, Pv1
⊆ K1( f←A) and Pv1

∈ Ω1 imply Pv1
∈

C1( f←A).
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Now, by using Theorem 3.3 we have Pv2
∈ C2( f→( f←A)). Since ( f ,F) is surjective we

get f→( f←A) = f→(F←A) = A by Proposition 1.5 (4). Therefore we have Pv2
∈ C2(A)

and that means Pv2
∈Ω2. �

Corollary 3.11. Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded ditopological texture

spaces with stableness (costableness) spectrums Ω j, (Ω∗j ) respectively and (S,S ,T ,K ,V,V )
their product graded ditopological texture space with stableness (costableness) spectrum

Ω, (Ω∗) respectively. Then for all j ∈ J;

(1) Pv ∈Ω⇒ Pv j
∈Ω j

(2) Pv ∈Ω∗⇒ Pv j
∈Ω∗j

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. We have Pv ⊆ πv
j
←(πv

j
→Pv) = πv

j
←(Pv j

) for all j ∈ J and v ∈V by Proposition 1.5

(3). So, the proof follows from Proposition 3.10. �

The other direction of Corollary 3.11 (i.e. ∀ j ∈ J Pv j
∈ Ω j ⇒ Pv ∈ Ω and ∀ j ∈ J Pv j

∈
Ω∗j⇒Pv ∈Ω∗) is an open problem for now as in the ditopological case in [6]. So we use the

method which based on the relationship between ditopological and graded ditopological

case to prove Theorem 3.16.

Definition 3.12. For a graded ditopological texture space (S,S ,T ,K ,V,V ), the family

defined by

DC = C (S)∩C ∗( /0)∩Ω∩Ω
∗

is called dicompactness spectrum of (S,S ,T ,K ,V,V ).

Example 3.13. Let (S,S ,τ,κ) be a ditopological texture space and (V,V ) = (1,P(1))
the discrete texture on a singleton. If (S,S ,τ,κ) is compact (cocompact, dicompact) then

for the graded ditopological texture space (S,S ,τg,κg,V,V ), Pv ∈ C (S) (Pv ∈ C ∗(S),
Pv ∈DC ) respectively for all v ∈V , i.e. v= 0.

Proposition 3.14. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space. Then

the following hold:

(1) Pv ∈ C (S)⇔ (S,S ,T v,K v) is compact

(2) Pv ∈ C ∗( /0)⇔ (S,S ,T v,K v) is cocompact

(3) Pv ∈Ω⇔ (S,S ,T v,K v) is stable

(4) Pv ∈Ω∗⇔ (S,S ,T v,K v) is costable

(5) Pv ∈DC ⇔ (S,S ,T v,K v) is dicompact

Example 3.15. Let (S,S =P(S)) and (V,V =P(V )) be discrete textures where S 6= /0

and V = {a,b,c}. Then the mappings T ,K : S → V defined by

T (A) =

{
V, A= /0 or A= S

{a}, otherwise

K (A) =

{
V, A= /0 or A= S

{b}, otherwise
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for all A ∈S form a (V,V )-graded ditopology on (S,S ). We have T a =S =P(S),
T b = T c = {S, /0}, K b =S =P(S), K a =K c = {S, /0}. If S is finite then we have

C (S) = C ∗( /0) =Ω=Ω∗ =DC = {Pa,Pb,Pc}= {{a},{b},{c}}.
If S is infinite then for an infinite subset A ⊆ S, U = {Px | x ∈ A} implies A ⊆ ∨U =∨

x∈A{x} however there is no finite subfamily U0 of U such that A ⊆ ∨U0. So we get

C (S) =Ω= {Pb,Pc}. Similarly, for a subset A⊆ S, if S\A is infinite then U = {(S\A)\
Px | x ∈ (S \A)} implies

∧
U =

∧
x∈(S\A)((S \A) \Px) = /0 ⊆ A however there is no finite

subfamily U0 of U such that
∧

U0 ⊆ A. Hence we get C ∗( /0) =Ω∗ = {Pa,Pc}. Therefore,

if S is infinite then DC = C (S)∩C ∗( /0)∩Ω∩Ω∗ = {Pc}= {{c}} is obtained.

Theorem 3.16. Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded ditopological tex-

ture spaces and (S,S ,T ,K ,V,V ) their product graded ditopological texture space. If

(Vj,V j) j∈J are plain textures then;

Pv ∈DC ⇔∀ j ∈ J Pv j
∈DC j

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. (⇒): It is obvious from Theorem 3.6 and Corollary 3.11.

(⇐): Let Pv j
∈DC j for all j∈ J where Pv=∏ j∈J Pv j

∈V and Pv j
∈V j. Then ditopological

texture spaces (S j,S j,T
v j

j ,K
v j

j ) j∈J are dicompact by Proposition 3.14. So, their product

ditopological texture space (S,S ,Tv,Kv) is dicompact by Theorem 1.12.

Now, we show that Tv =T v. Take A ∈Tv then A=
∨

B∈β
′ B where β

′ ⊆ β and β is the

base for the ditopology (Tv,Kv). On the other hand, if B ∈ β
′

there exists a finite subset

J0 ⊆ J with B=
⋂

j∈J0
ΠS

j

←
G j such that “G j ∈T

v j

j for all j ∈ J0”. This follows,

∀ j ∈ J0 Pv j
⊆T j(G j)⇒∀ j ∈ J0 Π

V
j

←
Pv j
⊆Π

V
j

←
T j(G j)

⇒ Pv ⊆
⋂
j∈J0

Π
V
j

←
Pv j
⊆
⋂
j∈J0

Π
V
j

←
T j(G j)

because Pv ⊆ ΠV
j

←
(πV

j

→
Pv) = ΠV

j

←
(Pv j

) for all j ∈ J and v ∈ V by Proposition 1.5 (3).

Thus we have Pv ⊆
⋂

j∈J0
ΠV

j

←
T j(G j) and B =

⋂
j∈J0

ΠS
j

←
G j where J0 ⊆ J is a finite

subset. So we get Pv ⊆ T (B) by the definition of T . Using GT3 we obtain that T (A) =
T (
∨

B∈β
′ B)⊇⋂B∈β

′T (B)⊇ Pv and so A ∈T v.

If we take A ∈ T v then Pv ⊆ T (A). Since (Vj,V j) j∈J are plain, (V,V ) is also plain by

Proposition 1.10. Hence, considering the definition of T we have:

∃J0 ⊆ J finite with A=
⋂
j∈J0

Π
S
j

←
G j : Pv ⊆

⋂
j∈J0

Π
V
j

←
T j(G j).

Besides, considering Proposition 1.5 (3) we get

Pv ⊆
⋂
j∈J0

Π
V
j

←
T j(G j)⇒∀ j ∈ J0 Pv ⊆Π

V
j

←
T j(G j)
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⇒∀ j ∈ J0 Pv j
= π

V
j

→
Pv ⊆ π

V
j

→
(ΠV

j

←
T j(G j))⊆T j(G j).

Thus we obtain that

∃J0 ⊆ J finite with A=
⋂
j∈J0

Π
S
j

←
G j : “∀ j ∈ J0 Pv j

⊆T j(G j)”

⇒∃J0 ⊆ J finite with A=
⋂
j∈J0

Π
S
j

←
G j : “∀ j ∈ J0 G j ∈T

v j

j ”⇒ A ∈Tv

Similarly it can be shown that Kv =K v. That means (S,S ,T v,K v) is dicompact

and so, Pv ∈DC . �
Note that in Theorem 3.16, the textures (S j,S j) j∈J don’t have to be plain unlike the

textures (Vj,V j) j∈J . It is an open problem whether Theorem 3.16 is still true in case

(Vj,V j) j∈J are not plain.

4. GRADED DIFILTERS AND DICOMPACTNESS SPECTRUM

Difilters on Textures: [14] Let (S,S ) be a texture. F ⊆S is called a filter on (S,S )
if (i) F 6= /0, (ii) /0 6∈ F , (iii) F ∈ F , F ⊆ F ′ ∈ S ⇒ F ′ ∈ F and (iv) F1,F2 ∈ F ⇒
F1∩F2 ∈F . G ⊆S is called a cofilter on (S,S ) if (i) G 6= /0, (ii) S 6∈ G , (iii) G ∈ G , G⊇
G′ ∈S ⇒ G′ ∈ G , and (iv) G1,G2 ∈ G ⇒ G1∪G2 ∈ G . If F is a filter and G is a cofilter

on (S,S ) then F ×G is called a difilter on (S,S ). A difilter F ×G on (S,S ) is called

regular if F ∩G = /0.

Proposition 4.1. [14] If F ×G is a difilter on (S,S ,τ,κ) then

(a) F converges to s ∈ S[ (F → s)⇔ “G ∈ τ, G* Qs⇒ G ∈F”

(b) G converges to s (G → s)⇔ “K ∈ κ, Ps * K⇒ K ∈ G ”

(c) F ×G is diconvergent if F → s and G → s′ for some s,s′ ∈ S with Ps′ * Qs.

A difilter F ×G on (S,S ,τ,κ) is said to be diclustering if A ∈ F ⇒ Ps′ ⊆ [A] and

B ∈ G ⇒]B[⊆ Qs for some s,s′ ∈ S with Ps′ * Qs.

Theorem 4.2. [14] A regular difilter F×G on (S,S ) is maximal if and only if F ∪G = S.

Proposition 4.3. [14] A maximal regular difilter is diconvergent if and only if it is diclus-

tering.

Theorem 4.4. [14] A ditopological texture space (S,S ,τ,κ) is dicompact if and only if

every regular difilter on (S,S ,τ,κ) is diclustering if and only if every maximal regular

difilter on (S,S ,τ,κ) is diconvergent.

Graded difilters : [9] Let (S,S ) and (V,V ) be textures. A mapping F : S → V
is called a (V,V )-graded filter on (S,S ) if (i) F( /0) = /0, (ii) A1 ⊆ A2 ⇒ F(A1) ⊆ F(A2)
and (iii) F(A1)∧F(A2) ⊆ F(A1 ∩A2). A mapping G : S → V is called a (V,V )-graded

cofilter on (S,S ) if (i)G(S)= /0, (ii) A1⊆A2⇒G(A2)⊆G(A1) and (iii)G(A1)∧G(A2)⊆
G(A1∪A2). If F is a (V,V )-graded filter and G (V,V )-graded cofilter on (S,S ) then the

pair (F,G) is called a (V,V )-graded difilter on (S,S ).
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(F,G) is called regular if F∧G= /0 i.e. F(A)∧G(A) = /0 for all A ∈S .

The diconvergent graded difilters were defined in [9]. To avoid a long preliminaries we

will give the following equivalent proposition instead of the definition.

Proposition 4.5. [9] If (F,G) is a (V,V )-graded difilter on (S,S ,T ,K ,V,V ) then

(a) F converges to s (F→ s)⇔ “A* Qs⇒T (A)⊆ F(A)”
(b) G converges to s (G→ s)⇔ “Ps * A⇒K (A)⊆G(A)”
(c) For s,s′ ∈ S, (F,G) is diconvergent if Ps′ * Qs, F→ s and G→ s′.

Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space, A ∈S and v ∈V . The

set
⋂{B ∈S |A⊆ B, Pv ⊆K (B)} ∈S is called v-closure of A and denoted by [A]v. The

set
∨{B ∈S |B⊆ A, Pv ⊆T (B)} ∈S is called v-interior of A and denoted by ]A[v. Note

that for each v ∈V , [A]v (]A[v) is the closure (the interior) of A in the ditopological texture

space (S,S ,T v,K v).
A regular graded difilter (F,G) on (S,S ,T ,K ,V,V ) is called diclustering if for all

A ∈S , v ∈ F(A)⇒ Ps ⊆ [A]v and v ∈G(A)⇒]A[v⊆ Qs′ for some s,s′ ∈ S with Ps * Qs′ .

Proposition 4.6. [9] Let (F,G) be a regular (V,V )-graded difilter on (S,S ). For the

statements

(1) (F,G) is a maximal regular (V,V )-graded difilter

(2) F∨G=V (i.e. ∀A ∈S ,F(A)∨G(A) = F(A)∪G(A) =V )

(1)⇐ (2) and in case of (V,V ) is discrete, (1)⇒ (2) are hold.

if (F,G) be a (regular) (V,V )-graded difilter on a texture (S,S ) then the families

Fv = {A ∈S | Pv ⊆ F(A)}, Gv = {A ∈S | Pv ⊆G(A)}

form a (regular) difilter Fv×Gv on (S,S ) for each v ∈V [9].

Proposition 4.7. [9] Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space.

Then, for the statements

(a) Every regular graded difilter on (S,S ,T ,K ,V,V ) is diclustering.

(b) Every maximal regular graded difilter on (S,S ,T ,K ,V,V ) is diconvergent.

the implication (b)⇒ (a) and in case of (V,V ) is discrete, (a)⇒ (b) are hold.

Definition 4.8. Let (F,G) be a regular graded difilter on a graded ditopological texture

space (S,S ,T ,K ,V,V ). Then the family defined by

Dcl(F,G) = {Pv | ∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[v ∈G(A)⇒]A[v⊆ Qs′ and v ∈ F(A)⇒ Ps ⊆ [A]v]}

is called diclustering spectrum of (F,G).
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Example 4.9. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space and v ∈V .

If F ×G is a a regular difilter on (S,S ,T v,K v) then the mappings defined by

FF (A) =

{
V, A ∈F
/0, A 6∈F

GG (A) =

{
V, A ∈ G
/0, A 6∈ G

for all A ∈S form a regular graded difilter (FF ,GG ) on (S,S ,T ,K ,V,V ). Moreover,

Fv
F =F and Gv

G = G .

Proposition 4.10. For a graded ditopological texture space (S,S ,T ,K ,V,V ), the fol-

lowing equation holds:

DC =
⋂
{Dcl(F,G) | (F,G) is a regular graded difilter}

Proof. Let Pv ∈
⋂{Dcl(F,G) | (F,G) is a regular graded difilter} and take a regular difilter

F×G on (S,S ,T v,K v). Then (FF ,GG ) is a regular graded difilter on (S,S ,T ,K ,V,V ).
Since Pv ∈

⋂{Dcl(F,G) | (F,G) is a regular graded difilter} we have Pv ∈ Dcl(FF ,GG ).
So we get

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S [v ∈GG (A)⇒]A[v⊆ Qs′ and v ∈ FF (A)⇒ Ps ⊆ [A]v].
This follows that “A ∈ Gv

G ⇒]A[v⊆ Qs′” and “A ∈ Fv
F ⇒ Ps ⊆ [A]v”. Thus we have “A ∈

G ⇒]A[⊆ Qs′”, “A ∈F ⇒ Ps ⊆ [A]” and this implies that F ×G is diclustering. Since

every regular difilter on (S,S ,T v,K v) is diclustering, (S,S ,T v,K v) is dicompact by

Theorem 4.4 and that means Pv ∈DC .

On the other hand, let Pv ∈DC and take a regular graded difilter (F,G) on (S,S ,T ,K ,V,V ).
Then (Fv×Gv) is a regular difilter on (S,S ,T v,K v). Since Pv ∈ DC , (S,S ,T v,K v)
is dicompact and so, (Fv×Gv) is diclustering by Theorem 4.4. That means “A ∈ Gv ⇒
]A[⊆ Qs′”, “A ∈ Fv⇒ Ps ⊆ [A]” for some s,s′ ∈ S with Ps * Qs′ . Thus we get,

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S [v ∈G(A)⇒]A[v⊆ Qs′ and v ∈ F(A)⇒ Ps ⊆ [A]v].
Hence we get Pv ∈

⋂{Dcl(F,G) | (F,G) is a regular graded difilter}. �

Lemma 4.11. Let (V,V ) be a discrete texture. If (F,G) is a maximal regular graded

difilter on a graded ditopological texture space (S,S ,T ,K ,V,V ) then the regular difilter

Fv×Gv on (S,S ,T v,K v) is maximal for all v ∈V .

Proof. Let (F,G) be a maximal regular graded difilter on (S,S ,T ,K ,V,V ) and v ∈ V .

Since (V,V ) is a discrete texture we have F∨G=V by Proposition 4.6. We also know that

Fv×Gv is a regular difilter. Consider Fv = {A ∈S | Pv ⊆ F(A)} and Gv = {A ∈S | Pv ⊆
G(A)}. Since F∨G=V and (V,V ) is discrete we get

A ∈S ⇒ Pv ⊆ F(A)∨G(A) = F(A)∪G(A)⇒ Pv ⊆ F(A) or Pv ⊆G(A)
⇒ A ∈ Fv or A ∈Gv⇒ A ∈ Fv∪Gv

for all A ∈S . That means Fv∪Gv =S and so Fv×Gv is maximal by Theorem 4.2. �
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Lemma 4.12. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space and v ∈V .

If F ×G is a maximal regular difilter on (S,S ,T v,K v) then the regular graded difilter

(FF ,GG ) on (S,S ,T ,K ,V,V ) is maximal.

Proof. Let F ×G be a maximal regular difilter on (S,S ,T v,K v). Then we have F ∪
G =S . So, for all A∈S we get A∈F or A∈G . This follows FF (A)=V orGG (A)=V .

That means FF ∨GG =V . Hence (FF ,GG ) is maximal by Proposition 4.6. �
Definition 4.13. Let (F,G) be a graded difilter on a graded ditopological texture space

(S,S ,T ,K ,V,V ). The family defined by

Dcn(F,G) = {Pv | ∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv and (A ∈K v, Ps′ * A)⇒ A ∈Gv]}
is called diconvergence spectrum of (F,G).

Proposition 4.14. Let (V,V ) be a discrete texture. For a graded ditopological texture

space (S,S ,T ,K ,V,V ), the following equation holds:

DC =
⋂
{Dcn(F,G) | (F,G) is a maximal regular graded difilter}

Proof. Let Pv ∈
⋂{Dcn(F,G) | (F,G) is a maximal regular graded difilter} and F ×G be

a maximal regular difilter on (S,S ,T v,K v). Then (FF ,GG ) is a maximal regular graded

difilter on (S,S ,T ,K ,V,V ) by Lemma 4.12.

Since Pv ∈
⋂{Dcn(F,G) | (F,G) is a maximal regular graded difilter} we have Pv ∈

Dcn(FF ,GG ). This follows

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv
F and (A ∈K v, Ps′ * A)⇒ A ∈Gv

G ].

Therefore we get “(A ∈ T v, A * Qs)⇒ A ∈ F ” and “(A ∈ K v, Ps′ * A)⇒ A ∈ G ”.

Considering Proposition 4.1, F ×G is diconvergent and so, (S,S ,T v,K v) is dicompact

by Theorem 4.4. Hence we get Pv ∈DC .

On the other hand, let Pv ∈ DC and take a maximal regular graded difilter (F,G) on

(S,S ,T ,K ,V,V ). Then Fv×Gv is a maximal regular difilter on (S,S ,T v,K v) by

Lemma 4.11. Besides, (S,S ,T v,K v) is dicompact since Pv ∈ DC . So, Fv ×Gv is

diconvergent by Theorem 4.4. Thus we have

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv and (A ∈K v, Ps′ * A)⇒ A ∈Gv].

Hence we get Pv ∈ Dcn(F,G) i.e.,

Pv ∈
⋂
{Dcn(F,G) | (F,G) is a maximal regular graded difilter}.

�
Corollary 4.15. Let (V,V ) be a discrete texture. If (F,G) is a maximal regular graded

difilter on a graded ditopological texture space (S,S ,T ,K ,V,V ). Then

Dcn(F,G) = Dcl(F,G)
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Proof. Considering Lemma 4.11 and Proposition 4.3 we have

Pv ∈ Dcn(F,G)⇔ “∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv and (A ∈K v, Ps′ * A)⇒ A ∈Gv]”

⇔ “Fv→ s, Gv→ s′ and Ps * Qs′”

⇔ “∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S [A ∈Gv⇒]A[v⊆ Qs′ and A ∈ Fv⇒ Ps ⊆ [A]v]”
⇔ Pv ∈ Dcl(F,G).

�
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A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR
LINEAR HYPERBOLIC PDE’S WITH HIGH FREQUENCIES

ŞUAYIP TOPRAKSEVEN

Abstract. The main purpose of this paper is to describe a space-time dis-
continuous Galerkin (DG) method based on an extended space-time approx-
imation space for the linear first order hyperbolic equation that contains a
high frequency component. We extend the space-time DG spaces of tensor-
product of polynomials by adding trigonometric functions in space and time
that capture the oscillatory behavior of the solution. We construct the method
by combining the basic framework of the space-time DG method with the ex-
tended finite element method. The basic principle of the method is integrating
the features of the partial differential equation with the standard space-time
spaces in the approximation. We present error analysis of the proposed space-
time DG method for the linear first order hyperbolic problems. We show that
the new space-time DG approximation has an improvement in the convergence
compared to the space-time DG schemes with tensor-product polynomials. Nu-
merical examples verify the theoretical findings and demonstrate the effects of
the proposed method.

1. Introduction

In computational acoustics, the medium frequency regime and multiscale wave
propagation governed by the wave equation have been gained a constant inter-
est in last decades. When multiscale wave propagation presents a high frequency
component, developing an effi cient numerical methods for these classes of prob-
lem is a challenging task. Some example of high frequency problems include the
high-intensity focused ultrasound (HIFU) treatment of cancer [1], coupled atomistic
continuum modeling in nanomaterials [2] and tunneling in quantum mechanics [3].
The reason for ineffi ciency of the existing methods is that the standard numerical
methods such as the finite element (FEM) or discontinuous Galerkin (DG) meth-
ods based on semi-discrete approach require a very fine mesh in the discretization
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in both space and time, and this leads to huge computational cost and makes the
numerical methods ineffi cient. Moreover, these methods based on semi-discrete
approach may not suitable for multiscale approximations in the temporal domain.
These issues on the standard numerical techniques have lead to high order methods
that solve wave propagation phenomena in the time domain. One promising ap-
proach that has gained considerable popularity is space-time approximation spaces
in which the time domain is also discretized. In these methods, two approaches
have been proposed during the last decades. The first approach is called the time
continuous space-time Galerkin methods (TCG) that do not require continuity in
time. This approach generalizes the semi-discrete discretization to time domain
with continuous time functions. The detailed explanations of such methods are
given in [4]. The drawback of these methods is high computational cost because
of discretization of whole domain. The second approach is based on space-time
discontinuous Galerkin methods that use standard polynomials spaces to discretize
the problem in space and time, while temporal domains are divided into time slab
and discontinuities and jumps are allowed in time. In each slab, TCG method is
applied and the next slab uses the information from the previous slab. This second
approach is more robust and effi cient than the first one. The wave equation can
be discretized by a space-time setting in two ways. One way is to discretize the
wave equation directly in a one field formulation with only one unknown as [5] and
[6] . The second way is to convert the second order equation to a system of first
order equations as done in [7] and [8]. Using this second formulation, a priori and
a posteriori error estimates have been proved in [9] using linear interpolation. This
approach clearly increases the unknowns in the resulting systems. Error estimates
to prove convergence of the methods have been derived by French [6] and Hughes
and Hulbert [5]. In the latter work, Galerkin least-squares stabilization terms are
added for convergence analysis. In [6], the weighted inner product is included for
the stability. A space-time DG method in which discontinuities and jumps are al-
lowed both in space and time have been developed in [10] and recently proposed in
[11] and [12] with discontinuous Petrov-Galerkin method in temporal domain for
linear hyperbolic systems. Furthermore, many applications require boundary move-
ment such as Stefan problems and water waves. In such problems, the mesh points
also move in order to capture boundary movement. These movements in mesh
points make the numerical scheme in effi cient or need more complicated numerical
discretization. In this case, it is natural to consider the space-time discontinuous
Galerkin approach. Analysis and survey of space-time DG method for hyperbolic
and parabolic conservation laws on time dependent domains are explained in details
in [13]. Recently, space-time methods have become popular for the time dependent
problems discussed in [14] and [15]. An application of this method to the compress-
ible Vaiver-Stokes equations is discussed in [17]. Space-time DG method for the
advection-diffusion equation has been given in details in [18] and [19]. This method
also has been successively applied to nonconservative hyperbolic PDEs as models
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for dispersed multiphase flows in [20]. Furthermore, space-time DG methods have
been proposed for the nonlinear water waves in [21] as well.
The medium or high frequency in wave propagation has been dealt with high

order numerical methods including the ultra-weak variational method [22] that is
a special case of the Trefftz-DG formulation for the wave equation [23] and the
discontinuous enrichment method [24]. In these methods, the approximation space
is enriched by the solution of the equation under consideration. In [24], the DG
space is extended by solutions of the homogeneous differential equation that capture
the high frequency in the solutions. In the same direction, an enriched space-time
FEM for the first-order hyperbolic systems with discontinuities in both space and
time has been studied by Chessa and Belytschko [25]. This enriched space-time
approach is based on the extended FEM studied in [26]. These methods are based
on the partition of unity approach developed in [27]. Motivated by these approaches,
in this paper we propose a high-order accurate space-time DG method that is well-
suited for first order linear hyperbolic problem with high frequency components.
We construct the extended space-time DG space by enriching space-time DG space
with the trigonometric functions in space and time. These trigonometric-function
spaces intuitively capture the high frequency solutions and should be used to the
highly oscillatory problems. This extended space time DG method is an extension
to an extended DG method presented in [28]. We will show global convergence in
error estimates. Our error analysis based on the DG method proposed by [29].
The outline of this paper is as follows: Section 2 describes the mathematical

analysis, formulations, and an introduction to a space-time DG method for scalar
hyperbolic linear equation with high-frequency components. The basic properties
of the proposed space-time DG method, the geometry of the space-time domain
and elements and the space-time formulation of the problem have been explained
and discussed and general solution form for linear hyperbolic equation with high
frequency components is also given in Section 2. In Section 3, we introduce pre-
liminaries and notations and recall some basic facts on DG methods for linear
hyperbolic equations. We present our extended DG method for linear hyperbolic
equation with high frequency components and our special interpolation operators
have been given in Section 4. Stability and error analysis are given in Section 5.
In Section 6 numerical example is given to show that our theoretical results agree
with numerical results. Finally we explain some conclusion and future direction in
Section 7.

2. Space-Time Formulation with Trigonometric Functions

The basic principle of an extended DG method is to enrich the DG space by
special functions that are, generally, the solution of homogeneous differential equa-
tion. The linear hyperbolic equation has the solution of the form h(x ± t) in one
dimension. In Section 2.2, we show that if the initial condition has a high fre-
quency component, then the homogeneous differential equation will also have a
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high frequency functions. This observation suggests that the enrichment shape
functions consist of the polynomials and the trigonometric functions in the space
E := span{sin(x ± t), cos(x ± t)}. A similar idea has been proposed for the wave
equation in [30] and Trefftz DG method in [23].

2.1. Problem Statement. In this paper, we consider a scalar hyperbolic equation
in an open domain Ω with boundary ∂Ω

Find U = U(x, t) so that{
LU(x, t) + c(x, t)U(x, t) = g(x, t) on QT , 0 < c0 ≤ c ≤ c1,
U(x, 0) = f(x).

(1)

Here, LU := ∂U
∂t +γ ∂U∂x , QT = Ω× (0, T ] and c0 and c1 are constants with γ ∈ (0, 1]

and U denotes a scalar quantity, and t represents time with T the final time. This
problem has been chosen purely for its simplicity. This analysis can be easily
extended to more general hyperbolic and scalar conservation law problems.
We propose a space-time DG method based on extended DG approximation

space for the equation (1). In this method, we directly consider the domainQT ⊂ R2

in which spatial and temporal variables are not distinguished and a point x̂ ∈ QT
has coordinates (x0, x1) with x0 = t representing a time variable and x = x1 space
variable. Thus, we define the space-time domain as the open domain QT ⊂ R2.
For space-time discretization, we need space-time slabs and elements. To do this,
we partition the time interval I = (0, T ] into an ordered time levels 0 = t0 <
t1 < · · · < tN = T . Let In = (tn, tn+1) so that I = ∪nIn with the time length
∆t = tn+1 − tn. Let Ω(tn) denote the space-time domain at the time level t = tn.
Then, we define space-time slabs as QnT = QT ∩ In. We divide further Ω(tn) into
non-overlapping spatial elements Kn and similarly we divide the spatial domain
Ω(tn+1) into elementsKn+1. We then connect the elementsKn andKn+1 to obtain
space-time element Kn by using linear interpolation in time. We also describe
the tessellation of the space-time slab Tnh = ∪nKn and all space-time elements
Th = ∪nTnh in QT . By ∂K we denote the boundary of the space-time element K.
These space-time elements can be mapped to reference element (square or rectangle)
by a suitable map, e.g., see [13] for construction of such a map. Figure 1 show a
sketch of the space-time slab in QT .
In this paper, we require c and g are slowly varying smooth functions with

bounded derivatives of many orders while f has the high frequency components.
For instance, if f(z) = cos(ωz), then the solution has the form of:

U(x, t) = S(x, t) +R(x, t) cos
(
ω(x− t)

)
, (2)

where the frequency ω is a large number in absolute value. We further assume the
functions S(x, t) and R(x, t) are slowly-varying functions of x and t in the sense
that they have many derivatives all of which have norms that are moderately sized
in space.
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Figure 1. Space-time slab in space-time domain QT . On the
right, the rectangular mesh is an example of structured discretiza-
tions in space and time.

We can assume that the forcing term g(x, t) has also frequency components and
we can show a similar solution form to (2). However, in this case extending the
DG space with trigonometric functions is not easy task since we should extend the
approximation space in all characteristic lines. For example, if we let g(x, t) =
sin(βx) + cos(ηt) with β, η >> 1, then the solution form looks like U(x, t) =
S1(x, t) sin(β(x − t)) + S2(x, t) cos(ηt) + R(x, t) cos(ω(x − t)) so that S1, S2 and
R do not have high frequency component. Therefore, enriching the space-time DG
space is not easy job in this simple example. As an application of this phenomena,
we consider high-intensity focused ultrasound (HIFU) treatment of cancer that uses
sound wave. Tumors in body tissues are destroyed when HIFU is focused onto them.
The initial condition in partial differential equation will generally help to determine
high frequency shape to destroy tumor. In Figure 2, high frequency components in
the initial condition determine acoustic pressure (high frequency shape) that heats
and destroys the tumor.
We define an interpolation based on the assumption (2) in the error analysis of

the proposed method. Hence, we prove this assumption in the next subsection.

2.2. General Form of the Solutions. In this section, we give the explicit solution
form of the following problem:

Find U = U(x, t) on R× [0, T ] so

∂U/∂t+ ∂U/∂x+ cU = g 0 < c0 ≤ c(x, t) ≤ c1,
with U(x, 0) = f(x).

(3)

The variable change to characteristic lines helps transform the PDE to an infinite
set of ODE’s. Let x = t+ x0 where x0 ∈ R and define

Ũ(t) = U(t+ x0, t).
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Figure 2. High frequency sound waves are concentrated on body
tissues and tumor heats up and dies.

Then, we find that
Ũ ′ = Ut + Ux = −cU + g,

or, with C̃(t) = c(t+ x0, t) and G̃(t) = g(t+ x0, t) we have

Ũ ′ + C̃Ũ = G̃ and Ũ(0) = f(x0).

We multiply this equation by an integrating factor µ̃ and find

µ̃(t) = exp

(∫ t

0

C̃(s) ds

)
⇒

(
µ̃(t)Ũ(t)

)′
= µ̃(t)G̃(t).

This first order linear BVP (in Ũ) can now be solved and we find that

Ũ(t) =
1

µ̃(t)

(
f(x0) +

∫ t

0

µ̃(s)G̃(s) ds

)
.

So, now we unwind the variable change to produce a solution for U . Note that
x0 = x− t and, thus, letting

I(x, t) = 1/µ̃(t) = exp

(
−
∫ t

0

c(s+ (x− t), s) ds
)
,

we have

U(x, t) = f(x− t)I(x, t) + I(x, t)

∫ t

0

I(x, s)g(s+ (x− t), s) ds.

If we now assume that g and c are slowly varying smooth functions with bounded
derivatives of many orders while f has the high frequency components; that is, say,

f(z) = cos(ωz) for ω >> 1,

then, we have
U(x, t) = S(x, t) +R(x, t) cos(ω(x− t)).

This proves the assumption (2).
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3. Preliminaries and Notations

The Sobolev space, Wm,p(K), for a domain K, consists of functions with m
derivatives in the Lp(K) norm. We will use the following notation for Sobolev
space semi-norms and norms for 1 ≤ p <∞

|v|m,p,K =

 ∑
|α|=m

‖Dαv‖pLp(K)

1/p

and ‖v‖m,p,K =

 ∑
|α|≤m

‖Dαv‖pLp(K)

1/p

,

(4)
and when p =∞

‖v‖m,∞,K =
∑
|α|≤m

‖Dαv‖L∞(K), (5)

where Dαv =
∂|α|v

∂xα11 . . . ∂xαnn
with |α| =

∑n
k=1 αk for αk ≥ 0, k = 1, . . . , n, and

xα = xα11 . . . xαnn and the standard Lebesgue space Lp(K) norms

‖v‖Lp(K) =
(∫

K

|v|p dx
)1/p

for 1 ≤ p <∞,

and
‖u‖L∞(K) = ess supx∈K |v(x)|.

For simplicity, we occasionally denote ‖.‖0,2,K by ‖.‖.
We will primarily be working with the Hilbert space Hm(K) = Wm,2(K).
Let Pr(K) be the space of polynomials with degree ≤ q in K. We also assume

there is an interpolation operator [[31], Theorem 4.4.4]

πh : W q+1,p(K)→ Pr(K)

for which

‖(I − πh)v‖`,p,K ≤ Chr−`‖v‖r,p,K , (0 ≤ ` ≤ r ≤ q + 1). (6)

and πhξ = ξ for ξ ∈ Pr(K). Moreover, if v ∈ C(Ω̄) then πhv is continuous on Ω̄ as
well.
The inverse inequality [[31], Theorem 4.5.11] for functions χ ∈ Pr(K) states that

there exists C > 0, which is independent of h, so that

‖χ‖`,p,K ≤ Chm−`+1/p−1/r‖χ‖m,r,K , m ≤ `, 1 ≤ p ≤ ∞, and 1 ≤ r ≤ ∞.
(7)

The arithmetic-geometric mean inequality states that for scalars a and b,

|ab| ≤ δa2 + Cδb
2, (8)

where Cδ = 1/(4δ) and δ > 0.
To be able to easily present our results and compare with previous works, we

follow the paper by C. Johnson and J. Pitkaranta [29]. Given a piecewise smooth
function v write vn(.) = v−(., nh) and the approximate solution u is computed
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successively on the strips Sn = {x ∈ Ω : (n − l)h < t < nh}, n = l, ..., N so that
‖un − Un‖ is the error on each time level t = nh.
Let nK = (nKx , n

K
t ) represent the outward pointing unit normal vector on ∂K

with space coordinate nKx and the time coordinate n
K
t . Let β := (1, γ) and ∂QT :=

Γ. The inflow boundary is defined

Γ_ := {x̂ ∈ Γ : nK · β < 0} = {(x, t) : x = 0 or t = 0}.

In an element K, its inflow boundary ∂K_ and its outflow ∂K+ = ∂K\∂K_ is
similarly defined by

∂K_ = {x ∈ ∂K : nK · β < 0},
∂K+ = {x ∈ ∂K : nK · β > 0}.

Space-time DG space is then defined as

Vh := {v ∈ L2(QT ) : v|K ∈ Pr(K), ∀K ∈ Th}. (9)

where Pr(K) denotes the space of polynomials of maximum degree at most r in
(x, t). Functions in Vh are allowed to be discontinuous at discrete time level. For
K ∈ Th, and a piecewise smooth function v, we define the jump operator by

[u](x) = lim
s→0+

(
u(x+ s)− u(x− s)

)
when x ∈ ∂K_ ⊂ E , interior faces, and [u](x) := u(x) when x ∈ Γ_ ∩ ∂K_. The
jump of v across ∂K_\Γ defined similarly by

[v]K := v+
K − v

−
K ,

where v+
K the trace of v on ∂K taken from within the element K and v−K is the

exterior trace of u. Note that the sign of the jump depends on the direction of the
flow. The average of a function u is defined by

{u} =
1

2
(u|K1

+ u|K2
) on ∂K1 ∩ ∂K2.

We define the equivalent space-time DGmethod for (1) by summing overK ∈ Th:
Find u ∈ Vh so that

a(u, v) = `(v), ∀v ∈ Vh, (10)

where
a(u, v) =

∑
K

(
(Lu+ cu, v)K −

〈
[u], v+

〉
∂K_

)
, (11)

and

`(v) = (g, v),
〈
u, v
〉
∂K

=

∫
∂K

|nK · β|uv ds. (12)

where β = (1, γ) and nK is the outward unit normal to ∂K.
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Figure 3. The order of the space-time elements on which u is computed.

Note that, for differentiable functions u and v, we have the following integration
by parts formula

(Lu, v)K = −(u,Lv)K +
〈
u, v
〉
∂K+
−
〈
u, v
〉
∂K_ .

Equivalently, using this formula we may write this as

a(u, v) =
∑
K

(−(u,Lv + cv)K −
〈
u−, [v]

〉
Γh

+
〈
u, v
〉

Γ+
, (13)

where Γh :=
(⋃

K ∂K
)
\Γ.

Now, we have the Galerkin orthogonality relation by replacing u by the exact
solution U in (11)

a(u− U, v) = 0, ∀v ∈ Vh. (14)

Let us recall the DG method for (1). Given a finite element partitioning Jh :=
{K} of QT , we look for a solution u defined on QT such that for all K ∈ Jh and
u|K ∈ Pr(K) so that∫

K

(Lu+ cu)vdx+

∫
∂K_

MK [u]Kv
+ ds = (g, v)K ∀v ∈ Pr(K), (15)

where MK := |nK .β|.
As shown in [29], u is uniquely determined by (15) and it is possible to compute

u successively on each K starting at the inflow boundary Γ_ where u is given.
Then it is possible to find the numerical solution u successively on one time level
after another computing space-time element by element by starting for each strip
on the left. The order of elements on which u will be computed is shown in Figure
3. Thus, given g and u− on inflow boundary, we can solve u locally in each K as
shown below. For detailed proof, we refer the reader to [29].
Below, we denote by C , a positive constant which may take different values on

different occurrences.

Lemma 1. [29] Assume that g ∈ L2(QT ) and f ∈ L2(Γ_) are given in (1). Then
u is determined by (15) and the following local stability holds for each K

‖u‖K + h
1
2 ‖u+‖∂K_ + h

1
2 ‖u−‖∂K+

≤ C{h‖g‖K + h
1
2 ‖MKu

−‖∂K_}.
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Let us introduce a norm |||.|||h for the error analysis :

|||u|||2h =
∑
K

h||Lu||2K + |u|2h.

|u|2h = ||u||2 +
1

2

〈
[u], [u]

〉
∂K_ +

1

2

〈
u−, u−

〉
Γ+
,

|||u|||2h =
∑
K

h||Lu||2K + |u|2h.

Then, we have the following a generalization of the Poincare-Friedrichs inequality
[31]:

∀w ∈ H1(K), ‖w‖0,2,QT
≤ C|||w|||h. (16)

4. Space-time Discontinuous Galerkin Discretization

In this section, we discuss the space-time DG method based on the extended
space-time approximation spaces and that combines the framework of space-time
DG with XFEM for the linear hyperbolic equation. We enrich the space-time DG
space by adding a range of Fourier-series components to handle the high-frequency
terms in the exact solution. As shown in Section 2.1, if the initial condition has only
one high frequency component, then the solution form given by (2). In the same
direction, if we assume that the initial condition has L high frequency components,
that is, f(z) =

∑L
`=1 cos(ω`z) with ω` >> 1, then we wil have the solution form of

U(x, t) = S(x, t) +

L∑
`=1

R(x, t) cos(ω`(x− t)). (17)

Thus, our "enriched space" Xr
h(QT ) consists of the functions of the form

Xr
h(QT ) = {ψ = s+

L∑
`=1

(a`cos(n`(x− t)) + b`sin(n`(x− t)))}, (18)

where n1, . . . , nL are integers and s as well as the ai’s and the bi’s are all elements
of the space-time DG space Vh (9). More precisely, these s, a` and b` functions are
tensor-product of piecewise discontinuous polynomials of degree at most r in x and
t variables. Note that these functions are allowed to be discontinuous at the nodal
points both in space and time and continuous in each element. This enriched space
provides good approximations to the solutions of (1) if the range of high frequencies
are known a priori.
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For a high-frequency component of (17), we have, by using a simple trigonometric
identities,

R(x, t)cos(ω`y) = R(x, t)cos(n`y + (ω` − n`)y)

= R(x, t) cos((ω` − n`)y) cos(n`y)−R(x, t) sin((ω` − n`)y) sin(n`y),

where y := x − t and n` is an integer and can be chosen between n0 and nL with
0 ≤ ω` − n` ≤ 1. The key idea is that the functions

α`(x, t) = R(x, t) cos((ω` − n`)(x− t)),
and

β`(x, t) = −R(x, t) sin((ω` − n`)(x− t))
oscillate slowly since their frequencies are small and can be well approximated by
functions in Vh.
We now directly approximate the form (2) using interpolation. Let

UA(x, t) = πhS(x, t)+

nL∑
`=n0

[(πhα`)(x, t)cos(n`(x− t)) + (πhβ`)(x, t)sin(n`(x− t))] .

(19)
Note that UA ∈ Xr

h(QT ) and we have

U(x, t)− UA(x, t) = (I − πh)S(x, t) +

n∑̀
`=n1

[
(I − πh)α`(x− t)cos(n`(x− t))

+ (I − πh)β`(x− t)sin(n`(x− t))
]
.

So, using (6), there is constant C, independent of h and ω`, we have

‖U − UA‖m,p,K ≤ Chr+1−mωmL , 0 ≤ m ≤ p ≤ r + 1. (20)

Also, since U is continuous, it follows that UA is continuous as well.
We remark that if U ∈ Pr(QT ), that is U is a polynomials, then our special

interpolation agrees with the interpolation operator πh so that in this case we have

UA = πhU. (21)

Furthermore, we have, by the trace inequality,

‖U − UA‖0,2,∂K ≤ Ch,r+
1
2 0 ≤ m ≤ 2 ≤ r + 1. (22)

To construct our space-time approximation solution on the extended space, we
perform the space-time discretization of the linear hyperbolic equation (1). Thus,
we define the space-time DG scheme : Find u ∈ Xr

h so that

a(u, v) = `(v) ∀v ∈ Xr
h. (23)

First, we show that the discrete problem (23) is stable from which the existence
and uniqueness of the problem follows. Then we prove the bilinear form a(., .) is
coercive and continuous. For short reference, we take MK = M .
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Lemma 2. The solution u to the problem (23) satisfies the following stability es-
timates

|||u|||2h ≤ C
(
‖g‖2 + ‖Mf‖2Γ_

)
. (24)

Proof. Taking v = u+ δLu when δ = Ch for some constant C in (23) we have, for
each K ∈ Th

a(u, u+ δLu) = (Lu+ cu, u+ δLu)−
∫
∂K_

[u]u+M ds = (g, u+ δLu)K . (25)

Now, using Green’s formula we have

2(Lu, u) =

∫
∂K+

(u−)2M ds−
∫
∂K_

(u+)2|M | ds,

and since c ≥ c0 > 0, we get

2aK(u, u+ δLu) ≥ 2δ(Lu,Lu)K + 2c0(u, u)K + (1 + δc0)
( ∫

∂K+

(u−)2M ds

−
∫
∂K_

(u+)2|M | ds
)

+ 2

∫
∂K_

[u]u+|M | ds.

Since every side of interior element boundary ∂K+ agrees with a side of ∂K ′_ for
an neighbour element K ′, we have∑

K

∫
∂K+

(u−)2M ds =
∑
K

∫
∂K_

(u−)2|M | ds+

∫
Γ+

(u−)2M ds+

∫
Γ_

(u−)2M ds,

(26)
and consequently if we take δ = Ch for some constant C with h ≤ 1 and using the
fact that 1 + Ch ≥ 1

2a(u, u+ ChLu) ≥ 2Ch
∑
K

(Lu,Lu)K + 2c0
∑
K

(u, u)K

+
∑
K

∫
∂K_

(
(u+)2 − 2u+u− + (u−)2

)
|M | ds

)
+

∫
Γ+

(u−)2M ds−
∫

Γ_
(u−)2|M | ds.

Thus we obtain

a(u, u+ ChLu) ≥ Ch
∑
K

‖Lu‖2 + c0‖u‖2 +
1

2

∑
K

∫
∂K_

[u]2|M | ds

+
1

2

∫
Γ+

(u−)2M ds− 1

2

∫
Γ_

(u−)2|M | ds. (27)

Now we estimate the right-hand side of (25). Applying the Cauchy-Schwarz and
the arithmetic-geometric inequalities we get

(g, u+ ChLu) ≤ ‖g‖2 +
1

4
‖u‖2 +

Ch

4

∑
K

‖Lu‖2K . (28)
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Using the fact that u_ = f on Γ_ and combining (27) and (28), the desired
result follows. �

In particular this estimate shows the uniqueness and existence of a solution to
(23)
Now we prove the improved stability estimate.

Lemma 3. The following improved stability holds for δ = Ch with suitable constant
C

a(u, u+ δLu) ≥ C
(
|||u|||2h −

∫
Γ_

(u−)2|M | ds
)
. (29)

Proof. From (27) and the definition of the norm (3) , the result easily follows. �

5. Error Analysis of the Space-time DG Method

We can now state and prove the basic global error estimate for our space-time
DG method (23).

Theorem 4. If u satisfies (23) and U satisfies (1), then we have the following
error estimate

|||e|||h ≤ Cωhr+
1
2 , (30)

where C does not depend on ω and h.

Proof. Let UA ∈ Xr
h be the special interpolation of U defined by (19). Let us write

η := U − UA, θ := u− UA, e = θ − η.

Using Lemma 3 with u = e and δ = Ch and the orthogonality property (14) with
v = θ and the fact that e_ = 0 on Γ_, we have

C|||e|||2h ≤ a(e, e+ ChLu) = a(e, e) + Cha(e,Lη) := T1 + T2. (31)

In order to bound T1, we first prove that

a(e, e) = |e|2h. (32)

By Green’s formula for each K

2(Le, e)K =

∫
∂K+

(e−)2M ds−
∫
∂K_

(e+)2|M | ds,

and thus

2a(e, e) =
∑
K

{∫
∂K+

(e−)2M ds−
∫
∂K_

(e+)2|M | ds

+ 2

∫
∂K_

(e+ − e−)e+|M | ds
}

+ 2‖e‖2.
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Now using the identity (26) with u = e along with the fact that e− = 0 on Γ_ we
obtain that

2a(e, e) =
∑
K

{∫
∂K_

(
(e+)2 − 2e+e− + (e−)2

)
|M | ds

}
+

∫
Γ+

(e−)2M ds+ 2‖e‖2,

which proves the result (32).
We next bound the term T2. To end this, we bound the bilinear form a(e,Lη).

So using the Cauchy-Schwarz and the arithmetic-geometric inequalities we have

a(e,Lη) =
∑
K

{(
Le+ ce,Lη)K −

∫
∂K_

[e]η+M ds
}

≤ 1

2

∑
K

‖Le‖2K +
1

2
‖Lη‖2 +

h−1

2
‖e‖2 +

h

2
‖Lη‖2

+
∑
K

( 1

4h

∫
∂K_

[e]2|M | ds+ h

∫
∂K_

η2|M | ds
)
,

thus we find that

Cha(e,Lη) ≤ h

2

∑
K

‖Le‖2K +
h

2
‖Lη‖2 +

1

2
‖e‖2 +

h2

4
‖Lη‖2

+
∑
K

(1

4

∫
∂K_

[e]2|M | ds+ h2

∫
∂K_

η2|M | ds
)
,

and

Cha(e,Lη) ≤ 1

2
|||e|||2h +

h

2
‖Lη‖2 +

h2

4
‖Lη‖2 +

∑
K

h2

∫
∂K_

η2|M | ds.

Using the bounds (20) and (22) and the fact that the number of elements is O(h−2)
we can bound the right hand-side by

Cha(e,Lη) ≤ 1

2
|||e|||2h +

h

2
Cω2h2r +

h2

4
Cω2h2r +

∑
K

h2Ch2r+1

≤ 1

2
|||e|||2h + Cω2h2r+1 + Cω2h2r+2 + Ch−2h2h2r+1

≤ 1

2
|||e|||2h + Cω2h2r+1. (33)

Finally inserting (32) and (33) into (31), it follows that

|||e|||2h ≤ Cω2h2r+1,

or
|||e|||h ≤ Cωhr+

1
2 .

This finishes the proof of the error estimate (30). �
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Remark 5. Typically, standard DG (without enrichment) with approximation uDG
would have (see, for example, ([7])

|||e|||2h ≤ Chr+
1
2 ‖U‖r+1,2,Q.

Since ‖U‖r+1,2,Q ∼ ωr+1 this error is dramatically larger than our error estimates
(30).

6. Numerical Results

In this section, we will demonstrate some numerical experiments to verify our
theoretical findings. Let us consider the scalar hyperbolic equation. We take QT =
Ω× (0, T ] = [0, 2π]× (0, T ] and the initial condition

u(x, 0) = sin(ωx), ω = 100.

We choose the boundary conditions so that the exact solution is given by

u(x, t) = sin(ω(x− t)).
In this example, the initial condition has only one high frequency component so
we take L = 1 and n1 ≈ ω. For simplicity, we consider here only structured
discretizations in space and time and choose h = 2−`, ` = 3, 4, 5, 6, 7 and we use
linear tensor-product polynomials, that is, r = 1. Thus we have 2 shape functions in
the (unenriched) space-time DG space, and we have 6 shape functions (2 unenriched
and 4 enriched) in the extended space-time DG space for the reference element
I2 = (0, 1) × (0, 1). Matrix integrals are all done on a reference element by using
10 Gauss-Lobatto points numerical integration. The most simple shape functions
of maximum degree r in the reference element can be given by

φ(η0, η1) = ηr00 η
r1
1 , r = r0 + r1.

These shape functions give better conditioned mass and stiffness matrices, and
make the computations relatively easier. Define the transformation

GnK : (0, 1)2 → Kn (34)

GnK(η0, η1) = (x, t),

where

(x, t) = (
1

2
(tn + tn+1)− 1

2
(tn − tn+1)η0,

1

2
(1− η0)ξ0 +

1

2
(1 + η0)ξ1)

with ξ0 and ξ1 are linear finite element shape functions that are the images of η1

to the elements Kn and Kn+1, respectively, by a suitable mapping. An example of
such a mapping, FnK can be given as

FnK : I2 → Kn

FnK(η1) =

8∑
k=1

xk(Kn)χk(η1),
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where xk(Kn) is the vertices of the element Kn and χ(η1) is the standard linear
finite element shape functions defined on I2. Thus, the space-time tessellation
consists of the union of all the partitioning of the space-time slabs. For more
detailed discussions of such mappings and other basis functions, see [13] and [14].
The numerical results are shown in Table 1 and Table 2. The observed convergence
rates (OCR) of the proposed method in L2 and the energy norms are given at
T = 1 and T = 2. The observed convergence rate R1 in L2 norm is computed by
the formula R1 = log(||e2h||/||eh||)/ log(2) and the observed convergence rate R2

in the energy norm is computed by the formula R2 = log(|||e2h|||h/|||eh|||h)/ log(2)
where eh = u − U is the error on the mesh. It is known that optimal convergence
is observed only by using suitable chosen meshes. The loss of order h1/2 in the
order of convergence of L2 norm is still under discussion, e.g., see [32]. In practice,
the optimal convergence hr+1 is achieved when polynomials of degree at most r
used even if there is no uniform requirement on the chosen meshes. See [33] for the
computational results for conforming triangulations for an example of this issue .
Thus, typically there is a gap of order h1/2 between computed convergence rate and
the optimal convergence rate in DG methods.

h ‖eh‖L2,T=1 R1 ‖eh‖L2,T=2 R1

1/8 0.2542 - 0.3653 -
1/16 0.7461e-1 1.739 1.070e-1 1.771
1/32 0.2193e-1 1.7664 0.288e-1 1.893
1/64 0.5993e-2 1.8715 0.768e-2 1.9068
1/128 0.1480e-2 2.0176 0.195e-2 1.9776

Table 1. The errors and the order of convergence of the space-
time DG for the first order polynomial approximation (r = 1) at
T = 1 and T = 2 in L2 norm.

h |||eh|||h,T=1 R2 |||eh|||h,T=2 R2

1/8 1.0532 - 1.2471 -
1/16 3.792e-1 1.473 4.584e-1 1.484
1/32 1.346e-1 1.494 1.563e-1 1.506
1/64 4.721e-2 1.511 5.491e-2 1.506
1/128 1.657e-2 1.510 1.943e-2 1.498

Table 2. The errors and the order of convergence of the space-
time DG for the first order polynomial approximation (r = 1) at
T = 1 and T = 2 in the energy norm.
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The results in Table 2 clearly indicate that the numerical results are in good
agreement with the theoretical findings and show that the proposed method con-
vergences with the expected (r+1/2)-th order of convergence when the polynomial
space of order r is used without any mesh refinement.

7. Conclusion

In this paper, we presented a space-time discontinuous Galerkin method for the
scalar hyperbolic problems that contain high frequency components. We extend
the space-time approximation space with trigonometric functions to capture the
oscillatory behavior of the solutions. We applied discontinuous Galerkin method-
ology in both space and time and derived a stable space-time DG scheme. Thus,
the method can be seen as a space-time framework of extended DG method. The
key feature of the method is that it uses the solutions of PDE under consideration.
Furthermore, the choice of DG space enriched by the solutions of the governing
differential equation enables an effi cient evaluation of integral terms. The proposed
method here performs well when compared to standard space-time DG method.
With conventional space-time DG method, one needs to refine the mesh size to get
an acceptable accuracy for high frequency component. This leads to the compu-
tational costs in each space-time slab for solving the resulting system. We showed
optimal a priori error estimates in a mesh dependent space-time DG norm. Ad-
ditionally, we gave a numerical experiments to verify the theoretical findings. An
extension of the analysis for an extended space-time solutions for the linear hyper-
bolic problems or conservation laws in two and three dimensional computational
domains will be considered in the future.
Acknowledgements: The author would like to thank the anonymous review-

ers for their valuable and constructive comments and suggestions that helped to
improve the manuscript.
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INTRODUCTION TO TEMPORAL INTUITIONISTIC FUZZY
APPROXIMATE REASONING

FATIH KUTLU, FERIDE TUĞRUL, AND MEHMET ÇITIL

Abstract. In this study; temporal intuitionistic fuzzy negation, temporal in-
tuitionistic fuzzy triangular norm and temporal intuitionistic fuzzy triangular
conorm have been researched. The aim of this study is to define negator, t-
norm and t-conorms, which is the generalization of negation, conjunctions and
disconjunctions in the temporal intuitionistic fuzzy sets and to examine the
De Morgan relations between these concepts. The thing to note here is that
conjunctions generalized with t−norm and t−conorm is changed depending
on time. We will carry concept of implication and coimplication to temporal
intuitionistic fuzzy sets. With the new implication definitions, a causal struc-
ture will be established which will match the variable structure of the systems
depending on the position and time variables. It is evident that successful
results will be achieved in this type of system, which is being dealt with by
this new structure.

1. Introduction

The notion of fuzzy logic was firstly defined by Zadeh in 1965 [10]. Then;
intuitionistic fuzzy sets (shortly IFS) were defined by K.Atanassov in 1986 [1].
Intuitionistic fuzzy sets form a generalization of the notion of fuzzy sets. The
concept of temporal intuitionistic fuzzy sets is defined by Atanassov in 1991 [2]. In
this concept; the membership and non-membership degrees are described based on
the time-moment and time-element. The temporal intuitionistic fuzzy set theory
create a new perspective in various application areas such as: Weather, economy,
image, video processing, etc.
In this study, firstly definition of temporal intuitionistic fuzzy sets has been

given. Then, temporal intuitionistic fuzzy negation, temporal intuitionistic fuzzy
triangular norm and temporal intuitionistic fuzzy triangular conorm have been
researched. The aim of this study is to define negator, t-norm and t-conorms,
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which is the generalization of negation, conjunctions and disconjunctions in the
temporal intuitionistic fuzzy sets and to examine the De Morgan relations between
these concepts. The thing to note here is that conjunctions generalized with t−norm
and t−conorm is changed depending on time. The changing conjunctive idea that
depends on time has a meaning only when the connected objects change depending
on time. Therefore these conjunctions can be used on temporal intuitionistic fuzzy
sets.
In this study; we will carry concept of implication and coimplication to tem-

poral intuitionistic fuzzy sets. The definition of the intuitionistic implication is
based on the notation from fuzzy set theory introduced by Fodor, Roubens [26].
These concepts, which are used to establish the IF-THEN structure with a clearer
reasoning in the fuzzy set and in the intuitionistic fuzzy set theory, are known to
be the basic elements in the systems studied by fuzzy and intuitionistic fuzzy set
theories. With the new implication definitions given below, a causal structure will
be established which will match the variable structure of the systems depending
on the position and time variables. It is evident that successful results will be
achieved in this type of system, which is being dealt with by this new structure.
When these two concepts are established, the necessity of satisfying the "modus
ponens" conditions in the classical logic will be taken into consideration. At this
point, implications and coimplication definitions will be moved to the temporal
intuitionistic fuzzy set space in the studies light, which has been done previously
and successfully in practice. Many researchers have been researched in this field
([8],[12],[13],[22],[23],[24],[25],[27])

2. Preliminaries

Definition 1. [1] An intuitionistic fuzzy set on a non-empty set X given by a set
of ordered triples A = {(x, µA (x) , ηA (x)) : x ∈ X} where µA (x) : X → I = [0, 1],
ηA (x) : X → I , are functions such that 0 ≤ µ (x) + η (x) ≤ 1 for all x ∈ X.
For x ∈ X, µA (x) and ηA (x) represent the degree of membership and degree of
non-membership of x to A respectively. For each x ∈ X; intuitionistic fuzzy index
of x in A is defined as follows πA (x) = 1−µA (x)− ηA (x). πA is the called degree
of hesitation or indeterminacy. Let denote the set of all intuitionistic fuzzy sets
defined on X by IFSX

Definition 2. [1] Let A,B ∈ IFSX . Then,
(i) A ⊆ B ⇔ µA (x) ≤ µB (x) and ηA (x) ≥ ηB (x) for ∀x ∈ X,
(ii) A = B ⇔ A ⊆ B and B ⊆ A,
(iii) Ā = {(x, ηA (x) , µA (x)) : x ∈ X},
(iv)

⋂
Ai =

{(
x, ∧µAi (x) ,∨ηAi (x)

)
: x ∈ X

}
,

(v)
⋃
Ai =

{(
x, ∨µAi (x) ,∧ηAi (x)

)
: x ∈ X

}
.

Definition 3. [2] Let X be an universe and T be a non-empty time set. We call
the elements of T as "time moments". Based on the definition of IFS, a temporal
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intuitionistic fuzzy set (TIFS) is defined as the following:

A (T ) = {(x, µA (x, t) , ηA (x, t) ) : X × T}
where:
a. A ⊆ X is a fixed set,
b. µA (x, t) + ηA (x, t) ≤ 1 for every (x, t) ∈ X × T,
c. µA (x, t) and ηA (x, t) are the degrees of membership and non-membership, re-
spectively, of the element x ∈ X at the time moment t ∈ T.

For brevity, we write A instead of A (T ). The hesitation degree of an TIFS is
defined as πA (x, t) = 1−µA (x, t)− ηA (x, t). Obviously, every ordinary IFS could
be regarded as TIFS for which T is a singleton set. All operations and operators
on IFS could be defined for TIFSs.
By TIFS(X,T ), we denote to the set of all temporal intuitionistic fuzzy sets

defined on X and time set T . Obviously, each intuitionistic fuzzy sets could be
expressed as temporal intuitionistic fuzzy set via a singular time set. In additionally,
all operations and operators defined for intuitionistic fuzzy sets could be defined
for temporal intuitionistic fuzzy sets.

Definition 4. [2] Let

A (T ′) = {(x, µA (x, t) , ηA (x, t) ) : X × T ′}
and

B (T ′′) = {(x, µB (x, t) , ηB (x, t) ) : X × T ′′}
where T ′ and T ′′ have finite number of distinct time-elements or they are time
intervals. Then;
A (T ′) ∩B (T ′′) ={

(x, min (µ̄A (x, t) , µ̄B (x, t)) , max (η̄A (x, t) , η̄B (x, t)) ) : (x, t) ∈ X ×
(
T ′ ∪ T ′′

)}
and
A (T ′) ∪B (T ′′) ={

(x, max (µ̄A (x, t) , µ̄B (x, t)) , min (η̄A (x, t) , η̄B (x, t)) ) : (x, t) ∈ X ×
(
T ′ ∪ T ′′

)}
Also from definition of subset in intuitionistic fuzzy sets, subsets of temporal intu-
itionistic fuzzy sets can be defined as the following:

A (T ′) ⊆ B (T ′′)⇔ µ̄A (x, t) ≥ µ̄B (x, t) and η̄A (x, t) ≤ η̄B (x, t)

for every (x, t) ∈ X × (T ′ ∪ T ′′) where

µ̄A (x, t) =

{
µA (x, t) ,

0,
if t ∈ T ′
if t ∈ T ′′ − T ′

µ̄B (x, t) =

{
µB (x, t) ,

0,
if t ∈ T ′′
if t ∈ T ′ − T ′′

η̄A (x, t) =

{
ηA (x, t) ,

1,
if t ∈ T ′
if t ∈ T ′′ − T ′
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η̄B (x, t) =

{
ηB (x, t) ,

1,
if t ∈ T ′′
if t ∈ T ′ − T ′′

It is obviously seen that if T ′ = T ′′; µ̄A (x, t) = µA (x, t), µ̄B (x, t) = µB (x, t),
η̄A (x, t) = ηA (x, t), η̄B (x, t) = ηB (x, t). [2]
Let J be an index set and Ti is a time set for each i ∈ J . Let define that

T =
⋃
i∈J

Ti. Now we extend union and intersection of temporal intuitionistic fuzzy

sets to the family F =
{
Ai (Ti) =

(
x, µAi (x, t) , ηAi (x, t)

)
: x ∈ X × Ti, i ∈ J

}
as:

⋃
i∈J

A (Ti) =

{(
x, max

i∈J

(
µ̄Ai (x, t)

)
, min
i∈J

(
η̄Ai (x, t)

)
: (x, t) ∈ X × T

)}
,

⋂
i∈J

A (Ti) =

{(
x, min

i∈J

(
µ̄Ai (x, t)

)
, max
i∈J

(
η̄Ai (x, t)

)
: (x, t) ∈ X × T

)}
where

µ̄Ai (x, t) =

{
µAi (x, t) ,

0,
if t ∈ Ti
if t ∈ T − Ti

and

η̄Ai (x, t) =

{
ηAi (x, t) ,

1,
if t ∈ Ti
if t ∈ T − Ti

.

Definition 5. The set of all intuitionistic fuzzy pair is defined as

IFP ∗ = {(x, y) ∈ [0, 1]× [0, 1] ; x+ y ≤ 1}

The order relation ≤ on this set is defined by (x1, y1) ≤ (x2, y2)⇔ x1 ≤ x2, y1 ≥ y2

for ∀ (x1, y1) , (x2, y2) ∈ IFP ∗. Also 1̃ = (1, 0) and 0̃ = (0, 1).
Let x : T → [0, 1] , y : T → [0, 1] are functions such that x (t) + y (t) ≤ 1

for each time moment t ∈ T. Then temporal intuitionistic pair set on time set T
defined as follows:

TIFP ∗T = {(x (t) , y (t)) : t ∈ T}
0T , 1T ∈ TIFP ∗T which are defined such as 0T = (x0T (t) , y0T (t)) = (0, 1) and

1T = (x1T (t) , y1T (t)) = (1, 0) for each time moment t ∈ T and are called overall
zero and overall one. On the other hand 0t, 1t ∈ TIFP ∗T , which are defined such
as 0t = (x0t (t) , y0t (t)) = (0, 1) and 1t = (x1t (t) , y1t (t)) = (1, 0) for a fixed time
moment t ∈ T , are called temporal zero and temporal one at time moment t.

3. Temporal Intuitionistic Fuzzy Negation, t-norm and t-conorm

In this section firstly; we will carry negation, t−norm and t−conorm definitions
to temporal intuitionistic fuzzy sets. Then, the basic relations between these defi-
nitions will be researched.
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Definition 6. Let T be a time set, the decreasing mapping Nt : TIFP ∗T × T →
TIFP ∗T which is satisfied following the condition Nt (0t, t) = 1t and Nt (1t, t) = 0t
at fixed time moment t ∈ T is called temporal intuitionistic fuzzy negation at fixed
time moment t .

Definition 7. If Nt is satisfied
a. Nt (Nt (a (t) , t) , t) = a (t) for all time moment t ∈ T and all a (t) ∈ TIFP ∗T ,
it is called temporal intuitionistic fuzzy strong negation at time moment t,
b. x (t) = 0t ⇔ Nt (x (t) , t) = 1t for fixed time moment t ∈ T , it is called temporal
intuitionistic fuzzy non-filling negation at time moment t,
c. x (t) = 1t ⇔ Nt (x, t) = 0t for t ∈ T and all a ∈ IF ∗ , it is called temporal
intuitionistic fuzzy non-vanishing negation at time moment t.

Remark 1. According to the this definition, it would be seen that the negation
operator may change with the time parameter. It would be more correct to define
temporal intuitionistic fuzzy negation on a temporal intuitionistic fuzzy pair, even
if it is true with a classical approach which defined with intuitionistic fuzzy pair.
Despite the fact that the cases to be handled by the negation operator can change ac-
cording to the time makes it necessary for the negation operator to change depending
on the time.

Definition 8. The mapping Nt : TIFP ∗T×T → [0, 1] defined by Nt ((x1 (t) , x2 (t)) , t)
= (x2, x1) for all (x1, x2) ∈ IF ∗ is called standard temporal intuitionistic fuzzy
negator.

The following proposition is also valid for temporal intuitionistic fuzzy negations
as well as fuzzy and intuitionistic fuzzy negations.

Proposition 1. The equation Nt (Nt (0t, t) , t) = 0t is satisfied for any temporal
intuitionistic fuzzy strong negator Nt.

Proof. From the temporal intuitionistic fuzzy negation definition;

Nt (0t, t) = 1t, Nt (1t, t) = 0t, Nt (Nt (0t, t) , t) = 0t.

�
Definition 9. Let T be a time set. If the mapping Tt : (TIFP ∗T × TIFP ∗∗T )×T →
TIFP ∗T is satisfied following condition for a fixed time moment t ∈ T , it is called
temporal intuitionistic fuzzy triangular norm (t−norm) at time moment t:
T1. Tt ((x (t) , y (t)) , t) = Tt ((y (t) , x (t)) , t) for every x, y ∈ TIFP ∗T at fixed

the time moment t ∈ T (symmetry),
T2. Tt ((x1 (t) , y1 (t)) , t) ≤ Tt ((x2 (t) , y2 (t)) , t) for every x1 (t) , y1 (t) , x2 (t) ,

y2 (t) ∈ TIFP ∗T such that x1 (t) ≤ x2 (t) and y1 (t) ≤ y2 (t) at fixed the time
moment t ∈ T (monotonicity),

T3. Tt ((Tt ((x (t) , y (t)) , t)) , z (t) , t) = Tt ((x (t) , Tt ((z (t) , y (t)) , t)) , t) for every
x (t) , y (t) , z (t) ∈ TIFP ∗T at fixed the time moment t ∈ T (associativity),
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T4. Tt ((x (t) , 1t) , t) = x (t) for every x (t) ∈ TIFP ∗T (boundary condition).

Definition 10. Let T be a time set. If the mapping St : (TIFP ∗T × TIFP ∗T )×T →
TIFP ∗T is satisfied following condition at time moment t ∈ T and , it is called
temporal triangular conorm (or s−norm) at time moment t :

S1. St ((x (t) , y (t)) , t) = St ((y (t) , x (t)) , t) for every x, y ∈ TIFP ∗T at fixed
the time moment t ∈ T (symmetry),

S2. St ((x1 (t) , y1 (t)) , t) ≤ St ((x2 (t) , y2 (t)) , t) for every x1 (t) , y1 (t) , x2 (t) ,
y2 (t) ∈ TIFP ∗T such that x1 (t) ≤ x2 (t) and y1 (t) ≤ y2 (t) at fixed the time
moment t ∈ T (monotonicity),

S3. St ((St ((x (t) , y (t)) , t)) , z (t) , t) = St ((x (t) , St ((z (t) , y (t)) , t)) , t) for every
x (t) , y (t) , z (t) ∈ TIFP ∗T at fixed the time moment t ∈ T (associativity),

S4. St ((x (t) , 0t) , t) = x (t) for every x (t) ∈ TIFP ∗T at fixed the time moment
t ∈ T (boundary condition).

The thing to note here is that conjunctions generalized with t−norm and t−conorm
is changed depending on time. The changing conjunctive idea that depends on time
has a meaning only when the connected objects change depending on time. There-
fore these conjunctions could be used on temporal intuitionistic fuzzy sets.

Proposition 2. Let

A = {(x, µA (x, t) , ηA (x, t) ) : (x, t) ∈ X × T ′}
and

B = {(x, µB (x, t) , ηB (x, t) ) : (x, t) ∈ X × T ′′}
be two TIFSs where T ′ and T ′′ are time set. Then the following mappings are
t−norm and t−conorm for (x, t) ∈ X × T ′ ∪ T ′′:

(1) T tmin [(A,B) , t] = (min (µ̄A (x, t) , µ̄B (x, t)) , max (η̄A (x, t) , η̄B (x, t))) ,

(2) T t0 [(A,B) , t] =


(µ̄A (x, t) , η̄A (x, t)) , (µB (x, t) , ηB (x, t)) = 1̃

(µ̄B (x, t) , η̄B (x, t)) , (µA (x, t) , ηA (x, t)) = 1̃

0̃ , otherwise
,

(3) T t1 [(A,B) , t] = (max {0, (µ̄A (x, t) + µ̄B (x, t))} ,min {1, η̄A (x, t) + η̄B (x, t)}) ,
(4) T t2 [(A,B) , t] = (µ̄A (x, t) µ̄B (x, t) , η̄A (x, t) + η̄B (x, t)− η̄A (x, t) η̄B (x, t)) ,
(5) T t3 [(A,B) , t] =
logt

1 +

(
t

(
µ̄A(x,t)

)
− 1

)(
t

(
µ̄B(x,t)

)
− 1

)
t − 1

 , 1 − logt

1 +

(
t

(
1−η̄A(x,t)

)
− 1

)(
t

(
1−η̄B(x,t)

)
− 1

)
t − 1


 ,

(6) Stmax [(A,B) , t] = (max (µ̄A (x, t) , µ̄B (x, t)) , min (η̄A (x, t) , η̄B (x, t))) ,

(7) St0 [(A,B) , t] =


(µ̄A (x, t) , η̄A (x, t)) , B = 1t
(µ̄B (x, t) , η̄B (x, t)) , A = 0t

1̃ , otherwise
,

(8) St1 [(A,B) , t] = (min {1, µ̄A (x, t) + µ̄B (x, t)} ,max {0, (η̄A (x, t) + η̄B (x, t))}) ,
(9) St2 [(A,B) , t] = (µ̄A (x, t) + µ̄B (x, t)− µ̄A (x, t) µ̄B (x, t) , η̄A (x, t) η̄B (x, t)) ,
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(10) St3 [(A,B) , t] =
1 − logt

1 +

(
t

(
1−µ̄A(x,t)

)
− 1

)(
t

(
1−µ̄B(x,t)

)
− 1

)
t − 1

 , logt

1 +

(
t

(
η̄A(x,t)

)
− 1

)(
t

(
η̄B(x,t)

)
− 1

)
t − 1




Proposition 3. Following inequalities are satisfied for each T t temporal intuition-
istic fuzzy t−norm and St temporal intuitionistic fuzzy t−conorm

(1) T t0 ≤ T t ≤ T tmin,
(2) Stmax ≤ St ≤ St0.

Proof. 1. Let’s prove on a single T time set without disturbing the generality.
Firstly; let’s show that T t0 ≤ T t.
In case of (µB (x, t) , ηB (x, t)) = 1̃ or (µA (x, t) , ηA (x, t)) = 1̃ (let’s accept

(µB (x, t) , ηB (x, t)) = 1̃ without loss of the generality) the following equation is
easily obtained.

T t0 [(A,B) , t] = (µA (x, t) , ηA (x, t)) = T t [(A,B) , t]

In other cases, because of T t0 [(A,B) , t] = 0̃, T t0 [(A,B) , t] ≤ T t [(A,B) , t] inequality
is clearly obtained. Let’s show that T t [(A,B) , t] ≤ T tmin [(A,B) , t]. Because of

T t [(A,B) , t] ≤ T t
[(
A, 1̃

)
, t
]

= (µA (x, t) , ηA (x, t)) and

T t [(A,B) , t] = T t [(B,A) , t] ≤ T t
[(
B, 1̃

)
, t
]

= (µB (x, t) , ηB (x, t))

T t [(A,B) , t] ≤ (min (µ̄A (x, t) , µ̄B (x, t)) , max (η̄A (x, t) , η̄B (x, t)))

= T tmin [(A,B) , t]

inequality is easily obtained. The other expression could be similarly proven. �

Definition 11. As stated in [9], Let T ∗ : TIFP ∗T × TIFP ∗T → [0, 1] and S∗ :
TIFP ∗T×TIFP ∗T → [0, 1] be respectively intuitionistic fuzzy t− norm and t− conorm
on TIFP ∗T and at fixed time moment t ∈ T such that

T ∗ (x (t) , y (t)) ≤ N (S∗ ((N (x (t)) , N (y (t)))))

where N is intuitionistic fuzzy standard negation. Then the mapping Tt defined as
follows

Tt ((A,B) , t) = (T ∗ (µ̄A (x, t) , µ̄B (x, t)) , S∗ (η̄A (x, t) , η̄B (x, t)))

is a temporal intuitionistic fuzzy t− norm and it is called t-representable temporal
intuitionistic fuzzy t− norm.
Similarly; the mapping St defined as follows

St ((A,B) , t) = (S∗ (µ̄A (x, t) , µ̄B (x, t)) , T ∗ (η̄A (x, t) , η̄B (x, t)))

is a temporal intuitionistic fuzzy t− conorm and it is called t-representable temporal
intuitionistic fuzzy t− conorm.
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Looking at the definitions of t−norm and t−conorm given above, it is seen that
they are t−representable temporal intuitionistic fuzzy t−norm and t−conorm. The
temporal intuitionistic fuzzy De Morgan triplet defined with approach described in
[10] as follows:

Definition 12. A triplet (St, Tt, Nt) is called temporal intuitionistic fuzzy De Mor-
gan triplet if Tt is temporal intuitionistic fuzzy t− norm, St is temporal intuitionistic
fuzzy t− conorm, Nt is temporal intuitionistic fuzzy negator and if they fulfill De
Morgan’s law

St ((A,B) , t) = Nt (Tt ((Nt (A, t) , Nt (B, t)) , t) , t)

or equivalently

Tt ((A,B) , t) = Nt (St ((Nt (A, t) , Nt (B, t)) , t) , t) .

Proposition 4. T tmin and S
t
max together with Nt generate a De Morgan Triplet.

Proof.

Stmax ((A,B) , t) = Nt
(
T tmin (Nt (A, t) , Nt (B, t)) , t

)
Stmax [(A,B) , t] = (max (µ̄A (x, t) , µ̄B (x, t)) , min (η̄A (x, t) , η̄B (x, t)))

T tmin [(A,B) , t] = (min (µ̄A (x, t) , µ̄B (x, t)) , max (η̄A (x, t) , η̄B (x, t)))

T tmin [(Nt (A) , Nt (B) , t)] = (min (η̄A (x, t) , η̄B (x, t)) ,max (µ̄A (x, t) , µ̄B (x, t)))

Nt
(
T tmin (Nt (A, t) , Nt (B, t) , t) , t

)
= (max (µ̄A (x, t) , µ̄B (x, t) ,min (η̄A (x, t) , η̄B (x, t))))

Stmax ((A,B) , t) = Nt
(
T tmin (Nt (A, t) , Nt (B, t) , t) , t

)
�

Proposition 5. T ti and S
t
i (i = 1, 2, 3) together with Nt generate a De Morgan

Triplet.

Proof. for i = 1;
T t1 and S

t
1 together with Nt generate a De Morgan Triplet.

St1 ((A,B) , t) = Nt
(
T t1 (Nt (A) , Nt (B))

)
St1 [(A,B) , t] = (min {1, µ̄A (x, t) + µ̄B (x, t)} ,max {0, (η̄A (x, t) + η̄B (x, t))})
T t1 [(A,B) , t] = (max {0, (µ̄A (x, t) + µ̄B (x, t))} ,min {1, η̄A (x, t) + η̄B (x, t)})
T t1 (Nt (A) , Nt (B)) = (max {0, (η̄A (x, t) + η̄B (x, t))} ,min {1, µ̄A (x, t) + µ̄B (x, t)})

Nt
(
T t1 (Nt (A) , Nt (B))

)
= (min {1, µ̄A (x, t) + µ̄B (x, t)} ,max {0, (η̄A (x, t) + η̄B (x, t))})

Consequently (for i = 1);
St1 ((A,B) , t) = Nt (T t1 (Nt (A) , Nt (B)))
for i = 2;
T t2 and S

t
2 together with Nt generate a De Morgan Triplet.

St2 ((A,B) , t) = Nt (T t2 (Nt (A) , Nt (B)))
St2 [(A,B) , t] = (µ̄A (x, t) + µ̄B (x, t)− µ̄A (x, t) µ̄B (x, t) , η̄A (x, t) η̄B (x, t))
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T t2 [(A,B) , t] = (µ̄A (x, t) µ̄B (x, t) , η̄A (x, t) + η̄B (x, t)− η̄A (x, t) η̄B (x, t))
T t2 (Nt (A) , Nt (B)) = (η̄A (x, t) η̄B (x, t) , µ̄A (x, t) + µ̄B (x, t)− µ̄A (x, t) µ̄B (x, t))

Nt
(
T t2 (Nt (A) , Nt (B))

)
= (µ̄A (x, t) + µ̄B (x, t)− µ̄A (x, t) µ̄B (x, t) , η̄A (x, t) η̄B (x, t))

Consequently (for i = 2);
St2 ((A,B) , t) = Nt (T t2 (Nt (A) , Nt (B)))
for i = 3; T t3 and S

t
3 together with Nt generate a De Morgan Triplet.

St3 [(A,B) , t] = St3 ((A,B) , t) = Nt (T t3 (Nt (A) , Nt (B)))
1 − logt

1 +

(
t

(
1−µ̄A(x,t)

)
− 1

)(
t

(
1−µ̄B(x,t)

)
− 1

)
t − 1

 , logt

1 +

(
t

(
η̄A(x,t)

)
− 1

)(
t

(
η̄B(x,t)

)
− 1

)
t − 1




T t3 [(A,B) , t] =
logt

1 +

(
t

(
µ̄A(x,t)

)
− 1

)(
t

(
µ̄B(x,t)

)
− 1

)
t − 1

 , 1 − logt

1 +

(
t

(
1−η̄A(x,t)

)
− 1

)(
t

(
1−η̄B(x,t)

)
− 1

)
t − 1




T t3 (Nt (A) , Nt (B)) =
logt

1 +

(
t

(
η̄A(x,t)

)
− 1

)(
t

(
η̄B(x,t)

)
− 1

)
t − 1

 , 1 − logt

1 +

(
t

(
1−µ̄A(x,t)

)
− 1

)(
t

(
1−µ̄B(x,t)

)
− 1

)
t − 1




Nt (T t3 (Nt (A) , Nt (B))) =
1 − logt

1 +

(
t

(
1−µ̄A(x,t)

)
− 1

)(
t

(
1−µ̄B(x,t)

)
− 1

)
t − 1

 , logt

1 +

(
t

(
η̄A(x,t)

)
− 1

)(
t

(
η̄B(x,t)

)
− 1

)
t − 1




Consequently (for i = 3);
St3 ((A,B) , t) = Nt (T t3 (Nt (A) , Nt (B))) �

4. Temporal Intuitionistic Fuzzy Implicator

In this section firstly; we will carry concepts of implication and coimplication to
temporal intuitionistic fuzzy sets. These concepts, which are used to establish the
IF-THEN structure with a clearer reasoning in the fuzzy set and in the intuitionistic
fuzzy set theory, are known to be the basic elements in the systems studied by
fuzzy and intuitionistic fuzzy set theories. With the new implication definitions
given below, a causal structure will be established which will match the variable
structure of the systems depending on the position and time variables. It is evident
that successful results will be achieved in this type of system, which is being dealt
with by this new structure. When these two concepts are established, the necessity
of satisfying the "modus ponens" conditions in the classical logic will be taken into
consideration. At this point, definitions of implication and coimplication will be
moved to the temporal intuitionistic fuzzy set space in the studies light, which has
been done previously and successfully in practice.

Definition 13. If a function It : (TIFP ∗T × TIFP ∗T ) × T → IFP ∗ is satisfied
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following condition, I is called temporal intuitionistic fuzzy implication at time
moment t

I-1: (Boundary Conditions):
a: It ((0t, a (t)) , t) = 1̃ for all a (t) ∈ TIFP ∗t at fixed time moment t,
b: It ((a (t) , 1t) , t) = 1̃ for all a (t) ∈ TIFP ∗t at fixed time moment t,
c: It ((1t, 0t) , t) = 0̃,
I-2: It is decreasing in first variable i.e.
If x ≤ y then It ((y, z) , t) ≤ It ((x, z) , t) for each x = (x1 (t) , x2 (t)), y =
(y1 (t) , y2 (t)), z = (z1 (t) , z2 (t)) ∈ IF ∗ × T and time moment t ∈ T,

I-3: It is increasing in second variable i.e.
If y ≤ z then It ((x, y) , t) ≤ It ((x, z) , t) for each x = (x1 (t) , x2 (t)), y =
(y1 (t) , y2 (t)), z = (z1 (t) , z2 (t)) ∈ IF ∗ × T and time moment t ∈ T.

As this definition shows, the intuitionistic fuzzy pairs to be subjected to the im-
plication process need to change depending on the time. For this reason, the follow-
ing implication examples will be given based on membership and non-membership
values in temporal intuitionistic fuzzy sets. These implications have been obtained
by modifying existing implications in the literature according to temporal intuition-
istic fuzzy sets.

Proposition 6. Let

A (T ′) = {(x, µA (x, t) , ηA (x, t) ) : X × T ′}

and
B (T ′′) = {(x, µB (x, t) , ηB (x, t) ) : X × T ′′}

where T ′ and T ′′ have finite number of distinct time-elements or they are time
intervals. Then the followings are temporal intuitionistic fuzzy implication at time
moment t ∈ T = T ′ ∪ T ′′.
1. Kleene- Dienes:

I1
t (((µA (x, t) , ηA (x, t)) , (µB (x, t) , ηB (x, t))) , t)

= (max {η̄A (x, t) , µ̄B (x, t)} , min {µ̄A (x, t) , η̄B (x, t)})

(This implication is defined by Parvathi and Geeta in [14])
2. Reichenbach:

I2
t (((µA (x, t) , ηA (x, t)) , (µB (x, t) , ηB (x, t))) , t) =

(η̄A (x, t) + µ̄B (x, t)− η̄A (x, t) µ̄B (x, t) , µ̄A (x, t) η̄B (x, t))

3. Gödel:
I3
t (((µA (x, t) , ηA (x, t)) , (µB (x, t) , ηB (x, t))) , t) = (1, 0) , 1− η̄A (x, t) ≤ µ̄B (x, t)

(µ̄B (x, t) , η̄B (x, t)) , 1− µ̄A (x, t) ≤ η̄B (x, t)
(µ̄B (x, t) , 0) , otherwise
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4. Lukasiewicz:
I4
t (((µA (x, t) , ηA (x, t)) , (µB (x, t) , ηB (x, t))) , t) =

(min {1, η̄A (x, t) + µ̄B (x, t)} ,max {0, (µ̄A (x, t) + η̄A (x, t)− 1)})
5. Yager:
I5
t (((µA (x, t) , ηA (x, t)) , (µB (x, t) , ηB (x, t))) , t) =(

(µ̄B (x, t))
1−η̄A(x,t)

, 1− (1− η̄B (x, t))
µ̄A(x,t)

)
6. Mamdani: I6

t (((µA (x, t) , ηA (x, t)) , (µB (x, t) , ηB (x, t))) , t) =

(min {1− η̄A (x, t) , µ̄B (x, t)} ,max {1− µ̄A (x, t) , η̄B (x, t)})
If It is a implication and Nt is a temporal fuzzy strong negation at time moment t
then the function

Ĩt (((x1, x2) , (y1, y2)) , t) = It (Nt ((y1, y2) , t) , Nt ((x1, x2) , t) , t)

is an implication at time moment t.

Proof. Let It be a temporal intuitionistic fuzzy implication at time moment t ∈ T .
Then we should show that the mapping Ĩt satisfy the conditions I1,I2,I3.
I1:
a. Ĩt ((0t, a (t)) , t) = It (Nt (a (t) , t) , Nt (0t, t)) = It ((Nt (a (t) , t) , 1t) , t). Since

It satisfy the condition I-1(a) I-1(b), it is obtained that It ((Nt (a (t) , t) , 1t) , t) = 1̃.
So it is obtained that Ĩt ((0t, a (t)) , t) = 1̃ for all a (t) = (a1 (t) , a2 (t)) ∈ IF ∗ at
fixed time moment t.
b. Ĩt ((a (t) , 1t) , t) = It ((Nt (1t, t) , Nt (a (t) , t)) , t) = It ((0t, Nt (a (t) , t)) , t).

Since It satisfy the condition I-1(a), it is obtained that It (((0t, Nt (a (t) , t)) , t)) = 1̃.
So it is obtained that Ĩt ((a (t) , 0t) , t) = 1̃ for all a (t) = (a1 (t) , a2 (t)) ∈ IF ∗ at
fixed time moment t.
c. Since It satisfy the condition I-1(c), the following equation is obtained as:

Ĩt ((0t, 1t) , t) = It ((Nt (0t, t) , Nt (1t, t)) , t) = It ((1t, 0t) , t) = 0̃
I2: Let x (t) = (x1 (t) , x2 (t)) and y (t) = (y1 (t) , y2 (t)) are two temporal intu-

itionistic fuzzy pair such that x (t) ≤ y (t) at the time moment t. Since It satisfy
the condition I3 and Nt (y (t)) ≤ Nt (x (t)), it is clearly obtained that

Ĩt ((y (t) , z (t)) , t) = It (Nt ((z1, z2) , t) , Nt ((y1, y2) , t))

≤ It (Nt ((z1, z2) , t) , Nt ((x1, x2) , t)) = Ĩt ((x (t) , z (t)) , t) .

I3: Let y (t) = (y1 (t) , y2 (t)) and z (t) = (z1 (t) , z2 (t))are two temporal intu-
itionistic fuzzy pair such that y (t) ≤ z (t) at the time moment t. Since It satisfy
the condition I2 and Nt (z (t)) ≤ Nt (y (t)), it is clearly obtained that

Ĩt ((x (t) , y (t)) , t) = It (Nt ((y1, y2) , t) , Nt ((x1, x2) , t))

≤ It (Nt ((z1, z2) , t) , Nt ((x1, x2) , t)) = Ĩt ((x (t) , z (t)) , t) .
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�

As stated in [15] , the coimplication, which is the dual of the implication concept,
is transferred to temporal intuitionistic fuzzy sets as follows.

Definition 14. If a function Ict : (TIFP ∗t × TIFP ∗t ) × T → IFP ∗is satisfied
following condition, Ict is called temporal intuitionistic fuzzy coimplication at time
moment t

CI-1: (Boundary Conditions):
a: Ict ((a (t) , 0t) , t) = 0̃ for all a (t) = (a1 (t) , a2 (t)) ∈ IF ∗ at time moment
t,

b: Ict ((1t, a (t)) , t) = 0̃ for all a (t) = (a1 (t) , a2 (t)) ∈ IF ∗ at time moment t,
c: Ict ((0t, 1t) , t) = 1̃,
CI-2: Ict is decreasing in first variable i.e.
If x ≤ y then Ict ((y, z) , t) ≤ Ict ((x, z) , t) for each x = (x1 (t) , x2 (t)),
y = (y1 (t) , y2 (t)), z = (z1 (t) , z2 (t)) ∈ IF ∗ × T and time moment t ∈ T,

CI-3: Ict is increasing in second variable i.e.
If y ≤ z then Ict ((x, y) , t) ≤ Ict ((x, z) , t) for each x = (x1 (t) , x2 (t)),
y = (y1 (t) , y2 (t)), z = (z1 (t) , z2 (t)) ∈ IF ∗ × T and time moment t ∈ T.

The relationship between temporal intuitionistic fuzzy implication and temporal
intuitionistic fuzzy coimplication is shown below.

Proposition 7. A function Ict : (TIFP ∗t × TIFP ∗t ) × T → IFP ∗ is a temporal
coimplication at time moment t if and only if the function

It ((x (t) , y (t)) , t) = Nt ((Ict (Nt (x (t) , t) , Nt (y (t)) , t)) , t)

is a temporal intuitionistic fuzzy implication at time moment t for any temporal
intuitionistic fuzzy strong negation Nt and each x (t) = (x1 (t) , x2 (t)) , y (t) =
(y1 (t) , y2 (t)) ∈ TIFP ∗t .

Proof. ⇒: Let Ict be a coimplication at time moment t ∈ T . Then we should show
that the conditions I1,I2,I3 are satisfied.
I1:
a. It ((0t, a (t)) , t) = Nt (Ict (Nt (0t, t) , Nt (a (t)) , t)). From CI-1(b), it is ob-

tained that
Nt (Ict (1t, Nt (a (t)) , t)) = Nt

(
0̃, t
)

= 1̃. So it is obtained that It ((0t, a (t)) , t) =

1̃
for all a (t) = (a1 (t) , a2 (t)) ∈ IF ∗ at time moment t.
b. It ((a (t) , 1t) , t) = Nt (Ict (Nt (a (t) , t) , Nt (1t, t) , t)) = Nt (Ict (Nt (a (t) , t) , 0t, t)).

From CI-1(a), it is obtained that Nt (Ict ((Nt (a (t)) , 0t) , t)) = Nt (0t, t) = 1̃ for all
a (t) = (a1 (t) , a2 (t)) ∈ IF ∗ at fixed time moment t.
c. From CI-1(c), It ((1t, 0t) , t) = Nt (Ict (Nt (1t, t) , Nt (0t, t) , t)) = Nt (Ict (0t, 1t, t))

= Nt

(
1̃, t
)

= 0̃
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I2: Let x (t) and y (t) ∈ TIFP ∗t such that x (t) ≤ y (t) at the time moment t,
From CI-2 and Nt (y (t) , t) ≤ Nt (x (t) , t), the inequality

Ict ((Nt (x (t) , t) , Nt (z (t) , t)) , t) ≤ Ict ((Nt (y (t) , t) , Nt (z (t) , t)) , t)

is satisfied for any z (t) ∈ TIFP ∗t at fixed time moment t. Since Nt is temporal
intuitionistic fuzzy strong negation at the time moment t, the inequality

Nt (Ict ((Nt (y (t) , t) , Nt (z (t) , t)) , t)) ≤ Nt (((Nt (x (t) , t) , Nt (z (t) , t)) , t))

is obtained. So it is clearly understood that the inequality

It ((y (t) , z (t)) , t) ≤ It ((x (t) , z (t)) , t)

is satisfied at the time moment t with the above assumptions.
I3: Let be y (t) and z (t) ∈ TIFP ∗t such that y (t) ≤ z (t) at fixed time moment

t. From CI-3 and Nt (z (t) , t) ≤ Nt (y (t) , t), it is obtained that

Ict ((Nt (x (t) , t) , Nt (z (t)) , t) , t) ≤ Ict ((Nt (x (t) , t) , Nt (y (t) , t)) , t) .

Since Nt is temporal intuitionistic strong negation at the time moment t, the in-
equality

Nt (Ict ((Nt (x (t) , t) , Nt (y (t) , t)) , t) , t) ≤ Nt (Ict ((Nt (x (t) , t) , Nt (z (t) , t)) , t))

is obtained. So it is clearly understood that the inequality

It (x (t) , y (t)) ≤ It (x (t) , z (t))

is satisfied at the time moment t with the above assumptions. �

Theorem 1. Let St be a temporal intuitionistic fuzzy t-conorm and Nt be a tempo-
ral intuitionistic fuzzy strong negation at time moment t. Then, the mapping defined
as ISt ((x (t) , y (t)) , t) = St ((Nt (x (t) , t) , y (t)) , t) for each x (t) , y (t) ∈ IF ∗ is a
temporal intuitionistic fuzzy implication.

Proof. I1-
a. ISt ((0t, x (t)) , t) = St ((Nt (0t, t) , y (t)) , t) = St ((1t, y (t)) , t) = 1̃,

b. ISt ((x (t) , 1t) , t) = St ((Nt (at, t) , 1t) , t) = 1̃,

c. ISt ((1t, 0t) , t) = St ((Nt (1t, t) , 1t) , t) = St ((0t, 0t) , t) = 0̃.
I2- Let be x (t) and y (t) ∈ TIFP ∗t such that x (t) ≤ y (t) at the time mo-

ment t. Then Nt (y (t) , t) ≤ Nt (x (t) , t). From S2, St ((Nt (y (t) , t) , z (t)) , t) ≤
St ((Nt (x (t) , t) , z (t)) , t) for each z (t) ∈ TIFP ∗t . Thus

ISt ((y (t) , z (t)) , t) ≤ ISt ((x (t) , z (t)) , t) .

I3- Let be y (t) and z (t) ∈ TIFP ∗t such that y (t) ≤ z (t) at the time moment t.
From S2, ISt ((x (t) , y (t)) , t) = St ((Nt (x (t) , t) , y (t)) , t) ≤ St ((Nt (x (t) , t) , z (t)) , t)
= ISt ((x (t) , z (t)) , t) for each z (t) ∈ TIFP ∗t . Thus it is obtained that

ISt ((x (t) , y (t)) , t) ≤ ISt ((x (t) , z (t)) , t) .

�
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Definition 15. Let St be a temporal intuitionistic fuzzy t-conorm and Nt be a
temporal intuitionistic fuzzy strong negation at fixed time moment t. Then ISt :
(TIFP ∗T × TIFP ∗T )×T → IFP ∗ is called temporal intuitionistic fuzzy S−implication.

Example 1. I1
t is a S−implication produced with Stmax and temporal intuitionistic

fuzzy standard negation

Theorem 2. Let Tt be a temporal intuitionistic fuzzy t-norm and Nt be a temporal
intuitionistic fuzzy strong negation at time moment t. Let define the family of TIFPs
such as Z(x(t),y(t)) = {z (t) = (zx (t) , zy (t)) ∈ TIFP ∗T : Tt ((x (t) , z (t)) , t) ≤ y (t)}
for each x (t) , y (t) ∈ TIFP ∗T . Then, the mapping defined as ITt ((x (t) , y (t)) , t) =
(sup (zx) , inf (zy)) is a temporal intuitionistic fuzzy implication.

Proof. I1-
a. Since Tt ((0t, z (t)) , t) = 0t ≤ y (t) for each z (t) = (zx (t) , zy (t)) ∈ TIFP ∗T ,

So 1t can be chosen as z (t). Then, it is obtained that ITt ((0t, y (t)) , t) = 1̃,
b. From T4, Tt ((x (t) , 1t) , t) = x (t) ≤ 1t. So 1t can be chosen as z (t). Then,

it is obtained that ITt ((0t, x (t)) , t) = 1̃.
c. Since the equation Tt ((1t, z (t)) , t) = z (t) ≤ 0t has a only one solution as

z (t) = 0t,it is clearly understood that ITt ((1t, 0t) , t) = 1̃.
I2- Let be x (t) and y (t) ∈ TIFP ∗t such that x (t) ≤ y (t) at the time moment

t. We must show that ITt ((y (t) , z (t)) , t) ≤ ITt ((x (t) , z (t)) , t). From T2, The
inequality Tt ((x (t) , z∗ (t)) , t) ≤ z (t) is satisfied for each z∗ (t) ∈ TIFP ∗T which
satisfy the inequality Tt ((y (t) , z∗ (t)) , t) ≤ z (t) .Then Z(y(t),z(t)) ⊆ Z(x(t),z(t)).
Then it is clearly understood from the definition of ITt

ITt ((y (t) , z (t)) , t) ≤ ITt ((x (t) , z (t)) , t) .

I3- Let be y (t) and z (t) ∈ TIFP ∗t such that y (t) ≤ z (t) at the time moment
t. We must show that ITt ((x (t) , y (t)) , t) ≤ ITt ((x (t) , z (t)) , t) . The inequality
Tt ((x (t) , z∗ (t)) , t) ≤ z (t) is satisfied for each z∗ (t) ∈ TIFP ∗T which satisfy the
inequality Tt ((x (t) , z∗ (t)) , t) ≤ y (t) .Then Z(x(t),z(t)) ⊆ Z(y(t),z(t)). Then it is
clearly understood from the definition of ITt

ITt ((x (t) , y (t)) , t) ≤ ITt ((x (t) , z (t)) , t) .

�

Definition 16. Let Tt be a temporal intuitionistic fuzzy t-conorm and Nt be a
temporal intuitionistic fuzzy strong negation at fixed time moment t. Then ITt :
(TIFP ∗T × TIFP ∗T )×T → IFP ∗ is called temporal intuitionistic fuzzy R−implication.

Proposition 8. Let ITt be a temporal intuitionistic fuzzy R−implication produced
any Tt temporal intuitionistic fuzzy t-conorm and Nt temporal intuitionistic fuzzy
strong negation at fixed time moment t. Then ITt ((x (t) , x (t)) , t) = 1̃ for each
x (t) ∈ TIFP ∗t .
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Proof. From T4, Tt ((x (t) , 1t) , t) = x (t) . Then it is understood that 1t ∈ Z(x(t),x(t)).
So ITt (x (t) , x (t)) = 1̃ �
Remark 2. The concepts, which we have given in our work until this section, have
always been defined for a single time moment. If these concepts are defined in all of
their clusters when these concepts are defined, these concepts are called the overall
intuitionistic fuzzy (negation, t-norm, t-conorm, implication and coimplication). It
is often essential to produce a final conclusion from a concept that is overall intu-
itionistic fuzzy. This could be done using the aggregation function. The following
theorem offers a way for this final conclusion.

Theorem 3. Let T = {t1, t2, ...tn} be a finite time set which has n ≥ 2 elements,
Nti be a overall intuitionistic fuzzy negation and f : (TIFP ∗T )

n → IFP ∗ (n ≥ 2)
be a function satisfied following conditions:

(1) f (0T , 0T , ..., 0T ) = 0̃ and f (1T , 1T , ..., 1T ) = 1̃
(2) f (a (t1) , a (t2) , ..., a (tn)) ≤ f (b (t1) , b (t2) , ..., b (tn)) for any pair (a (t1) ,

a (t2) , . . . , a (tn)) and (b (t1) , b (t2) , ..., b (tn)) of n−tuples in (TIFP ∗T )
n

such that a (ti) ≤ b (ti) (i ∈ {1, 2, ..., n})
(3) f is a continuous function.
Then the mapping N : TIFP ∗T → IFP ∗ defined as

N (x (ti)) = f (Nt1 (x (ti) , t1) , Nt2 (x (ti) , t2) , ..., Ntn (x (ti) , tn))

(i ∈ {1, 2, ..., n}) is a intuitionistic fuzzy negation on TIFP ∗T
Proof. For every x (ti) , y (ti) ∈ TIFP ∗T and i ∈ {1, 2, ..., n} such that x (ti) ≤ y (ti),
the inequality Ntj (y (ti) , tj) ≤ Ntj (x (ti) , tj) is obtained for each i, j ∈ {1, 2, ..., n}
from the definition of overall intuitionistic fuzzy negation. Then, following inequal-
ity is clearly obtained from the definition of f for each i ∈ {1, 2, ..., n} :

N (y (ti)) = f (Nt1 (y (ti) , t1) , Nt2 (y (ti) , t2) , ..., Ntn (y (ti) , tn))

≤ f (Nt1 (x (ti) , t1) , Nt2 (x (ti) , t2) , ..., Ntn (x (ti) , tn)) = N (x (ti))

Hence it is clearly understood that N is decreasing. On the other hand,

N (0T (ti)) = f (Nt1 (0T (ti) , t1) , Nt2 (0T (ti) , t2) , ..., Ntn (0T (ti) , tn))

= f
(

1̃, 1̃, ..., 1̃
)

= 1̃,

N (1T (ti)) = f (Nt1 (1T (ti) , t1) , Nt2 (1T (ti) , t2) , ..., Ntn (1T (ti) , tn))

= f
(

0̃, 0̃, ..., 0̃
)

= 0̃.

�
Theorem 4. Let T = {t1, t2, ...tn} be a finite time set which has n ≥ 2 elements,
Tti be a overall intuitionistic fuzzy t−norm and f : (TIFP ∗T )

n → IFP ∗ (n ≥ 2) be
a function satisfied following conditions:

(1) f (a (ti) , a (ti) , ..., a (ti)) = a (ti) for a (ti) ∈ TIFP ∗T ,
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(2) f (a (t1) , a (t2) , ..., a (tn)) ≤ f (b (t1) , b (t2) , ..., b (tn)) for any pair (a (t1) ,
a (t2) , ..., a (tn)) and (b (t1) , b (t2) , ..., b (tn)) of n−tuples in (TIFP ∗T )

n such
that a (ti) ≤ b (ti) (i ∈ {1, 2, ..., n}) .

(3) f is a continuous function.
Then the mapping T : TIFP ∗T → IFP ∗ defined as

T (x (ti) , y (ti)) =

f (Tt1 ((x (ti) , y (ti)) , t1) , Tt2 ((x (ti) , y (ti)) , t2) , ..., Ttn ((x (ti) , y (ti)) , tn))

(i ∈ {1, 2, ..., n}) is a intuitionistic fuzzy t− norm on TIFP ∗T .

Proof. T1. Since the equation Ttj ((x (ti) , y (ti)) , tj) = Ttj ((x (ti) , y (ti)) , tj) holds
for every x, y ∈ TIFP ∗T and i, j ∈ {1, 2, ..., n}, the following equation

T ((x (ti) , y (ti)))

= f (Tt1 ((x (ti) , y (ti)) , t1) , Tt2 ((x (ti) , y (ti)) , t2) , ..., Ttn ((x (ti) , y (ti)) , tn))

= f (Tt1 ((y (ti) , x (ti)) , t1) , Tt2 ((y (ti) , x (ti)) , t2) , ..., Ttn ((y (ti) , x (ti)) , tn))

= T ((y (ti) , x (ti)))

is obtained for each i ∈ {1, 2, ..., n}.
T2. Since Ttj is a overall intuitionistic fuzzy t−norm, the inequality

Ttj ((x1 (ti) , y1 (ti)) , tj) ≤ Ttj ((x2 (ti) , y2 (ti)) , tj)

is satisfied for every i, j ∈ {1, 2, ..., n} and every x1 (ti) , y1 (ti) , x2 (ti) , y2 (ti) ∈
TIFP ∗T such that x1 (ti) ≤ x2 (ti) and y1 (ti) ≤ y2 (ti).
From the definition of f , the following inequality is obtained:

f (Tt1 ((x1 (ti) , y1 (ti)) , t1) , Tt2 ((x1 (ti) , y1 (ti)) , t2) , ..., Ttn ((x1 (ti) , y1 (ti)) , tn))

≤ f (Tt1 ((x2 (ti) , y2 (ti)) , t1) , Tt2 ((x2 (ti) , y2 (ti)) , t2) , ..., Ttn ((x2 (ti) , y2 (ti)) , tn))

Then it is obtained that T ((x1 (ti) , y1 (ti))) ≤ T ((x2 (ti) , y2 (ti))).
T3. Since Ttj is a overall intuitionistic fuzzy t−norm, the equality

Ttj
((
Ttj ((x (ti) , y (ti)) , tj)

)
, z (ti) , tj

)
= Ttj

((
x (ti) , Ttj ((z (ti) , y (ti)) , tj)

)
, tj
)

is satisfied for every i, j ∈ {1, 2, ..., n} and every x (ti) , y (ti) ∈ TIFP ∗T . Then we
must show that

T ((T ((x (ti) , y (ti)) , tj)) , z (ti) , tj) = T ((x (ti) , T ((z (ti) , y (ti)) , tj)) , tj)

Let T ((x (ti) , y (ti))) = a (ti) , T ((z (ti) , y (ti))) = b (ti) . Hence the following equa-
tion is obtained

Ttj ((a (ti) , z (ti)) , tj) = Ttj ((x (ti) , b (ti)) , tj)

Then

T (a (ti) , z (ti))

= f (Tt1 ((a (ti) , z (ti)) , t1) , Tt2 ((a (ti) , z (ti)) , t2) , ..., Ttn ((a (ti) , x (ti)) , tn))

= f (Tt1 ((x (ti) , b (ti)) , t1) , Tt2 ((x (ti) , b (ti)) , t2) , ..., Ttn ((x (ti) , b (ti)) , tn))
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= T (x (ti) , b (ti))

T4. Since Ttj is a overall intuitionistic fuzzy t−norm, the equality

Ttj ((x (ti) , 1t) , tj) = x (ti)

for every x (ti) ∈ TIFP ∗T and for every i, j ∈ {1, 2, ..., n}. Then it is easily obtained
that

f (Tt1 ((x (ti) , 1t) , t1) , Tt2 ((x (ti) , 1t) , t2) , ..., Ttn ((x (ti) , 1t) , tn))

= f (x (ti) , x (ti) , ..., x (ti)) = x (ti)

�

Theorem 5. Let T = {t1, t2, ...tn} be a finite time set which has n ≥ 2 elements,
Sti be a overall intuitionistic fuzzy s − norm and f : (TIFP ∗T )

n → IFP ∗ (n ≥ 2)
be a function satisfied following conditions:

(1) f (a (ti) , a (ti) , ..., a (ti)) = a (ti) for a (ti) ∈ TIFP ∗T ,
(2) f (a (t1) , a (t2) , ..., a (tn)) ≤ f (b (t1) , b (t2) , ..., b (tn)) for any pair (a (t1) , a (t2) ,

..., a (tn)) and (b (t1) , b (t2) , ..., b (tn)) of n−tuples in (TIFP ∗T )
n such that

a (ti) ≤ b (ti) (i ∈ {1, 2, ..., n}) ,
(3) f is a continuous function.

Then the mapping S : TIFP ∗T → IFP ∗ defined as

S (x (ti) , y (ti)) =

f (St1 ((x (ti) , y (ti)) , t1) , St2 ((x (ti) , y (ti)) , t2) , ..., Stn ((x (ti) , y (ti)) , tn))

(i ∈ {1, 2, ..., n}) is a intuitionistic fuzzy s− norm on TIFP ∗T .

Proof. It could be proven as previous theorem. �

Theorem 6. Let T = {t1, t2, ...tn} be a finite time set which has n ≥ 2 elements,
Iti be a overall intuitionistic fuzzy implication and f : (TIFP ∗T )

n → IFP ∗ (n ≥ 2)
be a function satisfied following conditions:

(1) f (a (ti) , a (ti) , ..., a (ti)) = a (ti) for a (ti) ∈ TIFP ∗T ,
(2) f (a (t1) , a (t2) , ..., a (tn)) ≤ f (b (t1) , b (t2) , ..., b (tn)) for any pair (a (t1) , a (t2)

, ..., a (tn)) and (b (t1) , b (t2) , ..., b (tn)) of n−tuples in (TIFP ∗T )
n such that

a (ti) ≤ b (ti) (i ∈ {1, 2, ..., n}) ,
(3) f is a continuous function.

Then the mapping I : TIFP ∗T → IFP ∗ defined as

I (x (ti) , y (ti)) =

f (It1 ((x (ti) , y (ti)) , t1) , It2 ((x (ti) , y (ti)) , t2) , ..., Itn ((x (ti) , y (ti)) , tn))

(i ∈ {1, 2, ..., n}) is a intuitionistic fuzzy implication on TIFP ∗T .
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Proof. I-1: (Boundary Conditions):
a. Since It ((0T , a (ti)) , t) = 1̃ for all a (t) ∈ TIFP ∗t and every time moment

t ∈ T,The equation is satisfied
I (0T , a (ti)) = f (It1 ((0T , a (ti)) , t1) , It2 ((0T , a (ti)) , t2) , ..., Itn ((0T , a (ti)) , tn))

= f (1T , 1T , ..., 1T ) = 1̃

b. Since I ((a (ti) , 1T ) , t) = 1̃ for all a (ti) ∈ TIFP ∗t and every time moment
t ∈ T,The equation is satisfied
I (a (ti) , 1T ) = f (It1 ((a (ti) , 1T ) , t1) , It2 ((a (ti) , 1T ) , t2) , ..., Itn ((a (ti) , 1T ) , tn))

= f (1T , 1T , ..., 1T ) = 1̃

c. Since It ((1T , 0T ) , t) = 0̃ for every time moment t ∈ T,The equation is satisfied
I (1T , 0T ) = f (It1 ((1T , 0T ) , t1) , It2 ((1T , 0T ) , t2) , ..., Itn ((1T , 0T ) , tn))

= f (0T , 0T , ..., 0T ) = 0̃

I-2: Since It is decreasing in first variable, the inequality It (y (ti) , z (ti) , t) ≤
It (x (ti) , z (ti) , t) is satisfied at every time moment t and each x = (x1 (t) , x2 (t)),
y = (y1 (t) , y2 (t)), z = (z1 (t) , z2 (t)) ∈ TIFP ∗t such that x ≤ y. As the definition
of f , the following inequality is obtained such that:

I ((y (ti) , z (ti)) , t)

= f (It1 ((y (ti) , z (ti)) , t1) , It2 ((y (ti) , z (ti)) , t2) , ..., Itn ((y (ti) , z (ti)) , tn))

≤ f (It1 ((x (ti) , z (ti)) , t1) , It2 ((x (ti) , z (ti)) , t2) , ..., Itn ((x (ti) , z (ti)) , tn))

= I ((x (ti) , z (ti)) , t)

I-3: Since It is increasing in second variable, the inequality It (y (ti) , x (ti) , t) ≤
It (z (ti) , x (ti) , t) is satisfied at every time moment t and each x = (x1 (t) , x2 (t)),
y = (y1 (t) , y2 (t)), z = (z1 (t) , z2 (t)) ∈ TIFP ∗t such that y ≤ z. As the definition
of f , the following inequality is obtained such that:

I ((y (ti) , x (ti)) , t)

= f (It1 ((y (ti) , x (ti)) , t1) , It2 ((y (ti) , x (ti)) , t2) , ..., Itn ((y (ti) , x (ti)) , tn))

≤ f (It1 ((z (ti) , x (ti)) , t1) , It2 ((z (ti) , x (ti)) , t2) , ..., Itn ((z (ti) , x (ti)) , tn))

= I ((z (ti) , x (ti)) , t)

�
Theorem 7. Let T = {t1, t2, ...tn} be a finite time set which has n ≥ 2 elements, Icti
be an overall intuitionistic fuzzy coimplication and f : (TIFP ∗T )

n → IFP ∗ (n ≥ 2)
be a function satisfied following conditions:

(1) f (a (ti) , a (ti) , ..., a (ti)) = a (ti) for a (ti) ∈ TIFP ∗T ,
(2) f (a (t1) , a (t2) , ..., a (tn)) ≤ f (b (t1) , b (t2) , ..., b (tn)) for any pair (a (t1) ,

a (t2) , ..., a (tn)) and (b (t1) , b (t2) , ..., b (tn)) of n−tuples in (TIFP ∗T )
n such

that a (ti) ≤ b (ti) (i ∈ {1, 2, ..., n}) ,
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(3) f is a continuous function.

Then the mapping IC : TIFP ∗T → IFP ∗ defined as

IC (x (ti) , y (ti))

= f
(
Ict1 ((x (ti) , y (ti)) , t1) , Ict2 ((x (ti) , y (ti)) , t2) , ..., Ictn ((x (ti) , y (ti)) , tn)

)
(i ∈ {1, 2, ..., n}) is an intuitionistic fuzzy coimplication on TIFP ∗T .

5. Conclusion

It is understood from the definitions and theorems given in the whole article,
from the judgments obtained from a temporal system, that a conclusion judgment
could be obtained by aggregation functions. This provides a way for crisp outlets
to be obtained from temporal intuitionistic fuzzy systems. In this study; tempo-
ral intuitionistic fuzzy negation, temporal intuitionistic fuzzy triangular norm and
temporal intuitionistic fuzzy triangular conorm have been researched. The aim
of this study is to define negator, t-norm and t-conorms, which is the generaliza-
tion of negation, conjunctions and disconjunctions in the temporal intuitionistic
fuzzy sets and to examine the De Morgan relations between these concepts. The
thing to note here is that conjunctions generalized with t−norm and t−conorm is
changed depending on time. we will carry concept of implication and coimplica-
tion to temporal intuitionistic fuzzy sets. With the new implication definitions, a
causal structure will be established which will match the variable structure of the
systems depending on the position and time variables. It is evident that successful
results will be achieved in this type of system, which is being dealt with by this
new structure.
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GENERALIZED BURNSIDE ALGEBRA OF TYPE Bn

HASAN ARSLAN AND HIMMET CAN

Abstract. In this paper, we firstly give an alternative method to determine
the size of C(Sn) which is the set of elements of type Sn in a finite Cox-
eter system (Wn, Sn) of type Bn. We also show that all cuspidal classes of
Wn are actually the conjugacy classes Kλ for every λ ∈ DP+(n). We then
define the generalized Burnside algebra HB(Wn) for Wn and construct a sur-
jective algebra morphism between HB(Wn) and Mantaci-Reutenauer algebra
MR(Wn). We obtain a set of orthogonal primitive idempotents eλ, λ ∈ DP(n)
of HB(Wn), that is, all the characteristic class functions of Wn. Finally, we
give an effective formula to compute the number of elements of all the conju-
gacy classes Kλ, λ ∈ DP(n) of Wn.

1. Introduction

Solomon’s descent algebra of a finite Coxeter system (W,S) was introduced by
Solomon in 1976 in [11]. In 1992, Bergeron, Bergeron, Howlett and Taylor elegantly
reconstructed the Solomon’s descent algebra for a finite Coxeter system by using
the group structure of Coxeter group and also they introduced a family of orthog-
onal primitive idempotents of the Solomon’s descent algebra by lifting orthogonal
primitive idempotents of parabolic Burnside algebra in [1].
Let Wn be the Coxeter group of type Bn. As a convention, throughout this pa-

per, we denote by HB(Wn),MR(Wn), SC(n) and DP(n) the generalized Burnside
algebra of type Bn, the Mantaci-Reutenauer algebra, the set of all signed composi-
tions of n and the set of all double partitions of n, respectively.
Mantaci-Reutenauer algebra MR(Wn), which is a subalgebra of the group al-

gebra QWn and contains the Solomon’s descent algebras of type An and Bn, was
firstly constructed in [10]. In [2], Bonnafé and Hohlweg reconstructed MR(Wn)
by the methods which depend more on the structure of Wn as a Coxeter group.
Bonnafé studied the representation theory of Mantaci-Reutenauer algebra in [3].
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In Section 3, we prove that for every positive signed composition A of n, the
parabolic closure of the reflection subgroup WA is Wn. As a result of this, we
obtain that the number of all elements of type Sn is equal to

∑
λ∈DP+(n) |Kλ| and

realize that all cuspidal classes ofWn are the conjugacy classes Kλ for λ ∈ DP+(n).
In Section 4, we introduce the Burnside algebra HB(Wn) generated by isomor-

phism classes of reflection subgroups ofWn corresponding to signed compositions of
n. We call HB(Wn) generalized Burnside algebra of type Bn. Generalized Burnside
algebra HB(Wn) is isomorphic to the algebra QIrrWn generated by the irreducible
characters of Wn. Then we construct a set of orthogonal primitive idempotents of
HB(Wn). These orthogonal primitive idempotents are actually all the characteris-
tic class functions of the Coxeter groupWn. We determine the coeffi cient of the sign
character εn of Wn in the expression of the each orthogonal primitive idempotent
of HB(Wn) in terms of irreducible characters of Wn. We get a formula to compute
the number of elements of all the conjugacy classes Kλ, λ ∈ DP(n) of Wn.

2. Preliminaries

2.1. Hyperoctahedral group. Let (Wn, Sn) denote a Coxeter group of type Bn
and write its generating set as Sn = {t, s1, · · · , sn−1}. Any element w of Wn acts
by the permutation on the set Xn = {−n, · · · ,−1, 1, · · · , n} such that for every
i ∈ In, w(−i) = −w(i). The Dynkin diagram of Wn is as follows:

Bn :
t◦ ⇐ s1◦ − s2◦ − · · · −

sn−1◦ .

If J ⊂ Sn, the subgroup WJ generated by J is called a standard parabolic subgroup
of Wn. A parabolic subgroup of Wn is a subgroup of Wn conjugate to WJ for
some J ⊂ Sn. Let t1 := t and ti := si−1ti−1si−1 for each i, 2 ≤ i ≤ n. Put
Tn := {t1, · · · , tn}. It is well-known that there are the following relations between
the elements of Sn and Tn:

(1) t2i = 1, s2j = 1 for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1;
(2) ts1ts1 = s1ts1t;
(3) sisi+1si = si+1sisi+1 for all i, 1 ≤ i ≤ n− 2;
(4) tsi = sit, 1 < i ≤ n− 1;
(5) sisj = sjsi for |i− j| > 1;
(6) titj = tjti for 1 ≤ i, j ≤ n.
We denote by l : Wn → N the length function attached to Sn. Let Tn denote

the reflection subgroup of Wn generated by Tn. It is also clear that Tn is a normal
subgroup of Wn. Now let S−n = {s1, · · · , sn−1} and let W−n denote the reflection
subgroup of Wn generated by S−n, where W−n is isomorphic to the symmetric
group Ξn of degree n. Thus Wn = W−n n Tn.
Let {e1, · · · , en} be the canonical basis of the Euclidian space Rn over R. Let

Ψ+
n = {ei : 1 ≤ i ≤ n} ∪ {ej + λei : λ ∈ {−1, 1} and 1 ≤ i < j ≤ n}.
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Then Ψn is a root system of type Bn. For further information about the Coxeter
groups of type Bn, see [8], [9].
A signed composition of n is an expression of n as a finite sequence A =

(a1, · · · , ak) whose each part consists of non-zero integers such that
∑k
i=1 |ai| = n.

Put |A| =
∑k
i=1 |ai|. We write SC(n) to denote the set of all signed compositions

of n.
Let A = (a1, · · · , ak) ∈ SC(n). A is said to be positive(resp. negative) if ai > 0

(resp. ai < 0) for every i ≥ 1. If ai < 0 for every i ≥ 2, then A is called parabolic.
Let define A+ = (|a1|, · · · , |ar|). Then A+ is a positive signed composition of n.
The set of positive signed compositions of n is denoted by SC+(n).
A double partition µ = (µ+;µ−) of n consists of a pair of partitions µ+ and

µ− such that |µ| = |µ+| + |µ−| = n. If the number of positive parts of n (resp.
negative parts of n) is equal to zero, then we write ∅ instead of µ+ (resp. µ−). We
denote the set of all double partitions of n by DP(n). We define DP+(n) = {µ =
(µ+;µ−) ∈ DP(n) : µ− = ∅}. For µ = (µ+;µ−) ∈ DP(n), µ̂ := µ+ ∗ −µ− is the
signed composition obtained by appending the sequence of components of µ+ to
that of −µ− [2].
Now let A ∈ SC(n). If µ+ (resp. µ−) is rearrangement of the positive parts (resp.

absolute value of negative parts) of A in decreasing order, then λ(A) := (µ+;µ−) is
a double partition of n and also λ(µ̂) = µ for every µ ∈ DP(n) [2]. In [2], Bonnafé
and Hohlweg constructed some reflection subgroups of Wn corresponding to signed
compositions of n as an analogue to Ξn as follows: For each A = (a1, · · · , ak) ∈
SC(n), the reflection subgroup WA of Wn is generated by SA, which is

SA ={sp ∈W−n : |a1|+ · · ·+ |ai−1|+ 1 ≤ p ≤ |a1|+ · · ·+ |ai| − 1}

∪ {t|a1|+···+|aj−1|+1 ∈ Tn} | aj > 0} ⊂ S
′

n

where S′n = {s1 · · · sn−1, t1, t2, · · · , tn}. By the definition of SA, there exists an
isomorphism WA

∼= Wa1 × · · · ×Wak [2]. By taking into account the definition of
the generating set SA and the isomorphism WA

∼= Wa1 ×· · ·×War , for i, 1 ≤ i ≤ r
if ai > 0 then we have rankWai = ai and if ai < 0 then we have rankWai = |ai|−1.
Therefore, we get

rankWA = |SA| = n− ng(A),

where ng(A) denotes the number of negative parts of A. Because of
∑r
i=1 |ai| = n,

we obtain rankWA = |SA| ≤ n.
For A,B ∈ SC(n), we write A ⊂ B if WA ⊂ WB , where ⊂ is a partial ordering

relation on SC(n) [2]. For A ∈ SC(n) let coxA be a Coxeter element ofWA in terms
of generating set SA. For B,B

′ ⊂ A, we write B ≡A B′ if WB is conjugate to WB′

under WA and also coxB and coxB′ are conjugate to each other in WA if and only
if B ≡A B

′
[3]. We write B ≡n B

′
if WB is conjugate to WB′ under Wn. This

equivalence is a special case for these kind of reflection subgroups of Wn, because
this statement is not true for every reflection subgroup of Wn. Although some two
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reflection subgroups R and R′ of Wn contain Wn-conjugate Coxeter elements coxR
and coxR′ respectively, these subgroups are not able to Wn-conjugate to each other
[6]. For every element w of Wn, there exists a unique λ ∈ DP(n) such that w is
Wn-conjugate to coxλ̂ [3]. Let Kλ be the conjugacy class of Wn corresponding to
λ ∈ DP(n). Since the number of conjugacy classes of Wn is equal to |DP(n)|, thus
we may split up Wn into |DP(n)| conjugacy classes. In [3], Bonnafé showed that
for A,B ∈ SC(n), WA is conjugate to WB in Wn if and only if λ(A) = λ(B).
For a subset X of Wn, we denote by Fix(X) = {v ∈ Rn : ∀x ∈ X, x(v) = v} the

subspace of Rn fixed by X and let writeWFix(X) = {w ∈Wn : ∀v ∈ Fix(X), w(v) =
v} for the stabilizer of Fix(X) in Wn. By [6], the set WFix(X) is called the parabolic
closure of X and it is denoted by A(X). For any w ∈ Wn, if we take X = {w}
then we write Fix(w) and A(w) instead of Fix({w}) and A({w}), respectively. By
[1], w is said to be an element of type J if there exists a J ⊂ Sn such that A(w) is
conjugate to WJ under Wn.

2.2. Mantaci-Reutenauer algebra. For any A ∈ SC(n), we set

DA = {x ∈Wn : ∀ s ∈ SA, l(xs) > l(x)}.

By [2] and [7], DA is the set of distinguished coset representatives of WA in Wn.
Let

dA =
∑
w∈DA

w ∈ QWn,

and let
MR(Wn) =

⊕
A∈SC(n)

QdA.

For every A ∈ SC(n), from [2] Φn : MR(Wn) → QIrrWn is a surjective al-
gebra morphism such that Φn(dA) = IndWn

WA
1A, where 1A stands for the triv-

ial character of WA. It is well-known from [2] that the radical of MR(Wn) is
KerΦn =

⊕
A,B∈SC(n), A≡nB Q(dA − dB)

By [2], for A,B ∈ SC(n), the set of distinguished double coset representatives is
defined as DAB = D−1A ∩DB and for any x ∈ DAB ,

WA ∩ xWB = WA∩xB .

For A,B ∈ SC(n), let define [3] the sets D⊂AB = {x ∈ DAB : x−1WA ⊂ WB} and
D≡AB = {x ∈ DAB : WA =x WB}.
The following proposition proved by Bonnafé in [3] gives the ring multiplication

structure inMR(Wn).

Proposition 1 ([3]). Let A and B be any two signed composition of n. Then,

i. There is a map fAB : DAB → SC(n) satisfying the following conditions:
• For every x ∈ DAB, fAB(x) ⊂ B and fAB(x) ≡B x−1A ∩B.
• dAdB −

∑
x∈DAB dfAB(x) ∈MR(λA(Wn) ∩MR≺B(Wn) ∩KerΦn.



256 HASAN ARSLAN AND HIMMET CAN

ii. If A parabolic or B is semi-positive, then fAB(x) = x−1A∩B for x ∈ DAB

and dAdB =
∑
x∈DAB dx−1A∩B.

iii. τλ(A)(dB) = |D⊂AB |.
iv. D≡AB = {x ∈Wn : SA =x SB}.
v. W(B) = {w ∈Wn :w SB = SB}.
vi. W(B) is a subgroup of NWn

(WB).
vii. NWn(WB) =W(B)nWB.

In the Proposition 1, the symbols ⊂λ and ≺ denote a pre-order and an ordering
defined on SC(n), respectively. If A ≡n B, then it is clear D≡AB = D⊂AB and
W(A) = D⊂AA. ThusMR(Wn) is called Mantaci-Reutenauer algebra of Wn.
For λ ∈ DP(n), the map τλ : MR(Wn)→ Q, x 7→ Φn(x)(coxλ̂) is independent

of the choice of coxλ̂ ∈ Kλ and it is also an algebra morphism [2].

3. Some Properties of Coxeter group of type Bn

Let A ∈ SC(n) and let lA : WA → N be the length function of WA in terms of its
generating set SA. When A is not a parabolic signed composition of n, the value
lA(w) is not equal to l(w) for some w ∈WA. The following lemma gives a relation
between these two length functions. The proof of the following lemma is clear from
the fact that l(ti) = 2i− 1 for i, 1 ≤ i ≤ n.

Lemma 2. Let A ∈ SC(n). Then for every w ∈WA

l(w) ≡ lA(w) (mod 2).

Let εn and εA be the sign character of Wn and WA, respectively. As a result of
the previous lemma, we get

εn(w) = (−1)l(w) = (−1)lA(w) = εA(w).

Since the restriction of εn to WA, that is res
Wn

WA
εn, is an irreducible character of

WA for every A ∈ SC(n) and Lemma 2, then we have resWn

WA
εn = εA.

Example 3. For a concrete example, let A = (−2, 3,−1,−3, 1) ∈ SC(10). Then
SA = {s1} ∪ {t3, s3, s4} ∪ {s7, s8} ∪ {t10} ⊂ S

′

10 and S
′

A = WA ∩ S
′

10 = {s1} ∪
{t3, s3, s4, t4, t5}∪{s7, s8}∪{t10}. Thus WA

∼= W−2×W3×W−1×W−3×W1. For
w = s7t3s3s1t10 ∈WA, lA(w) = 5 and also

w = s7t3s3s1t10 = s7s2s1t1s1s2s3s1s9s8s7s6s5s4s3s2s1t1s1s2s3s4s5s6s7s8s9 ∈W10,

so l(w) = 27. It follows that l(w) ≡ lA(w) ≡ 1(mod 2).

Proposition 4. If B ∈ SC+(n), then the parabolic closure of WB is A(WB) = Wn.

Proof. Since B ∈ SC+(n), we have Tn ≤ WB and so wn ∈ WB . By considering
wn as a linear map −idRn : Rn → Rn, we obtain Fix(wn) = {~0}. Thus, the
parabolic closure of wn is A(wn) = WFix(wn) = Wn. Because of the relation wn ∈
WB ⊂ A(coxB) = A(WB), we get wn ∈ A(coxB). By [11], the inclusion A(wn) ⊂
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A(coxB) = A(WB) holds. If we take into account the fact that A(wn) = Wn, then
we have A(WB) = Wn. This completes the proof. �

As a consequence of Proposition 4, if B ∈ SC+(n), then the parabolic closure of
WB is Wn and each element of Kλ(B) is of type Sn.

Lemma 5. Let A be a signed composition of n. Then wn belongs to WA if and
only if A ∈ SC+(n).

Proof. When A is a positive signed composition of n, we can easily see from the
proof of Proposition 4 that wn is an element of WA. Conversely, let wn be in WA.
We suppose that A = (a1, · · · , ai, · · · , ar) is not a positive signed composition of n.
Then there exists ai < 0 for some i, 1 ≤ i ≤ r. Thus from the definition of WA, we
obtain t|a1|+···+|ai−1|+1, · · · , t|a1|+···+|ai| 6∈ S

′

A = WA ∩ S
′

n. Hence for any x ∈ WA

and e|a1|+···+|ai−1|+1 + · · · + e|a1|+···+|ai| ∈ Rn, we have x(e|a1|+···+|ai−1|+1 + · · · +
e|a1|+···+|ai|) = e|a1|+···+|ai−1|+1 + · · ·+ e|a1|+···+|ai| and so e|a1|+···+|ai−1|+1 + · · ·+
e|a1|+···+|ai| ∈ Fix(WA). This is a contradiction, because the subspace Fix(WA)

consists of only ~0. Therefore, we get A ∈ SC+(n). �

Theorem 6. If the set C(Sn) denotes the set of all elements of Wn of type Sn,
then we have

C(Sn) =
∐

λ∈DP+(n)

Kλ. (1)

Proof. For each λ ∈ DP+(n), we have λ̂ ∈ SC+(n). From Proposition 4, for
every element of Kλ is of type Sn and so the reverse inclusion holds. Now let
w ∈ C(Sn). Then w is Wn-conjugate to coxA for some A ∈ SC(n). Thus we
get A(w) = A(coxA) = A(WA) = Wn. From here, for every x ∈ Wn and every
v ∈ Fix(WA) we obtain x(v) = v. In particular, if we take wn = −idRn ∈Wn, then
it is seen that Fix(WA) includes just {~0}. Thus wn is an element ofWA. Otherwise,
if A 6∈ SC+(n), then from the proof of Lemma 5 we get Fix(WA) 6= {~0}, which is a
contradiction. Hence A ∈ SC+(n). By taking the definition of λ into account, we
get a λ ∈ DP+(n) such that λ(A) = λ. Thus w belongs to Kλ and so it is seen
that the inclusion C(Sn) ⊂

∐
λ∈DP+(n)Kλ satisfies. It is required. �

Since the exponents of Wn are in turn 1, 3, · · · , 2n− 1, then from [1] the number
of elements of type Sn is equal to the product of exponents of Wn and so |C(Sn)| =
1 · 3 · · · 2n− 1. By the equation (1), we obtain the formula

|C(Sn)| =
∑

µ∈DP+(n)

|Kµ|.

Thus Theorem 6 gives us an alternative method to compute the number of
elements of type Sn. We will give a formula in Corollary 19 to find the number of
elements of every conjugacy class Kλ, λ ∈ DP(n) of Wn. Moreover, we will give an
example for Theorem 6 in Section 5.
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A conjugacy class of a finite Coxeter groupW which does not contain an element
of a proper standard parabolic subgroup of W is called a cuspidal class of W [8].

Corollary 7. Let A be a positive signed composition of n. Then the conjugacy
class Kλ(A) is a cuspidal class of Wn.

If we consider the proof of Proposition 4 and Corollary 7, then all cuspidal classes
of Wn are the conjugacy classes Kλ(A) for every A ∈ SC+(n). From Theorem 6,
the set C(Sn) is disjoint union of cuspidal classes of Wn. Therefore, each element
of Wn of type Sn belongs to a unique cuspidal class of Wn.

4. Generalized Burnside Algebra of Wn

Let A,B be any two signed compositions of n. Then, we have that

A ≡n B ⇔ WA ∼Wn
WB ⇔ [W/WA] = [W/WB ]

where [W/WA] represents the isomorphism class of Wn-set W/WA. The orbits of
Wn onW/WA×W/WB are of the form (WAx,WB) where x ∈ DAB . The stabilizer
of (WAx,WB) in Wn is x

−1
WA ∩WB = Wx−1A∩B . Therefore

[W/WA].[W/WB ] = [W/WA ×W/WB ] =
∑

x∈DAB

[W/Wx−1A∩B ].

Thus, we are now in a position to give the following definition.

Definition 8. The generalized Burnside algebra of Wn is Q-spanned by the set
{[W/WA] : A ∈ SC(n)} and it is denoted by HB(Wn).

From part (i) of Proposition 1 and the structure of Ker(Φn), the ring multipli-
cation rule inMR(Wn) may be expressed by

dAdB =
∑

x∈DAB

dfAB(x) +
∑

N≡nN ′
aNN ′(dN − dN ′),

where aNN ′ ∈ Z; N,N ′(λA; N,N ′ ≺ B; fAB(x) ⊂ B and fAB(x) ≡B x−1A ∩B.
Now we define

ψ : MR(Wn)→ HB(Wn), dA 7→ [W/WA].

Thus ψ is well-defined and surjective linear map. By considering the structure of
KerΦn and fAB(x) ≡B x−1A ∩B ⇒WfAB(x) ∼WB

Wx−1A∩B , we get

ψ(dAdB) = ψ(
∑

x∈DAB

dfAB(x) +
∑

N≡nN ′
aNN ′(dN − dN ′))

=
∑

x∈DAB

[W/WfAB(x)]

= ψ(dA)ψ(dB).
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Then the map ψ is an algebra morphism. Since dimQHB(Wn) = dimQQIrrWn =
|DP(n)|, then there is an algebra isomorphism between HB(Wn) and QIrrWn such
that

HB(Wn)→ QIrrWn, [W/WA] 7→ IndWn

WA
1A.

Now let λ, µ ∈ DP(n) and let ϕλ = IndWn

Wλ̂
1λ̂. From part (iii) of Proposition

1, ϕλ(coxλ̂) = τλ(dλ̂) = |D⊂
λ̂λ̂
| 6= 0 and τλ(dµ̂) = 0 if λ * µ. Thus the matrix

(τλ(dλ̂))λ,µ∈DP(n) is lower diagonal. Then (ϕλ(coxµ̂))λ,µ is upper diagonal and
also has positive diagonal entries. Therefore (ϕλ(coxµ̂))λ,µ is invertible and we
write (uλµ)λ,µ∈DP(n) for the inverse of (ϕλ(coxµ̂))λ,µ. We define

eλ =
∑

µ∈DP(n)

uλµϕµ.

By definition of eλ and (ϕλ(coxµ̂))−1 = (uλµ), we obtain that

eλ(coxµ̂) =
∑

γ∈DP(n)

uλγϕγ(coxµ̂) = δλ,µ.

Hence the set {eλ : λ ∈ DP(n)} is a collection of orthogonal primitive idempotents
of HB(Wn). Consequently, we have HB(Wn) = ⊕λ∈DP(n)Qeλ.
For each A ∈ SC(n),

sA : HB(Wn)→ Q, sA([X]) = |WAX|
is an algebra map, whereWAX = {x ∈ X : WAx = x}. SinceHB(Wn) is semisimple
and commutative algebra, then all algebra maps HB(Wn)→ Q are of the form sA
for every A ∈ SC(n). The proof of the following lemma is immediately seen from
[5].

Lemma 9. For A,B ∈ SC(n), we have that

sA = sB ⇔ λ(A) = λ(B).

Thus the dual basis of HB(Wn) is {sλ̂ : λ ∈ DP(n)}. For any λ, µ ∈ DP(n),
we have the following equality

sλ̂(eµ) = δλ,µ, (2)

and so any element x in HB(Wn) can be expressed as x =
∑
λ∈DP(n) sλ̂(x)eλ.

Let A be a signed composition of n. Induction and restriction of characters give
rise to two maps between HB(WA) and HB(Wn). For any A,B ∈ SC(n) such that
B ⊂ A, we have IndWn

WA
([WA/WB ]) = [Wn/WB ].

Definition 10. Let A,B ∈ SC(n) be such that B ⊂ A. The restriction is a linear
map

resWA

WB
: HB(WA)→ HB(WB), resWA

WB
([WA/WC ]) =

∑
d∈WA∩DCB

[WB/WB∩d−1C ].
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Before going into a further discussion of the restriction and induced character
theories of generalized Burnside algebra, we shall first mention the number of ele-
ments of the conjugacy class of WA in Wn.

Proposition 11. Let A ∈ SC(n) and λ(A) = λ. The number of all reflection
subgroups of Wn which are conjugate to WA is

|[WA]| = |DA| · uλ,λ.
Proof. Put [WA] = {xWA : x ∈ Wn}. Now we note that xWAx

−1 = yWAy
−1 if

and only if x ∈ yNWn(WA). Thus, the number of distinct conjugates of WA in Wn

is [Wn : NWn(WA)]. Since also NWn(WA) =W(A)nWA, we have

|[WA]| = |Wn|
|W(A)| · |WA|

=
|DA|
|W(A)| .

Furthermore, from the fact that τλ(A)(dA) = |D⊂AA| = |W(A)| and ϕλ(coxλ̂) =

τλ(A)(dA) = 1
uλ,λ

, as desired. �

Example 12. We consider the set D(2,1) = {1, s2, s1s2} consisting of the distin-
guished coset representatives of reflection subgroup W(2,1) in W3. The number of
all reflection subgroups conjugate to W(2,1) in W3 is

|[W(2,1)]| = |D(2,1)| · u(2,1;∅),(2,1;∅) = 3 · 1 = 3.

These are explicitly W(2,1), W(1,2) and s2W(2,1) = 〈s2s1s2, t1, t2〉. We note that
the reflection subgroup s2W(2,1) does not coincide with any subgroup of W3 corre-
sponding to any signed composition of 3.

Remark 13. For A,B ∈ SC(n) such that B ⊂ A and for any x ∈ HB(Wn), by
using the definition of sA one can see that there exists the relation sAB(resWn

WA
(x)) =

sB(x).

We can now give the following proposition.

Proposition 14. Let be A,B ∈ SC(n) and let A1, A2, · · · , Ar be representatives of
the WA-equivalent classes of subsets of A, which are Wn-equivalent to B. Then,

resWn

WA
eB =

r∑
i=1

eAAi .

If B is not Wn-equivalent to any subset of A then resWn

WA
eB = 0.

Proof. Since resWn

WA
eB is an element of HB(WA), then we have

resWn

WA
eB =

∑
Ai⊂A

sAAi(res
Wn

WA
(eB))eAAi .

Then by using Remark 13 and the relation (2), we get

resWn

WA
eB =

∑
Ai⊂A

sAi(eB)eAAi
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=
∑
Ai⊂A
Ai≡AB

eAAi

=

r∑
i=1

eAAi .

�

Proposition 15. Let A,B ∈ SC(n) and let B ⊂ A. Then we have

IndWn

WA
eAB =

|W(B)|
|WA ∩W(B)| · eB .

Proof. Firstly, we assume that A = B and coxA is a Coxeter element of WA. Since
the image of coxA under permutation character ofWn on the cosets ofWA is |W(A)|
then it follows from the fact that

x−1coxAx ∈WA ⇔ x ∈ NWn
(WA).

Thus we obtain

IndWn

WA
eAA(coxA) = |DA ∩NWn

(WA)|
= |W(A)|.

As IndWn

WA
eAA takes value zero except for the elements conjugate to coxA and so we

get

IndWn

WA
eAA = |W(A)|eA.

By transitivity of induced characters, we generally get

IndWn

WA
eAB = IndWn

WA
(

1

|WA ∩W(B)| |WA ∩W(B)|eAB)

= IndWn

WA
(

1

|WA ∩W(B)| ind
WA

WB
eBB)

=
|W(B)|

|WA ∩W(B)|eB .

�

Furthermore, there is also the equality IndWn

WA
eAB = |NWn

(WB) : NWA
(WB)|eB .

Theorem 16. Let A,B ∈ SC(n) be such that λ(B) ⊂ λ(A). If B1, B2, · · · , Br
are the representatives of the WA-equivalence classes of subsets of A which are
Wn-equivalent to B, then for coxB ∈Wn,

IndWn

WA
1A(coxB) =

r∑
i=1

|W(B)|
|WA ∩W(Bi)|

.
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Proof. Let A,B ∈ SC(n). If A ≡n B then it is easy to prove that |W(A)| = |W(B)|.
We write 1A =

∑
E e

A
E , where E ∈ SC(n) runs overWA-conjugacy classes of subsets

of A. From Proposition 15, we have

IndWn

WA
1A =

∑
E

IndWn

WA
eAE ⇒ IndWn

WA
1A =

∑
E

|W(E)|
|WA ∩W(E)| · eE .

Since each Bi is Wn-equivalent to B, then eE(coxB) = 1 if and only if E ≡WA
Bi.

Thus we obtain that

IndWn

WA
1A(coxB) =

r∑
i=1

|W(B)|
|WA ∩W(Bi)|

.

Hence the theorem is proved. �
Theorem 17 and Proposition 18 give us a useful computation to determine the

coeffi cient of the sign character εn in the expression of the orthogonal primitive
idempotent eλ, λ ∈ DP(n) in terms of irreducible characters of Wn.

Theorem 17. u(n;∅),(∅;1,··· ,1) = (−1)n
2n .

Proof. Let χreg : Wn → Z be the regular character of Wn. For A = (−1, · · · ,−1)

it is satisfied IndWn

WA
1A = χreg. The character εn is contained in χreg with the

property that its coeffi cient is just 1, thus we have

〈IndWn

WA
1A, εn〉 = 1.

Now let A 6= (−1, · · · ,−1). By using Frobenius Reciprocity and the formula
resWn

WA
εn = εA, it is obtained that 〈IndWn

WA
1A, εn〉 = 0. If w is conjugate to coxWn

underWn, then we have e(n;∅)(w) = 1 and εn(w) = εn(coxWn) = (−1)l(w) = (−1)n.
Let cclWn

(coxWn
) denote the conjugacy class of coxWn

in Wn. By considering the
formula |cclWn

(coxWn
)| = |Wn|.n

2N in [4], we obtain

〈e(n;∅), εn〉 =
(−1)n

2n
.

On the other hand, 〈e(n;∅), εn〉 =
∑
µ∈DP(n) u(n;∅)µ〈ϕµ, εn〉 = u(n;∅),(∅;1,··· ,1) and so

the proof is completed. �
Proposition 18. For λ ∈ DP(n) and λ 6= (n; ∅), then we have

uλ,(∅;1,··· ,1) = (−1)|Sλ̂| · |Kλ||Wn|
.

Proof. Since the sign character is constant on the conjugacy classes, then we have

〈eλ, εn〉 =
1

|Wn|
∑
w∈Kλ

(−1)l(w) (rankWλ̂ = |Sλ̂|)

= (−1)|Sλ̂| · |Kλ||Wn|
.
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Note that 〈ϕµ, εn〉 has value 1 for µ = (∅; 1, · · · , 1) and zero for the others. Hence-
forth, we obtain 〈eλ, εn〉 =

∑
µ∈DP(n) uλµ〈ϕµ, εn〉 = uλ,(∅;1,··· ,1). Eventually, we

have uλ,(∅;1,··· ,1) = (−1)|Sλ̂| · |Kλ||Wn| . �

Notice that calculation of the inner product 〈eλ, 1Wn〉 leads to the following
corollary.

Corollary 19. Let λ ∈ DP(n). Then

|Wn|
∑

µ∈DP(n)

uλ,µ = |Kλ|.

By means of Corollary 19 and the matrix (uλµ)λ,µ∈DP(n), one can readily deter-
mine the sizes of all the conjugacy classes of Wn.

Theorem 20. Let A ∈ SC(n) and λ ∈ DP(n). Then∑
µ∈DP(n)

uλµaµ̂A(−1,··· ,−1) = (−1)|Sλ̂|
|Kλ ∩WA|
|WA|

,

where aµ̂A(−1,··· ,−1) = |{x ∈ Dµ̂A : x−1 µ̂ ∩A = (−1, · · · ,−1)}|.
Proof. The term d(−1,··· ,−1) in the multiplication dµ̂dA lies in the summand∑

x∈Dµ̂A dfµ̂A(x) from the structure of KerΦn and part (i) of Proposition 1. If we
write the coeffi cient of d(−1,··· ,−1) in this summand as aµ̂A(−1,··· ,−1), and so we get

aµ̂A(−1,··· ,−1) = |{x ∈ Dµ̂A : fµ̂A(x) = (−1, · · · ,−1)}|.

By using part (i) of Proposition 1 along with the fact fµ̂A(x) ≡A x−1 µ̂ ∩A, it is
seen that there is the equivalence x

−1
µ̂ ∩ A ≡A (−1, · · · ,−1). Since no element in

SC(n) is congruent to (−1, · · · ,−1) except for (−1, · · · ,−1), it then follows that
x−1 µ̂∩A = (−1, · · · ,−1). Hence we have deduced the equality aµ̂A(−1,··· ,−1) = |{x ∈
Dµ̂A : x−1 µ̂ ∩A = (−1, · · · ,−1)}| holds. Therefore, by Frobenius Reciprocity and
Mackey Theorem, we have

〈eλ, indWn

WA
εA〉 =

∑
µ∈DP(n)

uλµ
∑

x∈Dµ̂A

〈indWA

Wx−1 µ̂∩A
1x−1 µ̂∩A, εA〉

=
∑

µ∈DP(n)

uλµ
∑

x∈Dµ̂A
x−1 µ̂∩A=(−1,··· ,−1)

1x−1 µ̂∩A

=
∑

µ∈DP(n)

uλµaµ̂A(−1,··· ,−1).

Also, εn(w) is the same value for every w ∈ Kλ and so εn(w) = εn(coxλ̂) = (−1)|Sλ̂|.
Therefore, by Lemma 2, we have

〈eλ, indWn

WA
εA〉 =

1

|WA|
∑

w∈Kλ∩WA

(−1)lA(w
−1)
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=
1

|WA|
∑

w∈Kλ∩WA

(−1)l(w) =
1

|WA|
(−1)|Sλ̂||Kλ ∩WA|

Putting these two results together, we see that theorem is proved. �

5. Example

We consider the Coxeter group W3. For all λ, µ ∈ DP(3), by means of the
character table of MR(W3) in [3], we can write the values ϕλ(coxµ̂) as in the
following table:

c(3;∅) c(∅;3) c(2,1;∅) c(2;1) c(1;2) c(∅;2,1) c(1,1,1;∅) c(1,1;1) c(1;1,1) c(∅;1,1,1)
ϕ(3;∅) 1 1 1 1 1 1 1 1 1 1

ϕ(∅;3) 0 2 0 0 0 4 0 0 0 8

ϕ(2,1;∅) 0 0 1 1 1 1 3 3 3 3

ϕ(2;1) 0 0 0 2 0 2 0 2 4 6

ϕ(1;2) 0 0 0 0 2 2 0 0 4 12

ϕ(∅;2,1) 0 0 0 0 0 4 0 0 0 24

ϕ(1,1,1;∅) 0 0 0 0 0 0 6 6 6 6

ϕ(1,1;1) 0 0 0 0 0 0 0 4 8 12

ϕ(1;1,1) 0 0 0 0 0 0 0 0 8 24

ϕ(∅;1,1,1) 0 0 0 0 0 0 0 0 0 48

The matrices (uλ,µ)λ,µ∈DP(n) is

1 −1/2 −1 0 0 1/2 1/3 0 0 −1/6
0 1/2 0 0 0 −1/2 0 0 0 1/6
0 0 1 −1/2 −1/2 1/4 −1/2 1/4 1/4 −1/8
0 0 0 1/2 0 −1/4 0 −1/4 0 1/8
0 0 0 0 1/2 −1/4 0 0 −1/4 1/8
0 0 0 0 0 1/4 0 0 0 −1/8
0 0 0 0 0 0 1/6 −1/4 1/8 −1/48
0 0 0 0 0 0 0 1/4 −1/4 1/16
0 0 0 0 0 0 0 0 1/8 −1/16
0 0 0 0 0 0 0 0 0 1/48


.

For λ = (3; ∅), (2, 1; ∅), (1, 1, 1; ∅) ∈ DP(3), the size of Kλ is calculated by
means of Corollary 19 and matrix (uλ,µ)λ,µ∈DP(n) the above. Since |K(3;∅)| = 8,
|K(2,1;∅)| = 6 and |K(1,1,1;∅)| = 1, then we have found that the number of elements
of type S3 is |C(S3)| = 15.
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EXISTENCE OF FIXED POINTS IN QUASI METRIC SPACES

SUMIT CHANDOK AND SAURABH MANRO

Abstract. In this paper, we obtain some new fixed point theorems for two
pairs of weakly compatible mappings in the framework of non-symmeterical
quasi metric spaces. Several interesting corollaries are also deduced. The
results obtained extend various well known results of the literature in the
setting of quasi metric space. We also construct an example to demonstrate
the usability of the proved results.

1. Introduction and Preliminaries

In 2002, Aamri and Moutaawakil [1] introduced the notion of property E.A. in
metric spaces and proved various results in the area of fixed point theory. Later on,
using the idea of property E.A., Liu et al. [19] defined common (E.A.) property and
proved various common fixed point theorems under strict contractive conditions.
In 2006, Mustafa and Sims [21] introduced a new notion of generalized met-

ric space, called G-metric space, by showing that most of the results concerning
Dhage’s D-metric spaces [10] are invalid. After then, many authors studied fixed
and common fixed points in G−metric spaces, see [3, 4, 5, 7, 8, 11, 20, 21, 22, 23, 24].
Here, we give preliminaries and basic definitions which are helpful in the sequel.

Definition 1.1. (see [2, 18]) A quasi-metric on a non-empty set X is a function
q : X ×X → [0,∞) satisfying the following properties:

(q1) q(x, y) = 0 if and only if x = y;
(q2) q(x, y) ≤ q(x, z) + q(z, y), for all x, y, z ∈ X.
In such a case, the pair (X, q) is called a quasi-metric space.

For symmetry, convergence, Cauchy sequence, completeness, continuity in quasi-
metric space see [2].
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Example 1.2. (see [2]) Let X be a subset of R containing [0, 1] and define, for all
x, y ∈ X,

q(x, y) =

{
x− y, if x ≥ y,
1, otherwise.

Then (X, q) is a quasi-metric space.

Definition 1.3. (see [2, 21]) LetX be a nonempty set andG : X×X×X → [0,+∞)
be a function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., (symmetry in all three variables),
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X, (rectangle inequal-

ity).

Then the function G is called a generalized metric, or, more specifically, a G-
metric on X, and the pair (X,G) is called a G-metric space.

For more details about Symmetric G-metric, G− Cauchy sequence, continuity
of G function, G− completeness, one may refers to paper [21].
Let (X,G) be a G-metric space. Then

(a) (X,G) is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.
(b) The pair (S, T ) of self mappings of a G-metric space (X,G) is said to be

weakly compatible if they commute at their coincidence points.
(c) The pair (S, T ) of self mappings of a G-metric space (X,G) is said to

satisfy the property E.A if there exists a sequence {xn} in X such that
limn→+∞ Sxn = limn→+∞ Txn = t, for some t ∈ X.

(d) Two pairs (A,S) and (B, T ) of self mappings of a G− metric space are said
to satisfy the common (E.A.) property if there exist two sequences {xn} and
{yn} in X such that limn→+∞Axn = limn→+∞Byn = limn→+∞ Sxn =
limn→+∞ Tyn = z for some z ∈ X.

Recently, Chandok et al. [6] used the concept of a C-class functions which cover
a large class of contractive conditions.

Definition 1.4. A continuous function F : [0,∞)2 → R is called C -class function
if for any s, t ∈ [0,∞), the following conditions hold:
(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0.

An extra condition on F that F (0, 0) = 0 could be imposed in some cases if
required. The letter C will denote the class of all C- functions.

Example 1.5. (see [6]) The following examples show that the class C is nonempty:
(1) F (s, t) = s− t.
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(2) F (s, t) = ms, for some m ∈ (0, 1).
(3) F (s, t) = s

(1+t)r for some r ∈ (0,∞).

(4) F (s, t) = log(t+ as)/(1 + t), for some a > 1.
(5) F (s, t) = ln(1 + as)/2, for e > a > 1.

Indeed F (s, t) = s implies that s = 0.

Throughout this paper, we suppose that Ψ denote the class of all real valued
continuous non-decreasing functions ψ : [0,∞)→ [0,∞) satisfying ψ (t) = 0 if and
only if t = 0 and Φ denote the class of all real valued continuous non-decreasing
functions φ : [0,∞)→ [0,∞) satisfying φ (t) > 0 if t > 0.
In this paper, by using C- class functions, we prove some new common fixed

point theorems for two pairs of weakly compatible mappings in the framework of
quasi metric spaces. Several interesting corollaries are also deduced. The results
obtained extend various well known results of the literature in the setting of quasi
metric space. We also construct an example to demonstrate the usability of the
proved results.

2. Main results

Throughout this section, we assume that φ ∈ Φ, ψ ∈ Ψ and F is a C -class
function.
Also, we assume that (X,G) is a G-metric space and define dG : X×X → [0,∞)

by dG(x, y) = G(x, y, y). Using Lemma 3.3.1 of [2], every G-metric G induces a
quasi-metric dG in the sense of Kunzi [18] in such a way that τ(G) = τ(dG).
Now, we prove the main result of this section.

Theorem 2.1. Let (X, dG) be a quasi metric space and let A,B, S, T be four self-
mappings on set X such that:

(i) A(X) ⊆ T (X) and B(X) ⊆ S(X);
(ii) for all x, y ∈ X,

ψ(dG(Ax,By)) ≤ F (ψ(M(x, y)), φ(M(x, y))),

where M(x, y, y) = max{dG(Sx, Ty), dG(Sx,By), dG(Ty,By)};
(iii) one of A(X), B(X), S(X) or T (X) is a closed subset of X.

Further assume that one of the pairs (A,S) or (B, T ) satisfies the property E.A.
Then the pairs (A,S) and (B, T ) have a coincidence point. Moreover, if (A,S) and
(B, T ) are weakly compatible then A,B, S and T have a unique common fixed point
in X.

Proof. If the pair (B, T ) satisfies the property E.A., then there exists a sequence
{xn} in X such that limn→+∞Bxn = limn→+∞ Txn = t, for some t ∈ X. Since
B(X) ⊆ S(X), there exists a sequence {yn} in X such that Bxn = Syn. Hence
limn→+∞ Syn = t. We shall show that limn→+∞Ayn = t. From (ii), take x =
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yn, y = xn,
we have

ψ(dG(Ayn, Bxn)) ≤ F (ψ(M(yn, xn)), φ(M(yn, xn))) ≤ ψ(M(yn, xn))

where

M(yn, xn) = max{dG(Syn, Txn), dG(Syn, Bxn), dG(Txn, Bxn)}.
Taking the limit as n→ +∞ (upper limit) and using the definition of F , φ and ψ,
we have

ψ( lim
n→+∞

dG(Ayn, t)) ≤ ψ(0) = 0.

So, ψ(limn→+∞(dG(Ayn, t))) = 0. Thus, limn→+∞ dG(Ayn, t) = 0 and so
limn→+∞Ayn = t. Thus we have

lim
n→+∞

Ayn = lim
n→+∞

Bxn = lim
n→+∞

Syn = lim
n→+∞

Txn = t.

Suppose that S(X) is a closed subset of X. Then t = Su for some u ∈ X. Now,
we shall show that Au = Su = t. From (ii), take x = u, y = xn, we have

ψ(dG(Au,Bxn)) ≤ F (ψ(M(u, xn)), φ(M(u, xn)))

where
M(u, xn) = max{dG(Su, Txn), dG(Su,Bxn), dG(Txn, Bxn)}.

Taking the limit as n→ +∞, and using the definition of F , φ and ψ, we have
ψ(dG(Au, Su)) ≤ F (ψ(dG(t, t)), φ(dG(t, t))) ≤ ψ(dG(t, t)) = ψ(0) = 0.

This gives, Au = Su. Thus u is a coincidence point of the pair (A,S). The weak
compatibility of A and S implies that ASu = SAu and hence AAu = ASu =
SAu = SSu. As A(X) ⊆ T (X), there exists v ∈ X such that Au = Tv. We claim
that Tv = Bv. By (ii), take x = u, y = v, we have

ψ(dG(Au,Bv)) ≤ F (ψ(M(u, v)), φ(M(u, v))),

where
M(u, v) = max{dG(Su, Tv), dG(Su,Bv), dG(Tv,Bv)};

or
M(u, v) = max{0, dG(Au,Bv), dG(Au,Bv)} = dG(Au,Bv).

Using the definition of F , φ and ψ, we have

ψ(dG(Au,Bv)) ≤ F (ψ(dG(Au,Bv)), φ(dG(Au,Bv))) ≤ ψ(dG(Au,Bv)).

This gives, ψ(dG(Au,Bv)) = 0 or φ(dG(Au,Bv)) = 0. This implies that Au = Bv
and hence Tv = Bv. It follows that also the pair (B, T ) has a coincidence point.
Thus we have Au = Su = Tv = Bv.
Now, if B and T are weakly compatible, then we obtain BTv = TBv = TTv =

BBv and this shows that Au is a common fixed point of A,B, S and T . Again from
(ii), take x = Au, y = v, we have

ψ(dG(AAu,Au)) = ψ(dG(AAu,Bv)) ≤ F (ψ(M(Au, v)), φ(M(Au, v))),
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where
M(Au, v) = max{dG(SAu, Tv), dG(SAu,Bv), dG(Tv,Bv)};

M(Au, v) = max{dG(AAu,Bv), dG(AAu,Bv), 0} = dG(AAu,Bv).

Again using the definition of F , φ and ψ, we have

ψ(dG(AAu,Au)) ≤ F (ψ(dG(AAu,Au)), φ(dG(AAu,Au))) ≤ ψ(dG(AAu,Au)).

This implies Au = AAu = Bv. Therefore, Au = AAu = SAu is a common fixed
point of A and S. Similarly, one can prove that Bv is a common fixed point of B
and T . Since Au = Bv, we deduce that Au is a common fixed point of A,B, S and
T .
Now, we have to show that the common fixed point is unique. Suppose to the

contrary that w and z (w 6= z), are two common fixed points of A,B, S and T .
Then, from (ii) and using the definition of F , φ, ψ, we have

ψ(dG(Az,Bw)) ≤ F (ψ(M(z, w)), φ(M(z, w))),

where

M(z, w) = max{dG(Sz, Tw), dG(Sz,Bw), dG(Tw,Bw)}
= max{dG(z, w), dG(z, w), dG(w,w)}
= dG(z, w).

Therefore, we have

ψ(dG(z, w)) ≤ F (ψ(dG(z, w)), φ(dG(z, w))) ≤ ψ(dG(z, w)).

This gives, w = z. Therefore, A,B, S and T have a unique common fixed point.
Clearly proceeding on the foregoing lines, one can easily obtain the same con-

clusion in case (instead of S(X)) one of A(X), B(X) or T (X) is a closed subset of
X, and in case (instead of (B, T )) (A,S) satisfies the property E.A. �

Corollary 2.2. Let (X, dG) be a quasi metric space and A,B, S, T : X → X be
four mappings such that:

(i) A(X) ⊆ T (X) and B(X) ⊆ S(X);
(ii) for all x, y ∈ X

dG(Ax,By) ≤ F (ψ(M(x, y)), φ(M(x, y))),

where M(x, y) = max{dG(Sx, Ty), dG(Sx,By), dG(Ty,By)};
(iii) one of A(X), B(X), S(X) or T (X) is a closed subset of X.

Suppose that one of the pairs (A,S) or (B, T ) satisfies the property E.A. Then
the pairs (A,S) and (B, T ) have a coincidence point. Further, if (A,S) and (B, T )
are weakly compatible then A,B, S and T have a unique common fixed point in X.

If we assume S = T in the above Theorem 2.1, we deduce the following result
involving three self-mappings.
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Corollary 2.3. Let (X, dG) be a quasi metric space and A,B, S : X → X be three
mappings such that:

(i) A(X) ⊆ S(X) and B(X) ⊆ S(X);
(ii) for all x, y ∈ X,

ψ(dG(Ax,By)) ≤ F (ψ(M(x, y)), φ(M(x, y))),

where M(x, y) = max{dG(Sx, Sy), dG(Sx,By), dG(Sy,By)};
(iii) one of A(X), B(X) or S(X) is a closed subset of X.
Suppose that one of the pairs (A,S) or (B,S) satisfies the property E.A. Then

the pairs (A,S) and (B,S) have a coincidence point. Further, if (A,S) and (B,S)
are weakly compatible then A,B and S have a unique common fixed point in X.

Example 2.4. Let F (s, t) = 99s
100 , X = [0, 2] and G : X × X × X → [0,+∞)

be defined by G(x, y, z) = max{|x − y|, |y − z|, |z − x|}, for all x, y, z ∈ X. De-
fine also A,B, S : X → X by Ax = 1, Bx = 2 − x and Sx = x for all x ∈ X
and ψ : [0,+∞) → [0,+∞) by ψ(t) = 20t for all t ≥ 0. Clearly, the hypotheses
(i) and (iii) of Corollary 2.3 hold trivially. Moreover, the pair (A,S) satisfies the
property E.A. by taking sequence xn = n+1

n . Here we show only that the hypoth-
esis (ii) of Corollary 2.3 holds. In fact for all x, y ∈ X we have, dG(Ax,By) =
G(Ax,By,By) = G(1, 2 − y, 2 − y) = |1 − y|, dG(Sx, Sy) = G(Sx, Sy, Sy) =
G(x, y, y) = |x− y|, dG(Sx,By) = G(Sx,By,By) = G(x, 2− y, 2− y) = |2−x− y|,
dG(Sy,By) = G(Sy,By,By) = G(y, 2− y, 2− y) = 2|1− y| and consequently

ψ(dG(Ax,By)) = ψ(G(Ax,By,By)) ≤ F (ψ(M(x, y)), φ(M(x, y))).

Further, it implies that

|y − 1| ≤ 99

100
M(x, y),

where

M(x, y) = max{dG(Sx, Sy), dG(Sx,By), dG(Sy,By)} = max{|x−y|, |x+y−2|, 2|y−1|},
which is true. Then, by the Corollary 2.3, the pairs (A,S) and (B,S) have a
coincidence point, that is, u = 1. Moreover, since (A,S) and (B,S) are weakly
compatible, u = 1 is the unique common fixed point of A,B and S in X.

Corollary 2.5. Let (X, dG) be a quasi metric space and A, T : X → X be two
mappings such that:

(i) for all x, y ∈ X,
dG(Ax, Ty) ≤ F (ψ(M(x, y)), φ(M(x, y))),

where M(x, y) = max{dG(Tx, Ty), dG(Tx,Ay), dG(Ty,Ay)};
(iii) T (X) is a closed subset of X.
Suppose that the pair (A, T ) satisfies the property E.A. Then the pair (A,S) has

a coincidence point. Further, if pair (A,S) is weakly compatible then A and T have
a unique common fixed point in X.
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Remark 2.6. Theorem 2.1 still remains true ifM(x, y) in condition (ii) is replaced
by:

M1(x, y) = max{dG(Sx, Ty), dG(Ax, Sx), dG(By, Ty)}.
By taking, F (s, t) = s− t, we obtain the following corollary.

Corollary 2.7. Let (X, dG) be a quasi metric space and A,B, S, T be four self-
mappings on set X such that:

(i) A(X) ⊆ T (X) and B(X) ⊆ S(X);
(ii) for all x, y ∈ X,

ψ(dG(Ax,By)) ≤ ψ(M(x, y))− φ(M(x, y)),

where M(x, y) = max{dG(Sx, Ty), dG(Sx,By), dG(Ty,By)};
(iii) one of A(X), B(X), S(X) and T (X) is a closed subset of X.
Suppose that one of the pairs (A,S) and (B, T ) satisfies the property E.A. Then

the pairs (A,S) and (B, T ) have a coincidence point. Moreover, if (A,S) and (B, T )
are weakly compatible then A,B, S and T have a unique common fixed point in X.

Theorem 2.8. Let A,B, S, T be four self-mappings on a quasi metric space (X, dG)
satisfying the condition (ii) of Theorem 2.1 and

(a) the pair (A,S) and (B, T ) share the common (E.A.) property,
(b) S(X) and T (X) are closed subsets of X.
Then the pairs (A,S) and (B, T ) have a point of coincidence each. Moreover,

A,B, S and T have a unique common fixed point provided both the pairs (A,S) and
(B, T ) are weakly compatible.

Proof. In view of (a), there exist two sequences {xn} and {yn} in X such that
limn→+∞Axn = limn→+∞Byn = limn→+∞ Sxn = limn→+∞ Tyn = z for some
z ∈ X.
Since S(X) is a closed subset of X, therefore, there exists a point u ∈ X such that
z = Su. We claim that Au = z. By (ii), take x = u, y = yn,

ψ(dG(Au,Byn)) ≤ F (ψ(M(u, yn)), φ(M(u, yn))) ≤ ψ(M(u, yn)),

where
M(u, yn) = max{dG(Su, Tyn), dG(Su,Byn), dG(Tyn, Byn)}.

Taking the limit as n→ +∞ (upper limit) and using the definition of F , φ and ψ,
we have

ψ(dG(Au, z)) ≤ F (0, 0) ≤ ψ(0) = 0.

This gives, Au = z = Su which shows that u is a coincidence point of the pair
(A,S).
Since T (X) is also a closed subset of X, therefore limn→+∞ Tyn = z in T (X) and
hence there exists v ∈ X such that Tv = z = Au = Su. Now, we show that Bv = z.
By using inequality (ii) of Theorem 2.1, take x = u, y = v, we have

ψ(dG(Au,Bv)) ≤ F (ψ(M(u, v)), φ(M(u, v))),
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where

M(u, v) = max{dG(Su, Tv), dG(Su,Bv), dG(Tv,Bv)}.

Using the definition of F , φ and ψ, we have

ψ(dG(z,Bv)) ≤ F (ψ(dG(z,Bv)), φ(dG(z,Bv)) ≤ ψ(dG(z,Bv)).

This gives, ψ(dG(z,Bv)) = 0 or φ(dG(z,Bv) = 0. Hence Bv = z = Tv which shows
that v is a coincidence point of the pair (B, T ).
Since the pairs (A,S) and (B, T ) are weakly compatible and Au = Su,Bv = Tv,
therefore, Az = ASu = SAu = Sz,Bz = BTv = TBv = Tz.
Next, we show that Az = z. Again, by using inequality (ii) of Theorem 2.1, take

x = z and y = v we have

ψ(dG(Az,Bv)) ≤ F (ψ(M(z, v)), φ(M(z, v))),

where

M(z, v) = max{dG(Sz, Tv), dG(Sz,Bv), dG(Tv,Bv)}.

Again by using the definition of F , φ and ψ, we have

ψ(dG(Az, z)) ≤ F (ψ(dG(Az, z)), φ(dG(Az, z))) ≤ ψ(dG(Az, z)).

This gives, Az = z = Sz.
Similarly, one can prove that Bz = Tz = z. Hence, Az = Bz = Sz = Tz, and z is
common fixed point of A,B, S and T .
For uniqueness, let z and w be two common fixed points of A,B, S and T . Then
by using inequality (ii) of Theorem 2.1, we have

ψ(dG(Az,Bw)) ≤ F (ψ(M(z, w)), φ(M(z, w))),

where

M(z, w) = max{dG(Sz, Tw), dG(Sz,Bw), dG(Ty,Bw)}.

Again by using the definition of F , φ and ψ, we easily get z = w. �

Remark 2.9. For different variants of F (s, t) as in Example 1.5, we have various
variants of our proved results for two or three or four self mappings with E.A.
property or common (E.A.) property.
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CONFIDENCE REGIONS FOR BIVARIATE PROBABILITY
DENSITY FUNCTIONS USING POLYGONAL AREAS

ORHAN KESEMEN, EDA ÖZKUL, AND ÜLKÜ ÜNSAL

Abstract. In this study, a polygonal approach is suggested to generalize the
notion of the confidence region of the univariate probability density function for
the bivariate probability density function. The equal density approach is used
to demonstrate that confidence regions can be polygonal shapes. The bisection
method is the preferred method in finding the equal density value that reveals
the desired confidence coeffi cient. Confidence regions estimate not only bivari-
ate unimodal probability functions but also bivariate multimodal probability
functions. An approach is enhanced to estimate these confidence regions for
probability density functions which are defined as rectangular, polygonal and
infinite expanse areas. In order to show the applicable of the proposed method,
four different examples are analyzed. The results show that the confidence re-
gion is found no matter how complex the distribution function. In addition,
the proposed method gives more effi cient results for multimodal probability
density functions.

1. Introduction

In statistics, a confidence interval is an estimation of a parameter which repre-
sents the population within an acceptable range. Confidence interval was firstly
identified, and its validity was proven by Neyman [1]. Tate and Klett [2] deter-
mined the optimal confidence interval and they estimated the optimal confidence
interval for a normal distribution. Then, Dunn [3, 4] presented several procedures
for determining the rectangular confidence regions. Chew [5] compiled the formulas
for confidence, prediction, and tolerance regions for the multivariate normal distri-
bution for the various cases of known and unknown mean vector and covariance
matrix. Sidak [6] proved the validity of the rectangular confidence regions for the
means of multivariate normal distributions given by Dunn [3, 4]. Hu and Yang [7]
proposed a distribution-free approach, based on a few basic geometrical principles,
to determine the confidence region for two or more variables. Also, they analyzed
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some biological data sets to demonstrate the use of the proposed method for ge-
nomics. Mammen and Polonik [8] constructed a confidence region for a density
level set using kernel density estimators. Martin [9] described an approach, based
on random sets, to construct exact confidence regions that attain the nominal cov-
erage probability. Rambaud et al. [10] used the confidence regions to determine the
characteristics for diagnosis of pneumonia in children younger than 5 years. Harrar
and Xu [11] developed methods to construct confidence regions for level differences
in the multi-dimensional cases and they applied it to the profile analysis.
This paper proposes the confidence regions for bivariate probability density func-

tions using polygonal areas. The aim of this study is to estimate a more accurate
confidence region by utilizing the equal density approach.

2. Confidence Interval

In a probability density function, infinite confidence interval might be defined
that gives same confidence coeffi cient. Three different approaches are improved for
choosing the most convenience in these intervals. These approaches are

a) The equally tailed confidence interval,
b) The shortest confidence interval,
c) The equal density confidence interval.

These methods show the same limits in symmetric distribution, such as normal
distribution. However, the shortest confidence interval and the equal density confi-
dence interval estimate the same limits while the equally tailed confidence interval
estimates different limits in asymmetric distributions [8, 12, 13, 14]
Suppose X = {X1, X2, ..., Xn} are random samples that are taken from an i.i.d.

This distribution’s probability density function is f(x; θ, ...) and the parameter θ
is defined θ ∈ R. The values x = {x1, x2, ..., xn} are the observed values of X.
Interval estimation of θ for these observed values are executed by means of the two
bound values L and U . These two limit values must satisfy the condition L 6 U
for all x values. As a result, interval [L,U ] should involve the parameter θ with a
certain probability (1− α). This probability value is called a confidence coeffi cient.
This confidence coeffi cient constitutes the confidence interval when it is used in a
format such as (1).

Pr(L 6 θ 6 U) = 1− α (1)

Here, the value α is the significance coeffi cient which is determined by the researcher
and it ranges from (0, 1).

2.1. The Equally Tailed Confidence Interval. The equally tailed confidence
interval is used commonly in the literature. Statistic θ∗ ∼ Φ(x), which is obtained
from a sample, is an estimation of the parameter θ of the discussed population. If
the following condition is satisfied, this interval is called the equally tailed confidence
interval.



278 ORHAN KESEMEN, EDA ÖZKUL, AND ÜLKÜ ÜNSAL

Pr [L 6 θ 6 U | Pr(θ > U)] = 1− α (2)

According to this condition, the probabilities of parameter θ, being less than the
lower bound and being greater than the upper bound, are equal. Therefore, in this
interval, the right and the left side of the confidence region are equal to each other.
The parameter θ of the population with the (1− α) confidence coeffi cient can

be calculated with the inverse distribution function below.

Pr
[
Φ−1 (α/2; θ∗, ...) 6 θ 6 Φ−1 (1− α/2; θ∗, ...)

]
= 1− α (3)

2.2. The Shortest Confidence Interval. The shortest confidence interval is de-
fined as (4).

Pr [L 6 θ 6 U | min(U − L)] = 1− α (4)

There are infinite confidence limits with the same confidence level. In this method,
confidence limits which have the minimum confidence width (U − L) is preferred.
Although the shortest confidence interval gives a more precise estimation, it is not
preferred due to diffi culty of its calculation.

2.3. The Equal Density Confidence Interval. The equal density method presents
a different approach to the shortest confidence method. The basis of this approach
is the conditional equality which is given as follows.

Pr [L 6 θ 6 U | φ(L; θ, ...) = φ(U ; θ, ...)] = 1− α (5)

According to (5), the probability density values are equal in the shortest confidence
limits with the (1− α) confidence coeffi cient.
This approach is novel because it determines a cutting level in the y axis rather

than research shortest confidence interval in the x axis, in order to calculate the
shortest confidence interval. According to the cutting level, the confidence limits
are determined as the roots of the following equation.

φ(x; θ, ...)− ζ = 0 (6)

This method is superior because it determines the confidence interval within a
multimodal probability density function [14].

3. Confidence Region in Polygonal Area

The univariate confidence region is defined as a region that is restricted by the
two bounds, (L,U), of the probability density function. These bounds can be deter-
mined by employing the afore-mentioned methods. However, the confidence region
for bivariate probability density function cannot be estimated by using the equally-
tailed confidence interval. In this case, the confidence region with the smallest
area can be searched. Although there are many regions with the same volume, the
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confidence region with the smallest area can be found by utilizing two objective
optimization techniques [13]. Since there is no relationship between two objective
functions in multi objective optimization problems, several solutions with the same
(1−α) confidence coeffi cient are selected to solve the problem, and the region with
the smallest area is considered the confidence region. Although the selected region
is likely the desired region, it is possible for deviations to exist. The aim of this
study is to estimate a more accurate confidence region by utilizing the equal density
approach.

3.1. Determining the Search Area for the Confidence Region. It is often
impossible to determine a function, which defines the bounds of the region, that
estimates a confidence region for bivariate arbitrary probability density functions.
To solve this problem, this study considers the confidence region to be polygonal
region. A polygonal region is a closed region which is formed by lines with com-
bining clockwise or counterclockwise set points. The determination of this region
on an infinite plane is often not possible due to the required computation time and
memory usage. To solve this problem, an approximate search area is determined
according to the probability density function within various situations, and thus
the confidence region can be estimated with greater accuracy in this region. The
determination of the search area for some probability density functions is given
below.

3.1.1. The Search Area for the Rectangular Definition Region. In Figure 1(a), the
probability density function of the discussed statistics is defined in a polygonal
(rectangular) region

(
Φ(x, y) : [a, b]× [c, d]→ R2

)
. Its search area(

Ω = {Pi = (xi, yi) , i = 1, 2, . . . , 4}
)
is described in Figure 1(b).

Figure 1. Determination of the search area of the rectangular
definition region, (a) Rectangular definition region, (b) Search
area.
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3.1.2. The Search Area for the Arbitrary Definition Region. In Figure 2(a), the
probability density function of the discussed statistics is defined in an arbitrarily
restricted area. This area can be taken from digital images, maps, satellite images
etc. There are many applications of bivariate density functions that are in a region
restricted by polygonal area. These applications include the analysis of pollution or
crime rate in a city, of the earthquake risk distribution and frequency in a country, of
the density of a certain tree species in a forest [15], of the intensity of the dispersion
of harmful insects in a field, of the traffi c density in a particular area and of the
location and transmission of an epidemic illness in a country. In addition, there
could be multiple piecewise density functions of the examined area in the polygonal
region. In this regard, the applications of bivariate density functions extend to many
physically and politically divided cities (eg. Belfast, Beirut, Jerusalem, Mostar and
Nicosia). That said, the data in the politically divided cities changes significantly
over time. In this case, it may not be possible to evaluate an entire city in the same
way that a region is evaluated. Each example may need statistical analysis based
on a probability density function that is defined within a region with arbitrarily
determined limits. A polygonal structure should be used to define an arbitrary
region. Manual or automatic identification can determine the nodes of the polygonal
area. In automatic identification, the examined region must be converted to a digital
image. The nodes of the objects in the digital images are automatically determined
by using the dominant point detection algorithm [16]. In this case, the search area,
Ω = {Pi = (xi, yi) , i = 1, 2, . . . , NΩ}, is defined as a polygonal region consisting of
N nodes.

Figure 2. Determination of the search area of the polygonal def-
inition region (a) Arbitrary definition region (African content) (b)
Converting the arbitrary region to the polygonal search area via
dominant points.
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Figure 3. Determination of the search area via the points which
are randomly generated from the distribution function, (a) Ran-
domly generated points in an infinite definition region (b) Defini-
tion of the polygonal search area consisting of the random points
(c) Determination of the rectangular search area on the boundaries
of the random points (d) Determination of the expanded search
area.

3.1.3. The Search Area for the Infinite Definition Region. The probability density
functions are often defined in an infinite or semi-infinite space. In this study, the
search area is determined as a finite region which has a higher confidence coeffi -
cient instead of an infinite region due to the diffi culty of searching within an infinite
region. In this regard, the proposed automatic solution requires generating a suffi -
ciently random number(point) from the probability density function in this region
(Figure 3(a)). This study proposes two approaches to determine the search area
via these random points [17].
The first approach defines a polygonal search area Ω = {Pi = (xi, yi) , i = 1, 2, . . . , NΩ}

(Figure 3(b)) in which each point in this convex polygon surrounds random points
called nodes The second approach determines a rectangular search area (Figure
3(c)) consisting of bounds of randomly generated numbers (Ω : [min (X),max (X)]×
[min (Y ),max (Y )]). However, in order to find the confidence region within the de-
sired level for each of these two approaches, generated numbers must be numerous
or selected search area must be expanded (Figure 3(c)).
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3.2. Triangulation of the Search Area. In this study, a polygonal approach is
proposed to find the confidence region within the search area. The equal density
approach can be only used to find the coordinates of the nodes of the polygonal
confidence region because there is no tail definition for equally area or equally
volume in the two-variable expression. In addition, the term of the shortest region
converts to the two objective optimization problem. In this optimization problem,
the reliability of computation is weak because there is no relationship between
objective functions. As the equal density approach creates polygonal closed curves
similar to contour curves, it becomes simpler to apply as compared to the other
approaches. In order to more quickly reach the solution in an infinite space, the
search area is divided into small triangles and then the nodes of the polygonal
confidence region are sought in the edges of these triangles.
If the search area has a polygonal structure, grid points that are created around

the polygon equidistantly in rectangular area are selected via the minimum and
the maximum coordinates of the polygon nodes. These points are then recorded
in a list (Figure 4(a)). Grid points that fall out of the polygon are removed from
the list. The remaining grid points and nodes within the polygon are recorded on
the same list, and obtained point set are divided into small triangles by using the
Delaunay triangulation algorithm [18] (Figure 4(b)). If the polygonal confidence
region needs to be more sensitively bound, then the region should be gridded more
closely and divided into more small triangles (Figure 5).

Figure 4. Dividing the polygonal area into small triangles, (a)
Choosing the grid points with the size 5×5 grid; (b) Triangulation
of the polygonal area.

When the number of grids increases, the sensitivity of confidence region also
increases. Computation time and memory usage also increase. Therefore, the
choice of the number of grids belongs to the researcher. However, it can be easily
applied if the search area has a rectangular shape.
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Figure 5. Dividing the polygonal area into small triangles, (a)
Choosing the grid points with the size 10× 10 grid; (b) Triangula-
tion of the polygonal area.

There are many studies in the literature about the optimal grid size for calcu-
lating numerical integration [19, 20, 21, 22]. Since this study is based on statistical
distributions, it is necessary to investigate whether the error is significant or not.
Selected statistical distributions can be used in many polygonal areas with different
parameters. Also, distributions in the real life may be mixed or truncated distribu-
tions. In that case, it must be multiplied by a constant c, for the summation of the
distribution value to be 1. Therefore, the constant c depends on the number of the
selected grids. The best approach is to select the number the grid size according to
the researcher’s purpose. Nevertheless, the following equation can be given as an
appropriate approach to determine the number of grids in each case.

I = arg min
i=1,2,...

∣∣∣∣Φi − Φi−1

Φi
− ε
∣∣∣∣ (7)

This equation gives the number of grids of two regions. Φi is the total volume of
the two grids and ε is the tolerance value.

3.3. Computing the Probability in the Polygonal Area. The volume be-
tween the surface of the bivariate probability density function, defined in polygonal
area and x-y plane, gives the sum of the probability value in the polygonal area.
Hence, the probability value is calculated for each triangle within the triangulated
polygonal region in order to estimate this volume. Analytical and numerical ap-
proaches for the calculation of the probability in the polygonal region are improved
by Kesemen et. al [15]

3.4. Determining the Polygonal Area for the Cutting Level. In this study,
the equal density approach is used to determine the confidence region from the
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probability density function which is defined in the polygonal area. To explain the
equal density approach, the model, shown in Figure 6, is chosen as an example.
Figure 6(a) shows the values of two variable probability density functions in a
polygonal area according to color changes. These color changes are shown in the
surface form in Figure 6(b).

Figure 6. Normal distribution which is limited by the African
continent, (a) Contour format; (b) Surface format.

Figure 7(a) shows the intersection of a plane at ζ level. It is selected parallel
to the x-y plane of the model given in Figure 6(b), with the probability density
function placed in a polygonal area. The probability density function, which is
intersected by ζ plane, returns to an area of zero under the plane. The area over
the plane remains the same (Figure 7(b)).

Figure 7. Cutting region, (a)Applying the cutting level to the
probability density function; (b) Partial probability density func-
tion in the cutting region.

Each line segment between two nodes in the triangulated search area is labeled.
Each labeled line segment and its neighbor nodes are recorded in a list. If the line
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segment is one of the edges of the polygon, it has only one neighbor node (Figure
8(a)). If not, it has two neighbor nodes (Figure 8(b)).

Figure 8. Labeling line segments, (a) Edge line segment and its
neighbor nodes; (b) Inner line segment and its neighbor nodes.

The bold line segment in Figure 8(a) is between P1 and P2. Since it is an edge of
the polygon, it has only one neighbor node (P3). The bold line segment in Figure
8(b) is between P1 and P2. Since it is not an edge of the polygon, it has two
neighbor nodes (P3 and P4).
Two-dimensional linear interpolation is used for the determination of the cutting

points of all lines cut by the ζ, which is chosen by employing the equal density
approach. According to interpolation, if the cutting point of each line is on the
line segment, it is recorded as the inner polygon node (Figure 9(a), Figure 10(a),
Figure 11(a)). These nodes Qζ : {qi = (xi, yi) , i = 1, 2, . . . , NQ} are listed by the
line segment labels. The inner polygon nodes must be labeled in order to form a
polygon. For this, in this study, the neighbor-tracking approach is used. According
to this approach, labeling is performed by tracking the cutting nodes on the line
segments (the dashed lines in Figure 11) in the neighbor nodes starting from an
initial point (Figure 9(b), Figure 10(b), Figure 11(b)). If all cutting nodes are on
the inner lines of the polygon, an inner polygon is formed by starting a random
node and tracking the desired direction (Figure 9).
However, some cutting nodes fall on the line segment (Figure 10). Any edge-

cutting node is chosen as the initial point. Then, tracking is performed from the
initial point to the inner cutting nodes. When an edge-cutting node is reached,
the tracking process continues until it reaches the initial cutting point. Thus, the
cutting polygon is determined. After tracking the second edge cutting node, the
edge node with the highest density value is most preferred. In Figure 10(b), this
node is shown in a square by label 20.
If the cutting points cut the edges piece by piece (Figure 11(a)), tracking is

performed from any edge cutting point to the inner nodes (Figure 11(a)). If an
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Figure 9. Inner polygon nodes according to selected cutting level,
(a) Inner polygon nodes; (b) Sequentially labeled inner polygon
nodes; (c) Inner polygon area.

Figure 10. Inner polygon nodes according to selected cutting
level, (a) Inner polygon nodes; (b) Sequentially labeled inner poly-
gon nodes; (c) Inner polygon area.

edge node is reached in the tracking process, the tracking is continued on the edge
node (Figure 11(a)) until another edge node is reached. If the reached node is not
on the tracking list, tracking is performed on the other nodes (Figure 11(a)). This
process is continued until the edge cutting node is on the tracking list (Figure 11).
Although the tracking process is finished, there are still unlabeled cutting nodes

remaining. This shows that there is more than one confidence region. In this case,
independent regions are determined by performing an independent tracking process
to the unlabeled nodes.

3.5. Finding the Confidence Region within the Search Area. There is a
relationship between the probability value (P ) of each level at the cutting region
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Figure 11. Inner polygon nodes according to selected cutting
level, (a) Inner polygon nodes; (b) Sequentially labeled inner poly-
gon nodes; (c) Inner polygon area.

and the cutting level (ζ). Based on this relationship, the probability value can be
written as a function of ζ below.

P (ζ) = Pr [(X,Y ) ∈ Qζ | φ (xi, yi) = ζ, i = 1, 2, . . . , NQ] (8)

In this approach, the bisection method is preferred in order to find the density
level (ζ) which gives the desired probability value (1− α). According to the bisec-
tion method, two initial values, given below, are determined as the minimum and
maximum value of the probability density value of all nodes.

ζa = min{φ (xi, yi)}, (i = 1, 2, ..., NT )

ζb = max{φ (xi, yi)}, (i = 1, 2, ..., NT )
(9)

The probabilities of these levels are expected to be as follows.

P (ζa) = 1

P (ζb) = 0
(10)

This only occurs if the distribution function of the polygonal region is the uniform
distribution. In this case, polygon points are collapsed inward or expanded outward
until the desired probability value is obtained. Eventually, polygonal bounds of the
region, which provide the desired confidence coeffi cient within a polygonal search
area, are determined.
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Algorithm 1. Algorithm of the determination of the polygonal confidence
Step 1. Determine polygon nodes of the search area,
Step 2. Divide the polygonal search area into small triangles by gridding the area,
Step 3. Label the line segment between two neighbor nodes, forming the triangles,
Step 4. Determine the lower and upper initial cutting levels (ζa, ζb)

as in Equation (9),
Step 5. Determine the search level ζc,

ζc = (ζa + ζb)/2
Step 6. Determine the locations of the line segments which are cut by search level,
Step 7. Determine the cutting region Qζ via cutting points,
Step 8. Apply the triangulation algorithm to the cutting region

after the gridding process,
Step 9. Calculate the probability value P (ζc) of the triangulated cutting region,
Step 10. If |P (ζc)− (1− α)| < ε, stop the process,
Step 11. Update the lower and the upper levels

If P (ζc) < (1− α)
ζb = ζc

else,
ζa = ζc

Step 12. Go to Step 5.

4. Experimental Results

In this study, three different examples are used to measure the performance
of the proposed method. The first example aims to determine the confidence re-
gion for the standard normal distribution that is defined in an infinite space. In
this example, the performance of the proposed method is shown by comparing the
polygonal confidence regions. The second example searches the confidence region
for the quadratic gamma distribution that is defined in a semi-infinite space. In
the third example, the performance of the proposed method for multimodal prob-
ability density function is also analyzed. The fourth example examines the degree
of influence by the northern Anatolian fault line of Sivas province.
For this study, a computer with an Intel R© Core i7 2.40GHz processor was used,

and MATLAB R© was used for the application. For all models, the contour that
passes the through the middle of the initially selected minimum and maximum
contours are determined in each iteration and then, the cumulative distribution
value of its region is calculated. Until the obtained value converges the desired
confidence level, the iterations are continued. The last found contour is assumed
the desired contour.

Example 1. This example determines the confidence region with the confidence
coeffi cients α = 0.01, 0.025, 0.05, 0.1 for the bivariate standard normal distribution
function defined in an infinite space. Its probability density function is given in
Equation (11).
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Table 1. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.474295
2 0.000000 0.076304 0.038152 0.762730 0.227270
3 0.000000 0.038152 0.019076 0.882182 0.107818
4 0.000000 0.019076 0.009538 0.940484 0.049516
5 0.000000 0.009538 0.004769 0.970907 0.019093
6 0.000000 0.004769 0.002385 0.985380 0.004620
7 0.000000 0.002385 0.001192 0.992541 0.002541
8 0.001192 0.002385 0.001788 0.988984 0.001016
9 0.001192 0.001788 0.001490 0.990809 0.000809

Table 2. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.459295
2 0.000000 0.076304 0.038152 0.762730 0.212270
3 0.000000 0.038152 0.019076 0.882182 0.092818
4 0.000000 0.019076 0.009538 0.940484 0.034516
5 0.000000 0.009538 0.004769 0.970907 0.004093
6 0.000000 0.004769 0.002385 0.985380 0.010380
7 0.002385 0.004769 0.003577 0.977459 0.002459
8 0.003577 0.004769 0.004173 0.974140 0.000860

φ (x, y) =
1

2π
e

(
− x2+y2

2

)
(11)

The search area is determined as Ω : [−4, 4] × [−4, 4]. Some probability values
may be outside of the region due to the conversion of the probability density function,
which is defined in an infinite space to the search area in a finite space. Therefore,
the probability value in the search area is calculated as 0.998. This probability value
can be suffi cient for the search area. The tolerance value (ε) is determined as
1 × 10−3 and the region is also gridded according to the number of 20 × 20 grids.
Table 1 shows the simulation results for the significance level 0.01.
According to Table 1, the confidence coeffi cient 0.99 was reached in the 9th it-

eration. The confidence regions obtained from each iteration are given in Figure
12(a). Figure 12(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 2.
According to Table 2, the confidence coeffi cient 0.975 was reached in the 8th

iteration. The confidence regions obtained from each iteration are given in Figure
13(a). Figure 13(b) demonstrates the optimum confidence region for α = 0.025.
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Figure 12. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Figure 13. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 3 shows the simulation results for the significance level 0.05.
According to Table 3, the confidence coeffi cient 0.95 was reached in the 9th it-

eration. The confidence regions obtained from each iteration are given in Figure
14(a). Figure 14(b) demonstrates the optimum confidence region for α = 0.05.
Table 4 shows the simulation results for the significance level 0.10.
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Table 3. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.434295
2 0.000000 0.076304 0.038152 0.762730 0.187270
3 0.000000 0.038152 0.019076 0.882182 0.067818
4 0.000000 0.019076 0.009538 0.940484 0.009516
5 0.000000 0.009538 0.004769 0.970907 0.020907
6 0.004769 0.009538 0.007154 0.956182 0.006182
7 0.007154 0.009538 0.008346 0.948216 0.001784
8 0.007154 0.008346 0.007750 0.952225 0.002225
9 0.007750 0.008346 0.008048 0.950226 0.000226

Figure 14. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

According to Table 4, the confidence coeffi cient 0.90 was reached in the 9th it-
eration. The confidence regions obtained from each iteration are given in Figure
15(a). Figure 15(b) demonstrates the optimum confidence region for α = 0.10.
In order to measure the performance of the proposed method, the confidence

regions for the standard normal distribution must be determined according to the
given confidence coeffi cients. As shown in Equation (11), the desired confidence
region is symmetrical in all directions. According to each of the three approaches
mentioned in Section 2, the confidence region has a circular structure. Thus, the
first parameter of the circle is the center point, (0, 0), as seen in Equation (11).
To find the other parameter, the radius, the probability density function should be
converted to the polar coordinate system from the Cartesian coordinate system. This
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Table 4. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.384295
2 0.000000 0.076304 0.038152 0.762730 0.137270
3 0.000000 0.038152 0.019076 0.882182 0.017818
4 0.000000 0.019076 0.009538 0.940484 0.040484
5 0.009538 0.019076 0.014307 0.912242 0.012242
6 0.014307 0.019076 0.016692 0.897226 0.002774
7 0.014307 0.016692 0.015499 0.904739 0.004739
8 0.015499 0.016692 0.016095 0.901006 0.001006
9 0.016095 0.016692 0.016394 0.899079 0.000921

Figure 15. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

function is converted as (12).

Φ (r, θ) =
1

2π

∫ θ

0

∫ r

0

e−
r2

2 r drdθ (12)

Equation (12) is updated to the following equation by integrating θ into the interval
[0, 2π]. θ is integrated due to the equality of the changes in each direction of the
probability density function.

Φ (r, 2π) = ΦR(r) =

∫ r

0

e−
r2

2 r dr (13)

The distribution function based on r is found below.

ΦR (r) = 1− e− r2

2 (14)
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Table 5. Radius sizes and relative absolute error

α rα Eα 100 (1− Eα)

0.01 3.0349 0.0197 98.0306
0.025 2.7162 0.0168 98.3199
0.05 2.4477 0.0144 98.5593
0.1 2.1460 0.0162 98.3779

The desired confidence region Ω is shown as (15).

Pr ((X,Y ) ∈ Ω) = 1− α
= ΦR (r)− ΦR(0)

(15)

In this equation, ΦR (0) = 0. Thus, Equation (16) is obtained by updating the
equation above.

ΦR (r) = 1− α

= 1− e− r2

2

(16)

The following equation is obtained when the equation above is updated.

rα =
√
−2 log (α) (17)

Through this equation, radius sizes with different α values are given Table 5.
In order to measure the performance of the proposed method, the radius that

results from Equation (17) should be compared with the confidence region determined
by employing the proposed method. In order to do this, the circle and the polygon
are superimposed in Figure 16(a). Also, to calculate more clearly the differences
between two shapes, the points on the circle are added to the polygon (Figure 16(b)).
The sectors are formed by the drawing of line segments from each polygon node to
the center of the circle. Then, the relative absolute error is calculated by determining
the ratio of the sum of the subtraction of the sectors and triangles with the entire
area of the circle (Figure 16(c)). It is demonstrated as follows.

Eα =

∑n
i=1 |Sectori − Trianglei|

πr2
α

(18)

The relative absolute error and percent performance rate for all significance values
are shown in Table 5.

Example 2. In this example, the aim is to determine the confidence regions for
bivariate Gamma distribution within a semi-infinite space. The probability density
function of the Gamma distribution is given as (19)

φ (x, y) =
1

4
x2y2 e−(x+y) (19)



294 ORHAN KESEMEN, EDA ÖZKUL, AND ÜLKÜ ÜNSAL

Figure 16. The calculation of the relative absolute error value,
(a) The theoretical confidence region boundary (dashed curve) with
the polygonal confidence region boundary (solid lines); (b) Deter-
mining the junction points of the boundaries (black points) and
recording them to polygonal array; (c) The determination of sec-
tors that draw lines from all points of the polygon to the center of
the circle and the determination of the differences with the sector
and the triangle (shaded area).

Table 6. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.523404
2 0.000000 0.036436 0.018218 0.720246 0.269754
3 0.000000 0.018218 0.009109 0.854392 0.135608
4 0.000000 0.009109 0.004554 0.922488 0.067512
5 0.000000 0.004554 0.002277 0.958070 0.031930
6 0.000000 0.002277 0.001139 0.976851 0.013149
7 0.000000 0.001139 0.000569 0.987064 0.002936
8 0.000000 0.000569 0.000285 0.991079 0.001079
9 0.000285 0.000569 0.000427 0.989236 0.000764

Table 6 shows the simulation results for the significance level 0.01.
According to Table 6, the confidence coeffi cient 0.99 was reached in the 9th it-

eration. The confidence regions obtained from each iteration are given in Figure
17(a). Figure 17(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 7.
According to Table 7, the confidence coeffi cient 0.975 was reached in the 9th

iteration. The confidence regions obtained from each iteration are given in Figure
18(a). Figure 18(b) demonstrates the optimum confidence region for α = 0.025.
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Figure 17. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 7. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.508404
2 0.000000 0.036436 0.018218 0.720246 0.254754
3 0.000000 0.018218 0.009109 0.854392 0.120608
4 0.000000 0.009109 0.004554 0.922488 0.052512
5 0.000000 0.004554 0.002277 0.958070 0.016930
6 0.000000 0.002277 0.001139 0.976851 0.001851
7 0.001139 0.002277 0.001708 0.967380 0.007620
8 0.001139 0.001708 0.001423 0.972095 0.002905
9 0.001139 0.001423 0.001281 0.974489 0.000511

Table 8 shows the simulation results for the significance level 0.05.
According to Table 8, the confidence coeffi cient 0.95 was reached in the 10th

iteration. The confidence regions obtained from each iteration are given in Figure
19(a). Figure 19(b) demonstrates the optimum confidence region for α = 0.05.
Table 9 shows the simulation results for the significance level 0.10.
According to Table 9, the confidence coeffi cient 0.90 was reached in the 10th

iteration. The confidence regions obtained from each iteration are given in Figure
20(a). Figure 20(b) demonstrates the optimum confidence region for α = 0.10.

Example 3. This example determines the confidence regions for mixture normal
distribution based on the African continent as a polygonal area. Based on the pixel
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Figure 18. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 8. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.483404
2 0.000000 0.036436 0.018218 0.720246 0.229754
3 0.000000 0.018218 0.009109 0.854392 0.095608
4 0.000000 0.009109 0.004554 0.922488 0.027512
5 0.000000 0.004554 0.002277 0.958070 0.008070
6 0.002277 0.004554 0.003416 0.940103 0.009897
7 0.002277 0.003416 0.002847 0.948978 0.001022
8 0.002277 0.002847 0.002562 0.953394 0.003394
9 0.002562 0.002847 0.002704 0.951218 0.001218
10 0.002704 0.002847 0.002775 0.950116 0.000116

length of the African continent, which is taken as a digital image, the probability
density function is given below.

φ (x, y) =
1

3300
e−

(x−120)2+(y−60)2
1000 +

1

4000
e−

(x−50)2+(y−125)2
700 (20)

Table 10 shows the simulation results for the significance level 0.01.
According to Table 10, the confidence coeffi cient 0.99 was reached in the 4th

iteration. The confidence regions obtained from each iteration are given in Figure
21(a). Figure 21(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 11.
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Figure 19. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 9. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.433404
2 0.000000 0.036436 0.018218 0.720246 0.179754
3 0.000000 0.018218 0.009109 0.854392 0.045608
4 0.000000 0.009109 0.004554 0.922488 0.022488
5 0.004554 0.009109 0.006832 0.888147 0.011853
6 0.004554 0.006832 0.005693 0.905481 0.005481
7 0.005693 0.006832 0.006262 0.896776 0.003224
8 0.005693 0.006262 0.005978 0.901152 0.001152
9 0.005978 0.006262 0.006120 0.898973 0.001027
10 0.005978 0.006120 0.006049 0.900064 0.000064

Table 10. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.476171
2 0.000000 0.000151 0.000076 0.811344 0.178656
3 0.000000 0.000076 0.000038 0.947257 0.042743
4 0.000000 0.000038 0.000019 0.990765 0.000765

According to Table 11, the confidence coeffi cient 0.975 was reached in the 5th

iteration. The confidence regions obtained from each iteration are given in Figure
22(a). Figure 22(b) demonstrates the optimum confidence region for α = 0.025.
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Figure 20. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Figure 21. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 12 shows the simulation results for the significance level 0.05.
According to Table 12, the confidence coeffi cient 0.95 was reached in the 9th

iteration. The confidence regions obtained from each iteration are given in Figure
23(a). Figure 23(b) demonstrates the optimum confidence region for α = 0.05.
Table 13 shows the simulation results for the significance level 0.10.
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Table 11. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.461171
2 0.000000 0.000151 0.000076 0.811344 0.163656
3 0.000000 0.000076 0.000038 0.947257 0.027743
4 0.000000 0.000038 0.000019 0.990765 0.015765
5 0.000019 0.000038 0.000029 0.975359 0.000359

Figure 22. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 12. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.436171
2 0.000000 0.000151 0.000076 0.811344 0.138656
3 0.000000 0.000076 0.000038 0.947257 0.002743
4 0.000000 0.000038 0.000019 0.990765 0.040765
5 0.000019 0.000038 0.000029 0.975359 0.025359
6 0.000029 0.000038 0.000033 0.963739 0.013739
7 0.000033 0.000038 0.000036 0.956269 0.006269
8 0.000036 0.000038 0.000037 0.951965 0.001965
9 0.000037 0.000038 0.000037 0.949513 0.000487

According to Table 13, the confidence coeffi cient 0.90 was reached in the 9th

iteration. The confidence regions obtained from each iteration are given in Figure
24(a). Figure 24(b) demonstrates the optimum confidence region for α = 0.10.



300 ORHAN KESEMEN, EDA ÖZKUL, AND ÜLKÜ ÜNSAL

Figure 23. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 13. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.386171
2 0.000000 0.000151 0.000076 0.811344 0.088656
3 0.000000 0.000076 0.000038 0.947257 0.047257
4 0.000038 0.000076 0.000057 0.881265 0.018735
5 0.000038 0.000057 0.000047 0.914899 0.014899
6 0.000047 0.000057 0.000052 0.898041 0.001959
7 0.000047 0.000052 0.000050 0.906344 0.006344
8 0.000050 0.000052 0.000051 0.902225 0.002225
9 0.000051 0.000052 0.000051 0.900138 0.000138

Example 4. In this example, earthquake risk distribution of Sivas province is mod-
eled linearly according to North Anatolian fault line [23] and its confidence region
is estimated. Based on the pixel length of the Sivas province, which is taken as a
digital image, the probability density function is given below.

φ (x, y) =
155−

∣∣(x− 150) cos
(

17π
12

)
+ (y − 160) sin

(
17π
12

)∣∣
1.6× 106 (21)

In (21), the decreasing earthquake intensity risk in the direction parallel to the
fault line is modeled as a linear decreasing probability density function with respect
to the fault line.
Table 14 shows the simulation results for the significance level 0.01.
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Figure 24. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 14. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.184462
2 0.000000 0.000049 0.000024 0.980396 0.009604
3 0.000000 0.000024 0.000012 0.995995 0.005995
4 0.000012 0.000024 0.000018 0.989925 0.000075

Table 15. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.169462
2 0.000000 0.000049 0.000024 0.980396 0.005396
3 0.000024 0.000049 0.000037 0.919918 0.055082
4 0.000024 0.000037 0.000031 0.958831 0.016169
5 0.000024 0.000031 0.000028 0.971512 0.003488
6 0.000024 0.000028 0.000026 0.976528 0.001528
7 0.000026 0.000028 0.000027 0.974098 0.000902

According to Table 14, the confidence coeffi cient 0.99 was reached in the 4th

iteration. The confidence regions obtained from each iteration are given in Figure
25(a). Figure 25(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 15.
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Figure 25. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

According to Table 15, the confidence coeffi cient 0.975 was reached in the 7th

iteration. The confidence regions obtained from each iteration are given in Figure
26(a). Figure 26(b) demonstrates the optimum confidence region for α = 0.025.

Figure 26. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 16 shows the simulation results for the significance level 0.05.
According to Table 16, the confidence coeffi cient 0.95 was reached in the 6th

iteration. The confidence regions obtained from each iteration are given in Figure
27(a). Figure 27(b) demonstrates the optimum confidence region for α = 0.05.
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Table 16. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.144462
2 0.000000 0.000049 0.000024 0.980396 0.030396
3 0.000024 0.000049 0.000037 0.919918 0.030082
4 0.000024 0.000037 0.000031 0.958831 0.008831
5 0.000031 0.000037 0.000034 0.941625 0.008375
6 0.000031 0.000034 0.000032 0.950717 0.000717

Figure 27. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 17. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.094462
2 0.000000 0.000049 0.000024 0.980396 0.080396
3 0.000024 0.000049 0.000037 0.919918 0.019918
4 0.000037 0.000049 0.000043 0.869624 0.030376
5 0.000037 0.000043 0.000040 0.896214 0.003786
6 0.000037 0.000040 0.000038 0.908369 0.008369
7 0.000038 0.000040 0.000039 0.902369 0.002369
8 0.000039 0.000040 0.000039 0.899311 0.000689

Table 17 shows the simulation results for the significance level 0.10.



304 ORHAN KESEMEN, EDA ÖZKUL, AND ÜLKÜ ÜNSAL

According to Table 17, the confidence coeffi cient 0.90 was reached in the 8th

iteration. The confidence regions obtained from each iteration are given in Figure
28(a). Figure 28(b) demonstrates the optimum confidence region for α = 0.10.

Figure 28. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

5. Conclusions

This study proposes a practical method to in the attempt to modify the univari-
ate probability density functions into the bivariate probability density functions.
In the proposed method, the polygonal area is firstly separated into grids and then
triangulation is applied. If the number of grids increases the performance of method
can increase as well. According to the examples, the performance of the proposed
method is considerably high. In addition, the proposed method provides a solution
for infinite, semi-infinite and polygonal restricted areas. According to this method,
the confidence region is found no matter how complex the distribution function.
Confidence regions cannot be as precisely calculated in many applications. There-
fore, the proposed method gives more effi cient results for multimodal probability
density functions.
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LIGHTLIKE HYPERSURFACES AND LIGHTLIKE FOCAL SETS
WITH RESPECT TO BISHOP FRAME IN 4-DIMENSIONAL

MINKOWSKI SPACE E41

ZEHRA OZDEMIR

Abstract. In this article, light-like hypersurfaces which are derived by null
Cartan curves are examined and discussed. The singularities of lightlike hy-
persurfaces and light-like focal sets are investigated by using the Bishop frame
on the Null Cartan curves. We obtain that the types of these singularities
and the order of contact between the null Cartan curves are closely related
to the Bishop curvatures of the null Cartan curves. Moreover, two examples
of light-like hypersurfaces and light-like focal sets are given to illustrate our
theoretical results.

1. Introduction

In 4-dimensional Minkowski space, due to the causal character there are three
categories of vectors, namely, space-like, time-like and light-like (null) ones. There-
fore, hypersurfaces of a Lorentzian manifold (M, g) can be of three types(see [16]):
Space-like, time-like and light-like (null) hypersurfaces. Especially, the geometry of
light-like hypersurfaces becomes more diffi cult and is completely different from that
of the space-like and time-like hypersurfaces. In the case of light-like (degenerate,
null) hypersurfaces, the situation is totally different. The normal bundle TM⊥ is
a rank-one distribution on M : TM⊥ ⊂ TM . It is also coincides with the radical
distribution RadTM = TM ∩TM⊥. Therefore, the induced metric g is degenerate
on M and it has a constant rank n. Therefore, these hypersurfaces are usually
used in modeling objects that are diffi cult to understand. In particular, light-like
hypersurfaces are of interest to physicists because Kerr black holes, and various
horizons can be modeled with these hypersurfaces [2, 4, 10, 11, 13, 17, 18, 20, 24].
Moreover, these hypersurfaces are used in the electromagnetism theory [19, 21].
Nersessian and Ramos have shown that there is a geometric particle-model based
on the geometry of null curves in Minkowski 4-space [14]. Moreover, they studied
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the geometric particle model related to the null curves in Minkowski 3-space [15].
Duggal et.al. gave various fundamental works for the differential geometry theory
of light-like submanifolds [5, 6, 7, 8].
On the other hand, the use of differential geometry in the singularity theory was

first demonstrated by Thom in 1965. This study provides a connection between
physics and geometry. Then, in 1998, Akivis et al. investigate the singular points of
light-like hypersurfaces of the de Sitter space Sn+1 [1]. The singularities of light-like
surface and hypersurfaces have been studied in [22, 23].
In this study, the singularities of the hypersurfaces are defined by using the

Bishop frame of the null Cartan curve in Minkowski 4−space. We will classify
singular points of light-like hypersurfaces and light-like focal sets. We have also
shown that the types of these singularities are closely related to the curvatures of
the Bishop Cartan curvatures. Finally, we visualized light-like hypersurfaces and
light-like focal set to demonstrate our theoretical results.

2. Preliminaries

The 4-dimensional Minkowski space-time is a real vector space E41 furnished with
a symmetric non-degenerate (0,2) tensor field g with constant index. The metric
tensor g on E41 with the signature (-,+,+,+) has the form

g(x, y) = −x1y1 + x2y2 + x3y3 + x4y4
for any two x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in E41.
A non-zero vector x of E41 is called space-like if g(x, x) > 0, time-like if g(x, x) < 0

and null if g(x, x) = 0. Any two vectors x, y ∈ E41 are called orthogonal if g(x, y) =
0. Any two null vectors are called orthogonal on the condition that they are linearly
dependent.
Let α : I → E41; w → α(w) be a smooth curve in E41. Then the tangent vector

of the curve denoted by

t =
dα

dw
.

The curve α is said to be a null (isotropic or light-like ) curve iff locally at each
point it satisfies

g(
dα

dw
,
dα

dw
) = 0.

The null curve parameterized by the pseudo-arc parameter s denoted by

s(w) =

w∫
0

g(α′′(w), α′′(w))dw.

is called as a null Cartan Curve. The Cartan frame {t, n, b1, b2} along the non-
geodesic null Cartan curve α satisfies the following Cartan frame equations

t′ = k1n

n′ = −k2t+ k1b1
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b′1 = −k2n+ k3b2
b′2 = k3t

here k1(s), k2(s) and k3(s) are Cartan curvature functions and the first Cartan
curvature k1(s) = 1 in pseudo-arc parameter s. The null Cartan curve is called
a null Cartan cubic on the condition that the second Cartan curvature satisfies
k2(s) = 0. Moreover, we have the following relations

g(t, t) = g(b1, b1) = 0, g(n, n) = g(b2, b2) = 1,

g(t, n) = g(t, b2) = g(n, b1) = g(b1, b2) = 0, g(t, b1) = −1

[9].

Definition 1. The Bishop frame {t1, n1, n2, n3} of a null Cartan curve in E41 is
positively oriented pseudo-orthonormal frame. It contains a tangential vector field
t1, two relatively parallel space-like normal vector fields n1 and n3, and a relatively
parallel light-like transversal vector field n2. These vectors have satisfy the following
conditions

g(t1, t1) = g(n2, n2) = 0, g(n1, n1) = g(n3, n3) = 1,

g(t1, n1) = g(n1, n2) = g(n1, n3) = g(n2, n3) = 0, g(t1, n2) = −1

[12].

Theorem 2. Let α be a null Cartan curve in E41 with the Cartan curvatures k1(s) =
1, k2(s) and k3(s) = 0. Then the Bishop frame {t1, n1, n2, n3} and the Cartan frame
{t, n, b1, b2} of α have the following relation

t1
n1
n2
n3

 =


1 0 0 0
−σ2 1 0 0
σ22
2 −σ2 1 0
0 0 0 1




t
n
b1
b2

 (2.1)

and the Bishop frame derivative formulas are given as
t′1
n′1
n′2
n′3

 =

σ2 σ1 0 0
0 0 σ1 0
0 0 −σ2 0
0 0 0 0



t1
n1
n2
n3

 .
where the first Bishop curvature σ1(s) = 1, the third Bishop curvature σ3(s) = 0
and the second Bishop curvature satisfies the following differential equation

σ′2(s) = −
1

2
σ22(s)− k2(s)

[12].
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Particularly, the relation for cross products of the Bishop frame vector fields are

t1 × n1 × n2 = −n3; t1 × n1 × n3 = −t1;
t1 × n3 × n2 = n1; n1 × n2 × n3 = −n2

[12].

Theorem 3. Let α be a null Cartan curve in E41 with the Cartan curvatures k1(s) =
1, k2(s) and k3(s) 6= 0. Then the Bishop frame vectors {t1, n1, n2, n3} and the
Cartan frame vectors {t, n, b1, b2} of α are given by the following relation

t1
n1
n2
n3

 =


1 0 0 0

−σ1σ2 − σ3
√
σ′21 + σ

′2
3 σ1 0 σ3

σ22+σ
′2
1 +σ

′2
3

2 −σ2 1 −
√
σ′21 + σ

′2
3

σ2σ3 − σ1
√
σ′21 + σ

′2
3 −σ3 0 σ1




t
n
b1
b2

 (2.2)

where the Bishop frame derivative formulas are presented as
t′1
n′1
n′2
n′3

 =

σ2 σ1 0 −σ3
0 0 σ1 0
0 0 −σ2 0
0 0 −σ3 0



t1
n1
n2
n3

 .
where the first Bishop curvature σ1(s) = sinφ(s), the second Bishop curvature
satisfies the differential equation

σ2(s) =
k3(s)− φ′′(s)

φ′(s)
, φ′(s) 6= 0

the third Bishop curvature σ3(s) = cosφ(s) and the function φ(s) satisfies the
differential equation

2φ′(φ′′′ − k′3) + 2φ′′(k3 − φ′′) + φ′4 − (k3 − φ′′)2 − 2k2φ′2 = 0

where φ(s) /∈ {π2 + kπ, kπ}, k ∈ Z [12].

Definition 4. The map DG±C(u, θ) is called as de Sitter Gauss image of C = α(I)
with respect to Bishop frame in E41 and defined as

DGC = U × R→ S31; DGC(s, η, θ) = ηt1(s) + cos θn1(s) + sin θn3(s).

Definition 5. The light-like hypersurfaces along C with respect to Bishop frame in
E41 defined by

LHC : U × R→E41; LHα(s, η, θ) = α(s) + DGC(s, η, θ).

In the following section we derive the light-like hypersurfaces along C and inves-
tigate the singularities of the light-like hypersurfaces.
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3. Lightlike Hypersurfaces and Singularities

Let α : I → E41 be a null Cartan curve with the Bishop frame apparatus
{t1, n1, n2, n3} . Then the light-like distance squared function is defined as

d(p, ξ) = g(ξ − α(s), ξ − α(s))− 1
here p = α(s) for any fixed ξ0 ∈ E41, we have

ζ(p) = ζξ0(p) = d(p, ξ0).

If we take derivative of the last equation we get

ζ ′(p) = −2g(t1(s), ξ0 − α(s)).
Then, we calculate the discriminant set of the light-like squared function d as follows

Dd = {ξ = α(s) + ηt1(s) + cos θn1(s) + sin θn3(s) : θ ∈ [0, 2π), s ∈ I, η ∈ R} .
It is called as image of the light-like hypersurface along C. The second derivative
of the function ζ(p) calculated

ζ ′′(p) = −2g(T ′1(s), ξ0 − α(s)))
= −2g((σ2(s)t1(s) + σ1(s)n1(s)− σ3(s)n3(s)), cos θn1(s) + sin θn3(s)))
= −2σ1(s) cos θ + 2σ3(s) sin θ

from the Bishop frame equation which give following two case
Case 1. σ3(s) = 0,

ζ(p) = ζ ′(p) = ζ ′′(p) = 0

iff
cos θ = 0.

Case 2. σ3(s) 6= 0,
ζ(p) = ζ ′(p) = ζ ′′(p) = 0

iff

tan θ =
σ1(s)

σ3(s)
.

Using the Bishop curvature equation we obtain

θ = φ(s) + kπ, k ∈ Z.
Therefore, singular points of the light-like hypersurfaces are points satisfy
(i) If cos θ = 0 then the singular point of the light-like hypersurface is ξ0 =

α(s0) + η0t1(s)∓ n3(s) for η0 ∈ R. Then we obtain the light-like focal sets as

LFS±C =
{
ξ = α(s) + DGC(s, η, π ±

π

2
) : s ∈ I, η ∈ R

}
(ii) If θ = φ+ kπ, k ∈ Z then the singular points of the light-like hypersurfaces

are points ξ0 = α(s0) + η0t1(s) + cos θn1(s) + sin θn3(s).
Then we obtain the light-like focal sets as

{LFSC = ξ = α(s) + DGC(s, η, φ(s) + kπ, ) : k ∈ Z, s ∈ I, η ∈ R}
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Using the above characterizations we obtain the following proposition.

Proposition 6. Let α be a curve null Cartan curve with the Bishop frame {t1, n1, n2, n3} .
Then we have following three condition
1. h(p) = ζ ′(p) = 0 iff there exist θ0 ∈ [0, 2π) and η0 ∈ R such that

ξ0 − p0 = ηt1(s0) + cos θn1(s0) + sin θn3(s0).

2. i. If σ3(s) = 0, then we have,
ζ(p) = ζ ′(p) = ζ ′′(p) = 0 iff there exist θ0 = π ± π

2 and η0 ∈ R such that
ξ0 − p0 = η0t1(s0)± n3(s0).

ii. If σ3(s) 6= 0, then we have,
ζ(p) = ζ ′(p) = ζ ′′(p) = 0 iff there exist θ0 = φ(s) + kπ, k ∈ Z and η0 ∈ R such that

ξ0 − p0 = ηt1(s) + cos(φ(s) + kπ)n1(s) + sin(φ(s) + kπ)n3(s).

3.i. If σ3(s) = 0, then we have,
ζ(p) = ζ ′(p) = ζ ′′(p) = ζ ′′′(p) = 0 iff there exist θ0 = π ± π

2 and η0 = 0 such that

ξ0 − p0 = ±n3(s0).

ii. If σ3(s) 6= 0, then we have,
ζ(p) = ζ ′(p) = ζ ′′(p) = ζ ′′′(p) = 0 iff there exist θ0 = φ0 =

π
4 + 2kπ, k ∈ Z and

η0 = 0 such that

ξ0 − p0 = ηt1(s) + cos(
π

4
+ 2kπ)n1(s) + sin(

π

4
+ 2kπ)n3(s).

4. If ζ(p) = ζ ′(p) = ζ ′′(p) = ζ ′′′(p) then we have ζ(4)(p) 6= 0.

Definition 7. Let α : I → E41 be a null Bishop Cartan curve in E41. Then, the
pseudo-sphere that have five-point contact with α is said to be the osculating pseudo-
sphere of α [3].

Corollary 8. Let α : I → E41 be a null Bishop Cartan curve in E41. Then the curve
α has not fife-point contact with osculating pseudo-sphere.

Proposition 9. If ζξ0(s0) has Ak−singularity at s0 (k = 1, 2, 3, 4) then it is a
versal unfolding of ζξ0(s0).

Proof. Let we give

α(s) = (x1(s), x2(s), x3(s), x4(s)), ξ(s) = (ξ1, ξ2, ξ3, ξ4)

in E41. Then we know that if h(s) has A1 singularity at s0 then we have

δ1 = (−2(ξ1 − x1(s0)),−2(ξ2 − x2(s0)),−2(ξ3 − x3(s0)),−2(ξ4 − x4(s0)))
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Since ξ − α(s) ∈ S31,ξwe calculate that rankδ1 = 1
Let we assume that hξ0(s0) has Ak−singularity at s0 (k = 2, 3, 4) then we have the
following matrix form

δ2 =


(ξ1 − x1(s0) ξ2 − x2(s0) ξ3 − x3(s0) ξ4 − x4(s0)
x′1(s0) x′2(s0) x′3(s0) x′4(s0)
x′′1(s0) x′′2(s0) x′′3(s0) x′′4(s0)
x′′′1 (s0) x′′′2 (s0) x′′′3 (s0) x′′′4 (s0)


this give following two condition
i. If σ(3) 6= 0 then we have

ξ − α(s) = ηt1(s) + cos(φ(s) + kπ)n1(s) + sin(φ(s) + 2π)n3(s).

The determinant of the matrix δ2 calculated as

det δ2 = g((ξ − α(s))× α′(s)× α′′(s), α′′′(s))
= g(ηt1(s) + cos(φ(s) + kπ)n1(s)

+ sin(φ(s) + kπ)n3(s))× t1(s)× (σ2(s)t1(s) + σ1(s)n1(s)− σ3(s)n3(s))
, (σ′2(s) + σ

2
2(s))t1(s) + (σ

′
1(s) + σ1(s)σ2(s))n1(s)

+(σ21(s) + σ
2
3(s))n2(s)− (σ′3(s) + σ3(s)σ2(s))n3(s))

= g(−σ3 cos(φ(s) + kπ)n1(s)× T1(s)× n3(s)
+σ1 sin(φ(s) + kπ)n3(s)× t1(s)× n1(s),
, (σ′2(s) + σ

2
2(s))t1(s) + (σ

′
1(s) + σ1(s)σ2(s))n1(s)

+(σ21(s) + σ
2
3(s))n2(s)− (σ′3(s) + σ3(s)σ2(s))n3(s))

= g(−σ3 cos(φ(s) + kπ)t1(s)− σ1 sin(φ(s) + kπ)t1(s)
, (σ′2(s) + σ

2
2(s))t1(s) + (σ

′
1(s) + σ1(s)σ2(s))n1(s)

+(σ21(s) + σ
2
3(s))n2(s)− (σ′3(s) + σ3(s)σ2(s))n3(s))

from the Bishop curvature equation we calculated as

det δ2 = cos(kπ) = ±1.

ii. If σ(3) = 0 then we have

ξ − α(s) = ηt1(s)± n3(s).
The determinant of the matrix δ2 calculated as

det δ2 = g((ξ − α(s))× α′(s)× α′′(s), α′′′(s))
= g((ηt1(s)± n3(s))× t1 × (σ2t1 + σ1N1)

, (σ′2 + σ
2
2)t1 + (σ

′
1 + σ1σ2)n1 + σ

2
1n2)

from the Bishop curvature equation we calculated as

det δ2 = ±1.
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This gives det δ2 6= 0. These complete the proof. �

Now we may give the following main theorem.
Let α : I → E41 be a null Cartan curve with the Cartan Bishop frame {t1, n1, n2, n3}

in E41. Then the lightlike hypersurfaces LHC(s, µ, θ) = α(s) + µt(s) + cos θ n1(s) +
sin θ n3(s), satisfy the following assertions:
1.The pseudosphere S31,ξ0 and the null Bishop Cartan curve α have at least a two-
point contact.
2. i. The pseudosphere S31,ξ0 and the null Bishop Cartan curve α have a three-point
contact iff there exist θ0 = π ± π

2 and η0 ∈ R such that

ξ0 − p0 = η0t1(s0)± n3(s0).

where the third Bishop curvature σ3(s) = 0.
ii. the pseudosphere S31,ξ0 and the null Bishop Cartan curve α have a three-point
contact iff there exist θ0 = φ(s) + kπ, k ∈ Z and η0 ∈ R such that

ξ0 − p0 = ηt1(s) + cos(φ(s) + kπ)n1(s) + sin(φ(s) + kπ)n3(s)

where the third Bishop curvature σ3(s) 6= 0.
Remark 1.Under this condition the light-like focal set LFS±C is non-singular. In
addition, the light-like hypersurfaces is locally diffeomorphic to C(2, 3)×R2 at ξ0.
3. i. The pseudosphere S31,ξ0 and the null Bishop Cartan curve α have a four-point
contact on the condition that there exist θ0 = π ± π

2 and η0 = 0 such that

ξ0 − p0 = ±n3(s0).

where the third Bishop curvature σ3(s) = 0.
ii. The pseudosphere S31,ξ0 and the null Bishop Cartan curve α have a four-point
contact on the condition that there exist θ0 = φ0 =

π
4 + 2kπ, k ∈ Z and η0 = 0

such that

ξ0 − p0 = ηt1(s) + cos(
π

4
+ 2kπ)n1(s) + sin(

π

4
+ 2kπ)n3(s)

where the third Bishop curvature σ3(s) 6= 0.
Remark 2.Under this condition the critical value set of the LFSC is a regular
curve and the focal set LFSC is locally diffeomorphic to C(2, 3, 4)× R2. Also, the
light-like hypersurfaces is locally diffeomorphic to SW × R at ξ0.
4. The null Bishop Cartan curve α and pseudosphere S31,ξ0 not have five-point
contact.
In this section we provide two examples in E41. The first example is given for the

case of σ3(s) 6= 0 and the second example is for the case of σ3(s) = 0, to verify the
given theory.
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4. Applications

Example 10. Let α be a following parameterized curve in E41

α(s) = (sinh
s√
2
,
1√
3
sin

√
3s√
2
, cosh

s√
2
,− 1√

3
cos

√
3s√
2
)

[12]. Then the parallel transport frame of the curve α calculated as follows:

t1 = (
1√
2
cosh

s√
2
,
1√
2
cos

√
3s√
2
,
1√
2
sinh

s√
2
,
1√
2
sin

√
3s√
2
)

n1 =



(− 12 sin
√
3s√
2
−
√
3
2 cos

√
3s√
2
) cosh s√

2
+ 1

2 sin
√
3s√
2
sinh s√

2

+ 3
2
√
3
cos

√
3s√
2
sinh s√

2
,

(− 12 sin
√
3s√
2
−
√
3
2 cos

√
3s√
2
) cos

√
3s√
2
−
√
3
2 sin

√
3s√
2
sin
√
3s√
2

+ 1
2 cos

√
3s√
2
sin
√
3s√
2
,

(− 12 sin
√
3s√
2
−
√
3
2 cos

√
3s√
2
) sinh s√

2
+ 1√

2
sin
√
3s√
2
cosh s√

2

+ 3
2
√
3
cos

√
3s√
2
cosh s√

2
,

(− 12 sin
√
3s√
2
−
√
3
2 cos

√
3s√
2
) sin

√
3s√
2
+
√
3
2 sin

√
3s√
2
cos

√
3s√
2

− 12 cos
√
3s√
2
cos

√
3s√
2


n2 = (

√
2 cosh

s√
2
−
√
2 sinh

s√
2
, 0,
√
2 sinh

s√
2
−
√
2 cosh

s√
2
)

n3 =



( 12 cos
√
3s√
2
−
√
3
2 sin

√
3s√
2
) cosh s√

2
− 1

2 cos
√
3s√
2
sinh s√

2

+ 3
2
√
3
sin
√
3s√
2
sinh s√

2
,

( 12 cos
√
3s√
2
−
√
3
2 sin

√
3s√
2
) cos

√
3s√
2
+
√
3
2 cos

√
3s√
2
sin
√
3s√
2

+ 1
2 sin

√
3s√
2
sin
√
3s√
2
,

( 12 cos
√
3s√
2
−
√
3
2 sin

√
3s√
2
) sinh s√

2
− 1√

2
cos

√
3s√
2
cosh s√

2

+ 3
2
√
3
sin
√
3s√
2
cosh s√

2
,

( 12 cos
√
3s√
2
−
√
3
2 sin

√
3s√
2
) sin

√
3s√
2
−
√
3
2 cos

√
3s√
2
cos

√
3s√
2

− 12 sin
√
3s√
2
cos

√
3s√
2


We can give the light-like hypersurface as the form LHC(s, µ, θ) = α(s) +µT1(s) +
cos θ n1(s)+sin θ n3(s). When µ = 0, it is a ruled hypersurface derived by using the
null parallel transport frame. We draw the projections of surface LHC(s, 0, θ) on
3-dimensional space. Also, we plotted the projections of the critical value focal set
LFC(s, 0, π4 ) on 3 dimensional space illustrated in Figure 2. Thus, we may provide
the clue for the image of the light-like hypersurface LHC(s, 0, θ) with view of the
null parallel transport frame via these projections.

Remark 2. The yellow-orange parts correspond to the Focal set LFSC(s, η, π4 ),
s ∈ I, η ∈ R, the red parts correspond to the critical value set LFC(s, 0, π4 ).
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Figure 1. Projections of surface LHC(s, 0, θ) on 3-dimensional space.

Figure 2. Projections of critical value set LFC(s, 0, π4 ) on 3-
dimensional space.

Example 11. Let α be a following parameterized curve in E41

α(s) =


1
6s
3 + 1

2s,
1
6s
3 − 1

2s,
− 1
5 s

2+ 4
5 s

2 tan( 12 ln s)+
1
5 tan

2( 12 ln s)

1+tan2( 12 ln s)
,

2
5 s

2+ 2
5 s

2 tan( 12 ln s)−
2
5 tan

2( 12 ln s)

1+tan2( 12 ln s)


[23]. Then the parallel transport frame of the curve α calculated as follows:

t =

√
2

2
(
1

2
s2 +

1

2
,
1

2
s2 − 1

2
, s sin(ln s), s cos(ln s))
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n1 =


(
√
6s
√
3−1

c+s
√
3
)( 12s

2 + 1
2 ) +

√
2
2 s,

(
√
6s
√
3−1

c+s
√
3
)( 12s

2 − 1
2 ) +

√
2
2 s,

(
√
6s
√
3−1

c+s
√
3
)s sin(ln s) +

√
2
2 (cos(ln s) + sin(ln s)),

(
√
6s
√
3−1

c+s
√
3
)s cos(ln s) +

√
2
2 (cos(ln s)− sin(ln s)



n2 =



(
√
6s
√
3−1

c+s
√
3
)2( 14s

2 + 1
4 )− (

√
6s
√
3−1

c+s
√
3
)
√
2
2 s−

5
√
2

8 −
√
2

8s2 ,

(
√
6s
√
3−1

c+s
√
3
)2( 14s

2 − 1
4 )− (

√
6s
√
3−1

c+s
√
3
)
√
2
2 s−

5
√
2

8 +
√
2

8s2 ,

(
√
6s
√
3−1

c+s
√
3
)2 s sin(ln s)2 − (

√
6s
√
3−1

c+s
√
3
)
√
2
2 (cos(ln s) + sin(ln(s)))

−
√
2
4s (2 cos(ln s)− sin(ln s)),

(
√
6s
√
3−1

c+s
√
3
)2 s cos(ln s)2 − (

√
6s
√
3−1

c+s
√
3
)
√
2
2 (cos(ln s)− sin(ln(s))

+
√
2
4s (2 sin(ln s) + cos(ln s))


n3 =

√
2

4
(s− 1

s
, s+

1

s
,−2 cos(ln s)), 2 sin(ln s)

We can give the light-like hypersurface as the form LHC(s, µ, θ) = α(s) +µT1(s) +
cos θ N1(s)+sin θ N3(s), when µ = 0,is a ruled hypersurface generated by using the
null parallel transport frame. We draw the projections of surface LHC(s, 0, θ) on
3-dimensional space. Also, we illustrated the projections of the critical value Focal
set LFC÷(s, 0, π ± π

2 ) on 3 dimensional space illustrated in Figure 3 and Figure 4.
Thus, we can obtain the information for the image of the hypersurface LHC(s, 0, θ)
with view of the null parallel transport frame via these projections.

Figure 3. Projections of the hypersurface LHC(s, 0, θ) on 3-
dimensional space.
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Figure 4. Projections of focal Set LFS+C(s, η, π +
π
2 ) on 3-

dimensional space.

Figure 5. Projection of LFS−C(s, η, π − π
2 ) on 3-dimensional space.

Remark 4.The yellow-orange parts correspond to the focal set LFS±C(s, η, π±π
2 ),

s ∈ I, η ∈ R, the red parts correspond to the critical value focal set LFS±C(s, η, π±
π
2 ).
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PRO-C COMPLETIONS OF CROSSED SQUARES OF
COMMUTATIVE ALGEBRAS

HATICE GÜLSÜN AKAY

Abstract. In this paper we give the explicit construction of a pro-C comple-
tion functor which is defined in the category of crossed squares of commutative
algebras. Afterwards, we study some functorial properties of this pro-C com-
pletion process.

1. Introduction

A profinite group [9] occurs in a wide range of problems related to number the-
ory, commutative algebra, algebraic geometry and algebraic topology. Although
the category of profinite groups forms a natural extension of the category of fi-
nite groups, it carries a richer structure. Because it has some categorical objects
and constructions which do not exist in finite case; e.g. projective limits and free
products. The existence of such constructions in extended category leads to the
definition of profinite analogues of the usual constructions of combinatorial group
theory, such as free groups and presentations of group by generators and relations.

The theory of crossed modules [10] plays an important role in combinatorial and
cohomological group theory. Profinite crossed modules are introduced in [7]. They
examined the pro-C completion of crossed modules for a full class of finite groups C.
The crossed square version of this completion process is given in [3]. The definition
of crossed modules over a commutative algebra is given in [8]; also see [5] for the
general case. Crossed squares in the category of commutative algebras studied in
[1, 4].

2. Preliminaries

In this paper, k will be a fixed commutative ring with 1 6= 0 for abstract cases
and k will be a fixed commutative profinite ring with 1 6= 0 for topological cases.

Received by the editors: April 22, 2019; Accepted: October 17, 2019.
2010 Mathematics Subject Classification. 18G30, 18G55.
Key words and phrases. Crossed square, pro-C crossed square, pro-C completion.

c©2020 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

320



PRO-C COMPLETIONS OF CROSSED SQUARES 321

All k-algebras will be commutative and associative. C will denote a class of finite k-
algebras which is closed under the formation of subalgebras, homomorphic images,
finite products and which contains at least one non-trivial algebra. Pro-C algebras
are profinite algebras whose finite quotients are in C. The class C will be assumed
to be full in the sense that C must also be closed under extension of algebras.

Throughout this paper we denote an action of P on M by pm, where P and M
are k-algebras. We recall the definition of a crossed module, and its pro-C analogue.

A crossed module [8] is a k-algebra homomorphism ∂ : M → P together with an
action of P on M such that following two Peiffer relations hold (for all m,m′ ∈M
and p ∈ P ):

CM1) ∂(pm) = p∂(m),
CM2) ∂(m)m′ = mm′.

We denote such a crossed module by (M,P, ∂).

If (M,P, ∂) and (M ′, P ′, ∂′) are two crossed modules, a crossed module mor-
phism (φ, ψ) : (M,P, ∂)→ (M ′, P ′, ∂′) is a tuple which consists of k-algebra homo-
morphisms, φ : M →M ′, ψ : P → P ′ such that ψ∂ = ∂′φ and φ(pm) = ψ(p)φ(m).
Thus we get the category of crossed modules, denoted by XMod .

There are special classes of morphisms, those in which P = P ′ and ψ is the
identity morphism. For fixed P, a morphism (φ, idP ) : (M,P, ∂) → (M ′, P, ∂′)
will be called a morphism of crossed modules over P. Then we have a subcategory
XMod/P of XMod.

Let (M,P, ∂) be a crossed module. (M1, P1, ∂1) is a subcrossed module of
(M,P, ∂) if:

i) M1 is a subalgebra of M and P1 is a subring of P,
ii) ∂1 = ∂|M1

, the restriction of ∂ to M1,
iii) The action of P1 on M1 is induced by the action of P on M.

A subcrossed module (M1, P1, ∂1) of (M,P, ∂) is a crossed ideal if:

i) P1 is an ideal of P and M1 is an ideal of M,
ii) pm1 ∈M1, for all p ∈ P,m1 ∈M1,
iii) p1m ∈M1, for all p1 ∈ P1,m ∈M.

A pro-C crossed module (M,P, ∂) is a crossed module in which M and P are
pro-C k-algebras, ∂ is a continuous k-algebra homomorphism and the action of P
on M is a continuous P -action [6].

A morphism of pro-C crossed modules

(φ, ψ) : (M,P, ∂)→ (M ′, P ′, ∂′)

is a morphism of the underlying crossed modules in which both φ and ψ are con-
tinuous morphisms of pro-C k-algebras. Thus we get the categories Pro-C.XMod
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and similarly Pro-C.XMod/P for a fixed codomain P ; we therefore obtain the
forgetful functor:

UXMod : Pro-C.XMod→ XMod.

Recall from [8] that a cat1-algebra is a triple (E, s, t), where E is an k-algebra
and s, t are endomorphisms of E satisfying the following conditions:

i) st = t and ts = s
ii) [Kers,Kert] = 0.

It is well known that there is an equivalence of between the categories XMod
and Cat1(Alg).

A pro-C cat1-algebra is a cat1-algebra (E, s, t) in which E is a pro-C algebra and
s and t are continuous endomorphisms of E. A morphism of pro-C cat1-algebra is
a morphism

φ : (E, s, t)→ (E′, s′, t′)

of the underlying cat1-algebras such that φ : E → E′ is a continuous morphism
of pro-C algebras. Thus we get the category of pro-C cat1-algebras, denoted by
Pro-C.Cat1(Alg). There is a forgetful functor:

UCAlg : Pro-C.Cat1(Alg)→ Cat1(Alg)

It is proven in [6] that, there exists an equivalence of categories Pro-C.XMod
and Pro-C.Cat1(Alg) compatible with the forgetful functors, in the sense of the
equivalence between XMod and Cat1(Alg).

3. Crossed Squares and their Pro-C Analogue

3.1. Crossed squares. The following definition is due to [1].

A crossed square of commutative algebras is a commutative diagram:

together with actions of P on L, M and N (there are thus actions of N on L and
M via µ′, and of M on L and N via µ) and a function h : M ×N → L such that:

1) The maps λ, λ′, µ, µ′ and the composite µλ = µ′λ′ are crossed modules,
2) The maps λ, λ′ preserve the action of P ,
3) kh(m,n) = h(km, n) = h(m, kn),
4) h(m+m′, n) = h(m,n) + h(m′, n),
5) h(m,n+ n′) = h(m,n) + h(m,n′),
6) ph(m,n) = h(pm, n) = h(m, pn),
7) λh(m,n) = mµ′(n),
8) λ′h(m,n) = µ(m)n,
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9) h(λ(l), n) = lµ′(n),
10) h(m,λ′(l)) = µ(m)l

for all n, n′ ∈ N, m,m′ ∈ M, p ∈ P, l ∈ L, k ∈ k. We denote such a crossed
square by (L,M,N, P ).

Let µ and µ′ are normal subalgebra inclusions and L = M ∩N, with h is given
by the multiplication in P, i.e., h(m,n) = mn. Then, we have the crossed square:

A morphism of crossed square

Φ = (Φ1,Φ2,Φ3,Φ4) : (L1,M1, N1, P1)→ (L2,M2, N2, P2),

consists of homomorphisms:

Φ1 : L1 → L2, Φ2 : M1 →M2,
Φ3 : N1 → N2, Φ4 : P1 → P2,

such that the diagram commutes:

and
Φ1h(m1, n1) = h(Φ2(m1),Φ3(n1)),

for all m1 ∈M1, n1 ∈ N1, and the homomorphisms Φ1,Φ2,Φ3 are Φ4-equivariant.

Thus we get the category of crossed squares, denoted by Crs2.

There are special classes of morphisms, those in which P1 = P2 and Φ4 is the
identity morphism. For a fixed P, such a morphism

Φ = (Φ1,Φ2,Φ3, id) : (L1,M1, N1, P )→ (L2,M2, N2, P ),

will be called a morphism of crossed squares over P , yields a subcategory Crs2/P .

A crossed square
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is a subcrossed square of

if,
i) L1 is a subalgebra of L, M1 is a subring of M, N1 is a subring of N, P1 is
a subring of P,

ii) λ1 is restriction of λ to L1, µ1 is restriction of µ to M1, λ
′
1 is restriction of

λ′ to L1, µ
′
1 is restriction of µ

′ to N1,

iii) Actions of P1 on L1,M1 and N1 are induced by the actions of P on L,M
and N, respectively.

iv) h1 : M1 ×N1 → L1 is the restriction of h : M ×N → L to M1 ×N1.

A subcrossed square

is an ideal of

if,
i) P1 is an ideal of P, M1 is an ideal of M, N1 is an ideal of N,

ii) For all p ∈ P , l1 ∈ L1, m1 ∈M1 and n1 ∈ N1,

pl1 ∈ L1,
pm1 ∈M1,
pn1 ∈ N1.
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iii) For all p1 ∈ P1, l ∈ L, m ∈M and n ∈ N ,
p1l ∈ L1,
p1m ∈M1,
p1n ∈ N1.

Let

be a crossed square and

be an ideal of (L,M,N, P ). Let λ is induced by λ, µ is induced by µ, λ′ is induced
by λ′, µ′ is induced by µ′. Then there are actions of P/P1 on L/L1, M/M1 and
N/N1 given by

(p+ P1)(l + L1) = (pl) + L1,
(p+ P1)(m+M1) = pm+M1,
(p+ P1)(n+N1) = pn+N1

and N/N1 on L/L1 and M/M1 via µ′, i.e.,

(n+N1)(l + L1) = µ′(n)l + L1,
(n+N1)(m+M1) = µ′(n)m+M1

and then M/M1 acts on L/L1 and N/N1 via µ, i.e.,

(m+M1)(l + L1) = µ(m)l + L1,
(m+M1)(n+N1) = µ(m)n+N1.

for all p ∈ P , l ∈ L, m ∈ M and n ∈ N . The conditions for (L1,M1, N1, P1) to be
ideal in (L,M,N, P ) ensure that the actions are well defined. Let h1 : M1×N1 →
L1 is defined by h(m+M1, n+N1) = h(m,n) + L1. It is clear that:

is a crossed square. It is called the quotient crossed square of (L,M,N, P ) by
(L1,M1, N1, P1) and denoted by (L,M,N, P )/(L1,M1, N1, P1).
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3.2. Pro-C crossed squares. A pro-C crossed square of algebras

is a crossed square in which L,M,N and P are pro-C algebras, λ, λ′, µ, µ′ are contin-
uous homomorphisms, all the actions are continuous and the h-map is continuous.

A morphism

Φ = (Φ1,Φ2,Φ3,Φ4) : (L1,M1, N1, P1)→ (L2,M2, N2, P2)

of pro-C crossed squares is a morphism of the underlying crossed squares in which all
the maps Φ1,Φ2,Φ3 and Φ4 are continuous morphisms of pro-C algebras. Thus we
get the categories Pro-C.Crs2 and similarly Pro-C.Crs2/P for a fixed codomain
P ; and we also get the forgetful functor:

UCrs2 : Pro-C.Crs2 → Crs2.

Recall the corresponding situation for k-algebras; the forgetful functor

UAlg : Pro-C. Alg→ Alg

has a left adjoint, known as the pro-C completion functor, which we will denote by
a “ ̂ ”.
This is defined as follows:

Let P be a k-algebra and let Ω(P ) be the directed set of finite index ideals W
of P with P/W ∈ C, then

P̂ = lim←−
W∈Ω(P )

P/W.

We will sometimes write WfinP as indicating that W ∈ Ω(P ). This notation is
useful in as it is more suggestive of the actual concept involved, but can also become
somewhat cumbersome so we will use both notations.

We wish to see if the crossed square forgetful functor

UCrs2 : Pro-C.Crs2 → Crs2

also has a left adjoint. The obvious approach using some idea of finite index ideals
is technically messy so we use an equivalence formulation involving Loday’s notion
of cat2-algebras.
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4. Cat2-algebras and their Pro-C Analogue

4.1. Cat2-algebras. A cat2-algebra [1] is a 5-tuble (E, s1, t1, s2, t2) where (E, si, ti),
i = 1, 2 are cat1-algebras and

sisj = sjsi, titj = tjti, sitj = tjsi

for i, j = 1, 2, i 6= j.

If (E, s1, t1, s2, t2) and (E′, s′1, t
′
1, s

′
2, t

′
2) are cat2-algebras a cat2-algebra mor-

phism:
φ : (E, s1, t1, s2, t2)→ (E′, s′1, t

′
1, s

′
2, t

′
2)

is an algebra homomorphism φ : E → E′ such that:

s′1φ = φs1,
t′1φ = φt1,

s′2φ = φs2,
t′2φ = φt2.

Thus we get the category of cat2-algebras, denoted by Cat2(Alg).

Proposition 1. There is an equivalence of categories between the category of cat2

-algebras and that of crossed squares.

Proof. The cat1-algebra (E, s1, t1) will give us a crossed module

∂ : C → B

with C =Kers, B =Ims and ∂ = t | C, but as the two cat1 -algebra structures are
independent, (E, s2, t2) restricts to give cat1-algebra structures on C and B and
makes ∂ a morphism of cat1-algebras. Thus we get a morphism of crossed modules

where each morphism is a crossed module for the natural action, i.e. multiplication
in E. It remains to produce an h-map, but it is given by the multiplication within
E since if x ∈Kers2∩Ims1 and y ∈Ims2∩Kers1 then xy ∈Kers1∩Kers2. It is easy
to check the crossed squares axioms.
Conversely, if
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is a crossed square, then we can think of it as a morphism of crossed modules

Using the equivalence between crossed modules and cat1-algebras this gives a mor-
phism

∂ : (LoN, s, t) −→ (M oR, s′, t′)
of cat1-algebras. There is an action of M oR on LoN given by

(m, r)(l, n) = (rl + ∂(m)l + h(m,n), rn+mn)

for all (m, r) ∈ M o R and (l, n) ∈ L o N . Using this action, we thus form its
associated cat1-algebra with algebra (LoN)o(MoR) and induced endomorphisms
s1, t1, s2, t2. �

4.2. Pro-C cat2-algebras.

Definition 2. A pro-C cat2-algebra is a cat2 -algebra (E, s1, t1, s2, t2) in which E
is a pro-C algebra and s1, s2, t1 and t2 are continuous endomorphisms of E.

A morphism of pro-C cat2-algebra

φ : (E, s1, t1, s2, t2)→ (E′, s′1, t
′
1, s

′
2, t

′
2)

is a morphism of the underlying cat2-algebras such that φ is a continuous morphism
of pro-C algebras. Thus we get the category of pro-C cat2-algebras, denoted by Pro
-C.Cat2(Alg).

There is a forgetful functor:

UC2Alg : Pro−C.Cat2(Alg)→ Cat2(Alg).

Theorem 3. There exists an equivalence of categories Pro-C.Crs2 and Pro-C.Cat2(Alg)
compatible with the forgetful functors, in the sense of the equivalence between Crs2

and Cat2(Alg), i.e. the following diagram commutes:

Proof. In fact, if
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is a pro-C crossed square, then E = (L o M) o (N o P ) is a pro-C algebra
and the endomorphisms s1, s2, t1 and t2, given before, are continuous, so result-
ing (E, s1, t1, s2, t2) is a pro-C cat2-algebra. Similarly if (E, s1, t1, s2, t2) is a pro-C
cat2 -algebra then

is a pro-C crossed square. �

This lemma will enable us to prove the existence of a left adjoint for

UCrs2 : Pro-C.Crs2 −→ Crs2

by constructing one for

UC2Alg : Pro -C.Cat2(Alg) −→ Cat2(Alg).

This latter construction will need projective limit within Pro-C.Cat2(Alg) and
so we will briefly look at their construction as it sheds more light on the pro-C
completion functor that will result from their use.

5. The Completion Process

Given a projective system F : I → Cat2(Alg), one notes that F is a projec-
tive system of algebras together with four endomorphisms of projective systems,
s1, s2, t1, t2 : F → F satisfying

sisj = sjsi, titj = tjti, sitj = tjsi

for i, j = 1, 2, i 6= j and [Kers1,Kert1] = 0, [Kers2,Kert2] = 0. We form lim←−F
by taking the limit of this underlying system of pro-C algebras together with the
induced endomorphism lim←− s and lim←− t. Writing the result as (F , s1, t1, s2, t2), we
only need to check the conditions [Kers1,Kert1] = 0 and [Kers2,Kert2] = 0.
However F can be realized as a subalgebra of the product

∏
i∈I F (i) and

s1((xi)) = (s1(i)xi, t1(xi)) = (t1(i)xi),

similarly for s2, t1 and t2. So the commutator subalgebras [Kers1,Kert1] and
[Kers2,Kert2] are trivial for each i in I.
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Proposition 4. A pro-C completion functor from the category Cat2(Alg) to the
category Pro-C.Cat2(Alg) exists, (i.e. the forgetful functor UC2Alg has a left ad-
joint).

Proof. An exact sequence

0 −→ (E′, s′1, t
′
1, s

′
2, t

′
2)

u−→ (E, s1, t1, s2, t2)
v−→ (E′′, s′′1 , t

′′
1 , s

′′
2 , t

′′
2) −→ 0

of cat2-algebras is an exact sequence

0 −→ E′ −→ E −→ E′′ −→ 0

of the underlying algebras and continuous maps compatible with the source and
target maps. In this situation, we say that the cat2-algebra (E′′, s′′1 , t

′′
1 , s

′′
2 , t

′′
2) is

the quotient of (E, s1, t1, s2, t2) by the ideal (E′, s′1, t
′
1, s

′
2, t

′
2). The latter is of finite

index in (E, s1, t1, s2, t2) if E′ is finite.

Given any cat2-algebra (E, s1, t1, s2, t2) the set of its ideals (I, s′1, t
′
1, s

′
2, t

′
2) of

finite index with E/I ∈ C is directed by the inclusion so we can form an inverse
system of finite quotient of (E, s1, t1, s2, t2) and take its limit within the category
of pro-C cat2-algebras. (As usual one considers each finite cat 2-algebra as a pro-C
one having the discrete topology.)

Thus we define a pro-C completion functor:˜: Cat2(Alg)→ Pro-C.Cat2(Alg) (1)

by

˜(E,s1,t1,s2,t2 ) = lim←−{finite quotients of (E, s1, t1, s2, t2) by (I, s′1, t
′
1, s

′
2, t

′
2)}.

Categorically this functor is left adjoint to the forgetful functor from Pro-
C.Cat2(Alg) to Cat2(Alg). �

Proposition 5. A pro-C completion functor from Crs2 to Pro-C.Crs2 exists (i.e.
the forgetful functor UCrs2 has a left adjoint).

Proof. In the diagram

we already found that (1) is the left adjoint functor to right vertical functor. This
induces a left adjoint functor to left vertical functor via the equivalence of categories.

�
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Remark 6. One can attempt to use the functors defining the two equivalence to give
an “explicit” description of this pro-C completion functor, but in what follows we
shall merely use its existence and the universal property that it satisfies to compare
it with the individual algebras involved.

Notation 7. We denote the pro-C completion of the crossed square ( ˜(L,M ,N ,P )
or less accurately, (L̃, M̃ , Ñ , P̃ ) ),as follows:

It is natural to compare this pro-C completion (L̃, M̃ , Ñ , P̃ ) with the pro-C com-
pletions L̂, M̂ , N̂ , P̂ and λ̂, µ̂, λ̂′, µ̂′ of the individual pieces of data involved. One
may even wonder why

is not itself always the same as,

To start the study of this problem we first look at P̃ .

Proposition 8. For any crossed square (L,M,N, P ), we have P̃ ∼= P̂ .

Proof. This follows from an adjoint functor argument: There is a forgetful functor

R : Crs2 → Alg

given by R(L,M,N, P ) = P also an analogous one

RpC : Pro-C.Crs2 → Pro-C.Alg.

These have left adjoints L and LpC defined by L(P ) = (P, P, P, P )
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with the h-map given by h(p, p′) = pp′ for all p, p′ ∈ P and similarly for LpC .
Then, we get the diagram:

The right adjoint diagram commutes, so the left adjoint diagram commutes up to
isomorphism, i.e.

˜(P ,P ,P ,P ) ' (P̂ , P̂ , P̂ , P̂ ),

but better we have a sequence of isomorphisms: for a pro-C algebra H,

Pro-C.Alg(RpC ˜(L,M ,N ,P ), H)
∼= Pro-C.Crs2( ˜(L,M ,N ,P ),LpC(H))
∼= Crs2((L,M,N, P ), UCrs2LpC(H))
∼= Crs2((L,M,N, P ), LUC2Alg(H)) by observation
∼= Alg(R(L,M,N, P ), UAlg(H))
∼= Alg(P,UAlg(H))
∼= Pro-C.Alg(P̂ ,H)

as required; hence P̂ ∼= P̃ , independent from L,M,N are. �

In order to study the conditions that yields the isomorphism between L̃, M̃ , Ñ

and L̂, M̂ , N̂ , respectively; we introduce a condition called “cofinality”.

Let (L,P, ∂) be a crossed module and write ΩP (L) for the directed subset of
Ω(L) the set of finite index ideals of L, consisting of those L1 ∈ Ω(L), L/L1 ∈ C,
which are P -invariant. We will say that (L,M,N, P ) satisfies the cofinal condition
if ΩP (L) is cofinal in Ω(L). It was shown in [6] that if (L,P, ∂) satisfies the cofinality
condition, then L̃ ∼= L̂.
Let
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be a crossed square and write ΩP (L) for the directed subset of Ω(L) the set of finite
index ideals of L, given above.

We say that (L,M,N, P ) satisfies the cofinal condition if ΩP (L) is cofinal in
Ω(L), ΩP (M) is cofinal in Ω(M) and ΩP (N) is cofinal in Ω(N). Note that ΩP (L) ⊆
ΩM (L) and ΩP (L) ⊆ ΩN (L) so if ΩP (L) is cofinal in Ω(L), then ΩM (L) and ΩN (L)
are cofinal in Ω(L).

Proposition 9. If P ∈ C, then any crossed square

satisfies the cofinality condition.

Proof. Given any L1 ∈ Ω(L), let

L′1 =
⋂
p∈P

pL1

Then, L′1 is P -invariant and as P in C, L′1 is of finite index L/L′1 ∈ C. As L′1 is
contained in L1, so ΩP (L) is cofinal in Ω(L). Similarly, we can show that ΩP (M)
and ΩP (N) are cofinal in Ω(L). This completes the proof. �

Remark 10. Let C be k-algebra, letM(C) be the commutative k-algebra of multi-
pliers of C. Recall that a multiplier of C is a linear mapping λ : C → C such that
for all c, c′ ∈ C; λ(cc′) = λ(c)c′, see [2] for more details.

Theorem 11. If (L,M,N, P )

satisfies the cofinality condition, then L̃ ∼= L̂, M̃ ∼= M̂, Ñ ∼= N̂ .

Proof. Since ΩP (M) is cofinal in Ω(M) and ΩP (N) is cofinal in Ω(N), M̂ ∼= M̃

and N̂ ∼= Ñ . On the other hand since ΩP (L) is cofinal in Ω(L), L̂ ∼= L̃.

To check the axioms we need an explicit description of λ̂ : L̂→ M̂, µ̂ : M̂ → P̂ ,

λ̂′ : L̂ → N̂ , µ̂′ : N̂ → P̂ , µ̂λ = µ̂′λ′ : M̂ → P̂ and the h-map ĥ : M̂ × N̂ → L̂.
Given UfinP, there is a composed homomorphism M → P → P/U.

Take KU to be its kernel then since µ is P -equivariant and P/U is finite, it
follows that KU is in ΩP (M) and that U ⊆ MP (M/KU ). Similarly, there is a
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composed homomorphism L → M → M/KU . Take TU to be its kernel then since
λ is M -equivariant and P/U is finite, it follows that TU is in ΩM (L) and that
KU ⊆MP (L/TU ). On the other hand there is also composed homomorphism L→
P → P/U.

Take HU to be its kernel then since µλ is P -equivariant and P/U is finite,
it follows that HU is in ΩP (L) and that U ⊆ MP (L/HU ). Similarly there are
composed homomorphisms N → P → P/U, L→ N → N/K ′

U and L→ P → P/U
and kernels K ′

U , T
′
U , H

′
U of these morphisms respectively. It is easy to show that

HU = TU = T ′U = H ′
U . These observations readily imply that λ̂, µ̂, λ̂

′, µ̂′, µ̂λ = µ̂′λ′

and the h-map ĥ, defined by

λ̂U (lTU ) = λlUKU , µ̂U (mKU ) = µmUU,

λ̂′U (lTU ) = λ′lUK
′
U , µ̂′U (nK ′

U ) = µnUU,

µ̂λU (lHU ) = (µλ)lUU, µ̂′λ′U (lHU ) = (µ′λ′)lUU,

ĥU (mKU , nK
′
U ) = h(m,n)UHU .

It is clear that µ̂λU = µ̂U λ̂U = µ̂′U λ̂
′
U = µ̂′λ′U . Rest of the proof follows from the

crossed square axioms of (L,M,N, P ) and the descriptions of λ̂, µ̂, λ̂′, µ̂′, µ̂λ = µ̂′λ′,
ĥ and the P̂ -action. �

Corollary 12. If P is in C, and

is a crossed square then

is a crossed square, which is the pro-C completion of (L,M,N, P ).
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LIGHTLIKE HYPERSURFACES WITH PLANAR NORMAL
SECTIONS IN R4

1

FEYZA ESRA ERDOĞAN AND SELCEN YÜKSEL PERKTAŞ

Abstract. In the present paper our aim is to investigate lightlike hyper-
surfaces of R41 having degenerate or non-degenerate planar normal sections.
Firstly, we prove that lightlike hypersurfaces in R41 always have degenerate
planar normal sections. Then we examine the conditions for lightlike hyper-
surfaces in R41 to have non-degenerate planar normal sections and obtain some
characterizations for such lightlike hypersurfaces.

1. Introduction

In Euclidean spaces, B.Y. Chen [2] initiated the study of surfaces with planar
normal sections. After this, an important literature has been created on such sur-
faces and submanifolds (for example, see [2], [6], [7], [9],[8]). The semi-Riemannian
adaptation of such surfaces was done by Y. H. Kim [7]. Recently, the authors ([12],
[11]) introduced lightlike surfaces with planar normal sections in Minkowski 3-space
and halflightlike submanifolds of R4

2 having degenerate and non-degenerate planar
normal sections (see also [13]).
By a similar manner in [12] and [11] we define the normal section of a lightlike

hypersurface Ń in R4
1 and non-degenerate planar normal sections as follows:

For a point p in a lightlike hypersurface Ń of R4
1 and a lightlike vector ξ such

that the radical space Rad(TŃ) = Span{ξ}, the vector ξ and transversal space
tr(TŃ) to Ń at p determine a 2-dimensional subspace E(p, ξ) in R4

1 through p.
The intersection Ń∩ E(p, ξ) gives rise to a lightlike curve α in a neighborhood of
p, which we call normal section of Ń at the point p in the direction of ξ. If each
normal section α at p in the direction of ξ satisfies α′∧α′′∧α′′′ = 0, for each p ∈ Ń ,
then we say that Ń has degenerate pointwise planar normal sections.

Received by the editors: October 23, 2018; Accepted: October 07, 2019.
2010 Mathematics Subject Classification. Primary 53C42; Secondary 53C50.
Key words and phrases. Lightlike hypersurface, non-degenerate planar normal section, degen-

erate normal section.

c©2020 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

336



LIGHTLIKE HYPERSURFACES WITH PLANAR NORMAL SECTIONS 337

On the other hand, let w be a non-degenerate vector tangent to Ń at p such
that w ∈ S(TŃ) = Sp {u, v}, where S(TŃ) is the screen distribution of Ń . Then
the vector w and transversal space tr(TŃ) to Ń at p determine a 2- dimensional
subspace E(p, w) in R4

1 through p. From the intersection of Ń and E(p, w), we
have a non-degenerate curve α in a neighborhood of p which is called the normal
section of Ń at p in the direction of w. In this case, if α′ ∧α′′ ∧α′′′ = 0 is satisfied,
for each point p in Ń , where α is a normal section of Ń at p in the direction of w,
then Ń is said to have non-degenerate pointwise planar normal sections.
In this paper, we study lightlike hypersurfaces in R4

1 having degenerate and
nondegenerate planar normal sections. We prove that every lightlike hypersurfaces
of R4

1 has degenerate planar normal sections. Also we obtain some results for a
lightlike hypersurface with non-degenerate planar normal sections. We prove that
a lightlike hypersurface Ń in R4

1 has non-degenerate planar normal sections if and
only if it is either screen conformal and totally umbilical or totally geodesic. We also
obtain a characterization for non-umbilical screen conformal lightlike hypersurface
with non-degenerate planar normal sections.

2. Preliminaries

Let (N̆ , ğ) be an (n+ 2)-dimensional semi-Riemannian manifold with the indef-
inite metric ğ of index q ∈ {1, ..., n+ 1} and Ń be a hypersurface of N̆ . We denote
the tangent space at x ∈ Ń by TxŃ . Then

TxŃ
⊥ = {Vx ∈ TxN̆ | ğx(Vx,Wx) = 0,∀Wx ∈ TxŃ}

and
RadTxŃ = TxŃ ∩ TxŃ⊥.

Then, Ń is called a lightlike hypersurface of N̆ if RadTxŃ 6= {0}, for any x ∈ Ń .
Thus TŃ⊥ =

⋂
x∈Ń TxŃ

⊥ becomes a 1- dimensional distribution RadTŃ on Ń .
Then there exists a vector field ξ 6= 0 on Ń such that

g (ξ,X) = 0, ∀X ∈ Γ(TŃ),

where g is the induced degenerate metric tensor on Ń . We denote the algebra of
differential functions on Ń by F (Ń) and the F (Ń)-module of differentiable sections
of a vector bundle E over Ń by Γ(E).

A complementary vector bundle S(TŃ) of TŃ⊥ = RadTŃ in TŃ defined by

TŃ = RadTŃ ⊕orth S(TŃ), (1)

is called a screen distribution on Ń . It follows from the equation above that
S(TŃ) is a non-degenerate distribution. Moreover, since we assume that Ń is
para-compact, there always exists a screen S(TŃ). Thus, along Ń we have

TN̆|Ń = S(TŃ)⊕orth S(TŃ)⊥, S(TŃ) ∩ S(TŃ)⊥ 6= {0}, (2)
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that is, S(TŃ)⊥ is the orthogonal complement to S(TŃ) in TN̆ |Ń . Note that
S(TŃ)⊥ is also a non-degenerate vector bundle of rank 2. However, it includes
TŃ⊥ = RadTŃ as its sub-bundle.

Let (Ń , g, S(TŃ)) be a lightlike hypersurface of a semi-Riemannian manifold
(N̆ , ğ). Then there exists a unique vector bundle tr(TŃ) of rank 1 over Ń , such
that for any non-zero section ξ of TŃ⊥ on a coordinate neighborhood U ⊂ Ń ,
there exists a unique section N of tr(TŃ) on U satisfying: TŃ⊥ in S(TŃ)⊥ and
take V ∈ Γ (F |U ) , V 6= 0. Then ğ (ξ, V ) 6= 0 on U , otherwise S(TŃ)⊥ would be
degenerate at a point of U [5]. Define a vector field

N =
1

ğ (V, ξ)

{
V − ğ (V, V )

2ğ (V, ξ)
ξ

}
,

on U where V ∈ Γ (F | U ) such that ğ (ξ, V ) 6= 0. Then we have

ğ (N, ξ) = 1, ğ (N,N) = 0, ğ (N,W ) = 0, ∀W ∈ Γ(S(TŃ)|U ). (3)

Moreover, from (1) and (2) we have the following decomposition:

TN̆ |Ń= S(TŃ)⊕orth (TŃ⊥ ⊕ tr(TŃ)) = TŃ ⊕ tr(TŃ). (4)

Locally, suppose {ξ,N} is a pair of sections on U ⊂ Ń satisfying (3). Define a
symmetric z (U)-bi-linear form B and a 1-form τ on U . Hence on U , for X,Y ∈
Γ(TŃ |U ), we write

∇̆XY = ∇̆XY +B (X,Y )N, (5)

∇̆XN = −ANX + τ (X)N, (6)

which are called local Gauss and Weingarten formula, respectively. Since ∇̆ is a
metric connection on N̆ , it is easy to see that

B (X, ξ) = 0,∀X ∈ Γ(TŃ |U ). (7)

Consequently, the second fundamental form of Ń is degenerate [5]. Define a local
1-from η by

η (X) = ğ (X,N) ,∀ ∈ Γ(TŃ |U ). (8)

Let P denote the projection morphism of Γ(TŃ) on Γ(S(TŃ)) with respect to the
decomposition (1). We obtain

∇̆XPY = ∇̆∗XPY + C (X,PY ) ξ, (9)

∇̆Xξ = −A∗ξX + ε (X) ξ = −A∗ξX − τ (X) ξ, (10)

where ∇̆∗XPY and A∗ξX belong to Γ(S(TŃ)), ∇̆ and ∇̆∗ are linear connections on
Γ(S(TŃ)) and TŃ⊥, respectively, h∗ is a Γ(TŃ⊥)-valued z(Ń)-bi-linear form on
Γ(TŃ)× Γ(S(TŃ)) and A∗ξ is Γ(S(TŃ))-valued z(Ń)-linear operator on Γ(TŃ).
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We call them the screen fundamental form and screen shape operator of S(TŃ),
respectively. Define

C (X,PY ) = ğ (h∗(X,PY ) , N), (11)

ε(X) = ğ(∇̆∗tXξ,N),∀X,Y ∈ Γ(TŃ). (12)

One can easily show that ε (X) = −τ (X). Here, C (X,PY ) is called the local
screen fundamental form of S(TŃ). Precisely, the two local second fundamental
forms of Ń and S(TŃ) are related to their shape operators by

B (X,Y ) = ğ
(
Y,A∗ξX

)
, (13)

A∗ξξ = 0, (14)

ğ
(
A∗ξPY,N

)
= 0, (15)

C (X,PY ) = ğ (PY,ANX) , (16)

ğ (N,ANX) = 0. (17)

A lightlike hypersurface (Ń , g, S(TŃ)) of a semi-Riemannian manifold is called
totally umbilical[5] if there is a smooth function %, such that

B (X,Y ) = %g (X,Y ) ,∀X,Y ∈ Γ(TŃ), (18)

where % is non-vanishing smooth function on a neighborhood U in Ń .
A lightlike hypersurface (Ń , g, S(TŃ)) of a semi-Riemannian manifold is

called screen locally conformal if the shape operators AN and A∗ξ of Ń and S(TŃ),
respectively, are related by

AN = ϕA∗ξ , (19)

where ϕ is non-vanishing smooth function on a neighborhood U in Ń . Therefore,
it follows that for any X,Y ∈ Γ(S(TŃ)) and ξ ∈ RadTŃ we have

C (X, ξ) = 0. (20)

For details about screen conformal lightlike hypersurfaces, we refer [1] and [5] .

3. Planar Normal Sections of Lightlike Hypersurfaces in R4
1

Let Ń be a lightlike hypersurface of R4
1. Now we shall investigate lightlike

hypersurfaces with degenerate planar normal sections. If α is a null curve, for a
point p in Ń , we have

α′ (s) = ξ, (21)

α′′ (s) = ∇̆ξξ = −τ (ξ) ξ, (22)

α′′′ (s) = −
[
ξ (τ (ξ)) + τ2 (ξ)

]
ξ. (23)

Then, α′′′ is a linear combination of α′ and α′′. Thus from (21), (22) and (23), we
conclude α′′′ ∧ α′′ ∧ α′ = 0.
Hence we give
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Corollary 1. Every lightlike hypersurface of R4
1 has degenerate planar normal

sections.

Let Ń be a lightlike hypersurface of R4
1. For a point p in Ń and a spacelike

vector w ∈ S(TŃ) = Sp {u, v} , where u, v are unit spacelike vectors tangent to
Ń at p , the vector w and transversal space tr(TŃ) to Ń at p determine a 2-
dimensional subspace E(p, w) in R4

1 through p. The intersection of Ń and E(p, w)
gives a spacelike curve α in a neighborhood of p, which is called the normal section
of Ń at p in the direction of w.
Now, we shall research the conditions for a lightlike hypersurface of R4

1 to have
non-degenerate planar normal sections.
Let (Ń , g, S(TŃ)) be a totally umbilical and screen conformal lightlike hypersur-

face of
(
R4

1, ğ
)
. In this case S(TŃ) is integrable [1]. We denote integral hypersurface

of S(TŃ) by Ń ′. Then, using (6), (11) and (19) we find

C (w,w) ξ +B (w,w)N = ğ (w,w) {ρξ + βN} (24)

= λ {ρξ + βN} , λ = a2 + b2,

where λ, ρ, β ∈ R. In this case, we obtain
α′ (s) = w, (25)

α′′ (s) = ∇̆∗ww + C (w,w) ξ +B (w,w)N, (26)

α′′ (s) = ∇̆∗ww + ρξ + βN, (27)

and

α′′′ (s) = ∇̆∗w∇̆
∗
ww + C(w, ∇̆∗ww)ξ + w (C (w,w)) ξ (28)

−C (w,w)A∗ξw + w (B (w,w))N

−B (w,w)ANw +B(w, ∇̆∗ww)N,

which implies

α′′′ (s) = ∇̆∗w∇̆
∗
ww + C(w, ∇̆∗ww)ξ (29)

+B(w, ∇̆∗ww)N − ρA∗ξw − βANw.

Here ∇̆∗ and ∇̆ are linear connections on S(TŃ) and Γ(TŃ), respectively and
α′ (s) = w = au + bv, a, b ∈ R. Since Ń is a totally umbilical screen conformal
lightlike hypersurface, we find

C(w, ∇̆∗ww)ξ +B(w, ∇̆∗ww)N = g(w, ∇̆∗ww) {ρ1ξ + β1N} , (30)

where ρ1, β1 ∈ R. On the other hand we write

∇̆∗ww = a2∇̆∗uu+ ab∇̆∗uv + ab∇̆∗vu+ b2∇̆∗vv (31)

and

g(w, ∇̆∗ww) = a3g(u, ∇̆∗uu) + a2bg(u, ∇̆∗uv) + a2bg(u, ∇̆∗vu) + ab2g(u, ∇̆∗vv)
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+a2bg(v, ∇̆∗uv) + ab2g(v, ∇̆∗uv) + ab2g(v, ∇̆∗vu) + b3g(v, ∇̆∗vv).

Since ğ (u, u) = ğ (v, v) = 1 and ğ (u, v) = 0, then by a direct computation, we
obtain

∇̆∗uu = λ1v, ∇̆
∗
vu = λ2v, (32)

λ1 = −λ3, (33)

λ2 = −λ4, (34)

∇̆∗uv = λ3u, ∇̆
∗
vv = λ4u, (35)

where λ1, λ2, λ3, λ4 ∈ R . Hence, from (32)-(35) we get

g(w, ∇̆∗ww) = 0

and
C(w, ∇̆∗ww)ξ +B(w, ∇̆∗ww)N = 0.

Therefore, we obtain

C(w, ∇̆∗ww) = 0,

B(w, ∇̆∗ww) = 0.

Since Ń is screen conformal, we find

α′ (s) = w,

α′′ (s) = λ (ρξ + βN) ,

α′′′ (s) = −λρA∗ξw − λβANw,

where ρ, β 6= 0. Then, we have

α′′′ (s) = tA∗ξw, t = −2λρ.

Hence, we obtain

B (w,w) = g
(
A∗ξw,w

)
= βg (w,w) = g (βw,w) ,

which implies A∗ξw = βw, that is, α′ and α′′′ are linearly dependent and so Ń has
non-degenerate planar normal sections.

Assume that Ń is a totally geodesic lightlike hypersurface of R4
1. Then, we have

B = 0, A∗ξ = 0. Hence, from (25)-(28), we write

α′ (s) = w, (36)

α′′ (s) = ∇̆∗ww, (37)

α′′′ (s) = ∇̆∗w∇̆
∗
ww. (38)

Since α′, α′′, α′′′ ∈ Γ(S(TŃ)) and dim(S(TŃ)) = 2, we have α′′′ (s) ∧ α′′ (s) ∧
α′ (s) = 0.
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Conversely, we assume that Ń has non-degenerate planar normal sections. Then,
from (25), (26) and (28) we obtain

w ∧
(
∇̆∗ww + C (w,w) ξ

+B (w,w)N

)
∧

 ∇̆
∗
w∇̆
∗
ww + C(w, ∇̆∗ww)ξ + w (C (w,w)) ξ
−C (w,w)A∗ξw + w (B (w,w))N

−B (w,w)ANw +B(w, ∇̆∗ww)N

 = 0.

Since w = au+ bv, a, b ∈ R, for the sake of simplicity, we choose u = (0, 1, 0, 0) and
v = (0, 0, 1, 0) , which give

∇̆∗ww =
(
0, abλ3 + b2λ4, a

2λ1 + abλ2, 0
)
. (39)

If we take a = b = 1, from (32)-(34), we obtain

∇̆∗ww = (0,−(λ1 + λ2), λ1 + λ2, 0) ,

which yields that w and ∇̆∗ww are linearly dependent. Thus we find

w ∧ ∇̆∗ww = 0 (40)

for any a, b ∈ R. Moreover, if we take a, b ∈ {−1, 1}, we have

∇̆∗ww = (0, b (aλ1 + bλ2) , a (aλ1 + bλ2) , 0) ,

namely, in any case w and ∇̆∗ww are linearly dependent.
From (31), we find

∇̆∗w ∇̆
∗
ww = a3λ1λ3u+ a2bλ1λ3v + a2bλ2λ3u+ ab2λ4λ1v

+a2bλ1λ4u+ a2bλ2λ3v + ab2λ4λ2u+ b3λ4λ2v.

Here, for simplicity, if we take a = b = 1 then we obtain

∇̆∗w ∇̆
∗
ww =

(
0, λ2

1 + λ2λ3 + λ1λ4 + λ2
2, λ

2
1 + λ2λ3 + λ1λ4 + λ2

2, 0
)
,

which yields
w ∧ ∇̆∗w∇̆

∗
ww = 0. (41)

Then we have

w ∧ (C (w,w) ξ +B (w,w)N) ∧
(
∇̆w (C (w,w) ξ +B (w,w)N)

)
= 0. (42)

Thus C (w,w) ξ+B (w,w)N = 0 or ∇̆w (C (w,w) ξ +B (w,w)N) = 0. If C (w,w) ξ+

B (w,w)N = 0, then C = B = 0, at p ∈ Ń , which implies that Ń is totally geodesic
and totally umbilical. If ∇̆w (C (w,w) ξ +B (w,w)N) = 0, then we have

w (C (w,w)) ξ + w(B (w,w))N − C (w,w)A∗ξw −B (w,w)ANw = 0. (43)

Hence C (w,w)A∗ξw +B (w,w)ANw = 0, we find

A∗ξw = −B (w,w)

C (w,w)
AN w, (44)

at p ∈ Ń , which shows that Ń is a screen conformal lightlike hypersurface.



LIGHTLIKE HYPERSURFACES WITH PLANAR NORMAL SECTIONS 343

Consequently, we have the following.

Theorem 2. Let Ń be a lightlike hypersurface of R4
1. Then Ń has non-degenerate

planar normal sections if and only if either Ń is totally umbilical and screen con-
formal or Ń is totally geodesic.

Proof. Assume that Ń is a totally umbilical and screen conformal lightlike hyper-
surface of R4

1. Then we have A
∗
ξw = βw, β ∈ R. By using (25), (27) and (29), we

obtain
α′′′ (s) ∧ α′′ (s) ∧ α′ (s) = 0.

If we consider that Ń is totally geodesic, then, we have C = B = 0 and from (36)—
(38), we see that w, ∇̆∗ww and ∇̆

∗
w∇̆
∗
ww belong to S(TŃ). Since dim(S(TŃ)) = 2,

we conclude that α′, α′′, α′′′ are linearly dependent.
Conversely, we assume that Ń has non-degenerate planar normal sections. Then,

from (42)—(44) we complete the proof. �

Theorem 3. Let (Ń , g, S(TŃ)) be a screen conformal non-umbilical lightlike hy-
persurface of R4

1 . Then, for T (w,w) = C (w,w) ξ + B (w,w)N , the following
statements are equivalent:

(1) (∇̆wT ) (w,w) = 0, for every spacelike vector w ∈ S(TŃ),

(2) ∇̆T = 0,

(3) Ń has non-degenerate planar normal sections and each normal section at
p has one of its vertices at p.

Note that, by the vertex of curve α (s) we mean a point p on α such that its

curvature κ satisfies dκ2(p)
ds = 0, where κ2 = 〈α′′ (s) , α′′ (s)〉.

Proof. From (25), (26), we have

(∇̆wT ) (w,w) = ∇̆wT (w,w) ,

which shows (∇̆wT ) (w,w) = 0 if and only if ∇̆T = 0.
Assume that ∇̆T = 0 . Then Ń is totally geodesic and Theorem 2 implies that

Ń has (pointwise) planar normal sections. Let the α (s) be a normal section of Ń
at p in a given direction w ∈ S(TŃ). Then (25) shows that the curvature κ (s) of
α (s) satisfies

κ2 (s) = 〈α′′ (s) , α′′ (s)〉
= 2C(w,w)B(w,w)

= 〈T (w,w) , T (w,w)〉 , (45)

where w = α′ (s). Therefore we find

dκ2 (p)

ds
=
〈
∇̆wT (w,w) , T (w,w)

〉
=
〈

(∇̆wT ) (w,w) , T (w,w)
〉
. (46)
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Since ∇̆wT (w,w) = 0, this implies

dκ2 (0)

ds
= 0,

at p = α (0). Thus p is a vertex of the normal section α (s).
If Ń has planar normal sections, then by using Theorem 2 we have

T (w,w) ∧ (∇̆wT ) (w,w) = 0. (47)

If p is a vertex of α (s), then we have

dκ2 (0)

ds
= 0.

Thus, since Ń has planar normal sections, using (46) we find

α′ (s) ∧ α′′ (s) ∧ α′′′ (s) = w ∧ (∇̆∗ww + T (w,w))

∧(∇̆∗w∇̆
∗
ww + tT (w,w) + (∇̆wT ) (w,w)) = 0,

which yields
T (w,w) ∧ (∇̆wT ) (w,w) = 0

and 〈
(∇̆wT ) (w,w) , T (w,w)

〉
= 0. (48)

Combining (47) and (48) we obtain either (∇̆wT ) (w,w) = 0 or T (w,w) = 0. Let us

define U =
{
w ∈ S(TŃ) | T (w,w) = 0

}
. If int(U) 6= ∅, we obtain (∇̆wT ) (w,w) =

0 on int(U). Thus, by continuity we have ∇̆T = 0. �

Considering those obtained results above with [12], we give the following exam-
ple.

Example 4. Let R4
1 be the space R4 endowed with the semi-Euclidean metric

ğ(x, y) = −u0v0 +

3∑
a=1

uava, u =

3∑
a=0

ua
∂

∂ua
.

Consider the null cone of R4
1 given by

∧3
0 =

{
(u0, u1, u2, u3) | −u2

0 + u2
1 + u2

2 + u2
3 = 0, u0, u1, u2, u3 ∈ R

}
.

The radical bundle of null cone is

ξ = u0
∂

∂u0
+ u1

∂

∂u1
+ u2

∂

∂u2
+ u3

∂

∂u3

and screen distribution is spanned by

w = −u2
∂

∂u1
+ u1

∂

∂u2
− u3

∂

∂u3
.
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Then the lightlike transversal vector bundle is given by

Itr(T∧3
0) = Span

{
N =

1

2(u0)2

(
−u0

∂

∂u0
+ u1

∂

∂u1
+ u2

∂

∂u2
+ u3

∂

∂u3

)}
.

Let ∧3
0 be a lightlike hypersurfaces of R4

1. For a point p in ∧3
0 and a lightlike vector

ξ which spans the radical distribution of a lightlike hypersurface, the vector ξ and
transversal space tr(T∧3

0) to ∧3
0 at p determine a 2- dimensional subspace E(p, ξ)

in R4
1 through p. The intersection of ∧3

0 and E(p, ξ) gives a lightlike curve α in a
neighborhood of p, which is called the normal section of ∧3

0 at the point p in the
direction of ξ. Therefore, we have

∇̆ξξ = u0
∂

∂u0
+ u1

∂

∂u1
+ u2

∂

∂u2
+ u3

∂

∂u3

∇̆ξ∇̆ξξ = u0
∂

∂u0
+ u1

∂

∂u1
+ u2

∂

∂u2
+ u3

∂

∂u3
.

Then, we obtain

α′′′ (s) ∧ α′′ (s) ∧ α′ (s) = 0

which shows that null cone has degenerate planar normal sections.
On the other hand, by direct computations, we find

∇̆ξ̆w = ∇̆ξw = w

and

ANw =
1

2(u0)2
A∗
ξ̆
w.

Namely, ∧3
0 is a screen conformal lightlike hypersurface of R4

1 [5].
Now, for a point p in ∧3

0 and a non-degenerate vector w tangent to ∧3
0 at p

(w ∈ S(T∧3
0)), the vector w and transversal space tr(T∧3

0) to Ń at p determine
a 2- dimensional subspace E(p, w) in R4

1 through p. The intersection of ∧3
0 and

E(p, w) gives a non-degenerate curve α in a neighborhood of p. Therefore, we have

α′ = w = −u2
∂

∂u1
+ u1

∂

∂u2
− u3

∂

∂u3
,

α′′ = ∇̆ww +B (w,w)N

=
1

2
u0

∂

∂u0
− 3

2
u1

∂

∂u1
− 3

2
u2

∂

∂u2
− 3

2
u3

∂

∂u3
,

α′′′ = ∇̆w∇̆ww + w (B (w,w))N +B (w,w) ∇̆wN
= ∇̆w∇̆ww +B(w, ∇̆ww)N + w (B (w,w))N −B (w,w)ANw.

Using ANw in α′′′ we find

α′′′ = −1

2

(
−u2

∂

∂u1
+ u1

∂

∂u2
− u3

∂

∂u3

)
.
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Therefore α′′′ and α′are linearly dependent at p ∈ ∧3
0 and we have

α′ ∧ α′′ ∧ α′′′ = 0.

Namely, ∧3
0 has non-degenerate planar normal sections.
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ON SOME PROPERTIES OF GENERALIZED STRUVE
FUNCTION

İBRAHİM AKTAŞ, HALİT ORHAN, AND DORINA RǍDUCANU

Abstract. The main purpose of this investigation is to present some monotonic
and log-concavity properties of the generalized Struve function. By using
Hadamard product representation of the generalized Struve function, we in-
vestigate the sign of this function on some sets. Also, we determine an interval
such that the generalized Struve function is decreasing in this interval. More-
over, we show that generalized Struve function is strictly logaritmically concave
on some intervals. In addition, we prove that a function related to generalized
Struve function is increasing function on R.

1. Introduction and Preliminaries

In the last three decades many geometric and monotonic properties of some spe-
cial functions like Bessel, Struve, Lommel, Mittag-Leffl er, Wright functions and
their generalizations were investigated by many authors. In general, by using the
properties of zeros of the special functions many mathematicians studied about uni-
valence, starlikeness, convexity and close-to-convexity of the mentioned functions.
In addition, some authors focused on the monotonicity and log-convexity proper-
ties of the special functions by using their integral representations and some earlier
results on analytic functions. For more information about these investigations the
readers are referred to the papers [1, 2, 3, 4, 5, 8, 9, 10, 11] and references therein.
Some inequalities which were obtained via above special functions and monotonic
properties of these functions are intensively used in engineering sciences, mathe-
matical physics, probability and statistics, and economics. Especially, it is known
that the logarithmic concavity and logarithmic convexity properties have an impor-
tant role in economics. Information on the logarithmic concavity and logarithmic
convexity in the economic can be found in [7] and its references, comprehensively.
In this study, motivated by the some earlier studies, our main goal is to give some
monotonic and log-concavity properties of the generalized Struve functions.
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It is well-known that many special functions can be defined by using familiar
gamma function. That is why, we want to remember the definition of gamma
function. The Euler’s gamma or classical gamma function Γ is defined by the
following improper integral, for x > 0:

Γ(x) =

∫ ∞
0

tx−1e−tdt.

On the other hand, the definition of logarithmic concavity of a function can be
given as follow:

Definition 1 ([7]). A function f is said to be log-concave on interval (a, b) if the
function log f is a concave function on (a, b).

The log-concavity of the function f on the interval (a, b) can be shown by using
one of the following two conditions:
i. f ′

f monotone decreasing on (a, b).
ii. log f ′′ < 0.
Also the following lemma due to Biernacki and Krzyż (see [6]) will be used in

order to prove some monotonic properties of the mentioned functions.

Lemma 2. Consider the power series f(x) =
∑
n≥0 anx

n and g(x) =
∑
n≥0 bnx

n,
where an ∈ R and bn > 0 for all n ∈ {0, 1, . . . }, and suppose that both converge on
(−r, r), r > 0. If the sequence {anbn }n≥0 is increasing(decreasing), then the function
x 7→

(
f(x)
g(x)

)
is also increasing(decreasing) on (0, r).

It is important to note that the above result remains true for the even or odd
functions.

2. Main Results

In this section, we are going to discuss some properties like monotonicity and
log-concavity of the generalized Struve function by using its product representa-
tion which is known as Hadamard product or Weierstrassian decomposition. The
generalized Struve function has the following series representation (see [12]):

Sqp,b,c,δ(x) =
∞∑
n=0

(−c)n

n!Γ(qn+ p
δ + b+2

2 )

(x
2

)2n+p+1
(1)

for q ∈ N, p, b, c ∈ C and δ > 0. The author studied some geometric properties
such as starlikeness and convexity of generalized Struve function in [12]. Also, the
author showed that the zeros of the generalized Struve function are all real. In the
same paper, by using Hadamard’s theorem an infinite product representation of the
generalized Struve function was given as follow (see [12, Lemma 2.1]):

Sqp,b,c,δ(x) =

(
x
2

)p+1
Γ
(
p
δ + b+2

2

) ∏
n≥1

(
1− x2

qx2p,b,c,δ,n

)
, (2)
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where qxp,b,c,δ,n denotes the n-th positive zero of the generalized Struve function
Sqp,b,c,δ(x).

Theorem 3. Let b, c, δ, q are positive real numbers , p > −1 and qxp,b,c,δ,n denote
the nth positive zero of the generalized Struve function Sqp,b,c,δ(x). In addition,
consider the following sets:

∆1 =
⋃
n≥1

(qxp,b,c,δ,2n−1,q xp,b,c,δ,2n) ,∆2 =
⋃
n≥1

(qxp,b,c,δ,2n,q xp,b,c,δ,2n+1)

and
∆3 = [0,q xp,b,c,δ,1) ∪∆2.

Then, the generalized Struve function

Ψq
p,b,c,δ(x) =

(
2

x

)p+1
Γ

(
p

δ
+
b+ 2

2

)
Sqp,b,c,δ(x) =

∞∑
n=0

Γ
(
p
δ + b+2

2

)
(−c)n

n!Γ
(
nq + p

δ + b+2
2

) (x
2

)2n
(3)

satisfies the next properties:
a. the function x 7→ Ψq

p,b,c,δ(x) is negative on ∆1 and positive on ∆3,

b. the function x 7→ Ψq
p,b,c,δ(x) is decreasing on [0,q xp,b,c,δ,1),

c. the function x 7→ Ψq
p,b,c,δ(x) is strictly log-concave on ∆3.

Proof. a. By considering the infinite product representation of the generalized
Struve function Sqp,b,c,δ(x) which is given by (2), we can easily see that the function
Ψq
p,b,c,δ(x) can be written as the following product representation:

Ψq
p,b,c,δ(x) =

∏
n≥1

(
1− x2

qx2p,b,c,δ,n

)
. (4)

In order to determine the sign of the function x 7→ Ψq
p,b,c,δ(x) on the mentioned

sets, we rewrite the function x 7→ Ψq
p,b,c,δ(x) as

Ψq
p,b,c,δ(x) = χnτn,

where
χn =

∏
n≥1

qxp,b,c,δ,n + x

qx2p,b,c,δ,n
and τn =

∏
n≥1

(qxp,b,c,δ,n − x) .

It can be easily seen that χn > 0 for all x ∈ [0,∞) . On the other hand, since

0 <q xp,b,c,δ,1 <q xp,b,c,δ,2 < · · · <q xp,b,c,δ,n < · · ·
it can be said that, if x ∈ (qxp,b,c,δ,2n−1,q xp,b,c,δ,2n), then the first (2n − 1) terms
of τn are strictly negative and remained terms are strictly positive. Also, if x ∈
(qxp,b,c,δ,2n,q xp,b,c,δ,2n+1), then the first 2n terms of τn are strictly negative and
the rest is strictly positive. In addition, for x ∈ [0,q xp,b,c,δ,1) all the terms of τn
are strictly positive. As a consequence, the function x 7→ Ψq

p,b,c,δ(x) is negative on
∆1 and it is positive on ∆3.
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b. We know from the previous part of this theorem that the function x 7→ Ψq
p,b,c,δ(x)

is positive on the interval [0,q xp,b,c,δ,1). Now, taking logarithmic derivative of (4)
implies that

d

dx

[
log Ψq

p,b,c,δ(x)
]

=

(
Ψq
p,b,c,δ(x)

)′
Ψq
p,b,c,δ(x)

=
d

dx

log
∏
n≥1

(
1− x2

qx2p,b,c,δ,n

)
=

∞∑
n=1

2x

x2 −q x2p,b,c,δ,n
.

As a result, we get(
Ψq
p,b,c,δ(x)

)′
= Ψq

p,b,c,δ(x)

∞∑
n=1

2x

x2 −q x2p,b,c,δ,n
< 0

for all x ∈ [0,q xp,b,c,δ,1). So, the function x 7→ Ψq
p,b,c,δ(x) is decreasing on [0,q xp,b,c,δ,1) .

c. To show the log-concavity of the function x 7→ Ψq
p,b,c,δ(x), it is enough that

d2

dx2

[
log Ψq

p,b,c,δ(x)
]
< 0

for all x ∈ ∆3. Now, by using the Hadamard product representation of the function
Ψq
p,b,c,δ(x) which is given by (4) we deduce

d2

dx2

[
log Ψq

p,b,c,δ(x)
]

=
d2

dx2

log
∏
n≥1

(
1− x2

qx2p,b,c,δ,n

)
=

d

dx

[
d

dx

∞∑
n=1

log

(
1− x2

qx2p,b,c,δ,n

)]

=
d

dx

∞∑
n=1

−2x

qx2p,b,c,δ,n − x2

= −2

∞∑
n=1

qx
2
p,b,c,δ,n + x2(

qx2p,b,c,δ,n − x2
)2

< 0

for x ∈ ∆3. So, the conclusion follows. �
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Theorem 4. Let b, c, δ, q are positive real numbers , p > −1 and qxp,b,c,δ,n denote
the nth positive zero of the generalized Struve function Sqp,b,c,δ(x). Then, the func-
tion x 7→ Sqp,b,c,δ(x) is strictly log-concave on (0,q xp,b,c,δ,1) ∪∆2.

Proof. By using the fact that the product of two strictly log-concave function is
also strictly log-concave, it is possible to prove the log-concavity of the general-
ized Struve function Sqp,b,c,δ(x) on ∆3. Because of this, we consider the function
Sqp,b,c,δ(x) in the following form:

Sqp,b,c,δ(x) =
1

Γ
(
p
δ + b+2

2

) (x
2

)p+1
Ψq
p,b,c,δ(x).

We known from part c. of Theorem 3 that the generalized Struve functionΨq
p,b,c,δ(x)

is strictly log-concave on ∆3. In addition, since

d2

dx2

(
log
(x

2

)p+1)
=

d2

dx2

(
(p+ 1) log

(x
2

))
= −p+ 1

x2
< 0

for p > −1, the function x 7→
(
x
2

)p+1
is strictly log-concave on (−∞, 0) ∪ (0,∞).

As a result, the function Sqp,b,c,δ(x) is strictly log-concave on (0,q xp,b,c,δ,1) ∪∆2 as
a product of two strictly log-concave functions. �

Now, let define the function x 7→ hqp,b,δ(x) by putting c = −1 in (3). It is easily
seen that the function hqp,b,δ(x) has the following infinite sum representation:

hqp,b,δ(x) =

∞∑
n=0

Γ
(
p
δ + b+2

2

)
n!4nΓ

(
nq + p

δ + b+2
2

)x2n. (5)

By using the Lemma 2 we have the following:

Theorem 5. The function

x 7→
x
(
hqp,b,δ(x)

)′
hqp,b,δ(x)

is increasing on (0,∞) for p, b, δ, q ∈ R+.

Proof. By using the infinite sum representation of the function hqp,b,δ(x) which is
given by (5), it can be written that

x
(
hqp,b,δ(x)

)′
hqp,b,δ(x)

=

∑∞
n=0Anx

2n∑∞
n=0Bnx

2n
,

where

An =
2nΓ(pδ + b+2

2 )

n!4nΓ(nq + p
δ + b+2

2 )
and Bn =

Γ(pδ + b+2
2 )

n!4nΓ(nq + p
δ + b+2

2 )
.
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Cauchy-Hadamard theorem for power series implies that the both series
∑∞
n=0Anx

2n

and
∑∞
n=0Bnx

2n are convergent for all x ∈ R, since

lim
n→∞

∣∣∣∣ AnAn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ BnBn+1

∣∣∣∣ =∞.

Moreover, we can say that An ∈ R and Bn > 0 for all n = 0, 1, 2, . . . . On the other
hand, if we consider the sequence

Hn =
An
Bn

= 2n,

then we deduce
Hn+1
Hn

=
n+ 1

n
> 1.

So the sequence {Hn}n≥0 is increasing. As a result, by applying the Lemma 2 to
the function x 7→ x(hqp,b,δ(x))

′

hqp,b,δ(x)
the proof is completed. �
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INTEGRABILITY OF THE DISTRIBUTIONS OF
GCR-LIGHTLIKE SUBMANIFOLDS OF (ε)-SASAKIAN

MANIFOLDS

AYSE FUNDA SAGLAMER AND NESRIN CALISKAN

Abstract. We study GCR-lightlike submanifolds of (ε)-Sasakian manifolds
and derived some important structural characteristics equations for further
uses. We also obtain some necessary and suffi cient conditions for the integra-
bility of various distributions of GCR-lightlike submanifolds of (ε)-Sasakian
manifolds.

1. Introduction

As a generalization of complex and totally real submanifolds, Cauchy-Riemann
(CR)-submanifolds of Kaehler manifolds were introduced by Bejancu [1] in 1978 and
further studied by many authors on using positive definite metric. In [3], Duggal in-
troduced the geometry of CR-submanifolds with Lorentz metric and showed mutual
interplay between the Cauchy-Riemann structure and physical spacetime geometry.
In [4], Duggal showed the interaction of Lorentz CR-submanifolds with relativity
and also studied a new class of CR-submanifolds. Later on, Duggal and Bejancu [5]
introduced the concept of CR-lightlike submanifolds of indefinite Kaehler manifolds
but which excluded the complex and totally real subcases, therefore Duggal and
Sahin [6] introduced Screen Cauchy-Riemann (SCR)-lightlike submanifolds of in-
definite Kaehler manifolds which included complex and screen real subcases but
there was no inclusion relation between SCR and CR classes. Thus as an umbrella
of complex, real hypersurfaces, screen real and CR-lightlike submanifolds, Duggal
and Sahin [7] introduced Generalized Cauchy-Riemann (GCR)-lightlike submani-
folds of indefinite Kaehler manifolds and further studied by [10—15]. Since there
are significant applications of contact geometry in thermodynamics, optics, mechan-
ics and many more. Therefore, Duggal and Sahin [8] introduced the geometry of
(GCR)-lightlike submanifolds of indefinite Sasakian manifolds and further studied
by [16—18]. Recent developments in the geometry of GCR-lightlike submanifolds
motivated us to extend this work. Kumar et al. [9] contributed in the study of
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(ε)-Sasakian manifolds and our aim of this paper is to study GCR-lightlike sub-
manifolds of (ε)-Sasakian manifolds.

2. Preliminaries

2.1. (ε)-Sasakian Manifolds. Assume that M̄ is a (2n + 1)-dimensional differ-
entiable manifold endowed with an almost contact structure (φ, η, V ), where φ is
a (1, 1)-type tensor field, η is a 1-form and V is a vector field on M̄ , called the
characteristic vector field, satisfying

φ2X = −X + η (X)V, η (V ) = 1, (2.1)

η (φX) = 0, φ (V ) = 0, rankφ = 2n, (2.2)

then M̄ , with the triple (φ, η, V ) is called an almost contact manifold. If there
exists a semi-Riemannian metric ḡ such that

ḡ (φX, φY ) = ḡ (X,Y )− εη (X) η (Y ) , ∀X,Y ∈ TM̄, (2.3)

η (X) = εḡ (X,V ) , ḡ (V, V ) = ε, ∀X ∈ TM̄, (2.4)

for any vector fields X,Y on M̄ , where ε = ∓1, then (φ, η, V, ḡ) is called an (ε)-
almost contact metric structure on M̄ . If dη (X,Y ) = ḡ (φX, Y ), then (ε)-almost
contact metric structure is called an (ε)-contact metric structure and M̄ endowed
with this structure is called an (ε)- contact metric manifold. Furthermore, if the
(ε)-contact metric structure is normal, that is, if satisfying

[φX, φY ] + φ2 [X,Y ]− φ [X,φY ]− φ [φX, Y ] = −2dη (X,Y )V, (2.5)

then (ε)-contact metric structure is called an (ε)-Sasakian structure and M̄ endowed
with this structure is called as an (ε)-Sasakian manifold [2].

Remark 1. From the relations g (V, V ) = ε and ε = ∓1, it is clear that the vector
field V can never be null. If ε = −1 and the index of ḡ is odd; then M̄ is called a
time-like Sasakian manifold. If ε = 1 and the index of ḡ is even; then M̄ is called a
space-like Sasakian manifold. In particular, if ε = −1 and the index of ḡ is either
zero or one; then M̄ is said to be a usual Sasakian manifold or a Lorentz-Sasakian
manifold, respectively.

Theorem 1 ( [2, Theorem 3]). The necessary and suffi cient conditions for an
(ε)-almost contact metric structure (φ, η, V, ḡ) to be an (ε)-Sasakian structure is(

∇̄Xφ
)
Y = ḡ (X,Y )V − εη (Y )X, ∀X,Y ∈ TM̄, (2.6)

for any vector fields X,Y on M̄ , where ∇̄ denotes the Levi-Civita connection with
respect to ḡ. Moreover, we also have

∇̄XV = −εφX, (2.7)

for any X ∈ TM̄ .
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2.2. Lightlike Submanifolds. Suppose that
(
M̄m+n, ḡ

)
is a semi-Riemann man-

ifold andMm is its immersed submanifold. Then, Mm is called a lightlike subman-
ifold; if the metric g on M induced from ḡ has a radical distribution Rad (TM) of
rank r, for 1 ≤ r ≤ m, for details see [5]. Then, its semi-Riemannian complemen-
tary distribution in TM , denoted by S(TM), is known as the screen distribution
and it follows that TM = Rad (TM)⊥S (TM). The orthogonal complementary of
Rad (TM) in TM⊥, denoted by S

(
TM⊥

)
, is also a semi-Riemannian bundle and

known as a screen transversal bundle ofM . Since S(TM) is a non-degenerate vector
subbundle of TM̄ |M ; then, we have TM̄ |M = S(TM)⊥S(TM)⊥ where S(TM)⊥ is
the complementary orthogonal vector bundle of S(TM) in TM̄ |M . Then, clearly
we have S(TM)⊥ = S(TM⊥)⊥S(TM⊥)⊥. If (M, g) is an r-lightlike submanifold
of (M̄, ḡ); then, for the local basis {ξi}ri=1 of Rad (TM) on a coordinate neigh-
bourhood U of M , there exist smooth sections {Ni}ri=1 of S(TM⊥)⊥|U such that
ḡ (ξi, Nj) = δij and ḡ(Ni, Nj) = 0, for any i, j ∈ {1, . . . , r}. Then, there ex-
ists a vector subbundle of S(TM⊥)⊥ spanned by {Ni}ri=1, known as the lightlike
transversal vector bundle of M and denoted by ltr(TM). Consider a vector bun-
dle tr(TM) = ltr(TM)⊥S(TM⊥), which is a complementary (but not orthogonal)
vector bundle to TM in TM̄ |M and known as the transversal vector bundle of M .
Thus, we have the following decomposition

TM̄ |M = TM ⊕ tr(TM) = S(TM)⊥{Rad(TM)⊕ ltr(TM)}⊥S(TM⊥).

Let ∇̄ be the Levi-Civita connection on M̄ ; then using above decomposition, the
Gauss and Weingarten formulae are given by

∇̄XY = ∇XY + h (X,Y ) , ∀X,Y ∈ Γ (TM) , (2.8)

∇̄XU = −AUX +∇txU, ∀X ∈ Γ (TM) , U ∈ Γ (tr (TM)) , (2.9)

where {∇XY, AUX} and
{
h (X,Y ) , ∇tXU

}
are the elements of Γ (TM) and

Γ (tr (TM)), respectively. Here ∇ and ∇t are the linear connections on TM and
tr (TM), respectively and the linear operator AU onM is called the shape operator
and the symmetric bilinear form h on TM is called the second fundamental form.
Consider projection morphisms L and S of tr(TM) on ltr(TM) and S(TM⊥),

respectively, then particularly Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h` (X,Y ) + hs (X,Y ) , (2.10)

∇̄XN = −ANX +∇`X (N) +Ds (X,N) , (2.11)

∇̄XW = −AWX +∇sX (W ) +D` (X,W ) , (2.12)

for anyX,Y ∈ Γ (TM), N ∈ Γ (`tr (TM)) andW ∈ Γ
(
S
(
TM⊥

))
, where hl(X,Y ) =

L(h(X,Y )) and hs(X,Y ) = S(h(X,Y )) are the lightlike second fundamental form
and the screen second fundamental form of M , respectively. It should be noted
that Dl : Γ(TM)× Γ(S(TM⊥))→ Γ(ltr(TM)) and Ds : Γ(TM)× Γ(ltr(TM))→
Γ(S(TM⊥)) are F(M)-bilinear mappings. ∇` and ∇s are the lightlike and the
screen transversal connection on M , respectively. In the consequence of (2.8),
(2.10), (2.11) and (2.12), we have

g (AWX, Y ) = ḡ (hs (X, Y ) ,W ) + ḡ
(
Y,D` (X,W )

)
, (2.13)
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g
(
ANX, P̄Y

)
= ḡ

(
N,∇X P̄ Y

)
, (2.14)

where P̄ is the projection of TM on S (TM). Furthermore, we also have

∇X P̄ Y = ∇∗X P̄ Y + h∗
(
X, P̄Y

)
, (2.15)

∇Xξ = −A∗ξX +∇∗tXξ, (2.16)

for any X,Y ∈ Γ (TM) and ξ ∈ Γ (Rad(TM)), where ∇∗ and ∇∗t are the linear
connections on S (TM) and Rad (TM), respectively. h∗ and A∗ are Γ(Rad(TM))-
valued and Γ(S(TM))-valued bilinear forms and called as second fundamental forms
of distributions S(TM) and Rad(TM), respectively. By the virtue of (2.16) and
(2.17), we have

ḡ
(
h∗
(
X, P̄Y

)
, N
)

= g
(
ANX, P̄Y

)
(2.17)

3. GCR-lightlike submanifolds of (ε)-Sasakian manifolds

Definition 1. Suppose
(
M̄, ḡ

)
is an (ε)-Sasakian manifold and (M, g, S (TM))

is its real lightlike submanifold, where V is tangent to M . Then, M is called a
GCR-lightlike submanifold of M̄ if the following conditions are satisfied:

(A) There exist two subbundles D1 and D2 of Rad(TM); such that Rad(TM) =
D1 ⊕D2, where φ(D1) = D1 and φ(D2) ⊂ S(TM).

(B) There exist two subbundles D0 and D̄ of S(TM); such that S(TM) =
{φD2 ⊕ D̄}⊥D0⊥V and φ(D̄) = L⊥S,

where D0 is invariant non-degenerate distribution onM , {V } is one dimensional
distribution spanned by V , L and S are vector subbundles of ltr(TM) and S(TM⊥),
respectively. Then, the tangent bundle TM of M is decomposed as TM = {D ⊕
D̄ ⊕ {V }}, where D = Rad(TM)⊕D0 ⊕ φ(D2).

Suppose (M, g, S (TM)) is a GCR-lightlike submanifold of an (ε)-Sasakian man-
ifold M̄ . Then, any X ∈ TM can be written as

X = P1X + P2X + P0X + φP2X +QX + η (X)V, (3.1)

where P1X, P2X, P0X, φP2X and QX belong to the distributions D1, D2, D0,
φD2 and D̄, respectively. Assume that L1 represents the orthogonal complement
of the vector subbundle L in `tr (TM); then using the definition of GCR-lightlike
submanifold, for any N ∈ Γ (`tr (TM)), we have

φN = TN + CN, (3.2)

where TN ∈ Γ (φL) is the tangential part of φN and CN ∈ Γ
(
L⊥
)
is the transversal

part of φN . Similarly, suppose that S⊥ represents the orthogonal complement of
the vector subbundle S in S

(
TM⊥

)
; then for any W ∈ Γ

(
S
(
TM⊥

))
, we have

φW = TW + CW, (3.3)

where TW ∈ Γ (φS) is the tangential part of φW and CW ∈ Γ
(
S⊥
)
is the screen

transversal part of φW . Using (3.1), we obtain

φX = φ (P1X) + φ (P2X) + φ (P0X)− P2X + φQX, (3.4)
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where φQX ∈ Γ (L⊥S) and we can write

φQX = LX + SY, (3.5)

where LX ∈ Γ (L) and SY ∈ Γ (S). So, we have

U (X,Y ) = ∇X (φP1Y ) +∇X (φP2Y )−∇X (P2Y ) (3.6)

+∇X (φP0Y )−ALYX −ASYX,
for any X,Y ∈ TM .

Lemma 1. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, for any X,Y ∈ TM the following equalities hold

P1U (X,Y )− φP1∇XY = −εη (Y )P1X, (3.7)

P2U (X,Y ) + P2∇XY = −εη (Y )P2X, (3.8)

P0U (X,Y )− φP0∇XY = −εη (Y )P0X, (3.9)

φP2U (X,Y )− φP2∇XY = −εη (Y )φP2X, (3.10)

QU (X,Y )−QTh` (X,Y )−QThs (X,Y ) = −εη (Y )QX, (3.11)

{η (U (X,Y ))− ḡ (X,Y )}V = −εη (Y ) η (X)V, (3.12)

∇`X (LY ) +D` (X,SY )− L∇XY + h` (X,φP1Y )

+h` (X,φP2Y ) + h` (X,φP0Y )− h` (X,P2Y )− Ch` (X,Y ) = 0, (3.13)

∇sX (SY )− S∇XY +Ds (X,LY ) + hS (X,φP1Y )

+hS (X,φP2Y )− hs (X,P2Y ) + hs (X,φP0Y )− Chs (X,Y ) = 0. (3.14)

Proof. Let Y ∈ Γ (TM); then using (3.4) and (3.5), it follows that φ (P1Y ) −
P2Y , φ (P2Y ) + φP0Y , LY and SY belong to Rad (TM), S (TM), `tr (TM) and
S
(
TM⊥

)
, respectively. Also for any X,Y ∈ Γ (TM), it is known that(

∇̄Xφ
)
Y = ∇̄X (φY )− φ

(
∇̄XY

)
. (3.15)

Using (2.10), (2.11), (2.12) and (3.4) in (3.15) and afterwards applying (3.6), we
obtain(
∇̄Xφ

)
Y = (P1U (X,Y )− φP1∇XY ) + (P2U (X,Y ) + P2∇XY )

+ (P0U (X,Y )− φP0∇XY ) + φ (P2U (X,Y )− φP2∇XY )

+
(
QU (X,Y )− Th` (X,Y )− Ths (X,Y )

)
+ η (U (X,Y ))V

+
(
∇`X (LY ) +D` (X,SY )− L∇XY + h` (X,φP1Y ) + h` (X,φP2Y )

+h` (X,φP0Y ) −h` (X,P2Y )− Ch` (X,Y )
)

+ (∇sX (SY ) − S∇XY + hs (X,φP1Y ) , (3.16)

for any X,Y ∈ Γ (TM). Also from (2.6) and (3.1), it follows that(
∇̄Xφ

)
Y = −εη (Y ) (P1X)− εη (Y ) (P2X)− εη (Y ) (P0X)− εη (Y ) (φP2X)

−εη (Y )QX + (ḡ (X,Y )− εη (X) η (Y ))V. (3.17)
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By using (3.16) and (3.17), it is easy to obtain(
¯̃NXf

)
Y =

(
P1U (X,Y )− fP1ÑXY

)
+ P2

(
U (X,Y ) + ÑXY

)
+
(
P0U (X,Y )− fP0ÑXY

)
+ fP2

(
U (X,Y )− ÑXY

)
+QU (X,Y )− Thl (X,Y )− Ths (X,Y ) + η (U (X,Y ))V

+
(
Ñ l
X (LY ) +Dl (X,SY )− LÑXY + hl (X, fP1Y ) + hl (X, fP2Y )

+hl (X, fP0Y )− hl (X,P2Y )− Chl (X,Y )
)

+
(
Ñs
X (SY )− SÑXY + hs(X, fP1Y

)
+ hs (X, fP2Y )

−hs (X,P2Y ) + hs (X, fP0Y ) +Ds (X,LY )− Chs (X,Y )) .

Then, (3.7) to (3.14) follow on comparing the components of the vector bundles
D1, D2, D0, φD2, D̄, {V }, `tr (TM) and S

(
TM⊥

)
, respectively. �

Lemma 2. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, for any X ∈ Γ (TM) and N ∈ `tr (TM), the following relations
hold

P1∇X (TN)− P1ACNX + φP1 (ANX) = 0, (3.18)

P2∇X (TN)− P2ACNX − P2 (ANX) = 0, (3.19)

P0∇X (TN)− P0ACNX + φP0 (ANX) = 0, (3.20)

φP2 (∇X (TN))− φP2 (ACNX) + φ (P2ANX) = 0, (3.21)

Q∇X (TN)−QACNX − T∇`XN − TDs (X,N) = 0, (3.22)

η (∇XTN −ACNX) = ḡ (P1X,N) + ḡ (P2X,N) , (3.23)

h` (X,TN) +∇`X (CN)− C∇`XN + LANX = 0, (3.24)

hs (X,TN) +Ds (X,CN)− CDs (X,N) + SANX = 0. (3.25)

Proof. Let X ∈ Γ (TM) and N ∈ Γ(`tr (TM)), then we have(
∇̄Xφ

)
N = ∇̄X (TN) + ∇̄X (CN)

+φ (ANX)− φ
(
∇`X (N)

)
− φ (Ds (X,N)) . (3.26)

Further on using the equations (2.10) and (2.11) in (3.26), we get(
∇̄Xφ

)
N = ∇X (TN) + h` (X,TN) + hS (X,TN)−ACNX

+∇`X (CN) +Ds (X,CN) + φ (ANX)

−φ
(
∇`X (N)

)
− φDs (X,N) (3.27)

Using (3.1) to (3.3), we also have

∇X (TN) = P1∇X (TN) + P2∇X (TN) + P0∇X (TN)

+φP2∇X (TN) +Q∇X (TN) + η (∇X (TN))V, (3.28)

ACNX = P1ACNX + P2ACNX + P0ACNX

+φP2ACNX +QACNX + η (ACNX)V, (3.29)
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φ (ANX) = φ (P1ANX) + φ (P2ANX)

+φ (P0ANX)− P2 (ANX) + φQ (ANX) , (3.30)

φ
(
∇`XN

)
= T

(
∇`XN

)
+ C

(
∇`XN

)
, (3.31)

φ (Ds (X,N)) = TDs (X,N) + CDs (X,N) . (3.32)

On using the equations from (3.28) to (3.32) in equation (3.27), we get(
∇̄Xφ

)
N = {P1∇XTN − P1ACNX + φP1 (ANX)}

+ {P2 (∇XTN)− P2 (ACNX)− P2 (ANX)}
+ {P0∇XTN − P0ACNX + φP0ANX}
+ {φP2 (∇XTN)− φP2 (ACNX) + φP2 (ANX)}

+
{
Q∇XTN −QACNX − T∇`XN − TDs (X,N)

}
+ {η (∇XTN)− η (ACNX)}V

+
{
h` (X,TN) +∇`X (CN)− C∇`XN + LANX

}
+ {hs (X,TN) +Ds (X,CN)− CDs (X,N) + SANX} ,(3.33)

which implies φQ (ANX) = L (ANX) + S (ANX), where L (ANX) ∈ Γ (L) and
S (ANX) ∈ Γ (S). Also using (2.6), we have(

∇̄Xφ
)
N = ḡ (P1X,N)V + ḡ (P2X,N)V. (3.34)

On using (3.33) in (3.34), we obtain

ḡ (P1X,N)V + ḡ (P2X,N)V = {P1∇XTN − P1ACNX + φP1 (ANX)}
+ {P2 (∇XTN)− P2 (ACNX)− P2 (ANX)}

+ {P0∇XTN − P0ACNX + φP0ANX}
+ {φP2 (∇XTN)− φP2 (ACNX) + φP2 (ANX)}

+
{
Q∇XTN −QACNX − T∇`XN − TDs (X,N)

}
+ {η (∇XTN)− η (ACNX)}V

+
{
h` (X,TN) +∇`X (CN)− C∇`XN + LANX

}
+ {hs (X,TN) +Ds (X,CN)− CDs (X,N) + SANX} .

Then, the relations from (3.18) to (3.25) are obtained on comparing the compo-
nents of the vector bundles D1, D2, D0, φD2, D̄, {V }, `tr (TM) and S

(
TM⊥

)
,

respectively. �

Lemma 3. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, for any X ∈ Γ (TM) and W ∈ Γ(S

(
TM⊥

)
), the following

relations hold
P1 {∇XTW −ACWX + φ (ANX)} = 0, (3.35)

P2 {∇XTW −ACWX −AWX} = 0, (3.36)

P0 {∇XTW −ACWX + φ (AWX)} = 0, (3.37)
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φP2 {∇XTW −ACWX +AWX} = 0, (3.38)

Q∇XTW −QACWX − T∇sXW − TD` (X,W ) = 0, (3.39)

η (∇XTW −ACWX) = 0, (3.40)

h` (X,TW )− CD` (X,W ) +D` (X,CW ) + LAWX = 0, (3.41)

hs (X,TW ) +∇sX (CW )− C (∇sXW ) + SAWX = 0. (3.42)

Proof. Let X ∈ Γ (TM) and W ∈ Γ(S
(
TM⊥

)
); then using (2.12) and (3.3), it

follows that(
∇̄Xφ

)
W = ∇̄X (TW ) + ∇̄X (CW ) + φ (AWX)− φ (∇sXW )− φ

(
D` (X,W )

)
.

(3.43)
Then, further using (2.10), (2.12), (3.1), (3.3) and (3.4) in equation (3.43), we
obtain(

∇̄Xφ
)
W = P1 {∇X (TW )− (ACWX) + φ (AWX)}

+P2 {∇X (TW )−ACWX −AWX}
+P0 {∇X (TW )−ACWX + φ (AWX)}
+φP2 {∇XTW −ACWX +AWX}
+
{
Q∇XTW −QACWX − T∇sXW − TD` (X,W )

}
+ {η (∇XTW )− η (ACWX)}V
+
{
h` (X,TW ) +D` (X,CW )− CD` (X,W ) + LANX

}
+ {hs (X,TW )− C∇sXW +∇sX (CW ) + S (ANX)} . (3.44)

In consequence of (2.6), we know that
(
∇̄Xφ

)
W = 0; then the relations from (3.35)

to (3.42) follow immediately on comparing the components of the vector bundles
D1, D2, D0, φD2, D̄, {V }, `tr (TM) and S

(
TM⊥

)
, respectively. �

Lemma 4. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, for any X ∈ D and Y ∈ D̄, we have the following relations

∇XV = −εφX, h` (X,V ) = 0, hs (X,V ) = 0, (3.45)

∇Y V = 0, h` (Y, V ) = −εLY, hs (Y, V ) = −εSY, (3.46)

∇V V = 0, h` (V, V ) = 0, hs (V, V ) = 0. (3.47)

Proof. The proof follows immediately by using (2.10), (3.1) and (3.4) in (2.6). �

4. Integrability of the distributions

Theorem 2. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, necessary and suffi cient conditions for the radical distribution
Rad (TM) to be integrable are the following

(1) h` (X,φY ) = h` (Y, φX) , hs (X,φY ) = hs (Y, φX), ∀X,Y ∈ Rad (TM).

(2) ḡ
(
h∗ (X,φY ) , φZ̃

)
= ḡ

(
h∗ (Y, φX) , φZ̃

)
, ∀X,Y ∈ D2, φZ̃ ∈ `tr (TM).

(3) ḡ
(
∇∗tXφY, φZ̃

)
= ḡ

(
∇∗tY φX, φZ̃

)
, ∀X,Y ∈ D1, φZ̃ ∈ `tr (TM).



362 AYSE FUNDA SAGLAMER AND NESRIN CALISKAN

(4) ḡ
(
h∗ (X,φY ) , φZ̃

)
= ḡ

(
∇∗tY (φX) , φZ̃

)
, ∀X ∈ D1, Y ∈ D2, φZ̃ ∈ `tr (TM).

ḡ
(
h∗ (Y, φX) , φZ̃

)
= ḡ

(
∇∗tX (φY ) , φZ̃

)
, ∀X ∈ D2, Y ∈ D1, φZ̃ ∈ `tr (TM).

(5) ḡ
(
A∗φYX,φZ0

)
= ḡ

(
A∗φXY, φZ0

)
, ∀X,Y ∈ D1, Z0 ∈ D0.

(6) ḡ (∇∗XφY, φZ0) = ḡ (∇∗Y (φX) , φZ0), ∀X,Y ∈ D2, Z0 ∈ D0.

(7) ḡ (∇∗X (φY ) , φZ0) = −ḡ
(
A∗φXY, φZ0

)
, ∀X ∈ D1, Y ∈ D2, Z0 ∈ D0.

Proof. (1) Assume that the radical distribution RadTM is integrable; then, this
implies that [X,Y ] ∈ RadTM for any X,Y ∈ RadTM . Using (3.13), we have
h` (X,φY ) = L∇XY + Ch` (X,Y ) and h` (Y, φX) = L∇YX + Ch` (Y,X) this
further implies that h` (X,φY ) − h` (Y, φX) = L (∇XY −∇YX) = L [X,Y ] . If
[X,Y ] ∈ RadTM , then L [X,Y ] = 0, therefore we get

h` (X,φY ) = h` (Y, φX) . (4.1)

Similarly as a consequence of (3.14), we also have

hs (X,φY ) = hs (Y, φX) , (4.2)

and ḡ ([X,Y ] , V ) = 2εg (Y, φX) = 0. Now using (2.6) for any X,Y ∈ RadTM and
Z̃ ∈ D̄, we get
ḡ
(
∇̄X (φY ) +h` (X,φY )+hs (X,φY )−∇Y (φX)−h` (Y, φX)−hs (Y, φX)φZ̃

)
=

0,
and then by using (4.1) and (4.2), we obtain

0 = ḡ
(
∇X (φY ) , φZ̃

)
− ḡ

(
∇Y (φX) , φZ̃

)
. (4.3)

For ∇X (φY ), ∇Y (φX) ∈ Γ (TM) and φZ̃ ∈ S
(
TM⊥

)
, (4.3) is satisfied.

(2) Let φX, φY ∈ S (TM) and φZ̃ ∈ `tr (TM), then applying (2.16) in (4.3), we
get

0 = ḡ
(
∇∗X (φY ) , φZ̃

)
− ḡ

(
∇∗Y (φX) , φZ̃

)
+ḡ
(
h∗ (X,φY ) , φZ̃

)
− ḡ

(
h∗ (Y, φX) , φZ̃

)
(4.4)

where ∇∗X (φY ) ,∇∗Y (φX) ∈ S (TM) and h∗ (X,φY ), h∗ (Y, φX) ∈ Rad (TM).
Hence, (4.4) becomes

ḡ
(
h∗ (X,φY ) , φZ̃

)
= ḡ

(
h∗ (Y, φX) , φZ̃

)
. (4.5)

(3) Similarly, for φX, φY ∈ S (TM) and φZ̃ ∈ `tr (TM), using (2.17) in (4.3),
we get

0 = ḡ
(
A∗φXY, φZ̃

)
− ḡ

(
A∗φYX,φZ̃

)
− ḡ

(
A∗tY φX, φZ̃

)
+ ḡ

(
A∗tXφY, φZ̃

)
, (4.6)

where A∗φXY,A
∗
φYX ∈ S (TM) and ∇∗tY φX,∇∗tXφY ∈ Rad (TM). Hence, (4.6)

becomes
ḡ
(
∇∗tXφY, φZ̃

)
= ḡ

(
∇∗tY φX, φZ̃

)
. (4.7)
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(4) Let φX ∈ Rad (TM), φY ∈ S (TM) and φZ̃ ∈ `tr (TM); then using (2.16)
and (2.17) in (4.3), we get

ḡ
(
h∗ (X,φY ) , φZ̃

)
= ḡ

(
∇∗tY (φX) , φZ̃

)
. (4.8)

Similarly, by using φX ∈ S (TM), φY ∈ Rad (TM) and φZ̃ ∈ `tr (TM), with the
help of (2.16) and (2.17) in (4.3), it follows that

ḡ
(
h∗ (Y, φX) , φZ̃

)
= ḡ

(
∇∗tX (φY ) , φZ̃

)
. (4.9)

(5) For X,Y ∈ D1 and Z0 ∈ D0, using (2.6) and (2.17), we have the following
relation immediately

ḡ
(
A∗φXY, φZ0

)
= ḡ

(
A∗φYX,φZ0

)
. (4.10)

(6) For X,Y ∈ D2 and Z0 ∈ D0, by the use of (2.6) and (2.16), we have

ḡ (∇∗X (φY ) , φZ0) = ḡ (∇∗Y (φX) , φZ0) . (4.11)

(7) Finally, let X ∈ D1, Y ∈ D2 and Z0 ∈ D0; then, using (2.6), (2.16) and (2.17),
we obtain

ḡ (∇∗X (φY ) , φZ0) = −ḡ
(
A∗φXY, φZ0

)
. (4.12)

If we take X,Y ∈ D2 and Z ∈ φD2, then on applying(2.17) and (2.16), we get

ḡ (h∗ (X,φY ) , φZ)− ḡ (h∗ (Y, φX) , φZ) = 0, (4.13)

where ḡ (h∗ (X,φY ) , φZ) = 0 = ḡ (h∗ (Y, φX) , φZ), for all φZ ∈ D2, this implies
(4.13) holds. For X,Y ∈ D1 and Z ∈ φD2 with the help of (2.6) and (2.17) it is
possible to get g

(
∇∗tXφY, φZ

)
= g

(
∇∗tY φX, φZ

)
= 0. For X ∈ D1, Y ∈ D2 and

Z ∈ φD2 by using (2.6) and (2.16) and (2.17), we get ḡ (h∗ (X,φY ) , φZ) = 0 =
ḡ (h∗ (Y, φX) , φZ), for all φZ ∈ D2. �

Theorem 3. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, the distribution D0 is never integrable.

Proof. Assume that the distribution D0 is integrable, then g ([X,Y ] , V ) = 0 for
any X,Y ∈ D0. By using (2.6), we obtain ḡ ([X,Y ] , V ) = 2εḡ (Y, φX) for X,Y ∈
D0, then by using the above relation, we have ḡ (Y, φX) = 0. Since D0 is non-
degenerate then ḡ (Y, φX) 6= 0. This leads to a contradiction and hence the assertion
follows. �

Lemma 5. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, [X,V ] ∈ D ⊕ {V }, for any X ∈ D.

Proof. LetX ∈ D and Y ∈ D̄; then using (3.47), we get ḡ ([X,V ] , Y ) = εḡ (X,φY )−
ḡ (∇VX,Y ). Particularly, on taking φY ∈ S

(
TM⊥

)
, we have ḡ ([X,V ] , Y ) =

−ḡ (∇VX,Y ) and further on putting X = φX, then using (2.6), (2.12), (2.13)
and (3.47), we obtain ḡ ([φX, V ] , Y ) = ḡ (hs (V,X) , φY ) = 0. In particular, if we
take φY ∈ `tr (TM) then by using (2.6), (2.15) and (2.11), we get ḡ ([φX, V ] , Y ) =
ḡ (φY,∇VX) = 0. We know that if X ∈ D then this implies that φX ∈ D therefore
ḡ ([X,V ] , Y ) = 0 implies that [X,V ] ∈ D ⊕ {V } for X ∈ D. �
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Theorem 4. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, necessary and suffi cient conditions for D⊕{V } to be integrable
are h` (X,φY ) = h` (φX, Y ) and hs (X,φY ) = hs (φX, Y ), for any X,Y ∈ D⊕{V }.
Proof. Assume that D ⊕ {V } is integrable then [X,Y ] ∈ D ⊕ {V }, for any X,Y ∈
D ⊕ {V }. We know that for any X,Y ∈ D ⊕ {V }, we can write X = PX +
η (X)V and Y = PY + η (Y )V , where PX,PY ∈ D. Using these relations, we
obtain [X,Y ] − η (Y ) [PX, V ] − η (X) [V, PY ] = [PX,PY ] . Since [X,Y ], [PX, V ],
[V, PY ] ∈ D ⊕ {V } then [PX,PY ] ∈ D ⊕ {V }. Thus Q [PX,PY ] = 0 implies
L [PX,PY ] = 0 = S [PX,PY ]. On using these equalities in (3.13), our assertion
follows. �
Theorem 5. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, necessary and suffi cient condition for the distribution D̄ to be
integrable is that AφXY = AφYX for X,Y ∈ D̄.

Proof. Let φX ∈ S
(
TM⊥

)
, Y ∈ D̄ and Z ∈ S (TM), then using (2.6), (2.10) and

(2.13), it follows that

g (AφXY,Z) = −ḡ
(
∇̄Z (φY ) , X

)
. (4.14)

For φY ∈ S
(
TM⊥

)
, by the use of (2.13) in (4.14), we have

g (AφXY,Z) = g (AφYX,Z) . (4.15)

Also for φY ∈ `tr (TM), by using (2.17) in (4.14), we have

g (AφXY,Z) = g (AφYX,Z) . (4.16)

Hence by the use of (4.15) and (4.16), for any Z ∈ S (TM), we obtain AφXY =
AφYX. If φX ∈ `tr (TM), Y ∈ D̄ and Z ∈ S (TM) then from (2.6), (2.16) and
(2.17), it follows that g (AφXY,Z) = ḡ (∇ZX,φY ). Furthermore, particularly on
taking φY ∈ `tr (TM) and using (2.16), we obtain g (AφXY, Z) = ḡ (h∗ (X,Z) , φY ) =
g (AφYX,Z) . If particularly we take φX ∈ S

(
TM⊥

)
, Y ∈ D̄ and Z ∈ Rad (TM),

then using (2.6), (2.10), (2.12) and (2.13), we get

g (AφXY,Z) = ḡ (hs (Y, Z) , φX) + ḡ
(
Z,D` (Y, φX)

)
= ḡ (hs (X,Z) , φY ) + ḡ

(
Z,D` (Y, φX)

)
. (4.17)

Now, for any φY ∈ S
(
TM⊥

)
, using (3.13), we get D` (X,φY ) = D` (Y, φX) .

Then, using (4.17) for any Z ∈ S (TM), we obtain g (AφXY,Z) = ḡ (AφYX,Z).
If φX ∈ `tr (TM), Y ∈ D̄ and Z ∈ S (TM); then using (2.6), (2.16) and (2.17),

it yields

g (AφXY, Z) = ḡ (φX,∇∗Y Z) + ḡ
(
∇`Y (φX) , Z

)
= −ḡ (X,∇Y (φZ)) + ḡ

(
∇`Y (φX) , Z

)
. (4.18)

On applying (2.16) and (2.17) in (4.18) we get g (AφXY,Z) = ḡ
(
∇`Y (φX) , Z

)
and further on taking φY ∈ `tr (TM) and using (3.13), we obtain g (AφXY,Z) =
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ḡ
(
∇`φX (Y ) , Z

)
= g (AφYX,Z) . This implies that on considering Z ∈ Rad (TM),

we have AφXY = AφYX.
Conversely, let X,Y ∈ D̄; then using φP∇XY = φ (P1∇XY ) + φ (P2∇XY ) +

φ (P0∇XY ) − P2∇XY and applying (2.6) and (2.10),by the use of the equations
from (3.2) to (3.5), it is possible to have

∇̄XφY = ḡ (X,Y )V + φP∇XY + L∇XY + S∇XY
+Th` (X,Y ) + Ch` (X,Y ) + Ths (X,Y ) + Chs (X,Y ) . (4.19)

For φX, φY ∈ `tr (TM), by using (2.11) in (4.19), we also have

−AφYX +∇`X (φY ) +Ds (X,φY ) = ḡ (X,Y )V + φP∇XY + L∇XY
+S∇XY + Th` (X,Y ) + Ch` (X,Y )

+Ths (X,Y ) + Chs (X,Y ) . (4.20)

On separating the tangential and transversal components of (4.20), we obtain

AφYX = −ḡ (X,Y )V − φP∇XY − Th` (X,Y )− Ths (X,Y ) , (4.21)

∇`X (φY ) +Ds (X,φY ) = L∇XY + S∇XY + Ch` (X,Y ) + Chs (X,Y ) . (4.22)
From (4.21), we get AφYX−AφXY = −φP [X,Y ]. Since AφYX = AφXY ; then we
get P [X,Y ] = 0 and this implies that [X,Y ] ∈ D̄⊕{V }. Therefore, ḡ ([X,Y ] , V ) =
−g (Y,∇XV )+g (X,∇Y V ) = 0, for anyX,Y ∈ D̄, φX, φY ∈ `tr (TM) and [X,Y ] ∈
D̄. Similarly, for any φX, φY ∈ S

(
TM⊥

)
, by using (2.12) in (4.19), we obtain

−AφYX +∇sX (φY ) +D` (X,φY ) = ḡ (X,Y )V + φP∇XY + L∇XY
+S∇XY + Th` (X,Y ) + Ths (X,Y )

+Ch` (X,Y ) + Chs (X,Y ) . (4.23)

On separating the tangential and transversal components of (4.23), we get

AφYX = −ḡ (X,Y )V − φP∇XY − Th` (X,Y )− Ths (X,Y ) , (4.24)

∇sX (φY ) +D` (X,φY ) = L∇XY + S∇XY + Ch` (X,Y ) + Chs (X,Y ) . (4.25)
From (4.24), we get AφYX − AφXY = −φP [X,Y ]. Since AφYX = AφXY ; then
P [X,Y ] = 0. We know that ḡ ([X,Y ] , V ) = 0; therefore, for any X,Y ∈ D̄,
φX, φY ∈ S

(
TM⊥

)
, it follows that [X,Y ] ∈ D̄. Hence, the proof is complete. �

Theorem 6. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, the distribution D defines a totally geodesic foliation in M if
Th (X,Y ) = 0 for any X,Y ∈ Γ (D).

Proof. From the Definition 1, for any X,Y ∈ Γ (D), Z ∈ Γ (D), W ∈ Γ (S), we
have g (∇XY, φZ) = g (∇XY, φW ) = 0. Particularly, from (2.6) and (2.10), for any
X,Y ∈ Γ (D) and Z ∈ Γ (D1) ⊂ Rad (TM), it follows that

g (∇XY, φZ) = −g
(
h` (X,φY ) , Z

)
= 0. (4.26)

Similarly, using (2.10) and (2.3), for any X,Y ∈ Γ (D), W ∈ Γ (S), we have

g (∇XY, φW ) = −g (hs (X,φY ) ,W ) = 0. (4.27)
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Thus, from (4.26) and (4.27), it is clear that if the distribution D defines a totally
geodesic foliation in M then hs (X,φY ) and h` (X,φY ) have no components in S
and L, respectively. Thus, using these results with (3.2) and (3.3), the proof is
complete. �
Theorem 7. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, the distribution D̄ defines a totally geodesic foliation in M if
and only if AφYX ∈ Γ

(
D̄
)
for any X,Y ∈ Γ

(
D̄
)
.

Proof. For the elements X,Y ∈ Γ
(
D̄
)
, by using (3.4), we obtain φ

(
∇̄XY

)
=

φ
(
P ∇̄XY

)
+ φ

(
Q∇̄XY

)
. If we set φ

(
P ∇̄XY

)
= T

(
∇̄XY

)
and φ

(
Q∇̄XY

)
=

C∇̄XY ; then, by the use of (2.6), (2.8) and (2.9), we further have −AφYX =
T∇XY − Th (X,Y ) for any X,Y ∈ Γ

(
D̄
)
. Assume that the distribution D̄ is a

totally geodesic foliation in M ; then, it follows that AφYX = −Th (X,Y ). There-
fore, AφYX ∈ Γ

(
D̄
)
for any X,Y ∈ Γ

(
D̄
)
. Conversely, let AφYX ∈ Γ

(
D̄
)
, for any

X,Y ∈ Γ
(
D̄
)
then this implies that T∇XY = 0 and hence ∇XY ∈ Γ

(
D̄
)
. �

Definition 2. A GCR-lightlike submanifoldM is called D-geodesic if h (X,Y ) = 0,
for any X,Y ∈ Γ (D). Using the decomposition of the transversal vector bun-
dle, GCR-lightlike submanifold M is said to be a D-geodesic if h` (X,Y ) = 0 and
hs (X,Y ) = 0 for any X,Y ∈ Γ (D) . Also, M is said to be a mixed geodesic if
h` (X,Y ) = 0 and hs (X,Y ) = 0 for any X ∈ Γ (D) and Y ∈ Γ

(
D̄
)
.

Theorem 8. Let (M, g, S (TM)) be a GCR-lightlike submanifold of an (ε)-Sasakian
manifold M̄ . Then, the following assertions are equivalent

(1) M is mixed totally geodesic.
(2) ∇sD

(
φD̄
)
⊂ φD̄ and AφD̄D ⊂ D.

Proof. Choose Y ∈ D̄ such that φY ∈ S
(
TM⊥

)
; then, there exists a W ∈

S
(
TM⊥

)
such that φW = TW = Y . Let X ∈ D and W ∈ S

(
TM⊥

)
; then,

we have hs (X,Y ) = C (∇sXW ) − S (AWX) . Using the hypothesis that M is a
mixed totally geodesic; then, for X ∈ D and Y ∈ D̄, hs (X,Y ) = 0 holds and we
further obtain C (∇sXW ) = S (AWX) where S (AWX) ∈ Γ (S) ⊂ S

(
TM⊥

)
and

C (∇sXW ) ∈ Γ
(
S⊥
)
⊂ S

(
TM⊥

)
. For any ∇sXW ∈ S

(
TM⊥

)
, on using (3.3), we

have
φ (C∇sXW ) = −∇sXW − φ (T∇sXW ) , (4.28)

where ∇sXW ∈ S
(
TM⊥

)
and φ (T∇sXW ) ∈ φD̄ ⊂ S

(
TM⊥

)
. Using (4.28), it

follows that C∇sXW ∈
{
S
(
TM⊥

)
− φD̄

}
. Since S (AWX) ∈ φD̄; then, using

(4.27), we get C (∇sXW ) = 0 and S (AWX) = 0. Thus, from (4.27) and (4.28),
we have ∇sXW = φ (T∇sXW ) ,∇sXW ∈ φD̄ and AWX ∈ D, for any X ∈ D and
W ∈ φD̄. Consequently, we obtain that ∇sDφD̄ ⊂ φD̄ and AφD̄D ⊂ D.
Next, choose Y ∈ D̄ such that there exists a N ∈ `tr (TM) such that φN =

TN = Y , CN = 0. Using (3.26), for any X ∈ D and N ∈ `tr (TM), it follows that
h` (X,Y ) = C∇`XN − LANX. Assume that M is the mixed totally geodesic; then,
h` (X,Y ) = 0 where X ∈ D, Y ∈ D̄, therefore we further obtain

C∇`XN = LANX, (4.29)
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where C
(
∇`XN

)
∈ Γ

(
L⊥
)
⊂ `tr (TM) and LANX ∈ Γ (L) ⊂ `tr (TM). For

∇`XN ∈ `tr (TM), from (3.2), we also have

φ
(
C∇`XN

)
= −∇`XN − φ

(
T∇`XN

)
, (4.30)

where ∇`XN ∈ `tr (TM) and φ
(
T∇`XN

)
∈ φD̄ ⊂ `tr (TM). From (4.30), it is

obvious that φ
(
C∇`XN

)
/∈ D̄, this implies that C∇`XN /∈ φD̄, that is, C∇`XN ∈{

`tr (TM)− φD̄
}
. Since L (ANX) ∈ φD therefore from (4.29), we get C∇`XN = 0

and LANX = 0. As a conclusion, we obtain ∇`XN ∈ φD̄ and ANX ∈ D, for
any X ∈ D and N ∈ φD̄ ⊂ `tr (TM). Consequently, we have ∇`DφD̄ ⊂ φD̄ and
AφD̄D ⊂ D. Hence the proof is complete. �
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MORE IDENTITIES FOR FIBONACCI AND LUCAS
QUATERNIONS

NURETTIN IRMAK

Abstract. In this paper, we define the associate matrix as

F =

(
1 + i+ 2j + 3k i+ j + 2k

i+ j + 2k 1 + j + k

)
.

By the means of the matrix F, we give several identities about Fibonacci and
Lucas quaternions by matrix methods. Since there are two different determi-
nant definitions of a quaternion square matrix (whose entries are quaternions),
we obtain different Cassini identities for Fibonacci and Lucas quaternions apart
from Cassini identities that given in the papers [5] and [7].

1. Introduction

The quaternions were described by Irish mathematicians Sir William and Rowan
Hamilton as a extension of a complex number. The set of quaternion is defined by

H = {q = a0 + ia1 + ja2 + ka3 : an ∈ Z, n = 0, 1, 2, 3}

where i2 = j2 = k2 = −1 = ijk. This imply that ij = k = −ji, jk = i = −kj and
ki = j = −ik. The set of all quaternions form are associate but not commutative
algebra. We can write

q = a0 + u

where u = ia1 + ja2 + ka3. The conjugate of the quaternion q is denoted by q∗

and defined by q∗ = q − u. Namely, the conjugate of the quaternion q is q∗ =
a0 − ia1 − ja2 − ka3.
For n ≥ 2, the Fibonacci and Lucas sequences are defined as

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1

and
Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1,
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Key words and phrases. Fibonacci quaternions, Lucas quaternions, recurrence relations.

c©2020 Ankara University
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respectively. There are lots of amazing identities belongs to Fibonacci and Lucas
numbers. For the details, we refer the book of T. Koshy ([1]).
A. F. Horadam [2] defined nth Fibonacci and Lucas quaternions as follows,

Qn = Fn + iFn+1 + jFn+2 + kFn+3

and
Kn = Ln + iLn+1 + jLn+2 + kLn+3.

The conjugates of these quaternions are given by
∼
Qn = Fn − iFn+1 − jFn+2 − kFn+3

and
∼
Kn = Ln − iLn+1 − jLn+2 − kLn+3.

There are several researchers who focus on this Fibonacci and Lucas quaternions.
Swamy [4] gave interesting identities for Fibonacci quaternions. Iyer [3] established
some relations about Fibonacci and Lucas quaternions. Binet formula and gen-
erating functions of Fibonacci quaternions was given by Halıcı[5]. Akyiğit et al.
[6] gave the definition of split Fibonacci quaternions together with their proper-
ties. Afterwards, they gave Fibonacci generalized quaternions and they used the
well-known identities related to the Fibonacci and Lucas numbers to obtain the
relations regarding these quaternions in [7]. Another type generalization was given
by Tan et. al. [8], [9]. They defined bi-periodic Fibonacci and Lucas quaternions.
We use the determinant of quaternion matrix whose entries are quaternions.

Since the set of all quaternions are not commutative, we give the definitions of the
determinant of a quaternions matrix. Let A be a quaternion square matrix. Denote
A by,

A =

(
a11 a12
a21 a22

)
where aij ∈ H for i = 1, 2 and j = 1, 2. The determinant of A, detA, is defined by

detA = det

(
a11 a12
a21 a22

)
= a11a22 − a12a21. (1)

The above definition is called rule "multiplication from above to down below".
Since the set of all quaternion is not commutative, another product direction can
be defined. Namely, the definition

detA = det

(
a11 a12
a21 a22

)
= a22a11 − a21a12 (2)

is called the rule "multiplication from down below to above" (For details, see the
book [11], section 9.11.)
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In this paper, we present some novel identities between Fibonacci and Lucas
quaternions by using matrix method. Thanks to the this method, identities be-
longs to Fibonacci and Lucas quaternions can be obtained easily together with the
properties of matrices. Before going further, we define the following two matrices,

U =

(
1 1
1 0

)
, F =

(
1 + i+ 2j + 3k i+ j + 2k
i+ j + 2k 1 + j + k

)
. (3)

It is known that

Un =

(
Fn+1 Fn
Fn Fn−1

)
. (4)

2. Main Results

First theorem is about the Cassini identity belongs to Fibonacci and Lucas
quaternions. We obtain the two versions of Cassini identity since there are two
different determinant definitions of quaternion matrix. The first type Cassini iden-
tity for Fibonacci quaternions was given by Halıcı([5], Theorem 3.4) and Akyiğit
et. al. [7] gave the first type Cassini identity for Fibonacci and Lucas generalized
quaternions. For both identities, they used the determinant definition of (2). We
get the second type Cassini identity for the definition of (1).

Theorem 1. (First type Cassini identity) For n ≥ 1, the identities
Qn−1Qn+1 −Q2n = (−1)

n
(2Q1 − 3k)

and
Kn−1Kn+1 −K2

n = 5 (−1)
n−1

(2Q1 − 3k) .

Proof. By the matrices in (3) and (4), we obtain that

UnF =

(
Fn+1 Fn
Fn Fn−1

)(
1 + i+ 2j + 3k i+ j + 2k
i+ j + 2k 1 + j + k

)
(5)

=

(
Qn+1 Qn
Qn Qn−1

)
. (6)

Using the second definition of determinant (2) for the equation (5), we get

Qn−1Qn+1 −Q2n =
(
Fn+1Fn−1 − F 2n

)
×
(
(1 + j + k) (1 + i+ 2j + 3k)− (i+ j + 2k)2

)
= (−1)n (2Q1 − 3k)

as claimed. Since Fn−1 + Fn+1 = Ln, then we write(
Un−1 + Un+1

)
F =

(
Ln+1 Ln
Ln Ln−1

)(
1 + i+ 2j + 3k i+ j + 2k
i+ j + 2k 1 + j + k

)
=

(
Kn+1 Kn

Kn Kn−1

)
.
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Applying the equation (2) gives that

Kn−1Kn+1 −K2
n =

(
Ln+1Ln−1 − L2n

)
×
(
(1 + j + k) (1 + i+ 2j + 3k)− (i+ j + 2k)2

)
= 5 (−1)n−1 (2Q1 − 3k) .

�
The first type Cassini identity for the generalized bi-periodic Fibonacci quater-

nions was given by Tan et. al [10].

Theorem 2. (Second type Cassini identity) For n ≥ 1, the identities
Qn+1Qn−1 −Q2n = (−1)

n
(2 + 2j + 5k)

and
Kn+1Kn−1 −K2

n = 5 (−1)
n−1

(2 + 2j + 5k) .

Proof. Since the equation (5) holds, then the definition (1) yields that

Qn+1Qn−1 −Q2n =
(
Fn−1Fn+1 − F 2n

)
×
(
(1 + i+ 2j + 3k) (1 + j + k)− (i+ j + 2k)2

)
= (−1)n (2 + 2j + 5k) .

Similarly, one can see that

Kn+1Kn−1 −K2
n = 5 (−1)

n−1
(2 + 2j + 5k)

holds. �
Theorem 3. For n,m ≥ 1 integers, then

Qm+n = Fm+1Qn + FmQn−1

follows.

Proof. Since Um+nF = Um (UnF ) holds, then we obtain that

Um+nF =

(
Qm+n+1 Qm+n
Qm+n Qm+n−1

)
= UmUnF

=

(
Fm+1 Fm
Fm Fm−1

)(
Qn+1 Qn
Qn Qn−1

)
. (7)

Equating the first row second column entries of two matrix in (7) is yields that

Qm+n = Fm+1Qn + FmQn−1.

�
Since Fm+2 + Fm = Fm+1 and Qm+n+1 + Qm+n−1 = Km+n holds, we get the

following identity as a corollary.
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Corollary 1. For positive integers m and n, we get

Km+n = Lm+1Qn + LmQn−1 (8)

Theorem 4. For n,m ≥ 1 integers, we have
Qm+1Qn+1 +QmQn = Qm+n+1 + iQm+n+2 + jQm+n+3 + kQm+n+4.

Proof. The fact F (Um+nF ) = (FUm) (UnF ) yields that(
1 + i+ 2j + 3k i+ j + 2k
i+ j + 2k 1 + j + k

)(
Qm+n+1 Qm+n
Qm+n Qm+n−1

)
(9)

=

(
Qm+1 Qm
Qm Qm−1

)(
Qn+1 Qn
Qn Qn−1

)
(10)

If we equalize the pivot elements in the equation (9), we obtain claimed result. �

The equation (8) give the following system,(
Km+n+1 Km+n

Km+n Km+n−1

)
=

(
Lm+1 Lm
Lm Lm−1

)(
Qn+1 Qn
Qn Qn−1

)
. (11)

If we multiply the equation (11) with the matrix F from left side, we get that(
1 + i+ 2j + 3k i+ j + 2k
i+ j + 2k 1 + j + k

)(
Km+n+1 Km+n

Km+n Km+n−1

)
=

((
1 + i+ 2j + 3k i+ j + 2k
i+ j + 2k 1 + j + k

)(
Lm+1 Lm
Lm Lm−1

))(
Qn+1 Qn
Qn Qn−1

)
=

(
Km+1 Km

Km Km−1

)(
Qn+1 Qn
Qn Qn−1

)
.

Equating the first row and second column element, we obtain the following theorem.

Theorem 5. For m,n ≥ 1, we get
Km+n+1 + iKm+n+2 + jKm+n+3 + kKm+n+4 = Km+1Qn+1 +KnQn.

Let define the conjugate matrix of F as
∼
F =

(
1− i− 2j − 3k i− j − 2k
i− j − 2k 1− j − k

)
.

We present the first and second type Cassini identities for the conjugate Fi-
bonacci and Lucas quaternions.

Theorem 6. The identities

Q̃n−1Q̃n+1 − Q̃2n = (−1)n (2− 2j − 5k)

Q̃n+1Q̃n−1 − Q̃2n = (−1)n
(
2Q̃1 + 3k

)
K̃n−1K̃n+1 − K̃2

n = 5 (−1)n−1 (2− 2j − 5k)
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and
K̃n+1K̃n−1 − K̃2

n = 5 (−1)
n−1

(
2Q̃1 + 3k

)
hold for n ≥ 1.
Proof. The identity

F̃Un =

(
1− i− 2j − 3k i− j − 2k
i− j − 2k 1− j − k

)(
Fn+1 Fn
Fn Fn−1

)
=

(
Q̃n+1 Q̃n
Q̃n Q̃n−1

)
.

We get the first and second identities after taking the determinant under applying
the rules (2) and (1), respectively. By the way of the proofs of Theorem 1 and
Theorem 2, one can see the other identities easily. �
By using the conjugate matrix of F together with the matrix F, we get the

following identities. We equalize the first row and second column element to obtain
these identities,

Theorem 7. For the integers m and n,

1) The identity F̃ (Um+nF ) =
(
F̃Um

)
(UnF ) yields that

Qm+n+1 − iQm+n+2 − jQm+n+3 − kQm+n+4 = Q̃m+1Qn+1 + Q̃mQn.

2) The identity
(
F̃Um+n

)
F =

(
F̃Um

)
(UnF ) gives

Q̃m+n+1 + iQ̃m+n+2 + jQ̃m+n+3 + kQ̃m+n+4 = Q̃m+1Qn+1 + Q̃mQn.

3) By the identities(
FUm+n

)
F̃ = (FUm)

(
UnF̃

)
and F

(
Qm+nF̃

)
= (FQm)

(
QnF̃

)
,

Q̃m+n+1 + iQ̃m+n+2 + jQ̃m+n+3 + kQ̃m+n+4 = Qm+1Q̃n+1 +QmQ̃n

Qm+n+1 − iQm+n+2 − jQm+n+3 − kQm+n+4 = Qm+1Q̃n+1 +QmQ̃n

hold, respectively.

3. Open Question

There are several divisibility identities for Fibonacci and Lucas number. For
m,n positive integers, the well-known identities are

n|m⇐⇒ Fn|Fm
and

n = km⇔ Lm|Ln where k is odd integer.

Which conditions are suffi cient and necessary for the elements Qm

Qn
and Km

Kn
to

be Fibonacci and Lucas quaternions?
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ON NEW BÉZIER BASES WITH SCHURER POLYNOMIALS
AND CORRESPONDING RESULTS IN APPROXIMATION

THEORY

FARUK ÖZGER

Abstract. A new type Bézier bases with λ shape parameters have been de-
fined [30, Ye et al., 2010]. We slightly modify these bases to establish new
Bézier bases with Schurer polynomials and λ shape parameters. We construct
a new type Schurer operators via defined new Bézier-Schurer bases. Also, we
study statistical convergence properties of these operators and obtain an esti-
mate for the rate of weighted A-statistical convergence. Moreover, we prove
two Voronovskaja-type theorems including a Voronovskaja-type approximation
theorem using weighted A-statistical convergence.

1. Extended Bézier bases

In computer aided geometric design and computer graphics parametric represen-
tations of surfaces and curves have extensively been used for modeling miscellaneous
surfaces. It is important which basis functions are used if we want to preserve the
shape of the curve or surface when we demonstrate a parametric surface or curve.
This is why Bernstein-Bézier curve and surface representation have an important
role in computer graphics. Bernstein basis functions are used to construct classical
Bézier curves since they have a simple structure to use. They have also received
attention for their utility in the meshing of curved geometries and the numerical
solution of partial differential equations. We refer to [15, 22, 29] for recent computer
graphics studies including Bézier curves or bases.
A new type Bézier bases with shape parameters λ were defined by Ye et al. in

2010 [30]. We slightly modify these bases to establish new Bézier bases with Schurer
polynomials, which were defined in [25], and shape parameters λ.
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Let d ≥ 0 be a given integer and shape parameters λ ∈ [−1, 1]. We define the
following Bézier-Schurer bases

s̃n,0(λ;x) = sn,0(x)− λ

n+ d+ 1
sn+1,1(x),

s̃n,i(λ;x) = sn,i(x) +
λ

(n+ d)2 − 1
[(n+ d− 2i+ 1)sn+1,i(x)

−(n+ d− 2i− 1)sn+1,i+1(x)] (i = 1, 2 . . . , n+ d− 1),

s̃n,n+d(λ;x) = sn,n+d(x)− λ

n+ d+ 1
sn+1,n+d(x), (1)

where fundamental Schurer polynomials sn,i(x) of degree n+ d defined as

sn,i(x) =

(
n+ d

i

)
xi (1− x)n+d−i (i = 0, 1, . . . , n+ d).

Lemma 1. New Bézier-Schurer bases have partition of unity property.

Proof. It is enough to show the equality
∑n+d
i=0 s̃n,i(λ, x) = 1 holds.

n+d∑
i=0

s̃n,i(λ, x) = sn,0(x)− λ

n+ d+ 1
sn+1,1(x) + sn,n+d(x)− λ

n+ d+ 1
sn+1,n+d(x)

+

n+d−1∑
i=1

[
sn,i(x) + λ

(
n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x)

−n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x)

)]
= sn,0(x) + sn,1(x) + · · ·+ sn,n+d(x)

+ λ

(
n+ d− 1

(n+ d)2 − 1
sn+1,1(x)− n+ d− 3

(n+ d)2 − 1
sn+1,2(x)

)
+ λ

(
n+ d− 3

(n+ d)2 − 1
sn+1,2(x)− n+ d− 5

(n+ d)2 − 1
sn+1,3(x)

)
+ · · ·

+ λ

(
− n+ d− 5

(n+ d)2 − 1
sn+1,n+d−2(x) +

n+ d− 3

(n+ d)2 − 1
sn+1,n+d−1(x)

)
+ λ

(
− n+ d− 3

(n+ d)2 − 1
sn+1,n+d−1(x) +

n+ d− 1

(n+ d)2 − 1
sn+1,n+d(x)

)
− λ

n+ d+ 1
sn+1,1(x)− λ

n+ d+ 1
sn+1,n+d(x).

Since Schurer operators satisfy the equality
∑n+d
i=0 sn,i(x) = 1 we get the desired

result. �

Rest of the paper is organized as follows: In Section 2, λ-Schurer operators are
constructed and corresponding approximation results are obtained. In Section 3,
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some statistical approximation properties of defined operators are studied and an
estimate for the rate of weighted A-statistical convergence is established. In Section
4, two Voronovskaja-type theorems including a Voronovskaja-type approximation
theorem using weighted A-statistical convergence are proved. Final section of the
paper is devoted to give some concluding remarks including some future studies.

2. λ-Schurer operators and corresponding results in approximation
theory

A new type λ-Bernstein operators have been introduced by Cai et al. in [6]
based on Bézier bases defined by Ye et al. in [30]. We refer to [5, 6, 20, 23, 26] for
recent studies about λ-Bernstein type operators and [13, 14, 28] for some Schuer
type operators.
Considering a given non-negative integer d, we introduce λ-Schurer operators

Sλn,d(f ;x) : C[0, 1 + d] −→ C[0, 1]

Sλn,d(f ;x) =

n+d∑
i=0

s̃n,i(λ;x) f

(
i

n

)
(2)

for any n ∈ N, where new Bézier-Schurer bases s̃n,i(λ;x) are defined in (1).

Lemma 2. We have following results for λ-Schurer operators:

Sλn,d(t;x) =
n+ d

n
x+

1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ;

Sλn,d(t
2;x) =

(n+ d)2

n2
x2 +

n+ d

n2
x(1− x)

+
2(n+ d)x− 1− 4(n+ d)x2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

n2(n+ d− 1)
λ;

Proof. Using definition of operators (2) and Bézier-Schurer bases s̃n,i(λ;x) (1), we
write

Sλn,d(t;x) =

n+d∑
i=0

i

n
s̃n,i(λ;x)

=
n+ d

n
sn,n+d(x)− n+ d

n

λ

n+ d+ 1
sn+1,n+d(x)

+

n+d−1∑
i=0

i

n

[
sn,i(x) + λ

(
n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x)− n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x)

)]

=

n+d∑
i=0

i

n
sn,i(x) + λ (ϕ1(n, d, x)− ϕ2(n, d, x)) ,
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where

ϕ1(n, d, x) =

n+d∑
i=0

i

n

n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x);

ϕ2(n, d, x) =

n+d−1∑
i=1

i

n

n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x).

Now we compute the expressions ϕ1(n, d, x) and ϕ2(n, d, x).

ϕ1(n, d, x) =
1

n+ d− 1

n+d∑
i=0

i

n
sn+1,i(x)− 2

(n+ d)2 − 1

n+d∑
i=0

i2

n
sn+1,i(x)

=
x(n+ d+ 1)

n(n+ d− 1)

n+d−1∑
i=0

sn,i(x)− 2x

n(n+ d− 1)

n+d−1∑
i=0

sn,i(x)

− 2x2(n+ d)

n(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x)

= − (1− xn+d)(x(n+ d) + x− 2x)

n(n+ d− 1)
− 2x2(n+ d)(1− xn+d−1)

n(n+ d− 1)

=
x− xn+d+1

n
− 2(n+ d)(x2 − xn+d+1)

n(n+ d− 1)
.

ϕ2(n, d, x) =
n+ d− 1

n((n+ d)2 − 1)

n+d−1∑
i=1

i sn+1,i+1(x)

− 2

n((n+ d)2 − 1)

n+d−1∑
i=1

i2 sn+1,i+1(x)

=
2x

n(n+ d− 1)

n+d−1∑
i=1

sn,i(x)− 2x2(n+ d)

n(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x)

+
x

n

n+d−1∑
i=1

sn,i(x)

− 2

n((n+ d)2 − 1)

n+d−1∑
i=1

sn+1,i+1(x)− 1

n(n+ d+ 1)

n+d−1∑
i=1

sn+1,i+1(x)

=
2x− 2x(1− x)n+d − xn+d+1

n(n+ d− 1)
− 2(n+ d)(x2 − xn+d+1)

n(n+ d− 1)

− 2− (1− x)n+d+1 − 2x(n+ d+ 1)(1− x)n+d − 2xn+d+1

n((n+ d)2 − 1)
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+
x− xn+d+1

n
− 1− (1− x)n+d+1 − x(n+ d+ 1)(1− x)n+d − xn+d+1

n(n+ d− 1)
.

We obtain the result for Sλn,d(t;x) combining the results obtained for ϕ1(n, d, x)

and ϕ2(n, d, x) since Schurer operators are linear, and Schurer operators and fun-
damental Schurer bases satisfy the following equality:

n+d∑
i=1

i

n
sn,i(x) =

(
1 +

d

n

)
x.

We again use the definition of operators (2), Bézier-Schurer bases s̃n,i(λ;x) (1) and
the following relations to prove the second part of the lemma:

Sλn,d(t
2;x) =

n+d∑
i=0

i2

n2
s̃n,i(λ;x) =

(n+ d)2

n2
sn,n+d(x)− (n+ d)2

n2

λ

n+ d+ 1
sn+1,n+d(x)

+

n+d−1∑
i=0

i2

n2

[
sn,i(x) + λ

(
n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x)− n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x)

)]

=

n+d∑
i=0

i2

n2
sn,i(x) + λ (ϕ3(n, d, x)− ϕ4(n, d, x)) ,

where

ϕ3(n, d, x) =

n+d∑
i=0

i2

n2

n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x);

ϕ4(n, d, x) =

n+d−1∑
i=1

i2

n2

n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x).

Now we compute the expressions ϕ3(n, d, x) and ϕ4(n, d, x).

ϕ3(n, d, x) =
1

n+ d− 1

n+d∑
i=0

i2

n2
sn+1,i(x)− 2

(n+ d)2 − 1

n+d∑
i=0

i3

n2
sn+1,i(x)

=
(n+ d)(n+ d+ 1)x2

n2(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x) +
x

n2

n+d−1∑
i=0

sn,i(x)

− 2(n+ d)x3

n2

n+d−3∑
i=0

sn−2,i(x)− 6(n+ d)x2

n2(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x)

=
(n+ d)(n+ d+ 1)(x2 − xn+d+1)

n2(n+ d− 1)
+
x− xn+d+1

n2

− 2(n+ d)(x3 − xn+d+1)

n2
− 6(n+ d)(x2 − xn+d+1)

n2(n+ d− 1)
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=
2(n+ d)(xn+d+1 − x3)

n2
+
x− xn+d+1

n2

+
(n+ d)2 − 5(n+ d)(x2 − xn+d+1)

n2(n+ d− 1)
.

ϕ4(n, d, x) =
1

n+ d+ 1

n+d−1∑
i=1

i2

n2
sn+1,i+1(x)− 2

(n+ d)2 − 1

n+d−1∑
i=1

i3

n2
sn+1,i+1(x)

=
x2(n+ d)

n2

n+d−2∑
i=0

sn−1,i(x)− x

n2

n+d−1∑
i=1

sn,i(x)

+
1

n2(n+ d+ 1)

n+d−1∑
i=1

sn+1,i+1(x) +
2(n+ d)x3

n2

n+d−3∑
i=0

sn−2,i(x)

+
2x

n2(n+ d− 1)

n+d−1∑
i=1

sn,i(x)− 2

n2((n+ d)2 − 1)

n+d−1∑
i=1

sn+1,i+1(x)

=
x2(n+ d)(1− xn+d−1)

n2
− x(1− xn+d)

n2

+
1− (1− x)n+d+1 − x(n+ d+ 1)(1− x)n+d − xn+d+1

n2(n+ d− 1)

− 2(n+ d)x3(1− xn+d−2)

n2
− 2x(1− xn+d)

n2(n+ d− 1)

+
2− 2(1− x)n+d+1 − 2x(n+ d+ 1)(1− x)n+d − 2xn+d+1

n2((n+ d)2 − 1)
.

We get Sλn,d(t
2;x) combining ϕ3(n, d, x) and ϕ4(n, d, x) since Schurer operators and

fundamental Schurer bases satisfy the following equality:

n+d∑
i=1

i2

n2
sn,i(x) =

n+ d

n2

{
(n+ d)x2 + x(1− x)

}
.

�

Corollary 3. We have the following relations for Sλn,d(t−x;x) and Sλn,d((t−x)2;x):

Sλn,d(t− x;x) =
d

n
x+

1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ;

Sλn,d((t− x)2;x) =
d2

n2
x2 +

n+ d

n2
x(1− x)− 2xn+d+2 − 2x(1− x)n+d+1

n(n+ d− 1)
λ

+
2dx− 1− 4dx2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

n2(n+ d− 1)
λ;
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Corollary 4. We have the following relations for Sλn,d(t−x;x) and Sλn,d((t−x)2;x):

lim
n→∞

n Sλn,d(t− x;x) = dx;

lim
n→∞

n Sλn,d((t− x)2;x) = x(1− x).

Remark 5. We have the following results for λ-Schurer operators and Bézier-
Schurer bases:

• If we take d = 0, Bézier-Schurer bases (1) reduce to the classical Bézier
bases defined in [30].

• If we take λ = 0, λ-Schurer operators (2) reduce to the classical Schurer
operators defined in [25].

• If we take d, λ = 0, λ-Schurer operators (2) with Bézier-Schurer bases (1)
reduce to the classical Bernstein operators defined in [3].

The following theorem gives the uniform convergence property of λ-Schurer op-
erators (2) by the well-known Bohman-Korovkin-Popoviciu theorem:

Theorem 6. Let f ∈ C[0, 1 + d], then we have

lim
n→∞

Sλn,d(f ;x) = f(x)

uniformly on [0, 1], where C[0, 1 + d] denotes the space of all real-valued continuous
functions on [0, 1 + d] endowed with the norm ‖f‖C[0,1] = supx∈[0,1+d] |f(x)|.

We achieve a global approximation formula in terms of Ditzian-Totik uniform
modulus of smoothness of first and second order for λ-Schurer operators (2), and
give a local direct estimate of the rate of convergence by Lipschitz-type function
involving two parameters.

Definition 7. Global approximation formula in terms of Ditzian-Totik uniform
modulus of smoothness of first and second order defined by

ωξ(f, ζ) := sup
0<|h|≤ζ

sup
x,x+hξ(x)∈[0,1]

{|f(x+ hξ(x))− f(x)|};

ωτ2(f, ζ) := sup
0<|h|≤ζ

sup
x,x±hτ(x)∈[0,1]

{|f(x+ hτ(x))− 2f(x) + f(x− hτ(x))|},

respectively, where τ is an admissible step-weight function on [a, b], i.e. τ(x) =
[(x−a)(b−x)]1/2 if x ∈ [a, b], [7]. We write AC for absolutely continuous functions,
then K-functional is

K2,τ(x)(f, ζ) = inf
g∈W 2(τ)

{
||f − g||C[0,1] + ζ||τ2g′′||C[0,1] : g ∈ C2[0, 1 + d]

}
,

where ζ > 0, W 2(τ) = {g ∈ C[0, 1 + d] : g′2g′′ ∈ C[0, 1 + d]} and C2[0, 1 + d] =
{g ∈ C[0, 1 + d] : g′, g′′ ∈ C[0, 1 + d]}.
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Remark 8. It is known by [9] that there exists an absolute constant C > 0, such
that

C−1ωτ2(f,
√
ζ) ≤ K2,τ(x)(f, ζ) ≤ Cωτ2(f,

√
ζ). (3)

First we obtain global approximation formula in terms of Ditzian-Totik uniform
modulus of smoothness of first and second order.

Theorem 9. Let f ∈ C[0, 1 + d], x ∈ [0, 1] and λ ∈ [−1, 1]. Then for C > 0,
λ-Schurer operators (2) verify

|Sλn,d(f ;x)− f(x)| ≤ Cωτ2
(
f,

√
αn,λ(x) + β2

n,λ(x)

2τ(x)

)
+ ωξ

(
f,
βn,λ(x)

ξ(x)

)
,

where βn,λ(x) = Sλn,d(t−x;x) and αn,λ(x) = Sλn,d((t−x)2;x) are given in Corollary
3, and τ(x) (τ 6= 0) is an admissible step-weight function of Ditzian-Totik modulus
of smoothness such that τ2 is concave.

Proof. Let f ∈ C[0, 1 + d], x ∈ [0, 1] and λ ∈ [−1, 1]. Defining the operators

S̆λn,d(f ;x) = Sλn,d(f ;x) + f(x)− f
(
x+

d

n
x+

1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ
)
(4)

we see that S̆λn,d(1;x) = 1 and S̆λn,d(t;x) = x, that is S̆λn,d(t− x;x) = 0.
Let u = ρx + (1 − ρ)t, ρ ∈ [0, 1]. Since τ2 is concave on [0, 1], it follows that

τ2(u) ≥ ρτ2(x) + (1− ρ)τ2(t) and

|t− u|
τ2(u)

≤ ρ|x− t|
ρτ2(x) + (1− ρ)τ2(t)

≤ |t− x|
τ2(x)

. (5)

Hence the following inequalities hold:

|S̆λn,d(f ;x)− f(x)| ≤ |S̆λn,d(f − g;x)|+ |S̆λn,d(g;x)− g(x)|+ |f(x)− g(x)| (6)

≤ 4‖f − g‖C[0,1+d] + |S̆λn,d(g;x)− g(x)|.
Applying Taylor’s formula we obtain

|S̆λn,d(g;x)− g(x)| (7)

≤ Sλn,d
(∣∣∣∣ ∫ t

x

|t− u| |g′′(u)|du
∣∣∣∣;x)+

∣∣∣∣ ∫ x+βn,λ(x)

x

∣∣x+ βn,λ(x)− u
∣∣ |g′′(u)| du

∣∣∣∣
≤ ‖τ2g′′‖C[0,1+d]S

λ
n,d

(∣∣∣∣ ∫ t

x

|t− u|
τ2(u)

du

∣∣∣∣;x)
≤ +‖τ2g′′‖C[0,1+d]

∣∣∣∣ ∫ x+βn,λ(x)

x

|x+ βn,λ(x)− u|
τ2(u)

du

∣∣∣∣
≤ τ−2(x)‖τ2g′′‖C[0,1+d]S

λ
n,d((t− x)2;x) + τ−2(x)‖τ2g′′‖C[0,1+d]β

2
n,λ(x).
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By definition of K-functional with relation (3) and inequalities (6)-(7), we have

|S̆λn,d(f ;x)− f(x)| ≤ 4‖f − g‖C[0,1+d] + τ−2(x)‖τ2g′′‖C[0,1+d]

(
αn,λ(x) + β2

n,λ(x)
)

≤ Cωτ2
(
f,

√
αn,λ(x) + β2

n,λ(x)

2τ(x)

)
.

Also, by Ditzian-Totik uniform modulus of smoothness of first order we have

|f(x+ βn,λ(x))− f(x)| =
∣∣∣∣f(x+ ξ(x)

βn,λ(x)

ξ(x)

)
− f(x)

∣∣∣∣ ≤ ωξ(f, βn,λ(x)

ξ(x)

)
.

Therefore, following inequality, which completes the proof, holds:

|Sλn,d(f ;x)− f(x)| ≤ |S̆λn,d(f ;x)− f(x)|+
∣∣f(x+ βn,λ(x))− f(x)

∣∣
≤ Cωτ2

(
f,

√
αn,λ(x) + β2

n,λ(x)

2τ(x)

)
+ ωξ

(
f,
βn,λ(x)

ξ(x)

)
.

�

Theorem 10. The following inequality holds:

|Sλn,d(f ;x)− f(x)| ≤ |βn,λ(x)| |f ′(x)|+ 2
√
αn,λ(x)w

(
f ′,
√
αn,λ(x)

)
for f ∈ C1[0, 1 + d] and x ∈ [0, 1], where αn,λ(x) and βn,λ(x) are given in Theorem
9.

Proof. For any t ∈ [0, 1] and x ∈ [0, 1] we have

f(t)− f(x) = (t− x)f ′(x) +

∫ t

x

(f ′(u)− f ′(x))du.

Applying operators Sλn,d(f ;x) to both sides of (??), we have

Sλn,d(f(t)− f(x);x) = f ′(x)Sλn,d(t− x;x) + Sλn,d

(∫ t

x

(f ′(u)− f ′(x))du;x

)
.

The following inequality holds for any ζ > 0, u ∈ [0, 1] and f ∈ C[0, 1 + d]:

|f(u)− f(x)| ≤ w(f, ζ)

(
|u− x|
ζ

+ 1

)
,

With above inequality we get∣∣∣∣ ∫ t

x

(f ′(u)− f ′(x))du

∣∣∣∣ ≤ w(f ′, ζ)

(
(t− x)2

ζ
+ |t− x|

)
.

Hence we have

|Sλn,d(f ;x)− f(x)| ≤ |f ′(x)| |Sλn,d(t− x;x)|

+w(f ′, ζ)

{
1

ζ
Sλn,d((t− x)2;x) + Sλn,d(t− x;x)

}
.
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Applying Cauchy-Schwarz inequality on the right hand side of above inequality, we
have

|Sλn,d(f ;x)− f(x)| ≤ f ′(x)|βn,λ(x)|

+w(f ′, ζ)

{
1

ζ

√
Sλn,d((t− x)2;x) + 1

}√
Sλn,d(|t− x|;x).

�

3. Some statistical approximation theorems

In this section, we use weighted mean matrix method to establish statistical
approximation properties of λ-Schurer operators. We also give an estimate for the
rate of weighted A-statistical convergence of λ-Schurer operators.
Statistical convergence was first introduced in [8] and [27]. A new character-

ization in terms of weighted regular matrix and a Korovkin type approximation
theorem through statistically weighted A-summable sequences of real or complex
numbers have been given by Mohiuddine et al. [16, 17]. For further results in
weighted statistical approximation theory we refer to [11, 12] and for statistical
approximation papers to [2] .
All the following notions, notations and definitions which can be found in [2, 8,

11, 12, 17, 27] are needed for the results of this part.

Definition 11. Natural density of K is denoted by ζ(K) = limn→∞
1
n |Kn| provided

that limit exists, where Kn = {k ≤ n : k ∈ K}, K ⊆ N0 := N∪{0} and vertical bars
denote cardinality of the enclosed set. A sequence x = (xn) of numbers is called
statistically convergent to a number L, denoted by st-limn→∞ x = L, if, for each
ε > 0, ζ{n : n ∈ N and |xn − L| = ε} = 0.

Definition 12. A-transform of x denoted by Ax := {(Ax)n} is defined as (Ax)n =∑∞
k=0 ankxk for a given non-negative infinite summability matrix A = (ank), n, k ∈

N. It is provided defined series converges for every n ∈ N0. If limn→∞(Ax)n = L
whenever limn→∞ xn = L, we say that A is a regular method. Then sequence x =
(xn) is said to be A-statistically convergent to L, denoted by stA-limn→∞ xn = L,
provided that for each ε > 0, limn→∞

∑
k:|xk−L|=ε ank = 0.

Remark 13. We have the following results for A-statistical convergence concept:
• If we take A = (C1), the Cesaro matrix of order 1, A-statistical convergence
becomes ordinary statistical convergence which was introduced in [10].

• If we take A = I, the identity matrix, A-statistical convergence becomes
classical convergence.

• Every convergent sequence is statistically convergent to the same limit but
not conversely.

Definition 14. [16] Assume that q = (qn) is a sequence of non-negative numbers
so that q0 > 0 and Qn =

∑n
k=0 qk → ∞ as n → ∞. Then x = (xn) is called
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weighted A-statistically convergent to L, if, for every ε > 0,

lim
n→∞

1

Qn

n∑
k=0

qk
∑

m:|xm−L|=ε

akm = 0.

In this case, we write SÑA − limn→∞ xn = L.

Remark 15. [16] The weighted A-statistical convergence generalizes A-statistical
convergence, which we recover by putting qn = 1 for all n ∈ N.

We now give main results related to statistical approximation of operators in
(2).

Theorem 16. Let A = (ank) be a weighted non-negative regular summability matrix
for n, k ∈ N and q = (qn) be a sequence of non-negative numbers such that q0 > 0
and Qn =

∑n
k=0 qk →∞ as n→∞. For any f ∈ C[0, 1 + d], we have

SÑA − lim
n→∞

‖Sλn,d(f)− f‖C[0,1] = 0.

Proof. Consider sequence of functions ej(x) = xj , where j ∈ {0, 1, 2} and x ∈ [0, 1].
It is suffi cient to satisfy

SÑA − lim
n→∞

‖Sλn,d(ej ;x)− ej‖C[0,1] = 0, j = 0, 1, 2.

From Lemma 2, it is clear that

SÑA − lim
n→∞

‖Sλn,d(e0;x)− e0‖C[0,1] = 0. (8)

We have

‖Sλn,d(e1;x)− e1‖C[0,1] = sup
x∈[0,1]

∣∣∣∣ dnx+
1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ

∣∣∣∣
≤ d

n
+

4

n(n+ d− 1)

by Lemma 2. We choose a number ε > 0 for a given ε′ > 0 such that ε < ε′. If we
define following sets:

∆ :=
{
n ∈ N : ‖Sλn,d(e1;x)− e1‖C[0,1] = ε′

}
,

∆1 :=

{
n ∈ N :

d

n
+

4

n(n+ d− 1)
= ε− ε′

}
,

we see that the inclusion ∆ ⊂ ∆1 holds and

1

Qn

n∑
k=0

qk
∑
m∈∆

akm ≤
1

Qn

n∑
k=0

qk
∑
m∈∆1

akm for all n ∈ N. (9)

So we have

SÑA − lim
n→∞

‖Sλn,d(e1;x)− e1‖C[0,1] = 0 (10)
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as n→∞ in (9). By Lemma 2 we have

‖Sλn,d(e2;x)− e2‖C[0,1] = sup
x∈[0,1]

∣∣∣∣2nd+ d2

n2
x2 +

n+ d

n2
x(1− x)

+
2(n+ d)x− 1− 4(n+ d)x2+

n2(n+ d− 1)
λ

+
(2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

n2(n+ d− 1)
λ

∣∣∣∣
≤ 2nd+ d2

n2
+

2n+ 2d

n2
+

8(n+ d) + 2

n2(n+ d− 1)
.

We also obtain

SÑA − lim
n→∞

‖Sλn,d(e2;x)− e2‖C[0,1] = 0 (11)

since

SÑA − lim
n→∞

[
2nd+ d2

n2
+

2n+ 2d

n2
+

8(n+ d) + 2

n2(n+ d− 1)

]
= 0.

Combining (8), (10) and (11), we get desired result. �

We now estimate rate of weightedA-statistical convergence of operators Sλn,d(f ;x).

Definition 17. Let A = (ank) be a weighted non-negative regular summability
matrix and let q = (qn) be a sequence of non-negative numbers such that q0 > 0
and Qn =

∑n
k=0 qk → ∞ as n → ∞. Also let (un) be a positive non-decreasing

sequence. We say that a sequence x = (xn) is weighted A-statistically convergent
to L with the rate o(un) if

lim
n→∞

1

unQn

n∑
k=0

qk
∑

m:|xm−L|=ε

akm = 0.

This relation is denoted by [statA, qn]− o (un) = xn − L.

Theorem 18. Let A = (ank) be a weighted non-negative regular summability ma-
trix. Assume that following condition yields:

w(f, hn) = [statA, qn]− o (un) on [0, 1], where hn =
√
‖Sλn,d((s− x)2;x)‖C[0,1+d].

Then for every bounded f ∈ C[0, 1 + d] we have

‖Sλn,d(f)− f‖C[0,1] = [statA, qn]− o (un).

Proof. Let f ∈ C[0, 1 + d], then we have

|Sλn,d(f ;x)− f(x)| ≤ |Sλn,d
(
|f(t)− f(x)|;x

)
+A |Sλn,d(1;x)− 1|
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≤ ω(f, ζ)Sλn,d

(
|t− x|
ζ

+ 1;x

)
= ω(f, ζ)Sλn,d(1;x) + ω(f, ζ)

1

ζ2S
λ
n,d

(
(t− x)2;x

)
for any x, s ∈ [0, 1], where A = supx∈[0,1] |f(x)|. Let ζ := hn for all n ∈ N. Taking
supremum over x ∈ [0,∞) on both sides, we obtain

‖Sλn,d(f)− f‖C[0,1] ≤ ω(f, hn) + ω(f, hn)
1

h2
n

‖Sλn,d((t− x)2;x)‖C[0,1+d] = 2ω(f, hn).

We define the following sets for a given ε > 0:

S =
{
n : ‖Sλn,d(f)− f‖C[0,1] ≥ ε

}
and E =

{
n : ω(f, hn) ≥ ε

2

}
.

It is easy to see the following inequality holds:

1

unQn

n∑
k=0

∑
m∈S

qkakm ≤
1

unQn

n∑
k=0

∑
m∈E

qkakm.

Hence we are led to the fact that

‖Sλn,d(f)− f‖C[0,1] = [statA, qn]− o (un)

by the hypothesis, as asserted by Theorem 18. �

4. Voronovskaja-type approximation theorems

Two Voronovskaja-type theorems are established in this part: A quantitative
Voronovskaja-type theorem and a Voronovskaja-type approximation theorem by
S̄λn,d(f ;x) family of linear operators using the notion of weighted A-statistical con-
vergence.

Theorem 19. Let (xn) be a sequence of real numbers such that SÑA − limn→∞ xn =
0, where A = (ank) is a weighted non-negative regular summability matrix. Also let
S̄λn,d(f ;x) be a sequence of positive linear operators acting from CB [0, 1 + d] into
C[0, 1 + d] defined by

S̄λn,d(f ;x) = (1 + xn)Sλn,d(f ;x).

Then for every f ∈ CB [0, 1 + d] we have

SÑA − lim
n→∞

n
{
S̄λn,d(f ;x)− f(x)

}
= xd f ′(x) +

x(1− x)

2
f ′′(x),

where f ′, f ′′ ∈ CB [0, 1 + d].

Proof. Let x ∈ [0, 1] and f ′′ ∈ CB [0, 1 + d]. Applying S̄λn,d(f ;x) to both sides of
Taylor’s expansion theorem, we have

S̄λn,d(f ;x)− f(x) = f
′
(x)S̄λn,d(t− x;x) +

f
′′
(x)

2
S̄λn,d((t− x)2;x)
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+S̄λn,d((t− x)2rx(t);x),

which yields to

n
{
S̄λn,d(f ;x)− f(x)

}
= nf

′
(x)(1 + xn)Sλn,d(t− x;x)

+
n

2
f
′′
(x)(1 + xn)Sλn,d((t− x)2;x) + n(1 + xn)Sλn,d((t− x)2rx(t);x).

We also have from Corollary 3

Sλn,d(t− x;x) ≤ d

n
x+

1 + 2x+ xn+d+1 + (1− x)n+d+1

n(n+ d− 1)
:= E(n, d, x),

and again from Corollary 3

Sλn,d((t− x)2;x) ≤ d2

n2
x2 +

n+ d

n2
x(1− x) +

2xn+d+2 + 2x(1− x)n+d+1

n(n+ d− 1)

+
2dx+ 1 + 4dx2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

2n(n+ d− 1)
λ := F (n, d, x).

Hence we have∣∣∣∣n{S̄λn,d(f ;x)− f(x)
}
− f

′
(x)dx− f

′
(x)

1− 2x+ xn+d+1 − (1− x)n+d+1

n+ d− 1
λ

− f
′′
(x)

(
d2

2n
x2 +

n+ d

2n
x(1− x)− xn+d+2 − x(1− x)n+d+1

n+ d− 1
λ

+
2dx− 1− 4dx2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

2n(n+ d− 1)
λ

)∣∣∣∣
= nf

′
(x)xnS

λ
n,d(t− x;x) +

n

2
f
′′
(x)xnS

λ
n,d((t− x)2;x)

+ n(1 + xn)Sλn,d((t− x)2rx(t);x)

≤ xn{f
′
(x)Ē(n, d, x) +

f
′′
(x)

2
F̄ (n, d, x)}+ n(1 + xn)Sλn,d((t− x)2rx(t);x)

≤ xn{ sup
x∈[0,1]

|f ′(x)|Ē(n, d, x) +
1

2
sup
x∈[0,1]

|f ′′(x)|F̄ (n, d, x)}

+ n(1 + xn)Sλn,d((t− x)2rx(t);x),

where Ē(n, d, x) = n E(n, d, x) and F̄ (n, d, x) = n F (n, d, x). Since we have

SÑA − lim
n→∞

n (Sλn,d((t− x)2rx(t);x)) = 0

and SÑA − limn→∞ xn = 0, we get desired result. �

A quantitative Voronovskaja-type theorem for Sλn,d(f ;x) is established using
Ditzian-Totik modulus of smoothness defined as

ωτ (f, ζ) := sup
0<|h|≤ζ

{∣∣∣∣f(x+
hτ(x)

2

)
− f

(
x− hτ(x)

2

)∣∣∣∣, x± hτ(x)

2
∈ [0, 1]

}
,
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where τ(x) = (x(1 − x))1/2 and f ∈ C[0, 1 + d], and corresponding Peetre’s K-
functional is defined by

Kτ (f, ζ) = inf
g∈Wτ [0,1+d]

{
||f − g||+ ζ||τg′1[0, 1 + d], ζ > 0

}
,

where Wτ [0, 1+d] = {g : g ∈ ACloc[0, 1+d], ‖τg′‖ <∞} and ACloc[0, 1+d] is the
class of absolutely continuous functions defined on [a, b] ⊂ [0, 1 + d]. There exists a
constant C > 0 such that

Kτ (f, ζ) ≤ C ωτ (f, ζ).

Theorem 20. Let f, f ′, f ′′ ∈ C[0, 1 + d], then we have∣∣∣∣Sλn,d(f ;x)− f(x)− βn,λ(x)f ′(x)− αn,λ(x) + 1

2
f ′′(x)

∣∣∣∣ ≤ C

n
τ2(x)ωτ

(
f ′′,

1√
n

)
for every x ∈ [0, 1] and suffi ciently large n, where C is a positive constant, αn,λ(x)
and βn,λ(x) are defined in Theorem 9.

Proof. Consider following equality

f(t)− f(x)− (t− x)f ′(x) =

∫ t

x

(t− u)f ′′(u)du

for f ∈ C[0, 1 + d]. It means we have

f(t)− f(x)− (t− x)f ′(x)− f ′′(x)

2

(
(t− x)2 + 1

)
≤
∫ t

x

(t− u)[f ′′(u)− f ′′(x)]du.

(12)

Applying Sλn,d(f ;x) to both sides of (12), we obtain∣∣∣∣Sλn,d(f ;x)− f(x)− Sλn,d((t− x);x)f ′(x)− f ′′(x)

2

(
Sλn,d((t− x)2;x) + Sλn,d(1;x)

)∣∣∣∣
≤ Sλn,d

(∣∣∣ ∫ t

x

|t− u| |f ′′(u)− f ′′(x)| du
∣∣∣;x). (13)

The quantity in right hand side of (13) can be estimated as∣∣∣∣ ∫ t

x

|t− u| |f ′′(u)− f ′′(x)| du
∣∣∣∣ ≤ 2‖f ′′2 + 2‖τg′−1(x)|t− x|3, (14)

where g ∈Wτ [0, 1 + d]. There exists C > 0 such that

Sλn,d((t− x)2;x) ≤ C

2n
τ2(x) and Sλn,d((t− x)4;x) ≤ C

2n2
τ4(x) (15)

for suffi ciently large n. Using Cauchy-Schwarz inequality, we have∣∣∣∣Sλn,d(f ;x)− f(x)− Sλn,d((t− x);x)f ′(x)− f ′′(x)

2

(
Sλn,d((t− x)2;x) + Sλn,d(1;x)

)∣∣∣∣
≤ 2‖f ′′ − g‖Sλn,d((t− x)2;x) + 2‖τg′−1(x)Sλn,d(|t− x|3;x)



NEW BÉZIER BASES AND λ-SCHURER OPERATORS 391

≤ C

n
x(1− x)‖f ′′ − g‖+ 2‖τg′−1(x){Sλn,d((t− x)2;x)}1/2{Sλn,d((t− x)4;x)}1/2

≤ C

n
τ2(x)

{
‖f ′′−1/2‖τg′‖

}
by (13)—(15). Taking infimum on the right-hand side over all g ∈ Wτ [0, 1 + d], we
deduce∣∣∣∣Sλn,d(f ;x)− f(x)− βn,λ(x)f ′(x)− αn,λ(x) + 1

2
f ′′(x)

∣∣∣∣ ≤ C

n
τ2(x)ωτ

(
f ′′,

1√
n

)
.

�

Finally we obtain the following theorem applying Taylor’s expansion theorem
and as an immediate consequence of Lemma (2), Corollary (3) and Corollary (4):

Theorem 21. Let f ∈ CB [0, 1 + d], then for each x ∈ [0, 1]

lim
n→∞

n
{
Sλn,d(f ;x)− f(x)

}
= xd f ′(x) +

x(1− x)

2
f ′′(x)

uniformly on [0, 1], where f ′, f ′′ ∈ CB [0, 1 + d]

As an immediate consequence of Theorem 20 we have the following result.

Corollary 22. Let f ∈ C[0, 1 + d], then

lim
n→∞

n

[
Sλn,d(f ;x)− f(x)− βn,λ(x)f ′(x)− αn,λ(x) + 1

2
f ′′(x)

]
= 0,

where f ′, f ′′ ∈ CB [0, 1 + d], and αn,λ(x) and βn,λ(x) are defined in Theorem 9.

5. Concluding Remarks

A Korovkin type approximation theorem via Ka-convergence on weighted spaces
is studied by Yıldız et al. in [31] and a new concept, statistical e-convergence, is
introduced by Sever and Talo in [18, 24, 32]. As a future work we may study the
approximation properties of operators defined in this article and other Bernstein
type operators using those convergence types. The results of the paper will also be
extended to λ-Schurer-Kantorovich and λ-Schurer-Stancu operators using λ-Bézier-
Schurer bases defined in (1).
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BOUNDS FOR A CERTAIN SUBCLASSES OF ANALYTIC

FUNCTIONS
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Abstract. In the first part of this work we present several new geometric
properties of analytic functions by applying the differential subordination. In
addition, several results in the geometric functions theory pointed out. In
the second part we find upper bounds for coeffi cients of functions in class
Bq,µΣ (β, λ, h) which is defined by fractional q-calculus operators.

1. Introduction and Preliminaries

Let A be the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1}, and denote by S
the class of all functions of A which are univalent in U.
For two functions f and F which are analytic in U, we say that the function f

is subordinate to F in U, and write f(z) ≺ F (z), if there exists a Schwarz function
ω, which is analytic in U with ω(0) = 0 and |ω(z)| < 1, such that f(z) = F (ω(z))
for all z ∈ U.
By Schwarz’s lemma we have |ω(z)| ≤ |z|, z ∈ U, which concludes that ω(U) ⊂ U.

Since ω(0) = 0 and ω(U) ⊂ U it follows that if f(z) ≺ F (z), then f(0) = F (0) and
f(U) ⊂ F (U). In particular, if the function F is univalent in U, then we have the
following equivalence

f(z) ≺ F (z)⇔ f(0) = F (0) and f(U) ⊂ F (U).
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First, Miller and Mocanu [18] in 1978 introduced the method of differential sub-
ordinations and then in recent years several authors obtained several applications in
the geometric functions theory by using differential subordination, see for example
[5, 7, 8, 9, 12, 13, 15, 20].
We denote by S∗(α) the subclass of A consisting of functions which are starlike

of order α in U, as follows:

S∗(α) :=

{
f ∈ A : Re

zf ′(z)

f(z)
> α, z ∈ U, 0 ≤ α < 1

}
,

and, in particular, S∗ := S∗(0) is the class of starlike functions in the unit disk U.
Also, we denote by C(α) the subclass of A consisting of functions which are

close-to-convex of order α if there exists a function g ∈ S∗ such that

Re
zf ′(z)

g(z)
> α, z ∈ U, 0 ≤ α < 1.

In particular, C := C(0) is the class of close-to-convex functions in the unit disk U.
It is well-known that S(α) ⊂ S and C(α) ⊂ S, for all 0 ≤ α < 1.

It is well known that every function f ∈ S contains a disk of radius 1

4
. Therefore,

every function f ∈ S has an inverse f−1, which is defined by f−1 (f(z)) = z (z ∈ U),

and f
(
f−1 (w)

)
= w

(
|w| < r0(f); r0(f) ≥ 1

4

)
, where

g(w) = f−1(w) = w−a2w
2+(2a2

2−a3)w3−(5a3
2−5a2a3+a4)w4+· · · =: w+

∞∑
n=2

bnw
n.

(1.2)
A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent

in U, and let Σ denote the class of bi-univalent functions in U. In recent years many
authors made an effort to introduce various subclasses of the bi-univalent function
class Σ, see for example [10, 22, 23, 27].
Purohit and Raina [25] (see also [22]) defined a fractional q-differential operator

Ωµq (by using the definitions of the fractional q-calculus operators) for a function f
of the form (1.1) by

Ωµq f(z) = z +

∞∑
n=2

Ψn
q (µ)anz

n =
Γq(2− µ)

Γq(2)
zµ−1Dµ

q,zf(z), z ∈ U, (1.3)

where

Θn := Ψq
n(µ) =

Γq(2− µ)Γq(n+ 1)

Γq(2)Γq(n+ 1− µ)
, −∞ < µ < 2, 0 < q < 1,

where Dµ
q,zf in (1.3) represents, respectively, a fractional q-integral of f of order µ

when −∞ < µ < 0, and a fractional q-derivative of f of order µ when 0 ≤ µ < 2.
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We note that Ω0
qf(z) = f(z) and lim

q→1−
Ωµq f(z) = Ωµf(z) (see Owa and Srivastava

[24], Aouf and Dziok [6] and Srivastava and Aouf [26]).

Definition 1.1. [22] Let h : U→ C be a convex (univalent) function such that
h(0) = 1 and Reh(z) > 0, z ∈ U.

A function f ∈ Σ given by (1.1) is said to be in the class Bq,µΣ (β, λ, h) if the following
conditions are satisfied:

eiβ

(
z1−λ(Ωµq f(z))′

[Ωµq f(z)]1−λ

)
≺ h(z) cosβ + i sinβ

and

eiβ

(
w1−λ(Ωµq g(w))′

[Ωµq g(w)]1−λ

)
≺ h(w) cosβ + i sinβ,

where β ∈
(
−π
2
,
π

2

)
, λ ≥ 0, z, w ∈ U, and where g = f−1 is given by (1.2).

The following lemmas will be used in prove the main result.

Lemma 1.1. [19] Let p(z) = 1 +
∞∑
n≥m

cnz
n, cm 6= 0, be an analytic function in

|z| < 1 with p(0) = 1. If there exists a point z0, with |z0| < 1, such that

Re p(z) > 0 for |z| < |z0|
and

Re p(z0) = 0,

then we have

z0p
′(z0) =

{
ikp(z0), when p(z0) 6= 0
−l/2, when p(z0) = 0

for some k ≥ m, l ≥ m.

Lemma 1.2. [11, p. 190] Let u be analytic function in the unit disk U, with
u(0) = 0, and |u(z)| < 1 for all z ∈ D, with the power series expansion

u(z) =

∞∑
n=1

cnz
n, z ∈ D.

Then, |cn| ≤ 1 for all n = 1, 2, 3, . . . . Furthermore, |cn| = 1 for some n (n =
1, 2, 3, . . . ) if and only if u(z) = eiθzn, θ ∈ R.

Lemma 1.3. [14] Let the function w be a Schwarz function with the power series

expansion given by w(z) =
∞∑
n=1

wnz
n, z ∈ U. Then, for every complex number s,

the next inequality holds: ∣∣w2 − sw2
1

∣∣ ≤ 1 + (|s| − 1)
∣∣w2

1

∣∣ .
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In Section 2, the paper aims in presenting several new geometric properties
of analytic functions by applying the differential subordinations, and in addition,
several special results are pointed out. In Section 3 we use the Faber polynomial
expansion techniques to derive bounds for the coeffi cients |an| for the functions of
the class Bq,µΣ (β, λ, h), that our results generalize and improve some of the previously
ones. In the literature, several authors used the Faber polynomial expansions under
certain conditions to determine the general coeffi cient bounds of |an| for the analytic
bi-univalent functions (see, for example, [16, 17, 30]).

2. Sufficient Conditions for Univalence and Starlikeness

In the following section we study differential subordinations and several suffi cient
conditions for the univalence, starlikeness and close-to-convexity of functions f ∈ A.

Theorem 2.1. Let p be an analytic function in U, with p(0) = 1 and p′(0) 6= 0,
that satisfies

Re

 p(z) +
zp′(z)

p(z)

a+ p2(z) + zp′(z)


2

> 0, z ∈ U, for some a ∈ R \ {−1}. (2.1)

Then,
Re p(z) > 0, z ∈ U.

Proof. If a = 0, using the fact that p(0) = 1 it is easy to prove that the assumption
(2.1) implies Re p(z) > 0, z ∈ U, and therefore we will assume that a 6= 0. Also,
since the inequality (2.1) holds for z∗ = 0, it is necessary to assume that a 6= −1.
Supposing that there exists a point z0 ∈ U such that

Re p(z) > 0, for |z| < |z0|

and
Re p(z0) = 0,

it follows that
p(z0) = iλ, λ ∈ R.

Hence, according to Lemma 1.1 for m = 1, we have

z0p
′(z0) =

{
ikp(z0), when p(z0) 6= 0
−l/2, when p(z0) = 0

=

{
−kλ, when λ 6= 0
−l/2, when λ = 0,

for some k ≥ 1, l ≥ 1.
(i) For the case p(z0) 6= 0 suppose that

a+ p2(z0) + zp′(z0) = a− λ2 − kλ = 0. (2.2)

(α) If
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p(z0) +
z0p
′(z0)

p(z0)
= i(λ+ k) 6= 0,

then z0 ∈ U will be a double pole for the function p(z) +
zp′(z)

p(z)

a+ p2(z) + zp′(z)


2

and therefore, in any neighborhood U(z0; ρ) := {z ∈ C : |z| < ρ} ⊂ U of the pole z0

there exists at least a zρ ∈ U(z0; ρ) such that

Re

 p(zρ) +
zρp
′(zρ)

p(zρ)

a+ p2(zρ) + zρp′(zρ)


2

< 0,

which contradicts the assumption (2.1).
(β) If

p(z0) +
z0p
′(z0)

p(z0)
= i(λ+ k) = 0,

from this relation and (2.2) it follows that a = 0, which contradicts our assumption.
Therefore, from (α) and (β) we deduce that the assumption (2.1) implies that

the function  p(z) +
zp′(z)

p(z)

a+ p2(z) + zp′(z)


2

,

is analytic in U, and

Re

 p(z0) +
z0p
′(z0)

p(z0)

a+ p2(z0) + zp′(z0)


2

= Re

(
iλ+ ik

a− λ2 − kλ

)2

= −
(

λ+ k

a− λ2 − kλ

)2

≤ 0,

which is a contradiction with the assumption (2.1).
(ii) For the case p(z0) = 0 it follows that z0p

′(z0) is a negative real number, and

the function
zp′(z)

p(z)
has a simple pole at z0. Since p(0) = 1, then z0 ∈ U \ {0} will
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be at least a double pole for the function p(z) +
zp′(z)

p(z)

a+ p2(z) + zp′(z)


2

and therefore, in any neighborhood U(z0; ρ) := {z ∈ C : |z| < ρ} ⊂ U of the pole z0

there exists at least a zρ ∈ U(z0; ρ) such that have

Re

 p(zρ) +
zρp
′(zρ)

p(zρ)

a+ p2(zρ) + zρp′(zρ)


2

< 0,

which contradicts the assumption (2.1).
Concluding, from the above cases it follows that Re p(z) > 0 for all z ∈ U, and

the proof of the theorem is complete. �

For f ∈ A and p := f ′ the above theorem leads to the following result which
gives suffi cient condition for the close-to-convexity (univalence) of the function f :

Corollary 2.1. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re

 f ′(z) +
zf ′′(z)

f ′(z)

a+ [f ′2 + zf ′′(z)


2

> 0, z ∈ U, for some a ∈ R \ {−1},

then
Re f ′(z) > 0, z ∈ U.

For f ∈ A and p(z) :=
zf ′(z)

f(z)
, then p′(0) 6= 0 is equivalent to f ′′(0) 6= 0,

and Theorem 2.1 leads to the following result which gives a suffi cient starlikeness
(univalence) condition:

Corollary 2.2. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re

 1 +
zf ′′(z)

f ′(z)

a+
zf ′(z)

f(z)
+
z2f ′′(z)

f(z)


2

> 0, z ∈ U, for some a ∈ R \ {−1},

then

Re
zf ′(z)

f(z)
> 0, z ∈ U.
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Theorem 2.2. Let p be an analytic function in U, with p(0) = 1, p′(0) 6= 0, that
satisfies

Re

p(z) +
zp′(z)

p(z)

a+
zp′(z)

p2(z)


2

> 0, z ∈ U, for some a ∈ R \ {0}. (2.3)

Then,

Re p(z) > 0, z ∈ U.

Proof. Since the inequality (2.3) holds for z∗ = 0 it is necessary to assume that
a 6= 0. For a = 1, using the fact that p(0) = 1 it is easy to prove that the
assumption (2.3) implies our conclusion, and thus we will assume that a 6= 1.
Supposing that there exists a point z0 ∈ U such that

Re p(z) > 0, for |z| < |z0|

and

Re p(z0) = 0,

it follows that

p(z0) = iλ, λ ∈ R.

Now, using Lemma 1.1 for m = 1, we have

z0p
′(z0) =

{
ikp(z0), when p(z0) 6= 0
−l/2, when p(z0) = 0

=

{
−kλ, when λ 6= 0
−l/2, when λ = 0,

for some k ≥ 1, l ≥ 1.
(i) For the case p(z0) 6= 0, that is λ 6= 0, suppose that

a+
z0p
′(z0)

p2(z0)
= a+

k

λ
= 0. (2.4)

(α) If

p(z0) +
z0p
′(z0)

p(z0)
= i(λ+ k) 6= 0,

then z0 ∈ U will be a double pole for the functionp(z) +
zp′(z)

p(z)

a+
zp′(z)

p2(z)


2
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and therefore, in any neighborhood U(z0; ρ) := {z ∈ C : |z| < ρ} ⊂ U of the pole z0

there exists at least a zρ ∈ U(z0; ρ) such that

Re

p(zρ) +
zρp
′(zρ)

p(zρ)

a+
zρp
′(zρ)

p2(zρ)


2

< 0,

which contradicts the assumption (2.3).
(β) If

p(z0) +
z0p
′(z0)

p(z0)
= i(λ+ k) = 0,

from this relation and (2.4) it follows that a = 1, which contradicts our assumption.
Therefore, from (α) and (β) we deduce that the assumption (2.3) implies that

the function p(z) +
zp′(z)

p(z)

a+
zp′(z)

p2(z)


2

,

is analytic in U, and

Re

p(z0) +
z0p
′(z0)

p(z0)

a+
z0p
′(z0)

p2(z0)


2

= Re

 iλ+ ik

a+
k

λ


2

= −

 λ+ k

a+
k

λ


2

≤ 0,

which is a contradiction with the assumption (2.3).
(ii) For the case p(z0) = 0, sincep(z) +

zp′(z)

p(z)

a+
zp′(z)

p2(z)


2

=

[
p3(z) + zp(z)p′(z)

ap2(z) + zp′(z)

]2

,

it follows that

Re

[
p3(z0) + z0p(z0)p′(z0)

ap2(z0) + z0p′(z0)

]2

= 0,

which contradicts the assumption (2.3).
Thus, from the above cases it follows that Re p(z) > 0 for all z ∈ U. �

For f ∈ A and p := f ′, and for p(z) :=
zf ′(z)

f(z)
, Theorem 2.2 reduces to the

following two results which represent suffi cient condition for the close-to-convexity
and starlikeness, respectively:
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Corollary 2.3. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re

f
′(z) +

zf ′′(z)

f ′(z)

a+
zf ′′(z)

[f ′2


2

> 0, z ∈ U, for some a ∈ R \ {0},

then,
Re f ′(z) > 0, z ∈ U.

Corollary 2.4. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re

 1 +
zf ′′(z)

f ′(z)

a+
f(z)

zf ′(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)


2

> 0, z ∈ U, for some a ∈ R \ {0},

then,

Re
zf ′(z)

f(z)
> 0, z ∈ U.

Theorem 2.3. Let p be an analytic function in U, with p(0) = 1, p′(0) 6= 0, that
satisfies

Re

[
p(z) [a+ zp′(z)]

a+ p2(z) + zp′(z)

]2

> 0, z ∈ U, for some a ∈
(
−∞, 1

2

)
\ {−1, 0}. (2.5)

Then
Re p(z) > 0, z ∈ U.

Proof. First, since the assumption (2.5) holds for z∗ = 0, it is necessary to assume
that a 6= 0 and a 6= −1. If we suppose that there exists a point z0 ∈ U such that

Re p(z) > 0, for |z| < |z0|
and

Re p(z0) = 0,

it follows that
p(z0) = iλ, λ ∈ R.

Hence, according to Lemma 1.1 for m = 1, we have

z0p
′(z0) =

{
ikp(z0), when p(z0) 6= 0
−l/2, when p(z0) = 0

=

{
−kλ, when λ 6= 0
−l/2, when λ = 0,

for some k ≥ 1, l ≥ 1.
(i) For the case p(z0) 6= 0, that is λ 6= 0, suppose that

a+ p2(z0) + zp′(z0) = a− λ2 − kλ = 0. (2.6)

(α) If
p(z0) [a+ z0p

′(z0)] = iλ(a− kλ) 6= 0,
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then z0 ∈ U will be a double pole for the function[
p(z) [a+ zp′(z)]

a+ p2(z) + zp′(z)

]2

and therefore, in any neighborhood U(z0; ρ) := {z ∈ C : |z| < ρ} ⊂ U of the pole z0

there exists at least a zρ ∈ U(z0; ρ) such that have

Re

[
p(zρ) [a+ zρp

′(zρ)]

a+ p2(zρ) + zρp′(zρ)

]2

< 0,

which contradicts the assumption (2.5).
(β) If

p(z0) [a+ z0p
′(z0)] = iλ(a− kλ) = 0,

hence a = kλ, and from (2.6) it follows that −λ2 = 0, that contradicts the fact
λ 6= 0.
Therefore, from (α) and (β) we deduce that the assumption (2.1) implies that

the function [
p(z) [a+ zp′(z)]

a+ p2(z) + zp′(z)

]2

is analytic in U, and

Re

[
p(z0) [a+ z0p

′(z0)]

a+ p2(z0) + z0p′(z0)

]2

= Re

[
iλ(a− kλ)

a− λ2 − kλ

]2

= −
[
λ(a− kλ)

a− λ2 − kλ

]2

≤ 0,

which is a contradiction with the assumption (2.5).

(ii) For the case p(z0) = 0, using the fact that a <
1

2
we have

a+ p2(z0) + z0p
′(z0) = a− l

2
6= 0,

hence

Re

[
p(z0) [a+ z0p

′(z0)]

a+ p2(z0) + z0p′(z0)

]2

= 0,

which contradicts the assumption (2.5).
From the two which discussed above it follows that Re p(z) > 0 for all z ∈ U. �

Taking f ∈ A and p := f ′, and p(z) :=
zf ′(z)

f(z)
in Theorem 2.3 we obtain the

next two special cases that represent suffi cient condition for the close-to-convexity
and starlikeness, respectively:

Corollary 2.5. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re

[
f ′(z)[a+ zf ′′(z)]

a+ [f ′2 + zf ′′(z)

]2

> 0, z ∈ U, for some a ∈
(
−∞, 1

2

)
\ {−1, 0},
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then
Re f ′(z) > 0, z ∈ U.

Corollary 2.6. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re

a+
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
1 + a

f(z)

zf ′(z)
+
zf ′′(z)

f ′(z)


2

> 0, z ∈ U,

for some a ∈
(
−∞, 1

2

)
\ {−1, 0}, then

Re
zf ′(z)

f(z)
> 0, z ∈ U.

Theorem 2.4. Let p be an analytic function in U, with p(0) = 1, p′(0) 6= 0, that
satisfies

Re

p(z) [a+ zp′(z)]

a+
zp′(z)

p2(z)


2

> 0, z ∈ U, for some a ∈ R. (2.7)

Then
Re p(z) > 0, z ∈ U.

Proof. Suppose that there exists a point z0 ∈ U such that

Re p(z) > 0, for |z| < |z0|

and
Re p(z0) = 0.

By using Lemma 1.1 for m = 1, it follows that

p(z0) = iλ, λ ∈ R,

and

z0p
′(z0) =

{
ikp(z0), when p(z0) 6= 0
−l/2, when p(z0) = 0

=

{
−kλ, when λ 6= 0
−l/2, when λ = 0,

for some k ≥ 1, l ≥ 1.
(i) For the case p(z0) 6= 0, that is λ 6= 0, suppose that

a+
z0p
′(z0)

p2(z0)
= a+

k

λ
= 0. (2.8)

(α) If
p(z0) [a+ z0p

′(z0)] = iλ(a− kλ) 6= 0,
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then z0 ∈ U will be a double pole for the functionp(z) [a+ zp′(z)]

a+
zp′(z)

p2(z)


2

and therefore, in any neighborhood U(z0; ρ) := {z ∈ C : |z| < ρ} ⊂ U of the pole z0

there exists at least a zρ ∈ U(z0; ρ) such that havep(zρ) [a+ zρp
′(zρ)]

a+
zρp
′(zρ)

p2(zρ)


2

< 0,

which contradicts the assumption (2.7).
(β) If

p(z0) [a+ z0p
′(z0)] = iλ(a− kλ) = 0,

then a = kλ and from (2.8) it follows that k = 0 or λ2 = −1, which contradicts the
facts k ≥ 1 and λ ∈ R.
Therefore, from (α) and (β) we deduce that the assumption (2.7) implies that

the function p(z) [a+ zp′(z)]

a+
zp′(z)

p2(z)


2

,

is analytic in U, and

Re

p(z0) [a+ z0p
′(z0)]

a+
z0p
′(z0)

p2(z0)


2

= Re

 iλ(a− kλ)

a+
k

λ


2

= −

λ(a− kλ)

a+
k

λ


2

≤ 0,

which is a contradiction with the assumption (2.7).
(ii) For the case p(z0) = 0, sincep(z) [a+ zp′(z)]

a+
zp′(z)

p2(z)


2

=

[
p3(z) [a+ zp′(z)]

ap2(z) + zp′(z)

]2

,

it follows that

Re

[
p3(z0) [a+ z0p

′(z0)]

ap2(z0) + z0p′(z0)

]2

= 0,

which contradicts the assumption (2.7).
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Concluding, from the two cases we discussed above it follows that Re p(z) > 0
for all z ∈ U. �

Replacing p := f ′, and p(z) :=
zf ′(z)

f(z)
where f ∈ A in Theorem 2.4 we obtain the

next two special cases that represent suffi cient condition for the close-to-convexity
and starlikeness, respectively:

Corollary 2.7. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re

f ′(z)[a+ zf ′′(z)]

a+
zf ′′(z)

[f ′2


2

> 0, z ∈ U, for some a ∈ R,

then,

Re f ′(z) > 0, z ∈ U.

Corollary 2.8. If f ∈ A, with f ′′(0) 6= 0, and satisfies

Re


zf ′(z)

f(z)

[
a+

zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)]
a+

f(z)

zf ′(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)


2

> 0, z ∈ U, for some a ∈ R,

then,

Re
zf ′(z)

f(z)
> 0, z ∈ U.

Remark 2.1. (1) For g ∈ S∗ and f ∈ A, such that 2f ′′(0) 6= g′′(0), setting

p(z) :=
zf ′(z)

g(z)
in the above theorems we will obtain suffi cient condition for

close-to-convexity.

(2) For f ∈ A, with f ′′(0) 6= 0, setting p(z) :=
f(z)

z
in the above theorems we

will obtain suffi cient condition for the functions f to satisfy the inequality

Re
f(z)

z
> 0, z ∈ U.

3. Coefficient Bounds

We begin by deriving upper bounds for the general Taylor-Maclaurin coeffi cients
|an| for n ≥ 3 of the functions belonging in the class Bq,µΣ (β, λ, h), and next we will
find estimates for the initial coeffi cient |a2|.
Using the Faber polynomial expansion of functions f ∈ S of the form (1.1), the

coeffi cients of its inverse map g = f−1 may be expressed as follows (see for details
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[1] and [2])

g(w) = f−1(w) = w +

∞∑
n=2

1

n
K−nn−1(a2, a3, . . . , an)wn, (3.1)

where

K−nn−1 =
(−n)!

(−2n+ 1)!(n− 1)!
an−1

2 +
(−n)!

(2(−n+ 1))!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4 +
(−n)!

(2(−n+ 2))!(n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3

]
+

(−n)!

(−2n+ 5)!(n− 6)!
an−6

2 [a6 + (−2n+ 5)a3a4] +
∑
j≥7

an−j2 Vj

such that Vj (7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, . . . , an,
and the expressions such as (for example) (−n)! are to be interpreted symbolically
by

(−n)! ≡ Γ(1− n) := (−n)(−n− 1)(−n− 2) . . . ,

with n ∈ N0 := N ∪ {0}, N := {1, 2, 3, . . . }.

In particular, the first three terms of K−nn−1 are given by

K−2
1 = −2a2, K−3

2 = 3
(
2a2

2 − a3

)
and K−4

3 = −4
(
5a3

2 − 5a2a3 + a4

)
.

In general, for any p real value the expansion ofKp
n is given below (see for details,

[1, 29]; see also [2, p. 349])

Kp
n = pan+1 +

p(p− 1)

2
D2
n +

p!

(p− 3)!3!
D3
n + · · ·+ p!

(p− n)!n!
Dn
n, (3.2)

where Dp
n = Dp

n(a2, a3, . . . , an+1) (see for details [29]). We also have

Dm
n (a2, a3, . . . , an+1) =

∞∑
n=1

m!(a2)µ1 · . . . · (an+1)µn

µ1! · . . . · µn!
, (3.3)

where the sum is taken over all nonnegative integers µ1, . . . , µn satisfying the con-
ditions {

µ1 + µ2 + · · ·+ µn = m
µ1 + 2µ2 + · · ·+ nµn = n.

It is clear that Dn
n(a2, a3, . . . , an+1) = an2 .

Theorem 3.1. Let the function f ∈ Bq,µΣ (β, λ, h) be given by (1.1) with the power
expansion of the function h given by

h(z) = 1 +

∞∑
n=1

Bnz
n, z ∈ U, (3.4)
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and suppose that B1 6= 0. If ak = 0 for 2 ≤ k ≤ n− 1, where n ≥ 3, then

|an| ≤
|B1| cosβ

[λ+ (n− 1)]Θn
. (3.5)

Proof. For f ∈ Bq,µΣ (β, λ, h) given by (1.1), using the relations (1.6) and (1.7) from
[2, page 344] we have

eiβ

(
z1−λ(Ωµq f(z))′

[Ωµq f(z)]1−λ

)
= eiβ

(
1 +

∞∑
n=2

(
1 +

n− 1

λ

)
Kλ
n−1(Θ2a2,Θ3a3, . . . ,Θnan)zn−1

)
,

and for its inverse map g = f−1, according to the expansion formula (1.2) we have

eiβ

(
w1−λ(Ωµq g(w))′

[Ωµq g(w)]1−λ

)
= eiβ

(
1 +

∞∑
n=2

(
1 +

n− 1

λ

)
Kλ
n−1(Θ2b2,Θ3b3, . . . ,Θnbn)wn−1

)
,

where bn =
1

n
K−nn−1(a2, a3, . . . , an), n = 2, 3, . . . are defined by (3.1).

Furthermore, since f ∈ Bq,µΣ (β, λ, h), from the definition of the subordination

there exist two Schwartz functions u, v : U → U of the form u(z) =
∞∑
n=1

pnz
n,

v(z) =
∞∑
n=1

qnz
n, such that

eiβ

(
z1−λ(Ωµq f(z))′

[Ωµq f(z)]1−λ

)
= h(u(z)) cosβ + i sinβ, (3.6)

and

eiβ

(
w1−λ(Ωµq g(w))′

[Ωµq g(w)]1−λ

)
= h(v(w)) cosβ + i sinβ. (3.7)

Moreover, from (3.3) we have

h(u(z)) = 1+B1p1z+
(
B1p2 +B2p

2
1

)
z2 + · · · = 1+

∞∑
n=1

n∑
k=1

BkD
k
n(p1, p2, . . . , pn)zn,

and

h(v(w)) = 1 +

∞∑
n=1

n∑
k=1

BkD
k
n(q1, q2, . . . , qn)wn.

Equating the corresponding coeffi cients of (3.6) and (3.7) we get, respectively,

eiβ
(

1 +
n− 1

λ

)
Kλ
n−1(Θ2a2,Θ3a3, . . . ,Θnan) =

n−1∑
k=1

BkD
k
n−1(p1, p2, . . . , pn−1) cosβ

(3.8)
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and

eiβ
(

1 +
n− 1

λ

)
Kλ
n−1(Θ2b2,Θ3b3, . . . ,Θnbn) =

n−1∑
k=1

BkD
k
n−1(q1, q2, . . . , qn−1) cosβ.

(3.9)
We observe that if ak = 0 for all 2 ≤ k ≤ n− 1, by the definition of Kp

n we have
bn = −an, and since B1 6= 0 we have p1 = · · · = pn−2 = 0 and q1 = · · · = qn−2 = 0.
Hence from (3.8) and (3.9) we obtain, respectively,

[λ+ (n− 1)]eiβΘnan = B1pn−1 cosβ

and
−[λ+ (n− 1)]eiβΘnan = B1qn−1 cosβ.

Taking the modules of either of the above two equalities and using Lemma 1.2 we
obtain our result. �

Theorem 3.2. Let the function f ∈ Bq,µΣ (β, λ, h) be given by (1.1). Then

|a2| ≤
|B1|

√
2|B1| cosβ√

|B1|2 |(λ− 1)(λ+ 2)Θ2
2 + 2(λ+ 2)Θ3| cosβ + 2(|B1| − |B2|)(1 + λ)2Θ2

2

,

for those values of all the parameters such that the denominator is not zero.

Proof. If we set n = 2 and n = 3 in (3.8) and (3.9), respectively, we obtain

eiβ(1 + λ)Θ2a2 = B1p1 cosβ (3.10)

eiβ
[

(λ− 1)(λ+ 2)

2
Θ2

2a
2
2 + (λ+ 2)Θ3a3

]
= (B1p2 +B2p

2
1) cosβ (3.11)

−eiβ(1 + λ)Θ2a2 = B1q1 cosβ (3.12)

eiβ
[(

(λ− 1)(λ+ 2)

2
Θ2

2 + 2(λ+ 2)Θ3

)
a2

2 − (λ+ 2)Θ3a3

]
= (B1q2 +B2q

2
1) cosβ. (3.13)

From (3.10) and (3.12) we get
p1 = −q1, (3.14)

then, adding (3.11) and (3.13) and according to (3.14) we obtain

eiβ [(λ− 1)(λ+ 2)Θ2
2 + 2(λ+ 2)Θ3]a2

2 = B1

(
p2 +

B2

B1
p2

1 + q2 +
B2

B1
q2
1

)
cosβ.

From (3.10), using Lemma 1.3 we have∣∣(λ− 1)(λ+ 2)Θ2
2 + 2(λ+ 2)Θ3

∣∣ |a2|2 ≤ |B1|
(∣∣∣∣p2 +

B2

B1
p2

1

∣∣∣∣+

∣∣∣∣q2 +
B2

B1
q2
1

∣∣∣∣) cosβ

≤ 2|B1|
(

1 +
|B2| − |B1|
|B1|

|p2
1|
)

cosβ = 2|B1|
[
1 +

(|B2| − |B1|)(1 + λ)2Θ2
2|a2

2|
|B1|3 cos2 β

]
cosβ.



410 M. JAFARI, T. BULBOACĂ, A.ZIREH, E. A. ADEGANI

After some simple computations, from the above inequality we have[
|B1|2

∣∣(λ− 1)(λ+ 2)Θ2
2 + 2(λ+ 2)Θ3

∣∣ cosβ + 2(|B1| − |B2|)(1 + λ)2Θ2
2

]
|a2|2

≤ 2|B1|3 cos2 β,

which implies our result. �

Remark 3.1. (1) The bound for |a2| from Theorem 3.2 is smaller than the es-
timate obtained by Murugusundaramoorthy et al. in [22, Theorem 2.1].

(2) Letting h(z) =
1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, in Theorem 3.2, we obtain an

improvement of the estimate for |a2| obtained by Murugusundaramoorthy
et al. in [22, Theorem 3.1], and it is presented in the next example.

(3) Setting h(z) =
1 + (1− 2α)z

1− z , 0 ≤ α < 1, in Theorem 3.2, we obtain an

improvement of the estimate for |a2| obtained by Murugusundaramoorthy
et al. in [22, Theorem 4.1], like we will show in Example 3.2.

(4) By setting λ = 1, β = µ = 0, and q → 1− in Theorem 3.2, we get Θn =
1, hence we obtain an improvement of the estimate for |a2| obtained by
Algahtani in [4, Theorem 2.3].

(5) Taking λ = β = µ = 0 and q → 1− in Theorem 3.2, we get Θn = 1, hence
we obtain an improvement of the estimate for |a2| obtained by Algahtani
in [4, Theorem 2.6].

Example 3.1. Let the function f ∈ Bq,µΣ

(
β, λ,

1 +Az

1 +Bz

)
be given by (1.1), where

−1 ≤ B < A ≤ 1. If ak = 0 for 2 ≤ k ≤ n− 1, where n ≥ 3, then

|an| ≤
(A−B) cosβ

[λ+ (n− 1)]Θn
.

Example 3.2. Let the function f ∈ Bq,µΣ

(
β, λ,

1 + (1− 2α)z

1− z

)
be given by (1.1),

where 0 ≤ α < 1. If ak = 0 for 2 ≤ k ≤ n− 1, where n ≥ 3, then

|an| ≤
2(1− α) cosβ

[λ+ (n− 1)]Θn
.

4. Conclusion

In the final section, using the Faber polynomial expansion we found upper bounds
for |an| (n ≥ 3) coeffi cients of functions in the class defined by Definition 1.1, and
then we obtained an estimate for the initial coeffi cients |a2| for the functions of this
class. Thus, regarding the proofs of the Theorems 3.1 and 3.2, this technique can
be applied for all classes that are defined similarly to the Definition 1.1 in diverse
papers enhancing their outcomes (see for example [3, 10, 21, 23, 28] and references
therein).
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Math., 31 (1986), 13-21.

[10] Bulut, S. Coeffi cient estimates for initial Taylor-Maclaurin coeffi cients for a subclass of an-
alytic and bi-univalent functions defined by Al-Oboudi differential operator, Sci. World J.,
(2013), Art. ID 171039, 6 pages.

[11] Duren, P. L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259,
Springer, New York, (1983).
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EQUIVALENCE CONDITIONS OF TWO SYSTEMS OF
VECTORS IN THE TAXICAB PLANE AND ITS APPLICATIONS

TO TAXICAB POLYGONS

İDRIS ÖREN AND HÜSNÜ ANIL ÇOBAN

Abstract. This study presents the conditions of MT (2)-equivalence for two
systems of vectors {x1, x2, x3} and {y1, y2, y3} in R2T , where MT (2) is the
group of all isometries of the 2-dimensional taxicab space R2T . Firstly a min-
imal complete system of MT (2)-invariants of {x1, x2, x3} is obtained. Then,
using the conditions ofMT (2)-equivalence, an answer is given to the open prob-
lem posed in [10, p.428]. Furthermore, an algorithm is given for constructing
taxicab regular polygons in terms of MT (2)-invariants. This algorithm is gen-
eral and useful to construct the taxicab regular 2n-gons and gives a tool to solve
special cases of the open problem posed in [2, p.32]. Besides, both the con-
ditions of the taxicab regularity of Euclidean regular polygons and Euclidean
regularity of taxicab regular polygons are given in terms of MT (2)-invariants.

1. Introduction

Many problems in applied algebra have symmetries or are invariant under certain
natural transformations. In particular, all geometric magnitudes and properties are
invariant with respect to the underlying transformation group. Properties in Euclid-
ean geometry are invariant under the Euclidean group of rotations, reflections and
translations; properties in projective geometry are invariant under the projective
transformations, etc. This identification of geometry and invariant theory is ex-
pressed in Felix Klein’s Erlanger Program (see detailed information in [14, p.14,
193]).
Let R be the field of real numbers. Then the 2-dimensional taxicab space

can be introduced by using the metric dT (x, y) = |x1 − y1| + |x2 − y2| instead
of the well known Euclidean metric dE (x, y) =

√
(x1 − y1)2 + (x2 − y2)2, where

x = (x1, x2) , y = (y1, y2) ∈ R2. This space will be denoted by R2T which is known
as taxicab plane geometry.
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The taxicab metric dT (x, y) =
√
p(x− y, x− y) + 2 |(x1 − y1)(x2 − y2)| is also

defined in the paper [3, Definition 3.1, p.302], where p(x − y, x − y) is Euclidean
inner product.
LetMT (2) =

{
F : R2T → R2T : Fx = gx+ b,∀g ∈ D4, b ∈ R2T

}
which is known as

taxicab group (see [8], [10, p.424]) be the group of all isometries of R2T , where the
dihedral group D4 is the (Euclidean) symmetry group of the square.
Let ME(2) =

{
F : R2 → R2 : Fx = gx+ b,∀g ∈ O(2), b ∈ R2

}
which is known

Euclidean motion group (see [10, p.424]) be the group of all isometries of the 2-
dimensional Euclidean space R2 where the group O(2) is the orthogonal group.
The complete system of ME(n)-invariants of a system of the vectors

{x1, x2, . . . , xm} in the n-dimensional Euclidean space is given in [9, Theorem 6]
and the complete system of relations between elements of this complete system is
given in [9, Theorem 3] where ME(n) is an n-dimensional Euclidean motion group.
An aim of this study is to present the equivalence conditions of two systems of

vectors {x1, x2, x3}, {y1, y2, y3} and to give a minimal complete system of MT (2)-
invariants of the vectors {x1, x2, x3} for taxicab plane geometry.
The taxicab geometry play an important role in ecology, optic, fire-spread simu-

lation with square-cell, grid-based maps and nonlinear differential equations. Appli-
cations of the taxicab metric in ecology are also well-known. Ecologist have found
taxicab metric dT a useful metric in the measurement of ’niche overlap’and notion
of ecological distance between species.(see in papers [13],[11],[16],[4],[12], [7], [1]).
Let us give the well known theorem in the Euclidean geometry as; "If sys-

tems {x1, x2, . . . , xm} and {y1, y2, . . . , ym} of vectors in Rn such that dE (xi, xj) =
dE (yi, yj) for all i, j = 1, 2, . . . ,m; i 6= j, then there exists a unique isometry F of
Rn for which Fxi = yi for all i = 1, 2, . . . ,m." [9].
The group of isometries of the taxicab geometry described, and the following

open problem is given in [10]: "What (if any) is the taxicab metric analogue of the
theorem above for Euclidean isometries?" In this study, an answer is given to this
open problem.
Therefore, the following question is one of the fundamental problems of invariant

theory (see [14, pp.15]).
"Given a geometric property P , find the corresponding invariants and vice versa.
Is there an algorithm for this transition between geometry and algebra?"
Let P be any taxicab regular polygon in the taxicab plane. For P , the following

problems are important:

(1) The existence or non-existence of P .
(2) Which Euclidean regular polygons are also the taxicab regular, and which

are not?
(3) Find an algorithm to construct taxicab regular polygons.

The above problems for P are geometrically discussed in [2]. Regular polygons
in the taxicab plane were studied by means of taxicab circles also in [6]. Some
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regular polygons in the taxicab 3-space are described in [15]. In papers [2, 6], the
following corollaries are obtained:

(i) In [2], the existence of taxicab regular 2n-gons by means of taxicab cir-
cles is proved. Besides, the non-existence of taxicab regular triangle are
proved geometrically, and the question "Does there exist any taxicab regu-
lar (2n−1)-gons?" is posed as an open problem. In [6], the non-existence of
taxicab regular triangles and pentagons are proved geometrically by means
of taxicab circles.

(ii) In the papers [2, 6], it is proved that all Euclidean squares and some special
Euclidean regular octagons are also taxicab regular, and vice versa.

(iii) To construct taxicab regular 2n-gons, a procedure is given in the proof of
Theorem 8 in [2] and a method is demonstrated for any n in [6].

In this study, the solutions of above problems for taxicab regular polygons P in
terms of invariants of vectors are investigated. Therefore, an answer is given to the
special cases of the open problem posed in [2].
The study is organized as follows. In Section 2, the conditions of G-equivalence

of two systems of vectors are given for groups G = MT (2) and G = D4. The
relations between elements of the complete system of MT (2)-invariant functions
of two vectors x1, x2 is geometrically given. The open problem proposed in [10]
is solved for the systems of vectors {x1, x2, x3} and {y1, y2, y3}. In Section 3,
a minimal complete system of MT (2)-invariants functions of the system of vectors
{x1, x2, x3} is introduced. In Section 4, both the conditions of the taxicab regularity
of Euclidean regular polygons and Euclidean regularity of taxicab regular polygons
are given in terms of MT (2)-invariants of the vectors. In Section 5, an algorithm
to construct taxicab regular polygons and some corresponding examples are given.
In Section 6, in addition to the algorithm a procedure is given to the determine the
non-existence of taxicab regular (2n− 1)-gon having given a line segment as a side
for a definite value of n, and some corresponding examples are given.

2. Conditions of G-equivalence of vectors in taxicab geometry

Let G be a group.

Definition 1. Two systems of vectors {u1, u2, u3} and {v1, v2, v3} in R2T will be
called G-equivalent and written by {u1, u2, u3}

G∼ {v1, v2, v3} if there exists F ∈ G
such that vj = Fuj for all j = 1, 2, 3.

Definition 2. A function f(u1, u2, u3) of vectors u1, u2, u3 in R2T will be called
G-invariant if f(Fu1, Fu2, Fu3) = f(u1, u2, u3) for all F ∈ G.

Example 3. Let u1, v1 be vectors in R2T . Since the group D4 is a subgroup of or-
thogonal group O(2), we have p(u1, v1) is D4-invariant. That is, since p(gu1, gv1) =
p(u1, v1) for all g ∈ D4, we obtain that the scalar product p(u1, v1) is D4-invariant.
Similarly, the function p(u1 − v1, u1 − v1) is MT (2)-invariant.
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Example 4. Let u1 = (u11, u12), v1 = (v11, v12) be vectors in R2T . We define
function q(u1, v1) = (u11u12)(u11v12 + u12v11). Then q(u1, v1) is D4-invariant.
Similarly, the function q(u1 − v1, u1 − v1) is MT (2)-invariant.

Theorem 5. Let {u1, u2, u3} and {v1, v2, v3} be two systems of vectors in R2T .
Then following two conditions are equivalent:

(i) {u1, u2, u3}
MT (2)∼ {v1, v2, v3}

(ii) {u2 − u1, u3 − u1}
D4∼ {v2 − v1, v3 − v1}

Proof. Assume that {u1, u2, u3}
MT (2)∼ {v1, v2, v3}. Then there exists F ∈ MT (2)

such that vi = Fui for all i = 1, 2, 3, where F has the form Fu = gu+b, g ∈ D4, b ∈
R2T . These equalities imply that vi − v1 = g(ui − u1) for all i = 2, 3. This means

that {u2 − u1, u3 − u1}
D4∼ {v2 − v1, v3 − v1}.

Conversely, assume that{u2 − u1, u3 − u1}
D4∼ {v2 − v1, v3 − v1}. Then there exists

g ∈ D4 such that vi − v1 = g(ui − u1) for all i = 2, 3. Put b = v1 − gu1. Then
vi = gui + b for all i = 1, 2, 3. That is, {u1, u2, u3}

MT (2)∼ {v1, v2, v3}. �
Let u1, u2, . . . , um ∈ R2T . We denote the matrix ‖p(uj , uk)‖j,k=1,2,...,m by

Gr (u1, u2, . . . , um) and its determinant by detGr (u1, u2, . . . , um).
Below we use the following known proposition (see [5, p.192]).

Proposition 6. Vectors u1, u2, . . . , um ∈ R2T are linearly depended if and only if
detGr (u1, u2, . . . , um) = 0

Proof. A proof is given [17, p.75]. �
Example 7. The rank of the system of vectors X = {x1, x2} of vectors in R2T is
D4-invariant, but it is not MT (2)-invariant.

Remark 8. Let X = {x1, x2} and Y = {y1, y2} be two systems of vectors in R2T
such that x1 6= 0 and y1 = 0. Then the systems X and Y are not D4-equivalent. In
the case where x1 = y1 = 0, the problem of D4 − equivalence of systems X and Y
reduces to the problem of D4-equivalence of the systems {x2} and {y2}. Therefore
we will investigate the problem of D4-equivalence of the systems X and Y such that
x1 6= 0 and y1 6= 0.

Theorem 9. Let X = {x1, x2} and Y = {y1, y2} be two systems of vectors in R2T
such that x1 6= 0 and y1 6= 0. Then following two conditions are equivalent:

(i) {x1, x2}
D4∼ {y1, y2}

(ii) p(xi, xj) = p(yi, yj), q(x1, x1) = q(y1, y1) and q(x1, x2) = q(y1, y2) for all
i = 1, 2; i ≤ j.

Proof. Assume that {x1, x2}
D4∼ {y1, y2}. Then there exists g ∈ D4 such that

gxi = yi for all i = 1, 2. Since the functions p(xi, xj), q(x1, x1) and q(x1, x2) are
D4 − invariants, that is, p(xi, xj) = p(yi, yj), q(x1, x1) = q(y1, y1) and q(x1, x2) =
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q(y1, y2) for all i = 1, 2; i ≤ j.

Conversely, assume that the conditions p(xi, xj) = p(yi, yj), q(x1, x1) = q(y1, y1)
and q(x1, x2) = q(y1, y2) for all i = 1, 2; i ≤ j are valid.
Denote by r(X) and r(Y ) ranks of the systems X = {x1, x2} and Y = {y1, y2},

respectively.
(a) Firstly, consider the case r(X) = 2. Then there exist vectors x1, x2 which are

linearly independent. Let ‖x1x2‖ be the matrix of column vectors x1, x2. Denote
by U and V the matrices ‖x1x2‖ and ‖y1y2‖ and their transpose matrices by UT ,
V T , respectively. Let detU be the determinant of U . Linearly independence of
x1, x2 implies detU 6= 0. ‖p(xi, xj)‖i,j=1,2 is the Gram matrix of vectors x1, x2.
Then it is easy to see that

UTU = ‖p(xi, xj)‖i,j=1,2 (1)

Since p(xi, xj) = p(yi, yj) for all i, j = 1, 2, it is obtained

‖p(xi, xj)‖i,j=1,2 = ‖p(yi, yj)‖i,j=1,2 (2)

(1) and (2) imply
UTU = V TV (3)

whence
(detU)2 = (detV )2 (4)

Since detU 6= 0, (4) implies that detV 6= 0. That is, the vectors y1, y2 are linearly
independent. Then there exists a 2× 2-matrix g such that detg 6= 0 and

V = gU (5)

(3) and (5) give the equation

UTU = UT gT gU (6)

Since detU 6= 0, (6) implies gT g = I, where I is the identity matrix. This means
that g ∈ O(2). (5) implies yj = gxj for all j = 1, 2. Now we prove that g ∈ D4.

g ∈ O(2) has the form g =

(
a −b
b a

)
with detg = 1 or

(
a b
b −a

)
with detg = −1.

Consider the matrix g =

(
a −b
b a

)
such that detg = 1. Let xi = (xi1, xi2) for

all i = 1, 2. Since yj = gxj for all j = 1, 2, it is obtained

yj = (axj1 − bxj2, bxj1 + axj2) (7)

for all j = 1, 2.
q(x1, x1) = q(y1, y1) and (7) imply that

ab = 0 (8)

(8) and detg = a2 + b2 = 1 give
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(i) If a = 0, then b = ∓1. So g =

(
0 −1
1 0

)
or g =

(
0 1
−1 0

)
.

(ii) If b = 0, then a = ∓1. Therefore g =

(
1 0
0 1

)
or g =

(
−1 0
0 −1

)
.

Similarly, consider the matrix g =

(
a b
b −a

)
such that detg = −1. Let xi =

(xi1, xi2) for all i = 1, 2. Since yj = gxj for all j = 1, 2, it is obtained

yj = (axj1 + bxj2, bxj1 − axj2) (9)

for all j = 1, 2.
q(x1, x1) = q(y1, y1) and (9) imply

ab = 0 (10)

.
(10) and detg = a2 + b2 = −1 give

(i) If a = 0, then b = ∓1. Therefore g =

(
0 1
1 0

)
or g =

(
0 −1
−1 0

)
.

(ii) If b = 0, then a = ∓1. Hence g =

(
1 0
0 −1

)
or g =

(
−1 0
0 1

)
.

So we obtain that g ∈ D4.
Now, let us prove that there exists g ∈ D4 such that gxi = yi for all i =

1, 2. Assume that gx1 = y1, hx2 = y2 such that g, h ∈ D4 and g 6= h. Hence
the inequality q(x1, x2) 6= q(y1, y2) is obtained which a contradiction is to the
assumption of the theorem. From the equality q(x1, x2) = q(y1, y2), it is obtained
that there exists g ∈ D4 such that gxi = yi for all i = 1, 2.

(b) Now, consider the case r(X) = 1. The conditions of the theorem and Propo-
sition 6 imply that r(X) = r(Y ). Let X̃ and Ỹ denote the linear subspaces of
R2T spanned by the systems X = {x1, x2} and Y = {y1, y2}, respectively. Then
dim(X̃) = r(X) = r(Y ) = dim(Ỹ ) ≤ 1. Since dim(X̃) = dim(Ỹ ) = 1, there exist
vectors x2 and y2 in R2T such that p(x2, x2) = 1, p(x1, x2) = 0 and p(y2, y2) = 1,
p(y1, y2) = 0. Consider the systems Ū = {x1, x2} and V̄ = {y1, y2}. Then
r(Ū) = r(V̄ ) = 2 and p(xi, xs) = p(yi, ys) are obtained for all i, s = 1, 2. Ac-
cording to the case (a), there exists g ∈ O(2) such that V̄ = gŪ . Similarly, the
conditions in the theorem and from the case (a), it is obtained that there exists
g ∈ D4 such that V̄ = gŪ . In particularly, we obtain yj = gxj for all j = 1, 2.

Hence, from (a) and (b), we have {x1, x2}
D4∼ {y1, y2}. �

Corollary 10. According to Theorem 9, the system

{p(xi, xj), q(x1, x1), q(x1, x2), 1 ≤ i ≤ j ≤ 2}
is a complete system of D4-invariants of vectors x1, x2.

Using the Theorem 5 and Theorem 9, the following theorem can be obtained.
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Theorem 11. Let X = {x1, x2, x3} and Y = {y1, y2, y3} be two systems of vectors
in R2T such that x2 − x1 6= 0 and y2 − y1 6= 0. Then following two conditions are
equivalent:

(i) {x1, x2, x3}
MT (2)∼ {y1, y2, y3}

(ii) p(xi−x1, xj−x1) = p(yi−y1, yj−y1), q(x2−x1, x2−x1) = q(y2−y1, y2−y1)
and q(x2 − x1, x3 − x1) = q(y2 − y1, y3 − y1) for all i = 2, 3; i ≤ j.

Corollary 12. According to Theorem 11, the system

{p(xi − x1, xj − x1), q(x2 − x1, x2 − x1), q(x2 − x1, x3 − x1), 2 ≤ i ≤ j ≤ 3}
is a complete system of MT (2)-invariants of vectors x1, x2, x3.

Using the Theorem 11, the following theorem gives an answer to the open prob-
lem in [10] in terms of MT (2)-invariants.

Theorem 13. Let X = {x1, x2, x3} and Y = {y1, y2, y3} be two system of vectors
in R2T . Then following two conditions are equivalent:

(i) {x1, x2, x3}
MT (2)∼ {y1, y2, y3}

(ii) dT (xi, xj) = dT (yi, yj) and dE(xi, xj) = dE(yi, yj) for all i 6= j and i, j =
1, 2, 3.

According to Theorem 13, the system {dT (xi, xj), dE(xi, xj), i, j = 1, 2, 3; i 6= j}
is a complete system of MT (2)− invariants of vectors x1, x2, x3.
Specially, the system {dT (x1, x2), dE(x1, x2)} is a complete system of MT (2)-

invariants of vectors x1, x2.
Now we investigate relations between elements of the complete system ofMT (2)-

invariant functions of two vectors x1, x2

Theorem 14. Let x1 be a fixed point in R2T . Then for all points x1 6= x2, the
following statements are hold:

(i) The geometric locus of points x2 where dT (x1, x2) = dE(x1, x2) are intersec-
tion points of taxicab and Euclidean circles with centered x1. Geometrically,
this is a inscribed quadrilateral.

(ii) The geometric locus of points x2 where dT (x1, x2) =
√

2dE(x1, x2) are tan-
gent points of taxicab and Euclidean circles with centered x1. Geometrically,
this is a circumscribed quadrilateral.

(iii) The geometric locus of points x2 where dT (x1, x2) <
√

2dE(x1, x2) are in-
tersection points of taxicab and Euclidean circles with centered x1. The
number of the points are only eight.

Proof. Let x1 = (x11, x12) and x2 = (x21, x22) be two points in R2T such that
x1 6= x2. Let dT (x1, x2) = a and dE(x1, x2) = r, where a and r are positive real
numbers. Then, from the equalities dE(x1, x2) =

√
p(x1 − x2, x1 − x2) = r and

dT (x1, x2) =
√
p(x1 − x2, x1 − x2) + 2 |(x11 − x21)(x12 − x22)| = a, we have

p(x1 − x2, x1 − x2) = r2 (11)
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and
p(x1 − x2, x1 − x2) + 2 |(x11 − x21)(x12 − x22)| = a2 (12)

The equalities (11) and (12) imply

r2 + 2 |(x11 − x21)(x12 − x22)| − a2 = 0 (13)

From (13), following three cases are obtained:

(a) if x11 − x21 = 0 or x12 − x22 = 0, then r = a.

Hence the vector x1 − x2 is parallel to anyone of the lines x = 0 or y = 0. See
Figure 1 for positions of the vector x1 − x2.

Figure 1. The positions of vectors x2 − x1 with dT (x1, x2) = dE(x1, x2)

(b) Let x11−x21 6= 0 and x12−x22 6= 0. Then there are the following four cases:

(b.1) x11 − x21 > 0 and x12 − x22 > 0,

(b.2) x11 − x21 > 0 and x12 − x22 < 0,

(b.3) x11 − x21 < 0 and x12 − x22 > 0,

(b.4) x11 − x21 < 0 and x12 − x22 < 0.

(b.1) Let x11 − x21 > 0 and x12 − x22 > 0. From (13), it is obtained

x11 − x21 =
a2 − r2

2(x12 − x22)
(14)

Using the equalities (11) and (14), it is obtained

x12 − x22 =

√
r2 ± a

√
2r2 − a2
2

(15)

From (15), the following cases are obtained:
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(b.1.1) if 2r2−a2 = 0, then we have x11−x21 = x12−x22 = r√
2
. Hence the vector

x1 − x2 is parallel to anyone of the lines y = x or y = −x. See Figure 2 for
positions of the vector x1 − x2.

Figure 2. The positions of vectors x2 − x1 with dT (x1, x2) =
√

2dE(x1, x2)

(b.1.2) if 2r2 − a2 > 0, then we have x11 − x21 = x12 − x22 =

√
r2±a

√
2r2−a2
2 .

The cases (b.2),(b.3) and (b.4) are similar to (b.1). Then there exist eight
intersection points of taxicab circle and Euclidean circle. See Figure 3 for
positions of the vector x1 − x2.

Figure 3. The positions of vectors x2 − x1 with dT (x1, x2) <
√

2dE(x1, x2)

�
Remark 15. From (iii) in Theorem 14, we have

dE(x1, x2) < dT (x1, x2) <
√

2dE(x1, x2). (16)

3. On minimality of the complete system of invariants of vectors

Definition 16. A system {fτ , τ ∈ Q} of MT (2) -invariant functions fτ (x1, x2, x3)
of the systems {x1, x2, x3} in R2T will be called complete if equalities fτ (x1, x2, x3) =

fτ (y1, y2, y3) for all τ ∈ Q imply {x1, x2, x3}
MT (2)∼ {y1, y2, y3}.
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Denote by Kij(X), L(X) and M(X) by the functions p(xi − x1, xj − x1) for
2 ≤ i ≤ j ≤ 3, q(x2 − x1, x2 − x1) and q(x2 − x1, x3 − x1), respectively.
According to Theorem 11, the system

B = {Kij(X), L(X),M(X), 2 ≤ i ≤ j ≤ 3} is a complete system ofMT (2)-invariant
functions of vectors x1, x2, x3 in R2T .

Definition 17. A complete system B = {fτ , τ ∈ Q} of MT (2)-invariant functions
fτ of the system {x1, x2, x3} in R2T will be called minimal if every proper subset of
B is not complete.

Theorem 18. The system B is a minimal complete system of MT (2) -invariants
of vectors x1, x2, x3 in R2T .

Proof. A proof follows from the following Lemmas 19-22.

Lemma 19. The subsystem B \ {K23(X)} is not a complete system of MT (2)-
invariants.

Proof. Consider the following two systems of vectors in R2T :
X = {x1 = (1, 2), x2 = (3, 2), x3 = (2, 4)} and
Y = {y1 = (1, 2), y2 = (3, 2), y3 = (3, 3)}. Prove the lemma for i = 2, j = 3.
Then we have K22(X) = K22(Y ) = 4,K33(X) = K33(Y ) = 5, L(X) = L(Y ) =
0,M(X) = M(Y ) = 0. Since K23(X) and K23(Y ) areMT (2)-invariants, K23(X) =
2, K23(Y ) = 4, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {K23(X)} is not complete. �
Lemma 20. The subsystem B \{Kii(X)} for any i = 2, 3 is not a complete system
of MT (2)-invariants.

Proof. Consider the following two systems of vectors in R2T :
X = {x1 = (1, 2), x2 = (3, 2), x3 = (4, 3)} and
Y = {y1 = (1, 2), y2 = (3, 2), y3 = (4, 4)}. Prove the lemma for i = 3. Then we
have K22(X) = K22(Y ) = 4,K23(X) = K23(Y ) = 6, L(X) = L(Y ) = 0,M(X) =
M(Y ) = 0. Since K33(X) and K33(Y ) are MT (2)-invariants, K33(X) = 10,
K33(Y ) = 13, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {K33(X)} is not complete. Similarly, the subsystem
B \ {K22(X)} is not complete. �
Lemma 21. The subsystem B \ {L(X)} is not a complete system of MT (2) −
invariants.

Proof. Consider the following two systems in R2T :
X = {x1 = (1, 2), x2 = (2, 3), x3 = (2, 1)} and
Y =

{
y1 = (1, 2), y2 = (1 +

√
2, 2), y3 = (1, 2−

√
2)
}
.

Then we have K22(X) = K22(Y ) = 2,K23(X) = K23(Y ) = 0,K33(X) = K33(Y ) =
2,M(X) = M(Y ) = 0. Since L(X) and L(Y ) are MT (2)-invariants, L(X) = 2,
L(Y ) = 0, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {L(X)} is not complete. �



EQUIVALENCE CONDITIONS OF VECTORS IN THE TAXICAB GEOMETRY 423

Lemma 22. The subsystem B \ {M(X)} is not a complete system of MT (2) −
invariants.

Proof. Consider the following two systems in R2T :
X = {x1 = (1, 2), x2 = (2, 0), x3 = (5, 4)} and
Y = {y1 = (1, 2), y2 = (2, 0), y3 = (−3, 0)}.
Then we have K22(X) = K22(Y ) = 5,K23(X) = K23(Y ) = 0,K33(X) = K33(Y ) =
20, L(X) = L(Y ) = 4. Since M(X) and M(Y ) are MT (2)-invariants, M(X) = 12,
M(Y ) = −12, it is obtained that the systems X and Y are not MT (2)-equivalent.
Hence the subsystem B \ {M(X)} is not complete. �
Lemmas 19-22 imply that the system B is a minimal complete system ofMT (2)-

invariants. The proof of the theorem is completed. �

4. On the Euclidean regular polygons and taxicab regular polygons

The following definitions about the taxicab polygons are given in [2, p.27-28]
"As in the Euclidean plane, a polygon in the taxicab plane consists of three or
more coplanar line segments; the line segments (sides) intersect only at endpoints;
each endpoint(vertex) belongs to exactly two line segments; no two line segments
with a common endpoint are collinear. If the number of sides of a polygon is n for
n ≥ 3 and n ∈ N , then the polygon is called an n-gon. The following definitions
for polygons in the taxicab plane are given by means of the taxicab lengths instead
of the Euclidean lengths:

Definition 23. A polygon in the plane is said to be taxicab equilateral if the taxicab
lengths of its sides are equal.

Definition 24. A polygon in the plane is said to be taxicab equiangular if the
measures of its interior angles are equal.

Definition 25. A polygon in the plane is said to be taxicab regular if it is both
taxicab equilateral and equiangular.

Definition 24 does not give a new equiangular concept because the taxicab and
the Euclidean measure of an angle are the same. That is, every Euclidean equian-
gular polygon is also the taxicab equiangular, and vice versa. However, since the
taxicab plane has a different distance function, Definition 23 and therefore Defini-
tion 25 are new concepts."
The following theorem gives us conditions of the taxicab regularity of Euclidean

regular polygons in terms of MT (2)-invariants, vice versa.

Theorem 26. Let x1, x2, . . . , xn be vertices of an n-sided polygon in the Cartesian

plane. Assume that {xi+1, xi}
MT (2)∼ {xi+1, xi+2} and the angle between xi − xi+1

and xi+2−xi+1 has measure θ = π(n−2)
n radian for all 1 ≤ i ≤ n. Then the n-sided

polygon is a taxicab regular n-gon and a Euclidean regular n-gon, where n = 4 or
n = 8.
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Proof. For simplicity, let us consider two vertices x1 = (cosα, sinα) for α ∈ (0, π/4)

and x2 = (0, 0). Besides, let us start from the vertices. Put i = 1 and {x2, x1}
MT (2)∼

{x2, x3}. According to Theorem5, we have {x1 − x2}
D4∼ {x3 − x2}. Then there ex-

ist 8 forms vectors x3−x2 such that x3−x2 = (sinα, cosα), x3−x2 = (−sinα, cosα),
x3 − x2 = (−cosα, sinα),x3 − x2 = (−cosα,−sinα), x3 − x2 = (sinα,−cosα),
x3 − x2 = (−sinα,−cosα) and x3 − x2 = (−cosα,−sinα).

(i) Let us consider x3 − x2 = (sinα, cosα). Then the angle between x1 − x2 and
x3 − x2 has measure θ < π/2. Then n ≤ 3. Assuming n ≥ 3, n = 3 is obtained .
So, θ = π/3 and α = π/12.

Now let us consider {x3, x2}
MT (2)∼ {x3, x4}. Since n = 3, we obtain that x4 = x1.

Clearly, this is a contradiction. Then {x3, x2} is notMT (2)−equivalent to {x3, x4}.
That is, n 6= 3.

(ii) Let us consider x3 − x2 = (−sinα, cosα). Then the angle between x1 − x2
and x3 − x2 has measure θ = π/2. Then n = 4. Since n = 4, we have x5 =

x1. Let us consider {x3, x2}
MT (2)∼ {x3, x4} and {x4, x3}

MT (2)∼ {x4, x5}. Then
the angles between xi − xi+1 and xi+2 − xi+1 for i = 1, 2, 3 have measures θ =
π/2. Furthermore, we obtain dT (xi+1, xi) = dT (xi+1, xi+2) and dE(xi+1, xi) =
dE(xi+1, xi+2). That is, this is a taxicab square.

(iii) Let us consider x3 − x2 = (−cosα, sinα). Then the angle between x1 − x2
and x3 − x2 has measure θ = π − 2α > π/2. Then n > 4. Let us consider

g =

(
−cos2α −sin2α
sin2α −cos2α

)
. Since the angle between x2 − x3 and x4 − x3 has mea-

sure θ = π − 2α, we have g (x2 − x3) = x4 − x3. This implies
x4−x3 = (−cos3α, sin3α). According to Theorem5, {x3, x2}

MT (2)∼ {x3, x4} implies
{x2 − x3}

D4∼ {x4 − x3}.
So, {x2 − x3 = (cosα,−sinα)} D4∼ {x4 − x3 = (−cos3α, sin3α)} is obtained.
From Theorem 11, we have [(cosα)(−sinα)]

2
= [(−cos3α)(sin3α)]

2. Then this
equation implies α = π/8. That is, n = 8. Then the angles between xi − xi+1 and
xi+2−xi+1 for i = 3, . . . , 7 have measures θ = π−2α and g (xi − xi+1) = xi+2−xi+1.
This implies xi+2 − xi+1 = (−cos(2i− 1)α, sin(2i− 1)α) and x9 = x1. This
shows that the angles between xi − xi+1 and xi+2 − xi+1 for i = 1, 2, . . . , 7 have
measures θ = 3π/4. Furthermore, we obtain dT (xi+1, xi) = dT (xi+1, xi+2) and
dE(xi+1, xi) = dE(xi+1, xi+2). That is, this is a taxicab regular octagon.

If α = 0 radians or α = π/2 radians, the edges of the polygon are parallel to the
lines x = 0 and y = 0. The polygon is a taxicab regular square.
If α = π/4 radians, the edges of the polygon are parallel to the lines y = x and

y = −x. The polygon is a taxicab regular square.
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Proofs of the cases x3−x2 = (−cosα,−sinα), x3−x2 = (sinα,−cosα),x3−x2 =
(−sinα,−cosα) and x3 − x2 = (−cosα,−sinα) are similar to the proof of (i),(ii)
and (iii). Hence, we obtain that n = 4 or n = 8. �
Corollary 27. (1) According to Theorem 26, a taxicab regular octagon is a

Euclidean regular iff the slopes of sides of a taxicab regular octagon are
equal to m = ±tan(π/8) or m = ±tan(3π/8).

(2) According to Theorem26, a Euclidean regular octagon is a taxicab regular
iff the slopes of sides of a Euclidean regular octagon are equal to m =
±tan(π/8) or m = ±tan(3π/8).

(3) Every taxicab regular square is also Euclidean regular , vice versa.

Remark 28. (i) According to Corollary 27, all taxicab regular octagons are not
Euclidean regular, vice versa.
(ii) According to Corollary 27, all taxicab regular squares are Euclidean regular,
vice versa.

Corollary 27 and Remark 28 that we derived by using MT (2)-invariants, are the
same conclusions derived in [2] and [6].

5. The proposed algorithm for taxicab regular polygons

Let x1 and x2 be vertices of a side of any polygon and n be the number of
sides of polygon in the taxicab plane. Consider a side by x1x2. Since angles in
taxicab geometry are measured as in Euclidean geometry, each interior angle of a
regular polygon is measured θ = π(n−2)

n radians. Let us introduce the algorithm to
construct taxicab regular n-gon having x1x2 as side for a definite value of n, with
the following steps:

Step 1 The side x1x2 is rotated through β = π(n+2)
n radians clockwise about the

point x2 and is obtained a side x2z3 such that z3 = x2 + g(x1 − x2), where

g =

(
cosβ sinβ
−sinβ cosβ

)
.

Then dE(x1, x2) = dE(z3, x2) and the angle between vectors
x1 − x2 and z3 − x2 are equal to θ.

Step 2 For any point x3 on the line passes points x2 and z3, by solving equations
dT (x1, x2) = dT (x3, x2) and p (x1 − x2, x3 − x2) = dE(x1, x2)dE(x2, x3)cosθ,
x3 is obtained.

Step 3 Similarly, for all i = 2, . . . , n − 1, the side xixi+1 is rotated through β =
π(n+2)

n radians clockwise about the point xi+1 and is obtained a side xi+1zi+2
such that zi+2 = xi+1 + g(xi − xi+1). Then dE(xi, xi+1) = dE(xi+1, zi+2)
and the angle between vectors xi − xi+1 and zi+2 − xi+1 are equal to θ.

Step 4 For any point xi+2 on the line passes points zi+2 and xi+1, by solving
equations dT (xi, xi+1) = dT (xi+2, xi+1) and p (xi − xi+1, xi+2 − xi+1) =
dE(xi, xi+1)dE(xi+1, xi+2)cosθ, xi+2 is obtained.
Thus, all vertices x3, x4, . . . , xn+1 of the polygon are obtained.
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Step 5 If xn+1 = x1 and p (xn − x1, x2 − x1) = dE(x1, xn)dE(x1, x2)cosθ, then
this is a taxicab regular n-gon.

Step 6 If xn+1 6= x1 , then there is no taxicab regular n-gon having x1x2 as a side.

Remark 29. According to this algorithm, for definite value of n, one can constract
taxicab regular 2n-gons, and determine if there exist (2n− 1)-gons, having given a
line segment as a side. Clearly, this algorithm is also a tool to give an answer to
specal cases of open probleme given in [2].

5.1. Illustrations. In this subsection various examples are given to demonstrate
the steps of the proposed algorithm for taxicab regular polygons.

Example 30. Consider a hexagon with vertices x1 = (1, 1) , x2 = (0, 0) , x3 =
(−1.57735, 0.42265) , x4 = (−2, 2) , x5 = (−1, 3) , x6 = (0.57735, 2.57735). This
polygon is a taxicab regular hexagon(See Figure 4).

Figure 4. The taxicab regular hexagon

Example 31. Consider a 10-gon with vertices

x1 = (2, 3) , x2 = (1, 2) ,

x3 = (−0.726543, 1.72654) , x4 = (−2.05146, 2.40162) ,

x5 = (−2.72654, 3.72654) , x6 = (−2.45309, 5.45309) ,

x7 = (−1.45309, 6.45309) , x8 = (0.273457, 6.72654) ,

x9 = (1.59838, 6.05146) , x10 = (2.27346, 4.72654) .

This polygon is a taxicab regular 10-gon.(See Figure 5).

6. Taxicab regularity of polygons with an odd number of sides

The open problem for (2n− 1)-gons posed by [2]: "Does there exist any taxicab
regular (2n−1)-gons? "As the given algorithm in Section 5,the following procedure
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Figure 5. The taxicab regular 10-gon

is also a tool to give answer to special cases of open problem given in [2]. That is,
for a definite value of n, and given a line segment x1x2, this procedure determines
if (2n− 1)-gon having x1x2 as a side exist or not."
Since angles in taxicab geometry are measured as in Euclidean geometry, it is

obtained that each interior angle of a regular polygon has measure θ = π(n−2)
n

radians.
Let us consider a Euclidean regular (2n−1)-gon with vertices x1, . . . , x2n−1. For

simplicity, let us take a side x1x2 and denote two vertices by x1 = y1, x2 = y2. Then
there exists a point yi+2 on the line parallel to the sides xi+1xi+2 that passes through
the point yi+1 such that dT (x1, x2) = dT (yi+1, yi+2) for each i = 1, . . . , 2n − 3.
Therefore, the angle between sides yiyi+1 and yi+1yi+2 for all i = 1, . . . , 2n − 3

equals to θ = π(n−2)
n radians.

But the angle between sides y2n−2y2n−1 and y2n−1y1 is not equal to θ, and the
inequality dT (y1, y2) 6= dT (y2n−1, y1) holds. If both of these conditions hold at the
same time, then (2n − 1)-gon with vertices y1, y2, ..., y2n−1 is regular, otherwise it
is not.

6.1. Illustrations. In this subsection, we give examples related to the procedure
introduced above. We have implemented the algoritm proposed in Section 5 in the
computer program Mathematica for the examples given in 5.1 Illustrations and 6.1
Illustrations .
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Example 32. Let us consider Euclidean regular triangle with vertices x1 = (2, 1) , x2 =
(1, 1) , x3 = (1.5, 1.86603). Let a side of taxicab regular triangle be x1x2. Let us
denote vertices x1, x2 by y1, y2,respectively.
Then according to the above procedure, the point y3 = (1.36603, 1.63397) on the

line parallel to the sides x2x3 that passes through the point y2 such that dT (x1, x2) =
dT (y2, y3)is found. Then the triangle with vertices y1, y2 and y3is not taxicab regu-
lar. So there is no taxicab regular triangle with the side y1y2. (See Figure 6).

Figure 6. While the triangle with vertices x1, x2, x3 is Euclidean
regular, the triangle with vertices y1, y2, y3 is not taxicab regular.

Example 33. Let us consider Euclidean regular pentagon with vertices

x1 = (2, 1) , x2 = (1, 1) ,

x3 = (0.690983, 1.95106) , x4 = (1.5, 2.53884) ,

x5 = (2.30902, 1.95106) .

Let a side of taxicab regular pentagon be x1x2. Let us denote vertices x1, x2 by
y1, y2,respectively. Then according to the above procedure, the points

y3 = (0.754763, 1.75476) , y4 = (1.33395, 2.17557) ,

y5 = (1.91315, 1.75476)

such that dT (x1, x2) = dT (y2, y3) = dT (y3, y4) = dT (y4, y5) is found. Clearly, the
angle between sides y4y5 and y5y1 is not equal to θ, and the inequalty dT (y1, y2) 6=
dT (y5, y1) holds. The polygon with vertices x1, x2, x3, x4, x5 is a Euclidean regular
pentagon and but it is not a taxicab regular pentagon with vertices y1, y2, y3, y4, y5.(See
Figure 7).
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Figure 7. While the pentagon with vertices x1, x2, x3, x4, x5 is
Euclidean regular,the pentagon with vertices y1, y2, y3, y4, y5 is not
taxicab regular.

7. Conclusions

Finding of an algebraic solution for non-existence of taxicab (2n − 1)-gon is
diffi cult. In the special case, choosing an initial side in the algorithm, an algebraic
solution can be easily found for n = 3. Thus, in our paper, the solution of this
problem is given numerically. However, the conjecture in [2] still needs to be proven
geometrically or algebrically.
Acknowledgements. The authors are very grateful to the reviewer for helpful
comments and valuable suggestions.
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N-SPACES

ATILLA AKPINAR

Abstract. In this paper, we introduce n-spaces constructed over an local ring
with the maximal ideal (of non-unit elements). So, we give the example of an
octonion n-space. Finally, we give two collineations of quaternion n-space.

1. Introduction and Preliminaries

In the early 1930s, P. Jordan, who is a physicist, has began to study with Jordan
algebras. The algebra H (O3) is firstly used by Jordan, to define an octonion
plane (over real octonion division algebra) [10]. Freudenthal, in [8], gave the same
construction in [10]. Later, Springer, in [12], extended the construction given by
Jordan and Freudenthal to the octonion (or Cayley) division algebras defined over
a field whose characteristic is different from 2 and 3.
In [3], Bix deals with J = H (O3,Jγ), the set of 3 by 3 matrices with entries

in an octonion algebra O defined over a local ring R with the maximal ideal I (of
non-unit elements), that are symmetric with respect to the canonical involution
Jγ : X → γ−1X

t
γ where the γi are elements of R \ I and γ :=diag{γ1, γ2, γ3}.

Hence, any element X of J is of the form

X =

 α1 γ2a3 γ3a2
γ1a3 α2 γ3a1
γ1a2 γ2a1 α3

 for αi ∈ R and ai ∈ O.

If it is defined a cubic form N such that N(X) := detX, a quadratic mapping
X → X] :=adjoint of X, and a basepoint C := I3 on J are defined, then the triple
(J,N,C) is a quadratic (exceptional) Jordan algebra under the operator UXY =

T (X,Y )X − 2
(
X] × Y

)
[11]. Then, for X =

 α1 γ2a3 γ3a2
γ1a3 α2 γ3a1
γ1a2 γ2a1 α3

 and Y =
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γ1b3 β2 γ3b1
γ1b2 γ2b1 β3

 ∈ J, we can give the similar results to those given in [11,
3, 7]:

N(X) = α1α2α3−α1γ2γ3n (a1)−α2γ3γ1n (a2)−α3γ1γ2n (a3)+γ1γ2γ32t ((a1a2) a3) ,

X] = (Xij)3×3 for Xii = αjαk−γjγkn (ai) , xij = γiγkaiaj−γiαkak and Xji = Xij ,

X×Y = (zij)3×3 for

{
zii = 1

2

[
αjβk + βjαk − 2γjγkn (ai, bi)

]
,

zij = 1
2

(
γj

[
γk(aibj + biaj)− (αkbk + βkak)

])
, zji = zij

,

T (X,Y ) = α1β1+α2β2+α3β3+2γ2γ3n (a1, b1)+2γ3γ1n (a2, b2)+2γ1γ2n (a3, b3) ,

where (i, j, k) is a cyclic permutation of (1, 2, 3), n (defined by n(x) := xx) is the
norm (quadratic) form over O, t (defined by t(x) := 1

2 (x+ x)) is the trace (linear)
form over O and finally n (x, y) (defined by n (x, y) := 1

2 [n (x+ y)− n (x)− n (y)])
is symmetric bilinear norm w.r.t. n.
Let Π denote the set of elements of rank 1 in J. Then,

Π =
{
X
∣∣X ∈ J \ IJ and X ×X = X] = 0

}
.

Note that, if X ∈ Π and α is an element in R \ I, then αX ∈ Π. For X ∈ Π, let
X∗ and X∗ be two copies of the set {αX | α ∈ R \ I }.
Now, it is time to give the definition of an octonion plane P(J) from [3, 6].

Definition 1. The octonion plane P(J) = (P,L, | ,w) consists of the incidence
structure (P,L, | ) (points, lines, and incidence), and the connection relation is
defined as follows:
P = {X∗ |X ∈ Π}, L = {X∗ |X ∈ Π},
X∗ |Y ∗ , X∗ is on Y ∗, if VY,X = 0, that is, VY,X =: {1XY } = {X1Y } =

{XY 1} = X · Y = 0 where X · Y = 1
2 (XY + Y X) (Jordan multiplication).

X∗ w Y∗, X∗ is connected to Y∗ if X × Y ∈ IJ,
X∗ w Y ∗, X∗ is connected to Y ∗ if X × Y ∈ IJ,
X∗ w Y ∗, X∗ is connected (or near) to Y ∗ if T (X,Y ) ∈ I.

Now, we recall some informations on projective Klingenberg and Moufang-Klingenberg
planes from [2].

Definition 2. LetM = (P,L,∈′,∼′) consist of an incidence structure (P,L,∈′)(points,
lines, incidence) and an equivalence relation ‘∼′’(neighbour relation) on P and on
L. Then M is called a projective Klingenberg plane (PK-plane), if it satisfies the
following axioms:
(PK1) If P,Q are non-neighbour points, then there is a unique line PQ through

P and Q.
(PK2) If g, h are non-neighbour lines, then there is a unique point g ∧ h on

both g and h.
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(PK3) There is a projective plane M∗ = (P∗,L∗,∈′) and incidence structure
epimorphism Ψ : M→M∗, such that the conditions

Ψ(P ) = Ψ(Q)⇔ P ∼′ Q, Ψ(g) = Ψ(h) ⇐⇒ g ∼′ h

hold for all P,Q ∈ P, g, h ∈ L.

A point P ∈′ P is called near a line g ∈′ L iff there exists a line h such that
P ∈′ h for some line h ∼′ g.
An incidence structure automorphism preserving and reflecting the neighbour

relation is called a collineation of M.
A Moufang-Klingenberg plane (MK-plane) is a PK-plane M that generalizes a

Moufang plane, and for which M∗ is a Moufang plane (for the details see [2]).
In [9, Chapter III.2, Theorem 1], Jacobson showed that the fact that (Dn,Jγ)

is a Jordan algebra implies that D is associative if n ≥ 4 but alternative with its
symmetric elements in the nucleus if n = 3. Therefore, in [1], in the case of n ≥ 4
we were able to study the elements of the quaternion division algebra Q over a
field F , which is associative. For this reason, we could not continue studying by
elements of an octonion algebra. But, without the need for Jordan matrix algebras,
the obtained results in [1] show the existence of the following two possibilities:
either the definition of the octonion plane (octonion 2-space) may be extended to
an (octonion) n−space or a new geometric structure may be obtained. We need
to recall some results in the case n = 4 from [1] for better understanding of the
construction of the new structure which we call n-space.
ConsiderA := Q+Qε with componentwise addition and multiplication as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε, (ai, bi ∈ Q, i = 1, 2)

Then A is a (not commutative) local ring with the maximal ideal I = Qε of non-
units.
J′ = H (A4,Jγ), the set of 4 by 4 matrices, with entries from A, that are

symmetric with respect to the canonical involution Jγ : X → γ−1X
t
γ where the

γi are non-zero elements of F and γ :=diag{γ1, γ2, γ3, γ4}. Hence, any element X
of J′ is of the form

X = [xij ] =


α1 γ2a12 γ3a13 γ4a14

γ1a12 α2 γ3a23 γ4a24
γ1a13 γ2a23 α3 γ4a34
γ1a14 γ2a24 γ3a34 α4

 for αi ∈ F and ai ∈ A.

If we take a quartic form N such that N(X) := detX, a cubic mapping X →
X] :=adjoint of X, and a basepoint C := I4 on J, then: it is clear that

T (X,Y ) = α1β1 + α2β2 + α3β3 + α4β4

+2γ1γ2n (a12, b12) + 2γ1γ3n (a13, b13) + 2γ1γ4n (a14, b14)

+2γ2γ3n (a23, b23) + 2γ2γ4n (a24, b24) + 2γ3γ4n (a34, b34) ,
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as T (X,Y ) := T (X·Y ) =trace(X·Y ). Moreover,X×Y := 1
6

[
(X + Y )

# −X# − Y #
]

because of X ×X = X#.
So, it is obtained the following results for the quaternion 3-spaceP(J

′
) = (P,L, | ,w)

where J′ is the 56−dimensional special Jordan matrix algebra:
The set of points P consists of the following four classes (which we call as points

of types 1,2,3 and 4, respectively):P1 =


1 γ−11 γ2x2 γ−11 γ3x3 γ−11 γ4x4
x2 γ−11 γ2n(x2) γ−11 γ3x2x3 γ−11 γ4x2x4
x3 γ−11 γ2x3x2 γ−11 γ3n(x3) γ−11 γ4x3x4
x4 γ−11 γ2x4x2 γ−11 γ3x4x3 γ−11 γ4n(x4)

 =:


1
x2
x3
x4


t

| xi∈A

∪

P2 =


γ−12 γ1n(x1) x1 γ−12 γ3x1x3 γ−12 γ4x1x4
γ−12 γ1x1 1 γ−12 γ3x3 γ−12 γ4x4
γ−12 γ1x3x1 x3 γ−12 γ3n(x3) γ−12 γ4x3x4
γ−12 γ1x4x1 x4 γ−12 γ3x4x3 γ−12 γ4n(x4)

 =:


x1
1
x3
x4


t

| x1∈ I, x3, x4∈A

∪
P3 =


γ−13 γ1n(x1) γ−13 γ2x1x2 x1 γ−13 γ4x1x4
γ−13 γ1x2x1 γ−13 γ2n(x2) x2 γ−13 γ4x2x4
γ−13 γ1x1 γ−13 γ2x2 1 γ−13 γ4x4
γ−13 γ1x4x1 γ−13 γ2x4x2 x4 γ−13 γ4n(x4)

 =:


x1
x2
1
x4


t

| x1, x2∈ I, x4∈A

∪
P4 =


γ−14 γ1n(x1) γ−14 γ2x1x2 γ−14 γ3x1x3 x1
γ−14 γ1x2x1 γ−14 γ2n(x2) γ−14 γ3x2x3 x2
γ−14 γ1x3x1 γ−14 γ2x3x2 γ−14 γ3n(x3) x3
γ−14 γ1x1 γ−14 γ2x2 γ−14 γ3x3 1

 =:


x1
x2
x3
1


t

| xi∈I

 ,

the set of lines L consists of the following four classes (which we call as lines of
types 1,2,3 and 4, respectively):l1 =


1 −m2 −m3 −m4

−γ−12 γ1m2 γ−12 γ1n(m2) γ−12 γ1m2m3 γ−12 γ1m2m4

−γ−13 γ1m3 γ−13 γ1m3m2 γ−13 γ1n(m3) γ−13 γ1m3m4

−γ−14 γ1m4 γ−14 γ1m4m2 γ−14 γ1m4m3 γ−14 γ1n(m4)

 =:


1
m2
m3
m4


t

| mi∈I

∪
l2 =


γ−11 γ2n(m1) −γ−11 γ2m1 γ−11 γ2m1m3 γ−11 γ2m1m4
−m1 1 −m3 −m4

γ−13 γ2m3m1 −γ−13 γ2m3 γ−13 γ2n(m3) γ−13 γ2m3m4

γ−14 γ2m4m1 −γ−14 γ2m4 γ−14 γ2m4m3 γ−14 γ2n(m4)

 =:

m1
1
m3
m4


t

| m1∈ A, m3,m4∈I

∪l3 =

γ−11 γ3n(m1) γ−11 γ3m1m2 −γ−11 γ3m1 γ−11 γ3m1m4

γ−12 γ3m2m1 γ−12 γ3n(m2) −γ−12 γ3m2 γ−12 γ3m2m4
−m1 −m2 1 −m4

γ−14 γ3m4m1 γ−14 γ3m4m2 −γ−14 γ3m4 γ−14 γ3n(m4)

 =:

m1
m2
1
m4


t

| m1,m2∈ A, m4∈I

∪l4 =

γ−11 γ4n(m1) γ−11 γ4m1m2 γ−11 γ4m1m3 −γ−11 γ4m1

γ−12 γ4m2m1 γ−12 γ4n(m2) γ−12 γ4m2m3 −γ−12 γ4m2

γ−13 γ4m3m1 γ−13 γ4m3m2 γ−13 γ4n(m3) −γ−13 γ4m3
−m1 −m2 −m3 1

 =:

m1
m2
m3
1


t

| mi∈ A

 .

The incidence relation "|", equivalent to X · Y = 0, is obtained as follows:
[1, k2, k3, k4] = { (k2 + k3y3 + k4y4, 1, y3, y4)| y3, y4 ∈ A} ∪

{ (k2z2 + k3 + k4z4, z2, 1, z4)| z2 ∈ I, z4 ∈ A} ∪
{ (k2t2 + k3t3 + k4, t2, t3, 1)| t2, t3 ∈ I} ,

[l1, 1, l3, l4] = { (1, l1 + l3x3 + l4x4, x3, x4)| x3, x4 ∈ A} ∪
{ (z1, l1z1 + l3 + l4z4, 1, z4)| z1 ∈ I, z4 ∈ A} ∪
{ (t1, l1t1 + l3t3 + l4, t3, 1)| t1, t3 ∈ I} ,
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[m1,m2, 1,m4] = { (1, x2,m1 +m2x2 +m4x4, x4)|x2, x4 ∈ A} ∪
{ (y1, 1,m1y1 +m2 +m4y4, y4)| y1 ∈ I, y4 ∈ A} ∪
{ (t1, t2,m1t1 +m2t2 +m4, 1)| t1, t2 ∈ I} ,

[n1, n2, n3, 1] = { (1, x2, x3, n1 + n2x2 + n3x3, )|x2, x3 ∈ A} ∪
{ (y1, 1, y3, n1y1 + n2 + n3y3, )| y1 ∈ I, y3 ∈ A} ∪
{ (z1, z2, 1, n1z1 + n2z2 + n3)| z1, z2 ∈ I} .

Finally; the connection relation "w", equivalent to X × Y ∈ IJ, is obtained as
follows:

(x1, x2, x3, x4) w (y1, y2, y3, y4)⇔ xi − yi ∈ I for i = 1, 2, 3, 4,

[k1, k2, k3, k4] w [n1, n2, n3, n4]⇔ ki − ni ∈ I for i = 1, 2, 3, 4.

Besides, from types of points on lines, it is clear that a point and a line of same type
is not connected (near). Moreover, the result is equivalent to T (X,Y ) /∈ I = {0}
for a point (or line) X and a line (or point) Y , respectively. In the other cases, we
say that they are connected (near).
Now, we are ready to construct the n-space.

2. n-Spaces

Let R be a local ring with the maximal ideal I (of non-unit elements). Then
Sn(R) = (P,L,∈,∼) is the incidence structure with neighbour relation defined as
follows.
The set of points P consists of the following n+1 points (which we call as points

of types 1,2,3,..., n+ 1; respectively):

P = {Pi = (x1, ..., xi−1, 1, xi+1, ..., xn+1) | x1, ..., xi−1 ∈ I and xi+1, ..., xn+1 ∈ R} .
The set of lines L consists of the following n+ 1 lines (which we call as lines of

types 1,2,3,..., n+ 1; respectively):

L = {Mi = [m1, ...,mi−1, 1,mi+1, ...,mn+1] | m1, ...,mi−1 ∈ R and mi+1, ...,mn ∈ I} .
The incidence relation "∈" is defined as follows:

M1 = [1,m2,m3,m4,m5, ...,mn−1,mn,mn+1]

= { (m2 +m3y3 + · · ·+mn+1yn+1, 1, y3, ..., yn+1)| y3, ..., yn+1 ∈ R} ∪{
(m2z2 +m3 +m4z4 + · · ·+mn+1zn+1, z2, 1, z4, ..., zn+1)|

z2 ∈ I, z4, ..., zn+1 ∈ R

}
∪{

(m2t2 +m3t3 +m4 +m5t5 + · · ·+mn+1tn+1, t2, t3, 1, t5, ..., tn+1)|
t2, t3 ∈ I, t5, ..., tn+1 ∈ R

}
∪

...{
(m2k2 + · · ·+mn−1kn−1 +mn +mn+1kn+1, k2, k3, ..., kn−1, 1, kn+1)|

k2, ..., kn−1 ∈ I, kn+1 ∈ R

}
∪

{ (m2l2 +m3l3 + · · ·+mnln +mn+1, l2, l3, l4, ..., ln, 1)| l2, ..., ln ∈ I} ,
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M2 = [m1, 1,m3,m4,m5, ...mn−1,mn,mn+1]

= { (1,m1 +m3y3 + · · ·+mn+1yn+1, y3, ..., yn+1)| y3, ..., yn+1 ∈ R} ∪{
(z1,m1z1 +m3 +m4z4 + · · ·+mn+1zn+1, 1, z4, ..., zn+1)|

z1 ∈ I, z4, ..., zn+1 ∈ R

}
∪{

(t1,m1t1 +m3t3 +m4 +m5t5 + · · ·+mn+1tn+1, t3, 1, t5, ..., tn+1)|
t1, t3 ∈ I, t5, ..., tn+1 ∈ R

}
∪

...{
(k1,m1k1 +m3k3 + · · ·+mn−1kn−1 +mn +mn+1kn+1, k3, ..., kn−1, 1, kn+1)|

k1, k3, ..., kn−1 ∈ I, kn+1 ∈ R

}
∪

{ (l1,m1l1 +m3l3 + · · ·+mnln +mn+1, l3, l4, ..., ln, 1)| l1, l3, ..., ln ∈ I} ,

...

Mn+1 = [m1,m2,m3,m4, ...mn−1,mn, 1]

= { (1, y2, y3, ..., yn,m1 +m2y2 + · · ·+mnyn)| y2, ..., yn ∈ R} ∪{
(z1, 1, z3, z4, ..., zn,m1z1 +m2 +m3z3 + · · ·+mnzn)|

z1 ∈ I, z3, ..., zn ∈ R

}
∪{

(t1, t2, 1, t4, ..., tn,m1t1 +m2t2 +m3 +m4t4 + · · ·+mntn)|
t1, t2 ∈ I, t4, ..., tn ∈ R

}
∪

...{
(k1, k2, ..., kn−2, 1, kn,m1k1 + · · ·+mn−2kn−2 +mn−1 +mnkn)|

k1, k2, ..., kn−2 ∈ I, kn ∈ R

}
∪

{ (l1, l2, ..., ln−1, 1,m1l1 +m2l2 + · · ·+mn−1ln−1 +mn)| l1, l2, ..., ln−1 ∈ I} .

The connection relation "∼" is defined as follows:

P = (x1, ..., xi−1, xi, xi+1, ..., xn+1) ∼ (y1, ..., yi−1, yi, yi+1, ..., yn+1) = Q

⇐⇒ xi − yi ∈ I (1 ≤ i ≤ n+ 1) ,∀P ,Q ∈ P;
g = [m1, ...,mi−1,mi,mi+1, ...,mn+1] ∼ [p1, ..., pi−1, pi, pi+1, ..., pn+1] = h

⇐⇒ mi − pi ∈ I (1 ≤ i ≤ n+ 1) ,∀g,h ∈ L.

If we more closely examine the case n = 2, then S2(R) = (P,L,∈,∼) is obtained
as follows:
The set of points P consists of the following three points (which we call as points

of types 1,2,3; respectively):

P = {P1 = (1, x2, x3) | x2, x3 ∈ R} ∪
{P2 = (x1, 1, x3) | x1 ∈ I, x3 ∈ R} ∪
{P3 = (x1, x2, 1) | x1, x2 ∈ I} .
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The set of lines L consists of the following three lines (which we call as lines of
types 1,2,3; respectively):

L = {M1 = [1,m2,m3] | m2,m3 ∈ I} ∪
{M2 = [m1, 1,m3, ] | m1 ∈ R,m3 ∈ I}
{M3 = [m1,m2, 1] | m1,m2 ∈ R} .

The incidence relation "∈" is as follows:

M1 = [1,m2,m3] = { (m2 +m3y3, 1, y3)| y3 ∈ R} ∪ { (m2z2 +m3, z2, 1)| z2 ∈ I} ,

M2 = [m1, 1,m3] = { (1,m1 +m3y3, y3)| y3 ∈ R} ∪ { (z1,m1z1 +m3, 1)| z1 ∈ I} ,

M3 = [m1,m2, 1] = { (1, y2,m1 +m2y2)| y2 ∈ R} ∪ { (z1, 1,m1z1 +m2)| z1 ∈ I} .
The connection relation "∼" is as follows:

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q ⇐⇒ xi − yi ∈ I (i = 1, 2, 3) ,∀P ,Q ∈ P;
g = [m1,m2,m3] ∼ [p1, p2, p3] = h⇔ mi − pi ∈ I (i = 1, 2, 3)),∀g, h ∈ L.
So, we have obtained a PK-plane (2-space), isomorphic to the PK-plane given

in [2], in the case n = 2.
If we take R :=O + Oε where O is the Cayley division algebra over a field F

and ε /∈ O, then S2(R) is an octonion plane and also the MK-plane, introduced by
Blunck in [4]. Moreover, for n > 2, Sn(R) is the example of n-space (or octonion
n-space). Note that the (quaternion) n-space Sn(Q + Qε) is a subspace of the
(octonion) n-space Sn(O+Oε). Besides, it is well-known that there is no a projective
space constructed over non-associative division rings, and therefore a epimorphism
onto an ordinary projective n-space can not exist. This means that the space
Sn(O+Oε) for n > 2 is not a PK structure. For this reason, we tend to construct
some collineations of the space Sn(Q+Qε).
Finally, we would like to complete this paper by giving two collineations of the

quaternion n-space Sn(Q+Qε).

Ta2,0,...,0,0 : for a2 ∈ Q,
(1, x2, x3, ..., xn, xn+1) → (1, x2 + a2, x3 + 0, ..., xn + 0, xn+1 + 0) ,

(x1, 1, x3, ..., xn+1) → (x1, 1, x3 − (x3a2)x1, ..., xn+1 − (xn+1a2)x1) ,

(x1, x2, 1, x4, ..., xn, xn+1) → (x1, x2 + a2x1, 1, x4, ..., xn, xn+1) ,
...

(x1, x2, x3, ...xn−1, 1, xn+1) → (x1, x2 + a2x1, x3, ..., xn−1, 1, xn+1) ,
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(x1, x2, , ...xn−1, xn, 1) → (x1, x2 + a2x1, x3, ..., xn−1, xn, 1) ,

[m1,m2, ...,mn, 1] → [m1 −m2a2,m2, ...,mn, 1]

[m1,m2, ..., 1,mn+1] → [m1 −m2a2,m2, ..., 1,mn+1]

...

[m1,m2, 1,m4, ...,mn,mn+1] → [m1 −m2a2,m2, 1,m4, ...,mn,mn+1]

[m1, 1,m3, ...,mn,mn+1] → [m1 + a2, 1,m3, ...,mn,mn+1]

[1,m2,m3, ...,mn,mn+1] → [1,m2,m3, ...,mn,mn+1]

Similarly, the transformation T0,a3,0,...,0 can be defined in the following way: for
any a3 ∈ Q,

(1, x2, x3, x4, ..., xn+1) → (1, x2 + 0, x3 + a3, x4 + 0, ..., xn+1 + 0)

(x1, 1, x3, x4, ..., xn+1) → (x1, 1, x3 + a3x1, x4, ..., xn+1) ,

(x1, x2, 1, x4, ..., xn+1) → (x1, x2 − (x2a3)x1, 1, x4 − (x4a3)x1, ..., xn+1 − (xn+1a3)x1) ,
...

(x1, x2, x3, ...xn−1, 1, xn+1) → (x1, x2, x3 + a3x1, x4, ..., xn−1, 1, xn+1) ,

(x1, x2, , ..., xn−1, xn, 1) → (x1, x2, x3 + a3x1, x4, ..., xn−1, xn, 1) ,

[m1,m2, ...,mn, 1] → [m1 −m3a3,m2, ...,mn, 1] ,

[m1,m2, ...,mn−1, 1,mn+1] → [m1 −m3a3,m2, ...,mn−1, 1,mn+1] ,

...

[m1,m2, 1,m4, ...,mn,mn+1] → [m1 + a3,m2, 1,m4, ...,mn,mn+1] ,

[m1, 1,m3, ...,mn,mn+1] → [m1 −m3a3, 1,m3, ...,mn,mn+1] ,

[1,m2,m3, ...,mn,mn+1] → [1,m2,m3, ...,mn,mn+1] .

And, continuing on like this, finally, the transformation T0,0,...,0,an+1 can be defined
in the following manner: for any an+1 ∈ Q,

(1, x2, x3, ..., xn, xn+1) → (1, x2 + 0, x3 + 0, ..., xn + 0, xn+1 + an+1)

(x1, 1, x3, ..., xn, xn+1) → (x1, 1, x3, ..., xn, xn+1 + an+1x1) ,

(x1, x2, 1, x4, ..., xn, xn+1) → (x1, x2, 1, x4, ..., xn, xn+1 + an+1x1) ,
...

(x1, x2, x3, ..., xn−1, 1, xn+1) → (x1, x2, x3, ..., xn−1, 1, xn+1 + an+1x1) ,

(x1, x2, , ..., xn, 1) → (x1, x2 − (x2an+1)x1, ..., xn − (xnan+1)x1, 1) ,

[m1,m2, ...,mn, 1] → [m1 + an+1,m2, ...,mn, 1] ,
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[m1,m2, ..., 1,mn+1] → [m1 −mn+1an+1,m2, ..., 1,mn+1] ,
...

[m1,m2, 1,m4, ...,mn,mn+1] → [m1 −mn+1an+1,m2, 1,m4, ...,mn,mn+1] ,

[m1, 1,m3, ...,mn,mn+1] → [m1 −mn+1an+1, 1,m3, ...,mn,mn+1] ,

[1,m2,m3, ...,mn,mn+1] → [1,m2,m3, ...,mn,mn+1] .

So, in this case, we have the translation transformation Ta2,a3,...,an−1,an,an+1 of
Sn(Q+Qε). The other transformation Fa is defined as follows:

Fa : for a /∈ Qε,
(1, x2, x3, ..., xn, xn+1) → (1, ax2a, x3a, ..., xna, xn+1a)

(x1, 1, x3, ..., xn, xn+1) →
(
a−1x1a

−1, 1, x3a
−1, ..., xna

−1, xn+1a
−1)

(x1, x2, 1, x4, ..., xn, xn+1) →
(
a−1x1, ax2, 1, x4, ..., xn, xn+1

)
...

(x1, x2, x3, ...xn−1, 1, xn+1) →
(
a−1x1, ax2, x3, ...xn−1, 1, xn+1

)
(x1, x2, x3, ..., xn, 1) →

(
a−1x1, ax2, x3, ..., xn, 1

)
[m1,m2,m3, ...,mn, 1] →

[
m1a,m2a

−1,m3, ...,mn, 1
]

[m1,m2,m3, ...,mn−1, 1,mn+1] →
[
m1a,m2a

−1,m3, ...,mn−1, 1,mn+1

]
...

[m1,m2, 1,m4, ...,mn,mn+1] →
[
m1a,m2a

−1, 1,m4, ...,mn,mn+1

]
[m1, 1,m3, ...,mn,mn+1] → [am1a, 1, am3, ..., amn, amn+1]

[1,m2,m3, ...,mn,mn+1] →
[
1, a−1m2a

−1, a−1m3, ..., a
−1mn, a

−1mn+1

]
To show that the transformations Ta2,0,...0,0,0, T0,a3,...0,0,0, T0,0,...,0,an+1 (and as

a result, Ta2,a3,...,an−1,an,an+1 which is the combination of the all above transfor-
mations) and Fa are collineations of Sn(Q + Qε), it is basically enough to prove
Lemma 3 given in [5]. And also, we will often need the two results that Q+Qε is
associative and that multiplication of any elements in the ideal I = Qε is equal to
zero. Hence, we obtain that it is possible to study in the spaces by means of the
collineations, analogous of the collineations given for showing 4-transitivity on the
class of MK-plane in [5].
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GREEN FUNCTION AND RESOLVENT OPERATOR OF A
SCHRÖDINGER EQUATION WITH GENERAL POINT

INTERACTION

EMEL YILDIRIM

Abstract. In this paper, we investigate the time independent Schrödinger
equation which has complex valued potential function under the general point
interaction. We construct Green function of this problem and we find the
resolvent of the problem in terms of Green function.

1. Introduction

In mathematics, a Green’s function is used to solve inhomogeneous differential
equations under various initial conditions or boundary conditions. The term is also
used in physics, quantum mechanics, engineering and quantum field theory to sig-
nify various types of correlation functions. It has been shown that should be taken
into consideration a perturbation series to an infinite in order to obtain a deep in-
sight not attainable by a finite-order treatment thanks to Green’s functions in many
quantum-mechanical applications. Therefore, these functions are very important in
many disciplines and much work has been done on this theory. Especially, Green’s
functions have been used in investigating the completeness property of the set of
eigenfunctions of self-adjoint operators and in proving the expansion theorem for
an arbitrary function in terms of the complete set obtained from a Sturm-Liouville
operator [9]. Also, it has been obtained by Sakurai that one of the easiest ways
to identify the peculiar feature of a particular quantum mechanics, which contrasts
with classical mechanics, is to convert the action integral for a classical motion
into the form involving the Green’s functions of the Schrödinger equation [15] . As
a result of these studies, many researchers have examined of Green’s functions of
Schrödinger equation with some initial conditions or boundary conditions [20, 16].
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The Green’s functions of the Schrödinger equation for the simplest quantum me-
chanical systems have been investigated in [7]. Sturm Liouville operator with eigen-
parameter dependent boundary conditions and transmission conditions at a finite
number of interior points have been studied and Green’s function has been obtained
for this problem in [12].
Additionally, differential equations with transmission condition has an impor-

tant role for many branches of sciences. In particularly, they are used in quantum
mechanics and atomic physics. Because some of them are considered to represent
many physical systems quantitatively. It is known that there are four parameters
point interactions that can be represent as self-adjoint extensions of the nonrela-
tivistic kinetic energy operator in one-dimensional quantum mechanics [10, 11]. For
the mathematical theory of differential equations with point interaction, we refer to
the monographs[4, 5]. In the literature, many various type of differential equations
have been investigated under the point interaction [1, 2, 3, 8, 14, 19]. In particular,
dissipative boundary value problems with point interaction have been studied in
[6, 17, 18].
In this paper, our aim is to find the Resolvent operator of the Schrödinger equa-

tion under general point interaction by constructing the Green function.

2. Some Properties of Solutions of the Schrödinger Equation on
Whole Axis

Let us consider the time independent Schrödinger equation

− ψ′′ (x) + q(x)ψ(x) = λ2ψ(x), x ∈ R\ {0} (1)

where λ is spectral parameter, q(x) is complex valued function. The equation (1)
has bounded solutions e±(x, λ) which they satisfy following limit conditions.

lim
x→±∞

ψ(x)e∓iλx = 1, λ ∈ C+ = {λ : λ ∈ C, Imλ ≥ 0} . (2)

The solutions e±(x, λ) are called Jost solution of equation (1) and they have the
following representations

e−(x, λ) = e−iλx +

x∫
−∞

K− (x, t) e−iλtdt, λ ∈ C+, −∞ < x < 0 (3)

e+(x, λ) = eiλx +

∞∫
x

K+ (x, t) eiλtdt, λ ∈ C+, 0 < x <∞

under the condition
∞∫
−∞

(1 + |x|) |q(x)| dx <∞. (4)
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K+ (x, t) and K− (x, t) are called Kernel functions and they are defined as follows.

K+ (x, t) =
1

2

∞∫
x+t
2

q(s)ds+
1

2

x+t
2∫
x

t−x+s∫
x+t−s

q(s)K+ (s, r) dsdr

+
1

2

∞∫
x+t
2

t−x+s∫
s

q(s)K+ (s, r) dsdr (5)

K− (x, t) =
1

2

x+t
2∫

−∞

q(s)ds+
1

2

x+t
2∫
x

t−x+s∫
x+t−s

q(s)K− (s, r) dsdr

+
1

2

x+t
2∫

−∞

t−x+s∫
s

q(s)K− (s, r) dsdr

Moreover, these functions are continuously differentiable with respect to their ar-
guments and satisfy the following inequalities:

∣∣K± (x, t)∣∣ ≤ cσ±
(
x+ t

2

)
∣∣∣∣K±x (x, t)± 14

∣∣∣∣q(x+ t2
)∣∣∣∣∣∣∣∣ ≤ cσ±

(
x+ t

2

)
(6)∣∣∣∣K±t (x, t)± 14

∣∣∣∣q(x+ t2
)∣∣∣∣∣∣∣∣ ≤ cσ±

(
x+ t

2

)
where

σ+ (t) =

∞∫
x

|q (t)| dt, σ− (t) =

x∫
−∞

|q (t)| dt

and c > 0 is a constant. Furthermore, ê±(x, λ) are unbounded solutions of equation
(1) which they satisfy

lim
x→±∞

ψ (x) e±iλx = 1 (7)

[13].
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3. Green Function of the Schrödinger Equation with General Point
Interaction

In this section, we shall construct Green function of the Schrödinger equation
(1) with the general point interaction(

ψ+ (0, λ)

ψ′+ (0, λ)

)
=

(
a b
c d

)(
ψ− (0, λ)

ψ′− (0, λ)

)
(8)

where a, b, c, d ∈ R and ad − bc 6= 0 and we shall find the Resolvent operator
of this problem. Green function of the problem (1)-(8) is a solution to following
non-homogeneous differential equation

− ψ′′ (x) + q(x)ψ(x)− λ2ψ(x) = f (x) , x ∈ R\ {0} (9)

To obtain the general solution of this equation, we need to find solutions of equation
(1). The two linear independent solutions of its can be given as:

U(x, λ) =

{
U+ (x, λ) , x > 0
U− (x, λ) , x < 0

=

{
e+ (x, λ) , x > 0

α (λ) e− (x, λ) + β (λ) ê−(x, λ), x < 0
, λ ∈ C (10)

V (x, λ) =

{
V+ (x, λ) , x > 0
V− (x, λ) , x < 0

=

{
α̂ (λ) e+ (x, λ) + β̂ (λ) ê+(x, λ), x < 0

e− (x, λ) , x < 0
, λ ∈ C (11)

where ê± (x, λ) are unbounded solutions and e± (x, λ) are bounded solutions of
equation (1). By using the solutions U(x, λ) and V (x, λ) and the condition (8), we
get

e+(0, λ) = aα (λ) e−(0, λ) + aβ (λ) ê−(0, λ)

+bα (λ) e′−(0, λ) + bβ (λ) ê
′
−(0, λ)

e′+(0, λ) = cα (λ) e−(0, λ) + cβ (λ) ê−(0, λ)

+dα (λ) e′−(0, λ) + dβ (λ) ê
′
−(0, λ)

α̂ (λ) e+(0, λ) + β̂ (λ) ê+(0, λ) = ae−(0, λ) + be
′
−(0, λ)

α̂ (λ) e′+(0, λ) + β̂ (λ) ê
′
+(0, λ) = ce−(0, λ) + de

′
−(0, λ).
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For these equations to be true, α (λ) , β (λ) , α̂ (λ) and β̂ (λ) must be as follows,
respectively.

α (λ) =
1

2iλ(ad− bc)

(
cê−(0, λ)e+(0, λ) + de+(0, λ)ê

′
−(0, λ)

−aê−(0, λ)e′+(0, λ)− be′+(0, λ)ê′−(0, λ)

)

β (λ) =
1

2iλ(ad− bc)

(
ae−(0, λ)e

′
+(0, λ) + be

′
−(0, λ)e

′
+(0, λ)

−ce−(0, λ)− de′−(0, λ)e+(0, λ)

)

α̂ (λ) =
1

2iλ

(
ae−(0, λ)ê

′
+(0, λ) + be

′
−(0, λ)ê

′
+(0, λ)

−ce−(0, λ)ê+(0, λ)− de′−(0, λ)ê+(0, λ)

)

β̂ (λ) =
1

2iλ

(
ce−(0, λ)e

′
+(0, λ)− de′−(0, λ)e+(0, λ)

−ae−(0, λ)e′+(0, λ) + be′−(0, λ)e′+(0, λ)

)
From these equations, it is seen that β̂ (λ) can be written in terms of β (λ) such
that

β̂ (λ) = (ad− bc)β (λ) . (12)

Moreover, since the linear combination of solutions of a differential equation is the
solution of this equation, the general solution of equation (1) can be given by using
solutions U(x, λ) and V (x, λ)

y (x, λ) =

{
y− (x, λ) , x < 0
y+ (x, λ) , x > 0

(13)

=

{
c1U− (x, λ) + c2V− (x, λ) , x < 0
d1U+ (x, λ) + d2V+ (x, λ) , x > 0

where c1, c2, d1 and d2 are constant. If we use the method of variation of
constants, we find the general solution of equation (9) in the form

ỹ (x, λ) =

{
ỹ− (x, λ) , x < 0
ỹ+ (x, λ) , x > 0

(14)

=

{
c1(x)U− (x, λ) + c2(x)V− (x, λ) , x < 0
d1(x)U+ (x, λ) + d2(x)V+ (x, λ) , x > 0

where c1 (x) , c2 (x) and d1 (x) , d2 (x) satisfy the following equation systems

c
′

1 (x)U− (x, λ) + c
′

2 (x)V− (x, λ) = 0

c
′

1 (x)U
′

− (x, λ) + c
′

2 (x)V
′

− (x, λ) = −f (x)
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and

d
′

1 (x)U+ (x, λ) + d
′

2 (x)V+ (x, λ) = 0

d
′

1 (x)U
′

+ (x, λ) + d
′

2 (x)V
′

+ (x, λ) = −f (x) .
When the Cramer Method’s is applied to these equations, the following equations

are obtained.

c
′

1 (x) =
V− (x, λ) f (x)

W [U− (x, λ) , V− (x, λ)]

c
′

2 (x) =
−U− (x, λ) f (x)

W [U− (x, λ) , V− (x, λ)]

d
′

1 (x) =
V+ (x, λ) f (x)

W [U+ (x, λ) , V+ (x, λ)]

d
′

2 (x) =
−U+ (x, λ) f (x)

W [U+ (x, λ) , V+ (x, λ)]

Considering that U+ (x, λ) and V+ (x, λ) are defined on (0,∞) and U− (x, λ) and
V− (x, λ) are defined on (−∞, 0), c1 (x) , c2 (x) , d1 (x) and d2 (x) can be expressed
by the following integral equations;

c1 (x) = α1 +

x∫
−∞

V− (t, λ) f (t)

W [U− (t, λ) , V− (t, λ)]
dt,

c2 (x) = α2 +

0∫
x

−U− (t, λ) f (t)
W [U− (t, λ) , V− (t, λ)]

dt ,

d1 (x) = α3 +

x∫
0

V+ (t, λ) f (t)

W [U+ (t, λ) , V+ (t, λ)]
dt,

d2 (x) = α4 +

∞∫
x

−U+ (t, λ) f (t)
W [U+ (t, λ) , V+ (t, λ)]

dt .

If we consider these equation in (14), the general solution of equation (9) can be
given as

ỹ− (x, λ) = α1U− (x, λ) + U− (x, λ)

x∫
−∞

V− (t, λ) f (t)

W [U− (t, λ) , V− (t, λ)]
dt

+α2V− (x, λ)− V− (x, λ)
0∫
x

U− (t, λ) f (t)

W [U− (t, λ) , V− (t, λ)]
dt.



GREEN FUNCTION AND RESOLVENT OPERATOR OF A SCHRÖDINGER EQUATION447

ỹ+ (x, λ) = α3U+ (x, λ) + U+ (x, λ)

x∫
0

V+ (t, λ) f (t)

W [U+ (t, λ) , V+ (t, λ)]
dt

+α4V+ (x, λ)− V+ (x, λ)
∞∫
x

U+ (t, λ) f (t)

W [U+ (t, λ) , V+ (t, λ)]
dt.

Since ỹ− (x, λ) ∈ L2 (−∞, 0) and ỹ+ (x, λ) ∈ L2 (0,∞), α1, α2, α3 and α4 must be
equal to zero. Therefore the general solution of non-homogeneous equation (9) has
the following form:

ỹ (x, λ) =



x∫
−∞

V− (t, λ)U− (x, λ) f (t)

W [U− (t, λ) , V− (t, λ)]
dt+

0∫
x

−U− (t, λ)V− (x, λ) f (t)
W [U− (t, λ) , V− (t, λ)]

dt, x < 0

x∫
0

V+ (t, λ)U+ (x, λ) f (t)

W [U+ (t, λ) , V+ (t, λ)]
dt+

∞∫
x

−U+ (t, λ)V+ (x, λ) f (t)
W [U+ (t, λ) , V+ (t, λ)]

dt, x > 0

Moreover, by using the representations of U (x, λ) and V (t, λ), this formula can
be rewritten in the form

ỹ (x, λ) = U (x, λ)

x∫
−∞

V (t, λ) f (t)

W [U (t, λ) , V (t, λ)]
dt− V (x, λ)

∞∫
x

U (t, λ) f (t)

W [U (t, λ) , V (t, λ)]
dt

(15)
Consequently, we can write the Green function of the problem (1)-(8).

G(x, t;λ) =


U (x, λ)V (t, λ)

W [U (x, λ) , V (x, λ)]
, −∞ < x ≤ t, x 6= t 6= 0

V (x, λ)U (t, λ)

W [U (x, λ) , V (x, λ)]
, x ≤ t <∞, x 6= t 6= 0

(16)

The Wronksian of the solutions U (x, λ) and V (x, λ) can be calculated easily by
using the definiton of them. For x>0,

W [U (x, λ) , V (x, λ)] =

∣∣∣∣∣ e+(x, λ) α̂ (λ) e+(x, λ) + β̂ (λ) ê+(x, λ)

e′+(x, λ) α̂ (λ) e′+(x, λ) + β̂ (λ) ê
′

+(x, λ)

∣∣∣∣∣ (17)

= α̂ (λ) e′+(x, λ)e+(x, λ) + β̂ (λ) ê
′

+(x, λ)e+(x, λ)

−α̂ (λ) e+(x, λ)e′+(x, λ)− β̂ (λ) ê+(x, λ)e′+(x, λ)

= β̂ (λ)
(
e+(x, λ)ê

′

+(x, λ)− ê+(x, λ)e′+(x, λ)
)

= −2iλβ̂ (λ)
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and for x<0,

W [U (x, λ) , V (x, λ)] =

∣∣∣∣ α (λ) e−(x, λ) + β (λ) ê−(x, λ), e−(x, λ)

α (λ) e′−(x, λ) + β (λ) ê
′

−(x, λ), e′−(x, λ)

∣∣∣∣
= α (λ) e−(x, λ)e

′
−(x, λ) + β (λ) ê−(x, λ)e

′
−(x, λ)

−α (λ) e′−(x, λ)e−(x, λ)− β (λ) ê
′

−(x, λ)e−(x, λ)

= −β (λ)
(
e−(x, λ)ê

′

−(x, λ)− ê−(x, λ)e′−(x, λ)
)

= −2iλβ (λ) .
In view of (12) and (17), the Wronskian can be arranged.

W [U (x, λ) , V (x, λ)] =

 −2iλ(ad− bc)β (λ) , x > 0

−2iλβ (λ) , x < 0
(18)

Consequently, the Resolvent operator of this problem can be given as follows.

Rλ (f) =

∞∫
−∞

G(x, t;λ)f (t) dt.
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W—LINE CONGRUENCES

RASHAD A. ABDEL-BAKY AND FERHAT TAŞ

Abstract. By utilizing the Darboux frames, along with a regular surface
whose parametric curves are lines of curvature, we analyzed the normal line
congruence which preserves the asymptotic curves between its focal surfaces.
This allows deriving systems of partial differential equations through which
the problem of determining the director surface and the corresponding normal
line congruence could be solved. Moreover, a necessary and suffi cient condition
that the focal surfaces of the normal line congruence are degenerates into curves
is derived. As a result the middle focal surface of the normal line congruence
is presented as a new surface interrogation tool.

1. Introduction

In Euclidean 3-space, a two-parameter set of lines is called a line congruence.
For instance, the normal vector field of a surface constitute such a line congruence
but this is not the general situation. Hence, the line congruence of normals forms a
special class; which is called normal line congruence. The lines of a line congruence
meet a given plane in such a way that through a point of the plane one line, or
at most a finite member, pass. Similar results hold if a surface is taken instead
of a plane; this surface is called the reference surface or director surface of the
line congruence. The lines of the line congruence which pass through a curve on
the surface form a one-parameter set of lines i.e. a ruled surface (parameter ruled
surface). It is known that on each generator of line congruence, there are two
special points, called the focal points. This terminology is justified by the fact that
a line congruence can be considered as the set of lines tangents two surfaces, the
focal surfaces of the line congruence. Therefore there are two surfaces such that
the generating lines of the line congruence are tangents to these surfaces.
There are several different ways that the representation of the line geometry.

One of them is the dual vector system; a point on a dual unit sphere corresponds
to a straight line in the 3-dimensional Euclidean system. So, the one parameter
motion of this point corresponds to a ruled surface, while its two real parameter

Received by the editors: April 07, 2019; Accepted: November 19, 2019.
2010 Mathematics Subject Classification. Primary 53A04, 53A05. Secondary 53A17.
Key words and phrases. Lines of curvature, W-line congruence, area preserving representation.

c©2020 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

450



W—LINE CONGRUENCES 451

motion corresponds to a line congruence. Nowadays, the differential geometry of
the line congruence and the focal surfaces have been widely applied in design and
manufacturing, (e.g. Computer Aided Geometric Design/Computer Aided Manu-
facturing) of products and many other areas such as motion analysis and simulation
of rigid bodies via dual number and dual vector systems and model-based object
recognition systems [10-13].
This work is organized in the following way: In sec. 2, we present a brief intro-

duction to the basic definitions of the representation of the Darboux frame on a
regular surface whose parametric curves are lines of curvature and the normal line
congruence. Sec. 3 is dedicated to the main results; we form systems of partial dif-
ferential equations related to the following properties: the representation preserves,
asymptotic curves, and the element area between the focal surfaces. Meanwhile,
a necessary and suffi cient condition that the focal surfaces of the normal line con-
gruence are degenerates into curves has been derived. Especially, we have been
paid pay attention to the director surface to be minimal surface and Weingarten-
surface since the focal surfaces have special geometrical properties. Finally, the
generalization middle focal surface is presented as a new surface interrogation tool.

2. Line Congruence in Euclidean 3-Space E3

In the following, we will present some facts about classical results of differential
line geometry in order to introduce the notations which will be used through the
next sections. These and more recent descriptions about line congruences can be
found in the works [1-4,6,8].
Let the vector function r = r(u1, u2) represent a regular non-spherical and-non

developable surface M in Euclidean 3-Space E3, i.e. r : U ⊂ R2 → E3 be a regular
parametrized surface and gij and hij are the coeffi cients of the first and second
fundamental forms of the surface M , and suppose that the u1-and u2 curves of
this parametrization are lines of curvature, i.e., the elements g12 and h12 vanish
identically ( g12 = h12 = 0). Consider now the unit vectors e1 = e1(u1, u2),
e2 = e2(u1, u2), are the tangents of the parametric curves u2=const., u1 =const.,
and the unit vector e3 = e3(u1, u2) of the normal to the surface M at any regular
point, then we have:

e1 =
1
√
g11

∂r

∂u1
, e2 =

1
√
g22

∂r

∂u2
, e3 = e1 × e2, (2.1)

which are invariants vector functions on the surface. Using that u1-and u2 curves are
curvature lines on the surface, we can calculate ds =

√
g11du1-and ds =

√
g22du2,

the arc length parameters of the curves u2=const., u1 =const., respectively. The
moving frame {e1, e2, e3} on the surface M at every regular point is then called
the Darboux frame. Hence, by means of the derivatives with respect to the arc
length parameter of the curves u2=const. with tangent e1 on M , the derivative
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formula with respect to the Darboux frame, may be stated as [1]:

∂

∂s

 e1
e2
e3

 =

 0 q k
−q 0 0
−k 0 0

 e1
e2
e3

 , (2.2)

where k = h11
g11

=< ∂e1
∂s , e3 >, and q =

−(g11)u2
2g11
√
g22

=< ∂e1
∂s , e2 > are the normal and

geodesic curvatures of the curves u2=const., respectively. Similarly, the derivative
formula of the Darboux frame of the curves u1=const., with tangent e2 on M is:

∂

∂s

 e1
e2
e3

 =

 0 q 0

−q 0 k

0 −k 0

 e1
e2
e3

 , (2.3)

also k = h22
g22

=< ∂e2
∂s , e3 >, and q =

(g22)u1
2g22
√
g11

= − < ∂e2
∂s , e1 > have the same

meaning as in (2.2), for the curves u1=const. on the surface M . We shall denote
∂/∂s and ∂/∂s by the suffi xes 1 and 2.
Since k, k, and q, q are the invariant quantities of curvature on M , these invari-

ants and their derivatives must fulfill the Gauss and Mainardi-Codazzi equations
[1]:

−q2 + q2 − kk = q1 + q
2,

q(k − k) + k2 = 0,
q(k − k) + k1 = 0.

 (2.4)

As stated earlier, given a set of unit vectors e3 = e3(u1, u2), the normal line con-
gruence in E3 is defined in the parameter form:

CN : y(u1, u2, µ) = r(u1, u2) + µe3(u1, u2), µ ∈ R, (2.5)

where r = r(u1, u2) is its director surface and e3 = e3(u1, u2) is the unit vector
field along the direction of the generating lines of the congruence.

3. Main Results

It is known that the consecutive normals along a line of curvature on M :
r = r(u1, u2) intersect, the points of intersection being the corresponding center
of curvature. The locus of the centers of curvature for all points of the surface
M is called the surface of centers or centro-surface of M . In general it consists
of two sheets, conjugated to the two families of lines of curvature and called focal
surfaces of M . The parametric representations of the focal surfaces of C are given
by [6,7,14]:

F : x(u1, u2) = r(u1, u2) + ρe3(u1, u2), ρ = 1
k 6= 0,

F : x(u1, u2) = r(u1, u2) + ρe3(u1, u2), ρ =
1
k
6= 0.

}
(3.1)

Let gijk, and h
i
jk (i = 1, 2) are the coeffi cients of the first and second fundamental

forms of the focal surfaces x = x(u1, u2), and x = x(u1, u2), respectively, one can
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obtain:
g111 = ρ21, g112 = ρ1 ρ2, g122 = (1− ρ

ρ )
2 + ρ22,

g211 = (1− ρ
ρ )

2 + ρ21, g212 = ρ1 ρ2, g222 = ρ22,

}
(3.2)

and
h111 = −

ρ1
ρ , h112 = 0, h122 =

ρ ρ1
ρ2
,

h211 =
ρρ2
ρ2 , h212 = 0, h222 = −

ρ2
ρ .

}
(3.3)

Hence, the parametric curves on the focal surfaces, which correspond to the
lines of curvature on the director surface, are conjugate, but not (generally) lines
of curvature. The expression for the Gaussian curvatures of the focal surfaces F ,
and F , at the corresponding points, are:

Kx = − ρ1
ρ1( ρ−ρ)2

,

Kx = − ρ2
ρ2( ρ−ρ)2

.

}
(3.4)

Moreover, the Mainardi-Codazzi equations may be given as in the following form

∂
∂s [ln

√
g11
ρ −

∫
dρ
ρ−ρ ] = 0,

∂
∂s [ln

√
g22
f(ρ) −

∫
dρ
ρ−ρ ] = 0.

}
(3.5)

The integration of equations (3.5) is reducible to

√
g11 = ρa(s)e

∫ dρ
ρ−ρ ,

√
g11 = b(s)e

∫ dρ
ρ−ρ . (3.6)

Without changing the parametric curves, we may assume that a(s) = b(s) = 1,
then we get:

g11 = ρ2e2
∫ dρ
ρ−ρ , g12 = 0, g22 = ρ2e2

∫ dρ
ρ−ρ . (3.7)

Therefore

h11 = ρe−2
∫ dρ
ρ−ρ , h12 = 0, h22 = ρe−2

∫ dρ
ρ−ρ . (3.8)

Thus g11, g22 , and h11, h22 are expressible as functions of ρ or ρ, and consequently
they are functions of one another. It is clear after simple manipulation that these
magnitudes satisfy the Gauss’s equation.

3.1. Weingarten line congruence (W-line congruence). A line congruence in
Euclidean 3-space E3 is a two-parameter set of straight lines. Such a congruence
has a parameterization in the form [14]:

L : y(u, v, λ) = p(u, v) + λξ(u, v), ‖ξ‖ = 1, (3.9)

where p(u, v) is its base surface (the surface of reference) and ξ(u, v) is the unit vec-
tor giving the direction of the straight lines of the congruence, λ being a parameter
on each line. The equations

u = u(t), v = v(t), u′2 + v′2 6= 0, (3.10)
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define a ruled surface belonging to the line congruence. The ruled surface is called
a developable if and only if

det[ξ(t), ξ′(t),p(t)] = 0. (3.11)

This is a quadratic equation for u′, v′. If it has two real and distinct roots, then the
solutions of this equation define two distinct families of developable ruled surfaces.
In the generic case, each family consists of the tangent lines to a surface, and these
two surfaces M and M∗ are called the focal surfaces of the line congruence. The
line congruence gives a mapping f :M →M∗ with the property that the line con-
gruence consists of lines which are tangent to both M and M∗ and joining p ∈M
to f(p ∈ M∗). This simple construction plays a fundamental role in the theory of
the transformation of surfaces. The classical Bäckland theorem studies the trans-
formations of surfaces of constant negative Gaussian curvature in 3-dimensional
Euclidean space E3 by realizing them as the focal surfaces of a pseudo-spherical
(p.s.) line congruence. The integrability theorem says that we can construct a new
surface in E3 with constant negative Gaussian curvature from a given one.
We can rephrase this in more current terminology as follows:

Definition 1. Let L be a line congruence in 3-dimensional Euclidean space E3

with focal surfaces M,M∗ and let f :M →M∗ be the function defined above. The
line congruence is called a p.s. line congruence if
(i) the distance ‖pp∗‖ = r is a constant independent of p,
(ii) the angle between the two normals at p and p∗ is a constant independent of p.

Theorem 1. (Bäckland 1875): Suppose that L is a p.s. line congruence in E3

with the focal surfaces M and M∗. Then both focal surfaces have constant negative
Gaussian curvature equal to −sin2θ/r2 (such surfaces are called p.s. surfaces).

There is also an integrability theorem:

Theorem 2. SupposeM is a surface in E3 of constant negative Gaussian curvature
K = −sin2θ/r2, where r > 0 and 0 < θ < π are constants. Given any unit vector
e ∈ Mp, which is not a principal direction, there exists a unique surface M∗ and
p.s. congruence f : M → M∗ such that if p∗ = f(p), we have pp∗ = re and θ is
the angle between the normals at p and p∗.

Thus one can construct one-parameter family of new surface of constant negative
Gaussian curvature from a given one, the results by varying r.
One of the problems of the theory of line congruences is to classify the categories

of them which have the property such that this representation preserves the asymp-
totic curves between the two focal surfaces. This leads to the following definitions
for a Weingarten line congruence (W-line congruence):

Definition 2. A W-line congruence is a line congruence which preserves the as-
ymptotic curves between its focal surfaces.
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Equivalently, for a W -line congruence the second fundamental forms of the two
surfaces are proportional.

Corollary 1. A p.s. line congruence is a W-line congruence.

Theorem 3. Consider a line congruence generated by the normals along a regu-
lar non-spherical and non-developable surface M in Euclidean 3-Space E3. If the
generators of this congruence are preserving the asymptotic curves on their focal
surfaces, then the Gaussian curvatures of the focal surfaces satisfying the relation:

Kx Kx =
1

( ρ− ρ)4 . (3.12)

Hence at the corresponding points the curvature is of the same kind.

Proof. Let IIx and IIx be the second fundamental forms of the focal surfaces
x = x(u1, u2), and x = x(u1, u2), respectively. By equations (3.7), we have:

IIx = −ρ1ρ ds
2 + ρ ρ1

ρ2
ds2,

IIx =
ρρ2
ρ2 ds2 − ρ2

ρ ds
2.

}
(3.13)

Then the proportionality of the second fundamental forms means IIx = λ IIx; λ ∈
R, which is equivalent to the following condition on the invariants:

ρ1ρ2 − ρ2ρ1 = 0⇒
ρ1
ρ1
=
ρ2
ρ2
. (3.14)

From this relation, it follows that

Kx Kx =
ρ1ρ2

ρ1 ρ2( ρ− ρ)4
=

1

( ρ− ρ)4 , (3.15)

as claimed. �

Example 1. As an example of a p.s. surface, pseudo-sphere can be given as a focal
surface of a p.s. line congruence (so a W-line congruence):

x(u, v) = (sech(u) cos(v), sech(u)sin(v), u− tanh(u))

Let
{
e1 =

xu
‖ xu‖

, e2 =
xv
‖ xv‖

, e3 = xu × xv
}
be an orthonormal frame of the

surface x, where superscript shows the partial derivatives. Then the W-line con-
gruence is represented by (for simplicity for the equations we can chose)

L(u, v, µ) = x(u, v) + µe1(u, v),

where µ ∈ R.
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The other focal surface can be given as x = x+ re1 where r = ‖ x− x‖. There-
fore, assuming r =

√
2
2 the second focal surface is (see Fig.1)

x =

((
2−
√
2

2

)
sech(u) cos(v),

(
2−
√
2

2

)
sech(u)sin(v), u−

(
2−
√
2

2

)
tanh(u)

)
.

Figure 1. Focal surfaces of the line congruence.

3.1.1. W-surfaces. From equation (3.14), we see that ρ and ρ are connected by
functional relation as:

f(ρ, ρ) = ρ− ρ = c, c ∈ R. (3.16)

Surfaces with this property are called W-surfaces. From this relation it follows that

ρ1
ρ1
=
ρ2
ρ2
= 1.

Therefore, by using the expressions of the Gaussian curvatures in (3.4), we have

Kx = Kx = −
1

c2
. (3.17)

We know that the Gaussian curvature of the focal surfaces of the W-line congruence
equal to:

−sin2τ
r2

= − 1
c2
⇒ ρ− ρ = | r

sinτ
| (3.18)

Surfaces with constant negative Gaussian curvatures are called pseudo-spherical
surfaces and they are a result of the sine-Gordon partial differential equation, [8,
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12]. Hence, when this functional relation is substituted into (3.7), and (3.8), we
obtain:

g11 = ρ2e
2ρ
c , g12 = 0, g22 = ρ2e

−2ρ
c ,

h11 = ρe−
2ρ
c , h12 = 0, h22 = ρe

−2ρ
c .

}
(3.19)

Combining the above analysis with the fact that the Gauss and Mainardi-Codazzi
equations are the only independent algebraic equations among the fundamental
invariants k, k, and q, q and following Bonnet’s theorem. Then we may state the
following theorem:

Theorem 4. Among the line congruence in the Euclidean space E3, the only line
congruence whose focal surfaces are pseudo-spherical surfaces, and these surfaces
can be geodesically mapped upon the plane, is W-line congruence.

Now, the second fundamental form of the director surface M is given from the
equation:

II =
1

ρ
ds2 +

1

ρ
ds2, (3.20)

If we consider the possibility of the following corresponding II = λ IIx; λ ∈ R,
which is equivalent to the following condition on the invariants:

ρ1ρ1 + ρρ1 = 0. (3.21)

That is
∂

∂s
(ρρ) = 0. (3.22)

This means that the Gaussian curvature of the director surfaceM is constant along
the lines of curvature u2 − const,. Hence, the following theorem can be given:

Theorem 5. A necessary and suffi cient condition for the Gaussian curvature of the
director surface of the congruence CN is constant along one set of lines of curvature
is that the second fundamental forms of the focal surface, conjugate to this set, and
the director surface are proportional.

3.2. Degenerate focal surfaces. Now, we proceed to show the case for which the
line congruence CN degenerate into ruled surface. Since one of the families of lines
of curvature on a surface are plane curves, they are circular: In this case, either
sheet of the centro-surface may degenerate into a curve , i.e. x(u1, c), or x(c, u2).
In such a case the edge of regression of the developable ruled surface generated by
the normals along a line of curvature becomes a single point of that curve. Then,
from equations (3.1), the focal surface F is a curve if and only if

C : x(u1, c) = r(u1, u2) +
1

k
e3(u1, u2), k(u1, u2) 6= 0, c ∈ R, (3.23)

or

C : r(u1, u2) = x(u1, c)−
1

k
e3(u1, u2), k(u1, u2) 6= 0. (3.24)
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Because of < e3, dr >= 0, then we have

< e3, (
∂x

∂s
+
k1
k2
e3) >= 0, (3.25)

and

< e3,−
k

k
e2 +

k2
k2
e3 >= 0, (3.26)

which is equivalent to

− k1
k2
= < e3,

∂x

∂s
>=

∥∥∥∥∂x∂s
∥∥∥∥ cosϕ, k2 = 0, (3.27)

where ϕ is the inclination of the normal to M with the tangent to the curve C.
Since then

∂
∂s (
∥∥∂x
∂s

∥∥ cosϕ) = ∂
∂s (−

k1
k2 ),

= ∂
∂s (

∂
∂s

1
k ),

= ∂
∂s (

∂
∂s

1
k ),

= ∂
∂s (−

k2
k2 ) = 0,

(3.28)

it follows that ϕ = ϕ(u1), i.e. is a function of u1 only. Thus the normals to M ,
which meet at a point of the curve C, form a right circular cone whose semi-vertical
angle ϕ changes as the point moves along the curve. These intersecting normals
emanate from line of curvature (u2 = const.) on M , which must then be circular.
Thus the surfaceM has a system of circular lines of curvature. The sphere described
with center at the point of concurrence of the normals, and passing through the feet
of these normals, will touch M along one of the circular lines of curvature. Thus
M is the envelope of a one-parameter family of spheres with centers on the curve
C, i.e. M is a canal surface.
By similar argument, we can also have k1 = 0 for the focal surface F degenerate

into a curve. Hence, both systems of lines of curvature of M are circular lines of
curvature (k2 = 0, k1 = 0), and each sheet of the focal surfaces degenerate to a
curve. From the preceding arguments, it follows that each of these curves lies on a
one-parameter family of circular cones whose axes are tangents to the other curve.
Surfaces of this nature are called Dupin’s cyclids. Then as a result:

Theorem 6. For the line congruence CN , a necessary and suffi cient condition for
the focal surfaces degenerate into curves is that the director surface is Dupin cyclide.
More explicitly, we have the following:

k2 = 0, k1 = 0.

3.3. Generalized middle focal surface. The Gaussian curvature has the im-
portant property of remaining invariant if the surface is subject to an arbitrary
bending. A bending is defined as any deformation for which the arc length and an-
gles of all curves on the surface are left invariant. In equation (2.5), as µ = µ(u1, u2)
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is a differentiable function with continuos partial derivatives of a certain order the
regular surface

G : y(u1, u2) = r(u1, u2) + µ(u1, u2)e3(u1, u2), (3.29)

define the graph of the function µ = µ(u1, u2) on the surface M : r = r(u1, u2). For
each fixed t ∈ (ε,−ε), we define the generalized of the middle focal surface as:

y(u1, u2) = r(u1, u2) + tµe3(u1, u2); µ =
(ρ+ ρ)

2
. (3.30)

Thus µ is signed mean distance between the two focal surfaces x = x(u1, u2),
and x = x(u1, u2), and the lines of CN generate the corresponding between the
surfaces M and G.
Two surfaces that can be transformed into each other by bending are called

applicable to each other. Equivalently, we will determine whether the generating
lines of the congruence CN establish an area preserving representation between M
and G, i.e. it is necessary and suffi cient condition for the following condition to be
satisfied:

|A(G)−A(M)| → min, (3.31)

where A(G) and A(M) are the element areas on the surfaces M and G. So, we
have to calculate

A(G) =

∫∫
U

√
gG11 g

G
22 − (gG12)2

∫
du1du2, (3.32)

where gG11, g
G
22, and g

G
12 are the coeffi cients of the first fundamental form of the

surfaces G. By making use of the equations (2.2), (2.3), and (3.26), we obtain

gG11 =< y1,y1 >= g11 − 2tµh11 + t2(µ2k2 + µ21),
gG12 =< y1,y2 >= t2µ1µ2,

gG22 =< y2,y2 >= g22 − 2tµh22 + t2(µ2k
2
+ µ22).

 (3.33)

It follows that if ε is suffi ciently small subject to the relations ε2 = ε3 = ... = 0,
then we obtain

gG11g
G
22 = g11g22(1− 4tµH), (3.34)

or as √
gG11 g

G
22 =

√
g11g22(1− 2tµH), (3.35)

where we have used √
1− 4tµH = 1− 2tµH. (3.36)

Substituting equation (3.31) into the element area formula (3.28), then

A(G) = A(M)− 2tµ
∫∫
U

Hdsds. (3.37)

where H denotes to the mean curvatures of the director surface M . With ρ+ρ 6= 0
on the surface M , it means there is no change of sign of the mean curvature: It
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exists a real number m > 0, with |ρ+ ρ| > 0 for all µ ∈ (u1, u2) ∈ U . Therefore,
the function (ρ+ ρ) is bounded, and the relation (3.27) is hold.
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LCN-TRANSLATION SURFACES IN AFFINE 3-SPACE

NURAL YUKSEL, MURAT KEMAL KARACAN, AND YILMAZ TUNÇER

Abstract. We consider translation surfaces in Affi ne 3- space. Firstly, we
give some results of translation surfaces whose mean and Gaussian curvatures
vanish [8,16]. Further, we define and investigate LCN-translation surfaces with
zero the mean and the Gaussian curvatures in Affi ne 3-space.

1. Introduction

A surface that arises when a curve α(u) is translated over another curve β(v),
is called a translation surface. A translation surface can be defined as the sum of
the two generating curves α(u) and β(v).Therefore, translation surfaces are made
up of quadrilateral, that is, four sided, facets. Because of this property, translation
surfaces are used in architecture to design and construct free-form glass roofing
structures. A translation surface in an Euclidean 3-space E3 formed by translating
two curves lying in orthogonal planes is the graph of a function z(u, v) = f(u)+g(v),
where f(u) and g(v) are smooth functions on some interval of R [3, 6].
In 1835, H. F. Scherk studied translation surfaces in E3 defined as graph of the

function z(u, v) = f(u) + g(v) and he proved that, besides the planes, the only
minimal translation surfaces are the surfaces given by

z(u, v) =
1

a
log

∣∣∣∣cos(au)

cos(av)

∣∣∣∣ =
1

a
log |cos(au)| − 1

a
log |cos(av)| ,

where a is a non-zero constant. These surfaces are now referred as Scherk’s minimal
surfaces [18].
In mathematics, an Affi ne space is a geometric structure that generalizes some

of the properties of Euclidean spaces in such a way that these are independent of
the concepts of distance and measure of angles, keeping only the properties related
to parallelism and ratio of lengths for parallel line segments. Affi ne differential
geometry is a type of differential geometry in which the differential invariants are
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invariant under volume-preserving affi ne transformations. The basic difference be-
tween affi ne and Riemannian differential geometry is that in the affi ne case we
introduce volume forms over a manifold instead of metrics.
In theory of surfaces, there are some special surfaces such as ruled surfaces,

minimal surfaces, flat surfaces and surfaces of constant curvature in which differ-
ential geometers are interested. Liu described translation surfaces having constant
Gaussian and mean curvature in the Euclidean and Minkowski space [12].Goemans
studied weingarten translation surfaces Euclidean and Minkowski 3-spaces [6]. In
the literature of affi ne differential geometry, translation surfaces have been also
studied previously by many geometers [8, 10, 11, 15, 16, 17]. Manhart gave a com-
plete explicit classification of nondegenerate minimal translation surfaces in Affi ne
space R3 [11]. Magid and Vrancken showed that the curvatures must be zero and
this is equivalent to one of the defining curves being planar. Also, they investi-
gated other, natural, geometric conditions on translation surfaces. In particular,
they classified those translation surfaces which are umbilical, affi ne spheres have
trivial normal connection or null mean curvature vectors [10]. Sun classified trans-
lation surface with nonzero constant mean curvature in Affi ne space R3[15]. Fu
and Hou gave a complete classification of nondegenerate affi ne translation surfaces
with constant Gaussian curvature in R3 [8].Yang, Yu and Liu gave some classifica-
tion results for nondegenerate linear Weingarten centroaffi ne translation surfaces in
Affi ne space R3[16]. Yanga and Fu obtained the complete classification of minimal
affi ne translation surfaces in Affi ne space [17]. Andrade and Lewiner gave geomet-
ric properties of parametric or implicit surfaces, in particular the affi ne metric, the
conormal and normal vectors, and the affi ne Gaussian and mean curvatures [1, 2].
Huamani studied the surfaces with zero affi ne mean curvature [7].
The spline surface is composed of quartic Clough-Tocher-type macro elements.

Each element is capable of matching boundary data consisting of three points
with associated normal vectors. The collection of the macro elements forms a
G1continuous spline surface. Jutler and Sampoli constructed for polynomial spline
surfaces with a piecewise linear field of normal vectors [9]. Sampoli, Peternell and
Jüttler showed that even the convolution surface of an LN-surface and any rational
surface admits rational parametrization [14]. Sampoli showed that for LN spline
surfaces (surfaces with a linear field of normal vectors) a closed form representation
is available [13].
In this paper, we have pointed out the flat and minimal of the LCN-translation

surfaces in Affi ne 3-space.

2. Preliminaries

In this section we will give some definitions of the main affi ne structures: the
co-normal and normal vectors and the Gaussian and the mean curvatures. The
Berwald-Blaschke metric is invariant for Affi ne transformations and also indepen-
dent of system of coordinates. This metric is a quadric form. This quadratic form



TRANSLATION SURFACES 463

might not be positive definite (non-convex) case. Let X : Ω → R3 be a parame-
trization of a regular surface locally convex. The first affi ne fundamental form given
by

I = Ldu2 + 2Mdudv +Ndv2,

where

L = [Xu, Xv, Xuu] , N = [Xu, Xv, Xvv] , M = [Xu, Xv, Xuv] .

The Berwald-Blaschke metric or the second affi ne fundamental form given by

h = II = Edu2 + 2Fdudv +Gdv2, (1)

where

E =
L

|LN −M2|
1
4

, G =
N

|LN −M2|
1
4

, F =
M

|LN −M2|
1
4

.

From now on, we shall assume that the surface is non-degenerate, that is, LN −
M2 6= 0. Points LN − M2 are negative, zero or positive are called hyperbolic,
parabolic or elliptical, respectively [1, 2, 4, 7]. A transformation A : R3 → R3 is
affi ne iff A satisfies A(u) = C(u) + v0, where C is linear and v0 ∈ R3.
Orthonormality relationships are not preserved under an affi ne transformation A,

therefore the Euclidean normalNeis not an affi ne covariant vector. However, the di-
rection of the Euclidean normal is covariant (if 〈Ne, Xu〉 = 0, then

〈
A−TNe, AXu

〉
=

0 and similarly Xv, 〈, 〉 is Euclidean scalar product). Therefore, a covariant affi ne
normal, called the affi ne conormal ν can be obtained by scaling the Euclidean nor-
mal vector

ν = |Ke|−
1
4 Ne =

Xu ∧Xv

[ν, νu, νv]
=

Xu ∧Xv

|LN −M2|
1
4

, (2)

where L,N and M are the coeffi cients of the first affi ne fundamental form, Ke

and Neare the Euclidean Gaussian curvature and the Euclidean normal vector,
respectively [1, 2, 7].

By definition, it can be seen that ν.dX = 0. Let d = ± [ν, νu, νv] = ±
(
LN −M2

) 1
4 ,

where the signal ± depends on the point elliptical or hyperbolic. Using this nota-
tion, we have

ν =
Xu ∧Xv

d
. (3)

Since the affi ne conormal is not in general a unitary vector, it is not orthogonal to
its derivatives νu, νv.But since [ν, νu, νv] = d 6= 0, those derivatives define a proper
plane not orthogonal to ν. A contravariant affi ne vector can then be obtained by
looking at a vector orthogonal to that plane and would be the affi ne equivalent to
the Euclidean normal. More precisely, the affi ne normal vector ξ is defined locally
by the relationship:

〈ν, ξ〉 = 1, 〈νu, ξ〉 = 0, 〈νv, ξ〉 = 0.
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The affi ne normal then satisfies:

〈ν, ξu〉 = 〈ν, ξv〉 = 0.

This last relation shows that a local basis for the embedding space R3 at a point p
of the surface can be obtained by [Xu, Xv, ξ] .This allows to define affi ne structures
from Cartan’s moving frames theory. Denote by ξ = [ξ1, ξ2, ξ3] the affi ne normal
vector. Thus we have

ξ =
νu ∧ νv

[ν, νu, νv]
=
νu ∧ νv

d
(4)

or

ξ =
1

2

∣∣LN −M2
∣∣ 14

√
LN −M2

[
∂

∂u

(
NXu −MXv√
LN −M2

)
+

∂

∂v

(
LXv −MXu√
LN −M2

)]
(5)

or

ξ=
1

2

1√
EG− F 2

[
∂

∂u

(
GXu − FXv√
EG− F 2

)
+

∂

∂v

(
EXv − FXu√
EG− F 2

)]
, (6)

[1, 2, 7].

Figure 1

Observe that, the affi ne normal vector does not belong to the tangent plane to
the surfaces S. The curvatures describe the variation of the normal vector. We
know that ν.ξu = 0, ν.ξv = 0.That is , the derivatives ξu and ξv are orthogonal
to ν. In particular ξu and ξv ∈ TpS. Therefore, we can define the shape operator
S as follows

S : TpS → TpS

given by Sp(v) = −Dvξ. Since ξu and ξv are tangents to the surface, we have that
there are functions

bij : Ω→ R, i, j = 1, 2,

such that

ξu = b11Xu + b12Xv, (7)

ξv = b21Xu + b22Xv,

where

b11 =
[ξu, Xv, ξ]

d
, (8)
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b12 =
[ξv, Xv, ξ]

d
,

b11 =
[Xu, ξu, ξ]

d
,

b11 =
[Xu, ξv, ξ]

d
.

This shows that in the basis {Xu, Xv} , the Shape Operator Sp(v) = Dvξ is given
by the matrix B = (bij) , i, j = 1, 2. Notice that this matrix is not necessarily sym-
metric [1, 2, 7].

Definition 1. The coeffi cients bij form a matrix B = (bij), whose determinant
and the half of the trace are the Gaussian and the mean curvatures, respectively.
Hence, we have

K = detB = b11b22 − b12b21, (9)

H =
1

2
trB =

b11 + b22
2

[1, 2, 7].

Consider a surface X∗(u, v) in Affi ne 3-space. This surface is said to be an LCN
(linear conormal)-surface, if its conormal vectors admit a linear representation of
the form

ν∗ = −→a u+
−→
b v +−→c (10)

with certain constant coeffi cient vectors −→a ,−→b ,−→c ∈ R3. More precisely, it satisfies
the equations

〈X∗u, ν∗〉 = 〈X∗v , ν∗〉 = 0.

We assume that the three vectors −→a ,−→b ,−→c are linearly independent. Without loss
of generality we may then assume that

−→a = (1, 0, 0) ,
−→
b = (0, 1, 0) ,−→c = (0, 0, 1) ,

i.e.,ν∗ = (u, v, 1) .The tangent planes of an LCN surface have the equations

T (u, v) : z (u, v) + ux+ vy + z = 0, (11)

where z (u, v) is a polynomial or rational function, in case of a polynomial or rational
LCN surface, respectively. On the other hand, given a system of tangent planes of
the form (11) with a polynomial or rational function z(u, v).The envelope surface
X∗ = (x, y, z) satisfies the equations

T (u, v) : z (u, v) + ux+ vy + z = 0,

Tu(u, v) : zu + x = 0,

Tv(u, v) : zv + y = 0,
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and the conormal vector evaluates to

ν∗ =

(
zuuzvv − (zuv)

2

d∗

)
(u, v, 1) . (12)

Thus the envelope surface given by

X∗(u, v) = (−zu,−zv,−z + uzu + vzv) . (13)

[13, 14].

3. LCN-Translation Surfaces in Affine 3-Space

In this chapter, we define the LCN-translation surfaces in Affi ne 3-space. Con-
sider a surface in as a the graph of a function z = r(u, v) of two variables, which is
itself the sum of two functions f and g of one variable. Here, we restrict our topic
to regular surfaces X. Thus, we can express in open form as

X: z = f(u) + g(v). (14)

A surface S defined as the sum of two affi ne space curves α(u) = (u, 0, f(u)) and
β(v) = (0, v, g(v)) is called a translation surface in Affi ne 3-space. So, a translation
surface is defined by a patch

X(u, v) = (u, v, f (u) + g (v)) . (15)

The coeffi cients of the first affi ne fundamental form of the translation surface given
by

L = f ′′(u), N = g′′(v), M = 0, (16)

d =
(
LN −M2

) 1
4 = (f ′′g′′)

1
4 .

Hence the coeffi cients of the Berwald—Blaschke metric of the translation surface or
the coeffi cients of the second affi ne fundamental form of the translation surface are
given by

E =
f ′′

(f ′′g′′)
1
4

, G =
g′′

(f ′′g′′)
1
4

, F = 0. (17)

We suppose that the Berwald—Blaschke metric is non-degenerate: d 6= 0. Thus, we
have the affi ne conormal and normal vectors are given by

ν =

(
− f ′

(f ′′g′′)
1
4

,− g′

(f ′′g′′)
1
4

,
1

(f ′′g′′)
1
4

)
. (18)

ξ =


− f

′′′(f ′′g′′)
1
4

4f ′′2
,

− g
′′′(f ′′g′′)

1
4

4g′′2
,

(f ′′g′′)
1
4
(
−f ′g′′

2
f ′′′+f ′′

2
(
4g′′

2
−g′g′′′

))
4f ′′2g′′2

 . (19)
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respectively.

Proposition 2. Let S be a translation surface with non-degenerate in Affi ne 3-
space. Then the Gaussian and the mean curvatures of S can be given by

K =
f ′′′

2
(

12g′′′
2 − 7g′′g(4)

)
+ f ′′f (4)

(
−7g′′′

2

+ 4g′′g(4)
)

64 (f ′′g′′)
5
2

, (20)

H =

 (f ′′g′′)
1
4

(
7f ′′′

2 − 4f ′′f (4)
)

32f ′′3
+

(f ′′g′′)
1
4

(
7g′′′

2 − 4g′′g(4)
)

32g′′3

 ,

respectively [10, 11, 15].

In [8, 15], Fu, Hou and Sun classified vanishing Gaussian curvature and minimal
translation surfaces in the Affi ne 3-space, they proved the following theorems:

Theorem 3. Let S be a nondegenerate affi ne translation surface in R3 with van-
ishing Gaussian curvature. Then S is affi nely equivalent to one of the graph of the
following functions

z = u2 + g(v),

z = eu + v
1
2 ,

z = u lnu± v ln v,

z = lnu± ln v,

z = u
3−2λ
λ−1 ± v

3−2λ
5−3λ ,

where g(v) is an arbitrary function and λ is a constant satisfying λ 6= 1, 2, 32 ,
5
3 [8].

Theorem 4. Let S be a nondegenerate affi ne minimal translation surface in R3 .
Then S is one of the graph of the following functions under affi ne transformations:

z = u2 ± v2,
z = u

2
3 ± v 2

3 ,

z = u2 ± v 2
3

or

z = lnu− ln v,

z = ± lnu± (1 + cosh t) , t+ sinh t = v,

z = ± lnu± (1− cos t) , t− sin t = v,

z = ± (1 + cosh t)± (1 + cosh s) , t+ sinh t = u, s+ sinh s = v,

z = ± (1 + cosh t)± (1− cos s) , t+ sinh t = u, s− sinh s = v,

z = ± (1− cos t)± (1− cos s) , t− sin t = u, s− sin s = v.

[15].
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So, using (11) and (13), we can define the LCN- translation surfaces defined by
as

X∗(u, v) = (−f ′(u),−g′(v), uf ′(u) + vg′(v)− f(u)− g(v)) . (21)

A basis for the tangent vectors is given by

X∗u = (−f ′′, 0, uf ′′) , (22)

X∗v = (0,−g′′, vg′′) .

The second partial derivatives of X∗(u, v) are given by

X∗uu = (−f ′′′, 0, f ′′ + uf ′′′) , (23)

X∗uv = (0, 0, 0)

X∗vv = (0,−g′′′, g′′′ + vg′′′) .

The coeffi cients of the first affi ne fundamental form of the translation surface given
by

L∗ = f ′′
2

g′′, N∗ = f ′′g′′
2

, M∗ = 0, (24)

d∗ =
(
L∗N∗ −M∗

2
) 1
4

=
(
f ′′

3

g′′
3
) 1
4

.

Hence the coeffi cients of the Berwald—Blaschke metric of the translation surface or
the coeffi cients of the second affi ne fundamental form of the translation surface are
given by

E∗ =
f ′′

2

g′′(
f ′′3g′′3

) 1
4

, G∗ =
f ′′g′′

2(
f ′′3g′′3

) 1
4

, F ∗ = 0. (25)

We suppose that the Berwald—Blaschke metric is non-degenerate: d∗ 6= 0. Geomet-
rically d∗ > 0 means that the Euclidean Gaussian curvature does not vanish, i.e.
the LCN translation surface is strongly convex. The affi ne conormal field of the
LCN translation surface given by

ν∗ =
f ′′g′′(

f ′′3g′′3
) 1
4

(u, v, 1) . (26)

Thus, we have the affi ne normal vector

ξ∗ =


− f ′′f ′′′g′′

2

4(f ′′3g′′3)
3
4
,

− f ′′
2
g′′g′′′

4(f ′′3g′′3)
3
4
,

f ′′g′′(uf ′′′g′′+f ′′(4g′′−vg′′′))

4(f ′′3g′′3)
3
4

 . (27)
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Consequently, the coeffi cients b∗ij form a matrix B∗ =
[
b∗ij
]
are given by

b∗11 =

(
f ′′

3

g′′
3
) 1
4
(
−5f ′′′

2

+ 4f ′′f (4)
)

16f ′′4g′′
, b∗12 = − f ′′′g′′g′′′

16
(
f ′′3g′′3

) 3
4

, (28)

b∗21 = − f ′′f ′′′g′′′

16
(
f ′′3g′′3

) 3
4

, b∗22 =

(
f ′′

3

g′′
3
) 1
4
(
−5g′′′

2

+ 4g′′g(4)
)

16f ′′g′′4
.

Proposition 5. Let S∗ be a LCN−translation surface with non-degenerate in Affi ne
3-space. Then the Gaussian and the mean curvatures of S∗ can be given by

K∗ =
f ′′g′′

(
f ′′′

2
(

6g′′′
2 − 5g′′g(4)

)
+ f ′′f (4)

(
−5g′′′

2

+ 4g′′g(4)
))

64
(
f ′′3g′′3

) 3
2

, (29)

H∗ =
1

2


(
f ′′

3

g′′
3
) 1
4
(
−5f ′′′

2

+ 4f ′′f (4)
)

16f ′′4g′′
+

(
f ′′

3

g′′
3
) 1
4
(
−5g′′′

2

+ 4g′′g(4)
)

16f ′′g′′4

 ,

where f ′′ 6= 0, g′′ 6= 0, respectively.

We suppose that the LCN-translation surface with non-degenerate given by (29)
has zero the Gaussian curvature. Then we obtain

f ′′′
2
(

6g′′′
2

− 5g′′g(4)
)

+ f ′′f (4)
(
−5g′′′

2

+ 4g′′g(4)
)

= 0. (30)

Here u and v are independent variables, so each side of (30) is equal to a constant
p ∈ R\{0}. Hence, the equation (30) is reduced to

− f ′′′
2

f ′′f (4)
= p =

−5g′′′
2

+ 4g′′g(4)

6g′′′2 − 5g′′g(4)
, (31)

where f (4) 6= 0, g(4) 6= 0. By solving (31), we get

f(u) = c1 + c2u−
c3 (u+ pu− pc4)2+

p
1+p

(1 + 2p) (2 + 3p)
, (32)

g(v) = c5 + c6v −
c7 ((1 + p) v + c8 (4 + 5p))

− 2+3p
1+p

(2 + 3p) (3 + 4p)
,
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for some constants ci ∈ R and p 6=
{
−1,− 12 ,−

2
3 ,−

3
4

}
. We draw it as in Figure 2.

Figure 2

Theorem 6. Let S∗ be a LCN -translation surface with non-degenerate in Affi ne
3-space. If S∗ has zero Gaussian curvature or affi ne flat then S∗ is parametrized
as (20) with (32).

We assume that S∗ is affi ne minimal. Hence, the mean curvature is zero if and
only if(

f ′′
3

g′′
3
) 1
4
(
−5f ′′′

2

+ 4f ′′f (4)
)

16f ′′4g′′
+

(
f ′′

3

g′′
3
) 1
4
(
−5g′′′

2

+ 4g′′g(4)
)

16f ′′g′′4
= 0. (33)

Then, the minimality condition (33) can be separated for the variables(
−5f ′′′

2

+ 4f ′′f (4)
)

f ′′3
= −

(
−5g′′′

2

+ 4g′′g(4)
)

g′′3
, (34)

which implies there exists a constant p ∈ R\{0} such that(
−5f ′′′

2

+ 4f ′′f (4)
)

f ′′3
= p = −

(
−5g′′′

2

+ 4g′′g(4)
)

g′′3
, (35)

where f ′′ 6= 0, g′′ 6= 0. Solving this equation for f and g, we get

f(u) = c1 + c2u−
2c3 (c4 + u) arctanh

(
c3(c4+u)
4
√
p

)
p
3
2

, (36)
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g(v) = c5 + c6v −
2c7 (c8 + v) arctanh

(
c7(c8+v)
4
√
p

)
p
3
2

,

where ci ∈ R and p ∈ R\{0}. We draw it as in Figure 3.

Figure 3

Thus we have following theorem.

Theorem 7. A LCN-translation surface with non-degenerate S∗ is affi ne minimal
in Affi ne 3-space if and only if it is a part of the surface (20) with (36).
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SS-SUPPLEMENTED MODULES

ENGIN KAYNAR, HAMZA ÇALIŞICI, AND ERGÜL TÜRKMEN

Abstract. A module M is called ss-supplemented if every submodule U of
M has a supplement V in M such that U ∩ V is semisimple. It is shown
that a finitely generated module M is ss-supplemented iff it is supplemented
and Rad(M) ⊆ Soc(M). A module M is called strongly local if it is local
and Rad(M) is semisimple. Any direct sum of strongly local modules is ss-
supplemented and coatomic. A ring R is semiperfect and Rad(R) ⊆ Soc(RR)
iff every left R-module is (amply) ss-supplemented iff RR is a finite sum of
strongly local submodules.

1. Introduction

Throughout this study, all rings are associative with identity and all modules
are unitary left modules. Let R be a ring and M be an R-module. U ⊆ M will
mean that U is a submodule of M . Rad(M) and Soc(M) will indicate radical and
socle of M . A submodule N of M is called small in M , denoted N << M , if
M 6= N + K for every proper submodule K of M . Let U and V be submodules
of M . V is called a supplement of U in M if it is minimal with respect to M =
U + V , equivalently M = U + V and U ∩ V << V . The module M is called
supplemented if every submodule of M has a supplement in M . A submodule U of
M has ample supplements in M if every submodule L of M such that M = U + L
contains a supplement of U in M . The module M is called amply supplemented
if every submodule of M has ample supplements in M . For characterizations of
supplemented and amply supplemented modules we refer to [7]
A non-zero module M is called hollow if every proper submodule of M is small

in M and is called local if the sum of all proper submodules of M is also a proper
submodule ofM . Note that local modules are hollow and hollow modules are clearly
amply supplemented. A ring R is called local ring if RR is a local module.
In [8], Zhou and Zhang generalized the concept of socle of a moduleM to that of

Socs(M) by considering the class of all simple submodules ofM that are small inM
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in place of the class of all simple submodules of M , that is, Socs(M) =
∑
{N <<

M |N is simple}. It is clear that Socs(M) ⊆ Rad(M) and Socs(M) ⊆ Soc(M).
We call a module M strongly local if it is local and Rad(M) is semisimple. We

call a ring R left strongly local ring if RR is a strongly local module. Then we have
that the following implications on modules:

simple =⇒ strongly local =⇒ local

Next we mention two examples which show that the above implications are
proper. For the local left Z-module M = Z4, we have Rad(M) = Soc(M). Hence,
M is strongly local but not simple. On the other hand, for the local left Z-module
M = Z8, Soc(M) is a proper submodule of Rad(M). Thus M is not a strongly
local module.
In section 2 we study on strongly local modules and rings. We show that every

left strongly local ring is left perfect and right perfect. A strongly local commutative
domain is field.
Let U and V be submodules of a module M . V is called a Rad-supplement of

U in M if M = U + V and U ∩ V ⊆ Rad(V ). Since Socs(V ) ⊆ Rad(V ), it is
of interest to investigate the analogue of this notion by replacing “Rad(V )”with
“Socs(V )”. Now, we give the following result playing a key role in our work as
a proper generalization of direct summands. Firstly, we need the following well
known facts that we include here for completeness.

Lemma 1. Let M be a module and N be a semisimple submodule of M which is
contained in Rad(M). Then N << M .

Proof. Let N + K = M for some submodule K of M . Since N is semisimple,
there exists a submodule N

′
of N such that N = (N ∩ K) ⊕ N

′
. Hence M =

N + K = [(N ∩ K) ⊕ N
′
] + K = N

′
+ K. Since N

′ ∩ K = (N
′ ∩ N) ∩ K =

N
′ ∩ (N ∩ K) = 0, we have M = N

′ ⊕ K. It follows from [7, 21.6 (5)] that
Rad(M) = Rad(N

′
) ⊕ Rad(K) = Rad(K) since Rad(N

′
) ⊆ Rad(N) = 0. Then

M = N +K ⊆ Rad(M) +K ⊆ K. It means that N << M . �

Lemma 2. Let M be a module. Then Socs(M) = Rad(M) ∩ Soc(M).

Proof. Let a ∈ Rad(M)∩Soc(M). Then Ra is semisimple and so there exist n ∈ Z+
and simple submodules Si of M (1 ≤ i ≤ n) such that Ra = S1 ⊕ S2 ⊕ ...⊕ Sn by
[6, Proposition 3.3]. Since Ra is small in M , it follows from [7, 19.3 (2)] that each
Si is small in M . Thus a ∈ Ra ⊆ Socs(M). �

Lemma 3. Let M be a module and U , V be submodules of M . Then the following
statements are equivalent:

(1) M = U + V and U ∩ V ⊆ Socs(V ),
(2) M = U + V , U ∩ V ⊆ Rad(V ) and U ∩ V is semisimple,
(3) M = U + V , U ∩ V << V and U ∩ V is semisimple.
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Proof. (1) =⇒ (2) It follows that U ∩ V ⊆ Socs(V ) ⊆ Rad(V ) ∩ Soc(V ). Hence,
we deduce that U ∩ V ⊆ Rad(V ) and U ∩ V is semisimple.
(2) =⇒ (3) It is clear by Lemma 1.
(3) =⇒ (1) It is clear by Lemma 2 �

We say that V an ss-supplement of U in M if the equal conditions in the above
lemma are satisfied. It is clear that the following implications on submodules of a
module hold:

Direct summand =⇒ ss-supplement =⇒ supplement =⇒ Rad-supplement

We call a module M ss-supplemented if every submodule of M has an ss-
supplement in M . A submodule U of a module M has ample ss-supplements in
M if every submodule V of M such that M = U + V contains an ss-supplement
of U in M . We call a module M amply ss-supplemented if every submodule of
M has ample ss-supplements in M . It is clear that every ss-supplemented mod-
ule is supplemented. Of course there exists the same relationship between amply
ss-supplemented modules and amply supplemented modules. Later we shall give
examples of (amply) supplemented modules which are not (amply) ss-supplemented
(see Example 17 and Example 18).
In section 3 we characterize ss-supplemented and amply ss-supplemented mod-

ules. For modules with small radical, we give some conditions which are equivalent
to being an ss-supplemented module in Theorem 20. It follows that a finitely
generated module M is ss-supplemented if and only if it is supplemented and
Rad(M) ⊆ Soc(M). Any direct sum of strongly local modules is ss-supplemented
and coatomic. A moduleM is amply ss-supplemented if and only if every submod-
ule of the moduleM is ss-supplemented. We show that a ring R is semiperfect and
Rad(R) ⊆ Soc(RR) if and only if every left R-module is (amply) ss-supplemented.

2. Strongly Local Modules and Rings

As we mentioned at introduction, we denote by Socs(M) the sum of all simple
submodules of a module M that are small in M . Then we have:
Let M be a non-zero module. M is called indecomposable if the only direct

summands of M are 0 and M .

Lemma 4. Let M be an indecomposable module. Then M is simple or Soc(M) ⊆
Rad(M).

Proof. Suppose that M is not simple. Let M = Soc(M) +X for some submodule
X of M . Since Soc(M) is semisimple, there exists a submodule Y of Soc(M) such
that Soc(M) = (Soc(M)∩X)⊕Y . Therefore,M = Soc(M)+X = [(Soc(M)∩X)⊕
Y ]+X = X⊕Y . SinceM is indecomposable and not simple, it follows that Y = 0.
It means that X =M . Hence Soc(M) << M , that is, Soc(M) ⊆ Rad(M). �

Using Lemma 2 and Lemma 4, we have the following result.



476 ENGIN KAYNAR, HAMZA ÇALIŞICI, AND ERGÜL TÜRKMEN

Corollary 5. Let M be a local module which is not simple. Then Socs(M) =
Soc(M).

Recall that a module M is called radical if M has no maximal submodules, that
is, M = Rad(M). Let P (M) be the sum of all radical submodules of M . It is easy
to see that P (M) is the largest radical submodule of M . If P (M) = 0, M is called
reduced.

Proposition 6. Let M be a strongly local module. Then M is reduced.

Proof. Since M is strongly local, we get P (M) ⊆ Rad(M) ⊆ Soc(M). This implies
that P (M) is semisimple and so P (M) = Rad(P (M)) = 0. This completes the
proof. �

Note that the condition “strongly”in the above proposition is necessary. The
following example shows that in general a local module need not be reduced.

Example 7. Let K be a field. In the polynomial ring K[x1, x2, . . .] with countably
many indeterminates xn, n ∈ Z+, consider the ideal I = (x21, x22 − x1, x23 − x2, · · · )
generated by x21 and x

2
n+1 − xn for each n ∈ Z+. Then as shown in [?, Example

6.2], the quotient ring R = K[x1,x2,...]
I is a local ring with the unique maximal ideal

J = (x1,x2,...)
I = J2. Let M be the left R-module RR. Then M is a local module.

On the other hand, M is not reduced because P (M) = Rad(J) = J 6= 0.

Proposition 8. Every factor module of a strongly local module is strongly local.

Proof. Let M be a strongly local module and N be a submodule of M . Then the
factor module M

N is local. Since Rad(M) is the unique maximal submodule of M ,

it follows from [7, 21.2 (1)] that Rad(MN ) =
Rad(M)

N ⊆ Soc(M)
N = π(Soc(M)) ⊆

Soc(MN ), where π : M −→ M
N is the canonical projection. Hence M

N is strongly
local. �

Proposition 9. Let R be a left strongly local ring. Then (Rad(R))2 = 0. In
particular, Rad(R) is nilpotent.

Proof. Since Rad(R) ⊆ Soc(RR), it follows from [7, 21.12 (4)] that (Rad(R))2 = 0.
It means that Rad(R) is nilpotent. �

Recall from [7] that an ideal I of a ring R is right t-nilpotent if for every sequence
a1, a2, ..., ak of elements in I, there is a k ∈ Z+ with a1a2...ak = 0. Similarly left
t-nilpotent is defined. Following [7, 43.9], R is called left perfect (respectively,
right perfect) if R is semilocal and Rad(R) is right t-nilpotent (respectively, left
t-nilpotent). Here a ring R is semilocal if R

Rad(R) is an artinian semisimple ring (see
[4]). Note that nilpotent ideals are left and right t-nilpotent. Using this fact, we
have the following:

Corollary 10. Every left strongly local ring is left perfect and right perfect.
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Proof. Let R be a left strongly local ring. Since local rings are semilocal, it follows
from Proposition 9 that R is left perfect and right perfect. �
It is well known that an artinian commutative domain is field. We have:

Proposition 11. A strongly local commutative domain is field.

Proof. Let R be a strongly local commutative domain and a be any element of R.
If a ∈ R\Rad(R), we can write Ra = R because R is local. Therefore, a is an
invertible element of R. Suppose that a ∈ Rad(R). It follows from Proposition 9
that a2 ∈ (Rad(R))2 = 0. By the hypothesis, we get a = 0. Hence, R is field. �

3. SS-Supplemented Modules

It is known that a ring R is semiperfect if and only if every finitely generated
R-module is (amply) supplemented (see [7, 42.6]). In this section we obtain new
characterizations of semiperfect rings via their ss-supplemented modules.
Recall that for a maximal submodule U of a module M , a submodule V of M

is a supplement of U in M if and only if M = U + V and V is local (see [7, 41.1
(3)]). Analogous to that we have:

Proposition 12. Let M be a module and U be a maximal submodule of M . A
submodule V of M is an ss-supplement of U in M if and only if M = U + V and
V is strongly local.

Proof. Let V be an ss-supplement of U in M . By [7, 41.1.(3)], V is local and
U ∩V = Rad(V ) is the unique maximal submodule of V . Since U ∩V is semisimple,
we have Rad(V ) ⊆ Soc(V ). Thus V is strongly local.
Conversely, since V is local and M = U + V , we can write U ∩ V ⊆ Rad(V ). It

follows from assumption that U ∩ V is semisimple. Hence, V is an ss-supplement
of U in M . �
Now, we give examples of (amply) supplemented modules which are not (amply)

ss-supplemented. We first need the following facts.

Lemma 13. Let M be an ss-supplemented module and N be a small submodule of
M . Then N ⊆ Socs(M).
Proof. By the assumption, M is the unique ss-supplement of N in M and so N ∩
M = N is semisimple. Hence, N ⊆ Socs(M) by Lemma 2. �
The following result is a direct consequence of Lemma 13.

Corollary 14. Let M be an ss-supplemented module and Rad(M) << M . Then
Rad(M) ⊆ Soc(M).
It is well known that every local module is amply supplemented. Now we give

an analogous characterization of this fact for amply ss-supplemented modules.

Proposition 15. Every strongly local module is amply ss-supplemented.
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Proof. Let M be a strongly local module. Then, M is local and so it is amply
supplemented. Note that M has no supplement submodule except for 0 and M .
Since Rad(M) ⊆ Soc(M), M is amply ss-supplemented. �

Proposition 16. Let R be a ring and M be a hollow R-module. M is (amply)
ss-supplemented if and only if it is strongly local.

Proof. Suppose that M is ss-supplemented. Let m ∈ Rad(M). Then we get
Rm << M . Since M is ss-supplemented, it follows from Lemma 13 that Rm ⊆
Socs(M). It means that m ∈ Soc(M) and so Rad(M) ⊆ Soc(M). Suppose that
M = Rad(M). Since M = Rad(M) = Soc(M) and the radical of a semisimple
module is zero, we have that M = 0. This is a contradiction because M is hollow.
It means that M 6= Rad(M), that is, M is local by [7, 41.4]. Therefore M is
strongly local. The converse follows from Proposition 15. �

Example 17. For any prime integer p, consider the left Z-module M = Zp∞ .
Note that M is a hollow module which is not local. Since hollow modules are
(amply) supplemented, M is (amply) supplemented. However, M is not (amply)
ss-supplemented module by Proposition 16.

Every artinian module is supplemented. The next example shows that in general
artinian modules need not to be ss-supplemented.

Example 18. Let M be the Z-module Zpk , for p is any prime integer and k ≥ 3.
Note that M is artinian. Since Socs(Zpk) = Soc(Zpk) ∼= Zp and Rad(M) = pZpk ,
M is not strongly local and so it is not ss-supplemented by Proposition 16.

Lemma 19. Let M be a supplemented module and Rad(M) ⊆ Soc(M). Then M
is ss-supplemented.

Proof. Let U ⊆ M . Since M is supplemented, there exists a submodule V of M
such that M = U +V and U ∩V << V . Then U ∩V ⊆ Rad(V ) ⊆ Rad(M) and so
U ∩ V is semisimple by the assumption. Hence V is an ss-supplement of U in M .
It means that M is ss-supplemented. �

Theorem 20. Let M be a module with Rad(M) << M . Then the following state-
ments are equivalent:

(1) M is ss-supplemented,
(2) M is supplemented and Rad(M) has an ss-supplement in M ,
(3) M is supplemented and Rad(M) ⊆ Soc(M).

Proof. (1) =⇒ (2) It is clear.
(2) =⇒ (3) It follows from Lemma 13.
(3) =⇒ (1) By Lemma 19. �

Since finitely generated modules have small radical, we have the following result.
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Corollary 21. Let M be a finitely generated module. Then M is ss-supplemented
if and only if it is supplemented and Rad(M) ⊆ Soc(M).

Next, in order to prove that every finite sum of ss-supplemented modules is
ss-supplemented, we use the following standard lemma (see, [7, 41.2]).

Lemma 22. Let M be a module and M1, U be submodules of M with M1 ss-
supplemented. If M1+U has an ss-supplement in M , U also has an ss-supplement
in M .

Proof. Suppose that X is an ss-supplement of M1 + U in M and Y is an ss-
supplement of (X+U)∩M1 inM1. ThenM = X+Y +U and (X+Y )∩U << X+Y .
Moreover, X ∩ (Y + U) is semisimple as a submodule of the semisimple module
X ∩ (M1 + U). Note that Y ∩ [(X + U) ∩ M1] = Y ∩ (X + U) is semisimple.
It follows from [3, 8.1.5] that (X + Y ) ∩ U is semisimple. Hence X + Y is an
ss-supplement of U in M . �

Proposition 23. Let M1, M2 be any submodules of a module M such that M =
M1 +M2. Then if M1 and M2 are ss-supplemented, M is ss-supplemented.

Proof. Let U be any submodule of M . The trivial submodule 0 is ss-supplement
of M = M1 +M2 + U in M . Since M1 is ss-supplemented, M2 + U has an ss-
supplement in M by Lemma 22. Again applying Lemma 22, we also have that U
has an ss-supplement in M . This shows that M is ss-supplemented. �

Using this fact we obtain the following corollary.

Corollary 24. Every finite sum of ss-supplemented modules is ss-supplemented.

Now we give an example of an ss-supplemented module which is not strongly
local.

Example 25. The Z-module M = Z4⊕Z4 is ss-supplemented as a sum of strongly
local modules. However, M is not (strongly) local.

Then we have the following proper implications on modules hold:

Proposition 26. If M is a (amply) ss-supplemented module, then every factor
module of M is (amply) ss-supplemented.
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Proof. Let M be an ss-supplemented module and M
L be a factor module of M .

By the assumption, for any submodule U of M which contains L, there exists a
submodule V of M such that M = U + V , U ∩ V << V and U ∩ V is semisimple.
Let π : M −→ M

L be the canonical projection. Then we have that M
L = U

L +
V+L
L

and U
L ∩

V+L
L = (U∩V )+L

L = π(U ∩V ) << π(V ) = V+L
L by [7, 19.3(4)]. Since U ∩V

is semisimple, it follows from [3, 8.1.5] that π(U ∩ V ) = (U∩V )+L
L = U

L ∩
V+L
L is

semisimple. That is, V+LL is an ss-supplement of UL in
M
L , as required.

By adapting this argument we can prove similarly that if M is amply ss-supple-
mented, then so is every factor module of M . �

Recall that a module M is said to be coatomic if every proper submodule of M
is contained in a maximal submodule of M . It is easy to see that every coatomic
module has small radical.
Let p be a prime integer and consider the localization ring R = Z(p) = {ab | a, b ∈

Z and p - b}. Note that R is a local ring. Let M be the left R-module R(N). Then
M is the direct sum of local submodules but it is not supplemented. Since R is not
perfect, Rad(M) is not small in M and so M is not also coatomic. However, any
arbitrary direct sum of strongly local modules is ss-supplemented and coatomic, as
the next result shows.

Theorem 27. Let M =
⊕

i∈IMi, where each Mi is a strongly local module. Then,
M is ss-supplemented and coatomic.

Proof. SinceMi is strongly local for every i ∈ I, it is local and Rad(Mi) ⊆ Soc(Mi)
and so Rad(M) =

⊕
i∈I Rad(Mi) ⊆

⊕
i∈I Soc(Mi) = Soc(M) by [7, 21.6 (5) and

21.2 (5)]. Applying Lemma 1, we get that Rad(M) is a small submodule of M .
Since strongly local modules are local, it follows from [10, Theorem 1.4 (A)] that
M is supplemented. Hence, M is ss-supplemented by Theorem 20.
Let U be a proper submodule of M . It follows from [7, 41.1 (6)] that U is

contained in a maximal submodule of M , that is, M is coatomic. �

Let M be a module. A module N is called M -generated if there exists an
epimorphism f :M (I) −→ N for some index set I.

Corollary 28. Let M be a strongly local module. Then every M -generated module
is ss-supplemented and coatomic.

Proof. Suppose that N is M -generated. Then, there exists an epimorphism f :
M (I) −→ N for some index set I. By Theorem 27, M (I) is ss-supplemented and
coatomic. Hence N is ss-supplemented by Proposition 26 and it is coatomic by [10,
Lemma 1.5 (a)]. �

Corollary 29. Let R be a left strongly local ring. Then every left R-module is
ss-supplemented.
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Proof. Since all left R-modules are R-generated, the proof follows from Corollary
28. �

A submodule U of a moduleM is said to be cofinite ifM/U is finitely generated
(see [1]). Note that maximal submodules of M are cofinite.

Theorem 30. The following statements are equivalent for a module M :
(1) M is the sum of all strongly local submodules,
(2) M is ss-supplemented and coatomic,
(3) M is coatomic and every cofinite submodule of M has an ss-supplement in

M ,
(4) M is coatomic and every maximal submodule of M has an ss-supplement

in M.

Proof. (1) =⇒ (2) Let M =
∑

i∈IMi, where each Mi is strongly local submodules.
Put N =

⊕
i∈IMi. Then, by Theorem 27, N is ss-supplemented and coatomic.

Now we consider the epimorphism f : N −→ M via f((mi)i∈I) =
∑

i∈I mi for all
(mi)i∈I ∈ N . It follows from Proposition 26 and [10, Lemma 1.5 (a)] that M is
ss-supplemented and coatomic.
(2) =⇒ (3) =⇒ (4) are clear.
(4) =⇒ (1) Let S be the sum of all strongly local submodules of M . Assume

that S 6=M . Since M is coatomic, there exists a maximal submodule K of M with
S ⊆ K. By (4), K has an ss-supplement, say V , in M . It follows from Proposition
12 that V is strongly local. Therefore, V ⊆ S ⊆ K, a contradiction. �

The following fact is a direct consequence of Theorem 30.

Corollary 31. For a coatomic module M , the following statements are equivalent:
(1) M is the sum of all strongly local submodules,
(2) M is ss-supplemented,
(3) Every cofinite (maximal) submodule of M has an ss-supplement in M .

A ring R is called left max if every non-zero left R-module has a maximal sub-
module. Note that if R is a left max ring, then every left R-module is coatomic.
Using this fact and Corollary 31, we obtain the following result.

Corollary 32. Let R be a left max ring and M be a non-zero left R-module.
Then M is the sum of all strongly local submodules of M if and only if it is ss-
supplemented.

Proposition 33. Let M be a module. If every submodule of M is ss-supplemented,
then M is amply ss-supplemented.

Proof. Let U and V be two submodules of M such that M = U + V . Since V is
ss-supplemented, there exists a submodule V

′
of V such that V = (U ∩ V ) + V

′
,

U∩V ′
<< V

′
and U∩V ′

is semisimple. Note thatM = U+V = U+((U∩V )+V ′
) =
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U + V
′
. It means that U has ample ss-supplements in M . Hence M is amply ss-

supplemented. �
Lemma 34. Let M be amply ss-supplemented module and V be an ss-supplement
submodule in M . Then V is amply ss-supplemented.

Proof. Let V be an ss-supplement of a submodule U of M . Let X and Y be
submodules of V such that V = X + Y . Then M = (U + X) + Y . Since M is
amply ss-supplemented, U + X has an ss-supplement Y

′ ⊆ Y in M . It follows
that X + Y

′ ⊆ V . By the minimality of V , we have V = X + Y
′
. In addition,

X ∩ Y ′ ⊆ (U + X) ∩ Y ′
<< Y

′
, that is, X ∩ Y ′

<< Y
′
. Since (U + X) ∩ Y ′

is semisimple, X ∩ Y ′
is also semisimple by [3, 8.1.5]. It means that Y

′
is an

ss-supplement of X in V . Finally, V is amply ss-supplemented. �
The next result gives a useful characterization of amply ss-supplemented mod-

ules.

Theorem 35. Let M be a module. Then, M is amply ss-supplemented if and only
if every submodule U of M is of the form U = X +Y , where X is ss-supplemented
and Y ⊆ Socs(M).
Proof. Let U be a submodule of M . Since M is ss-supplemented, U has an ss-
supplement V inM . ThenM = U+V . By the assumption, there exists a submod-
ule X of U such that X is an ss-supplement of V in M . Put Y = U ∩ V . Since V
is an ss-supplement of U in M , we have that Y ⊆ Socs(V ) ⊆ Socs(M). Applying
the modular law, we get U = U ∩M = U ∩ (X + V ) = X + U ∩ V = X + Y . Note
that X is ss-supplemented by Lemma 34.
Conversely, let U be a submodule ofM . By the assumption, there exist submod-

ules X and Y of M such that U = X + Y , X ss-supplemented and Y ⊆ Socs(M).
By Proposition 23, U is ss-supplemented. HenceM is amply ss-supplemented from
Proposition 33. �
The next result is crucial.

Corollary 36. For a module M , the following statements are equivalent:
(1) M is amply ss-supplemented,
(2) Every submodule of M is ss-supplemented,
(3) Every submodule of M is amply ss-supplemented.

Note that it is not in general true that any submodule of an amply supplemented
module is (amply) supplemented. Let R be a local Dedekind domain which is not
field. Suppose that M = R(N). Then, M is not (amply) supplemented. The group

F = R×M can be converted to a ring by the following operation: (x, y) ·
(
x
′
, y

′
)
=

(xx
′
, xy

′
+x

′
y) where x, x

′ ∈ R and y, y′ ∈M . Then F is a commutative local ring
and so F is amply supplemented. Put L = {0}×M . Therefore, L is an ideal of F .
Hence the submodule L of F is not a (amply) supplemented F -module.
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A module M is said to be π-projective if whenever U and V are submodules
of M such that M = U + V , there exists an endomorphism f of M such that
f(M) ⊆ U and (1 − f)(M) ⊆ V . Hollow (local) modules and self-projective mod-
ules are π-projective and π-projective supplemented modules are amply supple-
mented. Similarly, we show that π-projective ss-supplemented modules are amply
ss-supplemented. The proof is virtually the same that of [7, 41.15], but we give it
for completeness.

Proposition 37. Let M be a π-projective and ss-supplemented module. Then M
is amply ss-supplemented.

Proof. Let U and V be submodules of M such that M = U + V . Since M is
π-projective, there exists an endomorphism f of M such that f(M) ⊆ U and
(1 − f)(M) ⊆ V . Note that (1 − f)(U) ⊆ U . Let V

′
be an ss-supplement of U in

M . Then M = f(M) + (1− f)(M) = f(M) + (1− f)(U + V ′
) ⊆ U + (1− f)(V ′

),
so that M = U + (1 − f)(V ′

). Note that (1 − f)(V ′
) is a submodule of V . Let

y ∈ U ∩ (1 − f)(V
′
). Then, y ∈ U and y = (1 − f)(x) = x − f(x) for some

x ∈ V ′
. Next x = y + f(x) ∈ U so that y ∈ (1− f)(U ∩ V ′

). Since U ∩ V ′
<< V

′
,

U ∩ (1 − f)(V ′
) = (1 − f)(U ∩ V ′

) << (1 − f)(V ′
) by [7, 19.3(4)]. By [3, 8.1.5],

U ∩ (1−f)(V ′
) = (1−f)(U ∩V ′

) is semisimple because U ∩V ′
is semisimple. Thus

(1−f)(V ′
) is an ss-supplement of U inM . ThereforeM is amply ss-supplemented

module. �

Since every projective module is π-projective, the following result follows from
Proposition 37 and Corollary 36.

Corollary 38. Any submodule of a projective ss-supplemented module is ss-supple-
mented.

Now, we characterize the rings whose modules are ss-supplemented. Firstly, we
need the following lemmas.

Lemma 39. Let M be a projective module. Then M is ss-supplemented if and
only if it is supplemented and Rad(M) ⊆ Soc(M).

Proof. Suppose that M is projective supplemented module. Therefore we have
Rad(M) << M by [7, 42.5]. Then the proof is obvious from Theorem 20. �

Lemma 40. Let R be a ring. Then every left R-module is ss-supplemented if and
only if every left R-module is the sum of all strongly local submodules.

Proof. Assume that every left R-module M is ss-supplemented. Then, by [7, 43.9],
R is left perfect. This implies that R is a left max ring. Applying Corollary 32,
M is the sum of all strongly local submodules of M . The converse follows from
Theorem 30. �
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Theorem 41. The following statements are equivalent for a ring R:

(1) RR is ss-supplemented,
(2) R is semiperfect and Rad(R) ⊆ Soc(RR),
(3) R is semilocal and Rad(R) ⊆ Soc(RR),
(4) Every projective left R-module is (amply) ss-supplemented,
(5) Every left R-module is (amply) ss-supplemented,
(6) Every left R-module is the sum of all strongly local submodules,
(7) RR is a finite sum of strongly local submodules,
(8) Every maximal left ideal of R has an ss-supplement in R.

Proof. (1) =⇒ (2) =⇒ (3) By Corollary 21 and [7, 42.6].
(3) =⇒ (4) Let M be a projective R-module. Then, by [7, 21.17 (2)], we can

write Rad(M) = Rad(R)M ⊆ Soc(RR)M = Soc(M). From [7, 43.9] and Lemma
39, the proof is completed.
(4) =⇒ (5) follows [7, 18.6] and Proposition 26.
(5) =⇒ (6) By Lemma 40.
(6) =⇒ (7) is obvious.
(7) =⇒ (8) By Theorem 30.
(8) =⇒ (1) By Corollary 31. �
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ASYMPTOTIC BEHAVIOUR OF RESONANCE EIGENVALUES
OF THE SCHRÖDINGER OPERATOR WITH A MATRIX

POTENTIAL

SEDEF KARAKILIÇ, SETENAY AKDUMAN, AND DIDEM COŞKAN

Abstract. We will discuss the asymptotic behaviour of the eigenvalues of a
Schrödinger operator with a matrix potential defined by the Neumann bound-
ary condition in Lm2 (F ), where F is a d-dimensional rectangle and the potential
is an m ×m matrix with m ≥ 2, d ≥ 2 , when the eigenvalues belong to the
resonance domain, roughly speaking they lie near the planes of diffraction.

1. Introduction

In this paper, we consider the Schrödinger operator with a matrix potential V (x)
defined by the differential expression

Lφ = −∆φ+ V φ (1)

and the Neumann boundary condition

∂φ

∂n
|∂F = 0, (2)

in Lm2 (F ) where F is the d dimensional rectangle F = [0, a1]× [0, a2]× . . .× [0, ad],
∂F is the boundary of F ,m > 2, d > 2, ∂

∂n denotes differentiation along the outward
normal of the boundary ∂F , ∆ is a diagonal m×m matrix whose diagonal elements
are the scalar Laplace operators4 = ∂2

∂x1
2 + ∂2

∂x2
2 +. . .+ ∂2

∂xd2 , x = (x1, x2, . . . , xd) ∈
Rd, V is a real valued symmetric matrix V (x) = (vij(x)), i, j = 1, 2, . . . ,m, vij(x) ∈
L2(F ), that is, V T (x) = V (x).
We denote the operator defined by (1)-(2) by L(V ), the eigenvalues and the

corresponding eigenfunctions of L(V ) by ΛN and ΨN , respectively.
The eigenvalues of the operator L(0) which is defined by the differential ex-

pression (1) when V (x) = 0 and the boundary condition (2) are |γ|2, and the
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perturbation theory.
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corresponding eigenspaces are Eγ = span{Φγ,1(x),Φγ,2(x), . . . ,Φγ,m(x)}, where

γ = (γ1, γ2, . . . , γd) ∈ Γ+0

2
,

Γ+0

2
= {(n1π

a1
,
n2π

a2
· · · , ndπ

ad
) : nk ∈ Z+ ∪ {0}, k = 1, 2, . . . , d},

Φγ,j(x) = (0, . . . , 0, uγ(x), 0, . . . , 0), j = 1, 2, . . . ,m,

and the non-zero component of Φγ,j(x) is uγ(x) = cosn1π
a1
x1cos

n2π
a2
x2 · · · cosndπad xd,

which stands in the jth component. In particular, u0(x) = 1 when γ = (0, 0, . . . , 0).

It can be easily calculated that the norm of uγ(x), γ ∈ Γ+0

2 , in L2(F ) is
√

µ(F )
|Aγ | ,

where µ(F ) is the measure of the d-dimensional parallelepiped F , |Aγ | is the number
of vectors in Aγ =

{
α = (α1, α2, . . . , αd) ∈ Γ

2 : |αk| = |γk|, k = 1, 2, . . . , d
}
, Γ

2 =
{(n1π

a1
, n2π
a2
· · · , ndπad ) : nk ∈ Z, k = 1, 2, . . . , d}.

From now on, 〈., .〉 and (., .) will denote the inner products in Lm2 (F ) and L2(F ),
respectively.
Since {uγ(x)}

γ∈Γ+0

2

is a complete system in L2(F ), for any q(x) in L2(F ) we

have

q(x) =
∑

γ∈Γ+0

2

|Aγ |
µ(F )

(q, uγ)uγ(x). (3)

In our study, it is convenient to use the equivalent decomposition (see [9])

q(x) =
∑
γ∈Γ

2

qγuγ(x), (4)

where qγ = 1
µ(F ) (q(x), uγ(x)) for the sake of simplicity. That is, the decomposition

(3) and (4) are equivalent for any d ≥ 2. Thus, according to (4), each matrix element
vij(x) ∈ L2(F ) of the matrix V (x) can be written in its Fourier series expansion

vij(x) =
∑
γ∈Γ

2

vijγuγ(x), (5)

vijγ =
(vij ,uγ)
µ(F ) , (vij , uγ) = 1

µ(F )

∫
F
vij(x)uγ(x)dx and vij0 = 1

µ(F )

∫
F
vij(x)dx i, j =

1, 2, . . . ,m.
We assume that l > (d+20)(d−1)

2 +d+ 3 and the Fourier coeffi cients vijγ of vij(x)
satisfy ∑

γ∈Γ
2

|vijγ |2(1 + |γ|2l) <∞, (6)

for each i, j = 1, 2, . . . ,m. Let ρ be a large parameter, ρ � 1 and α be a positive
number with 0 < α < 1

d+20 then for Γ(ρα) = {γ ∈ Γ
2 : 0 ≤ |γ| < ρα} and p = l − d
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the condition (6) implies that

vij(x) =
∑

γ∈Γ(ρα)

vijγuγ(x) +O(ρ−pα). (7)

Here O(ρ−pα) is a function in L2(F ) with norm of order ρ−pα. Furthermore, by
(6), we have

Mij ≡
∑
γ∈Γ

2

|vijγ | <∞, (8)

for all i, j = 1, 2, . . . ,m.
Notice that, if a function q(x) is suffi ciently smooth

(
q(x) ∈W l

2(F )
)
and the

support of ∇q(x) =
(
∂q
∂x1

, ∂q∂x2
, . . . , ∂q∂xd

)
is contained in the interior of the domain

F , then q(x) satisfies condition (6) (See [7]). There is also another class of functions
q(x), such that q(x) ∈W l

2(F ),

q(x) =
∑
γ′∈Γ

qγ′uγ′ (x),

which is periodic with respect to a lattice

Ω = {(m1a1,m2a2, . . . ,mdad) : mk ∈ Z, k = 1, 2, . . . , d}

and thus it also satisfies condition (6).
As in [17]-[22], we divide Rd into two domains: Resonance and Non-resonance

domains. In order to define these domains, let us introduce the following sets:
Let 0 < α < 1

d+20 , αk = 3kα, k = 1, 2, . . . , d− 1 and

Vb(ρ
α1) ≡

{
x ∈ Rd :

∣∣|x|2−|x+ b|2
∣∣ < ρα1

}
E1(ρα1 , p) ≡

⋃
b∈Γ(pρα)

Vb(ρ
α1)

U(ρα1 , p) ≡ Rd \ E1(ρα1 , p)

Ek(ραk , p) =
⋃

γ1,γ2,...,γk∈Γ(pρα)

(
k⋂
i=1

Vγi(ρ
αk)

)

where b 6= 0, γi 6= 0, i = 1, 2, . . . , k and the intersection
k⋂
i=1

Vγi(ρ
αk) in Ek is taken

over γ1, γ2, . . . , γk which are linearly independent vectors and the length of γi is not
greater than the length of the other vector in Γ

⋂
γiR. The set U(ρα1 , p) is said to be

a non-resonance domain, and the eigenvalue |γ|2 is called a non-resonance eigenvalue
if γ ∈ U(ρα1 , p). The domains Vb(ρα1), for b ∈ Γ(pρα) are called resonance domains
and the eigenvalue |γ|2 is a resonance eigenvalue if γ ∈ Vb(ρα1).
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As noted in [20]-[21], the domain Vb(ρα1) \E2, called a single resonance domain,
has asymptotically full measure on Vb(ρα1), that is,

µ ((Vb(ρ
α1) \ E2)

⋂
B(q))

µ (Vb(ρα1)
⋂
B(q))

→ 1, as ρ→∞,

where B(ρ) =
{
x ∈ Rd : |x|= ρ

}
, if

2α2 − α1 + (d+ 3)α < 1, α2 > 2α1, (9)

hold. Since 0 < α < 1
d+20 , the conditions in (9) hold.

In most cases, it is important to know the asymptotic behavior of the eigenvalues
of the Schrödinger operator L(V ). In this paper, [3] and [8], we construct the
asymptotic formulas in the high energy region for eigenvalues of the operator L(V ).
In [3], we obtain the asymptotic formulas of arbitrary order for the eigenvalue

of L(V ) corresponding to the non-resonance eigenvalues |γ|2 of L(0) in arbitrary
dimension d ≥ 2.
In [8], we constructed the high energy asymptotics of arbitrary order for the

eigenvalue of L(V ) corresponding to resonance eigenvalue |γ|2 when γ belongs to
the special single resonance domains Vδ(ρα1) \ E2, where δ is from {e1, e2, . . . , ed}
and e1 =

(
π
a1
, 0, . . . , 0

)
, . . . , ed =

(
0, . . . , πad

)
, d ≥ 2.

In this paper, we study the case for which |γ|2 is a resonance eigenvalue. More

precisely, in Theorem (1) and (2) of Section(2), we assume that γ ∈ (
k⋂
i=1

Vγi(ρ
αk))\

Ek+1, k = 1, 2, . . . , d − 1 and γ /∈ Vek(ρα1) for k = 1, 2, . . . , d and prove that the
corresponding eigenvalue of L(V ) is close to the sum of the eigenvalue of the matrix
V0 and the eigenvalue of the matrix C = C(γ, γ1, . . . , γk) (See (14)).
In Section(3), this time we assume that γ ∈ Vδ(ρα1) \E2, δ ∈ Γ

2 \{e1, e2, . . . , ed},
that is, γ is in a single resonance domain and we prove the main result Theorem
(7) which gives a connection between the eigenvalues of L(V ) corresponding to a
single resonance domain and the eigenvalues of the Sturm-Liouville operators.
Note that, the case δ = ei, i = 1, 2, . . . , d, was considered in [8], by a different

but simpler method and better formulas were obtained.

2. Asymptotic Formulas for the Eigenvalues in the Resonance
Domain

We assume that γ /∈ Vek(ρα1) for k = 1, 2, . . . , d, and |γ|2 is a resonance eigen-

value of the operator L(0), that is, γ ∈ (
k⋂
i=1

Vγi(ρ
αk)) \ Ek+1, k = 1, 2, . . . , d − 1,

such that | γ |∼ ρ where | γ |∼ ρ means that | γ | and ρ are asymptotically equal,
that is, there exist c1, c2 satisfying the inequality c1ρ ≤| γ |≤ c2ρ, ci, i = 1, 2, 3, . . .
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are positive real constants which do not depend on ρ. To obtain the asymptotic for-
mulas for the eigenvalues of L(V ) corresponding to |γ|2 we use the binding formula
(see (9) in [3])

(ΛN − |γ|2)〈ΨN ,Φγ,j〉 = 〈ΨN , V Φγ,j〉. (10)

Now, we decompose V (x)Φγ,j(x) with respect to the basis {Φγ′,i(x)}γ′∈Γ
2 ,i=1,2,...,m.

By definition of Φγ,j(x), it is obvious that

V (x)Φγ,j(x) = (v1j(x)uγ(x), . . . , vmj(x)uγ(x)). (11)

Substituting the decomposition (7) of vij(x) in (11), we get

V (x)Φγ,j(x) = (
∑

γ′∈Γ(ρα)

v1jγ′uγ′(x)uγ(x), . . . ,
∑

γ′∈Γ(ρα)

vmjγ′uγ′(x)uγ(x))+O(ρ−pα).

Since γ does not belong to the domains Vek(ρα1), for each k = 1, 2, ...d, we may
use the following equation∑

γ′∈Γ(ρα)

vijγ′uγ′(x)uγ(x) =
∑

γ′∈Γ(ρα)

vijγ′uγ−γ′(x)

which is proved in [9] (see equation (18) in [9]), and obtain

V (x)Φγ,j(x) = (
∑

γ′∈Γ(ρα)

v1jγ′uγ−γ′(x), . . . ,
∑

γ′∈Γ(ρα)

vmjγ′uγ−γ′(x)) +O(ρ−pα)

=

m∑
i=1

∑
γ′∈Γ(ρα)

vijγ′Φγ−γ′,i(x) +O(ρ−pα). (12)

Substituting (12) into (10), we obtain

< ΨN ,Φγ,j > =
< ΨN , V Φγ,j >

(ΛN− | γ |2)

=

m∑
i=1

∑
γ′∈Γ(ρα)

vijγ′
< ΨN ,Φγ−γ′,i >

(ΛN− | γ |2)
+O(ρ−pα) (13)

for every vector γ ∈ Γ
2 , satisfying the condition

| ΛN− | γ |2|>
1

2
ρα1 .

Letting p1 = [p+1
2 ], that is, p1 is the integer part of

p+1
2 , we define the following

sets

Bk(γ1, γ2, . . . , γk) = {b : b =

k∑
i=1

niγi, ni ∈ Z, |b| <
1

2
ρ

1
2αk+1},

Bk(γ) = γ +Bk(γ1, γ2, . . . , γk) = {γ + b : b ∈ Bk(γ1, γ2, . . . , γk)},
Bk(γ, p1) = Bk(γ) + Γ(p1ρ

α).
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Let hτ , τ = 1, 2, . . . , bk denote the vectors of Bk(γ, p1), bk the number of the
vectors in Bk(γ, p1). By its definition, it can easily be obtained that bk = O(ρ

d
2 3dα),

since αk = 3kα, 2 ≤ k ≤ d. We define the mbk ×mbk matrix C = C(γ, γ1, . . . , γk)
by

C =


|h1|2I − V0 Vh1−h2 · · · Vh1−hbk
Vh2−h1

|h2|2I − V0 · · · Vh2−hbk
...

Vhbk−h1 Vhbk−h2 · · · |hbk |2I − V0

 , (14)

where Vhτ−hξ , τ , ξ = 1, 2, . . . , bk are the m×m matrices defined by

Vhτ−hξ =


v11hτ−hξ v12hτ−hξ · · · v1mhτ−hξ
v21hτ−hξ v22hτ−hξ · · · v2mhτ−hξ

...
vm1hτ−hξ vm2hτ−hξ · · · vmmhτ−hξ

 . (15)

Writing equation (13) for all hτ ∈ Bk(γ, p1), τ = 1, 2, . . . , bk and j = 1, 2, . . . ,m,
we get

(ΛN − |hτ |2) < ΨN ,Φhτ ,j >=

m∑
i=1

∑
γ′∈Γ(ρα)

vijγ′ < ΨN ,Φhτ−γ′,i > +O(ρ−pα). (16)

Similar system of equations for quasi-periodic boundary condition was investigated
in [19], [21] and [22]. More recently, in [22], Lemma 2.2.1. states that for γ ∈

(
k⋂
i=1

Vγi(ρ
αk)) \ Ek+1, hτ ∈ Bk(γ, p1) and γ′, γ1, γ2, . . . , γs ∈ Γ(ρα), if hτ − γ′ /∈

Bk(γ, p1) then

||γ|2 − |hτ − γ′ − γ1 − . . .− γs|2 |>
1

5
ραk+1 , (17)

for s = 0, 1, 2, . . . , p1 − 1.
Thus, if an eigenvalue ΛN of L(V ) satisfies

|ΛN − |γ|2| <
1

2
ρα1 , (18)

then by (17) and (18), we have

|ΛN − |hτ − γ′ − γ1 − . . .− γs|2| >
1

6
ραk+1 . (19)

Now, we prove that if (18) holds then

O(ρ−pα) =

m∑
i=1

∑
γ′∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vijγ′ < ΨN ,Φhτ−γ′,i > (20)
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for any j = 1, 2, . . . ,m. Here we remark that γ′ 6= 0. If it were the case, then we
would have from hτ − γ′ /∈ Bk(γ, p1) that hτ /∈ Bk(γ, p1) which is a contradiction.
So, to prove (20), we argue as Theorem 2.2.2 (a) of [22]: Since ΛN satisfies the
inequality (18), by (19) (for s = 0) we have | ΛN− | hτ − γ′ |2|> 1

6ρ
αk+1 . Using

this, in the equation (13) instead of γ we write hτ − γ′ to get

< ΨN ,Φhτ−γ′,j >=

m∑
i1=1

∑
γ1∈Γ(ρα)

vijγ1

< ΨN ,Φhτ−γ′−γ1,i1 >

(ΛN− | hτ − γ′ |2)
+O(ρ−pα). (21)

Substituting this equation (21) into the right hand side of (20), we obtain∑
γ′∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vijγ′ < ΨN ,Φhτ−γ′,i > =

∑
γ′∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vijγ′
ΛN− | hτ − γ′ |2

m∑
i1=1

∑
γ1∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vi1iγ1
< ΨN ,Φhτ−γ′−γ1,i1 >

+O(ρ−pα).

In this manner, iterating p1 times, we get∑
γ′∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vijγ′ < ΨN ,Φhτ−γ′,i >=

m∑
i1,i2,...,ip1

=1

∑
γ′,γ1,γ2,...,γp1

∈Γ(ρα)

hτ−γ′/∈Bk(γ,p1)

vijγ′vi1iγ1
. . . vip1

ip1−1γp1
< ΨN ,Φhτ−γ′−γ1−···−γp1

,ip1
>

(ΛN− | hτ − γ′ |2)(ΛN− | hτ − γ′ − γ1 |2) . . . (ΛN− | hτ − γ′ − γ1 − · · · − γp1−1 |2)

+O(ρ−pα).

Taking norm of both sides of the last equality, using (19), the relation (8) and the
fact that p1αk+1 ≥ p1α2 > pα, we obtain

|
∑

γ′∈Γ(ρα)
hτ−γ′/∈Bk(γ,p1)

vijγ′ < ΨN ,Φhτ−γ′,i >|= O(ρ−pα),

which implies (20). Therefore, the equation (16) becomes

(ΛN − |hτ |2) < ΨN ,Φhτ ,j >=

m∑
i=1

∑
γ′∈Γ(ρα)

hτ−γ′∈Bk(γ,p1)

vijγ′ < ΨN ,Φhτ−γ′,i > +O(ρ−pα).

(22)
Since hτ − γ′ ∈ Bk(γ, p1), using the notation hξ = hτ − γ′, the decomposition

(22) can be written as

(ΛN − |hτ |2) < ΨN ,Φhτ ,j >=

m∑
i=1

∑
hτ−hξ∈Γ(ρα)

vijhτ−hξ < ΨN ,Φhξ,i > +O(ρ−pα).

(23)
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Isolating the terms where hτ − hξ = 0 in (23), we get

(ΛN − |hτ |2) < ΨN ,Φhτ ,j > =

m∑
i=1

vij0 < ΨN ,Φhτ ,i >

+

m∑
i=1

∑
hτ−hξ∈Γ(ρα)

hτ−hξ 6=0

vijhτ−hξ < ΨN ,Φhξ,i >

+ O(ρ−pα). (24)

Writing the equation (24) for all j = 1, 2, . . . ,m and for any τ = 1, 2, . . . , bk, ,
we get the system of equations

[(ΛN − |hτ |2)I − V0]A(N,hτ ) =

bk∑
ξ=1
ξ 6=τ

Vhτ−hξA(N,hξ) +O(ρ−pα), (25)

where I is an m×m identity matrix, Vhτ−hξ is given by (15),

O(ρ−pα) = (O(ρ−pα), . . . , O(ρ−pα))

is an m× 1 vector and A(N,hξ) is the m× 1 vector

A(N,hξ) = (< ΨN ,Φhξ,1 >,< ΨN ,Φhξ,2 >, . . . , < ΨN ,Φhξ,m >) (26)

for any ξ = 1, 2, . . . , bk. Letting λN,τ = ΛN − |hτ |2, we have
λN,1,I − V0 −Vh1−h2 · · · −Vh1−hbk
−Vh2−h1

λN,2I − V0 · · · −Vh2−hbk
...

−Vhbk−h1
−Vhbk−h2

· · · λN,bkI − V0




A(N,h1)
A(N,h2)

...
A(N,hbk)

 =


O(ρ−pα)
O(ρ−pα)

...
O(ρ−pα),

 .
(27)

We may write the system (27) as

[ΛNI − C]A(N,h1, h2, . . . , hbk) = O(ρ−pα), (28)

where I is an mbk ×mbk identity matrix, C is given by (14), A(N,h1, h2, . . . , hbk)
is the mbk × 1 vector

A(N,h1, h2, . . . , hbk) = (A(N,h1), A(N,h2), . . . , A(N,hbk)) (29)

and the right side of the system (28) is the mbk × 1 vector whose norm is

|O(ρ−pα)| = O(
√
bkρ
−pα). (30)

Theorem 1. Let | γ |2 be a resonance eigenvalue of the operator L(0), that is,

γ ∈ (
k⋂
i=1

Vγi(ρ
αk)) \Ek+1, k = 1, 2, . . . , d− 1 where | γ |∼ ρ, and ΛN an eigenvalue
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of the operator L(V ) for which (18) holds and its corresponding eigenfunction ΨN

satisfies
|< Φγ,j ,ΨN >|> c4ρ

−cα. (31)

Then there exists an eigenvalue ηs(γ), 1 ≤ s ≤ mbk of the matrix C such that

ΛN = ηs(γ) +O(ρ−(p−c− d4 3d)α).

Proof. Since (18) is satisfied, (28) holds. Then multiplying both sides of the equa-
tion (28) by [ΛNI − C]−1, then taking norm of both sides and by (30), we get

|A(N,h1, h2, . . . , hbk)| ≤‖ [ΛNI − C]−1 ‖ O(
√
bkρ
−pα). (32)

Using the fact that γ is one of h1, h2, . . . , hτ (See definition of Bk(γ, p1)) and hence
by (31) and (32), we obtain

c5ρ
−cα < |A(N,h1, h2, . . . , hbk)| ≤‖ [ΛNI − C]−1 ‖

√
bkc6ρ

−pα.

Since [ΛNI−C]−1 is symmetric matrix with the eigenvalues 1
ΛN−ηs(γ) , s = 1, . . . ,mbk,

we have

max
s=1,...,mbk

|ΛN − ηs(γ)|−1 =‖ [ΛNI − C]−1 ‖> c7c
−1
8 b
− 1

2

k ρ−cα+pα,

where bk = O(ρ
d
2 3dα), thus

min
s=1,2,...,mbk

| ΛN − ηs(γ, λi) |≤ c9ρ−(p−c− d4 3d)α,

and
ΛN = ηs(γ, λi) +O(ρ−(p−c− d4 3d)α).

�

Theorem 2. Let |γ|2 be a resonance eigenvalue of the operator L(0), that is, γ ∈

(
k⋂
i=1

Vγi(ρ
αk)) \ Ek+1, k = 1, 2, . . . , d− 1 where |γ| ∼ ρ, ηs(γ) an eigenvalue of the

matrix C such that |ηs(γ) − |γ|2| < 3
8ρ
α1 . Then there is an eigenvalue ΛN of the

operator L(V ) satisfying

ΛN = ηs(γ) +O(ρ−pα+ d
4 3dα+ d−1

2 ). (33)

Proof. By the general perturbation theory, there is an eigenvalue ΛN of the operator
L(V ) such that |ΛN − |γ|2| < 1

2ρ
2α1 holds. Thus one can use the system (28) and

we prove the theorem for this eigenvalue ΛN :
Let ηs, s = 1, 2, . . . ,mbk be an eigenvalue of the matrix C and

θs = (θ1
s, θ

2
s, . . . , θ

bk
s )mbk×1 the corresponding normalized eigenvector, where

θτs = (θτ1
s , θ

τ2
s , . . . , θ

τm
s )m×1, τ = 1, 2, . . . , bk. Multiplying the equation (28) by θs,

since C is symmetric (see (14) and (15)), we get

|ΛN − ηs||A(N,h1, h2, . . . , hbk) · θs| = |O(ρ−pα) · θs|. (34)
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By using bk = O(ρ
d
2 3dα), (30) and the Cauchy Schwartz Inequality for the right

hand side of (34), we have

|ΛN − ηs||A(N,h1, h2, . . . , hbk) · θs| = O(ρ−pα+ d
4 3dα). (35)

So we need to prove that

|A(N,h1, h2, . . . , hbk) · θs| > c10ρ
− d−1

2 , (36)

from which the theorem follows.
For this purpose,we first consider the decomposition of the matrix C as C =

A+B, where

A =


|h1|2I 0

. . .
0 |hbk |2I

 , B =


V0 Vh1−h2 · · · Vh1−hbk

Vh2−h1
V0 · · · Vh2−hbk

...
. . .

...
Vhbk−h1 Vhbk−h2 · · · V0

 .
(37)

The eigenvalues and the corresponding eigenspaces of the matrix A are |hτ |2 and
Eτ = span{ej : (τ − 1)m+ 1 ≤ j ≤ τm}, respectively, where

{ej = (0, . . . , 0, 1, 0, . . . , 0)}mbkj=1

is the standard basis of Rmbk . Now, we use the following notation

θs(hτ,j) ≡ θs · ej = θτjs , if (τ − 1)m+ 1 ≤ j ≤ τm, (38)

for τ = 1, 2, · · · , bk.
Multiplying (A+B)θs = ηsθs by ej , since A and B are symmetric, we get

(ηs − |hτ |2)θs(hτ,j) = θs ·Bej (39)

and (τ − 1)m+ 1 ≤ j ≤ τm, and τ = 1, 2, · · · , bk.
On the other hand, if we consider the sum of the elements in the i-th row of the

matrix B, by (8)
bk∑
τ=1
τ 6=i

m∑
j=1

vijhi−hτ <

m∑
j=1

Mij , (40)

for all i = 1, 2, . . . ,m. Since B is a symmetric matrix and by (40), the sum of

elements in each row of B is less then M = max
i=1,2,...,m

{
m∑
j=1

Mij}, the eigenvalues of

B are also less then M from which we have ‖ B ‖≤M .
Thus, by (26), (36), (38), we have

|A(N,h1, . . . , hbk) · θs| = |〈ψN ,
bk∑
τ=1

m∑
j=1

θs(hτ,j)φhτ,j 〉|, (41)
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which, together with Parseval’s relation, imply

1 = ‖
bk∑
τ=1

m∑
i=1

θs(hτ,i)Φhτ ,i ‖2

=
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

|
bk∑
τ=1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2

+
∑

N :|ΛN−|γ|2|< 1
2ρ

2α1

|
bk∑
τ=1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2. (42)

Now we estimate the first summation in the expression (42):∑
N :|ΛN−|γ|2|≥ 1

2ρ
2α1

|
bk∑
τ=1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2

=
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i >

+
∑

τ :|ηs−|hτ |2|≥ 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2

< 2
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2

+ 2
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

|
∑

τ :|ηs−|hτ |2|≥ 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2. (43)

Using Bessel’s inequality, Parseval’s relation, orthogonality of the functions Φhτ ,i(x),
τ = 1, 2, . . . , bk, i = 1, 2, . . . ,m, the binding formula (39) and ‖ B ‖≤M , we have∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

|
∑

τ :|ηs−|hτ |2|≥ 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2

6 ‖
∑

τ :|ηs−|hτ |2|≥ 1
8ρ
α1

m∑
i=1

θs(hτ,i)Φhτ ,i ‖2

=
∑

τ :|ηs−|hτ |2|≥ 1
8ρ
α1

m∑
i=1

|θs(hτ,i)|2 ‖ Φhτ ,i ‖2

=
∑

τ :|ηs−|hτ |2|≥ 1
8ρ
α1

m∑
i=1

|θs ·Bei|2
|ηs − |hτ |2|2

= O(ρ−2α1). (44)
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The assumption |ηs− |γ|2| < 3
8ρ
α1 of the theorem and |ηs− |hτ |2| < 1

8ρ
α1 imply

that ||γ|2 − |hτ |2| < 1
2ρ
α1 . So by the well-known formula

1

ΛN − |hτ |2
=

1

ΛN − |γ|2
{
k∑

n=0

(
|hτ |2 − |γ|2
ΛN − |γ|2

)n +O(ρ−(k+1)α1)},

for |ΛN − |γ|2| ≥ 1
2ρ

2α1 , and ||γ|2 − |hτ |2| < 1
2ρ

2α1 , using (39), we have

∑
N :|ΛN−|γ|2|≥ 1

2ρ
2α1

|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2

=
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i)
< ΨN , V Φhτ ,i >

ΛN − |hτ |2
|2

≤
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

(k + 1)|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN , V Φhτ ,i >

ΛN − |γ|2
|2

+
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

(k + 1)|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN , V Φhτ ,i >

ΛN − |γ|2
|hτ |2 − |γ|2
ΛN − |γ|2

|2

...

+
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

(k + 1)|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN , V Φhτ ,i >

ΛN − |γ|2
[
|hτ |2 − |γ|2
ΛN − |γ|2

]k|2

+
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

(k+1)|
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN , V Φhτ ,i > O(ρ−(k+1)α1)|2.

(45)
To calculate the order of each term in (44), we use Bessel’s inequality and the
orthogonality of Φhτ ,i. So we have

2
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

(k + 1)

×

∣∣∣∣∣∣
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN , V Φhτ ,i >
(|hτ |2 − |γ|2)r

(ΛN − |γ|2)r+1

∣∣∣∣∣∣
2

= 2
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

(k + 1)

|ΛN − |γ|2|2(r+1)
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×

∣∣∣∣∣∣
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN , V Φhτ ,i > (|hτ |2 − |γ|2)r

∣∣∣∣∣∣
2

≤ c11(ρ2α1)−2(r+1)(k + 1)

×
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

∣∣∣∣∣∣< ΨN ,
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i)(|hτ |2 − |γ|2)rV Φhτ ,i >

∣∣∣∣∣∣
2

≤ c12(ρ2α1)−2(r+1)(k + 1)

∥∥∥∥∥∥
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i)(|hτ |2 − |γ|2)rV Φhτ ,i

∥∥∥∥∥∥
2

≤ c13(ρ2α1)−2(r+1)(k + 1)

 ∑
τ :|ηs−|hτ |2|< 1

8ρ
α1

m∑
i=1

∥∥θs(hτ,i)(|hτ |2 − |γ|2)rV Φhτ ,i
∥∥2

= c14(ρ2α1)−2(r+1)(k + 1)

 ∑
τ :|ηs−|hτ |2|< 1

8ρ
α1

m∑
i=1

|θs(hτ,i)|||hτ |2 − |γ|2|r ‖ V Φhτ ,i ‖

2

≤ c15(ρ2α1)−2(r+1)(
1

2
ρα1)2r(k+1)(

∑
τ :|ηs−|hτ |2|< 1

8ρ
α1

m∑
i=1

‖ V Φhτ ,i ‖)2 = O(ρ−2(r+1)α1),

(46)
for r = 0, 1, 2, . . . , k. Now let K be the number of hτ satisfying |ηs − |hτ |2| <

1
8ρ
α1 , then the order of the last summation in (46) is:

∑
N :|ΛN−|γ|2|≥ 1

2ρ
2α1

(k + 1)

×

∣∣∣∣∣∣
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

m∑
i=1

θs(hτ,i) < ΨN , V Φhτ ,i > O(ρ−(k+1)α1)

∣∣∣∣∣∣
2

≤ K
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

(k + 1)

×
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

|O(ρ−(k+1)α1)|2 · |θs(hτ,i)|2 · | < ΨN , V Φhτ ,i > |2

≤ c16 ·K · ρ−2(k+1)α1 ·
∑

τ :|ηs−|hτ |2|< 1
8ρ
α1

‖ V (x)Φhτ ,i ‖2

≤ c17 ·K2 ·M2 · ρ−2(k+1)α1 = K2 · 0(ρ−2(k+1)α1) = O(ρ−2α1),
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since K = O(ρ
d
2αd) and we can always choose k in O(ρ−2(k+1)α1) such that

K2 ·O(ρ−2(k+1)α1) = O(ρ−2α1), (47)

which together with the estimations (44), , (45) and (46) imply

O(ρ−2α1) =
∑

N :|ΛN−|γ|2|≥ 1
2ρ

2α1

|
bk∑
τ=1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2.

Therefore, from the decomposition (42) we have

1−O(ρ−2α1) =
∑

N :|ΛN−|γ|2|< 1
2ρ

2α1

|
bk∑
τ=1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2.

Since the number of indexes N satisfying |ΛN − |γ|2| < 1
2ρ

2α1 is less then ρd−1, we
have

1−O(ρ−2α1) ≤ ρd−1 max
N :|ΛN−|γ|2|< 1

2ρ
2α1

{
|
bk∑
τ=1

m∑
i=1

θs(hτ,i) < ΨN ,Φhτ ,i > |2
}

which implies together with the relation (41) that

|A(N,h1, h2, . . . , hbk) · θs|2 ≥
1−O(ρ−2α1)

ρd−1
. (48)

It follows from the equation (35) and the estimation (48) that

ΛN = ηs +
O(ρ−pα+ d

4 3dα)

O(ρ−
d−1

2 )
,

that is, (36) holds. �

3. Asymptotic Formulas for the Eigenvalues in a
Single Resonance Domain

Now, we investigate in detail the eigenvalues of L(V ) in a single resonance do-
main. In order the inequalities

0 < α <
1

d+ 20
, 2α2 − α1 + (d+ 3)α < 1 (49)

and

α2 > 2α1, (50)

to be satisfied, we can choose α, α1 and α2 as follows

α =
1

d+ p
, α1 =

p2

d+ p
, α2 =

2p2 + 1

d+ p
,
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where p2 = [p−5
3 ]− 1. Let γ ∈ Vδ(ρα1) \ E2, δ ∈ Γ

2 \{ei}, where δ is minimal in its
direction. Consider the following sets :

B1(δ) = {b : b = nδ , n ∈ Z , |b| < 1

2
ρ

1
2α2},

B1(γ) = γ +B1(δ) = {γ + b : b ∈ B1(δ)},
B1(γ, p1) = B1(γ) + Γ(p1ρ

α).

As before, denote by hτ , τ = 1, 2, ..., b1 the vectors of B1(γ, p1), where b1 is the
number of vectors in B1(γ, p1). Then the matrix C(γ, δ) = (cij), i, j = 1, 2, . . . ,mb1
is defined by

C(γ, δ) =


|h1|2I − V0 Vh1−h2 · · · Vh1−hb1
Vh2−h1

|h2|2I − V0 · · · Vh2−hb1
...

Vhb1−h1
Vhb1−h2

· · · |hb1 |2I − V0

 , (51)

where Vhτ−hξ , τ , ξ = 1, 2, . . . , b1 are the m×m matrices defined by (15).
Also we define the matrix D(γ, δ) = (cij) for i, j = 1, 2, ...,ma1, where h1, h2, ..., ha1

are the vectors of B1(γ, p1)
⋂
{γ + nδ : n ∈ Z}, and a1 is the number of vectors in

B1(γ, p1)
⋂
{γ + nδ : n ∈ Z}. Clearly a1 = O(ρ

1
2α2).

Lemma 3. a) If ηjs is an eigenvalue of the matrix C(γ, δ) such that |ηjs−|hs|
2| <

M for s = 1, 2, ..., a1, 1 + (s− 1)m ≤ js ≤ ms, then

|ηjs − |hτ |
2| > 1

4
ρα2 , ∀τ = a1 + 1, a1 + 2, ..., b1.

b) If ηjs is an eigenvalue of the matrix C(γ, δ) such that |ηjs − |hs|
2| < M for

s = a1 + 1, a1 + 2, ..., b1 and 1 + (s− 1)m ≤ js ≤ ms, then

|ηjs − |hτ |
2| > 1

4
ρα2 , ∀τ = 1, 2, ..., a1.

Proof. First we prove

||hτ |2 − |hs|2| ≥
1

3
ρα2 , ∀s ≤ a1, ∀τ > a1. (52)

By definition, if s ≤ a1 then hs = γ + nδ, where |nδ| < 1
2ρ

1
2α2 + p1ρ

α. If τ > a1

then hτ = γ + s
′
δ + a, where |s′δ| < 1

2ρ
1
2α2 , a ∈ Γ(p1ρ

α) \ δR. Therefore

|hτ |2 − |hs|2 = 2γ · a+ 2s
′
δ · a+ 2s

′
γ · δ + |s

′
δ|2 + |a|2 − 2nγ · δ − |nδ|2.

Since γ /∈ Va(ρα2), |a| < p1ρ
α, we have

|2γ · a| > ρα2 − c0ρ2α.

The relation γ ∈ Vδ(ρα1) and the inequalities for s
′
and n imply that

2s
′
γ · δ + 2s

′
γ · a+ |a|2 − 2nγ · δ = O(ρ

1
2α2+α1),
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||s
′
δ|2 − |nδ|2| <

1

4
ρα2 + c0ρ

1
2α2+α.

Thus (52) follows from these relations, since 1
2α2 + α1 < α2 and 1

2α2 + α < α2.
The eigenvalues of D(γ, δ) and C(γ, δ) lay in M -neighborhood of the numbers

|hk|2 for k = 1, 2, ..., a1 and for k = 1, 2, ..., b1, respectively. The inequality (52)
shows that one can enumerate the eigenvalues ηj (j = 1, 2, . . . ,mb1) of C in the
following way:

ηj ≡ ηjs , js ≤ ma1, 1 + (s− 1)m ≤ js ≤ sm

when for s ≤ a1, ηj lay in M-neighborhood of |hs|2 and

ηj ≡ ηjτ , jτ ≥ ma1, 1 + (τ − 1)m ≤ jτ ≤ τm

when for τ > a1, ηj lay in M-neighborhood |hτ |2. Then by (52), we get

|ηjs − |hτ |
2| > 1

4
ρα2 , (53)

for s ≤ a1, τ > a1 and s > a1, τ ≤ a1. �

Now, using the notation hs = γ − ( s2 )δ if s is even, hs = γ + ( s−1
2 )δ if s is odd,

for s = 1, 2, ..., a1, (without loss of generality assume that a1 is even) and using the
orthogonal decomposition of γ ∈ Γ

2 , γ = β+ (l+ v(β))δ, where β ∈ Hδ ≡ {x ∈ Rd :
x · δ = 0}, l ∈ Z, v ∈ [0, 1) we can write the matrix D(γ, δ) as

D(γ, δ) = |β|2I + E(γ, δ), (54)

where I is a maximal identity matrix and E(γ, δ) is

E(γ, δ) =



(
(l + v)2|δ|2

)
I + V0 Vδ V−δ · · · Va1

2
δ

V−δ
(
(l − 1 + v)2|δ|2

)
I + V0 V−2δ · · · V( a1

2
−1
)
δ

Vδ V2δ

(
(l + 1 + v)2|δ|2

)
I + V0 . . . V( a1

2
+1
)
δ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

V
− a1

2
δ

· · . . .
(
(l − a1

2
+ v)2|δ|2

)
I + V 0


Denote nk = −k2 if k is even, nk = k−1

2 if k is odd. The system
{ei(nk+v)t : k = 1, 2, ...} is a basis in Lm2 [0, 2π]. Let T (γ, δ) ≡ T (P (t), β) be the
operator in `2 corresponding to the Sturm-Liouville operator T , generated by

− |δ|2Y ′′(t) + P (t)Y (t) = µY (t), (55)

Y (t+ 2π) = ei2πv(β)Y (t),

where P (t) = (pij(t)), pij(t) =
∞∑
k=1

vijnkδe
inkt, vijnkδ = (vij(x), 1

|Ankδ|
∑

α∈Ankδ
ei(α·x)),

t = x · δ. It means that T (γ, δ) is the infinite matrix (Tei(l+nk+v)t, ei(l+nm+v)t),
k,m = 1, 2, . . . .
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To find the relation between the eigenvalues of L(V ) in a single resonance domain
and the eigenvalues of the Sturm-Liouville operators defined by (55), we need the
following theorems.

Theorem 4. Let γ ∈ Vδ(ρα1) \E2 and |γ| ∼ ρ. Then, for any eigenvalue ηjs(γ) of
the matrix C(γ, δ) satisfying

|ηjs − |hs|
2| < M, 1 + (s− 1)m ≤ js ≤ sm, s = 1, 2, ..., a1 (56)

there exists an eigenvalue η̃k(js) of the matrix D(γ, δ) such that

ηjs = η̃k(js) +O(ρ−
3
4α2).

Proof. Let ηjs be an eigenvalue of the matrix C(γ, δ) satisfying (56) and θjs =

(θ1
js , θ

2
js , ..., θ

b1
js

)mb1×1 be the corresponding normalized eigenvector, |θjs | = 1. Now,
we consider the decomposition C = A+B and the matrices A, B which are defined
in (37). Writing the binding formula (39) for ηjs and using (38), we get

(ηjs − |hτ |
2)θjs(hτ,i) = θjs ·Bei, (57)

τ = 1, 2, . . . , b1, 1 + (τ − 1)m ≤ i ≤ τm.
For simplicity, we use the following notation in the sequel:

eζ,k = ek if 1 + (ζ − 1)m ≤ k ≤ ζm, ζ = 1, . . . , b1,

Bei · ek1
= Beτ,i · eξ,k1

= b(τ , i, ξ, k1).

Thus, substituting the orthogonal decomposition

Bei = Beτ,i =
∑

ξ=1,2,...,b1
1+(m−1)ξ≤k1≤mξ

b(τ , i, ξ, k1)eξ,k1

into the formula (57), we get

(ηjs − |hτ |
2)θjs(hτ,i) = θjs ·

∑
ξ=1,2,...,b1

1+(m−1)ξ≤k1≤mξ

b(τ , i, ξ, k1)eξ,k1

=
∑

ξ=1,2,...,b1
1+(m−1)ξ≤k1≤mξ

b(τ , i, ξ, k1)θjs · eξ,k1

=
∑

ξ=1,2,...,b1
1+(m−1)ξ≤k1≤mξ

b(τ , i, ξ, k1)θjs(hξ, k1).

It is clear that

b(τ , i, ξ, k1) =

{
0 if ξ = τ ,
vk1ihξ−hτ if ξ 6= τ ,

which implies ∑
ξ=1,2,...,b1

1+(m−1)ξ≤k1≤mξ

b(τ , i, ξ, k1) =
∑

ξ=1,2,...,b1

v k1ihξ−hτ
.
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Thus one has

(ηjs − |hτ |
2)θjs(hτ , i) =

∑
ξ=1,2,...,b1

v k1ihξ−hτ
θjs(hξ, k1)

=
∑

ξ=1,2,...,a1

v k1ihξ−hτ
θjs(hξ, k1)

+
∑

ξ=a1+1,...,b1

v k1ihξ−hτ
θjs(hξ, k1). (58)

Now, writing the equation (58) for all hτ , τ = 1, 2, ..., a1, we get the system of
linear algebraic equations:

(ηjs − |h1|2)θjs(h1, i)−
∑

ξ=1,2,...,a1

v k1ihξ−h1

θjs(hξ, k1)

=
∑

ξ=a1+1,...,b1

v k1ihξ−h1

θjs(hξ, k1)

(ηjs − |h2|2)θjs(h2, i)−
∑

ξ=1,2,...,a1

v k1ihξ−h2

θjs(hξ, k1)

=
∑

ξ=a1+1,...,b1

v k1ihξ−h2

θjs(hξ, k1)

...

(ηjs − |ha1
|2)θjs(ha1

, i)−
∑

ξ=1,2,...,a1

v k1ihξ−ha1

θjs(hξ, k1)

=
∑

ξ=a1+1,...,b1

v k1ihξ−ha1

θjs(hξ, k1) (59)

Using the binding formula (57), the relation (53), and ‖ B ‖≤ M, for any τ =
1, 2, . . . , a1, we find

|
∑

ξ=a1+1,...,b1
k1=1,2,...,m

ξ 6=τ

vk1ihξ−hτ θjs(hξ, k1)| = |
∑

ξ=a1+1,...,b1
k1=1,2,...,m

ξ 6=τ

vk1ihξ−hτ
θjs ·Beξ,k1

(ηjs − |hξ|2)
|

≤
∑

ξ=a1+1,...,b1
k1=1,2,...,m

ξ 6=τ

|vk1ihξ−hτ |
|θjs |‖B‖|eξ,k1 |
(ηjs − |hξ|2)

≤ 4ρ−α2M
∑

ξ=a1+1,...,b1
k1=1,2,...,m

ξ 6=τ

|vk1ihξ−hτ |

≤ 4ρ−α2M2

= O(ρ−α2) (60)
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and

∑
τ=a1+1,...,b1
i=1,2,...,m

|θjs(hτ , i)|2 =
∑

τ=a1+1,...,b1
i=1,2,...,m

∣∣∣∣ θjs ·Beτ,i(ηjs − |hτ |2)

∣∣∣∣2

=
∑

τ=a1+1,...,b1
i=1,2,...,m

|Bθjs · eτ,i|2
(ηjs − |hτ |2)2

≤ 16M2ρ−2α2

= O(ρ−2α2). (61)

By (60) and (54), (59) becomes

[θ1
js , θ

2
js , . . . , θ

a1
js

]t = (D(γ, δ)− ηjsI)−1[O(ρ−α2), O(ρ−α2), ..., O(ρ−α2)]t. (62)

By the Parseval’s identity and (61), we get∑
τ=1,2,...,a1
i=1,2,...,m

|θjs(hτ , i)|2 =
∑

τ=1,2,...,b1
i=1,2,...,m

|θjs(hτ , i)|2 −
∑

τ=a1+1,...,b1
i=1,2,...,m

|θjs(hτ , i)|2

≥ 1−O(ρ−2α2).

Now, taking norm of both sides in (62) and using the above inequality we have√
1−O(ρ−2α2) < (

∑
τ=1,2,...,a1
i=1,2,...,m

|θjs(hτ , i)|2)
1
2 ≤ ‖(D(γ, δ)− ηjsI)−1‖O(

√
a1ρ
−α2).

Thus

max|ηjs − η̃k(js)|
−1 >

√
1−O(ρ−2α2)
√
a1ρ−α2

,

or

min|ηjs − η̃k(js)| = O(
√
a1ρ
−α2) = O(ρ−

3
4α2),

where the maximum (minimum) is taken over all η̃k(js) , s = 1, 2, ..., a1. So the
result follows. �

Theorem 5. For any eigenvalue η̃τ of the matrix D(γ, δ), there exists an eigenvalue
ηjs(τ) of the matrix C(γ, δ) such that

ηjs(τ) = η̃τ +O(ρ−
1
2α2)
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Proof. Define the matrix D′ = D′(γ, δ) by

D
′

=



|h1|2I − V0 Vh1−h2
· · · Vh1−ha1

0 0 · · · 0

Vh2−h1
|h2|2I − V0 · · · Vh2−ha1

0 0 · · · 0

.

.

.
Vha1

−h1
Vha1

−h2
· · · |ha1

|2I − V0 0 0 · · · 0

0 0 · · · 0 |ha1+1|
2I 0 · · · 0

.

.

.

.

.

. · · ·
.
.
.

.

.

.
.
.
. · · · 0

0 0 · · · 0 0 0 |hb1−1|
2I 0

0 0 · · · 0 0 0 0 |hb1 |
2I



( 6 3 )

So that the spectrum of the matrix D′ is

spec(D′) = spec(D(γ, δ))
⋃
{|ha1+1|2, |ha1+2|2, ..., |hb1 |2}

≡ {η̃1, η̃2, ..., η̃ma1
, |ha1+1|2, |ha1+2|2, ..., |hb1 |2}.

Let us denote by Υτ = (Υ1
τ ,Υ

2
τ , ...,Υ

a1
τ , 0, ..., 0)mb1×1, Υi

τ = (Υi1
τ ,Υ

i2
τ , . . . ,Υ

im
τ )m×1

the normalized eigenvector corresponding to the τ -th eigenvalue of the matrix D′,
for τ = 1, 2, ...,ma1 and by {ek,i}i=1,2,··· ,m the eigenvector corresponding to the
k-th eigenvalue |hk|2 of D′, for k = a1 + 1, a1 + 2, ..., b1.
Now, using (62) from the previous theorem, we have

(D′ − ηjsI)[θ1
js , θ

2
js , . . . , θ

b1
js

]
t

= [(D(γ, δ)− ηjsI)[θ1
js , θ

2
js , . . . , θ

a1
js

]
t
, (|ha1+1|2 − ηjs)θ

a1+1
js

, ..., (|hb1 |2 − ηjs)θ
b1
js

]

= [O(ρ−α2), ..., O(ρ−α2), (|ha1+1|2 − ηjs)θ
a1+1
js

, ..., (|hb1 |2 − ηjs)θ
b1
js

].

Taking inner product of both sides of the last equality by Υτ for τ = 1, 2, ...,ma1,
using that D′ is symmetric and D′Υτ = η̃τΥτ we have

(ηjs(τ) − η̃τ )

a1∑
k=1

θkjs ·Υ
k
τ =

a1∑
k=1

O(ρ−α2)Υk
τ , (64)

For the right hand side of the equation (64) using the Cauchy-Schwarz inequality,
we get

|
a1∑
k=1

O(ρ−α2)Υk
τ | ≤

√√√√ a1∑
k=1

O(ρ−α2)2

√√√√ a1∑
k=1

|Υk
τ |2 ≤

√
a1(ρ−α2)2 = O(

√
a1ρ
−α2),

where a1 = O(ρ
1
2α2). Thus, the equation (64) can be written as

(ηjs(τ) − η̃τ )

a1∑
k=1

θkjs ·Υ
k
τ = O(ρ−

3
4α2). (65)
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In order to get the result, we need to show that for any τ = 1, 2, ...,ma1 there exists
θjs(τ) such that

|
a1∑
k=1

θkjs(τ) ·Υk
τ | = |θjs(τ) ·Υτ | >

√
1−O(ρ−

3
2α2)

ma1
> c18ρ

− 1
4α2 . (66)

For this, we consider the orthogonal decomposition Υτ =
mb1∑
s=1

(Υτ · θjs)θjs and the
Parseval’s identity

1 =

mb1∑
s=1

|Υτ · θjs |2 =

ma1∑
s=1

|Υτ · θjs |2 +

mb1∑
s=ma1+1

|Υτ · θjs |2.

First, let us show that

mb1∑
s=ma1+1

|Υτ · θjs |2 = O(ρ−
3
2α2). (67)

Using the decomposition Υτ =
∑

k=1,2...,a1
i=1,2,...,m

(Υτ ·ek,i)ek,i , the binding formula (57) for

C(γ, δ) and A, the relation (53), and the Bessel’s inequality we obtain the estimation

mb1∑
s=ma1+1

|Υτ · θjs |2

=

mb1∑
s=ma1+1

|(
∑

k=1,2,...,a1
i=1,2,...,m

Υki
τ ek,i) · θjs |2

=

mb1∑
s=ma1+1

|
∑

k=1,2,...,a1
i=1,2,...,m

Υki
τ (ek,i · θjs)|2 =

mb1∑
s=ma1+1

|
∑

k=1,2,...,a1
i=1,2,...,m

Υki
τ

θjs ·Bek,i
(ηjs − |hk|2)

|2

≤ 16

mb1∑
s=ma1+1

ρ−2α2(
∑

k=1,2,...,a1
i=1,2,...,m

|Υki
τ ||θjs ·Bek,i|)2

≤
mb1∑

s=ma1+1

16|a1|mρ−2α2

 ∑
k=1,2,...,a1
i=1,2,...,m

|Υki
τ |2|θjs ·Bek,i|2


≤ 16ρ−2α2 |a1|m

∑
k=1,2,...,a1
i=1,2,...,m

|Υki
τ |2

mb1∑
s=ma1+1

|θjsBek,i|2
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≤ 16ρ−2α2 |a1|m
∑

k=1,...,a1
i=1,2,...,m

|Υki
τ |2|Bek,i|2 ≤ 16ρ−2α2 |a1|mM2

∑
k=1,2,...,a1
i=1,2,...,m

|Υki
τ |2

≤ 16|a1|mρ−2α2M2 = O(ρ−
3
2α2).

Therefore one has
ma1∑
s=1

|Υτ · θjs |2 = 1−O(ρ−
3
2α2)

from which it follows that there exists an eigenvector θjs(τ) such that (66) holds.
Dividing both sides of (65) by (66) we get the result

ηjs(τ) = η̃τ +O(ρ−
1
2α2).

�

Theorem 6. For every eigenvalue ςs of the Sturm-Liouville operator T (γ, δ), there
exists an eigenvalue ς̃s of the matrix E(γ, δ) such that

ςs = ς̃s +O(ρ−
3
4α2).

Proof. Decompose the infinite matrix T (γ, δ) as T (γ, δ) = Ã+ B̃ where the matrix
Ã is defined by

Ã =



(
(l + v)2|δ|2

)
I + V0 0(

(l − 1 + v)2|δ|2
)
I + V0

. . .
0

(
(l − a1

2 + v)2|δ|2
)
I + V0


(68)

and B̃ = T (γ, δ)− Ã. Let ςs be an eigenvalue of T (γ, δ), and Θs = (Θ1
s,Θ

2
s,Θ

3
s, ...),

Θτ
s = (Θτ1

s , . . . ,Θ
τm
s ) be the corresponding normalized eigenvector, that is, TΘs =

ςsΘs. span{ei : (τ − 1)m + 1 ≤ i ≤ τm} is the eigenspace of the matrix Ã which
corresponds to the eigenvalue |(τ ′ + v)δ|2, where τ ′ = l− τ

2 if τ is even, τ
′ = l+ τ−1

2
if τ is odd, for τ = 1, 2, ... and {ei} is the standard basis for l2.
One can easily verify that(

ςs − |(τ ′ + v)δ|2
)

Θτ
s = Θs · B̃eτ,i, (69)

where eτ,i ≡ ei, if (m− 1)τ + 1 ≤ i ≤ mτ .
Using the orthogonal decomposition B̃eτ,i =

m∑
j=1

∞∑
k=1

(B̃eτ,i ·ek,j)ek,j , (69) reduces

to (
ςs − |(τ ′ + v)δ|2 − |vii0|2

)
Θτi
s =

m∑
j=1

∞∑
k=1

(B̃eτ,i · ek,j)Θkj
s
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and since B̃eτ,i · ek,j = vji(nk−nτ )δ for k 6= τ ,

(ςs − (τ ′ + v)δ2)Θτi
s −

m∑
j=1

a1∑
k=1

vji(nk−nτ )δΘ
kj
s =

m∑
j=1

∞∑
k=a1+1

vji(nk−nτ )δΘ
kj
s . (70)

Now take any eigenvalue ςs of T (γ, δ), satisfying
∣∣ςs − |(i′ + v)δ|2

∣∣ < sup|P (t)|
for s = 1, 2, ..., ma1

2 , where i′ = l − s
2 if s is even, i

′ = l + s−1
2 if s is odd. The

relations γ ∈ Vδ(ρα1) (δ 6= ei) and γ = β + (l + v)δ, β · δ = 0 imply

|2γ · δ + |δ|2| = |(l + v)|δ|2 + |δ|2| < ρα1 , |l| < c19ρ
α1 .

Therefore, using the definition of i′ and τ ′, we have

|(i′ + v)δ| < |a1δ|
4

+ c20ρ
α1

for s = 1, 2, ...a1

2 and

|(τ ′ + v)δ| > |a1δ|
2
− c21ρ

α1

for τ > a1. Since |a1| > c22ρ
α2
2 and α2 > 2α1, we have∣∣∣|(i′ + v)δ|2 − |(τ ′ + v)δ|2

∣∣∣ > c23ρ
α2 (71)

for s ≤ a1

2 , τ > a1, which implies∣∣ςs − |(τ ′ + v)| δ2
∣∣ = ||ςs − | |(i′ + v)δ|2 | − | |(τ ′ + v)| δ2| − | |(i′ + v)δ|2 || > c24ρ

α2 ,
(72)

for s = 1, 2, ...a1

2 , τ > a1.
Since B̃ corresponds to the operator P : Y → P (t)Y in Lm2 [0, 2π], which has

norm sup|P (t)| ≤ M. Using this, equation (69) and (72), we have for the right
hand side of (70) that

|
m∑
j=1

∞∑
k=a1+1

vij(nk−nτ )δΘ
kj
s | 6

m∑
j=1

∞∑
k=a1+1

|vij(nk−nτ )δ|
∣∣∣∣∣ Θs · B̃ekj
ςs − |(k′ + v)δ|2

∣∣∣∣∣
≤

m∑
j=1

∞∑
k=a1+1

|vij(nk−nτ )δ|
‖Θs‖‖B̃‖‖ekj‖
|ςs − |(k′ + v)δ|2| ≤Mρ−α2

m∑
j=1

∞∑
k=a1+1

|vij(nk−nτ )δ|

≤ c25ρ
−α2 , (73)

Therefore writing the equation (70) for all τ = 1, 2, ..., a1, and using (73) we get
the following system

(E(γ, δ)− ςsI)[Θ1
s,Θ

2
s, ...,Θ

a1
s ] = [O(ρ−α2), O(ρ−α2), ..., O(ρ−α2)], (74)
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where I is an ma1 ×ma1 identity matrix. Using Θs =
∞∑
τ=1

Θτ
seτ,i, the formula (69)

and the inequality (72), we have
∞∑

τ=a1+1

|Θτ
s |2 =

∞∑
τ=a1+1

| Θs · B̃eτ,i
ςs − |(τ ′ + v)δ|2 |

2 = O(ρ−2α2)

and thus
a1∑
τ=1

|Θτ
s |2 = 1−O(ρ−2α2). (75)

Multiplying both sides of (74) by (E(γ, δ)− ςsI)−1,

[Θ1
s,Θ

2
s, ...,Θ

a1
s ] = (E(γ, δ)− ςsI)−1[O(ρ−α2), ..., O(ρ−α2)],

then taking norm of both sides and using (75), we get√
1−O(ρ−2α2)

m
= ‖(E(γ, δ)− ςsI)−1‖O(

√
a1ρ
−α2)

or

min
τ
|ςs − ς̃τ | =

O(
√
a1ρ
−α2) ·

√
m√

1−O(ρ−2α2)
= O(ρ−

3
4α2),

where the minimum is taken over all eigenvalues ς̃τ of the matrix E(γ, δ). Thus,
the result follows. �
Theorem 7. (Main result) For every β ∈ Hδ , |β| ∼ ρ and for every eigenvalue
ςs(v(β)) of the Sturm-Liouville operator T (γ, δ), there is an eigenvalue ΛN of the
operator L(V ) satisfying

ΛN = |β|2 + ςs +O(ρ−
1
2α2).

Proof. From Theorem 6 and the definition of E(γ, δ), there exists an eigenvalue
η̃τ(s) of the matrix D(γ, δ), where γ has a decomposition γ = β + (τ + v(β))δ,

satisfying η̃τ(s) = |β|2 + ςs +O(ρ−
3
4α2). Therefore, the result follows from Theorem

5 and Theorem 2. �
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E-mail address : coskan.didem@gmail.com
ORCID Address: http://orcid.org/0000-0003-2358-198X



Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 69, Number 1, Pages 511—527 (2020)
DOI: 10.31801/cfsuasmas.527231
ISSN 1303—5991 E-ISSN 2618-6470

Available online: January 6, 2020

http://communications.science.ankara.edu.tr/index.php?series=A1

THE RELATIVELY OSCULATING DEVELOPABLE SURFACES
OF A SURFACE ALONG A DIRECTION CURVE

RASHAD A. ABDEL-BAKY AND YASIN ÜNLÜTÜRK

Abstract. We construct a developable surface tangent to a surface along a
curve on the surface. We call this surface as relatively osculating developable
surface. We choose the curve as the tangent normal direction curve on which
the new surface is formed in the Euclidean 3-space. We obtain some results
about the existence and uniqueness, and the singularities of relatively osculat-
ing developable surfaces. We also give two invariants of curves on a surface
which determine these singularities. We present two results for special curves
such as asymptotic line and line of curvature which are rulings of the relatively
osculating surface.

1. Introduction

One-parameter family of straight lines forms a surface called ruled surface in
Euclidean space. It has been an interesting subject that is studied from the end
of the 19th century until today. Applications of ruled surfaces have been exten-
sively performed to computer-aided geometric design (CAGD), design of surfaces,
technology of manufacture, simulation and rigid bodies [10],[11],[14].
Developable surfaces as a special kind of ruled surfaces are generally character-

ized by Gaussian curvature, that is, if Gaussian curvature of ruled surfaces becomes
vanishing, ruled surfaces can be mapped onto the plane surfaces without distortion
of curves: any curve from such a surface drawn onto the flat plane remains the
same. Although all developable surfaces are ruled ones, but all ruled surfaces are
not developable [11], [17]. Developable surfaces as a kind of ruled surfaces are clas-
sified into cylinders, cones or tangent surfaces of space curves [1], [3], [13], [14],
[18].
As well known, the inner metric of a surface determines the Gaussian curvature,

therefore all the lengths and angles on the surface remain invariant under bend-
ing. This feature is what makes developable surfaces important in manufacturing.
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Hence both ruled surfaces and developable surfaces have been paid attention in
engineering, architecture, and design, etc. [15], [16].
Based upon a curve in a surface in Euclidean 3-space, a surface has been con-

structed to be a developable surface tangent to the surface along the curve. This
geometric object has been said to be an osculating developable surface along the
curve [8]. It has been known that an osculating developable surface is a ruled sur-
face whose rulings are directed by the osculating Darboux vector field along the
curve [8].
Singularities of ruled surfaces were studied in the Euclidean 3-space R3 by Izu-

miya and Takeuchi [4]. Izumiya and Takeuchi, in their survey of ruled surfaces [5],
presented original results about curves in ruled surfaces in the Euclidean 3-space.
They studied curves on ruled surfaces by choosing curves as cylindirical helices and
Bertrand curves [6]. In their another paper [7], the notions of helices generalized
to slant helices and conical geodesic curves were defined in R3. Also the tangential
Darboux developable of a space curve was constructed and its singularities were
examined. Interesting results about a geometric invariant of space curve which
is closely regarded to singularities of the tangential Darboux developable of the
original curve given by Izumiya et al. [7].
The motivation of this study is based on the works of Izumiya and Otani [8],

and Hananoi and Izumiya [9]. In [8], the authors constructed osculating developable
surface along the curve in the surface by taking a developable surface tangent to
a surface forward a curve in the surface into consideration. Then they gave some
results such as the uniqueness and the singularities of such a surface.
In [9], Hananoi and Izumiya studied a developable surface which remains normal

to a surface along a curve on ruled surface. They had results such as the uniqueness
and the singularities of relatively osculating developable surfaces. Recently, Mark-
ina and Raffaelli examined the same topic in Rm+1. Taking a smooth curve γ in
an m−dimensional surface M in Rm+1, they gave some results about the existence
and uniqueness of a flat surface H having the same field of normal vectors as M
along γ [12].
The paper is organized as follows: the next two sections present some preliminar-

ies, and introductory relevant notation and terminology. In Sec. 3, new developable
surfaces which remain tangent to the base surface are constructed along a tangent
normal direction curve and some results such as invariants of Mo characterizing
contour generators of M are given. The existence and uniqueness of the surface
have been presented for these surfaces. We give two results for special curves such
as asymptotic line and line of curvature which are rulings of the relatively osculat-
ing surface. Finally, illustrative examples have been given for the base surface and
its osculating developable surface.
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2. Preliminaries

Some notions, formulas and conclusions for space curves, and ruled surfaces in
Euclidean 3-space R3 are presented in this section, so these basic information are
available in the textbooks on differential geometry (See for instance Refs. [5], [7],
[14]).
Let M be a regular surface in R3 and let α : I ⊆ R→M be a unit speed curve.

At each point on α = α(s), consider the following three vectors: the unit normal
vector e3(s) to the surface, the unit tangent vector e1= e1(s) to the curve and the
tangent normal vector e2= e3×e1. The vector e2 is tangent to the surface M ,
but normal to the curve α = α(s). Then we have an orthonormal frame {e1(s),
e2(s), e3(s)} along α, which is called the Darboux frame along α = α(s). Darboux
equations for this frame are given by: e′1

e
′

2

e
′

3

 =

 0 κg κn
−κg 0 τg
−κn −τg 0

 e1
e2
e3

 ,
or equivaently

e′1= Ωn×e1, e′2= Ωo×e2, e′1= Ωr×e3, (1)

where

Ωn = −κne2 + κge3, Ωr = τge1 + κge3, Ωo = τge1 − κne2, (2)

are said to be the normal, the rectifying, and the osculating Darboux vector fields
along α = α(s), respectively [5]. The functions κg(s), κn(s), τg(s) are entitled as
geodesic curvature, normal curvature, and geodesic torsion of α = α(s), respec-
tively [13]. In terms of these quantities, the geodesics, asymptotic lines, and line of
curvatures on a smooth surface can be determined, as loci along which κg(s) = 0,
κn = 0, and τg(s) = 0, respectively. The definitions of the spherical images of each
Darboux vector fields are as follows:

en(s) =
Ωn

‖ Ωn‖
=
−κne2 + κge3√

κ2g + κ2n

, if (κn,κg) 6= (0, 0),

er(s) =
Ωr

‖ Ωr‖
=
τge1 + κge3√

τ2g + k2g

, if (τg,κg) 6= (0, 0),

eo(s) =
Ωo

‖ Ωo‖
=
τge1 − κne2√

τ2g + k2n

, if (τg,κn) 6= (0, 0).


(3)

On the other hand, it is known that

κ(s) =
√
κ2g + κ2n, and τg(s) =

κnκ
′
g − κgκ′n
κ2n + κ2g

+ τ(s), (4)
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where κ(s), and τ(s) are the curvature and the torsion of α = α(s) as a space
curve, respectively [13]. From now on, we shall often not write the parameter s
explicitly in our formulae.

2.1. Ruled and developable surfaces. A ruled surface in Euclidean 3-space
R3 is a differentiable one-parameter set of straight lines. Such a surface has a
parameterization of the form

P(s, v) = α(s) + ve(s), v ∈ R, (5)

where α(s) is the base curve and e(s) is the unit vector giving the direction of the
straight lines of the surface. The unit normal vector of the ruled surface P(s, v) at
each point is defined by

n(s, v) =
Ps ×Pv

‖Ps ×Pv‖
=

α′ × e + ve′ × e

‖α′ × e + ve′ × e‖ . (6)

The base curve is not unique, since any curve of the form:

C(s) = α(s)− η(s)e(s) (7)

may be used as its base curve, η(s) is a smooth function. If there is a common
perpendicular vector to two neighboring rulings on P(s, v), then the foot of the
common perpendicular on the main ruling is said to be a central point. The locus
of the central points is said to be the striction curve. In Eq. (7) if

η(s) =
〈α′(s), e′〉
‖e′‖2

, (8)

then C(s) is named as the striction curve on the ruled surface and it is unique. In
the case η = 0, the base curve is the striction curve. The distribution parameter of
P(s, v) is defined by

λ(s) =
det(α′, e, e′)

‖e′‖2
. (9)

The parameter of distribution is a real integral invariant of a ruled surface and
allows further classification of the ruled surface.
Developable surfaces are briefly introduced as special types of ruled surfaces. If

the ruled surface P(s, v) is a developable one, then we have

λ(s) = 0⇔ det(α′, e, e′) = 0. (10)

Thus a volume formed by α′, e and e′ is vanishing, i.e, they are linearly dependent.
This condition is satisfied provided that there are three non-identically vanishing
functions η(s), ξ(s) and γ(s) satisfying

µ(s)α′ + β(s)e + γ(s)e′ = 0. (11)

We has to analyze the following cases:
Case 1: µ = 0
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Since 〈e, e′〉 = 0, it follows immediately that Eq. (11) is only satisfied when e is
a constant vector, i.e., P(s, v) is a part of a cylinder.
Case 2: µ 6= 0 from Eq. (11) it follows:

α′ = ζ(s)e + υ(s)e′, (12)

where

ζ(s) = −β
µ
, υ(s) = −γ

µ
.

Differentiating Eq. (7) and using Eq. (12), we get

C′(s) = (ζ(s)− η′(s)) e(s) + (υ(s)− η(s)) e′. (13)

The situation for C to be striction curve becomes equivalent to that the vectors
C′ and e′ are perpendicular to each other. Therefore, we conclude that the ruling
becomes parallel to the first differentiation of the striction curve which is also the
tangent of the striction curve, i.e.

C′ = (ζ(s)− η′(s))e(s). (14)

Thus we have to consider the following sub-case: ζ(s) = η′(s). In this case Eq. (14)
yields to that C = C0 is a constant vector. So, P(s, v) becomes a part of a cone as
follows:

P(s, v) = C0 + (η(s) + v)e(s), v ∈ R. (15)

We now define the concept "contour generators". LetM be an orientable surface
and n a unit normal vector field on M . For a unit vector x in the unit sphere
S2 =

{
x ∈R3 | ‖x‖ = 1

}
, the normal contour generator of the orthogonal projection

with the direction x is defined to be

{p ∈M |< n,x >= 0}. (16)

Moreover, for a fixed point c ∈ R3, the normal contour generator of the central
projection with the center c is defined to be

{p ∈M |< n,p− c >= 0}. (17)

3. The relatively osculating developable surfaces

In this section, we present a relatively osculating developable surface along the
e2(s)-direction curve

β(s) =
s∫
0

e2(s)ds

as follows:
Mo : P̃(s, v) = β(s) + veo(s), (18)

where v ∈ R, and
eo(s) =

τge1 − κne2√
τ2g + k2n
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under the assumption (τg,κn) 6= (0, 0). Firstly differentiating eo, we find

e′o =

(
κg +

κnτ
′
g − τgκ′n
τ2g + κ2n

)κne1 + τge2√
τ2g + κ2g

 , (19)

and thus λ(s) = 0. This results that Mo is a developable surface. Furthermore, we
propose two invariants δo(s), and σo(s) of Mo as follows:

δo = κg +
κnτ

′
g − τgκ′n
τ2g + κ2n

, and σo = −

 κn√
τ2g + κ2n

+

 τg

δo
√
τ2g + κ2g

′ , (20)

where δo 6= 0. We can also calculate that

P̃s × P̃v = −

vδo +
τg√

τ2g + κ2n

 e3. (21)

Hence, the normal vector of Mo is in the same direction to the normal vector of M .
This is the reason why we name Mo the relatively osculating developable surface
of M along β(s).
On the other hand, the invariants δo(s), and σo(s) of Mo describe contour gen-

erators of M as follows:

Theorem 1. Let Mo be the relatively osculating developable surface of M ex-
pressed by Eq. (18). Then we have the following:
(A) The following are equivalent:
(1) Mo is a cylinder,
(2) δo(s) = 0,
(3) β = β(s) is a contour generator with respect to an orthogonal projection.

(B) If δo(s) 6= 0, then the following are equivalent:
(1) Mo is a cone,
(2) σo(s) = 0,
(3) β = β(s) is a contour generator with respect to a central projection.
Proof. (A) From Eq. (18), it is obvious thatMo is a cylinder if and only if eo(s)

is constant, i.e. δo(s) = 0. Therefore, the condition (1) becomes equivalent to the
situation (2). Suppose that the condition (3) holds. Then there exists a fixed vector
x ∈S2 such that 〈e3, x〉 = 0. So there are a, b ∈ R such that x =ae1 + be2. Since
〈e′3,x〉 = 0, we have −aκn − bτg = 0, so that we have x = ±eo(s). Namely, the
situation (1) holds. Suppose that eo(s) is constant. Then we choose x = eo(s) ∈ S2.
By the definition of eo(s), we have 〈x, e3〉 = 0. Hence the condition (1) entails the
situation (3).
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(B) The situation (1) determines that the singular value set of Mn is a constant
vector. Thus, in view of Eqs. (8), (9), and from Eq. (19), we have

C′(s) = −

 κn√
τ2g + κ2n

+

 τg

δo
√
τ2g + κ2g

′ eo(s) = −σo(s)eo(s).

Then Mo is a cone if and only if σo(s) = 0. It follows that the situations (1) and
(2) are equivalent. By the definition of the the central projection means that there
is a fixed point c ∈ R3 such that 〈e3,β − c〉 = 0. If the condition (1) holds, then
C(s) is constant. For the constant point c = C(s), we have

〈e3,β − c〉 = 〈e3,β −C〉 =

〈
e3,

〈
β′, e′o

〉
‖e′o‖

2 eo

〉
= 〈e3, eo〉 = 0. (22)

This implies that (3) holds. On the contrary, by (3), there is a fixed point c ∈ R3
such that 〈e3 ,β − c〉 = 0. Differentiating both side of Eq. (22), we have

0 = 〈e3,β − c〉′ = 〈−κne1 − τge2 ,β − c〉 , (23)

so we may write β − c =f(s)eo(s), where f(s) is a differentiable function. Differ-
entiating Eq. (23) again, we have:

0 = 〈e3,β − c〉′′ = 〈−κne1 − τge2, e2〉+
〈
− (κne1 + τge2)

′
,β − c

〉
,

or equivaently,

0 = 〈e3,β − c〉′′ = −τg + fδo
√
τ2g + κ2n.

It follows that

c = β(s)− τg

δo
√
τ2g + κ2n

eo(s) = β −
〈
β′, e′o

〉
‖ e′o‖

2 eo(s) = C(s).

Therefore, C(s) is constant, so that (1) holds �.

Theorem 2 (Existence and uniqueness). Let M ⊂ R3 be a regular surface and
β :I → M ⊂ R3 be a unit-speed curve given by β =

∫
e2(s)ds with κ2n + τ2g 6= 0.

Then there exists uniquely a relatively osculating developable surface represented
by Eq. (18).
Proof. For the existence, we have the relatively osculating developable surface

along β = β(s) represented by Eq. (18). On the other hand, since Mo is a ruled
surface, we suppose that

Mo : P̃(s, v) = β(s) + vζ(s), (24)

where v ∈ R, with (τg,κn) 6= (0, 0), and

ζ(s) = ζ1(s)e1 + ζ2(s)e2 + ζ3(s)e3, ζ
′
(s) 6= 0.
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It can be immediately seen that Mo is developable if and only if

det(β
′
, ζ, ζ

′
) = 0⇔ ζ3ζ

′

1 − ζ1ζ
′

3 − ζ2 (ζ1τg + ζ3κg) + κn
(
ζ23 + ζ21

)
= 0. (25)

Conversely, since Mo is a relatively osculating developable surface along β = β(s),
we have (

P̃s × P̃v

)
(s, v) = ψ (s, v) e3. (26)

Also, the normal vector P̃s × P̃v at the point (s, 0) is(
P̃s × P̃v

)
(s, 0) = ζ3e1 − ζ1e3. (27)

By means of Eqs. (26) and (27) we find:

ζ3 = 0, and ζ1 = −ψ (s, 0) , (28)

which follows from Eq. (25) that

−ζ1 (ζ1κn + ζ2τg) = 0. (29)

If (s, 0) is a regular point (i.e., ψ (s, 0) 6= 0), then ζ1(s) 6= 0. Thus, we have

ζ2 = −κn
τg
ζ1, with τg 6= 0. (30)

Therefore, we obtain

ζ(s) = ζ1e1 −
κn
τg
ζ1e2 =

ζ1
cosϕ

eo(s), (31)

where (τg,κn) 6= (0, 0), and ϕ 6= π

2
. It follows that ζ(s) becomes equal to the

direction of eo(s). If τg 6= 0 (i.e., ϕ 6= π

2
), we have the same result as the above

case.
On the other hand, suppose that Mo has a singular point at (s0, 0). Then

ψ (s0, 0) = ζ1(s0) = ζ3(s0) = 0, and we have ζ(s0) = ζ2(s0)e2(s0). If the singular
point β(s0) is in the closure of the set of points where the relatively osculating
developable surface along β(s) is regular, then there is a point β(s) in any neigh-
borhood of β(s0) such that the uniqueness of the relatively osculating developable
surface is satisfied at β(s). Passing to the limit s→ s0, uniqueness of the relatively
osculating surface holds at s0. Assume that there is an open interval J ⊆ I such
that Mo is singular at β(s) for any s ∈ J . Then P(s, v) = β(s) + vζ2(s) e2(s) for
any s ∈ J . This means that ζ1(s) = ζ3(s) = 0 for s ∈ J . It follows that(

P̃s × P̃v

)
(s, v) = −vζ22 (τge1 + κge3) . (32)

Thus the above vector is directed to e3, i.e. P̃s×P̃v ‖ e3(s) if and only if κg 6= 0 and
τg = 0 for any s ∈ J . In this case, e0(s) = ±e3. This determines that uniqueness
holds �.
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Proposition 1. Let Mo be the relatively osculating developable surface expressed
by Eq. (18) with (τg,κn) 6= (0, 0). If there are two osculating developable surfaces
along β(s), then β(s) is a straight line.
Proof. Assume that (τg,κn) 6= (0, 0), the relatively osculating developable sur-

face along the direction curve β(s) is unique by Theorem 2. If κn = τg = 0, then
β(s) is a plane curve. In this case, a plane Π at β(s0) is a relatively osculating
developable surface along β(s). If there is another relatively osculating developable
surfaceMo along β(s), thenMo is tangent to Π along β(s). By definition, Π is tan-
gent to Mo along a ruling of Mo, which is β(s). Thus β(s) is a line. If κn = τg = 0
at an isolated point s0 ∈ I except at s0, then there is a point s ∈ I in any neighbor-
hood of s0 such that the uniqueness of the relatively osculating developable surface
is satisfied at s ∈ I. Passing to the limit s → s0, uniqueness of the relatively
osculating developable surface is satisfied at s0 ∈ I �.

Proposition 2. Let Mo be the relatively osculating developable surface expressed
by Eq. (18) with (τg,κn) 6= (0, 0). Then κn = τg = 0 if and only if β(s) is a ruling
of Mo.
Proof. In general, the torsion of the curve β(s) as a space curve is given by

τβ(s) :=
det(β′, β′′,β′′′)∥∥β′ × β′′∥∥2 = −κn +

κgτ
′
g − τgκ′g
τ2g + κ2g

. (33)

Assuming that κn = τg = 0, the torsion τβ becomes constantly equal to 0. Thus,
β(s) becomes a plane curve. Moreover, we have e′3 = −κn e1 − τge2 = 0. The
assumption thatMo is an osculating developable surface implies thatMo is a plane
generated by β(s). Thus β(s) is a line. For the converse, we assume that β(s) =
s∫
0

e2(s)ds is a ruling of the osculating developable Mo. Since β(s) is a ruling in

R3; e2 is a constant vector. The supposition that Mo is a developable surface
determines that e′3 = 0. Thus, by the Darboux equations we have κn = τg = 0 �.
Therefore, we can give the following corollaries:

Corollary 1. The relatively osculating developable surface Mo represented by Eq.
(18) is a non-cylindrical if and only if δo(s) 6= 0.
Proof. It is a straighforward result from the definition of non-cylindirical ruled

surface.

Corollary 2. The relatively osculating developable surface Mo represented by Eq.
(18) is a tangential developable if and only if δo(s) 6= 0, and σo(s) 6= 0.
Proof. According to the proof of Theorem 1, when δo(s) 6= 0, and σo(s) 6= 0, we

have e′o 6= 0, andC′ 6= 0. Since det(β′, eo, e
′
o) = 0, < C′, e′o>=0 and< eo, e

′
o >= 0,

we find C′‖eo. This determines that the surface Mo is a tangent surface �.
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3.1. Special curves on a surface. Based on the Theorem 3.3 of Ref. [8], we
divide the singularities of relatively osculating developable surfaces Mo forward
special curves by using the two invariants δo, and σo in the following:

(A). If κn = 0, then α is an asymptotic line on M , and

Mo : P̃(s, v) = β(s) + ve1(s), v ∈ R. (34)

In this case, we obtain the invariants as follows:

δo = κg, and σo = −

 τg

δo
√
τ2g + κ2g

′ .
Corollary 3. Let Mo be the relatively osculating developable surface expressed by
Eq. (34). Then we have the following:
(1) Mo is non-singular at points P̃(s0, v0) if and only if v0 6= 0.

(2) Mo is locally diffeomorphic to Cuspidal edge CE at points P̃(s0, v0) if and only
if v0 = −κ−1g (s0) 6= 0, and κ′g(s0) 6= 0.

(3) Mo is locally diffeomorphic to Swallowtail SW at points P̃(s0, v0) if and only
if v = −κ−1g (s0) 6= 0, κ′g(s0) = 0, and

(
κ−1g

)′′
(s0) 6= 0.

Here,

CE =
{

(x1, x2, x3)|x1 = u, x2 = v2 , x3 = v3
}
, (see Fig. 1).

SW =
{

(x1, x2, x3)|x1=u, x2=3v2+uv2, x3=4v3+2uv
}
, (see Fig. 2)

}

Figure 1. Cuspidal edge.

Proof. Singularities of the relatively osculating developable surface expressed
by Eq. (34) are

P̃s × P̃v = − (vκg + 1) e3. (35)
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Figure 2. Swallowtail.

Therefore, P̃(s0, v0) is non-singular if and only if P̃s × P̃v 6= 0. This condition is
equivalent to v0 = −κ−1g (s0). This completes the proof of assertion (1). If there is
a parameter s0 such that

v0 = −κ−1g (s0), and v′0 =
κ′g(s0)

κ2g(s0)
6= 0

(
i.e. κ′g 6= 0

)
,

then Mo is locally diffeomorphic to CE at P̃(s0, v0). This completes the proof of
assertion (2). We also have, if there is a parameter s0 such that

v0 = −κ−1g (s0), v′0 =
κ′g(s0)

κ2g(s0)
= 0, and

(
κ−1g

)′′
(s0) 6= 0,

then Mo is locally diffeomorphic to SW at points P̃(s0, v0). This concludes the
proof of affi rmation (3).

(B). If τg = 0, then α becomes a line of curvature on M , and

Mo : P̃(s, v) = β(s)− ve2(s), v ∈ R, (36)

which is recognized as the tangent surface of β(s). In this case we obtain
the invariants as δo = κg, and σo = −1.

Corollary 4. Let Mo be the relatively osculating developable surface expressed by
Eq. (36). Then we have the following:
(1) Mo is non-singular at points P(s0, v0) if and only if v0 6= 0.

(2) Mo is locally diffeomorphic to CE at points P̃(s0, v0) if and only if v0 =
−κ−1g (s0) 6= 0, and κ′g(s0) 6= 0.

(3) Mo is locally diffeomorphic to SW at points P̃(s0, v0) if and only if v =

−κ−1g (s0) 6= 0, κ′g(s0) = 0, and
(
κ−1g

)′′
(s0) 6= 0.



522 RASHAD A. ABDEL-BAKY AND YASIN ÜNLÜTÜRK

Proof. Singularities of the relatively osculating developable surface expressed
by Eq. (36) are

P̃s × P̃v = −vκge3. (37)

Therefore, P̃(s0, v0) is non-singular if and only if P̃s × P̃v 6= 0. This condition is
equivalent to v0 = −cκ−1g (s0), c 6= 0. This completes the proof of assertion (1). If
there is a parameter s0 such that

v0 = −cκ−1n (s0), c 6= 0, and v′0 =
cκ′n(s0)

κ2n(s0)
6= 0, (i.e. κ′n 6= 0) ,

then Mo is locally diffeomorphic to CE at P̃(s0, v0). This finishes the proof of
affi rmation (2). Again, if there exists a parameter s0 such that

v0 = −cκ−1g (s0), c 6= 0, v′0 =
cκ′g(s0)

κ2g(s0)
= 0, and

(
κ−1g

)′′
(s0) 6= 0,

thenMo is locally diffeomorphic to SW at pointgs P̃(s0, v0). This finishes the proof
of affi rmation (3) �.

3.1.1. Curves on the unit sphere. We now deal with the case when M is the unit

sphere S2 =
{

x ∈R3 | ‖x‖2 = 1
}
. Let α : I ⊆ R → S2 be a unit speed curve. In

this case, we have t(s) = α′, g(s) = α × t, and since s is a natural parameter of
α(s), it follows that ‖t‖ = 1, and the frame {α = α(s), t(s),g(s)} forms a moving
orthonormal frame fitted to each point of the spherical curve α(s). This frame
is said to be the Darboux frame relative to x(s). By construction, the Darboux
formula is  α

′

t
′

g
′

 =

 0 1 0
−1 0 γ
0 −γ 0

 α
t
g

 , (38)

where γ = γ(s) is the geodesic curvature of α(s). It follows that δo = γ, σo = ±1,

e0 = ±g(s), and β(s) =
s∫
0

g(s)ds. Thus, we have:

Mo : P̃(s, v) = β(s) + vg(s), v ∈ R, (39)

which is recognized as the tangent developable surface of β(s). Then we have the
following lemma as a result of Corollary 4.

Lemma 1. Let Mo be the tangent developable expressed by Eq. (39). Then we
have the following:
(1) Mo is non-singular at points β(s0) if and only if v0 6= 0.
(2) Mo is locally diffeomorphic to CE at points P(s0, v0) if and only if v0 =

−γ−1(s0) 6= 0, and γ
′
(s0) 6= 0.

(3) Mo is locally diffeomorphic to SW at points P(s0, v0) if and only if v =

−γ−1(s0) 6= 0, γ
′
(s0) = 0, and

(
γ−1

)′′
(s0) 6= 0.
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Figure 3.

Figure 4.

4.
Proposition 2. The relatively osculating developable surface Mo

represented by Eq. (39) is a cylindrical if α(s) is a great circle.
Proof. Assume that α(s) becomes a great circle. Then γ(s) = 0, and

g(s) is constant. Therefore, Mo is a circular cylinder.

4.1. Examples. We close this section with some examples:

Example 1. Let the base surface M be given as the following parameterization:

P(s, v) = (cos s− 1√
2
v cos s, sin s− 1√

2
v sin s,

v√
2

). (40)

The directrix curve β of the relatively osculating developable surface is β =

(− 1√
2

sin s,
1√
2

cos s,
s√
2

). The normal curvature and geodesic torsion of the base
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Figure 5.

curve are, respectively, computed as κn = − 1√
2
, and τg = 0. Then the rul-

ing line eo of the relatively osculating developable surface is obtained as eo =

(
1√
2

cos s,
1√
2

sin s,− 1√
2

). As a result, the relatively osculating developable sur-

face Mo is given with the parameterization:

P̃(s, v)=(-
1√
2

sin s+
1√
2
v cos s,

1√
2

cos s+
1√
2
v sin s,

s√
2
-
v√
2

). (41)

The base surface given by (40) and the relatively osculating developable surface
given by (41) have been together plotted in Fig. 3. The relatively osculating
developable surface given by (41) has been alone illustrated in Fig 4. The relatively
osculating developable surface has been illustrated by reflecting surface in Fig. 5.

Example 2. Given the base surface M as follows:

P(s, v)=(cos
s√
2
-

1√
2
v sin

s√
2
, sin

s√
2

+
1√
2
v cos

s√
2
,
s√
2

+
v√
2

). (42)

The directrix curve β of the relatively osculating developable surface is β =

(
√

2 sin
s√
2
,−
√

2 cos
s√
2
, 0). The normal curvature and geodesic torsion of the base

curve are, respectively, computed as κn = 0, and τg =
1

2
. Then the ruling line eo of

the relatively osculating developable surface is obtained as eo = (−1

2
sin

s√
2
,

1

2
cos

s√
2
,

1

2
).

As a result, the relatively osculating developable surfaceMo is given with the below
parameterization:

P̃(s, v) = (
√

2 sin
s√
2
− v

2
sin

s√
2
,−
√

2 cos
s√
2

+
v

2
cos

s√
2
,
v

2
). (43)
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Figure 6.

Figure 7.

The base surface given by (42) and the relatively osculating developable surface
given by (43) have been together plotted in Fig. 6. The relatively osculating
developable surface given by (42) has been alone illustrated in Fig. 7. The relatively
osculating developable surface has been illustrated by reflecting surface in Fig. 8.

5. Conclusion

In this work, we have constructed a developable surface tangent to a surface
forward a curve in the surface which we defined it as relatively osculating devel-
opable surface. We have chosen the curve as the tangent normal direction curve on
which the new surface is formed in Euclidean space. We have obtained some re-
sults about the existence and uniqueness, and the singularities of such developable
surfaces. We have also given two invariants of curves on a surface which describe
these singularities. We have given two results for special curves such as asymptotic
line and line of curvature which are rulings of the relatively osculating developable
surface.
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Figure 8.
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LIE IDEALS AND JORDAN TRIPLE (α, β)−DERIVATIONS IN
RINGS

NADEEM UR REHMAN AND EMINE KOÇ SÖGÜTCÜ

Abstract. In this paper we prove that on a 2-torsion free semiprime ring
R every Jordan triple (α, β)-derivation (resp. generalized Jordan triple (α, β)-
derivation) on Lie ideal L is an (α, β)-derivation on L (resp. generalized (α, β)-
derivation on L)

1. Introduction

Throughout the present paper R will denote an associative ring with center
Z(R). A ring R is n-torsion free, where n > 1 is an integer, in case nx = 0; x ∈ R,
implies x = 0. For any x, y ∈ R, we denote the commutator [x, y] = xy−yx. Recall
that R is prime if for a, b ∈ R, aRb = {0} implies that either a = 0 or b = 0, and is
semiprime if aRa = {0} implies a = 0. An additive subgroup L of R is said to be a
Lie ideal of R if [L,R] ⊆ L. A Lie ideal L is said to be square-closed if a2 ∈ L for
all a ∈ L. Recall that a derivation of a ring R is an additive map δ : R −→ R such
that (xy)

δ
= (x)δy + x(y)δ holds for all x, y ∈ R. On the other hand, δ : R −→ R

an additive mapping is called a Jordan derivation if
(
x2
)δ

= (x)δx+x(x)δ holds for
all x ∈ R. A famous result due to Herstein [11, Theorem 3.3] shows that a Jordan
derivation of a prime ring of characteristic not 2 must be a derivation. This result
was extended to 2-torsion free semiprime rings by Cusack [10] and subsequently, by
Bresar [7]. Following [6]. an additive mapping δ : R → R is called a Jordan triple
derivation if (xyx)δ = (x)δyx + x(y)δx + xy(x)δ holds for all x, y ∈ R. One can
easily prove that any Jordan derivation on an 2-torsion free ring is a Jordan triple
derivation ( see [11, Lemma 3.5]). Bresar has proved the following result.

Theorem 1.1. ([6, Theorem 4.3]) Let R be a 2-torsion free semiprime ring and
δ : R→ R be a Jordan triple derivation. In this case δ is a derivation.

Received by the editors: April 04, 2019; Accepted: October 05, 2019.
2010 Mathematics Subject Classification. 16W25, 16N60, 16U80.
Key words and phrases. Semiprime rings, Jordan triple (α, β)−derivations, generalized Jordan
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To understand our results it is better to review some generalizations of the no-
tion of derivation. An additive mapping F : R → R is said to be generalized
derivation (resp. a generalized Jordan derivation) on R if there exists a derivation
δ : R → R such that (xy)F = (x)F y + x(y)δ (resp. (x2)F = (x)Fx + x(x)δ) holds
for all x, y ∈ R. An additive mapping F : R → R is said to be generalized Jordan
triple derivation on R if there exists a Jordan triple derivation δ : R→ R such that
(xyx)F = (x)F yx+x(y)δx+xy(x)δ holds for all x, y ∈ R. In 2003, Jing and Lu [14,
Theorem 3.5] proved that every generalized Jordan triple derivation on a 2-torsion
free prime rings R is a generalized derivation. Recently, Vukman [20] extended Jing
and Lu result for 2-torsion free semiprime rings.

If δ : R −→ R is a additive and if α and β are endomorphisms of R, then δ is said
to be an (α, β)-derivation of R when for all x, y ∈ R, (xy)δ = (x)δα(y) + β(x)(y)δ.
Note that for I, the identity map on R, an (I, I)-derivation is just a derivation.
An example of (α, β)-derivation when R has a nontrivial central idempotent e is
to let δ(x) = ex, α(x) = (1 − e)x, and β = I (or δ) (formally). Here, δ is not a
derivation because (ee)δ = eee 6= 2eee = (ee)e+ e(ee) = (e)δe+ e(e)δ. In any ring
with endomorphism α, if we let d = I − α, then d is an (α, I)-derivation, but not
a derivation when R is semiprime, unless α = I. An additive mapping δ : R → R
is called Jordan triple (α, β)-derivation if (xyx)δ = (x)δα(yx) + β(x)(y)δα(x) +
α(xy)(x)δ for all x, y ∈ R. Obviously, every (α, β)-derivation on a 2-torsion free
ring is a Jordan triple (α, β)-derivation, but converse need not be true in general.
In 2007, Liu and Shiue [15, Theorem 2] show that the converse is true for 2-torsion
free semiprime rings R and probed the following result:

Theorem 1.2. Let R be a 2-torsion free semiprime rings and let α, β be auto-
morphisms of R. If δ : R → R is a Jordan triple (α, β)-derivation, then δ is an
(α, β)-derivation.

An additive map F : R −→ R is called a generalized (α, β)-derivation, for α
and β endomorphisms of R, if there exists an (α, β)-derivation δ : R −→ R such
that (xy)F = (x)Fα(y) + β(x)(y)δ holds for all x, y ∈ R. Clearly, this notion
include those of (α, β)-derivation when F = δ, of derivation when F = δ and
α = β = I, and of generalized derivation, which is the case when α = β = I.
Maps of the form (x)F = ax + xb for a, b ∈ R with (x)δ = xb − bx and α =
β = I are generalized derivations, and more generally, maps (x)δ = aα(x) + β(x)b
are generalized (α, β)-derivation. To see this observe that (xy)F = aα(x)α(y) +
β(x)β(y)b = (aα(x) + β(x)b)α(x) + β(x)(β(y)b− bα(y)), and as we have just seen
above, (x)δ = bα(x) − β(x)b is an (α, β)-derivation of R. As for derivation, a
generalized Jordan (α, β)-derivation F assumes x = y in the definition above; that
is, we assume only that (x2)F = (x)Fα(x)+β(x)(x)δ, holds for all x ∈. An additive
map F : R −→ R is called generalized Jordan triple (α, β)-derivation, for α and β
endomorphisms of R, if there exists a Jordan triple (α, β)-derivation δ : R −→ R
such that (xyx)F = (x)Fα(yx) + β(x)(y)δα(x) + β(xy)(x)δ, holds for all x, y ∈ R.
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Clearly, this notion includes those of triple (α, β)-derivation when F = δ, of triple
derivation when F = δ and α = β = I, and of generalized triple derivation which
is the case α = β = I. In 2007, Liu and Shiue [15, Theorem 3] proved the following
generalization of all above results:

Theorem 1.3. Let R be a 2-torsion free semiprime rings and α, β be automor-
phisms of R. If F : R→ R is a generalized Jordan triple (α, β)-derivation, then F
is a generalized (α, β)-derivation.

The present paper is motivated by the previous results and we here continue this
line of investigation to generalize Theorem 1.2 and Theorem 1.3 on Lie ideal of R.

2. Jordan Triple Derivations

It is obvious to see that every derivation is a Jordan triple derivation, but the
converse need not to be true in general. In [6], Bresar proved that any Jordan triple
derivation on a 2-torsion free semiprime ring is a derivation. Motivated by the result
due to Bresar, in the present section it is shown that on a 2-torsion free semiprime
ring R every Jordan triple (α, β)−derivation on Lie ideal L is an (α, β)−derivation
on L. More precisely, we prove the following:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a nonzero square-closed Lie ideal of R. If δ : R −→ L
satisfying

(aba)δ = aδα(ba) + β(a)bδα(a) + β(ab)aδ for all a, b ∈ L
and aδ, β(a) ∈ L, then δ is a (α, β)−derivation on L.

Corollary 2.1. Let R be a 2-torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a nonzero square-closed Lie ideal of R. If δ : R −→ L
satisfying

(a2)δ = aδα(a) + β(a)aδ for all a ∈ L
and aδ, β(a) ∈ L, then δ is a (α, β)−derivation on L.

To facilitate our discussion, we shall begin with the following lemmas:

Lemma 2.1 ([4], Lemma 4). If L 6⊆ Z(R) is a Lie ideal of a 2-torsion free prime
ring R and a, b ∈ R such that aLb = {0}, then a = 0 or b = 0.

Lemma 2.2 ([19], Lemma 2.4). Let R be a 2-torsion free semiprime ring, L be a
Lie ideal of R and a ∈ L such that L 6⊆ Z(R). If aLa = 0, then a2 = 0 and there
exists a nonzero ideal K = R[L,L]R of R generated by [L,L] such that [K,R] ⊆ L
and Ka = aK = 0.

Corollary 2.2 ([12], Corollary 2.1). Let R be a 2-torsion free semiprime ring, L
a Lie ideal of R such that L * Z(R) and let a, b ∈ L.
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(1) if aLa = 0, then a = 0.
(2) If aL = 0( or La = 0), then a = 0
(3) If L is square-closed and aLb = 0, then ab = 0 and ba = 0.

Lemma 2.3. Let R be a 2-torsion free semiprime ring, L be a noncentral Lie ideal
of R, β be a homomorphisms of R and a, b ∈ L. If aub+ β(bu)a = 0, for all u ∈ L
then aub = 0.

Proof. If
aub+ β(bu)a = 0, for all u ∈ L. (2.1)

Then replacing u by ubv in (2.1), we get

a(ubv)b+ β(bu)β(bv)a = 0. (2.2)

Now application of (2.1), yields that

− β(bu)avb+ β(bu)β(bv)a = 0. (2.3)

Again, by (2.1), we obtain −β(bu)avb− β(bu)avb = 0 that is β(bu)avb = 0. Again
by (2.1) aubvb = 0. Hence aubLb = 0, so aub = 0 for all u ∈ L.

Lemma 2.4 ([19], Lemma 2.7). Let G1, G2, · · · , Gn be additive groups and R be
a 2-torsion free semiprime ring and L 6⊆ Z(R) is a Lie ideal of R. Suppose that
mappings S : G1 × G2 × · · · × Gn −→ R and T : G1 × G2 × · · · × Gn −→ R are
additive in each argument. If S(a1, a2, · · · , an)xT (a1, a2, · · · , an) = 0 for all x ∈ L,
ai ∈ Gi i = 1, 2, · · ·n, then S(a1, a2, · · · , an)xT (b1, b2, · · · , bn) = 0 for all x ∈ L,
ai, bi ∈ Gi i = 1, 2, · · ·n.

Lemma 2.5. Let R be a ring, L be a Lie ideal of R and δ : R → R be a Jordan
triple (1, β)−derivation. For arbitrary a, b, c ∈ L, we have

(abc+ cba)δ = aδ(bc) + β(a)bδ(c) + β(ab)cδ + cδ(ba) + β(c)bδ(a) + β(cb)aδ.

Proof. We have

(aba)δ = aδ(ba) + β(a)bδ(a) + β(ab)aδ, for all a, b ∈ L. (2.4)

We compute, W = ((a+ c)b(a+ c))
δ in two different ways. On one hand, we

find that W = (a + c)δb(a + c) + β(a + c)bδ(a + c) + β((a + c)b)(a + c)δ, and on
the other hand W = (aba)δ + (abc+ cba)δ + (cbc)δ. Comparing two expressions we
obtain the required result.

Remark 2.1. It is easy to see that every Jordan (1, β)−derivation of a 2-torsion
free ring satisfies (2.4) ( see [1] for reference).

For the purpose of this section we shall write; ∆(a, b, c) = (abc)δ − aδ(bc) −
β(a)bδ(c)− β(ab)cδ, and Λ(a, b, c) = abc− cba. We list a few elementary properties
of δ and Λ:

(i) ∆(a, b, c) + ∆(c, b, a) = 0
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(ii) ∆((a + b), c, d) = ∆(a, c, d) + ∆(b, c, d) and Λ((a + b), c, d) = Λ(a, c, d) +
Λ(b, c, d)

(iii) ∆(a, (b + c), d) = ∆(a, b, d) + ∆(a, c, d) and Λ(a, (b + c), d) = Λ(a, b, d) +
Λ(a, c, d)

(iv) ∆(a, b, (c + d)) = ∆(a, b, c) + ∆(a, b, d) and Λ(a, b, (c + d)) = Λ(a, b, c) +
Λ(a, b, d).

Proposition 2.1. Let R be a semiprime ring and L 6⊆ Z(R) be a square-closed Lie
ideal of R. If ∆(a, b, c) = 0 holds for all a, b, c ∈ L, then δ is an (1, β)−derivation
of L.

Proof. We have ∆(a, b, c) = 0 for all a, b, c ∈ L, that is,
(abc)δ = aδ(bc) + β(a)bδ(c) + β(ab)cδ.

Let M = abxab. We have

Mδ = (a(bxa)b)δ = aδ(bxab) + β(a)bδ(xab) + β(ab)xδ(ab)

+ β(abx)aδ(b) + β(abxa)bδ for all x, a, b ∈ L. (2.5)
On the other hand,

Mδ = ((ab)x(ab))δ = (ab)δ(xab) + β(ab)xδ(ab) + β(abx)(ab)δ. (2.6)

Comparing (2.5) with (2.6) we get

{(ab)δ − aδ(b)− β(a)bδ}(xab) + β(abx){(ab)δ − aδ(b)− β(a)bδ} = 0

that is, ab(xab) + β(abx)ab = 0, where ab stands for (ab)δ − aδ(b) − β(a)bδ. Thus
by Lemma 2.3 we find that ab(xab) = 0, for all a, b, x ∈ L. Now by Lemma 2.4, we
get ab(xcd) = 0, for all a, b, c, d, x ∈ L. Hence, by using Corollary 2.2, we obtain
ab = 0 for all a, b ∈ L that is δ is a (1, β)−derivation on L.

Lemma 2.6. Let R be a ring and L be a Lie ideal of R. For any a, b, c, x ∈ L, we
have

∆(a, b, c)xΛ(a, b, c) + β(Λ(a, b, c))β(x)∆(a, b, c) = 0.

Proof. For any a, b, c, x ∈ L, suppose that N = abcxcba+ cbaxabc. Now we find

Nδ = (a(bcxcb)a+ c(baxab)c)δ = (a(bcxcb)a)δ + (c(baxab)c)δ

= aδ(bcxcba) + β(a)bδ(cxcba) + β(ab)cδ(xcba)
+β(abc)xδ(cba) + β(abcx)cδ(ba) + β(abcxc)bδ(a)
+β(abcxcb)aδ + cδ(baxabc) + β(c)bδ(axabc)
+β(cb)aδ(xabc) + β(cba)xδ(abc) + β(cbax)aδ(bc)
+β(cbaxa)bδ(c) + β(cbaxab)cδ.

On the other hand, we have

Nδ = ((abc)x(cba) + (cba)x(abc))δ

= (abc)δ(xcba) + β(abc)xδ(cba) + β(abcx)(cba)δ

+(cba)δ(xabc) + β(cba)xδ(abc) + β(cbax)(abc)δ.
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On comparing last two expressions we get

−∆(c, b, a)(xcba) + ∆(c, b, a)(xabc) + β(abcx)∆(c, b, a)− β(cbax)∆(c, b, a) = 0.

This implies that ∆(a, b, c)xΛ(a, b, c) + β(Λ(a, b, c))β(x)∆(a, b, c) = 0 for all
a, b, c ∈ L.

Lemma 2.7. Let R be a semiprime ring and L 6⊆ Z(R) be a square-closed Lie ideal
of R. Then ∆(a, b, c)xΛ(r, s, t) = 0 holds for all a, b, c, r, s, t, x ∈ L.

Proof. By Lemma 2.6, we have ∆(a, b, c)xΛ(a, b, c)+β(Λ(a, b, c))β(x)∆(a, b, c) = 0
for all a, b, c ∈ L. Thus we get ∆(a, b, c)xΛ(a, b, c) = 0 by Lemma 2.3. Now by
Lemma 2.4 we find that∆(a, b, c)xΛ(r, s, t) = 0, for all a, b, c, r, s, t ∈ L.

For an arbitrary ring R, we set S = {a ∈ C(L) | aL ⊆ C(L)} , where C(L) is
center of L.

Lemma 2.8. Let R be a semiprime ring, L be a square-closed Lie ideal of R and
a ∈ L. If axy = yxa holds for all x, y ∈ L, then a ∈ S.

Proof: Let x, y, z, w ∈ L. We get

a(wz)yx = yx(wz)a = ya(wz)x = y(awz)x = yzwax = (yzwa)x = awyzx.

This implies that

aw(zy − yz)x = 0, for all x, y, z, w ∈ L.

That is,

aw [z, y]Law [z, y] = 0, for all y, z, w ∈ L.
By Corollary 2.2, we have

aw [z, y] = 0, for all y, z, w ∈ L.

Replacing z by a in this equation, we get

aw [a, y] = 0, for all y, w ∈ L.

Hence ayw [a, y] = 0 = yaw [a, y] for all y, w ∈ L, and so [a, y] L [a, y] = 0, for all
y ∈ L. By Corollary 2.2, we have [a, y] = 0, for all y ∈ L. Therefore, axy = yxa =
yax for all x, y ∈ L. That is aL ⊆ C(L). Thus, a ∈ S.

Lemma 2.9. Let R be a semiprime ring, L be a square-closed Lie ideal of R,
a ∈ C(L), c ∈ L, β be a homomorphisms of R and β(L) ⊆ L. If (β(ab)− ab)c = 0
holds for all b ∈ L, then a(β(b)− b)c = 0.
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Proof: Replacing b by bx, x ∈ L in the hypothesis and using a ∈ C(L), we have

0 = (β(abx)− abx)c = β(ab)β(x)c− abxc
= β(ba)β(x)c− abxc = β(b)β(ax)c− abxc
= β(b)axc− abxc = aβ(b)xc− abxc
= a(β(b)− b)xc.

That is,
a(β(b)− b)xc = 0, for all b, x ∈ L.

Using β(L) ⊆ L and replacing x by cxa(β(b)− b), we obtain that
a(β(b)− b)cxa(β(b)− b)c = 0, for all b, x ∈ L.

This implies that

a(β(b)− b)cLa(β(b)− b)c = 0, for all b ∈ L.
By Corollary 2.2, we have

a(β(b)− b)c = 0, for all b ∈ L.

Lemma 2.10. Let R be a 2-torsion free semiprime ring and L be a square-closed
Lie ideal of R. If Λ(a, b, c) = 0 for all a, b, c ∈ L, then L ⊆ Z(R).

Proof. Assume that L 6⊆ Z(R). We have Λ(a, b, c) = 0 for all a, b, c ∈ L that is,
abc = cba. Replacing b by 2tb, we get 2atbc = 2ctba for all a, b, c, t ∈ L. Again
replacing t by 2tw and using the fact that R is 2-torsion free to get, atwbc = ctwba
and hence a(tw)bc = bc(tw)a = ba(tw)c = awtbc. Thus we find that a[t, w]bc = 0
for all a, b, c, t, w ∈ L. By Corollary 2.2, we get [t, w] = 0 for all t, w ∈ L, that is
L is a commutative Lie ideal of R. And so, we have [a, [a, t]] = 0 for all t ∈ R and
hence by Sublemma on page 5 of [11], a ∈ Z(R). Hence L ⊆ Z(R), a contradiction.
This completes the proof of the theorem.

Proof of Theorem 2.1. Since α−1δ is a Jordan triple (1, α−1β)-derivation, re-
placing δ by α−1δ we may assume that δ is a Jordan triple (1, β)-derivation. Then,
our goal will be to show that δ is a (1, β)−derivation of associative triple systems.
We have

Λ(∆(a, b, c), r, s)xΛ(∆(a, b, c), r, s) = (∆(a, b, c)rs− sr∆(a, b, c))xΛ(∆(a, b, c), r, s)
= ∆(a, b, c)rsxΛ(∆(a, b, c), r, s)
−sr∆(a, b, c)xΛ(∆(a, b, c), r, s).

By Lemma 2.7, the above relation reduces to

Λ(∆(a, b, c), r, s)LΛ(∆(a, b, c), r, s) = 0, for all a, b, c, r, s ∈ L.
By Corollary 2.2, we have

Λ(∆(a, b, c), r, s) = 0, for all a, b, c, r, s ∈ L.
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We obtain that

∆(a, b, c)rs− sr∆(a, b, c) = 0, for all a, b, c, r, s ∈ L.
Using ∆(a, b, c), r, s ∈ L and Lemma 2.8, we have ∆(a, b, c) ∈ S. This implies that

rs∆(a, b, c)− sr∆(a, b, c) = 0, for all a, b, c, r, s ∈ L.
That is,

[r, s]∆(a, b, c) = 0, for all a, b, c, r, s ∈ L. (2.7)

Similarly, we have

∆(a, b, c)[r, s] = 0, for all a, b, c, r, s ∈ L. (2.8)

Let a ∈ S and b, c ∈ L. Thus, a, ab, ac, abc ∈ C(L) and abc = cba. Consider
N = abcxcba. We have

Nδ = (a(bcxcb)a)δ

= aδ(bcxcba) + β(a)bδ(cxcba) + β(ab)cδ(xcba)
+β(abc)xδ(cba) + β(abcx)cδ(ba) + β(abcxc)bδ(a)
+β(abcxcb)aδ.

On the other hand, we have

Nδ = ((abc)x(cba))δ = ((abc)x(abc))δ

= (abc)δ(xabc) + β(abc)xδ(abc) + β(abcx)(abc)δ

Comparing the last two equations and using abc = cba, we have

∆(a, b, c)xabc+ β(abc)β(x)∆(c, b, a) = 0.

Using ∆(a, b, c) = −∆(c, b, a), we have

∆(a, b, c)xabc− β(abc)β(x)∆(a, b, c) = 0.

Since abc ∈ C(L), we find that

−∆(a, b, c)abcx+ β(abc)β(x)∆(a, b, c) = 0.

Using abcx ∈ C(L), we have

−(abc)x∆(a, b, c) + β(abc)β(x)∆(a, b, c) = 0.

This implies that
(β(abc)β(x)− (abc)x)∆(a, b, c) = 0.

By Lemma 2.9, we have

(abc)(β(x)− x)∆(a, b, c) = 0, for all a, b, c, x ∈ L.
Multiplying y form the right hand side, using abc ∈ C(L) and ∆(a, b, c) ∈ S, we
have

(β(x)− x)(abc)y∆(a, b, c) = 0, for all a, b, c, x, y ∈ L.
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By Lemma 2.4, we have

(β(x)− x)(srt)y∆(a, b, c) = 0, for all a, s ∈ S and x, r, t, b, c, y ∈ L.

Using ∆(a, b, c) ∈ S, we have

(β(x)− x)∆(a, b, c)2L(β(x)− x)∆(a, b, c)2 = 0, for all a ∈ S and x, b, c ∈ L.

By Corollary 2.2 and using abc = cba, for all b, c ∈ L, we have

(β(x)− x)∆(a, b, c)2 = 0, for all a ∈ S and x, b, c ∈ L.

Using ∆(a, b, c) ∈ S, we get

∆(a, b, c)2(β(x)− x) = 0, for all a ∈ S and x, b, c ∈ L. (2.9)

Using equations (2.8) and (2.9), we have

2∆(a, b, c)3 = ∆(a, b, c)2∆(a, b, c) + ∆(a, b, c)2∆(a, b, c)

= ∆(a, b, c)2∆(a, b, c)−∆(a, b, c)2∆(c, b, a)

= ∆(a, b, c)2(∆(a, b, c)−∆(c, b, a))

= ∆(a, b, c)2((abc)δ − aδ(bc)− β(a)bδc− β(ab)cδ

−(cba)δ + cδ(ba) + β(c)bδ(a) + β(cb)aδ)

= ∆(a, b, c)2(−aδ(bc)− β(a)bδc− β(ab)cδ + cδ(ba)

+β(c)bδ(a) + β(cb)aδ)

= ∆(a, b, c)2(−aδ(bc)− β(a)bδc− β(ab)cδ + cδ(ba)

+β(c)bδ(a) + β(cb)aδ

+aδβ(bc)− aδβ(bc) + aδβ(cb)− aδβ(cb) + abδc− abδc)
= ∆(a, b, c)2(aδ(β(bc)− bc)− aδ(β(bc)− β(cb)) + (β(cb)aδ − aδβ(cb))

−(β(a)− a)bδc+ (β(c)− c)bδa+ (ab− β(ab))cδ)

= ∆(a, b, c)2(aδ(β(bc)− bc)− aδ[β(b), β(c)]

+[β(cb), aδ]− (β(a)− a)bδc+ (β(c)− c)bδa+ (ab− β(ab))cδ)

= 0.

We have, 2∆(a, b, c)3 = 0. Since R is 2-torsion free, we have ∆(a, b, c)3 = 0. Using
∆(a, b, c) ∈ S, we have ∆(a, b, c)2x∆(a, b, c)2 = 0, for all x ∈ L. By Corollary 2.2,
we have ∆(a, b, c)2 = 0. Similarly, we get ∆(a, b, c) = 0, for all a ∈ S and b, c ∈ L.
Also, if a ∈ S, then aL ⊆ C(L) and β(a), β−1(a) ∈ S. Let a ∈ S and x, y, b, c ∈ L.
Using the last equation, we have

(ayxbc)δ = ((ayx)bc)δ = (ayx)δ(bc) + β(ayx)bδc+ β((ayx)b)cδ

= (aδ(yx) + β(a)yδx+ β(ay)xδ)(bc) + β(ayx)bδc+ β((ayx)b)cδ.
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On the other hand,

(ayxbc)δ = aδ(yxbc) + β(a)yδxbc+ β(ay)(xbc)δ.

Comparing the last two equations, we have

ayβ−1(∆(x, b, c)) = 0, for all a ∈ S and x, b, c ∈ L.

Replacing a by β−1(∆(x, b, c)), we have

β−1(∆(x, b, c))Lβ−1(∆(x, b, c)) = 0, for all x, b, c ∈ L.

Corollary 2.2, we find that

∆(x, b, c) = 0, for all x, b, c ∈ L.

By Proposition 2.1, we conclude that δ is an (1, β)−derivation of L. This completes
the proof of the theorem.

Example 2.1. Let S be any ring and let R =


 a 0 0

b c 0
0 0 0

 | a, b ∈ S
 and L =

 a 0 0
b 0 0
0 0 0

 | b ∈ S
. Define d : R→ R by d

 a 0 0
b 0 0
0 0 0

 =

 a 0 0
0 0 0
0 0 0

,
and β : R → R by β

 a 0 0
b 0 0
0 0 0

 =

 −a 0 0
−b 0 0
0 0 0

. It is easy to check that R
is a ring, L is a Lie ideal of R, β is an one to one, onto and d is a Jordan triple
(1, β)-derivation on L but not an (1, β)-derivation.

3. Generalized Jordan Triple (α, β)−Derivations

An additive mapping µ : R −→ R is said to be a Jordan triple left centralizer
on L if (aba)µ = aµba for all a, b ∈ L and called a Jordan left centralizer on L if
(a2)µ = aµa.
To facilitate our discussion, we shall begin with the following lemma:

Lemma 3.1 ([12], Theorem 3.1). Let R be a 2-torsion free semiprime ring and
L 6⊆ Z(R) be a square-closed Lie ideal. If µ : R→ R is Jordan triple left centralizer
on L, then µ is a Jordan left centralizer on L.

Theorem 3.1. Let R be a 2−torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a square-closed Lie ideal. If F : R → R is generalized
Jordan triple (α, β)−derivation on L such that aδ, β(a) ∈ L, then F is a generalized
(α, β)−derivation on L.
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Proof. We are given that F is a generalized Jordan triple (α, β)-derivation on L.
Therefore we have

(aba)F = aFα(ba) + β(a)bδα(a) + β(ab)aδ for all a, b ∈ L. (3.1)

In (3.1), we take δ is a Jordan triple (α, β)-derivation on L. Since R is a 2−torsion
free semiprime ring, so in view of Theorem 2.1, δ is (α, β)-derivation on L. Now we
write Γ = F − δ. Then

Γ(aba) = (aba)F−δ

= (aba)F − (aba)δ

= (aF − aδ)α(ba) for all a, b ∈ L.
Then we have Γ(aba) = Γ(a)α(ba) for all a, b ∈ L. So, α−1Γ becomes a Jordan
triple left centralizer. In other words α−1Γ is a Jordan triple left centralizer on L.
Since R is a 2−torsion free semiprime ring one can conclude that α−1Γ is a Jordan
left centralizer by Lemma 3.1. Hence

α−1Γ(ab) = α−1Γ(a)b for all a, b ∈ L.
That is, Γ(ab) = Γ(a)α(b) and hence F is of the form F = Γ + δ, where δ is an
(α, β)− derivation and Γ(ab) = Γ(a)α(b). Therefore, F is a generalized Jordan
(α, β)−derivation on L.

Since every generalized (α, β)-derivation is also a generalized Jordan Triple (α, β)
derivation, we immediately obtain

Corollary 3.1. Let R be a 2−torsion free semiprime ring, α, β be automorphisms
of R and L 6⊆ Z(R) be a square-closed Lie ideal. If F : R → R is generalized
Jordan (α, β)−derivation on L such that aδ, β(a) ∈ L, then F is a generalized
(α, β)−derivation on L.
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ON THE Ka−CONTINUITY OF REAL FUNCTIONS

KAMIL DEMIRCI, SEVDA YILDIZ, AND FADIME DIRIK

Abstract. The aim of the present paper is to define Ka−continuity which is
associated to the number sequence a = (an) and to give some new results.

1. Introduction and Preliminaries

Robbins proposed a problem and he asked readers to show that a function f :
R→ R with the following property has to be linear:

lim
n

1

n

n∑
k=1

f (xk) = f (x0) whenever lim
n

1

n

n∑
k=1

xk = x0, x0 ∈ R,

in 1946 ([9]). Solution by R. C. Buck [10] was published in 1948 (the problem
was also solved by five others). Since then, different type continuities defined and
studied by authors. Antoni and Salat [3] defined the concept of A−continuity for
real functions based on A−summability. After that the notion of F−continuity
based on almost convergence (F−convergence) was introduced in the paper [11] by
Öztürk. This method studied by Borsik and Salat [4] and they remark that almost
convergence and A−summability are not equivalent. Also some authors studied
different concepts of continuity [2, 10, 12, 13].
Let A = (ank) be an infinite matrix of real numbers and x = (xn) be a number se-

quence. The sequence (A (x)n) where A (x)n =
∞∑
k=1

ankxk is called the A−transform

of x whenever the series converges for n = 1, 2, 3, .... The sequence x is said to be
A−summable to l if the sequence (A (x)n) converges to l and we write A−limn xn = l.
A is called regular if lim

n
xn = l implies A− lim

n
xn = l ([5, 6]).
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A sequence (xn) of real numbers is said to be almost convergent (F−convergent)
to number l if

lim
p

1

p

p∑
k=1

xn+k = l

holds uniformly in n = 1, 2, 3, ... and we write F − lim
n
xn = l[8].

Definition 1. Let A = (ank) be a regular matrix of real numbers and (xn) be a
number sequence. A function f : R → R is A−continuous at a point x0 ∈ R if
A− lim

n
f (xn) = f (x0) whenever A− lim

n
xn = x0([2, 3]).

Definition 2. A function f : R → R is F−continuous at a point x0 ∈ R if
F − lim

n
f (xn) = f (x0) whenever F − lim

n
xn = x0.

In the present paper, we study the concept of Ka−continuity based on Ka−
convergence, was defined by Lazic and Jovovic [7]. It is now natural to ask:
Is the Ka−continuity a special case of A−continuity or do Ka−continuity and
F−continuity contain each other? In general the answer is no. Simple examples
show that these continuity methods do not contain each other. Namely, these
methods are overlap.
We now recall some definitions and properties:
The notion of Ka−convergence was defined by Lazic and Jovovic [7] in 1993,

which is obviously associated to the matrix A = (ank),

A =


a1 0 0 0 ...
a2 a1 0 0
a3 a2 a1 0
.
.

 .

Let a = (an) and (xn) be number sequences, set yn =
n∑
i=1

an−i+1xi (n = 1, 2, 3, ...) ,

then we say that (yn) is the Ka−transformation of the (xn) .

Definition 3. [7] The sequence (xn) of real numbers is said to be Ka−convergent
to the number l if, its Ka−transformation (yn) converges to the number l, i.e.
lim
n
yn = l. This limit is denoted by Ka − lim

n
xn = l.

Proposition 4. [7] Let a = (an) be a number sequence and the series
∑
an be

absolutely convergent, i.e.
∞∑
n=1

|an| <∞. (1)
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(i) If (xn) is convergent, lim
n
xn = l and the condition (1) is satisfied then,

Ka − lim
n
xn = l

∞∑
n=1

an.

(ii) The convergence method Ka is regular if and only if the condition (1) and
∞∑
n=1

an = 1 (2)

are valid (for more properties and details, see also [7]).

Now, we will give examples which show that Ka−convergence and almost con-
vergence do not imply each other.

Example 5. Let a = (an) = (2, 2,−2, 0, 0, ...) and let

x = (xi) = (1, 0, 1,−1, 2,−3, 5,−8, ...) [xi = xi−2 − xi−1 for i ≥ 3] .

Then,

(yk) =

(
k∑
i=1

ak−i+1xi

)
= (2, 2, 0, 0, ...) .

Therefore Ka − lim
n
xn = 0. However, F − lim

n
xn does not exist. Also, observe that

∞∑
n=1

an = 2 and Ka is not regular.

Example 6. Let a = (an) = (1, 0, 1, 0, 0, ...) and let

(xi) =

(
1, 1,

1

23
,
1

24
, 1, 1,

1

27
,
1

28
, 1, 1, ...

)
.

Then,

(yn) =

(
n∑
i=1

an−i+1xi

)
=

(
1, 1, 1 +

1

23
, 1 +

1

24
,
1

23
+ 1,

1

24
+ 1, ...

)
.

Hence Ka− lim
n
xn = 1. However, F − lim

n
xn 6= 1. Also, observe that

∞∑
n=1

an = 2 and

Ka is not regular.

Now, we introduce the notion of Ka−continuity.

Definition 7. Let a = (an) and (xn) be number sequences. The function f :
R → R is Ka−continuous at a point x0 ∈ R if Ka − lim

n
f (xn) = f (x0) whenever

Ka − lim
n
xn = x0.
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Lemma 8. If (fn) is a sequence of Ka−continuous functions defined on a subset

D of R,
∞∑
n=1

|an| =M 6= 0 and (fn) is uniformly convergent to a function f, then f

is Ka−continuous on D.

Proof. Let (xn) be a Ka−convergent sequence and ε > 0. Since (fn) is uniformly
convergent, then there exists a positive integer N such that |fn (x)− f (x)| <

ε
2(M+1) for all x ∈ D, whenever n ≥ N. As fN is Ka−continuous, there exists

a positive integer N1, greater than N , such that

∣∣∣∣∣
n∑
i=1

an−i+1fN (xi)− fN (x0)
∣∣∣∣∣ < ε

2

for n ≥ N1 (ε) . Then, for all n ≥ N1, we get∣∣∣∣∣
n∑
i=1

an−i+1f (xi)− f (x0)
∣∣∣∣∣ ≤

∣∣∣∣∣
n∑
i=1

an−i+1 (f (xi)− fN (xi))
∣∣∣∣∣

+

∣∣∣∣∣
n∑
i=1

an−i+1fN (xi)− fN (x0)
∣∣∣∣∣

+ |fN (x0)− f (x0)|
<

ε

2 (M + 1)
M +

ε

2
+

ε

2 (M + 1)
= ε.

This completes the proof. �

2. Main Results

In this section we prove our main theorems.

Theorem 9. Let a = (an) be a number sequence and
∞∑
n=1

|an| < ∞. If f : R → R

is Ka−continuous at a point x0 ∈ R, then f is a linear function.

Proof. Let
∞∑
n=1

an = N and N 6= 0. First, we can assume that g : R → R is

Ka−continuous at a point 0 and g (0) = 0 as a special case.
Let x = (b, c, d, b, c, d, ...) such that b, c, d ∈ R and b + c + d = 0 and let a =

(an) = (1, 1, 1, 0, 0, ...) . Then the sequence Ka−convergent to 0. Indeed,(
n∑
i=1

an−i+1xi

)
= (b, b+ c, 0, 0, ...) .

This means Ka − lim
n
xn = 0. According to assumption, we have Ka − lim

n
g (xn) =

g (0) = 0, i.e., the sequence (g (xn)) = (g (b) , g (c) , g (d) , ...) is Ka−convergent to
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0. Also, by a direct calculation, we can see that(
n∑
i=1

an−i+1g (xi)

)
= (g (b) , g (b) + g (c) , g (b) + g (c) + g (d) , g (c) + g (d) + g (b) , ...) .,

Ka − lim
n
g (xn) = g (b) + g (c) + g (d) . Hence

g (b) + g (c) + g (d) = 0 (3)

Since d = −b− c, we get g (−b− c) = −g (b)− g (c) . Putting c = 0 we have

g (−b) = −g (b) (b ∈ R) (4)

Let x, y ∈ R arbitrary. Put d = x + y, b = −x, c = −y then b + c + d = 0 and
according to (3) and (4), we get

g (x+ y) = −g (−x)− g (−y) = g (x) + g (y) , g (nx) = ng (x) .

If a sequence (xn) is Ka−convergent to zero, so that lim
n

n∑
i=1

an−i+1xi = 0, then it

can be seen that

lim
n

n∑
i=1

an−i+1g (xi) = lim
n
g

(
n∑
i=1

an−i+1xi

)
= 0.

Hence g is continuous in the usual sense at zero. On the basis of well known
knowledge on Cauchy equation we get g (x) = Cx for x ∈ R, C being a constant
(p. 44-45, [1]).
Now, we shall discuss the general case. Let f : R → R be Ka−continuous at

a point x0 ∈ R. We write new coordinates x′ = x − x0, y′ = Ny − f (x0) . Put
g (x′) = Nf (x) − f (x0) . It is easy to see that from the Ka−continuity of f at
x0 the Ka−continuity of g at 0 follows. Hence, g has the form g (x′) = C ′x′, i.e.,
Nf (x)− f (x0) = C ′x′ = C ′ (x− x0) = C ′x− C ′x0, f (x) = C′

N x+
−C′x0+f(x0)

N =

Cx+B where C = C′

N and B = −C
′x0+f(x0)
N . The proof is finished. �

Theorem 10. Let a = (an) be a number sequence,
∞∑
n=1

|an| < ∞ and f : R → R

have the following property:
there exists such a point x0 ∈ R that the following implication

Ka − lim
n
xn = x0 ⇒ lim

n
f (xn) =

f (x0)

N
, (5)

where N =

∞∑
n=1

an (N 6= 0) , is valid. Then f is a constant function.
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Proof. From (5) and Proposition 4, we have

Ka − lim
n
xn = x0 ⇒ Ka − lim

n
f (xn) = f (x0) .

Hence f is Ka−continuous at a point x0 ∈ R. The Theorem 9 says that f is linear.
Put b = x0 − 1, c = x0 + 1 and a = (an) =

(
1
2 ,

1
2 , 0, 0, ...

)
. Then the sequence

(xn) = (b, c, b, c, ...) is Ka−convergent to x0, i.e.,(
n∑
i=1

an−i+1xi

)
=

(
x0 − 1
2

, x0, x0, ...

)
,

Ka − lim
n
xn = x0. It follows from (5) that

(f (xn)) = (f (b) , f (c) , f (b) , f (c) , ...)

converges. The last statement yields

f (b) = f (c) . (6)

Since f is a linear function it follows from (6) that f is a constant function. �

We note that if
∞∑
n=1

an = 1 then the matrix A = (ank) given via the sequence a =

(an) is regular. In that case, the Ka−continuity is a special case of A−continuity.

But, here
∞∑
n=1

|an| <∞ and therefore our main theorems Theorem 9 and Theorem

10 are not a consequence of the results concerning the A−continuity.
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DECOMPOSITION OF SOFT CONTINUITY VIA SOFT
LOCALLY b-CLOSED SET

NAİME DEMİRTAŞ AND ZEHRA GÜZEL ERGÜL

Abstract. In this paper, we introduce soft locally b-closed sets in soft topo-
logical spaces which are defined over an initial universe with a fixed set of
parameters and study some of their properties. We investigate their relation-
ships with different types of subsets of soft topological spaces with the help
of counterexamples. Also, the concept of soft locally b-continuous functions is
presented. Finally, a decomposition of soft continuity is obtained.

1. Introduction

Molodtsov [18, 19] initiated and applied soft set theory, while modelling the
problems in the field of science including engineering physics, computer science,
economics, social sciences and medical sciences, to deal with uncertain data and
not clear objects without complete information. Then many researchers [9, 16, 17,
20, 24] presented some new definitions and results and also discussed in detail the
application of soft set theory in decision making problems.
In [20], Shabir and Naz introduced the primary concepts of soft topological

spaces. Later, Aygünoğlu and Aygün [7], Hussain and Ahmad [11], Yuksel et al.
[23], Zorlutuna et al. [24] continued to study many basic concepts and properties of
soft topological spaces. Kharal and Ahmad [13] and Zorlutuna et al. [24] discussed
the mappings of soft classes and their properties in soft topological spaces. Recently,
different forms of soft open sets [1, 2, 3, 6, 8, 12, 14, 15, 21] were studied.
In the present paper, we introduce soft locally b-closed set in soft topological

spaces which are defined over an initial universe with a fixed set of parameters.
Also, we give the notion of soft locally b-continuous function and obtain another
decomposition of soft continuity.
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Key words and phrases. Soft set, soft topological space, soft locally b-closed set, soft locally
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2. Preliminaries

Here, we present the basic definitions and results of soft sets and soft topological
spaces which have already given in earlier studies. Let X be an initial universe set
and E be the set of all possible parameters with respect to X. Let P (X) denote
the power set of X. Then a soft set over X is defined as follows.

Definition 1. [18] A pair (F,A) is called a soft set over X where A ⊆ E and
F : A → P (X) is a set valued mapping. In other words, a soft set over X is
a parameterized family of subsets of the universe X. For ∀ε ∈ A, F (ε) may be
considered as the set of ε−approximate elements of the soft set (F,A). It is worth
noting that F (ε) may be arbitrary. Some of them may be empty, and some may
have nonempty intersection.

The set of all soft sets over X is denoted by SS(X)E . For null soft set (Φ),

absolute soft set (
∼
X), soft subset (v), soft union (t), soft intersection (u), soft

relative complement, their properties and the relations to each other; the interested
reader is refer to [5, 9, 17, 20, 24].

Definition 2. [24] The soft set (F,E) ∈ SS(X)E is called a soft point in
∼
X,

denoted by eF , if for the element e ∈ E, F (e) 6= ∅ and F (e
′
) = ∅ for all e′ ∈ E\{e}.

The soft point eF is said to be in the soft set (G,E), denoted by eF ∈ (G,E), if for
the element e ∈ E and F (e) ⊆ G(e).

Definition 3. [20] Let
∼
τ be the collection of soft sets over X, then

∼
τ is said to be

a soft topology on X if

(1) Φ,
∼
X belong to

∼
τ ,

(2) the union of any number of soft sets in
∼
τ belongs to

∼
τ ,

(3) the intersection of any two soft sets in
∼
τ belongs to

∼
τ .

The triplet (X,
∼
τ , E) is called a soft topological space over X. The members of

∼
τ are said to be soft open sets in X. A soft set (F,E) over X is said to be a soft
closed set in X , if its relative complement (F,E)c belongs to

∼
τ . We will denote

the family of all soft open sets (resp., soft closed sets) of a soft topological space
(X,

∼
τ , E) by SOS(X) (resp., SCS(X)).
Throughout the paper, the spaces X and Y stand for soft topological spaces

with (X,
∼
τ , E) and (Y,

∼
υ,K) assumed unless otherwise stated.

Definition 4. Let X be a soft topological space and (F,E) be a soft set over X.

(1) [20] The soft closure of (F,E) is the soft set in X defined as:
cl(F,E) = u{(G,E) : (G,E) is soft closed and (F,E) v (G,E)}.
(2) [24] The soft interior of (F,E) is the soft set in X defined as:
int(F,E) = t{(H,E) : (H,E) is soft open and (H,E) v (F,E)}.
Clearly, cl(F,E) is the smallest soft closed set over X which contains (F,E) and

int(F,E) is the largest soft open set over X which is contained in (F,E).
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Definition 5. Let X be a soft topological space. A soft set (F,E) is called

(1) a soft semiopen set [8] in X if (F,E) v cl(int(F,E)),
(2) a soft preopen set [6] in X if (F,E) v int(cl(F,E)),
(3) a soft α-open set [1] in X if (F,E) v int(cl(int(F,E))),
(4) a soft β-open set [12] in X if (F,E) v cl(int(cl(F,E))),
(5) a soft regular open set [22] in X if (F,E) = int(cl(F,E)),
(6) a soft A-set [21] in X if (F,E) = (G,E)\(H,E), where (G,E) is a soft open

set and (H,E) is a soft regular open set in X,
(7) a soft t-set [21] in X if int(cl(F,E)) = int(F,E),
(8) a soft B-set [21] in X if (F,E) = (G,E)u (H,E), where (G,E) is a soft open

set and (H,E) is a soft t-set in X,
(9) a soft b-open (briefly; sb-open) set [2] in X if (F,E) v int(cl(F,E)) t

cl(int(F,E)),
(10) a soft locally closed set (briefly; soft LC-set) [14] in X if (F,E) = (G,E) u

(H,E), where (G,E) is soft open and (H,E) is soft closed in X.
The relative complement of a soft semiopen (soft preopen, soft α-open, soft β-

open, soft regular open, soft b-open) set is called a soft semiclosed (soft preclosed,
soft α-closed, soft β-closed, soft regular closed, soft b-closed) set. We will denote
the family of all soft semiopen sets (resp., soft preopen sets, soft α-open sets, soft
β-open sets, soft regular open sets, soft A-sets, soft B-sets, soft b-open sets and soft
locally closed sets) of a soft topological space X by SSOS(X) (resp., SPOS(X),
SαOS(X), SβOS(X), SROS(X), SAS(X), SBS(X), SbOS(X) and SLCS(X)).

Definition 6. Let X be a soft topological space and (F,E) be a soft set over X.

(1) The soft semiclosure [8] of (F,E) is the soft set in X defined as:
scl(F,E) = u{(G,E) : (G,E) is soft semiclosed and (F,E) v (G,E)}.
(2) The soft semiinterior [8] of (F,E) is the soft set in X defined as:
sint(F,E) = t{(H,E) : (H,E) is soft semiopen and (H,E) v (F,E)}.
(3) The soft preclosure [3] of (F,E) is the soft set in X defined as:
pcl(F,E) = u{(G,E) : (G,E) is soft preclosed and (F,E) v (G,E)}.
(4) The soft preinterior [3] of (F,E) is the soft set in X defined as:
pint(F,E) = t{(H,E) : (H,E) is soft preopen and (H,E) v (F,E)}.
(5) The soft b-closure [2] of (F,E) is the soft set in X defined as:
bcl(F,E) = u{(G,E) : (G,E) is soft b-closed and (F,E) v (G,E)}.
(6) The soft b-interior [2] of (F,E) is the soft set in X defined as:
bint(F,E) = t{(H,E) : (H,E) is soft b-open and (H,E) v (F,E)}.

Theorem 7. [21] Let X be a soft topological space. A soft set (F,E) over X is
soft open if and only if it is both a soft preopen set and a soft B-set.

Proof. Necessity is trivial, we prove the suffi ciency. Since (F,E) is a soft B-set, we
have (F,E) = (G,E)u (H,E), where (G,E) is a soft open set and int(cl(H,E)) =
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int(H,E). Since (F,E) is soft preopen, we have

(F,E) v int(cl(F,E)) = int(cl((G,E) u (H,E)))

v int(cl(G,E) u cl(H,E)) = int(cl(G,E)) u int(cl(H,E))

= int(cl(G,E)) u int(H,E).

Hence

(F,E) = (G,E) u (H,E) = ((G,E) u (H,E)) u (G,E)

v (int(cl(G,E)) u int(H,E)) u (G,E)

= (int(cl(G,E)) u (G,E)) u int(H,E) = (G,E) u int(H,E).

Notice (F,E) = (G,E) u (H,E) w (G,E) u int(H,E), we have (F,E) = (G,E) u
int(H,E). Thus we obtain (F,E) is soft open. �

Theorem 8. [12] Let X be a soft topological space. A soft set (F,E) over X is
soft α-open if and only if it is both a soft preopen set and a soft semiopen set.

Proof. Necessity. Since (F,E) is a soft α-open set, we have (F,E) v int(cl(int(F,E))).
Hence (F,E) v cl(int(F,E)) and (F,E) v int(cl(F,E)). Thus (F,E) is both soft
preopen and soft semiopen.
Suffi ciency. Since (F,E) is both a soft preopen set and a soft semiopen set, then

(F,E) v cl(int(F,E)) and (F,E) v int(cl(F,E)). Thus

(F,E) v int(cl(cl(int(F,E)))) = int(cl(int(F,E))).

It follows that (F,E) is soft α-open. �

3. Soft Locally b-Closed Sets

In this section, we introduce soft locally b-closed sets in soft topological spaces
and study some of their properties.

Definition 9. A soft set (F,E) in a soft topological space X is called a soft locally
b-closed set (briefly; soft LbC-set) if (F,E) = (G,E) u (K,E) where (G,E) is soft
open and (K,E) is soft b-closed.

Remark 10. The following examples show that a soft locally b-closed set need not
be soft open and a soft locally b-closed set need not be soft b-closed.

Example 11. Let X = {x1, x2, x3, x4}, E = {e1, e2, e3} and
∼
τ = {Φ,

∼
X, (F1, E), (F2, E), ..., (F15, E)}

where Φ,
∼
X, (F1, E), (F2, E), ..., (F15, E) are soft sets over X, defined as follows:

(F1, E) = {(e1, {x1}), (e2, {x2, x3}), (e3, {x1, x4})},
(F2, E) = {(e1, {x2, x4}), (e2, {x1, x3, x4}), (e3, {x1, x2, x4})},
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(F3, E) = {(e1, ∅), (e2, {x3}), (e3, {x1})},
(F4, E) = {(e1, {x1, x2, x4}), (e2, X), (e3, X)},
(F5, E) = {(e1, {x1, x3}), (e2, {x2, x4}), (e3, {x2})},
(F6, E) = {(e1, {x1}), (e2, {x2}), (e3, ∅)}
(F7, E) = {(e1, {x1, x3}), (e2, {x2, x3, x4}), (e3, {x1, x2, x4})},
(F8, E) = {(e1, ∅), (e2, {x4}), (e3, {x2})},
(F9, E) = {(e1, X), (e2, X), (e3, {x1, x2, x3})},

(F10, E) = {(e1, {x1, x3}), (e2, {x2, x3, x4}), (e3, {x1, x2})},
(F11, E) = {(e1, {x2, x3, x4}), (e2, X), (e3, {x1, x2, x3})},
(F12, E) = {(e1, {x1}), (e2, {x2, x3, x4}), (e3, {x1, x2, x4})},
(F13, E) = {(e1, {x1}), (e2, {x2, x4}), (e3, {x2})},
(F14, E) = {(e1, {x3, x4}), (e2, {x1, x2}), (e3, ∅)},
(F15, E) = {(e1, {x1}), (e2, {x2, x3}), (e3, {x1})}.

Then
∼
τ defines a soft topology on X and thus (X,

∼
τ , E) is a soft topological

space over X in [2]. Let (H,E) be a soft b-closed set over X such that (H,E) =
{(e1, {x1, x2, x3}), (e2, {x4}), (e3, {x1, x3})}. Then (F8, E) u (H,E) = (F,E) =
{(e1, ∅), (e2, {x4}), (e3, ∅)} is a soft locally b-closed set in X, but (F,E) is not soft
open.

Example 12. Let X = {x1, x2, x3, x4}, E = {e1, e2} and
∼
τ = {Φ,

∼
X, (F1, E), (F2, E), (F3, E)}

where Φ,
∼
X, (F1, E), (F2, E), (F3, E) are soft sets over X, defined as follows:

(F1, E) = {(e1, {x4}), (e2, {x2})},
(F2, E) = {(e1, {x2, x4}), (e2, {x2, x3, x4})},
(F3, E) = {(e1, {x1, x2, x4}), (e2, X)}.

Then
∼
τ defines a soft topology on X and thus (X,

∼
τ , E) is a soft topological

space over X in [10]. Clearly, (F2, E) = {(e1, {x2, x4}), (e2, {x2, x3, x4})} is a soft
locally b-closed set in X but not soft b-closed.

Proposition 13. Let (F,E) be any soft set in a soft topological space X. (F,E)
is soft locally b-closed if and only if there exists a soft open set (G,E) such that
(F,E) = (G,E) u bcl(F,E).

Proof. Necessity. Since (F,E) is soft locally b-closed, (F,E) = (G,E) u (K,E)
where (G,E) is soft open and (K,E) is soft b-closed. Hence (F,E) v (G,E)
and (F,E) v (K,E) then (F,E) v bcl(F,E) v bcl(K,E) = (K,E). Therefore
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(F,E) v (G,E) u bcl(F,E) v (G,E) u bcl(K,E) = (G,E) u (K,E) = (F,E).
Hence, (H,E) = (G,E) u bcl(H,E).
Suffi ciency. Since bcl(F,E) is soft b-closed and (F,E) = (G,E)u bcl(F,E), then

(F,E) is soft locally b-closed. �

Theorem 14. [2] In a soft topological space X, every soft closed set is soft b-closed.

Now we are ready to give the relation between soft locally b-closed set and soft
locally closed set.

Theorem 15. In a soft topological space X, every soft locally closed set is a soft
locally b-closed set.

The following example shows that the converse implication does not hold.

Example 16. Let X = {x1, x2, x3}, E = {e1, e2} and
∼
τ = {Φ,

∼
X, (F1, E), (F2, E), (F3, E)}

where Φ,
∼
X, (F1, E), (F2, E), (F3, E) are soft sets over X, defined as follows:

(F1, E) = {(e1, {x1}), (e2, {x1})},
(F2, E) = {(e1, {x2}), (e2, {x2})},
(F3, E) = {(e1, {x1, x2}), (e2, {x1, x2})}.

Then
∼
τ defines a soft topology on X and thus (X,

∼
τ , E) is a soft topological

space over X. Clearly, (F,E) = {(e1, {x3}), (e2, {x1, x3})} is a soft locally b-closed
set in X but not soft locally closed.

Theorem 17. [2] In a soft topological space X,
(1) An arbitrary union of soft b-open sets is a soft b-open set.
(2) The intersection of a soft open set and a soft b-open set is a soft b-open set.

From the Theorem 17, we have the following.

Corollary 18. The intersection of a soft locally b-closed set and a soft locally closed
set is soft locally b-closed.

Proposition 19. Let X be a soft topological space. If (F,E) is soft locally b-closed
in X then

(1) bcl(F,E)\(F,E) is a soft b-closed set.

(2) [(F,E) t (
∼
X\bcl(F,E))] is soft b-open.

(3) (F,E) v bint((F,E) t (
∼
X\bcl(F,E))).
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Proof. (1) If (F,E) is soft locally b-closed, there exists a soft open set (G,E) such
that (F,E) = (G,E) u bcl(F,E). Then

bcl(F,E)\(F,E) = bcl(F,E)\[(G,E) u bcl(F,E)]

= bcl(F,E) u [
∼
X\((G,E) u bcl(F,E))]

= bcl(F,E) u [(
∼
X\(G,E)) t (

∼
X\bcl(F,E))]

= [bcl(F,E) u (
∼
X\(G,E))] t [bcl(F,E) u (

∼
X\bcl(F,E))]

= bcl(F,E) u (
∼
X\(G,E))

which is soft b-closed by Theorem 17.

(2) Since bcl(F,E)\(F,E) is soft b-closed, then [
∼
X\(bcl(F,E)\(F,E))] is soft

b-open and
∼
X\(bcl(F,E)\(F,E)) =

∼
X\(bcl(F,E) u (

∼
X\(F,E))) = (F,E) t (

∼
X\bcl(F,E)).

(3) It is obvious that

(F,E) v (F,E) t (
∼
X\bcl(F,E)) = bint[(F,E) t (

∼
X\bcl(F,E))].

�

Theorem 20. Let X be closed under finite unions of soft b-closed sets. Then the
following relation hold:

bcl(F,E) t bcl(G,E) = bcl((F,E) t (G,E)).

Proof. We have (F,E) v (F,E) t (G,E) and (G,E) v (F,E) t (G,E). Since
bcl(F,E) v bcl((F,E) t (G,E)) and bcl(G,E) v bcl((F,E) t (G,E)) we have
bcl(F,E) t bcl(G,E) v bcl((F,E) t (G,E)) [2].
Now, bcl(F,E) and bcl(G,E) are soft b-closed sets. Then we have (F,E) t

(G,E) v bcl(F,E) t bcl(G,E) since (F,E) v bcl(F,E) and (G,E) v bcl(G,E).
That is, bcl(F,E) t bcl(G,E) is a soft b-closed set containing (F,E) t (G,E). But
bcl((F,E)t(G,E)) is the smallest soft b-closed set containing (F,E)t(G,E). Hence
bcl((F,E) t (G,E)) v bcl(F,E) t bcl(G,E). So, we obtain bcl((F,E) t (G,E)) =
bcl(F,E) t bcl(G,E). �

The union of two soft locally b-closed sets is generally not soft locally b-closed.
To define the union of two soft locally b-closed sets, we need to give the following
concept:

Definition 21. [23] Let X be a soft topological space and (F,E), (G,E) are soft sets
over X. (F,E) and (G,E) are said to be soft separated sets if (F,E)ucl(G,E) = Φ
and (G,E) u cl(F,E) = Φ.
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Theorem 22. Suppose X is closed under finite unions of soft b-closed sets. Let
(F,E) and (G,E) be soft locally b-closed. If (F,E) and (G,E) are soft separated,
then (F,E) t (G,E) is soft locally b-closed.

Proof. Since (F,E) and (G,E) are soft locally b-closed, (F,E) = (S,E)u bcl(F,E)
and (G,E) = (T,E) u bcl(G,E), where (S,E) and (T,E) are soft open in X.

Put (H,E) = (S,E) u (
∼
X\cl(G,E)) and (K,E) = (T,E) u (

∼
X\cl(F,E)). Then

(H,E)u bcl(F,E) = ((S,E)u (
∼
X\cl(G,E)))u bcl(F,E) = (F,E)u (

∼
X\cl(G,E)) =

(F,E), since (F,E) v (
∼
X\cl(G,E)). Similarly, (K,E) u bcl(G,E) = (G,E). And

(H,E) u bcl(G,E) v (H,E) u cl(G,E) = Φ and (K,E) u bcl(F,E) v (K,E) u
cl(F,E) = Φ. Since (H,E) and (K,E) are soft open, ((H,E)t(K,E))ubcl((F,E)t
(G,E)) = ((H,E)t(K,E))u(bcl(F,E)tbcl(G,E)) = ((H,E)ubcl(F,E))t((H,E)u
bcl(G,E))t((K,E)ubcl(F,E))t((K,E)ubcl(G,E)) = (F,E)t(G,E). We obtain
(F,E) t (G,E) is soft locally b-closed. �
Lemma 23. [12] Let X be a soft topological space, (F,E) a soft set over X and
eK ∈ SS(X)E. Then eK ∈ pcl(F,E) if and only if (F,E) u (G,E) 6= Φ for every
(G,E) ∈ SPOS(X).

Lemma 24. Let X be a soft topological space. If (F,E) is a soft semiopen set,
then pcl(F,E) = cl(F,E).

Proof. We have pcl(F,E) v cl(F,E) for every soft set (F,E) over X. We show that
cl(F,E) v pcl(F,E) if (F,E) ∈ SSOS(X). Let eK ∈ cl(F,E) and eK ∈ (G,E) ∈
SPOS(X), then eK ∈ (G,E) v int(cl(G,E)) and hence (F,E)uint(cl(G,E)) 6= Φ.
Since (F,E) ∈ SSOS(X), (F,E) u int(cl(G,E)) v cl(int(F,E)) u int(cl(G,E)) v
cl(int(F,E) u cl(G,E)) v cl((F,E) u (G,E)). Therefore, we obtain cl((F,E) u
(G,E)) 6= Φ and so (F,E) u (G,E) 6= Φ. By Lemma 23, eK ∈ pcl(F,E) and hence
cl(F,E) v pcl(F,E). �
Definition 25. A soft set (F,E) in a soft topological space X is called a soft Ψ- set
if (F,E) = (G,E) u (K,E) where (G,E) is soft open and int(cl(K,E)) v (K,E).

It is clear that every soft Ψ- set is a soft B-set.

Theorem 26. Let X be a soft topological space. A soft set (F,E) over X is
soft Ψ- set if and only if there exists a soft open set (G,E) such that (F,E) =
(G,E) u scl(F,E).

Proof. Let (F,E) be a soft Ψ- set. Then there exists a soft open set (G,E) and a soft
semiclosed set (H,E) such that (F,E) = (G,E)u(H,E). We have (F,E) v (G,E),
(F,E) v (H,E), (F,E) v scl(H,E), (F,E) v (G,E) u scl(F,E) v (G,E) u
(H,E) = (F,E). Hence (F,E) = (G,E) u scl(F,E).
The converse is obvious since scl(F,E) is soft semiclosed. �

Remark 27. Soft semiopen sets and soft locally b-closed sets are independent from
each other as shown in the following examples.
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Example 28. Let X = {x1, x2, x3, x4} and E = {e1, e2, e3}. Let us take the soft
topology

∼
τ on X and the soft set (F,E) = {(e1, ∅), (e2, {x4}), (e3, ∅)} in Example

11. Clearly, (F,E) is a soft locally b-closed set in X but not soft semiopen.

Example 29. Let X = {x1, x2, x3, x4} and E = {e1, e2}. Let us take the soft
topology

∼
τ on X and the soft set (G,E) = {(e1, {x2, x3, x4}), (e2, {x2, x3, x4})} in

Example 12. Clearly, (G,E) is a soft semiopen set in X but not soft locally b-closed.

Theorem 30. Let X be a soft topological space. A soft set (F,E) over X is a soft
B-set if it is soft locally b-closed and soft semiopen.

Proof. Let (F,E) be soft locally b-closed and soft semiopen. Then by Proposition
13, there exists a soft open set (G,E) such that (F,E) = (G,E) u bcl(F,E) =
(G,E)u[scl(F,E)upcl(F,E)]. By Lemma 24, we have (F,E) = (G,E)u[scl(F,E)u
cl(F,E)] = (G,E)uscl(F,E). Hence (F,E) is a soft Ψ- set by Theorem 26, so (F,E)
is a soft B-set. �

Remark 31. Soft α-open sets and soft locally b-closed sets are independent from
each other as shown in the following examples.

Example 32. Let X = {x1, x2, x3, x4} and E = {e1, e2, e3}. Let us take the soft
topology

∼
τ on X and the soft set (F,E) = {(e1, ∅), (e2, {x4}), (e3, ∅)} in Example

11. Clearly, (F,E) is a soft locally b-closed set in X but not soft α-open.

Example 33. Let X = {x1, x2, x3, x4} and E = {e1, e2}. Let us take the soft
topology

∼
τ on X and the soft set (G,E) = {(e1, {x2, x3, x4}), (e2, {x2, x3, x4})} in

Example 12. Clearly, (G,E) is a soft α-open set in X but not soft locally b-closed.

Theorem 34. Let X be a soft topological space. A soft set (F,E) over X is soft
open if and only if it is both a soft α-open set and a soft locally b-closed set.

Proof. It is immediate from Theorem 7, Theorem 8 and Theorem 30. �

Definition 35. [4] Let X be a soft topological space. A soft set (F,E) over X is
called a soft generalized b-closed set (briefly; soft gb-closed set) if bcl(F,E) v (G,E),
whenever (F,E) v (G,E) and (G,E) is soft open.

Theorem 36. Let X be a soft topological space. A soft set (F,E) over X is soft
b-closed if and only if it is both a soft gb-closed set and a soft locally b-closed set.

Proof. Necessity. Let (F,E) be soft b-closed. (F,E) = (F,E) u
∼
X, then (F,E)

soft locally b-closed. Also, if (F,E) v (G,E) where (G,E) is soft open, then
bcl(F,E) = (F,E) v (G,E). Hence (F,E) is soft gb-closed.
Suffi ciency. If (F,E) is soft locally b-closed, then there exists a soft open set

(G,E) such that (F,E) = (G,E) u bcl(F,E). Since (F,E) v (G,E) and (F,E) is
soft gb-closed then bcl(F,E) v (G,E). Therefore bcl(F,E) v (G,E) u bcl(F,E) =
(F,E). Hence (F,E) is soft b-closed. �
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4. Decompositions of Soft Continuity

In this section, we introduce soft locally b-continuous functions and give a de-
composition of soft continuity via the notion of soft locally b-closed set.

Definition 37. [13] Let SS(X)E and SS(Y )K be families of soft sets, u : X −→ Y
and p : E −→ K be mappings. Then the mapping fpu : SS(X)E −→ SS(Y )K is
defined as:

(1) Let (F,E) ∈ SS(X)E . The image of (F,E) under fpu, written as fpu(F,E) =
(fpu(F ), p(E)), is a soft set in SS(Y )K such that

fpu(F )(y) =

{
∪x∈p−1(y)∩Au(F (x)) , p−1(y) ∩A 6= ∅
∅ , otherwise

for all y ∈ K.
(2) Let (G,K) ∈ SS(Y )K . The inverse image of (G,K) under fpu, written as

f−1pu (G,K) = (f−1pu (G), p−1(K)), is a soft set in SS(X)E such that

f−1pu (G)(x) =

{
u−1(G(p(x))) , p(x) ∈ K
∅ , otherwise

for all x ∈ E.

Definition 38. Let X and Y be soft topological spaces and fpu : SS(X)E −→
SS(Y )K be a function. Then fpu is called

(1) soft continuous [24] if for each (G,K) ∈SOS(Y ), f−1(G,K) ∈SOS(X).
(2) soft semicontinuous [15] if for each (G,K) ∈SOS(Y ), f−1pu (G,K) ∈SSOS(X).
(3) soft α-continuous [1] if for each (G,K) ∈SOS(Y ), f−1pu (G,K) ∈SαOS(X).
(4) soft B-continuous [21] if for each (G,K) ∈SOS(Y ), f−1pu (G,K) ∈SBS(X).
(5) soft LC-continuous [14] if for each (G,K) ∈SOS(Y ), f−1pu (G,K) ∈SLCS(X).
(6) soft b-continuous [2] if for each (G,K) ∈SOS(Y ), f−1pu (G,K) ∈SbOS(X).

Definition 39. Let X and Y be soft topological spaces and fpu : SS(X)E −→
SS(Y )K be a function. Then fpu is called soft locally b-continuous if for each
(G,K) ∈SOS(Y ), f−1pu (G,K) is a soft locally b-closed set in X.

Remark 40. Soft α-continuous functions and soft locally b-continuous functions
are independent from each other as shown in the following examples.

Example 41. Let X = {x1, x2, x3}, Y = {y1, y2, y3}, E = {e1, e2}, K = {k1, k2},
∼
τ = {Φ,

∼
X, (F1, E), (F2, E), (F3, E)} in Example 16 and ∼υ = {Φ,

∼
Y , (H,K)} such

that

(H,K) = {(k1, {y1}), (k2, {y1, y3})}.
Let (X,

∼
τ , E) and (Y,

∼
υ,K) be soft topological spaces. Define u : X −→ Y, p :

E −→ K as
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u(x1) = {y3}, u(x2) = {y2}, u(x3) = {y1} and p(e1) = {k1}, p(e2) = {k2}.
Let fpu : SS(X)E −→ SS(Y )K be a function. Then (H,K) is soft open in Y and

f−1pu (H,K) = {(e1, {x3}), (e2, {x1, x3})} is a soft locally b-closed set. Therefore, fpu
is soft locally b-continuous. But, f−1pu (H,K) is not a soft α-open set and so fpu is
not soft α-continuous.

Example 42. Let X = {x1, x2, x3, x4}, Y = {y1, y2, y3, y4}, E = {e1, e2} and K =

{k1, k2}
∼
τ = {Φ,

∼
X, (F1, E), (F2, E), (F3, E)} in Example 12 and ∼υ = {Φ,

∼
Y , (G,K)}

such that

(G,K) = {(k1, {y1, y2, y3}), (k2, {y1, y2, y3})}.
Let (X,

∼
τ , E) and (Y,

∼
υ,K) be soft topological spaces. Define u : X −→ Y, p :

E −→ K as
u(x1) = {y4}, u(x2) = {y1}, u(x3) = {y2}, u(x4) = {y3} and

p(e1) = {k1}, p(e2) = {k2}.
Let fpu : SS(X)E −→ SS(Y )K be a function. Then (G,K) is soft open in Y and

f−1pu (G,K) = {(e1, {x2, x3, x4}), (e2, {x2, x3, x4})} is a soft α-open set. Therefore,
fpu is soft α-continuous. But, f−1pu (G,K) is not a soft locally b-closed set and so
fpu is not soft locally b-continuous.

Theorem 43. Let X and Y be soft topological spaces. Then fpu : SS(X)E −→
SS(Y )K is soft continuous if and only if it is soft α-continuous and soft locally
b-continuous.

Proof. This is an immediate consequence of Theorem 34. �
Definition 44. Let X and Y be soft topological spaces and fpu : SS(X)E −→
SS(Y )K be a function. Then fpu is called soft gb-continuous if for each (G,K) ∈SOS(Y ),
f−1pu (G,K) is a soft gb-closed set in X.

Theorem 45. Let X and Y be soft topological spaces. Then fpu : SS(X)E −→
SS(Y )K is soft b-continuous if and only if it is soft gb-continuous and soft locally
b-continuous.

Proof. This is an immediate consequence of Theorem 36. �

5. Conclusion

In the present study, we have introduced soft locally b-closed sets in soft topolog-
ical spaces which are defined over an initial universe with a fixed set of parameters
and we have studied some of their properties. We have investigated their rela-
tionships with different types of subsets of soft topological spaces with the help of
counterexamples. Also, the concept of soft locally b-continuous functions have been
presented. Finally, a decomposition of soft continuity has been obtained.
In future, these findings may be extended to new types of soft sets such as soft α-

locally closed and soft pre-locally closed sets in soft topological spaces. We expect
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that results in this paper will be helpfull for further studies in soft topological
spaces.
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ESTIMATION OF POPULATION MEAN UNDER DIFFERENT
STRATIFIED RANKED SET SAMPLING DESIGNS WITH
SIMULATION STUDY APPLICATION TO BMI DATA

ARZU ECE CETIN AND NURSEL KOYUNCU

Abstract. In this article, we have compared the performance of ratio-type
estimators in some stratified ranked set sampling methods. These sampling
methods are stratified random sampling, stratified ranked set sampling, strati-
fied double ranked set sampling and stratified median ranked set sampling. In
these methods, the ratio type estimators using auxiliary variable information
such as coeffi cient of variation and kurtosis are examined. We have used a real
data set to see the performance of estimators. We use the data concerning
body mass index (BMI) as a study variable and the age and the weight as
auxiliary variables for 800 people in Turkey in 2014. We stratified the data
set using gender. A simulation study is carried out to see performance of
the proposed ratio type estimators in these stratified ranked set sampling de-
signs. The performances of these estimators are compared in terms of mean
squared error (MSE) and percent relative effi ciency (PRE). The importance
of this study is to compare these stratified sampling designs with those in the
sampling literature by performing a detailed simulation using a real data set.

1. Introduction

Ranked set sampling (RSS) technique was first introduced by Mclntyre [11], and
Dell and Clutter [3] showed that the mean of the RSS is an unbiased estimator
of the population mean, whether or not there are errors in ranking. Following,
stratified ranked set sampling (SRSS) was suggested by Samawi and Muttlak [13]
to obtain a more effi cient estimator for a population mean. Samawi [14] proposed
an effi cient estimator in stratified ranked set sampling. Al- Saleh and Al-Kaddiri
[1] introduced the concept of double-ranked set sampling (DRSS) and showed that
the DRSS estimator is more effi cient than the usual RSS estimator in estimating
the finite population mean. Using SRSS, the performances of the combined and
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separate ratio estimates were obtained by Samawi and Siam [15]. Muttlak [12]
has suggested the median ranked set sampling (MRSS) method for estimating the
population mean. Ibrahim at al. [5] suggested estimating the population mean
using stratified median ranked set sampling (SMRSS). Al-Omari [2] suggested ratio
estimation of the population mean using auxiliary information in simple random
sampling (SRS) and median ranked set sampling (MRSS). Following Kadilar and
Cingi [6], Mandowara and Mehta [10] used the idea of SRSS instead of stratified
simple random sampling (SSRS) and obtained more effi cient ratio type estimators.
Koyuncu [7] has proposed ratio and exponential type estimators in MRSS. Khan et
al. [9] improved ratio-type estimators using stratified double-ranked set sampling
(SDRSS). Khan et al. [8] introduced effi cient classes of ratio-type estimators of
population mean under stratified median ranked set sampling. In this article we
compares the performance ratio-type estimators given by Mandowara and Mehta
[10], ratio-type estimators using stratified double-ranked set sampling (SDRSS)
given by Khan et al. [9] and effi cient classes of ratio-type estimators of population
mean under stratified median ranked set sampling given by Khan et al [8]. The
aim of this study is to make a performance comparison of the proposed ratio-type
estimators in these stratified sampling designs as a result of a simulation study using
a real data set. The remainder of the paper is organized as follows. In Section 2, the
designs of stratified sampling methods are explained and their ratio-type estimators
are given and MSE equations are offered. The results of simulation are reported in
Section 3. Finally, we arrive at a conclusion from these results in the last section.

2. Stratified Sampling Methods

2.1. Stratified Simple Random Sampling. In stratified sampling the popula-
tion of N units is first divided into L subpopulations of N1, N2, . . . , NL units. These
subpopulations, or also known as strata, are not overlapping and when combined
together they form the whole population, i.e. N1 + N2 + . . . + NL = N To ob-
tain the full benefit from stratification, the values of the Nh, h = 1, 2, . . . , L must
be known. After the strata have been determined, a sample is drawn from each
stratum. The sample sizes within the strata are denoted by n1, n2, . . . , nL respec-
tively and n =

∑L
h=1 nh simple random sample is taken in each stratum, the whole

procedure is described as stratified simple random sampling (SSRS). Let xhi and
yhi show the observed values of the variable of interest and the auxiliary variable
for hth stratum, respectively. When the relationship between the X and Y vari-
ables is positive, Hansen et al. [4] proposed compound and separate proportional
predictors, respectively,

ȳRC =
ȳst
x̄st

X̄ (1)

ȳRS =
ȳh
x̄h
X̄h (2)
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where ȳst =
∑L
h=1Whyh, x̄st =

∑L
h=1Whxh are the unbiased estimators of pop-

ulation means of the variable of interest and the auxiliary variable in SSRS and
Wh = Nh/N is the stratum weight.To the first degree of approximation the mean
square errors (MSE) of the estimators yRC and yRS respectively are given as follows

MSE(yRS) =

L∑
h=1

W 2
hψhY

2

h(C2yh + C2xh − 2Cyxh) (3)

where ψh =

(
1

nh
− 1

Nh

)
correction term for hth stratum, Cxh and Cyh are the

population coeffi cients of variation of auxiliary and study variables for hth stra-
tum, respectively. Cxyh = ρCyhCxh and ρ is the population correlation coeffi cient
between the auxiliary and the study variables.

MSE(yRC) =

L∑
h=1

W 2
hψh(S2yh +RS2xh − 2RSyxh) (4)

where S2xh =
1

(Nh − 1)

∑Nh

i=1(Xhi−Xh)2 and S2yh =
1

(Nh − 1)

∑Nh

i=1(Yhi−Y h)2 are

the population variances of the auxiliary and the study variables for hth stratum,

respectively. Syxh =
1

(Nh − 1)

∑Nh

i=1(Yhi−Y h)(Xhi−Xh) is the population covari-

ance between auxiliary variate and variate of interest in stratum h, and R =
Y

X
is

the population ratio.

2.2. Stratified Ranked Set Sampling. In ranked set sampling, r independent
random sets, each of size r and each unit in the set being selected with equal proba-
bility and without replacement, are selected from the population. The members of
each random set are ranked with respect to the characteristic of the study variable
or auxiliary variable. Then, the smallest unit is selected from the first ordered set
and the second smallest unit is selected from the second ordered set. By this way,
this procedure is continued until the unit with the largest rank is chosen from the
rth set. This cycle may be repeated m times, so n = mr units have been mea-
sured during this process. In stratified ranked set sampling, for the hth stratum of
the population, first choose rh independent samples each of size rh, h = 1, 2, ..., L.
Rank each sample, and use RSS scheme to obtain L independent RSS samples of
size rh, one from each stratum. Let r1 + r2 + . . .+ rL = r. This complete one cycle
of stratified ranked set sample. The cycle may be repeated m times until n = mr
elements have been obtained. A modification of the above procedure is suggested
here to be used for the estimation of the ratio using stratified ranked set sample.
For the hth stratum, first choose rh independent samples each of size rh of indepen-
dent bivariate elements from the hth subpopulation (stratum) h = 1, 2, ..., L. Rank
each sample with respect to one of the variables say Y or X. Then use the RSS



STRATIFIED RANKED SET SAMPLING DESIGNS 563

sampling scheme to obtain L independent RSS samples of size rh one from each
stratum. This complete one cycle of stratified ranked set sample. Sampling units
for stratified ranked set sample can be ranking is on the variable X or Y . When
the ranking is on the variable Y , for the kth cycle and the stratum hth, the SRSS
is denoted by {(Yh(1)k, Xh[1]k), ..., (Yh(rh)k, Xh[rh]k) : k = 1, 2, ...,m : h = 1, 2, ..., L}
, where Yh(i)k is the ith judgement ordering in the ith set for the study variable and
Xh[i]k is the ith order statistic in the ith set for the auxiliary variable. When ranking
in terms of Y and X variables, the formulas are the same, but the variable ordered
is represented by the index () and the other variable is represented by the index
[]. The compound and separate ratio estimators of population mean respectively
given by Samawi and Siam [15], using stratified ranked set sampling is defined as

ȳSS(c) =
ȳ(SRSS)

x̄[SRSS]
X̄ (5)

ȳSS(s) =
ȳ(SRSS)

x̄[SRSS]
X̄h (6)

where ȳ(SRSS) =
∑L
h=1Whyh(rh) and x̄[SRSS] =

∑L
h=1Whxh[rh] are the unbiased

estimators of population means Y and X in SRSS.
The MSE of the estimator ȳSS(c) and ȳSS(s) to the first degree of approximation

are respectively given by

MSE(ySS(c))
∼=

L∑
h=1

W 2
h

nh
Y
2

h

(
S2xh
X̄2

+
S2yh
Ȳ 2
− 2

Sxhyh
X̄Ȳ

− m

nh

rh∑
i=1

(Dxh[i] −Dyh(i))
2

)
(7)

where Dyh(i) =
µyh(i) − µyh

Ȳ
and Dxh[i] =

µxh[i] − µxh
X̄

.

MSE(ySS(s))
∼=

L∑
h=1

W 2
h

nh

(
S2yh +R2hS

2
xh − 2RhSxhyh −

m

nh

rh∑
i=1

(Mxh[i] −Myh(i))
2

)
(8)

where M2
yh(i) =

(µyh(i) − µyh)2

Ȳ 2h
, M2

xh[i] =
(µxh[i] − µxh)2

X̄2
h

and

Mxh[i]yh(i) =
(µxh[i] − µxh)(µyh(i) − µyh)

ȲhX̄h
.

Following Samawi and Siam[15], Mandowara and Mehta[10] suggested a modified
ratio-type estimator for population mean (Ȳ ) using SRSS, when the population
coeffi cient of variation of the auxiliary variable for the hth stratum Cxh and β2h(x)
the coeffi cient of kurtosis of the auxiliary variable X in the hth stratum, are known
as

ȳMM1 = ȳ(SRSS)
X̄ + Cst

x̄[SRSS] + Cst
(9)
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ȳMM2 = ȳ(SRSS)
X̄ + βst

x̄[SRSS] + βst
(10)

ȳMM3 = ȳ(SRSS)
X̄βst + Cst

x̄[SRSS]βst + Cst
(11)

ȳMM4 = ȳ(SRSS)
X̄Cst + βst

x̄[SRSS]Cst + βst
(12)

where Cst =
∑L
h=1WhCxh and βst =

∑L
h=1Whβ2h(x)

The MSE of the estimators ȳMM1,ȳMM2 ,ȳMM3 and ȳMM4 to the first degree of
approximation are respectively given by

MSE(ȳMMj) =

L∑
h=1

W 2
h

nh

{
S2yh +R2λ2jS

2
xh − 2RλjSxhyh − Ȳ 2

m

nh

rh∑
i=1

(Dyh(i) − λjDxh[i])
2

}
(13)

where λ1 =
X̄

X̄ + Cst
, λ2 =

X̄

X̄ + βst
, λ3 =

X̄βst
X̄βst + Cst

and λ4 =
X̄Cst

X̄Cst + βst
.

2.3. Stratified Double Ranked Set Sampling. In stratified double-ranked set
sampling, for the hth stratum of the population, first choose r3h independent random
samples (h = 1, 2, ..., L). Arrange these selected units randomly into rh sets, each
of size r2h . The procedure of RSS is then applied on each of the sets to obtain the rh
sets of ranked set samples each of size rh . These ranked set samples are collected
together to form rh sets of observations each of size rh . The RSS procedure is
then applied again on this set to obtain L independent DRSS samples each of size
rh, to get r1 + r2 + ...+ rL = r observations. This completes one cycle of SDRSS
. The whole process is repeated m times to get the desired sample size n = mr.
Following Samawi and Siam [15], Khan and et al. [9] propose combined ratio-type
estimator of population mean Y using SDRSS and is defined as

ȳR(StDRSS)SS = ȳ(StDRSS)

(
X̄

x̄[StDRSS]

)
(14)

where ȳ(StDRSS) =
∑L
h=1Whyh(DRSS) and x̄[StDRSS] =

∑L
h=1Whxh[DRSS] are the

unbiased estimators of population means Ȳ and X̄ respectively in SDRSS .
The MSE of the estimators ȳR(StDRSS)SS to the first degree of approximation is

given by

ȳR(StDRSS)SS
∼=
[
L∑
h=1

W 2
h

mrh
(C2yh + C2xh − 2ρyxhCxhCyh)

]

− Ȳ 2
[
L∑
h=1

W 2
h

mr2h

rh∑
i=1

(W
(i:rh)
yh(i:rh) −W

[i:rh]
xh[i:rh])

2

] (15)
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where

W
2[i:rh]
yh[i:rh] =

(µ
(i:rh)
yh(i:rh) − Ȳh)2

Ȳ 2
, W

2[i:rh]
xh[i:rh] =

(µ
[i:rh]
xh[i:rh] − X̄h)2

X̄2
,

W
[i:rh]
yh[i:rh] =

µ
(i:rh)
yh(i:rh) − Ȳh

Ȳ
, W

[i:rh]
xh[i:rh] =

µ
[i:rh]
xh[i:rh] − X̄h

X̄
,

W
[i:rh]
xh[i:rh]W

(i:rh)
yh(i:rh) =

(µ
(i:rh)
yh(i:rh) − Ȳh)(µ

[i:rh]
xh[i:rh] − X̄h)

Ȳ X̄

Khan et al. [9] suggested effi cient classes of ratio-type estimators of population
mean under stratified median ranked set sampling and is defined as

ȳR(StDRSS)SD = ȳ(StDRSS)

∑L
h=1Wh(X̄h + Cxh)∑L

h=1Wh(x̄h[DRSS] + Cxh)
(16)

ȳR(StDRSS)KC = ȳ(StDRSS)

∑L
h=1Wh(X̄h + Cxh)∑L

h=1Wh(x̄h[DRSS] + Cxh)
(17)

ȳR(StDRSS)US1 = ȳ(StDRSS)

∑L
h=1Wh(X̄h + β2(xh))∑L

h=1Wh(x̄h[DRSS] + β2(xh))
(18)

ȳR(StDRSS)US2 = ȳ(StDRSS)

∑L
h=1Wh(X̄hCxh + β2h(x))∑L

h=1Wh(x̄h[DRSS]Cxh + β2h(x))
(19)

The MSE of the estimators ȳR(StDRSS)SD, ȳR(StDRSS)KC , ȳR(StDRSS)US1,
ȳR(StDRSS)US2, to the first degree of approximation are respectively given by

MSE(ȳR(StDRSS)F ) =Ȳ 2

[
L∑
h=1

W 2
h

mrh
(C2yh + λ2iC

2
xh − 2λiρyxhCxhCyh)

]

− Ȳ
[
L∑
h=1

W 2
h

mr2h

rh∑
i=1

(
W

(i:rh)
yh(i:rh) − λiW

[i:rh]
xh[i:rh]

)2] (20)

where i = 1, 2, 3, 4 , F = SD,KC,US1, US2, λ1 =
X̄

X̄ + Cst
, λ2 =

X̄

X̄ + βst
,

λ3 =
X̄βst

X̄βst + Cst
and λ4 =

X̄Cst
X̄Cst + βst

.

2.4. Stratified Median Ranked Set Sampling. The MRSS procedure as pro-
posed by Muttlak [12] can be formed by selecting r random samples of size n units
from the population and rank the units within each sample with respect to a vari-
able of interest. If the sample size rh is odd, then from each sample select for the

measurement the
(
rh + 1

2

)
th smallest ranked unit,i.e., the median of the sam-

ple. If the sample size n is even, then select for the measurement from the first
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rh
2
samples the

(rh
2

)
th smallest ranked unit and from the second

rh
2
samples the(rh

2
+ 1
)
th smallest ranked. The cycle can be repeated m times if needed to get a

sample of size mr units. If the MRSS is performed in each stratum instead of SRSS
described, the method is known as stratified median ranked set sampling SMRSS
. To illustrate the method, let us consider the following two cases, if the subpopu-
lations involve odd number of elements in each set, and the second example if the
subpopulations involve even number of elements in each set. Note that the number
of subpopulations (strata) is immaterial, either odd or even. Following Ibrahim et
al. [5], Khan and et al. [8] propose two effi cient classes of ratio-type estimators for
estimating the finite population mean under stratified median ranked set sampling
using the known auxiliary information . Khan and et al. [8] propose the following
class of estimators in SMRSS , given by

ȳ(StMRSSk)p = ȳ(StMRSSk)

∑L
h=1Wh(ahX̄h + bh)∑L

h=1Wh(ahx̄h[MRSS] + bh)
(21)

where ȳ(StMRSS) =
∑L
h=1Whȳh(MRSS) and x̄[StMRSS] =

∑L
h=1Whx̄h[MRSS] are

the unbiased estimators of population means Ȳ and X̄ respectively in SMRSS.
Also, ah and bh are known population parameters, which can be coeffi cient of vari-
ation, coeffi cient of skewness, coeffi cient of kurtosis and coeffi cient of quartiles of the
auxiliary variable and k = O,E denote the sample size odd and even respectively.
The MSE of the estimators for odd and even sample sizes are respectively, given

by

MSE(ȳ(StMRSSO)p) ∼=

Ȳ 2
L∑
i=1

W 2
h

rh


σ2

yh

(
rh + 1

2

)
Ȳ 2h

+ λ2

σ2

xh

[
rh + 1

2

]
X̄2
h

− 2λ

σ2

yxh

(
rh + 1

2

)
ȲhX̄h

 (22)

MSE(ȳR(StMRSSE)p) ∼=

Ȳ 2
L∑
i=1

W 2
h

2rh



σ2

yh

(rh
2

) + σ2

yh

(
rh + 2

2

)
Ȳ 2h

+ λ2


σ2

xh

[rh
2

] + σ2

xh

[
rh + 2

2

]
X̄2
h




−λȲ 2
L∑
h=1

W 2
h

rh


σ
yxh

(rh
2

) + σ
yxh

(
rh + 2

2

)
ȲhX̄h

 (23)
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where λ =

∑L
h=1WhahX̄h∑L

h=1Wh(ahX̄h + bh)
Khan and et al. [8] proposed ȳR(StMRSSk)p ah and bh are known population

parameters; coeffi cient of variation, coeffi cient of skewness, coeffi cient of kurtosis
and coeffi cient of quartiles of the auxiliary variable,

ah = 1, bh = 0 y(StMRSSk)0 = ȳ(StMRSSk)

(
X̄

x̄[StMRSSk]

)
(24)

ah = 1, bh = Cxh y(StMRSSk)1 = ȳ(StMRSSk)

∑L
h=1Wh(X̄h + Cxh)∑L

h=1Wh(x̄h[MRSS] + Cxh)
(25)

ah = 1, bh = β2(xh) y(StMRSSk)2 = ȳ(StMRSSk)

∑L
h=1Wh(X̄h + β2(xh))∑L

h=1Wh(x̄h[MRSS] + β2(xh))

(26)

ah = β2(xh), bh = Cxh y(StMRSSk)3 = ȳ(StMRSSk)

∑L
h=1Wh(X̄hβ2(xh) + Cxh)∑L

h=1Wh(x̄h[MRSS]β2(xh) + Cxh)

(27)

ah = Cxh, bh = β2(xh) y(StMRSSk)4 = ȳ(StMRSSk)

∑L
h=1Wh(X̄hCxh + β2(xh))∑L

h=1Wh(x̄h[MRSS]Cxh + β2(xh))

(28)
The MSE of ȳR(StMRSSk)1, ȳR(StMRSS2)p, ȳR(StMRSS3)p, ȳR(StMRSS4)p and

ȳR(StMRSS5)p for odd and even sample sizes are respectively, given by

MSE(ȳR(StMRSSO)p) ∼=

Ȳ 2
L∑
i=1

W 2
h

rh


σ2

yh

(
rh + 1

2

)
Ȳ 2h

+ λ2i

σ2

xh

[
rh + 1

2

]
X̄2
h

− 2λi

σ
yxh

(
rh + 1

2

)
ȲhX̄h

 (29)

MSE(ȳR(StMRSSE)p) ∼=

Ȳ 2
L∑
i=1

W 2
h

2rh



σ2

yh

(rh
2

) + σ2

yh

(
rh + 2

2

)
Ȳ 2h

+ λ2i


σ2

xh

[rh
2

] + σ2

xh

[
rh + 2

2

]
X̄2
h




−λiȲ 2
L∑
h=1

W 2
h

rh


σ
yxh

(rh
2

) + σ
yxh

(
rh + 2

2

)
ȲhX̄h

 (30)
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p = 1, 2, 3, 4, 5 i = 0, 1, 2, 3, 4 where λ0 =
X̄

X̄
= 1,λ1 =

X̄

X̄ + Cst
, λ2 =

X̄

X̄ + βst
,

λ3 =
X̄βst

X̄βst + Cst
and λ4 =

X̄Cst
X̄Cst + βst

Khan et al. [8] proposed an other class of ratio-type estimators in SMRSS,
given by

MSE(ȳ(StMRSSk)G) =

ȳ(StMRSSk)

[
ω

∑L
h=1Wh(X̄h + q[1h])∑L

h=1Wh(x̄h[MRSS] + q[1h])
+ (1− ω)

∑L
h=1Wh(X̄h + q[3h])∑L

h=1Wh(x̄h[MRSS] + q[3h])

]
(31)

where ω is scalar quantity q[1h] and q[3h] are the first and third quartiles of auxiliary
variable in the hth stratum respectively.
The MSEs of ȳ(StMRSSk)G, upto first order of approximation, for odd and even

sample sizes are respectively, given by

MSE(ȳ(StMRSSO)G) ∼=Ȳ 2
L∑
i=1

W 2
h

rh

σ2yh( rh+12 )

Ȳ 2h
+ (η2 + k(η1 − η2))2

σ2
xh[

rh+1

2 ]

X̄2
h



− 2Ȳ 2 {η2 + ω(η1 − η2)}
L∑
h=1

W 2
h

rh


σ2

yxh

(
rh + 1

2

)
ȲhX̄h


(32)

MSE(ȳR(StMRSSE)G)

∼= Ȳ 2
L∑
i=1

W 2
h

2rh

σ2yh( rh+22 )
+ σ2

yh(
rh
2 )

Ȳ 2h
+ (η2 + ω(η1 − η2))2

σ2
xh[

rh+2

2 ]
+ σ2

xh[
rh
2 ]

X̄2
h



− {η2 + ω(η1 − η2)} Ȳ 2
L∑
h=1

W 2
h

rh


σ
yxh

(rh
2

) + σ
yxh

(
rh + 2

2

)
ȲhX̄h


(33)

where η1 =

∑L
h=1WhX̄h∑L

h=1Wh

(
X̄h + q[1h]

) and η2 =

∑L
h=1WhX̄h∑L

h=1Wh

(
X̄h + q[3h]

) .
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Estimators proposed by Khan et al. [8] using the following values for the scalar
number ω in the estimator ȳR(StMRSSk)G,

ω = 1, ȳ(StMRSSk)6 = ȳ(StMRSSk)

∑L
h=1Wh(X̄h + q[1h])∑L

h=1Wh(x̄h[MRSS] + q[1h])
(34)

ω = 0, ȳ(StMRSSk)7 = ȳ(StMRSSk)

∑L
h=1Wh(X̄h + q[3h])∑L

h=1Wh(x̄h[MRSS] + q[3h])
(35)

The MSE of ȳR(StMRSSk)6 and ȳR(StMRSSk)7 for odd and even sample sizes are
respectively, given by

MSE(ȳR(StMRSSO)G)) ∼= Ȳ 2
L∑
i=1

W 2
h
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(
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(36)

MSE(ȳR(StMRSSE)G)
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(
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2

)
ȲhX̄h


(37)

where i = 1, 2 G = 6, 7

3. Simulation Study

In this section a simulation study is conducted to investigate the performance of
SSRS, SRSS, SDRSS and SMRSS in ratio type estimators the population mean.
To observe performances of the estimators, we use the real data concerning body
mass index (BMI) as a study variable and the age and weight as auxiliary variable
for 800 people in Turkey in 2014. We have investigated correlation quantity between
study variable Y and auxiliary variable X for odd or even sample sizes. Also, we
considered on both variable Y and X. The simulation study was performed first by
using BMI with age variables and second by using BMI with weight variables. The
correlation coeffi cient of BMI with age was 0.60 and the correlation coeffi cient with
weight was 0.86. Thus, sampling methods were compared in different correlations.
For both cases, 10000 samples of size rh = 4, 5, 6, 7 were selected fromN = 800 units
using SSRS, SRSS, StDRSS and StMRSS methods. Also, we stratified the data
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set using gender (h = 1, 2). Estimators are compared in terms of mean squared
errors (MSEs) and percent relative effi ciencies (PREs). We used the following
expressions to obtain the MSEs and PREs, respectively

MSE(ȳ(α)) =

∑10000
k=1

[
ȳ(α) − Ȳ

]2
10000

(38)

PRE(ȳ(α)) =
MSE(ȳst)

MSE(ȳ(α))
∗ 100 (39)

α = st, SRSSk, StMRSSk, R(StDRSS), RC,RS, SS(c), MM1, MM2, MM3,
MM4, R(StMRSS)1, R(StMRSS)2, R(StMRSS)3, R(StMRSS)4, R(StMRSS)5,
R(StMRSS)6, R(StMRSS)7, R(StDRSS)SS, R(StDRSS)SD, R(StDRSS)KC,
R(StDRSS)US1, R(StDRSS)US2.
In this study, the PRE values of the average estimators in other sampling meth-

ods were calculated based on the classical mean estimator in the SSRS method.
In Table 1, statistical summary of population information about BMI, age and
weight variables are given. In Table 2, statistical summary of population stratified
information about BMI, age and weight variables are given. Simulation results ob-
tained when the auxiliary variable is taken as age are given in Table 3 and Table
4. The results obtained when the weight is taken as auxiliary variables are given
in Table 5 and Table 6. Since the effi ciency of the estimators changes according to
the sample size being odd and even, the sample size is considered as 4, 5, 6 and 7
in the simulation study and the results are given in all tables. When ranking on
variable X and Y , the results obtained by using the MSE and PRE formulas of the
estimators calculated by using the population stratified information of the Body
Mass Index (Y ) and Age (X1) variables of the SSRS, SDRSS, SRSS and SMRSS
methods are given in the following Table 3 and Table 4, respectively. When ranking
on variable X and Y , the results obtained by using the MSE and PRE formulas
of the estimators calculated by using the population stratified information of the
Body Mass Index (Y ) and Weight (X2) variables of the SSRS, SDRSS, SRSS and
SMRSS methods are given in the following Table 5 and Table 6, respectively.
From Table 3, it can be easily seen that when the sample size was both odd

and even and ranking on age, the lowest predictive value of MSE and the highest
predictive value of PRE were found to be y(StMRSSk)7 the estimator proposed by
Khan et al. [8].
From Table 4, it have seen that when the sample size was both odd and even

and ranking on BMI, the lowest predictive value of MSE and the highest predictive
value of PRE were found to be the y∗(StMRSSk)7 estimator proposed by Khan et
al.[8].
From Table 5, it have seen that when the sample size was both odd and even and

ranking on weight, the lowest predictive value of MSE and the highest predictive
value of PRE were found to be the y(StMRSSk)6 estimator proposed by Khan et al.
[8].
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From Table 6, it can be easily seen that when the sample size was both odd
and even and ranking on BMI, the lowest predictive value of MSE and the highest
predictive value of PRE were found to be the y∗(StMRSSk)7 estimator proposed by
Khan et al. [8].
According to the results of the ranking of X and Y variables, it was seen that

the PRE value was highest in the ranking on Y and the MSE value was lowest in
the ranking according to Y and the weight auxiliary variable gave the better results
in the ranking according to Y .

Table 1. Population Information about Body Mass Index (Y),
Age (X1) and Weight (X2) Variables

N=800 X̄1=30.12 X̄2=67.55
Ȳ1=23.77 S2x1=121.84 S2x2=191.53
S2y=17.6 β2(x1h) = 0.78 β2(x2h) = −0.58

Cy=0.17 R1=0.78 R2=0.35
Cx1=0.36 R21=0.62 R22=0.12
Cx2=0.2 ρx1y=0.6 ρx2y=0.86
Sx1y=28.24 Sx2y=50.36

Table 2. Population Stratified Information about Body Mass In-
dex (Y), Age (X1) and Weight (X2) Variables

Age Weight
Stratum1 Stratum2 Stratum1 Stratum2
N1=477 N2=323 N1=477 N2=323
r1=9 r2=8 r1=9 r2=8
m1=6 m2=5 m1=6 m2=5
W1=0.59 W2=0.4 W1=0.59 W2=0.4
X̄1=27.68 X̄2=33.73 X̄1=59.99 X̄2=78.72
Ȳ1=22.36 Ȳ2=25.85 Ȳ1=22.36 Ȳ2=25.85
Rx1[1]=0.8 Rx1[2]=0.76 Rx2[1]=0.37 Rx2[2]=0.32
Sx1[1]=10.19 Sx1[2]=11.26 Sx2[1]=10.47 Sx2[2]=3.58
Sy1(1)=3.99 Sy1(2)=10.16 Sy2(1)=3.99 Sy2(2)=10.16
Sxy1(1)=25.37 Sxy1(2)=19.96 Sxy2(1)=37.7 Sxy2(2)=30.2
Cx1[1]=0.36 Cx1[2]=0.33 Cx2[1]=0.17 Cx2[2]=0.04
Cy1(1)=0.17 Cy1(2)=10.16 Cy2(1)=3.99 Cy2(2)=10.16
β2[x1(1)]=2.72 β2[x1(2)]=-0.27 β2[x2(1)]=2.72 β2[x1(2)]=-0.27
ρxy1(1)=0.62 ρxy1(2)=0.49 ρxy2(1)=0.9 ρxy2(2)=0.82
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Table 3. MSE and PRE values of estimators according to even and odd
of sample size when ranking on variable Age (X1)

rh=4 rh=5 rh=6 rh=7
MSE PRE MSE PRE MSE PRE MSE PRE

SSRS ȳRC 5.99 31.69 4.88 31.67 4.03 31.11 3.39 31.99
ȳRS 6.09 31.14 4.96 31.15 4.11 30.54 3.44 31.53
ȳR(StDRSS)SS 7.37 25.75 10.56 14.63 8.67 14.49 11.68 9.30

SDRSS ȳR(StDRSS)SD 7.21 26.33 10.37 14.91 8.46 14.85 11.44 9.50
ȳR(StDRSS)KC 6.73 28.20 9.78 15.81 7.85 16.00 10.74 10.12
ȳR(StDRSS)US1 21.16 8.97 24.77 6.24 23.84 5.27 27.20 3.99
ȳR(StDRSS)US2 6.12 30.99 8.97 17.24 7.03 17.86 9.75 11.15
ȳSS(s) 3.76 50.43 2.72 56.67 2.07 60.45 1.66 65.24
ȳSS(c) 3.67 51.66 2.66 57.97 2.03 61.69 1.63 66.50

SRSS ȳMM1 3.59 52.78 2.61 59.16 1.99 62.88 1.60 67.72
ȳMM2 3.37 56.31 2.45 62.88 1.88 66.60 1.51 71.50
ȳMM3 7.67 24.75 7.17 21.55 6.70 18.74 6.46 16.80
ȳMM4 2.89 65.64 2.13 72.37 1.65 76.02 1.34 80.85
ȳR(StMRSSk)1 3.92 48.36 5.07 30.47 3.96 31.66 4.94 21.98
ȳR(StMRSSk)2 3.81 49.80 4.93 31.36 3.84 32.67 4.79 22.66
ȳR(StMRSSk)3 3.49 54.41 4.520 34.21 3.49 35.95 4.37 24.85

SMRSS ȳR(StMRSSk)4 3.18 59.67 2.54 60.69 1.65 75.68 1.52 71.10
ȳR(StMRSSk)5 2.64 71.85 3.44 44.93 2.53 49.56 3.23 33.60
ȳR(StMRSSk)6 1.14 166.00 1.57 98.32 0.95 131.71 1.32 82.24
ȳR(StMRSSk)7 0.84 223.81** 1.21 127.81 0.63 197.09 0.94 115.02

**Shows most effi cient estimator.

Table 4. MSE and PRE values of estimators according to even and odd
of sample size when ranking on variable Y

rh=4 rh=5 rh=6 rh=7
MSE PRE MSE PRE MSE PRE MSE PRE

SSRS ȳ∗RC 5.99 31.69 4.88 31.67 4.03 31.11 3.39 31.99
ȳ∗RS 6.09 31.14 4.96 31.15 4.11 30.54 3.44 31.53
ȳ∗R(StDRSS)SS 6.15 30.87 8.30 18.62 4.85 25.89 7.45 14.58

ȳ∗R(StDRSS)SD 6.01 31.59 8.11 19.06 4.72 26.77 7.28 14.92

SDRSS ȳ∗R(StDRSS)KC 5.60 33.89 7.55 20.46 4.37 28.74 6.78 16.03

ȳ∗R(StDRSS)US1 13.18 14.40 14.87 10.40 13.94 9.01 15.49 7.02

ȳ∗R(StDRSS)US2 4.85 39.12 6.50 23.78 3.80 33.03 5.88 18.45

ȳ∗SS(s) 6.14 30.88 4.83 31.95 4.10 30.57 3.45 31.48
ȳ∗SS(c) 6.00 31.61 4.72 32.73 4.01 31.29 3.37 32.21
ȳ∗MM1 5.85 32.43 4.60 33.57 3.91 32.08 3.29 33.01

SRSS ȳ∗MM2 5.41 35.05 4.26 36.24 3.62 34.62 3.05 35.59
ȳ∗MM3 8.98 21.13 8.40 18.40 7.92 15.85 7.48 14.51
ȳ∗MM4 4.48 42.37 3.54 43.57 3.01 41.61 2.54 42.66
ȳ∗R(StMRSSk)1 3.27 58.05 5.14 30.08 2.47 50.67 3.93 27.58

ȳ∗R(StMRSSk)2 3.17 59.74 4.99 30.97 2.40 52.26 3.82 28.44

ȳ∗R(StMRSSk)3 2.91 65.81 4.56 33.87 2.18 57.43 3.48 31.22

SMRSS ȳ∗R(StMRSSk)4 5.53 34.32 5.94 25.99 4.20 29.87 4.62 23.51

ȳ∗R(StMRSSk)5 2.29 82.65 3.58 43.10 1.64 76.22 2.66 40.80

ȳ∗R(StMRSSk)6 0.93 202.23 1.38 111.80 0.61 205.75 0.97 111.97

ȳ∗R(StMRSSk)7 0.67 281.13 0.94 164.36 0.41 304.56** 0.63 170.89

*Shows ranking on variable Y.
**Shows most effi cient estimator.
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Table 5. MSE and PRE values of estimators according to even
and odd of sample size when ranking on variable Weight (X2)

rh=4 rh=5 rh=6 rh=7
MSE PRE MSE PRE MSE PRE MSE PRE

SSRS ȳRC 0.44 429.60 0.34 452.29 0.29 432.77 0.25 429.82
ȳRS 0.43 434.29 0.34 453.64 0.28 434.55 0.25 432.36
ȳR(StDRSS)SS 0.58 325.97 3.45 44.71 0.37 330.87 3.28 33.12
ȳR(StDRSS)SD 0.58 325.16 3.45 44.82 0.38 329.49 3.27 33.19

SDRSS ȳR(StDRSS)KC 0.58 323.70 3.43 45.01 0.38 327.03 3.26 33.33
ȳR(StDRSS)US1 0.43 438.72 2.27 68.07 0.22 556.98 2.11 51.52
ȳR(StDRSS)US2 0.43 433.89 1.98 77.73 0.22 558.13 1.83 59.22
ȳSS(s) 0.42 446.16 0.34 451.14 0.28 446.11 0.24 448.94
ȳSS(c) 0.42 442.22 0.34 447.59 0.28 443.17 0.24 444.91

SRSS ȳMM1 0.42 442.38 0.34 447.70 0.28 443.29 0.24 444.98
ȳMM2 0.42 442.65 0.34 447.89 0.28 443.47 0.24 445.08
ȳMM3 0.54 349.21 0.46 331.78 0.41 305.38 0.36 294.93
ȳMM4 0.60 316.23 0.52 294.96 0.47 266.77 0.42 254.00
ȳR(StMRSSk)1 0.21 870.08 0.34 448.64 0.15 790.65 0.25 430.97
ȳR(StMRSSk)2 0.21 870.72 0.34 448.65 0.15 790.28 0.25 430.72
ȳR(StMRSSk)3 0.21 871.80 0.34 448.67 0.15 789.58 0.25 430.26

SMRSS ȳR(StMRSSk)4 0.42 450.22 0.56 272.47 0.38 324.80 0.48 225.29
ȳR(StMRSSk)5 0.50 377.12 0.65 234.84 0.48 262.16 0.57 188.02
ȳR(StMRSSk)6 0.31 604.43** 0.45 337.81 0.25 495.68 0.36 299.67
ȳR(StMRSSk)7 0.33 563.24 0.48 321.52 0.27 463.49 0.38 284.58

**Shows most effi cient estimator.

Table 6. MSE and PRE values of estimators according to even
and odd of sample size when ranking on variable Y

rh=4 rh=5 rh=6 rh=7
MSE PRE MSE PRE MSE PRE MSE PRE

SSRS ȳ∗RC 0.44 429.60 0.34 452.29 0.29 432.77 0.25 429.82
ȳRS 0.43 434.29 0.34 453.64 0.28 434.55 0.25 432.36
ȳ∗R(StDRSS)SS 0.55 345.06 3.81 40.51 0.49 251.27 3.92 27.67

ȳ∗R(StDRSS)SD 0.55 345.05 3.80 40.63 0.50 250.76 3.91 27.74

SDRSS ȳ∗R(StDRSS)KC 0.55 345.02 3.78 40.84 0.50 249.84 3.89 27.88

ȳ∗R(StDRSS)US1 0.39 480.77 2.53 61.06 0.26 481.15 2.59 41.96

ȳ∗R(StDRSS)US2 0.37 502.21 2.19 70.44 0.23 531.01 2.24 48.49

ȳ∗SS(s) 0.41 461.43 0.33 466.77 0.27 454.34 0.23 457.12
ȳ∗SS(c) 0.40 463.41 0.32 470.36 0.27 457.29 0.23 459.81
ȳ∗MM1 0.40 464.69 0.32 471.78 0.27 458.77 0.23 461.35

SRSS ȳ∗MM2 0.40 466.98 0.32 474.31 0.27 461.41 0.23 464.09
ȳ∗MM3 0.51 365.59 0.44 347.36 0.39 320.71 0.35 308.85
ȳ∗MM4 0.56 337.79 0.49 315.16 0.43 286.48 0.39 271.87
ȳ∗R(StMRSSk)1 0.21 896.95 0.33 466.16 0.15 825.55 0.24 448..20

ȳ∗R(StMRSSk)2 0.21 898.90 0.33 467.58 0.15 826.65 0.24 449.31

ȳ∗R(StMRSSk)3 0.21 902.32 0.32 470.09 0.15 828.56 0.24 451.26

SMRSS ȳ∗R(StMRSSk)4 0.42 447.73 0.55 278.78 0.39 319.83 0.48 223.98

ȳ∗R(StMRSSk)5 0.50 376.82 0.63 244.27 0.48 259.43 0.57 189.46

ȳ∗R(StMRSSk)6 0.26 721.73** 0.29 518.47 0.20 604.62 0.24 445.07

ȳ∗R(StMRSSk)7 0.28 669.91 0.31 494.40 0.20 562.40 0.25 422.55

*Shows ranking on variable Y.
**Shows most effi cient estimator.
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4. Conclusion

In this article, it is aimed to compare the performances of the population mean
estimators of various stratified sampling methods in the literature. These sampling
methods are SSRS, SRSS, SDRSS and SMRSS. In these methods, the ratio type
estimators using auxiliary variable information such as coeffi cient of variation and
kurtosis are examined. MSE and PRE values of these estimators are shown on a
numerical sample and their performance is evaluated. Firstly, general information
about these methods and estimators is given and introduced. Then, the MSE and
PRE values of these estimators were found and the results of the simulation were
interpreted. To observe performances of the estimators, we use the real data. The
simulation study was performed first by using BMI with age variables and second
by using BMI with weight variables. In the simulation study, when the sample size
is odd and even and sorted by X and Y variables and different correlations are cal-
culated by using different auxiliary variables, performance evaluation is performed.
The aim here is to compare the same sampling methods in different correlations.
According to the results obtained from the simulation, the best sampling method
was found to be the SMRSS method.
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A STUDY ON COMPARISONS OF BAYESIAN AND CLASSICAL
PARAMETER ESTIMATION METHODS FOR THE
TWO-PARAMETER WEIBULL DISTRIBUTION

ASUMAN YILMAZ, MAHMUT KARA, AND HALIL AYDOGDU

Abstract. The main objective of this paper is to determine the best esti-
mators of the shape and scale parameters of the two parameter Weibull dis-
tribution. Therefore, both classical and Bayesian approximation methods are
considered. For parameter estimation of classical approximation methods max-
imum likelihood estimators (MLEs), modified maximum likelihood estimators-
I (MMLEs-I), modified maximum likelihood estimators -II (MMLEs-II), least
square estimators (LSEs), weighted least square estimators (WLSEs), per-
centile estimators (PEs), moment estimators (MEs), L-moment estimators
(LMEs) and TL- moment estimators (TLMEs) are used. Since the Bayesian
estimators don’t have the explicit form. There are Bayes estimators are ob-
tained by using Lindley’s and Tierney Kadane’s approximation methods in
this study. In Bayesian approximation, the choice of loss function and prior
distribution is very important. Hence, Bayes estimators are given based on
both the non- informative and informative prior distribution. Moreover, these
estimators have been calculated under different symmetric and asymmetric loss
functions. The performance of classical and Bayesian estimators are compared
with respect to their biases and MSEs through a simulation study. Finally, a
real data set taken from Turkish State Meteorological Service is analysed for
better understanding of methods presented in this paper.

1. Introduction

Weibull distribution is one of the most popular among life-time distributions.
The Weibull distribution was first proposed by W. Weibull who used it to model
the distribution of the breaking strength of materials. The distribution has played
major role in the reliability theory, see for example, [1] and [2]. Also, the distribution
has found wide applications in many areas of environmental sciences, and renewable
energy [3],[4],[5]and [6] . In addition to these application areas, Weibull distribution
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is now being used in a wide range of fields in medical, biological, and earth sciences.
For details, see [7],[8] and [9] .
It is crucial to determine the best parameter estimation method for any prob-

ability function. There are various different estimation methods in the literature
for estimating the parameters of the Weibull distribution. Notable among them
are given as follows: In terms of classical parameter estimation methods, Trustrum
and Jayatilaka [10] investigated the moment estimator, maximum likelihood estima-
tor and least squares method based on the Monte Carlo simulation.Hung [11] and
Lu et al.[12] discussed the properties of the weighted least square estimators and
showed that weighted least squares estimators performed better than least squares
estimators. Pobocikova and Sedliackova [13] compared the maximum likelihood
estimators, moment estimators, least squares estimators and weighted least square
estimators. Teimouri et al. [14] presented the maximum likelihood estimators,
method of logarithm moment, percentile estimator, L- moment estimator, method
of moment. Alizadeh et al. [15] considered estimation of the probability density
function and cumulative density function.
In terms of Bayesian parameter estimation methods, Al Omari and Ibrahim [16]

conducted a study on Bayesian survival estimator for Weibull distribution with
censored data. Also, Guure et al. [17] provided the Bayesian estimation of two
parameter Weibull distribution under three loss functions using extension of Jeffey’s
prior information. Pandey et. al [18] compared Bayesion estimator and maximum
likelihood estimation of the scale parameter of the Weilbull distribution under linex
loss function, with the assumption that the shape parameter is kwown. Similar work
can be seen in [19],[20] .
The maximum likelihood estimators (MLEs) and the moment estimators (MEs)

are the most well-known among parameter estimation methods. In this article,
the least square error estimators (LSEs) and the weighted square error estimators
(WLSEs), the percentile estimators (PEs),the L-moment estimators (LMEs),the
TL-moment estimators (TLMEs), modified maximum likelihood estimators (MMLE-
I) are considered besides these methods. Moreover, we propose the modified max-
imum likelihood estimators-II (MMLE-II). Further, we compute Bayes estimators
of the unknown parameters with informative prior and non-informative prior under
squared error loss function (SELF), general entropy loss function (GELF), weighted
square loss function (WSELF) and precautionary loss function (PLF). It is clear
that Bayesian estimators cannot be found in explicit form. Therefore, in this paper,
we consider the Lindley’s and Tierney Kadane’s procedures.
There are numerous studies for Weibull distribution in literature. But, as far

as we know this, this is the first study which compares all these aforementioned
estimation methods for choosing the best estimation method for the two- parame-
ter Weibull distribution. The objective of this study is to estimate the parameters
of the model from both classical and Bayesian viewpoint. Finally, a better esti-
mation method is given for the distribution parameters. In the recent past, many
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researchers have compared various parameter estimation methods for estimating
the parameters of the different distribution. See, for example, [21] for the general-
ized Rayleigh distribution, [22] for the Fréchet distribution, [23] for two parameter
Maxwell distribution,[24] for generalized logistic distribution.
The rest of the paper is organized as follows: Weibull distribution is described in

section 2. In section 3, some classical estimation methods are given to estimate the
unknown parameters. In section 4, Bayes estimators of the unknown parameters are
obtained by using Lindley’s and Tierney Kadane’s approximations. In Section 5, a
simulation study is presented to evaluate the performances of the estimators with
respect to their biases and mean square errors (MSE). Finally, a real life example
taken from Turkish State Meteorological Service is given.

2. Weibull Distribution

The popularity of the Weibull distribution is attributable to the fact that it
is commonly used to model different data types, such as wind speed, geothermal
energy and finance.
The probability density function (PDF) and the cumulative density function

(CDF) of the two-parameter Weibull distribution with the shape parameter α and
the scale parameter β are given by:

F (x;α, β) = 1− exp
{
−
(
x

β

)α}
0 < x <∞; α > 0, β > 0 (1)

and

f(x;α, β) =
α

βα
xα−1exp

{
−
(
x

β

)α}
, 0 < x <∞. (2)

The mean and variance of the Weibull distribution are defined as follows:

E(x) = βΓ

(
1 +

1

α

)
and V (x) = β2

[
Γ

(
1 +

2

α

)
− Γ2

(
1 +

1

α

)]
respectively. Here, Γ is the gamma function.

3. The Methods for Parameter Estimation

In this section, we presented the methods of classical estimation for the Weibull
distribution used in this study.
3.1 Moment Estimators. The MEs are found by equating theoretical moments
to corresponding sample moments as shown below:

βΓ

(
1 +

1

α

)
= X̄ and β2Γ

(
1 +

2

α

)
=

∑n
i=1X

2
i

n
. (3)
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Then, by solving equation 3 the MEs of α and β are found as

β̂ =
X̄

Γ

(
1 + 1

α

) and

Γ

(
1 + 2

α̂

)
Γ2
(

1 + 2
α̂

) =

∑n
i=1X

2
i

nX̄2
(4)

respectively.
3.2 Maximum Likelihood Estimators. Let X1, X2, ..., Xn be a random sample
from Weibull distribution. The log-likelihood function is given by:

lnL = nlnα− nαlnβ + (α− 1)

n∑
i=1

lnxi −
n∑
i=1

(
xi
β

)α
. (5)

By taking the partial derivative of 5 with respect to α and β, and equating them
to zero, we obtain the following log-likelihood equations:

∂lnL

α
=
n

α
− nlnβ +

n∑
i=1

lnxi −
n∑
i=1

(
xi
β

)a
ln
xi
β

= 0 (6)

and
∂lnL

∂β
=
nα

β
+
α
∑n
i=1 x

α
i

βα+1
= 0. (7)

Solutions of these likelihood equations are called as the MLEs of shape parameter α
and scale parameter β , see for example [25] , [26] . However, they do not give closed
form expressions since they include nonlinear terms g1(x) = lnx and g2(x) = xαi in
6 and 7. Therefore, numerical methods are applied to solve the required equations.
In this study, we apply the well-known Newton Rapson method to solve these
equations.
3.3 Least Squares and Weighted Least Squares Estimators. The LSEs and
WLSEs were originally suggested by Swain et al.[27] to estimate the parameters of
beta distributions. See, for example, Kundu and Ragab [21] and Alkasabeh and
Ragab [24] .
Let X1, ..., Xn is a random sample of size n from a distribution function G(.) and

Xi:n; i = 1, 2, ..., n denotes the ordered sample. The expected value and variance
of G(Xi:n) are easily obtained from the relation between the Beta and uniform
distribution as

E(G(Xi:n)) =
i

n+ 1
and V ar(G(Xi:n)) =

i(n− i+ 1)

(n+ 1)2(n+ 2)
.

Since E(G(Xi:n)) = i
n+1 , i = 1, 2, ..., n, a regression model can be written as follows:

G(Xi:n) =
i

n+ 1
+ εi, i = 1, 2, ..., n.
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Then the LSEs of the unknown parameters can be obtained by minimizing the sum
of squares of errors

n∑
i=1

(G(Xi:n)− i

n+ 1
)2 (8)

with respect to unknown parameters. Therefore, the LSEs of the unknown para-
meters of Weibull distribution are found by minimizing

n∑
i=1

(1− exp(−(xi:n/β)α))2 (9)

with respect to α and β . Since the variances of errors depend on i, the het-
eroscedasticity problem arises. This problem adversely affects the performance of
the estimators. To overcome this problem, we use the method of weighted least
squares. The weighted least squares estimators of the unknown parameters can be
obtained by minimizing

n∑
i=1

Wi(G(Xi:n)− i

n+ 1
)2 (10)

with respect to the unknown parameters. Therefore, the WLSEs of the unknown
parameters of the two-parameter Weibull distribution are obtained by minimizing

n∑
i=1

wi(1− exp{−(xi:n/β)α})2 (11)

with respect to α and β. Where Wi = (n+1)2(n+2)
i(n−i+1) .

3.4 The Percentile Estimators. The Percentile estimators (PEs) of α and β are
obtained by minimizing the function given below:

n∑
i=1

{
Xi:n − F−1(

i

n+ 1
)

}2
(12)

with respect to unknown parameters [28], [29] . Here, F−1 is the inverse distribution
function and Xi:n is ordered observations i.e. X1:n < X2:n < ... < Xn:n.
Then the PEs of the shape and scale parameters of the Weibull distribution are

obtained by minimizing function
n∑
i=1

(
Xi:n − βln(

n+ 1

n+ 1− i )
1
α

)2
(13)

with respect to α and β.
3.5 L- Moment Estimators. The L- moment estimators (LMEs) was introduced
by Hosking [30]. These estimators have an estimation method based on linear
combination of order statistics. The LMEs have lower sample variances and they
are more robust outliers in data. In recently, a few authors have studied the L-
moment estimator for the Weibull distribution [14]-[31] .
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Let X1, X2, ..., Xn be a random sample of size n and X1:n ≤ X2:n ≤ ... ≤ Xn:n

be the order random variables. Then the population L-moments and sample L-
moments are given as follows:

Lk = k−1
k−1∑
j=0

(−1)j
(
k − 1

j

)
E(Xk−j:k), k = 1, 2, 3, ..., (14)

lk =
1

k
(
n
k

) n∑
i=1

k−1∑
j=0

(−1)j
(
k − 1

j

)(
i− 1

k − j − 1

)(
n− i
j

)
Xi:n, k = 1, 2, 3, ... (15)

respectively. Here, k is the number of the unknown parameters, E(Xi:n) are the
expected values of the order statistics and n is sample size.
By using equations 14, the population L-moments of two-parameter Weibull distri-
bution derived as

L1 = βΓ(1 +
1

α
) and L2 = βΓ(1 +

1

α
)−

βΓ(1 + 1
α )

2
1
α

. (16)

The idea lying under L moment estimators are the same as in the moment estima-
tors. In other words, on equating the first two population moments to corresponding
sample moments, the estimating equations are

βΓ(1 +
1

α
) = l1 and βΓ(1 +

1

α
)−

βΓ(1 + 1
α )

2
1
α

= l2. (17)

Then the LMEs of the parameters follow from 17 as

α̂ =
ln2

ln( l1
l1−l2 )

and β̂ =
l1

Γ(1 + 1
α̂ )
, (18)

respectively, where, l1 = x̄ and l2 = 1
n(n−1)

∑
(2j − n− 1)Xj:n.

3.6 Trimmed L-Moments Estimators. Elamir and Seheult [32] proposed TL-
moments as a robust generalization of L-moments. The TL-moments always exist
even if the mean of the distribution does not exist, for example, the TL-moments
exist for Cauchy distribution.
Let X1, X2, ..., Xn be a random sample of size n and X1:n ≤ X2:n ≤ ... ≤ Xn:n

denote the corresponding order statistics. Elamir and Seheult [32] defined the kth
the population and sample TL-moments

λ
(s,t)
k = k−1

k−1∑
j=0

(−1)j
(
k − 1

j

)
E(Xk+s−j:k+s+t), k = 1, 2, 3, ..., s, t = 0, 1, 2, ... (19)

and

l
(s,t)
k =

1

k
(

n
k+s+t

) n−t∑
j=s

k−1∑
i=0

(−1)i
(
k − 1

i

)(
j − 1

k + s− i− 1

)(
n− j
t+ i

)
Xj:n k = 1, 2, 3...

(20)
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respectively. It should be noted that TL-moments reduce to the L-moments when
s = t = 0 . In this study, we focus on asymmetric cases where s = 0, t = 1. By
putting s = 0 and t = 1 in equations 19 and 20 , we have

λ
(0,1)
k = k−1

k−1∑
j=0

(−1)j
(
k − 1

j

)
E(Xk−j:k+1) (21)

and

l
(0,1)
k =

1

k
(
n
k+t

) n−1∑
j=0

k−1∑
i=0

(−1)i
(
k − 1

i

)(
j − 1

k − i− 1

)(
n− j
i+ 1

)
Xj:n. (22)

The population TL-moments of the two-parameter Weibull distribution can be
obtained from 21 as

λ
(0,1)
1 =

βΓ(1 + 1
α )

2
1
α

and λ
(0,1)
2 =

3βΓ(1 + 1
α )

2
1
α

−
2βΓ(1 + 1

α )

3
1
α

(23)

The TLMEs are obtained by equating the first two sample TL-moments to the
corresponding population TL-moments. Hence, the estimating equations are

βΓ(1 + 1
α )

2
1
α

= l
(0,1)
1 and

3βΓ(1 + 1
α )

2
1
α

−
2βΓ(1 + 1

α )

3
1
α

= l
(0,1)
2 . (24)

The solutions of these equations are the following TLMEs:

α̂ =
log( 23 )

log(
3l
(0,1)
1 −2l(0,1)2

3l
(0,1)
1

)
and β̂ =

21/αl
(0,1)
1

Γ(1 + 1
α̂ )

where

l
(0,1)
1 =

2

n(n− 1)

n−1∑
i=1

(n−j)Xj:n and l
(0,1)
2 =

3

2n(n− 1)(n− 2)

n∑
j=1

(n−j)(3j−n−1))Xj:n.

3.7 Modified Maximum Likelihood Estimators-I. Cohen and Whitten [33]
recommend modifications of the MLEs for estimating the shape and scale parame-
ters of the Weibull distribution. The MMLE-I of the shape parameter α and scale
parameter β , say α̂MMLE−I and β̂MMLE−I respectively, of the Weibull distribu-
tion is obtained by solving the following equations:

−nXα
1:n

ln( n
n+1 )

=

n∑
i=1

Xα
i:n and β̂MMLE−I =

1

n
(

n∑
i=1

X α̂MMLE
i )

1
α̂MMLE−I . (25)

3.8 Modified Maximum Likelihood Estimators-II. We proposed modifica-
tions of the MLEs for estimating the unknown parameters of the Weibull distrib-
ution. Then, MMLE of the shape parameter α, say α̂MMLE−II , is estimated by
solving the following equation:

γ +
ln
∑n
i=1 x

α
i

n

α
=

∑n
i=1 lnxi
n

, (26)
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where γ ∼= 0.57722 is Euler constant.
Here, by inserting α̂MMLE−II instead of α̂ into equation 7 , MMLE of the scale
parameter β , say β̂MMLE−II is obtained as

β̂MMLE−II = (
1

n

n∑
i=1

x
α̂MMLE−II
i )

1
α̂MMLE−II . (27)

4. Bayesian Analysis

In this section, we consider the Bayesian estimation by using Lindley’s and
Tierney-Kadane’s approximations under different loss function for estimating the
unknown parameters of Weibull distribution. Bayesian analysis has many appli-
cations in statistical theory and analysis[34]. In Bayesian analysis the role of two
factors are crucial. These are (i) the choice of the loss function (LF) and (ii) the
choice of the prior distribution. For more details about the priors and loss func-
tions, see [35],[36].
In this study, GELF, PLF,WSELF and SELF are considered and described as fol-
lows:
The SELF was proposed by Legendre [37] and Gauss [38] to developed least square
theory. This loss function is commonly used and defined as

LSELF = (θ̂ − θ)2, (28)

where θ is the parameter to be estimated by an estimator θ̂ . The Bayes estimator
under equation 28 is the posterior mean given by

θ̂SELF = E(θ|x). (29)

This loss function is symmetrical in nature. It gives equal weight to both under-
estimation and over estimation. However, from a practical point of view, this is
not always appropriate and realistic, see for example [39]. Hence, asymmetric loss
functions would be more useful to develop Bayesian procedures.
Calabria and Pulcini [40] proposed general entropy loss function. It is one of the
most popular asymmetrical loss functions.
The GELF is given by

LGELF = (
θ̂

θ
)k − klog(

θ̂

θ
)− 1, k 6= 0, (30)

where θ̂ is the estimator of θ. k reflects the magnitude and degree of symmetry.
The Bayes estimator under equation 30 is given by

θ̂GELF = [E(θ−k|x)]−
1
k , (31)

provided Eθ(θ
−k|x).

The PLF, which is proposed by Norstrom [41] , is one of the asymmetric loss
functions. This loss function approach is useful to derive conservative estimators
since it approaches infinity near the origin and prevents underestimation. It is
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very useful when underestimation may lead to significant results [42]. The PLF is
defined as

LPLF =
(θ − θ̂)2

θ̂
, (32)

where θ̂ is the estimator of θ. The Bayes estimator of under equation 32 is given
by

θ̂PLF =

√
E(θ2|x), (33)

provided
√
E(θ2|x) exists and is finite.

WSELF is another useful asymmetric loss function. This function is a weighted
version of SELF. More detail about this loss function can be found in [35]and [43].
The WSELF is defined as:

LWSELF (θ̂, θ) =
(θ − θ̂)2

θ̂
. (34)

The Bayes estimator under WSELF is given by

θ̂WSELF = [E(θ−1|x)]−1. (35)

provided E(θ−1|x)−1 exists and is finite.
The prior distribution summarizes the information about unknown parameter be-
fore the data is available. The prior distribution is then synthesized with the
information in the data procedure the posterior distribution. In other words, an-
alytically, combining the prior distribution and likelihood function results in the
posterior distribution. The posterior distribution expresses what is known after
seeing data. In the Bayesian analysis, all inferences are made from the posterior
distribution [44].
The prior distribution has two forms: these are (i) "non-informative prior" and (ii)
"informative prior" [45].
Here we assume that α and β have two independent gamma prior distributions
i.e. α ∼ gamma(a, b) and β ∼ gamma(c, d) respectively. The gamma prior is
very flexible and suitable. Thus, this paper considers two special cases of the
gamma prior corresponding to a = b = c = d = 0 and a, b, c, d ≥ 0 (a, b, c, d are
the hyper-parameters of the prior distribution). It should be mentioned that for
a = b = c = d = 0 the prior distribution is non-informative prior (NP) distribution.
For a, b, c, d ≥ 0 , the prior distribution is referred to as the gamma prior (GP)
distribution. Thus, the proposed prior for α and β may be considered as

v1(α) ∝ αa−1e−bα, α > 0 and v2(β) ∝ βc−1e−dβ , β > 0. (36)

The joint prior distribution α and β is given as

v(α, β) ∝ αa−1βc−1e−dβ−bα, α, β, a, b, c, d ≥ 0. (37)
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Based on the observations, the likelihood function becomes

L(α, β) = αnβ−nα
n∏
i=1

X
(α−1)
i e−

∑
(
Xi
β )

α

. (38)

Combining 37 with 38 and using Bayes theorem, the joint posterior density of α
and β is

p(α, β|x) = K−1αn+a−1β−nα+c−1exp(−dβ − bα)

n∏
i=1

xα−1i e
∑n
i=1(

xi
β )

α

. (39)

Here K =
∫∞
0

∫∞
0
αn+a−1β−nα+c−1exp(−dβ − bα)

∏n
i=1 x

α−1
i e

∑n
i=1(

xi
β )

α

dαdβ.
It can be seen that the analytical solution of the Bayes estimators are not obtained.
Hence, we use the Lindley’s and Tierney-Kadane’s approximation. These methods
are described below.
4.1 Lindley’s procedure. Lindley’s [46] introduced an approximation method
for the evaluation of the ratio of the two integrals. This procedure can be applied
to compute the posterior expectation of the arbitrary function u(θ) as given by

E(u(θ)|x) =

∫
u(θ)eL(θ)+G(θ)dθ∫
eL(θ)+G(θ)dθ

,

where
u(θ) = a function of θ only,
L(θ) = Log-likelihood function,
G(θ) = Log of joint prior density function.
According to Lindley’s approximation, the ratio of integral E{u(θ)|x} can be ap-
proximated asymptotically given below:

E(u(θ)|x) ≈ [u+
1

2

∑
i

∑
j

(uij+2uiρi)σij+
1

2

∑
i

∑
j

∑
k

∑
l

Lijkσijσklul]+O(1/n2).

(40)
Here, i; j; k; l = 1, 2, ..., n; θ = (θ1, θ2, ..., θm), ui = ∂u(θ)

∂θi
, uij = ∂u(θ)

∂θi∂θj
, Lijk =

∂L(θ)
∂θi∂θj∂θk

, ρj = ∂G(θ)
∂θj

and σij are elements of the covariance matrix.
For the two-parameter Weibull distribution, equation 40 reduces to

E(u(α, β)|x) = u+
1

2
(u11σ11 + u22σ22) + u12σ12 + u1(σ11ρ1 + σ21ρ2) + u2(σ12ρ1 + σ22ρ2)

+ 0.5[L111(u1σ
2
11 + u2σ11σ12) + L112(3u1σ11σ12 + u2(σ11σ22 + 2σ212))

+ L122(u1(σ11σ22 + 2σ212) + 3u2σ12σ22) + L222(u1σ12σ22 + u2σ
2
22)]α̂,β̂,.

(41)

Here, the α̂ and β̂ are the MLEs of α and β, respectively.
All other quantities appearing in the above expression of E(u(α, β)|x) for Weibull
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distribution is given by

ρ̂α =
a− 1

α̂
− b, ρ̂β =

c− 1

β̂
− d,

L̂111 =
2n

α̂3
−

n∑
i=1

((ln(
xi

β̂
))3(

xi

β̂
)α̂),

L̂112 =

n∑
i=1

log(
xi

β̂
)(
xi

β̂
)α̂[

1

β̂
(2 + α̂.log(

xi

β̂
))],

L̂122 =

n∑
i=1

((
xi

β̂
)α̂(

1

β̂
2 (α̂+ 1)(α̂+ ln(

xi

β̂
) + 1) + α̂)) +

n

β̂

2

L̂222 =
−2nα̂

β̂
3 +

α̂(α̂+ 1)(α̂+ 2)

β̂
3

n∑
i=1

(
xi

β̂
)α̂,

and

σij =

[
V ar{α̂} Cov{α̂, β̂}
Cov{α̂, β̂} V ar{β̂}

]
=

1

n

[
0.6080α2 0.2570β

0.2570β 1.1087β
2

α2

]
.

All constant are evaluated at (α̂, β̂).
Then, by using Lindley’s method the Bayesion estimators of the parameter α under
SELF is obtained as
If u(α, β) = α, u1 = 1, u2 = u22 = u12 = u21 = u11 = 0, then

α̂SELF =α̂+ (σ̂11ρ̂1 + σ̂21ρ̂2)

+ 0.5[L̂111σ
2
11 + 3L̂112σ̂11σ̂12 + L̂122(σ̂11σ̂22 + 2σ̂212) + L̂222σ̂12σ̂22].

So, the Bayes estimator of β under SELF is obtained as,
If u(α, β) = β, u2 = 1, u22 = u12 = u21 = u11 = 0, then

β̂SELF =β̂ + (σ̂12ρ̂1 + σ̂22ρ̂2)

+ 0.5[L̂111σ11σ12 + L̂112(σ̂11σ̂22 + 2σ̂212) + 3L̂122σ̂12σ̂22 + L̂222σ̂
2
22].

Bayes estimator of α under the GELF is defined as
If u(α, β) = α−k, u1 = −kα−(k+1), u11 = k(k + 1)α−(k+2), u2 = u22 = u12 = u21 =
0, then

E(α−k|x) = α̂−k + 0.5(û11σ̂11) + û1(σ̂11ρ̂1 + σ̂21ρ̂2)+

0.5[L̂111û1σ̂
2
11 + 3L̂112û1σ̂11σ̂12 + L̂122û1(σ̂11σ̂22 + 2σ̂212) + L̂222û1σ̂12σ̂22].

Therefore, α̂GELF = E[α−k|x]−1/k.
Bayes estimator of β under the general entropy loss function is given by
If u(α, β) = β−k, u2 = −kβ−(k+1), u22 = k(k + 1)β−(k+2), u1 = u11 =
u12 = u21 = 0, then

E(β−k|x) = β̂
−k

+ 0.5(û22σ̂22) + û2(σ̂12ρ̂1 + σ̂22ρ̂2)+
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0.5[L̂111û2σ̂11σ̂12 + L̂112û2(σ̂11σ̂22 + 2σ212) + 3L̂122σ̂12σ̂22 + L̂222û2σ̂
2
22].

Hence, β̂GELF = E[β−k|x]−1/k.
Bayes estimator of α under the WSELF is as follows
If u(α, β) = α−1, u1 = −α−2, u11 = 2α−3, u2 = u22 = u12 = 0, then

E(α−1|x) = α̂−1 + 0.5(û11σ̂11) + û1(σ̂11ρ̂1 + σ̂21ρ̂2)+

0.5[L̂111û1σ̂
2
11 + 3L̂112û1(σ̂11σ̂12 + L̂122û1(σ̂11σ̂22 + 2σ̂212) + L̂222û1σ̂12σ̂22].

So, α̂WSELF = [E(α−1|x)]−1.
The Bayes estimator of β under the WSELF is given in following form
If u(α, β) = β−1, u2 = −β−2, u22 = 2β−3, u1 = u11 = u12 = 0, then

E(β−1|x) = β̂
−1

+ 0.5(û22σ̂22) + û2(σ̂12ρ̂1 + σ̂22ρ̂2)+

0.5[L̂111û2σ̂11σ̂12 + L̂112û2(σ̂11σ̂22 + 2σ̂212) + 3L̂122σ̂12σ̂22 + L̂222û2σ̂
2
22].

So, the Bayes estimator of β is β̂WSELF = [E(β−1|x)]−1.
Finally, the Bayes estimator of α under PLF is
If u(α, β) = α2, u1 = 2α, u11 = 2, u2 = u22 = u12 = 0, then

E(α2|x) = α̂2 + 0.5(û11σ̂11) + û1(σ̂11ρ̂1 + σ̂21ρ̂2)+

0.5[L̂111û1σ̂
2
11 + 3L̂112û1σ̂11σ̂12 + L̂122û1(σ̂11σ̂22 + 2σ̂212) + L̂222û1σ̂12σ̂22].

Hence,the Bayes estimator of α is as follows
α̂PLF =

√
E(α2|x).

Bayes estimator of β under PLF is given by
If u(α, β) = β2, u2 = 2β, u22 = 2, u1 = u11 = u12 = 0, then

E(β|x) = β̂ + 0.5(û22σ̂22) + û2(σ̂12ρ̂1 + σ̂22ρ̂2)+

0.5[L̂111û2σ̂11σ̂12 + L̂112û2(σ̂11σ̂22 + 2σ̂212) + 3L̂122σ̂12σ̂22 + L̂222û2σ̂
2
22].

So, β̂PLF =
√
E(β2|x).

4.2 Tierney Kadane’s Procedure. Lindley’s procedure seems to be become
more and more complex in p- parameter case (p > 2). Therefore, in multi-parameter
case, Tierney Kadane’s (T-K) procedure is used as an alternative to Lindley’s pro-
cedure [47],[48].
According to this procedure, posterior expectation for multi-parameter case can be
approximated by:

E(u(θ)|x) =

√
|Σ∗|
|Σ| exp[n(L∗1(θ̂

∗
)− L1(θ̂))]. (42)
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Here, θ̂
∗
and θ̂ maximize L∗1 and L1,respectively,

L1 =
[L(θ) + log(v(θ))]

n
,L∗1 = L1 +

[log(u(θ))]

n
,

where
v(θ) = joint prior distribution of θ,
L(θ) = Log-likelihood function of θ,
u(θ) = loss function of θ.
In equation 42,

∑∗ and∑ are elements of the negative of the inverse of the matrices
of the second derivatives of L∗1 and L1 at the point θ̂

∗
and θ, respectively.

For the two parameter case, θ = (α, β) , equation 42 becomes:

E(u(α, β)|x) =

√
|
∑∗ |
|
∑
| exp[n(L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]. (43)

Here, (β̂, α̂) and (β̂
∗
, α̂∗) maximize L1(α, β) and L∗1(α, β), respectively.

∑
and

∑∗
are given below:

∗∑
=

[
−∂

2L∗1
∂α2 − ∂2L∗1

∂α∂β

− ∂2L∗1
∂α∂β −∂

2L∗1
∂β

]−1
(α̂∗,β̂

∗
)

and
∑

=

[
−∂

2L1
∂α2 − ∂2L1

∂α∂β

− ∂2L1
∂α∂α −∂

2L1
∂β2

]−1
(α̂,β̂)

. (44)

All other quantities appearing in the above expression of E(u(α, β|x)) for Weibull
distribution can be obtained as

L1(α, β) =
1

n
[nlnα−nαlnβ+(α−1)

n∑
i=1

xi−
n∑
i=1

(
xi
β

)α+(α−1)lnα+(c−1)lnβ−(bα+dβ)].

(45)
Thus the Bayes estimator of α under SELF is given in the following form:
If u(α, β) = α and L∗1 = 1

n logα+ L1(α, β), then

α̂SELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
logα̂+ L1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]].

Also, the Bayes estimator of β under SELF using this procedure is defined as:
If u(α, β) = β and L∗1 = 1

n logβ + L1(α, β), then

β̂SELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
logβ̂ + L1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]].

Bayes estimator of α under GELF is given by:
If u(α, β) = α−k and L∗1 = 1

n log(α−k) + L1(α, β), then

α̂GELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log(α̂−k) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1/k.
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Bayes estimator of β under GELF is given by:
If u(α, β) = β−k and L∗1 = 1

n log(β−k) + L1(α, β), then

β̂GELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log(β̂

−k
) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1/k.

Bayes estimator of α under WSELF is as follows:
If u(α, β) = α−1 and L∗1 = 1

n log(α−1) + L1(α, β), then

α̂WSELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log( ˆα−1) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1.

Bayes estimator of β under WSELF is as follows:
If u(α, β) = β−1 and L∗1 = 1

n log(β)−1 + L1(α, β), then

β̂WSELF = [

√
|
∑∗ |
|
∑
| exp[n(

1

n
log(̂β−1) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))]]−1.

Bayes estimator of α under PLF is
If u(α, β) = α2 and L∗1 = 1

n log(α)2 + L1(α, β), then

α̂PLF =

√√√√√ |∑∗ |
|
∑
| exp[n(

1

n
log(α̂2) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))].

Bayes estimator of β under PLF is
If u(α, β) = β2 and L∗1 = 1

n log(β)2 + L1(α, β), then

β̂PLF =

√√√√√ |∑∗ |
|
∑
| exp[n(

1

n
log(β̂

2
) + L∗1(α̂

∗, β̂
∗
)− L1(α̂, β̂))].

5. Simulation study

In this section, an extensive Monte Carlo simulation study was carried out to
compare the performances of the Bayesian and classical estimators with respect to
the biases and mean squared errors (MSEs) for different sample sizes and parameter
values. All The computations were performed in Matlab R. 2013. over 10.000
replications for different cases. We consider the sample sizes n = 10(10)100, the
shape parameter values α = 0.5, 1.5 and the scale parameter β was taken to be
1 throughout the study. The bias and MSE values of the classical estimators are
given in Table 1.
For Bayesian estimators, we know that the Gamma prior provides flexible ap-

proach in both informative and non-informative cases [48]. In case of the non-
informative prior (NP), we chose hyper-parameter values as a = b = c = d = 0.
In case of the GP, we chose hyper-parameter values as a = 0.4, 1, 1.5, 3, b = 0.2, 1,
c = 0.4, 1, 1.5, 3 and d = 0.2, 1. In both cases i.e. informative and non-informative,
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we considered as k = ±1.5 for GELF. Because of the large number of tables and
results, only results for a = c = 0.4, b = d = 0.2 and k = 1.5 were reported. More-
over, Lindley’s and T-K methods were used to obtain the Bayes estimator of the
unknown parameters. The results of simulation for these approximation methods
were summarized in Table 2-3.

Table 1. The simulated, means and MSEs values for the classical
different parameter estimators of α and β

α̂ β̂
n α Estimator Mean MSE Mean MSE

20 0.5

MLE 0.5382 0.0121 1.0704 0.2607
LME 0.5290 0.0152 0.9837 0.2598
TLME 0.5079 0.0138 0.9579 0.2395
MMLE-II 0.5330 0.0123 1.0687 0.2610
MMLE-I 0.4739 0.0220 0.9874 0.2616
ME 0.6511 0.0403 1.3510 0.5322
LSE 0.5008 0.0147 1.1271 0.3244
WLSE 0.5052 0.0131 1.1114 0.2973
PE 0.4887 0.0336 1.1229 0.2395

30 0.5

MLE 0.5243 0.0068 1.0544 0.1694
LME 0.5210 0.0101 0.9960 0.1752
TLME 0.5039 0.0081 0.9807 0.1622
MMLE-II 0.5226 0.0069 1.0541 0.1700
MMLE-I 0.4702 0.0172 0.9816 0.1779
ME 0.6151 0.0263 1.2863 0.3425
LSE 0.4984 0.0087 1.0932 0.2037
WLSE 0.5034 0.0076 1.0795 0.1878
PE 0.4800 0.0276 1.0577 0.2268

50 0.5

MLE 0.5147 0.0037 1.0276 0.0951
LME 0.5125 0.0059 0.9891 0.1019
TLME 0.5032 0.0045 0.9829 0.0945
MMLE-II 0.5139 0.0038 1.0280 0.0959
MMLE-I 0.4689 0.0139 0.9654 0.1154
ME 0.5782 0.0149 1.1955 0.1874
LSE 0.5000 0.0048 1.0490 0.1094
WLSE 0.5039 0.0041 1.0401 0.1014
PE 0.4664 0.0210 0.9622 0.3263
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Table 1. Continued

α̂ β̂
n α Estimator Mean MSE Mean MSE

100 0.5

MLE 0.5068 0.0016 1.0112 0.0458
LME 0.5068 0.0029 0.9931 0.0506
TLME 0.5012 0.0022 0.9894 0.0472
MMLE-II 0.5063 0.0017 1.0111 0.0461
MMLE-I 0.4697 0.0106 0.9586 0.0661
ME 0.5487 0.0076 1.1264 0.0959
LSE 0.4994 0.0023 1.0223 0.0516
WLSE 0.5020 0.0019 1.0170 0.0481
PE 0.4653 0.0142 0.9208 0.1755

20 1.5

MLE 1.6090 0.1041 1.0010 0.0245
LME 1.5292 0.0878 0.9943 0.0247
TLME 1.5333 0.1304 0.9968 0.0270
MMLE-II 1.5989 0.1055 1.0008 0.0246
MMLE-I 1.4225 0.1959 0.9712 0.0281
ME 1.6194 0.1051 1.0016 0.0245
LSE 1.4949 0.1262 1.0165 0.0276
WLSE 1.5087 0.1116 1.0129 0.0262
PE 1.4362 0.0968 1.0172 0.0734

30 1.5

MLE 1.5740 0.0625 0.9999 0.0166
LME 1.5225 0.0563 0.9956 0.0167
TLME 1.5218 0.0793 0.9977 0.0179
MMLE-II 1.5689 0.0634 0.9998 0.0167
MMLE-I 1.4112 0.1556 0.9732 0.0202
ME 1.5826 0.0651 1.0003 0.0167
LSE 1.4981 0.0787 1.0104 0.0183
WLSE 1.5125 0.0683 1.0071 0.0174
PE 1.4471 0.0667 1.0107 0.0021

50 1.5

MLE 1.5438 0.0331 0.9995 0.0099
LME 1.5137 0.0319 0.9969 0.0100
TLME 1.5133 0.0445 0.9982 0.0108
MMLE-II 1.5413 0.0344 0.9994 0.0100
MMLE-I 1.4103 0.1258 0.9763 0.0133
ME 1.5496 0.0353 0.9997 0.0100
LSE 1.4989 0.0450 1.0058 0.0110
WLSE 1.5107 0.0381 1.0034 0.0104
PE 1.4549 0.0398 1.0057 0.1723

100 1.5

MLE 1.5213 0.0151 1.0000 0.0050
LME 1.5065 0.0152 0.9988 0.0050
TLME 1.5067 0.0206 0.9993 0.0054
MMLE-II 1.5199 0.0158 1.0000 0.0050
MMLE-I 1.4063 0.0976 0.9790 0.0081
ME 1.5244 0.0165 1.0001 0.0050
LSE 1.4998 0.0213 1.003 0.0055
WLSE 1.5075 0.0175 1.0017 0.0052
PE 1.4658 0.0205 1.0025 0.0735
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Table 2.The simulated, means and MSEs values under different
loss function for the Lindley approximation of α and β

Lindley’s approximation
α̂ β̂

NP GP NP GP
n α LF Mean MSE Mean MSE Mean MSE Mean MSE

20 0.5

SELF 0.5178 0.0102 0.5240 0.0100 1.1895 0.3391 1.2313 0.3487
GELF 0.5008 0.0092 0.5060 0.0089 0.9441 0.2152 0.9746 0.2060
WSELF 0.5038 0.0094 0.5092 0.0090 0.9825 0.2258 1.0182 0.2177
PLF 0.5258 0.0108 0.5321 0.0108 1.2758 0.4192 1.3101 0.4347

30 0.5

SELF 0.5110 0.0061 0.5154 0.0062 1.1349 0.2053 1.1635 0.2104
GELF 0.4993 0.0057 0.5032 0.0057 0.9640 0.1468 0.9868 0.1429
WSELF 0.5015 0.0057 0.5054 0.0058 0.9930 0.1524 1.0186 0.1494
PLF 0.5163 0.0063 0.5207 0.0065 1.1976 0.2441 1.2220 0.2518

50 0.5

SELF 0.5068 0.0034 0.5097 0.0035 1.0759 0.1071 1.0974 0.1128
GELF 0.4996 0.0033 0.5023 0.0033 0.9709 0.0875 0.9897 0.0880
WSELF 0.5009 0.0033 0.5037 0.0033 0.9899 0.0894 1.0099 0.0906
PLF 0.5099 0.0035 0.5129 0.0036 1.1157 0.1209 1.1356 0.1284

100 0.5

SELF 0.5029 0.0016 0.5031 0.0016 1.0354 0.0487 1.0418 0.0507
GELF 0.4992 0.0015 0.4994 0.0016 0.9816 0.0441 0.9876 0.0453
WSELF 0.4999 0.0015 0.5002 0.0016 0.9918 0.0445 0.9979 0.0459
PLF 0.5045 0.0016 0.5047 0.0016 1.0564 0.0521 1.0628 0.0545

20 1.5

SELF 1.5480 0.0877 1.5585 0.0894 1.0161 0.0250 1.0177 0.0250
GELF 1.4974 0.0799 1.5069 0.0807 0.9874 0.0245 0.9889 0.0243
WSELF 1.5061 0.0809 1.5158 0.0818 0.9930 0.0245 0.9946 0.0243
PLF 1.5720 0.0932 1.5828 0.0955 1.0274 0.0258 1.0287 0.0258

30 1.5

SELF 1.5340 0.0553 1.5387 0.0548 1.0102 0.0169 1.0122 0.0163
GELF 1.4989 0.0517 1.5031 0.0509 0.9906 0.0166 0.9927 0.0160
WSELF 1.5053 0.0521 1.5096 0.0514 0.9945 0.0166 0.9965 0.0160
PLF 1.5498 0.0577 1.5545 0.0574 1.0179 0.0172 1.0199 0.0166

50 1.5

SELF 1.5202 0.0306 1.5229 0.0300 1.0057 0.0100 1.0090 0.0100
GELF 1.4984 0.0294 1.5010 0.0287 0.9938 0.0099 0.9970 0.0098
WSELF 1.5025 0.0295 1.5051 0.0288 0.9961 0.0099 0.9994 0.0098
PLF 1.5295 0.0315 1.5322 0.0309 1.0104 0.0101 1.0137 0.0101

100 1.5

SELF 1.5096 0.0145 1.5119 0.0150 1.0032 0.0050 1.0037 0.0049
GELF 1.4985 0.0142 1.5008 0.0146 0.9971 0.0050 0.9976 0.0049
WSELF 1.5006 0.0142 1.5029 0.0147 0.9983 0.0050 0.9988 0.0049
PLF 1.5142 0.0147 1.5166 0.0152 1.0056 0.0051 1.0061 0.0049

In all cases, the biases and MSEs of the estimators decrease as the sample size
n increases. It indicates that all the estimators are asymptotically unbiased and
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Table 3.The simulated, means and MSEs values under different
loss function for Tierney Kadaneâ€TM s approximation parameter
estimators of α and β

Tierney-Kadane’s approximation
α̂ β̂

NP GP NP GP
n α LF Mean MSE Mean MSE Mean MSE Mean MSE

20 0.5

SELF 0.5288 0.0107 0.5348 0.0107 1.2014 0.3498 1.2423 0.3448
GELF 0.5081 0.0091 0.5143 0.0089 0.9001 0.3049 0.9501 0.1962
WSELF 0.5123 0.0094 0.5185 0.0092 0.9549 0.2193 1.0046 0.2093
PLF 0.5369 0.0115 0.5428 0.0116 1.3497 0.4496 1.3823 0.4838

30 0.5

SELF 0.5175 0.0063 0.5218 0.0065 1.1420 0.2066 1.1656 0.2083
GELF 0.5040 0.0057 0.5084 0.0058 0.9430 0.1433 0.9714 0.1393
WSELF 0.5068 0.0058 0.5111 0.0059 0.9809 0.1485 1.0084 0.1460
PLF 0.5229 0.0066 0.5271 0.0069 1.2317 0.2645 1.2527 0.2662

50 0.5

SELF 0.5103 0.0034 0.5132 0.0036 1.0765 0.1096 1.0982 0.1124
GELF 0.5024 0.0032 0.5053 0.0033 0.9609 0.0888 0.9836 0.0871
WSELF 0.5040 0.0033 0.5069 0.0034 0.9833 0.0906 1.0058 0.0898
PLF 0.5134 0.0036 0.5163 0.0037 1.1258 0.1273 1.1470 0.1318

100 0.5

SELF 0.5045 0.0016 0.5047 0.0016 1.0534 0.0551 1.0486 0.0505
GELF 0.5006 0.0015 0.5008 0.0016 0.9966 0.0481 0.9923 0.0443
WSELF 0.5014 0.0016 0.5016 0.0016 1.0078 0.0490 1.0034 0.0450
PLF 0.5060 0.0016 0.5063 0.0017 1.0769 0.0599 1.0718 0.0549

20 1.5

SELF 1.5464 0.0339 1.4050 0.0321 1.0161 0.0250 1.0184 0.0250
GELF 1.4859 0.1329 1.3065 0.1373 0.9819 0.0246 0.9849 0.0243
WSELF 1.4801 0.1009 1.3183 0.1119 0.9887 0.0245 0.9915 0.0243
PLF 1.4260 0.0342 1.4348 0.0329 1.0299 0.0259 1.0320 0.0260

30 1.5

SELF 1.5436 0.0277 1.4485 0.0274 1.0101 0.0169 1.0126 0.0163
GELF 1.4844 0.0379 1.400 0.0317 0.9882 0.0167 0.9908 0.0160
WSELF 1.4848 0.0325 1.4114 0.0279 0.9926 0.0166 0.9952 0.0160
PLF 1.4608 0.0285 1.4654 0.0283 1.019 0.0172 1.0213 0.0167

50 1.5

SELF 1.5229 0.0211 1.4757 0.0205 1.0057 0.0100 1.0091 0.0100
GELF 1.4894 0.0212 1.4523 0.0206 0.9929 0.0099 0.9964 0.0098
WSELF 1.4841 0.0211 1.4571 0.0205 0.9955 0.0099 0.9989 0.0098
PLF 1.4822 0.0212 1.4849 0.0207 1.0108 0.0101 1.0143 0.0101

100 1.5

SELF 1.4886 0.0122 1.4908 0.0126 1.0032 0.0050 1.0037 0.0049
GELF 1.4873 0.0124 1.4795 0.0126 0.9969 0.0050 0.9974 0.0049
WSELF 1.4895 0.0123 1.4818 0.0126 0.9982 0.0050 0.9987 0.0049
PLF 1.4931 0.0123 1.4953 0.0126 1.0057 0.0051 1.0062 0.0049



594 ASUMAN YILMAZ, MAHMUT KARA, AND HALIL AYDOGDU

consistent for the parameters α and β. When the classical methods are compared
with each other, for the shape parameter α, as far as bias is concerned, LSE, WLSE
and TLME work the best for all sample sizes. With respect to the MSEs, for α < 1 ,
MMLE-II performs better than the other estimators for small sample sizes (n < 20)
and otherwise MLE outperforms the rest. For α ≥ 1, LME works the best for small
sample sizes (n ≤ 20). For large sample sizes (n ≥ 50), MLE and MMLE-II both
works very well.
Similarly, if we compare the classical estimators for β , comparing the biases, for
α < 1 , it is observed that LME and TLME work the best for particularly small
sample sizes and for large sample sizes (n > 50), the performances of the LME
and TLME are close to that of the MLE and MMLE-II. When α ≥ 1, LME and
TLME work the better than the other estimators for small sample sizes (n ≤ 20)
and otherwise MLE and MMLE-II outperform the rest.
Then, if we compare the performance of Bayes estimators obtained by Lindley’s
method, it is clear that as far as MSE and bias are concerned, Bayes estimators
under GELF and WSELF work the best in all cases. Similarly, comparing the
performance of Bayes estimators obtained by Tierney Kadane’s approximation, it
is observed that, if α ≤ 1 , Bayes estimators obtained under GELF works the best
in all cases for estimating α parameter, followed by Bayes estimation under the
WSELF. When α > 1, for estimating parameter, Bayesian estimations under SELF
and PLF work very well.
For estimating β parameter, Bayes estimation under WSELF performs better than
the other estimators for small sample sizes (n ≤ 20) and otherwise Bayesian esti-
mations under WSELF and GELF give the same result.
When we compare the Bayesian and classical methods for estimating the α and β
parameters, it is clear that as far as bias and MSE are concerned; Bayesian methods
outperform the classical methods. Furthermore, Lindley’s method works well than
the Tierney-Kadane’s method in the most of the cases. Also, the GP gives better
estimators than the NP for all loss functions.

6. Application

In this section, an actual data set is used to illustrate the estimation procedure
developed in section 3-4. The data set measured from Sivas, Turkey during 2017
was used. There were 6011 observations recorded. The data was taken from the
Turkish State Meteorological Service. All measurements were made at the heights
of 10m in hourly basis.
In this paper, the performance of the Weibull distribution (WD) was compared
with the Gamma distribution (GD), log- normal distribution (LND) and inverse
Gauss distribution (IGD). These distributions for wind speed data were analyzed
seasonally and annually. To determine the distribution providing better fit to wind
speed data, we computed the root mean square error (RMSE), the coeffi cient of
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determination (R2) and Akaike information criteria(AIC) values for each distribu-
tion, as shown in Table 4. The formulas for model selection criteria were given in
Table 5. In addition to these statistical criteria, the cumulative density function of
the WD, GD, IGD and LND were presented in Figure 1 for seasonal and annual
wind speed data.

Table 4. RMSE, R2 and AIC values for distributions

n Criteria WD IGD LN GD

6011 Annual
RMSE 0.0215 0.0746 0.0502 0.0301
R2 0.9946 0.9214 0.9664 0.989
AIC 2.5736 2.7704 2.7488 2.6058

1560 Winter
RMSE 0.0215 0.0821 0.0571 0.0353
R2 0.9945 0.9053 0.9564 0.9847
AIC 6.6889 7.2235 6.9984 6.7801

1710 Spring
RMSE 0.025 0.0627 0.0419 0.0261
R2 0.9926 0.9453 0.977 0.9918
AIC 7.2749 7.7628 8.3423 7.3414

1429 Summer
RMSE 0.0236 0.0796 0.0538 0.0338
R2 0.9936 0.9084 0.9606 0.986
AIC 6.1904 6.7319 6.8202 6.298

1312 Autumn
RMSE 0.0231 0.0721 0.0482 0.0287
R2 0.9936 0.9276 0.9693 0.99
AIC 5.5252 5.8949 5.6003 5.5729

Table 5. The formulas of criteria for model evaluation

Criteria Formulas
RMSE 2k − 2 lnα

R2 1−
(∑n

i=1 F̂
(
X(i)

)
− i

n+1

)2
/
(∑n

i=1 F̂ (Xi)− F̂ (Xi)
)2

AIC
[∑n

i=1

(
F̂
(
X(i)

)
− i

n+1

)2
/n

]1/2

According to Table 4, Weibull distribution has the smallest RMSE, AIC values
and the highest R2 values. In Table 5, k is the number of the unknown parameters,
In L is the value of log-likelihood function for each distribution, F̂ is the estimated
cumulative density function, Xi is i − th order statistics, n is sample size and
¯̂
F =

∑n
i=1 F̂i/n .
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Figure 1. The cumulative density function for annual and seasonal wind speed
data (m/s) for Sivas.
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Table 6. Classical parameter estimations for the wind speed data.

n Estimator α̂ β̂

6011 Annual

MLE 2.1520 4.9177
LME 2.1422 4.9202
TLME 2.1256 4.9326
MMLE-I 2.1318 4.9088
MMLE-II 3.0342 5.2794
ME 2.1551 4.9203
LSE 2.1083 4.9360
WLSE 2.1571 4.9221
PE 2.1876 4.9300

1560 Winter

MLE 2.1052 4.8413
LME 2.1020 4.8463
TLME 2.0534 4.8832
MMLE-I 2.0780 4.8291
MMLE-II 2.6032 5.0557
ME 2.1139 4.8465
LSE 2.1089 4.8786
WLSE 2.1168 4.8610
PE 2.1452 4.8600

1710 Spring

MLE 2.2734 5.0726
LME 2.2605 5.0705
TLME 2.3060 5.0389
MMLE-I 2.2730 5.0724
MMLE-II 2.6083 5.2082
ME 2.2674 5.0704
LSE 2.1956 5.0535
WLSE 2.2540 5.0615
PE 2.2746 5.0723

1429 Summer

MLE 2.2483 5.1749
LME 2.2290 5.1816
TLME 2.1682 5.2274
MMLE-I 2.2058 5.1573
MMLE-II 2.5317 5.2892
ME 2.2541 5.1812
LSE 2.1641 5.2318
WLSE 2.2420 5.1998
PE 2.3019 5.1970
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Table 6. Continued.

n Estimator α̂ β̂

1312 Autumn

MLE 2.0056 4.5226
LME 2.0020 4.5226
TLME 2.0117 4.5155
MMLE-I 1.9993 4.5196
MMLE-II 2.5919 4.7879
ME 2.0060 4.5228
LSE 1.9794 4.5225
WLSE 2.0062 4.5257
PE 2.0140 4.5285

Table 7.Lindley’s and Tierney Kadane’s parameter estimations un-
der NP for the wind speed data

Lindley’s Tierney-Kadane’s
n LF α̂ β̂ α̂ β̂

6011 Annual

SELF 2.1517 4.9178 2.1494 4.9178
GELF 2.1515 4.9176 2.1493 4.9177
WSELF 2.1515 4.9176 2.1492 4.9176
PLF 2.1518 4.9179 2.1496 4.9179

1560 Winter

SELF 2.1041 4.8419 2.0963 4.8418
GELF 2.1034 4.8412 2.0956 4.8414
WSELF 2.1033 4.8411 2.0954 4.8413
PLF 2.1046 4.8423 2.0967 4.8423

1710 Spring

SELF 2.2724 5.0731 2.2619 5.0731
GELF 2.2717 5.0725 2.2611 5.0726
WSELF 2.2716 5.0724 2.2611 5.0724
PLF 2.2728 5.0734 2.2624 5.0734

1429 Summer

SELF 2.2471 5.1755 2.2349 5.1753
GELF 2.2463 5.1748 2.2340 5.1749
WSELF 2.2462 5.1747 2.2338 5.1748
PLF 2.2476 5.1759 2.2355 5.1758

1312 Autumn

SELF 2.0044 4.5232 1.9973 4.5233
GELF 2.0036 4.5224 1.9965 4.5223
WSELF 2.0035 4.5223 1.9963 4.5222
PLF 2.0049 4.5237 1.9978 4.5237
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Table 8. Lindley’s and Tierney Kadane’s parameter estimations
under GP for the wind speed

Lindley’s Tierney-Kadane’s
n LF α̂ β̂ α̂ β̂

6011 Annual

SELF 2.1517 4.9186 2.1489 4.918
GELF 2.1515 4.9184 2.1487 4.9131
WSELF 2.1515 4.9184 2.1487 4.9131
PLF 2.1518 4.9187 2.1490 4.9187

1560 Winter

SELF 2.1039 4.8365 2.0939 4.8365
GELF 2.1034 4.8358 2.0953 4.8358
WSELF 2.1033 4.8357 2.0951 4.8357
PLF 2.1046 4.8369 2.0965 4.8369

1710 Spring

SELF 2.2727 5.0731 2.2623 5.0731
GELF 2.2720 5.0725 2.2615 5.0725
WSELF 2.2719 5.0725 2.2614 5.0725
PLF 2.2731 5.0734 2.2627 5.0734

1429 Summer

SELF 2.2494 5.1776 2.2371 5.1777
GELF 2.2486 5.1769 2.2361 5.1770
WSELF 2.2484 5.1768 2.2360 5.1769
PLF 2.2499 5.1780 2.2376 5.1781

1312 Autumn

SELF 2.0059 4.5218 1.9984 4.5218
GELF 2.0047 4.5210 1.9976 4.5210
WSELF 2.0046 4.5209 1.9975 4.5209
PLF 2.0060 4.5223 1.9989 4.5223

It is clear that the results in Figure 1 are consistent with Table 4. Thus, in terms
of all criteria, WD performed better than GD, IGD and LND for the seasonal and
the annual wind speed data. Therefore, the two-parameter Weibull distribution
was used for modelling the wind speed data. The estimators of the α and β ob-
tained by using Bayesian and classical methods are given in Table 6-8. In light
of the aforementioned information, we recommend the Bayesian estimations under
WSELF and GELF for estimating the unknown parameters of Weibull distribution.

7. Conclusion

In this paper, we obtained different methods of estimation of the unknown pa-
rameters both with Bayesian and classical approximation. In classical method, the
parameters α and β were estimated by using nine different method. In Bayesian
method, we computed the Bayesian estimators of unknown parameters based on
symmetric and asymmetric loss functions. The Bayes estimators do not have ex-
plicit form. Hence, we used the Lindley and Tierney Kadane’s techniques under
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the assumption of Gamma priors. We also compare the performances of the esti-
mators via simulation study. It is clear from the simulation results given in Table
1-3 that Lindley approximation under GELF and WSELF are more preferable than
the other estimators according to the MSE and bias criteria in both scenarios i.e.
informative prior and non-informative prior (especially for sample size n > 50 ).
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T0 CONVERGENCE APPROACH SPACES

MUHAMMAD QASIM AND MEHMET BARAN

Abstract. In previous papers, several T0-objects in set-based topological cat-
egory have been introduced and compared. In this paper, we give the char-
acterization of general T0 (resp. T0, and T ′0) convergence approach spaces as
well as show how these notions are linked to each other.

1. Introduction

In 1989, Colebunders and Lowen [16] introduced convergence approach space to
satisfy the categorical properties such as Cartesian closedness which are failed in
approach space [17].
Classical T0 separation of topology plays a vital role not only in mathematics such

as to get an alternative characterization of locally semi-simple coverings in terms of
light morphisms in algebraic topology [13] but also in computer science where this
concept correspond to access the values through observations [26]. In addition to
that, T0 axiom has been used to build topological models in denotational semantics
of programming language and lambda calculus where Hausdorff topologies fail to
build such models [24, 25]. Furthermore, it has been used to characterize digital
line in digital topology and to construct cellular complex in image processing and
computer graphs [10, 14, 15].
Due to huge importance of T0 separation, this concept has been extended to

topological categories by several mathematicians such as Brümmer [8] in 1971,
Marny [21] in 1973, Hoffmann [11] in 1974, Harvey [9] in 1977 and Baran [2] in
1991. Moreover, in 1991, Weck-Schwarz [27] and in 1995, Baran [3] analyzed the
relationship among these various generalization of T0 objects. One of the main
reason to extend T0 separation was to define T2 objects in arbitrary topological
categories [5].
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The main object of this paper is to characterize each of T0, T0 and T ′0 convergence
approach spaces and show how these are related to each other.

2. Preliminaries

Let E and B be two categories. The functor U : E → B is called topological
functor if (i) U is concrete (i.e., faithful and amnestic) (ii) U consists of small fibers
and (iii) every U-source has a unique initial lift [1, 22, 23].
Note that topological functor U : E → B is called normalized if subterminals

have a unique structure.
Let X be a set, A ⊆ X, F (X) be the set of all filters and A be collection of

subsets of X. The stack of A and the indicator map θA : X → [0,∞] are defined
by [A] = {B ⊆ X|∃A ∈ A : A ⊆ B} and

θA(x) =

{
0, x ∈ A
∞, x /∈ A

respectively.

Definition 1. (cf. [16, 18, 20]) A map λ : F (X) −→ [0,∞]X is called a convergence
approach structure on X if it satisfies the followings:

(i) ∀x ∈ X : λ[x](x) = 0,
(ii) ∀α, β ∈ F (X) : α ⊂ β ⇒ λβ ≤ λα,
(iii) ∀α, β ∈ F (X) : λ(α ∩ β) = sup{λ(α), λ(β)}.
The pair (X,λ) is called a convergence approach space.

Definition 2. (cf. [16, 18, 20]) Let (X,λ) and (X ′, λ′) be convergence approach
spaces. The map f : (X,λ) −→ (X ′, λ′) is called a contraction map if it satisfies
for all α ∈ F (X) : λ′(f(α)) ◦ f ≤ λα.

The category whose objects are convergence approach spaces and morphisms
are contraction maps is denoted by CApp and it is a Cartesian closed topological
category over Set [16, 18, 20].

Definition 3. (cf. [16, 18, 20]) Let X be a non-empty set and (Xi, λi) be the class
of convergence approach spaces.

(i) A source {fi : X → (Xi, λi)} in CApp has initial lift if and only if for
all α ∈ F (X), λα = sup

i∈I
λi(fi(α)) ◦ fi, where fi(α) is a filter generated by

{fi(Ai), i ∈ I}, i.e., fi(α) = {Ai ⊂ Xi : ∃B ∈ α such that fi(B) ⊂ Ai}.
(ii) A sink {fi : (Xi, λi) → X} in CApp has final lift if and only if for all

α ∈ F (X) and x ∈ X,

λ(α)(x) =


0, α = [x]

inf
i∈I

inf
y∈f−1i (x)

inf
β∈F (Xi)
⊂α

λi(β)(y), α 6= [x]
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(iii) The discrete structure (X,λdis) on X in CApp is defined by for all α ∈
F (X) and x ∈ X,

λdis(α) =

{
θ{x}, α = [x]

∞, α 6= [x]
(iv) The indiscrete structure (X,λind) on X in CApp is defined by for all

α ∈ F (X) and x ∈ X,
λind(α)(x) = 0

3. T0 Convergence Approach Spaces

Let B be a nonempty set, B2
∐
B2 be the coproduct of B2 and B2∨4B2 be two

distinct copies of B2 identified along the diagonal [2]. Let q : B2
∐
B2 → B2∨4B2

be the quotient map. A point (x, y) in B2 ∨4 B2 is denoted by (x, y)1 (resp.
(x, y)2) if (x, y) is in the first (resp. second) component of B2 ∨4 B2. Note that
(x, x)1 = (x, x)2 = (x, x).

Definition 4. (cf. [2]) A map A : B2 ∨4 B2 → B3 is called a principle axis map
if

A((x, y)i) =

{
(x, y, x), i = 1

(x, x, y), i = 2

Definition 5. (cf. [2]) A map ∇ : B2 ∨4 B2 → B2 is called a folding map if
∇((x, y)i) = (x, y) for i = 1, 2.
Definition 6. (cf. [2, 21]) Let U : E → Set be topological in the sense of [1, 22]
and X be an object in E with U(X) = B.

(i) X is T0 iff initial lift of the U-source {A : B2 ∨4 B2 → U(X3) = B3 and
∇ : B2 ∨4 B2 → UD(B2) = B2} is discrete, where D is a discrete functor
which is left adjoint to U .

(ii) X is T ′0 iff initial lift of the U-source {id : B2∨4B2 → U(B2∨4B2)′2∨4B2
and ∇ : B2 ∨4 B2 → UD(B2) = B2} is discrete, where (B2 ∨4 B2)′ is
the final lift of U-sink {q ◦ i1, q ◦ i2 : U(X2) = B2 → B2 ∨4 B2} and
ik : B

2 → B2
∐
B2 are the canonical injections for k = 1, 2.

(iii) X is T0 iff X doesn’t contain an indiscrete subspace with (at least) two
points.

Theorem 7. A convergence approach space (X,λ) is T0 iff for all x, y ∈ X with
x 6= y, λ([x])(y) =∞ or λ([y])(x) =∞.

Proof. Let (X,λ) be T0 for all x, y ∈ X with x 6= y. Note that [(x, y)1] ∈ F (X2 ∨4
X2), (x, y)2 ∈ X2 ∨4 X2 and

λdis([∇(x, y)1])(∇(x, y)2) = λdis([(x, y)])(x, y) = 0,

λ([π1A(x, y)1](π1A(x, y)2) = λ([x])(x) = 0,
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λ([π2A(x, y)1](π2A(x, y)2) = λ([y])(x)

and

λ([π3A(x, y)1](π3A(x, y)2) = λ([x])(y),

where πi : X3 → X are the projection maps, i = 1, 2, 3. Since (X,λ) is T0, by
Definition 3 (i),

∞ = sup{λdis([∇(x, y)1])(∇(x, y)2), λ([π1A(x, y)1])(π1A(x, y)2),
λ([π2A(x, y)1])(π2A(x, y)2), λ([π3A(x, y)1])(π3A(x, y)2)}

= sup{0, λ([x])(y), λ([y])(x)} = sup{λ([x])(y), λ([y])(x)}

and consequently, λ([x])(y) =∞ or λ([y])(x) =∞.
Conversely, let λ be an initial convergence approach structure on X2 ∨4 X2

induced by A : X2 ∨4 X2 → (X3, λ3) and ∇ : X2 ∨4 X2 → (X2, λdis), where λdis
is discrete convergence approach structure on X2 and λ3 is the product convergence
approach structure on X3 induced by πi : X3 → X the projection maps for i =
1, 2, 3. Suppose α ∈ F (X2 ∨4 X2) and v ∈ X2 ∨4 X2 with ∇v = (x, y). By
Definition 1, we show that

λ(α) =

{
θ{v}, α = [v]

∞, α 6= [v]

where θ{v} is the indicator of {v}. Let w be any point in X2 ∨4 X2. Note that

λdis(∇α)(∇w) =
{
θ{(x,y)}∇w, ∇α = [(x, y)]
∞, ∇α 6= [(x, y)]

=


0, ∇α = [(x, y)] and ∇w = (x, y)
∞, ∇α = [(x, y)] and ∇w 6= (x, y)
∞, ∇α 6= [(x, y)] and ∇w 6= (x, y)

Case I: If x = y, then ∇w = (x, x) implies w = (x, x)1 = (x, x)2 = v and
∇α = [(x, x)] implies α = [(x, x)i] = [(x, x)] for i = 1, 2. By Definition 3 (i),
λ(∇α)(∇w) = λ([(x, x)])(x, x) = 0 since λ is a convergence approach structure on
X2 ∨4 X2.
Suppose that x 6= y. ∇w = (x, y) implies w = (x, y)1 or u = (x, y)2 and ∇α =

[(x, y)] implies α = [(x, y)1], [(x, y)2], [{(x, y)1, (x, y)2}] or α ⊃ [{(x, y)1, (x, y)2}].
Firstly, we show that the case α ⊃ [{(x, y)1, (x, y)2}] with α 6= [∅] and α 6=
[{(x, y)1, (x, y)2}] cannot occur. To end this, if [∅] 6= α 6= [{(x, y)1, (x, y)2}], then
α ⊃ [{(x, y)1, (x, y)2}] iff α = [(x, y)1] or α = [(x, y)2]. Clearly, if α = [(x, y)1]
or [(x, y)2], then α ⊃ [{(x, y)1, (x, y)2}]. Conversely, if α ⊃ [{(x, y)1, (x, y)2}] with
[∅] 6= α 6= [{(x, y)1, (x, y)2}], then there exists V ∈ α such that V 6= {(x, y)1, (x, y)2}
and V 6= ∅. Since V and {(x, y)1, (x, y)2} are in α and α is a filter, it follows that
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V ∩ {(x, y)1, (x, y)2} = {(x, y)1} or {(x, y)2} is in α, i.e., α = [(x, y)1] or [(x, y)2].
Hence, we must have α = [(x, y)1], [(x, y)2] or [{(x, y)1, (x, y)2}].
If α = [(x, y)i] and w = (x, y)i, i = 1, 2, then λ([(x, y)i])((x, y)i) = 0 since λ is a

convergence approach structure on X2 ∨4 X2.
If α = [(x, y)2] and w = (x, y)1, then

λdis(∇α)(∇w) = λdis(∇[(x, y)2])(∇(x, y)1) = λdis([(x, y)])(x, y) = 0,

λ(π1Aα)(π1Aw) = λ([π1A(x, y)2])(π1A(x, y)1)) = λ([x])(x) = 0,

λ(π2Aα)(π2Aw) = λ([π2A(x, y)2])(π2A(x, y)1) = λ([x])(y)

and
λ(π3Aα)(π3Aw) = λ([π3A(x, y)2])(π3A(x, y)1) = λ([y])(x),

by Definition 3 (i),

λ(α)(w) = λ([(x, y)2])((x, y)1)

= sup{λdis([∇(x, y)2])(∇(x, y)1), λ([π1A(x, y)2])(π1A(x, y)1),
λ([π2A(x, y)2])(π2A(x, y)1), λ([π3A(x, y)2])(π3A(x, y)1)}

= sup{0, λ([y])(x), λ([x])(y)} = sup{λ([y])(x), λ([x])(y)} =∞
since by the assumption λ([y])(x) =∞ or λ([x])(y) =∞.
If α = [{(x, y)1, (x, y)2}] and w = (x, y)1, then
λdis(∇α)(∇w) = λdis(∇[{(x, y)1, (x, y)2}])(∇(x, y)1) = λdis([x])(x) = 0,

λ(π1Aα)(π1Aw) = λ([{π1A(x, y)1, π1A(x, y)2}])(π1A(x, y)1) = λ([x])(x) = 0,

λ(π2Aα)(π2Aw) = λ([{π2A(x, y)1, π2A(x, y)2}])(π2A(x, y)1) = λ([{x, y}])(y)
and

λ(π3Aα)(π3Aw) = λ([{π3A(x, y)1, π3A(x, y)2}])(π3A(x, y)1) = λ([{x, y}])(x).
Note that [{x, y}] ⊂ [y] and [{x, y}] ⊂ [x]. Since λ is a convergence approach
structure, we get λ([y])(x) ≤ λ([{x, y}])(x) and λ([x])(y) ≤ λ([{x, y}])(y). The
assumption λ([y])(x) =∞ (resp. λ([x])(y) =∞) implies λ([{x, y}])(x) =∞ (resp.
λ([{x, y}])(y) =∞).
By Definition 3 (i),

λ(α)(w) = λ([{(x, y)1, (x, y)2}])((x, y)1)
= sup{λdis([{∇(x, y)1,∇(x, y)2}])(∇(x, y)1), λ([{π1A(x, y)1, π1A(x, y)2}])

(π1A(x, y)1), λ([{π2A(x, y)1, π2A(x, y)2}])(π2A(x, y)1), λ([{π3A(x, y)1,
π3A(x, y)2}])(π3A(x, y)1)} = sup{0,∞} =∞.

For the cases α = [(x, y)1] or [{(x, y)1, (x, y)2}] and w = (x, y)2, it can be done
analogously to the above argument.
Case II: Let (z, z) = ∇w 6= (x, y) for some z ∈ X and ∇α = [(x, y)]. It follows

that w = (z, z)1 = (z, z)2 and α = [(x, y)1], [(x, y)2] or [{(x, y)1, (x, y)2}].
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If α = [(x, y)i] or [{(x, y)1, (x, y)2}] for i = 1, 2 and w = (z, z)1 = (z, z)2,
then λdis(∇α)(∇w) = λdis([(x, y)])(z, z) = ∞ since λdis is a discrete convergence
approach structure and (x, y) 6= (z, z). It follows that
λ(α)(w) = sup{λdis(∇α)(∇w), λ(π1Aα)(π1Aw), λ(π2Aα)(π2Aw), λ(π3Aα)(π3Aw)}

= sup{∞, λ(π1Aα)(z, z), λ(π2Aα)(z, z), λ(π3Aα)(z, z)} =∞.
Case III: Suppose ∇w 6= (x, y) and ∇α 6= [(x, y)], then λdis(∇α)(∇w) =∞ since

λdis is a discrete convergence approach structure, and consequently

λ(α)(w) = sup{λdis(∇α)(∇w), λ(π1Aα)(π1Aw), λ(π2Aα)(π2Aw), λ(π3Aα)(π3Aw)}
= sup{∞, λ(π1Aα)(π1Aw), λ(π2Aα)(π2Aw), λ(π3Aα)(π3Aw)} =∞.

Therefore, for all α ∈ F (X2 ∨4 X2) and ∀v ∈ X2 ∨4 X2, we get

λ(α) =

{
θ{v}, α = [v]

∞, α 6= [v]

i.e., by Definition 3 (iii), λ is discrete convergence approach structure on X2∨4X2

and by Definition 6 (i), (X,λ) is T0. �
Let X be a non-empty set and α, β ∈ F (X). We denote by α ∪ β the smallest

filter containing both α and β, i.e., α∪β is the filter generated by the set {V ∩W :
V ∈ α,W ∈ β}.

Lemma 8. Let (Xj , λj)j∈I be a class of CApp objects and X =
∐
j∈I

Xj, the co-

product of {Xj}j∈I . The coproduct convergence approach structure λ on X with
respect to the family of canonical injections ij : (Xj , λj) → X =

∐
j∈I

Xj is defined

by

λ(α)(xk) =


0, if α = [xk]

λk(α ∪ [Xk])(xk), if ik(β) ⊂ α for some k ∈ I and βk ∈ F (Xk)

∞, if ik(β) 6⊂ α for all k ∈ I and βk ∈ F (Xk)

Proof. Let α ∈ F (X) with α 6= [x] for all x ∈ X =
∐
j∈I

Xj . By definition 3 (iii),

λ(α)(xk) = inf{λk(βk)(xk) : βk ∈ F (Xk) for some k ∈ I such that ik(βk) ⊂ α}. If
ik(βk) ⊂ α for some k ∈ I and βk ∈ F (Xk), then such k can be at most one and
for this k, α ∪ [Xk] is the greatest element βk ∈ F (Xk) such that ik(βk) ⊂ α, i.e.,
ik(α ∪ [Xk]) = α. Hence, λ(α)(xk) = λk(α ∪ [Xk])(xk). �
Theorem 9. Every convergence approach space is T ′0.

Proof. Let (X,λ) be a convergence approach space. We show that (X,λ) is T ′0.
Let λ be an initial convergence approach structure on X2 ∨4 X2 induced by ∇ :
X2∨4X2 → (X2, λdis) and id : X2∨4X2 → (X2∨4X2, λ∗), where λdis is discrete
convergence approach structure on X2 and λ∗ is the final convergence approach
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structure on X2 ∨4 X2 induced by q ◦ ik : X2 → X2 ∨4 X2 for k = 1, 2 and let
v ∈ X2 ∨4 X2 with ∇v = (x, y). Suppose α ∈ F (X2 ∨4 X2) and w ∈ X2 ∨4 X2.
Note that

λdis(∇α)(∇w) =

{
θ{(x,y)}∇w, ∇α = [(x, y)]
∞, ∇α 6= [(x, y)]

=


0, ∇α = [(x, y)] and ∇w = (x, y)
∞, ∇α = [(x, y)] and ∇w 6= (x, y)
∞, ∇α 6= [(x, y)] and ∇w 6= (x, y)

Case I: If x = y, then ∇w = (x, x) implies w = (x, x)1 = (x, x)2 = (x, x) = v
and ∇α = [(x, x)] implies α = [(x, x)i] = [(x, x)] for i = 1, 2. By Definition 3 (i),
λ(α)(w) = λ([(x, x)i])(x, x)i = 0 since λ is a convergence approach structure on
X2 ∨4 X2.
Let x 6= y. ∇α = [(x, y)] implies α = [(x, y)1], [(x, y)2], [{(x, y)1, (x, y)2}] or

α ⊃ [{(x, y)1, (x, y)2}] and ∇w = (x, y) implies w = (x, y)1 or w = (x, y)2. By using
the similar argument given in the proof of Theorem 7, we must have α = [(x, y)1],
[(x, y)2] or [{(x, y)1, (x, y)2}].
If α = [(x, y)j ] and w = (x, y)j for j = 1, 2, then λ([(x, y)j ])((x, y)j) = 0 since λ

is a convergence approach structure on X2 ∨4 X2.
If α = [(x, y)1] and w = (x, y)2, then

λdis(∇α)(∇w) = λdis(∇[(x, y)1])(∇(x, y)2) = λdis([(x, y)])(x, y) = 0,

λ∗(idα)(idw) = λ∗(α)(w) = λ∗([(x, y)1])((x, y)2).

Since i2β 6⊂ α = [(x, y)1] for all β ∈ F (X2), by Lemma 8,

λ∗(α)(w) = λ∗([(x, y)1])((x, y)2) =∞.
Hence, by Definition 3 (i),

λ(α)(w) = λ([(x, y)1])((x, y)2)

= sup{λdis([∇(x, y)1])(∇(x, y)2), λ∗(id[(x, y)1])(id(x, y)2)}
= sup{0,∞} =∞.

Suppose α = [{(x, y)1, (x, y)2}] and w = (x, y)2.
In particular,

λ∗(idα)(idw) = λ∗(α)(w) = λ∗([{(x, y)1, (x, y)2}])((x, y)2).
Since λ∗ is a final convergence approach structure onX2∨4X2 and [{(x, y)1, (x, y)2}] ⊂
[(x, y)1], we get λ

∗([(x, y)1])((x, y)2) ≤ λ∗([{(x, y)1, (x, y)2}])((x, y)2). By the same
statement used above, λ∗([(x, y)1])((x, y)2) =∞, and consequently,

λ∗([{(x, y)1, (x, y)2}])((x, y)2) =∞.
By Definition 3 (i),

λ(α)(w) = λ([{(x, y)1, (x, y)2}])((x, y)1)
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= sup{λdis(∇[{(x, y)1, (x, y)2}])(∇(x, y)2), λ∗(id[{(x, y)1, (x, y)2}]), (id(x, y)2)}
= sup{0,∞} =∞.

For the cases α = [(x, y)2] (resp. [{(x, y)1, (x, y)2}]) and w = (x, y)1, by Lemma
8 and the argument used above, we get λ(α)(w) =∞.
Case II: Let (z, z) = ∇w 6= (x, y) for some z ∈ X and ∇α = [(x, y)]. It follows

that w = (z, z)1 = (z, z)2 and α = [(x, y)1], [(x, y)2] or [{(x, y)1, (x, y)2}].
If α = [(x, y)i] (resp. [{(x, y)i, (x, y)j}]) for i, j = 1, 2 with i 6= j and w =

(z, z)1 = (z, z)2 = (z, z), then λdis(∇α)(∇w) = λdis([(x, y)])(z, z) = ∞ since λdis
is a discrete convergence approach structure and (x, y) 6= (z, z) = ∇w. It follows
that

λ(α)(w) = sup{λdis(∇α)(∇w), λ∗(idα)(idw)}
= sup{∞, λ∗(α)(w)} =∞.

Case III: Suppose ∇w 6= (x, y) and ∇α 6= [(x, y)], then λdis(∇α)(∇w) =∞ since
λdis is a discrete convergence approach structure, and consequently

λ(α)(w) = sup{λdis(∇α)(∇w), λ∗(idα)(idw)}
= sup{∞, λ∗(α)(w)} =∞.

Therefore, for all α ∈ F (X2 ∨4 X2),

λ(α) =

{
θ{v}, α = [v]

∞, α 6= [v]

, i.e., by Definition 3 (iii), λ(α) is discrete convergence approach structure over
X2 ∨4 X2. By Definition 6 (ii), (X,λ) is T ′0. �

Theorem 10. A convergence approach space (X,λ) is T0 iff for all x, y ∈ X with
x 6= y, λ([y])(x) > 0 or λ([x])(y) > 0.

Proof. The proof is the same as the proof of [12, 19]. �

Example 11. Let X be a set with |X| ≥ 2. By Theorems 7, 9 and 10, every
indiscrete convergence approach space, i.e., for all α ∈ F (X) and for all x ∈ X,
λ(α)(x) = 0 is T ′0 but neither T0 nor T0.

Example 12. Let X be a non-empty set, F (X) be the set of all filters and λ :
F (X)→ [0,∞]X be a map defined as follows: For all α ∈ F (X) and u ∈ X,

λ(α)(u) =

{
0, α = [u]

1, α 6= [u]

Clearly, (X,λ) is a convergence approach space. By Theorems 7, 9 and 10, (X,λ)
is T0 (resp. T ′0) but not T0.
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Remark 13. (I) In Top (category of topological spaces and continuous maps),
T0, T ′0 and T0 are equivalent and reduce to classical T0 axiom (i.e., for each
distinct points x and y, there exists a neighborhood of x doesn’t contain y
or vice versa) [4].

(II) For any arbitrary topological category,
(i) T0 implies T ′0 but converse is not true in general [3].
(ii) There is no relation between T0 and each of T0 and T ′0 [3].

(a) T0 could be only discrete objects such as in ∞pqsMet (extended
pseudo-quasi-semi metric spaces and non-expansive maps) [7].

(b) T0 could be all objects, e.g., in Born (bornological spaces and
bounded maps) [3].

(c) In category Born, T0 =⇒ T0 = T ′0 [3].
(d) In category Lim of limit spaces and filter convergence maps,

T0 = T0 =⇒ T ′0 [3].
(e) In category SUConv of semi-uniform convergence spaces and

uniformly continuous maps, T0 =⇒ T0 =⇒ T ′0 [6].
(III) In convergence approach space (X,λ), by Theorems 7, 9 and 10, T0 =⇒

T0 =⇒ T ′0 but converse of each implication is not true in general by
Examples 11 and 12.
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A GENERALIZED NONLINEAR ITERATIVE ALGORITHM FOR
THE EXPLICIT MIDPOINT RULE OF NONEXPANSIVE

SEMIGROUP

M. CHERAGHI, M. AZHINI, AND H.R. SAHEBI

Abstract. In this paper, we introduce a new iterative midpoint rule for find-
ing a solution of fixed point problem for a nonexpansive semigroup in real
Hilbert spaces. We establish a strong convergence theorem for the sequences
generated by our proposed iterative scheme. Furthermore, we provide appli-
cation to Fredholm integral equations. A numerical example is presented to
illustrate the convergence result. Our results improve and extend the corre-
sponding results in the literature.

1. Introduction

Let R denote the set of all real numbers, H be a real Hilbert space with inner
product 〈., .〉 and norm ‖.‖ and C be a nonempty closed convex subset of H. A
mapping T : C → C is said to be contraction if there exists a constant α ∈ (0, 1)
such that ‖T (x) − T (y)‖ ≤ α‖x − y‖, for all x, y ∈ C. If α = 1, T is called
nonexpansive on C.
The fixed point problem (FPP ) for a nonexpansive mapping T is: To find x ∈ C

such that x ∈ Fix(T ), where Fix(T ) is the fixed point set of the nonexpansive
mapping T .
The explicit midpoint rule is one of the powerful numerical methods for solving

ordinary differential equations and differential algebraic equations. For related
works, we refer to [2, 3, 4, 5, 9, 10, 11, 16, 19, 20, 21, 22, 23, 25, 27, 28] and the
references cited therein. For instance, consider the initial value problem for the
differential equation y

′
(t) = f(y(t)) with the initial condition y(0) = y0, where f

is a continuous function from Rd to Rd. The explicit midpoint rule in which a
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sequence {yn} is generated by the following the recurrence relation
1

h
(yn+1 − yn) = f(

yn+1 − yn
2

).

In 2015, Xu et al. [30] extended and generalized the results of Alghamdi et al. [1]
and applied the viscosity method on the midpoint rule for nonexpansive mappings
and they gave the generalized viscosity explicit method:

xn+1 = αnf(xn) + βnxn + (1− αn)T (
xn + xn+1

2
).

In 2016, Rizvi [24] introduced the following iterative method for the explicit mid-
point rule of nonexpansive mappings:

xn+1 = αnγf(xn) + (1− αnB)T (
xn + xn+1

2
).

A family S := {T (s) : 0 ≤ s < ∞} of mappings from C into itself is called a
nonexpansive semigroup on C if it satisfies the following conditions:

(1) T (0)x = x for all x ∈ C
(2) T (s+ t) = T (s)T (t) for all s, t ≥ 0
(3) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0
(4) For all x ∈ C, s→ T (s)x is continuous.

Plubtieng and Punpaeng [18] introduced and studied the following iterative
method to prove a strong convergence theorem for FPP in a real Hilbert space:

xn+1 = αnf(xn) + βnxn + (1− αn − βn) 1
sn

∫ sn
0
T (s)xnds, ∀n ∈ N.

where f is a contraction mapping and {αn} and {βn} are the sequences in (0, 1)
and {sn} is a positive real divergent sequence.
Kang et al. [12] considerd an iterative algorithm in a Hilbert space as follows:

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)
1

sn

∫ sn

0

T (s)xnds.

Under the certain conditions, the sequence {xn} strongly converges to a unique
solution of the variational inequality 〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ Fix(T ).
Motivated and inspired by the results mentioned and related literature in [1, 12,
24, 30], we propose an iterative midpoint algorithm based on the viscosity method
for finding a common element of the set of solutions of nonexpansive semigroup
in Hilbert spaces. Then we prove strong convergence theorems that extend and
improve the corresponding results of Rizvi [24], Xu [30], and others. Finally, we
give an example and numerical result to illustrate our main result.
The rest of paper is organized as follows. The next section presents some pre-

liminary results. Section 3 is devoted to introduce midpoint algorithm for solving
it. The last section presents a numerical example to demonstrate the proposed
algorithms.
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2. Preliminaries

For each point x ∈ H, there exists a unique nearest point of C, denote by PCx,
such that ‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. PC is called the metric projection of
H onto C. It is well known that PC is nonexpansive mapping and is characterized
by the following property:

〈x− PCx, y − PCy〉 ≤ 0 (1)

Further, it is well known that every nonexpansive operator T : H → H satisfies,
for all (x, y) ∈ H ×H, inequality

〈(x− T (x))− (y − T (y)), T (y)− T (x)〉 ≤ (
1

2
)‖(T (x)− x)− (T (y)− y)‖2, (2)

and therefore, we get, for all (x, y) ∈ H × Fix(T ),

〈(x− T (x)), (y − T (y))〉 ≤ (
1

2
)‖(T (x)− x)‖2, (3)

see, e.g. [8].
It is also known that H satisfies Opial’s condition [17], i.e., for any sequence

{xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (4)

holds for every y ∈ H with y 6= x.

Lemma 1. [6] The following inequality holds in real space H:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.
Definition 2. A mapping M : C → H is said to be monotone, if

〈Mx−My, x− y〉 ≥ 0, ∀x, y ∈ C.
M is called α-inverse-strongly-monotone if there exist a positive real number α such
that

〈Mx−My, x− y〉 ≥ α‖Mx−My‖2, ∀x, y ∈ C.
Definition 3. A mapping B : H → H is said to be strongly positive linear bounded
operator, if there exists a constant γ̄ > 0 such that 〈Bx, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.
Lemma 4. [15] Assume that B is a strong positive linear bounded self adjoint
operator on a Hilbert space H with coeffi cient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then
‖I − ρB‖ ≤ 1− ργ̄.
Lemma 5. [26] Let C be a nonempty bounded closed convex subset of a Hilbert
space H and let S = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C. For
each x ∈ C and t > 0. Then, for any 0 ≤ h <∞,

lim
t→∞

sup
x∈C
‖1

t

∫ t

0

T (s)xds− T (h)(
1

t

∫ t

0

T (s)xds)‖ = 0.
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Lemma 6. [29] Let {an} be a sequence of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + δn, n ≥ 0 where αn is a sequence in (0, 1) and δn is a
sequence in R such that
(i) Σ∞n=1αn =∞; (ii) lim supn→∞

δn
αn
≤ 0 or Σ∞n=1δn <∞.

Then limn→∞ an = 0.

3. Nonlinear midpoint algorithm

In this section, we prove a strong convergence theorem based on the explicit it-
erative for fixed point of nonexpansive semigroup. We firstly present the following
unified algorithm.
Let S = {T (s) : s ∈ [0,+∞)} be a nonexpansive semigroup on C such that
Fix(S) 6= ∅. Also f : C → H be a α-contraction mapping and B,D be strongly
positive bounded linear self adjoint operators on H with coeffi cients γ̄1, γ̄2 > 0 such
that 0 < γ < γ̄1

α < γ + 1
α , γ̄1 ≤ ‖B‖ ≤ 1 and ‖D‖ = γ̄2 ≤ 1.

Algorithm 7. For given x0 ∈ C arbitrary, let the sequence {xn} be generated by:

xn+1 = αnγf(xn) +βnDxn+ ((1− εn)I−βnD−αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds.

(5)
where {αn}, {βn}, {εn} are the sequence in (0, 1) such that εn ≤ αn and {sn} ⊂
[s,∞) with s > 0 satisfying conditions:
(C1)

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

εn = 0, Σ∞n=1αn = Σ∞n=1βn =∞;

(C2)
∞∑
n=1

|αn − αn−1| <∞ or lim
n→∞

αn+1

αn
= 1;

∞∑
n=1

|βn − βn−1| <∞ or lim
n→∞

βn+1

βn
= 1;

∞∑
n=1

|εn − εn−1| <∞ or lim
n→∞

εn+1

εn
= 1;

(C3)
lim
n→∞

sn =∞, sup
n∈N
|sn+1 − sn| is bounded.

Lemma 8. For any 0 < γ < γ̄1
α < γ + 1

α , there exists a unique fixed point for
sequence {xn}.
Proof. As a matter of fact, for fixed x ∈ C, we can define the sequence {Pn : H →
H} as follows:

Pn(x) := αnγf(x) + βnDx+ ((1− εn)I − βnD − αnB)
1

sn

∫ sn

0

T (s)x ds, ∀x ∈ H.
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We may assume without loss of generality that αn ≤ (1−εn−βn‖D‖)‖B‖−1. Since
B and D are linear bounded self adjoint operators, we have
‖B‖ = sup{|〈Bx, x〉| : x ∈ H, ‖x‖ = 1},
‖D‖ = sup{|〈Dx, x〉| : x ∈ H, ‖x‖ = 1}

and observe that

〈((1− εn)I − βnD − αnB)x, x〉 = (1− εn)〈x, x〉 − βn〈Dx, x〉 − αn〈Bx, x〉
≥ 1− εn − βn‖D‖ − αn‖B‖ ≥ 0.

Therefore, (1− εn)I − βnD−αnB is positive. Then, by strong positivity of B and
D, we get

‖(1− εn)I − βnD − αnB‖ = sup{〈((1− εn)I − βnD − αnB)x, x〉 : x ∈ H, ‖x‖ = 1}
= sup{(1− εn)〈x, x〉 − βn〈Dx, x〉
−αn〈Bx, x〉 : x ∈ H, ‖x‖ = 1}
≤ 1− εn − βnγ̄2 − αnγ̄1

≤ 1− βnγ̄2 − αnγ̄1.
(6)

For any x, y ∈ C
‖Pnx− Pny‖ ≤ αnγ‖f(x)− f(y)‖+ βn‖D‖‖x− y‖

+‖(1− εn)I − βnD − αnB‖
1

sn

∫ sn

0

‖T (s)x− T (s)y‖ds

≤ αnγα‖x− y‖+ βnγ̄2‖x− y‖+ (1− βnγ̄2 − αnγ1)‖x− y‖
= (1− (γ1 − γα)αn)‖x− y‖.

Therefore, Banach contraction principle guarantees that Pn has a unique fixed point
in H, and so the iteration (5) is well defined. �
Lemma 9. Let p ∈ Fix(S). Then the sequence {xn} generated by Algorithm 7 is
bounded.

Proof. Let p ∈ Fix(S), we obtain

‖xn+1 − p‖ = ‖αnγf(xn) + βnDxn

+((1− εn)I − βnD − αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− p‖

≤ αn‖γf(xn)−Bp‖+ βn‖Dxn −Dp‖+ εn‖p‖

+‖((1− εn)I − βnD − αnB)‖‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)− T (s)p‖ds

≤ αn(‖γf(xn)− γf(p)‖+ ‖γf(p)−Bp‖) + βn‖Dxn −Dp‖+ εn‖p‖

+(1− βnγ̄2 − αnγ̄1)‖xn + xn+1

2
− p‖

≤ αnγα‖xn − p‖+ αn‖γf(p)−Bp‖+ βnγ̄2‖xn − p‖+ αn‖p‖

+
(1− βnγ̄2 − αnγ̄1)

2
(‖xn − p‖+ ‖xn+1 − p‖).
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which implies that

1 + βnγ̄2 + αnγ̄1

2
‖xn+1 − p‖ ≤ (αnγα+

1 + βnγ̄2 − αnγ̄1

2
)‖xn − p‖

+αn(‖γf(p)−Bp‖+ ‖p‖).

Then

‖xn+1 − p‖ ≤ (1− 2(γ̄1 − γα)αn
1 + βnγ̄2 + αnγ̄1

)‖xn − p‖+
2αn(γ̄1 − γα)

1 + βnγ̄2 + αnγ̄1

‖γf(p)−Bp‖+ ‖p‖
γ̄1 − γα

≤ max{‖xn − p‖,
‖γf(p)−Bp‖+ ‖p‖

γ̄1 − γα
} (7)

...

≤ max{‖x0 − p‖,
‖γf(p)−Bp‖+ ‖p‖

γ̄1 − γα
}.

Hence {xn} is bounded. �

Now, set tn := 1
sn

∫ sn
0
T (s)(xn+xn+1

2 )ds. Then {tn} and {f(xn)} are bounded.

Lemma 10. The following properties are satisfying for the Algorithm 7
P1. limn→∞ ‖xn+1 − xn‖ = 0.
P2. limn→∞ ‖xn − tn‖ = 0.
P3. limn→∞ ‖T (s)tn − tn‖ = 0.

Lemma 11. In order to prove P1, one can write

‖tn+1 − tn‖ = ‖ 1

sn+1

∫ sn+1

0

T (s)(
xn+1 + xn+2

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

= ‖ 1

sn+1

∫ sn+1

0

(T (s)(
xn+1 + xn+2

2
)− T (s)(

xn + xn+1

2
))ds

+(
1

sn+1
− 1

sn
)

∫ sn

0

T (s)(
xn + xn+1

2
)ds

+
1

sn+1

∫ sn+1

sn

T (s)(
xn + xn+1

2
)ds‖

= ‖ 1

sn+1

∫ sn+1

0

(T (s)(
xn+1 + xn+2

2
)− T (s)(

xn + xn+1

2
))ds

+(
1

sn+1
− 1

sn
)

∫ sn

0

(T (s)(
xn + xn+1

2
)− T (s)p)ds

+
1

sn+1

∫ sn+1

sn

(T (s)(
xn + xn+1

2
)− T (s)p)ds‖

≤ ‖xn+1 + xn+2

2
− xn + xn+1

2
‖+
|sn+1 − sn|sn

sn+1sn
‖xn + xn+1

2
− p‖



A GENERALIZED NONLINEAR ITERATIVE ALGORITHM 619

+
|sn+1 − sn|

sn+1
‖xn + xn+1

2
− p‖1

2
(‖xn+1 − xn‖+ ‖xn+2 − xn+1‖)

≤ +
|sn+1 − sn|

sn+1
(‖xn − p‖+ ‖xn+1 − p‖). (8)

Next, we show that the sequence {xn} is asymptotically regular, i.e., limn→∞ ‖xn+2−
xn+1‖ = 0. By (8) we estimate that

‖xn+2 − xn+1‖ = ‖(αn+1γf(xn+1) + βn+1Dxn+1

+((1− εn+1)I − βn+1D − αn+1B)
1

sn+1

∫ sn+1

0

T (s)(
xn+1 + xn+2

2
)ds)

−(αnγf(xn) + βnDxn + ((1− εn)I − βnD − αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds)‖

= ‖((1− εn+1)I − βn+1D − αn+1B)(
1

sn+1

∫ sn+1

0

T (s)(
xn+1 + xn+2

2
)ds

− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds) + ((εn + βnD + αnB)

−(εn+1 + βn+1D + αn+1B))
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds+ (αn+1 − αn)γf(xn)

+αn+1(γf(xn+1)− γf(xn)) + (βn+1 − βn)Dxn + βn+1(Dxn+1 −Dxn)‖

≤ (1− βn+1γ̄2 − αn+1γ̄1)‖tn+1 − tn‖+ |εn+1 − εn|‖
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+M |αn − αn+1|+N |βn − βn+1|+ αn+1γ‖f(xn+1)− f(xn)‖

≤ (1− βn+1γ̄2 − αn+1γ̄1)‖tn+1 − tn‖+ |εn+1 − εn|‖
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+M |αn − αn+1|+N |βn − βn+1|+ αn+1γα‖xn+1 − xn‖

≤
1− βn+1γ̄2 − αn+1γ̄1

2
(‖xn+1 − xn‖+ ‖xn+2 − xn+1‖)

+(1− βn+1γ̄2 − αn+1γ̄1)
|sn+1 − sn|

sn+1
(‖xn − p‖+ ‖xn+1 − p‖) + |εn+1 − εn|‖tn‖

+M |αn − αn+1|+N |βn − βn+1|+ αn+1γα‖xn+1 − xn‖,

where M := sup{‖ 1
sn

∫ sn
0
T (s)(xn+xn+1

2 )ds‖+ ‖f(xn)‖} and
N := sup{‖ 1

sn

∫ sn
0
T (s)(xn+xn+1

2 )ds‖+ ‖xn‖}. Then

(1 + αn+1γ̄1 + βn+1γ̄2)‖xn+2 − xn+1‖ ≤ (1− βn+1γ̄2 + (2αγ − γ̄1)αn+1)‖xn+1 − xn‖

+(1− βn+1γ̄2 − αn+1γ̄1)
2|sn+1 − sn|

sn+1
(‖xn − p‖

+‖xn+1 − p‖) + 2|εn+1 − εn|‖tn‖
+2M |αn − αn+1|+ 2N |βn − βn+1|.
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Therefore

‖xn+2 − xn+1‖ ≤ (1−
2(βn+1γ̄2 + (γ̄1 − αγ)αn+1)

1 + αn+1γ̄1 + βn+1γ̄2

)‖xn+1 − xn‖

+(
1− βn+1γ̄2 − αn+1γ̄1

1 + αn+1γ̄1 + βn+1γ̄2

)(
2|sn+1 − sn|

sn+1
)(‖xn − p‖+ ‖xn+1 − p‖)

+
2

1 + αn+1γ̄1 + βn+1γ̄2

|εn+1 − εn|‖tn‖+
2M

1 + αn+1γ̄1 + βn+1γ̄2

|αn − αn+1|

+
2N

1 + αn+1γ̄1 + βn+1γ̄2

|βn − βn+1|.

Lemma 6 and (C1)-(C2) implies

lim
n→∞

‖xn+1 − xn‖ = 0. (9)

And similarly, we have
lim
n→∞

‖xn+2 − xn+1‖ = 0. (10)

Also by (8), (9),(10) and (C3) we have limn→∞ ‖tn+1 − tn‖ = 0.
In order to prove P2, one can write

‖xn − tn‖ ≤ ‖xn+1 − xn‖
+‖αnγf(xn) + βnDxn + ((1− εn)I − βnD − αnB)tn − tn‖

≤ ‖xn − xn+1‖+ αn‖γf(xn)−Btn‖+ βnγ̄2‖xn − tn‖+ εn‖tn‖.
Then

(1− βnγ̄2)‖xn − tn‖ ≤ ‖xn − xn+1‖+ αn‖γf(xn)−Btn‖+ εn‖tn‖.
By (C1) and (9), we obtain

lim
n→∞

‖xn − tn‖ = 0. (11)

In order to prove P3, set K := {w ∈ C : ‖w−p‖ ≤ ‖x0−p‖+ 1
γ̄1−γα

(‖γf(p)−Bp‖+
‖p‖)}. Then K is a nonempty bounded closed convex subset of C which is T (s)-
invariant for each s ∈ [0,+∞) and contains {xn}. So, without loss of generality,
we may assume that S := {T (s) : s ∈ [0,+∞)} is a nonexpansive semigroup on K.

‖T (s)xn − xn‖ = ‖T (s)xn − T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds

+T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds

− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds+

1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

≤ ‖T (s)xn − T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖
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+‖T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

≤ ‖xn −
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+‖T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

+‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

= 2‖ 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− xn‖

+‖T (s)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds− 1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds‖

Since xn+xn+1
2 ∈ C, from (11) and Lemma 5, we obtain limn→∞ ‖T (s)xn−xn‖ = 0.

Therefore

‖T (s)tn − tn‖ ≤ ‖T (s)tn − T (s)xn‖+ ‖T (s)xn − xn‖+ ‖xn − tn‖
≤ ‖tn − xn‖+ ‖T (s)xn − xn‖+ ‖xn − tn‖.

Then we have limn→∞ ‖T (s)tn − tn‖ = 0.

4. Convergence algorithm

Theorem 12. The Algorithm (5) converges strongly z ∈ Fix(S), which is a unique
solution of the variational inequality 〈(γf −B)z, y − z〉 ≤ 0, for all y ∈ Fix(S).

Proof. Let q = PFix(S). We get

‖q(I −B + γf)(x)− q(I −B + γf)(y)‖ ≤ ‖(I −B + γf)(x)− (I −B + γf)(y)‖
≤ ‖I −B‖‖x− y‖+ γ‖f(x)− f(y)‖
≤ (1− γ̄1)‖x− y‖+ γα‖x− y‖
= (1− (γ̄1 − γα))‖x− y‖.

Then q(I − B + γf) is a contraction mapping from H into itself. Therefore by
Banach contraction principle, there exists z ∈ H such that z = q(I − B + γf)z =
PFix(S)(I −B + γf)z.
We show that 〈(γf − B)z, xn − z〉 ≤ 0. To show this inequality, we choose a
subsequence {tni} of {tn} such that

lim sup
n→∞

〈(γf −B)z, tn − z〉 = lim
i→∞
〈(γf −B)z, tni − z〉. (12)

Since {tni} is bounded, there exists a subsequence {tnij } of {tni} ⊆ K which
converges weakly to some w ∈ C. Without loss of generality, we can assume that
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tni ⇀ w. Now, we prove that w ∈ Fix(S). Assume that w /∈ Fix(S). Since
tni ⇀ w and T (s)w 6= w, from Opial’s conditions (4) and Lemma 10 (P3), we have

lim inf
i→∞

‖tni − w‖ < lim inf
i→∞

‖tni − T (s)w‖

≤ lim inf
i→∞

(‖tni − T (s)tni‖+ ‖T (s)tni − T (s)w‖)

≤ lim inf
i→∞

‖tni − w‖,

which is a contradiction. Thus, we obtain w ∈ Fix(S). Now from (1), we have

lim sup
n→∞

〈(γf −B)z, xn − z〉 = lim sup
n→∞

〈(γf −B)z, tn − z〉

≤ lim sup
i→∞

〈(γf −B)z, tni − z〉 (13)

= 〈(γf −B)z, w − z〉 ≤ 0.

Now we prove that xn is strongly convergence to z.

‖xn+1 − z‖2 = αn〈γf(xn)−Bz, xn+1 − z〉+ βn〈Dxn −Dz, xn+1 − z〉
−εn〈z, xn+1 − z〉+ 〈((1− εn)I − βnD − αnB)(tn − z), xn+1 − z〉

≤ αn(γ〈f(xn)− f(z), xn+1 − z〉+ 〈γf(z)−Bz, xn+1 − z〉)
+βn‖D‖‖xn − z‖‖xn+1 − z‖ − εn‖z‖‖xn+1 − z‖
+‖(1− εn)I − βnD − αnB‖‖tn − z‖‖xn+1 − z‖

≤ αnαγ‖xn − z‖‖xn+1 − z‖+ αn〈γf(z)−Bz, xn+1 − z〉
+βnγ̄2‖xn − z‖‖xn+1 − z‖ − εn‖z‖‖xn+1 − z‖

+(1− βnγ̄2 − αnγ̄1)‖xn + xn+1

2
− z‖‖xn+1 − z‖

≤ αnαγ‖xn − z‖‖xn+1 − z‖+ αn〈γf(z)−Bz, xn+1 − z〉
+βnγ̄2‖xn − z‖‖xn+1 − z‖ − εn‖z‖‖xn+1 − z‖

+
1− βnγ̄2 − αnγ̄1

2
(‖xn − z‖+ ‖xn+1 − z‖)‖xn+1 − z‖

=
1 + βnγ̄2 − αn(γ̄1 − 2αγ)

2
‖xn − z‖‖xn+1 − z‖+ αn〈γf(z)−Bz, xn+1 − z〉

−εn‖z‖‖xn+1 − z‖+
1− βnγ̄2 − αnγ̄1

2
‖xn+1 − z‖2

≤ 1 + βnγ̄2 − αn(γ̄1 − 2αγ)

4
(‖xn − z‖2 + ‖xn+1 − z‖2)

+αn〈γf(z)−Bz, xn+1 − z〉 − εn‖z‖‖xn+1 − z‖

+
1− βnγ̄2 − αnγ̄1

2
‖xn+1 − z‖2

≤ 1 + βnγ̄2 − αn(γ̄1 − 2αγ)

4
‖xn − z‖2
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+
3− βnγ̄2 − αn(3γ̄1 − 2αγ)

4
‖xn+1 − z‖2

+αn〈γf(z)−Bz, xn+1 − z〉 − εn‖z‖‖xn+1 − z‖

≤ 1 + βnγ̄2 − αn(γ̄1 − 2αγ)

4
‖xn − z‖2 +

3

4
‖xn+1 − z‖2

+αn〈γf(z)−Bz, xn+1 − z〉 − εn‖z‖‖xn+1 − z‖.
This implies that

4‖xn+1 − z‖2 ≤ (1 + βnγ̄2 − αn(γ̄1 − 2αγ))‖xn − z‖2 + 3‖xn+1 − z‖2

+4αn〈γf(z)−Bz, xn+1 − z〉+ 4εn‖z‖‖xn+1 − z‖.
Then

‖xn+1 − z‖2 ≤ (1− (αn(γ̄1 − 2αγ)− βnγ̄2))‖xn − z‖2

+4αn〈γf(z)−Bz, xn+1 − z〉+ 4εn‖z‖‖xn+1 − z‖
= (1− kn)‖xn − z‖2 + 4αnln, (14)

where kn = αn(γ̄1−2αγ) +βnγ̄2 and ln = 〈γf(z)−Bz, xn+1− z〉−‖z‖‖xn+1− z‖.
Since limn→∞ αn = limn→∞ βn = 0 and Σ∞n=0αn = Σ∞n=0βn = ∞, it is easy to see
that limn→∞ kn = 0, Σ∞n=0kn = ∞ and lim supn→∞ ln ≤ 0. Hence, from (13) and
(14) and Lemma 6, we deduce that xn → z, where z = PFix(S)(I −B + γf)z. �

5. Numerical examples

In this section, we give some examples and numerical results for supporting our
main theorem. All the numerical results have been produced in Matlab 2017 on a
Linux workstation with a 3.8 GHZ Intel annex processor and 8 Gb of memory

Example 13. Consider a Fredholm integral equation of the following form

x(t) = g(t) +

∫ t

0

F (t, k, x(k)) dk, t ∈ [0, 1], (15)

where g is a continuous function on [0, 1] and F : [0, 1]×[0, 1]×R→ R is continuous.
Note that if F satisfies the Lipschitz continuity condition, i.e.,

|F (t, k, x)− F (t, k, y)| ≤ |x− y|, ∀t, k ∈ [0, 1], x, y ∈ R,
then equation (15) has at least one solution in L2[0, 1] (see [13]).
Define a mapping T (s) : L2[0, 1]→ L2[0, 1] by

(T (s)x)(t) = e−3s(g(t) +

∫ t

0

F (t, k, x(k)) dk), t ∈ [0, 1].

It is easy to observe that S = {T (s) : s ∈ [0,+∞)} is a nonexpansive semigroup.
In fact, we have, for x, y ∈ L2[0, 1],

‖T (s)x− T (s)y‖2 =

∫ 1

0

|(T (s)x)(t)− (T (s)y)(t)|2 dt
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=

∫ 1

0

|e−3s

∫ 1

0

(F (t, k, x(k))− F (t, k, y(k))) dk|2 dt

≤
∫ 1

0

(

∫ 1

0

|x(k)− y(k)|2 dk) dt

=

∫ 1

0

|x(k)− y(k)|2 dk

= ‖x− y‖2.

This means that to find the solution of integral equation (15) is reduced to find a
fixed point of the nonexpansive semigroup S in L2[0, 1]. For any given function
x0 ∈ L2[0, 1], define a sequence of functions xn in L2[0, 1] by

xn+1 = αnγf(xn) + βnDxn + ((1− εn)I − βnD−αnB)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds

satisfying the conditions of Algorithm 7. Then the sequence {xn} converges strongly
in L2[0, 1] to the solution of integral equation (15) which is also a solution of the
following variational inequality

〈(γf −B)z, y − z〉 ≤ 0, ∀y ∈ Fix(S).

Example 14. Let H = R, the set of all real numbers, with the inner product
defined by 〈x, y〉 = xy, ∀x, y ∈ R, and induced usual norm | . |. Let C = [−1, 3];
Let f(x) = 1

9x, B(x) = 1
4x, D(x) = x and let, for each x ∈ C, T (s)x = 1

1+2sx.
Then there exists a unique sequence {xn} ⊂ R generated by the iterative scheme

xn+1 = (
1

9
√
n

+
1

2n
)xn (16)

+((1− 1

(n+ 1)2
)I − 1

2n
D − 1√

n
B)

1

sn

∫ sn

0

1

1 + 2s
(
xn + xn+1

2
)ds

where αn = 1√
n
, βn = 1

2n , εn = 1
(n+1)2 and sn = n. Then {xn} converges to

{0} ∈ Fix(S). f is contraction mapping with constant α = 1
6 and B,D are strongly

positive bounded linear operators with constant γ̄1 = 1
5 on C. Therefore, we can

choose γ = 1 which satisfies 0 < γ < γ̄
α < γ+ 1

α . Furthermore, it is easy to observe
that Fix(S) = {0} 6= ∅. After simplification, scheme (16) reduce to

xn+1 =

1
9
√
n

+ 1
2n + 1

4n (1− 1
(n+1)2 −

1
2n −

1
4
√
n

) ln(1 + 2n)

1− 1
4n (1− 1

(n+1)2 −
1

2n −
1

4
√
n

) ln(1 + 2n)
xn.

Following the proof of Theorem 12, we obtain that {xn} converges strongly to w =
{0} ∈ Fix(S).
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Let H = R, the set of all real numbers, with the inner product defined by 〈x, y〉 =
xy, ∀x, y ∈ R, and induced usual norm | . |. Let C = [0, 4]; Let f(x) = 1

10 (x −
3), B(x) = 1

3x, D(x) = 1
2x and let, for each x ∈ C, T (s)x = e−2sx. Then there

exists a unique sequence {xn} ⊂ R generated by the iterative scheme

xn+1 =
3

20n+ 5
(xn − 3) +

1

2
√
n+ 2

xn (17)

+((1− 1

n2
)I − 1√

n+ 2
D − 3

4n+ 1
B)

1

sn

∫ sn

0

e−2s(
xn + xn+1

2
)ds

where αn = 3
4n+1 , βn = 1√

n+2
, εn = 1

n2 and sn = 2n. Then {xn} converges to
{0} ∈ Fix(S). f is contraction mapping with constant α = 1

9 and B,D are strongly
positive bounded linear operators with constant γ̄1 = 1

4 on C. Therefore, we can
choose γ = 2 which satisfies 0 < γ < γ̄

α < γ+ 1
α . Furthermore, it is easy to observe

that Fix(S) = {0} 6= ∅. After simplification, scheme (17) reduce to

xn+1 =
( 3

20n+5 + 1
2
√
n+2
− 1

8n (e−4n − 1)(1− 1
n2 −

1
2
√
n+2
− 1

4n+1 ))xn − 9
20n+5

1 + 1
8n (e−4n − 1)(1− 1

n2 −
1

2
√
n+2
− 1

4n+1 )
.

Following the proof of Theorem 12, we obtain that {xn} converges strongly to w =
{0} ∈ Fix(S).
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6. Conculsion

In this paper, we present a viscosity nonlinear midpoint algorithm for solving
equilibrium problems in real Hilbert spaces. The methods propose a theoretical
generalization of some existing results in the literature and primary numerical ex-
periments also demonstrate the potential applicability of these methods. We es-
tablish the algorithm’s strong convergence under mild and standard assumptions.
This work open the doors for many promising research directions such as obtaining
error bound and convergence rate of our algorithms as well as extensions to Banach
spaces.
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ON GENERALIZED CHEEGER-GROMOLL METRIC AND
HARMONICITY
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Abstract. In this paper, we introduce the Generalized Cheeger-Gromoll met-
ric on the tangent bundle TM , as a natural metric on TM . We establish a
necessary and suffi cient conditions under which a vector field is harmonic with
respect to the Generalized Cheeger-Gromoll metric. We also construct some
examples of harmonic vector fields.

1. Introduction

Consider a smooth map φ : (Mm, g)→ (Nn, h) between two Riemannian mani-
folds, then the energy functional is defined by

E(φ) =

∫
K

e(φ)dvg (1)

or over any compact subset K ⊂M .

e(φ) =
1

2
traceg(φ

∗h) =
1

2
tracegh(dφ, dφ) (2)

is the energy density of φ.
A map is called harmonic if it is a critical point of the energy functional. For

any smooth variation {φt}t∈I of φ with φ0 = φ and V =
d

dt
φt

∣∣∣
t=0
, we have

d

dt
E(φt)

∣∣∣
t=0

= −
∫
K

h(τ(φ), V )dvg (3)

where
τ(φ) = traceg∇dφ (4)

is the tension field of φ. Then φ is harmonic if and only if τ(φ) = 0.
One can refer to [14], [15], [22] for background on harmonic maps and [9], [12]

for background on generalized harmonic maps.
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The geometry of the tangent bundle TM equipped with the Sasaki metric has
been studied by many authors such as Sasaki [25], K.Yano and S. Ishihara [27],
P.Dombrowski [13], A. Salimov, A. Gezer and N. Cengiz [26],[23], etc.... The rigid-
ity of Sasaki metric has incited some geometers to construct and study other metrics
on TM . J. Cheeger and D. Gromoll has introduced the notion of Cheeger-Gromoll
metric [5], this metric has been studied also by many authors (see [1], [2], [16], [17],
[24], [26]).

The existence and explicit construction of harmonic mappings between two given
Riemannian manifolds (M, g) and (N,h) are two of the most fundamental prob-
lems of the theory of harmonic mappings. If M is compact N has non positive
sectional curvature, then any smooth map from M to N can be deformed into a
harmonic map using the heat flow method [Eells and Sampson 1964]. However,
there is no general existence theory of harmonic mappings if the target manifold
does not satisfy the non positive curvature condition. This fact makes it interesting
to find harmonic maps defined by vector fields as a maps from Riemannian manifold
(M, g) to its tangent bundle TM .

The main idea in this note consists in the modification of the Sasaki metric. First
we introduce a natural metric called Generalized Cheeger-Gromoll metric on the
tangent bundle TM , originally defined by M. Anastasiei [2]. Afterward we establish
necessary and suffi cient conditions under which a vector field is harmonic with
respect to the Generalized Cheeger-Gromoll metric (Theorem 10 and Theorem 11).
We also construct some examples of harmonic vector fields and we give a formula for
the construction of non trivial examples of vector fields (Theorem 16 and Corollary
17 ). After that we study the harmonicity of the map σ : (M, g) −→ (TN, h̃)
(Theorem 21, Theorem 22 ) and the map φ : (TM, g̃) −→ (N,h) (Theorem 24,
Theorem 25).

1.1. Basic Notion and Definition on TM . Let (M, g) be anm-dimensional Rie-
mannian manifold and (TM, π,M) be its tangent bundle. A local chart (U, xi)i=1,m
on M induces a local chart (π−1(U), xi, yi)i=1,m on TM . Denote by Γkij the
Christoffel symbols of g and by ∇ the Levi-Civita connection of g.
We have two complementary distributions on TM , the vertical distribution V

and the horizontal distribution H, defined by:

V(x,u) = ker(dπ(x,u)) = {ai ∂
∂yi
|(x,u); ai ∈ R},

H(x,u) = {ai ∂
∂xi
|(x,u) − aiujΓkij

∂

∂yk
|(x,u); ai ∈ R},
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where (x, u) ∈ TM ,such that T(x,u)TM = H(x,u) ⊕ V(x,u). Let X = Xi ∂

∂xi
be a

local vector field on M . The vertical and the horizontal lifts of X are defined by:

XV = Xi ∂

∂yi
(5)

XH = Xi δ

δxi
= Xi{ ∂

∂xi
− yjΓkij

∂

∂yk
} (6)

For consequences, we have (
∂

∂xi
)H =

δ

δxi
and (

∂

∂xi
)V =

∂

∂yi
, then (

δ

δxi
,
∂

∂yi
)i=1,m

is a local adapted frame on TTM .

If w = wi
∂

∂xi
+ wj

∂

∂yj
∈ T(x,u)TM , then its horizontal and vertical parts are

defined by

wh = wi
∂

∂xi
− wiujΓkij

∂

∂yk
∈ H(x,u)

wv = {wj + wiujΓkij}
∂

∂yk
∈ V(x,u)

Proposition 1. [27]Let (M, g) be a Riemannian manifold and R its tensor curva-
ture, then for all vector fields X,Y ∈ Γ(TM) and p = (x, u) ∈ TM we have:

(1) [XH , Y H ]p = [X,Y ]Hp − (Rx(X,Y )u)V ,

(2) [XH , Y V ]p = (∇XY )Vp ,

(3) [XV , Y V ]p = 0.

2. Generalized Cheeger-Gromoll metric

2.1. Generalized Cheeger-Gromoll metric.

Definition 2. Let (M, g) be a Riemannian manifold and α, β : R+ → R+, α 6= 0
are smooth functions. On the tangent bundle TM , we define a Generalized Cheeger-
Gromoll metric noted g̃ by:

(1) g̃(XH , Y H)p = gx(X,Y ),
(2) g̃(XH , Y V )p = 0,
(3) g̃(XV , Y V )p = α(r)g(X,Y ) + β(r)g(X,u)g(Y, u),
where X,Y ∈ Γ(TM), p = (x, u) ∈ TM and r = g(u, u).

For more details see [2].

Remark 3. 1) If α = 1 and β = 0, then g̃ is the Sasaki metric [25],

2) If α = β =
1

r + 1
, then g̃ is the Cheeger-Gromoll metric [5], [17].

Lemma 4. [1], [16]Let (M, g) be a Riemannian manifold and f : R→ R a smooth
function. For all X,Y ∈ Γ(TM), p = (x, u) ∈ TM , u = ui ∂

∂xi ∈ TxM and
r = g(u, u), we have:
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(1) XH(f(r))p = 0,
(2) XV (f(r))p = 2f ′(r)g(X,u)x
(3) XH(g(Y, u))p = g(∇XY, u)x,
(4) XV (g(Y, u))p = g(X,Y )x.

Proof. Locally, the statement is a direct consequence of formulas (??) and (5). �

Lemma 5. Let (M, g) be a Riemannian manifold and (TM, g̃) its tangent bundle
equipped with the Generalized Cheeger-Gromoll metric, we have:

1) XH g̃(Y V , ZV ) = g̃((∇XY )V , ZV ) + g̃(Y V , (∇XZ)V ),

2) XV g̃(Y V , ZV ) = 2α′g(X,u)g(Y,Z) + 2β′g(X,u)g(Y, u)g(Z, u)

+β[g(Z, u)g(X,Y ) + g(Y, u)g(X,Z)].

for all X,Y, Z ∈ Γ(TM).

Proof. Using Lemma 4, we obtain:

1)XH g̃(Y V , ZV ) = XH
[
αg(X,Y ) + βg(X,u)g(Y, u)

]
= αXHg(Y,Z) + βXH(g(Y, u)g(Z, u))]

= α[g(∇XY, Z) + g(Y,∇XZ)]

+β[g(∇XY, u)g(Z, u) + g(Y, u)g(∇XZ, u)]

= g̃((∇XY )V , ZV ) + g̃(Y V , (∇XZ)V ).

2)XV g̃(Y V , ZV ) = XV
[
αg(X,Y ) + βg(X,u)g(Y, u))

]
= XV (α)g(Y,Z) +XV (β)g(Y, u)g(Z, u) + βXV (g(Y, u)g(Z, u))

= 2α′g(X,u)g(Y, Z) + 2β′g(X,u)g(Y, u)g(Z, u)

+βg(Z, u)g(X,Y ) + βg(Y, u)g(X,Z).

�

2.2. Levi-Civita connection of the Generalized Cheeger-Gromoll metric.

Lemma 6. Let (M, g) be a Riemannian manifold and (TM, g̃) its tangent bundle
equipped with the Generalized Cheeger-Gromoll metric. If ∇ (resp. ∇̃) denote the
Levi-Civita connection of (M, g) (resp. (TM, g̃), then we have:

1) g̃(∇̃XHY H , ZH) = g̃((∇XY )H , ZH),

2) g̃(∇̃XHY H , ZV ) =− 1

2
g̃((R(X,Y )u)V , ZV ),

3) g̃(∇̃XHY V , ZH) =
α(r)

2
g̃((R(u, Y )X)H , ZH),

4) g̃(∇̃XHY V , ZV ) = g̃((∇XY )V , ZV ),

5) g̃(∇̃XV Y H , ZH) =
α(r)

2
g̃((R(u,X)Y )H , ZH),
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6) g̃(∇̃XV Y H , ZV ) = 0,

7) g̃(∇̃XV Y V , ZH) = 0,

8) g̃(∇̃XV Y V , ZV ) = g̃
(α′
α

[
g(X,u)Y V + g(Y, u)XV

]
+
[ β − α′
α+ rβ

g(X,Y ) +
αβ′ − 2α′β

α(α+ rβ)
g(X,u)g(Y, u)

]
UV , ZV

)
.

for all X,Y, U ∈ Γ(TM), Ux = u = ui ∂
∂xi ∈ TxM and (x, u) ∈ TM .

Proof. Using Lemma 4, Lemma 5 and Kozul formula, we obtain:

1) 2g̃(∇̃XHY H , ZH) =XH g̃(Y H , ZH) + Y H g̃(ZH , XH)− ZH g̃(XH , Y H)

+ g̃(ZH , [XH , Y H ]) + g̃(Y H , [ZH , XH ])− g̃(XH , [Y H , ZH ])

=Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g(Z, [X,Y ])

+ g(Y, [Z,X])− g(X, [Y, Z])

=2g(∇XY.Z)

=2g̃((∇XY )H , ZH).

2) 2g̃(∇̃XHY H , ZV ) =XH g̃(Y H , ZV ) + Y H g̃(ZV , XH)− ZV g̃(XH , Y H)

+ g̃(ZV , [XH , Y H ]) + g̃(Y H , [ZV , XH ])− g̃(XH , [Y H , ZV ])

=g̃(ZV , [XH , Y H ])

=− g̃((R(X,Y )u)V , ZV ).

3) 2g̃(∇̃XHY V , ZH) =XH g̃(Y V , ZH) + Y V g̃(ZH , XH)− ZH g̃(XH , Y V )

+ g̃(ZH , [XH , Y V ]) + g̃(Y V , [ZH , XH ])− g̃(XH , [Y V , ZH ])

=− g̃((R(Z,X)u)V , Y V )

=− αg(R(Z,X)u, Y )− βg(Y, u)g(R(Z,X)u, u)]

=αg(R(u, Y )X,Z)

=αg̃((R(u, Y )X)H , ZH).

4) 2g̃(∇̃XHY V , ZV ) =XH g̃(Y V , ZV ) + Y V g̃(ZV , XH)− ZV g̃(XH , Y V )

+ g̃(ZV , [XH , Y V ]) + g̃(Y V , [ZV , XH ])− g̃(XH , [Y V , ZV ])

=XH g̃(Y V , ZV ) + g̃(ZV , [XH , Y V ]) + g̃(Y V , [ZV , XH ])

=g̃((∇XY )V , ZV ) + g̃(Y V , (∇XZ)V )

+ g̃(ZV , (∇XY )V )− g̃(Y V , (∇XZ)V )

=2g̃((∇XY )V , ZV ).
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The other formulas are obtained by a similar calculation. �

Theorem 7. [16], [21]Let (M, g) be a Riemannian manifold and (TM, g̃) its tangent
bundle equipped with the Generalized Cheeger-Gromoll metric. If ∇ (resp. ∇̃)
denote the Levi-Civita connection of (M, g) (resp. (TM, g̃)), then we have:

1) (∇̃XHY H)p = (∇XY )Hp −
1

2
(Rx(X,Y )u)V ,

2) (∇̃XHY V )p = (∇XY )Vp +
α

2
(Rx(u, Y )X)H ,

3) (∇̃XV Y H)p =
α

2
(Rx(u,X)Y )H ,

4) (∇̃XV Y V )p =
α′

α

[
gx(X,u)Y Vp + gx(Y, u)XV

p

]
+
[ β − α′
α+ rβ

gx(X,Y ) +
αβ′ − 2α′β

α(α+ rβ)
gx(X,u)gx(Y, u)

]
UVp .

for all X,Y, U ∈ Γ(TM), Ux = u = ui ∂
∂xi ∈ TxM and p = (x, u) ∈ TM . where R

denote the curvature tensor of (M, g).

Proof. The statement is a direct consequence of Lemma 6. �

3. Generalized Cheeger-Gromoll metric and Harmonicity

3.1. Harmonicity of a vector field X : (M, g) −→ (TM, g̃).

Lemma 8. Let (M, g) be a Riemannian manifold. If X,Y ∈ Γ(TM) are vector
fields on M and (x, u) ∈ TM such that Yx = u, then we have:

dxY (Xx) = XH
(x,u) + (∇XY )V(x,u).

Proof. Let (U, xi) be a local chart on M in x ∈ M and π(−1)(U), xi, yj) be the
induced chart on TM , if Xx = Xi(x) ∂

∂xi |x and Yx = Y i(x) ∂
∂xi |x = u, then

dxY (Xx) = Xi(x)
∂

∂xi
|(x,u) +Xi(x)

∂Y k

∂xi
(x)

∂

∂yk
|(x,u),

thus the horizontal part is given by:

(dxY (Xx))h = Xi(x)
∂

∂xi
|(x,u) −Xi(x)Y j(x)Γkij(x)

∂

∂yk
|(x,u)

= XH
(x,u),

and the vertical part is given by:

(dxY (Xx))v = {Xj(x)
∂Y k

∂xi
(x) +Xi(x)Y j(x)Γkij(x)} ∂

∂yk
|(x,u)

= (∇XY )V(x,u).

�



ON GENERALIZED CHEEGER-GROMOLL METRIC AND HARMONICITY 635

Lemma 9. Let (Mm, g) be a Riemannian m-dimensional manifold and (TM, g̃)
its tangent bundle equipped with the Generalized Cheeger-Gromoll metric. If X ∈
Γ(TM), then the energy density associated to X is given by:

e(X) =
m

2
+

1

2
traceg

[
αg(∇X,∇X) + βg(∇X,u)2

]
.

Proof. Let X ∈ Γ(TM) and (E1, · · · , Em) be a local orthonormal frame on M ,
then:

e(X) =
1

2

m∑
i=1

g̃(dX(Ei), dX(Ei))

Using Lemma 8, we obtain:

e(X) =
1

2

m∑
i=1

g̃(EHi + (∇EiX)V , EHi + (∇EiX)V )

=
1

2

m∑
i=1

[
g̃(EHi , E

H
i ) + g̃((∇EiX)V , (∇EiX)V ))

]
=

1

2

m∑
i=1

[
g(Ei, Ei) + αg(∇EiX,∇EiX) + βg(∇EiX,u)2

]
=

m

2
+

1

2
traceg

[
αg(∇X,∇X) + βg(∇X,u)2

]
.

�

Theorem 10. Let (Mm, g) be a Riemannian m-dimensional manifold and (TM, g̃)
its tangent bundle equipped with the Generalized Cheeger-Gromoll metric. If X ∈
Γ(TM), then the tension field associated to X is given by:

τ(X) =
[
traceg(αR(X,∇X)∗)

]H
+
[
tracegA(X)

]V
.

where A(X) is a bilinear map defined by:

A(X) = ∇2X +
2α′

α
g(∇X,X)∇X +

[ β − α′
α+ ‖X‖2β g(∇X,∇X)

+
αβ′ − 2α′β

α(α+ ‖X‖2β)
g(∇X,X)2

]
X,

and ‖X‖2 = g(X,X).

Proof. Let x ∈ M and {Ei}i=1,m be a local orthonormal frame on M such that
(∇MEiEi)x = 0 and Xx = u, then:

τ(X)x =

m∑
i=1

{∇XEidX(Ei)− dX(∇MEiEi)}x
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=

m∑
i=1

{∇̃dX(Ei)dX(Ei)}(x,u)

=

m∑
i=1

{∇̃[EHi +(∇EiX)V ][E
H
i + (∇EiX)V ]}(x,u)

=

m∑
i=1

{∇̃EHi E
H
i + ∇̃EHi (∇EiX)V + ∇̃(∇EiX)V (Ei)

H + ∇̃(∇EiX)V (∇EiX)V }(x,u),

Using Theorem 7, we obtain:

τ(X) =

m∑
i=1

[
(∇EiEi)H −

1

2
(R(Ei, Ei)X)V + (∇Ei∇EiX)V +

α

2
(R(X,∇EiX)Ei)

H

+
α

2
(R(X,∇EiX)Ei)

H +
α′

α

[
g(∇EiX,X)(∇EiX)V + g(∇EiX,X)(∇EiX)V

]
+
[ β − α′
α+ ‖X‖2β g(∇EiX,∇EiX) +

αβ′ − 2α′β

α(α+ ‖X‖2β)
g(∇EiX,X)g(∇EiX,X)

]
XV

]
=

m∑
i=1

[
α(R(X,∇EiX)Ei)

H + (∇Ei∇EiX)V +
2α′

α
g(∇EiX,X)(∇EiX)V

+
[ β − α′
α+ ‖X‖2β g(∇EiX,∇EiX) +

αβ′ − 2α′β

α(α+ ‖X‖2β)
g(∇EiX,X)2

]
XV

]
=

[
traceg

(
αR(X,∇X) ∗

)]H
+

[
traceg

(
∇2X +

2α′

α
g(∇X,X)∇X

+
[ β − α′
α+ ‖X‖2β g(∇X,∇X) +

αβ′ − 2α′β

α(α+ ‖X‖2β)
g(∇X,X)2

]
X
)]V

.

�

Theorem 11. Let (Mm, g) be a Riemannian m-dimensional manifold and (TM, g̃)
its tangent bundle equipped with the Generalized Cheeger-Gromoll metric. If X ∈
Γ(TM), then X is harmonic if and only the following conditions are verified

traceg

(
R(X,∇X) ∗

)
= 0

and

traceg

(
∇2X +

2α′

α
g(∇X,X)∇X

+
[ β − α′
α+ ‖X‖2β g(∇X,∇X) +

αβ′ − 2α′β

α(α+ ‖X‖2β)
g(∇X,X)2

]
X
)

= 0 (7)

Proof. The statement is a direct consequence of Theorem 10. �
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Corollary 12. Let (Mm, g) be a Riemannian m-dimensional manifold and (TM, g̃)
its tangent bundle equipped with the Generalized Cheeger-Gromoll metric. If X ∈
Γ(TM) is a parallel (i.e ∇X = 0), then X is harmonic.

Theorem 13. Let (Mm, g) be a Riemannian compact m-dimensional manifold and
(TM, g̃) its tangent bundle equipped with the Generalized Cheeger-Gromoll metric.
If X ∈ Γ(TM), then X is harmonic if and only if X is parallel (i.e ∇X = 0).

Proof. If X is parallel from Corollary 12, we deduce that X is harmonic vector
field.
Inversely, let ϕt be a compactly supported variation of X defined by:

ϕ : R×M −→ TxM

(t, x) 7−→ ϕ(t, x) = ϕt(x) = (t+ 1)Xx

From Lemma 9 we have:

e(ϕt) =
m

2
+

(t+ 1)2

2
traceg

[
αg(∇X,∇X) + βg(∇X,X)2

]
E(ϕt) =

m

2
V ol(M) +

(t+ 1)2

2

∫
M

traceg
[
αg(∇X,∇X) + βg(∇X,X)2

]
dvg

If X is a critical point of the energy functional, then we have :

0 =
∂

∂t
E(ϕt)|t=0

=
∂

∂t

[m
2
V ol(M) +

(t+ 1)2

2

∫
M

traceg
[
αg(∇X,∇X) + βg(∇X,X)2

]
dvg

]
t=0

=

∫
M

traceg
[
αg(∇X,∇X) + βg(∇X,X)2

]
dvg

then g(∇X,∇X) + g(∇X,X)2 = 0,
hence ∇X = 0. �

Example 14. Let Rn equipped with the canonical metric (flat manifold and non
compact) and the vector field :

X : Rn −→ TRn ,

x = (x1, · · · , xn) 7−→ Xx = (X1
x, · · · , Xn

x )

we have:

τ(X) =

n∑
i=1

(
∂2X1

∂x2i
, ...,

∂2Xn

∂x2i
)

1) If X is constant, then X is harmonic.
2) If Xi = aixi and ai 6= 0, then X is harmonic (τ(X) = 0) but

∇X =
∑
i

ai
∂

∂xi
⊗ dxi 6= 0.
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indeed

∇X(∂xj) = ∇∂xjX =
∑
i

ai∇∂xj (xi
∂

∂xi
) =

∑
i

aiδij
∂

∂xi
= aj

∂

∂xj
.

Example 15. Let S1 equipped with the metric:

gS1 =
4

(1 + x2)2
dx2

as S1 is compact then. The vector field X = a(x) ∂
∂x , a ∈ C

∞(S1) is harmonic if
and only if X is parallel, i.e

∇X = 0 ⇔ ∇ ∂
∂x
a
∂

∂x
= 0

⇔ ∂a

∂x
+ aΓ = 0

⇔ ∂a

∂x
− 2x

1 + x2
a = 0

⇔ a(x) = k(1 + x2) , k ∈ R

⇔ X = k(1 + x2)
∂

∂x
, k ∈ R

Theorem 16. Let (Rm, g0) the real euclidean space and (TRm, g̃0) its tangent bun-
dle equipped with the Generalized Cheeger-Gromoll metric. If X = (X1, · · · , Xm) ∈
Γ(TRm), then X is harmonic if and only if X verifies the following system of equa-
tions
m∑
i=1

∂2Xk

∂(xi)2
+

m∑
i,j=1

(2α′

α
Xj ∂X

j

∂xi
∂Xk

∂xi
+

β − α′
α+ ‖X‖2βX

k
(∂Xj

∂xi
)2)

+
αβ′ − 2α′β

α(α+ ‖X‖2β)
Xk

m∑
i=1

( m∑
j=1

Xj ∂X
j

∂xi

)2
= 0. (8)

for all k = 1,m.

Proof. Let { ∂
∂xi }i=1,m be a canonical frame on Rm. Using Theorem 11, we have:

τ(X) = 0 equivalent the following equations (??) and (??) are verified.
As Rm is flat, then the equation (??) is obvious.
Hence,

τ(X) = 0⇔ (??)

⇔ traceg

[
∇2X +

2α′

α
g(∇X,X)∇X

+
[ β − α′
α+ ‖X‖2β g(∇X,∇X) +

αβ′ − 2α′β

α(α+ ‖X‖2β)
g(∇X,X)2

]
X
]

= 0
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m∑
i=1

[
∇ ∂

∂xi
∇ ∂

∂xi
X +

2α′

α
g(∇ ∂

∂xi
X,X)(∇ ∂

∂xi
X)

+
[ β − α′
α+ ‖X‖2β g(∇ ∂

∂xi
X,∇ ∂

∂xi
X) +

αβ′ − 2α′β

α(α+ ‖X‖2β)
g(∇ ∂

∂xi
X,X)2

]
X
]

= 0

⇔
m∑
i=1

[ m∑
k=1

( ∂2Xk

∂(xi)2
∂

∂xk
)

+
2α′

α

m∑
j=1

(∂Xj

∂xi
Xj
) m∑
k=1

(∂Xk

∂xi
∂

∂xk
)

+
[ β − α′
α+ ‖X‖2β

m∑
j=1

(
∂Xj

∂xi
)2 +

αβ′ − 2α′β

α(α+ ‖X‖2β)

( m∑
j=1

Xj ∂X
j

∂xi
)2] k∑

i=1

(Xk ∂

∂xk
)
]

= 0

⇔
m∑
i=1

∂2Xk

∂(xi)2
+

m∑
i,j=1

(2α′

α
Xj ∂X

j

∂xi
∂Xk

∂xi
+

β − α′
α+ ‖X‖2βX

k
(∂Xj

∂xi
)2)

+
αβ′ − 2α′β

α(α+ ‖X‖2β)
Xk

m∑
i=1

( m∑
j=1

Xj ∂X
j

∂xi

)2
= 0.

for all k = 1,m. �

Corollary 17. Let (Rm, g0) the real euclidean space and (TRm, g̃0) its tangent bun-
dle equipped with the Generalized Cheeger-Gromoll metric and X = (X1, · · · , Xm) ∈
Γ(TRm). If α and β are constant functions, then X is a harmonic if and only if
for all k = 1,m:

m∑
i=1

∂2Xk

∂(xi)2
+

β

α+ ‖X‖2βX
k

m∑
i,j=1

(∂Xj

∂xi
)2

= 0.

Remark 18. Using Corollary 17, we can construct many examples of non trivial
harmonic vector fields.

Example 19. If Rn is endowed with the canonical metric and TRm its tangent
bundle equipped with the Generalized Cheeger-Gromoll metric. From corollary 17,
we deduce that:
1) If X = (y(x1), 0, · · · , 0) ∈ Γ(TRm) is a harmonic vector field if and only the
function y is solution of differential equation:

y′′ +
βy′y

α+ βy2
y′ = 0.

2) If X = (y(x1, x2), 0, · · · , 0) ∈ Γ(TRm) is a harmonic vector field if and only the
function y is the solution of the partial derivative equation:

∂2y

∂x21
+
∂2y

∂x22
+

βy

α+ βy2
(
∂y

∂x1
+

∂y

∂x2
) = 0.

where α, β ∈ R+.
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3.2. Harmonicity of the map σ : (M, g) −→ (TN, h̃).

Lemma 20. Let (Mm, g), (Nn, h) two Riemannian manifolds and f : N →]0,+∞[

a smooth function. Let (TN, h̃) the tangent bundle of N equipped with the Gener-
alized Cheeger-Gromoll metric. If

σ : (M, g) −→ (TN, h̃)

x 7−→ (ϕ(x), v)

a map, such that ϕ = πTN ◦ σ and v = Yϕ(x) ∈ Tϕ(x)N where Y ∈ Γ(TN),
πTN : TN → N is the canonical projection, then:

dσ(X) = (dϕ(X))H + (∇ϕXσ)V

for all X ∈ Γ(TM).

Proof. Using Lemma 8, we obtain:

dxσ(Xx) = dx(Y ◦ ϕ)(Xx)

= dϕ(x)Y (dϕ(Xx))

= (dϕ(X))H(ϕ(x),v) + (∇dϕ(X)Y )V(ϕ(x),v)

= (dϕ(X))H(ϕ(x),v) + (∇ϕXσ)V(ϕ(x),v)

where Yϕ(x) = v ∈ Tϕ(x)N �

Theorem 21. Let (Mm, g), (Nn, h) two Riemannian manifolds and f : N →
]0,+∞[ a smooth function. Let (TN, h̃) the tangent bundle of N equipped with the
Generalized Cheeger-Gromoll metric. The tension field of the map

σ : (M, g) −→ (TN, hf )

x 7−→ (ϕ(x), v)

such that ϕ = πTN ◦ σ, is given by:

τ(σ) =
[
τ(ϕ) + traceg(αR

N (σ,∇ϕσ)dϕ(∗))
]H

+
[
tracegA(σ)

]V
where A(σ) is a bilinear map defined by:

A(σ) = (∇ϕ)2σ +
2α′

α
h(∇ϕσ, σ)∇ϕσ

+
[ β − α′
α+ ‖σ‖2β h(∇ϕσ,∇ϕσ) +

αβ′ − 2α′β

α(α+ ‖σ‖2β)
h(∇ϕσ, σ)2

]
σ

and ‖σ‖2 = h(σ, σ) = r.

Proof. Let x ∈ M and {Ei}i=1,m be a local orthonormal frame on M such that
(∇MEiEi)x = 0 and σ(x) = Uϕ(x) = v. From the Lemma 20 and theorem 7, we
obtain:

τ(σ)x = traceg(∇dσ)x
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=

m∑
i=1

{∇̃dσ(Ei)dσ(Ei)}(ϕ(x),v)

=

m∑
i=1

{∇̃[(dϕ(Ei))H+(∇ϕEiσ)V ][(dϕ(Ei))
H + (∇ϕEiσ)V ]}(ϕ(x),v)

=

m∑
i=1

{∇̃(dϕ(Ei))H (dϕ(Ei))
H + ∇̃(dϕ(Ei))H (∇ϕEiσ)V + ∇̃(∇ϕEiσ)V (dϕ(Ei))

H

+∇̃(∇ϕEiσ)V (∇ϕEiσ)V }(ϕ(x),v)

=

m∑
i=1

[
(∇Ndϕ(Ei)dϕ(Ei))

H − 1

2
(RN (dϕ(Ei), dϕ(Ei))σ)V

+(∇Ndϕ(Ei)∇
ϕ
Ei
σ)V +

α

2
(RN (v,∇ϕEiσ)dϕ(Ei))

H

+
α

2
(RN (v,∇ϕEiσ)dϕ(Ei))

H

+
α′

α

[
h(∇ϕEiσ, v)(∇ϕEiσ)V + h(∇ϕEiσ, v)(∇ϕEiσ)V

]
+
( β − α′
α+ rβ

h(∇ϕEiσ,∇
ϕ
Ei
σ) +

αβ′ − 2α′β

α(α+ rβ)
h(∇ϕEiσ, v)2

)
UV
]
(ϕ(x),v)

After offsetting the values of r = h(σ, σ) = ‖σ‖2 and σ(x) = Uϕ(x) = v, we have:

τ(σ) =

m∑
i=1

[
(∇ϕEidϕ(Ei))

H + α(RN (σ,∇ϕEiσ)dϕ(Ei))
H

+(∇ϕEi∇
ϕ
Ei
σ)V +

2α′

α
h(∇ϕEiσ, σ)(∇ϕEiσ)V

+
( β − α′
α+ ‖σ‖2β h(∇ϕEiσ,∇

ϕ
Ei
σ) +

αβ′ − 2α′β

α(α+ ‖σ‖2β)
h(∇ϕEiσ, σ)2

)
σV
]

τ(σ) =
[
τ(ϕ) + traceg

(
αRN (σ,∇ϕσ)dϕ(∗)

)]H
+
[
traceg

[
(∇ϕ)2σ +

2α′

α
h(∇ϕσ, σ)∇ϕσ

+
( β − α′
α+ ‖σ‖2β h(∇ϕEiσ,∇

ϕ
Ei
σ) +

αβ′ − 2α′β

α(α+ ‖σ‖2β)
h(∇ϕσ, σ)2

)
σ
]]V

�

Theorem 22. Let (Mm, g), (Nn, h) two Riemannian manifolds and f : N →
]0,+∞[ a smooth function. Let (TN, hf ) the tangent bundle of N equipped with the
Generalized Cheeger-Gromoll metric. The map

σ : (M, g) −→ (TN, hf )
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x 7−→ (ϕ(x), v)

such that ϕ = πTN ◦ σ, is a harmonic if and only if the following conditions are
verified

τ(ϕ) = −traceg
(
αRN (σ,∇ϕσ)dϕ(∗)

)
and

0 = traceg
[
(∇ϕ)2σ +

2α′

α
h(∇ϕσ, σ)∇ϕσ

+
( β − α′
α+ ‖σ‖2β h(∇ϕEiσ,∇

ϕ
Ei
σ) +

αβ′ − 2α′β

α(α+ ‖σ‖2β)
h(∇ϕσ, σ)2

)
σ
]

(9)

3.3. Harmonicity of the map φ : (TM, g̃) −→ (N,h).

Lemma 23. Let (Mm, g) be a Riemannian m-dimensional manifold and (TM, g̃)
its tangent bundle equipped with the Generalized Cheeger-Gromoll metric. The
canonical projection

π : (TM, g̃) −→ (M, g)

(x, u) 7−→ x

is harmonic: i.e. τ(π) = 0.

Proof. Let (x, u) ∈ TM and {Ei}i=1,m such that E1 = u
‖u‖ is an orthonormal basis

on M in x, then

{EHi ,
1√

α+ rβ
EV1 ,

1√
α
EVj }i=1,m,j=2,m

is an orthonormal basis on TM in (x, u).

τ(π) = traceg̃∇dπ

=

m∑
i=1

{
∇πEHi dπ(EHi )− dπ(∇TMEHi E

H
i )
}

+∇π( 1√
α+rβ

EV1 )
dπ(

1√
α+ rβ

EV1 )− dπ(∇TM( 1√
α+rβ

EV1 )
(

1√
α+ rβ

EV1 ))

+

m∑
j=2

{
∇π( 1√

α
EVj )

dπ(
1√
α
EVj )− dπ(∇TM( 1√

α
EVj )

(
1√
α
EVj ))

}
as dπ(EVi ) = 0 and dπ(EHi ) = Ei ◦ π then:

τ(π) =

m∑
i=1

{
(∇MEiEi) ◦ π − dπ(∇MEiEi)

H
}

− 1√
α+ rβ

dπ
[
EV1 (

1√
α+ rβ

)EV1 +
1√

α+ rβ
∇TMEV1 E

V
1

]
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−
m∑
j=2

{ 1√
α
dπ
[
EVj (

1√
α

)EVj +
1√
α
∇TMEVj E

V
j

]}
= − 1

α+ rβ
dπ(∇TMEV1 E

V
1 )−

m∑
j=2

{ 1

α
dπ(∇TMEVj E

V
j )
}

= 0

�

Theorem 24. Let (Mm, g), (Nn, h) two Riemannian manifolds and f : M →
]0,+∞[ a smooth function. Let (TM, g̃) the tangent bundle of M equipped with the
Generalized Cheeger-Gromoll metric.
Let ϕ : (M, g) −→ (N,h) a smooth map. The tension field of the map:

φ : (TM, g̃) −→ (N,h)

(x, y) 7−→ ϕ(x)

is given by:
τ(φ) =

[
τ(ϕ)] ◦ π.

Proof. Let (x, u) ∈ TM and {Ei}i=1,m such that E1 = u
‖u‖ is an orthonormal basis

on M in x, then {EHi , 1√
α+rβ

EV1 ,
1√
α
EVj }i=1,m,j=2,m is an orthonormal basis on

TM in (x, u).
as the φ is defined by:

φ : (TM, g̃)
π−→ (M, g)

ϕ−→ (N,h)

(x, y) 7−→ x 7−→ ϕ(x)

i.e. φ = ϕ ◦ π, we have:
τ(φ) = τ(ϕ ◦ π)

= dϕ(τ(π)) + traceg̃∇dϕ(dπ, dπ)

traceg̃∇dϕ(dπ, dπ) =

m∑
i=1

{
∇ϕ
dπ(EHi )

dϕ(dπ(EHi ))− dϕ(∇Mdπ(EHi )dπ(EHi ))
}

+

m∑
j=2

{
∇ϕ
dπ( 1√

α
EVj )

dϕ(dπ(
1√
α
EVj ))− dϕ(∇Mdπ( 1√

α
EVj )

dπ(
1√
α
EVj ))

}
+∇ϕ

dπ( 1√
α+rβ

EV1 )
dϕ(dπ(

1√
α+ rβ

EV1 ))− dϕ(∇Mdπ( 1√
α+rβ

EV1 )
dπ(

1√
α+ rβ

EV1 ))

=

m∑
i=1

{
(∇ϕEidϕ(Ei)) ◦ π − dϕ(∇MEiEi) ◦ π

}
=

m∑
i=1

{
∇ϕEidϕ(Ei)− dϕ(∇MEiEi)

}
◦ π
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= τ(ϕ) ◦ π
Using Lemma 23, we obtain:

τ(φ) = τ(ϕ) ◦ π
�

Theorem 25. Let (Mm, g), (Nn, h) two Riemannian manifolds and f : M →
]0,+∞[ a smooth function. Let (TM, g̃) the tangent bundle of M equipped with the
Generalized Cheeger-Gromoll metric. The map

φ : (TM, g̃) −→ (N,h)

(x, y) 7−→ ϕ(x)

is harmonic if and only if ϕ is a harmonic.
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RESULTS ON QUASI-STATISTICAL LIMIT AND
QUASI-STATISTICAL CLUSTER POINTS

İLKNUR ÖZGÜÇ

Abstract. In this paper we introduce the concepts of quasi-statistical limit
point and quasi-statistical cluster point of a sequence. We give some inclusion
results concerning these concepts. We also give the relationship between the
Knopp core and quasi-statistical core of a sequence. Finally we state some
theorems which deal with quasi-summability and quasi-statistical convergence
of a sequence under some assumptions.

1. Introduction

The convergence of sequences has many generalizations with the aim of providing
deeper insights into summability theory. One of the most important generalizations
is statistical convergence [1], [2], [12], [14]. It is quite effective especially when
the classical limit does not exist since it is broader than ordinary convergence.
Therefore concept of convergence has been studied by many authors [6], [7], [8], [9],
[13]. It has also been used in number theory, trigonometric series and approximation
theory [15], [16]. In [10] Ganichev and Kadets have introduced the concept of quasi-
statistical filter. Then by using the filter Özgüç and Yurdakadim have defined the
quasi-statistical convergence and have studied the relationship between statistical
convergence and quasi-statistical convergence in [11]. The statistical analogues of
limit points, limit superior, limit inferior and core of a sequence have been obtained
by Fridy and Orhan [3], [4], [5].
In this study we introduce the concepts of quasi-statistical limit point and quasi-

statistical cluster point of a sequence. We give some inclusion results concerning
these concepts. We also give the relationship between the Knopp core and quasi-
statistical core of a sequence. Finally we state some theorems which deal with
quasi-summability and quasi-statistical convergence of a sequence under some as-
sumptions.
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Now let us recall the basic notations and definitions which we need throughout
the paper.
If K is a set of positive integers, |K| will denote the cardinality of K. The

natural density of K is given by

δ (K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}| ,

if it exists.
The number sequence x = (xk) is statistically convergent to L provided that for

every ε > 0 the set Kε = {k ∈ N : |xk − L| ≥ ε} has natural density zero. In this
case we write st− limx = L.
Throughout the paper we assume that c := (cn) is a sequence of positive real

numbers such that

lim
n
cn =∞ and lim sup

n

cn
n
<∞. (1)

We define the quasi-density of E ⊂ N corresponding to the sequence (cn) by

δc (E) := lim
n

1

cn
|{k ≤ n : k ∈ E}|

if it exists.
The sequence x = (xk) is called quasi-statistically convergent to L provided that

for every ε > 0 the set Eε = {k ∈ N : |xk − L| ≥ ε} has quasi-density zero. In this
case we write stq − limx = L or xk → L (stq).
The next result has been obtained in [11] to present the relationship between

quasi-statistical convergence and statistical convergence.

Lemma 1. If x = (xk) is quasi-statistically convergent to L then it is statistically
convergent to L.

An example has been given in order to show that the converse of Lemma 1 does
not hold (see [11]).
The following result has also been given to relate the statistical convergence and

quasi-statistical convergence.
Under the assumptions (1) and

d := inf
n

cn
n
> 0 (2)

we immediately obtain that
"x = (xk) is statistically convergent to L if and only if x is quasi-statistically

convergent to L."
By Sq, we denote the set of all quasi-statistically convergent sequences.
It is easy to see that every convergent sequence is quasi-statistically convergent,

i.e., c ⊂ Sq where c is the set of all convergent sequences.
If x is a sequence we write {xk : k ∈ N} to denote the range of x. If {xk(j) : j ∈ N}

is a subsequence of x and K = {k(j) : j ∈ N}, then we abbreviate {xk(j)} by {x}K .
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In case δc(K) = 0, {x}K is called a subsequence of quasi-density zero or a thin
subsequence. On the other hand {x}K is called a nonthin subsequence of x if K
does not have quasi density zero. Note that {x}K is a nonthin subsequence if either
δc(K) is a positive number or does not exist.
The number L is an ordinary limit point of a sequence x if there is a subsequence

of x that converges to L.

Definition 2. The number λ is a quasi-statistical limit point of the sequence x if
there is a nonthin subsequence which converges to λ.

Note that we will denote by Λcx, Lx, the set of quasi-statistical limit points of x,
and the set of ordinary limit points of x, respectively. It is clear that Λcx ⊆ Lx for
any sequence x.

Proposition 3. Λx ⊆ Λcx holds where Λx denotes the set of statistical limit points
of x.

Proof. Let λ ∈ Λx. Then there exists a subset M such that δ(M) 6= 0 and {x}M
converges to λ. One can write that

1

n
|{k ≤ n : k ∈M}| ≤ H 1

cn
|{k ≤ n : k ∈M}|

where H := sup
n

cn
n and it follows that δc(M) 6= 0. This completes the proof. �

It is known that under the conditions (1) and (2) quasi-statistical convergence
coincides with statistical convergence. If we assume that the sequence c = (cn)
satisfies the conditions (1) and (2), we have Λcx = Λx.

Example 4. Define x by

xk =

{
rn ; k = n2, n = 0, 1, 2, ..
k ; otherwise

where {rn}∞n=1 is a sequence whose range is the set of all rational numbers. It is
known that Λx = ∅, Lx = R (see Example 2 of [3]). Since Λcx ⊆ Λx, we get that
Λcx = ∅.

Definition 5. The number γ is called a quasi-statistical cluster point of the se-
quence x if the set {k ∈ N : |xk − γ| < ε} does not have quasi-density zero for every
ε > 0.

We will denote the set of all quasi-statistical cluster points of x by Γcx. It is clear
that Γcx ⊆ Lx for every sequence x.

Proposition 6. Γx ⊆ Γcx holds where Γx denotes the set of all statistical cluster
points of x.
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Proof. Let γ ∈ Γx. Then δ(M := {k ∈ N : |xk − γ| < ε}) 6= 0 for every ε > 0. One
can write that

0 6= δ({k ∈ N : |xk − γ| < ε}) =
1

n
|{k ≤ n : k ∈M}| ≤ H 1

cn
|{k ≤ n : k ∈M}|

and it follows that δc(M) 6= 0. This completes the proof. �

Under the conditions (1) and (2), Γcx = Γx holds.
Following result presents the inclusion relationship between Γcx and Λcx.

Theorem 7. For every sequence x, Λcx ⊆ Γcx holds.

Proof. Let γ ∈ Λcx. Then lim
j
xk(j) = γ and lim sup

n

1
cn
|{k(j) ≤ n}| = r > 0 hold.

Also the set
{
j :
∣∣xk(j) − γ∣∣ ≥ ε} is finite for every ε > 0 so

{k ∈ N : |xk − γ| < ε} ⊇ {k(j) : j ∈ N} − finite set.
Therefore

1

cn
|{k ≤ n : |xk − γ| < ε}| ≥ 1

cn
|{k(j) : j ∈ N}| − 1

cn
O(1) ≥ r

2

for infinitely many n. Hence δc({k ∈ N : |xk − γ| < ε}) 6= 0 for every ε > 0 which
completes the proof. �

It is known that Λx does not need to be closed but Γx and Lx are closed sets.
In a similar proof to given by Fridy [3], one can also show the following.

Proposition 8. For any sequence x, the set Γcx is closed.

Theorem 9. If δc({k : xk 6= yk}) = 0 then Λcx = Λcy and Γcx = Γcy.

Proof. Assume that δc({k : xk 6= yk}) = 0 and let λ ∈ Λcx , the nonthin sequence
{x}K converges to λ. Note that δc({k : xk = yk}) 6= 0. Therefore the latter set
yields a nonthin subsequence {y}K′ of {y}K which converges to λ. Hence Λcx ⊆ Λcy.
By symmetry one can also get Λcx ⊇ Λcy. The second assertion can be proved in a
similar way. �

The following theorem is easy to prove by using the same technique in Theorem
2 of [3]. Therefore we omit it.

Theorem 10. If x is a number sequence then there exists a sequence y such that
Ly = Γcx and δc({k : xk 6= yk}) = 0. Moreover, the range of y is a subset of the
range of x.

Another noteworthy and useful result concerning the quasi-statistical cluster
points is as follows.

Theorem 11. If x is a number sequence that has a bounded nonthin subsequence,
then x has a quasi-statistical cluster point.
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Proof. For such x, the above theorem ensures that there exists a sequence y such
that Ly = Γcx and δc({k : xk 6= yk}) = 0. Then y must have a bounded nonthin
subsequence, so by the Bolzano-Weierstrass Theorem Ly 6= ∅ which implies Γcx 6=
∅. �
Now we immediately get the following corollary.

Corollary 12. If x is a bounded sequence, then x has a quasi-statistical cluster
point.

Theorem 13. If x is a bounded sequence then it has a thin subsequence {x}K such
that {xk : k ∈ N−K} ∪ Γcx is a compact set.

Proof. Again by the above results one can choose a bounded sequence y such that
Ly = Γcx, {yk : k ∈ N} ⊆ {xk : k ∈ N} , and δc(K) = 0 whereK := {k ∈ N : xk 6= yk} .
This implies

{xk : k ∈ N−K} ∪ Γcx = {yk : k ∈ N} ∪ Ly
and the right-hand set is compact. �

2. Quasi-Statistical Limit Superior and Inferior

The aim of this section is to present quasi-statistical limit superior and inferior
to obtain some quasi-statistical analogues of ordinary limit superior, inferior and
statistical limit superior, inferior as in [4]. We also introduce quasi-statistical core
of a sequence and prove some results.

Definition 14. If x is a real number sequence then the quasi-statistical limit supe-
rior and inferior of x are defined by

stq − lim supx =

{
supBcx , if Bcx 6= ∅
−∞ , if Bcx = ∅ ,

stq − lim inf x =

{
inf Acx , if Acx 6= ∅
+∞ , if Acx = ∅

where Bcx = {b ∈ R : δc({k : xk > b}) 6= 0}, Acx = {a ∈ R : δc({k : xk < a}) 6= 0} .
We now give a simple example to understand the concepts just defined.

Example 15. Let c := (cn) be the sequence of positive real numbers such that

lim
n
cn =∞, and lim

n

√
n

cn
=∞.We can choose a subsequence

{
cnp
}
such that cnp > 1

for each p ∈ N.
Consider the sequence x = (xk) defined by

xk :=


ck , k is square and ck ∈

{
cnp : p ∈ N

}
2 , k is square and ck /∈

{
cnp : p ∈ N

}
1 , k is odd and k is not square
0 , k is even and k is not square

.

One can easily see that stq − lim supx = 1, stq − lim inf x = 0.
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Definition 16. The real number sequence x is said to be quasi-statistically bounded
if there is a number M such that δc({k ∈ N : |xk| > M}) = 0.

The sequence x in the above example is not quasi-statistically convergent but
quasi-statistically bounded. Also note that quasi-statistical boundedness implies
that stq − lim sup, stq − lim inf are finite and if the sequence is quasi-statistically
bounded then stq − lim supx is the greatest element of the set of quasi-statistical
cluster points and stq − lim inf x is the least element of this set.
Now we investigate the relationship between stq − lim supx and st − lim supx

and also the relationship between stq − lim inf x and st− lim inf x.

Remark 17. Let H <∞. Then

stq − lim inf x ≤ st− lim inf x ≤ st− lim supx ≤ stq − lim supx

holds for any real sequence.

Proof. Let α2 = stq− lim inf x and α1 = st− lim inf x. Then δ({k : xk < α1 + ε}) 6=
0 and δ({k : xk < α1 − ε}) = 0 holds for every ε > 0. Since H < ∞, we have that
δ({k : xk < α1 + ε}) ≤ δc({k : xk < α1 + ε}) and this implies δc({k : xk < α1 + ε}) 6=
0. Then

α1 + ε ∈ Acx = {a ∈ R : δc({k : xk < a}) 6= 0}
and it is known that inf Acx = α2 which implies α2 ≤ α1 + ε for every ε > 0. ε
is arbitrary and we obtain that α1 = st − lim inf x ≥ α2 = stq − lim inf x. Now
let β2 = stq − lim supx, β1 = st − lim supx. Then δ({k : xk > β1 − ε}) 6= 0
and δ({k : xk > β1 + ε}) = 0 holds for every ε > 0. Since H < ∞ we have that
δ({k : xk > β1 − ε}) ≤ δc({k : xk > β1 − ε}) and this implies δc({k : xk > β1 − ε}) 6=
0. Then

β1 − ε ∈ Bcx = {b ∈ R : δ({k : xk > b}) 6= 0}
and it is known that supBcx = β2 which implies β1 − ε ≤ β2 for every ε > 0. ε
is arbitrary and we obtain that β1 = st − lim supx ≤ β2 = stq − lim supx which
completes the proof. �

Knopp has introduced the concept of the core of a sequence and has proved the
well known core theorem. In order to produce natural analogues of Knopp core
and statistical core of a sequence, we can replace limit points and statistical cluster
points with quasi-statistical cluster points in [4], [5].

Definition 18. If x is a quasi-statistically bounded real sequence then the quasi-
statistical core of x is the closed interval stq−core {x} = [stq − lim inf x, stq − lim supx] .
In case x is not quasi-statistically bounded, stq − core {x} is defined accordingly as
either [stq − lim inf x,∞) , (−∞,∞) or (−∞, stq − lim supx] .

One can easily see from Remark 1 that

st− core{x} ⊆ stq − core {x} ⊆ K − core{x}.
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Recall that the sequence x = (xk) is said to be strongly quasi-summable to L if

lim
n

1

cn

n∑
k=1

|xk − L| = 0.

The space of all strongly quasi-summable sequences is denoted by Nq.

Nq :=

{
x : for some L, lim

n

1

cn

n∑
k=1

|xk − L| = 0

}
.

Also the sequence x = (xk) is said to be quasi-summable to L if

lim
n

1

cn

n∑
k=1

xk = L.

Now we can give a result concerning with the quasi-summability and quasi-
statistical limit superior.

Theorem 19. Let the sequence x is bounded above, ` = δc(N) and βl = stq −
lim supx. If the sequence x is quasi-summable to β`2 then x is quasi-statistically
convergent to β`.

Proof. Suppose that x is not quasi-statistically convergent to β`. Then stq−lim inf x <
βl, therefore there is a number µ < βl such that δc({k : xk < µ}) 6= 0. Let
K

′
:= {k : xk < µ}. Then by the definition of quasi-statistical limit superior,

δc({k : xk > βl + ε}) = 0, for every ε > 0. Now define

K
′′

:= {k : µ ≤ xk ≤ βl + ε}, K
′′′

:= {k : xk > βl + ε}, B := supx <∞.
Since δc(K

′
) 6= 0, there are infinitely many n such that

1

cn

∣∣∣K ′

n

∣∣∣ ≥ r > 0,

for each such n we have

1

cn

n∑
k=1

xk =
1

cn

n∑
k=1, k∈K′

n

xk +
1

cn

n∑
k=1,k∈K′′

n

xk +
1

cn

n∑
k=1,k∈K′′′

n

xk

<
µ

cn

∣∣∣K ′

n

∣∣∣+
β`+ ε

cn

∣∣∣K ′′

n

∣∣∣+
B

cn

∣∣∣K ′′′

n

∣∣∣
=

µ

cn

∣∣∣K ′

n

∣∣∣+ (β`+ ε)(`−

∣∣∣K ′

n

∣∣∣
cn

) + o(1)

≤ (µ− β`)

∣∣∣K ′

n

∣∣∣
cn

+ β`2 + ε(`−

∣∣∣K ′

n

∣∣∣
cn

)

≤ β`2 − (β`− µ)

∣∣∣K ′

n

∣∣∣
cn

+ ε(`− r) + o(1)
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≤ β`2 − (β`− µ)r + ε(`− r) + o(1)

Since ε is arbitrary it follows that lim inf
1

cn

n∑
k=1

xk < β`2. Hence x is not quasi-

summable to β`2 and this completes the proof. �

This theorem is a generalization of Theorem 5 in [3]. Using the symmetry, we
also have the following for lower bounds.

Corollary 20. Let the sequence x is bounded below, ` = δc(N) and αl = stq −
lim inf x. If the sequence x is quasi-summable to α`2 then x is quasi-statistically
convergent to α`.
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META FUZZY INDEX FUNCTIONS

NIHAT TAK

Abstract. Meta-analysis was introduced to aggregate the findings of differ-
ent primary studies in statistical aspects. However, in the proposed study,
the term "meta" is used to aggregate different models for a specific topic with
the help of fuzzy c-means clustering method. One of the motivations of the
proposed method is based on the concept of indices. In the literature, there
are numerous proposed indices under different conditions for a specific pur-
pose. Our assumption is that each index has some information for a given
dataset. Therefore, meta fuzzy index functions, which include each index in
each function with a certain degree of membership value, are introduced in the
proposed method. Currency crisis and process capability indices are chosen as
applications in order to show that the proposed method can be useful tool in
terms of indices.

1. Introduction

Meta-analysis was defined as a method of combining the results of multiple in-
dependent studies based on statistical methods on a given subject by Glass [16] in
1976. His aim was to aggregate 375 different psychotherapy outcome studies to re-
duce the confusion among different outcomes. Besides, DerSimonian and Laird [12]
defined in their paper that meta-analysis is a collection of analytic results for inte-
grating the findings to get more reliable results. Aforementioned advantages, the
studies based on meta-analysis have become more popular in the last few decades.
However, rather than aggregating different studies outcomes, the outcomes of dif-
ferent selected methods for a given dataset are aggregated in the study. Because
there are numerous proposed indexes for a purpose, indexes are the focus of the
paper.
Indexes represent the proportional changes of a simple or compound event in

time or space. The expression of changes in percentage rather than absolute fig-
ures is preferred in terms of interpretation and understanding of events. In other
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words, a function of numerous indicators is defined as an index in statistics. In-
dices widely used for judging the pulse economy. Although they used to measure
the effect of changes in prices in the beginning, today we use indices for industrial
production, cost of living, agricultural production, currency crisis, process capa-
bility, etc. There are multiple proposed methods in literature for each title given
above. Another motivation of Meta Fuzzy Index Functions (MFIFs) is the assump-
tion that each method for an index has some information for a given dataset. Thus,
our aim is to aggregate these methods in functions with the help of fuzzy c-means
(FCM) clustering algorithm and call it MFIFs. Process Capability Indices (PCI)
and Currency Crisis Indices (CCI) are selected as applications.
The PCI, which is defined as a statistical measure of process capability, tends to

determine whether a production process is able to produce items within specification
tolerance. There are several conditions, some of which are assumed to be normally
distributed and to have a large sample size. Some of well-known PCIs are Cp, Cpk,
and Cpm, which are introduced by [26, 19, 7]. For these PCIs, it is assumed that
measured characteristic is normally distributed, and it is not, very often, possible
to maintain the mean of the process on the center of the tolerance interval. Some
of the well-known PCIs will be discussed in detail in Section 2.1.
A Currency crisis is defined as the crisis that consists of reduction in the reserves

of an economy that uses fixed exchanged regime. The reduction in the reserves
occurs when market actors change their national assets to international assets at the
instant and, in parallel, as the consequence of the action of Central Bank’s reserves.
To forecast the crisis there are numerous currency crisis indices in literature, some of
which are introduced by Kaminsky et al. [18] , Corsetti et al. [11] etc. Kaminsky’s
[18] index is composed of changes in nominal exchange rate and changes in foreign
reserves while Corsetti’s [11] index is composed of changes in nominal exchange rate
and changes in international reserves. In short, there are different point of views
for currency crisis’ indicators for different researchers. Thus, the currency crisis
indices are suitable for our purpose in the paper. The currency crisis indices will
be given in detail in Section 2.2.
The assumption of the proposed method is that each index has some information

about the process or the situation. Thus, we tried to aggregate indices in functions
with the help of FCM algorithm. The first step of the MFIFs is the clustering
the indices using FCM. Degree of membership values obtained from FCM for each
cluster give coeffi cients of the indices in each function. Finally, the function that
explains the process or the situation best is chosen as the meta-fuzzy index function.
The MFIFs will be discussed in detail in Section 4.

2. Preliminaries

2.1. Process Capability Indices (PCI). Process capability analysis is conducted
to examine whether the products produced during the production process have the
desired tolerances or not. In other words, it is the measure whether a process
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is capable of producing an item within specification limits. There are numerous
PCIs in literature to measure the process potential and performance. At the be-
ginning, it is assumed that the dataset of a process is normally distributed, and its
tolerance limits are symmetric. Later, researchers proposed different PCIs under
different conditions, such as processes with symmetric tolerance limits and normally
distributed, asymmetric tolerance limits and normally distributed, and symmetric
tolerance limits and asymmetric distribution. Some of the PCIs proposed are given
below. The concerned univariate measurements will be denoted with the corre-
sponding random variable by X. The expectation and standard deviation of X
will be denoted by µ and σ respectively. When it is assumed that the measured
characteristics of a process is approximately normally distributed and its tolerance
limits are symmetric, following PCIs are commonly used by manufacturers. The
Cp index introduced by Sullivan [26] is given in Equation 1,

PCI1 = Cp =
USL−ASL

6σ
(1)

and used when µ = M where M = (USL + LSL)/6σ. USL and LSL stand
for upper specification and lower specification limits respectively. It is not always
possible to maintain the process on the center of tolerance interval [LSL,USL]. In
this case, Cpk and Cpm indices might be useful and given in Equation 2,3,

PCI2 = Cpk =
min(USL− µ, µ− LSL)

3σ
(2)

and

PCI3 = Cpm =
USL− LSL

6
√
σ2 + (µ− τ)2

(3)

When it is assumed that the measured characteristics of a process is approximately
normally distributed and its tolerance limits are asymmetric, following PCIs are
used by researchers. Some of the studies conducted for asymmetric tolerance and
normal distributed of a process was proposed by Kane [19] , Boyles [5], Pearn and
Chen [23], Chan et al. [7], and Chen et al. [8].

PCI4 = C?pm =
d′

3
√
σ2 + (µ− T )

(4)

d′ =
(USL− T ) + (T − LSL)

2
(5)

where T is the target value.

PCI5 = C ′pm =
d?

3
√
σ2 + (A?)2

(6)

A? = max

{
d?(µ− T ))

Du
,
d?(T − µ))

Dl

}
, (7)

Du = USL− T,Dl = T − LSL (8)
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When the measured characteristics of a process has an asymmetric distribution
and symmetric tolerance limits, some of the PCAs are introduced by Clements [9],
Pearn and Kotz [25], Pearn and Chen [24], and Wright [28].

PCI6 = Ĉp =
USL− LSL
Up − Ul

(9)

PCI7 = Ĉpk = min

{
USL−m
m− Lp

,
m− LSL
Up −m

}
(10)

PCI8 = Ĉpmk = min

 USL−m

3
√

[
Up−m
3 ]2 + (m− T )2

,
m− LSL

3
√

[
m−Lp
3 ]2 + (m− T )2

 (11)

Up = %99.865, Lp = %0.135 (12)

PCI9 = Ĉ ′pk = min

{
USL−m

[Up − Lp]/2
,
m− LSL

[Up − Lp]/2

}
(13)

PCI10 = Ĉ ′pm =
USL− LSL

6

√[
Up−Lp

6

]2
+ (m− T )2

(14)

PCI11 = Ĉ ′pmk = min


USL−m

3

√[
Up−Lp

6

]2
+ (m− T )2

,
m− LSL

3

√[
Up−Lp

6

]2
+ (m− T )2


(15)

PCI12 = Cs =
(d− |µ− T |)/σ

3

√
1 + [(µ− T )/σ]

2
+ |k1|

(16)

Large value implies a better process for each index given above. The PCAs which
are used in the application are given above.

2.2. Currency Crisis Indices (CCI). Although there is no consensus on defining
currency crisis, there is more or less consensus on the indicators of a currency crisis.
Usually, exchange rate, interest rate, and international reserves are considered as
the indicators of the currency crisis. The definitions of CCIs are obtained using
three or different pairwise combination of these indicators. The CCIs which will
be used in the study are proposed by Eichengreen [15], Kaminsky [18], Corsetti
et al. [10], Krkoska [21], Von Hagen and Ho [29], Bussierre [4], Yiu et al. [31],
Alvarez-Plata and Schrooten [1], Bunda and Co-Zorri [6], and Johansen [17]. The
definitions of CCIs given by the researchers introduced above are given in Equation
17-26 and cited from Ari and Cergibozan [2].

CCI1t =
1

σRER
∆NERTR,t −

1

σRES
∆RESTR,t +

1

σNIR
∆(NIRTR,t −NIRUS,t)

(17)
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where NER is the nominal exchange rate, RES is international reserves, NIR is
the nominal interest rate.

CCI2t = ln

(
NERt
NERt−3

)
− σ2NER
σ2RES

ln

(
RESt
RESt−3

)
(18)

CCI3t =
1

σ2RER
∆RERt −

1

σ2RES
∆RESt +

1

σ2RIR
(RIRt −RIRt−1) (19)

where RER is the reel exchange rate, RIR is the reel exchange rate, σ2RER, σ
2
RES ,

and σ2RIR the standard deviations of the reel exchange rate, reserves and the reel
interest rate respectively.

CCI4t =
1

σNER
∆NERTRj −

1

σRES
(∆RESTRj −∆RESUSj )

+
1

σNIR
(∆NIRTRj

−∆NIRUSj ) (20)

where NIRTR and NIRUS are the nominal interest rates, RESTR and RESUS are
the international reserves excluding gold, σNER is the standard deviation of nominal
exchange rate, σRES is standard deviation of the change in the international reserves
gap between TR and the US, and σNIR indicates the standard deviation of the
difference between the nominal interest rate of TR and the US.

CCI5t =
1

σRER
∆RERt −

1

σRES
∆RESt +

1

σNIR
(NIRt −NIRt−1) (21)

CCI6t = 4RERt (22)

CCI7t = ∆NERt −
σNER
σRES

∆RESt (23)

CCI8t = ∆NERt −∆RESt + (NIRt −NIRt−1) (24)

CCI9t = ∆NERt −
σNER
σRES

∆RESt +
σNER
σNIR

(NIRt −NIRt−1) (25)

CCI10t = 0.75∆NERt − 0.25∆RESt (26)

2.3. Fuzzy C-means (FCM). Fuzzy set theory was introduced by Zadeh [32] in
1965. Fuzzy logic has been commonly studied topic by then. Fuzzy sets were used
in many fields, engineering, health science, economics, statistics, etc. Fuzzy logic
lets an object to become a member of different classes or clusters with a degree of
membership value. In this sense, fuzzy c-means clustering algorithm is developed
by Dunn [13] in 1973 and improved by Bezdek [3] in 1981. FCM is also very useful
tool in many fields. The detailed steps of FCM algorithm are given in Step 3 in
Section 3.
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3. Proposed Method

"Which index should we use for a given time series", "What are the character-
istics of the dataset" lead us to come up with MFIFs. Thus, the aim of MFIFs is
to propose a method that gives a way to aggregate the information of indices for a
specific topic in functions by using FCM and get better outcomes. Thus, the inputs
are MFIFs are the outputs of different indexes for a given dataset. Clustering the
inputs by using FCM, the functions are obtained. In this case, a cluster represents
a function in MFIFs. Thus, there are as many functions as the number of clusters.
Although there are many fuzzy clustering techniques like[20, 22], FCM[3] is used

in the proposed method because of its easy-to-use structure and fame. The detailed
steps of the proposed method are given below step by step.

• Step 1. Each index is calculated for the given dataset. When the scale of
each index values is not the same, input matrix is standardized. Thus, the
input matrix consists of the output of the indices.

• Step 2. Let c be the number of fuzzy sets (number of functions).
• Step 3. Using FCM algorithm, the degrees of membership values for each
observation (indices) are calculated. In other words, the coeffi cients of
indices in a function will be determined with the help of FCM.
FCM Algorithm
— Step 3.1. Initialize µ =

[
µij
]
matrix, determine the number of clusters

and initial cluster centers.
— Step 3.2. Calculate the membership value µ with the formula given in
Equation 27.

µik =

 c∑
j=1

(
d(zk, vi)

d(zk, vj)

) 2
fi−1

−1 , i = 1, 2, .., c; k = 1, 2, .., n (27)

under the constraint;
∑c

i=1 µik = 1, ifµik < α − cut, then µik value
will be taken as zero. where Z is the input matrix, v is the cluster
centers, d(.) stands for Euclidean distance function, c is the number of
clusters, and fi is the fuzzy index value.

— Step 3.3. Calculate the new cluster centers.

vi =

∑n
k=1 µ

fi
ikzk∑n

k=1 µ
fi
ik

(28)

— Step 3.4. Repeat Step 2 and Step 3 until the difference of clusters
between two iterations drops under some threshold or the number of
iterations is reached.
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• Step 4. Using the degrees of membership values, new vales of meta fuzzy
index functions are calculated with the formula given in Equation 29.

MFIFi =
ZTi µi∑c
i=1 µi

, i = 1, 2, ..c (29)

where MFIF stands for the index values of the proposed method and c
stands for the number of clusters.

• Step 5. Step 4 is repeated for the number of cluster times.
• Step 6. The cluster that explains the purpose best is selected as the meta-
fuzzy index function.

4. Applications

4.1. Application of CCIs. The first application of the proposed method is CCIs.
CCIs are chosen because determining a currency crisis in a certain year is commonly
studied topic by researchers and there are numerous proposed CCIs in literature.
Each CCI has its own characteristic. However, our assumption is that each CCI
has information about a dataset. Therefore, CCIs are suitable for MFIFs.
The data that were monthly observed were obtained from the Central Bank of

Turkey. [27] The elements of the input matrix, which are observed from January
of 1990 to June of 2014, are calculated using the given indices above. Summary of
the input matrix is given in Table 1.

Table 1. Some observations of the input matrix

no CCI1 CCI2 CCI3 CCI4 CCI5 CCI6 CCI7 CCI8 CCI9 CCI10 CCI11
1 -0.38 -0.08 -24.13 -0.65 -1.52 -0.12 -0.045 -0.09 -5.33 0.03 -0.06
2 -0.24 -0.04 -17.72 -0.54 -1.08 -0.01 -0.01 -0.03 -5.73 0.03 -0.02
3 0.16 0.04 6.62 1.73 0.56 0.03 0.08 0.09 -6.23 0.01 0.08
4 -0.08 0.06 -28.19 -0.17 -1.474 0.04 -0.01 -0.02 -21.13 0.02 -0.01
5 0.02 0.09 -1.19 0.6 -0.07 -0.02 0.02 0.03 -0.28 0.02 0.02
6 -0.28 -0.01 -14.01 -0.76 -1.07 -0.15 -0.06 -0.07 6.93 0.04 -0.06
. . . . . . . . . . . .

Because the values of the indices are not in the same scale, the input matrix is
standardized. The centers of the clusters are initialized randomly, and the number
of clusters (functions) is taken as three. The α − cut value is taken as 0.1. The
degree of membership matrix is given in Table 2.
Table 2 shows that which index belongs to which function with what degree

of membership values. Using Equation 29, the following functions and graphs are
obtained.
Using the first column of degree of memberships matrix and the CCIs, the first

function is obtained as below.



META FUZZY INDEX FUNCTIONS 661

Table 2. Degree of membership values of indices

Index 1 2 3
CCI1 0.12 0.02 0.86
CCI2 0.30 0.10 0.60
CCI3 0.01 0.00 0.99
CCI4 0.01 0.00 0.98
CCI5 0.00 0.00 1.00
CCI6 0.00 1.00 0.00
CCI7 0.08 0.01 0.90
CCI8 0.01 0.00 0.98
CCI9 0.96 0.01 0.04
CCI10 0.98 0.01 0.02
CCI11 0.00 0.00 1.00

MFIF1 = (µ11CCI1 + µ12CCI2 + ...+ µ1nCCIn)/

n∑
i=1

µ1i (30)

MFIF1 = (0.12∗CC1+0.3∗CCI2+...+0.98∗CCI10)/(0.12+0.3+...+0.98) (31)

Looking at MFIF1, it is obvious that most contribution is made by CCI9 and
CCI10, which means CCI9 and CCI10 reacts similar given the dataset. The
graph of the first function is given in Figure 1. The time period of the currency
crisis is determined if the points in a graph are 2 standard deviation away from
the margin. In this case, the first function is capable of detecting three crisis that
occurred in 1994, 2001, and 2008.

Figure 1. The first M-FIF for the crisis in Turkey
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For the second function (MFIF2), CCI6 dominates the other indices. The
second MFIF looks like as follows.

MFIF2 = (µ21CCI1 + µ22CCI2 + ...+ µ2nCCIn)/

n∑
i=1

µ2i (32)

MFIF2 = 1 ∗ CCI6 (33)

Figure 2 indicates 4 crises in Turkey, that occurred in 1994, 2001, 2006, and 2008.

Figure 2. The second M-FIF for the crisis in Turkey

The third M-FIF contains the rest of the indices with higher degree of member-
ship values.

MFIF3 = (µ31CCI1 + µ32CCI2 + ...+ µ3nCCIn)/

n∑
i=1

µ3i (34)

MFIF3 = (0.86 ∗ CCI1 + 0.60 ∗ CCI2 + ...+ 1 ∗ CCI11)/

n∑
i=1

µ3i (35)

The third function indicates 2 crises that occurred in 1994 and 2001. The graph of
M-FIF3 is given in Figure 3.
Implementing the proposed method to the currency crisis data set of Turkey,

three different functions are obtained. The question arises as which function will
be more useful for CCIs. In this case, the function which can detect more crisis is
chosen as the M-FIF, which is the second function.
Overall, in the application of CCIs, we obtain three M-FIFs. Each M-FIF has

different information about the crises in Turkey. The outcomes of MFIFs might be
investigated by an economist in details. Our belief is that the M-FIFs is a useful
tool in terms of CCIs.
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Figure 3. The third M-FIF for the crisis in Turkey.

4.2. Application of PCIs. PCIs are chosen as an application for the proposed
method because there are numerous PCIs given under different conditions in liter-
ature. Some of them are explained in Chapter 3. Our belief is that each PCI has
some information about a dataset no matter what distribution it has. Therefore,
we tried to aggregate these indices in different functions. While some of the func-
tions have more information about the process, some others have less information.
Because there will be as many index functions as the number of clusters, we are
looking for the best function in which indexes explain the process best. In this
case, the best function that gives the highest value is selected the M-FIF. For the
application, elastomer bearing sliding valve shaft dataset is chosen. The data set
is obtained from [30].
The dataset is non-normally distributed, and its tolerance limits are asymmetric.

At the beginning of the application, the bootstrap sampling method is used to
determine how the indices react to the dataset. The bootstrap method, which
was introduced by Efron [14], is a resampling technique with replacement used to
estimate statistics/indexes on a population. Because there is just one value that
is obtained from the indexes, we used bootstrap method to be able to learn the
characteristics of an index. Ten bootstrap samples are obtained from the dataset
and the index values of each sample are given in Table 3.
10 bootstrap samples of 11 indices are clustered using FCM. The degree of mem-

bership values of each index are given in Table 4.
Using Equation 26, we obtain the results in Table 5. Table 5 shows the M-FIF

values for each bootstrap sample.
Table 5 gives the M-FIFs. Looking at Table 4, it is obvious that only PCI12

belongs to the first function with 1 degree of membership value. The function looks
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Table 3. Values of indices and bootstrap samples

Index S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
PCI1 0.81 0.84 0.93 0.80 0.77 0.84 0.90 0.88 0.91 0.81
PCI2 0.69 0.73 0.81 0.73 0.71 0.77 0.78 0.77 0.83 0.71
PCI3 0.76 0.80 0.87 0.78 0.76 0.82 0.85 0.83 0.88 0.78
PCI4 0.64 0.66 0.73 0.62 0.59 0.65 0.71 0.70 0.70 0.64
PCI5 0.64 0.67 0.74 0.63 0.60 0.67 0.72 0.70 0.71 0.64
PCI6 1.10 1.04 1.15 1.01 1.05 1.13 1.06 1.04 1.10 1.02
PCI7 0.92 0.84 0.93 0.79 0.79 0.92 0.85 0.84 0.85 0.81
PCI8 0.91 0.84 0.93 0.77 0.76 0.92 0.85 0.84 0.84 0.80
PCI9 0.82 0.89 0.97 0.92 0.98 0.92 0.90 0.89 0.95 0.84
PCI10 1.10 1.04 1.14 0.99 1.02 1.13 1.05 1.04 1.10 1.02
PCI11 0.82 0.88 0.96 0.89 0.94 0.92 0.89 0.88 0.94 0.84
PCI12 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Degree of membership values of indices

Index 1 2 3
PCI1 0.004 0.086 0.910
PCI2 0.003 0.024 0.973
PCI3 0.001 0.012 0.987
PCI4 0.034 0.105 0.861
PCI5 0.029 0.097 0.874
PCI6 0.001 0.984 0.015
PCI7 0.006 0.132 0.861
PCI8 0.005 0.103 0.891
PCI9 0.010 0.449 0.540
PCI10 0.001 0.988 0.011
PCI11 0.010 0.361 0.629
PCI12 1.000 0.000 0.000

like as below.

MFIF1 = (µ11PCI1 + µ12PCI2 + ...+ µ1nPCIn)/

n∑
i=1

µ1i (36)

MFIF1 = 1 ∗ PCI12 (37)

The secondM−FIF includes mainly two indices mainly but a few more with lower
degree of membership values. MFIF2 is given in Equation 38.

MFIF2 = (µ21PCI1 + µ22PCI2 + ...+ µ2nPCIn)/

n∑
i=1

µ2i (38)
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Table 5. Index values of M-FIFs

Samples 1 2 3
1 0.070 0.978 0.776
2 0.072 0.956 0.788
3 0.079 1.051 0.869
4 0.068 0.930 0.760
5 0.067 0.962 0.751
6 0.073 1.027 0.818
7 0.075 0.975 0.824
8 0.074 0.962 0.811
9 0.076 1.015 0.841
10 0.069 0.931 0.759

MFIF2 = (0 ∗ PCI1 + ...+ 0.105 ∗ PCI4 + ...+ 0 ∗ PCI12)/

12∑
i=1

µ2i (39)

The third function includes the most of the indices more than 0.90 degree of mem-
bership values. The MFIF3 looks like as below.

MFIF3 = (µ31PCI1 + µ32PCI2 + ...+ µ3nPCIn)/

n∑
i=1

µ3i (40)

MFIF2 = (0.91 ∗ PCI1 + 0.973 ∗ PCI2 + ...+ 0 ∗ PCI12)/

12∑
i=1

µ3i (41)

Because we have three M-FIFs, the one that explains the process best is chosen
as the M-FIF. Deciding which function will be MFIF is selected by looking at the
mean of each cluster. The one which has the highest value is chosen as the M-FIF.
In this case, the second function is chosen as the M-FIF for the process capability.

5. Conclusions

A new approach in terms of indices is proposed in the study. The need of the
proposed method has arisen the question that which method we should prefer for
a given dataset (i.e. normally distributed, linear, non-linear, semi-linear, etc.).
Therefore, the methods that we might use for a given dataset are clustered with
FCM algorithm. While the methods that perform better for a dataset are clustered
in a function with higher degree of membership values, the methods that perform
worse are clustered in a different function with higher degree of membership values.
The advantages of the proposed method are discussed below.

• Because there are numerous methods in literature for a specific problem,
there is also confusion which method will be chosen. With the help of the
proposed method, the best method or methods are clustered in the same
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function with certain degree of membership values. Thus, we are able to say
that which method/methods are capable of dealing with a specific dataset.

• Because of the first advantage, we do not need to look for the assumptions
of methods.

• MFIFs are able to aggregate the information of each index into functions.
• The M-FIFs approach is the first method in literature that aggregates the
indexes into functions.

However, the major defect of the proposed method is the determination of the
number and centers of the clusters. In the applications given above, the number of
clusters is chosen as three and the centers are randomly initialized. Specifying the
cluster centers with expert opinion might give better classification of the methods.
Besides, increasing the number of clusters might give even better outcomes. This
part of the proposed method is left for future work.
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OSCILLATION RESULTS FOR SECOND ORDER HALF-LINEAR
FUNCTIONAL DYNAMIC EQUATIONS WITH UNBOUNDED

NEUTRAL COEFFICIENTS ON TIME SCALES

ORHAN ÖZDEMIR

Abstract. This study aims to present some new suffi cient conditions for the
oscillatory behavior of solutions to a class of second order half-linear functional
dynamic equations with mixed neutral term i.e., the neutral term contains both
retarded and advanced arguments. The results obtained are applicable in the
case where the studied equation has unbounded neutral coeffi cients and they
are new even for the linear case. Illustrative examples are also provided.

1. Introduction

In this study, we are concerned with the oscillation of second order half-linear
mixed neutral dynamic equations of the form(

r(t)
(
y∆(t)

)β)∆

+

n∑
i=1

qi(t)x
β
(
hi(t)

)
= 0, t ∈ [t0,∞)T (1.1)

where n ≥ 1 is an integer, β is a ratio of positive odd integers, T is a time scale
unbounded above with t0 ∈ T, and

y
(
t
)

:= x
(
t
)

+ p1

(
t
)
x
(
τ1(t)

)
+ p2

(
t
)
x
(
τ2(t)

)
. (1.2)

For some basic facts on time scale calculus and dynamic equations on time scales,
one may consult the excellent texts by Bohner and Peterson [8, 9]. Throughout
this study it is assumed that the reader is familiar with time scale calculus, and the
following conditions are always satisfied:

(i) qi : [t0,∞)T → R are nonnegative rd-continuous functions such that not
all of the qi(t) vanish in a neighborhood of infinity for i = 1, 2, ..., n and
r : [t0,∞)T → R is a positive rd-continuous function with∫ ∞

t0

r−1/β(s)∆s =∞;
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(ii) τ1, τ2, hi : [t0,∞)T → T are rd-continuous functions such that τ1 and τ2 are
strictly increasing, τ1(t) < t, τ2(t) > t and limt→∞ τ1(t) = limt→∞ hi(t) =
∞, for i = 1, 2, ..., n;

and, either

(iiia) p1, p2 : [t0,∞)T → R are rd-continuous functions with p1(t) ≥ 0, p2 (t) ≥ 1
and p2 (t) 6≡ 1 eventually;

or

(iiib) p1, p2 : [t0,∞)T → R are rd-continuous functions with p2(t) ≥ 0, p1 (t) ≥ 1
and p1 (t) 6≡ 1 eventually.

Wherever we write “t ≥ tn” we mean “t ∈ [tn,∞)T”.
By a solution of equation (1.1) we mean a function x ∈ Crd ([Tx,∞)T,R) which

has the properties y ∈ C1
rd ([Tx,∞)T,R) and r

(
y∆
)β ∈ C1

rd ([Tx,∞)T,R), and satis-
fies equation (1.1) on [Tx,∞)T. Without further mention, we will assume through-
out that every solution x(t) of (1.1) under consideration here is continuable to the
right and nontrivial, i.e., x(t) is defined on some ray [Tx,∞)T, for some Tx ≥ t0,
and

sup{|x(t)| : t ≥ T1} > 0 for all T1 ≥ Tx.

We make the standing hypothesis that (1.1) admits such solutions. Such a solution
of (1.1) is called oscillatory if it has arbitrarily large zeros on [Tx,∞)T and otherwise
it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions
are oscillatory.
The study of oscillation of the solutions of neutral differential and difference

equations presents a strong theoretical interest. One reason for this is that they
arise in several areas of applied mathematics including circuit theory, bifurcation
analysis, population dynamics, stability theory, the dynamics of delayed network
systems and others. Besides, these equations are used in the analysis of computer
networks containing lossless transmission lines, as in high speed networks where
lossless transmission lines serve to connect switching circuits in the network. Also,
second-order neutral delay differential equations are of great interest in biology in
explaining self-balancing of the human body and in robotics in constructing biped
robots [11, 13, 15, 25]. Interested readers can refer to the books by Hale [15] and,
Kolmanovskii and Myshkis [22] for more applications in science and technology.
Note that equation (1.1) with T = R, n = 2, h1(t) < t and h2(t) > t were en-

countered in the study of vibrating masses attached to an elastic bar [15, 23]. Since
it has some direct applications in science, the oscillatory behavior of equation (1.1)
and it’s special and more general forms have been studied by numerous authors
utilizing different methods. In reviewing the related literature, most of such results
are concerned with the cases where the functions pj(t) are constant or bounded
functions, for j = 1, 2; see for example [6, 10, 12, 16, 19, 23, 28, 30, 36, 37] and the
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references cited therein. However, to the best of our knowledge, there does not ap-
pear to be any oscillation results for second order mixed neutral dynamic equations
in the case where the neutral term includes unbounded neutral coeffi cients.
Motivated by the papers mentioned above, the purpose of this study is to estab-

lish some new oscillation criteria that can be applied in the case where equation
(1.1) has unbounded neutral coeffi cients, that is, p1(t) → ∞ and/or p2(t) → ∞ as
t→∞. Moreover, it should be also pointed out that the results obtained here are
new even for T = R and T = Z, for the linear case when β = 1, for r(t) = 1, for
n = 1 and for discrete deviating arguments such as τ1(t) = t− a, τ2(t) = t+ b and
hi(t) = t∓ c with a, b, c > 0 and i = 1, 2, ..., n.
For convenience, we will use the following notations:

γ =
β + 1

β
, θ+ (t) := max {0, θ (t)} and A (t, t1) :=

∫ t

t1

r−1/β(s)∆s,

for any rd-continuous function θ.
The following lemma is required in our main results. Since the proof is standard

we omit the details here.

Lemma 1.1. Assume that conditions (i)-(iiia) (or (i), (ii), (iiib)) hold and x(t) is
an eventually positive solution of (1.1). Then y(t) satisfies y(t) > 0, y∆(t) > 0 and(
r(t)

(
y∆(t)

)β)∆
< 0, for all t large enough.

Lemma 1.2. [17] If X and Y are nonnegative and λ > 1, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ,

where equality holds if and only if X = Y .

2. Oscillation results when (iiia) holds

In this section, we establish some new criteria for the oscillation of (1.1) in the
cases where hi(t) ≤ τ2(t) and hi(t) ≥ τ2(t) for i = 1, 2, ..., n, respectively. For
notational purposes, we let

ψ(t) :=
1

p2(τ−1
2 (t))

[
1− 1

p2(τ−1
2 (τ−1

2 (t)))
− p1(τ−1

2 (t))

p2(τ−1
2 (τ1(τ−1

2 (t))))

]
where τ−1

2 denotes the inverse function of τ2, and throughout this section we assume
that ψ(t) > 0 for all suffi ciently large t.

Theorem 2.1. Assume that conditions (i)-(iiia) hold and hi(t) ≤ τ2(t) for i =
1, 2, ..., n. If there exists a positive function η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
Ψ1 (s)−

r(s)
(
η∆(s)

)β+1

(β + 1 )β+1ηβ(s)

)
∆s =∞ (2.1)
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for T > t1 where t1 ∈ [t0,∞)T suffi ciently large and

Ψ1 (t) = η(t)

(
n∑

i=1

qi(t)ψβ
(
hi(t)

)Aβ
(
τ−1

2 (hi(t)), t1
)

Aβ
(
t , t1

) )
,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ1(t)) > 0,
x(τ2(t)) > 0 and x(hi(t)) > 0 for t ≥ t1 and i = 1, 2, ..., n. The proof if x(t) is
eventually negative is similar, so we omit the details of that case here as well as in
the remaining proofs in this paper. In view of Lemma 1.1, it is obvious that

y(t) > 0, y∆(t) > 0 and
(
r(t)

(
y∆(t)

)β)∆
< 0 for t ≥ t1.

Since r(t)
(
y∆(t)

)β
is decreasing, we have

y(t) = y(t1) +

∫ t

t1

(
r(s)

(
y∆(s)

)β )1/β
r1/β(s)

∆s

≥
(
r(t)

(
y∆(t)

)β )1/β
A(t, t1) for t ≥ t1. (2.2)

Thus (
y(t)

A(t, t1)

)∆

≤ 0, (2.3)

i.e., y(t)/A(t, t1) is nonincreasing on [t1,∞)T. From the definition of y(t), we get

x(t) =
1

p2(τ−1
2 (t))

(
y(τ−1

2 (t))− x(τ−1
2 (t))− p1(τ−1

2 (t))x(τ1(τ−1
2 (t)))

)
=

y(τ−1
2 (t))

p2(τ−1
2 (t))

− y(τ−1
2 (τ−1

2 (t)))− x(τ−1
2 (τ−1

2 (t)))

p2(τ−1
2 (t))p2(τ−1

2 (τ−1
2 (t)))

+
p1(τ−1

2 (τ−1
2 (t)))x(τ1(τ−1

2 (τ−1
2 (t))))

p2(τ−1
2 (t))p2(τ−1

2 (τ−1
2 (t)))

−p1(τ−1
2 (t))

p2(τ−1
2 (t))

[
y(τ−1

2 (τ1(τ−1
2 (t))))− x(τ−1

2 (τ1(τ−1
2 (t))))

p2(τ−1
2 (τ1(τ−1

2 (t))))

− p1(τ−1
2 (τ1(τ−1

2 (t))))x(τ1(τ−1
2 (τ1(τ−1

2 (t)))))

p2(τ−1
2 (τ1(τ−1

2 (t))))

]
≥ y(τ−1

2 (t))

p2(τ−1
2 (t))

− y(τ−1
2 (τ−1

2 (t)))

p2(τ−1
2 (t))p2(τ−1

2 (τ−1
2 (t)))

− p1(τ−1
2 (t))y(τ−1

2 (τ1(τ−1
2 (t))))

p2(τ−1
2 (t))p2(τ−1

2 (τ1(τ−1
2 (t))))

.

(2.4)

Using the fact that the functions y, τ1 and τ2 are strictly increasing, and noting
that τ1(t) < t < τ2(t), we get

y(τ−1
2 (τ−1

2 (t))) < y(τ−1
2 (t)) (2.5)
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and

y(τ−1
2 (τ1(τ−1

2 (t)))) < y(τ−1
2 (t)). (2.6)

Using (2.5) and (2.6) in (2.4) gives

x(t) ≥ 1

p2(τ−1
2 (t))

[
1− 1

p2(τ−1
2 (τ−1

2 (t)))
− p1(τ−1

2 (t))

p2(τ−1
2 (τ1(τ−1

2 (t))))

]
y(τ−1

2 (t)) (2.7)

for t ≥ t1. Since limt→∞ hi(t) = ∞, we can choose t2 ≥ t1 such that all hi(t) ≥ t1
for t ≥ t2, where i = 1, 2, ..., n. Thus, from (2.7) we obtain

x(hi(t)) ≥ ψ(hi(t))y
(
τ−1

2 (hi(t))
)
, i = 1, 2, ..., n (2.8)

for t ≥ t2. Using (2.8) in (1.1) gives(
r(t)

(
y∆(t)

)β)∆

+
n∑
i=1

qi(t)ψ
β
(
hi(t)

)
yβ
(
τ−1

2 (hi(t))
)
≤ 0. (2.9)

Define the function ω(t) by the Riccati substitution

ω(t) := η(t)
r(t)

(
y∆(t)

)β
yβ(t)

for t ≥ t2. (2.10)

Clearly ω(t) > 0 and from (2.9) we see that

ω∆ (t) =
η(t)

yβ(t)

(
r(t)

(
y∆(t)

)β)∆

+

(
η(t)

yβ(t)

)∆

r
(
σ(t)

)(
y∆
(
σ(t)

))β
≤ η∆ (t)

r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − η(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β(
yβ(t)

)∆
yβ(t)yβ

(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

)yβ(τ−1
2 (hi(t))

)
yβ(t)

)
for t ≥ t2, (2.11)

where σ(t) is the forward jump operator on time scale T. Using the fact y(t)/A(t, t1)
is nonincreasing, and noting that hi(t) ≤ τ2(t) implies τ−1

2 (hi(t)) ≤ t, we obtain

y
(
τ−1

2 (hi(t))
)

y(t)
≥
A
(
τ−1

2 (hi(t)), t1
)

A
(
t, t1

) . (2.12)

for i = 1, 2, ..., n. Substituting (2.12) into (2.11) gives

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − η(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β(
yβ(t)

)∆
yβ(t)yβ

(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

)Aβ(τ−1
2 (hi(t)), t1

)
Aβ
(
t, t1

) )
for t ≥ t2. (2.13)
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From [8, Theorem 1.90], we obtain(
yβ(t)

)∆ ≥ { βyβ−1
(
σ(t)

)
y∆(t), if 0 < β ≤ 1,

βyβ−1(t)y∆(t), if β > 1.
(2.14)

If 0 < β ≤ 1, then we have from (2.13) and (2.14) that

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − βη(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
y∆(t)

yβ(t)y
(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

)Aβ(τ−1
2 (hi(t)), t1

)
Aβ
(
t, t1

) )
. (2.15)

If β > 1, then we have from (2.13) and (2.14) that

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − βη(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
y∆(t)

y(t)yβ
(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

)Aβ(τ−1
2 (hi(t)), t1

)
Aβ
(
t, t1

) )
. (2.16)

Using the fact that y(t) is increasing and r(t)
(
y∆(t)

)β
is decreasing, we get y(t) ≤

y
(
σ(t)

)
and y∆(t) ≥ r1/β(σ(t))y∆

(
σ(t)

)
/r1/β(t), respectively. Thus, combining

(2.15) and (2.16) we obtain for β > 0 and t ≥ t2,

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − βη(t)
rγ
(
σ(t)

)(
y∆
(
σ(t)

))β+1

r1/β(t)yβ+1
(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

)Aβ(τ−1
2 (hi(t)), t1

)
Aβ
(
t, t1

) )

= η∆(t)
ω
(
σ(t)

)
η
(
σ(t)

) − β η(t)

r1/β(t)

ωγ
(
σ(t)

)
ηγ
(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

)Aβ(τ−1
2 (hi(t)), t1

)
Aβ
(
t, t1

) )
. (2.17)

If we apply Lemma 1.2 with

X =
[βη(t)]

1/γ[
r1/β(t)ηγ (σ(t))

]1/γ ω (σ(t)) and Y =

[
β

β + 1

[
r1/β(t)ηγ (σ(t))

]1/γ
[βη(t)]

1/γ

η∆(t)

η (σ(t))

]β
we see that

η∆(t)
ω
(
σ(t)

)
η
(
σ(t)

) − β η(t)

r1/β(t)

ωγ
(
σ(t)

)
ηγ
(
σ(t)

) ≤ 1

(β + 1)β+1

r(t)
(
η∆(t)

)β+1

ηβ(t)
. (2.18)
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Using (2.18) in (2.17) gives

ω∆ (t) ≤
r(t)

(
η∆(t)

)β+1

(β + 1)β+1ηβ(t)
− η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

)Aβ(τ−1
2 (hi(t)), t1

)
Aβ
(
t, t1

) )
.

Integrating the latter inequality from t2 to t yields∫ t

t2

(
η(s)

(
n∑
i=1

qi(s)ψ
β
(
hi(s)

)Aβ(τ−1
2 (hi(s)), t1

)
Aβ
(
s, t1

) )
−
r(s)

(
η∆(s)

)β+1

(β + 1)β+1ηβ(s)

)
∆s ≤ ω (t2)

which contradicts (2.1) and completes the proof. �

Following, we give an oscillation criterion for (1.1) by using the integral averaging
technique due to Philos [27]. First we need to introduce, the function class P.
Let D0 ≡ {(t, s) ∈ T2 : t > s ≥ t0}, D ≡ {(t, s) ∈ T2 : t ≥ s ≥ t0} and
H,h ∈ Crd (D,R). The function H ∈ Crd (D,R) is said to belongs to the class P if
(P1) H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 on D0,
(P2) H has a nonpositive rd-continuous ∆-partial derivative H∆s(t, s) on D0

with respect to second variable and satisfies

H∆s(t, s) +H(t, s)
η∆(s)

η(σ(s))
=

h(t, s)

η(σ(s))
H1/γ(t, s),

where the function η is as in Theorem 2.1.

Theorem 2.2. Assume that conditions (i)-(iiia) hold and hi(t) ≤ τ2(t) for i =
1, 2, ..., n. Suppose also that there exist functions η ∈ C1

rd ([t0,∞)T,R+) and H,h ∈
Crd (D,R) with H belongs to the class P such that

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

[
H (t, s) Ψ1 (s)−

r(s)
(
h+(t , s)

)β+1

(β + 1 )β+1ηβ(s)

]
∆s =∞, (2.19)

where Ψ1 (t) is as in Theorem 2.1 and t∗ > t1 for suffi ciently large t1 ∈ [t0,∞)T.
Then every solution of equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ1(t)) > 0,
x(τ2(t)) > 0 and x(hi(t)) > 0 for t ≥ t1 and i = 1, 2, ..., n. Proceeding as in the
proof of Theorem 2.1, we again arrive at (2.17) for t ≥ t2. In view of (P1) and (P2),
it follows from (2.17) that∫ t

t2

H(t, s)η(s)

(
n∑
i=1

qi(s)ψ
β
(
hi(s)

)Aβ(τ−1
2 (hi(s)), t1

)
Aβ
(
s, t1

) )
∆s ≤ −

∫ t

t2

H(t, s)ω∆(s)∆s

+

∫ t

t2

H(t, s)η∆(s)
ω
(
σ(s)

)
η
(
σ(s)

)∆s−
∫ t

t2

H(t, s)β
η(s)

r1/β(s)

ωγ
(
σ(s)

)
ηγ
(
σ(s)

)∆s.
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Using the integration by parts formula on time scales, we obtain∫ t

t2

H(t, s)Ψ1 (s)∆s ≤ H (t , t2 )ω(t2 ) +

∫ t

t2

H ∆s (t , s)ω
(
σ(s)

)
∆s

+

∫ t

t2

H(t, s)η∆(s)
ω
(
σ(s)

)
η
(
σ(s)

)∆s−
∫ t

t2

H(t, s)β
η(s)

r1/β(s)

ωγ
(
σ(s)

)
ηγ
(
σ(s)

)∆s

≤ H(t, t2)ω(t2) +

∫ t

t2

h+(t, s)

η
(
σ(s)

)H1/γ(t, s)ω
(
σ(s)

)
∆s

−
∫ t

t2

H(t, s)β
η(s)

r1/β(s)

ωγ
(
σ(s)

)
ηγ
(
σ(s)

)∆s. (2.20)

Applying Lemma 1.2 with

X =
[H(t, s)βη(s)]

1/γ[
r1/β(s)ηγ (σ(s))

]1/γ ω(σ(s)
)
and Y =

[
β

β + 1

[
r1/β(s)ηγ (σ(s))

]1/γ
[βη(s)]

1/γ

h+(t, s)

η (σ(s))

]β
we obtain,

h+(t, s)

η
(
σ(s)

)H1/γ(t, s)ω
(
σ(s)

)
−H(t, s)β

η(s)

r1/β(s)

ωγ
(
σ(s)

)
ηγ
(
σ(s)

) ≤ r(s)
(
h+(t, s)

)β+1

(β + 1)β+1ηβ(s)
.

Substituting the latter inequality into (2.20), we conclude that∫ t

t2

[
H (t, s) Ψ1 (s)−

r(s)
(
h+(t , s)

)β+1

(β + 1 )β+1ηβ(s)

]
∆s ≤ H(t, t2)ω(t2), (2.21)

which contradicts (2.19). This proves the theorem. �

From Theorem 2.2, we immediately have the following oscillation criterion.

Corollary 2.1. Suppose that all conditions of Theorem 2.2 are satisfied with (2.19)
replaced by

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

H (t, s) η(s)

(
n∑
i=1

qi(s)ψ
β
(
hi(s)

)Aβ(τ−1
2 (hi(s)), t1

)
Aβ
(
s, t1

) )
∆s =∞

and

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

r(s)
(
h+(t, s)

)β+1

ηβ(s)
∆s <∞,

then equation (1.1) is oscillatory.

Theorem 2.3. Assume that conditions (i)-(iiia) hold and hi(t) ≥ τ2(t) for i =
1, 2, ..., n. If there exists a positive function η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
η(s)

(
n∑
i=1

qi(s)ψ
β
(
hi(s)

))
−
r(s)

(
η∆(s)

)β+1

(β + 1)β+1ηβ(s)

)
∆s =∞, (2.22)
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for T > t1 with t1 ∈ [t0,∞)T suffi ciently large, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ1(t)) > 0,
x(τ2(t)) > 0 and x(hi(t)) > 0 for t ≥ t1 and i = 1, 2, ..., n. Proceeding as in the
proof of Theorem 2.1, we again arrive at (2.11) for t ≥ t2. Using the fact that τ2(t)
is strictly increasing and noting that hi(t) ≥ τ2(t), we have

τ−1
2 (hi(t)) ≥ t

for i = 1, 2, ..., n. So, from the fact that y is increasing, we obtain

y
(
τ−1

2 (hi(t))
)

y(t)
≥ 1, i = 1, 2, ..., n. (2.23)

Using (2.23) in (2.11) yields

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − η(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β(
yβ(t)

)∆
yβ(t)yβ

(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)ψ
β
(
hi(t)

))
for t ≥ t2. (2.24)

The rest of proof is similar to that of Theorem 2.1, and so we omit the details. �
Theorem 2.4. Assume that conditions (i)-(iiia) hold and hi(t) ≥ τ2(t) for i =
1, 2, ..., n. Suppose also that there exist functions η ∈ C1

rd ([t0,∞)T,R+) and H,h ∈
Crd (D,R) with H belongs to the class P such that

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

[
H(t, s)η(s)

(
n∑
i=1

qi(s)ψ
β
(
hi(s)

))
−
r(s)

(
h+(t, s)

)β+1

(β + 1)β+1ηβ(s)

]
∆s =∞,

(2.25)
where t∗ > t1 for suffi ciently large t1 ∈ [t0,∞)T. Then every solution of equation
(1.1) is oscillatory.

Proof. The proof follows from (2.23), (2.24) and Theorem 2.2, and so we omit the
details. �

3. Oscillation results when (iiib) holds

In this section, we establish some new criteria for the oscillation of (1.1) in the
cases where hi(t) ≤ τ1(t) and hi(t) ≥ τ1(t) for i = 1, 2, ..., n, respectively. For
notational purposes, we let

φ(t) :=
1

p1(τ−1
1 (t))

[
1− 1

p1(τ−1
1 (τ−1

1 (t)))

A
(
τ−1

1 (τ−1
1 (t)), t1

)
A
(
τ−1

1 (t), t1
)

− p2(τ−1
1 (t))

p1(τ−1
1 (τ2(τ−1

1 (t))))

A
(
τ−1

1 (τ2(τ−1
1 (t))), t1

)
A
(
τ−1

1 (t), t1
) ]
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where τ−1
1 denotes the inverse function of τ1, and throughout this section we assume

that φ(t) > 0 for all suffi ciently large t.

Theorem 3.1. Suppose that conditions (i), (ii), (iiib) hold and hi(t) ≤ τ1(t) for
i = 1, 2, ..., n. If there exists a positive function η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
Ψ2 (s)−

r(s)
(
η∆(s)

)β+1

(β + 1 )β+1ηβ(s)

)
∆s =∞ (3.1)

for T > t1 where t1 ∈ [t0,∞)T suffi ciently large and

Ψ2 (t) = η(t)

(
n∑

i=1

qi(t)φβ
(
hi(t)

)Aβ
(
τ−1

1 (hi(t)), t1
)

Aβ
(
t , t1

) )
,

then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ1(t)) > 0,
x(τ2(t)) > 0 and x(hi(t)) > 0 for t ≥ t1 and i = 1, 2, ..., n. Following a similar
procedure to the proof of Theorem 2.1, we see that (2.2), (2.3) hold again, and
from the definition of y(t), we obtain

x(t) ≥ y(τ−1
1 (t))

p1(τ−1
1 (t))

− y(τ−1
1 (τ−1

1 (t)))

p1(τ−1
1 (t))p1(τ−1

1 (τ−1
1 (t)))

− p2(τ−1
1 (t))y(τ−1

1 (τ2(τ−1
1 (t))))

p1(τ−1
1 (t))p1(τ−1

1 (τ2(τ−1
1 (t))))

.

(3.2)

Using the fact that τ1 and τ2 are strictly increasing, and noting that τ1(t) < t <
τ2(t), we get

τ−1
1 (τ−1

1 (t)) > τ−1
1 (t) (3.3)

and

τ−1
1 (τ2(τ−1

1 (t))) > τ−1
1 (t). (3.4)

Taking y(t)/A(t, t1) is nonincreasing on [t1,∞)T into account that, we deduce from
(3.3) and (3.4) that

A
(
τ−1

1 (τ−1
1 (t)), t1

)
y(τ−1

1 (t))

A
(
τ−1

1 (t), t1
) ≥ y(τ−1

1 (τ−1
1 (t))) for t ≥ t1, (3.5)

and

A
(
τ−1

1 (τ2(τ−1
1 (t))), t1

)
y(τ−1

1 (t))

A
(
τ−1

1 (t), t1
) ≥ y(τ−1

1 (τ2(τ−1
1 (t)))) for t ≥ t1, (3.6)

respectively. Using (3.5) and (3.6) in (3.4) yields

x(t) ≥ 1

p1(τ−1
1 (t))

[
1− 1

p1(τ−1
1 (τ−1

1 (t)))

A
(
τ−1

1 (τ−1
1 (t)), t1

)
A
(
τ−1

1 (t), t1
)
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− p2(τ−1
1 (t))

p1(τ−1
1 (τ2(τ−1

1 (t))))

A
(
τ−1

1 (τ2(τ−1
1 (t))), t1

)
A
(
τ−1

1 (t), t1
) ]

y(τ−1
1 (t)) (3.7)

for t ≥ t1. Since limt→∞ hi(t) = ∞, we can choose t2 ≥ t1 such that all hi(t) ≥ t1
for t ≥ t2, where i = 1, 2, ..., n. Thus, from (3.7) we obtain

x(hi(t)) ≥ φ(hi(t))y
(
τ−1

1 (hi(t))
)
, i = 1, 2, ..., n (3.8)

for t ≥ t2. Using (3.8) in (1.1) gives(
r(t)

(
y∆(t)

)β)∆

+

n∑
i=1

qi(t)φ
β
(
hi(t)

)
yβ
(
τ−1

1 (hi(t))
)
≤ 0. (3.9)

Define again Riccati substitution ω by (2.10). Then, it follows from (2.10) and (3.9)
that

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − η(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β(
yβ(t)

)∆
yβ(t)yβ

(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)φ
β
(
hi(t)

)yβ(τ−1
1 (hi(t))

)
yβ(t)

)
for t ≥ t2. (3.10)

Using the fact y(t)/A(t, t1) is nonincreasing, and noting that hi(t) ≤ τ1(t) implies
τ−1

1 (hi(t)) ≤ t, we obtain

y
(
τ−1

1 (hi(t))
)

y(t)
≥
A
(
τ−1

1 (hi(t)), t1
)

A
(
t, t1

) . (3.11)

for i = 1, 2, ..., n. Substituting (3.11) into (3.10) gives

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − η(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β(
yβ(t)

)∆
yβ(t)yβ

(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)φ
β
(
hi(t)

)Aβ(τ−1
1 (hi(t)), t1

)
Aβ(t, t1)

)
for t ≥ t2. (3.12)

The remainder of the proof is similar to that of Theorem 2.1, and so the details are
omitted. �

Theorem 3.2. Suppose that conditions (i), (ii), (iiib) hold and hi(t) ≤ τ1(t) for
i = 1, 2, ..., n. Suppose also that there exist functions η ∈ C1

rd ([t0,∞)T,R+) and
H,h ∈ Crd (D,R) with H belongs to the class P such that

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

[
H (t, s) Ψ2 (s)−

r(s)
(
h+(t , s)

)β+1

(β + 1 )β+1ηβ(s)

]
∆s =∞, (3.13)

where Ψ2 (t) is as in Theorem 3.1 and t∗ > t1 for suffi ciently large t1 ∈ [t0,∞)T.
Then every solution of equation (1.1) is oscillatory.
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Proof. The proof follows from (3.11), (3.12) and Theorem 2.2, and so we omit the
details. �

From Theorem 3.3, we immediately have the following oscillation criterion.

Corollary 3.1. Suppose that all conditions of Theorem 3.2 are satisfied with (3.13)
replaced by

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

H (t, s) η(s)

(
n∑
i=1

qi(s)φ
β
(
hi(s)

)Aβ(τ−1
1 (hi(s)), t1

)
Aβ
(
s, t1

) )
∆s =∞

and

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

r(s)
(
h+(t, s)

)β+1

ηβ(s)
∆s <∞,

then equation (1.1) is oscillatory.

Theorem 3.3. Assume that conditions (i), (ii), (iiib) hold and hi(t) ≥ τ1(t) for
i = 1, 2, ..., n. If there exists a positive function η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
η(s)

(
n∑
i=1

qi(s)φ
β
(
hi(s)

))
−
r(s)

(
η∆(s)

)β+1

(β + 1)β+1ηβ(s)

)
∆s =∞, (3.14)

for T > t1 with t1 ∈ [t0,∞)T suffi ciently large, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x(τ1(t)) > 0,
x(τ2(t)) > 0 and x(hi(t)) > 0 for t ≥ t1 and i = 1, 2, ..., n. Proceeding as in the
proof of Theorem 3.1, we again arrive at (3.10) for t ≥ t2. Using the fact that τ1(t)
is strictly increasing and noting that hi(t) ≥ τ1(t), we have

τ−1
1 (hi(t)) ≥ t

for i = 1, 2, ..., n. So, from the fact that y is increasing, we obtain

y
(
τ−1

1 (hi(t))
)

y(t)
≥ 1, i = 1, 2, ..., n. (3.15)

Using (3.15) in (3.10) yields

ω∆ (t) ≤ η∆ (t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β
yβ
(
σ(t)

) − η(t)
r
(
σ(t)

)(
y∆
(
σ(t)

))β(
yβ(t)

)∆
yβ(t)yβ

(
σ(t)

)
−η(t)

(
n∑
i=1

qi(t)φ
β
(
hi(t)

))
for t ≥ t2. (3.16)

The rest of proof is similar to the proof of Theorem 2.1, and so the details are
omitted. �
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Theorem 3.4. Suppose that conditions (i), (ii), (iiib) hold and hi(t) ≥ τ1(t) for
i = 1, 2, ..., n. Suppose also that there exist functions η ∈ C1

rd ([t0,∞)T,R+) and
H,h ∈ Crd (D,R) with H belongs to the class P such that

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

[
H(t, s)η(s)

(
n∑
i=1

qi(s)φ
β
(
hi(s)

))
−
r(s)

(
h+(t, s)

)β+1

(β + 1)β+1ηβ(s)

]
∆s =∞,

(3.17)
where t∗ > t1 for suffi ciently large t1 ∈ [t0,∞)T. Then every solution of equation
(1.1) is oscillatory.

Proof. The proof follows from (3.15), (3.16) and Theorem 2.2, and so we omit the
details. �

4. Examples and Remarks

Example 4.1. Consider the neutral differential equation((x(t) + x(
t

2
) + tx(2t)

)′)3
′4 x3(t− 1) + t5x3(2t− 1) = 0, (4.1)

for t ≥ 13. Here we have T = R, β = 3, n = 2, r(t) = p1(t) = 1, p2(t) = t,
q1(t) = t4, q2(t) = t5, τ1(t) = t/2, τ2(t) = 2t, h1(t) = t− 1 and h(t) = 2t− 1. It is
clear that conditions (i)-(iiia) hold, τ2(t) > h2(t) > t > h1(t) and

ψ(t) =
1

t/2

[
1− 1

t/4
− 1

t/8

]
=

2t− 24

t2
> 0, for t ≥ 13. (4.2)

On the other hand, we see that

A(t, t1) =

∫ t

t1

1

r1/β(s)
ds =

∫ t

13

ds = t− 13.

With η(t) = t, condition (2.1) is satisfied due to

lim sup
t→∞

∫ t

T

[
s5

(
2s− 26

(s− 1)2

)3(
s− 27

2s− 26

)3

+ s6

(
4s− 26

(2s− 1)2

)3(
s− 27/2

s− 13

)3
]
ds =∞

and

lim sup
t→∞

∫ t

T

1

44s3
ds <∞.

where T > 13. Hence, by Theorem 2.1, every solution of (4.1) is oscillatory.

Example 4.2. Let T = Z and consider the neutral difference equation

∆

[
1

t1/3

(
∆
(
x(t) + 3x(t− 3) + 7x(t+ 1)

))1/3
]

+

n∑
i=1

tix1/3(t+ i+ 1) = 0, (4.3)
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for t ≥ 2. Here we have β = 1/3, r(t) = 1/t1/3, p1(t) = 3, p2(t) = 7, τ1(t) = t− 3,
τ2(t) = t + 1, qi(t) = ti and hi(t) = t + i + 1 for i = 1, 2, ..., n. It is clear that
conditions (i)-(iiia) hold, t < τ2(t) < hi(t) for i = 1, 2, ..., n and

ψ(t) =
1

7

[
1− 1

7
− 3

7

]
=

3

49
> 0. (4.4)

It is easy to see that condition (2.22) holds with η(t) = c > 0. So, by Theorem 2.3,
all solutions of equation (4.3) are oscillatory.

Example 4.3. Consider the second order neutral dynamic equation((x(t) + 5tx(
t

2
) + tx(4t)

)∆
)3
∆

+ t2x3

(
t

4

)
+ t3x3

(
t

8

)
= 0, (4.5)

for t ≥ 2 and T := 2Z={2k : k ∈ Z} ∪ {0}. Here we have β = 3, n = 2, r(t) = 1,
p1(t) = 5t, p2(t) = t, τ1(t) = t/2, τ2(t) = 4t, q1(t) = t2, q2(t) = t3, h1(t) = t/4
and h2(t) = t/8. It is clear that conditions (i), (ii), (iiib) hold and τ1(t) ≥ hi(t) for
i = 1, 2. Also, it obvious that A(t, t1) = t− 2 for any time scale T, and

φ(t) =
1

10t

[
1− 1

20t

4t− 2

2t− 2
− 2t

80t

16t− 2

2t− 2

]
=

32t2 − 43t+ 2

400t3 − 400t2
> 0 (4.6)

for t ≥ 2. Then, with η(t) = t2, we see that condition (3.1) holds for T > 2. Hence,
by Theorem 3.1, every solution of second order mixed neutral q-difference equation
(4.5) is oscillatory.

Example 4.4. Consider the neutral differential equation(
x(t) + tx(t− 2π) + x(t+ π)

)′′
+ 2x

(
t− π

2

)
+ tx(t+ 2π) = 0, t ≥ 5. (4.7)

Here we have T = R, β = 1, n = 2, r(t) = p2(t) = 1, p1(t) = t, τ1(t) = t − 2π,
τ2(t) = t + π, q1(t) = 2, q2(t) = t, h1(t) = t − π

2 and h2(t) = t + 2π. It is clear
that conditions (i), (ii), (iiib) hold, and τ1(t) < h1(t) < h2(t). On the other hand,
we see that A(t, t1) = t − 5, and φ(t) > 0. With η(t) = 1, it is easy to see that
condition (3.14) holds. Hence, by Theorem 3.3, every solution of equation (4.7) is
oscillatory. In fact, x(t) = sin t is such a solution.

Remark 4.1. Note that oscillation results presented in [6, 10, 12, 16, 19, 23, 28, 30,
36, 37] fail to apply to the equations (4.1), (4.3), (4.5) and (4.7).
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CURVES AND RULED SURFACES ACCORDING TO
ALTERNATIVE FRAME IN DUAL SPACE

SÜLEYMAN ŞENYURT AND ABDUSSAMET ÇALIŞKAN

Abstract. In this paper, the vectorial moments of the alternative vectors are
expressed in terms of altrenative frame. According to the new versions of these
vectorial moments, the parametric equations of the closed ruled surfaces cor-
responding to the (N̂), (Ĉ), (Ŵ ) dual curves are given. The integral invariants
of these surfaces are computed and illustrated by presenting with examples.

1. Introduction

There are many studies on the classical differential geometry of curve and surface
theories and are still being studied. A ruled surface in IR3 is a surface which
contains at least one 1-parameter family of straight lines. Thus a ruled surface has
a parametrization in the form

~ϕ(s, v) = ~α(s) + v~x(s) (1)

where we call α the anchor curve and the generator vector x as ruled surface.
When the above ruled surface satisfies ϕ(s+2π, v) = ϕ(s, v) it is called closed ruled
surface. The properties of the ruled surface obtained according to the condition of
the anchor curve or the generator vector are available in the books of differential
geometry, [1, 2, 13]. Bertrand offsets, Mannheim offsets and involute-evolute offsets
are obtained when special curves such as Bertrand, Mannheim and involute-evolute
are taken as base curves. The geometric properties of these curves and surfaces are
available in some references, [8, 9, 10, 12, 14, 15, 16].
If the vectorial moment of the x vector is denoted by x∗, then x∗ = α ∧ x. If X

has the norm ‖X‖ = 1, then it is dual point on the dual unit sphere. According to
E.Study theorem, there exists a one-to-one transformation between the dual points
on the unit dual sphere and the oriented lines in IR3. A one-parameter set of
points (a dual curve) on dual unit sphere corresponds to a one-parameter family
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of oriented lines in E3, which defines a ruled surface. This dual curve is called the
dual spherical image of the ruled surface, [5, 7].
The dual expression of a ruled surface in (1) is

ϕ(s, u) = ~x(s) ∧ ~x∗(s) + u~x(s) (2)

where the ~x(s)∧ ~x∗(s) is the anchor curve. s is not the arc-parameter of this curve
[5, 7]. The dual angle of pitch of the closed ruled surface in (2) is defined by [5]

Figure 1. The dual expression of a ruled surface.

ΛX = −〈D,X〉 = λx − εLx (3)

Here, λx and Lx are real integral invariants [5].
Osman Gürsoy’s study showed that the dual integral invariant of a closed ruled

surface, the dual angle of pitch, corresponds to the dual spherical surface area
described by the dual spherical indicatrix of the closed ruled surface. Further, geo-
metric interpretations of the real angle of pitch and the real pitch of a closed ruled
surface were given [6]. In [4], the pitch, the angle of pitch and the dual angle of
pitch of closed ruled surface corresponding to a closed curve on dual unit sphere
were investigated. In [17], a differential equation characterizing the dual spherical
curves and an explicit solution of this differential equation was given. By investigat-
ing one parameter spherical motion in with two different kinds of dual indicatrice
curves, Yaylıand Saraçoğlu obtained the ruled surfaces that correspond to tangent,
principal normal and binormal indicatrices of the dual curve were developable, [20].

2. Preliminaries

In E3, standard inner product is given by

〈x, x〉 = x21 + x22 + x23 (4)

where x = (x1, x2, x3) ∈ E3. Let α : I → E3 be a unit speed curve denote by
{T,N,B} the moving Frenet frame. T (s) is the tangent vector field, N(s) is the
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principal normal vector field and B(s) is the binormal vector field of curve α(s),
respectively. The Frenet formulas are given by [2]

T ′(s) = κ(s)N(s), N ′(s) = −κ(s)T (s) + τ(s)B(s), B′(s) = −τ(s)N(s). (5)

Here curvature and torsion of the curve α(s) are defined with [2]

κ(s) = ‖α′′(s)‖, τ(s) =
〈α′(s) ∧ α′′(s), α′′′(s)〉

‖α′(s) ∧ α′′2 · (6)

The vector W is called unit Darboux vector and defined by [3]

W =
w

‖w‖ =
1√

κ2 + τ2
(τT + κB) (7)

It is obvious that the Darboux vector is perpendicular to the principal normal vector
field N . If C is taken as C = W ∧ N , then {N,C,W} are another orthonormal
moving frame along the curve α. This frame is called an alternative frame. The
derivative formulae of the alternative frame is given by N ′

C ′

W ′

 =

 0 β 0
β 0 γ
0 −γ 0

 N
C
W

 (8)

where β =
√
κ2 + τ2 and γ = κ2

κ2+τ2

(
τ
κ

)′
.The relationship between the Frenet frame

and alternative frame are{
C = −κT + τB

W = τT + κB
or

{
T = −κC + τW

B = τC + κW
(9)

where principal normal vector N is same in both frames, κ = κ
β and τ = τ

β , [11, 19].
Let f(s), g(s) and h(s) be al least C3− functions. α(s) can be written in the

form of
α(s) = f(s)T (s) + g(s)N(s) + h(s)B(s) (10)

as a linear combination of the Frenet vectors {T,N,B}, [18]. By differentiating
both side of (10), it is obtained [18]

f ′(s)− g(s)κ(s) = 1, h′(s) + g(s)τ(s) = 0, g′(s) + f(s)κ(s)− h(s)τ(s) = 0. (11)

3. Curves and Ruled Surfaces According to Alternative Frame in
Dual Space

The geometric location of N̂ = N + εN∗, Ĉ = C + εC∗ and Ŵ = W + εW ∗

vectors draws closed curves on the dual sphere. These closed curves are shown as
(N̂), (Ĉ) and (Ŵ ) respectively. According to Study’s theorem these closed curves
correspond to closed ruled surfaces. The dual expressions of the closed ruled sur-
faces corresponding to (N̂), (Ĉ) and (Ŵ ) dual curves are

ψN̂ (s, v) = βN (s) + vN(s), βN (s) = N(s) ∧N∗(s),
ψĈ(s, v) = βC(s) + vC(s), βC(s) = C(s) ∧ C∗(s), (12)
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ψ
Ŵ

(s, v) = βW (s) + vW (s), βW (s) = W (s) ∧W ∗(s).

It is known that the curve α is written in the form of Frenet vectors. Using the
equations (9) and (10), we can write as the linear combination of alternative vectors
as follows:

α(s) = f(−κC + τW ) + gN + h(τC + κW )

= gN +
g′

β
C +

(
fτ + hκ

β

)
W. (13)

Considering the above equation, vectorial moments of N,C,W are given respec-
tively

N∗ = α ∧N =
(
gN +

g′

β
C +

(fτ + hκ

β

)
W
)
∧N

= −g
′

β
W +

(fτ + hκ

β

)
C,

C∗ = α ∧ C =
(
gN +

g′

β
C +

(fτ + hκ

β

)
W
)
∧ C

= gW −
(fτ + hκ

β

)
N,

W ∗ = α ∧W =
(
gN +

g′

β
C +

(fτ + hκ

β

)
W
)
∧W

=
g′

β
N − gC. (14)

Using (14) in (12), The dual expressions of the closed ruled surfaces corresponding
to (N̂), (Ĉ) and (Ŵ ) dual curves are given by

ψN̂ (s, v) = N ∧N∗ + vN = N ∧
(

1

β

(
(fτ + hκ)C − g′W

))
+ vN

=
1

β

(
g′C + (fτ + hκ)W

)
+ vN,

ψĈ(s, v) = C(s) ∧ C∗(s) + vC(s) = C ∧
(
− 1

β
(fτ + hκ)N + gW

)
+ vC

=
1

β
(fτ + hκ)W + gN + vC,

ϕ
Ŵ

(s, v) = W (s) ∧W ∗(s) + vW (s) = W ∧
(
g′

β
N − gC

)
+ vW (s)

= gN +
g′

β
C + vW (s). (15)
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Theorem 1. Distribution parameters of the closed ruled surfaces corresponding to
the (N̂), (Ĉ), (Ŵ ) dual curves are given by

PN̂ =
1

β

(
−
(
fτ + hκ

β

)′
− γ

β
g′

)
,

PĈ =
g′γ + β

(
1
β (fτ + hκ)

)′
β2 + γ2

, (16)

P
Ŵ

= 0.

Proof. We know that the distribution parameter of the closed ruled surface corre-
sponding to the (N̂) dual curve is calculated by

PN̂ =
det((N ∧N∗)′, N,N ′)

‖N ′2 · (17)

It can be written that

(N ∧N∗)′ =

(
1

β

)′ (
g′C + (fτ + hκ)W

)
+

1

β

(
g′′C + g′(−βN + γW )

+(fτ + hκ)′W − γ(fτ + hκ)
)
C

= −g′N +

((g′
β

)′ − γ

β

(
fτ + hκ

))
C +

((fτ + hκ

β

)′
+
γ

β
g′
)
W.

If this value is substituted into (17), the following result is obtained

PN̂ =
1

β2

∣∣∣∣∣∣∣∣∣∣∣∣

−g′
(
g′

β

)′
− γ

β
(fτ + hκ) −

(
fτ + hκ

β

)′
− γ

β
g′

1 0 0

0 β 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

β

(
−
(
fτ + hκ

β

)′
− γ

β
g′

)
. (18)

Similarly, with the values of

(C ∧ C∗)′ = g′N + gN ′ +

(
fτ + hκ

β

)′
W +

1

β
(fτ + hκ)W ′

= g′N +

(
gβ − γ

β
(fτ + hκ)

)
C +

(
1

β
(fτ + hκ)

)′
W,

(W ∧W ∗)′ = g′N + gN ′ +

(
g′

β

)′
C +

g′

β
C ′
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=

(
gβ +

(
g′

β

)′)
C +

γ

β
g′W,

distribution parameters of the closed ruled surfaces corresponding to the (Ĉ) and
(Ŵ ) dual curves are

PĈ =
g′γ + β

(
1
β (fτ + hκ)

)′
β2 + γ2

, P
Ŵ

= 0. (19)

�

Theorem 2. Gauss curvatures of closed ruled surfaces corresponding to (N̂), (Ĉ)

and (Ŵ ) dual curves are

KN̂ (P ) = −


(
γ
β g
′ +
(
fτ+hκ
β

)′)
β√((

g′

β

)′
− γ(fτ+hκ)

β + vβ

)2
+

(
γ
β g
′ +
(
fτ+hκ
β

)′)2

2

,

KĈ(P ) = −


β

(
fτ + hκ

β

)′
+ γg′√√√√(g′ − vβ)

2
+

[(
fτ + hκ

β

)′
+ vγ

]2


2

,

K
Ŵ

(P ) = 0.

Proof. For the closed ruled surface ψN̂ (s, v), the partial derivative is taken accord-
ing to s and v, it is found

ψN̂v
(s, v) = N,

ψN̂s
(s, v) =

(
g′

β
C +

(
fτ + hκ

β

)
W

)′
+ vN ′(s)

= −g′N +

((
g′

β

)′
− γ

β
(fτ + hκ) + vβ

)
C

+

(
γ

β
g′ +

(
fτ + hκ

β

)′)
W.

Taking into account that inner product, we compute〈
ψN̂v

(s, v), ψN̂s
(s, v)〉 = −g′ 6= 0. (20)
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Using the Gram-Schmidt process, it can be seen that

y1 = x1 = N,

y2 = −〈y1, x2〉〈y1, y1〉
y1 + x2

=

((
g′

β

)′
− γ(fτ + hκ)

β
+ vβ

)
C +

(
γ

β
g′ +

(
fτ + hκ

β

)′)
W,

E1 =
y1
‖y1‖

= N,

E2 =
y2
‖y2‖

=

((
g′

β

)′
− γ(fτ+hκ)

β + vβ

)
C +

(
γ
β g
′ +
(
fτ+hκ
β

)′)
W√((

g′

β

)′
− γ(fτ+hκ)

β + vβ

)2
+

(
γ
β g
′ +
(
fτ+hκ
β

)′)2 .

For a closed ruled surface with parametrization ψN̂ (s, v), the normal vector is given
by

NN̂ = E1 ∧ E2

=

−
(
γ
β g
′ +
(
fτ+hκ
β

)′)
C +

((
g′

β

)′
− γ(fτ+hκ)

β + vβ

)
W√((

g′

β

)′
− γ(fτ+hκ)

β + vβ

)2
+

(
γ
β g
′ +
(
fτ+hκ
β

)′)2 ·
On the other hand, we compute

SN̂ (E2) = DE2NN̂ = D y2
‖y2‖

NN̂ =
1

‖y2‖
Dλy1+x2NN̂ =

1

‖y2‖
(
λ
∂NN̂
∂v

+
∂NN̂
∂s

)

⇒ 〈SN̂ (E2), E1〉 =


(
γ
β
g′ +

(
fτ+hκ
β

)′)
β√((

g′
β

)′
− γ(fτ+hκ)

β
+ vβ

)2
+
(
γ
β
g′ +

(
fτ+hκ
β

)′)2
 ,

(21)

where λ = − 〈y1,x2〉〈y1,y1〉 . Since shape operator is self-adjoint, we can write 〈S(E2), E1〉 =

〈S(E1), E2〉. If the main direction of the surface is the asymptotic direction, the
shape operator is 〈S(E1), E1〉 = 0, [1]. Then, Gauss curvature of closed ruled
surface ψN̂ (s, v) is

KN̂ (P ) = det(SP ) =

[
〈S(E1), E1〉 〈S(E1), E2〉
〈S(E2), E1〉 〈S(E2), E2〉

]
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= −


(
γ
β g
′ +
(
fτ+hκ
β

)′)
β√((

g′

β

)′
− γ(fτ+hκ)

β + vβ

)2
+

(
γ
β g
′ +
(
fτ+hκ
β

)′)2

2

.

Likewise, Gauss curvatures of closed ruled surfaces ψĈ(s, v) and ψ
Ŵ

(s, v) are

KĈ(P ) = −


β

(
fτ + hκ

β

)′
+ γg′√√√√(g′ − vβ)

2
+

[(
fτ + hκ

β

)′
+ vγ

]2


2

,

K
Ŵ

(P ) = 0.

�

Theorem 3. The instantaneous dual Pfaffi an vector and the dual Steiner vector
are given by respectively

ŵ = τT + κB + ε(gκT + g′N − gτB) (22)

and

D = d+ εd∗ = T

∮
τ +B

∮
κ+ ε(T

∮
gκ+N

∮
g′ −B

∮
gτ). (23)

Proof. The instantaneous dual Pfaffi an vector has the same role with the dual Dar-
boux vector. w and w∗ are respectively the Darboux vector and vectorial moment
of the Darboux vector.
The instantaneous dual Pfaffi an vector is

ω̂ = ω + εω∗. (24)

Vectorial moment of Darboux vector is given by

ω∗ = α ∧ w

= gN ∧ (τT + κB) +
g′

β
C ∧ (τT + κB) +

(
fτ + hκ

β

)
W ∧ (τT + κB)

= gκT + g′N − gτB
If this statement is substituted in (24), the instantaneous dual Pfaffi an vector is

ω̂ = τT + κB + ε(gκT + g′N − gτB). (25)

Also, by taking definition of dual Steiner vector,[5], we can write

D =

∮
ω̂ = T

∮
τ +B

∮
κ+ ε(T

∮
gκ+N

∮
g′ −B

∮
gτ). (26)

�
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Theorem 4. The dual angles of pitch of closed ruled surfaces corresponding to
(N̂), (Ĉ), (Ŵ ) dual curves are

ΛN̂ = ε

(
κ(fτ + hκ) + g′βτ

β2
λT −

τ(fτ + hκ)− g′βκ
β2

λB −
∮
g′
)
,

ΛĈ =
1

β

(
κλT − τλB

)
− ε
(

1

β

(
gτλT + gκλB − τ

∮
gτ − κ

∮
gκ
))

,

Λ
Ŵ

= − 1

β

(
τλT + κλB

)
− ε
(

1

β

(
gκλT − gτλB + τ

∮
gκ− κ

∮
gτ
))

.

(27)

Here λT and λB are the angles of pitch of closed ruled surfaces drawn by T and B,
respectively.

Proof. If take into account equations (3) and (23), the dual angle of pitch of closed
ruled surface corresponding to the (N̂) dual curve is

ΛN̂ = −〈D, N̂〉 = −〈d+ εd∗, N + εN∗〉

= −〈T
∮
τ +B

∮
κ,N〉 − ε

[
〈T
∮
τ +B

∮
κ,

1

β

(
(fτ + hκ)C − g′W

)
〉

+〈T
∮
gκ+N

∮
g′ −B

∮
gτ ,N〉

]
= ε

(
κ(fτ + hκ) + g′βτ

β2

∮
τ − τ(fτ + hκ)− g′βκ

β2

∮
κ−

∮
g′
)

= ε

(
κ(fτ + hκ) + g′βτ

β2
λT −

τ(fτ + hκ)− g′βκ
β2

λB −
∮
g′
)
.

Similarly, the dual angles of pitch of closed ruled surfaces corresponding to the (Ĉ)

and (Ŵ ) dual curves are

ΛĈ = −〈D, Ĉ〉 = −〈d+ εd∗, C + εC∗〉

= −〈T
∮
τ +B

∮
κ,C〉 − ε

[
〈T
∮
τ +B

∮
κ,− 1

β

(
(fτ + hκ)N + gW

)
〉

+〈T
∮
gκ+N

∮
g′ −B

∮
gτ , C〉

]
=

1

β

(
κ

∮
τ − τ

∮
κ
)
− ε
(

1

β

(
gτ

∮
τ − τ

∮
gτ + gκ

∮
κ− κ

∮
gκ
))

=
1

β

(
κλT − τλB

)
− ε
(

1

β

(
gτλT + gκλB − τ

∮
gτ − κ

∮
gκ
))

,
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Λ
Ŵ

= −〈D, Ŵ 〉 = −〈d+ εd∗,W + εW ∗〉

= −〈T
∮
τ +B

∮
κ,W 〉 − ε

[
〈T
∮
τ +B

∮
κ,
g′

β
N − gC〉

+〈T
∮
gκ+N

∮
g′ −B

∮
gτ ,W 〉

]
= − 1

β

(
τ

∮
τ + κ

∮
κ

)
− ε
(

1

β

(
gκ

∮
τ − gτ

∮
κ+ τ

∮
gκ− κ

∮
gτ
))

= − 1

β

(
τλT + κλB

)
− ε
(

1

β

(
gκλT − gτλB + τ

∮
gκ− κ

∮
gτ
))

.

�

Example 1. Let α(s) = 1√
2
(− cos s,− sin s, s) be a circular helix curve. Then, it

is easy to show that

N(s) = (cos s, sin s, 0), C(s) = (− sin s, cos s, 0),

W (s) = (0, 0, 1),

κ(s) =
1√
2
, τ(s) =

1√
2
.

Considering equation (2), we obtain closed ruled surfaces corresponding to the
(N̂), (Ĉ), (Ŵ ) dual curves as

ψN̂ (s, v) = N ∧N∗ + vN

=
(
v cos s, v sin s,

1√
2
s
)
,

ψĈ(s, v) = C ∧ C∗ + vC

=
(
− 1√

2
cos s− v sin s,

1√
2

sin s+ v cos s,
s√
2

)
,

ψ
Ŵ

(s, v) = W ∧W ∗ + vW

=
(
− 1√

2
sin s,− 1√

2
cos s, v

)
.

These closed ruled surfaces are shown in Fig.2. Let us find the functions f(s), g(s), h(s).
From the equation (13), we can write

− 1√
2

cos s = g(s) cos s− g′(s) sin s,

− 1√
2

sin s = g(s) sin s+ g′(s) cos s,

s√
2

= f(s) + h(s).
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Figure 2. The figures (i), (ii) and (iii) show closed ruled surfaces
corresponding to the (N̂), (Ĉ) and (Ŵ ) dual curves, respectively.
Anchor curves of these surfaces are helix curve.

Using the equation (11), the solutions of f(s), g(s), h(s) are given by

f(s) =
s

2
, g(s) = − 1√

2
, h(s) =

s

2
· (28)

By taking into account the above equation and the equation (27), the dual angles
of pitch of closed ruled surfaces corresponding to (N̂), (Ĉ), (Ŵ ) dual curves are

ΛN̂ = ε

(
s

2
(λT − λB)− c

)
,

ΛĈ =
1√
2

(λT − λB)− ε
(
− 1

2
(λT + λB) +

1√
2

∮
ds

)
=

1√
2

(λT − λB)− ε
(
− 1

2
(λT + λB) +

1√
2
LT

)
,

Λ
Ŵ

= − 1√
2

(λT + λB)− ε

2
(λB − λT ).

Here LT is the pitch of closed ruled surface drawn by the T and c is an arbitrary
constant known as the integration constant.
Example 2. Let α(s) = (45 cos s, 1− sin s,− 35 cos s) be a curve. Then, it is easy to
show that

N(s) =
(
− 4

5
cos s, sin s,

3

5
cos s

)
,

C(s) =
(4

5
sin s, cos s,−3

5
sin s

)
,

W (s) =
(
− 3

5
, 0,−4

5

)
,

κ(s) = 1, τ(s) = 0.
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Considering equation (2), we obtain closed ruled surfaces corresponding to (N̂), (Ĉ), (Ŵ )
dual curves as

ψN̂ (s, v) = N ∧N∗ + vN

=
(4

5
cos s sin s− v 4

5
cos s, cos 2s+ v sin s,−3

5
cos s sin s+ v

3

5
cos s

)
,

ψĈ(s, v) = C ∧ C∗ + vC

= v
(4

5
sin s, cos s,−3

5
sin s

)
,

ψ
Ŵ

(s, v) = W ∧W ∗ + vW

=
(4

5
cos s− v 3

5
, 1− sin s,−3

5
cos s− v 4

5

)
.

These closed ruled surfaces are shown in Fig.3. Let us find the functions f(s), g(s), h(s).
From the equation (13), we can write

4 cos s = −4f(s) sin s− 4g(s) cos s− 3h(s),

1− sin s = −f(s) cos s+ g(s) sin s,

−3 cos s = 3f(s) sin s+ 3g(s) cos s− 4h(s).

Applying the (11), the solutions of f(s), g(s), h(s) are given by

f(s) = − cos s, g(s) = sin s− 1, h(s) = 0. (29)

By taking into account the above equation and the equation (27), the dual angles
of pitch of closed ruled surfaces corresponding to (N̂), (Ĉ), (Ŵ ) are

ΛN̂ = ε

(
cos sλB −

∮
cos sds

)
,

ΛĈ = λT − ε
(

(sin s− 1)λB −
∮

(sin s− 1)ds

)
,

Λ
Ŵ

= −λB − ε(gλT − c).

where c is an arbitrary constant known as the integration constant.
Example 3. The Viviani’s curve is formed by the intersection of a cylinder and a
sphere. It is parametrized by

α(t) =

(
a(1 + cos t), a sin t, 2a sin

t

2

)
.

Here, 2a is radius of sphere. The expression for the alternative invariants of Viviani’s
curve are given by

N(s) =

(
−3− 12 cos t− cos 2t√
88 cos t+ 162 + 6 cos 2t

,
−12 sin t− sin 2t√

88 cos t+ 162 + 6 cos 2t
,
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Figure 3. The figures (i), (ii) and (iii) show closed ruled surfaces
corresponding to the (N̂), (Ĉ) and (Ŵ ) dual curves, respectively.

2
√
2 sin t

2√
81 + 44 cos t+ 3 cos 2t

)
,

C(s) = W ∧N,

W (s) =

[ √
3 cos t+ 13

a (cos t+ 3)3/2

(
3 sin(t/2) + sin(3t/2)√

26 + 6 cos t

)
+

−6
√
2 cos(t/2) sin t

a(3 cos t+ 13)
√
3 + cos t

,

√
3 cos t+ 13

a (cos t+ 3)3/2

(
−2
√
2 cos3(t/2)√
13 + 3 cos t

)
+

6 cos(t/2)

a(3 cos t+ 13)

( √
2 cos t√
3 + cos t

)
,

√
3 cos t+ 13

a (cos t+ 3)3/2

(
2
√
2√

13 + 3 cos t

)
+

6 cos(t/2)

a(3 cos t+ 13)

(√
2 cos(t/2)√
3 + cos t

)]
(
(3 cos t+ 13)a−1(cos t+ 3)−3 + 36 cos(t/2)2a−2(3 cos t+ 13)−2

) ,

κ(s) =

√
3 cos t+ 13

a(cos t+ 3)
3
2

, τ(s) =
6 cos t

2

3a cos t+ 13a
·

Considering the equation(15), closed ruled surfaces ψN̂ (s, v), ψĈ(s, v) and ψ
Ŵ

(s, v)

corresponding to (N̂), (Ĉ) and (Ŵ ) dual curves is plotted by using Maple program
(Fig. 4). Herein, associated calculations of these surfaces are computed by Maple
program.

4. Conclusion

In this study, the vectorial moments of the alternative vectors are written using
the data in equation (13). The dual expressions of the closed ruled surfaces which
corresponds to the dual curves drawn by the N̂ , Ĉ and Ŵ on the dual sphere
are expressed in terms of alternative vectors. The distribution parameters and
Gauss curvatures of closed ruled surfaces ψN̂ (s, v), ψĈ(s, v) and ψ

Ŵ
(s, v), which

are obtained using the equation (13), are calculated. Applying (13), likewise, it is
shown that the closed ruled surface corresponding to the (Ŵ ) is developable. The
dual angles of pitch of these surfaces obtained using the equation (13) are expressed
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Figure 4. The figures (i), (ii) and (iii) show closed ruled surfaces
corresponding to the (N̂), (Ĉ) and (Ŵ ) dual curves, respectively.
Anchor curves of these surfaces are Viviani’s curve.

in terms of the angles of pitch of closed ruled surfaces drawn by T and B. Upon
inspection of helix and Viviani’s curves, the related ruled surfaces are generated.
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ANALYSIS OF JOINT RELIABILITY IMPORTANCE IN LINEAR
m-CONSECUTIVE-k, l-OUT-OF-n:F SYSTEM

CIHANGIR KAN AND MURAT OZKUT

Abstract. Combinatorial techniques have an important role to compute the
joint reliability importance (JRI) of some coherent systems. We obtain combi-
natorial formula for calculation of the JRI of two components in a generalised
version of consecutive type systems consisting of n linearly ordered components
such that system fails if and only if (iff) there are at least m l-overlapping
runs of k consecutive failed components (n ≥ m(k− l) + l, l < k). Overlapping
runs mean having common elements which is denoted by l. We concentrate
on both s-independent & identical components and exchangeable components.
Explicit combinatorial formulae are provided for computing the JRI of the
above mentioned cases. For both cases, we also compare the results with lin-
ear m-consecutive-k-out-of-n:F system (nonoverlapping case when l = 0). In
addition, some numerical and illustrative examples are presented.

Acronyms and Notations

MRI Marginal Reliability Importance
JRI Joint Reliability Importance
Lin/m/Con/k/l/n : F Linear m-consecutive-k,l-out-of-n:F
n number of components
Xi the state of component i, i = 1, . . . , n

(Xi = 1 if the ith component fails, and
Xi = 0 if the ith component works)

E the event that the system works
kφ minimum number of failed components that may

cause system failure
zφ maximum number of failed components such that a

system can still work successfully
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1. Introduction

The marginal reliability importance (MRI) of a component measures the change
in system reliability with respect to the change in component reliability([5, 6, 24, 35,
36, 37]). MRI is very useful in engineering fields such as design and improvement
of a system. If MRIE+j(i) (MRIE−j(i)) denotes MRI of ith component when jth
component is functioning (failed), then JRI(i, j) =MRIE+j(i)−MRIE−j(i) where
the JRI is a measure of the interaction of the components in their contribution to
system reliability (see [3, 14, 19, 20, 21]). Type and degree of interactions between
two components are represented not only by the sign but also by the value of the
JRI of two components in a coherent system. If the sign of the JRI of two compo-
nents is nonnegative (nonpositive), it is called reliability complements (substitutes)
([19]). Moreover, if JRI > 0 (JRI < 0), then one component becomes more (less)
important when the other is functioning which is also considered as synergy (dimin-
ishing returns). For JRI = 0, then one component’s importance is not affected by
the functioning of the other component ([3]). In literature, there are many studies
on computation and analysis of JRI. Hong, Koo, and Lie [22] obtained a closed-form
equation for the JRI of two components in a k-out-of- n : G system, and examined
its properties with respect to component reliability, and system parameters k and n.
Gao, Cui, and Li [14] deeply analyzed JRI of three components in a k-out-of-n : G
system with independent components. Gertsbakh and Shpungin [17] combinatori-
ally computed the JRI of two components. Rani, Jain, and Dewan [34] presented
conditional marginal and conditional JRI in series—parallel systems. Eryilmaz [10]
presented JRI in linear m-consecutive-k-out-of-n : F systems. Mahmoud and Ery-
ilmaz [28] studied exchangeable dependent components which is generalization of
some results in Hong, Koo, and Lie [22] and Gao, Cui, and Li [14]. Zhu, Mah-
moud, and Mohamed [38] presented JRI in m-consecutive-k-out-of-n : F system
that consists of Markov dependent components. Zhu, Mahmoud, and Mohamed
[39] computed the JRI in consecutive-k-within-m-out-of-n : F system with Markov
dependent components. Eryilmaz and Mahmoud [8] firstly proposed and studied
the m-consecutive-k, l-out-of-n : F system. Zhu et al. [40] derived closed-form for-
mulas for the reliability of the m-consecutive-k, l-out-of-n : F and G systems, and
computed JRI of this system when the components are non-homogenous Markov-
dependent. One can see an extensive review of reliability importance measures in
Kuo and Zhu [24] and Kuo, Way, and Zuo [25].
Eryilmaz, Oruc, and Oger [12] obtained general formula for computing the joint

reliability importance of two components for a binary coherent system that con-
sists of exchangeable dependent components. In that study, the joint reliability
importance can be easily calculated if the path sets of the system are known. On
the other hand, achieving the full list of path sets for the computation of JRI of
any coherent system is not an easy task. Hence, only combinatorial formula for a
series-parallel system is given in the study of Eryilmaz, Oruc, and Oger [12]. From
this point of view, combinatorial techniques have an important role to compute JRI
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of some coherent systems. In this paper, combinatorial method has been used for
computing the JRI of two components in Lin/m/Con/k/l/n : F systems consisting
of n linearly ordered components such that the system fails iff there are at least
m l-overlapping runs of k consecutive failed components (n ≥ m(k − l) + l, l < k).
Unlike the study done by Zhu et al. [40], we concentrate on both s-independent &
identical components and exchangeable components. For both cases, we also com-
pare the results with linearm-consecutive-k-out-of-n:F system (nonoverlapping case
when l = 0). Eryilmaz [11] mentioned Birnbaum importance of a component when
the system consists of exchangeable dependent components which is distinguished
from our paper. We give explicit formula for calculation of JRI of two components
under these two cases. And finally, some numerical and illustrative examples are
presented.

2. Lin/m/Con/k/l/n : F System

The Lin/m/Con/k/l/n : F is a system that consists of n linearly ordered com-
ponents such that the system fails iff there are at least m l-overlapping runs of k
consecutive failed components (n ≥ m(k − l) + l, l < k). Overlapping runs mean
having common elements. For instance, 1111 is a sequence which contains two over-
lapping runs of length three and three overlapping runs of length two. Now, consider
the states of a system with 16 components be 1110011100110100. For m = 5, k = 2
and l = 0, this system is functioning when l = 1 it is failed. When l = 0, the
Lin/m/Con/k/l/n : F system becomes the non-overlapping Lin/m/Con/k/n : F
system which is introduced by Griffi th [18] and Papastavridis [33]. When l = k−1,
it reduces to the overlapping Lin/m/Con/k/n : F systems. When m = 1, the
Lin/m/Con/k/l/n : F system reduces to the Lin/Con/k/n : F system. Also when
k = 1, the Lin/m/Con/k/l/n : F system becomes m-out-of-n : F system. This ad-
vanced system model with addition of the new parameter l creates diversity for real
life applications in quality control, statistics and probability. Recently, there are
many discussions on Lin/m/Con/k/l/n : F system. For instance, Agarwal and Mo-
han [1] computed reliability of the system with the help of graphical evaluation and
review technique under assumptions of i.i.d. components and (k − 1)-step Markov
dependent components. Some recent contributions on Lin/m/Con/k/l/n : F sys-
tem are the works of Gera [16], Levitin and Dai [27], Cui, Lin, and Du [7] and Zhu
et al. [40].
The reliability of Lin/m/Con/k/l/n : F system is closely related with the run

statistics NL(1:n)
n,k,l , which denotes the total number of l−overlapping runs of failures

of length k in a linearly ordered sequence of binary trials X1, X2, . . . , Xn. The dis-
tribution of the random variable NL(1:n)

n,k,l has been named the binomial distribution
of order k for l−overlapping runs of length k, and introduced and studied by Aki
and Hirano [2]. The reliability of Lin/m/Con/k/l/n : F system can be expressed
as P{E} = P{NL(1:n)

n,k,l < m}. Some recent discussions on this topic are Eryilmaz
[9], Eryilmaz and Mahmoud [8], Levitin [26], Makri and Psillakis [29, 30] and Makri
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and Psillakis [31]. For extensive reviews of the runs related literature, we refer to
Balakrishnan and Koutras [4], Fu and Lou [13], and Koutras [23].

3. The Reliability of Lin/m/Con/k/l/n : F system

Eryilmaz [9] computed that the reliability of Lin/m/Con/k/l/n : F system con-
sisting of s-independent components with common working probability P{Xi =
0} = p, and ri(n) denotes the total number of path sets of this structure including
i working components,

n∑
i=n−zφ

ri(n)pi(1− p)n−i

where
zφ = n− 1−

[
n−m(k − l)− l

k

]
n ≥ m(k−l)+l, and [x] denotes the integer part of x and for the derivation of ri(n),
see, Theorems 2.1 of Makri, Philippou, and Psillakis [32] and Eq. (1) of Eryilmaz
and Mahmoud [8]). For simplicity of calculation, throughout this paper, we will
denote Ni,a,k,l,s,n as N

L(1:n)
n,k,l , hence

ri(n) =

m−1∑
s=0

∑
a

(i+ 1

a

)
N
L(1:n)
n,k,l .

In an explicit way, by using Theorem 1 of Eryilmaz and Mahmoud [8] it can be
written as
ri(n) = C(n− i; i+ 1, 0; k − 1; k − 1)

+

m−1∑
s=1

min(i+1,s)∑
a=1

(i+ 1

a

)(s− 1

a− 1

)
C(n− i− al − s(k − l); a, i− a+ 1; k − l − 1, k − 1)

where the quantities C(β; a, r−a;m1−1,m2−1) can be calculated via the following
formula (see, e.g. Makri, Philippou, and Psillakis [32]):

C(β; a, r−a;m1−1,m2−1) =

[
β
m1

]∑
j1=0

[
β−m1j1
m2

]∑
j2=0

(−1)j1+j2
( a
j1

)(r − a
j2

)(β −m1j1 −m2j2 + r − 1

r − 1

)

4. The JRI of Lin/m/Con/k/l/n : F system

Consider Lin/m/Con/k/l/n : F system consists of n binary components. Let Xi

denote the state of ith component (Xi = 1 if the ith component fails, and Xi = 0
if it works, i = 1, 2, . . . , n.) and E be the event that system functions. Then the
JRI of components i and j can be defined as (see Kuo and Zhu [2012])

JRI(i, j) = P{E|Xi = 1, Xj = 1} − P{E|Xi = 1, Xj = 0} − P{E|Xi = 0, Xj = 1}
+P {E|Xi = 0, Xj = 0} . (1)

Eryilmaz [10] expressed (1) by using the law of total probability as follows

JRI(i, j) =
P{E} − P{E,Xj = 0} − P{E,Xi = 0}+ P{E,Xi = 0, Xj = 0}

1− P{Xj = 0} − P{Xi = 0}+ P{Xi = 0, Xj = 0}
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−
P{E,Xj = 0} − P{E,Xi = 0, Xj = 0}
P{Xj = 0} − P{Xi = 0, Xj = 0}

−
P{E,Xi = 0} − P{E,Xi = 0, Xj = 0}
P{Xi = 0} − P{Xi = 0, Xj = 0}

+
P{E,Xi = 0, Xj = 0}
P{Xi = 0, Xj = 0}

.

So we need to calculate P{E,Xi = 0} and P{E,Xi = 0, Xj = 0} for the computa-
tion of JRI. It can easily be written as

P{E,Xi = 0}

= P{NL(1:n)
n,k,l < m,Xi = 0}

= P{NL(1:i−1)
i−1,k,l +N

L(i+1:n)
n−i,k,l < m,Xi = 0}

=
∑∑
s1+s2<m

P{NL(1:i−1)
i−1,k,l = s1, N

L(i+1:n)
n−i,k,l = s2, Xi = 0} (2)

and
P{E,Xi = 0, Xj = 0}

= P{NL(1:i−1)
i−1,k,l +N

L(i+1:j−1)
j−i−1,k,l +N

L(j+1:n)
n−j,k,l < m,Xi = 0, Xj = 0}

=
∑∑∑
s1+s2+s3<m

P{NL(1:i−1)
i−1,k,l = s1, N

L(i+1:j−1)
j−i−1,k,l = s2, N

L(j+1:n)
n−j,k,l = s3, Xi = 0, Xj = 0}.

(3)

In the following subsections, we will obtain combinatorial formulas for the JRI
of Lin/m/Con/k/l/n : F systems consisting of

i. s-independent and identical components (common working probability
P{Xi = 0} = p),

ii. exchangeable s-dependent components.

4.1. S-Independent and Identical Components. Consider a Lin/m/Con/k/l/n :
F system when the components are s-independent with same working probability
P{Xi = 0} = p. Assume that in the sequence of the first i − 1 components there
are m1 working ones and in the sequence of the last n− i components there are m2

working components, and let S(a:b)b−a+1 denote the number of working components

among the components a, a+1, . . . , b, for a < b. That is S(a:b)b−a+1 =
b∑
i=a

(1−Xi), then

by conditioning on s1, s2 and working components (2) can be rewritten as

P{E,Xi = 0} =
∑∑
s1+s2<m

i−1∑
m1=0

n−i∑
m2=0

P
{
N
L(1:i−1)
i−1,k,l = s1, N

L(i+1:n)
n−i,k,l = s2,

S
(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0

}
.

For the simplicity of calculation, above equation can be written as a sum of 4 terms
(4,5,6 and 7) as follows

P{E,Xi = 0} =

i−1∑
m1=0

n−i∑
m2=0

P
{
N
L(1:i−1)
i−1,k,l = 0, N

L(i+1:n)
n−i,k,l = 0,

S
(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0

}
(4)
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+

min
(
m−1,

[
n−i−l
k−l

])∑
s2=1

i−1∑
m1=0

upm2∑
m2=lowm2

P
{
N
L(1:i−1)
i−1,k,l = 0, N

L(i+1:n)
n−i,k,l = s2,

S
(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0

}
(5)

+

min
(
m−1,

[
i−1−l
k−l

])∑
s1=1

upm1∑
m1=lowm1

n−i∑
m2=0

P
{
N
L(1:i−1)
i−1,k,l = s1, N

L(i+1:n)
n−i,k,l = 0,

S
(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0

}
(6)

+

min
(
m−2,

[
i−1−l
k−l

])∑
s1=1

min
(
m−1−s1,

[
n−i−l
k−l

])∑
s2=1

upm1∑
m1=lowm1

upm2∑
m2=lowm2

P
{
N
L(1:i−1)
i−1,k,l = s1,

N
L(i+1:n)
n−i,k,l = s2, S

(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0

}
(7)

where

upm1 = i− 1− k − (s1 − 1)(k − l),

lowm1 =

∣∣∣∣∣ 1 +
[
i−2−s1(k−l)−l

k

]
if i−1−l

k−l < m− 1

0 otherwise
,

upm2 = n− i− k − (s2 − 1)(k − l),

lowm2 =

∣∣∣∣∣ 1 +
[
n−i−1−s2(k−l)−l

k

]
if n−i−l

k−l < m− 1

0 otherwise
.

For better understanding of the terms 4,5,6 and 7, an explanation is given at Ap-
pendix.
Now, consider the probability P{E,Xi = 0, Xj = 0}. From (3)

P{E,Xi = 0, Xj = 0}

=
∑∑∑
s1+s2+s3<m

i−1∑
m1=0

j−i−1∑
m2=0

n−j∑
m3=0

P
{
N
L(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1, N

L(i+1:j−1)
j−i−1,k,l = s2,

S
(i+1:j−1)
j−i−1 = m2, N

L(j+1:n)
n−j,k,l = s3, S

(j+1:n)
n−j = m3, Xi = 0, Xj = 0

}
By using the independence of components, we can write,

P
{
N
L(1:i−1)
i−1,k,l = s1, N

L(i+1:j−1)
j−i−1,k,l = s2, N

L(j+1:n)
n−j,k,l = s3,

S
(1:i−1)
i−1 = m1, S

(i+1:j−1)
j−i−1 = m2, S

(j+1:n)
n−j = m3, Xi = 0, Xj = 0

}
= P

{
N
L(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1

}
P
{
N
L(i+1:j−1)
j−i−1,k,l = s2, S

(i+1:j−1)
j−i−1 = m2

}
× P

{
N
L(j+1:n)
n−j,k,l = s3, S

(j+1:n)
n−j = m3

}
P
{
Xi = 0

}
P
{
Xj = 0

}
So, the cardinality of NL(i:j)

j−i−1,k,l and S
(i:j)
j−i−1 denotes the number of having s l-

overlapping failure runs of length k in a linear binary sequence of length j−i−1(i <
j) with M number of working component(s) which is given as

{NL(i:j)
j−i−1,k,l = s, S

(i:j)
j−i−1 = M} =
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a

(M + 1

a

)(s− 1

a− 1

)
C(j − i−M − al − s(k − l); a,M + 1− a; k − l − 1, k − 1), for s > 0.

(8)

The quantity C(β; a, r − a;m1 − 1,m2 − 1) can be calculated via the following
formula (see, e.g. Makri, Philippou, and Psillakis [32]):

C(β; a, r−a;m1−1,m2−1) =

[
β
m1

]∑
j1=0

[
β−m1j1
m2

]∑
j2=0

(−1)j1+j2
( a
j1

)(r − a
j2

)(β −m1j1 −m2j2 + r − 1

r − 1

)
.

P{E,Xi = 0, Xj = 0} can be rewritten explicitly which was shown at Appendix.

4.1.1. Numerical Studies and Illustrations. In this subsection, we present illustra-
tive computational results for the JRI of components in a Lin/m/Con/k/l/n : F
system when the components are s-independent with same working probability
P{Xi = 0} = p. In Figure 1., we compare graph of JRI(2,5) considered as a func-
tion of component reliability p for m = 3, k = 2, n = 20 and l = 0, 1.

Figure 1. JRI(2,5) in a Lin/3/Con/2/l/20:F system as a function
of p for l = 0 and 1.

It can be easily seen that for Lin/3/Con/2/0/20 : F system, the sign of JRI(2,5)
changes around at the point p = 0.55. On the other hand, for Lin/3/Con/2/1/20 :
F system this point shifts around p = 0.7. As a result for the values i = 2 and
j = 5, the graph of Lin/3/Con/2/1/20 : F system can be considered as a graph of
Lin/3/Con/2/0/20 : F system shifted to the right. The sign of JRI(2,5) may not
change for some values of n,m, k as seen in Figure 2.
In Table 1., we present all pairwise JRI values of the Lin/2/Con/2/1/5 : F

system for different values of p.
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Figure 2. JRI(2,5) in a Lin/2/Con/5/l/12:F system as a function
of p for l = 0 and

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
JRI(1,2) −0.171 −0.288 −0.357 −0.384 −0.375 −0.336 −0.273 −0.192 −0.099
JRI(1,3) 0.639 0.352 0.133 −0.024 −0.125 −0.176 −0.183 −0.152 −0.089
JRI(1,4) 0.729 0.512 0.343 0.216 0.125 0.064 0.027 0.008 0.001
JRI(1,5) −0.081 −0.128 −0.147 −0.144 −0.125 −0.096 −0.063 −0.032 −0.009
JRI(2,3) 0.549 −0.192 −0.073 −0.264 −0.375 −0.416 −0.393 −0.312 −0.179
JRI(2,4) 0.639 0.352 0.133 −0.024 −0.125 −0.176 −0.183 −0.152 −0.089

Table 1. All Pairwise JRI Values for the Lin/2/Con/2/1/5 : F System

Note that the Lin/m/Con/k/l/n : F system is symmetric, more precisely JRI(i, j) =
JRI(n− i+ 1, n− j + 1), By Table 1, JRI(1, 2) < JRI(1, 5) < 0 for all 0 < p < 1.
which means component 2 should be more reliable than component 5 to decrease
the diminishing return effect of component 1. while JRI(1, 4) > 0 for all 0 < p < 1.
which means that component 1 and 4 have complementary synergy. On the other
hand, one can see that components 1 and 3, and 2 and 4 are reliability complements
for p < 0.4, while they are reliability substitutes for p ≥ 0.4. The components 2
and 3 are reliability substitutes for p ≥ 0.2.
In Table 2., we show the sign of JRI between component 1 and others for different

values ofm, k, l and n with different component reliability p when Lin/m/Con/k/l/n :
F system contains s-independent and identical components.
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p n m k l JRI(1, 2) JRI(1, 3) JRI(1, 4) JRI(1, 5) JRI(1, 6) JRI(1, 7) JRI(1, j), j > 7
0.85 20 3 2 1 − − − − − − −
0.9 20 3 2 1 − − − − − − −
0.9 30 3 2 1 − − − − − − −
0.9 30 3 3 1 − − − + − − −
0.9 30 3 3 2 − − − − + − −
0.9 30 4 3 1 − − − + − + −
0.9 30 4 3 2 − − − − − + −

Table 2. The sign of JRI(1, j), j > 1 for different Lin/m/Con/k/l/n : F Systems

This table shows the effect of the system values n,m, k, l and p on the JRI. Also we
observe that components 1 and 5 are reliability complements in Lin/3/Con/3/1/30 :
F system when the components are s-independent with same working probability
p = 0.9. However, they are reliability substitutes in Lin/3/Con/3/2/30 : F system
with same component reliability. For Lin/3/Con/3/l/30 : F systems, when we
change the value of l from 1 to 2, the reliability complementary components 1 and
5 turns into reliability substitutive components, while the reliability substitutive
components 1 and 6 turns into reliability complementary components. As a result,
the sign of JRI may change as the value of n,m, k, l and p change.

Figure 3. JRI(1, j), j = 2, ..., 10, of Lin/2/Con/3/l/10:F system
with common working probabilityp = 0.9 for l = 1 and l = 2.

In Figure 3 we present JRI(1, j), j = 2, . . . , 10, of Lin/2/Con/3/l/10 : F system
consisting of independent and identical components with working probability p =
0.9 for the two cases: when l = 1 and l = 2. From this figure, we observe that
the sign of the JRI(1, 5) for these two cases are different. When JRI(1, j) <
0 (j = 2, . . . , 10), increasing in l causes diminishing on the value of JRI(1, j) in
Lin/2/Con/3/l/10 : F system, generally.

4.2. Exchangeable S-Dependent Components. In this section, JRI formula is
obtained for Lin/m/Con/k/l/n : F system consisting of exchangeable components.
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A sequence of components X1, X2, . . . , Xn is exchangeable if for each n,
P{Xπ1 = x1, . . . , Xπn = xn} = P{X1 = x1, . . . , Xn = xn}

for any permutation (π1, . . . , πn) of the indices in (1, . . . , n), i.e. the joint distri-
bution of X1, X2, . . . , Xn is symmetric in x1, x2, . . . , xn. The exchangeability means
that the components have identical distribution, but they affect one other within
the system. That means, the joint distribution of X1, X2, . . . , Xn is invariant under
permutation of its arguments. From George and Bowman (1995), any sequence
with a 0 s and n− a 1 s has probability

g(n, a) = P{X1 = 0, . . . , Xa = 0, Xa+1 = 1, . . . , Xn = 1}

=

n−a∑
i=0

(−1)i
(n− a

i

)
λa+i

=
a∑
i=0

(−1)i
(a
i

)
θn−a+i

where λa = P{X1 = 0, . . . , Xa = 0} and θa = P{X1 = 1, . . . , Xa = 1} with
λ0 = 1, θ0 = 1.
Since (2) can be obtained by the sum of (9), (10), (11) and (12), for exchangeable

components pm1+m2+1 × (1− p)n−m1−m2−1 can be replaced by g(n,m1 +m2 + 1)
in (2) [see Eryilmaz [10]]. Similarly, g(n,m1 +m2 +m3 + 2) can be substituted in
(3).

4.2.1. Numerical Studies and Illustrations. In this subsection, we consider
Lin/m/Con/k/l/n : F system consisting of exchangeable components and present
illustrative computational results for the JRI of components. Suppose p have a Beta
distribution with parameters α and β. Hence for exchangeable random variables
X1, . . . , Xn,

λa = P {X1 = 0, . . . , Xa = 0}

=

1∫
0

pa
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp

=
Γ(a+ α)Γ(α+ β)

Γ(α)Γ(a+ α+ β)

when a ≥ 1.
In Figure 4, we present JRI(1, j) of Lin/m/Con/3/l/10 : F system consisting of

exchangeable components with parameters α = 9 and β = 1 for the two cases: when
m = 2 and m = 3. Clearly, when m = 2, the sign JRI(1, j), j = 2, . . . , 10, are same
for the values l = 1 and l = 2 but the sign of JRI(1, 5) is different for another case,
m = 3, when l = 1 and l = 2 we observe that the sign of the JRI(1, 5) for these
two cases are opposite. Similar to s-independent and identical case, increasing in l
causes diminishing on the value of JRI between the first and the other components
in Lin/m/Con/k/l/n : F system consisting of exchangeable components, for most
cases.Since systems in Figure 3 containing s-independent components and systems
in Figure 4 containing exchangeable components with parameters α = 9 and β = 1
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Figure 4. JRI(1, j), j = 2, ..., 10, of Lin/m/Con/3/l/10:F system
with exchangeable components with parameters α = 9 and β = 1
for the two cases: when m = 2 (l = 1, 2) and m = 3 (l = 1, 2).

have the same working component reliability p = 0.9, one can easily compare
JRI(1, j) of those common systems.
In Table 3, the sign of JRI(1, j), j = 2, . . . , 10, of various Lin/m/Con/k/l/n : F
systems consisting of exchangeable components with parameters α = 9 and β = 1
are given.

α β p n m k l JRI(1, 2) JRI(1, 3) JRI(1, 4) JRI(1, j), j > 4
4 6 0.4 20 3 2 1 + + + +
10 6 0.625 20 3 2 1 − + + +
10 4 0.714 20 3 2 1 − − − −
4 6 0.4 10 3 2 1 − + + +
4 6 0.4 20 2 2 1 + + + +
4 6 0.4 20 2 3 1 − − + +
4 6 0.4 20 2 3 2 − − + +

Table 3. The sign of JRI(1, j), j > 1 for different Lin/m/Con/k/l/n : F systems

consisting of exchangeable components with parameters α = 9 and β = 1.

From Table 2 and 3 we can see that the dependency may effect the sign of the
JRI between the first and the other components. In addition, the sign of JRI
between the first and the other components in Lin/m/Con/k/l/n : F systems
consisting of exchangeable components highly depend on the values of n,m.k, and
l. However, from Table 3 one can say that increasing component reliability p will
change reliability complement components into reliability substitute components,
i.e. increasing p from 0.4 to 0.714 when n = 20,m = 3, k = 2, and l = 1.
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5. Conclusions

We have studied on Lin/m/Con/k/l/n : F system which is the generalization
of consecutive k-out-of-n : F system. A Lin/m/Con/k/l/n : F system becomes a
non-overlapping Lin/m/Con/k/n : F system, an overlapping Lin/m/Con/k/n : F
system, a Lin/Con/k/n : F system and a m-out-of-n : F system for l = 0, l =
k − 1,m = 1 and k = 1 respectively. We have derived combinatorial formula for
the computation of JRI of two components in Lin/m/Con/k/l/n : F system when
components are s-independent & identical components and exchangeable. One
possible future effort can be carried on the computation of JRI in an arbitrary
dependent case or by changing the type of the system from linear form into circular
form.

6. Appendix

For better understanding of the terms 4,5,6 and 7, consider a binary sequence in
the following form

11 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸
first i−1 components containing m1 working components

ith working component
0 1 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

last n−i components containing m2 working components

For the operation of system, s is the total number of l-overlapping failure runs of
length k must be less than m. We can denote this by s = s1 + s2(s < m) where
s1 and s2 denote the l-overlapping runs of length k in the first sequence i − 1
components and in the last sequence n − i components, respectively. Hence we
have four possible cases for operation of system.

Case 1
(4)

11 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸
first i−1 components containing m1 working components with s1=0

ith working component
0 1 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

last n−i components containing m2 working components with s2=0

Case 2
(5)

11 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸
first i−1 components containing m1 working components with s1=0

ith working component
0 1 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

last n−i components containing m2 working components with 0<s2<m

Case 3
(6)

11 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸
first i−1 components containing m1 working components with 0<s1<m

ith working component
0 1 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

last n−i components containing m2 working components with s2=0

Case 4
(7)

11 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸
first i−1 components containing m1 working components with 0<s1<m−1

ith working component
0 1 . . . 10 . . . 01 . . . 10 . . . 01 . . . 1︸ ︷︷ ︸

last n−i components containing m2 working components with 0<s2<m−1

Now let us consider terms of the sum 4,5,6 and 7 one by one. For term 4, where
s1 = s2 = 0,

i−1∑
m1=0

n−i∑
m2=0

P{NL(1:i−1)
i−1,k,l = 0, N

L(i+1:n)
n−i,k,l = 0, S

(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0}

=

i−1∑
m1=0

n−i∑
m2=0

C(i− 1−m1;m1 + 1, 0; k − 1, k − 1)× C(n− i−m2;m2 + 1, 0; k − 1, k − 1)

× pm1+m2+1 × (1− p)n−m1−m2−1

=

i−1∑
m1=0

n−i∑
m2=0

min(m1+1,
[
i−1−m1

k

]
)∑

j=0

(−1)j
(m1 + 1

j

)(i− 1− kj
m1

)
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×
min(m2+1,

[
n−i−m2

k

]
)∑

j=0

(−1)j
(m2 + 1

j

)(n− i− kj
m2

)
× pm1+m2+1 × (1− p)n−m1−m2−1 (9)

In term 5, where s1 = 0 and 0 < s2 < m,

min
(
m−1,

[
n−i−l
k−l

])∑
s2=1

i−1∑
m1=0

upm2∑
m2=lowm2

P
{
N
L(1:i−1)
i−1,k,l = 0, N

L(i+1:n)
n−i,k,l = s2,

S
(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0

}

=

min
(
m−1,

[
n−i−l
k−l

])∑
s2=1

i−1∑
m1=0

upm2∑
m2=lowm2

C(i− 1−m1;m1 + 1, 0; k − 1, k − 1)

×
u∑
a=1

(m2 + 1

a

)(s2 − 1

a− 1

)
C(n− i−m2 − al − (k − l)s2; a,m2 + 1− a; k − l − 1, k − 1)

×pm1+m2+1 × (1− p)n−m1−m2−1

=

min
(
m−1,

[
n−i−l
k−l

])∑
s2=1

i−1∑
m1=0

upm2∑
m2=lowm2

min(m1+1,
[
i−1−m1

k

]
)∑

j=0

(−1)j
(m1 + 1

j

)(i− 1− kj
m1

)

×
u∑
a=1

(m2 + 1

a

)(s2 − 1

a− 1

)min(a,[n−i−al−(k−l)s2−m2
k−l

]
)∑

j1=0

min(m2+1−a,
[
n−i−al−(k−l)(s2+j1)−m2

k

]
)∑

j2=0

×(−1)j1+j2
( a
j1

)(m2 + 1− a
j2

)(n− i− al − (k − l)s2 − (k − l)j1 − kj2
m2

)
×pm1+m2+1 × (1− p)n−m1−m2−1 (10)

where u =

∣∣∣∣∣ min(m2 + 1, s2) for l = 0

min(m2 + 1, s2,
[
n−i−s2(k−l)−m2

l

]
) otherwise

.

In term 6, where s2 = 0 and 0 < s1 < m,

min
(
m−1,

[
i−1−l
k−l

])∑
s1=1

upm1∑
m1=lowm1

n−i∑
m2=0

P
{
N
L(1:i−1)
i−1,k,l = s1, N

L(i+1:n)
n−i,k,l = 0,

S
(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0

}

=

min
(
m−1,

[
i−1−l
k−l

])∑
s1=1

upm1∑
m1=lowm1

n−i∑
m2=0

v∑
a=1

(m1 + 1

a

)(s1 − 1

a− 1

)
× C(i− 1−m1 − al − s1(k − l); a,m1 + 1− a; k − l − 1, k − 1)

× C(n− i−m2;m2 + 1, 0; k − 1, k − 1)× pm1+m2+1 × (1− p)n−m1−m2−1

=

min
(
m−1,

[
i−1−l
k−l

])∑
s1=1

upm1∑
m1=lowm1

n−i∑
m2=0

v∑
a=1

(m1 + 1

a

)(s1 − 1

a− 1

)
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×
min(a,

[
i−1−al−s1(k−l)−m1

k−l

]
)∑

j1=0

min(m1+1−a,
[
i−1−al−(k−l)(s1+j1)−m1

k

]
)∑

j2=0

{
(−1)j1+j2

( a
j1

)
×
(m1 + 1− a

j2

)(i− 1− al − s1(k − l)− (k − l)j1 − kj2
m1

)}

×
min(m2+1,

[
n−i−m2

k

]
)∑

j=0

(−1)j
(m2 + 1

j

)(n− i− kj
m2

)
× pm1+m2+1 × (1− p)n−m1−m2−1 (11)

where v =

∣∣∣∣∣ min(m1 + 1, s1) for l = 0

min(m1 + 1, s1,
[
i−1−s1(k−l)−m1

l

]
) otherwise

.

In term 7, that is s1 ≥ 1, s2 ≥ 1, and s1 + s2 < m,

min
(
m−2,

[
i−1−l
k−l

])∑
s1=1

min
(
m−1−s1,

[
n−i−l
k−l

])∑
s2=1

upm1∑
m1=lowm1

upm2∑
m2=lowm2

×P{NL(1:i−1)
i−1,k,l = s1, N

L(i+1:n)
n−i,k,l = s2, S

(1:i−1)
i−1 = m1, S

(i+1:n)
n−i = m2, Xi = 0}

=

min
(
m−2,

[
i−1−l
k−l

])∑
s1=1

min
(
m−1−s1,

[
n−i−l
k−l

])∑
s2=1

upm1∑
m1=lowm1

upm2∑
m2=lowm2

×P{NL(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1} × P{NL(i+1:n)

n−i,k,l = s2, S
(i+1:n)
n−i = m2} × P{Xi = 0} (12)

where

P{NL(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1} =

v∑
a=1

(m1 + 1

a

)(s1 − 1

a− 1

)
× C(i− 1−m1 − al − s1(k − l); a,m1 + 1− a; k − l − 1, k − 1)

× pm1 × (1− p)i−1−m1 ,

P{NL(i+1:n)
n−i,k,l = s2, S

(i+1:n)
n−i = m2} =

u∑
a=1

(m2 + 1

a

)(s2 − 1

a− 1

)
× C(n− i−m2 − al − (k − l)s2; a,m2 + 1− a; k − l − 1, k − 1)

× pm2 × (1− p)n−i−m2 .

Explanation for P{E,Xi = 0, Xj = 0} :
P{E,Xi = 0, Xj = 0} can be rewritten explicitly as follows

P{E,Xi = 0, Xj = 0} =
i−1∑
m1=0

j−i−1∑
m2=0

n−j∑
m3=0

P{NL(1:i−1)
i−1,k,l = 0, S

(1:i−1)
i−1 = m1}P{NL(i+1:j−1)

j−i−1,k,l = 0, S
(i+1:j−1)
j−i−1 = m2}

×P{NL(j+1:n)
n−j,k,l = 0, S

(j+1:n)
n−j = m3}P{Xi = 0}P{Xj = 0}
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+

min(m−1,[ i−1−lk−l ])∑
s1=1

upm1∑
m1=lowm1

j−i−1∑
m2=0

n−j∑
m3=0

P{NL(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1}

×P{NL(i+1:j−1)
j−i−1,k,l = 0, S

(i+1:j−1)
j−i−1 = m2}P{NL(j+1:n)

n−j,k,l = 0, S
(j+1:n)
n−j = m3}

×P{Xi = 0}P{Xj = 0}

+

min(m−1,[ j−i−1−lk−l ])∑
s2=1

i−1∑
m1=0

upm2∑
m2=lowm2

n−j∑
m3=0

P{NL(1:i−1)
i−1,k,l = 0, S

(1:i−1)
i−1 = m1}

×P{NL(i+1:j−1)
j−i−1,k,l = s2, S

(i+1:j−1)
j−i−1 = m2}P{NL(j+1:n)

n−j,k,l = 0, S
(j+1:n)
n−j = m3}

×P{Xi = 0}P{Xj = 0}

+

min(m−1,[n−j−lk−l ])∑
s3=1

i−1∑
m1=0

j−i−1∑
m2=0

upm3∑
m3=lowm3

P{NL(1:i−1)
i−1,k,l = 0, S

(1:i−1)
i−1 = m1}

×P{NL(i+1:j−1)
j−i−1,k,l = 0, S

(i+1:j−1)
j−i−1 = m2}P{NL(j+1:n)

n−j,k,l = s3, S
(j+1:n)
n−j = m3}

×P{Xi = 0}P{Xj = 0}

+

min(m−2,[ i−1−lk−l ])∑
s1=1

min(m−1−s1,[ j−i−1−lk−l ])∑
s2=1

upm1∑
m1=lowm1

upm2∑
m2=lowm2

n−j∑
m3=0

×P{NL(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1}P{NL(i+1:j−1)

j−i−1,k,l = s2, S
(i+1:j−1)
j−i−1 = m2}

×P{NL(j+1:n)
n−j,k,l = 0, S

(j+1:n)
n−j = m3}P{Xi = 0}P{Xj = 0}

+

min(m−2,[ i−1−lk−l ])∑
s1=1

min(m−1−s1,[n−j−lk−l ])∑
s3=1

upm1∑
m1=lowm1

j−i−1∑
m2=0

upm3∑
m3=lowm3

×P{NL(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1}P{NL(i+1:j−1)

j−i−1,k,l = 0, S
(i+1:j−1)
j−i−1 = m2}

×P{NL(j+1:n)
n−j,k,l = s3, S

(j+1:n)
n−j = m3}P{Xi = 0}P{Xj = 0}

+

min(m−2,[ j−i−1−lk−l ])∑
s2=1

min(m−1−s2,[n−j−lk−l ])∑
s3=1

i−1∑
m1=0

upm2∑
m2=lowm2

upm3∑
m3=lowm3

×P{NL(1:i−1)
i−1,k,l = 0, S

(1:i−1)
i−1 = m1}P{NL(i+1:j−1)

j−i−1,k,l = s2, S
(i+1:j−1)
j−i−1 = m2}

×P{NL(j+1:n)
n−j,k,l = s3, S

(j+1:n)
n−j = m3}P{Xi = 0}P{Xj = 0}

+

min(m−3,[ i−1−lk−l ])∑
s1=1

min(m−2−s1,[ j−i−1−lk−l ])∑
s2=1

min(m−1−s1−s2,[n−j−lk−l ])∑
s3=1

upm1∑
m1=lowm1

upm2∑
m2=lowm2

upm3∑
m3=lowm3
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×P{NL(1:i−1)
i−1,k,l = s1, S

(1:i−1)
i−1 = m1}P{NL(i+1:j−1)

j−i−1,k,l = s2, S
(i+1:j−1)
j−i−1 = m2}

×P{NL(j+1:n)
n−j,k,l = s3, S

(j+1:n)
n−j = m3}P{Xi = 0}P{Xj = 0}.

where

upm1 = i− 1− k − (s1 − 1)(k − l),

lowm1 =

∣∣∣∣∣ 1 +
[
i−2−s1(k−l)−l

k

]
if i−1−l

k−l < m− 1

0 otherwise
,

upm2 = j − i− 1− k − (s2 − 1)(k − l),

lowm2 =

∣∣∣∣∣ 1 +
[
j−i−2−s2(k−l)−l

k

]
if j−i−1−l

k−l < m− 1

0 otherwise
,

upm3 = n− j − k − (s3 − 1)(k − l),

lowm3 =

∣∣∣∣∣ 1 +
[
n−j−1−s3(k−l)−l

k

]
if n−j−l

k−l < m− 1

0 otherwise
.

By substituting the equation (8) in (3) one can obtain explicitly.
Acknowledgment. The authors would like to thank two anonymous referees for
their helpful comments and suggestions, which were very useful in improving of this
paper.

References

[1] Agarwal, M. and Mohan, P., GERT analysis of m-consecutive-k-out-of-n:F system with over-
lapping runs and (k− 1)-step markov dependence, International Journal of Operational Re-
search, 3 (2008), 36—51.

[2] Aki, S. and Hirano, K., Numbers of success runs of specified length until certain stopping time
rules and generalized binomial distributions of order k, Annals of the Institute of Statistical
Mathematics, 52 (2000), 767—777.

[3] Armstrong, M. J., Joint reliability-importance of components, IEEE Transactions on Relia-
bility, 44(3) (1995), 408-412.

[4] Balakrishnan, N. and Koutras, M. V., Runs and Scans with Applications, New York: Wiley,
2002.

[5] Birnbaum, Z. W., On the importance of different components in a multicomponent system,
Multivariate Analysis– II, P. R. Krishnaiah, Ed. New York, NY, USA: Academic Press,
(1969), 581—592.

[6] Boland, P. J., and EI-Neweihi, E., Measures of component importance in reliability theory,
Comput. Ops. Res., 22 (1995), 455—463.

[7] Cui, L., Lin, C. and Du, S., m-consecutive-k,l-out-of-n system, IEEE Transactions on Reli-
ability, 64 (2015), 386-393.

[8] Eryilmaz, S. and Mahmoud, B., Linear m-consecutive-k, l-out-of-n:F system, IEEE Transac-
tions on Reliability, 61(3) (2012), 787-791.

[9] Eryilmaz, S., m-consecutive-k-out-of-n:F system with overlapping runs: Signature-based re-
liability analysis, International Journal of Operational Research, 15(1) (2012), 64-73.

[10] Eryilmaz, S., Joint reliability importance in linear m-consecutive-k-out-of-n:F systems, IEEE
Transactions on Reliability, 62(4) (2013), 862-869.

[11] Eryilmaz, S., Component importance in coherent systems with exchangeable components,
Journal of Applied Probability, 52 (2015), 851-863.



ANALY. OF JRI IN LIN/m/CON/k/l/n : F SYSTEM 715

[12] Eryilmaz, S., Oruc, O. E. and Oger, V., Joint reliability importance in coherent systems
with exchangeable dependent components, IEEE Transactions on Reliability, 65(3) (2016),
1562-1570.

[13] Fu, J. C. and Lou, W. Y. W., Distribution Theory of Runs and Patterns and its Applications:
A Finite Markov Chain Imbedding Approach, River Edge, NJ: World Scientific, 2003.

[14] Gao, X., Cui, L. and Li, J., Analysis for joint importance of components in a coherent system,
European Journal of Operational Research, 182 (2007), 282-299.

[15] George, E. O., and Bowman, D., A full likelihood procedure for analyzing exchangeable
binary data, Biometrics, 51 (1995), 512-523.

[16] Gera, A. E., Combined m1-consecutive-kc1 -out-of-n and m2-consecutive-kc2 -out-of-n sys-
tems, IEEE Transactions on Reliability, 60(2) (2011), 493-497.

[17] Gertsbakh, I. B., and Shpungin., Y., Combinatorial approach to computing component impor-
tance indexes in coherent systems, Probability in the Engineering and Informational Sciences,
26 (2012), 117-128.

[18] Griffi th, W. S., On consecutive-k-out-of-n: failure systems and their generaliza-
tions,Reliability and quality control, (1986), 157-165.

[19] Hagstrom, J. N., Redundancy, substitutes and complements in system reliability, Technical
Report. College Bus. Admin., Univ. Illinois, USA, 1990.

[20] Hagstrom, J. N., and Mak., K. T., System reliability analysis in the presence of dependent
component failures, Probability in the Engineering and Informational Sciences, 1 (1987),
425-440.

[21] Hong, J. S., and Lie, C. H., Joint reliability-importance of two edges in an undirected network,
IEEE Transactions on Reliability, 42(1) (1993), 17-33.

[22] Hong, S., Koo, H. Y. and Lie, C. H., Joint reliability importance of k-out-of-n systems,
European Journal of Operational Research, 142 (2002), 539-547.

[23] Koutras, M. V., Applications of Markov chains to the distribution theory of runs and patterns,
Amsterdam: North-Holland, Handbook of Statistics, 2003.

[24] Kuo, W., and X., Zhu., Importance Measures in Reliability, Risk, and Optimization: Princi-
ples and Applications, Hoboken, NJ, USA: Wiley, 2012.

[25] Kuo, W., and Zuo, M. J., Optimal reliability modeling: principles and applications, John
Wiley & Sons, 2003.

[26] Levitin, G., The Universal Generating Function in Reliability Analysis and Optimization,
London: Springer-Verlag Limited, 2010.

[27] Levitin, G., and Dai., Y., Linear m-consecutive-k-out-of-r-from-n:F systems, IEEE Trans-
actions on Reliability, 60(3) (2011), 640-646.

[28] Mahmoud, B., and Eryilmaz, S., Joint reliability importance in a binary k-out-of-n:G system
with exchangeable dependent components, Quality Technology and Quantitative Manage-
ment, 11 (2014), 453-460.

[29] Makri, F. S., and Psillakis, Z. M., On success runs of length exceeded a threshold, Methodol.
Comput. Appl. Probab., 13 (2011b), 269-305.

[30] Makri, F. S., and Psillakis, Z. M., On runs of length exceeding a threshold: normal approxi-
mation, Stat. Papers, 52 (2011c), 531-551.

[31] Makri, F. S., and Psillakis, Z. M., On l-overlapping success runs of ones of length k in
sequence of independent binary random variables, Communications in Statistics- Theory
and Methods, 44 (2015), 3865-3884.

[32] Makri, F. S., Philippou, A. N. and Psillakis, Z. M., Polya, Inverse Polya, and Circular Polya
distributions of order for l-overlapping success runs, Communications in Statistics- Theory
and Methods, 36 (2007), 657-668.

[33] Papastavridis, S., m-consecutive-k-out-of-n systems, IEEE Transactions on Reliability, 39
(1990), 386-387.



716 CIHANGIR KAN AND MURAT OZKUT

[34] Rani, M., Jain, K. and Dewan, I., On conditional marginal and conditional joint reliability
importance, International Journal of Reliability, Quality and Safety Engineering, 18 (2011),
119-138.

[35] Xie, M. and Bergman, B., On a general measure of component importance, J. Statist. Plan-
ning Inference, 29 (1991), 211—220.

[36] Xie, M. and Lai, C. D., Exploiting symmetry in the reliability analysis of coherent system,
Naval Res. Logist., 43 (1996), 1025—1034.

[37] Zhu, X., Yao, Q. and Kuo, W., Patterns of the Birnbaum importance in linear consecutive-
k-out-of-n systems, IIE Transactions, 44(4) (2012), 277—290.

[38] Zhu, X., Mahmoud, B. and Mohamed, R., Joint reliability importance in a consecutive k-out-
of-n:F system and an m-consecutive-k-out-of-n:F systems for Markov-dependent components,
IEEE Transactions on Reliability, 64(2) (2015), 784-798.

[39] Zhu, X., Mahmoud, B. and Mohamed, R., Reliability and joint reliability importance in a
consecutive-k-within-m-out-of-n:F system with Markov dependent components, IEEE Trans-
actions on Reliability, 65(2) (2016), 802-815.

[40] Zhu, X., Mahmoud, B. Coit, D. W. and Benyahia, A., Reliability and importance measures for
m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components,
Reliability Engineering and System Safety, 167 (2017), 1-9.

Current address : Cihangir Kan: Xi’an Jiaotong Liverpool University, Dept. of Mathematical
Sciences, 215123, Suzhou-China.

E-mail address : Cihangir.Kan@xjtlu.edu.cn
ORCID Address: http://orcid.org/0000-0002-3642-9509
Current address : Murat Ozkut: Izmir University of Economics, Dept. of Mathematics, 35330,

Izmir-Turkey.
E-mail address : murat.ozkut@ieu.edu.tr
ORCID Address: http://orcid.org/0000-0002-0699-892X



Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 69, Number 1, Pages 717—738 (2020)
DOI: 10.31801/cfsuasmas.567078
ISSN 1303—5991 E-ISSN 2618-6470

Available online: February 10, 2020

http://communications.science.ankara.edu.tr/index.php?series=A1

AN EVALUATION OF SOME METHODS USED FOR
DETERMINATION OF HOMOGENOUS STRUCTURAL BREAK

POINT IN MEAN OF PANEL DATA
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Abstract. In this study, performances of correct break point estimation of
Simple Mean Shift Model Method, Fluctuation Test, Wald Statistic Test and
Kim Test methods used to investigate presence of structural break and deter-
mine the date of break in a panel data consisting of N time series, each of T
length, belonging to N cross-section have been investigated. In this context,
108 Monte Carlo simulations with each 3000 repeats have been carried out
for 3, 3, 4 and 3 levels of factors, respectively number of cross-section units,
length of series, size of break and proportion of break, to evaluate the perfor-
mance of these tests used for determination of structural break in panel data.
According to the Monte Carlo simulations it is concluded that Simple Mean
Shift Model approach has better performance of break point estimation than
other methods. Moreover, while Wald Test puts forth its best performance in
the case where the breaks in series are at the half of the series, Fluctuation
and Kim Tests showed their best performances in the case that the breaks are
at the third quarter of series. Generally, correct break point estimation per-
formances of tests decrease as the number of cross-section or length of series
increases, even if it is limited. The changes at the levels of the proportion
of break factor also lead to high accuracy estimation performance of different
methods. Moreover, increases at the size of break usually decreases rates of
correct estimation of methods and they approach to zero while means of the
series changed 40% and over after break.

1. Introduction

Structural break(s) is(are) permanent change(s) in the structure of variables,
due to permanent effects of economic or financial shocks, policy changes, cultural
and technological changes, etc., on the distribution of variables. Changes in the
behaviour of economic time series such as employment, growth and unemployment
can occur in the long run due to policy changes and various economic events.

Received by the editors: May 13, 2019; Accepted: January 23, 2020.
2010 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
Key words and phrases. Panel data, structural break point, correct estimation of break point,

Monte Carlo simulation.

c©2020 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

717
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However, when the models used in examining the data for such variables are es-
timated, it is usually assumed that the model parameters do not change over the
sampling periods. This assumption makes the analysis relatively simple. However,
the assumption that a time series is not subject to a change throughout the sample
becomes more diffi cult to achieve as the length of the series increases. In the case of
structural breaks in series, continuing analysis without considering this structural
change can lead to incorrect estimations of model parameters. A typical example
of this is that the investigation of the presence of unit root in Nelson and Plosser
data; Nelson and Plosser [1], Perron [2], Zivot and Andrews [3] and Lumsdaine and
Papell [4] have achieved different results. Despite the use of the same data set in
these studies, the results differ depending on whether structural breaks are taken
into account and whether structural breaks are included in the model.
The time series consists of observations obtained over a single cross-sectional unit

at different times. Policy or technology changes often lead to permanent changes
in the structure of the time series. For this reason, structural breaks are often en-
countered in time series. However, some diffi culties arise when estimating the break
point in the time series. If a structural break occurs at any time point k0 of time se-
ries yt, the break point k0 can not be consistently predicted, regardless of how large
the sample is, and the estimator k̂ of the break point k0 is not consistent. There-
fore, it is usually attempted to estimate the break fraction instead of estimating the
k0’s in which the structural change occurs in the time series. The effectiveness of
the approach using a single time series in determining structural break depends on
two assumptions: First, the magnitude of structural break (the difference between
pre-break mean and post-break mean) is large enough. The second is that the true
point of break point k0 is far enough from the beginning and end of the sample.
In a single series it is impossible to identify break point when the regime has a
single observation [5], [6]. In the study of both single and multiple structural break
points in time series, asymptotic framework is used in which the magnitudes of
change(s) asymptotically converge to zero as the sample size increases in order to
obtain critical statistics [7]. In other words, obtaining the limit distribution of the
test statistics requires the assumption that the size of the structural break decreases
as the sample size increases [8]. In the structural break literature this assumption
is called the shrinking magnitude of structural break assumption. According to this
assumption, as the sample size increases in the time series, the break point can be
determined [9]. Both the break point inconsistency and the necessity of reduced
break are related to the problem of defining the break point in time series models.
The main reason for these two situations to emerge is that time series can not carry
enough information. Additional information is needed in order to determine the
actual break point in the time series. This information is tried to be obtained by
increasing the sample size. When examining structural break in panel data, the
additional information carried by the cross-sectional dimension of panel data elim-
inate the necessity of artificially increasing the number of observations using the
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reduced shrinking magnitude of structural break assumption. In addition, panel
data can be used to derive asymptotics around the actual break date, since it has
the cross-sectional dimension as well as the time dimension [9].
Although methods using panel data have significant advantages when compared

to methods using only time series or only cross-sectional data, methods using panel
data are much more complex. In this context, different methods for determining
structural break point in panel data have been developed in the structural break
literature. It has become widespread that structural break problem has been ex-
amined in panel data in recent years. The studies on the structural break problem
in the panel data are generally considered in two directions. The first is to inves-
tigate the existence of unit root in panel data in the presence of structural break.
The second is to determine the existence and date of structural break point. Two
approaches have been adopted in panel studies in relation to the assumptions made
about the position of structural break data. While the first considers the assump-
tion that structural breaks in all series of the panel have emerged in a common
date, in the second approach break point is assumed to be random in which break
point occur on a different date for each series depending on the distribution of
the random variable. The methods assuming the random break point are more
complicated than the methods considering the common break point hypothesis.
The assumption of the common break point has been used in the studies by

Han and Park [10], Joseph and Wolfson [11], Bai [12], Bai et al. [13], Emerson
and Kao [14], Bai and Perron [15], Kao et. al. [16], Feng et. al. [9], Kim [17],
Horváth and Hus̆ková [18], Chan et. al. [19] and Li et. al. [20]. On the other hand,
the assumption of random break point is considered in studies such as Joseph and
Wolfson [11], Joseph and Wolfson [21], Joseph, Vandal and Wolfson [22], Joseph at
al. [23], Joseph at al. [24] and Liao [6].
While there have been various methods developed in the literature on structural

breaks in panel data, no study has been found on the comparison of the performance
of these methods in the context of determining break point [25]. The contribution
of this study is to compare the correct break point estimation performance of some
methods used to determine the structural break point under the assumption of the
common break point, according to the factors the number of cross sections, time
series dimension, break size and break fraction. In this context, with the aid of
Monte Carlo simulations, the Simple Mean Shift Model Method proposed in Bai
[5], the Fluctuation Test and the Wald Statistic Test proposed in Emerson and Kao
[14] and the Kim Test proposed in Kim [17] performance are evaluated.
In the next section of the study, the performances of the considered methods

estimating the breakpoint are discussed. In the third section of the study, the data
generating process and the issues considered in determination of factor levels and
the assumption of Monte Carlo simulation are explained. In the fourth part of the
study, the results obtained by Monte Carlo simulations are given. In the fifth and
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last part, the results obtained in the study are discussed and some suggestions are
made.

2. Methods for Determination of Break point

Bai [5] considers the following simple mean shift model:

yit = µi1 + uit t = 1, 2, ..., k0

yit = µi2 + uit t = k0 + 1, ..., T.
(1)

where E (uit) = 0 for all i and t. In this model, each series has a break point at k0,
where k0 is unknown. The µi1 and µi2 are pre-break mean and post-break mean of
yit, respectively. For the simple mean shift model, he proposes the OLS estimator
of k0 as in Equation 2:

k̂ = arg min
1≤k≤T−1

SSR (k) . (2)

where sum of square of residuals SSRiT (k) is

SSRiT (k) =


k∑
t=1

(yit − ȳi1)2 +
T∑

t=k+1

(yit − ȳi2)2 , k = 1, 2, ..., T − 1

T∑
t=1

(yit − ȳi)2 , k = T

(3)

for each k = 1, 2, ..., T . Also ȳi is the average of all the observations of cross-section
unit defined by,

ȳi1 =
1

k

k∑
t=1

yit

ȳi2 =
1

T − k

T∑
t=k+1

yit

(4)

and sum of residual squares over all equations is as in Equation 5:

SSR (k) =

N∑
i=1

SSRiT (k). (5)

Emerson and Kao [14] consider the one-way random effect panel regression model
with the deterministic time trend given in Equation 6:

yit = α+ βtXt + vit

vit = µi + uit.
(6)

where β is the slope parameter, Xt = t
T , unobservable individual effects are µi ∼

iid
(
0, σ2µ

)
and disturbance term of AR(1) is uit = ρuit−1+εit, ε ∼ iid

(
0, σ2ε

)
. They

propose two different methods for testing the following null hypothesis

H0 : βt = β;∀t ∈ [1, T ] (7)
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meaning that there is no change in the model against the following alternative
hypothesis

H1 : βt =

{
β1 , t = 1, 2, ..., k
β2 , t = k + 1, ..., T

(8)

meaning that there exists a change in the k−point. They proposed to estimate the
break point according to these two methods, The first is based on the fluctuation
test of Ploberger, Kramer and Kontrus [26], while the second one is based on the
mean statistics of Andrew and Ploberger [27] and exponential Wald statistic and
the Wald statistic of Andrew [28]. In testing null hypothesis with fluctuation test,
if the difference

max
i=1,...,k

∣∣∣β̂k − β̂T ∣∣∣ (9)

is big enough, that is when β̂k is too much fluctuating, the null hypothesis is

rejected. In other words, there is a structural break at this point and
∣∣∣β̂k − β̂T ∣∣∣ is

the estimate of the break point. In Equation (9), β̂T denotes the estimate of the
slope parameter over all panel data estimated by OLS method, and β̂k, which is
estimated with recursive OLS, is

β̂k =

N∑
i=1

[
k∑
t=1

(
Xt − X̄k

)
yit

]
N∑
i=1

k∑
t=1

(
Xt − X̄k

)2 (10)

where

X̄k =
1

k

k∑
t=1

Xt.

In the Wald statistic test, the break point is estimated to be

k̂ = arg min
[Tr+≤k≤T−[Tr+]]

W1 (k) . (11)

Here,

σ̃2u =
1

NT

N∑
i=1

T∑
t=1

(vit − v̄i)2 (12)

and the estimation of σ20 is

σ20 =
σ2ε

(1− ρ)
2 . (13)

Thus,

W1 (k) =
σ̃2u
3σ20

W (k) . (14)
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In addition,

β̂1k =

N∑
i=1

[
k∑
t=1

(
Xt − X̄1k

)
yit

]
N∑
i=1

k∑
t=1

(
Xt − X̄1k

)2 (15)

β̂2k =

N∑
i=1

[
T∑

t=k+1

(
Xt − X̄2k

)
yit

]
N∑
i=1

T∑
t=k+1

(
Xt − X̄2k

)2 (16)

X̄1k =
1

k

k∑
t=1

Xt

and

X̄2k =
1

T − k

T∑
t=k+1

Xt.

Then W (k) is calculated as follows:

W (k) =
1

σ̂2u

(
β̂1k − β̂2k

)2
( N∑

i=1

k∑
t=1

(
Xt − X̄1k

)2)−1
+

(
N∑
i=1

T∑
t=k+1

(
Xt − X̄2k

)2)−1 . (17)

Kim [17] considers the model with the deterministic trend and the disturbance
component given in Equation 18:

yit = dit + uit , i = 1, ..., N and t = 1, ..., T. (18)

The deterministic component dit can be considered in three different ways to be

dit =

 µi + βit+ γiBt , Model I (Joint broken trend)
µi + βit+ θiCt + γiBt , Model II (Locally broken trend)

µi + βit+ θiCt , Model III (Mean shift)
(19)

where

Ct =

{
0 , t ≤ k0
1 , t > k0

(20)

and
Bt = (t− k0)Ct. (21)

Here, Equation (20) can be rewritten for all of three models, if t ≤ k0, then dit =
µi + βit and if t > k0, then

dit =

 µi − k0γi + (βi + γi) t , Model I (Joint broken trend)
µi − k0γi + θi + (βi + γi) t , Model II (Locally broken trend)

µi + βit+ θi , Model III (Mean shift)
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Models I and II are extended form of the panel data models reviewed by Perron
and Zhu [29] for the univariate case. Model III, on the other hand, is an extended
form so as to include a deterministic trend of the mean shift model examined in
Bai [5].
The regression coeffi cients in the model are not restricted to be common for each

section. For this reason, instead of estimating the regression coeffi cients jointly by
pooling the cross-section data, the regression coeffi cients can be estimated sep-
arately for each equation using the OLS method. Thus, in the Kim Test, the
individual OLS estimators of the regression coeffi cients for each equations are used
for each cross section unit [17].
The Kim test assumes that the actual break point is unknown and the break

fraction defined to be λ1 = k0/T ; λ1 ∈ [π, 1− π] , π ∈ (0, 1/2) is constant for
every T . It is also assumed that the break point k0 is common to all equations and
that the break fraction λ1 remains constant as the sample size grows.
Using the deterministic time trend definitions given in Equation (19), the model

in Equation (18) can be rewritten with matrix notation for each equation as

Yi
(T×1)

= Xk0
(T×3 or T×4)

Πi
(3×1 or 4×1)

Ui
(T×1)

(22)

where Yi = (yi1, ..., yiT )
′ and Ui = (ui1, ..., uiT )

′. The variables and coeffi cients of
Equation (22) are defined as follows:

Xk0 =

 [ι, τ , B] , Model I
[ι, τ , C,B] , Model II

[ι, τ , C] , Model III

Πi =


(µi, βi, γi)

′
, Model I

(µi, βi, θi, γi)
′
, Model II

(µi, βi, θi)
′

, Model III

where ι = (1, ..., 1)
′
, τ = (1, ..., T )

′
, C = (C1, ..., CT )

′
, B = (B1, ..., BT )

′
, Xk0 is

the collection of all dependent variables, and Πi is the regression coeffi cient for the
corresponding equation.
Then, the whole N equation system can be written as

Y = Xk0Π + U (23)

where Y = [Y1, ..., YN ] ,Π = [Π1, ...,ΠN ] and U = [U1, ..., UN ]. Also the row
vectors are defined as µ = (µ1, ..., µN ) , β = (β1, ..., βN ) , θ = (θ1, ..., θN ) andγ =

(γ1, ..., γN ). Then, an alternative expression for Π is
[
µ′, β′, γ′

]′
,
[
µ′, β′, θ′, γ′

]′
and[

µ′, β′, θ′
]′
for Model I, II and III, respectively.

A general break point and a general break fraction are denoted by k, and α =
k/T , respectively, and Xk is defined similarly to Xk0 . Then, the sum of residual
squares for each k, can be defined as follows:

SSR (k) = tr [Y ′ (I − Pk)Y ] (24)
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where Pk = Xk (X ′kXk)
−1
X ′k and tr[.] is trace operator. Thus, estimated break

point is the one minimizing the sum of residual squares such as

k̂ = arg min
k

SSR (k) (25)

and

λ̂ =
k̂

T
. (26)

3. Data generation and Monte-Carlo simulations

In this section, we evaluate the correct estimation performance of the Simple
Mean Shift Model Method (hereafter referred to as Bai Test) proposed by Bai [5],
the Fluctuation Test, Wald Statistic Test (hereafter referred to as Wald test) and
Kim Test proposed in Kim [17], for the break date with Monte Carlo simulations.
The panel data to which the tests are applied are generated in accordance with

the following model, also given in Equation (1):

yit = µi1 + uit, t = 1, 2, ..., k0

yit = µi2 + uit, t = k0 + 1, ..., T

where, i = 1, 2, ..., N , t = 1, 2, ..., T , yit is the observation value of the ith section
unit at time t, µi1 is the pre-break mean which is mean of the panel data before the
break date, µi2 is the post-break mean which is mean of the panel data after the
break date, k0 is the common break point and uit indicates the disturbance terms.
In the simulations, the disturbance terms are generated from independent and iden-

tically distributed uit
iid∼ N (0; 1), and, µi1 and µi2 are from µi1

iid∼ N (3; 0, 24) and

µi2
iid∼ N (3× γ; 0, 24) where γ denotes the break ratio.
The number of repetitions are decided by taking into account the difference

between asymptotics of the estimated break points in sequential run of simulations.
In the study, the number of repetitions was determined as 3000 runs with the
difference 0,001 between the average values of the break points predicted in each
repetition. In total, Monte Carlo simulations are repeated as many times as the
number of factor combinations depending on the level of the four factors under
investigation.
Various issues have been taken into account to determine the factor levels. These

issues can be summarized as follows: When examining the effects of time and cross-
section length on break point estimation performance, the levels of these factors are
defined as small, medium and large. The levels are chosen as 12, 32 and 120 for
both time dimension T and cross-sectional dimension N .
If the break point k0 is defined as a set of fixed values, the marginal effect of

the break point can not be observed due to the coexistence of changes in the break
point at different time dimension and the effects of changes in time dimension. For
this reason, instead of taking the break point k0 as a member of a fixed value set
in simulations, k0 is defined as an integer between 1 and T , k0 = [Tλ], λ ∈ (0, 1).
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Thus, in the simulations, breaks are allowed to occur in the first, second and third
quarter of the panel data, respectively, taking into account λ ∈ {0, 25; 0, 50; 0, 75}
to define the break fraction.
The final factor by which the effect on the break point estimation performance

is investigated is the magnitude of the break (µi2 − µi1). When the magnitude of
break factor levels are determined, the post-break mean is defined as

µi2 = µi1 × γ
where γ is the break ratio. Then, the magnitude of the break is constant and
written in the following form:

(µi2 − µi1) = γ × µi1 − µi1 = (γ − 1)µi1

Thus, the magnitude of the break is defined as the ratio of the pre-break mean.
Expression of the magnitude of break in this way allows it to be fixed for different
factor levels and to define the post-break mean to be smaller than the pre-break
mean. For this reason, when examining the effect of magnitude of break on the
performance of the tests, the break ratio factor, γ, is strictly defined as the pre-break
mean is used. The levels of the break ratio are defined as γ ∈ {1, 1; 0, 8; 1, 4; 1, 9} so
as to include the case where the post-break panel mean is smaller than the pre-break
panel mean.
Simulation is performed at a total of 108 points of the experimental design for

the factors time dimension, cross-section dimension, break fraction and break ratio,
with the levels 3, 3, 3 and 4, respectively.

4. Simulation Results

In this section, the simulation results obtained via the simulation design de-
scribed in the third section about correct break point estimation performance of
the Bai, Fluctuation, Wald, and Kim tests are given. After generation of panel
data, indicator variable is generated by using break point estimates of Bai, Fluctu-
ation, Wald and Kim Tests to estimate correct estimation rates. Indicator variable
shows whether estimated break point is equal actual break point or not. Indicator
variable defined as dummy variable is given below:

Dj =

{
1 , k̂j = k0
0 , k̂j 6= k0

where j (j = 1, ..., 4) shows the method used for estimating break point. This
variable can take two values as 0 or 1. Since the mean of the indicator variable is
on the [0, 1] interval, it shows the correct estimation rate of tests under the certain
factor assumptions. These rates have been used for evaluating the performance
for correct estimation of tests. Figure 1 shows the the effects of the changes in
the cross-section dimension on the correct estimation rates of the tests for different
time dimension in the case that the breakpoint occurs at the first quarter of the
series of the panel data and mean of the series decreases by %20 after break. When
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Figure 1. Simulation results for correct break point estimation
rates (γ = 0, 8 and λ = 0, 25)

the break fraction and the break ratio factor are fixed, correct estimation rates of
test convergences to zero by decreasing as both time and cross-section dimensions
increase. Nevertheless, it is seen that decreasing at the rate of correct break point
estimation are small. Moreover, while in the case where T = 12, correct estimation
rates of the Bai and Kim tests are different from zero, they converge to zero as the
time and cross-section dimensions increase. Correct estimation rates of the tests,
except the Bai’s, are zero for the bigger factor levels of T .If a break occurs in the
first quarter of the series and the mean of the series increases by 40% after break, the
correct break point estimation rates of all the tests decrease as the cross-sectional
dimension increases under different time dimensions. Compared to the case where
the mean of the series is reduced by 20%, the correct estimation rates of the tests
show a similar tendency. Nevertheless, in the current case, the correct break points
estimation rates of the tests are generally lower for all levels of the cross-sectional
dimension. In other words, an increase in the rate of break ratio causes to a decrease
in the correct estimation rates of the methods. In both cases, the highest correct
estimation rates are achieved with the Bai Test. In the case where a break in the
first quarter of the series and an 10% increase in the mean of the series after break,
the correct break point estimation rates of all the tests, except rates of Bai Test,
decreases as the cross-section size increases for different time dimensions. In panel
data, the Bai Test correct estimation rates increase (Figure 3). However, when



DETERMINATION OF STRUCTURAL BREAK POINT IN PANEL DATA 727

Figure 2. Simulation results for correct break point estimation
rates (γ = 1, 4 and λ = 0, 25)

Figures 1 and 3 are evaluated jointly, the correct break point estimation rates of
the test converges each other for both break ratios of 10% and 20%.
Figures 1, 2 and 3 show that increments in the cross-section dimensions have an

effects towards decreasing the correct estimation rates of break points. A similar
situation is observed for time dimension and the break ratio. In other words,
according to the results obtained in Figures 1, 2 and 3, it can be said that the
increases in the cross section and time dimension and the increase in the break
ratio in the series have negative effect on the correct break points estimation rates
of the tests. Figure 4 shows the effects of the break fraction on the correct break
point estimation rates of Bai, Fructuation, Wald and Kim Tests when the time
dimension and cross section size are fixed at 12. From the Figure 4, it is seen that
the Wald Test has the highest correct estimation rate in the case that the breaks
occur at the midpoint of the series. In addition, if the breaks occur in the later
periods of the series, the correct break point estimation rates of the Fluctuation test
increase. The Fluctuation Test shows highest correct estimation rates in the panels
where break occurs in the second half of the series and the break ratio is small.
Compared to other methods, the Bai Test has a generally high correct estimation
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Figure 3. Simulation results for correct break point estimation
rates (γ = 1, 1 and λ = 0, 25)

rate and they are less influenced by break fraction. In addition, Kim Test provides
higher correct break point estimation rates if the break occurs in the later stages
of the series similar to Fluctuation test.
An important finding emerging from Figure 4 is that the changes in the break

fraction have effects on the correct estimation rates of the break point of the tests
at different ways. Moreover, changes in break fraction has limited effects on correct
break point estimation rates of the tests. Figure 5 shows the effects of the changes
in the break ratio on the correct break point estimation rates of tests when the
break occurred in first quarter, half or the third quarter of panel data formed by
N = 32 and T = 12. In general, the correct break point estimation rate of the
methods decreases as the break ratio increases.
In addition, if the post-break mean is 40% or more bigger than the pre-break

mean, methods with some exceptions can not accurately estimate the break point
depending on the break fraction in general. According to the region where the
breaks occur in the series, the test having the highest correct break point estimation
rate varies. In the case where the break occurs in the first, second and third quarter
of the series, the Bai, Wald and Kim tests have the highest correct estimation rates,
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Figure 4. Simulation results for correct break point estimation
rates (N = 12 and T = 12)

in order. Nevertheless, in the case where the break occurs in the third quarter of the
series and the break ratio is small, the Fluctuation Test has the highest correct break
point estimation rate. While the changes in the break fraction have a limited effect
on the correct break point estimation rates of the tests except Wald test, they lead
to change the tests having the highest correct break point estimation rates based
on the occurrence of break in different regions of the series. Figure 6 shows the
effects of changes in panel time dimension on the correct break point estimation
rates of Bai, Fluctuation, Wald and Kim Tests where the mean of the series is
reduced by 20% compared to the pre-break mean in the panel data consisting of
32 cross-sectional units. From Figure 6, it is seen that Bai Test mostly has higher
correct estimation rates than others. Furthermore, the change in the break fraction
leads to significant changes in the correct estimation rates of the tests. When the
break occurs in the middle of the series, the Wald Test has higher correct estimation
rates than others for T = 12, whereas in the third quarter of the series, the Kim
Test has higher correct estimation rate for the smallest time dimension. As the
time dimension increases at all levels of the break fraction factor, a decrease in
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Figure 5. Simulation results for correct break point estimation
rates (N = 32 and T = 12)

the correct estimation performance of the tests occurs and correct estimation rates
approach to zero.
Nevertheless, the Bai test is the one affected least against time dimension. Thus,

for medium and large time dimension, Bai Test has the highest correct break point
estimation rate. Figure 7 shows the effects of the cross-section dimension on the
correct break point estimation rates under the conditions that the break occurs
in the middle of the series, and the mean of the series increases by 10% in post-
break. it is seen from Figure 7 that the increase in cross-section dimension have
effect on the correct break point estimation rates of the methods on different ways.
However, the length of the series forming the panel has a limited impact on the
correct estimation rates for Bai Test, while other methods lead to a reduction in
the correct estimates. Accordingly, the highest accurate estimation rates for the
panels with short time series at these levels of the fraction section and fraction
rate factors are reached with the Wald Test, while the highest rates of the other
methods are reached with Bai Test as the time series length increases. Figure 8
shows the effects of the cross-section size under the conditions the break point in
the third quarter of the series and the mean of the series increases by 10% after
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Figure 6. Simulation results for correct break point estimation
rates (γ = 0, 8 and N = 32)

break. It is seen in Figure 8 that increase in the cross section dimension have a
different effects on the correct break point estimation rate of the methods. While
the increase in cross-section size leads to a decrease in the correct break point
estimation rate of the Fluctuation test, it leads to a slight increase in the correct
estimation rate of Bai Test. However, the length of time has a different effect on the
correct estimation rates of the methods and the correct estimation rates of the tests
vary under different time dimension values. While changes in time dimension have
a limited effect on the correct estimation rates of Bai Test, it leads to decrease in
the correct estimation rates of the other methods. Accordingly, while the highest
correct estimation rates in the panels with short time series at this level of the
break fraction and the break ratio factors are reached with the Fluctuation Test, as
the time lengths increase the highest correct estimation rates are reached with the
Bai Test. Moreover, when Figures 3, 7 and 8 are evaluated altogether, it can be
concluded that Bai Test has the highest correct estimation rates in the case where
break occurs in the first quarter of the series, Wald Test has the highest correct
estimation rates in the case where break occurs in the second quarter of the series
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Figure 7. Simulation results for correct break point estimation
rates (γ = 1, 1 and λ = 0, 5)

and Fluctuation Test has the highest rate in the case where break occurs in the
third quarter of the series.
However, while the level of the time dimension factor is 12, the Kim Test reveals

the correct estimation rates similar to that of the Bai Test. Figure 9 concludes
the effects of break ratio where a break occurs in the third quarter of the series
by fixing time dimension at 32. From the Figure 9 it is seen that the correct
estimation performance of the tests generally decreases as the break ratio increases.
All methods can no longer accurately estimate the actual break point when post-
break means of the series are bigger at the rate of %40 or greater than pre-break
means of the series. In addition, as the cross-section dimension increases, there is
a limited decrease in the correct estimation performance of the tests. The Figure
10 shows that in the panel data with 32 section units and 12 time points, the ratio
of the pre-break mean to the post-break mean and the part in which the break
occurs are observed to have a significant effect on the correct estimation rates of
the methods. While the highest correct break point estimation rates are reached
with the Bai Test if the break occurs in the first quarter of the series, the Wald Test
has the highest correct estimation rates in case the break occurs in the middle of
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Figure 8. Simulation results for correct break point estimation
rates (γ = 1, 1 and λ = 0, 75)

the series. When the break occurs in the third quarter of the series, the Fluctuation
Test has higher correct estimation rates if the change in the mean of the series is
small. Nevertheless, the Kim Test reveals higher correct estimation rates if the
change in the mean of the series is large. The Bai Test is the method of which the
correct estimation performance is least affected by the changes of break fraction.

5. Conclusion and Suggestions

The correct estimation performance of the Bai, Fluctuation, Wald Statistics and
Kim Tests, which are used to determine the structural break date in panel data, are
examined via Monte Carlo simulations for the factors time dimension, cross-section
dimension, break fraction and break ratio. The results can be concluded as follows:

• Bai Test has higher correct break point estimation rate than the other test
methods except for some specific factor levels. If the break occurs in the
first quarter of the series, the Bai Test shows a higher correct estimation
performance. The Bai Test is the method that is least affected by the
changes in the time dimension and the place on where the break point is.
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Figure 9. Simulation results for correct break point estimation
rates (T = 32 and λ = 0, 75)

• Wald Test has the highest correct estimation performance if the break oc-
curs in the middle of the series. Nevertheless, the Bai Test shows a higher
correct estimation performance if the break occurs in the middle of the se-
ries in panel data with large time dimensions since the changes in the time
dimension have effects on the correct break point estimation rate of Bai
and Wald Test on different ways.

• Correct estimation performance of the Fluctuation Test increases as the
distance between the starting point of the series forming the panel and
the break point increases. The Fluctuation Test shows a higher correct
estimation performance when the break is in the third quarter of the series.

• The Kim Test shows a lower correct estimation performance than in other
cases when the break is in the middle of the series. If the break occurs
in the third quarter of the series, the Kim Test reveals a higher correct
estimation performance. The Kim Test shows a higher correct estimation
performance than the Fluctuation Test in the case when the break occurs
in the third quarter of the series and where the time dimension of the panel
is medium or large.
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Figure 10. Simulation results for correct break point estimation
rates (N = 32 and T = 12)

• Mostly, increases in the cross-sectional dimension and/or time dimension
have the effect on the correct estimation performance of the methods, which
is slight but on decreasing direction. Nevertheless, the time dimension
changes have a small effect on the Bai Test.

• Changes in the break ratio generally have a negative effect on the correct
break point estimation performance of Bai, Fluctuation, Wald and Kim
Tests. The methods can no longer correct estimate the actual break point
when post-break mean is bigger 40% or more than the pre-break mean of
the series.

• While the highest correct estimation rates are reached with the Bai Test
in the case when the break occurs in the first quarter of the series, the
highest correct estimation rates can be reached by the Wald Test if the
break occurs in the middle of the series. In the case when the break occurs
in the third quarter of the series, if the change in the mean of the series is
small, the Fluctuation Test shows higher correct estimation rates, whereas
in the case of a large change in the mean of the series, the Kim Test reveals
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higher correct estimation rates. The method of which correct estimation
performance is less affected by the changes in the break fraction is Bai Test.

When evaluating the results of the tests concerning the correct break point es-
timation performance, it is seen that the correct estimation rates of the tests are
usually adversely affected by the increase in the factor levels such as increase in
the time or the cross-sectional dimensions. This may be due to a larger range of
estimation values when the time dimension increases, or the fact that, when the
cross-section dimension increases, the estimation of the break point estimates the
same value as the standard error decreases. The results so far are the results ob-
tained by evaluating test performances without considering the magnitude of the
difference between the actual date of break and the break point estimate. How-
ever, it should be taken into consideration that the performance of the tests can be
seen adverse since they do not estimate actual break date correctly at all, although
they steadily lead very close estimation to the break point. On the other hand,
we can only conclude that the tests have a good estimation performance since they
have estimated the true break date only once although they generally produce very
distant estimations to the actual break point.

6. Concluding Remarks

This paper investigates the performance of methods determining structural break
point in a panel data with only one common break point at the time dimension.
It is assumed that there is no serial correlation and/or cross section dependency.
Also, the performance evaluation is performed with a consideration that there does
not exist cross sectional heterogeneity. Although this study is limited for evaluation
of performance of the methods assuming time and/or cross sectional dependency,
it would be extended of the performance evaluation of these methods in terms
of sensitivity or robustness for panel data set with time and/or cross sectional
dependency.
The Monte Carlo simulations are based on the Equation 1 of the study which

is the basic model of Bai (2010). Therefore, it could be expected that the Bai
method or the methods which are compatible to this methodology such as Kim
(2011) Model III has better performances more than others in this study. Since
correct estimation performance of the methods have been investigated instead of
comparing the performance of the considered tests in testing the null hypothesis,
the data set is generated by considering only the model based on Equation 1 and the
correct estimation rates of the methods were compared. Therefore, although data
are produced according to the model proposed by Bai (2010), other methods have
executed higher correct estimation performance than Bai (2010) and Kim (2011) at
some factor levels. Thus, it has been possible to compare which test is more likely
to correct estimate the break point according to the factor levels of the break point
estimation methods considered in the study. Nevertheless, in the future studies, it
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may be useful to compare the correct estimation perspectives of the tests according
to factor levels by considering the data generation processes based on other models.
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THE GOMPERTZ EXTENDED GENERALIZED EXPONENTIAL
DISTRIBUTION: PROPERTIES AND APPLICATIONS

J.T. EGHWERIDO, L.C. NZEI, I.J. DAVID, AND O.D. ADUBISI

Abstract. In this article, a new class of distribution of the exponential fam-
ily of distributions called the Gompertz extended generalized exponential (G-
EGE) distribution for life time processes is proposed. The mathematical prop-
erties of the G-EGE distribution such as reliability, hazard rate function, re-
versed hazard, cumulative, odd functions, quantiles function, kurtosis, skew-
ness and order statistics were derived. The parameters of the G-EGE distri-
bution were estimated using the maximum likelihood method. The effi ciency
and flexibility of the G-EGE distribution were examined using a simulation
study and a real life data application. The results revealed that the G-EGE
distribution outperformed some existing distributions in terms of their test
statistics.

1. Introduction

Modeling lifetime processes has received several attentions in recent years. How-
ever, the lifetime processes rely on the phenomena of distribution. Thus, developing
a flexible distributions depends on how the researcher compound one or more distri-
butions to form a more flexible distribution [1]. One of such distributions in mod-
eling lifetime processes is exponential distribution. The exponential distribution is
used to describing the time between events with a Poisson processes. Thus, the ex-
ponential distribution has been used to model processes with continuous memoryless
random processes and constant failure rate. However, the occurrence of constant
failure rate is almost impossible in real life. Hence, to account for this shortcom-
ing in distribution theory, [2] modeled lifetime processes with inverted exponential
(IE) distribution. The inverted exponential distribution was extensively studied in
[3]; who applied it to various data from the field of engineering and medicine. [4]
proposed the transmuted inverse exponential distribution and studied its statistical
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properties using data from medicine and engineering. [5] also examined the statis-
tical properties of the exponentiated generalized inverted exponential distribution.
[6] proposed the Kumaraswamy inverse exponential distribution. More so, [7] pro-
posed the extended generalized exponential distribution. [8] proposed the Harris
extended exponential distribution. [9] proposed the extended Poisson exponential
distribution. [10] proposed fractional beta exponential distribution. [11] proposed
the exponentiated generalized extended exponential distribution. [12] proposed the
moments of the alpha power transformed generalized exponential distribution. [13]
proposed the extended weighted exponential distribution. [14] proposed the type I
general exponential class of distribution. [15] proposed the Gompertz alpha power
inverted exponential distribution. [16] proposed extended new generalized expo-
nential distribution. [17] proposed the alpha power Gompertz distribution. [18]
proposed the odd exponentiated half logistic-G family of distribution. [19] pro-
posed a new distribution using the tangent function. [20] proposed generalized
exponential distribution. [21] proposed the alpha power inverted exponential dis-
tribution. [22] proposed the alpha power Weibull distribution. [23] proposed a
new extension of generalized exponential distribution. [24] proposed transmuted
exponentiated generalized-G family of distributions. [25] proposed exponentiated
generalized-G Poisson distribution. [26] proposed exponentiated generalized class
of distributions. [27] proposed a new method for generating distributions with an
application to exponential distribution. [28] proposed a method for estimating the
generalized inverted exponential distribution.
The cumulative distribution function (cdf) of the extended generalized distribu-

tion is given as

G(x; γ, β) =
(β − e−x)γ − (β − 1)γ
(βγ − (β − 1)γ) (βγ − (β − 1)γ) 6= 0 x > 0, γ > 1 , β > 1. (1)

The corresponding probability density function (pdf) to Equation (1) is given as

g(x; γ, β) =
γ(β − e−x)γ−1e−x
(βγ − (β − 1)γ) (βγ − (β − 1)γ) 6= 0 x > 0, γ > 1 , β > 1, (2)

where γ is shape parameter and β is the scale parameter.
Also, the Gompertz distribution is a continuous distribution used to describe

the lifespan of stochastic processes. Hence, there exist a relationship between the
exponential and the Gompertz distributions. A lot of researchers have developed
different compound distributions using the exponential and Gompertz distributions.
However, no knowledge of Gompertz extended generalized exponential distribution
was found in existing literature. Hence, this study is motivated to bridge the gap
in existing literature by proposing a lifetime distribution called Gompertz extended
generalized exponential (G-EGE) distribution using the Gompertz-G characteriza-
tion. This distribution is further applied to glass fibre to examine its effi ciency and
flexibility.
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Let G(x; τ) and g(x; τ) be the baseline model with parameter vector τ . Then,
the cdf of Gompertz-G family proposed in [29] is given as

F (x) =

∫ B[G(x;τ)]

0

u(t)dt, (3)

where u(t) is the probability density function of the Gompertz distribution and
B[G(x; τ)] = −log[1−G(x; τ)] is the link function.
The cumulative distribution function in Equation (3) can be expressed as

F (x) =

∫ − log[1−G(x;τ)]
0

θ eλt−
θ
λ (e

λt−1)dt = 1−e θλ (1−(1−G(x,τ))
−λ) for θ > 0 λ > 0,

(4)
where λ and θ are additional two shape parameters.
The pdf that corresponds to the G-family of distribution is given as

f(x) = [
d

dx
B[G(x; τ)]]u[B[G(x; τ)]] = θg(x; τ)[1−G(x; τ)]−λ−1e θλ (1−(1−G(x;τ))

−λ).

(5)
A random variable X with pdf in Equation (5) is denoted by X ∼ Gompertz −

G(θ, λ, τ).
The aim of this study is to propose a G-EGE class of the family of the exponential

distribution and examining its statistical characteristics extensively.
This paper is unfolded as follows. In Section 2, we define the G-EGE distribution

and a plot for its pdf, cdf and hazard rate function (hrf). Useful mixture represen-
tation of the pdf is derived in Section 3. In Section 4 derives some mathematical
properties of the newly proposed class of distribution. In Section 5, the order statis-
tics is obtained. The maximum likelihood estimates (MLEs) of the newly proposed
class of distribution and simulation are performed in Section 6. The viability of the
new class of distribution is examined in Section 7 by means of real life data sets.
Section 7 is the concluding remarks.

2. The Gompertz Extended Generalized Exponential Distribution

In this section, we shall establish the pdf and the cdf of the newly proposed
continuous distribution. Let X be a continuous random variable. Then, X follows
an G-EGE distribution if its pdf is given as

f(G−EGE)(x; θ, λ, β, γ) = θ γ exp
(
−x
) (

βγ −
(
β − 1

)γ)λ(
β − exp

(
−x
))γ−1

×
[
βγ −

(
β − exp

(
−x
))γ]−(λ+1)

× exp
(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

(6)
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for θ > 0 λ > 0 x > 0, γ > 1 , β > 1.

The cdf that corresponds to the pdf is given as

F(G−EGE)(x) = 1− exp
(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

(7)

for θ > 0 λ > 0 x > 0, γ > 1 , β > 1,

where γ is shape parameter and β is the scale parameter; λ and θ are additional
two shape parameters.
Figure 1 shows the plots of the G-EGE density for some selected values of the

parameters γ, β, λ and θ. The pdf plots indicate that the G-EGE distribution can
be unimodal, left skewed, increasing and decreasing.

Figure 1. The plots of the G-EGE pdf for some parameter values.

The Hazard Rate function (hrf), reliability function (rf) and cumulative hazard
rate function (chrf) of the random variable X are given respectively as

hrf(x) =
f(G−EGE)(x)

1− F(G−EGE)(x)
= θ γ exp

(
−x
) (

βγ −
(
β − 1

)γ)λ(
β − exp

(
−x
))γ−1

×
[
βγ −

(
β − exp

(
−x
))γ]−(λ+1)

.

(8)
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Figure 2 shows the plots for the hazard rate function of the G-EGE distribution.
The plots shows that the G-EGE density is increasing and bathtub depending on
the values of the parameters γ, β, λ, and θ.

Figure 2. The plots of the G-EGE hrf for some parameter values.

R(x) = 1− F(G−EGE)(x) = exp
(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

. (9)

H(x) = −InR(G−EGE)(x) =
{
θ

λ

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
}
− θ

λ
. (10)

3. Mixture Representation

The quantity
(
β − exp(−x)

)γ
can be expressed as

γ∑
k=0

(−1)k
(
γ

k

)
βγ−k exp(−xk).
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More so, the quantity
(
βγ −

(
β − exp(−x)

)γ)λ+1
can be expressed as

γ∑
k=0

λ+1∑
p=0

(
−1
)p(k+1)(λ+ 1

p

)(
γ

k

)p
βλ(γ+1)+p(γ−λ−k) exp(−xkp).

Thus, inserting these expressions into Equation (6) and after some algebraic sim-
plification we expanded Equation (6) as

f(x) =

γ∑
k=0

λ+1∑
p=0

γ−1∑
i=0

(γ − 1)!
(γ − i− 1)!i!θ γ exp

(
−x
) (

βγ −
(
β − 1

)γ)λ(
−1
)i−p(k+1)

× exp
(
−xi

)
am+jβ

(
γ−i−1

)
−
(
λ(γ+1)+p(γ−λ−k)

)
exp
(
xkp

)
× exp

(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

, (11)

where

aj =
[ (λ− p+ 1)!p!

(λ+ 1)!

]
and am =

[ (γ − k)!k!
γ!

]p
.

Expanding the binomial terms, we have

f(x) =

γ∑
k=0

λ+1∑
p=0

γ−1∑
i=0

υi,k,p exp

(
−x Dikp −m

(
βγ −

(
β − e−x

)γ)−λ)
, (12)

where

υi,k,p =
(γ − 1)!

(γ − i− 1)!i!θ γ
(
βγ −

(
β − 1

)γ)λ(
−1
)i−p(k+1)

am+j

×β−
(
λ(γ+1)+p(γ−λ−k)

)
+
(
γ−i−1

)
exp(

θ

λ
).

Dikp =
(
i− kp+ 1

)
,

m =
θ

λ

( 1

βγ − (β − 1)γ
)−λ

.

4. Mathematical Properties

This section investigates some statistical properties of the G-EGE distribution.
This includes quantile and random number generation, Skewness, Kurtosis and
order statistics. These structural properties of the G-EGE distribution can be
computed effi ciently by using programming softwares like R, Mathematical, Maple
and Matlab.
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4.1. Quantile function and random number generation. Let X be a random
variable such that X ∼ G− EGE(θ, β, γ, λ). Then, the quantile function of X for
p ∈ (0, 1) is obtained by inverting Equation (7) as

xp = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
1− p

))− 1
λ

) 1
γ
]
. (13)

Setting p = 0.5 in Equation (13) gives the median M of X as

x0.5 = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
0.5
))− 1

λ

) 1
γ
]
0 < p < 1. (14)

Simulating the G-EGE random variable is flexible. If U is a uniform variates
on the interval (0, 1), then the random variable X = xp at p = U follows the
xp ∼ G− EGE(θ, β, γ, λ) of Equation (6).
However, the 25th and 75th percentile for the random variable X are obtained

as

x0.25 = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
0.75

))− 1
λ

) 1
γ
]
, (15)

x0.75 = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
0.25

))− 1
λ

) 1
γ
]
. (16)

4.2. Skewness and Kurtosis. The Bowleys formula for coeffi cient of skewness is
given as

Sk =
x0.75 − 2x0.5 + x0.25

x0.75 − x0.25
.

However, the Moors formula for coeffi cient of kurtosis is given as

Ks =
x0.875 − x0.625 − x0.375 + x0.125

x0.75 − x0.25
.

4.3. Order statistics. Let X1, X2, · · · , Xn be a random sample of size n of the
fAPEGE(x) distribution and X(1), X(2), · · · , X(n) be the corresponding order sta-
tistics. Then, probability density function of the ith order statistics Xk, say fk(x)
is expressed as

gk(yk) =
n!(

k − 1
)
!

(
nk

)
!

[
FG−EGE(yk)

]k−1
fG−EGE(yk)

[
1− FG−EGE(yk)

]k−1
.

(17)
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We can write

gk(yk) =
n!(

k − 1
)
!

(
nk

)
!

×
[
1− exp

(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})]k−1

×
γ∑
k=0

λ+1∑
p=0

γ−1∑
i=0

υi,k,p exp

(
−x
(
i− kp+ 1

)
+
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

×
[
exp

(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

)

]n−k
.

(18)

The order statistics for the G-EGE distribution can be obtained as follows:

• The minimum order statistics is obtained for k = 1.
• The median is obtained when k = m = 1, given n is odd expressed as
n = 2m+ 1.

• The maximum order statistics is obtained for k = n for even n expressed
as n = 2m.

5. Parameter Estimation

Several approaches have been employed for parameter estimation in literature. In
this article, the maximum likelihood method was adopted to obtain the parameters
of the G-EGE. Let x = (x1, . . . , xn) be a random sample of the G-EGE model with
unknown parameter vector θ = (θ, β, γ, λ)T . Then, the log-likelihood function ` of
the G-EGE distribution can be expressed as

` = n log θ+n log γ−
n∑
i=1

xi+nλ log z−
(
λ+1

) n∑
i=1

si+

n∑
i=1

θ

λ

{
1−
(
z

si

)λ}
, (19)

where

z = βγ −
(
β − 1

)γ
and s = βγ −

(
β − exp(−x)

)γ
However, the partial derivative of the ` with respect to each parameter is given as

∂`

∂θ
=
n

θ
+
1

λ

n∑
i=1

{
1−

(
z

si

)λ}
, (20)

∂`

∂γ
=
n

γ
+
nλz′γ
z
−
(
λ+ 1

) n∑
i=1

s′γ −
n∑
i=1

θ

{
zλ−1z′γs

−λ
i − zλs

−λ−1
i s′γ

}
, (21)
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∂`

∂λ
= n log z −

n∑
i=1

si −
nθ

λ2
+

n∑
i=1

{
θ

λ2

(
z

si

)λ
− θ

λ

(
z

si

)λ
ln

(
z

si

)}
, (22)

∂`

∂β
=

nλγ

(
βγ−1 −

(
β − 1

)γ−1)
βγ −

(
β − 1

)γ − γ
(
λ+ 1

) n∑
i=1

(
βγ−1 −

(
β − exp(−x)

)γ−1)

−
n∑
i=1

γθ

(
zλ−1s−λi

(
βγ−1 − (β − 1)γ−1

)
− zλs(λ+1)i

(
βγ −

(
β − exp(−x)

)γ−1))
,

(23)

where

z′γ =
∂z

∂γ
; s′γ =

∂s

∂γ
.

The solution to the vector is obtained analytically using Newton-Raphson algo-
rithm. Software like MATLAB, R, MAPLE, and so on could be used to obtain the
estimates.

5.1. Simulations study. A simulation is carried out to test the flexibility and
effi ciency of the G-EGE distribution. Table 1 shows the simulation for different
values of parameters for the G-EGE distribution. The simulation is performed as
follows:

• Data are generated using

x = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
1− p

))− 1
λ

) 1
γ
]
, 0 < p < 1

• The values of the parameters are set as follows: γ = 1.5, θ = 1.3, λ = 1.5,
and β = 2.0

• The sample sizes are taken as n = 50, 100, 150, 250 and 350.
• Each sample size is replicated 1000 times.

The bias is calculated by (for S = â, b̂, α̂, λ̂,)

B̂iasS =
1

1000

1000∑
i=1

(
Ŝi − S

)
.

Also, the MSE is obtained as

M̂SES =
1

1000

1000∑
i=1

(
Ŝi − S

)2
.

The simulation study investigates the average estimates (MEs), biases, variance,
means squared errors and roots means squared errors. The results are shown in Ta-
ble 1. The results of the Monte Carlo study show that the MSEs and RMSEs decay
towards zero as the sample size increases. This corroborates the first-order asymp-
totic theory. The mean estimates of the parameters tend to the true parameter
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Table 1. A simulation Study of the G-EGE Distribution

Sample size Parameter Average estimate Bias Variance MSE RMSE

50 γ 1.4859 -0.0141 0.1470 0.1472 0.3836
θ 1.2792 -0.0208 0.0299 0.0303 0.1741
λ 1.5913 0.0913 0.1078 0.1162 0.3408
β 2.1554 0.1554 0.3791 0.4032 0.6350

100 γ 1.5168 0.0168 0.0739 0.0742 0.2723
θ 1.3097 0.0097 0.0146 0.0147 0.1211
λ 1.5657 0.0657 0.0775 0.0818 0.2860
β 2.0793 0.0793 0.1920 0.1983 0.4453

150 γ 1.5143 0.0143 0.0549 0.0551 0.2348
θ 1.3153 0.0153 0.0105 0.0107 0.1036
λ 1.5752 0.0752 0.0716 0.0773 0.2779
β 2.0492 0.0492 0.1212 0.1237 0.3517

250 γ 1.5187 0.0187 0.0340 0.0343 0.1853
θ 1.3325 0.0325 0.0065 0.0076 0.0869
λ 1.5665 0.0665 0.0491 0.0535 0.2314
β 2.0381 0.0381 0.0729 0.0743 0.2726

350 γ 1.5135 0.0135 0.0228 0.0229 0.1515
θ 1.3317 0.0317 0.0040 0.0050 0.0706
λ 1.5792 0.0792 0.0416 0.0478 0.2187
β 2.0248 0.0248 0.0501 0.0508 0.2253

values as the sample size increases. This corroborates the fact that the asymptotic
normal distribution provides an adequate approximation of the estimates.

6. Data Analysis

In this section, the flexibility of the newly developed G-EGE model is proven by
means of a real life datasets. The fits of G-EGE model is compared with Weibull
Frechét (WFr), extended generalized exponential (EGE), Weibull alpha power in-
verted exponential (WAPIE), Kumaraswamy Frechét (KFr), transmuted Frechét
(TFr), transmuted Marshall-Olkin Frechét (TMOFr), Kumaraswamy alpha power
inverted exponential (KAPIE), Kumaraswamy inverted exponential (KIE), beta
Lomax (BL), alpha power inverted exponential (APIE) and exponential(E) distrib-
utions. However, these models were chosen base on their relationship that enables
us make effective and effi cient conclusion about their test statistics.
The following criteria were used to determine the best fit: Akaike Information

Criteria (AIC), Consistent Akaike Information Criteria (CAIC), Bayesian Infor-
mation Criteria (BIC), and Hannan and Quinn Information Criteria (HQIC). The
test statistics are given as follows: AIC = −2ˆ̀+ 2k, BIC = −2ˆ̀+ k log(n),
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CAIC = −2ˆ̀+ 2kn
n−k−1 , HQIC = −2ˆ̀+ 2k log(log(n)), where n is the sample

size, k is the number of model parameters and ˆ̀ is minus twice the maximized
log-likelihood. The model with the lowest values test statistics is chosen as the best
model to fit the datasets.
The first set of data on 1.5 cm strengths of glass fibres were obtained by workers

at the UK National Physical Laboratory was used to compare the performance of
the G-EGE distribution as used by [30], [31], [32], [33], [34], [35] and [36].
The performance of a model is determined by the value that corresponds to the

lowest Akaike Information Criteria (AIC) as the best model. In the real life cases
considered in Table 2, the G-EGE distribution has the lowest AIC value with 37.6.
Figure 3 shows the plots of the estimated densities together with the estimated

cdfs of the models under consideration. These plots show that the G-EGE distrib-
ution produces a better fit than others models.

Figure 3. The plots of empirical estimated pdfs and cdfs of the
G-EGE model

7. Conclusion

The G-EGE distribution has been successfully derived. The basic statistical
properties of the G-EGE distribution such as the order statistics, cumulative hazard
function, reversed hazard function, quantile, median, hazard function, odds function
have been successfully established. The G-EGE distribution was also explicitly
expressed as a linear function of the exponential distribution. The order statistics
of the proposed distribution was also derived. A simulation study of the proposed
model was also illustrated. The simulation shows that the shape of the proposed
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Table 2. Performance rating of the G-EGE distribution with
glass fibers dataset

D is t r ib u t io n P a r am e t e r M L E s A IC C A IC B IC H Q IC W A

θ̂ = 0.0085

λ̂ = 3.5696
G -E G E 37.6 38.3 46.2 41.0 0.14 0.84

β̂ = 8.6251
γ̂ = 0.1765

α̂ = 0.0207

β̂ = 10.0442
We ib u l l Fr e ch é t 3 9 .3 3 9 .7 4 7 .6 4 2 .4 0 .2 6 1 .4 2

â = 0.4430

b̂ = 0.3690

α̂ = 0.0058

β̂ = 4.9797
We ib u l l A lp h a P ow e r In v e r t e d E x p o n e n t ia l 3 9 .6 4 0 .2 4 8 .1 4 2 .9 0 .2 7 1 .4 6

λ̂ = 0.3655
γ̂ = 2.0357

α̂ = 2.1160

β̂ = 0.7401
K um a ra sw am y Fr e ch é t 4 7 .6 4 8 .3 5 6 .2 5 1 .0 0 .2 6 1 .4 2

â = 5.5043

b̂ = 857.3434

â = 1.04428

b̂ = 19.3039
K um a ra sw am y A lp h a P ow e r In v e r t e d E x p o n e n t ia l 5 2 .7 5 3 .4 6 1 .3 5 6 .1 0 .5 1 2 .7 7

ĉ = 7.4277
α̂ = 0.0021

α̂ = 3.0232

K um a ra sw am y In v e r t e d E x p o n e n t ia l λ̂ = 163.2152 5 3 .4 5 3 .8 5 9 .9 5 6 .0 0 .5 1 2 .8 3
β̂ = 2.6961

α̂ = 0.6524

β̂ = 6.8744
Tra n sm u t e d M a r s h a l l -O lk in Fr e ch é t 5 6 .5 5 7 .2 6 5 .1 5 9 .9 2 .5 0 3 .1 0

λ̂ = 376.2684
γ̂ = 0.1499

α̂ = 18.1737

β̂ = 26.7645
B e t a L om a x 5 6 .8 5 7 .5 6 5 .4 6 0 .2 2 .5 4 3 .2 0

â = 10.8769

b̂ = 0.0329

α̂ = 1.3068

Tra n sm u t e d Fr e ch é t β̂ = 2.7898 1 0 0 .1 1 0 0 .5 1 0 6 .6 1 0 2 .7 0 .9 9 4 .2 8
λ̂ = 0.1298

α̂ = 0.5128

G β̂ = 0.5009 1 4 1 .4 1 4 1 .6 1 4 5 .6 1 4 3 .1 2 .0 2 3 .4 2
α̂ = 144.0791

β̂ = 0.0550
E x t e n d e d G e n e r a l i z e d E x p o n e n t ia l 1 4 5 .3 1 4 5 .9 1 5 3 .8 1 4 8 .6 0 .9 9 4 .2 5

λ̂ = 137.8711
γ̂ = 7.994

E x p o n e n t ia l λ̂ = 0.6637 1 7 9 .6 1 8 1 .8 1 8 5 .9 1 7 9 .7 1 .0 0 4 .2 9
α̂ = 53.5634

A lp h a P ow e r In v e r t e d E x p o n e n t ia l λ̂ = 0.3509 1 9 6 .3 1 9 6 .5 2 0 0 .6 1 9 8 .0 0 .7 8 4 .2 4

distribution could be inverted bathtub or decreasing (depending on the value of the
parameters). The new distribution was applied to a real life data. It shows that
the G-EGE distribution performed better than some existing models in literature.
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Abstract. Gestational Diabetes Mellitus (GDM), usually found deploying a
medical test called the Oral Glucose Tolerance Test (OGTT), is a prevalent
complication during pregnancy. Early detection of GDM and identifying the
most influential risk factors of GDM pose to be a challenging problem and is
found to be crucial as GDM has dreadful health indications for both mother
and the baby. The performances of computational techniques like Radial Basis
Function (RBF) neural network and Multilayer Perceptron Network (MLP)
were collated with that of the statistical technique Discriminant Analysis (DA)
on real time GDM datasets for diagnosis of GDM in multigravida pregnant
women, specifically women who have been pregnant more than once, without
even a visit to the hospital. The most influential risk factors were identified
using DA while the overall performance of MLP beyond doubt established
itself to be the most effective technique for early diagnosis of GDM in women
during pregnancy.

1. Introduction

Diabetes Mellitus is causing havoc and concern amongst the health experts
as it is greatly instrumental in the increasing burden of diseases which are non-
communicable. Sadly, India is no different. According to the World Health Organi-
zation (WHO), existence of diabetes mellitus (DM) in adults showed a rise of more
than 120% from 135 million in the year 1995 to a staggering 300 million in 2025
[1]. In a survey conducted, the percentage of pregnant woman who was diagnosed
with GDM in the urban population of Chennai was found to be 16.2% [2].
GDM is defined as intolerance of carbohydrate levels of differing severity with

onset or foremost identification during pregnancy [3]. The birth of a child from
GDM mother is susceptible in getting affected by obesity while growing up and
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possibly with DM type ii during subsequent stages of their lifespan [4]. Moreover,
their offspring are more prone to an added threat of health issues like jaundice,
hypoglycemia and fetal macrosomia. Delivery complications like Caesarean section,
pre-eclampsia and an extended danger of having type 2 diabetes or even Type1 after
delivery are more incident amongst ladies with GDM. However, gestational diabetes
is a treatable condition. The WHO has recommended using a 2 hour 75 g OGTT
to systemize the diagnosis of GDM, which is generally performed between 24 and
28 weeks [5]. Thus a pregnant woman who may be prone to gestational diabetes
shall undergo the conventional medical blood tests only in the period of six to seven
months of her pregnancy. Discerning individuals who are at danger of developing
GDM is the growing need of the hour. Various studies have put on record that
early detection of gestational diabetes actually lowered mortality of mother and
child and also helped improve the woman’s well being in terms of health [6][7][8].
More importantly, as the rate of babies who are born dead is relatively high in India
and gestational diabetes mellitus is undoubtedly one of the causes, early diagnosis
and awareness of GDM is an utmost priority in the society today [9].

2. Literature Review

Nanda et al.[10] used an analysis on predicting complications during pregnancy
in the early stage to build a methodology for forecasting gestational diabetes us-
ing biochemical markers, characteristics of the pregnant women. The classification
power of the models for detection of GDM in pregnant women who were prone to
developing GDM was collated by Tran et al.[11] using a few diagnostic norms on
the basis of 75-g oral glucose tolerance test and finally summarized for screening of
GDM selectively in places like Vietnam, an ordinary prognostic model using Body
Mass Index (BMI) and age at booking was adequate. Okeh et al.[12] applied a
semi-parametric linear mixed model to determine the effect of covariates on the
precision of the results of diagnostic tests by deriving a general cut off estimate
for selecting patients to perform glucose tests during pregnancy explained imple-
menting gestational diabetes data. Fuzzy integral was used by Zhang et al.[13] to
develop the classification model of GDM. Training of BPN was done to obtain the
Sugeno measure and the BP neural network was optimized using the algorithm
of simulated annealing to acquire an estimated global solution which was optimal.
A universal screening program to detect GDM was extremely cost-effective in Is-
rael and India concluded Lohse et al.[14] by examining whether selection process
of pregnant women for diagnosing GDM was economical and used published core
diabetes model to estimate the long-term impact of screening through their study.
The above survey infers that while taking into consideration the facts and figures

needed to be collected for the analysis, there is certainly a minimum of one data for
which the pregnant woman is in need of help of a medical staff from the hospital.
By providing newly designed input variables, the article aims to diagnose GDM in
an early stage among pregnant women without performing a blood test. The article
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utilizes Artificial Neural Networks namely a supervised MLP network using Back
propagation algorithm and RBF Network and the statistical technique Discriminant
Analysis for classification of GDM and compares the effi ciency of these diagnostic
models.

3. Methodology

3.1. Artificial Neural Network. A computational arrangement which bears a
strong resemblance to the biological networks consisting of neurons in the human
brain basically explains an artificial neural network. Because of their ability to
adapt easily, a salient feature of these networks, these networks go a long way in
solving problems in diagnosis of diseases. Neural networks are known for recognizing
the patterns which are hidden between predictor variables and dependent variables
and are commonly applied to model complex relationships between them.

3.1.1. Fundamentals of Multilayer Perceptron Network. Using hidden layers, the
separation of the relationship between the inputs and the output into a sequence of
stages which are linearly separable is the most important essence of neural networks
[15]. The diagnostic system comprises of three varied modules. The input module
which receives data from the patient is the first module. It then transfers it to
the second module, which classifies the given input patient’s case record. The
classification system output is displayed by the third module which is an output
module. For an input pattern zp, with an only pass forward, the MLP Network’s
return is evaluated. For every output unit ok , the output is given by

Ok,p = fok

( J+1∑
J=1

wkjfyj
( I+1∑
i=1

vjizi,p
))

(1)

where the activation function for ok is fok and the activation function for yj , a
hidden unit is fyj ; the weight linking hidden unit yj and output unit ok is wkj ;
the estimate of zi of input pattern zp is zi,p; in the following layer the neurons’
threshold estimates are indicated by the bias units.
Back propagation Training Algorithm. The most powerful tool for training ANN is
probably the hugely popular Back propagation algorithm. It coaches a Multilayer
Perceptron network for a group of values of input whose outputs are already known.
The network inspects the response of its output values to the given input values
weighing up with the target output values for every entry of the sample set that is
submitted and the error value is determined. Till the value of the error is brought
to a minimum, these sample patterns are continuously handed over to the MLP
network [16].

3.1.2. Fundamentals of Radial Basis Function Network. RBF is one of the fre-
quently implemented algorithms of neural networks in various medical and engi-
neering domains because of their faster learning speed, more compact topology and
universal approximation. These networks have been independently proposed by
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Figure 1. Architecture Design of MLP Network

numerous researchers [17] [18][19][20] and are a popular alternative to the Mul-
tilayer Perceptrons. It is a Feed Forward Neural Network (FFNN) containing 3
different modules which are the input layer, the hidden layer and the output layer.
A parameter vector in the hidden module called center exists in every neuron. By
evaluating distance between the inputs of the network and centers of the hidden
module, the outputs of the first module are determined. The outputs of the linear
hidden layer are the weighted forms of the returns of the first module. The general
expression of the RBF network is [21]:

ylj =

I∑
i=1

wij∅
(
||x− ci||

)
+ βj (2)

The Euclidean distance is taken to be the norm while the most frequently used
Gaussian function is assumed to be the radial basis function as it has well known
mathematical features, is highly nonlinear and provides good locality as a local
RBF [22] and is defined by:

φ(r) = e(−αi||x−ci||
2) (3)

I denotes neuron count in the middle layer i ∈ {1, 2, ...I}
J denotes neuron count in the middle layer J ∈ {1, 2, ...J}
ci denotes centre vector of the ith neuron
x denotes input data vector
wij denotes connecting value of the ith neuron and jth output
ylj denotes output of the j

th neuron Network
φ denotes radial basis function
αi denotes spread parameter of the ith neuron
βj denotes value of the bias of the output j

th neuron.
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Figure 2. Architecture Design of RBF network

The structure of a radial basis function neural network is depicted in Fig. 2. The
inputs of m dimensions (x1, ..., xm) situated in the input module are first passed
on to the hidden module, which comprises of I neurons. The Euclidean distance
connecting the centers and inputs are evaluated by each neuron which contains
the basis function, which is an activation function. To shape the curve (α1, ..., αi)
the RBF contains a spread parameter and is very often taken to be the Gaussian
function. The hidden layer’s weighted outputs denoted by (w11, ..., wij) are then
broadcasted to the last module. Here the dimensions of the middle layer are given
by I where i ∈ {1, 2, ...I} which depicts the number of neurons in the layer while the
dimension of the output is denoted by J where j ∈ {1, 2, ...J} and bias parameters
by (β1, ..., βj). The linear combination of the bias parameters and returns of the
second module are evaluated by the last layer. The results of the radial basis
network are then eventually acquired (yl1, ..., y

l
j) . During the training period, the

parameters of the RBF network are modulated in such a way that the data used
for training is made to fit the network model in best possible way [23].

3.2. Discriminant Analysis. In biomedicine models, one of the most commonly
accepted statistical techniques extensively implemented is Discriminant Analysis
[24]. It is basically a multivariate method which segregates different sets of obser-
vation values and assigns fresh observation values to already defined sets[25]. Based
on the population size, the statistical problem is to build a classification function.
The score of the discriminant function can be generated with unstandardized dis-
criminant function scores and raw scores. To maximize the differences between the
two groups, the discriminant function coeffi cients are chosen, whose mean is equal
to zero and standard deviation is one. For every group the mean discriminant



A COMPARATIVE STUDY OF CLASSIFIERS 759

function coeffi cient known as centroids can be found which are generated by the
discriminant function brought down from the starting independent variables.
The dimensions along which the groups differ are shown by differences in the lo-

cation of these centroids. Through their capacity to exactly discriminate every data
point to their derived groups, the utility of these functions can be examined. When
the classification functions are ascertained groups are then differentiated. In order
to achieve this purpose, from the linear discriminant functions, the classification
functions are acquired.
The classification function coeffi cient Cj for the jth group, j = 1, ..., k whose

sample sizes are all equal is given by:

Cj = cj0 + cj1x1 + cj2x2 + ...+ cjpxp (4)

where cj0 is a constant and x stands for the raw scores of each predictor. If M
denotes mean column matrix for group j and W denotes within-group variance-
covariance matrix, cj0 = (−1/2)CjMj . When the size of the sample is unequal in
every group, if in group j, size is denoted by nj and N denotes the entire size of
the sample, then Cj is as follows:

Cj = cj0 +

p∑
i=1

cijxi + ln
(nj
N

)
(5)

4. Data Analysis

The variables used in the study were selected based on the various characteristics
which are relevant medically for a woman who is pregnant to have gestational
diabetes on consultation with gynecologists. The real time data sets of 336 records
of which 188 were of multigravida patients, every set containing ten variables, were
collected from the records of outgoing patients in a Chennai multi-specialty hospital
located in India during the period January to May 2013.

Table 1. The variables for the study

S.No Study Variable Classification Network Variable
1 History of stillbirth Y or N [character]
2 Pre pregnancy body mass index Integer [continuous]
3 Abnormal baby in previous pregnancy Y or N [character]
4 History of miscarriage Y or N [character]
5 Delivery of a large infant Y or N [character]
6 Age Integer [continuous]
7 History of GDM Y or N [character]
8 History of polycystic ovary syndrome Y or N [character]
9 Family history of diabetes Y or N [character]
10 Infections (Urinary, Skin, Vaginal) Y or N [character]
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Table 1 shows the variables chosen for the study. Of the ten parameters, three
include common details like BMI and age of the patient and history of diabetes
in family amongst relatives of first degree. Details on previous pregnancy namely
child born weighing above 3.8kg, presence or absence of GDM, the demise of a
child within 5 months, a baby’s birth which has flaws in major organs like the
heart or brain, the birth of an infant that has died in the womb strictly after
having survived through at least 5 months of pregnancy are included in five other
variables. Particulars on history of infections and syndrome of polycystic ovaries
are revealed in the remaining two variables[26].

Figure 3. Graph showing the patients’history summary statistics

The information on the statistics of the records containing history of the patients
is shown in Figure 3 by means of a graph. It was observed that the age of the
pregnant ladies on an average was 32.8 years while average BMI of the patients
was 26.4. The prevalence rate of GDM was found to be an alarming 34.04% in this
study.

5. Results

The results of the three diagnostic models are discussed below.
Results of MLP Model
MATLAB R2014a, a toolbox of Neural Network was implemented to construct

the diagnostic models for both MLP and RBF. A typical FFNN using back- prop-
agation was implemented to develop a classification system. Ten input neurons
constituted the input layer, fifteen hidden neurons were used in the middle layer
while the output layer comprised of a single neuron. 1 or 0 were the only possible
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outputs of the model as diagnosing GDM was considered as a binary classification
problem i.e. Output 1 was regarded as “GDM patient”and a value of 0 was inter-
preted as “non-GDM patient”. As the optimal neuron count lying in the middle
layer cannot be predetermined, stopping criteria, the neurons in the second module
and the network layer count was determined through trial and error procedure.
Hence the neurons in the hidden layer were kept altering and tests were carried
out on various architectures through which it was found that the architecture with
hidden layer consisting of 15 neurons produced the best classification results. 70%
of the data set was selected for training, 15% of them were chosen for validation
while the remaining 15% was allotted for testing. The learning rate for network
training was set to 0.28 and the momentum was set to 0.8. Until an average squared
error of minimum less than 0.045 was reached, the model was executed.

Figure 4. Regression Testing
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Figure 5. Performance Analysis

The regression testing outcomes performed on the MLP architecture for training,
testing and validation and an amalgamation of all of them is depicted in Fig. 4.
The performances of the MLP generated for training, validation and testing with
respect to the mean square error is shown in Fig. 5. The mean square value was
found to be 0.12506 and the performance of best validation was reached in the
3rd generation. As the generation proceeded, it was seen gradient descent learning
algorithm minimized the error. The global minimum of mean square error was
0.075309 at the ninth generation as depicted in Fig. 6. A surge in the gradient
value was noted right after ninth generation. Fig. 7 depicts the linear separability
of the chosen data set classified into 2 distinguished groups namely GDM pregnant
women with output 1 and non GDM patients with output 0. An astonishing 92.86
% of the given data was classified correctly while only the remaining 7.14 % were
classified incorrectly. These results of the MLP model proved that the system was
trained effectively and may very possibly be implemented for discerning women
who are pregnant having high or low risk of gestational diabetes.
Results of RBF Model
The datasets were divided equally for training and testing. The outputs in

the model were either 1 or 0 as detection of GDM was considered as a binary
classification problem.
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Figure 6. Validation Performance

The graphs generated for trained dataset and tested dataset are shown above in
fig.8 and fig.9. The performance of RBF neural networks was considered best at
nine centers while 16 centers were maximum tried. Using the best centers, 0.1213
was found to be the root mean square error. Execution time of RBF network
was lesser than MLP. The classification accuracy of a model is used to analyze
its discriminatory power. The measures of accuracy namely the sensitivity and
specificity brief about the test accuracy. The true positive rate or sensitivity of
a model is the capacity to accurately discern the patients with GDM while the
true negative rate or specificity of the model is the capacity to accurately discern
patients without gestational diabetes. The total of the number of true negative
and true positive values divided by the overall size of the sample gives the overall
accuracy of the model.

Table 2. Classification Table of RBF Model

Observed
Predicted

Output GDM Percentage Correct
No Yes

Output GDM No 23 46 33.33
Yes 01 24 96.00

Overall Percentage 50.00
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Figure 7. Classification of GDM

The classification results using RBF is shown in Table 2. 50% of the records were
used for testing. Sensitivity was found to be 96.00% in the RBF neural network
model and specificity was 33.33%. The overall accuracy was calculated to be a
modest 50.00% for the model.
Results of Discriminant Analysis Model
To detect GDM and non GDM patients and also to determine most significant

parameters of GDM, Discriminant Analysis model was implemented using version
20 of SPSS, namely the Statistical Package for Social Sciences for Windows. In DA,
Wilks’lambda is applied by the mean differences ANOVA F test. Lambda value
lies between 0 and 1, wherein 0 indicates that the group means differ and a value of
1 indicate that all means of the group are equal. Hence an independent variable will
contribute more to the discriminant function as the lambda value gets smaller for
the variable. Thus the significance of the contributions of the variables is revealed
through the Wilks’lambda’s F test. Corresponding to each discriminant function,
the Pearsonian correlations of all the variables are depicted by the structure matrix
table in SPSS, which are known as discriminant loadings or correlations or structure
coeffi cients.
The significance of discriminant analysis was indicated using Wilks’ Lambda

test. From the table, it is inferred that pre pregnancy body mass index, diabetes
history in family and presence or absence of GDM history were the variables which
were the most influential with GDM occurrence since they had the least p values.
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Figure 8. Relationship between desired and actual values for
training dataset

Table 3. Testing Equality of Group Means

Study Variable F Value Wilks’Lambda P Value
Pre pregnancy body mass index 16.130 0.920 <0.001**
Abnormal baby in previous pregnancy 2.953 0.984 0.087
Infections (Urinary, Skin, Vaginal) 6.455 0.966 0.012*
Delivery of a large infant 6.657 0.965 0.011*
Age 5.850 0.970 0.017*
History of miscarriage 7.283 0.962 0.008**
History of GDM 95.894 0.660 <0.001**
History of polycystic ovary syndrome 2.190 0.988 0.141
History of stillbirth 3.030 0.984 0.083
Family history of diabetes 27.594 0.871 <0.001**
Note: * stands for 5% level of significancenificance

** stands for 1% level of sig
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Figure 9. Relationship between desired and actual values for test
dataset

Moreover, large infant delivery, age and infections in the past were the variables
with 5% level of significance whereas the variable history of miscarriage had 1%
level of significance[27]. Using structure matrix and the standardized coeffi cients,
discriminant functions are well explained. In each discriminant function, standard-
ized beta coeffi cients are given for every variable. The contribution of a variable to
the discrimination between GDM and non GDM patients will be less if the value of
the standardized coeffi cient is less and vice-versa. It is concluded from table 4 that
the most vital part in discriminating the two groups was contributed by history
of GDM while a few other variables like infections history, history of diabetes in
family and miscarriage history also played crucial roles. 64 of the 188 pregnant
women in the study had GDM in current pregnancy. Table 5 shows that using
the discriminant analysis model, 45 of the 64 pregnant women with GDM were
correctly identified while 112 pregnant women of the 124 patients who did not have
GDM were correctly identified.
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Table 4. Canonical Discriminant Function Coeffi cients

Study Variable
Standardized

Coeffi cients

Unstandardized

Coeffi cients
Pre pregnancy body mass index 0.053 0.017
Abnormal baby in previous pregnancy 0.145 0.830
Infections (Urinary, Skin, Vaginal) 0.313 0.707
Delivery of a large infant 0.244 0.841
Age 0.156 0.041
History of miscarriage 0.304 0.629
History of GDM 0.800 2.577
History of polycystic ovary syndrome 0.234 0.997
History of stillbirth -0.094 -0.469
Family history of diabetes 0.472 1.011
Constant -3.199

Table 5. Classification Table

Observed
Predicted

Output GDM Percentage Correct
Yes No

Output GDM
Yes 45 19 70.31
No 12 112 90.32

Overall Percentage 83.51

6. Discussion

To determine the most effi cient model and the model with the best discriminatory
power, the measures of accuracy of the three diagnostic models were compared
and analyzed. Another measure which exhibits information on the classification
accuracy of the test namely Youden’s index is calculated using the specificity and
sensitivity values of the model and is defined as follows:

Youden’s index = Specificity+ Sensitivity− 1. (6)

This index lies between -1 and 1. The test is considered flawless if there are no false
negatives or false positives thereby yielding a value of 1. Thus, the accuracy of the
model is higher when Youden’s index value of the model is larger.
For all the three classification methods, table 6 displays a comparison of the mea-

sures namely accuracy, specificity, sensitivity and Youden’s index. All models had
specificity, sensitivity, accuracy and Youden’s index range between 33.33-94.74%,
70.31-96.00%, 50.00-92.86% and 0.29-0.84 respectively. The sensitivity was more
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Table 6. Comparative Predictions of the three Diagnostic Models

Model
Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Youden’s
Index

MLP 88.89 94.74 92.86 0.84
RBF 96.00 33.33 50.00 0.29
Discriminant Analysis 70.31 90.32 83.51 0.61

than 70% in each model of which RBF had the highest (96.00%). In this study, the
MLP model had the highest specificity (94.74%), the best classification accuracy
(92.86%) and the highest Youden’s index (0.84). Based on the above comparison
analysis carried out, the MLP model was found to be the best classification method
and has clearly outperformed RBF and discriminant analysis models.

7. Conclusion

GDM is a public health concern. Only women who have the traditional risk
factors like obesity or family history of GDM are usually screened earlier on in
pregnancy. Unfortunately, women who do not have these common risk factors and
develop GDM often remain undiagnosed until the second trimester and a delay in
diagnosis often leads to therapies for GDM becoming less effective. Hence, there is a
growing need for early detection of gestational diabetes. Nearly three-fourth of the
population in India exists in rural environment and basic amenity for even diagnosis
of DM is inadequate. Performing OGTT to diagnose GDM is burdensome and un-
favorable in this current setting. Furthermore, the amount involved is exorbitant to
undergo three medical tests. Therefore, the necessity is also for an inexpensive and
uncomplicated procedure to detect gestational diabetes. To address these needs,
the methods identified in this study offer every pregnant woman the opportunity to
know her risk early on without a visit to the hospital because of which the costs for
the various blood tests are saved and hence would prove immensely favorable for all
pregnant women. In conclusion, with a staggering 92.86% overall accuracy, MLP
neural network with back propagation algorithm significantly outperformed RBF
and discriminant analysis models. Moreover, through discriminant analysis, it was
found that the variables, diabetes history in family, pre pregnancy BMI and GDM
history of the patient are the significant factors which play the most crucial role
in diagnosing gestational diabetes, which will assist pregnant women to be mindful
of in an early stage and take precautionary measures like actively participate in
physical exercise and make changes in dietary behavior so that gestational diabetes
can be successfully warded off.
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GRAND LORENTZ SEQUENCE SPACE AND ITS
MULTIPLICATION OPERATOR

OĞUZ OĞUR

Abstract. In this paper, we introduce the grand Lorentz sequence spaces
`θ
p,q)

and study on some topological properties. Also, we characterize some
properties of the multiplication operator, such as compactness, Fredholmness
etc., defined on `θ

p,q)
.

1. Introduction

Let (X,S, µ) be a σ−finite measure space and let g be a complex-valued measur-
able function defined on X. The non-increasing rearrangement g∗ of g is defined
by

g∗(s) = inf {t > 0 : Fµ(t) ≤ s} , s ≥ 0,

where Fµ(t) = µ {x ∈ X : |g(x)| > t}, t ≥ 0, is the distribution function of g. If µ
is counting measure on S = 2N, then we can write the distribution function and
the non-increasing rearrangement of a complex-valued sequence (xn), respectively,
as follows;

Fµ(t) = µ {n ∈ N : |xn| > t} , t ≥ 0

and

xφ(n) = inf {t > 0 : Fµ(t) ≤ n− 1}

if n−1 ≤ t < n with Fµ(t) <∞. By the definition of non-increasing rearrangement,
we can interpret that

(
xφ(n)

)
can be obtained by permuting (|xn|)n∈R, where R =

{n ∈ N : xn 6= 0}, in the decreasing order. Here, xφ(n) = 0 for n > µ(R) if µ(R) <
∞ [2].
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Lorentz introduced the classical Lorentz space Λq,w, 0 < q <∞, which the space
of all measurable functions f defined on (0, 1) with

‖f‖Λq,w =

 1∫
0

(f∗(x))qw(x)dx


1
q

,

where f∗ is the non-increasing rearrangement of f and w is a weight function [12],
[13]. The space Λq,w and its special case Lp,q, 0 < q, p ≤ ∞, have been widely
studied by many authors. For more details see [3], [5], [7].
The Lorentz sequence spaces `p,q is the space of all complex-valued sequences

x = (xn) such that

‖x‖p,q =


( ∞∑
n=1

n
q
p−1(xφ(n))

q

) 1
q

, 1 ≤ p ≤ ∞, 1 ≤ q <∞

supn n
1
pxφ(n), 1 ≤ p <∞, q =∞

is finite, where
(
xφ(n)

)
is non-increasing rearrangement of x. The spaces `p,q have

been used to introduce and investigate some classes of operators, like (p, q)−nuclear,
(p, q; r)−absolutely summing operator [14]. Kato [11] characterized the dual space
of `p,q {E}, where E is a Banach space. See also [2], [10], [15].
The idea of grand spaces was raised by Iwaniec and Sbordone [8]. They intro-

duced the grand Lebesgue spaces Lp) for 1 < p < ∞. Samko and Umarkhadzhiev
[17] studied some properties of grand Lebesgue spaces on sets of infinite measure.
Jain and Kumari [9] introduced the grand Lorentz spaces Λq),w, 0 < q < ∞ and
studied on its basic properties. Also, they characterized boundedness of maximal
operator on the space Λq),w. Later, Rafeiro and others [16] introduced the grand
Lebesgue sequence space `p),θ = `p),θ(X) by the norm

‖x‖`p),θ(X) = sup
ε>0

(
εθ
∑
k∈X
|xk|p(1+ε)

) 1
p(1+ε)

= sup
ε>0

ε
θ

p(1+ε) ‖x‖`p(1+ε)(X)

where X is one of the sets Zn, Z, N and N0 for 1 ≤ p < ∞, θ > 0. They studied
various operators of harmonic analysis, e. g. maximal, convolution, Hardy etc.
In this paper, we are inspired by this work and introduce the grand Lorentz

sequence spaces `θp,q) as follows; let θ > 0. The grand Lorentz sequence space `θp,q)
is the set of all sequences a = (an) such that ‖a‖p,q),θ < ∞, where ‖a‖p,q),θ is
defined by supε>0

(
εθ
∞∑
n=1

(
n

1
p(1+ε) aφ(n)

)q(1+ε)

n−1

) 1
q(1+ε)

, 1 ≤ p ≤ ∞, 1 ≤ q <∞

supn≥1 n
1
p aφ(n), 1 ≤ p <∞, q =∞

where
(
aφ(n)

)
is the non-increasing rearrangement of the sequence a = (an). In case

p = q, the grand Lorentz sequence space `θp,q) coincides with the grand Lebesgue
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space `p),θ(N). In this work, we study on some topological properties and inclusion
theorems of the space `θp,q). Also, we characterize some properties of multiplication

operator on the `θp,q).
We will need the following lemma:

Lemma 1. (Hardy, Littlewood and Polya) Let (r∗n) and (∗rn) be the non-increasing
and non-decreasing rearrangements of a finite sequence (rn) of positive numbers.
Then, we have for any two sequences (an) and (bn) of positive numbers such that∑

n

a∗∗n bn ≤
∑
n

anbn ≤
∑
n

a∗nb
∗
n

[6].

2. Main Results

2.1. Grand Lorentz Sequence Space.

Theorem 2. The grand Lorentz sequence space `θp,q) is a normed space for 1 ≤ q ≤
p ≤ ∞ and a quasi-normed space for 1 ≤ p < q ≤ ∞.

Proof. By definition of the norm of `θp,q), we can write

‖a‖p,q),θ = sup
ε>0

ε
θ

q(1+ε) ‖a‖p,q(1+ε) . (1)

Let 1 ≤ q < p ≤ ∞. For any a, b ∈ `θp,q), since n
q
p−1 is decreasing sequence of

positive numbers and so by Lemma 1, we have

‖a+ b‖p,q),θ = sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
aϑ(n) + bϑ(n)

)q(1+ε)

) 1
q(1+ε)

= sup
ε>0

(
εθ
∞∑
n=1

(
n( qp−1) 1

q(1+ε)
(
aϑ(n) + bϑ(n)

))q(1+ε)
) 1
q(1+ε)

≤ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
aϑ(n)

)q(1+ε)

) 1
q(1+ε)

+ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
bϑ(n)

)q(1+ε)

) 1
q(1+ε)

≤ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
aφ(n)

)q(1+ε)

) 1
q(1+ε)

+ sup
ε>0

(
εθ
∞∑
n=1

n
q
p−1

(
bψ(n)

)q(1+ε)

) 1
q(1+ε)
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= ‖a‖p,q),θ + ‖b‖p,q),θ
where

(
aϑ(n) + bϑ(n)

)
,
(
aφ(n)

)
and

(
bψ(n)

)
are the non-increasing rearrangements

of (an + bn), (an) and (bn), respectively.
Let 1 ≤ p < q <∞. Then, we have p < q(1 + ε) for ε > 0 and hence ‖a‖p,q(1+ε)

is a quasi-norm. Thus, we get

‖a+ b‖p,q),θ = sup
ε>0

ε
θ

q(1+ε) ‖a+ b‖p,q(1+ε)

≤ sup
ε>0

ε
θ

q(1+ε)

(
2
1
p

(
‖a‖p,q(1+ε) + ‖b‖p,q(1+ε)

))
≤ 2

1
p

(
‖a‖p,q),θ + ‖b‖p,q),θ

)
.

For 1 ≤ p < ∞ and q = ∞, we have ‖a‖p,∞),θ = ‖a‖p,∞. The proof is completed.
�

Remark 3. Let α > 0 and let us take the sequence

(an) =
(
n
−1
p (ln(n+ 1))

−α
)

as in [16]. It is easy to see that the sequence (an) is decreasing and thus the non-
increasing rearrangement of (an) is itself. Therefore, we have

∞∑
n=1

(
n
1
pn

−1
p (ln(n+ 1))

−α
)q
n−1 =

∞∑
n=1

n−1 (ln(n+ 1))
−αq .

If α > 1
q , then (an) ∈ `p,q. Using similar technique as in [16], we get (an) ∈ `θp,q)

if and only if α ≥ 1−θ
q . Thus, we get (an) ∈ `θp,q) and (an) /∈ `p,q whenever

1−θ
q ≤ α ≤

1
q .

Definition 4. The vanishing grand Lorentz sequence space ˚̀θ
p,q), 1 ≤ p ≤ ∞, 1 ≤

q <∞, consists of all sequences (an) ∈ `θp,q) such that

lim
ε→0

εθ
∞∑
n=1

(
n

1
p(1+ε) aφ(n)

)q(1+ε)

n−1 = 0.

Lemma 5. The space ˚̀θ
p,q) is a closed subspace of the space `

θ
p,q).

Proof. The proof can be obtained by using similar technique as in [16]. �

Remark 6. It is enough to take the supremum in (1) on the finite interval for ε,
which means

‖a‖p,q),θ = sup
0<ε< 1

W (1/e)

ε
θ

q(1+ε) ‖a‖p,q(1+ε)

where W (t) is the Lambert function. Note that 1
W (1/e) ≈ 3.59 (see [4], [16]).
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Lemma 7. Let a = (an) ∈ `θp,q), 1 ≤ p, q < ∞ and θ > 0. Then, we have the
following inequalities for all n ∈ N:

aφ(n) ≤ h
(

1

W (e−1)

)−θ
q
(
p

q
R(ε0)

)−1
q

n
−1
p ‖a‖p,q),θ

if 1 ≤ p ≤ q <∞ and

aφ(n) ≤ h
(

1

W (e−1)

)− θq
n
1
q−

1
p ‖a‖p,q),θ

if 1 ≤ q < p ≤ ∞, where h(x) = x
1

1+x , R(x) = (1 + x)
− 1
1+x and ε0 ≈ 1, 7182.

Proof. Let a = (an) ∈ `θp,q) and let 1 ≤ p ≤ q <∞. Since p ≤ q(1 + ε), we have by
Lemma 2 in [11] that

‖a‖p,q),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p,q(1+ε)

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
n
1
p

(
p

q(1 + ε)

) 1
q(1+ε)

aφ(n)

)

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
p

q

) 1
q

(1 + ε)−
1

q(1+ε)n
1
p aφ(n)

= sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
p

q

) 1
q

(R(ε))
1
q n

1
p aφ(n).

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
p

q

) 1
q

(R(ε0))
1
q n

1
p aφ(n).

= h

(
1

W (e−1)

) θ
q
(
p

q

) 1
q

(R(ε0))
1
q n

1
p aφ(n).

Here R(x) = (1 + x)
− 1
1+x attains the minimum at the point ε0 ≈ 1, 7182.

Let 1 ≤ q < p <∞. Then, since n
q
p−1 is decreasing, we have

‖a‖p,q),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p,q(1+ε)

≥ sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
k∑

n=1

(
n

1
p(1+ε) aφ(n)

)q(1+ε)

n−1

) 1
q(1+ε)

≥ aφ(k) sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
k∑

n=1

n
q
p−1

) 1
q(1+ε)
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≥ aφ(k) sup
0<ε< 1

W (e−1)

h(ε)
θ
q

(
k
q
p−1
) 1
q(1+ε)

≥ h

(
1

W (e−1)

) θ
q

n
1
p−

1
q aφ(k).

�

Theorem 8. The space `θp,q) is complete for 1 ≤ p, q ≤ ∞.

Proof. Let a(s) =
(
a

(s)
n

)
∈ `θp,q) such that

lim
s,t→∞

∥∥∥a(s) − a(t)
∥∥∥
p,q),θ

= 0.

For q =∞, the proof is clear. Let q <∞. Then, there exists a natural number s0

such that ∥∥∥a(s) − a(t)
∥∥∥
p,q),θ

< η

whenever s, t ≥ s0. By Lemma 3, we have∣∣∣a(s)
k − a

(t)
k

∣∣∣ ≤ h

(
1

W (e−1)

)− θq  k
1
q−

1
p

∥∥a(s) − a(t)
∥∥
p,q),θ

, q < p(
p
qR(ε0)

)− 1
q

k−
1
p

∥∥a(s) − a(t)
∥∥
p,q),θ

, p ≤ q

< h

(
1

W (e−1)

)− θq  k
1
q−

1
p η, q < p(

p
qR(ε0)

)− 1
q

k−
1
p η, p ≤ q

where h(x) = x
1

1+x , R(x) = (1 + x)
− 1
1+x . This shows that

(
a

(s)
k

)
is a Cauchy

sequence in C. Thus, we have (ak) ∈ C such that lims→∞

∣∣∣a(s)
k − ak

∣∣∣ = 0. By using

the equality (1) with classical method, we get `θp,q)is a complete space. �

Lemma 9. Let 1 ≤ p <∞, 1 ≤ q < q1 ≤ ∞. Then, we have the following
`θp,q) ⊂ `θp,q1).

Proof. Let a = (an) ∈ `θp,q) and p < q. Then, we have by Proposition 2 in [11] that

‖a‖p,q1),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q1 ‖a‖p,q1(1+ε)

≤ sup
0<ε< 1

W (e−1)

h(ε)
θ
q1

(
q(1 + ε)

p

) 1
q(1+ε)

− 1
q1

‖a‖p,q(1+ε)

≤
(
q

p

(
1 +

1

W (e−1)

)) 1
q−

1
q1

‖a‖p,q),θ
< ∞.
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where h(x) = x
1

1+x . The inclusion can be obtained by similar way for p ≥ q with
Lemma 3. �

Theorem 10. Let either 1 ≤ p < p1 ≤ ∞, 1 ≤ q <∞ or 1 ≤ p < p1 <∞, q =∞.
Then, the inclusion

`θp,q) ⊂ `θp1,q)
holds.

Proof. Let a ∈ `θp,q). Then, we have

‖a‖p1,q),θ = sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p1,q(1+ε)

≤ sup
0<ε< 1

W (e−1)

h(ε)
θ
q ‖a‖p,q(1+ε)

= ‖a‖p,q),θ
< ∞

which shows a ∈ `θp1,q). �

Corollary 11. Let 1 ≤ p1 < p ≤ q < q1 ≤ ∞. Then, the inclusions

`p1),θ ⊂ `θp,q) ⊂ `q1),θ

hold.

Theorem 12. The grand Lorentz sequence space `θp,q) is strictly convex for 1 <

p <∞ and 1 < q <∞.

Proof. Let a, b ∈ `θp,q) such that ‖a‖p,q),θ = ‖b‖p,q),θ = 1 and
∥∥a+b

2

∥∥
p,q),θ

= 1. Then,
we have by using similar technique as in [1] that

1 =

∥∥∥∥a+ b

2

∥∥∥∥
p,q),θ

= sup
0<ε< 1

W (e−1)

ε
θ

q(1+ε)

∥∥∥∥a+ b

2

∥∥∥∥
p,q(1+ε)

≤ sup
0<ε< 1

W (e−1)

ε
θ

q(1+ε)

(
‖a‖p,q(1+ε) + ‖b‖p,q(1+ε)

2

)

≤
(
‖a‖p,q),θ + ‖b‖p,q),θ

2

)
= 1

which shows a = b. �
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2.2. Multiplication Operator. In this section, we characterize some properties
of the multiplication operators on `θp,q). Let v = (vn) be a complex-valued sequence
and let us define the linear transformation Mv on the sequence space X into the
linear space of all complex-valued sequences by

Mv(x) = vx = (vnxn).

If the linear transformation Mv is bounded with range in X, then it is called
multiplication operator on X.

Theorem 13. Let v = (vn) be a complex-valued sequence. Then, Mv is a multipli-
cation operator on `θp,q), 1 ≤ p, q ≤ ∞ if and only if v is a bounded sequence.

Proof. Let Mv be a multiplication operator on `θp,q) and let q < ∞. Then, there
exists a positive number K > 0 such that

‖Mv(a)‖p,q),θ ≤ K ‖a‖p,q),θ
for all a ∈ `θp,q). Let us define

e(k)
n =

{
s−

θ
p , k = n

0, k 6= n

where s =
(

1
W (e−1)

) W (e−1)
1+W (e−1) for all n ∈ N. Then, the non-increasing rearrangement

of
(
e

(k)
n

)
is

e
(k)
φ(n) =

{
s−

θ
p , n = 1

0 , n 6= 1
.

Then, we have
(
e

(k)
n

)
∈ `θp,q) with

∥∥e(k)
∥∥
p,q),θ

= 1. By the boundedness of Mv, it

can be written
∥∥Mve

(k)
∥∥
p,q),θ

≤ K
∥∥e(k)

∥∥
p,q),θ

= K. Thus, we get

sup
ε>0

(
εθ
∞∑
n=1

(
n

1
p(1+ε) vψ(n)e

(k)
ψ(n)

)q(1+ε)

n−1

) 1
q(1+ε)

= sup
ε>0

(
εθ
(
vψ(1)e

(k)
ψ(1)

)q(1+ε)
) 1
q(1+ε)

= s−
θ
p sup
ε>0

(
ε

θ
q(1+ε) vψ(1)

)
≤ K

which gives that vψ(1) ≤ K.s−
θ
q+ θ

p . This shows that v is bounded. If q = ∞, the
proof is similar as was used in the classical Lorentz sequence spaces.
Conversely, let v be a bounded sequence. Then, there exists T > 0 such that

|vk| ≤ T for all k ∈ N. Thus, we get

‖Mva‖p,q),θ = sup
ε>0

(
εθ
∞∑
k=1

(
k

1
p(1+ε) vψ(k)aψ(k)

)q(1+ε)

k−1

) 1
q(1+ε)
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≤ T sup
ε>0

(
εθ
∞∑
k=1

(
k

1
p(1+ε) aψ(k)

)q(1+ε)

k−1

) 1
q(1+ε)

= T ‖a‖p,q),θ
for q <∞. If q =∞, then

sup
k∈N

k
1
p vψ(k)aψ(k) ≤ T ‖a‖p,q),θ .

�

Theorem 14. Let Mv be a multiplication operator on `θp,q), 1 ≤ p, q ≤ ∞. Then,
Mv is invertible if and only if there exists µ > 0 such that |vn| ≥ µ.s−

θ
q+ 2θ

p , where

s =
(

1
W (e−1)

) W (e−1)
1+W (e−1) for all n ∈ N.

Proof. Let Mv be invertible operator on `θp,q), 1 ≤ p, q ≤ ∞. Then, there exists
ρ > 0 such that

‖Mva‖p,q),θ ≥ µ ‖a‖p,q),θ
for all a ∈ `θp,q). Thus, for

(
e

(k)
n

)
∈ `θp,q), we get∥∥∥Mve

(k)
∥∥∥
p,q),θ

= s
θ
q−

θ
p |vk| ≥ µs

θ
p

which gives |vk| ≥ s−
θ
q+ 2θ

p µ. Conversely, let define zk = (vk)
−1. By using Theorem

5, the proof can be obtained. �

Theorem 15. Let Mv be a multiplication operator on `θp,q), 1 ≤ p, q ≤ ∞. Then,
a necessary and suffi cient condition for Mv to have closed range is that for some
% > 0

|vn| ≥ %
for each n ∈ R = {n ∈ N : vn 6= 0}.

Proof. Assume that |vn| ≥ % for % > 0 and for all n ∈ R. Let q < ∞ and let
g(k), g ∈ `θp,q) such that Mvg

(k) → g as k →∞. Then, we write

lim
m,n→∞

∥∥∥Mvg
(m) −Mvg

(n)
∥∥∥
p,q),θ

= 0.

Put x(mn) = g(m) − g(n). Thus, we have{
l ∈ N :

∣∣∣x(mn)
l

∣∣∣ > r

%

}
⊆
{
l ∈ N :

∣∣∣vlx(mn)
l

∣∣∣ > r
}

for each r > 0 and so %x(mn)
φ(l) ≤ vψ(l)x

(mn)
ψ(l) , where x

(mn)
φ(l) and vψ(l)x

(mn)
ψ(l) are the non-

increasing rearrangement of the sequences
(
x

(mn)
l

)
and

(
vlx

(mn)
l

)
, respectively.
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Thus, we have∥∥∥vx(mn)
∥∥∥
p,q),θ

=
∥∥∥Mvg

(m) −Mvg
(n)
∥∥∥
p,q),θ

= sup
ε>0

(
εθ
∑
l∈R

(
l

1
p(1+ε) vψ(l)x

(mn)
ψ(l)

)q(1+ε)

l−1

) 1
q(1+ε)

≥ sup
ε>0

(
εθ
∑
l∈R

%q(1+ε)
(
l

1
p(1+ε)x

(mn)
φ(l)

)q(1+ε)

l−1

) 1
q(1+ε)

= %
∥∥∥x(mn)

∥∥∥
p,q),θ

.

Since
∥∥vx(mn)

∥∥
p,q),θ

→ 0 as m,n → ∞, we have x(mn) → 0 as m,n → ∞. This
means that g(m) is a Cauchy sequence in `θp,q)|R, where
`θp,q)|R =

{
a = (ak) ∈ `θp,q) : ak = 0 if k ∈ N\R

}
is a closed subspace of `θp,q). Thus,

we get f ∈ `θp,q)|R such that g(m) → f as m → ∞. Since Mv is bounded lin-

ear operator, we can write Mvg
(m) → Mvf . This gives Mvf = g. Because of

Ker (Mv) = `θp,q)|N\R, Mv has closed range.
Conversely, assume thatMv has closed range and there exists (ln) ∈ R such that

|vln | < 1
n . Let

e(ln)
m =

{
s−

θ
p , m = ln

0, m 6= ln

where s =
(

1
W (e−1)

) W (e−1)
1+W (e−1) and let q <∞. Then,

∥∥e(ln)
∥∥
p,q),θ

= 1. Thus, we get∥∥∥Mve
(ln)
∥∥∥
p,q),θ

=
∥∥∥ve(ln)

∥∥∥
p,q),θ

= sup
ε>0

(
εθ
∞∑
m=1

(
m

1
p(1+ε) vψ(m)e

(ln)
ψ(m)

)q(1+ε)

m−1

) 1
q(1+ε)

= sup
ε>0

(
εθ
(
vψ(1)e

(ln)
ψ(1)

)q(1+ε)
) 1
q(1+ε)

= s
θ
p−

θ
q vln

<
1

n
s
θ
p−

θ
q

∥∥∥e(ln)
∥∥∥
p,q),θ

which means Mv is not bounded different from zero. Thus, |vn| ≥ % for some % > 0
and all n ∈ R. For the case q =∞ the proof can be obtained by similar way. �

Theorem 16. Let Mv be a multiplication operator on `θp,q). Then, Mv is compact
if and only if |vn| → 0 as n→∞.
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Proof. The proof can be obtained by the similar way used in the classical Lorentz
sequence space. �
Corollary 17. Let Mv be a multiplication operator on `θp,q). Then, Mv is Fredholm
if and only if the set N\R has finite elements and there exists ρ > 0 such that

|vn| ≥ %
for all n ∈ N, where R = {n ∈ N : vn 6= 0}.
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GENERALIZED FUZZY SUBHYPERSPACES BASED ON FUZZY
POINTS

O. R. DEHGHAN AND M. NOROUZI

Abstract. We define (∈,∈ ∨qδ)-fuzzy subhyperspaces and (∈,∈ ∨qδk)-fuzzy
subhyperspaces, as a generalization of fuzzy subhyperspaces, (∈,∈ ∨q)-fuzzy
subhyperspaces and (∈,∈ ∨qk)-fuzzy subhyperspaces. In this way, we show
that (∈,∈ ∨qδk)-fuzzy subhyperspaces are the largest family of generalized
fuzzy subhyperspaces based on concepts of belongingness and quasi-coincidence.
Moreover, we study some properties and investigate the difference of general-
ized fuzzy subhyperspaces, supported by examples.

1. Introduction

The theory of fuzzy set was initiated by Zadeh [23] in 1965. It was extended to
algebra by Rosenfeld [17] with defining fuzzy subgroups. Then other fuzzy algebraic
structures have been investigated, such as fuzzy semigroups, fuzzy ideals, fuzzy
vector spaces and so on. For more information about fuzzy algebraic structures
refer to [15] and [16].
Algebraic hyperstructures was introduced by Marty [14] in 1934, when he defined

hypergroups. Similarly fuzzy algebraic hyperstructures were investigated in many
branches ([8]). Ameri [1] introduced fuzzy subhyperspaces of hypervector spaces in
the sense of Scafatti-Tallini [18]. Fuzzy subhyperspaces were studied more in [2],
[3] and [13].
After defining the concept of (∈,∈ ∨q)-fuzzy subgroups by Bhakat and Das [4] as

an important generalization of Rosenfeld’s fuzzy subgroups, this notion and its an-
other type, (∈,∈ ∨qk)-fuzzy subgroups, were studied on many algebraic structures
(see [9]). In context of hyperstructures theory, as an extension of fuzzy subhy-
perstructures, Davvaz and Corsini defined (∈,∈ ∨q)-fuzzy subhyperquasigroups in
[5]. Furthermore, semihypergroups were characterized by (∈,∈ ∨qk)-fuzzy hyper-
ideals and (∈γ ,∈γ ∨qδ)-fuzzy hyperideals in [19] and [20], respectively. Moreover,
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Key words and phrases. Hypervector space, fuzzy subhyperspace, (∈,∈ ∨qδ)-fuzzy subhyper-
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(∈,∈ ∨q)-fuzzy n-ary subhypergroups in [12] and [22], (∈,∈ ∨q)-fuzzy and (∈,∈∨q)-
fuzzy n-ary subpolygroups in [11] and (∈γ ,∈γ ∨qδ)-fuzzy n-ary subhypergroups in
[21], had been studied. Also, this concept and related topics were investigated on
Hv-rings in [6], hypermodules in [24] and (m,n)-ary hypermodules in [7].
A new generalization of (∈,∈ ∨q)-fuzzy subgroups was defined by Jun et al.

([10]) which called (∈,∈ ∨qδ)-fuzzy subgroups. Now, in this paper, we introduce
new generalizations of a fuzzy subhyperspace. In this regards, (∈,∈ ∨qδ)-fuzzy
subhyperspaces and (∈,∈ ∨qδk)-fuzzy subhyperspaces as generalizations of fuzzy
subhyperspaces, (∈,∈ ∨q)-fuzzy subhyperspaces and also (∈,∈ ∨qk)-fuzzy subhy-
perspaces are defined. It is shown that these notions construct a bigger family
for generalized fuzzy subhyperspaces and also indicated that subhyperspaces are
characterized by them. Moreover, connections and differences of them are studied,
supported by illustrative examples.

2. Preliminaries

In this section we present some definitions and properties of hypervector spaces
and fuzzy subhyperspaces that we shall use in later.

Definition 1. [18] Let K be a field, (V,+) be an Abelian group and P∗(V ) be the
set of all non-empty subsets of V . We define a hypervector space over K to be the
quadruplet (V,+, ◦,K), where “ ◦ ” is an external hyperoperation

◦ : K × V −→ P∗(V ),

such that for all a, b ∈ K and x, y ∈ V the following conditions hold:

(H1) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y, right distributive law,
(H2) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x, left distributive law,
(H3) a ◦ (b ◦ x) = (ab) ◦ x,
(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x),
(H5) x ∈ 1 ◦ x,

where in (H1), a ◦ x+ a ◦ y = {p+ q : p ∈ a ◦ x, q ∈ a ◦ y}. Similarly it is in (H2).
Also in (H3), a ◦ (b ◦ x) =

⋃
t∈b◦x

a ◦ t.

V is called strongly right distributive, if we have equality in (H1). In a similar
way we define the strongly left distributive hypervector spaces. V is called strongly
distributive, if it is strongly right and left distributive.
A non-empty subset W of V is called a subhyperspace of V if W is itself a

hypervector space with the external hyperoperation on V , i.e. for all a ∈ K and
x, y ∈W , x− y ∈W and a ◦ x ⊆W .

In the sequel of this paper, V denotes a hypervector space over the field K,
unless otherwise is specified.
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Example 2. [2] In classical vector space (R3,+, .,R) we define:{
◦ : R × R3 −→ P∗(R3)

a ◦ (x0, y0, z0) = L,

where L is a line with the parametric equations:

L :

 x = ax0,
y = ay0,
z = t.

Then V = (R3,+, ◦,R) is a strongly left distributive hypervector space.

Definition 3. [1] A fuzzy subset µ of V is called a fuzzy subhyperspace of V , if for
all a ∈ K and x, y ∈ V , the following conditions are satisfied:

1) µ(x− y) ≥ µ(x) ∧ µ(y),
2)

∧
t∈a◦x

µ(t) ≥ µ(x).

Example 4. (modified example 2.16, of [3]) Consider the hypervector space V =
(R3,+, ◦,R) in Example 2. Define a fuzzy subset µ of V by the following:

µ(x, y, z) =

 t3 (x, y, z) ∈ {0} × {0} × R,
t2 (x, y, z) ∈ R× {0} × R\{0} × {0} × R,
t1 otherwise,

where 0 ≤ t1 < t2 < t3 ≤ 1. Then µ is a fuzzy subhyperspace of V .

3. (α, β)-Fuzzy Subhyperspaces

A fuzzy subset µ of a hypervector space V defined by

µ(y) =

{
t (6= 0), if y = x
0, if y 6= x

is said to be a fuzzy point with the support x and the value t and is denoted by xt.
For a fuzzy point xt and the fuzzy subset µ we write
(1) xt ∈ µ⇔ µ(x) ≥ t.
(2) xtqµ⇔ µ(x) + t > 1.
(3) xtqkµ⇔ µ(x) + t+ k > 1, for k ∈ [0, 1).
(4) xtq

δµ⇔ µ(x) + t > δ, for δ ∈ (0, 1].
(5) xtq

δ
kµ⇔ µ(x) + t+ k > δ, for (k, δ) ∈ [0, 1)× (0, 1].

In case (1) we say that xt is belong to µ and in (2) xt is quasi-coincident with the
fuzzy subset µ. For a fuzzy point xt, we write xt ∈ ∨qµ (xt ∈ ∧qµ) if xt ∈ µ or
xtqµ (xt ∈ µ and xtqµ). Similarly, we have xt ∈ ∨qkµ and xt ∈ ∧qkµ. Also, for
α ∈ {∈, q, qk,∈ ∨q,∈ ∧q, . . .}, the notation xtαµ means that xtαµ does not hold.

Definition 5. A fuzzy subset µ of V is called an (∈,∈ ∨qδk)-fuzzy subhyperspace of
V , if for all t, r ∈ [0, 1), x, y ∈ V and a ∈ K:
kδ1) xt ∈ µ and yr ∈ µ imply that (x− y)t∧r ∈ ∨qδkµ;
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kδ2) xt ∈ µ implies that zt ∈ ∨qδkµ, for all z ∈ a ◦ x.
µ is called an (∈,∈ ∨q)-fuzzy subhyperspace of V , if δ = 1 and k = 0. It is called

an (∈,∈ ∨qk)-fuzzy subhyperspace of V , if δ = 1. Also, µ is called an (∈,∈ ∨qδ)-
fuzzy subhyperspace of V , if k = 0.

Theorem 6. A fuzzy subset µ of V is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V if
and only if for all x, y ∈ V and a ∈ K the following conditions hold:

´kδ1) µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ−k
2 ;

´kδ2)
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ δ−k

2 .

Proof. Let µ be an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . Assume that ´(kδ1) is
not valid, i.e. there exist x, y ∈ V such that µ(x − y) < µ(x) ∧ µ(y) ∧ δ−k

2 .
Then µ(x − y) < t ≤ µ(x) ∧ µ(y) ∧ δ−k

2 , for some t ∈ (0, 1]. Thus t ≤ µ(x) and
t ≤ µ(y), and so xt, yt ∈ µ. Hence (x − y)t ∈ ∨qδkµ. But µ(x − y) < t and also
µ(x − y) + t < t + t ≤ δ−k

2 + δ−k
2 = δ − k. It follows that µ(x − y) + t + k ≤ δ.

Therefore, (x− y)t∈ ∨qδkµ, which is a contradiction. Consequently, ´(kδ1) is valid.
Now if there exist some x, z ∈ V and a ∈ K, such that z ∈ a ◦ x and µ(z) <

µ(x) ∧ δ−k
2 , then µ(z) < t ≤ µ(x) ∧ δ−k

2 , for some t ∈ (0, 1]. Thus t ≤ µ(x) and so
xt ∈ µ. Hence zt ∈ ∨qδkµ. But µ(z) < t and also µ(z)+t < t+t ≤ δ−k

2 + δ−k
2 = δ−k.

Thus µ(z)+ t+k ≤ δ. Therefore zt∈ ∨qδkµ, which is a contradiction. Consequently,
´(kδ2) is valid.
Conversely, let xt ∈ µ and yr ∈ µ. Then µ(x) ≥ t and µ(y) ≥ r. Thus by ´(kδ1),

µ(x− y) ≥ t ∧ r ∧ δ−k
2 . If t ∧ r ≤

δ−k
2 , then µ(x− y) ≥ t ∧ r and so (x− y)t∧r ∈ µ.

If t ∧ r > δ−k
2 , then µ(x − y) ≥ δ−k

2 and µ(x − y) + (t ∧ r) > δ−k
2 + δ−k

2 = δ − k.
Thus µ(x− y) + (t∧ r) + k > δ. Hence (x− y)t∧rq

δ
kµ. Therefore (x− y)t∧r ∈ ∨qδkµ.

Similarly, ´(kδ2) implies (kδ2). �
Corollary 7. Let µ ∈ FS(V ), i.e. µ is a fuzzy subset of V . Then µ is

1) an (∈,∈ ∨q)-fuzzy subhyperspace of V if and only if for all x, y ∈ V and
a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ 0.5 and

∧
z∈a◦x

µ(z) ≥ µ(x) ∧ 0.5;

2) an (∈,∈ ∨qk)-fuzzy subhyperspace of V if and only if for all x, y ∈ V and
a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ 1−k

2 and
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ 1−k

2 ;

3) an (∈,∈ ∨qδ)-fuzzy subhyperspace of V if and only if for all x, y ∈ V and
a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ

2 and
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ δ

2 .

Example 8. Consider the hypervector space V = (R3,+, ◦,R) in Example 2. De-
fine a fuzzy subset µ of V by the following:

µ(x, y, z) =


1
2 (x, y, z) = (0, 0, 0),
1
3 (x, y, z) ∈ R× {0} × {0} \(0, 0, 0),
1
5 o.w.
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Then µ is an (∈,∈ ∨q0.70.5)-fuzzy subhyperspace of V , but it is not an (∈,∈ ∨q0.80.3)-
fuzzy subhyperspace of V , since the condition ´(kδ2) is not valid (if x = (0, 0, 0)
and z = (0, 0, 2), then for all a ∈ R, z ∈ a ◦ x, so µ(x) = 1

2 , µ(z) = 1
5 and

µ(z) � µ(x) ∧ δ−k
2 ).

In the next example one can see that an (∈,∈ ∨qδk)-fuzzy subhyperspace is not
an (∈,∈ ∨q)-fuzzy subhyperspace or (∈,∈ ∨qk)-fuzzy subhyperspace or (∈,∈ ∨qδ)-
fuzzy subhyperspace of V , in general.

Example 9. Consider the (∈,∈ ∨q0.70.5)-fuzzy subhyperspace µ of V = (R3,+, ◦,R)
in Example 8. Then by Corollary 7, it follows that:

1) µ is not an (∈,∈ ∨q)-fuzzy subhyperspace of V , because if x = (0, 0, 0) and
z = (0, 0, 3), then for all a ∈ R and z ∈ a ◦ x, µ(x) = 1

2 , µ(z) = 1
5 and

µ(z) � µ(x) ∧ 0.5;
2) µ is not an (∈,∈ ∨q0.5)-fuzzy subhyperspace of V , because if x = (0, 0, 0)
and z = (0, 0, 2), then for all a ∈ R and z ∈ a ◦ x, µ(x) = 1

2 , µ(z) = 1
5 and

µ(z) � µ(x) ∧ 1−k
2 ;

3) µ is not an (∈,∈ ∨q0.7)-fuzzy subhyperspace of V , because if x = (1, 0, 0),
a = 2 and z = (2, 0, 5), then z ∈ a ◦ x, µ(x) = 1

3 , µ(z) = 1
5 and µ(z) �

µ(x) ∧ δ
2 .

Theorem 10. Let µ ∈ FS(V ), δ ∈ (0, 1] and k ∈ [0, 1). Then µ is an (∈,∈ ∨qδk)-
fuzzy subhyperspace of V if and only if µt(6= ∅) is a subhyperspace of V , for all
t ∈ (0, δ−k2 ].

Proof. Suppose µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , t ∈ (0, δ−k2 ] and
x, y ∈ µt. Then by Theorem 6,

µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ − k
2
≥ t ∧ t ∧ δ − k

2
= t.

Thus x − y ∈ µt. Moreover, for all a ∈ K, z ∈ a ◦ x and x ∈ µt, we have
µ(z) ≥ µ(x) ∧ δ−k

2 ≥ t, which means that a ◦ x ⊆ µt. Hence µt is a subhyperspace
of V , for all t ∈ (0, δ−k2 ].

Conversely, let µt be a subhyperspace of V , for all t ∈ (0, δ−k2 ] and let ( ´kδ1) is
not valid. Then there exist x, y ∈ V and t ∈ (0, 1) such that

µ(x− y) < t < µ(x) ∧ µ(y) ∧ δ − k
2

.

Thus x, y ∈ µt for some 0 < t ≤ δ−k
2 , but x − y /∈ µt, which is a contradiction.

Hence ( ´kδ1) is valid. Similarly, we can show ( ´kδ2) is valid. Therefore, by Theorem
6, µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . �
Corollary 11. Let µ ∈ FS(V ). Then µ is

1) an (∈,∈ ∨q)-fuzzy subhyperspace of V if and only if µt( 6= ∅) is a subhyper-
space of V , for all t ∈ (0, 0.5];
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2) an (∈,∈ ∨qk)-fuzzy subhyperspace of V if and only if µt(6= ∅) is a subhy-
perspace of V , for all t ∈ (0, 1−k2 ];

3) an (∈,∈ ∨qδ)-fuzzy subhyperspace of V if and only if µt(6= ∅) is a subhy-
perspace of V , for all t ∈ (0, δ2 ].

Theorem 12. Let µ ∈ FS(V ). Then µt(6= ∅) is a subhyperspace of V , for all
t ∈ ( δ−k2 , 1], if and only if

(i) µ(x− y) ∨ δ−k
2 ≥ µ(x) ∧ µ(y), for all x, y ∈ V ;

(ii)
∧

z∈a◦x
µ(z) ∨ δ−k

2 ≥ µ(x), for all x ∈ V and a ∈ K.

Proof. Let µt(6= ∅) be a subhyperspace of V , for all t ∈ ( δ−k2 , 1]. If there exist
x, y ∈ V such that

µ(x− y) ∨ δ − k
2

< µ(x) ∧ µ(y),

then t0 = µ(x)∧µ(y) ∈ ( δ−k2 , 1] and x, y ∈ µt0 . Thus x−y ∈ µt0 and so µ(x−y) ≥ t0,
which is a contradiction with µ(x − y) ∨ δ−k

2 < t0. Hence (i) holds. Similarly,
condition (ii) will be obtained.
Conversely, assume that t ∈ ( δ−k2 , 1] and x, y ∈ µt. Then

µ(x− y) ∨ δ − k
2

< µ(x) ∧ µ(y) ≥ t > δ − k
2

.

Thus µ(x− y) ≥ t and so x− y ∈ µt. Now let a ∈ K, x ∈ µt and z ∈ a ◦ x. Then

µ(z) ∨ δ − k
2
≥

∧
z∈a◦x

µ(z) ∨ δ − k
2
≥ µ(x) ≥ t,

which implies that µ(z) ≥ t, for all z ∈ a ◦ x. Hence a ◦ x ⊆ µt, for all t ∈ ( δ−k2 , 1].
Therefore, µt is a subhyperspace of V . �

Corollary 13. Let µ ∈ FS(V ). Then

1) µt(6= ∅) is a subhyperspace of V for all t ∈ (0.5, 1] if and only if for all
x, y ∈ V and a ∈ K, µ(x−y)∨0.5 ≥ µ(x)∧µ(y) and

∧
z∈a◦x

µ(z)∨0.5 ≥ µ(x);

2) µt(6= ∅) is a subhyperspace of V for all t ∈ ( 1−k2 , 1] if and only if for all
x, y ∈ V and a ∈ K, µ(x− y) ∨ 1−k

2 ≥ µ(x) ∧ µ(y) and
∧

z∈a◦x
µ(z) ∨ 1−k

2 ≥

µ(x);
3) µt(6= ∅) is a subhyperspace of V for all t ∈ ( δ2 , 1] if and only if for all

x, y ∈ V and a ∈ K, µ(x− y)∨ δ
2 ≥ µ(x)∧ µ(y) and

∧
z∈a◦x

µ(z)∨ δ
2 ≥ µ(x).

Theorem 14. A non-empty subset S of V is a subhyperspace of V if and only if
χS is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V .
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Proof. Let S be a subhyperspace of V and t ∈ (0, δ−k2 ]. If x, y ∈ χSt , then
χS(x), χS(y) ≥ t. Thus χS(x) = χS(y) = 1 and so x − y ∈ S. Hence χS(x − y) =
1 ≥ t, i.e. x − y ∈ χSt . Similarly, a ◦ x ⊆ χSt , for all a ∈ K and x ∈ χSt . Conse-
quently, χSt is a subhyperspace of V , for all t ∈ (0, δ−k2 ]. Therefore, by Theorem
10, χS is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V .
Conversely, let χS be an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , a ∈ K and x ∈ S.

Then by Theorem 6, for all z ∈ a ◦ x,
∧

z∈a◦x
χS(z) ≥ χS(x) ∧ δ−k

2 = 1 ∧ δ−k
2 = δ−k

2 .

Since δ ∈ (0, 1] and k ∈ [0, 1), so χS(z) = 1, for all z ∈ a ◦ x. Thus a ◦ x ⊆ S.
Similarly, x+ y ∈ S, for all x, y ∈ S. Therefore, S is a subhyperspace of V . �
It is well-known that the characterization function of any subhyperspace is a

fuzzy subhyperspace. Hence the following corollary is obtained from Theorem 14:

Corollary 15. A non-empty subset S of V is a subhyperspace of V if and only if
χS is an (∈,∈ ∨q)-fuzzy subhyperspace of V if and only if χS is an (∈,∈ ∨qk)-fuzzy
subhyperspace of V if and only if χS is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V .
Proposition 16. Let δ ∈ (0, 1], k ∈ [0, 1). Then

1) Every (∈,∈ ∨qk)-fuzzy subhyperspace of V is an (∈,∈ ∨qδ)-fuzzy subhyper-
space of V , if δ + k < 1;

2) Every (∈,∈ ∨qδ)-fuzzy subhyperspace of V is an (∈,∈ ∨qk)-fuzzy subhyper-
space of V , if δ + k > 1;

3) For δ+ k = 1, µ is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V if and only if it
is an (∈,∈ ∨qk)-fuzzy subhyperspace of V ;

4) Every (∈,∈ ∨qδk)-fuzzy subhyperspace of V is an (∈,∈ ∨q)-fuzzy subhyper-
space of V , if δ = k + 1;

5) Every (∈,∈ ∨qδk)-fuzzy subhyperspace of V is a fuzzy subhyperspace of V ,
if δ = k.

Proof. 1) Let µ be an (∈,∈ ∨qk)-fuzzy subhyperspace of V . Then by Corollary
7(2), for all x, y ∈ V and a ∈ K, it follows that:

µ(x− y) ≥ µ(x) ∧ µ(y) ∧ 1− k
2
≥ µ(x) ∧ µ(y) ∧ δ

2
,

and ∧
z∈a◦x

µ(z) ≥ µ(x) ∧ 1− k
2
≥ µ(x) ∧ δ

2
.

Thus by Corollary 7(3), µ is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V .
2) The proof is completed by Corollary 7, similarly.
3) One can conclude by Corollary 7(2) and Corollary 7(3).
4) It is straightforward by Theorem 6 and Corollary 7(1).
5) The proof is obtained by Theorem 6 and Definition 3. �
The following example shows that the converse of assertions (1) and (2) of Propo-

sition 16 are not generally true.
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Example 17. Consider the fuzzy subset µ of V = (R3,+, ◦,R) in Example 8. Then
by Corollary 7, it follows that:

1) µ is an (∈,∈ ∨q0.2)-fuzzy subhyperspace of V , but it is not an (∈,∈ ∨q0.4)-
fuzzy subhyperspace of V , because if x = (2, 0, 0), a = 4 and z = (8, 0, 3),
then z ∈ a◦x, µ(x) = 1

3 , µ(z) = 1
5 and µ(z) � µ(x)∧ 1−k2 (δ = 0.2, k = 0.4).

2) µ is an (∈,∈ ∨q0.7)-fuzzy subhyperspace of V , but it is not an (∈,∈ ∨q0.5)-
fuzzy subhyperspace of V , because if x = (3, 0, 0), a = 1 and z = (3, 0, 2),
then z ∈ a ◦ x, µ(x) = 1

3 , µ(z) = 1
5 and µ(z) � µ(x)∧ δ

2 (δ = 0.5, k = 0.7).

Theorem 18. If µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , such that µ(x) ≤
δ−k
2 , for all x ∈ V , then µ is a fuzzy subhyperspace of V .

Proof. By Theorem 6, for all x, y ∈ V and a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ−k
2 =

µ(x) ∧ µ(y) and
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ δ−k

2 = µ(x). So µ is a fuzzy subhyperspace of

V . �
Note that in the (∈,∈ ∨q0.70.5)-fuzzy subhyperspace µ of V = (R3,+, ◦,R) in

Example 8, µ(x) � δ−k
2 , for some x ∈ V and µ is not a fuzzy subhyperspace of V .

Corollary 19. Let µ ∈ FS(V ). Then
1) If µ is an (∈,∈ ∨q)-fuzzy subhyperspace of V , such that µ(x) < 0.5, for all

x ∈ V , then µ is a fuzzy subhyperspace of V ;
2) If µ is an (∈,∈ ∨qk)-fuzzy subhyperspace of V , such that µ(x) < 1−k

2 , for
all x ∈ V , then µ is a fuzzy subhyperspace of V ;

3) If µ is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V , such that µ(x) < δ
2 , for all

x ∈ V , then µ is a fuzzy subhyperspace of V .
Proposition 20. Let 0 < δ2 ≤ δ1 ≤ 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qδ1k )-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qδ2k )-fuzzy subhyperspace of V .

Proof. By Theorem 6, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ1−k
2 and µ(z) ≥ µ(x) ∧ δ1−k

2 , for
all x, y ∈ V , a ∈ K and z ∈ a◦x. Since δ1 ≥ δ2, thus µ(x− y) ≥ µ(x)∧µ(y)∧ δ2−k

2

and µ(z) ≥ µ(x) ∧ δ2−k
2 . Hence the proof is completed by Theorem 6. �

In the following example it can be seen that the converse of Proposition 20, is
not generally valid.

Example 21. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.80.5)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.950.5 )-fuzzy subhyperspace of V , while δ2 = 0.8 ≤ δ1 = 0.95.

Corollary 22. Let 0 < δ2 ≤ δ1 ≤ 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qδ1)-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qδ2)-fuzzy subhyperspace of V .
Proof. It is straightforward by Corollary 7 and Proposition 20. �
Next example shows that the converse of Corollary 22, is not valid, in general.
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Example 23. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.3)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.5)-fuzzy subhyperspace of V , while δ2 = 0.3 ≤ δ1 = 0.5.

Proposition 24. Let 0 ≤ k1 ≤ k2 < 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qδk1)-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qδk2)-fuzzy subhyperspace of V .

Proof. It is completed by a similar manner of the proof of Proposition 20. �

The converse of Proposition 24, is not valid in general. See the following example:

Example 25. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.70.4)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.70.2)-fuzzy subhyperspace of V , while k1 = 0.2 ≤ k2 = 0.4.

The following corollary is immediately concluded by Corollary 7 and Proposition
24.

Corollary 26. Let 0 ≤ k1 ≤ k2 < 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qk1)-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qk2)-fuzzy subhyperspace of V .

The converse of Corollary 26, is not valid in general. See the next example:

Example 27. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.7)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.5)-fuzzy subhyperspace of V , while k1 = 0.5 ≤ k2 = 0.7.

Theorem 28. Let S be a subhyperspace of V . Then for every t ∈ (0, δ−k2 ], there
exists an (∈,∈ ∨qδk)-fuzzy subhyperspace µ of V such that µt = S.

Proof. Let t ∈ (0, δ−k2 ] and define a fuzzy subset µ of V as

µ(x) =

{
t if x ∈ S
0 otherwise

Clearly, µt = S. Now if there exist x, y ∈ V such that µ(x−y) < µ(x)∧µ(y)∧ δ−k
2 ,

then µ(x− y) = 0 and µ(x) = µ(y) = t, which is a contradiction. Thus µ(x− y) ≥
µ(x)∧µ(y)∧ δ−k2 , for all x, y ∈ V . Similarly,

∧
z∈a◦x

µ(z) ≥ µ(x)∧ δ−k2 , for all a ∈ K.

Hence µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , by Theorem 6. �

Corollary 29. Let S be a subhyperspace of V . Then
1) For every t ∈ (0, 0.5], there exists an (∈,∈ ∨q)-fuzzy subhyperspace µ of V ,
such that µt = S;

2) For every t ∈ (0, 1−k2 ], there exists an (∈,∈ ∨qk)-fuzzy subhyperspace µ of
V , such that µt = S;

3) For every t ∈ (0, δ2 ], there exists an (∈,∈ ∨qδ)-fuzzy subhyperspace µ of V ,
such that µt = S.
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Theorem 30. If µi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , for all i ∈ I, then
µ = ∩i∈Iµi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V .

Proof. Let xt, yr ∈ µ, for x, y ∈ V and t, r ∈ (0, 1) and (x − y)t∧r ∈ ∨qδkµ. Then
µ(x − y) < t ∧ r and µ(x − y) + t ∧ r ≤ δ − k, which imply that µ(x − y) < δ−k

2 .
Now, put I1 = {i ∈ I | (x− y)t∧r ∈ µi} and I2 = {i ∈ I | (x− y)t∧rq

δ
kµi} ∩ {j ∈ I |

(x− y)t∧r∈µj}. Then I = I1 ∪ I2 and I1 ∩ I2 = ∅. If I2 = ∅, then (x− y)t∧r ∈ µi,
for all i ∈ I, which implies that µ(x − y) ≥ t ∧ r, that is a contradiction. Hence
I2 6= ∅, and so for every i ∈ I2, µi(x− y) < t∧ r and µi(x− y) + t∧ r > δ− k, that
is t ∧ r > δ−k

2 . Thus from xt, yr ∈ µ, we can obtain µi(x) ∧ µi(y) > µ(x) ∧ µ(y) >

t ∧ r > δ−k
2 . Now, set α = µi(x − y) < δ−k

2 and take α < β < δ−k
2 . Then

xα, yβ ∈ µi but µi(x − y) = α < β and µi(x − y) + β < δ − k. This contradicts
that µi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . Thus µi(x − y) ≥ δ−k

2 , which
is a contradiction. Hence (x− y)t∧r ∈ ∨qδkµ. Similarly, the condition (kδ2) will be
proven. Therefore, µ = ∩i∈Iµi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . �

For any fuzzy set µ of V and t ∈ (0, 1] , we denote

(µ)t = {x ∈ V | xt qδk µ} and [µ]t = {x ∈ V | xt ∈ ∨qδk µ}.
Obviously, [µ]t = µt ∪ (µ)t.

Theorem 31. Let µ ∈ FS(V ). Then µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V
if and only if [µ]t is a subhyperspace of V , for all t ∈ (0, 1].

Proof. let µ be an (∈,∈ ∨qδk)-fuzzy subhyperspace of V and x, y ∈ [µ]t, for t ∈ (0, 1].
Then µ(x) ≥ t or µ(x)+ t > δ−k, and µ(y) ≥ t or µ(y)+ t > δ−k. Using Theorem
6,
1) for µ(x), µ(y) ≥ t, µ(x − y) ≥ t ∧ δ−k

2 . If t >
δ−k
2 , then µ(x − y) + t >

δ−k
2 + δ−k

2 = δ − k, and so (x − y)tq
δ
kµ. If t ≤ δ−k

2 , then µ(x − y) ≥ t and so
(x− y)t ∈ µ. Thus x− y ∈ [µ]t. Similarly, we can show a ◦ x ⊆ [µ]t, for all a ∈ K,
in this case.
2) for µ(x) ≥ t and µ(y) + t > δ − k, µ(x− y) ≥ t ∧ δ − k − t ∧ δ−k

2 . If t >
δ−k
2 ,

then µ(x− y) > δ− k− t, and so (x− y)tq
δ
kµ. If t ≤ δ−k

2 , then µ(x− y) ≥ t and so
(x− y)t ∈ µ. Thus x− y ∈ [µ]t. Similarly, we can show a ◦ x ⊆ [µ]t, for all a ∈ K,
in this case.
3) for µ(x) + t > δ − k and µ(y) ≥ t, we can prove similar to the case (2).
4) for µ(x) + t > δ−k and µ(y) + t > δ−k, if t > δ−k

2 , then µ(x−y) > δ−k− t,
and if t ≤ δ−k

2 , then µ(x − y) ≥ t. Thus (x − y)t ∈ ∨qδkµ and so x − y ∈ [µ]t.
Similarly, a ◦ x ⊆ [µ]t, for all a ∈ K.
Therefore, [µ]t is a subhyperspace of V .
Conversely, let µ be a fuzzy subset of V and there exist x, y ∈ V such that

µ(x − y) < µ(x) ∧ µ(y) ∧ δ−k
2 , for δ ∈ (0, 1] and k ∈ [0, 1). Then µ(x − y) < t ≥

µ(x) ∧ µ(y) ∧ δ−k
2 , for some t ∈ (0, 1). Thus x, y ∈ [µ]t and so x − y ∈ [µ]t. But



792 O. R. DEHGHAN AND M. NOROUZI

µ(x − y) < t and µ(x − y) + t ≥ δ − k, which is a contradiction. Hence (1) of
Theorem 6, and similarly the assertion (2) of Theorem 6, are valid. Therefore, µ is
an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . �

4. Conclusion

We define λ(x) + t > δ and λ(x) + t + k > δ as new connections between a
fuzzy point and a fuzzy subset on a hypervector space to generalize the concept of
fuzzy subhyperspaces. These new connections help us to find new generalizations
for fuzzy subhyperspaces and specially the largest family of them based on the
concepts of belongingness and quasi-coincidence. This study can be extended to
other algebraic structures and hyperstructures, in future. The following figure
shows how we extend the family of generalized fuzzy subhyperspaces:

Figure 1. Generalizations of fuzzy subhyperspces
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THE COMPARISON OF DIFFERENT ESTIMATION METHODS
FOR THE PARAMETERS OF FLEXIBLE WEIBULL

DISTRIBUTION

SAJID ALI, SANKU DEY, M. H. TAHIR, AND MUHAMMAD MANSOOR

Abstract. This article presents different parameter estimation methods for
flexible Weibull distribution introduced by Bebbington et al. (Reliability En-
gineering and System Safety 92:719-726, 2007), which is a modified version
of the Weibull distribution and is suitable to model different shapes of the
hazard rate. We consider both frequentist and Bayesian estimation methods
and present a comprehensive comparison of them. For frequentist estima-
tion, we consider the maximum likelihood estimators, least squares estima-
tors, weighted least squares estimators, percentile estimators, the maximum
product spacing estimators, the minimum spacing absolute distance estima-
tors, the minimum spacing absolute log-distance estimators, Cramér von Mises
estimators, Anderson Darling estimators, and right tailed Anderson Darling
estimators, and compare them using a comprehensive simulation study. We
also consider Bayesian estimation by assuming gamma priors for both shape
and scale parameters. We use a Markov Chain Monte Carlo algorithm to
compute the posterior summaries. A real data example is also a part of this
work.

1. Introduction

Weibull distribution is one of the most widely used distributions in reliability, and
has a monotonic hazard rate, which may be increasing or decreasing. In many relia-
bility applications, however, the failure rate often non-monotonic, which motivated
[1] to introduce a new extension of the Weibull distribution having bathtub-shaped
failure rate. To define it, let X have the flexible Weibull (FW for short) distribu-
tion, say X ∼ FW(α, λ). [1] defined the cumulative distribution function (cdf) of
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X as
G(x) = 1− exp

(
− exp(αt− λ/t)

)
, (1)

where α and λ are the shape parameters. The exponential distribution is obtained
by λ = 0 and α = log(θ). The probability density function (pdf) corresponding to
(1) is given by

g(x) = (α+ λ/x2) exp
(
αt− λ/x

)
exp
(
− exp(αt− λ/t)

)
, x > 0 (2)

[1] pointed out that as λ decreases, the failure rate function becomes more
bathtub-like while it becomes shallower as α increases.

Figure 1. Density Plot of flexible Weibull for some selected parameter values.

Note that the FW distribution has the closed-form density, hazard and survival
functions. In Figure-1, we have depicted the density of FW distribution for various
combinations of parameters. It is clear from the figure that the distribution is very
flexible and adopts various shapes for different combinations of parameters.
In the literature, [2] developed a R Package ’reliaR’to generate random num-

bers from FW to estimate its parameters and study other reliability characteristics.
[3] discussed Bayesian estimation and prediction for FW under type-II censoring
scheme. [4] discussed parameter estimation of the flexible Weibull distribution for
type I censored data. [5] proposed a new extension of FW distribution using the odd
generalized exponential generator. [6] proposed a generalized class of FW distribu-
tion for repairable systems. [7] proposed a generalized class of FW distribution. [8]
discussed estimation and prediction for type-II hybrid censored data assuming FW
distribution. [9] studied the penalized maximum likelihood estimation for the mod-
ified extended Weibull distribution. [10] discussed the reliability properties of the
proportional hazard reverse transformation using FW distribution. [11] presented
estimation and prediction for FW based on progressive type-II censored data. [12]
proposed exponentiated additive Weibull distribution where FW is a special case
of the proposed distribution.
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The aim of this article is to compare different parameter estimation methods,
including both classical and Bayesian. In particular, we compare the maximum like-
lihood, the maximum and the minimum spacing distances (minimum spacing ab-
solute distance and minimum spacing absolute-log distance), ordinary and weighted
least squares, percentiles, the minimum distance methods including Cramér-von-
Mises, Anderson-Darling and right-tail Anderson-Darling. Further, we also com-
pute the parameter estimates of FW by using the Bayesian method, where we use
the Markov Chain Monte Carlo (MCMC) to obtain the posterior summaries. Sev-
eral authors have used different methods of estimations for different distributions,
for example, [13, 14, 15, 16, 17, 18, 19, 20].
The rest of the article is organized as follows: Section 2 discusses some new

properties of the FW distribution. Section 3 deals with different methods of esti-
mation of the model parameters. Section 4 presents simulation study while a real
life example to show the practical application is presented in Section 5. Finally,
some concluding remarks are given in Section 6.

2. New properties

This section discusses some statistical properties.

2.1. Moments, Skewness and Kurtosis. We calculate the mean, variance, skew-
ness and kurtosis numerically and depict in Figure-2. It is clear from the figure that
as λ increases, the mean and variance also increase. However, the skewness and
kurtosis decrease by increasing λ. It is also noticed that a small value of α results
into large value of mean, variance, skewness and kurtosis.

2.2. Quantile function. To generate random variable from FW, we invert Equation-
1 as follows X = F−1(u), where u ∼ Uniform(0, 1). The simplified form is

X = F−1(u) =
1

2α

(
log(− log u) +

√
{log(− log u)}2 + 4αλ

)
(3)

The skewness and kurtosis measures can be investigated using the quantile function.
For example, the Bowley skewness [21] based on quantiles is given by

B =
F−1(3/4) + F−1(1/4)− 2F−1(2/4)

F−1(3/4)− F−1(1/4)
.

Similarly, the Moors’kurtosis [22] is

M =
F−1(3/8)− F−1(1/8) + F−1(7/8)− F−1(5/8)

F−1(6/8)− F−1(2/8)
.

2.3. Reliability properties of FW distribution. A key property to characterize
the distribution is log-concave, i.e., the density is log-concave if d2/dx2 log f < 0,
otherwise convex. The hazard would be decreasing if density is log-concave. For
the FW, it is observed that the density is log-concave for λ > α.
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Figure 2. Plots of the FW (a) Mean (b) Variance (c) Skewness, and
(d) Kurtosis for some selected parameter values.

2.4. Stochastic ordering. Stochastic ordering is an important tool in reliabil-
ity theory and finance to assess comparative behavior. Let X1 and X2 be two
random variables having cdfs, sfs and pdfs F1(x), F2(x), F̄1(x) = 1 − F1(x),
F̄2(x) = 1 − F2(x), f1(x), and f2(x), respectively. The random variable X1 is
said to be smaller than X2 in the following ordering as:

(i) stochastic order (denoted by X1 ≤st X2) if F̄1(x) ≤ F̄2(x) for all x;
(ii) likelihood ratio order (denoted by X1 ≤lr X1) if f1(x)/f2(x) is decreasing in
x ≥ 0;
(iii) hazard rate order (denoted by X1 ≤hr X2) if F̄1(x)/F̄2(x) is decreasing in
x ≥ 0;
(iv) reversed hazard rate order (denoted by X1 ≤rhr X2) if F1(x)/F2(x) is decreas-
ing in x ≥ 0.

All these four stochastic orders defined in (i)—(iv) are related to each other [23]
and the following implications hold:

(X1 ≤rhr X2)⇐ (X1 ≤lr X2)⇒ (X1 ≤hr X2)⇒ (X1 ≤st X2). (4)
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The following theorem shows that the FW distribution has likelihood ratio ordering
when appropriate assumptions are satisfied.

Theorem 2.1. Let X1 ∼ FW(α1, λ1) and X2 ∼ FW(α2, λ2). If α1 < α2 for fixed
λ1 = λ2 = λ, and λ2 > λ2, for α1 = α2 = α then X1 ≤lr X2.

Proof. It is not diffi cult to show that d
dx log f1(x;α1,λ1)

f2(x;α2,λ1) < 0 for the following condi-
tions:

• α1 < α2 for fixed λ1 = λ2 = λ,
• λ2 > λ2 and α1 = α2 = α.

Thus, likelihood ratio ordering holds and X1 ≤lr X2. �

2.5. Stress and Strength Analysis. Stress-Strength reliability is defined as G =
Pr(X1 > X2) =

∫∞
0
f1(x)F2(x)dx, X1 ∼ FW (α1, λ1) and X2 ∼ FW (α2, λ2),

whereas the f1(x) is the pdf of X1 and F2(x) cdf of X2.

G = Pr(X1 > X2) = 1−
∫ ∞

0

(α1 + λ1/x
2) exp

(
α1x− λ1/x

)
× exp

(
− exp

(
α1x− λ1/x

)
− exp

(
α2x− λ2/x

))
dx (5)

The above equation can be solved numerically.

3. Parameters estimation methods

This section describes ten different methods of estimation to obtain the estima-
tors of the parameters α and λ of the FW distribution.

3.1. Maximum likelihood estimators. Let x1, x2, . . . , xn be a random sample
of size n from Equation (2). Then, the log-likelihood function is given by

`(α, λ) =

n∑
i=1

log
(
α+ λ/x2

i

)
+α

n∑
i=1

xi −
n∑
i=1

(λ/xi)−
n∑
i=1

exp
(
αxi − λ/xi

)
(6)

The resulting partial derivatives of the log-likelihood function are

∂ `(α, λ)

∂α
=

n∑
i=1

1

α+ λ/x2
i

+

n∑
i=1

xi −
n∑
i=1

xi exp
(
αxi − λ/xi

)
(7)

∂ `(α, λ)

∂λ
=

n∑
i=1

1

αx2
i + λ

+

n∑
i=1

x−1
i −

n∑
i=1

x−1
i exp

(
αxi − λ/xi

)
(8)

Equating these partial derivatives to zero do not yield closed-form solutions for
the MLEs and thus a numerical method, like Newton Raphson, is used for solving
these equations simultaneously.
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3.2. Least Squares Estimators. The least squares and weighted least squares
estimators were proposed by [24] to estimate the parameters of beta distributions.
To define these, suppose F (X(j)) denote the distribution function of the ordered
random variables X(1) < X(2) < · · · < X(n) where {X1, X2, · · · , Xn} is a ran-
dom sample of size n from the distribution function F (·). Then, the least squares
estimators of α and λ, say α̂LSE and λ̂LSE can be obtained by minimizing

S(α, λ) =

n∑
i=1

[
F (xi:n|α, λ)− i

n+ 1

]2

with respect to α and λ, where F (·) is the cdf (1). Equivalently, the estimators can
be obtained by solving:

n∑
i=1

[
F (xi:n | α, λ)− i

n+ 1

]
η1 (xi:n | α, λ) = 0,

n∑
i=1

[
F (xi:n | α, λ)− i

n+ 1

]
η2 (xi:n | α, λ) = 0,

where

η1 (xi:n | α, λ) = α exp

((
αx− λ/x

)
− exp

(
αx− λ/x

))
, (9)

and

η2 (xi:n | α, λ) =
λ

x2
exp

((
αx− λ/x

)
− exp

(
αx− λ/x

))
. (10)

The weighted least squares estimators, α̂WLSE and λ̂WLSE , can be obtained by
minimizing

W (α, λ) =

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

[
F (xi:n | α, λ)− i

n+ 1

]2

.

These estimators can be obtained by solving:
n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

[
F (xi:n | α, λ)− i

n+ 1

]
η1 (xi:n | α, λ) = 0,

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

[
F (xi:n | α, λ)− i

n+ 1

]
η2 (xi:n | α, λ) = 0.

3.3. Percentile Estimators. If the data come from a distribution function which
has a closed form, then the unknown parameters can be estimated by fitting straight
line to the theoretical points obtained from the distribution function and the sample
percentile points. This method was originally suggested by [25, 26] and it has
been used for Weibull distribution and for generalized exponential distribution. In
this paper, we apply the same technique for the two-parameter FW distribution.
Let X(j) be the jth order statistic, i.e, X(1) < X(2) < · · · < X(n). If pj denote
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some estimate of F (x(j);α, λ), then the estimate of α and λ can be obtained by
minimizing

n∑
j=1

(
x(j) −

1

2α

(
log(− log pj) +

√
{log(− log pj)}2 + 4αλ

))2

,

with respect to α and λ. Several type of estimators for pj can be used [27] and this
paper considers pj = j

n+1 .

3.4. Maximum and Minimum Product of Spacings Estimators. The max-
imum product spacing (MPS) method was introduced by [28, 29] as an alternative
to MLE for the estimation of the unknown parameters of continuous univariate dis-
tributions. The MPS method was also derived independently by [30] as an approx-
imation to the Kullback-Leibler measure of information. To motivate our choice,
[29] proved that this method is as effi cient as the MLE estimators and consistent
under more general conditions.
We define the uniform spacings of a random sample from the FW distribution

as:

Di(α, λ) = F (xi:n | α, λ)− F (xi−1:n | α, λ) , i = 1, 2, . . . , n,

where F (x0:n | α, λ) = 0 and F (xn+1:n | α, λ) = 1. Clearly
∑n+1
i=1 Di(α, λ) = 1.

The maximum product of spacings estimators α̂MPS and λ̂MPS , of the parame-
ters α and λ are obtained by maximizing the geometric mean of the spacings with
respect to α and λ

G (α, λ) =

[
n+1∏
i=1

Di(α, λ)

] 1
n+1

, (11)

or, equivalently, by maximizing the function

H (α, λ) =
1

n+ 1

n+1∑
i=1

logDi(α, λ). (12)

The estimators α̂MPS and λ̂MPS of the parameters α and λ can be obtained by
solving the nonlinear equations

∂

∂α
H (α, λ) =

1

n+ 1

n+1∑
i=1

1

Di(α, λ)
[η1(xi:n|α, λ)− η1(xi−1:n|α, λ)] = 0,

∂

∂λ
H (α, λ) =

1

n+ 1

n+1∑
i=1

1

Di(α, λ)
[η2(xi:n|α, λ)− η2(xi−1:n|α, λ)] = 0,

where η1 (· | α, λ) and η2 (· | α, λ) are given by (9) and (10), respectively.
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Similarly, the minimum spacing distance estimators of α̂MSADE and λ̂MSADE

of α and λ are obtained by minimizing

T (α, λ) =

n+1∑
i=1

h

(
Di (α, λ) ,

1

n+ 1

)
, (13)

where h(x, y) is an appropriate distance. Some choices of h(x, y) are the absolute
distance |x− y| and the absolute-log distance |log x− log y|. These estimators
are called the “minimum spacing absolute distance estimator" (MSADE) and the
“minimum spacing absolute-log distance estimator" (MSALDE). The MSADE and
MSALDE of parameters α and λ can be obtained by minimizing

T (α, λ) =

n+1∑
i=1

∣∣∣∣(Di(α, λ)− 1

n+ 1

∣∣∣∣ (14)

and

T (α, λ) =

n+1∑
i=1

∣∣∣∣logDi(α, λ)− log
1

n+ 1

∣∣∣∣ , (15)

with respect to α and λ, respectively.
The estimators α̂MSADE and λ̂MSADE of α and λ can be obtained by solving

the following nonlinear equations

∂

∂α
T (α, λ) =

n+1∑
i=1

Di(α, λ)− 1
n+1∣∣∣Di(α, λ)− 1
n+1

∣∣∣ [η1 (xi:n | α, λ)− η1 (xi−1:n | α, λ)] = 0

∂

∂λ
T (α, λ) =

n+1∑
i=1

Di(α, λ)− 1
n+1∣∣∣Di(α, λ)− 1
n+1

∣∣∣ [η2 (xi:n | α, λ)− η2 (xi−1:n | α, λ)] = 0,

where Di(α, λ) 6= 1
n+1 .

The estimators α̂MSALDE , and λ̂MSALDE of α and λ can be obtained by solving
the nonlinear equations

∂

∂α
T (α, λ) =

n+1∑
i=1

logDi(α, λ)− log 1
n+1∣∣∣logDi(α, λ)− log 1
n+1

∣∣∣ 1

Di(α, λ)

× [η1 (xi:n | α, λ)− η1 (xi−1:n | α, λ)] = 0

∂

∂λ
T (α, λ) =

n+1∑
i=1

logDi(α, λ)− log 1
n+1∣∣∣logDi(α, λ)− log 1
n+1

∣∣∣ 1

Di(α, λ)

× [η2 (xi:n | α, λ)− η2 (xi−1:n | α, λ)] = 0,

where logDi(α, λ) 6= log 1
n+1 .
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3.5. Minimum Distances Estimators. This section presents three estimation
methods for α and λ based on the minimization of the goodness-of-fit statistics
with respect to α and λ. This class of statistics is based on the difference between
the estimate of the cumulative distribution function and the empirical distribution
function.

3.5.1. Cramér-von-Mises Estimators. To motivate our choice of Cramér-von-Mises
type minimum distance estimators, [31] provided empirical evidence that the bias
of the estimator is smaller than the other minimum distance estimators. Thus,
the Cramér-von Mises estimators α̂CME and λ̂CME of the parameters α and λ are
obtained by minimizing the following function.

C(α, λ) =
1

12n
+

n∑
i=1

(
F (xi:n | α, λ)− 2i− 1

2n

)2

. (16)

These estimators can be obtained by solving the following non-linear equations

n∑
i=1

(
F (xi:n | α, λ)− 2i− 1

2n

)
η1 (xi:n | α, λ) = 0,

n∑
i=1

(
F (xi:n | α, λ)− 2i− 1

2n

)
η2 (xi:n | α, λ) = 0,

where η1 (· | α, λ) and η2 (· | α, λ) are given by (9) and (10) respectively.

3.5.2. Anderson-Darling and Right-tail Anderson-Darling Estimators. The Anderson-
Darling (AD) test [32] is an alternative method to detect sample distribution depar-
ture from the assumed distribution. Specifically, the AD test converge very quickly
towards the asymptote [33, 34, 35]. The Anderson-Darling estimators α̂ADE and
λ̂ADE of the parameters α and λ are obtained by minimizing the following function
with respect to the parameters.

A(α, λ) = −n− 1

n

n∑
i=1

(2i− 1)
{

logF (xi:n | α, λ) + logF (xn+1−i:n | α, λ)
}
. (17)

These estimators can be obtained by solving the following non-linear equations:

n∑
i=1

(2i− 1)

[
η1 (xi:n | α, λ)

F (xi:n | α, λ)
−
η1

(
x
n+1−i:n | α, λ

)
F (xn+1−i:n | α, λ)

]
= 0,

n∑
i=1

(2i− 1)

[
η2 (xi:n | α, λ)

F (xi:n | α, λ)
−
η2

(
xn+1−i:n | α, λ

)
F (xn+1−i:n | α, λ)

]
= 0,

where η1 (· | α, λ) and η2 (· | α, λ) are given by (9) and (10), respectively.
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The Right-tail Anderson-Darling estimators α̂RTADE and λ̂RTADE of the para-
meters α and λ are obtained by minimizing, with respect to α and λ, the function:

R(α, λ) =
n

2
− 2

n∑
i=1

F (xi:n | α, λ)− 1

n

n∑
i=1

(2i− 1) logF (xn+1−i:n | α, λ) . (18)

Equivalently

−2

n∑
i=1

η1 (xi:n | α, λ) +
1

n

n∑
i=1

(2i− 1)
η1

(
x
n+1−i:n | α, λ

)
F (xn+1−i:n | α, λ)

= 0,

−2

n∑
i=1

η2 (xi:n | α, λ) +
1

n

n∑
i=1

(2i− 1)
η2

(
x
n+1−i:n | α, λ

)
F (xn+1−i:n | α, λ)

= 0,

where η1 (· | α, λ) and η2 (· | α, λ) are given by (9) and (10), respectively.

4. Bayesian analysis

This section discusses the Bayesian estimation of the FW distribution. To this
end, the likelihood function can be written as

L(α, λ|x) = exp

( n∑
i=1

log
(
α+λ/x2

i

))
exp(α

n∑
i=1

xi−λ
n∑
i=1

x−1
i ) exp

(
−

n∑
i=1

exp
(
αxi−λ/xi

))
Next assuming α ∼ Gamma(a, b), i.e., f(α) = ba

Γ(a)α
a−1 exp(−bα), and λ ∼

Gamma(c, d), the joint posterior of α and λ can be written as

P (α, λ|x) ∝ αa−1 exp(−α(b−
n∑
i=1

xi))λ
c−1 exp(−λ(d+

n∑
i=1

x−1
i ))

× exp

( n∑
i=1

log
(
α+ λ/x2

i

)
−

n∑
i=1

exp
(
αxi − λ/xi

))
(19)

The marginal distribution of λ is P (λ|x) ∼ Gamma(c, d+
∑n
i=1 x

−1
i ) while P (α|λ,x) ∼

αa−1 exp(−α(b−
∑n
i=1 xi)) exp

(∑n
i=1 log

(
α+ λ/x2

i

)
−
∑n
i=1 exp

(
αxi− λ/xi

))
for

α.
To generate marginal of α, we propose the adaptive rejection sampling. To

this end, it is not diffi cult to show that P (α|λ,x) is log-concave and thus, the
idea of [36] can be used. For Metropolis Hastings (MH) sampling, we assume the
gamma density as transition kernel q(α(i)|α(∗)) for sampling value of α. The choice
of gamma distribution has been done purely for illustration purpose, and other
suitable distributions can be considered. After generating the marginal densities,
the next step is to calculate the posterior summaries, E(θ|x) =

∫
θ
θP(θ|x). The

steps to calculate the Bayes estimates are as follow:

MH Algorithm-Step 1: Generate λ from the Gamma distribution.
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(1) To generate the α, evaluate the acceptance probability by k(α(i), α(∗)) =

min

(
1, P (α(∗)|x)q(α(i)|α(∗))

P (α(i)|x)q(α(∗)|α(i))

)
, where P (α|x, λ) has been defined above.

(2) Generate a random u from Uniform(0, 1)
(3) If k(α(i), α(∗)) ≥ u, α(i+1) = α(∗), otherwise α(i+1) = α(i).

Step 2: Suppose at the i-th step, α and λ take the values αi and λi and we
can generate P(λi+1|x), and P(αi+1|λi,x);

Step 3: Repeat the above step N times;
Step 4: Calculate the Bayes estimator of g(α, λ) by 1

N−M
∑N
i=M+1 g(αi, λi),

where M denotes the burn-in sample.

In the next section, a simulation study is done to assess the performance of
different estimation methods.

5. Simulation Study

This section presents Monte Carlo simulation studies to assess the performance
of the frequentist estimators derived in the previous section. In particular, we use
bias, the root mean squared error, the average absolute difference between the the-
oretical and the empirical estimate of the distribution functions, and the maximum
absolute difference between the theoretical and empirical distribution functions as
the performance assessment criteria. For comparison, we considered the follow-
ing sample sizes: n = 20, 40, 60, 80, 100. Ten thousand independent samples of
the aforementioned sizes were generated from EW distribution with parameters
(α, λ) = {(0.5, 0.5), (1.5, 0.5), (1.5, 2.0), (3.0, 2.0)}. It is noticed that 10,000 repeti-
tions are suffi ciently large to have stable results. For all the methods considered
in this study, first we estimated the parameters using the method of maximum
likelihood and then these estimates are used as the initial values. Since the MLE
are not in closed form, we used the ’fitdist’ function of R package fitdistrplus,
which optimized the logarithm of the likelihood function numerically, to estimate
the parameters. The results of the simulation studies are tabulated in Tables 1-4.
For each estimate, we calculated the bias, the root mean-squared error (RMSE),

the average absolute difference between the theoretical and the empirical estimate
of the distribution functions (Dabs), and the maximum absolute difference between
the theoretical and the empirical distribution functions (Dmax). The statistics are
obtained using the following formulae:

Bias(α̂) =
1

K

K∑
i=1

(α̂i − α), Bias(λ̂) =
1

K

K∑
i=1

(λ̂i − λ) (20)

RMSE(α̂) =

√√√√ 1

K

K∑
i=1

(α̂i − α)2, RMSE(λ̂) =

√√√√ 1

K

K∑
i=1

(λ̂i − λ)2 (21)
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Dabs(α̂) =
1

(nK)

K∑
i=1

n∑
j=1

∣∣F (xij |α, λ)− F (xij
∣∣α̂, λ̂)| (22)

Dmax(α̂) =
1

nK

K∑
i=1

max
j

∣∣F (xij
∣∣α, λ)− F (xij |α̂, λ̂)| (23)

where n denotes the sample size and K is the number of iterations. Simulated bias,
RMSE, Dabs, Dmax for the estimates are given in Tables 1-4. The row with label∑
Ranks shows the partial sum of the ranks and superscript indicates the rank

of each of the estimators among all the estimators for that metric. For example,
Table-1 shows the bias of MLE(α̂) as 1.7318 for n = 20. This indicates, bias of
α̂ obtained using the method of maximum likelihood ranks 8th among all other
estimators.
The following observations can be drawn from the Tables 1-4.

1. All the estimators show the property of consistency, i.e., the RMSE decreases
as the sample size increases, except in the case of PCE and MSALDE for α = 0.5.
However, assuming α > 1, the RMSE of MSALDE decreases by increasing the
sample size. Furthermore, assuming α = 1.5, λ = 0.5,the RMSE of assuming α
increases with the sample size for the MLE.
2. The bias of α̂ and λ̂ decreases with increasing n for all the method of estimations.
3. It is noticed that the MLE and PCE performed the worst than the rest methods.
The MSALDE performs the best when α, λ > 1. The CVM and AD are suggested
only when α > 1.
4. Dabs is smaller than Dmax for all the estimation techniques. Again, the statistics
gets smaller with the increase of sample size.
5. In terms of performance of the methods of estimation, the MSADE and AD es-
timators uniformly produces the least biases of the estimates with the least RMSE,
see the ranking of

∑
Ranks rows in the tables, for the most configurations consid-

ered in our studies.
6. It is also observed that for the estimation of λ, PCE performed the worst, as the
RMSE is the highest as compared to the other methods.
For the Bayesian analysis, we generated 12, 000 samples of α and λ, and the

Bayes estimates with other posterior summaries, like MCMC error, median, 95%
Bayesian intervals have been tabulated in Table-5. For the parameter combinations
mentioned above to compute the posterior summaries, hyperparameters are selected
in such a way that the mean of the priors equal to the parameters’nominal values
with large variances. Moreover, we used M = 2, 000 as a burn-in period for our
calculations. From the table, it is clear that as the sample size increases, the Bayes
estimates approaches to the nominal values and the Bayesian intervals become more
smaller for large sample sizes. Furthermore, the MCMC error decreases with the
increase of sample size.
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Table 1. Simulation results for α = λ = 0.5.

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias(α̂) 1.7318 1.6807 12.81310 -0.3812 1.4095 -0.3853 -0.3111 1.8939 1.1014 1.6296

RMSE(α̂) 1.8207 1.9258 14.13110 0.3812 1.4925 0.3893 0.3731 2.1599 1.1844 1.7246

Bias(λ̂) -0.3654 -0.3675 0.0001 29.94310 -0.3777 3.4258 12.4809 -0.3602 -0.3746 -0.3633

RMSE(λ̂) 0.3674 0.3695 0.0031 32.90010 0.3786 3.7428 13.9739 0.3622 0.3807 0.3673

Dabs 0.36310 0.3596 0.3275 0.1373 0.3607 0.1361 0.1372 0.3618 0.3154 0.3619

Dmax 0.5288 0.5176 0.77710 0.4954 0.5005 0.4832 0.4943 0.5339 0.4421 0.5177∑
Ranks 4110 377.5 377.5 314 356 251.5 251.5 399 263 345

40 Bias(α̂) 1.6088 1.5657 11.73310 -0.4983 1.4195 -0.3982 -0.2981 1.6659 1.0644 1.5596

RMSE(α̂) 1.6437 1.6498 12.97610 0.4982 1.4535 0.3991 0.5183 1.7539 1.1024 1.5996

Bias(λ̂) -0.3704 -0.3725 0.0001 36.32110 -0.3786 4.0388 12.1359 -0.3682 -0.3797 -0.3703

RMSE(λ̂) 0.3714 0.3735 0.0001 38.80910 0.3796 4.2328 13.7509 0.3692 0.3817 0.3713

Dabs 0.36310 0.3616 0.3215 0.1373 0.3639 0.1371 0.1372 0.3627 0.3154 0.3628

Dmax 0.5195 0.5133 0.78010 0.5399 0.5032 0.5337 0.5388 0.5226 0.4391 0.5144∑
Ranks 3810 346 378.5 378.5 335 271.5 324 357 271.5 303

60 Bias(α̂) 1.5688 1.5336 11.14910 -0.3992 1.4295 -0.3993 -0.2681 1.5999 1.0514 1.5377

RMSE(α̂) 1.5898 1.5827 12.27910 0.3991 1.4495 0.3992 0.5863 1.6509 1.0754 1.5626

Bias(λ̂) -0.3724 -0.3735 0.0001 50.07610 -0.3786 4.4318 11.7729 -0.3712 -0.3807 -0.3724

RMSE(λ̂) 0.3723 0.3745 0.0001 54.88810 0.3786 4.5658 13.4459 0.3712 0.3827 0.3724

Dabs 0.3639 0.3626 0.3185 0.1373 0.36310 0.1371 0.1372 0.3628 0.3144 0.3627

Dmax 0.5155 0.5113 0.77810 0.5609 0.5032 0.5557 0.5588 0.5176 0.4371 0.5124∑
Ranks 379.5 324.5 379.5 357 346 292 324.5 368 271 313

80 Bias(α̂) 1.5508 1.5206 10.71110 -0.4033 1.4395 -0.3982 -0.2311 1.5709 1.0454 1.5277

RMSE(α̂) 1.5668 1.5547 11.73110 0.4032 1.4545 0.3991 0.7883 1.6049 1.0634 1.5466

Bias(λ̂) -0.3734 -0.3745 0.0001 58.68210 -0.3786 4.7198 11.4439 -0.3722 -0.3817 -0.3733

RMSE(λ̂) 0.3733 0.3745 0.0001 64.96110 0.3786 4.8478 13.1389 0.3732 0.3827 0.3734

Dabs 0.3639 0.3626 0.3155 0.1373 0.36310 0.1371 0.1372 0.3628 0.3144 0.3627

Dmax 0.5145 0.5113 0.77510 0.5749 0.5042 0.5687 0.5718 0.5156 0.4371 0.5114∑
Ranks 379 324.5 379 379 346 271.5 324.5 367 271.5 313

100 Bias(α̂) 1.5408 1.5156 10.47810 -0.4053 1.4455 -0.3942 -0.1911 1.5559 1.0424 1.5227

RMSE(α̂) 1.5528 1.5417 11.40610 0.4052 1.4575 0.4001 0.8983 1.5829 1.0564 1.5376

Bias(λ̂) -0.3734 -0.3745 0.0001 57.71310 -0.3786 4.8818 11.1309 -0.3732 -0.3827 -0.3733

RMSE(λ̂) 0.3743 0.3755 0.0001 60.41410 0.3786 5.0458 12.8239 0.3732 0.3837 0.3744

Dabs 0.3639 0.3627 0.3144 0.1373 0.36310 0.1371 0.1372 0.3638 0.3145 0.3626

Dmax 0.5135 0.5103 0.77410 0.5839 0.5052 0.5737 0.5808 0.5146 0.4361 0.5114∑
Ranks 379.5 335 367.5 379.5 346 271 324 367.5 282 303

6. Data Analysis

This section shows empirically that the FW distribution can be used as an alter-
native to some well-known two-parameter models like gamma, log-normal, Weibull,
exponentiated exponential (EE), Nadarajah and Haghighi (NH) [37], Birnbaum-
Saunders (BS), and inverse Gaussian (IG) distributions. For model comparison, we
consider three well-known statistics and three model selection criteria. These mea-
sures and selection criteria are: Anderson-Darling (A∗), Cramér—von Mises (W ∗)
and Kolmogorov-Smirnov (K-S) measures, Akaike information criterion (AIC),Bayesian
information criterion (BIC), and loglikelihood. The least value of these measures
and selection criteria may indicate better fit. The cdfs of the EE, NH, BS and pdf
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Table 2. Simulation results for α = 1.5, λ = 0.5.

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias(α̂) -0.7704 -0.8246 -0.8175 -1.4878 -0.8577 2.5139 2.54610 -0.7583 -0.3352 -0.3211

RMSE(α̂) 0.7853 0.8476 0.8375 1.4878 0.8977 3.2369 3.46810 0.7894 0.3902 0.3801

Bias(λ̂) 0.7158 0.6426 0.6507 121.75110 0.5655 -0.2252 0.0381 0.7239 0.2453 0.2714

RMSE(λ̂) 0.7736 0.7174 0.7195 175.81110 0.6223 1.7359 1.4358 0.8037 0.3121 0.3592

Dabs 0.3327 0.3329 0.3328 0.83110 0.3255 0.1624 0.1101 0.3316 0.1542 0.1563

Dmax 0.4978 0.4865 0.4876 1.00010 0.4704 0.5819 0.3563 0.4977 0.2181 0.2252∑
Ranks 366.5 366.5 366.5 5610 313 429 334 366.5 111 132

40 Bias(α̂) -0.8034 -0.8317 -0.8256 -1.4888 -0.8195 3.29010 1.9539 -0.8003 -0.1742 -0.1681

RMSE(α̂) 0.8093 0.8406 0.8335 1.4888 1.1027 3.89110 2.7129 0.8104 0.2282 0.2211

Bias(λ̂) 0.6677 0.6315 0.6386 143.17010 0.5784 -0.3403 0.9579 0.6698 0.1151 0.1252

RMSE(λ̂) 0.6956 0.6664 0.6705 207.45010 0.6073 1.0848 4.4609 0.7057 0.1591 0.1812

Dabs 0.3327 0.3328 0.3329 0.83210 0.3275 0.1644 0.1433 0.3326 0.0821 0.0832

Dmax 0.4948 0.4885 0.4896 1.00010 0.4764 0.6579 0.3923 0.4937 0.1171 0.1212∑
Ranks 355 355 377 5610 283 449 428 355 81 102

60 Bias(α̂) -0.8146 -0.8328 -0.8277 -1.4889 -0.7404 3.84610 0.2873 -0.8125 -0.0862 -0.0821

RMSE(α̂) 0.8173 0.8386 0.8325 1.4887 1.5518 4.44310 1.9889 0.8184 0.1512 0.1461

Bias(λ̂) 0.6537 0.6285 0.6356 159.27910 0.5864 -0.3213 9.0049 0.6538 0.0571 0.0632

RMSE(λ̂) 0.6716 0.6514 0.6555 227.69810 0.6163 1.2578 13.3009 0.6777 0.0991 0.1152

Dabs 0.3328 0.3326 0.3327 0.83210 0.3264 0.1673 0.4419 0.3325 0.0471 0.0492

Dmax 0.4937 0.4884 0.4905 1.00010 0.4783 0.6969 0.6558 0.4926 0.0701 0.0742∑
Ranks 377 334 355.5 5610 263 438 479 355.5 81 102

80 Bias(α̂) -0.8196 -0.8338 -0.8297 -1.4899 -0.6634 4.23610 0.1563 -0.8185 -0.0892 -0.0861

RMSE(α̂) 0.8213 0.8376 0.8325 1.4897 1.8748 4.84210 1.8749 0.8224 0.1392 0.1341

Bias(λ̂) 0.6457 0.6265 0.6326 177.80310 0.5934 -0.3073 9.5629 0.6458 0.0551 0.0602

RMSE(λ̂) 0.6586 0.6444 0.6485 259.17710 0.6323 1.3708 13.6989 0.6627 0.0891 0.1022

Dabs 0.3327 0.3326 0.3328 0.83210 0.3254 0.1683 0.4639 0.3325 0.0441 0.0462

Dmax 0.4927 0.4884 0.4895 1.00010 0.4793 0.7199 0.6758 0.4916 0.0651 0.0682∑
Ranks 366.5 334 366.5 5610 263 438 479 355 81 102

100 Bias(α̂) -0.8226 -0.8338 -0.8297 -1.4899 -0.5894 4.43710 0.3143 -0.8215 -0.0912 -0.0891

RMSE(α̂) 0.8243 0.8366 0.8325 1.4897 2.1719 5.08010 1.9388 0.8244 0.1312 0.1271

Bias(λ̂) 0.6407 0.6265 0.6316 190.29310 0.5894 -0.2813 8.6529 0.6418 0.0541 0.0582

RMSE(λ̂) 0.6516 0.6404 0.6435 271.66510 0.6253 1.5398 13.0379 0.6547 0.0831 0.0932

Dabs 0.3327 0.3326 0.3328 0.83210 0.3234 0.1683 0.4299 0.3325 0.0431 0.0442

Dmax 0.4917 0.4894 0.4895 1.00010 0.4793 0.7299 0.6468 0.4916 0.0631 0.0652∑
Ranks 366.5 334 366.5 5610 273 438 469 355 81 102

of the IG distributions are, respectively, given by

FEE(x;α, λ) =
(
1− e−λ x

)α
, x, θ > 0,

FNH(x;α, λ) = 1− e1−(1+λx)α , x, α, λ > 0,

FBS(x;α, β) = Φ

[
1

α

{(
x

β

)1/2

−
(
β

x

)1/2
}]

, x, α,> 0,

fIG(x;µ, λ) =

√
λ

2πx3
exp

[
−λ(x− µ)2/(2xµ2)

]
, x, µ, λ > 0.

6.1. Strength of glass fibres. This data set corresponds to the strengths of 15 cm
fibres and taken from [38]. The data are: 0.37, 0.40, 0.70, 0.75, 0.80 ,0.81 ,0.83, 0.86,
0.92, 0.92, 0.94, 0.95, 0.98, 1.03, 1.06, 1.06, 1.08, 1.09, 1.10, 1.10, 1.13, 1.14, 1.15,
1.17, 1.20, 1.20, 1.21, 1.22, 1.25, 1.28, 1.28, 1.29, 1.29, 1.30, 1.35, 1.35, 1.37, 1.37,
1.38, 1.40, 1.40, 1.42, 1.43, 1.51, 1.53, 1.61. A summary of these data is: n = 46, x̄
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Table 3. Simulation results for α = 1.5, λ = 2.0.

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias(α̂) -0.7797 -0.8339 -0.8268 -1.46710 -0.5235 0.2533 0.1631 -0.7746 0.2422 0.2644

RMSE(α̂) 0.7915 0.8498 0.8407 1.4689 2.25810 0.7754 0.4083 0.7956 0.3351 0.3642

Bias(λ̂) 2.8398 2.5146 2.5547 297.88210 2.2455 1.4554 -0.1021 2.8559 -0.3373 -0.2912

RMSE(λ̂) 3.0247 2.7645 2.7796 416.37810 2.5154 5.5659 0.3821 3.1238 0.5122 0.5363

Dabs 0.4569 0.4568 0.4557 0.95510 0.4375 0.1102 0.0121 0.4556 0.1463 0.1464

Dmax 0.7969 0.7786 0.7817 1.00010 0.7515 0.2604 0.0881 0.7938 0.2182 0.2193∑
Ranks 459 426.5 426.5 5910 345 264 81 438 132 183

40 Bias(α̂) -0.8077 -0.8359 -0.8298 -1.47010 0.3235 0.2714 0.0741 -0.8076 0.2262 0.2353

RMSE(α̂) 0.8124 0.8428 0.8357 1.4709 4.61610 0.8296 0.2721 0.8145 0.2742 0.2853

Bias(λ̂) 2.6619 2.4976 2.5327 359.24610 2.3945 1.8564 -0.1061 2.6598 -0.3603 -0.3402

RMSE(λ̂) 2.7487 2.6125 2.6336 489.78410 2.6094 6.3089 0.3971 2.7788 0.4462 0.4503

Dabs 0.4559 0.4557 0.4558 0.95510 0.4265 0.1372 0.0101 0.4556 0.1454 0.1453

Dmax 0.7989 0.7896 0.7917 1.00010 0.7655 0.3394 0.0771 0.7978 0.2122 0.2133∑
Ranks 459 416.5 438 5910 345 294 61 416.5 152 173

60 Bias(α̂) -0.8176 -0.8358 -0.8307 -1.47010 1.0629 0.4643 0.0371 -0.8165 0.4602 0.4674

RMSE(α̂) 0.8194 0.8397 0.8336 1.4709 5.85810 0.8618 0.2271 0.8215 0.4822 0.4893

Bias(λ̂) 2.6059 2.4966 2.5267 378.61310 2.4835 0.5972 -0.0791 2.6028 -0.7104 -0.7003

RMSE(λ̂) 2.6616 2.5724 2.5925 514.54610 2.7398 4.4079 0.7573 2.6797 0.7302 0.7251

Dabs 0.4569 0.4557 0.4558 0.95510 0.4125 0.0812 0.0091 0.4556 0.2694 0.2693

Dmax 0.7999 0.7926 0.7947 1.00010 0.7675 0.3482 0.0681 0.7988 0.3993 0.4004∑
Ranks 439 385 407 5910 428 264 81 396 172 183

80 Bias(α̂) -0.8216 -0.8358 -0.8307 -1.4719 1.73510 0.5754 0.0241 -0.8215 0.4572 0.4633

RMSE(α̂) 0.8234 0.8387 0.8336 1.4719 6.77910 0.8948 0.1991 0.8245 0.4732 0.4793

Bias(λ̂) 2.5759 2.4935 2.5196 393.76510 2.5487 -0.0441 -0.0862 2.5728 -0.7134 -0.7063

RMSE(λ̂) 2.6186 2.5504 2.5695 535.26910 2.8688 3.1199 0.6211 2.6307 0.7283 0.7242

Dabs 0.4559 0.4557 0.4558 0.95510 0.3975 0.0562 0.0081 0.4556 0.2694 0.2693

Dmax 0.7989 0.7946 0.7957 1.00010 0.7705 0.3682 0.0621 0.7988 0.3993 0.3994∑
Ranks 438 375 396.5 5810 459 264 71 396.5 182.5 182.5

100 Bias(α̂) -0.8245 -0.8358 -0.8317 -1.4719 2.47810 0.6364 0.0141 -0.8246 0.4562 0.4603

RMSE(α̂) 0.8254 0.8377 0.8336 1.4719 7.67210 0.9378 0.1821 0.8265 0.4692 0.4733

Bias(λ̂) 2.5598 2.4935 2.5166 410.75710 2.6199 -0.3552 -0.0691 2.5567 -0.7154 -0.7093

RMSE(λ̂) 2.5937 2.5385 2.5556 546.16710 2.9879 2.3854 0.7101 2.6028 0.7273 0.7242

Dabs 0.4559 0.4557 0.4558 0.95510 0.3825 0.0452 0.0081 0.4556 0.2694 0.2693

Dmax 0.7989 0.7956 0.7967 1.00010 0.7715 0.3932 0.0561 0.7988 0.3993 0.3994∑
Ranks 428 385 406.5 5810 489 224 61 406.5 182.5 182.5

= 1.13, s = 0.2713669, skewness = −0.79359, kurtosis = 0.59954. The boxplot of
these observations displayed in Figure 3(a) indicates that the distribution is right-
skewed. The TTT plot [39] of these data is shown in Figure 3(b). The TTT plot
suggests an increasing failure rate and thus, the FW distribution could in principle
be appropriate for modeling the current data. Table ?? provides the MLEs of
the parameters and the values of A∗, W ∗, K-S, AIC, BIC, and loglikelihood for
each model. On the basis of results listed in the table, we conclude that the FW
distribution provides the best fit with the lowest values of model selection criteria.
This indicates that the FW distribution has the ability to fit left-skewed data with
increasing failure rate. For a visual comparison, we provide QQ-plots for all fitted
models in Figure 4. Clearly, the FW model provides the closest fit to the data.
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Table 4. Simulation results for α = 2, λ = 3.

n Est. MLE LSE WLS PCE MPS MSADE MSALDE CVM AD RAD
20 Bias(α̂) -2.4749 0.514 0.512 -2.90410 0.5117 0.515 0.516 0.513 -1.3608 0.2641

RMSE(α̂) 2.4749 0.514 0.512 2.90410 0.5367 0.515 0.516 0.513 1.3658 0.3641

Bias(λ̂) 2.8628 0.013 0.015 85.22310 0.0116 0.012 0.011 0.014 4.0509 -0.2917

RMSE(λ̂) 2.8628 0.012 0.014 114.48710 0.1196 0.011 0.015 0.013 4.2379 0.5367

Dabs 0.0137 0.003 0.001 1.00010 0.0006 0.003 0.005 0.003 0.4959 0.1468

Dmax 0.1727 0.003 0.001 1.00010 0.0006 0.003 0.005 0.003 0.9239 0.2198∑
Ranks 488 193 151 6010 387 193 285 193 529 326

40 Bias(α̂) -2.4739 0.516 0.514 -2.9110 0.5093 0.517 0.518 0.515 0.2261 0.2352

RMSE(α̂) 2.4749 0.515 0.513 2.9110 0.5128 0.516 0.517 0.514 0.2741 0.2852

Bias(λ̂) 2.8629 0.013 0.015 100.1510 0.0146 0.012 0.011 0.014 -0.3608 -0.3407

RMSE(λ̂) 2.8629 0.012 0.014 129.7310 0.2146 0.011 0.015 0.013 0.4467 0.4508

Dabs 0.0137 0.003 0.001 1.0010 0.0006 0.003 0.005 0.003 0.1459 0.1458

Dmax 0.2609 0.003 0.001 1.0010 0.0006 0.003 0.005 0.003 0.2127 0.2138∑
Ranks 529 223 181 6010 357.5 223 315 223 336.5 357.5

60 Bias(α̂) -2.4739 0.516 0.514 -2.91210 0.5093 0.517 0.518 0.515 0.4601 0.4672

RMSE(α̂) 2.4749 0.515 0.513 2.91210 0.5188 0.516 0.517 0.514 0.4821 0.4892

Bias(λ̂) 2.8629 0.013 0.015 106.91910 0.0176 0.012 0.011 0.014 -0.7108 -0.7007

RMSE(λ̂) 2.8629 0.012 0.014 137.63510 0.3036 0.011 0.015 0.013 0.7308 0.7257

Dabs 0.0137 0.003 0.001 1.00010 0.0006 0.004 0.005 0.002 0.2699 0.2698

Dmax 0.3187 0.003 0.001 1.00010 0.0016 0.004 0.005 0.002 0.3998 0.4009∑
Ranks 509 223 181 6010 357 244 315 202 357 357

80 Bias(α̂) -2.4739 0.516 0.5104 -2.91310 0.5083 0.517 0.518 0.515 0.4571 0.4632

RMSE(α̂) 2.4749 0.514 0.5117 2.91310 0.5168 0.515 0.516 0.513 0.4731 0.4792

Bias(λ̂) 2.8629 0.013 0.0115 112.75110 0.0196 0.012 0.011 0.014 -0.7138 -0.7067

RMSE(λ̂) 2.8629 0.011 0.1435 144.65310 0.3506 0.014 0.013 0.012 0.7288 0.7247

Dabs 0.0137 0.002 0.0005 1.00010 0.0006 0.003 0.004 0.001 0.2699 0.2698

Dmax 0.3627 0.002 0.0005 1.00010 0.0016 0.003 0.004 0.001 0.3998 0.3999∑
Ranks 509 182 315 6010 357 243 264 161 357 357

100 Bias(α̂) -2.4739 0.516 0.5104 -2.91410 0.5083 0.517 0.518 0.515 0.4561 0.4602

RMSE(α̂) 2.4749 0.514 0.5117 2.91410 0.5158 0.515 0.516 0.513 0.4691 0.4732

Bias(λ̂) 2.8629 0.013 0.0115 115.57610 0.0206 0.012 0.011 0.014 -0.7158 -0.7097

RMSE(λ̂) 2.8629 0.011 0.1425 149.39010 0.3726 0.014 0.013 0.012 0.7278 0.7247

Dabs 0.0137 0.002 0.0005 1.00010 0.0006 0.003 0.004 0.001 0.2699 0.2698

Dmax 0.3957 0.002 0.0005 1.00010 0.0016 0.003 0.004 0.001 0.3998 0.3999∑
Ranks 509 182 315 6010 357 243 264 161 357 357

7. Concluding remarks

This article studied the performance of different estimation methods for flexible
Weibull distribution. The distribution parameters are estimated by eleven different
methods of estimation, namely, the maximum likelihood estimators, least squares
and weighted least squares estimators, the maximum product of spacings estima-
tors, the minimum spacing absolute distance estimators, the minimum spacing
absolute-log distance estimators, Cramér-von-Mises estimators, Anderson-Darling,
right-tail Anderson-Darling, and the Bayes estimators. The results of the simulation
study showed that among the frequentist estimators, Cramér-von-Mises estimators
and Anderson-Darling perform better than their counterparts. Contrary to frequen-
tist methods, Bayesian method outperformed the rest estimation methods. In the
future, different estimation methods can be compared using censored and record
data. Furthermore, different confidence intervals, like approximate, bootstrap, and
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Table 5. Monte Carlo Markov Chain results for Bayesian analysis.

Parameter n Estimate SD MC error 95% CI Median
α = 0.5 20 0.4990 0.5096 0.0051 (0.0125,1.912) 0.3418

40 0.4995 0.5045 0.0035 (0.0122,1.872) 0.3443
60 0.4992 0.4999 0.0029 (0.0124,1.865) 0.3455
80 0.4998 0.4977 0.0023 (0.0128,1.845) 0.346
100 0.4982 0.4950 0.0021 (0.0127,1.851) 0.3452

λ = 0.5 20 0.4968 0.5039 0.0051 (0.0119,1.866) 0.3404
40 0.4976 0.4969 0.0033 (0.0128,1.86) 0.3462
60 0.4969 0.4968 0.0026 (0.0121,1.845) 0.3454
80 0.4964 0.4958 0.0023 (0.0122,1.841) 0.3447
100 0.4965 0.4948 0.0022 (0.0122,1.837) 0.3452

α = 1.5 20 1.489 0.8649 0.0089 (0.3095,3.635) 1.318
40 1.488 0.855 0.0058 (0.3104,3.561) 1.326
60 1.493 0.835 0.0051 (0.3065,3.559) 1.325
80 1.497 0.8246 0.0043 (0.3091,3.563) 1.326
100 1.498 0.8157 0.0038 (0.3078,3.58) 1.33

λ = 0.5 20 0.4934 0.4977 0.0046 (0.0132,1.836) 0.3365
40 0.4976 0.4975 0.0034 (0.0123,1.845) 0.3459
60 0.4991 0.4963 0.0028 (0.0119,1.838) 0.3463
80 0.5008 0.4927 0.0027 (0.0127,1.847) 0.3463
100 0.4996 0.4905 0.0023 (0.0127,1.846) 0.3456

α = 1.5 20 1.501 0.8659 0.0093 (0.3163,3.629) 1.336
40 1.501 0.8657 0.0065 (0.3155,3.611) 1.335
60 1.497 0.8653 0.0050 (0.3118,3.606) 1.335
80 1.498 0.8649 0.0046 (0.3125,3.607) 1.334
100 1.499 0.8645 0.0039 (0.3119,3.604) 1.331

λ = 2 20 1.97 0.9931 0.0099 (0.5345,4.331) 1.811
40 1.977 0.9874 0.0069 (0.5475,4.289) 1.818
60 1.977 0.9822 0.0058 (0.5536,4.297) 1.82
80 1.980 0.9820 0.0048 (0.5502,4.301) 1.823
100 1.989 0.9814 0.0045 (0.5475,4.308) 1.822

α = 1.5 20 2.982 1.222 0.0116 (1.098,5.859) 2.813
40 2.979 1.220 0.0080 (1.103,5.849) 2.807
60 2.976 1.218 0.0066 (1.101,5.842) 2.806
80 2.99 1.188 0.0028 (1.093,5.816) 2.822
100 2.989 1.176 0.0026 (1.094,5.813) 2.822

λ = 2 20 1.98 0.991 0.0099 (0.5403,4.333) 1.816
40 1.986 0.9893 0.0075 (0.5383,4.324) 1.825
60 1.988 0.9891 0.0056 (0.5407,4.331) 1.829
80 1.989 0.9925 0.0028 (0.5408,4.361) 1.824
100 1.989 0.9913 0.0024 (0.5377,4.368) 1.824

Bayesian can also be compared. Also, bias-corrected estimators can be studied for
the flexible Weibull distribution.
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Figure 3. (a) Histogram (b) TTT plot for the strengths of glass
fibres data.

Table 6. MLEs, their standard errors (in parentheses) and
goodness-of-fit measures of the strengths of glass fibres data.

Distribution Estimates A∗ W∗ K-S AIC BIC Loglikelihood

FW(α, λ) 1.9908 2.96114 0.4157 0.0622 0.0605 10.6989 14.3562 3.34946

(0.2304) (0.3925)
Gamma(α,θ) 11.6769 0.0979 1.3219 0.1920 0.1324 26.3742 30.0315 11.1871

(3.6130) (0.0313)
Weibull(c, λ) 2.79206 0.0490 0.5254 0.0661 0.0921 13.2132 16.8705 4.6065

(0.2133) (0.0138)
Log-normal(µ, σ) 0.0850 0.2964 1.8996 0.2838 0.1596 30.5075 34.1648 13.2538

(0.0437) (0.0309)
NH(α, λ) 35.5990 0.0193 0.8102 0.1129 0.4296 79.2266 82.8838 37.6133

(27.5059) (0.0150)
EE(α, λ) 20.4136 3.1137 2.0367 0.3076 0.1601 33.2085 36.8658 14.6043

(6.6018) (0.3384)
BS(α, β) 0.3042 1.0797 2.0263 0.3029 0.1714 31.9066 35.5639 13.9533

(0.0317) (0.0478)
IG(µ, λ) 1.1312 311.8473 2.0538 0.3075 0.1712 32.2376 35.8949 14.1188

(0.0516) (2.4703)
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INTERVAL OSCILLATION CRITERIA FOR IMPULSIVE
CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS

YASAR BOLAT, THANGARAJ RAJA, KANDHASAMY LOGAARASI,
AND VADIVEL SADHASIVAM

Abstract. In this paper, we derive new interval oscillation criteria for im-
pulsive conformable fractional differential equations having fixed moments of
impulse actions. The results are extended to a more general class of nonlin-
ear impulsive conformable fractional differential equations. Examples are also
given to illustrate the relevance of the result.

1. Introduction

In recent years fractional differential equations are recognized as an excellent
source of knowledge in modelling dynamical processes in self similar and porous
structures, electrical networks, probability and statistics, visco elasticity, electro
chemistry of corrosion, electro dynamics of complex medium, polymer rheology,
industrial robotics, economics, biotechnology etc. For the theory and applications
of fractional differential equations we refer the monographs [10, 18]. But the most
commonly used definitions are based on the integration with singular kernel and
which are nonlocal: Riemann-Liouville derivative and Caputo derivative. Moreover
for this type of derivative useful product rule and chain rule are not applicable.
But in 2014 Khalil et. al [9] introduced a new fractional derivative called the
conformable derivative which is closely similar to classical derivative.
The oscillation of fractional differential equations as a new research field has re-

ceived significant attention and some interesting results have already been obtained.
We refer to [2, 3, 4, 5, 6, 14, 22, 24] and the references quoted therein.
The oscillation theory of impulsive differential equations, which provide a natural

description of observed evolution processes, are regarded as important mathemat-
ical tools for the better understanding of several real world problems in applied
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sciences. For further details and applications one can refer the monographs [1, 12]
and reference cited therein.
In [13], Q.L. Li and W.S. Cheng considered the following interval oscillation

criteria for second order forced delay differential equation under impulses effects of
the form

(p(t)x′(t))
′
+ q(t)x(t− τ) +

n∑
i=1

qi(t)Φαi(x(t− τ)) = f(t), t 6= tk

x(t+k ) = akx(tk), x′(t+k ) = bkx
′(tk), k = 1, 2, · · ·

where 0 ≤ t0 < t1 < · · · < tk < · · · , lim
k→∞

tk = ∞, p, q, qi, f ∈ PLC[t0,∞). By

using the Riccati technique, some interesting oscillation results were obtained.
In the last decades, interval oscillation of impulsive differential equations was

arousing the interest of many researchers, see [7, 8, 11, 15, 16, 19, 20, 21, 23, 25] and
the references cited therein. Most of the existing literature concentrated on interval
oscillation criteria for case of without delay and only very few papers appeared for
case of with delay. As far as author knowledge, it seems that there has been no
paper dealing with interval oscillation criteria for impulsive conformable fractional
differential equations.
Motivated by this gap, we propose to initiate the following model of the form

Tα (r(t)g (Tαx(t))) + q(t)x(t− ρ) +
n∑
i=1

qi(t)fi(x(t− ρ)) = f(t), t 6= tk

x(t+k ) = akx(tk), Tα(x(t+k )) = bkTα(x(tk)), k = 1, 2, · · · ,


(1)

where Tα denotes the conformable fractional derivative of order 0 < α ≤ 1.
In the sequel, we assume that the following hypotheses (H) hold:

(H1) r(t) ∈ Cα([t0,∞), (0,∞)), q(t), qi(t), f(t) ∈ PLC([t0,∞),R), i = 1, 2, · · · , n,
where PLC represents the class of functions which are piecewise continu-
ous in t with discontinuities of first kind only at t = tk, k = 1, 2, · · · ,
and left continuous at t = tk, ak, bk are real-valued sequences satisfying
ak > −1, ak ≤ bk, k = 1, 2, · · · , t − ρ < t, lim

t→∞
t − ρ = ∞, 0 < t0 < t1 <

· · · < tk < · · · , lim
k→∞

tk =∞.

(H2) fi, g ∈ C(R,R) are convex in [0,∞) with xfi(x) > 0 and fi(x)
x ≥ εi > 0 for

x 6= 0, i = 1, 2, · · · , n, xg(x) > 0, g(x) ≤ ηx for x 6= 0, g−1 ∈ C(R,R) are
continuous functions with xg−1(x) > 0 for x 6= 0 and there exist positive
constant ζ such that g−1(xy) ≤ ζg−1(x)g−1(y) for xy 6= 0 and∫ ∞

t0

sα−1g−1
(

1

r(s)

)
ds =∞.

(H3) For any T ≥ 0 there exists intervals [c1, d1] and [c2, d2] contained in [T,∞)
such that c1 < d1 ≤ d1 + ρ ≤ c2 < d2, cj , dj /∈ {tk}, j = 1, 2, k = 1, 2, · · ·
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and r(t) > 0, q(t) ≥ 0, qi(t) ≥ 0, i = 1, 2, · · · , n for t ∈ [c1−ρ, d1]∪[c2−ρ, d2]
and f(t) has different signs in [c1 − ρ, d1] and [c2 − ρ, d2], for instance, let
f(t) ≤ 0 for t ∈ [c1 − ρ, d1] and f(t) ≥ 0 for t ∈ [c2 − ρ, d2].
Denote

J(s) := max {j : t0 < tj < s} , rj := max {r(t) : t ∈ [cj , dj ]} , j = 1, 2

Jp(cj , dj) = {p ∈ Cα[cj , dj ], p(t) 6= 0, p(cj) = p(dj) = 0, j = 1, 2} .

For two constants c, d /∈ {tk} with c < d and a function ϕ ∈ C([c, d],R), we
define an operator Φ : C([c, d],R)→ R by

Φdc [ϕ] =

{
0, J(c) = J(d)

ϕ(tJ(c)+1)τ(c) +
∑J(d)
k=J(c)+2 ϕ(ti)σ(ti), J(c) < J(d),

where

τ(c) = t1−αI(c)+1

aJ(c)+1 − bJ(c)+1
aJ(c)+1(t

α
J(c1)+1

− cα1 )

and

σ(t) = t1−αj

aj − bj
aj(tαj − tαj−1)

.

This paper is organized as follows: In Section 2, we present some definitions and
results that will be needed in the sequel. The main results are given in Section 3.
In Section 4, some examples is considered to illustrate the main results.

2. Preliminaries

In this section, we recall some definitions and results which will be used in our
main results.

Definition 1. A solution of equation (1) is called oscillatory if it has arbitrarily
large zeros, otherwise it is called non-oscillatory. Equation (1) is called oscillatory
if all its solutions are oscillatory.

We use the following definition introduced by R.R. Khalil et al. [9].

Definition 2. Given f : [0,∞) → R. Then the conformable fractional derivative
of f of order α is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, α ∈ (0, 1].

If f is α-differentiable in some (0, a), a > 0 and lim
t→0+

f (α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).
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Definition 3. Iaα(f)(t) = Ia1 (tα−1f) =
∫ t
a

f(x)

x1−α
dx, where the integral is the usual

Riemann improper integral, and α ∈ (0, 1).

Conformable fractional derivative has the following properties :

Theorem 4. Let α ∈ (0, 1] and f, g be α- differentiable at a point t > 0. Then

(i) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.
(ii) Tα(tp) = ptp−α, for all p ∈ R.

(iii) Tα(λ) = 0, for all constant functions f(t) = λ.
(iv) Tα(fg) = fTα(g) + gTα(f).

(v) Tα

(
f
g

)
=
gTα(f)− fTα(g)

g2
.

(vi) If f is differentiable, then Tα(f)(t) = t1−α
df

dt
(t).

3. Main Results

In this section, we established some new interval oscillation criteria for the equa-
tion (1) by using Riccati transformation.

Theorem 5. Assume that conditions (H1)− (H3) hold, furthermore for any T ≥ 0
there exist cj , dj satisfying with T ≤ c1 < d1, T ≤ c2 < d2 and p(t) ∈ Jp(c1, d1)
such that∫ dj

cj

[
(p′(t))2t2−2αηr(t) + w(t)p2(t)(1− α)t−α

]
dt−

∫ tJ(cj)+1

cj

Q(t)p2(t)M j
J(cj)

(t)dt

−
J(dj)−1∑
k=J(cj)+1

∫ tk+1

tk

Q(t)p2(t)M j
J(cj)

(t)dt−
∫ dj

tJ(dj)

Q(t)p2(t)M j
J(dj)

(t)dt ≤ Λ(p, cj , dj)

(2)

where Q(t) = q(t) +
n∑
i=1

εiqi(t), Λ(p, cj , dj) = 0 for J(cj) = J(dj) and

Λ(p, cj , dj) = rj

{
p2(tJ(cj)+1)t

1−α
J(cj)+1

aJ(cj)+1 − bJ(cj)+1
aJ(cj)+1(t

α
J(cj)+1

− cαj )

+

J(dj)∑
k=J(cj)+2

p2(tk)t1−αk

ak − bk
ak(tαk − tαk−1)

}
for J(cj) < J(dj), j = 1, 2

M j
k(t) =


ρα

ραak + bk(tα − tαk )

(t− ρ)α − (tk − ρ)α

tαk − (tk − ρ)α
, t ∈ (tk, tk + ρ)

(t− ρ)α − tαk
tα − tαk

, t ∈ [tk + ρ, tk+1),
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then every solution of problem (1) is oscillatory.

Proof. Assume to the contrary that x(t) is a non-oscillatory solution of (1). Without
loss of generality we may assume that x(t) is an eventually positive solution of (1).
Then there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. Therefore it follows from
(1) that

Tα [r(t)g(Tα(x(t)))] = f(t)− q(t)x(t− ρ)−
n∑
i=1

qi(t)fi(x(t− ρ)) for t ∈ [t1,∞).

Thus Tα [r(t)g(Tα(x(t)))] ≥ 0 or Tα [r(t)g(Tα(x(t)))] < 0, t ≥ t1 for some t1 ≥ t0.
We now claim that

Tα [r(t)g(Tα(x(t)))] ≥ 0 for t ≥ t1. (3)

Suppose not, then Tα [r(t)g(Tα(x(t)))] < 0 and there exists t2 ∈ [t1,∞) such that
Tα [r(t2)g(Tα(x(t2)))] < 0. Since r(t)g(Tα(x(t))) is strictly decreasing on [t1,∞).
It is clear that

r(t)g(Tα(x(t))) < r(t2)g(Tα(x(t2))) := −µ
where µ > 0 is a constant for t ∈ [t2,∞), we have

r(t)g(Tα(x(t))) < −µ

Tα(x(t)) < g−1
(
−µ
r(t)

)
Tα(x(t)) ≤ −ζ1g−1

(
1

r(t)

)
, where ζ1 = ζg−1(µ) for t ∈ [t2,∞).

Integrating the above inequality from t2 to t, we have

x(t) ≤ x(t2)− ζ1
∫ t

t2

sα−1g−1
(

1

r(s)

)
ds.

Letting t→∞, we get lim
t→+∞

x(t) = −∞ which contradiction proves that (3) holds.

Define the Riccati transformation

w(t) :=
r(t)g(Tα(x(t)))

x(t)
.

It follows from (1) that w(t) satisfies

Tα(w(t)) ≤ f(t)

x(t)
−
[
q(t) +

n∑
i=1

εiqi(t)

]
x(t− ρ)

x(t)
− w2(t)

ηr(t)
.

By the assumption, we can choose c1, d1 ≥ t0 such that r(t) > 0, q(t) ≥ 0 and
qi(t) ≥ 0 for t ∈ [c1− ρ, d1], i = 1, 2, · · · , n and f(t) ≤ 0 for t ∈ [c1− ρ, d1] from (1)
we can easily to see that

t1−αw′(t) ≤ −w
2(t)

ηr(t)
−Q(t)

x(t− ρ)

x(t)
. (4)
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For t = tk, k = 1, 2, · · · , one has

w(t+k ) =
r(t+k )g(Tα(x(t+k )))

x(t+k )
≤ bk
ak
w(tk).

At first, we consider the case in which J(c1) < J(d1). In this case, all the impulsive
moments in [c1, d1] are tJ(c1)+1, tJ(c1)+2, · · · , tJ(d1). Choose an p(t) ∈ Jp(c1, d1)
and multiplying by p2(t) on both sides on (4), integrating it from c1 to d1, we obtain∫ tJ(c1)+1

c1

p2(t)t1−αw′(t)dt+

∫ tJ(c1)+2

tJ(c1)+1

p2(t)t1−αw′(t)dt

+ · · ·+
∫ d1

tJ(d1)

p2(t)t1−αw′(t)dt

≤ −
∫ tJ(c1)+1

c1

p2(t)
w2(t)

ηr(t)
dt−

∫ tJ(c1)+2

tJ(c1)+1

p2(t)
w2(t)

ηr(t)
dt− · · · −

∫ d1

tJ(d1)

p2(t)
w2(t)

ηr(t)
dt

−
∫ tJ(c1)+1

c1

p2(t)Q(t)
x(t− ρ)

x(t)
dt−

∫ tJ(c1)+1+ρ

tJ(c1)+1

p2(t)Q(t)
x(t− ρ)

x(t)
dt

−
∫ tJ(c1)+2

tJ(c1)+1+ρ

p2(t)Q(t)
x(t− ρ)

x(t)
dt− · · · −

∫ tJ(d1)

tJ(c1)−1+ρ

p2(t)Q(t)
x(t− ρ)

x(t)
dt

−
∫ d1

tJ(d1)

p2(t)Q(t)
x(t− ρ)

x(t)
dt.

Using the integration by parts on the left-hand side, and noting that the condition
p(c1) = p(d1) = 0, we get

J(d1)∑
k=J(c1)+1

p2(tk)t1−αk

[
w(tk)− w(t+k )

]
≤
∫ d1

c1

[
p′(t)t1−α

√
ηr(t)− p(t)w(t)√

ηr(t)

]2
dt

−
∫ tJ(c1)+1

c1

p2(t)Q(t)
x(t− ρ)

x(t)
dt

−
J(d1)−1∑
k=J(c1)+1

[∫ tk+ρ

tk

p2(t)Q(t)
x(t− ρ)

x(t)
dt+

∫ tk+1

tk+ρ

p2(t)Q(t)
x(t− ρ)

x(t)
dt

]

−
∫ d1

tJ(d1)

p2(t)Q(t)
x(t− ρ)

x(t)
dt+

∫ d1

c1

t2−2αηr(t)(p′(t))2dt

+

∫ d1

c1

(1− α)t−αp2(t)w(t)dt. (5)

There are several cases to consider to estimate x(t−ρ)
x(t) .

Case 1: For t ∈ (tk, tk+1] ⊂ [c1, d1]. If t ∈ (tk, tk+1] ⊂ [c1, d1], since tk+1 − tk > ρ,
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we consider two sub cases:
Case 1.1: If t ∈ [tk + ρ, tk+1], then t− ρ ∈ [tk, tk+1− ρ] and there are no impulsive
moments in (t− ρ, t), then for any t ∈ [tk + ρ, tk+1] one has

x(t)− x(t+k ) = Tα(x(ξ))

(
tα − tαk
α

)
, ξ ∈ (tk, t).

Since r(t)g(Tα(x(t))) is non-increasing

x(t) ≥ Tα(x(ξ))

(
tα − tαk
α

)
>
r(t)g(Tα(x(t)))

r(ξ)

(
tα − tαk
α

)
.

From the fact that r(t) is nondecreasing, we get

r(t)g(Tα(x(t)))

x(t)
<

αr(ξ)

tα − tαk
<

αr(t)

tα − tαk
.

We obtain
Tα(x(t))

x(t)
<

α

tα − tαk
.

Integrating it from t− ρ to t, we have
x(t− ρ)

x(t)
>

(t− ρ)α − tαk
tα − tαk

.

Case 1.2: If t ∈ (tk, tk + ρ) then t − ρ ∈ (tk − ρ, tk) and there is an impulsive
moment tk in (t− ρ, t). Similar to Case 1.1, we obtain

x(t)− x(tk − ρ) = Tα(x(ξ1))

(
tα − (tk − ρ)α

α

)
, ξ1 ∈ (tk − ρ, tk]

or
Tα(x(t))

x(t)
<

α

tα − (tk − ρ)α
.

Integrating it from t− ρ to t, we get
x(t− ρ)

x(tk)
>

(t− ρ)α − (tk − ρ)α

tαk − (tk − ρ)α
> 0, t ∈ (tk, tk + ρ). (6)

For any t ∈ (tk, tk + ρ), we have

x(t)− x(t+k ) < Tα(x(t+k ))

(
tα − tαk
α

)
, ξ2 ∈ (tk, t).

Using the impulsive conditions in equation (1), we get

x(t)− akx(tk) < bkTα(x(tk))

(
tα − tαk
α

)
x(t)

x(tk)
< bk

Tα(x(tk))

x(tk)

(
tα − tαk
α

)
+ ak.
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Using Tα(x(tk))
x(tk)

< 1
ρ , we obtain

x(t)

x(tk)
< ak +

bk
ρ

(
tα − tαk
α

)
.

That is,
x(tk)

x(t)
>

ρα

ραak + bk(tα − tαk )
. (7)

From (6) and (7), we get

x(t− ρ)

x(t)
>

ρα

ραak + bk(tα − tαk )

(t− ρ)α − (tk − ρ)α

tαk − (tk − ρ)α
≥ 0.

Case 2: If t ∈ [c1, tJ(c1)+1], we consider three sub cases:
Case 2.1: If tJ(c1) > c1−ρ and t ∈ [tJ(c1)+ρ, tJ(c1)+1] then t−ρ ∈ [tJ(c1), tJ(c1)+1−
ρ] and there are no impulsive moments in (t − ρ, t). Making a similar analysis of
the Case 1.1 and using Mean-value Theorem on (tJ(c1), tJ(c1)+1], we get

x(t− ρ)

x(t)
>

(t− ρ)α − tαJ(c1)
tα − tαJ(c1)

> 0, t ∈ [tJ(c1) + ρ, tJ(c1)+1].

Case 2.2: If tJ(c1) > c1 − ρ and t ∈ [c1, tJ(c1) + ρ), then t− ρ ∈ [c1 − ρ, tJ(c1)) and
there is an impulsive moments tJ(c1) in (t− ρ, t). Making a similar analysis of the
Case 1.2, we have

x(t− ρ)

x(t)
>

ρα

ραaJ(c1) + bJ(c1)(t
α − tαJ(c1))

(t− ρ)α − (tJ(c1) − ρ)α

tαJ(c1) − (tJ(c1) − ρ)α

≥ 0, t ∈ (c1, tJ(c1) + ρ).

Case 2.3: If tJ(c1) < c1−ρ, then for any t ∈ [c1, tJ(c1)+1], t−ρ ∈ [c1−ρ, tJ(c1)+1−ρ]
and there are no impulsive moments in (t− ρ, t). Making a similar analysis of the
Case 1.1, we obtain

x(t− ρ)

x(t)
>

(t− ρ)α − tαJ(c1)
tα − tαJ(c1)

> 0, t ∈ [c1, tJ(c1)+1].

Case 3: For t ∈ (tJ(d1), d1], there are three sub cases:
Case 3.1: If tJ(d1) + ρ < d1 and t ∈ [tJ(d1) + ρ, d1] then t− ρ ∈ [tJ(d1), d1 − ρ] and
there are no impulsive moments in (t− ρ, t). Making a similar analysis of the Case
2.1, we have

x(t− ρ)

x(t)
>

(t− ρ)α − tαJ(d1)
tα − tαJ(d1)

> 0, t ∈ [tJ(d1) + ρ, d1].

Case 3.2: If tJ(d1)+ρ < d1 and t ∈ [tJ(d1), tJ(d1)+ρ), then t−ρ ∈ [tJ(d1)−ρ, tJ(d1))
and there is an impulsive moments tJ(d1) in (t− ρ, t). Making a similar analysis of
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the Case 2.2, we obtain

x(t− ρ)

x(t)
>

ρα

ραaJ(d1) + bJ(d1)(t
α − tαJ(d1))

(t− ρ)α − (tJ(d1) − ρ)α

tαJ(d1) − (tJ(d1) − ρ)α
≥ 0.

Case 3.3: If tJ(d1) + ρ ≥ d1, then for any t ∈ (tJ(d1), d1], we get t − ρ ∈ (tJ(d1) −
ρ, d1 − ρ] and there is an impulsive moments tJ(d1) in (t − ρ, t). Making a similar
analysis of the Case 3.2, we get

x(t− ρ)

x(t)
>

ρα

ραaJ(d1) + bJ(d1)(t
α − tαJ(d1))

(t− ρ)α − (tJ(d1) − ρ)α

tαJ(d1) − (tJ(d1) − ρ)α
≥ 0.

Combining all these cases, we have

x(t− ρ)

x(t)
>


M1
J(c1)

(t) for t ∈ [c1, tJ(c1)+1]

M1
k (t) for t ∈ (tk, tk+1], k = J(c1) + 1, · · · , J(d1)− 1

M1
J(d1)

(t) for t ∈ (tJ(d1)+1, d1].

Hence by (5), we have

J(d1)∑
k=J(c1)+1

p2(tk)t1−αk

[
w(tk)− w(t+k )

]
≤
∫ tJ(c1)+1

c1

[
(p′(t))2t2−2αηr(t)− p2(t)Q(t)M1

J(c1)
(t)
]
dt

+

J(d1)−1∑
k=J(c1)+1

∫ tk+1

tk

[
(p′(t))2t2−2αηr(t)− p2(t)Q(t)M1

k (t)
]
dt

+

∫ d1

tJ(d1)

[
(p′(t))2t2−2αηr(t)− p2(t)Q(t)M1

J(d1)
(t)
]
dt

+

∫ d1

c1

(1− α)t−αp2(t)w(t)dt (8)

Since r(t)g(Tα(x(t))) is non-increasing in (c1, tJ(c1)+1]. Thus

x(t) > x(t)− x(c1) = Tα(x(ξ3))

(
tα − cα1
α

)
≥ r(t)g(Tα(x(t)))

r(ξ3)

(
tα − cα1
α

)
, ξ3 ∈ (c1, t)

Letting t→ t−J(c1)+1, it follows that

w(tJ(c1)+1) <
r1

tαJ(c1)+1 − c
α
1

. (9)
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Similarly we can prove that on (tk−1, tk], k = J(c1) + 2, · · · , J(d1),

w(tk) <
r1

tαk − tαk−1
. (10)

Hence (9) and (10), we have

J(d1)∑
k=J(c1)+1

p2(tk)t1−αk w(tk)

[
ak − bk
ak

]

≥ r1

[
p2(tJ(c1)+1)t

1−α
J(c1)+1

aJ(c1)+1 − bJ(c1)+1
aJ(c1)+1

1

tαJ(c1)+1 − c
α
1

+

J(d1)∑
k=J(c1)+2

p2(tk)t1−αk

ak − bk
ak

1

tαk − tαk−1

]
≥ Λ(p, c1, d1).

Thus we have

J(d1)∑
k=J(c1)+1

p2(tk)t1−αk w(tk)

[
ak − bk
ak

]
≥ Λ(p, c1, d1).

Therefore (8), we get∫ tJ(c1)+1

c1

[
(p′(t))2t2−2αηr(t)− p2(t)Q(t)M1

J(c1)
(t)
]
dt

+

J(d1)−1∑
k=J(c1)+1

∫ tk+1

tk

[
(p′(t))2t2−2αηr(t)− p2(t)Q(t)M1

k (t)
]
dt

+

∫ d1

tJ(d1)

[
(p′(t))2t2−2αηr(t)− p2(t)Q(t)M1

J(d1)
(t)
]
dt+

∫ d1

c1

(1− α)t−αp2(t)w(t)dt

> Λ(p, c1, d1)

which contradicts (2).
If J(c1) = J(d1) then Λ(p, c1, d1) = 0 and there are no impulsive moments in

[c1, d1]. Similar to the proof of (8), we obtain∫ d1

c1

[
(p′(t))2t2−2αηr(t)− p2(t)Q(t)M1

J(c1)
(t) + p2(t)(1− α)t−αw(t)

]
dt > 0

This again contradicts our assumption. Finally if x(t) is eventually negative, we can
consider [c2, d2] and reach similar contradiction. The proof of theorem is complete.

�
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Following Kong [11] and Philos [17], we introduce a class of functions: Let D =
{(t, s) : t0 ≤ s ≤ t}, then a function H1, H2 ∈ C(D,R) is said to belong to the class
H if

(H4) H1(t, t) = H2(t, t) = 0, H1(t, s) > 0, H2(t, s) > 0 for t > s and
(H5) H1 and H2 have partial derivatives ∂H∂t and

∂H
∂s on D such that

∂H1

∂t
= h1(t, s)H1(t, s),

∂H2

∂s
= −h2(t, s)H2(t, s),

where h1, h2 ∈ Lloc(D,R).

Ω1,j =

∫ tJ(cj)+1

cj

H1(t, cj)Q(t)M j
J(cj)

(t)dt+

J(λj)−1∑
k=J(ci)+1

∫ tk+1

tk

H1(t, cj)Q(t)M j
k(t)dt

+

∫ λj

tJ(λj)

H1(t, cj)Q(t)M j
J(dj)

(t)dt

+

∫ λj

cj

H1(t, cj)

[
w2(t)

ηr(t)
− w(t)t1−αh1(t, cj)− (1− α)t−αw(t)

]
dt

and

Ω2,j =

∫ tJ(λj)+1

λj

H2(dj , t)Q(t)M j
J(λj)

(t)dt+

J(dj)−1∑
k=J(λj)+1

∫ tk+1

tk

H2(dj , t)Q(t)M j
k(t)dt

+

∫ dj

tJ(dj)

H2(dj , t)Q(t)M j
J(dj)

(t)dt

+

∫ dj

λj

H2(dj , t)

[
w2(t)

ηr(t)
+ w(t)t1−αh2(dj , t)− (1− α)t−αw(t)

]
dt.

Theorem 6. Assume that conditions (H1)− (H3) hold, furthermore for any T ≥ 0
there exist cj , dj satisfying (H4), (H5) with c1 < λ1 < d1 ≤ c2 < λ2 < d2. If there
exists H1, H2 ∈ H such that

1

H1(λ1, c1)
Ω1,1 +

1

H2(d1, λ1)
Ω2,1 > Λ(H1, H2; cj , dj), (11)

where

Λ(H1, H2; cj , dj) = −
{

rj
H1(λj , cj)

Φλjcj [H1(., cj)] +
rj

H2(dj , λj)
Φ
dj
λj

[H2(dj , .)]

}
,

then every solution of problem (1) is oscillatory.

Proof. Suppose to the contrary that there is a non-oscillatory solution x(t) of prob-
lem (1). Notice whether or not there are impulsive moments in [c1, λ1] and [λ1, d1],
we should consider the following cases J(c1) < J(λ1) < J(d1), J(c1) = J(λ1) <
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J(d1), J(c1) < J(λ1) = J(d1) and J(c1) = J(λ1) = J(d1). Moreover, the impulsive
moments of x(t−ρ) having following two cases, tJ(λs)+ρ > λs and tJ(λs)+ρ ≤ λs.
Consider the case J(c1) < J(λ1) < J(d1), with tJ(λs) + ρ > λs. For this case, the
impulsive moments are tJ(λ1)+1, tJ(λ1)+2, · · · , tJ(d1) in [λ1, d1].
Multiplying by H1(t, c1) on both sides on (4), integrating it from c1 to λ1, we

obtain∫ λ1

c1

H1(t, c1)t
1−αw′(t)dt ≤ −

∫ λ1

c1

H1(t, c1)Q(t)
x(t− ρ)

x(t)
dt−

∫ λ1

c1

H1(t, c1)
w2(t)

ηr(t)
dt.

Applying integration by parts formula on the L.H.S, we get,
J(λ1)∑

k=J(c1)+1

H1(tk, c1)t
1−α
k

[
w(tk)− w(t+k )

]
−H1(λ1, c1)λ

1−α
1 w(λ1)

−
∫ λ1

c1

w(t)
[
h1(t, c1)H1(t, c1)t

1−α +H1(t, c1)(1− α)t−α
]
dt

≤ −
∫ λ1

c1

H1(t, c1)Q(t)
x(t− ρ)

x(t)
dt−

∫ λ1

c1

w2(t)

ηr(t)
H1(t, c1)dt (12)

By Theorem 5, we divide the interval [c1, λ1] into several and calculating the func-

tion
x(t− ρ)

x(t)
, we obtain∫ λ1

c1

H1(t, c1)Q(t)
x(t− ρ)

x(t)
dt ≥

∫ tJ(c1)+1

c1

H1(t, c1)Q(t)M1
J(c1)

(t)dt

+

J(λ1)−1∑
k=J(c1)+1

∫ tk+1

tk

H1(t, c1)Q(t)M1
k(t)dt

+

∫ λ1

tJ(λ1)

H1(t, c1)Q(t)M1
J(λ1)

(t)dt. (13)

From (12) and (13), we obtain∫ tJ(c1)+1

c1

H1(t, c1)Q(t)M1
J(c1)

(t)dt+

J(λ1)−1∑
k=J(c1)+1

∫ tk+1

tk

H1(t, c1)Q(t)M1
k(t)dt

+

∫ λ1

tJ(λ1)

H1(t, c1)Q(t)M1
J(λ1)

(t)dt

+

∫ λ1

c1

H1(t, c1)w(t)

[
w(t)

ηr(t)
− t1−αh1(t, c1)− (1− α)t−α

]
dt

≤ −
J(λ1)∑

k=J(c1)+1

H1(tk, c1)t
1−α
k

[
ak − bk
ak

]
w(tk)−H1(λ1, c1)λ

1−α
1 w(λ1). (14)
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On the other hand multiplying both sides of (4) by H2(d1, t) and integrating from
λ1 to d1 and using the similar of above, we get∫ tJ(λ1)+1

λ1

H2(d1, t)Q(t)M1
J(λ1)

(t)dt+

J(d1)−1∑
k=J(λ1)+1

∫ tk+1

tk

H2(d1, tk)Q(t)M1
k(t)dt

+

∫ d1

tJ(d1)

H2(d1, t)Q(t)M1
J(d1)

(t)dt

+

∫ d1

λ1

H2(d1, t)w(t)

[
w(t)

ηr(t)
+ t1−αh2(d1, t)− (1− α)t−α

]
dt

≤ −
J(d1)∑

k=J(λ1)+1

H2(d1, tk)t1−αk

[
ak − bk
ak

]
w(tk) +H2(d1, λ1)λ

1−α
1 w(λ1). (15)

Dividing (14) and (15) by H1(λ1, c1) and H2(d1, λ1) respectively and adding them,
we get

1

H1(λ1, c1)
Ω1,1 +

1

H2(d1, λ1)
Ω2,1

≤ −
[

1

H1(λ1, c1)

J(λ1)∑
k=J(c1)+1

H1(tk, c1)t
1−α
k

[
ak − bk
ak

]
w(tk)

+
1

H2(d1, λ1)

J(d1)∑
k=J(λ1)+1

H2(d1, tk)t1−αk

[
ak − bk
ak

]
w(tk)

]
. (16)

Using the method as in (9) , we obtain

−
J(λ1)∑

k=J(c1)+1

H1(tk, c1)t
1−α
k

[
ak − bk
ak

]
w(tk) ≤ −r1Φλ1c1 [H1(·, c1)]

−
J(d1)∑

k=J(λ1)+1

H2(d1, tk)t1−αk

[
ak − bk
ak

]
w(tk) ≤ −r1Φd1λ1 [H2(d1, ·)].

 (17)

From (16) and (17), we obtain

1

H1(λ1, c1)
Ω1,1 +

1

H2(d1, λ1)
Ω2,1

≤ −
{

r1
H1(λ1, c1)

Φλ1c1 [H1(·, c1)] +
r1

H2(d1, λ1)
Φd1λ1 [H2(d1, ·)]

}
≤ Λ(H1, H2; c1, d1) (18)

which is contradiction to the condition (11). Suppose x(t) < 0, we take interval
[c2, d2] for equation (1). The proof is similar and hence omitted. The proof is
complete. �
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4. Examples

In this section, we present some examples to illustrate our results established in
Section 3.

Example 7. Consider the following impulsive conformable fractional differential
equations

T 1
2

(
2
(
T 1
2
(x(t))

))
+mx(t− π

8 ) + 2mx(t− π
8 ) = f(t), t 6= 2kπ ± π

4 ,

x(t+k ) = 1
3x(tk), T 1

2
(x(t+k )) = 2

3T 1
2
(x(tk)), k = 1, 2, · · · .

}
(19)

Here α = 1
2 , ak = 1

3 , bk = 2
3 , r(t) = 2, q(t) = m, q1(t) = 2m, g(x) = x, f1(x) = x,

η = 1, f(t) = cos t − 2t sin t + 3m sin(t − π
8 ) and m is a positive constant. Also

ρ = π
8 , tk+1 − tk = π/2 > π/8. For any T > 0, we choose k large enough such that

T < c1 = 4kπ − π
2 < d1 = 4kπ and c2 = 4kπ + π

8 < d2 = 4kπ + π
2 , k = 1, 2, · · · .

Then there is an impulsive movement tk = 4kπ − π
4 in [c1, d1] and an impulsive

moment tk+1 = 4kπ + π
4 in [c2, d2]. For ε1 = 1, we have Q(t) = 3m, and we take

p(t) = sin 8t ∈ Jp(cj , dj), j = 1, 2, tJ(c1) = 4kπ − 7π
4 , tJ(d1) = 4kπ − π

4 , then by
using simple calculation, the left side of equation (2) is the following :∫ dj

cj

[
(p′(t))2t2−2αηr(t) + w(t)p2(t)(1− α)t−α

]
dt−

∫ tJ(cj)+1

cj

Q(t)p2(t)M j
J(cj)

(t)dt

−
J(dj)−1∑
k=J(cj)+1

∫ tk+1

tk

Q(t)p2(t)M j
J(cj)

(t)dt−
∫ dj

tJ(dj)

Q(t)p2(t)M j
J(dj)

(t)dt

≤
∫ 4kπ

4kπ−π2

(
2t(8 cos 8t)2 +

t
1
2 cos t

sin t
t−

1
2 sin2(8t)

)
dt

− 3m

{∫ 4kπ−π4

4kπ−π2
sin2(8t)

(t− π
8

) 1
2 −

(
4kπ − 7π

4

) 1
2

t
1
2 −

(
4kπ − 7π

4

) 1
2

 dt

+

∫ 4kπ−π8

4kπ−π4
sin2(8t)

 π
16

π
48 + 2

3

(
t
1
2 −

(
4kπ − π

4

) 1
2

)


×
( (

t− π
8

) 1
2 −

(
4kπ − π

4 −
π
8

) 1
2(

4kπ − π
4

) 1
2 −

(
4kπ − π

4 −
π
8

) 1
2

)

+

∫ 4kπ

4kπ−π8
sin2(8t)

(t− π
8

) 1
2 −

(
4kπ − π

4

) 1
2

t
1
2 −

(
4kπ − π

4

) 1
2

 dt

}
' 1182.67634−m(1.94487).
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for m large enough. On the other hand, note that J(c1) = k − 1 , J(d1) = k,
r1 = 2, we have Λ(p, ci, di) = 0. Therefore the condition (2) is satisfied in [c1, d1].
Similarly, we can prove that for t ∈ [c2, d2]. Hence by Theorem 5, every solution of
(19) is oscillatory. In fact x(t) = sin t is one such solution of problem (19).

Example 8. Consider the following impulsive conformable fractional differential
equations

T 1
3

(
3
(
T 1
3
(x(t))

))
+ m

2 x(t− π
8 ) +mx(t− π

8 ) = f(t), t 6= 2kπ ± π
4 ,

x(t+k ) = 4x(tk), T 1
3
(x(t+k )) = 5T 1

3
(x(tk)), k = 1, 2, · · · .

}
(20)

Here α = 1
3 , ak = 4, bk = 5, r(t) = 3, q(t) = m

2 , q1(t) = m, g(x) = 2x, f1(x) = x,
η = 2, f(t) = −4t

1
3 sin t − 6t

4
3 cos t + 3m

2 cos(t − π
8 ) and m is a positive constant.

Also ρ = π
8 , tk+1 − tk = π/2 > π/8. For any T > 0, we choose k large enough such

that T < c1 = 4kπ− π
2 < d1 = 4kπ and c2 = 4kπ+ π

8 < d2 = 4kπ+ π
2 , k = 1, 2, · · · .

Then there is an impulsive movement tk = 4kπ − π
4 in [c1, d1] and an impulsive

moment tk+1 = 4kπ + π
4 in [c2, d2]. For ε1 = 1, we have Q(t) = 3m

2 , and we take
p(t) = sin 16t ∈ Jp(cj , dj), j = 1, 2, tJ(c1) = 4kπ − 7π

4 , tJ(d1) = 4kπ − π
4 , then by

using simple calculation, the left side of Equation (2) is the following :∫ dj

cj

[
(p′(t))2t2−2αηr(t) + w(t)p2(t)(1− α)t−α

]
dt−

∫ tJ(cj)+1

cj

Q(t)p2(t)M j
J(cj)

(t)dt

−
J(dj)−1∑
k=J(cj)+1

∫ tk+1

tk

Q(t)p2(t)M j
J(cj)

(t)dt−
∫ dj

tJ(dj)

Q(t)p2(t)M j
J(dj)

(t)dt

≤
∫ 4kπ

4kπ−π2

(
6t

4
3 (16 cos 16t)2 − 4t

1
3 sin t

cos t
sin2(16t)

)
dt

− 3m

2

{∫ 4kπ−π4

4kπ−π2
sin2(16t)

(t− π
8

) 1
3 −

(
4kπ − 7π

4

) 1
3

t
1
3 −

(
4kπ − 7π

4

) 1
3

 dt

+

∫ 4kπ−π8

4kπ−π4
sin2(16t)

 π
24

2π
6 + 5

(
t
1
3 −

(
4kπ − π

4

) 1
3

)
 (

t− π
8

) 1
3 −

(
4kπ − π

4 −
π
8

) 1
3(

4kπ − π
4

) 1
3 −

(
4kπ − π

4 −
π
8

) 1
3


+

∫ 4kπ

4kπ−π8
sin2(16t)

(t− π
8

) 1
3 −

(
4kπ − π

4

) 1
3

t
1
3 −

(
4kπ − π

4

) 1
3

 dt

}
' 32367.58257−m(0.66712).

for m large enough. On the other hand, note that J(c1) = k − 1 , J(d1) = k,
r1 = 3, we have Λ(p, ci, di) = 0. Therefore the condition (2) is satisfied in [c1, d1].
Similarly, we can prove that for t ∈ [c2, d2]. Hence by Theorem 5, every solution of
(20) is oscillatory. In fact x(t) = cos t is one such solution of problems(20).
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Remark 9. In this paper, some new oscillation results are obtained, generalizing
the results of [13] to impulsive conformable fractional differential equations. The
improvement factors impulses, delay and forcing term that affect the interval qual-
itative properties of solution in the sequence of subintervals in [0,∞), were taken
into account together. Our newly obtained results in this paper have improved and
extended some of the results already prevailing in the existing literature.
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RELATIVE SUBCOPURE-INJECTIVE MODULES

YUSUF ALAGÖZ

Abstract. In this paper, copure-injective modules are examined from an al-
ternative perspective. For two modules A and B, A is called B-subcopure-
injective if for every copure monomorphism f : B → C and homomorphism
g : B → A, there exists a homomorphism h : C → A such that hf = g. The
class CPI−1(A) ={B : A is B-subcopure-injective} is called the subcopure-
injectivity domain of A. We obtain characterizations of copure-injective mod-
ules, right CDS rings and right V-rings with the help of subcopure-injectivity
domains. Since subcopure-injectivity domains clearly contains all copure-
injective modules, studying the notion of modules which are subcopure-injective
only with respect to the class of copure-injective modules is reasonable. We
refer to these modules as sc-indigent. We studied the properties of subcopure-
injectivity domains and of sc-indigent modules and investigated these modules
over some certain rings.

1. Introduction and preliminaries

Throughout this paper, R will denote an associative ring with identity, and
modules will be unital right R-modules, unless otherwise stated. As usual, the
category of right R-modules is denoted by Mod−R.
Some new studies in module theory have focused on to approach to the injectivity

from the point of relative notions. The injectivity domain In−1(A) for a module
A, is the class of all modules B such that A is B-injective [1]. Given A and B
modules, A is called B-subinjective if for every monomorphism f : B → C and
homomorphism g : B → A, there exists a homomorphism h : C → A such that
hf = g. Instead of using the injectivity domain, in latest articles, authors have
proposed to consider an alternative sight so-called subinjectivity domain In−1(A),
contains of modules B such that A is B-subinjective ([2]). It is clear that injectivity
of A is equivalent to that In−1(A) = Mod−R. If B is injective, then A is exactly B-
subinjective. So by [2, Proposition 2.3], the class of injective modules is the smallest

Received by the editors: October 31, 2019; Accepted: April 17, 2020.
2010 Mathematics Subject Classification. Primary 16D10, 13C11; Secondary 18G25, 16D80.
Key words and phrases. Copure-injective modules, subcopure-injectivity domains, sc-indigent

modules, CDS rings.
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possible subinjectivity domain. The recent studies of non-injective modules have
been made to figure out the notion of modules that are subinjective only with
respect to the class of injective modules. This kind of non-injective modules are
called indigent in [2]. So far, it is not known whether the existence of indigent
modules for an arbitrary ring, but a positive answer is known for some rings, such
as Noetherian rings ([3, Proposition 3.4]).
A submodule A of a right R-module B is said to be pure if for every left R-module

K the natural induced map i⊗ 1K : A⊗K → B ⊗K is a monomorphism. Recall
that a module A is said to be B-pure-injective if for every pure monomorphism
f : C → B and every homomorphism g : C → A, there exists a homomorphism
h : B → A such that hf = g. A module A is said to be pure-injective if it is B-pure-
injective for every module B. As an analogue to the injectivity profile of [12], the
pure-injectivity profile of a ring is introduced in [5]. The pure-injectivity domain
PI−1(A) of a moduleA, consists of those modulesB such thatA isB-pure-injective.
Inspired by the notion of subinjectivity, the notion of pure-subinjectivity introduced
in [11]. A module A is called B-pure-subinjective if for every pure monomorphism
f : B → C and homomorphism g : B → A, there exists a homomorphism h : C → A
such that hf = g. The pure-subinjectivity domain of a module A is the class
PI−1(A) = {B : A is B-pure-subinjective}. If B is pure-injective, then A is exactly
B-pure-subinjective. So by [11, Theorem 2.4], for a module A, the class PI−1(A)
must contain the class of pure-injective modules at least. In [11], modules whose
pure-subinjectivity domain consists of only pure-injective modules is called pure-
subinjectively poor (ps-poor for short).
AnR-moduleA is said to be finitely embedded (or cofinitely generated) if E(A) =

E(S1)⊕ E(S2)⊕ ...⊕ E(Sn), where S1, S2, ..., Sn are simple R-modules (see [16]).
If an R-module A is isomorphic to

∏
{E(Sα)|Sαis a simple right R-module, α ∈ I},

where I is some index set, then A is called a cofree module (see [6]). A right R-
module A is said to be cofinitely related if there is an exact sequence 0→ A→ B →
C → 0 of R-modules with B finitely embedded, cofree and C finitely embedded
(see [6]). As a dual notion of purity, by using cofinitely related modules, the notion
of copurity is introduced in [7]. An exact sequence of R-modules 0 → A → B →
C → 0 is called a copure exact sequence if every cofinitely related right R-module
is injective relative to this sequence.
Following idea on pure-injectivity profile of [5], in [15], the copure-injectivity

profile of a ring is introduced. For two modules A and B, A is called B-copure-
injective if for every copure monomorphism f : C → B and a homomorphism
g : C → A, there exists a homomorphism h : B → A such that hf = g. A
is copure-injective if it is injective with respect to every copure exact sequences
(see [8]). The copure-injectivity domain CPI−1(A) of A is the class of modules
B such that A is B-copure-injective. In [15], copure-injectively-poor (shortly copi-
poor) modules introduced as modules with minimal copure-injectivity domain and
studied properties of copi-poor modules. The existence of copi-poor modules are
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studied and investigated over some certain rings, but we do not know whether
copi-poor modules exist over arbitrary rings (see [15]).
Inspired by the notion of pure-subinjectivity from [11], in this paper we initiate

the study of an alternative perspective on the analysis of the copure-injectivity of
a module, as we introduce the notions of relative subcopure-injectivity and assign
to every module its subcopure-injectivity domain. The aim of this paper is to
investigate the viability of obtaining valuable information about a ring R from the
perspective of subcopure-injectivity domain.
In Section 2, relative subcopure-injectivity and subcopure-injectivity domains

of modules introduced. We investigate the properties of the notion of subcopure-
injectivity and we compare subcopure-injectivity domains with (copure-)injectivity
domains. We obtain characterizations of copure-injective modules, right CDS rings
and right V-rings with the help of subcopure-injectivity domains.
In section 3, we introduced and studied the concept of cc-injective modules in

terms of relative subcopure-injective modules. We give examples of cc-injective
modules and compare cc-injective modules with cotorsion modules in Example 19.
We prove that R is a right V-ring if and only if every cc-injective right R-module is
injective. We investigate when the class of B-subcopure-injective modules is closed
under extensions.
An R-module is copure-injective if and only if its subcopure-injectivity domain

consists ofMod−R. Since subcopure-injectivity domains clearly contain all copure-
injective modules, it is reasonable to investigate modules which are subcopure-
injective only with respect to the class of copure-injective modules. It is thus to
keep in line with [11], we refer to these modules as sc-indigent. In Section 4 of this
paper, we studied and investigated sc-indigent modules over some certain rings. We
compared sc-indigent modules with indigent modules and ps-poor modules.

2. Relative subcopure-injective modules

In this section, we study the B-subcopure-injective modules for a module B and
examine its fundamental properties.

Definition 1. For two modules A and B, A is called B-subcopure-injective if for
every copure monomorphism f : B → C and homomorphism g : B → A, there
exists a homomorphism h : C → A such that hf = g. The class CPI−1(A) ={B :
A is B-subcopure-injective} is called the subcopure-injectivity domain of A.

Hiremath proved in [8, Theorem 7] that every module can be embedded as a
copure submodule in a direct product of cofinitely related modules. By [8, Proposi-
tion 3], every cofinitely related module is copure-injective and every direct product
of copure-injective modules is copure-injective. This gives the below result that we
use frequently in the sequel.

Lemma 2. For every module A, there exists a copure monomorphism α : A → C
with C is copure-injective.
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Our next Lemma gives a characterization of the B-subcopure-injective modules
for a module B.

Lemma 3. Let A and B be two modules. The following conditions are equivalent:
(1) A is B-subcopure-injective.
(2) For every homomorphism g : B → A and every copure monomorphism

α : B → C with C copure-injective, there exists h : C → A such that
hα = g.

(3) For every homomorphism g : B → A and every copure monomorphism
α : B → C with C direct product of cofinitely related modules, there exists
h : C → A such that hα = g.

(4) For every g : B → A there exist a copure monomorphism α : B → C with
C copure-injective and h : C → A such that hα = g.

Proof. (1)⇒ (2) Obvious. (2)⇒ (3) It follows from [8, Proposition 3].
(3) ⇒ (4) Let g : B → A be a homomorphism. By Lemma 2, there exists a

copure monomorphism α : B → C with C copure-injective, whence C is a direct
summand of F where F =

∏
i∈I Fi with each Fi cofinitely related by [8, Theorem

8]. So iα : B → F is copure monomorphism where i : C → F . By (3), there exists
h : F → A such that (hi)α = h(iα) = g ,where iα : B → F .

(4) ⇒ (1) Let g : B → A be a homomorphism and ᾱ : B → D a copure
monomorphism. By (4), there exists a monic copure map α : B → C with C
copure-injective and a homomorphism h : C → A such that hα = g. So by the
copure-injectivity of C, there exists a homomorphism h̄ : D → C such that α = h̄ᾱ.
Then hh̄ : D → A and hh̄ᾱ = hα = g. Hence, A is B-subcopure-injective. �
Proposition 4. Let A be an R-module. The following conditions are equivalent:

(1) A is copure-injective.
(2) CPI−1(A) = Mod−R.
(3) A is A-subcopure-injective.

Proof. (1) ⇒ (2) For any R-module B and any copure-injective module A, every
copure monomorphism α : B → D and a homomorphism g : B → A, there exists
a homomorphism h : D → A such that hα = g. Hence, A is B-subcopure-injective
and so B ∈ CPI−1(A). Consequently, CPI−1(A) = Mod−R.

(2)⇒ (3) Obvious.
(3) ⇒ (1) Assume that A is A-subcopure-injective. For any copure monomor-

phism α : A → B with B copure-injective and 1A : A → A, there exists a homo-
morphism g : B → A such that gα = 1A. Thus α splits. This means that A is
copure-injective. �
The next result asserts that subcopure-injectivity domain CPI−1(A) of A how

small can be. It should contain the copure-injective modules at least.

Proposition 5.
⋂
A∈Mod−R CPI

−1(A) = {C ∈Mod−R | C is copure-injective}.
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Proof. Suppose that each R-module is B-subcopure-injective for an R-module B.
Then, by Proposition 4, B is copure-injective. Conversely, let A be any R-module
and B a copure-injective module. Let g : B → A be a homomorphism and α : B →
C a copure monomorphism. Since B is copure-injective, the splitting map α : B →
C gives the homomorphism β : C → B such that βα = 1B . So β(αg) = (βα)g = g.
Hence B ∈ CPI−1(A) for any R-module A. �

Clearly, CPI−1(A) contains In−1(A) for any module A. The following example
shows that equality need not hold.

Example 6. Let G = Z(n) be a cyclic group of order n. Since G is finite it
is cofinitely related and so it is copure-injective Z-module [8, Proposition 3]. So
G ∈ CPI−1(G) by Proposition 4. But G /∈ In−1(G), otherwise G would be an
injective Z-module.

It is natural to investigate conditions to get the coincidence of the injectivity, and
subcopure-injectivity domains, either for a certain class of modules or all the mod-
ules in Mod− R. We start by proving that, for all modules, subcopure-injectivity
domains are the same as their subinjectivity domains over a right V-ring. Recall
that a ring R is a right V-ring if and only if all exact sequences in Mod − R are
copure if and only if all copure-injective modules are injective (see [8, Proposition
5]).

Corollary 7. Let R be a ring. The following conditions are equivalent:

(1) R is a right V-ring.
(2) CPI−1(A) = In−1(A) for each R-module A.
(3) CPI−1(A) ⊆ In−1(A) for each R-module A.

Proof. (1)⇒ (2) It is easy since for any module A, over a right V-ring its extension
is copure.
(2)⇒ (3) It is obvious.
(3)⇒ (1) For a copure injective rightR-moduleA, by Proposition 4, A ∈ CPI−1(A).
By (3), A ∈ In−1(A). This says that A is injective, and so R is a right V-ring by
[8, Proposition 5].

�

Proposition 8. Let A be a module. The following conditions are equivalent:

(1) A is copure-injective.
(2) CPI−1(A) is closed under copure submodules.
(3) CPI−1(A) = CPI−1(A).
(4) CPI−1(A) ⊆ CPI−1(A).

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) are clear since CPI−1(A) =

CPI−1(A) = Mod−R.
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(2) ⇒ (1) For a copure-injective extension C of A, C ∈ CPI−1(A), so A is also
in CPI−1(A) by (2). Then by Proposition 4, A is copure-injective.

(3)⇒ (4) It is clear.
(4)⇒ (1) For a copure-injective extension C of A, C ∈ CPI−1(A). This implies

that A is C-copure-injective i.e. C = A ⊕ B for some submodule B of A, whence
A is copure-injective. �

The rings for which every right R-module is copure-injective are called right
CDS, [8, Corollary 18]. As a result of Proposition 8, we get the following Corollary.

Corollary 9. Let R be a ring. The following conditions are equivalent:
(1) R is right CDS.
(2) CPI−1(A) = CPI−1(A) for each R-module A.
(3) CPI−1(A) ⊆ CPI−1(A) for each R-module A.

Proof. (2)⇒ (3) It is clear.
(1) ⇒ (2) Let A be an R-module. Since R is a right CDS ring, A is copure-

injective. The rest follows from Proposition 8.
(3)⇒ (1) For any right R-module A, CPI−1(A) ⊆ CPI−1(A) by the hypothesis.

Thus every right R-module A is copure-injective by Proposition 8, whence R is right
CDS. �

Remark 10. If A is R-subcopure-injective, for a ring R and a module A, then
CPI−1(A) andMod−R need not be equal. For example if R is copure-injective ring
that is not CDS, then for every module A, A is R-subcopure-injective by Proposition
5. But by the definition of right CDS ring, we can find a module A that is not
copure-injective.

Proposition 11. Let A be a module. The following conditions are equivalent:
(1) A is injective.
(2) CPI−1(A) = In−1(A).
(3) CPI−1(A) ⊆ In−1(A).

Proof. (1)⇒ (2)⇒ (3) It is clear.
(3)⇒ (1) By the copure-injectivity of E(A), E(A) ∈ CPI−1(A). By (3), E(A) ∈

In−1(A), and hence A is injective. �

Corollary 12. Let R be a ring. The following conditions are equivalent:
(1) R is semisimple.
(2) CPI−1(A) = In−1(A) for each R-module A.
(3) CPI−1(A) ⊆ In−1(A) for each R-module A.

Proof. (2)⇒ (3) It is clear.
(1)⇒ (2) Let A be an R-module. Since R is semisimple, A is injective. The rest

follows from Proposition 11.
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(3) ⇒ (1) For any right R-module A, CPI−1(A) ⊆ In−1(A) by the hypothesis.
Thus every right R-module A is injective by Proposition 11, whence R is semisimple.

�

In general, factors of copure-injective modules need not be copure-injective (see,
[8, Remark 24]). But if R is a Dedekind domain, every copure factor of copure-
injective module is copure-injective by [8, Corollary 28]. Hence, by the following
Proposition, CPI−1(A) is closed under copure homomorphic images over Dedekind
domains for a module A.

Proposition 13. CPI−1(A) is closed under copure quotients for any module A
if and only if every copure homomorphic image of a copure-injective module is
copure-injective.

Proof. Let B be a copure submodule of copure-injective module A. Since A ∈
CPI−1(AB ), by the hypothesis A

B ∈ CPI
−1(AB ), and so A

B is copure-injective. Con-
versely, let A be a module and C a copure submodule of B with B ∈ CPI−1(A).
By Lemma 2, there exists a copure monomorphism α : B → D with D copure-
injective. Let f : BC → A be any homomorphism. Consider the following pushout
diagram:

where π : B → B
C is the natural epimorphism. By commutativity of the following

diagram:

and the pushout diagram property, there exists a map φ : E → D
C such that φπ′ =

π′′ and φα′ = α′′. Since A is B-subcopure-injective, there exists a homomorphism
ϕ : D → A such that ϕα = fπ. Then, ϕ(C) = ϕα(C) = fπ(C) = f(0) = 0. Hence,
Ker(φπ′) ⊆ Kerϕ, and so there exists ψ : DC → A such that ψπ′′ = ϕ. For every
x ∈ B, ψ(x+ C) = ψπ′′(x) = ϕ(x) = fπ(x) = f(x+ C). Thus ψ extends f . Then
by the hypothesis, DC is copure-injective, so by Lemma 3, BC ∈ CPI

−1(A). �
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Proposition 14. CPI−1(
∏
i∈I Ai) =

⋂
i∈I CPI

−1(Ai) for any set of modules
{Ai}i∈I .

Proof. Let B ∈ CPI−1(
∏
i∈I Ai), i ∈ I and f : B → Ai be a homomorphism.

Then there exists a homomorphism g : C →
∏
i∈I Ai such that gα = iAi

f , where
α : B → C is the monic map with C copure-injective and iAi

: Ai →
∏
i∈I Ai is

the inclusion map. Let πAi
:
∏
i∈I Ai → Ai denote the natural projection. Since

πAi
gα = πAi

iAi
f = f , f is extended to πAi

g. Therefore B ∈ CPI−1(Ai) for any
i ∈ I. Conversely , let B ∈ CPI−1(Ai) for all i ∈ I and f : B →

∏
i∈I Ai. Hence for

each i ∈ I, there exists gi : C → Ai with giα = πAi
f . Now define g : C →

∏
i∈I Ai

by x 7→ gi(x). Since gα = f , g extends f . Thus, B ∈ CPI−1(
∏
i∈I Ai). �

Corollary 15. Let B be a module. Then B-subcopure-injective modules are closed
under direct summands and finite direct sums.

Proof. Let A be a module with decomposition A = ⊕ni=1Ai. By Proposition 14,
B ∈ CPI−1(A) if and only if B ∈

⋂n
i=1 CPI

−1(Ai). Now the result follows. �

The following shows that Proposition 14 do not hold for infinite direct sums.

Example 16. Let Ki = Zpi and G =
⊕

i∈N Zpi where pi is a prime integer for
all i ∈ N. Since every Zpi is pure-injective, every Zpi is copure-injective by [8,
Proposition 9]. So G ∈ CPI−1(Zpi) for all i ∈ N. But G /∈ CPI−1(G) since G is
not copure-injective by [8, Examples-(ii)].

Proposition 17. If B ∈ CPI−1(A), then every direct summand of B is in CPI−1(A).

Proof. Suppose C is a direct summand ofB, and let f : C → A be a homomorphism.
By Lemma 2, there exist copure monomorphisms i : B → D and j : C → E with
D and E copure-injective. Consider the following diagram:

where iC : C → B the inclusion map. Since D is copure-injective, there exists
h : E → D such that hj = iiC . Let πC : B → C be the projection map. Since
A is B-subcopure-injective, there exists a homomorphism g : D → A such that
gi = fπC . Then, (gh)j = g(hj) = giiC = fπCiC = f , and so by Lemma 3, A is
C-subcopure-injective. �
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3. cc-injective modules

In this section, we introduced and studied the concept of cc-injective modules in
terms of relative subcopure-injective modules.
A module C is said to be co-absolutely co-pure (c.c. in short) if every exact

sequence of modules ending with C is copure, equivalently Ext1R(C,A) = 0 for
every co-finitely related module A. Clearly every projective module is c.c. But the
converse need not be true, for instance, the additive group Q is a c.c. Z-module
but Q is not projective as a Z-module (see, [9, Example on page 290]).

Definition 18. A right module A is called cc-injective if Ext1R(B,A) = 0 for any
c.c. module B.

Recall that a module A is called cotorsion if Ext1R(B,A) = 0 for every flat
module B. A module A is called linearly compact if any family of cosets having
the finite intersection property has a nonempty intersection. A commutative ring
is called classical if the injective hull E(S) of all simple modules S are linearly
compact (see [17, §3]).

Example 19. (1) By definition, any cofinitely related module is cc-injective.
(2) By [9, Remark 15], c.c. modules need not be flat in general. By [9, Corollary
14] c.c. modules are flat over a commutative ring. So, in this case every cotorsion
module is cc-injective.
(3) By [9, Remark 12], flat modules need not be c.c. Over a commutative classical
ring flat modules are c.c. by [9, Proposition 11]. So, in this case every cc-injective
module is cotorsion.

Remark 20. Over a commutative ring R every simple R-module is cotorsion by
[13, Lemma 2.14]. So by Example 19(2), every simple R-module is cc-injective.

Lemma 21. Every copure-injective module is cc-injective.

Proof. Let A be a copure-injective module and B a c.c. module. By [9, Propo-
sition 5], there exists a copure exact sequence 0 → D → P → B → 0 with
P projective. If we apply Hom(−, A) to this sequence, we have Hom(P,A) →
Hom(D,A) → Ext1R(B,A) → Ext1R(P,A) = 0. Since A is copure-injective,
Hom(P,A) → Hom(D,A) is epic, and so Ext1R(B,A) = 0 for any c.c. module
B. Hence A is cc-injective. �

Proposition 22. For a ring R, the following conditions are equivalent:

(1) R is a right V-ring.
(2) Every copure-injective right R-module is injective.
(3) Every cc-injective right R-module is injective.

Proof. (1)⇔ (2) It follows by [8, Proposition 5].
(3)⇒ (2) It immediately from Lemma 21.
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(1) ⇒ (3) Let A be a cc-injective R-module and B any R-module. Since R is
right V , B is a c.c. module by [9, Proposition 4]. Thus Ext1R(B,A) = 0 for any
R-module B, and so A is injective. �

Proposition 23. Let B be an R-module and α : B → C a copure monomorphism
with C copure-injective. If C/im(α) is c.c., then every cc-injective module is B-
subcopure-injective.

Proof. Let A be a cc-injective module and C/im(α) a c.c. module. Applying
functor Hom(−, A) to the exact sequence 0 → B → C → C/im(α) → 0, we
have Hom(C,A) → Hom(B,A) → Ext1R(C/im(α), A). Since C/im(α) is c.c.,
Ext1R(C/im(α), A) = 0 and so Hom(C,A) → Hom(B,A) is epic. Hence A is
B-subcopure-injective by Lemma 3. �

Theorem 24. Let A and B be two modules. Consider the following conditions:

(1) A is B-subcopure-injective.
(2) For every homomorphism g : B → A, there exist a monomorphism α :

B → C with C copure-injective and a homomorphism h : C → A such that
hα = g.

(3) For every homomorphism g : B → A, there exist a monomorphism α : B →
C with C cc-injective and a homomorphism h : C → A such that hα = g.

(4) For every homomorphism g : B → A and for any extension α : B ↪→ C
with C/B is c.c., there exists h : C → A such that hα = g.

Then (1) ⇔ (2) ⇒ (3) ⇒ (4). Also, if D/im(α) is c.c. for a copure monomor-
phism α : B → D with D copure-injective, then (4)⇒ (1).

Proof. (1)⇒ (2) Obvious by Lemma 3.
(2) ⇒ (3) It follows from Lemma 21, since every copure-injective module is

cc-injective.
(2) ⇒ (1) Let α : B → C be a copure-monomorphism and g : B → A a

homomorphism. By (2), exists a monomorphism β : B → D with D copure-
injective and a homomorphism h : D → A such that hβ = g. Since D is copure-
injective, there exists a homomorphism f : C → D such that fα = β. Hence,
(hf)α = hβ = g, and so (1) follows.

(3) ⇒ (4) Let C be an extension of B with C/B is c.c. and g : B → A a
homomorphism. So, 0 → B

α−→ C → C/B → 0 is copure exact. Then consider the
exact sequence with E cc-injective:

0→ HomR(C/B,E)→ HomR(C,E)
α∗−−→ HomR(B,E)→ Ext1R(C/B,E) = 0

Since, α∗ is surjective, by (3), there exists a monomorphism f : B → E and a
homomorphism h : E → A such that hf = g. Since α∗ is surjective, there exists a
homomorphism β : C → E such that βα = f . Hence, h(βα) = hf = g, and so (4)
follows.
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(4)⇒ (1) : Let α : B → D be a copure monomorphism with D copure-injective
and D/im(α) is c.c. So, by (4), for any homomorphism g : B → A there exists
h : D → A such that hα = g. Thus A is B-subcopure-injective by Lemma 3. �
Now we investigate when the class of B-subcopure-injective modules is closed

under extensions.

Proposition 25. Let B be an R-module and α : B → C a copure monomorphism
with C copure-injective. The class of B-subcopure-injective modules is closed under
extensions if and only if for every exact sequence 0 → A′ → A → C → 0 with A′

B-subcopure-injective, A is B-subcopure-injective.

Proof. Let 0 → A′ → A → C → 0 be an exact sequence with A′ B-subcopure-
injective. Since C is copure-injective, it is B-subcopure-injective. By the hypothe-
sis, A is B-subcopure-injective. Conversely, let 0→ A′ → A

π−→ A′′ → 0 be an exact
sequence with A′ and A′′ B-subcopure-injective. Then by Lemma 3, for every map
g : B → A, there exists a map h : C → A′′ such that πg = hα where α : B → C
is the copure monomorphism with C copure-injective. If we consider the pullback
diagram:

there exists a homomorphism γ : B → D such that fγ = g and βγ = α. By hy-
pothesis, D is B-subcopure-injective, so by Lemma 3, there exists a homomorphism
h′ : C → D such that h′α = γ. Thus, fh′α = fγ = g and so, A is B-subcopure-
injective by Lemma 3. �
A ring R is said to be right co-noetherian if every homomorphic image of a fi-

nitely embedded R-module is finitely embedded, equivalently for each simple right
R-module S the injective hull E(S) is Artinian (see [10, Theorem]). Over a commu-
tative noetherian ring, the injective hull of each simple right R-module is Artinian
by [14, Exercise 4.17]. Thus every commutative Noetherian ring is co-noetherian. In
the following, for an ideal I, we deal with an R-module structure of an R/I-module.

Proposition 26. Let R be a right co-noetherian ring and f : R → S a ring
epimorphism. If A is cc-injective S-module, then A is cc-injective R-module.

Proof. Let A be a cc-injective S-module. Since f : R → S is a ring epimorphism,
S ∼= R/I for some ideal I of R and so A can be considered as R/I-module. Let C
be an extension of A by a c.c. module F as R-modules. Since F is c.c., the exact
sequence 0 → A → C → F → 0 is copure. Then A ∩ CI = AI for each right ideal
I by [7, proposition 16]. Since A is an R/I-module, A ∩ CI = AI = 0, and so
A+CI
CI

∼= A. Thus we have the following commutative diagram.
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Since C
A ⊗

R
I
∼= C

A+CI is c.c. as an R/I-module, so the second exact sequence splits
and so does the first. Hence Ext1R(F,A) = 0, and A is cc-injective R-module. �

4. sc-indigent modules

Indigent (resp. ps-poor) modules were introduced and some results about them
were obtained in [2] (resp. [11]). Proposition 5 says that subcopure-injectivity
domain of any module A contains all copure-injective modules, so studying the
notion of modules which are subcopure-injective only with respect to the class of
copure-injective modules is reasonable. It is thus to keep in line with [2], we refer
to these modules as subcopure-injectively indigent (sc-indigent for short). In this
section, sc-indigent modules investigated over certain rings and compared these
modules with indigent modules and ps-poor modules.

Definition 27. A module A is said to be subcopure-injectively indigent (sc-indigent
for short), if CPI−1(A) consists of only copure-injective modules.

Remark 28. Let A be a module with decomposition A = B⊕C. If B is sc-indigent,
then so is A, by Proposition 14.

Proposition 29. For a ring R, the following conditions are equivalent:
(1) R is right CDS.
(2) Every R-module is sc-indigent.
(3) There exists a copure-injective sc-indigent R-module.
(4) 0 is an sc-indigent R-module.
(5) R has an sc-indigent module and every sc-indigent R-module is copure-

injective.
(6) R has an sc-indigent module and every factor of an sc-indigent R-module

is sc-indigent.
(7) R has an sc-indigent module and every summand of an sc-indigent R-

module is sc-indigent.

Proof. The implications (1)⇒ (2) and (1)⇒ (5) are clear since every R-module is
copure-injective.
The implications (2)⇒ (4) and (2)⇒ (6)⇒ (7) are clear.
(4)⇒ (2) It immediately from Remark 28.
(2)⇒ (3) The copure-injective extension C of any module A is sc-indigent.
(3) ⇒ (1) Let C be a copure-injective sc-indigent module and A a module. Since
C is A-subcopure-injective, A is copure-injective. Then R is a right CDS ring.
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(5) ⇒ (1) By (5), there exist an sc-indigent module B. Then A ⊕ B is also sc-
indigent for any module A by Remark 28. So A is copure-injective by (5). Also A
is copure-injective. Thus R is a right CDS ring.
(7) ⇒ (2) Let A be an R-module. Then A ⊕ B is an sc-indigent module for some
sc-indigent module B. Hence, A is sc-indigent by the hypothesis. �
Remark 30. Over a commutative uniserial ring R, every R-module is sc-indigent
since such rings are CDS by [4, Theorem 10.4].

Remark 31. An sc-indigent module need not be indigent. Consider the ring R =
Z/p2Z, for some prime integer p. R is an artinian principal ideal ring. Hence it is
a CDS-ring by [4, Theorem 10.4]. So every R-module is sc-indigent. Since Z/p2Z is
injective Z/p2Z-module, In−1(Z/p2Z) = Mod−R. But since R is not a semisimple
ring, Z/p2Z is not an indigent R-module.

Remark 32. An indigent module need not be sc-indigent. Let R be a commutative
Noetherian ring which is not CDS and Γ a complete set of representatives of finitely
presented right R-modules. Set F :=

⊕
Si∈Γ Si. Thus the character module F

+

of F is a pure-injective indigent R-module by [3, Proposition 3.4]. Since R is
commutative, F+ is copure-injective by [8, Proposition 9], and so CPI−1(F+) =

Mod−R. But since R is not a CDS-ring, F+ is not an sc-indigent R-module.

Proposition 33. Indigent modules and sc-indigent modules coincide over a right
V-ring R.

Proof. Let R be a right V-ring. Then by Corollary 7, CPI−1(A) = In−1(A) for any
R-module A. Hence A is indigent if and only if A is sc-indigent by [8, Proposition
5]. �
Proposition 34. A module A is sc-indigent if and only if

∏
i∈I Ai is sc-indigent

where Ai = A for all i ∈ I.
Proof. Clear by Proposition 14. �
By Remark 28 and Proposition 34, sc-indigent rings are characterized as follows:

Corollary 35. For a ring R, the following are equivalent:
(1) RR is sc-indigent.
(2) Any direct product of copies of R is sc-indigent.
(3) Every free R-module is sc-indigent.
(4) There exists a cyclic projective sc-indigent R-module.

Theorem 36. Let R be a ring, B an R-module and A an R/I-module for any ideal
I of R. If B/BI ∈ CPI−1(AR/I), then B ∈ CPI−1(AR).

Proof. Let B/BI ∈ CPI−1(AR/I), and C be a copure extension of B and g :
B → A an R-homomorphism. Since copure short exact sequences of R-modules
form a proper class by [7, Proposition 8], B/BI can be embedded in C/CI as
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a copure submodule via f : B/BI → C/CI defined by f(b + BI) = b + CI for
any b ∈ B. Since BI ⊆ Ker(g), there exists a homomorphism h : B/BI → A
such that hπB = g where πB : B → B/BI. By assumption, there exists an
R/I-homomorphism h̄ : C/CI → A such that h̄f = g. Since h is also an R-
homomorphism and h̄πCiB = g where πC : C → C/CI and iB : B → C is the
inclusion. Thus B ∈ CPI−1(AR). �

Corollary 37. Let I be an ideal of a ring R and A and B be R/I-modules. Then
the following statements hold:

(1) B ∈ CPI−1(AR) if and only if B ∈ CPI−1(AR/I).
(2) A is a copure-injective R-module if and only if A is a copure-injective R/I-

module.
(3) A is an sc-indigent R-module if and only if A is an sc-indigent R/I-module.

Proof. (1) If AR is B-subcopure-injective, then clearly it is a B-subcopure-injective
R/I-module. The converse follows by Theorem 36.

(2) By using Proposition 4, (2) follows from (1).
(3) Clear by (1) and (2). �

Recall [11] that a module A is called ps-poor if pure-subinjectivity domain of
A consists of only pure-injective modules. Over a commutative classical ring R,
by [8, Corollary 17], pure-injective modules and copure-injective modules coincide.
Hence, the following result is immediate.

Proposition 38. Let R be a commutative classical ring. Then an R-module A is
sc-indigent if and only if A is ps-poor.

Since by [16, Theorem 2] and [17, Proposition 4.1], every commutative (co-
)noetherian ring is classical, we have the following result.

Corollary 39. Let R be a commutative (co-)noetherian ring. Then an R-module
A is sc-indigent if and only if A is ps-poor.

Remark 40. ps-poor abelian groups and sc-indigent abelian groups coincide by
Corollary 39.

Corollary 41. Every finitely embedded Z-module is copure-injective but not sc-
indigent.

Proof. Let A be a finitely embedded Z-module. Then A is cofinitely related by [6,
Proposition 17]. So A is copure-injective by [8, Proposition 3]. Since Z is not a
CDS ring, by Proposition 29, A is not an sc-indigent module. �

Proposition 42. If a ring R has an sc-indigent cc-injective module B, then every
module with its copure injective extension has c.c cokernel is copure-injective.
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Proof. Let A be an R-module with the exact sequence 0 → A → C → C/A → 0,
where A → C is a copure extension of A with C is copure-injective. Consider
the sequence 0 → Hom(C/A,B) → Hom(C,B) → Hom(A,B) → Ext1(C/A,B).
Since C/A is c.c., Ext1(C/A,B) = 0. So by Lemma 3, A ∈ CPI−1(B), that is A is
copure-injective. �
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FOURIER-BESSEL TRANSFORMS OF DINI-LIPSCHITZ
FUNCTIONS ON LEBESGUE SPACES Lp,γ(Rn+)

ISMAIL EKINCIOGLU, ESRA KAYA, AND S. ELIFNUR EKINCIOGLU

Abstract. In this paper, we prove a generalization of Titchmarsh’s theorem
for the Laplace-Bessel differential operator in the space Lp,γ(Rn+) for functions
satisfying the (ψ, p)-Laplace-Bessel Lipschitz condition for 1 < p ≤ 2 and
γ > 0.

1. Introduction

Integral transforms and their inverse transforms are widely used to solve various
problems in calculus, fourier analysis, mechanics, mathematical physics, and com-
putational mathematics. Fourier transform is one of the most important integral
transforms. Since it was introducted by Fourier in the early 1880s, it has become
an important mathematical concept that is at the centre of the highly developed
branch of mathematics called Fourier Analysis. It has many application areas. The
Fourier transform of the kernel of singular integral operator is very important in
applications of singular integral operator theory. The properties of the Fourier
transform of the kernel give information about the existence of the solution of sin-
gular integral equations. Since singular integrals are convolution type operators,
their Fourier transforms are the product of the Fourier transforms of two functions.
As it is well known that if Lipschitz conditions are applied on a function f(x),

then these conditions greatly affect the absolute convergence of the Fourier-Bessel
series and behaviour of Fγf Fourier-Bessel transforms of f . In general, if f(x)
belongs to a certain function class, then the Lipschitz conditions have bearing as
to the dual space to which the Fourier coeffi cients and Fourier-Bessel transforms
of f(x) belong. Younis (see [12]) worked the same phenomena for the wider Dini
Lipschitz class for some classes of functions. Daher, El Quadih, Daher and El
Hamma proved an analog Younis (see [12, Theorem 2.5]) in for the Fourier-Bessel
transform for functions satisfies the Fourier-Bessel Dini Lipschitz condition in the
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Lebesgue space L2α,n (see [10]). El Hamma and Daher proved a generalization of
Titchmarsh’s theorem for the Bessel transform in the space L2,γ(Rn+) (see [1]) .
In this paper we prove a generalization of Titchmarsh’s theorem for the Laplace-

Bessel transform in the space Lp,γ(Rn+), where 1 < p ≤ 2 and γ > 0.

2. Preliminaries

Let Rn+ be the part of the Euclidean space Rn of points x = (x1, ..., xn), defined
by the inequality xn > 0. We write x = (x′, xn), x′ = (x1, . . . , xn−1) ∈ Rn−1+ . Sn+
denote the unit sphere on Rn+, which can be defined as Sn+ = {x ∈ Rn+ : |x| = 1}.
S+ = S(Rn+) be the space of functions which are the restrictions to Rn+ of the test
functions of the Schwartz that are even with respect to xn, decreasing suffi ciently
rapidly at infinity, together with all derivatives of the form

Dα
γ = Dα′

x′B
αn
n = Dα1

1 ...D
αn−1
n−1 B

αn
n =

∂α1

∂xα11
. . . ...

∂αn−1

∂x
αn−1
n−1

Bαnn ,

i.e., for all ϕ ∈ S+, sup
x∈Rn+

∣∣xβDα
γϕ
∣∣ <∞, where α = (α1, ..., αn) and β = (β1, ..., βn)

are multi-indexes, and xβ = x
β1
1 . . . x

βn
n and Bn =

∂2

∂x2n
+

γ

xn

∂

∂xn
is the Bessel

differential expansion. For γ ≥ 0, we introduce the Bessel normalized function of
the first kind jγ defined by

jγ(z) = Γ(γ + 1)

∞∑
n=0

(−1)n

n!Γ(n+ γ + 1)

(
z

2

)2n
, (1)

where Γ is the gamma-function (see [9]). Moreover, from (1) we see that

lim
z→0

j γ−1
2

(z)− 1

z2
6= 0

by consequence, there exist C > 0 and η > 0 satisfying

|z| ≤ η ⇒
∣∣∣j γ−1

2
(z)− 1

∣∣∣ ≥ C |z|2. (2)

The function u = j γ−1
2

(z) satisfies the differential equation

Bxnu(x, y) = Bynu(x, y)

with the initial conditions u(x, 0) = f(x) and uy(x, 0) = 0 is function infinitely
differentiable, even, and, moreover entire analytic.
The Fourier-Bessel transformation and its inverse on S+ are defined by

Fγf(x) =

∫
Rn
f(y) e−i(x

′y′)j γ−1
2

(xnyn) yγndy,

F−1γ f(x) = Cn,γFγf(−x′, xn),
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where (x′, y′) = x1y1+ . . .+xn−1yn−1, jγ , γ > 0, is the normalized Bessel function,
and

Cn,γ = (2π)n−12γ−1Γ2((γ + 1)/2),

(see [4, 9, 11]). This transform is associated to the Laplace-Bessel differential op-
erator

∆γ =

n∑
i=1

∂2

∂x2i
+

γ

xn

∂

∂xn
, γ > 0. (3)

The expression (3) is a hybrid of the Hankel transform.
For a fixed parameter γ > 0, let Lp,γ = Lp,γ(Rn+) be the space of measurable

functions with a finite norm

‖f‖Lp,γ =

(∫
Rn+
|f(x)|pxγndx

)1/p
, 1 ≤ p <∞.

The space of the essentially bounded measurable function on Rn+ is denoted by
L∞,γ(Rn+). For for f ∈ Lp,γ , I.A. Kipriyanov (for n = 1 B.M. Levitan [7, 8])
investigated the generalized convolution (∆γ-convolution)

(f ⊗ g)(x) =

∫
Rn+
f(y) T yg(x) yγndy,

associated with the Laplace-Bessel differential operator, where T y is the generalized
shift operator (∆γ-shift) defined by

T yf(x) = Cγ

∫ π

0

f
(
x′ − y′,

√
x2n − 2xnyn cos θ + y2n

)
sinγ−1 θdθ,

being Cγ = π−
1
2 Γ
(
γ+1
2

)
[Γ
(
γ
2

)
]−1 (see [5, 6, 7, 8]). We note that this convolution

satisfies the property (f ⊗ g)(x) = (g ⊗ f)(x) (see [2, 3]). The following relation
connect the generalized shift operator and the Fourier-Bessel transform, we have

Fγ [T yf(x)] = j γ−1
2

(xnyn)Fγ [f(x)]. (4)

Given 1 < p ≤ 2,
1

p
+

1

q
= 1 and f ∈ Lp,γ , we have the Hausdorff-Young inequality

‖Fγf‖q,γ ≤ Cq ‖f‖p,γ , (5)

where and Cq is a positive constant.

3. Fourier-Bessel Transforms of Dini-Lipschitz Functions

In this section we give the main result of this paper. We need first to define
(ψ, p)-Laplace Bessel Lipschitz class.

Definition 1. A function f ∈ Lp,γ(Rn+) is said to be in the (ψ, p)-Laplace Bessel
Lipschitz class, denoted by Lip(ψ, γ, p), if

‖T yf(x)− f(x)‖p,γ = O(ψ(y)) as y → 0,
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where ψ(x) is a continuous increasing function on Rn+, ψ(0) = 0, and ψ(xs) =
ψ(x)ψ(s) for all x, s ∈ Rn+.

Theorem 2. Let f(x) belong to Lip(ψ, γ, p). Then∫
|ξ|≥τ

|Fγf(ξ)|qξγndξ = O(ψ(τ−q)), as τ → +∞.

Proof. Let f ∈ Lip(ψ, γ, p). Then we have
‖T yf(x)− f(x)‖p,γ = O(ψ(y)) as y → 0.

Now we consider Fourier-Bessel transform of generalized shift operator. We get

Fγ [T yf(x)](ξ) =

∫
Rn+
T yf(x)j γ−1

2
(xnξn)xγndx

=

∫
Rn+
T y
[
j γ−1

2
(xnξn)

]
f(x)xγndx

=

∫
Rn+
j γ−1

2
(xnξn)j γ−1

2
(ynξn)f(x)xγndx

= j γ−1
2

(ynξn)

∫
R+n
f(x)j γ−1

2
(xnξn)xγndx

= j γ−1
2

(ynξn)Fγ(f)(ξ),

where T y(jp(
√
λx)) = jp(

√
λy)jp(

√
λx). From formulas (4) and (5), we obtain∫

Rn+
Fγ |T yf(x)− f(x)|qxγndx =

∫
Rn+
|FγT yf(x)− Fγf(x)|qxγndx

=

∫
Rn+
|j γ−1

2
(ξy)Fγf(ξ)− Fγf(ξ)|qξγndξ

=

∫
Rn+
|Fγf(ξ)[1− j γ−1

2
(ξy)]|qξγndξ

=

∫
Rn+
|1− j γ−1

2
(ξy)|q|Fγf(ξ)|qξγndξ

≤ Cq
∫
Rn+
|T yf(x)− f(x)|qξγndξ

≤ Cq‖T yf(x)− f(x)‖qp,γ .
From (2), we have∫

1
h≤|ξ|≤

2
h

|Fγf(ξ)|qξγndξ = Cq

∫
1
h≤|ξ|≤

2
h

|1− j γ−1
2

(ξh)|q|Fγf(ξ)|qξγndξ

≥ Cq|h|−1
∫
1
h≤|ξ|≤

2
h

|Fγf(ξ)|qξγndξ,
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0 < h ≤ 1. It follows from the above consideration that there exists a positive
constant C such that∫

1
h≤|ξ|≤

2
h

|Fγf(ξ)|qξγndξ ≤ Cψq(h) = Cψ(hq).

Therefore, we get ∫
τ≤|ξ|≤2τ

|Fγf(ξ)|qξγndξ ≤ Cψ(τ−q).

In fact, we have∫
τ≤|ξ|<∞

|Fγf(ξ)|qξγndξ =

∞∑
k=1

∫
2k−1τ≤|ξ|<2kτ

|Fγf(ξ)|qξγndξ

≤ Cqψ(τ−q) + Cqψ
(
(2τ)−q

)
+ Cqψ

(
(22τ)−q

)
+ . . .

≤ Cqψ(τ−q)
(
1 + ψ(2−q) + ψ2(2−q) + ψ3(2−q) + . . .

)
.

Thus, we can write ∫
τ≤|ξ|<∞

|Fγf(ξ)|qξγndξ ≤ C1ψ(τ−q),

where C1 = Cq (1− ψ(2−q))
−1 since 2−q < 1. Finally, we get∫

|ξ|≥τ
|Fγf(ξ)|qξγndξ = O(ψ(τ−q)) as τ →∞.

Thus, the proof of theorem is completed. �

We can give the following result which is used for many the theorem given above.
It is well known that

Fγ (Bαnn f) (x) = (−x2n)αnFγf(x), (6)

Fγ
(
D2αi
i f

)
(x) = (−x2i )αiFγf(x), i = 1, . . . , n− 1, (7)

Fγ (∆γf) (x) = −|x|2Fγf(x) and Fγ(f ⊗ g) = Fγf Fγg, (8)

Fγ

(
D2α′

x′ B
αn
n f

)
(x) = (−1)|α|x2αFγf(x) (9)

We can use the mathematical induction method for k = 1, we get

Fγ
(
∆γf

)
(x) = Cn,γ

∫
Rn+

∆γf(y)e−ix
′y′j γ−1

2
(xnyn)yγndy

= Cn,γ

∫
Rn+

( n∑
k=1

∂2f(y)

∂y2k
+

γ

yn

∂f(y)

∂yn

)
e−ix

′y′j γ−1
2

(xnyn)yγndy
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= Cn,γ

∫
Rn+

( n∑
k=1

∂2f(y)

∂y2k
e−ix

′y′j γ−1
2

(xnyn)yγndy

− Cn,γ
∫
Rn+

( n∑
k=1

γ

yn

∂f(y)

∂yn

)
e−ix

′y′j γ−1
2

(xnyn)yγndy = I1 + I2.

If we apply partial integration to the second term of I1 and I2, then we have

Fγ
(
∆γu

)
(x) = Cn,γ

∫
Rn+
f(y)e−ix

′y′
(
∆γj γ−1

2
(xnyn)

)
yγndy.

Here, if we use the following equality [8],∫ ∞
0

f(y)∆γj γ−1
2

(xy)yγdy = −|x|2
∫ ∞
0

f(y)j γ−1
2

(xy)yγdy

then we have

Fγ (∆γf) (x) = −|x|2Fγf(x).

Since f ∈ Lip(ψ, γ, p), it is clear that
||Fγ (∆γf) ||Lq,γ(|ξ|≥τ) ≤ Cn,γO(ψ(τ−q))

as τ → +∞.
There are many examples. Here is one of them and a simple method to produce

many more: f(x) = |x|
1
p for 1 < p < ∞, where f(0) = 0 is understood. These

functions are uniformly continuous on all of Rn+. If p = 2, f belongs to the Lipschitz
class at R+.
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WIJSMAN ASYMPTOTICAL I2-STATISTICALLY EQUIVALENT
DOUBLE SET SEQUENCES OF ORDER η

UǦUR ULUSU AND ESRA GÜLLE

Abstract. In this study, we present notions of Wijsman asymptotical I2-
statistically equivalence of order η, Wijsman asymptotical I2-Cesàro equiva-
lence of order η and Wijsman asymptotical strongly p−I2-Cesàro equivalence
of order η for double set sequences where 0 < η ≤ 1. Also, we investigate some
properties of these notions and some relationships between them.

1. Introduction

Pringshiem [1] introduced the notion of convergence for double sequences. Then,
Mursaleen and Edely [2] studied the notion of statistical convergence. After that,
Das et al. [3] studied the notion of I-convergence for double sequences. Recently,
Bhunia et al. [4], Çolak and Altın [5], Savaş [6] and Altın et al. [7] presented various
type of convergence of order α for double sequences.
Patterson [8] introduced the notion of asymptotical equivalence for double se-

quences. After that, the notions of asymptotical Cesàro equivalence, asymptotical
I-equivalence and asymptotical statistically equivalence for double sequences were
studied by Kavita et al. [9], Hazarika and Kumar [10] and Esi and Açıkgöz [11],
respectively.
To date, a variety of convergence types for set sequences have been studied by

several authors. In this study, the notion of Wijsman convergence which is one
of these types is handled (see, [12, 13, 14]). Several authors extended the notion
of Wijsman convergence to the new notions for double set sequences via using
the notions of statistical convergence, I-convergence and Cesàro summability (see,
[15, 16, 17, 18, 19, 20]).
The notions of asymptotical equivalence in Wijsman sense for double set se-

quences were presented by Nuray et al. [21]. Also, the notions of Wijsman asymp-
totical I2-statistically equivalence andWijsman asymptotical I2-Cesàro equivalence
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for double set sequences were introduced in [22] and [23], respectively. Lately, new
notions of asymptotical equivalence of order α for double set sequences were studied
by Gülle [24].
More study on the concepts of convergence or asymptotical equivalence for real

sequences or set sequences can be found in [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

2. Definitions and Notations

The fundamental definitions and notations required for this study are following.
(see, [1, 3, 8, 12, 13, 14, 21, 22, 23, 25]).
A double sequence (xij) is convergent to L if for ε > 0, there exists a number

Nε ∈ N such that |xij − L| < ε for i, j > Nε.
A family of sets I ⊆ 2N is said to be ideal if
1) ∅ ∈ I, 2) For E,F ∈ I, E ∪ F ∈ I, 3) For E ∈ I and F ⊆ E, F ∈ I.
An ideal I ⊆ 2N is said to be non trivial if N /∈ I and a non trivial ideal I ⊆ 2N

is said to be admissible if {j} ∈ I for j ∈ N.
A non trivial ideal I2 ⊆ 2N×N is said to be strongly admissible if {j} × N and

N× {j} belong to I2 for j ∈ N.
Obviously any strongly admissible ideal is admissible.
Throughout the study, I2 ⊆ 2N×N will be taken as strongly admissible ideal.
Two non negative double sequences (xij) and (yij) are said to be asymptotical

equivalent if

lim
i,j→∞

xij
yij

= 1.

Let X be any non empty set. A function f : N→ 2X is defined by f(n) = Un ∈
2X for each n ∈ N, where 2X is power set of X. The sequence {Un} = (U1, U2, ...),
which is the range’s elements of f , is said to be set sequences.
Let (X, ρ) be a metric space. For any point x ∈ X and any non empty subset U

of X, distance from x to U is defined by

µ(x, U) = inf
u∈U

ρ(x, u).

A double sequence {Uij} is Wijsman convergent to U if for each x ∈ X,

lim
i,j→∞

µ(x, Uij) = µ(x, U).

Throughout the study, we will take (X, ρ) as metric space and Uij , Vij as any
non empty closed subsets of X.
The term µx(Uij , Vij) is defined as follows:

µx(Uij , Vij) =


µ(x, Uij)

µ(x, Vij)
, x 6∈ Uij ∪ Vij

L , x ∈ Uij ∪ Vij .
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Double sequences {Uij} and {Vij} are Wijsman asymptotical equivalent if for
each x ∈ X,

lim
i,j→∞

µx(Uij , Vij) = 1.

Double sequences {Uij} and {Vij} are Wijsman asymptotical I2-equivalent of
multiple L if for each x ∈ X and ε > 0,{

(i, j) ∈ N× N : |µx(Uij , Vij)− L| ≥ ε
}
∈ I2.

Double sequences {Uij} and {Vij} are Wijsman asymptotical I2-statistically
equivalent of multiple L if for each x ∈ X and ε, δ > 0,{

(m,n) ∈ N× N : 1

mn

∣∣∣{i ≤ m, j ≤ n : |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ} ∈ I2.
The set of Wijsman asymptotical I2-statistically equivalent double sequences is

denoted by S(ILW2
).

Double sequences {Uij} and {Vij} are Wijsman asymptotical strongly p − I2-
Cesàro equivalent of multiple L if for each x ∈ X and ε > 0,{

(m,n) ∈ N× N : 1

mn

m,n∑
k,j=1,1

|µx(Uij , Vij)− L|p ≥ ε
}
∈ I2

where 0 < p <∞.
The set of Wijsman asymptotical strongly p − I2-Cesàro equivalent double se-

quences is denoted by C[ILW2
]p.

3. New Notions

In this section, we present notions of Wijsman asymptotical I2-statistically
equivalence of order η, Wijsman asymptotical I2-Cesàro equivalence of order η
and Wijsman asymptotical strongly p−I2-Cesàro equivalence of order η for double
set sequences.

Definition 1. Let 0 < η ≤ 1. Double sequences {Uij} and {Vij} are Wijsman
asymptotical I2-statistically equivalent to multiple L of order η if for each x ∈ X
and ε, δ > 0,{
(m,n) ∈ N× N : 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ} ∈ I2
and we write Uij

IW2 (SηL)∼ Vij, and simply Wijsman asymptotical I2-statistically
equivalent of order η if L = 1.

The class of Wijsman asymptotical I2-statistically equivalent to multiple L of
order η double sequences will be denoted by IW2 (S

η
L).
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Example 2. Let X = R2 and double sequences {Uij} and {Vij} be defined as
following:

Uij :=


{
(x1, x2) ∈ R2 : x21 + (x2 −

ij

2
)2 =

(ij)2

4

}
, if ij = c2 and c ∈ N{

(0, 1)
}

, if not.

and

Vij :=


{
(x1, x2) ∈ R2 : x21 + (x2 +

ij

2
)2 =

(ij)2

4

}
, if ij = c2 and c ∈ N{

(0, 1)
}

, if not.

If we take I2 = If2 , (I
f
2 is the class of finite subsets of N × N), then the double

sequences {Uij} and {Vij} are Wijsman asymptotical I2-statistically equivalent of
order η.

Remark 3. For η = 1, the notion of Wijsman asymptotical I2-statistically equiv-
alence to multiple L of order η coincides with the notion of Wijsman asymptotical
I2-statistically equivalence of multiple L for double set sequences in [22].

Definition 4. Let 0 < η ≤ 1. Double sequences {Uij} and {Vij} are Wijsman
asymptotical I2-Cesàro equivalent to multiple L of order η if for each x ∈ X and
ε > 0, {

(m,n) ∈ N× N :
∣∣∣∣ 1

(mn)η

m,n∑
i,j=1,1

µx(Uij , Vij)− L
∣∣∣∣ ≥ ε

}
∈ I2

and we write Uij
IW2 (CηL)∼ Vij, and simply Wijsman asymptotical I2-Cesàro equiva-

lent of order η if L = 1.

Definition 5. Let 0 < η ≤ 1 and 0 < p < ∞. Double sequences {Uij} and {Vij}
are Wijsman asymptotical strongly p− I2-Cesàro equivalent to multiple L of order
η if for each x ∈ X and ε > 0,{

(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}
∈ I2

and we write Uij
IW2 [CηL]

p

∼ Vij, and simply Wijsman asymptotical strongly p − I2-
Cesàro equivalent of order η if L = 1.

The class of Wijsman asymptotical strongly p−I2-Cesàro equivalent to multiple
L of order η double sequences will be denoted by I2W [CηL]p.
If p = 1, then the double sequences {Uij} and {Vij} are Wijsman asymptotical

strongly I2-Cesàro equivalent to multiple L of order η and we write Uij
IW2 [CηL]∼ Vij ,

and simply Wijsman asymptotical strongly I2-Cesàro equivalent of order η if L = 1.
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Example 6. Let X = R2 and double sequences {Uij} and {Vij} be defined as
following:

Uij :=


{
(x1, x2) ∈ R2 : (x1 + 2)2 + x22 =

1

ij

}
, if ij = c2 and c ∈ N{

(−1, 1)
}

, if not.

and

Vij :=


{
(x1, x2) ∈ R2 : (x1 − 2)2 + x22 =

1

ij

}
, if ij = c2 and c ∈ N{

(−1, 1)
}

, if not.

If we take I2 = If2 , then the double sequences {Uij} and {Vij} are Wijsman
asymptotical strongly I2-Cesàro equivalent of order η.

Remark 7. For η = 1, the notions of Wijsman asymptotical I2-Cesàro equivalence
to multiple L of order η and Wijsman asymptotical strongly I2-Cesàro equivalence to
multiple L of order η coincide with the notions of Wijsman asymptotical I2-Cesàro
equivalence of multiple L and Wijsman asymptotical strongly I2-Cesàro equivalence
of multiple L for double set sequences in [23], respectively.

4. Inclusions Theorems

In this section, we investigate some properties of the new asymptotical equiva-
lence notions that introduced in Section 3 and some relationships between them.

Theorem 8. If 0 < η ≤ γ ≤ 1, then IW2 (S
η
L) ⊆ IW2 (S

γ
L).

Proof. Suppose that 0 < η ≤ γ ≤ 1 and Uij
IW2 (SηL)∼ Vij . For each x ∈ X and ε > 0,

1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣
≤ 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣
and so for δ > 0,{

(m,n) ∈ N× N : 1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ}

⊆
{
(m,n) ∈ N× N : 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ} .
Consequently, by our assumption, we get IW2 (S

η
L) ⊆ IW2 (S

γ
L). �

If we take γ = 1 in Theorem 8, we obtain the following:
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Corollary 9. If double sequences {Uij} and {Vij} are Wijsman asymptotical I2-sta-
tistically equivalent to multiple L of order η, then the double sequences are Wijsman
asymptotical I2-statistically equivalent of multiple L, i.e., IW2 (S

η
L) ⊆ S(ILW2

).

Theorem 10. If 0 < η ≤ γ ≤ 1 and 0 < p <∞, then IW2 [C
η
L]
p ⊆ IW2 [C

γ
L]
p.

Proof. Suppose that 0 < η ≤ γ ≤ 1 and Uij
IW2 [CηL]

p

∼ Vij . For each x ∈ X,

1

(mn)γ

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≤ 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p
and so for ε > 0,{

(m,n) ∈ N× N : 1

(mn)γ

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}

⊆
{
(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}
.

Consequently, by our assumption, we get IW2 [C
η
L]
p ⊆ IW2 [C

γ
L]
p. �

If we take γ = 1 in Theorem 10, we obtain the following:

Corollary 11. If double sequences {Uij} and {Vij} are Wijsman asymptotical
strongly p − I2-Cesàro equivalent to multiple L of order η, then the double se-
quences are Wijsman asymptotical strongly p−I2-Cesàro equivalent of multiple L,
i.e., IW2 [C

η
L]
p ⊆ C[ILW2

]p.

Now, we shall give a theorem that gives a relation between IW2 [C
η
L]
p and IW2 [C

η
L]
q

where 0 < η ≤ 1 and 0 < p < q <∞.

Theorem 12. If 0 < η ≤ 1 and 0 < p < q <∞, then IW2 [C
η
L]
q ⊂ IW2 [C

η
L]
p.

Proof. Assume that 0 < p < q <∞ and Uij
IW2 [CηL]

q

∼ Vij . For each x ∈ X,

1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p < 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣q
and so for ε > 0,{

(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥ ε
}

⊂
{
(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣q ≥ ε
}
.
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Hence, by our assumption, we get Uij
IW2 [CηL]

p

∼ Vij . Consequently, IW2 [C
η
L]
q ⊂

IW2 [C
η
L]
p. �

Theorem 13. If double sequences {Uij} and {Vij} are Wijsman asymptotical
strongly p − I2-Cesàro equivalent to multiple L of order η, then the double se-
quences are Wijsman asymptotical I2-statistically to multiple L of order γ where
0 < η ≤ γ ≤ 1 and 0 < p <∞.

Proof. Assume that 0 < η ≤ γ ≤ 1 and the double sequences {Uij} and {Vij} are
Wijsman asymptotical strongly p− I2-Cesàro equivalent to multiple L of order η.
For each x ∈ X and ε > 0,
m,n∑

i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p ≥
m,n∑

i,j=1,1

|µx(Uij ,Vij)−L|≥ε

∣∣µx(Uij , Vij)− L∣∣p

≥ εp
∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣

and so

1

εp (mn)η

m,n∑
i,j=1,1

∣∣µx(Uij , Vij)− L∣∣p
≥ 1

(mn)η

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣
≥ 1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣.
Then for δ > 0,{

(m,n) ∈ N× N : 1

(mn)γ

∣∣∣{(i, j) : i ≤ m, j ≤ n, |µx(Uij , Vij)− L| ≥ ε}∣∣∣ ≥ δ}

⊆
{
(m,n) ∈ N× N : 1

(mn)η

m,n∑
i,j=1,1

|µx(Uij , Vij)− L|p ≥ εp δ
}
.

Consequently, by our assumption, we get that the double sequences {Uij} and {Vij}
are Wijsman asymptotical I2-statistically equivalent to multiple L of order γ. �

If we take γ = η in Theorem 13, we obtain the following:

Corollary 14. If double sequences {Uij} and {Vij} are Wijsman asymptotical
strongly p − I2-Cesàro equivalent to multiple L of order η, then the double se-
quences are Wijsman asymptotical I2-statistically equivalent to multiple L of order
η where 0 < η ≤ 1 and 0 < p <∞.
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GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES
FOR PRODUCTS OF CO-ORDINATED CONVEX FUNCTIONS

HÜSEYIN BUDAK AND TUBA TUNÇ

Abstract. In this paper, we think products of two co-ordinated convex func-
tions for the Hermite-Hadamard type inequalities. Using these functions we ob-
tained Hermite-Hadamard type inequalities which are generalizations of some
results given in earlier works.

1. Introduction

The following inequality discovered by C. Hermite and J. Hadamard for convex
functions is well known in the literature as the Hermite—Hadamard inequality (see,
e.g., [13]):

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

where f : I ⊂ R→ R is a convex function on the interval I and a, b ∈ I with a < b.
Hermite—Hadamard inequality provides a lower and an upper estimation for the

integral average of any convex function defined on a compact interval. This inequal-
ity has a notable place in mathematical analysis, optimization and so on. However,
many studies have been established to demonstrate its new proofs, refinements,
extensions and generalizations. A few of these studies are ([4], [9]-[11], [13]-[17],
[24]-[27], [29], [34], [35], [37]) referenced works and also the references included
there.
On the other hand, Hermite-Hadamard inequality is considered for convex func-

tions on the co-ordinates in [12], [18]. If we look at the convexity of the co-ordinates,
there are a lot of definitions of co-ordinated convex function. They may be stated
as follows [12]:
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Definition 1. Let us consider a bidimensional interval ∆ := [a, b] × [c, d] in R2
with a < b and c < d. A function f : ∆ ⊂ R2 → R is said to be convex on ∆ if the
following inequality satisfies

f(tx+ (1− t) z, ty + (1− t) w) ≤ t f(x, y) + (1− t) f(z, w)

for all (x, y), (z, w) ∈ ∆ and t ∈ [0, 1].

A modification of definition of co-ordinated convex function was defined by
Dragomir [12] as follows:

Definition 2. A function f : ∆ → R is said to be convex on the co-ordinates on
∆ if the partial mappings fy : [a, b] → R, fy(x) = f(x, y) and fx : [c, d] → R,
fx(y) = f(x, y) are convex where defined for all x ∈ [a, b] and y ∈ [c, d].

A formal definition for co-ordinated convex function may be stated as follows:

Definition 3. A function f : ∆ → R is called co-ordinated convex on ∆ if the
following inequality satisfies

f(tx+ (1− t) y, su+ (1− s) v) (1)

≤ ts f(x, u) + t(1− s)f(x, v) + s(1− t)f(y, u) + (1− t)(1− s)f(y, v)

for all (x, u), (y, v) ∈ ∆ and t, s ∈ [0, 1].

The following Hermite-Hadamard type inequalities for co-ordinated convex func-
tions were obtained by Dragomir in [12]:

Theorem 4. Suppose that f : ∆ → R is co-ordinated convex, then we have the
following inequalities:

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

 1

b− a

b∫
a

f

(
x,
c+ d

2

)
dx+

1

d− c

d∫
c

f

(
a+ b

2
, y

)
dy


≤ 1

(b− a)(d− c)

b∫
a

d∫
c

f(x, y) dydx (2)

≤ 1

4

 1

b− a

b∫
a

f(x, c)dx+
1

b− a

b∫
a

f(x, d)dx

+
1

d− c

d∫
c

f(a, y)dy +
1

d− c

d∫
c

f(b, y)dy


≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
The above inequalities are sharp.
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The following Hermite-Hadamard type inequalities for products of two co-ordinated
convex functions were given by Latif and Alomari in [18]:

Theorem 5. Let f, g : ∆→ [0,∞) be co-ordinated convex functions on ∆, then we
have the following Hermite-Hadamard type inequalities

1

(b− a) (d− c)

b∫
a

d∫
c

f(x, y)g(x, y)dxdy (3)

≤ 1

9
K(a, b, c, d) +

1

18
[L(a, b, c, d) +M(a, b, c, d)] +

1

36
N(a, b, c, d)

and

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)
(4)

≤ 1

(b− a) (d− c)

b∫
a

d∫
c

f(x, y)g(x, y)dxdy +
5

36
K(a, b, c, d)

+
7

36
[L(a, b, c, d) +M(a, b, c, d)] +

2

9
N(a, b, c, d)

where

K(a, b, c, d) = f(a, c)g(a, c) + f(b, c)g(b, c) + f(a, d)g(a, d) + f(b, d)g(b, d),

L(a, b, c, d) = f(a, c)g(b, c) + f(b, c)g(a, c) + f(a, d)g(b, d) + f(b, d)g(a, d),

M(a, b, c, d) = f(a, c)g(a, d) + f(b, c)g(b, d) + f(a, d)g(a, c) + f(b, d)g(b, c)

and

N(a, b, c, d) = f(a, c)g(b, d) + f(b, c)g(a, d) + f(a, d)g(b, c) + f(b, d)g(a, c).

Now, we give the definitions of Riemann-Liouville fractional integrals for two
variable functions:

Definition 6. [28] Let f ∈ L1([a, b] × [c, d]). The Riemann-Liouville fractional
integrals Jα,βa+,c+, J

α,β
a+,d−, J

α,β
b−,c+ and J

α,β
b−,d− are defined by

Jα,βa+,c+f(x, y) =
1

Γ(α)Γ(β)

x∫
a

y∫
c

(x− t)α−1 (y − s)β−1 f(t, s)dsdt, x > a, y > c,

Jα,βa+,d−f(x, y) =
1

Γ(α)Γ(β)

x∫
a

d∫
y

(x− t)α−1 (s− y)
β−1

f(t, s)dsdt, x > a, y < d,

Jα,βb−,c+f(x, y) =
1

Γ(α)Γ(β)

b∫
x

y∫
c

(t− x)
α−1

(y − s)β−1 f(t, s)dsdt, x < b, y > c
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and

Jα,βb−,d−f(x, y) =
1

Γ(α)Γ(β)

b∫
x

d∫
y

(t− x)
α−1

(s− y)
β−1

f(t, s)dsdt, x < b, y < d.

The following Hermite-Hadamard type inequality utilizing co-ordinated convex
functions was proved by Sarikaya in [28]:

Theorem 7. Let f, g : ∆ := [a, b] × [c, d] → [0,∞) be two co-ordinated convex on
∆ with 0 ≤ a < b and 0 ≤ c < d and f ∈ L(∆). Then for α, β > 0 we have the
following Hermite-Hadamard type inequality

f

(
a+ b

2
,
c+ d

2

)
(5)

≤ Γ (α+ 1) Γ (β + 1)

4(b− a)α (d− c)β

×
[
Jα,βa+,c+f(b, d)g(b, d) + Jα,βa+,d−f(b, c)g(b, c)

+ Jα,βb−,c+f(a, d)g(a, d) + Jα,βb−,d−f(a, c)g(a, c)
]

≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
.

Now, let’s give the notations Ak(x;m,n) and Bk(x;m,n) used throughout the
study:

Ak(x;m,n) =

n∫
m

(n− x)2wk(x)dx, Bk(x;m,n) =

n∫
m

(n− x)(x−m)wk(x)dx

for k = 1, 2.
In [7], Budak gave the following inequalities which are used the main results:

Theorem 8. Suppose that w1 : [a, b]→ R is non-negative, integrable and symmetric
about x = a+b

2 (i.e. w1(x) = w1(a + b − x)). If f, g : I → R are two real-valued,
non-negative and convex functions on I, then for any a, b ∈ I, we have

b∫
a

f(x)g(x)w1(x)dx ≤ M(a, b)

(b− a)
2A1(x; a, b) +

N(a, b)

(b− a)
2B1(x; a, b) (6)

where

M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).
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Theorem 9. Suppose that conditions of Theorem 8 hold, then we have the following
inequality

2f

(
a+ b

2

)
g

(
a+ b

2

) b∫
a

w1(x)dx (7)

≤
b∫
a

f(x)g(x)w1(x)dx+
M(a, b)

(b− a)
2B1(x; a, b) +

N(a, b)

(b− a)
2A1(x; a, b)

where M(a, b) and N(a, b) are defined as in Theorem 8.

Many convexity is defined on co-ordinates and several inequalities are done by
using these definitions. For example, Alomari and Darus proved Hadamard type in-
equalities for the s−convex functions and log−convex functions on the co-ordinates
in a rectangle from the plane R2 in [2] and [3] respectively. In [23] Ozdemir et al.
gave Hadamard type inequalities for h−convex functions on the co-ordinates. For
the others, please refer to ([1]-[3], [5]-[8], [12], [18]-[23],[28],[30]-[33], [36]).
The aim of this paper is to establish Hermite-Hadamard type inequalities for

product of co-ordinated convex functions. The results presented in this paper pro-
vide extensions of those given in [6] and [18]

2. Main Results

Theorem 10. Let f, g : ∆ ⊂ R2 → [0,∞) be co-ordinated convex functions on
∆. Also, w1 : [a, b] → R is non-negative, integrable and symmetric about x = a+b

2
(i.e. w1(x) = w1(a + b − x)) and w2 : [c, d] → R is non-negative, integrable and
symmetric about y = c+d

2 (i.e. w2(y) = w2(c+d−y)). Then, we have the following
Hermite-Hadamard type inequality

1

(b− a)(d− c)

b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

≤ A2(y; c, d)

(b− a)3(d− c)3 [K(a, b, c, d)A1(x; a, b) + L(a, b, c, d)B1(x; a, b)]

+
B2(y; c, d)

(b− a)3(d− c)3 [M(a, b, c, d)A1(x; a, b) +N(a, b, c, d)B1(x; a, b)]

where K(a, b, c, d), L(a, b, c, d), M(a, b, c, d) and N(a, b, c, d) defined by as in Theo-
rem 5.

Proof. Since f and g are co-ordinated convex functions on ∆, the functions fx and
gx are convex on [c, d]. If the inequality (6) is applied for the functions fx and gx,
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then we obtain

1

d− c

d∫
c

fx(y)gx(y)w2(y)dy ≤ A2(y; c, d)

(d− c)3 [fx(c)gx(c) + fx(d)gx(d)] (8)

+
B2(y; c, d)

(d− c)3 [fx(c)gx(d) + fx(d)gx(c)] .

That is,

1

d− c

d∫
c

f(x, y)g(x, y)w2(y)dy ≤ A2(y; c, d)

(d− c)3 [f(x, c)g(x, c) + f(x, d)g(x, d)] (9)

+
B2(y; c, d)

(d− c)3 [f(x, c)g(x, d) + f(x, d)g(x, c)] .

Multiplying the inequality (9) by w1(x)
(b−a) and then integrating respect to x from

a to b, we get

1

(b− a)(d− c)

b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx (10)

≤ A2(y; c, d)

(b− a)(d− c)3

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
B2(y; c, d)

(b− a)(d− c)3

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx.

Applying the inequality (6) to each integrals in (10), we have

b∫
a

f(x, c)g(x, c)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, c)g(a, c) + f(b, c)g(b, c)] (11)

+
B1(x; a, b)

(b− a)
2 [f(a, c)g(b, c) + f(b, c)g(a, c)] ,

b∫
a

f(x, d)g(x, d)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, d)g(a, d) + f(b, d)g(b, d)] (12)
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+
B1(x; a, b)

(b− a)
2 [f(a, d)g(b, d) + f(b, d)g(a, d)] ,

b∫
a

f(x, c)g(x, d)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, c)g(a, d) + f(b, c)g(b, d)] (13)

+
B1(x; a, b)

(b− a)
2 [f(a, c)g(b, d) + f(b, c)g(a, d)]

and
b∫
a

f(x, d)g(x, c)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, d)g(a, c) + f(b, d)g(b, c)] (14)

+
B1(x; a, b)

(b− a)
2 [f(a, d)g(b, c) + f(b, d)g(a, c)] .

Substituting the inequalities (11)-(14) in the inequality (10) and then arranging
the result obtained, we get desired result. On the other hand, the same result is
obtained by using the convexity of functions fy and gy. �

Theorem 11. Let f, g : ∆ ⊂ R2 → [0,∞) be co-ordinated convex functions on ∆
with a < b, c < d. Also, w1 : [a, b] → R is non-negative, integrable and symmetric
about x = a+b

2 (i.e. w1(x) = w1(a + b − x)) and w2 : [c, d] → R is non-negative,
integrable and symmetric about y = c+d

2 (i.e. w2(y) = w2(c + d − y)). Then, we
have the following Hermite-Hadamard type inequality

4

b∫
a

d∫
c

f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)
w1(x)w2(y)dydx

≤
b∫
a

d∫
c

f (x, y) g (x, y)w1(x)w2(y)dydx

+
K(a, b, c, d)

(b− a)2(d− c)2 [B1(x; a, b)A2(y; c, d) +B2(y; c, d)A1(x; a, b) +B1(x; a, b)B2(y; c, d)]

+
L(a, b, c, d)

(b− a)2(d− c)2 [B2(y; c, d)B1(x; a, b) +A2(y; c, d)A1(x; a, b) +A1(x; a, b)B2(y; c, d)]

+
M(a, b, c, d)

(b− a)2(d− c)2 [B2(y; c, d)B1(x; a, b) +A2(y; c, d)A1(x; a, b) +B1(x; a, b)A2(y; c, d)]
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+
N(a, b, c, d)

(b− a)2(d− c)2 [A1(x; a, b)B2(y; c, d) +A2(y; c, d)B1(x; a, b) +A2(y; c, d)A1(x; a, b)] .

Proof. Since f and g are co-ordinated convex functions on ∆, the functions fx, gx,
fy and gy are convex. Applying the inequality (7) for the functions f c+d

2
and g c+d

2

with y = c+d
2 and then multiplying both sides of the result obtained by 2

d∫
c

w2(y)dy,

we get

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (15)

≤ 2

b∫
a

d∫
c

f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
w1(x)w2(y)dydx

+

2

d∫
c

[
f
(
a, c+d2

)
g
(
a, c+d2

)
+ f

(
b, c+d2

)
g
(
b, c+d2

)
(b− a)2

]
w2(y)dy

B1(x; a, b)

+

2

d∫
c

[
f
(
a, c+d2

)
g
(
b, c+d2

)
+ f

(
b, c+d2

)
g
(
a, c+d2

)
(b− a)2

]
w2(y)dy

A1(x; a, b).

Similarly, if we apply the inequality (7) for the functions f a+b
2
and g a+b

2
with x = a+b

2

and then multiply both sides of the result obtained by 2
b∫
a

w1(x)dx, we get

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (16)

≤ 2

b∫
a

d∫
c

f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
w1(x)w2(y)dydx

+

2

b∫
a

[
f
(
a+b
2 , c

)
g
(
a+b
2 , c

)
+ f

(
a+b
2 , d

)
g
(
a+b
2 , d

)
(d− c)2

]
w1(x)dx

B2(y; c, d)

+

2

b∫
a

[
f
(
a+b
2 , c

)
g
(
a+b
2 , d

)
+ f

(
a+b
2 , d

)
g
(
a+b
2 , c

)
(d− c)2

]
w1(x)dx

A2(y; c, d).
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Using the inequality (7) for each integrals in inequalities (15) and (16), we have

2f

(
a,
c+ d

2

)
g

(
a,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(a, y)g(a, y)w2(y)dy (17)

+

[
f(a, c)g(a, c) + f(a, d)g(a, d)

(d− c)2

]
B1(y; c, d)

+

[
f(a, c)g(a, d) + f(a, d)g(a, c)

(d− c)2

]
A1(y; c, d),

2f

(
b,
c+ d

2

)
g

(
b,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(b, y)g(b, y)w2(y)dy (18)

+

[
f(b, c)g(b, c) + f(b, d)g(b, d)

(d− c)2

]
B1(y; c, d)

+

[
f(b, c)g(b, d) + f(b, d)g(b, c)

(d− c)2

]
A1(y; c, d),

2f

(
a,
c+ d

2

)
g

(
b,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(a, y)g(b, y)w2(y)dy (19)

+

[
f(a, c)g(b, c) + f(a, d)g(b, d)

(d− c)2

]
B1(y; c, d)

+

[
f(a, c)g(b, d) + f(a, d)g(b, c)

(d− c)2

]
A1(y; c, d),
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2f

(
b,
c+ d

2

)
g

(
a,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(b, y)g(a, y)w2(y)dy (20)

+

[
f(b, c)g(a, c) + f(b, d)g(a, d)

(d− c)2

]
B1(y; c, d)

+

[
f(b, c)g(a, d) + f(b, d)g(a, c)

(d− c)2

]
A1(y; c, d),

2f

(
a+ b

2
, c

)
g

(
a+ b

2
, c

) b∫
a

w1(x)dx ≤
b∫
a

f(x, c)g(x, c)w1(x)dx (21)

+

[
f(a, c)g(a, c) + f(b, c)g(b, c)

(b− a)2

]
B1(x; a, b)

+

[
f(a, c)g(b, c) + f(b, c)g(a, c)

(b− a)2

]
A1(x; a, b),

2f

(
a+ b

2
, d

)
g

(
a+ b

2
, d

) b∫
a

w1(x)dx ≤
b∫
a

f(x, d)g(x, d)w1(x)dx (22)

+

[
f(a, d)g(a, d) + f(b, d)g(b, d)

(b− a)2

]
B1(x; a, b)

+

[
f(a, d)g(b, d) + f(b, d)g(a, d)

(b− a)2

]
A1(x; a, b),
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2f

(
a+ b

2
, d

)
g

(
a+ b

2
, d

) b∫
a

w1(x)dx ≤
b∫
a

f(x, d)g(x, d)w1(x)dx (23)

+

[
f(a, d)g(a, d) + f(b, d)g(b, d)

(b− a)2

]
B1(x; a, b)

+

[
f(a, d)g(b, d) + f(b, d)g(a, d)

(b− a)2

]
A1(x; a, b),

2f

(
a+ b

2
, c

)
g

(
a+ b

2
, d

) b∫
a

w1(x)dx ≤
b∫
a

f(x, c)g(x, d)w1(x)dx (24)

+

[
f(a, c)g(a, d) + f(b, c)g(b, d)

(b− a)2

]
B1(x; a, b)

+

[
f(a, c)g(b, d) + f(b, c)g(a, d)

(b− a)2

]
A1(x; a, b)

and

2f

(
a+ b

2
, d

)
g

(
a+ b

2
, c

) b∫
a

w1(x)dx ≤
b∫
a

f(x, d)g(x, c)w1(x)dx (25)

+

[
f(a, d)g(a, c) + f(b, d)g(b, c)

(b− a)2

]
B1(x; a, b)

+

[
f(a, d)g(b, c) + f(b, d)g(a, c)

(b− a)2

]
A1(x; a, b).

When the inequalities (17)-(25) is written in (15) and (16) and then the results
obtained are added side by side and rearranged, we obtain
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8f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (26)

≤ 2

b∫
a

d∫
c

f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
w1(x)w2(y)dydx

+2

b∫
a

d∫
c

f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
w1(x)w2(y)dydx

+
B1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(a, y) + f(b, y)g(b, y)]w2(y)dy

+
A1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(b, y) + f(b, y)g(a, y)]w2(y)dy

+
B2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
A2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx

+
2K(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)B2(y; c, d)

+
2L(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)B2(y; c, d)

+
2M(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)A2(y; c, d)

+
2N(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)A2(y; c, d).

The inequality (7) is applied to f
(
x, c+d2

)
g
(
x, c+d2

)
and then the result is multiplied

by w1(x) and integrated over [a, b],we get

2

b∫
a

d∫
c

f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
w1(x)w2(y)dydx (27)
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≤
b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

+
B2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
A2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx.

Similarly, if we apply the inequality (7) to f
(
a+b
2 , y

)
g
(
a+b
2 , y

)
and then the result

is multiplied by w2(y) and integrated over [c, d],we get

2

b∫
a

d∫
c

f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
w1(x)w2(y)dydx (28)

≤
b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

+
B1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(a, y) + f(b, y)g(b, y)]w2(y)dy

+
A1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(b, y) + f(b, y)g(a, y)]w2(y)dy.

Substituting the inequalities (27) and (28) in the inequality (26) and reordering the
results obtained, we have

8f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (29)

≤ 2

b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

+
2B1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(a, y) + f(b, y)g(b, y)]w2(y)dy
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+
2A1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(b, y) + f(b, y)g(a, y)]w2(y)dy

+
2B2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
2A2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx

+
2K(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)B2(y; c, d)

+
2L(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)B2(y; c, d)

+
2M(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)A2(y; c, d)

+
2N(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)A2(y; c, d).

By applying the inequality (6) to each integral in (29) and later rearranging the
results obtained, we obtain desired inequality. �

Remark 12. If we choose w1(x) = 1 and w2(y) = 1 in Theorem 10 and Theorem
11, we get (3) and (4) respectively.

Remark 13. If we choose w1(x) = α
(b−a)α−1

[
(b− x)α−1 + (x− a)α−1

]
with α > 0

and w2(y) = β
(d−c)β−1

[
(d− y)β−1 + (y − c)β−1

]
with β > 0 in Theorem 10 and

Theorem 11, we get

Γ (α+ 1) Γ (β + 1)

4(b− a)α (d− c)β

×
[
Jα,βa+,c+f(b, d)g(b, d) + Jα,βa+,d−f(b, c)g(b, c)

+Jα,βb−,c+f(a, d)g(a, d) + Jα,βb−,d−f(a, c)g(a, c)
]

≤
[

1

2
− β

(β + 1) (β + 2)

] [
1

2
− α

(α+ 1) (α+ 2)

]
K(a, b, c, d)
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+

[
1

2
− β

(β + 1) (β + 2)

] [
α

(α+ 1) (α+ 2)

]
L(a, b, c, d)

+

[
β

(β + 1) (β + 2)

] [
1

2
− α

(α+ 1) (α+ 2)

]
M(a, b, c, d)

+

[
β

(β + 1) (β + 2)

] [
α

(α+ 1) (α+ 2)

]
N(a, b, c, d)

and

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)

≤ Γ (α+ 1) Γ (β + 1)

4(b− a)α (d− c)β

×
[
Jα,βa+,c+f(b, d)g(b, d) + Jα,βa+,d−f(b, c)g(b, c)

+ Jα,βb−,c+f(a, d)g(a, d) + Jα,βb−,d−f(a, c)g(a, c)
]

+

{
α

2 (α+ 1) (α+ 2)
+

[
β

(β + 1) (β + 2)

] [
1

2
− α

(α+ 1) (α+ 2)

]}
K(a, b, c, d)

+

{
1

2

[
1

2
− α

(α+ 1) (α+ 2)

]
+

[
α

(α+ 1) (α+ 2)

] [
β

(β + 1) (β + 2)

]}
L(a, b, c, d)

+

{
1

2

[
1

2
− β

(β + 1) (β + 2)

]
+

[
α

(α+ 1) (α+ 2)

] [
β

(β + 1) (β + 2)

]}
M(a, b, c, d)

+

{
1

4
−
[

α

(α+ 1) (α+ 2)

] [
β

(β + 1) (β + 2)

]}
N(a, b, c, d)

which is proved by Budak and Sarikaya [6].
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A NOTE ON HYPERBOLIC (p, q)-FIBONACCI QUATERNIONS

TÜLAY YAǦMUR

Abstract. In this paper, we introduce a new quaternion sequence called hy-
perbolic (p, q)-Fibonacci quaternions. This new quaternion sequence includes
hyperbolic Fibonacci, hyperbolic k-Fibonacci, hyperbolic Pell, hyperbolic k-
Pell, hyperbolic Jacobsthal, hyperbolic k-Jacobsthal quaternions. We give
generating function and Binet’s formula for these quaternions. We also obtain
some identities such as d’Ocagne’s, Catalan’s and Cassini’s identities involving
hyperbolic (p, q)-Fibonacci quaternions.

1. Introduction

Fibonacci numbers have been applied in different scientific areas such as en-
gineering, and architecture. Recently, Fibonacci numbers have been studied and
generalized by many authors in many ways. For example, one of the generalization
of Fibonacci numbers is (p, q)-Fibonacci numbers [15,17].
For positive real numbers p and q, the sequence of (p, q)-Fibonacci numbers,

denoted by {Fn}n≥0, is defined by the recurrence relation

Fn = pFn−1 + qFn−2, n ≥ 2

with initial conditions F0 = 0 and F1 = 1 [17].
The nth term of the sequence {Fn}n≥0 is given by

Fn =
αn − βn

α− β , (1)

where α =
p+

√
p2 + 4q

2
, β =

p−
√
p2 + 4q

2
are the roots of the characteristic

equation t2 − pt− q = 0 [17].
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nions, hyperbolic quaternions, hyperbolic (p, q)-Fibonacci quaternions.
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It must be note that α+ β = p, α− β =
√
p2 + 4q and αβ = −q. Moreover, the

generating function for the sequence {Fn}n≥0 [29] is given by

fp,q(t) =
t

1− pt− qt2 .

The (p, q)-Fibonacci sequence is the generalization of the familiar second-order
recurrent sequences, that is, for special values of p and q, are defined as follows:

• If p = q = 1, then {Fn}n≥0 is the (classical) Fibonacci sequence {Fn}n≥0
[24].

• If p = k, q = 1, then {Fn}n≥0 is the k-Fibonacci sequence {Fk,n}n≥0 [9].
• If p = 2, q = 1 , then {Fn}n≥0 is the Pell sequence {Pn}n≥0 [18].
• If p = 2, q = k then {Fn}n≥0 is the k-Pell sequence {Pk,n}n≥0 [7].
• If p = 1, q = 2 , then {Fn}n≥0 is the Jacobsthal sequence {Jn}n≥0 [19].
• If p = k, q = 2, then {Fn}n≥0 is the k-Jacobsthal sequence {Jk,n}n≥0 [22].

Quaternions (real quaternions), introduced by Sir William Rowan Hamilton in
the mid nineteenth century, are four-dimensional hypercomplex numbers. Quater-
nions are widely used in high-tech areas such as computer graphics, signal process-
ing, and robotics, see for example [1,8,10,11], among others.
Quaternions form a four-dimensional non-commutative associative algebra over

the real numbers, are defined as follows:

H = {q = q0 + q1i+ q2j+ q3k | q0, q1, q2, q3 ∈ R},
where {1, i, j,k} is a basis of H, and the imaginary units i, j and k satisfy the
following equalities

i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.
For more details on quaternions, one can see, for example [14,32].
Horadam [16] defined the Fibonacci quaternions as

QFn = Fn + Fn+1i+ Fn+2j+ Fn+3k,

where Fn is the nth Fibonacci number.
Fibonacci quaternions have been studied and generalized by many authors, some

of which can be found in [2-6,12,13,20,21,26-28,30,31], among others. One of the
generalization for Fibonacci quaternions is done by Ipek. In [20], Ipek introduced
the (p, q)-Fibonacci quaternions as

QFn = Fn + Fn+1i+ Fn+2j+ Fn+3k,
where Fn is the nth (p, q)-Fibonacci number.
The author also defined the (p, q)-Fibonacci quaternions recursively by the rela-

tion
QFn = pQFn−1 + qQFn−2, n ≥ 2.
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Moreover, Patel and Ray [26] investigated some properties of (p, q)-Fibonacci and
(p, q)-Lucas quaternions.
Alexander Mac-Farlane first described hyperbolic quaternions in 1891, and these

numbers are not associative. Kurt Godel used the name of these quaternions in
1949, but the author actually implied split quaternions in his definition. Hyperbolic
quaternions [25], just like real quaternions, are a generalization of complex numbers
by four real numbers. Moreover, just like real quaternions, hyperbolic quaternions
are not commutative. But hyperbolic quaternions have zero divisors.
In [23], Kosal studied on hyperbolic quaternions and their algebraic properties.

In [5], Aydin defined the hyperbolic k-Fibonacci quaternions. The author also
investigated some algebraic properties of the hyperbolic k-Fibonacci quaternions.
Hyperbolic quaternions are defined as

K = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R},

where

i2 = j2 = k2 = ijk = 1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

Let p = p0 + ip1 + jp2 + kp3 and q = q0 + iq1 + jq2 + kq3 be two hyperbolic
quaternions. Then the addition and subtraction of two hyperbolic quaternions are
defined as

p± q = (p0 ± q0) + i(p1 ± q1) + j(p2 ± q2) + k(p3 ± q3).

The multiplication of a hyperbolic quaternion by a real scalar λ is defined as

λp = λp0 + iλp1 + jλp2 + kλp3.

The multiplication of two hyperbolic quaternions is defined as

pq = (p0q0 + p1q1 + p2q2 + p3q3) + i(p0q1 + p1q0 + p2q3 − p3q2)
+ j(p0q2 − p1q3 + p2q0 + p3q1) + k(p0q3 + p1q2 − p2q1 + p3q0).

The conjugate of a hyperbolic quaternion q is denoted by q and defined by

q = q0 − iq1 − jq2 − kq3.

Moreover, the norm of the hyperbolic quaternion q is

N(q) = qq = q0
2 − q12 − q22 − q32.

The main objective of this paper is to introduce hyperbolic (p, q)-Fibonacci
quaternions. We then give the generating function and Binet’s formula for the
hyperbolic (p, q)-Fibonacci quaternions. In addition, we obtain some well-known
identities involving these quaternions.
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2. The Hyperbolic (p, q)-Fibonacci Quaternions

In this section, we first give the definition of the hyperbolic (p, q)-Fibonacci
quaternions. We then investigate some properties of these quaternions.

Definition 1. For positive real numbers p and q, hyperbolic (p, q)-Fibonacci quater-
nions are defined by the relation

HQFn = Fn + iFn+1 + jFn+2 + kFn+3, (2)

where Fn is the nth (p, q)-Fibonacci number, and i, j, k satisfy the equalities

i2 = j2 = k2 = ijk = 1, ij = k = −ji, jk = i = −kj, ki = j = −ik. (3)

Let HQFn be the nth (p, q)-Fibonacci number. Then, after some necessary
calculations, one can obtain the following recurrence relation:

HQFn = pHQFn−1 + qHQFn−2, n ≥ 2, (4)

with initial conditions

HQF0 = i+ jp+ k(p2 + q), (5)

HQF1 = 1 + ip+ j(p2 + q) + k(p3 + 2pq). (6)

Particular cases of Definition 1 are

• Hyperbolic Fibonacci quaternions are

HQFn = Fn + iFn+1 + jFn+2 + kFn+3,

where Fn is the nth Fibonacci number, with initial conditions

HQF0 = i+ j+ k2,

HQF1 = 1 + i+ j2 + k3.

• Hyperbolic k-Fibonacci quaternions [5] are

HQFk,n = Fk,n + iFk,n+1 + jFk,n+2 + kFk,n+3,

where Fk,n is the nth k-Fibonacci number, with initial conditions

HQFk,0 = i+ jk + k(k
2 + 1),

HQFk,1 = 1 + ik + j(k
2 + 1) + k(k3 + 2k).

• Hyperbolic Pell quaternions are

HQPn = Pn + iPn+1 + jPn+2 + kPn+3,

where Pn is the nth Pell number, with initial conditions

HQP0 = i+ 2j+ k5,

HQP1 = 1 + i2 + j5 + k12.
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• Hyperbolic k-Pell quaternions are

HQPk,n = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3,

where Pk,n is the nth k-Pell number, with initial conditions

HQPk,0 = i+ j2 + k(4 + k),

HQPk,1 = 1 + i2 + j(4 + k) + k(8 + 4k).

• Hyperbolic Jacobsthal quaternions are

HQJn = Jn + iJn+1 + jJn+2 + kJn+3,

where Jn is the nth Jacobsthal number, with initial conditions

HQJ0 = i+ j+ k3,

HQJ1 = 1 + i+ j3 + k5.

• Hyperbolic k-Jacobsthal quaternions are

HQJk,n = Jk,n + iJk,n+1 + jJk,n+2 + kJk,n+3,

where Jk,n is the nth k-Jacobsthal number, with initial conditions

HQJk,0 = i+ jk + k(k
2 + 2),

HQJk,1 = 1 + ik + j(k
2 + 2) + k(k3 + 4k).

Let HQFn = Fn + iFn+1 + jFn+2 + kFn+3 and HQFm = Fm + iFm+1 +
jFm+2+kFm+3 be two hyperbolic (p, q)-Fibonacci quaternions. Then the addition
and subtraction of two hyperbolic (p, q)-Fibonacci quaternions are defined by

HQFn ±HQFm = (Fn ±Fm) + i(Fn+1 ±Fm+1) + j(Fn+2 ±Fm+2)
+ k(Fn+3 ±Fm+3). (7)

The multiplication of a hyperbolic (p, q)-Fibonacci quaternion by a real scalar λ is
defined by

λHQFn = λFn + iλFn+1 + jλFn+2 + kλFn+3. (8)

The multiplication of two hyperbolic (p, q)-Fibonacci quaternions is defined by

HQFn ×HQFm
= (FnFm + Fn+1Fm+1 + Fn+2Fm+2 + Fn+3Fm+3)
+ i(FnFm+1 + Fn+1Fm + Fn+2Fm+3 −Fn+3Fm+2)
+ j(FnFm+2 −Fn+1Fm+3 + Fn+2Fm + Fn+3Fm+1)
+ k(FnFm+3 + Fn+1Fm+2 −Fn+2Fm+1 + Fn+3Fm). (9)

The generating function for the hyperbolic (p, q)-Fibonacci quaternions is given
in the following theorem.



HYPERBOLIC (p, q)-FIBONACCI QUATERNIONS 885

Theorem 2. The generating function for the hyperbolic (p, q)-Fibonacci quater-
nions is given by

Gp,q(t) =
t+ i(1 + t− pt) + j(1 + 2t− pt) + k(2 + 3t− 2pt)

1− pt− qt2 .

Proof. Let Gp,q(t) be the generating function for the hyperbolic (p, q)-Fibonacci
quaternions. Then we write

Gp,q(t) =

∞∑
n=0

HQFntn = HQF0 +HQF1t+ ...+HQFntn + ... . (10)

Multiplying the Eq. (10) with pt and qt2 respectively, we get

ptGp,q(t) = pHQF0t+ pHQF1t2 + ...+ pHQFn−1tn + ...
and

qt2Gp,q(t) = qHQF0t2 + qHQF1t3 + ...+ qHQFn−2tn + ... .

Then we have

(1− pt− qt2)Gp,q(t) = HQF0 + (HQF1 − pHQF0)t

+

∞∑
n=2

(HQFn − pHQFn−1 − qHQFn−2)tn

= HQF0 + (HQF1 − pHQF0)t.
By the Eqs. (5) and (6), we get

(1− pt− qt2)Gp,q(t) = t+ i(1 + t− pt) + j(1 + 2t− pt) + k(2 + 3t− 2pt)
which is the desired result. �

Particular cases of Theorem 2 are

• The generating function of the hyperbolic (classical) Fibonacci quaternions
is

f(t) =
t+ i+ j(1 + t) + k(2 + t)

1− t− t2 .

• The generating function of the hyperbolic k-Fibonacci quaternions is

fk(t) =
t+ i(1 + t(1− k)) + j(1 + t(2− k)) + k(2 + t(3− 2k))

1− kt− t2 .

• The generating function of the hyperbolic Pell quaternions is

g(t) =
t+ i(1− t) + j+ k(2− t)

1− 2t− t2 .

• The generating function of the hyperbolic k-Pell quaternions is

gk(t) =
t+ i(1− t) + j+ k(2− t)

1− 2t− kt2 .
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• The generating function of the hyperbolic Jacobsthal quaternions is

h(t) =
t+ i+ j(1 + t) + k(2 + t)

1− t− 2t2 .

• The generating function of the hyperbolic k-Jacobsthal quaternions is

hk(t) =
t+ i(1 + t(1− k)) + j(1 + t(2− k)) + k(2 + t(3− 2k))

1− kt− 2t2 .

The following theorem gives the Binet’s formula for the hyperbolic (p, q)-Fibonacci
quaternions.

Theorem 3. The nth term of the hyperbolic (p, q)-Fibonacci quaternion is given
by

HQFn =
α∗αn − β∗βn

α− β ,

where α∗ = 1 + iα + jα2 + kα3, α =
p+
√
p2+4q

2 and β∗ = 1 + iβ + jβ2 + kβ3,

β =
p−
√
p2+4q

2 .

Proof. Using the definition of the hyperbolic (p, q)-Fibonacci quaternions and the
Binet’s formula of the (p, q)-Fibonacci numbers, we have

HQFn = Fn + iFn+1 + jFn+2 + kFn+3

=
αn − βn

α− β + i
αn+1 − βn+1

α− β + j
αn+2 − βn+2

α− β + k
αn+3 − βn+3

α− β

=
αn(1 + iα+ jα2 + kα3)− βn(1 + iβ + jβ2 + kβ3)

α− β .

If we take α∗ = 1 + iα + jα2 + kα3 and β∗ = 1 + iβ + jβ2 + kβ3, we obtain the
desired result. �

Particular cases of Therorem 3 are

• The Binet’s formula of the nth hyperbolic (classical) Fibonacci quaternion
is

HQFn =
1√
5
(α∗αn − β∗βn),

where α∗ = 1 + iα + jα2 + kα3, α = 1+
√
5

2 and β∗ = 1 + iβ + jβ2 + kβ3,

β = 1−
√
5

2 .
• The Binet’s formula of the nth hyperbolic k-Fibonacci quaternion [5] is

HQFk,n =
1√

k2 + 4
(r1
∗r1

n − r2∗r2n),
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where r1∗ = 1+ir1+jr12+kr13, r1 = k+
√
k2+4
2 and r2∗ = 1+ir2+jr22+kr23,

r2 =
k−
√
k2+4
2 .

• The Binet’s formula of the nth hyperbolic Pell quaternion is

HQPn =
1

2
√
2
(x∗1x1

n − x2∗xn2 ),

where x1∗ = 1+ ix1+ jx12+kx13, x1 = 1 +
√
2 and x2∗ = 1+ ix2+ jx22+

kx2
3, x2 = 1−

√
2.

• The Binet’s formula of the nth hyperbolic k-Pell quaternion is

HQPk,n =
1

2
√
1 + k

(y∗1y1
n − y2∗yn2 ),

where y1∗ = 1 + iy1 + jy1
2 + ky1

3, y1 = 1 +
√
1 + k and y2∗ = 1 + iy2 +

jy2
2 + ky2

3, y2 = 1−
√
1 + k.

• The Binet’s formula of the nth hyperbolic Jacobsthal quaternion is

HQJn =
2∗2n − (−1)∗(−1)n

3
,

where 2∗ = 1 + i2 + j4 + k8 and (−1)∗ = 1− i+ j− k.
• The Binet’s formula of the nth hyperbolic k-Jacobsthal quaternion is

HQJk,n =
1√

k2 + 8
(w∗1w1

n − w2∗wn2 ),

where w1∗ = 1 + iw1 + jw12 + kw13, w1 = k+
√
k2+8
2 and w2∗ = 1 + iw2 +

jw2
2 + kw2

3, w2 = k−
√
k2+8
2 .

The d’Ocagne’s identity involving the hyperbolic (p, q)-Fibonacci quaternions is
given in the following theorem.

Theorem 4. Let m and n be two positive integers, such that n ≤ m. Then we
have

HQFm ×HQFn+1 −HQFm+1 ×HQFn =
(−q)n√
p2 + 4q

(α∗β∗αm−n − β∗α∗βm−n).

Proof. Using the Binet’s formula of the hyperbolic (p, q)-Fibonacci quaternions, we
have

HQFm ×HQFn+1 −HQFm+1 ×HQFn

=
α∗αm − β∗βm

α− β × α∗αn+1 − β∗βn+1

α− β − α∗αm+1 − β∗βm+1

α− β × α∗αn − β∗βn

α− β

=
1

(α− β)2 (α
∗β∗(αm+1βn − αmβn+1) + β∗α∗(αnβm+1 − αn+1βm))
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=
1

(α− β) (α
∗β∗αmβn − β∗α∗αnβm)

=
1

(α− β) (αβ)
n(α∗β∗αm−n − β∗α∗βm−n).

Since α− β =
√
p2 + 4q and αβ = −q , we obtain the desired result. �

Note that, if we take p = k, q = 1 as a special case in Theorem 4, we obtain
the equivalent result for d’Ocagne’s identity involving the hyperbolic k-Fibonacci
quaternions given in [5].
The following theorem gives the Catalan’s identity for the hyperbolic (p, q)-

Fibonacci quaternions.

Theorem 5. Let n and r be two positive integers. Then we have

HQFn−r ×HQFn+r −HQF2n =
(−q)n−r
p2 + 4q

(α∗β∗βr − β∗α∗αr)(αr − βr).

Proof. Using the Binet’s formula of the hyperbolic (p, q)-Fibonacci quaternions, we
have

HQFn−r ×HQFn+r −HQFn ×HQFn

=
α∗αn−r − β∗βn−r

α− β × α∗αn+r − β∗βn+r

α− β − α∗αn − β∗βn

α− β × α∗αn − β∗βn

α− β

=
1

(α− β)2 (α
∗β∗(αβ)n−r(αrβr − β2r) + β∗α∗(αβ)n−r(αrβr − α2r))

=
1

(α− β)2 (αβ)
n−r(α∗β∗βr − β∗α∗αr)(αr − βr).

Since α− β =
√
p2 + 4q and αβ = −q , we obtain the desired result. �

Note that, if we take p = k, q = 1 as a special case in Theorem 5, we obtain
the equivalent result for Catalan’s identity involving the hyperbolic k-Fibonacci
quaternions given in [5].
If we take r = 1 in Theorem 5, we obtain the Cassini’s identity involving the

hyperbolic (p, q)-Fibonacci quaternions as

HQFn−1 ×HQFn+1 −HQF2n =
(−q)n−1√
p2 + 4q

(α∗β∗β − β∗α∗α).

Acknowledgements. The author would like to thank the anonymous reviewers
for their careful reading, valuable comments and suggestions who helped to improve
the presentation of the paper.



HYPERBOLIC (p, q)-FIBONACCI QUATERNIONS 889

References

[1] Adler, S. L., Quaternionic quantum mechanics and quantum fields, 88. Oxford Univ. Press
on Demand, 1995.

[2] Akyigit, M., Kosal, H. H. and Tosun, M., Split Fibonacci quaternions, Adv. Appl. Cliff ord
Algebras 23 (2013), 535-545.

[3] Aydin, F. T., The k-Fibonacci dual quaternions, Int. J. Mathematical Analysis 12 (2018),
363-373.

[4] Aydin, F. T., Bicomplex Fibonacci quaternions, Chaos Solitons Fractals 106 (2018), 147-153.
[5] Aydin, F. T., Hyperbolic k-Fibonacci quaternions, arXiv:1812.00781v1, 2018.
[6] Bilgici, G., Tokeser, U. and Unal, Z., k- Fibonacci and k-Lucas generalized quaternions,

Konuralp J. Math. 5 (2017), 102-113.
[7] Catarino, P., On some identities and generating functions for k-Pell numbers, Int. J. Mathe-

matical Analysis 7 (2013), 1877-1884.
[8] Ell, T. A., Bihan, N. L. and Sangwine, S. J., Quaternion Fourier transforms for signal and

image processing, John Wiley and Sons, 2014.
[9] Falcon, S. and Plaza, A., On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007),

1615-1624.
[10] Finkelstein, D., Jauch, J. M., Schiminovich, S. and Speiser, D., Foundations of quaternion

quantum mechanics, J. Math. Phys. 3 (1962), 207-220.
[11] Girard, P. R., The quaternion group and modern physics, Eur. J. Phys. 5 (1984), 25-32.
[12] Halici, S., On Fibonacci quaternions, Adv. Appl. Cliff ord Algebras 22 (2012), 321-327.
[13] Halici, S., On complex Fibonacci quaternions, Adv. Appl. Cliff ord Algebras 23 (2013), 105-

112.
[14] Hamilton, W. R., Lectures on quaternions, Hodges and Smith, Dublin, 1853.
[15] Horadam, A. F., A generalized Fibonacci sequence, The American Math. Monthly 68 (1961),

455-459.
[16] Horadam, A. F., Complex Fibonacci numbers and Fibonacci quaternions, The American

Math. Monthly 70 (1963), 289-291.
[17] Horadam, A. F., Basic properties of a certain generalized sequence of numbers, The Fibonacci

Quart. 3 (1965), 161-176.
[18] Horadam, A. F., Pell identities, The Fibonacci Quart. 9 (1971), 245-252.
[19] Horadam, A. F., Jacobsthal representation numbers, The Fibonacci Quart. 34 (1996), 40-54.
[20] Ipek, A., On (p, q)-Fibonacci quaternions and their Binet formulas, generating functions and

certain binomial sums, Adv. Appl. Cliff ord Algebras 27 (2017), 1343-1351.
[21] Iyer, M. R., A note on Fibonacci quaternions, The Fibonacci Quart. 7 (1969), 225-229.
[22] Jhala, D., Sisodiya, K. and Rathore, G. P. S., On some identities for k-Jacobsthal numbers,

Int. J. Mathematical Analysis 7 (2013), 551-556.
[23] Kosal, I. A., A note on hyperbolic quaternions, Universal Journal of Mathematics and Ap-

plications 1 (2018), 155-159.
[24] Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New

York, 2001.
[25] Mac-Farlane, A., Hyperbolic quaternions, Proc. Roy. Soc. Edinburg 23 (1902), 169-180.
[26] Patel, B. K. and Ray, P. K., On the properties of (p, q)-Fibonacci and (p, q)-Lucas quaternions,

Mathematical Reports 21 (2019), 15-25.
[27] Polatli, E., Kizilates, C. and Kesim, S., On split k-Fibonacci and k-Lucas quaternions, Adv.

Appl. Cliff ord Algebras 26 (2016), 353-362.
[28] Ramirez, J. L., Some combinatorial properties of the k-Fibonacci and the k-Lucas quater-

nions, An. St. Univ. Ovidius Constanta 23 (2015), 201-212.
[29] Ribenboim, P., My Numbers, My Friends: Popular Lectures on Number Theory, Springer-

Verlag, New York, 2000.



890 TÜLAY YAǦMUR
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ON THE INTUITIONISTIC FUZZY PROJECTIVE MENELAUS
AND CEVA’S CONDITIONS

ZIYA AKÇA, AYŞE BAYAR, AND SÜHEYLA EKMEKÇI

Abstract. In this work, the intuitionistic fuzzy versions of Menelaus and
Ceva’s theorems in intuitionistic fuzzy projective plane are defined and the
conditions to the intuitionistic fuzzy versions of Menelaus and Ceva 6-figures
are determined.

1. Introduction

Ceva’s and Menelaus theorems are two classic theorems in plane geometry. The
main question of these theorems is to determine conditions under which three points
are collinear and conditions under which three lines are concurrent. Ceva’s theorem
characterizes the concurrency of lines and Menelaus’s theorem characterizes the col-
linearity of points. Kelly B. Funk [9] gave Menelaus and Ceva theorems in projective
planes P2(F ) where F is the field of characteristic not equal to two. The definitions
of the original Menelaus and Ceva 6−figures are given in [3, 9].
After the introduction of Fuzzy set theory by Zadeh [15] several researches were

conducted on generalizations of fuzzy theory.
A model of fuzzy projective geometries was introduced by Kuijken and Van

Maldeghem [14]. This provided a link between the fuzzy versions of classical theories
that are very closely related some basic results on fuzzy projective geometries are
published in [1, 2, 5, 8]. Fiber geometry that is a particular kind of fuzzy geometries
is introduced by Kuijken and Van Maldeghem. In these geometry, the points and
lines of the base geometry mostly have multiple degrees of membership. The fibered
version of Menelaus and Ceva’s 6-figures was studied in [6].
Intuitionistic fuzzy set theory was firstly published by Atanassov [4]. A model

of intuitionistic fuzzy projective geometry and the link between fibered and intu-
itionistic fuzzy projective geometry were given by Ghassan E. Arif [10].
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In the present paper, intuitionistic fuzzy projective Menelaus and Ceva’s condi-
tions in the intuitionistic fuzzy projective plane with base plane that is projective
plane are given.

2. Preliminaries

We firstly recall the basic notions from the theory of projective geometry, fuzzy
projective geometry and intuitionistic fuzzy projective geometry. We assume that
the reader is familiar with the basic notions of fuzzy mathematics, although this is
not strictly necessary as the paper is self-contained in this respect.
We denote by ∧ and ∨, minimum and maximum operators respectively.

Definition 1. Let P = (P,B,∼) be any projective plane with point set P and line
set B, i.e., P and B are two disjoint sets endowed with a symmetric relation ∼
(called the incidence relation) such that the graph (P ∪ B,∼) is a bipartite graph
with classes P and B, and such that two distinct points p, q in P are incident with
exactly one line (denoted by 〈pq〉), every two distinct lines L,M are incident with
exactly one point (denoted by L∩M), and every line is incident with at least three
points. A set S of collinear points is a subset of P each member of which is incident
with a common line L. Dually, one defines a set of concurrent lines [5].

Definition 2. (see [15])A fuzzy set λ of a set X is a function λ : X → [0, 1].

Definition 3. (see [4]) Let X be a nonempty fixed set. An intuitionistic fuzzy set
A on X is an object having the form

A = {〈x, λ(x), µ(x)〉 : x ∈ X}
where the function λ : X → I and µ : X → I denote the degree of membership
(namely, λ(x)) and the degree of nonmembership (namely, µ(x)) of each element
x ∈ X to the set A, respectively, and 0 ≤ λ(x) + µ(x) ≤ 1 for each x ∈ X. An
intuitionistic fuzzy set A = {〈x, λ(x), µ(x)〉 : x ∈ X} can be written in the A =
{〈x, λ, µ〉 : x ∈ X}, or simply A = 〈λ, µ〉.

Definition 4. (see [10]) An intuitionistic fuzzy set A = {〈x, λ(x), µ(x)〉 : x ∈ X} on
n -dimensional projective space S is an intuitionistic fuzzy n−dimensional projective
space on S if λ(p) ≥ λ(q) ∧ λ(r) and µ(p) ≤ µ(q) ∨ µ(r), for any three collinear
points p, q, r of A we denoted [A,S].
The projective space S is called the base projective space of [A,S] if [A,S] is

an intuitionistic fuzzy point, line, plane, . . . ,we use base point, base line, base
plane,. . . , respectively.

Definition 5. (see [10]) Consider the projective plane P = (P,B,∼). Suppose
a ∈ P and α, α′ ∈ [0, 1]. The IF-point (a, α, α′) is the following intuitionistic fuzzy
set on the point set P of P:

(a, α, α′) : P → [0, 1] :

{
a→ α, a→ α′

x→ 0 if x ∈ P\{a}.
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The point a is called the base point of the IF-point (a, α, α′). An IF-line
(L,α, α′) with base line L is defined in a similar way.
The IF-lines (L,α, α′) and (M,β, β′) intersect in the unique IF- point (L ∩

M,α ∧ β, α′ ∨ β′). The IF-points (a, α, α′) and (b, β, β′) span the unique IF-line
(〈a, b〉, α ∧ β, α′ ∨ β′).

Definition 6. (see [10]) Suppose P is a projective plane P = (P,B,∼). The intu-
itionistic fuzzy set Z = 〈λ, µ〉 on P ∪B is an intuitionistic fuzzy projective plane
on P denoted by IFP if
1) λ(L) ≥ λ(p) ∧ λ(q) and µ(L) ≤ µ(p) ∨µ(q), ∀p, q: 〈p, q〉 = L
2) λ(p) ≥ λ(L) ∧ λ(M) and µ(p) ≤ µ(L) ∨µ(M), ∀L,M : L ∩M = p.

Theorem 7. (see [7]) Suppose we have an intuitionistic fuzzy projective plane IFP
with base plane P that is Desarguesian. Choose three IF-points (ai, αi, α′i), i ∈
{1, 2, 3}with noncollinear base points, and three other points (bi, βi, β′i), i ∈ {1, 2, 3}
with noncollinear base points, such that the f-lines (〈ai, bi〉, αi ∧ βi, α′i ∨ β

′
i), for i ∈

{1, 2, 3}, meet in an IF-point (p, γ, η) of IFP, with ai 6= bi 6= p 6= ai. Then the three
IF-points (c{i,j}, γ{i,j}, γ′{i,j}) obtained by intersecting (〈ai, aj〉, αi∧αj , α′i∨α′j) and
(〈bi, bj〉, βi ∧ βj , β′i ∨ β′j), for i 6= j and i, j ∈ {1, 2, 3}), are collinear.

Theorem 8. (see [7]) Suppose we have an intuitionistic fuzzy projective plane IFP
with Pappian base plane P. Choose two different lines L1 and L2 in P. Choose
two triples of IF−points (ai, αi, α′i) and (bi, βi, β

′
i) with ai on L1 and bi on L2,

i = 1, 2, 3 and such that no three of the base points a1, a2, b1, b2 are collinear.
Then the three intersection IF−points (c1, γ1, γ′1) = (a2b3 ∩ a3b2, α2 ∧ α3 ∧ β2 ∧
β3, α

′
2∨α′3∨β′2∨β′3), (c2, γ2, γ′2) = (a1b3∩a3b1, α1∧α3∧β1∧β3, α′1∨α′3∨β′1∨β′3)

and (c3, γ3, γ
′
3) = (a1b2 ∩ a2b1, α1 ∧ α2 ∧ β1 ∧ β2, α′1 ∨ α′2 ∨ β′1 ∨ β′2) are collinear.

Definition 9. ( see [11]) Let P be a projective plane. A 6−figure in P is a se-
quence of six distinct points (a1a2a3 , b1b2b3) such that a1a2a3 constitutes a non-
degenerate triangle with b1 ∈ 〈a2, a3〉 , b2 ∈ 〈a1, a3〉 , b3 ∈ 〈a1, a2〉. The points
a1, a2, a3, b1, b2, b3 are called vertices of this 6−figures. Such a configuration is said
to be a Menelaus 6−figure or a Ceva 6−figure if b1, b2 and b3 are collinear or if
〈a1, b1〉 , 〈a2, b2〉 , 〈a3, b3〉 are concurrent, respectively.

Definition 10. ( see [6]) Let FP be a fibered projective plane with base plane P.
Choose three f−points (ai, αi), i ∈ {1, 2, 3} in FP with non collinear base points
and the other three f−points (bk, βk), k ∈ {1, 2, 3}with (bk, βk) ∈ (〈ai, aj〉 , αi ∧αj)
for i 6= j 6= k, {i, j, k} = {1, 2, 3}. If the f−points (bk, βk) are f−collinear, the
configuration that consists of these six f−points is called an f−Menelaus 6−figure.
It is called f−Menelaus line spanned with f−points (bk, βk) for k = {1, 2, 3}.

Theorem 11. ( see [6]) Let FP be a fibered projective plane with base plane P.
Choose three f−points (ai, αi), i ∈ {1, 2, 3} in FP with non collinear base points
and the other three f-points (bk, βk), k ∈ {1, 2, 3}with (bk, βk) ∈ (〈ai, aj〉 , αi∧αj) for
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i 6= j 6= k, {i, j, k} = {1, 2, 3}. The configuration that consists of these six f−points
is Menelaus 6−figure if and only if α21 ∧ α2 ∧ α3 = α1 ∧ α22 ∧ α3 = α1 ∧ α2 ∧ α23.

Corollary 12. ( see [6]) Let FP be a fibered projective plane with base plane P.
Choose three f−points (ai, αi), i ∈ {1, 2, 3} in FP with non collinear base points
and the other three f-points (bk, βk), k ∈ {1, 2, 3} with (bk, βk) ∈ (〈ai, aj〉 , αi∧αj)
for i 6= j 6= k, {i, j, k} = {1, 2, 3}. The configuration that consists of these six
f−points is Ceva 6−figure iff α21 ∧ α2 ∧ α3 = α1 ∧ α22 ∧ α3 = α1 ∧ α2 ∧ α23.

We view Menalaus and Ceva’s theorem in projective plane and extend them
IFP, intuitionistic fuzzy projective plane.

Theorem 13. Suppose we have an intuitionistic fuzzy projective plane IFP with
base plane P. Let a1, a2, a3 be three non-collinear points in P and be

(a1, α1, α
′
1), (a2, α2, α

′
2), (a3, α3, α

′
3)

be three points of IFP. Suppose that the point b3 on 〈a1, a2〉 is obtained by inter-
secting 〈a1, a2〉 with the join of two chosen points b1and b2 where b1 on 〈a2, a3〉 and
b2 on 〈a1, a3〉. Then the point (b3, β3, β′3) obtained by intersecting (〈a1, a2〉 , α1 ∧
α2, α

′
1 ∨ α′2) with the join of the two points (b1, β1, β′1) and (b2, β2, β′2), where

(b1, β1, β
′
1), (a2, α2, α

′
2), (a3, α3, α

′
3) and (b2, β2, β

′
2), (a1, α1, α

′
1), (a3, α3, α

′
3) are col-

linear, is independent of the chosen points (b1, β1, β
′
1) and (b2, β2, β

′
2).

Proof. In IFP, since the three points (b2, β2, β′2), (a1, α1, α′1), (a3, α3, α′3) and the
three points

(b1, β1, β
′
1), (a2, α2, α

′
2), (a3, α3, α

′
3)

are collinear,
α1 ∧ α3 = α1 ∧ β2 = α3 ∧ β2
α′1 ∨ α′3 = α′1 ∨ β′2 = α′3 ∨ β′2

and
α2 ∧ α3 = α2 ∧ β1 = α3 ∧ β1
α′2 ∨ α′3 = α′2 ∨ β′1 = α′3 ∨ β′1.

One can easily calculate that β3 = α1 ∧ α2 ∧ α23 and β′3 = α′1 ∨ α′2 ∨ α2′3 . It is seen
that the point (b3, β3, β

′
3) is independent of the choice of the points (b1, β1, β

′
1) and

(b2, β2, β
′
2). �

Theorem 14. Let an intuitionistic fuzzy projective plane with base plane P be
IFP. Let three points in this plane no three base points of which are collinear
be (a1, α1, α′1), (a2, α2, α

′
2), (a3, α3, α

′
3). If the point (b3, β3, β

′
3) be obtain by in-

tersecting of the lines (〈a1, a2〉 , α1 ∧ α2, α′1 ∨ α′2) and (〈b1, b2〉 , β1 ∧ β2, β′1 ∨ β′2),
where (b1, β1, β

′
1), (a2, α2, α

′
2), (a3, α3, α

′
3) and (b2, β2, β

′
2), (a1, α1, α

′
1), (a3, α3, α

′
3)

are collinear, then the configuration that consists of the six points

(ai, αi, α
′
i), (bi, βi, β

′
i), i ∈ {1, 2, 3}

is an intuitionistic fuzzy Menelaus 6−figure.
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Proof. Since the three points (bi, βi, β
′
i), i ∈ {1, 2, 3} are collinear, from Definition

9 the configuration that consists of the six points (ai, αi, α′i), (bi, βi, β
′
i), i ∈ {1, 2, 3}

is an intuitionistic fuzzy Menelaus 6−figure. �
Theorem 15. Let IFP be an intuitionistic fuzzy projective plane with base plane
P. Choose three points (ai, αi, α′i), i ∈ {1, 2, 3} in IFP with non collinear base
points and with (bj , βj , β

′
j) ∈ (〈ai, ak〉 , αi ∧ αk, α′i ∨ α′k) for i 6= j 6= k, {i, j, k} =

{1, 2, 3}. If b1, b2 and b3 in P are collinear, then the three points (bj , βj , β′j), j ∈
{1, 2, 3} are collinear if and only if α21 ∧α2 ∧α3 = α1 ∧α22 ∧α3 = α1 ∧α2 ∧α23 and
α′21 ∨ α′2 ∨ α′3 = α′1 ∨ α′22 ∨ α′3 = α′1 ∨ α′2 ∨ α′23 .
Proof. A configuration is picked such that three points

(a1, α1, α
′
1), (a2, α2, α

′
2), (a3, α3, α

′
3)

and

(bj , βj , β
′
j) ∈ (〈ai, ak〉 , αi ∧ αk, α′i ∨ α′k) for i 6= j 6= k, {i, j, k} = {1, 2, 3}.

Suppose the three points (bj , βj , β
′
j), j ∈ {1, 2, 3} be collinear. Since three points

(bj , βj , β
′
j) are collinear and the three points (ai, αi, α

′
i), (aj , αj , α

′
j) and (bk, βk, β

′
k),

for i 6= j 6= k, {i, j, k} = {1, 2, 3} are collinear βi ∧ βj = βi ∧ βk, β′i ∨ β′j = β′i ∨ β′k
and αi ∧ αj = αi ∧ βk = αj ∧ βk, α′i ∨ α′j = α′i ∨ β

′
k = α′j ∨ β

′
k. Then it is seen that

α21 ∧ α2 ∧ α3 = α1 ∧ α22 ∧ α3 = α1 ∧ α2 ∧ α23 and α′21 ∨ α′2 ∨ α′3 = α′1 ∨ α′22 ∨ α′3 =
α′1 ∨ α′2 ∨ α′23 .
Conversely, if α21 ∧ α2 ∧ α3 = α1 ∧ α22 ∧ α3 = α1 ∧ α2 ∧ α33 and α′21 ∨ α′2 ∨ α′3 =

α′1 ∨ α′22 ∨ α′3 = α′1 ∨ α′2 ∨ α′23 are satisfied, β1 ∧ β2 = β1 ∧ β3 = β2 ∧ β3 and
β′1 ∨ β′2 = β′1 ∨ β′3 = β′2 ∨ β′3. Then three points (bi, βi, β

′
i), i ∈ {1, 2, 3} are

collinear. �
Corollary 16. The intuitionistic fuzzy projective Menelaus condition
(IFPMC): Let IFP be an intuitionistic fuzzy projective plane with base plane P.
Choose three points (a1, α1, α′1), (a2, α2, α

′
2) and (a3, α3, α

′
3) in IFP with non colli-

near base points and the other three points (bk, βk, β
′
k), k ∈ {1, 2, 3}with (bk, βk, β′k) ∈

(〈ai, aj〉 , αi ∧αj , α′i ∨α′j) for i 6= j 6= k, {i, j, k} = {1, 2, 3}. The configuration that
consists of these six points is Menelaus 6−figure if and only if α21 ∧ α2 ∧ α3 =
α1 ∧ α22 ∧ α3 = α1 ∧ α2 ∧ α23 and α′21 ∨ α′2 ∨ α′3 = α′1 ∨ α′22 ∨ α′3 = α′1 ∨ α′2 ∨ α′23 .
Definition 17. Let IFP be an intuitionistic fuzzy projective plane with base plane
P. Choose three points (ai, αi, α′i), i ∈ {1, 2, 3} in IFP with non collinear base
points and the other three points (bk, βk, β

′
k), k ∈ {1, 2, 3} with

(bk, βk, β
′
k) ∈ (〈ai, aj〉 , αi ∧ αj , α′i ∨ α′j) for i 6= j 6= k, {i, j, k} = {1, 2, 3}.

If the lines (〈ai, bi〉 , αi∧βi, α′i∨β
′
i), i = 1, 2, 3 are concurrent, the configuration that

consists of these six points is called an intuitionistic fuzzy Ceva 6−figure. The inter-
section point of the lines (〈ai, bi〉 , αi ∧ βi, α′i ∨ β

′
i), i = 1, 2, 3 is called intuitionistic

fuzzy Ceva point.
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Theorem 18. Suppose we have an intuitionistic fuzzy projective plane IFP with
base plane P. Let a1, a2, a3 be three non-collinear points in P and be

(a1, α1, α
′
1), (a2, α2, α

′
2) and (a3, α3, α

′
3)

be three points of IFP. Let points b1and b2 be chosen such that b1 on 〈a2, a3〉
and b2 on 〈a1, a3〉. Suppose that the point b3 on 〈a1, a2〉 is obtained by intersecting
〈a1, a2〉 with the join (〈a1, b1〉 ∩ 〈a2, b2〉) and a3. Then the point (b3, β3, β′3) ob-
tained by intersecting (〈a1, a2〉 , α1 ∧ α2, α′1 ∨ α′2) with the join of the two points
(〈a1, b1〉 , α1 ∧ β1, α′1 ∨ β′1) ∩ (〈a2, b2〉 , α2 ∧ β2, α′2 ∨ β′2) and (a3, α3, α′3), where
(b1, β1, β

′
1), (a2, α2, α

′
2), (a3, α3, α

′
3) and (b2, β2, β

′
2), (a1, α1, α

′
1), (a3, α3, α

′
3) are col-

linear, and independent of the chosen points (b1, β1, β
′
1) and (b2, β2, β

′
2).

Proof. Since three points(a1, α1, α′1), (a3, α3, α
′
3),(b2, β2, β

′
2) and three points

(b1, β1, β
′
1), (a2, α2, α

′
2), (a3, α3, α

′
3)

are collinear,

α1 ∧ α3 = α1 ∧ β2 = α3 ∧ β2 and α2 ∧ α3 = α2 ∧ β1 = α3 ∧ β1
α′1 ∨ α′3 = α′1 ∨ β′2 = α′3 ∨ β′2 and α′2 ∨ α′3 = α′2 ∨ β′1 = α′3 ∨ β′1.

One calculates that β3 = α1 ∧ α2 ∧ α23 and β′3 = α′1 ∨ α′2 ∨ α2′3 hence the point
(b3, β3, β

′
3) is independent of the chosen of the points (b1, β1, β

′
1) and (b2, β2, β

′
2).
�

Theorem 19. Let IFP be an intuitionistic fuzzy projective plane with base plane
P. Choose three points (ai, αi, α′i), i ∈ {1, 2, 3} in IFP with non collinear base
points and with (bj , βj , β

′
j) ∈ (〈ai, ak〉 , αi ∧ αk, α′i ∨ α′k) for i 6= j 6= k, {i, j, k} =

{1, 2, 3}. If the lines 〈a1, b1〉 , 〈a2, b2〉 and 〈a3, b3〉 in P are concurrent, then three
lines (〈ai, bi〉 , αi∧βi, α′i∨β

′
i), for i ∈ {1, 2, 3} are concurrent if and only if α21∧α2∧

α3 = α1 ∧α22 ∧α3 = α1 ∧α2 ∧α23 and α′21 ∨α′2 ∨α′3 = α′1 ∨α′22 ∨α′3 = α′1 ∨α′2 ∨α′23 .

Proof. A configuration is chosen such that three points(a1, α1, α′1), (a2, α2, α
′
2) and

(a3, α3, α
′
3) and (bj , βj , β

′
j) ∈ (〈ai, ak〉 , αi ∧ αk, α′i ∨ α′k) for i 6= j 6= k, {i, j, k} =

{1, 2, 3}. Suppose three lines (〈ai, bi〉 , αi∧βi, α′i∨β
′
i), for i ∈ {1, 2, 3} are concurrent.

Then three membership degree pairs in concurrent point αi ∧ αj ∧ βi ∧ βj and
α′i ∨α′j ∨β

′
i ∨β′j , i 6= j, {i, j} = {1, 2, 3} are equal. Since three points (bj , βj , β′j) ∈

(〈ai, ak〉 , αi∧αk, α′i∨α′k), αi∧αj = αi∧βk = αj∧βk and α′i∨α′j = α′i∨β
′
k = α′j∨β

′
k

for i 6= j 6= k, {i, j, k} = {1, 2, 3} are valid. One can easily get α21 ∧ α2 ∧ α3 =
α1 ∧ α22 ∧ α3 = α1 ∧ α2 ∧ α23 and α′21 ∨ α′2 ∨ α′3 = α′1 ∨ α′22 ∨ α′3 = α′1 ∨ α′2 ∨ α′23 .
Conversely, by using points (bj , βj , β

′
j), (ai, αi, α

′
i) and (ai, αk, α

′
k) are collinear

for i 6= j 6= k, {i, j, k} = {1, 2, 3} in α21 ∧α2 ∧α3 = α1 ∧α22 ∧α3 = α1 ∧α2 ∧α23 and
α′21 ∨ α′2 ∨ α′3 = α′1 ∨ α′22 ∨ α′3 = α′1 ∨ α′2 ∨ α′23 it is shown that three pair of values
αi ∧ αj ∧ βi ∧ βj and α′i ∨ α′j ∨ β

′
i ∨ β′j , i 6= j, {i, j} = {1, 2, 3} are equal. �
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Corollary 20. (The intuitionistic fuzzy projective Ceva condition(IFPCC))
Let FP be an intuitionistic fuzzy projective plane with base plane P. Choose three
points (ai, αi, α′i), i ∈ {1, 2, 3} in IFP with non collinear base points and the other
three points (bk, βk, β

′
k), k ∈ {1, 2, 3} with (bk, βk, β

′
k) ∈ (〈ai, aj〉 , αi ∧αj , α′i ∨α′j)

for i 6= j 6= k, {i, j, k} = {1, 2, 3}. The configuration that consists of these six
points is Ceva 6−figure iff α21 ∧ α2 ∧ α3 = α1 ∧ α22 ∧ α3 = α1 ∧ α2 ∧ α23 and
α′21 ∨ α′2 ∨ α′3 = α′1 ∨ α′22 ∨ α′3 = α′1 ∨ α′2 ∨ α′23 .

The following theorem show that intuitionistic fuzzy Ceva 6−figures can be
obtained as a corollary of intuitionistic fuzzy Menelaus 6−figures.

Theorem 21. Let IFP be an intuitionistic fuzzy projective plane with base plane
P. Choose three points (ai, αi, α′i), i ∈ {1, 2, 3} in IFP with non collinear base
points and the other three points (bk, βk, β

′
k), k ∈ {1, 2, 3} with (bk, βk, β′k) ∈

(〈ai, aj〉 , αi ∧αj , α′i ∨α′j) for i 6= j 6= k, {i, j, k} = {1, 2, 3}, three lines 〈ai, bi〉 are
concurrent in P. If the configuration that consists of these six points is intuition-
istic fuzzy Menelaus 6−figure, it is intuitionistic fuzzy Ceva 6−figure.

Proof. Let the configuration chosen such that three points (a1, α1, α′1), (a2, α2, α
′
2)

and (a3, α3, α′3) and (bj , βj , β
′
j) ∈ (〈ai, ak〉 , αi∧αk, α′i∨α′k) for i 6= j 6= k, {i, j, k} =

{1, 2, 3} be intuitionistic fuzzy Menelaus 6−figure. Three membership degree pairs
in intersection point of three lines (〈ai, bi〉 , αi ∧ βi, α′i ∨ β

′
i) are αi ∧ αj ∧ βi ∧ βj

and α′i ∨α′j ∨β
′
i ∨β′j , i 6= j, {i, j} = {1, 2, 3}. It is easily seen that these are equal.

So three lines (〈ai, bi〉 , αi ∧ βi, α′i ∨ β
′
i) for i ∈ {1, 2, 3} are concurrent. �

The reverse of this theorem isn’t true in IFP .
Fano projective plane, denoted by PG(2, 2), consists seven points and seven

lines. Fano projective plane is only example that is both Menelaus 6−figure and
Ceva 6−figure. Even if the base plane P of IFP is Fano plane, the reverse of the
process is not always valid in IFP.

Theorem 22. Let ∧ and ∨be a triangular norm and conorm, respectively. Let
IFP be any nontrivial intuitionistic fuzzy projective plane with base plane P that
is Fano plane. Let three points be (ai, αi, α′i), i ∈ {1, 2, 3} in IFP with non colline-
ar base points and the other three points (bk, βk, β

′
k), k ∈ {1, 2, 3} with (bk, βk, β′k) ∈

(〈ai, aj〉 , αi ∧αj , α′i ∨α′j) for i 6= j 6= k, {i, j, k} = {1, 2, 3}, three lines 〈ai, bi〉 are
concurrent in P. If the configuration that consists of these six points is intuitionistic
fuzzy Ceva 6−figure, it can not be intuitionistic fuzzy Menalaus 6−figure.

Proof. The configuration picked such that points

(a1, 0.5, 0.5), (a2, 0.5, 0.5), (a3, 0, 5, 0.5) and (b1, 0.6, 0.4), (b2, 0.7, 0.3), (b3, 0.8, 0.2)

is Ceva 6−figure in IFP. But, using the minimum and maximum operators for
∧ and ∨, it is easily seen that the points (b1, 0.6, 0.4), (b2, 0.7, 0.3) and (b3, 0.8, 0.2)
are not collinear. �
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Conclusion 23. In this study, the intuitionistic fuzzy versions of Menelaus and
Ceva 6-figures in intuitionistic fuzzy projective plane are given. So, the obtained
conditions and results for the intuitionistic fuzzy versions of Menelaus and Ceva
will contribute to the intuitionistic fuzzy projective geometry. While the fibered and
fuzzy versions of some classical results in projective planes by using t-norm are
given, the intuitionistic fuzzy versions of these theorems include both t-norm and
conorm. It seen that the triangular norms and conorms have important role in the
intuitionistic fuzzy versions of theorems related to theory.
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ALTERNATIVE PARTNER CURVES IN THE EUCLIDEAN
3−SPACE

BEYHAN YILMAZ AND AYKUT HAS

Abstract. In the present paper, a new type of special curve couple which are
called WC∗−partner curves are introduced according to alternative moving
frame {N,C,W}. The distance function between the corresponding points of
reference curve and its partner curve is obtained. Besides, the angle function
between the vector fields of alternative frame of the curves is expressed by
means of alternative curvatures f and g. In addition to these, various charac-
terizations are obtained related to these curves.

1. Introduction

The curves are the fundamental structure of differential geometry. Numerous
studies of curves are carried out in 3−dimensional Euclidean space. Two curves
which have some special properties at their corresponding points are called curve
pairs. Hence, curve pairs are attracted the attention of many researchers [1, 2, 3, 13].
The most famous types of curve pairs are Bertrand partner curves. The Bertrand
curves were firstly described by Bertrand Russell in 1850. These curves have the
common principal normal vector. The classic characterization for Bertrand curves
is that a regular curve α in E3 is the Bertrand curve if and only if aκ(s)+ bτ(s) = 1
holds [7]. The other famous curve pair are the Mannheim partner curves. These
curves are defined by Mannheim with the equality κ2+τ2 = w2 =constant. Another
characterization can be made as two curves α and β in E3 which are called Manneim
partner curves if the principal normal vector fields of α coincide with the binormal
vector fields of β at the corresponding points of curves [5, 6, 12, 14].
This paper is expected to define a new kind of curve pairs which are called

WC∗−partner curves and give various characterization of these curves. For this
purpose, an alternative frame on original curve is used and another curve is defined
using this frame. First of all, a brief summary of curve theory and alternative frame
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are presented. Afterwards, the definition and main characterizations corporated to
distance function and angle function of WC∗−partner curves are introduced.

2. Preliminaries

Let α = α(s) be a regular unit speed curve in the Euclidean 3−space where s

measures its arc length. Also, let T = α
′
be its unit tangent vector, N =

T
′

‖T ′‖
be its principal normal vector and B = T × N be its binormal vector. The triple
{T,N,B} be the Frenet frame of the curve α. Then the Frenet formula of the curve
is given by  T ′(s)

N ′ (s)
B′(s)

 =

 0 κ (s) 0
−κ (s) 0 τ (s)

0 −τ (s) 0

 T (s)
N (s)
B (s)

 (2.1)

where κ (s) and τ (s) are curvature and torsion of α, respectively [10]. Also, the
geodesic curvature of spherical image of principal normal indicatrix of a space curve
α is given

σ =
κ2

(κ2 + τ2)3/2
(
τ

κ
)
′
.

If we reconstruct the above equation via the harmonic curvature function H which
is introduced by Özdamar in [8], we can easily see that

σ =
H ′

κ(1 +H2)3/2
, H =

τ

κ
.

From the equation (2.1), the unit Darboux vector W of α is as follows

W =
1√

κ2 + τ2
(τT + κB). (2.2)

It is obvious that the Darboux vector is vertical to the principal normal vector field
N from equation (2.2). With the help of the vector fields W and N , along α(s),
C = W × N unit vector field is defined. These three orthogonal vectors creates
a new frame defined by Uzunoğlu et al. in [11]. This frame is designation by
{N,C,W} and alternative frame to curve rather than the Frenet frame {T,N,B}.
The alternative frame and derivative formula of the alternative frame are given by N

C
W

 =


0 1 0
−κ√
κ2 + τ2

0
τ√

κ2 + τ2
τ√

κ2 + τ2
0

κ√
κ2 + τ2


 T

N
B

 , (2.3)

and  N ′

C ′

W ′

 =

 0 f 0
−f 0 g
0 −g 0

 N
C
W

 , (2.4)
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where

f = κ
√

1 +H2, g =
H
′

1 +H2
.

Since the principal normal vector N is common in both frames, following equations
are available from the equations (2.1), (2.2) and (2.4) ,

C = −
_
κT +

_
τB (2.5)

W =
_
τT +

_
κB

and

T = −
_
κC +

_
τW (2.6)

B =
_
τC +

_
κW

where
_
κ =

κ

f
and

_
τ =

τ

f
.

A regular curve α is called a helix if the tangent lines of the curve makes a
constant angle with a fixed direction. This curve is characterized by the property
that

τ

κ
is constant [4]. If the principal normal lines of the curve makes a constant

angle with a fixed direction, then the curve is called a slant helix and characterized
by the equally

g

f
=

H
′

κ(1 +H2)3/2
= σ

is constant [11]. Then the characterization of a slant helix according to alternative
frame is given as follows.

Remark 1. A regular curve α(s) according to alternative frame {N,C,W} with

alternative curvatures f and g is a slant helix if and only if
g(s)

f(s)
= constant [11].

3. ALTERNATIVE PARTNER CURVES IN THE EUCLIDEAN
3−SPACE

This section aims to define a new type of partner curves by considering alterna-
tive frame and find some characterizations for these curves corporated to distance
function between the corresponding points of the curves, curvatures of the curves
and angle function.

Definition 1. Let α = α(s) and α∗ = α∗(s∗) be two regular space curves parameter-
ized by its arc length s and s∗ with Frenet frames {T,N,B}, {T ∗, N∗, B∗} , curva-
tures κ, κ∗ and torsions τ , τ∗ respectively in the Euclidean 3−space. Also, let the al-
ternative moving frames and alternative curvatures of curves be {N,C,W} , f, g and
{N∗, C∗,W ∗} , f∗, g∗, respectively. The curves α and α∗ are called WC∗−partner
curves if the vector fields W and C

∗
coincide i.e., W = C∗ holds at the correspond-

ing points of the curves.
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From Definition 1, we can easily write the parametric representation of α∗(s∗)
as follows

α∗(s∗) = α(s) + λ(s)W (s) (3.1)

where λ = λ(s) is the distance function between corresponding points of the curves
α and α∗. Because the vector fields W and C∗ are the equal, we can represent the
relationship between the alternative frames of α and α∗. If θ = θ(s) is the angle
function between vector fields N and W ∗, the following equations are obtained
thanks to axis rotation equations. N∗

C∗

W ∗

 =

 cos(90− θ) sin(90− θ) 0
0 0 1

− sin(90− θ) cos(90− θ) 0

 N
C
W


N∗ = sin θN + cos θC (3.2)

W ∗ = − cos θN + sin θC

and

N = sin θN∗ − cos θW ∗ (3.3)

C = cos θN∗ + sin θW ∗.

Theorem 1. Let {α, α∗} be WC∗−partner curves according to alternative frame
in Euclidean 3−space. The distance function λ = λ(s) between the corresponding
points of the α and α∗ is as follows,

λ(s) = − κ

fg
.

Proof. If we take derivative of the equation (3.1) according to s, we get

T ∗
ds∗

ds
= T + λ

′
W + λW ′.

Using the equations (2.6) and (3.3) , we obtain that

(−
_
κ
∗
C∗ +

_
τ
∗
W ∗)

ds∗

ds
= −(

_
κ + λg) cos θN∗ + (

_
τ + λ

′
)C∗ − (

_
κ + λg) sin θW ∗.

If we consider the above equalities, we can easily see that

λ(s) = − κ

fg
.

�

Theorem 2. Let {α, α∗} beWC∗−partner curves in Euclidean 3−space. {N,C,W, f, g}
and {N∗, C∗,W ∗, f∗, g∗} are the alternative frame elements of the curves α and α∗,
respectively. Then the following relation exists among curvatures.

g∗

f∗
= − tan θ = constant and (f∗)2 + (g∗)2 = g2
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Proof. Since {α, α∗} is the WC∗−partner curves, W = C∗ and their derivatives
are equal.

(C∗)′ = −f∗N∗ + g∗W ∗,

W ′ = −gC.

From the last equation and equation (3.3) , we have

−f∗N∗ + g∗W ∗ = −g(cos θN∗ + sin θW ∗)

f∗ = g cos θ,

g∗ = −g sin θ.

So, we obtain that

g∗

f∗
= − tan θ

and
(f∗)2 + (g∗)2 = g2.

�

Theorem 3. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. θ = θ(s)
be the angle function between vector fields N and W ∗. Then the following relation
exists.

θ =

s∫
0

fds, s =

s∗∫
0

f∗

g cos θ
ds∗

Proof. From the equation (3.2) , we have

N∗ = sin θN + cos θC

If we take the derivative of each side of the above equation according to s, we obtain

dN∗

ds∗
ds∗

ds
= cos θ

dθ

ds
N + sin θN ′ − sin θ

dθ

ds
C + cos θC ′

f∗C∗
ds∗

ds
= cos θ

dθ

ds
N + sin θ(fC)− sin θ

dθ

ds
C + cos θ(−fN + gW )

Because {α, α∗} is the WC∗−partner curves, we have

f∗W
ds∗

ds
= (cos θ

dθ

ds
− f cos θ)N + (f sin θ − sin θ

dθ

ds
)C + g cos θW

f∗
ds∗

ds
= g cos θ and s =

s∗∫
0

f∗

g cos θ
ds∗.
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Also, from f sin θ − sin θ
dθ

ds
= 0 and cos θ

dθ

ds
− f cos θ = 0, we get f =

dθ

ds
and

θ =

s∫
0

fds.

�

Theorem 4. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. α∗ is a
helix if and only if

(
_
κ + λg) sin θ

(
_
τ + λ′)

is constant.

Proof. If we take the derivative of the equation (3.1) according to parameter s, we
have

T ∗
ds∗

ds
= T + λ

′
W + λW ′

and if we use the equation (2.6) and the alternative frame formulas, we get

(−κ̄∗C∗ + τ̄∗W ∗)
ds∗

ds
= −κ̄C + τ̄W + λ

′
W − λ(gC).

From equation (3.2) and W = C∗,

(−κ̄∗W+ τ̄∗W ∗)
ds∗

ds
= −κ̄(cos θN∗+sin θW ∗)+ τ̄W+λ

′
W−λg(cos θN∗+sin θW ∗)

κ̄∗
ds∗

ds
= −(

_
τ + λ′)

τ̄∗
ds∗

ds
= −(

_
κ + λg) sin θ

and _
τ
∗

_
κ
∗ =

(
_
κ + λg) sin θ

(
_
τ + λ′)

. (3.4)

Because of
_
τ
∗

=
τ∗

f∗
and

_
κ
∗

=
κ∗

f∗
, we know that

_
τ
∗

_
κ
∗ =

τ∗

κ∗
. So, from equation

(3.4) , α∗ is a helix if and only if

(
_
κ + λg) sin θ

(
_
τ + λ′)

is constant. �

Theorem 5. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. α∗ is a
slant helix if and only if

g∗

f∗
= constant
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Proof. If we use the derivative of the alternative frame, we have

dN∗

ds∗
= f∗C∗

and
dW ∗

ds∗
= −g∗C∗.

Using the above two equations, we obtain that

g∗

f∗
= −

dW ∗

ds∗

dN∗

ds∗

.

Also if we take the derivative of the first equality of equation (3.2) according to s,
we get

dN∗

ds∗
ds∗

ds
= cos θ

dθ

ds
N + sin θN ′ − sin θ

dθ

ds
C + cos θC ′,

= cos θ
dθ

ds
N + sin θ(fC)− sin θ

dθ

ds
C + cos θ(−fN + gW ),

=

(
cos θ

dθ

ds
− f cos θ

)
N +

(
f sin θ − sin θ

dθ

ds

)
C + g cos θW(3.5)

From the proof of the Theorem 3, we know that

f =
dθ

ds
. (3.6)

If we use the above equation in (3.5) , we obtain that

dN∗

ds∗
ds∗

ds
= g cos θW. (3.7)

Similarly if we take the derivative of the second equality of equation (3.2) according
to parameter s, we can easily see that

dW ∗

ds∗
ds∗

ds
= sin θ

dθ

ds
N − cos θN ′ + cos θ

dθ

ds
C + sin θC ′,

= sin θ
dθ

ds
N − cos θ(fC) + cos θ

dθ

ds
C + sin θ(−fN + gW ),

=

(
sin θ

dθ

ds
− f sin θ

)
N +

(
−f cos θ + cos θ

dθ

ds

)
C + g sin θW(3.8)

If we use the equation (3.6) in (3.8) , we have

dW ∗

ds∗
ds∗

ds
= g sin θW. (3.9)

By proportioning the equations (3.7) and (3.9) , we get

g∗

f∗
= − tan θ = constant
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�

Theorem 6. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. Then the
following relation exists

g

f
=

f∗

f cos θ

ds∗

ds

Proof. Using alternative frame {N,C,W}, we have
N ′ = fC and W ′ = −gC.

If we calculate the ratio of these two equations, we obtain

g

f
= −W

′

N ′
. (3.10)

From the following equations

dC∗

ds∗
= −f∗N∗ + g∗W ∗ and W = C∗,

we can see that
dW

ds∗
ds∗

ds
= (−f∗N∗ + g∗W ∗)

ds∗

ds
.

Also, from equation (3.2) ,

dW

ds∗
ds∗

ds
= [−f∗(sin θN + cos θC) + g∗(− cos θN + sin θC)]

ds∗

ds

= [(−f∗ sin θ − g∗ cos θ)N + (−f∗ cos θ + g∗ sin θ)C]
ds∗

ds
(3.11)

If we use the equations f∗ = g cos θ and g∗ = −g sin θ in Theorem 2, we obtain

g∗ = −f
∗ sin θ

cos θ

and if we write this equation in (3.11) , we get

dW

ds∗
ds∗

ds
=

[(
−f∗ sin θ +

f∗ sin θ

cos θ
cos θ

)
N +

(
−f∗ cos θ − f∗ sin θ

cos θ
sin θ

)
C

]
ds∗

ds
.

W ′ = − f∗

cos θ

ds∗

ds
C.

Also from the equation (3.10), we have

g

f
= −W

′

N ′
= −
− f∗

cos θ

ds∗

ds
C

fC

g

f
=

f∗

f cos θ

ds∗

ds
.

So this completes the proof. �
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Figure 1. The curve α

Figure 2. WC∗−partner curve of α

Example 1. Let α be spatial curve given by the parametrization ([9])

α(s) = (
9

208
sin 16s− 1

117
sin 36s,

−9

208
cos 16s+

1

117
cos 36s,

6

65
sin 10s).

If the necessary arrangements are made, we obtain the curvatures of α as follows

κ(s) = −24 sin 10s, τ(s) = 24 cos 10s, f(s) = 24, g(s) = 10.

From the Theorem 1, the distance function is obtained as λ(s) =
sin 10s

10
. Then

the WC∗−partner curve α∗ of α is obtained as

α∗(s∗) = α(s) + λ(s)W (s)

α∗(s) = (
9

208
sin 16s− 1

117
sin 36s+

9

130
cos 6s sin 10s− 4

130
cos 46s sin 10s,

−9

208
cos 16s+

1

117
cos 36s+

9

130
sin 6s sin 10s− 4

130
sin 46s sin 10s,
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6

65
sin 10s+

12

130
cos 20s sin 10s).

Figure 1 shows the graph of the curve α and Figure 2 shows the WC∗−partner
curve α∗.
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FORECASTING MORTALITY RATES WITH A GENERAL
STOCHASTIC MORTALITY TREND MODEL

ETKIN HASGÜL, A. SEVTAP KESTEL, AND YELIZ YOLCU-OKUR

Abstract. This paper presents a model, which can closely predict the fu-
ture mortality rates whose effi ciency is performed through the comparisons
with respect to Lee-Carter and mortality trend models. This general model
estimates the logit function of death rate in terms of general tendency of the
mortality evolution independent of age, the mortality steepness, additional
effects of childhood, youth and old age. Generalized linear model (GLM) is
used to estimate the parameters. Moreover, the weighted least square (WLS)
and random walk with drift (RWWD) methods are employed to project the
future values of the parameters. In order to ensure the stability of the outputs
and construct the confidence intervals, Monte Carlo simulation is used. The
impact of the proposed model is implemented on USA, France, Italy, Japan
and Israel mortality rates for both genders based on their ageing structure. A
detailed comparison study is performed to illustrate modified mortality rates
on the net single premiums over mortality trend model and Lee-Carter model.

1. Intoduction

Having well-constructed mortality tables and accurate future mortality rate pro-
jections are important in many areas. In the case of under or over estimation of
the rates, unpredictable losses can be experienced, especially, by the life and pen-
sion companies. For this reason, modeling mortality rates accurately has gained
importance in recent decades, and been used especially to measure the longevity
risk. The future values of the mortality rates are projected by many methods. The
main idea of these studies is to model or systematize mortality rates from the past
to the future so that the actuarial calculations become proper for both present
and the future. In the literature, Lee and Li (2005) proposed a multi-population
mortality modeling as an extension of Lee-Carter method which is accounted as a
stochastic model [10]. Also, Jarner and Kryger (2011) studied a multi-population
mortality model which includes long-term trend and short- to mid-term deviations
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weighted least squares.
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using time series model [8]. An application of Canada and US female mortality has
been conducted by Li and Hardy (2011) with respect to basis risk in longevity index
hedges [9] incorporating four extensions to the Lee-Carter model. Börger (2010)
proposed one-year period longevity risk by considering the adequacy of Solvency
II scenarios [1]. The adequacy of longevity shock has been analyzed by comparing
the resulting capital requirement to the Value-at-Risk (VaR) based on a stochastic
mortality model. On the other hand, Plat (2011) modeled the changes of long-term
mortality trend from the aspects of mortality and longevity risk proposing one-year
VaR measure which aims at covering the risk of the variation in the projection year
as well as the risk of changes in the best estimate projection for future years [11].
Another remarkable study was conducted by Richards et al. (2014) using different
methods like Lee-Carter and Cairns-Blake-Dowd in order to determine one-year
period longevity risk [12]. Börger et al. (2014) proposed a new mortality trend
model, which contributed to a better quantification of mortality and longevity risk
over time, under modern solvency regimes [2]. In their work, mortality trend model
represents young and old age effects more precisely: They use three variables sep-
arately for each group of age. The outputs of this model are employed to compare
the capital requirements with respect to Solvency II standard formula.
Constructing a model that includes additional effects of specific age groups is

crucial for many pension systems, since different age groups have different effects
on the trend. If the parameters of specific age effects are not used, the model
becomes less sensitive to inner trends of each age groups. As the proportion of
a specific age group whose inner trend is not well represented increase, the gap
between installments and the compensations increase, too. For this reason, in this
paper, we aim (i) to create a mortality trend model which includes both stochastic
and deterministic terms to project future mortality rates accurately; (ii) to propose
a modified trend model which includes the impact of young ages which is crucial,
especially for populations having higher proportions at younger ages; (iii) to incor-
porate more stochastic structure to capture the stylized facts of mortality trend
by modifying the model proposed by Börger (2014). We show the effect of these
models on the valuation of net single premiums. The inclusion of the childhood ef-
fect parameter as modification to the linear model having the impact of old, center
and young ages on mortality rates is expected to give more sensitive estimation of
mortality rates. In this aspect, to our best knowledge, this study contributes to the
literature of the quantification of influence of childhood effect by determining the
threshold age to describe the childhood based on population dynamics. Validation
of modified mortality trend model is performed using Mean Absolute Percentage
Error (MAPE), R-Squared and applied to mortality tables from selected national-
ities: USA, France, Italy, Japan and Israel. The choice of these countries is made
according to their ageing structure such as young, middle and elderly populations.
The results of the mortality trend model, the modified mortality trend model and
Lee-Carter model are compared to demonstrate the effi ciency on predictions.
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This paper is organized as follows: Trend and modified trend models are pre-
sented in Section 2 along with the outline of the proposed model. Section 3 includes
the application of the modified model on the mortality tables of the selected coun-
tries. Parameter estimation, projection of future mortality rates and comparison of
the methods are also performed. The impact of the models on net single premium
valuations is determined in Section 4. Last section concludes the paper.

2. Trend Models

The popularity of the trend models has been increased during the last decades
with the Lee-Carter model [3]. There are also other trend models such as Heligman-
Pollard [6], Cairns-Blake-Dowd (CBD) [14] which have significant contributions in
this field. In this study, Lee-Carter is taken as benchmark model for the comparison,
as it is the most commonly used method in the literature and practices.

2.1. Lee-Carter (LC). An extended version of the LC mortality rate model pro-
posed by Girosi & King (2007) is [4]:

log[qxt] = αx + βxκt + εxt, (1)

where qx,t is the central rate of mortality at age x and in year t, αx is the general
tendency in the trend of mortality rates which depends on age, βx explains the
rate of decline in response, κt is a level of mortality index and the random error
εxt follows a Normal distribution with mean 0 and variance σ2ε with the following
restrictions ∑

βx = 1 and
∑

κt = 0. (2)

Here, x and t are age and time components, respectively. Singular Value Decom-
position (SVD) is used in order to estimate βx and κt parameters.

2.2. Mortality trend model (MTM). The mortality rate, qx,t, is expressed as
[2]:

logit qx,t = αx+κ
(1)
t +κ

(2)
t (x−xcenter) +κ

(3)
t (xyoung−x)++κ

(4)
t (x−xold)++γt−x

(3)
where logit(qx,t) = ln(

qx,t
1−qx,t ) and x+ = max{x, 0}. Here, αx is the location

parameter, κ(1), κ(2), κ(3) and κ(4) are time dependent parameters, which represent
the trend of ages, and γ is a normally distributed random error.
Börger (2014) states that including ages smaller than 20 disturbs the general

trend of the mortality rate evolution and it leads to an increase in the empirical
errors of the model, since mortality rates decreases over years at the childhood ages
contrary to the rest of the ages [2]. Hence, small ages are generally not taken into
account in the most of the similar studies. In order to increase the sensitivity to
younger ages, we propose adding another additional effect parameter: childhood
effect. Therefore, modified mortality trend model (M-MTM) should include the
ages smaller than 20 in the analysis preventing such disturbance.
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2.3. Modified mortality trend model (M-MTM). The model with childhood
effect parameter is given as:

logit qx,t = αx + κ
(1)
t + κ

(2)
t (x− xcenter) + κ

(3)
t (xchild − x)I(x<xchild)

+κ
(4)
t (xyoung − x)I(xchild<x<xyoung) + κ

(5)
t (x− xold)I(x>xold) + γt−x (4)

M-MTM includes another time dependent parameter κ(5) at which, indicator
functions, I, are used to define valid ranges for κ(3), κ(4), and κ(5). Having these
parameters specified for the age ranges is crucial to express the special effects of the
age intervals. This model is expected to incorporate the impact of young ages into
the estimation and projection of the mortality rates with more precision especially
for the countries having high rate of birth and young population. Moreover, since
the age boundaries such as xchild, xyoung, xcenter and xold can be rearrangeable
based on mortality breaks, the model is also applicable for the countries having
dominancy on elderly people which is shown by Hasgul (2015) [5].
The M-MTM requires certain steps to estimate the parameters based on time-

varying structured data. Following algorithm illustrates that the parameter estima-
tion is the first performed by conditional GLM with respect to the age constraints
on parameters κ(3), κ(4), and κ(5). After estimation of κ(.) parameters, the fu-
ture values of the parameters are projected using WLS and RWWD methods. The
future mortality rates are obtained by substituting the projected κ(.) parameters
into the mortality trend model. Finally, a Monte Carlo algorithm is employed to
resemble the predictions.
Let the mortality rates be defined as qx,t at age x and in year t. The steps of
the algorithm:

(1) Apply the logit transformation to qx,t as log(qx,t/(1− qx,t))
(2) Apply GLM to the transformed mortality rates in given intervals as in

Eqn[4]
(3) Test if WLS model for κ(1) is significant
(4) Test if κ(2), κ(3), κ(4), κ(5) are stationary
(5) Apply WLS model for prediction of κ(1)

(6) Apply appropriate time series model for forecasting κ(2), κ(3), κ(4), κ(5)

(7) Find future prediction of mortality rates via future parameters
(8) Resemble the predictions of m-simulations by MC

The parameters in Eqn.(4), κ(1), κ(2), κ(3), κ(4) and κ(5) represent general ten-
dency, mortality steepness, additional effects of childhood, young and old ages,
respectively.
The estimation of constant parameter, αx for a fixed x defined by

αx =
1

tmax − tmin + 1

tmax∑
t=tmin

logit qx,t, (5)
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where tmin and tmax are starting and ending year of the time span of the data,
respectively.
Estimation of κ(.) is performed through a GLM, which enables more flexible

fitting and compatibility with non-normal distribution of errors. By employing
GLM, κ(.)t are estimated in the interval [tmin, tmax]. The GLM equation of the
M-MTM is given as follows

logit(qxmin,t)− αxmin

logit(qxmin+1,t)− αxmin+1

...
logit(qxmax,t)− αxmax

 ≈M

κ
(1)
t
...

κ
(5)
t

 ,

where M is the coeffi cient matrix of the mortality trend model.
After the estimation process the next step is the projection of the future model

parameters, coeffi cients and the future mortality rates.
The mortality tendency κ(1) is forecasted by employing WLS method which

advantageously reflects the behaviour of the random errors and can be used with
either linear or non-linear functions.
The first step of projection process is fitting a weighted least square model to

κ
(1)
t . The weights (wt) are given as:

wt =

(
1 +

1

h

)t−tmax

; for h > 0. (6)

Note that the weights are chosen in such a way that the last years of the data has
more contribution to the model than the earlier years in the projected model with
the help of weight factor, h [2]. As t gets close to tmax, wt gets larger with an
increasing momentum for all h greater than zero.
We add a stochastic term to the best fitted regression line ltmax , where t ∈

[tmin, tmax]. Hence, the forecast for κ(1)t is obtained as follows:

κ
(1)
t = lt−1(t) + ε

(1)
t (σ(1) + σ̄(1)), (7)

where ε(1)t ∼iid N (0, 1) for all t ∈ [tmin, tmax]. The volatility, σ(1), is the standard
deviation of the empirical errors (κ(1)t − lt−1(t)) for [tmin + 2, tmax] obtained from
the WLS estimation and the term σ̄(1) is optional volatility which is assumed as
zero [2]. The projection of κ(1)t over time is done iteratively by including each new
element of projection in the following forecast.
As experienced from the literature, κ(2), κ(3), κ(4) and κ(5) parameters are gen-

erally non-stationary and have trends over time. Thus, RWWD is proposed to
capture this stochastic pattern. In RWWD, the mean and standard deviation dif-
ferences between κ(.)t and κ(.)t−1 are assumed to be the drift, µ

(.)
t , and the volatility,
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σ(.), respectively. The dynamics of each parameter are given as follows:

κ
(i)
t = κ

(i)
t−1 + µ

(i)
t + ε

(i)
t ; for i = 2,3,4,5 (8)

with ε
(.)
t ∼ N (0, σ(.)).

Finally, the future mortality rate projections are determined by Monte Carlo
simulations. In addition, standard deviation of the generated samples are used in
the construction of the confidence intervals (CI) for projections.

3. Implementation of the Model

MTM, M-MTM and LC Model are applied to the mortality rates of selected
countries over years and the results are compared in order to test whether pro-
posed model illustrates significancy with respect to age, time and country specific
characteristics.
The reliability of the model should be examined through a validation process in

order to apply the model to the selected data. Throughout the validation process,
mortality rates corresponding to the last 8 years of each country are employed
as in-sample justification and compared with projections. MAPE and R-Squared
statistics are used in the comparison of the observed rates versus projections, and
95% confidence interval is constructed. Depending on the accuracy of in-sample
forecast process, 10 years of projections are made on gender base for the selected
countries.
The projections are made with the help of ’demography’package of R-code which

uses the time series forecasts.

3.1. Description of the data. Five countries are selected with respect to their
ageing structure. The main indicator for the classification of age structure is the
median age. Italy (IT) and Japan (JPN) are supposed to have elderly popula-
tions with median ages 44.5 and 46, respectively. France (FR) and the United
States of America (USA) are supposed as middle-aged countries having median age
around 39, whereas Israel represents a young age population with median age of
30. Mortality rates are retrieved from Human Mortality Database [7]. The longest
possible common (joint) time span (1960-2012) is selected. However, since Israel
(ISR) mortality rates on the data sources are found to be available only after 1983,
this country’s mortality is studied within the years 1983-2014. Mortality rates for
the ages 10 and 100 are taken into account in the study.

3.2. Parameter estimation. GLM has the advantage on relaxing normality as-
sumption on dependent variable. Having two outcomes as being alive or dead in
defined period allows us to assume that the distribution of mortality rates are
Bernoulli distributed with the probabilities px and qx, respectively. Thus, the logit
function can be used as a link in order to transform response variable, qx,t, into
normal distribution which enables us to employ GLM and the parameters of the
trend model in Eqn (4) are estimated. The dependence between mortality rates and
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Table 1. The median ages and the selected time frame

Country Group Years Child* Young* Center* Old* Median
Italy Old 1960-2012 30; 30 55; 55 60; 60 85; 85 44.5
Japan Old 1960-2012 30; 30 55; 55 65; 65 85; 85 46.1
France Middle 1960-2012 35; 42 60; 55 67; 65 85; 85 40.9
USA Middle 1960-2012 27; 25 55; 55 60; 60 85; 85 37.6
Israel Young 1983-2014 40; 40 55; 55 60; 60 85; 85 29.9

*Age boundaries for genders (Male; Female)

its regressors are quantified (Table 2) and the correlations indicate that the general
mortality trend, κ(1), has strong positive correlation to the corresponding mortal-
ity rates for all countries. On the other hand, old age effect, κ(5), expose negative
correlations for all countries. Japan female (F) and France (F) cases yield the most
significant correlations with the response for each parameter (old age parameter is
in negative direction) compared to the others.

Table 2. Correlation coeffi cients between response variable and
regressors in M-MTM

MALE IT JPN USA FR ISR
general (κ(1)) 0.9835 0.9967 0.9944 0.9903 0.9845
center (κ(2)) -0.4786 0.8148 0.6722 0.686 0.4841
child (κ(3)) 0.2978 0.8523 0.8041 0.9749 0.6438
young (κ(4)) -0.6998 0.1016 -0.5707 0.0994 -0.6241
old (κ(5)) -0.7027 -0.8527 -0.9246 -0.8354 -0.6139

FEMALE IT JPN USA FR ISR
general (κ(1)) 0.9916 0.9979 0.9961 0.9868 0.9906
center (κ(2)) 0.7347 0.9616 0.1592 0.9437 0.5068
child (κ(3)) 0.8278 0.897 0.8884 0.979 0.6371
young (κ(4)) 0.1404 0.9689 0.3562 0.6889 -0.245
old (κ(5)) -0.8931 -0.9455 -0.8584 -0.9526 -0.7567

The parameter estimates are obtained according to the proposed algorithm.
Findings for some selected years are illustrated for USA male (M) data for a slice
of the time span in Table 3. We see that the change in parameters over years is
recognizable, especially in κ(3), κ(4) and κ5 which correspond to childhood, young
and old ages, respectively. Even if the changes in κ(3), κ(4) and κ5 are greater than
in κ(1) proportionally, it is important to note that κ(1) is the leading variable which
has major effect on the mortality rate and makes it dramatically decrease over time
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Table 3. Estimated κ(.) parameters for USA (M) mortality rates

Parameter 1960 1961 1962 . 2010 2011 2012
κ(1) -3.7819 -3.8041 -3.7866 . -4.4662 -4.4751 -4.4866
κ(2) 0.0851 0.0852 0.0851 . 0.0805 0.0804 0.0799
κ(3) 0.0053 0.0044 0.0028 . -0.0221 -0.0212 -0.0244
κ(4) -0.0064 -0.0064 -0.0068 . 0.0024 0.0030 0.0032
κ(5) -0.0280 -0.0304 -0.0234 . 0.0422 0.0419 0.0452

(Figure 1). In other words, mortality rates generally decrease with respect to the
major effect of κ(1).
In order to compare the parameters of different populations with each other, some

transformations on the parameters should be conducted. Hence, some adjustments
on κ(1) and κ(2) are done as follows [2] :

κ
(2)
t ⇐= κ

(2)
t + ϕ1,

αx ⇐= αx − ϕ1(x− xcenter),

ϕ2 = αcenter,

αx ⇐= αx − ϕ2,

κ
(1)
t ⇐= κ

(1)
t + ϕ2,

where ϕ is the slope of the fitted regression line of αx for x ∈ {xchild, ..., xold}. These
adjustments do not detort the results. However, they bring the parameters onto a
comparable scale so that the explanation on the parameters become legitimate. κ(.)

estimates for the selected countries (M, F: 1960-2012) are illustrated in Figures 1-5.
These graphs depict that the mortality rates of all countries in the study decrease
over time and females generally tend to live longer compared to males which can
be inferred from general tendency parameter (κ(1)). While childhood parameter
(κ(3)) decreases over time, the old age parameter (κ(5)) increases. In other words,
these graphs shows us that the mortality rates of people aged below the boundary
of childhood parameter (κ(3)) decrease more than the amount the general tendecy
(κ(1)) proposes. However, the mortality rate of people aged above the boundary of
old age parameter (κ(5)) decreases less than the amount general tendency proposes.
This illustrates even though the mortality trend model has a decreasing pattern,

the contribution of each age class may differ in the amount of the decay keeping up
the pace of the decay based on mortality structure.
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Figure 1. Estimation of general tendency parameter (κ(1))

Figure 2. Estimation of slope in the logit parameter (κ(2))

3.3. Projection of future mortality rates. A future time frame of 2013-2022 is
achieved by estimating κ(.). A validation period 2005-2012 is taken into account to
determine the estimation power of M-MTM. Projection of κ(1) is performed based
on WLS as presented in earlier sections. Whereas, for the projections of κ(2), κ(3),
κ(4) and κ(5), a stochastic modeling approach, RWWD is employed.
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Figure 3. Estimation of childhood parameter (κ(3))

Figure 4. Estimation of young age parameter (κ(4))

WLS method is applied with five different values of weight factor h in order to
detect the best choice. κ(1) projection values with the weight factors h = 1, h = 2,
h = 5, h = 10 and h = 20 are shown in Figure 6. Small h values leads to less
constribution of previous years. From Figure 6, we see that the projections with
h = 5, h = 10 and h = 20 appear to have more stable paths than the projections
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Figure 5. Estimation of old age parameter (κ(5))

with h = 1 and h = 2 considering the estimated κ(1) values. Hence, it can be
inferred that the contribution of past years are important.
The linear model of years and κ(1) is significant (p-value < 0.001) and has R2 =

98%. Residuals also follow normal distribution (p-value of 0.9933).

Figure 6. Effect of choice of h on κ(1) trend

The sequential estimation of κ(1) requires the following steps:
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Figure 7. Projections of κ(2), κ(3), κ(4) and κ(5) for the test and
the forecast periods

(i) Apply WLS to n-estimated κ(1)’s to predict (n+ 1)th value of κ(1),
(ii) Apply WLS to (n+ 1)-estimated κ(1)’s to predict (n+ 2)th value of κ(1),
(iii) Continue until k projected (n+ k in total) κ(1) values are obtained.

Since the data of κ(2), κ(3), κ(4) and κ(5) are non-stationary processes and have
drifts, RWWD method is used to model future values of κ(2), κ(3), κ(4) and κ(5).
Average and standard deviation of differences between nth and (n + 1)th values
in each series of κ(.)’s correspond to drift and volatility, respectively, given by the
following equation.

κ̂
(.)
t+1 = κ

(.)
t + µ(.) + ε

(.)
t , (9)

where µ(.) is drift, σ(.) is standard deviation and it is assumed that εt ∼ N (0, σ(.)).
The trends of κ(2), κ(3), κ(4) and κ(5) for a time interval between 1960-2022

are shown in Figure 7. While interpreting the projections of κ(4) (additional effect
of young ages) and κ(5) (additional effect of old ages) parameters, the sustainable
decrease in κ(1) parameter should be considered as well. Although, an increase
in the projections of parameters is observed, it does not necessarily indicate the
increase in the mortality rates of specific age groups, such as young and old ages.
Since κ(1) has a linear decrease as shown in Figure 6, we infer that the rate of
reduction in mortality rates of young and old ages decreases over time as values of
κ(4) and κ(5) increase (Figure 7).
Based on the forecasts of κ(1), κ(2), κ(3), κ(4) and κ(5), mortality rates corre-

sponding to the period of 8 years are projected by employing Monte Carlo simula-
tion with m = 104 trials for the random components for USA (M) case. To justify
the precision and accuracy of the model, MAPE, R2-values and 95% confidence
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interval of projected mortality rates are determined. Table 4 shows that MAPE
values are smaller than 10%. The range of error is between 4.7% and 8% and the
average of all errors is found to be 6.4%. Moreover, R2-values are considerably high
which indicate the accuracy of the proposed M-MTM.

Table 4. MAPE and R2-values for USA (M) between 2005-2012

% 2005 2006 2007 2008 2009 2010 2011 2012 Average

MAPE 4.75 5.43 5.60 5.63 7.47 8.00 6.89 7.65 6.43

R2 99.99 99.98 99.95 99.97 99.93 99.94 99.98 99.94

Figure 8. In-sample estimates of USA (M) mortality rates (α =
5%, M, x=55)

For the illustration purposes and space limitations, the predicted mortality rates
of age 55 for USA (M) are exibited with 95% confidence interval based on the mean
and standard deviation of estimates obtained from Monte Carlo simulation for years
2005-2012. As it is seen in Figure 8, all the observed mortality rates remain within
the confidence interval of in-sample estimates.
The high values of R2 (>99%) are also the indication to a systematic risk which

is presumed to arise from the high proportion of variance in the dependent variable
explained by independent variables in the M-MTM.
Henceforth, we predict future 10-years (2013-2022) mortality rates with 95%

confidence band using M-MTM whose outcomes are plotted in Figure 9 and 10 for
M and F, respectively. We see that the pattern of mortality rates in USA at age
55 is consistent for both genders.



FORECASTING MORTALITY RATES 923

Figure 9. Projection for USA mortality rates and 95% CI (x=55, M)

Figure 10. Projection for USA mortality rates and 95% CI
(x=55, F)

3.4. Comparison of models. The comparison of three models, MTM, M-MTM
and LC, is carried out for each country on gender base for the years 2005-2012
except for Israel whose time frame is taken as 2007-2014. MAPE values are shown
in Table 5. The average of the values are taken as indicators of performance of the
models. The MAPE values for years between 2005 and 2012 yield an average of
value ranging between 4.69% and 20.78% for old and middle age countries. However,
MAPE averages for young age country (Israel) are around 17% and 20%. The best
performance is marked by bold font for each case in Table 5. It is observed that
the minimum average error is achieved by M-MTM, except Italy (M) where LC
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model outperforms compare to the others. It is also interesting to note that Italy
(F) results do not show any superiority in any model. It can be concluded that
M-MTM estimation carries almost the majority in good performance compared to
the other two. To determine if the MAPE values of each model are statistically

Table 5. MAPE values for old and middle-aged countries (in %)

GROUP DATA GND MODEL 2005 2006 2007 2008 2009 2010 2011 2012 Mean
MTM 16.56 19.59 18.33 17.37 20.54 26.00 23.24 27.38 21.13

OLD ITA M M-MTM 15.18 17.33 16.96 14.29 19.65 24.76 22.68 25.83 19.59
LC 8.36 9.21 10.14 9.40 13.37 15.45 16.36 18.45 12.59
MTM 8.42 8.42 8.84 8.45 8.54 9.74 8.06 7.66 8.52

OLD ITA F M-MTM 7.48 7.14 8.58 7.63 7.61 9.75 8.23 9.25 8.21
LC 8.64 5.64 8.38 8.45 9.62 10.34 10.94 11.68 9.21
MTM 11.04 9.03 9.28 10.04 9.53 12.09 17.24 11.98 11.28

OLD JPN M M-MTM 8.01 5.70 6.13 7.15 6.92 9.44 14.01 8.99 8.30
LC 9.13 7.54 8.24 8.67 9.13 10.81 14.34 11.06 9.87
MTM 13.21 14.06 14.12 16.42 17.15 19.25 29.18 21.90 18.16

OLD JPN F M-MTM 10.77 11.59 11.79 13.85 14.83 16.70 27.15 19.32 15.75
LC 16.49 17.39 17.37 19.10 20.19 21.45 30.63 23.62 20.78
MTM 8.85 10.92 12.86 13.50 12.47 13.82 15.57 18.50 13.31

MIDDLE FR M M-MTM 8.59 11.15 12.92 13.10 12.27 13.53 14.63 17.53 12.96
LC 9.10 9.72 11.48 12.28 12.29 13.85 14.74 17.52 12.62
MTM 8.51 7.53 6.51 7.85 8.88 8.65 7.58 10.16 8.21

MIDDLE FR F M-MTM 6.72 6.93 7.14 7.52 8.31 9.94 9.23 11.64 8.43
LC 10.30 10.86 11.18 11.59 11.39 13.05 13.15 14.32 11.98
MTM 5.43 6.37 6.96 7.88 9.41 10.78 9.60 10.01 8.31

MIDDLE USA M M-MTM 4.76 5.47 5.50 5.99 7.49 8.48 7.35 7.74 6.60
LC 6.04 6.85 7.43 7.54 9.01 9.55 9.86 10.29 8.32
MTM 7.42 7.61 7.22 8.06 7.88 8.56 9.07 9.37 8.15

MIDDLE USA F M-MTM 4.70 3.69 3.78 4.29 5.08 5.03 5.30 5.69 4.69
LC 6.60 7.62 7.60 8.76 9.54 10.59 11.07 11.37 9.14

2007 2008 2009 2010 2011 2012 2013 2014
MTM 15.69 15.26 19.21 19.10 22.13 26.42 28.15 24.69 21.33

YOUNG ISR M MMTM 14.55 13.07 14.70 16.08 18.05 22.73 23.60 20.01 17.85
LC 16.48 15.86 17.45 17.83 23.60 28.49 25.03 24.39 21.14
MTM 14.86 18.50 17.51 17.44 17.91 17.49 22.07 18.78 18.07

YOUNG ISR F MMTM 13.72 18.88 17.06 19.13 20.06 20.53 24.92 21.93 19.53
LC 16.44 19.29 19.48 19.26 18.45 17.88 25.52 20.38 19.59

different from each other, t-test is performed for each population considered (Table
6). The results of comparison tests indicate that the M-MTM generally has a
better precision than MTM and LC. For Italy (M) which is in old group, LC has
a better precision compared with M-MTM and MTM. It can be generalized that
M-MTM performs better than Lee Carter for the rest of the cases. MTM is found
to be preferable for some cases such as Israel (F) mortality rates. This can be
distinguished in pairwise comparisons which are also differentiated by colors (Table
6). As blue color refers to M-MTM is preferable, green to MTM and red color
stands for superiority of LC to the others. Black color shows no favoration on the
model choice.
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Table 6. MAPE comparisons via p-values of t-tests

DATA GND MMTM&MTM MMTM&LC MTM&LC
USA M 0,00012* 0.00005* 0.94370

F <0.00001* 0.00002* 0.03590*
FR M 0.05530 0.25270 0.01760*

F 0.62840 <0.00001* 0.00005*
ITA M 0.00091 <0.00001* <0.00001*

F 0.37610 0.08410 0.37480
JPN M <0.00001* 0.00020* 0.00100*

F <0.00001* <0.00001* 0.00002*
ISR M 0.00016* 0.00018* 0.11270

F 0.00310* 0.8754 0.02430*
*statistically significant at 5% level

4. Performance of the Models on the Net Single Premium
Calculations

In order to illustrate the impact of the models on the valuation of NSP, we
assume a hypothetical term life insurance scenario with the following assumptions:
(i) a constant annual interest rate of 10%, (ii) an 8-year term life insurance for
ages 25, 35, 45 and 55. The risk premium corresponding to one unit benefit of life
insurance payment for aged x, which covers next n years [13].

A1
x:n| =

n−1∑
k=0

vk+1kpxqx+k; (10)

where v denotes discount factor, kpx is the probability of living k years at age x
and qx+k stands for the probability of death in one year between age (x + k) and
(x+ k + 1).
Table 7 demonstrates the values of NSP under three models and the original

mortality rates (between 2005-2012) and depicts the best model yielding the closest
NSP to the one obtained with respect to the original. Moreover, Table 7 shows
that MTM gives the closest values to original NSP for age 25, whereas, M-MTM
outperforms the other two models for the ages, 35, 45, 55 for the term life insurance
of 8 years.

5. Conclusion

The prediction of future mortality rates using proposed model (M-MTM) in-
corporates the childhood effect into the mortality trend model (MTM) [2] and the
stochastic approach to estimate its parameters are found to yield remarkable re-
sults. Since the mortality trend of young people has a different slope than the rest
of the population, forecasts including younger ages, such as 5-20 and 10-20, have
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Table 7. The impact of models on NSP of 8-year Term Life insurance

Age Country Gender M-MTM MTM LC Original Best
USA M 0.008287 0.008302 0.008182 0.008561 MTM

F 0.003286 0.002875 0.003235 0.003530 M-MTM
FR M 0.005655 0.005223 0.006684 0.005179 MTM

F 0.001987 0.001790 0.002190 0.001855 MTM
25-33 ITA M 0.004739 0.003997 0.004964 0.003912 MTM

F 0.001407 0.001330 0.001400 0.001280 MTM
JPN M 0.003565 0.003613 0.002969 0.003874 MTM

F 0.001551 0.001616 0.001173 0.001996 MTM
ISR M 0.003750 0.004143 0.004262 0.003676 M-MTM

F 0.001554 0.001414 0.001533 0.001399 MTM
USA M 0.012007 0.012344 0.012515 0.011400 M-MTM

F 0.006408 0.006022 0.006347 0.006580 M-MTM
FR M 0.010960 0.009764 0.010964 0.009125 MTM

F 0.004422 0.004099 0.004697 0.004385 M-MTM
35-43 ITA M 0.007123 0.006334 0.006067 0.005757 LC

F 0.003176 0.003003 0.002924 0.003065 MTM
JPN M 0.006319 0.005884 0.005558 0.006762 M-MTM

F 0.003098 0.003271 0.002572 0.003709 MTM
ISR M 0.005950 0.005785 0.007240 0.005901 M-MTM

F 0.003413 0.003030 0.003306 0.003256 LC
USA M 0.026204 0.027077 0.023213 0.026604 M-MTM

F 0.015079 0.015142 0.014813 0.016409 MTM
FR M 0.026190 0.026482 0.025168 0.024169 LC

F 0.011161 0.010772 0.010458 0.011906 M-MTM
45-53 ITA M 0.016626 0.017518 0.013139 0.014356 LC

F 0.008301 0.008529 0.007575 0.008677 MTM
JPN M 0.015239 0.014135 0.015901 0.016220 LC

F 0.007166 0.006875 0.006604 0.008543 M-MTM
ISR M 0.015268 0.015095 0.013805 0.014885 MTM

F 0.008291 0.008404 0.008285 0.008333 M-MTM
USA M 0.060004 0.061893 0.051921 0.055702 M-MTM

F 0.033970 0.035285 0.037536 0.032919 M-MTM
FR M 0.057042 0.061561 0.049459 0.053340 M-MTM

F 0.020789 0.022280 0.019778 0.023075 MTM
55-63 ITA M 0.045992 0.050541 0.038009 0.037771 LC

F 0.020042 0.021421 0.018474 0.019912 M-MTM
JPN M 0.037035 0.034616 0.038211 0.040878 LC

F 0.015273 0.013961 0.013958 0.017944 M-MTM
ISR M 0.042078 0.043441 0.032790 0.040081 M-MTM

F 0.021520 0.023886 0.020389 0.021706 M-MTM

always been challenging in the mortality trend modeling. However, we show that
M-MTM handles this problem with a better accuracy in predictions. The imple-
mentation and illustration of the proposed model are done on the mortality rates of
5 countries in order to determine the effect of demographic structure (old, middle
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and young age). Monte Carlo simulation is used to generate possible projections
and construct confidence interval for these projections. Comparison of the proposed
model is done with respect to MTM and LC model where the performance is exam-
ined via effi ciency indicators. In most of the cases, our proposed model performs
more accurate results than the other two models. In other words, in the case that
these three models are conducted in a wider range of ages including childhood ages,
modified model projects the future mortality rates with less margin of errors. Ad-
ditionally, projections performed by M-MTM generally have narrower confidence
intervals and more precise forecasts compared to MTM and LC model. For this
reason, the future mortality projected by M-MTM would be more contributing.
For a term life insurance, net single premium (NSP) estimation by M-MTM for
the ages over 35 generally gives closest results to realized NSP compared to the
estimations by other two models. The outcomes of this study show that M-MTM is
advantageous in mortality modeling since the opportunity of changing age bound-
aries including the childhood makes M-MTM applicable for all types of different
age-level populations.
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FIRST ORDER MAXIMAL DISSIPATIVE SINGULAR
DIFFERENTIAL OPERATORS

PEMBE IPEK AL AND ZAMEDDIN I. ISMAILOV

Abstract. In this paper, using the Calkin-Gorbachuk method, the general
form of all maximal dissipative extensions of the minimal operator generated by
first order linear multipoint symmetric singular differential-operator expression
in the direct sum of Hilbert space of vector-functions has been found. Later
on, the structure of spectrum of these extensions is researched. Finally, the
results are supported by an application.

1. Introduction

Operator theory is important to understand the nature of the spectral properties
of an operator associated with a boundary value problem acting on a Hilbert space.
To obtain such an information as is well known that the corresponding inner product
is useful. A linear closed densely defined operator T : D(T ) ⊂ X → X in a Hilbert
space X is called to be dissipative if and only if

Im(Tψ, ψ)X ≥ 0, ψ ∈ D(T ),

where Im( . , . ) and D(T ) denote the imaginary part of the inner product and
the domain of the operator T , respectively (see [3]). If a dissipative operator has
no any proper dissipative extension, then it is called maximal dissipative [3]. A
direct result on dissipative operators is that their spectrum lies in the closed upper
half-plane. Therefore, open lower half-plane does not belong to the spectrum of
T . Maximal dissipative operators play a very important role in mathematics and
physics. In physics, there are many interesting applications of the dissipative oper-
ators in areas like hydrodynamic, laser and nuclear scattering theories.
Remember that the general theory of self-adjoint extensions of linear densely-

defined closed symmetric operators in any Hilbert space was mentioned in the well-
known work of Neumann [9]. The complete informations of Vishik’s and Birman’s
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investigations on the all non-negative selfadjoint extensions of a positive closed
symmetric operator have been given by Fischbacher in [2].
The functional model theory of Nagy and Foias [6] is a basic method for inves-

tigation the spectral properties of dissipative operators. The maximal dissipative
extensions and their spectral analysis of the minimal operator having equal defi-
ciency indices generated by formally symmetric differential-operator expression in
one finite or infinite interval case in the Hilbert space of vector-functions have been
researched by Gorbachuk [3]. This method has been generalized in terms of bound-
ary values by Rofe-Beketov, Kholkin in [8].
In the present study, in Section 3, using the Calkin-Gorbachuk method, the rep-

resentation of all maximal dissipative extensions of the minimal operator generated
by the first order linear symmetric differential-operator expression in the direct sum
of Hilbert spaces of vector-functions in two infinite interval case is obtained. Later
on, in Section 4, we also investigate the structure of spectrum of these dissipative
extensions.

2. Statement of the problem

Let X be a separable Hilbert space and a1, a2 ∈ R such that a1 < a2. In the
Hilbert spaces

X = L2(X, (−∞, a1))⊕ L2(X, (a2,∞))

of vector-functions on (−∞, a1) ∪ (a2,∞), consider the following linear multipoint
differential operator expression for first order of the form

l(ν) = (l1(ν1), l2(ν2)), ν = (ν1, ν2),

where

l1(ν1) = iν′1 + Ω1ν1,

l2(ν2) = iν′2 + Ω2ν2,

where Ωm : D(Ωm) ⊂ X → X, m = 1, 2 are linear selfadjoint operators.
The minimal Υ1

0 and Υ2
0 operators corresponding to differential operator expres-

sion l1( . ) and l2( . ) in L2(X, (−∞, a1)) and L2(X, (a2,∞)) can be constructed
by using the same technique in [4], respectively. The operators Υ1 = (Υ1

0)
∗, Υ2 =

(Υ2
0)
∗ are maximal operators corresponding to l1( . ) and l2( . ) in L2(X, (−∞, a1))

and L2(X, (a2,∞)), respectively. In this case, the operators

Υ0 = Υ1
0 ⊕Υ2

0 and Υ = Υ1 ⊕Υ2

in the Hilbert space X are called minimal and maximal operators corresponding to
differential operator expression l( . ), respectively.
We have that the domains of the operators Υ and Υ0 are of the form

D(Υ) = {ν ∈ X : l(ν) ∈ X},
D(Υ0) = {ν ∈ D(Υ) : ν1(a1) = ν2(a2) = 0}.
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Our aim in this paper is to obtain all maximal dissipative extensions of the minimal
operator Υ0 in X in terms of boundary values and investigate the spectrum of them.
Then, we give an application of obtained results to the concrete model.

3. Representation of maximal dissipative extensions

In this section, we will study the abstract representation of all maximal dissi-
pative extensions of Υ0 in terms of boundary values using the Calkin-Gorbachuk
method.
Firstly, let us define the deficiency indices of any symmetric operator in a Hilbert

space.

Definition 1. [7] Let T be a symmetric operator, λ be an arbitrary non-real number
and X be a Hilbert space. We denote by Rλ and Rλ the ranges of the operator(
T − λI

)
and (T − λI), respectively, where I is identity operator on X. Clearly,

Rλ and Rλ are subspaces of X, which need not necessarily be closed. We call(
X−Rλ

)
and (X−Rλ), which are their orthogonal complements, the deficiency

spaces of the operator T and we denote them by Nλ and Nλ, respectively: thus
Nλ = X−Rλ, Nλ = X−Rλ.

The numbers
nλ = dimNλ, nλ = dimNλ

are called deficiency indices of the operator T.

Let us prove the following auxiliary result we will need:

Lemma 2. The deficiency indices of Υ0 are of the form

(n+(Υ0), n−(Υ0)) = (dimX, dimX).

Proof. Here, without loss generality it will be assumed that Ω1 = Ω2 = 0. The
general solution of the differential equations can be given as follows:

iν′1±(ξ) = ∓iν1±(ξ), ξ < a1,

iν′2±(ξ) = ∓iν2±(ξ), ξ > a2

where

ν1±(ξ) = exp (∓(ξ − a1))κ1, κ1 ∈ X, ξ < a1,

ν2±(ξ) = exp (∓(ξ − a2))κ2, κ2 ∈ X, ξ > a2,

respectively. Hence, we have

n+(Υ1
0) = dimKer(Υ1 + iI) = 0,

n−(Υ1
0) = dimKer(Υ1 − iI) = dimX,

n+(Υ2
0) = dimKer(Υ2 + iI) = dimX,

n−(Υ2
0) = dimKer(Υ2 − iI) = 0,
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where I is identity operator in the corresponding space. Therefore, we get

n+(Υ0) = n+(Υ1
0) + n+(Υ2

0) = dimX,

n−(Υ0) = n−(Υ1
0) + n−(Υ2

0) = dimX.

�

Consequently, the operator Υ0 has a maximal dissipative extension (see [3]). In
order to describe all maximal dissipative extensions of Υ0, it is necessary to con-
struct a space of boundary values for it.

Definition 3. [3] Let X be any Hilbert space and S : D(S) ⊂ X → X be a closed
densely defined symmetric operator on the Hilbert space having equal finite or in-
finite deficiency indices. A triplet (X, β1, β2), where X is a Hilbert space, β1 and
β2 are linear mappings from D(S∗) into X, is called a space of boundary values for
the operator S, if for any η, κ ∈ D(S∗)

(S∗η, κ)X − (η, S∗κ)X = (β1(η), β2(κ))X − (β2(η), β1(κ))X

while for any G1,G2 ∈ X, there exists an element η ∈ D(S∗) such that β1(η) = G1
and β2(η) = G2.

Lemma 4. The triplet (X,β1, β2), where

β1 : D(Υ)→ X, β1(ν) =
1√
2

(ν1(a1)− ν2(a2)) and

β2 : D(Υ)→ X, β2(ν) =
1

i
√

2
(ν1(a1) + ν2(a2)) , ν = (ν1, ν2) ∈ D(Υ)

is a space of boundary values of the minimal operator Υ0 in X .

Proof. For any ν = (ν1, ν2), ϑ = (ϑ1, ϑ2) from D(Υ), one can easily check that

(Υν, ϑ)X − (ν,Υϑ)X = (Υ1ν1, ϑ1)L2(X,(−∞,a1)) + (Υ2ν2, ϑ2)L2(X,(a2,∞))

− (ν1,Υ
1ϑ1)L2(X,(−∞,a1)) − (ν2,Υ

2ϑ2)L2(X,(a2,∞))

=
[
(iν′1 + Ω1ν1, ϑ1)L2(X,(−∞,a1)) − (ν1, iϑ

′
1 + Ω1v1)L2(X,(−∞,a1))

]
+
[
(iν′2 + Ω2ν2, ϑ2)L2(X,(a2,∞)) − (ν2, iϑ

′
2 + Ω2ϑ2)L2(X,(a2,∞))

]
=
[
(iν′1, ϑ1)L2(X,(−∞,a1)) − (ν1, iϑ

′
1)L2(X,(−∞,a1))

]
+
[
(iν′2, ϑ2)L2(X,(a2,∞)) − (ν2, iϑ

′
2)L2(X,(a2,∞))

]
= i
[
(ν′1, ϑ1)L2(X,(−∞,a1)) + (ν1, ϑ

′
1)L2(X,(−∞,a1))

]
+ i
[
(ν′2, ϑ2)L2(X,(a2,∞)) + (ν2, ϑ

′
2)L2(X,(a2,∞))

]
= i [(ν1(a1), ϑ1(a1))X − (ν2(a2), ϑ2(a2))X ]

= (β1(ν), β2(ϑ))X − (β2(ν), β1(ϑ))X .
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Now let f1, f2 ∈ X. Let us find the function ν = (ν1, ν2) ∈ D(Υ) such that

β1(ν) =
1√
2

(ν1(a1)− ν2(a2)) = f1

and

β2(ν) =
1

i
√

2
(ν1(a1) + ν2(a2)) = f2.

Hence, we can obtain

(ν1)(a1) = (if2 + f1)/
√

2, (ν2)(a2) = (if2 − f1)/
√

2.

If we choose the functions ν1( . ) and ν2( . ) as

ν1(τ) = eτ−a1(if2 + f1)/
√

2, τ < a1 and

ν2(τ) = ea2−τ (if2 − f1)/
√

2, τ > a2,

then we have ν = (ν1, ν2) ∈ D(Υ) and β1(ν) = f1, β2(ν) = f2. �

With the use of the Calkin-Gorbachuk method [3], we obtain the following:

Theorem 5. If Υ̃ is a maximal dissipative extension of Υ0 in X , then it is generated
by the differential operator expression l( . ) and the boundary condition

ν2(a2) = Kν1(a1),

where K : X → X is a contraction operator. Moreover, the contraction operator K
in X is uniquely determined by the extension Υ̃, i.e. Υ̃ = ΥK , and vice versa.

Proof. Each maximal dissipative extension Υ̃ of Υ0 is described by the differential
operator expression l( . ) with the boundary condition

(C − I)β1(ν) + i(C + I)β2(ν) = 0, ν ∈ D(Υ),

where C : X → X is a contraction operator and I is identity operator in corre-
sponding space. Therefore, from Lemma 4, we obtain

(C − E) (ν1(a1)− ν2(a2)) + (C + E) (ν1(a1) + ν2(a2)) = 0, ν = (ν1, ν2) ∈ D(Υ̃).

Hence it is obtained that

ν2(a2) = −Cν1(a1).

Choosing K = −C in the last boundary condition we have

ν2(a2) = Kν1(a1).

�
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4. The spectrum of the maximal dissipative extensions

In this section, we will investigate the structure of the spectrum of the maximal
dissipative extensions ΥK of the minimal operator Υ0 in X .

Theorem 6. The point spectrum σp(ΥK) of any maximal dissipative extension ΥK

is of the form:
(1) If KerK 6= {0}, then σp(ΥK) ⊃ H+, where H+ = {λ ∈ C : Imλ > 0};
(2) If KerK = {0}, then σp(ΥK) = ∅.

Proof. Let us consider the following eigenvalue problem defined by

l(ν) = λν, λ = λr + iλi, ν ∈ X , λ ∈ H+,

with the boundary condition

ν2(a2) = Kν1(a1).

Then, we have

ν′1(ξ) = i(Ω1 − λ)ν1, ξ < a1,

ν′2(ξ) = i(Ω2 − λ)ν2, ξ > a2,

ν2(a2) = Kν1(a1).

The general solutions of these differential equations are as follows:

ν1(ξ;λ) = exp (i(Ω1 − λ)(ξ − a1)) f1, ξ < a1, f1 ∈ X,
ν2(ξ;λ) = exp (i(Ω2 − λ)(ξ − a2)) f2, ξ > a2, f2 ∈ X

with the boundary condition

ν2(a2;λ) = Kν1(a1;λ).

Moreover, f1 = ν1(a1;λ), f2 = ν2(a2;λ).
It is clear that for any f1 ∈ X, we can write

ν1(ξ;λ) = exp (i(Ω1 − λr)(ξ − a1)) exp (λi(ξ − a1)) f1 ∈ L2(X, (−∞, a1))
and for f2 ∈ X such that f2 6= 0, we get

ν2(ξ;λ) = exp (i(Ω2 − λr)(ξ − a2)) exp (λi(ξ − a2)) f2 /∈ L2(X, (a2,∞)).

(1) If we choose the function ν ∈ X of the following special form

ν∗(ξ;λ) = (exp (i(Ω1 − λr)(ξ − a1)) exp (λi(ξ − a1)) f, 0) , f ∈ KerK,
then we obtain ΥKν

∗(ξ;λ) = λν∗(ξ;λ) and ν∗2(a2;λ) = Kν∗1(a1;λ), for any λ ∈ H+.
(2) If KerK = {0}, then from the boundary condition 0 = Kν1(a1;λ) we have
ν1(a1;λ) = f1 = 0. Hence, the boundary value problem ΥKν = λν, λ ∈ H+, ν ∈ X
have a zero solution once.
Now, let us consider the eigenvalue problem defined by

ΥKν = λν, ν ∈ X , λ ∈ R.
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Then we have

ν′1(ξ) = i(Ω1 − λ)ν1, ξ < a1,

ν′2(ξ) = i(Ω2 − λ)ν2, ξ > a2,

ν2(a2) = Kν1(a1).

The general solutions of these differential equations are as follows:

ν1(ξ;λ) = exp (i(Ω1 − λ)(ξ − a1)) f1 /∈ L2(X, (−∞, a1)), f1 ∈ X
ν2(ξ;λ) = exp (i(Ω2 − λ)(ξ − a2)) f2 /∈ L2(X, (a2,∞)), f2 ∈ X.

Consequently, for KerK 6= {0} we have
σp(ΥK) ⊃ H+

and for KerK = {0} we get
σp(ΥK) = ∅.

�

Theorem 7. The residual spectrum σr(ΥK) of any maximal dissipative extension
ΥK is empty, i.e.

σr(ΥK) = ∅.

Proof. From Theorem 6 we get σr(ΥK) ⊂ R for KerK 6= {0}, and σr(ΥK) ⊂
R∩H+ forKerK = {0}. In order to prove this theorem we will investigate the point
spectrum of the adjoint operator Υ∗K of ΥK in X . Let us consider the eigenvalue
problem defined by

Υ∗Kϑ = λϑ, λ ∈ R, ϑ = (ϑ1, ϑ2) ∈ X .
In this case, we have

iϑ′1(ξ) + Ω1ϑ1(ξ) = λϑ1(ξ), ξ < a1,

iϑ′2(ξ) + Ω2ϑ2(ξ) = λϑ2(ξ), ξ > a2

with the boundary condition

ϑ1(a1) = K∗ϑ2(a2).

Hence, it is obtained

ϑ1(ξ;λ) = exp (i(Ω1 − λ)(ξ − a1)) g1, ξ < a1

ϑ2(ξ;λ) = exp (i(Ω2 − λ)(ξ − a2)) g2, ξ > a2, g1, g2 ∈ X.
Therefore for any g1, g2 ∈ X and for each λ ∈ R, we get

ϑ1(
. ;λ) /∈ L2(X, (−∞, a1)),

ϑ2(
. ;λ) /∈ L2(X, (a2,∞)).

Now, let us consider the residual spectrum of ΥK , namely,

Υ∗Kϑ = λϑ, λ ∈ C, λi = Imλ > 0, ϑ = (ϑ1, ϑ2) ∈ X .



936 PEMBE IPEK AL AND ZAMEDDIN I. ISMAILOV

We have

ϑ1(ξ;λ) = exp ((iΩ1 − iλr + λi)(ξ − a1)) g1, ξ < a1

ϑ2(ξ;λ) = exp ((iΩ2 − iλr + λi)(ξ − a2)) g2, ξ > a2.

As a result, we get ϑ1( . ;λ) ∈ L2(X, (−∞, a1)) and ν2( . ;λ) /∈ L2(X, (a2,∞)) for
any g2 = ϑ2(a2) 6= 0.
The necessary and suffi cient condition for ϑ2( . ;λ) ∈ L2(X, (a2,∞)) is g2 =

ϑ2(a2) = 0. From the boundary condition we get

ϑ1(a1) = K∗ϑ2(a2)

which implies ϑ1(a1) = 0. Then, Ker(Υ∗K) = {0}.
Consequently, we have λ /∈ σr(ΥK) for any λ ∈ C with Imλ > 0. �

By the general theory of linear closed operators in a Hilbert spaces and Theorem
6-Theorem 7, one can immediately obtain the following:

Theorem 8. If KerK 6= {0}, then the continuous spectrum σc(ΥK) of any maxi-
mal dissipative extension ΥK in X coincides with R, i.e.

σc(ΥK) = R.

Moreover, σ(ΥK) = {λ ∈ C : Imλ ≥ 0} .

With the use of Theorem 6-Theorem 8, the following result can be obtained.

Corollary 9. If KerK 6= {0}, then the point spectrum σp(ΥK) of any maximal
dissipative extension ΥK in X is of the form σp(ΥK) = {λ ∈ C : Imλ > 0} .

Theorem 10. If KerK = {0}, then the spectrum of any maximal dissipative ex-
tension ΥK in X is of the form

σ(ΥK) = σc(ΥK) = R.

Proof. Let us consider the following spectrum problem defined by

ΥKν = λν + f, λ ∈ C, Imλ = λi > 0, ν = (ν1, ν2), f = (f1, f2) ∈ X .

Then, we have

iν′1(ξ) + Ω1ν1(ξ) = λν1(ξ) + f1(ξ), ξ < a1,

iν′2(ξ) + Ω2ν2(ξ) = λν2(ξ) + f2(ξ), ξ > a2,

ν2(a2) = Kν1(a1).

Hence, the general solutions of the following differential equations

ν′1(ξ) = i(Ω1 − λE)ν1(ξ)− if1(ξ), ξ < a1,

ν′2(ξ) = i(Ω2 − λE)ν2(ξ)− if2(ξ), ξ > a2
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are of the forms

ν1(ξ;λ) = exp (i(Ω1 − λE)(ξ − a1)) fλ + i

a1∫
ξ

exp (i(Ω1 − λE)(ξ − τ)) f1(τ)dτ,

ξ < a1, fλ ∈ X,

ν2(ξ;λ) = i

∞∫
ξ

exp (i(Ω2 − λE)(ξ − τ)) f2(τ)dτ, ξ > a2.

Additionally, from the boundary condition we have
∞∫
a2

exp (i(Ω2 − λE)(a2 − τ)) f2(τ)dτ = Kfλ.

Consequently, the solution of above considered spectrum problem can be expressed
by

ν1(ξ;λ) = exp (i(Ω1 − λE)(ξ − a1))

K−1 ∞∫
a2

exp (i(Ω2 − λE)(a2 − τ)) f2(τ)dτ


+i

a1∫
ξ

exp (i(Ω1 − λE)(ξ − τ)) f1(τ)dτ, ξ < a1,

ν2(ξ;λ) = i

∞∫
ξ

exp (i(Ω2 − λE)(ξ − τ)) f2(τ)dτ, ξ > a2

in the spaces L2(X, (−∞, a1)) and L2(X, (a2,∞)), respectively.
As a result, we have H+ ⊂ ρ(ΥK). Since for λ ∈ R the problem

ΥKν = λν, ν ∈ X
has zero solution once, σp(ΥK) = ∅ in case that KerK = {0}.
For λ ∈ C, λi = Imλ > 0 and f = (f1, f2) ∈ X the resolvent operator Rλ(ΥK)

in X can be written in the form

‖Rλ(ΥK))f(ξ)‖2X ≥ ‖i
∞∫
ξ

exp (i(Ω2 − λE)(ξ − τ)) f2(τ)dτ‖2L2(X,(a2,∞)).

The vector functions f∗(ξ;λ) have the form f∗(ξ, λ) = (0, exp (i(Ω2 − λE)ξ) f) ,
λ ∈ C, λi = Imλ > 0, f ∈ X belong to X . Indeed,

‖f∗(ξ, λ)‖2L2(X,(a2,∞)) =

∞∫
a2

‖exp (i(Ω2 − λE)ξ) f‖2Xdξ
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=

∞∫
a2

exp (−2λiξ) dξ‖f‖2X

=
1

2λi
exp (−2λia2) ‖f‖2X <∞.

For the such functions f∗(λ; . ), we have

‖Rλ(ΥK)f∗( . ;λ)‖2X ≥ ‖i
∞∫
ξ

exp (i(Ω2 − λ)(ξ − τ)− i(λ− Ω2)τ) fdτ‖2L2(X,(a2,∞))

= ‖
∞∫
ξ

exp (−iλξ) exp (−2λiτ) exp (iΩ2ξ) fdτ‖2L2(X,(a2,∞))

= ‖exp (−iλξ) exp (iΩ2ξ)

∞∫
ξ

exp (−2λiτ) fdτ‖2L2(X,(a2,∞))

= ‖exp (−iλξ)
∞∫
ξ

exp (−2λiτ) dτ‖2L2(X,(a2,∞))‖f‖
2
X

=
1

4λ2i

∞∫
a2

exp (−2λiτ) dτ‖f‖2X

=
1

8λ3i
exp (−2λia2) ‖f‖2X .

Using the above inequality we get

‖Rλ(ΥK)f∗( . ;λ)‖X ≥
exp (λia2)

2
√

2λi
√
λi
‖f‖2X =

1

2λi
‖f∗(ξ;λ)‖L2(X,(a2,∞)),

i.e., for λi = Imλ > 0 and f 6= 0 we can write

‖Rλ(ΥK)f∗(λ; . )‖X
‖f∗(λ; ξ)‖X

≥ 1

2λi

and it is also obvious that

‖Rλ(ΥK)‖ ≥ ‖Rλ(ΥK)f∗( . ;λ)‖X
‖f∗(ξ;λ)‖X

, f 6= 0.

As a consequence, we get

‖Rλ(ΥK)‖ ≥ 1

2λi
for λ ∈ C, λi = Imλ > 0,

which shows that every λ ∈ R belongs to the continuous spectrum of the extension
ΥK . �
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5. Examples

Example 11. Let us consider the following linear multipoint differential operator
expression for first order of the form

l((ν, ϑ)) =
(
iν′(τ , ς) + ςν(τ , ς), iϑ′(τ , ς) + ςϑ(τ , ς)

)
in the Hilbert space

X = L2 ((−∞,−1)× R)⊕ L2 ((1,∞)× R) .

Let L̃ be a maximal dissipative extension of the minimal operator generated by
above differential expression. Then, L̃ is generated by the differential operator ex-
pression l( . ) and the following boundary condition

ϑ(1, ς) = ν(−1, ς)

in X .
By Corollary 9, Theorem 8 and Theorem 7, the point, continuous and residual

spectrum of the maximal dissipative extension L̃ in X are of the forms

σp

(
L̃
)

= {λ ∈ C : Imλ > 0},

σc

(
L̃
)

= R,

σr

(
L̃
)

= ∅,

respectively.
Consequently, the spectrum of the maximal dissipative extension L̃ in X is of the

form

σ
(
L̃
)

= {λ ∈ C : Imλ ≥ 0}.

Remark 12. In special case the representation of selfadjoint extensions of corre-
sponding mentioned above minimal operator and their spectral analysis have been
surveyed in [1] and [5].
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GENERALIZED DIFFERENCE SEQUENCE SPACES OF
FRACTIONAL ORDER DEFINED BY ORLICZ FUNCTIONS

NAZLIM DENIZ ARAL AND MIKAIL ET

Abstract. The main purpose of this paper is to introduce the concepts of
∆α−lacunary statistical convergence of order β (0 < β ≤ 1) with the fractional
order of α and ∆α−lacunary strongly convergence of order β (0 < β ≤ 1) with
the fractional order of α. We establish some connections between ∆α−lacunary
strongly convergence of order β and ∆α−lacunary statistical convergence of
order β.

1. Introduction

The idea of statistical convergence was given by Zygmund [45] in the first edition
of his monograph published in Warsaw in 1935. The concept of statistical conver-
gence was introduced by Steinhaus [42] and Fast [20] and later reintroduced by
Schoenberg [38]. Over the years and under different names statistical convergence
was discussed in the theory of Fourier analysis, Ergodic theory, Number theory,
Measure theory, Trigonometric series, Turnpike theory and Banach spaces. Later
on it was further investigated from the sequence space point of view and linked with
summability theory by Çakallıet al. ([7],[8],[9]). Caserta et al. [10], Çınar et al.
[11], Connor [13], Et et al. ([15],[17]), Fridy [22], Fridy and Orhan [23], Mursaleen
[33], Salat [41], Mohiuddine et al. ([5], [31]) and many others.

The idea of statistical convergence depends upon the density of subsets of the
set N of natural numbers. The density of a subset E of N is defined by

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k), provided that the limit exists.

A sequence x = (xk) is said to be statistically convergent to L if for every ε > 0,

δ ({k ∈ N : |xk − L| ≥ ε}) = 0.
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Recently, Çolak [12] generalized the statistical convergence by ordering the in-
terval (0, 1] and defined the statistical convergence of order β and strong p−Cesàro
summability of order β, where 0 < β ≤ 1 and p is a positive real number. Şengül
and Et ([19],[39]) generalized the concepts such as lacunary statistical convergence
of order β and lacunary strong p−Cesàro summability of order β for sequences of
real numbers.

Difference sequence spaces was defined by Kızmaz [27] and the concept was
generalized by Et et al. ([14],[18]) as follows:

∆m (X) = {x = (xk) : (∆mxk) ∈ X} ,
where X is any sequence space, m ∈ N, ∆0x = (xk) , ∆x = (xk − xk+1) , ∆mx =
(∆mxk) =

(
∆m−1xk −∆m−1xk+1

)
and so ∆mxk =

∑m
v=0 (−1)

v (m
v

)
xk+v.

If x ∈ ∆m (X) then there exists one and only one sequence y = (yk) ∈ X such
that yk = ∆mxk and

xk =

k−m∑
v=1

(−1)
m

(
k − v − 1
m− 1

)
yv =

k∑
v=1

(−1)
m

(
k +m− v − 1

m− 1

)
yv−m, (1)

y1−m = y2−m = · · · = y0 = 0

for suffi ciently large k, for instance k > 2m. After then some properties of difference
sequence spaces have been studied in ([1],[2],[16],[18], [25], [26], [32], [36]).
By Γ(r), we denote the Gamma function of a real number r and r /∈ {0,−1,−2,−3, ...}.

By the definition, it can be expressed as an improper integral as:

Γ(r) =

∫ ∞
0

e−ttr−1dt.

From the definition, it is observed that:
(i) For any natural number n, Γ(n+ 1) = n!,
(ii) For any real number n and n /∈ {0,−1,−2,−3, ...},Γ(n+ 1) = nΓ(n),
(iii) For particular cases, we have Γ(1) = Γ(2) = 1,Γ(3) = 2!,Γ(4) = 3!, ....
For a proper fraction α, we define a fractional difference operator ∆α : w → w

defined by

∆α(xk) =

∞∑
i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)
xk+i. (2)

In particular, we have

∆
1
2xk = xk −

1

2
xk+1 −

1

8
xk+2 −

1

16
xk+3 −

5

128
xk+4 −

7

256
xk+5 −

21

1024
xk+6 · · ·

∆−
1
2xk = xk +

1

2
xk+1 +

3

8
xk+2 +

5

16
xk+3 +

35

128
xk+4 +

63

256
xk+5 +

231

1024
xk+6 · · ·

∆
1
3xk = xk −

1

3
xk+1 −

1

9
xk+2 −

5

81
xk+3 −

10

243
xk+4 −

22

729
xk+5 −

154

6561
xk+6 · · ·

∆
2
3xk = xk −

2

3
xk+1 −

1

9
xk+2 −

4

81
xk+3 −

7

243
xk+4 −

14

729
xk+5 −

91

6561
xk+6 · · ·
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Without loss of generality, we assume throughout that the series defined in (2)
is convergent. Moreover, if α is a positive integer, then the infinite sum defined
in (2) reduces to a finite sum i.e.,

∑α
i=0(−1)i Γ(α+1)

i!Γ(α−i+1)xk+i. In fact, this operator
generalized the difference operator introduced by Et and Çolak [14].

Recently, using fractional operator ∆α (fractional order of α, α ∈ R ) Baliars-
ingh et al. ([3],[4],[35]) defined the sequence space ∆α (X) such as: ∆α (X) =
{x = (xk) : (∆αxk) ∈ X} , where X is any sequence space.

By a lacunary sequence we mean an increasing integer sequence θ = (kr) of
non-negative integers such that k0 = 0 and hr = (kr − kr−1)→∞ as r →∞. The
intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
will be abbreviated by qr, and q1 = k1 for convenience. In recent years, lacunary
sequences have been studied in ([7],[8],[9],[21],[23], [24], [40]).

An Orlicz function is a function M : [0,∞)→ [0,∞), which is continuous, non-
decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞ as
x→∞.

The study of Orlicz sequence spaces was initiated with a certain specific purpose
in Banach space theory. Indeed, Lindberg [29] got interested in Orlicz sequence
spaces in connection with finding Banach spaces with symmetric Schauder bases
having complementary subspaces isomorphic to c0 or `p (0 ≤ p <∞). Subsequently,
Lindenstrauss and Tzafriri [30] used the idea of Orlicz function to construct the
sequence space

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞ for some ρ > 0

}
.

The space `M with the norm

‖x‖ = inf
{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1
}

becomes a Banach space, called an Orlicz sequence space. The space `M is closely
related to the space `p which is an Orlicz sequence space with M(x) = |x|p for
1 ≤ p < ∞. Lindenstrauss and Tzafriri [30] proved that every Orlicz sequence
space `M contains a subspace isomorphic to lp (1 ≤ p < ∞). The Orlicz sequence
spaces are the special cases of Orlicz spaces studied in [28].

It is well known that if M is a convex function and M(0) = 0, then M(λx) ≤
λM(x) for all λ with 0 < λ < 1.

Recently, Orlicz sequence spaces were studied by Bhardwaj and Singh [6],Mursaleen
et al. ([16],[34]), Savaş and Rhoades [37], Tripathy et al. [43] and many others.
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2. Main Results and proofs

Definition 1. Let θ = (kr) be a lacunary sequence, β ∈ (0, 1] and α be a proper
fraction. The sequence x = (xk) is said to be ∆α−lacunary statistically convergent
of order β of fractional order of α (or ∆α(Sβθ )−convergent to L ) to the number L,
if there is a real number L such that

lim
r→∞

1

hβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}| = 0

for all ε > 0. In this case, we write xk → L(∆α(Sβθ ).

The set of all ∆α(Sβθ )−convergent sequences will be denoted by ∆α(Sβθ ). If
θ = (2r) , then we write ∆α(Sβ) instead of ∆α(Sβθ ). In the special cases θ = (2r)

and β = 1, we write ∆α(S) instead of ∆α(Sβθ ).

In particular, ∆α(Sβθ )−convergence includes many special cases; for example,
in case of α = m ∈ N, β = 1,∆α−lacunary statistical convergence of order β
reduces to the ∆m−lacunary statistical convergence which was defined and studied
by Tripathy and Et [44].

Definition 2. Let M be an Orlicz function, θ = (kr) be a lacunary sequence,
β ∈ (0, 1], α be a proper fraction and p = (pk) be a sequence of strictly positive real
numbers. The sequence x = (xk) is said to be strongly ∆α(Nβ

θ , (p))−summable to
L with respect to the Orlicz function M (or strongly ∆α(Nβ

θ ,M, (p))−summable to
L), if there is a real number L such that

lim
r→∞

1

hβr

∑
k∈Ir

[
M

(
|∆αxk − L|

ρ

)]pk
= 0,

for all ε > 0 and some ρ > 0. In this case, we write xk → L(∆α(Nβ
θ ,M, (p))).

The set of all∆α(Nβ
θ ,M, (p))−summable sequences will be denoted by∆α(Nβ

θ ,M, (p)).
In the special cases M (x) = x, pk = p for each k ∈ N, we obtain the set ∆α(Nβ

θ , p).
If θ = (2r) , M (x) = x, pk = 1 for each k ∈ N and β = 1, then we write ∆α (|σ1|)
instead of ∆α(Nβ

θ , p) and say that x = (xk) is strongly ∆α−Cesàro summable to
L.

The proof the following theorems are straightforward, so we choose to state these
results without proof.

Theorem 3. Let θ = (kr) be a lacunary sequence, β ∈ (0, 1], α be a proper fraction
and x = (xk), y = (yk) are sequences of real numbers, then

i) If xk → L(∆α(Sβθ )) and c ∈ C, then cxk → cL(∆α(Sβθ )).
ii) If xk → L1(∆α(Sβθ )) and yk → L2(∆α(Sβθ )), then (xk + yk)→ (L1 + L2) (∆α(Sβθ )).
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Theorem 4. Let the sequence (pk) be bounded, then the sequence space ∆α(Nβ
θ ,M, (p))

is a linear space over the set of complex numbers.

Theorem 5. If a ∆α−bounded sequence (that is x ∈ ∆α (`∞)) is ∆α−statistically
convergent to L then it is strongly ∆α−Cesàro summable to L.

Proof. Suppose that x ∈ ∆α (`∞) ∩ ∆α(S) with xk → L(∆α(S). Without loss of
generality we may assume that L = 0. Set K = ‖∆αx‖∞ . Let ε > 0 be given and
choose Nε such that 1

n |{k ≤ n : |∆αxk| ≥ ε
2}| <

ε
2K for all n > Nε. Now, we get

1

n

n∑
k=1

|∆αxk| =
1

n

∑
1≤k≤n
|∆αxk|≥ ε2

|∆αxk|+
1

n

∑
1≤k≤n
|∆αxk|< ε

2

|∆αxk| ≤
1

n

nε

2K
K +

n

n

ε

2
= ε.

for all n > Nε. Thus lim 1
n

∑n
k=1 |∆αxk| = 0 which means that x ∈ ∆α (|σ1|) . �

Converse of Theorem 5 does not holds. For this choose α = 1, then the sequence
x = (0,−1,−1,−2,−2,−3−, 3,−4,−4, ...) belongs to ∆ (|σ1|) and does not belong
to ∆ (S) .

Theorem 6. ∆α(Nβ
θ , p) is a Banach space normed by

‖x‖∆α
1

=

∞∑
i=1

|xi|+ sup
r

(
1

hβr

∑
k∈Ir

|∆αxk|p
)1/p

, 1 ≤ p <∞ (3)

and a complete p-normed space for 0 < p < 1 by

‖x‖∆α
2

=

∞∑
i=1

|xi|+ sup
r

1

hβr

∑
k∈Ir

|∆αxk|p = 0 (4)

Proof. Proof follows from Theorem 3 [4] and Theorem 2.4 [39]. �

Theorem 7. ∆α(Nβ
θ , p) is a BK−space normed by (3) .

Proof. Omitted. �

Theorem 8. Let θ = (kr) be a lacunary sequence, β ∈ (0, 1], α be a proper fraction
and p be a fixed positive real number, then

i) If xk → L(∆α(Nβ
θ , p)), then xk → L(∆α(Sβθ )) and the inclusion is strict,

ii) ([24]) If x ∈ ∆α(`∞) and xk → L(∆α(Sθ)), then xk → L(∆α (Nθ, p)).
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Proof. The inclusion part of the proof is easy. In order to establish "the inclusion is
strict", let θ be given, choose α = m, β = 1, p = 1 and define a sequence x = (xk)
by ∆mx to be 1, 2, ...,

[√
hr
]
at the first

[√
hr
]
integers in Ir, and ∆mxk = 0

otherwise (5)

It is clear that x is not ∆m−bounded. Since
1

hr
|{k ∈ Ir : |∆mxk − 0| ≥ ε}| =

[√
hr
]

hr
→ 0, as r →∞

and
1

hr

∑
k∈Ir

|∆mxk − 0| =
[√
hr
] ([√

hr
]

+ 1
)

2hr
→ 1

2
, as r →∞.

From (1) we have x ∈ ∆m (Sθ), xk /∈ ∆m (Nθ) . �

Theorem 9. Let 0 < α ≤ 1 and θ = (kr) be a lacunary sequence. If lim infr qr > 1,

then ∆α
(
Sβ
)
⊂ ∆α

(
Sβθ

)
.

Proof. Suppose that lim infr qr > 1; then there exists a δ > 0 such that qr ≥ 1 + δ
for suffi ciently large r, which implies that

hr
kr
≥ δ

1 + δ
=⇒

(
hr
kr

)β
≥
(

δ

1 + δ

)β
=⇒ 1

kβr
≥ δβ

(1 + δ)
β

1

hβr
.

If xk → L
(
∆α
(
Sβ
))
, then for every ε > 0 and for suffi ciently large r, we have

1

kβr
|{k ≤ kr : |∆αxk − L| ≥ ε}| ≥

1

kβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}|

≥ δβ

(1 + δ)
β

1

hβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}| ;

So x ∈ ∆α
(
Sβθ

)
. �

Theorem 10. Let 0 < α ≤ 1 and θ = (kr) be a lacunary sequence. If lim supr qr <

∞, then ∆α
(
Sβθ

)
⊂ ∆α

(
Sβ
)
.

Proof. Omitted. �

In the following theorems, assume that the sequence p = (pk) is bounded and
0 < h = infk pk ≤ pk ≤ supk pk = H <∞.

Theorem 11. Let β, γ ∈ (0, 1] be real numbers such that β ≤ γ, M be an Orlicz
function and θ = (kr) be a lacunary sequence, then ∆α(Nβ

θ (M, (p)) ⊂ ∆α(Sγθ ).
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Proof. Let x ∈ ∆α(Nβ
θ (M, (p)), ε > 0 be given and

∑
1 and

∑
2 denote the sums

over k ∈ Ir, |∆αxk − L| ≥ ε and |∆αxk − L| < ε respectively. As hβr ≤ hγr for each
r, we have

1

hβr

∑
k∈Ir

[
M

(
|∆αxk − L|

ρ

)]pk
≥ 1

hγr

 ∑
1

[
M
(
|∆αxk−L|

ρ

)]pk
+
∑

2

[
M
(
|∆αxk−L|

ρ

)]pk


≥ 1

hγr

[∑
1

M

(
ε

ρ

)]pk
≥ 1

hγr

∑
1

min
(

[M(ε1)]
h
, [M(ε1)]

H
)
, ε1 =

ε

ρ

≥ 1

hγr
|{k ∈ Ir : |∆αxk − L| ≥ ε}|

×min
(

[M(ε1)]
h
, [M(ε1)]

H
)
.

As x ∈ ∆α(Nβ
θ (M, (p)), the left hand side of the above inequality tends to zero as

r → ∞. Therefore, the right hand side of the above inequality tends to zero as
r →∞, hence x ∈ ∆α(Sγθ ). �

Corollary 12. Let 0 < β ≤ 1, M be an Orlicz function and θ = (kr) be a lacunary
sequence, then ∆α(Nβ

θ (M, (p)) ⊂ ∆α(Sβθ ).

Theorem 13. Let M be an Orlicz function, x = (xk) be a ∆α−bounded sequence
and θ = (kr) be a lacunary sequence. If limr→∞

hr

hβr
= 1, then x ∈ ∆α(Sβθ ) ⇒ x ∈

∆α(Nβ
θ (M, (p)).

Proof. Suppose that x = (xk) be a ∆α−bounded sequence, that is x ∈ ∆α(`∞)

and xk → L(∆α(Sβθ )). As x ∈ ∆α(`∞), then there is a constant T > 0 such that
|∆αxk| ≤ T . Given ε > 0, we have

1

hβr

∑
k∈Ir

[
M

(
|∆αxk − L|

ρ

)]pk
=

1

hβr

∑
1

[
M

(
|∆αxk − L|

ρ

)]pk
+

1

hβr

∑
2

[
M

(
|∆αxk − L|

ρ

)]pk
≤ 1

hβr

∑
1

max

{[[
M

(
T

ρ

)]h
,

[
M

(
T

ρ

)]H]}
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+
1

hβr

∑
2

max

[
M

(
ε

ρ

)]pk
≤ max

{
[M(K)]

h
, [M(K)]

H
}

× 1

hβr
|{k ∈ Ir : |∆αxk − L| ≥ ε}|

+
hr

hβr
max

{
[M(ε1)]

h
, [M(ε1)]

H
}
,

T

ρ
= K,

ε

ρ
= ε1.

Hence x ∈ ∆α(Nβ
θ (M, (p)). �

Theorem 14. If lim pk > 0 and x = (xk) is strongly ∆α(Nβ
θ (M, (p))−summable

to L with respect to the Orlicz function M , then that limit L is unique.

Proof. Let lim pk = s > 0. Suppose that xk → L(∆α(Nβ
θ , p)) and xk → L1(∆α(Nβ

θ , p)).
Then we have

lim
r→∞

1

hβr

∑
k∈Ir

[
M

(
|∆αxk − L|

ρ1

)]pk
= 0, for some ρ1 > 0

and

lim
r→∞

1

hβr

∑
k∈Ir

[
M

(
|∆αxk − L1|

ρ2

)]pk
= 0, for some ρ2 > 0.

We define the ρ = max(2ρ1, 2ρ2). As M is nondecreasing and convex, we have

1

hβr

∑
k∈Ir

[
M

(
L− L1

ρ

)]pk
≤ D

hβr

∑
k∈Ir

1

2pk

×
([
M

(
|∆αxk − L|

ρ1

)]pk
+

[
M

(
|∆αxk − L1|

ρ2

)]pk)
≤ D

hβr

∑
k∈Ir

[
M

(
|∆αxk − L|

ρ1

)]pk
+
D

hβr

∑
k∈Ir

[
M

(
|∆αxk − L1|

ρ2

)]pk
→ 0, (r →∞),

where supk pk = H and D = max(1, 2H−1). Hence,

lim
r→∞

1

hβr

∑
k∈Ir

[
M

(
L− L1

ρ

)]pk
= 0.
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As limk→∞ pk = s, we have

lim
k→∞

[
M

(
|L− L1|

ρ

)]pk
=

[
M

(
|L− L1|

ρ

)]s
and so L = L1. Thus, the limit is unique. �
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[11] Çınar, M., Karakaş, M., Et, M., On pointwise and uniform statistical convergence of order α
for sequences of functions, Fixed Point Theory And Applications, Article Number: 33, 2013.

[12] Çolak, R., Statistical convergence of order α, Modern Methods in Analysis and Its Applica-
tions, New Delhi, India: Anamaya Pub., (2010) 121—129.

[13] Connor, J. S., The statistical and strong p−Cesaro convergence of sequences, Analysis, 8
(1988), 47-63.

[14] Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow J. Math., 21(4)
(1995), 377-386 .

[15] Et, M., Tripathy, B. C., Dutta, A. J., On pointwise statistical convergence of order α of
sequences of fuzzy mappings, Kuwait J. Sci., 41(3) (2014), 17—30.
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SOME GENERAL INTEGRAL INEQUALITIES FOR
LIPSCHITZIAN FUNCTIONS VIA CONFORMABLE

FRACTIONAL INTEGRAL

İMDAT İŞCAN, SERCAN TURHAN, AND SELIM NUMAN

Abstract. In this paper, the author establishes some Hadamard-type and
Bullen-type inequalities for Lipschitzian functions via Riemann Liouville frac-
tional integral.

1. Introduction

Hermite-Hadamard Inequality. Let f : I ⊆ R→ R be a convex function defined
on the interval I of real numbers and a, b ∈ I with a < b. The following inequality

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
(1)

holds. This double inequality is known in the literature as Hermite-Hadamard
integral inequality for convex functions (see [7]). Note that some of the classical
inequalities for means can be derived from (1) for appropriate particular selections
of the mapping f .
Ostrowski’s Inequality. Let f : I ⊆ R→ R be a mapping differentiable in I◦, the

interior of I, and let a, b ∈ I◦ with a < b. If |f ′(x)| ≤ M, x ∈ [a, b] , then we the
following inequality holds∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ M

b− a

[
(x− a)

2
+ (b− x)

2

2

]

for all x ∈ [a, b] (see [1]).
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formable fractional integral.
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Simpson’s Inequality. Let f : [a, b]→ R be a four times continuously differen-
tiable mapping on (a, b) and

∥∥f (4)∥∥∞ = sup
x∈(a,b)

∣∣f (4)(x)
∣∣ < ∞. Then the following

inequality holds:∣∣∣∣∣∣13
[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ 1

2880

∥∥∥f (4)∥∥∥
∞

(b− a)
4

(see [3, 11] and therein).
Bullen’s inequality. Suppose that f : [a, b]→ R is a convex function on [a, b].

Then we have the inequalities:

1

b− a

b∫
a

f(x)dx ≤ 1

2

[
f

(
a+ b

2

)
+
f(a) + f(b)

2

]
(see [5] and [16]). In what follows we recall the following definition.

Definition 1. A function f : I ⊆ R→ R is called an M -Lipschitzian function on
the interval I of real numbers with M ≥ 0, if

|f(x)− f(y)| ≤M |x− y|

for all x, y ∈ I.

For some recent results are connected with Hermite-Hadamard type integral in-
equalities for Lipschitzian functions, see [4, 8, 9, 17, 18]. In [17], Tseng et al. estab-
lished some Hadamard-type and Bullen-type inequalities for Lipschitzian functions
as follows:

Theorem 2. Let I be an interval in R, a ≤ A ≤ B ≤ b in I, V = (1 − α)a + αb,
α ∈ [0, 1] and let f : I→ R be an L -Lipschitzian function with L ≥ 0. Then we
have the inequality∣∣∣∣∣∣αf(A) + (1− α)f(B)− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ LVα(A,B)

2 (b− a)
, (2)

where

Vα(A,B)

=



(A− a)
2 − (A− V )

2
+ (B − V )

2
+ (b−B)

2
,

a ≤ V ≤ A ≤ B ≤ b,
(A− a)

2
+ (V −A)

2
+ (B − V )

2
+ (b−B)

2
,

a ≤ A ≤ V ≤ B ≤ b,
(A− a)

2
+ (V −A)

2
+ (b−B)

2 − (V −B)
2
,

a ≤ A ≤ B ≤ V ≤ b

.
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Theorem 3. Let I be an interval in R, a ≤ A ≤ B ≤ C ≤ b in I, V1 = (1−α)a+αb,
V2 = γa + (α+ β) b, α, β, γ ∈ [0, 1], α + β + γ = 1, and let f : I → R be an L-
Lipschitzian function with L ≥ 0. Then we have the inequality∣∣∣∣∣∣αf(A) + βf(B) + γf (C)− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ LVα,β,γ(A,B,C)

2 (b− a)
, (3)

where Vα,β,γ is defined as in [17, Section 3].

We give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used throughout this paper.

Definition 4. Let f ∈ L [a, b]. The Riemann-Liouville fractional integrals Jαa+f
and Jαb−f of order α > 0 are defined by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1 f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

respectively, where Γ(α) is the Gamma function defined by Γ(α) =
∞∫
0

e−ttα−1dt and

J0a+f(x) = J0b−f(x) = f(x) (see [13]).

In the case of α = 1, the fractional integral reduces to the classical integral. For
some recent results connected with fractional integral inequalities, see [2, 10, 14,
15, 19]. In [15], Sarıkaya et. al. represented Hermite—Hadamard’s inequalities in
fractional integral forms as follows:

Theorem 5. Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L [a, b]. If f is a convex function on [a, b], then the following inequalities
for fractional integrals hold

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)
α

[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

2
(4)

with α > 0.

Definition 6. Let α ∈ (n, n+ 1] , n = 0, 1, 2, ... and set β = α − n. Then the left
conformable factional integral of any order α > 0 is defined by

(Iaαf) (x) =
1

n!

x∫
a

(x− t)n (t− a)
β−1

f(t)dt,
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and analogously, the right conformable fractional integral of any order α > 0 is
defined by (

bIαf
)

(x) =
1

n!

b∫
x

(t− x)
n

(b− t)β−1 f(t)dt.

Notice that, if α = n + 1 then β = α − n = 1 and hence (Iaαf) (x) = Jn+1a+ f(x)

and
(
bIαf

)
(x) = Jn+1b− f(x). Also, if n = 0 and α = 1 then β = 1 and hence

(Iaαf) (b) =
(
bIαf

)
(a) =

b∫
a

f(t)dt.

The Beta function defined as follows:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

1∫
0

ta−1(1− t)b−1dt, a, b > 0.

The Incomplete Beta function is defined by

Bx(a, b) =

x∫
0

ta−1(1− t)b−1dt, x ∈ [0, 1] , a, b > 0,

for x = 1, the incomplete beta function coincides with the complete beta function.
In [12], Set et. al. represented Hermite—Hadamard’s inequalities for conformable
fractional integrals as follows:

Theorem 7. Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈ L [a, b].
If f is a convex function on [a, b], then the following inequalities for conformable
fractional integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)
α

Γ(α− n)

[
(Iaαf) (b) +

(
bIαf

)
(a)
]
≤ f(a) + f(b)

2
. (5)

The aim of this paper is to indicate generalizations of some integral inequalities
for Lipschitzian functions via conformable fractional integral. The results are ob-
tained in this study is a generalization of the results which are obtained in Theorem
2 and Theorem 3 by using conformable fractional integrals.

2. A generalization of Hadamard and Ostrowski type inequalities
for Lipschitzian functions via fractional integrals

Throughout this section, let I be an interval in R, a ≤ x ≤ y ≤ b in I and
let f : I → R be an M -Lipschitzian function. In the next theorem, let λ ∈ [0, 1],
A = (1− λ)a+ λb, and Aα,β,n, α > 0, n = 0, 1, 2, β = α− n, as follows:
(1) If a ≤ A ≤ x ≤ y ≤ b, then

Aα,β,n(x, y,A) = Kα,β,n(x, y,A) + L∗α,β,n(x, y,A).
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(2) If a ≤ x ≤ A ≤ y ≤ b, then

Aα,β,n(x, y,A) = K∗α,β,n(x, y,A) + L∗α,β,n(x, y,A).

(3) If a ≤ x ≤ y ≤ A ≤ b, then

Aα,β,n(x, y,A) = K∗α,β,n(x, y,A) + Lα,β,n(x, y,A).

where

Kα,β,n(x, y,A) = (A− a)
α

[(x− a)B(β, n+ 1)− (A− a)B(β + 1, n+ 1))] ,

K∗α,β,n(x, y,A) = (A− a)
α
{

(x− a)
[
2B x−a

A−a
(β, n+ 1)−B(β, n+ 1)

]
)

+ (A− a)
[
B(β + 1, n+ 1)− 2B x−a

A−a
(β + 1, n+ 1)

]}
, A 6= a,

K∗α,β,n(x, y, a) = 0,

Lα,β,n(x, y,A) = (b−A)
α

[(A− y)B(n+ 1, β) + (b−A)B(n+ 2, β)] ,

L∗α,β,n(x, y,A) = (b−A)
α
{

(y −A)
[
2B y−A

b−A
(n+ 1, β)−B(n+ 1, β)

]
)

+ (b−A)
[
B(n+ 2, β)− 2B y−A

b−A
(n+ 2, β)

]}
, A 6= b,

L∗α,β,n(x, y, b) = 0.

Theorem 8. Let x, y, α, λ,A,Aα,β,n and the function f be defined as above. Then
we have the inequality for fractional integrals∣∣∣∣λαf(x) + (1− λ)αf(y)− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
bIαf

)
(A)
]∣∣∣∣

≤ Γ(α+ 1)Aα,β,n(x, y,A)

n! (b− a)
α

Γ(α− n)
M. (6)

Proof. Using the hypothesis of f , we have the following inequality∣∣∣∣λαf(x) + (1− λ)αf(y)− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
bIαf

)
(A)
]∣∣∣∣

=
Γ(α+ 1)

n! (b− a)
α

Γ(α− n)

∣∣∣∣∣∣
A∫
a

[f(x)− f(t)] (A− t)n (t− a)
β−1

dt

+

b∫
A

[f(y)− f(t)] (t−A)
n

(b− t)β−1 dt

∣∣∣∣∣∣
≤ Γ(α+ 1)

n! (b− a)
α

Γ(α− n)

 A∫
a

|f(x)− f(t)| (A− t)n (t− a)
β−1

dt
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+

b∫
A

|f(y)− f(t)| (t−A)
n

(b− t)β−1 dt


≤ Γ(α+ 1)M

n! (b− a)
α

Γ(α− n)

 A∫
a

|x− t| (A− t)n (t− a)
β−1

dt

+

b∫
A

|y − t| (t−A)
n

(b− t)β−1 dt

 . (7)

Now using simple calculations, we obtain the following identities

A∫
a

|x− t| (A− t)n (t− a)
β−1

dt and

b∫
A

|y − t| (t−A)
n

(b− t)β−1 dt.

1. If a ≤ A ≤ x ≤ y ≤ b, then
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt

= (A− a)
α

[(x− a)B(β, n+ 1)− (A− a)B(β + 1, n+ 1))]

= Kα,β,n(x, y,A).

and
b∫

A

|y − t| (t−A)
n

(b− t)β−1 dt

= (b−A)
α
{

(y −A)
[
2B y−A

b−A
(n+ 1, β)−B(n+ 1, β)

]
)

+ (b−A)
[
B(n+ 2, β)− 2B y−A

b−A
(n+ 2, β)

]}
= L∗α,β,n(x, y,A).

2. If a ≤ x ≤ A ≤ y ≤ b, then
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt

= (A− a)
α
{

(x− a)
[
2B x−a

A−a
(β, n+ 1)−B(β, n+ 1)

]
)

+ (A− a)
[
B(β + 1, n+ 1)− 2B x−a

A−a
(β + 1, n+ 1)

]}
= K∗α,β,n(x, y,A).
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and
b∫

A

|y − t| (t−A)
n

(b− t)β−1 dt

= (b−A)
α
{

(y −A)
[
2B y−A

b−A
(n+ 1, β)−B(n+ 1, β)

]
)

+ (b−A)
[
B(n+ 2, β)− 2B y−A

b−A
(n+ 2, β)

]}
= L∗α,β,n(x, y,A).

3. If a ≤ x ≤ y ≤ A ≤ b, then
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt

= (A− a)
α
{

(x− a)
[
2B x−a

A−a
(β, n+ 1)−B(β, n+ 1)

]
)

+ (A− a)
[
B(β + 1, n+ 1)− 2B x−a

A−a
(β + 1, n+ 1)

]}
= K∗α,β,n(x, y,A),

and
b∫

A

|y − t| (t−A)
n

(b− t)β−1 dt

= (b−A)
α

[(A− y)B(n+ 1, β) + (b−A)B(n+ 2, β)] = Lα,β,n(x, y,A).

Using the inequality (7) and the above identities
∫ A
a
|x− t| (A− t)n (t− a)

β−1
dt

and
∫ b
A
|y − t| (t−A)

n
(b− t)β−1 dt, we derive the inequality ( 6). This completes

the proof. �

Under the assumptions of Theorem 8, we have the following corollaries and
remarks as follows:

Remark 9. In Theorem 8, if we take α = β = 1 and n = 0, then the inequality
(6) reduces the inequality (2) in Theorem 2 under the appropriate symbols.

Corollary 10. In Theorem 8, let δ ∈
[
1
2 , 1
]
, x = δa+(1−δ)b and y = (1−δ)a+δb.

Then, we have the inequality

|λαf(δa+ (1− δ)b) + (1− λ)αf((1− δ)a+ δb)

− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
bIαf

)
(A)
]∣∣∣∣

≤ Γ(α+ 1)Aα,β,n(δa+ (1− δ)b, (1− δ)a+ δb, A)

n! (b− a)
α

Γ(α− n)
M. (8)
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Specially if we choose, if we take x = y = A, then we have Ostrowski-type inequality
as follows: ∣∣∣∣[λα + (1− λ)α] f(x)− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
bIαf

)
(A)
]∣∣∣∣ (9)

≤ Γ(α+ 1)Aα,β,n(x, y,A)

n! (b− a)
α

Γ(α− n)
M,

where

Aα,β,n(x, y,A) = (x− a)
α+1

(B(β, n+ 1)−B(β + 1, n+ 1))+(b− x)
α+1

B(n+2, β).

Remark 11. In the inequality (9), if we take α = n + 1, then the inequality (9)
reduces the inequality (2.4) obtained via Riemann-Liouville fractional integrals in
[10, Corollary 2.1].

Corollary 12. We have the following weighted Hadamard-type inequalities for Lip-
schitzian functions via conformable fractional integrals as follows:
In the inequality (8), if we take δ = 1, then we have∣∣∣∣λαf(a) + (1− λ)αf(b)− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
bIαf

)
(A)
]∣∣∣∣

≤ Γ(α+ 1)Aα,β,n(a, b, A)

n! (b− a)
α

Γ(α− n)
M,

where

Aα,β,n(a, b, A) = (A− a)
α+1

[B(β + 1, n+ 1)−B(β, n+ 1)]

+ (b−A)
α+1

[B(n+ 1, β)−B(n+ 2, β)] ,

in this inequality, specially if we choose λ = x−a
b−a for x ∈ [a, b], then∣∣∣∣ (x− a)

α
f(a) + (b− x)

α
f(b)

(b− a)
α − Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (x) +

(
bIαf

)
(x)
]∣∣∣∣

≤ Γ(α+ 1)Aα,β,n(a, b, x)

n! (b− a)
α

Γ(α− n)
M,

Corollary 13. In the inequality (9),
(i) if we choose λ = 1

2 , then∣∣∣∣f (a+ b

2

)
− 2α−1Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf)

(
a+ b

2

)
+
(
bIαf

)(a+ b

2

)]∣∣∣∣
≤

2α−1Γ(α+ 1)Aα,β,n(a+b2 , a+b2 , a+b2 )

n! (b− a)
α

Γ(α− n)
M,

where

Aα,β,n(
a+ b

2
,
a+ b

2
,
a+ b

2
)
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=

(
b− a

2

)α+1
[B(β, n+ 1)−B(β + 1, n+ 1) +B(n+ 2, β)] .

(ii) In the inequality (9), if we take λ = 1
2 and δ = 3

4 then∣∣∣∣12
[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
− 2α−1Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf)

(
a+ b

2

)
+
(
bIαf

)(a+ b

2

)]∣∣∣∣
≤

2α−1Γ(α+ 1)Aα,β,n( 3a+b4 , a+3b4 , a+b2 )

n! (b− a)
α

Γ(α− n)
M,

where

Aα,β,n(
3a+ b

4
,
a+ 3b

4
,
a+ b

2
)

=

(
b− a

2

)α+1 [
B1/2(β, n+ 1) +B1/2(n+ 1, β)− 2B1/2(β + 1, n+ 1)

−2B1/2(n+ 2, β) +B(β + 1, n+ 1) +B(n+ 2, β)−B(β, n+ 1)
]
.

3. A generalization of Bullen and Simpson type inequalities for
Lipschitzian functions via fractional integrals

Throughout this section, let I be an interval in R, a ≤ x ≤ y ≤ z ≤ b in I and
f : I → R be an M -lipschitzian function. In the next theorem, let λ + η + µ = 1,
λ, η, µ ∈ [0, 1], A = (1− λ)a+ λb, C = µa+ (λ+ η) b, and define Iα,λ,η,µ, α > 0, as
follows:

(1) If A ≤ C ≤ x ≤ y ≤ z or A ≤ x ≤ C ≤ y ≤ z, then
Iα,λ,η,µ(x, y, z) = Mα,λ,η,µ(x, y, z) +Nα,λ,η,µ(x, y, z) +O∗α,λ,η,µ(x, y, z).

(2) If A ≤ x ≤ y ≤ C ≤ z, then
Iα,λ,η,µ(x, y, z) = Mα,λ,η,µ(x, y, z) +N∗α,λ,η,µ(x, y, z) +O∗α,λ,η,µ(x, y, z).

(3) If A ≤ x ≤ y ≤ z ≤ C, then
Iα,λ,η,µ(x, y, z) = Mα,λ,η,µ(x, y, z) +N∗α,λ,η,µ(x, y, z) +Oα,λ,η,µ(x, y, z).

(4) If x ≤ A ≤ C ≤ y ≤ z, then
Iα,λ,η,µ(x, y, z) = M∗α,λ,η,µ(x, y, z) +Nα,λ,η,µ(x, y, z) +O∗α,λ,η,µ(x, y, z).

(5) If x ≤ A ≤ y ≤ C ≤ z, then
Iα,λ,η,µ(x, y, z) = M∗α,λ,η,µ(x, y, z) +N∗α,λ,η,µ(x, y, z) +O∗α,λ,η,µ(x, y, z).

(6) If x ≤ A ≤ y ≤ z ≤ C, then
Iα,λ,η,µ(x, y, z) = M∗α,λ,η,µ(x, y, z) +N∗α,λ,η,µ(x, y, z) +Oα,λ,η,µ(x, y, z).
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(7) If x ≤ y ≤ A ≤ C ≤ z, then
Iα,λ,η,µ(x, y, z) = M∗α,λ,η,µ(x, y, z)−Nα,λ,η,µ(x, y, z) +O∗α,λ,η,µ(x, y, z).

(8) If x ≤ y ≤ A ≤ z ≤ C or x ≤ y ≤ z ≤ A ≤ C, then
Iα,λ,η,µ(x, y, z) = M∗α,λ,η,µ(x, y, z)−Nα,λ,η,µ(x, y, z) +Oα,λ,η,µ(x, y, z).

Where

Mα,λ,η,µ(x, y, z) = (A− a)
α

[(x− a)B(β, n+ 1)− (A− a)B(β + 1, n+ 1)] ,

Nα,λ,η,µ(x, y, z) = (C −A)
α

[(y −A)B(n+ 1, β)− (C −A)B(n+ 2, β)] ,

Oα,λ,η,µ(x, y, z) = (b− C)
α

[(C − z)B(n+ 1, β) + (b− C)B(n+ 2, β)] ,

M∗α,λ,η,µ(x, y, z) = (A− a)
α
{

(x− a)
[
2B x−a

A−a
(β, n+ 1)−B(β, n+ 1)

]
)

+ (A− a)
[
B(β + 1, n+ 1)− 2B x−a

A−a
(β + 1, n+ 1)

]}
, A 6= a (or λ 6= 0),

M∗α,0,η,µ(x, y, z) = 0,

N∗α,λ,η,µ(x, y, z) = (C −A)
α
{

(y −A)
[
2B y−A

C−A
(n+ 1, β)−B(n+ 1, β)

]
)

+ (C −A)
[
B(n+ 2, β)− 2B y−A

C−A
(n+ 2, β)

]}
, A 6= C (or η 6= 0),

N∗α,λ,0,µ(x, y, z) = 0,

O∗α,λ,η,µ(x, y, z) = (b− C)
α
{

(z − C)
[
2B z−C

b−C
(n+ 1, β)−B(n+ 1, β)

]
)

+ (b− C)
[
B(n+ 2, β)− 2B z−C

b−C
(n+ 2, β)

]}
, C 6= b (or µ 6= 0),

O∗α,λ,η,0(x, y, z) = 0.

Theorem 14. Let x, y, z, λ, η, µ,A1, A2, Aα,λ,η,µ and the function f be defined as
above. Then we have the inequality

|λαf(x) + ηαf(y) + µαf(z)

− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
CIαf

)
(A) +

(
bIαf

)
(C)
]∣∣∣∣

≤ Γ(α+ 1)Iα,λ,η,µ(x, y, z)

n! (b− a)
α

Γ(α− n)
M. (10)

Proof. Using the hypothesis of f , we have the inequality

|λαf(x) + ηαf(y) + µαf(z)

− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
CIαf

)
(A) +

(
bIαf

)
(C)
]∣∣∣∣

=
Γ(α+ 1)

n! (b− a)
α

Γ(α− n)

∣∣∣∣∣∣
A∫
a

[f(x)− f(t)] (A− t)n (t− a)
β−1

dt
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+

C∫
A

[f(y)− f(t)] (t−A)
n

(C − t)β−1 dt+

b∫
C

[f(z)− f(t)] (t− C)
n

(b− t)β−1 dt

∣∣∣∣∣∣
≤ Γ(α+ 1)

n! (b− a)
α

Γ(α− n)

∣∣∣∣∣∣
A∫
a

|f(x)− f(t)| (A− t)n (t− a)
β−1

dt

+

C∫
A

|f(y)− f(t)| (t−A)
n

(C − t)β−1 dt+

b∫
C

|f(z)− f(t)| (t− C)
n

(b− t)β−1 dt

∣∣∣∣∣∣
≤ Γ(α+ 1)M

n! (b− a)
α

Γ(α− n)

∣∣∣∣∣∣
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt (11)

+

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt+

b∫
C

|z − t| (t− C)
n

(b− t)β−1 dt

∣∣∣∣∣∣ .
Now, using simple calculations, we obtain the following identities∫ A
a
|x− t| (A− t)n (t− a)

β−1
dt,
∫ C
A
|y − t| (t−A)

n
(C − t)β−1 dt

and
∫ b
C
|z − t| (t− C)

n
(b− t)β−1 dt.

(1) If A ≤ C ≤ x ≤ y ≤ z or A ≤ x ≤ C ≤ y ≤ z, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt

= (A− a)
α

[(x− a)B(β, n+ 1)− (A− a)B(β + 1, n+ 1)]

= Mα,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt

= (C −A)
α

[(y −A)B(n+ 1, β)− (C −A)B(n+ 2, β)]

= Nα,λ,η,µ(x, y, z),

and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt

= (b− C)
α
{

(z − C)
[
2B z−C

b−C
(n+ 1, β)−B(n+ 1, β)

]
)

+ (b− C)
[
B(n+ 2, β)− 2B z−C

b−C
(n+ 2, β)

]}
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= O∗α,λ,η,µ(x, y, z).

(2) If A ≤ x ≤ y ≤ C ≤ z, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt = Mα,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt

= (C −A)
α
{

(y −A)
[
2B y−A

C−A
(n+ 1, β)−B(n+ 1, β)

]
)

+ (C −A)
[
B(n+ 2, β)− 2B y−A

C−A
(n+ 2, β)

]}
= N∗α,λ,η,µ(x, y, z),

and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt = O∗α,λ,η,µ(x, y, z).

(3) If A ≤ x ≤ y ≤ z ≤ C, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt = Mα,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt = N∗α,λ,η,µ(x, y, z),

and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt

= (b− C)
α

[(C − z)B(n+ 1, β) + (b− C)B(n+ 2, β)]

= Oα,λ,η,µ(x, y, z).

(4) If x ≤ A ≤ C ≤ y ≤ z, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt = M∗α,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt = Nα,λ,η,µ(x, y, z),
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and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt = O∗α,λ,η,µ(x, y, z).

(5) If x ≤ A ≤ y ≤ C ≤ z, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt = M∗α,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt = N∗α,λ,η,µ(x, y, z),

and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt = O∗α,λ,η,µ(x, y, z).

(6) If x ≤ A ≤ y ≤ z ≤ C, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt = M∗α,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt = N∗α,λ,η,µ(x, y, z),

and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt = Oα,λ,η,µ(x, y, z).

(7) If x ≤ y ≤ A ≤ C ≤ z, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt = M∗α,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt = −Nα,λ,η,µ(x, y, z)

and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt = O∗α,λ,η,µ(x, y, z).
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(8) If x ≤ y ≤ A ≤ z ≤ C or x ≤ y ≤ z ≤ A ≤ C, then we have
A∫
a

|x− t| (A− t)n (t− a)
β−1

dt = M∗α,λ,η,µ(x, y, z),

C∫
A

|y − t| (t−A)
n

(C − t)β−1 dt = −Nα,λ,η,µ(x, y, z),

and
b∫

C

|z − t| (t− C)
n

(b− t)β−1 dt = Oα,λ,η,µ(x, y, z).

Using the inequality (11) and the above identities
∫ A
a
|x− t| (A− t)n (t− a)

β−1
dt,∫ C

A
|y − t| (t−A)

n
(C − t)β−1 dt and

∫ b
C
|z − t| (t− C)

n
(b− t)β−1 dt, we derive the

inequality (10). This completes the proof. �

Under the assumptions of Theorem 14, we have the following corollaries and
remarks as follows:

Remark 15. In Theorem 14, if we take α = β = 1 and n = 0, then then the
inequality (10) reduces the inequality (3) in Theorem 3 under the appropriate sym-
bols.

Corollary 16. In Theorem 14, let δ ∈
[
1
2 , 1
]
, x = δa + (1 − δ)b, y = a+b

2 and
z = (1− δ)a+ δb . Then, we have the inequality∣∣∣∣λαf(δa+ (1− δ)b) + ηαf(

a+ b

2
) + µαf((1− δ)a+ δb)

− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
CIαf

)
(A) +

(
bIαf

)
(C)
]∣∣∣∣

≤
Γ(α+ 1)Iα,λ,η,µ(δa+ (1− δ)b, a+b2 , (1− δ)a+ δb)

n! (b− a)
α

Γ(α− n)
M.

Corollary 17. In Corollary 16, if we take δ = 1, λ = µ = θ
2 and η = 1 − θ

with θ ∈ [0, 1], then we have the following weighted Bullen-type inequality for M -
Lipschitzian functions via fractional integrals∣∣∣∣(θ2

)α
(f(a) + f(b)) + (1− θ)α f

(
a+ b

2

)
− Γ(α+ 1)

(b− a)
α

Γ(α− n)

[
(Iaαf) (A) +

(
CIαf

)
(A) +

(
bIαf

)
(C)
]∣∣∣∣

≤
Γ(α+ 1)Iα, θ2 ,1−θ,

θ
2
(a, a+b2 , b)

n! (b− a)
α

Γ(α− n)
M, (12)
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where

Iα, θ2 ,1−θ,
θ
2
(a,

a+ b

2
, b)

= (b− a)
α+1


(
θ
2

)α+1
[B (β + 1, n+ 1) +B (n+ 1, β)−B (n+ 2, β)]

+ (1− θ)α+1
[
B (n+ 2, β)− 1

2B (n+ 1, β) +B1/2 (n+ 1, β)
−2B1/2 (n+ 2, β)

]  .

Specially, in the inequality (12), if we take n = 0 and α = β = 1, then the inequality
(12) reduces to the following general inequality for M -Lipschitzian functions∣∣∣∣∣∣

(
θ

2

)
(f(a) + f(b)) + (1− θ) f

(
a+ b

2

)
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣
≤ M

4
(b− a)

[
2θ2 + (1− θ)2

]
. (13)

Remark 18. In the inequality (12), if we take α = n+ 1, then the inequality (12)
reduces the inequality obtained via Riemann-Liouville fractional integrals in [10,
Corollary 3.2].

Remark 19. In the inequality (13), if we take θ = 1
3 , then the inequality (13)

reduces to the following Simpson-type inequality for M -Lipschitzian functions∣∣∣∣∣∣16
[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ M

6
(b− a) .

Remark 20. In the inequality (13), if we take θ = 1
2 , then the inequality (13)

reduces to the following Bullen type inequality for M -Lipschitzian functions∣∣∣∣∣∣12
[
f(a) + f(b)

2
+ f

(
a+ b

2

)]
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ 3M

16
(b− a) .

Remark 21. In the inequality (13), if we take θ = 0, then the inequality ( 13)
reduces to the following Midpoint type inequality for M -Lipschitzian functions∣∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ M

4
(b− a) .

Remark 22. In the inequality (13), if we take θ = 1, then the inequality ( 13)
reduces to the following Trapezoid type inequality for M -Lipschitzian functions∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ M

2
(b− a) .
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APPROXIMATION BY SAMPLING TYPE DISCRETE
OPERATORS

İSMAIL ASLAN

Abstract. In this paper, we deal with discrete operators of sampling type.
It is known that this type of operators are related to generalized sampling
series and they have important applications. In this work, using bounded
and uniformly continuous functions we get general estimations under usual
supremum norm with the help of summability method. We also study the
degree of approximation with respect to suitable Lipschitz class of continuous
functions. Finally, we give specific kernels which verify our kernel assumptions.

1. Introduction

Sampling type discrete operators have significant applications in speech process-
ing, medicine, economic forecasting, geophysics and etc. (see [2, 11, 12, 13, 14, 15,
16, 25]). In this paper, we mainly inspired from the paper [1], where Angeloni and
Vinti had some convergence results using discrete operators. The authors utilized
from convergence in ϕ-variation to get some convergence results in that work. Now,
our aim is to get some approximations under usual supremum norm by generalizing
them using Bell-type summability method. In this process, we use bounded and
uniformly continuous functions on R. Furthermore, we study the rate of approx-
imation for our main theorem using suitable Lipschitz class. Then, taking some
appropriate kernels we also get more general case of generalized sampling series.
Finally, we illustrate the kernels lk,w which satisfy our kernel assumptions.
Some notations and definitions are given below.

• ‖·‖l1 denotes the l1 norm, i.e., for a given uk : Z→ R, ‖uk‖l1 =
∑
k∈Z |uk| .

• By ‖·‖ , we mean the usual supremum norm on R.
• The space of bounded and uniformly continuous functions on R is shown
by BUC (R).

• Let A = {Aυ}υ∈N = {[aυnw]}υ∈N (n,w ∈ N) be a family of infinite matrices
of real or complex numbers. Then, for a given sequence x = (xk) the

Received by the editors: January 06, 2020; Accepted: May 03, 2020.
2010 Mathematics Subject Classification. 41A25, 41A35, 40A25, 40C05.
Key words and phrases. Sampling type operators, rate of approximation, summability process.
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following double sequence (Ax)
υ
n

(Ax)
υ
n :=

{ ∞∑
w=1

aυnwxw

}
(n, υ ∈ N)

is called by A-transform of x, if the series is convergent for all n, υ ∈ N.
Moreover, if

lim
n→∞

∞∑
w=1

aυnwxw = L uniformly in υ

holds, we call “x is A-summable to L”and denote by
A− limx = L

(see [9]).
• A is called regular if for any limk xk = L implies that A−limx = L ([9, 10]).
• A characterization for the regularity of the given method A is found by Bell
in [10] such that

A is regular ⇔ · for each w ∈ N, limn→∞ aυnw = 0 (uniformly in υ),

· limn→∞
∞∑
w=1

aυnw = 1 (uniformly in υ),

· for all n, υ ∈ N,
∞∑
w=1
|aυnw| <∞ and there exist integers

N and M such that sup
n≥N,υ∈N

∞∑
w=1
|aυnw| ≤M .

• Throughout the paper, we will assume that A is regular with nonnegative
real entries.

We should note that Bell-type summability method consists many well-known
methods such as Cesàro summability [18], almost convergence [23], order sum-
mability [19, 20] and etc. It also allows us to increase the speed of convergence
[21, 27, 29]. Some applications of Bell-type summability method are given in
[3, 4, 5, 6, 7, 8, 17, 22, 24, 28].
Now, we can define our operator as follows:

Tn,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
x− k

w

)
lk,w (x∈R, n, υ ∈ N) (1.1)

where f : R→ R is bounded and lk,w ∈ l1 (Z) is a family of discrete kernels for all
w ∈ N.
Our aim is to prove the following general convergence result

lim
n→∞

‖Tn,υ (f)− f‖ = 0 (uniformly in υ ∈ N)

for all f ∈ BUC (R) . It is not hard to see that operator (1.1) coincides with the
following operator

Tw (f ;x) =
∑
k∈Z

f
(
x− k

w

)
lk,w
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when A = {Aυ} = {I} (identity matrix). Furthermore, we will indicate that oper-
ator (1.1) contains the A-transform of generalized sampling series, defined by

Sn,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
k
w

)
χ (wx−k) (x∈R, n, υ ∈ N) (1.2)

where f, χ : R→ R and generalized sampling series

Sw (f ;x) =
∑
k∈Z

f
(
k
w

)
χ (wx− k)

is a special case of (1.2).

2. Approximation in Usual Supremum Norm

In this section, we will prove our main approximation theorem. For this, we need
the following conditions on the kernel of the corresponding operator.

(l1) There exists a constant A > 0 such that sup
n,υ∈N

∞∑
w=1

aυnw ‖ lk,w‖l1 = A <∞,

(l2) A− lim

(∑
k∈Z

lk,w

)
= 1,

(l3) there exists r > 0 such that A− lim

( ∑
|k|≥r

|lk,w|
)

= 0.

Here, when A is taken the identity matrix, conditions (l1) − (l3) reduce to the
approximate identities given in [1].
The following lemma shows that (1.1) is well defined for all bounded functions.

Lemma 2.1. If f is bounded on R and (l1) holds, then ‖Tn,υ (f)‖ < ∞ for every
n, υ ∈ N. Moreover, if f ∈ L1 (R) , then Tn,υ (f) ∈ L1 (R) .

Proof. Since f is bounded, there exists a positive number M such that |f (x)| ≤M
for all x ∈ R. Considering this with (l1) , we get

|Tn,υ (f ;x)| ≤
∞∑
w=1

aυnw
∑
k∈Z

∣∣f (x− k
w

)∣∣ |lk,w|
≤MA

and having supremum over x∈R, we have

‖Tn,υ (f)‖ ≤MA <∞

for all n, υ ∈ N, which shows that Tn,υ maps from the space of bounded functions
into itself.
For the second part of the theorem, assume that f ∈ L1 (R) . Then, it is possible

to write that ∫
R
|Tn,υ (f ;x)| dx≤

∫
R

∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∣∣f (x− k
w

)∣∣ dx
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and from a theorem of integration by series (see [26]),∫
R
|Tn,υ (f ;x)| dx≤

∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∥∥f (· − k
w

)∥∥
L1

holds for all n, υ ∈ N. Since
∥∥f (· − k

w

)∥∥
L1

= ‖f‖L1 , then∫
R
|Tn,υ (f ;x)| dx ≤ ‖f‖L1

∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

≤ A ‖f‖L1

is obtained, where ‖f‖L1 is the classical L1 norm, i.e., ‖f‖L1 =
∫
R
|f (x)| dx. �

Lemma 2.2. Assume that (l1) holds. If f ∈ BUC (R) , then Tn,υ (f) ∈ BUC (R)
for all n, υ ∈ N.

Proof. By the previous lemma it is clear that if f is bounded, then Tn,υ (f) is too.
Now, let ε > 0 be given and let |x− y| < δ where δ corresponds to given ε and f.
Then,

|Tn,υ (f ;x)− Tn,υ (f ; y)| ≤
∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∣∣f (x− k
w

)
− f

(
y − k

w

)∣∣
holds. Since

∣∣x− k
w −

(
y − k

w

)∣∣ = |x− y| < δ, from (l1)

|Tn,υ (f ;x)− Tn,υ (f ; y)| ≤ Aε

for all n, υ ∈ N. �

The main approximation theorem is given below.

Theorem 2.3. Assume that (l1)− (l3) hold. Then, for all f ∈ BUC (R) we have

lim
n→∞

‖Tn,υ (f)− f‖ = 0 uniformly in υ.

Proof. From triangle inequality, it is possible to write that

|Tn,υ (f ;x)− f (x)| =
∣∣∣∣ ∞∑
w=1

aυnw
∑
k∈Z

lk,w
(
f
(
x− k

w

)
− f (x)

)
+f (x)

( ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

)∣∣∣∣
≤
∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥
+ ‖f‖

∣∣∣∣ ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

∣∣∣∣
:= A1 +A2
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holds. In A1, we concentrate on the continuity of f. Since f is uniformly continuous,
for every ε > 0 we can find a δ > 0 such that

|f (x)− f (y)| < ε (2.1)

whenever |x−y| < δ. Then, for a fixed r̄ it is easy to find a number w1 satisfying∣∣ r̄
w

∣∣ < δ

for all w > w1.Now, if we divide A1 as follows

A1 =
w1∑
w=1

aυnw
∑
|k|<r̄

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+

∞∑
w=w1+1

aυnw
∑
|k|<r̄

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+
∞∑
w=1

aυnw
∑
|k|≥r̄

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
:= A1

1 +A2
1 +A3

1

from (2.1) and (l1)
A2

1 ≤ Aε
holds, since

∣∣x− k
w − x

∣∣ =
∣∣ k
w

∣∣ < r̄
w < δ.

For A1
1, from the regularity of A, one can find a number n1 = n1 (ε) such that

A1
1 < D′w1ε

where D′ := max1≤w≤w1

{∑
|k|<r̄ |lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥} . And from (l3) , we see

that
A3

1 < 2 ‖f‖ ε
for suffi ciently large n ∈ N.
Finally, it follows from (l2)

A2 < ‖f‖ ε
yields for suffi ciently large n ∈ N. Hence, having supremum over x∈R in the first
inequality, we complete the proof. �

3. Rate of Convergence

In this section we investigate the rate of approximation, and therefore we need
the following Lipschitz class.
For any given α > 0, define Lip (α) as follows:

Lip (α) = {f ∈ BUC (R) : ‖f (· − t)− f (·)‖ = O (|t|α) as t→ 0}
where f (t) = O (g (t)) as t→ 0 means that, there exist δ,N > 0 such that |f (t)| ≤
N |g (t)| for |t| < δ. Let Ψ be family of all functions ξ : R+

0 → R+
0 , such that

ξ (0) = 0, ξ (t) > 0 for t > 0 and ξ be continuous at t = 0. Now, for any fixed α > 0
and ξ ∈ Ψ, consider the following conditions:
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( ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

)
= O (ξ (1/n)) as n→∞ (uniformly in υ), (3.1)

there exists a constant r0 > 0 such that

∞∑
w=1

aυnw
∑
|k|<r0

|lk,w|
wα

= O (ξ (1/n)) as n→∞ (uniformly in υ), (3.2)

∞∑
w=1

aυnw
∑
|k|≥r0

|lk,w| = O (ξ (1/n)) as n→∞ (uniformly in υ) (3.3)

and for a given A = {[aυnw]}υ∈N
for each w ∈ N, aυnw = O (ξ (1/n)) as n→∞ (uniformly in υ). (3.4)

We obtain the following rates of approximations.

Theorem 3.1. Suppose that for any fixed ξ ∈ Ψ and α > 0, (3.1)-(3.4) and (l1)
hold. Then, for all f ∈ Lip (α)

‖Tn,υ (f)− f‖ = O (ξ (1/n)) as n→∞ (uniformly in υ).

Proof. From the proof of Theorem 2.3, we observe that

‖Tn,υ (f)− f‖ ≤
∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥
+ ‖f‖

∣∣∣∣ ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

∣∣∣∣
:= B1 +B2

holds. In B1 for some fixed r0 > 0, we can find a number w2 such that for all
w > w2,

∣∣x− k
w − x

∣∣ =
∣∣ k
w

∣∣ < r0
w < δ and since f ∈ Lip (α) , there exists a constant

N > 0 such that ∥∥f (· − k
w

)
− f (·)

∥∥ ≤ N ∣∣ kw ∣∣α
hold. Then, we get

B1 =
w2∑
w=1

aυnw
∑
|k|<r0

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+

∞∑
w=w2+1

aυnw
∑
|k|<r0

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+
∞∑
w=1

aυnw
∑
|k|≥r0

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
≤ D′′w2 max

1≤w≤w2
aυnw

+N
∞∑

w=w2+1
aυnw

∑
|k|<r0

|lk,w|
(
r0
w

)α
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+ 2 ‖f‖
∞∑
w=1

aυnw
∑
|k|≥r0

|lk,w|

:= B1
1 +B2

1 +B3
1

where D′′ := max1≤w≤w2

{∑
|k|<r0 |lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥} . From (3.4), (3.2)

and (3.3) it is clear that

B1
1 , B

2
1 , B

3
1 = O (ξ (1/n)) as n→∞ (uniformly in υ),

yields.
Finally, from (3.1) we conclude that

B2 = O (ξ (1/n)) as n→∞ (uniformly in υ).

�
Notice that, it is possible to find regular methods such that (3.4) is satisfied,

for instance, {C1} (Cesàro Matrix) and F (almost convergence matrix) which are
given in Corollary 4.3.

4. Conclusions and Applications

In the present section, we give some applications of the operators of type (1.1).
Let f : R → R be given, and suppose that lk,w ≡ χ (k) , that is, lk,w is not

depending on w where χ : R→ R. Then, (1.1) reduces to

T̄n,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
x− k

w

)
χ (k) , x∈R

which is in some cases equal to A−transform of generalized sampling series, namely

Sn,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
k
w

)
χ (wx−k) , x∈R.

In this case (l1) and (l2) coincide with the following assumptions
(l′1) χ ∈ l1 (Z)
(l′2)

∑
k∈Z

χ (k) = 1

where on the other hand, (l3) is clearly not satisfied. But these two conditions are
still enough to verify the following approximations (see also [1]).

Theorem 4.1. Let f ∈ BUC (R) . If (l′1), (l′2) hold, then

lim
n→∞

∥∥T̄n,υ (f)− f
∥∥ = 0 (uniformly in υ ∈ N).

Proof. Considering (l′2) , by the proof of the Theorem 2.3, we obtain the following
inequalities∥∥T̄n,υ (f)− f

∥∥ ≤ ∞∑
w=1

aυnw
∑
k∈Z
|χ (k)|

∥∥f (· − k
w

)
− f (·)

∥∥+ ‖f‖
∣∣∣∣∣
∞∑
w=1

aυnw − 1

∣∣∣∣∣ .
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Since
∑
k∈Z
|χ (k)| <∞ from (l′1) , for all ε > 0 there exists a number r̆ > 0 such that

∑
|k|≥r̆

|χ (k)| < ε

and hence, for suffi ciently large n ∈ N
∞∑
w=1

aυnw
∑
|k|≥r̆

|χ (k)|
∥∥f (· − k

w

)
− f (·)

∥∥ < 2 ‖f‖
∞∑
w=1

aυnwε

≤ 2M ‖f‖ ε

holds where M comes from the regularity of A. In a similar way with the proof of
Theorem 2.3, it is possible to show

∞∑
w=1

aυnw
∑
|k|<r̆

|χ (k)|
∥∥f (· − k

w

)
− f (·)

∥∥ < ε
(
D̄w̄1 + ĀM

)
for suffi ciently large n ∈ N, where D̄ := max1≤w≤w̄1

{∑
|k|<r̆ |χ (k)|

∥∥f (· − k
w

)
− f (·)

∥∥} .
Finally, by the regularity of A

‖f‖
∣∣∣∣ ∞∑
w=1

aυnw − 1

∣∣∣∣ < ‖f‖ ε
for suffi ciently large n ∈ N. Since ε is arbitrary, the proof is completed. �

Although T̄ and S are similar, they are different in general. However, in some
cases, they coincide (see [1]).

Corollary 4.2. Let f ∈ B1
πw (R) (the Paley-Wiener Space B1

πw (R) =
{
f ∈ L1 (R) :

|f (z)| ≤ exp (πw |z|) ‖f‖ for every z ∈ C}) for some w > 0 and χ ∈ B∞π (R). If
(l′1) and (l′2) hold, then

lim
n→∞

‖Sn,υ (f)− f‖ = 0 (uniformly in υ ∈ N).

Proof. It is proved in [1] thatB1
πw (R) ⊂ Lip (R) , and therefore bounded elements of

B1
πw (R) are also elements of BUC (R) . On the other hand, using similar arguments

in Lemma 4.2 in [1] we get

Sn,υ (f) = T̄n,υ (f)

for all n, υ ∈ N and f ∈ B1
πw (R) . Consequently, by the Theorem 4.1, the proof

completes. �

Remark 4.1. It may clearly be seen that, Corollary 4.2 holds for f ∈ Bpπw (R)
where 1 ≤ p ≤ 2. In this case, we need to assume χ ∈ Bqπ (R) to apply Lemma 4.2
in [1] where 1/p + 1/q = 1. For some examples of χ which satisfy χ ∈ B∞π (R),
(l′1) and (l′2) , we refer to Example 4.5 in [1].
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It is clear that operator (1.1) can be written as

Tn,υ (f ;x) =
∞∑
w=1

aυnwTw (f ;x) (4.1)

where Tw is given by

Tw (f ;x) =
∑
k∈Z

f
(
x− k

w

)
lk,w (x∈R, w ∈ N) . (4.2)

Considering (4.1) and (4.2), we get the following corollary.

Corollary 4.3. Taking specific regular matrices, we observe the following estima-
tions:

• Assume that A = F = {F υ} = {[aυnw]} where aυnw = 1/n if υ ≤ w ≤
n + υ − 1; aυnw = 0 if otherwise. Assume further that (l1) − (l3) hold for
A = F (almost convergence matrix). Then, for all f ∈ BUC (R) ,

lim
n→∞

∥∥∥∥Tυ (f) + Tυ+1 (f) + · · ·+ Tn+υ−1 (f)

n
− f

∥∥∥∥ = 0 (uniformly in υ)

i.e., Tn (f) is almost convergent to f,
• Assume that A = {C1} = {[cnw]} where cnw = 1/n if 1 ≤ w ≤ n; cnw = 0
if otherwise. Assume further that (l1) − (l3) hold for A = {C1} (Cesàro
matrix). Then, for all f ∈ BUC (R) ,

lim
n→∞

∥∥∥∥T1 (f) + T2 (f) + · · ·+ Tn (f)

n
− f

∥∥∥∥ = 0

i.e., Tn (f) is arithmetic mean convergent to f,
• Suppose that A = {I} and (l1)− (l3) hold. Then, for all f ∈ BUC (R) ,

lim
n→∞

‖Tn (f)− f‖ = 0

i.e., Tn (f) is uniformly convergent to f, where Tn (f) is given in (4.2).

Similar corollaries also hold for generalized sampling series

Sw (f ;x) =
∑
k∈Z

f
(
k
w

)
χ (wx−k) .

Now, we will give a specific kernel of lk,w, which satisfies (l1)− (l3) respectively.
Take A = {C1} , and then define lk,w as follows:

lk,w =
(−1)

w
+ 1

2w(|k|)

(
2w − 1

2w + 1

)
.

It is easy to see that (l1) and (l2) are satisfied from the following calculations:

sup
n∈N

n∑
w=1

1

n

∑
k∈Z
|lk,w| ≤ sup

n∈N

n∑
w=1

1

n

∑
k∈Z

2

2w|k|
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= sup
n∈N

n∑
w=1

2

n

(
2w + 1

2w − 1

)
≤ sup
n∈N

n∑
w=1

6

n

= 6

and since lk,w > 0, from the previous statement

lim
n→∞

∣∣∣∣ n∑
w=1

1

n

∑
k∈Z

lk,w − 1

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣ n∑
w=1

(−1)
w

n

∣∣∣∣ = 0.

On the other hand, for (l3) , for any integer r ≥ 1, we get
n∑

w=1

1

n

∑
|k|≥r

|lk,w| =
n∑

w=1

1

n

(
(−1)

w
+ 1

2w + 1

)
2w+1

2wr

where

lim
w→∞

(
(−1)

w
+ 1

2w + 1

)
2w+1

2wr
= 0. (4.3)

Then, since (4.3) is convergent to 0, its arithmetic mean is too, namely,

lim
n→∞

n∑
w=1

1

n

(
(−1)

w
+ 1

2w + 1

)
2w+1

2wr
= 0,

which implies (l3). For the behaviour of lk,w , see Figure 1 (k = 0, · · · , 5 and
w = 1, · · · , 6) which is symmetric for k. But in the classical sense, lk,w does not

Figure 1. The kernel function lk,w

satisfy the condition of (A1) since∣∣∣∣∑
k∈Z

lk,w − 1

∣∣∣∣ = (−1)
w

+ 1

is divergent. Therefore, our approximation is not trivial.

Acknowledgement. The author would like to thank to the reviewer(s) for reading
the manuscript carefully.
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ON THE STABILITY ANALYSIS OF THE TIME-FRACTIONAL
VARIABLE ORDER KLEIN-GORDON EQUATION AND SOME

NUMERICAL SIMULATIONS

SİNAN DENİZ

Abstract. In this paper, the Klein - Gordon equation is generalized using the
concept of the variational order derivative. We try to construct the Crank-
Nicholson scheme for numerical solutions of the modified Klein- Gordon equa-
tion. Stability analysis of the Crank-Nicholson scheme is examined and ana-
lyzed to prove the proposed method is stable for solving the time-fractional
variable order Klein- Gordon equation. Numerical examples are also given for
illustration.

1. Introduction

In recent years, fractional calculus and especially fractional differential equations
(FDEs) have been extensively used for many different fields of mathematical physics
such as relaxation processes,control theory of dynamical systems, viscoelasticity,
diffusion and so on [1—5]. The main reason why they are so important is that a
realistic modeling of many physical phenomenon having dependence not only at
the time instant, but also the previous time history can be successfully achieved
by using fractional derivatives. Besides, quite a number of different methods have
been enhanced to analyze many different types of fractional differential equations
for showing the importance of the fractional calculus [6—11]. On the other hand,
stability analysis of fractional differential equations has attracted much attention
over the past decade. Atangana has analyzed the stability of numerical solutions for
many different types of FDEs such as groundwater flow equation [12], Schrödinger
equation [13] and telegraph equation [14]. In [15], Zhang et. al. have examined
the stability of FDEs, including linear FDEs, nonlinear FDEs and the FDEs with
time-delay.
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As it is well known, partial differential equations are encountered frequently in
many fields of applied physics [16—23]. One of them is Klein - Gordon equation
which models many problems in quantum mechanics, condensed matter physics,
etc. A Josephson junction, the motion of rigid pendula attached to a stretched
wire can be described by sine Klein-Gordon equation and a non-local version of
them are properly modeled by the fractional version of them [24]. In [25], Sweilam
et al. has constructed a new and effective numerical scheme, namely weighted
average nonstandard finite difference method, for analyzing the time variable-order
fractional of nonlinear Klein-Gordon equation and so on.
In this paper, we investigate the stability of the linear time-fractional variable

order Klein-Gordon equation:

D
α(x,t)
tt y(x, t)− yxx(x, t) + µy(x, t) = 0, 1 < α(x, t) ≤ 2, µ > 0, (1)

with the conditions

y(x, 0) = δ(x), yt(x, 0) = 0; 0 ≤ t ≤ T, 0 ≤ x ≤ L (2)

where δ(x) is a real-valued continuous function.

2. Some basic information for the variable order fractional
derivative

In this section, we give some basic definitions that we need for our analysis.
For much more details about fractional analysis we refer to the books and papers
in [26—28].
Definition 2.1. Let 0 < α(x, t) < 1 for all (x, t) ∈ [a, b] and f ∈ L1[a, b]. Then

aI
α(.,.)
t (f(t)) =

t∫
a

1

Γ [α(t, x)]
(t− x)

α(t,x)−1
f(x)dx (t > a) (3)

and

bI
α(.,.)
t (f(t)) =

b∫
t

1

Γ [α(t, x)]
(x− t)α(x,t)−1f(x)dx (t > b) (4)

are called the left and right Riemann-Liouville integral of variable fractional order
α(., .) respectively.
Definition 2.2. Let aI1−α(.,.)t f ∈ C[a, b] and 0 < α(x, t) < 1 for all (x, t) ∈ [a, b].
Then

aD
α(.,.)
t (f(t)) =

d

dt

t∫
a

1

Γ [1− α(t, x)]
(t− x)

−α(t,x)
f(x)dx (t > a) (5)
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and

bD
α(.,.)
t (f(t)) =

d

dt

b∫
t

1

Γ [1− α(x, t)]
(x− t)−α(t,x)f(x)dx (t < b) (6)

are called the left and right Riemann-Liouville derivative of variable fractional order
α(., .) respectively.
Definition 2.3. Let f be a real valued differentiable function and α(x) ∈ C(0, 1].
Then the Caputo variable order differential operator is given by

D
α(x)
0 (f(x)) =

1

Γ [1− α(x)]

x∫
0

df(t)

dt
(x− t)−α(t)dt. (7)

3. Crank-Nicholson Scheme for numerical solutions

The numbers of the works for numerical solutions of different types of fractional
differential equations have begun to increase considerably in recent years. A few of
the most important ones of them can be found in [13,14,29—31].
In this section, we construct the Crank-Nicholson scheme for the fractional Klein-

Gordon equation by taking xl = lh, tj = jτ ,Mh = L,Nτ = T, 0 ≤ l ≤ M, 0 ≤ j ≤
N whereM,N are grid points, h, τ are step size and time respectively. Under these
assumptions, Crank-Nicholson scheme can be presented by giving the following
discretizations:

y =
1

2
(y(xl, tj+1) + y(xl, tj)) (8)

yxx =
∂2y

∂x2
=

1

2

(
y(xl+1, tj+1)− 2y(xl, tj+1) + y(xl−1, tj+1)

h2

)
+

1

2

(
y(xl+1, tj)− 2y(xl, tj) + y(xl−1, tj)

h2

)
+O(h2)

(9)

D
α(x,t)
tt y =

∂αl
j+1

y(xl, tj+1)

∂tαlj+1
=

τ−α
j+1

Γ(2− αj+1l )
×

 y(xl, tj+1)− y(xl, tj)+

j∑
n=1

(y(xl, tj−n+1)− y(xl, tj−n))
(

(n+ 1)(1−α
j+1
l ) − n(1−αj+1l )

)
 (10)

Substituting (8), (9),(10) into the fractional Klein-Gordon equation (1) yields
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τ−α
j+1

Γ(2− αj+1l )


y(xl, tj+1)− y(xl, tj)+

j∑
n=1

(y(xl, tj−n+1)− y(xl, tj−n))
(

(n+ 1)(1−α
j+1
l ) − n(1−α

j+1
l )

)


−


1

2

(
y(xl+1, tj+1)− 2y(xl, tj+1) + y(xl−1, tj+1)

h2

)
+

1

2

(
y(xl+1, tj)− 2y(xl, tj) + y(xl−1, tj)

h2

)


+µ

(
1

2
(y(xl, tj+1) + y(xl, tj))

)
= 0

(11)
Multiplying both sides of (11) with

Γ(2− αj+1l )

τ−αj+1
= τα

j+1

Γ(2− αj+1l )

we get

y(xl, tj+1)− y(xl, tj)+

j∑
n=1

(y(xl, tj−n+1)− y(xl, tj−n))
(

(n+ 1)(1−α
j+1
l ) − n(1−α

j+1
l )

)

−τ
αj+1Γ(2− αj+1l )

2h2

 y(xl+1, tj+1)− 2y(xl, tj+1) + y(xl−1, tj+1)+

y(xl+1, tj)− 2y(xl, tj) + y(xl−1, tj)



+
µτα

j+1

Γ(2− αj+1l )

2
(y(xl, tj+1) + y(xl, tj)) = 0

(12)

and by making the following change of variables

y(xl, tj) = yjl , Rj+1l =
τα

j+1

Γ(2− αj+1l )

2h2
, Sj+1l =

µτα
j+1

Γ(2− αj+1l )

2

cl,j+1n = (n+ 1)(1−α
j+1
l ) − n(1−αj+1l ), dl,j+1n = cl,j+1n−1 − cl,j+1n

(13)

Eq. (11) becomes

Rj+1l

(
yj+1l+1 − 2yj+1l + yj+1l−1 + yjl+1 − 2yjl + yjl−1

)
−

j∑
n=1

[
yj−n+1l − yj−nl

]
cl,j+1n + Sj+1l

(
yj+1l + yjl

)
+ yj+1l − yjl = 0.

(14)
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4. Stability analysis for Crank-Nicholson scheme

Stability analysis is a very important concept in solving many types of linear or
nonlinear differential equations [32—34]. In order to examine the stability analysis
of the Crank-Nicholson scheme defined above, we now take that εjl = yjl −Y

j
l where

Y jl is the approximate numerical solution at the point (xl, tj) and

εj =
[
εj1, ε

j
2, ..., ε

j
M−1

]T
(15)

with

εj(x) =

{
εjl if xl − h/2 < x ≤ xl + h/2, l = 1, 2, ...,M − 1

0 if L− h/2 < x ≤ L
(16)

for l = 1, 2, ...,M − 1, j = 1, 2, ..., N . Thereby, one can use the Fourier series to
state the function εj(x) as:

εj(x) =

m=∞∑
m=−∞

δm(m)exp [2iπmj/L] (17)

where

δj(x) =
1

L

L∫
0

ρjexp [2iπmx/L] dx. (18)

Before going through a detailed analysis, we give the following remarks which will
be necessary for stability conditions.
Remarks 4.1. One can set up the following properties for all l = 1, 2, ..,M − 1.

i. Rj+1l , Sj+1l > 0

ii. 0 ≤ dl,jn ≤ d
l,j
n−1

iii. 0 ≤ cl,jn ≤ 1,

j−1∑
n=0

cl,j+1n+1 = 1− dl,j+1n .

(19)

Using the previous notations, one can present the error done while applying the
Crank-Nicholson scheme to solve the given fractional Klein-Gordon equation (1)
as:

Rj+1l

(
εj+1l+1 − 2εj+1l + εj+1l−1 + εjl+1 − 2εjl + εjl−1

)
−

j∑
n=1

[
εj−n+1l − εj−nl

]
cl,j+1n + Sj+1l

(
εj+1l + εjl

)
+ εj+1l − εjl .

(20)

In order to show the equation (20) more briefly, the term εjl can be represented in
the delta-exponential form as:

εjl = δjexp [iθlj] . (21)
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where θ represents a real spatial wave number. Using (21) for j = 0, we get

R1l
(
ε1l+1 − 2ε1l + ε1l−1 + ε0l+1 − 2ε0l + ε0l−1

)
+

0∑
n=1

[
ε1−nl − ε−nl

]
cl,1n + S1l

(
ε1l + εl

)
+ ε1l − ε0l = 0.

(22)

Eq. (22) can be arranged as:

δ1 = δ0
1 + 4R1l sin2

(
hθ
2

)
− 2S1l sin2

(
hθ
2

)
1 + 4R1l sin2

(
hθ
2

)
+ 2S1l sin2

(
hθ
2

) (23)

and one can similarly obtain

δj+1 =

δj
(
1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

))
−
j−1∑
n=0

d1,j+1n+1 δj−n + d1,j+1j δ0

1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)
(24)

for j = 0, 1, 2, .... We must now prove that the inequality |δj | ≤ |δ0| holds for all
j = 1, 2, ... to accomplish the proof of the stability of numerical solutions.It is easy
to see that the inequality is true for j = 1, because

|δ1| = |δ0|
∣∣∣∣∣1 + 4R1l sin2

(
hθ
2

)
− 2S1l sin2

(
hθ
2

)
1 + 4R1l sin2

(
hθ
2

)
+ 2S1l sin2

(
hθ
2

) ∣∣∣∣∣ ≤
|δ0|

∣∣∣∣∣1 + 4R1l sin2
(
hθ
2

)
+ 2S1l sin2

(
hθ
2

)
1 + 4R1l sin2

(
hθ
2

)
+ 2S1l sin2

(
hθ
2

) ∣∣∣∣∣ = |δ0|.
(25)

On the basis of induction, we now suppose that

|δj+1| =

∣∣∣∣∣∣∣∣∣∣∣
δj
(
1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

))
−
j−1∑
n=0

d1,j+1n+1 δj−n + d1,j+1j δ0

1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)
∣∣∣∣∣∣∣∣∣∣∣

(26)
for m = 2, 3, ...j. Implementing the triangle inequality, the equality (26) turns into

|δj+1| ≤
|δj |

(∣∣1 + 4Rk+1l sin2
(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

)∣∣)+

j−1∑
n=0

|d1,j+1n+1 ||δj−n|+ |d
1,j+1
j δ0|∣∣1 + 4Rk+1l sin2

(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣ .

(27)
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Using the induction hypothesis, we get

|δj+1| ≤ |δ0|


∣∣1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

)∣∣+

j−1∑
n=0

|d1,j+1n+1 |+ |d
1,j+1
j |∣∣1 + 4Rk+1l sin2

(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣
 .
(28)

By taking advantage of Remark 1, we finally obtain the inequality

|δj+1| ≤ |δ0|
[∣∣1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

)∣∣∣∣1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣
]

≤ |δ0|
[∣∣1 + 4Rk+1l sin2

(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣∣∣1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣
]

= |δ0|

(29)

thus,
|δj+1| ≤ |δ0|,

and the proof is completed.

5. Numerical examples

In this section, we give some numerical simulations for the approximate solution
of the time-fractional variable order Klein-Gordon equation.
Example 1. Consider the problem (1) with µ = 0.9, α(x, t) = 0.04tanh(x3+t)−

sin2(5x4t− 9x2) and δ(x) = 0.08 cos(x3). The error surface figures of approximate
solutions are depicted for different N’s and for h = 0.0002. As can be seen from
the figures 1 and 2, the larger the N , the smaller the error.

Figure 1. The error surface figures for N = 40
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Figure 2. The error surface figures for N = 80

Example 2. As a second example, let us consider the problem (1) with µ = 0.8,
α(x, t) = 2 − sin2(x5t + t7) and δ(x) = x + sec(x0.7). The error surface figures of
approximate solutions are displayed for different N’s and for h = 0.00012. Again,
it is clear from the figures 3 and 4, we have smaller errors for the larger the N .

Figure 3. The error surface figures for N = 80

Example 3. As a final example, let us now consider the problem (1) with
µ = 0.5, α(x, t) = 1 − cos2(x + t3) and δ(x) = sin(x). Figures of the approximate
solutions are sketched for different N’s and for h = 0.0005. A slight difference
between these solutions can be seen from the simulations from Fig. 5 to 8 for
N = 10 to N = 70. In addition to that, the error surface figure of approximate
solution for N = 80 is demonstrated in Figure 9.

6. Results and discussion

We have modified the time-fractional variable order Klein-Gordon equation to
analyze the concept of the variable order derivative. We apply the Crank-Nicholson
method to solve the new modified equation numerically. Stability of this method is
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Figure 4. The error surface figures for N = 85

Figure 5. Numerical solution to problem (1) for N = 10

Figure 6. Numerical solution to problem (1) for N = 30

studied and reached by proving some inequalities. Some numerical examples have
been also given for illustration. It can be concluded that Crank-Nicholson method
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Figure 7. Numerical solution to problem (1) for N = 50

Figure 8. Numerical solution to problem (1) for N = 70

Figure 9. The error surface figures for N = 80

can be safely implemented to solve the time-fractional variable order Klein-Gordon
equation.
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ERRATUM TO: "(θ, µ, τ)−NEIGHBORHOOD FOR ANALYTIC
FUNCTIONS INVOLVING MODIFIED SIGMOID FUNCTION"
[COMMUN. FAC. SCI. UNIV. ANK. SER. A1 MATH. STAT.,

68(2) (2019), 2161-2169]

HALIT ORHAN AND MURAT ÇAĞLAR

We draw attention to some corrections in the section of "Applications of Jack’s
Lemma" which appear in the above-mentioned paper. Our results have changed
due to the lack of the 1

τ(s) factor on the left side of equation (in page 2166, line 24).
So, we correct them in the following:

• In page 2166, line 19: · · · < 2µ−· · · should be · · · < 2µτ(s)−
√
2(1− cos θ).

• In page 2166, line 22: · · · < µ+ · · · should be · · · < µτ(s) +
√
2(1− cos θ).

• In page 2166, line 24: fτ (z)
z
− · · · = · · · should be

1
τ(s)

(
fτ (z)

z
− eiθ gτ (z)

z
− (1− eiθ)

)
= µw(z).

• In page 2167, line 2:
∣∣f ′τ (z)− eiθg′τ (z)∣∣ = · · · should be

1
τ(s)

∣∣f ′τ (z)− eiθg′τ (z)∣∣ = · · · .
• In page 2167, line 4: · · · < 2µ−· · · should be · · · < 2µτ(s)−

√
2(1− cos θ).

• In page 2167, line 9: · · · =
∣∣∣ 1
τ(s) (1− e

iθ) + · · ·
∣∣∣ should be

· · · =
∣∣(1− eiθ) + µτ(s)eiθ(1 + k)∣∣ .

• In page 2167, line 10: ≥ µ(1+k)−· · · should be ≥ µτ(s)(1+k)−
∣∣1− eiθ∣∣ .

• In page 2167, line 11: ≥ 2µ− · · · should be ≥ 2µτ(s)−
√
2(1− cos θ).

• In page 2167, line 15: · · · =
∣∣∣ 1
τ(s) (1− e

iθ) + · · ·
∣∣∣ should be

· · · =
∣∣(1− eiθ) + µτ(s)w(z)∣∣ .

• In page 2167, line 16: ≤ 1
τ(s)

∣∣1− eiθ∣∣+· · · should be≤ ∣∣1− eiθ∣∣+µτ(s) |w(z)| .
• In page 2167, line 17: < µ+ · · · should be < µτ(s) +

√
2(1− cos θ).

• In page 2167, line 20: · · · < 2µ−
√
2

τ(s) should be · · · < 2µτ(s)−
√
2.
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• In page 2167, line 22: · · · < µ+
√
2

τ(s) should be · · · < µτ(s) +
√
2.

• In page 2168, line 2: · · · > 1
τ(s) (1− cos θ)−

3µ

4
should be · · · > (1− cos θ)−

3µ

4
τ(s).

• In page 2168, line 4: · · · > 1
τ(s) (1− cos θ)−

µ
2 should be · · · > (1− cos θ)−

µ
2 τ(s).

• In page 2168, line 6: fτ (z)
z
− · · · = · · · should be

• 1
τ(s)

(
fτ (z)

z
− eiθ gτ (z)

z
− (1− eiθ)

)
= µ w(z)

1−w(z) .

• In page 2168, line 8: · · · = 1
τ(s) (1− e

iθ) + · · · should be

· · · = (1− eiθ) + µτ(s) w(z)

1− w(z) + µτ(s)
zw′(z)

(1− w(z))2 .

• In page 2168, line 14: · · · = Re
(

1
τ(s) (1− e

iθ) + · · ·
)
should be

· · · = Re
(
(1− eiθ) + µτ(s) eiθ

1− eiθ + µτ(s)
keiθ

(1− eiθ)2

)
.

• In page 2168, line 15: = 1
τ(s) (1− cos θ)− · · · should be

= (1− cos θ)− µ

2
τ(s)− kµτ(s) 1

2(1− cos θ) .

• In page 2168, line 16: ≤ 1
τ(s) (1 − cos θ) − · · · should be ≤ (1 − cos θ) −

µ

2
τ(s)− µ

4
τ(s).

• In page 2168, line 17: = 1
τ(s) (1−cos θ)−

3µ

4
should be = (1−cos θ)− 3µ

4
τ(s).

• In page 2168, line 23: · · · > 1
τ(s) (1− cos θ)−

µ
2 should be · · · > (1− cos θ)−

µ
2 τ(s)

• In page 2169, line 1: · · · > 1
τ(s) −

3µ

4
should be · · · > 1− 3µ

4
τ(s).

• In page 2169, line 2: · · · > 1
τ(s) −

3µ

4
should be · · · > 1− µ

2
τ(s).

• In page 2169, line 3: · · · > 1
τ(s)−

3(1− β)
2

should be · · · > 1− 3(1− β)
2

τ(s).

• In page 2169, line 4: · · · > 1
τ(s) + β − 1 should be · · · > 1 + (β − 1) τ(s).
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