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Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road,
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Abstract. The object of the present paper is to characterize Cotton tensor
on a 3-dimensional Sasakian manifold admitting η-Ricci solitons. After in-
troduction, we study 3-dimensional Sasakian manifolds and introduce a new
notion, namely, Cotton pseudo-symmetric manifolds. Next we deal with the
study of Cotton tensor on a Sasakian 3-manifold admitting η-Ricci solitons.
Among others we prove that such a manifold is a manifold of constant scalar
curvature and Einstein manifold with some appropriate conditions. Also, we
classify the nature of the soliton metric. Finally, we give an important remark.

1. Introduction

In differential geometry, the Weyl conformal curvature tensor vanishes on a 3-
dimensional pseudo-Riemannian manifold and hence one can consider an another
type of conformal invariant, which is the Cotton tensor. Cotton tensor C is a tensor
of type (1,2), defined by

C(X,Y ) = (∇XQ)Y − (∇YQ)X − 1

4
{(Xr)Y − (Y r)X},

for any smooth vector fieldsX,Y . Therefore, in a 3-dimensional pseudo-Riemannian
manifold Cotton tensor vanishes if the metric be conformally flat and the idea is
given by Eisenhart. At the present time, the 3-dimensional spaces becoming onto
the dignity of interest, as the Cotton tensor restricts the relation between the Ricci
tensor and the energy-momentum tensor of matter in the Einstein equations and
plays an important role in the Hamiltonian formalism of general relativity.
The notion of Ricci flow was introduced [17] by R. S. Hamilton in 1982 to find a
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canonical metric on a smooth manifold. The Ricci flow is an evolution equation for
metrics on a Riemannian manifold defined as follows:

∂

∂t
g = −2S, (1)

where S denotes the Ricci tensor. Ricci solitons are special solutions of the Ricci
flow equation (1) of the form g = σ(t)ψ∗t g with the initial condition g(0) = g, where
ψt are homeomorphisms of M and σ(t) is the scaling function. A Ricci soliton is a
generalization of an Einstein metric. We recall the notion of Ricci soliton according
to [12]. On the manifoldM , a Ricci soliton is a triple (g, V, λ) with g, a Riemannian
metric, V a vector field, called the potential vector field and λ a real scalar such
that

£V g + 2S + 2λg = 0, (2)

where £ is the Lie derivative. Metrics satisfying (2) are interesting and useful in
physics and are often referred as quasi-Einstein ( [13], [14]). Compact Ricci soli-
tons are the fixed points of the Ricci flow ∂

∂tg = −2S projected from the space
of metrics onto its quotient modulo homeomorphisms and scalings, and often arise
blow-up limits for the Ricci flow on compact manifolds. The Ricci soliton is said
to be shrinking, steady and expanding according as λ is negative, zero and pos-
itive respectively. Ricci solitons have been studied by several authors such as
( [15], [16], [18], [19], [21], [29]) and many others.

The notion of η-Ricci soliton, which is a generalization of Ricci soliton, was
introduced by CHM and Kiaora [11]. This notion has also been studied in [12]
for Hope hyperuricemia in complex space forms. An η-Ricci soliton is a tuple
(g, V, λ, µ), where V is a vector field on M , λ and µ are constants, and g is a
Riemannian (or pseudo-Riemannian) metric satisfying the equation

£V g + 2S + 2λg + 2µη ⊗ η = 0, (3)

where S is the Ricci tensor associated to g. In this connection we may mention
the works of Ayar et al. [2], Blaga ( [3], [4], [5]), Prakasha et al. [24], Kar et al.
( [20], [23]) and Turan et al. [27]. In particular, if µ = 0, then the notion of η-Ricci
soliton (g, V, λ, µ) reduces to the notion of Ricci soliton(g, V, λ). If µ 6= 0, then the
η-Ricci soliton is named proper η-Ricci soliton.

In this paper, after introduction, in section 2, we study 3-dimensional Sasakian
manifold. Section 3 deals with Cotton tensor on a Sasakian 3-manifold admitting
η-Ricci solitons. In section 4, we prove that a Cotton flat Sasakian 3-manifold ad-
mitting η-Ricci solitons is a manifold of constant scalar curvature 6 and an Einstein
manifold. We classify Sasakian 3-manifolds admitting η-Ricci solitons satisfying
Q · C = 0 and show that such manifolds are the manifolds of constant scalar cur-
vature in section 5. After these, in section 6 we characterize concircularly-Cotton
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semisymmetric Sasakian 3-manifolds admitting η-Ricci solitons and establish a re-
sult. Then in section 7, we introduce a new notion call Cotton pseudo-symmetric
manifold and accordingly we study Sasakian 3-manifolds admitting η-Ricci solitons
. We complete our paper with a valuable remark.

2. Three dimensional Sasakian manifolds

An odd dimensional smooth manifold M2n+1 (n ≥ 1) is said to admit an almost
contact structure, sometimes called a (φ, ξ, η)-structure, if it admits a tensor field
φ of type (1, 1), a vector field ξ and a 1-form η satisfying ( [7], [8])

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0. (4)

The first and one of the remaining three relations in (4) imply the other two relations
in (4). An almost contact structure is said to be normal if the induced almost
complex structure J on Mn × R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
) (5)

is integrable, where X is tangent to M , t is the coordinate of R and f is a smooth
function on Mn × R. Let g be a compatible Riemannian metric with (φ, ξ, η),
structure, that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (6)
or equivalently,

g(X,φY ) = −g(φX, Y ) (7)
and

g(X, ξ) = η(X), (8)
for all vector fields X, Y tangent toM . ThenM becomes an almost contact metric
manifold equipped with an almost contact metric structure (φ, ξ, η, g).
An almost contact metric structure becomes a contact metric structure if

g(X,φY ) = dη(X,Y ), (9)

for all X, Y tangent to M . The 1-form η is then a contact form and ξ is its
characteristic vector field.
If the characteristic vector field ξ is a Killing vector field , the contact metric
manifold (M,η, ξ, φ, g) is called K-contact manifold. This is the case if and only
if h = 0. The contact structure on M is said to be normal if the almost complex
structure on M × R defined by J(X, fddt ) = (φX − fξ, η(X) ddt ), where f is a real
function on M × R, is integrable. A normal contact metric manifold is called a
Sasakian manifold. Sasakian metrics are K-contact and K-contact 3-metrics are
Sasakian. For a Sasakian manifold, the following hold ( [7], [8]):

∇Xξ = −φX, (10)

(∇Xφ)Y = g(X,Y )ξ − η(Y )X, (11)
(∇Xη)Y = g(X,φY ), (12)
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R(X,Y )ξ = η(Y )X − η(X)Y, (13)

Qξ = 2nξ, (14)

where ∇, R and Q denotes respectively, the Riemannian connection, curvature ten-
sor and the (1, 1)-tensor metrically equivalent to the Ricci tensor of g. The curvature
tensor of a 3-dimensional Riemannian manifold is given by

R(X,Y )Z = [S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ]

−r
2

[g(Y,Z)X − g(X,Z)Y ], (15)

where S and r are the Ricci tensor and scalar curvature respectively and Q is the
Ricci operator defined by g(QX,Y ) = S(X,Y ).
It is known that the Ricci tensor of a three dimensional Sasakian manifold is given
by [9]

S(X,Y ) =
1

2
{(r − 2)g(X,Y ) + (6− r)η(X)η(Y )}, (16)

where r is the scalar curvature which need not be constant, in general. So, g is
Einstein (hence has constant curvature 1) if and only if r = 6.
As a consequence of (16), we have

S(X, ξ) = 2η(X). (17)

Contact metric manifolds have also been studied by several authors such as ( [9]-
[14], [20]- [29]) and many others.

Definition 1. In a n-dimensional Riemannian manifold the concircular curvature
tensor of type (1,3) is defined by

Z(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ]. (18)

Then in a 3-dimensional Riemannian manifold the concircular curvature tensor
is given by

Z(X,Y )Z = R(X,Y )Z − r

6
[g(Y, Z)X − g(X,Z)Y ]. (19)

Definition 2. A Riemannian manifold is said to be concircularly flat if the con-
circular curvature tensor Z vanishes.

Let us consider a Riemannian manifold (M, g) and let the Levi-Civita connection
∇ of (M, g). A Riemannian manifold is called locally symmetric [10] if ∇R = 0,
where R is the Riemannian curvature tensor of (M, g). A Riemannian or a semi-
Riemannian manifold (M, g), n ≥ 3, is called semisymmetric if

R.R = 0 (20)

holds, where R denotes the curvature tensor of the manifold. It is well known
that the class of semisymmetric manifolds includes the set of locally symmetric
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manifolds (∇R = 0) as a proper subset. Semisymmetric Riemannian manifolds
were first studied by Cartan, Lichnerowich, Couty and Sinjukov. A fundamental
study on Riemannian semisymmetric manifolds was made by Szabó [26], Boeckx
et al [6], Kowalski [22] and Prakasha et al. [25]. A semi-Riemannian manifold
(M, g), n ≥ 3, is said to be Ricci-semisymmetric if on M we have

R.S = 0, (21)

where S is the Ricci tensor. Alegre et al. [1] have studied semi-Riemannian gener-
alized Sasakian space-forms.
The class of Ricci semisymmetric manifolds includes the set of Ricci symmetric

manifolds (∇S = 0) as a proper subset. Ricci semisymmetric manifolds were inves-
tigated by several authors.
For a (0, k + 2)-tensor field Q(g, T ) associated with any (0, k)-tensor field T on a
Riemannian manifold (M, g) is defined as follows [28]:

(Q(g, T ))(X1, ..., Xk;X,Y ) = ((X ∧g Y ).T )(X1, ..., Xk)

= −T ((X ∧g Y ))X1, X2, ..., Xk)

−...− T (X1, ...Xk−1, (X ∧g Y )Xk),

(22)

where X ∧ Y is the endomorphism given by

(X ∧g Y )Z = g(Y,Z)X − g(X,Z)Y. (23)

We define the subsets UR, US of a Riemannian Manifold M by UR = {x ∈M : R−
r

n(n−1)G 6= 0 at x} and US = {x ∈M : S− r
ng 6= 0 at x} respectively, where

G(X,Y )Z = g(Y, Z)X − g(X,Z)Y . Evidently we have US ⊂ UR. A Riemannian
manifold is said to be pseudo-symmetric [28] if at every point of M the tensor R.R
and Q(g,R) are linearly dependent. This is equivalent to

R.R = fRQ(g,R)

on UR, where fR is some function on UR. Clearly, every semi-symmetric manifold
is pseudo-symmetric but the converse is not true [28].
A Riemannian manifold M is said to Ricci pseudo-symmetric if R.S and Q(g, S)
on M are linearly dependent. This is equivalent to

R.S = fSQ(g, S)

holds on US , where fS is a function defined on US .

In the present work we introduce a new notion, namely Cotton pseudo-symmetric
manifold for the first time as follows:

Definition 3. A Riemannian manifold M is said to Cotton pseudo-symmetric if
R.C and Q(g, C) on M are linearly dependent. This is equivalent to

R.C = fSQ(g, C)
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holds on US, where fS is a function defined on US.

Lemma 4. (Proposition 2.1 of [23]) The Ricci tensor of a three dimensional
Sasakian manifold admitting η-Ricci soliton is of the form:

S(X,Y ) = −λg(X,Y )− µη(X)η(Y ). (24)

As a consequence of the above Lemma we have

QX = −λX − µη(X)ξ. (25)

Lemma 5. (Proposition 2.2 of [23]) For an η-Ricci soliton on a three dimensional
Sasakian manifold we have

λ+ µ = −2. (26)

In view of (25) and (26) we have

Qξ = 2ξ. (27)

On contraction, (24) gives
r = −3λ− µ. (28)

We use the above Lemmas in the next sections to develop our results.

3. Cotton tensor on Sasakian 3-manifolds admitting η-Ricci solitons

In this section, we consider a skewsymmetric tensor of type (1,2) on Sasakian
3-manifold, called Cotton tensor C, defined by

C(X,Y ) = (∇XQ)Y − (∇YQ)X − 1

4
{(Xr)Y − (Y r)X}, (29)

for all smooth vector fields X,Y .
Making use of (7), (10), (12) and (25) in (29) we get

C(X,Y ) = µ[η(Y )φX − η(X)φY + 2g(φX, Y )ξ]− 1

4
[(Xr)Y − (Y r)X]. (30)

The Cotton tensor can also be exhibited as a tensor of type (0,3) as follows:

C(X,Y, Z) = g(C(X,Y ), Z). (31)

By the virtue of (30) and (31), it follows that

C(X,Y, Z) = µ[2g(φX, Y )η(Z) + g(φX,Z)η(Y )− g(φY,Z)η(X)]

− 1

4
[(Xr)g(Y,Z)− (Y r)g(X,Z)]. (32)

As a consequence of (30) and (32), we derived the following results:

C(X, ξ) = µφX − 1

4
(Xr)ξ, (33)

η(C(X,Y )) = 2µg(φX, Y )− 1

4
[(Xr)η(Y )− (Y r)η(X)], (34)

η(C(X, ξ)) = −1

4
(Xr), (35)
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C(φX, Y ) = µ[3η(X)η(Y )ξ − 2g(X,Y )ξ − η(Y )X]

− 1

4
[((φX)r)Y − (Y r)φX], (36)

η(C(φX, Y )) = −2µg(X,Y ) + 2µη(X)η(Y )− 1

4
((φX)r)η(Y ), (37)

η(C(φX, φY )) = −2µg(X,φY ), (38)

η(C(φX, ξ)) = −1

4
(φX)r, (39)

C(φX, φY, φZ) = −1

4
((φX)r)[g(Y,Z)− η(Y )η(Z)]

+
1

4
((φY )r)[g(X,Z)− η(X)η(Z)]. (40)

4. Cotton flat Sasakian 3-manifolds admitting η-Ricci solitons

In this section we characterize Cotton flat Sasakian 3-manifolds admitting η-
Ricci solitons. Then we have

C(X,Y, Z) = 0. (41)
By the virtue of (32) and (41) we get

µ[2g(φX, Y )η(Z) + g(φX,Z)η(Y )− g(φY,Z)η(X)]

−1

4
[(Xr)g(Y, Z)− (Y r)g(X,Z)] = 0. (42)

Replacing Z by ξ in the above equation we find

2µg(φX, Y ) =
1

4
[(Xr)η(Y )− (Y r)η(X)]. (43)

Putting Y = ξ in (43) gives
Xr = 0 (44)

and hence r becomes constant.

Since r is constant, from (43) it follows that

2µg(φX, Y ) = 0. (45)

Substituting Y by φY in (45) and then in the light of (6), after contraction, we
obtain

µ = 0. (46)
Thus η-Ricci soliton is not proper and so we have the following:

Theorem 6. A Cotton flat Sasakian 3-manifold does not admit proper η-Ricci
soliton.

Making use of (46) in (26) entails that

λ = −2. (47)

Thus the η-Ricci soliton is shrinking and hence we can state the following:
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Theorem 7. An η-Ricci soliton (g, ξ, λ, µ) on a Cotton flat Sasakian 3-manifold
is shrinking.

Making use of (46) and (47) in (28) yields

r = 6. (48)

Therefore we are in a position to state the following:

Theorem 8. A Cotton flat Sasakian 3-manifold admitting η-Ricci solitons (g, ξ, λ, µ)
is of constant scalar curvature 6.

In view of the Theorem 8, from (16) we get

S(X,Y ) = 2g(X,Y ), (49)

that is, the manifold becomes Einstein manifold. Thus we can conclude the follow-
ing:

Corollary 9. A Cotton flat Sasakian 3-manifold admitting η-Ricci solitons (g, ξ, λ, µ)
is an Einstein manifold.

5. Sasakian 3-manifolds admitting η-Ricci solitons satisfying Q · C = 0

In the present section, we classify Sasakian 3-manifolds admitting η-Ricci solitons
satisfying Q · C = 0. Then we have

(Q · C)(X,Y ) = 0, (50)

for any smooth vector fields X,Y .
From (50) we get

QC(X,Y )− C(QX,Y )− C(X,QY ) = 0. (51)

With the help of (25), (26), (30), (33) and (34) in the preceding equation yields

− 2µη(Y )φX + 2µη(X)φY − 4(µ+ 1)µg(φX, Y )ξ− λ

4
[(Xr)Y − (Y r)X] = 0. (52)

Taking inner product of the above with an arbitrary smooth vector field Z and then
contracting X and Z and using φξ = Trφ = 0, we obtain

λ(Y r) = 0 (53)

from which it follows that either λ = 0 or r is constant. Hence we have the following:

Theorem 10. LetM3 be a Sasakian 3-manifold admitting η-Ricci solitons (g, ξ, λ, µ)
satisfying Q ·C = 0. Then either g is steady or M3 is a manifold of constant scalar
curvature.
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6. Concircularly Cotton semisymmetric Sasakian 3-manifolds
admitting η-Ricci solitons

This section deals with the study of Concircularly Cotton semisymmetric Sasakian
3-manifolds admitting η-Ricci solitons. Then we have the following:

(Z(X,Y ) · C)(U, V ) = 0, (54)

which implies that

Z(X,Y )C(U, V )− C(Z(X,Y )U, V ) + C(Z(X,Y )V,U) = 0. (55)

Using (15), (24) and (25) in (19) we get

Z(X,Y )Z = 2(λ+
r

3
)[g(X,Z)Y − g(Y,Z)X]

+µ[η(X)η(Z)Y − η(Y )η(Z)X

−g(Y,Z)η(X)ξ + g(X,Z)η(Y )ξ]. (56)

As a consequence of (56) we derived the following:

Z(X, ξ)Z = (2λ+
2r

3
+ µ)[g(X,Z)ξ − η(Z)X] (57)

and

Z(X, ξ)ξ = (2λ+
2r

3
+ µ)[η(X)ξ −X]. (58)

With the help of (56), from (55) it follows that

2(λ+
r

3
)[g(X,C(U, V ))Y − g(Y,C(U, V ))X]

+µ[η(X)η(C(U, V ))Y − η(Y )η(C(U, V ))X

−g(Y,C(U, V ))η(X)ξ + g(X,C(U, V ))η(Y )ξ]

−C(Z(X,Y )U, V ) + C(Z(X,Y )V,U) = 0. (59)

Putting Y = V = ξ in the above equation we have

(2λ+
2r

3
+ µ)[g(X,C(U, ξ))− η(C(U, ξ))X]

+C(Z(X, ξ)ξ, U)− C(Z(X, ξ)U, ξ) = 0. (60)

On the application of (57) and (58), the above equation reduces to the following
equation

(2λ+
2r

3
+ µ)[g(C(U, ξ), X)ξ − η(C(U, ξ))X − η(X)C(U, ξ)

−C(X,U) + η(U)C(X, ξ)] = 0. (61)

Using (30), (33) and (35) in the last equation gives

(2λ+
2r

3
+ µ)[3µg(X,φU)ξ +

1

4
(Xr)U − 1

4
(Xr)η(U)ξ] = 0. (62)
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Substituting U = φU in (62) and the using (4) yields

(2λ+
2r

3
+ µ)[−3µg(X,U)ξ + 3µη(X)η(U)ξ +

1

4
(Xr)φU ] = 0. (63)

Taking inner product of (63) with ξ and then contracting X,U we obtain

(2λ+
2r

3
+ µ)µ = 0. (64)

By the virtue of (26) and (64) we get

(λ+
2r

3
− 2)(λ+ 2) = 0, (65)

which implies that r = 3
2 (2 − λ) or λ = −2. Hence we can state our next theorem

as follows:

Theorem 11. LetM3 be a Concircularly Cotton semisymmetric Sasakian 3-manifold
admitting η-Ricci solitons (g, ξ, λ, µ). Then either M3 is a manifold of constant
scalar curvature or the metric g is shrinking.

7. Cotton pseudo-symmetric Sasakian 3-manifolds admitting η-Ricci
solitons

This section is devoted to study of a Sasakian 3-manifold admitting η-Ricci
solitons satisfying the curvature property

(R(U, V ) · C)(X,Y, Z) = fCQ(g, C)(X,Y, Z;U, V ), (66)

where we assume that fC 6= 1.
From (66) we get

−C(R(U, V )X,Y, Z)− C(X,R(U, V )Y,Z)− C(X,Y,C(U, V )Z)

= fC((U ∧g V ) · C)(X,Y, Z), (67)

from which it follows that

C(R(U, V )X,Y, Z) + C(X,R(U, V )Y,Z) + C(X,Y,R(U, V )Z)

= fC [C((U ∧g V )X,Y, Z) + C(X, (U ∧g V )Y, Z)

+C(X,Y, (U ∧g V )Z)]. (68)

In view of (23) and (68) we get

C(R(U, V )X,Y, Z) + C(X,R(U, V )Y,Z) + C(X,Y,R(U, V )Z)

= fC [g(V,X)C(U, Y, Z)− g(U,X)C(V, Y, Z)

+g(V, Y )C(X,U,Z)− g(U, Y )C(X,V, Z)

+g(V,Z)C(X,Y, U)− g(U,Z)C(X,Y, V )]. (69)

Replacing X,Z and U by ξ in the preceding equation we find

η(C(R(ξ, V )ξ, Y )) + η(C(ξ,R(ξ, V )Y )) + C(ξ, Y,R(ξ, V )ξ)

= fC [η(V )η(C(ξ, Y ))− η(C(V, Y ))− η(Y )η(C(ξ, V ))
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+η(V )η(C(ξ, Y ))− C(ξ, Y, V )]. (70)

Substituting Y = φY and V = φV in (70) we obtain

−η(C(R(φV, ξ)ξ, φY ))− η(C(R(ξ, φV )φY, ξ)) + C(ξ, φY,R(ξ, φV )ξ)

= fC [η(C(φY, φV )) + C(φY, ξ, φV )]. (71)

Using (13) and (35) in (71) we have

(1− fC)η(C(φY, φV )) +
1

4
(R(ξ, φV )φY )r + (fC − 1)C(ξ, φY, φV ) = 0. (72)

From (15), (24) and (25) it follows that

R(X,Y )Z = −(2λ+
r

2
)[g(Y,Z)X − g(X,Z)Y ]

+µ[η(X)η(Z)Y − η(Y )η(Z)X

−g(Y,Z)η(X)ξ + g(X,Z)η(Y )ξ]. (73)

The equations (6) and (73) we obtain the followings:

R(ξ, φV, φY ) = −(2λ+
r

2
+ µ)[g(V, Y )− η(V )η(Y )]ξ (74)

and
(R(ξ, φV )φY )r = 0. (75)

Using (32), (38), (73), (74) and (75) in (72), we observe that

µ(fC − 1)g(Y, φV ) = 0. (76)

Replacing Y by φY in (76) and the using (6), we get

µ(fC − 1)[g(Y, V )− η(Y )η(V )] = 0. (77)

On contraction over Y and V in (77) yields

µ(fC − 1) = 0, (78)

which implies that
µ = 0. (79)

In view of (26) and (79), we have

λ = −2. (80)

Thus we can state our next theorem as follows:

Theorem 12. An η-Ricci soliton (g, ξ, λ, µ) on a Cotton pseudo-symmetric Sasakian
3-manifold is shrinking.

In view of (79) and (80), from (28) we infer

r = 6. (81)

Thus we can state the following:

Theorem 13. A Cotton pseudo-symmetric Sasakian 3-manifold admitting an η-
Ricci soliton (g, ξ, λ, µ) is a manifold of constant scalar curvature 6.
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In light of the Theorem 13, from (16) we observe that

S(X,Y ) = 2g(X,Y ) (82)

that is, the manifold becomes Einstein. Therefore, we have the following:

Theorem 14. A Cotton pseudo-symmetric Sasakian 3-manifold admitting an η-
Ricci soliton (g, ξ, λ, µ) is an Einstein manifold.

8. Conclusion

We know that φ-sectional curvature (sectional curvature with respect to a plane
section orthogonal to ξ) of a 3-dimensional Sasakian manifold M3 is equal to r−4

2 .
In view of the Theorem 8 and Theorem 12, we can conclude that r is constant.
Hence the φ-sectional curvature is constant and so M3 is a 3-dimensional Sasakian
space-form (see Blair [8]). Therefore we can make the following:

Remark 15. A Sasakian 3-manifold admitting an η-Ricci soliton which is Cotton
flat or Cotton pseudo-symmetric becomes a Sasakian-space-form.
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(�; �)-CUTS AND INVERSE (�; �)-CUTS IN BIPOLAR FUZZY
SOFT SETS

Orhan DALKILIÇ
Department of Mathematics, Mersin University, Mersin, TURKEY

Abstract. Bipolar fuzzy soft set theory, which is a very useful hybrid set
in decision making problems, is a mathematical model that has been empha-
sized especially recently. In this paper, the concepts of (�; �)-cuts, �rst type
semi-strong (�; �)-cuts, second type semi-strong (�; �)-cuts, strong (�; �)-cuts,
inverse (�; �)-cuts, �rst type semi-weak inverse (�; �)-cuts, second type semi-
weak inverse (�; �)-cuts and weak inverse (�; �)-cuts of bipolar fuzzy soft sets
were introduced together with some of their properties. In addition, some
distinctive properties between (�; �)-cuts and inverse (�; �)-cuts were estab-
lished. Moreover, some related theorems were formulated and proved. It is
further demonstrated that both (�; �)-cuts and inverse (�; �)-cuts of bipolar
fuzzy soft sets were useful tools in decision making.

1. INTRODUCTION

Many mathematical models have been introduced to the literature in order to
express the uncertainty problems encountered in the most accurate way. For exam-
ple; the fuzzy sets put forward by Zadeh [1] is a theory that allows the abandonment
of strict rules in classical mathematics in expressing uncertainty. After this theory
was introduced, the theories of fuzzy sets and fuzzy systems developed rapidly. As
is well known, the cut set (or level set) of fuzzy set [1] is an important concept in
theory of fuzzy sets and systems, which plays a signi�cant role in fuzzy algebra [7,8],
fuzzy reasoning [9, 10], fuzzy measure [11, 12, 13] and so on. The cut set allows us
to express fuzzy sets as classical sets. Based on the cut sets, the decomposition
theorems and representation theorems can be established [14]. The cut sets on
fuzzy sets are described in [15] by using the neighborhood relations between fuzzy
point and fuzzy set. It is pointed out that there are four kinds of de�nitions of cut
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sets on fuzzy sets, each of which has similar properties.

Fuzzy set is a type of important mathematical structure to represent a collection
of objects whose boundary is vague. There are several types of fuzzy set extensions
in the fuzzy set theory, for example, intuitionistic fuzzy sets [16], interval-valued
fuzzy sets [17], vague sets [18], etc. Bipolar-valued fuzzy set is another an extension
of fuzzy set whose membership degree range is di¤erent from the above extensions.
In 2000, Lee [19] initiated an extension of fuzzy set named bipolar-valued fuzzy set.
Bipolar-valued fuzzy sets membership degree range is enlarged from the interval
[0; 1] to [�1; 1]. In a bipolar-valued fuzzy set, the membership degree 0 indicate
that elements are irrelevant to the corresponding property, the membership degrees
on (0; 1] assigne that elements some what satisfy the property, and the membership
degrees on [�1; 0) assigne that elements somewhat satisfy the implicit counterprop-
erty [19]. However, it was not practical to express an uncertainty problem using
fuzzy sets and its extensions.

Realizing the inadequacy of fuzzy set theory and extensions in expressing uncer-
tainty problems, Molodsov [2] thought that this de�ciency was due to the lack of
a parameterization tool. Therefore, he [2] proposed the soft set theory in 1999 and
gave some relevant features. Such theory is a general mathematical tool for dealing
with uncertain, fuzzy, not clearly de�ned objects. Especially with the introduction
of soft sets to the literature, the construction of hybrid set types has accelerated.
This is due to the easy and practical applicability of the parameter tool. It is also
because the hybrid set is more successful in expressing uncertainty, as it retains the
properties of the set types that compose it. One of these hybrid sets is the bipolar
fuzzy soft set, a combination of bipolar fuzzy set and soft set provided by Abdullah
et al. [20]. As another example, the bipolar soft set with applications in decision
making popularized by Shabir et al. [4] and discussed exhaustively by Karaaslan et
al. [21] are another hybrid set model. This mathematical approach has managed
to attract the attention of researchers since it was built with the contribution of a
parameterization tool to this theory by addressing bipolar fuzzy sets, which is an
e¤ective generalization of fuzzy sets. In addition, we can easily say that the studies
with hybrid cluster models introduced for the solution of uncertainty problems are
increasing day by day [22,23,24,27,28].

In this paper, the concepts of (�; �)-cuts, �rst type semi-strong (�; �)-cuts, sec-
ond type semi-strong (�; �)-cuts, strong (�; �)-cuts for bipolar fuzzy soft sets were
introduced and some of their properties were examined. Moreover, the concepts of
inverse (�; �)-cuts, �rst type semi-weak inverse (�; �)-cuts, second type semi-weak
inverse (�; �)-cuts and weak inverse (�; �)-cuts for bipolar fuzzy soft sets were iden-
ti�ed and some of their distinctive features were investigated. Thanks to these cuts,
bipolar fuzzy soft sets can be expressed as bipolar soft sets, which in turn can assist
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us in the decision making process. In addition, related examples are given in the
paper in order to better understand this situation.

Throughout this study, let U = fu1; u2; :::; umg be a non-empty universe set and
E = fx1; x2; :::; xng be a set of parameters. Also, let P (U) denote the power set of
U and A � E.

2. PRELIMINARIES

Here, we remind some basic information from the literature for subsequent use.

2.1. Fuzzy Sets. It is possible to express de�nite expressions in classical mathe-
matics with values of 0 ("false") and 1 ("true"). However, in real life this situation
may not always be possible. For example; the FS theory (Zadeh 1965) put forward
to present human thoughts expresses this situations in the interval [0; 1] with the
help of membership functions for better outcome. Zadeh expressed this set theory
as follows,

De�nition 1. [1] A FS X over U is a set de�ned by a function �X representing a
mapping

�X : U ! [0; 1]

�X is called the membership function of X, and the value �X(u) is called the grade
of membership of u 2 U . The value represents the degree of u belonging to the FS
X. Thus, a FS X over U can be represented as follows:

X = f(u; �X(u)) : �X(u) 2 [0; 1]; u 2 Ug

State that the set of all the FSs over U will be denoted by F (U).
With Zadeh�s [1] min-max system, FS union, intersection, and complement op-

erations are de�ned below.
The union of two FSs M and N is a FS in U , denoted by M [ N , whose

membership grade is �M[N (u) = �M (u) _ �N (u) = max
�
�M (u); �N (u)

	
for each

u 2 U . So

M [N =
n�
u; �M[N (u)

�
: �M[N (u) = max

�
�M (u); �N (u)

	
;8u 2 U

o
:

The intersection of two FSs M and N is a FS in U , denoted by M \N , whose
membership grade is �M\N (u) = �M (u) ^ �N (u) = min

�
�M (u); �N (u)

	
for each

u 2 U . So

M \N =
n�
u; �M\N (u)

�
: �M\N (u) = min

�
�M (u); �N (u)

	
;8u 2 U

o
:

Let D be a FS de�ned over U . Then its complement, denoted by Dc, is de�ned
in terms of membership grade as �Dc(u) = 1� �D(u) for each u 2 U .

Dc =
n�
u; �Dc(u)

�
: u 2 U

o
:
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De�nition 2. [1] Let X 2 F (U) and � 2 [0; 1]. Then the non-fuzzy set (or crisp
set) X� = fu 2 U : �X(u) � �g is called the �-cut or �-level set of X.

If the weak inequality � is replaced by the strict inequality >, the it is called the
strong �-cut of X, denoted by X�+ . That is, X�+ = fu 2 U : �X(u) > �g.
De�nition 3. [3] Let X 2 F (U) and � 2 [0; 1]. Then the non-fuzzy set X�1

� =
fu 2 U : �X(u) < �g is called an inverse �-cut or inverse �-level set of X.

If the strict inequality < is replaced by the weak inequality �, the it is called the
weak inverse �-cut of X, denoted by X�1

�� . That is, X
�1
�� = fu 2 U : �X(u) � �g.

2.2. Bipolar Fuzzy Sets.

De�nition 4. [25,26] Let U be any nonempty set. Then a bipolar fuzzy set, is an
object of the form

� = f(u;< �+� (u); ��� (u) >) : u 2 Ug
and �+� : U ! [0; 1] and ��� : U ! [�1; 0], �+� (u) is a positive material and ��� (u)
is a negative material of u 2 U . For simplicity, we donate the bipolar fuzzy set as
� =< �+� ; �

�
� > in its place of � = f(u;< �+� (u); ��� (u) >) : u 2 Ug.

De�nition 5. [25,26] Let �1 =< �
+
�1
; ���1 > and �2 =< �

+
�2
; ���2 > be two bipolar

fuzzy sets, on U . Then we de�ne the following operations.
(i) �c1 = f< 1� �+�1(u);�1� �

�
�1
(u) >g,

(ii) �1 [ �2 =< max(�+�1(u); �
+
�2
(u));min(���1(u); �

�
�2
(u)) >,

(iii) �1 \ �2 =< min(�+�1(u); �
+
�2
(u));max(���1(u); �

�
�2
(u)) >.

2.3. Soft Sets and Bipolar Soft Sets.

De�nition 6. [2] Let U be an initial universe, E be the set of parameters, A � E
and P (U) is the power set of U . Then (F;A) is called a soft set, where F : A !
P (U).
In other words, a soft set over U is a parameterized family of subsets of the

universe U . For � 2 A, F (�) may be considered as the set of �-approximate elements
of the soft set (F;A), or as the set of �-approximate elements of the soft set.

De�nition 7. [5] Let E = fx1; x2; :::; xng be a set of parameters. The NOT set of
E denoted by :E is de�ned by :E = f:x1;:x2; :::;:xng where, :xi = not xi for
all i.

De�nition 8. [4] A triplet (F;G;A) is called a bipolar soft set over U , where F
and G are mappings, given by F : A ! P (U) and G : :A ! P (U) such that
F (x) \G(:x) = ; (Empty Set) for all x 2 A.
De�nition 9. [6] Let (F;G;A) be a BSS over U . The presentation of

(F;G;A) = f(x; F (x); G(:x)) : x 2 A � E;:x 2 :A � :E and F (x); G(:x) 2 P (U)g
is said to be a short expansion of BSS (F;G;A).
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Example 10. Let U = fu1; u2; u3; u4; u5g be the set of �ve cars under consideration
and A = fx1 = Expensive; x2 = Modern Technology; x3 = Comfortable; x4 =
Fastg � E be the set of parameters. Then
:A = fx1 = Cheap; x2 = Classic Technology; x3 = Not Comfortable; x4 =

Slowg � :E.
Suppose that a BSS (F;G;A) is given as follows.

F (x1) = fu2; u4g; F (x2) = fu1; u4; u5g; F (x3) = fu1; u3; u4g; F (x4) = fu3; u5g;

G(:x1) = fu1; u5g; G(:x2) = fu2; u3g; G(:x3) = fu5g; G(:x4) = fu2; u4g:
Then the short expansion of BSS (F;G;A) is denoted by

(F;G;A) =

�
(x1; fu2; u4g; fu1; u5g); (x2; fu1; u4; u5g; fu2; u3g);
(x3; fu1; u3; u4g; fu5g); (x4; fu3; u5g; fu2; u4g)

�
De�nition 11. [4] For two bipolar soft sets (F;G;A) and (F1; G1; B) over a uni-
verse U , we say that (F;G;A) is a bipolar soft subset of (F1; G1; B), if,
(1) A � B and
(2) F (e) � F1(e) and G1(:x) � G(:x) for all x 2 A.
This relationship is denoted by (F;G;A) ~�(F1; G1; B). Similarly (F;G;A) is said
to be a bipolar soft superset of (F1; G1; B), if (F1; G1; B) is a bipolar soft subset of
(F;G;A). We denote it by (F;G;A) ~�(F1; G1; B).

De�nition 12. [4] Two bipolar soft sets (F;G;A) and (F1; G1; B) over a uni-
verse U are said to be equal if (F;G;A) is a bipolar soft subset of (F1; G1; B) and
(F1; G1; B) is a bipolar soft subset of (F;G;A).

De�nition 13. [4] The complement of a bipolar soft set (F;G;A) is denoted by
(F;G;A)c and is de�ned by (F;G;A)c = (F c; Gc; A) where F c and Gc are mappings
given by F c(x) = G(:x) and Gc(:x) = F (x) for all x 2 A.

De�nition 14. [4] Extended Union of two bipolar soft sets (F;G;A) and (F1; G1; B)
over the common universe U is the bipolar soft set (H; I; C) over U , where C =
A [B and for all x 2 C,

H(x) =

8<: F (x) if x 2 A�B
F1(x) if x 2 B �A
F (x) [ F1(x) if x 2 A \B

I(:x) =

8<: G(:x) if :x 2 (:A)� (:B)
G1(:x) if :x 2 (:B)� (:A)
G(:x) \G1(:x) if :x 2 (:A) \ (:B)

We denote it by (F;G;A)~[(F1; G1; B) = (H; I; C).

De�nition 15. [4] Extended Intersection of two bipolar soft sets (F;G;A) and
(F1; G1; B) over the common universe U is the bipolar soft set (H; I; C) over U ,
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where C = A [B and for all x 2 C,

H(x) =

8<: F (x) if x 2 A�B
F1(x) if x 2 B �A
F (x) \ F1(x) if x 2 A \B

I(:x) =

8<: G(x) if x 2 (:A)� (:B)
G1(x) if x 2 (:B)� (:A)
G(x) [G1(x) if x 2 (:A) \ (:B)

We denote it by (F;G;A)~\(F1; G1; B) = (H; I; C).

De�nition 16. [4] Restricted Union of two bipolar soft sets (F;G;A) and (F1; G1; B)
over the common universe U is the bipolar soft set (H; I; C), where C = A \ B is
non-empty and for all x 2 C

H(x) = F (x) [G(x) and I(:x) = F1(:x) \G1(:x)
We denote it by (F;G;A) [R (F1; G1; B) = (H; I; C).

De�nition 17. [4] Restricted Intersection of two bipolar soft sets (F;G;A) and
(F1; G1; B) over the common universe U is the bipolar soft set (H; I; C), where
C = A \B is non-empty and for all x 2 C

H(x) = F (x) \G(x) and I(:x) = F1(:x) [G1(:x)
We denote it by (F;G;A) \R (F1; G1; B) = (H; I; C).

2.4. Bipolar Fuzzy Soft Sets.

De�nition 18. [20] De�ne f : A ! BFU , where BFU is the collection of all
bipolar fuzzy subsets of U . Then (f;A), denoted by fA, is said to be a bipolar fuzzy
soft set over a universe U . It is de�ned by

fA =
n�
u; �+(fA)x(u); �

�
(fA)x

(u)
�
: 8u 2 U; x 2 A

o
Example 19. Let U = fu1; u2; u3; u4g be the set of four computers under consid-
eration and A = fx1 = Modern Technology; x2 = Cost; x3 = Fastg � E be the
set of parameters. Then,

fA =

8>>>>>><>>>>>>:

f(x1) =

�
(u1; 0:45;�0:2); (u2; 0:6;�0:43);
(u3; 0:7;�0:35); (u4; 0:55;�0:25)

�
;

f(x2) =

�
(u1; 0:34;�0:65); (u2; 0:32;�0:22);
(u3; 0:48;�0:24); (u4; 0:64;�0:8)

�
;

f(x3) =

�
(u1; 0:9;�0:15); (u2; 0:72;�0:34);
(u3; 0:34;�0:56); (u4; 0:24;�0:87)

�

9>>>>>>=>>>>>>;
De�nition 20. [20] Let U be a universe and E a set of attributes. Then, (U;E) is
the collection of all bipolar fuzzy soft sets on U with attributes from E and is said
to be bipolar fuzzy soft class.
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De�nition 21. [20] Let fA and gB be two bipolar fuzzy soft sets over a common
universe U . We say that fA is a bipolar fuzzy soft subset of gB, if
(i) A � B and
(ii) For all x 2 A, f(x) is a bipolar fuzzy subset of g(x). We write fAb�gB.
Moreover, we say that fA and gB are bipolar fuzzy soft equal sets if fA is a

bipolar fuzzy soft subset of gB and gB is a bipolar fuzzy soft subset of fA.

De�nition 22. [20] The complement of a bipolar fuzzy soft set fA is denoted fAc

and is de�ned by fA
c =

n�
u; 1� �+(fA)x(u);�1� �

�
(fA)x

(u)
�
: 8u 2 U; x 2 A

o
.

It should be noted that 1�f(x) denotes the fuzzy complement of f(x) for x 2 A.

De�nition 23. [20] Let fA and gB be two bipolar fuzzy soft sets over a common
universe U . Then
(i) The union of bipolar fuzzy soft sets fA and gB is de�ned as the bipolar fuzzy
soft set hC = fAb[gB over U , where C = A [B, h : C ! BFU and

h(e) =

8<: f(x) if x 2 A nB
g(x) if x 2 B nA
f(x) [ g(x) if x 2 A \B

for all x 2 C.
(ii) The restricted union of bipolar fuzzy soft sets fA and gB is de�ned as the bipolar
fuzzy soft set hC = fAb[RgB over U , where C = A \ B 6= ;, h : C ! BFU and
h(x) = f(x) [ g(x) for all x 2 C.
(iii) The extended intersection of bipolar fuzzy soft sets fA and gB is de�ned as the
bipolar fuzzy soft set hC = fAb\gB over U , where C = A [B, h : C ! BFU and

h(x) =

8<: f(x) if x 2 A nB
g(x) if x 2 B nA
f(x) \ g(x) if x 2 A \B

for all x 2 C.
(iv) The restricted intersection of bipolar fuzzy soft sets fA and gB is de�ned as the
bipolar fuzzy soft set hC = fAb\RgB over U , where C = A \ B 6= ;, h : C ! BFU

and h(x) = f(x) \ g(x) for all x 2 C.

3. (�; �)-cuts and its Properties in Bipolar Fuzzy Soft Sets

In this section, the concepts of (�; �)-cuts and strong (�; �)-cuts of BFSSs were
introduced together with some of their properties.

De�nition 24. Let fA be a BFSS over U and � 2 [0; 1], � 2 [�1; 0]. Then the
(�; �)-cut or (�; �)-level BSS of fA denoted by [fA](�;�) is de�ned as

[fA](�;�) =
n�
x; bF (�;�)[fA]

(x); bG(�;�)[fA]
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
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wherebF (�;�)[fA]
(x) =

n
u :
h
�+[fA]x(u) � �

i
^
h
��[fA]x(u) � �

i
^
h
�+[fA]x(u) �

�����[fA]x(u)���io;bG(�;�)[fA]
(:x) =

n
u :
h
�+[fA]x(u) � �

i
^
h
��[fA]x(u) � �

i
^
h
�+[fA]x(u) <

�����[fA]x(u)���io:
The �rst type semi-strong (�; �)-cut, denoted by [fA](�+;�) is de�ned as

[fA](�+;�) =
n�
x; bF (�+;�)[fA]

(x); bG(�+;�)[fA]
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
wherebF (�+;�)[fA]

(x) =
n
u :
h
�+[fA]x(u) > �

i
^
h
��[fA]x(u) � �

i
^
h
�+[fA]x(u) �

�����[fA]x(u)���io;bG(�+;�)[fA]
(:x) =

n
u :
h
�+[fA]x(u) > �

i
^
h
��[fA]x(u) � �

i
^
h
�+[fA]x(u) <

�����[fA]x(u)���io:
The second type semi-strong (�; �)-cut, denoted by [fA](�;�+) is de�ned as

[fA](�;�+) =
n�
x; bF (�;�+)[fA]

(x); bG(�;�+)[fA]
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
wherebF (�;�+)[fA]

(x) =
n
u :
h
�+[fA]x(u) � �

i
^
h
��[fA]x(u) < �

i
^
h
�+[fA]x(u) �

�����[fA]x(u)���io;bG(�;�+)[fA]
(:x) =

n
u :
h
�+[fA]x(u) � �

i
^
h
��[fA]x(u) < �

i
^
h
�+[fA]x(u) <

�����[fA]x(u)���io:
The strong (�; �)-cut, denoted by [fA](�+;�+) is de�ned as

[fA](�+;�+) =
n�
x; bF (�+;�+)[fA]

(x); bG(�+;�+)[fA]
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
wherebF (�+;�+)[fA]

(x) =
n
u :
h
�+[fA]x(u) > �

i
^
h
��[fA]x(u) < �

i
^
h
�+[fA]x(u) �

�����[fA]x(u)���io;bG(�+;�+)[fA]
(:x) =

n
u :
h
�+[fA]x(u) > �

i
^
h
��[fA]x(u) < �

i
^
h
�+[fA]x(u) <

�����[fA]x(u)���io:
Example 25. Let U = fu1; u2; u3g, A = fx1; x2; x3g � E and BFSS fA over U be

fA =

8<: f(x1) =
�
(u1; 0:56;�0:42); (u2; 0:75;�0:5); (u3; 0:5;�0:3)

	
;

f(x2) =
�
(u1; 0:8;�0:15); (u2; 0:4;�0:56); (u3; 0:64;�0:15)

	
;

f(x3) =
�
(u1; 0:35;�0:6); (u2; 0:1;�0:5); (u3; 0:56;�0:2)

	
9=;

For example; let U be the supplier �rms that apply to become a supplier of a phar-
maceutical company and A � E is the set of parameters that the company wants
from the supplier. This BFSS is represented in tabular form as follows:

TABLE 1. Representation of BFSS fA
U n E Experienced = x1 Cheap = x2 Fast = x3
u1 < 0:56;�0:42 > < 0:8;�0:15 > < 0:35;�0:6 >
u2 < 0:75;�0:5 > < 0:4;�0:56 > < 0:64;�0:15 >
u3 < 0:35;�0:6 > < 0:1;�0:5 > < 0:56;�0:2 >
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Example 26. Then if � = 0:56 and � = �0:5, we have
[fA](0:56;�0:5) = f(x1; fu1; u2g; fu3g); (x2; fu1g; fu2; u3g); (x3; fu2; u3g; fu1g)g;
[fA](0:56+;�0:5) = f(x1; fu2g; fu3g); (x2; fu1g; fu2; u3g); (x3; fu2g; fu1g)g;
[fA](0:56;�0:5+) = f(x1; fu1; u2g; fu3g); (x2; fu1g; fu2g); (x3; fu2; u3g; fu1g)g

and

[fA](0:56+;�0:5+) = f(x1; fu2g; fu3g); (x2; fu1g; fu2g); (x3; fu2g; fu1g)g:
Then if � = 0:35 and � = �0:6, we have

[fA](0:35;�0:6) = f(x1; fu1; u2g; fu3g); (x2; fu1; u2g; fg); (x3; fu2; u3g; fu1g)g;
[fA](0:35+;�0:6) = f(x1; fu1; u2g; fu3g); (x2; fu1; u2g; fg); (x3; fu2; u3g; fu1g)g;
[fA](0:35;�0:6+) = f(x1; fu1; u2g; fg); (x2; fu1; u2g; fg); (x3; fu2; u3g; fg)g

and

[fA](0:35+;�0:6+) = f(x1; fu1; u2g; fg); (x2; fu1; u2g; fg); (x3; fu2; u3g; fg)g:

Remark 27. (�; �)-cut can be use to make a decision. For example, let�s assume
that the pharmaceutical company will consider the most suitable supplier �rm as
the �rm that provides the most number of parameters under (�; �). For this, the
mapping �[fA](�;�) is de�ned by �[fA](�;�) : U ! [�n; n] for all ui 2 U as follows:
(1 � i � s(E) = n and 1 � j � s(U) = m)

�[fA](�;�)(ui) =
nX
j=1

�ij[fA](�;�) (1)

�ij[fA](�;�) =

8><>:
1; if ui 2 bF (�;�)[fA]

(xj)

�1; if ui 2 bG(�;�)[fA]
(xj)

0; otherwise

(2)

Here, the value �[fA](�;�)(ui) is called the "total score" for the objects and the greater
the total score of an object, the more recommended it is to select that object. Under
these conditions, the calculation of the total scores for � = 0:56 and � = �0:5 given
in Example 25 is as follows;

�[fA](0:56;�0:5)(u1) = �
11
[fA](0:56;�0:5)

+�12[fA](0:56;�0:5)+�
13
[fA](0:56;�0:5)

= 1+1+(�1) = 1;

�[fA](0:56;�0:5)(u2) = 1; �[fA](0:56;�0:5)(u3) = �1:
Similarly, for � = 0:35 and � = �0:6

�[fA](0:35;�0:6)(u1) = 1; �[fA](0:35;�0:6)(u2) = 3; �[fA](0:35;�0:6)(u3) = 2:

As can be seen, it is not possible to choose the best element for � = 0:56 and
� = �0:5, because there are two supplier �rms that have the highest total score.
However, the total scores calculated for � = 0:35 and � = �0:6 indicate that the
most suitable supplier �rm for the pharmaceutical company is u2.
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Proposition 28. Let � 2 [0; 1], � 2 [�1; 0] and fA, gB be BFSSs over U , the
following properties hold:
(i) [fA](�+;�+)e�[fA](�+;�)e�[fA](�;�) and [fA](�+;�+)e�[fA](�;�+)e�[fA](�;�).
(ii) [fA](�+;�)e\[fA](�;�+) = [fA](�+;�+).
(iii) If �1 � �2 and �1 � �2, then [fA](�2;�2)e�[fA](�1;�1).
(iv) [fAb[gB ](�;�) = [fA](�;�)e[[gB ](�;�).
(v) [fAb\gB ](�;�) = [fA](�;�)e\[gB ](�;�).
Proof. (i) Let (x; fuig; fujg) 2 [fA](�+;�+)
)
h
�+[fA]x(ui) > �

i
^
h
��[fA]x(ui) < �

i
^
h
�+[fA]x(ui) �

�����[fA]x(ui)���i and ��+[fA]x(uj) >
�
i
^
h
��[fA]x(uj) < �

i
^
h
�+[fA]x(uj) <

�����[fA]x(uj)���i, 8x 2 A
)
h
�+[fA]x(ui) > �

i
^
h
��[fA]x(ui) � �

i
^
h
�+[fA]x(ui) �

�����[fA]x(ui)���i and h�+[fA]x(uj) >
�
i
^
h
��[fA]x(uj) � �

i
^
h
�+[fA]x(uj) <

�����[fA]x(uj)���i, 8x 2 A
) (x; fuig; fujg) 2 [fA](�+;�)
Therefore [fA](�+;�+)e�[fA](�+;�). Similarity, for (x; fuig; fujg) 2 [fA](�+;�)
)
h
�+[fA]x(ui) > �

i
^
h
��[fA]x(ui) � �

i
^
h
�+[fA]x(ui) �

�����[fA]x(ui)���i and h�+[fA]x(uj) >
�
i
^
h
��[fA]x(uj) � �

i
^
h
�+[fA]x(uj) <

�����[fA]x(uj)���i, 8x 2 A
)
h
�+[fA]x(ui) � �

i
^
h
��[fA]x(ui) � �

i
^
h
�+[fA]x(ui) �

�����[fA]x(ui)���i and h�+[fA]x(uj) �
�
i
^
h
��[fA]x(uj) � �

i
^
h
�+[fA]x(uj) <

�����[fA]x(uj)���i, 8x 2 A
) (x; fuig; fujg) 2 [fA](�;�)
Therefore [fA](�+;�)e�[fA](�+;�+). It is proved similarly in the other part.
(ii) Straighforward.
(iii) It is clear from De�nition 11 and De�nition 24.
(iv) Let (x; fuig; fujg) 2 [fAb[gB ](�;�)
)
h
�+
[fAb[gB ]x(ui) � �

i
^
h
��
[fAb[gB ]x(ui) � �

i
^
h
�+
[fAb[gB ]x(ui) �

�����
[fAb[gB ]x(ui)

���i
and

h
�+
[fAb[gB ]x(uj) � �

i
^
h
��
[fAb[gB ]x(uj) � �

i
^
h
�+
[fAb[gB ]x(uj) <

�����
[fAb[gB ]x(uj)

���i,
8x 2 A [B

)
"h
�+[fA]x(ui) � �

i
^
h
��[fA]x(ui) � �

i
^
h
�+[fA]x(ui) �

�����[fA]x(ui)���i and h�+[fA]x(uj) �
�
i
^
h
��[fA]x(uj) � �

i
^
h
�+[fA]x(uj) <

�����[fA]x(uj)���i, 8x 2 A
#
or

"h
�+[gB ]x(ui) � �

i
^h

��[gB ]x(ui) � �
i
^
h
�+[gB ]x(ui) �

�����[gB ]x(ui)���i and h�+[gB ]x(uj) � �i ^ h��[gB ]x(uj) �
�
i
^
h
�+[gB ]x(uj) <

�����[gB ]x(uj)���i, 8x 2 B
#
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) (x; fuig; fujg) 2 [fA](�;�) or (x; fuig; fujg) 2 [gB ](�;�)
) (x; fuig; fujg) 2 [fA](�;�)e[[gB ](�;�)
Therefore, [fAb[gB ](�;�)e�[fA](�;�)e[[gB ](�;�).
Conversely, suppose (x; fuig; fujg) 2 [fA](�;�)e[[gB ](�;�)
) (x; fuig; fujg) 2 [fA](�;�) or (x; fuig; fujg) 2 [gB ](�;�)

)
"h
�+[fA]x(ui) � �

i
^
h
��[fA]x(ui) � �

i
^
h
�+[fA]x(ui) �

�����[fA]x(ui)���i and h�+[fA]x(uj) �
�
i
^
h
��[fA]x(uj) � �

i
^
h
�+[fA]x(uj) <

�����[fA]x(uj)���i, 8x 2 A
#
or

"h
�+[gB ]x(ui) � �

i
^h

��[gB ]x(ui) � �
i
^
h
�+[gB ]x(ui) �

�����[gB ]x(ui)���i and h�+[gB ]x(uj) � �i ^ h��[gB ]x(uj) �
�
i
^
h
�+[gB ]x(uj) <

�����[gB ]x(uj)���i, 8x 2 B
#

)
h
�+
[fAb[gB ]x(ui) � �

i
^
h
��
[fAb[gB ]x(ui) � �

i
^
h
�+
[fAb[gB ]x(ui) �

�����
[fAb[gB ]x(ui)

���i
and

h
�+
[fAb[gB ]x(uj) � �

i
^
h
��
[fAb[gB ]x(uj) � �

i
^
h
�+
[fAb[gB ]x(uj) <

�����
[fAb[gB ]x(uj)

���i,
8x 2 A [B
) (x; fuig; fujg) 2 [fAb[gB ](�;�)
Therefore, [fA](�;�)e[[gB ](�;�)e�[fAb[gB ](�;�). Thus [fAb[gB ](�;�) = [fA](�;�)e[[gB ](�;�).
(v) It is proved similar to step (iv). �

4. Inverse (�; �)-cuts and its Properties in Bipolar Fuzzy Soft Sets

In this section, the concepts of inverse (�; �)-cuts and weak inverse (�; �)-cuts
of BFSSs were introduced together with some of their properties.

De�nition 29. Let fA be a BFSS over U and � 2 [0; 1], � 2 [�1; 0]. Then the
inverse (�; �)-cut or inverse (�; �)-level BSS of fA denoted by [fA]

�1
(�;�) is de�ned

as

[fA]
�1
(�;�) =

n�
x; bF (�;�)[fA]�1

(x); bG(�;�)[fA]�1
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
wherebF (�;�)[fA]�1

(x) =
n
u :
h
�+
[fA]

�1
x
(u) < �

i
^
h
��
[fA]

�1
x
(u) > �

i
^
h
�+
[fA]

�1
x
(u) �

�����
[fA]

�1
x
(u)
���io;

bG(�;�)
[fA]

�1
x
(:x) =

n
u :
h
�+
[fA]

�1
x
(u) < �

i
^
h
��
[fA]

�1
x
(u) > �

i
^
h
�+
[fA]

�1
x
(u) <

�����
[fA]

�1
x
(u)
���io:

The �rst type semi-weak inverse (�; �)-cut, denoted by [fA]
�1
(��;�) is de�ned as

[fA]
�1
(��;�) =

n�
x; bF (��;�)[fA]�1

(x); bG(��;�)[fA]�1
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
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wherebF (��;�)[fA]�1
(x) =

n
u :
h
�+
[fA]

�1
x
(u) � �

i
^
h
��
[fA]

�1
x
(u) > �

i
^
h
�+
[fA]

�1
x
(u) �

�����
[fA]

�1
x
(u)
���io;

bG(��;�)[fA]�1
(:x) =

n
u :
h
�+
[fA]

�1
x
(u) � �

i
^
h
��
[fA]

�1
x
(u) > �

i
^
h
�+
[fA]

�1
x
(u) <

�����
[fA]

�1
x
(u)
���io:

The second type semi-weak inverse (�; �)-cut, denoted by [fA]
�1
(�;��)

is de�ned as

[fA]
�1
(�;��)

=
n�
x; bF (�;��)[fA]�1

(x); bG(�;��)[fA]�1
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
wherebF (�;��)[fA]�1

(x) =
n
u :
h
�+
[fA]

�1
x
(u) < �

i
^
h
��
[fA]

�1
x
(u) � �

i
^
h
�+
[fA]

�1
x
(u) �

�����
[fA]

�1
x
(u)
���io;

bG(�;��)[fA]�1
(:x) =

n
u :
h
�+
[fA]

�1
x
(u) < �

i
^
h
��
[fA]

�1
x
(u) � �

i
^
h
�+
[fA]

�1
x
(u) <

�����
[fA]

�1
x
(u)
���io:

The weak inverse (�; �)-cut, denoted by [fA]
�1
(��;��)

is de�ned as

[fA]
�1
(��;��)

=
n�
x; bF (��;��)[fA]�1

(x); bG(��;��)[fA]�1
(:x)

�
: x 2 A � E;:x 2 :A � :E

o
wherebF (��;��)[fA]�1

(x) =
n
u :
h
�+
[fA]

�1
x
(u) � �

i
^
h
��
[fA]

�1
x
(u) � �

i
^
h
�+
[fA]

�1
x
(u) �

�����
[fA]

�1
x
(u)
���io;

bG(��;��)[fA]�1
(:x) =

n
u :
h
�+
[fA]

�1
x
(u) � �

i
^
h
��
[fA]

�1
x
(u) � �

i
^
h
�+
[fA]

�1
x
(u) <

�����
[fA]

�1
x
(u)
���io:

Example 30. Consider the BFSS fA as given in Example 25.
Then if � = 0:56 and � = �0:5, we have

[fA]
�1
(0:56;�0:5) = f(x1; fu3g; fu1g); (x2; fu2; u3g; fu1g); (x3; fu1g; fu2; u3g)g;

[fA]
�1
(0:56�;�0:5) = f(x1; fu1; u3g; fg); (x2; fu2; u3g; fu1g); (x3; fu1; u3g; fu2g)g;

[fA]
�1
(0:56;�0:5�) = f(x1; fu3g; fu1; u2g); (x2; fu2g; fu1; u3g); (x3; fu1g; fu2; u3g)g

and

[fA]
�1
(0:56�;�0:5�) = f(x1; fu1; u3g; fu2g); (x2; fu2g; fu1; u3g); (x3; fu1; u3g; fu2g)g:

Then if � = 0:35 and � = �0:6, we have
[fA]

�1
(0:35;�0:6) = f(x1; fg; fu1; u2g); (x2; fg; fu1; u2; u3g); (x3; fg; fu2; u3g)g;

[fA]
�1
(0:35�;�0:6) = f(x1; fu3g; fu1; u2g); (x2; fg; fu1; u2; u3g); (x3; fu1g; fu2; u3g)g;

[fA]
�1
(0:35;�0:6�) = f(x1; fg; fu1; u2; u3g); (x2; fg; fu1; u2; u3g); (x3; fg; fu1; u2; u3g)g

and

[fA]
�1
(0:35�;�0:6�) = f(x1; fg; fu1; u2; u3g); (x2; fg; fu1; u2; u3g); (x3; fg; fu1; u2; u3g)g:



594 O. DALKILIÇ

Remark 31. Inverse (�; �)-cut can be use to know the most unfavorable selection.
For example, let�s assume that the pharmaceutical company will consider the un-
suitable supplier �rm as the �rm that provides the least number of parameters under
inverse (�; �). For this, let�s create a similar mapping given in Remark 27 and the
mapping ��1[fA](�;�) is de�ned by �

�1
[fA](�;�)

: U ! [�n; n] for all ui 2 U as follows:

(1 � i � s(E) = n and 1 � j � s(U) = m)

��1[fA](�;�)(ui) =
nX
j=1

�ij
[fA]

�1
(�;�)

(3)

�ij
[fA]

�1
(�;�)

=

8><>:
1; if ui 2 bF (�;�)[fA]�1

(xj)

�1; if ui 2 bG(�;�)[fA]�1
(xj)

0; otherwise

(4)

Here, the value �[fA]�1(�;�)
(ui) is called the "inverse total score" for the objects and

the smaller the inverse total score of an object, the more recommended it is not
to select that object. Under these conditions, the calculation of the total scores for
� = 0:56 and � = �0:5 given in Example 30 is as follows;

��1[fA](0:56;�0:5)(u1) = �11
[fA]

�1
(0:56;�0:5)

+�12
[fA]

�1
(0:56;�0:5)

+�13
[fA]

�1
(0:56;�0:5)

= (�1) + (�1) + 1 = �1;

��1[fA](0:56;�0:5)(u2) = 0; ��1[fA](0:56;�0:5)(u3) = 1:

Similarly, for � = 0:35 and � = �0:6
��1[fA](0:35;�0:6)(u1) = �2; ��1[fA](0:35;�0:6)(u2) = �3; ��1[fA](0:35;�0:6)(u3) = �2:

As can be seen, the inverse total scores calculated for � = 0:35 and � = �0:6
indicate that the unsuitable supplier �rm for the pharmaceutical company is u2.
Moreover, the inverse total scores calculated for � = 0:56 and � = �0:5 indicate
that the unsuitable supplier �rm for the pharmaceutical company is u1. It means
that the unsuitable object can change for the selected inverse (�; �)-cuts. In this
case, we should pay attention to the selection of inverse (�; �)-cuts in order for the
decision making process to function properly.

Remark 32. Items (iv) and (v) given in Proposition 28 are not generally correct
for inverse (�; �)-cuts. For this, let�s examine Example 33 and 34:

Example 33.
�
Counter Example for (iv):

�
Let U = fu1; u2; u3g, A = fx1; x2; x3g � E, B = fx2; x3; x4g � E and BFSS fA,
gB over U be

fA =

8<: f(x1) =
�
(u1; 0:56;�0:42); (u2; 0:75;�0:5); (u3; 0:5;�0:3)

	
;

f(x2) =
�
(u1; 0:8;�0:15); (u2; 0:4;�0:56); (u3; 0:64;�0:15)

	
;

f(x3) =
�
(u1; 0:35;�0:6); (u2; 0:1;�0:5); (u3; 0:56;�0:2)

	
9=;
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gB =

8<: g(x2) =
�
(u1; 0:64;�0:2); (u2; 0:57;�0:55); (u3; 0:6;�0:65)

	
;

g(x3) =
�
(u1; 0:51;�0:24); (u2; 0:7;�0:2); (u3; 0:7;�0:52)

	
;

g(x4) =
�
(u1; 0:18;�0:62); (u2; 0:33;�0:6); (u3; 0:5;�0:3)

	
9=;

Then hC = fAb[gB, where C = A [B = fe1; e2; e3; e4g
hC =

8>><>>:
h(x1) =

�
(u1; 0:56;�0:42); (u2; 0:75;�0:5); (u3; 0:5;�0:3)

	
;

h(x2) =
�
(u1; 0:8;�0:2); (u2; 0:57;�0:56); (u3; 0:64;�0:65)

	
;

h(x3) =
�
(u1; 0:51;�0:6); (u2; 0:7;�0:5); (u3; 0:7;�0:52)

	
;

h(x4) =
�
(u1; 0:18;�0:62); (u2; 0:33;�0:6); (u3; 0:5;�0:3)

	
9>>=>>; :

Then

[fA]
�1
(0:56;�0:5) = f(x1; fu3g; fu1g); (x2; fu2; u3g; fu1g); (x3; fu1g; fu2; u3g)g;

[gB ]
�1
(0:56;�0:5) = f(x2; fg; fu1g); (x3; fu1g; fu2g); (x4; fu1; u2; u3g; fg)g;

and

[hC ]
�1
(0:56;�0:5) = f(x1; fu3g; fu1g); (x2; fg; fu1g); (x3; fu1g; fg); (x4; fu1; u2; u3g; fg)g:

Also,

[fA]
�1
(0:56;�0:5)e[[gB ]�1(0:56;�0:5) = f(x1; fu3g; fu1g); (x2; fu2; u3g; fu1g);

(x3; fu1g; fu2; u3g); (x4; fu1; u2; u3g; fg)g:
Thus [fA]

�1
(0:56;�0:5)e[[gB ]�1(0:56;�0:5) 6= [fAb[gB ]�1(0:56;�0:5).

Example 34.
�
Counter Example for (v):

�
Consider the BFSS fA and gB as given in Example 33. In this case, hC = fAb\gB,
where C = A \B = fe2; e3g

hC =

�
h(x2) =

�
(u1; 0:64;�0:15); (u2; 0:4;�0:55); (u3; 0:6;�0:15)

	
;

h(x3) =
�
(u1; 0:51;�0:15); (u2; 0:4;�0:2); (u3; 0:64;�0:15)

	 �
:

Then
[hC ]

�1
(0:56;�0:5) = f(x2; fu2g; fu1; u3g); (x3; fu1; u2g; fu3g)g

and

[fA]
�1
(0:56;�0:5)e\[gB ]�1(0:56;�0:5) = f(x1; fu3g; fu1g); (x2; fg; fu1g);

(x3; fu1g; fu2g); (x4; fu1; u2; u3g; fg)g:
Thus [fA]

�1
(0:56;�0:5)e\[gB ]�1(0:56;�0:5) 6= [fAb\gB ]�1(0:56;�0:5).

Proposition 35. Let � 2 [0; 1], � 2 [�1; 0] and fA, gB be BFSSs over U , the
following properties hold:
(i) [fA]

�1
(�;�)

e�[fA]�1(��;�)e�[fA]�1(��;��) and [fA]�1(�;�)e�[fA]�1(�;��)e�[fA]�1(��;��).
(ii) [fA]

�1
(��;�)

e\[fA]�1(�;��) = [fA]�1(��;��).
(iii) If �1 � �2 and �1 � �2, then [fA]�1(�1;�1)

e�[fA]�1(�2;�2).
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(iv) [fAb[gB ]�1(�;�)e�[fA]�1(�;�)e[[gB ]�1(�;�).
(v) [fA]

�1
(�;�)

e\[gB ]�1(�;�)e�[fAb\gB ]�1(�;�).
Proof. (i) Let (x; fuig; fujg) 2 [fA]�1(�;�)
)

h
�+
[fA]

�1
x
(ui) < �

i
^
h
��
[fA]

�1
x
(ui) > �

i
^
h
�+
[fA]

�1
x
(ui) �

�����
[fA]

�1
x
(ui)

���i and�
�+
[fA]

�1
x
(uj) < �

i
^
h
��
[fA]

�1
x
(uj) > �

i
^
h
�+
[fA]

�1
x
(uj) <

�����
[fA]

�1
x
(uj)

���i, 8x 2 A
)

h
�+
[fA]

�1
x
(ui) � �

i
^
h
��
[fA]

�1
x
(ui) > �

i
^
h
�+
[fA]

�1
x
(ui) �

�����
[fA]

�1
x
(ui)

���i and�
�+
[fA]

�1
x
(uj) � �

i
^
h
��
[fA]

�1
x
(uj) > �

i
^
h
�+
[fA]

�1
x
(uj) <

�����
[fA]

�1
x
(uj)

���i, 8x 2 A
) (x; fuig; fujg) 2 [fA]�1(��;�)
Therefore [fA]

�1
(�;�)

e�[fA]�1(��;�). Similarity, for (x; fuig; fujg) 2 [fA]�1(��;�)
)

h
�+
[fA]

�1
x
(ui) � �

i
^
h
��
[fA]

�1
x
(ui) > �

i
^
h
�+
[fA]

�1
x
(ui) �

�����
[fA]

�1
x
(ui)

���i and�
�+
[fA]

�1
x
(uj) � �
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(v) Let (x; fuig; fujg) 2 [fA]�1(�;�)e\[gB ]�1(�;�)
) (x; fuig; fujg) 2 [fA]�1(�;�) and (x; fuig; fujg) 2 [gB ]

�1
(�;�)

)
"h
�+
[fA]

�1
x
(ui) < �

i
^
h
��
[fA]

�1
x
(ui) > �

i
^
h
�+
[fA]

�1
x
(ui) �

�����
[fA]

�1
x
(ui)

���i and
h
�+
[fA]

�1
x
(uj) < �

i
^
h
��
[fA]

�1
x
(uj) > �

i
^
h
�+
[fA]

�1
x
(uj) <

�����
[fA]

�1
x
(uj)

���i, 8x 2 A#

and

"h
�+
[gB ]

�1
x
(ui) < �

i
^
h
��
[gB ]

�1
x
(ui) > �

i
^
h
�+
[gB ]

�1
x
(ui) �

�����
[gB ]

�1
x
(ui)

���i and
h
�+
[gB ]

�1
x
(uj) < �

i
^
h
��
[gB ]

�1
x
(uj) > �

i
^
h
�+
[gB ]

�1
x
(uj) <

�����
[gB ]

�1
x
(uj)

���i, 8x 2 B#
)
h
�+
[fAb[gB ]�1x (ui) < �

i
^
h
��
[fAb[gB ]�1x (ui) > �

i
^
h
�+
[fAb[gB ]�1x (ui) �

�����
[fAb[gB ]�1x (ui)

���i
and

h
�+
[fAb[gB ]�1x (uj) < �

i
^
h
��
[fAb[gB ]�1x (uj) > �

i
^
h
�+
[fAb[gB ]�1x (uj) <

�����
[fAb[gB ]�1x (uj)

���i,
8x 2 A [B
) (x; fuig; fujg) 2 [fAb[gB ]�1(�;�)
Therefore, [fA]

�1
(�;�)

e\[gB ]�1(�;�)e�[fAb\gB ]�1(�;�). �

5. Results and Conclusion

The concepts of (�; �)-cut, �rst type semi-strong (�; �)-cut, second type semi-
strong (�; �)-cut, strong (�; �)-cut, inverse (�; �)-cut, �rst type semi-weak inverse
(�; �)-cut, second type semi-weak inverse (�; �)-cut and weak inverse (�; �)-cut for
bipolar fuzzy soft sets were introduced and their applications were highlighted. It
is shown that (�; �)-cut of bipolar fuzzy soft sets can be used to determine the best
choice while inverse (�; �)-cuts of bipolar fuzzy soft sets can be used to determine
unfavorable alternative. Moreover, some related results were presented. I think
that these concepts proposed for better management of decision-making processes
for uncertainty problems may be useful in the future.

Declaration of Competing Interests The author declares that they have no
known competing �nancial interests or personal relationships that could have ap-
peared to in�uence the work reported in this paper.

References

[1] Zadeh, L. A., Fuzzy sets, Inf. Control. 8 (1965), 338-353.
[2] Molodtsov, D., Soft set theory-�rst results, Computers and Mathematics with Applications,

37 (1999), 19-31.https://doi.org/10.1016/S0898-1221(99)00056-5
[3] Sun Z., Han, J., Inverse alpha-Cuts and Interval [a; b)-Cuts, Proceedings of the International

Conference on Innovative Computing, Information and Control (ICICIC2006), 30 August -
1 September, Beijing, IEEE Press, (2006), 441-444. Doi:10.1109/ICICIC.2006.105

https://doi.org/10.1016/S0898-1221(99)00056-5
Doi: 10.1109/ICICIC.2006.105


598 O. DALKILIÇ

[4] Shabir, M., Naz, M., On bipolar soft sets, Retrieved from https://arxiv.org/abs/1303.1344,
2013.

[5] Maji, P. K., Biswas, R., Roy, A. R., Soft set theory, Computers and Mathematics with
Applications, 45(4-5) (2003), 555-562. Doi:10.1016/S0898-1221(03)00016-6

[6] Ozturk, T. Y., On bipolar soft topological spaces, Journal of New Theory, 20 (2018), 64-75.
[7] Mordeson, J. N., Malik, D. S., Fuzzy Commutative Algebra, World Scienti�c Publishing,

Singapore, 1998.
[8] Mordeson, J. N., Bhutani, K. R., Rosenfeld, A., Fuzzy Group Theory, Springer, New York,

2005.
[9] Dubois, D., Hullermeier, E., Prade, H., On the representation of fuzzy rules in terms of crisp

rules, Information Sciences, 151 (2003), 301-326. Doi:10.1016/S0020-0255(02)00403-6
[10] Luo, C. Z., Wang, P. Z., Representation of compositional relations in fuzzy reasoning, Fuzzy

Sets and Systems, 36 (1990), 327-337. Doi:10.1016/0165-0114(90)90080-P
[11] Bertoluzza, C., Solci, M., Caodieci, M. L., Measure of a fuzzy set: The approach in the �nite

case, Fuzzy Sets and Systems, 123 (2001), 93-102. Doi:10.1016/S0165-0114(00)00074-9
[12] Garcia, J. N., Kutalik, Z., Cho, K. H., Wolkenhauer, O., Level sets and the minimum volume

sets of probability density function, International Journal of Approximate Reasoning, 34
(2003), 25-47. Doi:10.1016/S0888-613X(03)00052-5

[13] Pap, E., Surla, D., Lebesgue measure of approach for �nding the height of the membership
function, Fuzzy Sets and Systems, 111 (2000), 341-350. Doi:10.1016/S0165-0114(98)00162-6

[14] Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications, Academic Press,
1980.

[15] Yuan, X. H., Li, H. X., Stanley Lee, E., Three new cut sets of fuzzy sets and new theories of
fuzzy sets, Computer and Mathematics with Applications, 57 (2009), 691-701. Doi:10.1016/
j.camwa.2008.05.044

[16] Atanassov, K., Intuitionistic fuzzy sets, International Journal Bioautomation, 20(1) (2016),
1-6.

[17] Zadeh, L., The concept of a linguistic variable and its application to approximate reasoning,
Part 1, Inform. Sci., 8 (1975), 199-249. Doi:10.1016/0020-0255(75)90036-5

[18] Gau, W. L., Buehrer, D. J., Vague sets, IEEE Transactions on Systems, Man and Cybernet-
ics, 23 (1993), 610-614. Doi:10.1109/21.229476

[19] Lee, K. M., Bipolar-valued fuzzy sets and their basic operations, Proceeding International
Conference, Bangkok, Thailand, (2000), 307-317.

[20] Abdullah, S., Aslam, M., Ullah, K., Bipolar fuzzy soft sets and its applications in decision
making problem, Journal of Intelligent and Fuzzy Systems, 27(2) (2014), 729-742. Doi:10.
3233/IFS-131031

[21] Karaaslan, F., Karatas, S., A new approach to bipolar soft sets and its applications.
Discrete Mathematics, Algorithms and Applications, 7(4) (2015), 1550054. Doi:10.1142/
S1793830915500548
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Abstract. New types of connectedness in S-proximity spaces, named as an
S-�-connectedness, local S-�-connectedness are introduced. Also, their inter-
relationships are studied. In an S-proximity space (X; �X), the S-�-connectedness
of a subset U ofX with respect to �X may not be same as the S-�-connectedness
of U with respect to its subspace proximity �U . Further, S-�-component and
S-�-treelike spaces are also de�ned and a number of results are given.

1. Introduction

In 1908, Reisz [13] discussed the idea of proximity (now it is called an E-
proximity) and although this idea was revived by Wallace [17, 18]. But the real
beginning of E-proximity was due to Efremoviµc [5, 6] who gave axioms of it as
a natural generalization of metric space and topological group. Smirnov [14, 15]
demonstrated that a completely regular space always has a compatible E-proximity
relation and vice versa. Also, he found the relationship between E-proximity space
and uniform space. Several generalizations of E-proximity were de�ned and stud-
ied. The notion of µCech proximity spaces was given by E. µCech [2], later elaborated
in [10], [11] and [12]. An S-proximity was introduced independently by Krishna
Murti [7], Szymanski [16], Wallace [17,18].
Mrówka et al. [9] de�ned the notion of �-connectedness in E-proximity spaces

and after that in 1987, the concepts of local �-connectedness, �-component and �-
quasi components were introduced by Dimitrijevíc et al. [3]. Dimitrijevíc et al. [4]
also studied �-treelike proximity spaces. Recently, Modak et al. [8] introduced the
weaker form of connectedness (Cl-Cl-connectedness) in topological spaces.
In this paper, we introduce a new type of �-connectedness (named as S-�-

connectedness) in S-proximity spaces and show that S-�-connectedness is di¤erent
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from �-connectedness [9] in the category of S-proximity spaces. And it become
identical in the categories of L-proximity spaces and E-proximity spaces. We give
a characterization for an S-proximity space X to be S-�-connected and several
other properties analogous to �-connectedness are justi�ed. Relation among dif-
ferent types of connectedness are shown. In the last section, S-�-component, local
S-�-connectedness and S-�-treelike spaces are de�ned and their properties are stud-
ied.
Throughout this paper, (A;B) 2 � ((A;B) =2 �) denotes A, B are near (�-

separated). We write an S-proximity space as X instead of (X; �) whenever there
is no confusion of the S-proximity �. ClX(:) and intX(:) are used to denote closure
and interior, respectively, with respect to topology T� generated by � in X.

2. Preliminaries

In this section, we recall some important de�nitions and results that will be used
in subsequent sections.

De�nition 1. [10] For a nonempty set X, a µCech proximity (or basic proximity)
on X is a binary relation � on the power set of X, P(X), that satis�es the following
axioms for all A;B;C 2 P(X):

(i) If (A;B) 2 �, then (B;A) 2 �.
(ii) If (A;B) 2 �, then A 6= � and B 6= �.
(iii) If A \B 6= �, then (A;B) 2 �.
(iv) (A;B [ C) 2 � if and only if (A;B) 2 � or (A;C) 2 �.
The set X together with a µCech proximity � is called a µCech proximity space

(X; �).

De�nition 2. [10] A µCech proximity space X is called separated if we have (fxg; fyg) 2
�, then x = y for all x; y 2 X.

De�nition 3. [10,12] For A;B;C 2 P(X), a µCech proximity � on a set X is:
(i) E-proximity if (A;B) =2 �, then there is some E � X with (A;E) =2 � and

(XnE;B) =2 �.
(ii) L-proximity if (A;B) 2 � and (fbg; C) 2 � for each b 2 B, then (A;C) 2 �.
(iii) S-proximity if (fxg; B) 2 � and (fbg; C) 2 � for each b 2 B, then (x;C) 2 �.

A µCech proximity space (X; �) is called an E-proximity space (or a L-proximity
space, an S-proximity space respectively) if the µCech proximity � satis�es the E-
proximity axiom (or L-proximity axiom, S-proximity axiom respectively.).

De�nition 4. [10, 12] Let (X; �) be an S-proximity space and T be a topology on
X. Then � is compatible with T if and only if the generated topology T� and T are
equal.

De�nition 5. [10] Let (X; �) be a µCech proximity space. Then a subset V of X is
said to be a �-neighbourhood of U � X if (U;XnV ) =2 �.
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De�nition 6. [10,12] Let (X; �) and (Y; �
0
) be two E-proximity spaces, a function

f : (X; �) �! (Y; �
0
) is �-continuous (or p-continuous) if for all A;B � X such

that (A;B) 2 �, implies (f(A); f(B)) 2 �
0
.

De�nition 7. [9] Let (X; �) be an E-proximity space. Then X is said to be �-
connected if every �-continuous map from X to discrete proximity space is constant.

Theorem 8. [9] Let (X; �) be an E-proximity space. Then the following statements
are equivalent:

(i) X is �-connected.
(ii) (A;XnA) 2 � for each nonempty subset A with A 6= X.
(iii) For every �-continuous real-valued function f , the image f(X) is dense in

some interval of R.
(iv) If X = A [B and (A;B) =2 �, then either A = � or B = �.
However, if X is not �-connected, then by Theorem 8 (iv) we have X = A [ B

with (A;B) =2 � where A;B � X are nonempty. Here, the pair (A;B) forms a
�-separation for X.

De�nition 9. [3] Let (X; �) be an E-proximity space and Y � X. Then Y is
�-connected, if it is �-connected with respect to the subspace proximity of Y .

De�nition 10. [3] An E-proximity space X is locally �-connected if for every
point x of X and for every �-neighborhood U of x, there exists some �-connected
�-neighborhood V of x such that x 2 V � U .
De�nition 11. [7,10] Let (X; �X) and (Y; �Y ) be S-proximity spaces. Then a map
f : X �! Y is said to be S-�-continuous if (A;B) =2 �X implies (f(A); f(B)) =2 �Y ,
for all A;B � X.
De�nition 12. [8] Let (X; T ) be a topological space. A pair of non-empty subsets
A;B of X is called Cl � Cl-separated (weak separated) if Cl(A) \ Cl(B) = �. A
subset U of a space X is said to be Cl�Cl-connected (weak connected) if U is not
the union of two Cl � Cl-separated (weak separated) sets in X.
De�nition 13. [4] If an E-proximity space X can be written as X = P [Q with
(P;Q) =2 �, then the pair (P;Q) is said to be a separation for X and write it as
X = P +Q. If P contains some set A and Q contains B, then it can be written as
X = P (A) +Q(B).

De�nition 14. [4] Let X be an E-proximity space. Then it is called �-treelike if it
is �-connected, and for each pair (x; y) of distinct points in X there is a �-connected
set V such that XnV = P (x) +Q(y).

3. S-�-connectedness

In this section, we de�ne S-�-connectedness in S-proximity spaces and give char-
acterizations of it.
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Recall that every discrete proximity is an S-proximity and induces the discrete
topology.

De�nition 15. An S-proximity space X is said to be S-�-connected if every S-�-
continuous map from X to discrete space is constant.

Next, we give a characterization for an S-proximity space to be S-�-connected.

Theorem 16. For an S-proximity space X, the following statements are equivalent:
(i) X is S-�-connected.
(ii) (ClX(A); XnA) 2 � for all nonempty proper subset A of X.
(iii) If X = P [Q with (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �, then either P = �

or Q = �.

Proof. (i) ) (ii). If (ClX(A); XnA) =2 � for some nonempty proper subset A of
X, then the map f : X �! f0; 1g de�ned as f(A) = f0g and f(XnA) = f1g is
non-constant, S-�-continuous map. Therefore, X is not S-�-connected.
(ii) ) (iii). If X = P [ Q, where P , Q are nonempty subsets such that

(ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �, then Q = XnP . Thus, (ClX(P ); XnP ) =2 �, a
contradiction.
(iii)) (i). If X is not S-�-connected, then the map f : (X; �) �! f0; 1g de�ned

as f(P ) = f0g and f(Q) = f1g is non-constant, surjective, S-�-continuous map.
Therefore, X = P[Q, where P , Q are nonempty subsets such that (ClX(P ); Q) =2 �
or (P;ClX(Q)) =2 �, a contradiction. �
De�nition 17. Let X be an S-proximity space. A pair (P;Q) of two nonempty
subsets of X is said to be S-�-separated in X if (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �.
Every S-�-separated sets are always �-separated. However, converse need not be

true.

Example 18. Let X = R be the real line. For P;Q � X, de�ne a binary relation
� on P(X) as:

(P;Q) 2 � if and only if ( �P \Q) [ (P \ �Q) 6= �
Here �P and �Q denote the closure of P and Q in X, respectively. Then � is a
compatible S-proximity on X which is not an L-proximity. The pair P = (1; 2) and
Q = (2; 3) is �-separated, but not S-�-separated in X.

De�nition 19. Let (X; �X) be an S-proximity space and U � X. Then U is said
to be S-�-connected in X (that is, with respect to �X) if it cannot be written as
the union of a pair of two S-�-separated sets in X. If U is not S-�-connected,
then it is called S-�-disconnected and the pair of two S-�-separated sets is called
S-�-separation for U in X.

By an S-�-connected subset U of an S-proximity space (X; �X), we mean it is
an S-�-connected with respect to �X (that is, with respect to the proximity of X
not subspace proximity of U).
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Since every S-�-separation for a set always forms �-separation, therefore every
�-connected set is S-�-connected. But converse need not be true.

Example 20. Let X = R be the real line and � be a S-proximity on X de�ned as in
Example 18. Let U = (1; 2) [ (2; 3). Then U is S-�-connected, but not �-connected
subset of X.

Thus, S-�-connectedness is di¤erent from �-connectedness in general. Next, we
know that �-connectedness [9] of a subset U in E-proximity space (X; �X) is same
as the �-connectedness of U with respect to subspace proximity �U . But, it is
not true for the case of an S-�-connectedness. In Example 20, note that U is S-
�-connected with respect to �X , and with respect to �U , it is not S-�-connected
as ClU ((0; 1)) = (0; 1) and ClU ((1; 2)) = (1; 2) with respect to �U . But, if U is
S-�-connected with respect to �U , then it is also S-�-connected with respect to �X .

Remark 21. The notions of �-connectedness and S-�-connectedness are equivalent
in the category of L-proximity spaces, as for every L-proximity space X, we have
(P;Q) 2 � if and only if (ClX(P ); ClX(Q) 2 � for all non-empty P , Q in X.

Since every E-proximity is an L-proximity, so above remark holds for E-proximity
spaces.
Recall that if for all A;B � X, (A;B) 2 �1 implies (A;B) 2 �2, then �1 > �2.

Corollary 22. Let �1; �2 be two S-proximities on X such that �1 > �2. If X is
S-�1-connected, then so is S-�2-connected.

Theorem 23. Let X be an S-proximity space. Suppose M is an S-�-connected
subset of X and (P;Q) be a pair of S-�-separated sets in X such that M � P [Q.
Then either M � P or M � Q.
Proof. If possible, M * P and M * Q. M is S-�-connected set such that M �
P [Q. Therefore, M = (M \ P ) [ (M \Q). Also by hypothesis (ClX(P ); Q) =2 �
or (P;ClX(Q)) =2 �. If (ClX(P ); Q) =2 �, then (ClX(M \ P );M \ Q) =2 �. On the
other hand, if (P;ClX(Q)) =2 �, then (ClX(M \ Q);M \ P ) =2 �. Thus, the pair
M \ P and M \Q forms an S-�-separation for X. �
Theorem 24. Let M , N are two S-�-connected subsets of an S-proximity space
X. If (M;N) is not S-�-separated, then M [N is S-�-connected in X.

Proof. Suppose (P;Q) be an S-�-separation for M [N . Therefore, M [N = P [Q
where (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Since M and N are S-�-connected.
Thus, by Theorem 23, two case arises:
Case (i). If M � P and N � Q, then (ClX(M); N) =2 � or (M;ClX(N)) =2 �,

because (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Hence, (M;N) is S-�-separated
which is a contradiction.
Case (ii). If M � Q and N � P , then (ClX(N);M) =2 � or (N;ClX(M)) =2 �,

because (ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Hence, (M;N) is S-�-separated
which is a contradiction. �
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Theorem 25. Let fWj : j 2 Jg be a nonempty family of S-�-connected subsets of
an S-proximity space X. If there exists some j0 2 J such that (Wj0 ;Wj) 2 � for
all j 2 J , then

S
j2JWj is also S-�-connected in X.

Proof. If possible, there exists an S-�-separation (P;Q) such that
S
j2JWj = P [Q

with (Cl(P ); Q) =2 � or (P;Cl(Q)) =2 �. Therefore,Wj0 � P [Q which implies either
Wj0 � P orWj0 � Q. IfWj0 � P , thenWj � P for all j 2 J because (Wj0 ;Wj) 2 �
for all j 2 J . Thus

S
j2JWj � P so Q = �. Similarly, if Wj0 � Q, then P = �.

Thus,
S
j2JWj is S-�-connected. �

Corollary 26. If fWj : j 2 Jg is a nonempty family of S-�-connected subsets of
an S-proximity space X and

T
j2JWj 6= �, then

S
j2JWj is also S-�-connected in

X.

Proof. Since
T
j2JWj 6= �, therefore (Wi;Wj) 2 � for all i; j 2 J . So for some

�x j0 2 J , (Wj0 ;Wj) 2 � for all j 2 J . Thus, by Theorem 25,
S
j2JWj is S-�-

connected in X. �
Corollary 27. If Y is an S-�-connected subset of an S-proximity space X, then
every subset Z such that Y � Z � ClX(Y ) is also S-�-connected in X.

Proof. Note that fY [ fzg : z 2 Zg is a family of S-�-connected sets such that Y
is near to each of the set. Therefore, by Theorem 25, Z is S-�-connected. �
Corollary 28. If an S-proximity space X contains some S-�-connected dense sub-
set, then X is S-�-connected.

Proof. Let Y be an S-�-connected dense subset of X. Then, ClX(Y ) = X. There-
fore, by Corollary 27, X is S-�-connected. �
Lemma 29. Let X be an S-proximity space and fMi : i 2 Ig be a nonempty family
of S-�-connected subsets of X. If M is S-�-connected in X such that M \Mi 6= �
for all i 2 I, then M [ (

S
i2IMi) is also S-�-connected in X.

Proof. By Theorem 25, (M;Mi) 2 � for all i 2 I. Hence the proof follows. �
Corollary 30. In an S-proximity space X, if any two points can be joined by an
S-�-connected subset of X, then X is S-�-connected.

Proof. Fix a point x0 in X and let Mx be an S-�-connected subset of X which
joins x0 and x. By Lemma 29, M = fx0g and M \Mx 6= � for all x 2 X. Thus,
M [ (

S
x2XMx) = X is S-�-connected. �

Theorem 31. The S-�-continuous image of S-�-connected space is S-�-connected.

Proof. Let f : (X; �) �! (Y; �0) be S-�-continuous, surjective map and X is S-�-
connected space. It is to show that Y is also an S-�-connected space. On contrary,
suppose Y is not S-�-connected space. So, there exists a pair (P;Q) in Y such
that Y = P [ Q with (ClY (P ); Q) =2 �0 or (P;ClY (Q)) =2 �0. If (ClY (P ); Q) =2 �0,
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then (f�1(ClY (P )); f�1(Q)) =2 �. Since S-�-continuity of f implies continuity with
respect to T�, so ClX(f�1(P )) � f�1(ClY (P )). Thus, (ClX(f�1(P )); f�1(Q)) =2 �.
Hence, (f�1(P ); f�1(Q)) forms an S-�-separation for X, a contradiction. A similar
case for (P;ClY (Q)) =2 �0. �

As every S-�-continuous map is continuous, so every weak connected [8] space is
S-�-connected.

Example 32. The set of rationals Q is an S-�-connected in R, but is not weak
connected.

However, compact Hausdor¤ S-�-connected space is weak connected as every
continuous map with compact Hausdor¤ domain is S-�-continuous. Thus, we have
the following diagram of implications.

� � connected (= connected
+ +

S � � � connected (= weak connected

Following example concludes that a locally �-connected space may not be an
S-�-connected.

Example 33. Let R be the real line and � be a compatible S-proximity de�ned as
in Example 18. Let X = (�1; 0) [ (2; 3). Then the pair (P;Q) where P = (�1; 0)
and Q = (2; 3), is S-�-separation for X. Therefore X is not S-�-connected in R,
but it is locally �-connected.

An S-�-connected space may not be locally �-connected.

Example 34. The closed Topologist�s Sine curve T = f(x; sin(1=x)) : 0 < x �
1g[f(0; y) : �1 � y � 1g with subspace E-proximity induced by R2 is S-�-connected
in R2, but not locally �-connected.

Theorem 35. Suppose f(Xi; �i) : i 2 Ig be a nonempty family of S-proximity
spaces. Then the product (X; �) =

Q
f(Xi; �i) : i 2 Ig is S-�-connected if and only

if Xi is S-�-connected for each i 2 I.

Proof. Let
Q
i2I Xi be S-�-connected. Since S-�-continuous image of S-�-connected

set is S-�-connected, therefore Xi is S-�-connected for each i 2 I as projections are
S-�-continuous, surjective maps.
Conversely, assume that each Xi is S-�-connected. Firstly, take I = f1; 2g. Then

in X1 �X2, any two distinct points (x1; x2) and (y1; y2) can be connected by the
S-�-connected set (X1�fx2g)[ (fy1g�X2). Therefore, X1�X2 is S-�-connected.
Using induction, it can be shown that any �nite product of S-�-connected set is S-
�-connected. Now, for an arbitrary product, choose xi 2 Xi for all i 2 I. Consider
a family F consisting of all �nite subsets of the set I and put KF =

Q
i2I Li for

all F 2 F with Li = Xi if i 2 F and Li = fxig if i =2 F . Then, fKF : F 2 Fg is
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a family of S-�-connected sets by induction hypothesis. Therefore, K =
S
F2F KF

is S-�-connected as
T
F2F KF 6= �. Since K is dense in

Q
i2I Xi, therefore by

Corollary 28,
Q
i2I Xi is S-�-connected. �

De�nition 36. For given S-proximity spaces (X; �) and (Y; �
0
), S-�-continuous

map f : X �! Y is said to be S-�-monotone if for every y 2 Y , the pullback
f�1(y) is S-�-connected in X.

De�nition 37. A map f : (X; �) �! (Y; �
0
) is said to be �b�map if for every pair

of subsets A;B of Y , the following two axioms hold:

(i) If (ClXf�1(A); f�1(B)) =2 �, then (ClY (A); B) =2 �
0
.

(ii) If (f�1(A); ClXf�1(B)) =2 �, then (A;ClY (B)) =2 �
0
.

Following theorem shows that if a map is S-�-monotone, surjective, �b�map,
then inverse image of S-�-connected set is S-�-connected.

Theorem 38. Let f : (X; �) �! (Y; �
0
) be a �b�map, S-�-monotone, surjective

map. Then for each S-�-connected subset U of Y , f�1(U) is S-�-connected in X.

Proof. Let f�1(U) be not S-�-connected. Then, f�1(U) = P[Q with (ClX(P ); Q) =2
� or (P;ClX(Q)) =2 �. As f is S-�-monotone, so for each y 2 U , f�1(y) is S-�-
connected. Thus, f�1(y) � P or f�1(y) � Q for all y 2 U . Now, let us de�ne
A = fy 2 U : f�1(y) � Pg and B = fy 2 U : f�1(y) � Qg. Note that P = f�1(A),
Q = f�1(B) and U = A [ B. Since f is �b� map with (ClX(P ); Q) =2 � or
(P;ClX(Q)) =2 �, therefore (A;B) forms an S-�-separation for U . �

De�nition 39. In an S-proximity space X, a �nite sequence U1; U2; � � � ; Un of
subsets of X is called an S-�-chain if (ClX(Ui); Ui+1) 2 � and (Ui; ClX(Ui+1)) 2 �
for all i = 1; 2; � � � ; n� 1.
A family F of subsets of X is said to be S-�-chained in X if for every pair (U; V )

of elements of F , there is an S-�-chain in F joining U and V .

Theorem 40. Suppose fUigni=1 be a �nite family of S-�-connected subsets of an
S-proximity space X and forms an S-�-chain, then

Sn
i=1 Ui is S-�-connected in X.

Proof. The Proof follows by induction on n as it holds for n = 2 by Theorem 24. �

Theorem 41. For an S-�-chained family F = fUi : i 2 Ig in X, if each member
Ui is S-�-connected in X, then U =

S
i2I Ui is also S-�-connected in X.

Proof. Let x; y 2 U be arbitrary. So, there is some i; j 2 I such that x 2 Ui and
y 2 Uj . Thus by hypothesis, there is an S-�-chain joining Ui and Uj . Therefore,
by Theorem 40, union of all the members of this S-�-chain is S-�-connected. Thus,
x and y can be joined by an S-�-connected set. Hence, by Corollary 30, U is
S-�-connected in X. �
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De�nition 42. In an S-proximity space X, a cover F is said to be an S-�-cover if
(ClX(M); N) 2 � and (M;ClX(N)) 2 � for M;N � X, then there is some U 2 F
such that M \ U 6= � and N \ U 6= �.

Theorem 43. In an S-�-connected space X, every S-�-cover is an S-�-chained
family.

Proof. Assume that F = fUi : i 2 Ig be any S-�-cover of X. Suppose there
exist i; j 2 I such that Ui and Uj can not be joined by any S-�-chain in F . Now,
consider P as the union of all the members of F which are joinable with Ui by
some S-�-chain F 0 � F , and Q as the union of rest of the elements of F . Then
note that X = P [ Q. Now it is to show that X is not S-�-connected, that is,
(ClX(P ); Q) =2 � or (P;ClX(Q)) =2 �. Again on the contrary, let (ClX(P ); Q) 2 �
and (P;ClX(Q)) 2 �. Then there exists U 2 F such that U \P 6= � and U \Q 6= �.
Thus, there is some Um � P and Un � Q such that U \ Um 6= � and U \ Un 6= �.
So, Un can be joined with Ui using an S-�-chain F 00 � F , which is absurd. �
Theorem 44. Let X be an S-�-connected, separated S-proximity space. If for some
x 2 X, Xnfxg = P [Q where (P;Q) is S-�-separated in X, then (fxg; ClX(P )) 2 �
and (fyg; ClX(Q)) 2 �.

Proof. If (fxg; ClX(P )) =2 �, then (fxg; P ) =2 �. Since pair (P;Q) is S-�-separated in
X and X is separated, therefore it is easy to conclude that X is not S-�-connected,
a contradiction. Similarly, conclude that (fyg; ClX(Q)) 2 �. �

4. Local S-�-connectedness

In this section, local S-�-connectedness is de�ned and it�s several properties are
studied.

De�nition 45. The S-�-component of a subset U in an S-proximity space X is
de�ned as the union of all S-�-connected subsets of X containing U and it is denoted
by C�� (U).

Every �-component is contained in some S-�-component. Any S-�-component
being union of S-�-connected sets with nonempty intersection is S-�-connected. An
S-�-component being a maximal S-�-connected set is T�-closed.
Analogously, the S-�-component of a point x can be de�ned as the union of all

S-�-connected subsets of X containing x. Note that S-�-components of any two
distinct points of X are either same or �-far sets in X.
In the next theorem, we show that the S-�-component of product S-proximity

is exactly the product of S-�-components of each S-proximity.

Theorem 46. Suppose f(Xi; �i) : i 2 Ig be a nonempty family of S-proximity
spaces. Then the S-�-component of the product (X; �) =

Q
f(Xi; �i) : i 2 Ig co-

incides with the product
Q
fC��i(xi) : i 2 Ig of each S-�-component of the point

xi 2 Xi.
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Proof. Let C�� (x) be the S-�-component of x in X and for each i 2 I, C��i(xi)
be the S-�-component of xi in Xi. Then,

Q
fC��i(xi) : i 2 Ig being the product

of the S-�-connected sets is S-�-connected. Therefore it is contained in C�� (x).
Conversely, for each i 2 I, piC�� (x) being S-�-continuous image of S-�-connected
set is S-�-connected. Therefore, piC�� (x) � C��i(xi) for each i 2 I. Hence, C

�
� (x) �Q

fpiC�� (x) : i 2 Ig �
Q
fC��i(xi) : i 2 Ig. �

Next, we show that S-�-component is preserved under an S-�-monotone, surjec-
tive, �b�map

Theorem 47. Suppose f : (X; �) �! (Y; �0) be S-�-monotone, surjective and �b�
map. Then C� is an S-�-component of W � Y if and only if f�1(C�) is an S-�-
component of f�1(W ).

Proof. Assume that C� is S-�-component of subspace W � Y . Obviously, f�1(C�)
is S-�-connected by Theorem 38: Now, suppose there is some S-�-connected set M
in f�1(W ) such that f�1(C�) � M � f�1(W ). Since the map f is surjective,
therefore C� � f(M) � W . As f is S-�-continuous being S-�-monotone, so f(M)
is S-�-connected. Thus, f(M) = C� which implies f�1(C�) =M .
Conversely, let f�1(C�) be an S-�-component of f�1(W ). Therfore, f�1(C�)

is S-�-connected subset of f�1(W ) and f is S-�-continuous being S-�-monotone.
Thus, C� is S-�-connected subset of W . Now, suppose that N be an S-�-connected
set such that C� � N � W . Then, f�1(C�) � f�1(N) � f�1(W ) and f�1(N)
is S-�-connected by Theorem 38. Hence, by hypothesis, f�1(C�) = f�1(N) which
implies C� = N . �

De�nition 48. Let X be an S-proximity space. Then X is locally S-�-connected at
x 2 X, if every �-neighbourhood of x contains some S-�-connected �-neighbourhood
of x. We call X is locally S-�-connected if it is locally S-�-connected for all x 2 X.
Further, a subset Y � X is locally S-�-connected if Y is locally S-�-connected in
the subspace S-proximity of X.

Now, we show that locally S-�-connectedness and S-�-connectedness are two
independent concepts.

Example 49. (a). Let X be any discrete proximity space with jXj � 2. Then X
is locally S-�-connected, but it is not S-�-connected.
(b). Suppose X be an S-proximity space de�ned as in Example 33. Then X is

locally S-�-connected, but not S-�-connected.

Example 50. The closed Topologist�s sine curve T = f(x; sin(1=x)) : 0 < x �
1g[f(0; y) : �1 � y � 1g with subspace E-proximity induced by R2 is S-�-connected,
but not locally S-�-connected.

Example 51. The subspace X = f0g[f1=n : n 2 Ng of R with S-proximity de�ned
as in Example 18. Then X is not locally S-�-connected.
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Theorem 52. Suppose x 2 P \ Q, where P and Q are locally S-�-connected sets
at x. Then P [Q is also locally S-�-connected at x.

Proof. Let W be a �-neighbourhood of the point x. Then, WP = W \ P and
WQ =W \Q are �-neighbourhoods of the point x in P and Q respectively. Using
hypothesis, there exist some S-�-connected �-neighbourhoods MP and MQ of x
such that MP � WP and MQ � WQ. Then, x 2MP [MQ � WP [WQ such that
MP [MQ is S-�-connected set. Also, (fxg; (PnMP ) [ (QnMQ)) =2 � which implies
(fxg; (P [Q)n(MP [MQ) =2 �. Therefore, MP [MQ is a �-neighbourhood of x. �

Theorem 53. If an S-proximity space X is locally S-�-connected, then S-�-component
of every T�-open subspace of X is T�-open.

Proof. Assme that X is locally S-�-connected and W be T�-open subspace in X.
Let C� be an S-�-component of W . If y 2 C�, then (fyg; XnW ) =2 �. Therefore W
is a �-neighbourhood of y. Since X is locally S-�-connected, then there exists an
S-�-connected �-neighbourhood M of y such that y 2M �W . But C� is maximal
S-�-connected set containing y, so y 2M � C�. Therefore, C� is T�-open. �

Corollary 54. If X is locally S-�-connected space, then S-�-components of X are
clopen sets in the induced topology T�.

Corollary 55. If an S-proximity space X is locally S-�-connected and compact,
then it has at most �nite number of S-�-components.

De�nition 56. Let U be a subset of an S-proximity space X. Then it is called an
S-�-treelike in X if it is S-�-connected and for each pair of points x; y 2 U there
exists an S-�-connected set V � U in X such that UnV = P [ Q where x 2 P ,
y 2 Q and the pair (P;Q) is S-�-separated in X.

Example 20 shows that there exists an S-�-treelike S-proximity space which is
not �-treelike [4], and from Example 32 we conclude that there exists an S-�-treelike
S-proximity space which is not treelike [1] (Topologically).

Theorem 57. If an S-proximity space X is S-�-treelike, then it is separated.

Proof. SupposeX is not separated. So, there exist two distinct points x; y inX such
that (fxg; fyg) 2 �. Thus, fx; yg is S-�-connected in X. Since X is an S-�-treelike
space, therefore there exists an S-�-connected set U in X such that XnU = P [Q
where x 2 P , y 2 Q and the pair (P;Q) is S-�-separated in X. Then the pair
P \ fx; yg and Q \ fx; yg forms an S-�-separation for fx; yg, a contradiction. �

Authors Contribution Statement All the authors have contributed equally in
the making of this paper.

Declaration of Competing Interests The authors of this paper declare that
there are no con�icts of interest about publication of the paper.



S-�-CONNECTEDNESS IN S-PROXIMITY SPACES 611

References

[1] Brouwer A.E., Treelike Spaces and Related Connected Topological Spaces, Mathematical
Centre Tracts, Mathematisch centrum, 75, 1977.

[2] µCech E., Topological spaces, Wiley London (1966) fr seminar, Brno, 1936� 1939, rev. ed. Z.
Frolik, M. Kat¼etov.

[3] Dimitrijevíc R., Koµcinac Lj., On connectedness of proximity spaces, Mat. Vesnik, 39(1)
(1987), 27� 35.

[4] Dimitrijevíc R., Koµcinac Lj., On treelike proximity spaces, Mat. Vesnik, 39(3) (1987), 257�
261.

[5] Efremoviµc V.A., In�nitesimal spaces, Dokl. Akad. Nauk SSSR, 76 (1951), 341-343 (in
Russian).

[6] Efremoviµc V.A., The geometry of proximity I, Mat. Sb., 31 (1952), 189-200 (in Russian).
[7] Krishna Murti S.B., A set of axioms for topological algebra, J. Indian Math. Soc., 4 (1940),

116� 119.
[8] Modak S., Noiri T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Sér.

A1 Math. Stat., 65 (2016), 49� 52.
[9] Mrówka S. G. , W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc., 15 (1964),

446� 449.
[10] Naimpally S. , Proximity Approach to Problems in Topology and Analysis, Oldenbourg Verlag,

München, 2009.
[11] Naimpally S., Peters j., Topology with Applications; Topological Spaces Via Near and Far,

World Scienti�c Publishing Co. Pte. Ltd., 2013.
[12] Naimpally S., Warrack B.D., Proximity Spaces, Cambridge Univ. Press, 1970.
[13] Reisz F., Stetigkeitsbegri¤ and abstrakte Mengelehre, Atti IV Congr. Intern. dei Mat. Roma,

2 (1908), 18� 24.
[14] Smirnov Y.M., On Completeness of Proximity Spaces I, Amer. Math. Soc. Trans., 38 (1964),

37� 73.
[15] Smirnov Y.M., On Proximity Spaces, Amer. Math. Soc. Trans., 38 (1964), 5� 35.
[16] Szymanski P., La notion des ensembles séparés comme terme primitif de la topologie, Math.

Timisoara, 17 (1941), 65� 84.
[17] Wallace A.D., Separation spaces, Ann. Math., 42(3) (1941), 687� 697.
[18] Wallace A.D., Separation spaces II, Anais. Acad. Brasil Ciencias, 14 (1942), 203� 206.

https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=a.e.+brouwer%2C+treelike+spaces+and+related+connected+topologies%2C+1977&btnG=
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=a.e.+brouwer%2C+treelike+spaces+and+related+connected+topologies%2C+1977&btnG=
https://eudml.org/doc/277000
https://eudml.org/doc/277000
http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=mv&rbr=97
http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=mv&rbr=97
http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=mv&rbr=99
http://elib.mi.sanu.ac.rs/pages/browse_issue.php?db=mv&rbr=99
https://mathscinet.ams.org/mathscinet-getitem?mr=0040748
https://mathscinet.ams.org/mathscinet-getitem?mr=0040748
https://vpn.du.ac.in/proxy/4edabc86/https/mathscinet.ams.org/mathscinet/pdf/55659.pdf?batch_title=Selected%20Matches%20for%3A%20Items%20authored%20by%20Efremovich%2C%20Vadim%20Arsen%CA%B9evich&fmt=doc&pg1=INDI&s1=200563&searchin=&sort=oldest&vfpref=html&r=6
https://mathscinet.ams.org/mathscinet-getitem?mr=2518
https://mathscinet.ams.org/mathscinet-getitem?mr=2518
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=S.+Modak+and+T.+Noiri%2C+A+weaker+form+of+connectedness%2C+&btnG=
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=S.+Modak+and+T.+Noiri%2C+A+weaker+form+of+connectedness%2C+&btnG=
https://www.jstor.org/stable/2034521?seq=1#metadata_info_tab_contents
https://www.jstor.org/stable/2034521?seq=1#metadata_info_tab_contents
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=S.+Naimpally%2C+Proximity+Approach+to+Problems+in+Topology+and+Analysis&btnG=
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=S.+Naimpally%2C+Proximity+Approach+to+Problems+in+Topology+and+Analysis&btnG=
http://library.lol/main/07C7235AB1630059841BA360111D7E47
http://library.lol/main/07C7235AB1630059841BA360111D7E47
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=S.+Naimpally%2C+B.D.+Warrack%2C+Proximity+Spaces&btnG=
https://zbmath.org/?format=complete&q=an:40.0098.07
https://zbmath.org/?format=complete&q=an:40.0098.07
https://books.google.co.in/books?hl=en&lr=&id=emmHE97LyhgC&oi=fnd&pg=PA37&dq=Y.M.+Smirnov,+On+Completeness+of+Proximity+Spaces&ots=KVwMzQPr2I&sig=hrAZFAFG3FFOcYR4zGqM6N-7w9w#v=onepage&q=Y.M.%20Smirnov%2C%20On%20Completeness%20of%20Proximity%20Spaces&f=false
https://books.google.co.in/books?hl=en&lr=&id=emmHE97LyhgC&oi=fnd&pg=PA37&dq=Y.M.+Smirnov,+On+Completeness+of+Proximity+Spaces&ots=KVwMzQPr2I&sig=hrAZFAFG3FFOcYR4zGqM6N-7w9w#v=onepage&q=Y.M.%20Smirnov%2C%20On%20Completeness%20of%20Proximity%20Spaces&f=false
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5547&option_lang=eng
https://mathscinet.ams.org/mathscinet-getitem?mr=7098
https://mathscinet.ams.org/mathscinet-getitem?mr=7098
https://www.jstor.org/stable/1969257?origin=crossref#page_scan_tab_contents
https://mathscinet.ams.org/mathscinet-getitem?mr=7102


Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 70, Number 2, Pages 612�621 (2021)
DOI: 10.31801/cfsuasmas.776651
ISSN 1303�5991 E-ISSN 2618�6470

https://communications.science.ankara.edu.tr

Received by the editors: August 3, 2020; Accepted: March 3, 2021

THE EXISTENCE OF THE BOUNDED SOLUTIONS OF A
SECOND ORDER NONHOMOGENEOUS NONLINEAR

DIFFERENTIAL EQUATION

Mehtap LAFCI BUYUKKAHRAMAN
Department of Mathematics, Faculty of Arts and Sciences,
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Abstract. In this paper, we consider a second order nonlinear di¤erential
equation and establish two new theorems about the existence of the bounded
solutions of a second order nonlinear di¤erential equation. In these theorems,
we use di¤erent Lyapunov functions with di¤erent conditions but we get the
same result. In addition, two examples are given to support our results with
some �gures.

1. Introduction

For more than sixty years, a great deal of work has been done by various authors
to investigate the autonomous and non-autonomous second order nonlinear ordinary
di¤erential equations (ODEs) ( [1]- [5], [7]- [14], [16], [17], [19] ) and references cited
therein.
In investigating the qualitative properties of solutions for second order ODEs,

the �xed point method, perturbation theory, variations of parameter formulas, etc.
have been used to get information without solving the equations. Moreover, in
some of these works, the authors have been studied the Lyapunov direct or second
method by constructing di¤erent Lyapunov functions or using existing Lyapunov
functions.
As far as we know, it should be noted in the relevant literature that so far,

the second method of Lyapunov is the most e¤ective tool for studying qualitative
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features of nonlinear higher order equations without getting solutions of the equa-
tions. This method needs the creation of an appropriate function or functionality
that gives concrete results for the problem being studied.
In 1995, Meng [6] dealt with the ordinary linear di¤erential equation of second

order
x00(t) + p(t)x0(t) + [q1(t) + q2(t)]x(t) = f(t);

and in 2002, Yuangong and Fanwei [18] considered the second order time lag non-
linear di¤erential equation

(r(t)x0(t))0 + p(t)x0(t) + [q1(t) + q2(t)]x(t) = f(t; x(t)):

The authors got some interesting results on the boundedness and square integra-
bility of solutions of the ODEs.
In 2019, Tunç and Mohammed [15] considered two di¤erent models for nonlinear

of second order

x00(t) + p(t)g(x0) + q1(t)h(x) + q2(t)x = f(t; x; x0)

and
x00(t) + �(t; x; x0) + q1(t)x+ q2(t)�(x) = q(t; x; x0):

They investigate asymptotic boundedness of solutions of the ODEs as t �!1:
In this paper, motivated by the work of Tunc and Mohammed [15], we deal with

the following second order nonlinear di¤erential equation:

x00 + f(t; x; x0) + q1(t)'(x) + q2(t) (x) = g(t; x; x0); (1)

where x 2 R = (�1;1); t 2 R+ = [0;1): f 2 C1(R+�R2;R); q1; q2 2 C1(R+;R);
';  2 C1(R;R); g 2 C(R+ � R2;R) and f(t; x; 0) = 0; '(0) = 0;  (0) = 0:
Under the assumptions, the existence of the solutions of Eq. (1) is guaranteed. In
addition, we assume that the functions f; ';  and g ful�ll the Lipschitz condition
with respect to x and its derivative x0. So, the solutions of Eq. (1) are uniqueness.
Eq. (1) can be written as

x0 = y

y0 = �f(t; x; x0)� q1(t)'(x)� q2(t) (x) + g(t; x; x0): (2)

Let

'�(x) =

8<: x�1'(x); x 6= 0
'0(0); x = 0;

 �(x) =

8<: x�1 (x); x 6= 0
 0(0); x = 0

and

f�(t; x; y) =

8<:
y�1f(t; x; y); y 6= 0
f 0y(t; x; 0); y = 0:



614 M. LAFCI BUYUKKAHRAMAN

2. Main Results

The following assumptions are needed to formulate our main results.

(A1) f(t; x; 0) = 0; y�1f(t; x; y) � f0 � 1 for all t 2 R+; x 2 R; y 2 R� f0g:
(A2) '(0) = 0; x�1'(x) � '0 � 1 for all x 2 R� f0g:
(A3)  (0) = 0; x�2 2(x) � 1 for all x 2 R� f0g:
(A4)  (0) = 0; x�1 (x) �  0 � 1 for all x 2 R� f0g:
(A5) q1(t) > 0; q2(t) > 0; q01(t) > 0;8t 2 R+:
(A6) The functions g1(t);�(t); h(t) are continuous such that

jg(t; x; y)j � jg1(t)j;8t 2 R+; 8x; y2R; (3)

�(t) =
1

2
(q01(t) + 2q1(t)); 8t 2 R+;Z 1

a

q22(s)

h2(s)�(s)
ds <1;

Z 1

a

g21(s)

�(s)
ds <1;

h2(t) � 1; 8t 2 R+:

Theorem 1. If the conditions (A1); (A2); (A3); (A5) and (A6) hold, any solution
of Eq. (1) satis�es

jx(t)j � O(1);

����dxdt
���� � O(

p
q1(t)); t �!1:

Proof. We establish the following Lyapunov function because we use the Lyapunov
second method

V (x; y) = 2

Z x

0

'(�)d� +
1

q1(t)
y2: (4)

From (A1); (A2); (A5) and (A6); we get V (x; y) = 0 if and only if x = 0 and y = 0:
From (A2) and q1(t) > 0; we have

V (x; y) � x2 +
1

q1(t)
y2 � 0:

Di¤erentiating the Lyapunov function V in (4) along the solutions of the system
(2) and using (A1); we obtain

d

dt
V = � q

0
1(t)

q21(t)
y2 � 2

q1(t)
yf(t; x; y)� 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y)

� � q
0
1(t)

q21(t)
y2 � 2

q1(t)
y2 � 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y)

= � 2

q21(t)

�
1

2
q01(t) + q1(t)

�
y2 � 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y):

Since

�(t) =
1

2
(q01(t) + 2q1(t)); (5)
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we have
d

dt
V � �2�(t)

q21(t)
y2 � 2q2(t)

q1(t)
y (x) +

2

q1(t)
yg(t; x; y):

We assume that a > 0; b; x 2 R: If we use the inequality

� ax2 + bx � �a
2
x2 +

b2

2a
; (6)

to the terms

�2�(t)
q21(t)

y2 +
2

q1(t)
yg(t; x; y);

and from (A5); (A6); we get

d

dt
V � ��(t)

q21(t)
y2 � 2q2(t)

q1(t)
y (x) +

g21(t)

�(t)
: (7)

Let

W (x; y) = ��(t)
q21(t)

y2 � 2q2(t)
q1(t)

y (x):

Rearranging W (x; y); we have

W (x; y) = ��(t)
q21(t)

�
h(t)y +

q1(t)q2(t)

h(t)�(t)
 (x)

�2
+

q22(t)

h2(t)�(t)
 2(x)+

�(t)

q21(t)

�
h2(t)� 1

�
y2:

Since the �rst term of W (x; y) is negative, it is clear that

W (x; y) � q22(t)

h2(t)�(t)
 2(x) +

�(t)

q21(t)
(h2(t)� 1)y2: (8)

From (7) and (8)

d

dt
V � q22(t)

h2(t)�(t)
 2(x) +

�(t)

q21(t)

�
h2(t)� 1

�
y2 +

g21(t)

�(t)
: (9)

We assume that

q22(t)

h2(t)�(t)
=
�(t)

q1(t)

�
h2(t)� 1

�
:

Hence

h2(t) =
�2(t) +

p
�4(t) + 4q1(t)q22(t)�

2(t)

2�2(t)
:

So, it can be seen that h2(t) � 1 for t 2 R+: Thus, we obtain

W (x; y) � q22(t)

h2(t)�(t)

�
 2(x) +

1

q1(t)
y2
�
: (10)

From (9) and (10)

d

dt
V � q22(t)

h2(t)�(t)

�
 2(x) +

1

q1(t)
y2
�
+
g21(t)

�(t)
: (11)
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Also, from (A3); we know that

 2(x) +
1

q1(t)
y2 � x2 +

1

q1(t)
y2 � V (t):

And applying the inequality to (11), we can derive

d

dt
V � q22(t)

h2(t)�(t)
V � g21(t)

�(t)
:

Multiplying the inequality by

exp

�
�
Z t

t0

q22(s)

h2(s)�(s)
ds

�
and integrating this inequality from t0 to t; we get

V (t) � V (t0) exp

�Z t

t0

q22(s)

h2(s)�(s)
ds

�
+

Z t

t0

�
g21(s)

�(s)
exp

�Z t

s

q22(�)

h2(�)�(�)
d�

��
ds:

Hence we can take

V (t) � V (t0) exp

�Z 1

t0

q22(s)

h2(s)�(s)
ds

�
+

Z 1

t0

�
g21(s)

�(s)
exp

�Z 1

s

q22(�)

h2(�)�(�)
d�

��
ds:

Because of (A6); we can assume that

V (t0) exp

�Z 1

t0

q22(s)

h2(s)�(s)
ds

�
+

Z 1

t0

�
g21(s)

�(s)
exp

�Z 1

s

q23(�)

h2(�)�(�)
d�

��
ds = A;

where A > 0; A 2 R: So, we have
V (t) � A

and

x2 +
1

q1(t)
y2 � V (t) � A:

Therefore, we �nd
jx(t)j �

p
A; jy(t)j �

p
Aq1(t):

Hence
jx(t)j � O(1); jy(t)j � O(

p
q1(t)); t �!1:

�
The result of the following theorem is the same as the result of Theorem 1 but

we use di¤erent Lyapunov function and some di¤erent conditions in Theorem 2.

Theorem 2. If the conditions (A1); (A2); (A4); (A5) and (A6) hold, any solution
of Eq. (1) satis�es

jx(t)j � O(1);

����dxdt
���� � O(

p
q1(t)); t �!1:
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Proof. We determine the Lyapunov function as follows

V (x; y) = 2

Z x

0

�
'(�) +

q2(t)

q1(t)
 (�)

�
d� +

1

q1(t)
y2: (12)

From (A1); (A2); (A4); (A5) and (A6); we get V (x; y) = 0 if and only if x = 0
and y = 0: From (A2); (A4); q1(t) > 0 and q2(t) > 0; we have

V (x; y) �
�
1 +

q2(t)

q1(t)

�
x2 +

1

q1(t)
y2 � 0:

Di¤erentiating the Lyapunov function V in (12) along the solutions of the system
(2) and using (A1); we �nd

d

dt
V = � 2

q1(t)
yf(t; x; y) +

2

q1(t)
yg(t; x; y)� q01(t)

q21(t)
y2

� � 2y2

q1(t)
+

2

q1(t)
yg(t; x; y)� q01(t)

q21(t)
y2

= � 2

q21(t)

�
1

2
q01(t) + q1(t)

�
y2 +

2

q1(t)
yg(t; x; y):

De�ning �(t) as in (5), we have

d

dt
V � �2�(t)

q21(t)
y2 +

2

q1(t)
yg(t; x; y):

Let a > 0; b; x 2 R: From the inequality (6) and (A6); we get

d

dt
V � ��(t)

q21(t)
y2 +

g21(t)

�(t)
:

Since the �rst term of the inequality is negative, we can write

d

dt
V � g21(t)

�(t)
:

Integrating this inequality from t0 to t; we get

V (t) � V (t0) +

Z t

t0

g21(s)

�(s)
ds:

Hence we can take

V (t) � V (t0) +

Z 1

t0

g21(s)

�(s)
ds:

Because of (A6); we can assume that

V (t0) +

Z 1

t0

g21(s)

�(s)
ds = B; B > 0; B 2 R:

So, we have
V (t) � B:
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From (A2); (A4) and (A5); we know that

x2 +
1

q1(t)
y2 � V (t) � B:

Therefore, we �nd
jx(t)j �

p
B; jy(t)j �

p
Bq1(t):

Hence
jx(t)j � O(1); jy(t)j � O(

p
q1(t)); t �!1:

�

Remark 3. If it is taken f(t; x; x0) = p(t)g(x0) and  (x) = x in Eq. (1) or
'(x) = x in Eq. (1), Theorem 1 or Theorem 2 in [15] is obtained, respectively.

3. Examples

Example 4. As a special case of Eq. (1), we consider the following second order
nonlinear ODE

x00 + 6x0 + x0e�t�x
2

+ 5e3t(5 + sinx)x+ 2e2t(1� e�x
2

)x =
cost

e3t(1 + 2ex4)
(13)

or

x0 = y

y0 = �6x0 � x0e�t�x
2

� 5e3t(5 + sinx)x� 2e2t(1� e�x
2

)x+
cost

e3t(1 + 2ex4)
:

It is clear that the conditions (A1); (A2); (A3); (A5) and (A6) are satis�ed. So,
from Theorem 1, all solutions of Eq. (13) satisfy

jx(t)j � O(1);

����dxdt
���� � O(

p
5e3t); t �!1

as shown in Fig. 1 obtained by using the adaptive MATLAB solver ode45.

Example 5. Taking f(t; x; x0) = 5x0et sin2 x; q1(t) = 2e3t; '(x) = xex
2

; q2(t) =

5e4t;  (x) = (3 + sinx)x and g(t; x; x0) =
sinx0

e6t(2 + ex2)
in Eq. (1), we get the

following second order nonlinear ODE

x00 + 5x0et sin2 x+ 2e3txex
2

+ 5e4t(3 + sinx)x =
sinx0

e6t(2 + ex2)
(14)

or

x0 = y

y0 = �5x0et sin2 x� 2e3txex
2

� 5e4t(3 + sinx)x+ sinx0

e6t(2 + ex2)
:
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Figure 1. The solution of Eq. (13) with the initial conditions
x(0) = 0; y(0) = �1 in t 2 [0; 10]:

It is clear that the conditions (A1); (A2); (A4); (A5) and (A6) are satis�ed. So,
from Theorem 2, all solutions of Eq. (14) satisfy

jx(t)j � O(1);

����dxdt
���� � O(

p
2e�3t); t �!1

as shown in Fig. 2 obtained by using the adaptive MATLAB solver ode45.

4. Conclusion

We have presented a new second order nonlinear di¤erential equation (1) to study
the existence of the bounded solutions of the equation by using the Lyapunov direct
or second method. Additionally, we give two examples to support our main results.
Also, MATLAB has been used to draw two �gures. Fig. 1 in �rst example shows the
solution (x(t); y(t)) of Eq. (13) with the initial conditions x(0) = 0; y(0) = �1 in
t 2 [0; 10]: The solution is bounded since the conditions of Theorem 1 are satis�ed.
Fig. 2 exempli�es the solution (x(t); y(t)) of Eq. (14) with the initial conditions
x(0) = 1; y(0) = 0 in t 2 [0; 7]: The solution is bounded since the conditions of
Theorem 2 are satis�ed. Moreover, taking f(t; x; x0) = p(t)g(x0) and  (x) = x or
'(x) = x in Eq. (1), Theorem 1 or Theorem 2 in [15] is gotten, respectively. So,
Eq. (1) is a generalization of Eq. (6) and Eq. (7) in [15].

Declaration of Competing Interest The author has no competing interest to
declare.
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Figure 2. The solution of Eq. (14) with the initial conditions
x(0) = 1; y(0) = 0 in t 2 [0; 7]:
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THE GENERALIZED LUCAS HYBRINOMIALS
WITH TWO VARIABLES

Emre SEVG·I
Department of Mathematics, Gazi University, Ankara, TURKEY

Abstract. Özdemir de�ned the hybrid numbers as a generalization of com-
plex, hyperbolic and dual numbers. In this research, we de�ne the generalized
Lucas hybrinomials with two variables. Also, we get the Binet formula, gen-
erating function and some properties for the generalized Lucas hybrinomials.
Moreover, Catalan�s, Cassini�s and d�Ocagne�s identities for these hybrinomi-
als are obtained. Lastly, by the help of the matrix theory we derive the matrix
representation of the generalized Lucas hybrinomials.

1. Introduction

Many researchers have studied on applications of the Fibonacci and the Lucas
numbers for a long time in engineering, arts, physics and nature. These sequences
have taken a huge interest of many authors.
The Fibonacci numbers are de�ned recursively by

Fn = Fn�1 + Fn�2

for n � 2 with initial values F0 = 0 and F1 = 1 [4]:
The Lucas numbers are de�ned with the same recurrence relation of the Fi-

bonacci numbers with initial values L0 = 2 and L1 = 1 [4]:
For the variable x; Catalan de�ned the Lucas polynomials with the recurrence

relation
Ln(x) = xLn�1(x) + Ln�2(x); n � 2

with L0(x) = 2 and L1(x) = x [4].
Bergum and Hoggatt studied on the generalized Lucas polynomials and de�ned

these polynomials recursively by
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Vn(x; y) = xVn�1(x; y) + yVn�2(x; y); n � 2
with the initial conditions V0(x; y) = 2 and V1(x; y) = x [1]:
After that, Swamy obtained some identities and properties for the generalized

Lucas sequence [7].
The �rst few terms of this sequence are

n Vn(x; y)

0 2

1 x

2 x2 + 2y

3 x3 + 3xy

4 x4 + 4x2y + 2y2

5 x5 + 5x3y + 5xy2

6 x6 + 6x4y + 9x2y2 + 2y3

For simplicity, we will use Vn instead of Vn(x; y).
The characteristic equation of this sequence is

v2 � xv � y = 0
with the roots

� =
x+

p
x2 + 4y

2
; � =

x�
p
x2 + 4y

2
: (1)

Lemma 1. [7] The roots � and � de�ned in (1) satisfy the following properties
� �+ � = x
� �� � =

p
x2 + 4y

� �� = �y

Lemma 2. [7]For n � 0 the Binet formula for the generalized Lucas polynomials
is

Vn = �
n + �n:

The hybrid numbers were de�ned by Özdemir as a generalization of complex, hy-
perbolic and dual numbers [5]. The set of hybrid numbers is

K = fa+ bi+ c"+ dh : a; b; c; d 2 Rg :
Let Z1 = a1 + b1i + c1" + d1h and Z2 = a2 + b2i + c2" + d2h be any two hybrid
numbers. Then the main operations on hybrid numbers are de�ned as follows:

Z1 = Z2 if and only if a1 = a2; b1 = b2; c1 = c2; d1 = d2

Z1 + Z2 = (a1 + a2) + (b1 + b2) i+ (c1 + c2) "+ (d1 + d2)h

Z1 � Z2 = (a1 � a2) + (b1 � b2) i+ (c1 � c2) "+ (d1 � d2)h



624 E. SEVG·I

sZ1 = sa1 + sb1i+ sc1"+ sd1h; where s 2 R:
By using the following multiplication table, one can �nd the product of any two

hybrid numbers:
� 1 i " h
1 1 i " h
i i �1 1� h "+ i
" " h+ 1 0 �"
h h �"� i " 1

By using the elements of integer sequences as coe¢ cients of hybrid numbers, many
authors de�ned new type of hybrid numbers ( [8, 9, 3, 2, 10, 11, 12, 14]). The most
exciting studies among the cited works are the Fibonacci hybrid numbers and the
Lucas hybrid numbers which were de�ned as

FHn = Fn + iFn+1 + "Fn+2 + hFn+3

and
LHn = Ln + iLn+1 + "Ln+2 + hLn+3

respectively.
After that, for n � 0 Szynal-Liana and W÷och [13] de�ned the Fibonacci and the

Lucas hybrinomials as

FHn(x) = Fn(x) + iFn+1(x) + "Fn+2(x) + hFn+3(x)

and
LHn(x) = Ln(x) + iLn+1(x) + "Ln+2(x) + hLn+3(x)

respectively.

2. Main Results

De�nition 3. For n � 0 the Lucas hybrinomials with two variables x and y, called
the generalized Lucas hybrinomials de�ned by

V Hn(x; y) = Vn + iVn+1 + "Vn+2 + hVn+3

where Vn is the nth generalized Lucas polynomial.

For simplicity, we will use V Hn instead of V Hn(x; y).

Theorem 4. For the variables x and y; the generalized Lucas hybrinomials provides
the recurrence relation

V Hn = xV Hn�1 + yV Hn�2; n � 2
with the initial conditions

V H0 = 2 + ix+ "(x
2 + 2y) + h(x3 + 3xy) and

V H1 = x+ i(x
2 + 2y) + "(x3 + 3xy) + h(x4 + 4x2y + 2y2):
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Proof. For n = 2;we get

V H2 = xV H1 + yV H0

= x
�
x+ i(x2 + 2y) + "(x3 + 3xy) + h(x4 + 4x2y + 2y2)

�
+y
�
2 + ix+ "(x2 + 2y) + h(x3 + 3xy)

�
= x2 + 2y + i(x3 + 3xy) + "(x4 + 4x2y + 2y2) + h(x5 + 5x3y + 5xy2)

= V2 + iV3 + "V4 + hV5:

For n > 2; using the de�nition of the generalized Lucas polynomials, we obtain
V Hn = Vn + iVn+1 + "Vn+2 + hVn+3

= (xVn�1 + yVn�2) + i(xVn + yVn�1)

+" (xVn+1 + yVn) + h (xVn+2 + yVn+1)

= x (Vn�1 + iVn + "Vn+1 + hVn+2)

+y (Vn�2 + iVn�1 + "Vn + hVn+1)

= xV Hn�1 + yV Hn�2:

So, the proof is completed. �

For y = 1; we obtain the Lucas hybrinomials.
For x = y = 1; we obtain the Lucas hybrid numbers.

Theorem 5. For any integer n � 0; the Binet formula for the generalized Lucas
hybrinomials is de�ned as

V Hn = �
n(1 + i�+ "�2 + h�3) + �n(1 + i� + "�2 + h�3)

where � =
x+

p
x2 + 4y

2
and � =

x�
p
x2 + 4y

2
:

Proof. Using the de�nition of the generalized Lucas hybrinomials and the Binet
formula for the generalized Lucas polynomials, we get

V Hn = Vn + iVn+1 + "Vn+2 + hVn+3

= �n + �n + i
�
�n+1 + �n+1

�
+ "

�
�n+2 + �n+2

�
+ h

�
�n+3 + �n+3

�
= �n(1 + i�+ "�2 + h�3) + �n(1 + i� + "�2 + h�3)

�

For expressing the notations simply, letb� = 1 + i�+ "�2 + h�3b� = 1 + i� + "�2 + h�3:

Then, we can write the Binet formula for the generalized Lucas hybrinomials as

V Hn = �
nb�+ �nb�:

Theorem 6. The generating function for the generalized Lucas hybrinomials is
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1P
n=0

V Hnt
n

=
2 + ix+ "(x2 + 2y) + h(x3 + 3xy) + (�x+ i2y + "xy + h

�
x2y + 2y2

�
)t

1� xt� yt2 :

Proof. Suppose that the formal power series representation of the generating func-
tion for the generalized Lucas hybrinomials is

G(t) =
1X
n=0

V Hnt
n = V H0 + V H1t+ V H2t

2 + � � � (2)

Then, multiplying the equation (2) by �xt and �yt2 respectively, we have
�G(t)xt = �V H0xt� V H1xt2 � V H2xt3 � � � �
and
�G(t)yt2 = �V H0yt2 � V H1yt3 � V H2yt4 � � � �
By using the above equations and the fact that for n � 2 the coe¢ cients of tn

are zero by the recurrence relation of the generalized Lucas hybrinomials, we obtain

G(t)
�
1� xt� yt2

�
= V H0 + (V H1 � V H0x) t: (3)

Finally, by substituting V H0 and V H1 in the equation (3) ; we get

G(t) =
2 + ix+ "(x2 + 2y) + h(x3 + 3xy) + (�x+ i2y + "xy + h

�
x2y + 2y2

�
)t

1� xt� yt2 :

�

Lemma 7. [6]For any integer n � 2; the generalized Lucas polynomials provides
the summation formula

n�1X
m=1

Vm =
Vn + yVn�1 � x� 2y

x+ y � 1 :

Theorem 8. For any integer n � 2; the generalized Lucas hybrinomials provides
the summation formula

n�1X
m=1

V Hm =
V Hn + yV Hn�1 � V H1 � yV H0

x+ y � 1 :

Proof. By using the de�nition of the generalized Lucas hybrinomials, we have
n�1X
m=1

V Hm = V H1 + V H2 + � � �+ V Hn�1

= V1 + iV2 + "V3 + hV4

+ V2 + iV3 + "V4 + hV5

...
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+ Vn�1 + iVn + "Vn+1 + hVn+2

= V1 + V2 + � � �+ Vn�1
+ i [V2 + V3 + � � �+ Vn + (V1 � V1)]
+ " [V3 + V4 + � � �+ Vn+1 + (V1 + V2 � V1 � V2)]
+ h[V4 + V5 + � � �+ Vn+2 + (V1 + V2 + V3 � V1 � V2 � V3)]

By using the previous lemma, we have

n�1X
m=1

V Hm =
Vn + yVn�1 � x� 2y

x+ y � 1

+ i

�
Vn+1 + yVn � x� 2y

x+ y � 1 � V1
�

+ "

�
Vn+2 + yVn+1 � x� 2y

x+ y � 1 � V1 � V2
�

+ h

�
Vn+3 + yVn+2 � x� 2y

x+ y � 1 � V1 � V2 � V3
�
:

Substituting V1; V2, V3 and making the fractions common denominator, we obtain

n�1X
m=1

V Hm =
Vn + yVn�1 � x� 2y

x+ y � 1

+ i

�
Vn+1 + yVn � x� 2y � x (x+ y � 1)

x+ y � 1

�
+ "

1

x+ y � 1 (Vn+2 + yVn+1 � x� 2y � x (x+ y � 1)

�
�
x2 + 2y

�
(x+ y � 1)

�
+ h

1

x+ y � 1 (Vn+3 + yVn+2 � x� 2y � x (x+ y � 1)

�
�
x2 + 2y

�
(x+ y � 1)�

�
x3 + 3xy

�
(x+ y � 1)

�
:

Finally, we get the result as
n�1X
m=1

V Hm =
Vn + iVn+1 + "Vn+2 + hVn+3

x+ y � 1

+ y
Vn�1 + iVn + "Vn+1 + hVn+2

x+ y � 1

� 1

x+ y � 1
�
x+ 2y + i

�
x2 + 2y + yx

�
+ "(x3 + 3xy + y(x2 + 2y))

+h(x4 + 4x2y + 2y2 + y
�
x3 + 3xy

�
)
�
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=
V Hn + yV Hn�1 � V H1 � yV H0

x+ y � 1 :

�
Theorem 9 (Catalan Identity). For the nonnegative integers n and r with n � r;
we have

V Hn�rV Hn+r � (V Hn)2 = (�y)n b�b���r
�r
� 1
�
+ (�y)n b�b���r

�r
� 1
�
:

Proof. By using the Binet formula for the generalized Lucas hybrinomials, we have

V Hn�rV Hn+r � (V Hn)2

=
�
�n�rb�+ �n�rb����n+rb�+ �n+rb��� ��nb�+ �nb����nb�+ �nb��

= �n�r�n+rb�b� + �n�r�n+rb�b�� �n�nb�b� � �n�nb�b�
= �n�nb�b���r

�r
� 1
�
+ �n�nb�b���r

�r
� 1
�

= (�y)n b�b���r
�r
� 1
�
+ (�y)n b�b���r

�r
� 1
�
:

�
Theorem 10 (Cassini Identity). For any nonnegative integer n; we have

V Hn�1V Hn+1 � (V Hn)2 = (�y)n b�b���
�
� 1
�
+ (�y)n b�b���

�
� 1
�

Proof. Since the Cassini identity is a special case of the Catalan identity, by taking
r = 1 in the Catalan identity theorem can be proved easily. �
Theorem 11 (d�Ocagne Identity). For the nonnegative integers m and n with
m � n; we have

V HmV Hn+1 � V Hm+1V Hn = (�y)n (�� �)
�
�m�nb�b�� �m�nb�b�� :

Proof. By using the Binet formula for the generalized Lucas hybrinomials, we have

V HmV Hn+1 � V Hm+1V Hn

=
�
�mb�+ �mb����n+1b�+ �n+1b��� ��m+1b�+ �m+1b����nb�+ �nb��

= �m+n+1b�2 + �m�n+1b�b� + �m�n+1b�b�+ �m+n+1b�2
��m+n+1b�2 � �m+1�nb�b� � �m+1�nb�b�� �m+n+1b�2

=
�
�m�n+1 � �m+1�n

� b�b� + ��m�n+1 � �m+1�n� b�b�
= �m�n (� � �) b�b� + �m�n (�� �) b�b�
= (�y)n (�� �)

�
�m�nb�b�� �m�nb�b�� :

�
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Theorem 12. For any nonnegative integer n; we have�
V Hn+2 V Hn+1
V Hn+1 V Hn

�
=

�
V H2 V H1
V H1 V H0

� �
x 1
y 0

�n
Proof. We prove the theorem using induction method on n.
For n = 0; the result is obvious.
Assume that for any n � 0 the theorem holds�

V Hn+2 V Hn+1
V Hn+1 V Hn

�
=

�
V H2 V H1
V H1 V H0

� �
x 1
y 0

�n
:

We must show that for n+ 1 the theorem holds�
V Hn+3 V Hn+2
V Hn+2 V Hn+1

�
=

�
V H2 V H1
V H1 V H0

� �
x 1
y 0

�n+1
:

By using the induction hypothesis, we have�
V H2 V H1
V H1 V H0

� �
x 1
y 0

�n+1
=

�
V H2 V H1
V H1 V H0

� �
x 1
y 0

�n �
x 1
y 0

�
=

�
V Hn+2 V Hn+1
V Hn+1 V Hn

� �
x 1
y 0

�
=

�
xV Hn+2 + yV Hn+1 V Hn+2
xV Hn+1 + yV Hn V Hn+1

�
=

�
V Hn+3 V Hn+2
V Hn+2 V Hn+1

�
which completes the proof. �

3. Conclusion

In the present work, we de�ne the generalized Lucas hybrinomials with two vari-
ables x and y. Then, Binet formula, generating function and some properties of the
generalized Lucas hybrinomials are obtained. Moreover, we obtain Catalan, Cassini
and d�Ocagne identities for these hybrinomials. Finally, we derive the generalized
Lucas hybrinomials by the help of matrix theory.
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NONLINEAR MATRIX EQUATIONS
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Abstract. In the present paper, we introduce the notion of generalized F<-
contraction and establish some �xed point results for such mappings, which
extend and generalize the result of Alam and Imdad [1], Sawangsup et al. [23]
and many others. Our results reveal that the assumption of M -closedness of
underlying binary relation is not a necessary condition for the existence of
�xed points in relational metric spaces. We also derive some N -order �xed
point theorems from our main results. As an application of our main result,
we �nd a solution to a certain class of nonlinear matrix equations.

1. Introduction

It is widely known that the Banach contraction principle (BCP) [7] is the �rst
metric �xed point theorem and one of the most powerful and versatile result in
the �eld of nonlinear analysis. It asserts that every contraction mapping on a
complete metric space possesses a unique �xed point. Several extensions of this
principle were considered by many authors to various generalized contractions and
di¤erent type of spaces (see [1], [3], [4], [5], [6], [8], [10], [12], [18], [20], [21], [26]).
Wardowski [26] generalized the Banach contraction principle by introducing the
notion of F-contraction on metric spaces. The result of Wardowski was further
extended and generalized by several authors (see [10], [11], [12], [17], [19], [27] and
references therein) by improving the condition of F-contraction .
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Another important generalization of the BCP was obtained by Alam and Imdad
[1] in 2015. They generalized the BCP to complete metric spaces endowed with
an arbitrary binary relation. Subsequently, Sawangsup et al. [23] introduced the
notion of F<-contraction in relational metric space by modifying the condition of
F-contraction. They also introduced the notion of F<N - contraction and established
some multidimensional �xed point results of N -order.
In the present paper, we improve the idea of Sawangsup et al. [23] by introduc-

ing the notion of generalized F<-contraction mappings and prove some �xed point
results for such mappings. Our results generalize the result of Alam and Imdad [1],
Wardowski [26], Sawangsup et al. [23] and many others in the existing literature.
We also introduce the notions of multidimensional generalized F<N -contraction and
F<N -graph contraction and prove some multidimensional results for the existence of
�xed points of N -order. Our results do not force the underlying binary relation to
be M -closed for the existence of �xed points in relational metric spaces. Moreover,
we furnish some examples to demonstrate the usefulness of our main results. As an
application, we apply our result to �nd a solution of a class of non-linear matrix
equations.

2. Preliminaries

Throughout this paper, we assume that N, N0, R and R+ stand for the set of
positive integers, the set of non-negative integers, the set of real numbers and the
set of positive real numbers, respectively.

De�nition 1. [26] Let F denotes the family of all functions F : R+ ! R satisfying
the following properties:

(F1) F is strictly increasing, i.e., for all %; � 2 R+ such that % < �; F(%) < F(�);
(F2) for each sequence f%ngn2N of positive numbers we have limn!1 %n = 0 i¤

limn!1 F(%n) = �1;
(F3) there exists k 2 (0; 1) such that lim%!0+ %

kF(%) = 0.

Example 2. [26] Let Fi : R+ ! R, i = 1; 2; 3; 4 by:

(i) F1(%) = log(%) for all % > 0;
(ii) F2(%) = %+ log(%) for all % > 0;
(iii) F3(%) = � 1p

% for all % > 0;

(iv) F4(%) = log(%2 + %) for all % > 0:

De�nition 3. [26] Let (X; d) be a metric space and M : X ! X be a mapping.
The mapping M is said to be a F-contraction if there exists � > 0 and F 2 F such
that

d(M�;M�) > 0 =) � + F(d(M�;M�)) � F(d(�; �)); �; � 2 X:

We accept the following relation-theoretic notations and de�nitions in our sub-
sequent discussions.
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De�nition 4. [1] Let X be a non-empty set. A binary relation < on X is a subset
of X �X. We say that � relates to � under < if and only if (�; �) 2 <:

De�nition 5. [1] Let < be a binary relation on X. If either (�; �) 2 < or (�; �) 2 <
then we say � and � are <-comparable and we denote it by [�; �] 2 <.

De�nition 6. [1] A binary relation < de�ned on a non-empty set X is called

(a) re�exive if (�; �) 2 < for all � 2 X;
(b) irre�exive if (�; �) 62 < for all � 2 X;
(c) symmetric if (�; �) 2 < implies (�; �) 2 <;
(d) antisymmetric if (�; �) 2 < and (�; �) 2 < implies � = �;
(e) transitive if (�; �) 2 < and (�; z) 2 < implies (�; z) 2 <;
(f) complete, connected or dichotomous if [�; �] 2 < for all �; � 2 X;
(g) weakly complete, weakly connected or trichotomous if [�; �] 2 < or � = �

for all �; � 2 X.

De�nition 7. [1] Let X be a non-empty set and < be a binary relation on X. A
sequence f�ng 2 X is called <-preserving if

(�n; �n+1) 2 <; for all n 2 N0:

De�nition 8. [1] Let (X; d) be a metric space and < be a binary relation on X: If
for any <-preserving sequence f�ng on X such that

f�ng
d�! �;

there exists a subsequence f�nkg of f�ng with [�nk ; �] 2 <, for all k 2 N0, then the
binary relation < is called d-self-closed on X:

De�nition 9. [1,22] Let X be a non-empty set and M be a self-mapping on X. A
binary relation < is called M -closed, if for �; � 2 X with

(�; �) 2 < =) (M�;M�) 2 <

and the mapping M is also called comparative mapping on X, under binary relation
<.

De�nition 10. [14] Let < be a binary relation on X andM : X ! X be a mapping.
We denote the relational graph of mapping M under the binary relation < on X,
by G(M ;<) and de�ned as:

G(M ;<) = f(�;M�) 2 < : � 2 Xg:

De�nition 11. [14] Let < be a binary relation on X and M : X ! X be a self-
mapping. By X(M ;<), we denotes the set of all those � 2 X for which (�;M�) 2
G(M ;<), that is,

X(M ;<) = f� 2 X : (�;M�) 2 G(M ;<)g:
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The above De�nition 11 is equivalent to the De�nition 2.12 of Shukla and
Rodríguez-López [25] which states that X(M ;<) is a set of all those points � in X
for which (�;M�) 2 <, that is,

X(M ;<) = f� 2 X : (�;M�) 2 <g:

De�nition 12. [14] Let (X; d) be a metric space, < be a binary relation on X
and M : X ! X be a mapping. A binary relation < is called MG-d-closed if the
following condition holds:

(�; �) 2 G(M ;<); d(M�;M�) � d(�; �) =) (M�;M�) 2 G(M ;<):

Remark 13. We notice that the condition of MG-d-closedness is weaker than the
condition of M -closedness. The following example illustrates this fact.

Example 14. Let X = [0; 1] equipped with usual metric d(�; �) = j�� �j. Let a bi-
nary relation < and a self-mapM on X be de�ned as < = f(0; 0); (1; 0); (1; 1); (1=3; 1)g
and

M(�) =

�
�=4; if � 2 [0; 1=3];
1; if � 2 (1=3; 1]:

Then G(M ;<) = f(0; 0); (1; 1)g and for each (�; �) 2 G(M ;<), we have d(M�;
M�) = d(�; �) and (M�;M�) 2 G(M ;<). Hence the binary relation < is MG-
d-closed. But < is not M -closed in X because (1=3; 1) 2 < and (M1=3;M1) =
(1=12; 1) =2 <.

De�nition 15. [2] Let (X; d) be a metric space and < be a binary relation on X.
A self-mapping M on X is called <-continuous mapping at point � 2 X if for

any <-preserving sequence f�ng such that f�ng
d�! �, we have fM(�n)g

d�! M(�).
Moreover, M is called <-continuous if it is <-continuous at each point of X.

By above de�nition, it is clear that every continuous mapping is <-continuous
and under universal relation the de�nition of <-continuity coincides with the de�-
nition of continuity.

De�nition 16. [16] A self-mapping M of a metric space (X; d) is called k- con-
tinuous, k = 1; 2; 3 : : : ; at a point � 2 X if fMk�ng ! M�, whenever f�ng is a
sequence in X such that fMk�1�ng ! � in X. Moreover, M is called k-continuous
if it is k-continuous at each point of X.

It is obvious by the de�nition of k-continuity that every continuous mapping M
of a metric space (X; d) is k-continuous and the notion of continuity coincides with
the notion of 1-continuity. However, k-continuity of a function (for k � 2) does not
imply the continuity of the function (see Example 1.2 in [16]).

De�nition 17. [13] Let (X; d) be a metric space endowed with a binary rela-
tion <. A mapping M : X ! X is called (<; k)-continuous at a point � 2 X

if whenever f�ng is <-preserving sequence in X such that fMk�1�ng
d�! �, we have
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fMk(�n)g
d�!M� . Moreover, if M is a (<; k)-continuous at each point of X then

M is called (<; k)-continuous.

By the de�nition of (<; k)-continuity, it is clear that every <-continuous mapping
is a (<; k)-continuous mapping and both the de�nitions coincide for k = 1. Also
every k-continuous mapping is (<; k)-continuous and for universal relation the def-
inition of (<; k)-continuity is equivalent to the de�nition of k-continuity introduced
by Pant and Pant in [16].

Remark 18. Every continuous, k-continuous and <-continuous mapping is a (<; k)-
continuous mapping but converse may not be true. The following example illustrates
that (<; k)-continuity does not imply <-continuity and k-continuity as well.

Example 19. Let X = [�1; 2] be a metric space equipped with a usual metric
d(�; �) = j� � �j. Let < = f( 12n ;

1
2n+1 ) : n 2 Ng be a binary relation on X and M

be a self-mapping on X, de�ned as

M(�) =

8<: 1=3; if � 2 [�1; 0];
1=2; if � 2 (0; 1];
�; if � 2 (1; 2]:

Clearly, M is not a continuous mapping in X and the sequence f�ng = f 1
2n g; n 2 N

is <-preserving in X as (�n; �n+1) 2 <; for all n 2 N. Since f�ng ! 0 as n!1
then fM�ng ! 1=2 6=M0. Hence, M is not a <-continuous mapping in X. Now,
for each k = 2; 3; 4; : : :,

Mk(�) =

�
1=2; if � 2 [�1; 1];
�; if � 2 (1; 2]:

Since Mk(�) is continuous everywhere in X, except at � = 1. Also, there does not
exist any <-preserving sequence f�ng in X such that fMk�1�ng ! 1 as n!1. So
M is obviously a (<; k)-continuous mapping in X. However, for f�ng = f1+ 1

ng; n 2
N, fMk�1�ng ! 1 and fMk�ng ! 1 6=M1 yieldsM is not a k-continuous mapping
in X.
Hence, the mapping M is a (<; k)-continuous mapping in X, but M is neither

a continuous nor a k-continuous and also not a <-continuous mapping in X.

De�nition 20. [2] Let (X; d) be a metric space and < be a binary relation on X.
If every <-preserving Cauchy sequence converges in X, then we say that (X; d) is
<-complete .

Every complete metric space is <-complete under an arbitrary binary relation <
and both the de�nitions coincide under the universal relation.

De�nition 21. [15] Let < be a binary relation on a non-empty set X and �; � 2 X.
A path of length k 2 N in < from � to � is a �nite sequence fz0; z1; : : : ; zkg � X
satisfying the following conditions:
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(1) z0 = � and zk = �;
(2) (zi; zi+1) 2 < for all i 2 f0; 1; 2; : : : ; k � 1g.
We denote by (�; �;<), the family of all paths in < from � to �.

3. Main Results

Firstly, we introduce the notion of generalized F<-contraction mapping and F<-
graph contraction mapping. Then, we will state our main results.

De�nition 22. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M be a self-mapping on X and A is any non-empty subset of X(M ;<).
Then, the mapping M is called a generalized F<-contraction with respect to A, if
for each �; � 2 A with (�; �) 2 <, there exist F 2 F and � > 0 such that

d(M�;M�) > 0 =) � + F(d(M�;M�)) � F(d(�; �)): (1)

If we take A = X(M ;<) in the above de�nition then we get the following de�n-
ition, which is a special case of the De�nition 22.

De�nition 23. Let (X; d) be a metric space and < be a binary relation on X. A
self-mappingM on X is called a generalized F<-contraction with respect to X(M ;<)
or F<-graph contraction, if for each �; � 2 X(M ;<) with (�; �) 2 <, there exist
F 2 F and � > 0 such that

d(M�;M�) > 0 =) � + F(d(M�;M�)) � F(d(�; �)): (2)

Clearly condition (1) and condition (2) is weaker than the condition of F<-
contraction due to Sawangsup et al. [23].
Now, we state our �rst result for a generalized F<-contraction mapping in a

relational metric space.

Theorem 24. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M : X ! X be a mapping and there exists a non-empty subset A of
X(M ;<) such that the following conditions hold:

(a) M(A) � A;
(b) M is (<; k)-continuous mapping or < is d-self closed,
(c) M is a generalized F<-contraction with respect to A,
(d) there exists Y � A such that M(A) � Y � A and (Y; d) is <-complete.
Then, for each �0 2 A, there exists a Picard sequence f�ng of M , starting from

�1 = �0 which converges to the �xed point of M .

Proof. Let A be a non-empty subset of X(M ;<) and �0 2 A. Then by virtue of
subset A, we have (�0;M�0) 2 <. If �0 = M�0 then the proof is complete. So in
view of condition (a), there exists a point say �1 in A such that �1 =M�0. Again,
since �1 2 A so (�1;M�1) 2 <. If �1 =M�1 then �1 is a �xed point of M and the
proof is complete. Therefore �1 6=M�1 and by assumption (a), there exists a point
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say �2 2 A such that �2 = M�1. Continuing this process again and again, we get
a <-preserving Cauchy sequence of points f�ng in A such that

�n+1 =M�n and (�n; �n+1) 2 <; for all n 2 N0:
We denote �n = d(�n+1; �n), n 2 N0 and assume that �n+1 6= �n for n 2 N. Then
�n > 0, for n 2 N and

F(�n) � F(�n�1)� � � F(�n�2)� 2� � � � � � F(�0)� n�: (3)

From (3), we get lim
n!1

F(�n) = �1 and together with (F2), we have

lim
n!1

�n = 0: (4)

From (F3), there exists k 2 (0; 1) such that

lim
n!1

�knF(�n) = 0: (5)

By (3), the following inequality holds

�knF(�n)� �knF(�0) � �kn(F(�0)� n�)� �knF(�0) = ��knn� � 0; (6)

for all n 2 N. Making n!1 in (6) and using (5), we obtain

lim
n!1

n�kn = 0: (7)

From (7), we observe that there exists n1 2 N such that n�kn � 1 for all n � n1.
Consequently, we have

�n �
1

n1=k
; (8)

for n � n1. In order to prove that the sequence f�ngn2N is a Cauchy, consider
m;n 2 N with m > n > n1: From (8) and triangle inequality, we get

d(�m; �n) � �m�1 + �m�2 + � � �+ �n <
1X
i=n

�i �
1X
i=n

1

i1=k
:

Now it follows, from the above inequality and by the convergence of
1P
i=n

1

i1=k
, that

the sequence f�ngn2N is a Cauchy in A. Since f�ngn2N � M(A) � Y therefore
f�ngn2N is a <-preserving Cauchy sequence in Y. Since (Y; d) is a <-complete
metric space so there exists a point say �� 2 Y � A such that lim

n!1
�n = �

�.

We now assume that M is a (<; k)-continuous mapping. Since the sequence
f�ng = fMk�1(�n�k+1)g converges to �� then (<; k)-continuity of M implies that
fMk(�n�k+1)g converges to M(��). Hence, from the above we conclude that
M(��) = ��, that is, �� is a �xed point of the function M .
Alternately, we assume that < is d-self-closed. Since f�ng is a <-preserving

sequence in A such that

f�ng
d�! ��
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and �� 2 A, therefore by assumption of d-self-closedness, there exists a subsequence
f�nkg of f�ng with [�nk ; ��] 2 < for all k 2 N0. From contraction condition (22),
we obtain

F
�
d(�nk+1;M�

�)
�
= F
�
d(M�nk ;M�

�)
�
� F
�
d(�nk ; �

�)
�
� �

=) d(�nk+1;M�
�) < d(�nk ; �

�)! 0 as k !1;
which yields �nk+1

d�!M(��), that is, M has a �xed point at �� in X. �

The following example illustrates our Theorem 24.

Example 25. Let X = (�1; 2] be a metric space equipped with a usual metric
d(�; �) = j� � �j. Let L =

�
( 14n ;

1
4n+1 ) : n 2 N

	
and < = f(0; 0); (0; 1); (1; 1); (0; 32 );

(0; 14 ); (1;
1
6 ); (

1
4 ;

1
6 ); (

1
6 ;

1
6 )g[L be a binary relation on X. We de�ne a self-mapping

M on X as

M(�) =

8><>:
1
4 ; if � 2 (�1; 0];
1
6 ; if � 2 (0; 1];
�; if � 2 (1; 2];

then it is easy to see that X(M ;<) = f0; 14 ;
1
6 ; 1g. Suppose that A = f0; 14 ;

1
6g �

X(M ;<) and Y = f1=4; 1=6g. Then clearly Y =M(A) � A and Y is <-complete.
Since f�ng = f 1

4n : n 2 Ng is a <-preserving sequence in X and f�ng ! 0 but
fM�ng ! 1

6 6= M0. Therefore, M is neither a continuous nor a <-continuous
mapping in X. Now, for each k = 2; 3; 4; : : : ;

Mk(�) =

(
1
6 ; if � 2 (�1; 1];
�; if � 2 (1; 2]:

As Mk(�) is continuous everywhere in X; except � = 1 and there does not exist any
<-preserving sequence f�ng in X such that fMk�1�ng ! 1 as n ! 1. Then, it
is obvious by De�nition 17 that M is a (<; k)-continuous mapping in X. However,
for f�ng = f1 + 1

n : n 2 Ng, we have fM
k�1�ng ! 1 and fMk�ng ! 1 6= M1

which implies M is not a k-continuous mapping in X. Now, we will prove that
M is a generalized F<-contraction mapping with respect to A. For this, we take
� = 1; F 2 F given by F(%) = % + ln(%); % > 0 and �; � 2 A with (�; �) 2 <
such that d(M�;M�) > 0, we have only one choice for such (�; �) in <, that is,
(�; �) = (0; 1=4). Then from (1), we obtain

d(M�;M�)

d(�; �)
e[d(M�;M�)�d(�;�)] =

d(M0;M 1
4 )

d(0; 14 )
e[d(M0;M 1

4 )�d(0;
1
4 )] =

1

3
e�

1
6 < e�1:

Hence, all the assumptions of Theorem 24 are hold and M has in�nite �xed points
in X.

Remark 26. It is noticeable that the binary relation used in the Example 25 is
not M -closed even though M has in�nite �xed points in X, which reveals that the
assumption of M -closedness of the underlying binary relation is not a necessary
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condition for the existence of �xed points in relational metric spaces. Thus in
Example 25, the �xed point results of Sawangsup et al. [23], Alam and Imdad [1],
Samet and Turinici [22] and many others does not work but our result is still valid
therein.

Remark 27. We also notice that, the binary relation < used in Example 25 is not
one of the earlier known standard binary relation such as re�exive , symmetric,
transitive, anti-symmetric, complete or weakly complete. Therefore, theorems con-
tained in [1, 2, 7, 10, 11] can not be apply in the above example. Thus, Theorem 24
extends all the classical results to an arbitrary binary relation.

We get the following corollary as a direct consequence of Theorem 24 by taking
� = log 1% and F = log � in Theorem 24.

Corollary 28. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M : X ! X be a mapping and there exists a non-empty subset A of
X(M ;<) such that the following conditions hold:

(a) M(A) � A;
(b) M is (<; k)-continuous mapping or < is d-self closed,
(c) there exists % 2 [0; 1) such that

d(M�;M�) � % d(�; �); for all �; � 2 A such that (�; �) 2 <:
(d) there exists Y � A such that M(A) � Y � A and (Y; d) is <-complete.
Then M has a �xed point in X.
Now we prove �xed point theorem for F<-graph contraction mappings in rela-

tional metric spaces.

Theorem 29. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M be a self-mapping on X and X(M ;<) be a non-empty set such that the
following conditions are satis�ed:

(a) < is MG-d-closed;
(b) M is (<; k)-continuous or < is d-self closed;
(c) M is F<-graph contraction on X,
(d) there exists Y � X(M ;<) such that M(X(M ;<)) � Y � X(M ;<) and

(Y; d) is <-complete.
Then, for each �0 2 X(M ;<), there exists a Picard sequence f�ng ofM , starting

from �1 = �0 which converges to the �xed point of M .

Proof. Suppose X(M ;<) be a non-empty and �0 be any point in X(M ;<). Then
by virtue of X(M ;<), we have (�0;M�0) 2 < . If �0 = M�0 then �0 is a �xed
point of M and the proof is completed. Therefore, we assume that �0 6=M�0 and
M�0 = �1 (say). Now as (�0; �1) = (�0;M�0) 2 G(M ;<) and M is a F<-graph
contraction, we have

d(M�0;M�1) � d(�0; �1): (9)



640 D. KHANTWAL, S. ANTAL, U. C. GAIROLA

In view of assumption (a) and from condition (9), we get (M�0;M�1) = (�1;M�1) 2
<. Again, if �1 = M�1 then the proof is complete, otherwise there exists a point
say �2 in X, such that �2 = M�1 and �1 6= �2. Continuing this process again and
again, we get a <-preserving Cauchy sequence of points f�ng in X such that

�n+1 =M�n and (�n; �n+1) 2 R; for all n 2 N0:

If we take �n = �n+1 for some n 2 N, then �n is called �xed point ofM . Therefore,
we assume that �n 6= �n+1 for n 2 N, that is, d(�n; �n+1) 6= 0 for n 2 N. Now
proceeding the proof of Theorem 24, we get the conclusion. �

The following example illustrates the utility of Theorem 29.

Example 30. Let X = (�1; 3] be a metric space equipped with a usual metric
d(�; �) = j� � �j and P =

�
( 1n ;

1
n+1 ) : n 2 N

	
. Let a binary relation < and a

self-map M on X is de�ned as < =
�
(0; 0); (0; 16 ); (

1
6 ;

1
8 ); (

1
8 ;

1
8 ); (1;

1
8 ); (1; 2)

	
[ P

and

M(�) =

8><>:
1
6 ; if � 2 (�1; 0];
1
8 ; if � 2 (0; 1];
2; if � 2 (1; 3]:

Then, clearly X(M ;<) = f0; 16 ;
1
8 ; 1g and G(M ;<) = f(0;

1
6 ); (

1
6 ;

1
8 ); (

1
8 ;

1
8 ); (1;

1
8 )g.

For each (�; �) 2 G(M ;<), we have d(M�;M�) � d(�; �) and (M�; M�) 2
G(M ;<) which yields the binary relation < on X is MG-d-closed. However, <
is not M -closed in X as (0; 0) 2 < but (M0;M0) = ( 16 ;

1
6 ) =2 <. Since f�ng =

f 1ng; n 2 N is a <-preserving sequence in X as (�n; �n+1) 2 < and f�ng ! 0 then
fM�ng ! 1

8 6=M0. Thus, M is neither a continuous nor a <-continuous mapping
in X. Now, for each k = 2; 3; 4; :::;

Mk(�) =

(
1
8 ; if � 2 (�1; 1];
2; if � 2 (1; 3]:

As Mk(�) is continuous everywhere in X; except � = 1 and there does not exist
any <-preserving sequence f�ng in X such that fMk�1�ng ! 1 as n!1. So M
is obviously a (<; k)-continuous mapping in X. However, for f�ng = f1+ 1

ng; n 2
N, fMk�1�ng ! 1 and fMk�ng ! 1 6= M1, yields M is not a k-continuous
mapping in X: Hence, the mapping M is a (<; k)-continuous mapping in X, but M
is neither a continuous nor a k-continuous and also not a <-continuous mapping in
X: Now, we will show that M is a generalized F<-graph contraction mapping with
� = 1 and F 2 F de�ned by

F(%) = %+ ln(%); for all % > 0:
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For any �; � 2 X(M ;<) with (�; �) 2 < and d(M�;M�) > 0, we have only one
choice for (�; �) = (0; 16 ) in <. Then from (23),

d(M�;M�)

d(�; �)
efd(M�;M�)�d(�;�)g =

d(M0;M 1
6 )

d(0; 16 )
efd(M0;M 1

6 )�d(0;
1
6 )g =

1

4
e�

1
8 < e�1:

This yields M is a F<-graph contraction with � = 1: Hence, all the conditions of
Theorem 29 are hold and M has two �xed points at points � = 1

8 and � = 2.

A generalized version of relation-theoretic contraction principle due to Alam and
Imdad [1] is derived from Theorem 29 by taking � = log 1k and F = log � in Theorem
29.

Corollary 31. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M be a self-mapping on X and X(M ;<) be a non-empty set such that the
following conditions are satis�ed:

(a) < is MG-d-closed,
(b) M is (<; k)-continuous or < is d-self-closed,
(c) there exists k 2 [0; 1) such that

d(M�;M�) � k d(�; �); for all �; � 2 X(M ;<) with (�; �) 2 <:
(d) there exists Y � X(M ;<) such that M(X(M ;<)) � Y � X(M ;<) and

(Y; d) is <-complete.
Then M has a �xed point.

Remark 32. We notice that Theorem 24 and Theorem 29 remain valid if we replace
the assumption of (<; k)-continuity of M either by continuity of M , k-continuity of
M or <-continuity of M (without altering the rest of the hypothesis).

The following theorem guarantees the uniqueness of �xed points of Theorem 29
in a relational metric space.

Theorem 33. In addition to the hypothesis of Theorem 29, suppose that < is a
transitive relation on X and (�; �;<) is non-empty, for all �; � 2 X(M ;<). Then,
M has a unique �xed point in X(M ;<).
Proof. Let �� and �� be two distinct �xed points of M in X(M ;<) then �� =
M��; �� =M��. Since (��; ��;<) is non-empty, there is a path (say fz0; z1; : : : ; zkg)
of some �nite length k in < from � to �, so that

z0 = �
�; zk = �

�; (zi; zi+1) 2 <; for each i = 0; 1; 2; : : : ; k � 1:
By transitivity of <, we get

(��; z1) 2 <; (z1; z2) 2 <; : : : ; (zk�1; ��) 2 < =) (��; ��) 2 <:
The condition (23) implies that

� + F(d(��; ��)) = � + F(d(M��;M��)) � F(d(��; ��))
which is not possible. Thus, M has a unique �xed point in X(M ;<). �
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4. Multidimensional results for the existence of fixed points of
N-order

In this section, we drive some multidimensional results or N -order �xed point
theorems from our main results by using very simple tools. Let < be a binary
relation on X and we denote by <N the binary relation on the product space XN

de�ned by:�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 <N () (�1; �1) 2 <; (�2; �2) 2 <;

(�3; �3) 2 <; : : : ; (�N ; �N ) 2 <:

Suppose M : XN ! X is a mapping and by XN (M ;<N ), we denote the set of all
points (�1; �2; : : : ; �N ) 2 XN such that�

(�1; �2; : : : ; �N );
�
M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �N ; �1)

; : : : ;M(�N ; �1; : : : ; �N�1)
� �

2 <N ;

that is,�
�i;M(�i; �i+1; : : : ; �N ; �1; �2; : : : ; �i�1)

�
2 <; for each i 2 f1; 2; : : : ; Ng:

In addition, we denote by SNM : XN ! XN the mapping

SNM (�1; �2; : : : ; �N ) =
�
M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �N ; �1)

; : : : ;M(�N ; �1; : : : ; �N�1)

�
;

for all (�1; �2; : : : ; �N ) 2 XN :

De�nition 34. [24] Let < be a binary relation de�ned on a non-empty set X and
(�1; �2; :::; �N ); (�1; �2; :::; �N ) 2 XN . Then (�1; �2; :::; �N ) and (�1; �2; :::; �N ) are
<N -comparative if either

�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2 <N or

�
(�1; �2; :::; �N );

(�1; �2; :::; �N )
�
2 <N : We denote it by

�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 <N .

De�nition 35. [24] Let X be a non-empty set and < be a binary relation on X.
A sequence

�
(�1n; �

2
n; : : : ; �

N
n )g � XN is called <N -preserving if�

(�1n; �
2
n; : : : ; �

N
n ); (�

1
n+1; �

2
n+1; : : : ; �

N
n+1)

�
2 <N for all n 2 N:

De�nition 36. [23] Let M : XN ! X be a mapping. A binary relation < on X
is called MN -closed, if for any (�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ) 2 XN ,8>>>>>><>>>>>>:

(�1; �1) 2 <
(�2; �2) 2 <

:
:
:

(�N ; �N ) 2 <

9>>>>>>=>>>>>>;
)

8>>>>>><>>>>>>:

�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
2 <�

M(�2; �3; : : : ; �1);M(�2; �3; : : : ; �1)
�
2 <

:
:
:�

M(�N ; �1; : : : ; �N�1);M(�N ; �1; : : : ; �N�1)
�
2 <

9>>>>>>=>>>>>>;
:
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De�nition 37. If M : XN ! X is a mapping. Then, we denote the relational
graph of the mapping M under the binary relation <N on XN ; by GN (M ;<N ) and
de�ned as:

GN (M ;<N ) =
��
(�1; �2; : : : ; �N );

�
M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �1);

: : : ;M(�N ; �1; : : : ; �N�1)
��
2 <N : (�1; �2; : : : ; �N ) 2 XN

	
:

De�nition 38. Let (X; d) be a metric space, < be a binary relation on X and
M : XN ! X be a mapping. By XN (M ;<N ), we denote the set of all those
(�1; �2; : : : ; �N ) 2 XN , for which�

(�1; �2; : : : ; �N );
�
M(�1; �2; : : : ; �N );M(�2; �3; :::; �1)

; : : : ;M(�N ; �1; : : : ; �N�1)
� �

2 GN (M ;<N );

that is,

XN (M ;<N ) = f(�1; �2; : : : ; �N ) 2 XN :
�
(�1; �2; : : : ; �N );

�
M(�1; �2; : : : ; �N );

M(�2; �3; : : : ; �1); : : : ;M(�N ; �1; : : : ; �N�1)
��
2 GN (M ;<N )g:

De�nition 39. Let (X; d) be a metric space, < be a binary relation on X and
M : XN ! X be a mapping. A binary relation < is called MN

G -d-closed if for every�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 GN (M ;<N ) with8>>>>><>>>>>:

d
�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
� d((�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ))

d
�
M(�2; �3 : : : ; �1);M(�2; �3; : : : ; �1)

�
� d((�2; �3; : : : ; �1); (�2; �3; : : : ; �1))
...

d

�
M(�N ; �1; :::; �N�1);
M(�N ; �1; :::; �N�1)

�
� d

�
(�N ; �1; : : : ; �N�1);
(�N ; �1; : : : ; �N�1)

�
9>>>>>=>>>>>;

=)

8>>>>>><>>>>>>:

�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
2 GN (M ;<N )�

M(�2; �3; : : : ; �1);M(�2; �3; : : : ; �1)
�
2 GN (M ;<N )

:
:
:�

M(�N ; �1; : : : ; �N�1);M(�N ; �1; : : : ; �N�1)
�
2 GN (M ;<N )

9>>>>>>=>>>>>>;
:

Remark 40. It is obvious from the above de�nition that the condition of MN
G -d-

closedness is weaker than the condition of MN -closedness of underlying relation in
relational metric spaces.

De�nition 41. Let X be a non-empty set and < be a binary relation on X. A
mapping M : XN ! X is said to be a (<N ; k)-continuous at (�1; �2; : : : ; �N ) 2 XN

if for any <N -preserving sequence
�
(�1n; �

2
n; : : : ; �

N
n )g in XN such that�

Mk�1(�1n; �
2
n; :::; �

N
n );M

k�1(�2n; �
3
n; :::; �

1
n); :::;M

k�1(�Nn ; �
1
n; :::; �

N�1
n )g

d�! (�1; �2; : : : ; �N );
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we have�
Mk(�1n; �

2
n; : : : ; �

N
n );M

k(�2n; �
3
n; : : : ; �

1
n); : : : ;M

k(�Nn ; �
1
n; : : : ; �

N�1
n )g d�!�

M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �1); : : : ;M(�N ; �1; : : : ; �N�1)
	
:

Then mapping M is called (<N ; k)-continuous if it is (<N ; k)-continuous at each
point of XN .

Lemma 42. [23] Given N � 2 and M : XN ! X be a given mapping. A point
(�1; �2; : : : ; �N ) 2 XN is an N -order �xed point of M if and only if it is a �xed
point of SNM .

Lemma 43. [23] Given N � 2 and M : XN ! X, a point (�1; �2; : : : ; �N ) 2
XN (M ;<N ) if and only if (�1; �2; : : : ; �N ) 2 XN (SNM ;<N ).

Lemma 44. [23] Let (X; d) be a metric space and DN : XN �XN ! R be de�ned
by

DN (U; V ) =

NX
i=1

d(ui; vi)

for all U = (u1; u2; : : : ; uN ), V = (v1; v2; : : : ; vN ) 2 XN : Then the following prop-
erties hold:

(1) (XN ; DN ) is also a metric space.
(2) Let fUn = (u1n; u2n; : : : ; uNn )g be a sequence inXN and U = (u1; u2; : : : ; uN ) 2

XN . Then UN
DN��! U if and only if fuing

d�! ui for all i 2 f1; 2; 3; : : : ; Ng.
(3) If fUn = (u1n; u2n; : : : ; uNn )g is a sequence on XN , then fUng is a DN -Cauchy

sequence if and only if fuing is a Cauchy sequence for all i 2 f1; 2; 3; : : : ; Ng:
(4) (X; d) is complete if and only if (XN ; DN ) is complete.

De�nition 45. Let (XN ; DN ) be a metric space and < be a binary relation on
X. If every <N -preserving Cauchy sequence converges in XN then we say that
(XN ; DN ) is <N -complete.

Every complete metric space is <N -complete under any binary relation <N on
XN and both the de�nitions coincide under the universal relation.

De�nition 46. [23] Let X be a non-empty set and < be a binary relation on X. A
path of length k 2 N in <N from (�1; �2; : : : ; �N ) 2 XN to (�1; �2; : : : ; �N ) 2 XN

is a �nite sequence
�
(z10 ; z

2
0 ; : : : ; z

N
0 ); (z

1
1 ; z

2
1 ; : : : ; z

N
1 ); : : : ; (z

1
k; z

2
k; : : : ; z

N
k )
	
� XN

satisfying the following conditions:

(i) (z10 ; z
2
0 ; : : : ; z

N
0 ) = (�1; �2; : : : ; �N ) and (z

1
k; z

2
k; : : : ; z

N
k ) = (�1; �2; : : : ; �N );

(ii)
�
(z1i ; z

2
i ; : : : ; z

N
i ); (z

1
i+1; z

2
i+1; : : : ; z

N
i+1)

�
2 <N for all i = 0; 1; 2; :::; k � 1.

Clearly, a path of length k involves k + 1 elements of XN , although they are
not necessarily distinct. Moreover, let 

�
(�1; �2; :::; �N ); (�1; �2; :::; �N );<N

�
be the

class of all paths in <N from (�1; �2; : : : ; �N ) to (�1; �2; : : : ; �N ).
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Now, we introduce the notion of generalized F<N -contraction mapping and F<N -
graph contraction mapping for N � 2.

De�nition 47. Let (X; d) be a metric space endowed with a binary relation < and
AN is a non-empty subset of XN (M ;<N ). A mappingM : XN ! X is called a gen-
eralized F<N -contraction with respect to AN , if for each (�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ) 2
AN with

�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2 <N , there exist F 2 F and � > 0 such

that

d
�
M(�1; �2; :::; �N );M(�1; �2; :::; �N )

�
> 0 =)

� + F

0BBBBBB@
d
�
M(�1; �2; :::; �N );M(�1; �2; :::; �N )

�
+

d
�
M(�2; �3; :::; �1);M(�2; �3; :::; �1)

�
+

:
:
:

d
�
M(�N ; �1; :::; �N�1);M(�N ; �1; :::; �N�1)

�

1CCCCCCA � F
� NX
i=1

d(�i; �i)
�
:

De�nition 48. Let (X; d) be a metric space endowed with a binary relation < and
XN (M ;<N ) be a non-empty subset of X. A mapping M : XN ! X is called a
F<N -graph contraction, if for each (�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ) 2 XN (M ;<N )
with

�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 <N , there exist F 2 F and � > 0 such

that d
�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
> 0 =)

� + F

0BBBBBB@
d
�
M(�1; �2; :::; �N );M(�1; �2; :::; �N )

�
+

d
�
M(�2; �3; :::; �1);M(�2; �3; :::; �1)

�
+

:
:
:

d
�
M(�N ; �1; :::; �N�1);M(�N ; �1; :::; �N�1)

�

1CCCCCCA � F
� NX
i=1

d(�i; �i)
�
: (10)

Now using Theorem 24, we will prove a multidimensional result which conforms
the existence of �xed points of N -order.

Theorem 49. Let (X; d) be a metric space and < be a binary relation on X.
Suppose that M : XN ! X be a mapping and there exists a non-empty subset AN

of XN (M ;<N ) such that the following conditions hold:

(a) M(AN ) � AN ;
(b) M is (<N ; k)-continuous mapping;
(c) M is a generalized F<N -contraction with respect to AN ;
(d) there exists YN � AN such that M(AN ) � YN � AN and (YN ; DN ) is

<N -complete.
Then M has a �xed point of N -order.
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Proof. Let AN be a non-empty subset of XN (M;<N ) and (�10; �20; : : : ; �N0 ) 2 AN .
Then by the virtue of subset AN , we have�

(�10; �
2
0; : : : ; �

N
0 ); (M(�

1
0; �

2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

1
0);

: : : ;M(�N0 ; �
1
0; : : : ; �

N�1
0 ))

�
2 <N :

If (�10; �
2
0; : : : ; �

N
0 ) =

�
M(�10; �

2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

N
0 ; �

1
0);

: : : ;M(�N0 ; �
1
0; : : : ; �

N�1
0 )

�
, then proof

is complete. So in view of assumption (a), there exists (�11; �
2
1; : : : ; �

N
1 ) in A

N such
that

(�11; �
2
1; : : : ; �

N
1 ) =

�
M(�10; �

2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

N
0 ; �

1
0);

: : : ;M(�N0 ; �
1
0; : : : ; �

N�1
0 )

�
:

Again, since (�11; �
2
1; : : : ; �

N
1 ) 2 AN so�

(�11; �
2
1; : : : ; �

N
1 ); (M(�

1
1; �

2
1; : : : ; �

N
1 );M(�

2
1; �

3
1; : : : ; �

N
1 ; �

1
1);

: : : ;M(�N1 ; �
1
1; : : : ; �

N�1
1 ))

�
2 <N :

If (�11; �
2
1; : : : ; �

N
1 ) =

�
M(�11; �

2
1; : : : ; �

N
1 );M(�

2
1; �

3
1; : : : ; �

N
1 ; �

1
1);

: : : ;M(�N1 ; �
1
1; : : : ; �

N�1
1 )

�
, then the

proof is complete. Otherwise we will continue this process again and again and
obtain a <N -preserving sequence of points f(�1n; �2n; : : : ; �Nn )g in AN such that

(�1n+1; �
2
n+1; : : : ; �

N
n+1) =

�
M(�1n; �

2
n; : : : ; �

N
n );M(�

2
n; �

3
n; : : : ; �

N
n ; �

1
n);

: : : ;M(�Nn ; �
1
n; : : : ; �

N�1
n )

�
and �

(�1n; �
2
n; : : : ; �

N
n ); (�

1
n+1; �

2
n+1; : : : ; �

N
n+1)

�
2 <N ; for all n 2 N:

Since M is (<N ; k)-continuous, we get SNM is also (<N ; k)-continuous. From the
generalized F<N -contractive condition ofM , we deduce that SNM is also a generalized
F<N -contraction. Applying Theorem 24, there exists �Z = (��1; �

�
2; : : : ; �

�
N ) 2 XN

such that SNM (�Z) = �Z, i.e., (��1; �
�
2; : : : ; �

�
N ) is a �xed point of SNM . Using Lemma

42, we have (��1; �
�
2; : : : ; �

�
N ) is a �xed point of N -order of M . This completes the

proof. �

If we take � = log 1% and F = log � in Theorem 49 then we get the following
corollary as a direct consequence of Theorem 49.

Corollary 50. Let (X; d) be a metric space and < be a binary relation on X.
Suppose that M : XN ! X be a mapping and there exists a non-empty subset AN

of XN (M ;<N ) such that the following conditions hold:

(a) M(AN ) � AN ,
(b) M is (<N ; k)-continuous mapping,
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(c) there exists % 2 [0; 1) such that
NX
i=1

d

�
M(�i; �i+1; :::; �N ; �1; :::; �i�1);
M(�i; �i+1; :::; �N ; �1; :::; �i�1)

�
� %

NX
i=1

d(�i; �i);

for each (�1; �2; :::; �N ); (�1; �2; :::; �N ) 2 AN such that
�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2

<N , then M has a �xed point of N -order.

(d) there exists YN � AN and M(AN ) � YN � AN , so that (YN ; DN ) is
<N -complete.

Using similar technique as in the proof of Theorem 49, we obtain the following
multidimensional result for the existence of �xed points of N -order.

Theorem 51. Let (X; d) be a metric space and < be a binary relation on X.
Suppose XN (M ;<N ) be a non-empty and M : XN ! X be a mapping such that
the following conditions hold:

(a) < is MN
G -d-closed;

(b) M is (<N ; k)-continuous;
(c) M is F<N -graph contraction on XN ;
(d) there existsYN � XN (M ;<N ) such thatM(XN (M ;<N )) � YN � XN (M ;<N )

and (YN ; DN ) is <N -complete,
then M has a �xed point of N -order.

Proof. Suppose XN (M ;<N ) be a non-empty set and (�10; �20; : : : ; �N0 ) 2 XN (M ;
<N ). Then, we have�

(�10; �
2
0; : : : ; �

N
0 ); (M(�

1
0; �

2
0; : : : ; �

N
0 ); : : : ;M(�

N
0 ; �

1
0; : : : ; �

N�1
0 ))

�
2 <N :

Now in view of assumption (a) and from F<N -graph contraction condition (10), we
have�
(�11; �

2
1; : : : ; �

N
1 ); (�

1
2; �

2
2; : : : ; �

N
2 )
�
=� �

M(�10; �
2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

N
0 ; �

1
0); : : : ;M(�

N
0 ; �

1
0; : : : ; �

N�1
0 )

�
;�

M(�11; �
2
1; : : : ; �

N
1 );M(�

2
1; �

3
1; : : : ; �

N
1 ; �

1
1); : : : ;M(�

N
1 ; �

1
1; : : : ; �

N�1
1

� �
:

Continuing this process again and again, we get a <N -preserving Cauchy sequence
of points (�1n; �

2
n; : : : ; �

N
n ) in X

N such that

(�1n+1; �
2
n+1; : : : ; �

N
n+1) =

�
M(�1n; �

2
n; : : : ; �

N
n );M(�

2
n; �

3
n; : : : ; �

N
n ; �

1
n);

: : : ;M(�Nn ; �
1
n; : : : ; �

N�1
n )

�
and �

(�1n; �
2
n; : : : ; �

N
n ); (�

1
n+1; �

2
n+1; : : : ; �

N
n+1)

�
2 <N ; for all n 2 N:

If we take (�1n; �
2
n; : : : ; �

N
n ) = (�

1
n+1; �

2
n+1; : : : ; �

N
n+1) for some n 2 N, then f(�1n; �2n; : : : ; �Nn )g

is called a �xed point ofM . Therefore we assume (�1n; �
2
n; : : : ; �

N
n ) 6= (�1n+1; �2n+1; : : : ; �Nn+1)

for all n 2 N. Now proceeding the proof of Theorem 49 we get the conclusion. �
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Corollary 52. Let (X; d) be a metric space and < be a binary relation on X.
Suppose XN (M ;<N ) be a non-empty set and M : XN ! X be a mapping such
that the following conditions hold:

(a) < is MN
G -d-closed,

(b) M is (<N ; k)-continuous,
(c) there exists % 2 [0; 1) such that

NX
i=1

d

�
M(�i; �i+1; :::; �N ; �1; :::; �i�1);
M(�i; �i+1; :::; �N ; �1; :::; �i�1)

�
� %

NX
i=1

d(�i; �i);

for all
�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2 GN (M ;<N ),

(d) there existsYN � XN (M ;<N ) such thatM(XN (M ;<N )) � YN � XN (M ;<N )
and (YN ; DN ) is <N -complete.

Then M has a �xed point of N -th order.

5. Application to nonlinear matrix equations

In this section, we follow the following notations:

� Xn denotes the set of all n� n Complex matrices;
� Hn � Xn is the set of all n� n Hermitian matrices;
� Pn � Hn is the set of all n� n positive de�nite matrices;
� H+

n � Hn is the set of all n� n positive semide�nite matrices.
and for U; V 2 Xn, we denote the following notations:
� U � 0() U 2 Pn;
� U � 0() U 2 H+

n ;
� U � V � 0() U � V ;
� U � V � 0() U � V:

Let B� is the conjugate transpose of B and �+(B�B) is the largest eigenvalue
of B�B. We use the symbol k:k for the spectral norm of B and de�ned by kBk =q
�+(B�B).
The symbol k:ktr is used for the metric induced by trace norm and it is de�ned

by kBktr =
Pn

j=1 sj(B), where sj(B); j = 1; 2; :::; n; are the singular values of
B 2 Xn. Hence, (Hn; k:ktr) forms a complete metric space. See ( [8], [9], [18]) for
more details. Moreover, the binary relation � on Hn de�ned by:

U � V () V � U
for all U; V 2 Hn.
In this section, we apply Theorem 24 to establish a solution of the nonlinear

matrix equation.

U = Q+
nX
i=1

A�iG(U)Ai (11)
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where Ai is an any n � n matrices, Q is a Hermitian positive de�nite matrix and
G is continuous order preserving mapping (i.e., if U; V 2 Hn with U � V implies
that G(U) � G(V )) with G(0) = 0.
Now we state the following lemmas which are very useful in this sequel:

Lemma 53. If U; V 2 H+
n such that U � 0 and V � 0, Then
0 � tr(UV ) � kUktr(V ):

Lemma 54. If U 2 Hn and U � I, then kUk < 1:

Theorem 55. Consider the matrix equation (11) and suppose that there is a pos-
itive numbers k and � such that

(i) For every U; V 2 H+
n with U � V and

Pn
i=1A

�
iG(U)Ai 6=

Pn
i=1A

�
iG(V )Ai,

we have

jtr(G(V )� G(U))j � jtr(V � U)j
k(1 + �

p
tr(V � U))2

; (12)

(ii)
Pm

i=1AiA
�
i � kIn and

Pm
i=1A

�
iG(U)Ai � 0:

Then the matrix equation (11) has a solution. Moreover, the iteration

Un = Q+

nX
i=1

A�iG(Un�1)Ai (13)

where U0 2 Hn such that U0 � Q +
Pn

i=1A
�
iG(U0)Ai, converges in the sense of

trace norm k:ktr, to the solution of the nonlinear matrix equation (11).

Proof. We de�ne a mapping M : Hn ! Hn by

M(U) = Q+

nX
i=1

A�iG(U)Ai

for all U 2 Hn and a set by

H+
n (M;�) = fA 2 H+ : A �M(A) or M(A)�A � 0g:

Then M is well de�ned mapping, H+
n (M;�) is a non-empty set as Q 2 H+ and

M(Q) � Q =
Pn

i=1A
�
iG(Q)Ai � 0. It is easy to verify that for every positive

semide�nite matrix B, M(B) is also positive semide�nite matrix and H+
n (M;�)

is �-complete. Now, we will prove that the set H+
n (M;�) is invariant under the

mapping M , that is M(H+
n (M;�)) � H+

n (M;�). For this, it is su¢ cient to prove
that M(B) 2 H+

n (M;�) for every B 2 H+
n (M;�). Let B 2 H+

n (M;�) then
M(B)�B � 0 and

M(M(B))�M(B) =
nX
i=1

A�i
�
G(M(B))� G(B)

�
Ai � 0; (14)

that is M(B) �M(M(B)), which implies M(B) 2 H+
n (M;�).
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Next, we will show thatM is a generalized F�-contraction mapping with respect
to H+

n (M;�). For this, let � > 0 be any real number and F : R+ ! R be mapping
de�ned as

F(%) = � 1
p
%
for all % 2 R+:

Then from (12), for each U; V 2 H+
n (M;�) with U � V and G(U) � G(V ), we have

kM(V )�M(U)ktr = tr(M(V )�M(U))

= tr
� mX
i=1

A�i (G(V )� G(U))Ai
�

=
mX
i=1

tr(A�i (G(V )� G(U)Ai)

=
mX
i=1

tr(AiA
�
i (G(V )� G(U)))

= tr
�� mX

i=1

AiA
�
i

�
(G(V )� G(U))

�
�

�
k
mX
i=1

AiA
�
i k
�
kG(V )� G(U)ktr

� k
Pm

i=1AiA
�
i k

k

 
kV � Uktr�

1 + �
p
kV � Uktr

�2
!

<

 
kV � Uktr�

1 + �
p
kV � Uktr

�2
!

and so �
1 + �

p
kV � Uktr

�2
kV � Uktr

� 1

kM(V )�M(U)ktr
:

This implies that  
� +

1p
kV � Uktr

!2
� 1

kM(V )�M(U)ktr
or

� +
1p

kV � Uktr
� 1p

kM(V )�M(U)ktr
:

This yields that

� � 1p
kM(V )�M(U)ktr

� � 1p
kV � Uktr

:
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Hence

� + F(kM(V )�M(U)ktr) � F(kV � Uktr);

which shows that M is a generalized F�-contraction with respect to H+
n (M;�).

Since all the assumptions of Theorem 24 are satis�ed therefore there exists Z 2 Hn

such that M(Z) = Z, i.e., the matrix equation (11) has a solution. �
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THE TRIPLE ZERO GRAPH OF A COMMUTATIVE RING

Ece YETK·IN ÇEL·IKEL
Department of Electrical-Electronics Engineering,

Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, TURKEY

Abstract. Let R be a commutative ring with non-zero identity. We de�ne
the set of triple zero elements of R by TZ(R) = fa 2 Z(R)� : there exist
b; c 2 Rnf0g such that abc = 0, ab 6= 0, ac 6= 0, bc 6= 0g. In this paper, we
introduce and study some properties of the triple zero graph of R which is an
undirected graph TZ�(R) with vertices TZ(R); and two vertices a and b are
adjacent if and only if ab 6= 0 and there exists a non-zero element c of R such
that ac 6= 0, bc 6= 0, and abc = 0. We investigate some properties of the triple
zero graph of a general ZPI-ring R, we prove that diam(TZ�(R)) 2 f0; 1; 2g
and gr(TZ�(R)) 2 f3;1g.

1. Introduction

Throughout this paper, all rings are commutative with identity and Z(R) denotes
the set of zero-divisors of a ring R. The concept of the zero-divisor graph of a
commutative ring was introduced by I. Beck [9]. He let all elements of R be vertices
of the graph and his work was mostly concerned with coloring of rings. In [3],
all elements of a commutative ring R are vertices, and distinct vertices a and
b are adjacent if and only if ab = 0: This graph is denoted by �0(R): Then D.F.
Anderson and P.S. Livingston [4] introduced a (induced) zero-divisor subgraph �(R)
of �0(R). The zero-divisor graph �(R) introduced in [13] and [4] is as follows: Two
distinct vertices x; y 2 Z(R)� = Z(R)nf0g are adjacent if and only if xy = 0.
In [4], D.F. Anderson and P.S. Livingston have shown that �(R) is connected with
diam(�(R)) 2 f0; 1; 2; 3g and gr((�(R)) 2 f3; 4;1g: The zero-divisor graph of a
commutative ring in the sense of Anderson�Livingston has been studied extensively
by several authors, [1], [2], [5], [6], [14], [15]. Since then, the concept of the zero-
divisor graph of ring has been playing a vital role in its expansion.
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We de�ne the set of the triple zero elements of R by TZ(R) = fa 2 Z(R)� :
there exist b; c 2 Rnf0g such that abc = 0, ab 6= 0, ac 6= 0, bc 6= 0g: It is clear
that every triple zero element of R is a zero-divisor of R, but the converse is not
true in general. For example, the element 2 is a zero-divisor of Z6; but clearly it
is not a triple zero element. In this paper, motivated from zero-divisor graphs, we
introduce the triple zero graph of a commutative ring. Our starting point is the
following de�nition: The triple zero graph of R is an undirected graph TZ�(R)
with vertices TZ(R). If two distinct elements a and b are adjacent, then (a; b) is
an edge and we will denote it by a � b: Two distinct vertices a and b are adjacent
if and only if ab 6= 0 and there exists an element c 2 Rnf0g such that ac 6= 0,
bc 6= 0 and abc = 0. The relation "�" is always symmetric, but neither re�exive
nor transitive in general. For instance, let R = Z36: Then clearly 2; 3, 6 2 TZ(R)
with 6 � 6, and also 2 � 3, 2 � 9; but 3 � 9.
Recall from [8] that I is said to be a 2-absorbing ideal of R if whenever a; b; c 2 R

and abc 2 I, then either ab 2 I or ac 2 I or bc 2 I. As de�ned in [7], I is said to to
be a weakly 2-absorbing ideal of R if whenever a; b; c 2 R and 0 6= abc 2 I, then
ab 2 I, ac 2 I; or bc 2 I. From these de�nitions, note that f0g is always a weakly
2-absorbing ideal of R: If 0 is not a 2-absorbing ideal, then there are some triple
zero elements of R. The concept of (weakly) 2-absorbing ideals and the zero-divisor
graphs motivated us to de�ne the triple zero divisor graph and also investigate the
relations between triple zero graph of a ring R and 2-absorbing ideals of R:
Among many results in this paper, in Section 2, we justify some properties of

the triple zero graph of commutative rings. In Theorem 1, we show that a proper
ideal I of a ring R is 2-absorbing if and only if TZ�(R=I) = ;. In Theorem
11, we characterize triangle free triple zero graphs of general ZPI-rings. In [11],
the authors de�ne 3-zero-divisor hypergraph regarding to an ideal with vertices
fx 2 RnI : xyz 2 I for some y; z 2 RnI such that xy =2 I, yz =2 I, xz =2 Ig where
distinct vertices are adjacent if and only if xyz 2 I, xy =2 I, yz =2 I and xz =2 I: They
conclude that diameter of this graph is at most 4: In Section 3, we study the triple
zero graph of general ZPI-rings. The graph properties of the triple zero graph of
general ZPI-rings such as diameter and girth are investigated. We obtain that the
triple zero graph of a zero dimensional general ZPI-ring is always connected with
diameter at most 2 and girth 3 if it is determined. (Corollary 12). Furthermore, we
give some characterizations for the triple zero graph of Zn where n > 1 and justify
the diameter and girth of TZ�(Zn). (Theorem 13, Theorem 14 and Corollary 15)
For the sake of completeness, we state some de�nitions and notation used through-

out. Let G be a (undirected) graph. The order of G, denoted by jGj, is equal to the
cardinality of the vertex set. The graphG is connected if there is a path between any
two distinct vertices. For vertices a and b of G; we say that the distance between a
and b, d(a; b) is the length of a shortest path from a to b: If there is no path between
a and b; then d(a; b) =1; and d(a; a) = 0. A graph G is said to be totally discon-
nected if it has no edges. The diameter of G is de�ned by diam(G) = supfd(a; b) : a
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and b are vertices of Gg: The girth of G; denoted by gr(G), is the length of a short-
est cycle in G: If G contains no cycles, then gr(G) =1. A cycle of length three is
commonly called a triangle. A triangle-free graph is an undirected graph in which
no three vertices form a triangle of edges. A graph G is complete if any two distinct
vertices are adjacent. The complete graph with n vertices will be denoted by Kn:
A complete bipartite graph is a graph G which may be partitioned into two disjoint
non-empty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets. We denote the complete bipartite graph by
Km;n where A and B are partitions with j A j= m and j B j= n. If one of the
vertex sets is a singleton, then we call G a star graph. A star graph is clearly K1;n:
As usual, Z and Zn will denote the integers and integers modulo n, respectively.
For general background and terminology, the reader may consult [10].

2. Properties of The Triple Zero Graph

Theorem 1. Let R be a commutative ring and I be a proper ideal of R. Then the
following statements hold:

(1) TZ�(R=I) = ; if and only if I is a 2-absorbing ideal of R:
(2) TZ�(R) = ; if and only if f0g is a 2-absorbing ideal of R:
(3) If (R;M) is a quasi-local ring with M2 = 0, then TZ�(R) = ;:

Proof. Suppose that I is not a 2-absorbing ideal of R. Then there exist some
(not necessarily distinct) elements a; b; c of R with abc 2 I but neither ab 2 I nor
ac 2 I nor bc 2 I: Hence (a + I)(b + I)(c + I) = I but neither (a + I)(b + I) = I
nor (a + I)(c + I) = I nor (b + I)(c + I) = I: Thus a; b; c 2 TZ(R=I); and so
TZ�(R=I) 6= ;: Conversely, if TZ�(R=I) 6= ;; then there are some (not necessarily
distinct) elements a+ I; b+ I; c+ I of R=I satisfying (a+ I)(b+ I)(c+ I) = I but
neither (a+ I)(b+ I) = I nor (a+ I)(c+ I) = I nor (b+ I)(c+ I) = I: It implies
that ab; ac; bc =2 I and abc 2 I. Hence I is not a 2-absorbing ideal of R.
(2) It is clearly a particular case putting I = 0 in (1).
(3) Suppose that (R;M) is a quasi-local ring with M2 = 0. Hence 0 is a 2-

absorbing ideal of R by [7, Corollary 3.3]. Thus TZ�(R) = ; by (2). �

The following example shows that the converse of Theorem 1 (3) does not hold.

Example 2. Consider R = Z2 � Z2. Then clearly TZ�(R) = ; but since R has
two maximal ideals 0� Z2 and Z2 � 0, it is not a quasi-local ring.

Let R = Zp[X]= hXni ; where p is prime and n � 3: We denote a(X) as the
congruence class of polynomials congruent to a(X)mod hXni : It is well-known that
an element of Zp[X]= hXni is of the form a(X) = a0+ a1X + a2X

2+ � � �+ akXk of
degree k � n where ai 2 Zp for i 2 f1; 2; :::; kg. Now we determine the vertex set
of the graph TZ(Zp[X]= hXni).
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Theorem 3. Let a(X) = a0+a1X+a2X2+� � �+akXk 2 Zp[X]= hXni where n � 3:
Then a(X) is a vertex of the graph TZ�(Zp[X]= hXni) if and only if a0 = 0(mod p)
and of the form in one of the following types:

(1) a1 = a2 = ::: = ak�1 = 0 and k � n� 2:
(2) ai 6= 0 for some r = 1; 2; :::; k � 1 and k � n� 1:

Proof. Let a(X) 2 TZ(Zp[X]= hXni): Then there exists non-zero b(X); c(X) 2
Zp[X]= hXni such that a(X)b(X)c(X) = 0mod hXni, a(X)b(X) 6= 0 mod hXni ;
a(X)c(X) 6= 0 mod hXni and b(X)c(X) 6= 0 mod hXni. Let b(X) = b0 + b1X +
b2X

2 + � � �+ btXt; c(X) = c0 + c1X + c2X
2 + � � �+ csXs where bj and cr are the

�rst non-zero (i.e., bj ,cr 6= 0(mod p)) coe¢ cients in the polynomials b(X) and c(X);
respectively. Then the coe¢ cient of Xj+r in the product a(X)b(X)c(X) is a0bjcr.
Since a(X)b(X)c(X) = 0mod hXni and j; r < n, we must have a0bicj = 0(mod
p). Observe that since bj ; cr are non-zero elements of Zp, we have bjcr 6= 0: Thus
a0 = 0(mod p):
Case I. Suppose that a1 = a2 = ::: = ak�1 = 0: Then akXkbjX

jcrX
r =

0mod hXni which implies that k + j + r = n. Since j; r � 1, we conclude that
k � n� 2.
Case II. Suppose that ai 6= 0 for some i = 1; 2; :::; k � 1. Then we show

that k can be n � 1: Assume that deg(a(X)) = k = n � 1: Then, clearly a(X)
X X = 0mod hXni and X X 6= 0mod hXni. Since aiXiX 6= 0mod hXni where
i = 1; 2; :::; k � 1, we conclude that a(X) X 6= 0mod hXni :
Conversely, assume that a0 = 0 (mod p). If (1) holds, then a(X) = akX

k and
k � n� 2: Then a(X) Xj Xr = 0mod hXni for all j; r � 1 such that j + r = n� k
but neither a(X) Xj = 0mod hXni nor a(X) Xr = 0mod hXni nor Xj Xr =
0mod hXni : Hence a(X) is a triple zero element of Zp[X]= hXni : Suppose that (2)
holds. We may assume that a1 6= 0 (mod p). Then a(X) Xj Xr = 0mod hXni for
all j; r � 1 such that j + r = n � 1. Since a1X Xj 6= 0mod hXni and a1X Xr 6=
0mod hXni ; we conclude that a(X) Xj 6= 0mod hXni and a(X) Xr 6= 0mod hXni :
Thus a(X) is a triple zero element of Zp[X]= hXni : �

Theorem 4. Let R = Zp[X]=


X3
�
. Then TZ�(R) is a complete graph with p2�p

vertices, i.e., TZ�(R) �= Kp2�p: In particular, if p = 2; then TZ�(R) �= K2:

Proof. From Theorem 3, the vertices of TZ�(Zp[X]=


X3
�
) of the type nX+mX2,

where n;m are integers with 1 � n � p and 0 � m � p. Hence, the number
of the vertices of TZ�(Zp[X]=



X3
�
) is p2 � p. Observe that all vertices of this

graph are adjacent, thus it is the complete graph Kp2�p: For p = 3, this graph is
illustrated by Figure 2. In the particular case, since X X (X + X2) = 0 but X
X 6= 0 and X(X+X2) 6= 0; X and (X+X2) are the only distinct adjacent vertices
of TZ�(Z2[X]=



X3
�
): �

We are unable to answer the following question which may be inspiring for the
possible other work:
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Figure 1. TZ�(Z27)

Figure 2. TZ�(Z3[X]=


X3
�
)

Question. Let R = Zp[X]= hXni where p is a prime number and n � 3: Can
we have a general characterization for the triple zero graph of R?

We recall that an n-gon is a regular polygon with n sides. In the next example,
we show that there are triple zero graphs with cycles of arbitrary speci�ed length.
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Example 5. Let T be an integral domain and n � 3 is an integer. Consider
R = T [X1; X2; � � � ; Xn]=(X1X2X3; X3X4X5; � � � ; Xn�1XnX1): Then TZ�(R) is a
connected graph which has an n-gon, an n=2-gon and has triangles more than n.

Proof. Observe that X1 � X2 � X3; X3 � X4 � X5; � � � ; Xn�1 � Xn � X1
are some of the triangles, and it is easy to see that (Xk + XkXk+1) � (Xk+1 +
XkXk+1) � Xk+2 is another triangle for each k, where k is odd, and k < n � 2:
Also X1 � X3 � � � � � Xn�1 � X1 is an n=2� gon and X1 � X2 � � � � � Xn�1 �
Xn � X1 is an n-gon. �

3. Triple Zero Graph of General ZPI-rings

A ring is called a general ZPI-ring (resp. ZPI-ring) if each ideal (resp. each non-
zero ideal) I of R is uniquely expressible as product of prime ideals of R. Dedekind
domains are indecomposable general ZPI-rings. For a general background, the
reader may refer to [12]. In this section, we study the graph theoretical properties
of the triple zero graph for general ZPI-rings. First we need to prove the following
lemma which is a generalization of [8, Theorem 3.15].

Lemma 6. Let R be a zero dimensional Noetherian ring which is not a �eld. Then
the following statements are equivalent:

(1) R is a general ZPI-ring.
(2) If I is a 2-absorbing ideal of R, then I is a maximal ideal of R or I = M2

for some maximal ideal M of R or I = MM 0 for some maximal ideals M ,
M 0 of R.

(3) If I is a 2-absorbing ideal of R, then I is a prime ideal of R or I = P 2 for
some prime ideal P of R or I = PQ for some prime ideals P;Q of R.

Proof. (1))(2) Let I be a 2-absorbing ideal of R. Since maximal ideals coincide
with prime ideals,

p
I = M for some maximal ideal M of R with M2 � I orp

I = M \ M 0 = MM 0 for some maximal ideals M , M 0 of R with MM 0 � I
by [8, Theorem 2.4]. Thus, we have either I = M is maximal or I = M2 for some
maximal ideal M of R or I =MM 0 for some maximal ideals M , M 0 of R.
(2))(3) is straightforward.
(3))(1) Suppose that (3) holds. Assume that there is an ideal J of R which

satis�es M2 � I � M: Then I is an M -primary ideal of R; so I is a 2-absorbing
ideal by [8, Theorem 3.1]. Hence I =M or I =M2 from our assumption (3): Thus
there are no ideals properly between M and M2: From [12, (39.2) Theorem], R is
a general ZPI-ring. �

Theorem 7. Let R be a zero dimensional general ZPI-ring. Then TZ�(R) = ; if
and ony if either R is an integral domain or 0 = P 2 where P is a prime ideal of R
or 0 = PQ where P and Q are prime ideals of R:
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Proof. If R is an integral domain or 0 = P 2 where P is a prime ideal of R or 0 = PQ
where P and Q are prime ideals of R, then it is easy to verify that there is no triple
zero elements of R; so TZ�(R) = ;. Conversely, suppose that TZ�(R) = ;. Then
0 is a 2-absorbing ideal of R by Theorem 1. From Lemma 6, either 0 is prime,
0 = P 2 for some prime ideal P or 0 = PQ for some prime ideals P ,Q of R, so we
are done. �
We recall that a special primary is an indecomposable general ZPI-ring which is

a local ring with maximal ideal M such that each proper ideal of R is a power of
M:

Lemma 8. [12] An indecomposable general ZPI-ring with identity is either a Dedekind
domain or a special primary ring.

Theorem 9. Let R be a general ZPI-ring and 0 = P 3 where P is a prime ideal of
R such that P 2 6= 0. Then TZ�(R) is a complete graph on jP j �

��P 2�� vertices; i.e.
TZ�(R) �= KjP j�jP 2j

Proof. Suppose that 0 = P 3 where P is a prime ideal of R: It is well-known that a
ring R is indecomposable if and only if 1 is the only non-zero idempotent element
of R. Let 0 6= a 2 R and a2 = a: Hence a � a2 = a(1 � a) = 0 2 P implies a 2 P
or (1 � a) 2 P: If a 2 P; then we get 0 = a3 = a2 = a, a contradiction. Thus
(1 � a) 2 P: It follows 0 = (1 � a)3 = 1 � 2a2 + 2a � a3 = 1 � a; and so a = 1:
Therefore, R is a indecomposable ring which is clearly not a domain as 0 = P 3

and P is nonzero. Hence, we conclude from Lemma 8 that R is a special primary
ring. Let M be the unique maximal ideal of R. Since every ideal, in particular,
the zero ideal is a power of M , we have M �

p
0. Since 0 = P 3, clearly we have

P =
p
0 =M:

Now, we show that a is a vertex of TZ�(R) if and only if a 2 PnP 2. Let a be
a vertex of TZ�(R). Then, there exist b; c 2 Rnf0g such that abc = 0, ab 6= 0,
ac 6= 0, bc 6= 0. If a =2 P , then a is unit and bc = 0 which is a contradiction. Thus
TZ(R) � P: If a 2 P 2, then since b 2 TZ(R) � P , we conclude ab 2 P 3 = 0,
a contradiction. Therefore, a 2 PnP 2: Conversely, if a 2 PnP 2; then the claim
follows from a3 = 0 and a2 2 P 2 6= 0. Suppose a and b are any two distinct
vertices. Since a2b = ab2 = 0 and ab; a2; b2 are nonzero, a and b are adjacent.
Thus, TZ�(R) is a complete graph on jP j �

��P 2�� vertices. �

Theorem 10. Let 0 = P 2Q where P and Q are prime ideals of a general ZPI-ring
R. Then TZ�(R) is a connected graph with diameter 2 and girth 3.

Proof. Suppose that 0 = P 2Q: Let a be a vertex of TZ�(R). We show that a 2 QnP
or a 2 Pn(P 2[Q). Since a 2 TZ(R), there exist b; c 2 RnP 2Q such that abc 2 P 2Q
and ab; bc; ac =2 P 2Q. Hence, we have either a 2 P or b 2 P or c 2 P; and a 2 Q or
b 2 Q or c 2 Q:
Case I. Let a 2 P \Q: If a 2 P 2, then a 2 P 2 \Q = P 2Q = 0 as P 2 and Q are

coprime; a contradiction. So, assume that a 2 (PnP 2)\Q: If b 2 P or c 2 P , then
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ab = 0 or ac = 0, a contradiction. If b 2 QnP and c 2 QnP , then we get abc =2 P 2Q
which is again a contradiction. Thus, TZ(R) � (PnQ) [ (QnP ):
Case II. Let a 2 PnQ: Suppose that a 2 P 2: If b 2 QnP or c 2 QnP , then we

have either ab = 0 or ac = 0, a contradiction. If b; c 2 PnQ, then abc =2 Q, and so
abc =2 P 2Q, a contradiction.
Therefore, we conclude that a 2 Pn(P 2 [Q) or a 2 QnP .
Observe that all pairs are adjacent except for the elements of QnP: In fact, if an

element x 2 TZ(R) satis�es a1b1x = 0, where a1; a2 2 QnP , we conclude that x 2
P 2, a contradiction. Thus TZ�(R) is a connected graph with diam(TZ�(R)) = 2
and gr(TZ�(R)) = 3: �

In the next theorem, we give a necessary and su¢ cient conditions for TZ�(R)
to be triangle free.

Theorem 11. Let R be a zero dimensional general ZPI-ring. TZ�(R) is triangle
free if and only if one of the following statements is hold:

(1) R is an integral domain.
(2) 0 = PQ for some distinct prime ideals P and Q of R:
(3) 0 = P 2 for some prime ideal P of R:
(4) 0 = P 3 for some prime ideal P of R such that jP j = 4 and

��P 2�� = 2:
Proof. ()): We investigate the following cases separately.
Case I. Suppose that 0 is divisible by at least three prime ideals of R, say P; Q

and T . Then p � q � t where p 2 P; q 2 Q, t 2 T forms a triangle.
Case II. If 0 is divisible by P 2 and Q; where P and Q are distinct prime ideals

of R, then we obtain the triangle p � q � kp; where p 2 P; q 2 Q and 1 6= k 2 RnQ.
Case III. Suppose that 0 = Pn; where P is prime and n � 3: If n = 3, then

this graph is complete by Theorem 9. If 0 = Pn (n � 4); then p � p2 � kp; where
p 2 P and 1 6= k 2 RnP forms a triangle:
((): If (1), (2) or (3) holds, then TZ�(R) = ; by Theorem 7. If (4) holds; then

there are the only two vertices connected by an edge by Theorem 9; so TZ�(R) �=
K2: �

So we conclude the following result.

Corollary 12. The diameter of the triple zero graph of a zero dimensional general
ZPI-ring R is an element of f0; 1; 2g and the girth of the triple zero graph of R is
3 or unde�ned.

In the following result, we characterize the triple zero graph of Zn and calculate
jTZ�(Zn)j cardinality of the vertex set for some particular cases.

Theorem 13. Let R = Zn where n is a positive integer. Then the following
statements hold:

(1) If n = p or n = p2 or n = pq, then TZ�(Zn) = ;:
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(2) If n = p3 where p is prime, then TZ�(Zn) is a complete graph on p2 � p
vertices.

(3) If n = p2q where p and q are distinct prime integers, then TZ�(Zn) is a
connected graph with diameter 2 and girth 3.

Proof. (1) is clear by Theorem 7.
(2) The vertices of TZ�(Zn) are kp; where k 2 Z�p2 = fk 2 Z : (k; p2) =

1; k < p2g: So the number of vertices can be calculated by Euler�s function �(p2) =
p(p � 1): Since (kp)(mp)(tp) = 0 for all k;m; t 2 Z�p2 and neither (kp)(mp) = 0

nor (kp)(tp) = 0 nor (mp)(tp) = 0, there is an edge between all vertices. Thus the
graph is complete; so it is Kp2�p.
(3) Suppose that n = p2q: Then TZ�(Zn) is a connected graph with diameter

2 and girth 3 by Theorem 10. Observe that the vertices of this graph are of the
form kq where k 2 Z�p2 = fk 2 Z : (k; p2) = 1, k < p2g and of the form sp where
s 2 
 = fs 2 Z : (s; p) = (s; q) = 1 and s < pqg: So the number of vertices is
j
j + �(p2) = j
j + p2 � p: Moreover, the number of edges can be calculated as�
j
j
2

�
+ (p2 � p) j
j : �

Theorem 14. Let n > 0 and R = Zn: Then the following statements are equivalent:
(1) TZ�(Zn) is triangle free.
(2) Either n = p, n = p2, n = pq, or n = 8, where p and q are distinct prime

integers.

Proof. We investigate the following cases separately.
Case I. Suppose that n is divisible by at least three primes, say p; q; and r: Then

p � q � (n=pq) forms a triangle.
Case II. If n is divisible by p2 and q; where p and q are distinct prime integers,

then we obtain the triangle p � q � kp; where (k; q) = 1 and k < pq.
Case III. Suppose that n = pn; where p is prime and n � 3: If n = 3, then this

graph is complete by Theorem 9. If n = pn; where n � 3; except from p = 2; then
p � p2 � kp; where (k; p) = 1, k < pn�3 forms a triangle: Thus, n = p, n = p2,
n = pq, or n = 8.
Conversely, if n = p, n = p2 or n = pq, then TZ�(Zn) = ; by Theorem 7. If

n = 8; then 2 and 6 are the only vertices connected by an edge; and so the claim is
clear. �

So we conclude the following result which shows that TZ�(Zn) is connected with
diameter at most 2.

Corollary 15. The diameter of the triple zero graph of Zn is an element of f0; 1; 2g
and the girth of the triple zero graph of Zn is 3 or unde�ned.

Now we can summarize these results by the table below. Let p and q be distinct
prime integers and 
 = fs 2 Z : (s; p) = (s; q) = 1 and s < pqg:
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Table 1. TZ�(Zn) Summary Table

n Number of vertices Number of edges Diam Girth Remarks
p or p2or pq 0 0 0 1 TZ�(Zn) = ;

8 2 1 1 1 2�6

p3(p � 3) p2�p
�
p2 � p
2

�
2 3 Kp2�p

p2q j
j+p2�p
�
j
j
2

�
+(p

2�p) j
j 2 3 Connected

All others 2 3 Connected
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FINITE BLASCHKE PRODUCTS AND THE GOLDEN RATIO

Nihal ÖZGÜR and Sümeyra UÇAR
Department of Mathematics, Bal¬kesir University, Bal¬kesir, TURKEY

Abstract. Geometric properties of �nite Blaschke products have been inten-
sively studied by many di¤erent aspects. In this paper, our aim is to study
geometric properties of �nite Blaschke products related to the golden ratio

� = 1+
p
5

2
. Mainly, we focus on the relationships between the zeros of canoni-

cal �nite Blaschke products of lower degree and the golden ratio. We show that
the geometric notions such as "golden triangle, "golden ellipse" and "golden
rectangle" are closely related to the geometry of �nite Blaschke products.

1. INTRODUCTION

The golden ratio � = 1+
p
5

2 is the positive root of the quadratic equation x2 �
x� 1 = 0. So we have

�2 = �+ 1: (1)

It is well-known that the golden ratio is almost everywhere in nature and science
[12]. This ratio appears in modern research in many �elds. For example, in [19],
the golden ratio is used in graphs; in [10], it is proved that in any dimension
all solutions between unity and the golden ratio to the optimal spherical code
problem for N spheres are also solutions to the corresponding DLP (the densed
local packing problem) problem. Some geometric applications of the golden ratio
and its generalizations have been used to introduce new types of manifolds (see, for
example, [2], [3], [11], [13], [14] and the references therein).
The rational function

B(z) = �
nY
i=1

z � ai
1� aiz

is called a �nite Blaschke product of degree n for the unit disc where j�j = 1 and
jaij < 1, 1 � i � n. Finite Blaschke products and geometric properties of them have
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been extensively studied by many di¤erent aspects (see, for example, [4], [5], [6],
[7], [8], [9], [15], [16], [17], [18]). Mainly, in this paper, we study on the connection
between geometric properties of Blaschke products and the golden ratio.
It is known that Blaschke products of the following form are called as canonical:

B(z) = z
n�1Y
j=1

z � aj
1� ajz

; jaj j < 1 for 1 � j � n� 1: (2)

Note that the canonical Blaschke products correspond to �nite Blaschke products
vanishing at the origin. It is well-known that every Blaschke product B of degree
n with B(0) = 0; is associated with a unique Poncelet curve (for more details,
see [4], [5] and [8]). From [4] we know that the Poncelet curve associated with a
Blaschke product of degree 3 is an ellipse.
In this paper, we investigate the relationships between the zeros of canonical

�nite Blaschke products of lower degree and the golden ratio. We see that some
geometric notions such as "golden triangle, "golden ellipse" and "golden rectangle"
are closely related to the geometry of �nite Blaschke products.

2. BLASCHKE PRODUCTS OF DEGREE TWO

Let AB be a line segment and C be a point on the line segment AB such that
AC is the greater part of AB: Recall that we say the point C divides the line
segment AB in the golden ratio if ACBC = � [12].
In this section we consider a �nite Blaschke product B of degree two of the form

Ba(z) = z
z � a
1� az ; (3)

with a 6= 0, jaj < 1. From [4], we know that there exist two distinct points z1 and
z2 on @D that Ba(z) maps to �, for any point � on the unit circle @D, and that the
line joining z1 and z2 passes through a, the nonzero zero of Ba. Conversely, let L
be any line through the point a, then for the points z1 and z2 at which L intersects
@D we have Ba(z1) = Ba(z2).
Now we ask the following questions:
1) Does the point a divide the line segment [z1; z2] joining z1 and z2 in the golden

ratio?
2) If it does, what is the number of these line segments?
The answers of these questions are given in the following theorem.

Theorem 1. Let Ba(z) = z z�a1�az be a Blaschke product with a 6= 0, jaj < 1. There
are in�nitely many values of a such that there is a line segment with endpoints on
the unit circle divided by a in the golden ratio. Furthermore the number of such
line segments is at most two for a �xed a.

Proof. Let a be a �xed point such that a 6= 0, jaj < 1 and consider the �nite
Blaschke product Ba(z) = z z�a1�az . The ratio of the length of the longer part to
length of the smaller part of the segment [z1; z2] divided by the point a gives rise
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Figure 1. A Blaschke product of degree 2

to a continuous function of the angle � between the segments [0; a] and [z1; z2]. For
� = 0 the ratio is 1+jaj

1�jaj and for � =
�
2 the ratio is 1. Applying the well known

secant property of a circle to Figure 1, it should be

(1� jaj)(1 + jaj) = l�:l
where l is the length of the segment [z1; a] and l� is the length of the segment
[a; z2] [1]. Then we get

l =

s
1� jaj2

�
(4)

Since nonlinear three distinct points determine a triangle, if the points 0; z1; z2 form
a triangle it should be

0 < l + l� < 2: (5)

If we substitute the equation (4) in (5); we gets
1� jaj2

�
(�+ 1) < 2:

Then we get
1 + jaj
1� jaj > �:
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If � = 1+jaj
1�jaj ; then the line passing through the points z1; z2 and a is the diameter

of the unit circle.
For this reason, as long as 1+jaj

1�jaj � �; there is a segment divided by a in the
golden ratio. Now we �nd the number of the segments divided by a in the golden
ratio for a such a.
Let a be chosen such that 1+jaj

1�jaj � � and z1 be chosen such that the point a
divides the line segment [z1; z2] in the golden ratio. Then by de�nition we have

jz2 � aj
jz1 � aj

= �: (6)

Using the fact that jzj = 1 for z 2 @D, we can write

B(z) =
z � a
z � a , z 2 @D:

Also, we know that B(z1) = B(z2) and so we obtain

(z1 � a)
(z1 � a)

=
z2 � a
z2 � a

(7)

From the equation (6), we have

(z2 � a)(z2 � a)
(z1 � a)(z1 � a)

= �2 (8)

and from the equation (7), we �nd

z2 � a =
(z2 � a)(z1 � a)

(z1 � a)
(9)

After substitute (9) into (8), we get the equation

� z22 + 2az2 + �a2 � 2a�2z1 + �2z21 = 0. (10)

Clearly the last equation (10) has at most two roots with respect to z2. Hence there
are at most two line segments [z1; z2] passing through the point a and divided by a
in the golden ratio. This fact can be also seen by some geometric arguments. �

Example 2. Let us consider the Blaschke product B(z) = z
z� 1

2

1� 1
2 z
. Let z1 and z2

be two distinct points satisfying B(z1) = B(z2). If the point a = 1
2 divides the line

segment [z1; z2] in the golden ratio, from the common solutions of the equations (8)
and (7), we obtain Figure 2. There the dashed line segments show the line segments
which are divided by the point a = 1

2 in the golden ratio.
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Figure 2. Blaschke product of degree 2 with a = 1
2 .

3. BLASCHKE PRODUCTS OF DEGREE THREE

In this section, we consider a �nite Blaschke product B of degree three of the
form

B(z) = z
(z � a1)(z � a2)
(1� a1z)(1� a2z)

;

with distinct zeros at the points 0, a1 and a2. It is well-known that for any speci�ed
point � of the unit circle @D, there exist 3 distinct points z1, z2 and z3 of @D such
that B(z1) = B(z2) = B(z3) = �.
We know the following theorem for a Blaschke product of degree three.

Theorem 3. (See [4] Theorem 1) Let B be a Blaschke product of degree three with
distinct zeros at the points 0, a1 and a2. For � on the unit circle, let z1, z2 and z3
denote the points mapped to � under B. Then the lines joining zj and zk for j 6= k
are tangent to the ellipse E with equation

jz � a1j+ jz � a2j = j1� a1a2j : (11)

Conversely, every point on E is the point of tangency of a line segment joining two
distinct points z1 and z2 on the unit circle for which B(z1) = B(z2).

The ellipse E in (11) is called a Blaschke 3-ellipse associated with the Blaschke
product B(z) of degree 3. There are many studies on the ellipse E given in (11)
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(see [5], [6], [7], [9], [16] and [17] for more details). For any � 2 @D, we know that
E circumscribed in the triangle �(z1; z2; z3), where z1; z2 and z3 are the points
mapped to � under B.
A golden triangle is an isosceles triangle such that the ratio of one its lateral

sides to the base is the golden ratio � = 1+
p
5

2 : A golden ellipse is an ellipse such

that the ratio of the major axis to the minor axis is the golden ratio 1+
p
5

2 (see [12]
for more details).
We have the following questions:
1) Are there any Blaschke 3-ellipses which are circumscribed (at least) one golden

triangle?
2) Can a Blaschke 3-ellipse be a golden ellipse? If so, what is the number of

these ellipses?
We begin with answering of the �rst question.

Theorem 4. There are in�nitely many golden triangles whose three vertices lie on
the unit circle.

Proof. Without loss of generality, let x and y be chosen so that x; y > 0 and such
that the triangle with vertices at the points 1;�x+ iy;�x� iy is inscribed in the
unit circle. We try to determine the values of x and y such that x2 + y2 = 1. By
the de�nition of a golden triangle it is su¢ cient to show that there are values of x
and y on the unit circle such that

2�y =
p
y2 + (x+ 1)2: (12)

Squaring both sides of (12) and using the fact that x2+ y2 = 1, we obtain 2y2�2 =
x+ 1: Then we have

2(1� x2)�2 � x� 1 = 0
and so

2x2�2 + x+ (1� 2�2) = 0:
Solving this quadric equation for x and y; we obtain x = 0; 809017 and y =

0:587785 where y =
p
1� x2: So we have one golden triangle such that its vertices

are on the unit circle. Then there are in�nitely many golden triangles with vertices
on the unit circle by rotation. �

Now we can construct some examples using some results from [5] and [9]. Recall
that two sets fz1; z2; :::; zng and fw1; w2; :::; wng of points from @D are interspersed
if 0 � arg(z1) < arg(w1) < ::: < arg(zn) < arg(wn) < 2� (see [5] for more details).
From [6], we know that the ellipses inscribed in triangles with vertices on the

unit circle are precisely Blaschke 3-ellipses.

Example 5. Let �(z1; z2; z3) be a golden triangle on the unit circle. From Theorem
2:1 in [9], we know that the Steiner ellipse E inscribed in this golden triangle has
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Figure 3. Blaschke product B of degree 3 whose Poncelet curve in-
scribed in (at least) one golden triangle. The dashed triangle is the
golden triangle.

foci a1 and a2 with the following equation :

a1 =
1

3
(z1 + z2 + z3) +

r
(
1

3
(z1 + z2 + z3))2 �

1

3
(z1z2 + z1z3 + z2z3)

and

a2 =
1

3
(z1 + z2 + z3)�

r
(
1

3
(z1 + z2 + z3))2 �

1

3
(z1z2 + z1z3 + z2z3):

Then this Steiner ellipse E is the Poncelet curve of the Blaschke product B(z) =
z z�a11�a1z

z�a2
1�a2z .

Example 6. Let z1; z2; z3 and w1; w2; w3 be triples of points which form the golden
triangles �(z1; z2; z3) and �(w1; w2; w3) on the unit circle so that fz1; z2; z3g and
fw1; w2; w3g are interspersed sets of the points. From Corollary 10 on page 97
in [5], we know that there exists a Blaschke product B of degree 3 which maps 0 to
0 such that B(zj) = B(zk) and B(wj) = B(wk) for all j and k (1 � j; k � 3): Since
we can choose the triples z1; z2; z3 and w1; w2; w3 by in�nitely many di¤erent ways
then clearly there are in�nitely many Blaschke ellipses each of which has at least
two golden triangle circumscribing them and having the vertices on the unit circle.
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Figure 4. Blaschke product B of degree 3 whose Poncelet curve in-
scribed in (at least) two golden triangles. The dashed triangles are the
golden triangles.

We have seen examples of Blaschke products of degree three of which Poncelet
curves inscribed in at least one or two golden triangles.
Now we consider the answer of our second question.

Theorem 7. There are in�nitely many golden ellipses which are Blaschke ellipses
in the unit disc.

Proof. Let us take a golden ellipse with equation x2

a2 +
y2

b2 = 1 in the unit disc. Then
by de�nition a

b = � and so a = b�. Recall that we have the equation a
2 = b2 + c2

where the point c is the positive focus of the ellipse. So this ellipse has foci �c and
c. By the last equation and �2 = � + 1, we �nd b2� = c2. Combining a = b� and
b2� = c2 we �nd a = �c

p
�. Now we consider the Blaschke product associated

with this ellipse. If this ellipse is a Blaschke ellipse, it must be 2a = 1 + c2 by
the de�nition of a Blaschke ellipse. Hence we �nd c2 � 2

p
�c + 1 = 0. As these

equations have only one positive root c = 1
2 (�

q
2(�1 +

p
5) +

q
2(1 +

p
5)), there

is one golden ellipse which is a Blaschke ellipse. Since every rotation of this golden
ellipse is again golden, clearly we have in�nitely many golden Blaschke ellipses in
the unit disc. �
We give the following de�nition.
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De�nition 8. Let B be a �nite Blaschke product of degree n of the canonical form.
If the Poncelet curve associated with B is an ellipse and this ellipse is a golden
ellipse, then B is called as a golden Blaschke product.

Example 9. Let us consider the Blaschke product

B1(z) = z
(z � a1)(z � a2)
(1� a1z)(1� a2z)

;

where

a1 =
1

2
(�
q
2(�1 +

p
5) +

q
2(1 +

p
5))

and a2 = �a1. By the proof of Theorem 7, we know that the Blaschke 3-ellipse
E associated with B1 is a golden ellipse. So B1(z) is a golden Blaschke product.
The image of this golden Blaschke ellipse under the rotation transformation f(z) =
( 12 + i

p
3
2 )z is another golden Blaschke ellipse. Clearly we �nd the equation of f(E)

as �����z � (12 + i
p
3

2
)a1

�����+
�����z � (12 + i

p
3

2
)a2

����� = j1� a1a2j :
More precisely, this image ellipse f(E) is the Poncelet curve of the following Blaschke
product :

B2(z) = z
(z � ( 12 + i

p
3
2 )a1)(z � (

1
2 + i

p
3
2 )a2)

(1� ( 12 � i
p
3
2 )a1z)(1� (

1
2 � i

p
3
2 )a2z)

:

4. BLASCHKE PRODUCTS OF DEGREE FOUR

A golden rectangle is a rectangle such that the ratio of the length x of the longer
side to the length y of the shorter side is the golden ratio 1+

p
5

2 (see [12] for more
details).
We give the following theorem.

Theorem 10. There are in�nitely many golden rectangles whose four vertices lie
on the unit circle.

Proof. Without loss of generality, let x and y be chosen so that x; y > 0 and such
that the rectangle with vertices at the points x + iy; x � iy;�x � iy;�x + iy is
inscribed in the unit circle. We try to determine the values of x and y such that
x2+ y2 = 1. So, it is su¢ cient to show that there are values of x and y on the unit
circle such that

2x = 2�y:

We get x = �y and using the facts that x2 + y2 = 1 and �2 = � + 1 we obtain
y2(�2 + 1) = 1 and hence

y =
1p
�+ 2

= 0:525731 and x =
�p
�+ 2

= 0:850651.
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So, we have one golden rectangle such that its vertices are on the unit circle. Then,
there are in�nitely many golden triangles with vertices on the unit circle by rotation.

�

Example 11. Let z1; z2; z3; z4 and w1; w2; w3; w4 be eight points which form the
golden rectangles (z1; z2; z3; z4) and (w1; w2; w3; w4) on the unit circle so that fz1; z2;
z3; z4g and fw1; w2; w3; w4g are interspersed sets of the points. From Corollary
10 on page 97 in [5], we know that there exists a Blaschke product B of degree 4
which maps 0 to 0 such that B(zj) = B(zk) and B(wj) = B(wk) for all j and k
(1 � j; k � 4): Then clearly there are in�nitely many Poncelet curves associated
with a �nite Blaschke product of degree 4 each of which has at least two golden
rectangle circumscribing them and having the vertices on the unit circle.

Using the following lemmas, we construct examples of �nite Blaschke products
of degree 4 whose Poncelet curves are ellipses and each of them have at least one
golden rectangle.

Lemma 12. (See [7] Lemma 5) For any quadrilateral that is inscribed in the unit
circle, an ellipse is inscribed in it if and only if the ellipse is associated with the
composition of two Blaschke products of degree 2:

Lemma 13. (See [7] Lemma 6) For four mutually distinct points z1; :::; z4 on the
unit circle (0 � arg z1 < arg z2 < arg z3 < arg z4 < 2�); there exists an ellipse that
is inscribed in the quadrilateral with vertices z1; :::; z4: Moreover, for each quadri-
lateral, inscribed ellipses form a real-valued one-parameter family.

Now we give the following theorem.

Theorem 14. Let Q be any golden rectangle inscribed in the unit circle. Then
there is at least one ellipse E inscribed in Q such that E is a Poncelet curve of a
�nite Blaschke product B of degree 4.

Proof. Let Q be any golden rectangle with the vertices z1; z2; z3; z4 on the unit
circle. By Lemma 13 there exists an ellipse E inscribed in Q. We know that
the two foci a and b of an ellipse inscribed in any rectangle whose vertices are
z1; z2; z3; z4 satisfy the equations

[(((�z2 + z1) z3 � z1z2) z4 + z1z2z3) a+ z2z4 � z1z3] a2
�[z1z2z3z4 (z4 � z3 + z2 � z1) a2 � (z3 + z1) (z4 + z2) (z2z4 � z1z3) a

+z2z4 (z4 + z2)� z1z3 (z1 + z3)]a+ z1z2z3z4 (z2z4 � z1z3) a2
�[
�
z22z3 + z1z

2
2

�
z24 � z21z23z4 � z21z2z23 ]a

+(z2z4 � z1z3) (z2z4 + z1z3) = 0

and
(z4 � z3 + z2 � z1) ab� (z2z4 � z1z3) (a+ b)

+[(z2 � z1) z3 + z1z2]z4 � z1z2z3 = 0
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Figure 5. Blaschke product B of degree 4 whose Poncelet curve is an
ellipse inscribed in (at least) one golden rectangle. The dashed rectangle
is the golden rectangle.

given in [7]. Then by the proof of Lemma 12, E has the following equation

E : jz � aj+ jz � bj = j1� abj

s
jaj2 + jbj2 � 2
jaj2 jbj2 � 1

and E is the Poncelet curve of the �nite Blaschke product B of the following form:

B(z) = z
z � �
1� �z

z2 + (��� �)z � �
1� (��� + �)z � �z2

;

where � = �ab and � = a+b�ab(a+b)
1�jabj2 : �

5. BLASCHKE PRODUCTS OF HIGHER DEGREE

We know that regular pentagon and regular decagon have the same properties
of the golden ratio among polygons (see [12] for more details). It is not known
the equation of the Poncelet curves of Blaschke products of degree 5 or 10, so
we cannot obtain similar theorems to the ones given in the previous sections. In
these two cases, by the similar arguments used in the Example 6 and Example 11,
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Figure 6. Blaschke product B of degree 5 whose Poncelet curve in-
scribed in (at least) one golden pentagon. The dashed pentagon is the
golden pentagon.

we can obtain �nite Blaschke products of degree 5 and 10 whose Poncelet curves
circumscribed by at least two regular pentagon and regular decagon, respectively.
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Figure 7. Blaschke product B of degree 10 whose Poncelet curve in-
scribed in (at least) one golden decagon. The dashed decagon is the
golden decagon.
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SOLUTION OF FRACTIONAL KINETIC EQUATIONS
INVOLVING GENERALIZED HURWITZ-LERCH ZETA

FUNCTION USING SUMUDU TRANSFORM

O¼guz YA ¼GCI and Recep ŞAH·IN
Department of Mathematics, Faculty of Arts and Sciences, K¬r¬kkale University,

71450, K¬r¬kkale, TURKEY

Abstract. Fractional kinetic equations (FKEs) comprising a large array of
special functions have been extensively and successfully applied in speci�cation
and solving many signi�cant problems of astrophysics and physics. In this
present work, our aim is to demonstrate solutions of (FKEs) of the generalized
Hurwitz-Lerch Zeta function by applying the Sumudu transform. In addition
to these, solutions of (FKEs) in special conditions of generalised Hurwitz-Lerch
Zeta function have been derived.

1. Introduction

The Hurwitz-Lerch Zeta function is de�ned by [34,35]:

� (�;m; �) =

1X
n=0

�n

(n+ �)
m (1)

�
� 2 C n Z0; m 2 C when j�j < 1; <(m) > 1 when j�j = 1

�
:

Many researchers studied many di¤erent generalisations and extensions of the
Hurwitz-Lerch Zeta function by inserting certain additional parameters to the series
representation of the Hurwitz-Lerch Zeta function. The interested readers can refer
to these earlier publications for further researches and applications [13, 14, 15, 18,
20,21,22,25,26,33,36,38,42].

2020 Mathematics Subject Classi�cation. Primary 11M35, 44A20, 33E12; Secondary 33B15,
26A33.

Keywords and phrases. Hurwitz-Lerch Zeta function, generalized Hurwitz-Lerch Zeta function,
fractional calculus, fractional kinetic equation, Mittag-Le er function, Sumudu transform.

1588151031@kku.edu.tr, oguzyagci26@gmail.com- Corresponding author;
recepsahin@kku.edu.tr

0000-0001-9902-8094; 0000-0001-5713-3830.

c2021 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

678



FKE INVOLVING HURWITZ-LERCH ZETA FUNCTION USING SUMUDU TRANSFORM679

In 2011, Srivastava et. al [41, p.491, Eq.(1.20)] introduced and studied the
following extension of the generalized Hurwitz-Lerch Zeta function:

�
(�; �; �)
�; �;! (�;m; a) =

1X
n=0

(�)�n (�)�n
(!)�n n!

�n

(n+ a)m
; (2)

(�; � 2 C; a; ! 2 C n Z�0 ; �; �; � 2 R+; �� � � � > �1whenm; � 2 C;
�� � � � = �1 andm 2 Cwhen j�j < �? = ��������;

�� � � � = �1 and<(m+ ! � �� �) > 1when j�j = �?):

1.1. Fractional Kinetic Equations. In [23] one determinated the fractional dif-
ferential equation for the rate of change of reaction. The destruction rate and the
production rate follow:

d�

dx
= �d(�x) + p(�x); (3)

where � = �(x) the rate of the reaction, d = d(�) the rate of destruction, p = p(�)
the rate of production and �x denotes the function de�ned by �x(x?) = �(x� x?); x? > 0 .
The special condition of equation (3) for spatial �uctuations and inhomogeneities

in �(x) the quantities are ignored, that is the equation

d�

dx
= �ci �i(x) (4)

with the initial condition that �i(x = 0 ) = �0 is the number of density of the species
i at time x = 0 and ci > 0. If we shift the index i and integrate the standard kinetic
equation (4), we have

�(x)� �0 = �c 0D�1t �(x) (5)

where 0D�1x is the special condition of the Riemann-Liouville integral operator

0D��x given as [40],

0D��x f (x) =
1

� (�)

Z x

0

(x� s)��1 f (s)ds; (6)

(x > 0; <(�) > 0):
The fractional generalisation of the standard kinetic equation (5) is studied by

Haubold and Mathai as follows [23]:

�(x)� �0 = �c� 0D�1x �(x) (7)

and acquired the solution of (4) as follows:

�(x) = �0

1X
k=0

(�1 )k
� (�k + 1 )

(cx)�k : (8)
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In addition to that, Saxena and Kalla [30] take into consideration the following
fractional kinetic equation:

�(x)� �0 f (x) = �c� 0D�1x �(x) (<(�) > 0 ); (9)

where �(x) denotes the number density of a given species at time x, �0 = �(0 ) is the
number of density of that species at time x = 0, c is a constant and f 2 L(0;1).
By taking advantage of the Laplace transform [19,37,39] to the equation (9),

L f�(x); pg = �0
F (p)

1 + c� p��
= �0

� 1X
n=0

(�c�)n p��n
�
F (p); (10)

�
n 2 �0 ;

���� cp
���� < 1�:

The extension and generalisation of (FKEs) comprising many fractional operators
were found in [1, 2, 3, 5, 16,17,23,24,28,29,30,31,32,43].

1.2. Sumudu Transform. The Sumudu transform is extensively used to solve
several type of problems in science and engineering and it was introduced by Watag-
ula [44,45]. For details, the reader is referred to [4, 7, 8, 9, 10,11,12].
Suppose that U be the class of exponentially bounded function f : < ! <, that

is,

f(�) <

(M exp

�
� �

�1

�
(� 5 0);

M exp

�
�

�2

�
(� = 0);

whereM; �1 and �2 are positive real constants. The Sumudu transform de�ned on
the set U is given as follows [44,45]:

G(u) = Sff(�);ug =
Z 1

0

e�� f(u�) d� (��1 < u < �2): (11)

The main goal of this work is to demonstrate the generalized (FKEs) involv-
ing generalised Hurwitz-Lerch Zeta function (2). Here, we conceive the Sumudu
transform methodology to arrive at the solutions.

2. Main Results

Here, we will explain the solution of the generalised (FKEs) which by considering
generalized Hurwitz-Lerch Zeta function (2).

Theorem 1. If b > 0; � > 0; �; �; � 2 C; and b 6= � be such that a; ! 2
C n Z�0 ; �; �; � 2 R+, then the solution of the given fractional equation

�(x)� �0 �(�; �; �)�; �;! (b�x� ;m; a) = ��� 0D��x �(x) (12)
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is derived by

�(x) = �0

1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n t�n�1

(!)�n n! (n + a)m
E�;�n(��� x�); (13)

where E�;�n(:) is the Mittag-Le er function [27].

Proof. The Sumudu transform of the Riemann-Liouville fractional integral operator
is de�ned by [24, p. 460, Eq. (2.10)]:

S
�
0D��x f (x); u

�
= S

�
x��1

� (�)
; u

�
� S
�
f (x); u

�
= u� G(u): (14)

Now, taking advantage of the Sumudu transform to the both sides of (12), we
have

S f�(x); ug = �0 S f�(�; �; �)�; �;! (b�x� ;m; a); ug � �� S f0D��x �(x); ug

�(u) = �0

�Z 1

0

e�x
1X
n=0

(�)�n (�)�n (b
�(ux)�)n

(!)�n n! (n + a)m

�
dx� ��u� �(u)

�(u) + ��u� �(u)

= �0

1X
n=0

(�)�n (�)�n b
�n

(!)�n n! (n + a)m
u�n

Z 1

0

e�x x�ndx

= �0

1X
n=0

(�)�n (�)�n b
�n

(!)�n n! (n + a)m
u�n � (�n + 1 )

N(u) = �0

1X
n=0

(�)�n (�)�n �(�n+ 1) b
�n

(!)�n n! (n+ a)m
u�n

1X
r=0

�
� (�u)�

�r
:

(15)

Taking the inverse Sumudu transform of (15), and by applying

S�1fu�; xg = x��1

�(�)
; (<(�) > 0); (16)

we have

S�1f�(u)g = �0

1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n

(!)�n n! (n + a)m

� S�1
� 1X
r=0

��r u�(n+r)
�

�(x) =
1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n x�n�1

(!)�n n! (n + a)m

1X
r=0

(�1 )r��r x�r

� (�n + �r)
:

(17)

So, we can be yield the required result (13). �
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Theorem 2. If b > 0; � > 0;�; � 2 C be such that a; ! 2 C nZ�0 ; �; �; � 2 R+,
then the solution of the given fractional equation

�(x)� �0 �(�; �; �)�; �;! (b�x�;m; a) = �b� 0D��x �(x) (18)

is derived by

�(x) = �0

1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n x�n�1

(!)�n n! (n + a)m
E�;�n(�b� x�); (19)

where E�;�n(:) is the Mittag-Le er function [27].

Proof. The proof of Theorem 2 is parallel to the proof of Theorem 1, thus the
details are omitted. �

Theorem 3. If � > 0; �; �; � 2 C be such that a; ! 2 C n Z�0 ; �; �; � 2 R+,
then the solution of the given fractional equation

�(x)� �0 �(�; �; �)�; �;! (x;m; a) = ��� 0D��x �(x) (20)

is derived by

�(x) = �0

1X
n=0

(�)�n (�)�n � (n + 1 ) x
n�1

(!)�n n! (n + a)m
E�;n(��� x�); (21)

where E�;n(:) is the Mittag-Le er function [27].

Proof. Theorem 3 can be easily acquired from Theorem 1, so the details are omitted.
�

2.1. Special Conditions. Choosing � = � = 1 in the equation (2), which is the
generalized Hurwitz-Lerch Zeta function ��; ��;!(�;m; a) introduced and studied by
Lin and Srivastava [25].
Applying � = � = 1 in the Theorem 1, Theorem 2, Theorem 3 obtained the

following forms:

Corollary 4. If b > 0; � > 0; �; � 2 C, and b 6= � be such that a; ! 2 C n
Z�0 ; �; � 2 R+, then the solution of the given fractional equation

�(x)� �0 �(�; �)�;! (b�x�;m; a) = ��� 0D��x �(x) (22)

is derived by

�(x) = �0

1X
n=0

(�)�n � (�n + 1 ) b
�nx�n�1

(!)�n (n + a)m
E�;�n(��� x�): (23)
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Corollary 5. If b > 0; � > 0; � 2 C be such that a; ! 2 C n Z�0 ; �; � 2 R+,
then the solution of the given fractional equation

�(x)� �0 �(�; �)�;! (b�x�;m; a) = �b� 0D��x �(x) (24)

is derived by

�(x) = �0

1X
n=0

(�)�n � (�n + 1 ) b
�nx�n�1

(!)�n (n + a)m
E�;�n(�b� x�): (25)

Corollary 6. If �; � 2 C be such that a; ! 2 C n Z�0 ; �; � 2 R+, then the
solution of the given fractional equation

�(x)� �0 �(�; �)�;! (x;m; a) = ��� 0D��x �(x) (26)

is derived by

�(x) = �0

1X
n=0

(�)�n � (n + 1 )x
n�1

(!)�n (n + a)m
E�;n(��� x�): (27)

Setting � = � = � = 1 in the equation (2), which is the generalized Hurwitz-
Lerch Zeta function ��; �;!(�;m; a) introduced and studied by Garg et. all [20].
Applying � = � = � = 1 in the Theorem 1, Theorem 2, Theorem 3 obtained

the following forms:

Corollary 7. If b > 0; � > 0; �; �; � 2 C, and b 6= � be such that a; ! 2 CnZ�0 ,
then the solution of the following given equation

�(x)� �0 ��; �;!(b�x�;m; a) = ��� 0D��x �(x) (28)

is derived by

�(x) = �0

1X
n=0

(�)n (�)n � (�n + 1 ) b
�nx�n�1

(!)n n! (n + a)m
E�;�n(��� x�): (29)

Corollary 8. If b > 0; � > 0; �; � 2 C be such that a; ! 2 C n Z�0 , then the
solution of the given fractional equation

�(x)� �0 ��; �;!(b�x�;m; a) = �b� 0D��x �(x) (30)

is derived by

�(x) = �0

1X
n=0

(�)n (�)n � (�n + 1 )b
�nx�n�1

(!)n n! (n + a)m
E�;�n(�b� x�): (31)

Corollary 9. If �; �; � 2 C be such that a; ! 2 C n Z�0 , then the solution of the
given fractional equation

�(x)� �0 ��; �;!(x;m; a) = ��� 0D��x �(x) (32)
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is derived by

�(x) = �0

1X
n=0

(�)n (�)n � (n + 1 )x
n�1

(!)n n! (n + a)m
E�;n(��� x�): (33)

Upon taking � = � = � = 1 and � = ! in the equation (2), which is the
generalized Hurwitz-Lerch Zeta function �?�(�;m; a) introduced and studied by
Goyal and Laddha [21, p.100, Eq.(1.5)].
Applying � = � = � = 1 and � = ! in the Theorem 1, Theorem 2, Theorem 3

obtained the following forms:

Corollary 10. If b > 0; � > 0; �; � 2 C, and b 6= � be such that a 2 C n Z�0 ,
then the solution of the given fractional equation

�(x)� �0 �?�(b�x�;m; a) = ��� 0D��x �(x) (34)

is derived by

�(x) = �0

1X
n=0

(�)n � (�n + 1 ) b
�nx�n�1

n! (n + a)m
E�;�n(��� x�): (35)

Corollary 11. If b > 0; � > 0; � 2 C be such that a 2 C n Z�0 , then the solution
of the given fractional equation

�(x)� �0 �?�(b�x�;m; a) = �b� 0D��x �(x) (36)

is derived by

�(x) = �0

1X
n=0

(�)n � (�n + 1 ) b
�nx�n�1

n! (n + a)m
E�;�n(�b� x�): (37)

Corollary 12. If �; �; � 2 C be such that a 2 C n Z�0 , then the solution of the
given fractional equation

�(x)� �0 �?�(x;m; a) = ��� 0D��x �(x) (38)

is derived by

�(x) = �0

1X
n=0

(�)n � (n + 1 )x
n�1

n! (n + a)m
E�;n(��� x�): (39)

Upon taking � = � = � = 1 and � = �
� . Then, the limit case of (2) when

�!1, would yield the Mittag-Le er type function E(a)�; !(m; x) studied by Barnes
[6], that is,

E(a)�; !(m; �) =
1X
n=0

�n

(n+ a)m �(! + �n)
; (40)

(a; ! 2 C n Z�0 ; <(�) > 0; m; � 2 C):
Applying � = � = � = 1 and � = �

� . Then, the limit case of (2) when � ! 1
in the Theorem 1, Theorem 2, Theorem 3 obtained the following forms:
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Corollary 13. If b > 0; � > 0; �; � 2 C, and b 6= � be such that a; ! 2 C n Z�0 ,
then the solution of the given fractional equation

�(x)� �0 E(a)�; !(m; b
�x�) = ��� 0D��x �(x) (41)

is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m � (! + �n)
E�;�n(��� x�): (42)

Corollary 14. If b > 0; � > 0; � 2 C be such that a; ! 2 C n Z�0 , then the
solution of the given fractional equation

�(x)� �0 E(a)�; !(m; b
�x�) = �b� 0D��x �(x) (43)

is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m � (! + �n)
E�;�n(�b� x�): (44)

Corollary 15. If �; � 2 C be such that a; ! 2 C n Z�0 , then the solution of the
given fractional equation

�(x)� �0 E(a)�; !(m; x) = ��� 0D��x �(x) (45)

is derived by

�(x) = �0

1X
n=0

� (n + 1 )xn�1

(n + a)m � (! + �n)
E�;n(��� x�): (46)

Finally, upon setting �; �; !; �; �; � = 1 in the equation (2), which gives the
equation (1) [34,35].
Choosing �; �; !; �; �; � = 1 in the Theorem 1, Theorem 2, Theorem 3 obtained

the following forms:

Corollary 16. If b > 0; �; � 2 C; a 2 C nZ�0 , and b 6= �, then the solution of the
given fractional equation

�(x)� �0 �(b�x�;m; a) = ��� 0D��x �(x) (47)

is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m
E�;�n(��� x�): (48)

Corollary 17. If b > 0; � 2 C; a 2 CnZ�0 , then the solution of the given fractional
equation

�(x)� �0 �(b�x�;m; a) = �b� 0D��x �(x) (49)
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is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m
E�;�n(�b� x�): (50)

Corollary 18. If � 2 C; a 2 C n Z�0 , then the solution of the given fractional
equation

�(x)� �0 �(x;m; a) = ��� 0D��x �(x) (51)

is derived by

�(x) = �0

1X
n=0

� (n + 1 )xn�1

(n + a)m
E�;n(��� x�): (52)

3. Numerical Result and Graphic

In this section, we present the 2D plots of Equation (13) for special values such
as: �; �; !; �; �; �; a; m = 1, � = 4, �0 = 3 and � = 0:4; 0:5; 0:6.

Figure 1. Solution of the FKE for GHLZ

4. Conclusions

The fractional kinetic equation involving the generalized Hurwitz-Lerch Zeta
function is studied using the Sumudu transform. The results obtained in this study
have remarkable signi�cance as the solution of the equations are general and can
be reproduced many new and known solutions of (FKEs) involving various type of
special functions.
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Abstract. In this article, we introduce the notion of complex valued modular
metric spaces. We also a prove generalization of Banach Fixed Point Theo-
rem, which is one of the most simple and signi�cant tests for existence and
uniqueness of solution of problems arising in mathematics and engineering for
complex valued modular metric spaces. In addition, we express some results
related to these spaces. Finally, we give an application of our results to digital
programming.

1. INTRODUCTION AND PRELIMINARIES

In 2011, Azam et al. [6] introduced the notion of complex valued metric spaces
and they gave generalization of Banach contraction mapping principle [10]. Then,
this space has been studied by many authors. After that, they obtained various
�xed point theorems on this spaces [2, 7, 15, 16, 22, 24, 31, 32, 33, 34]. On the other
hand, a lot of researchers have contributed introducing di¤erent concepts on these
structures. And they extended them to b-metric, rectangular metric, generalized
metric spaces, etc. [1, 4, 5, 20,25,26,35].
In 1950, Nakano introduced modular spaces [30]. In 2008, Chistyakov intro-

duced the notion of modular metric spaces, which has a physical interpretation [11]
and he gave the fundamental properties of modular metric spaces [12]. In 2011,
Mongkolkeha and et. al. proved contraction-type �xed point theorems on modu-
lar metric spaces [23]. Since the 2010, many researchers as Kumam, Cho, Alaca,
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Khamsi, Mutlu have contributed to develop these structures introducing various
�xed point theorems on modular metric spaces [9, 3, 8, 13,14,17,18,19,27,28].
The aim of this paper is to introduced the concept of complex valued modular

metric spaces, which is more general than well-know modular metric spaces, and
give some �xed point theorems under the contraction condition in these spaces.
Further, we discuss some results and an application related to these new spaces in
digital programming.
Complex valued modular metric spaces form a special class of cone modular metric
space. This idea is useful in de�ning rational expressions which are not meaningful
in cone modular metric spaces. Thus, many results of analysis cannot be generalized
to cone modular metric spaces. So the complex valued modular metric spaces are
important spaces.
Let z1; z2 2 C, z1 = a1 + ib1, z2 = a2 + ib2 where a1; b2; a1; b2 2 R and - be a
partial order on C. Then z1 - z2 , a1 � a2 and b1 � b2: Therefore, it is obvious
that z1 - z2, if
(i) a1 = a2 and b1 = b2 or;
(ii) a1 < a2 and b1 = b2 or;
(iii) a1 = a2 and b1 < b2 or;
(iv) a1 < a2 and b1 < b2.
Specially, z1 � z2 if z1 6= z2 and one of conditions (ii), (iii), (iv) is satis�ed. Also,
z1 � z2 if only the condition (iv) is satis�ed.

De�nition 1. [29] Let X be a linear space on R (or C). If a functional � : X !
[0;1] holds the following conditions, we call that � is a modular on X: (1) �(0) = 0;
(2) If x 2 X and �(�x) = 0 some numbers � > 0, then x = 0;
(3) �(�x) = �(x), for all x 2 X;
(4) �(�x+ �y) � �(x) + �(y) for some �; � � 0 with �+ � = 1 and x; y 2 X.

2. MAIN RESULTS

Let X 6= ;, � 2 (0;1) and ! : (0;1)�X �X ! C is a function. Throughout
this article, the value !(�; x; y) is denoted as !�(x; y) for all � > 0 and x; y 2 X.

De�nition 2. Let X 6= ;. The function ! : (0;1)�X�X ! C is called a complex
valued metric modular on X, if
(CM1) !�(x; y) = 0 , x = y;
(CM2) !�(x; y) = !�(y; x) ;
(CM3) !�+�(x; y) - !�(x; z) + !�(z; y)

for all x; y; z 2 X and �; � > 0.
If instead of (CM1), we only have the condition
(CM1*) !�(x; x) = 0 for all � > 0, x 2 X,

then � is said to be a complex valued metric pseudo-modular on X.
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De�nition 3. Let ! : (0;1)�X �X ! C be a complex valued metric (pseudo-)
modular on X. For any x0 2 X, the sets

X! = fx 2 X : lim
�!1

!�(x; x0) = 0g

and
X�
! = fx 2 X : 9� = �(x) > 0 such that !�(x; x0) < +1g

are said to be complex valued modular spaces (around x0).

If ! is complex valued metric modular on X, the complex valued modular spaces
X! can be equipped with a metric, generated by ! and given by

d!(x; y) = inff� > 0 : !�(x; y) - �g for any x; y 2 X!:

Example 4. Let (X; d) be a complex valued metric space. Then the functional
! : (0;1)�X �X ! C de�ned by

!�(x; y) =
d(x; y)

�

is a complex valued modular metric on X. Indeed, complex valued metric spaces
are also complex valued modular metric spaces.

De�nition 5. Let X! be a complex valued modular metric space and fangn2N be
a sequence on X!. Then,
(1) fangn2N is called a complex valued modular convergent sequence to a 2 X!,

if for every � 2 C with � � 0 there exists n0 2 N such that !�(an; a) � � for all
� > 0 and n � n0. And this is denoted with an ! a as n!1 or limn!1 an = a.
(2) fangn2N is called a complex valued modular Cauchy sequence, if for every

� 2 C with � � 0 there exists n0 2 N such that !�(an; an+m) � � for all � > 0 and
n � n0 as m 2 N. This is denoted with limn!1 !�(an; an+m) = 0 for all � > 0
and m � 0.
(3) X! is called a complete complex valued modular metric space, if every mod-

ular Cauchy sequence fang on X! converges to a 2 X!.
(4) The set K � X! is called closed, if the limit of a complex valued modular

convergent sequence on K still in K.
(5) The set K � X! is called bounded, if

�!(K) = supf!�(x; y)j x; y 2 Kg <1
for all � > 0.

Lemma 6. Let X! be a complex valued modular metric space and fangn2N be
a sequence on X!. Then fang converges to a 2 X! if and only if !�(an; a) !
0 as n!1:

Lemma 7. Let ! : (0;1)�X �X ! C be a complex valued modular metric space
and fangn2N be a sequence on X!. Then, fang is a complex valued Cauch sequence
on X! if and only if !�(an; an+m)! 0 as m;n!1 for all m 2 N.
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Lemma 8. Let w and z be complex numbers. If w % 0, jzj < 1 and w - zw, then
w = 0 2 C.

Proof. Let w = a + ib; z = c + id where a; b; c; d 2 R. By properties of complex
numbers, we have

w % 0) a � 0; b � 0 (1)

and
jzj < 1)

p
c2 + d2 < 1) jc2 + d2j < 1:

Also, since zw = (ac� bd) + i(ad+ bc), w - zw implies

a � ac� bd and b � ad+ bc: (2)

We assume that a 6= 0. Since a > 0 and jcj � jc2 + d2j < 1, we get ac < a. From
(2), we have bd < 0. This implies b > 0 and d < 0. Then we obtain that ad < 0
which contradicts with b(1� c) � ad for jcj < 1. Thus, a = 0. As a = 0; 0 < 1� c,
from (2) b(1� c) � 0 and b = 0. So, w = a+ ib = 0 2 C. �

Theorem 9. Let X! be a complete complex valued modular metric space. Suppose
that T : X! ! X! is a mapping satisfying

!�(Tx; Ty) - z !�(x; y); z 2 C as jzj < 1 (3)

for all � > 0 and x; y 2 X!. Then T has a unique �xed point on X!.

Proof. Let x0 2 X! be arbitrary. We de�ne a sequence fxng such that xn+1 =
Txn = Tnx0 for all n � 0. Using (3), we have

!�(xn; xn+1) = !�(Txn�1; Txn) - z !�(xn�1; xn) - � � � - zn !�(x0; x1) (4)

for � > 0 and n � 0.
Using (4) and axiom (iii) in the de�nition of complex valued metric spaces, we

obtain that

!�(xn; xn+s) -
n+s�1P
j=n

! �
s
(xj ; xj+1)

-
n+s�1P
j=n

zj ! �
s
(x0; x1)

- zn

1�z! �
s
(x0; x1)

some � > 0, s > 0 and n 2 N.
Now, we take limit as n!1,

limn!1 !�(xn; xn+s) - limn!1
zn

1�z! �
s
(x0; x1)

=
! �
s
(x0;x1)

1�z limn!1 zn

We know that jznj = jzjn ! 0. Then zn ! 0 2 C. So, we obtain that

0 - lim
n!1

!�(xn; xn+s) = 0: (5)
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for all � > 0 and s > 0. From (5), we can say that fxng is a Cauchy sequence. As
X! is a complete complex valued modular metric space, there is at least one point
p 2 X! such that limn!1!�(xn; p) = 0.
We show that p is a �xed point of T . By using (3) and the axiom (iii) in the

de�nition of complex valued modular metrics, we get

!�(p; Tp) - ! �
2
(p; Txn) + ! �

2
(Txn; Tp)

- ! �
2
(p; xn+1) + z ! �

2
(xn; p)

(6)

for all � > 0, n � 0 and z 2 C with jzj < 1. If we take limit as n ! 1 in (6) for
� > 0 and z 2 C, since xn ! p, we obtain that

0 - lim
n!1

!�(p; Tp) - 0: (7)

Equation (7) implies !�(p; Tp) = 0. So, Tp = p.
In this sequel of the proof, we show the uniqueness of the �xed point p of the

mapping T . We assume the existence of a point r which is another �xed point of
T as p 6= r. From (3), we get

!�(p; r) = !�(Tp; Tr) - z !�(p; r)

Since !�(p; r); z 2 C and jzj < 1, by Lemma 8, we obtain that !�(p; r) = 0 for all
� > 0. So, p = r. �

Now, as a corollary of this theorem, we express a generalization of the Banach
�xed point principle in complex valued modular metric spaces.

Corollary 10. Let X! be a complete complex valued modular metric space, z be
a complex number such that Imz = 0 and jzj < 1. If T : X! ! X! is a mapping
satisfying

!�(Tx; Ty) - z !�(x; y)

for all � > 0 and x; y 2 X!, then T has a unique �xed point.

Theorem 11. Let X! be a complete complex valued modular metric space. If

!�(T
nx; Tny) - z !�(x; y)

for all � > 0, n > 0, z 2 C and x; y 2 X! as jzj < 1, then T has a unique �xed
point.

Proof. Since
!�(T

nx; Tny) - z !�(x; y);

from Theorem 9, there exists a unique �xed point p of Tn on X!. Then Tnp = p
as p 2 X!. Then, we have

Tn(Tp) = T (Tnp) = Tp:

Hence, Tp is further �xed point of Tn. Since p is a unique �xed point of Tn, Tp = p.
So, p is a �xed point of the mapping T . We assume that there exists another �xed
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point r of T . So, Tr = r. Therefore, Tn(Tr) = Tr, which contradicts with the
uniqueness of �xed point p for Tn. Then, p is a unique �xed point of T . �
Example 12. Let X = C. The mapping ! : (0;1)� C� C! C is de�ned by

!�(z1; z2) =
ja1 � a2j+ ijb1 � b2j

�
for all � > 0 where z1 = a1 + ib1 and z2 = a2 + ib2. Then, it can be shown that

isacompletecomplexvaluedmodularmetricspace:Wedefineamapping

T:C! ! C! such that Tk = k
3 and we take z =

1
3 2 C. Then, for all z1; z2 2 C and

� > 0, we have

!�(Tz1; T z2) = !�(
z1
3
;
z2
3
) =

ja1 � a2j+ ijb1 � b2j
3�

and

!�(z1; z2) =
ja1 � a2j+ ijb1 � b2j

�
:

Hence, !�(Tz1; T z2) - z!�(z1; z2). From Theorem 9, T has a �xed point, which is
immediately seen to be 0 2 C.

Let X! be a complex valued modular metric space, K � X!,  : K ! C be a
function and fxng be a sequence in K.  is called lower semi-continuous (l.s.c.) on
K if

lim
n!1

!�(xn; x) = 0 and lim
n!1

inf( (xn)) = h imply  (x) � h

for all fxng � K and � > 0.

Theorem 13. Let X! be a complete complex valued modular metric space and  :
X! ! C be a lower semi-continuous function on X!. If any mapping T : X! ! X!

satisfying
!�(x; Tx) �  (x)�  (Tx) (8)

for all � > 0 and x; y 2 X!, then T has a �xed point in X!.

Proof. For each x 2 X! denote,

M(x) = fy 2 X! : !�(x; y) -  (x)�  (y) for all � > 0g;
�(x) = inff (y) : y 2M(x)g:

Let x 2 M(x). Then, M(x) is not empty and 0 � �(x) �  (x). We take an
arbitrary point x 2 X!. Now, we form a sequence fxng on X! as follows:
Let x1 = x and when x1; x2; : : : ; xn have been chosen, choose xn+1 2 M(xn) such
that

 (xn+1) � �(xn) +
1

n
for all n � 1. By doing so, we get a sequence fxng satisfying the condition

!�(xn; xn+1) -  (xn)�  (xn+1);
�(xn) �  (xn+1) � �(xn) +

1
n

(9)
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for all n � 0 and � > 0. Then, f (xn)g is a nonincreasing sequence and it is
bounded from below by zero. So, the sequence f (xn)g is convergent to a number
D � 0. By virtue of (9), we get

D = lim
n!1

 (xn) = lim
n!1

�(xn): (10)

Now, let k 2 N be arbitrary. From (9) and (10), there exists a number Nk such
that

 (xn) < D +
1

k
for all n � Nk:

Since  (xn) monotone, we get

D �  (xm) �  (xn) < D +
1

k

for m � n � Nk. Then, we obtain that

 (xn)�  (xm) <
1

k
for all m � n � Nk: (11)

Preserving the generality, suppose that m > n and m;n 2 N. From (11), we get

! �
m�n

(xn; xn+1) -  (xn)�  (xn+1)

for all �
m�n > 0. Now, we obtain that

!�(xn; xm) - ! �
m�n

(xn; xn+1) + ! �
m�n

(xn+1; xn+2) + � � �+ ! �
m�n

(xm�1; xm)

-
Pm�1

j=n [ (xj)�  (xj+1)]
=  (xn)�  (xm)

(12)
for all m;n � Nk. Then, by (11),

!�(xn; xm) �
1

k
for all m � n � Nk: (13)

Letting k or m;n to tend to in�nity in (13), we conclude that

lim
m;n!1

!�(xn; xm) = 0:

Then, fxngn2N is a complex valued modular Cauchy sequence. Hence, from the
completeness of X!, there exist a point p 2 X! such that xn ! p as n!1. Since
 is lower semi-continuous, using the equation (12), we have

 (p) � limm!1inf (xm)

- limm!1inf( (xn)� !�(xn; xm))
=  (xn)� !�(xn; p)

and hence
!�(xn; p) -  (xn)�  (p):
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Thus, p 2 M(xn) for all n � 0 and �(xn) �  (p). So, by (10), we have D �  (p).
Moreover, by lower semi-continuity of  and (10), we get

 (p) = lim
n!1

 (xn) = S:

So,  (p) = S. From 8, we know that Tp 2M(p). Since p 2M(p) for n 2 N, we get
!�(xn; Tp) - ! �

2
(xn; p) + ! �

2
(p; Tp)

-  (xn)�  (p) +  (p)�  (Tp)
=  (xn)�  (Tp):

Then Tp 2M(xn) and implies �(xn) �  (Tp). Thus, we obtain S �  (Tp). Since
 (Tp) �  (p) by (8) and  (p) = S, we get

 (p) = S �  (Tp) �  (p):

Therefore,  (Tp) =  (p). Then from (8), we get

!�(p; Tp) -  (p)�  (Tp) = 0:
Thus, Tp = p. �

Example 14. Let X = C. We de�ne the mapping ! : (0;1)� C� C! C by

!�(z1; z2) =
ja1 � a2j+ ijb1 � b2j

�

for all � > 0 where z1 = a1 + ib1 and z2 = a2 + ib2. C! is a complete modular
metric space. De�ne T : C! ! C! by Tz = z

4 and  : C! ! C by  (z) = jaj+ ijbj
where z = a+ ib. Then for all z = a+ ib 2 C and � > 0, we have

!�(z; Tz) =
ja� a

4 j+ ijb�
b
4 j

�
=

3
4 jaj+ i

3
4 jbj

�
� 3

4
(jaj+ ijbj)

and

 (z)�  (Tz) = (jaj+ ijbj)�
�
jaj
4
+ i
jbj
4

�
=
3

4
(jaj+ ijbj):

Hence, !�(z; Tz) �  (z) �  (T ). From Theorem 13, the mapping T has a �xed
point.

3. AN APPLICATION TO DYNAMIC PROGRAMMING

In the section, we express an application of Theorem 9 to dynamic programming
which is a powerful tecnique for solving some complex problems in mathematics,
economics, computer science and bioinformatics.
Let X! be a complete complex valued modular metric space induced by ! :

(0;1)� C� C! C, S � X!, Z be a Banach space and P � Z.
We consider the functional equation

q(x) = sup
y2P

ff(x; y) +H(x; y; q('(x; y)))g (14)
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where x 2 S, ' : S � P ! S, f : S � P ! C and H : S � P � C ! C: We show
that existence of unique solution of the functional equation (14). We suppose that
B(S) is the set of all bounded complex valued function on S. We de�ne

kkk = sup
x2S

jk(x)j

for an arbitrary k 2 B(S). We take complex valued metric modular ! on B(S) as

!�(k; g) = sup
x2Z

�����k(x)� g(x)�

����+ i����k(x)� g(x)�

����� (15)

for all k; g 2 B(S) and � > 0. On the other hand, we take a Cauchy sequence
fkngn2N in B(S). Then fkngn2N is convergent to a function t 2 B(S).

Theorem 15. Let f : S�P ! C and H : S�P �C! C be bounded. We suppose
that T : B(S)! B(S) de�ned by

T (k)(x) = sup
y2P

ff(x; y) +H(x; y; k('(x; y)))g

for all k 2 B(S) and x 2 S. If����H(x; y; k(x))�H(x; y; g(x))�

����+ i����H(x; y; k(x))�H(x; y; g(x))�

���� - z!�(k; g) (16)

for all � > 0, x 2 S, y 2 P , k; g 2 B(S) and a arbitrary complex number z where
jzj < 1, the functional equation (14) has a unique solution.

Proof. Let x 2 S and k; g 2 B(S). Then there exist y1; y2 2 P and a complex
number � > 0 such that

T (k)(x) - f(x; y1) +H(x; y1; k('(x; y1))) + � (17)

T (g)(x) - f(x; y2) +H(x; y2; g('(x; y2))) + � (18)

T (k)(x) % f(x; y1) +H(x; y1; k('(x; y1))) (19)

T (g)(x) % f(x; y2) +H(x; y2; g('(x; y2))): (20)

From (17) and (20), we obtain that

T (k)(x)� T (g)(x) - H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2))) + �
-

��H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2)))��+ �:
So, for � > 0

T (k)(x)� T (g)(x)
�

-
����H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2)))�

����+ �

�
: (21)

Similarly, combining (18) and (19) we have

T (g)(x)� T (k)(x)
�

-
����H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2)))�

����+ �

�
: (22)
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Therefore, from (21) and (22),����T (k)(x)� T (g)(x)�

���� - ����H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2)))�

����+ �

�
(23)

for all � > 0. Since �
� > 0 in inequality (23), we can ignore the contrary the �

� .
Therefore,����T (k)(x)� T (g)(x)�

���� - ����H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2)))�

����: (24)

From inequality (24), we easily obtain that����T (k)(x)� T (g)(x)�

����+ i����T (k)(x)� T (g)(x)�

���� - ����H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2)))�

����
+ i

����H(x; y1; k('(x; y1)))�H(x; y2; g('(x; y2)))�

����
From (15) and (16), we get

!�(T (k); T (g)) - z!�(k; g):

Then, from Theorem 9, T has a unique �xed point t 2 B(S). That is, the functional
equation (14) has a unique solution. �

Open problem How can we obtain coupled �xed point theorems and common
�xed point theorems in these metric spaces?
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Abstract. In this paper, we investigate the resolvent operator of the singular q-
Sturm-Liouville problem de�ned as

�1
q
Dq�1 [Dqy (x)] + [r (x)� �] y (x) = 0;

with the boundary condition

y (0; �) cos� +Dq�1y (0; �) sin� = 0;

where � 2 C, r is a real-valued function de�ned on [0;1), continuous at zero
and r 2 L1q;loc[0;1). We give a representation for the resolvent operator and
investigate some properties of this operator. Furthermore, we obtain a formula
for the Titchmarsh-Weyl function of the singular q-Sturm-Liouville problem.

1. Introduction

Quantum (or q) calculus is a very interesting �eld in mathematics. It has nu-
merous in statistic physics, quantum theory, the calculus of variations and number
theory; see, e.g., [12, 1, 11, 14, 15, 18, 21, 24]). The �rst results in q-calculus be-
long to the Euler. In 2005, Annaby and Mansour investigated q-Sturm-Liouville
problems [10]: Later in [9], the authors studied the Titchmarsh-Weyl theory for
q-Sturm-Liouville equations. In [3,4], the authors proved the existence of a spectral
function for q-Sturm-Liouville operator.
In this article, we investigate the following q-Sturm-Liouville problem de�ned as

� 1
q
Dq�1Dqy (x) + u (x) y (x) = �y (x) ; (1)
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where 0 < x < 1: The resolvent operator for this problem is constructed. Using
the spectral function, an integral representation is obtained. Furthermore, some
properties of this operator are investigated. A formula for the Titchmarsh-Weyl
function of Eq. (1) is given. Historically, in 1910, H. Weyl was �rst obtained a
representation theorem for the resolvent of Sturm-Liouville problem de�ned by

� (py0)0 + qy = �y; x 2 (0;1);

where p; q are real-valued and p�1; q 2 L1loc[0;1). Similar representation theorems
were proved in [25,20,2, 5, 6, 7].

2. Preliminaries

In this section, we give a brief introduction to quantum calculus and refer the
interested reader to [17,8, 12].
Let 0 < q < 1 and let A � R is a q-geometric set, i.e., qx 2 A for all x 2 A: The

Jackson q-derivative is de�ned by

Dqy (x) = ��1 (x) [y (qx)� y (x)] ;

where � (x) = qx� x and x 2 A: We note that there is a connection the Jackson q-
derivative between and q-deformed Heisenberg uncertainty relation (see [23]). The
q-derivative at zero is de�ned as

Dqy (0) = lim
n!1

[qnx]
�1
[y (qnx)� y (0)] (x 2 A); (2)

if the limit in (2) exists and does not depend on x: The Jackson q-integration is
given by Z x

0

f (t) dqt = x (1� q)
1X
n=0

qnf (qnx) (x 2 A);

provided that the series converges, andZ b

a

f (t) dqt =

Z b

0

f (t) dqt�
Z a

0

f (t) dqt;

where a; b 2 A: The q-integration for a function over [0;1) de�ned by the formula
( [13]) Z 1

0

f (t) dqt =
1X

n=�1
qnf (qn) :

Let f be a function on A and let 0 2 A: For every x 2 A; if

lim
n!1

f (xqn) = f (0) ;

then f is called q-regular at zero. Throughout the paper, we deal only with functions
q-regular at zero.
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The following relation holdsZ a

0

g (t)Dqf (t) dqt+

Z a

0

f (qt)Dqg (t) dqt = f (a) g (a)� f (0) g (0) ;

where f and g are q-regular at zero.
Let L2q[0;1) be the Hilbert space consisting of all functions f satisfying ( [9])

kfk :=

sZ 1

0

jf (x)j2 dqx < +1

with the inner product

(f; g) :=

Z 1

0

f (x) g (x)dqx:

The q-Wronskian of the functions y (:) and z (:) is de�ned by the formula

Wq (y; z) (x) := y (x)Dqz (x)� z (x)Dqy (x) ;

where x 2 [0;1):

3. Main Results

Consider the q-Sturm-Liouville equation

L(y) := �1
q
Dq�1Dqy (x) + r (x) y (x) = �y (x) ; (3)

satisfying the conditions

y (0; �) cos� +Dq�1y (0; �) sin� = 0; (4)

y
�
q�n; �

�
cos�+Dq�1y

�
q�n; �

�
sin� = 0; �; � 2 R; n 2 N := f1; 2; :::g; (5)

where � 2 C; r is a real-valued function de�ned on [0;1), continuous at zero and
r 2 L1q;loc[0;1).
Let ' (x; �) and � (x; �) be the solutions of the Eq. (3) satisfying the following

conditions
' (0; �) = sin�; Dq�1' (0; �) = � cos�;
� (0; �) = cos�; Dq�1� (0; �) = sin�:

(6)

Lemma 1 ( [9]). Let � =2 R and let

�q�n (x; �) = � (x; �) + l
�
�; q�n

�
' (x; �) 2 L2q(0;1);

where n 2 N: Then we have
�q�n (x; �) ! � (x; �) ;

Z q�n

0

���q�n (qt; �)��2 dqx !
Z 1

0

j� (x; �)j2 dqx; n!1:
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Putting

Gq�n (x; t; �) =

�
�q�n (x; �)' (t; �) ; t � x
' (x; �)�q�n (t; �) ; t > x;

y (x; �) :=
�
Rq�nf

�
(x; �) =

Z q�n

0

Gq�n (x; t; �) f (t) dqt; (� 2 C; Im� 6= 0); (7)

where f 2 L2q[0; q�n]: Now, we shall show that the equality (7) satis�es the equation
L(y)� �y(x) = f(x); x 2 (0; q�n) (� 2 C; Im� 6= 0) and the boundary conditions
(4)-(5). From (7), we get

y (x; �) = q�q�n (x; �)

Z x

0

' (qt; �) f (qt) dqt

+q' (x; �)

Z q�n

x

�q�n (qt; �) f (qt) dqt: (8)

From (8), it follows that

Dqy (x; �) = qDq�q�n (x; �)

Z x

0

' (qt; �) f (qt) dqt

+qDq' (x; �)

Z q�n

x

�q�n (qt; �) f (qt) dqt;

and

Dq�1Dqy (x; �) = qDq�1Dq�q�n (x; �)

Z x

0

' (qt; �) f (qt) dqt

+qDq�1Dq' (x; �)

Z q�n

x

�q�n (qt; �) f (qt) dqt

�qWq

�
�q�n ; '

�
f (x) :

Hence, by Wq

�
'; �q�n

�
= 1 (n 2 N); we deduce that

�1
q
Dq�1Dqy (x; �)

= (�� r (x)) q�q�n (x; �)
Z x

0

' (qt; �) f (qt) dqt

+(�� r (x)) q' (x; �)
Z q�n

x

�q�n (qt; �) f (qt) dqt+ f (x)

= (�� r (x)) y (x; �) + f (x) ;
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i.e., the function y (x; �) satis�es the equation L(y)� �y(x) = f(x); x 2 (0; q�n):
Moreover,

y (0; �) = q' (0; �)

Z q�n

0

�q�n (qt; �) f (qt) dqt

= q cos�

Z q�n

0

�q�n (qt; �) f (qt) dqt;

Dq�1y (0; �) = qDq�1' (0; �)

Z q�n

0

�q�n (qt; �) f (qt) dqt

= �q sin�
Z q�n

0

�q�n (qt; �) f (qt) dqt;

i.e., y (x; �) satis�es (4). Similarly, we may infer that y (x; �) satis�es (5).
Note that the problem (3)-(5) has a purely discrete spectrum [10].
Let �m;q�n be the eigenvalues of the problem (3)-(5). Let 'm;q�n be the corre-

sponding eigenfunctions and

�m;q�n :=
'm;q�n =

 Z q�n

0

'2m;q�n (x) dqx

! 1
2

;

where 'm;q�n (x) := 'm;q�n
�
x; �m;q�n

�
and m 2 N:

Then we have the following Parseval equality (see [8])Z q�n

0

jf (x)j2 dqx =
1X
m=1

1

�2m;q�n

(Z q�n

0

f (x)'m;q�n (x) dqx

)2
; (9)

where f (:) 2 L2q[0; q�n]:
Now, let us de�ne the nondecreasing step function %q�n on [0;1) by

%q�n (�) =

8<: �
P

�<�m;q�n<0
1

�2
m;q�n

; for � � 0P
0��m;q�n<�

1
�2
m;q�n

for � > 0:

It follows from (9) thatZ q�n

0

jf (x)j2 dqx =
Z 1

�1
F 2 (�) d%q�n (�) ; (10)

where

F (�) =

Z q�n

0

f (x)' (x; �) dqx:



ON THE RESOLVENT OF SINGULAR q-STURM-LIOUVILLE OPERATORS 707

Lemma 2. Let � > 0: Then the following relation holds
�

V
��

�
%q�n (�)

	
=

X
����m;q�n<�

1

�2m;q�n
= %q�n (�)� %q�n (��) < �; (11)

where � = �(�) is a positive constant not depending on q�n:

Proof. Let sin� 6= 0: Since ' (x; �) is continuous at zero, by condition ' (0; �) =
sin�; there exists a positive number h and nearby 0 such that

j' (x; �)j > 1p
2
jsin�j ; 0 � x � h

and  
1

h

Z h

0

' (x; �) dqx

!2
>

 
1p
2h
sin�

Z h

0

dqx

!2
=
1

2
sin2 �: (12)

Let us de�ne fh (x) by

fh (x) =

�
0; x > h
1
h ; 0 � x � h:

It follows from (10) and (12) thatZ h

0

f2h (x) dqx =
1

h
=

Z 1

�1

 
1

h

Z h

0

' (x; �) dqx

!2
d%q�n(�)

�
Z �

��

 
1

h

Z h

0

' (x; �) dqx

!2
d%q�n (�)

>
1

2
sin2 �

�
%q�n (�)� %q�n (��)

	
;

which proves the inequality (11).
Let sin� = 0 and

fh (x) =

�
0; x > h
1
h2 ; 0 � x � h:

By (10), we can get the desired result. �
We now return to the formula (7), whose right-hand side has been called the

resolvent. The resolvent is known to exist for all � which are not eigenvalues of the
problem (3)-(5). Now, we will get the expansion of the resolvent.
Since the function y (x; �) satis�es the equation L(y)��y(x) = f(x); x 2 (0; q�n)

(� 2 C; � 6= �m;q�n ; m 2 N) and the boundary conditions (4), (5), via the q-
integration by parts, we �nd (the operator A generated by the expression L and
the boundary conditions (4), (5) is a self-adjoint (see [10]))

(Ay; 'm;q�n)
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=

Z q�n

0

�
�1
q
Dq�1Dqy (x; �) + r (x) y (x; �)

�
'm;q�n (x) dqx

= (y;A'm;q�n)

=

Z q�n

0

y (x; �)

�
�1
q
Dq�1Dq'm;q�n (x) + r (x)'m;q�n (x)

�
dqx

= �m;q�n

Z q�n

0

y (x; �)'m;q�n (x) dqx:

The set of all eigenfunctions
'm;q�n (x)

�m;q�n
(m 2 N) of the self-adjoint operator A

form an orthonormal basis for L2q(0; q
�n) (see [10]). Then, the function y (:; �) 2

L2q(0; q
�n) (� 2 C; � 6= �m;q�n ; m 2 N) can be expanded into Fourier series of

eigenfunctions
'm;q�n (x)

�m;q�n
(m 2 N) of the problem (3)-(5) (or of the operator A).

Then we have

y (x; �) =
1X
m=1

tm (�)
'm;q�n (x)

�m;q�n
;

where tm (�) is the Fourier coe¢ cient, i.e.,

tm (�) =

Z q�n

0

y (x; �)
'm;q�n (x)

�m;q�n
dqx; m 2 N:

Since y (x; �) (� 2 C; � 6= �m;q�n ; m 2 N) satis�es the equation

�1
q
Dq�1Dqy (x; �) + (r (x)� �) y (x; �) = f (x) ; x 2 (0; q�n);

we get

am : =

Z q�n

0

f (x)
'm;q�n (x)

�m;q�n
dqx

=

Z q�n

0

�
�1
q
Dq�1Dqy (x; �) + (r (x)� �) y (x; �)

�
'm;q�n (x)

�m;q�n
dqx

=

Z q�n

0

�
�1
q
Dq�1Dq'm;q�n (x) + (r (x)� �)'m;q�n (x)

�
y (x; �)

�m;q�n
dqx

=

Z q�n

0

�
�m;q�n'm;q�n (x)� �'m;q�n (x)

� y (x; �)
�m;q�n

dqx

= �m;q�ntm (�)� �tm (�) ; m 2 N:



ON THE RESOLVENT OF SINGULAR q-STURM-LIOUVILLE OPERATORS 709

Thus, we have

tm (�) =
am

�m;q�n � �
;

and

y (x; �) =

Z q�n

0

Gq�n (x; t; �) f (t) dqt

=
1X
m=1

am
�m;q�n � �

'm;q�n (x)

�m;q�n
(� 2 C; � 6= �m;q�n ; m 2 N):

Then

y (x; z) =
�
Rq�nf

�
(x; z)

=

1X
m=1

'm;q�n (x)

�2m;q�n
�
�m;q�n � z

� Z q�n

0

f (t)'m;q�n (t) dqt

=

Z 1

�1

' (x; �)

�� z

(Z q�n

0

f (t)'m;q�n (t; �) dqt

)
d%q�n (�) : (13)

Lemma 3. The following formula holdsZ 1

�1

����' (x; �)�� z

����2 d%q�n (�) < K; (14)

where x is a �xed number and z is a non-real number.

Proof. Let f (t) =
'm;q�n (t)

�m;q�n
: By (13), we conclude that

1

�m;q�n

Z q�n

0

Gq�n (x; t; z)'m;q�n (t) dqt =
'm;q�n (x)

�m;q�n
�
�m;q�n � z

� : (15)

Under (15) and (9), we see thatZ q�n

0

��Gq�n (x; t; z)��2 dqt =
1X
m=1

��'m;q�n (x)��2
�2m;q�n

���m;q�n � z��2
=

Z 1

�1

����' (x; �)�� z

����2 d%q�n (�) :
It follows from Lemma 1 that the last integral is convergent. The proof is complete

�

Now, we present below for the convenience of the reader.
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Theorem 4 ( [19]). Let (wn)n2N be a uniformly bounded sequence of real non-
decreasing function on a �nite interval [a; b]: Then
(i) there exists a subsequence (wnk)k2N and a non-decreasing function w such that

lim
k!1

wnk (�) = w (�) ;

where a � � � b:

(ii) suppose
lim
n!1

wn (�) = w (�) ;

where a � � � b: Then, we have

lim
n!1

Z b

a

f (�) dwn (�) =

Z b

a

f (�) dw (�) ;

where f 2 C[a; b]:

By Lemma 2 and Theorem 4, one can �nd a sequence fq�nkg such that
lim
k!1

%q�nk (�)! % (�) ;

where % (�) is a monotone function:

Lemma 5. Let z =2 R: Then we haveZ 1

�1

����' (x; �)�� z

����2 d% (�) � K; (16)

where x is a �xed number.

Proof. Let � > 0: It follows from (14) thatZ �

��

����' (x; �)�� z

����2 d%q�n (�) < K:

Then Z 1

�1

����' (x; �)�� z

����2 d% (�) = lim
�!1
n!1

Z �

��

����' (x; �)�� z

����2 d%q�n (�) < K:

�

Lemma 6. Let � > 0: Then we haveZ ��

�1

d% (�)

j�� zj2
<1;

Z 1

�

d% (�)

j�� zj2
<1: (17)

Proof. Let sin� 6= 0: From (16), we deduce thatZ 1

�1

d% (�)

j�� zj2
<1:
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Let sin� = 0: Hence we see that

1

�m;q�n

Z q�n

0

'm;q�n (t)Dq;x

�
Gq�n (x; t; z)

�
dqt =

Dq;x'm;q�n (x)

�m;q�n
�
�m;q�n � z

� :
It follows from (9) thatZ q�n

0

��Dq;x

�
Gq�n (x; t; z)

���2 dqt = Z 1

�1

����Dq;x' (x; �)

�� z

����2 d%q�n (�) :
Proceeding similarly, we can get the desired result. �

Lemma 7. Let

G (x; t; z) =

�
� (x; z)' (t; z) ; x � t
' (x; z)� (t; z) ; x < t;

and let f (:) 2 L2q[0;1): Then we haveZ 1

0

j(Rf) (x; z)j2 dqx �
1

v2

Z 1

0

jf (x)j2 dqx;

where

(Rf) (x; z) =

Z 1

0

G (x; t; z) f (t) dqt;

and z = u+ iv:

Proof. See [9]. �

Now we shall state the main result of this paper.

Theorem 8. The following relation holds

(Rf) (x; z) =

Z 1

�1

' (x; �)

�� z F (�) d% (�) ; (18)

where f (:) 2 L2q[0;1);

F (�) = lim
�!1

Z q��

0

f (x)' (x; �) dqx;

and z =2 R:

Proof. De�ne the function f� (x) as

f� (x) =

�
f� (x) ; x 2 [0; q��];
0; x =2 [0; q��] (q�� < q�n)

such that f� (x) satis�es (4). By (13), we conclude that�
Rq�nf�

�
(x; z)

=

Z 1

�1

' (x; �)

�� z F� (�) d%q�n (�) =

Z �a

�1

' (x; �)

�� z F� (�) d%q�n (�)
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+

Z a

�a

' (x; �)

�� z F� (�) d%q�n (�) +

Z 1

a

' (x; �)

�� z F� (�) d%q�n (�)

= I1 + I2 + I3; (19)

where

F� (�) =

Z q��

0

f (x)' (x; �) dqx;

and a > 0.
It follows from (13) that

jI1j =

����Z �a

�1

' (x; �)

�� z F� (�) d%q�n (�)

����
�

X
�k;q�n<�a

��'k;q�n (x)�� ���R q��0
f� (t)'k;q�n (t) dqt

���
�2k;q�n

����
k;q�n

� z
���

�

0@ X
�k;q�n<�a

'2k;q�n (x)

�2k;q�n
���k;q�n � z��2

1A1=2

�

0@ X
�k;q�n<�a

1

�2k;q�n

"Z q��

0

f� (x)'k;q�n (x) dqx

#21A1=2

: (20)

Using the q-integration-by-parts formula in the integral below, we haveZ q��

0

f� (x)'k;q�n (x) dqx

=
1

�k;q�n

Z q��

0

f� (x)

�
�1
q
Dq�1Dq'k;q�n (x) + r (x)'k;q�n (x)

�
dqx

=
1

�k;q�n

Z q��

0

�
�1
q
Dq�1Dqf� (x) + r (x) f� (x)

�
'k;q�n (x) dqx: (21)

From Lemma 3, we get

jI1j � K1=2

a

0@ P
�k;q�n<�a

1
�2
k;q�n

�
hR q��
0

n
� 1
qDq�1Dqf� (x) + r (x) f� (x)

o
'k;q�n (x) dqx

i2
1A1=2

:
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Application of Bessel inequality yields

jI1j �
K1=2

a

"Z q��

0

�
�1
q
Dq�1Dqf� (x) + r (x) f� (x)

�2
dqx

#1=2
=
C

a
:

Likewise, we show that jI3j � C
a : Then I1; I3 ! 0, as a!1; uniformly in q�n: By

virtue of (19) and Theorem 4, we see that

(Rf�) (x; z) =

Z 1

�1

' (x; �)

�� z F� (�) d% (�) : (22)

We can �nd a sequence ff� (x)g1�=1 which satis�es the previous conditions and tend
to f (x) as � ! 1; since f (:) 2 L2q[0;1): It follows from (9) that the sequence of
Fourier transform converges to the transform of f (x) : Using Lemmas 5 and 7, one
can pass to the limit � !1 in (22). �
Remark 9. The following formula holds.Z 1

0

(Rf) (x; z) g (x) dqx =

Z 1

�1

F (�)G (�)

�� z d% (�) ; (23)

where

G (�) = lim
�!1

Z q��

0

g (x)' (x; �) dqx;

and

F (�) = lim
�!1

Z q��

0

f (x)' (x; �) dqx:

Now, we will study some properties of the resolvent operator. We give the fol-
lowing de�nition and theorems.

De�nition 10. Let M (x; t) be a complex-valued function, where x; t 2 (a; b): IfZ b

a

Z b

a

jM (x; t)j2 dqxdqt < +1;

then M (x; t) is called the q-Hilbert-Schmidt kernel.

Theorem 11 ( [22]). Let us de�ne the operator A as

A fxig = fyig ;
where

yi =
1X
k=1

aikxk; i 2 N: (24)

If
1X

i;k=1

jaikj2 < +1 (25)

then A is a compact operator in the sequence space l2:
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Theorem 12. Let the limit circle case holds for Eq. (3) and

G (x; t) = G (x; t; 0) =

�
' (x)� (t) ; x < t
� (x)' (t) ; x � t:

(26)

Then the function G (x; t) de�ned by (26) is a q-Hilbert-Schmidt kernel.

Proof. It follows from (26) thatZ 1

0

dqx

Z x

0

jG (x; t)j2 dqt < +1;

and Z 1

0

dqx

Z 1

x

jG (x; t)j2 dqt < +1;

since the integrals Z 1

0

jG (x; t)j2 dqx

and Z 1

0

jG (x; t)j2 dqt

exist and are a linear combination of the products ' (x)� (t) ; and these products
belong to L2q[0;1)� L2q[0;1): ThenZ 1

0

Z 1

0

jG (x; t)j2 dqxdqt < +1: (27)

�
Theorem 13. Let us de�ne the operator R as

(Rf) (x) =

Z 1

0

G (x; t) f (t) dqt

Under the assumptions of Theorem 12, R is a compact operator.

Proof. Let �i = �i (t) (i 2 N) be a complete, orthonormal basis of L2q[0;1): By
Theorem 12, we can de�ne

xi = (f; �i) =

Z 1

0

�i (t)f (t) dqt;

yi = (g; �i) =

Z 1

0

�i (t)g (t) dqt;

aik =

Z 1

0

Z 1

0

�k (t)�i (x)G (x; t) dqxdqt;

where i; k 2 N: Then, L2q[0;1) is mapped isometrically l2: Therefore, the operator
R transforms into A de�ned by (24) in l2 by this mapping, and (27) is translated
into (25). It follows from Theorem 11 that A is compact operator. Consequently,
R is a compact operator. �
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Now, we will give some auxiliary lemmas.

Lemma 14. The following equalities hold.

lim
x!1

Wq

�
� (x; �) ; �

�
x; �0

��
= 0; (28)Z 1

0

� (x; �) ; �
�
x; �0

�
dqx =

m (�)�m
�
�0
�

�� �0
; (29)

where � and �0 are any �xed nonreal numbers.

Proof. See [9]. �

Using (29) and setting � = u+ iv and �0 = �, we obtainZ 1

0

j� (x; �)j2 dqx = �
Im fm (�)g

v
: (30)

Lemma 15. For �xed u1 and u2; we haveZ u2

u1

� Im fm (u+ i�)g du = O (1) ; as � ! 0: (31)

Proof. Let sin� 6= 0: It follows from (9) and (18) thatZ 1

0

j� (t; z)j2 dqt =
Z 1

�1

d% (�)

(u� �)2 + v2
; (32)

where z = u+ iv:
Let sin� = 0: If the equality (15) is q-di¤erentiated throughout with respect to

x; and the limit is taken as n!1; then we can get the desired result.
By virtue of (30) and (32), we conclude that

� Im fm (u+ i�)g = �

Z 1

�1

d% (�)

(u� �)2 + �2
:

Then we have

�
Z u2

u1

Im fm (u+ i�)g du = �

Z u2

u1

du

Z 1

�1

d% (�)

(u� �)2 + �2
:

Let (a; b) be a �nite interval where a < u1 and b > u2. From (17), we see that

�

Z u2

u1

du

Z a

�1

d% (�)

(u� �)2 + �2
= O (1) ;

�

Z u2

u1

du

Z 1

b

d% (�)

(u� �)2 + �2
= O (1) :

Hence, we get

�

Z u2

u1

du

Z b

a

d% (�)

(u� �)2 + �2
=

Z b

a

d% (�)

Z u2��
�

u1��
�

dv

1 + v2
= O (1) :

�



716 B. P. ALLAHVERD·IEV, H. TUNA

Assume that � (�) = �1 (�) + i�2 (�) is a complex bounded variation on the
entire line. Set

' (z) =

Z 1

�1

d� (�)

�� z ;  (�; �) =
sgn�

�

' (z)� ' (z)
2i

= � 1
�

Z 1

�1

j� j d� (�)
(�� �)2 + �2

; z = � + i� :

Theorem 16 ( [20]). Let the points a; b are points of continuity of � (�) : Then we
obtain

� (b)� � (a) = lim
�!0

Z b

a

� (�; �) d�:

Theorem 17. Let the endpoints of � = (�; �+�) be the points of continuity of
% (�) : Then, we deduce that

% (�+�)� % (�) = 1

�
lim
�!0

Z
�

� Im fm (u+ i�)g du: (33)

Proof. Let f (:) ; g (:) 2 L2q[0;1) vanish outside a �nite interval. By (23), we deduce
that

y (�) =

Z 1

0

(Rf) (x; z) g (x) dqx

=

Z 1

�1

F (�)G (�)

�� z d% (�) =

Z 1

�1

d� (�)

�� z ;

where

� (�) =

Z
�

F (�)G (�) d% (�) :

It follows from Theorem 16 that

� (�) = � 1
�
lim
�!0

Z
�

Im f (u+ i�)g du: (34)

Furthermore, we have

Im f (u+ i�)g =
Z 1

0

g (x) dqx

�f
Z x

0

[� (x; u+ i�) +m (u+ i�)' (x; u+ i�)]' (t; u+ i�) f (t) dqt

+

Z 1

x

[� (t; u+ i�) +m (u+ i�)' (t; u+ i�)]' (x; u+ i�) f (t) dqtg;

where � (x; u) ; ' (x; u) ; g (x) and f (x) are real-valued functions. It follows from
(34) and Lemma 15 that

� (�) =
1

�
lim
�!0

Z
�

� Im fm (u+ i�)gG (u)F (u) du: (35)
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If we choose g (x) and f (x) conveniently, we can make G (u) and F (u) di¤er as
little from unity in the �xed interval �: From Lemma 15 and (33), we get the
desired result. �

Theorem 18. Let z =2 R. Then we have

m (z) = � cot� +
Z 1

�1

d% (�)

�� z : (36)

Proof. It follows from (18) that

G (x; t; z) =

Z 1

�1

' (x; �)' (t; �) d% (�)

�� z ; (37)

since f (x) is an arbitrary function. By de�nition, we get

G (x; t; z) =

�
[� (t; z) +m (z)' (t; z)]' (x; z) ; t > x
[� (x; z) +m (z)' (x; z)]' (t; z) ; t � x:

By virtue of (6) and (37), we conclude that

G (0; 0; z) = sin� fcos� +m (z) sin�g

=

Z 1

�1

sin2 �

�� z d% (�) ;

i.e.,

m (z) = � cot� +
Z 1

�1

d% (�)

�� z :

�
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Abstract. In this paper, we deal with the variational problems de�ned by
an integral that include fractional conformable derivative. We obtained the
optimality results for variational problems with �xed end-point boundary con-
ditions and variable end-point boundary conditions. Then, we studied on the
variational problems with integral constraints and holonomic constraints, re-
spectively.

1. Introduction

Origin of fractional calculus dates back to 1600�s, �rstly seen in a letter from
Leibnitz to L�Hospital. So far, a number of famous mathematicians such as Abel,
Fourier, Liouville, Leibnitz, Weyl and Riemann made contributions to this theory.
Probably, Abel has given the �rst applications of fractional calculus in 1823. Es-
pecially in last decades, fractional calculus �nd ample applications in various �elds
of science (see [13, 22, 23, 27, 28]). Recently, fractional order Black-Scholes equa-
tion is studied in [11], fractional Harry-Dym equation is studied in [12]. There
are several de�nitions of fractional derivatives and fractional integrals, such as
Atangana-Baleanu, Riemann-Liouville, Grunwald-Letnikov, Caputo, Riesz, Riesz-
Caputo, Hadamard-Hilfer, Caputo-Fabrizio, and Weyl, etc. We refer to mono-
graphs [15, 20,24] for de�nitions and properties of most common fractional deriva-
tives. Recently Khalil et. al. [19] gave a new well-behaved fractional derivative de-
�nition; named as conformable fractional derivative. This new de�nition has many
similar properties with ordinary integer order derivative such as constant function
rule, linearity, product and quotient rules and Leibnitz rule (see [1]). Conformable
fractional di¤erential equations are studied widely in the literature. We refer to [9]
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for Lie symmetry analysis; to [8] for boundary value problems; to [18] for numerical
solutions conformable di¤erential equations; to [14] for Fourier transform, etc.
Calculus of variations is a subject which is concerned with �nding the maxima

and minima of functionals and plays important role in many problems arising in
mechanics, geometry, analysis etc. We refer to monograph [17] for the basic con-
cepts of this theory. In 1996, Riewe [25] noted that the traditional Lagrangian
and Hamiltonian mechanics can not be used with non-conservative forces. In order
to deal with Lagrangians involving nonconservative forces, Riewe [26] generalized
the usual variational methods by using Riemann-Liouville type operators and in-
troduced the fractional order calculus of variations. For di¤erent de�nitions on
fractional derivatives, di¤erent approaches have been developed to generalize cal-
culus of variations to fractional case. Agarwal [2, 3, 4] studied variational meth-
ods for Riemann-Liouville, Caputo and Riesz fractional derivatives. Almeida [5, 6]
considered variational problems involving Riesz-Caputo and Caputo-Katugampola
fractional derivatives. Zhang et. al. [29] and Bastos [7] studied calculus of varia-
tions with Caputo-Fabrizio derivatives. Chatibi et. al. [10] investigated variational
methods for Atangana-Baleanu fractional derivatives. Lazo and Torres [21] and
Ero¼glu and Yap¬̧skan [16] studied variational methods for conformable fractional
derivatives.
In this paper, we consider more general variational problems with conformable

fractional derivative and extend the results given in [21]. More specially, we in-
vestigate variable end-point variational problems and variational problems with
subsidiary conditions.

2. Preliminaries

In this section, we introduce de�nitions and basic properties concerning the
conformable fractional derivative that will be needed in our proofs.
0 < � � 1 order left-conformable fractional derivative of the function h :

[a;1)! R is de�ned by

(T a�h) (t) := lim
"!0

h(t+ "(t� a)1��)� h(t)
"

:

If (T�h) exists on the interval (a; b), then (T a�h) (a) = lim
t!a+

(T a�h) (t) :

Similarly, 0 < � � 1 order right-conformable fractional derivative of the function
h is de�ned by �

b
�Th

�
(t) := lim

"!0

h(t+ "(b� t)1��)� h(t)
"

:

If
�
b
�Th

�
exists on the interval (a; b) ; then

�
b
�Th

�
(a) = lim

t!b�

�
b
�Th

�
(t) :

We remark that, additionally if h is di¤erentiable, then (T a�h) (:) = (:�a)1��h
0
(:)

and
�
b
�Th

�
(:) = �(b� :)1��f 0(:) for all t 2 (a; b). As in the case Caputo derivative,

conformable derivative of the constant function is zero (see [1, 19]).
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0 < � � 1 order left and right conformable fractional integrals of the function h
are de�ned by

(Ia�h) (t) :=

tZ
a

h(s)d�(s; a)

and

�
b
�Ih

�
(t) :=

bZ
t

h(s)d�(b; s)

respectively, where d�(s; a) = (s� a)��1ds and d�(b; s) = (b� s)��1ds (see [1]).
Let 0 < � � 1: If h : [a;1) ! R is continuous, then the identity (T a�Ia�h) (t) =

h(t) holds for all t > a. And, if h : (a;1) ! R is continuous, then the identity
(Ia�T

a
�h) (t) = h(t)� h(a) holds for all t > a (see [1, 19]).

For the di¤erentiable functions h; g : [a; b] ! R, the conformable integration by
parts formula reads as follows (see [1])

bZ
a

h(t) (T a�g) (t)d
�(t; a) = (hg)(t)jt=bt=a �

bZ
a

g(t) (T a�h) (t)d
�(t; a): (1)

In the following, we give the fundamental lemma of fractional variational calculus
and the de�nition of jointly-convex functions that will be used in the sequel .

Lemma 1 ( [21]). Let the functions '; � : [a; b] ! R be continuous and the the
equality

bZ
a

'(t)�(t)d�(t; a) = 0

holds for all � 2 C [a; b] satisfying �(a) = �(b) = 0. Then

'(t) = 0

for all t 2 [a; b].

De�nition 2 ( [7]). Let F (x1; x2; x3) be continuous function for its second and
third arguments. If the inequality

F (x1; x2 + h1; x3 + h2)� F (x1; x2; x3) � (�)@2F (x1; x2; x3)h1 + @3F (x1; x2; x3)h2

is hold for all (x1; x2; x3) 2 A and all h1; h2 2 R, then we say that function F is
jointly-convex (or jointly-concave) in A � R3.
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3. Main results

In this study, we consider the functional

J[x] :=
bZ
a

L(t; x(t); T a�x(t))d
�(t; a): (2)

Throughout the paper, we assume that x 2 C1 [a; b], T a� (@3L (t; x(t); T a�x(t))) is
continuous, and L 2 C12;3

�
[a; b]� R2;R

�
; where C12;3 denotes the family of functions

that continuously di¤erentiable for its second and third arguments, and @i denotes
the partial derivative of the function for its i�th argument.
One can �nd necessary optimality conditions for the problem of �nding local

minimizers of the functional (2) in the following result.

Theorem 3 ( [13]). Let 0 < � � 1 and xa; xb 2 R be �xed. If x is a minimizer of
the (2) on the set

S :=
�
x 2 C1 [a; b] : x(a) = xa; x(b) = xb

	
; (3)

then we say that x(t) is a solution of the equation

@2 (L�;x)� T a� (@3 (L�;x)) = 0; (4)

where L�;x := L (:; x (:) ; T a�x(:)) :

De�nition 4. Equation (4) is named as the Euler-Lagrange equation for (2) ; and
its solutions are named as the extremals of (2).

Equation (4) provides only a necessary condition for the function x(t) to be
an extremal of (2). By using notion of jointly-convex functions given above and
conformable integration by parts formula (1), we can give a su¢ cient condition as
follows.

Theorem 5. If the function L is jointly-convex in [a; b]� R2, then every solution
of the Euler-Lagrange equation (4) minimizes the functional J on the set S.

Proof. Assume that function x(t) is a solution of (4) : Let x+ �� be a variation of
x, with 1� j�j and � 2 C1 [a; b] with �(a) = �(b) = 0. Since x(t) is a solution of (4)
and L is jointly-convex, we have

J[x+ ��]� J[x]

=

bZ
a

(L�;x+��) d
�(t; a)�

bZ
a

(L�;x) d
�(t; a)

� �

bZ
a

[@2 (L�;x) �(t) + @3 (L�;x)T
a
��(t)] d

�(t; a):
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= �

bZ
a

@2 (L�;x) �(t)d
�(t; a) + �

bZ
a

@3 (L�;x)T
a
��(t)d

�(t; a)

Using (1) for the second term of the inequality, we can write

J[x+ ��]� J[x]

� �

bZ
a

@2 (L�;x) �(t)d
�(t; a) + ��(t)@3@3 (L�;x)

���t=b
t=a

��
bZ
a

T a� (@3 (L�;x)) �(t)d
�(t; a)

= �

bZ
a

[@2 (L�;x)� T a� (@3 (L�;x))] �(t)d�(t; a)

= 0:

Hence, we can say that x(t) is a local minimizer of the functional J. �

In Theorems 3 and 5, we introduced the variational problems with �xed end-
point. In the following result, we will study the variational problems with variable
end-point. Because of the absence of at least one of the end-point conditions (3)
in such problems, we need additional conditions, which are named transversality
conditions in the literature.

Theorem 6. Assume that x(t) is a minimizer of the functional J. Then, x(t) is a
solution of the Euler-Lagrange equation (4).
If x(a) is absent, then

@3 (L�;x)jt=a = 0:
If x(b) is absent, then

@3 (L�;x)jt=b = 0:

Proof. Let x + �� be a variation of x, with 1 � j�j and � 2 C1 [a; b]. Let the
functional j de�ned in a neighborhood of zero by

j [�] := J [x+ ��] :

Since x is a minimizer of J, then � = 0 will be a minimizer of j and so we can
conclude that j0 [0] = 0. Using (1), we can calculate j0 [�] as

@

@�
j [�] =

@

@�

0@ bZ
a

L�;x+��d
�(t; a)

1A
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=

bZ
a

[@2 (L�;x+��) �(t) + @3L (L�;x+��)T
a
�� (t)] d

�(t; a)

=

bZ
a

@2 (L�;x+��) �(t)d
�(t; a) + @3 (L�;x+��) � (t)

���t=b
t=a

�
bZ
a

T�a (@3 (L�;x+��)) �(t)d
�(t; a):

Using the fact that j0 [0] = 0; we get
bZ
a

[@2 (L�;x)� @3 (L�;x)] �(t)d�(t; a) + @3 (L�;x) �(t)
���t=a
t=a

= 0: (5)

Also, since x is a minimizer, the relation

@2 (L�;x)� @3 (L�;x) = 0
holds for all t 2 [a; b] : Therefore, from (5) we have

@3 (L�;x) �(t)jt=at=a = 0:

If x(a) is not �xed, then �(a) will be free. Hence taking the end-point conditions
as �(a) 6= 0 and �(b) = 0; we obtain that

@3 (L�;x) �(t)jt=a = 0:
If x(b) is not �xed, then �(b) will be free. Hence taking the end-point conditions as
�(b) 6= 0 and �(a) = 0; we obtain that

@3 (L�;x) �(t)jt=b = 0:
Thus, the proof is complete. �

Now we consider variational problems with constraints, i.e. subsidiary condi-
tions. Let l 2 R �xed, G 2 C12;3

�
[a; b]� R2;R

�
, and T a� (@3 (G�;x(t))) is continuous.

Theorem 7. Assume that x is a minimizer of functional (2), de�ned on the set
(3) subject to the additional restriction

I [x] :=
bZ
a

G�;xd
� (t; a) = l: (6)

If x is not an extremal of I, then there exists a � 2 R such that x is a solution of
the equation

@2 (K�;x)� @3 (K�;x) = 0 (7)

where K : [a; b]� R2 ! R is de�ned by K = L+ �G.
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Proof. Consider a variation of x with two parameters x+ �1�1 + �2�2; with 1� j�j
and �i 2 C1 [a; b] satisfying �i(a) = �i(b) = 0; for i = 1; 2. In the neighborhood of
zero, let de�ne the bivariate functions k and j� as

k (�1; �2) = I (x+ �1�1 + �2�2)

and
j� (�1; �2) = J (x+ �1�1 + �2�2) :

Using integration by parts formula given by (1) ; we obtain

@

@�2
k (�1; �2)

=
@

@�2

0@ bZ
a

G�;x+�1�1+�2�2d
� (t; a)�

bZ
a

G�;xd
� (t; a)

1A
=

bZ
a

@2
�
G�;x+�1�1+�2�2

�
�2 (t) d

� (t; a) +

bZ
a

@3
�
G�;x+�1�1+�2�2

�
T a��2 (t) d

� (t; a)

=

bZ
a

@2
�
G�;x+�1�1+�2�2

�
�2 (t) d

� (t; a) + @3
�
G�;x+�1�1+�2�2

�
�2 (t)

���t=b
t=a

�
bZ
a

T a�
�
@3
�
G�;x+�1�1+�2�2

��
�2 (t) d

� (t; a)

=

bZ
a

h
@2
�
G�;x+�1�1+�2�2

�
� T a�

�
@3
�
G�;x+�1�1+�2�2

�� i
�2 (t) d

� (t; a)

+ @3
�
G�;x+�1�1+�2�2

�
�2 (t)

���t=b
t=a

:

Therefore, we have

@

@�2
k (�1; �2)

����
(0;0)

=

bZ
a

h
@2 (G�;x)� T a� [@3 (G�;x)]

i
�2 (t) d

� (t; a)+ @3 (G�;x) �2 (t)
���t=b
t=a

:

From the hypothesis we know that x is not an extremal of I, so we can conclude
that there exists a function �2 such that

@
@�2
k (�1; �2)

���
(0;0)

6= 0: From the Implicit

Function Theorem, we can say that there exists a unique function �2(:) de�ned in
the neighborhood of zero such that k(�1; �2 (�1)) = 0 is satis�ed.
Additionally, (0; 0) is a minimizer of j�, with condition k(:; :) = 0, and so we

proved that rk(0; 0) = 0. After that using the Lagrange multiplier rule, we con-
clude that there exists a � 2 R such that r(j+�k) = 0 is satis�ed. Di¤erentiating
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the map �! j (�1; �2) + �k (�1; �2), and taking (�1; �2) = (0; 0)

bZ
a

h
@2 (G�;x)� T a� [@3 (G�;x)]

i
�2 (t) d

� (t; a) + @3 (G�;x) �2 (t)
���t=b
t=a

= 0

is obtained. Finally, using the fundamental lemma, we obtain the desired result. �

Now we consider variational problems with holonomic constraints, i.e. the
case when admissible functions lie on a certain surface. Let the function L 2
C12;3;4;5

�
[a; b]� R4;R

�
, and the functions T a� (@iL (t; x1(t); x2(t); T

a
�x1(t); T

a
�x2(t)))

are continuous for i = 4; 5.
Consider the functional

J [x1; x2] :=
bZ
a

L (t; x1(t); x2(t); T
a
�x1(t); T

a
�x2(t)) d

� (t; a) (8)

on the space

S� :=
�
(x1; x2) : x1;2 2 C1 [a; b] ; (x1(a); x2(a)) = xa and (x1(a); x2(b)) = xb

	
where xa; xb 2 R2 are �xed, and assume that the admissible functions of (8) lie on
the surface

G(t; x1(t); x2(t)) = 0 (9)

where G 2 C12;3
�
[a; b]� R2;R

�
.

For the sake of brevity, we denote x(t) := (x1 (t) ; x2 (t)) and
T a�x(t) := (T

a
�x1(t); T

a
�x2(t)) in the remaining part of this paper.

Theorem 8. Let x 2 S� be a minimizer of J given by (8) under the constraint (9).
If

@3G (t; x (t)) 6= 0; t 2 [a; b] ;
then there is a continuous function  : [a; b]! R such that x satis�es

@2 (L�;x)� T a� (@4 (L�;x)) +  (t) @2G (t; x (t)) = 0; (10)

and
@3 (L�;x)� T a� (@5 (L�;x)) +  (t) @3G (t; x (t)) = 0:

Proof. Consider a variation of x as x + �� with 1 � j�j and � 2 C1 [a; b] satisfying
end-point conditions �(a) = �(b) = 0. Since

@3G (t; x (t)) 6= 0;
from the Implicit Function Theorem, we can say that there exists a subfamily of
variations satisfying condition (9), i.e., there exists a unique function �2 (�; �1) such
that (x1 + ��1; x2 + ��2) satis�es (7) : Therefore, we get

G (t; x1 (t) + ��1 (t) ; x2 (t) + ��2 (t)) = 0; t 2 [a; b] : (11)
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Di¤erentiating equation (11) with respect to � and putting � = 0; we obtain

@2G (t; x1 (t) ; x2 (t)) �1 (t) + @3G (t; x1 (t) ; x2 (t)) �2 (t) = 0;

i.e.
@2G (t; x (t)) �1 (t) + @3G (t; x (t)) �2 (t) = 0: (12)

Now, de�ne the function

(t) = �@3 (L�;x)� T
a
� (@5 (L�;x))

@3G (t; x (t))
: (13)

Using equations (12) and (13), we obtain

 (t) @2G (t; x (t)) �1 (t) = [@3 (L�;x)� T a� (@5 (L�;x))] �2 (t) : (14)

On the other hand, using the fact that if x is a minimizer of J, then �rst variation
of J is equal to zero, we have

bZ
a

h
@2 (L�;x) �1 (t) + @3 (L�;x) �2 (t)

+ @4 (L�;x)T
a
��1 (t) + @5 (L�;x)T

a
��2 (t)

i
d�(t; a) = 0:

Using conformable integration by parts, we obtain
bZ
a

hh
@2 (L�;x)� T a� (@4 (L�;x))

i
�1 (t)

+
h
@3 (L�;x)� T a� (@5 (L�;x))

i
�2 (t)

i
d�(t; a) = 0:

Inserting (14) into the this integral, we get

bZ
a

h
@2 (L�;x)� T a� (@4 (L�;x)) + (t)@2G (t; x (t))

i
�1 (t) d

� (t; a) = 0:

Since �1 is an arbitrary function, we can conclude that x is a solution of

@2 (L�;x)� T a� (@4 (L�;x)) + (t)@2G (t; x (t)) = 0:
Following the same process, the second condition

@3 (L�;x)� T a� (@5 (L�;x)) + (t)@3G (t; x (t)) = 0
can be obtained, and the proof is complete. �

Theorem 9. Suppose that the function L (t; x1 (t) ; x2 (t) ; y1 (t) ; y2 (t)) given by
(8) is convex in [a; b] � R4; G 2 C12;3, and let  be given by equation (13). If
@3G (t; x (t)) 6= 0 for all t 2 [a; b] and x is a solution of the fractional Euler-Lagrange
equation (10), then x minimizes J in S�, subject to (9).
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Proof. If x+ �� is a variation of x, then we have

J [x+ ��]� J [x] �
bZ
a

f[@2 (L�;x)� T a� (@4 (L�;x))] ��1 (t)

+ [@3 (L�;x)� T a� (@5L�;x)] ��2 (t) d� (t; a) :

since the variation functions must satisfy the constraint (9) ; from (12) we have the

�2 (t) = �
@2G (t; x (t)) �1 (t)

@3G (t; x (t))

and from equation (13) ; we obtain

J [x+ ��]�J [x] �
bZ
a

[@2 (L�;x)� T a� (@4 (L�;x)) + (t)@2G (t; x (t))] ��1 (t) d� (t; a) ;

which is zero by hypothesis. �

4. Conclusions

We have discussed the optimality conditions of the variational problems including
conformable fractional derivatives. We obtained the optimality conditions for �xed
end-point variational problems in Theorem 5, and for variable end-point variational
problems in Theorem 6. Then, we have investigated the isoperimetric problem in
Theorem 7, and variational problem with holonomic constraints in Theorem 8.
Finally, in Theorem 9, we have given a su¢ cient condition for optimality results of
variational problems.
It is known that conformable fractional derivative generalizes the ordinary de-

rivative, i.e. if we take � = 1 in conformable derivative T a�h(t), we have ordinary
derivative Dh(t). Using this fact, It is clear that the results obtained in our study
expand the results in the literature given before.
The problems we have dealt with include only one independent variable and one

dependent variable and its derivative. As a possible extension of our results, one
can study the problems involving more than one dependent variable and their deriv-
atives. And problems with one dependent variable and its derivatives of di¤erent
orders can be studied.
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Abstract. In this paper, an integral equation for the kth moment function of
a geometric process is derived as a generalization of the lower-order moments
of the process. We propose a general solution to solve this integral equation
by using the numerical method, namely trapezoidal integration rule. The
general solution is reduced to the numerical solution of the integral equations
which will be given for the third and fourth moment functions to compute
the skewness and kurtosis of a geometric process. To illustrate the numerical
method, we assume gamma, Weibull and lognormal distributions for the �rst
interarrival time of the geometric process.

1. INTRODUCTION

The geometric process (GP), which is a natural generalization of a renewal
process (RP), is an important stochastic monotone model used in many areas of sta-
tistics and applied probability, especially for statistical analysis of series of events.
Since its introduction by [9], many researcher and authors made a signi�cance ef-
fort on GP by publishing more than 200 papers. For instance, the GP has been
used as a model in modelling of an epidemic disease [8], software reliability [16,18],
maintenance [23], warranty analysis [5,12] and electricity prices [7]. This process is
de�ned as follows.

De�nition 1. Let fN(t); t � 0g be a counting process (CP) and Xi be the interar-
rival time between (i� 1)th and ith event of this process for i = 1; 2; : : : . The CP
fN(t); t � 0g is called a GP with the ratio parameter a if there exists a real number
a > 0 such that ai�1Xi; i = 1; 2; : : : are independent and identically distributed
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(iid) random variables with a distribution function F , where F is the distribution
function of the �rst interarrival time X1.

The GP is also called quasi-renewal process with ratio parameter � = 1=a by [18].
Let fN(t); t � 0g be a GP with the ratio parameter a and Fi be the distribution

function of Xi for i = 1; 2; : : : . Then, it is easy to verify that Fi (x) = F
�
ai�1x

�
for

i = 1; 2; : : : . Further, it can be shown that GP is stochastically increasing if a < 1
and stochastically decreasing if a > 1. When a = 1, GP reduces to a RP.
By considering the distribution functions of the interarrival times, one of the

important di¤erences between RP and GP can be given as follows. In RP, the
distribution function of the interarrival times remains same over i�s, that is Fi (x) =
F (x) for i = 1; 2; : : : . However, in GP, the distribution of the interarrival time Xi
does not remain same over i�s, that is Fi (x) = F (ai�1x) for i = 1; 2; : : : . This
provides some advantages to the GP in applications, in particular for reliability
mathematics since it can be used as a model for deteriorating systems which may
have decreasing working times between failures. In order to understand the place
of the GP model in the literature, see the following papers, [1, 19,20,21,22].
Let fN (t) ; t � 0g be a GP with ratio parameter a. Set S0 = 0 and Sn =Pn
i=1Xi for n = 1; 2; : : : . Thus, Sn is called nth arrival time of the GP. The

distribution function of Sn is given by F1 � F2 � � � � � Fn (t), where * denotes the
Stieltjes convolution and Fi (t) for i = 1; 2; : : : is the distribution function of Xi.
Further, since the events (Sn � t) and (N (t) � n) are equivalent, the probability
distribution of the random variable N (t) is given by

P (N (t) = n) = F1 � � � � � Fn (t)� F1 � � � � � Fn+1 (t)
for each �xed t � 0.
Now, let give the following theorem which states the existence of the moments

of the GP. The proof of this theorem can be found in many manuscripts and mono-
graphs, for example, [6, 11].

Theorem 2. Consider the GP fN (t) ; t � 0g with ratio parameter a. If a � 1,
then Mk (t) = E

�
Nk (t)

�
< 1 for all t � 0 and k � 0. If a > 1 and F (t) > 0 for

all t > 0, then the moments of N (t) are in�nite.

Let fN (t) ; t � 0g be a GP with ratio parameter a. The mean value function
of a GP, which is also called the geometric function, is given by M1 (t) = E (N (t)).
M1 (t) is the number of the events that have occurred by time t. The geometric
function M1 (t) satis�es the following integral equation.

M1 (t) = F (t) +

Z t

0

M1(a (t� x))dF (x) ; t � 0: (1)

The second moment function of a GP is given by M2 (t) = E
�
N2 (t)

�
. [15] show

that M2 (t) satis�es the following integral equation.

M2 (t) = 2M1 (t)� F (t) +
Z t

0

M2 (a (t� x))dF (x) ; t � 0: (2)
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According to the Theorem 1, for a � 1, the geometric function M1 (t) and
the second moment function M2 (t) are �nite for all t � 0. Furthermore, if F is
continuous, then the integral equations (1) and (2) can be solved uniquely although
M1 (t) and M2 (t) cannot be obtained in analytical forms. In the case of a > 1,
M1 (t) and M2 (t) are in�nite for all t > 0.
When the GP model is used as a model for the data sets come from series

of event, the distribution function of the �rst interarrival time is assumed to be
one of four common lifetime distributions as exponential, gamma, Weibull and
lognormal. See [13] for the details how to discriminate the lifetime distributions
in GP model. Under a lifetime distribution assumption, it is of importance to
calculate the moment functions of the GP. Many researchers and authors made some
studies on the �rst and second moment functions of the GP by considering these
lifetime distributions. [6] deal with the boundary problem forM1 (t). [17] propose a
numerical method, namely trapezoidal integration rule, for M1 (t) with the help of
the integral equation (1). In addition, [4] and [3] suggest power series expansions for
M1 (t) depending on the integral equation (1). [2] obtain the numerical calculation
and Monte Carlo estimation of the variance function, which is M2 (t) � M2

1 (t) ;
by using the convolution of the distribution functions. Alternative methods for
computing M2 (t) are given in [15]. They adapt the Tang and Lam�s method to
M2 (t) and propose a power series expansion forM2 (t) with the help of the integral
equation (2). Further, [14] show the asymptotic solution of the integral equation
for the second moment function. To the best of our knowledge, in the literature,
there is no study about the higher-order moment functions of the GP. However, in
order to calculate, for instance, the skewness and kurtosis of the process, the third
and fourth moment functions are required. Moreover, to compare the estimators
proposed for some parameters of GP and to examine some theoretical properties of
the process, higher-order moment functions should be known.
The rest of the paper organized as follows. In section 2, �rstly, we obtain the

integral equations for the third and fourth moment functions of the GP. Then, a
generalization of the integral equation for kth moment function of the GP is given.
We adapt the Tang and Lam�s numerical method for the kth moment function of
the GP with the help of the integral equation given for this function. Then, we
reduce this general approximation to third and fourth moment functions of the GP
in Section 3. Illustrative examples are provided in Section 4. Conclusion remarks
are presented in Section 5.

2. INTEGRAL EQUATIONS FOR THE MOMENT FUNCTIONS OF
THE GP

In this section, �rstly, integral equations for the third and fourth moment func-
tions of the GP are obtained. Then, in general, we present an integral equation for
the kth moment function of the GP.



734 M. H. PEKALP, A. AYDO ¼GDU

Let fN (t) ; t � 0g be a GP with ratio parameter a and let us assume that the
�rst interarrival time X1 follows the distribution function F . The third moment
function of the GP is given by M3 (t) = E

�
N3 (t)

�
; t � 0: Conditioning on the

�rst interarrival time X1, we have

M3 (t) = E
�
N3 (t)

�
=

Z 1

0

E
�
N3 (t) j X1 = x

�
dF (x):

Since E(N3
(t) j X1 = x) = E(1 +N (a (t� x)))3; x < t and E(N3

(t) j X1 = x) =
0; x � t, we rewrite the equality as follows.

M3 (t) =

Z t

0

E (1 +N (a (t� x)))3dF (x)

=

Z t

0

dF (x)+3

Z t

0

E (N (a (t� x))) dF (x)

+3

Z t

0

E
�
N2 (a (t� x))

�
dF (x)+

Z t

0

E
�
N3 (a (t� x))

�
dF (x)

=F (t) + 3

Z t

0

M1(a (t� x) )dF (x)+3
Z t

0

M2 (a(t� x)) dF (x)

+

Z t

0

M3 (a(t� x)) dF (x) :

Using the integral equations given in (1) and (2), we have

M3 (t) = F (t) + 3 (M1 (t)� F (t)) + 3 (M2 (t)� 2M1 (t) + F (t))

+

Z t

0

M3 (a(t� x))dF (x) :

Simplifying the expression, we obtain

M3 (t) = 3M2 (t)� 3M1 (t) + F (t) +

Z t

0

M3 (a (t� x))dF (x) ; t � 0: (3)

The fourth moment function of the GP is de�ned byM4 (t) = E
�
N4 (t)

�
; t � 0:

Using similar arguments in the derivation of the integral equation for M3 (t), we
have

M4 (t) = 4M3 (t)� 6M2 (t) + 4M1 (t)� F (t)

+

Z t

0

M4 (a (t� x))dF (x) ; t � 0: (4)

Following theorem states the kth moment function of a GP model.
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Theorem 3. For any k 2 N, the kth moment function Mk (t) of the GP is given
by

Mk (t) =
k�1X
j=0

(�1)k�1�j
�
k

j

�
Mj (t) +

Z t

0

Mk (a (t� x))dF (x) ; t � 0; (5)

where M0 (t) = F (t).

Proof. The proof of (5) is given by using the mathematical induction. It is obvious
that (5) holds for k = 1 when we consider equation (1). Now, let us assume that
(5) holds for any integer k and show that it also holds for integer k + 1. The
(k+1)th moment function of the GP is de�ned byMk+1 (t) = E

�
Nk+1 (t)

�
; t � 0:

Conditioning on the �rst interarrival time X1, we have

Mk+1 (t) =

Z t

0

E(1 +N (a (t� x)))k+1dF (x)

=
k+1X
j=0

�
k + 1

j

�Z t

0

Mj (a (t� x))dF (x) :

The following equation can be written by separating the (k + 1)th term.

Mk+1 (t) =
kX
j=0

�
k + 1

j

�Z t

0

Mj (a (t� x))dF (x) +
Z t

0

Mk+1 (a (t� x))dF (x) :

Since we assume that (5) holds for any integer k, we have

Mk+1 (t) =
kX
j=0

�
k + 1

j

� 
Mj (t)�

j�1X
i=0

(�1)j�1�i
�
j

i

�
Mi (t)

!

+

Z t

0

Mk+1 (a (t� x))dF (x)

=
kX
j=0

�
k + 1

j

� jX
i=0

(�1)j�i
�
j

i

�
Mi (t)

!

+

Z t

0

Mk+1 (a (t� x))dF (x) :

When we rearrange the terms, we obtain

Mk+1 (t) =
kX
i=0

0@ kX
j=i

(�1)j�i
�
k + 1

j

��
j

i

�1AMi (t) +

Z t

0

Mk+1 (a (t� x))dF (x) :
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Since the identities
�
k+1
j

� �
j
i

�
=
�
k+1
i

��
k+1�i
j�i

�
and

Pk
j=i (�1)

j�i
�
k+1�i
j�i

�
=

(�1)k�i hold,

Mk+1 (t) =
kX
i=0

(�1)k�i
�
k + 1

i

�
Mi (t) +

Z t

0

Mk+1 (a (t� x))dF (x) :

Hence, the proof is completed. �

According to the Theorem 1, for a � 1, the function Mk (t) is �nite for all
t � 0. Furthermore, if F is continuous, then the integral equation (5) can be solved
uniquely although this function does not have an analytical form. We discuss this
problem in the next section. In the case of a > 1, Mk (t) is in�nite for all t > 0.

3. NUMERICAL SOLUTION

In this section, we give a method based on the trapezoidal integration rule for the
numerical solution of the integral equation (5). This solution is obtained by recur-
sive calculations with respect to k. Now, let us remind the trapezoidal integration
rule as follows.
According to the trapezoidal integration rule, an integral

R b
a
g (t) dt can be cal-

culated numerically asZ b

a

g (t) dt �
nX
i=1

g (ti�1) + g (ti)

2
(ti � ti�1) =

h

2
g(t0) + h

n�1X
i=1

g(ti) +
h

2
g(tn);

where ft0; t1; : : : ; tng is a partition of the interval [a; b] such that a = t0 < t1 <
� � � < tn = b, ti = a + ih, i = 0; 1; : : : ; n and h = b�a

n . The approximation gives
more precise results as the number of the partition increases.
Let fN(t); t � 0g be a GP with ratio parameter a < 1. Assume that the �rst

interarrival time X1 has probability density function f . Then, the integral equation
(5) can be written as

Mk (t) =

k�1X
j=0

(�1)k�1�j
�
k

j

�
Mj (t) +

Z t

0

Mk (a (t� x))f (x) dx; t � 0: (6)

If we substitute s = a(t� x), we have

Mk (t) =
k�1X
j=0

(�1)k�1�j
�
k

j

�
Mj (t) +

1

a

Z at

0

Mk (s)f
�
t� s

a

�
ds: (7)

Assume that T > 0; t 2 [0; T ] and f (0) = 0. Let ft0; t1; : : : ; tng be a partition
of the interval [0; T ] such that 0 = t0 < t1 < � � � < tn = T . Take the step width
h = T

n and ti = ih for i = 0; 1; : : : ; n. By (7), we have
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Mk (ti) =
k�1X
j=0

(�1)k�1�j
�
k

j

�
Mj (ti)

+
1

a

Z tbaic

0

Mk (s)f
�
ti �

s

a

�
ds

+
1

a

Z ati

tbaic

Mk (s)f
�
ti �

s

a

�
ds: (8)

where b:c is the greatest integer function. Since ati does not have to belong to this
partition, the interval [0; ati] is divided into two subsets as [0; tbaic] and [tbaic; ati].
Now, let us de�ne I1 and I2 as

I1 =
1

a

Z tbaic

0

Mk (s)f
�
ti �

s

a

�
ds

and

I2 =
1

a

Z ati

tbaic

Mk (s)f
�
ti �

s

a

�
ds:

Considering the trapezoidal integration rule with the partition f0; h; 2h; : : : ; [ai]hg
of the interval [0; tbaic], we obtain

I1 =
1

a

Z tbaic

0

Mk (s)f
�
ti �

s

a

�
ds

� h

2a
Mk (t0) f

�
ti �

t0
a

�
+
h

a

baic�1X
j=1

Mk (tj) f

�
ti �

tj
a

�

+
h

2a
Mk

�
tbaic

�
f

�
ti �

tbaic

a

�

=
h

a

baic�1X
j=1

Mk (tj) f

�
ti �

tj
a

�

+
h

2a
Mk

�
tbaic

�
f

�
ti �

tbaic

a

�
; (9)

whereMk (0) = 0. To calculate the integral I2, it can be again used the trapezoidal
integration rule with two points (the values of the lower and upper bounds) on the
interval [tbaic; ati]. Hence,

I2 =
1

a

Z ati

tbaic

Mk (s)f
�
ti �

s

a

�
ds

�
ati � tbaic

2a

�
Mk

�
tbaic

�
f

�
ti �

tbaic

a

�
+Mk (ati) f (0)

�
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=
ati � tbaic

2a

�
Mk

�
tbaic

�
f

�
ti �

tbaic

a

��
: (10)

By using the equations (9) and (10) into the equation (8), we have

Mk (ti) �
k�1X
j=0

(�1)k�1�j
�
k

j

�
Mj (ti)

+
h

a

baic�1X
j=1

Mk (tj) f

�
ti �

tj
a

�

+
h

2a
Mk

�
tbaic

�
f

�
ti �

tbaic

a

�
+
ati � tbaic

2a

�
Mk

�
tbaic

�
f

�
ti �

tbaic

a

��
:

Denote the approximate value of Mk (ti) as ~Mk (ti). Then, for any given k � 1
and i = 0; 1; : : : ; n, the values of ~Mk (ti) can be recursively calculated as

~Mk (ti) =
k�1X
j=0

(�1)k�1�j
�
k

j

�
~Mj (ti)

+
h

a

baic�1X
j=1

~Mk (tj) f

�
ti �

tj
a

�

+
h

2a
~Mk

�
tbaic

�
f

�
ti �

tbaic

a

�
+
ati � tbaic

2a

�
~Mk

�
tbaic

�
f

�
ti �

tbaic

a

��
; (11)

where ~Mk (0) =Mk (0) = 0:
Let us reduce this general solution to the numerical solution of integral equations

(3) and (4). By (11), the values of ~M3 (ti) and ~M4 (ti) can be calculated as

~M3 (ti) = 3 ~M2 (ti)� 3 ~M1 (ti) + F (ti)

+
h

a

baic�1X
j=1

~M3 (tj) f

�
ti �

tj
a

�

+
h

2a
~M3

�
tbaic

�
f

�
ti �

tbaic

a

�
+
ati � tbaic

2a

�
~M3

�
tbaic

�
f

�
ti �

tbaic

a

��
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and

~M4 (ti) = 4 ~M3 (ti)� 6 ~M2 (ti) + 4 ~M1 (ti)� F (ti)

+
h

a

baic�1X
j=1

~M4 (tj) f

�
ti �

tj
a

�

+
h

2a
~M4

�
tbaic

�
f

�
ti �

tbaic

a

�
+
ati � tbaic

2a

�
~M4

�
tbaic

�
f

�
ti �

tbaic

a

��
respectively, where M1 (ti) and M2 (ti) can be approximately calculated with the
help of the formula given in (11) as

~M1 (ti) = F (ti) +
h

a

baic�1X
j=1

~M1 (tj) f

�
ti �

tj
a

�

+
h

2a
~M1

�
tbaic

�
f

�
ti �

tbaic

a

�
+
ati � tbaic

2a

�
~M1

�
tbaic

�
f

�
ti �

tbaic

a

��
(12)

and

~M2 (ti) = 2 ~M1 (ti)� F (ti)

+
h

a

baic�1X
j=1

~M2 (tj) f

�
ti �

tj
a

�

+
h

2a
~M2

�
tbaic

�
f

�
ti �

t[ai]

a

�
+
ati � tbaic

2a

�
~M2

�
tbaic

�
f

�
ti �

tbaic

a

��
: (13)

Note that these formulas in (12) and (13) are given previously by [17] and [15],
respectively.

4. ILLUSTRATIVE EXAMPLES

In this section, we consider gamma, Weibull and lognormal distributions for the
�rst interarrival time of the GP to illustrate the numerical method developed in
previous section. As indicated in [10], the ratio parameter a satis�es the condition
0:95 � a � 1:05 for many real data sets �tted by the GP. Further, in the applications
of the GP, we mostly encounter with values of a which is less than 1. For this reason,
the ratio parameter of the GP is taken as a = 0:95 in each example. It is worth to
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noting that similar results are obtained for the di¤erent values of a. The value of
T is chosen to be at least 10E (X1).
In each example, we calculate the approximate values of the skewness and kur-

tosis of the GP model as

~S (t) =
~M3 (t)� 3 ~M2 (t) ~M1 (t) + 2 ~M

3
1 (t)�

~M2 (t)� ~M2
1 (t)

�3=2 ; t � 0

and

~K (t) =
~M4 (t)� 4 ~M3 (t) ~M1 (t) + 6 ~M2 (t) ~M

2
1 (t)� 3 ~M4

1 (t)�
~M2 (t)� ~M2

1 (t)
�2 ; t � 0

respectively.

Example 1. (Gamma distribution)

Let fN(t); t � 0g be a GP with ratio parameter a = 0:95 and assume that the
�rst interarrival time X1 follows gamma distribution �(2; 1). Since T = 10E (X1) =
20, we divide the interval [0; 20] into n = 2000 subintervals with the equal width h =
0:01. The following Table 1 presents the approximate values ofM3 (t),M4 (t) ; S(t)
and K(t).

Table 1. Results for X1 � �(2; 1)

t ~M3 (t) ~M4 (t) ~S (t) ~K (t)
0.1 0.0047 0.0047 14.5437 213.1503
0.5 0.1016 0.1148 3.0185 10.9469
1 0.3954 0.5569 1.4545 4.2591
3 4.7898 11.9093 0.4792 3.1260
5 17.2850 58.7025 0.3523 3.0903
8 57.5463 267.5775 0.2646 3.0412
10 101.6607 552.6060 0.2279 3.0256
15 280.9871 2041.6477 0.1696 3.0086
20 565.2640 5051.7662 0.1350 3.0045
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Example 2. (Weibull distribution)

Let fN(t); t � 0g be a GP with ratio parameter a = 0:95 and assume that
the �rst interarrival time X1 has Weibull distribution W(2; 1). Since T = 10 >
10E (X1) = 5

p
�, the interval [0; 10] is divided into n = 1000 subintervals with the

equal width h = 0:01. Thus, the approximate values of M3 (t), M4 (t) ; S(t) and
K(t) are given in the Table 2 below.

Table 2. Results for X1 �W(2; 1):

t ~M3 (t) ~M4 (t) ~S (t) ~K (t)
0.1 0.0101 0.0102 9.9125 99.8624
0.5 0.2833 0.3573 1.5956 4.4056
1 1.4831 2.6215 0.4613 2.9561
2 9.6617 26.4035 0.4614 3.2020
3 29.7577 108.7189 0.3757 3.1660
4 65.4750 297.7482 0.3335 3.1183
5 119.3496 645.6989 0.3003 3.0952
8 403.4629 3151.2045 0.2350 3.0699
10 699.8581 6486.4930 0.2059 3.0786

Example 3. (Lognormal distribution)

Let fN(t); t � 0g be a GP with ratio parameter a = 0:95 and assume that
the �rst interarrival time X1 has lognormal distribution LN(0; 1). Taking T =
18 > 10E (X1) = 10e1=2, the interval [0; 18] is divided into n = 1800 subintervals
with the equal width h = 0:01. Thus, we obtain the approximate values of M3 (t),
M4 (t) ; S(t) and K(t) in the Table 3 below.

Table 3. Results for X1 � LN(0; 1):

t ~M3 (t) ~M4 (t) ~S (t) ~K (t)
0.1 0.0106 0.0107 9.5450 92.2791
0.5 0.3473 0.4711 1.5313 4.3893
1 1.4488 2.8111 0.8825 3.2820
3 16.3445 58.9722 0.4168 2.8515
5 52.0086 255.8734 0.2412 2.7747
8 151.0759 997.1935 0.0829 2.7883
10 249.7131 1898.0273 0.0096 2.8269
15 613.5389 6027.1855 -0.1164 2.9489
18 911.0975 10036.7429 -0.1682 3.0225
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It can be concluded from Tables 1-3 that the shape of the distribution of the GP
converges to the normal distribution when the value of t gets closer to the mean of
the �rst interarrival time.

5. CONCLUSIONS

Integral equations satis�ed by the third and fourth moment functions of a GP
are derived. Further, we present an integral equation for the kth moment func-
tion as a generalization of the lower-order moment functions of the GP. In general
manner, a numerical method established for solving the integral equation given for
the kth moment function is presented. Then, we reduce this general structure to
the solutions of the third and fourth integral equations to obtain their solutions.
By using the solutions of the integral equation (3) and (4), skewness and kurtosis
of the GP model are calculated for some lifetime distributions. According to the
numerical calculations, as t gets closer to E(X1), the shape of the distribution of
the GP converges to the normal distribution. Note that more precise results can
be obtained by taking smaller step width in numerical calculation of the integral
equations since the accuracy of the approximation depends on the step width.
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of Higher Education, Malatya Turgut Özal University, Malatya, TURKEY

3Department of Mathematics, Faculty of Arts and Sciences, ·Inönü University,
Malatya, TURKEY

Abstract. In this paper, we study the hypersurface families with Smaran-
dache curves in 4-dimensional Galilean space G4 and give the conditions for
di¤erent Smarandache curves to be parameter and the curve which generates
the Smarandache curves is geodesic on a hypersurface in G4: Also, we inves-
tigate three types of marching-scale functions for one of these hypersurfaces
and construct an example for it.

1. PRELIMINARIES

In physics, geodesics which are de�ned as a parallel transport of a tangent vector
in a linear (a¢ ne) connection on the manifoldM are very important for general rel-
ativity. Because, the geodesic equation which is given with a set of initial conditions
is very useful in theoretical foundations of general relativity. Also, in general, rela-
tivity gravity can be regarded as not a force but a consequence of a curved spacetime
geometry where the source of curvature is the stress�energy tensor. For example,
the path of a planet orbiting a star is the projection of a geodesic of the curved
four-dimensional spacetime geometry around the star onto three-dimensional space.
Furthermore, as an alternative de�nition of a geodesic line can be de�ned as the

shortest curve connecting two points on a manifold. A curve (�) on a hypersur-
face ' (�; �; �) is geodesic i¤ the normal N (�) of the curve (�) and the normal
� (�; �0; �0) of the hypersurface ' (�; �; �) at any point on the curve (�) are par-
allel to each other and a curve (�) on the hypersurface ' (�; �; �) is asymptotic i¤
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the normal N (�) of the curve (�) and the normal � (�; �0; �0) of the hypersurface
' (�; �; �) at any point on the curve (�) are perpendicular.
The problem of constructing a family of surfaces from a given spatial geodesic

curve �rstly has been studied by Wang et al. in 2004 and in that study, the authors
have derived a parametric representation for a surface pencil whose members share
the same geodesic curve as an isoparametric curve [15]. After this study, in 2008 the
generalization of the Wangs�assumption to more general marching-scale functions
has been given by Kasap et al [7]. By using these studies, the problem of �nding
a surface pencil from a given spatial asymptotic curve has been investigated in [4]
and the necessary and su¢ cient condition for the given curve to be the asymptotic
curve for the parametric surface has been stated in [1]. Also, the problem of �nding
a hypersurface family from a given asymptotic curve in R4 has been handled in [5].
Surfaces with common geodesic and family of surface with a common null geo-

desic in Minkowski 3-space have been studied in [8] and [13], respectively.
The Galilean space G3 is a Cayley-Klein space equipped with the metric of

signature (0; 0;+;+). The absolute �gure of the Galilean space consists of an
ordered triple f!; f; Ig in which ! is the ideal (absolute) plane, f is the line
(absolute line) in ! and I is the �xed elliptic involution of f .
In the Galilean n-space, there are just two types of vectors. A vector u =

(u1; u2; :::; un) is said to be non-isotropic, if u1 6= 0 and it is said to be isotropic
otherwise.
If u = (u1; u2; u3; u4), v = (v1; v2; v3; v4) and w = (w1; w2; w3; w4) are three

vectors in Galilean space G4, then the Galilean scalar product of x and y is given
by

hu; vi =
�

u1v1; if u1 6= 0 or v1 6= 0
u2v2 + u3v3 + u4v4; if u1 = 0 and v1 = 0

(1)

and for e2 = (0; 1; 0; 0); e3 = (0; 0; 1; 0) and e4 = (0; 0; 0; 1), the Galilean cross
product of u, v and w is de�ned by

u� v � w =

��������
0 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

�������� : (2)

Let  be an admissible curve of the class C1 in G4; parameterized by the invariant
arc-length parameter �, given by

(�) = (�; f(�); g(�); h(�)): (3)

Then the Frenet frame is

T (�) = 0(�) = (1; f 0(�); g0(�); h0(�));

N(�) = 00(�)
�1(�)

= 1
�1(�)

(0; f 00(�); g00(�); h00(�));

B1(�) =
1

�2(�)

�
0; ( f

00(�)
�1(�)

)0; ( g
00(�)
�1(�)

)0; (h
00(�)
�1(�)

)0
�
;

B2(�) = �T (�)�N(�)�B1(�)

(4)
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and the �rst, second and third curvatures of the curve (�) are given by

�1(�) =
p
f 00(�)2 + g00(�)2 + h00(�)2;

�2(�) =
p
hN 0(�); N 0(�)i;

�3(�) = hB01(�); B2(�)i ;
(5)

respectively and where T; N; B1 and B2 are called tangent vector, principal normal
vector, �rst binormal vector and second binormal vector of (�):We must note that,
throughout this study, we will assume that �1(�) 6= 0 and �2(�) 6= 0 at everywhere.
Also, Frenet formulas are given by

T 0(�) = �1(�)N(�);
N 0(�) = �2(�)B1(�);
B01(�) = ��2(�)N(�) + �3(�)B2(�);
B02(�) = ��3(�)B1(�):

(6)

The equation of a hypersurface in G4 can be given by the parametrization

' (�; �; �) = ((' (�; �; �))1 ; (' (�; �; �))2 ; (' (�; �; �))3 ; (' (�; �; �))4) ; (7)

where (' (�; �; �))i 2 C3; i = 1; 2; 3; 4. The normal of this hypersurface is calculated
as follows

�(�; �; �) = '� � '� � '�; (8)

where 'i =
@'(�;�;�)

@i ; i 2 f�; �; �g.
For more information about 4-dimensional Galilean space, we refer to [6], [11],

[12], [16], [17] and etc.
If (�) is a isoparametric curve on the hypersurface ' (�; �; �), then there exists a

pair of parameters �0 2 [T1; T2] and �0 2 [M1;M2] ; such that (�) = ' (�; �0; �0).
If the curve is both an asymptotic and parameter (isoparametric) curve on ',

then it is called isoasymptotic on the hypersurface '. Similarly, if the curve is both
a geodesic and parameter (isoparametric) curve on the hypersurface ', then it is
called isogeodesic on the hypersurface '.
On the constructions of surface families with common geodesic and asymptotic

curves in Galilean Space G3 and an approach for hypersurface family with common
geodesic curve in the Galilean Space G4 have been handled in [9], [10] and [11],
respectively.
On the other hand, the geometry of Smarandache curves has been very popular

topic for di¤erential geometers, recently. Let (�) be an admissible curve in G4 and
fT;N;B1; B2g be its moving Frenet frame. Then TN; TB1; TB2; NB1; NB2; B1B2;
TNB1; TNB2; TB1B2; NB1B2 and TNB1B2-Smarandache curves are de�ned by
rTN =

T+N
kT+Nk ; rTB1

= T+B1

kT+B1k ; rTB2
= T+B2

kT+B2k ; rNB1
= N+B1

kN+B1k ; rNB2
= N+B2

kN+B2k ;

rB1B2
= B1+B2

kB1+B2k ; rTNB1
= T+N+B1

kT+N+B1k ; rTNB2
= T+N+B2

kT+N+B2k ; rTB1B2
= T+B1+B2

kT+B1+B2k ;

rNB1B2 =
N+B1+B2

kN+B1+B2k ; rTNB1B2 =
T+N+B1+B2

kT+N+B1+B2k , respectively.
The problem of constructing a family of surfaces from a given some special

Smarandache asymptotic curves in Euclidean 3-space has been analyzed in [14] and
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surfaces using Smarandache asymptotic curves in Galilean space have been studied
in [2].
In the present study, we investigate the hypersurface families with Smarandache

curves in 4-dimensional Galilean space G4:

2. HYPERSURFACE FAMILIES WITH SMARANDACHE CURVES IN
4-DIMENSIONAL GALILEAN SPACE G4

Let '(�; �; �) be a parametric hypersurface which is de�ned by a given curve
(�) as follows

'(�; �; �) = (�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
; (9)

where L1 � � � L2; T1 � � � T2 and M1 � � � M2: Also, x(�; �; �); y(�; �; �);
z(�; �; �) and m(�; �; �) which are the values of the marching-scale functions indi-
cate and the values of these functions are C1-functions and fT;N;B1; B2g is the
Frenet frame associated with the curve  in G4.
Throughout this study, for simplicity, we will denote x(�; �; �) = x, x(�; �0; �0)

= x0,
@x(�;�;�)

@� = x� ,
@x(�;�;�)

@� = x�,
@x(�;�;�)

@� = x� and
@x(�;�;�)

@� j(�;�0;�0) = (xv)0,
@x(�;�;�)

@� j(�;�0;�0) = (x�)0,
@x(�;�;�)

@v j(�;�0;�0) = (x�)0. Similar abbreviations for
y(�; �; �); z(�; �; �) and m(�; �; �) will be used, too.
CASE 1.
In this case, by taking the TN -Smarandache curve of (�) instead of the curve

(�) in (9), let us de�ne a parametric hypersurface 'TN (�; �; �) which is given with
the aid of the TN -Smarandache curve of (�) and the Frenet vectors of the curve
(�) as follows

'TN (�; �; �) = rTN (�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
: (10)

From (10), we have

('TN )� = x�T + (�1 + x�1 + y� � z�2)N
+ (�2 + y�2 + z� �m�3)B1 + (m� + z�3)B2;

('TN )� = x�T + y�N + z�B1 +m�B2;

('TN )� = x�T + y�N + z�B1 +m�B2;

(11)

where we denote @'TN (�;�;�)
@� = ('TN )� ;

@'TN (�;�;�)
@� = ('TN )� ;

@'TN (�;�;�)
@� =

('TN )� :
Thus, if we use (11) in (8), by obtaining the normal of the hypersurface (10), we

can state the following theorem:

Theorem 1. (�) is not a geodesic curve where TN -Smarandache curve rTN of
the curve (�) is isoparametric on the hypersurface 'NB1

(�; �; �) in G4.



748 M. ALTIN, A. KAZAN, H.B. KARADA ¼G

Proof. If TN -Smarandache curve is a isoparametric curve on 'TN (�; �; �), then
there exists a pair of parameters � = �0 and � = �0 such that

'TN (�; �0; �0) = T (�) +N(�);

that is
x(�; �0; �0) = y(�; �0; �0) = z(�; �0; �0) = m(�; �0; �0) = 0; (12)

where L1 � � � L2; T1 � �0 � T2 and M1 � �0 � M2: Here we must note that,
from (12), we have

xv(�; �0; �0) = yv(�; �0; �0) = zv(�; �0; �0) = mv(�; �0; �0) = 0: (13)

So, from (2), (11), (12) and (13), the normal of the hypersurface (10) for � = �0
and � = �0 is obtained as

�TN (�; �0; �0) = (�TN )1 (�; �0; �0)T (�) + (�TN )2 (�; �0; �0)N(�)
+ (�TN )3 (�; �0; �0)B1(�) + (�TN )4 (�; �0; �0)B2(�);

(14)

where
(�TN )1 (�; �0; �0) = 0;
(�TN )2 (�; �0; �0) = �2

�
(m�)0 (x�)0 � (x�)0 (m�)0

�
;

(�TN )3 (�; �0; �0) = �1
�
(m�)0 (x�)0 � (x�)0 (m�)0

�
;

(�TN )4 (�; �0; �0) = �1
�
(x�)0 (z�)0 � (z�)0 (x�)0

�
+ �2

�
(y�)0 (x�)0 � (x�)0 (y�)0

�
:

(15)

Also, from the de�nition of a given curve (�) on the hypersurface ' (�; �; �) to be
geodesic, it must be

(�TN )2 (�; �0; �0) 6= 0
and

(�TN )3 (�; �0; �0) = (�TN )4 (�; �0; �0) = 0:

So, from (15) the curve (�) is a geodesic on the hypersurface 'TN (�; �; �) in G4 if8<: x(�; �0; �0) = y(�; �0; �0) = z(�; �0; �0) = m(�; �0; �0) = 0;
�1 = 0; �2 6= 0;
(y�)0 (x�)0 = (x�)0 (y�)0 , (m�)0 (x�)0 6= (x�)0 (m�)0

(16)

satis�ed, where � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] : Since �1(v) 6= 0, the
proof completes. �

CASE 2.
Here, by taking the NB2-Smarandache curve of (�) instead of the curve (�)

in (9), let us de�ne a parametric hypersurface 'NB2
(�; �; �) which is given with

the aid of the NB2-Smarandache curve of (�) and the Frenet vectors of the curve
(�) as follows

'NB2
(�; �; �) = rNB2(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:
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If NB2-Smarandache curve of the curve (�) is a isoparametric curve on a hy-
persurface 'NB2

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the normal
of this hypersurface is

�NB2
(�; �0; �0) =

�
�NB2

�
1
(�; �0; �0)T (�) +

�
�NB2

�
2
(�; �0; �0)N(�)

+
�
�NB2

�
3
(�; �0; �0)B1(�) +

�
�NB2

�
4
(�; �0; �0)B2(�);

(17)
where �

�NB2

�
1
(�; �0; �0) = 0;�

�NB2

�
2
(�; �0; �0) = (

�2��3p
2
)
�
(x�)0 (m�)0 � (m�)0 (x�)0

�
;�

�NB2

�
3
(�; �0; �0) = 0;�

�NB2

�
4
(�; �0; �0) = (

�3��2p
2
)
�
(y�)0 (x�)0 � (x�)0 (y�)0

�
:

(18)

Theorem 2. (�) is a geodesic curve where NB2-Smarandache curve rNB2
of the

curve (�) is isoparametric on the hypersurface 'NB2
(�; �; �) in G4 if the conditions8<: x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;

�2 6= �3;
(y�)0 (x�)0 = (x�)0 (y�)0 ; (m�)0 (x�)0 6= (x�)0 (m�)0

(19)

are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :

Proof. If x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0 satis�es
for a pair of parameters � = �0 and � = �0 on hypersurface 'NB2

(�; �; �); then
NB2-Smarandache curve is a isoparametric curve such that

'NB2
(�; �0; �0) =

N(�) +B2(�)p
2

;

where L1 � � � L2; T1 � �0 � T2 and M1 � �0 �M2:
Also, from the de�nition of a given curve (�) on the hypersurface ' (�; �; �) to

be geodesic where NB2-Smarandache curve rNB2
of the curve (�) is isoparametric,

it must be �
�NB1

�
2
(�; �0; �0) 6= 0

and �
�NB1

�
3
(�; �0; �0) =

�
�NB1

�
4
(�; �0; �0) = 0:

So, using these conditions with (19) in (18), the proof completes. �

For the purposes of simpli�cation and better analysis, Wang et al. have studied
the case when the marching-scale functions can be decomposed into two factors in
Euclidean 3-space. The factor-decomposition form possesses an evident advantage:
the designer can select di¤erent sets of functions to adjust the shape of the surface
until they are grati�ed with the design, and the resulting surface is guaranteed to
belong to the isogeodesic surface pencil with the curve as the common geodesic [15].
Also in [3] and [11], the three types of the marching-scale function which have
three parameters have been studied in 4-dimensional Galilean and Euclidean spaces,
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respectively. In this study, we have used the marching-scale functions which have
been given in these studies. Now, for simplicity, let we investigate three types of
marching-scale functions for this hypersurface.
Marching-scale functions of type 1
Let us choose

8>><>>:
x(�; �; �) = p(�)X(�; �);
y(�; �; �) = q(�)Y (�; �);
z(�; �; �) = w(�)Z(�; �);
m(�; �; �) = l(�)M(�; �);

(20)

where L1 � � � L2; T1 � � � T2, M1 � � � M2; p(�); q(�); w(�); l(�); X(�; �);
Y (�; �); Z(�; �), M(�; �) 2 C1 and p(�); q(�); w(�); l(�); 8� 2 [L1; L2] are not
identically zero. By using (19), if the conditions8>>><>>>:

X (�0; �0) = Y (�0; �0) = Z (�0; �0) =M (�0; �0) = 0;
�2 6= �3;
@Y (�0;�0)

@�
@X(�0;�0)

@� = @X(�0;�0)
@�

@Y (�0;�0)
@� ;

@M(�0;�0)
@�

@X(�0;�0)
@� 6= @X(�0;�0)

@�
@M(�0;�0)

@� ;

(21)

satisfy, then (�) is a geodesic curve where NB2-Smarandache curve rNB2
of the

curve (�) is isoparametric on the hypersurface 'NB2
(�; �; �) in G4. Here, �0 2

[T1; T2] ; �0 2 [M1;M2] :
Marching-scale functions of type 2
If we take 8>><>>:

x(�; �; �) = p(�; �)X(�);
y(�; �; �) = q(�; �)Y (�);
z(�; �; �) = w(�; �)Z(�);
m(�; �; �) = l(�; �)M(�);

(22)

where L1 � � � L2; T1 � � � T2, M1 � � � M2 and p(�; �); q(�; �); w(�; �);
l(�; �); X(�); Y (�); Z(�), M(�) 2 C1, by using (19), if the conditions8>>><>>>:

p(�; �0)X(�0) = q(�; �0)Y (�0) = w(�; �0)Z(�0) = l(�; �0)M(�0) = 0;
�2 6= �3;
@q(�;�0)
@� Y (�0)p(�; �0)

@X(�0)
@� = @p(�;�0)

@� X(�0)q(�; �0)
@Y (�0)
@� ;

@l(�;�0)
@� M(�0)p(�; �0)

@X(�0)
@� 6= @p(�;�0)

@� X(�0)l(�; �0)
@M(�0)
@� ;

(23)

satisfy, then (�) is a geodesic curve where NB2-Smarandache curve rNB2 of the
curve (�) is isoparametric on the hypersurface 'NB2

(�; �; �) in G4. Here, �0 2
[T1; T2] ; �0 2 [M1;M2] :
Marching-scale functions of type 3
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For 8>><>>:
x(�; �; �) = p(�; �)X(�);
y(�; �; �) = q(�; �)Y (�);
z(�; �; �) = w(�; �)Z(�);
m(�; �; �) = l(�; �)M(�);

(24)

where L1 � � � L2; T1 � � � T2, M1 � � � M2 and p(�; �); q(�; �); w(�; �);
l(�; �); X(�); Y (�); Z(�), M(�) 2 C1; from (19), if the conditions

8>>><>>>:
p(�; �0)X(�0) = q(�; �0)Y (�0) = w(�; �0)Z(�0) = l(�; �0)M(�0) = 0;
�2 6= �3;
@Y (�0)
@� q(�; �0)

@p(�;�0)
@� X (�0) =

@X(�0)
@� p(�; �0)

@q(�;�0)
@� Y (�0) ;

@M(�0)
@� l(�; �0)

@p(�;�0)
@� X (�0) 6=

@X(�0)
@� p(�; �0)

@l(�;�0)
@� M (�0) ;

(25)

satisfy, then (�) is a geodesic curve where NB2-Smarandache curve rNB2 of
the curve (�) is isoparametric on the hypersurface 'NB2

(�; �; �) in G4. Here,
�0 2 [T1; T2] ; �0 2 [M1;M2] :

Now, let we construct an example for this hypersurface family.

Example 3. Let (�) be a curve which is parametrized by

(�) = (�; sin v; cos v; �3): (26)

From (4) and (5), it is easy to obtain that8>>>>><>>>>>:

T (�) = (1; cos v;� sin v; 3�2);
N(�) = 1p

1+36�2
(0;� sin v;� cos v; 6v);

B1(�) =
1p

(1+36�2)(37+36�2)
(0; 36v sin v � (36v2 + 1) cos v;
36v cos v + (36v2 + 1) sin v; 6);

B2(�) =
1p

37+36�2
(0; 6(cos v + v sin v); 6(v cos v � sin v); 1)

(27)

and

�1 =
p
1 + 36�2; �2 =

p
37 + 36�2

1 + 36�2
; �3 =

6v
p
1 + 36�2

37 + 36�2
: (28)

Now, if we choose �0 = �
2 ; �0 = 0; x(�; �; �) = �

3(� � �
2 ); y(�; �; �) = ��

2 sin�;

z(�; �; �) = cos� and m(�; �; �) = ���2; then (26) is a geodesic curve where NB2-
Smarandache curve rNB2

of the curve (26) is isoparametric on the hypersurface

'NB2
(�; �; �) = (�3(� � �

2
);

� sin vp
1 + 36�2

+
6(cos v + v sin v)p

(37 + 36�2)
+ �3(� � �

2
) cos v � ��

2 sin� sin vp
1 + 36�2

+
cos�(36v sin v � (36v2 + 1) cos v)p

(1 + 36�2)(37 + 36�2)
+
6(cos v + v sin v)���2p

(37 + 36�2)
;
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� cos vp
1 + 36�2

+
6(v cos v � sin v)p

(37 + 36�2)
� �3(� � �

2
) sin v � ��

2 sin� cos vp
1 + 36�2

(29)

+
cos�(36v cos v + (36v2 + 1) sin v)p

(1 + 36�2)(37 + 36�2)
+
6(v cos v � sin v)���2p

(37 + 36�2)
;

6vp
1 + 36�2

+
1p

(37 + 36�2)
+ 3v5(� � �

2
) +

6�2�2 sin�p
1 + 36�2

+
6 cos�p

(1 + 36�2)(37 + 36�2)
+

���2p
(37 + 36�2)

):

in G4.
Di¤erent projections from four-space to three-spaces of the hypersurface (29) for

� = �=2 can be seen in the Fig.1:

Figure 1. Projections of hypersurface family with parameter
NB2-Smarandache curve into x2x3x4, x1x3x4, x1x2x4 and x1x2x3-
spaces in (a), (b), (c) and (d), respectively.

From now on, we�ll give the parametric hypersurfaces given by di¤erent Smaran-
dache curves of curve (�) and their normal vector �elds. Also, we�ll state the
theorems which give us the conditions for which (�) is a geodesic curve where
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Smarandache curves of the curve (�) is isoparametric on these hypersurfaces.
One can prove these theorems and investigate the conditions for di¤erent types of
marching-scale functions with the similar methods given in the above case.
CASE 3.
Here, by taking the TB1-Smarandache curve of (�) instead of the curve (�) in

(9), let us de�ne a parametric hypersurface 'TB1
(�; �; �) which is given with the

aid of the TB1-Smarandache curve of (�) and the Frenet vectors of the curve (�)
as follows

'TB1
(�; �; �) = rTB1

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:

If TB1-Smarandache curve of the curve (�) is a isoparametric curve on a hy-
persurface 'TB1

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the normal
of this hypersurface is

�TB1
(�; �0; �0) =

�
�TB1

�
1
(�; �0; �0)T (�) +

�
�TB1

�
2
(�; �0; �0)N(�)

+
�
�TB1

�
3
(�; �0; �0)B1(�) +

�
�TB1

�
4
(�; �0; �0)B2(�);

where �
�TB1

�
1
(�; �0; �0) = 0;�

�TB1

�
2
(�; �0; �0) = �3

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
;�

�TB1

�
3
(�; �0; �0) = (�1 � �2)

�
(m�)0 (x�)0 � (x�)0 (m�)0

�
+ �3

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
;�

�TB1

�
4
(�; �0; �0) = (�1 � �2)

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
:

Thus,

Theorem 4. (�) is a geodesic curve where TB1-Smarandache curve rTB1
of the

curve (�) is isoparametric on the hypersurface 'TB1
(�; �; �) in G4 if the conditions8<: x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;

�1 = �2; �3 6= 0;
(y�)0 (x�)0 = (x�)0 (y�)0 ; (z�)0 (x�)0 6= (x�)0 (z�)0

(30)

are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :

CASE 4.
Here, by taking the TB2-Smarandache curve of (�) instead of the curve (�) in

(9), let us de�ne a parametric hypersurface 'TB2
(�; �; �) which is given with the

aid of the TB2-Smarandache curve of (�) and the Frenet vectors of the curve (�)
as follows

'TB2
(�; �; �) = rTB2

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:
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If TB2-Smarandache curve of the curve (�) is a isoparametric curve on a hy-
persurface 'TB2

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the normal
of this hypersurface is

�TB2
(�; �0; �0) =

�
�TB2

�
1
(�; �0; �0)T (�) +

�
�TB2

�
2
(�; �0; �0)N(�)

+
�
�TB2

�
3
(�; �0; �0)B1(�) +

�
�TB2

�
4
(�; �0; �0)B2(�);

where�
�TB2

�
1
(�; �0; �0) = 0;�

�TB2

�
2
(�; �0; �0) = �3

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
;�

�TB2

�
3
(�; �0; �0) = �1

�
(m�)0 (x�)0 � (x�)0 (m�)0

�
;�

�TB2

�
4
(�; �0; �0) = �1

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
+ �3

�
(y�)0 (x�)0 � (x�)0 (y�)0

�
:

For the curve (�) to be a geodesic where TB2-Smarandache curve rTB2
of the

curve (�) is isoparametric on the hypersurface 'TB1
(�; �; �) in G4, the following

conditions must hold:8<: x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;
�1 = 0; �3 6= 0;
(y�)0 (x�)0 = (x�)0 (y�)0 ; (m�)0 (x�)0 6= (x�)0 (m�)0

; (31)

where � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] : But, from our assumption that
�1(v) 6= 0; we have a contradiction. So, we have

Theorem 5. (�) is not a geodesic curve where TB2-Smarandache curve rTB2 of
the curve (�) is isoparametric on the hypersurface 'TB2

(�; �; �) in G4.

CASE 5.
Here, by taking the NB1-Smarandache curve of (�) instead of the curve (�)

in (9), let us de�ne a parametric hypersurface 'NB1
(�; �; �) which is given with

the aid of the NB1-Smarandache curve of (�) and the Frenet vectors of the curve
(�) as follows

'NB1
(�; �; �) = rNB1

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
: (32)

If NB1-Smarandache curve of the curve (�) is a isoparametric curve on a hy-
persurface 'NB1

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the normal
of this hypersurface is

�NB1
(�; �0; �0) =

�
�NB1

�
1
(�; �0; �0)T (�) +

�
�NB1

�
2
(�; �0; �0)N(�)

+
�
�NB1

�
3
(�; �0; �0)B1(�) +

�
�NB1

�
4
(�; �0; �0)B2(�);
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where �
�NB1

�
1
(�; �0; �0) = 0;�

�NB1

�
2
(�; �0; �0) =

�2p
2

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
� �3p

2

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
;�

�NB1

�
3
(�; �0; �0) =

�2p
2

�
(m�)0 (x�)0 � (x�)0 (m�)0

�
+ �3p

2

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
;�

�NB1

�
4
(�; �0; �0) =

�2p
2

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
+ �2p

2

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
:

(33)

Hence,

Theorem 6. (�) is a geodesic curve where NB1-Smarandache curve rNB1
of the

curve (�) is isoparametric on the hypersurface 'NB1
(�; �; �) in G4 if the conditions�

x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;�
�NB1

�
2
(�; �0; �0) 6= 0;

�
�NB1

�
3
(�; �0; �0) =

�
�NB1

�
4
(�; �0; �0) = 0

(34)

are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :

CASE 6.
Here, by taking the B1B2-Smarandache curve of (�) instead of the curve (�)

in (9), let us de�ne a parametric hypersurface 'B1B2
(�; �; �) which is given with

the aid of the B1B2-Smarandache curve of (�) and the Frenet vectors of the curve
(�) as follows

'B1B2
(�; �; �) = rB1B2

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:

If B1B2-Smarandache curve of the curve (�) is a isoparametric curve on a
hypersurface 'B1B2

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the
normal of this hypersurface is

�B1B2
(�; �0; �0) =

�
�B1B2

�
1
(�; �0; �0)T (�) +

�
�B1B2

�
2
(�; �0; �0)N(�)

+
�
�B1B2

�
3
(�; �0; �0)B1(�) +

�
�B1B2

�
4
(�; �0; �0)B2(�);

where�
�B1B2

�
1
(�; �0; �0) = 0;�

�B1B2

�
2
(�; �0; �0) =

�3p
2

�
(x�)0

�
(m�)0 + (z�)0

�
� (x�)0 ((m�)0 + (z�)0)

�
;�

�B1B2

�
3
(�; �0; �0) =

�2p
2

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
+
�3p
2

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
;�

�B1B2

�
4
(�; �0; �0) =

�2p
2

�
(z�)0 (x�)0 � (x�)0 (z�)0

�
� �3p

2

�
(y�)0 (x�)0 � (x�)0 (y�)0

�
:

So, we can state the following Theorem:
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Theorem 7. (�) is a geodesic curve where B1B2-Smarandache curve rB1B2
of

the curve (�) is isoparametric on the hypersurface 'B1B2
(�; �; �) in G4 if the

conditions8>><>>:
x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;
�3 6= 0;
(x�)0 ((m�)0 + (z�)0) 6= (x�)0

�
(m�)0 + (z�)0

�
;�

�B1B2

�
3
(�; �0; �0) =

�
�B1B2

�
4
(�; �0; �0) = 0

(35)

are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :

CASE 7.
Here, by taking the TNB1-Smarandache curve of (�) instead of the curve (�)

in (9), let us de�ne a parametric hypersurface 'TNB1
(�; �; �) which is given with

the aid of the TNB1-Smarandache curve of (�) and the Frenet vectors of the curve
(�) as follows

'TNB1
(�; �; �) = rTNB1

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:

If TNB1-Smarandache curve of the curve (�) is a isoparametric curve on a
hypersurface 'TNB1

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the
normal of this hypersurface is

�TNB1
(�; �0; �0) =

�
�TNB1

�
1
(�; �0; �0)T (�) +

�
�TNB1

�
2
(�; �0; �0)N(�)

+
�
�TNB1

�
3
(�; �0; �0)B1(�) +

�
�TNB1

�
4
(�; �0; �0)B2(�);

where�
�TNB1

�
1
(�; �0; �0) = 0;�

�TNB1

�
2
(�; �0; �0) = �3

�
(z�)0 (x�)0 � (x�)0 (z�)0

�
� �2

�
(m�)0 (x�)0 � (x�)0 (m�)0

�
;�

�TNB1

�
3
(�; �0; �0) = (�2 � �1)

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
+ �3

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
;�

�TNB1

�
4
(�; �0; �0) = (�1 � �2)

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
+ �2

�
(y�)0 (x�)0 � (x�)0 (y�)0

�
:

Hence,

Theorem 8. (�) is a geodesic curve where TNB1-Smarandache curve rTNB1
of

the curve (�) is isoparametric on the hypersurface 'TNB1
(�; �; �) in G4 if the

conditions�
x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;�
�TNB1

�
2
(�; �0; �0) 6= 0;

�
�TNB1

�
3
(�; �0; �0) =

�
�TNB1

�
4
(�; �0; �0) = 0

(36)
are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :
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CASE 8.
Here, by taking the TNB2-Smarandache curve of (�) instead of the curve (�)

in (9), let us de�ne a parametric hypersurface 'TNB2
(�; �; �) which is given with

the aid of the TNB2-Smarandache curve of (�) and the Frenet vectors of the curve
(�) as follows

'TNB2
(�; �; �) = rTNB2

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:

If TNB2-Smarandache curve of the curve (�) is a isoparametric curve on a
hypersurface 'TNB2

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the
normal of this hypersurface is

�TNB2
(�; �0; �0) =

�
�TNB2

�
1
(�; �0; �0)T (�) +

�
�TNB2

�
2
(�; �0; �0)N(�)

+
�
�TNB2

�
3
(�; �0; �0)B1(�) +

�
�TNB2

�
4
(�; �0; �0)B2(�);

where �
�TNB2

�
1
(�; �0; �0) = 0;�

�TNB2

�
2
(�; �0; �0) = (�2 � �3)

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
;�

�TNB2

�
3
(�; �0; �0) = ��1

�
(x�)0 (m�)0 � (m�)0 (x�)0

��
�TNB2

�
4
(�; �0; �0) = �1

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
+ (�3 � �2)

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
:

For the curve (�) to be a geodesic where TNB2-Smarandache curve rTNB2

of the curve (�) is isoparametric on the hypersurface 'TNB2
(�; �; �) in G4, the

following conditions must hold:8<: x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;
�1 = 0; �2 6= �3;
(x�)0 (y�)0 = (y�)0 (x�)0; (x�)0 (m�)0 6= (m�)0 (x�)0

; (37)

where � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] : Since �1(v) 6= 0; we have

Theorem 9. (�) is not a geodesic curve where TNB2-Smarandache curve rTNB2

of the curve (�) is isoparametric on the hypersurface 'TNB2
(�; �; �) in G4.

CASE 9.
Here, by taking the TB1B2-Smarandache curve of (�) instead of the curve (�)

in (9), let us de�ne a parametric hypersurface 'TB1B2
(�; �; �) which is given with

the aid of the TB1B2-Smarandache curve of (�) and the Frenet vectors of the
curve (�) as follows

'TB1B2
(�; �; �) = rTB1B2

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:

If TB1B2-Smarandache curve of the curve (�) is a isoparametric curve on a
hypersurface 'TB1B2

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the
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normal of this hypersurface is

�TB1B2
(�; �0; �0) =

�
�TB1B2

�
1
(�; �0; �0)T (�) +

�
�TB1B2

�
2
(�; �0; �0)N(�)

+
�
�TB1B2

�
3
(�; �0; �0)B1(�) +

�
�TB1B2

�
4
(�; �0; �0)B2(�);

where�
�TB1B2

�
1
(�; �0; �0) = 0;�

�TB1B2

�
2
(�; �0; �0) = �3

�
(x�)0((m�)0 + (z�)0)� (x�)0((m�)0 + (z�)0)

�
;�

�TB1B2

�
3
(�; �0; �0) = (�2 � �1)

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
+ �3

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
;�

�TB1B2

�
4
(�; �0; �0) = (�1 � �2) ((x�)0 (z�)0 � (z�)0(x�)0)

+ �3
�
(x�)0 (y�)0 � (y�)0 (x�)0

�
:

Thus,

Theorem 10. (�) is a geodesic curve where TB1B2-Smarandache curve rTB1B2

of the curve (�) is isoparametric on the hypersurface 'TB1B2
(�; �; �) in G4 if the

conditions8>><>>:
x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;
�3 6= 0;�
�TB1B2

�
3
(�; �0; �0) =

�
�TB1B2

�
4
(�; �0; �0) = 0;

(x�)0((m�)0 + (z�)0) 6= (x�)0((m�)0 + (z�)0)

(38)

are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :

CASE 10.
Here, by taking the NB1B2-Smarandache curve of (�) instead of the curve (�)

in (9), let us de�ne a parametric hypersurface 'NB1B2
(�; �; �) which is given with

the aid of the NB1B2-Smarandache curve of (�) and the Frenet vectors of the
curve (�) as follows

'NB1B2
(�; �; �) = rNB1B2

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:

If NB1B2-Smarandache curve of the curve (�) is a isoparametric curve on a
hypersurface 'NB1B2

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the
normal of this hypersurface is

�NB1B2
(�; �0; �0) =

�
�NB1B2

�
1
(�; �0; �0)T (�) +

�
�NB1B2

�
2
(�; �0; �0)N(�)

+
�
�NB1B2

�
3
(�; �0; �0)B1(�) +

�
�NB1B2

�
4
(�; �0; �0)B2(�);

where �
�NB1B2

�
1
(�; �0; �0) = 0;�

�NB1B2

�
2
(�; �0; �0) = (

�2 � �3p
3

)
�
(x�)0 (m�)0 � (m�)0 (x�)0

�
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+
�3p
3

�
(z�)0 (x�)0 � (x�)0 (z�)0

�
;�

�NB1B2

�
3
(�; �0; �0) =

�2p
3

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
+
�3p
3

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
;�

�NB1B2

�
4
(�; �0; �0) =

�2p
3

�
(z�)0 (x�)0 � (x�)0 (z�)0

�
+ (

�3 � �2p
3

)
�
(x�)0 (y�)0 � (y�)0 (x�)0

�
:

So,

Theorem 11. (�) is a geodesic curve where NB1B2-Smarandache curve rNB1B2

of the curve (�) is isoparametric on the hypersurface 'NB1B2
(�; �; �) in G4 if the

conditions�
x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;�
�NB1B2

�
2
(�; �0; �0) 6= 0;

�
�NB1B2

�
3
(�; �0; �0) =

�
�NB1B2

�
4
(�; �0; �0) = 0

(39)
are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :

CASE 11.
Here, by taking the TNB1B2-Smarandache curve of (�) instead of the curve

(�) in (9), let us de�ne a parametric hypersurface 'TNB1B2
(�; �; �) which is given

with the aid of the TNB1B2-Smarandache curve of (�) and the Frenet vectors of
the curve (�) as follows

'TNB1B2
(�; �; �) = rTNB1B2

(�) +

�
x(�; �; �)T (�) + y(�; �; �)N(�)

+z(�; �; �)B1(�) +m(�; �; �)B2(�)

�
:

If TNB1B2-Smarandache curve of the curve (�) is a isoparametric curve on a
hypersurface 'TNB1B2

(�; �; �) in G4 for � = �0 and � = �0; then from (8), the
normal of this hypersurface is

�TNB1B2
(�; �0; �0) =

�
�TNB1B2

�
1
(�; �0; �0)T (�) +

�
�TNB1B2

�
2
(�; �0; �0)N(�)

+
�
�TNB1B2

�
3
(�; �0; �0)B1(�) +

�
�TNB1B2

�
4
(�; �0; �0)B2(�);

where�
�TNB1B2

�
1
(�; �0; �0) = 0;�

�TNB1B2

�
2
(�; �0; �0) = �2

�
(m�)0 (x�)0 � (x�)0 (m�)0

�
+ �3

��
(x�)0 (m�)0 � (m�)0 (x�)0

�
�
�
(x�)0 (z�)0 � (z�)0 (x�)0

��
;�

�TNB1B2

�
3
(�; �0; �0) = (�2 � �1)

�
(x�)0 (m�)0 � (m�)0 (x�)0

�
+ �3

�
(x�)0 (y�)0 � (y�)0 (x�)0

�
;�

�TNB1B2

�
4
(�; �0; �0) = (�1 � �2)

�
(x�)0 (z�)0 � (z�)0 (x�)0

�
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+ (�3 � �2)
�
(x�)0 (y�)0 � (y�)0 (x�)0

�
:

Finally, we get

Theorem 12. (�) is a geodesic curve where TNB1B2-Smarandache curve rTNB1B2

of the curve (�) is isoparametric on the hypersurface 'TNB1B2
(�; �; �) in G4 if

the conditions�
x (�; �0; �0) = y (�; �0; �0) = z (�; �0; �0) = m (�; �0; �0) = 0;�
�TNB1B2

�
2
(�; �0; �0) 6= 0;

�
�TNB1B2

�
3
(�; �0; �0) =

�
�TNB1B2

�
4
(�; �0; �0) = 0

(40)
are satis�ed. Here, � 2 [L1; L2] ; �0 2 [T1; T2] ; �0 2 [M1;M2] :
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[14] Şa¤ak Atalay, G., Kasap, E., Surfaces family with common Smarandache asymptotic curve,
Bol. Soc. Paran. Mat., 34 (1) (2016), 9�20, doi:10.5269/bspm.v34i1.24392.

[15] Wang, G. J., Tang, K., Tai, C. L., Parametric representation of a surface pen-
cil with a common spatial geodesic, Computer-Aided Design, 36 (2004), 447-459,
https://doi.org/10.1016/S0010-4485(03)00117-9.

[16] Y¬lmaz, S., Consruction of the Frenet-Serret frame of a curve in 4D Galilean space and some
applications, Int. Jour. of the Phys. Sci. Vol., 5 (8) (2010), 1284-1289.

[17] Yoon, D. W., Lee, J. W., Lee, C. W., Osculating curves in the Galilean 4-space,
International Journal of Pure and Applied Mathematics, 100 (4) (2015), 497-506,
DOI:10.12732/IJPAM.V100I4.9.



Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 70, Number 2, Pages 762�772 (2021)
DOI: 10.31801/cfsuasmas.851539
ISSN 1303�5991 E-ISSN 2618�6470

https://communications.science.ankara.edu.tr

Received by the editors: January 1, 2021; Accepted: March 12, 2021

A NOTE ON THE GENERATING SETS FOR THE MAPPING
CLASS GROUPS
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Abstract. In this short note, we obtain generating sets with two elements for
the mapping class group of closed, oriented surfaces of genus three and four,
containing elements of the lowest order known so far.

1. Introduction

Let �g denote a closed, oriented surface of genus g. Let MCG(�g) denote the
group of isotopy classes of orientation preserving self homeomorphisms, which is
called the mapping class group of the surface �g.
Dehn, [1] proved that the mapping class group of a compact, closed surface �g,

MCG(�g), is generated by twists, which are now called Dehn twists. Lickorish [6],
unaware of Dehn�s work, proved that the group is generated by 3g-1 Dehn twists
about the non�separating curves that are given in Figure 1.

Figure 1. Lickorish generators
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Following these developments, Humphries [3] showed that, one can obtain the
Dehn twists about the non�seperating curves b3; b4; : : : ; bg, from the remaining col-
lection of Lickorish generators, see Figure 1. Hence, Humphries proved that 2g+1
of Lickorish generators are su¢ cient to generate the MCG(�g). These generators
are the Dehn twists about the non�seperating curves of Figure 2. In the same paper
he showed that this number is in fact minimal.

Figure 2. Humphries generators

These generators are of in�nite order, hence the next question that comes to
minds: Can we have generators of �nite order? Let Ai and Bi denote Dehn twist
about simple closed curves ai and bi given in Figure 3, respectively Wajnryb [7]
proved thatMCG(�g) is generated by



S;Bg�1B

�1
g

�
, where S = A2gA2g�1 � � �A2A1,

and is of order 4g + 2, see Figure 3.

Figure 3. Wajnryb generators

Then Korkmaz improved this result, by the following theorem:

Theorem 1. [4] Suppose that g � 2 and �g is a closed oriented surface of genus
g. The mapping class group MCG(�g) of �g is generated by S and B.
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In Theorem 1, Korkmaz proved that MCG(�g) of a closed surface �g is gener-
ated by two elements. One of the generators is B, Dehn twist about the curve b,
hence it is of in�nite order. The other generator is S = A2gA2g�1 � � �A2A1 and is
of order 4g + 2, see Figure 2 for the curves b; a1; a2; : : : ; a2g. In this note we lower
this order using the homeomorphism Q = A2g+1A2g � � �A2A1 for a genus 4 surface
and Q0 = A2g+1A2g � � �A2A1A1 for a genus 3 surface. In the following theorem we
show that MCG(�4) is generated by hQ;Bi where Q = A9A8 � � �A2A1, and is of
order 10 ( that is 2g + 2 for g = 4).

Theorem 2. Mapping class group of a closed, oriented genus 4 surface is generated
by Q, an element of order 10, and the Dehn twist B.

Our second result gives even a lower order generator Q0 = A7A6 � � �A2A1A1,
which is of order 7 (that is 2g + 1 for g = 3), for the group of mapping classes of
the closed genus 3 surface:

Theorem 3. Mapping class group of a closed, oriented genus 3 surface is generated
by Q0, an element of order 7, and the Dehn twist B.

Remark 4. Even though we tried to generalize Theorem 2 and Theorem 3 for
higher genus surfaces, it was not possible with the current technique. One needs
other approaches to prove such generalizations.

2. Preliminaries

In the next section, we will prove Theorem 2 and Theorem 3, using some basic
properties of the group of mapping classes. In this section we will review the basic
properties that we need, without giving their proofs. For the proofs see [2], [5].
Convention: In this note we consider simple closed curves and homeomor-

phisms up to isotopy and the usual composition of functions, meaning that, if there
are several number of functions (Dehn twists) to be composed, we �rst apply the
function on the right then continue from right to left. Throughout the paper,
when we use an equality sign between the curves or homeomorphisms, we mean the
equivalence up to isotopy.
Notation: We use lower case letters (ai; b; bj ; : : :) for the simple closed curves,

and capital letters (Ai; B;Bj ; : : :) to denote the Dehn twists about these curves
(ai; b; bj ; : : :).
Relations:
(1) Let c; d be two simple closed curves on an oriented surface �g and let H

be an orientation preserving self homeomorphism of the surface such that
H(c) = d. Then

HCH�1 = D:

(2) Commutativity relation: Let c; d be two disjoint simple closed curves
on an oriented surface �g, then the Dehn twists around the curves c and d
commute:

CD = DC
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Figure 4. K, the neighborhood of union of even number of curves
in the chain

(3) Braid relation: Let c; d be two simple closed curves, intersecting trans-
versely at one point, on an oriented surface �g, then the Dehn twists around
the curves c and d satisfy the relation below:

CDC = DCD

(4) Chain relation:
First we de�ne the chain, then we will give the chain relation.

De�nition 5. Chain: Let c1; c2; :::; cn be a sequence of simple closed
curves on an orientable surface. If only the consecutive ones intersect trans-
versely at one point, and the others are disjoint, then this sequence of simple
closed curves c1; c2; :::; cn is called a chain.

Let K be a tubular neighborhood of union of curves in the chain. There
are two cases according to the parity of number of curves (n is even or odd)
in the chain:
� If n = 2g, then K is an orientable genus g surface of one boundary
component, call that boundary component d, see Figure 4.

� If n = 2g+1, then K is an orientable genus g surface of two boundary
components, call them d1 and d2.

Then we have the following relations, which are called the chain relations
in MCG(K):
� If n = 2g, then we have (C1C2 � � �C2g)4g+2 = D
� If n = 2g + 1, then we have (C1C2 � � �C2g+1)2g+2 = D1D2.

3. Proofs

We will start this section with the proof of Theorem 2. In Theorem 2, we show
that MCG(�4) =< Q;B >, where Q = A9A8 � � �A2A1, see Figure 1 for the curves
a1; a2; : : : ; a9. Then we show that the order of the element Q is 10, in Lemma 8.
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Figure 5. K, the neighborhood of union of odd number of curves
in the chain

Hence, it is a lower order element than the one in Theorem 1, in which Korkmaz
proved that MCG(�4) =< S;B > and S = A8A7 � � �A2A1. The element S is of
order 14.
In order to prove these results we need some preparatory results. Let G =<

Q;B > be the subgroup of MCG(�4) generated by Q and B. Let C1; C2; C3,
D1; D2, E1; E2, F1 and B3 be the Dehn twists around the curves c1; c2; c3, d1; d2,
e1; e2, f1 and b3, respectively, which are shown in Figure 6.

Lemma 6. The Dehn twists C1; C2; C3, D1; D2, E1; E2, F1 and B3 are contained
in G =< Q;B >.

Proof of Lemma 6. We will show that we can get the Dehn twists C1; C2; C3,D1; D2,
E1; E2, F1, B3 from the homeomorphisms Q and B by applying the Relation (1)
several times. First, applying the homeomorphism Q�1 to the simple closed curve
b, we get the simple closed curve c1. Hence, we have

� Q�1(b) = c1 and by Relation (1), we can write C1 = Q�1BQ. Since Q and
B are already in the group G, we conclude that C1 2 G .

Similarly, we repeat this process:

� Q�1(c1) = d1, using Relation (1) and since C1, Q 2 G we have D1 2 G.
� Q�1(d1) = c2 which implies C2 2 G.
� Q�1(c2) = d2 which implies D2 2 G.
� Q�1(d2) = c3 which implies C3 2 G.
� Q�1(c3) = b3 which implies B3 2 G.
� Q�1(b3) = e1 which implies E1 2 G.
� Q�1(e1) = f1 which implies F1 2 G.
� Q�1(f1) = e2 which implies E2 2 G.

�
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Figure 6. c1; c2; c3; d1; d2; e1; e2; f1; b3, curves on a genus 4 surface

The main idea of the proof of Theorem 2 is to show that the G-orbit of the
curve b contains the simple closed curves a1; a2; : : : ; a8. As a result of this, all the
Humphries generators A1; A2; : : : ; A8 and B ofMCG(�4) are contained in G, hence
we conclude that MCG(�4) = G.

Proof of Theorem 2. Let h be the self homeomorphism of the surface �4 which is
given by the product of the Dehn twists: C2D1BB

�1
3 . We will apply the homeo-

morphism h to the curve c2, and obtain the non-separating simple closed curve a3,
which is shown in detail in Figure 7. Using Relation (1) and Lemma 6, we can say
that the Dehn twist A3 is in G. Then applying the homeomorphism Q�1 to the
curve a3, we get:

� Q�1(a3) = a4, using Relation (1) we say that Q�1A3Q = A4 and since
Q, A3 2 G we have A4 2 G. Using repeatedly this process, we get the
following:

� Q�1(a4) = a5 which implies that A5 2 G.
� Q�1(a5) = a6 which implies that A6 2 G.
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Figure 7. h(c2) = a3

� Q�1(a6) = a7 which implies that A7 2 G.
� Q�1(a7) = a8 which implies that A8 2 G.

Similarly applying the homeomorphism Q and Q2 to the curve a3, we get a2 and
a1:

� Q(a3) = a2 which implies that A2 2 G.
� Q2(a3) = a1 which implies that A1 2 G.

Therefore, we get the result that all Humphries generators of MCG(�4) are
contained in G, and hence, conclude that G = MCG(�4). �
Now we are going to prove Theorem 3, which implies that MCG(�3) = hQ0; Bi,

where Q0 = A7A6A5A4A3A2A1A1. The idea in the proof of Theorem 3 is similar
to the one in the proof of Theorem 2. In order to prove Theorem 3, we need the
following lemma. For the simple closed curves that we use in Lemma 7, see Figure
8.

Lemma 7. The Dehn twists C1; C2; D1 are in the group G0 = hQ0; Bi.

Proof of Lemma 7. We start with the simple closed curve b, and apply the home-
omorphism Q0. We get Q0(b) = c2 and by Relation (1) we have, C2 = Q0BQ0�1.
Since Q0 and B are in the group G0, we deduce that C2 2 G0.
Similarly,
Q0(c2) = d1 which implies that D1 2 G0.
Q0(d1) = c1 which implies that C1 2 G0.
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Figure 8. c1; c2; d1; e1; b curves on a genus 3 surface

�
Proof of Theorem 3. Let h be the self-homeomorphism of the genus 3 surface to
itself, given by h = C�11 (Q0)�1. We apply the homeomorphism h to the simple
closed curve b, and see that h(b) = a1, as in Figure 9. Using Relation (1), we get
that A1 2 hQ0; Bi = G0. Note that for a genus 3 surface, the homeomorphism Q is
given by Q = A7A6A5A4A3A2A1 and Q = Q0A

�1
1 , hence, Q 2 G0.

� Q�1(a1) = a2, using Relation (1) we say that Q�1A1Q = A2 and since Q,
A1 2 G0 we have A2 2 G0. Upon repeating this process we get the following
results:

� Q�1(a2) = a3 which implies that A3 2 G0.
� Q�1(a3) = a4 which implies that A4 2 G0.
� Q�1(a4) = a5 which implies that A5 2 G0.
� Q�1(a5) = a6 which implies that A6 2 G0.

Therefore all the Humphries generators ofMCG(�3), are contained in G0, hence,
we conclude that MCG(�3) = G0.

�
Lemma 8. The order of the element Q = A9A8 � � �A2A1 is 10.

Proof of Lemma 8. The curves de�ning Q form a chain on a closed genus 4-surface
�4. Then using the chain relation we get, Q10 = id. Hence the order of Q is at
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Figure 9. h(b) = a1

most 10. Now, take the simple closed curve e2 on �4, see Figure 6. From the Proof
of Lemma 6, we observe that Qi(e2) 6= e2 for 1 � i � 9. Therefore the order of Q
is 10. �
Lemma 9. The order of the element Q0 = A7A6 � � �A2A1A1 is 7.

Proof of Lemma 9. Using commutativity and braid relation, we have (Q0)7 = Q8,
where Q = A7A6A5A4A3A2A1 on a closed genus 3-surface �3:

(Q0)7 = A7A6A5A4A3A2A1A1(Q
0)6

= (Q)A1(Q
0)6

= (Q)A1(A7A6A5A4A3A2A1A1)(Q
0)5

= (Q)2A2A1(Q
0)5

= (Q)3A3A2A1(Q
0)4

= (Q)4A4A3A2A1(Q
0)3

= (Q)5A5A4A3A2A1(Q
0)2

= (Q)6A6A5A4A3A2A1(Q
0)

= (Q)7A7A6A5A4A3A2A1

= (Q)8

Moreover since Q is a chain on a closed �3 surface, from the chain relation we
have, Q8 = id, which implies that, (Q0)7 = Q8 = id, hence, the order of Q0 is at
most 7.
On the other hand, one can easily check that (Q0)i(a7) 6= a7 for 1 � i � 6 which

is shown in the Figure 10. Therefore the order of Q0 is 7.
�
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Figure 10. (Q0)i (a7) 6= a7 for 1 � i � 6.
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Abstract. This paper deals with the symmetric space of functions and its
subspace where continuous functions are dense is considered. Main properties
of convolution which plays a vital role in harmonic analysis, as in other areas
of mathematics are established in this space. Following the classical case, it
is proved that the convolution can be approximated by linear combinations of
shifts in a subspace of the considered space. An approximate identity for the
convolution is also considered in that subspace.

1. Introduction

Convolution operation plays a vital role in harmonic analysis, as in other areas
of mathematics. This is mainly due to the fact that many key operators like Hilbert
transform, Poisson integrals, Dirichlet integrals, di¤erent types of potentials includ-
ing Riesz potential, singular integrals, etc are expressed in terms of convolution.
Involved in the above operators, convolution operation plays a key role also in ap-
proximation theory. Therefore, to have knowledge of basic properties of convolution
in various Banach function spaces is very important and useful in the study of the
problems of harmonic analysis, approximation theory, theory of partial di¤erential
equations, etc.
Recent years have seen an increased interest in di¤erent function spaces, such

as Lebesgue spaces with variable summability index, Orlicz spaces, Morrey spaces,
grand-Lebesgue spaces, etc. Some problems of harmonic analysis and approxima-
tion theory have been considered in [1-14]. Basicity of the classical exponential
system, as well as its perturbations in the subspaces of Morrey space of functions
de�ned on [��; �] was investigated in [6, 11, 13, 15] by the method of boundary
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value problems for analytic functions on a complex domain. In [12, 16, 23], an
analogue of the classical Young inequality and some properties of the convolution
of periodic functions belonging to Morrey type spaces have been obtained. In [12],
it was proved that the convolution in the subspace of Morrey space can be ap-
proximated by �nite linear combinations of shifts. In the same work, the validity
of classical facts about approximate identities was also proved in Morrey space.
Note that the spaces considered in the above works are all Banach function spaces
(see, e.g., [17;18]). Moreover, all of them, except for Lebesgue spaces with variable
summability index, are symmetric. Therefore, a question naturally arises: do the
similar results hold for symmetric spaces? Some analogues of Young inequality for
some symmetric spaces have been obtained in [20-22].
In this work, we consider a symmetric space of functions and its subspace where

continuous functions are dense. We establish main properties of convolution in
this space. We prove that the convolution can be approximated by the linear
combinations of shifts in a subspace of this space. Approximate identity is also
considered in that subspace.

2. Needful information

We will use the following standard notations and concepts. R+ = (0;+1);
�M (�) is the characteristic function of the set M ; R is the set of real numbers; C is
the complex plane; ! = fz 2 C : jzj < 1g is a unit disk in C;  = @! is a unit circle;
�M is the closure of the set M with respect to appropriate norm; ( � ) is the complex
conjugate. By [X] we denote the algebra of linear bounded operators acting in a
Banach space X.
We will need some concepts and facts from the theory of Banach function spaces

(see e.g. [24;25]). Let (R;�) be a measure space, and M+ be the cone of �-
measurable functions on R whose values lie in [0;+1]. Denote the characteristic
function of a �-measurable subset E of R by �E .

De�nition 1. A mapping � :M+ ! [0;+1] is called a Banach function norm (or
simply a function norm) if, for all f; g; fn; n 2 N in M+, for all constants a � 0
and for all �-measurable subsets E � R, the following properties hold:
(P1)� (f) = 0, f = 0 �-a.e.; � (af) = a� (f) ; � (f + g) � � (f) + � (g);
(P2) 0 � g � f�-a.e. ) � (g) � � (f);
(P3) 0 � fn " f�-a.e. ) � (fn) " � (f);
(P4) � (E) < +1) � (�E) < +1;
(P5) � (E) < +1)

R
E
fd� � CE� (f), for some constant CE : 0 < CE < +1

depending on E and �, but independent of f .

Let M denote the collection of all extended scalar-valued (real or complex) �-
measurable functions and M0 �M denote the subclass of functions that are �nite
�-a.e.
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De�nition 2. Let � be a function norm. The collection X = X (�) of all functions
f in M for which � (jf j) < +1 is called a Banach function space. For each f 2 X,
de�ne kfkX = � (jf j).

The following theorem is true.

Theorem 3. Let � be a function norm and let X = X (�) and k�kX be as above.
Then under the natural vector space operations, (X; k�kX) is a normed linear space
for which the inclusions

Ms � X �M0

hold, where Ms is the set of �-simple functions. In particular, if fn ! f in X, then
fn ! f in measure on sets of �nite measure, and hence some subsequence converges
pointwise �-a.e. to f .

Let

�0 (g) = sup

�Z


f (�) g (�) jdtj : f 2M+; � (f) � 1
�
;8g 2M+:

A space

X 0 = fg 2M : �0 (jgj) < +1g ;

is called an associate space (Kothe dual) of X.
The functions f ; g 2M0 are called equimeasurable if

jf� 2  : jf (�)j > �gj = jf� 2  : jg (�)j > �gj ;8� � 0:

Banach function norm � : M+ ! [0;1] is called rearrangement invariant if for
arbitrary equimeasurable functions f ; g 2 M+

0 the relation � (f) = � (g) holds.
In this case, Banach function space X with the norm k � kX = � (j � j) is said to
be rearrangement invariant function space (r.i.s. for short). Classical Lebesgue,
Orlicz, Lorentz, Lorentz-Orlicz spaces are r.i.s.

De�nition 4. Let X be a Banach function space. The closure of the set of simple
functions Ms in X is denoted by Xb.

To obtain our main results, we will signi�cantly use the following fact from the
monograph [17, p.13].
Recall that a closed linear subspace B of the dual space X� of a Banach space

X is said to be norm-fundamental if

kfkX = sup fjL (f)j : L 2 B ^ kLkX� � 1g

for every f 2 X. Thus, B is norm-fundamental if it contains su¢ ciently many
functionals to reproduce the norm of every element of X. The following theorem is
true.
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Theorem 5. The associate space X 0 of a Banach function space X is canoni-
cally isometrically isomorphic to a closed norm-fundamental subspace of the Banach
space X� of X, i.e.

kfkX = sup
g2X0

�����Z �

��
fgdt

���� : kgkX0 � 1
�
;8f 2 X:

In the sequel, we will assume that all the considered functions are de�ned on
[��; �] and periodically continued to the whole real axis. By Ts we will denote the
shift operator, i.e. (Tsf)(x) = f(x+ s); 8s;x 2 (��; �].
We will also use the following lemma of [17, p.157].

Lemma 6. Let X be a r.i.s. on  and Xb be the closure of simple functions in X.
The following assertions are equivalent:

(1) Xb is the closure of continuous functions;
(2) translation is continuous in Xb, that is

lim
s!0

kTsf � fkX = 0;8f 2 Xb;

(3) Xb is the closure in X of trigonometric polynomials.

3. Main results

3.1. Convolution. LetX be a Banach function space with the norm k�kX invariant
with respect to shift on [��; �] (we will assume that the functions from X and X 0

are periodically continued to the whole axis R with period 2�). We will call such
space a norm-invariant space for short. Let f 2 X and g 2 X 0. Consider the
convolution

(f � g) (x) =
Z �

��
f (x� y) g (y) dy; x 2 [��; �] :

AsX � L1 andX 0 � L1, the existence of the convolution (f � g) (x) a.e. x 2 [��; �]
is beyond any doubt. Applying Hölder�s inequality, we obtain

j(f � g) (x)j � kf (x� �)kX kgkX0 = kfkX kgkX0 ; a.e. x 2 (��; �) :
Consequently,

kf � gk1 � kfkX kgkX0 : (1)

Let T� be a shift operator, i.e. (T�f) (x) = f (� + x), x 2 [��; �]. It is not di¢ cult
to see that

T� (f � g) (x) = (f � g) (x+ �) =
Z �

��
f (x+ � � t) g(t)dt = (T�f � g) (x) :

In view of the periodicity of the functions f and g, we also have

T� (f � g) (x) =
Z �

��
f (x+ � � t) g (t) dt = jt� � = � j =

Z ���

����
f (x� �) g (� + �) d� =
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=

Z �

��
f (x� �) (T�g) (�) d� = (f � T�g) (x) :

Denote by Xs (X 0
s) the subspace of functions from X (from X 0) whose shifts are

continuous in X (in X 0). Applying inequality (1), we obtain

kT� (f � g)� f � gk1 = kT�f � g � f � gk1 = k(T�f � f) � gk � kT�f � fkX kgkX0 :

Similarly we have

kT� (f � g)� f � gk1 � kfkX kT�g � gkX0 :

These relations directly imply the validity of the following theorem.

Theorem 7. Let X be a norm-invariant Banach function space. Then

kf � gk1 � kfkX kgkX0 ;8f 2 X;8g 2 X 0:

Moreover, the convolution operation f � g is continuous in L1 if either f 2 Xs
or g 2 X 0

s.
Let X be a norm-invariant Banach function space and f : [��; �]! R be some

simple function, i.e. let [��; �] =
Sr
k=1Ek be some division of segment [��; �] and

f (x) = ck, 8x 2 Ek, k = 1; r. Take an arbitrary function g 2 Xb and consider

(f � g) (x) =
Z �

��
f (x� y) g (y) dy =

Z �

��
f (y) g (x� y) dy =

=
rX

k=1

ck

Z
Ek

g (x� y) dy;8x 2 [��; �] :

Consequently,

kf � gkX �
rX

k=1

jckj
Z

Ek

g (x� y) dy

X

�
rX

k=1

jckj
Z
Ek

kg (� � y)kX dy =

=
rX

k=1

jckj kgkX
Z
Ek

1dy = kfkL1 kgkX ;8f 2 S [��; �] ;

where S [��; �] is a set of all simple functions on [��; �]. So the following inequality
holds:

kf � gkX � kfkL1 kgkX ;8f 2 S [��; �] : (2)

Let f 2 L1 (��; �) be an arbitrary function. Consider
8 ffngn2N � S [��; �] : kfn � fkL1 ! 0; n!1:

Since S [��; �] is dense in L1 (��; �), the choice of such a sequence is always possi-
ble. Then it follows directly from the inequality (2) that the sequence ffn � ggn2N
is fundamental in X. Assume

(f � g)1 = lim
n!1

fn � g:
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By virtue of inequality (2), the de�nition of (f � g)1 does not depend on the choice
of the sequence ffngn2N � S [��; �]. On the other hand, it is clear that the
sequence ffn � ggn2N converges to (f � g)1 also in L1 (��; �). As f ; g 2 L1 (��; �),
by classical facts (see, e.g., [19]), there exists a convolution f � g and, moreover,
fn � g ! f � g, n!1, in L1 (��; �). Then it is clear that (f � g)1 (x) = (f � g) (x)
a.e. x 2 [��; �]. So the following theorem is true.

Theorem 8. Let X be a norm-invariant Banach function space and f 2 L1 (��; �)^
g 2 X be arbitrary functions. Then f � g 2 X and the following inequality holds:

kf � gkX � kfkL1 kgkX ;8f 2 L1 (��; �) ;8g 2 X: (3)

Denote by M the space of measures on [��; �], i.e. M contains a distribution
F 2 D (D is a space of distributions on [��; �]) satisfying the inequality

jF (u)j � c kuk1 ;8u 2 C
1
0 ;

where C10 are in�nitely di¤erentiable functions with compact support on T =
(��; �). Such measures are called Radon measures. It is known (see Riesz-Markov-
Kakutani theorem for compact space) that every functional (distribution) can be
represented as an integral with respect to the unique regular Borel measure � on
T :

F (u) = � (u) =

Z
T

u (x) d� (x) :

M is a Banach space with respect to the norm

k�k1 = sup fj� (u)j : u 2 C [��; �] ; kuk1 � 1g :

For more details on these facts we refer the reader to [19].
Let � 2 M and f; g 2 C [��; �] be arbitrary functions. Then, as shown in the

monograph [19] (see p. 93), we have the relation

1

2�

Z �

��
(� � f) gdx = �

�
�f � g

�
;

where �f (t) = f (�t). It directly follows���� 12�
Z �

��
(� � f) gdx

���� � k�k1 kf � gk1 :
Applying Theorem 7, we obtain���� 12�

Z �

��
(� � f) gdx

���� � k�k1 kfkX kgkX0 : (4)

Passing to the limit, we see that the inequality (4) holds for 8f 2 Xb and 8g 2 (X 0)b.
So the following lemma is true.
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Lemma 9. Let X be a norm-invariant Banach function space and � 2 M be a
Radon measure. Then the following inequality holds���� 12�

Z �

��
(� � f) gdx

���� � k�k1 kfkX kgkX0 ;8f 2 Xb;8g 2 (X 0)b : (5)

Now let�s assume that X has an absolutely continuous norm. Then, as is known
(see, e.g., [17], Theorem 4.1, p. 20), X = Xb and X 0 = X� (X� is a conjugate
space). Lemma 9 and the inequality (5) imply that � � f 2 X and

k� � fkX � k�k1 kfkX : (6)

So the following theorem is true.

Theorem 10. Let X be a Banach function space with absolutely continuous and
invariant norm. Then for 8� 2 M and 8f 2 X the relation � � f 2 X and the
inequality (6) hold.

In the sequel, we will need some direct corollaries of Theorem 8. Let all conditions
of this theorem hold. Then from the inequality (3) we obtain

kf � gkX � C kfkX kgkX ;8f 2 Xb;8g 2 X; (7)

and
kf � gkX � C kfk(X0)b

kgkX ;8f 2 (X
0)b ;8g 2 X; (8)

where C is a constant depending only on X. As L1 (��; �) is dense in Xb (in
(X 0)b), these inequalities follow from (3) by passage to the limit. So the following
statement is true.

Proposition 11. Let X be a norm-invariant Banach function space. Then for
8f 2 Xb (or 8f 2 (X 0)b ) and 8g 2 X : f �g 2 X and the inequalities (7), (8) hold.

A question naturally arises: does Proposition 11 hold for 8f 2 X? It is absolutely
clear that 8f ; g 2 X the convolution f � g is de�ned like an element of the space
L1 (��; �). Let S0 = f# 2 X 0 : k#kX0 � 1g. Then, by Theorem 5, we have

kf � gkX = sup
#2S0

����Z �

��
(f � g) (x)# (x) dx

���� = sup
#2S0

����Z �

��

Z �

��
f (x� t) g (t)# (x) dtdx

���� =
= sup

#2S0

����Z �

��

Z �

��
f (x� t)# (x) dxg (t) dt

���� � Z �

��
sup
#2S0

����Z �

��
f (x� t)# (x) dx

���� jg (t)j dt =
=

Z �

��
kf (� � t)kX jg (t)j dt = kfkX

Z �

��
jg (t)j dt = kfkX kgkL1 :

So the following lemma is true.

Lemma 12. Let X be a norm-invariant Banach function space. Then for 8f ; g 2
X: f � g belongs to X and

kf � gkX � kfkX kgkL1 ;8f ; g 2 X;
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The following main theorem follows direcly from this lemma.

Theorem 13. Let X be a norm-invariant Banach function space. Then for 8f ; g 2
X: f � g 2 X and

kf � gkX � C kfkX kgkX ;8f ; g 2 X;
where C is a constant independent of f and g.

3.2. Approximation of convolution by shifts. Let�s prove the theorem below
following the classical case.

Theorem 14. Let X be a r.i.s. with Boyd indices �X ;�X 2 (0; 1). Let f 2
L1 (��; �) and g 2 E, where E denotes any one of the spaces C [��; �] or Xb.
Then the convolution f � g in E can be approximated by �nite linear combinations
of shifts g, i.e. 8" > 0, 9 fakgn1 � [��; �] ^ f�kg

n
1 � R:f � g �

nX
k=1

�kTakg


E

< ":

Proof. The case of E = C [��; �] is known (see, e.g.,[19]). Consider the case of
E = Xb. Following the classical scheme, as a subset S0, such that the �nite linear
combinations of elements from S0 are dense in L1, we take a set of functions f ,
each of which coincides on [��; �] with the characteristic function of some interval
M = [a; b], �� < a < b < �, and continues further on periodically.
Let 8" > 0 be arbitrary. Let�s divide M into a �nite number of subintervals Ik

of length jIkj < �. Take 8ak 2 Ik. Let f (x) = �M (x) : We have

(f � g) (x)�
X
k

jIkj g (x� ak) =
Z
S
k Ik

g (x� y) dy�

�
X
k

Z
Ik

g (x� ak) dy =
X
k

Z
Ik

[g (x� y)� g (x� ak)] dy =
X
k

hk (x) ;

where

hk (x) =

Z
Ik

[g (x� y)� g (x� ak)] dy:

Consequently (f � g) (�)�X
k

jIkj g (� � ak)

X

�
X
k

khkkX :

We have

khkkX = sup
#2S1

����Z �

��
hk (t)# (t) dt

���� = sup
#2S0

����Z �

��

Z
Ik

[g (t� x)� g (t� ak)] dx# (t) dt
���� =

= sup
#2S0

����Z �

��

Z �

��
[g (t� x)� g (t� ak)]�Ik (x)# (t) dxdt

���� =
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= sup
#2S0

����Z �

��

Z �

��
[g (t� x)� g (t� ak)]# (t) dt�Ik (x) dx

���� �
�
Z �

��
sup
#2S0

����Z �

��
[g (t� x)� g (t� ak)]# (t) dt�Ik (x) dx

���� =
=

Z
Ik

kg (� � x)� g (� � ak)kX dx:

So the following relation is valid

khkkX �
Z
Ik

kg (� � x)� g (� � ak)kX dx: (9)

In the sequel, we will assume that X is a r.i.s. with Boyd indies �X ; �X 2
(0; 1). Then it follows from Corollary 6.11 of [17] (see p. 165) that trigonometric
polynomials are dense in Xb, and hence, by Lemma 6, the shifts are continuus in
Xb. Therefore, for 8" > 0, 9� > 0:

kTxg � TakgkX < ";8x 2 Ik:
Considering this relation in (9), we obtain

khkkX � jIkj ";
and hence (f � g) (�)�X

k

jIkj g (� � ak)

X

� jIj " � 2�":

Since
P

k jIkjTakg is a �nite linear combination of shifts g, it is clear that f �g 2 �Vg,
where �Vg is a closed linear subspace in E, generated by shifts Tag of the function
g. Let f 2 L1 (��; �) be an arbitrary element. Then for 8" > 0 there exist a
partition of [��; �] into a �nite number of intervals Mk and a number �k such that
the inequality f (�)�X

k

�k�Mk
(�)

L1

< "

holds. It follows directly from the previous result that F � g 2 �Vg, where F (�) =P
k �k�Mk

(�). Then there exists a �nite linear combination of shifts
P

n �nTang
such that F � g �X

n

�nTang


X

< ":

By Lemma 12, we obtainf � g �X
n

�nTang


X

� kf � g � F � gkX +
F � g �X

n

�nTang


X

�

� "+ kf � FkL1 kgkX � " (1 + kgkX) :
The arbitrariness of " > 0 implies f � g 2 �Vg. The theorem is proved. �
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3.3. Approximate identity. Let�s consider the approximate identities for convo-
lutions in the space Xb. By the approximate identity (for convolution) we meann
K
(�)
n

o
n2N

� L1 (��; �) such that
�)sup

n
kKnkL1 < +1;

�)lim
n

1
2�

R �
��Kn (x) dx = 1;

) lim
n!1

R
��jxj�� jKn (x) dxj = 0 ; 8� 2 (0; �) :

The following theorem is true.

Theorem 15. Let X be a r.i.s. with Boyd indices �X ;�X 2 (0; 1) and fKngn2N
be an approximate identity. Then

lim
n!1

kKn � f � fkX = 0;8f 2 Xb:

Proof. Take 8f 2 Xb. Let " > 0 be an arbitrary number. It is clear that 9g 2
C [��; �]:

kf � gkX < ":
We have

kKn � f �Kn � gkX � kKnkL1 kf � gkX �M";
where M = sup

n
kKnkL1 . As is known (see, e.g., [19]),

lim
n!1

kKn � g � gk1 = 0:

Then 9n0 2 N :
kKn � g � gk1 < ";8n � n0:

We have
kKn � g � gkX � " k1kX = C";8n � n0:

Hence
kKn � f � fkX � kKn � f �Kn � gkX + kKn � g � gkX +

+ kg � fkX � (M + C + 1) ";8n � n0:
The theorem is proved. �
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AN EXCEEDANCE MODEL BASED ON BIVARIATE ORDER
STATISTICS
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Abstract. In hydrologic risk analysis, the use of exceedance statistics are
very important. In this sense, we construct a random threshold model based
on bivariate order statistics. The exact distribution of exceedance statistics
is calculated under some well-known copulas such as independent and Farlie-
Gumbel-Morgenstern (FGM) copulas. Furthermore, numerical results are pro-
vided for expected value and variance of exceedance statistics under indepen-
dent and Farlie-Gumbel-Morgenstern copulas. The application of the model
in hydrology is also discussed.

1. Introduction

Exceedance statistics and random threshold models are very useful tools in real
life applications. There have been many studies about the applications of ex-
ceedances in di¤erent areas such as hydrology, actuarial sciences and medicine,
see [13,15,12] and [19], respectively.
Eryilmaz [11], construct a random threshold model by using univariate order

statistics. The distribution of the longest run statistics are derived. Then the use
of the model in hydrology is discussed. For univariate random threshold models we
refer to [6, 2, 21,17,18] and [4].
Theoretical properties and application areas of bivariate random threshold mod-

els have been discussed in many publications. In [10], marginal distribution and
joint distribution of the new sample rank of rth order statistics and its concomi-
tant are obtained. The application of the model in hydorology is discussed based
on numerical results. Bayramoglu and Giner [5], construct a random threshold
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model based on order statistics from independent but not necessarily identically
distributed (INID) random variables. Asymptotic distributions of exceedance sta-
tistic is derived based on hypergeometric function and incomplete beta functions.
Bayramoglu and Eryilmaz [4], compose a random threshold model based on two
sets of exchangeable random vectors. The reliability applications of the model are
discussed under the FGM distribution. In [7] and [9] bivariate random threshold
models are composed based on concomitants of order statistics. Then the exact
and asymptotic distribution of exceedance statistics are obtained. Applications in
medicine, economics and air pollution are discussed. In [8], a statistical test is
introduced for checking the equality of two copulas based on a bivariate random
threshold model.
In hydrological analysis, if the �ood peak and �ood volume exceed critical val-

ues within a certain period, they create a risky situation. Therefore, the use of
exceedance statistics and random thresholds in calculating these risk probabilities
is quite important. In this study, a bivariate random threshold model based on
bivariate order statistics is considered. Here we have a training sample which con-
sists of bivariate random variables that represent �ood peak and �ood volume of
n hydrological stations in a certain location, in the past year. We also have a bi-
variate control sample which consists of bivariate random variables that represent
�ood peak and �ood volume of m hydrological stations in the same location, in the
coming year. Then by using the minimum �ood peak and minimum �ood volume in
training sample, the random threshold model is constructed. The use of the model
in hydrological risk analysis is also discussed.
This paper is organized as follows: In section 2, the problem statement is pro-

vided. Then the exact distribution of exceedance statistics are obtained in terms of
copula functions. Expected value and variance of exceedance statistics are provided
as numerically for independent and Farlie-Gumbel -Morgenstern copulas. Lastly,
Section 3 concludes the paper.

2. Model Description

Let T1 = f(Xk; Yk) ; k = 1; 2; :::; ng be a sequence of independent random vari-
ables with joint cumulative distribution function (CDF) F (x; y) = C1 (FX (x) ; FY (y)) ;
where C1(u; v); (u; v) 2 [0; 1]

2 is a connecting copula and FX(x); FY (y) are the
marginal CDF�s of X and Y; respectively. Furthermore, let T2 = f(X 0

k; Y
0

k ); k =
1; 2; :::;mg be another sequence of independent random variables with joint CDF
G (x; y) = C2 (FX (x) ; FY (y)) ; where C2(u; v); (u; v) 2 [0; 1]2 is a connecting cop-
ula and FX(x); FY (y) are the marginal CDF� s of X and Y; respectively. Let

f (x; y) = @2F (x;y)
@x@y ; g (x; y) = @2G(x;y)

@x@y ; fX(x) =
dFX(x)
dx , fY (y) =

dFY (y)
dy ; FX(x) =

1 � FX(x); and FY (y) = 1 � FY (y): Here Xk and Yk denote �ood peak and �ood
volume of n stations in past for a certain location, respectively. Furthermore, X

0

k
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and Y
0

k denote �ood peak and �ood volume of the future m stations in the same
location, respectively. Here we call T1 as training sample and T2 as control sample.
We de�ne the rth bivariate order statistics of T1 as (Xr:n; Yr:n), where 1 � r � n;

X1:n � X2:n � � � � � Xn:n and Y1:n � Y2:n � � � � � Yn:n are the order statistics of
fXk; k = 1; 2; :::; ng and fYk; k = 1; 2; :::; ng; respectively. For r = 1, (X1:n; Y1:n)
denotes the smallest �ood peak and �ood volume in the past, respectively. Then
the exceedance statistic Mm (1) is de�ned as follows

Mm (1) =
mX
k=1

�k;

where

�k =

(
1; if

�
X

0

k; Y
0

k

�
2 A1

0; otherwise

and A1 = (�1; X1:n]� (�1; Y1:n] : The set A1 is constructed from training sample
T1:
Here Mm (1) denotes the number of nonhazardous stations in the future obser-

vations. For example, if Mm (1) = 4 it means that there can be 4 nonhazardous
stations in the future observations.
In Corollary 1, the probability mass function (PMF) of Mm (1) is given by using

the distribution of bivariate order statistics, see [3] and [14]. For 1 � r; s � n, the
joint probability density function (PDF) of Xr:n and Ys:n is

fXr:n;Ys:n(t; s) =

a2X
t1=a1

p1 [F (t; s)]
t1 [(FX (t)� F (t; s))]r�1�t1 [FY (s)� F (t; s)]s�1�t1

�
�
F (t; s)

�n�r�s+t1+1
f (t; s) +

d2X
t4=d1

c2X
t2=c1

b2X
t1=b1

p2 [F (t; s)]
t1

� [(FX (t)� F (t; s))]r�1�t1�t2 [(FY (s)� F (t; s))]s�1�t1�t4

�
�
F (t; s)

�n�r�s+t1+t2+t4 �
F :;1 (t; s)

�t2 �
fY (s)� F :;1 (t; s)

�1�t2
�
�
F 1;: (t; s)

�t4 �
fX (t)� F 1;: (t; s)

�1�t4
; (1)

where a1 = max(0; r+s�n�1); a2 = min(r�1; s�1); b1 = max(0; r+s�n�t2�t4);
b2 = min(r � t2 � 1; s � t4 � 1); c1 = max(0; r � n + 1); c2 = min(1; r � 1); d1 =
max(0; s� n+ 1); d2 = min(1; s� 1)

F (t; s) = 1� FX(t)� FY (s) + F (t; s)

F 1;: (t; s) =
@F (t; s)

@t

F :;1 (t; s) =
@F (t; s)

@s
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and the constants p1 and p2 are

p1 =
n!

t1! (r � 1� t1)! (s� 1� t1)! (n� r � s+ t1 � 1)!
;

p2 =
n!

t1! (r � 1� t1 � t2)! (s� 1� t1 � t4)! (n� r � s+ t1 + t2 + t4)!
:

Corollary 1. The PMF of Mk (1) is

P fMm (1) = lg =
�
m

l

�
G (x; y)

l
(1�G (x; y))m�l fX1:n;Y1:n (x; y) dxdy (2)

where fX1:n;Y1:n (x; y) is the PDF of X1:n and Y1:n in training sample T1:

Then by using the formula of bivariate order statistics, Equation (2) can be
written as follows

P fMm (1) = lg =

�
m

l

�Z 1

�1

Z 1

�1
G (x; y)

l
(1�G (x; y))m�l fn

�
F (x; y)

�n�1
�f (x; y) + n (n� 1)

�
F (x; y)

�n�2
(fY (y)

�F :;1 (x; y))
�
fX (x)� F 1;: (x; y)

�
gdxdy (3)

Proof. The proof of Corollary 1 is similar to proof of Theorem 1, in [7].

P fMm (1) = lg = P fl of the sample values in T2 are in (�1; X1:n]� (�1; Y1:n]g
De�ne the events Eij and E

c
ij
as follows

Eij = fXij < X1:n; Yij < Y1:ng and Ecij = fXij < X1:n; Yij > Y1:ng [ fXij >
X1:n; Yij < Y1:ng [ fXij > X1:n; Yij > Y1:ng; 1 � i; j � m: Then

P fMm (1) = lg =
X

i1;i2;:::;im

P (Ei1Ei2 :::EilE
c
il+1
:::Ecim) (4)

By conditioning of the integral on X = x and Y = y in Equation (4) and using the
distribution of bivariate order statistics, the proof is completed. �

When we apply the probability integral transformation F (t) = u; F (s) = v and
F (t; s) = C1

�
F�1 (t) ; F�1 (s)

�
and G(t; s) = C2

�
F�1 (t) ; F�1 (s)

�
in Equation

(3), we have

P fMm (1) = lg =

�
m

l

�Z 1

0

Z 1

0

C2 (u; v)
l
(1� C2 (u; v))m�l

�fn( bC1 (1� u; 1� v))n�1c1 (u; v)
+n (n� 1)

� bC1 (1� u; 1� v)�n�2
� (1� C �1 (u; v)) (1� C ��1 (u; v))gdudv; (5)

where bC1 (1� u; 1� v) = 1� u� v + C1 (u; v)
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C ��1 (u; v) =
@C1 (u; v)

@u

C �1 (u; v) =
@C1 (u; v)

@v

c1 (u; v) =
@2C1 (u; v)

@u@v
:

Let C1(u; v) = C2(u; v); then

P fMm (1) = lg =

�
m

l

�Z 1

0

Z 1

0

C1 (u; v)
l
(1� C1 (u; v))m�l

�fn
� bC1 (1� u; 1� v)�n�1 c1 (u; v)

+n (n� 1)
� bC1 (1� u; 1� v)�n�2

� (1� C �1 (u; v)) (1� C ��1 (u; v))gdudv: (6)

For the ease of the calculations we �rstly consider the case C1 (u; v) = C2 (u; v) =
uv: Then we have

P fMm (1) = lg =
�
m

l

�Z 1

0

Z 1

0

(uv)
l
(1� uv)m�l

n
n (1� u� v + uv)n�1

+ n (n� 1) (1� u� v + uv)n�2 (1� u) (1� v)
o
dudv; (7)

In Table 1, the numerical values of P fMm (1) = lg are provided for C1 (u; v) =
C2 (u; v) = uv by using Equations (6) and (7).

Table 1. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 5:

(m;n) l 0 1 2 3 4 5
(5; 5) P fMm (1) = lg 0:88 0:1 0:015 0:0021 0:00024 0:000016
(5; 10) P fMm (1) = lg 0:96 0:037 0:002 0:0001 4:4� 10�6 1:1� 10�6
(5; 20) P fMm (1) = lg 0:989 0:0110 0:000178 3:01� 10�6 4:25� 10�8 3:54� 10�10

We can interpret Table 1, as follows. For example if there have been 10 stations
in a certain region in the past, after a couple of years at the same location we can
observe 5 stations. So under C1 (u; v) = C2 (u; v) = uv, the probability of observing
1 nonhazardous station in the coming years is 0.037. In other words, the probability
that only 1 station will be less than the minimum �ood peak and minimum �ood
volume observed in the past year is 0.037, in the coming years.
In Table 2, the numerical values of P fMm (1) = lg are provided under C1 (u; v) =

C2 (u; v) = uv for m = 10 and some values of n. Similar to Table 1, we can do
the same interpretations with Table 2. When m = 10 and n = 5; probability of
observing 0 nonhazardous stations in the coming years is 0:796.



790 A. EREM

In Tables 1 and 2, it can be easily seen that while n increases, P fMm (1) = lg also
increases for �xed values ofm and l: It is clear that as l increases P fMm (1) = lg de-
creases for �xed values ofm and n: Furthermore, whilem increases, P fMm (1) = lg
decreases for �xed values of n and l:

Table 2. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 10:

(m;n) l 0 1 2 3 4 5
(10; 5) P fMm(1) = lg 0:796 0:151 0:038 0:011 0:00305913 0:00085
(10; 10) P fMm(1) = lg 0:926 0:0657 0:00695 0:000853 0:000109 0:0000138
(10; 20) P fMm(1) = lg 0:978 0:0211 0:000739 0:0000316 1:47� 10�6 6:84� 10�8
(m;n) l 6 7 8 9 10
(10; 5) P fMm(1) = lg 0:00022 0:000051 9:70281� 10�6 1:38612� 10�6 1:10889� 10�7
(10; 10) P fMm(1) = lg 1:62� 10�6 1:68� 10�7 1:43� 10�8 8:79� 10�10 2:93� 10�11
(10; 20) P fMm(1) = lg 3:02� 10�9 1:18� 10�10 3:81� 10�12 8:86� 10�14 1:11� 10�15

The FGM copula is highly preferred in applications due to its closed form struc-
ture that facilitates theoretical calculations. In addition, it has become one of the
preferred distributions in applications in the �eld of hydrology, since it includes
both negative and positive dependency structure, see [20], [1], and [16]. For this
reason, some numerical results in this paper have been calculated under the FGM
copula.
Let C1(u; v) = uv and C2(u; v) = uv (1 + � (1� u) (1� v)) ; � 2 [�1; 1] ; then

P fMm (1) = lg =
�
m

l

�Z 1

0

Z 1

0

[uv (1 + � (1� u) (1� v))]l

� [1� uv (1 + � (1� u) (1� v))]m�l

� fn (1� u� v + uv)n�1

+ n (n� 1) (1� u� v + uv)n�2 (1� u) (1� v)gdudv; (8)

In Table 3, the numerical values of P fMm (1) = lg is provided for C1(u; v) = uv
and C2(u; v) = uv (1 + � (1� u) (1� v)) ; � 2 [�1; 1] by using equation (5).
In Table 3, similar to Tables 1 and 2, as n increases P fMm (1) = lg also increases

for �xed values of �;m and l: For l = 0, �xed values ofm and n when the dependence
parameter � increases P fMm (1) = lg decreases. But for l = 1; :::; 5 and �xed values
of m and n; P fMm (1) = lg increases. As in Tables 1 and 2, while l increases,
P fMm (1) = lg decreases for �xed values of m;n and �:
In Table 4, the numerical values of P fMm (1) = lg is provided for C1(u; v) =

C2(u; v) = uv (1 + � (1� u) (1� v)) ; � 2 [�1; 1] by using Equation (6). In Table 4,
similar to Table 3 when l = 0 and � increases P fMm (1) = 0g decreases for �xed
values of m and n: But for l = 1; :::; 5 and �xed values of m and n; P fMm (1) = lg
increases. In Tables 5-7, the expected values of Mm(1) are calculated by using
Equations (5) and (6) under

C1(u; v) = C2(u; v) = uv; (9)
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Table 3. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 5:

(m;n) �=l 0 1 2 3 4 5
(5; 5) �1 0:940 0:0533 0:00604 0:000765 0:0000836 5:61� 10�6

�0:5 0:909563 0:0790261 0:00996047 0:00129879 0:000141936 9:3751� 10�6
0:5 0:853735 0:122215 0:0204795 0:00316417 0:000380553 0:000026234
1 0:828 0:140 0:0267 0:00456 0:000591 0:0000429

(5; 10) �1 0:988 0:0118 0:000370 0:0000146 5:31� 10�7 1:21� 10�8
�0:5 0:974123 0:0248275 0:00100337 0:0000443511 1:68777� 10�6 3:89844� 10�8
0:5 0:947961 0:0486292 0:00319862 0:000200988 9:89698� 10�6 2:75831� 10�7
1 0:935 0:0595 0:00469 0:000345 0:0000195 6:10� 10�7

(5; 20) �1 0:998 0:00194 0:0000122 1:10� 10�7 10�9 6:08� 10�12
�0:5 0:993419 0:00650981 0:0000701828 8:60826� 10�7 9:39504� 10�9 6:37741� 10�11
0:5 0:984326 0:0153334 0:000333565 7:29272� 10�6 1:28804� 10�7 1:30955� 10�9
1 0:980 0:0196 0:000534 0:0000144 3:07� 10�7 3:73� 10�9

Table 4. Numerical values of P fMm (1) = lg for di¤erent values
of n and m = 5:

(m;n) �=l 0 1 2 3 4 5
(5; 5) �1 0:946472 0:0487 0:00435425 0:000407848 0:0000315723 1:44141� 10�6

�0:5 0:913422 0:076709 0:00876889 0:00100174 0:0000937063 5:20157� 10�6
0:5 0:849052 0:124131 0:0224053 0:00384628 0:000524333 0:0000415192
1 0:818045 0:143125 0:0312117 0:00646731 0:00105374 0:0000981558

(5; 10) �1 0:988971 0:0107548 0:000266524 2:01062� 10�7 2:01062� 10�7 3:14295� 10�9
�0:5 0:975021 0:0240525 0:000890853 0:0000348152 1:14229� 10�6 2:22888� 10�8
0:5 0:946488 0:04975 0:00349145 0:000258435 0:0000154613 3:1657� 10�7
1 0:931939 0:061969 0:00556312 0:000492862 0:0000348765 1:40955� 10�6

C1(u; v) = uv;C2(u; v) = uv (1 + � (1� u) (1� v)) ; (10)

and
C1(u; v) = C2(u; v) = uv (1 + � (1� u) (1� v)) ; (11)

respectively: In Table 5, we can interpret E (Mm(1)) as follows. When m = n = 5
(The number of stations is not changed in a certain location), expected number of
nonhazardous stations is 0:139.

Table 5. Expected values of Mm(1) for C1(u; v) = C2(u; v) = uv

m n E (Mm(1)) m n E (Mm(1))
5 5 0:139 5 10 0:0413
10 5 0:278 10 10 0:0826
20 5 0:556 20 10 0:165
50 5 1:39 50 10 0:413

In Table 5, we can clearly see that when m increases E (Mm(1)) also increases
for �xed values of n: For �xed values of m; as n increases E (Mm(1)) decreases.
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From Table 6, we can easily observe that as � increases, E (Mm(1)) also increases
for �xed values of m and n: As n increases E (Mm(1)) also increases for �xed values
of m and �: From Table 7, we can see that for �xed values of n and �; when m
increases E (Mm(1)) also increases. For �xed values of m and �; as n increases
E (Mm(1)) decreases. Furthermore similar to Table 7, as � increases E (Mm(1))
also increases for �xed values of m and n: In Tables 8-10, the variance of Mm(1)

Table 6. Expected value of Mm(1) for C1(u; v) = uv; C2(u; v) =
uv (1 + � (1� u) (1� v))

� m n E (Mm(1)) � m n E (Mm(1))
5 5 0:0680 5 5 0:210
10 5 0:0126 10 5 0:0700

�1 5 10 0:136 1 5 10 0:420
10 10 0:0253 10 10 0:140
20 20 0:00787 20 20 0:0828
5 5 0:103458 5 5 0:17432

�0:5 5 10 0:206916 0:5 5 10 0:348639
10 5 0:0269743 10 5 0:0556703
10 10 0:0539486 10 10 0:111357

Table 7. Expected value of Mm(1) for C1(u; v) = C2(u; v) =
uv (1 + � (1� u) (1� v))

� m n E (Mm(1)) � m n E (Mm(1))
5 5 0.0587987 5 5 0.229656
10 5 0.117597 10 5 0.459311

�1 5 10 0.0113121 1 5 10 0.0747203
5 5 0.0976528 5 5 0.182785

�0:5 10 5 0.195306 0:5 10 5 0.365559
5 10 0.0259433 5 10 0.0575716

are calculated by using Equations (5) and (6) under

C1(u; v) = C2(u; v) = uv; (12)

C1(u; v) = uv;C2(u; v) = uv (1 + � (1� u) (1� v)) ; (13)
and

C1(u; v) = C2(u; v) = uv (1 + � (1� u) (1� v)) ; (14)
respectively.
In Table 8, it is obvious that for �xed values of n; when m increases variance of

Mm(1) also increases. For �xed values of m; as n increases the variance of Mm(1)
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decreases. Similary, in Tables 9 and 10, for �xed values of � and n; as m increases
variance of Mm(1) increases. Furthermore for �xed values of m and n; when �
increases, the variance of Mm(1) increases.

Table 8. Variances of Mm(1) for C1(u; v) = C2(u; v) = uv

m n V (Mm(1)) m n V (Mm(1))
5 5 0:165 5 10 0:044
10 5 0:404 10 10 0:097
20 5 1:1 20 10 0:226

Table 9. Variances of Mm(1) for C1(u; v) = uv; C2(u; v) =
uv (1 + � (1� u) (1� v))

� m n V (Mm(1)) � m n V (Mm(1))
5 5 0:0812 5 5 0:254
10 5 0:198 10 5 0:642

�1 5 10 0:133 1 5 10 0:0768
10 10 0:0284 10 10 0:173
5 5 0:121 5 5 0:201

�0:5 5 10 0:0286 0:5 5 10 0:0603
10 5 0:297 10 5 0:52
10 10 0:061 10 10 0:134

Table 10. Variances of Mm(1) for C1(u; v) = C2(u; v) = uv (1 + � (1� u) (1� v))

� m n V (Mm(1)) � m n V (Mm(1))
5 5 0:0669047 5 5 0:292749
5 10 0:0117666 5 10 0:0836673

�1 10 5 0:1558 1 10 5 0:769603
5 5 0:112893 5 5 0:224385

�0:5 5 10 0:027275 0:5 5 10 0:0629825
10 5 0:268656 10 5 0:5694260

3. Conclusion

In this study, a bivariate exceedance model is constructed based on bivariate
order statistics. In this model, we compose a bivariate random threshold model by
using the past �ood peak and �ood volume of the hydrological stations. Probability
of exceedance statistics are calculated under some well-known copulas for small



794 A. EREM

sample sizes. Then the numerical values of expected values of exceedance statistics
are provided for independent and FGM copulas. Because of the complexity of the
calculations, the numerical results are provided for small sample sizes. As a further
study, we need to investigate the properties of exceedance statistics under di¤erent
bivariate distributions by using some real data sets in hydorology. The results
obtained using real data sets can be compared with the theoretical results in this
article.
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Abstract. In this study, the standard two-sided power (STSP) distribution

is considered with regard to statistical reliability analysis in detail. For this

purpose, along with the reliability and hazard functions of the distribution,
particular reliability indices that are useful in maintenance and replacement

policies are obtained and they are evaluated with their plots. The STSP distri-

bution is classified based on aging according to various cases of its parameters.
Then, we studied the classical and Bayesian estimations of the reliability and

hazard functions. In Bayesian estimation, symmetric and different asymmetric

loss functions are considered. For obtaining the Bayes estimates, Monte Carlo
Markov Chain simulation using the Gibbs algorithm is performed. Various

simulation schemes are performed for comparing the performances of the esti-
mators. Further, the Bayesian predictions of the future observations based on

the observed samples are obtained. A real data example is used to illustrate

the theoretical outcomes.

1. Introduction

Lifetime, survival time or failure time data is encountered in many study fields
such as reliability assesment in engineering, clinical trial studies in medicine, biomed-
ical engineering, social studies and etc. In this purpose; lifetimes of peoples, com-
ponents, patients, industrial robots, animals, plants, cogs, softwares and etc. are
considered with probability distributions. In statistical literature, there are many
different probability distributions for modelling lifetime data. In reliability theory, a
finite upper limit to the lifetime data does not frequently consider and thereby many
lifetime distributions are defined over the range (0,∞) [14]. The commonly used
lifetime distributions are the exponential, Weibull, lognormal, gamma and pareto
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etc. distributions. On the other hand, in many cases, the lifetime distributions are
needed to consider on a finite range. For example, the pressure, strength, length,
temperature, weight, or voltage of material can take any value on a finite range
(e.g. 150− 250 MPa). Also, the existence of the censoring or truncation causes to
reduce lifetimes on a finite range. In these cases, finite range distributions could
be considered for modelling them. In the reliability studies, distributions on finite
ranges are considered for failure data [1] in various studies. As a special case, finite
ranges can be occur over the range [0, 1] and used for modeling uncertainty about
the probability of success of an experiment. In these cases, beta distributions could
be considered as the most used lifetime distribution. The Beta distributions are
quite useful to modeling many uncertainties since their versatile structure [10]. On
the other hand, the standard two-sided power distribution, denoted by STSP, is
introduced by van Dorp and Kotz [21] and it has the following probability density
function (pdf) and the reliability function

f(x|α, β) =

{
α( xβ )α−1 , 0 < x ≤ β
α( 1−x

1−β )α−1 , β ≤ x < 1
(1)

R(x) = P (X > x) =

{
1− β( xβ )α , 0 < x ≤ β
(1− β)( 1−x

1−β )α , β ≤ x < 1
(2)

while the hazard(failure rate, hazard rate or force of mortality) function is given by

λ(x) =
f(x)

R(x)
=

{
α/
{(

β
x

)α−1 − x
}

, 0 < x ≤ β
α/{1− x} , β ≤ x < 1

(3)

where α > 0 is the shape and 0 < β < 1 is the reflection parameters. The STSP
distribution is proposed as a peaked alternative of beta distribution by Kotz and
van Dorp [12]. Since the STSP distribution is defined on a finite range and has
similar flexibility, the STSP distribution is a beta-like distribution. The parameters
of the distribution determine the shapes of the distribution and similar to the beta
case. For example, the STSP distribution is unimodal in the case of 0 < β <
1 & α > 0 and U shaped for 0 < β < 1 & 0 < α < 1. It has relations with
some other distributions according to its special cases. For instance; the uniform
distribution on (0, 1) for α = 1 and the triangular model for α = 2 are obtained.
In the case of β = 0.5, the STSP distribution is symmetric and the left-skewed
and right-skewed distributions occurs when β > 0.5 and β < 0.5, respectively, for
α > 1. The STSP distribution is intelligibly more flexible than the power function
distribution which is a special case of the distribution in the case of β = 1 (see Fig.
1). In this way, the STSP distribution can be used in reliability and life testing
experiments on [0, 1] range of finite-range datasets. Particularly, when these types
of lifetime data have any threshold point, they are convenient for modelling by a
two-sided distribution. Mance, Barker and Chimka [13] studied some features of
two-sided power distribution (TSP) which is an extension of the STSP distribution
in reliability analysis, firstly. They introduced the reliability and hazard functions of
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Figure 1. Plots of probability denstiy function of the STSP dis-
tribution for various choices of its parameters.

the TSP distribution and presented their plots with usefulness in engineering. Using
analytical estimation procedure, they obtained the TSP parameters and compared
the distribution with the Weibull distribution. Recently, Çetinkaya and Genç [8], [9]
studied the STSP distribution under moments of order statistics and stress-strength
reliability.

As a further study, we consider the STSP distribution under statistical reliability
context. Fundamental reliability indices such as reliability and hazard functions are
given and their plots are interpreted according to changing in parameters of the
distribution. Following, some reliability indices which are useful in maintenance and
replacement policies in engineering are given. Further, we considered the classifying
of the STSP distribution based on notions of aging according to various cases of
its parameters. Otherwise, as a diagnostics test if a data comes from the STSP
distribution, we examined the hazard plot. After these main reliability indices,
we obtanined the classical and Bayesian estimations of the reliability and hazard
functions based on the symmetrical and asymmetrical loss functions. A real dataset
is used to illustrate the outcomes and all estimates are compared. In the last section,
Bayes prediction of a future sample based on current available sample is obtained.

2. Reliability characteristics

The STSP distribution is a two-sided distribution and quite useful on the finite
range. The reliability graph of the STSP distribution is both convex and concave,or
likely S-shaped, depending on different cases of its parameters (see Fig. 2-3). In
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Figure 2. Reliability function plots of the symmetrical STSP dis-
tribution (β = 0.5) for different shape parameters.

symmetrical case, that is if β = 0.5, in the case of α < 1, it is convex for the
smaller values than β and concave for bigger values than β. On the conversely,
in the case of α > 1, it is concave for the smaller values than β and convex for
bigger values than β. If the STSP distribution is not in symmetrical case, that is
if β 6= 0.5, it is convex for small β values and it turns to concave with increasing β
for α > 1. On the other hand, it is convex for large β values and it turns to concave
with decreasing β for α < 1. While α = 1, the STSP distribution has constant
decreasing reliability.
Concave reliability curve imply low failure in early and useful life along with rapid
increase in later life. On the contrary, convex reliability curve imply high failure
in early and useful life along with rapid decrease in later life, the convexity or
concavity of a reliability curve is depend on environmental conditions and genetic
structure of the observations.
In parallel to its reliability function, the STSP distribution has both increasing and

decreasing failure rate based on different cases of its parameters (see Fig. 4). On the
other hand, the hazard function (Eq.3) shows that for any case of parameters the
STSP distribution does not have constant hazard where imminent risk of failure
does not change with time. It is clearly seen that, the failure rate of the STSP
distribution is increasing for α > 1 values and in the form of bathtube curve for
α < 1. Also, λ(t) is not differantiable in the t = β point so there is a cusp as seen
in Fig. 4. Detailed comments about behaviour of the hazard function are given in
the next section.
In statistical reliability studies, there are some indices to compare survival random
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Figure 3. Reliability function plots of the STSP distribution for
different reflection parameters in the case of α > 1(α = 2) on left
and α < 1(α = 0.5) on right.
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Figure 4. Hazard function plots of the symmetrical STSP distri-
bution (β = 0.5) for different shape parameters.

variables. Also, these indices are quite useful for maintenence and replacement
policies.
Firstly, mean time to failure (MTTF) is the length of lifetime a component is
expected to failure. MTTF is one of various methods to assess the reliability of a
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component. The mean time to failure (MTTF) of the STSP distribution can be
obtained by using the pdf (1) of the distribution as in the following.

MTTF = E(X) =
β(α− 1) + 1

α+ 1

Mean residual life time (MRL) at age-t can be considered as another reliability
index. Resiual lifetime at age t is about the question of a component how much
life does it have left in on avarage while the experimental component still alive and
under observation at time t [18]. Mean time to failure for the STSP distribution
can be easily obtained as in the following. Firstly, the conditional density of the X
given X > t is obtained by

f(X|X > t) =


α( xβ )α−1

1−β( tβ )α
, 0 < t < x < β (t < β,CaseI)

α( 1−x
1−β )α−1

1−β( tβ )α
, 0 < t < β < x < 1 (t < β,CaseI)

α
1−x

(
1−x
1−t
)α

, β < t < x < 1(t > β,CaseII)

Then, mean residual lifetime at age-t can be obtained by using

r(t) = E(X − t|X > t) =
∫

(x− t)f(x|x > t)dx and equally

E(X − t|X > t) =
∫ 1
t
R(x)dx

R(t) =
∫ β
t
R1(x)dx+

∫ 1
β
R2(x)dx

R(t) for t ≤ β

E(X − t|X > t) =
∫ 1
t
R(x)dx

R(t) =
∫ 1
t
R2(x)dx

R(t) for t > β.

where R1(x) and R2(x) are the two sides of the reliability function (2), respectively.
Thus, under the STSP distribution mean residual lifetime at age-t is obtained as
in the following

r(t) = E(X − t|X > t) =


[
1+β(α−1)+βt

(
t
β

)α]
(α+1)−1−t

1−β( tβ )α
, t ≤ β

1−t
α+1 , t > β

Together with the hazard plot, MRL plot is a useful and good indication to inves-
tigate the behaviour of lifetime data [15]. The MRL plot which are given in Fig.
5 shows that the MRL of a lifetime data under the STSP distribution brings with
convex curve to concave curve with increasing shape parameter α. Similar to re-
sults which are obtained with hazard plot, for α < 1, MRL is rapidly increasing in
early life as parallel to rapidly decreasing failure. Then, MRL is rapidly decreasing
in wear out stage after a stationary process in useful lifetime on peak. Examples
can be increased for all possible conditions of the parameters α and β.
Further, when a component has already reached given age t, life expectancy at age t
is named as mean life expectancy at age-t and denoted by E(X|X > t) = t+r(t) . If
a component has a lifetime under the STSP distribution, the mean life expectancy
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at age t it is obtained as in the following

E(X|X > t) = t+ r(t) =


[
1+β(α−1)−αβt

(
t
β

)α]
(α+1)−1

1−β( tβ )α
, t ≤ β

αt+1
α+1 , t > β

Similar to MRL plot, the plots of the mean life expectancy at age-t are given in
Fig. 5. The behaviour of the mean life expectancy shows consistents results with
the hazard (Fig. 4) and MRL (Fig. 5) plots.
There is an other index for replacement policies is computation of the probability
of that an A-year-old component reaches age-B. Under the STSP distribution, it
can be obtained easily as in the following

e−
∫B
A
λ(x)dx =


βα−1−Bα
βα−1−Aα , A < B ≤ β

βα−1(1−B)α

(βα−1−Aα)(1−β)α−1 , A ≤ β < B(
1−B
1−A

)α
, β ≤ A < B

Additionally, the expected service life (ESL) of a component under a replacement
policy [3] whereby the component is replaced when it reaches age t is defined as
the expected value of the mixture random variable, namely Z = min{X, t} and
ESL(t) is given as in the following [18].

ESL(t) =

∫ t

0

xf(x)dx+

∫ 1

t

tf(x)dx

For the STSP distribution the expected service life of a component is considered
for two cases as given below

If t ≤ β,

ESL(t) =
∫ t

0
xf1(x)dx+

∫ β
t
tf2(x)dx+

∫ 1

β
tf2(x)dx =

∫ t
0
xf1(x)dx+ tR1(t)

If t > β,

ESL(t) =
∫ β

0
xf1(y)dx+

∫ t
β
xf2(x)dx+

∫ 1

t
tf2(x)dx

ESL(t) =
∫ β

0
xf1(x)dx+

∫ t
β
xf2(x)dx+ tR2(t)

where f1(x) and f2(x) are the two sides of the pdf (1) of the STSP distribution.
Thus, ESL(t) under the STSP distribution is obtained as in the following

ESL(t) =

 t− βt
(
t
β

)α
α+1 , t ≤ β

αβ+(1−β)
[
1−(1−t)

(
1−t
1−β

)α]
α+1 , t > β

The plots of EST(t) for different cases of the parameters are given in Fig. 6 and
Fig. 7. In symmetrical case, that is if β = 0.5, is changing to concave curve with
increasing α. For fixed α > 1, ESL(t) has larger values and similar concavity with
increasing β. On the contrary, for α < 1, ESL(t) has smaller values and similar
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Figure 5. Plots of mean residual lifetime (left) and mean life
expectancy (right) at age-t for the symmetrical STSP distribution

concavity with increasing β.

All these indices which are given and interpreted above is quite useful to evaluate
the behaviour of a lifetime data. In engineering. maintenance and replacement
policies of components and systems have been considered, seriously.

2.1. Classifiying the distribution based on notions of aging. Many lifetime
distributions are considered under particular replacement policies. The mainta-
nence policies are useful to reduce the deficit of the system failures and provide
operational sustainability. In this purpose, the STSP distribution has been evalu-
ated based on its aging. Firstly, the behaviour of the hazard function is considered
and life characteristics for a lifetime data from the STSP distribution is determined
as in the following and summarized in Table 1.

Theorem 1. In the case of x ≤ β, λ(x) is increasing namely it has increasing

failure rate (IFR) for α > 1 and either decreasing on x ≤ min
((

1−α
β1−α

)1/α
, β

)
and

increasing on
(

1−α
β1−α

)1/α ≤ x ≤ β for α < 1.

Proof. If x ≤ β, then

λ
′
(x) = α

[(
β
x

)α 1
β − 1

]−2
1
x2

[(
β
x

)α 1
β (α− 1) + 1

]
Note that;

(
β
x

)α 1
β > 1. So,

the sign of λ
′
(x) depends on the sign of

(
β
x

)α 1
β (α− 1) + 1.
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0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

t

E
x
p
e
c
te

d
 s

e
rv

ic
e
 l
ife

α = 0.25
α = 0.5
α = 1
α = 2.5
α = 4

Figure 6. Plots of expected service life (ESL) for the symmetrical
STSP distribution for various α values
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Table 1. Life characteristics for a lifetime data from the STSP distribution.

Parameters Domain Failure Type

α < 1 x ≤ min
((

1−α
β1−α

)1/α
, β

)
Decreasing Hazard

α < 1
(

1−α
β1−α

)1/α ≤ x ≤ β Increasing Hazard

α ≥ 1 x ≤ β Increasing Hazard
α ≥ 0 x ≥ β Increasing Hazard

For α > 1, λ(x) is increasing on (0, β)(
β
x

)α 1
β (α− 1) + 1 > 0 ⇐⇒ x > (1− α)β1−1/α

For α < 1, λ(x) is either increasing or decreasing on (0, β)(
β
x

)α 1
β (α− 1) + 1 > 0 ⇐⇒ x >

(
1−α
β1−α

)1/α
Thus, λ(x) is increasing on

((
1−α
β1−α

)1/α
, β

)
, if 1 < α+ β.

So if 1− β < α < 1 then λ(x) is increasing on

((
1−α
β1−α

)1/α
, β

)
(
β
t

)α 1
β (α− 1) + 1 < 0 ⇐⇒ t <

(
1−α
β1−α

)1/α
So λ(x) is decreasing on

(
0,
(

1−α
β1−α

)1/α)
, if α+ β < 1

So if α < 1− β < 1 then λ(x) is decreasing on

(
0,
(

1−α
β1−α

)1/α)
. �

Theorem 2. In the case of x > β, λ(x) is an increasing function and namely it
has IFR on (β, 1) for both α > 1 and α < 1.

Proof. λ
′
(x) = α

(1−x)2 . In this way, λ
′
(x) > 0 for all α > 0 values. �

In the hazard function of the STSP distribution for α > 1 values of shape pa-

rameter λ
′

1(β) 6= λ
′

2(β) and it is not differentiable in the x = β point so there is

a cusp as seen in Fig. 4 (Here, λ
′

1(.) and λ
′

2(.) denotes to two side of the hazard
function (3)).

If a lifetime distribution, has a hazard function with non-decreasing avarage, it
is increasing failure rate avarage (IFRA) class of lifetime distribution. This class
could be alternately defined by a condition intuitively related to wear out for each
x ≥ 0 [4]. An IFR limetime distribution is also IFRA. The both proporties of a
lifetime distribution are notions of aging. The IFR, the IFRA or the NBU class of
distributions have a number of benefits. For instance, the distribution or reliability
functions of these distributions can be bounded from lower and upper in terms of
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their mean or quantiles. Many other useful properties of these class of distribu-
tions are elaborated by Barlow and Proschan [1] such as relating to the reliability
of a simple system, a coherent system, a system subject to cumulative shocks and
etc. [19].
An IFRA component Tends to more survive any shorter period and on the con-
trary, less surviving any longer period. The IFRA class contains the exponential
survival probabilities. It contains all IFR survival probabilities. Birnbaum et al. [4]
mentioned that the IFRA class is closed under the formation of coherent systems
and that it is essentially the smallest class containing the exponentials which is so
closed.

Remark 1. A distribution has IFRA (Increasing failure rate avarage) if −(1/x) lnR(x)
is increasing in x ≥ 0. Similarly a distribution has DFRA (Decreasing failure rate
avarage) if −(1/x) lnR(x) is decreasing in x ≥ 0 [1].

Theorem 3. The STSP distribution is an IFRA class of distribution for α > 1 in
the both x ≤ β and x ≥ β cases.

Proof.

ψ1(x) = − lnR1(x)

x
= −

ln
[
1− β( xβ )α

]
x

=
ln
[

1
1−β( xβ )α

]
x

Using the expansion of ln
[

1
1−β( xβ )α

]
as

ψ1(x) =
β( xβ )α +

[
β( xβ )α

]2
2 +

[
β( xβ )α

]3
3 + · · ·

x

Then,

ψ
′

1(x) = (α− 1)β1−αxα−2 +
(2α− 1)β2−2αx2α−1

2
+

(3α− 1)β3−3αx3α−2

3
+ · · ·

It is clearly seen that for α > 1, ψ
′

1(x) > 0. Thus, the STSP distribution is IFRA
in the case of x ≤ β if and only if α > 1.

On the other hand

ψ2(x) =− lnR2(x)

x
= −

ln

[
(1−x)α

(1−β)α−1

]
x

=

ln

[
(1−β)α−1

(1−x)α

]
x

=
ln(1− β)α−1 − ln(1− x)α

x
=

ln(1− β)α−1 + α ln
(

1
1−x

)
x
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Using the expansion of ln
(

1
1−y
)

as

ψ2(x) =
(α− 1) ln(1− β) + α

(
x+ x2

2 + x3

3 + · · ·
)

x

Then

ψ
′

2(x) =
(1− α) ln(1− β)

x2
+
α

2
+

2xα

3
+

3x2α

4
· · ·

In this equation ln(1 − β) > 0 for α > 1 values. Thus, it makes (1−α) ln(1−β)
x2 ≥ 0

and ψ
′

2(x) > 0 �

2.2. Hazard plot. A hazard plot is a simple plot of the points
(
aj , xj

)
, where

aj =
∑j
i=1

1
n−i+1 are called the hazard plot scores [18]. For using a hazard plot

to determine if a data comes from the STSP distribution, note that, cumulative
hazard function of the STSP distribution

H(x) = − ln{R(x)}

{
ln
[
1− β( xβ )α

]−1
, 0 < x ≤ β

ln
[ (1−β)α−1

(1−x)α

]
, β ≤ x < 1

Therefore, if a data comes from the STSP distribution the relationship between
ln(aj) and ln(xj) should be a 450 line similarly to hazard plot for the Weibull dis-
tribution. Many engineers regard hazard plot as a simpler diagnostic test than a
probability plot [18].

3. Classical estimation

In this section, we have obtained the maximum likelihood estimation (MLE)
of the reliability and hazard functions of the STSP distribution. Let us suppose
that x1, x1, . . . , xn is the independent and identical (IID) random samples from
STSP (α, β). Then the likelihood function is given by

L(α, β) = αn
{∏r

i=1 x(i)

∏n
i=r+1(1− x(i))

βr(1− β)n−r

}α−1

where x(r) ≤ β < x(r+1) with x(0) ≡ 0 and x(n+1) ≡ 1.

The maximum likelihood estimators of the parameters are obtained by van Dorp
and Kotz [21], and they are given by

β̂ = X(r̂)

α̂ = − n

logM(r̂)
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where r̂ = arg max{r∈1,2,··· ,n}M(r) and

M(r) =

r−1∏
i=1

X(i)

X(r)

n∏
i=r+1

1−X(i)

1−X(r)

Thus, by using the invariance property of the MLEs, the maximum likelihood esti-
mators of the reliability function and hazard function can be obtained by replacing
the parameters in Eq.(2) and Eq.(3) with their estimates and denoted by R̂ML and

λ̂ML.

4. Bayesian estimation

In this section, we provide Bayes estimates of reliability function R(x) and haz-
ard function λ(x) . Under considering different loss functions, these estimates are
obtained and compared with respect to their expected risks (ER). In Bayesian esti-
mation, squared error loss function (SELF) is the most commonly used loss function
due to it is symmetrical and it provides equal distance to the losses through over-
estimation and underestimation. However, in some situations such as reliability
and hazard estimates overestimation is more considerable than underestimation or
vice-vera [16]. In this purpose, Linex loss function (LLF) defined by Varian [22]
and general entropy loss function (GELF) defined by Calabria and Pulcini [5] are
considered as asymmetric loss functions which are defined as, respectively,

SELF =⇒ L1(θ̂, θ) = (θ̂ − θ)2

LLF =⇒ L2(θ̂, θ) = ep(θ̂−θ) − p(θ̂ − θ)− 1, p 6= 0

GELF =⇒ L3(θ̂, θ) =
(
θ̂
θ

)c − c log
(
θ̂
θ

)
− 1

where p and c reflects the departure from the symmetry, θ̂ represents an estimate
for parameter θ. Thus, Bayes estimates of the parameters under these loss functions
can be obtained from their posterior distributions as in the following;

SELF =⇒ θ̂B1 = E(θ|data)

LLF =⇒ θ̂B2 = − 1
p log{E(e−pθ|data)}

GELF =⇒ θ̂B3 = {E(θ−c|data)}−1/c

Under these loss functions, the Bayes estimators of reliability R(x|α, β) and hazard
λ(x|α, β) functions which are given in Eq.(2) and Eq.(3), respectively, are expressed
as in the following,

R̂B1 =

∫ ∞
0

∫ 1

0

R(data|α, β) π(α, β|data)dβdα (4)

R̂B2 = −1

p
log

{∫ ∞
0

∫ 1

0

e−pR(data|α,β)π(α, β|data)dβdα

}
(5)
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R̂B3 =

{∫ ∞
0

∫ 1

0

R(data|α, β)−cπ(α, β|data)dβdα

}−1/c

(6)

where π(α, β|data) is posterior distribution of the parameters. Estimators of the

λ(t), denoted by λ̂B1, λ̂B2 and λ̂B3 , can be obtained by changing R(data|α, β)
with Eq.(3), similarly.
However, the form of the STSP distribution given in (1) is not proper for devel-
oping Bayesian models. Since the its support depends on the reflection parameter,
posterior distributions of α and β, namely π(α, β|data) can not be obtained. Also,
estimators given in (4),(5) and (6) can not be expressed in closed form and hence
it can not be evaluated analytically. This fact was previously pointed out for the
triangular distribution which is special form of the STSP distribution (α = 2 case)
by Ho et al. [11]. To overcome this adversity and obtain a Bayesian inference for
the STSP distribution, Çetinkaya and Genç [9] proposed a hierarchical model con-
struction. This model provides conditional distributions of parameters to build a
Markov Chain Monte Carlo (MCMC) algorithm using a Gibbs sampler as given in
the following.
Çetinkaya and Genç [9] developed marginal densities by introducing an auxiliary
or talent variable as in the following.
Let V be a random variable with parameter α > 1. Suppose that V has the pdf

fV (v;α) = α
[
1− (1− v)1/(α−1)

]
, 0 < v < 1.

Further, let the conditional distribution of X given V = v be the uniform distribu-
tion represented by

U
[
β(1− v)1/(α−1), 1− (1− β)(1− v)1/(α−1)

]
.

Then the marginal distribution of X has the STSP distribution with pdf given
in (1). Thus, this hierarchical model will simplify the computational procedures
for Bayesian calculations. In order to implement a Gibbs sampler, Çetinkaya and
Genç [9] are obtained the conditional distributions of α, β and v as in the following

f(v|α, β, x) ∝ f(v|α)f(x|α, β, v)

∝ I
(
max

{
1−

(
x

β

)α−1

, 1−
(

1− x
1− β

)α−1}
< v < 1

)
f(β|α, v, x) ∝ π(β)f(x|β, v, α)

∝ π(β)I

(
1− 1− x

(1− v)1/(α−1)
< β <

x

(1− v)1/(α−1)

)
f(α|v, β, x) ∝ π(α)f(v|α)f(x|β, v, α)

∝ π(α)I

(
1 < α < min

{
ln(1− v)

ln(x
<

β )
+ 1,

ln(1− v)

ln( 1−x>
1−β )

+ 1

})
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where I(.) denotes indicator function, x< denotes observations below β and x> ob-
servations above β, π(α) and π(β) denotes prior distributions for the parameters.
Thus, MCMC samples using Gibbs algorithm can be obtained by using the follow-
ing steps;

Step 1: Assign initial α(0) and β(0) values for α and β.
Step 2: Set t=1.

Step 3: Given α(t−1) and β(t−1) and {x1, x2, · · · , xn} generate {v1, v2, · · · , vn}
using Eq.(4).
Step 4: Considering uniform prior on [0, 1] for β, given α(t−1), {x1, x2, · · · , xn}
and {v1, v2, · · · , vn}, generate β(t) using

I

(
max

{
1− 1− xi

(1− vi)1/(α(t−1)−1)
, 0

}
< β < min

{
xi

(1− vi)1/(α(t−1)−1)
, 1

})
Step 5: Considering uniform prior on [1, c] for α and choosing c = 100 generate αt

from the pdf
[
(n+ 1)/(bn+1 − 1)]αn using inverse transformation method, where

b = min

{
1 +

ln(1− vi)
ln(

x<i
β(t) )

, 1 +
ln(1− vi)
ln(

1−x>i
1−β(t) )

, c

}
Step 6: Using Eq.(2) and Eq.(3), compute R

(t)
B and λ

(t)
B at (α(t), β(t)).

Step 7: Set t = t+ 1.

Step 8: Repeat steps 2 − 7, M times and obtain posterior samples (R
(t)
B : t =

1, 2, · · · ,M) and (λ
(t)
B : t = 1, 2, · · · ,M).

Finally, the posterior mean under mean sqaured error, linex loss and general en-

tropy loss functions, say R̂B1, R̂B2, R̂B3 and λ̂B1, λ̂B2, λ̂B3, can be obtained as
follows;

R̂B1 =
1

M

M∑
t=1

R
(t)
B , R̂B2 = −1

p
ln

{
1

M

M∑
t=1

e−pR
(t)
B

}

R̂B3 =

{
1

M

M∑
t=1

(R
(t)
B )−c

}−1/c

(7)

λ̂B1, λ̂B2, λ̂B3 are obtained similarly.

5. Simulation Studies

In this section, performances of the maximum likelihood and Bayes estimators
under different loss functions are compared. According to various fixed point (t)
and sample sizes, avarage estimates and corresponding expected risks (ER) of R(t)
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are obtained and reported in Tables 2 and 3. Similar results are also obtained for
λ(t) and reported in Table 4 and 5.

The expected risks of estimates under all considered loss functions (SELF, LLF

and GELF), when θ is estimated by θ̂, can be obtained by using the following equa-
tion,

ER(θ̂) =
1

M

M∑
i=1

(θ̂i − θ)2,

where

θ̂ = E(θ|data), for SELF

θ̂ = −1

p
log{E(e−pθ|data), for LLF

θ̂ = {E(θ−c|data)}−1/c, for GELF

respectively. Choosen arbitrary values of the parameters (α, β) are taken as (2.8, 0.8)
and (1.5, 0.5), respectively. The Bayes point estimates are obtained under SELF,
LLF(p = −0.5, 0.5, 1) and GELF(c = −0.5, 0.5, 1) loss functions. We generate 2000
samples of size n (small sample size n = 10, moderate sample sizes n = 20, 30 and
large sample sizes n = 50, 100). For Bayesian estimation, we run the Gibbs sampler
to generate a Markov chain with 3500 observations using the given algorithm in
Section 4. As burn-in period, we discard the first 500 values and take every third
variate as a independent and identically distributed observation in thinning pro-
cedure. Thus, a sample of 1000 resulted which is used to calculate the posterior
estimates. Then, the simulation is performed via MCMC for 2000 replicates. We
report all the results of this simulation scheme in Table 2, 3 for reliability esti-
mates. We observed that all the estimates are close to the actual values of R(t). As
expected, the ERs of all estimators decrease as sample size increases in all consid-
ered cases. In all cases (t ≤ β, t > β), maximum likelihood estimates tend to give
overestimates. Being underestimating or overestimating is not only depend on loss
parameters, it is also related to relation between t and β. Bayes estimates under
squared error R̂B1 and Linex loss functions R̂B2 gives under estimates for t ≤ β
and over estimates for t > β. Bayes estimates under general entropy loss function
R̂B3 gives under estimates for t ≤ β. On the other hand, for t > β it gives under
estimate for c = 0.5 and c = 1, overestimates for c = −0.5. Expected risks show
that MLE and Bayes estimates under SELF have larger risks. Bayesian estimates
under LLF and GELF gives better results in terms of expected risks. Especially,
estimates give smallest risks for loss parameters c = 0.5 and p = 0.5. While loss
parameter values converges to 1, risks are getting larger.
Furthermore, similar simulation scenario are applied for λ(t) and reported in Table
4, 5. However, Linex loss function is not considered for hazard estimates, only
SELF and GELF are used in Bayesian estimates in addition to MLE. Since the
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Table 2. Avarage estimates and corresponding mean squared er-
rors/risks of R(t) for different choise of n and t when α = 2.8 and
β = 0.8 where actual R(0.2) = 0.984, R(0.5) = 0.785 and R(0.9) =
0.029.

t n R̂ML R̂B1

R̂B2(Linex) R̂B3(GELF )

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2

10 0.983448 0.970658 0.970911 0.970400 0.970138 0.970381 0.969809 0.969514

0.000381 0.000818 0.000801 0.000836 0.000853 0.000837 0.000877 0.000898

20 0.982662 0.975747 0.975863 0.975631 0.975512 0.975623 0.975369 0.975239

0.000239 0.000437 0.000431 0.000443 0.000449 0.000444 0.000458 0.000465

30 0.983106 0.978792 0.978854 0.978730 0.978668 0.978728 0.978596 0.978529

0.000138 0.000209 0.000207 0.000212 0.000214 0.000212 0.000216 0.000219

50 0.983434 0.980887 0.980916 0.980858 0.980828 0.980857 0.980796 0.980766

0.000083 0.000111 0.000110 0.000111 0.000112 0.000111 0.000113 0.000113

100 0.983348 0.982076 0.982088 0.982065 0.982053 0.982064 0.982040 0.982028

0.000041 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050 0.000050

0.5

10 0.805895 0.769507 0.772007 0.766961 0.764367 0.765790 0.757843 0.753595

0.011199 0.011945 0.011693 0.012211 0.012491 0.012449 0.013632 0.014321

20 0.795528 0.778710 0.779972 0.777433 0.776138 0.776950 0.773281 0.771367

0.005247 0.005728 0.005655 0.005804 0.005886 0.005864 0.006173 0.006348

30 0.793182 0.783086 0.783890 0.782275 0.781457 0.782004 0.779787 0.778650

0.003232 0.003476 0.003450 0.003503 0.003532 0.003523 0.003631 0.003691

50 0.790239 0.785236 0.785692 0.784777 0.784316 0.784638 0.783426 0.782812

0.001903 0.001997 0.001990 0.002004 0.002012 0.002010 0.002038 0.002054

100 0.787610 0.785392 0.785609 0.785173 0.784955 0.785111 0.784545 0.784261

0.000964 0.001019 0.001017 0.001021 0.001023 0.001022 0.001029 0.001033

0.9

10 0.036569 0.029611 0.029755 0.029468 0.029327 0.025943 0.018368 0.014756

0.002212 0.000556 0.000565 0.000547 0.000538 0.000495 0.000457 0.000478

20 0.033779 0.034082 0.034217 0.033949 0.033817 0.031104 0.025323 0.022586

0.001096 0.000477 0.000484 0.000470 0.000463 0.000408 0.000330 0.000318

30 0.031665 0.034080 0.034189 0.033973 0.033866 0.031723 0.027279 0.025209

0.000628 0.000401 0.000406 0.000396 0.000391 0.000347 0.000278 0.000262

50 0.030256 0.033022 0.033088 0.032956 0.032891 0.031505 0.028678 0.027359

0.000242 0.000236 0.000239 0.000234 0.000232 0.000209 0.000175 0.000166

100 0.028860 0.030302 0.030325 0.030278 0.030255 0.029645 0.028380 0.027770

0.000082 0.000090 0.000090 0.000090 0.000089 0.000085 0.000079 0.000077

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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Table 3. Avarage estimates and corresponding mean squared er-
rors/risks of R(t) for different choise of n and t when α = 1.5 and
β = 0.5 where actual R(0.2) = 0.874, R(0.5) = 0.500 and R(0.9) =
0.045.

t n R̂ML R̂B1

R̂B2(Linex) R̂B3(GELF )

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2

10 0.874192 0.880441 0.881192 0.879683 0.878918 0.879536 0.877680 0.876729

0.008142 0.003009 0.002987 0.003033 0.003059 0.003050 0.003142 0.003195

20 0.873982 0.872569 0.873088 0.872047 0.871521 0.871956 0.870711 0.870078

0.004265 0.001863 0.001853 0.001873 0.001885 0.001878 0.001912 0.001930

30 0.874393 0.869598 0.869997 0.869197 0.868793 0.869128 0.868176 0.867693

0.002691 0.001442 0.001434 0.001450 0.001459 0.001453 0.001478 0.001491

50 0.875334 0.868961 0.869237 0.868683 0.868404 0.868636 0.867980 0.867649

0.001292 0.000944 0.000939 0.000950 0.000955 0.000951 0.000966 0.000975

100 0.874437 0.869591 0.869733 0.869449 0.869306 0.869425 0.869091 0.868923

0.000609 0.000606 0.000604 0.000609 0.000612 0.000610 0.000617 0.000621

0.5

10 0.501461 0.499542 0.502393 0.496691 0.493841 0.493212 0.479664 0.472407

0.024020 0.011413 0.011422 0.011418 0.011438 0.011813 0.013025 0.013872

20 0.498163 0.497941 0.499603 0.496279 0.494617 0.494423 0.487152 0.483395

0.011601 0.005787 0.005783 0.005797 0.005812 0.005910 0.006251 0.006474

30 0.502838 0.502116 0.503334 0.500899 0.499681 0.499604 0.494469 0.491846

0.007896 0.00430 0.004307 0.004296 0.004295 0.004341 0.004465 0.004550

50 0.497907 0.498000 0.498795 0.497205 0.496411 0.496369 0.493065 0.491393

0.004915 0.003033 0.003030 0.003036 0.003041 0.003061 0.003133 0.003178

100 0.499269 0.499646 0.500082 0.499209 0.498772 0.498762 0.496985 0.496091

0.002365 0.001661 0.001661 0.001662 0.001662 0.001667 0.001684 0.001694

0.9

10 0.042168 0.039468 0.039622 0.039315 0.039163 0.035352 0.026263 0.021649

0.001781 0.000528 0.000530 0.000527 0.000525 0.000587 0.000807 0.000959

20 0.045160 0.046053 0.046180 0.045926 0.045800 0.043146 0.036971 0.033781

0.001053 0.000394 0.000395 0.000392 0.000390 0.000400 0.000459 0.000513

30 0.044577 0.047299 0.047403 0.047196 0.047092 0.045040 0.040359 0.037972

0.000727 0.000357 0.000359 0.000356 0.000354 0.000354 0.000373 0.000396

50 0.044447 0.048333 0.048408 0.048257 0.048182 0.046789 0.043676 0.042119

0.000379 0.000279 0.000280 0.000278 0.000277 0.000270 0.000264 0.000268

100 0.043858 0.046646 0.046685 0.046607 0.046568 0.045844 0.044252 0.043462

0.000155 0.000165 0.000166 0.000165 0.000164 0.000161 0.000156 0.000156

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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Table 4. Avarage estimates and corresponding mean squared er-
rors/risks of λ(t) for different choise of n and t when α = 2.8 and
β = 0.8 where actual λ(0.2) = 0.235, λ(0.5) = 1.530 and λ(0.9) =
28.

t n λ̂ML λ̂B1

λ̂B2

c = −0.5 c = 0.5 c = 1

0.2

10 0.212659 0.313104 0.268433 0.179495 0.139538

0.040227 0.059365 0.050593 0.042289 0.041897

20 0.227699 0.279875 0.255613 0.206944 0.183191

0.024096 0.032751 0.029739 0.026911 0.026982

30 0.228798 0.260926 0.244609 0.211838 0.195616

0.015070 0.017770 0.016607 0.015801 0.016135

50 0.228658 0.247889 0.238138 0.218507 0.208703

0.009430 0.010604 0.010247 0.010088 0.010284

100 0.232933 0.242591 0.237783 0.228127 0.223305

0.004708 0.005225 0.005131 0.005085 0.005132

0.5

10 1.527713 1.759105 1.692216 1.562116 1.497889

0.645253 0.692297 0.626148 0.542050 0.522746

20 1.523361 1.615436 1.587562 1.533140 1.506383

0.227766 0.237356 0.224401 0.206981 0.202233

30 1.508165 1.558570 1.542440 1.510611 1.494848

0.103195 0.108809 0.105687 0.102085 0.101525

50 1.515442 1.535820 1.527515 1.510964 1.502708

0.056820 0.059281 0.058701 0.058129 0.058130

100 1.526108 1.534501 1.530836 1.523501 1.519830

0.024845 0.025726 0.025636 0.025553 0.025559

0.9

10 33.641810 34.949716 34.095302 32.380401 31.522558

216.803883 232.935939 212.975812 177.496690 161.996142

20 30.473946 30.805958 30.405633 29.597499 29.190319

71.428341 71.478819 68.002931 62.007851 59.498323

30 29.760384 29.848291 29.587420 29.059841 28.793272

38.963410 40.020913 38.694668 36.473211 35.583057

50 28.950512 28.947054 28.798466 28.498208 28.346406

20.345468 21.397870 20.993493 20.333355 20.080180

100 28.537238 28.599188 28.531815 28.396683 28.328937

8.511153 9.343395 9.232614 9.041654 8.961717

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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Table 5. Avarage estimates and corresponding mean squared er-
rors/risks of λ(t) for different choise of n and t when α = 1.5 and
β = 0.5 where actual λ(0.2) = 1.086, λ(0.5) = 3 and λ(0.9) = 15.

t n λ̂ML λ̂B1

λ̂B2

c = −0.5 c = 0.5 c = 1

0.2

10 1.169160 1.138610 1.083326 0.969943 0.911189

0.578881 0.282840 0.264464 0.256365 0.267456

20 1.126438 1.130396 1.101100 1.042949 1.013914

0.241296 0.119590 0.114397 0.110948 0.112758

30 1.115528 1.136663 1.116351 1.076537 1.056966

0.149128 0.083364 0.079938 0.076227 0.075905

50 1.100535 1.127605 1.114830 1.089977 1.077876

0.072287 0.047207 0.045266 0.042646 0.041937

100 1.095927 1.119173 1.112864 1.100583 1.094604

0.033968 0.029776 0.028847 0.027331 0.026735

0.5

10 3.163512 3.274372 3.189939 3.029371 2.953750

2.061529 1.592072 1.445463 1.206419 1.113028

20 2.955649 2.951840 2.909191 2.826440 2.786523

0.805802 0.538925 0.521216 0.495661 0.487587

30 2.891219 2.847796 2.817406 2.757840 2.728774

0.535141 0.375209 0.373863 0.375581 0.378551

50 2.873531 2.806055 2.786332 2.747164 2.727771

0.324230 0.256955 0.261111 0.271222 0.277145

100 2.866385 2.799225 2.787858 2.765075 2.753677

0.175262 0.165486 0.169514 0.178249 0.182950

0.9

10 19.682280 20.553253 20.138921 19.332664 18.942773

74.221823 77.820319 70.489912 57.178282 51.195827

20 17.047429 17.258969 17.069952 16.697927 16.515474

20.687151 19.057091 17.735260 15.325558 14.236774

30 16.403576 16.389651 16.262977 16.011816 15.887572

12.517064 11.323384 10.766275 9.747012 9.284522

50 15.779786 15.640292 15.564618 15.413565 15.338271

5.990385 5.627023 5.470833 5.190874 5.067049

100 15.459294 15.358812 15.321466 15.246624 15.209147

2.569578 2.791105 2.754111 2.688752 2.660413

*First rows in each coloumn represents the avarage estimates and the second rows represents the
expected risks of the estimates.
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second case (t > β) of the hazard function which is given in Eq. (3) is depend on
only shape (α) parameter and dividing it to (1 − t) bring along large deviations
even if small changes on α, the ERs under LLF do not provide consistent results.
Also, many authors implied that LLF is not as appropriate for estimation of scale
parameter as it is for location parameter and GELF is proposed as a suitable al-
ternative to the modified LINEX loss function [2], [17]. Table 4, 5 show that the
Bayes estimates under GELF has smaller expected risks and loss parameter c = 0.5
gives smallest risks for actual λ > 1 values of hazard function. On the contrary,
MLE estimates has smaller risks while actual values converges to 0. In this case,
ML gives better results than Bayes estimates in terms of ER. Similar to reliability
estimates, the ERs of all hazard estimators decrease as sample size increases as
expected.

6. Real Data Studies

In this section, a real data analysis is used to illustrate the proposed methods.
In this purpose, breaking strengths of 1mm length single carbon fibers data, from
Crowder [7], is used. We scaled the data by subtracting 2 and multiplying 5,
respectively. Thus, the data lie in the interval (0, 1). The sample size of the data
is 58. The scaled data is given in Table 6.

Table 6. Re-scaled breaking strengths of 1mm length single car-
bon fibers data,(n = 58).

0.0494 0.3570 0.5356 0.3362 0.5110 0.2656
0.2710 0.4222 0.6718 0.3824 0.5664 0.3456
0.3566 0.4914 0.1816 0.4432 0.7368 0.4126
0.4164 0.5272 0.3162 0.5084 0.2490 0.4652
0.4804 0.6268 0.3792 0.5476 0.3454 0.5264
0.5268 0.1684 0.4282 0.7142 0.4100 0.6086
0.6198 0.3144 0.5038 0.2252 0.4524 0.7996
0.8120 0,3572 0.5396 0.3452 0.5228 0.8120
0.1280 0.4236 0.6946 0.3928 0.5848
0.2766 0.4932 0.2198 0.4502 0.7442

We fit the STSP distribution to this dataset and we used maximum likelihood
and Bayesian estimation methods. Estimations of the parameters α and β are
reported in Table 7. Then, we applied to data Kolmogorov-Simirnov test to evaluate
goodness of fit and test statistics are reported in Table 8, respectively. For sample
size n = 58 and significance level 0, 05, the critical Kolmogorov-Simirnov test value
is D58,0.05 = 0, 1783. Thus, the null hypothesis that the data come from the STSP
distribution cannot reject. Also, the QQ-plot and hazard plot, Fig. 8, support this
observation.
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Table 7. ML and Bayes estimates of the parameters for the real
data set.

MLE SELF
LLF GELF

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

α 2.6704 2.6734 2.7060 2.6417 2.6111 2.6614 2.6373 2.6253
β 0.4164 0.4092 0.4097 0.4087 0.4083 0.4080 0.4056 0.4044

Estimates of reliability R(t) and failure rate λ(t) under maximum likelihood and
Bayes method are obtained for different choise of t, say t = 0.2, 0.4, 0.6, 0.8, and
reported in Table 9 and Table 10, respectively. We perform the algorithm which
is given above for Bayes estimations with 100 000 iteration. We start the iteration
with the maximum likelihood estimates of parameters and with these good starting
values we prefer not to use burn-in operation. Also, we take every tenth variate as
a independent and identically distributed observation in thinning procedure. Thus,
a sample of 10 000 resulted which is used to calculate the posterior estimates. We
used R program [20] to obtain the simulation results. Convergence of the simulated
Markov chains is assessed by graphical methods.
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Figure 8. Q-Q and the hazard plots of the real dataset.

In this purpose, trace plots (Fig. 9, Fig. 10) which is a plot of the iteration

number, t, against the value of the R
(t)
B and λ

(t)
B at each iteration. Also, density

plots of the posterior distribution of the R and λ are drawn at the same time. It is
observed that Markov chains fluctuates around their center with similar variation.
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Table 8. Kolmogorov-Simirnov test statistics for the real data
set. Kolmogorov-Simirnov critical test value D58,0.05 = 0, 1783.

MLE SELF
LLF GELF

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.1207 0.0862 0.1552 0.1034 0.0690 0.1379 0.1207 0.1379

Table 9. Reliability estimates of the real data set under various t values.

t R̂ML R̂B1
R̂B2 R̂B3

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2 0.9412 0.9363 0.9364 0.9362 0.9361 0.9362 0.9360 0.9359
0.4 0.6260 0.6137 0.6146 0.6129 0.6120 0.6123 0.6093 0.6078
0.6 0.2128 0.2142 0.2146 0.2139 0.2135 0.2125 0.2091 0.2074
0.8 0.0334 0.0354 0.0355 0.0354 0.0353 0.0341 0.0314 0.0300

The density plots seems in a symmetrical and unimodal shape. Morever, autocor-
relation of the chains are evaluated and their plots are given in Fig. 11. The ACF
plots show that thinning is succesful. Also, we computed the sample lag-t auto-
correlation function by autocorr command in library coda [6] in R. For reliability
estimates, the lag-10 autocorrelation is 0.02165095 and the lag-50 autocorrelation
is -0.01679917. In addition to this, the lag-10 autocorrelation is 0.09367374 and the
lag-50 autocorrelation is -0.02822016 for hazard estimates. Thus, we can say that
convergence of the Markov chain is satisfactory.
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Figure 9. Trace plot of reliability estimates on the left and the
density plot of the posterior distribution of reliability on the right.
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Figure 10. Trace plot of hazard estimates on the left and the
density plot of the posterior distribution of hazard on the right.
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Figure 11. Autocorrelation plot for reliability estimates on the
left and for hazard estimates on the right.

7. Bayesian Prediction

In this section, we studied Bayesian prediction of future ordered sample based on
informative of current observed data. Let y1:m, y2:m, · · · , ym:m be a future ordered
observation independent of the given informative sample data x1:n, x2:n, · · · , xn:n.
Then, Bayesian predictive density of the sth{s = 1, 2, · · · ,m} ordered future sample
can be obtained by using

gs:m(y|x) =

∫ ∞
0

∫ 1

0

fs:m(y|α, β)π(α, β|x)dβdα
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Table 10. Failure rate estimates of the real data set under various
t values.

t λ̂ML λ̂B1
λ̂B2 λ̂B3

p = −0.5 p = 0.5 p = 1 c = −0.5 c = 0.5 c = 1

0.2 0.8334 0.8852 0.8964 0.8745 0.8644 0.8732 0.8493 0.8374
0.4 3.9891 3.9164 4.0665 3.7712 3.6333 3.8779 3.7989 3.7584
0.6 6.6760 6.6874 6.8823 6.5091 6.3441 6.6597 6.6044 6.5767
0.8 13.3521 13.3790 14.2480 12.6505 12.0244 13.3201 13.2022 13.1433

where π(α, β|x) denotes the posterior density of the parameters and fs:m(y|α, β)
denotes the pdf of the sth order statistic in the future sample as given in the
following

fs:m(y|α, β) =
m!

(s− 1)!(m− s)!
[
F (y|α, β)

]s−1[
1− F (y|α, β)

]m−s
f(y|α, β)

here f(.|α, β) denotes the pdf which is given in Eq. (1) and F (.|α, β) denotes the
distribution function of the STSP distribution. Çetinkaya and Genç [8] studied the
STSP distribution in detailed in terms of its order statistics. The density of the sth

order statistics is given as

fs:m(y) = αCm,s

{
β(1−α)s∑m−s

i=0 (−1)i
(
m−s
i

)
βi(1−α)xα(s+i)−1 , 0 < y ≤ β

(1− β)ϕ1
∑s−1
i=0 (−1)i

(
r−1
i

)
(1− β)i(1−α)(1− x)ϕ2 , β ≤ y < 1

where Cm,s = m!
(s−1)!(m−s)! , ϕ1 = (1−α)(m− s+ 1) and ϕ2 = α(i+m− s+ 1)− 1.

If we denote the predictive density of ys:m as ĝs:m(y|x), it can be obtained by using

ĝs:m(y|x) =

∫ ∞
0

∫ 1

0

fs:m(y|α, β)π(α, β|x)dβdα (8)

However, it is be noted that Eq. (8) cannot be expressed in closed form and
hence it cannot be evaluated analytically. Thus, we propose a simulation consistent
estimator of ĝs:m(y|x), which can be obtained by using Gibbs sampling MCMC
method described in Section 4. Let suppose that MCMC sample {(αi, βi); i =
1, 2, · · · ,M} obtained from π(α, β|x) using the algorithm given in Section 4, then
a simulation consistent estimator of ĝs:m(y|x) can be obtained as

ĝs:m(y|x) =
1

M

M∑
i=1

fs:m(y|αi, βi)

Further, a simulation consistent estimator of predictive distribution of sth order
statistics, say Ĝs:m(y|x), can be obtained as

Ĝs:m(y|x) =
1

M

M∑
i=1

Fs:m(y|αi, βi)
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where Fs:m(y|α, β) denotes the distribution function of the sth order statistics, i.e.

Fs:m(y|α, β) = Cm,s
∫ y

0
[F (z|α, β)]s−1[1− F (z|α, β)]m−sf(z|α, β)dz

= Cm,s


B(β( yβ )α; s,m− s+ 1) , 0 < y ≤ β

B(s,m− s+ 1)−B
(

(1− β)( 1−y
1−β )α,m− s+ 1, s

)
, β ≤ y < 1

here B(a, b) denotes the beta function and B(·, a, b) denotes the incomplete beta
function. It should be note that, ĝs:m(y|x) is not a point prediction, it is a predictive
density. The point prediction for the future observations under squared error loss
function can be obtained as in the following

ŶS =

∫ 1

0

yĝs:m(y|x) =
1

M

M∑
i=1

∫ 1

0

yfs:m(y|αi, βi)dy =
1

M

M∑
i=1

µs:m

where µs:m is the first moment of sth order statistics of the STSP distribution and
it was given by Çetinkaya and Genç [8] as in the following

µs:m = Cm,s

[
β1−1/αB(β; 1/α+ s,m− s+ 1) +B(1− β;m− s+ 1, s)

−(1− β)1−1/αB(1− β; 1/α+m− s+ 1, s)

]
Finally, point estimation under SELF, denoted by ŶS , can be obtained as in the
following;

ŶS =
1

M

M∑
i=1

Cm,s

[
β

1−1/αi
i B(βi; 1/αi + s,m− s+ 1) +B(1− βi;m− s+ 1, s)

−(1− βi)1−1/αiB(1− βi; 1/αi +m− s+ 1, s)

]
(9)

Further, point prediction under general entropy loss function, denoted by ŶG can
be obtained as

ŶG =

[ ∫ 1

0

y−cĝs:m(y|x)

]−1/c

=

[
1

M

M∑
i=1

∫ 1

0

y−cfs:m(y|αi, βi)dy
]−1/c

Then, solution of this integral is obtained as∫ 1

0

y−cfs:m(y|α, β)dy =

∫ β

0

y−c
[
β

(
y

β

)α]s−1[
1− β

(
y

β

)α]m−s
α

(
y

β

)α−1

dy

+

∫ 1

β

y−c
[
1− (1− β)

(
1− y
1− β

)α]s−1[
(1− β)

(
1− y
1− β

)α]m−s
α

(
1− y
1− β

)α−1

dy
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In the first integral, by change of variable U = β

(
y
β

)α
and binomial expansion for[

1− (1− β)

(
1−y
1−β

)α]s−1

and 1− y = v transformation in the second integral, the

solution can be obtained as∫ 1

0

y−cfs:m(y|α, β)dy = βc(1/α−1)B(β; s− c/α,m− s+ 1) + α

s−1∑
j=0

(
s− 1

j

)
(−1)j(1− β)(1−α)(m−s+j+1)B(1− β;α(m− s+ j + 1, 1− c))

where c < 1. Thus; ŶG can be obtained as

ŶG =

[
1

M

M∑
i=1

Cm,s

(
β
c(1/αi−1)
i B(βi; s− c/αi,m− s+ 1) + αi

s−1∑
j=0

(
s− 1

j

)

(−1)j(1− βi)(1−αi)(m−s+j+1)B(1− βi;αi(m− s+ j + 1), 1− c)
)]−1/c

(10)

Moreover, we can construct a 100γ% predictive interval for ys:m. A symmetrical
predictive interval for future sample can be obtained by solving the following non-
linear equations for the lower bound L and upper bound U,

1 + γ

2
= P (Ys:m > L|data) = 1− F ∗s:m(L|data) =⇒ F ∗s:m(L|data) =

1− γ
2

1− γ
2

= P (Ys:m > U |data) = 1− F ∗s:m(U |data) =⇒ F ∗s:m(U |data) =
1 + γ

2

(11)

It is not possible to obtain the solutions analytically and we need to apply suitable
numerical techniques for solving these nonlinear equations.

Example. Under the future prediction framework, the prediction values of the
first two and last two observations of future sample,y1:m,y2:m,ym−1:m and ym:m,
of size m = 5, 10, 15, 20 based on real data given in Sec. 6 are obtained with
their constructed 95% symmetric predictive interval and reported in Table 11. We
performed similar algorithm process which in given in Sec. 4 with the iteration
number M = 10000 and we used Eq. (9) and Eq. (10) to obtain prediction and
Eq. (11) for their predictive intervals. We take the first 500 values as burn-in pe-
riod and take every third variable as a thinng procedure. Estimations are obtained
under symmetric (SELF) and asymmetric (GELF) loss functions and they are rep-
resented with their expected risks. Under GELF, three different loss parameters
(c = −0.5, c = 0.5, c = 0.75) are considered. For example, based on given real data
set, prediction of the first observation of a future sample with size m = 5 is ob-
tained as 0.263357 with ER 0.000419 under SELF and 0.252411 with ER 0.000964
under SELF (c = −0.5). Table 11 shows that predictions are closer to each other
for the last observations. For all sample sizes and orders, GELF with c = −0.5 loss
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parameter has smallest expected risks. Prediction intervals are getting shorter by
increasing sample size m for each order.

8. Conclusions

Mance et al. [13] first considered the TSP distribution under reliability proper-
ties. Recently, moments of order statistics and stress-strength reliability estimation
under the STSP distribution were studied by Çetinkaya and Genç [8], [9]. In this
study, the STSP distribution is considered as a further research in statistical relia-
bility analysis. In this purpose, we introduced the importance of the distribution as
defined on a finite range and two-sided distribution in reliability context. Particular
reliability indices with their plots are presented. It has both convex and concave
reliability curves according to various cases of its parameters. Also, it has bathtube
failure rate for α < 1 so it is useful for modelling early life, useful life and wear out
proccesses of a component with only single model. By considering the behaviour
of the hazard function, the STSP distribution is IFR class of distribution for α > 1
and has better chance of surviving any shorter period and the worse chance of
surviving any larger period. For the various cases of its parameters, it has both
increasing and decreasing failure rate. We showed that the hazard plot is usable
to determine if a data comes from the STSP distribution or not. Estimation of the
reliability and hazard rate of the STSP distribution are obtained with maximum
likelihood method and Bayesian estimation method under different loss functions.
Loss functions are considered as symmetrical (SELF) and asymmetrical (LLF and
GELF). Based on reliability and hazard estimation studies, our conclusions can be
listed as follows;

• In all cases (t ≤ β, t > β), maximum likelihood estimates tend to give
overestimates.
• Being underestimating or overestimating is not only depend on loss param-

eters, it is also related to relation between t and β.
• Bayes estimates under squared error R̂B1 and Linex loss functions R̂B2

gives under estimates for t ≤ β and over estimates for t > β.
• Bayes estimates under general entropy loss function R̂B3 gives under esti-

mates for t ≤ β. On the other hand, for t > β it gives under estimate for
c = 0.5 and c = 1.
• Linex loss function is not proposed to obtain consistent estimations for

hazard rate since the second case of the hazard function in Eq. 3 brings
along large deviations even if small changes on α.
• For λ > 1 actual values of hazard function, Bayes estimates under GELF

has smaller expected risks and loss parameter c = 0.5 gives smallest risks.
• MLEs of hazard rate have smaller risks while actual values converges to

zero.
• While actual values of hazard rate λ converges to zero, ML gives better

results than Bayes estimates in terms of expected risks.
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Table 11. Bayesian point future predictions under SELF and
GELF, their expected risks and corresponding predictive bounds
for various sample size (m) and the first and last two ordered sam-
ples (r) based on given real dataset.

Bayes Point Predictors

GELF

m r SELF c = −0.5 c = 0.5 c = 0.75 Prediction Interval

5 1 0.263357 0.252411 0.225168 0.216594 0.078675 0.445661

(0.000419) (0.000964) (0.003864) (0.012944) (0.366985)

2 0.368356 0.362191 0.348675 0.344976 0.191825 0.504161

(0.000397) (0.000400) (0.000741) (0.002049) (0.312337)

4 0.542520 0.537029 0.525876 0.523051 0.364299 0.763211

(0.000536) (0.000237) (0.000346) (0.000886) (0.398912)

5 0.663595 0.657488 0.644880 0.641650 0.432850 0.897675

(0.000640) (0.000190) (0.000282) (0.000726) (0.464825)

10 1 0.211261 0.202036 0.179387 0.172369 0.062818 0.370456

(0.000411) (0.001357) (0.004510) (0.014746) (0.307638)

2 0.285261 0.279898 0.267940 0.264628 0.142756 0.419541

(0.000430) (0.000701) (0.001144) (0.003090) (0.276785)

9 0.638138 0.634510 0.627164 0.625311 0.468758 0.817628

(0.000981) (0.000300) (0.000334) (0.000786) (0.348871)

10 0.744783 0.740974 0.733117 0.731103 0.543045 0.928041

(0.000817) (0.000185) (0.000213) (0.000508) (0.384996)

15 1 0.175294 0.166855 0.146081 0.139594 0.049536 0.317008

(0.000378) (0.001819) (0.005730) (0.018808) (0.267472)

2 0.243967 0.238845 0.227423 0.224256 0.120202 0.366792

(0.000559) (0.001252) (0.001789) (0.004687) (0.246590)

14 0.690972 0.688235 0.682689 0.681288 0.534454 0.848207

(0.000893) (0.000234) (0.000250) (0.000580) (0.313753)

15 0.774991 0.772149 0.766314 0.764824 0.595999 0.935209

(0.000720) (0.000151) (0.000165) (0.000385) (0.339210)

20 1 0.166227 0.158357 0.139102 0.133144 0.048739 0.298049

(0.000447) (0.002244) (0.005961) (0.019004) (0.249311)

2 0.225341 0.220638 0.210224 0.207360 0.111514 0.340080

(0.000470) (0.001219) (0.001751) (0.004582) (0.228566)

19 0.721969 0.719759 0.715280 0.714149 0.578303 0.863639

(0.000883) (0.000211) (0.000221) (0.000507) (0.285337)

20 0.793014 0.790657 0.785832 0.784603 0.629258 0.939188

(0.000756) (0.000151) (0.000160) (0.000369) (0.309930)

*First rows in each coloumn represents the point estimation values and prediction interval (last

coloumn), the second rows in brackets represents the expected risks of the estimates and length
of prediction interval (last coloumn).
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All obtained results are illustrated with a real data example. The reliability and
hazard rate estimates for various fixed point are obtained. Convergency of the
obtained Markov chain is checked and consistent estimations are reported. Finally,
we obtained the prediction of the future observations based on given datasets. For
various sample size, the first two and last two observations are predicted with their
prediction interval.

There are still some other problems concerning the STSP distribution. For ex-
ample, censored or truncated sampling schemes may be considered in the frame of
reliability estimation and prediction.
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PREDICTING CREDIT CARD CUSTOMER CHURN USING
SUPPORT VECTOR MACHINE BASED ON BAYESIAN

OPTIMIZATION
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Abstract. In this study, we have employed a hybrid machine learning algo-
rithm to predict credit card customer churn. The proposed model is Support
Vector Machine (SVM) with Bayesian Optimization (BO). BO is used to opti-
mize the hyper-parameters of the SVM. Four di¤erent kernels are utilized. The
hyper-parameters of the utilized kernels are calculated by the BO. The pre-
diction power of the proposed models is compared by four di¤erent evaluation
metrics. Used metrics are accuracy, precision, recall and F1-score. According
to each metrics linear kernel has the highest performance. It has accuracy of
%91. The worst performance achieved by sigmoid kernel which has accuracy
of %84.

1. Introduction

Customer churn is a business term expression which describes loss of customers.
Firms invest in order not to lose their customers. Marketing departments continu-
ously investigate the behavior of their existing customers and potential customers
to understand the underlying causes of churn. These investigations are costly and
time consuming. For that reason, in this study we propose a hybrid machine learn-
ing algorithm to predict customer churn of a bank by using the available data.
We propose a model based on Support Vector Machine (SVM) which has many
applications on regression and classi�cations. We utilized SVM as the classi�er
in this study because it ensure to use the technique called kernel transformations,
projects the features space to a higher dimension, which makes it easier to �nd the
bound between the classi�cation objects. These kernels are non-linear so SVM can
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capture complex relations between the observations without making complex cal-
culations. Some application areas of SVM are �nancial bubble detection [1], stock
market movement forecasting [2], �nancial time series forecasting [3], oil price fore-
casting [4] and air pollution modelling [5].
The SVM has three hyper-parameters. The �rst one is C. It is the penalty

parameter and it tells the magnitude of the margin of the hyperplane. Large values
of C imply small margin while small values of C imply large margins. The second is
the kernels. These can be radial basis, polynomial or sigmoid. The last one is the 
parameter. It decides the curvature of the hyperplane. A high value indicates more
curvature while a low value represents less curvature. The parameters can not be
predicted by the algorithm itself. They can be de�ned by the user or optimization
algorithms can be employed to decide these parameters. In this study we use
Bayesian Optimization to handle the hyper-parameter optimization problem.

[1] compares SVM with arti�cial neural networks (ANN), k-nearest neighbours
(KNN) decision tress (DT), random forest (RF) and logistic regression (LR) to
predict �nancial bubbles in the S&P 500 index. Their �ndings show that SVM is
favourable among the others with almost %95 accuracy. [2] compares the perfor-
mance of SVM with Linear Discriminant Analysis, Elman Backpropagation Neural
Networks and Quadratic Discriminant Analysis to predict the markets movements
of NIKKEI 225. Their results show that SVM outperforms the other classi�ers. [3]
compares SVM with multi-layer back-propagation (BP) neural network to forecast
�ve futures contracts of Chicago Mercantile Market. The authors show that SVM
outperforms BP based on weighted directional symmetry, mean absolute error,
directional symmetry and normalized mean square error. [4] investigated the pre-
diction power of SVM on oil price forecasting and compared it with auto regressive
moving average (ARIMA) and BP. The �ndings show that the prediction power of
SVM outperforms the others. Lastly, [5] use SVM to predict air pollution in the
urban areas of Honk Kong and the proposed model compared with ANN. The �nd-
ings reveal that SVM performs better than ANN. The literature above mentioned
provides the necessary evidence of the performs of SVM in both classi�cation and
regression. For that reason, in this study we chose our classi�er as SVM.
Summary of some related works which employ machine learning algorithms to

predict customer churn are given in this paragraph. Customer churn prediction
based on textual data is studied by [6]. The Convolution Neural Network (CNN) is
proposed as the model. The data set contains structured information with textual
information. The results show that using textual data as a feature of the model
increases the performance of the proposed model. [7] use churn rate of the customer
to predict the electricity sales of the power market. Credit card churn prediction is
done by [8]. The used models are logistic regression and decision tree based meth-
ods. The comparison of the models show that logistic regression performs better
than the tree algorithms. Extended SVM (E-SVM) and ANN are proposed by [9]
to model customer churn in e-commerce sector. The results show that E-SVM has
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better performance based on accuracy, coverage rate, hit ratio and lift coe¢ cient.
Also, it is noted that the new algorithm handles data well when imbalanced is
an issue. [10] propose SVM and RF to predict customer churn of telecom sector
and the results reveal that the investigate learning models behave similarly. Ten
di¤erent machine learning algorithms are compared by [11] to classify customer
churn. The �ndings of the study indicate that best performance achived by RF and
ADA boost with almost %96 accuracy and SVM with %94 accuracy. Some other
recent machine learning approach on customer churn predictions are [12], [13], [14]
and [15].
The remainder of this paper is organized as follows. Section 2 devoted to the

methodology. Data and experimental results are given in Section 3 and �nally
Section 4 concludes the study.

2. Methodology

2.1. Support Vector Machine. Support vector machine is a supervised machine
learning algorithm that can be used for regression or classi�cation. It is introduced
by [16]. The main idea under the algorithm is to �nd a hyperplane to separate a data
set into multiple classes. For instance, if there are two linearly separable classes in a
data set, multiple lines can divide the data into two parts. SVM proposes to �nd the
line which maximize the margin between the closest data points. These data points
are called support vectors. For more than two separable case the algorithm uses
hyperplane for classi�cation. If the data set contains classes which are not linearly
separable than kernel tricks are used. It is the transformation of the features to the
higher dimensions which makes it easier to separate.
Suppose it is given a data set which has n observations of d variables with features

(x1; x2; :::; xd) where xi 2 Rn and labels (y1; y2; :::; yn) where yi 2 f�1; 1g. De�ne
the linear classi�er

y(x) = sign(wTx+ b); (1)

where w is the weight vector and b is the bias term. If the data set is linearly
separable than the hyperplane wTx+ b separates the two class as:

wTx+ b � 1 for y = 1;

wTx+ b < 1 for y = �1:
(2)

These two equations can be combined in one equations by multiplying both by y
that is

y(wTx+ b) � 1: (3)

The margin between the support vectors and the hyperplane is 2
kwk . The optimal

solution is found by maximizing the margin that is to minimize the length of w:

min
1

2
kwk2 s.t y(wTx+ b) � 1: (4)
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Solution for the above optimization problem can be obtained by using the La-
grange�s method as

L(w; b; �) =
1

2
kwk2 �

nX
i=1

�i(yi(xiw
T + b)� 1); (5)

where

w =
nX
i=1

�iyixi; (6)

and � is the non-negative Lagrange multiplier. The classi�er for the linear case can
be obtained as

f(x) = sign

 
nX
i=1

�iyi(x
Txi) + b

!
: (7)

In the non linear case the classi�er transformed to

f(x) = sign

 
nX
i=1

�iyiK(x; xi) + b

!
; (8)

where K(xi; xj) is the kernel function of the form

K(xi; xj) = �(xi)
T�(xj): (9)

Mostly used kernels are:

Radial basis kernel : K(xi; xj) = exp(�kxi � xjk2);

Polynomial kernel : K(xi; xj) = (xiTxj + r)d;

Sigmoid kernel : K(xi; xj) = tanh(xiTxj + r):

2.2. Bayesian Optimization. Bayesian optimization is an iterative optimization
which is very popular in hyper-parameter optimization of machine learning algo-
rithms [17]. It searches and �nds the candidate values based on previously obtained
values. It contains two important elements called acquisition function and surro-
gate model [18]. The observed data points are �t into an objective function by
the surrogate model. The acquisition function determines which points are used
to balance the distribution of the surrogate model by evaluating the arrangements
between exploration and exploitation [19]. Exploration is the process to search the
upsampled area while the exploitation is the process of searching the most promising
area in which the global minima or maxima may occurs.
In this paragraph we try to summarize Bayesian Optimization based on the

work [17]. Firstly, the algorithm builds a surrogate model for the objective function.
Secondly, using the surrogate model, it determines the optimal parameter values.
Thirdly, the determined values are tested in the real objective function. Finally,
the surrogate model is updated by the new results. These procedure repeats until
the maximum number of iterations are achieved based on the initially surrogate
model. Gaussian process can be given as a classic example of a surrogate model.
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This algorithm is more e¢ cient than grid search and random search, for that reason
it is employed in this study.

2.3. Evaluation Metrics. We use 4 di¤erent evaluation metrics to test the per-
formance of the proposed hybrid model. These are precision, recall, F1-score and
accuracy. Precision is the ratio of true positives to the sum of true positives and
false positives.

Precision =
True Positive

True Positive+ False Positive
:

It measures the classi�er ability to not to label a sample as positive which is neg-
ative. Recall is the ratio of true positives to the sum of true positives and false
negatives.

Recall =
True Positive

True Positive+ False Negatives
:

It measures the classi�er ability to identify the all positive sample points. F1-score
is the weighted average of precision and recall. It can take values between 0 and
1. The performance of the algorithm is at the best when takes value 1 or near to
1. In the same manner it is the worst when takes 0 or values very near to 0. It is
calculated by the following formula:

F1 = 2
Precision � Recall
Precision+ Recall

:

Finally, accuracy is the fraction that the model predicts correctly. It is calculated as
the ratio of sum of the total true positive and true negative to the total predictions.
That is

Accuracy =
True Positive+ True Negative

True Positive+ True Negative+ False Positive+ False Negative
:

It can take values between 1 and 0. If the performance of the model is high, it will
take values near to 1, otherwise near to 0.

3. Data and Analysis

The data set for this study is obtained from the Kaggle [20] which is a ma-
chine learning and data science community. The data set contains 20 variables and
each contains 10127 observations with no missing values. The variable with their
descriptions are given in Table 1.
The data set contains categorical and numerical variables. Categorical variables

are: AF, EL, MS, IC, GN, ID and CC. AF is the target variable. Numerical
variables are CA, DC, MB, TR, MI, CC12, CL, OB, TA, TT, TC, TC4, TR, RB
and AU. Categorical variables are converted to binary and one hot encoding. The
target variable AF takes 1 if it is existing customer and 0 otherwise. GN takes value
0 if it is male and 1 otherwise. The rest of the categorical variables are converted
to the one hot encoding format.
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Table 1. Variables with their descriptions

Variables Descriptions
1 ID Unique identi�er for the customer.
2 Attrition Flag (AF) Customer activity. If the account is closed takes

value 1 otherwise 0.
3 Customer Age (CA) Demographic variable. Customer ages in years.
4 Gender (GN) Demographic variable. M for male and F for female.
5 Dependent Count (DC) Number of dependents.
6 Education Level (EL) Demographic variable which takes the values of high

school, graduate, college, post-graduate, doctorate,
uneducated and unknown.

7 Marital Status (MS) Demographic variable which can be married, single,
divorced and unknown.

8 Income Category (IC) Demographic variable which can be less than 40000$,
between 40000$ and 60000$, between 60000$ and
80000$, between 800000$ and 120000$ and greater
than 120000$.

9 Card Category (CC) Product variable which represent the card category.
It takes the values of blue, silver, gold and platinum.

10 Months on Book (MB) Represents the time of period with the bank.
11 Months Inactive (MI) Number of months in active in the last 12 months.
12 Contacts Count (CC12) Number of contacts in the last 12 months.
13 Credit Limit (CL) The amount of credit limit on the card.
14 Revolving Balance (RB) Total revolving balance on the card.
15 Open to Buy Credit (OB) Average of open to buy credit on line of 12 months.
16 Total Amount of Changes (TA) Change in transaction from the �rst quarter to the

fourth quarter.
17 Total Transaction Amount (TT) Total transaction amount of the last 12 months.
18 Total Transaction Count (TC) Total transaction count of the last 12 months.
19 Total Change in Transaction

Count (TC4)
Change in transaction count from the �rst quarter
to the fourth quarter.

20 Total Relationship Count (TR) Total number of products held by the customer.
21 Average Utilization Ratio (AU) Average credit card utilization ratio.

As an example consider the transformation of CC:

Card Category =

8>>>><>>>>:
1 0 0 0 if card category = blue,

0 1 0 0 if card category = silver,

0 0 1 0 if card category = gold,

0 0 0 1 if card category = platinum.
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For categorical variables which has more than 2 di¤erent observations, one hot
encoding is used. It is used because there is no ordinary relations between the
observations. Otherwise, algorithms would assume natural ordering between the
categorical variables which leads poor performance.
According to the data 16% of the customer leaving the bank while 86% staying.

The vast majority of the customers are married and female level is slightly higher
than the male proportion by 3% . Mostly, blue credit cards are used and in general
income levels are less than 40000$. More than 30% of the credit card users have
graduate level. The age of the customers are between 26 and 73. Lastly, credit card
limits are between 1.438 and 34.516. Correlation between the numerical variables
are given in Figure 1. The colour codes of the �gure is given in the right hand side
of the table. Light red implies strong positive correlation while dark purple implies
negative correlations. It is seen that there exists high positive correlation between
MA - CA, OB - CL, TC4 - TA and AU - RB, high negative correlation between
AU - CL and AU - OB.
The data set divided into test and train set. The test set contains the %20 of

the data while the rest is the train set.
We have started our analysis with the linear kernel. The best parameter for C,

the penalty parameter, is obtained as 37:5598. On the train set the algorithm with
the given parameters has %91 accuracy. The other metrics are given in the Table
2.

Figure 1. Correlation between numerical variables
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Table 2. Evaluation Metrics for the Linear Kernel

Label Precision Recall F1-score Support
0 0.78 0.60 0.68 319
1 0.93 0.97 0.95 1707
Macro Average 0.85 0.79 0.81 2026
Weighted Average 0.91 0.91 0.91 2026

As Table 2 shows linear kernel has weighted average, calculates the metrics for
each label and takes the weighted average according to number of supports, of the
precision, recall and F1-score as 0:91 while it has accuracy of %91.
Secondly, polynomial kernel is utilized and by the help of the Bayesian optimiza-

tion the best parameter for C is obtained as 0:28860 with  = 5:3504. The accuracy
of the train set with the given parameters are obtained as %87. The other metrics
are given in Table 3.

Table 3. Evaluation Metrics for the Polynomial Kernel

Label Precision Recall F1-score Support
0 0.61 0.63 0.62 319
1 0.93 0.92 0.93 1707
Macro Average 0.77 0.78 0.77 2026
Weighted Average 0.88 0.88 0.88 2026

As Table 3 shows polynomial kernel has weighted average of the precision as
0:77, recall as 0:78, F1-score as 0:77 while it has accuracy of %88. It can be said
that polynomial kernel is worse than the linear kernel according to the calculated
metrics.
Thirdly, radial basis kernel is employed to predict credit card churns. The best

parameter for C is obtained as 11:6085 with  = 3:2151. The accuracy of the kernel
in the train set is obtained as %86. The other metrics are given in Table 4.

Table 4. Evaluation Metrics for the Radial Kernel

Label Precision Recall F1-score Support
0 0.62 0.31 0.42 319
1 0.88 0.96 0.92 1707
Macro Average 0.75 0.64 0.67 2026
Weighted Average 0.84 0.86 0.84 2026

As Table 4 shows radial kernel has weighted average of the precision as 0:75,
recall as 0:64, F1-score as 0:67 while it has accuracy of %86. It can be said that
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polynomial kernel is worse than the linear kernel and polynomial kernel according
to the calculated metrics.
Lastly, sigmoid function is used as a kernel. The best parameters for the model

are observed as C = 45:4489,  = 6:3796. The model with these parameters have
%83 accuracy. The metrics on the test set are given in Table 5.

Table 5. Evaluation Metrics for the Sigmoid Kernel

Label Precision Recall F1-score Support
0 0.20 0.00 0.01 319
1 0.84 1.00 0.91 1707
Macro Average 0.52 0.50 0.46 2026
Weighted Average 0.74 0.84 0.77 2026

The worst result upon the investigated kernels are achieved by the sigmoid func-
tions. The algorithm made 2026 forecasts and 2021 were identi�ed as 1. As Table
5 shows it has accuracy of %84 while it has very low scores on precision, recall and
F1-score.

4. Conclusion

In this study, it is aimed to use a hybrid machine learning algorithm to classify
the credit card churn of a bank. It is shown that the best kernel to predict churn
behaviour of the customers is the SVM with linear kernel. Although, the data
set is complex and contains many explanatory variables, a linear model �ts the
data better than the non-linear ones. The hyper-parameters of the algorithm is
obtained by another algorithm called Bayesian optimization. Although, Bayesian
optimization is not the only choice, it is utilized because of the �exibility and the
speed of the algorithm. For the future studies the hyper-parameter optimizations
tools can be compared and other machine learning and deep learning algorithms
can be utilized to classify the churn behaviour of the customers.
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EMBEDDINGS BETWEEN WEIGHTED TANDORI AND
CESÀRO FUNCTION SPACES

Tu¼gçe ÜNVER YILDIZ
Department of Mathematics, Faculty of Science and Arts, Kirikkale University, Kirikkale,

TURKEY

Abstract. We characterize the weights for which the two-operator inequality�Z x

0
f(t)pv(t)pdt

� 1
p

q;u;(0;1)

� c
 ess sup
t2(x;1)

f(t)


r;w;(0;1)

holds for all non-negative measurable functions on (0;1), where 0 < p < q �
1 and 0 < r < 1, namely, we �nd the least constants in the embeddings
between weighted Tandori and Cesàro function spaces. We use the combina-
tion of duality arguments for weighted Lebesgue spaces and weighted Tandori
spaces with weighted estimates for the iterated integral operators.

1. INTRODUCTION

Given two function spaces X, Y and an operator T, a standard problem is
characterizing the conditions for which T maps X into Y . If X and Y are (quasi)
Banach spaces of measurable functions, a bounded operator T : X ! Y satis�es
the inequality kT fkY � ckfkX for all f 2 X where c 2 (0;1). When T is the
identity operator I, we say that X is embedded into Y and write X ,! Y . The
least constant c in the embedding X ,! Y is k I kX!Y .
In this paper, we �nd the optimal constants in the embedding between weighted

Tandori and Cesàro function spaces. We shall begin with the de�nitions of the
function spaces considered in this paper.
Given a measurable function f on E, we set

kfkp;E :=
�Z

E

jf(x)jpdx
�
; 1 � p <1
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and
kfk1;E := ess sup

x2E
jf(x)j; p =1:

If w is a weight on E, that is, measurable, positive and �nite a.e. on E, then we
denote by Lp;w(E)1, the weighted Lebesgue space, the set of measurable functions
satisfying kfkp;w;E := kfwkp;E <1.
Let 0 < p; q � 1, u be a non-negative measurable function and v be a weight,

the weighted Cesàro space Cesp;q(u; v) is the set of all measurable functions such
that kfkCesp;q(u;v) <1, where

kfkCesp;q(u;v) :=
kfkp;v;(0;x)q;u;(0;1)

;

and the weighted Copson space Copp;q(u; v) is the set of all measurable functions
such that kfkCopp;q(u;v) <1, where

kfkCopp;q(u;v) :=
kfkp;v;(x;1)


q;u;(0;1)

:

The classical Cesàro spaces Ces1;p(x�1; 1), 1 � p <1 were de�ned by Shiue [20]
in 1970. When 1 < p <1 Hassard and Hussein [12] proved that Ces1;p(x�1; 1) are
separable Banach spaces and Bennett [4] showed that the spaces Ces1;p(x�1; 1) and
Cop1;p(1; x

�1) coincide. Dual spaces of the classical Cesàro function spaces were
considered in [4, 21]. In [1], factorization theorems for classical Cesàro function
spaces were given and based on these results the dual spaces of classical Cesàro
function spaces were presented. One weighted Cesàro function spaces Ces1;p(w

1
p ; 1)

and their duals were considered in [13]. Recently, in [3], factorization of the spaces
Ces1;p(x

�1w
1
p ; 1) and Cop1;p(w

1
p ; x�1) are given.

We do not aim to give a thorough set of references on the history of these spaces.
Instead, we refer the interested reader to survey paper [2], where the comprehensive
history on the structure of Cesàro and Copson function spaces are given.
In this paper our primary focus is the following inequality

kfkCesp2;q2 (u2;v2) � ckfkCopp1;q1 (u1;v1) (1)

for all measurable functions where 0 < pi; qi � 1, i = 1; 2.
There is more than one motivation to study inclusion between Cesàro and Cop-

son spaces. First of all when p1 = q1 or p2 = q2, weighted Cesàro and Copson
function spaces coincide with some weighted Lebesgue spaces (see [9, Lemmas 3.4-
3.5]), thus inequality (1) is a generalization of the well-known weighted direct and
reverse Hardy-type inequalities (e.g. [15,7,19]). Another justi�cation is to give the
characterization of pointwise multipliers between two spaces of Cesàro and Cop-
son type, because it reduces to the characterization the embeddings between these
spaces. In [11, Section 7] Grosse-Erdmann considered the multipliers between the
spaces of p-summable sequences and Cesàro and Copson sequence spaces. He also
introduced corresponding function spaces but the characterization of the multipliers

1When E = (0;1), we simply write Lp;w instead of Lp;w(0;1).
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between two spaces of Cesàro and Copson type remained open for both sequence
and function spaces for a long time.
The characterization of the inequality (1) is given in one parameter case when

p1 = p2 = 1, q1 = q2 = p > 1, v1(t) = t���1, v2(t) = t��1, u1(t) = t��1=p and
u2(t) = t

���1=p, t > 0, �; � > 0 in [5]. Moreover, it was shown that the inequality
is reversed when 0 < p < 1. In [6], inequality (1) is considered for two di¤erent
parameters in the special case p1 = p2 = 1, q1 = p, q2 = q, v1(t) = t�1, v2(t) = 1,
u1(t)

p = v(t), u2(t)q = w(t)t�q, t > 0, under the restriction q � 1 in order to
characterize the embeddings between some Lorentz-type spaces. Recently, in [9] the
two sided estimates for the best constant in (1) is given for four weights and four
parameters 0 < p1; p2; q1; q2 < 1 under the restriction p2 � q2. Moreover, using
these results, in [9, Theorems 3.11-3.12], the associate spaces of weighted Copson
and Cesàro function spaces were characterized and in [10] pointwise multipliers
between Cesàro and Copson function spaces are given for some ranges of parameters.
Furthermore, in 2015, Lesnik and Maligranda [16,17] began studying these spaces

within an abstract framework, where they used a more general function space X
instead of the weighted Lebesgue spaces. When X is a Banach space, they de-
�ned Cesàro space CX, Copson space C�X and Tandori space eX as the set of all
measurable functions, respectively, with the following norms:

kfkCX =
 1x

Z x

0

jf(t)jdt

X

<1;

kfkC�X =

Z 1

x

jf(t)j
t
dt


X

<1;

kfk eX =
 ess sup
t2(x;1)

jf(t)j

X

<1:

In [18], they named eX as the generalized Tandori spaces in honour of Tandori who
provided dual spaces to the spaces CL1[0; 1] in [22]. Their de�nition is related to
our de�nition in the following way:

CLp;w = Ces1;p(x
�1w(x); 1); C�Lp;w = Cop1;p(w; x

�1); eLp;w = Cop1;p(w; 1):

We should note that recently in [14] multipliers between CLp and CLq are given
when 1 < q � p � 1.
We want to continue this research. In this paper, we will handle the inequality (1)

when p1 =1. In other words, we will consider the embeddings eLr;w ,! Cesp;q(u; v),
namely, we will give the characterization of the following inequality,

kfkCesp;q(u;v) � CkfkeLr;w (2)

for all measurable functions where p; q; r 2 (0;1) with p < q. The restriction on
the parameters arises from the duality argument. The key ingredient of the proof is
combining characterizations of the associate spaces of Tandori spaces, namely, the
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reverse Hardy-type inequality for supremal operators which was given in [19] with
the characterizations of some iterated Hardy-type inequalities.
Throughout the paper, we put 0 � 1 = 0

0 = 0. We write A � B if there exist
positive constants �; � independent of relevant quantities appearing in expressions
A and B such that

� � A

B
� �

holds.
The symbol M will stand for the set of all measurable functions on (0;1), and

we denote the class of non-negative elements of M by M+.
We sometimes omit the di¤erential element dx to make the formulas simpler

when the expressions are too long.
The paper is structured as follows. In Section 2, we formulate the main results

of this paper. In Section 3, we collect some properties and necessary background
material. Finally, in the last section, we give the proofs of our main results.

2. MAIN RESULTS

It is convenient to start this section by recalling some properties of the weighted
Cesàro and Copson spaces. Let 0 < p; q � 1. Assume that u is a non-negative
measurable function and v is a weight. We will always assume that kukq;(t;1) <1
for all t > 0 and kukq;(0;t) < 1 for all t > 0, when considering weighted Cesàro
and Copson function spaces, respectively. Otherwise, these spaces consist only of
functions equivalent to zero (see, [9, Lemmas 3.1-3.2]).
In this section, we will formulate the least constant in the embeddingeLr;w ,! Cesp;q(u; v): (3)

Remark 1. Observe that,

k I kCop1;r(w;v1)!Cesp;q(u;v2) = k I keLr;w!Cesp;q(u;
v2
v1
)

holds. Therefore, it is enough to consider the three weighted case (3).

Remark 2. Note that, when p = q or r =1, this problem is not interesting since
it reduces to the characterizations of Hardy-type inequalities and can be found in [9],
therefore we will consider the cases when r < 1. On the other hand, we have the
restriction p < q, which arises from the duality argument.

Now we are in position to formulate the results of this paper. We begin with the
cases where q =1.

Theorem 3. Let 0 < p; r < 1. Assume that v is a weight, w 2 M+ such that
kwkr;(0;t) <1 for all t 2 (0;1) and w 6= 0 a.e. on (0;1), and u 2M+ such that
kuk1;(t;1) <1 for all t 2 (0;1).
(i) If r � p, then

k I keLr;w!Cesp;1(u;v)
� I1;
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where

I1 := ess sup
x2(0;1)

u(x) sup
t2(0;x)

�Z t

0

vp
� 1

p
�Z t

0

wr
�� 1

r

<1:

(ii) If p < r, then

k I keLr;w!Cesp;1(u;v)
� I2 + I3 + I4

where

I2 := ess sup
x2(0;1)

u(x)

�Z x

0

�Z t

0

vp
� r

r�p
�Z t

0

wr
�� r

r�p

w(t)rdt

� r�p
rp

<1;

I3 := ess sup
x2(0;1)

u(x)

�Z 1

x

�Z t

0

wr
�� r

r�p

w(t)rdt

� r�p
rp
�Z x

0

vp
� 1

p

<1;

and

I4 :=

�Z 1

0

wr
�� 1

r

ess sup
x2(0;1)

u(x)

�Z x

0

vp
� 1

p

<1:

When q <1, we consider the cases r � p and p < r separately.

Theorem 4. Let 0 < r � p < q < 1. Assume that v 2 M+, w 2 M+ such that
kwkr;(0;t) <1 for all t 2 (0;1) and w 6= 0 a.e. on (0;1), and u 2M+ such that
kukq;(t;1) <1 for all t 2 (0;1). Then

k I keLr;w!Cesp;q(u;v)
� I5 + I6;

where

I5 := sup
t2(0;1)

�Z t

0

w(s)rds

�� 1
r
�Z t

0

�Z s

0

v(y)pdy

� q
p

u(s)qds

� 1
q

<1;

and

I6 := sup
t2(0;1)

�Z t

0

w(s)rds

�� 1
r
�Z t

0

v(s)pds

� 1
p
�Z 1

t

u(s)qds

� 1
q

<1:

Theorem 5. Let 0 < p < r < 1 and 0 < p < q < 1. Assume that v 2 M+,
such that v > 0, kvkp;(0;t) <1 for all t 2 (0;1) and kvkp;(0;1) =1. Suppose that
w 2M+ such that kwkr;(0;t) <1 for all t 2 (0;1) and w 6= 0 a.e. on (0;1), and
u 2M+ such that kukq;(t;1) <1 for all t 2 (0;1). Let

�
Z t

0

�Z s

0

vp
� r

r�p
�Z s

0

wr
�� r

r�p

w(s)rds <1 for all t 2 (0;1),

�
Z 1

0

�Z s

0

wr
�� r

r�p

w(s)rds =1,
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�
Z 1

t

�Z s

0

wr
�� r

r�p

w(s)rds <1 for all t 2 (0;1),

�
Z 1

1

�Z s

0

vp
� r

r�p
�Z s

0

wr
�� r

r�p

w(s)rds =1

hold.
(i) If r � q, then

k I keLr;w!Cesp;q(u;v)
� I7 + I8 + I9;

where

I7 :=

�Z 1

0

wr
�� 1

r
�Z 1

0

�Z y

0

v(s)pds

� q
p

u(y)qdy

� 1
q

<1; (4)

I8 := sup
x2(0;1)

�Z x

0

�Z t

0

vp
� r

r�p
�Z t

0

wr
�� r

r�p

w(t)rdt

� r�p
rp
�Z 1

x

uq
� 1

q

<1;

and

I9 := sup
x2(0;1)

�Z 1

x

�Z t

0

wr
�� r

r�p

w(t)rdt

� r�p
rp
�Z x

0

�Z t

0

vp
� q

p

u(t)qdt

� 1
q

<1:

(ii) If q < r, then

k I keLr;w!Cesp;q(u;v)
� I7 + I10 + I11;

where I7 is de�ned in (4),

I10 :=

�Z 1

0

�Z 1

x

uq
� r

r�q
�Z x

0

�Z t

0

vp
� r

r�p
�Z t

0

wr
�� r

r�p

w(t)rdt

� r(q�p)
p(r�q)

�
�Z x

0

vp
� r

r�p
�Z x

0

wr
�� r

r�p

w(x)rdx

� r�q
rq

<1;

and

I11 :=

�Z 1

0

�Z x

0

�Z t

0

vp
� q

p

u(t)qdt

� r
r�q
�Z 1

x

�Z t

0

wr
�� r

r�p

w(t)rdt

� r(q�p)
p(r�q)

�
�Z x

0

wr
�� r

r�p

w(x)rdx

� r�q
rq

<1:

3. BACKGROUND MATERIAL

In this section we quote some known results. Let us start with the characteriza-
tion of the reverse Hardy-type inequality for supremal operator, that is,�Z 1

0

f(t)pu(t)pdt

� 1
p

� C
�Z 1

0

w(t)q
�
ess sup
s2(t;1)

f(s)

�q
dt

� 1
q

(5)
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for all non-negative measurable functions f on (0;1) where 0 < p; q <1.

Theorem 6. [19, Theorem 3.4] Let 0 < p; q < 1. Assume that u 2 M+ and
w 2M+ such that

R t
0
wq <1 for all t 2 (0;1) and w 6= 0 a.e. on (0;1).

(i) If q � p, then inequality (5) holds for all non-negative measurable functions
f on (0;1) if and only if A1 <1, where

A1 := sup
t2(0;1)

�Z t

0

up
� 1

p
�Z t

0

wq
�� 1

q

: (6)

Moreover, the least possible constant C in (5) sati�es C � A1.
(ii) If p < q, then inequality (5) holds for all non-negative measurable functions

f on (0;1) if and only if A2 <1 and A3 <1, where

A2 :=

�Z 1

0

�Z t

0

up
� q

q�p
�Z t

0

wq
�� q

q�p

w(t)qdt

� q�p
pq

; (7)

and

A3 :=

�Z 1

0

up
� 1

p
�Z 1

0

wq
�� 1

q

: (8)

Moreover, the least possible constant C in (5) sati�es C � A2 +A3.

We next recall the characterization of the weighted iterated inequality involving
Hardy and Copson operators, that is,�Z 1

0

�Z t

0

�Z 1

s

g

�
v(s)ds

�q
w(t)qdt

� 1
q

� C
�Z 1

0

g(t)pu(t)pdt

� 1
p

: (9)

Note that the characterization of inequality (9) is given in [8]. In the next theorem,
we provide a modi�ed version of [8, Theorem 3.1], using the gluing lemmas presented
in the recent paper [10]. Denote by

V(t) :=
Z t

0

v(s)ds; t > 0:

Theorem 7. Let 1 < p <1 and 0 < q <1. Assume that u 2M+ and v;w 2M+

such that v(t) > 0, V(t) <1 for all t 2 (0;1) and V(1) =1,

�
Z t

0

V(s)qw(s)qds <1 for all t 2 (0;1) and
Z 1

1

V(s)qw(s)qds =1,

�
Z 1

t

w(s)qds <1 for all t 2 (0;1) and
Z 1

0

w(s)qds =1.

(i) If p � q, then (9) holds for all non-negative measurable functions f on (0;1)
if and only if B1 <1 and B2 <1, where

B1 := sup
x2(0;1)

�Z x

0

V(t)qw(t)qdt
� 1

q
�Z 1

x

u(t)�
p

p�1 dt

� p�1
p

;
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and

B2 := sup
x2(0;1)

�Z 1

x

w(t)qdt

� 1
q
�Z x

0

V(t)
p

p�1 u(t)�
p

p�1 dt

� p�1
p

:

Moreover, the least possible constant C in (9) sati�es C � B1 +B2.
(ii) If q < p, then (9) holds for all non-negative measurable functions f on (0;1)

if and only if B3 <1 and B4 <1, where

B3 :=

�Z 1

0

�Z 1

x

u(t)�
p

p�1 dt

� q(p�1)
p�q

�Z x

0

V(t)qw(t)qdt
� q

p�q

V(x)qw(x)qdx
� p�q

pq

;

and

B4 :=

�Z 1

0

�Z 1

x

w(t)qdt

� q
p�q
�Z x

0

V(t)
p

p�1 u(t)�
p

p�1 dt

� q(p�1)
p�q

w(x)qdx

� p�q
pq

:

Moreover, the least possible constant C in (9) sati�es C � B3 +B4.

Proof. The proof is the combination of [8, Theorem 3.1, (iii)] and [10, Lemma 2.7]
for the �rst case and [8, Theorem 3.1, (iv)] and [10, Lemma 2.8] for the second
case. �

4. PROOFS

Denote by

R(p; r; v; w) := sup
f2M+

kfkp;v;(0;1) ess sup
s2(t;1)

f(s)


r;w;(0;1)

:

Proof of Theorem 3 Let 0 < p; r <1. We have

C = sup
f2M

kfkCesp;1(u;v)
kfkeLr;w = sup

f2M+

ess sup
x2(0;1)

u(x)kfkp;v;(0;x) ess sup
s2(t;1)

f(s)


r;w;(0;1)

:

Fix x 2 (0;1), then

C = sup
f2M+

ess sup
x2(0;1)

u(x)kf�(0;x)kp;v;(0;1) ess sup
s2(t;1)

f(s)


r;w;(0;1)

:

Observe that, interchanging supremum gives

C = ess sup
x2(0;1)

u(x)R(p; r; ~v; w);

where ~v(t) = �(0;x)(t)v(t), t 2 (0;1). Thus, the problem is reduced to the charac-
terization of reverse Hardy-type inequalities for supremal operator. It remains to
apply [Theorem 6, (i)] when r � p and [Theorem 6, (ii)] when p < r.
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�
Proof of Theorem 4 Let 0 < r � p < q <1. We have

C = sup
f2M

kfkCesp;q(u;v)
kfkeLr;w

Since q=p 2 (1;1), by the duality in weighted Lebesgue spaces, we have

kfkpCesp;q(u;v) = sup
g2M+

Z 1

0

�Z t

0

f(s)pv(s)pds

�
g(t)dt�Z 1

0

g(t)
q

q�pu(t)�
qp
q�p dt

� q�p
q

:

Interchanging supremum and Fubini�s Theorem gives that

C = sup
g2M+

1�Z 1

0

g(t)
q

q�pu(t)�
qp
q�p dt

� q�p
qp

sup
f2M+

�Z 1

0

f(s)pv(s)p
Z 1

s

g(t)dt ds

� 1
p

�Z 1

0

�
ess sup
s2(t;1)

f(s)

�r
w(t)rdt

� 1
r

=: sup
g2M+

R(p; r; ~v; w)
kgk

1
p

(10)

where, ~v(s) = v(s)
� R1

s
g(t)dt

� 1
p , s 2 (0;1), and

kgk :=
�Z 1

0

g(t)
q

q�pu(t)�
qp
q�p dt

� q�p
q

:

Note that R(p; r; ~v; w) is the best constant in the inequality�Z 1

0

h(s)pv(s)p
Z 1

s

g(t)dt ds

� 1
p

� c
�Z 1

0

�
ess sup
s2(t;1)

h(s)

�r
w(t)rdt

� 1
r

; h 2M+

for every �xed g 2 M+. Now, we can apply Theorem 6 by taking the parameters
p; r, and weights

w(s) = w(s) u(s) = v(s)

�Z 1

s

g

� 1
p

; s > 0:

Since r � p, according to the �rst case in Theorem 6,

R(p; r; ~v; w) � sup
t2(0;1)

�Z t

0

v(s)p
�Z 1

s

g

�
ds

� 1
p
�Z t

0

w(s)rds

�� 1
r
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holds. Thus,

C � sup
g2M+

sup
t2(0;1)

�Z t

0

v(s)p
�Z 1

s

g

�
ds

� 1
p
�Z t

0

w(s)rds

�� 1
r

kgk
1
p

:

Interchanging suprema yields that

C � sup
t2(0;1)

�Z t

0

w(s)rds

�� 1
r

sup
g2M+

�Z 1

0

v(s)p
�Z 1

s

g

�
�(0;t)(s)ds

� 1
p

kgk
1
p

:

From Fubini�s Theorem and duality in weighted Lebesgue spaces with q=p 2 (1;1)
again, it follows that

C = sup
t2(0;1)

�Z t

0

w(s)rds

�� 1
r

sup
g2M+

�Z 1

0

g(y)

�Z y

0

v(s)p�(0;t)(s)ds

�
dy

� 1
p

�Z 1

0

g(y)
q

q�pu(y)�
qp
q�p dy

� q�p
qp

� sup
t2(0;1)

�Z t

0

w(s)rds

�� 1
r
�Z 1

0

�Z y

0

v(s)p�(0;t)(s)ds

� q
p

u(y)qdy

� 1
q

:

Observe that,Z 1

0

�Z y

0

v(s)p�(0;t)(s)ds

� q
p

u(y)qdy

=

Z t

0

�Z y

0

v(s)pds

� q
p

u(y)qdy +

�Z t

0

v(s)pds

� q
p
�Z 1

t

u(y)qdy

�
:

Thus we arrive at C � I5 + I6.
�

Proof of Theorem 5 Let 0 < p < r <1 and 0 < p < q <1. Using the steps
identical to the preceding proof, which relies on q=p 2 (1;1), duality in weighted
Lebesgue spaces, and Fubini�s Theorem one can see that (10) holds. Since p < r,
applying the second case of Theorem 6, we obtain that

R(p; r; ~v; w) �
�Z 1

0

�Z t

0

v(s)p
�Z 1

s

g

�
ds

� r
r�p
�Z t

0

wr
�� r

r�p

w(t)rdt

� r�p
rp

+

�Z 1

0

v(s)p
�Z 1

s

g

�
ds

� 1
p
�Z 1

0

wr
�� 1

r

:
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Then, C � C1 + C2, where

C1 := sup
g2M+

�Z 1

0

�Z t

0

v(s)p
�Z 1

s

g

�
ds

� r
r�p
�Z t

0

wr
�� r

r�p

w(t)rdt

� r�p
rp

kgk
1
p

and

C2 :=

�Z 1

0

wr
�� 1

r

sup
g2M+

�Z 1

0

v(s)p
Z 1

s

g(y)dy ds

� 1
p

kgk
1
p

:

First observe that, using Fubini�s Theorem and duality principle one more time, we
have

C2 =

�Z 1

0

wr
�� 1

r
�Z 1

0

�Z y

0

v(s)pds

� q
p

u(y)qdy

� 1
q

;

and Cp1 is the best constant in the inequality (9) with parameters p =
q
q�p and

q = r
r�p , and weights

u(s) = u(s)�p; v(s) = v(s)p; w(s) =

�Z s

0

wr
��1

w(s)r�p; s > 0:

It remains to apply Theorem 7. To this end we should again split this case into
two parts.
(i) If r � q, then applying the �rst case in Theorem 7, we obtain that C1 � I8+I9

and the result follows.
(ii) If q < r, then applying the second case in Theorem 7, we obtain that C1 �

I10 + I11 and the result follows.
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ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS OF
COMPLEX ORDER ASSOCIATED WITH PASCAL

DISTRIBUTION SERIES
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Abstract. In this study, by establishing a connection between normalized
univalent functions in the unit disc and Pascal distribution series, we have
obtained the necessary and su¢ cient conditions for these functions to belong
to some subclasses of univalent functions of complex-order. We also determined
some conditions by considering the integral operator for these functions.

1. Introduction

Let A stand for the standard class of analytic functions of the form

f (z) = z +
1X
k=2

akz
k; z 2 U = fz 2 C : jzj < 1g : (1)

Moreover, let S be the class of functions in A, which are univalent in U (see [5]).
The necessary and su¢ cient condition for a function f 2 A to be called starlike

of complex order  ( 2 C� = C n f0g) is f(z)
z 6= 0; z 2 U, and

Re

�
1 +

1



�
zf 0(z)

f(z)
� 1
��

> 0; (z 2 U): (2)

We denote the class of these functions with S�(). The class S�() introduced
by Nasr and Aouf [10].
The necessary and su¢ cient condition for a function f 2 A to be called convex

function of order  ( 2 C�), that is f 2 C() is f 0(z) 6= 0 in U and

Re

�
1 +

1



�
zf 00(z)

f 0(z)

��
> 0; (z 2 U): (3)
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The class C() was introduced by Wiatrowski [15]. It follows from (2) and (3)
that for a function f 2 A we have the equivalence

f 2 C(), zf 0 2 S�():

For a function f 2 A, we say that it is close-to-convex function of order  ( 2
C�), that is f 2 R(), if and only if

Re

�
1 +

1


(f 0(z)� 1)

�
> 0; (z 2 U):

The class R() was studied by Halim [6] and Owa [11].
Let T � A represent the functions of the form

f (z) = z �
1X
k=2

akz
k; (ak � 0): (4)

Many important results for the class T have been given by Silverman [14]. A
lot of consequences have obtained by researchers about the functions in the class
T . Using the functions of the form f (z) = z �

P1
k=n+1 akz

k, Alt¬ntaş et al. [2]
de�ned following subclasses of A(n), which generalizes the results of Nasr et al.
and Wiatrowski [10, 15], and obtained several results for this class. It is clear that
for n = 1, we obtain the class T .

De�nition 1. [2] Let Sn(; �; �) denote the subclass of T consisting of functions
f which satisfy the inequality���� 1

�
zf 02f 00(z)

�zf 0(z) + (1� �)f(z) � 1
����� < �;

(z 2 U;  2 C�; 0 < � � 1; 0 � � � 1):
Also let Rn(; �; �) denote the subclass of T consisting of functions f which satisfy
the inequality ���� 1 (f 0(z) + �zf 00(z)� 1)

���� < �;
(z 2 U;  2 C�; 0 < � � 1; 0 � � � 1):

We note that

Sn(; 0; 1) � S�n() and Rn(; 0; 1) � Rn():

Recently, it has been established a power series that its coe¢ cients were prob-
abilities of the elementary distributions such as Poisson, Pascal, Binomial, etc.
Many researchers have obtained several results about some subclasses of univalent
functions using these series. (see, for example [1, 3, 7, 8, 9, 12,13] )
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A variable x is said to have the Pascal distribution if it takes on the values
0; 1; 2; 3; ::: with the probabilities (1� q)r, qr(1�q)

r

1! , q2r(r+1)(1�q)r
2! ,

q3r(r+1)(r+2)(1�q)r
3! ,..., respectively, where q and r are parameters. Hence

P (X = k) =

�
k + r � 1
r � 1

�
qk(1� q)r; k 2 f0; 1; 2; :::g:

Recently, El-Deeb et al. [4] introduced the following power series whose coe¢ -
cients are probabilities of the Pascal distribution and stated some su¢ cient con-
ditions for the Pascal distribution series and other related series to be in some
subclasses of analytic functions.

Kr
q(z) := z +

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)rzk (5)

(z 2 U; r � 1; 0 � q � 1):
Now let us introduce the following new power series whose coe¢ cients are prob-

abilities of the Pascal distribution.

�rq(z) := 2z �Kr
q(z) = z �

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)rzk (6)

(z 2 U; r � 1; 0 � q � 1):
It is clear that �rq(z) is in the class T . Note that, by using ratio test we deduce

that the radius of convergence of the power series Kr
q(z) and �

r
q(z) are in�nity.

We will need the following Lemmas from Alt¬ntaş et al. [2] to prove our main
results.

Lemma 2. [2] Let the function f 2 A(n), then f is in the class Sn(; �; �) if and
only if

1X
k=n+1

[�(k � 1) + 1] (k + �jj � 1) ak � �jj: (7)

Lemma 3. [2] Let the function f 2 A(n), then f is in the class Rn(; �; �) if and
only if

1X
k=n+1

k [�(k � 1) + 1] ak � �jj: (8)

Throughout this paper, we suppose that n = 1 for the functions in the classes
Sn(; �; �) andRn(; �; �) and we will write S1(; �; �) = S(; �; �) andR1(; �; �) =
R(; �; �) for brie�y.
In the present paper, we established necessary and su¢ cient conditions for the

functions that coe¢ cients consist of Pascal distribution series to be in S(; �; �)
and R(; �; �). Also, we studied similar properties for integral transforms related
to these series.
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2. Main Results

Theorem 4. �rq(z) given by (6) is in the class S(; �; �) if and only if

q2r(r + 1)�

(1� q)2 +
qr(��jj+ �+ 1)

1� q � �jj(1� q)r: (9)

Proof. To prove that �rq 2 S(; �; �), according to Lemma 2, it is su¢ cient to show
that

1X
k=2

[�(k � 1) + 1] (k + �jj � 1)
�
k + r � 2
r � 1

�
qk�1(1� q)r � �jj: (10)

We will use the following very known relation

1X
k=0

�
k + r � 1
r � 1

�
qk =

1

(1� q)r ; 0 � q � 1:

and the corresponding ones obtained by replacing the value of r with r � 1,r + 1
and r + 2 in our proofs.
By making calculations on the left hand side of the inequality (10) we obtain,

1X
k=2

[�(k � 1) + 1] (k + �jj � 1)
�
k + r � 2
r � 1

�
qk�1(1�q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1)(k � 2) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1�jj

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1(k � 1)(��jj+ �+ 1)

#

= (1� q)r
"
q2

1X
k=3

�
k + r � 2
r + 1

�
qk�3�r(r + 1) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1�jj

+q
1X
k=2

�
k + r � 2

r

�
qk�2r(��jj+ �+ 1)

#

= (1� q)r
"
q2

1X
k=0

�
k + r + 1

r + 1

�
qk�r(r + 1) +

1X
k=0

�
k + r � 1
r � 1

�
qk�jj � �jj

+q
1X
k=0

�
k + r

r

�
qkr(��jj+ �+ 1)

#

=
q2r(r + 1)�

(1� q)2 +
qr(��jj+ �+ 1)

1� q + �jj [1� (1� q)r] :
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Therefore the inequality (10) holds if and only if

q2r(r + 1)�

(1� q)2 +
qr(��jj+ �+ 1)

1� q + �jj [1� (1� q)r] � �jj;

which is equivalent to (9). This completes the proof. �
Upon letting � = 0 and � = 1, Theorem 4 yields the following result.

Corollary 5. �rq(z) given by (6) is in the class S(; 0; 1) � S�() if and only if

qr

(1� q)r+1 � jj:

Taking � = 0 and  = � = 1, we obtain the following corollary.

Corollary 6. �rq(z) given by (6) is in the class S(1; 0; 1) � S� if and only if
qr

(1� q)r+1 � 1:

Theorem 7. �rq(z) given by (6) is in the class R(; �; �) if and only if
q2r(r + 1)�

(1� q)2 +
qr(1 + 2�)

1� q + 1� (1� q)r � �jj: (11)

Proof. To prove that �rq 2 R(; �; �), according to Lemma 3, it is su¢ cient to show
that

1X
k=2

k [�(k � 1) + 1]
�
k + r � 2
r � 1

�
qk�1(1� q)r � �jj: (12)

Now,using the same method as in the proof of Theorem 4, we obtain

1X
k=2

k [�(k � 1) + 1]
�
k + r � 2
r � 1

�
qk�1(1� q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1)(k � 2)

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1(k � 1)(1 + 2�) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1

#

= (1� q)r
"
q2

1X
k=3

�
k + r � 2
r + 1

�
qk�3�r(r + 1) + q

1X
k=2

�
k + r � 2

r

�
qk�2r(1 + 2�)

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1

#
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= (1� q)r
"
q2

1X
k=0

�
k + r + 1

r + 1

�
qk�r(r + 1) + q

1X
k=0

�
k + r

r

�
qkr(1 + 2�)

+
1X
k=0

�
k + r � 1
r � 1

�
qk � 1

#

=
q2r(r + 1)�

(1� q)2 +
qr(1 + 2�)

1� q + 1� (1� q)r:

Therefore the inequality (12) holds if and only if

q2r(r + 1)�

(1� q)2 +
qr(1 + 2�)

1� q + 1� (1� q)r � �jj:

This completes the proof. �

As a special case of Theorem 7, if we put � = 0 and � = 1, we arrive at the
following result.

Corollary 8. �rq(z) given by (6) is in the class R(; 0; 1) � R() if and only if

qr

1� q + 1� (1� q)
r � jj:

Taking � = 0 and  = � = 1, we obtain the following corollary.

Corollary 9. �rq(z) given by (6) is in the class R(1; 0; 1) � R(1) if and only if

qr

1� q + 1� (1� q)
r � 1:

3. Integral Operators

In this section, we will give analog results for the integral operators de�ned as
follows:

Hr
q (z) =

Z z

0

�rq(t)

t
dt (13)

where �rq(t) is given by (6).

Theorem 10. Hr
q (z) given by (13) is in the class S(; �; �) if and only if

�qr

(1� q) +
(1� �)(�jj � 1)(1� q)

q(r � 1)
�
1� (1� q)r�1

�
� �jj(1� q)r + ��jj+ 1� � � �jj:

(14)
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Proof. From (13), we can write

Hr
q (z) =

Z z

0

�rq(t)

t
dt = z �

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)r z

k

k
: (15)

According to Lemma 2, it is enough to show that
1X
k=2

[�(k � 1) + 1] (k + �jj � 1)
k

�
k + r � 2
r � 1

�
qk�1(1� q)r � �jj: (16)

Using the assumption (14), a simple computation shows that
1X
k=2

[�(k � 1) + 1] (k + �jj � 1)
k

�
k + r � 2
r � 1

�
qk�1(1�q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1(��jj � �+ 1)

+
1X
k=2

�
k + r � 2
r � 1

�
qk�1

(1� �)(�jj � 1)
k

#

= (1� q)r
"
q

1X
k=2

�
k + r � 2

r

�
qk�2�r +

1X
k=2

�
k + r � 2
r � 1

�
qk�1(��jj � �+ 1)

+
(1� �)(�jj � 1)

q(r � 1)

1X
k=2

�
k + r � 2
r � 2

�
qk

#

= (1� q)r
(
�qr

1X
k=0

�
k + r

r

�
qk + (��jj � �+ 1)

" 1X
k=0

�
k + r � 1
r � 1

�
qk � 1

#

+
(1� �)(�jj � 1)

q(r � 1)

" 1X
k=0

�
k + r � 2
r � 2

�
qk � 1� q(r � 1)

#)

=
�qr

(1� q) + (��jj � �+ 1) [1� (1� q)
r]

+
(1� �)(�jj � 1)

q(r � 1) [(1� q)� (1� q)r � q(r � 1)(1� q)r]

=
�qr

(1� q) +
(1� �)(�jj � 1)(1� q)

q(r � 1)
�
1� (1� q)r�1

�
��jj(1� q)r+��jj+1��:

From (14), we conclude that Hr
q (z) 2 S(; �; �). This completes the proof. �

Theorem 11. Hr
q (z) given by (13) is in the class R(; �; �) if and only if

qr�

(1� q) + 1� (1� q)
r � �jj: (17)
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Proof. Since

Hr
q (z) = z �

1X
k=2

�
k + r � 2
r � 1

�
qk�1(1� q)r z

k

k
; (18)

according to Lemma 3, it is enough to show that
1X
k=2

k [�(k � 1) + 1]
k

�
k + r � 2
r � 1

�
qk�1(1� q)r � �jj: (19)

Using the assumption (17), some simple computations shows that
1X
k=2

k [�(k � 1) + 1]
k

�
k + r � 2
r � 1

�
qk�1(1� q)r

= (1� q)r
" 1X
k=2

�
k + r � 2
r � 1

�
qk�1�(k � 1) +

1X
k=2

�
k + r � 2
r � 1

�
qk�1

#

= (1� q)r
"
q
1X
k=2

�
k + r � 2

r

�
qk�2�r +

1X
k=2

�
k + r � 2
r � 1

�
qk�1

#

= (1� q)r
"
q�r

1X
k=0

�
k + r

r

�
qk +

1X
k=0

�
k + r � 1
r � 1

�
qk � 1

#

=
qr�

(1� q) + 1� (1� q)
r

From (17), we conclude that Hr
q (z) 2 R(; �; �). This completes the proof. �
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Abstract. We present and investigate a new subclass of meromorphic uni-
valent functions described by the Rapid operator in this study. Coe¢ cient
inequalities is discussed, as well as distortion properties, closure theorems,
Hadamard product. After this, integral transforms for the class ��(#; %; }; �; �)
are obtained.

1. Introduction

Let � stands for the function class of the form

@(~) = 1

~
+

1X
`=1

a`~`; ` 2 N = f1; 2; 3; � � � g (1)

analytic in the punctured unit disc �� = f~ 2 C : 0 < j~j < 1g = � n f0g:
A function @ 2 � given by (1) is said to be meromorphically starlike of order %

if it satis�es the following:

<
�
�
�
~@0(~)
@(~)

��
> %; (~ 2 �)

for some %(0 � % < 1): We say that @ is in the class ��(%) of such functions.
Similarly a function @ 2 � given by (1) is said to be meromorphically convex of

order % if it satis�es the following:

<
�
�
�
1 +

~@00(~)
@0(~)

��
> %; (~ 2 �)
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for some %(0 � % < 1): We say that @ is in the class �`(%) of such functions.
Akgul [1,2], Miller [8], Pommerenke [9], Royster [10], Aydogan and Sakar [4,5,11]

and Venkateswarlu et al. [14,15,16] have all studied the class ��(%) and numerous
other subclasses of � extensively.
For functions @ 2 � given by (1) and g 2 � given by

g(~) =
1

~
+

1X
`=1

b`~`;

we de�ne the Hadamard product of @ and g by

(@ � g)(~) = 1

~
+

1X
`=1

a`b`~`:

Jung et al. de�ned the integral operator on normalised analytic functions in [6]
and Lashin [7] updated their operator for meromorphic functions in the following
manner:

Lemma 1. For @ 2 � given by (1), if the operator S�� : �! � is de�ned by

S��@(~) =
1

(1� �)��(� + 1)

1Z
0

t�+1e
�t
1��@(t~)dt; (2)

(0 � � < 1; 0 � � � 1 and ~ 2 �) then

S��@(~) =
1

~
+

1X
`=1

�`(�; �)a`~` (3)

where �`(�; �) = (1� �)
`+1 �(`+�+2)

�(�+1) and � is the familiar Gamma function.

Using the equation (3), it is easily seen that

~(S��@(~))0 = �S��1� @(~)� (�+ 1)S��@(~); (0 � � � 1; 0 � � � 1): (4)

We de�ne a new subclass ��(#; %; }; �; �) of � based on Sivaprasad Kumar et
al. [13] and Venkateswarlu et al. [14] ��(#; %; }; �; �) of �:

De�nition 2. For 0 � # < 1; % � 0; 0 � } < 1
2 ; we let �

�(#; %; }; �; �) be the
subclass of � consisting of functions of the form (1) and satisfying the analytic
condition

�<
 

~(S��@(~))02(S��@(~))00

(1� })S��@(~) + }~(S��@(~))0
+ #

!
> %

����� ~(S��@(~))02(S��@(~))00

(1� })S��@(~) + }~(S��@(~))0
+ 1

����� :
(5)

The following lemmas are needed to prove our �ndings [3].

Lemma 3. If � is a real number and ! is a complex number then

<(!) � � , j! + (1� �)j � j! � (1 + �)j � 0:
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Lemma 4. If ! is a complex number and �; ` are real numbers then

�<(!) � `j! + 1j+ � , �<
�
!(1 + `ei�) + `ei�

�
� �; (�� � � � �):

The key purpose of this paper is to look at some traditional geometric function
theory properties for the class of geometric functions, such as coe¢ cient bounds, dis-
tortion properties, closure theorems, Hadamard product, and integral transforms.

2. Coefficient estimates

We obtain required and adequate conditions for a function @ to be in the class
in this section.

Theorem 5. Let @ 2 � be given by (1). Then @ 2 ��(#; %; }; �; �) i¤
1X
`=1

[(1 + (`� 1)})][`(%+ 1) + (%+ #)]�`(�; �)a` � (1� #)(1� 2}): (6)

Proof. Let @ 2 ��(#; %; }; �; �): Then by De�nition 2 and using Lemma 4, It su¢ ces
to demonstrate that

�<
(

~(S��@(~))02(S��@(~))00

(1� })S��@(~) + }~(S��@(~))0
(1 + %ei�) + %ei�

)
� #; (�� � � � �): (7)

For convenience

C(~) =�
�
~(S��@(~))02(S��@(~))00

�
(1 + %ei�)

� %ei�
�
(1� })S��@(~) + }~(S��@(~))0

�
D(~) =(1� })S��@(~) + }~(S��@(~))0:

That is, the equation (7) is equivalent to

�<
�
C(~)
D(~)

�
� #:

We only need to prove that in light of Lemma 3

jC(~) + (1� #)D(~)j � jC(~)� (1 + #)D(~)j � 0:
Therefore

jC(~) + (1� #)D(~)j

�(2� #)(1� 2}) 1j~j �
1X
`=1

[`� (1� #)][1 + }(`� 1)]�`(�; �)a`j~j`

� %
1X
`=1

(`+ 1)[1 + }(`� 1)]�`(�; �)a`j~j`

and jC(~)� (1 + #)D(~)j
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�#(1� 2}) 1j~j +
1X
`=1

[`+ (1 + #)][1 + }(`� 1)]�`(�; �)a`j~j`

+ %
1X
`=1

(`+ 1)[1 + }(`� 1)]�`(�; �)a`j~j`:

It is to show that

jC(~) + (1� #)D(~)j � jC(~)� (1 + #)D(~)j

�2(1� #)(1� 2}) 1j~j � 2
1X
`=1

[(`+ #)(1 + (`� 1)})]�`(�; �)a`j~j`

� 2%
1X
`=1

(`+ 1)(1 + (`� 1)})�`(�; �)a`j~j`

�0; by the given condition (6).

Conversely suppose @ 2 ��(#; %; }; �; �): Then by Lemma 3, we have (7).
The inequality (7) is reduced to when the values of ~ are chosen on the positive

real axis

<

8>><>>:
[(1� 2})(1� #)(1 + %ei�)] 1~2 +

1P̀
=1

f`+ %ei�(`+ 1) + #g[1 + }(`� 1)]�`(�; �)~`�1

(1� 2}) 1~2 +
1P̀
=1

[1 + }(`� 1)]�`(�; �)a`~`�1

9>>=>>; � 0:

Since <(�ei�) � �jei�j = �1; the above inequality is reduced to

<

8>><>>:
[(1� 2})(1� #)(1 + %ei�)] 1r2 +

1P̀
=1

f`+ %(`+ 1) + #g[1 + }(`� 1)]�`(�; �)a`r`�1

(1� 2}) 1r2 +
1P̀
=1

[1 + }(`� 1)]�`(�; �)r`�1

9>>=>>; � 0:

We obtained the inequality (6) by letting r ! 1� and using the mean value theorem.
�

Corollary 6. If @ 2 ��(#; %; }; �; �) then

a` �
(1� #)(1� 2})

[1 + }(`� 1)][`(1 + %) + (#+ %)]�`(�; �)
: (8)

The estimate is sharp for the function

@(~) = 1

~
+

(1� #)(1� 2})
[1 + }(`� 1)][`(1 + %) + (#+ %)]�`(�; �)

~`: (9)

We get the following corollary by taking } = 0 in Theorem 5.
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Corollary 7. If @ 2 ��(#; %; �; �) then

a` �
1� #

[`(1 + %) + (#+ %)]�`(�; �)
: (10)

3. Distortion theorem

Theorem 8. If @ 2 ��(#; %; }; �; �) then for 0 < j~j = r < 1;
1

r
� (1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

r � j@(~)j � 1

r
+

(1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

r: (11)

This estimate is sharp for the function

@(~) = 1

~
+

(1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

~: (12)

Proof. Since @(~) = 1
~ +

1P̀
=1

a`~`; we have

j@(~)j = 1

r
+

1X
`=1

a`r
` � 1

r
+ r

1X
`=1

a`: (13)

Since ` � 1; (2%+ #+ 1)�1(�; �) � [1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �); using
Theorem 5, we have

(2%+ #+ 1)�1(�; �)
1X
`=1

a` �
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

� (1� #)(1� 2})

)
1X
`=1

a` �
(1� #)(1� 2})

(2%+ #+ 1)�1(�; �)
:

Using the above inequality in (13), we have

j@(~)j � 1

r
+

(1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

r

and j@(~)j � 1

r
� (1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

r:

The estimate is sharp for the function @(~) = 1
~ +

(1�#)(1�2})
(2%+#+1)�1(�;�)

~: �

We omit the proof of the following corollary since it is similar to that of Theorem
8.

Corollary 9. If @ 2 ��(#; %; }; �; �) then
1

r2
� (1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

� j@0(~)j � 1

r2
+

((1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

:

The estimate is sharp for the function given by (12).
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4. Closure theorems

Let the function @j be de�ned, for j = 1; 2; � � � ;m; by

@j(~) =
1

~
+

1X
`=1

a`;j~`; a`;j � 0: (14)

Theorem 10. Let the functions @j ; j = 1; 2; � � � ;m de�ned by (14) be in the class
��(#; %; }; �; �): Then the function h de�ned by

h(~) =
1

~
+

1X
`=1

0@ 1

m

mX
j=1

a`;j

1A ~` (15)

also belongs to the class ��(#; %; }; �; �):

Proof. Since @j ; j = 1; 2; � � � ;m are in the class ��(#; %; }; �; �); it follows from
Theorem 5, that

1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)a`;j � (1� #)(1� 2});

for every j = 1; 2; � � � ;m: Hence

1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

0@ 1

m

mX
j=1

a`;j

1A
=
1

m

mX
j=1

 1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)a`;j

!
� (1� #)(1� 2}):

From Theorem (6), it follows that h 2 ��(#; %; }; �; �):
Hence the proof. �

Theorem 11. The class ��(#; %; }; �; �) is closed under convex linear combina-
tions.

Proof. Let the functions @j ; j = 1; 2; � � � ;m de�ned by (14) be in the class ��(#; %; }; �; �):
Then one need only show that function

h(~) = &@1(~) + (1� &)@2(~); 0 � & � 1 (16)

is in the class ��(#; %; }; �; �): Since for 0 � & � 1;

h(~) =
1

~
+

1X
`=1

[&a`;1 + (1� &)a`;1]~`; (17)
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with the assistance of the Theorem5, we have
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)[&a`;1 + (1� &)a`;1]

�&(1� #)(1� 2}) + (1� &)(1� #)(1� 2})
=(1� #)(1� 2});

which implies that h 2 ��(#; %; }; �; �): �
Theorem 12. Let � � 0: Then ���(#; %; }; �; �) � N(%; �); where

� = 1� 2(1� #)(1� 2})(1 + %)
(2%+ #+ 1) + (1� #)(1� 2}) : (18)

Proof. If @ 2 ���(#; %; }; �; �) then
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)
(1� #)(1� 2}) a` � 1:

We need to �nd the value of � such that
1X
`=1

[`(1 + %) + (%+ �)]�`(�; �)

1� � a` � 1:

Thus it is su¢ cient to show that
[`(1 + %) + (%+ �)]�`(�; �)

1� � � [1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)
(1� #)(1� 2}) :

Then

� � 1� (`+ 1)(1� #)(1� 2})(1 + %)
[1 + }(`� 1)][`(1 + %) + (%+ #)] + (1� #)(1� 2}) :

Since

G(`) = 1� (`+ 1)(1� #)(1� 2})(1 + %)
[1 + }(`� 1)][`(1 + %) + (%+ #)] + (1� #)(1� 2})

is an increasing function of `; ` � 1; we obtain

� � G(1) = 1� 2(1� #)(1� 2})(1 + %)
(2%+ #+ 1) + (1� #)(1� 2}) :

�
Theorem 13. Let @0(~) = 1

~ and

@`(~) =
1

~
+

1X
`=1

(1� #)(1� 2})
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

~`; ` � 1: (19)

Then @ is in the class ��(#; %; }; �; �) i¤ can be expressed in the form

@(~) =
1X
`=0

!`@`(~); (20)
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where !` � 0 and
1P̀
=0

!` = 1.

Proof. Assume that

@(~) =
1X
`=0

!`@`(~)

=
1

~
+

1X
`=1

(1� #)(1� 2})
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

~`:

Then it follows that
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)
(1� #)(1� 2})

(1� #)(1� 2})
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

~`

=
1X
`=1

!` = 1� !0 � 1

which implies that @ 2 ��(#; %; }; �; �):
On the other side, assume that the function @ de�ned by (1) be in the class

@ 2 ��(#; %; }; �; �): Then

a` �
(1� #)(1� 2})

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)
:

Setting

!` =
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

(1� #)(1� 2}) a`;

where

!0 = 1�
1X
`=0

!`;

@ can be expressed in the form (20), as can be shown. �

Corollary 14. The extreme points of the class ��(#; %; }; �; �) are the functions
@0(~) = 1

~ and

@`(~) =
1

~
+

(1� #)(1� 2})
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

~`: (21)

5. Modified Hadamard products

Let the functions @j(j = 1; 2) de�ned by (14). The modi�ed Hadamard product
of @1 and @2 is de�ned by

(@1 � @2)(~) =
1

~
+

1X
`=1

a`;1a`;2~` = (@2 � @1)(~): (22)
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Theorem 15. Let the function @j(j = 1; 2) de�ned by (14) be in the class ��(#; %; }; �; �):
Then @1 � @2 2 ��(#; %; }; �; �); where

' = 1� 2(1� #)2(1� 2})(1 + %)
(2%+ #+ 1)2�1(�; �) + (1� #)2(1� 2})

: (23)

The estimate is sharp for the functions @j(j = 1; 2) given by

@j(~) =
1

~
+

(1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

~; (j = 1; 2): (24)

Proof. Using the same method that Schild and Silverman [12] used earlier, we need
to �nd the largest real parameter ' such that

1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ ')]�`(�; �)
(1� ')(1� 2}) a`;1a`;2 � 1: (25)

Since @j 2 ��(#; %; }; �; �); j = 1; 2; we readily see that
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #]�`(�; �)
(1� #)(1� 2}) a`;1 � 1

and
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #]�`(�; �)
(1� #)(1� 2}) a`;2 � 1:

By Cauchy- Schwarz inequality, we have
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #]�`(�; �)
(1� #)(1� 2})

p
a`;1a`;2 � 1: (26)

Then merely demonstrating that is necessary
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ ')]�`(�; �)
(1� ')(1� 2}) a`;1a`;2

�
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #]�`(�; �)
(1� #)(1� 2})

p
a`;1a`;2

or equivalently that

p
a`;1a`;2 �

[`(1 + %) + (%+ #](1� ')
[`(1 + %) + (%+ '](1� #) :

Hence, it light of the inequality (26), then merely demonstrating that is necessary

(1� #)(1� 2})
[1 + }(`� 1)][`(1 + %) + (%+ #]�`(�; �)

� [`(1 + %) + (%+ #](1� ')
[`(1 + %) + (%+ '](1� #) : (27)

It follows from (27) that

' � 1� (1� #)2(1� 2})(1 + %)(`+ 1)
[1 + }(`� 1)][`(1 + %) + (%+ #]2�`(�; �) + (1� #)2(1� 2})

:
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Now de�ning the function E(`);

E(`) = 1� (1� #)2(1� 2})(1 + %)(`+ 1)
[1 + }(`� 1)][`(1 + %) + (%+ #]2�`(�; �) + (1� #)2(1� 2})

:

We see that E(`) is an increasing of `; ` � 1: Therefore, we conclude that

' � E(`) = 1� 2(1� #)2(1� 2})(1 + %)
(2%+ #+ 1)2�1(�; �) + (1� #)2(1� 2})

;

Hence the proof. �

The following theorem is obtained using arguments close to those used in the
proof of 15,

Theorem 16. Let the function @1 de�ned by (14) be in the class ��(#; %; }; �; �):
Suppose also that the function @2 de�ned by (14) be in the class ��(�; #; %; }; �; �):
Then @1 � @2 2 ��(�; #; %; }; �; �); where

� = 1� 2(1� #)(1� �)(1� 2})(1 + %)
(2%+ #+ 1)(2%+ �+ 1)�1(�; �) + (1� #)(1� �)(1� 2})

: (28)

The estimate is sharp for the functions @j(j = 1; 2) given by

@1(~) =
1

~
+

(1� #)(1� 2})
(2%+ #+ 1)�1(�; �)

~

and

@2(~) =
1

~
+

(1� �)(1� 2})
(2%+ �+ 1)�1(�; �)

~:

Theorem 17. Let the function @j(j = 1; 2) de�ned by (14) be in the class ��(#; %; }; �; �):
Then the function

h(~) =
1

~
+

1X
`=1

(a2`;1 + a
2
`;2)~` (29)

belongs to the class ��("; #; %; }; �; �); where

" = 1� 4(1� #)2(1� 2})(1 + %)
(2%+ #+ 1)2�1(�; �) + 2(1� #)2(1� 2})

: (30)

The estimate is sharp for the functions @j(j = 1; 2) given by (24).

Proof. By using Theorem 5, we obtain
1X
`=1

�
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

(1� #)(1� 2})

�2
a2`;1

�
1X
`=1

�
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

(1� #)(1� 2}) a`;1

�2
� 1 (31)
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and
1X
`=1

�
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

(1� #)(1� 2})

�2
a2`;2

�
1X
`=1

�
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

(1� #)(1� 2}) a`;2

�2
� 1: (32)

It follows from (31) and (32) that
1X
`=1

1

2

�
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

(1� #)(1� 2})

�2
(a2`;1 + a

2
`;2) � 1:

Therefore, we need to �nd the largest " such that

[1 + }(`� 1)][`(1 + %) + (%+ ")]�`(�; �)
(1� ")(1� 2})

�1
2

�
[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)

(1� #)(1� 2})

�2
;

that is

" � 1� 2(1� #)2(1� 2})(1 + %)(`+ 1)
1 + }(`� 1)][`(1 + %) + (%+ #)]2�`(�; �) + 2(1� #)2(1� 2})

:

Since

G(`) = 1� 2(1� #)2(1� 2})(1 + %)(`+ 1)
[1 + }(`� 1)][`(1 + %) + (%+ #)]2�`(�; �) + 2(1� #)2(1� 2})

is an increasing function of `; ` � 1; we obtain

" � G(1) = 4(1� #)2(1� 2})(1 + %)
(2%+ #+ 1)2�1(�; �) + 2(1� #)2(1� 2})

and hence the proof. �

6. Integral operators

Theorem 18. Let the functions @ given by (1) be in the class ��(#; %; }; �; �):
Then the integral operator

F (~) = c
1Z
0

uc@(u~)du; 0 < u � 1; c > 0 (33)

is in the class ��(#; %; }; �; �); where

� = 1� 2c(1� #)(1 + %)
(c+ 2)(2%+ #+ 1) + c(1� #) : (34)

The estimate is sharp for the function @ given by (12).
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Proof. Let @ 2 ��(#; %; }; �; �): Then

F (~) =c
1Z
0

uc@(u~)du

=
1

~
+

1X
`=1

c

`+ c+ 1
a`~`:

Thus it is enough to show that
1X
`=1

c[1 + }(`� 1)][`(1 + %) + (%+ �)]�`(�; �)
(`+ c+ 1)(1� �)(1� 2}) a` � 1: (35)

Since @ 2 ��(#; %; }; �; �); then
1X
`=1

[1 + }(`� 1)][`(1 + %) + (%+ #)]�`(�; �)
(1� #)(1� 2}) a` � 1: (36)

From (35) and (36), we have

[`(1 + %) + (%+ �)]

(`+ c+ 1)(1� �) �
[`(1 + %) + (%+ #)]

(1� #) :

Then

� � 1� c(1� #)(`+ 1)(1 + %)
(`+ c+ 1)[`(1 + %) + (%+ #)] + c(1� #) :

Since

Y (`) = 1� c(1� #)(`+ 1)(1 + %)
(`+ c+ 1)[`(1 + %) + (%+ #)] + c(1� #)

is an increasing function of `; ` � 1; we obtain

� � Y (1) = 1� 2c(1� #)(1 + %)
(c+ 2)(2%+ #+ 1) + c(1� #)

and hence the proof. �

7. Conclusion

This research has introduced a new subclass of meromorphic functions de�ned
by Rapid operator and studied some basic properties of geometric function theory.
Accordingly, some results to coe¢ cient estimates, distortion properties, closure
theorems, hadamard product and integral transforms have been considered, inviting
further research for this �eld of study.
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INVERSE STEREOGRAPHIC HYPERBOLIC SECANT

DISTRIBUTION: A NEW SYMMETRIC CIRCULAR MODEL BY

ROTATED BILINEAR TRANSFORMATIONS

Abdullah YILMAZ

Department of Actuarial Sciences, Kirikkale University, TURKEY

Abstract. The inverse stereographic projection (ISP), or equivalently, bilin-

ear transformation, is a method to produce a circular distribution based on
an existing linear model. By the genesis of the ISP method, many impor-

tant circular models have been provided by many researchers. In this study,

we propose a new symmetric unimodal/bimodal circular distribution by the
rotated ISP method considering the hyperbolic secant distribution as a base-

line distribution. Rotation means that fixing the origin and rotating all other

points the same amount counterclockwise. Considering the effect of rotation
on the circular distribution to be obtained with the bilinear transformation,

it is seen that it actually induces a location parameter in the obtained cir-
cular probability distribution. We analyze some of the stochastic properties

of the proposed distribution. The methods for the parameter estimation of

the new circular model and the simulation-based compare results of these es-
timators are extensively provided by the paper. Furthermore, we compare the

fitting performance of the new model according to its well-known symmetric

alternatives, such as Von-Misses, and wrapped Cauchy distributions, on a real
data set. From the information obtained by the analysis on the real data,

we say that the fitting performance of the new distribution is better than its

alternatives according to the criteria frequently used in the literature.

1. INTRODUCTION

Circular or directional data are observed in various fields of science. Data on
angular observations can often be associated with compass measurements. Addi-
tionally, daily, weekly, or hourly observations obtained in the specific time period
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may be circular. Although it may seem attractive in some ways, processing and
evaluating such data linearly can lead to false results. In directional data, the start
and endpoints are neighbors despite having the furthest distance according to lin-
ear metric. As a simple example, the arithmetic mean of two angles 1 and 359
degrees is 180 degrees, although the circular average to be 0 degrees. Therefore, it
requires a special class of distributions known as circular probability distributions
to analyze such data.

Circular probability distributions are usually obtained by circularizing a known
linear probability distribution. The two most common methods for circularization
are wrapping and inverse stereographic projection (ISP). ISP method is based on bi-
linear transformations. Minh and Farnum [8] used bilinear transformations to map
points on the unit circle in the complex plane into points on the real line. Thus,
they used the stereographic projection as a transformation, to produces probability
distributions on the real line by circular models. It was clear that by the inverse of
this transformation (ISP), circular probability distributions could be obtained from
probability distributions on the real line. Many studies on circular distributions
obtained using the ISP method have been added to the literature. Yedlapalli, et
al [11] used to transformation on double Weibull distribution to obtain a symmetric
circular distribution. Kato and Jones [6] proposed a family of four-parameter distri-
butions on the circle that contains the Von Mises and wrapped Cauchy distributions
as special cases. Girija, et al [5] introduced stereographic double exponential dis-
tribution obtained by using double exponential (Laplace) distribution. The same
authors introduced the stereographic logistic model [2] in a later study. Yedlapalli,
et al [12] obtained semicircular (axial) model induced by using modified inverse
stereographic projection on Quasi Lindley distribution. The projection method
used in all these studies is based on the result obtained by Minh and Farnum [8]
in a study in which they introduced the induction of linear models with Möbius
transformations. Möbius transformation (bilinear, fractional linear or linear frac-
tional transformation) provides very convenient methods of finding a one-to-one
mapping of one domain into another. In a general form, Möbius transformation
can be written as

T (z) =
az + b

cz + d
, (1)

where a,b,c and d are complex or real valued coefficients and bc − ad 6= 0. This
transformation was proposed by Minh and Farnum [8] as a new method of generat-
ing probability distributions, which maps every point on a real line onto the point
on a unit circle. Their construction proceeds as follows. In order for T (z) to map
the unit circle on the real line, the constraints Im (c) 6= 0, ad = cb, and a 6= 0 must
be provided. Dividing all coefficients in Eq.(1) by a and imposing the requirement
T (−1) =∞ yields the transformation of the form

T (z) =
cz + c

z + 1
. (2)
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Finally, by taking c = u− iv and z = cos (θ) + i sin (θ), the transformation

x = T (θ) = T (cos (θ) + i sin (θ))

= u+ v
sin (θ)

1 + cos (θ)
= u+ v tan

(
θ

2

)
(3)

is obtained which is known as stereographic transformation. Inverse stereographic
projection yields a circular model when it applied to a linear model. If a random
variable is defined on the whole real line with probability density function (pdf)
f (.) and cumulative distribution function (cdf) F (.) then Θ = T−1 (X) is a random
point on the unit circle, with the pdf g (.) and the cdf G (.), respectively, defined as

g (θ) = f (T (θ))

∣∣∣∣ ddθT (θ)

∣∣∣∣ = f

(
u+ v tan

(
θ

2

))
v

cos(θ) + 1
, (4)

G (θ) = F (T (θ)) = F

(
u+ v tan

(
θ

2

))
, (5)

where θ ∈ [−π, π), u ∈ R and v > 0. Multiplying the coefficients in Eq.(1) by k
yields one to one and the same mapping, where k is an arbitrary (non-zero) complex
number. Since three complex numbers are sufficient to pin down the mapping, i.e.,
there exist a unique Mobius transformation sending any three points (z1, z2, z3) to
any other three points (w1, w2, w3) [9]. Consider the cross-ratio of three points

(z, z1, z2, z3) =
(z − z1) (z2 − z3)

(z − z3) (z2 − z1)
.

where zi 6= zj , i, j = 1, 2, 3 and i 6= j. Then there is a unique Mobius transformation
such that

(z, z1, z2, z3) = (w,w1, w2, w3) .

Moreover, it is known that rotation is to fix the origin and spin all other points
counter-clockwise by the same amount (see Fig.1). By this motivation, if we solve
the equation (

z, e−iα, e−i(α−π/2), e−i(α+π/2)
)

= (w, u, u+ v, u− v)

with respect to w, we have

w = Tα (z) = u− iv
(

1− 2

1 + eiαz

)
. (6)

Note that, multiplication z by eiα has a geometric effect of anti-clockwise rotation
about the origin by an angle of α ∈ [−π, π) . So, it is easy to see that Tα (z) =
T
(
eiαz

)
. Finally, by taking z = cos (θ) + i sin (θ) in Eq.(6), we have

x = Tα (θ) = Tα (cos (θ) + i sin (θ))

= u+ v tan

(
θ + α

2

)
. (7)
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α

θ

p

z
1
=e

-iα

z
2

z
3

z

x

Figure 1. Rotation by α, cross-ratio points z1, z2, z3 and pole (p).

Lemma 1. Pole of transformation in Eq.(6) is z = −e−iα.

Lemma 2. Inverse transformation of Tα is T−1
α (x) = 2 tan−1

(
x−u
v

)
− α.

Lemma 3. Let X be a random variable defined on (−∞,∞) with pdf f (.) and cdf
F (.) . Then Θ = T−1

α (X) is a circular random variable with pdf

g (θ;α) = f (Tα (θ))

∣∣∣∣ ddθTα (θ)

∣∣∣∣
= f

(
u+ v tan

(
θ + α

2

))
v

cos(θ + α) + 1
, (8)

and the corresponding cdf

G (θ;α) = F (Tα (θ)) = F

(
u+ v tan

(
θ + α

2

))
, (9)

where α ∈ [−π, π) , v > 0 and u ∈ R.

The probability density function given by the Eq.(8) provides three properties: i)
g(θ;α) ≥ 0 for ∀θ ∈ R, ii) g (.) is periodic with period 2π, iii)

∫
Γ
g (θ;α) dθ = 1 where

Γ is any interval of length 2π.

Proposition 4. A rotation of Mobius transformation given by the Eq.(2) will in-
duce a location parameter in the probability distribution given by the Eq.(4).

Proof. Proof is clear from lemma 3. �

Corollary 5. The quantile function of Θ = T−1
α (X) is

Q (t) = 2 tan−1

(
F− (t)− t

v

)
− α, (10)
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where t ∈ (0, 1) , F− (t) = inf {x ∈ R : F (x) ≥ t} and F (.) is the cdf of random
variable X.

Proposition 6. Let X be a symmetric random variable around E(X) = u. The
random variable Θ defined as Θ = T−1

α (X) has a symmetrical distribution around
−α.

Proof. If X is symmetric around E(X) = u then, F− (1/2) = u and F−
(

1
2 − r

)
+

F−
(

1
2 + r

)
= 2u, where 0 < r < 1/2 and F−is the quantile function of X. Thus

Q
(

1
2

)
= −α and

Q
(

1
2 − r

)
+Q

(
1
2 + r

)
= 2 tan−1

(
F−( 1

2−r)−u
v

)
+ 2 tan−1

(
F−( 1

2 +r)−u
v

)
− 2α

= 2 tan−1

(
u−F−( 1

2 +r)
v

)
+ 2 tan−1

(
F−( 1

2 +r)−u
v

)
− 2α

= −2α.

Hence Θ has a symmetrical distribution around −α. �

Corollary 7. Since the distribution of Θ is symmetrical about −α

µ = atan (E(sin Θ), E(cos Θ))

= −α,

(E(sin Θ), E(cos Θ) <∞) where atan (., .) is quadrant inverse tangent function de-
fined as

atan (s, c) =


tan−1 (s/c) , c > 0, s ≥ 0

π/2 , c = 0, s > 0
tan−1 (s/c) + π , c < 0
tan−1 (s/c) + 2π , c ≥ 0, s < 0

undefined , c = 0, s = 0

.

In the following section, we show an application of the T−1
α transformation to hy-

perbolic secant distribution. We introduce the methods for estimating the location
parameter induced by T−1

α in the relevant subsections. Also, that section includes
the basic properties of the obtained circular distribution and an application to a
real-life data set.

2. Induce Inverse Stereographic Hyperbolic Secant Model with
Rotated Bilinear Transformations

Suppose X follows hyperbolic secant distribution, then cdf and pdf of X are

F (x) =
2

π
tan−1

(
e
π
2 x
)
, (11)

f (x) =
1

2
sech

(π
2
x
)
, x ∈ R (12)
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respectively. This distribution is also called the inverse-cosh distribution because
of the hyperbolic secant function is equivalent to the reciprocal hyperbolic cosine
function. Note that the pdf given by Eq.(12) is symmetrical around E (X) = 0.
By considering the Eq.(8) and Eq.(9) with Eq.(12) and Eq.(11), we obtain the cdf
and pdf of the inverse stereographic hyperbolic secant distributed random variable
Θ = T−1

α (X) as

G (θ;α, v) =
2

π
tan−1

(
e

1
2πv tan(α+θ

2 )
)
, (13)

g (θ;α, v) =
v

2 (1 + cos(α+ θ))
sech

[
πv

2
tan

(
α+ θ

2

)]
, (14)

respectively, where v > 0 is the scale parameter and α ∈ [−π, π) is the location
parameter. In the rest of this paper, a random variable Θ having cdf as in Eq.(13)
and pdf as in Eq.(14) will be denoted as Θ ∼ ISHS (α, v) . Figure 2 illustrates the
some of possible shapes of the pdf ofrandom variable Θ ∼ ISHS (α, v) for different
values of the parameters α and v.
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Figure 2. Pdf of ISHS (α, v) for different values of α and v.

Figure 2 shows that increasing α values cause counterclockwise rotation, and
increasing v value causes an increase in angular concentration. The modality be-
havior of the ISHS distribution depends only the v parameter. For v < 0.900316,
the distribution is bimodal. The modality behavior is studied more detailed in
Subsection 2.3.

The inverse cdf of hyperbolic secant distribution is F−1 (t) = − 1
π log

(
cot2

(
1
2πt
))
.

Thus, the quantile function of ISHS (α, v) can be easily obtained from Eq.(10) as

Q (t) = −α− 2 tan−1

[
1

πv
log

(
cot2

(
πt

2

))]
, (15)
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where t ∈ (0, 1) .

2.1. Location, Dispersion and Median. For a circular random variable, the pth
cosine moment is defined as cp = E(cos pΘ), and the pth sine moment is defined
as sp = E(sin pΘ) [7]. Thus, the mean direction is calculated as µ = atan (s1, c1),
where atan (., .) is quadrant inverse tangent function. The explicit analytical forms
of cp and sp values can not be obtained for random variable Θ ∼ ISHS (α, v).
However, according to proposition 6 and corollary 7, it is clear that

µ = atan (s1, c1) = −α.

The first trigonometric moments of Inverse Stereographic Hyperbolic Secant distri-
bution are calculated numerically and presented in Figure 3. The following propo-
sitions give useful results for the location parameter of the ISHS distribution.

Proposition 8. Θ ∼ ISHS (α, v)⇔ −Θ ∼ ISHS (−α, v) .

Proposition 9. Θ ∼ ISHS (α, v)⇔ Θ + k ∼ ISHS (α− k, v)

The length of mean direction vector is a measure of angular concentration around
the mean and it is calculated as ρ =

√
c21 + s2

1. By using the value of ρ, the circular
variance is calculated as V = 1− ρ and the circular standard deviation calculated
as σ =

√
−2 ln ρ. These three characteristics are illustrated in Figure 4 for different

values of v.
As a measure of asymmetry, the skewness coefficient for the circular distribution

is calculated as γ1 = s2V
−3/2, where sp denotes the pth central sine moment which

is defined as sp = E [sin p (Θ− µ)]. According to the following proposition, the
skewness coefficient of the ISHS (α, v) distribution are zero for every v > 0.

Proposition 10. All central sine moments of ISHS (α, v) distribution is zero.

Proof. Since g (θ;α, v) is periodic with period 2π and µ = −α, we have

sp = E [sin p (Θ− µ)] =

∫ θ0+2π

θ0

sin [p (θ − µ)] g (θ;α, v) dθ

=

∫ π−α

−π−α
sin [p (θ + α)] g (θ;α, v) dθ.

According to proposition 9 g (θ;α, v) = g (θ + α; 0, v) , and according to proposition
6 g (θ; 0, v) is an even function. Thus, we can write sp as

sp =

∫ π

−π
sin (pθ) g (θ; 0, v) dθ = 0

since sin (pθ) g (θ; 0, v) is an odd function. �

The kurtosis coefficient of a circular distribution is calculated as
γ2 =

(
c2 − ρ4

)
(1− ρ)

−2
, where cp denotes the pth central cosine moment and
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defined as cp = E [cos p (Θ− µ)]. The change of the γ2 value according to the
parameter v of ISHS (α, v) distribution is shown in Figure 4.

1 2 3 4 5 6 7 8 9 10

v

0

0.5

1

1.5

2

2.5

3

α

-0.80255

-0.80255

-0.62421

-0.62421

-0.44586-0.44586

-0
.2

6
7
5
2

-0.26752-0.26752

-0
.2

6
7
5
2

-0
.0

8
9
1
7
3

-0.089173-0.089173

-0
.0

8
9
1
7
3

0.0891730.089173

0
.0

8
9
1
7
3

0
.0

8
9
1
7
3

0.267520.26752

0
.2

6
7
5
2

0
.2

6
7
5
2

0.445860.44586

0
.4

4
5
8
6

0.62421

0.6
2421

0.80255

0.80255

1 2 3 4 5 6 7 8 9 10

v

0

0.5

1

1.5

2

2.5

3

α

-0.82594

-0.82594

-0.82594
-0.82594

-0.67149
-0.67149

-0
.6

7
1
4
9

-0.67149

-0.51703

-0.51703

-0
.5

1
7
0
3

-0.51703 -0.51703

-0.36258

-0.36258

-0
.3

6
2
5
8

-0.36258 -0.36258

-0.20813-0.20813

-0
.2

0
8
1
3

-0
.2

0
8
1
3

-0.20813 -0.20813

-0.053674-0.053674

-0
.0

5
3
6
7
4

-0
.0

5
3
6
7
4

-0.053674 -0.053674

0
.1

0
0
7
8

0
.1

0
0
7
8

0
.2

5
5
2
3

0
.4

0
9
6
9

0
.5

6
4
1
4

Figure 3. Contour plots for first cosine moment (left panel) and
first sine moment (right panel) according to α and v.

The median direction (M) and the interquartile range (Iqr) of ISHS (α, v) dis-
tribution are easily obtained from Eq.(15), as follows, respectively:

M = Q

(
1

2

)
= −α, (16)

IqrΘ = Q (.75)−Q (.25)

= 2

(
tan−1

[
2 log

(
cot
(
π
8

))
πv

]
− tan−1

[
2 log

(
tan

(
π
8

))
πv

])

' 4. tan−1

(
0.5611

v

)
.

2.2. Entropy. The entropy is a measure of variation or uncertainty of a random
variable. Following the formal definition of the entropy, the entropy of the random
variable Θ ∼ ISHS (α, v) is

HΘ = −
∫

Γ

g (θ;α, v) ln g (θ;α, v) dθ,

where Γ is any interval of length 2π. Since Θ is 2π periodic

HΘ = −
∫

Γ

g (θ; 0, v) ln g (θ; 0, v) dθ

= −v
∫

Γ

sech
(

1
2πv tan

(
θ
2

))
2 cos(θ) + 2

log

(
v

sech
(

1
2πv tan

(
θ
2

))
2 cos(θ) + 2

)
dθ. (17)
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We could not get an explicit analytical form of the integral in Eq.(17). Therefore,
we numerically calculated the HΘ with respect to v and illustrated in Figure 4.
Note that the entropy of the circular uniform distribution is ln (2π) and this is
the maximum entropy any circular distribution may have. Figure 4 shows that
the maximum value of the HΘ is below this value. The entropy of the ISHS
distribution attains its maximum value when the circular variance is maximized or
equivalently angular concentration minimized. Thus one can write

v∗ = argmax v>0HΘ = argminv>0 c1

= argminv>0

∫
Γ

cos (θ) g (θ; 0, v) dθ

= argminv>0

∫ π

0

cos (θ) g (θ; 0, v) dθ.

Since the minimum value of the first cosine moment is zero, the value of v∗ is
obtained by solving the equation∫ π

0

cos (θ) g (θ; 0, v) dθ = 0

with respect to v. Using the bisection method, we observed that v∗ ' 0.521567.
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Figure 4. Values of ρ,V ,σ (left axis) and γ2 (right axis) according
to v (left panel). Entropy and ρ values according to v (right panel).

2.3. Modality. The ISHS distribution is unimodal or bimodal depending on the
value of the v parameter. Therefore, it will be sufficient to examine the modality
behavior of the g (θ; 0, v) function, which is symmetric about 0 when Γ = [−π, π).
The first and second derivates of g (θ; 0, v) with respect to θ are

g′ (θ; 0, v) = −
v sech

(
1
2πv tan

(
θ
2

)) (
πv tanh

(
1
2πv tan

(
θ
2

))
− 2 sin(θ)

)
4(cos(θ) + 1)2
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and

g′′ (θ; 0, v) =
v sech

(
1
2πv tan

(
θ
2

))
8(cos(θ) + 1)3

×

4 cos(θ)− 2 cos(2θ) + 6 + πv

 −2πv sech2
(

1
2πv tan

(
θ
2

))
−6 sin(θ) tanh

(
1
2πv tan

(
θ
2

))
+πv


respectively. Since g (θ; 0, v) is symmetric around 0, θ = 0 is a saddle point, ie
g′ (0; 0, v) = 0. If this point is a local minimum, then g′′ (0; 0, v) > 0. Thus,
ISHS distribution is bimodal when g′′ (0; 0, v) = −64−1v

(
π2v2 − 8

)
> 0 ⇐⇒ v <

2
√

2/π ' 0.900316.

2.4. Order Statistics. Let Θ1,Θ2, ...,Θn be a random sample from ISHS (α, v)
distribution and let Θ(1) ≤ Θ(2) ≤ . . . ≤ Θ(n) denote the order statistic for this
sample. Then, the pdf of the random variable Θ(i), i = 1, 2, ..., n is obtained as

hΘ(i)
(θ;α, v) =

n!

(i− 1)!(n− i)!
G(θ;α, v)i−1g(θ;α, v)(1−G(θ;α, v))n−i

=
2i−2π1−ivn! tan−1

(
e

1
2πv tan(α+θ

2 )
)i−1

(i− 1)!(n− i)!(cos(α+ θ) + 1)
(18)

× sech

(
1

2
πv tan

(
α+ θ

2

))1−
2 tan−1

(
e

1
2πv tan(α+θ

2 )
)

π

n−i

.

The pdf of first order (minimum) and nth order (maximum) statistics can be im-
mediately calculated from Eq.(18) as

hΘ(1)
(θ;α, v) =

sech
(

1
2πv tan

(
α+θ

2

))
2 cos(α+ θ) + 2

nv

1−
2 tan−1

(
e

1
2πv tan(α+θ

2 )
)

π

n−1

and

hΘ(n)
(θ;α, v) =

sech
(

1
2πv tan

(
α+θ

2

))
(cos(α+ θ) + 1)

2n−2π1−nnv tan−1
(
e

1
2πv tan(α+θ

2 )
)n−1

,

respectively.

2.5. Inference. In this section, we consider estimating the unknown parameters
of ISHS (α, v) distribution. We will use tree methods commonly used in the liter-
ature, such as, maximum likelihood (ml), weighted least-squares (ls) and moments
estimation (me) methods. Finally, a Monte-Carlo simulation study will be given to
show and compare the performance of ml, me and ls estimators.
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2.5.1. Maximum Likelihood Estimation. Let Θ1,Θ2, ...,Θn be a random sample
from ISHS (α, v) distribution. By considering the random variables Θi, i = 1, 2, ..., n,
The logarithmic likelihood function of α and v can be written as

L (α, v; θ1, θ2, ..., θn) =

n∑
i=1

log

[
1

4
v sec2

(
α+ θi

2

)
sech

(
1

2
πv tan

(
α+ θi

2

))]
.

If the first derivatives of this log-likelihood function with respect to parameters α
and v are taken and equalized them to zero, then we have the following normal
equations

∂L

∂α
=

n∑
i=1

tan

(
1

2
(α+ θi)

)
−1

4
πv

n∑
i=1

sec2

(
α+ θi

2

)
tanh

(
1

2
πv tan

(
α+ θi

2

))
= 0

(19)
and

∂L

∂v
=
n

v
− π

2

n∑
i=1

tan

(
α+ θi

2

)
tanh

(
1

2
πv tan

(
α+ θi

2

))
= 0. (20)

Let us denote the ml estimates of the parameters α and v as α̂ML and v̂ML, respec-
tively. Hence, α̂ML and v̂ML can obtained from the collective solution of Eq.(19)
and Eq.(20). However, these equations do not have an analytical solution. So α̂ML

and v̂ML must be obtained numerically.

2.5.2. Weighted Least Square Estimation. A well-known modification of least square
estimation method is the weighted least square, which has a lower bias than the
ordinary least square estimation. Let us consider the ordered random sample
θ(1) <···< θ(n) from ISHS (α, v) distribution. The weighted least square estimates
of the parameters, say α̂LS and v̂LS are obtained by minimizing

n∑
j=1

(n+ 1)
2

(n+ 2)

j (n− j + 1)

[
2

π
tan−1

(
e

1
2πv tan

(
α+θ(j)

2

))
− j

n+ 1

]2

, (21)

with respect to α and v. Where j
n+1 is the expectation of the empirical distribution

function of the ordered data, see Swain et al. [10]. Numerical methods can be used
to minimize Eq.(21).

2.5.3. Method of Moment Estimation. Let us start by expressing the sample trigono-
metric moments for circular data [7]. The pth order sample cosine moment is defined
as

Cp =
1

n

n∑
i=1

cos (pθi) ,

and sample sine moment is defined as

Sp =
1

n

n∑
i=1

sin (pθi) .
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Now consider the random sample θ1, θ2, . . . , θn from the ISHS (α, v) distribution.
Moment estimates of α and v (α̂ME and v̂ME) are obtained from the collective
solution of equations

C1 − c1 = 0, (22)

and

S1 − s1 = 0 (23)

by using numerical methods, where c1 = E(cos Θ) and s1 = E(sin Θ).

2.5.4. Monte-Carlo Simulation Study. We perform some Monte-Carlo experiments
to compare the performance of ml, ls, and me estimators in different sample sizes.
We consider n = 50, 100, 500, and 1000 sample sizes and the repitation of the
simulation is set as 100 times in each sample size. The algorithm below has been
run for different parameter sets and the results are shown in Table 1.

Step 1. Select n and set values of the parameters α and v.
Step 2. Generate n random numbers from U (0, 1) → un×1.
Step 3. Calculate Q (un×1)→ θn×1, where Q (.) as Eq.(15).
Step 4. Get α̂ML and v̂ML from the collective solution of Eq.(19) and Eq.(20).

Get α̂LS and v̂LS from minimazing Eq.(21).
Get α̂ME and v̂ME from the collective solution of Eq.(22).and Eq.(23).

Step 5. Repeat Step 2 to Step 4 for N = 100 times.
Step 6. Calculate the |Bias (.)| and Mse (.) values of the α̂ and v̂ estimators

for each ml, ls, and me estimates.

As we discussed in relevant sections, the referred equations in Step 4 have no an-
alytical solutions. We carried out the programming in Matlab and used the ’fsolve’
subroutine to solve Eq.(19), Eq.(20), Eq.(22), and Eq.(23). For the minimization
problem in Eq.(21), we used the ’fmincon’ subroutine. In all routines, the initial
values of parameters were taken as −m1 = − atan

(
S1, C1

)
for α and 1 for v.

According to the results in Table 1, it is seen that the Bias and MSE values
decrease to zero as the sample size increases for the estimation of parameters α and
v by all three methods. This shows that the estimates are precise and accurate,
hence, we say that it is consistent and unbiased. It is known that ml estimators
are asymptotically unbiased estimators. So, the results in Table 1 agree with ex-
pectations for ml estimators. In addition, simulation results show that the other
estimators have the same characteristics.
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Table 1. Simulated Bias and MSE values of parameter estimates
for different sample sizes and parameter values.

α = π/2 α = −π/4
α̂ v̂ α̂ v̂

Method n Bias MSE Bias MSE Bias MSE Bias MSE

v=3 ML 50 .0067 .0058 .0551 .1663 .0021 .0068 .0950 .2064

100 .0051 .0031 .1007 .0840 .0098 .0033 .0533 .0954

500 .0017 .0007 .0057 .0160 .0019 .0006 .0204 .0163

1000 .0017 .0003 .0040 .0068 .0018 .0003 .0104 .0067

ME 50 .0066 .0058 .0619 .1703 .0026 .0070 .1012 .2169

100 .0057 .0031 .1007 .0831 .0075 .0032 .0605 .1005

500 .0023 .0007 .0031 .0171 .0018 .0006 .0198 .0168

1000 .0016 .0003 .0038 .0070 .0016 .0003 .0070 .0070

LS 50 .0070 .0057 .0226 .1883 .0018 .0071 .0088 .2178

100 .0052 .0030 .0745 .0910 .0081 .0032 .0177 .1029

500 .0020 .0007 .0082 .0178 .0021 .0006 .0171 .0171

1000 .0015 .0003 .0062 .0072 .0019 .0003 .0099 .0071

v=6 ML 50 .0049 .0015 .1384 .6167 .0064 .0014 .0302 .4931

100 .0024 .0010 .0401 .2787 .0005 .0010 .0963 .3519

500 .0021 .0001 .0189 .0554 .0024 .0002 .0165 .0556

1000 .0003 .0001 .0072 .0264 .0002 .0001 .0085 .0284

ME 50 .0049 .0017 .2071 .5840 .0047 .0017 .0538 .5626

100 .0031 .0010 .0710 .2968 .0001 .0011 .1093 .4181

500 .0020 .0001 .0502 .0677 .0024 .0002 .0132 .0626

1000 .0005 .0001 .0270 .0305 .0007 .0001 .0029 .0321

LS 50 .0049 .0016 .0183 .8181 .0062 .0015 .0939 .5589

100 .0026 .0010 .0021 .3388 .0005 .0010 .0534 .3494

500 .0022 .0001 .0037 .0595 .0024 .0002 .0130 .0605

1000 .0003 .0001 .0049 .0292 .0003 .0001 .0159 .0292

v=0.75 ML 50 .0062 .0114 .0342 .0115 .0117 .0125 .0298 .0122

100 .0105 .0068 .0126 .0043 .0008 .0056 .0086 .0042

500 .0046 .0011 .0023 .0008 .0015 .0011 .0018 .0010

1000 .0008 .0005 .0005 .0004 .0028 .0005 .0014 .0005

ME 50 .0776 .4152 .0358 .0235 .0130 .4464 .0203 .0266

100 .0825 .2560 .0102 .0092 .0658 .2579 .0059 .0097

500 .0111 .0254 .0044 .0010 .0170 .0256 .0003 .0012

1000 .0235 .0108 .0016 .0005 .0111 .0105 .0023 .0005

LS 50 .0232 .0412 .0324 .0159 .0107 .0309 .0202 .0140

100 .0219 .0147 .0074 .0049 .0058 .0139 .0045 .0050

500 .0003 .0026 .0019 .0008 .0023 .0028 .0021 .0011

1000 .0003 .0014 .0001 .0004 .0001 .0013 .0015 .0005
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2.6. Real Data Example. In this section, we study the modeling behavior of the
ISHS distribution on a real-life dataset. We consider the termite mounds data in
Appendix B.13 (set 7) of Fisher [3]. The data consist of n = 66 termite mounds
orientations of Amitermes laurensis in the Cape York Peninsula, North Queensland.
We obtained the parameter estimates by using Matlab’s ’fmincon’ and ’fsolve’ sub-
routines. In these subroutines, the parameter ranges were chosen as wide as possible
to avoid local maxima. The initial values were set to −m1 = − atan

(
S1, C1

)
for

α and 1 for v. In order to make comparisons, we chosed the Von-Mises (VM) and
Wrapped Cauchy (WC) distributions as well-known alternatives from the location
family for modeling symmetrical circular data. Table 2 shows the parameter esti-
mates for each models, and Figure 5 illustrates the fitted pdfs and cdfs. The ISHS
parameters were estimated with three methods; ml, me and ls. Table 2 also includes
the mean direction and resultant length estimates for each models, and the values
of these characteristics obtained from the sample.

Table 2. Parameter estimates, estimated mean direction and re-
sultant length for termit mounds data.

Model Method Parameters Mean Res. Iqr

α̂ v̂ Direction Length

ISHS ML -3.0527 6.7146 3.0527 (174.91◦) 0.9596 0.3335

ME -3.0381 6.4753 3.0381 (174.07◦) 0.9569 0.3457

LS -3.0551 6.9872 3.0551 (175.04◦) 0.9625 0.3205

µ̂ κ̂
VM ML 3.0381 11.8567 3.0381 (174.07◦) 0.9569 0.3968

µ̂ γ̂
WC ML 3.0485 0.14748 3.0485 (174.66◦) 0.8566 0.2974

Sample - - - 3.0381 (174.07◦) 0.9569 0.3491

Table 3 contains Log-likelihood (LL), the Akaike and Bayesian information crite-
ria (AIC and BIC), Watson’s U2(W2) statistics values, Kolmogorov-Smirnov (KS)
and Chi square tests statistics with p-values. Here, it is seen that the data fit all
the distributions selected (p > 0.05). However, it can be said that the proposed
ISHS model is the model that best fits the data since it has the smallest values in
all model selection criteria.
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Table 3. Summary of fits for termit mounds data.

Model -LL AIC BIC W2 K-S (p) Chi sq.(p)
ISHS ML 10.559 25.118 29.497 .040 .06 (.9478) 3.24 (.3557)

ME 10.710 25.419 29.799 .038 .06 (.9487) 3.70 (.2953)

LS 10.628 25.255 29.634 .054 .09 (.6460) 3.05 (.3836)

VM ML 13.537 31.073 35.453 .104 .11 (.3393) 6.21 (.1017)

WC ML 16.768 37.537 41.916 .085 .10 (.4779) 5.52 (.1372)

Plots of the fitted densities are shown in Figure 5. Left panel of this figure
represents the circular data plot, fitted pdfs of the ISHS distribution with ml, me
and ls estimates, fitted vm and wc models. The arrow points out the sample mean
resultant vector

m1 = atan
(
S1, C1

)
= 3.0381 (174.07◦) ,

and resultant length

r1 =

√
C

2

1 + S
2

1

= 0.4971,

where C1 and S1 the first order sample cosine and sine moments, respectively.
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Figure 5. Plots for termite mounds data. Circular data plot,
fitted circular pdfs (left) linear histogram and fitted pdfs (center),
empirical cdf and fitted cdfs (rigth).

All models estimated the average orientation of the mounds to be almost south.
The ISHS model with ME estimates gave the mean orientation and resultant length
the same as in the sample. This is an expected result for moment estimators.
Same thing valid for the VM model. However, when we compare the modeling



886 A. YILMAZ

performances with the values in Table 3, we see that the ISHS model is better than
both the VM and the WC model.

3. Conclusion

After Minh and Farnum [8] introduced the ISP method, a number of researchers
have introduced many circular distributions by employing the ISP method. In some
of these (for example; [1], [4] and [6]), the authors added a location parameter to the
circular distributions in their studies. In fact, the location parameter to be added
to the circular probability distributions obtained by the ISP method corresponds
to the rotation property of bilinear transforms. Here, the rotation means fixing the
origin and rotating all other points by the same amount and counterclockwise. In
this study, we considered rotation in bilinear transformations and used the rotated
inverse stereographic projection (T−1

α ) to obtain a new circular model. Thus, we
showed that the circular model to be obtained by the T−1

α (X) transformation will
naturally belong to the location family of the distributions. Before the section in-
cluding the application of the method, we gave some propositions and theorems
that are useful when the transformation is applied to especially symmetric dis-
tributions. In the study, we applied T−1

α to the hyperbolic secant distribution.
Thus, we obtained a symmetrical circular distribution with two parameters. One
of these parameters is the location parameter and induced by rotated inverse stere-
ographic projection T−1

α . To estimate the unknown parameters of the introduced
distribution, the maximum likelihood, the weighted least squares, and the moment
estimators are obtained. By a conducted Monte Carlo simulation study, we show
that, as the sample size increases, both Bias and MSE values decrease for all esti-
mation methods. Finally, we used the introduced distribution on a real dataset. To
compare the fitting performance, we considered the Von-Mises distribution (also
known as the circular normal distribution) and Wrapped Cauchy distribution as
well-known symmetric alternatives. We observed that the fitting performance of
the obtained distribution according to the measures frequently used in the literature
is better than both Von-Mises and Wrapped Cauchy distribution.

Declaration of Competing Interests The author declares that he has no known
competing financial interests or personal relationships that could affect the work
reported in this article.
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ON SOME WEAKER HESITANT FUZZY OPEN SETS
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Abstract. The purpose of this paper is to define and study some new types of
hesitant fuzzy open sets namely, hesitant fuzzy α-open, hesitant fuzzy preopen,

hesitant fuzzy semiopen, hesitant fuzzy b-open and hesitant fuzzy β-open in

hesitant fuzzy topological space. Some properties and the relationships be-
tween these hesitant fuzzy sets are investigated. Furthermore, some relation-

ships between them in hesitant fuzzy subspace are introduced.

1. Introduction

Hesitant fuzzy sets are very useful to deal with group decision making prob-
lems when experts have a hesitation among several possible memberships for an
element to a set. During the evaluating process in practice, however, these possible
memberships may be not only crisp values in [0, 1], but also interval values. Then
hesitant fuzzy set theory has many applications in various fields like decision mak-
ing problems, decision support systems, clustering algorithms, algebras, etc. After
that time, hesitant fuzzy set theory has been developed rapidly by some scholars in
theory and practice. In 1965, Zadeh [16] introduced the concept of a fuzzy set as a
generalization of a crisp set. Chang [3] defined initially the notion of fuzzy topolog-
ical spaces. In 2010, Torra [14] introduced the notion of a hesitant fuzzy set as an
extension of a fuzzy set. In 2011, Xia and Xu [15] applied a hesitant fuzzy set to
decision making by defining ”hesitant fuzzy information aggregation”. Jun et al. [5]
studied hesitant fuzzy bi-ideals in semigroups. Divakaran and John [4] introduced
a basic version of hesitant fuzzy rough sets through hesitant fuzzy relations. On the
other hand, Jun and Ahn [6] applied hesitant fuzzy sets to BCK/BCI-algebras. Kim
et al. [7] gave characterizations of a hesitant fuzzy positive implicative ideal, a hes-
itant fuzzy implicative ideal, and a hesitant fuzzy commutative ideal, respectively
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in BCK-algebras. Recently, Lee and Hur [10] defined a hesitant fuzzy topology and
introduced the concepts of a hesitant fuzzy neighborhood, closure, interior, hesitant
fuzzy subspace and obtained some of their properties. Also, they defined a hesitant
fuzzy continuous mapping and investigated some of its properties. In 1965, Njas-
tad [13] defined the class of α-open sets in topological spaces. In 1982, Mashhour
et al [12] introduced the concept of preopen sets. The study of semiopen sets and
their properties was initiated by Levine [11]. In 1996, Andrijevic’ [2] introduced
and studied a class of generalized open sets in a topological space called b-open sets,
this class of sets contained in the class of β-open sets [1] and contains all semiopen
sets and all preopen sets.

2. hesitant fuzzy open sets

Definition 1. [14] Let X be a reference set, and P [0, 1] denote the power set of
[0, 1]. Then, a mapping h : X → P [0, 1] is called a hesitant fuzzy set in X.

The hesitant fuzzy empty (resp. whole) set, denoted by h0 (resp. h1), is a
hesitant fuzzy set in X defined as h0(x) = φ (resp. h1(x) = [0, 1]), for each x ∈ X.
Especially, we will denote the set of all hesitant fuzzy sets in X as HS(X) [8].

Definition 2. Assume that X is a nonempty set and h, hi ∈ HS(X) for i belong
to the set of natural numbers N. Then,

(1) h1 is a subset of h2, denoted by h1 ⊆ h2, if h1(x) ⊆ h2(x), for each x ∈ X
[4].

(2) h1 is equal to h2, denoted by h1 = h2, if h1(x) ⊆ h2(x) and h2(x) ⊆ h1(x)
[4].

(3) the intersection of h1 and h2, denoted by h1∩̃h2, is a hesitant fuzzy set in
X defined as follows: for each x ∈ X,

(h1∩̃h2)(x) = h1(x) ∩ h2(x) [8].
(4) the union of h1 and h2, denoted by h1∪̃h2, is a hesitant fuzzy set in X

defined as follows: for each x ∈ X,
(h1∪̃h2)(x) = h1(x) ∪ h2(x) [8].

(5) the complement of h, denoted by hc, is a hesitant fuzzy set in X defined as:
for each x ∈ X,
hc(x) = h(x)c = [0, 1] \ h(x) [8].

(6) the intersection of {hi}i∈N, denoted by
⋂̃
i∈Nhi, is a hesitant fuzzy set in

X defined as follows: for each x ∈ X,

(
⋂̃
i∈Nhi)(x) =

⋂
i∈N hi(x) [8].

(7) the union of {hi}i∈N, denoted by
⋃̃
i∈Nhi, is a hesitant fuzzy set in X

defined as follows: for each x ∈ X,

(
⋃̃
i∈Nhi)(x) =

⋃
i∈N hi(x) [8].

Definition 3. [9] Let h ∈ HS(X). Then, h is called a hesitant fuzzy point with the
support x ∈ X and the value δ, denoted by xδ, if xδ : X → P [0, 1] is the mapping
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given by: for each y ∈ X,

xδ(y) =

{
δ ⊆ [0, 1] if y = x,
φ otherwise.

In particular, HP (X) is called the set of all hesitant fuzzy points in X. If δ ⊆ h(x),

then xδ is said to belong to h, denoted by xδ ∈ h. It is obvious that h =
⋃̃
xδ∈hxδ.

Definition 4. [10] Let X be a nonempty set, and τ ⊆ HS(X). Then, τ is called a
hesitant topology (HFT ) on X, if it satisfies the following axioms:

(1) h0, h1 ∈ τ .
(2) For any h1, h2 ∈ τ , we have h1∩̃h2 ∈ τ .
(3) For each hi ∈ τ , we have ∪̃i∈Nhi ∈ τ .

The pair (X, τ) is called a hesitant fuzzy topological space. Each member of τ is
called a hesitant fuzzy open set (HFOS) in X. A hesitant fuzzy set h in X is called
a hesitant fuzzy closed set (HFCS) in (X, τ), if hc ∈ τ . The set of all hesitant fuzzy
closed sets is denoted by HFC(X).

Definition 5. [10] Let (X, τ) be a hesitant fuzzy topological space, and hA ∈
HS(X). Then:

(1) intH(hA) =
⋃̃
{hU ∈ τ : hU ⊆ hA}.

(2) clH(hA) =
⋂̃
{hF ∈ HFC(X) : hA ⊆ hF }.

3. Weaker hesitant fuzzy open sets

Definition 6. Let (X, τ) be a hesitant fuzzy topological space. A subset h of HS(X)
is called:

(1) hesitant fuzzy α-open if h ⊆ intH(clH(intH(h))).
(2) hesitant fuzzy preopen if h ⊆ intH(clH(h)).
(3) hesitant fuzzy semiopen if h ⊆ clH(intH(h)).
(4) hesitant fuzzy b-open if h ⊆ intH(clH(h))∪̃clH(intH(h)).
(5) hesitant fuzzy β-open if h ⊆ clH(intH(clH(h))).

Theorem 1. Let (X, τ) be a hesitant fuzzy topological space, then the following
statements are hold:

(1) Every hesitant fuzzy open set is hesitant fuzzy α-open.
(2) Every hesitant fuzzy α-open set is hesitant fuzzy preopen.
(3) Every hesitant fuzzy α-open set is hesitant fuzzy semiopen.
(4) Every hesitant fuzzy preopen set is hesitant fuzzy b-open.
(5) Every hesitant fuzzy semiopen set is hesitant fuzzy b-open.
(6) Every hesitant fuzzy b-open set is hesitant fuzzy β-open.

Proof. (1) If hA is hesitant fuzzy open, then hA = intH(hA) ⊆ intH(clH(hA)) =
intH(clH(intH(hA))). Thus, hA is hesitant fuzzy α-open.
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(2) If hA is hesitant fuzzy α-open, then hA ⊆ intH(clH(intH(hA))) ⊆ intH(clH(hA)).
Thus, hA is hesitant fuzzy preopen.

(3) If hA is hesitant fuzzy α-open, then hA ⊆ intH(clH(intH(hA))) ⊆ clH(inH(hA)).
Thus, hA is hesitant fuzzy semiopen.

(4) If hA is hesitant fuzzy preopen, then hA ⊆ intH(clH(hA)) ⊆ intH(clH(hA))
∪̃clH(intH(hA)). Thus, hA is hesitant fuzzy b-open.

(5) If hA is hesitant fuzzy semiopen, then hA ⊆ clH(intH(hA)) ⊆ intH(clH(hA))
∪̃clH(intH(hA)). Thus, hA is hesitant fuzzy b-open.

(6) If hA is hesitant fuzzy b-open, then hA ⊆ intH(clH(hA))∪̃clH(intH(hA)) ⊆
clH(intH(clH(hA)))∪̃clH(intH(hA)) = clH [intH(clH(hA))∪̃intH(hA)] ⊆
clH [intH(clH(hA))∪̃intH(clH(hA))] = clH(intH(clH(hA))). Thus, hA is
hesitant fuzzy β-open.

�

Remark 1. The concepts of hesitant fuzzy preopen and hesitant fuzzy semiopen
are independent.

Remark 2. The converse of the Theorem 1, need not be true as shown by the
following examples.

Example 1. Consider the hesitant fuzzy sets in X = {a, b, c} given by:
h1(a) = [0.7, 1], h1(b) = {0.2, 0.5, 0.8}, h1(c) = [0.7, 1),
h2(a) = [0.5, 1), h2(b) = {0.2, 0.5, 0.7}, h2(c) = (0.7, 1],
h3(a) = [0.7, 1), h3(b) = {0.2, 0.5}, h3(c) = (0.7, 1), and
h4(a) = [0.5, 1], h4(b) = {0.2, 0.5, 0.7, 0.8}, h4(c) = [0.7, 1].
Then, τ = {h0, h1, h1, h2, h3, h4} a hesitant topology on X. If hA is the hesitant
fuzzy set in X given by:

(1) hA(a) = [0.6, 1], hA(b) = {0.2, 0.5, 0.6, 0.8, 0.9}, hA(c) = [0.3, 1),
then hA is hesitant fuzzy α-open but hA is not hesitant fuzzy open.

(2) hA(a) = [0, 1], hA(b) = φ, hA(c) = φ,
then hA is both hesitant fuzzy preopen and hesitant fuzzy b-open but hA is
neither hesitant fuzzy α-open nor hesitant fuzzy semiopen.

Example 2. Consider the hesitant fuzzy sets in X = {a, b, c} given by:
h1(a) = {0.4}, h1(b) = {0.1}, h1(c) = {0.8},
h2(a) = {0.3}, h2(b) = {0.2}, h2(c) = {0.7}, and
h3(a) = {0.3, 0.4}, h3(b) = {0.1, 0.2}, h3(c) = {0.7, 0.8}.
Then, τ = {h0, h1, h1, h2, h3} a hesitant topology on X. If hA is the hesitant fuzzy
set in X given by:
hA(a) = {0.4, 0.6}, hA(b) = {0.1, 0.6}, hA(c) = {0.6, 0.8},
then hA is both hesitant fuzzy semiopen and hesitant fuzzy b-open but A is neither
hesitant fuzzy α-open nor hesitant fuzzy preopen.

Example 3. Consider the hesitant fuzzy sets in X = {a} given by:
h1(a) = {0.1},
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h2(a) = {0.2},
h3(a) = {0.1, 0.2},
h4(a) = {0.3, 0.4},
h5(a) = {0.1, 0.3, 0.4},
h6(a) = {0.2, 0.3, 0.4},
h7(a) = {0.1, 0.2, 0.3, 0.4},
h8(a) = {0.1, 0.3, 0.4, 0.5}, and
h9(a) = {0.1, 0.2, 0.3, 0.4, 0.5}.
Then, τ = {h0, h1, h1, h2, h3, h4, h5, h6, h7, h8, h9} is a hesitant topology on X. If
hA is the hesitant fuzzy set in X given by:
hA(a) = {0.2, 0.3, 0.5},
then hA is hesitant fuzzy β-open but A is not hesitant fuzzy b-open.

Remark 3. From Theorem 1, we obtain the following diagram of implications:

hesitant fuzzy open

��

hesitant fuzzy preopen

��
hesitant fuzzy α-open

**UUU
UUUU

UUUU
UUUU

UU

44iiiiiiiiiiiiiiiii
hesitant fuzzy b-open // hesitant fuzzy β-open

hesitant fuzzy semiopen

OO

Theorem 2. Let (X, τ) be a hesitant fuzzy topological space and hA ∈ HS(X).
Then:

(1) clH(hA)∩̃hG ⊆ clH(hA∩̃hG), for every hesitant fuzzy open set hG.
(2) intH(hA∪̃hF ) ⊆ intH(hA)∪̃hF , for every hesitant fuzzy closed set hF .

Proof. (1) Let xδ ∈ clH(hA)∩̃hG, then xδ ∈ clH(hA) and xδ ∈ hG. If hV is a
hesitant fuzzy open set containing xδ, then, hV ∩̃hG is also hesitant fuzzy
open set containing xδ. Since xδ ∈ clH(hA) implies (hV ∩̃hG)∩̃hA 6= h0

and hence hV ∩̃(hG∩̃hA) 6= h0. This is true for every hV containing xδ, so
xδ ∈ clH(hG∩̃hA). Therefore hesitant fuzzy cl(hA)∩̃hG ⊆ clH(hA∩̃hG).

(2) Follows from (1) and so it is obvious.
�

Theorem 3. If {hi : i ∈ N} is a collection of hesitant fuzzy b-open (resp. hesitant
fuzzy α-open, hesitant fuzzy preopen, hesitant fuzzy semiopen and hesitant fuzzy
β-open) sets of a hesitant fuzzy topological space (X, τ), then ∪̃i∈Nhi is a hesitant
fuzzy b-open (resp. hesitant fuzzy α-open, hesitant fuzzy preopen, hesitant fuzzy
semiopen and hesitant fuzzy β-open) set.

Proof. We prove only the first case since the other cases are similarly shown. Since
hi ⊆ intH(clH(hi))∪̃clH(intH(hi)) for every i ∈ N, we have

∪̃i∈Nhi ⊆ ∪̃i∈N[intH(clH(hi))∪̃clH(intH(hi))]
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⊆ [∪̃i∈NintH(clH(hi))]∪̃[∪̃i∈NclH(intH(hi))]

⊆ [intH(∪̃i∈NclH(hi))]∪̃[clH(∪̃i∈NintH(hi))]

⊆ [intH(clH(∪̃i∈Nhi))]∪̃[clH(intH(∪̃i∈Nhi))].

Therefore, ∪̃i∈Nhi is hesitant fuzzy b-open. �

Theorem 4. Let (X, τ) be a hesitant fuzzy topological space, hU ∈ τ and hA ∈
HS(X).

(1) If hA is hesitant fuzzy preopen, then hU ∩̃hA is hesitant fuzzy preopen.
(2) If hA is hesitant fuzzy semiopen, then hU ∩̃hA is hesitant fuzzy semiopen.

Proof. (1) Since hA is hesitant fuzzy preopen and hU is hesitant fuzzy open,
then, hA ⊆ intH(clH(hA)) and intH(hU ) = hU and so by Theorem 2 (1),
hU ∩̃hA ⊆ intH(hU )∩̃intH(clH(hA)) = intH(hU ∩̃clH(hA)) ⊆ intH(clH(hU ∩̃hA)).
Therefore, hU ∩̃hA is hesitant fuzzy preopen.

(2) Since hA is hesitant fuzzy semiopen, then by Theorem 2 (1), hU ∩̃hA ⊆
hU ∩̃clH(inH(hA)) ⊆ clH(hU ∩̃inH(hA)) = clH(inH(hU )∩̃inH(hA)) =
clH(inH(hU ∩̃hA)). Therefore, hU ∩̃hA is hesitant fuzzy semiopen.

�

Theorem 5. Let (X, τ) be a hesitant fuzzy topological space, hU ∈ τ and hA ∈
HS(X). If hA is hesitant fuzzy β-open, then hU ∩̃hA is hesitant fuzzy β-open.

Proof. Since hA is hesitant fuzzy β-open, then

hU ∩̃hA ⊆ hU ∩̃clH(intH(clH(hA)))

⊆ clH(hU ∩̃intH(clH(hA)))

= clH(intH(hU )∩̃intH(clH(hA)))

= clH(intH(hU ∩̃clH(hA)))

⊆ clH(intH(clH(hU ∩̃hA))).

This shows that hU ∩̃hA is hesitant fuzzy β-open. �

Theorem 6. Let (X, τ) be a hesitant fuzzy topological space, hU ∈ τ and hA ∈
HS(X). If hA is hesitant fuzzy b-open, then hU ∩̃hA is hesitant fuzzy b-open.

Proof. Since hA is hesitant fuzzy b-open, then

hU ∩̃hA ⊆ hU ∩̃[intH(clH(hA))∪̃clH(intH(hA))]

= [hU ∩̃intH(clH(hA))]∪̃[hU ∩̃clH(intH(hA))]

= [intH(hU )∩̃intH(clH(hA))]∪̃[hU ∩̃clH(intH(hA))]

⊆ [intH(hU ∩̃clH(hA))]∪̃[clH(hU ∩̃intH(hA))]
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⊆ [intH(clH(hU ∩̃hA))]∪̃[clH(intH(hU ∩̃hA))].

This shows that hU ∩̃hA is hesitant fuzzy b-open. �

Remark 4. We note that the intersection of two hesitant fuzzy preopen (resp.
hesitant fuzzy semiopen, hesitant fuzzy b-open and hesitant fuzzy β-open) sets need
not be hesitant fuzzy preopen (resp. hesitant fuzzy semiopen, hesitant fuzzy b-open
and hesitant fuzzy β-open) as can be seen from the following examples:

Example 4. Consider the hesitant fuzzy sets in X = {a} given by h(a) = {0.3, 0.6}.
Then, τ = {h0, h1, h} is a hesitant topology on X. If hA(a) = {0.1, 0.3} and
hB(a) = {0.1, 0.6}, then hA and hB are hesitant fuzzy preopen (resp. hesitant fuzzy
b-open and hesitant fuzzy β-open), but hA∩̃hB = {0.1} = hC which is not hesitant
fuzzy preopen (resp. hesitant fuzzy b-open and hesitant fuzzy β-open).

Example 5. From Example 2, if hA is the hesitant fuzzy set in X given by:
hA(a) = {0.4, 0.6}, hA(b) = {0.1, 0.6}, hA(c) = {0.6, 0.8},
and hB is the hesitant fuzzy set in X given by:
hB(a) = {0.3, 0.6}, hB(b) = {0.2, 0.6}, hB(c) = {0.7, 0.9},
then hA and hB are hesitant fuzzy semiopen, but hA∩̃hB = hC which is not hesitant
fuzzy semiopen, where hC is the hesitant fuzzy set in X given by:
hC(a) = {0.6}, hC(b) = {0.6}, hC(c) = φ.

Remark 5. From Remark 4, we notice that the family of all hesitant fuzzy preopen
(resp. hesitant fuzzy semiopen, hesitant fuzzy b-open and hesitant fuzzy β-open)
sets need not be a topology in general.

Theorem 7. Let (X, τ) be a hesitant fuzzy topological space. If hA and hB are
hesitant fuzzy α-open, then hB∩̃hA is also hesitant fuzzy α-open.

Proof. Since hA and hB are hesitant fuzzy α-open, then

hB∩̃hA ⊆ intH(clH(intH(hB)))∩̃intH(clH(intH(hA)))

⊆ intH [clH(intH(hB))∩̃intH(clH(intH(hA)))]

⊆ intHclH [intH(hB)∩̃intH(clH(intH(hA)))]

⊆ intHclH [intH(hB)∩̃clH(intH(hA))]

⊆ intHclHclH [intH(hB)∩̃intH(hA)]

⊆ intHclH intH(hB∩̃hA).

Thus, hB∩̃hA is hesitant fuzzy α-open. �

Remark 6. From the Theorems 3 and 7, we notice that the family of all hesitant
fuzzy α-open is a topology.
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Theorem 8. Let (X, τ) be a hesitant fuzzy topological space and hA ∈ HS(X). If
hA is both hesitant fuzzy semiopen and hesitant fuzzy preopen, then hA is hesitant
fuzzy α-open.

Proof. By assumption, hA ⊆ clH(intH(hA)) and hA ⊆ intH(clH(hA)). Then, hA ⊆
intH(clH(hA)) ⊆ intH(clH(clH(intH(hA)))) = intH(clH(intH(hA))). Therefore,
hA is hesitant fuzzy α-open. �

Theorem 9. Let (X, τ) be a hesitant fuzzy topological space and hA be hesitant
fuzzy α-open.

(1) If hB is hesitant fuzzy semiopen, then hA∩̃hB is hesitant fuzzy semiopen.
(2) If hB is hesitant fuzzy preopen, then hA∩̃hB is hesitant fuzzy preopen.

Proof. (1) By assumption, hA ⊆ intH(clH(intH(hA))) and hB ⊆ clH(intH(hB)),
then by Theorem 2 (1), we have that

hA∩̃hB ⊆ intH(clH(intH(hA)))∩̃clH(intH(hB))

⊆ clH [intH(clH(intH(hA)))∩̃intH(hB)]

⊆ clH [clH(intH(hA))∩̃intH(hB)]

⊆ clH [clH [intH(hA)∩̃intH(hB)]]

= clH(intH(hA∩̃hB)).

Therefore, hA∩̃hB is hesitant fuzzy semiopen.
(2) By assumption, hA ⊆ intH(clH(intH(hA))) and hB ⊆ intH(clH(hB)), then

hA∩̃hB ⊆ intH(clH(intH(hA)))∩̃intH(clH(hB))

= intH [intH(clH(intH(hA)))∩̃intH(clH(hB))]

⊆ intH [clH(intH(hA))∩̃intH(clH(hB))]

⊆ intH [clH [intH(hA)∩̃intH(clH(hB))]]

⊆ intH [clH [intH(hA)∩̃clH(hB)]]

⊆ intH [clH [clH [intH(hA)∩̃hB ]]]

⊆ intH(clH(clH(hA∩̃hB)))

= intH(clH(hA∩̃hB)).

Therefore, hA∩̃hB is hesitant fuzzy preopen.
�

Theorem 10. Let (X, τ) be a hesitant fuzzy topological space. If hA is hesitant
fuzzy preopen and hB is hesitant fuzzy semiopen, then hA∩̃hB is hesitant fuzzy
β-open.

Proof. By assumption, hA ⊆ intH(clH(hA)) and hB ⊆ clH(intH(hB)), then by
Theorem 2 (1), we have that

hA∩̃hB ⊆ intH(clH(hA))∩̃clH(intH(hB))

⊆ clH [intH(clH(hA))∩̃intH(hB)]
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= clH [intH [intH(clH(hA))∩̃intH(hB)]]

⊆ clH [intH [clH(hA)∩̃intH(hB)]]

⊆ clH [intH [clH(hA∩̃intH(hB))]]

⊆ clH(intH(clH(hA∩̃hB))).

Therefore, hA∩̃hB is hesitant fuzzy β-open. �

Theorem 11. Let (X, τ) be a hesitant fuzzy topological space and hA, hB ∈
HS(X). Then,

(1) hA is hesitant fuzzy semiopen if and only if there exists a hesitant fuzzy
open set hU such that hU ⊆ hA ⊆ clH(hU ).

(2) hB is hesitant fuzzy semiopen if hA is hesitant fuzzy semiopen and hA ⊆
hB ⊆ clH(hA).

(3) hA is hesitant fuzzy semiopen if and only if clH(hA) = clH(intH(hA)).

Proof. (1) Let hA be hesitant fuzzy semiopen, then hA ⊆ clH(intH(hA)). Take
hU = intH(hA), then hU is hesitant fuzzy open such that hU = intH(hA) ⊆
hA ⊆ clH(intH(hA)) = clH(hU ).

Conversely, since hU ⊆ hA implies that hU = intH(hU ) ⊆ intH(hA) and
so hA ⊆ clH(hU ) = clH(intH(hU )) ⊆ clH(intH(hA)). Thus, hA is hesitant
fuzzy semiopen.

(2) Since hA is hesitant fuzzy semiopen, then by (1) there exists a hesitant fuzzy
open set hU such that hU ⊆ hA ⊆ clH(hU ). Since hA ⊆ hB , so hU ⊆ hB .
But clH(hA) ⊆ clH(hU ), then hB ⊆ clH(hU ). Hence, hU ⊆ hB ⊆ clH(hU ).
Thus, hB is hesitant fuzzy semiopen.

(3) Let hA be hesitant fuzzy semiopen, then hA ⊆ clH(intH(hA)) which im-
plies that clH(hA) ⊆ clH(intH(hA)) ⊆ clH(hA) and hence clH(hA) =
clH(intH(hA)).

Conversely, since by Theorem 1, intH(hA) is hesitant fuzzy semiopen
such that intH(hA) ⊆ hA ⊆ clH(hA) = clH(intH(hA)) and therefore hA is
hesitant fuzzy semiopen.

�

Definition 7. [10] Let (X, τ) be a hesitant fuzzy topological space and h ∈ HS(X).
Then, the collection τh = {U ∩̃h : U ∈ τ} is called a hesitant fuzzy subspace topology
or hesitant fuzzy relative topology on h. The pair (h, τh) is called a hesitant fuzzy
subspace, and each member of τh is called a hesitant fuzzy open set in h.

Proposition 1. [10] Let (X, τ) be a hesitant fuzzy topological space, h, hA ∈
HS(X) and hA ⊆ h. Then, clτh(hA) = h∩̃clH(hA), where clτh(hA) denotes the
closure of hA in (h, τh).

Definition 8. Let (X, τ) be a hesitant fuzzy topological space, h, hA ∈ HS(X) and

hA ⊆ h. Then, intτh(hA) =
⋃̃
{hU ∈ τh : hU ⊆ hA}.
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Theorem 12. Let (X, τ) be a hesitant fuzzy topological space and hA, hB ∈
HS(X). If hA is hesitant fuzzy preopen in X and hB is hesitant fuzzy semiopen in
X, then

(1) hA∩̃hB is hesitant fuzzy semiopen in hA.
(2) hA∩̃hB is hesitant fuzzy preopen in hB .

Proof. By assumption, hA ⊆ intH(clH(hA)) and hB ⊆ clH(intH(hB)).

(1) Then,

hA∩̃hB ⊆ intH(clH(hA))∩̃clH(intH(hB))

⊆ clH [intH(clH(hA))∩̃intH(hB)]

⊆ clH [clH(hA)∩̃intH(hB)]

⊆ clH [clH [hA∩̃intH(hB)]]

= clH [hA∩̃intH(hB)].

Hence, hA∩̃hB ⊆ clH(hA∩̃intH(hB)) and so hA∩̃hB ⊆ clH(hA∩̃intH(hB))∩̃hA =
clτhA (hA∩̃intH(hB)). Since hA∩̃intH(hB) is a hesitant fuzzy open set in

hA, so hA∩̃hB ⊆ clτhA (hA∩̃intH(hB)) = clτhA (intτhA (hA∩̃intH(hB))) ⊆
clτhA (intτhA (hA∩̃hB)). Therefore, hA∩̃hB is hesitant fuzzy semiopen in
hA.

(2) Now,

hA∩̃hB ⊆ intH(clH(hA))∩̃hB
= intτhB [intH(clH(hA))∩̃hB ]

⊆ intτhB [intH(clH(hA))∩̃clH(intH(hB))]

⊆ intτhB [clH [intH(clH(hA))∩̃intH(hB)]]

⊆ intτhB [clH [clH(hA)∩̃intH(hB)]]

⊆ intτhB [clH [clH [hA∩̃intH(hB)]]]

⊆ intτhB [clH [clH [hA∩̃hB ]]]

= intτhB (clH(hA∩̃hB)).

Since intτhB (clH(hA∩̃hB)) is hesitant fuzzy open in hB , then

intτhB (clH(hA∩̃hB))∩̃hB = intτhB (clH(hA∩̃hB)∩̃hB), and hence hA∩̃hB ⊆
intτhB (clH(hA∩̃hB)∩̃hB) = intτhB (clτhB (hA∩̃hB)).

Therefore, hA∩̃hB is hesitant fuzzy preopen in hB . �

Theorem 13. Let (X, τ) be a hesitant fuzzy topological space, hA, hB ∈ HS(X),
hA ⊆ hB and hB be hesitant fuzzy semiopen in X. Then, hA is hesitant fuzzy
semiopen in X if and only if hA is hesitant fuzzy semiopen in hB .

Proof. Let hA be hesitant fuzzy semiopen in X, then there is a hesitant fuzzy
open set hU such that hU ⊆ hA ⊆ clH(hU ) implies that hU ⊆ hA ⊆ hB . Hence,
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hU ⊆ hA ⊆ clH(hU )∩̃hB = clτhB (hU ). Since hU ∩̃hB = hU is also hesitant fuzzy
open in hB , then hA is hesitant fuzzy semiopen in hB .

Conversely, let hA be hesitant fuzzy semiopen in hB . Then there is a hesitant
fuzzy open set hU in hB such that hU ⊆ hA ⊆ clτhB (hU ). Since hU is hesitant fuzzy

open in hB , there exists a hesitant fuzzy open set hV such that hU = hV ∩̃hB . Then,
hV ∩̃hB = hU ⊆ hA ⊆ clτhB (hU ) = clτhB (hV ∩̃hB) ⊆ clH(hV ∩̃hB). By Theorem

4 (2), hV ∩̃hB is hesitant fuzzy semiopen, then by Theorem 11 (2), hA is hesitant
fuzzy semiopen in X. �

Theorem 14. Let (X, τ) be a hesitant fuzzy topological space, hA, hB ∈ HS(X),
hA ⊆ hB and hB be hesitant fuzzy preopen in X. Then, hA is hesitant fuzzy
preopen in X if and only if hA is hesitant fuzzy preopen in hB .

Proof. Suppose that hA is hesitant fuzzy preopen in X, then hA = hA∩̃hB ⊆
intH(clH(hA))∩̃hB . Since intH(clH(hA))∩̃hB is hesitant fuzzy open in hB , then
hA ⊆ intH(clH(hA))∩̃hB ⊆ intτhB [intH(clH(hA))∩̃hB ] ⊆ intτhB [clH(hA)∩̃hB ] =

intτhB (clτhB (hA)). Hence, hA is hesitant fuzzy preopen in hB .
Conversely, assume that hA is hesitant fuzzy preopen in hB . Then, hA ⊆

intτhB (clτhB (hA)). Since intτhB (clτhB (hA)) is hesitant fuzzy open in hB , so there

a hesitant fuzzy open set hU in X such that intτhB (clτhB (hA)) = hU ∩̃hB . By

Theorem 9 (2), intτhB (clτhB (hA)) is hesitant fuzzy preopen in X. Therefore,

hA ⊆ intτhB (clτhB (hA))

⊆ intH(clH(intτhB (clτhB (hA))))

= intH(clH(intτhB [clH(hA)∩̃hB ]))

⊆ intH(clH [clH(hA)∩̃hB ])

⊆ intH(clH(clH(hA)))

= intH(clH(hA)).

This shows that hA is hesitant fuzzy preopen in X. �
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CHEBYSHEV INEQUALITY ON CONFORMABLE DERIVATIVE
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Abstract. Integral inequalities are very important in applied sciences. Cheby-
shev�s integral inequality is widely used in applied mathematics. First of all,
some necessary de�nitions and results regarding conformable derivative are
given in this article. Then we give Chebyshev inequality for simultaneously
positive (or negative) functions using the conformable fractional derivative.
We used the Gronwall inequality to prove our results, unlike other studies in
the literature.

1. Introduction

Various de�nitions are given in the literature for fractional derivatives [8, 14,
17, 20]. Some of which are Riemann-Liouville, Caputo, Grünwald-Letnikov, Riesz,
Weyl fractional derivatives. Having more than one de�nition of derivative in frac-
tional analysis ensures that the most suitable one is used according to the type of
the problem and thus the best solution is obtained.
In [12], a new fractional derivative that is known as conformable derivative has

been de�ned by Khalil. This new fractional derivative based on classical limit def-
inition. Authors gave linearity condition, the product rule, the division rule, Rolle
theorem and mean value theorem for this new de�nition of fractional derivative.
They also de�ned the fractional integral of order 0 < � � 1 only.
In [1], de�nition of left and right conformable fractional integrals of any order

� > 0 has been given by Abdeljawad. He also gave chain rule, linear di¤erential
systems, Laplace transforms and exponential functions on a fractional version.
Conformable fractional derivative has been formulated in [1, 12] as

D�z(t) = lim
�!0

z(t+ �t1��)�z(t)
�

;
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or in [11] as

D�z(t) = lim
�!0

z(te�t��)�z(t)
�

; D �z(0) = limD
t!0+

�z(t);

provided the limit exist; in both we have

D�z(t) = t1��D
0
(t);

where z0
(t) = lim

�!0
[z(t+ �)�z(t)]=�.

In [2], Anderson and Ulness present an exact de�nition of a conformable frac-
tional derivative of order � for 0 � � � 1 and t 2 R, where D0 is the identity
operator and D1 is the classical di¤erential operator.
Monotonicity is an important part of applications of derivatives. The monocity

of a function gives an idea about behaviour of the function. Monotonic function is
de�ned as a function that is either completely non-increasing or completely non-
decreasing.
For monotonicity and convexity results for fractional integrals and some of their

application we recommend the readers to refer the literature [18,13,7, 5, 19].

2. Preliminaries

Main de�nitions and results of conformable derivatives from [2] will be presented
as follows:

De�nition 1. Let � 2 [0; 1] . A di¤erential operator D� is conformable if and
only if

D0z(t) = z(t) and D1z(t) =
d

dt
z(t) = z0(t); (1)

where D0 is the identity operator and D1 is the classical di¤erential operator.

De�nition 2. Let � 2 [0; 1] and let the functions �0; �1 : [0; 1] � R ! [0;1) be
continuous such that

lim
�!0+

�1(�; t) = 1; lim
�!0+

�0(�; t) = 0; 8t 2 R;

lim
�!1�

�1(�; t) = 0; lim
�!1�

�0(�; t) = 1;8t 2 R;

�1(�; t) 6= 0 , � 2 [0; 1); �0(�; t) 6= 0; � 2 (0; 1] , 8t 2 R:
Then the following di¤erential operator D�, de�ned via

D�z(t) = �1(�; t)z(t) + �0(�; t)z0(t); (3)

is conformable provided the function z is di¤erentiable at t and z0
= d
dtz.

For more information on conformable derivative and integral, we refer [1, 2, 12,
11,4].
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De�nition 3. (Partial Conformable Derivatives). Let � 2 [0; 1], and let
the functions �0; �1 : [0; 1] � R ! [0;1) be continuous and satisfy (2). Given a
function z : R2 ! R such that @

@tz(t; s) exists for each �xed s 2 R, de�ne the
partial di¤erential operator D�

t via

D�
t z(t; s) = �1(�; t)z(t; s) + �0(�; t)

@

@t
z(t; s): (4)

De�nition 4. (Conformable Exponential Function). Let � 2 (0; 1], the points
s; t 2 R with s � t, and the function � : [s; t] ! R be continuous. Let �0; �1 :
[0; 1] � R ! [0;1) be continuous and satisfy (2), with �=�0 and �1=�0 Riemann
integrable on [s; t]. After that the exponential function with respect to D� in (3) is
de�ned as follows

e�(t; s) = e

tR
s

�(�)��1(�;�)
�0(�;�)

d�
; e0(t; s) = e

�
tR
s

�1(�;�)

�0(�;�)
d�
: (5)

Lemma 5. (Basic Derivatives). Let the conformable di¤erential operator D�

be given as in (3), where � 2 [0; 1] , � : [s; t] ! R be continuous. Let �0; �1 :
[0; 1] � R ! [0;1) be continuous and satisfy (2), with �=�0 and �1=�0 Riemann
integrable on [s; t] . Assume the functions z and H are di¤erentiable as needed.
Then

(i) D�[az(t) + bH(t)] = aD�[z(t)] + bD�[H(t)] for all a; b 2 R;
(ii) D�[c] = c�1(�; t) for all constants c 2 R;
(iii) D�[z(t)H(t)] = z(t)D�[H(t)] +H(t)D�[z(t)]�z(t)H(t)�1(�; t);
(iv)D�[z(t)=H(t)] = H(t)D�[z(t)]�z(t)D�[H(t)]

H2(t) + z(t)
H(t)�1(�; t);

(v) for � 2 (0; 1] and �xed s 2 R, the exponential function satis�es
D�
t [e�(t; s)] = �(t)e�(t; s); (6)

for e�(t; s) given in (5);
(vi) for � 2 (0; 1] and for the exponential function e0 given in (5), we have

D�[

tZ
a

z(s)e0(t; s)
�0(�; s)

ds] = z(t). (7)

De�nition 6. Let � 2 (0; 1] and t0 2 R. In light of (5) and Lemma 1 (v) and (vi),
de�ne the antiderivative viaZ

D�z(t)d�t = z(t) + ce0(t; t0), c 2 R

Similarly, de�ne the integral of z over [a,b] as
tZ
a

z(s)e0(t; s)d�s =
tZ
a

z(s)e0(t; s)
�0(�; s)

ds; d�s =
1

�0(�; s)
; (8)
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recall that

e0(t; s) = e
�

tR
s

�1(�;�)

�0(�;�)
d�
= e

�
tR
s

�1(�;�)d��

from (5).

Lemma 7. Let the conformable di¤erential operator D� be given as in (3), the
integral be given as in (8) with � 2 (0; 1]. Let the functions �0; �1 be continuous
and satisfy (2), and let z and H be di¤erentiable as needed. Then

(i) the derivative of the de�nite integral of z is given by

D�[

tZ
a

z(s)e0(t; s)d�s] = z(t);

(ii) the de�nite integral of the derivative of z is given by
tZ
a

D�[z(s)]e0(t; s)d�s = z(s)e0(t; s) jts=a= z(t)�z(a)e0(t; a);

(iii) an integration by parts formula is given by
bZ
a

z(t)D�[H(t)]e0(b; t)d�t = z(t)H(t)e0(b; t) jbt=a

�
Z b

a

H(t)(D�[z(t)]� �1(�; ; t)z(t))e0(b; t)d�t;

(iv) a version of the Leibniz rule for di¤erentiation of an integral is given by

D�[

tZ
a

z(t; s)e0(t; s)d�s] =
tZ
a

(D�
t [z(t; s)]��1(�; t)z(t; s))e0(t; s)d�s+z(t; t);

using (4); or, if e0 is absent,

D�(

tZ
a

z(t; s)d�s) = z(t; t) +
tZ
a

D�
t [z(t; s)]d�s.

Lemma 8. (Variation of Constants). Assume �0, �1 satisfy (2). Let f; � :
[t0;1] ! R be continuous, let e� be as in (5), and let x0 2 R. Then the unique
solution of the initial value problem

D�x(t)� �(t)x(t) = f(t); x(t0) = x0;
is given by

x(t) = x0e�(t; t0) +

tZ
t0

e�(t; s)f(s)d�s; t 2 [to;1). (9)
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Theorem 9. (Gronwall�s Inequality). Let �; x; f be continuous functions on
[t0;1), with � � 0. Then

x(t) � f(t) +
tZ

t0

�(s)x(s)e0(t; s)d�s for all t 2 [t0;1);

implies

x(t) � f(t) +
tZ

t0

�(s)f(s)e0(t; s)d�s for all t 2 [t0;1).

Corollary 10. Let �; x be continuous functions on [t0;1), with � > 0. Then

x(t) 6
tZ

t0

�(s)x(s)e0(t; s)d�s for all t 2 [t0;1);

implies x(t) 6 0 for all t 2 [t0;1).

3. Main Result

It is new to refer to inequalities as a mathematics discipline. A very small portion
of these inequalities originated from the ancient traditions. In the 18th and early
19th century names such as Newton, Cauchy and Maclaurin started to work in this
�eld. In this period, only Bernoulli and Cauchy-Schwarz-Bunyakovsky inequalities,
which are mentioned with their own name, can be given as an example [9].
Towards the end of the 19th century, original products started to be given in the

�eld of inequalities. Hölder and Minkovski could be shown among their pioneers.
But the milestone in this area is the Chebyshev�s paper [6]. Chebyshev submit-
ted his paper to the Han�kovshov University�s Editorial Committee in order to be
published in the journal for the volumes in 1883. But the mentioned committee
extremely impressed from this paper that they published it in the last volume of
1882 [9].

Theorem 11. (Chebyshev Inequality). Let f and g be two integrable functions
on the [0; 1]. If both functions are simultaneously increasing or decreasing for the
same x 2 [0; 1], then

1Z
0

f(x)g(x)dx >
1Z
0

f(x)dx

1Z
0

g(x)dx:

If one of the functions is increasing, the other is decreasing for the same x 2 [0; 1]
values, then

1Z
0

f(x)g(x)dx �
1Z
0

f(x)dx

1Z
0

g(x)dx:
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(Chebyshev 1882).

Belarbi and Dahmani gave results on Chebyshev�s inequality using the Riemann-
Liouville integral in 2009 [4]. E.Set gave results on Chebyshev�s inequality using
conformable fractional integrals in 2019 [21]. For the background and summary on
inequalities, we refer the readers to the references [3, 9, 10,15].
Before giving Chebyshev inequality using conformable derivative, mentioning

about following results [16] that play a key role in our proof will provide a better
understanding:
Monotonicity

Let a > 0 and z : [a; b]! R be ��di¤erentiable on an interval [a; b].
i. If z�(x) � 0 for all x 2 [a; b], then z is nondecreasing on [a; b].
ii. If z�(x) > 0 for all x 2 [a; b], then z is increasing on [a; b].
iii. If z�(x) � 0 for all x 2 [a; b], then z is nonincreasing on [a; b].
iv. If z�(x) < 0 for all x 2 [a; b], then z is decreasing on [a; b].
v. If z�(x) = 0 for all x 2 [a; b], then z is constant on [a; b].

Theorem 12. Let f and g be two integrable functions on [a; b]. If both functions
are simultaneously positive or negative for the same x 2 [a; b] values then

bZ
a

f(x)g(x)e0(t; x)d�x >
bZ
a

f(x)e0(t; x)d�x

bZ
a

g(x)e0(t; x)d�x.

If one of the functions for the same x 2 [a; b] values is positive and the other is
negative then

bZ
a

f(x)g(x)e0(t; x)d�x 6
bZ
a

f(x)e0(t; x)d�x

bZ
a

g(x)e0(t; x)d�x.

Proof. Let f and g be two integrable functions on [a,b]. Let de�ne

z(x) =
xZ
a

f(t)g(t)e0(x; t)d�t�
xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:

If we take the derivative of both sides, we have

D�z(x) = f(x)g(x)� f(x)
xZ
a

g(t)e0(x; t)d�t� g(x)
xZ
a

f(t)e0(x; t)d�t

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:
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D�z(x) =
f(x)g(x)

2
� f(x)

xZ
a

g(t)e0(x; t)d�t+
f(x)g(x)

2
� g(x)

xZ
a

f(t)e0(x; t)d�t

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:

D�z(x) =
f(x)

2
[g(x)� 2

xZ
a

g(t)e0(x; t)d�t] +
g(x)

2
[f(x)� 2

xZ
a

f(t)e0(x; t)d�t]

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t:

a) (i) Let g(x) > 0; assume that

g(x)� 2
xZ
a

g(t)e0(x; t)d�t 6 0;

then

g(x) 6 2
xZ
a

g(t)e0(x; t)d�t.

From Corollory 10 g(x) 6 0. This is the contradiction. Then;

g(x) > 0, g(x)� 2
xZ
a

g(t)e0(x; t)d�t > 0.

Using similar arguments, we can write

f(x) > 0, f(x)� 2
xZ
a

f(t)e0(x; t)d�t > 0.

(ii) Let g(x) < 0;�g(x) = G(x); G(x) > 0; assume that

g(x)� 2
xZ
a

g(t)e0(x; t)d�t � 0;

then

�G(x) + 2
xZ
a

G(t)e0(x; t)d�t � 0;
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this implies

G(x) � 2
xZ
a

G(t)e0(x; t)d�t:

From Corollory 10 G(x) � 0. This is the contradiction. Consequently,

g(x) < 0; g(x)� 2
xZ
a

g(t)e0(x; t)d�t < 0:

Using similar arguments, we can write

f(x) < 0; f(x)� 2
xZ
a

f(t)e0(x; t)d�t < 0:

Also we can say �1(�; t)
xR
a

f(t)e0(x; t)d�t
xR
a

g(t)e0(x; t)d�t � 0. As a result of this

part we have

D�z(x) =
f(x)

2
[g(x)� 2

xZ
a

g(t)e0(x; t)d�t] +
g(x)

2
[f(x)� 2

xZ
a

f(t)e0(x; t)d�t]

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t;

is positive. So, the function z(x) is increasing on [a; b]. Then,

z(b) � z(a) = 0:

This implies the �rst inequality in theorem is proved.
b)Let f(x) > 0; assume that

f(x)� 2
xZ
a

f(t)e0(x; t)d�t � 0;

then

f(x) � 2
xZ
a

f(t)e0(x; t)d�t:

From Corollory 10 f(x) � 0. This is the contradiction. Hence,

f(x) > 0, f(x) > 2

xZ
a

f(t)e0(x; t)d�t.
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Now, from part a, if

g(x) < 0; g(x)� 2
xZ
a

g(t)e0(x; t)d�t < 0:

As a result of this part we have

D�z(x) =
f(x)

2
[g(x)� 2

xZ
a

g(t)e0(x; t)d�t] +
g(x)

2
[f(x)� 2

xZ
a

f(t)e0(x; t)d�t]

+�1(�; t)

xZ
a

f(t)e0(x; t)d�t

xZ
a

g(t)e0(x; t)d�t;

is negative. So the function z(x) is decreasing on [a,b]. Then,
z(b) � z(a) = 0:

This implies the second inequality in theorem is proved. �
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LOGARITHMIC COEFFICIENTS OF STARLIKE FUNCTIONS

CONNECTED WITH k-FIBONACCI NUMBERS

Serap BULUT
Faculty of Aviation and Space Science, Arslanbey Campus, Kocaeli University,

41285 Kartepe-Kocaeli, TURKEY

Abstract. Let A denote the class of analytic functions f in the open unit disc

U normalized by f(0) = f ′(0) − 1 = 0, and let S be the class of all functions

f ∈ A which are univalent in U. For a function f ∈ S, the logarithmic
coefficients δn (n = 1, 2, 3, . . .) are defined by

log
f(z)

z
= 2

∞∑
n=1

δnz
n (z ∈ U)

and it is known that |δ1| ≤ 1 and |δ2| ≤ 1
2

(
1 + 2e−2

)
= 0, 635 · · · . The

problem of the best upper bounds for |δn| of univalent functions for n ≥ 3 is

still open. Let SLk denote the class of functions f ∈ A such that

zf ′ (z)

f(z)
≺

1 + τ2kz
2

1− kτkz − τ2kz2
, τk =

k −
√
k2 + 4

2
(z ∈ U) .

In the present paper, we determine the sharp upper bound for |δ1| , |δ2| and |δ3|
for functions f belong to the class SLk which is a subclass of S. Furthermore,

a general formula is given for |δn| (n ∈ N) as a conjecture.

1. Introduction

Let C be the set of complex numbers and N = {1, 2, 3, . . .} be the set of positive
integers. Assume that H is the class of analytic functions in the open unit disc
U = {z ∈ C : |z| < 1} , and let the class P be defined by

P = {p ∈ H : p(0) = 1 and < (p(z)) > 0 (z ∈ U)} .

For two functions f, g ∈ H, we say that the function f is subordinate to g in U,
and write

f (z) ≺ g (z) (z ∈ U) ,

Keywords. Analytic function, univalent function, shell-like function, logarithmic coefficients,
k-Fibonacci number, subordination.
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if there exists a Schwarz function

ω ∈ Ω := {ω ∈ H : ω(0) = 0 and |ω (z)| < 1 (z ∈ U)} ,
such that

f (z) = g (ω (z)) (z ∈ U) .

Indeed, it is known that

f (z) ≺ g (z) (z ∈ U)⇒ f (0) = g (0) and f (U) ⊂ g (U) .

Furthermore, if the function g is univalent in U, then we have the following equiv-
alence

f (z) ≺ g (z) (z ∈ U)⇔ f (0) = g (0) and f (U) ⊂ g (U) .

Let A denote the subclass of H consisting of functions f normalized by

f(0) = f ′(0)− 1 = 0.

Each function f ∈ A can be expressed as

f(z) = z +

∞∑
n=2

anz
n (z ∈ U) . (1)

We also denote by S the class of all functions in the normalized analytic function
class A which are univalent in U.

A function f ∈ A is said to be starlike of order α (0 ≤ α < 1), if it satisfies the
inequality

<
(
zf ′(z)

f(z)

)
> α (z ∈ U) .

We denote the class which consists of all functions f ∈ A that are starlike of order
α by S∗(α). It is well-known that S∗(α) ⊂ S∗(0) = S∗ ⊂ S.

By means of the principle of subordination, Yılmaz Özgür and Sokól [13] defined

the following class SLk of functions f ∈ S, connected with a shell-like region
described by a function p̃k with coefficients depicted in terms of the k-Fibonacci
numbers where k is a positive real number. The name attributed to the class SLk
is motivated by the shape of the curve

Γ =
{
p̃k
(
eiϕ
)

: ϕ ∈ [0, 2π) \ {π}
}
.

The curve Γ has a shell-like shape and it is symmetric with respect to the real axis.
For more details about the class SLk, please refer to [11,13].

Definition 1. [13] Let k be any positive real number. The function f ∈ S belongs

to the class SLk if it satisfies the condition that

zf ′ (z)

f(z)
≺ p̃k (z) (z ∈ U) , (2)

where

p̃k (z) =
1 + τ2

kz
2

1− kτkz − τ2
kz

2
=

1 + τ2
kz

2

1− (τ2
k − 1) z − τ2

kz
2

(3)
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with

τk =
k −
√
k2 + 4

2
. (4)

For k = 1, the class SLk reduces to the class SL which consists of functions
f ∈ A defined by (1) satisfying

zf ′ (z)

f(z)
≺ p̃ (z)

where

p̃ (z) := p̃1 (z) =
1 + τ2z2

1− τz − τ2z2
(5)

with

τ := τ1 =
1−
√

5

2
. (6)

This class was introduced by Sokól [10].

Definition 2. [3] For any positive real number k, the k-Fibonacci sequence {Fk,n}n∈N0

is defined recurrently by

Fk,n+1 = kFk,n + Fk,n−1 (n ∈ N)

with initial conditions
Fk,0 = 0, Fk,1 = 1.

Furthermore nth k-Fibonacci number is given by

Fk,n =
(k − τk)

n − τnk√
k2 + 4

, (7)

where τk is given by (4) .

For k = 1, we obtain the classic Fibonacci sequence {Fn}n∈N0
:

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n ∈ N) .

For more details about the k-Fibonacci sequences please refer to [7, 9, 12,14].

Yılmaz Özgür and Sokól [13] showed that the coefficients of the function p̃k (z)
defined by (3) are connected with k-Fibonacci numbers. This connection is pointed
out in the following theorem.

Theorem 1. [13] Let {Fk,n}n∈N0
be the sequence of k-Fibonacci numbers defined

in Definition 2. If

p̃k (z) =
1 + τ2

kz
2

1− kτkz − τ2
kz

2
:= 1 +

∞∑
n=1

p̃k,nz
n, (8)

then we have

p̃k,1 = kτk, p̃k,2 =
(
k2 + 2

)
τ2
k, p̃k,n = (Fk,n−1 + Fk,n+1) τnk (n ∈ N) . (9)

It can be found the more results related to Fibonacci numbers in [7, 12,14].
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Remark 1. [13] For each k > 0,

SLk ⊂ S∗ (αk) , αk =
k

2
√
k2 + 4

,

that is, f ∈ SLk is a starlike function of order αk, and so is univalent.

For a function f ∈ S, the logarithmic coefficients δn (n ∈ N) are defined by

log
f(z)

z
= 2

∞∑
n=1

δnz
n (z ∈ U) , (10)

and play a central role in the theory of univalent functions. The idea of studying
the logarithmic coefficients helped Kayumov [8] to solve Brennan’s conjecture for
conformal mappings. If f ∈ S, then it is known that

|δ1| ≤ 1

and

|δ2| ≤
1

2

(
1 + 2e−2

)
= 0, 635 · · ·

(see [2]). The problem of the best upper bounds for |δn| of univalent functions for
n ≥ 3 is still open.

The main purpose of this paper is to determine the upper bound for |δ1| , |δ2|
and |δ3| for functions f belong to the univalent function class SLk. To prove our
main results we need the following lemmas.

Lemma 1. [11] If p (z) = 1 + p1z + p2z
2 + · · · (z ∈ U) and

p (z) ≺ p̃k (z) =
1 + τ2

kz
2

1− kτkz − τ2
kz

2
, τk =

k −
√
k2 + 4

2
,

then we have

|p1| ≤ k |τk| and |p2| ≤
(
k2 + 2

)
τ2
k.

The above estimates are sharp.

Lemma 2. [5] If p (z) = 1 + p1z + p2z
2 + · · · (z ∈ U) and

p (z) ≺ p̃k (z) =
1 + τ2

kz
2

1− kτkz − τ2
kz

2
, τk =

k −
√
k2 + 4

2
,

then we have

|p3| ≤
(
k3 + 3k

)
|τk|3 .

The result is sharp.

Lemma 3. [1] If p (z) = 1 + p1z + p2z
2 + · · · (z ∈ U) and

p (z) ≺ p̃k (z) =
1 + τ2

kz
2

1− kτkz − τ2
kz

2
, τk =

k −
√
k2 + 4

2
,
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then we have ∣∣p2 − γp2
1

∣∣ ≤ k |τk|max

{
1,
∣∣k2 + 2− γk2

∣∣ |τk|
k

}
for all γ ∈ C. The above estimates are sharp.

Lemma 4. [2] Let p (z) = 1 + c1z + c2z
2 + · · · ∈ P. Then

|cn| ≤ 2 (n ∈ N) .

Lemma 5. [4] Let p (z) = 1 + c1z + c2z
2 + · · · ∈ P. Then

2c2 = c21 + x
(
4− c21

)
for some x, |x| ≤ 1, and

4c3 = c31 + 2c1
(
4− c21

)
x− c1

(
4− c21

)
x2 + 2

(
4− c21

) (
1− |x|2

)
z

for some z, |z| ≤ 1.

Lemma 6. [1] If the function f given by (1) is in the class SLk, then we have

∣∣a3 − λa2
2

∣∣ ≤


τ2
k

(
k2 + 1− λk2

)
, λ ≤ 2(k2+1)τk+k

2k2τk

k|τk|
2 ,

2(k2+1)τk+k

2k2τk
≤ λ ≤ 2(k2+1)τk−k

2k2τk

τ2
k

(
λk2 − k2 − 1

)
, λ ≥ 2(k2+1)τk−k

2k2τk

.

If
2(k2+1)τk+k

2k2τk
≤ λ ≤ k2+1

k2 , then

∣∣a3 − λa2
2

∣∣+

(
λ−

2
(
k2 + 1

)
τk + k

2k2τk

)
|a2|2 ≤

k |τk|
2

.

Furthermore, if k2+1
k2 ≤ λ ≤

2(k2+1)τk−k
2k2τk

, then

∣∣a3 − λa2
2

∣∣+

(
2
(
k2 + 1

)
τk − k

2k2τk
− λ

)
|a2|2 ≤

k |τk|
2

.

Each of these results is sharp.

Lemma 7. [6] If the function f given by (1) is in the class SLk, then∣∣a2a4 − a2
3

∣∣ ≤ τ4
k.

The bound is sharp.

Lemma 8. [6] If the function f given by (1) is in the class SLk, then

|a2a3 − a4| ≤ k |τk|3 .
The bound is sharp.
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2. The coefficients of log (f(z)/z)

Theorem 2. Let f ∈ SLk be given by (1) and the coefficients of log (f(z)/z) be
given by (10) . Then

|δ1| ≤
k

2
|τk| , |δ2| ≤

k2 + 2

4
τ2
k, |δ3| ≤

k3 + 3k

6
|τk|3 , (11)

where τk is defined by (4). Each of these results is sharp. The equalities are attained
by the function p̃k given by (3) .

Proof. Firstly, by differentiating (10) and equating coefficients, we have

δ1 =
1

2
a2,

δ2 =
1

2

(
a3 −

1

2
a2

2

)
,

δ3 =
1

2

(
a4 − a2a3 +

1

3
a3

2

)
.

If f ∈ SLk, then by the principle of subordination, there exists a Schwarz function
ω ∈ Ω such that

zf ′ (z)

f(z)
= p̃k (ω (z)) (z ∈ U) , (12)

where the function p̃k is given by (8). Therefore, the function

g(z) :=
1 + ω (z)

1− ω (z)
= 1 + c1z + c2z

2 + · · · (z ∈ U) (13)

is in the class P. Now, defining the function p(z) by

p(z) =
zf ′ (z)

f(z)
= 1 + p1z + p2z

2 + · · · , (14)

it follows from (12) and (13) that

p(z) = p̃k

(
g (z)− 1

g(z) + 1

)
. (15)

Note that

ω (z) =
c1
2
z +

1

2

(
c2 −

c21
2

)
z2 +

1

2

(
c3 − c1c2 +

c31
4

)
z3 + · · ·

and so

p̃k (ω (z)) = 1 +
p̃k,1c1

2
z +

[
1

2

(
c2 −

c21
2

)
p̃k,1 +

1

4
c21p̃k,2

]
z2

+

[
1

2

(
c3 − c1c2 +

c31
4

)
p̃k,1 +

1

2
c1

(
c2 −

c21
2

)
p̃k,2 +

c31
8
p̃k,3

]
z3 + · · · .

(16)
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Thus, by using (13) in (15), and considering the values p̃k,j (j = 1, 2, 3) given in
(9), we obtain

p1 =
kτk
2
c1, (17)

p2 =
kτk
2

(
c2 −

c21
2

)
+

(
k2 + 2

)
τ2
k

4
c21, (18)

p3 =
kτk
2

(
c3 − c1c2 +

c31
4

)
+

(
k2 + 2

)
τ2
k

2
c1

(
c2 −

c21
2

)
+

(
k3 + 3k

)
τ3
k

8
c31. (19)

On the other hand, a simple calculation shows that

zf ′ (z)

f(z)
= 1 + a2z +

(
2a3 − a2

2

)
z2 +

(
3a4 − 3a2a3 + a3

2

)
z3 + · · · ,

which, in view of (14), yields

a2 = p1, a3 =
p2

1 + p2

2
, a4 =

p3
1 + 3p1p2 + 2p3

6
. (20)

Substituting for a2, a3 and a4 from (20), we obtain

δ1 =
1

2
p1, δ2 =

1

4
p2, δ3 =

1

6
p3. (21)

Using Lemma 1 and Lemma 2, we get the desired results. This completes the proof
of theorem. �

Conjecture. Let f ∈ SLk be given by (1) and the coefficients of log (f(z)/z)
be given by (10) . Then

|δn| ≤
Fk,n−1 + Fk,n+1

2n
|τk|n (n ∈ N) ,

where {Fk,n}n∈N0
is the Fibonacci sequence given by (7) .

This conjecture has been verified for the values n = 1, 2, 3 by the Theorem 2.

Letting k = 1 in Theorem 2, we obtain the following consequence.

Corollary 1. Let f ∈ SL be given by (1) and the coefficients of log (f(z)/z) be
given by (10) . Then

|δ1| ≤
1

2
|τ | , |δ2| ≤

3

4
τ2, |δ3| ≤

2

3
|τ |3 ,

where τ is defined by (6). Each of these results is sharp. The equalities are attained
by the function p̃ given by (5) .
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Theorem 3. Let f ∈ SLk be given by (1) and the coefficients of log (f(z)/z) be
given by (10) . Then for any γ ∈ C, we have∣∣δ2 − γδ2

1

∣∣ ≤ k |τk|
4

max

{
1,
∣∣k2 + 2− γk2

∣∣ |τk|
k

}
.

Proof. By using (21) , the desired result is obtained from the equality

δ2 − γδ2
1 =

1

4

(
p2 − γp2

1

)
(γ ∈ C)

and Lemma 3. �

Letting k = 1 in Theorem 3, we obtain the following consequence.

Corollary 2. Let f ∈ SL be given by (1) and the coefficients of log (f(z)/z) be
given by (10) . Then for any γ ∈ C, we have∣∣δ2 − γδ2

1

∣∣ ≤ |τ |
4

max {1, |(3− γ) τ |} .

If we take γ = 1 in Theorem 3, then we obtain the following result.

Corollary 3. Let f ∈ SLk be given by (1) and the coefficients of log (f(z)/z) be
given by (10) . Then

∣∣δ2 − δ2
1

∣∣ ≤


τ2
k

2 , 0 < k ≤ 2√
3

k|τk|
4 k ≥ 2√

3

.

Letting k = 1 in Corollary 3, we obtain the following consequence.

Corollary 4. Let f ∈ SL be given by (1) and the coefficients of log (f(z)/z) be
given by (10) . Then ∣∣δ2 − δ2

1

∣∣ ≤ τ2

2
.

3. The coefficients of the inverse function

Since univalent functions are one-to-one, they are invertible and the inverse func-
tions need not be defined on the entire unit disk U. In fact, the Koebe one-quarter
theorem [2] ensures that the image of U under every univalent function f ∈ S con-
tains a disk of radius 1/4. Thus every function f ∈ A has an inverse f−1, which is
defined by

f−1 (f (z)) = z (z ∈ U)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) ; r0 (f) ≥ 1

4

)
.
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In fact, for a function f ∈ A given by (1) the inverse function f−1 is given by

f−1 (w) = w−a2w
2 +
(
2a2

2 − a3

)
w3−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · =: w+

∞∑
n=2

Anw
n.

(22)

Since SLk ⊂ S, the functions f belonging to the class SLk are invertible.

Theorem 4. Let f ∈ SLk be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then we have

|A2| ≤ k |τk|
and

|A3| ≤
k |τk|

2
max

{
1, 2

∣∣1− k2
∣∣ |τk|
k

}
.

Each of these results is sharp.

Proof. Let the function f ∈ A given by (1) be in the class SLk, and f−1 be the
inverse function of f defined by (22) . Then using (20), we obtain

A2 = −a2 = −p1 (23)

and

A3 = 2a2
2 − a3 = −1

2

(
p2 − 3p2

1

)
.

The upper bound for |A2| is clear from Lemma 1. Furthermore by considering
Lemma 3 we obtain the upper bound of |A3| as

|A3| ≤
k |τk|

2
max

{
1, 2

∣∣1− k2
∣∣ |τk|
k

}
.

Finally, for the sharpness, we have by (8) that

p̃k (z) = 1 + kτkz +
(
k2 + 2

)
τ2
k z

2 + · · ·
and

p̃k
(
z2
)

= 1 + kτkz
2 +

(
k2 + 2

)
τ2
k z

4 + · · · .
From this equalities, we obtain

p1 = kτk and p2 =
(
k2 + 2

)
τ2
k

and

p1 = 0 and p2 = kτk,

respectively. Thus, it is clear that the equality for |A2| is attained for the function
p̃k(z); and the equality for the first value of |A3| is attained for the function p̃k(z2),
for the second value of |A3| is attained for the function p̃k(z). This evidently
completes the proof of theorem. �

Remark 2. It is worthy to note that the coefficient bound obtained for |A3| in
Theorem 4 is the improvement of [11, Corollary 2.4].



APPLICATIONS OF FIBONACCI NUMBERS 919

Theorem 5. Let f ∈ SL be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then we have

|A2| ≤ |τ | , |A3| ≤
|τ |
2

and |A4| ≤ 2 |τ |3 .

Each of these results is sharp.

Proof. Let f ∈ SL be given by (1) , and f−1 be the inverse function of f defined
by (22) . Then the upper bounds for |A2| and |A3| are obtained as a consequence
of Theorem 4 when k = 1. From (22) , we have

−A4 = 5a3
2 − 5a2a3 + a4.

By using (20) in the above equality, we obtain

−A4 =
8

3
p3

1 − 2p1p2 +
1

3
p3.

By (17)-(19), this equality gives

A4 = −τ
6

(
c3 − c1c2 +

1− 6τ2

4
c31

)
.

By means of Lemma 5, we get

A4 =
τ

6

[
1

4
c1
(
4− c21

)
x2 − 1

2

(
4− c21

) (
1− |x|2

)
z +

3τ2

2
c31

]
=

τ

24

[
6τ2c31 +

(
4− c21

){
c1x

2 − 2
(

1− |x|2
)
z
}]

.

As per Lemma 4, it is clear that |c1| ≤ 2. Therefore letting c1 = c, we may assume
without loss of generality that c ∈ [0, 2] . Hence, by using the triangle inequality, it
is obtained that

|A4| ≤
|τ |
24

[
6τ2c3 +

(
4− c2

){
c |x|2 + 2

(
1− |x|2

)}]
.

Thus, for µ = |x| ≤ 1, we have

|A4| ≤
|τ |
24

[
6τ2c3 +

(
4− c2

) {
cµ2 + 2

(
1− µ2

)}]
:= F (c, µ) .

Now, we need to find the maximum value of F (c, µ) over the rectangle Π,

Π = {(c, µ) : 0 ≤ c ≤ 2, 0 ≤ µ ≤ 1} .

For this, first differentiating the function F with respect to c and µ, we get

∂F (c, µ)

∂c
=
|τ |
24

[
18τ2c2 +

(
4− c2

) {
cµ2 + 2

(
1− µ2

)}]
and

∂F (c, µ)

∂µ
=
|τ |
12

(
4− c2

)
(c− 2)µ,
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respectively. The condition ∂F (c,µ)
∂µ = 0 gives c = 2 or µ = 0, and such points (c, µ)

are not interior point of Π. So the maximum cannot attain in the interior of Π.
Now to see on the boundary, by elementary calculus one can verify the following:

max
0≤µ≤1

F (0, µ) = F (0, 0) =
|τ |
3
, max

0≤µ≤1
F (2, µ) = F (2, 0) = 2 |τ |3

max
0≤c≤2

F (c, 0) = F (2, 0) = 2 |τ |3 , max
0≤c≤2

F (c, 1) = F (2, 1) = 2 |τ |3 .

Comparing these results, we get

max
Π

F (c, µ) = 2 |τ |3

(see Figure 1). Also note that

p̃ (z) = 1 + τz + 3τ2 z2 + 4τ3 z3 + · · ·
by (8) with k = 1. From this equality, we obtain

p1 = τ , p2 = 3τ2 and p3 = 4τ3.

On the other hand, the sharpness of the upper bounds of |A2| and |A3| is known
from Theorem 4 and it is seen that the equality for |A4| is attained for the function
p̃(z). This evidently completes the proof of theorem. �

Theorem 6. Let f ∈ SLk be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then for any γ ∈ C, we have∣∣A3 − γA2

2

∣∣ ≤ k |τk|
2

max

{
1, 2

∣∣1− (1− γ) k2
∣∣ |τk|
k

}
.

Proof. By using (20) , the desired result is obtained from the equality

A3 − γA2
2 = −1

2

[
p2 − (3− 2γ) p2

1

]
(γ ∈ C)

and Lemma 3. �

Letting k = 1 in Theorem 6, we obtain following consequence.

Corollary 5. Let f ∈ SL be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then for any γ ∈ C, we have∣∣A3 − γA2

2

∣∣ ≤ |τ |
2

max {1, 2 |γτ |} .

If we take γ = 1 in Theorem 6, then we obtain the following result.

Corollary 6. Let f ∈ SLk be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then

∣∣A3 −A2
2

∣∣ ≤


τ2
k , 0 < k ≤ 2√

3

k|τk|
2 , k ≥ 2√

3

.
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Figure 1. Mapping of F (c, µ) over Π

Letting k = 1 in Corollary 6, we obtain the following consequence.

Corollary 7. Let f ∈ SL be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then ∣∣A3 −A2

2

∣∣ ≤ τ2.

Theorem 7. Let f ∈ SLk be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then

∣∣A2A4 −A2
3

∣∣ ≤

(
1 + k2

)
τ4
k , 0 < k ≤ 2√

3

τ4
k + k3|τk|3

2 , k ≥ 2√
3

and

|A2A3 −A4| ≤


4k |τk|3 , 0 < k ≤ 2√

3

k |τk|3 +
3k2τ2

k

2 , k ≥ 2√
3

.
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Proof. Let f ∈ SLk be of the form (1) and its inverse f−1 be given by (22). Then
we obtain ∣∣A2A4 −A2

3

∣∣ =
∣∣a2

2

(
a2

2 − a3

)
+
(
a2a4 − a2

3

)∣∣
and

|A2A3 −A4| =
∣∣3a2

(
a2

2 − a3

)
− (a2a3 − a4)

∣∣ .
Hence, applying triangle inequality, we have∣∣A2A4 −A2

3

∣∣ ≤ |a2|2
∣∣a3 − a2

2

∣∣+
∣∣a2a4 − a2

3

∣∣
and

|A2A3 −A4| ≤ 3 |a2|
∣∣a3 − a2

2

∣∣+ |a2a3 − a4| ,
respectively. On the other hand, from Lemma 6, we obtain

∣∣a3 − a2
2

∣∣ ≤


τ2
k , 0 < k ≤ 2√

3

k|τk|
2 , k ≥ 2√

3

. (24)

Furhermore, we get

|a2| ≤ k |τk| (25)

by using (23) together with Lemma 1. Now, by considering Lemma 7 and Lemma
8, we get the desired estimates. �

Letting k = 1 in Theorem 7, we obtain the following consequence.

Corollary 8. Let f ∈ SL be given by (1) , and f−1 be the inverse function of f
defined by (22) . Then ∣∣A2A4 −A2

3

∣∣ ≤ 2τ4

and

|A2A3 −A4| ≤ 4 |τ |3 .
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Abstract. The goals of the present paper are to introduce truncated Lupaş

type operators of max-product kind and give an estimation for the degree of
approximation with respect to first modulus of continuity function. We prove

that this estimate can not be improved; on the other hand, for some subclasses

of functions, better degree of approximation is obtained. We also showed the
piecewise convexity of the constructed operators on the interval [0, 1].

1. Introduction

As it takes very important place in the approximation theory, the sequences
of positive linear operators of discrete type have been studied by various authors
in the last century. One of those operators that we deal with in this paper was
constructed by A. Lupaş [23] in 1995. His starting point in this construction was
the identity

1

(1− a)
γ =

∞∑
k=0

(γ)k

k!
ak, |a| < 1.

With the help of this identity, he defined the following sequence of operators which
is linear and positive:

Ln (f) (x) = (1− a)
nx
∞∑
k=0

(nx)k

k!
akf

(
k

n

)
, x ≥ 0,
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with f : [0,∞)→ R. The notation here is the Pochhammer symbol and given by

(γ)0 = 1, (γ)k = γ (γ + 1) ... (γ + k − 1) , k ≥ 1.

Imposing Ln (e1) = e1, one finds a = 1/2 and therefore the operator turns into,

Ln (f) (x) = 2−nx
∞∑
k=0

(nx)k

2kk!
f

(
k

n

)
, x ≥ 0. (1)

Agratini [2] studied the approximation properties of these operators by means of
Korovkin’s theorem and gave estimates for the rate of convergence of the operators.
The well-known Korovkin’s theorem, which gives a simple proof of Weierstrass the-
orem, is based on the approximation of functions by linear and positive operators.
The underlying algebraic structure of these mentioned operators is linear over R
and they are also linear operators. The idea of nonlinear positive operators was
given by Bede et al. in [3]. They asked whether they could change the underlying
algebraic structure to more general structures. In this sense they presented nonlin-
ear Shepard-type operators by replacing the operations sum and product by max
and product.

Following this paper Bede et. al. [4] defined and studied pseudo linear approx-
imation operators. Based upon these studies, there appeared an open problem in
the book of S.Gal [17] in which the max-product type Bernstein operators were
introduced. Related to this open problem, a nonlinear modification of the classical
Bernstein operators were first studied by Bede and Gal [5] in detail. The idea be-
hind these studies were also applied to other well-known approximating operators.
Same authors introduced the nonlinear versions of the previously defined operators
and they studied the approximation order and shape-preserving properties of the
stated operators.

The nonlinear Favard-Szász-Mirakjan operators of max-product type F
(M)
n is

given in [5] as

F (M)
n (f) (x) =

∞∨
k=0

sn,k (x) f
(
k
n

)
n∨
k=0

sn,k (x)
, x ∈ [0,∞) , n ∈ N,

where sn,k (x) = (nx)k

k! . Bede, Coroianu and Gal [6] introduced the truncated
Favard-Szász-Mirakjan operators of max-product type as follows:

T (M)
n (f) (x) =

n∨
k=0

sn,k (x) f
(
k
n

)
n∨
k=0

sn,k (x)
, x ∈ [0, 1] , n ∈ N.

Recently, Güngör and İspir studied quantitative estimations for the generalized
Szász operators of max product type in [18]. Also, they constructed nonlinear
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Bernstein-Chlodowsky operators of max-product type in [19]. Holhos [20] stud-
ied weighted approximation of functions by Meyer-König and Zeller operators of
max-product type. Coroianu and Gal [8, 9] introduced truncated max-product
Kantorovich operators based on Fejer Kernel and generalized (ϕ,ψ)-kernels. By
Costarelli and Vinti, the max-product neural networks operators were studied
in [11]- [15]. Recently, in [1], the max-product of Bernstein operators for sym-
metric ranges are introduced by Acar et.al. and upper estimates of approximation
error for some subclasses of functions are obtained. Also, they investigated the
shape-preserving properties of the operators.

In this paper, the nonlinear truncated Lupaş operators of max-product type
are introduced. We estimate the degree of approximation of the defined sequence
of operators. More importantly, we show that the estimate with respect to the
modulus of continuity function cannot be improved. On the other hand, for some
subclasses of functions, better order of approximation is obtained. Finally, we
proved that our sequence of operators is piecewise convex on the interval [0, 1] for
any arbitrary function f .

Before proceeding further, we will recall some general notations about the max-
product type nonlinear operators. Considering the set of positive real numbers R+,
we deal with the maximum ”

∨
” and the product ”·” operations. Then (R+,

∨
, ·)

is called as Max-Product algebra.
Let I ⊂ R be a bounded or unbounded interval, and

CB+(I) = {f : I → R+; f continuous and bounded on I}.
A discrete max-product type approximation operator Ln : CB+(I)→ CB+(I), has
a general form

Ln (f) (x) =

n∨
i=0

Dn(x, xi)ḟ (xi) ,

or

Ln (f) (x) =

∞∨
i=0

Dn(x, xi)ḟ (xi)

where n ∈ N, f ∈ CB+(I), Dn(·, xi) ∈ CB+(I) and xi ∈ I, for all i. The above
form of the operators are positive and nonlinear. These operators also satisfy the
pseudolinearity condition which is of the form

Ln(a · f ∨ b · g)(x) = a · Ln(f)(x) ∨ b · Ln(g)(x),∀a, b ∈ R+, f, g : I → R+.

In order to give some properties of the operators Ln, we present the following
auxiliary Lemma.

Lemma 1. ( [5]) Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators
satisfying the following properties :

(i) (Monotonicity)
If f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g) for all n ∈ N ;

(ii) (Subadditivity)
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Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).

2. Construction of the Operators

Now, we define our truncated max-product type operators as follows:

V (M)
n (f) (x) =

n∨
k=0

vn,k (x) f
(
k
n

)
n∨
k=0

vn,k (x)
, x ∈ [0, 1] , n ∈ N, (2)

where

vn,k (x) =
(nx)k

2kk!
, (nx)0 = 1, (nx)k = nx (nx+ 1) ... (nx+ k − 1) , k ≥ 1.

We can write the following properties of the operators V
(M)
n (f).

i) One can see that
n∨
k=0

vn,k (x) > 0 for x ∈ [0, 1].

For any f ∈ C+ [0, 1], the space of all positive real-valued and continuous functions

on [0, 1] , V
(M)
n (f) ∈ C+ [0, 1] . So, V

(M)
n : C+ [0, 1] → C+ [0, 1] is a sequence of

positive operators and since
n∨
k=0

vn,k (x) = 1 for x = 0, V
(M)
n (f) (0) = f(0).

ii) For any f ∈ C+ [0, 1] and λ ≥ 0,

V (M)
n (λf) = λV (M)

n (f) . (3)

Hence, the max-product operators V
(M)
n given by (2) are positive homogenous.

iii) For V
(M)
n the identity

V (M)
n (e0) = e0, e0 (x) = 1 (4)

holds.
iv) V

(M)
n (f) satisfy the pseudo-linearity condition, i.e., for any f, g ∈ C+ [0, 1] and

α, β ∈ R+

V (M)
n (αf ∨ βg) (x) = αV (M)

n (f) (x) ∨ βV (M)
n (g) (x) . (5)

From the above equality, we have

f ≤ g =⇒ V (M)
n (f) (x) ≤ V (M)

n (g) (x) . (6)

So, V
(M)
n (f) is a monotone operator.

v) For any f, g ∈ C+ [0, 1] , we get

V (M)
n (f + g) (x) ≤ V (M)

n (f) (x) + V (M)
n (g) (x) . (7)
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That is the sublinearity condition is satisfied by the operators V
(M)
n (f) .

vi) From the above properties and Lemma 1 we have∣∣∣V (M)
n (f) (x)− V (M)

n (g) (x)
∣∣∣ ≤ V (M)

n (|f − g|) (x) . (8)

Now, we can write the following corollary.

Corollary 2. For all f ∈ C+ [0, 1] ,∣∣∣V (M)
n (f) (x)− f (x)

∣∣∣ ≤ [1 +
1

δ
V (M)
n (ϕx) (x)

]
ω1 (f, δ) , (9)

where ϕx (t) = |t− x| , t, x ∈ [0, 1] and the modulus of continuity function of f is
defined as

ω1 (f, δ) = max
t,x∈[0,1]
|t−x|≤δ

{|f (t)− f (x)|} .

Proof. For the proof, see for example [6]. �

3. Auxiliary Lemmas

In the current section we will give some auxiliary lemmas which we need for the
proof of the main theorem.

Lemma 3. Let x ∈
[
j+1
n , j+2

n

]
and j ∈ {0, 1, ..., n− 2}. Then we have,

n∨
k=0

vn,k (x) = vn,j (x) .

Also,
n∨
k=0

vn,k (x) = 1, for x ∈
[
0, 2

n

]
.

Proof. In fact for fixed n ∈ N and k ≥ 0, the inequality

0 ≤ vn,k+1 (x) ≤ vn,k (x)

0 ≤ nx+ k ≤ 2 (k + 1)

is equivalent to

0 ≤ x ≤ k + 2

n
.

So, taking k = 0, 1, ..., n− 2, we get

0 ≤ vn,1 (x) ≤ vn,0 (x) ⇐⇒ x ∈
[
0,

2

n

]
,

0 ≤ vn,2 (x) ≤ vn,1 (x) ⇐⇒ x ∈
[
0,

3

n

]
,

...

0 ≤ vn,k+1 (x) ≤ vn,k (x) ⇐⇒ x ∈
[
0,
k + 2

n

]
,

...
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0 ≤ vn,n−1 (x) ≤ vn,n−2 (x) ⇐⇒ x ∈ [0, 1] .

For k = n− 1 we also have

0 ≤ vn,n (x) ≤ vn,n−1 (x) ⇐⇒ x ∈
[
0, 1 +

1

n

]
.

From all these inequalities, we can write

x ∈
[
0,

2

n

]
=⇒ vn,k (x) ≤ vn,0 (x) = 1 for all k = 0, 1, ..., n,

also

x ∈
[

2

n
,

3

n

]
=⇒ vn,k (x) ≤ vn,1 (x) for all k = 0, 1, ..., n,

x ∈
[

3

n
,

4

n

]
=⇒ vn,k (x) ≤ vn,2 (x) for all k = 0, 1, ..., n,

in general, for fixed j = 0, 1, ..., n− 2,

x ∈
[
j + 1

n
,
j + 2

n

]
=⇒ vn,k (x) ≤ vn,j (x) for all k = 0, 1, ..., n.

So, the proof is completed.
�

In order to proceed we need the following notations:

For each k ∈ {0, 1, ..., n} , j ∈ {0, 1, ..., n− 2}, state

Mk,n,j (x) =
vn,k (x)

∣∣ k
n − x

∣∣
vn,j (x)

, mk,n,j (x) =
vn,k (x)

vn,j (x)
. (10)

It is clear that if k ≥ j + 2 then

Mk,n,j (x) =
vn,k (x)

(
k
n − x

)
vn,j (x)

,

and if k ≤ j then

Mk,n,j (x) =
vn,k (x)

(
x− k

n

)
vn,j (x)

.

Lemma 4. For all k ∈ {0, 1, ..., n} , j ∈ {0, 1, ..., n− 2} and x ∈
[
j+1
n , j+2

n

]
, we

have

mk,n,j ≤ 1.

Proof. If k ≥ j then, since h(x) = 1
nx+k is nonincreasing on x ∈

[
j+1
n , j+2

n

]
, we

have
mk,n,j (x)

mk+1,n,j (x)
=

2 (k + 1)

nx+ k
≥ 2 (k + 1)

k + j + 2
≥ 1. (11)
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So, mj,n,j (x) ≥ mj+1,n,j (x) ≥ ... ≥ mn,n,j (x) is true.
If k ≤ j then,

mk,n,j (x)

mk−1,n,j (x)
=
nx+ k − 1

2k
≥ j + k

2k
≥ 1, (12)

which implies, mj,n,j (x) ≥ mj−1,n,j (x) ≥ ... ≥ m0,n,j (x) is true. Hence for all

k ∈ {0, 1, 2, ..., n} , j ∈ {0, 1, 2, ..., n− 2} , n ∈ N and x ∈
[
j+1
n , j+2

n

]
, we can write

mk,n,j ≤ mj,n,j (x) = 1.

�

Lemma 5. Let x ∈
[
j+1
n , j+2

n

]
,

i) If k ∈ {j + 2, ..., n− 2} is such that , k −
√

3k + 2 ≥ j then Mk,n,j (x) ≥
Mk+1,n,j (x) .

ii) If k ∈ {1, 2, ..., j} is such that k +
√

3k ≤ j, then Mk,n,j (x) ≥Mk−1,n,j (x) .

Proof. i) Since g(x) = 1
nx+k

k−nx
k+1−nx is nonincreasing, we can write g (x) ≥ g

(
j+2
n

)
and hence get,

Mk,n,j (x)

Mk+1,n,j (x)
=

2 (k + 1)

nx+ k

k
n − x
k+1
n − x

≥ 2 (k + 1)

k + j + 2

k − j − 2

k − j − 1

Then, the condition k −
√

3k + 2 ≥ j implies (k − j)2 ≥ 3k − j + 2. This implies
2 (k + 1) (k − j − 2) ≥ (k + j + 2) (k − j − 1) . So, we have

Mk,n,j (x)

Mk+1,n,j (x)
≥ 1.

ii) Since h(x) = (nx+ k − 1)
x− k

n

x− k−1
n

is nondecreasing, we can write g (x) ≥

g
(
j+1
n

)
and hence get,

Mk,n,j (x)

Mk−1,n,j (x)
=

(nx+ k − 1)

2k

x− k
n

x− k−1
n

≥ j + k

2k

j − k + 1

j − k + 2
.

Then, the condition k +
√

3k ≤ j implies (j − k)
2 ≥ 3k − j. Since this implies

(j + k) (j − k + 1) ≥ 2k (j − k + 2), we have

Mk,n,j (x)

Mk−1,n,j (x)
≥ 1.

So, the proof is completed. �
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4. Degree of Approximation by V
(M)
n (f)

Our aim is to estimate the degree of convergence of the sequence of max-product

operators V
(M)
n (f) given by (2) with respect to modulus of continuity function and

then show that this estimate can not be improved.

Theorem 6. Let V
(M)
n (f), n ∈ N be defined by (2). For all f ∈ C+ [0, 1] , the

following inequality∣∣∣V (M)
n (f) (x)− f (x)

∣∣∣ ≤ 8ω1

(
f,

1√
n

)
, x ∈ [0, 1]

holds.

Proof. One can see from Corollary 2 that, in order to reach the desired inequality,
we have to estimate the term

V (M)
n (ϕx) (x) =

n∨
k=0

vn,k (x)
∣∣ k
n − x

∣∣
n∨
k=0

vn,k (x)
, x ∈ [0, 1] .

From Lemma 3 we can write, for x ∈
[
0, 2

n

]
,

V (M)
n (ϕx) (x) =

n∨
k=0

vn,k (x)

∣∣∣∣kn − x
∣∣∣∣ = max

k=0,1,...,n
{Mk,n,0 (x)}

where Mk,n,0 (x) is defined by (10).
If k = 0 then,

M0,n,0 (x) = x ≤ 2

n
, x ∈

[
0,

2

n

]
.

If k ≥ 1 then,
for x ∈

[
0, 1

n

]
, since (1)k = k! and k ≤ 2k,

Mk,n,0 (x) ≤
(nx)k

2kk!

k

n
≤ k

2kn
≤ 1

n
,

for x ∈
[

1
n ,

2
n

]
and k = 1,

M1,n,0 (x) =
(nx)1

211!

(
x− 1

n

)
≤ 1

n
,

for x ∈
[

1
n ,

2
n

]
and k = 2, 3, ..., n

Mk,n,0 (x) ≤
(nx)k

2kk!

(
k

n
− x
)
≤ (k + 1) (k − 1)

2kn
≤ k2

2kn
.

If we take g(x) = x2

2x , since g(x) ≤ g
(

2
ln 2

)
< 2, x ∈ [0,∞), we can write

Mk,n,0 (x) ≤ k2

2kn
≤ 2

n
.
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Consequently, for x ∈
[
0, 2

n

]
V (M)
n (ϕx) (x) = max

k=0,1,...,n
{Mk,n,0 (x)} ≤ 2

n
.

Considering Lemma 3 once more, we can write

V (M)
n (ϕx) (x) = max

k=0,1,...,n
{Mk,n,j (x)} , j ∈ {1, ..., n− 2} .

Now, we will try to obtain an upper estimate for Mk,n,j (x) with x ∈
[
j+1
n , j+2

n

]
,

j ∈ {1, ..., n− 2} .We consider the following 3 cases:

i) If k = j + 1; for x ∈
[
j+1
n , j+2

n

]
, Mj+1,n,j (x) = (nx+j)

2j+2

(
x− j+1

n

)
≤ 1

n .

ii) If k ≥ j + 2;
a) Firstly, we suppose that k−

√
3k + 2 < j. From Lemma 4, since mk,n,j (x) ≤ 1 ,

we write

Mk,n,j (x) = mk,n,j (x)

(
k

n
− x
)
≤ k

n
− x ≤ k

n
− j + 1

n

≤ (
√

3k + 2− 1)

n
≤
√

3n+ 2

n
≤ 3√

n
.

b) Now, we suppose that k−
√

3k + 2 ≥ j. Since g (x) = x−
√

3x+ 2 is nondecreasing
on
[

1
12 ,∞

)
and since in this case k ≥ j + 2, we take 3 ≤ k ≤ n. Since g is

nondecreasing, there exists k ∈ {3, ..., n} of maximum value such that k−
√

3k + 2 <

j and k + 1−
√

3k + 5 ≥ j.

Mk+1,n,j (x) = mk+1,n,j (x)

(
k + 1

n
− x
)
≤ k + 1

n
− x

≤ k + 1

n
− j + 1

n
<

√
3k + 2

n
≤ 3√

n
. (13)

So, from Lemma 5, for k ∈
{
k + 1, k + 2, ..., n

}
, we getMk+1,n,j (x) ≥Mk+2,n,j (x) ≥

... ≥Mn,n,j (x) . Finally, by (13), we can writeMk,n,j (x) ≤ 3√
n
, for k ∈

{
k + 1, k + 2, ..., n

}
.

iii) k ≤ j;
a) Firstly, we suppose that k +

√
3k > j. From Lemma 4 we get

Mk,n,j (x) = mk,n,j (x)

(
x− k

n

)
≤ j + 2

n
− k

n

≤
√

3k + 2

n
≤
√

3n+ 2

n
≤ 4√

n
.

b) Now, we suppose that k +
√

3k ≤ j. Since h (x) = x +
√

3x is increasing on

[0,∞), there exists k̃ ∈ {1, ..., n} of minimum value such that k̃ +
√

3k̃ > j and



933

k̃ − 1 +
√

3k̃ − 3 ≤ j and

Mk̃−1,n,j (x) = mk̃−1,n,j (x)

(
x− k̃ − 1

n

)
≤ x− k̃ − 1

n

≤ j + 2

n
− k̃ − 1

n
<
k̃ +

√
3k̃ + 2

n
− k̃ − 1

n

=

√
3k̃ + 3

n
≤
√

3n+ 2

n
≤ 4√

n
. (14)

We have j ≥ 1 in this case. Also, since j+
√

3j > j and k̃ ∈ {0, 1, ..., n} of minimum

value such that k̃+
√

3k̃ > j, k̃−1 ≤ j. So, from Lemma 5, for k ∈
{

1, 2, ..., k̃ − 1
}
,

we get Mk̃−1,n,j (x) ≥Mk̃−2,n,j (x) ≥ ... ≥M0,n,j (x) . Finally, by (14), we can write

Mk,n,j (x) ≤ 4√
n
, for k ∈

{
1, 2, ..., k̃ − 1

}
.

Considering all the estimates above, we can write

Mk,n,j (x) ≤ 4√
n

for all x ∈
[
j + 1

n
,
j + 2

n

]
which implies

V (M)
n (ϕx) (x) ≤ 4√

n
for all x ∈ [0, 1]

Since the first modulus of continuity function satisfies the property ω1 (f,mδ) ≤
mω1 (f, δ) , for m ∈ N, with all cases and subcases and taking δ = 4√

n
in (9), the

proof is completed. �

Remark 7. The estimate regarding the first order modulus of continuity function
given in Theorem 6 cannot be improved for n ≥ 4. Suppose that

jn =
[n

2

]
, kn = jn +

[√
n
]
, xn =

jn
n
,

With calculations, we can write

Mkn,n,jn(xn) =
(nxn + jn) ... (nxn + kn − 1)

2kn−jn (jn + 1) ...kn

∣∣∣∣knn − xn
∣∣∣∣

≥ (nxn + jn)
kn−jn

2kn−jnkkn−jnn

∣∣∣∣knn − xn
∣∣∣∣

=
(2jn)

kn−jn

2kn−jnkkn−jnn

∣∣∣∣knn − xn
∣∣∣∣

=
(jn)

kn−jn

kkn−jnn

(kn − jn)

n
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=

( [
n
2

][
n
2

]
+ [
√
n]

)[
√
n]

[
√
n]

n
.

From definition of the greatest integer function, we can write( n
2 − 1
n
2 +
√
n

)√n
≤

( [
n
2

][
n
2

]
+ [
√
n]

)[
√
n]

≤
( n

2
n
2 +
√
n− 2

)√n−1

.

One can obtain that lim
n→∞

(
[n
2 ]

[n
2 ]+[

√
n]

)[
√
n]

= e−2 and there exists n0 ∈ N such that

Mkn,n,jn(xn) ≥ [
√
n]

e3n
, n ≥ n0.

Also
[
√
n]√
n
≥
√
n−1√
n
≥ 1

2 for n ≥ 4. Therefore we can say

Mkn,n,jn(xn) ≥ 1

2e3
√
n
, n ≥ n0.

Now, we will show that better order of approximation can be obtained for some
subclasses of functions f .

For x = 0, since vn,k (0) = 0 for all k ∈ {1, ..., n} and vn,0 (0) = 1, V
(M)
n (f) (0) −

f(0) = 0. So, we assume x > 0.
For any k ∈ 0, 1, ...n and j ∈ {0, 1, ..., n− 2} consider the functions

fk,n,j (x) =
vn,k (x)

vn,j (x)
f

(
k

n

)
= mk,n,j(x)f

(
k

n

)
.

For any j ∈ {0, 1, ..., n− 2} and x ∈
[
j+1
n , j+2

n

]
we can write

V (M)
n (f) (x) =

n∨
k=0

vn,k (x)

vn,j (x)
f

(
k

n

)
=

n∨
k=0

fk,n,j (x) .

Lemma 8. For f : [0, 1] −→ [0,∞) and j ∈ {0, 1, ..., n− 2} , if

V (M)
n (f) (x) = max {fj,n,j (x) , fj+1,n,j (x) , fj+2,n,j (x)} , for all x ∈

[
j + 1

n
,
j + 2

n

]
(15)

then ∣∣∣V (M)
n (f) (x)− f (x)

∣∣∣ ≤ 2ω1

(
f,

1

n

)
, for all x ∈

[
j + 1

n
,
j + 2

n

]
.

Proof. We proceed in the same manner as Bede et.al. [6]. This time we have three
cases to examine:



935

Case (i) Let V
(M)
n (f) (x) = fj,n,j (x) = f

(
j
n

)
for fixed x ∈

[
j+1
n , j+2

n

]
. Since

1
n ≤ x−

j
n ≤

2
n ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f,

2

n

)
.

Case (ii) Let V
(M)
n (f) (x) = fj+1,n,j (x) for fixed x ∈

[
j+1
n , j+2

n

]
.

Subcase (a) If V
(M)
n (f) (x) ≤ f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = f (x)− fj+1,n,j (x)

≤ f (x)− fj,n,j (x) ≤ ω1

(
f,

2

n

)
.

Subcase (b) If V
(M)
n (f) (x) > f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = fj+1,n,j (x)− f (x)

= mj+1,n,j (x) f

(
j + 1

n

)
− f (x)

≤ f

(
j + 1

n

)
− f (x) .

Since 0 ≤ x− j+1
n ≤

1
n ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f,

1

n

)
.

Case (iii) Let V
(M)
n (f) (x) = fj+2,n,j (x) for fixed x ∈

[
j+1
n , j+2

n

]
.

Subcase (a) If V
(M)
n (f) (x) ≤ f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = f (x)− fj+2,n,j (x)

≤ f (x)− fj,n,j (x) ≤ ω1

(
f,

2

n

)
.

Subcase (b) If V
(M)
n (f) (x) > f (x) then∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ = fj+2,n,j (x)− f (x)

= mj+2,n,j (x) f

(
j + 2

n

)
− f (x)

≤ f

(
j + 2

n

)
− f (x) .

Since 0 ≤ j+2
n − x ≤

1
n ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f,

1

n

)
.
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So the proof is completed. �

Theorem 9. For f : [0, 1] −→ [0,∞) is a nondecreasing function and the function

g : (0, 1]→ [0,∞) g (x) = f(x)
x is nonincreasing, we have∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ 2ω1

(
f,

1

n

)
for all x ∈ [0, 1] .

Proof. From the monotonocity of f and k ≤ j ,

fk−1,n,j (x) =
2j−k+1j!

(k − 1)! (nx+ k − 1) ... (nx+ j − 1)
f

(
k − 1

n

)
≤ 2j−kj!

k! (nx+ k) ... (nx+ j − 1)

2k

(nx+ k − 1)
f

(
k

n

)
≤ 2j−kj!

k! (nx+ k) ... (nx+ j − 1)

2k

j + k
f

(
k

n

)
≤ fk,n,j (x)

So, we can write

j∨
k=1

fk,n,j (x) = fj,n,j (x) ,

V (M)
n (f) (x) =

n∨
k=j

fk,n,j (x) . (16)

Let k ∈ {0, 1, ..., n} with k ≥ j. Since g is nonincreasing and x ∈
[
j+1
n , j+2

n

]
, we

have

fk+1,n,j (x) =
j! (nx+ j) ... (nx+ k)

2k+1−j (k + 1)!
f

(
k + 1

n

)
≤ j! (nx+ j) ... (nx+ k)

2k+1−j (k + 1)!

k + 1

k
f

(
k

n

)
=

j! (nx+ j) ... (nx+ k − 1)

2k−jk!

(nx+ k)

2k
f

(
k

n

)
≤ fk,n,j (x)

k + j + 2

2k
.

So, we get

fk+1,n,j (x) ≤ fk,n,j (x) , for k ≥ j + 2,

from which, we have,

n∨
k=j+2

fk,n,j (x) = fj+2,n,j (x) , j ∈ {0, 1, ..., n− 2} . (17)
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From (16) and (17), we obtain (15) for all x ∈
[
j+1
n , j+2

n

]
, i.e.,

V (M)
n (f) (x) = max {fj,n,j (x) , fj+1,n,j (x) , fj+2,n,j (x)} , j ∈ {0, 1, ..., n− 2} .

By Lemma 8, the proof is completed. �

Lemma 10. [7] If f : [0, 1] −→ [0,∞) is a concave function then g : (0, 1]→ [0,∞)

g (x) = f(x)
x is nonincreasing.

Proof. For the proof see [7] �

Corollary 11. For f : [0, 1] −→ [0,∞) is a nondecreasing concave function, we
have ∣∣∣V (M)

n (f) (x)− f (x)
∣∣∣ ≤ 2ω1

(
f,

1

n

)
, for all x ∈ [0, 1] .

Proof. The proof is completed by Theorem 9 and Lemma 10. �

The last theorem is about the piecewise convexity of the truncated Lupaş oper-
ators of max-product type on the interval [0, 1].

Theorem 12. For any f : [0, 1] −→ R+ , V
(M)
n (f) is convex on

[
j+1
n , j+2

n

]
,

j ∈ {0, 1, ..., n− 2} .

Proof. For any j ∈ {0, 1, ..., n− 2} and x ∈
[
j+1
n , j+2

n

]
, since we can write V

(M)
n (f) (x) =

n∨
k=0

fk,n,j (x), we will show for any fixed j, fk,n,j is convex on
[
j+1
n , j+2

n

]
. This imply

that V
(M)
n (f) is convex, as being the maximum of convex functions on

[
j+1
n , j+2

n

]
.

Since f ≥ 0 and fk,n,j (x) =
(nx)k j!

2k−j(nx)j k!
f
(
k
n

)
, we will prove that gk,n,j (x) =

(nx)k
(nx)j

are convex on
[
j+1
n , j+2

n

]
.

For k = j, gj,n,j is constant so it is convex.
For k = j + 1, gj+1,n,j (x) = nx+ j is convex.

For k = j − 1, gj−1,n,j (x) = 1
nx+j−1 and since g′′j−1,n,j (x) = 2n2

(nx+j−1)3
> 0 on[

j+1
n , j+2

n

]
, it is convex.

For k ≥ j+2, gk,n,j (x) = (nx+ j) ... (nx+ k − 1) and ln (gk,n,j (x)) = ln (nx+ j)+

...+ ln (nx+ k − 1) . Since g′k,n,j (x) = ngk,n,j (x)
[

1
nx+j + ...+ 1

nx+k−1

]
and

g′′k,n,j (x) = ng′k,n,j (x)
[

1
nx+j + ...+ 1

nx+k−1

]
−n2gk,n,j (x)

[
1

(nx+j)2
+ ...+ 1

(nx+k−1)2

]
,

we obtain

g′′k,n,j (x) = n2gk,n,j (x)

{(
1

nx+j + ...+ 1
nx+k−1

)2

−
(

1
(nx+j)2

+ ...+ 1
(nx+k−1)2

)}
>

0.
For k ≤ j − 2, gk,n,j (x) = 1

(nx+k)...(nx+j−1) and since

g′k,n,j (x) = −ngk,n,j (x)
[

1
nx+k + ...+ 1

nx+j−1

]
, we get
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g′′k,n,j (x) = n2gk,n,j (x)

{(
1

nx+k + ...+ 1
nx+j−1

)2

+
(

1
(nx+k)2 + ...+ 1

(nx+j−1)2

)}
>

0.
Hence, we see that all the functions gk,n,j are convex on

[
j+1
n , j+2

n

]
. As being

maximum of all these functions, V
(M)
n (f) is convex on

[
j+1
n , j+2

n

]
. �

5. Conclusion

The nonlinear max product type operators have been studied by various au-
thors for the last two decades. For example, in [16] Duman obtained convergence
results for a sequence of max-product operators in the statistical sense. Karakuş
and Demirci [22] examined the σ-statistical convergence of the max product type
operators. For the future studies, one can examine whether the truncated Lupaş
operators of max product kind can be generalized in the light of these studies or
not. Also the statistical convergence of the constructed operators may be investi-
gated.
Another study related to this topic is due to Holhoş. He examined the approxima-
tion properties of Meyer-König and Zeller and Favard-Szász-Mirakyan operators of
max-product type in weighted space of functions in the papers [20] and [21], re-
spectively. Taking these studies into account, Lupaş operators of max-product type
may be constructed on an unbounded interval [0,∞) and weighted approximation
results of the operators can be examined.
Very recently, Coroianu and Gal [10] have studied the Kantorovich type max-
product operators. In view of this paper one can consider the Lupaş-Kantorovich
operators of max-product type and analyze the approximating properties.
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Abstract. Recently, q-analogue of Noor integral operator and other special

operators became importance in the field of Geometric Function Theory. In
this study, by connecting this operators and the principle of subordination we

introduced an interesting class of bi-univalent functions and obtained coeffi-

cient estimates for this new class.

1. Introduction

Let A indicates the family of analytic functions having form

f(z) = z +

∞∑
n=2

anz
n (1)

in the open unit disk D = {z : |z| < 1, z ∈ C} and let S = {f ∈ A : f is univalent in D} .
According the Koebe one-quarter theorem [6], the image of D under every func-

tion f from S contains a disk of radius 1
4 . That is, every such univalent function

has an inverse f−1 satisfying

f−1 (f (z)) = z (z ∈ D)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,

where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)
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If f and f−1 are univalent, then we say that f is bi-univalent function in D.
The class of bi-univalent functions defined in D is symbolized by Σ.

One can see important examples in the class in [20]. Although the functions
z

1−z , − log(1− z), 1
2 log

(
1+z
1−z .

)
are in Σ, well known Koebe function is not in Σ.

For example, z − z2

2 and z
1−z2 are in S but not in Σ [20].

Given f , g ∈ A, f is said to be subordinate to g, symbolized

f(z) ≺ g(z), (3)

such that there is an analytic function w defined on D with

w(0) = 0 and |w(z)| < 1

fulfilling the following condition:

f(z) = g (w(z)) .

The aforecited subclasses of Σ were constructed and non-sharp estimates on the
first two coefficients |a2| and |a3| in the Taylor-Maclaurin series expansion (1) were
found in several recent studies (see [7], [8], [10], [20] , [21], [22]). In very nearly,
they have been followed by many works (see also [5], [9], [12], [14], [19]).

Now, we give some basic definitions.

Definition 1. [13] For q ∈ (0, 1), the q-derivative of function f ∈ A is defined by

∂qf(z) =
f(qz)− f(z)

(q − 1)z
, z 6= 0 (4)

and

∂qf(0) = f ′(0).

Thus we have

∂qf(z) = 1 +

∞∑
k=2

[k, q] akz
k−1 (5)

where [k, q] is given by

[k, q] =
1− qk

1− q
, [0, q] = 0 (6)

and the q-fractional is defined by

[k, q]! =


k∏

n=1
[n, q] , k ∈ N

1, k = 0
. (7)

Also, the q−generalized Pochhammer symbol for p ≥ 0 is given by

[p, q]k =


k∏

n=1
[p + n− 1, q] , k ∈ N

1, k = 0
. (8)
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As q → 1, then we get [k, q]→ k. Thus, by choosing the function g(z) = zk, while
q → 1, then we obtain

∂qg(z) = ∂qz
k = [k, q] zk−1 = g′(z),

where g′ is the ordinary derivative.
Recently, function F−1

q,µ+1(z) is defined by Arif et al. [4] by

F−1
q,µ+1(z) ∗ Fq,µ+1(z) = z∂qf(z), (µ > −1) (9)

where

Fq,µ+1(z) = z +

∞∑
k=2

[µ+ 1, q]k−1

[k − 1, q]!
zk, z ∈ D. (10)

To the series defined in (10) is convergent absolutely in D , by using the definition
of q-derivative through convolution, let us explain the integral operator ζµq : D→ D
by

ζµq f(z) = F−1
q,µ+1(z) ∗ f(z) = z +

∞∑
k=2

φk−1akz
k, (z ∈ D) (11)

where

φk−1 =
[k, q]!

[µ+ 1, q]k−1
. (12)

From (11), one can readily have the identity

[µ+ 1, q]ζµq f(z) = [µ, q]ζµ+1
q f(z) + qµz∂q(ζ

µ+1
q f(z)). (13)

We can state that

ζ0
qf(z) = z∂qf(z), ζ ′qf(z) = f(z) (14)

also

lim
q→1−

ζµq f(z) = z +

∞∑
k=2

k!

(µ+ 1)k−1

akz
k. (15)

This means that, by taking q → 1−, the operator defined in equation (11) reduces
to the famous Noor integral operator given in ( [15]). Moreover, for more detailed
knowledge on the coefficient estimates of analytic bi-univalent functions given by
q-analogue of differential and integral operators, see the work of [1], [2], [3], [4], [16],
[17].

In this study, utilizing by the aforementioned works we introduce a general new
subclass =µ,qΣ (ξ, τ , θ; k) of the function class Σ and obtain estimates of the coeffi-
cients |a2| and |a3| for functions in our new class =µ,qΣ (ξ, τ , θ; k). Also through this
paper, f, g are given by (1) and (2) and ζµq is q−analogue of Noor integral operator.
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2. The class =µ,qΣ (ξ, τ , θ; k)

Definition 2. Let k : D→ C be a convex univalent function such that

k(0) = 1, k(z) = k(z), (z ∈ D;R(k(z)) > 0). (16)

For f ∈ Σ, the function f is said to be in the class of ∈ =µ,qΣ (ξ, τ , θ; k) if the

following conditions are satisfied:

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])
≺ k(z) cos θ + i sin θ, (z ∈ D),

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])
≺ k(w) cos θ + i sin θ, (w ∈ D) (17)

where ξ ≥ 1, τ 6= 0, θ ∈ (−π2 ,
π
2 ).

Remark 3. Choosing

k(z) =
1 +Az
1 + Bz

, (−1 ≤ B < A ≤ 1) (18)

in the class =µ,qΣ (ξ, τ , θ; k), we have =µ,qΣ (ξ, τ , θ;A,B) and defined as

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])
≺ 1 +Az

1 + Bz
cos θ + i sin θ, (z ∈ D),

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])
≺ 1 +Aw

1 + Bw
cos θ + i sin θ, (w ∈ D) (19)

where θ ∈ (−π2 ,
π
2 ), ξ ≥ 1.

Remark 4. Choosing

k(z) =
1 + (1− 2γ)z

1− z
, (0 ≤ γ < 1) (20)

in the class=µ,qΣ (ξ, τ , θ; k), we have =µ,qΣ (ξ, τ , θ, γ) and defined as

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])}
> γ cos θ, (z ∈ D),

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])}
> γ cos θ, (w ∈ D) (21)

where θ ∈ (−π2 ,
π
2 ), ξ ≥ 1.

In the case of k(z) = 1+(1−2γ)z
1−z , (0 ≤ γ < 1), by choosing different values instead

of parameters, we obtain different subclasses:
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1. Upon setting q → 1−, it is simply to see that f ∈ Σ is in

=µ,1Σ (ξ, τ , θ, γ) = =µΣ(ξ, τ , θ, γ)

if the following inequalities hold:

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)ζ

µf(z)

z
+ ξ(ζµf(z))′ − 1

])}
> γ cos θ, (z ∈ D),

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)ζ

µg(w)

w
+ ξ(ζµg(w))′ − 1

])}
> γ cos θ, (w ∈ D). (22)

2. Upon setting q → 1−and for τ = 1, it is simply to see that f ∈ Σ is in

=µ,1Σ (ξ, 1, θ, γ)

if the following inequalities hold:

R

{
eiθ
[
(1− ξ)ζ

µf(z)

z
+ ξ(ζµf(z))′

]}
> γ cos θ, (z ∈ D),

R

{
eiθ
[
(1− ξ)ζ

µg(w)

w
+ ξ(ζµg(w))′

]}
> γ cos θ, (w ∈ D). (23)

3. Upon setting q → 1−, for τ = 1 and ξ = 1, it is simply to see that f ∈ Σ is
in

=µ,1Σ (1, 1, θ, γ) = =µΣ(θ, γ)

if the following inequalities hold:

R
{
eiθ(ζµf(z))′

}
> γ cos θ, (z ∈ D),

R
{
eiθ(ζµg(w))′

}
> γ cos θ, (w ∈ D). (24)

4. Upon setting q → 1−, for τ = 1 and µ = 1, it is simply to see that f ∈ Σ
is in

=1,1
Σ (ξ, 1, θ, γ) = =Σ(ξ, θ, γ)

if the following inequalities hold:

R

{
eiθ
[
(1− ξ)f(z)

z
+ ξ(f(z))′

]}
> γ cos θ, (z ∈ D),

R

{
eiθ
[
(1− ξ)g(w)

w
+ ξ(g(w))′

]}
> γ cos θ, (w ∈ D). (25)

5. Upon setting q → 1− ,for τ = 1, ξ = 1 and µ = 0, it is simply to see that
f ∈ Σ is in

=0
Σ(1, 1; γ) = =Σ(γ)

if the following inequalities hold:

R
{
eiθ(z∂f(z))′

}
> γ cos θ, (z ∈ D),

R
{
eiθ(w∂g(w))′

}
> γ cos θ, (w ∈ D). (26)
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6. Upon setting q → 1−, for τ = 1, ξ = 1 and µ = 1, it is simply to see that
f ∈ Σ is in

=1,1
Σ (1, 1, θ, γ) = =Σ(θ, γ)

if the following inequalities hold:

R
{
eiθ(f(z))′

}
> γ cos θ, (z ∈ D),

R
{
eiθ(g(w))′

}
> γ cos θ, (w ∈ D). (27)

We state that

=Σ(ξ0, γ) = BΣ(α, λ) (see [10])

=Σ(0, γ) = HΣ(α, λ) (see [20]).

We need the following lemma to derive our main result.

Lemma 5. [18] Let the function k(z) defined with

k(z) =

∞∑
n=1

Bnzn

be convex in D. Assume also that the function Ψ(z) given by

Ψ(z) =

∞∑
n=1

cnz
n

is holomorphic in D. If Ψ(z) ≺ k(z), (z ∈ D), then

|cn| ≤ |B1| , (n ∈ N). (28)

Now, we give our general results involving the new class =µ,qΣ (ξ, τ , θ; k).

Theorem 6. Let f ∈ =µ,qΣ (ξ, τ , θ; k), (ξ ≥ 1, θ ∈ (−π2 ,
π
2 ) and τ 6= 0, with

k(z) = 1 +B1z +B2z
2 + · · · . (29)

Then

|a2| ≤ min

{
|τB1| cos θ

(1 + ξq)φ1

, 2

√
|τB1| cos θ

(1 + ξq + ξq2)φ2

}
(30)

and

|a3| ≤
|τB1| cos θ

(1 + ξq + ξq2)φ2

. (31)

Proof. According the inequality (17), we can write that

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])
= r(z) cos θ + i sin θ, (z ∈ D)

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])
= s(w) cos θ + i sin θ , (w ∈ D) (32)
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where r(z) ≺ k(z) and s(w) ≺ k(w) have the following series expansions

r(z) = 1 + r1z + r2z
2 + ... (33)

s(w) = 1 + s1w + s2w
2 + ... (34)

respectively: By equating the coefficients of the two equations in (32), we have

eiθ
1

τ
(1 + ξq)φ1a2 = r1 cos θ ... (35)

eiθ
1

τ
(1 + ξq + ξq2)φ2a3 = r2 cos θ ... (36)

and

− eiθ 1

τ
(1 + ξq)φ1a2 = s1 cos θ ... (37)

eiθ
1

τ

[
(1 + ξq + ξq2)φ2

(
2a2

2 − a3

)]
= s2 cos θ .... (38)

From (35) and (37), we have

r1 = −s1 ... (39)

and

a2
2 =

(r2
1 + s2

1)e−2iθ cos2 θ

2
[

1
τ (1 + ξq)φ1

]2 ... (40)

Also from (36) and (38), we get

a2
2 =

(r2 + s2)e−iθ cos θ

2(1 + ξq + ξq2)φ2

τ .... (41)

Due to the fact r, s ∈ h(D), by virtue of Lemma 5, we obtain

|rk| =

∣∣∣∣r(k)(0)

k!

∣∣∣∣ ≤ |B1| ,

|sk| =

∣∣∣∣s(k)(0)

k!

∣∣∣∣ ≤ |B1| , (k ∈ N). (42)

If we apply (42) and Lemma 5 for coefficients r1, r2, s1 and s2, from (40) and (41),
we have

|a2|2 ≤
|τB1|2 cos2 θ

|(1 + ξq)φ1|
2 (43)

and

|a2|2 ≤
|τB1| cos θ

|(1 + ξq + ξq2)φ2|
. (44)
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Thus, we obtain desired result for |a2| .
Next, in order to find the bound on the coefficient |a3|, if we subtract (38), from

(36), then we get

a3 − a2
2 =

e−iθ(r2 − s2)τ cos θ

2(1 + ξq + ξq2)φ2

. (45)

By substituting A2
2 from (41) into (45), it is obtained that

a3 =
e−2iθ(r2

1 + s2
1)τ2 cos2 θ

2(1 + ξq)2φ2
1

+
e−iθ(r2 − s2)τ cos θ

2(1 + ξq + ξq2)φ2

. (46)

Taking absolute value of the equation (46), we get

|a3| ≤
cos2 θ |τB1|2

(1 + ξq)2φ2
1

+
cos θ |τB1|

(1 + ξq + ξq2)φ2

(47)

Thus,

|a3| ≤
cos θ |τB1|

(1 + ξq + ξq2)φ2

.

�

3. Corollaries and Consequences

According the Remark 1 and Remark 2, choosing

k(z) =
1 +Az
1 + Bz

, (−1 ≤ B < A ≤ 1)

and

k(z) =
1 + (1− 2γ)z

1− z
(0 ≤ γ < 1)

in Theorem 6, Corollaries 7, 8, and 9 can be readily deduced, respectively.

Corollary 7. If f ∈ =µ,qΣ (ξ, θ, τ ;A,B), (θ ∈ (−π2 ,
π
2 ), ξ ≥ 1, τ 6= 0,−1 ≤ B < A ≤

1), then we have

|a2| ≤ min

{
|τ | (A− B) cos θ

(1 + ξq)φ1

,

√
|τB| (A− B) cos θ

(1 + ξq + ξq2)φ2

}
and

|a3| ≤
(A− B) |τ | cos θ

(1 + ξq + ξq2)φ2

.

Corollary 8. If f ∈ =µΣ(ξ, θ, γ), (θ ∈ (−π2 ,
π
2 ), ξ ≥ 1, 0 ≤ γ < 1), then we have

|a2| ≤ min

{
2τ(1− γ) cos θ

(1 + ξ)φ1

,

√
2 |τ | (1− γ) cos θ

(1 + 2ξ)φ2

}
and

|a3| ≤
2τ(1− γ) cos θ

((1 + 2ξ)φ2

.
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When θ = 0 in Corollary 8, we obtain a new result:

Corollary 9. If f ∈ =µΣ(ξ, γ), (ξ ≥ 1, 0 ≤ γ < 1), then we have

|a2| ≤

√
2(1− γ)

(1 + 2ξ)φ2

and

|a3| ≤
2τ(1− γ)

((1 + 2ξ)φ2

.

Corollary 10. If f ∈ =Σ(γ), then we have

|a2| ≤

√
2(1− γ)

3φ2

and

|a3| ≤
2(1− γ)

3φ2

.
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Abstract. The study of interaction between predator and prey species is one

of the important subjects in mathematical biology. Optimal strategy control
plays a vital role in preserving animals from extinction. Harvesting of species

is a vital issue for the conservation biologists. In this work, we investigate the

bifurcation and chaos control of the two species interaction model of fractional
order in discrete time with harvesting of both prey and predator species. Ex-

istence results and the stability conditions of the system are analyzed using

the fixed points and jacobian matrix. The chaotic behavior of the system is
discussed with bifurcation diagrams. Linear control and hybrid control meth-

ods are used in controlling the chaos of the system. Numerical experiments

with different phase portraits are simulated for the better understanding of
the qualitative behavior of the considered model.

1. Introduction

Modelling of real life phenomena by fractional order equations is more realistic
and follows the laws of nature very well. Fractional calculus is used in modelling
of physical and chemical phenomena like diffusion waves, nonlinear oscillations in-
volved in earthquakes, hydrologic models, blood vessel models and various other
interdisciplinary fields. In construction of biological models, fractional calculus re-
lates the memory effects of biological populations very well rather than ordinary
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integer order calculus. Recently, models of species interaction and biological popu-
lations are developed using fractional calculus with discrete time [2, 21, 22, 24, 25].

Mathematical models of the species by Lotka in 1925 and Volterra in 1926 were
the first models on the interactions involving multi species [11]. Later several models
on interacting species were developed by Robert May in 1972, Holling and Tanner
in 1975 and many other researchers proving the necessity in studying mathematical
ecology [15, 26]. Biological populations with non overlapping generations are mod-
eled with difference equations and some of the discrete time models are studied by
[8, 9, 12, 13, 14].

The population dynamics gives an accurate and deep understanding of the factors
threatening the existence of the species in ecosystem. Apart from the natural forces
like drought and natural calamities there are some artificial factors that has human
involvement such as hunting, human habitat and harvesting also paves way for the
extinction of the species. Continuous harvesting results in unstability of ecosystem
with loss in biodiversity. Thus, it is necessary to bring forth some conservation
policy for optimal harvesting of species. Myerscough et al [20] reported the effects
of predator harvesting on ecosystem, harvesting and its effects in aquasystem was
studied in [16], [19] studied the prey-predator system with constant harvesting
policy and the fractional order model of quadratic harvesting of scavenger was
studied in [23].

The paper is structured with discretization of fractional order system in section
2 followed with analysis of stability condition in Section 3. The bifurcation analysis
and chaos control in section 4 and 5 respectively. Section 6 provides some numerical
examples with simulations.

2. Fractional Order System with Discretization

In the recent decades, Fractional order has emerged as one of the significant
interdisciplinary subjects in physical & biological sciences and Engineering [4], [3],
[1]. In this work, the biological system with harvesting of predator and prey species
are considered. The non-dimensional form of system is

dx

dt
= sx(1− x)− βxy − cx

dy

dt
= −wy + ηxy − fy

(1)

In system (1), the prey and predator populations are represented by x(t) and y(t).
All the system parameters s, β, c, w, η, f take positive real values that stand for
growth rate of prey, interaction rate, harvesting effort of prey, mortality rate of
predator, conversion rate of prey and harvesting effort of predator respectively.

Generalization of (1) to arbitrary order yield

Dυ
t (x) = sx(1− x)− βxy − cx

Dυ
t (y) = −wy + ηxy − fy

(2)
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with x(0) = x0 and y(0) = y0, where υ ∈ (0, 1) is non integer order and fractional

order caputo derivative is aD
υ
t f(t) = 1

Γ(1−υ)

∫ t
a

f(n)(τ)
(t−τ)υ−n+1 dτ, for n− 1 < υ < n [5].

2.1. Discretization Process. The discretization of the system (2) with initial
point x(0) = x0 and y(0) = y0 is carried out using piecewise constant arguments
method [2, 7]. The fractional order predator prey system with harvesting at discrete
time is

x(t+ 1) = x(t) +
ρν

Γ(1 + ν)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)]

y(t+ 1) = y(t) +
ρν

Γ(1 + ν)
[−wy(t) + ηx(t)y(t)− fy(t)]

(3)

where υ ∈ (0, 1] and ρ > 0 is step size.

2.2. Existence and Uniqueness of the Solution. Let the region be defined by
Θ× (0,T] where

Θ =
{

(x, y) ∈ R2 : max(|x| , |y| ≤ L)
}

The existence results are established with method as in [17]. Consider a mapping
H(C) = (H1(C),H2(C)) such that

H1(C) = sx(1− x)− βxy − cx
H2(C) = −wy + ηxy − fy.

(4)

Let C, C̄ ∈ Θ. We have from (4) that∥∥H(C)−H(C)
∥∥ =

∣∣H1(C)−H1(C)
∣∣+
∣∣H2(C)−H2(C)

∣∣
= |sx(1− x)− βxy − cx− sx̄(1− x̄) + βx̄ ȳ + cx̄|
+ |−wy + ηxy − fy + wȳ − ηx̄ ȳ + f ȳ|
= |s(x− x̄)− s(x− x̄)(x+ x̄)− β(xy − x̄ ȳ)− c(x− x̄)|
+ |η(xy − x̄ ȳ)− w(y − ȳ)− f (y − ȳ)|
≤ s|(x− x̄)|+ 2sL|x− x̄|+ βL|(y − ȳ)|+ βL|(x− x̄ )|
+ c|(x− x̄)|+ η |(x− x̄ )|+ η(y − ȳ)|+ w|(y − ȳ)|+ f | (y − ȳ)|
≤ [(1 + 2L)s+ (β + η)L+ c] |x− x̄|+ [(β + η)L+ w + f ] |y − ȳ|∥∥H(C)−H(C)

∥∥ ≤ Ω
∥∥C − C∥∥

and

Ω = max {(1 + 2L)s+ (β + η)L+ c, (β + η)L+ w + f} .
For Ω < 1, we obtain C = H(C) and hence H(C) is a contraction mapping.

Theorem 1. The sufficient condition for existence of unique solution of the frac-
tional system (2) in Θ× (0,T] is

Ω = max {(1 + 2L)s+ (β + η)L+ c, (β + η)L+ w + f} < 1.
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3. Equilibrium points and Stability of system (3)

This section investigates the stability results of the (3) using Jury conditions.

3.1. Equilibrium Points and its Existence. The positive equilibrium points of
system (3) are obtained by solving

sx(1− x)− βxy − cx = 0

−wy + ηxy − fy = 0.
(5)

(1) ES0 = (0, 0)
(2) ES1 =

(
s−c
s , 0

)
(3) ES2 =

(
x∗, s−cβ −

s
βx
∗
)

.

where x∗ = w+f
η .

Theorem 2. The equilibrium points satisfy

(1) The trivial equilibrium point ES0 always exists.
(2) The axial equilibrium steady state ES1 exists if s > c

(3) The interior equilibrium point ES2 exists if η > s(w+f)
s−c .

3.2. Stability Results of System (3). Jacobian matrices are formulated at the
steady states and jury conditions are employed to investigate the stability of the
system (3). At (x, y), the Jacobian matrix is

J(x, y) =

[
1 +Q [s(1− 2x)− βy − c] −Qβx

Qηy 1 +Q [ηx− w − f ]

]
(6)

where Q = ρυ

Γ(1+υ) . Now the characteristic equation of (6) is

Φ(m) = m2 − Tm+D = 0 (7)

where T = 2 +Q[s− c−w− f + (η− 2s)x−βy] is the trace of (6) and determinant
of (6) is D = 1 +Q [s− c− w − f − βy + x(η − 2s)]
+Q2 [(s− 2sx− c)(ηx− w − f) + βy(w + f)].

Lemma 3. [18] Let m1,m2 satisfy Φ(m) = 0 and suppose that Φ(1) > 0. Then
(x∗, y∗) is

(1) stable if |m1| < 1, |m2| < 1⇔ Φ(−1) > 0, Φ(0) < 1.
(2) saddle point if |m1| < 1 , |m2| > 1 (or |m1| > 1, |m2| < 1) ⇔ Φ(−1) < 0.
(3) unstable if |m1| > 1,|m2| > 1⇔ Φ(−1) > 0 , Φ(0) > 1.
(4) |m1| = −1, |m2| 6= 1 ⇔ Φ(−1) = 0.
(5) m1,m2 are complex and |m1| = |m2| ⇔ T 2 − 4D < 0 and Φ(0) = 1.

Theorem 4. The equilibrium point ES0 is

(a) unstable for |m2| > 1 i.e. ρ >
[

2Γ(1+υ)
w+f

] 1
υ

.

(b) saddle point for |m2| < 1, i.e. 0 < ρ <
[

2Γ(1+υ)
w+f

] 1
υ

.
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(c) non-hyperbolic for ρ =
[

2Γ(1+υ)
c

] 1
υ

.

Proof. At ES0, (6) becomes

JES0 = J(0, 0) =

[
1 +Q(s− c) 0

0 1−Q(w + f)

]
whose eigenvalues are m1 = 1 +Q(s− c) and m2 = 1−Q(w+ f). Since ρυ

Γ(1+υ) > 0

for 0 < υ ≤ 1.

(a) It is obvious that |m2| > 1. Then ES0 is source if |1−Q(w + f)| > 1 which

yields ρ >
[

2Γ(1+υ)
w+f

] 1
υ

.

(b) ES0is saddle point if |1−Q(w + f)| < 1, i.e. 0 < ρ <
[

2Γ(1+υ)
w+f

] 1
υ

.

(c) This result is a consequence of (I) and (II).

Theorem 5. The axial equilibrium point ES1 is

(a) stable for c < s < ηc
η−w−f and ρ < min

{[
2Γ(1+υ)
s−c

] 1
υ

,
[

2Γ(1+υ)
s(w+f)−η(s−c)

] 1
υ

}
.

(b) unstable for ηc
η−w−f < s < c and ρ > max

{[
2Γ(1+υ)
s−c

] 1
υ

,
[

2Γ(1+υ)
s(w+f)−η(s−c)

] 1
υ

}
.

(c) saddle for s > max
{

ηc
η−w−f , c

}
and

[
2Γ(1+υ)

s(w+f)−η(s−c)

] 1
υ

< ρ <

{[
2Γ(1+υ)
s−c

] 1
υ

}
.

(d) non-hyperbolic for s = c (or) s =
{

ηc
η−w−f

}
and ρ =

[
2Γ(1+υ)

s(w+f)−η(s−c)

] 1
υ

(or)

ρ =

{[
2Γ(1+υ)
s−c

] 1
υ

}
.

Proof. For ES1, Jacobian matrix is

JES1 = J

(
s− c
s

, 0

)
=

[
1 +Q(s− c) −Qβ(s−c)

s

0 1−Q
[
w + f − η(s−c)

s

]]

whose eigen values are m1 = 1−Q(s− c) and m2 = 1−Q
[
w + f − η(s−c)

s

]
. Since

ρυ

Γ(1+υ) > 0 for 0 < α ≤ 1.

(a) ES1 is stable if |1−Q(s− c)| < 1 and
∣∣∣1−Q [w + f − η(s−c)

s

]∣∣∣ < 1 which

yields

c < s <
ηc

η − w − f
and ρ < min

{[
2Γ(1 + υ)

s− c

] 1
υ

,

[
2Γ(1 + υ)

s(w + f)− η(s− c)

] 1
υ

}
.
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(b) ES1 is unstable if |1−Q(s− c)| > 1 and
∣∣∣1−Q [w + f − η(s−c)

s

]∣∣∣ > 1, i.e.

ηc

η − w − f
< s < c and ρ > max

{[
2Γ(1 + υ)

s− c

] 1
υ

,

[
2Γ(1 + υ)

s(w + f)− η(s− c)

] 1
υ

}
(c) ES1 is Saddle if |1−Q(s− c)| < 1 and

∣∣∣1−Q [w + f − η(s−c)
s

]∣∣∣ > 1, i.e.

s > max

{
ηc

η − w − f
, c

}
and

[
2Γ(1 + υ)

s(w + f)− η(s− c)

] 1
υ

< ρ <

{[
2Γ(1 + υ)

s− c

] 1
υ

}
(d) The proof follows from result (a) and (b).

At ES2, (6) becomes

JES2
=

[
1 +Qa11 −Qa12

Qa21 1

]
(8)

The characteristic equation of JES2 is Φ(m) = m2−Tm+D = 0, with T = 2+Qa11

and D = 1 + Qa11 + Q2a12a21, where Q = ρυ

Γ(1+υ) , a11 = − s(w+f)
η , a12 = β(w+f)

η

and a21 = η(s−c)−s(w+f)
β . Eigen values are

m1,2 = 1 +
QM

2
± Q

2

√
M2 − 4N,

here M = a11 and N = a12a21.

Theorem 6. The interior equilibrium point ES2 is a

(a) sink if one of the following conditions are satisfied:
(i) S∗ < 0 and ρ < ρ3,
(ii) S∗ ≥ 0 and ρ < ρ2,

(b) source if one of the following conditions are satisfied:
(i) S∗ < 0 and ρ > ρ3,
(ii) S∗ ≥ 0 and ρ > ρ1,

(c) saddle, if
(i) S∗ ≥ 0 and ρ2 < ρ < ρ1,

(d) non-hyperbolic, if one of the following conditions are satisfied:
(i) S∗ < 0 and ρ = ρ3.
(ii) S∗ > 0 and ρ = ρ1 or ρ = ρ2,

S∗ = (M2 − 4N) and ρ1 =
{

Γ(1 + υ)
[
−M+

√
M2−4N
N

]} 1
υ

,

ρ2 =
{

Γ(1 + υ)
[
−M−

√
M2−4N
N

]} 1
υ

, ρ3 =
{[
−Γ(1+υ)M

N

]} 1
υ

4. Bifurcation Analysis of (3)

The existence of bifurcation is investigated in this section.
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4.1. Periodic Doubling Bifurcation. The parameter for analyzing existence of
bifurcation is chosen as ρ. The equilibrium point ES2 is said to undergo periodic
doubling bifurcation if one of the eigenvalue is −1 and other shall not be 1 (or) -1
[10].

The quadratic equation obtained from (8) is

Φ(m) = m2 − (2 +QM)m+ (1 +QM +Q2N).

By Theorem (6), if S∗ ≥ 0 and ρ =
[

2Γ(1+υ)
s−c

] 1
υ

, the eigen values are

m1 = −1,m2 = 1− 2(w + f)

s− c
+

2η

s
.

Theorem 7. The periodic doubling bifurcation occurs causing instability to ES1

when S∗ =
(
Q(s− c)−Q

(
w + f − η(s−c)

s

))2

≥ 0 and ρ =
[

2Γ(1+υ)
s−c

] 1
υ

, and

m1 = −1,m2 = 1− 2(w + f)

s− c
+

2η

s
6= ±1.

4.2. Neimark Sacker Bifurcation. Let ρ be the bifurcation parameter consid-
ered to analyzes Neimark-Sacker bifurcation. The occurance of this bifurcation
is ensured when the eigenvalues at steady state ES2 are complex conjugate with
modulus equal to 1 [10]. The quadratic equation obtained from (8) is

Φ(m) = m2 − (2 +QM)m+ (1 +QM +Q2N).

From Theorem (6), if S∗ < 0 and ρ = ρ3, then

m1,2 = 1− M2

2N
± i M

2N

√
4N −M2.

are the corresponding eigen values.

Theorem 8. The Neimark-Sacker bifurcation of system (3)occurs when S∗ < 0
and ρ = ρ3, and

|m1,2| =
∣∣∣∣1− M2

2N
± i M

2N

√
4N −M2

∣∣∣∣ = 1.

5. Control Strategies

The system with linear feedback controller [6] is

x(t+ 1) = x(t) +
ρυ

Γ(1 + υ)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)] +R(t)

y(t+ 1) = y(t) +
ρυ

Γ(1 + υ)
[−wy(t) + ηx(t)y(t)− fy(t)]

(9)

where feedback control is R(t) = −r1

(
x(t)− s−c

s

)
− r2y(t) with r1, r2 being feed-

back gains. The Jacobian of system (9) at
(
s−c
s , 0

)
is
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J1

(
s− c
s

, 0

)
=

[
1−QA− r1 −QβAs − r2

0 1−QB

]
(10)

Here A = (s − c) and B =
[
w + f − η(s−c)

s

]
. The corresponding characteristic

equation of J1

(
s−c
s , 0

)
is

m2 − (2−Q(A+B)− r1)m+ (Q2AB −Q(A+B +Br1) + 1− r1) = 0. (11)

If m1,m2 are the eigenvalues of (11), then

m1,2 =
(2−Q(A+B)−r1)±

√
(2−Q(A+B)−r1)2−4(Q2AB−Q(A+B−Br1)+1−r1)

2
and

m1m2 = 1− r1 −Q(A+B −Br1) +Q2AB (12)

The equations m1 = ±1 and m1m2 = 1 ensure that absolute values of the eigen
values are less than 1. Suppose m1m2 = 1, then (12) becomes

l1 : Q2AB −Q(A+B) = r1 −QBr1

Suppose that m1 = 1 or m1 = −1, then equation (11) yields

l2 : −QA = r1

l3 : Q2AB − 2Q(A+B) + 4 = 2r1 −QBr1

The triangular region with lines l1, l2 and l3 contains the eigenvalues.
Next, the system with hybrid controlled strategy is given by

x(t+ 1) = αx(t) +
αρν

Γ(1 + ν)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)] + (1− α)x(t)

y(t+ 1) = αy(t) +
αρν

Γ(1 + ν)
[−wy(t) + ηx(t)y(t)− fy(t)] + (1− α)x(t)

(13)

where 0 < α < 1. Parameter perturbation and feedback control are combined in
(13) as control strategy and appropriate choice of α results in partial or completely
elimination of Neimark sacker bifurcation. Jacobian of (13) at ES2 is

J2 (ES2) =

[
1 + αAa11 −αAa12

αAa21 1

]
. (14)

where A, a11, a12, a21 are given in (8). The presence of the roots of the (14) in the
unit disk ensure the asymptotic stability of ES2.
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6. Numerical Experiments

This section illustrates the results obtained above with suitable examples.

Example 9. Let ν = 0.85, s = 2.3, β = 0.8, c = 0.05, w = 0.3, η = 0.81, f = 0.5
and 0.75 ≤ ρ ≤ 1.31 of system (3) and x(0) = 0.55, y(0) = 0.45. We obtain
ES1 = (x∗, y∗) = (0.9782, 0). Eigen values are m1 = −1 and m2 = 0.9932 6= 1. The
critical point of periodic doubling bifurcation given in Theorem (7) is ρ = 0.8151.
Figure 1(a), 1(b) show flip bifurcation diagrams in (ρ, x) and lyapunov exponent.
The periodic windows of the corresponding bifurcation diagrams are represented in
1(c), 1(d), 1(e) and 1(f) respectively.

Figure 1. Flip bifurcation diagram in (ρ, x) plane and Maximum
Lyapunov exponents of the system (3) with different periodic win-
dows

Example 10. Let ν = 0.85, ρ = 0.82, s = 2.3, β = 0.8, c = 0.05, w = 0.3, η =
0.81, f = 0.5 and x(0) = 0.55, y(0) = 0.45 for the system (3), periodic doubling
bifurcation occurs as ρ varies in ρ ∈ [0.75, 1.31]. Moreover, Figure 2(a) displays the
time plots for both prey and predator populations at ρ = 0.82.
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Figure 2. Time series for the system 3 and (15)

The controlled system (9) for above values takes the form

x(t+ 1) = x(t) +
ρυ

Γ(1 + υ)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)] +R(t)

y(t+ 1) = y(t) +
ρυ

Γ(1 + υ)
[−wy(t) + ηx(t)y(t)− fy(t)]

(15)

where R(t) = −r1

(
x(t)− s−c

s

)
− r2y(t) and r1 = −0.07 and r2 = 0.075. The plots

for the system (15) with control terms are provided in Figure 2(b). It is clear that
the equilibrium ES1 is stable. The time plots at different ρ values are displayed in
Figure 3 and Figure 4.

Figure 3. Different periodic orbits of the axial Bifurcation of the
system (3)

Example 11. Taking ν = 0.85, s = 0.35, β = 0.4, c = 0.01, w = 0.01, η = 0.56, f =
0.12 and 2 ≤ ρ ≤ 4.5 in system (3) and x(0) = 0.55, y(0) = 0.45, we get ES2 =
(x∗, y∗) = (0.2321, 0.6469). For M = −0.0804;N = 0.0336, S∗ = −0.1279, ρ3 =
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Figure 4. Different periodic orbits of the axial Bifurcation of the
system (3)

2.6124, the eigen values are m1,2 = 0.9038 ± i0.4280 with |η1,2| = 1. The critical
value given in Theorem (8) is ρ3 = 2.6124.

The bifurcation diagrams in x and y plane are presented in Figure 5(a), 5(b).
Phase trajectories obtained for various values of ρ are given in Figure 6 and Figure
7. System (3) at ES2 is locally asymptotic stable for ρ < ρ3 = 2.6124 and becomes
unstable at ρ = ρ3 followed by formation of invariant cycles for ρ > ρ3 which are
presented in Figure 5, Figure 6 and Figure 7.

Example 12. Consider the values ν = 0.85, ρ = 2.67, s = 0.35, β = 0.4, c =
0.01, w = 0.01, η = 0.56, f = 0.12 and x(0) = 0.55, y(0) = 0.45. The occurrence
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Figure 5. Neimark- Sacker Bifurcations for the system 3

Figure 6. Phase portraits of system (3) for different values of ρ

of the Neimark-Sacker bifurcation for ρ ∈ [2, 4.5] of the system (3) is illustrated
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Figure 7. Phase portraits of system (3) for different values of ρ

in Example (11). The unstable closed path formed at ρ = 2.67 enclosing unstable
steady state ES2 = (x∗, y∗) = (0.2321, 0.6469) is presented in Figure-8.

Figure 8. Phase portrait for the system 3 with time series plot

The controlled system (13) for above values can be written as

x(t+ 1) = x(t) +
αρν

Γ(1 + ν)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)]

y(t+ 1) = y(t) +
αρν

Γ(1 + ν)
[−wy(t) + ηx(t)y(t)− fy(t)]

(16)

with ν = 0.85, ρ = 2.67, s = 0.35, β = 0.4, c = 0.01, w = 0.01, η = 0.56, f = 0.12
and 0 < α < 1. The stability of ES2 is confirmed by the phase trajectory and time
plots in Figure 9 for (16) at α = 0.95.

7. Conclusion

The qualitative study of the fractional order discrete equations of the prey- preda-
tor model with harvesting is carried out. The stability conditions and bifurcation
analysis of the system is studied. The chaos control is performed with feedback
control and numerical simulations for bifurcations with different phase trajectories
are performed as well in accordance with the theoretical work. The periodic win-
dows and different time plots are provided to understand the dynamics exhibited
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Figure 9. Phase portrait for the system 13 with time series plot

by the prey predator model.
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THE LOMAX-LINDLEY DISTRIBUTION: PROPERTIES AND

APPLICATIONS TO LIFETIME DATA

Bahman TARVIRDIZADE

Department of Mathematics, Maku Branch, Islamic Azad University, Maku, IRAN

Abstract. This paper introduces a new three-parameter distribution which is
obtained by combining the Lomax and Lindley distributions in a serial system

and is called the Lomax-Lindley distribution. The new distribution is quite
flexible to model lifetime data. This distribution provides a simple form for

hazard rate function which can be increasing, decreasing, bathtub-shaped and

unimodal for different choices of the parameter values. Some statistical prop-
erties of the Lomax-Lindley distribution such as quantiles, moments, order

statistics, Renyi entropy and mean deviations are discussed. The maximum

likelihood estimators of its unknown parameters are obtained and the approx-
imate confidence intervals of the parameters are provided. A Monte Carlo

simulation study is conducted to investigate the performance of the maximum

likelihood estimators and their corresponding confidence intervals. Finally, two
real data sets having bathtub-shaped and unimodal hazard rate functions are

analyzed and it is shown that the proposed distribution can provide a better

fit than other distributions for both lifetime data.

1. Introduction

The Lomax (also known as the Pareto Type II) distribution has been intro-
duced by Lomax [16] as a model for lifetime data analysis. The Lomax distribution
is a heavy-tailed distribution and it has wide applications in many fields such as
business, economics, actuarial modeling, queuing problems, biological sciences, re-
liability and life testing problems. For more details we refer to Arnold [5].

The cumulative distribution function (cdf) of the Lomax distribution with two
parameters α and β is given by

F (x) = 1− (1 + βx)
−α
, x > 0, α, β > 0. (1)

Keywords. Lomax distribution, Lindley distribution, maximum likelihood estimation, lifetime
data analysis.
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Another distribution that has been extensively used over the past decades for
modeling data in reliability, biology, insurance, finance and lifetime analysis is Lind-
ley distribution. This distribution was introduced by Lindley [15] in the context
of fiducial and Bayesian inference. Ghitany et al. [11] showed that the Lindley
distribution is more flexible than the exponential distribution for modeling lifetime
data. In recent years, Lindley distribution has been considered by several authors.
See, for example, Gupta and Singh [12] and Maiti and Mukherjee [17].

The cdf of the Lindley distribution with parameter θ is given by

F (x) = 1−
(

1 +
θx

θ + 1

)
e−θx, x > 0, θ > 0. (2)

Although the Lomax and the Lindley distributions are very useful for modeling
lifetime data, they have monotone hazard rate functions. The hazard rate function
of Lomax distribution is decreasing and that of Lindley distribution is increasing.
Therefore, these distributions may not provide a reasonable parametric fit for mod-
eling phenomena with non-monotone hazard rates such as the bathtub-shaped and
unimodal hazard rates which are often encountered in practice. In this regard, some
researchers have considered modified forms and generalizations of these distribu-
tions to provide more flexibility for describing different types of data. For example,
McDonald Lomax distribution by Lemonte and Cordeiro [14], Weibull-Lomax distri-
bution by Tahir et al. [23], Burr X exponentiated Lomax distribution by Aboraya
[1], new extended generalized lindley distribution by Maya and Irshad [19], odd
log-logistic Lindley distribution by Ozel et al. [21], odd log-logistic Marshal-Olkin
Lindley distribution by Alizadeh et al. [3] and exponentiated power Lindley power
series class of distributions by Alizadeh et al. [2]. Most of these distributions have
four or more parameters which cause estimation problems as a consequence of the
number of parameters. On the other hand, the hazard rate functions in most of
these models have the complex forms and therefore cannot have many applications
for lifetime data analysis in practice. Therefore, major motivation of this study is
to introduce a new flexible three-parameter distribution based on the Lomax and
the Lindley distributions which its hazard rate function is simple and can cover
monotone as well as non-monotone hazard rates.

To obtain more flexible models with simple hazard rate functions, a useful tech-
nique is combining the hazard rates of two distributions. For example, additive
Weibull distribution by Xie and Lai [25], new modified Weibull distribution by Al-
malki and Yuan [4] and power-exponential hazard rate distribution by Tarvirdizade
and Nematollahi [24] are some models introduced by using this technique. The goal
of this article is to propose a new three-parameter lifetime distribution called the
Lomax-Lindley (L-L) distribution using the combination of the Lomax and the
Lindley distributions in a serial system. The new distribution can be used effec-
tively for analyzing lifetime data since it provides a simple hazard function which
can cover increasing, decreasing, bathtub-shaped and unimodal hazard rates. Some
properties of the L-L distribution including the density and hazard rate functions,
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quantiles, moments, order statistics, Renyi entropy and mean deviations are pre-
sented. The method of maximum likelihood estimation (MLE) is used to estimate
the unknown parameters of this new class of distributions. The flexibility of the
new model is demonstrated by fitting the L-L distribution to two real data sets
having bathtub-shaped and unimodal hazard rate functions.

The contents of this paper are organized as follows. In Section 2, we define
the L-L distribution and and study the shape of the hazard rate function of this
model. In Section 3, we consider some distributional properties of the new model.
In Section 4, the MLEs of unknown parameters are discussed and their asymptotic
confidence intervals are provided. In Section 5, a Monte Carlo simulation study is
conducted. The applications of the L-L distribution are illustrated by analyzing
two real data sets in Section 6. Finally, the conclusions of this paper are given in
Section 7.

2. The L-L distribution

We define the cdf of the L-L distribution with three parameters α, β and θ as

F (x) = 1− (1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θx, x > 0, α > 0, β, θ ≥ 0, (3)

where β+θ > 0. The probability density function (pdf) of this distribution is given
by

f(x) =

(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
(1 + βx)

−α
e−θx,

x > 0, α > 0, β, θ ≥ 0. (4)

Henceforth, we denote a random variable X having pdf (4) by X ∼ L-L(α, β, θ).
The L-L model in (4) can be interpreted as the lifetime of a serial system with
two components, one following Lomax distribution with parameters α and β and
another following Lindley distribution with parameter θ, and the system’s lifetime
is the minimum of the two components. Clearly, the L-L distribution contains
Lomax and Lindley distributions as special cases.

The hazard rate function of the L-L distribution takes a simple form as

h(x) =
αβ

1 + βx
+

θ2(1 + x)

1 + θ(1 + x)
. (5)

To derive the shape of h(x), we obtain the first derivative of (5) as

h′(x) = − αβ2

(1 + βx)
2 +

θ2

[1 + θ(1 + x)]
2 .

Setting h′(x) = 0, we obtain

x0 =

√
αβ(1 + θ)− θ
θβ(1−

√
α)

.
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Then it can be seen that the hazard rate function has bathtub-shaped property if

α < 1, β <
1√
α
, θ <

√
αβ

1−
√
αβ

,

and the hazard rate function is unimodal if

α > 1, β <
1√
α
, θ >

√
αβ

1−
√
αβ

.

For other values of the parameters α, β and θ, the hazard rate function can also
be increasing or decreasing. Plots of increasing, bathtub-shaped, decreasing and
unimodal hazard rate functions of the L-L distribution and the corresponding pdfs
for different values of the parameters α, β and θ are displayed in Figures 1 and 2,
respectively.
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Figure 1. The increasing and bathtub-shaped hazard rate func-
tions of the L-L distribution and the corresponding pdfs for differ-
ent parameter values.

3. Properties of the L-L distribution

We discuss some of the basic statistical properties of the L-L distribution in this
section, which consist of quantiles, moments, order statistics, Renyi entropy and
mean deviations.
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Figure 2. The decreasing and unimodal hazard rate functions
of the L-L distribution and the corresponding pdfs for different
parameter values.

3.1. Quantiles. The quantile function is one of the important functions in prob-
ability theory and statistical applications which can be used in data generation
from a distribution. The qth quantile (xq) of the L-L(α, β, θ) is obtained by solving
F (xq) = q where F (x) is given in (3). It can be easily shown that xq is the real
solution of the following equation

α log(1 + βxq)− log

(
1 +

θxq
θ + 1

)
+ θxq + log(1− q) = 0.

The above equation has no closed form solution in xq and therefore, a numerical
technique such as the Newton-Raphson method can be employed to get the quantile.
In particular, the median of the L-L(α, β, θ) is obtained for q = 0.5.

3.2. Moments. The rth moment (µr) of the L-L(α, β, θ) could be obtained from
(4) and integration by parts as follow:

µr = E(Xr) =

∫ ∞
0

xr
(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
(1 + βx)

−α
e−θxdx

=

∫ ∞
0

rxr−1(1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θxdx, r = 1, 2, .... (6)

Now, using the Taylor expansion

(1 + βx)
−α

=

∞∑
i=0

(−1)
i

(
α+ i− 1

i

)
(βx)i, (7)
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it follows from (6) that

µr =

∞∑
i=0

(−1)
i
βi
(
α+ i− 1

i

)∫ ∞
0

rxr+i−1
(

1 +
θx

θ + 1

)
e−θxdx. (8)

Finally, using the transformation y = θx, we obtain the rth moment of the L-
L(α, β, θ) as

µr =

∞∑
i=0

(−1)
i
βi
(
α+ i− 1

i

)
r

θr+i

[
Γ (r + i) +

1

θ + 1
Γ (r + i+ 1)

]
, (9)

where Γ(.) is the gamma function.
Some of the most important characteristics of a distribution can be obtained

through moments. For example, the measures of variance, skewness and kurto-
sis of the L-L distribution can be obtained according to the following relations,
respectively,

σ2 = µ2 − µ2
1, SK =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3/2
, KU =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1

(µ2 − µ2
1)

2 .

3.3. Order statistics. Order statistics make their appearance in many areas of
statistical theory and practice. In this subsection, we provide an expression for the
pdf of the ith order statistic (Xi:n) of a random sample X1, X2, ..., Xn drawn from
the L-L(α, β, θ). From Balakrishnan and Nagaraja [6], the pdf of Xi:n is given by

fi:n(x) =
1

B(i, n− i+ 1)
f(x)F (x)i−1(1− F (x))n−i, (10)

where B(., .) is the beta function. Using (3), (4) and the binomial expansion, we
have

fi:n(x) =
1

B(i, n− i+ 1)

i−1∑
j=0

(−1)
j

(
i− 1
j

)(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
×

(
1 +

θx

θ + 1

)n−i+j
(1 + βx)

−(n−i+j+1)α
e−(n−i+j+1)θx

=
1

B(i, n− i+ 1)

i−1∑
j=0

n−i+j∑
k=0

(−1)
j

(
i− 1
j

)(
n− i+ j

k

)(
θx

θ + 1

)k
×

(
θ2(1 + x)

1 + θ
+

αβ

1 + βx

(
1 +

θx

θ + 1

))
(1 + βx)

−(n−i+j+1)α
e−(n−i+j+1)θx.

(11)

Some statistical properties of the L-L distribution such as moments, generating
function and mean deviations of the order statistics can be derived using (11).
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3.4. Renyi entropy. The entropy is an index for measuring variation or uncer-
tainty of a random variable and has been used in many fields such as physics,
engineering and economics among others. A popular entropy measure is Renyi
entropy. Renyi entropy of a random variable with pdf f(.) is defined as follows:

IR(r) =
1

1− r
log

∫ ∞
0

fr(x)dx,

where r > 0 and r 6= 1. Let X ∼ L-L(α, β, θ). Then, using (4) and the binomial
expansion, we have

fr(x) =

r∑
i=0

(
r
i

)
(αβ)

i

(
1 +

θx

θ + 1

)i(
θ2(1 + x)

1 + θ

)r−i
(1 + βx)

−(rα+i)
e−rθx

=

r∑
i=0

r−i∑
j=0

(
r
i

)(
r − i
j

)
(−1)

j
(αβ)

i
θr−i

(
1

θ + 1

)j(
1 +

θx

θ + 1

)r−j
×(1 + βx)

−(rα+i)
e−rθx

=

r∑
i=0

r−i∑
j=0

r−j∑
k=0

(
r
i

)(
r − i
j

)(
r − j
k

)
(−1)

j
(αβ)

i
θr−i

(
1

θ + 1

)j(
θx

θ + 1

)k
×(1 + βx)

−(rα+i)
e−rθx.

Now, using the Taylor expansions of (1 + βx)
−(rα+i)

, it follows that

fr(x) =

r∑
i=0

r−i∑
j=0

r−j∑
k=0

∞∑
`=0

(
r
i

)(
r − i
j

)(
r − j
k

)(
rα+ i+ `− 1

`

)
×(−1)j+`(αβ)iθr−i

(
1

θ + 1

)j(
θx

θ + 1

)k
(βx)`e−rθx.

Finally, by making the transformation y = rθx and by identifying a gamma density
inside the integral sign, Renyi entropy of X is given by

IR(r) =
1

1− r
log

r∑
i=0

r−i∑
j=0

r−j∑
k=0

∞∑
`=0

(
r
i

)(
r − i
j

)(
r − j
k

)(
rα+ i+ `− 1

`

)
× (−1)

j+`
αiβi+`θr−i+k

(θ + 1)
j+k

Γ(k + `+ 1)

(rθ)
k+`+1

. (12)

The values of some important measures of the L-L distribution such as the
median, mean, variance, skewness, kurtosis and Renyi entropy (r = 2) for various
choices of the parameters (α, β, θ) are presented in Table 1.

3.5. Mean deviations. The totality of deviations from the mean and median is
an index for measuring the amount of scatter in a population. Let X be a random
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Table 1. The values of some measures of the L-L distribution for
different parameter values

α β θ Median Mean Variance Skewness Kurtosis IR(2)
0.5 0.5 0.5 1.6632 2.3438 5.1731 1.8618 8.0781 1.5610
0.5 0.5 3 0.2716 0.3835 0.1392 1.8874 8.2468 -0.2493
0.5 1 0.5 1.2725 1.9780 4.5025 2.0830 9.2932 1.3022
0.5 1 3 0.2512 0.3602 0.1276 1.9563 8.6825 -0.3232
1 0.5 0.5 1.1298 1.7308 3.4137 2.1972 10.267 1.1925
1 0.5 3 0.2490 0.3547 0.1219 1.9365 8.5762 -0.3338
1 1 0.5 0.7273 1.2819 2.4594 2.6654 13.755 0.7655
1 1 3 0.2159 0.3155 0.1027 2.0620 9.4225 -0.4701
2 0.5 0.5 0.6514 1.0642 1.5340 2.6978 14.694 0.6536
2 0.5 3 0.2129 0.3074 0.0947 2.0165 9.1454 -0.4868
2 1 0.5 0.3668 0.6666 0.7861 3.5006 23.599 0.0906
2 1 3 0.1673 0.2500 0.0685 2.2203 10.670 -0.7202

variable with cdf (3), pdf (4), mean µ and median M . Then, the mean deviation
from the mean and the mean deviation from the median are defined by

δ(µ) =

∫ ∞
0

|x− µ| f(x)dx = 2µF (µ)− 2I(µ),

and

δ(M) =

∫ ∞
0

|x−M | f(x)dx = 2MF (M)−M + µ− 2I(M),

respectively, where

I(a) =

∫ a

0

xf(x)dx = aF (a)−
∫ a

0

F (x)dx

= −a(1 + βa)
−α
(

1 +
θa

θ + 1

)
e−θa +

∫ a

0

(1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θxdx,

and using (7) and the Taylor expansion of e−θx,∫ a

0

(1 + βx)
−α
(

1 +
θx

θ + 1

)
e−θxdx

=

∞∑
i=0

∞∑
j=0

(−1)
i+j

j!

(
α+ i− 1

i

)
βiθj

∫ a

0

xi+j
(

1 +
θx

θ + 1

)
dx

=

∞∑
i=0

∞∑
j=0

(−1)
i+j

j!

(
α+ i− 1

i

)
βiθj

(
ai+j+1

i+ j + 1
+

θ

θ + 1

ai+j+2

i+ j + 2

)
.
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4. Maximum likelihood estimation

In this section, we apply the maximum likelihood method for estimating the
unknown parameters α, β and θ. Let x = (x1, x2, ..., xn) be n observations of a
random sample from the L-L(α, β, θ). The likelihood function of this sample using
(4) can be written as

L(α, β, θ|x) =

n∏
i=1

(
θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

1 + θ

)
(1 + βxi)

−(α+1)
e−θxi , (13)

and hence the log-likelihood function is given by

`(α, β, θ|x) =

n∑
i=1

log
(
θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
−n log(θ + 1)− (α+ 1)

n∑
i=1

log(1 + βxi)− θ
n∑
i=1

xi. (14)

Setting the first partial derivatives of ` with respect to α, β and θ equal to zero,
the likelihood equations are obtained in the following form

∂`

∂α
=

n∑
i=1

(
β(1 + θ + θxi)

θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
−

n∑
i=1

log(1 + βxi) = 0,

(15)

∂`

∂β
=

n∑
i=1

(
θ2(1 + xi)xi + α(1 + θ + θxi)

θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
− (α+ 1)

n∑
i=1

xi
1 + βxi

= 0,

(16)

∂`

∂θ
=

n∑
i=1

(
2θ(1 + xi)(1 + βxi) + αβ(1 + xi)

θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi)

)
− n

θ + 1
−

n∑
i=1

xi = 0.

(17)

To find the MLEs of α, β and θ, say α̂, β̂ and θ̂, we should solve the above system of
non-linear equations (15)–(17) with respect to α, β and θ. These equations cannot
be solved analytically and therefore, we have to solve the equations numerically. We
can use iterative techniques such as a Newton-Raphson type algorithm to obtain
the MLEs of the parameters α, β and θ. The subroutines to solve non-linear
optimization problem are available in R software. We maximize the log-likelihood
function using nlm() package.

To obtain the confidence intervals for the parameters α, β and θ, the distributions

of the MLEs α̂, β̂ and θ̂ are needed. Since the MLEs were not obtained in closed
forms, then it is not possible to derive their exact distributions. Thus, for interval
estimation of the parameters α, β and θ, we derive the approximate confidence
intervals of the parameters based on the asymptotic distributions of their MLE
which is need to calculate the Fisher information matrix. We obtain the observed
information matrix since the expected information matrix is very complicated and
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will require numerical integration. The elements of the 3×3 observed information
matrix I are given in the Appendix. Then the asymptotic distribution of the MLE
of the parameters α, β and θ is given by α̂

β̂

θ̂

 ∼ N
 α

β
θ

 ,V

 , (18)

where V is the variance-covariance matrix and can be approximated by the re-
ciprocal of the observed information matrix, i.e., V = I−1. Since V involves the
parameters α, β and θ, we replace the parameters by the corresponding MLEs in
order to obtain an estimate of V, which is denoted by

V̂ =

 V̂11 V̂12 V̂13
V̂21 V̂22 V̂23
V̂31 V̂32 V̂33

 =

 Î11 Î12 Î13
Î21 Î22 I23
Î31 Î32 Î33

−1, (19)

where Îij is the (i, j)th element of the observed information matrix I when α, β

and θ are replaced by α̂, β̂ and θ̂, respectively. Now, using (18), the 100(1 −
γ)% approximate confidence intervals for the parameters α, β and θ are given,
respectively, as

α̂± zγ/2
√
V̂11, β̂ ± zγ/2

√
V̂22, θ̂ ± zγ/2

√
V̂33, (20)

where zγ/2 is the (1− γ/2) quantile of the standard normal distribution.

5. A simulation study

In this section, we perform a Monte Carlo simulation study to assess the perfor-
mance of the point and interval estimates of the parameters presented in Section
4. The performance of the MLEs is compared in terms of their average estimates
and mean squared errors (MSEs). We also compare the performance of the confi-
dence intervals in terms of their expected length and coverage probability. To this
end, the samples of size n = 10, 30, 80, 150 are generated from the L-L distribution
with three different values for the parameters (α, β, θ), namely, (0.5, 0.5, 2), (0.5,
1, 2), and (1.5, 0.5, 2) which correspond to the increasing, bathtub-shaped and
unimodal hazard rates, respectively. We report the average estimates and MSEs
of the parameters in Table 2. The expected length and coverage probability of the
confidence intervals for confidence level (1− γ) = 0.95 are also reported in Table 3.
This simulation study is performed using the statistical software R and the number
of Monte Carlo replications was 5000.

The results of Table 2 indicate that the MSEs for all the selected parameter values
decrease with increasing the sample size, which confirm the consistency properties
of the MLEs. Based on the results in Table 3, it is observed that increasing the
sample size result in a decrease in the expected lengths of the intervals. Also,
the assessment of the coverage probabilities show that the approximate confidence
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Table 2. Average estimates and MSEs (in parentheses) of the param-
eters (α, β, θ)

n α = 0.5 β = 0.5 θ = 2
10 0.1029 (0.4945) 0.0113 (0.2918) 2.3134 (0.6471)
30 0.0719 (0.3537) 0.0134 (0.2635) 2.2286 (0.2787)
80 0.0058 (0.2878) 0.0097 (0.2583) 2.2473 (0.1249)
150 0.0085 (0.2510) 0.0112 (0.2488) 2.2568 (0.0993)
n α = 0.5 β = 1 θ = 2
10 0.0523 (0.4019) 0.0584 (1.3474) 2.7009 (1.3509)
30 0.0382 (0.3736) 0.0380 (0.9569) 2.4825 (0.3880)
80 0.0257 (0.3080) 0.0249 (0.8908) 2.4428 (0.2663)
150 0.0135 (0.2483) 0.0139 (0.7824) 2.4000 (0.1915)
n α = 1.5 β = 0.5 θ = 2
10 0.7741 (6.5418) 0.1515 (0.8265) 2.9206 (1.9750)
30 0.2392 (2.3196) 0.0669 (0.2934) 2.7443 (0.7976)
80 0.1907 (1.9680) 0.0665 (0.2554) 2.6547 (0.5210)
150 0.2264 (1.8560) 0.0845 (0.2158) 2.6232 (0.4418)

Table 3. Expected lengths and coverage probabilities (in parentheses)
of the parameters (α, β, θ)

n α = 0.5 β = 0.5 θ = 2
10 2.3847 (0.874) 6.7524 (0.951) 3.4349 (0.848)
30 1.6174 (0.849) 6.3374 (0.964) 2.8423 (0.890)
80 1.3127 (0.870) 5.5297 (0.956) 2.3102 (0.862)
150 0.9047 (0.866) 4.5623 (0.978) 1.7505 (0.872)
n α = 0.5 β = 1 θ = 2
10 2.5894 (0.824) 7.7381 (0.894) 5.6279 (0.944)
30 1.9630 (0.806) 6.3784 (0.892) 4.1238 (0.948)
80 1.1327 (0.778) 3.0566 (0.898) 2.4911 (0.934)
150 0.7995 (0.752) 1.9818 (0.887) 1.5862 (0.942)
n α = 1.5 β = 0.5 θ = 2
10 3.6819 (0.786) 6.8136 (0.978) 5.7652 (0.928)
30 2.2182 (0.768) 5.4194 (0.971) 3.2770 (0.904)
80 1.2703 (0.757) 3.5746 (0.968) 1.8928 (0.913)
150 0.8794 (0.734) 2.6734 (0.973) 1.2594 (0.921)

intervals for most of the parameters provides the coverage probabilities smaller than
their nominal level.
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6. Applications

In this section, two applications to real data sets with bathtub-shaped and uni-
modal hazard rates are considered in order to illustrate the potentiality of the
L-L distribution. We use goodness-of-fit tests including the Anderson-Darling (A-
D) and Kolmogorov-Smirnov (K-S) tests to compare the L-L distribution with its
sub-models, namely the Lindley and Lomax distributions, and the following three-
parameter distributions:

(1) Exponential Lomax (E-Lo) distribution with the pdf

f(x) =
αλ

β

(
β

x+ β

)−α+1

e−λ(
β
x+β )

−α

, x > 0, α, β, λ > 0,

which was introduced by El-Bassiouny et al. [10].

(2) Generalized Lomax (G-Lo) distribution with the pdf

f(x) = αβγxγ−1(1 + βxγ)−(α+1), x > 0, α, β, γ > 0,

which was introduced by Maurya et al. [18].

(3) Lindley-Lomax (Li-Lo) distribution with the pdf

f(x) =
αθ2

σ(θ + 1)

[
1 + α log

(
1 +

x

σ

)](
1 +

x

σ

)−(αθ+1)

, x > 0, α, θ, σ > 0,

which was introduced by Cakmakyapan and Ozel [7].

(4) Lindley Weibull (Li-W) distribution with the pdf

f(x) =
βθ2

(θ + 1)

(
αβxβ−1 + α2βx2β−1

)
e−θ(αx)

β

, x > 0, α, β, θ > 0,

which was introduced by Cordeiro et al. [8].

(5) Extended Generalized Lindley (EG-Li) distribution with the pdf

f(x) =
λ2(1 + x)

[
1−

(
1 + λx

1+λ

)
e−λx

]α−1 {
α+ (γ − α)

[
1−

(
1 + λx

1+λ

)
e−λx

]γ}
(1 + λ)eλx

{[
1−

(
1 + λx

1+λ

)
e−λx

]α
+ 1−

[
1−

(
1 + λx

1+λ

)
e−λx

]γ}2 ,

x > 0, α, γ, λ > 0,

which was introduced by Ranjbar et al. [22].

6.1. Bathtub-shaped hazard rate lifetime data. The first application consists
the times between failures (in hours) of load-haul-dump (LHD) machine used to
pick up rock or waste. The data has been obtained from Kumar et al. [13] and are
presented in Table 4. The TTT-plot presented by Kumar et al. [13] for this data
set exhibits a bathtub-shaped hazard rate function.
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Table 4. Times between failures of LHD machine (LHD data)

110 13 72 4 45 56 19 27 36 90 19 7 2 118 44 8 277
4 8 10 79 103 6 18 147 96 22 3 24 3 9 99 82 121
54 79 99 18 5 21 1 3 5 1 59 22 17 35 35 29

Table 5 present the MLEs of the model parameters as well as values of A-D
statistics, K-S statistics and their corresponding p-values for all models. These
results show that the L-L distribution has the lowest A-D and K-S values and, has
the biggest p-value of K-S test statistic among all the fitted models. Hence, L-L
distribution yields a better fit than Lindley, Lomax, E-Lo, G-Lo, Li-Lo, Li-W and
EG-Li distributions under these criteria. Furthermore, Figure 3 show the empirical
cdf versus fitted cdfs and the histogram of the data versus fitted pdfs for the LHD
data. This figure confirms the goodness-of-fit of L-L distribution with respect to
its sub-models and the other competitor distributions.

Substituting the MLE of the unknown parameters in (19), we obtain estimation

of the variance-covariance matrix V̂ as

V̂ =

 0.1227 −0.0316 −0.0017
−0.0316 0.0091 0.0004
−0.0017 0.0004 4.4× 10−5

 .

Therefore, the approximate 95% confidence intervals of the parameters α, β and
θ using (20) are given as (-0.2207, 1.1525), (-0.0966, 0.2789) and (0.0077, 0.0337),
respectively.

6.2. Unimodal hazard rate lifetime data. As second application, we consider
a clinical trial data set involving survival times (in days) of 45 head and neck cancer
patients in arm B which was considered earlier by Efron [9]. The data are presented
in Table 6. Mudholkar et al. [20] discussed that this data set indicates a unimodal
hazard rate function.

Table 5. MLEs of parameters, A-D statistic, K-S statistic and
corresponding p-value

Distribution Estimates A-D statistic K-S statistic p-value

Lindley(θ) 0.0432 - - 8.1689 0.2383 0.0068
Lomax(α, β) 0.0788 7020 - 17.006 0.5027 0.0000
L-L(α, β, θ) 0.4658 0.0911 0.0207 0.2864 0.0699 0.9672
E-Lo(α, β, λ) 0.8621 0.0254 0.0016 0.4053 0.0823 0.8865
G-Lo(α, β, γ) 77.547 0.0005 0.8717 0.4166 0.0830 0.8806
Li-Lo(α, θ, σ) 0.3819 15.138 8203.02 0.6425 0.0928 0.7816
Li-W(α, β, θ) 0.2223 0.6868 0.3984 0.4360 0.0845 0.8670
EG-Li(α, γ, λ) 0.4311 0.2170 0.0198 0.4810 0.0874 0.8386
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Figure 3. (a) The fitted cdfs and empirical cdf. (b) The fitted
pdfs and histogram of the data for LHD data.

Table 6. Survival times of 45 head and neck cancer patients (Can-
cer data)

37 84 92 94 110 112 119 127 130 133 140 146
155 159 169 173 179 194 195 209 249 281 319 339
432 469 519 528 547 613 633 725 759 817 1092 1245
1331 1557 1642 1771 1776 1897 2023 2146 2297

To compare the goodness of fit of L-L distribution with other distributions, the
MLEs of the model parameters as well as values of A-D statistics, K-S statistics
and their corresponding p-values for all models are calculated and the results are
reported in Table 7. It is observed that the L-L distribution provides the lowest
A-D and K-S values and, has the biggest p-value of K-S test statistic in comparison
with its sub-models and the other competitor distributions and therefore, it could
be chosen as the best model under these criteria. Figure 4 show the empirical cdf
versus fitted cdfs and the histogram of the data versus fitted pdfs for the cancer
data. This figure confirms the goodness-of-fit of L-L distribution with respect to
all the fitted distributions.

Substituting the MLE of the unknown parameters in (19), we obtain estimation

of the variance-covariance matrix V̂ as

V̂ =

 0.0937 8.6× 10−5 −3.1× 10−5

8.6× 10−5 2.1× 10−7 −4.9× 10−8

−3.1× 10−5 −4.9× 10−8 1.8× 10−7

 .
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Table 7. MLEs of parameters, A-D statistic, K-S statistic and
corresponding p-value

Distribution Estimates A-D statistic K-S statistic p-value

Lindley(θ) 0.0031 - - 7.5923 0.3037 0.0003
Lomax(α, β) 0.0626 7266.3 - 16.594 0.5436 0.0000
L-L(α, β, θ) 1.5395 0.0013 0.0010 1.0182 0.1258 0.4383
E-Lo(α, β, λ) 0.9813 0.8707 0.0015 1.3949 0.1579 0.1904
G-Lo(α, β, γ) 1.1442 0.0002 1.4413 1.0320 0.1341 0.3608
Li-Lo(α, θ, σ) 146.12 0.0151 321.13 1.0544 0.1334 0.3663
Li-W(α, β, θ) 0.0001 0.9759 10.344 1.3961 0.1582 0.1887
EG-Li(α, γ, λ) 0.5304 0.1198 0.0012 1.2175 0.1410 0.3027
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Figure 4. (a) The fitted cdfs and empirical cdf. (b) The fitted
pdfs and histogram of the data for cancer data.

Therefore, the approximate 95% confidence intervals of the parameters α, β and
θ using (20) are given as (0.9395, 2.1396), (0.0004, 0.0022) and (0.0002, 0.0019),
respectively.

7. Conclusions

In this paper, we have proposed a new three-parameter lifetime distribution
which is referred to as the the Lomax-Lindley distribution. This distribution is ob-
tained by combining the Lomax and Lindley distributions in a serial system. The
new distribution is quite flexible to model lifetime data since it provides a sim-
ple form for hazard rate function which can cover increasing, decreasing, bathtub-
shaped and unimodal hazard rates. We have studied some important mathematical
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properties of new distribution, which consist of quantiles, moments, order statis-
tics, Renyi entropy and mean deviations. The maximum likelihood estimation and
asymptotic confidence intervals for the model parameters are also discussed and a
simulation study is conducted to evaluate the performances of the point and in-
terval estimates of the parameters. Two real data sets having bathtub-shaped and
unimodal hazard rate functions are analyzed to show the superiority of the new
distribution. It observed that the present distribution can provide a better fit than
other competitor distributions for both lifetime data.

Appendix A

In Section 4, we used the observed information matrix I to construct the asymp-
totic confidence intervals for the parameters of the L-L distribution. The elements
of this matrix are given by

I11 =

n∑
i=1

(
β(1 + θ + θxi)

gi

)2

,

I12 = −
n∑
i=1

θ2(1 + xi)(1 + θ + θxi)

g2i
+

n∑
i=1

xi
1 + βxi

,

I22 =

n∑
i=1

(
θ2(1 + xi)xi + α(1 + θ + θxi)

gi

)2

− (α+ 1)

n∑
i=1

(
xi

1 + βxi

)2

,

I13 =

n∑
i=1

βθ(1 + xi)(1 + βxi)(2 + θ + θxi)

g2i
,

I23 = −
n∑
i=1

αθ2(1 + xi)
2 − 2αθ(1 + xi)(1 + θ + θxi)

g2i
,

I33 = −
n∑
i=1

2(1 + xi)(1 + βxi)gi − [2θ(1 + xi)(1 + βxi) + αβ(1 + xi)]
2

g2i
− n

(θ + 1)
2 ,

where

gi(α, β, θ) = θ2(1 + xi)(1 + βxi) + αβ(1 + θ + θxi).

Appendix B

Some programs developed in R for the L-L distribution fitting and estimation of
its parameters are given as follows:

library(MASS)
# LHD data
x=c(110, 13, 72, 4, 45, 56, 19, 27, 36, 90, 19, 7, 2, 118, 44, 8, 277, 4, 8, 10, 79,

103, 6, 18, 147, 96, 22, 3, 24, 3, 9, 99, 82, 121, 54, 79, 99, 18, 5, 21, 1, 3, 5, 1, 59,
22, 17, 35, 35, 29)

n=50
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logL=function(par){
al=par[1]
be=par[2]
te=par[3]
-sum(log((1+x)*(1+be*x)*teˆ 2+al*be*(1+te+te*x))-log(te+1)-(al+1)

*log(1+be*x)-te*x)}
est=nlm(logL,c(1,.01,.01))
alpha=est $estimate[1]
beta=est$estimate[2]
theta=est$estimate[3]
print(c(alpha,beta,theta))

# Cumulative distribution function of the L-L distribution
F=function(z,al,be,te){
P=1-(1+te*z/(te+1))*exp(-te*z)/(1+be*z)ˆ al
return(P)
}
print(ks.test(x,”F”,alpha,beta,theta))

# Elements of the observed information matrix
g=(1+x)*(1+beta*x)*thetaˆ 2+alpha*beta*(1+theta+theta*x)
I=matrix(c(rep(0,9)),ncol=3)
I[1,1]=sum((beta*(1+theta+theta*x)/g)ˆ 2)
I[1,2]=I[2,1]=- sum((1+x)*(1+theta+theta*x)*thetaˆ 2/gˆ 2 -x/(1+beta*x))
I[1,3]=I[3,1]=sum(beta*theta*(1+x)*(1+beta*x)*(2+theta+theta*x)/gˆ 2)
I[2,2]=sum((((1+x)*x*thetaˆ 2+alpha*(1+theta+theta*x))/g)ˆ 2-(alpha+1)

*(x/(1+beta*x))ˆ 2)
I[2,3]=I[3,2]=- sum((alpha*thetaˆ 2*(1+x)ˆ 2-2*alpha*theta*(1+x)

*(1+theta+theta*x))/gˆ 2)
I[3,3]=- sum((2*(1+x)*(1+beta*x)*g-(2*theta*(1+x)*(1+beta*x)

+alpha*beta*(1+x))ˆ 2)/gˆ 2)-n/(theta+1)ˆ 2
V=ginv(I)
print(V)
al=alpha-qnorm(0.975)*sqrt(V[1,1])
au=alpha+qnorm(0.975)*sqrt(V[1,1])
print(c(al,au))
bl=beta-qnorm(0.975)*sqrt(V[2,2])
bu=beta+qnorm(0.975)*sqrt(V[2,2])
print(c(bl,bu))
tl=theta-qnorm(0.975)*sqrt(V[3,3])
tu=theta+qnorm(0.975)*sqrt(V[3,3])
print(c(tl,tu))
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Abstract. Let R be a commutative semiring with nonzero identity and H
be an arbitrary multiplicatively closed subset R. The generalized identity-

summand graph of R is the (simple) graph GH(R) with all elements of R as

the vertices, and two distinct vertices x and y are adjacent if and only if x+y ∈
H. In this paper, we study some basic properties of GH(R). Moreover, we

characterize the planarity, chromatic number, clique number and independence

number of GH(R).

1. Introduction

Semirings provide useful instruments to solve problems in many areas of informa-
tion sciences and applied mathematics such as optimization theory, graph theory,
automata theory, coding theory and analysis of computer programs, because the
structure of semiring provides a useful algebraic technique for investigating and
modelling the key factors in these problems.

Over the last few years, the study of algebraic structures by graphs has been
done and several interesting results have been obtained (see [1,2,4,5,10,11,13–17]).
For instance, the total graph of a commutative ring R is a simple graph whose
vertex set is R, and two distinct vertices a and b are adjacent if a+ b is a zero divi-
sor of R (the set of all zero-divisor elements of R is denoted by Z(R))(see [3, 18]).
Recently, in [9], the authors considered the identity summand graph of a commu-
tative semiring R denoted by Γ(R), as the simple graph with the set of vertices
{x ∈ R \ {1} : x + y = 1 for some y ∈ R \ {1}}, where two distinct vertices x and
y are adjacent if and only if x + y = 1. Moreover, the identity-summand graph
with respect to co-ideal I denoted by ΓI(R) is a graph with vertices as elements

Keywords. I-semiring, planar graph, clique number, chromatic number, independence number.
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SI(R) = {x ∈ R \ I : x+ y ∈ I for some y ∈ R \ I}, where two distinct vertices x
and y are adjacent if and only if x+ y ∈ I [12].

Let H be a nonempty subset of a semiring R with nonzero identity. H is said
to be multiplicatively closed if xy ∈ H, for all x and y of H. Also, a subset H of R
is called saturated if xy ∈ H if and only if x, y ∈ H. For a multiplicatively closed
subset H of R, we define the generalized identity-summand graph of R, denoted by
GH(R), as a simple graph, with vertex set R and two distinct vertices x and y being
adjacent if and only if x + y ∈ H. Since the subsets Z(R) of R is multiplicatively
closed, GH(R) is a natural generalization of the total graph of R. Hence the total
graph is a well-known graph of this type. Moreover, if H is a co-ideal of R, then
ΓH(R) is a subgraph of GH(R).

We summarize the contents of this article as follows. In Section 2, we inves-
tigate the basic properties of generalized identity-summand graph, for instance ,
the degree of the vertices and connectivity. Also, We consider the possible inte-
gers for the diameter and the girth of the graph GH(R). We investigate the case
that H is a saturated multiplicatively closed subset of R. We prove a subset H
of R is saturated if and only if R \ H is a union of some prime ideals. Therefore
R \ H =

⋃
j∈J Mj for some prime ideals Mj with j ∈ J . Set I :=

⋂
j∈J Mj . If I

is a Q-ideal of R, then set H̃ := {q + I : h ∈ q + I for some h ∈ H}. We show

that the newly constructed subset H̃ is a saturated multiplicatively closed subset of
R/I and study the relationship between the combinatorial properties of the graphs
GH(R) and GH̃(R/I). Further, we consider the graph GH(R), when it is complete,
complete r-partite, complete 2-partite and regular graph. It is proved that GH(R)
is complete 2-partite if and only if it is star graph. In Section 3, we consider and
study the planar property, clique number, chromatic number and independence
number of GH(R). We will show that ω(GH(R)) = χ(GH(R)) and completely de-
termine the chromatic number, clique number and independence number of GH(R).

Now, we are going to recall some notations and definitions of graph theory
from [6], which are needed in this paper. Let G be a graph. By E(G) and V (G)
we will denote the set of all edges and vertices, respectively. A graph G is called
connected provided that there exists a path between any two distinct vertices. Oth-
erwise, G is said to be disconnected. The distance between two distinct vertices a
and b is the length of the shortest path connecting them, denoted by d(a, b), (if such
a path does not exist, then d(a, b) = ∞, also d(a, a) = 0). The diameter of a graph
G, denoted by diam(G), is equal to sup{d(a, b) : a and b are distinct vertices of G}.
The girth of a graph G denoted gr(G), is the length of a shortest cycle in G, pro-
vided that G contains a cycle; otherwise gr(G) = ∞. For a given vertex x ∈ V (G),
the neighborhood set of x is the set N(x) = {a ∈ V (G) : a is adjacent to x}. A
graph G is called complete, if every pair of distinct vertices is connected by a
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unique edge. The notation Kn will denote the complete graph on n vertices. A
complete r-partite graph is one in which each vertex is joined to every vertex that
is not in the same subset. A complete r-partite graph with part sizes m1, ...,mr

is denoted by Km1,m2,...,mr
. We will sometimes call K1,n a star graph. Let G be

a graph. A coloring of a graph G is an assignment one color to each vertex of G
such that distinct colors are assigned to adjacent vertices. If one used n colors for
the coloring of G, then it is referred to as an n-coloring. If G has n-coloring, then
G is called n-colorable. The minimum positive integer n for which a graph G is
n-colorable is called the chromatic number of G, and is denoted by χ(G). A graph
G is said to be totally disconnected, if no two vertices of G are adjacent. Every
complete subgraph of a graph G is called a clique of G, and the number of vertices
in the largest clique of graph G, denoted by ω(G), is called the clique number of G.
In a graph G = (V,E), a subset S of V is said to be an independent set provided
that the subgraph induced by S is totally disconnected. The independence number
is the maximum size of an independent set in G and denoted by α(G). A graph
G is called a null graph if whose vertex-set is empty and a graph whose edge-set
is empty is said to be an empty graph. Let G be a graph with edge set E. Also,
suppose that there exists a family of edge-disjoint subgraphs {Gi}i∈I of G. Then
we put G = ⊕i∈IGi. Furthermore, in the case that Gi

∼= H for every i ∈ I, we set
G = ⊕|I|H.

An algebraic system (R,+, .) is called a commutative semiring provided that
(R,+) and (R, .) are commutative semigroups, connected by a(b + c) = ab + ac
for all a, b, c ∈ R, and there exist 0, 1 ∈ R such that r + 0 = r and r0 = 0r = 0
and r1 = 1r = r for each r ∈ R. Throughout this paper, all semirings considered
will be assumed to be commutative semirings with a non-zero identity. Let R be a
semiring. A non-empty subset I of R is called co-ideal (resp. ideal), if it is closed
under multiplication (rep. under addition) and satisfies the condition r + a ∈ I
(resp. ra ∈ I) for all a ∈ I and r ∈ R (so 0 ∈ I (resp. 1 ∈ I) if and only if I = R).
A co-ideal I of a semiring R is said to be a strong co-ideal, if 1 ∈ I. A co-ideal
(resp. ideal) I of R is called k-ideal or subtractive, if ab ∈ I and b ∈ I imply that
a ∈ I (resp. a+ b ∈ I and a ∈ I imply that b ∈ I), for each a, b ∈ R. A proper ideal
P of R is called prime if xy ∈ P , then x ∈ P or y ∈ P . A proper co-ideal M of R
is said to be prime, if x+ y ∈ M , then x ∈ M or y ∈ M [8]. A semiring R is called
I-semiring, if r + 1 = 1 for all r ∈ R. A semiring R is called idempotent if x2 = x
for all x ∈ R. Let I be a proper ideal of R. Then I is said to be maximal if R is
the only ideal having I. The notation Jac(R) will denote the jacobson radical of R
which is the intersection of all maximal ideals of R. Let I be an ideal of a semiring
R. Then I is said to be a partitioning ideal (= Q-ideal) provided that there exists
a subset Q of R such that

(1) R = ∪{q + I : q ∈ Q},
(2) If q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) ̸= ∅ if and only if q1 = q2.
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If I is a Q-ideal of a semiring R, the we set

R/I := {q + I : q ∈ Q}.

Thus R/I is a semiring under the binary operations ⊕ and ⊙ defined as follows:
(q1 + I) ⊕ (q2 + I) = q3 + I where q3 ∈ Q is the unique element such that

q1 + q2 + I ⊆ q3 + I.
(q1 + I) ⊙ (q2 + I) = q4 + I where q4 ∈ Q is the unique element such that

q1q2 + I ⊆ q4 + I. Semiring R/I is said to be the quotient semiring of R by I. By
definition of Q-ideal, there exists a unique q0 ∈ Q such that 0 + I ⊆ q0 + I. Then
q0 + I is a zero element of R/I. Clearly, if R is an idempotent I-semiring, then so
is R/I ( [7]). Dual notion of Q-ideal (Q-co-ideal) was defined in [8].

2. Basic structure GH(R)

Throughout this paper, R is a I-semiring and H is a multiplicatively closed
subset of R.

Lemma 1. The following statements hold:
(i) If 0 ∈ H, then N(0) = H \ {0} and if 0 /∈ H, then N(0) = H.
(ii) If 1 ∈ H, then N(1) = R \ {1} and if 1 /∈ H, then N(1) = ∅.

Proof. (i) Since 0 + x = x ∈ H for all x ∈ H and 0 ∈ H, N(0) = H \ {0}.
Otherwise, N(0) = H. This proves (i). Since 1+x = 1 for all x ∈ R, the statement
(ii) holds. □

Theorem 1. GH(R) is connected if and only if 1 ∈ H. Moreover, if GH(R) is
connected, then diam(GH(R)) ≤ 2.

Proof. If 1 ∈ H, then deg(1) = |R| − 1 by Lemma 1 (ii); so GH(R) is connected.
Conversely, if GH(R) is connected, then deg(1) ̸= 0 which implies that 1 ∈ H by
Lemma 1 (ii). Finally, let x and y be distinct elements of R. If x + y ∈ H, then
x − y is a path in GH(R). So we may assume that x + y /∈ H. Now the assertion
follows the fact that x− 1− y is a path in GH(R). □

Proposition 1. The following statements hold:
(1) GH(R) is complete if and only if R = H or H = R \ {0}.
(2) GH(R) is regular if and only if it is either complete or totally disconnected.

Proof. (1) Let GH(R) be complete. Thus 0 is connected to every element of R\{0},
and so 0 + x ∈ H for every x ∈ R \ {0}. So R \ {0} ⊆ H. Therefore R = H or
H = R \ {0}. The converse is clear. Note that if x+ y = 0, then x = x+ x+ y =
x(1 + 1) + y = x+ y = 0, because R is an I-semiring.

(2) Assume that GH(R) is regular and that is not totally disconnected. By
Theorem 1, 1 ∈ H; so deg(1) = |R|−1. ThenGH(R) is regular gives deg(y) = |R|−1
for all y ∈ R; hence GH(R) is complete. The other implication is clear. □
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In the following, the notation max(R) denotes the set of all maximal ideals of
R.

Theorem 2. If 1 ∈ H, then gr(GH(R)) ∈ {3,∞}.

Proof. Assume that |max(R)| ≥ 2 and let M1,M2 ∈ max(R). Since x + y = 1,
for some x ∈ M1 and y ∈ M2, we have 1 − x − y − 1 is a cycle in GH(R); hence
gr(GH(R)) = 3. So we may assume that |max(R)| = 1. If H = {1}, then the
graph GH(R) is a star graph which implies that gr(GH(R)) = ∞. Now suppose
that |H| = 2. If H = {0, 1}, then the graph GH(R) is a star graph which implies
that gr(GH(R)) = ∞, because x+ y = 0 implies x = 0 and y = 0 for each x, y ∈ R.
Otherwise, H = {1, r}, where r ̸= 0. Then the cycle 1 − r − 0 − 1 is the shortest
cycle in the graph GH(R). So gr(GH(R)) = 3. If |H| ≥ 3, then there is an element
r ∈ H such that r ̸= 0, 1. Now the cycle 1 − r − 0 − 1 is the shortest cycle in the
graph GH(R) which implies that gr(GH(R)) = 3.

□

The remaining of this section, we assume that R is an idempotent I-semiring,
H is a saturated subset of R and H ̸= R. Note that if 0 ∈ H, then H = R, and so,
by Proposition 1, the graph GH(R) is complete.

Proposition 2. Assume that |R| ≥ 3. If |H| ≥ 2, then every vertex of the graph
GH(R) lies in a cycle of length 3, and so gr(GH(R)) = 3.

Proof. By assumption, there is an element x ∈ H with x ̸= 1. If y ̸= 1, x is an
arbitrary element in R, then x(x+ y) = x+ xy = x ∈ H. Therefore x+ y ∈ H and
we have the cycle 1− y − x− 1, as required. □

Theorem 3. Let |H| = 1. Then the following hold:
(i) deg(a) = 1 for all a ∈ Jac(R).
(ii) If |max(R)| ≥ 2, then every vertex in graph GH(R) \ Jac(R) lies in a cycle

of length 3.

Proof. (i) Since |H| = 1, we have H = {1}. Let x ∈ Jac(R). Since 1 + y = 1 ∈ H,
1 is adjacent to every vertex y in GH(R) which implies that deg(x) ≥ 1. Suppose
the result is false. Let deg(x) ≥ 2. So there is 1 ̸= y ∈ R such that x and y are
adjacent (note that 1 + x = 1 ∈ H = {1}), so x + y = 1. One can find a maximal
ideal M of R such that y ∈ M . Hence 1 = x + y ∈ M , which is impossible. So
deg(a) = 1 for all a ∈ Jac(R).

(ii) Assume that x is an arbitrary vertex in GH(R) \ Jac(R). Thus x /∈ M , for
some maximal ideal M of R. Thus xR+M = R, and so there exist r ∈ R,m ∈ M
such that xr +m = 1. Hence x +m = x + xr +m = 1 + x = 1. If m ∈ Jac(R),
then x+m ∈ M ′, for some maximal ideal M ′ of R (we can find the maximal ideal
M ′ such that x ∈ M ′), which is a contradiction. Hence, we can consider the cycle
x−m− 1− x in GH(R) \ Jac(R). □
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Lemma 2. The following statements hold:
(1) If I is an ideal of R and a+ b ∈ I, for some a, b ∈ R, then a, b ∈ I.
(2) Every ideal of R is k-ideal.

Proof. (1) Let I be an ideal of R and a+ b ∈ I, for some a, b ∈ R. Then

a = a(1 + b) = a+ ab = a(a+ b) ∈ I.

Similarly, b ∈ I.
(2) It is clear from (1). □

Proposition 3. (1) The following statements are equivalent on a subset H of R:
(i) H is saturated.
(ii) R \H =

⋃
i∈Λ Mi, for some prime ideals Mi of R.

(2) H is a saturated multiplicatively closed subset of R if and only if H is a co-
ideal of R. Moreover, H =

⋂
j∈J Pj, where {Pj}j∈J is the set of all prime co-ideals

of R containing H.
(3) P is a prime co-ideal of R if and only if R \ P is a prime ideal of R.
(4) Let H be a subset of R. Then P is a minimal prime co-ideal of R containing

H if and only if R \ P is an ideal of R which is maximal with disjoint from H.

Proof. (1) (i) ⇒ (ii) Let x ∈ R \ H. Set
∑

= {I : I is an ideal of R, I ∩ H =
∅ andx ∈ I}. Since Rx ∈

∑
,
∑

̸= ∅. By Zorn,s Lemma,
∑

has a maximal element
P . It can be easily seen that P is a prime ideal. Therefore every x ̸∈ H has been
inserted in a prime ideal disjoint from H. This proves (2).

(ii) ⇒ (i) It is clear.
(2) Let H be saturated. Then R \ H =

⋃
i∈Λ Mi, for some prime ideals Mi of

R, by (1). Let a ∈ H and r ∈ R. If r + a /∈ H, then r + a ∈ Mi, for some i ∈ Λ.
Therefore by Lemma 2(1), a ∈ Mi, a contradiction. Therefore H is a co-ideal of R.
The converse is clear from [12, Proposition 2.1(1)]. Therefore H =

⋂
j∈J Pj , where

{Pj}j∈J is the set of all prime strong co-ideals of R containing S, by [12, Theorem
4.6].

(3) Assume that P is a prime co-ideal of R. Let x ∈ R−P and r ∈ R. If rx ∈ P ,
then r, x ∈ P , by [12, Proposition 2.1(1)], a contradiction. Thus rx ∈ R − P . Let
x, y ∈ R − P . If x + y ∈ P , then either x ∈ P or y ∈ P , which is impossible.
Therefore x+ y ∈ R− P . This implies that R− P is an ideal of R. It is clear that
R − P is a prime ideal. Conversely, let T be a prime ideal of R. Let x ∈ R − T
and r ∈ R. If r + x ∈ T , then r, x ∈ T , by Lemma 2. Thus r + x ∈ R − T . Let
x, y ∈ R − T . If xy ∈ T , then either x ∈ T or y ∈ T . Therefore xy ∈ R − T . This
implies that R−T is a co-ideal of R. Also, It is clear that R−T is a prime co-ideal.
Therefore, if R− P is a prime ideal of R, then P is a prime co-ideal of R.

(4) It is straightforward. □

Throughout the paper, by min(H) and max(H), we show the set of minimal
prime co-ideals of R containing H and the set of ideals of R which are maximal
with disjoint from H, respectively.
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Proposition 4. If GH(R) is complete r-partite, then r = |H|+ 1.

Proof. Assume that GH(R) is complete r-partite with parts Vi (1 ≤ i ≤ r). Since
H is a clique in GH(R), every element of H is in a part Vi, where |Vi| = 1. Let
V1 and V2 be two parts of GH(R) and a, b ∈ R \H such that a ∈ V1 and b ∈ V2.
As 0 is not adjacent to a, 0 ∈ V1. Therefore 0 and b are adjacent, which is a
contradiction. Therefore every element of R \ H is in one part and R \ H is an
ideal. Thus r = |H|+ 1. □

Theorem 4. The following statements are equivalent:
(1) gr(GH(R)) = ∞.
(2) GH(R) is a star graph.
(3) H = {1} and max(H) = {R− {1}}.
(4) GH(R) is a complete bipartite.

Proof. (1) ⇒ (3) Assume that |H| ≥ 2 and a, b ∈ H. Then a − b − 0 − a is
a cycle in GH(R), a contradiction. Hence H = {1}. Let |max(H)| ≥ 2 and
M1,M2 ∈ max(H). As H = {1}, every ideal which is maximal with respect to
disjoint from H, is a maximal ideal of R. Therefore M1 +M2 = R and a + b = 1
for some a ∈ M1, b ∈ M2. Therefore a − b − 1 − a is a cycle in GH(R), which is a
contradiction. Therefore H = {1} and max(H) = {R− {1}}.

The implications (3) ⇒ (2) and (2) ⇒ (4) are clear.
(4) ⇒ (1) By Proposition 4, r = 2. It is clear that H = {1} and R − {1} is a

maximal ideal of R. Therefore gr(GH(R)) = ∞. □

In the rest of this section, we will assume that R \H =
⋃

i∈Λ Mi for some prime

ideals Mi of R and I :=
⋂

i∈Λ Mi. Let I be a Q-ideal and H̃ := {q + I : h ∈
q + I for some h ∈ H}.

Lemma 3. Let I be a Q-ideal of R. Then H̃ is a saturated multiplicatively closed
subset of R/I.

Proof. Let q1+I and q2+I be two elements of H̃, where h1 ∈ q1+I and h2 ∈ q2+I,
for some h1, h2 ∈ H. If (q1 + I) ⊙ (q2 + I) = q3 + I, where q1q2 + I ⊆ q3 + I and

q3 ∈ Q, then we have h1h2 ∈ q1q2 + I ⊆ q3 + I. Thus q3 + I ∈ H̃. We show H̃

is saturated. Let (q1 + I) ⊙ (q2 + I) = q3 + I ∈ H̃, where q1q2 + I ⊆ q3 + I and

q3 ∈ Q. Since q3 + I ∈ H̃, there exists h ∈ H such that h ∈ q3 + I. Thus h = q3 + i
for some i ∈ I. As h ∈ H and i ∈ I, q3 ∈ H. Let q1q2 = q3 + j for some j ∈ I.
Then q1q2 ∈ H, because H is a co-ideal, by Lemma 2. Therefore q1, q2 ∈ H and so

q1 + I, q2 + I ∈ H̃. □

Lemma 4. Let I be a Q-ideal of R. Then the following statements hold:
(1) Let p1 and p2 be two elements of R with p1 ∈ q1 + I and p2 ∈ q2 + I, where

q1 + I ̸= q2 + I. Then the following statements are equivalent:
(i) p1 is adjacent to p2 in GH(R).
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(ii) q1 + I is adjacent to q2 + I in GH̃(R/I).
(iii) each element of q1 + I is adjacent to q2 + I.
(iv) there exists an element of q1 + I which is adjacent to an element of q2 + I.

(2) If q + I ∈ H̃, then q ∈ Q ∩H and q + I is a clique in GH(R).

(3) If q + I /∈ H̃, then q + I is an independent set in GH(R).

Proof. (1) (i) ⇒ (ii) By (i), p1 + p2 ∈ H. Let (q1 + I) ⊕ (q2 + I) = q3 + I
where q3 ∈ Q is the unique element such that q1 + q2 + I ⊆ q3 + I. Therefore

p1 + p2 ∈ q1 + q2 + I ⊆ q3 + I gives q3 + I ∈ H̃.
(ii) ⇒ (iii) Let q1 + i1 ∈ q1 + I and q2 + i2 ∈ q2 + I, where i1, i2 ∈ I. Assume

that (q1 + I) ⊕ (q2 + I) = q3 + I where q3 ∈ Q is the unique element such that

q1 + q2 + I ⊆ q3 + I. By (ii), q3 + I ∈ H̃. Thus there exists h ∈ H such that
h ∈ q3+ I. Hence h = q3+ j for some j ∈ I. Therefore q3 ∈ H. Let q1+ q2 = q3+ i
for some i ∈ I. Then q1 + i1 + q2 + i2 ∈ H, because H is a co-ideal.

(iii) ⇒ (iv) This implication is clear.
(iv) ⇒ (i) Assume that q1 + i ∈ q1 + I and q2 + i′ ∈ q2 + I are adjacent in

GH(R), where i, i′ ∈ I. Let q1 + i1 ∈ q1 + I and q2 + i2 ∈ q2 + I, where i1, i2 ∈ I.
As q1 + i+ q2 + i′ ∈ H and i, i′ ∈ I, we have q1 + q2 ∈ H. Therefore p+ q ∈ H.

(2) Let q + I ∈ H̃. Then h = q + i for some h ∈ H and i ∈ I. Therefore q ∈ H.
Also, it is clear that q + I is a clique in GH(R).

(3) If q+ I /∈ H̃, then q /∈ H. Let q+ i and q+ i′ be arbitrary elements of q+ I.
Then q + i + q + i′ /∈ H, because q, i, i′ ∈ M for some M ∈ max(H). Therefore
q + I is an independent set in GH(R). □

In the following, we investigate the relationship between the diameter and the
girth of the graphs GH(R) and GH̃(R/I).

Theorem 5. The following statements hold:
(1) gr(GH(R)) ≤ gr(GH̃̃(R/I)).
(2) diam(GH̃(R/I)) ≤ diam(GH(R)).

Proof. (1) If GH̃̃(R/I) has no cycle, then there is nothing to prove. Hence assume
that q1 + I − q2 + I − ... − qn + I − q1 + I is a cycle in GH̃̃(R/I). Then we
have the cycle q1 − q2 − ... − qn − q1 in GH(R), by Lemma 4, which implies that
gr(GH(R)) ≤ gr(GH̃̃(R/I)).

(2) If n := diam(GH̃(R/I)), then there are two vertices q1 + I and q2 + I of
GH̃(R/I) with d(q1+I, q2+I) = n. Assume that q1+I−p1− ...−pn−2+I−q2+I
is a corresponding path of length n between q1+ I and q2+ I in GH̃̃(R/I). In view
of Lemma 4, q1 − p1 − ... − pn−2 − q2 is a path of length n in GH(R). Therefore
diam(GH̃(R/I)) ≤ diam(GH(R)). □

The following example shows that we may have strict inequality in parts (1), (2)
of Theorem 5.

Example 1. Let X = {a, b, c} and R = (P (X),∪,∩) a semiring, where P (X) is
the set of all subsets of X. If H = {{a}, {a, b}, {a, c}, X}, then H is a saturated
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multiplicatively closed subset of R and a minimal prime co-ideal of R. Therefore
I = R \ H is a maximal ideal of R. It can be verified that I is a Q-ideal of
R and Q = {∅, {a}}. By drawing GH(R) and GH̃(R/I), one can see that 1 =
diam(GH̃(R/I)) < diam(GH(R)) = 2 and 3 = gr(GH(R)) < gr(GH̃̃(R/I)) = ∞.

In the following theorem, we provide a characterization of GH(R) in terms of
GH̃(R/I).

Theorem 6. Let I be a Q-ideal of R. Then

GH(R) = (⊕|I|2GH̃(R/I))⊕ (⊕|I|K|Q∩H|).

Proof. If there exist p, q ∈ Q such that p + I and q + I are adjacent in GH̃(R/I),
then in view of Lemma 4, each element of p + I is adjacent to each element of
q + I in GH(R). Thus, each edge of GH̃(R/I) corresponds to exactly |I|2 edges in
GH(R). Also, for each p ∈ Q ∩H, the coset p+ I forms a clique in GH(R). Hence
GH(R) = (⊕|I|2GH̃(R/I))⊕ (⊕|I|K|Q∩H|). □

3. Planarity, clique number, chromatic number and independence
number of GH(R)

In this section, we use the notations already established, so R is an idempotent
I-semiring and H is a saturated proper subset of R. We will investigate clique
number, independence number and planar property of the graph GH(R). A graph
G is called planar, if it can be drawn in the plane (i.e. its edges intersect only at
their ends). A subdivision of a graph is a graph obtained from it by replacing edges
with pairwise internally-disjoint paths. An interesting characterization of planar
graphs was given by Kuratowski in 1930, that says that a graph is planar if and
only if it contains no subdivision of K5 or K3,3 [6].

Proposition 5. The following hold:
(i) If 0 ∈ H, then GH(R) is planar if and only if |R| ≤ 4.
(ii) If |max(H)| ≥ 4 or |H| ≥ 4, then GH(R) is not planar.
(iii) If |H| = 3, then GH(R) is planar if and only if |R| ≤ 5.
(iv) Let H = {1}. Then GH(R) is planar if and only if GH(R)\Jac(R) is planar.

Proof. (i) Since 0 ∈ H, H = R. It follows that GH(R) is complete. Now the
assertion follows from Kuratowski’s theorem.

(ii) If |max(H)| ≥ 4, then |min(H)| ≥ 4. Hence ΓH(R) is not planar, by [12,
Theorem 4.10]. Therefore GH(R) is not planar. The other implication is clear.

(iii) Assume that GH(R) is planar and let V1 = H = {x1, x2, x3}. Suppose to
the contrary that |R| ≥ 6. Set V2 = {y1, y2, y3} ⊆ R \H. It can be easily seen that
one can find a copy of K3,3 in GH(R), which is a contradiction. Conversely, assume
that |R| ≤ 5. If |R| ≤ 4, we are done. If |R| = 5, then by Proposition 1, GH(R) is
not K5; hence GH(R) is planar.

(iv) Since by Theorem 3 (i), deg(a) = 1 for all a ∈ Jac(R), the result is clear. □
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If max(H) = {M1,M2, ...,Mn}, then we denote Mi \ (∪n
j=1,j ̸=iMj) by M ′

i and

(Mi ∩Mj) \ (∪n
s=1,s ̸=i,jMs) by Mi,j for each 1 ≤ i ̸= j ≤ n.

Theorem 7. Let H = {1}. Then the graph GH(R) is planar if and only if one of
the following statements holds:

(1) max(R) = {M1,M2,M3}, |M ′
i | = 1 for each 1 ≤ i ≤ 3 and V (GH(R)) =

V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, where V ,
i s are satisfying the following:

(i) V1 = M ′
1 ∪M ′

2 ∪M ′
3 ∪ {1} is a clique in GH(R).

(ii) V2 = M1,2 and every element of V2 is adjacent to 1 and a ∈ M ′
3.

(iii) V3 = M1,3 and every element of V3 is adjacent to 1 and b ∈ M ′
2.

(iv) V4 = M2,3 and every element of V4 is adjacent to 1 and c ∈ M ′
1.

(v) V5 = M1 ∩M2 ∩M3 and every element of V5 is adjacent to 1.
(2) max(R) = {M1,M2} , V (GH(R)) = V1∪V2∪V3∪V4 where V ,

i s are satisfying
the following:

(i) V1 = {1}, and 1 is adjacent to every vertex of GH(R).
(ii) V2 = M ′

1, V3 = M ′
2 and either |Vi| ≥ 3 and |Vj | = 1 (i ̸= j) or |Vi| ≤ 2 for

each i = 1, 2. Moreover, the subgraph generated by V2, V3 is complete 2-partite with
parts V2 and V3 and every element of V2 ∪ V3 is adjacent to 1.

(iii) V4 = M1 ∩M2 and every element of V4 is adjacent to 1.
(3) R− {1} is a maximal ideal of R and GH(R) is a star graph.

Proof. Assume that the graph GH(R) is planar. Then |max(R)| ≤ 3, by Proposi-
tion 5. Let max(R) = {M1,M2,M3}. If |M ′

i | ≥ 2, for some i ∈ {1, 2, 3}, then there
exist x, y ∈ M ′

i . Let z ∈ M ′
j and t ∈ M ′

k, where 1 ≤ k, j ≤ 3 and k ̸= j are distinct
from i. Set S1 := {x, y, 1} and S2 := {z, t, zt}. As x + z = x + t = 1, we have
x+tz = 1 (note that zt ̸= z and zt ̸= t). Similarly, y+z = y+t = y+tz = 1. Hence,
one can find a copy of K3,3 in GH(R), which is impossible. Hence |M ′

i | = 1 for each
i ∈ {1, 2, 3}. It can be easily verified that (1) holds. If max(R) = {M1,M2}, then
we will prove that (2) holds. If |M ′

1| ≥ 3, then there exist x, y, z ∈ M ′
1. If t, s ∈ M ′

2,
then by setting S1 := {x, y, z} and S2 := {t, s, 1}, the graph GH(R) has a subgraph
isomorphic to K3,3, a contradiction. Hence |M ′

2| = 1. Similarly, if |M ′
2| ≥ 3, then

|M ′
1| = 2. Hence |M ′

i | ≥ 3 and |M ′
j | = 1 (i ̸= j) or |M ′

i | ≤ 2 for each i = 1, 2. It is
easy to see that (2) holds. If |max(R)| = 1, then by Theorem 4 , GH(R) is a star
graph.

Conversely, if one of the conditions (1) or (2) or (3) holds, then it is easy to show
GH(R) is a planar graph. □

Theorem 8. Let H = {1, a}. Then the graph GH(R) is planar if and only if one
of the following statements holds:

(1) max(R) = {M1,M2} , V (GH(R)) = V1∪V2∪V3∪V4 where V ,
i s are satisfying

the following:
(i) V1 = {1, a}, and every element of V1 is adjacent to every vertex of GH(R).
(ii) V2 = M ′

1, V3 = M ′
2 and either |Vi| = 1 for each i = 1, 2 or |Vi| = 2 and

|Vj | = 1 for each i ̸= j ∈ {1, 2}. Moreover, the subgraph generated by V2, V3 is
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complete 2-partite with parts V2 and V3 and every element of V2 ∪V3 is adjacent to
1 and a.

(iii) V4 = M1 ∩M2 and every element of V4 is adjacent to 1 and {a}.
(2) max(H) = {R− {1, a}} and GH(R) ∼= K1,1,|R−{1}|.

Proof. If GH(R) is planar, then |max(R)| ≤ 3, by Proposition 5. If max(H) =
{M1,M2,M3}, then there exist d ∈ M ′

1, b ∈ M ′
2, c ∈ M ′

3 such that {1, a, b, c, d} is
a clique in GH(R), which is impossible. Hence |max(H)| ≤ 2. If |M ′

i | ≥ 2 for each
i = 1, 2, then there exist x, y ∈ M ′

1 and t, z ∈ M ′
2. By setting S1 := {x, y, a} and

S2 := {1, t, z}, GH(R) has a subgraph isomorphic to K3,3, which is a contradiction.
Hence either |M ′

i | = 1 for each i = 1, 2 or |M ′
i | = 2 and |M ′

j | = 1 for each
i ̸= j ∈ {1, 2}. Therefore (1) holds. If |max(H)| = 1, then it is easy to verified that
GH(R) is complete 3-partite and GH(R) ∼= K1,1,|R−{1}|. □

Theorem 9. In the graph GH(R) we have the following equality:

ω(GH(R)) = χ(GH(R)) = |H|+ |max(H)|.

Proof. It is clear that ω(G) ≤ χ(G), for each graph G. We consider two cases:
Case 1: ω(GH(R)) = ∞. Then χ(GH(R)) = ∞. Assume that H and max(H)

are finite and max(H) = {M1, ...,Mn}. Let C be a maximal clique in GH(R). Set
for each 1 ≤ i ≤ n, Ii = {a ∈ C \ H : a ∈ Mi}. If |Ii| ≥ 2, for some 1 ≤ i ≤ n,
then there exist a, b ∈ C \ H. Therefore a, b ∈ Mi and so a + b /∈ H contradicts
a, b ∈ C. Therefore |Ii| ≤ 1 for each 1 ≤ i ≤ n. As C \ H =

⋃n
i=1 Ii and Ii is

a finite set for each 1 ≤ i ≤ n, C \ H is a finite set. Therefore C is a finite set,
a contradiction. Therefore either H is infinite or max(H) is infinite. This gives
ω(GH(R)) = χ(GH(R)) = |H|+ |max(H)| = ∞.

Case 2: ω(GH(R)) < ∞. As ω(ΓH(R)) < ∞ and H is a clique in GH(R), H
is a finite set. Moreover, ω(ΓH(R)) < ∞, because ΓH(R) is a subgraph of GH(R).
Therefore min(H) is finite, and so max(H) is finite. Assume that max(H) =
{M1, ...,Mn}. Let ai ∈ Mi \ (

⋃n
i̸=j,j=1 Mj). If ai + aj ̸∈ H, for some 1 ≤ i, j ≤ n,

then ai+aj ∈ Mk, for someMk ∈ max(H), and so by Lemma 2 we have ai, aj ∈ Mk,
a contradiction. Therefore ai + aj ∈ H. Hence |H|+ |max(H)| ≤ ω(GH(R)). Let
|H| = m and H = {a1, ..., am. Define f : V (GH(R)) → {1, ..., n, n+ 1, ...,m} by

f(a) =


n+ i, if a = ai ∈ {a1, ..., am}
i, if a = ai ∈ Mi − (

⋃n
i ̸=j,j=1 Mj)

j, if a ∈ Mj ∩Mj+s1 ∩ ... ∩Mj+st ,where s1, ..., st ∈ N.

Let a, b ∈ R be adjacent in GH(R). Then it is clear that f(a) ̸= f(b) provided that
(a, b ∈ H) or (a /∈ H, b ∈ H) or (a ∈ H, b /∈ H). Let a /∈ H and b /∈ H. Then a ∈ Mi

and b ∈ Mj for some Mi,Mj ∈ max(H). If i = j, then a+ b ∈ Mi and a+ b /∈ H, a
contradiction. Let I = {i : a ∈ Mi, 1 ≤ i ≤ n} and J = {j : b ∈ Mj , 1 ≤ j ≤ n}.
As a + b ∈ H, we have I ∩ J = ∅. Therefore f(a) and f(b) are the least element



A GRAPH ASSOCIATED TO A COMMUTATIVE SEMIRING 995

of I and J , respectively. Thus f(a) ̸= f(b). This implies that χ(GS(R)) ≤ |H| +
|max(H)| and so we have ω(GH(R)) = χ(GH(R)) = |H|+ |max(H)|. □

Let T ⊆ P ({1, 2, ..., n}), where P ({1, 2, ..., n} denotes the power set of {1, 2, ..., n}.
We say that T satisfies the property (P ), provided that:

(1) For each I ∈ T , |I| ≥ 2.
(2) For each I, J ∈ T , I ∩ J ̸= ∅.
Set

∑
= {T ⊆ P ({1, 2, ..., n} : T satisfies the property (P )}.

Theorem 10. Let max(H) = {M1,M2, ...,Mn}. Then

α(GH(R)) = max{{|Mi|}ni=1 ∪ {| ∪I∈T (∩i∈IMi)|}T∈
∑}.

Proof. It can be easily seen that Mi and ∪I∈T (∩j∈IMj) are independent sets in
GH(R), for each 1 ≤ i ≤ n and T ∈

∑
. Therefore, α(GH(R)) ≥ max{{|Mi|}ni=1 ∪

{| ∪I∈T (∩i∈IMi)|}T∈
∑}. Assume that Y is a maximal independent set of GH(R).

For each a ∈ Y , set
Ia = {i : a ∈ Mi, 1 ≤ i ≤ n}.

Let a ∈ Y and Ia = {i}, for some 1 ≤ i ≤ n. If b ∈ Y , then b+a /∈ H. Hence b+a ∈
Mk for some 1 ≤ k ≤ n. Hence a, b ∈ Mk, by Lemma 2. This implies that b ∈ Mi.
Therefore, Y ⊆ Mi. As Y is a maximal independent set, we have Y = Mi (Mi is
independent set). Now, let |Ia| ≥ 2, for each a ∈ Y . If there exist a, b ∈ Y such that
Ia ∩ Ib = ∅, then a+ b ∈ H, a contradiction. Thus, Ia ∩ Ib ̸= ∅. Set T = {Ia}a∈Y .
Then T ∈

∑
and Y ⊆ ∪I∈T (∩i∈IMi). Since Y is maximal, Y = ∪I∈T (∩i∈IMi).

This proves that α(GH(R)) = max{{|Mi|}ni=1 ∪ {| ∪I∈T (∩i∈IMi)|}T∈
∑}. □
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Abstract. This manuscript considers a dual to product and ratio estimator

for estimating the finite population mean of study variable on applying a simple

transformation to the auxiliary variable by using its average values in the pop-
ulation that is generally available in practice. The mean square error (MSE)

of the proposed estimator has been obtained to the first degree of approxima-

tion. The optimum values and range of suitably chosen scalar, under which
the proposed estimator perform better, have been determined. A method to

lower the MSE of the proposed estimator relative to that of the MSE of the

linear regression estimator is developed for small sample sizes. Theoretical
and empirical studies have been done to demonstrate the superiority of the

proposed estimator over the other estimators.

1. Introduction

There are numerous number of ratio and product type estimators available in
survey literature from the time ratio estimator was developed by Cochran [4], and
the product estimator was defined by Robson [12] that was revisited by Murthy [11].
Ratio and product type estimators have been largely used due to computational
simplicity, greater applicability to the general design and researchers’ impulsive
draw towards it. Most of the ratio and product type estimators recently developed
are simply a modification of other existing estimators available in the literature.
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This has led to the accumulation of a large number of the ratio as well as product
type estimators with cumbersome structure over the time. Often these estimators
require the knowledge of other population parameters in advance or has to guess
it with the experience gathered over the period of time in sample survey or esti-
mate it through pilot survey or the sample itself and in optimum case the MSE of
the proposed estimator is found generally equivalent to the MSE of the regression
estimator. Moving in this direction, we have proposed the dual to product and
ratio estimators and shown that how in optimal case their minimum MSE becomes
nothing but MSE of regression estimator. We have carried out then the key study
of developing the new estimator using the previously proposed dual to product and
ratio estimators which will be called parent estimator for the newly developed es-
timator. The new estimator’ MSE is improved to an extent that it becomes better
or more efficient than the regression estimator. One more aspect of our method
is the important role played by the bias of the estimator in improving MSE which
was neglected before in the survey literature works in the area of ratio and product
estimators.

Let U = {U1, U2, ..., UN} be a finite population of size N. Also, let Y and X be the
study and auxiliary variables, respectively, taking the values yi and xi on the ith

unit Ui (i = 1, 2, ..., N) of the population U . Assuming that the population mean
X̄ of the auxiliary variable X is known,the population mean Ȳ of the study variable
Y is estimated by selecting a sample of size n (with n < N) from the population
U using simple random sampling without replacement (SRSWOR) scheme.

The ratio estimator of Ȳ as developed by Cochran [4], and the product estima-
tor of Ȳ as developed by Murthy [11] are given, respectively, by

ȳR = ȳ
(X̄
x̄

)
(1)

ȳP = ȳ
( x̄
X̄

)
(2)

with their respective Biases and MSEs to the first order of approximations as

Bias(ȳR) = λȲ
[
Cx

2 − ρyxCyCx

]
(3)

Bias(ȳP ) = λȲ ρyxCyCx (4)

MSE(ȳR) = λȲ 2C2
y

[
1 +

(
Cx

Cy

)2

− 2ρyx
Cx

Cy

]
(5)

MSE(ȳP ) = λȲ 2C2
y

[
1 +

(
Cx

Cy

)2

+ 2ρyx
Cx

Cy

]
(6)
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where ȳ = 1
n

∑n
i=1 yi and x̄ = 1

n

∑n
i=1 xi are the sample means of Y and X,

respectively. Also, Cy and Cx represent the coefficients of variations of the variables
Y and X, respectively. Moreover, ρyx denotes the correlation coefficient between
the study variable Y and the auxiliary variable X. The notations used above are
as follows:

λ =
1− f

n
, f =

n

N
, C2

y =
S2
y

Ȳ 2
, C2

x =
S2
x

X̄2
, ρyx =

Syx

SySx

S2
y =

1

(N − 1)

N∑
i=1

(yi − Ȳ )2, S2
x =

1

(N − 1)

N∑
i=1

(xi − X̄)2

Syx =
1

(N − 1)

N∑
i=1

(yi − Ȳ )(xi − X̄)

The classical linear regression estimator for population mean Ȳ is defined by

ˆ̄Yreg = ȳ + byx(X̄ − x̄) (7)

where byx is the sample regression coefficient of Y on X.

Also, the Bias and MSE of ˆ̄Yreg to the first order of approximations are given,
respectively, by

Bias( ˆ̄Yreg) = −cov(x̄ , byx) (8)

MSE( ˆ̄Yreg) = λȲ 2C2
y

(
1− ρ2yx

)
(9)

Srivenkataramana [15] and Bandyopadhya [2] suggested a dual to ratio and a dual
to product estimators, respectively, for Ȳ as

ȳ∗R = ȳ
( x̄∗
X̄

)
(10)

ȳ∗P = ȳ
( X̄
x̄∗

)
(11)

with their respective Biases and MSEs to the first order of approximations as

Bias(ȳ∗R) = −gλȲ ρyxCyCx (12)

Bias(ȳ∗P ) = λȲ
[
g2Cx

2 + gρyxCyCx

]
(13)

MSE(ȳ∗R) = λȲ 2C2
y

[
1 + g2

(
Cx

Cy

)2

− 2gρyx
Cx

Cy

]
(14)
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MSE(ȳ∗P ) = λȲ 2C2
y

[
1 + g2

(
Cx

Cy

)2

+ 2gρyx
Cx

Cy

]
(15)

where x̄∗ = (1 + g)X̄ − gx̄ is an unbiased estimator of X̄, and g = n/(N − n).
Some recent developments towards the formulation of different classes of dual

to product-cum-dual to ratio estimators have been made by Singh et al. [13], and
Choudhury and Singh [3]. Moreover, Adebola et al. [?] developed a class of regres-
sion estimator with cum-dual ratio estimator as intercept. The recently developed
estimators as described here are listed in Table 1.

Table 1. Recent developed estimators of Ȳ

Authors Estimators

Singh et al. [13] ȳ∗PR = ηȳ
(

aX̄+b
ax̄∗+b

)
+ (1− η) ȳ

(
ax̄∗+b
aX̄+b

)
Choudhury and Singh [3] ȳ∗CS = ȳ

[
α X̄

x̄∗ + (1− α) x̄∗

X̄

]
Adebola et al. [?] ȳ∗Rd = ȳ x̄∗

X̄
+ α

(
X̄ − x̄∗

)
In Table 1, η, a, b and α denote the scalars, which are suitably determined so as

to minimize the MSEs of the concerned estimators. Also, the expressions for the
Biases and MSEs of various estimators to the terms of order o

(
n−1

)
are given by

Bias (ȳ∗PR) = λȲ

[
η

(
aX̄

aX̄ + b

)2

g2Cx
2 + (2η − 1)

(
aX̄

aX̄ + b

)
gρyxCyCx

]
(16)

Bias (ȳ∗CS) = λȲ
[
(2α− 1) gρyxCyCx + αg2Cx

2
]

(17)

Bias (ȳ∗Rd) = −λgȲ ρyxCyCx (18)

MSE (ȳ∗PR) = λȲ 2

[
C2

y +

{
aX̄

aX̄ + b

}2

g2 (2η − 1)
2
C2

x +
aX̄

aX̄ + b
g (2η − 1) ρyxCyCx

]
(19)

MSE (ȳ∗CS) = Ȳ 2λ

[
C2

y + g (2α− 1)C2
x

{
g (2η − 1) + ρyx

Cy

Cx

}]
(20)

MSE (ȳ∗Rd) = λ
[
Ȳ 2C2

y − 2gȲ ρyxCxCy

(
Ȳ − αX̄

)
+ gC2

x

(
Ȳ − αX̄

)2]
(21)
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Furthermore, the minimum attainable MSEs of the estimators ȳ∗PR, ȳ
∗
CS and ȳ∗Rd

are
MSE (ȳ∗PR)min = λȲ 2C2

y

(
1− ρ2yx

)
(22)

MSE (ȳ∗CS)min = λȲ 2C2
y

(
1− ρ2yx

)
(23)

MSE (ȳ∗Rd)min = λȲ 2C2
y

(
1− ρ2yx

)
(24)

Hence, we have

MSE (ȳ∗PR)min =MSE (ȳ∗CS)min =MSE (ȳ∗Rd)min = λȲ 2C2
y

(
1− ρ2yx

)
(25)

Table 1 and Eqs. (19) to (21) and Eq. (25) substantiate that the modified ratio and
product type estimators are too complex in structure, demands advance knowledge
of the scalars and the minimum MSEs of these estimators are equivalent to the

MSE of linear regression estimator ˆ̄Yreg as given in Eq. (9). Thus, making their
theoretical and practical relevance in the argument.

2. Proposed Estimator

We define an efficient variant of dual to product and ratio estimators for Ȳ as

ˆ̄YMd = ȳ

(
X̄ + θx̄∗

x̄∗ + θX̄

)
(26)

where θ is a scalar which is determined so as to minimize the MSE of the proposed

estimator ˆ̄YMd. Also, it is worth noting that, for θ = 1, ˆ̄YMd = ȳ and that, for

θ = 0, ˆ̄YMd = ȳ∗P . Moreover, if θ is very large, ˆ̄YMd is almost the same as ȳ∗R .

The Bias and mean square error (MSE) of the proposed estimator ˆ̄YMd are ob-
tained by considering

ȳ = Ȳ (1 + e0), x̄ = X̄(1 + e1)

such that E(e0) = E(e1) = 0 .

Also, on simplification, we get

E(e20) = λC2
y , E(e21) = λC2

x , E(e0e1) = λρyxCyCx (27)

Now, expressing Eq. (26) in terms of e0, e1 we get

ˆ̄YMd = Ȳ (1 + e0)

{
1− θge1

(1 + θ)

}{
1− ge1

(1 + θ)

}−1

(28)

Expanding the right hand side of Eq. (28), multiplying out, and retaining the
terms up to second powers of e’s, we get



1002 S. M. ZEESHAN, G. K. VISHWAKARMA, M. KUMAR

ˆ̄YMd = Ȳ

{
1 + e0 +

(1− θ)

(1 + θ)
ge1 +

(1− θ)

(1 + θ)
ge0e1 +

(1− θ)

(1 + θ)2
g2e21

}
(29)

or

ˆ̄YMd − Ȳ = Ȳ

{
e0 +

(1− θ)

(1 + θ)
ge1 +

(1− θ)

(1 + θ)
ge0e1 +

(1− θ)

(1 + θ)2
g2e21

}
(30)

Taking the expectation in Eq. (30) and using results in Eq. (27), we get the bias

of ˆ̄YMd to the first degree of approximation as

Bias( ˆ̄YMd) = λȲ

{
(1− θ)

(1 + θ)
gρyxCyCx +

(1− θ)

(1 + θ)
2 g

2C2
x

}
(31)

Again from Eq. (30), by neglecting the terms of e’s having degree greater than
one, we have

ˆ̄YMd − Ȳ = Ȳ

[
e0 +

(
1− θ

1 + θ

)
ge1

]
(32)

Squaring both sides of Eq. (32), taking the expectation and using results in Eq.

(27), we obtain the MSE of ˆ̄YMd to the first degree of approximation as

MSE( ˆ̄YMd) = λȲ 2

[
C2

y +

(
1− θ

1 + θ

)2

g2C2
x + 2g

(
1− θ

1 + θ

)
ρyxCyCx

]
(33)

Minimization of MSE( ˆ̄YMd) in Eq. (33) with respect to θ yields the optimum
value of θ as

θopt =
g + ρyx

Cy

Cx

g − ρyx
Cy

Cx

(34)

On substituting Eq. (34) in Eq. (33), the minimum attainable MSE of ˆ̄YMd is
obtained as

MSE( ˆ̄YMd)min = λȲ 2C2
y(1− ρ2yx) (35)

Remark 1. The minimum MSE of ˆ̄YMd is same as that of the MSE of the linear

regression estimator ˆ̄Yreg as given in Eq. (9).

Even our proposed estimator’s minimum MSE corroborate the results of the other
modified ratio and product type estimators’ minimum MSEs as given in Eq. (25).
But now we will work out a simple condition on our proposed estimator in order
to derive a new proposed estimator for which previously proposed estimator will
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be called parent estimator. Hence, using the parent estimator our new proposed
estimator is

ˆ̄Yw = w ˆ̄YMd (36)

where w denotes the scalar which is to be suitably determined so as to minimize
the MSE of the above concerned estimator.

Now, expanding Eq. (36) using Eq. (29), we get

ˆ̄Yw = wȲ

{
1 + e0 +

(1− θ)

(1 + θ)
ge1 +

(1− θ)

(1 + θ)
ge0e1 +

(1− θ)

(1 + θ)2
g2e21

}
(37)

or

ˆ̄Yw − Ȳ = (w− 1)Ȳ +wȲ

{
e0 +

(1− θ)

(1 + θ)
ge1 +

(1− θ)

(1 + θ)
ge0e1 +

(1− θ)

(1 + θ)2
g2e21

}
(38)

Squaring both sides of Eq. (38), taking the expectation and using results in Eq.

(27), we obtain the MSE of ˆ̄Yw to the first degree of approximation as

MSE( ˆ̄Yw) = (w−1)2Ȳ 2+w2λȲ 2

{
C2

y +

(
1− θ

1 + θ

)2

g2C2
x + 2g

(
1− θ

1 + θ

)
ρyxCyCx

}

+ 2w(w − 1)λȲ

{
1− θ

1 + θ
gρyxCyCx +

1− θ

(1 + θ)
2 g

2C2
x

}
(39)

which can be rewritten as

MSE
(
ˆ̄Yw

)
= (w − 1)2Ȳ 2 + w2MSE( ˆ̄YMd) + 2w(w − 1)Ȳ Bias( ˆ̄YMd) (40)

From Eq. (40) it can be brought to notice that the MSE of the new proposed
estimator contains the MSE and Bias of its parent estimator. Now differentiating
Eq. (40) w.r.t w and equating it to zero, we get

wopt =
Ȳ 2 + Ȳ Bias( ˆ̄YMd)

Ȳ 2 +MSE( ˆ̄YMd) + 2Ȳ Bias( ˆ̄YMd)
(41)

and using it to find the minimum MSE of the new proposed estimator, we have

MSE( ˆ̄Yw)min =
Ȳ 2

(
MSE( ˆ̄YMd)−Bias( ˆ̄YMd)

2
)

Ȳ 2 +MSE( ˆ̄YMd) + 2Ȳ Bias( ˆ̄YMd)
(42)

From Eq. (42), we see that the numerator is nothing but variance of the parent es-
timator. The trade-off between bias and variance in order to increase the efficiency
of the new proposed estimator is very effective here.
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If we substitute in equation Eq. (42), the minimum attainable MSE of parent

estimator ˆ̄YMd, we get

MSE( ˆ̄Yw)min =
Ȳ 2

(
MSE( ˆ̄Yreg)−B2

)
Ȳ 2 +MSE( ˆ̄Yreg) + 2Ȳ B

(43)

where B represents the Bias( ˆ̄YMd) at the value of θ = θopt as given in Eq. (34).
That is

B = −λȲ
2

{
gρyxCyCx + ρ2yxC

2
x

}
(44)

Theorem 1. For small sample size, the proposed estimator ˆ̄Yw is more efficient

than the regression estimator ˆ̄Yreg. But as the sample size increases, i.e., as n→ N

the relative efficiency of the proposed estimator ˆ̄Yw is same as that of the regression

estimator ˆ̄Yreg.

Proof. From the definition of relative efficiency RE, we get:

RE =
MSE

(
ˆ̄Yreg

)
MSE( ˆ̄Yw)min

=
1

Ȳ 2

(
1− B2

MSE( ˆ̄Yreg)

) (
Ȳ 2 +MSE( ˆ̄Yreg) + 2Ȳ B

)

Now as n → N we have λ → 0. As a result B2

MSE( ˆ̄Yreg)
→ 0, MSE( ˆ̄Yreg) → 0

and B → 0. Therefore

RE → 1

i.e., MSE( ˆ̄Yw)min →MSE
(
ˆ̄Yreg

)
. Hence the theorem. □

3. Bias and Efficiency Comparisons

It is well known that Bias and MSE of the usual unbiased estimator ȳ for
population mean in SRSWOR are

Bias (ȳ) = 0 (45)

V (ȳ) = λȲ 2Cy
2 (46)

For making Bias comparisons of the proposed estimator ˆ̄YMd with the existing
estimators, we have from Eq. (31), and Eq. (3), Eq. (4), Eq. (12), Eq. (13), Eq.
(16), Eq. (17), Eq. (18), and Eq. (45).

(i) | Bias( ˆ̄YMd) |≤| B(ȳ) | or | Bias( ˆ̄YMd) |≤ 0 if

θ = 0 (47)
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(ii) | Bias( ˆ̄YMd) |≤| Bias(ȳR) | if[
g2 (1− θ)

2 (
gCx + ρyxCy (1 + θ)

)2
(1 + θ)

4 −
(
Cx − ρyxCy

)2] ≤ 0 (48)

(iii) | Bias( ˆ̄YMd) |≤| Bias(ȳP ) | if[
g2 (1− θ)

2 (
gCx + ρyxCy (1 + θ)

)2
(1 + θ)

4 −
(
ρyxCy

)2] ≤ 0 (49)

(iv) | Bias( ˆ̄YMd) |≤| bias(ȳ∗R) | if[
(1− θ)

2 (
gCx + ρyxCy (1 + θ)

)2
(1 + θ)

4 −
(
ρyxCy

)2] ≤ 0 (50)

(v) | Bias( ˆ̄YMd) |≤| Bias (ȳ∗P ) | if[
g2 (1− θ)

2 (
gCx + ρyxCy (1 + θ)

)2
(1 + θ)

4 −
(
Cx + gρyxCy

)2] ≤ 0 (51)

(vi) | Bias( ˆ̄YMd) |≤| Bias(ȳ∗PR) | if[
(1− θ)

2 (
gCx + ρyxCy (1 + θ)

)2
(1 + θ)

4

−
(

aX̄

aX̄ + b

)2 (
gη

(
aX̄

aX̄ + b

)
Cx − (1− 2η) ρyxCy

)2
]
≤ 0 (52)

(vii) | Bias( ˆ̄YMd) |≤| Bias(ȳ∗CS) | if[
(1− θ)

2 (
gCx + ρyxCy (1 + θ)

)2
(1 + θ)

4 −
(
gαCx − (1− 2α) ρyxCy

)2] ≤ 0 (53)

(viii) | Bias( ˆ̄YMd) |≤| Bias(ȳ∗Rd) | if[
(1− θ)

2 (
gCx + ρyxCy (1 + θ)

)2
(1 + θ)

4 −
(
ρyxCy

)2] ≤ 0 (54)

For making efficiency comparisons of the proposed estimator ˆ̄YMd with the ex-
isting estimators, we have from Eq. (33), and Eq. (5), Eq. (6), Eq. (14), Eq. (15),
and (46)

(i) MSE( ˆ̄YMd) < V (ȳ) if

min

(
0,−2ρyx

Cy

gCx

)
< ψ < max

(
0,−2ρyx

Cy

gCx

)
(55)
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where ψ = 1−θ
1+θ .

(ii) MSE( ˆ̄YMd) < MSE(ȳR) if

min

{
−1

g
,

(
−2ρyx

Cy

gCx
+

1

g

)}
< ψ < max

{
−1

g
,

(
−2ρyx

Cy

gCx
+

1

g

)}
(56)

(iii) MSE( ˆ̄YMd) < MSE(ȳP ) if

min

{
1

g
,

(
−2ρyx

Cy

gCx
− 1

g

)}
< ψ < max

{
1

g
,

(
−2ρyx

Cy

gCx
− 1

g

)}
(57)

(iv) MSE( ˆ̄YMd) < MSE(ȳ∗R) if

− 1 < ψ <

(
1− 2ρyx

Cy

gCx

)
(58)

(v) MSE( ˆ̄YMd) < MSE (ȳ∗P ) if

min

{
1,

(
−2ρyx

Cy

gCx
− 1

)}
< ψ < max

{
1,

(
−2ρyx

Cy

gCx
− 1

)}
(59)

Now let us denote the estimators ˆ̄YMd, ȳ
∗
PR, ȳ

∗
CS and ȳ∗Rd which attains mini-

mum MSEs equivalent to MSE of linear regression estimator ˆ̄Yreg as T , and

comparing it to the new proposed estimator ˆ̄Yw, we have

(vi) MSE( ˆ̄Yw)min < MSE(T ) if(
MSE(T ) + Ȳ B

)2
> 0 (60)

where MSE(T ) =MSE( ˆ̄Yreg) = λȲ 2C2
y

(
1− ρ2yx

)
4. Empirical Study

To examine the merits of the new proposed estimator ˆ̄Yw over other existing es-
timators, seven natural population data sets have been considered. The description
of the populations and the values of various parameters are listed in Tables 2 and
3, respectively.

In Table 4, the effective ranges of ψ along with its optimum values are shown

for which the proposed estimator ˆ̄YMd is better than the other existing estima-
tors. However, in practice, it may be difficult to determine the interval extremes
depending on the unknown parameter values of the population.
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The percentage relative efficiencies (PREs) are obtained for various suggested
estimators of Ȳ with respect to the usual unbiased estimator ȳ using the formula

PRE(ϕ, ȳ) =
V (ȳ)

MSE(ϕ)
× 100

where ϕ is used in places of any estimator among ȳ, ȳR, ȳP , ȳ
∗
R, ȳ

∗
P ,

ˆ̄YMd and ˆ̄Yw,
and the findings are presented in Table 5.

Table 2. Description of Populations

Populations Variables

Population I Y = Apple production amount in 1999

Kadilar and Cingi [9] X = Apple production amount in 1998

N = 204, n = 50

Population II Y = Apple trees of bearing age in 1964

Sukhatme and Chand [16] X = Bushels of apples harvested in 1964

N = 200, n = 20

Population III Y = Peach production in bushels in an orchard in 1946

Cochran [5] X = Number of peach trees in the orchard in 1946

N = 256, n = 100

Population IV Y = Number of females employed

Singh [14] X = Number of females in service

N = 61, n = 20

Population V Y = Number of agricultural laborers for 1971

Das [6] X = Number of agricultural laborers for 1961

N = 278, n = 30

Population VI Y = Consumption per capita

Maddala [10] X = Deflated prices of veal

N = 16, n = 4

Population VII Y = Percentage of hives affected by disease

Johnston [8] X = Date of flowering of a particular summer species

(number of days from January 1)

N = 10, n = 4
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Table 3. Parameters of populations

Populations Ȳ X̄ Cy Cx ρyx g

I 966 1014 2.4739 2.4866 0.94 0.3247

II 1031.82 2934.58 1.5977 2.0062 0.93 0.1111

III 56.47 44.45 1.42 1.40 0.887 0.6410

IV 7.46 5.31 0.7103 0.7574 0.7737 0.4878

V 39.0680 25.1110 1.4451 1.6198 0.7213 0.1209

VI 7.6375 75.4313 0.2278 0.0986 -0.6823 0.3333

VII 52 200 0.1562 0.0458 -0.94 0.6667

Table 4. Effective ranges of ψ under which ˆ̄YMd is better than
the other existing estimators

Population Range of ψ in which ˆ̄YMd is better than Optimum value of ψ

ȳ ȳR ȳP ȳ∗R ȳ∗P ( i.e., ψ0 )

I (-5.7608, 0) (-3.08, -2.6808) (-8.8408, 3.08) (-4.7608, -1) (-6.7608, 1) -2.8804

II (-13.3315, 0) (-9, -4.3315) (-22.3315, 9) (-12.3315, -1) (-14.3315, 1) -6.6657

III (-2.8069, 0) (-1.56, -1.2469) (-4.3669, 1.56) (-1.8069, -1) (-3.8069, 1) -1.4035

IV (-2.975, 0) (-2.05, -0.9250) (-5.025, 2.05) (-1.975, -1) (-3.975, 1) -1.4875

V (-10.6452, 0) (-8.2713, -2.3739) (-18.9165, 8.2713) (-9.6452, -1) (-11.6452, 1) -5.3226

VI (0, 9.4598) (-3.0003, 12.4601) (3.0003, 6.4595) (-1, 10.4598) (1, 8.4598) 4.7299

VII (0, 9.6125) (-1.5, 11.1125) (1.5, 8.1125) (-1, 10.6125) (1, 8.6125) 4.8062

5. Discussion and Conclusion

Section 3 examines how, within a very wide range of ψ, the proposed estimator
ˆ̄YMd behaves more efficiently than the other estimators namely ȳ, ȳR, ȳP , ȳ

∗
R and ȳ∗P .

Table 4 provides the effective ranges of ψ along with its optimum values for which

the proposed estimator ˆ̄YMd is more efficient than the other existing estimators as
far as the MSE criterion is considered. In section 2 we see that MSE of the esti-
mator ˆ̄YMd is equivalent to the MSE of ˆ̄Yreg. But using the procedure to lower the
MSE and forming the new proposed estimator by simply conditioning the parent
estimator, we obtain a more efficient estimator than the linear regression estima-
tor. The two estimators (linear regression estimator and new proposed estimator)
needs an equal number of prior knowledge of population parameters (Sy and Sx)
but the reason why the latter is more efficient is it utilizes the knowledge of Bias of
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Table 5. Percentage Relative Efficiencies (PREs) of various es-
timators with respect to ȳ

Estimators Populations

I II III IV V VI VII

ȳ 100 100 100 100 100 100 100

ȳR 828.89 414.66 448.4 205.35 156.39 * *

ȳP * * * * * 167.58 187.08

ȳ∗R 202.85 131.59 359.38 214.74 121.53 * *

ȳ∗P * * * * * 121.37 149.13
ˆ̄YMd 859.11 740.19 468.98 249.14 208.45 187.10 859.11
ˆ̄Yw 1076.6 844.75 474.85 249.24 209.24 187.52 868.68

* Data is not applicable.

parent population. This is an additional work to see how different estimators with
different Bias will affect the MSEs, which is a research question and is left by the
authors for further work. In addition, our theoretical results is supported numeri-
cally based on the results obtained in Table 5 using the data sets as shown in Table
2 along with the required values of various parameters in Table 3. Table 5 exhibits

that there is a considerable gain in efficiency by using proposed estimator ˆ̄Yw over

the estimators ȳ, ȳR, ȳP , ȳ
∗
R, ȳ

∗
P , and

ˆ̄YMd. Thus, the new proposed estimator is
more appropriate, in comparison to all the other existing estimators, for estimating

the unknown mean Ȳ of the study variable Y . Hence, the proposed estimator ˆ̄Yw
should be preferred in practice. The present study deals with the estimation of
unknown mean Ȳ under SRSWOR scheme. It can also be extended to double (or
two-phase) sampling, two-stage sampling and other sampling designs.
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Abstract. In this work, we discuss and introduce the novel literature about

Raina–convex function and its algebraic properties. In addition, we elaborate

and investigate Hermite-Hadamard and Fejér–type inequalities for newly dis-
cussed definition. Finally, using the newly introduced definition, we find and

prove amazing new integral type inequalities and applications for mean to pos-

itive real numbers. The amazing techniques and wonderful ideas of this paper
may inspire and motivate for further activities and research in this direction

furthermore.

1. Introduction

During the whole of the 20th century, an enormous and extreme research activity
was done and fruitful ideas and magnificent results were obtained in mathematical
analysis, functional analysis , convex analysis, mathematical economics and non–
linear optimization. But interesting and tremendous book namely “Inequalities”,
which is written by Hardy, Littlewood and Polya. This book has played an el-
egant role in popularization and importance of the subject of convex functions.
The modern and amazing viewpoint on convexity entails a powerful, enlighten and
distinguish interaction between analysis and geometry, which makes and enables
the readers to shear a sense of excitement. The theory of convexity encompasses
a large variety of classes of convex functions like functions, s–convex, p–convex,
log–convex, h–convex, quasi convex and exponential type convex functions while it
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is good to understand and what they have in common, it is of equal importance to
look inside their own field. The theory of convexity also played a magnificent act
in the advances of theory of inequalities. Inequalities have a lot of applications in
statistical problems, probability and numerical quadrature formulas. Due to rich
and paramount history, convex analysis and inequalities have become an attrac-
tive, interesting and absorbing field for the researchers and for the attention of the
reader, see [1, 3, 4, 8, 9, 16,18–22].
In recent years, many researchers working in the direction of convexity and gener-
alized convexity of Raina type using meaningful ideas and magnificent techniques
to bring a new dimension to mathematical analysis and applied mathematics with
different features in the literature. Interested readers see the references [2,7,14,15].
So that is the main aim and motivation of our work. Before we start, we need
the following necessary known definitions and literature and throughout the paper,
“(H–H)” means Hermite–Hadamard inequality and “diff mapp” means differential
mapping.

2. Preliminaries

In this section we recall some basic definitions.

Definition 1. [10] A ζ : H → R is called convex, if

ζ (κτ1 + (1− κ) τ2) ≤ κζ (τ1) + (1− κ) ζ (τ2) , (1)

holds ∀ τ1, τ2 ∈ H and κ ∈ [0, 1].

The well known and remarkable inequality concerning convex function is Hermite–
Hadamard inequality given as:

Theorem 1. [6] If ζ : H = [τ1, τ2] → R is a convex function, then

ζ

(
τ1 + τ2

2

)
≤ 1

τ2 − τ1

∫ τ2

τ1

ζ(ν)dν ≤ ζ(τ1) + ζ(τ2)

2
. (2)

The double inequality (2) is in reverse order if ζ is a concave function.

Theorem 2. If ζ : H = [τ1, τ2] → R is a convex function, then

ζ

(
τ1 + τ2

2

)∫ τ2

τ1

ξ(ν)dν ≤
∫ τ2

τ1

ζ(ν)ξ(ν)dν ≤ ζ(τ1) + ζ(τ2)

2

∫ τ2

τ1

ξ(ν)dν. (3)

In 1906, L. Fejér [5] proved the above integral inequality (3) which is known in
the literature as Fejér inequality. Since the researchers have shown interest in the
above inequality and as a result, various generalizations and improvements have
have been appeared in the literature. This inequality has remained an area of great
and vital field for research activities due to its widespread views and robustness
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applications in the field of mathematical and convex analysis.
In 2005, Raina [12] introduced a class of functions defined formally by

Fℵ
κ,λ(z) = Fℵ(0),ℵ(1),...

κ,λ (z) =

+∞∑
k=0

ℵ(k)
Γ(κk + λ)

zk, (4)

where ℵ = (ℵ(0), . . . ,ℵ(k), . . .) and κ, λ > 0, |z| < R.

If κ = 1, λ = 0 and ℵ(k) = (α)k(β)k
(γ)k

for k = 0, 1, 2, . . . , where α, β and γ are

parameters which can take arbitrary real or complex values (provided that γ ̸=
0,−1,−2, . . .), and the symbol αk denote the quantity

(α)k =
Γ(α+ k)

Γ(α)
= α(α+ 1) . . . (α+ k − 1), k = 0, 1, 2, . . . ,

and restrict its domain to |z| ≤ 1 (with z ∈ C), then we have the classical hyperge-
ometric function, that is

F(α, β; γ; z) =

+∞∑
k=0

(α)k(β)k
k!(γ)k

zk.

Also, if ℵ = (1, 1, . . .) with κ = α, (Re(α) > 0), λ = 1, then

Eα(z) =

+∞∑
k=0

zk

Γ(1 + αk)
.

The above function is called a classical Mittag–Leffler function.

Theorem 3. [11] Suppose ζ : H ⊆ [0,∞) → R be a diff mapp on H o of H such
that ζ ′′ ∈ L1[τ1, τ2], where τ1, τ2 ∈ H with τ1 < τ2. If |ζ| is convex on [τ1, τ2],
then∣∣∣∣∣ζ(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(ν)dν

∣∣∣∣∣ ≤ (τ2 − τ1)
2

192

{
|ζ ′′(τ1)|+6

∣∣∣ζ ′′(τ1 + τ2
2

)
∣∣∣+|ζ ′′(τ2)|

}
.

(5)

Theorem 4. [11] Suppose ζ : H ⊆ [0,∞) → R be a diff mapp on H o such that
ζ ′′ ∈ L1[τ1, τ2], where τ1, τ2 ∈ H with τ1 < τ2. If |ζ ′′|ℓ for ℓ ≥ 1 is convex on
[τ1, τ2], then∣∣∣∣∣ζ(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(ν)dν

∣∣∣∣∣ ≤ (τ2 − τ1)
2

48

(3
4

) 1
ℓ

(6)

×

{(
|ζ ′′(τ1)|ℓ

3
+ |ζ ′′(τ1 + τ2

2
)|ℓ
) 1

ℓ

+

(∣∣∣ζ ′′(τ1 + τ2
2

)
∣∣∣ℓ + |ζ ′′(τ2)|ℓ

3

) 1
ℓ
}
.
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Lemma 1. [17] Suppose ζ : H ⊆ R → R be a diff mapp on H o such that
ζ ′ ∈ L1[τ1, τ2], where τ1, τ2 ∈ H with τ1 < τ2. If α, β ∈ R, then

αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(ν)dν =
τ2 − τ1

4
(7)

×
∫ 1

0

[
(1− α− κ)ζ ′

(
κτ1 + (1− κ)

τ1 + τ2
2

)
+ (β − κ)ζ ′

(
κ
τ1 + τ2

2
+ (1− κ)τ2

)]
dκ.

Lemma 2. [17] For L > 0 and 0 ≤ ε ≤ 1,we have∫ 1

0

|ε− κ|L dκ =
εL+1 + (1− ε)L+1

L + 1
(8)∫ 1

0

κ|ε− κ|L dκ =
εL+2 + (L + 1 + ε)(1− ε)L+1

(L + 1)(L + 2)

Owing to the aforementioned trend and inspired by the ongoing activities in this
absorbing field, we organize the paper in the following pattern. Firstly, we introduce
Raina–convex function and its properties. Secondly, we debate and investigate (H-
H) and Fejér-type integral inequalities for Riana–convex functions. Furthermore,
we find integral inequalities and applications about fractional calculus regarding
Riana–convex functions.

3. Raina–Convex functions and its properties

In this section we are going to add a new definition namely Raina–convex func-
tion and will study some of their algebraic properties..

Definition 2. A function ζ : H → R is said to be Raina–convex function on H ,
if the following inequality

ζ(κτ1 + (1− κ)τ2) ≤ ζ(τ2) + κ Fℵ
κ,λ(ζ(τ1)− ζ(τ2)) (9)

holds ∀ [τ1, τ2] ∈ H and κ ∈ [0, 1], where κ, λ > 0 and ℵ = (ℵ(1),ℵ(2), ...,ℵ(κ)) is
a bounded sequence of positive real no.

Note that when we choose Fℵ
κ,λ(ζ(τ1) − ζ(τ2)) = ζ(τ1) − ζ(τ2), then Raina–

convex function collapse to the classical convex function.

Theorem 5. Let ζ, ξ : H = [τ1, τ2] → R. If ζ and ξ are Raina–convex functions
then
(i) ζ + ξ is Raina–convex function.
(ii) For c ∈ R and (c ≥ 0) then cζ is Raina–convex function.

Proof. (i) Let ζ and ξ be a Raina–convex functions, then

(ζ + ξ)(κτ1 + (1− κ)τ2)

= ζ(κτ1 + (1− κ)τ2) + ξ(κτ1 + (1− κ)τ2)

≤ ζ(τ2) + κ Fℵ
κ,λ(ζ(τ1)− ζ(τ2)) + ξ(τ2) + κ Fℵ

κ,λ(ξ(τ1)− ξ(τ2))
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≤ (ζ + ξ)(τ2) + κ Fℵ
κ,λ((ζ + ξ)(τ1)− (ζ + ξ)(τ2)).

(ii) Let ζ be a Raina–convex function and c ∈ R, then

(cζ)(κτ1 + (1− κ)τ2)

= c
[
ζ(κτ1 + (1− κ)τ2)

]
≤ c
[
ζ(τ2) + κ Fℵ

κ,λ(ζ(τ1)− ζ(τ2))
]

≤ (cζ)(τ2) + κ Fℵ
κ,λ((cζ)(τ1)− (cζ)(τ2)),

which completes the proof. □

Theorem 6. Let ζ : H → J be a Raina–convex function and ξ : J → R is
non-decreasing function. Then ξ ◦ ζ : H → R is Raina–convex function.

Proof. ∀ τ1, τ2 ∈ H and κ ∈ [0, 1], we have

(ξ ◦ ζ) (κτ1 + (1− κ)τ2)

= ξ(ζ(κτ1 + (1− κ)τ2))

≤ ξ

[
ζ(τ2) + κ Fℵ

κ,λ(ζ(τ1)− ζ(τ2))

]
≤ ξ(ζ(τ2)) + κξ Fℵ

κ,λ(ζ(τ1)− ζ(τ2))

= (ξ ◦ ζ)(τ2) + κ Fℵ
κ,λ((ξ ◦ ζ)(τ1)− (ξ ◦ ζ)(τ2)),

which completes the proof. □

Theorem 7. Let ζi : H = [τ1, τ2] → R be an arbitrary family of Raina–convex
functions and let ζ(τ) = supi ζi(τ). If H = {τ ∈ [τ1, τ2] : ζ(τ) < +∞} ≠ ∅, then
H is an interval and ζ is Raina–convex function.

Proof. ∀ τ1, τ2 ∈ H and κ ∈ [0, 1], we have

ζ(κτ1 + (1− κ)τ2)

= sup
j

ζj(κτ1 + (1− κ)τ2)

≤ sup
j

ζj (τ2) + κ Fℵ
κ,λ(sup

j
ζj(τ1)− sup

j
ζj(τ2))

= ζ (τ2) + κ Fℵ
κ,λ(ζ(τ1)− ζ(τ2)) < +∞,

which completes the proof. □

4. New version of H–H and Fej́er–type inequalities

Theorem 8. Let ζ : H ⊆ R → R be a Raina–convex function with ζ ∈ L1[τ1.τ2],
where τ1, τ2 ∈ H with τ1 < τ2, then

ζ
(τ1 + τ2

2

)
− 1

2(τ2 − τ1)

∫ τ2

τ1

Fℵ
κ,λ(ζ(τ1+τ2−µ)−ζ(µ))dµ ≤ 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

(10)
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≤ ζ(τ2) +
1

2
Fℵ

κ,λ(ζ(τ1)− ζ(τ2)).

Proof. Using (9), with µ = κτ1 + (1 − κ)τ2, ν = (1 − κ)τ1 + κτ2 and κ = 1
2 , we

find that

ζ
(τ1 + τ2

2

)
≤ ζ
(
(1−κ)τ1+κτ2

)
+
1

2
Fℵ

κ,λ

(
ζ(κτ1+(1−κ)τ2)−ζ((1−κ)τ1+κτ2)

)
Thus by integrating, we obtain

ζ
(τ1 + τ2

2

)
≤
∫ 1

0

ζ
(
(1− κ)τ1 + κτ2

)
dκ+

1

2

∫ 1

0

Fℵ
κ,λ

(
ζ(κτ1 + (1− κ)τ2)

−ζ((1− κ)τ1 + κτ2)
)
dκ

≤ 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ+
1

2(τ2 − τ1)

∫ τ2

τ1

Fℵ
κ,λ

(
ζ(τ1 + τ2 − µ)− ζ(µ)

)
dµ

So that

ζ
(τ1 + τ2

2

)
− 1

2(τ2 − τ1)

∫ τ2

τ1

Fℵ
κ,λ

(
ζ(τ1+τ2−µ)−ζ(µ)

)
dµ ≤ 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ.

(11)
This completes the proof of left side of above inequality. For the right side using
µ = τ1 and ν = τ2 in (9), and integrating over [0, 1], we have

1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ ≤ ζ(τ2) +
1

2
Fℵ

κ,λ(ζ(τ1)− ζ(τ2)). (12)

By simplification, the inequalities (11) and (12), we get the inequality (10). □

Remark 1. Taking Fℵ
κ,λ(µ− ν) = µ− ν, we reduce (10) to inequality (2).

Remark 2. Under the assumption of Theorem 8, if we take ℵ = (1, 1, ...) with
κ = α, λ = 1, we get the following inequality involving classical Mittag–Leffler
function

ζ
(τ1 + τ2

2

)
− 1

2(τ2 − τ1)

∫ τ2

τ1

Eα(ζ(τ1 + τ2 − µ)− ζ(µ))dµ ≤ 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

(13)

≤ ζ(τ2) +
1

2
Eα(ζ(τ1)− ζ(τ2)).

Theorem 9. Let ζ and ξ be non-negative generalized convex functions of Raina
type with ζξ ∈ L1[τ1, τ2], where τ1, τ2 ∈ H , τ1 < τ2. Then

1

τ2 − τ1

∫ τ2

τ1

ζ(µ)ξ(µ)dµ ≤ M ′(τ1, τ2) (14)

where

M ′(τ1, τ2) = ζ(τ2)ξ(τ2) +
1

2
ζ(τ2) Fℵ

κ,λ

(
ξ(τ1)− ξ(τ2)

)
+

1

2
ξ(τ2) Fℵ

κ,λ

(
ζ(τ1)− ζ(τ2)

)
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+
1

3
Fℵ

κ,λ

(
ζ(τ1)− ζ(τ2)

)
Fℵ

κ,λ

(
ξ(τ1)− ξ(τ2)

)
Proof. Since ζ and ξ be a Raina–convex functions, we have

ζ
(
κτ1 + (1− κ)τ2

)
≤ ζ(τ2) + κ Fℵ

κ,λ

(
ζ(τ1)− ζ(τ2)

)
ξ
(
κτ1 + (1− κ)τ2

)
≤ ξ(τ2) + κ Fℵ

κ,λ

(
ξ(τ1)− ξ(τ2)

)
For all κ ∈ [0, 1]. Since ζ and ξ are non–negative, we have

ζ
(
κτ1 + (1− κ)τ2

)
ξ
(
κτ1 + (1− κ)τ2

)
≤ ζ(τ2)ξ(τ2) + κζ(τ2) Fℵ

κ,λ

(
ξ(τ1)− ξ(τ2)

)
+κξ(τ2) Fℵ

κ,λ

(
ζ(τ1)− ζ(τ2)

)
+ κ2 Fℵ

κ,λ

(
ζ(τ1)− ζ(τ2)

)
Fℵ

κ,λ

(
ξ(τ1)− ξ(τ2)

)
integrating over [0, 1] both sides, we have∫ 1

0

ζ
(
κτ1 + (1− κ)τ2

)
ξ
(
κτ1 + (1− κ)τ2

)
dκ ≤ ζ(τ2)ξ(τ2)

+
1

2
ζ(τ2) Fℵ

κ,λ

(
ξ(τ1)− ξ(τ2)

)
+

1

2
ξ(τ2) Fℵ

κ,λ

(
ζ(τ1)− ζ(τ2)

)
+

1

3
Fℵ

κ,λ

(
ζ(τ1)− ζτ2)

)
Fℵ

κ,λ

(
ξ(τ1)− ξ(τ2)

)
then

1

τ2 − τ1

∫ τ2

τ1

ζ(µ)ξ(µ)dµ ≤ M ′(τ1, τ2).

□

Remark 3. Taking Fℵ
κ,λ(µ−ν) = µ−ν in above inequality (14), we get inequality

(1.4) in [13].

Remark 4. Under the assumption of Theorem 9, if we take ℵ = (1, 1, ...) with
κ = α, λ = 1, we get the following inequality involving classical Mittag–Leffler
function

1

τ2 − τ1

∫ τ2

τ1

ζ(µ)ξ(µ)dµ ≤ M ′(τ1, τ2) (15)

where

M ′(τ1, τ2) = ζ(τ2)ξ(τ2) +
1

2
ζ(τ2)Eα

(
ξ(τ1)− ξ(τ2)

)
+

1

2
ξ(τ2)Eα

(
ζ(τ1)− ζ(τ2)

)
+
1

3
Eα

(
ζ(τ1)− ζ(τ2)

)
Eα

(
ξ(τ1)− ξ(τ2)

)
Theorem 10. Let ζ be a Raina–convex function with ζ ∈ L1[τ1, τ2], where τ1, τ2 ∈
H , τ1 < τ2, and ξ : H = [τ1, τ2] → R be non–negative, integrable symmetric
about τ1+τ2

2 , then∫ τ2

τ1

ζ(µ)ξ(µ)dµ ≤
[
ζ(τ2) +

1

2
Fℵ

κ,λ

(
ζ(τ1)− ζ(τ2)

)] ∫ τ2

τ1

ξ(µ)dµ. (16)
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Proof. Since ζ be a Raina–convex function and ξ is non-negative integrable and
symmetric about τ1+τ2

2 , we find that∫ τ2

τ1

ζ(µ)ξ(µ)dµ =
1

2

[ ∫ τ2

τ1

ζ(µ)ξ(µ)dµ+

∫ τ2

τ1

ζ(τ1 + τ2 − µ)g(τ1 + τ2 − µ)dµ
]

=
1

2

∫ τ2

τ1

[(
ζ(µ) + ζ(τ1 + τ2 − µ)

)
ξ(µ)dµ

]

=
1

2

∫ τ2

τ1

[
ζ
( τ2 − µ

τ2 − τ1
τ1 +

µ− τ1
τ2 − τ1

τ2

)
+ ζ
( µ− τ1
τ2 − τ1

τ1 +
τ2 − µ

τ2 − τ1
τ2

)]
ξ(µ)dµ

≤ 1

2

∫ τ2

τ1

[(
ζ(τ2) +

τ2 − µ

τ2 − τ1
Fℵ

κ,λ(ζ(τ1)− ζ(τ2))
)

+
(
ζ(τ2) +

µ− τ1
τ2 − τ1

Fℵ
κ,λ(ζ(τ1)− ζ(τ2))

)]
ξ(µ)dµ

≤
[
ζ(τ2) +

1

2
Fℵ

κ,λ(ζ(τ1)− ζ(τ2))
] ∫ τ2

τ1

ξ(µ)dµ,

which completes the proof. □

Remark 5. (i) Taking Fℵ
κ,λ(µ − ν) = µ − ν and ξ(x) = 1, then inequality (16)

reduce to the inequality (2).
(ii) Taking Fℵ

κ,λ(µ− ν) = µ− ν, then inequality (16) reduce to the inequality (3).

(iii) Under the assumption of Theorem 10, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∫ τ2

τ1

ζ(µ)ξ(µ)dµ ≤
[
ζ(τ2) +

1

2
Eα

(
ζ(τ1)− ζ(τ2)

)] ∫ τ2

τ1

ξ(µ)dµ. (17)

5. New integral type inequalities via Raina-convex function

Theorem 11. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈ L1[τ1, τ2],
where τ1, τ2 ∈ H , τ1 < τ2. If |ζ ′(µ)|ℓ for ℓ ≥ 1 is Raina–convex function on [τ1, τ2]
and 0 ≤ α, β ≤ 1 then∣∣∣∣∣αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
≤ τ2 − τ1

8
(
1

6
)

1
ℓ

{
(1− 2α+ 2α2)1−

1
ℓ

[
(6− 12α+ 12α2)|ζ ′(τ2)|ℓ + (4− 9α+ 12α2 − 2α3)

× Fℵ
κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)] 1
ℓ

+ (1− 2β + 2β2)1−
1
ℓ

[
(6− 12β + 12β2)|ζ ′(τ2)|ℓ
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+ (2− 3β + 2β3) Fℵ
κ,λ(|ζ

′(τ1)|ℓ − |ζ ′(τ2)|ℓ)
] 1

ℓ

}
. (18)

Proof. In case ℓ > 1, using lemma (1), Raina–convexity of |ζ ′(x)|ℓ on [τ1, τ2] and
power mean inequality, we have∣∣∣∣∣αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
≤ τ2 − τ1

4

[ ∫ 1

0

|1− α− κ|
∣∣∣ζ ′(κτ1 + (1− κ)

τ1 + τ2
2

)
∣∣∣dκ

+

∫ 1

0

|β − κ|
∣∣∣ζ ′(κτ1 + τ2

2
+ (1− κ)τ2)

∣∣∣dκ]
≤ τ2 − τ1

4

[( ∫ 1

0

|1− α− κ|dκ
)1− 1

ℓ
[ ∫ 1

0

|1− α− κ|
(
|ζ ′(τ2)|ℓ + (

1 + κ

2
)

× Fℵ
κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))
dκ
] 1

ℓ

+ (

∫ 1

0

|β − κ|dκ)1− 1
ℓ

×
[ ∫ 1

0

|β − κ|
(
|ζ ′(τ2)|ℓ +

κ

2
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)
dκ
] 1

ℓ
]

(19)

using lemma (2), by simplifications we obtain∫ 1

0

|1− α− κ|

(
|ζ ′(τ2)|ℓ + (

1 + κ

2
) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))
dκ

=

(
|ζ ′(τ2)|ℓ +

1

2
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))∫ 1

0

|1− α− κ|dκ

+
1

2
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)∫ 1

0

κ|1− α− κ|dκ

=

(
|ζ ′(τ2)|ℓ +

1

2
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))(1
2
− α+ α2

)
+

1

12
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)[
(1− α)3 + α2(3− α)

]
=

1

2
(1− 2α+ 2α2)|ζ ′(τ2)|ℓ +

1

12
(4− 9α+ 12α2 − 2α3) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)
and∫ 1

0

|β − κ|

(
|ζ ′(τ2)|ℓ + (

κ

2
) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))
dκ

= |ζ ′(τ2)|ℓ
∫ 1

0

|β − t|dκ+
1

2
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)∫ 1

0

κ|β − κ|dκ
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= |ζ ′(τ2)|ℓ(
1

2
− β − β2) +

1

12
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)(
β3 + (2 + β)(1− β)2

)
=

1

2
(1− 2β + 2β2)ζ ′(τ2)|ℓ +

1

12
(2− 3β + 2β3) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)
,

The following above two inequalities substitute into inequality (19) and according
lemma (2) result in inequality (18) for ℓ > 1.
For ℓ = 1, from lemma (1) and (2) it follows that∣∣∣∣∣αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
≤ τ2 − τ1

4

[∫ 1

0

|1− α− κ|

(
|ζ ′(τ2)|+ (

1 + κ

2
) Fℵ

κ,λ(|ζ
′(τ1)| − |ζ ′(τ2)|)

)
dκ

+

∫ 1

0

|β − κ|
(
|ζ ′(τ2)|+

κ

2
Fℵ

κ,λ

(
|ζ ′(τ1)| − |ζ ′(τ2)|

))
dκ

]

=
τ2 − τ1

48

{
(6− 12α+ 12α2)|ζ ′(τ2)|+ (4− 9α+ 12α2 − 2α3) Fℵ

κ,λ(|ζ
′(τ1)| − |ζ ′(τ2)|)

+ (6− 12β + 12β2)|ζ ′(τ2)|+ (2− 3β + 2β3) Fℵ
κ,λ(|ζ

′(τ1)| − |ζ ′(τ2)|)

}
. (20)

□

Remark 6. (i) Choosing Fℵ
κ,λ(µ− ν) = (µ− ν), then the inequality (18) collapse

to the inequality (3.1) in [17].
(ii) Under the assumption of Theorem 11, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∣∣∣∣∣αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ ≤ τ2 − τ1
8

× (
1

6
)

1
ℓ

{
(1− 2α+ 2α2)1−

1
ℓ

[
(6− 12α+ 12α2)|ζ ′(τ2)|ℓ + (4− 9α+ 12α2 − 2α3)

× Eα

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)] 1
ℓ

+ (1− 2β + 2β2)1−
1
ℓ

[
(6− 12β + 12β2)|ζ ′(τ2)|ℓ

+ (2− 3β + 2β3)Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)
] 1

ℓ
}
. (21)

(iii) Choosing α = β in above Theorem (11), we derive the following corollary,

Corollary 1. Let ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈ L1[τ1, τ2],
where τ1, τ2 ∈ H , τ1 < τ2. If |ζ ′(µ)|ℓ for ℓ ≥ 1 is Raina–convex function on
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[τ1, τ2] and 0 ≤ α ≤ 1then∣∣∣∣∣α2 [ζ(τ1) + ζ(τ2)] + (1− α)ζ
(τ1 + τ2

2

)
− 1

τ1 − τ2
ζ(µ)dµ

∣∣∣∣∣ ≤ τ2 − τ1
8

(
1

6
)

1
ℓ

×

{
(1− 2α+ 2α2)1−

1
ℓ

[
(6− 12α+ 12α2)|ζ ′(τ2)|ℓ (22)

+ (4− 9α+ 12α2 − 2α3) Fℵ
κ,λ(|ζ

′(τ1)|ℓ)− |ζ ′(τ2)|ℓ
] 1

ℓ

+
[
(6− 12α+ 12α2)|ζ ′(τ2)|ℓ + (2− 3α+ 2α3) Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
.

Remark 7. (i) Choosing Fℵ
κ,λ(µ − ν) = µ − ν in Corollary (1), then inequality

(22) collapse to inequality (3.5) in [17].
(ii) Under the assumption of Corollary 1, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∣∣∣∣∣α2 [ζ(τ1) + ζ(τ2)] + (1− α)ζ

(τ1 + τ2
2

)
− 1

τ1 − τ2
ζ(µ)dµ

∣∣∣∣∣ ≤ τ2 − τ1
8

(
1

6
)

1
ℓ (23)

×

[
(1− 2α+ 2α2)1−

1
ℓ

[
(6− 12α+ 12α2)|ζ ′(τ2)|ℓ

+ (4− 9α+ 12α2 − 2α3)Eα(|ζ ′(τ1)|ℓ)− |ζ ′(τ2)|ℓ
] 1

ℓ

+
[
(6− 12α+ 12α2)|ζ ′(τ2)|ℓ + (2− 3α+ 2α3)Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

]
.

(iii) choosing α = β = 1
2 ,

1
3 , respectively, in above Theorem (11), we can obtain the

following inequality,

Corollary 2. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈ L1[τ1, τ2]
where τ1, τ2 ∈ H , τ1 < τ2. If |ζ ′(µ)|ℓ for ℓ ≥ 1 is Raina–convex function on
[τ1, τ2] and 0 ≤ α, β ≤ 1, then∣∣∣∣∣12[ζ(τ1) + ζ(τ2)

2
+ ζ
(τ1 + τ2

2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(x)dx

∣∣∣∣∣ ≤ τ2 − τ1
16

(
1

12

) 1
ℓ

(24)

×

{[
12|ζ ′(τ2)|ℓ + 9 Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

+
[
12|ζ ′(τ2)|ℓ + 3 Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
,
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(τ1 + τ2

2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(x)dx

∣∣∣∣∣
≤ 5(τ2 − τ1)

72

(
1

90

) 1
ℓ

{[
90|ζ ′(τ2)|ℓ + 61 Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

+
[
90|ζ ′(τ2)|ℓ + 29 Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
.

Remark 8. Under the assumption of Corollary 2, if we take ℵ = (1, 1, ...) with
κ = α, λ = 1, we get the following inequality involving classical Mittag–Leffler
function∣∣∣∣∣12[ζ(τ1) + ζ(τ2)

2
+ ζ
(τ1 + τ2

2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ ≤ τ2 − τ1
16

(
1

12

) 1
ℓ

(25)

×

{[
12|ζ ′(τ2)|ℓ + 9Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

+
[
12|ζ ′(τ2)|ℓ + 3Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
,∣∣∣∣∣16[ζ(τ1) + ζ(τ2) + 4ζ

(τ1 + τ2
2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
≤ 5(τ2 − τ1)

72

(
1

90

) 1
ℓ

{[
90|ζ ′(τ2)|ℓ + 61Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

+
[
90|ζ ′(τ2)|ℓ + 29Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
.

If we choose ℓ = 1 in Corollary (2), then we take the following inequality,

Corollary 3. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈ L1[τ1, τ2]
where τ1, τ2 ∈ H , τ1 < τ2. If |ζ ′(µ)| is Raina–convex function on [τ1, τ2]∣∣∣∣∣12[ζ(τ1) + ζ(τ2)

2
+ ζ
(τ1 + τ2

2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ (26)

≤ τ2 − τ1
16

[
2|ζ ′(τ2)|+ Fℵ

κ,λ

(
|ζ ′(τ1)| − |ζ ′(τ2)|

)]
∣∣∣∣∣16[ζ(τ1) + ζ(τ2) + 4ζ

(τ1 + τ2
2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
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≤ 5(τ2 − τ1)

72

[
2|ζ ′(τ2)|+ Fℵ

κ,λ

(
|ζ ′(τ1)| − |ζ ′(τ2)|

)]
.

Remark 9. (i) Choosing Fℵ
κ,λ(µ − ν) = (µ − ν), then inequalities (24) and (26)

reduce to inequalities (3.6) and (3.7) in [17].
(ii) Under the assumption of Corollary 3, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∣∣∣∣∣12[ζ(τ1) + ζ(τ2)

2
+ ζ
(τ1 + τ2

2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ (27)

≤ τ2 − τ1
16

[
2|ζ ′(τ2)|+ Eα

(
|ζ ′(τ1)| − |ζ ′(τ2)|

)]
∣∣∣∣∣16[ζ(τ1) + ζ(τ2) + 4ζ

(τ1 + τ2
2

)]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
≤ 5(τ2 − τ1)

72

[
2|ζ ′(τ2)|+ Eα

(
|ζ ′(τ1)| − |ζ ′(τ2)|

)]
.

Theorem 12. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈ L1[τ1, τ2],
where τ1, τ2 ∈ H , τ1 < τ2. If |ζ ′(µ)|ℓ is Raina–convex function on [τ1, τ2] and
0 ≤ α, β ≤ 1, then∣∣∣∣∣αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ (28)

≤ τ2 − τ1
4

[ 1

2(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

×

{[(
2(ℓ+ 2)(1− α)ℓ+1 + 2(ℓ+ 2)αℓ+1

)
|ζ ′(τ2)|ℓ

+
(
(ℓ+ 3− α)(1− α)ℓ+1 + (2ℓ+ 4− α)αℓ+1

)
× Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)] 1
ℓ

+
[(

2(ℓ+ 2)(1− β)ℓ+1 + 2(ℓ+ 2)βℓ+1
)
|ζ ′(τ2)|ℓ

+
(
βℓ+2 + (ℓ+ 1 + β)(1− β)ℓ+1

)
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)] 1
ℓ

}
.

Proof. In case ℓ > 1, using the property of Raina–convexity of |ζ ′(µ)|ℓ on [τ1, τ2]
and Hölder’s inequality∣∣∣∣∣αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ (29)



1024 S. I. BUTT, M. NADEEM, M. TARIQ, A. ASLAM

≤ τ2 − τ1
4

[ ∫ 1

0

(1− α− κ)|ζ ′(κτ1 + (1− κ)
τ1 + τ2

2
)|dκ

+

∫ 1

0

|β − κ|
∣∣∣ζ ′(κτ1 + τ2

2
+ (1− κ)τ2)

∣∣∣dκ] ≤ τ2 − τ1
4

[
(

∫ 1

0

dκ)1−
1
ℓ

[ ∫ 1

0

|1− α− κ|ℓ|

×
(
|ζ ′(τ2)|ℓ + (

1 + κ

2
) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))
dκ
] 1

ℓ

+ (

∫ 1

0

dκ)1−
1
ℓ

[ ∫ 1

0

|β − κ|ℓ|
(
|ζ ′(τ2)|ℓ + (

κ

2
) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))
dκ
] 1

ℓ

]

≤ τ2 − τ1
4

[[ ∫ 1

0

|1− α− κ|ℓ|
(
|ζ ′(τ2)|ℓ + (

1 + κ

2
) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))
dκ
] 1

ℓ

+
[ ∫ 1

0

|β − κ|ℓ|
(
|ζ ′(τ2)|ℓ + (

κ

2
) Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

))
dκ
] 1

ℓ

]
.

By lemma (2) we have

∫ 1

0

|1− α− κ|ℓ
(
|ζ ′(τ2)|ℓ + (

1 + κ

2
) Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)
dκ

=
(
|ζ ′(τ2)|ℓ +

1

2
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)∫ 1

0

|1− α− κ|ℓdκ

+
1

2
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

∫ 1

0

κ|1− α− κ|ℓdκ

=
(
|ζ ′(τ2)|ℓ +

1

2
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)( (1− α)ℓ+1 + αℓ+1

ℓ+ 1

)
+

1

2
Fℵ

κ,λ

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)( (1− α)ℓ+2 + (ℓ+ 2− α)αℓ+1

(ℓ+ 1)(ℓ+ 2)

)
=

1

2(ℓ+ 1)(ℓ+ 2)

[
2(ℓ+ 2)(1− α)ℓ+1 + 2(ℓ+ 2)αℓ+1

]
|ζ ′(τ2)|ℓ

+
[
2(ℓ+ 2)(1− α)ℓ+1 + (ℓ+ 2)αℓ+1 + (1− α)ℓ+2 + (ℓ+ 2− α)αℓ+1

]
× Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ) =

1

2(ℓ+ 1)(ℓ+ 2)

[[
2(ℓ+ 2)(1− α)ℓ+1

+ 2(ℓ+ 2)αℓ+1
]
|ζ ′(τ2)|ℓ +

[
(ℓ+ 3− α)(1− α)ℓ+1

+ (2ℓ+ 4− α)αℓ+1
]
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

]
,
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and ∫ 1

0

|β − κ|ℓ
(
|ζ ′(τ2)|ℓ + (

κ

2
) Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)
dκ

= |ζ ′(τ2)|ℓ
∫ 1

0

|β − κ|ℓdκ+
1

2
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

∫ 1

0

κ|β − κ|ℓdκ

= |ζ ′(τ2)|ℓ
(βℓ+1 + (1− β)ℓ+1

ℓ+ 1

)
+

1

2
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

×
(βℓ+2 + (ℓ+ 1 + β)(1− β)ℓ+1

(ℓ+ 1)(ℓ+ 2)

)
=

1

2(ℓ+ 1)(ℓ+ 2)

[
[2(ℓ+ 2)(1− β)ℓ+1 + 2(ℓ+ 2)βℓ+1]|ζ ′(τ2)|ℓ

+ [βℓ+2 + (ℓ+ 1 + β)(1− β)ℓ+1] Fℵ
κ,λ(|ζ

′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

]
.

If we put the last two inequalities into inequality (29), as a result we obtain the
inequality (28) for ℓ > 1. If we put ℓ = 1, then the proof is the identitical as that
of (20), and the theorem is investigated. □

Remark 10. (i) Choosing Fℵ
κ,λ(µ − ν) = µ − ν, then the inequality (28) reduces

to the inequality (3.8) in [17].
(ii) Under the assumption of Corollary 12, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∣∣∣∣∣αζ(τ1) + βζ(τ2)

2
+

2− α− β

2
ζ
(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ (30)

≤ τ2 − τ1
4

[ 1

2(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

×

{[(
2(ℓ+ 2)(1− α)ℓ+1 + 2(ℓ+ 2)αℓ+1

)
|ζ ′(τ2)|ℓ

+
(
(ℓ+ 3− α)(1− α)ℓ+1 + (2ℓ+ 4− α)αℓ+1

)
× Eα

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)] 1
ℓ

+
[(

2(ℓ+ 2)(1− β)ℓ+1 + 2(ℓ+ 2)βℓ+1
)
|ζ ′(τ2)|ℓ

+
(
βℓ+2 + (ℓ+ 1 + β)(1− β)ℓ+1

)
Eα

(
|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ

)] 1
ℓ

}
.

Similarly to Corollaries of Theorem (11), we can obtain the following Corollaries
of Theorem (12) .
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Corollary 4. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈ L1[τ1, τ2]
where τ1, τ2 ∈ H , τ1 < τ2. If |ζ ′(µ)|ℓ is Raina–convex function on [τ1, τ2] for
ℓ ≥ 1 and 0 ≤ α ≤ 1, then∣∣∣∣∣α2 [ζ(τ1) + ζ(τ2)] + (1− α)ζ(

τ1 + τ2
2

)− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ (31)

≤ τ2 − τ1
4

[ 1

2(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

{[(
2(ℓ+ 2)(1− α)ℓ+1 + 2(ℓ+ 2)αℓ+1

)
|ζ ′(τ2)|ℓ

+
(
(ℓ+ 3− α)(1− α)ℓ+1 + (2ℓ+ 4− α)αℓ+1

)
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

+
[(

2(ℓ+ 2)(1− α)ℓ+1 + 2(ℓ+ 2)αℓ+1
)
|ζ ′(τ2)|ℓ

+
(
αℓ+2 + (ℓ+ 1 + α)(1− α)ℓ+1

)
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
.

Remark 11. Choosing Fℵ
κ,λ(µ − ν) = µ − ν, then inequality (31) collapse to in-

equality (3.11) in [17].

Corollary 5. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈ L1[τ1, τ2]
where τ1, τ2 ∈ H , τ1 < τ2. If |ζ ′(µ)|ℓ is Raina–convex function on [τ1, τ2] for
ℓ ≥ 1 and 0 ≤ α, β ≤ 1, then∣∣∣∣∣12[ζ(τ1) + ζ(τ2)

2
+ ζ(

τ1 + τ2
2

)
]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ ≤ τ2 − τ1
8

[ 1

4(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

(32)

×

{[(
(4ℓ+ 8)|ζ ′(τ2)|ℓ + (3ℓ+ 6) Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)] 1
ℓ

+
[(

(4ℓ+ 8)|ζ ′(τ2)|ℓ + (ℓ+ 2) Fℵ
κ,λ(|ζ

′(τ1)|ℓ − |ζ ′(τ2)|ℓ)
)] 1

ℓ

}
∣∣∣∣∣16[f(τ1) + ζ(τ2) + 4ζ(

τ1 + τ2
2

)
]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
≤ τ2 − τ1

12

[ 1

18(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

{[(
(3ℓ+ 6)2ℓ+2 + 6(ℓ+ 2)

)
|ζ ′(τ2)|ℓ

+
(
(3ℓ+ 8)2ℓ+1 + (6ℓ+ 11) Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)] 1
ℓ

+
[(

(3ℓ+ 6)2ℓ+2 + 6(ℓ+ 2)
)

|ζ ′(τ2)|ℓ +
(
1 + (3ℓ+ 4)2ℓ+1

)
Fℵ

κ,λ(|ζ
′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
.
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Remark 12. (i) Choosing Fℵ
κ,λ(µ − ν) = µ − ν, then the inequality (32) reduces

to the inequality (3.12) in [17].
(ii) Choosing ℓ = 1 in Corollary (4), then we get Corollary (3).
(iii) Under the assumption of Corollary 5, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∣∣∣∣∣12[ζ(τ1) + ζ(τ2)

2
+ ζ(

τ1 + τ2
2

)
]
− 1

τ2 − τ1

∫ τ2

τ1

f(µ)dµ

∣∣∣∣∣ ≤ τ2 − τ1
8

[ 1

4(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

×

{[(
(4ℓ+ 8)|ζ ′(τ2)|ℓ + (3ℓ+ 6)Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)] 1
ℓ

+
[(

(4ℓ+ 8)|ζ ′(τ2)|ℓ + (ℓ+ 2)Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)
)] 1

ℓ

}
∣∣∣∣∣16[ζ(τ1) + ζ(τ2) + 4ζ(

τ1 + τ2
2

)
]
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣
≤ τ2 − τ1

12

[ 1

18(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

{[(
(3ℓ+ 6)2ℓ+2 + 6(ℓ+ 2)

)
|ζ ′(τ2)|ℓ

+
(
(3ℓ+ 8)2ℓ+1 + (6ℓ+ 11)Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

)] 1
ℓ

+
[(

(3ℓ+ 6)2ℓ+2 + 6(ℓ+ 2)
)

|ζ ′(τ2)|ℓ +
(
1 + (3ℓ+ 4)2ℓ+1

)
Eα(|ζ ′(τ1)|ℓ − |ζ ′(τ2)|ℓ)

] 1
ℓ

}
. (33)

For further results, we highlight the below Lemma which is proved in [11].

Lemma 3. [11] Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′ ∈
L1[τ1, τ2] where τ1, τ2 ∈ H and τ1 < τ2, then

1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ− ζ(
τ1 + τ2

2
) =

(τ2 − τ1)
2

16
(34)

×

[∫ 1

0

κ2ζ ′′(κ
τ1 + τ2

2
+ (1− κ)τ1)dκ+

∫ 1

0

(κ− 1)2ζ ′′(κτ2 + (1− κ)
τ1 + τ2

2
)dκ

]
.

Theorem 13. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′′ ∈
L1[τ1, τ2], where τ1, τ2 ∈ H and τ1 < τ2. If |ζ ′′(µ)| is Raina–convex function on
[τ1, τ2], then∣∣∣ζ(τ1 + τ2

2
)− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ
∣∣∣ ≤ (τ2 − τ1)

2

16

[
1

3

(
|ζ ′′(τ1)|+ |ζ ′′(τ1 + τ2

2
)|
)
(35)
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+
1

4

(
Fℵ

κ,λ(|ζ
′′(

τ1 + τ2
2

)| − |ζ ′′(τ1)|)
)
+

1

3
Fℵ

κ,λ(|ζ
′′(τ2)| − |ζ ′′(τ1 + τ2

2
)|)

]
.

Proof. From lemma (3), we have∣∣∣ζ(τ1 + τ2
2

)− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ
∣∣∣ ≤ (τ2 − τ1)

2

16

[ ∫ 1

0

κ2|ζ ′′(κτ1 + τ2
2

+ (1− κ)τ1)|dκ

+

∫ 1

0

(κ− 1)2|ζ ′′(κτ2 + (1− κ)
τ1 + τ2

2
)|dκ

]
≤ (τ2 − τ1)

2

16

[ ∫ 1

0

κ2
(
|ζ ′′(τ1)|+ κ Fσ

ρ,λ(|ζ
′′(

τ1 + τ2
2

)| − |ζ ′′(τ1)|)
)
dκ
]

+
(τ2 − τ1)

2

16

[∫ 1

0

(κ− 1)2
(
|ζ ′′(τ1 + τ2

2
)|+ κ Fℵ

κ,λ(|ζ
′′(τ2)| − |ζ ′′(τ1 + τ2

2
)|)
)
dκ

]

=
(τ2 − τ1)

2

16

[
1

3
|ζ ′′(τ1)|+

1

3
|ζ ′′(τ1 + τ2

2
)|+ 1

4
Fℵ

κ,λ(|ζ
′′(

τ1 + τ2
2

)| − |ζ ′′(τ1)|)

+
1

12
Fℵ

κ,λ(|ζ
′′(τ2)| − |ζ ′′(τ1 + τ2

2
)|)

]
=

(τ2 − τ1)
2

16

[
1

3

(
|ζ ′′(τ1)|+ |ζ ′′(τ1 + τ2

2
)|
)

+
1

4
Fℵ

κ,λ(|ζ
′′(

τ1 + τ2
2

)| − |ζ ′′(τ1)|) +
1

3
Fℵ

κ,λ(|ζ
′′(τ2)| − |ζ ′′(τ1 + τ2

2
)|)

]
.

□

Remark 13. (i) Choosing Fℵ
κ,λ(µ − ν) = µ − ν, then inequality (35) reduce to

inequality (5).
(ii) Under the assumption of Theorem 13, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∣∣∣ζ(τ1 + τ2

2
)− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ
∣∣∣ ≤ (τ2 − τ1)

2

16

[
1

3

(
|ζ ′′(τ1)|+ |ζ ′′(τ1 + τ2

2
)|
)
(36)

+
1

4

(
Eα(|ζ ′′(

τ1 + τ2
2

)| − |ζ ′′(τ1)|)
)
+

1

3
Eα(|ζ ′′(τ2)| − |ζ ′′(τ1 + τ2

2
)|)

]
.

Theorem 14. Suppose ζ : H ⊆ R → R be a diff mapp on H o with ζ ′′ ∈
L1[τ1, τ2], where τ1, τ2 ∈ H and τ1 < τ2. If |ζ ′′(µ)|ℓ for ℓ ≥ 1 with 1

p + 1
ℓ = 1 is

Raina–convex function on [τ1, τ2], then∣∣∣∣∣ζ(τ1 + τ2
2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ
)∣∣∣∣∣ ≤ (τ2 − τ1)

2

16
(
1

3
)

1
p (37)
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×

[(1
3
|ζ ′′(τ1)|ℓ +

1

4
Fℵ

κ,λ(|ζ
′′(

τ1 + τ2
2

)|ℓ − |ζ ′′(τ1)|ℓ)
) 1

ℓ

+
(1
3
|ζ ′′(τ1 + τ2

2
)|ℓ + 1

12
Fℵ

κ,λ(|ζ
′′(τ2)|ℓ − |ζ ′′(τ1 + τ2

2
)|ℓ)
) 1

ℓ

]
.

Proof. If p ≥ 1, using lemma (3) and power Mean Inequality, then∣∣∣∣∣ζ(τ1 + τ2
2

)− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ
)∣∣∣∣∣ ≤ (τ2 − τ1)

2

16

[∫ 1

0

κ2
∣∣∣ζ ′′(κτ1 + τ2

2
+ (1− κ)τ1

)∣∣∣dκ
+

∫ 1

0

(κ− 1)2
∣∣∣ζ ′′(κτ2 + (1− κ)

τ1 + τ2
2

)∣∣∣dκ]

≤ (τ2 − τ1)
2

16
(

∫ 1

0

κ2dκ)
1
p

[ ∫ 1

0

κ2
∣∣∣ζ ′′(κτ1 + τ2

2
+ (1− κ)τ1

)∣∣∣ℓdκ] 1
ℓ

+
(τ2 − τ1)

2

16
(

∫ 1

0

(κ− 1)2dκ)
1
p

(∫ 1

0

(κ− 1)2
∣∣∣ζ ′′(κτ2 + (1− κ)

τ1 + τ2
2

)∣∣∣ℓdκ) 1
ℓ

Because |ζ ′′|ℓ is Raina–convex function, we have∫ 1

0

κ2
∣∣∣ζ ′′(κτ1 + τ2

2
+ (1− κ)τ1

)∣∣∣ℓdκ ≤ 1

3
|ζ ′′(τ1)|ℓ

+
1

4

(
Fℵ

κ,λ(|ζ
′′(

τ1 + τ2
2

)|ℓ − |ζ ′′(τ2)|ℓ)
)

and∫ 1

0

(κ− 1)2
∣∣∣ζ ′′(κτ2 + (1− κ)

τ1 + τ2
2

)
∣∣∣ℓdκ ≤ 1

3
|ζ ′′(τ1 + τ2

2
)|ℓ

+
1

12
Fℵ

κ,λ

(
|ζ ′′(τ2)|ℓ − |ζ ′′(τ1 + τ2

2
)|ℓ
)

Therefore we have∣∣∣∣∣ζ(τ1 + τ2
2

)− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ

∣∣∣∣∣ ≤ (τ2 − τ1)
2

16
(
1

3
)

1
p

×

[(1
3
|ζ ′′(τ1)|ℓ +

1

4
Fℵ

κ,λ(|ζ
′′(

τ1 + τ2
2

)| − |ζ ′′(τ1)|ℓ)
) 1

ℓ

+
(1
3
|ζ ′′(τ1 + τ2

2
)|ℓ + 1

12
Fℵ

κ,λ(|ζ
′′(τ2)|ℓ − |ζ ′′(τ1 + τ2

2
)|ℓ)
) 1

ℓ

]
.

□

Remark 14. (i) Choosing Fℵ
κ,λ(µ − ν) = µ − ν, then inequality (37) reduce to

inequality (6).
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(ii) Under the assumption of Theorem 14, if we take ℵ = (1, 1, ...) with κ = α, λ =
1, we get the following inequality involving classical Mittag–Leffler function∣∣∣∣∣ζ(τ1 + τ2

2

)
− 1

τ2 − τ1

∫ τ2

τ1

ζ(µ)dµ
)∣∣∣∣∣ ≤ (τ2 − τ1)

2

16
(
1

3
)

1
p (38)

×

[(1
3
|ζ ′′(τ1)|ℓ +

1

4
Eα(|ζ ′′(

τ1 + τ2
2

)|ℓ − |ζ ′′(τ1)|ℓ)
) 1

ℓ

+
(1
3
|ζ ′′(τ1 + τ2

2
)|ℓ + 1

12
Eα(|ζ ′′(τ2)|ℓ − |ζ ′′(τ1 + τ2

2
)|ℓ)
) 1

ℓ

]
.

6. Applications

In this section, we recall the following special means for two positive real numbers
τ1, τ2 where τ1 < τ2:
(1) The arithmetic mean

A = A(τ1, τ2) =
τ1 + τ2

2
.

(2) The geometric mean
G = G(τ1, τ2) =

√
τ1τ2.

(3) The harmonic mean

H = H(τ1, τ2) =
2τ1τ2
τ1 + τ2

.

(4) The p-logarithmic mean

Lp = Lp(τ1, τ2) =

(
τp+1
2 − τp+1

1

(p+ 1)(τ2 − τ1)

) 1
p

, p ∈ R \ {0}.

(5) The identric mean

I = I(τ1, τ2) =
1

e

(
τ τ2
2

τ τ1
1

) 1
τ2−τ1

.

(6) The heronian mean

Hw,s(τ1, τ2) =


[τs2 + w(τ1τ2)

s
2 + τs2

w + 2

] 1
s

, if s ̸= 0
√
τ1τ2, if s = 0.

These means have a lot of applications in areas and different type of numerical
approximations. However, the following simple relationship are known in the liter-
ature.

If we choose ζ(µ) = µs for s ̸= 0 and x > 0 in Theorems (11) and (12), as a
result we get the following inequalities for means.
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Proposition 1. Let τ1 > 0, τ2 > 0, τ1 ̸= τ2, ℓ ≥ 1 and either s > 1 and
(s− 1)ℓ ≥ 1 or s < 0 Then∣∣∣∣∣A(ατs1, βτ

s
2) +

2− α− β

2
As(τ1, τ2)− Ls(τ1, τ2)

∣∣∣∣∣ ≤ τ2 − τ1
8

(
1

6
)

1
ℓ (39)

×

[
(1− 2α+ 2α2)1−

1
ℓ

[
(6− 12α+ 12α2)|sτs−1

2 |ℓ + (4− 9α+ 12α2 − 2α3)

× Fℵ
κ,λ

(
|sτs−1

1 |ℓ − |sτs−1
2 |ℓ

)] 1
ℓ

+ (1− 2β + 2β2)1−
1
ℓ

[
(6− 12β + 12β2)|sτs−1

2 |ℓ

+ (2− 3β + 2β3) Fℵ
κ,λ(|sτs−1

1 |ℓ − |sτs−1
2 |ℓ)

] 1
ℓ

]
.

Remark 15. Under the assumption of Proposition 1, if we take ℵ = (1, 1, ...) with
κ = α, λ = 1, we get the following inequality involving classical Mittag–Leffler
function∣∣∣∣∣A(ατs1, βτ

s
2) +

2− α− β

2
As(τ1, τ2)− Ls(τ1, τ2)

∣∣∣∣∣ ≤ τ2 − τ1
8

(
1

6
)

1
ℓ (40)

×

[
(1− 2α+ 2α2)1−

1
ℓ

[
(6− 12α+ 12α2)|sτs−1

2 |ℓ + (4− 9α+ 12α2 − 2α3)

× Eα

(
|sτs−1

1 |ℓ − |sτs−1
2 |ℓ

)] 1
ℓ

+ (1− 2β + 2β2)1−
1
ℓ

[
(6− 12β + 12β2)|sτs−1

2 |ℓ

+ (2− 3β + 2β3)× Eα(|sτs−1
1 |ℓ − |sτs−1

2 |ℓ)
] 1

ℓ

]
.

Proposition 2. Let τ1 > 0, τ2 > 0, τ1 ̸= τ2, ℓ ≥ 1 and either s > 1 and
(s− 1)ℓ ≥ 1 or s < 0∣∣∣∣∣A(ατs1, βτ

s
2) +

2− α− β

2
As(τ1, τ2)− Ls(τ1, τ2)

∣∣∣∣∣ ≤ (τ2 − τ1)

4
[

1

2(ℓ+ 1)(ℓ+ 2)
]
1
ℓ

(41)

×

[[([
2(ℓ+ 2)(1− α)ℓ+1 + 2(ℓ+ 2)αℓ+1

])
|sτs−1

2 |ℓ +
[
(ℓ+ 3− α)(1− α)ℓ+1

+ (2ℓ+ 4− α)αℓ+1
]
Fℵ

κ,λ(|sτs−1
1 |ℓ − |sτs−1

2 |ℓ)

] 1
ℓ

+
[(

2(ℓ+ 2)(1− β)ℓ+1

+ 2(ℓ+ 2)βq+1
)
|sτs−1

2 |ℓ +
(
βℓ+2 + (ℓ+ 1 + β)(1− β)ℓ+1

)
Fℵ

κ,λ

(
|sτs−1

1 |ℓ − |sτs−1
2 |ℓ

)] 1
ℓ

]
.
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If we choose ζ(µ) = lnµ for µ > 0 in theorems (11) and (12), as a result we get
the following inequalities for mean.

Proposition 3. For τ1 > 0, τ2 > 0, τ1 ̸= τ2 and ℓ ≥ 1, we have∣∣∣∣∣ lnG2(τα1 , τ
β
2 )

2
+

2− α− β

2
lnA(τ1, τ2)− lnI(τ1, τ2)

∣∣∣∣∣ ≤ τ2 − τ1
8

(
1

6
)

1
ℓ

[
(1− 2α+ 2α2)1−

1
ℓ

×
[
(6− 12α+ 12α2)(

1

τ2
)ℓ + (4− 9α+ 12α2 − 2α3) Fℵ

κ,λ

(
(
1

τ1
)ℓ − (

1

τ2
)ℓ
)] 1

ℓ

(42)

+ (1− 2β + 2β2)1−
1
ℓ

[
(6− 12β + 12β2)(

1

τ2
)ℓ + (2− 3β + 2β3) Fℵ

κ,λ

(
(
1

τ1
)ℓ − (

1

τ2
)ℓ
)] 1

ℓ

]
.

Remark 16. Under the assumption of Proposition 3, if we take ℵ = (1, 1, ...) with
κ = α, λ = 1, we get the following inequality involving classical Mittag–Leffler
function∣∣∣∣∣ lnG2(τα1 , τ

β
2 )

2
+

2− α− β

2
lnA(τ1, τ2)− lnI(τ1, τ2)

∣∣∣∣∣ ≤ τ2 − τ1
8

(
1

6
)

1
ℓ (43)

×

[
(1− 2α+ 2α2)1−

1
ℓ

[
(6− 12α+ 12α2)(

1

τ2
)ℓ + (4− 9α+ 12α2 − 2α3)Eα

(
(
1

τ1
)ℓ − (

1

τ2
)ℓ
)] 1

ℓ

+ (1− 2β + 2β2)1−
1
ℓ

[
(6− 12β + 12β2)(

1

τ2
)ℓ + (2− 3β + 2β3)Eα

(
(
1

τ1
)ℓ − (

1

τ2
)ℓ
)] 1

ℓ

]
.

Proposition 4. For τ1 > 0, τ2 > 0, τ1 ̸= τ2 and ℓ ≥ 1, we have∣∣∣∣∣ lnG2(τα1 , τ
β
2 )

2
+

2− α− β

2
lnA(τ1, τ2)− lnI(τ1, τ2)

∣∣∣∣∣ ≤ τ2 − τ1
4

[ 1

2(ℓ+ 1)(ℓ+ 2)

] 1
ℓ

(44)

×

[[(
2(ℓ+ 2)(1− α)ℓ+1 + 2(ℓ+ 2)αℓ+1

)
(
1

τ2
)ℓ +

[
(q + 3− α)(1− α)ℓ+1 + (2ℓ+ 4− α)αℓ+1

]
× Fℵ

κ,λ

(
(
1

τ1
)ℓ − (

1

τ2
)ℓ
)] 1

ℓ

+

[(
2(ℓ+ 2)(1− β)ℓ+1 + 2(ℓ+ 2)βℓ+1

)( 1

τ2

)ℓ
+
(
(q + 1 + β)(1− β)q+1 + βq+2

)
Fℵ

κ,λ

(
(
1

τ1
)ℓ − (

1

τ2
)ℓ
)] 1

ℓ

]
.

Finally,

Proposition 5. For τ2 > τ1 > 0, τ1 ̸= τ2, w ≥ 0 and s ≥ 4 or 0 ̸= s < 1, we have∣∣∣∣∣Hs
w,s(τ1, τ2)

H(τs1, τ
s
2)

+H
s
2+1

w,( s
2+1)

(τ2
τ1

+
τ1
τ2

, 1
)
−Hs

w,s

( L(τ21, τ
2
2)

G2(τ1, τ2)
, 1
)∣∣∣∣∣ (45)
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≤ (τ2 − τ1)A(τ1, τ2)

8G2(τ1, τ2)

[
2|s|
w + 2

(
G2(s−1)(τ2,

1

τ1
) +

w

2
Gs− 1

2 (τ2,
1

τ1
)
)

+ Fℵ
κ,λ

( |s|
w + 2

(
G2(s−1)(τ1,

1

τ2
) +

w

2
Gs− 1

2 (τ1,
1

τ2
)
)

− |s|
w + 2

(
G2(s−1)(τ2,

1

τ1
) +

w

2
Gs− 1

2 (τ2,
1

τ1
)
))]

.

Proof. Let ζ(µ) = µs+wµ
s
2 +1

w+2 for µ > 0 and s ̸∈ (1, 4).

ζ ′(µ) =
s

w + 2

(
µs−1 +

w

2
µ

s
2−1
)

(46)

By Corollary (3) . if follows that∣∣∣∣∣12[ζ(
τ2

τ1
) + ζ( τ1

τ2
)

2
+ ζ
( τ2

τ1
+ τ1

τ2

2

)]
− 1

τ2

τ1
− τ1

τ2

∫ τ2
τ1

τ1
τ2

ζ(x)dx

∣∣∣∣∣
=

∣∣∣∣∣12
[
1

2

[τs2 + w(τ1τ2)
s
2 + τs1

τs1(w + 2)
+

τs1 + w(τ1τ2)
s
2 + τs2

τs2(w + 2)

]
+

( τ2

τ1
+ τ1

τ2
)s + w( τ2

τ1
+ τ1

τ2
)

s
2

w + 2

]
− 1

w + 2

[
( τ2

τ1
)s+1 − ( τ1

τ2
)s+1

(s+ 1)( τ2

τ1
− τ1

τ2
)

+ w
( τ2

τ1
)

s
2+1 − ( τ1

τ2
)

s
2+1

( s2 + 1)( τ2

τ1
− τ1

τ2
)

+ 1

]∣∣∣∣∣
=

∣∣∣∣∣Hs
w,s(τ1, τ2)

H(τs1, τ
s
2)

+H
s
2+1

w,( s
2+1)(

τ2
τ1

+
τ1
τ2

, 1)−Hs
w,s

( L(τ21, τ
2
2)

G2(τ1, τ2)
, 1
)∣∣∣∣∣

×
τ2

τ1
− τ1

τ2

16

[
2

∣∣∣∣∣ζ ′∣∣τ2τ1 ∣∣+ Fℵ
κ,λ

(∣∣ζ ′(τ1
τ2

)
∣∣− ∣∣ζ ′(τ2

τ1
)
∣∣)∣∣∣∣∣
]

=
τ22 − τ21
16τ1τ2

[
2
∣∣∣ s

w + 2

(
(
τ2
τ1

)s−1 +
w

2
(
τ2
τ1

)
s
2−1
)∣∣∣ (47)

+ Fℵ
κ,λ

(∣∣∣ s

w + 2

(
(
τ1
τ2

)s−1 +
w

2
(
τ1
τ2

)
s
2−1
)∣∣∣− ∣∣∣ s

w + 2

(
(
τ2
τ1

)s−1 +
w

2
(
τ2
τ1

)
s
2−1
)∣∣∣)]

=
(τ2 − τ1)A(τ1, τ2)

8G2(τ1, τ2)

[
2|s|
w + 2

(
G2(s−1)(τ2,

1

τ1
) +

w

2
Gs− 1

2 (τ2,
1

τ1
)
)

(48)

+ Fℵ
κ,λ

(
|s|

w + 2

(
G2(s−1)(τ1,

1

τ2
) +

w

2
Gs− 1

2 (τ1,
1

τ2
)
)
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− |s|
w + 2

(
G2(s−1)(τ2,

1

τ1
) +

w

2
Gs− 1

2 (τ2,
1

τ1
)

))]
,

obviously (47) and (48) yield (45). □

7. Conclusion

In this paper, we have defined and proved some Hermite-Hadamard and Féjer-
type inequalities for generalize convex functions of Riana type. In addition, we
find some interesting integral inequalities. All these results are new and amazing
in literature. These results of the convex analysis are the basis and argument for
many inequalities in pure and applied sciences. One thing to keep in mind, in the
field of convex analysis and inequalities if we face problems, generalized notions and
conceptions about convex functions are required to obtain pertinent and applicable
results. It is high time to find the applications of these inequalities along with
efficient numerical methods. We believe that our new results regarding generalize
convex function of Raina type will have a very deep research in this fascinating
field of inequalities and also in pure and applied sciences. The amazing techniques
and wonderful ideas of this paper can be extended on the co-ordinates along with
fractional calculus. In the future our goal is that we will continue our research work
in this direction furthermore.
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Abstract. The non-normality may occur in the data due to several reasons

such as the presence of the outlier or skewness. It leads to lose the power

and fail control Type I error probability of the tests which are used to test
the equality of the group means under heteroscedasticity. To overcome this

problem, a revised generalized F-test (RGF) is proposed to test the equality

of group means under heteroscedasticity in which non-normality is caused by
skewness in this study. An extensive Monte-Carlo simulation study is con-

ducted to investigate and compare the performance of the proposed test with

non-parametric alternatives under several values of skewness, and different
number of groups. The proposed RGF is the best choice in the high level of

skewness for k = 3, 4, 5. The Kruskal-Wallis test shows better performance
than the others in small and moderate sample sizes for k = 6, and 7. It is

shown that the proposed RGF test is superior than the non-parametric alter-

natives in the most of the conditions.

1. Introduction

Classical F-test (CF) is a powerful procedure in testing the equality of group
means when the assumptions hold. If one of the assumptions is violated, the power
of the CF test is adversely affected. Alexander-Govern (AG), Generalized F (GF),
Parametric Bootstrap (PB), and Welch tests are developed when the assumption
of variance homogeneity is violated. When the distributional assumption is vio-
lated or the distribution of the data is unknown, non-parametric methods may be
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more appropriate than their parametric counterparts. Kruskal-Wallis (KW) test is
the non-parametric counterpart of the CF test and does not depend on normality
assumption. In the case of unequal variances, Brunner et al. (1997) improved the
Brunner-Dette-Munk (BDM) test as the heteroscedastic alternative of KW test.

There are numerous articles about the effect of both non-normality and het-
eroscedasticity on testing the equality of several group means. To reduce the nega-
tive effect of non-normality, researchers have proposed to use the robust estimators
rather than the usual maximum likelihood (ML) estimators of the sample mean and
variance to obtain better control of Type I error probability under non-normality
and variance heterogeneity. Luh and Guo (1999) modified the AG trimmed mean
test and Welch trimmed mean test with Johnson’s normality transformation to
deal with non-normality. Keselman et al. (2002) improved the Welch-James het-
eroscedastic test. Luh and Guo (2005) adopted a trimmed means method in con-
junction with Hall’s invertible transformation into AG andWelch test. Cribbie et al.
(2007) found that the nonparametric procedure proposed by Brunner et al. (1997)
provided good Type I error control. Kulinskaya and Dollinger (2007) modified the
Welch test with the robust estimators: Huber (1964) proposed two estimators of
location and scale, Hampel’s M-estimator of location with scale estimated by the
median absolute deviation, and the trimmed mean with scale estimated by the
Winsorized standard deviation. Cribbie et al. (2012) proposed the modified PB
test based on the trimmed mean. Ochuko et al. (2015) modified the AG test using
the one-step m-estimator as central tendency measure to obtain a more power-
ful test under non-normality. Karagoz and Saracbasi (2016) proposed the robust
Brown-Forsythe tests based on median/MAD and median/Qn to test the equal-
ity of Weibull distributed group means in the presence of outliers. Ozdemir et al.
(2018) proposed the B2

tj test based on bootstrapped trimmed means. Yusof et al.
(2013) proposed the trimmed F-test combined with the robust scale estimators to
overcome the problem of inflating Type I error on testing equality of group means
for skewed distributions.

The non-normality may occur in the data due to different reasons such as the
presence of outliers or skewness. They may lead to lose power and fail to control
Type I error probability of the tests which are used to test the equality of group
means under heteroscedasticity. Cavus et al. (2017) modified the GF test to obtain
a powerful test for non-normality is caused by outliers. However, it is concluded
by the Monte-Carlo simulation study that MGF does not maintain its performance
when non-normality caused by skewness. Thus, the primary goal of this article
is to propose a revised test for testing the equality of the group means under
heteroscedasticity in which non-normality caused by skewness.

The rest of the article is organized as follows: Section 2 provides a literature
review about testing the equality of group means. Moreover, the alternative ways
in case of assumption violation are described. Section 3 describes the methods
that are used to test the equality of group means and the proposed method. An
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extensive Monte-Carlo simulation study, conducted in Section 4, and Section 5,
gives some concluding remarks.

2. Generalized Behrens-Fisher Problem in case of Non-Normality

The linear model underlying the ANOVA F test within the context of a one-way
independent group design is given in (1).

Yij = µi + ϵij (1)

where Yij is the dependent variable associated with the ith observation in the jth
group for i = 1, 2, ..., ni and j = 1, 2, ..., k. µi is the group mean for the ith group,
and ϵij is the random error component associated with Yij . The null hypothesis
H0 : µ1 = µ2 = ... = µk is tested classical F-test assumed that the ϵij ’s are
independent, normally distributed and have an equal variance σ2 for each group of
k. When the normality assumption does not hold, the non-parametric counterparts
of the CF test are used. In the following subsections, KW and BDM tests, which
are the non-parametric counterparts of CF, are introduced.

2.1. Bruner-Dette-Munk (BDM) test. Brunner et al. (1997) proposed the
following heterogeneous, rank-based F statistic:

TBDM =
N

tr(M11V )
QMQ′ (2)

where M = I − 1
J J , V = Ndiag(

s21
n1

,
s22
n2

, ...,
s2j
nj
), s2j = 1

N2(nj−1)

∑
j Rij − R̄j

2
,

Q = 1
N (R̄1 − 1

2 , R̄2 − 1
2 , ..., R̄j − 1

2 ) and R̄j =
1
nj

∑nj

i=1 Rij .

Rij is the rank of Xij . The null hypothesis is rejected if TBDM ≥ Fα,v1,v2 where

v1 = M11[tr(V )]2

tr(MVMV ) , v2 = [tr(V )]2

tr(V 2Λ) and Λ = diag( 1
n1−1 ,

1
n2−1 , ...,

1
nj−1 ).

2.2. Kruskal-Wallis (KW) test. The well-known non-parametric counterpart of
the CF test is the KW test was proposed by Kruskal and Wallis (1952). For this
test, the data is ranked so that the smallest of all observations receives a rank
of one, and the largest of all observations receives rank N . The test statistic is
calculated as

TKW =
12

N(N + 1)

k∑
j=1

R2
j

nj
− 3(N + 1) (3)

is distributed as χ2
k−1, where nj is the sample size for the jth sample, N is the total

sample size, and R2
j is the sum of the ranks for the jth sample.

Oshima and Algina (1992) showed that the KW test is sensitive to the presence
of unequal variances, particularly when the group sizes are unequal. Fagerland and



A REVISED GENERALIZED F-TEST 1039

Sandvick (2009) indicated that when the observations in each group have different
shapes, the KW test may give inaccurate results.

3. Revised Generalized F-Test (RGF)

Weerahandi (1995) proposed the Generalized F-test (GF) using the concept of
the generalized p-values to test the equality of several normal distributed group
means under heteroscedasticity. Yazici and Cavus (2021) discussed the performance
the GF test under various conditions. Cavus et al. (2017) proposed the modified
GF (MGF) test by replacing the maximum likelihood estimators of the sample
mean and variance with Huber (1964)’s M-estimators to overcome non-normality
caused by outlier(s). They conducted a Monte-Carlo simulation study to show
the performance of the MGF in terms of power and Type I error probability. It
was clearly pointed out that MGF outperforms the alternatives in the case of non-
normality caused by outlier(s).

In this paper, the performance of MGF is investigated under heteroscedasticity
where non-normality is caused by skewness. However, MGF does not maintain its
performance under this case. To solve this problem, MGF is improved by using the
Huber (1981) second proposal M-estimators instead of Huber (1964) M-estimators.
The difference between these estimators is that the calculation of the scale es-
timator. Huber (1964) uses the median absolute deviation (MAD) as the scale
estimator. However, since the second proposal takes into account the iterative ver-
sion of MAD, it is used in this study for skewed distributions. The test statistic of
the newly proposed test is given in (4).

TRGF =
TN (X̄∗

1 , X̄
∗
2 , ..., X̄

∗
k ;σ

2∗
1 , σ2∗

2 , ..., σ2∗
k )

TN (x̄1, x̄2, ..., x̄k; v21/U1, v22/u2, ..., v2k/Uk)

=

∑k
i=1(ni/σ

2∗
i )X̄2∗

i − [
∑k

i=1(niX̄
2∗
i )/σ2∗

i ]/
∑k

i=1 ni/σ
2∗
i∑k

i=1(niUi/v2i )x̄
2∗
i − [

∑k
i=1(niUi/v2i )x̄

2∗
i ]2/

∑k
i=1(niUi/v2i )

(4)

where x̄∗
i and σ2∗

i ’s are the mean and scale estimator of Huber (1981) second pro-
posal, respectively. U1, U2, ..., Uk are independent random variables with χ2

ni−1, i =

1, 2, ..., k. Furthermore, TN (X̄∗
1 , X̄

∗
2 , ..., X̄

∗
k ;σ

2∗
1 , σ2∗

2 , ..., σ2∗
k ) χ2

ni−1 independently
of U1, U2, ..., Uk. The observed value of TMGF∗ is defined as the value of MGF
at (X̄∗

1 , X̄
∗
2 , ..., X̄

∗
k ;V

2
1 , V

2
2 , ..., V

2
k ) = (x̄∗

1, x̄
∗
2, ..., x̄

∗
k; v

2
1 , v

2
2 , ..., v

2
k), the generalized p-

value is given in the following equation.

p = #

(
χ2
k−1

TN (x̄∗
1, x̄

∗
2, ..., x̄

∗
k; v

2
1/U1, v22/u2, ..., v2k/Uk

> 1

)
(5)

The p-value of the RGF test is the Monte-Carlo estimate which is computed with
10000 repetitions. It is the rate of the values which provides the condition given in
(5).
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4. Monte-Carlo Simulation Study

The performance of the RGF test is investigated under heteroscedasticity where
non-normality is caused by skewness over the non-parametric counterparts, KW
and BDM test. Moreover, MGF is used as the reference test to show the differ-
ence between the performance of the RGF. Skewed Exponential Power Distribution
(SEPD) is used to simulate the observations from a wide variety of distributions.
We included extreme departures from normality as measured by skewness and kur-
tosis. Zhu and Zilde (2009)’s version of the SEPD is used as follows:

f(x | µ, σ, t, p) =

{
1
σK(p) exp(− 1

p |
x−µ
2tσ |p) if x ≤ µ

1
σK(p) exp(− 1

p |
x−µ

2(1−t)σ |
p) if x > µ

(6)

where µ and σ are location and scale parameter, p ≥ 0 is the kurtosis parameter,
t ∈ [0, 1] is skewness parameter and K(p) is the normalization constant, K(p) =
1/[2p1/pΓ(1+1/p)]. The SEPD corresponds to the Normal distribution when p = 2
and t = 0.5.

SEPD departures from normality depending on fixed t and p parameters in
the simulation study. The Shapiro-Wilk normality test results depend on t and
n presented as percentage (%) in Table 1. The results are computed for 10000
samples. SEPD departures from normality when the n increases and t moves away
from 0.5 and right-skewed when t is smaller than 0.5, and left-skewed otherwise. A
range between 0.1 and 0.9 for t is used to find out the performance of the tests in
case of the non-normality caused by skewness.

Beyond the simulation part of this study, power and Type I error probabilities
of the tests are calculated with 10000 replications for the nominal size 0.05 con-
cerning the configuration factors which are sample size, effect size, design type, and
skewness. Cavus and Yazici (2020) implemented the doex (ver.1.2) R package is
used to compute the p-values of the RGF and MGF test. The values of Type I
error probability and power of the tests are tabulated for both balanced and un-
balanced designs and different number of groups (k = 3, 4, 5, 6, 7) in the following
subsections.

4.1. The properties of the tests to control the Type I error probability.
In this section, Type I error probabilities of the tests are given in Tables 2-6 un-
der different scenarios such as heteroscedasticity where non-normality caused by
skewness as well as sample size, design type, and the number of the groups (k).
According to the Bradley (1978) liberal criterion, a statistical test is considered
robust if the empirical Type I error probability is between 0.025 and 0.075 for a
nominal level 0.05. The value of the Type I error probability of a test is pointed
out with ′′∗′′ which is in this interval.

It is clearly concluded that MGF has a serious problem controlling the Type I
error probability when RGF outperforms others for most of the scenarios. Cavus
et al. (2017) showed that the MGF is the superior test for heteroscedasticity and
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Table 1. The values of skewness and non-normality (%) of the
SEPD with fixed n and t parameters

ti ni skewness non-normality (%)

0.1 10 0.467 0.159
30 0.741 0.579
60 0.827 0.925

0.2 10 0.399 0.121
30 0.630 0.393
60 0.705 0.737

0.3 10 0.288 0.083
30 0.462 0.208
60 0.523 0.412

0.4 10 0.151 0.058
30 0.246 0.086
60 0.278 0.141

0.5 10 0.001 0.046
30 0.000 0.049
60 0.000 0.050

0.6 10 -0.154 0.057
30 -0.252 0.089
60 -0.280 0.136

0.7 10 -0.289 0.081
30 -0.470 0.218
60 -0.523 0.417

0.8 10 -0.398 0.115
30 -0.632 0.401
60 -0.706 0.738

0.9 10 -0.467 0.160
30 -0.739 0.575
60 -0.828 0.927

non-normality caused by outliers. However, it could not maintain the performance
for non-normality caused by skewness in terms of Type I error probability. Since
MGF is out of the acceptable interval in almost all cases, it can not be evaluated
as a robust test.

Type I error probabilities of the RGF test seem to be very conservative when
equal and small sample sizes in case of testing equality of three group means (k = 3).
However, its Type I error probability is very close to the nominal level for large
samples with the high level of skewness. RGF and KW tests outperform others in
terms of the controlling Type I error probabilities for k = 3. KW test is better than
RGF in unbalanced designs when the RGF is better in balanced designs. While
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BDM is keeping its performance for all k’s, and KW are not keeping in higher
values of k.

Results indicated that the RGF (for k = 3, 4) and KW (for k = 3, 4, 5) tests are
fairly robust for deviations from the assumption of normality caused by skewness
in the case of small sample sizes. For the higher values of k, none of the procedures
considered in this paper control the Type I error probability.

Table 2. Type I error probabilities of the tests for k = 3

RGF MGF KW BDM RGF MGF KW BDM

ti ni = (5, 10, 15) ni = (10, 10, 10)

0.1 0.0549* 0.1428 0.0364* 0.0836 0.0800 0.1672 0.0819 0.0796

0.2 0.0529* 0.1326 0.0341* 0.0773 0.0689* 0.1553 0.0728* 0.0706*
0.3 0.0485* 0.1186 0.0308* 0.0702* 0.0615* 0.1382 0.0712* 0.0697*

0.4 0.0422* 0.1120 0.0304* 0.0629* 0.0536* 0.1238 0.0610* 0.0596*
0.5 0.0398* 0.1070 0.0265* 0.0552* 0.0463* 0.1121 0.0561* 0.0555*

0.6 0.0409* 0.1109 0.0259* 0.0603* 0.0543* 0.1216 0.0612* 0.0606*

0.7 0.0458* 0.1209 0.0299* 0.0694* 0.0617* 0.1372 0.0660* 0.0652*
0.8 0.0501* 0.1337 0.0334* 0.0742* 0.0672* 0.1542 0.0711* 0.0686*

0.9 0.0545* 0.1414 0.0377* 0.0847 0.0782 0.1685 0.0784 0.0759

ti ni = (15, 30, 45) ni = (30, 30, 30)

0.1 0.0804 0.1078 0.0692* 0.1577 0.0975 0.1274 0.1322 0.1245

0.2 0.0725* 0.1049 0.0572* 0.1322 0.0792 0.1160 0.1116 0.1049

0.3 0.0649* 0.0893 0.0462* 0.0992 0.0696* 0.1013 0.0876 0.0816
0.4 0.0576* 0.0814 0.0310* 0.0710* 0.0593* 0.0831 0.0684* 0.0646*

0.5 0.0526* 0.0778 0.0307* 0.0595* 0.0524* 0.0779 0.0598* 0.0567*

0.6 0.0546* 0.0802 0.0322* 0.0693* 0.0547* 0.0818 0.0668* 0.0626*
0.7 0.0620* 0.0893 0.0421* 0.0944 0.0651* 0.0970 0.0875 0.0815

0.8 0.0703* 0.0978 0.0535* 0.1239 0.0787 0.1150 0.1080 0.1017
0.9 0.0776 0.1025 0.0647* 0.1511 0.0964 0.1292 0.1325 0.1241

ti ni = (30, 60, 90) ni = (60, 60, 60)

0.1 0.0959 0.1077 0.1198 0.2587 0.1054 0.1184 0.2117 0.2003
0.2 0.0804 0.0931 0.0907 0.1998 0.0969 0.1144 0.1704 0.1610

0.3 0.0672* 0.0800 0.0585* 0.1332 0.0744* 0.0922 0.1170 0.1095
0.4 0.0556* 0.0671* 0.0383* 0.0797 0.0635* 0.0770 0.0783 0.0737*
0.5 0.0553* 0.0659* 0.0319* 0.0643* 0.0581* 0.0686* 0.0644* 0.0603*

0.6 0.0550* 0.0674* 0.0376* 0.0784 0.0620* 0.0760 0.0738* 0.0709*

0.7 0.0666* 0.0781 0.0567* 0.1296 0.0688* 0.0892 0.1141 0.1060
0.8 0.0777 0.0925 0.0877 0.1969 0.0899 0.1056 0.1662 0.1558

0.9 0.0913 0.1028 0.1212 0.2620 0.0970 0.1136 0.2097 0.1990

t: skewness parameter of SEPD, RGF: new proposed test, (σ1, σ2, σ3) = (0.2, 0.4, 0.6)
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Table 3. Type I error probabilities of the tests for k = 4

RGF MGF KW BDM RGF MGF KW BDM

ti ni = (4, 8, 12, 16) ni = (10, 10, 10, 10)

0.1 0.0691* 0.1810 0.0333* 0.0864 0.0973 0.2272 0.0831 0.0783
0.2 0.0626* 0.1714 0.0318* 0.0784 0.0847 0.2078 0.0761 0.0703*

0.3 0.0529* 0.1475 0.0280* 0.0654* 0.0739* 0.1805 0.0720* 0.0674*

0.4 0.0438* 0.1375 0.0258* 0.0561* 0.0636* 0.1617 0.0640* 0.0605*
0.5 0.0416* 0.1318 0.0244 0.0542* 0.0544* 0.1467 0.0596* 0.0566*

0.6 0.0467* 0.1401 0.0240 0.0592* 0.0627* 0.1585 0.0640* 0.0608*
0.7 0.0540* 0.1599 0.0282* 0.0710* 0.0763 0.1836 0.0739* 0.0692*

0.8 0.0600* 0.1716 0.0300* 0.0785 0.0862 0.2055 0.0787 0.0734*

0.9 0.0664* 0.1863 0.0294* 0.0852 0.0998 0.2282 0.0839 0.0779

ti ni = (12, 24, 36, 48) ni = (30, 30, 30, 30)

0.1 0.0944 0.1352 0.0707* 0.1850 0.1143 0.1606 0.1470 0.1349

0.2 0.0823 0.1275 0.0521* 0.1466 0.0962 0.1442 0.1281 0.1163
0.3 0.0659* 0.1102 0.0369* 0.1025 0.0798 0.1191 0.0951 0.0854

0.4 0.0544* 0.0894 0.0257* 0.0700* 0.0618* 0.0961 0.0738* 0.0663*

0.5 0.0514* 0.0859 0.0229 0.0573* 0.0578* 0.0905 0.0649* 0.0587*
0.6 0.0602* 0.0967 0.0326* 0.0764 0.0616* 0.0950 0.0698* 0.0634*

0.7 0.0695* 0.1075 0.0419* 0.1029 0.0741* 0.1172 0.0914 0.0824

0.8 0.0800 0.1230 0.0529* 0.1454 0.0940 0.1407 0.1197 0.1083
0.9 0.0943 0.1276 0.0662* 0.1798 0.1134 0.1633 0.1464 0.1342

ti ni = (24, 48, 72, 96) ni = (60, 60, 60, 60)

0.1 0.1036 0.1181 0.1264 0.3220 0.1250 0.1470 0.2469 0.2215

0.2 0.0883 0.1071 0.0910 0.2403 0.1094 0.1361 0.1985 0.1816

0.3 0.0708* 0.0879 0.0548* 0.1517 0.0856 0.1093 0.1342 0.1208
0.4 0.0580* 0.0752 0.0316* 0.0835 0.0684* 0.0871 0.0854 0.0784

0.5 0.0568* 0.0714* 0.0254* 0.0606* 0.0584* 0.0752 0.0649 0.0577*

0.6 0.0625* 0.0785 0.0341* 0.0841 0.0647* 0.0832 0.0814 0.0739*
0.7 0.0713* 0.0936 0.0585* 0.1504 0.0823 0.1066 0.1270 0.1164

0.8 0.0880 0.1088 0.0911 0.2349 0.1055 0.1301 0.1925 0.1760

0.9 0.1085 0.1228 0.1268 0.3159 0.1209 0.1385 0.2472 0.2269

t: skewness parameter of SEPD, RGF: new proposed test, (σ1, σ2, σ3, σ4) = (0.2, 0.4, 0.6, 0.8)

Several valuable results are obtained. Despite the BDM is the heteroscedastic
alternative of the KW test, the property of KW to control Type I error probability
is better than BDM for balanced designs and k = 3. For higher values of k, the
BDM test controls the Type I error probability better than the KW test. KW is
not able to control Type I error when the distribution near normal.

4.2. The results of penalized power of the tests. Monte-Carlo simulation
studies are used to compare the performance of the tests in terms of power and Type
I error probability. However, any comparison of the powers is invalid when Type I
error probabilities are different. Cavus et al. (2021) proposed the penalized power
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approach in (7) to compare the power of the tests when Type I error probabilities
are different.

γ =
1− β√

1 +
∣∣∣1− αi

α0

∣∣∣ (7)

Table 4. Type I error probabilities of the tests for k = 5

RGF MGF KW BDM RGF MGF KW BDM

ti ni = (5, 8, 10, 12, 15) ni = (10, 10, 10, 10, 10)

0.1 0.1025 0.2525 0.0435* 0.0924 0.1178 0.2841 0.0866 0.0769

0.2 0.0851 0.2308 0.0397* 0.0810 0.1043 0.2544 0.0802 0.0734*
0.3 0.0730* 0.2021 0.0376* 0.0695* 0.0852 0.2232 0.0714* 0.0655*

0.4 0.0589* 0.1776 0.0324* 0.0605* 0.0720 * 0.1959 0.0682* 0.0615*

0.5 0.0546* 0.1697 0.0299* 0.0557* 0.0629* 0.1772 0.0594* 0.0548*
0.6 0.0596* 0.1832 0.0272* 0.0577* 0.0695* 0.1853 0.0629* 0.0577*

0.7 0.0662* 0.1978 0.0288* 0.0645* 0.0834* 0.2230 0.0706* 0.0650*

0.8 0.0816 0.2267 0.0384* 0.0772 0.0995 0.2464 0.0794 0.0714*
0.9 0.0959 0.2517 0.0415* 0.0885 0.1158 0.2758 0.0839 0.0760

ti ni = (15, 24, 30, 36, 45) ni = (30, 30, 30, 30, 30)

0.1 0.1149 0.1662 0.0918 0.1884 0.1288 0.1896 0.1590 0.1415

0.2 0.0965 0.1481 0.0685* 0.1489 0.1077 0.1680 0.1338 0.1191

0.3 0.0833 0.1338 0.0526* 0.1079 0.0894 0.1390 0.1003 0.0888
0.4 0.0681* 0.1064 0.0364* 0.0721* 0.0680* 0.1100 0.0786 0.0699*

0.5 0.0581* 0.0983 0.0327* 0.0587* 0.0599* 0.0994 0.0655* 0.0578*

0.6 0.0586* 0.1006 0.0362* 0.0695* 0.0652* 0.1069 0.0748* 0.0659*
0.7 0.0780 0.1262 0.0538* 0.1064 0.0794 0.1322 0.0941 0.0830

0.8 0.0920 0.1467 0.0716* 0.1488 0.1083 0.1662 0.1326 0.1176

0.9 0.1114 0.1655 0.0909 0.1886 0.1292 0.1889 0.1565 0.1381

ti ni = (30, 48, 60, 72, 90) ni = (60, 60, 60, 60, 60)

0.1 0.1242 0.1446 0.1714 0.3440 0.1431 0.1731 0.2819 0.2525

0.2 0.1062 0.1336 0.1256 0.2608 0.1204 0.1545 0.2214 0.1955
0.3 0.0847 0.1088 0.0734* 0.1544 0.0933 0.1201 0.1428 0.1264
0.4 0.0671* 0.0881 0.0454* 0.0862 0.0695* 0.0913 0.0856 0.0725*

0.5 0.0555* 0.0769 0.0364* 0.0606* 0.0615* 0.0784 0.0660* 0.0578*
0.6 0.0668* 0.0870 0.0451* 0.0853 0.0688* 0.0917 0.0859 0.0737*

0.7 0.0819 0.1128 0.0753 0.1556 0.0867 0.1158 0.1382 0.1218
0.8 0.1056 0.1345 0.1268 0.2630 0.1175 0.1500 0.2109 0.1880

0.9 0.1306 0.1455 0.1704 0.3464 0.1368 0.1693 0.2734 0.2451

t: skewness parameter of SEPD, RGF: new proposed test,
(σ1, σ2, σ3, σ4, σ5) = (0.2, 0.4, 0.6, 0.8, 1.0)
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Table 5. Type I error probabilities of the tests for k = 6

RGF MGF KW BDM RGF MGF KW BDM

ti ni = (4, 6, 8, 12, 14, 16) ni = (10, 10, 10, 10, 10, 10)

0.1 0.1038 0.2959 0.0321* 0.0920 0.1419 0.3390 0.0962 0.0848
0.2 0.0922 0.2699 0.0276* 0.0764 0.1190 0.2991 0.0863 0.0772

0.3 0.0726* 0.2406 0.0235 0.0650* 0.0957 0.2566 0.0725* 0.0640*

0.4 0.0616* 0.2202 0.0220 0.0536* 0.0775 0.2255 0.0651* 0.0579*
0.5 0.0574* 0.2034 0.0229 0.0514* 0.0661* 0.2073 0.0596* 0.0530*

0.6 0.0612* 0.2115 0.0237 0.0551* 0.0791 0.2190 0.0630* 0.0575*
0.7 0.0806 0.2376 0.0288* 0.0689* 0.0962 0.2588 0.0730* 0.0656*

0.8 0.0930 0.2680 0.0350* 0.0839 0.1179 0.2916 0.0835 0.0731*

0.9 0.1089 0.2931 0.0355* 0.0957 0.1395 0.3259 0.0926 0.0823

ti ni = (12, 18, 24, 36, 42, 48) ni = (30, 30, 30, 30, 30, 30)

0.1 0.1244 0.1911 0.0783 0.2213 0.1452 0.2211 0.1732 0.1505

0.2 0.1085 0.1762 0.0617* 0.1704 0.1175 0.189 0.1422 0.1203
0.3 0.0844 0.1473 0.0437* 0.1125 0.0954 0.1551 0.1036 0.0884

0.4 0.0648* 0.1106 0.0283* 0.0709* 0.0744* 0.1212 0.0809 0.0683*

0.5 0.0579* 0.1055 0.0244 0.0540* 0.0636* 0.1083 0.0686* 0.0595*
0.6 0.0614* 0.1145 0.0289* 0.0694* 0.0704* 0.1191 0.0792 0.0663*

0.7 0.0826 0.1411 0.0451* 0.1117 0.0873 0.1479 0.0997 0.0862

0.8 0.1022 0.1677 0.0597* 0.1673 0.1185 0.1874 0.1380 0.1203
0.9 0.1229 0.1907 0.0760 0.2220 0.1446 0.2147 0.1718 0.1472

ti ni = (24, 36, 48, 72, 84, 96) ni = (60, 60, 60, 60, 60, 60)

0.1 0.1392 0.1681 0.1542 0.3980 0.1608 0.1956 0.3084 0.2722

0.2 0.1161 0.1503 0.1064 0.2932 0.1319 0.1697 0.2356 0.2032

0.3 0.0855 0.1194 0.0616* 0.1764 0.1014 0.1331 0.1534 0.1337
0.4 0.0637* 0.0929 0.0321* 0.0826 0.0723* 0.0950 0.0866 0.0756

0.5 0.0555* 0.0798 0.0245 0.0583* 0.0640* 0.0825 0.0679* 0.0546*

0.6 0.0637* 0.0899 0.0333* 0.0866 0.0699* 0.0947 0.0862 0.0727*
0.7 0.0872 0.1176 0.0621* 0.1761 0.0915 0.1278 0.1443 0.1239

0.8 0.1129 0.1495 0.1046 0.2997 0.1300 0.1668 0.2314 0.2038

0.9 0.1396 0.1685 0.1500 0.3997 0.1584 0.1923 0.3026 0.2680

t: skewness parameter of SEPD, RGF: new proposed test,

(σ1, σ2, σ3, σ4, σ5, σ6) = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2)
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Table 6. Type I error probabilities of the tests for k = 7

RGF MGF KW BDM RGF MGF KW BDM

ti ni = (4, 6, 8, 10, 12, 14, 16) ni = (10, 10, 10, 10, 10, 10, 10)

0.1 0.1218 0.3421 0.0356* 0.0935 0.1597 0.3814 0.0985 0.0840
0.2 0.1077 0.3190 0.0341* 0.0855 0.1349 0.3409 0.0854 0.0765

0.3 0.0860 0.2743 0.0276* 0.0661* 0.1066 0.2914 0.0739* 0.0643*

0.4 0.0704* 0.2507 0.0234 0.0562* 0.0840 0.2552 0.0647* 0.0558*
0.5 0.0670* 0.2281 0.0226 0.0526* 0.0724 0.2327 0.0596* 0.0519*

0.6 0.0699* 0.2348 0.0256* 0.0574* 0.0855 0.2499 0.0661* 0.0586*
0.7 0.0852 0.2710 0.0304* 0.0675* 0.1113 0.2981 0.0747* 0.0654*

0.8 0.1037 0.3079 0.0319* 0.0804 0.1359 0.3441 0.0895 0.0786

0.9 0.1229 0.3459 0.0366* 0.0984 0.1606 0.3750 0.0994 0.0870

ti ni = (12, 18, 24, 30, 36, 42, 48) ni = (30, 30, 30, 30, 30, 30, 30)

0.1 0.1396 0.2132 0.0849 0.2290 0.1599 0.2429 0.1791 0.1518

0.2 0.1194 0.1920 0.0642* 0.1753 0.1274 0.2097 0.1435 0.1234
0.3 0.0930 0.1635 0.0436* 0.1168 0.1030 0.1698 0.1066 0.0905

0.4 0.0717* 0.1277 0.0306* 0.0696* 0.0779 0.1333 0.0793 0.0668*

0.5 0.0627* 0.1117 0.0244 0.0540* 0.0632* 0.1161 0.0686* 0.0577*
0.6 0.0677* 0.1232 0.0280* 0.0697* 0.0746* 0.1302 0.0782 0.0669*

0.7 0.0880 0.1578 0.0430* 0.1194 0.0960 0.1673 0.1046 0.0882

0.8 0.1132 0.1886 0.0628* 0.1764 0.1293 0.2119 0.1437 0.1213
0.9 0.1358 0.2072 0.0793 0.2276 0.1580 0.2391 0.1820 0.1563

ti ni = (24, 36, 48, 60, 72, 84, 96) ni = (60, 60, 60, 60, 60, 60, 60)

0.1 0.1600 0.1890 0.1759 0.4405 0.1804 0.2197 0.3376 0.2961

0.2 0.1238 0.1606 0.1185 0.3218 0.1466 0.1934 0.2578 0.2237

0.3 0.0923 0.1312 0.0659* 0.1859 0.1058 0.1477 0.1660 0.1430
0.4 0.0722* 0.1019 0.0370* 0.0898 0.0762 0.1040 0.0907 0.0766

0.5 0.0612* 0.0885 0.0267* 0.0566* 0.0658* 0.0867 0.0682* 0.0537*

0.6 0.0657* 0.0954 0.0369* 0.0873 0.0719* 0.0997 0.0848 0.0704*
0.7 0.0875 0.1260 0.0668* 0.1818 0.0981 0.1396 0.1506 0.1278

0.8 0.1242 0.1621 0.1255 0.3208 0.1418 0.1862 0.2552 0.2217

0.9 0.1569 0.1872 0.1780 0.4419 0.1768 0.2159 0.3295 0.2853

t: skewness parameter of SEPD, RGF: new proposed test,

(σ1, σ2, σ3, σ4, σ5, σ6, σ7) = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4)

where β is Type II error rate, αi is Type I error of the test and α0 is the nominal
level. Penalized power adjusts the power function with the square root of the
percentile deviation between Type I error probability and the nominal level. Thus,
penalized power is used to compare the power of the tests in the simulation studies.

Penalized power of the tests are given in Tables 7-11 under different scenarios
such as sample size, design type and the number of the groups (k). Indeed a
test can be evaluated as an acceptable test when Type I error probability of the
test is near to the nominal level and its power as high as possible according to
Neyman-Pearson theory. Thus, it is clearly seen that MGF is more powerful than
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the others. However, MGF can not control Type I error probability so that it can
not be considered an acceptable test. The second powerful test is RGF especially
for small sample size and k’s. Also, it performs better in the unbalanced over the
balanced designs. However, its power, like the others, is adversely affected by the
increasing number of groups. The power of KW and BDM tests is least affected
by skewness. There are cases where the BDM test performs better than the others
in terms of power for small sample sizes. The power of the KW test is the lowest
one for unbalanced designs with small sample sizes. However, it is seen that KW
is more powerful than RGF especially for balanced designs when the sample size is
increased.

From the results in Tables 7-11, KW and BDM tests have similar power when
the skewness level is high (t ∼ 0.1 or 0.9) for k = 3, 4. However, BDM is more
powerful than KW in small sample sizes when the distribution is nearly normal.
(t ∼ 0.5). Moreover, BDM is more powerful than KW for unbalanced designs for
k = 5, 6, 7 whereas KW is more powerful for balanced designs.

5. Conclusions

There are many modifications proposed to the parametric tests instead of using
non-parametric tests in case of non-normality and heteroscedasticity. Cavus et
al. (2017) proposed a modification to the GF test under non-normality caused
by outliers replacing ML estimators of the sample mean and variance with robust
estimators. It was shown that the MGF test is powerful than the alternatives in
a Monte-Carlo simulation study. Also, the effectiveness of MGF was illustrated by
an example of analyzing regional export data by Cavus et al. (2018a). However, it
does not maintain the performance under non-normality caused by skewness.

In this study, MGF is revised by using the advantage of the iterative formed scale
estimator of Huber (1981) second proposal for non-normality caused by skewness.
The performance of the newly proposed RGF test is investigated in an extensive
Monte-Carlo simulation study in terms of Type I error probability and penalized
power of the test. According to the results which are given in the previous sub-
sections, RGF is superior when non-normality caused by skewness, especially for
lower k’s and unbalanced designs. It is more powerful than KW and a better test
to control Type I error probability, while the BDM test may be useful for higher
k’s. However, BDM can not control Type I error probability in case of high values
of skewness.

As a result, we suggest researchers use RGF test for k = 3, 4, 5. Because of the
decreasing performance of RGF for k = 6, 7, the KW test may be more appropriate
to use for the high level of skewness in small and moderate sample sizes-unbalanced
designs. However, BDM test should be used for slightly skewed normal distributions
(t ∼ 0.5) in small and moderate sample sizes-balanced designs. It is concluded and
advised that RGF is the best choice in the high level of skewness because of its
better performance to control Type I error probability.
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Table 7. Penalized power of the tests for k = 3

RGF MGF KW BDM RGF MGF KW BDM RGF MGF KW BDM

ti ∆i ni = (5, 10, 15) ni = (10, 10, 10) ni = (15, 30, 45)

0.1 0.2 0,1078 0,1212 0,0546 0,0784 0,0732 0,0961 0,0770 0,0775 0,2828 0,2602 0,1409 0,1181
0.3 0,2151 0,2012 0,1440 0,1579 0,1191 0,1390 0,1433 0,1450 0,5746 0,5071 0,4342 0,3054
0.5 0,6112 0,4292 0,5148 0,4479 0,3554 0,3140 0,4344 0,4437 0,7869 0,6795 0,8408 0,5567

0.2 0.2 0,1101 0,1270 0,0596 0,0853 0,0760 0,0975 0,0827 0,0821 0,3001 0,2722 0,1724 0,1440
0.3 0,2199 0,2076 0,1418 0,1660 0,1315 0,1439 0,1580 0,1599 0,6036 0,5146 0,4959 0,3530
0.5 0,6086 0,4415 0,5015 0,4772 0,3718 0,3106 0,4469 0,4563 0,8275 0,6880 0,9248 0,6079

0.3 0.2 0,1088 0,1265 0,0673 0,0964 0,0793 0,1024 0,0898 0,0913 0,3232 0,3025 0,2107 0,1934
0.3 0,2172 0,2093 0,1494 0,1858 0,1383 0,1545 0,1683 0,1713 0,6443 0,5633 0,5561 0,4424
0.5 0,6036 0,4558 0,4821 0,5064 0,3978 0,3376 0,4604 0,4670 0,8740 0,7459 0,9498 0,7024

0.4 0.2 0,1029 0,1307 0,0739 0,1177 0,0898 0,1113 0,1099 0,1106 0,3486 0,3227 0,2206 0,2714
0.3 0,2080 0,2189 0,1648 0,2120 0,1626 0,1736 0,2015 0,2046 0,6872 0,5971 0,5327 0,5753
0.5 0,5752 0,4668 0,4870 0,5590 0,4379 0,3603 0,5032 0,5115 0,9282 0,7812 0,8409 0,8321

0.5 0.2 0,1165 0,1527 0,0848 0,1487 0,1019 0,1298 0,1301 0,1312 0,3798 0,3415 0,2684 0,3711
0.3 0,2286 0,2447 0,1856 0,2711 0,1853 0,2017 0,2379 0,2398 0,7289 0,6154 0,5744 0,6886
0.5 0,5585 0,4774 0,4861 0,6327 0,4450 0,3800 0,5394 0,5416 0,9707 0,7983 0,8424 0,9125

0.6 0.2 0,1299 0,1606 0,0996 0,1670 0,1217 0,1412 0,1457 0,1462 0,4017 0,3566 0,3380 0,4261
0.3 0,2483 0,2546 0,2070 0,3078 0,2055 0,2097 0,2553 0,2552 0,7215 0,6091 0,6276 0,6889
0.5 0,5863 0,4746 0,4975 0,6385 0,4712 0,3758 0,5302 0,5301 0,9512 0,7844 0,8512 0,8455

0.7 0.2 0,1514 0,1613 0,1240 0,1949 0,1394 0,1583 0,1668 0,1673 0,4104 0,3655 0,4431 0,4346
0.3 0,2793 0,2539 0,2363 0,3244 0,2265 0,2203 0,2726 0,2727 0,6904 0,5848 0,7196 0,6246
0.5 0,6116 0,4540 0,5216 0,6132 0,4623 0,3684 0,5228 0,5224 0,8932 0,7415 0,9226 0,7256

0.8 0.2 0,1794 0,1751 0,1468 0,2203 0,1528 0,1643 0,1781 0,1800 0,4112 0,3597 0,5213 0,4311
0.3 0,3221 0,2582 0,2726 0,3577 0,2358 0,2215 0,2791 0,2817 0,6701 0,5663 0,7920 0,5678
0.5 0,6523 0,4347 0,5488 0,6101 0,4525 0,3524 0,5070 0,5119 0,8386 0,7094 0,9605 0,6339

0.9 0.2 0,1874 0,1783 0,1659 0,2259 0,1558 0,1686 0,1816 0,1812 0,4152 0,3633 0,5083 0,4100
0.3 0,3205 0,2572 0,2971 0,3462 0,2356 0,2281 0,2776 0,2792 0,6470 0,5543 0,7420 0,5296
0.5 0,6278 0,4243 0,5708 0,5787 0,4273 0,3468 0,4927 0,4964 0,7974 0,6921 0,8743 0,5741

ti ∆i ni = (30, 30, 30) ni = (30, 60, 90) ni = (60, 60, 60)

0.1 0.2 0,1744 0,1673 0,1162 0,1153 0,4705 0,4429 0,2178 0,1703 0,3568 0,3304 0,1674 0,1666
0.3 0,4156 0,3687 0,2942 0,2985 0,6958 0,6556 0,5432 0,3779 0,6275 0,5873 0,3832 0,3902
0.5 0,7082 0,6200 0,5991 0,6170 0,7221 0,6814 0,6460 0,4396 0,6888 0,6498 0,4858 0,4994

0.2 0.2 0,1950 0,1756 0,1372 0,1371 0,5118 0,4793 0,2750 0,2101 0,3675 0,3356 0,1992 0,1997
0.3 0,4558 0,3891 0,3289 0,3340 0,7612 0,7066 0,6321 0,4355 0,6489 0,5957 0,4363 0,4436
0.5 0,7822 0,6477 0,6517 0,6709 0,7886 0,7328 0,7425 0,5003 0,7183 0,6611 0,5417 0,5572

0.3 0.2 0,2187 0,1987 0,1727 0,1735 0,5665 0,5278 0,4010 0,2968 0,4163 0,3844 0,2719 0,2739
0.3 0,4862 0,4190 0,4031 0,4122 0,8324 0,7645 0,8149 0,5547 0,7371 0,6656 0,5436 0,5587
0.5 0,8305 0,6891 0,7337 0,7599 0,8626 0,7906 0,9245 0,6127 0,8198 0,7364 0,6536 0,6756

0.4 0.2 0,2408 0,2313 0,2298 0,2300 0,6386 0,5896 0,4658 0,4627 0,4735 0,4432 0,3933 0,3978
0.3 0,5293 0,4699 0,4959 0,5043 0,9144 0,8318 0,8204 0,7395 0,7976 0,7270 0,6957 0,7123
0.5 0,8946 0,7561 0,8331 0,8558 0,9483 0,8632 0,9002 0,7921 0,8874 0,8058 0,7991 0,8237

0.5 0.2 0,2909 0,2722 0,3125 0,3125 0,6706 0,6261 0,5352 0,6229 0,5321 0,4955 0,5297 0,5383
0.3 0,5771 0,5041 0,5880 0,5956 0,9216 0,8413 0,8106 0,8495 0,8418 0,7760 0,8062 0,8299
0.5 0,9481 0,7754 0,8934 0,9163 0,9509 0,8710 0,8569 0,8818 0,9275 0,8536 0,8811 0,9106

0.6 0.2 0,3207 0,2985 0,3648 0,3650 0,7084 0,6465 0,6586 0,6539 0,5500 0,5091 0,5824 0,5846
0.3 0,5910 0,5102 0,6086 0,6193 0,9285 0,8374 0,8672 0,7871 0,8186 0,7379 0,7745 0,7870
0.5 0,9264 0,7557 0,8458 0,8721 0,9535 0,8613 0,8951 0,7986 0,8978 0,8109 0,8229 0,8396

0.7 0.2 0,3271 0,2971 0,3665 0,3705 0,6722 0,6204 0,7653 0,5538 0,5509 0,4886 0,5171 0,5301
0.3 0,5714 0,4799 0,5665 0,5787 0,8457 0,7780 0,9212 0,6158 0,7867 0,6836 0,6359 0,6571
0.5 0,8450 0,6898 0,7398 0,7652 0,8665 0,8001 0,9391 0,6211 0,8523 0,7485 0,6618 0,6865

0.8 0.2 0,3238 0,2913 0,3680 0,3702 0,6472 0,5802 0,6587 0,4695 0,5162 0,4704 0,4616 0,4718
0.3 0,5377 0,4530 0,5348 0,5434 0,7857 0,7165 0,7462 0,5015 0,6912 0,6314 0,5329 0,5476
0.5 0,7695 0,6292 0,6688 0,6876 0,8022 0,7352 0,7551 0,5039 0,7455 0,6874 0,5483 0,5662

0.9 0.2 0,3038 0,2845 0,3549 0,3565 0,6033 0,5514 0,5738 0,4158 0,5098 0,4587 0,4276 0,4345
0.3 0,4946 0,4320 0,4976 0,5058 0,7261 0,6793 0,6360 0,4357 0,6681 0,6112 0,4777 0,4888
0.5 0,6954 0,5957 0,6046 0,6233 0,7400 0,6974 0,6423 0,4369 0,7178 0,6632 0,4882 0,5012

t: skewness parameter of SEPD, ∆: effect size, RGF: new proposed test, (σ1, σ2, σ3) = (0.2, 0.4, 0.6)
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Table 8. Penalized power of the tests for k = 4

RGF MGF KW BDM RGF MGF KW BDM RGF MGF KW BDM

ti ∆i ni = (4, 8, 12, 16) ni = (10, 10, 10, 10) ni = (12, 24, 36, 48)

0.1 0.2 0,0789 0,1112 0,0360 0,0566 0,0418 0,1696 0,0654 0,0560 0,1556 0,1550 0,0737 0,0734
0.3 0,1257 0,1476 0,0743 0,0873 0,0541 0,1913 0,0967 0,0809 0,3288 0,2937 0,2099 0,1545
0.5 0,3244 0,2792 0,2677 0,2377 0,1116 0,2931 0,2309 0,1991 0,6802 0,5720 0,7035 0,4335

0.2 0.2 0,0758 0,1075 0,0372 0,0628 0,0417 0,1645 0,0713 0,0571 0,1559 0,1574 0,0907 0,0829
0.3 0,1223 0,1420 0,0740 0,0977 0,0543 0,1894 0,1012 0,0813 0,3495 0,3011 0,2643 0,1800
0.5 0,3201 0,2785 0,2618 0,2500 0,1112 0,3036 0,2410 0,1973 0,7257 0,5876 0,8117 0,4874

0.3 0.2 0,0760 0,1072 0,0405 0,0701 0,0439 0,1553 0,0696 0,0557 0,1798 0,1701 0,0993 0,1106
0.3 0,1262 0,1524 0,0785 0,1110 0,0569 0,1853 0,1063 0,0846 0,3829 0,3298 0,2656 0,2354
0.5 0,3430 0,2950 0,2575 0,2861 0,1163 0,3105 0,2556 0,2048 0,8042 0,6255 0,7529 0,5960

0.4 0.2 0,0768 0,1151 0,0479 0,0808 0,0420 0,1596 0,0782 0,0584 0,2055 0,2003 0,1124 0,1560
0.3 0,1292 0,1609 0,0918 0,1312 0,0591 0,2012 0,1216 0,0918 0,4439 0,3836 0,2925 0,3447
0.5 0,3375 0,3079 0,2605 0,3397 0,1350 0,3437 0,2900 0,2227 0,8784 0,6939 0,7043 0,7407

0.5 0.2 0,0794 0,1208 0,0566 0,0980 0,0473 0,1726 0,0912 0,0659 0,2332 0,2171 0,1495 0,2281
0.3 0,1331 0,1680 0,0995 0,1623 0,0673 0,2244 0,1410 0,1044 0,4726 0,4019 0,3310 0,4555
0.5 0,3372 0,3157 0,2754 0,3800 0,1481 0,3686 0,3107 0,2300 0,9048 0,7051 0,7116 0,8521

0.6 0.2 0,0887 0,1234 0,0599 0,1127 0,0561 0,1877 0,1054 0,0800 0,2413 0,2259 0,2043 0,2718
0.3 0,1515 0,1793 0,1097 0,1807 0,0807 0,2376 0,1652 0,1232 0,4608 0,3930 0,4213 0,4791
0.5 0,3775 0,3110 0,2948 0,4145 0,1636 0,3804 0,3294 0,2514 0,8339 0,6595 0,7803 0,7601

0.7 0.2 0,1091 0,1371 0,0774 0,1299 0,0651 0,2043 0,1217 0,0969 0,2467 0,2330 0,2792 0,3014
0.3 0,1840 0,1835 0,1402 0,2105 0,0917 0,2566 0,1790 0,1445 0,4601 0,3939 0,5225 0,4767
0.5 0,4022 0,3057 0,3373 0,4228 0,1675 0,3878 0,3417 0,2787 0,7793 0,6246 0,8579 0,6689

0.8 0.2 0,1170 0,1392 0,0886 0,1476 0,0719 0,2347 0,1316 0,1082 0,2639 0,2386 0,3562 0,3114
0.3 0,1886 0,1851 0,1601 0,2263 0,1009 0,2826 0,1915 0,1584 0,4530 0,3797 0,6002 0,4430
0.5 0,3986 0,3021 0,3594 0,4362 0,1709 0,4016 0,3480 0,2909 0,7267 0,5845 0,9108 0,5666

0.9 0.2 0,1246 0,1444 0,1000 0,1623 0,0801 0,2463 0,1421 0,1198 0,2642 0,2461 0,3574 0,3131
0.3 0,1949 0,1914 0,1752 0,2451 0,1074 0,2930 0,2046 0,1747 0,4338 0,3835 0,5760 0,4194
0.5 0,4006 0,3022 0,3831 0,4416 0,1798 0,4091 0,3596 0,3084 0,6756 0,5769 0,8235 0,5146

ti ∆i ni = (30, 30, 30, 30) ni = (24, 48, 72, 96) ni = (60, 60, 60, 60)

0.1 0.2 0,0913 0,1152 0,0884 0,0940 0,2682 0,2588 0,1112 0,0960 0,1624 0,1265 0,1153 0,1597
0.3 0,1707 0,1950 0,1671 0,1816 0,5437 0,5083 0,3317 0,2218 0,3511 0,2651 0,2313 0,3297
0.5 0,4392 0,4653 0,4532 0,5160 0,6943 0,6503 0,6245 0,3913 0,5782 0,4458 0,4583 0,6784

0.2 0.2 0,0934 0,1245 0,0963 0,0969 0,2882 0,2748 0,1426 0,1133 0,1683 0,1468 0,1259 0,1570
0.3 0,1767 0,2099 0,1827 0,1853 0,5903 0,5395 0,4047 0,2624 0,3572 0,2981 0,2688 0,3492
0.5 0,4584 0,4964 0,4891 0,5152 0,7523 0,6831 0,7364 0,4534 0,5979 0,4955 0,5061 0,6809

0.3 0.2 0,0959 0,1399 0,1184 0,1008 0,3314 0,3171 0,2174 0,1560 0,1840 0,1743 0,1553 0,1598
0.3 0,1955 0,2510 0,2409 0,2111 0,6641 0,6017 0,5724 0,3569 0,4034 0,3712 0,3504 0,3728
0.5 0,4888 0,5677 0,5788 0,5261 0,8404 0,7541 0,9502 0,5708 0,6638 0,6000 0,6244 0,6833

0.4 0.2 0,1160 0,1691 0,1528 0,1174 0,3892 0,3599 0,2420 0,2546 0,2221 0,2410 0,2316 0,1926
0.3 0,2289 0,2962 0,3059 0,2384 0,7446 0,6631 0,5780 0,5530 0,4640 0,4830 0,4819 0,4141
0.5 0,5463 0,6409 0,6786 0,5452 0,9279 0,8151 0,8519 0,7717 0,7454 0,7519 0,7801 0,6899

0.5 0.2 0,1292 0,1906 0,1922 0,1410 0,4299 0,3977 0,3196 0,4162 0,2671 0,3144 0,3506 0,2537
0.3 0,2460 0,3344 0,3679 0,2698 0,7677 0,6895 0,6245 0,7341 0,5219 0,5788 0,6425 0,4769
0.5 0,5639 0,6823 0,7500 0,5657 0,9369 0,8357 0,8170 0,9073 0,7962 0,8575 0,9154 0,6937

0.6 0.2 0,1477 0,2133 0,2447 0,1829 0,4384 0,4110 0,4340 0,4713 0,2859 0,3146 0,4090 0,3376
0.3 0,2709 0,3592 0,4201 0,3216 0,7504 0,6734 0,7313 0,6904 0,5245 0,5386 0,6334 0,5346
0.5 0,5577 0,6683 0,7520 0,5889 0,8930 0,7971 0,8698 0,7709 0,7549 0,7620 0,8125 0,6971

0.7 0.2 0,1596 0,2183 0,2647 0,2244 0,4561 0,4049 0,5728 0,4337 0,2882 0,2810 0,3934 0,4088
0.3 0,2709 0,3427 0,4203 0,3677 0,7245 0,6290 0,8328 0,5479 0,4787 0,4440 0,5477 0,5815
0.5 0,5091 0,5886 0,6777 0,6067 0,8357 0,7285 0,9238 0,5765 0,6690 0,6100 0,6487 0,6990

0.8 0.2 0,1669 0,2201 0,2734 0,2663 0,4521 0,4048 0,5307 0,3904 0,2857 0,2434 0,3644 0,4673
0.3 0,2717 0,3242 0,4054 0,4067 0,6678 0,5913 0,6958 0,4489 0,4558 0,3728 0,4737 0,6184
0.5 0,4701 0,5186 0,6031 0,6187 0,7527 0,6760 0,7405 0,4613 0,6053 0,4955 0,5294 0,7013

0.9 0.2 0,1695 0,2042 0,2687 0,2936 0,4298 0,3914 0,4908 0,3553 0,3050 0,2288 0,3507 0,5139
0.3 0,2634 0,2970 0,3806 0,4234 0,6104 0,5618 0,5992 0,3914 0,4566 0,3391 0,4290 0,6387
0.5 0,4451 0,4728 0,5500 0,6289 0,6780 0,6367 0,6277 0,3978 0,5897 0,4386 0,4675 0,7036

t: skewness parameter of SEPD, ∆: effect size, RGF: new proposed test,
(σ1, σ2, σ3, σ4, σ5) = (0.2, 0.4, 0.6, 0.8, 1.0)
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Table 9. Penalized power of the tests for k = 5

RGF MGF KW BDM RGF MGF KW BDM RGF MGF KW BDM

ti ∆i ni = (5, 8, 10, 12, 15) ni = (10, 10, 10, 10, 10) ni = (15, 24, 30, 36, 45)

0.1 0.2 0,0717 0,1137 0,0342 0,0537 0,0449 0,2050 0,0656 0,0518 0,1053 0,1140 0,0567 0,0756
0.3 0,0912 0,1282 0,0547 0,0681 0,0490 0,2147 0,0800 0,0638 0,1909 0,1833 0,1204 0,1112
0.5 0,1710 0,1830 0,1594 0,1449 0,0740 0,2626 0,1521 0,1253 0,4701 0,4027 0,4151 0,2958

0.2 0.2 0,0719 0,1118 0,0368 0,0574 0,0450 0,1958 0,0662 0,0516 0,1083 0,1161 0,0677 0,0727
0.3 0,0970 0,1273 0,0570 0,0751 0,0504 0,2081 0,0817 0,0649 0,2000 0,1909 0,1435 0,1200
0.5 0,1815 0,1892 0,1677 0,1644 0,0763 0,2678 0,1543 0,1243 0,5023 0,4231 0,4755 0,3278

0.3 0.2 0,0698 0,1062 0,0406 0,0626 0,0405 0,1831 0,0671 0,0486 0,1133 0,1176 0,0778 0,0806
0.3 0,0889 0,1246 0,0641 0,0806 0,0475 0,2018 0,0860 0,0643 0,2117 0,1965 0,1769 0,1458
0.5 0,1889 0,1938 0,1704 0,1790 0,0775 0,2775 0,1761 0,1352 0,5349 0,4458 0,5715 0,4067

0.4 0.2 0,0774 0,1070 0,0461 0,0695 0,0395 0,1726 0,0692 0,0505 0,1244 0,1307 0,0825 0,1053
0.3 0,1095 0,1307 0,0722 0,1013 0,0456 0,1976 0,0986 0,0723 0,2386 0,2246 0,1935 0,2079
0.5 0,2147 0,2088 0,1813 0,2140 0,0814 0,2771 0,1919 0,1451 0,6012 0,4991 0,5639 0,5460

0.5 0.2 0,0769 0,1174 0,0465 0,0792 0,0425 0,1839 0,0795 0,0560 0,1501 0,1521 0,1114 0,1593
0.3 0,1097 0,1462 0,0760 0,1163 0,0543 0,2134 0,1087 0,0767 0,2803 0,2545 0,2355 0,2915
0.5 0,2390 0,2255 0,1980 0,2568 0,0921 0,3072 0,2193 0,1537 0,6514 0,5216 0,5935 0,6665

0.6 0.2 0,0854 0,1253 0,0530 0,0920 0,0476 0,1965 0,0868 0,0618 0,1724 0,1700 0,1569 0,2058
0.3 0,1215 0,1515 0,0883 0,1376 0,0603 0,2291 0,1182 0,0857 0,3135 0,2783 0,3090 0,3545
0.5 0,2502 0,2317 0,2148 0,2958 0,0999 0,3124 0,2223 0,1618 0,6684 0,5251 0,6565 0,6675

0.7 0.2 0,0911 0,1268 0,0637 0,1092 0,0527 0,2262 0,1033 0,0745 0,1729 0,1725 0,2314 0,2247
0.3 0,1319 0,1531 0,1068 0,1601 0,0690 0,2562 0,1382 0,1041 0,3015 0,2697 0,4041 0,3519
0.5 0,2628 0,2312 0,2455 0,3231 0,1107 0,3371 0,2433 0,1877 0,5978 0,4811 0,7585 0,5771

0.8 0.2 0,0996 0,1377 0,0798 0,1239 0,0617 0,2381 0,1088 0,0864 0,1868 0,1795 0,2477 0,2364
0.3 0,1478 0,1666 0,1398 0,1857 0,0778 0,2720 0,1483 0,1162 0,3079 0,2739 0,4081 0,3484
0.5 0,2622 0,2359 0,2912 0,3279 0,1204 0,3527 0,2546 0,2032 0,5674 0,4532 0,6933 0,5120

0.9 0.2 0,1138 0,1438 0,1043 0,1354 0,0691 0,2594 0,1139 0,0919 0,1994 0,1889 0,2541 0,2481
0.3 0,1522 0,1687 0,1583 0,1900 0,0852 0,2932 0,1616 0,1298 0,3058 0,2698 0,3987 0,3413
0.5 0,2604 0,2308 0,3140 0,3246 0,1282 0,3739 0,2659 0,2193 0,5294 0,4294 0,6329 0,4670

ti ∆i ni = (30, 30, 30, 30, 30) ni = (30, 48, 60, 72, 90) ni = (60, 60, 60, 60, 60)

0.1 0.2 0,0727 0,1108 0,0778 0,0819 0,1580 0,1491 0,0756 0,0885 0,1078 0,0908 0,0964 0,1353
0.3 0,1077 0,1450 0,1151 0,1260 0,3209 0,3004 0,1725 0,1469 0,2051 0,1619 0,1555 0,2297
0.5 0,2620 0,2979 0,2928 0,3302 0,6171 0,5706 0,4823 0,3405 0,4669 0,3641 0,3586 0,5564

0.2 0.2 0,0700 0,1127 0,0800 0,0759 0,1641 0,1610 0,0869 0,0898 0,1057 0,1025 0,0968 0,1208
0.3 0,1097 0,1543 0,1266 0,1250 0,3472 0,3208 0,2138 0,1677 0,2078 0,1825 0,1738 0,2261
0.5 0,2717 0,3291 0,3232 0,3374 0,6627 0,5917 0,5639 0,3908 0,4870 0,4078 0,4051 0,5530

0.3 0.2 0,0684 0,1133 0,0881 0,0744 0,1783 0,1760 0,1192 0,1052 0,1145 0,1205 0,1137 0,1151
0.3 0,1123 0,1709 0,1466 0,1270 0,3908 0,3598 0,3054 0,2256 0,2346 0,2311 0,2218 0,2324
0.5 0,2933 0,3838 0,3854 0,3469 0,7399 0,6543 0,7481 0,5152 0,5461 0,5068 0,5160 0,5682

0.4 0.2 0,0762 0,1305 0,1030 0,0778 0,2098 0,2016 0,1701 0,1581 0,1328 0,1596 0,1614 0,1240
0.3 0,1317 0,2088 0,1944 0,1502 0,4589 0,4189 0,4195 0,3450 0,2774 0,3071 0,3250 0,2604
0.5 0,3367 0,4403 0,4660 0,3741 0,8297 0,7255 0,8882 0,7103 0,6304 0,6553 0,7097 0,5950

0.5 0.2 0,0902 0,1552 0,1397 0,0990 0,2633 0,2450 0,2171 0,2598 0,1672 0,2072 0,2381 0,1648
0.3 0,1533 0,2397 0,2537 0,1805 0,5465 0,4809 0,4800 0,5248 0,3282 0,3786 0,4470 0,3224
0.5 0,3691 0,4971 0,5577 0,4097 0,9110 0,7760 0,8462 0,8738 0,6932 0,7579 0,8380 0,6293

0.6 0.2 0,1011 0,1658 0,1723 0,1280 0,2843 0,2665 0,3388 0,3323 0,1791 0,2142 0,2960 0,2343
0.3 0,1726 0,2610 0,2874 0,2174 0,5269 0,4812 0,6220 0,5496 0,3370 0,3761 0,4939 0,4018
0.5 0,3730 0,4827 0,5684 0,4470 0,8338 0,7304 0,9263 0,7489 0,6491 0,6741 0,7713 0,6562

0.7 0.2 0,1128 0,1857 0,1975 0,1643 0,2999 0,2727 0,3946 0,3427 0,2016 0,2116 0,3110 0,3217
0.3 0,1795 0,2643 0,3182 0,2700 0,5201 0,4491 0,6203 0,4664 0,3408 0,3294 0,4559 0,4848
0.5 0,3608 0,4584 0,5553 0,4906 0,7534 0,6411 0,8004 0,5612 0,5836 0,5357 0,6167 0,6771

0.8 0.2 0,1219 0,1787 0,2119 0,2111 0,3055 0,2806 0,3750 0,3150 0,2080 0,1897 0,3054 0,3967
0.3 0,1886 0,2512 0,3112 0,3157 0,4862 0,4278 0,5225 0,3920 0,3302 0,2853 0,4110 0,5456
0.5 0,3400 0,4093 0,4896 0,5162 0,6710 0,5906 0,6227 0,4341 0,5267 0,4399 0,5031 0,6866

0.9 0.2 0,1306 0,1822 0,2249 0,2428 0,2976 0,2787 0,3623 0,3052 0,2215 0,1820 0,3035 0,4541
0.3 0,1904 0,2433 0,3179 0,3504 0,4534 0,4189 0,4743 0,3549 0,3366 0,2651 0,3785 0,5801
0.5 0,3353 0,3831 0,4766 0,5443 0,6046 0,5680 0,5387 0,3790 0,4987 0,3855 0,4443 0,6925

t: skewness parameter of SEPD, ∆: effect size, RGF: new proposed test,
(σ1, σ2, σ3, σ4, σ5) = (0.2, 0.4, 0.6, 0.8, 1.0)
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Table 10. Penalized power of the tests for k = 6

RGF MGF KW BDM RGF MGF KW BDM RGF MGF KW BDM

ti ∆i ni = (5, 8, 10, 12, 14, 16) ni = (10, 10, 10, 10, 10, 10) ni = (15, 24, 30, 36, 42, 48)

0.1 0.2 0,0736 0,1227 0,0256 0,0538 0,0499 0,2314 0,0647 0,0523 0,0975 0,1075 0,0534 0,0760
0.3 0,0874 0,1320 0,0359 0,0600 0,0520 0,2362 0,0726 0,0602 0,1406 0,1427 0,0909 0,0907
0.5 0,1321 0,1667 0,0838 0,1037 0,0644 0,2584 0,1086 0,0911 0,3320 0,2906 0,2926 0,1959

0.2 0.2 0,0717 0,1175 0,0241 0,0579 0,0457 0,2146 0,0581 0,0448 0,0929 0,1110 0,0576 0,0719
0.3 0,0825 0,1268 0,0357 0,0665 0,0482 0,2218 0,0676 0,0530 0,1458 0,1486 0,1048 0,0952
0.5 0,1320 0,1648 0,0861 0,1115 0,0615 0,2574 0,1120 0,0912 0,3495 0,3015 0,3291 0,2199

0.3 0.2 0,0692 0,1141 0,0260 0,0539 0,0403 0,2018 0,0626 0,0440 0,0944 0,1070 0,0581 0,0721
0.3 0,0878 0,1247 0,0346 0,0675 0,0426 0,2174 0,0753 0,0543 0,1513 0,1599 0,1116 0,1047
0.5 0,1459 0,1660 0,0920 0,1251 0,0595 0,2609 0,1225 0,0921 0,3933 0,3310 0,3734 0,2840

0.4 0.2 0,0674 0,1152 0,0263 0,0599 0,0375 0,1949 0,0639 0,0444 0,1040 0,1212 0,0568 0,0857
0.3 0,0834 0,1291 0,0412 0,0761 0,0427 0,2096 0,0782 0,0543 0,1845 0,1869 0,1177 0,1505
0.5 0,1497 0,1770 0,0967 0,1538 0,0638 0,2626 0,1364 0,0969 0,4529 0,3884 0,3587 0,3890

0.5 0.2 0,0739 0,1189 0,0337 0,0726 0,0376 0,2083 0,0734 0,0495 0,1162 0,1296 0,0634 0,1191
0.3 0,0928 0,1334 0,0515 0,0994 0,0467 0,2286 0,0923 0,0631 0,1996 0,2009 0,1366 0,2132
0.5 0,1723 0,1821 0,1137 0,1817 0,0687 0,2953 0,1634 0,1103 0,4946 0,4064 0,3951 0,5240

0.6 0.2 0,0772 0,1184 0,0387 0,0817 0,0435 0,2165 0,0821 0,0567 0,1345 0,1422 0,1016 0,1603
0.3 0,1011 0,1361 0,0604 0,1122 0,0523 0,2402 0,1050 0,0735 0,2287 0,2181 0,1914 0,2686
0.5 0,1815 0,1879 0,1332 0,2098 0,0800 0,3098 0,1740 0,1236 0,5127 0,4135 0,4746 0,5561

0.7 0.2 0,0868 0,1272 0,0513 0,0973 0,0535 0,2476 0,0932 0,0694 0,1386 0,1491 0,1588 0,1905
0.3 0,1125 0,1473 0,0749 0,1320 0,0629 0,2701 0,1170 0,0882 0,2291 0,2172 0,2787 0,2857
0.5 0,1864 0,1979 0,1555 0,2351 0,0908 0,3357 0,1922 0,1461 0,4748 0,3905 0,6144 0,5041

0.8 0.2 0,0952 0,1382 0,0568 0,1075 0,0612 0,2585 0,1027 0,0788 0,1582 0,1597 0,2052 0,2091
0.3 0,1192 0,1557 0,0863 0,1431 0,0716 0,2807 0,1287 0,1008 0,2370 0,2244 0,3375 0,2924
0.5 0,1945 0,2024 0,1873 0,2477 0,0981 0,3408 0,2015 0,1614 0,4539 0,3708 0,6393 0,4464

0.9 0.2 0,0995 0,1446 0,0681 0,1174 0,0678 0,2719 0,1066 0,0882 0,1649 0,1644 0,2182 0,2206
0.3 0,1264 0,1611 0,1023 0,1553 0,0773 0,2923 0,1336 0,1116 0,2472 0,2257 0,3480 0,2949
0.5 0,2000 0,2084 0,2094 0,2580 0,1026 0,3479 0,2059 0,1735 0,4409 0,3637 0,6057 0,4070

ti ∆i ni = (30, 30, 30, 30, 30, 30) ni = (30, 48, 60, 72, 84, 96) ni = (60, 60, 60, 60, 60, 60)

0.1 0.2 0,0684 0,1115 0,0799 0,0853 0,1254 0,1243 0,0620 0,0936 0,0938 0,0864 0,1008 0,1457
0.3 0,0834 0,1273 0,0963 0,1035 0,2267 0,2197 0,1279 0,1216 0,1442 0,1227 0,1309 0,1981
0.5 0,1618 0,2135 0,1997 0,2260 0,5181 0,4718 0,4060 0,2633 0,3349 0,2673 0,2729 0,4271

0.2 0.2 0,0619 0,1079 0,0759 0,0710 0,1230 0,1231 0,0631 0,0832 0,0930 0,0956 0,0998 0,1233
0.3 0,0798 0,1300 0,1004 0,0977 0,2425 0,2299 0,1533 0,1283 0,1481 0,1381 0,1424 0,1824
0.5 0,1678 0,2336 0,2176 0,2202 0,5612 0,4995 0,4892 0,3005 0,3512 0,3016 0,3089 0,4203

0.3 0.2 0,0595 0,1130 0,0787 0,0663 0,1323 0,1346 0,0827 0,0818 0,0900 0,1020 0,1010 0,1027
0.3 0,0793 0,1444 0,1137 0,0959 0,2784 0,2539 0,2067 0,1482 0,1565 0,1625 0,1646 0,1704
0.5 0,1784 0,2677 0,2623 0,2301 0,6448 0,5573 0,6588 0,3937 0,3907 0,3737 0,3902 0,4316

0.4 0.2 0,0624 0,1173 0,0890 0,0634 0,1565 0,1514 0,0953 0,1150 0,0953 0,1248 0,1264 0,0948
0.3 0,0906 0,1564 0,1366 0,0983 0,3253 0,2942 0,2394 0,2368 0,1817 0,2161 0,2272 0,1850
0.5 0,2104 0,3140 0,3263 0,2547 0,7522 0,6302 0,6649 0,6115 0,4691 0,5126 0,5476 0,4585

0.5 0.2 0,0696 0,1354 0,1173 0,0798 0,1910 0,1865 0,1279 0,1895 0,1171 0,1526 0,1780 0,1175
0.3 0,1084 0,1904 0,1876 0,1301 0,3759 0,3454 0,2868 0,3808 0,2150 0,2664 0,3284 0,2239
0.5 0,2430 0,3645 0,4024 0,2915 0,8239 0,6896 0,6850 0,8038 0,5196 0,5911 0,6986 0,5013

0.6 0.2 0,0828 0,1421 0,1416 0,1048 0,2093 0,2048 0,2073 0,2625 0,1264 0,1644 0,2203 0,1698
0.3 0,1218 0,2080 0,2216 0,1652 0,4056 0,3659 0,4165 0,4431 0,2283 0,2742 0,3727 0,2966
0.5 0,2559 0,3719 0,4410 0,3393 0,7823 0,6597 0,7794 0,7079 0,5069 0,5445 0,6771 0,5613

0.7 0.2 0,0941 0,1653 0,1718 0,1434 0,2235 0,2126 0,3164 0,2799 0,1479 0,1662 0,2521 0,2577
0.3 0,1376 0,2231 0,2497 0,2120 0,3933 0,3528 0,5483 0,3951 0,2432 0,2536 0,3625 0,3827
0.5 0,2643 0,3746 0,4497 0,3975 0,6820 0,5861 0,8431 0,5170 0,4630 0,4407 0,5548 0,6061

0.8 0.2 0,1068 0,1723 0,1871 0,1844 0,2356 0,2187 0,3222 0,2733 0,1640 0,1564 0,2547 0,3393
0.3 0,1499 0,2232 0,2620 0,2642 0,3827 0,3363 0,4877 0,3462 0,2470 0,2232 0,3386 0,4599
0.5 0,2618 0,3429 0,4207 0,4394 0,6113 0,5257 0,6661 0,4022 0,4226 0,3572 0,4557 0,6384

0.9 0.2 0,1156 0,1730 0,1964 0,2158 0,2426 0,2230 0,3180 0,2717 0,1739 0,1500 0,2577 0,3964
0.3 0,1543 0,2159 0,2653 0,2978 0,3743 0,3346 0,4491 0,3200 0,2489 0,2047 0,3245 0,5093
0.5 0,2604 0,3231 0,4101 0,4739 0,5580 0,4979 0,5628 0,3504 0,4069 0,3181 0,4066 0,6568

t: skewness parameter of SEPD, ∆: effect size, RGF: new proposed test,
(σ1, σ2, σ3, σ4, σ5, σ6) = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2)
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Table 11. Penalized power of the tests for k = 7

RGF MGF KW BDM RGF MGF KW BDM RGF MGF KW BDM

ti ∆i ni = (4, 6, 8, 10, 12, 14, 16) ni = (10, 10, 10, 10, 10, 10, 10) ni = (12, 18, 24, 30, 36, 42, 48)

0.1 0.2 0,0787 0,1301 0,0310 0,0572 0,0518 0,2572 0,0668 0,0519 0,0908 0,1110 0,0494 0,0828
0.3 0,0853 0,1346 0,0374 0,0635 0,0531 0,2605 0,0704 0,0550 0,1196 0,1303 0,0712 0,0896
0.5 0,1138 0,1564 0,0754 0,0905 0,0608 0,2784 0,0937 0,0765 0,2299 0,2192 0,1899 0,1465

0.2 0.2 0,0782 0,1282 0,0289 0,0595 0,0469 0,2502 0,0595 0,0450 0,0824 0,1047 0,0466 0,0680
0.3 0,0838 0,1348 0,0382 0,0647 0,0481 0,2539 0,0627 0,0468 0,1101 0,1277 0,0711 0,0812
0.5 0,1131 0,1545 0,0704 0,0918 0,0559 0,2762 0,0878 0,0677 0,2403 0,2297 0,2148 0,1618

0.3 0.2 0,0711 0,1190 0,0264 0,0567 0,0422 0,2305 0,0628 0,0444 0,0812 0,1021 0,0435 0,0669
0.3 0,0793 0,1263 0,0312 0,0630 0,0432 0,2356 0,0691 0,0501 0,1128 0,1327 0,0778 0,0874
0.5 0,1136 0,1549 0,0635 0,0971 0,0543 0,2617 0,0989 0,0716 0,2593 0,2431 0,2431 0,1945

0.4 0.2 0,0656 0,1181 0,0247 0,0566 0,0371 0,2178 0,0604 0,0396 0,0802 0,1010 0,0429 0,0729
0.3 0,0760 0,1275 0,0352 0,0687 0,0400 0,2270 0,0689 0,0464 0,1281 0,1424 0,0803 0,1136
0.5 0,1209 0,1571 0,0748 0,1177 0,0513 0,2637 0,1111 0,0752 0,3053 0,2791 0,2462 0,2719

0.5 0.2 0,0657 0,1156 0,0275 0,0608 0,0398 0,2204 0,0718 0,0458 0,0850 0,1087 0,0488 0,0906
0.3 0,0791 0,1259 0,0391 0,0817 0,0439 0,2359 0,0848 0,0550 0,1390 0,1550 0,0984 0,1543
0.5 0,1253 0,1597 0,0855 0,1334 0,0587 0,2874 0,1294 0,0839 0,3447 0,3055 0,2819 0,3791

0.6 0.2 0,0702 0,1191 0,0315 0,0732 0,0432 0,2367 0,0761 0,0533 0,1095 0,1236 0,0738 0,1318
0.3 0,0866 0,1319 0,0495 0,0963 0,0497 0,2529 0,0944 0,0670 0,1659 0,1721 0,1408 0,2034
0.5 0,1421 0,1706 0,1020 0,1613 0,0669 0,3018 0,1458 0,1024 0,3575 0,3106 0,3482 0,4184

0.7 0.2 0,0827 0,1266 0,0424 0,0885 0,0523 0,2657 0,0913 0,0655 0,1194 0,1330 0,1309 0,1534
0.3 0,0956 0,1386 0,0602 0,1140 0,0591 0,2854 0,1105 0,0783 0,1800 0,1772 0,2124 0,2198
0.5 0,1482 0,1740 0,1163 0,1813 0,0779 0,3258 0,1644 0,1218 0,3505 0,2987 0,4591 0,3927

0.8 0.2 0,0907 0,1391 0,0542 0,0992 0,0591 0,2788 0,0959 0,0744 0,1346 0,1456 0,1645 0,1797
0.3 0,1100 0,1521 0,0739 0,1268 0,0679 0,2952 0,1147 0,0901 0,1918 0,1869 0,2655 0,2418
0.5 0,1564 0,1830 0,1354 0,2005 0,0865 0,3338 0,1653 0,1332 0,3492 0,2980 0,5125 0,3786

0.9 0.2 0,0996 0,1453 0,0627 0,1101 0,0690 0,2909 0,1028 0,0843 0,1488 0,1540 0,1837 0,1924
0.3 0,1165 0,1572 0,0890 0,1344 0,0764 0,3074 0,1227 0,1034 0,2029 0,1954 0,2759 0,2507
0.5 0,1642 0,1849 0,1599 0,2066 0,0950 0,3444 0,1728 0,1481 0,3442 0,2981 0,4955 0,3616

ti ∆i ni = (30, 30, 30, 30, 30, 30, 30) ni = (24, 36, 48, 60, 72, 84, 96) ni = (60, 60, 60, 60, 60, 60, 60)

0.1 0.2 0,0718 0,1268 0,0860 0,0894 0,1048 0,1122 0,0597 0,1003 0,0860 0,0830 0,1039 0,1512
0.3 0,0827 0,1384 0,0980 0,1041 0,1654 0,1628 0,0952 0,1124 0,1154 0,1039 0,1181 0,1790
0.5 0,1311 0,1847 0,1676 0,1844 0,3950 0,3655 0,2831 0,2038 0,2312 0,1933 0,2101 0,3366

0.2 0.2 0,0665 0,1238 0,0801 0,0757 0,1010 0,1128 0,0569 0,0869 0,0768 0,0855 0,0911 0,1161
0.3 0,0772 0,1381 0,0973 0,0938 0,1748 0,1744 0,1043 0,1081 0,1067 0,1095 0,1137 0,1502
0.5 0,1287 0,2019 0,1750 0,1759 0,4344 0,3900 0,3425 0,2256 0,2347 0,2144 0,2268 0,3159

0.3 0.2 0,0621 0,1244 0,0837 0,0676 0,1048 0,1133 0,0653 0,0785 0,0742 0,0903 0,0857 0,0875
0.3 0,0765 0,1441 0,1073 0,0891 0,1915 0,1877 0,1420 0,1174 0,1092 0,1206 0,1229 0,1287
0.5 0,1365 0,2237 0,2046 0,1772 0,4921 0,4326 0,4733 0,2940 0,2569 0,2650 0,2773 0,3063

0.4 0.2 0,0582 0,1220 0,0879 0,0601 0,1105 0,1159 0,0697 0,0848 0,0778 0,1034 0,1007 0,0752
0.3 0,0766 0,1513 0,1260 0,0919 0,2164 0,2073 0,1652 0,1637 0,1267 0,1657 0,1661 0,1298
0.5 0,1536 0,2606 0,2583 0,1945 0,5690 0,4969 0,5354 0,4592 0,3212 0,3708 0,4051 0,3335

0.5 0.2 0,0642 0,1303 0,1071 0,0694 0,1379 0,1385 0,0887 0,1442 0,0923 0,1276 0,1453 0,0932
0.3 0,0849 0,1670 0,1519 0,1039 0,2688 0,2488 0,2085 0,2833 0,1551 0,2046 0,2474 0,1625
0.5 0,1713 0,2951 0,3098 0,2151 0,6463 0,5553 0,5710 0,6773 0,3770 0,4524 0,5666 0,3906

0.6 0.2 0,0725 0,1431 0,1238 0,0882 0,1598 0,1633 0,1599 0,2093 0,1028 0,1453 0,1927 0,1451
0.3 0,0963 0,1847 0,1821 0,1334 0,3057 0,2844 0,3320 0,3542 0,1741 0,2261 0,3073 0,2360
0.5 0,1883 0,3071 0,3474 0,2642 0,6557 0,5518 0,7011 0,6345 0,3830 0,4366 0,5722 0,4608

0.7 0.2 0,0811 0,1604 0,1461 0,1181 0,1858 0,1838 0,2549 0,2424 0,1238 0,1498 0,2273 0,2288
0.3 0,1091 0,1980 0,2062 0,1742 0,3154 0,2861 0,4281 0,3405 0,1903 0,2165 0,3119 0,3285
0.5 0,1898 0,3028 0,3545 0,3084 0,5963 0,5031 0,7442 0,4809 0,3647 0,3691 0,4893 0,5344

0.8 0.2 0,0934 0,1660 0,1620 0,1604 0,1961 0,1944 0,2589 0,2501 0,1431 0,1443 0,2309 0,3130
0.3 0,1187 0,1982 0,2166 0,2143 0,3093 0,2798 0,3888 0,3092 0,2010 0,1913 0,2955 0,4124
0.5 0,1960 0,2849 0,3479 0,3564 0,5242 0,4555 0,5764 0,3808 0,3429 0,3029 0,4082 0,5924

0.9 0.2 0,1054 0,1604 0,1708 0,1868 0,2119 0,1987 0,2707 0,2462 0,1565 0,1412 0,2386 0,3773
0.3 0,1327 0,1926 0,2231 0,2489 0,3045 0,2802 0,3696 0,2896 0,2151 0,1864 0,2961 0,4739
0.5 0,2021 0,2707 0,3378 0,3944 0,4829 0,4303 0,4982 0,3282 0,3395 0,2752 0,3799 0,6265

t: skewness parameter of SEPD, ∆: effect size, RGF: new proposed test,
(σ1, σ2, σ3, σ4, σ5, σ6, σ7) = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4)
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ON BIVARIATE EXTENSION OF THE UNIVARIATE

TRANSMUTED DISTRIBUTION FAMILY

Mehmet YILMAZ and Hüseyin ÜNÖZKAN

Statistics Department, Ankara University, Ankara, TURKEY

Abstract. The aim of this study is to examine the bivariate transmuted

distributions in the literature and to propose alternative distribution. The
method is based on mixing distributions of pairs of order statistics of a sample

of size two. Some of proposed distributions allow both negative and positive

Pearson correlations with admissible range between pairs of random variates.
The results of the study gain importance in terms of eliminating or completing

the missing aspects of the bivariate transmuted distributions existing in the
literature.

1. Introduction

Quadratic Rank Transmutation Mapping (QRTM) method proposed by Shaw
and Buckley (2009) [20], which is one of the most popular methods of constructing
univariate distribution. In multivariate data modelling, instead of investigating the
independence between random variables, sometimes one can desire to construct a
multivariate distribution of highly correlated random variables. For this purpose, it
is important to extend the QRTM technique to two-dimensional distributions both
in terms of providing flexibility and making alternative distribution suggestions to
the previous works.

Some authors have worked with the bivariate (or multivariate) extension of
the univariate transmuted distributions. The bivariate and multivariate exten-
sions of the univariate-transmuted family are first introduced by Bourguignon et
al. (2016) [7]. They obtained continuous bivariate and multivariate distributions
having transmuted univariate marginals. Merovci et al. (2016) [11] introduced the
bivariate version of univariate generalized transmuted G distribution. Alizadeh et
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al. (2017) [1] introduced the bivariate version of univariate generalized transmuted
distribution. Unlike the works of Bourguignon et al. (2016) [7] and Merovci et al.
(2016) [11], Alizadeh et al. (2017) [1] considered the base distribution as an expo-
nentiated distribution. Merovci et al. (2017) [12] proposed the bivariate extension
of the univariate Exponentiated-Transmuted G (ET-G) distribution family. Rezaei
et al. (2017) [16] introduced a bivariate version of the generalized exponentiated
distribution (GEC-G) by using failure probabilities of nested series and parallel
systems. Bakouch et al. (2017) [4] proposed a bivariate version of the transmuted
general (T-G) family of distributions. Although Bakouch et al. (2017) [4] use of
similar techniques, unlike other authors’ works, they proposed the Bivariate T-G
distribution by considering different baseline distribution. Unlike the works men-
tioned above, Sarabia et al. [18] suggests a bivariate distribution with transmuted
conditionals.

According to Table 1 of Shaw and Buckley (2009) [20], the essence of the uni-
variate distributions derived from the QRTM is based on minimum and maximum
order statistics, therefore this technique may not be easy to apply for bivariate or
multivariate distributions. Since a bivariate distribution is constructed over the
quadrants, the complement of the bivariate distribution is different from the uni-
variate case.

Some relevant references about construction bivariate and multivariate distribu-
tions based on the pairs of order statistics are in [3], [8], [14] and [13]. According

to work of Dolati and Úbeda-Flores (2009) [8], a bivariate distribution family was
introduced by assuming negative dependence [6] and [21].

Since we inspire by the works of [8] and [13] in the present study, let’s give these

studies in more detail as follows: Dolati and Úbeda-Flores (2009) [8] introduced
two transformations, based on the choice of pairs of order statistics of the marginal
distributions. [13] defined that the bivariate distribution having the transmuted
marginals, both by examining the univariate QRTM technique and inspired by [8].

In this study, we first examined the bivariate extensions that exist in the litera-
ture, and secondly, we discussed the new distribution proposals in the light of the
studies of [8] and [13]. The findings obtained as a result of the study show that
the proposed distributions can be used as an alternative to the extensions in the
literature without any restrictions on the base distribution.

Accordingly, the study is organized as follows: The material and method section
will be presented in four parts, these are as follows: Brief introduction of univariate
QRTM given by Shaw and Buckley (2009) [20]. The extension of the QRTM tech-
nique to the bivariate case proposed by [7] will be considered, and we will discuss by
Theorem 1 under which conditions this extension will be a bivariate distribution.
Based on the studies of [8] and [13], the introduction of the technique to be used
for new distribution proposals will be detailed.



COMMENTS ON BIVARIATE EXTENSION OF TRANSMUTED DISTRIBUTION 1057

In section 3, new distribution suggestions will be made, and Spearman’s rank
correlation coefficient will be calculated based on a specially selected distribution
as base distribution.

The last part of the study includes the comparison of the proposed distributions
with the studies available in the literature, a discussion of the advantages and
disadvantages.

2. Material and Method

The quadratic rank transmutation mapping (QRTM) proposed by Shaw and
Buckley (2009) [20] is given as u −→ u+λu(1−u), where u ∈ [0, 1] and λ ∈ [−1, 1].
We come up with an idea inspired by Shaw and Buckley (2009) [20] as follows:

Let X1 and X2 be two independent and identically distributed random variables.
Then once recall the distributions of order statistics associated with sample size of
2:

Pr (X1:2 ≤ x) = 1− Pr (X1:2 > x) = 1− (1− F (x))
2
= 2F (x)− F 2 (x) ,

Pr (X2:2 ≤ x) = F (x)
2
.

Now, a new random variable T is defined by mixing the above order statistics as
follows:

T =

{
X1:2, with probability π1

X2:2, with probability π2,

where π1 + π2 = 1. Then the distribution of T is as follows:

Pr (T ≤ t) = π1

(
2F (t)− F 2 (t)

)
+ π2

(
F 2 (t)

)
= (2π1)F (t) + (π2 − π1)F

2 (t) .

By letting π2 = 1− π1 then we have

Pr (T ≤ t) = 2π1F (t) + (1− 2π1)F
2 (t) .

Since π1 ∈ [0, 1], appropriate parametrization for π1 can be taken into account as
2π1 = 1+λ. New parameter is in the interval [−1, 1]. Accordingly, latter probability
is as follows:

Pr (T ≤ t) = (1 + λ)F (t)− λ F 2 (t)

= F (t) + λF (t) (1− F (t)),

with λ ∈ [−1, 1]. As can be seen immediately, if F (t) = u is taken into account, the
above expression is the quadratic rank transmutation proposed in [20]. Here, F (t)
is named as ”base distribution” and Pr (T ≤ t) = G(t) is named as ”transmuted
distribution”.
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Based on this, bivariate extension of quadratic transmuted distribution proposal
of [7] draws our attention in particular. They proposed quadratic rank transmuted
bivariate distribution as

H (x, y) = (1 + λ)F (x, y)− λF (x, y)
2
, (1)

where λ ∈ [−1, 1]. Marginals of this model are univariate transmuted distributions

respectively as (1 + λ)Fx (x)− λFx(x)
2
and (1 + λ)Fy (y)− λFy(y)

2
.

Furthermore, just like as in the univariate case, a bivariate distribution should
be obtained with the eq. (1) for the extreme values of λ. Such that for λ = −1, eq.

(1) reduces to give F (x, y)
2
which is a cumulative distribution function (cdf), and

for λ = 1, eq. (1) gives 2F (x, y)− F (x, y)
2
which is not a cdf.

Furthermore, 2F (x, y)− F (x, y)
2
indicates the probability that is

Pr({X1 ≤ x, Y1 ≤ y} ∪ {X2 ≤ x, Y2 ≤ y}),

where (X1, Y1) and (X2, Y2) are independent and identically distributed copulas
from F . Therefore, there are some issues to overcome for the case of positive values
of the transmutation parameter λ. To overcome these issues, we have the following
theorem.

Theorem 1. Let F (x, y) be a continuous distribution function and H(x, y) be a dif-

ferentiable on ℜ2 where h (x, y) denotes ∂2H(x,y)
∂x∂y . Then H (x, y) = (1 + λ)F (x, y)−

λF (x, y)
2
is a continuous distribution function, if the following conditions hold:

(i) −1 ≤ λ ≤ 0,
(ii) 0 < λ ≤ 1

3 and F (x, y) belongs to Positively Dependent Class.

Proof. Multivariate distribution function must satisfy ((P1)-(P3)) properties (see,
Barlow and Proschan, 1975, Chapter 5 [5]). The properties (P1) and (P2) are
obviously hold. We prove only (P3).

(i)

(P3) ∂2H(x,y)
∂x∂y ≥ 0. For the simplicity, let fxy = f (x, y), Fxy = F (x, y), and

hxy = ∂2H(x,y)
∂x∂y . Then

hxy = fxy [1 + λ− 2λFxy]− 2λ
∂Fxy

∂x

∂Fxy

∂y
(2)

where
∂Fxy

∂x and
∂Fxy

∂y are respectively the probabilities of Pr (Y ≤ y, X = x) and

Pr (X ≤ x, Y = y). Obviously, from the eq.(2), for λ ∈ [−1, 0], hxy ≥ 0.

(ii)
(P3) Under the assumption of the positive dependence of F , according to [15] and

2, by noting that positive dependence implies fxyFxy ≥ ∂Fxy

∂x
∂Fxy

∂y . Hence, by the

eq.(2), we have
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hxy ≥ fxy [1 + λ− 4λFxy]

≥ fxy[1− 3λ].

By considering λ ≤ 1/3, the latter expression in square brackets is non negative.
This completes the proof. □

The transition from univariate case to bivariate or multivariate cases is not so
easy. While in univariate case the real line is the complement of Pr(X ≤ x), at least
in the bivariate case the complement of Pr (X ≤ x, Y ≤ y) is on the quadrants.

In response to the above discussions, we consider the work of Dolati and Úbeda-
Flores (2009) [8]. They introduced a method for constructing bivariate distribution
by using order statistics.

Let (X1, Y1) and (X2, Y2) be two independent random vectors with common
distribution function F (x, y). Note that, F (x, y) belongs to the distribution family
F (Fx, Fy) where Fx and Fy denote respectively marginals of X and Y. Let X(1),
X(2) and Y(1), Y(2) be their corresponding order statistics. According to [8], consider
the four probabilities as follows:

Pr
(
X(1) ≤ x, Y(2) ≤ y

)
= Fxy (2Fy − Fxy) , (3)

Pr
(
X(2) ≤ x, Y(1) ≤ y

)
= Fxy (2Fx − Fxy) , (4)

Pr
(
X(1) ≤ x, Y(1) ≤ y

)
= 2F xFy + 2FxyF̄xy − F 2

xy (5)

and

Pr
(
X(2) ≤ x, Y(2) ≤ y

)
= F 2

xy, (6)

where F̄xy denotes survival function of (X,Y ) i.e., Pr (X > x, Y > y). Dolati and

Úbeda-Flores (2009) [8] proposed two new distributions. First is a mixture of (3)
and (4) with mixing probability ½. In other words,

(Z1, Z2) =

{
(X(1), Y(2)), with probability 1

2

(X(2), Y(1)), with probability 1
2 .

Then the distribution of (Z1, Z2) is given by

H1 (x, y) = Fxy

[
1− F̄xy

]
. (7)

Second is a mixture of (5) and (6) with mixing probability ½. In other words, If we
consider the random vector

(T1, T2) =

{
(X(1), Y(1)), with probability 1

2

(X(2), Y(2)), with probability 1
2 ,

the distribution function of (T1, T2) is given by
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H2 (x, y) = FxFy + FxyF̄xy. (8)

Note that, H1 and H2 both belong to F (Fx, Fy). Accordingly, a transmuted bi-
variate distribution was introduced by considering the eq. (5) and eq. (6) in [13]
as follows: If we consider the random vector

(T ∗
1 , T

∗
2 ) =

{
(X(1), Y(1)), with probability 1+λ

2

(X(2), Y(2)), with probability 1−λ
2 ,

for λ ∈ [−1, 1], the distribution function of (T ∗
1 , T ∗

2 ) is given by

H3 (x, y) = (1 + λ)
[
FxFy + FxyF̄xy

]
− λF 2

xy. (9)

Note that, H3 does not belong to F (Fx, Fy). Marginals are represented by uni-
variate transmuted distribution as in (1). With descriptions so far, it can easily be
said that the genesis of the eq. (9) is one of the bivariate extension of QRTM.

Next section, we try to propose three alternative distributions. The first and
second are proposed in the light of the works of [8] and [13]. The third proposal is
based on QRTM technique of [20].

3. The Research Findings and Discussion

3.1. Some Alternative Methods for Constructing Bivariate Distribution
Family. First proposal is as follows: We obtain by mixing H1 in (7) and H2 in (8)
with respective mixing probabilities 1+λ

2 and 1−λ
2 , then we have

H4 (x, y) =
(1− λ)

2
FxFy +

(1 + λ)

2
Fxy − λFxyF̄xy, (10)

where λ ∈ [−1, 1] . Note that, H4 ∈ F (Fx, Fy). In fact, Dolati and Úbeda-Flores
(2009) [8] proposed two different distribution families and made their conclusions
on these two families. Therefore, H4 will be similar to their proposed families.

Second proposal is as follows: Let (X1, Y1) and (X2, Y2) be two independent ran-
dom vectors with different bivariate distributions FxFy and Fxy. Then we consider
the random pair (V1, V2) as follows:

(V1, V2) =

{
(min{X1, X2},min{Y1, Y2}) , with probability 1+λ

2

(max{X1, X2},max{Y1, Y2}) , with probability 1−λ
2 ,

where −1 ≤ λ ≤ 1. Then the distribution of (V1, V2) is given by

H5 (x, y) = (1 + λ)FxFy +
(1 + λ)

2

[
FxFyF̄xy + FxyF̄xF̄y

]
− λFxyFxFy. (11)
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Here, marginal distributions respectively are H5x = (1 + λ)Fx − λF 2
x and H5y =

(1 + λ)Fy − λF 2
y . Note that, H5 does not belong to F (Fx, Fy) and its marginals

are represented by univariate transmuted distribution as in H3 given by the eq. (9).
The genesis of the third proposal is based on the QRTM technique of [20], and

Rüschendorf’s Method of [17]. Then we define a function on the unit square as

g (u, v) = uv + k (u, v) , (12)

where k (u, v) = 0 at the endpoints of the unit square, with −∂2k(u,v)
∂u∂v ≤ 1. Spe-

cially, by choosing k (u, v) = λuv(1 − u)(1 − v), with u = Fx and v = Fy the eq.
(12) indicates well-known bivariate distribution which is called as Farlie-Gumbel-
Morgenstern (FGM) distribution (see Farlie, 1960, [9] and Gumbel, 1960, [10]).
Note also that, both g (u, 1) and g (1, v) are indicate the QRTM technique of [20].
In the light of these works, we consider

k (u, v) = λuv − λC2
uv + λ (1 + λ)CuvC̄uv,

where Cuv is a bivariate copula, and C̄uv is a survival copula. Accordingly, the
third proposal is introduced as

H6 (x, y) = (1 + λ)FxFy − λF 2
xy + λ (1 + λ)FxyF̄xy, (13)

with the marginal distributions respectively are (1 + λ)Fx − λF 2
x and (1 + λ)Fy −

λF 2
y . The eq. (13) can be seen as another mixture of the eq. (5) and eq. (6). In

other words, for λ = −1, eq. (13) reduces to eq. (6), and for λ = 1, the eq. (13)
reduces to eq.(5). Note that, H6 does not belong to F (Fx, Fy) and its marginals are
represented by univariate transmuted distribution. Unlike H3 and H5 alternatives,
H6 contains the independence class. In other words, for λ = 0, H6 produces FxFy

which is the member of F
(
(1 + λ)Fx − λF 2

x , (1 + λ)Fy − λF 2
y

)
.

Thus, we just propose H4, H5 and H6 as alternative bivariate distributions. By
the next section, considering the special choice of Fxy, we will make a compari-
son amongst to works of [ [8], [13], [6], [21]], according to their Spearman’s rank
correlation coefficients.

3.2. Spearman’s Rho Measures for the New Families of Bivariate Distri-
butions. For F ∈ F (Fx, Fy), Spearman’s rho can be expressed as

ρs = 12

∫
R

∫
R

{Fxy − FxFy} dFydFx (14)

(see, [19]).
FGM distribution, a well-known bivariate distribution, will be considered, and

calculations of Spearman’s rho will be made according to this base distribution.
The Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions are given
by Fxy = FxFy

[
1 + θ F̄xF̄y

]
, for θ ∈ [−1, 1]. Note that, ρs =

θ
3 (see [9] and [10]).
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The calculated coefficient of Spearman’s rho for H4 (in eq. (10)) can be obtained
by

ρH4
s =

(
1 + λ

2

)
ρFs − 12λ

∫
R

∫
R

FxyF̄xydFydFx

=
1

6
θ − 1

75
λθ2 − 1

3
λ.

In fact, this result overlaps with the result of [8] (see, end of Section 3). Because
we created a mixture distribution by H4 of their proposed distributions. According
to their reported results, ρH4

s attains minimum value as − 77
150

∼= − .513 at (θ =

−1, λ = 1) and has a maximum value as as 77
150

∼= .513 at (θ = 1, λ = −1).
The calculated coefficient of Spearman’s rho for H5 (in eq. (11)) can be obtained

by

ρH5
s =

1

3
+

1

12
θ +

11

300
λ2θ − 1

3
λ2.

ρH5
s has a minimum value as −.12 at (θ = −1, λ = ±1) and has a maximum value

as 5
12

∼= .417 at (θ = 1, λ = 0).
The calculated coefficient of Spearman’s rho for H6 (in eq. (13)) can be obtained

by

ρH6
s =

θλ2
(
λ2 + 2θ + 35

)
150

.

ρH6
s has a minimum value as −34

150
∼= − .227 at (θ = −1, λ = ±1) and has a

maximum value as 38
150

∼= .253 at (θ = 1, λ = ±1).
For the comparison, we calculate coefficient of Spearman’s rho for H3 (in eq.

(9)) proposed by [13] as follows:

ρH3
s =

1

3
+

1

6
θ +

1

75
θ2 +

11

150
λ2θ − 1

3
λ2.

ρH3
s has a minimum value as −34

150
∼= − .227 at (θ = −1, λ = ±1) and has a

maximum value as 77
150

∼= .513 at (θ = 1, λ = 0).

We can see that the lower bound of ρH3
s is the same of ρH6

s , and the upper
bound is the same as ρH4

s . Furthermore, in [6] it was reported that for θ ∈ [−1, 0],
ρs ∈ [− 1

4 ,
1
3 ] and in [21] it was reported that for θ ∈ [−1, 0], ρs ∈ [− 1

3 ,
1
3 ].

The upper bounds of Spearman rho for H3, H4 and H5 yield a wider range than
FGM does. According to the comparison for the lower bound, H4 offers wider range
than FGM does.

4. Results

We make an in-depth review of the work which is the first of the bivariate
extensions of QRTM available in the literature. A discussion is made that this first
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extension is a bivariate distribution under which conditions. The result of Theorem
1 shows that this bivariate extension cannot be a bivariate distribution function in
some values of transmutation parameter λ. Therefore, other extensions existing in
literature derived from or similar to this extension proposal may also need to be
explored in detail.

To succeed to extend the univariate QRTM to the bivariate case, three new
bivariate distribution families have been proposed as an alternative to the bivari-
ate distribution families obtained using bivariate order statistics. We have shown
that H4 has a wider range of dependence measure than FGM has when the base
distribution is the specially selected bivariate FGM distribution family is taken.
Furthermore, H5 has also a successful range according to the positive dependence
measure.
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A VARIANT OF THE PROOF OF VAN DER WAERDEN’S

THEOREM BY FURSTENBERG

Sadık EYİDOĞAN and Ali Arslan ÖZKURT

Department of Mathematics, Çukurova University, Adana, TURKEY

Abstract. Let R be a commutative ring with identity. In this paper, for a

given monotone decreasing positive sequence and an increasing sequence of
subsets of R, we will define a metric on R using them. Then, we will use this

kind of metric to obtain a variant of the proof of Van der Waerden’s theorem

by Furstenberg [3].

1. Introduction

In 1927, Van der Waerden published a famous theorem [5], which states that if
the set of positive integers is divided into finitely many classes, then at least one of
these classes contains arbitrarily long arithmetic progressions. This theorem was
proved by several different methods. The ergodic theoretic method was established
by Furstenberg [3] to prove Van der Waerden’s theorem. Notion of a dynamical sys-
tem plays a fundamental role in the proof. A dynamical system is defined as a pair
(X,T ), where X being a compact metric space and T is a continuous map (homeo-
morphism) from X into itself. To obtain number theoretic results, a particular kind
of a dynamical system, a symbolic system, is preferable. Let Λ = {a1, a2, ..., an} be
a finite set and form the space Ω = ΛZ the set of all sequences with entries from Λ:

x ∈ Ω ⇔ x = {..., x−1, x0, x1, ...}.
Observe that Ω can be made a compact metric space, with the following metric:

d (x, y) = inf

{
1

k + 1
: xi = yi for |i| < k

}
for x, y ∈ Ω.

When T is the shift homeomorphism, that is to say Txn = xn+1, from Ω to itself,
the pair (Ω, T ) is called a symbolic dynamical system.
We shall be interested in defining a new symbolic dynamical system in order to
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prove Van der Waerden’s Theorem. For this purpose, we will consider Λ not only
as a finite set but also as a ring like Zn, and define a metric using the notion of
filtration.
For a comprehensive treatment of the topological results and the ergodic theoretic
method described here, the reader is refered to [2] and [4], respectively.

2. Main Results

Let R be a commutative ring with identity and

F : F1 = {0} ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · ·

be a chain of subsets of R such that R =
∞⋃
i=1

Fi. The chain F is also called a

filtration for convenience. For a given monotone decreasing sequence x := (xn) on
(0,∞), let’s start by defining the function dx,F : R×R −→ [0,∞) as follows:

dx,F (s, t) =

{
xm if As,t has an upper bound and m = maxAs,t

0 otherwise

where As,t = {n ∈ N : ∀z ∈ Fn sz = tz} and s, t ∈ R.

Proposition 1. dx,F is a metric on R.

Proof. (i) It is clear that dx,F (s, t) ≥ 0 for all s, t ∈ R.

(ii) If dx,F (s, t) = 0, then As,t has no upper bound and 1R ∈
∞⋃
i=1

Fi implies

1R ∈ Fj for some j. It follows from s1R = t1R that s = t.
(iii) It is easy to see that dx,F is a symmetric function by the definition.
(iv) Let dx,F (s, t) = xm. Then sz = tz holds for all z ∈ Fm and there exists

an element yn ∈ Fn such that syn ̸= tyn for n > m. For a given arbitrary
r ∈ R, suppose dx,F (s, r) = xl < xm and dx,F (r, t) = xk < xm. Then for
each w ∈ Fn, where n = min {l, k} > m, we have sw = rw = tw which in turn
implies that s and t are equal on Fn. This contradicts with dx,F (s, t) = xm.
Therefore, dx,F (s, t) ≤ dx,F (s, r) + dx,F (r, t) holds for all s, r, t ∈ R.

□

Remark 1. Suppose that R is an integral domain. For s, t ∈ R, s ̸= t, when sz = tz
holds, then z must be 0R due to the fact that (s− t) z = 0R and R has no nonzero
zero divisors. In this case, for an arbitrary filtration F :

F1 = {0} ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · such that R =

∞⋃
i=1

Fi,

dx,F (s, t) =

{
x1 if s ̸= t

0 if s = t .

In other words, dx,F must be the discrete metric on integral domains.
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Remark 2. (i) If xn ≤ yn for all n ∈ N, then dx,F ≤ dy,F .
(ii) If F and G are two filtration such that Fn ⊆ Gn for all n ∈ N, then dx,F ≤

dx,G holds.

Example 1. For the commutative ring Z6 and the given filtration

F : F1 = {0} ⊆ {0, 2} ⊆ {0, 2, 4} ⊆ Z6,

the distance table for a given arbitrary monotone decreasing and positive sequence
x := (xn) as follows;

dx,F 0 1 2 3 4 5
0 0 x1 x1 x3 x1 x1

1 x1 0 x1 x1 x3 x1

2 x1 x1 0 x1 x1 x3

3 x3 x1 x1 0 x1 x1

4 x1 x3 x1 x1 0 x1

5 x1 x1 x3 x1 x1 0

Theorem 1. Suppose that R is a commutative ring with identity and τ is a topology
on R. Then τ is the discrete topology if and only if there exist a monotone decreasing
and positive sequence x := (xn) and a filtration F such that τ = τdx,F

where τdx,F

is the metric topology induced by dx,F .

Proof. Let τ be the discrete topology on R. If we choose F to be F1 = {0} ⊆ F2 = R
and x to be an arbitrary monotone decreasing sequence on (0,∞), then we get the
following metric

dx,F (s, t) =

{
x1 if s ̸= t

0 if s = t

on R. As dx,F is a discrete metric, we obtain that τ = τdx,F
.

Conversely, for a given topology τdx,F
on R, we will show that τdx,F

is the discrete

topology. Since 1R ∈ R =
∞⋃
i=1

Fi, there is some k ≥ 1 such that 1R ∈ Fk. It follows

from 1R ∈ Fk that m = maxAs,t < k for all s, t ∈ R, s ̸= t. Therefore, if we choose
ε from the interval (0, xk), we get that the open ball of radius ε centred at s is a
singleton, it means that

B (s, ε) = {r ∈ R : dx,F (s, r) < ε} = {s} .

Hence, τdx,F
is the discrete topology on R. □

It was shown that using the metric dx,F on a commutative ring with identity,
we cannot go beyond discrete topology. Therefore, it is necessary to change the
definition to get effective results.

Let R be a commutative ring with identity and

F : F1 = {0} ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · ·
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be a chain of subsets of R which do not contain any units. For a given monotone
decreasing sequence x := (xn) on (0,∞) that converges to zero, let us define dx,F :
R×R −→ [0,∞) as follows:

dx,F (s, t) =

{
xm if As,t has an upper bound and m = maxAs,t

0 otherwise

where As,t = {n ∈ N : ∀z ∈ Fn sz = tz} and s, t ∈ R.

This time dx,F is a pseudometric on R. For this reason, define the space R∗ = R/∼
of equivalence classes by setting

s ∼ t ⇔ dx,F (s, t) = 0

to obtain a metric.

Proposition 2. d∗x,F ([s] , [t]) = dx,F (s, t) is a metric on R∗.

Example 2. (i) Since Z2 has no zero divisors, it is easy to see d∗x,F = dx,F for

ZN
2 and the filtration

F : F0 = {θ} ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·
where Fn = Z2 × · · · × Z2︸ ︷︷ ︸

n−times

×{0} × · · · for each n ∈ N and θ = (0, 0, . . . ).

(ii) For the commutative ring ZN
6 and the filtration

F : F0 = {θ} ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·
where Fn = {0, 2} × · · · × {0, 2}︸ ︷︷ ︸

n−times

×{0} × · · · for each n ∈ N,

we have [(1, 1, ...)] = [(4, 4, ...)] since dx,F ((1, 1, ...) , (4, 4, ...)) = 0 holds.

Proposition 3. The operations induced by + and · are continuous on the metric

space
((

ZN
n

)∗
, d∗x,F

)
.

Proof. (i) + :
(
ZN
n

)∗ × (
ZN
n

)∗ →
(
ZN
n

)∗
, ([a] , [b]) 7→

[
(an + bn)n∈N

]
Suppose that (an, bn) converges to (a, b). Since dx,F (an, a) + dx,F (bn, b) → 0,
for each ε > 0 there exists a natural number m such that for every natural
number n > m, we have dx,F (an, a) + dx,F (bn, b) ≤ xk < ε where xk is
the greatest term of the sequence satisfying the inequality. Therefore, we get
anz = az and bnz = bz for all z ∈ Fk which imply (an + bn) z = (a+ b) z and
dx,F (an + bn, a+ b) ≤ xk < ε. Hence, d∗x,F ([an] + [bn] , [a] + [b]) → 0 and +
is continuous.

(ii) · :
(
ZN
n

)∗ × (
ZN
n

)∗ →
(
ZN
n

)∗
, ([a] , [b]) 7→

[
(an.bn)n∈N

]
First, we show the compatibility of multiplication; for any s, s1, t, t1 ∈

(
ZN
n

)∗
,

s ∼ s1, t ∼ t1 ⇒ st ∼ s1t1.
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Suppose that s ∼ s1, t ∼ t1. For any z ∈
∞⋃

n=1
Fn, we have

tz = t1z ⇔ (t− t1)z = 0

since t ∼ t1. Combining the commutative property of multiplication and
s ∼ s1 that we obtain

s((t− t1)z) = 0 ⇔ (st)z = s(t1z) = t1(sz) = (t1s1)z = (s1t1)z.

Hence, st ∼ s1t1.
Now, we prove the continuity of multiplication. Assume that (an, bn) con-
verges to (a, b). Since dx,F (an, a) + dx,F (bn, b) → 0, for each ε > 0 there
exists a natural number m such that for every natural number n > m, we
have dx,F (an, a) + dx,F (bn, b) ≤ xk < ε where xk is the greatest term of the
sequence satisfying the inequality. Therefore, we get anz = az and bnz = bz
for all z ∈ Fk. It follows that we have

(anbn)z = an(bnz) = an(bz) = (anz)b = (az)b = (ab)z

for all z ∈ Fk by the commutative property of multiplication. Thus,

dx,F (anbn, ab) ≤ xk < ε.

Hence, d∗x,F ([an] [bn] , [a] [b]) → 0 and · is continuous.
□

We have to work with ZZ
n instead of ZN

n if we want to say that the shift map T on
the compact metric space is a homeomorphism. Therefore, let us define a compact
metric space on the commutative ring ZZ

n using the notion of filtration.

(i) Let n be a prime number.
The metric space

(
ZZ
n, dx,F

)
is generated by the filtration

F : F0 = {θ} ⊆ F1 ⊆ · · · ⊆ Fm ⊆ · · ·
where

Fm = · · · × {0}−m × (Zn)−m+1 × · · · × (Zn)m−1 × {0}m × · · ·
for each m ∈ N and θ = (. . . , 0, 0, . . . ).
Since

B (s, ε) =
{
y ∈ ZZ

2 : dx,F (s, y) < ε
}
=

· · · × (Z2)−m × {s−m+1} × · · · × {sm−1} × (Z2)m × · · ·
for s ∈ ZZ

2 and ε > 0, where m ∈ N minimum such that xm < ε, the metric

space
(
ZZ
2 , dx,F

)
has the same topology as

(
{0, 1}Z , d

)
does,

where d (x, y) = inf

{
1

k + 1
: xi = yi for |i| < k

}
x, y ∈ {0, 1}Z defined by Furstenberg [3].
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(ii) Let n be a composite number.

The metric space
((

ZZ
n

)∗
, d∗x,F

)
is generated by the filtration

F : F0 = {θ} ⊆ F1 ⊆ · · · ⊆ Fm ⊆ · · ·
where

Fm = · · · × {0}−m × {0, a}−m+1 × · · · × {0, a}m−1 × {0}m × · · ·
for each m ∈ N, θ = (. . . , 0, 0, . . . ) and a is the smallest prime divisor of n.

Proposition 4. The metric space
((

ZZ
n

)∗
, d∗x,F

)
defined above is compact.

Proof. It is easy to prove that
((

ZZ
n

)∗
, d∗x,F

)
is a sequentially compact space since

Zn is finite set. It is sufficient to show that any sequence (an)n∈N of members of(
ZZ
n

)∗
has a subsequence converging to an element of

(
ZZ
n

)∗
.

Let an := [(cn,m)m∈Z] be a sequence in
(
ZZ
n

)∗
. Take α0 ∈ Zn such that I(0) =

{n ∈ N : cn,0 = α0} is infinite. Let s(0) be the minimum element (or any) of I(0).
Now, take α1 ∈ Zn such that I(1) = {n ∈ I(0) : cn,1 = α1} is infinite. Let s(1)
be any element of I(1) such that s(1) > s(0). Then, take α−1 ∈ Zn such that
I(−1) = {n ∈ I(1) : cn,−1 = α−1} is infinite and choose s(−1) to be any element
of I(−1) such that s(−1) > s(1). Continuing in this way, we obtain an element

a := [(αm)m∈Z] of
(
ZZ
n

)∗
. Besides, (as(n))n∈Z is a subsequence of (an)n∈N that

converges to a. Consequently, the metric space
((

ZZ
n

)∗
, d∗x,F

)
is compact since it

is known that a sequentially compact metric space is also compact. □

Definition 1. [3] Let (X,T ) be a dynamical system. A point x ∈ X is a recurrent
point of (X,T ) if for some sequence nk → ∞, Tnkx → x.

Let us recall the Birkhoff Multiple Recurrence Theorem. G. D. Birkhoff showed
that if X is a compact topological space and T is a continuous map from X to itself,
then X has a recurrent point [1] which is called the Birkhoff Recurence Theorem.
The following theorem, due to Furstenberg [3], generalizes the Birkhoff Recurrence
Theorem since it guarantees the existence of a point which is simultaneously recur-
rent for T, T 2, ..., Tn n ≥ 1.

Theorem 2 (Birkhoff Multiple Recurrence). [3] Let X be a compact metric space,
and let T : X → X be a continuous map. Then for any integer r ≥ 1, there exists
a point x ∈ X and a sequence nk → ∞ with Tnkx → x, T 2nkx → x, ..., T rnkx → x.

Definition 2. An arithmetic progression of length l is a sequence of integers of the
form

a, a+ d, a+ 2d, ..., a+ (l − 1)d

where d ̸= 0.
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Now, we give a variant of the proof of Van der Waerden’s theorem by Furstenberg
[3].

Theorem 3 (Van der Waerden). Let Z =
r−1⋃
i=0

Ci be a partition of the integers into

r subsets. Then one of the sets Cj contains an arithmetic progression of length l.

Proof. Let Z =
r−1⋃
i=0

Ci be a partition of the integers.

Case 1 Suppose r is a composite number. Let us define ξ ∈ ZZ
r which corresponds

to a partition of Z with r sets. In other words,

Z = ∪Ci where Ci = {n : ξn = i}

represents an equivanlance class partition of Z in Ω :=
((

ZZ
r

)∗
, d∗x,F

)
. Let X ⊆ Ω,

X = {Tn [ξ] , n ∈ Z}

be the closure of the set of all translates of [ξ]. According to the Birkhoff Mul-
tiple Recurrence theorem, there exists [β] ∈ X and an n > 0 with the points
[β] , Tn [β] , ..., T ln [β] within distance less than x1 of one another. We know that
for two elements [α] and [γ] in Ω, d∗x,F ([α] , [γ]) < x1 implies that one of

α0 = γ0, α0 = γ0 + q, ... ,α0 = γ0 + (a− 1) q

is satisfied in Zr by virtue of the definition of d∗x,F where r = aq and a is the
smallest prime divisor of r. It follows that

β0 = βk11·n = βk12·n = · · · = βk1S1
·n

β0 + q = βk21·n = βk22·n = · · · = βk2S2
·n

...
β0 + (a− 1) q = βka1·n = βka2·n = · · · = βkaSa ·n

such that {1, 2, ..., l} =
a⋃

i=1

{ki1, ..., kiSi
}.

Since [β] ∈ X = {T j [ξ] , j ∈ Z}, we can find m so that

ξm = ξm+k11·n = ξm+k12·n = · · · = ξm+k1S1
·n

ξm + q = ξm+k21·n = ξm+k22·n = · · · = ξm+k2S2
·n

...
ξm + (a− 1) q = ξm+ka1·n = ξm+ka2·n = · · · = ξm+kaSa ·n.

Then one of Ci ∪ Ci+q ∪ ... ∪ Ci+(a−1)q, where i ∈ {0, 1, ..., q − 1}, contains an
arithmetic progression of length l.
Now, let us consider the partition
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Z =
ar−1⋃
i=0

Di where Ci = Di ∪Di+r ∪ ... ∪Di+(a−1)r and i ∈ {0, 1, ..., r − 1}.

If we apply the above method for the partition

Z =
ar−1⋃
i=0

Di and Ω :=
((

ZZ
ar

)∗
, d∗x,F

)
,

we obtain that one of Ci = Di ∪Di+r ∪ ... ∪Di+(a−1)r, where i ∈ {0, 1, ..., r − 1},
contains an arithmetic progression of length l.

Case 2 Let r be a prime number. Now, let us arrange the partition Z =
r−1⋃
i=0

Ci in

order to turn into the first case. If we take r′ = 2r and

Z =
r′−1⋃
i=0

Ei where Ci = Ei ∪ Ei+r for i ∈ {0, 1, ..., r − 1},

it follows from Case 1 that one of Ei contains an arithmetic progression of length
l. □
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THE EFFECT OF SEMI PERFORATED DUCT ON RING

SOURCED ACOUSTIC DIFFRACTION

Burhan TIRYAKIOGLU
Department of Applied Mathematics, Marmara University, Istanbul, TURKEY

Abstract. An analytical solution is obtained for the diffraction problem. In
an infinite cylindrical duct, the sound waves are emanating by a ring source.

The duct is rigid for z < l and perforated for z > l. The mixed boundary

value problem is defined by a Wiener Hopf equation, by using the Fourier
transform technique. Then the numerical solution is obtained. The influence

of the parameters of the problem on the diffraction phenomenon is displayed

graphically. The present study can be used as a model for different appli-
cations. Reducing noise in exhaust systems, ventilation systems are some of

these applications.

1. Introduction

Radiation or diffraction of sound waves is an essential problem which has been
extensively studied in the literature so far. The duct and pipe structures are com-
monly used in many industrial devices to control the unwanted and harmful noise,
such as exhaust systems, ventilation systems, aircraft jet and modern turbofan en-
gines. For this reason, it is essential to investigate more accurate mathematical
models for such engineering problems.

The radiation of sound waves from a semi-infinite rigid duct was first discussed
by [1]. In their study, by using the Wiener-Hopf technique, the solution was ob-
tained analytically [2]. Covering the pipe/duct walls with an absorbing lining is
an efficient method that has proven beneficial in noise reduction [3–5]. Another
method of reducing unwanted sound is to provide additional sound absorption by
using perforated structures. The phenomenon of perforated structures has been
investigated by various authors [6–10]. This idea is essential because perforated
structures provide some possibilities for investigating of sound diffraction.
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The goal of the present study is to consider the diffraction of sound waves em-
anating from a ring source by an infinite circular cylindrical duct. Duct walls are
assumed to be infinitely thin and rigid for z < l, perforated for z > l. The ring
source is located out of the duct and can be moved along the duct axis, but never
go beyond the duct exit. This problem is a generalization of a previous work by
the author [11] who considered the similar geometry in the case where the numer-
ical results is absent. This geometry can be considered as a model of an acoustic
waveguide for noise reduction. Due to the ring source, the total field have angu-
lar symmetry which makes the problem simpler than the asymmetric case. This
mixed boundary value problem is investigated rigorously through the Wiener-Hopf
technique. By applying the Fourier transform, we obtain a Wiener-Hopf equation.
After application of usual decomposition and factorisation procedures the solution
of the Wiener-Hopf equation is obtained. Then, numerical solution is obtained ap-
proximately for various values of the parameters such as the radii of the duct and
ring source, frequency, perforated part, etc. The effect of values of the parameters
on the diffraction phenomenon is presented graphically.

Validation of graphical results is obtained with unperforated (open) case. When
the perforated part is absent, the present study is compared with the study of [12]
and the results are found to be in good agreement.

2. Analysis

2.1. Formulation of the Problem. We consider the diffraction of sound waves
by an infinite cylindrical duct. Infinitely thin duct walls are assumed. The duct
is {r = a, z ∈ R} illuminated by a ring source located at {r = b > a, z = −c, c > 0}
(see Fig. 1). The part z < l of the inner cylinder is hard walled while the part
z > l is perforated. From the installation of the problem, the ring source and the
geometry is symmetrical. Therefore, the total field will be independent of azimuth
ϕ everywhere in coordinate system (r, ϕ, z). The velocity potential ψ will be used
to obtain acoustic pressure p and velocity v via p = −ρ0(∂/∂t)ψ and −→v = gradψ,
where ρ0 is the density of the undisturbed medium.

Figure 1. Geometry of the current problem.
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For analytical convenience, it is suitable to write the total field as follows

ψT (r, z) =

 ψ1 (r, z) ;
ψ2 (r, z) ;
ψ3 (r, z) ;

r > b
a < r < b
r < a

(1)

Time dependence is assumed to be e−iωt and suppressed throughout this work
where ω = 2πf is the angular frequency and f is the frequency.

2.2. Derivation of the Wiener-Hopf System. The unknown fields ψ1 (r, z) , ψ2 (r, z)
and ψ3 (r, z) satisfy the wave equation for z ∈ (−∞,∞)[

1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
+ k2

]
ψj(r, z) = 0, j = 1, 2, 3 (2)

with wave number k = ω/c0 where c0 is the speed of the sound. By taking Fourier
transform of these three equations we obtain the following integral representations

ψ1 (r, z) =
k

2π

∫
L

A (α)H
(1)
0 (λkr) e−iαkzdα (3)

ψ2 (r, z) =
k

2π

∫
L

[B (α) J0 (λkr) + C (α)Y0 (λkr)] e
−iαkzdα (4)

ψ3 (r, z) =
k

2π

∫
L

D (α) J0 (λkr) e
−iαkzdα (5)

where L is a suitable inverse Fourier transform integration contour in the complex
α-plane [13]. J0 and Y0 are the Bessel and Neumann functions of order zero,

respectively. H
(1)
0 = J0 + iY0 is the Hankel function of the first type. λ =

√
1− α2

is square root function. The unknown coefficients A (α) , B (α) , C (α) and D (α) ,
which are introduced in the solution of potential function, are to be determined by
applying the following boundary conditions and continuity relations at r = a and
r = b.

∂

∂r
ψ2 (a, z) = 0, z < l (6)

∂

∂r
ψ3 (a, z) = 0, z < l (7)

∂

∂r
ψ2 (a, z) =

∂

∂r
ψ3 (a, z) , z > l (8)

ψ2(a, z) = ψ3(a, z) + i
ζp
k

∂

∂r
ψ3 (a, z) , z > l (9)

ζp which is given by [14], is the nondimensional specific acoustic impedance, de-
scribing the acoustic properties of the perforated cylinder.

ζp = [0.006− ik (tw + 0.75dh)] /σ (10)
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where σ is the porosity, dh is the perforate hole diameter and tw is the screen
thickness. By using the ring source definition, given as

∂

∂r
ψ1 (b, z)−

∂

∂r
ψ2 (b, z) = δ (z + c) , −∞ < z <∞ (11)

ψ1(b, z) = ψ2(b, z), −∞ < z <∞ (12)

where δ is dirac delta function. Applying the boundary conditions on r = a for
equations (6), (7) and (8) and taking Fourier transforms gives

[D (α)−B (α)] J1 (λka) = C (α)Y1 (λka) (13)

similarly for equation (7)

−D (α)λkJ1 (λka) = eiαklΦ+ (α) (14)

continuity of pressure at r = a for (9) yields

[B (α)−D (α)] J0 (λka) + C (α)Y0 (λka) = eiαklΦ− (α) + i
ζp
k
eiαklΦ+ (α) (15)

where Φ+ (α) and Φ− (α) are a function analytic at the upper (Imα > 0 or Imα =
0 and Reα > 0) and lower (Imα < 0 or Imα = 0 and Reα < 0) half plane
respectively and defined as

Φ+ (α) =

∞∫
l

∂

∂r
ψ3 (a, z) e

iαk(z−l)dz (16)

Φ− (α) =

l∫
−∞

[ψ2(a, z)− ψ3 (a, z)] e
iαk(z−l)dz (17)

The spectral coefficient D (α) can be found easily from (14) while A (α), B (α) and
C (α) are related to each other by the definition of the ring source given in (11,12).
By using the boundary conditions on r = b, one obtains

λkA (α)H
(1)
1 (λkb) = λkB (α) J1 (λkb) + λkC (α)Y1 (λkb)− e−iαkc (18)

A (α)H
(1)
0 (λkb) = B (α) J0 (λkb) + C (α)Y0 (λkb) (19)

where H
(1)
1 = J1 + iY1. From (18) and (19), we get

B (α) = A (α) + e−iαkcπb

2
Y0 (λkb) (20)

C (α) = iA (α)− e−iαkcπb

2
J0 (λkb) (21)
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(13) and (14) allows us to express the coefficients A (α) and D (α) in terms of the
analytic function Φ+ (u)

A (α) = − eiαklΦ+(α)

λkH
(1)
1 (λka)

+
πb

2

e−iαkc

H
(1)
1 (λka)

[J0 (λkb)Y1 (λka)− Y0 (λkb) J1 (λka)]

(22)

D (α) = −e
iαklΦ+(α)

λkJ1 (λka)
(23)

The substitution of B (α) , C (α) and D (α) given by (20), (21), (23) into (15) yields

Φ+(α)M (α) = Φ− (α) +
b

a
e−iαk(c+l) H

(1)
0 (λkb)

λkH
(1)
1 (λka)

(24)

where M (α) is kernel function to be factorized

M (α) =
J0 (λka)

λkJ1 (λka)
− H

(1)
0 (λka)

λkH
(1)
1 (λka)

− i
ζp
k

(25)

2.3. Solution of the Wiener-Hopf Equation. Consider the Wiener-Hopf equa-
tion in (24) and rearrange it using (25) in the following form

Φ+(α)M+ (α) = Φ− (α)M− (α) +
b

a
e−iαk(c+l)M− (α)

H
(1)
0 (λkb)

λkH
(1)
1 (λka)

(26)

Here,M− (α) andM+ (α) are analytic functions in the lower and upper half planes,
respectively, From the Wiener-Hopf factorization of M (α) as [15], one gets

M (α) =
M+ (α)

M− (α)
(27)

Now consider (26), by using the classical decomposition procedure for complex
term, one gets

Φ+(α)M+ (α) = Φ− (α)M− (α) + I+ (α) + I− (α) (28)

Decomposing I (α) we obtain split functions I+ (α) and I− (α) which are regular
in the upper and lower half planes, respectively [16].

I (α) =
b

a
e−iαk(c+l)M− (α)

H
(1)
0 (λkb)

λkH
(1)
1 (λka)

= I+ (α) + I− (α) (29)

The Wiener-Hopf equation in (28), yields

Φ+(α)M+ (α)− I+ (α) = Φ− (α)M− (α) + I− (α) (30)

Now both sides of (30) are analytical functions on upper and lower regions, one can
obtains the Wiener-Hopf solution

Φ+(α) = I+ (α) /M+ (α) (31)
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and

Φ−(α) = −I− (α) /M− (α) (32)

3. Far Field

The total field in r > b can be evaluated from (3)

ψ1 (r, z) =
k

2π

∫
L

A (α)H
(1)
0 (λkr) e−iαkzdα (33)

We may write the total field as follows

ψ1 (r, z) = ψd (r, z) + ψi (r, z) + ψr (r, z) (34)

where

ψd (r, z) = − k

2π

∫
L

Φ+(α)

λkH
(1)
1 (λka)

H
(1)
0 (λkr) e−iαk(z−l)dα (35)

ψi (r, z) + ψr (r, z) =
kb

4

∫
L

J0 (λkb)Y1 (λka)− Y0 (λkb) J1 (λka)

H
(1)
1 (λka)

×H
(1)
0 (λkr) e−iαk(z+c)dα (36)

Replacing H
(1)
0 (λkr) by its asymptotic expressions valid for kr ≫ 1.

H
(1)
0 (λkr) ∼

√
2

πλkr
ei(λkr−π/4) (37)

and applying the saddle point technique [17], we get

ψ1 (r, z) = ψd (R1, θ1) + ψi (R2, θ2) + ψr (R2, θ2) (38)

where

ψd (R1, θ1) =
i

π

Φ+(− cos θ1)

sin θ1H
(1)
1 (ka sin θ1)

eikR1

kR1
(39)

ψi (R2, θ2) + ψr (R2, θ2)

=
kb

2i

J0 (kb sin θ2)Y1 (ka sin θ2)− Y0 (kb sin θ2) J1 (ka sin θ2)

H
(1)
1 (ka sin θ1)

eikR2

kR2
(40)

Here R1, θ1 and R2, θ2 are the spherical coordinates

r = R1 sin θ1, z − l = R1 cos θ1 (41)

and

r = R2 sin θ2, z + c = R2 cos θ2 (42)
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4. Numerical Results

In order to show the effects of the parameters like the radii of the duct and the
ring source and the perforated part on the diffracted field, some results displaying
a changing of the sound pressure level with different values are presented in this
section. Figures are plotted for Sound Pressure Level (SPL), described by

SPL = 20 log10

∣∣∣ p

2 · 10−5

∣∣∣
Far field values are plotted 46 m from the duct edge. Parameter values of the
perforated part are taken from the study of [14].

First, variations of sound pressure level for different values of radius (a) are
presented in Figure 2 for f = 1500 Hz, b = 0.075 m, l = 0.010 m, c = 0.050 m,
tw = 0.00081 m, dh = 0.0249 m, σ = 0.057. In the graph, it is seen that as the value
of (a) decreases, the sound pressure level decreases. In Figure 3, similar analysis is

0 20 40 60 80 100 120 140 160 180

Observation angle in degrees

20

30

40

50

60

70

80

90

100

110

S
o

u
n

d
 P

re
s
s
u

re
 L

e
v
e

l 
(d

B
)

a = 0.010

a = 0.020

a = 0.030

Figure 2. SPL versus the observation angle for different values
of the duct radius (a) with f = 1500 Hz, b = 0.075 m, l = 0.010
m, c = 0.050 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057.

also carried for different values of ring source radius (b) for f = 1500 Hz, a = 0.010
m, l = 0.010 m, c = 0.050 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057. Sound
pressure level decreases with decreasing value of ring source radius like in Figure 2.

Figures 4 and 5 display the same effect to the sound pressure level for different
values of l and c. For Figure 4, the parameter values are f = 1500 Hz, a = 0.010
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Figure 3. SPL versus the observation angle for different values of
the ring source radius (b) with f = 1500 Hz, a = 0.010 m, l = 0.010
m, c = 0.050 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057.

m, b = 0.0510 m, c = 0.050 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057 while
for Figure 5 the parameter values are f = 1500 Hz, a = 0.010 m, b = 0.050 m,
l = 0.010 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057. Sound pressure level
decreases with increasing values of l and c, as expected.

From Figure 6, one can see the effect of the frequency on the sound pressure
level. This graph is plotted for a = 0.010 m, b = 0.025 m, l = 0.010 m, c = 0.050
m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057. The similar effect is observed like
in Figure 2.

In Figure 7, the effect of specific acoustic impedance (ζp) on sound pressure level
is first studied for three different acoustic impedances and compared to open case.
This graph is plotted for non dimensional parameters which values are ka = 1,
kb = 10, kl = 10, kc = 6. It is seen that existing of perforated part makes
contribution to the reduction of sound pressure level and when imaginary coefficient
of acoustic impedance decreases the pressure level decreases. It should be noted
that, due to Equation (10), the real part of ζp remains constant and the imaginary
part changes for different values of frequency.

In order to show the accuracy of the numerical results obtained in this study, ζp is
taken zero and the results are compared with the study of [12] for semi-infinite rigid
duct. Figure 8 shows that the results are consistent, that is, the results obtained



THE EFFECT OF SEMI PERFORATED DUCT ON DIFFRACTION 1081

0 20 40 60 80 100 120 140 160 180

Observation angle in degrees

20

30

40

50

60

70

80

90

100

S
o

u
n

d
 P

re
s
s
u
re

 L
e

v
e

l 
(d

B
)

l = 0.010

l = 0.025

l = 0.050

Figure 4. SPL versus the observation angle for different values of
the duct extension (l) with f = 1500 Hz, a = 0.010 m, b = 0.0510
m, c = 0.050 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057.
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Figure 5. SPL versus the observation angle for different values of
the ring source axes (c) with f = 1500 Hz, a = 0.010 m, b = 0.050
m, l = 0.010 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057.
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Figure 6. SPL versus the observation angle for different values
of the frequency (f) with a = 0.010 m, b = 0.025 m, l = 0.010 m,
c = 0.050 m, tw = 0.00081 m, dh = 0.0249 m, σ = 0.057.
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Figure 7. SPL versus the observation angle for open perforated
duct with ka = 1, kb = 10, kl = 10, kc = 6.



THE EFFECT OF SEMI PERFORATED DUCT ON DIFFRACTION 1083

0 20 40 60 80 100 120 140 160 180

Observation angle in degrees

-90

-80

-70

-60

-50

-40

-30

A
m

p
lit

u
d

e
 o

f 
th

e
 d

if
fr

a
c
te

d
 f

ie
ld

 (
d

B
) 

ka = 1

ka = 1.25

ka = 1.5

Figure 8. Comparison of the diffracted field with the study of [12]
for semi infinite rigid duct.

in this study are correct. Notice that for Figure 8, the diffracted field graphic is
produced for 20 log10|ψd (R1, θ1)|.

5. Conclusion

In this study, diffraction of sound waves emanating from a ring source by an
infinite cylindrical duct which is rigid for z < l and perforated for z > l has
been investigated by using the Fourier transform technique in conjunction with the
Wiener Hopf technique. The problem is modelled two dimensional due to sym-
metry of the geometry and of the ring source. A solution is derived by solving
the Wiener Hopf equation. To a better understanding the effect of the parameters
of the problem such as the radii of the duct and ring source and perforated part
on the sound pressure level, graphics are presented for some specific values of the
problem. It has been observed that the sound pressure level decreases as the values
of the frequency (f), the duct radius (a) and the ring source radius (b) decreases.
On the contrary, it is observed that the sound pressure level increases as the values
of the duct extension (l) and the ring source axes (c) decreases. The effect of the
perforated duct on the sound pressure level is more effective. While a few decibels
change in sound pressure level is observed for other parameters of the problem, the
variation from the perforated duct is more significant. It is found that presence of
the perforated part reduced the sound pressure level when compared with the open
part situation. The results are also compared with the study of [12] (ζp = 0) and
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it is observed that the agreement is perfect.
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COMPARISON OF DIFFERENT ESTIMATION METHODS FOR

THE INVERSE WEIGHTED LINDLEY DISTRIBUTION

Iklim GEDIK BALAY
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Abstract. In this paper, different estimation methods are considered for the
parameters of the inverse weighted Lindley (IWL) distribution introduced by

Ramos et al.(2019). Parameters of the IWL are estimated by the method of

maximum likelihood (ML), least squares (LS), weighted least squares (WLS),
Cramér-von Mises (CVM) and Anderson Darling (AD). The performances of

the estimators are compared using Monte Carlo simulation study via bias,

mean square error and deficiency (Def) criteria. Finally, a real data set is
analyzed for illustrative purposes.

1. Introduction

Lindley distribution presented by Lindley [7] is an important distribution in
statistics and many applied areas because of its flexible mathematical properties.
Furthermore, Lindley distribution is more preferable than the exponential distri-
bution in many cases (see [5]). Different generalizations are considered in the lit-
erature such as given in [15], [1], [3] to add more flexibility to Lindley distribution.
Weighted distributions can extend and provide more flexibility to standard distribu-
tions (see [11]). Two-parameter weighted Lindley (WL) distribution is introduced
by Ghitany et al. [4]. Mazucheli et al. [3] study on the finite sample properties of
the parameters of the WL distribution using four methods. Wang and Wang [14]
propose bias-corrected maximum likelihood (bias-corrected ML) estimators for the
parameters of the WL distribution. Ramos and Louzada [13] introduce three pa-
rameters generalized weighted Lindley distribution. Ramos et al. [12] propose the
inverse weighted Lindley (IWL) distribution. The IWL distribution is a component
of two mixture model with upside-down bathtub hazard rate function. The IWL
distribution is flexible to model data sets in the presence of heterogeneity (see [12]).
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For example, if we are interested in life time of products in a group, it can be consid-
ered that the group is heterogeneous. Since the observed failure times of products
could be different. In this case, the IWL distribution can be appropriate to describe
the heterogeneity in the data.

The IWL distribution is specified by the probability density function (pdf)

f(t) =
λϕ+1

(ϕ+ λ)Γ(ϕ)
t−ϕ−1

(
1 +

1

t

)
e−λt−1

, (1)

for all t > 0, ϕ > 0 and λ > 0 where Γ(ϕ) is the gamma function which is computed
by Γ(ϕ) =

∫∞
0
e−xxϕ−1dx is the gamma function. The corresponding cumulative

distribution function (cdf) is given by

F (t) =
Γ(ϕ, λt−1)(λ+ ϕ) + (λt−1)ϕe−λt−1

(λ+ ϕ)Γ(ϕ)
(2)

where Γ(x, y) =
∫∞
x
wy−1e−xdw is the upper incomplete gamma. The survival

function and hazard function of the IWL distribution are defined as follows

S(t) =
γ(ϕ, λt−1)(λ+ ϕ)− (λt−1)ϕe−λt−1

(λ+ ϕ)Γ(ϕ)
, (3)

h(t) =
λϕ+1t−ϕ−1(1 + t−1)e−λt−1

γ(ϕ, λt−1)(λ+ ϕ)− (λt−1)ϕe−λt−1 , (4)

respectively. Here γ(y, x) =
∫ x

0
wy−1e−wdw is the lower incomplete gamma func-

tion. Hazard function plots of the IWL distribution for some selected values of
parameters (ϕ, λ) are presented in Figure 1.

We refer to [12] for the further details about the IWL distribution.
Ramos et al. [12] present the ML and Bias-corrected ML estimators for the pa-

rameters of the IWL distribution for both complete and censored data and examine
the efficienct of bias correction via Monte Carlo simulation.

To the best of our knowledge, parameters of the IWL distribution have not been
estimated using different methods, namely, least square (LS), weighted least squares
(WLS), Cramér-von Mises (CVM) and Anderson Darling (AD) methods.

In this paper, we propose ML, LS, WLS, CVM and AD estimators for parameters
of the IWL distribution. CVM and AD estimators are in the class of minimum
distance estimators which are based on minimizing distance between the estimated
and empirical cdf with respect to the parameters of interest. Minimum distance
estimators are also called as goodness of fit estimators. See [2] and [8] for the further
details of goodness of fit estimators. We carry out Monte Carlo simulation study in
order to compare performances of the proposed estimators in terms of bias, mean
squared error (MSE) and deficiency (Def) criteria.

The rest of paper is organized as follows. Brief descriptions of ML, LS, WLS,
CVM and AD methods are given in Section 2. In Section 3, an extensive Monte
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Figure 1. Hazard function plots of the IWL distribution for some
selected values of parameters (ϕ, λ).

Carlo simulation study is carried out to compare the performances of the estimators
for parameters of the IWL distribution. In Section 4, we give real data application
to illustrate the implementation of the proposed methodology. In the final section,
the concluding remarks are given.

2. Estimation methods

In this section, we give a brief information of the estimation methods, called as
ML, LS, WLS, CVM and AD used to estimate parameters of the IWL in this study.
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2.1. Maximum likelihood estimators. Let T1, T2, ..., Tn be a random sample
from the IWL(ϕ, λ) distribution. Then, the log-likelihood function (l) of the ob-
served sample is

l = n(ϕ+ 1)logλ− nlog(λ+ ϕ)− nlogΓ(ϕ)− λ

n∑
i=1

1

ti
− (ϕ+ 1)

n∑
i=1

log(ti). (5)

The ML estimators of the parameters ϕ and λ are obtained from the following
likelihood equations:

∂l

∂ϕ
= nlog(λ)−

n∑
i=1

log(ti)−
n

λ+ ϕ
− nψ(ϕ) = 0 (6)

∂l

∂λ
=

n(ϕ+ 1)

λ
−

n∑
i=1

1

ti
− n

λ+ ϕ
= 0 (7)

where ψ(k) = ∂
∂k logΓ(k) =

Γ′(k)
Γ(k) is the digamma function. The ML estimate of λ

is obtained from equation (7) as

λ̂ML =
−ϕ̂ML(ξ(t)− 1) +

√
(ϕ̂ML(ξ(t)− 1))2 + 4ξ(t)(ϕ̂

2

ML + ϕ̂ML)

2ξ(t)
(8)

where ξ(t) =
∑n

i=1(nti)
−1. It is obvious that (6) cannot be solved explicitly.

Therefore, for computing the ML estimator of ϕ, numerical methods should be
performed. See [12] for more details about the ML estimators of the parameters of
the IWL distribution.

2.2. Least Squares Estimation Method. Let x(i), i = 1, 2, ..., n be the order
statistics of a random sample from the IWL distribution. Since F (x(i)) behaves as
the i-th order statistic of a sample size from U(0, 1), expected value and variance
of F (x(i)) are given as follows:

E[F (x(i))] =
i

n+ 1
and V ar[F (x(i))] =

i(n− i+ 1)

(n+ 1)2(n+ 2)
, (9)

respectively. The LS estimators of the parameters of the IWL distribution are
obtained by minimizing the following function with respect to the parameters ϕ
and λ.

S =

n∑
i=1

(
F (x(i))−

i

n+ 1

)2

. (10)

Here F (.) is the cdf of the IWL given in (2). LS estimators of ϕ and λ are obtained
by solving following equations:

∂S

∂ϕ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ1(x(i);ϕ, λ) = 0,



COMPARISONS FOR THE INVERSE WEIGHTED LINDLEY DISTRIBUTION 1089

∂S

∂λ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ2(x(i);ϕ, λ) = 0, (11)

where

Λ1(x(i);ϕ, λ) =

(
Γ(ϕ,λt−1)+γ1(ϕ+λ)+(λt−1)ϕln(λt−1)e−λt−1

)(
(λ+ϕ)Γ(ϕ)

)
(

(λ+ϕ)Γ(ϕ)

)2

−

(
Γ(ϕ,λt−1)(λ+ϕ)+(λt−1)ϕe−λt−1

)(
λγ3+Γ(ϕ)+ϕγ3

)
(

(λ+ϕ)Γ(ϕ)

)2 , (12)

Λ2(x(i);ϕ, λ) =

(
Γ(ϕ,λt−1)+γ2(λ+ϕ)+t−1e−λt−1

(ϕ(λt−1)ϕ−1−(λt−1)ϕ)

)
(

(λ+ϕ)Γ(ϕ)

)2

×

(
(λ+ ϕ)Γ(ϕ)

)
−

(
Γ(ϕ,λt−1)(λ+ϕ)+(λt−1)ϕe−λt−1

)
Γ(ϕ)(

(λ+ϕ)Γ(ϕ)

)2 , (13)

respectively. It is obvious that, since equations given in (11) include nonlinear
functions, numerical methods should be performed to obtain LS estimators of ϕ
and λ.

2.3. Weighted Least Squares Estimators. The WLS estimators of the param-
eters ϕ and λ are obtained by minimizing the following function:

Sw =

n∑
i=1

wi

(
F (x(i))−

i

n+ 1

)2

(14)

where wi denotes the weight and computed by

wi =
1

Var(F (X(i)))
=

(n+ 1)2(n+ 2)

i(n− i− 1)
, i = 1, 2, ..., n.
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The WLS estimators of ϕ and λ are obtained by solving the following nonlinear
equations:

∂Sw

∂ϕ
=

n∑
i=1

wi

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ1(x(i);ϕ, λ) = 0,

∂Sw

∂λ
=

n∑
i=1

wi

(
F (x(i);ϕ, λ)−

i

n+ 1

)
Λ2(x(i);ϕ, λ) = 0, (15)

respectively. Here Λ1 and Λ2 are given in (13). It is clear that WLS estimators
should also be obtained using numerical methods, since equations given in (15)
cannot be solved explicitly.

2.4. Cramér-von Mises estimators. CVM estimators of the parameters of the
IWL distribution are obtained by minimizing the following equation with respect
to the parameters ϕ and λ.

CVM =
1

12n
+

n∑
i=1

(
F (x(i), ϕ, λ)−

2i− 1

2n

)2

(16)

To obtain the CVM estimators of the parameters, we have to solve the following
equations by using numerical methods.

∂CVM

∂ϕ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

2i− 1

2n

)
Λ1(x(i);ϕ, λ) = 0,

∂CVM

∂λ
=

n∑
i=1

(
F (x(i);ϕ, λ)−

2i− 1

2n

)
Λ2(x(i);ϕ, λ) = 0. (17)

Here, Λ1 and Λ2 are given in (13).

2.5. Anderson Darling estimators. The AD estimators of ϕ and λ are obtained
by minimizing the following equation with respect to the parameters of interest.

A = −n− 1

n

n∑
i=1

(2i− 1)

{
log

[
F (x(i))

(
1− F (x(j))

)]}
, (18)

where j = n − i + 1. The AD estimators of ϕ and λ are obtained by solving the
nonlinear equations

∂A

∂ϕ
=

n∑
i=1

(2i− 1)

[
Λ1(x(i), ϕ, λ)

F (x(i), ϕ, λ)
−

Λ1(x(j), ϕ, λ)

F (x(j), ϕ, λ)

]
= 0

∂A

∂λ
=

n∑
i=1

(2i− 1)

[
Λ2(x(i), ϕ, λ)

F (x(i), ϕ, λ)
−

Λ2(x(j), ϕ, λ)

F (x(j), ϕ, λ)

]
= 0, (19)

respectively. Here, Λ1 and Λ2 are given in (13). Nonlinear equations given in (19)
can be solved by using numerical methods.
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3. Simulation study

In this section, we conduct a Monte-Carlo simulation study to compare the
performance of the different estimation methods discussed in the previous section.
The bias, MSE and Def criteria are used in the comparisons. The bias and MSE
are respectively formulated as follows:

Bias(θ̂) = E(θ − θ̂) and MSE(θ̂) = E(θ − θ̂)2

where θ = (ϕ, λ). The mathematical expression of the Def criterion used in this
study to compare joint efficiencies of the parameters is given as

Def = MSE(ϕ̂) +MSE(λ̂),

see [6] for the further details on DEF. In simulation study, we generate random
data from the IWL distribution using the algorithm given by Ramos et al. [12]. The
simulation study is performed considering the values: (ϕ, λ) = (0.5, 0.5), (0.5, 2),
(2, 0.5), (2, 4) and n = (20, 50, 100, 200, 500).
For all the numerical computations, we use the R statistical software environment.
The ML, LS, WLS, CVM and AD estimators of the parameters are obtained by
using “optim” function. Simulation results are given in Table 1-Table 4.

It is observed from Table 1 and Table 2 that the ML estimators of ϕ and λ have
the smallest bias for all sample sizes. The ML estimator is also the most efficient
one for both ϕ and λ parameters with the smallest MSE values for all cases. The
AD estimators of ϕ and λ outperform LS, WLS and CVM estimators in terms
of bias and MSE criteria. Overall, the ML estimators of parameters of the IWL
distribution is the best estimator in terms of Def criterion. It is followed by AD
estimators.

It is observed from Table 3 that the ML estimators of ϕ and λ perform better
than the others in terms of bias and MSE criterion in most cases. However AD
estimators of ϕ and λ outperform the ML, LS, WLS and CVM estimators in terms
of both bias and MSE criteria, when n = 20. According to Def, the AD estimator
has the best performance for n = 20. Otherwise the ML estimator can be preferred.

It is observed from Table 4 that the ML estimators of ϕ and λ have the smallest
bias and MSE values in most cases. On the other hand, the bias values of all
estimators are close to each other. The AD is the best for n = 20 and followed by
WLS and LS estimators.

The simulation results show that ML has the best performance with the lowest
deficiency almost in all cases. However, AD has a little bit smaller deficiency than
the ML when n = 20, ϕ = 2 and λ = 4. Also, ML has higher deficiency than LS,
WLS and AD when n = 20, ϕ = 2 and λ = 0.5.

Overall, we suggest using the ML methodology for estimating the parameters
of the IWL distribution because of its superior performance. Also for the small
sample size, the AD estimators can be preferred. It can be also said that CVM
estimators of ϕ and λ demonstrate the weakest performance for all cases.
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Table 1. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 0.5, λ = 0.5.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML -0.1784 0.0019 -1.5279 0.3212 0.3231
LS -0.2345 0.0028 -2.3822 0.4274 0.4302

WLS -0.2291 0.0025 -2.7214 0.3867 0.3892
CVM -0.2608 0.0031 -2.5854 0.6440 0.6471
AD -0.2096 0.0025 -1.9553 0.3501 0.3526

50

ML -0.1784 0.0018 -1.4903 0.3138 0.3157
LS -0.2341 0.0026 -2.3477 0.4117 0.4144

WLS -0.2291 0.0023 -2.6822 0.3645 0.3668
CVM -0.2519 0.0029 -2.4238 0.6248 0.6277
AD -0.2073 0.0022 -1.9289 0.3421 0.3443

100

ML -0.1669 0.0017 -1.4630 0.3103 0.3120
LS -0.2314 0.0025 -2.3501 0.4013 0.4038

WLS -0.2240 0.0023 -2.5933 0.3528 0.3551
CVM -0.2497 0.0028 -2.3878 0.6209 0.6237
AD -0.2072 0.0021 -1.9823 0.3419 0.3441

200

ML -0.1518 0.0015 -1.4334 0.3067 0.3082
LS -0.2294 0.0023 -2.3326 0.4002 0.4025

WLS -0.2233 0.0022 -2.4987 0.3312 0.3334
CVM -0.2474 0.0026 -2.3512 0.6076 0.6102
AD -0.2022 0.0021 -1.9663 0.3353 0.3374

500

ML -0.1364 0.0011 -1.4280 0.2952 0.2964
LS -0.2234 0.0020 -2.3293 0.3982 0.4002

WLS -0.2212 0.0021 -2.4574 0.3166 0.3187
CVM -0.2469 0.0024 -2.3367 0.5825 0.5849
AD -0.2019 0.0019 -1.9356 0.3285 0.3304

4. Application

In this section, we analyse a real data set taken from the literature to show the
implementation of the proposed methods. The data set in Table 5 consist of the
failure stresses (in GPa) of 65 single carbon fiber of length 50mm. This data set
is taken from Mazucheli et al. [9] in which weighted Lindley (WL) distribution is
used.

To fit the IWL distribution to the data set, we use Q-Q plot technique which is
one of the well-known and widely used graphical techniques. It is observed from
Figure (2) that IWL distribution provides good fit to model the failure stresses data
set.
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Figure 2. IWL QQ plot for the failure stresses data set.

In this study, we use Kolmogorov-Simirnov (KS) test which is a well-known
goodness of fit test to test whether the IWL distribution is appropriate for the
data.

Furthermore, to identify the parameter estimation methods providing a better
fit to the data set, we use Akaike information criterion (AIC), Bayesian information
criterion (BCI), the root mean square error (RMSE) and coefficient of determination
(R2) criteria.

We present the estimates of the IWL parameters, AIC, BIC, RMSE, R2 and
p-values obtained from Kolmogrov-Smirnov test are given in Table 6 for the failure
stresses data set.

Acording to the results of the KS test given in Table 6, it can be concluded that
the IWL distribution with the ML, LS, WLS, CVM and AD estimators of ϕ and λ
works quite well to fit the failure stresses data set. However, It is clear from Table
6 that the ML is more desirable according to p-values for the IWL distribution.

It is also obvious from Table 6 that the ML estimates is the most appropriate
model among the others. They are followed by the AD estimates. Since it is known
that the model having the lowest AIC, the lowest BIC, the lowest RMSE and the
highest R2 value among the models provides better fitting to the data.
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Table 2. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 0.5, λ = 2.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML -0.0884 0.0022 0.2936 0.1503 0.1541
LS -0.1597 0.0056 0.6346 0.1749 0.1805

WLS -0.1227 0.0038 0.3956 0.2276 0.2298
CVM -0.1989 0.0044 0.5366 0.2196 0.2240
AD -0.1346 0.0029 0.2968 0.1589 0.1617

50

ML -0.0863 0.0021 0.2930 0.1485 0.1519
LS -0.1582 0.0051 0.6312 0.1702 0.1753

WLS -0.1223 0.0034 0.3956 0.2208 0.2229
CVM -0.1972 0.0041 0.5226 0.2112 0.2153
AD -0.1340 0.0026 0.2913 0.1429 0.1455

100

ML -0.0855 0.0019 0.2857 0.1376 0.1396
LS -0.1578 0.0048 0.5947 0.1673 0.1720

WLS -0.1219 0.0030 0.3346 0.2189 0.2220
CVM -0.1906 0.0039 0.4985 0.2098 0.2138
AD -0.1324 0.0024 0.2791 0.1320 0.1344

200

ML -0.0846 0.0018 0.2680 0.1296 0.1314
LS -0.1566 0.0046 0.5747 0.1573 0.1618

WLS -0.1187 0.0027 0.3298 0.2056 0.2083
CVM -0.1893 0.0037 0.4757 0.1945 0.1982
AD -0.1310 0.0022 0.2587 0.1256 0.1279

500

ML -0.0838 0.0016 0.2297 0.1172 0.1188
LS -0.1487 0.0043 0.5493 0.1494 0.1536

WLS -0.1174 0.0025 0.3086 0.1986 0.2011
CVM -0.1876 0.0035 0.4328 0.1942 0.1977
AD -0.1306 0.0020 0.2328 0.1128 0.1148

5. Conclusion

In this paper, we focus different estimation methods of the unknown parame-
ters of the IWL distribution. We consider ML, LS and WLS as classical methods
and CVM and AD as minimum distance methods. As far as we know, LS, WLS,
AD and CVM methods have not been used for estimating the parameters of the
IWL distribution previously. We compare the performance of the estimators via
Monte Carlo simulation study in terms of bias, MSE and Def criteria. The results
of simulation study show that among the mentioned estimators, ML has the best
performance in most of the cases. Also, it can be concluded that ML is followed by
AD especially for small sample sizes. Overall, we suggest using ML methodology
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Table 3. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 2, λ = 0.5.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML 0.2831 0.0273 -0.7123 0.1688 0.1961
LS 0.2457 0.0236 -0.6542 0.1583 0.1819

WLS 0.2396 0.0253 -0.6288 0.1221 0.1474
CVM 0.3139 0.0295 -0.7245 0.1747 0.2042
AD 0.1946 0.0217 -0.6125 0.1174 0.1391

50

ML 0.1912 0.0207 -0.6073 0.1049 0.1256
LS 0.2231 0.0225 -0.6456 0.1466 0.1691

WLS 0.2065 0.0219 -0.6207 0.1207 0.1426
CVM 0.3056 0.0278 -0.7098 0.1653 0.1931
AD 0.1915 0.0212 -0.6098 0.1122 0.1334

100

ML 0.1905 0.0199 -0.5877 0.0972 0.1171
LS 0.2178 0.0217 -0.6325 0.1352 0.1570

WLS 0.1976 0.0205 -0.6140 0.1195 0.1400
CVM 0.2945 0.0266 -0.6947 0.1573 0.1838
AD 0.1911 0.0201 -0.5927 0.1002 0.1203

200

ML 0.1877 0.0188 -0.5614 0.0954 0.1141
LS 0.2046 0.0202 -0.6245 0.1294 0.1496

WLS 0.1912 0.0197 -0.6076 0.1124 0.1321
CVM 0.2818 0.0242 -0.6544 0.1407 0.1648
AD 0.1893 0.0193 -0.5706 0.0998 0.1191

500

ML 0.1763 0.0164 -0.5533 0.0826 0.0990
LS 0.1932 0.0192 -0.6126 0.1122 0.1314

WLS 0.1846 0.0187 -0.5973 0.1042 0.1229
CVM 0.2666 0.0211 -0.6286 0.1376 0.1588
AD 0.1786 0.0176 -0.5683 0.0919 0.1095

to obtain estimators of the IWL distribution. AD gives relatively good results and
it is also preferable.

Declaration of Competing Interests The author declares that they have no
known competing financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.
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Table 4. Simulated biases, MSEs and Def values of the ML, LS,
WLS, CVM and AD estimators for ϕ = 2, λ = 4.

ϕ λ
n Method Bias MSE Bias MSE Def

20

ML 0.1105 0.0106 2.5729 0.3218 0.3324
LS 0.1127 0.0134 2.6473 0.3457 0.3591

WLS 0.1110 0.0108 2.6126 0.3462 0.3571
CVM 0.1312 0.0153 2.7390 0.3959 0.4112
AD 0.1057 0.0097 2.4957 0.2562 0.2659

50

ML 0.1026 0.0092 2.4559 0.2452 0.2544
LS 0.1103 0.0128 2.5927 0.3419 0.3547

WLS 0.1098 0.0095 2.5919 0.3404 0.3499
CVM 0.1276 0.0146 2.6514 0.3727 0.3872
AD 0.1033 0.0095 2.4627 0.2496 0.2590

100

ML 0.0956 0.0087 2.4227 0.2383 0.2470
LS 0.1097 0.0117 2.5569 0.3293 0.3411

WLS 0.1024 0.0093 2.5224 0.3221 0.3314
CVM 0.1222 0.0123 2.6007 0.3656 0.3779
AD 0.1002 0.0090 2.4316 0.2392 0.2483

200

ML 0.0899 0.0083 2.3723 0.2251 0.2334
LS 0.0977 0.0107 2.4928 0.3118 0.3226

WLS 0.0965 0.0089 2.4791 0.3076 0.3165
CVM 0.1152 0.0115 2.5817 0.3422 0.3537
AD 0.0926 0.0087 2.3917 0.2286 0.2373

500

ML 0.0823 0.0083 2.3357 0.2119 0.2202
LS 0.0943 0.0107 2.4129 0.3066 0.3173

WLS 0.0931 0.0089 2.4057 0.2915 0.3004
CVM 0.1016 0.0115 2.5517 0.3166 0.3282
AD 0.0893 0.0087 2.3620 0.2148 0.2235

Table 5. The failure stresses (in GPa) of 65 single carbon fibers
of length 50 mm.

1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 1.7646 1.807 1.812 1.840 1.852
1.852 1.862 1.864 1.931 1.952 1.974 2.019 2.051 2.055 2.058 2.088 2.125 2.162
2.171 2.172 2.18 2.194 2.211 2.270 2.272 2.280 2.299 2.308 2.335 2.349 2.356
2.386 2.390 2.410 2.430 2.431 2.458 2.471 2.497 2.514 2.558 2.577 2.593 2.601
2.604 2.620 2.633 2.670 2.682 2.699 2.705 2.735 2.785 3.020 3.042 3.116 3.174
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Table 6. Estimates of the parameters, AIC, BIC, RMSE, R2 and
D values for failure stress data set.

Method ϕ̂ λ̂ AIC BIC RMSE R2 p-value
ML 1.6499 3.3788 250.2429 254.5917 0.1307 0.6023 0.8919
LS 1.6361 4.8553 255.3739 259.7227 0.1393 0.5834 0.8608

WLS 1.6435 4.8799 255.2037 259.5525 0.1393 0.5830 0.8208
CVM 1.6363 4.8553 255.3570 259.7057 0.1393 0.5834 0.8301
AD 1.6196 4.5039 252.1279 256.4767 0.1350 0.5956 0.8624
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A GENERALIZATION OF PURELY EXTENDING MODULES

RELATIVE TO A TORSION THEORY

Semra DOĞRUÖZ and Azime TARHAN
Adnan Menderes University, Aydın, TURKEY

Abstract. In this work we introduce a new concept, namely, purely τs-extending
modules (rings) which is torsion-theoretic analogues of extending modules and

then we extend many results from extending modules to this new concept. For

instance, we show that for any ring R with unit, RR is purely τs-extending
if and only if every cyclic τ -nonsingular R-module is flat. Also, we make a

classification for the direct sums of the rings to be purely τs-extending.

1. Introduction

Injective modules have been intensively studied in the 1960s and 1970s in module
theory and more generally in algebra. As a generalization of injective modules,
extending modules (CS), that is every closed submodule is a direct summand,
have been studied widely in last three decades. In general setting, Chatters and
Hajarnavis [7], Harmancı and Smith [23], Kamal and Muller [24] and their schools
can be mentioned involving studies of extending modules.

Recently, torsion-theoretic analogues of extending modules has been studied on
many results and concepts, such primarily studies as, Asgari and Haghany [4],
Berktaş, Doğruöz and Tarhan [6], Crivei [11], Çeken and Alkan [12], Doǧruöz [13].
Clark [8] defined a module M is purely extending if every submodule of M is
essential in a pure submodule of M , equivalently every closed submodule of M
is pure in M . A submodule K of a module M is essential (in M ) if N ∩ K ̸=
0 for every non-zero submodule K of M . A submodule K of a module M is
closed (in M ) if K has no proper essential extension in M , i.e., whenever L
is a submodule of M such that K is essential in L, then K = L. Al-Bahrani
[1] generalized purely extending modules as a purely y-extending module using
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s-closed submodules which was defined by Goodearl [21] such as a submodule N of
a module M is s-closed in M if M/N is nonsingular. So a module M is called purely
y-extending if every s-closed submodule of M is pure in M . In fact, Al-Bahrani [1]
belike misused the terminology of s-closed submodules. They used the term y-closed
(purely y-extending) instead of s-closed (purely s-extending) respectively. In this
study, we use s-closed submodule and purely s-extending module instead of y-closed
submodule and purely y-extending module in the sense of Al-Bahrani [1].

We use the concept ’purity’ in the sense of Cohn [10] (as in [8]) which implies
definition of Anderson and Fuller [3], that is, a submodule N of an R-module M
is called pure submodule in M in case IN = N ∩ IM for each finitely generated
right ideal I of the ring R (see also [26] ). In the present paper we introduce purely
τs-extending modules and then we extend many results from [1], [8] and [21] to this
new concept.

For instance, we show that:
Theorem 1: Let R be a τ -torsion ring and M be an R-module. Let E(M)

be an injective hull of M . Then M is a purely τs-extending module if and only if
A∩M is pure in M for every direct summand A of E(M) such that the submodule
A ∩M is τs-closed in M .

Proposition 5: Let R be a ring with identity. Then RR is purely τs-extending
if and only if every cyclic τ -nonsingular R-module is flat.

and
Theorem 6: Let R be a commutative domain and every essential ideal of R is

τ -dense in R. Then the following properties are equivalent:

(1): R is a semi-hereditary ring.
(2): R⊕R is an extending module.
(3): R⊕R is a purely extending module.
(4): R⊕R is a purely s-extending module.
(5): R⊕R is a purely τs-extending module.
(6): for each n ∈ N,

⊕
n R is an extending module.

(7): for each n ∈ N,
⊕

n R is a purely extending module.
(8): for each n ∈ N,

⊕
n R is a purely s-extending module.

(9): for each n ∈ N,
⊕

n R is a purely τs-extending module.

which is a torsion-theoretic analogue of [8, Proposition 1.6].
Throughout the workR will be an associative ring with identity and allR-modules

will be unitary left R-modules unless otherwise stated. R-Mod will be the category
of unitary left R-modules, and all modules and module homomorphisms will belong
toR-Mod. By a class X ofR-modules we mean a collection ofR-modules containing
the zero module and closed under isomorphism, i.e., any module which is isomorphic
to some module in X also belongs to X . If a submodule N of a moduleM belongs to
X class, then N is called X -submodule of M . The class of X closed under extension
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by short exact sequence we mean for a short exact sequence

0 C B A 0- - - -

of R-modules A, B, C, if A and C are bought belong to the class of X , then B is
also belongs to X class.

Let τ := (T ,F) be a hereditary torsion theory on R-Mod. The modules in
T are called τ -torsion modules and the modules in F are called τ -torsion-free
modules. Let M ∈ R-Mod. Then the τ -torsion submodule of M , denoted by τ(M),
is defined to be the sum of all τ -torsion submodules of M . Thus τ(M) is the unique
largest τ -torsion submodule of M and τ(M/τ(M)) = 0 for an R-module M . Also
the module M is τ -torsion (resp. τ -torsion-free) if and only if τ(M) = M (resp.
τ(M) = 0). In our study, we mean a ring R is τ -torsion if RR is τ -torsion.

Let M be an R-module. A submodule N of M is called τ -dense in M if M/N is
τ -torsion. A submodule N of M is called τ -essential in M denoted by (N ≤τe

M)
if N is essential in M and M/N is τ -torsion (see [19], originally defined by Tsai in
1965 [29]). Define the set Zτ (M) = {m ∈ M | Ann(m) ≤τe R}. Here Zτ (M) is
called the τ -singular submodule of M . Then the module M is called τ -singular if
Zτ (M) = M and τ -nonsingular if Zτ (M) = 0 ( [20]). We mean Z(M) the singular
submodule of a module M which is consists of singular elements of M , i.e., elements
annihilated by essential left ideals. The module M is singular (resp. nonsingular)
if Z(M) = M (resp. Z(M) = 0). For the singular and nonsingular notions (see
also [21], [22]). If a ring R is τ -torsion, then every left ideal I of R is τ -dense in it,
i.e., R/I is τ -torsion in the sense of [19]. Therefore, clearly Zτ (M) = Z(M) over a
τ -torsion ring R.

For elementary, additional and unexplained terminology the reader is referred
to [3] or [30] for module and ring theory, [19] and [28] for torsion theory, [15] for
extending modules and [26] for homological algebra.

2. Purely τs-Extending Modules

Definition 1. Let M be an R-module and N be a submodule of M . We call N
is a τs-closed submodule of M if the factor module M/N is τ -nonsingular and it is
denoted by N ≤τsc M .

Definition 2. Let M be an R-module. We call M is a purely τs-extending module
if every τs-closed submodule of M is pure in M .

Lemma 1. Let R be a τ -torsion ring. Then every τs-closed submodule of a module
M is closed in M .

Proof. Let N be a τs-closed submodule of M . Then the factor module M/N
is τ -nonsingular i.e., Zτ (M/N) = 0. Since R is τ -torsion, clearly Zτ (M/N) =
Z(M/N). Assume N is not closed in M . Then there exists a submodule K of M
such that K contains N as an essential submodule. So the factor module K/N
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is singular [21]. Hence Z(K/N) = K/N . On the other hand, Z(K/N) = 0 since
Z(K/N) is a submodule of Z(M/N). Hence K/N is nonsingular. But since K/N
is singular, it must be zero (i.e K/N = 0). Therefore, N = K and so N is closed
submodule of M . □

Corollary 1. Let R be a τ -torsion ring. Then every purely extending R-module is
purely τs-extending.

Proof. Let M be a purely extending module and N be a τs-closed submodule of
M . Since R is τ -torsion N is closed in M by Lemma 1. From [8, Lemma 1.1] every
closed submodule of M is pure in M . So N is pure in M . Therefore M is purely
τs-extending module. □

As in general extending module theory we have some of the fundamental properties
of purely τs-extending modules as follows:

Lemma 2. Let M = M1 ⊕ M2 be a purely τs-extending module. Then M1 and
M2 are also purely τs-extending modules i.e., any direct summand of a purely
τs-extending module is purely τs-extending.

Proof. LetM = M1⊕M2 be a purely τs-extending module and letN1 be a τs-closed
submodule of M1. Then Zτ (M1/N1) = 0. For the proof we want to show that
N1 is pure in M1. First let us show that N1 is τs-closed in M i.e., (M/N1) is
τ -nonsingular.

Assume M/N1 is not τ -nonsingular module. Thus Zτ (M/N1) ̸= 0. Then there
exists an element N1 ̸= m + N1 ∈ M/N1 such that Ann(m + N1) ≤τe

R. On the
other hand, since m ∈ M = M1⊕M2, there exist m1 ∈ M1 and m2 ∈ M2 such that
m = m1 +m2 and this writing unique. Thus

Ann(m+N1) = Ann((m1 +m2) +N1) = Ann(m1 +N1 +m2 +N1)
= Ann(m1 +N1) ∩Ann(m2 +N1)

(see [3, Proposition 2.16]). In addition, since Ann(m + N1) ≤τe
R, we have

Ann(m1 +N1) ∩ Ann(m2 +N1) ≤τe
R. Since Ann(m1 +N1) ∩ Ann(m2 +N1) ⊆

Ann(m1 + N1) ⊆ R, we have Ann(m1 + N1) ≤τe R. But this contradicts with
Zτ (M/N1) ̸= 0. Hence Zτ (M/N1) = 0 i.e., N1 is a τs-closed submodule of M . By
the hypothesis N1 is pure in M since M is purely τs-extending module. By [17,
Proposition 1.2 (2)] N1 is pure in M1. Thus M1 is purely τs-extending module.
Similarly it can be shown that M2 is also purely τs-extending module. □

Corollary 2. Let M =
⊕

i∈I Mi be a purely τs-extending module where I is a
finite index set. Then for every i ∈ I, Mi is purely τs-extending.

Proof. It is clear from Lemma 2. □

Lemma 3. Let C be an R-module. Then C is a τ -nonsingular module if and only
if HomR(A,C) = 0 for every τ -singular R-module A.
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Proof. Let f : A −→ C be an R-module homomorphism where C is a τ -nonsingular
module and A is a τ -singular R-module. Then f(A) = f(Zτ (A)). We show
f(Zτ (A)) ≤ Zτ (C). If x ∈ f(Zτ (A)) then there is an element a ∈ Zτ (A) such
that x = f(a). So Ann(a) ≤τe

R. If r ∈ Ann(a), then rx = rf(a) = f(ra) = 0 i.e.,
r ∈ Ann(x). Since Ann(a) ≤ Ann(x) ≤ R, we have Ann(x) ≤τe

R i.e., x ∈ Zτ (C).
By the hypothesis, since Zτ (C) = 0, f = 0 and thus HomR(A,C) = 0.

For the converse let HomR(A,C) = 0 for every τ -nonsingular R-module A.
Specially HomR(Zτ (C), C) = 0. So the inclusion map Zτ (C) −→ C is zero. Hence
Zτ (C) = 0 and so C is τ -nonsingular module. □

Lemma 4. The class of τ -nonsingular modules is closed under extensions by short
exact sequences.

Proof. Let C and A be τ -nonsingular modules and consider the following short
exact sequence

0 C B A 0- - - -

For every τ -singular R-module M , using Lemma 3, we have HomR(M,C) = 0
and HomR(M,A) = 0. Then the following short exact sequence

0 −→ HomR(M,C) −→ HomR(M,B) −→ HomR(M,A) −→ 0

yieldsHomR(M,B) = 0. Again by Lemma 3 theR-moduleB must be τ -nonsingular.
□

Next we can show τs-closed submodules have transitivity property.

Lemma 5. Let M be an R-module and let K and N be submodules of M such that
K ⩽ N . If K is τs-closed submodule of N and N is τs-closed submodule of M ,
then K is τs-closed submodule of M .

Proof. Since K is τs-closed submodule of N and N is τs-closed submodule of M ,
Zτ (N/K) = 0 and Zτ (M/N) = 0. We must show that Zτ (M/K) = 0. Consider
the following short exact sequence

0 N/K M/K M/N 0- - - -

By Lemma 4, the class of τ -nonsingular modules are closed under extensions
by short exact sequences. Since N/K and M/N are both τ -nonsingular, M/K is
τ -nonsingular. Hence Zτ (M/K) = 0. Thus K is τs-closed submodule of M . □

Now we have some basic properties as follows.

Lemma 6. Any τs-closed submodule of a purely τs-extending module is purely
τs-extending.
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Proof. Let M be a purely τs-extending module and let N be a τs-closed submodule
of M . Then M/N is τ -nonsingular. Let K be a τs-closed submodule of N . Then
by Lemma 5, K is a τs-closed submodule of M . Since M is purely τs-extending
module, K is pure in M . By [17, Proposition 1.2 (2)], K is pure in N . So N is
purely τs-extending module. □

There exist submodules K,L of a module M such that K and L both closed
submodules of M but K ∩ L is not closed in K,L or M (see [21, Example 1.6]).
But we have the following in our case.

Proposition 1. Let M be an R-module and N,K be τs-closed submodules of M .
Then N ∩K is a τs-closed submodule of M .

Proof. Let M be an R-module and N , K be τs-closed submodules of M . Then
M/K and M/N are τ -nonsingular, i.e., Zτ (M/N) = 0 and Zτ (M/K) = 0. Assume
Zτ (M/(N ∩ K)) ̸= 0. Then there is a (N ∩ K) ̸= m̄ ∈ M/(N ∩ K) such that
Ann(m̄) ≤τe R. Now for m̄ = m + (N ∩ K), m ̸∈ N ∩ K. On the other hand
for m ∈ M , choose the elements m̂ = m + N ∈ M/N and m̃ = m + K ∈ M/K.
Then we have Ann(m̄) ⊆ Ann(m̂) and Ann(m̄) ⊆ Ann(m̃). Indeed, now let
0 ̸= r ∈ Ann(m̄). Then rm̄ = 0 and so rm+(N ∩K) = N ∩K. Hence rm ∈ N ∩K.
So we have rm ∈ N and rm ∈ K. Thus rm+N = N and rm+K = K, i.e. rm̂ = 0
and rm̃ = 0. Consequently r ∈ Ann(m̂) and r ∈ Ann(m̃). Hence Ann(m̄) ⊆
Ann(m̂) and Ann(m̄) ⊆ Ann(m̃). On the other hand, since Ann(m̄) ≤τe R we
have Ann(m̂) ≤τe

R and Ann(m̃) ≤τe
R. Then by hypothesis Zτ (M/N) = 0

and Zτ (M/K) = 0, we have m ∈ N and m ∈ K and so m ∈ N ∩ K. Hence
m̄ = m + (N ∩K) = N ∩K. This is a contradiction. Thus Zτ (M/(N ∩K)) = 0.
Therefore, N ∩K is a τs-closed submodule of M . □

Corollary 3. Any intersection of τs-closed submodules is also τs-closed.

Proof. It is an evident result of Proposition 1. □

Lemma 7. Let M be an R-module and let K,L be submodules of M such that
K ⩽ L. If L is a τs-closed submodule of M , then L/K is a τs-closed submodule of
M/K.

Proof. Let L be a τs-closed submodule of M . Then Zτ (M/L) = 0. On the other
hand, (M/K)/(L/K) ∼= M/L and since τ -nonsingular modules are closed under
isomorphisms, Zτ ((M/K)/(L/K)) = 0. Hence L/K is τs-closed in M/K. □

Lemma 8. Let M be an R-module and let K,L be submodules of M such that K ≤
L . If the submodule L/K is τs-closed in M/K, then L is a τs-closed submodule
of M .

Proof. Since L/K is a τs-closed submodule ofM/K, Zτ ((M/K)/(L/K)) = 0. Since
(M/K)/(L/K) ∼= M/L and τ -nonsingular modules are closed under isomorphisms,
Zτ (M/L) = 0. Hence L is a τs-closed submodule of M . □
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Proposition 2. Let M be a purely τs-extending R-module and N be a τs-closed
submodule of M . Then the factor module M/N is purely τs-extending.

Proof. Let M be a purely τs-extending R-module and N be a τs-closed submodule
of M . By the definition of purely τs-extending module, N is pure in M . For
N ≤ K ≤ M let K/N be τs-closed in M/N . Now (M/N)/(K/N) ≃ M/K and
since the τ -nonsingular modules are closed under isomorphisms, Zτ (M/K) = 0.
So K is τs-closed submodule of M . Since M is purely τs-extending, K is pure
in M . By [17, Proposition 1.2 (3)] K/N is pure in M/N . Thus M/N is purely
τs-extending. □

Let M be an R-module. For an arbitrary submodule N of M by Zorn’s Lemma
there is a submodule K of M maximal with respect to N is essential in K. The
submodule K is called closure of N in M ( [27]). See also [14] for torsion theoretic
version of closures.

Now we give another generalization of closures relative to a torsion theory as
follows:

Definition 3. Let M be an R-module and let N be a submodule of M . The
smallest τs-closed submodule K of M which is containing N is called τs-closure of
N in M . The τs-closure of N is denoted by N−τs .

Lemma 9. Every submodule N of an R-module M has a τs-closure in M .

Proof. Let M be an R-module and N be a submodule of M . Now define the set
S = {K ≤ M | N ⊆ K and K ≤τsc M}. Since Zτ (M/M) = 0, M is τs-closed in M
and so M ∈ S. Then S is non-empty. Let C be a chain in S. Take C =

⋂
Ki∈C Ki.

By Corollary 3 C is a τs-closed submodule of M . Then C ∈ S. By Zorn’s Lemma
there is a minimal element in S. If we call this element such as H then H is
τs-closure of N in M . Thus every submodule N of M has a τs-closure in M . □

Proposition 3. An R-module M is a purely τs-extending if and only if the τs-closure
of N (i.e., N−τs ) is pure in M for every submodule N of M .

Proof. Let M be a purely τs-extending module. Then every τs-closed submodule
of M is pure in M . By Zorn’s Lemma every submodule N of M has a τs-closure
in M . By the definition of τs-closure, the submodule N−τs is τs-closed in M and
by the hypothesis the submodule N−τs is pure in M .

Conversely, letK be a τs-closed submodule inM . By the definition of τs-closure,
K−τs = K. By the hypothesis K−τs i.e. K is a pure submodule in M . Then
any τs-closed submodule of M is pure in M . Thus M is a purely τs-extending
module. □

Theorem 1. Let R be a τ -torsion ring, let M be an R-module and E(M) be the
injective hull of M . Then, M is a purely τs-extending module if and only if A∩M
is pure in M for every direct summand A of E(M) such that the submodule A∩M
is τs-closed in M .
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Proof. Let R be a τ -torsion ring, M be an R-module, E(M) be the injective hull
of M and M be a purely τs-extending module. Then for every direct summand A
of E(M) such that A ∩M is a τs-closed submodule of M it is clear that A ∩M is
pure in M .

Conversely, let A be a τs-closed submodule of M and let B be a complement
of A in M . Then A ⊕ B is essential in M [21, Proposition 1.3]. Now it is clear
that A ⊕ B is essential in E(M). Hence E(A) ⊕ E(B) = E(A ⊕ B) = E(M) [22].
Since A = A ∩ M ≤e E(A) ∩ M , (E(A) ∩ M)/A is singular (see [21]). Moreover,
since R is τ -torsion ring (E(A) ∩ M)/A is τ -singular. On the other hand since
(E(A) ∩M)/A ≤ M/A and A is τs-closed submodule of M , M/A is τ -nonsingular
and thus (E(A) ∩ M)/A is τ -nonsingular. Therefore, (E(A) ∩ M)/A = 0 and so
E(A)∩M = A. Since A is τs-closed in M , E(A)∩M is also τs-closed in M . Since
E(A) is a direct summand of E(M) by the hypothesis E(A)∩M is a pure submodule
of M . Hence A is pure in M . Thus M is a purely τs-extending module. □

Theorem 2. Let R be a τ -torsion ring, let M be an R-module and let E(M) be the
injective hull of M . Assume A+M be a flat module for every direct summand A of
E(M) with A ∩M is τs-closed submodule of M . Then M is a purely τs-extending
module.

Proof. Let A be a direct summand of E(M) such that A ∩ M is τs-closed in M .
Consider the following short exact sequences of R-modules

0 A ∩M M M/(A ∩M) 0- -i1 -f1 -

and

0 A A+M (A+M)/A 0- -i2 -f2 -

where i1, i2 are inclusion maps and f1, f2 are natural epimorphisms. Since A is a
direct summand of E(M), there is a submodule A

′
of E(M) such that E(M) =

A⊕ A
′
. Thus A is also a direct summand of A+M such as A+M = (A+M) ∩

E(M) = (A +M) ∩ (A ⊕ A
′
) = A ⊕ ((A +M) ∩ A

′
). Here ((A +M) ∩ A

′
) is flat

as a direct summand of a flat module A+M . Since (A+M)/A ∼= ((A+M)∩A
′
),

(A+M)/A is flat. On the other hand, the factor module M/(A ∩M) is again flat
since M/(A∩M) ∼= (A+M)/A. By [17, Theorem 1.7] A∩M is pure in M . Hence
by Theorem 1, M is a purely τs-extending module. □
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3. Purely τs-Extending Rings

If the ring R is purely τs-extending as an R-module over itself then R is called
purely τs-extending.

A (von Neumann ) regular ring R as an R-module over itself, i.e., RR can be
given an example of purely τs-extending ring since every left ideal is pure in it
by [17, Theorem 2.1].

Fieldhouse in [17] generalizing (von Neumann) regular ring and define, for any
ring R, an R-module M is called (von Neumann) regular if all its submodules are
pure in M .

Therefore, since all (left) R-modules over a (von Neumann) regular ring is regular
by [17, Theorem 3.1], thus all R-modules over a (von Neumann) regular ring R is
purely τs-extending. Also any regular module over any ring R can be given as an
example of purely τs-extending modules.

3.1. Multiplication Modules. LetR be a commutative ring andM be anR-module.
For every submodule N of M if there exists an ideal I of R such that N = IM ,
then M is called a multiplication module. For every submodule N of M let us define

(N : M) = {r ∈ R | rM ⊆ N}.
Then M is an multiplication R-module if and only if N = (N : M)M ( [5]).

Definition 4. [9] Let M be an R-module and N be a submodule of M . If

N = Hom(M,N)N = Σ{φ(N) | φ : M → N}
then N is called an idempotent submodule of M . If every submodule of M is
idempotent, then M is called a fully idempotent module.

Theorem 3. [16, Teorem 2.11] Let M be a multiplication R-module and M =
M1 ⊕M2, is a direct sum of fully idempotent submodules M1 and M2. Then M is
a fully idempotent module.

Lemma 10. [16, Lemma 2.13] Let M be a fully idempotent R-module, N be a
submodule of M and I be an ideal of R. Then N ∩MI = NI, i.e., N is pure in
M .

Now we can give the following teorem by using fully idempotent submodules:

Theorem 4. Let R be a commutative ring and let M = M1⊕M2 be a multiplication
R-module with fully idempotent submodules M1, M2 of M . Then M is a purely
τs-extending module.

Proof. Let M be a multiplication R-module and N be a τs-closed submodule of
M . By Teorem 3 M is fully idempotent R-module and by Lemma 10 the τs-closed
submodule N of M is pure in M . Hence M is purely τs-extending. □

Now we can give a characterization of a purely τs-extending R-module with a
ring as follows:



1108 S. DOĞRUÖZ, A. TARHAN

Proposition 4. Let R be a commutative ring and let M be a faithful multiplication
R-module. If RR is purely τs-extending module then M is also purely τs-extending
module.

Proof. Let N be a τs-closed submodule of M . Since M is multiplication R-module,
we can write N = (N : M)M . Claim: (N : M) is τs-closed submodule in RR.
Assume (N : M) is not τs-closed in R. Then R/(N : M) is not τ -nonsingular
that is, Zτ (R/(N : M)) ̸= 0. Then there exists at least one non-zero element r̄
of R/(N : M) such that Ann(r + (N : M)) is τ -essential in R. So r̄ = r + (N :
M) ̸= (N : M). Then there is an element 0 ̸= m0 ∈ M such that rm0 ̸∈ N .
Now Ann(r + (N : M)) ⊆ Ann(rm0 + N). If s ∈ Ann(r + (N : M)), then
sr + (N : M) = (N : M). Hence we have sr ∈ (N : M) so it is easy to check that
(sr)M ⊆ N (*). Let us show that s ∈ Ann(rm0+N). Now s(rm0+N) = srm0+N
but since (sr)M ⊆ N and by (*) for m0 ∈ M , srm0 ∈ N , i.e., srm0 + N = N .
So s ∈ Ann(rm0 + N). Hence we have Ann(r + (N : M)) ⊆ Ann(rm0 + N).
On the other hand, since N is τs-closed in M it is clear that M/N τ -nonsingular.
So rm0 + N = N but it contradicts with rm0 ̸∈ N . Hence (N : M) must be
τs-closed in R. Moreover since RR is purely τs-extending, (N : M) is pure in R,
i.e., I(N : M) = IR ∩ (N : M) for every finitely generated ideal I of R. Thus
I(N : M) = IR ∩ (N : M) = I ∩ (N : M). Therefore, by N = (N : M)M we
write IN = I(N : M)M = (I ∩ (N : M))M . On the other hand, the equality
(I ∩ (N : M))M = IM ∩ (N : M)M holds since R is a commutative ring and M is
a faithful multiplication R-module by applying [2, Proposition 1.6 (i)].

Now for the finitely generated ideal I of R, we have
IN = I(N : M)M = (I ∩ (N : M))M = IM ∩ (N : M)M = IM ∩ N ( [5]).
Therefore, the τs-closed submodule N of M is pure in M . Hence M is a purely
τs-extending module. □

Remark 1. [26, Proposition 3.46] Let R be an arbitrary ring. The left R-module
R is a flat left R-module.

In the sequel we use the flat ring in the sense of Rotman [26, Proposition 3.46],
i.e the ring R is flat if RR is flat.

Proposition 5. Let R be an arbitrary ring. Then RR is purely τs-extending if and
only if every cyclic τ -nonsingular R-module is flat.

Proof. Let RR be a purely τs-extending module. LetM = Ra be a cyclic τ -nonsingular
R-module which is generated by a. Define the map f : R → M with f(r) = ra.
Clearly f is an epimorphism and Ker(f) = Ann(a). So R/Ker(f) = R/Ann(a) ∼=
Ra. Moreover, since Ra is a τ -nonsingular module and the class of τ - nonsingular
modules is closed under isomorphisms R/Ann(a) is τ -nonsingular. Hence Ann(a) is
τs-closed in R. By the hypothesis Ann(a) is pure in R. Since R is flat and Ann(a)
is pure in R, R/Ann(a) is flat by [3, Lemma 19.18]. Therefore, Ra is flat.
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Conversely, let K be a τs-closed ideal of R. Then R/K is τ -nonsingular. By the
hypothesis R/K is flat as a left R-module. Thus by [3, Lemma 19.18], K is pure
in R. Thus RR is a purely τs-extending. □

Theorem 5. Let R be a ring. Then R ⊕ R is purely τs-extending if and only if
every τ -nonsingular 2-generated R-module is flat.

Proof. Let M = Rm1 + Rm2 be a τ -nonsingular R-module. Define the map f :
R⊕R → M with f(r1, r2) = r1m1+r2m2. Now it is clear that f is an epimorphism.
Hence (R ⊕ R)/Ker(f) ∼= M . Since (R ⊕ R)/Ker(f) is τ -nonsingular, Ker(f) is a
τs-closed submodule of R ⊕ R. By the hypothesis Ker(f) is pure in R ⊕ R. Since
R is is flat as an R-module, R⊕R is flat ( [21]). Thus by [17, Proposition 1.3 (3)],
we have the R-module M is flat.

For the converse, let C be a τs-closed submodule of R⊕R. Then (R⊕R)/C is
τ -nonsingular. On the other hand, sinceR⊕R is a 2-generatedR-module, (R⊕R)/C
is also a 2-generated τ -nonsingular R-module. By the hypothesis (R⊕R)/C is flat.
Then by [17, Theorem 1.7] we get C is pure in R ⊕ R. Thus R ⊕ R is purely τs-
extending. □

Corollary 4. Let R be a ring and I be a finite index set. Then ⊕IR is purely
τs-extending if and only if every τ -nonsingular I-generated R-module is flat.

3.2. Semi-hereditary Rings. Let R be a ring with unit element. If every left
(right) ideal of R is projective then R is called a left (right) hereditary ring . If
every finitely generated left (right) ideal of R is projective then R is called a left
(right) semi-hereditary ring ( [28]). A module M over a commutative domain R is
said to be torsion-free if for m ∈ M and r ∈ R, rm = 0 ⇒ r = 0 or m = 0 [25].

Now we can give the following generalized characterization of purely τs-extending
modules.

Theorem 6. Let R be a commutative domain and every essential ideal of R is
τ -dense in R. Then the following properties are equivalent:

(1): R is a semi-hereditary ring.
(2): R⊕R is an extending module.
(3): R⊕R is a purely extending module.
(4): R⊕R is a purely s-extending module.
(5): R⊕R is a purely τs-extending module.
(6): for each n ∈ N,

⊕
n R is an extending module.

(7): for each n ∈ N,
⊕

n R is a purely extending module.
(8): for each n ∈ N,

⊕
n R is a purely s-extending module.

(9): for each n ∈ N,
⊕

n R is a purely τs-extending module.

Proof. The equivalence of (1), (2) and (6) are given in [15, Corollary 12.10].
In addition the equivalence of (1), (2), (3), (6) and (7) are given in [8, Proposition

1.6].
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(3) ⇔ (4). Every s-closed submodule of a moduleM is closed inM . But converse
is true if M is nonsingular [21, Proposition 2.4]. Here since R is commutative
domain, R is nonsingular. Therefore, the notion of closed submodule and s-closed
submodule coincide. Thus the proof is clear by [8, Lemma 1.1] in fact, Lemma 1.1
is originally given by Fuchs [18].

(7) ⇔ (8). It can be easily checked be like (3) ⇔ (4).
(5) ⇒ (4). Let K be a s-closed submodule of R ⊕ R. Then (R ⊕ R)/K is

nonsingular. Since any nonsingular module is τ -nonsingular. (R ⊕ R)/K is a
τ -nonsingular. By the hypothesis K is pure in R ⊕ R. Hence R ⊕ R is a purely
s-extending module.

The implication of (9) ⇒ (8) is a generalization of (5) ⇒ (4).
(1) ⇒ (5). Let K be a τs-closed submodule of R ⊕ R. Then (R ⊕ R)/K is

τ -nonsingular. Claim that (R ⊕ R)/K is torsion-free R-module. For this fact, let
us assume m.r = 0 and r ̸= 0 for m ∈ (R ⊕ R)/K and r ∈ R. Here 0 ̸= r ∈
Ann(m). Thus Ann(m) ̸= 0. Since also R is a commutative domain, then all
non-zero ideals of R are essential [25, 7.6]. Thus Ann(m) is essential ideal in R.
By hypothesis of the theorem, Ann(m) is τ -dense in R. Thus Ann(m) ≤τe

R and
so, m ∈ Zτ ((R ⊕ R)/K). In this case, m = 0 since (R ⊕ R)/K is τ -nonsingular.
Therefore (R⊕R)/K is torsion-free. Thus applying [25, Collary 2.31] (R⊕R)/K is
projective since (R⊕R)/K is 2-generated over the Prüfer domain R. So (R⊕R)/K
is flat by [26, Proposition 3.46]. Thus K is pure in R⊕R by [17, Proposition 1.3].
Hence R⊕R is a purely τs-extending module

(1) ⇒ (9) is also similar to (1) ⇒ (5). This completes the proof.
In fact, the proof can be also completed by the following implications.
(4) ⇒ (5). Let K be a τs-closed submodule of R ⊕ R. Then (R ⊕ R)/K is

τ -nonsingular, i.e., Zτ ((R ⊕ R)/K) = 0. By assumption, since R is a ring with
essential ideal of R is τ -dense in it, τ -nonsingular and nonsingular modules are
coincide. Therefore (R ⊕ R)/K is nonsingular and so K is s-closed in R ⊕ R. By
hypothesis, K is pure in R⊕R. Therefore, R⊕R is purely τs-extending module.

(8) ⇒ (9) is also similar to (4) ⇒ (5). □
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Abstract. In this paper we extend the trapezoid inequality to the complex

integral by providing upper bounds for the quantity∣∣∣∣(v − u) f (u) + (w − v) f (w)−
∫
γ
f (z) dz

∣∣∣∣
under the assumptions that γ is a smooth path parametrized by z (t) , t ∈ [a, b] ,

u = z (a) , v = z (x) with x ∈ (a, b) and w = z (b) while f is holomorphic in G,
an open domain and γ ⊂ G. An application for circular paths is also given.

1. Introduction

Inequalities providing upper bounds for the quantity∣∣∣∣∣(t− a) f (a) + (b− t) f (b)−
∫ b

a

f (s) ds

∣∣∣∣∣ , t ∈ [a, b] (1)

are known in the literature as generalized trapezoid inequalities and it has been
shown in [2] that ∣∣∣∣∣(t− a) f (a) + (b− t) f (b)−

∫ b

a

f (s) ds

∣∣∣∣∣ (2)

≤

[
1

2
+

∣∣∣∣∣ t− a+b
2

b− a

∣∣∣∣∣
]
(b− a)

b∨
a

(f)
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for any t ∈ [a, b] , provided that f is of bounded variation on [a, b] . The constant 1
2

is the best possible.
If f is absolutely continuous on [a, b] , then (see [1, p. 93])∣∣∣∣∣(t− a) f (a) + (b− t) f (b)−

∫ b

a

f (s) ds

∣∣∣∣∣ (3)

≤



[
1
4 +

(
t− a+b

2

b−a

)2]
(b− a)

2 ∥f ′∥∞ if f ′ ∈ L∞ [a, b] ;

1
(q+1)1/q

[(
t−a
b−a

)q+1

+
(

b−t
b−a

)q+1
] 1

q

(b− a)
1+1/q ∥f ′∥p if f ′ ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;[
1
2 +

∣∣∣ t− a+b
2

b−a

∣∣∣] (b− a) ∥f ′∥1
for any t ∈ [a, b] . The constants 1

2 ,
1
4 and 1

(q+1)1/q
are the best possible.

Finally, for convex functions f : [a, b] → R, we have [4]

1

2

[
(b− t)

2
f ′
+ (t)− (t− a)

2
f ′
− (t)

]
≤ (b− t) f (b) + (t− a) f (a)−

∫ b

a

f (s) ds

≤ 1

2

[
(b− t)

2
f ′
− (b)− (t− a)

2
f ′
− (a)

]
(4)

for any t ∈ (a, b), provided that f ′
− (b) and f ′

+ (a) are finite. As above, the second

inequality also holds for t = a and t = b and the constant 1
2 is the best possible on

both sides of (4).
For other recent results on the trapezoid inequality, see [3], [7], [8], [9] and [11].
In order to extend this result for the complex integral, we need some preparations

as follows.
Suppose γ is a smooth path parametrized by z (t) , t ∈ [a, b] and f is a complex

function which is continuous on γ. Put z (a) = u and z (b) = w with u, w ∈ C. We
define the integral of f on γu,w = γ as∫

γ

f (z) dz =

∫
γu,w

f (z) dz :=

∫ b

a

f (z (t)) z′ (t) dt.

We observe that that the actual choice of parametrization of γ does not matter.
This definition immediately extends to paths that are piecewise smooth. Suppose

γ is parametrized by z (t), t ∈ [a, b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on γ we define∫

γu,w

f (z) dz :=

∫
γu,v

f (z) dz +

∫
γv,w

f (z) dz
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where v := z (c) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length∫

γu,w

f (z) |dz| :=
∫ b

a

f (z (t)) |z′ (t)| dt

and the length of the curve γ is then

ℓ (γ) =

∫
γu,w

|dz| =
∫ b

a

|z′ (t)| dt.

Let f and g be holomorphic in G, an open domain and suppose γ ⊂ G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula∫

γu,w

f (z) g′ (z) dz = f (w) g (w)− f (u) g (u)−
∫
γu,w

f ′ (z) g (z) dz. (5)

We recall also the triangle inequality for the complex integral, namely∣∣∣∣∫
γ

f (z) dz

∣∣∣∣ ≤ ∫
γ

|f (z)| |dz| ≤ ∥f∥γ,∞ ℓ (γ) (6)

where ∥f∥γ,∞ := supz∈γ |f (z)| .
We also define the p-norm with p ≥ 1 by

∥f∥γ,p :=

(∫
γ

|f (z)|p |dz|
)1/p

.

For p = 1 we have

∥f∥γ,1 :=

∫
γ

|f (z)| |dz| .

If p, q > 1 with 1
p + 1

q = 1, then by Hölder’s inequality we have

∥f∥γ,1 ≤ [ℓ (γ)]
1/q ∥f∥γ,p .

In this paper we extend the trapezoid inequality to the complex integral, by
providing upper bounds for the quantity∣∣∣∣(v − u) f (u) + (w − v) f (w)−

∫
γ

f (z) dz

∣∣∣∣
under the assumptions that γ is a smooth path parametrized by z (t) , t ∈ [a, b] ,
u = z (a) , v = z (x) with x ∈ (a, b) and w = z (b) while f is holomorphic in G, an
open domain and γ ⊂ G. An application for circular paths is also given.
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2. Trapezoid Type Inequalities

We have the following result for functions of complex variable:

Theorem 1. Let f be holomorphic in G, an open domain and suppose γ ⊂ G
is a smooth path from z (a) = u to z (b) = w. If v = z (x) with x ∈ (a, b) , then
γu,w = γu,v ∪ γv,w,∣∣∣∣(v − u) f (u) + (w − v) f (w)−

∫
γ

f (z) dz

∣∣∣∣
≤ ∥f ′∥γu,v ;∞

∫
γu,v

|z − v| |dz|+ ∥f ′∥γv,w;∞

∫
γv,w

|z − v| |dz|

≤ ∥f ′∥γu,w;∞

∫
γu,w

|z − v| |dz| , (7)

and∣∣∣∣(v − u) f (u) + (w − v) f (w)−
∫
γ

f (z) dz

∣∣∣∣
≤ ∥f ′∥γu,v ;1

max
z∈γu,v

|z − v|+ ∥f ′∥γv,w;1 max
z∈γv,w

|z − v|

≤ ∥f ′∥γu,w;1 max
z∈γu,w

|z − v| . (8)

If p, q > 1 with 1
p + 1

q = 1, then∣∣∣∣(v − u) f (u) + (w − v) f (w)−
∫
γ

f (z) dz

∣∣∣∣
≤ ∥f ′∥γu,v ;p

(∫
γu,v

|z − v|q |dz|

)1/q

+ ∥f ′∥γv,w;p

(∫
γv,w

|z − v|q |dz|

)1/q

≤ ∥f ′∥γu,w;p

(∫
γu,w

|z − v|q |dz|

)1/q

. (9)

Proof. Using the integration by parts formula (5) twice we have∫
γu,v

(z − v) f ′ (z) dz = (v − u) f (u)−
∫
γu,v

f (z) dz

and ∫
γv,w

(z − v) f ′ (z) dz = (w − v) f (w)−
∫
γv,w

f (z) dz.

If we add these two equalities, we get the following equality of interest

(v − u) f (u) + (w − v) f (w)−
∫
γ

f (z) dz
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=

∫
γu,v

(z − v) f ′ (z) dz +

∫
γv,w

(z − v) f ′ (z) dz =

∫
γ

(z − v) f ′ (z) dz (10)

with the above assumptions for u, v and w on γ.
Using the properties of modulus and the triangle inequality for the complex

integral we have∣∣∣∣(v − u) f (u) + (w − v) f (w)−
∫
γ

f (z) dz

∣∣∣∣
=

∣∣∣∣∣
∫
γu,v

(z − v) f ′ (z) dz +

∫
γv,w

(z − v) f ′ (z) dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫
γu,v

(z − v) f ′ (z) dz

∣∣∣∣∣+
∣∣∣∣∣
∫
γv,w

(z − v) f ′ (z) dz

∣∣∣∣∣
≤
∫
γu,v

|z − v| |f ′ (z)| |dz|+
∫
γv,w

|z − v| |f ′ (z)| |dz|

≤ ∥f ′∥γu,v ;∞

∫
γu,v

|z − v| |dz|+∥f ′∥γv,w;∞

∫
γv,w

|z − v| |dz| ≤ ∥f ′∥γu,w;∞

∫
γu,w

|z − v| |dz| ,

which proves the inequality (7).
We also have∫

γu,v

|z − v| |f ′ (z)| |dz|+
∫
γv,w

|z − v| |f ′ (z)| |dz|

≤ max
z∈γu,v

|z − v|
∫
γu,v

|f ′ (z)| |dz|+ max
z∈γv,w

|z − v|
∫
γv,w

|f ′ (z)| |dz|

≤ max

{
max
z∈γu,v

|z − v| , max
z∈γv,w

|z − v|
}

×

(∫
γu,v

|f ′ (z)| |dz|+
∫
γv,w

|f ′ (z)| |dz|

)
= max

z∈γu,w

|z − v|
∫
γu,w

|f ′ (z)| |dz| ,

which proves the inequality (8).
If p, q > 1 with 1

p +
1
q = 1, then by Hölder’s weighted integral inequality we have∫

γu,v

|z − v| |f ′ (z)| |dz|+
∫
γv,w

|z − v| |f ′ (z)| |dz|

≤

(∫
γu,v

|z − v|q |dz|

)1/q (∫
γu,v

|f ′ (z)|p |dz|

)1/p

+

(∫
γv,w

|z − v|q |dz|

)1/q (∫
γv,w

|f ′ (z)|p |dz|

)1/p

=: B.
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By the elementary inequality

ab+ cd ≤ (ap + cp)
1/p

(bq + dq)
1/q

,

where a, b, c, d ≥ 0 and p, q > 1 with 1
p + 1

q = 1, we also have

B ≤

(∫
γu,v

|z − v|q |dz|+
∫
γv,w

|z − v|q |dz|

)1/q

×

(∫
γu,v

|f ′ (z)|p |dz|+
∫
γv,w

|f ′ (z)|p |dz|

)1/p

=

(∫
γu,w

|z − v|q |dz|

)1/q (∫
γu,w

|f ′ (z)|p |dz|

)1/p

,

which prove the desired result (9). □

If the path γ is a segment [u,w] ⊂ G connecting two distinct points u and w in
G then we write

∫
γ
f (z) dz as

∫ w

u
f (z) dz.

Using the p-norms defined in the introduction for the segments, namely

∥h∥[u,w];∞ = sup
z∈[u,w]

|h (z)|

and

∥h∥[u,w];p =

(∫ w

u

|h (z)|p |dz|
)1/p

for p ≥ 1,

we can state the following particular case as well:

Corollary 1. Let f be holomorphic in G, an open domain and suppose [u,w] ⊂ G
is a segment connecting two distinct points u and w in G and v ∈ [u,w] . Then for
v = (1− s)u+ sw with s ∈ [0, 1] , we have∣∣∣∣(v − u) f (u) + (w − v) f (w)−

∫ w

u

f (z) dz

∣∣∣∣
≤ 1

2
|w − u|2

[
s2 ∥f ′∥γu,v ;∞

+ (1− s)
2 ∥f ′∥γv,w;∞

]
≤ |w − u|2

[
1

4
+

(
s− 1

2

)2
]
∥f ′∥[u,w];∞ , (11)

and∣∣∣∣(v − u) f (u) + (w − v) f (w)−
∫ w

u

f (z) dz

∣∣∣∣
≤ |w − u|

{
s ∥f ′∥[u,v];1 + (1− s) ∥f ′∥[v,w];1

}
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≤ |w − u|
(
1

2
+

∣∣∣∣s− 1

2

∣∣∣∣) ∥f ′∥[u,w];1 . (12)

If p, q > 1 with 1
p + 1

q = 1, then∣∣∣∣(v − u) f (u) + (w − v) f (w)−
∫
γ

f (z) dz

∣∣∣∣
≤ 1

(q + 1)
1/q

|w − u|1+1/q
[
s1+1/q ∥f ′∥[u,v];p + (1− s)

1+1/q ∥f ′∥[v,w];p

]
≤ 1

(q + 1)
1/q

|w − u|1+1/q
[
sq+1 + (1− s)

q+1
]1/q

∥f ′∥[u,w];p . (13)

Proof. Observe that if the segment [u,w] is parametrized by z (t) = (1− t)u+ tw,
then z′ (t) = w − u∫ v

u

|z − v| |dz| = |w − u|
∫ s

0

|(1− t)u+ tw − (1− s)u− sw| dt

= |w − u|2
∫ s

0

(s− t) dt =
1

2
|w − u|2 s2

and ∫ w

v

|z − v| |dz| = |w − u|
∫ 1

s

|(1− t)u+ tw − (1− s)u− sw| dt

= |w − u|2
∫ 1

s

(t− s) dt =
1

2
|w − u|2 (1− s)

2
.

Using the inequality (7) we get∣∣∣∣(v − u) f (u) + (w − v) f (w)−
∫
γ

f (z) dz

∣∣∣∣
≤ 1

2
|w − u|2 s2 ∥f ′∥γu,v ;∞

+
1

2
|w − u|2 (1− s)

2 ∥f ′∥γv,w;∞

≤ 1

2
|w − u|2

[
s2 + (1− s)

2
]
∥f ′∥γu,w;∞ = |w − u|2

[
1

4
+

(
s− 1

2

)2
]
∥f ′∥[u,w];∞ ,

which proves (11).
Also

max
z∈γu,v

|z − v| = max
t∈[0,s]

|(1− t)u+ tw − (1− s)u− sw| = |w − u| s

and

max
z∈γv,w

|z − v| = max
t∈[s,1]

{|w − u| (1− t)} = |w − u| (1− s) ,

then by (8)
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∫
γ

f (z) dz

∣∣∣∣
≤ |w − u|

{
s ∥f ′∥[u,v];1 + (1− s) ∥f ′∥[v,w];1

}
≤ |w − u|max {s, 1− s} ∥f ′∥[u,w];1 = |w − u|

(
1

2
+

∣∣∣∣s− 1

2

∣∣∣∣) ∥f ′∥[u,w];1 ,

which proves (12).
Finally, since∫ v

u

|z − v|q |dz| = |w − u|
∫ s

0

|(1− t)u+ tw − (1− s)u− sw|q dt

= |w − u|q+1
∫ s

0

(s− t)
q
dt =

1

q + 1
sq+1 |w − u|q+1

and ∫ w

v

|z − v|q |dz| = |w − u|
∫ 1

s

|(1− t)u+ tw − (1− s)u− sw|q dt

= |w − u|q+1
∫ 1

s

(t− s)
q
dt =

1

q + 1
(1− s)

q+1 |w − u|q+1
,

hence by (9) we get (13). □

Remark 1. Let f be holomorphic in G, an open domain and suppose [u,w] ⊂ G
is a segment connecting two distinct points u and w in G. Then∣∣∣∣f (u) + f (w)

2
(w − u)−

∫ w

u

f (z) dz

∣∣∣∣
≤ 1

8
|w − u|2

[
∥f ′∥γ

u, u+w
2

;∞ + ∥f ′∥γ u+w
2

,w
;∞

]
≤ 1

4
|w − u|2 ∥f ′∥[u,w];∞ , (14)

and ∣∣∣∣f (u) + f (w)

2
(w − u)−

∫ w

u

f (z) dz

∣∣∣∣ ≤ 1

2
|w − u| ∥f ′∥[u,w];1 . (15)

If p, q > 1 with 1
p + 1

q = 1, then∣∣∣∣f (u) + f (w)

2
(w − u)−

∫ w

u

f (z) dz

∣∣∣∣
≤ 1

21+1/q (q + 1)
1/q

|w − u|1+1/q
[
∥f ′∥[u,u+w

2 ];p + ∥f ′∥[u+w
2 ,w];p

]
≤ 1

2 (q + 1)
1/q

|w − u|1+1/q ∥f ′∥[u,w];p . (16)

Suppose that γ ⊂ G is a smooth path from z (a) = u to z (b) = w. If v = z (x)
with x ∈ (a, b) , then γu,w = γu,v ∪ γv,w.
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If we consider f (z) = exp (z) with z ∈ C, then∫
γu,w

exp (z) dz = exp (w)− exp (u) ,

|exp (z)| = |exp (Re (z) + i Im (z))| = exp (Re (z))

and by Theorem 1 we have

|(v − u) expu+ (w − v) expw − exp (w) + exp (u)|

≤ ∥exp (Re (·))∥γu,v ;∞

∫
γu,v

|z − v| |dz|

+ ∥exp (Re (·))∥γv,w;∞

∫
γv,w

|z − v| |dz|

≤ ∥exp (Re (·))∥γu,w;∞

∫
γu,w

|z − v| |dz| , (17)

and

|(v − u) expu+ (w − v) expw − exp (w) + exp (u)|
≤ ∥exp (Re (·))∥γu,v ;1

max
z∈γu,v

|z − v|+ ∥exp (Re (·))∥γv,w;1 max
z∈γv,w

|z − v|

≤ ∥exp (Re (·))∥γu,w;1 max
z∈γu,w

|z − v| . (18)

If p, q > 1 with 1
p + 1

q = 1, then

|(v − u) expu+ (w − v) expw − exp (w) + exp (u)|

≤ ∥exp (Re (·))∥γu,v ;p

(∫
γu,v

|z − v|q |dz|

)1/q

+ ∥exp (Re (·))∥γv,w;p

(∫
γv,w

|z − v|q |dz|

)1/q

≤ ∥exp (Re (·))∥γu,w;p

(∫
γu,w

|z − v|q |dz|

)1/q

. (19)

With the same assumption of the path γ and if we consider f (z) = zn with
n ≥ 1, then ∫

γ

zndz =
wn+1 − un+1

n+ 1

and by Theorem 1 we get, by denoting ℓ (z) = z, z ∈ C, that∣∣∣∣(v − u)un + (w − v)wn − wn+1 − un+1

n+ 1

∣∣∣∣
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≤ n

[∥∥ℓn−1
∥∥
γu,v ;∞

∫
γu,v

|z − v| |dz|+
∥∥ℓn−1

∥∥
γv,w;∞

∫
γv,w

|z − v| |dz|

]

≤ n
∥∥ℓn−1

∥∥
γu,w;∞

∫
γu,w

|z − v| |dz| , (20)

and∣∣∣∣(v − u)un + (w − v)wn − wn+1 − un+1

n+ 1

∣∣∣∣
≤ n

[∥∥ℓn−1
∥∥
γu,v ;1

max
z∈γu,v

|z − v|+
∥∥ℓn−1

∥∥
γv,w;1

max
z∈γv,w

|z − v|
]

≤ n
∥∥ℓn−1

∥∥
γu,w;1

max
z∈γu,w

|z − v| . (21)

If p, q > 1 with 1
p + 1

q = 1, then∣∣∣∣(v − u)un + (w − v)wn − wn+1 − un+1

n+ 1

∣∣∣∣
≤ n

∥∥ℓn−1
∥∥
γu,v ;p

(∫
γu,v

|z − v|q |dz|

)1/q

+
∥∥ℓn−1

∥∥
γv,w;p

(∫
γv,w

|z − v|q |dz|

)1/q


≤ n
∥∥ℓn−1

∥∥
γu,w;p

(∫
γu,w

|z − v|q |dz|

)1/q

, (22)

where γ ⊂ G is a smooth path from z (a) = u to z (b) = w and v = z (x) with
x ∈ (a, b) .

3. Examples For Circular Paths

Let [a, b] ⊆ [0, 2π] and the circular path γ[a,b],R centered in 0 and with radius
R > 0

z (t) = R exp (it) = R (cos t+ i sin t) , t ∈ [a, b] .

If [a, b] = [0, π] then we get a half circle while for [a, b] = [0, 2π] we get the full
circle.

Since ∣∣eis − eit
∣∣2 =

∣∣eis∣∣2 − 2Re
(
ei(s−t)

)
+
∣∣eit∣∣2

= 2− 2 cos (s− t) = 4 sin2
(
s− t

2

)
for any t, s ∈ R, then ∣∣eis − eit

∣∣r = 2r
∣∣∣∣sin(s− t

2

)∣∣∣∣r (23)
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for any t, s ∈ R and r > 0. In particular,∣∣eis − eit
∣∣ = 2

∣∣∣∣sin(s− t

2

)∣∣∣∣
for any t, s ∈ R.

For t, x ∈ [a, b] ⊆ [0, 2π] we then have∣∣eix − eit
∣∣ = 2

∣∣∣∣sin(x− t

2

)∣∣∣∣ .
If u = R exp (ia) , v = R exp (ix) and w = R exp (ib) then

v − u = R [exp (ix)− exp (ia)] = R [cosx+ i sinx− cos a− i sin a]

= R [cosx− cos a+ i (sinx− sin a)] .

Since

cosx− cos a = −2 sin

(
a+ x

2

)
sin

(
x− a

2

)
and

sinx− sin a = 2 sin

(
x− a

2

)
cos

(
a+ x

2

)
,

hence

v − u = R

[
−2 sin

(
a+ x

2

)
sin

(
x− a

2

)
+ 2i sin

(
x− a

2

)
cos

(
a+ x

2

)]
= 2R sin

(
x− a

2

)[
− sin

(
a+ x

2

)
+ i cos

(
a+ x

2

)]
= 2Ri sin

(
x− a

2

)[
cos

(
a+ x

2

)
+ i sin

(
a+ x

2

)]
= 2Ri sin

(
x− a

2

)
exp

[(
a+ x

2

)
i

]
.

Similarly,

w − v = 2Ri sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
for a ≤ x ≤ b.

Moreover,

z − v = 2Ri sin

(
t− x

2

)
exp

[(
t+ b

2

)
i

]
and

|z − v| =
∣∣∣∣2Ri sin

(
t− x

2

)
exp

[(
t+ b

2

)
i

]∣∣∣∣ = 2R

∣∣∣∣sin( t− x

2

)∣∣∣∣
for a ≤ x, t ≤ b.

We also have

z′ (t) = Ri exp (it) and |z′ (t)| = R
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for t ∈ [a, b] .

Proposition 1. Let f be holomorphic in G, on open domain and suppose γ[a,b],R ⊂
G with [a, b] ⊆ [0, 2π] and R > 0. If x ∈ [a, b] , then∣∣∣∣sin(x− a

2

)
exp

[(
a+ x

2

)
i

]
f (R exp (ia))

+ sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
f (R exp (ib))

−1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
≤ 4R

[
∥f ′ (R exp (i·))∥[a,x],∞ sin2

(
x− a

4

)
+ ∥f ′ (R exp (i·))∥[x,b],∞ sin2

(
b− x

4

)]
≤ 4R ∥f ′ (R exp (i·))∥[a,b],∞

[
sin2

(
x− a

4

)
+ sin2

(
b− x

4

)]
. (24)

Proof. We write the inequality (7) for γ[a,b],R and x ∈ [a, b] to get∣∣∣∣2Ri sin

(
x− a

2

)
exp

[(
a+ x

2

)
i

]
f (R exp (ia))

+ 2Ri sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
f (R exp (ib))

−Ri

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
≤ 2R2 ∥f ′ (R exp (i·))∥[a,x],∞

∫ b

a

∣∣∣∣sin( t− x

2

)∣∣∣∣ dt
+ 2R2 ∥f ′ (R exp (i·))∥[x,b],∞

∫ x

x

∣∣∣∣sin( t− x

2

)∣∣∣∣ dt.
This is equivalent to∣∣∣∣sin(x− a

2

)
exp

[(
a+ x

2

)
i

]
f (R exp (ia))

+ sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
f (R exp (ib))

−1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
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≤ R ∥f ′ (R exp (i·))∥[a,x],∞
∫ x

a

∣∣∣∣sin( t− x

2

)∣∣∣∣ dt
+R ∥f ′ (R exp (i·))∥[x,b],∞

∫ b

x

∣∣∣∣sin( t− x

2

)∣∣∣∣ dt (25)

for x ∈ [a, b] .
Observe that∫ x

a

∣∣∣∣sin( t− x

2

)∣∣∣∣ dt = ∫ x

a

sin

(
x− t

2

)
dt = 2− 2 cos

(
x− a

2

)
= 4 sin2

(
x− a

4

)
and ∫ b

x

∣∣∣∣sin( t− x

2

)∣∣∣∣ dt = ∫ b

x

sin

(
t− x

2

)
dt = 2− 2 cos

(
b− t

2

)
= 4 sin2

(
b− x

4

)
,

which by (25) produce the desired result (24). □

Corollary 2. With the assumptions of Proposition 1 we have∣∣∣∣sin(b− a

4

)
exp

[(
3a+ b

4

)
i

]
f (R exp (ia))

+ sin

(
b− a

4

)
exp

[(
a+ 3b

4

)
i

]
f (R exp (ib))

−1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
≤ 4R

[
∥f ′ (R exp (i·))∥[a,x],∞ + ∥f ′ (R exp (i·))∥[x,b],∞

]
sin2

(
b− a

8

)
≤ 8R ∥f ′ (R exp (i·))∥[a,b],∞ sin2

(
b− a

8

)
. (26)

Remark 2. The case of semi-circle, namely a = 0 and b = π in (24) gives the
inequality∣∣∣sin(x

2

)
exp

[(x
2

)
i
]
f (R) + i cos

(x
2

)
exp

[(x
2

)
i
]
f (−R)

−1

2

∫ π

0

f (R exp (it)) exp (it) dt

∣∣∣∣
≤ 4R

[
∥f ′ (R exp (i·))∥[0,x],∞ sin2

(x
4

)



1126 S. S. DRAGOMIR

+ ∥f ′ (R exp (i·))∥[x,π],∞ sin2
(
π − x

4

)]
≤ 4R ∥f ′ (R exp (i·))∥[0,π],∞

[
sin2

(x
4

)
+ sin2

(
π − x

4

)]
, (27)

for x ∈ [0, π] .

Since

sin2
(π
8

)
=

1− cos
(
π
4

)
2

=
1−

√
2
2

2
=

2−
√
2

4
,

then by taking x = π
2 in (27), we get∣∣∣∣1 + i

2
f (R) +

−1 + i

2
f (−R)− 1

2

∫ π

0

f (R exp (it)) exp (it) dt

∣∣∣∣
≤
(
2−

√
2
) [

∥f ′ (R exp (i·))∥[0,π2 ],∞ + ∥f ′ (R exp (i·))∥[π2 ,π],∞

]
≤ 2

(
2−

√
2
)
∥f ′ (R exp (i·))∥[0,π],∞ . (28)

Further, we have the following result as well:

Proposition 2. With the assumptions of Proposition 1 we have∣∣∣∣sin(x− a

2

)
exp

[(
a+ x

2

)
i

]
f (R exp (ia))

+ sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
f (R exp (ib))

−1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
≤ R

[
max
t∈[a,x]

∣∣∣∣sin( t− x

2

)∣∣∣∣ ∫ x

a

|f ′ (R exp (it))| dt

+ max
t∈[x,b]

∣∣∣∣sin( t− x

2

)∣∣∣∣ ∫ b

x

|f ′ (R exp (it))| dt

]

≤ R max
t∈[a,b]

∣∣∣∣sin( t− x

2

)∣∣∣∣ ∫ b

a

|f ′ (R exp (it))| dt. (29)

Proof. We write the inequality (8) for γ[a,b],R and x ∈ [a, b] to get∣∣∣∣2Ri sin

(
x− a

2

)
exp

[(
a+ x

2

)
i

]
f (R exp (ia))

+ 2Ri sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
f (R exp (ib))
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−Ri

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
≤ 2R2

[
max
t∈[a,x]

∣∣∣∣sin( t− x

2

)∣∣∣∣ ∫ x

a

|f ′ (R exp (it))| dt

+ max
t∈[x,b]

∣∣∣∣sin( t− x

2

)∣∣∣∣ ∫ b

x

|f ′ (R exp (it))| dt

]

≤ 2R2 max
t∈[a,b]

∣∣∣∣sin( t− x

2

)∣∣∣∣ ∫ b

a

|f ′ (R exp (it))| dt,

which is equivalent to (29). □

In particular, we have:

Corollary 3. With the assumptions of Proposition 1 we have∣∣∣∣sin(b− a

4

)
exp

[(
3a+ b

4

)
i

]
f (R exp (ia))

+ sin

(
b− a

4

)
exp

[(
a+ 3b

4

)
i

]
f (R exp (ib))

−1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣ ≤ R sin

(
b− a

4

)∫ b

a

|f ′ (R exp (it))| dt. (30)

Proof. If we take in (29) x = a+b
2 , then we get∣∣∣∣sin(b− a

4

)
exp

[(
3a+ b

4

)
i

]
f (R exp (ia))

+ sin

(
b− a

4

)
exp

[(
a+ 3b

4

)
i

]
f (R exp (ib)) −1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
≤ R

[
max

t∈[a, a+b
2 ]

∣∣∣∣∣sin
(
t− a+b

2

2

)∣∣∣∣∣
∫ a+b

2

a

|f ′ (R exp (it))| dt

+ max
t∈[ a+b

2 ,b]

∣∣∣∣∣sin
(
t− a+b

2

2

)∣∣∣∣∣
∫ b

a+b
2

|f ′ (R exp (it))| dt

]

≤ R max
t∈[a,b]

∣∣∣∣∣sin
(
t− a+b

2

2

)∣∣∣∣∣
∫ b

a

|f ′ (R exp (it))| dt. (31)

Since the intervals
[
a, a+b

2

]
and

[
a+b
2 , b

]
have a length less than π, then

max
t∈[a, a+b

2 ]

∣∣∣∣∣sin
(
t− a+b

2

2

)∣∣∣∣∣ = max
t∈[ a+b

2 ,b]

∣∣∣∣∣sin
(
t− a+b

2

2

)∣∣∣∣∣ = sin

(
b− a

4

)
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and by (31) we get (30). □

The case of p-norms is as follows:

Proposition 3. With the assumptions of Proposition 1 and p, q > 1 with 1
p+

1
q = 1

we have∣∣∣∣sin(x− a

2

)
exp

[(
a+ x

2

)
i

]
f (R exp (ia))

+ sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
f (R exp (ib))

−1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣ (32)

≤ R

(∫ x

a

sinq
(
x− t

2

)
dt

)1/q

∥f ′ (R exp (i·))∥[a,x],p

+R

(∫ b

x

sinq
(
t− x

2

)
dt

)1/q

∥f ′ (R exp (i·))∥[x,b],p

≤ R

[∫ x

a

sinq
(
x− t

2

)
dt+

∫ b

x

sinq
(
t− x

2

)
dt

]1/q
∥f ′ (R exp (i·))∥[a,b],p .

In particular, for x = a+b
2 we get∣∣∣∣sin(b− a

4

)
exp

[(
3a+ b

4

)
i

]
f (R exp (ia))

+ sin

(
b− a

4

)
exp

[(
a+ 3b

4

)
i

]
f (R exp (ib))

−1

2

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣ (33)

≤ R

(∫ a+b
2

a

sinq

(
a+b
2 − t

2

)
dt

)1/q

∥f ′ (R exp (i·))∥[a, a+b
2 ],p

+R

(∫ b

a+b
2

sinq

(
t− a+b

2

2

)
dt

)1/q

∥f ′ (R exp (i·))∥[ a+b
2 ,b],p

≤ R

[∫ b

a

sinq

(∣∣∣∣∣ t− a+b
2

2

∣∣∣∣∣
)
dt

]1/q
∥f ′ (R exp (i·))∥[a,b],p .
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Proof. By making use of the inequality (9) for γ[a,b],R and x ∈ [a, b] we get∣∣∣∣2Ri sin

(
x− a

2

)
exp

[(
a+ x

2

)
i

]
f (R exp (ia))

+2Ri sin

(
b− x

2

)
exp

[(
x+ b

2

)
i

]
f (R exp (ib)) −Ri

∫ b

a

f (R exp (it)) exp (it) dt

∣∣∣∣∣
≤ 2R2

(∫ x

a

sinq
(
x− t

2

)
dt

)1/q

∥f ′ (R exp (i·))∥[a,x],p

+ 2R2

(∫ b

x

sinq
(
t− x

2

)
dt

)1/q

∥f ′ (R exp (i·))∥[x,b],p

≤ 2R2

[∫ x

a

sinq
(
x− t

2

)
dt+

∫ b

x

sinq
(
t− x

2

)
dt

]1/q
∥f ′ (R exp (i·))∥[a,b],p ,

which proves the desired result (32). □

The interested reader may consider for examples some fundamental complex
functions such as f (z) = zn with n a natural number, f (z) = exp (z) or f a
trigonometric or a hyperbolic complex function. The details are omitted.

Declaration of Competing Interests There are no competing interests regard-
ing the contents of the present paper.
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