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Preface

I welcome you to the 8th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-
2019) on August 27-30, 2019 in Baku, Azerbaijan. It is an honor for me to inform you that this conference is
dedicated to the 100th Anniversary of the first university of Azerbaijan-Baku State University which is a leader of
educational institutions, has a rich history and today it is known as one of the most famous scientific and educa-
tional centers of Azerbaijan Republic.

IECMSA-2019 is supported by Sakarya University, Baku State University, International Balkan University, Fi-
rat University, Tekirdag Namik Kemal University, Kocaeli University, Amasya University, Gazi University, and
Turkic World Mathematical Society.

The series of IECMSA provides a highly productive forum for reporting the latest developments in the researches
and applications of Mathematics. The previous seven conferences held annually since 2012 such that IECMSA-2012,
Prishtine, Kosovo, IECMSA-2013, Sarajevo, Bosnia and Herzegovina, IECMSA-2014, Vienna, Austria, IECMSA-
2015, Athens, Greece, IECMSA-2016, Belgrade, Serbia, IECMSA-2017, Budapest, Hungary, and IECMSA-2018,
Kyiv, Ukraine.

The scientific committee members of IECMSA-2019 and the external reviewers invested significant time in an-
alyzing and assessing multiple papers, consequently, they hold and maintain a high standard of quality for this
conference. The scientific program of the conference features invited talks, followed by contributed oral and poster
presentations in seven parallel sessions.

The conference program represents the efforts of many people. I would like to express my gratitude to all members
of the scientific committee, external reviewers, sponsors and, honorary committee for their continued support to
the IECMSA. I also thank the invited speakers for presenting their talks on current researches. Also, the success
of IECMSA depends on the effort and talent of researchers in mathematics and its applications that have written
and submitted papers on a variety of topics. So, I would like to sincerely thank all participants of IECMSA-2019
for contributing to this great meeting in many different ways. I believe and hope that each of you will get the
maximum benefit from the conference.

Prof. Dr. Murat TOSUN
Chairman
On behalf of the Organizing Committee
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Düzce-TÜRKİYE
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Mikail Et 198-200

9 Solutions of Singular Differential Equations by means of Discrete Fractional Analysis

Resat Yilmazer, Gonul Oztas 201-204

10 Geometric Interpretation of Curvature Circles in Minkowski Plane

Kemal Eren, Soley Ersoy 205-208

11 The Measurement of Success Distribution with Gini Coefficient
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ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Aynur Keskin Kaymakci 1∗

1Department of Mathematics, Faculty of Science, Selcuk University, Campus, Konya, Turkey, ORCID:0000-0001-5909-8477

* Corresponding Author E-mail: akeskin@selcuk.edu.tr

Abstract: In this paper, we introduce a new set namely a∗-I-open set in ideal topological spaces. Besides, we give some proper-

ties and characterizations of it. We obtain that it is stronger than pre∗-I-open set with b-open set and weaker than δβI -open set.

Finally, we give a decomposition of continuity by using a∗-I-open set as stated the following:" f : (X, τ, I) −→ (Y, ϕ) is continuous

if and only if it is a∗-I-continuous and strongly AI -continuous."

Keywords: a∗-I-open set, Decomposition of continuity, Ideal.

1 Introduction and preliminaries

Topic of ideals in topological spaces has been studied since beginning of 20th century. It has won reputain and importance in citevai.Throughout
this paper, we will denote topological spaces by (X, τ) and (Y, ϕ). For a subset A of a space (X, τ), the closure of A and the interior of A
are denoted by Cl(A) and Int(A), respectively. It is well known that a subset A of a space (X, τ) is said to be regular open citevel if
A = Int(Cl(A)). A subset A of a space (X, τ) is said to be δ-open citevel if for each x ∈ A there exists a regular open set U such that
x ∈ U ⊆ A. A is δ-closed citevel if (X-A) is δ-open. The set {x ∈ X | x ∈ U ⊆ A for some regular open set U of X} is called the δ-
interior of A and is denoted by Intδ(A) citevel. A point x ∈ X is called a δ-cluster point of A if A ∩ Int(Cl(V )) 6= ∅ for each open set V
containing x. The set of all δ-cluster points of A is called the δ-closure of A and is denoted by δCl(A) citevel. Of course, δ-open sets form a

topology τδ and then τδ ⊂ τ holds citevel.
An ideal I on X is defined as a nonempty collection of subsets of X satisfying the following two conditions:
(1) If A ∈ I and B ⊂ A, then B ∈ I;
(2) If A ∈ I and B ∈ I , then A ∪B ∈ I .
Let (X, τ) be a topological space and I an ideal on X . An ideal topological space is a topological space (X, τ) with an ideal I on X and

is denoted by (X, τ, I). For a subset A ⊂ X , A∗(I, τ) = {x ∈ X | U ∩A /∈ I for each neighbourhood U of x} is called the local function
of A with respect to I and τ ( citekur). Throught this paper, we use A∗ instead of A∗(I, τ). Besides, in citejan, authors introduced a new
Kuratowski closure operator Cl∗(.) defined by Cl∗(A) = A ∪A∗(I, τ) and obtained a new topology on X which is called an ∗-topo log y.
This topology is denoted by τ∗ (I) which is finer than τ .

A point x in an ideal topological space is called δI -cluster point of A if Int(Cl∗(U) ∩A 6= ∅ for each neighborhood U of x. The set of
all δI -cluster points of A is called the δI -closure of A and will be denoted by δClI(A) citey/"uk. A is said to be δI -closed citey/"uk if
A = δClI(A). Of course, the complement of δI -open set is said δI -closed citey/"uk. The family of all δI -open sets in any ideal topological

space (X, τ, I) form a topology τδI and then τδI ⊂ τ holds citey/"uk.

Definition 1. some label A subset A of an ideal topological space (X, τ, I) is said to be α-open citenja ( resp. semi-open citelev, pre-open
citemas1, b-open citeand ( or γ open citeel-a), β-open citeabd ) if A ⊂ Int(Cl(Int(A))) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)),
A ⊂ Int(Cl(A)) ∪ Cl(Int(A)), A ⊂ Cl(Int(Cl(A))) ).

Definition 2. some label A subset A of an ideal topological space (X, τ, I) is said to be pre-I-open citedon ( resp. semi-I-open citehat1,
α-I-open citehat1, b-I-open citeg/"ul, β-I-open citehat 1 ) if A ⊂ Int(Cl∗(A)) (resp. A ⊂ Cl∗(Int(A)), A ⊂ Int(Cl∗(Int(A))), A ⊂
Cl∗(Int(A))∪ Int(Cl∗(A)), A ⊂ Cl(Int(Cl∗(A))) ).

Definition 3. A subset A of an ideal topological space (X, τ, I) is said to be δ-α-I-open citehat 4, pre∗-I-open citeeki ( resp. semi∗-I-open
, δβ-I-open citehat 4 ) if A ⊂ Int(Cl(δIntI(A))) ( resp. A ⊂ Int(δClI(A)), A ⊂ Cl(δIntI(A)), A ⊂ Cl(Int(δClI(A))) ).

Related to above definitions, one can find the following diagram in citehat 4. None of these implications are reversible in generally as shown
in the related papers.
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open → α-I-open → semi-I-open

↑ ↓ ց ↓ ց

↑ ↓ pre-I-open → ↓ b-I-open → β-I-open

↑ ↓ ↓ ↓ ↓ ↓

↑ α-open ↓ → semi-open ↓ ↓

↑ ↑ ց ↓ ց ↓ ↓

↑ ↑ pre-open → b-open → β-open

↑ ↑ ց ց ↓

↑ ↑ pre∗-I-open → a∗-I-open ↓

↑ ↑ ր ց ↓

δ-I-open → δ-α-I-open → semi∗-I-open → δβI -open

Diagram II

Lemma 1. For a subset A of an ideal topological space (X, τ, I) , the following properties are hold:
(1) If U is an open set, then U ∩ Cl∗(A) ⊆ Cl∗(U ∩A) citehat2,
(2) If U is an open set, then δClI(U)) = Cl(U) citehat3.

2 a∗-I-open sets

In this section, to give a decomposition of open set we introduce a new set which name is a∗-I-open set and obtain some properties and
characterizations of it.

Definition 4. A subset A of an ideal topological space (X, τ, I) is said to be an a∗-I-open if A ⊂ Int(δClI(A)) ∪ Cl(Int(A)). The com-
plement of an a∗-I-open set said to be an a∗-I-closed. It is obvious that A is an a∗-I-closed if and only if Cl(δIntI(A)) ∩ Int(Cl(A)) ⊂
A.

Corollary 1. It is obtained from Definition 4, ∅ and X are both a∗-I-open sets and a∗-I-closed sets.

Proposition 1. Let (X, τ, I) be an ideal topological space. Then, the following properties are hold:
(1) If A is pre∗-I-open, then it is a∗-I-open,
(2) If A is b-open, then it is a∗-I-open,
(3) If A is a∗-I-open, then it is δβI -open.

Proof: The proof of (1) is clear from Definitions 1, 3 and 4. The others are obtained by using related set definitions.The following diagram is
obtained by using Proposition 3 and several sets defined above. �

Remark 1. The converses of each statements in Proposition 3 are not true in generally as shown in the next examples.

Example 1. Let X = {a, b, c, d}, τ = {X,∅, {a}, {c}, {a, c}, {b, c}, {a, b, c}} and I = {∅}.(1) Set A = {a, d}. Then, A is an a∗-I-open
but it is not pre∗-I-open (2) Set A = {a, b}. Then, A is an a∗-I-open but it is not b-open.

Example 2. Let X = {a, b, c, d}, τ = {X,∅, {a}, {c}, {a, c}} and I = {∅}. For A = {b, d} is δβI -open, but it isn’t a∗-I-open.

We have the following diagram.
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open → α-I-open → semi-I-open

↑ ↓ ց ↓ ց

↑ ↓ pre-I-open → ↓ b-I-open → β-I-open

↑ ↓ ↓ ↓ ↓ ↓

↑ α-open ↓ → semi-open ↓ ↓

↑ ↑ ց ↓ ց ↓ ↓

↑ ↑ pre-open → b-open → β-open

↑ ↑ ց ւ

↑ ↑ pre∗-I-open → δβI -open

↑ ↑ ր ր

δ-I-open → δ-α-I-open → semi∗-I-open

Diagram I

Proposition 2. For an ideal topological space (X, τ, I) and a subset A of X, the following property is hold: "If I = ℘ (X), then A is an
a∗-I-open if and only if A is an b-open."

Proof: Since sufficiency is stated in Proposition 3(2), we prove only necessity. Let I = ℘ (X). Then, A∗ = ∅ and Cl∗(A) = A ∪A∗ = A
for every subset A of X . So, we have δClI(A) = Cl(A). If A is an a∗-I-open set, then we obtain that A ⊂ Int(δClI(A)) ∪ Cl(Int(A)) ⊂
Int(Cl(A)) ∪ Cl(Int(A)) and hence every a∗-I-open set is a b-open. �

Remark 2. The notions of a∗-I-open set and β-open set are independent each other. Indeed in Example 2, set A = {b, d} is β-open, but it
isn’t a∗-I-open. Besides in Example 1(2), set A = {a, b} is an a∗-I-open but it is not β-open.

Proposition 3. Let (X, τ, I) be an ideal topological space with an arbitrary index set ∆. If {Aα : α ∈ ∆} ⊂ a∗IO(X, τ), then ∪{Aα : α ∈
∆} ∈ a∗IO(X, τ).

Proof: Since {Aα : α ∈ ∆} ⊂ a∗IO(X, τ), Aα ⊂ Int(δClI(Aα)) ∪ Cl(Int(Aα)) for every α ∈ ∆. Since δClI is a Kuratowski closure
operator, we have

( ∪
α∈ △

Aα) ⊂

(

∪
α∈ △

Int(δClI(Aα)) ∪ Cl(Int(Aα))

)

=

(

∪
α∈ △

Int(δClI(Aα))

)

∪

(

∪
α∈ △

Cl(Int(Aα))

)

⊂ Int

(

∪
α∈ △

δClI(Aα)

)

∪ Cl

(

∪
α∈ △

Int(Aα)

)

⊂ Int(δClI

(

∪
α∈ △

Aα

)

∪ Cl(Int

(

∪
α∈ △

Aα

)

. �

Proposition 4. Let (X, τ, I) be an ideal topological space and A, U are subsets of X . If A is an a∗-I-open set and U is δ-I-open set. Then
(A ∩ U) is an a∗-I-open set.

Proof: Since A is an a∗-I-open set and U is δ-I-open set, we have A ⊂ Int(δClI(A)) ∪ Cl(Int(A)) and U ⊂ δInt (U). By using some
properties of closure, interior and δ-I-closure operations, we have

(A ∩ U) ⊂ ((Int(δClI(A))) ∪ Cl(Int(A))) ∩ δIntI(U)
= (Int(δClI(A)) ∩ δIntI(U)) ∪ (Cl(Int(A)) ∩ δIntI(U))
⊆ (Int(δClI(A)) ∩ Int(U)) ∪ (Cl(Int(A)) ∩ Int(U))
⊆ Int [δClI(A) ∩ Int(U)] ∪ Cl [Int(A) ∩ Int(U)]
⊆ Int (δClI (A ∩ Int(U))) ∪ Cl(Int(A ∩ U))
⊆ Int (δClI (A ∩ U)) ∪ Cl(Int(A ∩ U)).

This shows that (A ∩ U) is an a∗-I-open set. �

Definition 5. A subset A of an ideal topological space (X, τ, I) is called
(1) strongly t-I-set citeeki if Int(δClI (A) = Int (A),
(2) strongly AI -set if A = U ∩ V , where U ∈ τ and V is strongly t-I-set and Int(δClI (V ) = Cl (Int (V )).

Theorem 1. The following properties hold for a subset A of an ideal topological space (X, τ, I):
(1) If A is strongly t-I-set and Int(δClI (A) = Cl (Int (A)), then it is strongly AI -set,
(2) If A is open set, then it is strongly AI -set.
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Proof:
(1) : Since A is strongly t-I-set with Int(δClI (A) = Cl (Int (A)) and X ∈ τ , the proof of 1) is obvious.
(2) : Since X is strongly t-I-set with Int(δClI (X) = Cl (Int (X)) and A ∈ τ , the proof of 2) is obtained. �

Theorem 2. For a subset A of (X, τ, I), the following properties are equivalent:
(1) A is open,
(2) A is an a∗-I-open and strongly AI -set.

Proof: (1) =⇒ (2) : By Diagram II, every open set is a∗-I-open. Besides, we have every open set is strongly AI -set according to Theorem
7(2).

(2) =⇒ (1) : Let A is an a∗-I-open and strongly AI -set. Then, we have A ⊂ Int(δClI(A)) ∪ Cl(Int(A)) and strongly
AI -set if A = U ∩ V , where U ∈ τ and V is strongly t-I-set and Int(δClI (V ) = Cl (Int (V )), respectively. Therefore, we
have A ⊂ Int(δClI(U ∩ V )) ∪ Cl(Int(U ∩ V )) ⊆ [Int(δClI(U)) ∩ Int(δClI(V ))] ∪ [Cl(Int(U) ∩ Cl(Int(V )] = [Int(δClI(U)) ∩
Cl(Int(V )] ∪ [Cl(Int(U) ∩ Cl(Int(V )]. According to Lemma 1(2), since U ∈ τ , it is obvious that δClI(U) = Cl(U) and
Int(δClI(U)) = Int(Cl(U)). So, we have

A ⊂ [Int(Cl(U)) ∩ Cl(Int(V )] ∪ [Cl(Int(U) ∩ Cl(Int(V )] = [Int(Cl(U)) ∪ Cl(Int(U)] ∩ Cl(Int(V ). Consequently, since A ⊂
U , we obtain A ⊂ U ∩ {[Int(Cl(U)) ∪ Cl(Int(U)] ∩ Cl(Int(V ))} = {U ∩ [Int(Cl(U)) ∪ Cl(Int(U)]} ∩ Cl(Int(V )) = [(U ∩ Int(Cl(U))) ∪
(U ∩ Cl(Int(U)))] ∩ Cl(Int(V )) = U ∩ Int(V ) = Int(U ∩ V ) = Int(A). Hence A is an open. �

The notions of a∗-I-open set and strongly AI -set are independent each other as shown in the following examples.

Example 3. Let X = {a, b, c, d}, τ = {X,∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, c, d}} and I = {∅, {d}}. For A = {a}, then it is a∗-I-open
but it isn’t strongly AI -set.

Example 4. Let X = {a, b, c, d}, τ = {X,∅, {a}, {c}, {a, c}} and I = {∅, {a}}. For A = {b, d}, then it is strongly AI -set but it isn’t
a∗-I-open.

3 Decomposition of continuity

In this section, we introduce the notions of a∗-I-continuity, strongly AI -continuity and obtain a decomposition of continuity.

Definition 6. A function f : (X, τ) −→ (Y, ϕ) is said to be b-continuous citeel-a if f−1 (V ) is a b-open set in (X, τ) for every open set V
in (Y, ϕ).

Definition 7. A function f : (X, τ, I) −→ (Y, ϕ) is said to be pre∗-I-continuous citeeki (resp. δ betaI -continuous citehat4, a∗-I-continuous

strongly AI -continuous ) if f−1 (V ) is a pre∗-I-open (resp. δβI -open, a∗-I-open set, strongly AI -set ).
(resp. δβI -open, a∗-I-open set, strongly AI

Proposition 5. For a function f:(X, τ, I) −→ (Y, ϕ), the following properties are hold: (1) If f is pre∗-I-continuous, then f is a∗-I(2) If f is
b-continuous, then f is a∗-I-continuous, (3) If f is a∗-I-continuous, then f is δβI

Proof: The proofs are omitted from Proposition 3 as consequences by using Definitions 6 and 7. �

Remark 3. The converses of each statements in Proposition 9 are not true in generally as shown in the next examples.

Example 5. Let (X, τ, I) be an ideal topological space as same as in Example 1 and Y = {a, b}, ϕ = {Y,∅, {a}}. (1) Let f : (X, τ, I) −→
(Y, ϕ) be a function defined as f(a) = f(d) = a, f(b) = f(c) = b. Then f is a∗-I-continuous, but it isn’t pre∗-I-continuous.

(2) Let f : (X, τ, I) −→ (Y, ϕ) be a function defined as f(b) = f(d) = a, f(a) = f(c) = b. Then f is a∗-I-continuous, but it isn’t b-
continuous.

Example 6. Let (X, τ, I) be an ideal topological space as same as in Example 2 and Y = {a, b}, ϕ = {Y,∅, {a}}. Let f : (X, τ, I) −→
(Y, ϕ) be a function defined as f(a) = f(d) = a, f(b) = f(c) = b. Then f is δβI -continuous, but it isn’t a∗-I-continuous.

It is known that a function f : (X, τ) −→ (Y, ϕ) is continuous if f−1 (V ) is an open set in (X, τ) for every open set V in (Y, ϕ).

Theorem 3. For a function f : (X, τ, I) −→ (Y, ϕ), the following statements are equivalent: (1) f is continuous, (2) f is a∗-I-continuous and
strongly AI -continuous.

Proof: This follows from Theorem 8. �
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1 Introduction

Let ω be the set of all complex sequences, ℓk and c be the sets of k-absolutely convergent series and convergent sequences, respectively. By bv
we denote the space of all sequences of bounded variation, i.e.,

bv = {x ∈ w : ∆x ∈ ℓk} .

Let U and V be subspaces of w and A = (anv) be an arbitrary infinite matrix of complex numbers. By A(x) = (An (x)) , we denote the
A-transform of the sequence x = (xv), i.e.,

An (x) =
∞∑

v=0

anvxv,

provided that the series is convergent for n ≥ 0. Then, we say that A defines a matrix transformation from U into V , and denote it by A ∈
(U, V ) if the sequence A(x) = (An(x)) ∈ V for every sequence x ∈ U , also the sets Uβ = {ε = (εv) : Σεvxv converges for all x ∈ U}
and

UA = {x ∈ ω : A(x) ∈ U} (1)

are called the β dual of U and the domain of a matrix A in U. Further, U ⊂ w is said to be a BK-space if it is a Banach space with continuous
coordinates pn : U → C defined by pn (x) = xn for n ≥ 0. The sequence (ev) is called a Schauder base (or briefly base) for a normed
sequence space U if for each x ∈ U there exist unique scalar coefficients (xv) such that

lim
m→∞

∥∥∥∥∥x−
m∑

v=0

xvev

∥∥∥∥∥ = 0,

and we write

x =
∞∑

v=0

xvev.

An infinite matrix A = (anv) is called a triangle if ann 6= 0 and anv = 0 for all v > n for all n, v [1].
We define the notations Γc, Γ∞ and Γs for v = 1, 2, ..., as follows:

Γc =

{

ε = (εv) : lim
m

m∑

v=r

εv exists for r = 1, 2, ...

}

,

Γ∞ =

{

ε = (εv) : sup
m,r

∣∣∣∣∣

m∑

v=r

εv

∣∣∣∣∣ < ∞, r = 1, 2, ...

}

,

and

Γs =




ε = (εv) : sup
m

m∑

r=1

∣∣∣∣∣θ
−1/k∗

r

m∑

v=r

εv

∣∣∣∣∣

k∗

< ∞




 ,

where k∗is the conjugate of k, that is, 1/k + 1/k∗ = 1, and 1/k∗ = 0 for k = 1.
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More recently some new sequence spaces by means of the matrix domain of a particular limitation method or absolute summability methods
have been defined and studied by several authors in many research papers (see, for instance [2–8]). In this study, we introduce the space bvθk,
give its some algebraic and topological properties and characterize some matrix operators defined on that space. Also we extend some well
known results.

The following lemmas are needed in proving our theorems.

Lemma 1. Let 1 ≤ k < ∞. Then, A ∈ (ℓ, ℓk) if and only if

sup
v

∞∑

n=0

|anv|
k < ∞,

[9].

Lemma 2.
a-)

A ∈ (ℓ, c) ⇔ (i) lim
n

anv exists for each v, and (ii) sup
n,v

|anv| < ∞.

b-) Let 1 < k < ∞.Then A ∈ (ℓk, c) ⇔ (i) holds and

sup
n

∞∑

v=0

|anv|
k∗

< ∞

[10].

2 The space bv
θ

k
and matrix operators

In this section we introduce the space bvθk as

bvθk =
{
x = (xk) ∈ w :

(
θ
1/k∗

n △xn
)
∈ ℓk

}
,

where (θn) is a sequence of nonnegative terms, 1 ≤ k < ∞ and △xn = xn − xn−1 for all n. Note that it includes some known spaces. For

example, it is reduced to bvk for θn = 1 for all n and bvθ1 = bv, which have been studied by Malkowsky et al [11] and Jarrah and Malkowsky
[6]. Moreover, recently, Başar et al [3] have defined the sequence space bv (u, p) and proved that this space is linearly isomorphic to the space
ℓ(p) of Maddox [12] as generalized to paranormed space.

It is redefined as bvθk = (ℓk)A with the notation (1) , where the matrix A is defined by

anv =






−θ
1/k∗

n , v = n− 1,

θ
1/k∗

n , v = n,
0, v 6= n, n− 1.

Further,
∣∣∣Nθ

p

∣∣∣
k
=
(
bvθk

)

A
and |Cα|k =

(
bvθk

)

B
where A and B are Cesàro and Nörlund means of series Σxn (see [8],[5, 13]).

Now we begin with topological properties of bvθk, which also can be deduced from [3] .

Lemma 3. Let 1 ≤ k < ∞ and (θn) be a sequence of nonnegative numbers. Then,
a-) The space bvθk is a BK-space and norm isomorphic to the space ℓk, i.e., bv

θ
k h ℓk.

b-)
(
bvθk

)β
= Γc ∩ Γs for 1 < k < ∞ and (bv)β = Γc ∩ Γ∞ for k = 1.

c-) Define the sequence b(j) =
(
b
(j)
n

)
such that, for j, n ≥ 0,

b
(j)
n =

{
θ
−1/k∗

j , n ≥ j,

0, n < j.

Then, the sequence b(j) =
(
b
(j)
n

)
is the base of bvθk.

Proof: a-) Since ℓk is a BK-space with respect to its usual norm and A is a triangle matrix, Theorem 4.3.2 of Wilansky [1, p. 61] gives the fact
that bvθk is a BK-space for 1 ≤ k < ∞. Now, consider T : bvθk → ℓk defined by y = T (x) =

(
θ
1/k∗

n ∆xn
)

for all x ∈ bvθk . Then, it is clear

that T is a linear operator, and surjective since, if y = (yn) ∈ ℓk, then x = (xn) =
(
Σn
j=0θ

−1/k∗

j yj

)
∈ bvθk, and also one to one. Further, it

preserves the norm, since

‖T (x)‖ℓk =

(
∞∑

n=0

θk−1
n |△xn|

k

)1/k

= ‖x‖bvθ
k
,

which completes the proof.
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b-) This part can be proved together with Lemma 2.

c-) Since the sequence e(j) is a base of ℓk, where e(j) =
(
e
(j)
n

)∞
n=0

is the sequence whose only non-zero term is 1 in the nth place for

each n ∈ N, it is clear that the sequence b(j) is the base of bvθk. In fact, we first note that T−1(e(j)) = b(j). Now, if x ∈ bvθk, then there exists
y ∈ ℓk such that y = T (x), and so it follows from (a) that

∥∥∥∥∥∥
x−

m∑

j=0

xjb
(j)

∥∥∥∥∥∥
bvθ

k

=

∥∥∥∥∥∥
y −

m∑

j=0

yje
(j)

∥∥∥∥∥∥
ℓk

→ 0 as m → ∞,

and it is easy to see that the representation x =
∑∞

j=0 xjb
(j) is unique. �

Theorem 1. Let A = (anv) be an infinite matrix of complex numbers for all n, v ≥ 0 , (θn) be a sequence of nonnegative numbers and

1 ≤ k < ∞. Then, A ∈
(
bv, bvθk

)
if and only if

lim
n→∞

∞∑

j=ν

anj exists for each v, (2)

sup
n,v

∣∣∣∣∣∣

∞∑

j=v

anj

∣∣∣∣∣∣
< ∞ (3)

and

sup
ν

∞∑

n=0

∣∣∣∣∣∣
θ
1/k∗

n

∞∑

j=ν

(
anj − an−1,j

)
∣∣∣∣∣∣

k

< ∞. (4)

Proof: A ∈
(
bv, bvθk

)
iff
(
anj
)∞
j=0

∈ bvβ and A (x) ∈ bvθk for every x ∈ bv, and also, by Lemma 3,
(
anj
)∞
j=0

∈ bvβ iff (2) and (3) hold.

Now, to prove necessity and sufficiency of the condition (4), consider the operators B : bv → ℓ and B′ : bvθk → ℓk defined by

Bn (x) = ∆xn, B
′
n(x) = θ

1/k∗

n ∆xn,

respectively. As in Lemma 3, these operators are bijection and the matrices corresponding to these operators are triangles. Further, let x ∈ bv
be given. Then, B (x) = y ∈ ℓ iff x = S (y) , where S is the inverse of B and it is given by

snν =

{
1, 0 ≤ ν ≤ n,
0, ν > n.

On the other hand, if any matrix R = (rnv) ∈ (ℓ, c) , then, the series Rn(x) = Σrnvxv is convergent uniformly in n, since, by Lemma 2, the
remaining term tends to zero uniformly in n, that is,

∣∣∣∣∣

∞∑

v=m

rnvxv

∣∣∣∣∣ ≤
(
sup
n,v

|rnv|

) ∞∑

v=m

|xv| → 0 as m → ∞,

and so

lim
n

Rn(x) =
∞∑

v=0

lim
n

rnvxv. (5)

Now, it is easily seen from (2) and (3) that H =
(
h
(n)
mr

)
∈ (ℓ, c), which gives us, by (5) , that

An(x) = lim
m

m∑

r=0

h
(n)
mryr =

∞∑

r=0

(
∞∑

v=r

anv

)

yr,

converges for all n ≥ 0,where, for r,m = 0, 1, ...,

h
(n)
mr =

{ ∑m
v=r anvsvr, 0 ≤ r ≤ m,

0, r > m.

This shows that the mapping sequence A(x) = (An(x)) exists. On the other hand, since S is the infinite triangle matrix, it is clear that
A(x) = A (S(y)) ∈ bvθk for every x ∈ bv iff B′ (A (S(y))) ∈ ℓk, i.e.,

(
B′oAoS

)
(y) ∈ ℓk , which implies that D = B′oAoS : ℓ → ℓk.
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Therefore, it can be written that A : bv → bvθk iff D : ℓ → ℓk, and also D = B′oÂ, where Â = AoS. Now, a few calculations reveal that

ânv =
∞∑

j=v

anjsjv =
∞∑

j=v

anj

and so

dnv =
n∑

j=0

b′nj âjv = θ
1/k∗

n

∞∑

j=ν

(
anj − an−1,j

)

Now, let us apply Lemma 1 with the matrix D. Then, it can be easily obtained from the definition of the matrix D that D : ℓ → ℓk iff condition
(4) holds. This completes the proof.

�

If A is an infinite triangle matrix in Theorem 1, then (2) and (3) hold, and so it reduces to the following result.

Corollary 1. If A is an infinite triangle matrix of complex numbers for all n, v ≥ 0 and 1 ≤ k < ∞, then, A ∈
(
bv, bvθk

)
if and only if

sup
ν

∞∑

n=0

∣∣∣∣∣∣
θ
1/k∗

n

n∑

j=ν

(
anj − an−1,j

)
∣∣∣∣∣∣

k

< ∞.
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1 Introduction

The theory of curves is the one of the most important subject in differential geometry. The curves are represented in parametrized form and
then their geometric properties and various quantities associated with them, such as curvature and arc length expressed via derivatives and
integrals using the idea of vector calculus. There are special curves which are classical differential geometric objects. These curves are obtained
by assuming a special property on the original regular curve. Some of them are Smarandache curves, curves of constant breadth, Bertrand
curves, and Mannheim curves, associated curves, etc. Studying curves can be differed according to frame used for curve [1], [2], [3]. There
are many studies on these special curves; for example, Choi and Kim in 2012 introduced the notion of the principal (binormal)-direction curve
and principal (binormal)-donor curve of a Frenet curve and gave the relationship of curvature and torsion of its mates in both Euclidean and
Minkowski spaces [4]-[5]. Also Macit and Duldul in 2014 worked on the new associated curves in E

3 and E
4 [6]. New associated curves

by using the Bishop frame are obtained by some researches in [7], [8], [9] and [10]. In this paper, we give another approach to directional
associated curves of timelike space curve with q-frame used in [11], [12], [13] and [14].

The aim of this study in this paper is to define nq, bq-direction curves and nq, bq-donor curves of timelike curve γ via the q-frame in E
3
1 and

give the relationship between q-curvatures and curvature and torsion of its mates in Minkowski space.

2 Preliminaries

Let α(t) be a space curve with a non-vanishing second derivative. The Frenet frame is defined as follows,

t =
α′

‖α′‖
,b =

α′ ∧ α′′

‖α′ ∧ α′′‖
,n = b ∧ t. (1)

The curvature κ and the torsion τ are given by

κ =

∥

∥α′ ∧ α′′
∥

∥

‖α′‖3
, τ =

det(α′, α′′, α′′′)

‖α′ ∧ α′′‖2
. (2)

The well-known Frenet formulas are given by





t
′

n
′

b
′



 = v





0 κ 0
−κ 0 τ
0 −τ 0









t

n

b



 , (3)

where

v =
∥

∥α
′(t)

∥

∥ . (4)

In order to construct the 3D curve offset, Coquillart in [15] introduced the quasi-normal vector of a space curve. The quasi-normal vector is
defined for each point of the curve, and lies in the plane perpendicular to the tangent of the curve at this point.

c© CPOST 2019 173



As an alternative to the Frenet frame, a new adapted frame called q-frame in both Euclidean and Minkowski space is defined by Ekici et all
in [11] and [13]. Given a space curve α(t) the q-frame consists of three orthonormal vectors, the unit tangent vector t, the quasi-normal vector
nq and the quasi-binormal vector bq . The q-frame {t,nq,bq,k} is given by

t =
α′

‖α′‖
,nq =

t ∧ k

‖t ∧ k‖
,bq = t ∧ nq (5)

where k is the projection vector, which can be chosen k = (0, 1, 0) or k = (1, 0, 0) or k = (0, 0, 1).
A q-frame along a space curve is shown in Figure 1.

Fig. 1: The q-frame and Frenet frame

Since the derivation formula for the q-frame for the timelike curve in Minkowski space does not depend on projection vector being timelike
or spacelike, we work on spacelike projection vector without loss of generality.

In [12], the variation equations of the directional q-frame for the timelike space curve when tangent vector (timelike), projection vector
k = (0, 1, 0) (spacelike), quasi-normal vector (spacelike) and quasi-binormal vector (spacelike) are given by





t
′

n
′

q

b
′

q



 =





0 k1 k2
k1 0 k3
k2 −k3 0









t

nq

bq



 (6)

where the q-curvatures are

k1 =
〈

t
′
,nq

〉

, k2 =
〈

t
′
,bq

〉

, k3 =
〈

n
′

q,bq

〉

,

In the three dimensional Minkowski space R
3
1, the inner product and the cross product of two vectors u = (u1, u2, u3), v = (v1, v2, v3) ∈

R
3
1 are defined as

< u,v >= u1v1 + u2v2 − u3v3 (7)

and

u ∧ v = (u3v2 − u2v3, u1v3 − u3v1, u1v2 − u2v1) (8)

where e1 ∧ e2 = e3, e2 ∧ e3 = −e1, e3 ∧ e1 = −e2, respectively [16].
The norm of the vector u is given by

‖u‖ =
√

|〈u, u〉|. (9)

We say that a Lorentzian vector u is spacelike, lightlike or timelike if 〈u,u〉 > 0, 〈u,u〉 = 0 and u 6= 0, 〈u,u〉 < 0, respectively. In
particular, the vector u = 0 is spacelike.

An arbitrary curve α(s) in R
3
1 can locally be spacelike, timelike or null(lightlike), if all its velocity vectors α′(s) are respectively spacelike,

timelike or null.
A null curve α is parameterized by pseudo-arc s if

〈

α′′(s), α′′(s)
〉

= 1. On the other hand, a non-null curve α is parameterized by arc-lenght
parameter s if

〈

α′(s), α′(s)
〉

= ±1 [17] and [18].
Then Frenet formulas of timelike curve may be written as

d

dt





t

n

b



 = v





0 κ 0
κ 0 τ
0 −τ 0









t

n

b



 (10)

where v =
∥

∥α′(t)
∥

∥ . The Minkowski curvature and torsion of timelike curve α(t) are obtained by

κ =< t
′
,n >, τ =< n

′
,b >,

respectively [16] and [19].
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Let x and y be future painting (or post painting) timelike vectors in E3
1 , then there is an unique real number θ ≥ 0 such that

〈x, y〉 = ‖x‖ ‖y‖ cosh θ.

This number is called the hyperbolic angle between the vectors x and y [19]. Let x and y be spacelike vectors in E3
1 that span spacelike vector

subspace. Then, there is an unique real number θ ≥ 0 such that

〈x, y〉 = ‖x‖ ‖y‖ cos θ.

This number is called the spacelike angle between the vectors x and y.
Let x be a spacelike and y be a timelike vectors in E3

1 , then there is an unique real number θ ≥ 0 such that

〈x, y〉 = ‖x‖ ‖y‖ sinh θ.

This number is called the timelike angle between the vectors x and y [19]. The relation between Frenet (n is timelike) and q-frame (t is
timelike) is given as





t

n

b



 =





1 0 0
0 sinh θ cosh θ
0 cosh θ sinh θ



 .





t
′

n
′

q

b
′

q



 , (11)

where the angle is between n and nq.
Also the relation between q-curvatures and curvature and torsion are

k1 = κ sinh θ, k2 = κ cosh θ, k3 = −dθ + τ. (12)

The relation between Frenet (b is timelike) and q-frame (t is timelike) is given as





t

n

b



 =





1 0 0
0 cosh θ sinh θ
0 − sinh θ − cosh θ



 .





t
′

n
′

q

b
′

q



 , (13)

where the angle is between b and nq.
Also the relation between q-curvatures and curvature and torsion are

k1 = κ cosh θ, k2 = κ sinh θ, k3 = −dθ − τ. (14)

3 Directional Associated Curves of Timelike Space Curve

In this section, we inverstigate nq and bq− direction and donor curves of the timelike curve with q-frame in E
3
1. For a Frenet frame γ : I → E

3
1,

consider a vector field V with q frame as follows:

V (s) = u(s)t(s) + v(s)nq(s) + w(s)bq(s), (15)

where u, v, and w are functions on I satisfying

u2(s) + v2(s)− w2(s) = 1. (16)

Then, an integral curve γ(s), that is V (γ(s)) = γ′(s), of V defined on I is a unit speed curve in E
3
1.

Let γ be a timelike curve in E
3
1. An integral curve of nq is called nq−direction curve of the timelike curve γ via q-frame.

Remark 1. A nq−direction curve is an integral curve of the equation (15) with u(s) = w(s) = 0, v(s) = 1.

Let γ be a timelike curve in E
3
1. An integral curve of bq is called bq−direction curve of the timelike curve γ via q-frame.

Remark 2. A bq−direction curve is an integral curve of the equation (15) with u(s) = v(s) = 0, w(s) = 1.

3.1 nq− direction and donor curves of the timelike curve with q-frame

Theorem 1. Let γ be a timelike space curve in E
3
1 with the q-curvatures k1, k2, k3 and γ be the nq−direction curve of γ with the q-curvature

k1, k2, k3. Then we have

t = nq, nq = −t, bq = bq

k1 = |k1| or k1 =
√

|2k2
3
− k2

1
|, k2 = k3, k3 = k2.

(17)
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Fig. 2: nq direction curve

Proof. By definition of nq−direction curve of γ, we can write

γ′ = t = nq. (18)

Geometrically, since nq and t lie on the same plane, we can take nq = −t. The vectorial product of t and nq is as follows:

bq = nq × t (19)

therefore, bq = bq. Differentiating the expression (18) and then taking its norm, we find

k1 = |k1| or k1 =
√

|2k2
3
− k2

1
|. (20)

Using definition of q− curvatures and derivation formula of q− frame, one can get k2 = k3, and k3 = k2.

Theorem 2. Let γ be a timelike space curve in E
3
1 with the q−curvatures k1, k2, k3 and γ be the nq−direction curve of the timelike curve γ

with the curvature κ and the torsion τ . Then we have

t = nq, n = −t, b = bq

κ =
√

| − k2
1
+ k2

3
|, τ = −k2.

(21)

Proof. By definition of nq−direction curve of γ, we can write

γ′ = t = nq. (22)

Differentiating the expression (22) and then taking its norm, we find

κ =
√

| − k2
1
+ k2

3
| (23)

Differentiation of the expressions (22) gives us

n = −t. (24)

The vectorial product of t and n is as follows:

b = n× t. (25)

Using the expressions (22), (24) in (25) we find that

b = bq. (26)

Finally, differentiating (26) and using (24) in it, we have

τ = −k2. (27)

Corollary 1. Let γ be a timelike curve in E
3
1 and γ be the nq−direction curve of γ. The Frenet frame of γ is given in terms of the q− frame

as follows:

t(s) = nq(s),

n(s) = − sinh(
∫
k2(s)ds)nq(s) + cosh(

∫
k2(s)ds)bq(s),

b(s) = cosh(
∫
k2(s)ds)nq(s)− sinh(

∫
k2(s)ds)bq(s).

(28)
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Proof. It is straightforwardly seen by substituting (23) and (27) into (11).

Corollary 2. If the curve γ is a nq−donor curve of the curve γ with the curvatures k1, k2, k3, then the curvature κ and the torsion τ of the
timelike curve γ are given by

τ =
√

| − k2
1
+ k2

3
|, κ = ±k2 + (

k23
−k2

1
+ k2

3

)(
k1

k3
)′ (29)

Proof. Taking the squares of (23) and (27), then subtracting them side by side by using (12) gives us the equation (29).

Corollary 3. Let γ be a timelike curve with the curvature κ and the torsion τ in E
3
1 and γ be the nq−direction curve of γ with the curvatures

k1, k2, k3. Then it satisfies

k2

k1
= coth θ,

τ

κ
= ±

k2
√

−k2
1
+ k2

3

+
k23

(−k2
1
+ k2

3
)
3

2

(
k1

k3
)′

(30)

Proof. It is straightforwardly seen by substituting the expressions (23), (27) and (29) into (12).

3.2 bq− direction and donor curves of the timelike curve with q-frame

Fig. 3: bq direction curve

Theorem 3. Let γ be a timelike space curve in E
3
1 with the q-curvatures k1, k2, k3 and γ be the nq−direction curve of γ with the q-curvature

k1, k2, k3. Then we have

t = nq, nq = −t, bq = bq

k1 = |k1| or k1 =
√

|2k2
3
− k2

1
|, k2 = k3, k3 = k2.

(31)

Proof. By definition of nq−direction curve of γ, we can write

γ′ = t = nq. (32)

Geometrically, since nq and t lie on the same plane, we can take nq = −t. The vectorial product of t and nq is as follows:

bq = nq × t (33)

therefore, bq = bq. Differentiating the expression (32) and then taking its norm, we find

k1 = |k1| or k1 =
√

|2k2
3
− k2

1
|. (34)

Using definition of q− curvatures and derivation formula of q− frame, one can get

k2 = k3 and k3 = k2. (35)

Theorem 4. Let γ be a timelike space curve in E
3
1 with the q−curvatures k1, k2, k3 and γ be the bq−direction curve of the timelike curve γ

with the curvature κ and the torsion τ . Then we have

t = bq, n = t, b = nq

κ =
√

| − k2
2
+ k2

3
|, τ = −k1.

(36)
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Proof. By definition of bq−direction curve of γ, we can write

γ′ = t = bq. (37)

Differentiating the expression (37) and then taking its norm, we find

κ =
√

| − k2
2
+ k2

3
| (38)

Differentiation of the expressions (37) with using of (38) gives us

n = t. (39)

The vectorial product of t and n is as follows:

b = n× t. (40)

Using the expressions (37), (39) in (40) we find that

b = nq. (41)

Finally, differentiating (41) and using definition of curvature, we have

τ = k1 (42)

which proves theorem.

Corollary 4. Let γ be a timelike curve in E
3
1 and γ be the bq−direction curve of γ. The Frenet frame of γ is given in terms of the q− frame as

follows:

t(s) = bq(s),

n(s) = cosh(
∫
k1(s)ds)nq(s) + sinh(

∫
k1(s)ds)bq(s),

b(s) = − sinh(
∫
k1(s)ds)nq(s)− cosh(

∫
k1(s)ds)bq(s).

(43)

Proof. It is straightforwardly seen by substituting (38) and (42) into (13).

Corollary 5. If the curve γ is a nq−donor curve of the curve γ with the curvatures k1, k2, k3, then the curvature κ and the torsion τ of the
timelike curve γ are given by

τ =
√

| − k2
2
+ k2

3
|, κ = ±k1 + (

k23
−k2

2
+ k2

3

)(
k2

k3
)′ (44)

Proof. Taking the squares of (38) and (42), then subtracting them side by side by using (14) gives us the equation (44).

Corollary 6. Let γ be a timelike curve with the curvature κ and the torsion τ in E
3
1 and γ be the nq−direction curve of γ with the curvatures

k1, k2, k3. Then it satisfies

k2

k1
= tanh θ,

τ

κ
= ±

k1
√

−k2
2
+ k2

3

+
k23

(−k2
2
+ k2

3
)
3

2

(
k2

k3
)′

(45)

Proof. It is straightforwardly seen by substituting the expressions (38), (42) and (44) into (14).

4 Examples

In this section, an example of directional associated curves of timelike space curve with q-frame are constructed and plotted.

Example 1. Consider a timelike curve

γ(t) = (−
5

9
cosh(3t),

4

3
t,−

5

9
sinh(3t)).

The Frenet frame vectors and curvatures are calculated by

t =
(

− 5

3
sinh(3t), 4

3
,− 5

3
cosh(3t)

)

,

n =
(

− cosh(3t), 0,− sinh(3t)
)

,

b =
(

4

3
sinh(3t),− 5

3
, 4
3
cosh(3t)

)

,

κ = 5, τ = 4.
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The q-frame vectors and curvatures are obtained by

t =
(

− 5

3
sinh(3t), 4

3
,− 5

3
cosh(3t)

)

,

nq =
(

− cosh(3t), 0,− sinh(3t)
)

,

bq =
(

− 4

3
sinh(3t), 5

3
,− 4

3
cosh(3t)

)

,

k1 = 5, k2 = 0, k3 = −4.

nq and bq− direction curves of γ shown in Figure 4 are written as

γ =
(

− 1

3
sinh(3t) + c1, c2,−

1

3
cosh(3t) + c3

)

,

γ =
(

− 4

9
cosh(3t) + c4,

5

3
t+ c5,−

4

9
sinh(3t) + c6

)

,

respectively.

Fig. 4: Timelike curve (black), nq direction curve (red) and bq direction curve (blue) for ci = 0.

All the figures in this study were created by using maple programme.
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Abstract: In this study, we generalize the well-known formulae of de-Moivre and Euler of hyperbolic numbers to dual-hyperbolic

numbers. Furthermore, we investigate the roots and powers of a dual-hyperbolic number by using these formulae. Consequently,

we give some examples to illustrate the main results in this paper.
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1 Introduction

The number systems of two- dimensional numbers have taken place in literature with a multi-perspective approach. The hyperbolic numbers
were first introduced by J. Cockle [1] and elaborated by I.M. Yaglom [2]. At the end of the 20th century, O. Bodnar, A. Stakhov and I.S.
Tkachenko revealed a hyperbolic function class with gold ratio [3]. In recent years, there have been a great number of studies referring to
hyperbolic numbers [4]-[9]. One of the most important recent studies has been given by A. Harkin and J. Harkin and generalized trigonometry
including complex, hyperbolic and dual numbers were studied [10]. Any hyperbolic number (or split complex number, perplex number, double
number) z = x+ j y is a pair of real numbers (x, y), which consists of the real unit +1 and hyperbolic (unipotent) imaginary unit j satisfying

j2 = 1, j 6= ±1. Therefore, hyperbolic numbers are elements of two-dimensional real algebra

H =
{

z = x+ jy |x, y ∈ R and j
2 = 1 (j 6= ±1)

}

which is generated by 1 and j. The module of a hyperbolic number z is defined by

|z| =
{

∓
√

x2 − y2

∓
√

y2 − x2
; |x| ≥ |y|
; |x| ≤ |y|

and its argument is ϕ = arctanh
( y
x

)

and represented by arg (z). Any hyperbolic number z can be given by one of the following forms;

a−) z = r (coshϕ+ j sinhϕ)
b−) z = r (sinhϕ+ j coshϕ) .

The hyperbolic number given in (a) and (b) is called the first and second type hyperbolic number, respectively, see figure 1.
On the other hand, the developments in the number theory present us new number systems including the dual numbers which are expressed

by the real and dual parts similar to hyperbolic numbers. This idea was first introduced by W. K. Clifford to solve some algebraic problems
[11]. Afterwards, E. Study presented different theorems with his studies on kinematics and line geometry [12].

A dual number is a pair of real numbers which consists of the real unit +1 and dual unit ε satisfying ε2 = 0 for ε 6= 0. Therefore, the dual
numbers are elements of two-dimensional real algebra

D =
{

z = x+ εy |x, y ∈ R, ε
2 = 0, ε 6= 0

}

which is generated by +1 and ε.
Similar to the hyperbolic numbers, the module of a dual number z is defined by |z| = |x+ εy| = |x| = r and its argument is θ = y

x and
represented by arg (z). The set of all points which satisfy the equation |z| = |x| = r > 0 and which are on the dual plane are the lines x = ±r
[2]. This circle is called the Galilean circle on a dual plane. Let S be a circle centered with O and M be a point on S. If d is the line OM , and
α is the angle δOd, a Galilean circle can be seen in the following figure 2.
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Fig. 1: Representation of hyperbolic numbers at a coordinate plane

So, one can easily see that

cosgα =
|OP |
|OM | = 1 , singα =

|MP |
|OM | =

δOd

1
= α.

Moreover, the exponential representation of a dual number z = x+ εy is in the form of z = xeεα where
y
x is dual angle and it is shown as

arg (z) = y
x = α [3]. In addition, from the definitions of Galilean cosine and sine, we realize

cosg (α) = 1 and sing (α) =
y

x
= α.

By considering the exponential rules, we write

cosg (x+ y) = cosg (x) cosg (y)− ε
2sing (x) sing (y) ,

sing (x+ y) = sing (x) cosg (y) + cosg (x) sing (y) ,

cosg2 (x) + ε
2sing2 (x) = 1

[10].
E. Cho proved that de-Moivre formula for the hyperbolic numbers is admissible for quaternions [13]. Also, Yaylı and Kabadayı gave the

de-Moivre formula for dual quaternions [14]. This formula was also investigated for the case of hyperbolic quaternions in [15]. In this study,
we first introduce dual-hyperbolic numbers and algebraic expressions on dual hyperbolic numbers. We also generalize de-Moivre and Euler
formulae given for hyperbolic and dual numbers to dual-hyperbolic numbers. Then we have found the roots and forces of the dual-hyperbolic
numbers. Finally, the obtained results are supported by examples.

2 Dual-Hyperbolic numbers

A dual-hyperbolic number ω can be written in the form of hyperbolic pair (z1, z2) such that +1 is the real unit and ε is the dual unit. Thus, we
denote dual-hyperbolic numbers set by

Fig. 2: Galilean unit circle
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DH =
{

ω = z1 + εz2 | z1, z2 ∈ H and ε
2 = 0, ε 6= 0

}

.

If we consider hyperbolic numbers z1 = x1 + jx2 and z2 = x3 + jx4, we represent a dual-hyperbolic number

ω = x1 + x2j + x3ε+ x4εj.

Here j, ε and εj are unit vectors in three-dimensional vectors space such that j is a hyperbolic unit, ε is a dual unit, and εj is a dual-hyperbolic
unit [16]. So, the multiplication table of dual-hyperbolic numbers’ base elements is given below.

× 1 j ε jε
1 1 j ε jε
j j 1 jε ε
ε ε jε 0 0
jε jε ε 0 0

Table 1 Multiplication Table of Dual-Hyperbolic Numbers

We define addition and multiplication on dual-hyperbolic numbers as follows

ω1 + ω2 = (z1 ± εz2) + (z3 ± εz4) = (z1 ± z3) + ε (z2 ± z4) ,
ω1 × ω2 = (z1 + εz2)× (z3 + εz4) = z1z3 + ε (z1z4 + z2z3)

where ω1 and ω2 are dual-hyperbolic numbers and z1, z2, z3, z4 ∈ H . On the other hand, the division of two dual-hyperbolic numbers is

ω1

ω2
=

z1 + εz2

z3 + εz4
=

z1

z3
+ ε

z2z3 − z1z4

z32
,

where Re (ω2) 6= 0.
Thus, dual-hyperbolic numbers yield a commutative ring whose characteristic is 0. If we consider both algebraic and geometric properties

of dual-hyperbolic numbers, we define five possible conjugations of dual-hyperbolic numbers. These are

ω†1 = z̄1 + εz̄2, (hyperbolic conjugation) ,

ω†2 = z1 − εz2, (dual conjugation) ,

ω†3 = z̄1 − εz̄2, (coupled conjugation) ,

ω†4 = z1

(

1− ε z2z1

)

(ω ∈ DH −A) , (dual− hyperbolic conjugation) ,

ω†5 = z2 − εz1, (anti− dual conjugation) ,

where "-" denotes the standard hyperbolic conjugation and the zero divisors of DH is defined by the set A [17].
In regards to these definitions, we give the following proposition for modules of dual-hyperbolic numbers.

Proposition 1. Let ω = z1 + εz2 be a dual-hyperbolic number. Then we write

|ω|2†1 = ω × ω†1 = |z1|2 + 2εRe (z1z̄2) ∈ D

|ω|2†2 = ω × ω†2 = z21 ∈ H

|ω|2†3 = ω × ω†3 = |z1|2 − 2jεIm (z1z̄2) ∈ DH

|ω|2†4 = ω × ω†4 = |z1|2 ∈ R (ω ∈ DH −A)

|ω|2†5 = ω × ω†5 = z1z2 + ε
(

z22 − z21

)

∈ DH

[17].

3 De-Moivre and Euler formulae for Dual-Hyperbolic number

The exponential representation of a dual-hyperbolic number is ω = z1 e
z2
z1

ε
, where ω = z1 + εz2 ∈ DH is a dual-hyperbolic number and

(z1 6= 0). The dual-hyperbolic angle z2
z1

is called the argument of dual-hyperbolic number and it is denoted by argω = z2
z1

= ϕ [17].

Theorem 1. Let ω = z1 + εz2 ∈ DH −A be a dual-hyperbolic number and ϕ be the principal argument of ω. Every dual-hyperbolic number
can be written in the form of

w = z1e
εϕ

= z1 (cosg(ϕ) + εsing(ϕ)) =

{

r (coshϕ+ j sinhϕ) (cosg(ϕ) + εsing(ϕ)) , |x1| > |y1|
r (sinhϕ+ j coshϕ) (cosg(ϕ) + εsing(ϕ)) , |y1| > |x1|

such that cosg(ϕ) = 1 and sing(ϕ) = ϕ.
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Proof: The exponential representation of a dual-hyperbolic number ω = z1 + εz2 ∈ DH −A is ω = z1 e
z2
z1

ε
, where dual-hyperbolic number

z2
z1

is the principal argument ϕ. Thus, if we write ω in the form of

ω = z1e
εϕ = z1

(

1 + εϕ+
(εϕ)2

2!
+

(εϕ)3

3!
+ ....................

)

from properties of the dual unit, we see that

ω = z1e
εϕ = z1 (1 + εϕ) = z1 (cosg(ϕ) + εsing(ϕ)) .

Eventually, by considering each case of |x1| > |y1| or |y1| > |x1| if we substitute the hyperbolic number z1 = x1 + j y1 ∈ H into the last
equation we get

ω =

{

r (coshϕ+ j sinhϕ) (cosg(ϕ) + εsing(ϕ)) , |x1| > |y1| ,
r (sinhϕ+ j coshϕ) (cosg(ϕ) + εsing(ϕ)) , |y1| > |x1| .

�

Theorem 2. Let ω = z1 + εz2 ∈ DH −A be a dual-hyperbolic number and argω = z2
z1

= ϕ. Then 1
eεϕ = eε(−ϕ).

Proof: If we use the Euler formula for 1
eεϕ , we have

1
eεϕ = 1

(

1+εϕ+
(εϕ)2

2! +
(εϕ)3

3! +....................
)

= 1
cos g(ϕ)+ε sin g(ϕ)

.

If we multiply both the numerator and the denominator of the last fraction by cosg(ϕ)− εsing(ϕ), we get

1
eεϕ = 1

cosg(ϕ)+εsing(ϕ)
(cosg(ϕ)−εsing(ϕ))
(cosg(ϕ)−εsing(ϕ))

=
cosg(ϕ)−εsing(ϕ)

cosg2(ϕ)
.

If we consider equality cosg2(ϕ) = 1, we have

1

eεϕ
= cosg(ϕ)− εsing(ϕ).

This gives us the relation

1

eεϕ
= cosg(ϕ)− εsing(ϕ) = cosg(−ϕ) + εsing(−ϕ).

As a consequence, we get 1
eεϕ = eε(−ϕ). �

Theorem 3. Let ω = z1 + εz2 ∈ DH −A be a dual-hyperbolic number and ω = z1e
εϕ = z1 (cosg(ϕ) + εsing(ϕ)) be its polar represen-

tation. Then, the equation

ω
n =

(

z1e
εϕ)n = (z1(cosg(ϕ) + εsing(ϕ))n = z1

n (cosg(nϕ) + εsing(nϕ))

yields for all non-negative integers.

Proof: First, let’s prove that de-Moivre formula is correct for n ∈ N . For this, under consideration the Galilean trigonometric identities, for
n = 2 the dual-hyperbolic number ω = z1e

εϕ ∈ DH −A becomes

(z1e
εϕ)2 = z1 (cosg(ϕ) + εsing(ϕ)) z1 (cosg(ϕ) + εsing(ϕ))

= z1
2
(

cosg2(ϕ) + ε (cosg(ϕ)sing(ϕ) + sing(ϕ)cosg(ϕ))
)

= z1
2 (cosg(2ϕ) + εsing(2ϕ)) .

Suppose that the equality is true for n = k, that is,

(z1(cosg(ϕ) + εsing(ϕ))k = z1
k (cosg(kϕ) + εsing(kϕ)) .

Then for the case n = k + 1, we find

(z1(cosg(ϕ) + εsing(ϕ))k+1 = z1(cosg(ϕ) + εsing(ϕ))k (z1(cosg(ϕ) + εsing(ϕ))

= z1
k (cosg(kϕ) + εsing(kϕ)) z1 (cosg(kϕ) + εsing(kϕ))

= z1
k (cosg(kϕ)cosg(ϕ) + ε (cosg(kϕ)sing(ϕ) + sing(kϕ)cosg(ϕ)))

= z1
k+1 (cosg((k + 1)ϕ) + εsing((k + 1)ϕ)) .

c© CPOST 2019 183



Here zk1 = rk (cosh (kϕ) + j sinh (kϕ)) for |x1| > |y1| and r = |z1| = ∓
√

x12 − y12. Moreover, zk1 = rk (sinh (kϕ) + j cosh (kϕ)) for

|y1| > |x1| and r = |z1| = ∓
√

y12 − x12. On the other hand, for ω = z1e
εϕ ∈ DH −A and n ∈ N we can write

w−n = z1
−n (cosg(nϕ)− εsing(nϕ))

= z1
−n (cosg(−nϕ) + εsing(−nϕ)) .

Thus, for all n ∈ Z we obtain

ω
n =

(

z1e
εϕ)n = (z1(cosg(ϕ) + εsing(ϕ))n = z1

n (cosg(nϕ) + εsing(nϕ)) .

�

Theorem 4. The n-th degree root of ω is

n
√
ω = n

√
z
(

cosg
(ϕ

n

)

+ εsing
(ϕ

n

))

where ω = z1 + εz2 ∈ DH −A is a dual-hyperbolic number.

Proof: Polar representation of ω = z1 + εz2 ∈ DH −A is ω = z1 (cosg(ϕ) + εsing(ϕ)). From Theorem 3, we know that

ω
n =

(

z1e
εϕ)n = (z1(cosg(ϕ) + εsing(ϕ))n = z1

n (cosg(nϕ) + εsing(nϕ)) .

So, we get

n
√
ω = ω

1
n = z

1
n

1

(

cosg
(

1
nϕ
)

+ εsing
(

1
nϕ
))

= n
√
z1
(

cosg
(ϕ
n

)

+ εsing
(ϕ
n

))

.

This completes the proof. �
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1 Introduction

Let ω be the set of all complex sequences, ℓk and c be the set of k-absolutely convergent series and convergent sequences. In [2] , the space bvθk
has been defined by

bvθk =

{

x = (xk) ∈ w :

∞
∑

n=0

θk−1
n |△xn|

k < ∞, x−1 = 0

}

,

which is a BK space for 1 ≤ k < ∞, where (θn) is a sequence of nonnegative terms and △xn = xn − xn−1 for all n.
Also, in the special case θn = 1 for all n, it is reduced to bvk, studied by Malkowsky, Rakočević and Živković [1] , and bvθ1 = bv.
Let U and V be subspaces of w and A = (anv) be an arbitrary infinite matrix of complex numbers. By A(x) = (An (x)) , we denote the

A-transform of the sequence x = (xv), i.e.,

An (x) =
∞
∑

v=0

anvxv,

provided that the series are convergent for v, n ≥ 0. Then, A defines a matrix transformation from U into V, denoted by A ∈ (U, V ) , if the
sequence Ax = (An(x)) ∈ V for all sequence x ∈ U .

Lemma 1.1 ([6]) . Let 1 < k < ∞ and 1/k + 1/k∗ = 1. Then, A ∈ (ℓk, ℓ) if and only if

‖A‖′(ℓk,ℓ) =







∞
∑

ν=0

(

∞
∑

n=0

|anv|

)k∗






1/k∗

< ∞

and there exists 1 ≤ ξ ≤ 4 such that ‖A‖′(ℓk,ℓ) = ξ ‖A‖(ℓk,ℓ)

If S and H are subsets of a metric space (X, d) and ε > 0, then S is called an ε-net of H , if, for every h ∈ H, there exists an s ∈ S such
that d (h, s) < ε; if S is finite, then the ε-net S of H is called a finite ε-net of H . By MX , we denote the collection of all bounded subsets of
X. If Q ∈ MX , then the Hausdorff measure of noncompactness of Q is defined by

χ(Q) = inf {ε > 0 : Q has a finite ε-net in X} .

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness [5].

If X and Y are normed spaces, B (X,Y ) states the set of all bounded linear operators from X to Y and is also a normed space according to
the norm ‖L‖ = supx∈SX

‖L(x)‖ , where SX is a unit sphere in X, i.e., SX = {x ∈ X : ‖x‖ = 1} . Further, a lineer operator L : X → Y
is said to be compact if the sequence (L (xn)) has convergent subsequence in Y for every bounded sequence x = (xn) ∈ X. By C (X,Y ) we
denote the set of such operators.

The following results are need to compute Hausdorff measure of noncompactness.
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Lemma 1.2 ([4]). Let X and Y be Banach spaces, L ∈ B (X,Y ). Then, Hausdorff measure of noncompactness of L, denoted by ‖L‖χ ,
is defined by

‖L‖χ = χ (L (SX)) ,

and

L ∈ C (X,Y ) iff ‖L‖χ = 0.

Lemma 1.3 ([5]). Let Q be a bounded subset of the normed space X where X = ℓk for 1 ≤ k < ∞.If Pr : X → X is the operator defined
by Pr (x) = (x0, x1, ..., xr, 0, ...) for all x ∈ X, then

χ(Q) = lim
r→∞

sup
x∈Q

‖(I − Pr) (x)‖ ,

where I is the identity operator on X .

Lemma 1.4 ([4]). Let X be normed sequence space, χT and χ denote Hausdorff measures of noncompactness on M
XT

and MX , the collections
of all bounded sets in XT and X , respectively. Then,

χ
T
(Q) = χ(T (Q)) for all Q ∈ M

XT

,

where T is an infinite triangle matrix.

2 Compact operators on the space bv
θ

k

More recently the class
(

bvθk, bv
)

, 1 < k < ∞, has been characterized by Hazar and Sarıgöl [2] in the following form. In the present paper,
by computing Hausdorff measure of noncompactness, we characterize compact operators in the same class.

Theorem 2.1. Let A = (anv) be an infinite matrix of complex numbers for all n, v ≥ 0 and 1 < k < ∞. Then, A ∈
(

bvθk, bv
)

if and
only if

lim
n→∞

∞
∑

j=ν

anj exists for each v (2.1)

sup
m

m
∑

ν=0

∣

∣

∣

∣

∣

∣

θ
−1/k∗

ν

m
∑

j=ν

anj

∣

∣

∣

∣

∣

∣

k∗

< ∞ for each n (2.2)

∞
∑

ν=0





∞
∑

n=0

∣

∣

∣

∣

∣

∣

θ
1/k∗

ν

∞
∑

j=ν

(

anj − an−1,j

)

∣

∣

∣

∣

∣

∣





k∗

< ∞. (2.3)

Also, for special case θv = 1, it is reduced to the following result of [1].

Corollary 2.2. Let A = (anv) be an infinite matrix of complex numbers for all n, v ≥ 0 and 1 < k < ∞. Then, A ∈
(

bvk, bv
)

if and

only if (2.1) holds,

sup
m

m
∑

ν=0

∣

∣

∣

∣

∣

∣

m
∑

j=ν

anj

∣

∣

∣

∣

∣

∣

k∗

< ∞ for each n,

∞
∑

ν=0





∞
∑

n=0

∣

∣

∣

∣

∣

∣

∞
∑

j=ν

(

anj − an−1,j

)

∣

∣

∣

∣

∣

∣





k∗

< ∞.

Now we give the following theorem.
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Theorem 2.3.Let 1 < k < ∞ and θ = (θn) be a sequence of positive numbers. If A ∈
(

bvθk, bv
)

, then there exists 1 ≤ ξ ≤ 4 such that

‖A‖χ =
1

ξ
lim

r→∞







∞
∑

n=r+1

(

∞
∑

v=0

|dnv|

)k∗






1/k∗

, (2.4)

and A ∈ C
(

bvθk, bv
)

if and only if

lim
r→∞

∞
∑

n=r+1

(

∞
∑

v=0

|dnv|

)k∗

= 0 (2.5)

where

dnj = θ
−1/k∗

j

∞
∑

v=j

(

anv − an−1,v
)

Proof. Define T1 : bvθk → ℓk and T2 : bv → ℓ by T1(x) = θ
1/k∗

v (xv − xv−1) and T2(x) = xv − xv−1, x−1 = 0. Then, it clear that T1
and T2 are isomorhism preseving norms, i.e., ‖x‖bvθ

k

= ‖T1(x)‖ℓk and ‖x‖bv = ‖T2(x)‖ℓ . So, bvθk and bv are isometrically isomorhic to

ℓk and ℓ, respectively, i.e., bvθk ≃ ℓk and bv ≃ ℓ. Now let T1(x) = y for x ∈ bvθk. Then, x = T−1
1 (y) ∈ Sbvθ

k

if and only if y ∈ Sℓk , where

SX =
{

x ∈ X : ‖x‖X = 1
}

. Also, it is seen easily (see [3]) that T2AT−1
1 = D and A ∈

(

bvθk, bv
)

iff D ∈ (ℓk, ℓ) . Further, by Lemma 1.1,
there exists 1 ≤ ξ ≤ 4 such that

‖A‖(bvθ

k
,bv) = sup

x 6=θ

‖A(x)‖bv
‖x‖bvθ

k

= sup
x 6=θ

∥

∥

∥T−1
2 DT1(x)

∥

∥

∥

bv

‖x‖bvθ

k

= sup
x 6=θ

‖D(y)‖ℓ
‖y‖ℓk

= ‖D‖(ℓk,ℓ)

=
1

ξ
‖D‖′(ℓk,ℓ)

and so, by Lemmas 1.2, 1.3 and 1.4, we have

‖A‖χ = χ
(

ASbvθ

k

)

= χ(T2ASbvθ

k

)

= χ(DT1Sbvθ

k

) = lim
r→∞

sup
y∈Sℓk

‖(I − Pr)D(y)‖ℓ

= lim
r→∞

sup
y∈Sℓk

∥

∥

∥D
(r)(y)

∥

∥

∥ = lim
r→∞

∥

∥

∥D
(r)
∥

∥

∥

(ℓk,ℓ)

=
1

ξ
lim

r→∞







∞
∑

n=r+1

(

∞
∑

v=0

|dnv|

)k∗






1/k∗

where Pr : ℓ → ℓ is defined by Pr (y) = (y0, y1, ..., yr, 0, ...) , and

d
(r)
nv =

{

0, 0 ≤ n ≤ r
dnv, n > r

So the proof is completed by Lemma 1.2.

In the special case θn = 1, the following result is immediate.

Corollary 2.4. Let 1 < k < ∞. If A ∈
(

bvk, bv
)

, then there exists 1 ≤ ξ ≤ 4 such that

‖A‖χ =
1

ξ
lim

r→∞







∞
∑

n=r+1

(

∞
∑

v=0

|dnv|

)k∗






1/k∗

and

A ∈ C (bvk, bv) iff lim
r→∞

∞
∑

n=r+1

(

∞
∑

v=0

|dnv|

)k∗

= 0

where

dnj =
∞
∑

v=j

(

anv − an−1,v
)
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[4] E. Malkowsky, V. Rakočević, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr) 9(17) (2000), 143-234.
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1 Introduction

The idea of statistical convergence was given by Zygmund [1] in the first edition of his monograph published in Warsaw in 1935. The concept of
statistical convergence was introduced by Steinhaus [2] and Fast [3] and then reintroduced independently by Schoenberg [4]. Over the years and
under different names, statistical convergence has been discussed in the Theory of Fourier Analysis, Ergodic Theory, Number Theory, Measure
Theory, Trigonometric Series, Turnpike Theory and Banach Spaces. Later on it was further investigated from the sequence spaces point of view
and linked with summability theory by Gupta and Bhardwaj [5], Braha et al. [6], Çınar et al. [7], Connor [8], Et et al. ([9],[10],[11],[12],[13]),
Fridy [14], Işık et al. ([15],[16],[17]), Mohiuddine et al. [18], Mursaleen et al. [19], Nuray [20], Nuray and Aydın [21], Salat [22], Şengül et al.
([23],[24],[25],[26]), Srivastava et al. ([27],[28]) and many others.

The idea of statistical convergence depends upon the density of subsets of the set N of natural numbers. The density of a subset E of N is
defined by

δ(E) = lim
n→∞

1

n

n
∑

k=1

χE(k),

provided that the limit exists, where χE is the characteristic function of the set E. It is clear that any finite subset of N has zero natural density
and that

δ
(

E
c) = 1− δ (E) .

A sequence x = (xk)k∈N
is said to be statistically convergent to L if, for every ε > 0, we have

δ ({k ∈ N : |xk − L| ≥ ε}) = 0.

In this case, we write

xk
stat−→ L as k → ∞ or S − limk→∞ xk = L.

In 1932, Agnew [29] introduced the concept of deferred Cesàro mean of real (or complex) valued sequences x = (xk) defined by

(Dp,qx)n =
1

(q (n)− p (n))

q(n)
∑

k=p(n)+1

xk, n = 1, 2, 3, . . . ,

where p = {p (n)} and q = {q (n)} are the sequences of non-negative integers satisfying

p (n) < q (n) and lim
n→∞

q (n) = ∞.

Let K be a subset of N and denote the set {k : p (n) < k ≤ q (n) , k ∈ K} by Kp,q (n) .
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Deferred density of K is defined by

δp,q (K) = lim
n→∞

1

(q (n)− p (n))
|Kp,q (n)| , provided the limit exists,

where, vertical bars indicate the cardinality of the enclosed set Kp,q (n) . If q (n) = n, p (n) = 0, then the deferred density coincides with
natural density of K.

A real valued sequence x = (xk) is said to be deferred statistically convergent to L, if for each ε > 0

lim
n→∞

1

(q (n)− p (n))
|{p (n) < k ≤ q (n) : |xk − L| ≥ ε}| = 0.

In this case we write Sp,q − limxk = L. If q (n) = n, p (n) = 0, for all n ∈ N, then deferred statistical convergence coincides with usual
statistical convergence [30].

2 Main Results

In this section, we give some inclusion relations between statistical convergence, deferred strong Cesàro summability and deferred statistical
convergence in general metric spaces.

Definition 1 Let (X, d) be a metric space and {p (n)} and {q (n)} be two sequences as above. A metric valued sequence x = (xk) is said
to be DSd

p,q−convergent (or deferred d−statistically convergent) to a if there is a real number a ∈ X such that

lim
n→∞

1

(q (n)− p (n))
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| = 0.

In this case we write DSd
p,q − limxk = a or xk → a

(

DSd
p,q

)

. The set of all DSd
p,q−statistically convergent sequences will be denoted by

DSd
p,q . If q (n) = n and p (n) = 0, then deferred d−statistical convergence coincides d−statistical convergence.

Definition 2 Let (X, d) be a metric space and {p (n)} and {q (n)} be two sequences as above. A metric valued sequence x = (xk) is said
to be strongly Dwd

p,q−summable (or deferred strongly d−Cesàro summable) to a if there is a real number a ∈ X such that

lim
n→∞

1

(q (n)− p (n))

q(n)
∑

p(n)+1

d (xk, a) = 0.

In this case we write Dwd
p,q − limxk = a or xk → a

(

Dwd
p,q

)

. The set of all strongly Dwd
p,q−summable sequences will be denoted by

Dwd
p,q. If q (n) = n and p (n) = 0, for all n ∈ N, then deferred strong d−Cesàro summability coincides strong d−Cesàro summability.

Theorem 3 Let (X, d) be a linear metric space and x = (xk) , y = (yk) be metric valued sequences, then

(i) If DSd
p,q − limxk = x0 and DSd

p,q − lim yk = y0, then DSd
p,q − lim (xk + yk) = x0 + y0,

(ii)If DSd
p,q − limxk = x0 and c ∈ C, then DSd

p,q − lim (cxk) = cx0,

(iii) If DSd
p,q − limxk = x0, DSd

p,q − lim yk = y0 and x, y ∈ ℓ∞, then DSd
p,q − lim (xkyk) = x0y0.

Theorem 4 Dwd
p,q ⊆ DSd

p,q and the inclusion is strict.

Proof. First part of proof is easy, so omitted. To show the strictness of the inclusion, choose q (n) = n, p (n) = 0, for all n ∈ N and a = 0 and
define a sequence x = (xk) by

xk =

{ √
n
2 , k = n2

0, k 6= n2 .

Then for every ε > 0, we have

1

(q (n)− p (n))
|{p (n) < k ≤ q (n) : d (xk, 0) ≥ ε}| ≤ [

√
n]

n
→ 0, as n → ∞,

where d (x, y) = |x− y| , that is xk → 0
(

DSd
p,q

)

. At the same time, we get

1

(q (n)− p (n))

q(n)
∑

p(n)+1

d (xk, 0) ≤
[
√
n] [

√
n]

n
→ 1,

i.e. xk 9 0
(

Dwd
p,q

)

. Therefore, Dwd
p,q ⊆ DSd

p,q is strict.

190 c© CPOST 2019



Theorem 5 If lim infn
q(n)
p(n)

> 1, then Sd ⊂ DSd
p,q.

Proof. Suppose that lim infn
q(n)
p(n)

> 1; then there exists a ν > 0 such that q(n)
p(n)

≥ 1 + ν for sufficiently large n, which implies that

q (n)− p (n)

q (n)
≥ ν

1 + ν
=⇒ 1

q (n)
≥ ν

(1 + ν)

1

(q (n)− p (n))
.

If xk → a
(

Sd
)

, then for every ε > 0 and for sufficiently large n, we have

1

q (n)
|{k ≤ q (n) : d (xk, a) ≥ ε}| ≥ 1

q (n)
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}|

≥ ν

(1 + ν)

1

(q (n)− p (n))
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| .

This proves the proof.
"In the following theorem, by changing the conditions on the sequences (pn) and (qn) we give the same relation with Theorem 5."

Theorem 6 If limn→∞ inf
(q (n)− p (n))

n
> 0 and q (n) < n, then Sd ⊆ DSd

p,q.

Proof. Let limn→∞ inf
(q (n)− p (n))

n
> 0 and q (n) < n, then for each ε > 0 the inclusion

{k ≤ n : d (xk, a) ≥ ε} ⊃ {p (n) < k ≤ q (n) : d (xk, a) ≥ ε}

is satisfied and so we have the following inequality

1

n
|{k ≤ n : d (xk, a) ≥ ε}| ≥ 1

n
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}|

=
(q (n)− p (n))

n

1

(q (n)− p (n))
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| .

Therefore Sd ⊆ DSd
p,q.

Theorem 7 Let {p (n)} , {q (n)} ,
{

p′ (n)
}

and
{

q′ (n)
}

be four sequences of non-negative integers such that

p
′ (n) < p (n) < q (n) < q

′ (n) for all n ∈ N, (1)

then

(i) If

lim
n→∞

q (n)− p (n)

q′ (n)− p′ (n)
= m > 0 (2)

then DSd
p′,q′ ⊆ DSd

p,q,

(ii) If

lim
n→∞

q′ (n)− p′ (n)
q (n)− p (n)

= 1 (3)

then DSd
p,q ⊆ DSd

p′,q′ .

Proof. (i) Let (2) be satisfied. For given ε > 0 we have

{

p
′ (n) < k ≤ q

′ (n) : d (xk, a) ≥ ε
}

⊇ {p (n) < k ≤ q (n) : d (xk, a) ≥ ε} ,

and so

1

(q′ (n)− p′ (n))

∣

∣

{

p
′ (n) < k ≤ q

′ (n) : d (xk, a) ≥ ε
}
∣

∣

≥ (q (n)− p (n))

(q′ (n)− p′ (n))
1

(q (n)− p (n))
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}| .

Therefore DSd
p′,q′ ⊆ DSd

p,q.

(ii) Omitted.
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Theorem 8 Let {p (n)} , {q (n)} ,
{

p′ (n)
}

and
{

q′ (n)
}

be four sequences of non-negative integers defined as in (1) .

(i) If (2) holds then Dwd
p′,q′ ⊂ Dwd

p,q,

(ii) If (3) holds and x = (xk) be a bounded sequence, then Dwd
p,q ⊂ Dwd

p′,q′ .

Proof. Omitted.

Theorem 9 Let {p (n)} , {q (n)} ,
{

p′ (n)
}

and
{

q′ (n)
}

be four sequences of non-negative integers defined as in (1) . Then

(i) Let (2) holds, if a sequence is strongly Dwd
p′,q′−summable to a, then it is DSd

p,q−convergent to a,

(ii) Let (3) holds and x = (xk) be a bounded sequence, if a sequence is DSd
p,q−convergent to a then it is strongly Dwd

p′,q′−summable to
a.

Proof. (i) Omitted.

(ii) Suppose that DSd
p,q − limxk = a and (xk) ∈ ℓ∞. Then there exists some M > 0 such that d (xk, a) < M for all k, then for every

ε > 0 we may write

1

(q′ (n)− p′ (n))

q′(n)
∑

p′(n)+1

d (xk, a)

=
1

(q′ (n)− p′ (n))

q′(n)−p′(n)
∑

q(n)−p(n)+1

d (xk, a) +
1

(q′ (n)− p′ (n))

q(n)
∑

p(n)+1

d (xk, a)

≤
(

q′ (n)− p′ (n)
)

− (q (n)− p (n))

(q′ (n)− p′ (n))
M +

1

(q′ (n)− p′ (n))

q(n)
∑

p(n)+1

d (xk, a)

≤
(

q′ (n)− p′ (n)
q (n)− p (n)

− 1

)

M +
1

(q (n)− p (n))

q(n)
∑

p(n)+1
d(xk,a)≥ε

d (xk, a)

+
1

(q (n)− p (n))

q(n)
∑

p(n)+1
d(xk,a)<ε

d (xk, a)

≤
(

q′ (n)− p′ (n)
q (n)− p (n)

− 1

)

M +
M

(q (n)− p (n))
|{p (n) < k ≤ q (n) : d (xk, a) ≥ ε}|

+
q′ (n)− p′ (n)
q (n)− p (n)

ε.

This completes the proof.
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[7] M. Çınar, M. Karakaş, M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory Appl. 33(2013), 11.
[8] J. S. Connor, The Statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47–63.
[9] M. Et, A. Alotaibi, S. A. Mohiuddine, On (∆m, I)−statistical convergence of order α, The Scientific World Journal, 2014, 535419 DOI: 10.1155/2014/535419.

[10] M. Et, S. A. Mohiuddine, A. Alotaibi, On λ−statistical convergence and strongly λ−summable functions of order α, J. Inequal. Appl. 469 (2013), 8.
[11] M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings, Kuwait J. Sci. 41(3) (2014), 17–30.
[12] M. Et, R. Colak, Y. Altın, Strongly almost summable sequences of order α, Kuwait J. Sci. 41(2), (2014), 35–47.
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1 Introduction

By w, we denote the space of all complex (or real) sequences. If x ∈ w, then we simply write x = (xk) instead of x = (xk)
∞
k=0. We shall

write ℓ∞, c and c0 for the sequence spaces of all bounded, convergent and null sequences, respectively. Also by ℓ1 and ℓp; we denote the spaces
of all absolutely summable and p−absolutely summable sequences, respectively.

Let x ∈ w and S(x) denotes the set of all permutation of the elements xn, i.e. S(x) = {
(

xπ(n)

)

: π (n) is a permutation on N}. A sequence

space E is said to be symmetric if S(x) ⊂ E for all x ∈ E.

A sequence space E is said to be solid (normal) if (yn) ∈ E, whenever (xn) ∈ E and |yn| ≤ |xn| for all n ∈ N.

A sequence space E is said to be sequence algebra if x.y ∈ E, whenever x, y ∈ E.
A sequence space E is said to be perfect if E = Eαα.
It is well known that if E is perfect then E is normal.

A sequence spaceE with a linear topology is called aK−space provided each of the maps pi : E → C defined by pi (x) = xi is continuous
for each i ∈ N, where C denotes the complex field. A K−space E is called an FK−space provided E is a complete linear metric space. An
FK−space whose topology is normable is called a BK−space.

The notion of difference sequence spaces was introduced by Kızmaz [4] and it was generalized by Et and Çolak [5] for X = ℓ∞, c, c0 as
follows:

Let n be a non-negative integer, then

∆n(X) = {x = (xk) : (∆
nxk) ∈ X},

where ∆nxk = ∆n−1xk −∆n−1xk+1 for all k ∈ N and so ∆nxk =
∑n
v=0 (−1)v

(

n
v

)

xk+v. Et and Çolak [5] showed that the sequence
spaces ∆n(c0),∆

n(c) and ∆n(ℓ∞) are BK−spaces with the norm

‖x‖∆1 =

n
∑

i=1

|xi|+
∥

∥∆nx
∥

∥

∞
.

After then, using a new difference operator ∆nm, Tripathy et al. ([6], [7], [8]) have defined a new type difference sequence space ∆nm(X) such
as

∆nm(X) = {x = (xk) : (∆
n
mxk) ∈ X},

wherem,n ∈ N,∆0
mx = x,∆1

mx = (xk − xk+m) ,∆nmx = (∆nmxk) =
(

∆n−1
m xk −∆n−1

m xk+m

)

and so ∆nmxk =
∑n
v=0 (−1)n

(

n
v

)

xk+mv ,

and give some topological properties about this space and show that the spaces ∆nm(X) are BK−spaces by the norm

‖x‖∆2 =

mn
∑

i=1

|xi|+
∥

∥∆nmx
∥

∥

∞
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for X = ℓ∞, c and c0. Recently, difference sequences have been studied in ([9],[10],[11],[12],[13],[14],[15],[16],[17],[18]) and many others.

2 Main results

In this section, we introduce a new class m (φ, p) (∆nm) of sequences , establish some inclusion relations and some topological properties. The
obtained results are more general than those of Çolak and Et [19], Sargent [1] and Tripathy and Sen [2] .

The notation ϕs denotes the class of all subsets of N, those do not contain more than s elements. Let (φn) be a non-decreasing sequence of
positive numbers such that nφn+1 ≤ (n+ 1)φn for all n ∈ N. The class of all sequences (φn) is denoted by Φ.

The sequence spaces m (φ) and m (φ, p) were introduced by Sargent [1], Tripathy and Sen [2] as follows, respectively

m (φ) =







x = (xk) ∈ w : ‖x‖m(φ) = sup
s≥1, σ∈ϕs

1

φs

∑

k∈σ

|xk| <∞







,

m (φ, p) =











x = (xk) ∈ w : ‖x‖m(φ,p) = sup
s≥1, σ∈ϕs

1

φs





∑

k∈σ

|xk|
p





1
p

<∞











.

Let m,n ∈ N and 1 ≤ p <∞. Now we define the sequence space m (φ, p) (∆nm) as

m (φ, p)
(

∆nm
)

=







x = (xk) ∈ w : sup
s≥1, σ∈ϕs

1

φs

∑

k∈σ

∣

∣∆nmxk
∣

∣

p
<∞







.

From this definition it is clear thatm (φ, p)
(

∆0
m

)

= m (φ, p) andm (φ, 1)
(

∆0
m

)

= m (φ) . In case ofm = 1,we shall writem (φ, p) (∆n)

instead of m (φ, p) (∆nm) and in case of p = 1, we shall write m (φ) (∆nm) instead of m (φ, p) (∆nm) . The sequence space m (φ, p) (∆nm)
contains some unbounded sequences for m,n ≥ 1. For example, the sequence (xk) = (kn) is an element of m (φ, p) (∆nm) for m = 1, but is
not an element of ℓ∞.

Theorem 1. The space m (φ, p) (∆nm) is a Banach space with the norm

‖x‖∆n
m

=

r
∑

i=1

|xi|+ sup
s≥1, σ∈ϕs

1

φs





∑

k∈σ

∣

∣∆nmxk
∣

∣

p





1
p

, 1 ≤ p <∞, (1)

where r = mn for m ≥ 1, n ≥ 1.

Proof. It is a routine verification that m (φ, p) (∆nm) is a normed linear space normed by (1) for 1 ≤ p <∞. Let
(

xl
)

be a Cauchy sequence

in m (φ, p) (∆nm) , where xl = (xlk)
∞
k=1 =

(

xl1, x
l
2, ...

)

∈ m (φ, p) (∆nm) , for each l ∈ N. Then given ε > 0 there exists n0 ∈ N such that

∥

∥

∥x
l − xt

∥

∥

∥

∆n
m

=

r
∑

i=1

∣

∣

∣x
l
i − xti

∣

∣

∣+ sup
s≥1, σ∈ϕs

1

φs





∑

k∈σ

∣

∣

∣∆
n
m

(

xlk − xtk

)∣

∣

∣

p





1
p

< ε (2)

for all l, t > n0. Hence we obtain
∣

∣

∣x
l
k − xtk

∣

∣

∣→ 0 as l, t→ ∞, for each k ∈ N.

Therefore (xlk)
∞
l=1 =

(

x1k, x
2
k, ...

)

is a Cauchy sequence in C. Since C is complete, it is convergent, that is,

lim
l
xlk = xk

for each k ∈ N. Using these infinite limits x1, x2, x3, ... let us define the sequence x = (xk) . We should show that x ∈ m (φ, p) (∆nm) and
(

xl
)

→ x. Taking limit as t→ ∞ in (2) , we get

∥

∥

∥x
l − x

∥

∥

∥

∆n
m

=

r
∑

i=1

∣

∣

∣x
l
i − xi

∣

∣

∣+ sup
s≥1, σ∈ϕs

1

φs





∑

k∈σ

∣

∣

∣∆
n
m

(

xlk − xk

)∣

∣

∣

p





1
p

< ε (3)
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for all l ≥ n0. This shows that
(

xl
)

→ x as l → ∞. From (3) we also have

sup
s≥1, σ∈ϕs

1

φs





∑

k∈σ

∣

∣

∣∆
n
m

(

xlk − xk

)∣

∣

∣

p





1
p

< ε

for all l ≥ n0. Hence xl − x =
(

xlk − xk

)

k
∈ m (φ, p) (∆nm) . Since xl − x, xl ∈ m (φ, p) (∆nm) and m (φ, p) (∆nm) is a linear space, we

have x = xl −
(

xl − x
)

∈ m (φ, p) (∆nm) . Therefore m (φ, p) (∆nm) is complete.

Theorem 2. The space m (φ, p) (∆nm) is a BK−space.

Proof. Omitted.

Theorem 3. [2] i) The space m (φ, p) is a symmetric space,
ii) The space m (φ, p) is a normal space.

Theorem 4. The sequence space m (φ, p) (∆nm) is not sequence algebra, is not solid and is not symmetric, for m,n, p ≥ 1.

Proof. For the proof of the Theorem, consider the following examples:

Example 1. It is obvious that, if x =
(

kn−2
)

, y =
(

kn−2
)

and m = 1, then x, y ∈ m (φ, p) (∆nm) , but x.y /∈ m (φ, p) (∆nm). Hence

m (φ, p) (∆nm) is not a sequence algebra.

Example 2. It is obvious that, if x =
(

kn−1
)

and m = 1, then x ∈ m (φ, p) (∆nm) , but (αkxk) /∈ m (φ, p) (∆nm) for (αk) =
(

(−1)k
)

.

Hence m (φ, p) (∆nm) is not solid.

Example 3. Let us consider the sequence x =
(

kn−1
)

. Then x ∈ m (φ, p) (∆nm) for m = 1. Let (yk) be a rearrangement of (xk) which is

defined as follows:

yk = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, ...} .

Then y /∈ m (φ, p) (∆nm) . Hence m (φ, p) (∆nm) is not symmetric.

The following result is a consequence of Theorem 4.

Corollary 1. The sequence space m (φ, p) (∆nm) is not perfect, for m,n, p ≥ 1.

Theorem 5. m (φ) (∆nm) ⊂ m (φ, p) (∆nm) for each m,n, p ≥ 1.

Proof. Omitted.

Theorem 6. m (φ, p) (∆nm) ⊂ m (ψ, p) (∆nm) if and only if sup
s≥1

(

φs

ψs

)

<∞.

Proof. Suppose that sup
s≥1

(

φs

ψs

)

<∞. Then φs ≤ Kψs for every s and for some positive number K. If x ∈ m (φ, p) (∆nm) , then,

sup
s≥1, σ∈ϕs

1

φs





∑

k∈σ

∣

∣∆nmxk
∣

∣

p





1
p

<∞.

Now, we have

sup
s≥1, σ∈ϕs

1

ψs





∑

k∈σ

∣

∣∆nmxk
∣

∣

p





1
p
%

< sup
s≥1

(K) sup
s≥1 k∈ϕs

1

φs





∑

k∈σ

∣

∣∆nmxk
∣

∣

p





1
p

<∞.

Hence x ∈ m (ψ, p) (∆nm) .

Conversely let m (φ, p) (∆nm) ⊂ m (ψ, p) (∆nm) and suppose that sups≥1

(

φs

ψs

)

= ∞. Then, there exists a sequence (si) of natural

numbers such that lim
i

(

φsi

ψsi

)

= ∞. Then, for x ∈ m (φ, p) (∆nm) we have

sup
s≥1, σ∈ϕs

1

ψs





∑

k∈σ

∣

∣∆nmxk
∣

∣

p





1
p

≥ sup
i≥1

(

φsi
ψsi

)

sup
i≥1, σ∈ϕsi

1

φs





∑

k∈σ

∣

∣∆nmxk
∣

∣

p





1
p

= ∞.

Therefore x /∈ m (ψ, p) (∆nm). This contradict to m (φ, p) (∆nm) ⊂ m (ψ, p) (∆nm) . Hence sups≥1

(

φs

ψs

)

<∞.
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From Theorem 6, we get the following result.

Corollary 2. m (φ, p) (∆nm) = m (ψ, p) (∆nm) if and only if 0 < infs≥1

(

φs

ψs

)

≤ sups≥1

(

φs

ψs

)

<∞.

Theorem 7. m (φ, p)
(

∆n−1
m

)

⊂ m (φ, p) (∆nm) and the inclusion is strict.

Proof.Let x ∈ m (φ, p)
(

∆n−1
m

)

. It is well known that, for 1 ≤ p <∞, |a+ b|p ≤ 2p
(

|a|p + |b|p
)

. Hence, for 1 ≤ p <∞, we have

1

φs

∑

k∈σ

∣

∣∆nmxk
∣

∣

p
≤ 2p





1

φs

∑

k∈σ

∣

∣

∣∆
n−1
m xk

∣

∣

∣

p
+

1

φs

∑

k∈σ

∣

∣

∣∆
n−1
m xk+1

∣

∣

∣

p





Hence x ∈ m (φ, p) (∆nm) .

To show the inclusion is strict consider the following example.

Example 4. Let φn = 1, for all n ∈ N, m = 1 and x =
(

kn−1
)

, then x ∈ ℓp (∆
n
m) \ℓp

(

∆n−1
m

)

.

Theorem 8. We have ℓp (∆
n
m) ⊂ m (φ, p) (∆nm) ⊂ ℓ∞ (∆nm) .

Proof. Since m (φ, p) (∆nm) = ℓp (∆
n
m) for φn = 1, for all n ∈ N, then ℓp (∆

n
m) ⊂ m (φ, p) (∆nm) . Now assume that x ∈ m (φ, p) (∆nm) .

Then we have

sup
s≥1, σ∈ϕs

1

φs





∑

k∈σ

∣

∣∆nmxk
∣

∣

p





1
p

<∞ and so
∣

∣∆nmxk
∣

∣ < Kφ1,

for all k ∈ N and for some positive number K. Thus, x ∈ ℓ∞ (∆nm) .

Theorem 9. If 0 < p < q, then m (φ, p) (∆nm) ⊂ m (φ, q) (∆nm) .

Proof. Proof follows from the following inequality

(

n
∑

k=1

|xk|
q

)
1
q

≤

(

n
∑

k=1

|xk|
p

)
1
p

, (0 < p < q) .
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1 Introduction

Let w be the set of all sequences of real or complex numbers and ℓ∞, c and c0 be respectively the Banach spaces of bounded, convergent and
null sequences x = (xk) with the usual norm ‖x‖

∞
= sup |xk| , where k ∈ N = {1, 2, . . .} , the set of positive integers. Also by bs, cs, ℓ1

and ℓp; we denote the spaces of all bounded, convergent, absolutely summable and p−absolutely summable sequences, respectively.

A sequence space X with a linear topology is called a K−space provided each of the maps pi : X → C defined by pi (x) = xi is continuous
for each i ∈ N, where C denotes the complex field. A K−space X is called an FK−space provided X is a complete linear metric space. An
FK−space whose topology is normable is called a BK−space. We say that an FK−space X has AK (or has the AK property), if (ek) (
the sequence of unit vectors) is a Schauder bases for X.

The notion of difference sequence spaces was introduced by Kızmaz [? ] and the notion was generalized by Et and Çolak [? ]. Later on Et
and Nuray [? ] generalized these sequence spaces to the following sequence spaces:

Let X be any sequence space and let m be a non-negative integer. Then,

∆m (X) =
{

x = (xk) :
(

∆mxk
)

∈ X
}

∆0x = (xk) , ∆
mx =

(

∆m−1xk −∆m−1xk+1

)

and so ∆mxk =
m
∑

i=0
(−1)i

(

m
i

)

xk+i. is a Banach space normed by

‖x‖∆ =

m
∑

i=1

|xi|+
∥

∥∆mxk
∥

∥

∞
.

If x ∈X (∆m) then there exists one and only one y = (yk) ∈ X such that

xk =

k−m
∑

i=1

(−1)m
(

k − i− 1

m− 1

)

yi =
k
∑

i=1

(−1)m
(

k +m− i− 1

m− 1

)

yi−m, y1−m = y2−m = · · · = y0 = 0

for sufficiently large k, for instance k > 2m. Recently, a large amount of work has been carried out by many mathematicians regarding various
generalizations of sequence spaces. For a detailed account of sequence spaces one may refer to ([2-13]).

In 1932, Agnew [? ] introduced the concept of deferred Cesaro mean of real (or complex) valued sequences x = (xk) defined by

(Dp,qx)n =
1

(q (n)− p (n))

q(n)
∑

k=p(n)+1

xk, n = 1, 2, 3, . . . ,

where p = {p (n)} and q = {q (n)} are the sequences of non-negative integers satisfying

p (n) < q (n) and lim
n→∞

q (n) = ∞. (1)
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2 Topological Properties of X (∆m)

In this section we prove some results involving the sequence spaces Cd
0 (∆

m), Cd
1 (∆

m) and Cd
∞(∆m).

Definition 1. Let m be a fixed non-negative integer and let {p (n)} and {q (n)} be two sequences of non-negative integers satisfying the
condition (1). We define the following sequence spaces:

Cd
0 (∆

m) =







x = (xk) : lim
n

1

(q (n)− p (n))

q(n)
∑

k=p(n)+1

∆mxk = 0







,

Cd
1 (∆

m) =







x = (xk) : lim
n

1

(q (n)− p (n))

q(n)
∑

k=p(n)+1

(

∆mxk − L
)

= 0







,

Cd
∞(∆m) =







x = (xk) : sup
n





1

(q (n)− p (n))

q(n)
∑

k=p(n)+1

∆mxk



 < ∞







.

The above sequence spaces contain some unbounded sequences for m ≥ 1, for example let x = (km) , then x ∈ Cd
∞(∆m), but x /∈ ℓ∞.

Theorem 1. The sequence spaces Cd
0 (∆

m), Cd
1 (∆

m) and Cd
∞(∆m) are Banach spaces normed by

‖x‖∆ =

m
∑

i=1

|xi|+ sup
n

1

(q (n)− p (n))

∣

∣

∣

∣

∣

∣

q(n)
∑

k=p(n)+1

∆mxk

∣

∣

∣

∣

∣

∣

.

Proof: Proof follows from Theorem ?? of Et and Nuray [? ]. �

Theorem 2. X(∆m−1) ⊂ X(∆m) and the inclusion is strict for X = Cd
0 , C

d
1 and Cd

∞.

Proof: The inclusions part of the proof are esay. To see that the inclusions are strict, let m = 2 and q (n) = n, p (n) = 0 and consider a

sequence defined by x =
(

k2
)

, then x ∈ Cd
1 (∆

2), but x /∈ Cd
1 (∆) ( If x =

(

k2
)

, then
(

∆2xk

)

= (2, 2, 2, ...). �

Theorem 3. The inclusions Cd
0 (∆

m) ⊂ Cd
1 (∆

m) ⊂ Cd
∞(∆m) are strict.

Proof: First inclusion is esay. Second inclusion follows from the following inequality

1

(q (n)− p (n))

∣

∣

∣

∣

∣

∣

q(n)
∑

k=p(n)+1

∆mxk

∣

∣

∣

∣

∣

∣

≤
1

(q (n)− p (n))

∣

∣

∣

∣

∣

∣

q(n)
∑

k=p(n)+1

∆mxk − L

∣

∣

∣

∣

∣

∣

+
1

(q (n)− p (n))

∣

∣

∣

∣

∣

∣

q(n)
∑

k=p(n)+1

L

∣

∣

∣

∣

∣

∣

≤
1

(q (n)− p (n))

∣

∣

∣

∣

∣

∣

q(n)
∑

k=p(n)+1

∆mxk − L

∣

∣

∣

∣

∣

∣

+ L

For strict the inclusion, observe that x = (1, 0, 1, 0, ...) ∈ Cd
∞(∆m), but x /∈ Cd

1 (∆
m), ( If x = (1, 0, 1, 0, ...) , then (∆mxk) =

(

(−1)m+1 2m+1
)

). �

Theorem 4. Cd
1 (∆

m) is a closed subspace of Cd
∞(∆m).
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Proof: Proof follows from Theorem ?? of Et and Nuray [? ]. �

Theorem 5. Cd
1 (∆

m) is a nowhere dense subset of Cd
∞(∆m).

Proof: Proof follows from the fact that Cd
1 (∆

m) is a proper and complete subspace of Cd
∞(∆m). �

Theorem 6. Cd
∞(∆m) is not separable, in general.

Proof: Suppose that Cd
∞(∆m) is separable for some m ≥ 1, for example let m = 2 and q (n) = n, p (n) = 0. In this case C∞(∆2) is

separable. In Theorem ??, Bhardwaj et al. [? ] show that C∞(∆2) is not separable. So Cd
∞(∆m) is not separable, in general. �

Theorem 7. Cd
∞(∆m) does not have Schauder basis. separable, in general.

Proof: Proof follows from the fact that if a normed space has a Schauder basis, then it is separable. �

Theorem 8. Cd
1 (∆

m) is separable.

Proof: Proof follows from Theorem ?? of Et and Nuray [? ]. �
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1 Introduction

The remarkably widely investigated subject of fractional and discrete fractional calculus has gained importance and popularity during the past
three decades or so, due chiefly to its demonstrated applications in numerous seemingly diverse fields of science and engineering [1]-[4]. The
analogous theory for discrete fractional analysis was initiated and properties of the theory of fractional differences and sums were established.
Recently, many articles related to discrete fractional analysis have been published [5]-[9]. The fractional nabla operator have been applied to
various singular ordinary and partial differential equations such as the second-order linear ordinary differential equation of hypergeometric type
[10], the Bessel equation [11], the Hermite equation [12], the non- fuchsian differential equation [13], the hydrogen atom equation [14].

The aim of this article is to obtain new dfs of the singular differential equation by means of fractional calculus operator.

2 Preliminary and properties

Here we only give a very short introduction to the basic definitions in discrete fractional calculus. For more on the subject we refer the reader
to [5, 13].

Let ζ ∈ R
+, n ∈ Z, such that n− 1 ≤ ζ < n. The ζth− order fractional sum of F is defined as

∇−ζ
c F (t) =

1

Γ (ζ)

t
∑

τ=c

(t− ρ (τ))ζ−1F (τ) , (1)

where t ∈ Nα = {α, α+ 1, α+ 2, ...} , α ∈ R, ρ (t) = t− 1 is the backward jump operator.
The rising factorial power and rising function is given by

tn = t (t+ 1) (t+ 2) ... (t+ n− 1) , n ∈ N, t0 = 1,

tζ =
Γ (t+ ζ)

Γ (t)
, ζ ∈ R, t ∈ R\ {...,−2,−1, 0} , 0ζ = 0. (2)

Note that

∇
(

tζ
)

= ζtζ−1, (3)

where ∇φ (t) = φ (t)− φ (σ (t)) = φ (t)− φ (t− 1) .
The ζth− order fractional difference of F is defined by

∇ζ
cF (t) = ∇n

[

∇ζ
c

−(n−ζ)
F (t)

]

= ∇n

[

1

Γ (n− ζ)

t
∑

τ=c

(t− σ (τ))n−ζ−1F (τ)

]

, (4)
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where F is defined on Nα.
Lemma 1. (Linearity). Let F and G be analytic and single-valued functions. Then

[c1F (t) + c2G (t)]ζ = c1Fζ (t) + c2Gζ (t) , (5)

where c1 and c2 are constants, ζ ∈ R; t ∈ C.
Lemma 2. (Index law). Let φ be an analytic and single-valued function. The following equality holds

(

Fζ (t)
)

η
= Fζ+η (t) = (Fη (t))ζ

(

Fζ (t) 6= 0; Fη (t) 6= 0; ζ, η ∈ R; t ∈ C
)

. (6)

Lemma 3. (Leibniz Rule). Suppose that F and G are analytic and single-valued functions. Then

∇ζ
0 (FG) (t) =

t
∑

n=0

(

ζ

n

)

[

∇ζ−n
0 F (t− n)

]

[

∇nG (t)
]

, ζ ∈ R; t ∈ C, (7)

where ∇nG (t) = Gn (t) is the ordinary derivative of G of order n ∈ N0.
Definition 4. µ shift operator is given by

µnF (t) = F (t− n) (8)

where n ∈ N.

3 Main results

Theorem 1. Let F ∈ {F : 0 6= |Fυ| < ∞; υ ∈ R} . Then the following homogeneous ordinary differential equation:

s (1− s) F2 + [(α− 2γ) s+ γ + σ] F1 + γ (α− γ + 1) F = 0, (s ∈ C\ {0, 1}) , (9)

has particular solutions of the forms:

F = k
{

s−(υτ+γ+σ)(1− s)−(υτ+γ−α−σ)
}

−(1+υ)
, (10)

and

F = ks1−(γ+σ)
{

s−(υτ−γ−σ+2)(1− s)−(υτ+γ−α−σ)
}

−(1+υ)
(11)

where Fn = dnF/dsn (n = 0, 1, 2) , F0 = F = F (s) , α 6= 0, γ, σ are given constants, k is an arbitrary constant and τ is a shift operator
[15].
Proof. (i) When we operate ∇υ to the both sides of (9) , we readily obtain;

∇υ [F2s (1− s)] +∇υ {F1 [(α− 2γ) s+ γ + σ]}+∇υ [Fγ (α− γ + 1)] = 0. (12)

Using (5)− (7) we have

∇υ [F2s (1− s)] = F2+υs (1− s) + F1+υυτ (1− 2s)− Fυυ (υ − 1) τ2 (13)

and

∇υ {F1 [(α− 2γ) s+ γ + σ]} = F1+υ [(α− 2γ) s+ γ + σ] + Fυυτ (α− 2γ) (14)

where τ is a shift operatÃűr. By substituting (13) , (14) into the (12) , we obtain

F2+υs (1− s) + F1+υ [υτ (1− 2s) + (α− 2γ) s+ γ + σ]

+Fυ

[

υ (1− υ) τ2 + υτ (α− 2γ) + γ (α− γ + 1)
]

=0. (15)

Choose υ such that

υ (1− υ) τ2 + υτ (α− 2γ) + γ (α− γ + 1) =0,

υ =

[

(τ + α− 2γ)±

√

(τ + α− 2γ)2 + 4γ (α− γ + 1)

]

/2τ. (16)

From Eq. (16), one can easily see that

[

(τ + α− 2γ)2≥4γ (−α+ γ − 1)
]

,

we have then

F2+υs (1− s) + F1+υ [υτ (1− 2s) + (α− 2γ) s+ γ + σ] = 0, (17)

202 c© CPOST 2019



from (15) and (16) .
Next, writing:

F1+υ = f (s)
[

F = f
−(1+υ)

]

, (18)

we have

f1 + f

[

υτ (1− 2s) + (α− 2γ) s+ γ + σ

s (1− s)

]

= 0, (19)

from eqs. (17) and (18) . A particular solution of linear ordinary differential equation (19) :

f = ks−(υτ+γ+σ)(1− s)−(υτ+γ−α−σ). (20)

Therefore, we obtain (10) from (18) and (20) .
(ii) Set

F = sηΦ, Φ = Φ(s) . (21)

The first and second derivatives of (21) are acquired as follows:

F1 = ηsη−1Φ+ sηΦ1 (22)

and

F2 = η (η − 1) sη−2Φ+ 2ηsη−1Φ1 + sηΦ2. (23)

Substitute (21)− (23) into (9) , we obtain

s (1− s) Φ2 + [(1− s) 2η + (α− 2γ) s+ γ + σ] Φ1

+
[((

η2 − η
)

+ (γ + σ) η
)

s−1 −
(

η2 − η
)

+ (α− 2γ) η + γ (α− γ + 1)
]

Φ=0. (24)

Choose η such that

(

η2 − η
)

+ (γ + σ) η = 0,

that is

η = 0, η = 1− (γ + σ) .

In the case η = 0, we have the same results as i.

Let η = 1− (γ + σ) . From (21) and (24) , we have

F = s1−(γ+σ)Φ (25)

and

s (1− s) Φ2 + [(2σ + α− 2) s− (γ + σ − 2)] Φ1 + [(1− σ) (σ + α)] Φ = 0 (26)

respectively.
Applying the discrete operator ∇υ to both sides of (26) , we obtain

Φ2+υs (1− s) + Φ1+υ [υτ (1− 2s) + (2σ + α− 2) s− (γ + σ − 2)]

+Φυ

[

υ (1− υ) τ2 + υτ (2σ + α− 2) + (1− σ) (α+ σ)
]

=0. (27)

Choose υ such that

υ (1− υ) τ2 + υτ (2σ + α− 2) + (1− σ) (α+ σ) =0,

υ =

[

(τ + 2σ + α− 2)±

√

(τ + 2σ + α− 2)2 − 4 (σ − 1) (α+ σ)

]

/2τ. (28)

From Eq. (28), one can get

[

(τ + 2σ + α− 2)2 ≥ 4 (σ − 1) (α+ σ)
]

,

then we have

Φ2+υs (1− s) + Φ1+υ [υτ (1− 2s) + (2σ + α− 2) s− (γ + σ − 2)] = 0, (29)

from (27) and (28).
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Next, by writing

Φ1+υ = g (s) ,
[

Φ = g
−(1+υ)

]

, (30)

we have

g1 + g

[

υτ (1− 2s) + (2σ + α− 2) s− (γ + σ − 2)

s (1− s)

]

= 0, (31)

from (29) and (30) . A particular solution to this linear differential equation is given by

g = ks−(υτ−γ−σ+2)(1− s)−(υτ+γ−α−σ). (32)

Thus we obtain the solution (11) from (25), (30) and (32).

4 Conclusion

In this article, we applied the nabla operator of discrete fractional analysis to the second order linear differential equations. We obtained the
discrete fractional solutions of these equations via this new operator method.
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1 Introduction

The concept of instantaneous invariants was first given by Bottema to determine the geometric properties of a moving rigid body at a given
moment. Therefore, the geometric and kinematic properties of planar motions in Euclidean space are investigated according to these invariants
[1] and this method has also guided many studies in the field of kinematics [2–6]. Later, the instantaneous invariants were called B-invariants
(Bottema-invariants) by Veldkamp [7]. Besides, Veldkamp found special geometrical ground curves such as the inflection curve, the circling-
point curve and the centering-point curve with the help of B-invariants, as well as the intersection points of these curves, Ball and Burmester
points [8, 9]. The special geometrical ground curves in Minkowski (Lorentz) plane and their intersection points were analyzed by recent
studies [10, 11], however, the positions of these curves relative to each other have not been studied yet. Therefore, it is aimed to present the
geometric interpretation of curvature circles relative to each other throughout one-parameter planar motion in Minkowski plane based on the
above-mentioned studies.

2 Preliminaries

The Minkowski plane L is the plane R2 endowed with the Lorentzian scalar product given by 〈x, y〉 = x1y1 − x2y2, where x = (x1, x2)
and y = (y1, y2). The norm of a vector is defined by ‖x‖ =

√

|〈x, x〉|. An arbitrary vector x ∈ L is called timelike if 〈x, x〉 < 0, spacelike
if 〈x, x〉 > 0 or x = 0, lightlike if 〈x, x〉 = 0 whereby x 6= 0. Two vectors x and y are said to be orthogonal if 〈x, y〉 = 0. Let Lm be a
Minkowski plane in continuous motion relative to a fixed Minkowski plane Lf . Then one-parameter planar motion Lm with respect to Lf is
represented by

X = x cosh θ + y sinh θ + a
Y = x sinh θ + y cosh θ + b

(1)

with respect to Cartesian frames of reference xoy and XOY in Lm and Lf , respectively. Here a, b and θ are functions depending on time t.
The position corresponding to ϕ = 0 of Lm is called initial position. The values for the initial position of the nth (n = 0, 1, 2, . . .) derivative
of a function f of ϕ with respect to ϕ is denoted by fn.

The Minkowski plane Lm is chosen to rotate with a constant angular velocity relative to the fixed Minkowski plane Lf , that is, θ = t. The
canonical relative system of motion is constructed by

a0 = b0 = a1 = b1 = a2 = 0 (2)

and the instantaneous invariants an and bn characterize completely the infinitesimal properties of motion of Minkowski planes up the n-th
order as

X = x, X ′ = y, X ′′ = x, X ′′′ = y + a3,

Y = y, Y ′ = x, Y ′′ = y + b2, Y ′′′ = x+ b3
(3)

for t = 0 [10, 11].

3 The curvature circles in Minkowski plane

In this section, let’s first recall the definitions of curvature circles in Minkowski plane.
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Definition 1. The locus of the points of moving Minkowski plane Lm, whose curvature of the trajectory is constant at initial position, is called
circling-point curve in Minkowski plane and denoted by cp.

The equation of the circling-point curve cp in Minkowski plane is

(

x
2 − y

2
)

(a3x− b3y) + 3x
(

x
2 − y

2 + y
)

= 0, (x, y) 6= (0, 0) (4)

where (x, y) 6= (0, 0) or x 6= ∓y, [10, 11].

Definition 2. The locus of the curvature centers of the points of moving Minkowski plane Lm is called centering-point curve in Minkowski
plane and denoted by cp̃.

The equation of the centering-point curve cp̃ in Minkowski plane is

(

x
2 − y

2
)

(a3x− b3y) + 3xy = 0 (5)

where (x, y) 6= (0, 0) or x 6= ∓y, [10, 11].
Now, let us examine the positions of circling-point and centering-point curves relative to each other in Minkowski plane. The curve cp given

by equation (4) and the curve cp̃ given by equation (5) can be arranged as

(

x2 − y2
)(

(a3+3)
3 x− b3

3 y
)

+ xy = 0

and

(

x2 − y2
)(

a3

3 x− b3
3 y

)

+ xy = 0,

respectively.
On the other hand, a third-order cubic curve γ in Minkowski plane can be given by

(αx+ βy)
(

x
2 − y

2
)

+ xy = 0. (6)

Let γ be an irreducible curve, this means that αβ 6= 0.

If α = a3+3
3 and β = − b3

3 are satisfied, then the curve given by the equation (6) corresponds to the circling-point curve cp according to the
canonical system in Minkowski plane.

Moreover, if there are the relations α = a3

3 and β = − b3
3 , then the curve given by the equation (6) corresponds to the centering-point curve

cp̃ according to the canonical system in Minkowski plane.

Theorem 1. The parametric equation of the curve γ is given by

x =
u

(u2 − 1) (α+ βu)
, y =

u2

(u2 − 1) (α+ βu)
(7)

where u 6= ±1.

Proof: If we substitute y = ux, such that u 6= ±1, in the equation (6), then we get x3 (α+ βu)
(

1− u2
)

+ ux2 = 0. Afterwards, some direct

calculations completes the proof. �

Specifically, the parametric value −α
β corresponds to the infinity point of the curve γ. We can examine the reducible states of this curve in

the following corollaries:

Corollary 1. In Minkowski plane, the parametric equation of the curvature circle Γ0, which is tangent to the curve γ along the axis y, is
represented by

x =
1

β (u2 − 1)
, y =

u

β (u2 − 1)
. (8)

Proof: If α = 0 is taken in the equation (7) then the proof is obvious. �

Corollary 2. In Minkowski plane, the parametric equation of the curvature circle Γ1, which is tangent to the curve γ along the axis x, is given
by

x =
u

α (u2 − 1)
, y =

u2

α (u2 − 1)
. (9)

Proof: Taking β = 0 in the equation (7) completes the proof. �
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From the equation (8), the Cartesian equation of the curvature circle Γ0 in Minkowski plane is represented as

β
(

x
2 − y

2
)

+ x = 0. (10)

Similarly, by taking the equation (9) the Cartesian equation of the curvature circle Γ1 in Minkowski plane is given by

α
(

x
2 − y

2
)

+ y = 0. (11)

Let the points Ai (i = 1, 2, 3) be on the curve γ. In that case, these points are given as

Ai =

(

ui
(ui2 − 1) (α+ βui)

,
ui

2

(ui2 − 1) (α+ βui)

)

, (i = 1, 2, 3) .

Theorem 2. The points Ai (i = 1, 2, 3) with parametric value ui (i = 1, 2, 3) are on the same line does not pass through the origin if and
only if

u3u2u1 =
α

β
. (12)

Proof: The points Ai are on the same line that does not pass through the origin if and only if the slopes of the lines A1A2 and A2A3 are equal
the each other. Thus, there is the relationship

−u3
2

(1−u3
2)(α+βu3)

+ u2
2

(1−u2
2)(α+βu2)

−u3

(1−u3
2)(α+βu3)

+ u2

(1−u2
2)(α+βu2)

=

−u2
2

(1−u2
2)(α+βu2)

+ u1
2

(1−u1
2)(α+βu1)

−u2

(1−u2
2)(α+βu2)

+ u1

(1−u1
2)(α+βu1)

.

In this manner, we get

β
2
u1u2

2
u3 + βα (u2 (u1u3 − 1))− α

2
.

If this equation is factored, we find

(βu1u2u3 − α) = 0 or (βu2 + α) = 0.

So, we can write

u1u2u3 = α
β or u2 = −α

β .

Here u2 6= −α
β must be satisfied since the parametric value −α

β corresponds to the infinity point of the curve γ. �

If one of these three points is at the infinity, i.e., u∗3 = −α
β , this means that this line is parallel to the asymptotes of the curve γ and cuts the

curve at two points with the parameters u∗1 and u∗2. Then the correlation between the parameters u∗1 and u∗2 is given by

u
∗

1u
∗

2 = −1. (13)

If the points A1 and A2 of the curve γ are represented with respect to the parameters u1 and u2, then the equation of the line A1A2 is found as

(α (u2 + u1) + βu1u2 (u1u2 + 1))x− (α (u1u2 + 1) + βu1u2 (u2 + u1)) y + u1u2 = 0. (14)

After the formation this equation we have

α ((u1 + u2)x− (u1u2 + 1) y)− βu1u2

(

− (u1u2 + 1)x+ (u2 + u1) y −
1

β

)

= 0. (15)

If we denote the slopes of the lines d1 and d2 given by the equations

(u1 + u2)x− (u1u2 + 1) y = 0 (16)

and

−β (u1u2 + 1)x+ β (u2 + u1) y − 1 = 0 (17)

by md1
and md2

, respectively, we see that these lines are perpendicular in Minkowski plane since there is the relationship md1
md2

= 1.
Hence, we can interpret that the line given by the equation (14) passes through the intersection of the lines d1 and d2 which are perpendicular
to each other in the Minkowski plane.

Also, considering the equation of distance from a point to a line in the Minkowski plane we find the equation of the distance from origin to
the line A1A2 as

d =
|u1u2|

√

∣

∣

(

−α2 + β2u21u
2
2

) (

u21 − 1
) (

u22 − 1
)∣

∣

(18)

where ui 6= ±1, i = 1, 2.
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Let A3 be a point with the parameter −u1 on the curve γ. From the equation (18), the lines A2A1 and A2A3 have equal distance from
origin, that is, the lines A2A1 and A2A3 are symmetrical according to the point A2.

Now let’s give the formation of the circles Γ0 and Γ1. Since the geometric location of the curvature centers of the curve cp is the centering-
point curve cp̃, the curvature center of a point with the parameter u of the curve cp coincides with the same parameter point of the curve cp̃,
[11]. Let A1 and A2 be two points on the curve cp. Also, let α1 and α2 be the centers of curvature of these points. If the points A1 and A2

are given by the parameters u1 and u2 , respectively, the equation of line A1A2 is found by writing α = a3+3
3 , β = − b3

3 in the equation (14)

and the equation of line α1α2 is found by writing α = a3

3 , β = − b3
3 in the equation (14).

Thus, we get the equations of A1A2 and α1α2 lines as

((3 + a3) (u1 + u2)− b3u1u2 (1 + u1u2))x− ((3 + a3) (1 + u1u2)− b3u1u2 (u1 + u2)) y − 3u1u2 = 0

and

(a3 (u1 + u2)− b3u1u2 (1 + u1u2))x− (a3 (1 + u1u2)− b3u1u2 (u1 + u2)) y − 3u1u2 = 0,

respectively. Here, the lines A1A2 and α1α2 pass through the intersection of the lines given by the equations (16) and (17), which are
perpendicular to each other in the Minkowski plane. Here, the equation (16) indicates a line and this line passes through the pole point P and
the intersection point Q of the lines α1α2 and A1A2. The equation (17) refers to the equation of the line perpendicular to the line PQ passing
through the point Q.

In case of α = 0, by substituting the parameter equation (18) into the equation (17), for Γ0 we get

u
2 − (u2 + u1)u+ u1u2 = 0. (19)

Corollary 3. u1 and u2 (the roots of the equation (19)) give the parametric expression of the intersection points of circle Γ0 with the line
given by the equation (17).

In addition, these points are on the PA1 and PA2 lines. Similarly, the above statements can be investigated for the curvature circle Γ1 in
Minkowski plane. For this, let’s first examine the line passing through the pole point P perpendicular to the line PQ. This line is given by the
following equation taking into consideration the equation (16) such that the product of the slopes of these lines is 1 and these lines pass from
pole P :

(u1 + u2) y − (u1u2 + 1)x = 0.

If the above equation and (14) are considered together, the intersection point (is denoted by R ) of this line with line A1A2 is on the line below

α ((u1 + u2)x− (u1u2 + 1) y) + u1u2 = 0. (20)

So the line passing through the point R is parallel to the line PQ. By substituting the parameter equation of circle Γ1 into the equation (20),
we get

u
2 − (u2 + u1)u+ u1u2 = 0. (21)

The equation (21) is the previously obtained equation (19).

Corollary 4. u1 and u2 (the roots of the equation (21)) give the parametric expression of the intersection point of the circle Γ1 and the line
given by equation (20).
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Şüheda Güray1,∗

1Baskent University, Ankara, Turkey, ORCID: 0000-0002-9562-1461

* Corresponding Author E-mail: sguray@baskent.edu.tr

Abstract: The aim of this study is to calculate and examine the distribution of the academic success of the students of the Faculty

of Education academic years between 2014-2019 the courses of statistics and probability with lorenz curve and Gini coefficient.

In this regard, Tomul, E [? ] in Educational Inequality in Turkey: Gini to Evaluate According to the index, Erdem, E., Çoban, S.

[? ] ’provinces in Turkey in Measurement Based Education Inequality and Economic Development Relationship with Difference:

Education Gini Explained with coefficients.

Keywords: Academic achievement, Gini coefficient, Lorenz diagram.

1 The importance of the study

The Gini coefficient, developed by the Italian Statistician Corrado Gini (1912), is also used to determine the inequality in economic literature [?
] because it shows simplicity and distribution with a single coefficient [? ] and the Gini Coefficient, which is a tool used to measure inequality,
in different disciplines including health and education. [? ].

Gini coefficient of 0 means absolute equality and a value of 1 means absolute inequality. Therefore, decreasing and increasing the coefficient
over time indicates the decrease and increase of inequality. In this context; What is the success inequality of Gini Coefficient and how it is
distributed according to the lessons and years?

The main questions that the study seeks to answer are: What does the Gini Coefficient Achievement Distribution of Academic Achievement
of Elementary Mathematics Teacher Statistics Probability course mean between the academic years of 2014-2019?

The empirical data used in the study may vary in academic terms. The sample of the study was; the academic years between 2014-2019
consists of the number of students. The number of samples between 2014-2019 is the academic achievement data of 112 students. The sample
distribution by year is 2014; 36 students, 2015; 16, students, 2016; 7 students, 2017; 6 students, 2018; 28 students, 2019; 19 students

Classes 2014 2015 2016 2017 2018 2019
Statistics and Probability 36 16 7 6 28 19

The Lorenz curve examines the relationship between a certain cumulative share of national income and the cumulative share of those who
obtain it. The Lorenz curve is conceptually similar to the percentage slicing method; it relates the cumulative share of income to the cumulative
share of individuals, rather than simply determining their share of income. The Lorenz curve is a graphical form that shows how much the
percentage income groups receive from the income distribution [? ]. However; the usefulness of the Lorenz curve helps us to present the
inequality in income distribution by a single number, without needing to tell us how much the percentage of individual groups receive.

Gini Coefficient is a non-negative number less than 1. By calculating the area between the Lorenz curve and the 45-degree line giving full
equality, a numerical value ranging from 0 to 1, namely the “Gini Coefficient”, is found. Where the income distribution is most fair, A = 0. The
closer the Gini Coefficient is to 0, the more fair the income distribution is. Family structure of the society, population structure, educational
level, tax situation, the structure of the financial sector or industry and development indicators are some factors that may affect the income
distribution in a country. In general, the Gini Coefficient, i.e. the income distribution, is interpreted as sufficient after 0.40 and worse after 0.50
[? ].

In this study, Lorenz curve and the Gini coefficient previously used in an unused area, in the area of measurement and the evaluation of the
final stage of evaluation. Between the academic years of 2014 and 2019, the Faculty of Education Mathematics Education in Primary Education
teacher candidates Statistics Probability courses of academic achievement was evaluated as data notes.
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Fig. 1: Lorentz calculation chart of income and academic achievement

The Gini Coefficient Calculation of the Student Success of the year 2014 in Excel

Number of percentage of cumulative
Success fi(student Cumulative cumulative Si(average average cumulative grade
Points Frequency) Students students grade) grade average percentage A
0 0 0 0 0 0 0 0
4≤<17 2 2 0,06 10,5 10,5 0,03 0,000841751
17≤<30 2 4 0,11 23,5 34 0,10 0,00356742
30≤<43 4 8 0,22 36,5 70,5 0,203463203 0,01675485
43≤<56 11 19 0,53 49,5 120 0,346320346 0,083994709
56≤<69 7 26 0,72 62,5 182,5 0,526695527 0,084876543
69≤<82 7 33 0,92 75,5 258 0,744588745 0,123597082
82≤<95 3 36 1,00 88,5 346,5 1 0,072691198

0,386323553

B 0,386323553
A 0,113676447

A+B 0,5
GÍNÍ=A/(A+B)=0,227352894

In the results of the study, the academic achievement obtained with the Gini coefficient approach of the Elementary Mathematics Teacher
Statistics Probability courses were distributed in the most fair year by year 2014 academic year, and in 2015 it moved away from the fair
distribution (gini coefficient; 0.45). , 19 and 0.15 academic achievement (Gini Coefficient in general, i.e. the income distribution, up to 0.40
sufficient, 0.50 are interpreted as bad after we see).

The Geogbra Calculation of 2014

Fig. 2: Trapezoidal areas below the curve(A), A area (0,5- B);B=0,5-0,1136447=0,3863553 Gini=A/A+B = 0,1136447/(0,1136447+0,38635
53)=0,227352894

The Gini coefficient of 0.22 is that the elementary mathematics teachers’ academic achievement is distributed to students fairly or 36 students
share the achievement fairly. If the Gini coefficient is 0.45, it is suggested that the prospective mathematics teacher candidates did not distribute
their academic achievement fairly in the courses of Statistics and Probability or 16 students could not share the achievement fairly, but they fit
the expected situation in the other years, and further evaluations can be made by following the success of other courses in those years.
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1 Introduction

Fractional calculus deal with derivatives and integrals of arbitrary orders, their applications seem in different areas of science such as physics,
applied mathematics, chemistry, engineering [1–4]. Mathematical models have significant applications in physical and technical processing
phenomena [5–9]. The solutions of the differential equations relevant to many interesting special functions in mathematics, physics, and
engineering, such as the hypergeometric series [10], the zeta function [11], the continued fraction [12], the power series [13], the Fourier
analysis [14]. The discrete fractional Nabla calculus operator have been applied to various singular ordinary equations such as the second-order
linear ordinary differential equation of hypergeometric type [15], the modified Bessel differential equation [16], the radial equation of the
fractional Schrödinger equation [17, 18], the Gauss equation [19], the non-Fuchsian differential equation [20], the Chebyshev’s equation [21].
The aim of this study is to apply the Nabla calculus operator to a well-known ordinary differential equation k-hypergeometric equation [22],
which is expressed by

kr (1− kr)
d2w

dr2
+ [α− (k + ρ+ σ) kr]

dw

dr
− ρσw = v (r) , (1)

where k ∈ R
+, α, ρ, σ ∈ R

+and v (r) is holomorphic in an interval D ⊆ C. If k = 1 and the function v (r) be vanishes identically, then Eq.
(1) reduce to a linear homogenous hypergeometric ordinary differential equation (ODE) as follows

r (1− r)
d2w

dr2
+ [α− (1 + ρ+ σ) r]

dw

dr
− ρσw = 0. (2)

Many researchers have been studied the hypergeometric differential equation by different schemes, such as Kummer, presented the concurrent
of hypergeometric equation in physical models [23]. Campos, finalize that this kind of equation contains complex calculations, and also the
singularities of the differential equation are orderly. [24].

2 Preliminaries

Here, we have some imperative knowledge about the discrete fractional calculus theory and also some necessary notes, N is the set of natural
numbers including zero, and Z is the set of integers. The Nb = {b, b+ 1, b+ 2, ...} for b ∈ Z. Let f(t) and g(t) are the real valued functions
defined on N

+
0 . For more details see [15–21].

Definition 1. The rising factorial power is defined by

zn̄ = t (z + 1) (z + 2) ... (z + n− 1) , n ∈ N, z0̄ = 1.

Given α be a real number, then zᾱ is expressed by

t
ᾱ =

Γ (t+ α)

Γ (t)
, (3)

where z ∈ R\{...,−2,−1, 0}, and 0ᾱ = 0.
Let us symbolize that

∇
(

z
α
)

= αz
α−1

, (4)
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here ∇u (z) = u (z)− u (z − 1) . For n = 2, 3, . . . describe ∇n by ∇n = ∇∇n−1.

Definition 2. The αth order fractional sum of f is defined by

∇−α
b f (z) =

z
∑

s=b

[s− δ (z)]α−1

Γ (α)
f (s) , (5)

where z ∈ Nb, δ (z) = z − 1 is backward jump operator.
Theorem 1. Let f (z) and g (z) : N+

0 → R, α, β > 0, and h, v are constants, then

∇−α∇−β
f (z) = ∇−(α+β)

f (z) = ∇−β∇−α
f (z) (6)

∇α [hf (z) + vg (z)] = h∇α
f (z) + v∇α

g (z) (7)

∇∇−α
f (z) = ∇−(α−1)

f (z) (8)

∇−α∇f (z) = ∇(1−α)
f (z)−

(

z + α− 2

z − 1

)

f (0) (9)

Lemma 1. For all α > 0, αth order fractional difference of the product fg is expressed by

∇α
0 (fg) (z) =

z
∑

n=0

(

α

n

)

[

∇
α−n

0 f (z − n)
]

[

∇n
g (z)

]

. (10)

Lemma 2. If the function f (t) is single valued and analytic, then

[fα (z)]β = fα+β (z) =
[

fβ (z)
]

α
,
[

fα (z) 6= 0, fβ (z) 6= 0, α, β ∈ R, z ∈ N
]

. (11)

3 Main results

Theorem 2. Let w ∈ {w : 0 6= |wϑ| < ∞, ϑ ∈ R}, and then the homogeneous k-hypergeometric equation is given by

w2kr (1− kr) + w1 [α− (k + ρ+ σ) kr]− wρσ = 0, (12)

has a particular solution of the form

w = h

{

(r)
−( 1

k
(ϑθk+α))

(1− kr)
−( 1

k
(ϑθk+ρ+σ−α+k))

}

−(ϑ+1)

, r 6=

{

0,
1

k

}

. (13)

where wm (r) = dmw
drm

, (m = 0, 1, 2) , w0 = w (r), and α, ρ, σ are given constants as well as h is a constant of integration.
Proof. When we applied the discrete fractional calculus operator to both sides of Eq. (12), we have

∇ϑ
w2kr (1− kr) +∇ϑ

w1 [α− (k + ρ+ σ) kr]−∇ϑ (wρσ) = 0, (14)

using Eq. (8), and Eq. (9) together with Eq. (14), one may obtain

wϑ+2kr (1− kr) + wϑ+1 [ϑθk (1− 2kr) + α− (k + ρ+ σ) kr]

+wϑ

[

−ϑ (ϑ− 1) θ2k2 + ϑθ (− (k + ρ+ σ) k)− ρσ
]

= 0,
(15)

where θ is a shift operator.
We choose ϑ such that

ϑ (ϑ− 1) θ2k2 + ϑθ
(

k2 + kρ+ kσ
)

+ ρσ = 0,
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ϑ =

[

θk − (k + ρ+ σ)±

√

((k + ρ+ σ)− θk)2 − 4ρσ

]

2θk
, (16)

and let (k + ρ+ σ − θk)2 ≥ 4ρσ, then we have

wϑ+2kr (1− kr) + wϑ+1 [ϑθk (1− 2kr) + α− (k + ρ+ σ) kr] = 0, (17)

and set

wϑ+1 = W = W (r) ,
(

w = W
−(ϑ+1)

)

. (18)

Therefore

W1 +W

[

ϑθk (1− 2kr) + α− (k + ρ+ σ) kr

kr (1− kr)

]

= 0, (19)

by using Eq. (17), and Eq. (18), then the solution of the ODE Eq. (19) has the form

W = h (r)
−( 1

k
(ϑθk+α))

(1− kr)
−( 1

k
(ϑθk+ρ+σ−α+k))

. (20)

4 Conclusion

In the present study, we applied the discrete fractional Nabla calculus operator to the homogeneous k-hypergeometric differential equation. As
a result, we obtained a new exact discrete fractional solution.
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