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A NEW SYSTEM OF GENERALIZED NONLINEAR

VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER

PRODUCT SPACES

Sumeera SHAFI

Department of Mathematics, University of Kashmir, Srinagar-190006, INDIA

Abstract. In this work we reflect a new system of generalized nonlinear vari-

ational inclusion problems in 2-uniformly smooth Banach spaces. By using
resolvent operator technique, we offer an iterative algorithm for figuring out

the approximate solution of the said system. The motive of this paper is to re-

view the convergence analysis of a system of generalized nonlinear variational
inclusion problems in 2-uniformly smooth Banach spaces. The proposition

used in this paper can be considered as an extension of propositions for ex-

amining the existence of solution for various classes of variational inclusions
considered and studied by many authors in 2-uniformly smooth Banach spaces.

1. Introduction

In recent past, variational inequalities have been elongated in dissimilar directions
and sections of studies, using peculiar and ingenious techniques. One of such con-
ception is variational inclusions. Numerous problems that exist in engineering,
optimization and control situations can be designed by free boundary problems
which conveys to variational inequality and variational inclusion problems. For
details, please refer [1-5, 8-14, 18, 20-23, 25, 26].

2. Resolvent Operator and Formulation of Problem

Let X be a real 2-uniformly smooth Banach space equipped with norm ∥.∥ and a
semi-inner product [., .]. Let C(X) be the family of all nonempty compact subsets
of X and 2X be the power set of X.

We need the following definitions and results from the literature.

2020 Mathematics Subject Classification. 47H09, 47J20, 49J40.
Keywords. System of generalized nonlinear variational inclusion problems, 2-uniformly smooth
Banach spaces, resolvent operator, iterative algorithm, convergence analysis.
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Definition 1. Let X be a vector space over the field F of real or complex numbers.
A functional [., .] : X × X → F is called a semi-inner product if it satisfies the
following:

(i) [x+ y, z] = [x, z] + [y, z], ∀x, y, z ∈ X;
(ii) [λx, y] = λ[x, y], ∀λ ∈ F and x, y ∈ X;
(iii) [x, x] > 0, for x ̸= 0;
(iv) |[x, y]|2 ≤ [x, x][y, y].

The pair (X, [., .]) is called a semi-inner product space.

We observe that ||x|| = [x, x]
1
2 is a norm on X. Hence every semi-inner product

space is a normed linear space. On the other hand, in a normed linear space, one
can generate semi-inner product in infinitely many different ways. Giles [7] had
proved that if the underlying space X is a uniformly convex smooth Banach space
then it is possible to find a semi-inner product, uniquely. Also the unique semi-inner
product has the following nice properties:

(i) [x, y] = 0 if and only if y is orthogonal to x, that is if and only if ||y|| ≤
||y + λx||, ∀ scalars λ.

(ii) Generalized Riesz representation theorem: If f is a continuous linear func-
tional onX then there is a unique vector y ∈ X such that f(x) = [x, y], ∀x ∈
X.

(iii) The semi-inner product is continuous, that is for each x, y ∈ X, we have
Re[y, x+ λy] → Re[y, x] as λ → 0.

The sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly
convex smooth Banach spaces. So one can define semi-inner product on these
spaces, uniquely.

Example 1. [19] The real sequence space lp for 1 < p < ∞ is a semi-inner product
space with the semi-inner product defined by

[x, y] =
1

||y||p−2
p

∑
i

xiyi|yi|p−2, x, y ∈ lp.

Example 2. [7, 19] The real Banach space Lp(X,µ) for 1 < p < ∞ is a semi-inner
product space with the semi-inner product defined by

[f, g] =
1

||g||p−2
p

∫
X

f(x)|g(x)|p−1sgn(g(x))dµ, f, g ∈ Lp.

Definition 2. [19, 24] Let X be a real Banach space. Then:

(i) The modulus of smoothness of X is defined as

ρX(t) = sup

{
||x+ y||+ ||x− y||

2
− 1 : ||x|| = 1, ||y|| = t, t > 0

}
.

(ii) X is said to be uniformly smooth if lim
t→0

ρX(t)

t
= 0.
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(iii) X is said to be p-uniformly smooth if there exists a positive real constant
c such that ρX(t) ≤ c tp, p > 1. Clearly, X is 2-uniformly smooth if there
exists a positive real constant c such that ρX(t) ≤ c t2.

Lemma 1. [19, 24] Let p > 1 be a real number and X be a smooth Banach space.
Then the following statements are equivalent:

(i) X is 2-uniformly smooth.
(ii) There is a constant c > 0 such that for every x, y ∈ X, the following

inequality holds

||x+ y||2 ≤ ||x||2 + 2⟨y, fx⟩+ c||y||2,
where fx ∈ J(x) and J(x) = {x⋆ ∈ X⋆ : ⟨x, x⋆⟩ = ||x||2 and ||x⋆|| = ||x||} is the
normalized duality mapping.

Remark 1. [19] Every normed linear space is a semi-inner product space (see[15]).
In fact by Hahn Banach theorem, for each x ∈ X, there exists atleast one functional
fx ∈ X⋆ such that ⟨x, fx⟩ = ||x||2. Given any such mapping f from X into X⋆, we
can verify that [y, x] = ⟨y, fx⟩ defines a semi-inner product. Hence we can write
(ii) of above Lemma as

||x+ y||2 ≤ ||x||2 + 2[y, x] + c||y||2, ∀x, y ∈ X.

The constant c is chosen with best possible minimum value. We call c, as the
constant of smoothness of X.

Example 3. The function space Lp is 2-uniformly smooth for p ≥ 2 and it is
p-uniformly smooth for 1 < p < 2. If 2 ≤ p < ∞, then we have for all x, y ∈ Lp,

||x+ y||2 ≤ ||x||2 + 2[y, x] + (p− 1)||y||2.
Here the constant of smoothness is p− 1.

Definition 3. [16, 19] Let X be a real 2-uniformly smooth Banach space. A map-
ping S : X → X is said to be:

(i) monotone, if [Sx− Sy, x− y] ≥ 0, ∀x, y ∈ X,
(ii) strictly monotone, if [Sx− Sy, x− y] > 0, ∀x, y ∈ X, and equality holds if

and only if x = y,
(iii) r-strongly monotone if there exists a positive constant r > 0 such that

[Sx− Sy, x− y] ≥ r||x− y||2, ∀x, y ∈ X,

(iv) δ-Lipschitz continuous, if there exists a constant δ > 0 such that

∥S(x)− S(y)∥ ≤ δ∥x− y∥, ∀x, y ∈ X,

(v) η-monotone, if [Sx− Sy, η(x, y)] ≥ 0, ∀x, y ∈ X,
(vi) strictly η-monotone, if [Sx−Sy, η(x, y)] > 0, ∀x, y ∈ X, and equality holds

if and only if x = y,
(vii) r-strongly η-monotone if there exists a positive constant r > 0 such that

[Sx− Sy, η(x, y)] ≥ r||x− y||2, ∀x, y ∈ X,
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(viii) ξ-cocoercive if there exists a constant ξ > 0 such that

[Sx− Sy, x− y] ≥ ξ||Sx− Sy||2, ∀x, y ∈ X,

(ix) relaxed (ξ, δ)-cocoercive if there exist two constants ξ, δ > 0 such that

[Sx− Sy, x− y] ≥ −ξ||Sx− Sy||2 + δ∥x− y∥2, ∀x, y ∈ X.

For ξ = 0 S is δ-strongly monotone.

This class of mappings is more general than the class of strongly monotone
mappings.

Definition 4. Let X be a 2-uniformly smooth Banach space. Let η : X ×X → X
be single-valued mappings and M : X ×X → 2X be multi-valued mapping. Then

(i) η is said to be accretive, if[
η(x, y), x− y

]
≥ 0, ∀x, y ∈ X.

(ii) η is said to be strictly accretive, if[
η(x, y), x− y

]
> 0, ∀x, y ∈ X.

and equality holds only when x = y.
(iii) η is said to be r-strongly-accretive if there exists a constant r > 0 such that[

η(x, y), x− y
]
≥ r∥x− y∥2, ∀x, y ∈ X.

(iv) η is said to be m-Lipschitz continuous, if there exists a constant m > 0
such that

∥η(x, y)∥ ≤ m∥x− y∥, ∀x, y ∈ X,

(v) M is said to be η-accretive in the first argument if[
u− v, η(x, y)

]
≥ 0, ∀x, y ∈ X, ∀u ∈ M(x, t), v ∈ M(y, t), for each fixed t ∈ X,

(vi) µ-strongly η-accretive if there exists a positive constant µ > 0 such that

[u− v, η(x, y)] ≥ µ∥x− y∥2, ∀x, y ∈ X,u ∈ M(x, t), v ∈ M(y, t).

Definition 5. Let X be a 2-uniformly smooth Banach space. Let η : X ×X → X
be single-valued mappings, M : X ×X → 2X be a multi-valued mapping, then M
is said to be m− η−accretive mapping if for each fixed t ∈ X,M(., t) is η-accretive
in the first argument and (I + ρM(., t))X = X, ∀ρ > 0.

Theorem 1. Let X be a 2-uniformly smooth Banach space. Let η : X×X → X be
q-strongly accretive mapping. Let M : X×X → 2X be m−η−accretive mapping. If

the following inequality :
[
u− v, η(x, y)

]
≥ 0, holds ∀(y, v) ∈ Graph (M(., t)), then

(x, u) ∈ Graph(M(., t)), where Graph (M(., t)) := {(x, u) ∈ X ×X : u ∈ M(x, t)}.
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Theorem 2. Let η : X × X → X be q-strongly accretive mapping. Let M :
X ×X → 2X be m− η−accretive mapping. Then the mapping (I + ρM(., t))−1 is
single-valued, ∀ ρ > 0.

Definition 6. Let η : X×X → X be single-valued mapping. Let M : X×X → 2X

be m − η−accretive mapping. Then for each fixed t ∈ X, the resolvent operator

R
M(.,t)
ρ,η : X → X is defined by

RM(.,t)
ρ,η (x) = (I + ρM(., t))−1(x), ∀x ∈ X.

Theorem 3. Let η : X×X → X be p-Lipschitz continuous and q-strongly accretive
mapping. Let M : X ×X → 2X be m− η−accretive mapping. Then for each fixed

t ∈ X the resolvent operator of M, R
M(.,t)
ρ,η (x) = (I+ρM(., t))−1(x) is

p

q
−Lipschitz

continuous, that is,∥∥∥RM(.,t)
ρ,η (x)−RM(.,t)

ρ,η (y)
∥∥∥ ≤ L∥x− y∥, ∀x, y, t ∈ X.

where L =
p

q
.

Definition 7. The Hausdorff metric D(·, ·) on CB(X), is defined by

D(A,B) = max

{
sup
u∈A

inf
v∈B

d(u, v), sup
v∈B

inf
u∈A

d(u, v)

}
, A,B ∈ CB(X),

where d(·, ·) is the induced metric on X and CB(X) denotes the family of all
nonempty closed and bounded subsets of X.

Definition 8. [6] A set-valued mapping T : X → CB(X) is said to be γ-D-
Lipschitz continuous, if there exists a constant γ > 0 such that

D(T (x), T (y)) ≤ γ∥x− y∥, ∀x, y ∈ X.

Theorem 4. [17] Let T : X → CB(X) be a set-valued mapping on X and (X, d)
be a complete metric space. Then:

(i) For any given ν > 0 and for any given u, v ∈ X and x ∈ T (u), there exists
y ∈ T (v) such that

d(x, y) ≤ (1 + ν)D(T (u), T (v));

(ii) If T : X → C(X), then (i) holds for ν = 0, (where C(X) denotes the family
of all nonempty compact subsets of X).

Lemma 2. Let {bn} be a sequence of nonnegative real numbers such that

bn+1 ≤ (1− an)bn + cn + hn, ∀n ≥ n0,

where n0 is a nonnegative integer, {an} is a sequence in (0, 1) with
∞∑

n=1
an = ∞,

cn = o(an) and
∞∑

n=0
hn < ∞. Then lim

n→∞
bn = 0.
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Definition 9. A mapping S : X×X×X → X is said to be relaxed (ξ, δ)−cocoercive
if there exist constants ξ, δ > 0 such that[
S(x, y, z)− S(x1, y1, z1), x− x1

]
≥ −ξ

∥∥∥S(x, y, z)− S(x1, y1, z1)
∥∥∥2 + δ

∥∥∥x− x1

∥∥∥2,
∀x, x1, y, y1, z, z1 ∈ X. (1)

Definition 10. A mapping S : X×X×X → X is said to be β-Lipschitz continuous
in the first variable if there exist constant β > 0 such that∥∥∥S(x, y, z)− S(x1, y1, z1)

∥∥∥ ≤ β
∥∥∥x− x1

∥∥∥, ∀x, x1, y, y1, z, z1 ∈ X. (2)

Now, we formulate our main problem.
For each i = 1, 2, 3, let Ni : X×X×X → X, fi : X → X, ηi : X×X → X be single-
valued mappings. Let Ai, Bi, Fi : X → C(X) be set-valued mappings. Suppose that
Mi : X ×X → 2X is mi − ηi− accretive mapping. Then we consider the following
system of generalized nonlinear variational inclusion problems (in short, SGNVIP):
Find (x1, x2, x3) ∈ X ×X ×X,ui ∈ Ai(xi), vi ∈ Bi(xi), wi ∈ Fi(xi) such that

0 ∈ f1(x1)− f1(x2) + ρ1{N1(u2, u3, u1) +M1(f1(x1), x1)}

0 ∈ f2(x2)− f2(x3) + ρ2{N2(v3, v1, v2) +M2(f2(x2), x2)}

0 ∈ f3(x3)− f3(x1) + ρ3{N3(w1, w2, w3) +M3(f3(x3), x3)}, ∀ρi > 0.


(3)

Special Cases:

I. If in problem (3), f1(x1) = G(x), f1(x2) = H(x), such that G,H : X → X, f2 =
f3 ≡ 0, N1 = N2 = N3 ≡ 0, ρ1 = ρ2 = ρ3 = 1, then problem (3) reduces to the
following problem: Find x ∈ X such that

0 ∈ G(x)−H(x) +M(G(x), x). (4)

This type of problem has been considered and studied by Sahu et al.[19].

3. Iterative Algorithm

First, we give the following technical lemma:

Lemma 3. Let X be a real 2-uniformly smooth Banach space. Let for each
i ∈ {1, 2, 3} Ni, fi, ηi be single-valued mappings. Let Ai, Bi, Fi : X → C(X) be
set-valued mappings, Mi : X × X → 2X be mi − ηi−accretive mappings. Then
(xi, ui, vi, wi) where xi ∈ X,ui ∈ Ai(xi), vi ∈ Bi(xi), wi ∈ Fi(xi) is a solution of
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(3) if and only if (xi, ui, vi, wi) satisfies

f1(x1) = R
M1(.,x1)
ρ1,η1

{
f1(x2)− ρ1N1(u2, u3, u1)

}
f2(x2) = R

M2(.,x2)
ρ2,η2

{
f2(x3)− ρ2N2(v3, v1, v2)

}
f3(x3) = R

M3(.,x3)
ρ3,η3

{
f3(x1)− ρ3N3(w1, w2, w3)

}


(5)

where R
Mi(.,xi)
ρi,ηi

=
(
I + ρiMi(., xi)

)−1

are the resolvent operators.

Proof. Let (xi, ui, vi, wi) is a solution of (3), then we have

f1(x1) = RM1(.,x1)
ρ1,η1

{
f1(x2)− ρ1N1(u2, u3, u1)

}
⇐⇒ f1(x1) =

(
I + ρ1M1(., x1)

)−1{
f1(x2)− ρ1N1(u2, u3, u1)

}
⇐⇒ f1(x1) + ρ1M1(f1(x1), x1) =

{
f1(x2)− ρ1N1(u2, u3, u1)

}
⇐⇒ 0 ∈ f1(x1)− f1(x2) + ρ1{N1(u2, u3, u1) +M1(f1(x1), x1)}.

Proceeding likewise by using (5), we have

f2(x2) = RM2(.,x2)
ρ2,η2

{
f2(x3)− ρ2N2(v3, v1, v2)

}
⇐⇒ 0 ∈ f2(x2)− f2(x3) + ρ2{N2(v3, v1, v2) +M2(f2(x2), x2)}

and

f3(x3) = RM3(.,x3)
ρ3,η3

{
f3(x1)− ρ3N3(w1, w2, w3)

}
⇐⇒ 0 ∈ f3(x3)− f3(x1) + ρ3{N3(w1, w2, w3) +M3(f3(x3), x3)}.

□

Lemma 3 allows us to suggest the following iterative algorithm for finding the
approximate solution of (3).

Iterative Algorithm 1. For each i = {1, 2, 3} given {x0
i , u

0
i , v

0
i , w

0
i } where x0

i ∈
Xi, u

0
i ∈ Ai(x

0
i ), v

0
i ∈ Bi(x

0
i ), w

0
i ∈ Fi(x

0
i ) compute the sequences {xn

i , u
n
i , v

n
i , w

n
i }

defined by the iterative schemes

f3(x
n
3 ) = R

M3(.,x
n
3 )

ρ3,η3

{
f3(x

n
1 )− ρ3N3(w

n
1 , w

n
2 , w

n
3 )
}

f2(x
n
2 ) = R

M2(.,x
n
2 )

ρ2,η2

{
f2(x

n
3 )− ρ2N2(v

n
3 , v

n
1 , v

n
2 )
}

xn+1
1 = (1− αn)xn

1 + αn
(
xn
1 − f1(x

n
1 ) +R

M1(.,x
n
1 )

ρ1,η1

{
f1(x

n
2 )− ρ1N1(u

n
2 , u

n
3 , u

n
1 )
})

where αn is a sequence of real numbers such that
∞∑

n=0
αn = ∞, ∀n ≥ 0.
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4. Existence of Solution and Convergence Analysis

Theorem 5. For each i ∈ {1, 2, 3}, let X be a real 2-uniformly smooth Banach
space with k as constant of smoothness. Let Ni : X × X × X → X be a relaxed
(ξi, δi)-cocoercive and νi-Lipschitz continuous in the first argument. Let fi be a
relaxed (ri, si)-cocoercive and βi-Lipschitz continuous in the first argument. Let
Ai, Bi, Fi : Xi → C(Xi) be set-valued mappings such that Ai is LAi

−D−Lipschitz
continuous, Bi is LBi

−D−Lipschitz continuous and Fi is LFi
−D−Lipschitz con-

tinuous. In addition, if there are constants ti > 0 such that∥∥∥RMi(.,x
n
i )

ρi,ηi
(zi)−RMi(.,xi)

ρi,ηi
(zi)
∥∥∥
i
≤ ti∥xn

i − xi∥i, ∀zi ∈ Xi (6)

and

1− (t2 +Φ5) > 0, 1− (t3 +Φ6) > 0

such that

0 <

(
Φ4 +Φ4

L1L2L3

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

)

+
L1L2L3Φ1

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

) + t1

)
< 1, (7)

where

Φ1 =
√
1 + 2ρ1(ξ1ν

2
1L

2
A2

− δ1) + kρ21ν
2
1L

2
A2

; Φ2 =
√

1 + 2ρ2(ξ2ν
2
2L

2
B3

− δ2) + kρ22ν
2
2L

2
B3

.

Φ3 =
√

1 + 2ρ3(ξ3ν
2
3L

2
F1

− δ3) + kρ23ν
2
3L

2
F1
; Φ4 =

√
1 + 2(r1β

2
1 − s1) + kβ2

1.

Φ5 =

√
1 + 2(r2β

2
2 − s2) + kβ2

2; Φ6 =

√
1 + 2(r3β

2
3 − s3) + kβ2

3.

Then the sequences {xn
i }, {un

i }, {vni }, {wn
i } generated by above iterative algorithm

1 converges strongly to (xi, ui, vi, wi) where (xi, ui, vi, wi) is a solution of above
problem (3).

Proof. From Lemma 3, Iterative Algorithm 1, (6) and by using Theorem 3, it follows
that ∥∥∥xn+1

1 − x1

∥∥∥
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=

∥∥∥∥∥(1− αn)xn
1 + αn

(
xn
1 − f1(x

n
1 ) +R

M1(.,x
n
1 )

ρ1,η1

{
f1(x

n
2 )− ρ1N1(u

n
2 , u

n
3 , u

n
1 )
})

−

[
(1− αn)x1 + αn

(
x1 − f1(x1) +R

M1(.,x1)
ρ1,η1

{
f1(x2)− ρ1N1(u2, u3, u1)

})]∥∥∥∥∥
≤ (1− αn)

∥∥∥xn
1 − x1

∥∥∥+ αn
∥∥∥(xn

1 − x1)− (f1(x
n
1 )− f1(x1))

∥∥∥
+αn

∥∥∥RM1(.,x
n
1 )

ρ1,η1

{
f1(x

n
2 )− ρ1N1(u

n
2 , u

n
3 , u

n
1 )
}

−R
M1(.,x

n
1 )

ρ1,η1

{
f1(x2)− ρ1N1(u2, u3, u1)

}
+R

M1(.,x
n
1 )

ρ1,η1

{
f1(x2)− ρ1N1(u2, u3, u1)

}
−R

M1(.,x1)
ρ1,η1

{
f1(x2)− ρ1N1(u2, u3, u1)

}∥∥∥
≤ (1− αn)

∥∥∥xn
1 − x1

∥∥∥+ αn
∥∥∥(xn

1 − x1)− (f1(x
n
1 )− f1(x1))

∥∥∥
+αnL1

∥∥∥f1(xn
2 )− f1(x2)− ρ1

(
N1(u

n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1)

)∥∥∥
+αnt1∥xn

1 − x1∥

≤ (1− αn)
∥∥∥xn

1 − x1

∥∥∥+ αn
∥∥∥(xn

1 − x1)− (f1(x
n
1 )− f1(x1))

∥∥∥
+αnL1

∥∥∥(xn
2 − x2)− (f1(x

n
2 )− f1(x2)

∥∥∥
+αnL1

∥∥∥(xn
2 − x2)− ρ1

(
N1(u

n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1)

)∥∥∥
+αnt1∥xn

1 − x1∥. (8)

Since N1 is relaxed (ξ1, δ1)-cocoercive and ν1-Lipschitz continuous in the first ar-
gument, therefore by using Remark 1 , it follows that

∥∥∥(xn
2 − x2)− ρ1

(
N1(u

n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1)

)∥∥∥2
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=
∥∥∥xn

2 − x2

∥∥∥2 − 2ρ1

[
N1(u

n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1), x

n
2 − x2

]
+kρ21

∥∥∥N1(u
n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1)

∥∥∥2
≤

∥∥∥xn
2 − x2

∥∥∥2 − 2ρ1

{
− ξ1

∥∥∥N1(u
n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1)

∥∥∥2 + δ1

∥∥∥xn
2 − x2

∥∥∥2}
+kρ21ν

2
1

∥∥∥un
2 − u2

∥∥∥2
≤

∥∥∥xn
2 − x2

∥∥∥2 + 2ρ1ξ1ν
2
1

∥∥∥un
2 − u2

∥∥∥2
−2ρ1δ1

∥∥∥xn
2 − x2

∥∥∥2 + kρ21ν
2
1

∥∥∥un
2 − u2

∥∥∥2
≤

∥∥∥xn
2 − x2

∥∥∥2 + 2ρ1ξ1ν
2
1

(
D(A2(x

n
2 ), A2(x2))

)2
−2ρ1δ1

∥∥∥xn
2 − x2

∥∥∥2 + kρ21ν
2
1

(
D(A2(x

n
2 ), A2(x2))

)2
≤

∥∥∥xn
2 − x2

∥∥∥2 + 2ρ1ξ1ν
2
1L

2
A2

∥∥∥xn
2 − x2

∥∥∥2
−2ρ1δ1

∥∥∥xn
2 − x2

∥∥∥2 + kρ21ν
2
1L

2
A2

∥∥∥xn
2 − x2

∥∥∥2
≤

(
1 + 2ρ1(ξ1ν

2
1L

2
A2

− δ1) + kρ21ν
2
1L

2
A2

)∥∥∥xn
2 − x2

∥∥∥2
=⇒

∥∥∥(xn
2 − x2)− ρ1

(
N1(u

n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1)

)∥∥∥ ≤ Φ1

∥∥∥xn
2 − x2

∥∥∥ (9)

where

Φ1 =
√

1 + 2ρ1(ξ1ν
2
1L

2
A2

− δ1) + kρ21ν
2
1L

2
A2

.

Also ∥∥∥xn
2 − x2

∥∥∥ =
∥∥∥(xn

2 − x2)− (f2(x
n
2 )− f2(x2)) + (f2(x

n
2 )− f2(x2))

∥∥∥
≤

∥∥∥(xn
2 − x2)− (f2(x

n
2 )− f2(x2))

∥∥∥
+
∥∥∥f2(xn

2 )− f2(x2)
∥∥∥. (10)
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Now,

∥∥∥f2(xn
2 )− f2(x2)

∥∥∥
=

∥∥∥RM2(.,x
n
2 )

ρ2,η2

{
f2(x

n
3 )− ρ2N2(v

n
3 , v

n
1 , v

n
2 )
}
−R

M2(.,x2)
ρ2,η2

{
f2(x3)− ρ2N2(v3, v1, v2)

}∥∥∥
=

∥∥∥RM2(.,x
n
2 )

ρ2,η2

{
f2(x

n
3 )− ρ2N2(v

n
3 , v

n
1 , v

n
2 )
}

−R
M2(.,x2)
ρ2,η2

{
f2(x3)− ρ2N2(v3, v1, v2)

}∥∥∥
≤

∥∥∥RM2(.,x
n
2 )

ρ2,η2

{
f2(x

n
3 )− ρ2N2(v

n
3 , v

n
1 , v

n
2 )
}

−R
M2(.,x

n
2 )

ρ2,η2

{
f2(x3)− ρ2N2(v3, v1, v2)

}∥∥∥
+
∥∥∥RM2(.,x

n
2 )

ρ2,η2

{
f2(x3)− ρ2N2(v3, v1, v2)

}
−R

M2(.,x2)
ρ2,η2

{
f2(x3)− ρ2N2(v3, v1, v2)

}∥∥∥
≤ L2

∥∥∥f2(xn
3 )− f2(x3)− ρ2

(
N2(v

n
3 , v

n
1 , v

n
2 )−N2(v3, v1, v2)

)∥∥∥
+t2

∥∥∥xn
2 − x2

∥∥∥
≤ L2

∥∥∥(xn
3 − x3)−

(
f2(x

n
3 )− f2(x3)

)∥∥∥
+L2

∥∥∥(xn
3 − x3)− ρ2

(
N2(v

n
3 , v

n
1 , v

n
2 )−N2(v3, v1, v2)

)∥∥∥
+t2

∥∥∥xn
2 − x2

∥∥∥. (11)

Since N2 is relaxed (ξ2, δ2)-cocoercive and ν2-Lipschitz continuous in the first ar-
gument, therefore by using Remark 1, we have

∥∥∥(xn
3 − x3)− ρ2

(
N2(v

n
3 , v

n
1 , v

n
2 )−N2(v3, v1, v2)

)∥∥∥2
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=
∥∥∥xn

3 − x3

∥∥∥2 − 2ρ2

[
N2(v

n
3 , v

n
1 , v

n
2 )−N2(v3, v1, v2), x

n
3 − x3

]
+kρ22

∥∥∥N2(v
n
3 , v

n
1 , v

n
2 )−N2(v3, v1, v2)

∥∥∥2
≤

∥∥∥xn
3 − x3

∥∥∥2 − 2ρ2

{
− ξ2

∥∥∥N2(v
n
3 , v

n
1 , v

n
2 )−N2(v3, v1, v2)

∥∥∥2 + δ2

∥∥∥xn
3 − x3

∥∥∥2}
+kρ22ν

2
2

∥∥∥vn3 − v3

∥∥∥2
≤

∥∥∥xn
3 − x3

∥∥∥2 − 2ρ2

{
− ξ2ν

2
2

∥∥∥vn3 − v3

∥∥∥2 + δ2

∥∥∥xn
3 − x3

∥∥∥2}
+kρ22ν

2
2

∥∥∥vn3 − v3

∥∥∥2
≤

∥∥∥xn
3 − x3

∥∥∥2 + 2ρ2ξ2ν
2
2

(
D(B3(x

n
3 ), B3(x3))

)2
−2ρ2δ2

∥∥∥xn
3 − x3

∥∥∥2 + kρ22ν
2
2

(
D(B3(x

n
3 ), B3(x3))

)2
≤

∥∥∥xn
3 − x3

∥∥∥2 + 2ρ2ξ2ν
2
2L

2
B3

∥∥∥xn
3 − x3

∥∥∥2
−2ρ2δ2

∥∥∥xn
3 − x3

∥∥∥2 + kρ22ν
2
2L

2
B3

∥∥∥xn
3 − x3

∥∥∥2
≤

(
1 + 2ρ2(ξ2ν

2
2L

2
B3

− δ2) + kρ22ν
2
2L

2
B3

)∥∥∥xn
3 − x3

∥∥∥2

=⇒
∥∥∥(xn

3 − x3)− ρ2

(
N2(v

n
3 , v

n
1 , v

n
2 )−N2(v3, v1, v2)

)∥∥∥ ≤ Φ2

∥∥∥xn
3 − x3

∥∥∥ (12)

where

Φ2 =
√
1 + 2ρ2(ξ2ν

2
2L

2
B3

− δ2) + kρ22ν
2
2L

2
B3

.

Since f2 is relaxed (r2, s2)-cocoercive and β2-Lipschitz continuous, therefore by
using Remark 1, we have ∥∥∥xn

3 − x3 − (f2(x
n
3 )− f2(x3))

∥∥∥2



628 S. SHAFI

=
∥∥∥xn

3 − x3

∥∥∥2 − 2
[
f2(x

n
3 )− f2(x3), x

n
3 − x3

]
+ k
∥∥∥f2(xn

3 )− f2(x3)
∥∥∥2

≤
∥∥∥xn

3 − x3

∥∥∥2 − 2
{
− r2

∥∥∥f2(xn
3 )− f2(x3)

∥∥∥2 + s2

∥∥∥xn
3 − x3

∥∥∥2}+ kβ2
2

∥∥∥xn
3 − x3

∥∥∥2
≤

∥∥∥xn
3 − x3

∥∥∥2 + 2r2β
2
2

∥∥∥xn
3 − x3

∥∥∥2 − 2s2

∥∥∥xn
3 − x3

∥∥∥2 + kβ2
2

∥∥∥xn
3 − x3

∥∥∥2
≤

(
1 + 2(r2β

2
2 − s2) + kβ2

2

)∥∥∥xn
3 − x3

∥∥∥2
=⇒

∥∥∥xn
3 − x3 − (f2(x

n
3 )− f2(x3))

∥∥∥ ≤ Φ5

∥∥∥xn
3 − x3

∥∥∥ (13)

where

Φ5 =

√
1 + 2(r2β

2
2 − s2) + kβ2

2.

Similarly ∥∥∥xn
2 − x2 − (f2(x

n
2 )− f2(x2))

∥∥∥ ≤ Φ5

∥∥∥xn
2 − x2

∥∥∥. (14)

Substituting (12), (13) in (11), we have∥∥∥f2(xn
2 )− f2(x2)

∥∥∥ ≤ L2(Φ2 +Φ5)
∥∥∥xn

3 − x3

∥∥∥+ t2

∥∥∥xn
2 − x2

∥∥∥. (15)

Combining (10), (14) and (15), we have∥∥∥xn
2 − x2

∥∥∥ ≤ Φ5

∥∥∥xn
2 − x2

∥∥∥+ L2(Φ2 +Φ5)
∥∥∥xn

3 − x3

∥∥∥+ t2

∥∥∥xn
2 − x2

∥∥∥
≤ (Φ5 + t2)

∥∥∥xn
2 − x2

∥∥∥+ L2(Φ2 +Φ5)
∥∥∥xn

3 − x3

∥∥∥. (16)

Again, we have∥∥∥xn
3 − x3

∥∥∥ =
∥∥∥(xn

3 − x3)− (f3(x
n
3 )− f3(x3)) + (f3(x

n
3 )− f3(x3))

∥∥∥
≤
∥∥∥(xn

3 − x3)− (f3(x
n
3 )− f3(x3))

∥∥∥+ ∥∥∥(f3(xn
3 )− f3(x3))

∥∥∥. (17)

Now,∥∥∥f3(xn
3 )− f3(x3)

∥∥∥
=

∥∥∥RM3(.,x
n
3 )

ρ3,η3

{
f3(x

n
1 )− ρ3N3(w

n
1 , w

n
2 , w

n
3 )
}
−R

M3(.,x3)
ρ3,η3

{
f3(x1)− ρ3N3(w1, w2, w3)

}∥∥∥
≤

∥∥∥RM3(.,x
n
3 )

ρ3,η3

{
f3(x

n
1 )− ρ3N3(w

n
1 , w

n
2 , w

n
3 )
}
−R

M3(.,x
n
3 )

ρ3,η3

{
f3(x1)− ρ3N3(w1, w2, w3)

}∥∥∥
+
∥∥∥RM3(.,x

n
3 )

ρ3,η3

{
f3(x1)− ρ3N3(w1, w2, w3)

}
−R

M3(.,x3)
ρ3,η3

{
f3(x1)− ρ3N3(w1, w2, w3)

}∥∥∥
≤ L3

∥∥∥f3(xn
1 )− f3(x1)− ρ3

(
N3(w

n
1 , w

n
2 , w

n
3 )−N3(w1, w2, w3)

)∥∥∥+ t3

∥∥∥xn
3 − x3

∥∥∥
≤ L3

∥∥∥xn
1 − x1 −

(
f3(x

n
1 )− f3(x1)

)∥∥∥
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+L3

∥∥∥xn
1 − x1 − ρ3

(
N3(w

n
1 , w

n
2 , w

n
3 )−N3(w1, w2, w3)

)∥∥∥+ t3

∥∥∥xn
3 − x3

∥∥∥. (18)

Since N3 is relaxed (ξ3, δ3)-cocoercive and ν3-Lipschitz continuous in the first ar-
gument, therefore by using Remark 1, we have∥∥∥(xn

1 − x1)− ρ3

(
N3(w

n
1 , w

n
2 , w

n
3 )−N3(w1, w2, w3)

)∥∥∥2
=

∥∥∥xn
1 − x1

∥∥∥2 − 2ρ3

[
N3(w

n
1 , w

n
2 , w

n
3 )−N3(w1, w2, w3), x

n
1 − x1

]
+kρ23

∥∥∥N3(w
n
1 , w

n
2 , w

n
3 )−N3(w1, w2, w3)

∥∥∥2
≤

∥∥∥xn
1 − x1

∥∥∥2 − 2ρ3

{
− ξ3

∥∥∥N3(w
n
1 , w

n
2 , w

n
3 )−N3(w1, w2, w3)

∥∥∥2 + δ3

∥∥∥xn
1 − x1

∥∥∥2}
+kρ23ν

2
3

∥∥∥wn
1 − w1

∥∥∥2
≤

∥∥∥xn
1 − x1

∥∥∥2 + 2ρ3ξ3ν
2
3

∥∥∥wn
1 − w1

∥∥∥2
−2ρ3δ3

∥∥∥xn
1 − x1

∥∥∥2 + kρ23ν
2
3

∥∥∥wn
1 − w1

∥∥∥2
≤

∥∥∥xn
1 − x1

∥∥∥2 + 2ρ3ξ3ν
2
3

(
D(F1(x

n
1 ), F1(x1))

)2
−2ρ3δ3

∥∥∥xn
1 − x1

∥∥∥2 + kρ23ν
2
3

(
D(F1(x

n
1 ), F1(x1))

)2
≤

∥∥∥xn
1 − x1

∥∥∥2 + 2ρ3ξ3ν
2
3L

2
F1

∥∥∥xn
1 − x1

∥∥∥2
−2ρ3δ3

∥∥∥xn
1 − x1

∥∥∥2 + kρ23ν
2
3L

2
F1

∥∥∥xn
1 − x1

∥∥∥2
≤

(
1 + 2ρ3(ξ3ν

2
3L

2
F1

− δ3) + kρ23ν
2
3L

2
F1

)∥∥∥xn
1 − x1

∥∥∥2
=⇒

∥∥∥(xn
1 − x1)− ρ3

(
N3(w

n
1 , w

n
2 , w

n
3 )−N3(w1, w2, w3)

)∥∥∥ ≤ Φ3

∥∥∥xn
1 − x1

∥∥∥ (19)

where

Φ3 =
√

1 + 2ρ3(ξ3ν
2
3L

2
F1

− δ3) + kρ23ν
2
3L

2
F1
.

Since f3 is relaxed (r3, s3)-cocoercive and β3-Lipschitz continuous, therefore by
using Remark 1, it follows that∥∥∥xn

1 − x1 − (f3(x
n
1 )− f3(x1))

∥∥∥2
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=
∥∥∥xn

1 − x1

∥∥∥2 − 2
[
f3(x

n
1 )− f3(x1), x

n
1 − x1

]
+k
∥∥∥f3(xn

1 )− f3(x1)
∥∥∥2

≤
∥∥∥xn

1 − x1

∥∥∥2 − 2
{
− r3

∥∥∥f3(xn
1 )− f3(x1)

∥∥∥2 + s3

∥∥∥xn
1 − x1

∥∥∥2}
+kβ2

3

∥∥∥xn
1 − x1

∥∥∥2
≤

∥∥∥xn
1 − x1

∥∥∥2 + 2r3β
2
3

∥∥∥xn
1 − x1

∥∥∥2
−2s3

∥∥∥xn
1 − x1

∥∥∥2 + kβ2
3

∥∥∥xn
1 − x1

∥∥∥2
≤

(
1 + 2(r3β

2
3 − s3) + kβ2

3

)∥∥∥xn
1 − x1

∥∥∥2
=⇒

∥∥∥xn
1 − x1 − (f3(x

n
1 )− f3(x1))

∥∥∥ ≤ Φ6

∥∥∥xn
1 − x1

∥∥∥, (20)

where

Φ6 =

√
1 + 2(r3β

2
3 − s3) + kβ2

3.

Similarly ∥∥∥xn
3 − x3 − (f3(x

n
3 )− f3(x3))

∥∥∥ ≤ Φ6

∥∥∥xn
3 − x3

∥∥∥. (21)

Substituting (19), (20) in (18), we have∥∥∥f3(xn
3 )− f3(x3)

∥∥∥ ≤ L3(Φ3 +Φ6)
∥∥∥xn

1 − x1

∥∥∥+ t3

∥∥∥xn
3 − x3

∥∥∥. (22)

Combining (17), (21) and (22), we have∥∥∥xn
3 − x3

∥∥∥
≤ Φ6

∥∥∥xn
3 − x3

∥∥∥+ L3

(
Φ3 +Φ6

)∥∥∥xn
1 − x1

∥∥∥+ t3

∥∥∥xn
3 − x3

∥∥∥
≤

(
Φ6 + t3

)∥∥∥xn
3 − x3

∥∥∥+ L3

(
Φ3 +Φ6

)∥∥∥xn
1 − x1

∥∥∥
=⇒

(
1− (t3 +Φ6)

)∥∥∥xn
3 − x3

∥∥∥ ≤ L3

(
Φ3 +Φ6

)∥∥∥xn
1 − x1

∥∥∥
=⇒

∥∥∥xn
3 − x3

∥∥∥ ≤
L3

(
Φ3 +Φ6

)
(
1− (t3 +Φ6)

) ∥∥∥xn
1 − x1

∥∥∥. (23)
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Substituting (23) in (16), we have∥∥∥xn
2 − x2

∥∥∥
≤ (t2 +Φ5)

∥∥∥xn
2 − x2

∥∥∥+ L2L3

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t3 +Φ6)

) ∥∥∥xn
1 − x1

∥∥∥
=⇒

(
1− (t2 +Φ5)

)∥∥∥xn
2 − x2

∥∥∥ ≤
L2L3

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t3 +Φ6)

) ∥∥∥xn
1 − x1

∥∥∥
=⇒

∥∥∥xn
2 − x2

∥∥∥ ≤
L2L3

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

) ∥∥∥xn
1 − x1

∥∥∥. (24)

Substituting (24) in (9),∥∥∥(xn
2 − x2)− ρ1

(
N1(u

n
2 , u

n
3 , u

n
1 )−N1(u2, u3, u1)

)∥∥∥
≤

L2L3Φ1

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

) ∥∥∥xn
1 − x1

∥∥∥. (25)

Since f1 is relaxed (r1, s1)-cocoercive and β1-Lipschitz continuous, therefore follow-
ing the same procedure as in (13), (20), we have∥∥∥xn

1 − x1 − (f1(x
n
1 )− f1(x1))

∥∥∥ ≤ Φ4

∥∥∥xn
1 − x1

∥∥∥, (26)

and similarly, we have∥∥∥xn
2 − x2 − (f1(x

n
2 )− f1(x2))

∥∥∥ ≤ Φ4

∥∥∥xn
2 − x2

∥∥∥, (27)

where

Φ4 =

√
1 + 2(r1β

2
1 − s1) + kβ2

1.

Combining (24) and (27)∥∥∥xn
2 − x2 − (f1(x

n
2 )− f1(x2))

∥∥∥
≤ Φ4

L2L3

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

) ∥∥∥xn
1 − x1

∥∥∥. (28)

Substituting (25), (26), (28) in (8), it follows that∥∥∥xn+1
1 − xn

1

∥∥∥
≤

{
(1− αn) + αnΦ4 + αnΦ4

L1L2L3

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

)
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+αn
L1L2L3Φ1

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

) + αnt1

} ∥∥∥xn
1 − x1

∥∥∥
≤

{
1− αn

(
1− Φ4 − Φ4

L1L2L3

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

)
−
L1L2L3Φ1

(
Φ2 +Φ5

)(
Φ3 +Φ6

)
(
1− (t2 +Φ5)

)(
1− (t3 +Φ6)

) − t1

)} ∥∥∥xn
1 − x1

∥∥∥
≤ (1− αn(1− ℏ))

∥∥∥xn
1 − x1

∥∥∥. (29)

where ℏ < 1 by assumption (7). Therefore by using Lemma 2, {xn
i } converges

strongly to a solution of (3). This completes the proof. □

5. Conclusion

A new system of generalized nonlinear variational inclusion problems has been
introduced in semi-inner product spaces. Using resolvent operator technique, an
iterative algorithm has been constructed to solve the proposed system and the con-
vergence analysis of the iterative algorithm has been investigated. The obtained
results generalizes many known classes of variational inequalities and variational
inclusions in the literature. The results presented can be used for approximation
solvability of some different classes of problems in the literature.

Declaration of Competing Interests The author declare that there is no conflict
of interest regarding the publication of this article.
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ON EIGENFUNCTIONS OF HILL’S EQUATION WITH

SYMMETRIC DOUBLE WELL POTENTIAL

Ayşe KABATAŞ

Department of Mathematics, Karadeniz Technical University, Trabzon, TURKEY

Abstract. Throughout this paper the asymptotic approximations for eigen-
functions of eigenvalue problems associated with Hill’s equation satisfying pe-

riodic and semi-periodic boundary conditions are derived when the potential
is symmetric double well. These approximations are used to determine the

Green’s functions of the related problems. Then, the obtained results are

adapted to the Whittaker-Hill equation which has the symmetric double well
potential and is widely investigated in the literature.

1. Introduction

Consider the Hill’s equation

y′′ + [λ− q(x)]y = 0, x ∈ [0, a] (1)

under the periodic boundary conditions y(0) = y(a), y′(0) = y′(a), or the semi-
periodic boundary conditions y(0) = −y(a), y′(0) = −y′(a). Here, λ is a real
parameter and the potential q(x) is a real-valued, absolutely continuous and peri-
odic function with period a such that∫ a

0

q(t)dt = 0.

The equation (1) is fundamental for the quantum mechanical treatment of atomic
and molecular phenomena. This kind of equation was first used by Hill [21] in mod-
elling of the moon motion. It also appears in the theory of particle orbits in linear
accelerators and alternating gradient synchrotrons, because the field structures are
periodic [10,25,32].
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functions, Green’s functions, asymptotics.
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The derivation of asymptotic formulae for eigenvalues and eigenfunctions of Hill’s
equation, when restrictive conditions were imposed on q, is of interest in its own
right and has a long history. Exact solutions of differential equations are unfor-
tunately rare in applied mathematics and physics. Asymptotical interpretation of
the differential equations plays an important role in understanding the behaviour
of such differential equations [5, 12, 27, 30, 31]. Motivation for studying eigenvalue
and eigenfunction asymptotics has come from several different types of problems
including instability intervals and gaps of eigenvalues [3,4,11,15,22,26], the deriva-
tion and properties of the Green’s function [7–9, 13, 14, 23], inverse spectral theory
and theory on reconstructing the potential function from knowledge of spectral
data [16,19], and the general theory of periodic potentials [2, 6, 18,24,28].

The main purpose of this paper is to determine asymptotic formulae for the
eigenfunctions of the Hill’s equation with q(x) being of a symmetric double well
potential under the periodic and semi-periodic boundary conditions . We call q
a double well potential, if there are points x1 < x2 < x3 in [0, a] such that q is
monotone decreasing on [0, x1] and [x2, x3] and is monotone increasing elsewhere.
In this work, it is assumed in particular that the potential function q is a continuous
function on [0, a] which is symmetric on [0, a] as well as on [0, a2 ] and non-increasing
on [0, a4 ] , that is, q(x) = q(a− x) = q(a2 − x), mathematically.

Denote by λn and µn (n = 0, 1, 2, ...) the periodic and semi-periodic eigenvalues
of (1), respectively. These eigenvalues are interlaced in the following way:

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < ...→ ∞.

Başkaya [4] obtained the asymptotic approximations of the periodic and semi-
periodic eigenvalues of (1) having symmetric double well potential such that, as
n→ ∞

λ2n+1

λ2n+2
=

4(n+ 1)2π2

a2
∓ 1

(n+ 1)π

∣∣∣ ∫ a/4

0

q′(t) sin

(
4(n+ 1)π

a
t

)
dt
∣∣∣

− a

16(n+ 1)2π2
[aq2(a) + 2a

∫ a/4

0

q(t)q′(t)dt

− 8

∫ a/4

0

tq(t)q′(t)dt] + o(n−2) (2)

and

µ2n

µ2n+1
=

(2n+ 1)2π2

a2
− a

4(2n+ 1)2π2
[aq2(a) + 2a

∫ a/4

0

q(t)q′(t)dt

− 8

∫ a/4

0

tq(t)q′(t)dt] + o(n−2). (3)
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In Section 2, the eigenfunctions of (1) corresponding to the eigenvalues, λn and
µn, given by (2) and (3) are investigated. By using the estimates on the eigenfunc-
tions, the Green’s function asymptotics related to the Hill’s equation are derived
in Section 3. Here, the method developed by Fulton [20] is followed. In Section
4, the obtained results for the eigenfunctions and Green’s functions are adapted to
the Whittaker-Hill equation

d2ψ

dz2
+ [λ+ 2kcos(2z) + 2lcos(4z)]ψ = 0

where λ, k, l are real. This equation arises after separating the wave equation using
paraboloidal coordinates [1] and is equivalent to a time-independent Schrödinger
equation,

− α
d2ψ

dθ2
+ V (θ)ψ = εψ,

that describes the internal rotational (torsinal) problem of a given molecular sys-
tem around a dihedral angle θ = 2z. ε = αλ/4 is the energy eigenvalue of the
eigenfunction ψ = ψ(θ) and V (θ) = V1 cos(θ) + V2 cos(2θ) is a period 2π func-
tion representing a symmetric periodic double well potential with V1 = −αk/2 and
V2 = −αl/2 (see [29]).

The following results obtained in [18] will be used to determine the eigen-
functions.

Let ϕ1(x, λ) and ϕ2(x, λ) be the linearly independent solutions of (1) with the
initial conditions

ϕ1(0, λ) = 1, ϕ′1(0, λ) = 0, ϕ2(0, λ) = 0, ϕ′2(0, λ) = 1. (4)

Theorem 1. [18, §4.3] Assume that ϕ1(x, λ) and ϕ2(x, λ) are the solutions of (1)
satisfying (4). Let q(x) be an absolutely continuous function. Then, as λ→ ∞,

ϕ1(x, λ) = cos(x
√
λ) +

1

2
λ−

1
2Q(x) sin(x

√
λ) +

1

4
λ−1

{
q(x)− q(0)− 1

2
Q2(x)

}
× cos(x

√
λ) + o(λ−1),

ϕ2(x, λ) = λ−
1
2 sin(x

√
λ)− 1

2
λ−1Q(x) cos(x

√
λ)

+
1

4
λ−

3
2

{
q(x) + q(0)− 1

2
Q2(x)

}
sin(x

√
λ) + o(λ−

3
2 )

where

Q(x) =

∫ x

0

q(t)dt. (5)
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2. Asymptotics of Eigenfunctions

In this section we obtain the asymptotic approximations for eigenfunctions of
(1) satisfying the periodic and semi-periodic boundary conditions.

Before, we prove the following lemma for q(x) being of a symmetric double well
potential.

Lemma 1. If q(x) is a symmetric double well potential on [0, a], then∫ x

0

q(t)dt = xq(x) +
a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt. (6)

Proof. Using integration by parts and q(x) = q(a − x) = q(a2 − x), it is obtained
that∫ x

0

q(t)dt = tq(t)
∣∣∣x
t=0

−
∫ x

0

tq′(t)dt

= xq(x)−

[∫ a/2

0

tq′(t)dt+

∫ x

a/2

tq′(t)dt

]

= xq(x)−

[
−
∫ a/2

0

tq′(a− t)dt+

∫ x

a/2

tq′(t)dt

]

= xq(x)−
∫ a/2

a

(a− t)q′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x) + a[q(t)]
∣∣∣a
t=a/2

−
∫ a

a/2

tq′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x) + a
[
q (a)− q

(a
2

)]
−

∫ a

a/2

tq′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x)−
∫ a

a/2

tq′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x)−

[∫ a/4

0

tq′(t)dt+

∫ a/2

a/4

tq′(t)dt

]
−
∫ x

a/2

tq′(t)dt

= xq(x)−

[
−
∫ a/4

0

tq′
(a
2
− t

)
dt+

∫ a/2

a/4

tq′(t)dt

]
−

∫ x

a/2

tq′(t)dt

= xq(x)−

[∫ a/4

a/2

(a
2
− t

)
q′(t)dt+

∫ a/2

a/4

tq′(t)dt

]
−
∫ x

a/2

tq′(t)dt

= xq(x) +
a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt.

□
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Theorem 2. Let q(x) be a symmetric double well potential on [0, a]. Then as
λ→ ∞, for the solutions of (1) with the initial conditions (4), we have

ϕ1(x, λ) = cos(x
√
λ) +

1

2
λ−

1
2 {xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt} sin(x
√
λ) +

1

4
λ−1{q(x)− q(0)− 1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} cos(x
√
λ) + o(λ−1), (7)

ϕ2(x, λ) = λ−
1
2 sin(x

√
λ)− 1

2
λ−1{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt} cos(x
√
λ) +

1

4
λ−

3
2 {q(x) + q(0)− 1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} sin(x
√
λ) + o(λ−

3
2 ). (8)

Proof. If we use Theorem 1 and substitute (6) in (5), the proof is done. □

Theorem 3. The eigenfunctions of the periodic problem having symmetric double
well potential satisfy, as n→ ∞

ϕ1(x, n) = cos
2(n+ 1)πx

a
+

a

4(n+ 1)π
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} sin 2(n+ 1)πx

a
+

a2

16(n+ 1)2π2

× {q(x)− q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt]2} cos 2(n+ 1)πx

a
+ o(n−2),

ϕ2(x, n) =
a

2(n+ 1)π
sin

2(n+ 1)πx

a
− a2

8(n+ 1)2π2
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} cos 2(n+ 1)πx

a
+

a3

32(n+ 1)3π3

× {q(x) + q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt]2} sin 2(n+ 1)πx

a
+ o(n−3).
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Theorem 4. The eigenfunctions of the semi-periodic problem having symmetric
double well potential satisfy, as n→ ∞

ϕ1(x, n) = cos
(2n+ 1)πx

a
+

a

2(2n+ 1)π
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} sin (2n+ 1)πx

a
+

a2

4(2n+ 1)2π2

× {q(x)− q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt]2} cos (2n+ 1)πx

a
+ o(n−2),

ϕ2(x, n) =
a

(2n+ 1)π
sin

(2n+ 1)πx

a
− a2

2(2n+ 1)2π2
{xq(x) + a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} cos (2n+ 1)πx

a

+
a3

4(2n+ 1)3π3
{q(x) + q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} sin (2n+ 1)πx

a
+ o(n−3).

To prove Theorem 3 and Theorem 4, the related eigenvalues given by (2) and
(3) are substituted in Theorem 2.

We also have asymptotic formulae for the derivatives of ϕ1(x, λ) and ϕ2(x, λ).
We will use them in calculation of the Green’s functions.

Lemma 2. Consider the equation (1) having symmetric double well potential. As
λ→ ∞, for the derivatives of its solutions, ϕ1(x, λ) and ϕ2(x, λ) which satisfy (4),
we have

ϕ′1(x, λ) = −λ
1
2 sin(x

√
λ) +

1

2
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt} cos(x
√
λ) +

1

4
λ−

1
2 {q(x) + q(0) +

1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} sin(x
√
λ) + o(λ−

1
2 ), (9)

ϕ′2(x, λ) = cos(x
√
λ) +

1

2
λ−

1
2 {xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt
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−
∫ x

a/4

tq′(t)dt} sin(x
√
λ)− 1

4
λ−1{q(x)− q(0) +

1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} cos(x
√
λ) + o(λ−1). (10)

Proof. Here, the proof of (9) will be shown. The proof of (10) is similar to that.
If q(x) is a piecewise continuous function, then, as λ→ ∞,

ϕ1(x, λ) = cos(x
√
λ) + λ−

1
2

∫ x

0

sin{(x− t)
√
λ}q(t) cos(t

√
λ)dt

+ λ−1

∫ x

0

sin{(x− t)
√
λ}q(t)dt

∫ t

0

sin{(t− u)
√
λ}q(u) cos(u

√
λ)du

+O(λ−
3
2 ) (11)

(see [18, §4.3]). The usual variation of constants formula [17, §2.5] gives

ϕ1(x, λ) = cos(x
√
λ) + λ−

1
2

∫ x

0

sin{(x− t)
√
λ}q(t)ϕ1(t, λ)dt.

If we arrange this formula, one can write

ϕ1(x, λ) = cos(x
√
λ) + λ−

1
2 {sin(x

√
λ)

∫ x

0

cos(t
√
λ)q(t)ϕ1(t, λ)dt

− cos(x
√
λ)

∫ x

0

sin(t
√
λ)q(t)ϕ1(t, λ)dt}. (12)

It is obtained by differentiating (12) with respect to x and substituting ϕ1(t, λ)
from (11) in the integral that

ϕ′1(x, λ) = −λ
1
2 sin(x

√
λ) + λ−

1
2 {λ

1
2 cos(x

√
λ)

∫ x

0

cos(t
√
λ)q(t)ϕ1(t, λ)dt

+ λ
1
2 sin(x

√
λ)

∫ x

0

sin(t
√
λ)q(t)ϕ1(t, λ)dt}

= −λ
1
2 sin(x

√
λ) +

∫ x

0

cos{(x− t)
√
λ}q(t)ϕ1(t, λ)dt

= −λ
1
2 sin(x

√
λ) +

∫ x

0

cos{(x− t)
√
λ}q(t) cos(t

√
λ)dt

+ λ−
1
2

∫ x

0

cos{(x− t)
√
λ}q(t)dt

∫ t

0

sin{(t− u)
√
λ}q(u) cos(u

√
λ)du

+O(λ−1). (13)

If differentiability conditions are imposed on q(x), (13) can be made more precise.
Assume that q(x) is absolutely continuous. This implies that q′(x) exists almost
everywhere and is integrable. Under these conditions, let consider the second term
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on the right of (13). We have∫ x

0
cos{(x− t)

√
λ}q(t) cos(t

√
λ)dt

=
1

2

∫ x

0

[
cos(x

√
λ) + cos{(x− 2t)

√
λ}

]
q(t)dt

=
1

2
Q(x) cos(x

√
λ) +

1

2

∫ x

0

cos{(x− 2t)
√
λ}q(t)dt

=
1

2
Q(x) cos(x

√
λ) +

1

2
[−1

2
λ−

1
2 q(t)sin{(x− 2t)

√
λ}

∣∣∣x
t=0

+
1

2
λ−

1
2

∫ x

0

q′(t) sin{(x− 2t)
√
λ}dt]

=
1

2
Q(x) cos(x

√
λ) +

1

4
λ−

1
2 [q(x) + q(0)] sin(x

√
λ)

+
1

4
λ−

1
2

∫ x

0

q′(t) sin{(x− 2t)
√
λ}dt.

The right-hand integral on the last equality is o(1) as λ → ∞ by the Riemann-
Lebesgue Lemma. So,∫ x

0

cos{(x− t)
√
λ}q(t) cos(t

√
λ)dt =

1

2
Q(x) cos(x

√
λ) +

1

4
λ−

1
2 [q(x) + q(0)]

× sin(x
√
λ) + o(λ−

1
2 ). (14)

Also, from [18, §4.3]∫ x

0

sin{(x− t)
√
λ}q(t) cos(t

√
λ)dt =

1

2
Q(x) sin(x

√
λ) +

1

4
λ−

1
2 [q(x)− q(0)]

× cos(x
√
λ) + o(λ−

1
2 ). (15)

For the third term on the right of (13), together with (15) we find

λ−
1
2
∫ x

0
cos{(x− t)

√
λ}q(t)dt

∫ t

0
sin{(t− u)

√
λ}q(u) cos(u

√
λ)du

=
1

2
λ−

1
2

∫ x

0

cos{(x− t)
√
λ}q(t)Q(t) sin(t

√
λ)dt+O(λ−1)

=
1

4
λ−

1
2

∫ x

0

[
sin(x

√
λ)− sin{(x− 2t)

√
λ}

]
q(t)Q(t)dt+O(λ−1)

=
1

4
λ−

1
2 sin(x

√
λ)

[
Q2(t)

2

] ∣∣∣x
t=0

+ o(λ−
1
2 )

=
1

8
λ−

1
2Q2(x) sin(x

√
λ) + o(λ−

1
2 ), (16)
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again by using the Riemann-Lebesgue Lemma. From (14) and (16), it is obtained
that

ϕ′1(x, λ) = −λ
1
2 sin(x

√
λ) +

1

2
Q(x) cos(x

√
λ) +

1

4
λ−

1
2

{
q(x) + q(0) +

1

2
Q2(x)

}
× sin(x

√
λ) + o(λ−

1
2 ). (17)

Using (6) in (5) and substituting this in (17) prove (9).
□

3. Asymptotics of Green’s Functions

In this section, we aim to improve asymptotic formulae for Green’s functions of
the periodic and semi-periodic problems with symmetric double well potential. The
Green’s function G(x, ζ, λ) is given by

G(x, ζ, λ) =

{
ϕ1(ζ,λ)ϕ2(x,λ)

w(λ) , 0 ≤ ζ ≤ x ≤ a
ϕ1(x,λ)ϕ2(ζ,λ)

w(λ) , 0 ≤ x ≤ ζ ≤ a
(18)

(see [20]). Here, ϕ1(x, λ) and ϕ2(x, λ) are linearly independent solutions of (1)
satisfying (4). And, we define w(λ) as follows

w(λ) := ϕ1(x, λ)ϕ
′
2(x, λ)− ϕ′1(x, λ)ϕ2(x, λ). (19)

It is known as the Wronskian function of ϕ1(x, λ) and ϕ2(x, λ).

Theorem 5. Suppose that the equation (1) has the symmetric double well poten-
tial and its independent solutions, ϕ1(x, λ) and ϕ2(x, λ) satisfy the initial conditions
(4). Then, the Green’s function of the problem is, as λ→ ∞

G(x, ζ, λ) = λ−
1
2 cos(ζ

√
λ) sin(x

√
λ)− 1

2
λ−1[D(x) cos(ζ

√
λ) cos(x

√
λ)

−D(ζ) sin(ζ
√
λ) sin(x

√
λ)] +

1

4
λ−

3
2 {[q(ζ) + q(x)− 1

2
(D2(ζ)

+D2(x))] cos(ζ
√
λ) sin(x

√
λ)−D(ζ)D(x) sin(ζ

√
λ) cos(x

√
λ)}

+ o(λ−
3
2 ), 0 ≤ ζ ≤ x ≤ a

where

D(x) := xq(x) +
a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt. (20)

Similar result holds for 0 ≤ x ≤ ζ ≤ a changing the role of ζ and x.

Proof. We begin to the proof by evaluating the Wronskian function w(λ). For this
reason, we substitute (7), (8), (9) and (10) into (19). Hence,

w(λ) = 1− 1

4
λ−1

[
q(x)− q(0) +

1

2
D2(x)

]
cos2(x

√
λ) +

1

4
λ−1
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×
[
q(x) + q(0)− 1

2
D2(x)

]
sin2(x

√
λ)

+
1

4
λ−1D2(x) +

1

4
λ−1

[
q(x)− q(0)− 1

2
D2(x)

]
cos2(x

√
λ)

− 1

4
λ−1

[
q(x) + q(0) +

1

2
D2(x)

]
sin2(x

√
λ) + o(λ−1)

= 1− 1

4
λ−1D2(x) +

1

4
λ−1D2(x) + o(λ−1)

= 1 + o(λ−1).

From that, we can write

1

w(λ)
=

1

1 + o(λ−1)
= 1 + o(λ−1). (21)

Finally, using (7), (8), (21) in (18) we find

ϕ1(ζ, λ)ϕ2(x, λ)

w(λ)
= {cos(ζ

√
λ) +

1

2
λ−

1
2D(ζ) sin(ζ

√
λ) +

1

4
λ−1[q(ζ)− q(0)

− 1

2
D2(ζ)] cos(ζ

√
λ) + o(λ−1)}

× {λ−
1
2 sin(x

√
λ)− 1

2
λ−1D(x) cos(x

√
λ) +

1

4
λ−

3
2

×
[
q(x) + q(0)− 1

2
D2(x)

]
sin(x

√
λ) + o(λ−

3
2 )}{1 + o(λ−1)}

= {λ−
1
2 cos(ζ

√
λ) sin(x

√
λ)− 1

2
λ−1D(x) cos(ζ

√
λ) cos(x

√
λ)

+
1

4
λ−

3
2

[
q(x) + q(0)− 1

2
D2(x)

]
cos(ζ

√
λ) sin(x

√
λ)

+
1

2
λ−1D(ζ) sin(ζ

√
λ) sin(x

√
λ)− 1

4
λ−

3
2D(ζ)D(x)

× sin(ζ
√
λ) cos(x

√
λ) +

1

4
λ−

3
2

[
q(ζ)− q(0)− 1

2
D2(ζ)

]
× cos(ζ

√
λ) sin(x

√
λ) + o(λ−

3
2 )} ×

{
1 + o(λ−1)

}
= λ−

1
2 cos(ζ

√
λ) sin(x

√
λ)− 1

2
λ−1[D(x) cos(ζ

√
λ) cos(x

√
λ)

−D(ζ) sin(ζ
√
λ) sin(x

√
λ)] +

1

4
λ−

3
2

× {
[
q(ζ) + q(x)− 1

2

(
D2(ζ) +D2(x)

)]
cos(ζ

√
λ) sin(x

√
λ)

−D(ζ)D(x) sin(ζ
√
λ) cos(x

√
λ)}+ o(λ−

3
2 ).
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Thus, the proof is completed. □

Theorem 6. Green’s function of the periodic problem with symmetric double well
potential satisfies, as n→ ∞

G(x, ζ, n) =
a

2(n+ 1)π
cos

2(n+ 1)πζ

a
sin

2(n+ 1)πx

a
− a2

8(n+ 1)2π2

× [D(x) cos
2(n+ 1)πζ

a
cos

2(n+ 1)πx

a

−D(ζ) sin
2(n+ 1)πζ

a
sin

2(n+ 1)πx

a
]

+
a3

32(n+ 1)3π3
{
[
q(ζ) + q(x)− 1

2

(
D2(ζ) +D2(x)

)]

× cos
2(n+ 1)πζ

a
sin

2(n+ 1)πx

a
−D(ζ)D(x) sin

2(n+ 1)πζ

a

× cos
2(n+ 1)πx

a
}+ o(n−3)

for 0 ≤ ζ ≤ x ≤ a. Similar result holds for 0 ≤ x ≤ ζ ≤ a changing the role of ζ
and x.

Theorem 7. Green’s function of the semi-periodic problem with symmetric double
well potential satisfies, as n→ ∞

G(x, ζ, n) =
a

(2n+ 1)π
cos

(2n+ 1)πζ

a
sin

(2n+ 1)πx

a
− a2

2(2n+ 1)2π2

× [D(x) cos
(2n+ 1)πζ

a
cos

(2n+ 1)πx

a

−D(ζ) sin
(2n+ 1)πζ

a
sin

(2n+ 1)πx

a
] +

a3

4(2n+ 1)3π3

× {
[
q(ζ) + q(x)− 1

2

(
D2(ζ) +D2(x)

)]
cos

(2n+ 1)πζ

a

× sin
(2n+ 1)πx

a
−D(ζ)D(x) sin

(2n+ 1)πζ

a
cos

(2n+ 1)πx

a
}

+ o(n−3)

for 0 ≤ ζ ≤ x ≤ a. Similar result holds for 0 ≤ x ≤ ζ ≤ a changing the role of ζ
and x.

To prove Theorem 6 and Theorem 7, the related eigenvalues given by (2) and
(3) are used together with Theorem 5.



HILL’S EQUATION WITH SYMMETRIC DOUBLE WELL POTENTIAL 645

4. The Whittaker-Hill Equation

Consider the Whittaker-Hill equation

y′′ + [λ+ 2k cos(2x) + 2ℓ cos(4x)]y = 0, x ∈ [0, 2π], λ, k, ℓ ∈ R (22)

under the periodic boundary conditions y(0) = y(2π), y′(0) = y′(2π), or the semi-
periodic boundary conditions y(0) = −y(2π), y′(0) = −y′(2π). Here, our goal is to
seek the eigenfunction and Green’s function asymptotics of the described problem.
This problem is a special case of (1) when q(x) = 2k cos(2x)+2ℓ cos(4x) and a = 2π.
Also, note that q is a continuous function on [0, 2π] which is symmetric on [0, 2π]
as well as on [0, π] and non-increasing on [0, π2 ], i. e., q(x) = q(2π − x) = q(π − x).
So, we say that q is a symmetric double well potential (see Figure 1). Last of all,
we can apply the obtained results in Sections 2 and 3 to this problem.

Figure 1. Graph of q when k = ℓ = 1

Following two theorems give the results about the eigenfunctions.

Theorem 8. The eigenfunctions of the Whittaker-Hill equation satisfying the pe-
riodic boundary conditions are, as n→ ∞

ϕ1(x, n) = cos((n+ 1)x) +
1

2(n+ 1)

[
ksin(2x) +

ℓ

2
sin(4x)

]
sin((n+ 1)x)

+
1

4(n+ 1)2
{2k cos(2x) + 2ℓ cos(4x)− 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} cos((n+ 1)x) + o(n−2),

ϕ2(x, n) =
1

n+ 1
sin((n+ 1)x)− 1

2(n+ 1)2

[
ksin(2x) +

ℓ

2
sin(4x)

]
cos((n+ 1)x)

+
1

4(n+ 1)3
{2k cos(2x) + 2ℓ cos(4x) + 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} sin((n+ 1)x) + o(n−3).
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Theorem 9. The eigenfunctions of the Whittaker-Hill equation satisfying the semi-
periodic boundary conditions are, as n→ ∞

ϕ1(x, n) = cos
(2n+ 1)x

2
+

1

2n+ 1

[
k sin(2x) +

ℓ

2
sin(4x)

]
sin

(2n+ 1)x

2

+
1

(2n+ 1)2
{2k cos(2x) + 2ℓ cos(4x)− 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} cos (2n+ 1)x

2
+ o(n−2),

ϕ2(x, n) =
2

2n+ 1
sin

(2n+ 1)x

2
− 2

(2n+ 1)2

[
k sin(2x) +

ℓ

2
sin(4x)

]
cos

(2n+ 1)x

2

+
2

(2n+ 1)3
{2k cos(2x) + 2ℓ cos(4x) + 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} sin (2n+ 1)x

2
+ o(n−3).

To prove Theorem 8 and Theorem 9, we take q(x) = 2k cos(2x)+ 2ℓ cos(4x) and
a = 2π in Theorem 3 and Theorem 4, respectively.

Following two theorems give the results about Green’s functions.

Theorem 10. Green’s function of the Whittaker-Hill equation under periodic bound-
ary conditions is, as n→ ∞

G(x, ζ, n) =
1

(n+ 1)
cos((n+ 1)ζ) sin((n+ 1)x)− 1

2(n+ 1)2
{[k sin(2x) + ℓ

2
sin(4x)]

× cos((n+ 1)ζ) cos((n+ 1)x)− [k sin(2ζ) +
ℓ

2
sin(4ζ)] sin((n+ 1)ζ)

× sin((n+ 1)x)}+ 1

4(n+ 1)3
{[2k[cos(2ζ) + cos(2x)] + 2ℓ[cos(4ζ)

+ cos(4x)]− 1

2
[(k sin(2ζ) +

ℓ

2
sin(4ζ))2 + (k sin(2x) +

ℓ

2
sin(4x))2]]

× cos((n+ 1)ζ) sin((n+ 1)x)− [k sin(2ζ) +
ℓ

2
sin(4ζ)][k sin(2x)

+
ℓ

2
sin(4x)] sin((n+ 1)ζ) cos((n+ 1)x)}+ o(n−3)

for 0 ≤ ζ ≤ x ≤ 2π. Similar result holds for 0 ≤ x ≤ ζ ≤ 2π changing the role of ζ
and x.

Theorem 11. Green’s function of the Whittaker-Hill equation under semi-periodic
boundary conditions is, as n→ ∞

G(x, ζ, n) =
2

2n+ 1
cos

(2n+ 1)ζ

2
sin

(2n+ 1)x

2
− 2

(2n+ 1)2
{[ksin(2x)
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+
ℓ

2
sin(4x)] cos

(2n+ 1)ζ

2
cos

(2n+ 1)x

2
− [k sin(2ζ) +

ℓ

2
sin(4ζ)]

× sin
(2n+ 1)ζ

2
sin

(2n+ 1)x

2
}+ 2

(2n+ 1)3
{[2k(cos(2ζ) + cos(2x))

+ 2ℓ(cos(4ζ) + cos(4x))− 1

2
[(k sin(2ζ) +

ℓ

2
sin(4ζ))2 + (k sin(2x)

+
ℓ

2
sin(4x))2]] cos

(2n+ 1)ζ

2
sin

(2n+ 1)x

2
− [k sin(2ζ) +

ℓ

2
sin(4ζ)]

× [k sin(2x) +
ℓ

2
sin(4x)] sin

(2n+ 1)ζ

2
cos

(2n+ 1)x

2
}+ o(n−3)

for 0 ≤ ζ ≤ x ≤ 2π. Similar result holds for 0 ≤ x ≤ ζ ≤ 2π changing the role of ζ
and x.

To prove Theorem 10 and Theorem 11, we first calculate (20) for q(x) = 2k cos(2x)+
2ℓ cos(4x) and a = 2π. We find

D(x) = 2kx cos 2x+ 2ℓx cos 4x+ 4πk + 4k

∫ π

π/2

t sin 2tdt+ 8ℓ

∫ π

π/2

t sin 4tdt

+ 4k

∫ x

π/2

t sin 2tdt+ 8ℓ

∫ x

π/2

t sin 4tdt

= k sin 2x+
ℓ

2
sin 4x.

Then, we substitute the obtained result of D(x) in Theorem 6 and Theorem 7,
respectively. The proof is done.

Declaration of Competing Interests The author declares that they have no
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[14] Coşkun, H., Kabataş, A., Başkaya, E., On Green’s function for boundary value problem
with eigenvalue dependent quadratic boundary condition, Bound. Value Probl., (2017).

http://dx.doi.org/10.1186/s13661-017-0802-0
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TAIL DEPENDENCE ESTIMATION BASED ON SMOOTH

ESTIMATION OF DIAGONAL SECTION

Selim Orhun SUSAM

Department of Econometrics, Munzur University, Tunceli, TURKEY

Abstract. This paper is mainly developed around the diagonal section which

is strongly related to tail dependence coefficients as defined in Nelsen [19].
Hence, we propose a flexible method for estimating tail dependence coefficients

based on the new smooth estimation of the diagonal section based on the

Bernstein polynomial approximation. To assess the performance of the new
estimators we conduct the Monte-Carlo simulation study. As a result of the

simulation study, both estimators perform satisfactory performance. Also, the
estimation methods are illustrated by real data examples.

1. Introduction

Let X and Y be the random variable having the joint distribution function H
and the marginals F and G, respectively. The copula C is the function that links
the multivariate joint distribution function to its marginal distributions due to the
following relationship proposed by Sklar [24]:

H(x, y) = C(F (x), G(y)).

Copula C is unique if and only if marginals F and G are continuous. Also, it
satisfies the following properties

(1) C(0, u) = C(u, 0) = 0 for all u ∈ [0, 1]
(2) C(1, u) = C(u, 1) = u for all u ∈ [0, 1]
(3) for all u, u′, v, v′ ∈ [0, 1] with u < u′ and v < v′

VC([u, u
′]× [v, v′]) = C(u, u′)− C(u, v′)− C(u′, v) + C(u, v) ≥ 0

where VC([u, u
′]× [v, v′]) is the C − volume of the rectangle [u, u′]× [v, v′].
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The contribution of this study is two-fold: first, we are proposing a smooth esti-
mation of diagonal section of the copula. Second, we estimate the tail dependence
coefficients using the smooth estimation of the diagonal section.

The diagonal section of copulas is an important aspect in the field of dependence
modelling. Especially, the diagonal section provides some pieces of information
about the tail dependence behaviour of the bivariate random variables (Joe [18]).
Thus, estimation of the diagonal section is a crucial part of the estimation of tail
dependence coefficients between bivariate random variables. For this reason, we
propose a non-parametric smooth estimation of the diagonal section based on the
Bernstein polynomial approximation. The proposed estimation method is a contin-
uous approximation of the classical estimation which has jump discontinuous. In a
copula framework, estimation procedures based on the polynomial approximation
is not new: see, e.g., Susam and Hudaverdi [21]- [22], Dimitrova et al. [6], Durante
and Okhrin [8], Ambrard and Girard [1].

The second aim of this paper is tail dependence estimation based on the plug-in
method. Because there is a direct relationship between the diagonal section and
tail dependence coefficients as defined in Nelsen [19], the tail dependence estimation
method is mainly developed around the smooth estimation of the diagonal section.
The use of the Bernstein estimator of the diagonal section reduced the complexity
of the tail dependence estimation coefficients. Moreover, the proposed estimation
method of the tail dependence coefficient is flexible according to its polynomial
degree, hence the error of the estimation may be reduced by increasing the degree
of the Bernstein polynomial. There are some papers which introduces the tail de-
pendence estimation in the literature e.g., Susam and Erdogan [23], Ferreira [13],
Schmidt and Stadtmuller [20], Ferreira and Ferreira [14], Frahm et al. [16], Caillault
and Guégan [4], Goegebeur and Guillou [17]. The plug-in estimation of tail depen-
dence based on Bernstein polynomial approximation is not a new idea. Susam and
Erdogan [23] proposed a tail dependence estimation using the plug-in principle.
Their tail dependence estimation is mainly developed around the smooth estima-
tion of the Kendall distribution function of Archimedean copula family. The main
difference of this article from the Susam and Erdogan [23] is that our proposed tail
dependence estimator is applicable to all copula families such as Elliptical, Extreme
value, etc.

The paper is organized as follows. In section 2, we propose the smooth es-
timation of the diagonal section using Bernstein polynomial approximation and
investigate its properties. Also, we conduct a simulation study to measure its per-
formance. In section 3, we deal with the estimation of tail dependence coefficients
using the smooth estimation of the diagonal section. Moreover, we investigate its
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performance. As an illustration, we apply the proposed tail dependence estimation
method to the Danube data set. Finally, the conclusion is given in the last section.

2. Estimation of Diagonal Section

In this section, firstly, we review basic definitions and properties about diagonal
section of copulas, which can be found, for instance, in Durante et al. [9] and Du-
rante et al. [10]. Then, we investigated the smooth estimation of diagonal section
of copulas based on the Bernstein polynomial approaximation.

δC : [0, 1] → [0, 1], called diagonal section of copula, is the function defined by
δ(t) = C(t, t). Let us consider that X and Y are uniformly distributed on the unit
interval. Moreover, suppose that W = max(X,Y ) is distributed according to the
cumulative distribution function (cdf) H. The behaviour of the random variable W
is determined by the diagonal section of the copula CX,Y , such that δC(t) = HW (t)
(Durante et al. [10]). Diagonal section of the copula has the following properties:

(D1) δC(0) = 0 and δC(1) = 1;
(D2) δC(t) ≤ t for all t ∈ [0, 1];
(D3) δC(t) is non-decreasing function;
(D4) δC is 2− Lipschitz, such that

∣∣δC(t2)− δC(t1)
∣∣ ≤ 2

∣∣t2 − t1
∣∣ for all t2, t1 ∈

[0, 1].

Let {(X1, Y1), . . . , (Xn, Yn)} be a random sample of (X,Y ) from cdf H(x, y).
The inference is then based on the pseudo-samples defined as

Ui =
R(Xi)

n
, Vi =

R(Yi)

n
, i = 1, . . . , n;

where R(.) is the rank of random variable. Hence, the pair of random vari-
ables (U, V ) yield an approximate sample from the copula C(u, v). The non-
parametric estimation of diagonal section relies on the pseudo-observations wi =
max

(
ui, vi

)
, i = 1, . . . , n which have the distribution function C(w,w). It is natural

to non-parametric estimate the diagonal section given by

δn(t) =
1

n

n∑
i=0

I
(
wi ≤ t

)
, t ∈ [0, 1]; (1)

which by the Glivenko–Cantelli lemma converges to the true cdf. Erderly [12]
investigated properties of empirical diagol section δn. An empirical diagonal section
can be written by following:

δn(t) = Cn(t, t), t ∈ [0, 1]

where Cn is the empirical copula defined by Deheuvels [5]. Hence, the properties
of δn may be imvestigated using the properties of empirical copula and empirical
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(a) Gumbel Copula with

τ = 0.25

(b) Gumbel Copula with

τ = 0.50

(c) Clayton Copula with
τ = 0.25

(d) Clayton Copula with
τ = 0.50

Figure 1. MISE values for some Archimdean copulas with τ =
0.25, 0.5

cdf. It is clear that δn(0) = 0, δn(1) = 1 and δn(t) is non-decreasing function.
Moreover, by the Fréchet–Hoeffding bounds for empirical copula:

max(2t− 1, 0) ≤ δn(t) ≤ t, t ∈ [0, 1],
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(a) Normal Copula with

τ = 0.25

(b) Normal Copula with

τ = 0.50

(c) Student-t Copula with
τ = 0.25

(d) Student-t Copula with
τ = 0.50

Figure 2. MISE values for some Elliptical copulas with τ =
0.25, 0.5

hence property D3 is also satisfied. Erderly [12] also proved the propoerty given
by:

δn(
i+ 1

n
)− δn(

i

n
) ∈

{
0,

1

n
,
2

n

}
, i = 1, . . . , n. (2)
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Because of the δn has jump discontinuties, estimating a continuous distribution
function may not be a good choice. Hence, in this paper, we propose a smooth esti-
mation of δn using Bernstein polynomial approximation. The Bernstein estimator
of order (m > 0) of the diagonal section δ is defined as,

δm,n(t) =

m∑
k=0

δn(
k

m
)Pk,m(t), t ∈ [0, 1]

where Pk,m(t) =
(
m
k

)
tk(1−t)m−k is the binomial probability. The following theorem

defined in Feller [15] helps us to prove the consistency of the Bernstein empirical
diagonal section.

Theorem 1. If f(t) is a bounded and continuous function on the interval [0, 1],
then as m → ∞

f∗
m(t) =

m∑
k=0

f(
k

m
)Pk,m(t) → f(t)

The following theorem states that the Bernstein empirical diagonal section is a
consistent estimator of δ(t).

Theorem 2. Let δ be a continuous diagonal section on the interval [0, 1]. If m,n →
∞, then sup

t∈[0,1]

|δn,m(t)− S(t)| → 0 a.s.

Proof. Recall Theorem 1 of f∗
m for any f .

sup
t∈[0,1]

|δn,m(t)− δ(t)| ≤ sup
t∈[0,1]

|δn,m(t)− δ∗m(t)|+ sup
t∈[0,1]

|δ∗m(t)− δ(t)|.

As

δn,m(t)− δ∗(t) =

m∑
k=0

(
δn(t)− δ(t)

)
Pk,m(t)

we have

sup
t∈[0,1]

|δn,m(t)− δ∗m(t)| ≤ max
0≤k≤m

|δn(
k

m
)− δ(

k

m
)| ≤ sup

t∈[0,1]

|δn(t)− δ(t)|

Then, sup
t∈[0,1]

|δn(t)− δ(t)| → 0 a.s as n → ∞. See also, Babu et al. [2]. □

The next proposition investigates the properties of the Bernstein empirical di-
agonal section:

Proposition 1. The Bernstein empirical diagonal section with order m > 0 has
the following properties:

(P1) δn,m(0) = 0 and δn,m(1) = 1;
(P2) δn,m(t) ≤ t for all t ∈ [0, 1];
(P3) δn,m(t) is non-decreasing function;
(P4) δn,m is 2− Lipschitz.
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Proof. From the endpoint property of Berntein ploynomial, δm,n(1) = δn(1) = 1
and δm,n(0) = δn(0) = 0. See Duncan [7]. We know that δn(t) ≤ t, hence we can
write δn(

i
m ) = i

m − ri, i = 1, . . . ,m then

δm,n(t) =

m∑
i=0

δn(
i

m
)

(
m

k

)
tk(1− t)m−k

=

m∑
k=0

(
k

m
− rk)

(
m

k

)
tk(1− t)m−k

=

m∑
k=0

(
k

m
)

(
m

i

)
tk(1− t)m−k −

m∑
k=0

rk

(
m

k

)
tk(1− t)m−k

= t

m∑
k=1

(
m− 1

k − 1

)
tk−1(1− t)m−k −

m∑
k=0

rk

(
m

k

)
tk(1− t)m−k

= t

m−1∑
l=0

tl(1− t)m−l−1

(
m− 1

l

)
−

m∑
k=0

rk

(
m

k

)
tk(1− t)m−k

= t−
m∑

k=0

rk

(
m

k

)
tk(1− t)m−k < t.

Thus δm,n(t) ≤ t is satisfied for all t ∈ [0, 1]. The first derivative of the δm,n can
be obtained as

δ′m,n(t) = m

m−1∑
k=0

(
δn(

k + 1

m
)− δn(

k

m
)
)
tk(1− t)m−k−1

(
m− 1

k

)
, see Duncan [7]. Becasue δn is non-decreasing function such that

δn(
k + 1

m
)− δn(

k

m
) ≥ 0, k = 0, . . . ,m− 1;

then δ′m,n(t) ≥ 0, t ∈ [0, 1]. We note that a function f : [a, b] → ℜ is said to be a
Lipschitz if there is a constant L such that∣∣f(x2)− f(x1)

∣∣ ≤ L
∣∣x2 − x1

∣∣, ∀ x2, x1 ∈ [a, b],

where Lipschitz constant of f equals to sup
x∈[0,1]

∣∣f ′(t)
∣∣. Brown et al. [3] showed that

Bernstein polynomial approximation defined as

B(t) =

m∑
k=0

f(
k

m
)Pk,m(t), t ∈ [0, 1]

is L−Lipschitz function. Hence, the Lipschitz constant L eqauls to L = sup
t∈[0,1]

∣∣B′(t)
∣∣.

We know that δm,n(t) is non-decreasing function and δ′m,n(1) equals to m
(
δn(

m

m
)−
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δn(
m− 1

m
)
)
∈ {0, 1, 2}. Hence, the Lipschitz constant of δm,n(t) can be calculated

as

L = sup
t∈[0,1]

∣∣δ′m,n(t)
∣∣ = 2.

□

To measure the performance of the proposed estimator, we conduct Monte-Carlo
simulation study. Gumbel, Clayton (Archimedean) and Normal, Student-t (Ellipti-
cal) copulas that have parameters coressponding to Kendall’s tau as τ = 0.25, 0.50
are used to generate the data. Specifically, 10.000 Monte-Carlo samples of size
n = 100, 200 are generated from each copula, and the performance of the Bernstein
empirical diagonal section with order m = 3, . . . , 30 are measured by means of the
Mean Integrated Squared error (MISE) defined as

MISE(δ) = E
(∫ 1

0

(
δm,n(t)− δ(t)

)2
dt
)
.

Simulation results are shown in Figures 1 and 2 for the Archimedean and El-
liptical copulas, respectively. From these figures, it is clear that MISE scores of
the Bernstein empirical diagonal section gets closure to the true cdf when both
order m and sample size n are increased for all copula classes. Moreover, the Bern-
stein empirical diagonal section δm,n outperforms to classical one δn for all possible
situations.

3. Tail Dependence Estimation

In this section, firstly, we will be introducing the tail dependence concept. Then,
we investigate the plug-in estimators for the upper and lower tail dependence coef-
ficients based on the smooth estimation of the diagonal section discussed in Section
2.

An crucial part of the dependence between the variables in the upper-right quad-
rant and in the lower-left quadrant of I2. In general, most dependence measures
associate the entire distribution of two or more random variables. However, the
dependence between the upper part of the distribution may be different than the
mid-range and/or lower part of the distribution (Embrechts et al. [11]). Let X and
Y be continuous random variables with margins F and G, respectively. Nelsen [19]
shows that the tail dependence coefficients depend on the derivative of diagonal
section are given by following:

λU = 2− lim
t→1−

1− C(t, t)

1− t
= 2− δ′C(1

−), λL = lim
t→0+

C(t, t)

t
= δ′C(0

+). (3)

In general, the tail dependence between variables may strongly depend on the
choice of model or estimation technique (Frahm et al. [16]). For this reason, to
estimate the tail dependence coefficients we prefer to use smooth estimation of
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diagonal section of copula which outperforms the classical estimator as shown in
section 2. The estimation of the tail dependence coeffcients investigated in next
propsition.

Proposition 2. Let δm,n(.) be the estimator of diagonal section based on Bernstein
polynomial approximation and δn(.) be empirical diagonal section. The estimation
of the lower tail and the upper tail dependence for copulas are obtained by

λ̂L = m
(
δn(

1

m
)
)

λ̂U = 2−m
(
(1− δn(

m− 1

m
)
)

The proof of the Proposition 2 can be easley done using the properties of Bern-
stein polynomials. It is obvious that there are clear link beetwen the tail dependence

estimations λ̂L, λ̂U and the Bernstein polynomial degree m.

Table 1. The values of the tail dependence and dependence pa-
rameter for Gumbel, Clayton, Normal and Student-t copula for
different level of dependence

Copula τ θ λU λL

Gumbel 0.25 1.3333 0.3182 0
0.50 2 0.5857 0

Clayton 0.25 0.6666 0 0.3535
0.50 2 0 0.7071

Normal 0.25 0.3826 0 0
0.50 0.7071 0 0

Student 0.25 0.3826 0.1953 0.1953
0.50 0.7071 0.3968 0.3968

To asses the performance of the tail dependence estimation, we simulate K =
10.000 times bivariate random of sample size n = 250, 750, respectively, from
Gumbel, Clayton, Normal and Student-t copulas with Kendall’s tau τ = 0.25, 0.50.
The value of the upper tail dependence (λU ), lower tail dependence (λL) and the
dependence parameter (θ) for Gumbel, Clayton, Normal and Student-t copulas with
τ = 0.25, 0.50 are given in Table 1.

The boxplots of the results of the tail dependence estimations obtained after
K Monte-Carlo samples of size n = 250, 750 from Gumbel, Clayton, Normal and
Student-t copulas for varying Kendall’s tau values τ = 0.25, 0.50 are displayed in
Figs. 3-6.

The following results can be obtained:
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation for τ =

0.5 and n = 750

Figure 3. Box-plots of the estimation of the tail dependence co-
efficients of Gumbel copula

(1) For copulas studied in this paper, the upper tail dependence and lower
tail dependence estimation converge to its true value defined in Table 1,
regardless of Kendall’s tau and sample size.
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation for τ =

0.5 and n = 750

Figure 4. Box-plots of the estimation of the tail dependence co-
efficients of Clayton copula

(2) It is obvious that variance of the upper tail dependence and lower tail depen-
dence estimation increases when the Bernstein polynomial degree increases
in all situations.
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation for τ =

0.5 and n = 750

Figure 5. Box-plots of the estimation of the tail dependence co-
efficients of Normal copula

(3) For Gumbel copula with sample size n = 750 and Kendall’s tau τ = 0.50,
to estimate the λL approaches its true value, the polynomial degree of
estimation should be chosen higher than 30.
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation estima-

tion for τ = 0.5 and n =

750

Figure 6. Box-plots of the estimation of the tail dependence co-
efficients of Student-t copula
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4. Case Study

In this section, in order to demonstrate the estimation methods of diagonal sec-
tion and tail dependence coefficients, we use the Danube data set which is available
in the R package copula. According to this package, the Danube data set contains
ranks of base flow observations from the Global River Discharge project of the Oak
Ridge National Laboratory Distributed Active Archive Centre (ORNL DAAC), a
NASA data centre. The measurements are the monthly average flow rate for two
stations situated at Scharding (Austria) on the Inn River and Nagymaros (Hun-
gary) on the Danube.

The scatter plot of the pseudo-observations of the Danube data set is displayed
in Figure 7. In this figure, symmetrical dependence structures are observed. From
this figure, it seems that the Danube data set has a heavy right tail dependence
structure and mild left tail dependence structure. Figure 8 represents the estimation
of upper tail dependence and lower tail dependence coefficient for polynomial degree
m = 1, . . . , 30. As it is expected estimation of upper tail dependece is greater than

the lower tail dependence estimation for all poynomial degrees. From figure 8, λ̂U

approaximates to 0.5 and λ̂L approaximates to 0.20.

Figure 7. Scatter plot of Danube data set

5. Conclusion

In this paper, we have presented a smooth estimation of the diagonal section
based on the Bernstein polynomial approximation. The new estimator is flexible
according to its polynomial degree; the error of the estimation may be decreased
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(a) Estimation of λU (b) Estimation of λL

Figure 8. Estimation of λU and λL for Danube data set

when the polynomial degree increases. Moreover, Bernstein diagonal section out-
performs the empirical diagonal section for the higher polynomial degrees. Also,
considering the strong relationship between the diagonal section and the tail de-
pendence coefficient, we propose the tail dependence coefficients estimation method
via Bernstein diagonal section. According to the simulation results and real data
example, the tail dependence coefficients estimation method has a satisfactory per-
formance.
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Abstract. In this paper we impose distinct restrictions on the moduli of the

zeros of p(z) =
n∑

v=0
avzv and investigate the dependence of ∥p(Rz) − p(σz)∥,

R > σ ≥ 1 on Mα and Mα+π , where Mα = max
1≤k≤n

|p(ei(α+2kπ)/n)| and on

certain coefficients of p(z). This paper comprises several results, which in par-

ticular yields some classical polynomial inequalities as special cases. Moreover,

the problem of estimating p
(
1− w

n

)
, 0 < w ≤ n given p(1) = 0 is considered.

1. Introduction

Let p(z) =
n∑

v=0
avz

v be a polynomial of degree n over C. Then it is well known

that

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1)

The result in (1) is sharp and equality holds when p(z) = λzn, where λ ∈ C.
The inequality (1), known as Bernstein’s inequality, was proved by Bernstein [4]

in 1926, however it was also proved earlier by Riesz [14]. By the maximum modulus
principle, max

|z|≤1
|p(z)| = max

|z|=1
|p(z)| and so if we consider ∥p∥ = max

|z|=1
|p(z)|, then

inequality (1) can be written as

∥p′∥ ≤ n ∥p∥ . (2)

For R ≥ 1, the inequality pertaining to the estimate of ∥p∥ on a large circle
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|z| = R given below is well known [11, Problem 269] or [15].

max
|z|=R

|p(z)| ≤ Rn∥p∥, (3)

equality holds in (3) when p(z) = λzn, λ ∈ C.
Marden [9], Milovanović et al. [10] and Rahman and Schmeisser [12] have pre-

sented an exceptional introduction to this topic. Frappier, Rahman and Ruscheweyh
[6] were able to refine (1) under the same hypothesis, by replacing the estimate of
the maximum modulus of |p(z)| on a unit circle |z| = 1 with the estimate of the max-
imum modulus of |p(z)| taken over (2n)th roots of unity. The maximum modulus of
|p(z)| taken over (2n)th roots of unity may be less than the maximum modulus of
|p(z)| on unit circle |z| = 1 which is shown by a simple example p(z) = zn+ia, a > 0.
In fact they proved that

∥p′∥ ≤ n max
1≤k≤2n

|p(eikπ/n)|. (4)

As an improvement of (4) A.Aziz [2] showed that the maximum modulus of |p(z)|
taken over (2n)th roots of unity in (4) can be replaced by maximum modulus of
|p(z)| taken over nth roots of the equation wn = eiα. In fact he proved that, for a
polynomial p(z) of degree n and for every α ∈ R,

∥p′∥ ≤ n

2
(Mα +Mα+π), (5)

where

Mα = max
1≤k≤n

|p(ei(α+2kπ)/n)| (6)

and Mα+π is obtained by replacing α by α+ π. The result is sharp and equality in
(5) holds for the polynomial p(z) = zn + reiα,−1 ≤ r ≤ 1.

As an application of inequality (5) A.Aziz [2] was able to establish the following
refinement of (3).
For a polynomial p(z) of degree n, and for every α and R > 1

∥p(Rz)− p(z)∥ ≤ Rn − 1

2
[Mα +Mα+π], (7)

where Mα is defined by (6) and Mα+π is obtained by replacing α by α + π. The
result is the best possible and equality in (7) holds for p(z) = zn+reiα,−1 ≤ r ≤ 1.

In the same paper A.Aziz [2] also proved that if p(z) is a polynomial of degree
n such that p(1) = 0, then for 0 < w ≤ n∣∣∣p(1− w

n

)∣∣∣ ≤ 1

2

[
1−

(
1− w

n

)n]
{M0 +Mπ}, (8)

where Mα is defined by (6). The result is the best possible and equality in (8) holds
for p(z) = zn − 1.

The study of mathematical objects associated with Bernstein type inequalities
has been very active over the years, many papers are published each year in a variety
of journals and different approaches are being employed for different purposes. In
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the present article we have come up with the similar type of inequalities, their
refined and improved forms. If we restrict ourselves to the class of polynomials
having no zero in |z| < 1, then one would expect, the further developments of the
upper bound estimate in (1). In fact, P. Erdös conjectured and later P.D. Lax [8]
proved that if p(z) ̸= 0 in |z| < 1, then

∥p′∥ ≤ n

2
∥p∥. (9)

The result is best possible and equality holds for p(z) = α+ βzn, where |α| = |β|.
In this connection A. Aziz [2], improved the inequality (5) by showing that if p(z)
is a polynomial of degree n having no zero in |z| < 1, then for every given real α

∥p′∥ ≤ n

2
(M2

α +M2
α+π)

1/2, (10)

where Mα is defined by (6) for all real α. The result is the best possible and equality
in (10) holds for p(z) = zn + eiα. Furthermore, A. Aziz [2] also established that if
p(z) is a polynomial of degree n having no zero in |z| < 1, then for every given real
α and R > 1

∥p(Rz)− p(z)∥ ≤ Rn − 1

2
[M2

α +M2
α+π]

1/2, (11)

where Mα is defined by (6). The result is the best possible and equality in (11)
holds for p(z) = zn + eiα. By estimating the minimum modulus of |p(z)| on the
unit circle inequality (11) was refined and generalized by Ahmad [1]. In fact proved
the following result.
If p(z) is a polynomial of degree n having all its zero in |z| ≥ 1 and m = min

|z|=1
|p(z)|,

then for all real λ and R > r ≥ 1

∥p(Rz)− p(rz)∥ ≤ Rn − rn

2
[M2

λ +M2
λ+π − 2m2]1/2, (12)

where Mλ is defined by (6). Just replace argument α of z simply by λ, unless oth-
erwise stated. In the same paper Ahmad [1] also proved that if p(z) is a polynomial
of degree n having all its zero in |z| ≥ k ≥ 1 and m = min

|z|=1
|p(z)|, then for all real

λ and R > r ≥ 1

∥p(Rz)− p(rz)∥ ≤ Rn − rn√
2(1 + k2)

[M2
λ +M2

λ+π − 2m2]
1
2 , (13)

where Mλ is defined by (6).
While establishing the inequality analogous to (11) for the class of polynomials

having all zeros in |z| ≤ k, k ≤ 1, M. H. Gulzar [7] proved that if p(z) is a polynomial
of degree n having all its zero in |z| ≤ k ≤ 1, then for all real λ and R > 1

∥p(Rz)− p(z)∥ ≤ Rn − 1√
2(1 + k2n)

[M2
λ +M2

λ+π]
1
2 , (14)
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where Mλ is defined by (6) and Mλ+π is obtained by replacing λ by λ+ π in Mλ.
While seeking the generalization of (14). Formerly, in the same paper Ahmad [1]
proved that if p(z) is a polynomial of degree n having all its zero in |z| ≤ k ≤ 1,
then for all real λ and R > r ≥ 1

∥p(Rz)− p(rz)∥ ≤ Rn − rn√
2(1 + k2n)

[M2
λ +M2

λ+π]
1
2 . (15)

We conclude this section by stating the following result for the case when p(z)
has no zero in |z| < k, k ≤ 1.
If p(z) is a polynomial of degree n and p(z) has no zero in |z| < k, k ≤ 1, then for
every real α and R > 1

∥p(Rz)− p(z)∥ ≤ Rn − 1√
2(1 + k2n)

[M2
α +M2

α+π − 2m2]
1
2 , (16)

provided |p′(z)| and |q′(z)| attain maximum at the same point on |z| = 1, where

q(z) = znp( 1z ). The result is best possible and equality in (16) holds for p(z) =
zn + kn. This result is ascribed to Rather and Shah [13].

2. Lemmas

Lemma 1. If p(z) is a polynomial of degree n having all its zeros |z| ≤ k ≤ 1, then
for all real λ

|p′(z)| ≤ n

2
1
2 (1 + k2n)

1
2

[M2
λ +M2

λ+π]
1
2 .

This lemma is a special case of the result due to M.H.Gulzar [7].

Lemma 2. If P (z) is a polynomial of degree n, then for R ≥ 1

max
|z|=R

|p(z)| ≤ Rn∥p∥ − 2
(Rn − 1)

n+ 2
|a0| − |a1|

[
Rn − 1

n
− Rn−2 − 1

n− 2

]
, for n > 2

(17)

and

max
|z|=R

|p(z)| ≤ R2∥p∥ − (R− 1)

2
[(R+ 1)|a0|+ (R− 1)|a1|], for n = 2. (18)

The above lemma is ascribed to Dewan et.al [5].

Lemma 3. If p(z) is a polynomial of degree n, having all its zeros in |z| ≥ k ≥ 1,
then for |z| = 1

k|p′(z)| ≤ |np(z)− zp′(z)| − nm,

where m = min
|z|=k

|p(z)|.

Lemma 3 is a special case of a result due to A. Aziz and N. A. Rather [3].
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Lemma 4. If p(z) is a polynomial of degree n, then for |z| = 1 and for every real
λ

|p′(z)|2 + |np(z)− zp′(z)|2 ≤ n2

2
[M2

α +M2
α+π].

The above lemma is due to A.Aziz [2].

Lemma 5. If p(z) is a polynomial of degree n which has no zeros in |z| < k, k ≥ 1
and m = min

|z|=k
|p(z)| then for every real α

∥p′∥ ≤ n√
2(1 + k2)

(M2
α +M2

α+π − 2m2)
1
2 ,

where Mα is defined by (6).

Lemma 6. If p(z) is a polynomial of degree n which does not vanish in |z| < k,
k ≤ 1 and m = min

|z|=k
|p(z)|, then for |z| = 1

kn∥p′∥+ nm ≤ ∥q′∥,

where q(z) = znp( 1z ).

Lemmas 5 and 6 are due to Rather and Shah [13].

3. Main Results

In this paper we first prove the generalization of inequality (7) which is ascribed
to A.Aziz [2]. More precisely we prove the following result.

Theorem 1. If p(z) is a polynomial of degree n, then for every real α and R >
σ ≥ 1

∥p(Rz)− p(σz)∥ ≤ Rn − σn

2
[Mα +Mα+π]−

2|a1|
n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|a2|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn−2 − σn−2)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
,

for n > 3

(19)

and

∥P (Rz)− P (σz)∥ ≤ R3 − σ3

2
[Mα +Mα+π]− |a1|

(
R3 − σ3 − 3(R− σ)

6

)
− |a2|

[
(R− 1)3 − (σ − 1)3

3

]
, for n = 3,

(20)

where Mα is defined by (6) and Mα+π is obtained by replacing α by α+π. The result
is the best possible and equality in (19) and (20) holds for p(z) = zn + reiα, −1 ≤
r ≤ 1.
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Proof. Let n > 3. Since p(z) is a polynomial of degree n > 3, therefore p′(z) is
of degree n ≥ 3, applying inequality (17) of Lemma 2 we obtain for all v ≥ 1 and
0 ≤ θ < 2π

|p′(veiθ)| ≤ vn−1∥p′∥ − 2
(vn−1 − 1)

n+ 1
|a1| − 2|a2|

[
vn−1 − 1

n− 1
− vn−3 − 1

n− 3

]
.

Using inequality (5) we get,

|p′(veiθ)| ≤ nvn−1

2
(Mα +Mα+π)− 2

(vn−1 − 1)

n+ 1
|a1| − 2|a2|

[
vn−1 − 1

n− 1
− vn−3 − 1

n− 3

]
.

For each θ, 0 ≤ θ < 2π and R > σ ≥ 1, it follows that

|p(Reiθ)− p(σeiθ)| =

∣∣∣∣∣∣
R∫

σ

eiθp′(veiθ)dv

∣∣∣∣∣∣
≤

R∫
σ

|p′(veiθ)|dv

≤
n(M2

α +M2
α+π)

2

R∫
σ

vn−1dv − 2|a1|
n+ 1

R∫
σ

(vn−1 − 1)dv

− 2|a2|
R∫

σ

(
vn−1 − 1

n− 1
− vn−3 − 1

n− 3

)
dv

=
n(M2

α +M2
α+π)

2

(Rn − σn)

n
− 2|a1|

n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|a1|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn−2 − σn−2)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
,

equivalently

∥p(Rz)− p(σz)∥ ≤ Rn − σn

2
[Mα +Mα+π]−

2|a1|
n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|a2|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn−2 − σn−2)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
.

This is the desired result for n > 3. Furthermore the case for n = 3 follows on the
same lines but instead of using inequality (17) of Lemma 2 we use inequality (18)
of the same Lemma. □
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Theorem 2. If p(z) is a polynomial of degree n such that p(1) = 0, then for
0 < w ≤ n and α = 0∣∣∣p(1− w

n

)∣∣∣ ≤ 1

2

[
1−

(
1− w

n

)n]
{M0 +Mπ}

− 2|an−1|
n+ 1

(
1− (1− w/n)n

n
− w

n
(1− w/n)n−1

)
− 2|an−2|χ(w, n), for n > 3

(21)

and∣∣∣p(1− w

n

)∣∣∣ ≤ 1

2

[
1−

(
1− w

n

)3
]
{M0 +Mπ} −

|an−1|
6

(
1−

(
1− w

3

)3

− w
(
1− w

3

)2
)

−
|an−2|

3

(w
3

)3

, for n = 3,

(22)

where

χ(w, n) =

[
1− (1− w/n)n − w(1− w/n)n−1

n(n− 1)

− (1− w/n)2 − (1− w/n)n − (w − 2w/n)(1− w/n)n−1

(n− 2)(n− 3)

]
and M0 is defined by (6). The result is the best possible and equality in (21) holds
for p(z) = zn − 1.

Proof. Case I, n > 3: If t(z) = znp( 1z ), then |t(z)| = |p(z)| for |z| = 1 and by the

hypothesis we have t(1) = p(1) = 0. On using inequality (19) of Theorem 1 to the
polynomial t(z) for α = 0 and σ = 1, we get for R > 1

|t(R)| ≤ Rn − 1

2
[M0 +Mπ]−

2|an−1|
n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|an−2|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn−2 − σn−2)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
.

This gives for R > 1

|t(1/R)| ≤ 1

2
(1−R−n)[M0 +Mπ]−

2|an−1|
n+ 1

(
1−R−n

n
− (R1−n −R−n)

)
− 2|an−2|

[
(1−R−n)− n(R1−n −R−n)

n(n− 1)
− (R−2 −R−n)− (n− 2)(R1−n −R−n)

(n− 2)(n− 3)

]
.
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Since 0 < w ≤ n, so that (1 − w/n)−1 > 1 and therefore, in particular, replace R
by (1− w/n)−1 > 1 and after simplification we have,∣∣∣p(1− w

n

)∣∣∣ ≤ 1

2

[
1−

(
1− w

n

)n]
{M0 +Mπ}

− 2|an−1|
n+ 1

(
1− (1− w/n)n

n
− w

n
(1− w/n)n−1

)
− 2|an−2|χ(w, n),

where

χ(w, n) =

[
1− (1− w/n)n − w(1− w/n)n−1

n(n− 1)

− (1− w/n)2 − (1− w/n)n − (w − 2w/n)(1− w/n)n−1

(n− 2)(n− 3)

]
.

Case II, n = 3: This can be established identically as above by using inequality
(20) of Theorem 1. □

Now we present the refinement of inequality (12). Here we are able to prove

Theorem 3. If p(z) is a polynomial of degree n ≥ 3 having all its zeros in |z| ≥ 1
and m = min

|z|=1
|p(z)|, then for all real α and R > σ ≥ 1

∥p(Rz)− p(σz)∥ ≤ Rn − σn

2
[M2

α +M2
α+π − 2m2]

1
2 − 2|a1|

n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|a2|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn−2 − σn−2)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
,

if n > 3

(23)

and

∥p(Rz)− p(σz)∥ ≤ R3 − σ3

2
[M2

α +M2
α+π − 2m2]

1
2 − |a1|

(
(R3 − σ3)− 3(R− σ)

6

)
− |a2|

[
(R− 1)2 − (σ − 1)3

3

]
, if n = 3,

(24)

Proof. Since p(z) has all its zeros in |z| ≥ 1 and m = min
|z|=1

|p(z)|, therefore by

Lemma 3 with k = 1, we have for |z| = 1

(|p′(z)|+mn)2 ≤ |np(z)− zp′(z)|2.
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. This in conjunction with Lemma 4 gives

|p′(z)|2 + (|p′(z)|+mn)2 ≤ |p′(z)|2 + |np(z)− zp′(z)|2

≤ n2

2
[M2

α +M2
α+π].

Since we have (|p′(z)|+mn)2 = |p′(z)|2 + (mn)2 + 2mn|p′(z)|.
This gives

(|p′(z)|+mn)2 ≥ |p′(z)|2 + (mn)2.

Therefore, we have

∥p′∥ ≤ n

2
[M2

α +M2
α+π − 2m2]

1
2 . (25)

Applying inequality (17) of Lemma 2 with R = s ≥ 1 to the polynomial p′(z) which
is of degree n− 1, we obtain for n > 3

|p′(seiθ)| ≤ sn−1∥p′∥ − 2(sn−1 − 1)

n+ 1
|a1| − 2|a2|

[
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

]
.

With the help of inequality (25), we obtain for n > 3

|p′(seiθ)| ≤ nsn−1

2
[M2

α +M2
α+π − 2m2]

1
2 − 2(sn−1 − 1)

n+ 1
|a1| − 2|a2|

[
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

]
.

Now for each 0 ≤ θ < 2π and R > σ ≥ 1, we have

|p(Reiθ)− p(σeiθ)| =

∣∣∣∣∣∣
R∫

σ

eiθp′(seiθ)ds

∣∣∣∣∣∣
≤

R∫
σ

|p′(seiθ)|ds

≤ n

2
[M2

α +M2
α+π − 2m2]

1
2

R∫
σ

sn−1ds− 2|a1|
n+ 1

R∫
σ

(sn−1 − 1)ds

− 2|a2|
R∫

σ

(
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

)
ds

=
Rn − σn

2
(M2

α +M2
α+π − 2m2)

1
2 − 2|a1|

n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|a2|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn − σn)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
,
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which implies

∥p(Rz)− p(σz)∥ ≤ Rn − σn

2
[M2

α +M2
α+π − 2m2]

1
2 − 2|a1|

n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|a2|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn − σn)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
.

This proves the result in case n > 3. For the case n = 3, the result follows from
similar lines but instead of using inequality (17) of Lemma 2, we use inequality (18)
of the same Lemma and this proves the theorem completely. □

As a refinement of inequality (13), we prove the following result.

Theorem 4. If p(z) is a polynomial of degree n ≥ 3 having all its zeros in |z| ≥
k ≥ 1 and m = min

|z|=k
|p(z)|, then for all real α and R > σ ≥ 1

∥p(Rz)− p(σz)∥ ≤ Rn − σn√
2(1 + k2)

[M2
α +M2

α+π − 2m2]
1
2 − 2|a1|

n+ 1

(
Rn − σn

n
− (R− σ)

)
− 2|a2|

[
(Rn − σn)− n(R− σ)

n(n− 1)
− (Rn − σn)− (n− 2)(R− σ)

(n− 2)(n− 3)

]
,

if n > 3

(26)

and

∥p(Rz)− p(σz)∥ ≤ R3 − σ3√
2(1 + k2)

[M2
α +M2

α+π − 2m2]
1
2 − |a1|

(
(R3 − σ3)− 3(R− σ)

6

)
− |a2|

[
(R− 1)2 − (σ − 1)3

3

]
, if n = 3,

(27)

where Mα is defined by (6).

Proof. The proof of this theorem follows easily on using arguments similar to that
used in the proof of Theorem 3 but instead of using inequality (25) we use Lemma
5. We omit the details. □

Next we establish the upper bound estimate for ∥p(Rz) − p(ξz)∥ and thereby
prove the following improvement of inequality (15).
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Theorem 5. Let p(z) be a polynomial of degree n ≥ 3 having all its zeros in |z| ≤ k,
k ≤ 1, then for all real α and R > ξ ≥ 1

∥p(Rz)− p(ξz)∥ ≤ Rn − ξn√
2(1 + k2n)

(M2
α +M2

α+π)
1
2 − 2|a1|

n+ 1

(
Rn − ξn

n
− (R− ξ)

)
− 2|a2|

[
(Rn − ξn)− n(R− ξ)

n(n− 1)
− (Rn−2 − ξn−2)− (n− 2)(R− ξ)

(n− 2)(n− 3)

]
,

for n > 3

(28)

and

∥p(Rz)− p(ξz)∥ ≤ R3 − ξ3√
2(1 + k6)

(M2
α +M2

α+π)
1
2 − |a1|

(
(R3 − ξ3)− 3(R− ξ)

6

)
− |a2|

[
(R− 1)3 − (ξ − 1)3

3

]
, for n = 3.

(29)

Proof. Let n > 3. Since p(z) is a polynomial of degree n > 3, it follows that p′(z)
is a polynomial of degree n ≥ 3. Hence applying inequality (17) of Lemma 2 to the
polynomial p′(z) with k = s ≥ 1, we have for n > 3

|p′(seiθ)| ≤ sn−1∥p′∥ − 2
(sn − 1)

n+ 1
|a1| − 2|a2|

[
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

]

This gives with the help of Lemma 1,

|p′(seiθ)| ≤ sn−1

[
n

2
1
2 (1+k2n)

1
2
[M2

α +M2
α+π]

1
2

]
− 2 (sn−1)

n+1 |a1| − 2|a2|
[
sn−1−1
n−1 − sn−3−1

n−3

]
.
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Hence for each θ, 0 ≤ θ < 2π and R > ξ ≥ 1

|p(Reiθ)− p(ξeiθ)| =

∣∣∣∣∣∣∣
R∫
ξ

eiθp′(seiθ)ds

∣∣∣∣∣∣∣
≤

R∫
ξ

|p′(seiθ)|ds

≤
n(M2

α +M2
α+π)

1
2

√
2(1 + k2n)

1
2

R∫
ξ

sn−1ds− 2|a1|
n+ 1

R∫
ξ

(sn−1 − 1)ds

− 2|a2|
R∫
ξ

(
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

)
ds

=
n(M2

α +M2
α+π)

1
2

√
2(1 + k2n)

1
2

(Rn − ξn)

n
− 2|a1|

n+ 1

(
Rn − ξn

n
− (R− ξ)

)
− 2|a1|

[
(Rn − ξn)− n(R− ξ)

n(n− 1)
− (Rn−2 − ξn−2)− (n− 2)(R− ξ)

(n− 2)(n− 3)

]
.

This implies,

∥p(Rz)− p(ξz)∥ ≤ Rn − ξn√
2(1 + k2n)

1
2

(M2
α +M2

α+π)
1
2 − 2|a1|

n+ 1

(
Rn − ξn

n
− (R− ξ)

)
− 2|a2|

[
(Rn − ξn)− n(R− ξ)

n(n− 1)
− (Rn−2 − ξn−2)− (n− 2)(R− ξ)

(n− 2)(n− 3)

]
.

This is the desired result for the case n > 3. For n = 3, using inequality (18) of
Lemma 2 with k = s ≥ 1 to the polynomial p′(z) we obtain

|p′(seiθ)| ≤ s2∥p′∥ − (s− 1)

2
[(s+ 1)|a1|+ (s− 1)|a2|].

As before, again this gives with the help of Lemma 1 that

|p′(seiθ)| ≤ s2
3√

2(1 + k6)
1
2

(M2
α +M2

α+π)
1
2 − (s− 1)

2
[(s+ 1)|a1|+ (s− 1)|a2|].
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Now for each θ, 0 ≤ θ < 2π and R > ξ ≥ 1

|p(Reiθ)− p(ξeiθ)| ≤
R∫
ξ

|p′(seiθ)|ds

≤
R∫
ξ

[
3(M2

α +M2
α+π)

1
2

√
2(1 + k6)

1
2

s2 − s2 − 1

2
|a1| − (s− 1)2|a2|

]
ds

=
3(M2

α +M2
α+π)

1
2

√
2(1 + k6)

1
2

R3 − ξ3

3
− 1

2

[
R3 − ξ3

3
− (R− ξ)

]
|a1|

−
[
(R− 1)3 − (ξ − 1)3

3

]
|a2|,

i.e,

∥p(Rz)− p(ξz)∥ ≤ R3 − ξ3

2
1
2 (1 + k6)

1
2

(M2
α +M2

α+π)
1
2 − |a1|

(
(R3 − ξ3)− 3(R− ξ)

6

)
− |a2|

[
(R− 1)3 − (ξ − 1)3

3

]
.

This proves the theorem for the case n = 3. □

Finally we present the refinement and generalization for the upper bound of
inequality (16). More precisely we prove the following result.

Theorem 6. Let p(z) be a polynomial of degree n ≥ 3 which has no zeros in |z| < k,
k ≤ 1 and m = min

|z|=k
|p(z)| then for all real α and R > ξ ≥ 1

∥p(Rz)− p(ξz)∥ ≤ Rn − ξn√
2(1 + k2n)

(M2
α +M2

α+π − 2m2)
1
2 − 2|a1|

n+ 1

(
Rn − ξn

n
− (R− ξ)

)
− 2|a2|

[
(Rn − ξn)− n(R− ξ)

n(n− 1)
− (Rn−2 − ξn−2)− (n− 2)(R− ξ)

(n− 2)(n− 3)

]
,

if n > 3

(30)

and

∥p(Rz)− p(ξz)∥ ≤ R3 − ξ3√
2(1 + k6)

(M2
α +M2

α+π − 2m2)
1
2 − |a1|

(
(R3 − ξ3)− 3(R− ξ)

6

)
− |a2|

[
(R− 1)3 − (ξ − 1)3

3

]
, if n = 3,

(31)



ON THE MAXIMUM MODULUS OF A COMPLEX POLYNOMIAL 679

provided |p′(z)| and |q′(z)| attain maximum at the same point on |z| = 1, where

q(z) = znp( 1z ). The result is best possible and equality in (30) holds for p(z) =
zn + kn.

Proof. Since q(z) = znp( 1z ), therefore,

|q′(z)| = |np(z)− zp′(z)| for |z| = 1.

By hypothesis |p′(z)| and |q′(z)| attain maximum at the same point on |z| = 1. If
we consider

max
|z|=1

|p′(z)| = |p(eiα)|, 0 ≤ α < 2π

then it is clear that,

max
|z|=1

|q′(z)| = |q(eiα)|, 0 ≤ α < 2π.

Since p(z) does not vanish in |z| < k, k ≤ 1 and m = min
|z|=k

|p(z)|. Therefore by

Lemma 6 and by using above maximum values of |p′(z)| and |q′(z)|, we get

(kn|p′(eiα)|+ nm)2 ≤ |q′(eiα)|2.
This gives with the help of Lemma 4

|p′(eiα)|2 + (kn|p′(eiα)|+ nm)2 ≤ |p′(eiα)|2 + |q′(eiα)|2

n2

2
[M2

α +M2
α+π].

Since

(kn|p′(eiα)|+ nm)2 ≥ k2n|p′(eiα)|2 + n2m2.

Consequently,

|p′(eiα)|2 + k2n|p′(eiα)|2 + n2m2 ≤ n2

2
[M2

α +M2
α+π].

Equivalently,

|p′(eiα)|2 ≤ n2

2(1 + k2)
[M2

λ +M2
λ+π − 2m2]

and therefore, we have

∥p′∥ ≤ n√
2(1 + k2n)

[M2
λ +M2

λ+π − 2m2]
1
2 . (32)

Since p(z) is a polynomial of degree n > 3, it follows that p′(z) is a polynomial of
degree n ≥ 3. Hence applying inequality (17) of Lemma 2 to the polynomial p′(z)
with k = s ≥ 1, we have for n > 3

|p′(seiθ)| ≤ sn−1∥p′∥ − 2
(sn−1 − 1)

n+ 1
|a1| − 2|a2|

[
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

]
,
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This in conjunction with (32) gives,

|p′(seiθ)| ≤ sn−1

[
n√

2(1 + k2n)
[M2

α +M2
α+π − 2m2]

1
2

]
− 2

(sn−1 − 1)

n+ 1
|a1|

− 2|a2|
[
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

]
.

Hence for each θ, 0 ≤ θ < 2π and R > ξ ≥ 1

|p(Reiθ)− p(ξeiθ)| =

∣∣∣∣∣∣∣
R∫
ξ

eiθp′(seiθ)ds

∣∣∣∣∣∣∣
≤

R∫
ξ

|p′(seiθ)|ds

≤
n(M2

α +M2
α+π − 2m2)

1
2√

2(1 + k2n)

R∫
ξ

sn−1ds− 2|a1|
n+ 1

R∫
ξ

(sn−1 − 1)ds

− 2|a2|
R∫
ξ

(
sn−1 − 1

n− 1
− sn−3 − 1

n− 3

)
ds

=
n(M2

α +M2
α+π − 2m2)

1
2√

2(1 + k2n)

(Rn − ξn)

n
− 2|a1|

n+ 1

(
Rn − ξn

n
− (R− ξ)

)
− 2|a1|

[
(Rn − ξn)− n(R− ξ)

n(n− 1)
− (Rn−2 − ξn−2)− (n− 2)(R− ξ)

(n− 2)(n− 3)

]
.

This implies,

∥p(Rz)− p(ξz)∥ ≤ Rn − ξn√
2(1 + k2n)

(M2
α +M2

α+π − 2m2)
1
2 − 2|a1|

n+ 1

(
Rn − ξn

n
− (R− ξ)

)
− 2|a2|

[
(Rn − ξn)− n(R− ξ)

n(n− 1)
− (Rn−2 − ξn−2)− (n− 2)(R− ξ)

(n− 2)(n− 3)

]
.

This proves inequality (30). For the proof of inequality (31), we use inequality (18)
of Lemma 2 rather than inequality (17) of the same Lemma. □
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Abstract. This paper consists of two main sections. In the first part, we

give some general information about the almost contact manifold, α−Sasakian,
β−Kenmotsu and Trans-Sasakian Structures on the manifolds. In the second

part, these structures were expressed on the tangent bundle with the help of
lifts and the most general forms were tried to be obtained.

1. Introduction

1.1. Lifts of Vector Fields.

Definition 1. Let Mn be an n−dimensional differentiable manifold of class C∞

and let Tp(M
n) be the tangent space of Mn at a point p of Mn. Then the set [12]

T (Mn) = ∪
p∈Mn

Tp(M
n) (1)

is called the tangent bundle over the manifold Mn.

For any point p̃ of T (Mn), the correspondence p̃ → p determines the bundle
projection π : T (Mn) → Mn, Thus π(p̃) = p, where π : T (Mn) → Mn defines
the bundle projection of T (Mn) over Mn. The set π−1(p) is called the fibre over
p ∈ Mn and Mn the base space.
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1.1.1. Vertical Lifts. If f is a function inMn, we write fv for the function in T (Mn)
obtained by forming the composition of π : T (Mn) → Mn and f : Mn → R, so
that

fv = foπ. (2)

Thus, if a point p̃ ∈ π−1(U) has induced coordinates (xh, yh), then

fv(p̃) = fv(σ, θ) = foπ(p̃) = f(p) = f(σ). (3)

Thus the value of fv(p̃) is constant along each fibre Tp(M
n) and equal to the value

f(p). We call fv the vertical lift of f [12].
Let σ ∈ ℑ1

0(T (M
n)) be such that σfv = 0 for all f ∈ ℑ0

0(M
n). Then we say

that σ is a vertical vector field. Let

[
σh

σh̄

]
be components of σ with respect to

the induced coordinates. Then σ is vertical if and only if its components in π−1(U)
satisfy [

σh

σh̄

]
=

[
0

σh̄

]
. (4)

Suppose that σ ∈ ℑ1
0(M

n), so that is a vector field in Mn. We define a vector
field σv in T (Mn) by

σv(ι ζ) = (ζσ)v (5)

ζ being an arbitrary 1−form in Mn. We cal σv the vertical lift of σ [12].
Let ζ ∈ ℑ0

1(T (M
n)) be such that ζ(σ)v = 0 for all σ ∈ ℑ1

0(M
n). Then we say

that ζ is a vertical 1−form in T (Mn). We define the vertical lift ζv of the 1−form
ζ by

ζv = (ζi)
v(dxi)v (6)

in each open set π−1(U), where (U ;xh) is coordinate neighbourhood in Mn and ζ
is given by ζ = ζidx

i in U . The vertical lift ζv with local expression ζ = ζidx
i has

components of the form

ζv : (ζi, 0) (7)

with respect to the induced coordinates in T (Mn).
Vertical lift has the following formulas [10,12]:

(fσ)
v

= fvσv, Ivσv = 0, ηv (σv) = 0, (8)

(fη)
v

= fvηv, [σv, θv] = 0, φvσv = 0,

σvfv = 0, σvfv = 0

hold good, where f ∈ ℑ0
0(M

n
n ), σ, θ ∈ ℑ1

0(M
n
n ), η ∈ ℑ0

1(M
n
n ), φ ∈ ℑ1

1(M
n
n ), I =

idMn
n
.
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1.1.2. Complete Lifts. If f is a function in Mn, we write f c for the function in
T (Mn) defined by

f c = ι(df) (9)

and call f c the comple lift of f. The complete lift f c has the local expression

f c = yi∂if = ∂f (10)

with respect to the induced coordinates in T (Mn), where ∂f denotes yi∂if.
Suppose that σ ∈ ℑ1

0(M
n). We define a vector field σc in T (Mn) by

σcf c = (σf)c, (11)

f being an arbitrary function in Mn and call σc the complete lift of σ in T (Mn)
[3, 12]. The complete lift σc with components xh in Mn has components

σc =

(
σh

∂σh

)
(12)

with respect to the induced coordinates in T (Mn).
Suppose that ζ ∈ ℑ0

1(M
n), then a 1−form ζc in T (Mn) defined by

ζc(σc) = (ζσ)c (13)

σ being an arbitrary vector field in Mn. We call ζc the complete lift of ζ. The
complete lift ζc of ζ with components ζi in Mn has components of the form

ζc : (∂ζi,ζi) (14)

according to the induced coordinates in T (Mn) [3].

σcfv = (σf)
v
, ηv (σc) = (η (σ))

v
, (15)

(fσ)
c

= f cσv + fvσc = (σf)c,

σvf c = (σf)
v
, φvσc = (φσ)

v
,

φcσv = (φσ)
v
, (φσ)

c
= φcσc,

ηv (σc) = (η (σ))
c
, ηc (σv) = (η (σ))

v
,

[σv, θc] = [σ, θ]
v
, Ic = I, Ivσc = σv, [σc, θc] = [σ, θ]

c
.

1.2. Almost Contact Manifolds. An almost contact manifold is an odd-dimensional
C∞ manifold whose structural group can be reduced to U(x)×1. This is equivalent
to the existence of a tensor field ϕ of type (1, 1), a vector field ξ and a 1−form η
satisfying ϕ2 = −I+η⊗ξ and η(ξ) = 1. From these conditions one can deduce that
ϕξ = 0 and η ◦ ϕ = 0. A Riemannian metric g is compatible with these structure
tensors if

g(ϕσ, ϕθ) = g(σ, θ)− η(σ)η(θ) (16)

and we refer to an almost contact metric structure (ϕ, ξ, η, g). Note also that
η(σ) = g(σ, ξ).
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Let Mn be an almost contact manifold and define an almost complex structure
J on Mn ×R by

J(σ, f
d

dt
) = (ϕσ − fξ, η(σ)

d

dt
). (17)

A Sasakian manifold is a normal contact metric manifold. It is well known that
the Sasakian condition may be expressed as an almost contact metric structure
satisfying

(▽σϕ)θ = g(σ, θ)ξ − η(θ)σ, (18)

again see e.g. [1].

2. α−Sasakian and β−Kenmotsu structures on the tangent bundle

A α−Sasakian structure [6] which may be defined by the requirement

(▽σϕ)θ = α(g(σ, θ)ξ − η(θ)σ), (19)

where α is a non-zero constant. Setting θ = ξ in this formula, one readily obtains

▽σ ξ = −αϕσ (20)

Theorem 1. Let a vector field ξ, ϕ be a tensor field of type (1, 1), 1−form η
satisfying ϕ2 = −I + η ⊗ ξ i.e. η(ξ) = 1, ϕξ = 0 and η ◦ ϕ = 0. A α−Sasakian
structure on tangent bundle defined by

(▽c
σcϕc)θc = α((g(σ, θ))V ξC + (g(σ, θ))CξV − (η(θ))CσV − (η(θ))V σC),

where g is a Riemannian metric, α is a non-zero constant. In addition, if we put
θ = ξ, we get

▽C
σC ξ

C = −αϕCσC .

Proof. From (19) , we get the α−Sasakian structure on the bundle

(▽c
σcϕc)θc = ▽C

σCϕ
cθC − ϕC ▽C

σC θC

= α((g(σ, θ))V ξC + (g(σ, θ))CξV − (η(θ))CσV − (η(θ))V σC).

If we put θ = ξ, we get

(▽C
σCϕ

C)ξC = ▽C
σCϕ

CξC − ϕC ▽C
σC ξC

= −ϕC ▽C
σC ξC

= α(η(σ)V ξC + (η(σ))CξV − (η(ξ))CσV − (η(ξ)V σC)

= α((η(σ))V ξC + (η(σ))CξV − σC)

−ϕC ▽C
σC ξC = α(ϕC)2σC

▽C
σC ξ

C = −αϕCσC

□
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In particular the almost contact metric structure in this case satisfies

(▽σϕ)θ = g(ϕσ, θ)ξ − η(θ)ϕσ (21)

and an almost contact metric manifold satisfying this condition is called a Kenmotsu
manifold [6,7]. Again one has the more general notion of a β−Kenmotsu structure
[6] which may be defined by

(▽σϕ)θ = β(g(ϕσ, θ)ξ − η(θ)ϕσ), (22)

where β is a non-zero constant. From the condition one may readily deduce that

▽σ ξ = β(σ − η(σ)ξ). (23)

Theorem 2. Let ϕ be a tensor field of type (1, 1), a vector field ξ, 1−form η
satisfying ϕ2 = −I + η ⊗ ξ i.e. η(ξ) = 1, ϕξ = 0 and η ◦ ϕ = 0. A β−Kenmotsu
structure on tangent bundle defined by

((▽σϕ)θ)
C = β((g(ϕσ, θ))V ξC + (g(ϕσ, θ))CξV − (η(θ))C(ϕσ)V − (η(θ))V (ϕσ)C),

where g is a Riemannian metric, β is a non-zero constant. In addition, if we put
θ = ξ, we get

▽C
σC ξC = β(σC − ((η(σ))ξ)C). (24)

Proof. From (22) , we get the β−Kenmotsu structure on the bundle

((▽σϕ)θ)
C = ▽C

σCϕ
CθC − ϕC ▽C

σC θC

= β((g(ϕσ, θ))V ξC + (g(ϕσ, θ))CξV − (η(θ))C(ϕσ)V − (η(θ))V (ϕσ)C)

If we put θ = ξ, we get

−ϕC ▽C
σC ξC = β((η(ϕσ))V ξC + (η(ϕσ))CξV − (η(ξ))C(ϕσ)V − (η(ξ))V (ϕσ)C)

−ϕC ▽C
σC ξC = β(−(ϕσ)C + (η(ϕσ ))V ξC + (η(ϕσ))CξV )

ϕ2 ▽C
σC ξC = β((ϕσ)C − (η(ϕσ))V ξC − (η(ϕσ))CξV )

ϕ▽C
σC ξC = β(ϕCσC − ηV (ϕCσC)ξC − ηC(ϕCσC)ξV )

▽C
σC ξ

C = β(σC − (ηV σC)ξC − (ηCσC)ξV )

▽C
σC ξ

C = β(σC − (ησ)V ξC − (ησ)CξV )

▽C
σC ξ

C = β(σC − ((η(σ))ξ)C)

□

3. Trans-Sasakian manifolds on the tangent bundle

An almost contact metric structure (ϕ, ξ, η, g) on Mn is trans-Sasakian [9] if
(Mn × R, J,G) belongs to the class W4, where J is the almost complex structure
on Mn×R defined by (17) and G is the product metric on Mn×R. This expressed
by the condition

(▽σϕ)θ = α(g(σ, θ)ξ − η(θ)σ) + β(g(ϕσ, θ)ξ − η(θ)ϕσ) (25)
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for functions α and β on Mn, and we shall say that the trans-Sasakian structure is
of type (α, β); in particular, it is normal and it generalizes both α− Sasakian and
β −Kenmotsu structures. From the formula one obtain

▽σ ξ = −αϕσ + β(σ − η(σ)ξ), (26)

(▽ση)(θ) = −αg(ϕσ, θ) + β(g(σ, θ)− η(σ)η(θ)), (27)

(▽σϕ)(θ, Z) = α(g(σ, Z)η(θ)−g(σ, θ)η(Z))−β(g(σ, ϕZ)η(θ)−g(σ, ϕθ)η(Z)), (28)

where ϕ is the fundamental 2−form of the structure, given by ϕ(σ, θ) = g(σ, ϕθ).

Theorem 3. Let ϕ be a tensor field of type (1, 1), a vector field ξ, 1−form η
satisfying ϕ2 = −I + η ⊗ ξ i.e. η(ξ) = 1, ϕξ = 0 and η ◦ ϕ = 0. A trans-Sasakian
structure on tangent bundle defined by

(▽C
σCϕ

C)θC = α((g(σ, θ))V ξC + (g(σ, θ))CξV − (η(θ))CσV − (η(θ))V σC)

+β((g(ϕσ, θ))V ξC + (g(ϕσ, θ))CξV − (η(θ))C(ϕσ)V − (η(θ))V (ϕσ)C),
where g is a Riemannian metric, α, β are non-zero constants. In addition, if we

put θ = ξ, we get

▽C
σC ξ

C = −αϕCσC + β(σC − ((η(σ))ξ)C)

Proof. From (25), we get the trans-Sasakian structure on the bundle

(▽C
σCϕ

C)θC = ▽C
σCϕ

CθC − ϕC ▽C
σC θC

= α((g(σ, θ))V ξC + (g(σ, θ))CξV − (η(θ))CσV − (η(θ))V σC)

+β((g(ϕσ, θ))V ξC + (g(ϕσ, θ))CξV − (η(θ))C(ϕσ)V − (η(θ))V (ϕσ)C).
If we put θ = ξ and using the formulas of (8),(15), similarly we get

▽C
σC ξ

C = −αϕCσC + β(σC − ((η(σ))ξ)C).

□

Theorem 4. Let a vector field ξ, ϕ be a tensor field of type (1, 1), 1−form η
satisfying ϕ2 = −I + η ⊗ ξ i.e. η(ξ) = 1, ϕξ = 0 and η ◦ ϕ = 0. The term

(▽C
σCη

C)θC in a trans-Sasakian structure on tangent bundle defined by

(▽C
σCη

C)θC = −αgC(ϕCσC , θC) + βgC(ϕCσC , ϕCθC),

where g is a Riemannian metric, α, β is a non-zero constant.

Proof. From (27) , we get

(▽C
σCη

C)θC = ▽C
σCη

CθC − ηC ▽C
σC θC

= ▽C
σC (g(θ, ξ))

C − (g(▽σθ, ξ))
C

= ▽C
σCg

C)(θC , ξC) + gC(▽C
σCθ

C , ξC) + gC(θC ,▽C
σC ξ

C)

−gC(▽C
σCθ

C , ξC)
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= gC(θC ,▽C
σC ξ

C) = gC(θC ,−αϕCσC + β(σC((η(σ))ξ)C)

= −αgC(θC , ϕCσC) + βgC(θC , σC − ((η(σ))ξ)C)

= −αgC(ϕCσC , θC) + βgC(θC , σC − (η(σ))V ξC − (η(σ))CξV )

= −αgC(ϕCσC , θC) + β(gC(θC , σC)− (η(σ))V gC(θC , ξC)

−(η(σ))CgC(θC , ξV ))

= −αgC(ϕCσC , θC) + βgC(ϕCσC , ϕCθC),

where gC(θC , ξV ) = (η(θ))V and gC(ϕCσC , ϕCθC) = gC(σC , θC)−(η(σ))C(η(θ))V −
(η(σ))V (η(θ))C . □
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SOFT SEMI-TOPOLOGICAL POLYGROUPS

Rasoul MOUSAREZAEI and Bijan DAVVAZ
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Abstract. By removing the condition that the inverse function is continuous

in soft topological polygroups, we will have less constraint to obtain the results.
We offer different definitions for soft topological polygroups and eliminate the

inverse function continuity condition to have more freedom of action.

1. Introduction

To answer the types of uncertainties that abound in various sciences, we insert
soft sets into mathematical structures. Specifically, we equip topological polygroups
with soft sets. This is a process that began in 1934 by Marty [16] with the introduc-
tion of hypergroups and continued with the introduction of soft sets by Molodtsov
in 1999 [17]. Since then, many efforts have been made to deepen the discussion,
some of which we can mention below.

A good description of the Groupoides, demi-hypergroupes et hypergroupes is
given by M. Koskas in [14], also useful information about the Soft subsets and soft
product operations is provided by F. Feng, Y.M. Li in [8]. There is a beautiful
writing about the topological spaces from the S. Nazmul, SK. Samanta under the
name Neighbourhood properties of soft topological spaces in [20], also about Soft
set theory by P. K. Maji, R. Biswas and A. R. Roy in [15], Soft topological groups
and rings by T. Shah and S. Shaheen in [27], On soft topological hypergroups by
G. Oguz in [24], On soft topological spaces by M. Shabir and M. Naz in [26]. Only
a genius like T. Hida can write such a beautiful story about the Soft topological
group in [11], also G. Oguz with article Soft topological hyperstructure in [25] and
M. Shabir, M. Naz With their own handwriting about the On soft topological spaces
in [26]. If you want to read interesting articles about the topological polygroups,
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you can read Heidari’s article about the Topological polygroups in [9], also about
the Idealistic soft topological hyperrings by G. Oguz in [23] and A new view on
topological polygroups by G. Oguz in [22], Soft sets and soft groups by H. Aktas
and N. Cagman in [1], Prolegomena of Hypergroup Theory by P. Corsini in [5].

2. Preliminaries

2.1. Soft Sets. Let U be an initial universe and E be a set of parameters. Let P (U)
denotes the power set of U and A be a non-empty subset of E. A pair (F, A) is called
a soft set over U , where F is a mapping given by F : A→ P (U). In other words, a
soft set over U is a parametrized family of subsets of the universe U . For a ∈ A,F(a)
may be considered as the set of approximate elements of the soft set(F, A). Clearly
a soft set is not a set. For two soft sets (F, A) and (G, B) over a common universe
U , we say that (F, A) is a soft subset of (G, B)(i.e., (F, A)⊂̂(G, B)) if A ⊆ B and
F(a) ⊆ G(a) for all a ∈ A. (F, A) is said to be a soft super set of (G, B), if (G, B) is
a soft subset of (F, A) and it is denoted by (F, A)⊃̂(G, B). Two soft sets (F, A) and
(G, B) over a common universe U are said to be soft equal if (F, A) is a soft subset
of (G, B) and (G, B) is a soft subset of (F, A). A soft set (F, A) over U is said to
be a NULL soft set, denoted by ∅̂, if F(a) = ∅ (null set) for all a ∈ A . A soft set

(F, A) over U is said to be ABSOLUTE soft set, denoted by Â, if F(a) = U for all
a ∈ A. (F, A) AND (G, B) denoted by (F, A)∧̂(G, B) is defined by (F, A)∧̂(G, B) =
(H, A × B), where H((a, b)) = F(a) ∩ G(b) for all (a, b) ∈ A × B. (F, A) OR
(G, B) denoted by (F, A)∨̂(G, B) is defined by (F, A)∨̂(G, B) = (O,A× B) where,
O((a, b)) = F(a) ∪ G(b) for all (a, b) ∈ A × B. Union of two soft sets (F, A) and
(G, B) over the common universe U denoted by (F, A)∪̂(G, B) is defined by (H, C),
where C = A ∪B and for all a ∈ C,

H(a) =

 F(a) if a ∈ A−B
G(a) if a ∈ B −A
F(a) ∪G(a) if a ∈ A ∩B.

Bi-intersection of two soft sets (F, A) and (G, B) over the common universe U
is the soft set (H, C) is defined by (F, A)∩̂(G, B) = (H, C), where C = A ∩ B and
H(a) = F(a)∩G(a) for all a ∈ C. Extended intersection of two soft sets (F, A) and
(G, B) over the common universe U denoted by (F, A) ∩E (G, B) and is defined by
(H, C), where C = A ∪B and for all a ∈ C,

H(a) =

 F(a) if a ∈ A−B
G(a) if a ∈ B −A
F(a) ∩G(a) if a ∈ A ∩B.

Let (F, A) be a soft set. The set Supp(F, A) = {a ∈ A : F(a) ̸= ∅} is called
the support of the soft set (F, A). A soft set is said to be non-null if its support is
not equal to the empty set. If A is equal to E we write F instead of (F, A). Let
θ : U 7−→ U ′ be a function and F(resp.F′) be a soft set over U(resp.U ′) with a
parameter set E. Then θ(F)(resp.θ−1(F′)) is the soft set on U ′(resp.U) is defined
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by (θ(F))(e) = θ(F(e))(resp.(θ−1(F′))(e) = θ−1(F′(e))). We will use the symbol Fĉ

to denote soft complement of F and is defined by Fĉ(e) = U \ F(e)(e ∈ E). Let
F be a soft set over U and x be an element of U we call x is a soft element of F,
if x ∈ F(e) for all parameters e ∈ E and denoted by x∈̂F. We recall the above
definitions from [11,27].

2.2. Polygroups. Let H be a non-empty set. A mapping ◦ : H ×H 7−→ P ∗(H)
is called a hyperoperation, where P ∗(H) is the family of non-empty subsets of H.
The couple (H, ◦) is called a hypergroupoid. In the above definition,if A and B are
two non-empty subsets of H and x ∈ H, then we define:

A ◦B =
⋃

a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈ H, we have
x ◦ (y ◦ z) = (x ◦ y) ◦ z and is called a quasihypergroup if for every x ∈ H, we have
x ◦H = H = H ◦ x. This condition is called the reproduction axiom. The couple
(H, ◦) is called a hypergroup if it is a semihypergroup and a quasihypergroup [5].

Let (H, ◦) be a semihypergroup and A be a non-empty subset of H. We say
that A is a complete part of H if for any non-zero natural number n and for all
a1, . . . , an of H, the following implication holds:

A ∩
n∏

i=1

ai ̸= ∅ ⇒
n∏

i=1

ai ⊆ A.

The complete parts were introduced for the first time by Koskas [14]. Let (G, ◦)
and (H, ∗) be two hypergroups. A map f : G 7−→ H, is called a homomorphism
if for all x, y of G, we have f(x ◦ y) ⊆ f(x) ∗ f(y); a good homomorphism if for
all x, y of G, we have f(x ◦ y) = f(x) ∗ f(y);f is an isomorphism if it is a good
homomorphism ,and its inverse f−1 is a homomorphism, too.

Definition 1. A special sub class of hypergroups is the class of polygroups.A poly-
group is a system P =< P, ◦, e,−1 >,where ◦ : P × P 7−→ P ∗(P ), e ∈ P , -1 is a
unitary operation on P and the following axioms hold for all x, y, z ∈ P :

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z);
(2) e ◦ x = x ◦ e = x;
(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

The following elementary facts about polygroups follow easily from the axioms:
e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1. A non-

empty subset K of a polygroup P is a subpolygroup of P if and only if a, b ∈ K
implies a ◦ b ⊆ K and a ∈ K implies a−1 ∈ K.

The subpolygroup N of P is normal in P if and only if a−1 ◦N ◦ a ⊆ N for all
a ∈ P .

Theorem 1. Let N be a normal subpolygroup of P then:
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(1) Na = aN for all a ∈ P ;
(2) (aN)(bN) = abN for all a, b ∈ P ;
(3) aN = bN for all b ∈ aN .

Example 1. Let P be {1, 2} and hyperoperation ⋇ be as follow:

⋇ 1 2
1 1 2
2 2 {1, 2}

With the above multiplication table, P is a polygroup [7].

Let P is polygroup and (F, A) be a soft set on P . Then (F, A) is called a
(normal)soft polygroup on P if F(x) be a (normal)subpolygroup of P for all x ∈
Supp(F, A).

Example 2. Let P be {e, a, b} and multiplication table be:

◦ e a b
e e a b
a a e b
b b b {e, a}

Subpolygroups of P are ∅, P, {e}, {e, a}. Let A be equal with P and define soft
set F as follow:

F(x) =

 {e} if x = e
{e, a} if x = a
{e, a, b} if x = b

Therefore (F, A) is a soft polygroup. We recall the above definitions and theorems
from [7].

2.3. Topological Hyperstructure. Suppose that T is a topology on G, where
G is a group, then (G,T ) is called a topological group over G if φ and −1 are
continuous, where φ and −1 are as follow:

(1) The mapping φ : G × G 7−→ G is defined by φ(g, h) = gh and G × G is
endowed with the product topology.

(2) The mapping −1 : G 7−→ G is defined by −1(g) = g−1 [10].

If the condition (2) of previous definition is not met, then the (G,T ) is called
semi-topological group over G.

Let (F, A) be a soft set over G. Then the (F, A, T ) is called soft topological group
over G if the following conditions hold:

(1) F(a) be a subgroup of G for all a ∈ A.
(2) The mapping φ : (x, y) 7−→ xy of the topological space F(a) × F(a) onto

F(a) be continuous for all a ∈ A.
(3) The mapping −1 : F(a) 7−→ F(a) is defined by −1(g) = g−1 be continuous

for all a ∈ A.
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If the condition (3) of previous definition is not met, then the (F, A, T ) is called
soft semi-topological group over G.

In [9] is proved that condition continuity φ is equivalent to following statement;
If U ⊆ G is open, and gh ∈ U , then there exist open sets Vg and Vh with the

property that g ∈ Vg,h ∈ Vh, and VgVh = {v1v2|v1 ∈ Vg, v2 ∈ Vh} ⊆ U .
Also, condition continuity −1 is equivalent to following statement; If U subset of

G is open, then U−1 = {g−1|g ∈ U} be open.
Let (H,T ) be a topological space. The following theorem give us a topology on

P ∗(H) that is induced by T .

Theorem 2. Let (H,T ) be a topological space. Then the family β consisting of all
sets SV = {U ∈ P ∗(H) | U ⊆ V }, V ∈ T is a base for a topology on P ∗(H). This
topology is denoted by T ∗ [12].

Let (H,T ) be a topological space, where (H, ◦) be a hypergroup. Then the triple
(H, ◦, T ) is called a topological hypergroup if the following functions are continuous:

(1) The mapping φ : (x, y) 7−→ x ◦ y, from H ×H onto P ∗(H);
(2) The mapping ψ : (x, y) 7−→ x/y, from H × H onto P ∗(H), where x/y =

{z ∈ H|x ∈ z ◦ y}.

If the condition (2) of previous definition is not met, then (H, ◦, T ) is called
a semi-topological hypergroup.

Let (P, T ) be a topological space, where (P, ◦, e,−1 ) be a polygroup. Then the
(P, T ) is called a topological polygroup (in short TP) if the following axioms hold:

(1) The mapping ◦ : P × P 7−→ P ∗(P ) be continuous, where ◦(x, y) = x ◦ y;
(2) The mapping −1 : P 7−→ P be continuous, where −1(x) = −x.

We can combine items (1),(2) and present the following case:
The mapping φ : P × P 7−→ P ∗(P ) be continuous, where φ(x, y) = x ◦ y−1 .
The following theorem help us to determine the continuity of hyperoperation.

We us to use the following theorem for the continuity test.

Theorem 3. The hyperoperation ◦ : P × P 7−→ P ∗(P ) is continuous, where P is
a polygroup ⇐⇒ ∀a, b ∈ P and C ∈ T with the property that a ◦ b ⊆ C then there
exist A,B ∈ T with the property that a ∈ A and b ∈ B and A ◦B ⊆ C [9].

Example 3. [18] Let P be {e, a, b, c} and multiplication table be:

◦ e a b c
e e a b c
a a {e, a} c {b, c}
b b c e a
c c {b, c} a {e, a}

Hyperoperation ◦ : P × P 7−→ P ∗(P ) is continuous with topologies:
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Tdis,
Tndis,
T1 = {∅, P, {e, b}},
T2 = {∅, P, {e}, {b}},
since x−1 = x for all x ∈ P , inverse operation is identity and identity function is
continuous with every topology, it follows that P with topologies T1, T2 is topological
polygroup.

Hyperoperation ◦ : P × P 7−→ P ∗(P ) with below topologies is not continuous.

T3 = {∅, P, {e}},
T4 = {∅, P, {a}},
T5 = {∅, P, {b}},
T6 = {∅, P, {c}},
T7 = {∅, P, {e, a}},
T8 = {∅, P, {e, c}},
T9 = {∅, P, {a, b}},
T10 = {∅, P, {a, c}},
T11 = {∅, P, {b, c}},
T12 = {∅, P, {e, a, b}},
T13 = {∅, P, {e, a, c}},
T14 = {∅, P, {e, b, c}},
T15 = {∅, P, {a, b, c}},
T16 = {∅, P, {e}, {a}}.

If the condition (2) of previous defintion is not met, then (P, ◦, e,−1 , T ) is called
a semi-topological polygroup.

3. Soft Semi-Topological Polygroups

The first definition we provide for soft semi-topological polygroups is as follows,
and the examples and results that follow from this definition will be given below.

Definition 2. Let T be a topology on a polygroup P . Let (F, A) be a soft set over
P . Then the system (F, A, T ) said to be soft semi-topological polygroup over P if
the following axioms hold:

(a) F(a) is a subpolygroup of P for all a ∈ A.
(b) The mapping (x, y) 7−→ x ◦ y of the topological space F(a) × F(a) onto

P ∗(F(a)) is continuous for all a ∈ A.

Topology T on P induces topologies on F(a) , F(a)×F(a) and by Theorem 2 on
P ∗(F(a)).
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If A be {e, a1, a2, ...}, B be {e, b1, b2, ...}, and the table for ∗ in A[B] be the
following form:

e a1 a2 ... b1 b2 ...
e e a1 a2 ... b1 b2 ...
a1 a1 a1a1 a1a2 ... b1 b2 ...
a2 a2 a2a1 a2a2 ... b1 b2 ...
...

...
...

...
...

...
...

...
b1 b1 b1 b1 ... b1 ∗ b1 b1 ∗ b2 ...
b2 b2 b2 b2 ... b2 ∗ b1 b2 ∗ b2 ...
...

...
...

...
...

...
...

...

Then several special cases of the algebra A[B] are useful [6, 7]. Before describing
them we need to assign names to the 2-elements polygroups. Let 2 denotes the
group Z2 and let 3 denotes the polygroup S3//⟨(12)⟩ ∼= Z3/T , where T is the
special conjugation with blocks {0}, {1, 2}. The multiplication table for 3 is

0 1
0 0 2
1 1 {0, 1}

The system 3[M ] is the result of adding a new identity to the polygroup [M ]. The
system 2[M ] is almost as good. For example, suppose that R is the system with
table

0 1 2
0 0 1 2
1 1 {0, 2} {1, 2}
2 2 {1, 2} {0, 1}

Example 4. With the above description, polygroup 2[R] will be as follows:

◦ 0 a 1 2
0 0 a 1 2
a a 0 1 2

1 1 1 {0, a, 2} {1, 2}
2 2 2 {1, 2} {0, a, 1}

Hyperoperation ◦ : 2[R] × 2[R] 7−→ P ∗(2[R]) is not continuous with the following
topologies:
T1 = {∅, 2[R], {0}},
T2 = {∅, 2[R], {a}},
T3 = {∅, 2[R], {1}},
T4 = {∅, 2[R], {2}},
T5 = {∅, 2[R], {0, 1}},
T6 = {∅, 2[R], {0, 2}},
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T7 = {∅, 2[R], {a, 1}},
T8 = {∅, 2[R], {a, 2}},
T9 = {∅, 2[R], {1, 2}},
T10 = {∅, 2[R], {0, a, 1}},
T11 = {∅, 2[R], {0, a, 2}},
T12 = {∅, 2[R], {a, 1, 2}},
T13 = {∅, 2[R], {0, 1, 2}}.
But ◦ : 2[R]× 2[R] 7−→ P ∗(2[R]) is continuous with

T14 = {∅, 2[R], {0, a}}, T15 = {∅, 2[R], {0}, {a}}
This means that (2[R], Tdis), (2[R], Tndis), (2[R], T14) and (2[R], T15) are semi-
topological polygroups. Subpolygroups of 2[R] are ∅, 2[R], {0}, {0, a}. Let A be a
arbitrary set and a1, a2, a3 ∈ A and define a soft set F by

F(x) =


{0} if x = a1
{0, a} if x = a2
2[R] if x = a3
∅ otherwise.

In conclusion (F, A, T14) and (F, A, T15) are soft semi-topological polygroups [18].

Example 5. Polygroup 3[R] will be as follows:

◦ 0 a 1 2
0 0 a 1 2
a a {0, a} 1 2

1 1 1 {0, a, 2} {1, 2}
2 2 2 {1, 2} {0, a, 1}

Hyperoperation ◦ : 3[R] × 3[R] 7−→ P ∗(3[R]) is not continuous with the following
topologies:
T1 = {∅, 3[R], {a}},
T2 = {∅, 3[R], {1}},
T3 = {∅, 3[R], {2}},
T4 = {∅, 3[R], {0, 1}},
T5 = {∅, 3[R], {0, 2}},
T6 = {∅, 3[R], {a, 1}},
T7 = {∅, 3[R], {a, 2}},
T8 = {∅, 3[R], {1, 2}},
T9 = {∅, 3[R], {0, a, 1}},
T10 = {∅, 3[R], {0, a, 2}},
T11 = {∅, 3[R], {a, 1, 2}}.
Nevertheless hyperoperation ◦ : 3[R]× 3[R] 7−→ P ∗(3[R]) is continuous with
T12 = {∅, 3[R], {0}},
T13 = {∅, 3[R], {0, a}},
T14 = {∅, 3[R], {0}, {a}}.
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Therefore, (3[R], (Ti)i=12,13,14) are semi-topological polygroups. Subpolygroups of
3[R] are ∅, 3[R], {0}, {0, a}. Let A be 3[R] and define a soft set F by

F(x) =


{0} if x = 0
{0, a} if x = a
3[R] if x = 1
∅ if x = 2.

Then, (F, A, (Ti)i=12,13,14)) is a soft semi-topological polygroup. Now, let A be ar-
bitrary set and a1, a2 ∈ A and define a soft set F by

F(x) =

 ∅ if x = a1
{0, a} if x = a2
{0} otherwise.

In this case (F, A, (Ti)i=3,4,5,8,9,10) are soft semi-topological polygroups.

Theorem 4. [22] Let (F, A) be a soft polygroup over P and (P, T ) be a semi-
topological polygroup. then (F, A, T ) is a soft semi-topological polygroup over P .

Theorem 5. [22] Let (F, A, T ) and (G, B, T ) be soft semi-topological polygroups
over P . Then (F, A, T )∩̂(G, B, T ) and (F, A, T )∩E(G, B, T ) are soft semi-topological
polygroup over P .

Theorem 6. [22] If (Fi, Ai, T ) be a nonempty family of soft semi-topological poly-
groups, then ∩̂i∈I(Fi, Ai, T ) is a soft semi-topological polygroup over P .

Theorem 7. [22] Let (F, A, T ) and (G, B, T ) be soft semi-topological polygroups
over P . Then (F, A, T )∧̂(G, B, T ) and (F, A, T )∪̂(G, B, T ) are soft semi-topological
polygroup.

Theorem 8. [22] Let (Fi, Ai, T ) be a nonempty family of soft semi-topological poly-
groups over P . Then ∧̂i∈I(Fi, Ai, T ) and ∪̂i∈I(Fi, Ai, T ) are soft semi-topological
polygroup.

Definition 3. Let (F, A, T ) be a soft semi-topological polygroup over P . Then
(G, B, T ) is called a soft semi-topological subpolygroup (resp. normal subpolygroup)
of (F, A, T ) if the following items hold:

(a) B subset of A and G(b) is a subpolygroup (resp. normal subpolygroup) of
F(b) for every b ∈ supp(G, B).

(b) the mapping (x, y) 7−→ x ◦ y of the topological space G(b) × G(b) onto
P ∗(G(b)) is continuous for every b ∈ supp(G, B).

Theorem 9. Let (F, A, T ) be a soft semi-topological polygroup over P, and (Gi, Bi, T )i∈I

be a non-empty family of (normal) soft semi-topological subpolygroups of (F, A, T ).
Then

(1) If ∩i∈IBi ̸= ∅, then ∩̂i∈I(Gi, Bi, T ) is a (normal) soft subpolygroup of
(F, A, T ).
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(2) If Bi ∩ Bj = ∅ for all i, j ∈ I and i ̸= j, then (∩E)i∈I(Gi, Bi, T ) is a
(normal) soft subpolygroup of (F, A, T ).

(3) If Bi ∩Bj = ∅ for all i, j ∈ I and i ̸= j, then ∪̂i∈I(Gi, Bi, T ) is a (normal)
soft subpolygroup of (F, A, T ).

(4) The ∧̂i∈I(Gi, Bi, T ) is a (normal) soft subpolygroup of the soft polygroup
∧̂i∈I(F, A, T ).

Proof.
(1) Suppose that C = ∩i∈I(Bi) and H(c) = ∩i∈I(Gi(c)) Furthermore C ⊆ A and
H(c) is a (normal) soft subpolygroup of A and the mapping in Definition 3 (b) is
continuous on H(c).
(2) Give C = ∪i∈I(Bi),H(c) = Gi(c) where c ∈ Bi and H(c) is a (normal) soft
subpolygroup of F (c) and the mapping in Definition 3 (b) is continuous on H(c).
(3) Take C = ∪i∈IBi,H(c) = Gi(c), where c ∈ Bi thus Bi ⊆ A notably ∪i∈I(Bi) ⊆
A in conclusion H(c) = Gi(c) is a (normal) soft subpolygroup of F(c) and the
mapping in Definition 3 (b) is continuous on H(c).
(4) Select C = ×i∈I(Bi),H((ci)i∈I) = ∩i∈IGi((ci)i∈I) and Gi(ci) is a (normal)
soft subpolygroup of ×i∈IF(ci) in conclusion the mapping in Definition 3 (b) is
continuous on H((ci)i∈I). □

Definition 4. Let (F, A, T ) and (G, B, ξ) be the soft semi-topological polygroups
over P1 and P2, where T and ξ are topologies are defined over P1 and P2 respectively.
Let f : P1 7−→ P2 and g : A 7−→ B be two mappings. Then the pair (f, g) is called
a soft semi-topological polygroup homomorphism if the following condition true:

(a) f be strong epimorphism and g be surjection.
(b) f(F(a)) = G(g(a)).
(c) fa : (F(a), TF(a)) 7−→ (G(g(a)), ξG(g(a))) is continuous.

Then (F, A, T ) is said to be soft semi-topologically homomorphic to (G, B, ξ) and
denoted by(F, A, T ) ∼ (G, B, ξ). If f is a polygroup isomorphism, g is bijective and
fa is continuous as well as open, then the pair (f, g) is called a soft semi-topological
polygroup isomorphism. In this case (F, A, T ) is soft topologically isomorphic to
(G, B, ξ), which is denoted by (F, A, T ) ≃ (G, B, ξ).

Theorem 10. If (F, A, T ) ∼ (G, B, ξ) and (F, A, T ) is a normal soft polygroup over
P , then (G, B, ξ) is a normal soft polygroup over Q, where (F, A, T ) and (G, B, ξ)
be soft semi-topological polygroups over P and Q.

Proof. Let (f, g) be a soft semi-topological homomorphism from (F, A) to (G, B).
For all x ∈ supp(F, A), F(x) is a normal subpolygroup of P ; then f(F(x)) is a
normal subpolygroup of Q. For all y ∈ supp(G, B), there exists x ∈ supp(F, A)
with the property that g(x) = y. In conclusion G(y) = G(g(x)) = f(F(x)) is a
normal subpolygroup of Q. Thus (G, B) is a normal soft polygroup on Q.

□
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Theorem 11. Let N be a normal subpolygroup of P , and (F, A, T ) be a soft semi-
topological polygroup over P . Then (F, A, T ) ∼ (G, A, T ), where G(x) = F(x)/N
for all x ∈ A, and N ⊆ F(x) for all x ∈ supp(F, A).

Proof. Firstly supp(G, A) = supp(F, A) and we know that P/N is a factor poly-
group. Since for every x ∈ supp(F, A),F(x) is a subpolygroup of P and N ⊆ F(x),
it follows that F(x)/N is also a factor polygroup, which is a subpolygroup of P/N .
Thus (G, A) is a soft polygroup over P/N . Therefore f : P 7−→ P/N, f(a) = aN .
Clearly, f is a strong epimorphism. In other words g : A 7−→ A, g(x) = x. Then g is
a surjective mapping. For all x ∈ supp(F, A), f(F(x)) = F(x)/N = G(x) = G(g(x)).
For all x ∈ A− supp(F, A), notably f(F(x)) = ∅ = G(g(x)). Therefore, (f, g) is a
soft semi-topological homomorphism, and (F, A, T ) ∼ (G, B, ξ).

□

Definition 5. Closure of (F, A, T ) denoted by (F, A, T ) and is defined by F(a) =
F(a) where F(a) is the closure of F(a) in topology on P .

Theorem 12. [9] Let P be a semi-topological polygroup with the property that every
open subset of P is a complete part. Then:

(1) If K is a subhypergroup of P , then as well as K.
(2) If K is a subpolygroup of P , then as well as K.

Theorem 13. Let (F, A, T ) be a soft semi-topological polygroup over a semi-topological
polygroup (P, T ) and every open subset of P is a complete part Then:

(1) (F, A, T ) is also a soft semi-topological polygroup over (P, T ).
(2) (F, A, T )⊂̂(F, A, T ).

Proof. (1) By Theorem 12 F(a) is subpolygroup P and since (P, T ) is a semi-
topological polygroup, it follows that condition (b) of Definition 2 holds on

F(a).
(2) It is clear.

□

Definition 6. Let (F, A), (G, B) be soft sets over polygroup < P, e, ◦,−1 > define
(F, A)◦̂(G, B) = (H,C) where C = A ∪B for all a ∈ C, and

H(a) =

 F(a) if a ∈ A−B
G(a) if a ∈ B −A
F(a) ◦G(a) if a ∈ A ∩B

Theorem 14. [9] Let A and B be subsets of polygroup P with the property that
every open subset of P is a complete part. Then:

(1) A ◦B ⊆ A ◦B.

(2) (A)−1 = (A−1).

Theorem 15. [9] In every topological space (X,T ) if A,B ⊆ X we have:
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(1) A ∪B = A ∪B.
(2) A ∩B = A ∩B.

Theorem 16. Let (F, A, T ) , (F, B, T ) be soft semi-topological polygroups over a
semi-topological polygroup (P, T ) and every open subset of P is a complete part
Then:

(1) (F, A, T )∪̂(G, B, T ) = (F, A, T )∪̂(G, B, T ).
(2) (F, A, T )∩̂(G, B, T ) = (F, A, T )∩̂(G, B, T ).
(3) (F, A, T )∧̂(G, B, T ) = (F, A, T )∧̂(G, B, T ).
(4) (F, A, T )◦̂(G, B, T )⊆̂(F, A, T )◦̂(G, B, T ).
(5) (F ,A, T ) ∩E (G, B, T ) = (F, A, T ) ∩E (G, B, T ).

Proof. (1) Let a be element ofA−B. then (F, A, T )∪̂(G, B, T )(a) = (F, A, T )(a) =
F(a) In conclusion, (F, A, T )∪̂(G, B, T )(a) = F(a) = F(a).

Let a be element of B−A. Then (F, A, T )∪̂(G, B, T )(a) = (G, B, T )(a) =
G(a) In conclusion, (F, A, T )∪̂(G, B, T )(a) = G(a) = G(a).

Let a be element of A ∩ B. Then (F, A, T )∪̂(G, B, T )(a) = F(a) ∪ G(a)

In conclusion, (F, A, T )∪̂(G, B, T )(a) = F(a) ∪G(a). By Theorem 15 proof
is complete.

(4) Let a be element of A − B. Then (F, A, T )◦̂(G, B, T )(a) = (F, A, T )(a) =
F(a) In conclusion, (F, A, T )◦̂(G, B, T )(a) = F(a) = F(a).

Let a be element of B−A. Then (F, A, T )◦̂(G, B, T )(a) = (G, B, T )(a) =
G(a) In conclusion, (F, A, T )◦̂(G, B, T )(a) = G(a) = G(a).

Let a be element of A ∩ B. Then (F, A, T )◦̂(G, B, T )(a) = F(a) ◦ G(a)

In conclusion, (F, A, T )◦̂(G, B, T )(a) = F(a) ◦G(a). By Theorem 14 proof
is complete.

Other items are similar (1) or (4). □

The second definition of soft semi-topological polygroups is as follows, and this
definition is based on soft topologies and soft continuity. The results of this def-
inition follow. To distinguish the latter Definition from the previous one, we use
distinct symbols.

A family θ of soft sets over U is called a soft topology on U if the following
axioms hold:

(1) ∅̂ and Û are in θ,
(2) θ is closed under finite soft intersection,
(3) θ is closed under (arbitrary) soft union.

We will use the symbol (U, θ,E) to denote a soft topological space and soft set
F is called a soft close set if Fĉ is soft open set, where each member of θ said to be
a soft open set [4, 26].
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Example 6. Let U be Z2 and θ be {∅̂, {e2} × Z2, Ẑ2}, where E = {e1, e2} and
{e2}×Z2 be soft set F : E 7−→ P (Z2) with the property that F(e1) = ∅;F(e2) = Z2.
Then (Z2, θ, E) is soft topological space.

Example 7. Let P be {e, a, b, c} and hyperoparation ◦ be as follow:

◦ e a b c

e e a b c
a a {e, a} c {b, c}
b b c e a
c c {b, c} a {e, a}

polygroup P with topologies θ1 = {∅̂, {e1} × P, P̂}, θ2 = {∅̂, {e2} × P, P̂} are soft
topological spaces.

Closure of F denoted by Ĉl(F) and define soft intersection of all soft closed
supersets of F, where F be soft set over U .

A soft set F said to be a soft neighborhood of x if there exists a soft open set G
with the property that x∈̂G⊆̂F, where x be an element of the universe U . The soft
neighborhood system of x we will consider the collection of all soft neighborhoods
of x.

Let V be a subset of the universe U . A soft set F said to be a soft neighborhood
of V if there exists a soft open set G with the property that V ⊆̂G⊆̂F. (i.e ∀e ∈ E :
V ⊆ G(e) ⊆ F(e)).

The collection of all soft neighborhoods of V said to be the soft neighborhood
system of V .

Definition 7. Let P1, P2 be polygroups and (P1, θ1, E), (P2, θ2, E) be soft topological
spaces. The function φ : (P1, θ1, E) 7−→ (P2, θ2, E) said to be a soft continuous
function if for all x ∈ P1 and for all soft neighborhood Fφ(x) of φ(x), there exists a

soft neighborhood Fx of x with the property that φ(Fx)⊆̂Fφ(x).

Theorem 17. The function φ : (P1, θ1, E) 7−→ (P2, θ2, E) is soft continuous func-
tion if and only if for every soft closed set F′, the inverse image φ−1(F′) is also soft
closed.

Proof. This is easily seen to be an equivalence relation.
□

Theorem 18. Let φ : (P1, θ1, E) 7−→ (P2, θ2, E) be function in this case, for every
soft closed set F′, the inverse image φ−1(F′) is also soft closed if and only if for all

soft set F, we have φ(Ĉl(F))⊆̂Ĉl(φ(F)).

Proof. (i) ⇐= Let F′ be soft closed set . Then we have φ(φ−1(F′))⊆̂F′. The
soft closeness of F′, together with the assumption (for all soft set F, we have
φ(Ĉl(F))⊆̂Ĉl(φ(F))), proves that
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φ(Ĉl(φ−1(F′)))⊆̂Ĉl(φ(φ−1(F′)))⊆̂F′

Therefore, it holds that Ĉl(φ−1(F′))⊆̂φ−1(F′)⊆̂Ĉl(φ−1(F′)), which shows
that φ−1(F′) is soft closed.

(ii) =⇒ We have F⊆̂φ−1(Ĉl(φ(F))) for any soft set F. Since (for every soft
closed set F′, the inverse image φ−1(F′) is also soft closed), we have

Ĉl(F)⊆̂φ−1(Ĉl(φ(F))). Thus, we have

φ(Ĉl(F))⊆̂φ(φ−1(Ĉl(φ(F))))=̂Ĉl(φ(F))
□

Theorem 19. Let φ : (P1, θ1, E) 7−→ (P2, θ2, E) be a function. If for all soft
open set F′ ∈ θ2, the inverse image φ−1(F′) is also soft open set then φ is a soft
continuous function.

Proof. For all x ∈ P1 and a soft open neighborhood F′ of φ(x), φ−1(F′) is a soft

open set having x as a soft element. Since φ(φ−1(F′))⊆̂F′, give F = φ−1(F′) in this

case φ(F)⊆̂F′. □

Example 8. We prove that the opposite Theorem 19 is not true.
Let P1 be < {u}, θ1, {e1, e2} > and P2 be < {u}, θ2, {e1, e2} >, where

θ1 = {∅̂, {(e1, u), (e2, u)}}
θ2 = {∅̂, {(e2, u)}, {(e1, u), (e2, u)}}

In soft topologies, {e1, e2} × {u} is the soft neighborhood of the point u. Thus
id : P1 7−→ P2 satisfies in second part Theorem 19. However, id−1({(e2, u)}) is not
soft open in P1, showing that the inverse images of soft open sets are, in general,
not soft open. Show that, not only id : P1 7−→ P2 but also id−1 : P2 7−→ P1 satisfy
in second part Theorem 19.

Definition 8. A bijection φ : P1 7−→ P2 said to be a soft homeomorphism between
(P1, θ1, E) and (P2, θ2, E) if φ and φ−1 are soft continuous.

Theorem 20. Let φ : (P1, θ1, E) 7−→ (P2, θ2, E) be a soft continuous function and
for all soft open set F2 ∈ θ2, there exists a soft open set F1 ∈ θ1 with the property
that for all x ∈ P1; x∈̂F1 if and only if x∈̂φ−1(F2).

Proof. For every x ∈ P1 with φ(x)∈̂F2, choose a soft open Fx ∈ θ1 with the property

that x∈̂Fx and φ(Fx)⊆̂F2. Then define F1 =
⋃̂
{Fx|x ∈ P1, φ(x)∈̂F2} is the desired

soft open set. □

Definition 9. Let (P, ◦, e,−1 ) be a polygroup and θ be a soft topology on P with a
parameter set E. then (P, θ, E) is a soft semi-Topological polygroup if the following
item true:
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For each soft neighborhood F of p ◦ q, where (p, q) ∈ P × P there exist soft

neighborhoods Fp and Fq of p and q with the property that Fp ◦ Fq⊆̂F.

Every soft semi-topological group is soft semi-Topological polygroup.

Example 9. Let E be {e1, e2} and θ be {∅̂, {(e1, 1)}, Ẑ2}. Conclusion (Z2, θ, E) is
a soft semi-Topological polygroup.

Example 10. Let P be {e, a, b, c} and hyperoparation ◦ be as follow:

◦ e a b c

e e a b c
a a {e, a} c {b, c}
b b c e a
c c {b, c} a {e, a}

And E be {e1, e2, e3}. Then the polygroup P with each of the following topologies

θ1 = {∅̂, {e1} × P, P̂}
θ2 = {∅̂, {e2} × P, P̂}
θ3 = {∅̂, {e3} × {a, b}, P̂}
θ3 = {∅̂, {e3} × {a, b}, {e1} × {e, b}, P̂}
θ4 = {∅̂, {e3} × {a, b}, {e1} × {e, b}, {e2} × {e, b, c}, P̂}

is a soft semi-Topological polygroup.

The family of soft sets Θ, is said to be a soft indiscrete (soft discrete) topology

on P if Θ = {∅̂, P̂}(Θ = SS(P )), in this case (P,Θ) is called a soft indiscrete space
(soft discrete space) over P , where SS(P ) is the set of all soft sets over P [26].

Example 11. Every polygroup with soft discrete or indiscrete topology is a soft
semi-Topological polygroup.

If we want to merge the previous two Definitions of soft semi-topological poly-
groups into one Definition, it will be as follows. We will show with an example how
the generalized Definition refers to the first Definition and under what conditions
the second Definition.

Definition 10. Let (P, θ,A) be a soft topology on P and (F, E) be a soft set over
P , where A ̸= E are sets of parameters. Then (F, θ, A,E, ◦) is called a generalized
soft semi-topological polygroup over P if the following axioms satisfies:

(1) F(e) is a subpolygroup of P for all e ∈ E.
(2) For all e ∈ E and every soft open neighborhoods Fp◦q of p◦q subset of F(e),

there exist an soft open neighborhood Fp of p and an soft open neighborhood

Fq of q, such that Fp ◦ Fq⊆̂Fp◦q, with the restricted soft topology θ to F(e)
which is denoted by θ |F(e).
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The following example proves that the two Definitions soft semi-topological poly-
group are a special case of Definition 10.

Example 12. Let (F,E) be P̂ in this case (F, θ, A,E, ◦) is a soft semi-Topological
polygroup via Definition 9 and if A be a single member set then (F, θ, A,E, ◦) is a
soft semi-topological polygroup via Definition 2. It should be noted that in case that
set A contains a parameter, the soft topology becomes a normal topology.

Example 13. Let P = (Z4,+), θ = {∅̂, Ẑ4, {(a1, {0̂, 2̂}), (a2,∅)}, {(a1, {1̂, 3̂}), (a2,Z4)}},
where A = {a1, a2} and E = {e1, e2}, (E,F ) = {(e1, {0̂, 2̂}), (e2,Z4)}. In this

case we have θ |F(e1)= {∅̂, {0̂, 2̂}, {(a1, {0̂, 2̂}), (a2,∅)}, {(a1,∅), (a2, {0̂, 2̂})}}, and
θ |F(e2)= θ.

With above condition (F, θ, A,E,+) is a generalized soft semi-topological poly-
group over P .

Definition 11. Let (F, θ, A,E, ◦) be a generalized soft semi-topological polygroup
over P and G be a soft subset of F. Then (G, θ, A,E, ◦) sub-gstp(sub-generalized soft
semi-topological polygroup) of (F, θ, A,E, ◦) if (G, θ, A,E, ◦) also is a generalized
soft semi-topological polygroup over P .

Example 14. Let (F, θ, A,E,+) be in Example 13, in conclusion (F, θ, A,E,+)
(F, θ, {a1}, E,+), (Z4, θ, A,E,+) are sub-gstp of (F, θ, A,E,+).

Definition 12. Let (P, ◦, en,−1 ) and (Q, ⋆, e′n,
−1 ) be polygruops if P ∗ ⊆ P , Q ⊆

Q with the property that (P̂ ∗, θ, A,E, ◦),(Q̂, θ, A,E, ⋆) are generalized soft semi-
topological polygroup over P ∗ and Q then F = (f1, f2) said to be a morphism if the
following conditions are true:

(i) f1 : (P, θ,A) 7−→ (Q, θ,A) is soft continuous.
(ii) f2 : (P, ◦) 7−→ (Q, ⋆) is a polygroup homomorphism.

Theorem 21. The image of a generalized soft semi-topological polygroup under a
morphism, is also a generalized soft semi-topological polygroup.

Proof. Let (P, ◦, en,−1 ) , (Q, ⋆, e′n,
−1 ) be polygruops, P ∗ ⊆ P , Q ⊆ Q with

the property that (P̂ ∗, θ, A,E, ◦),(Q̂, θ, A,E, ⋆) are generalized soft semi-topological
polygroup over P ∗ and Q and F = (f1, f2)be a morphism. since for every e ∈ E,
f2(F (e)) is subpolygroup of Q as f2 is a polygroup homomorphism, it follows that

F ((P̂ ∗, θ, A,E, ◦)) is a generalized soft semi-topological polygroup. Furthemore the
composition of two continuous functions is continuous, this proves the second and
third conditions. □

Definition 13. Let (F, θ, A,E, ◦) be a generalized soft semi-topological polygroup
over P . The (F, θ, A,E, ◦) is called Tigeneralized soft semi-topological polygroup if
(P, θ,A) is a soft Tispace.

Theorem 22. [11]Let (F, θ, A,E, ◦) be a generalized soft semi-topological polygroup
over P . the following items are equivalents:
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(i) (F, θ, A,E, ◦) T0generalized soft semi-topological polygroup.
(ii) (F, θ, A,E, ◦) T1generalized soft semi-topological polygroup.
(iii) (F, θ, A,E, ◦) T2generalized soft semi-topological polygroup.

Let P ,Q,R are polygroups and hyperoperation of polygroups is ”◦” and SS(P )
is all soft sets are defined on the set of parameters E. Note that in a polygroup,
the combination of two members will be a set.

Definition 14. [13] Consider FA ∈ SS(P ) , GB ∈ SS(Q) and ψ : P 7−→ Q
, φ : A 7−→ B be two mappings. The (φ,ψ) is a soft mapping from FA to GB

denoted by (φ,ψ) : FA 7−→ GB if and only if

ψ(FA(a)) = GB(φ(a)),∀a ∈ A.

We consider that all soft sets are defined on the set of parameters E and all
soft mappings are defined with respect to the identity on E. Note that if (idE , f) :
F 7−→ G is a soft mapping we write f instead of (idE , f).

Definition 15. The cartesian product of FA and GB is shown with soft set (FA×̂GB) ∈
SS(P × Q), such that (FA×̂GB)(a, b) = FA(a) × GB(b),∀(a, b) ∈ A × B, where
FA ∈ SS(P ) and GB ∈ SS(Q) [3].

Throughout this section, we will deal with soft topological spaces defined over a
soft set F ∈ SS(P ). Thus, we will recall the following Definition for soft topology
[26].

Definition 16. Consider F ∈ SS(P ) and Θ be a family of soft subsets of F and

(i) ∅̂,F ∈ Θ;
(ii) Θ is closed under finite intersection;
(iii) Θ is closed under arbitrary union.

We say that Θ is a soft topology on F and (F,Θ) is called the soft topological space
(in short STS) and V ∈ SS(P ) is called a soft open set if V ∈ Θ [4].

Example 15. Assume that E = R+(the set of all positive real numbers), where R be
the set of all real numbers. Let ε ∈ E and Fε ∈ SS(R) such that Fε(e) = (e−ε, e+ε),
for all e ∈ E. Consider Θ = {Fε | ε ∈ E}. Then (R,Θ) is a soft semi-topological
space [2].

Definition 17. Assume that (P,Θ) and (Q,Λ) are soft topological spaces and f be
mapping f : P 7−→ Q then

(1) If f satisfies in the condition F ∈ Θ =⇒ f(F) ∈ Λ, then f is said to be soft
open;

(2) f is said to be soft continuous, if and only if for any x ∈ P and any soft
open neighborhoods Ff(x) of f(x), there exist an soft open neighborhood Fx

of x such that f(x)∈̂f(Fx)⊆̂Ff(x);
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(3) If f is bijective and f , f−1 are soft continuous, then f is said to be soft
homeomorphism;

(4) Assume that F ∈ SS(P ) and G ∈ SS(Q), then the mapping f : F 7−→ G
is said to be soft continuous, if and only if for any x∈̂F and any soft open
neighborhoods Ff(x) of f(x), there exist an soft open neighborhood Fx of x

such thatf(x)∈̂f(Fx)⊆̂Ff(x) [11].

In the above Definition, f(x) may be a set. In particular, when f is hyperoper-
ation of polygroup.

Definition 18. Assume that (P,Θ) and (Q,Λ) be soft topological spaces. We can
make soft product topological space (P ×Q,Θ×̂Λ), where the collection of all unions
of soft sets in {F×̂G | F ∈ Θ,G ∈ Λ} is a soft topology on P ×Q and it is said to
be soft product topology on P ×Q and denoted by (Θ×̂Λ) [19].

Theorem 23. Assume that (P,Θ) and (Q,Λ) is soft topological spaces. Then
projp : (P × Q,Θ×̂Λ) 7−→ (P,Θ) and projq : (P × Q,Θ×̂Λ) 7−→ (Q,Λ) are

soft continuous and soft open too the smallest soft topology on P × Q for which
projp, projq be soft continuous is Θ×̂Λ [19].

Theorem 24. The mapping f : (R,ϕ) 7−→ (P × Q,Θ×̂Λ) is soft continuous, if
and only if the mappings (projq ◦ f) and (projp ◦ f) are soft continuous, where
(P,Θ), (Q,Λ) and (R,ϕ) are soft topological spaces [19].

Theorem 25. Assume that f : P 7−→ Q and g : Q 7−→ R be soft continuous.
Then the mapping g ◦ f is soft continuous, where (P,Θ) , (Q,Λ) and (R,ϕ) be soft
topological spaces [19].

Definition 19. The set β is a base for a soft topological space (P,Θ) if we can
make every soft open set in Θ as a union of elements of β [26].

Definition 20. Suppose that Q is subset of P and (P,Θ) is a soft topological space.

Then the set ΘQ̂ = {Q̂∩̂F | F ∈ Θ} is said to be the soft relative topology on Q, and

(Q,ΘQ̂) is a soft subspace of (P,Θ) [26].

Theorem 26. Assume that (P,Θ) is a soft topological space and F ∈ SS(P ). Then
the collection ΘF = {F∩̂G | G ∈ Θ} is a soft topology over F.

Proof. The first, Θ is closed under the finite intersection and arbitrary union for
all soft sets over P that is indeed ΘF is closed under the finite intersection and
arbitrary union since the elements of ΘF are soft sets over P .

The second, since ΘF = {F∩̂G | G ∈ Θ} and F∩̂G⊆̂F, it follows that element soft
ΘF are soft subsets of F. Moreover, since (P,Θ) be a soft topological space over P ,

then P̂ , ∅̂ ∈ Θ. So, F = F∩̂P̂ ∈ ΘF and ∅̂ = F∩̂∅̂ ∈ ΘF. □

(F,ΘF) is referred to as a soft subspace of (P,Θ), where ΘF is said to be the soft
relative topology on F.
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Theorem 27. The union of two STS is not necessary a STS. However, the inter-
section of two STS is a STS [21].

Definition 21. Assume that Θ is a soft topology on P and F ∈ SS(P ) is a soft
polygroup, then the soft topological space (F,Θ) is said to be soft semi-topological
soft polygroup over P (in short SSTSP) if the soft mappings f : (a, b) 7−→ a◦b from
(F×̂F,Θ×̂Θ) to (F,ΘF) is soft continuous.

Definition 22. The sum of F and G is the soft set F◦̂G ∈ SS(P ), such that
(F◦̂G)(e) = F(e)◦G(e), for all e ∈ E, where that F,G ∈ SS(P ) are soft polygroups.

The following theorem presents an equivalent definition for SSTSP.

Theorem 28. Suppose that F is a soft polygroup over P where Θ is a soft topology
on P . Then (F,Θ) is an SSTSP over P if and only if the following condition be
true:

For all a, b∈̂F and every soft open neighborhoods Fa◦b of a ◦ b, there exist an
soft open neighborhood Fa of a and an soft open neighborhood Fb of b, such that
Fa◦̂Fb⊆̂Fa◦b.

Proof. [⇒] The first assume that (F,Θ) is an SSTSP. Then f : (a, b) 7−→ a ◦ b from
(F×̂F,Θ×̂Θ) to (F,ΘF), is soft continuous. Suppose that a, b∈̂F, and Fa◦b of an ar-
bitrary soft open neighborhood of f(a, b) = a◦ b. Then by soft-continuity in Defini-
tion 17, for every (a, b) ∈ F×̂F and every soft open neighborhoods Ff(a,b) of f(a, b),

there is an soft open neighborhood F(a,b) of (a, b) such that a ◦ b∈̂f(F(a,b))⊆̂Ff(a,b).

Now F(a,b) is a soft open set in Θ×̂Θ, which means there exist

{Fai
,Fbi ∈ Θ, i ∈ I} such that F(a,b) =

⋃
i∈I

Fai
×̂Fbi . That shows there exist i ∈ I

such that a∈̂Fai and b∈̂Fbi . So, Fai×̂Fbi ∈ Θ×̂Θ and Fai×̂Fbi⊆̂F(a,b) and

Fai
◦̂Fbi = f(Fai

×̂Fbi)⊆̂f(F(a,b))⊆̂Ff(a,b).

[⇐] For all a, b∈̂F and every soft open neighborhoods Fa◦b of a◦ b, there exist an
soft open neighborhood Fa of a and an soft open neighborhood Fb of b, such that
Fa◦̂Fb⊆̂Fa◦b.

However, Fa◦̂Fb = f(Fa×̂Fb), since a∈̂Fa and b∈̂Fb and they are soft open neigh-
borhoods in Θ, then Fa×̂Fb is an soft open neighborhood in Θ×̂Θ contains (a, b).
Therefore, by Definition of soft continuity 17, the mapping f is soft continuous. □
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Abstract. By using the Lp(·)−boundedness of a maximal operator defined

on homogeneous space, it has been shown that the B−maximal operator is
bounded. In the present paper, we aim to bring a different approach to the

boundedness of the B−maximal operator generated by generalized translation

operator under a continuity assumption on p(·). It is noteworthy to mention
that our assumption is weaker than uniform Hölder continuity.

1. Introduction

Nowadays, there is a big attention on the singular integral operator and maximal
operators which are defined on variable Lebesgue spaces. The problem that such
operators are bounded under which conditions is well-studied and it is the main
topic of harmonic analysis. Lp(·)−boundedness of the Hardy-Littlewood maximal
operator and singular integral operators have been investigated in [1–5].

This study is dealing with the boundedness of maximal operator generated by
the Laplace-Bessel differential operator

∆B :=

k∑
i=1

Bi +

n∑
i=k+1

∂2

∂x2
i

, Bi =
∂2

∂x2
i

+
γi

xi

∂

∂xi
, 1 ≤ k ≤ n,

which has big importance in harmonic analysis. In [8], Guliyev has obtained the
Lp,γ−boundedness of the B−maximal operator. Moreover, in [6, 12], it has been
shown that the B−maximal operator is Lp(·),γ−bounded by using the Lp(·)− bound-
edness of a maximal operator whose domain is a homogeneous space.
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In this study, we obtain that the B−maximal operator is bounded on the vari-
able Lebesgue spaces. Here, there are some difficulties while studying the theory
of variable Lebesgue spaces. One of them, the generalized translation operator
is in general not continuous on the spaces Lp(·),γ . Particularly, if p(·) is not con-
stant, then the generalized translation operator T y is not continuous on the variable
Lebesgue spaces. But, it is still possible to overcome these difficulties by taking
some regularity conditions on this exponent function. In [7], it has been obtained
that the generalized translation operator on the spaces Lp(·),γ is bounded. The
construction of the article is as follows: The first section is devoted to introduction.
In the second section, we recall some basic concepts, notations and some known re-
sults which we need throughout the paper. In the third section, we present that the
B−maximal operator on the spaces Lp(·),γ is bounded under suitable assumptions
by a different approach.

2. Preliminaries

Now, we pause to collect some basic concepts, notations and known results which
are beneficial for us.

Let x = (x′, x′′), x′ = (x1, . . . , xk) ∈ Rk, and x′′ = (xk+1, . . . , xn) ∈ Rn−k.
Denote Rn

k,+ = {x ∈ Rn : x1 > 0, . . . , xk > 0, 1 ≤ k ≤ n}, γ = (γ1, . . . , γk),

γ1 > 0, . . . , γk > 0, |γ| = γ1 + . . .+ γk, and S+ = {x ∈ Rn
k,+ : |x| = 1}. Denote by

B+(x, r) the open ball of radius r centered at x, namely,
B+(x, r) = {y ∈ Rn

k,+ : |x − y| < r}. Let B+(0, r) ⊂ Rn
k,+ be a measurable set,

then

|B+(0, r)|γ =

∫
B+(0,r)

(x′)γdx = ω(n, k, γ)rn+|γ|,

where ω(n, k, γ) = π
n−k

2

2k

k∏
i=1

Γ
(

γi+1
2

)
(γi

2

) .

We will now introduce the spaces Lp(·),γ(Rn
k,+) and recall the basic properties of

it. Let P(Rn
k,+) be the set of all measurable functions p(·) : Rn

k,+ → [1,∞]. The

elements of P(Rn
k,+) are called variable exponent functions and also let

p− := ess inf
x∈Rn

k,+

p(x), p+ := ess sup
x∈Rn

k,+

p(x).

Given p(·), the conjugate exponent function is as follows:

1

p(x)
+

1

p′(x)
= 1, x ∈ Rn

k,+.

The analog of log-Hölder continuity for variable Lebesgue spaces related to the
Laplace-Bessel differential operator is defined by the following.
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Definition 1. Given a function p(·) : Rn
k,+ → [1,∞), p(·) is called log-Hölder

continuous on Rn
k,+, if there exist constants C0, C∞ > 0 and p∞ such that for all

|x− y| ≤ 1

2
, and x, y ∈ Rn

k,+,

|p(x)− p(y)| ≤ C0

− log |x− y|
, (1)

and

|p(x)− p∞| ≤ C∞

log(e+ |x|)
, (2)

where p∞ = lim
x→∞

p(x) > 1. If (1) and (2) hold for p(·), then it is denoted by

p(·) ∈ P log(Rn
k,+), and p(·) ∈ P log

∞ (Rn
k,+), respectively.

Lemma 1. [7] Let p(·) : Rn
k,+ → [1,∞) be continuous. The followings are equiva-

lent:

(i) p(·) is uniformly continuous with |p(x) − p(y)| ≤ C0

ln |x− y|−1
for all 0 <

|x− y| ≤ 1
2 .

(ii) |B+|p−−p+
γ ≤ C1 holds for all open balls B+.

The space Lp(·),γ(Rn
k,+) is known as the set of measurable functions f such that

for a variable exponent p(·) : Rn
k,+ → [1,∞],

∥f∥Lp(·),γ(Rn
k,+) = inf

{
λ > 0 : ρp(·),γ (f/λ) ≤ 1

}
< ∞,

where

ρp(·),γ :=

∫
Rn

k,+

|f(x)|p(x)(x′)γdx.

Note that the variable Lebesgue space Lp(·),γ(Rn
k,+) is a Banach space for 1 < p− ≤

p(x) ≤ p+ < ∞.
The definition of the generalized translation operator is as follows:

T yf(x) := Cγ,k

∫ π

0

. . .

∫ π

0

f [(x1, y1)α1
, . . . , (xk, yk)αk

, x′′ − y′′] dγ(α),

where Cγ,k = π− k
2 Γ(γi+1

2 )[Γ(γi

2 )]
−1, (xi, yi)αi

= (x2
i−2xiyi cosαi+y2i )

1
2 , 1 ≤ i ≤ k,

1 ≤ k ≤ n, and dγ(α) =

k∏
i=1

sinγi−1 αi dαi [13, 14]. Notice that the generalized

translation operator is related to the Laplace-Bessel differential operator.
The definition of the B−convolution operator is as follows:

(f ⊗ g)(x) =

∫
Rn

k,+

f(y)T yg(x)(y′)γdy.
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Given a function f ∈ Lloc
1,γ(Rn

k,+), then the maximal operator associated with the

Laplace-Bessel differential operator (B−maximal operator) (see [8]) is as follows:

Mγf(x) = sup
r>0

|B+(0, r)|−1
γ

∫
B+(0,r)

T y|f(x)|(y′)γdy.

Let B+ ∈ Rn
k,+ be an arbitrary ball and f ∈ Lloc

1,γ(Rn
k,+), then define

Mγ,B+f := |B+(0, r)|−1
γ

∫
B+

T y|f(x)|(y′)γdy.

By taking supremum over all balls centered at x, one can easily observe that

Mγf := sup
B+(x)

Mγ,B+(x)f.

As mentioned earlier, the variable Lebesgue spaces Lp(·),γ(Rn
k,+) have some un-

desired properties about the generalized translation operator. In order to overcome
this problem, it is necessary to give some smoothness conditions on p(·). The fol-
lowing theorem states the necessary condition for the boundedness of generalized
translation operator.

Theorem 1. [7] Let p(·) ∈ P log(Rn
k,+) with 1 < p− ≤ p+ < ∞. Then for all

f ∈ Lp(·),γ(Rn
k,+) ∩ S ′

+(Rn
k,+) with supp FBf ⊂ {ξ ∈ Rn

k,+ : |ξ| ≤ 2v+1}, v ∈ N0,

∥T yf(x)∥p(·),γ ≤ c exp ((2 + 2vn|y|)clog(p)) ∥f∥p(·),γ ,

holds, where c > 0 is independent of v.

3. Main Results

This section is devoted to our main results. First of all we obtain some lemmas
which we need to prove that the B−maximal operator is bounded on variable
Lebesgue spaces.

Lemma 2. Let p(·) ∈ Rn
k,+ be as in Lemma 1. Then there exists a positive constant

C(p, γ) > 0 such that

(Mγf(x))
p(x)
p− ≤ C(p, γ)

(
Mγ(|f |

p(·)
p− )(x) + 1

)
, for all x ∈ Rn

k,+,

holds for all ∥f∥p(·),γ ≤ 1.

Proof. Define q(·) := p(·)
p−

, then q(·) is also as in Lemma 1. Let ∥f∥p(·),γ ≤ 1, then

ρp(·),γ(f) ≤ 1. By Theorem 1, for r ≥ 1

2
, we get

(Mγf)
q(x) =

(
|B+|−1

γ

∫
B+

T y|f(x)|(y′)γdy

)q(x)
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≤

(
|B+|−1

γ

∫
B+

(
1

p(y)
T y|f(x)|p(y)(y′)γ +

1

p′(y)
(y′)γ

)
dy

)q(x)

≤

(
|B+|−1

γ

∫
B+

1

p(y)
T y|f(x)|p(y)(y′)γdy + |B+|−1

γ

∫
B+

1

p′(y)
(y′)γdy

)q(x)

≤

(
|B+|−1

γ

∫
B+

T y|f(x)|p(y)(y′)γdy + |B+|−1
γ

∫
B+

(y′)γdy

)q(x)

≤

(
|B+|−1

γ

∫
B+

|f(x)|p(y)(y′)γdy + |B+|−1
γ

∫
B+

(y′)γdy

)q(x)

≤

(
|B+|−1

γ

∫
B+

(|f(x)|p(y) + 1)(y′)γdy

)q(x)

≤
(
|B+|−1

γ ρp(·),γ(f) + 1
)q(x)

≤
(
|B+(0,

1

2
)|−1
γ + 1

)q+

.

If 0 < r <
1

2
, then |B+|γ ≤ (2r)n+|γ| < 1, and

(Mγf)
q(x) =

(
|B+|−1

γ

∫
B+

T y|f(x)|(y′)γdy

)q(x)

≤

(|B+|−1
γ

∫
B+

T y|f(x)|q−(y′)γdy

) 1
q−
(
|B+|−1

γ

∫
B+

(y′)γdy

) 1
q′−

q(x)

≤

(
|B+|−1

γ

∫
B+

T y|f(x)|q−(y′)γdy

) q(x)
q−

≤

(
|B+|−1

γ

∫
B+

T y|f(x)|q(y)(y′)γdy

) q(x)
q−

≤

(
|B+|−1

γ

∫
B+

(T y|f(x)|q(y) + 1)(y′)γdy

) q(x)
q−

≤ |B+|
− q(x)

q−
γ 3q+

(
1

3

∫
B+

(T y|f(x)|q(y) + 1)(y′)γdy

) q(x)
q−

.
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Since,

1

3

∫
B+

(T y|f(x)|q(y) + 1)(y′)γdy ≤ 1

3

∫
B+

(T y|f(x)|p(y) + 2)(y′)γdy

≤ 1

3

∫
B+

T y|f(x)|p(y)(y′)γdy + 2

3
|B+|γ < 1,

and from Lemma 1, we obtain

(Mγf)
q(x) ≤ |B+|

− q(x)
q−

γ 3q+

(
1

3

∫
B+

T y|f(x)|q(y)(y′)γdy + 2

3
|B+|γ

)

≤ |B+|
− q(x)

q−
γ |B+|γ3q+−1

(∫
B+

T y|f(x)|q(y)(y′)γdy + 2

)

≤ |B+|
q−−q+

q−
γ 3q+−1

∮
B+

T y|f(x)|q(y)(y′)γdy + 2


≤ C0 3

q+−1(Mγ(|f |q(y)) + 2).

If one takes supremum over all balls B+, then the proof is completed. □

Lemma 3. Let p(·) ∈ Rn
k,+ be as in Lemma 1 and be constant outside some ball

B+(0, r). Then there exist a constant C(p, γ) > 0, and
h ∈ L1,∞,γ(Rn

k,+) ∩ L∞,γ(Rn
k,+) such that

(Mγf(x))
p(x)
p− ≤ C(p, γ)Mγ

(
|f |

p(·)
p−

)
(x) + h(x) for a.a. x ∈ Rn

k,+,

holds for all ∥f∥p(·),γ ≤ 1.

Proof. Define q(·) := p(·)
p−

, and q∞ :=
p∞
p−

, then q(·) satisfies the equivalent condi-

tions of Lemma 1. Let ∥f∥p(·),γ ≤ 1, then ρp(·),γ(f) ≤ 1. Split f = f0 + f1 such

that f0 := χB+
f , and f1 := χRn

k,+\B+
f . Thus, for all x ∈ B+(0, 2r),

(Mγf(x))
q(x) ≤ C(q, γ) (Mγ(|f |q(·)) + 1). (3)

Now let x ∈ Rn
k,+\B+(0, 2r). Then |x|−r ≥ 1

2
|x|, and |B+(x, |x|−r)|γ ≥ C |x|n+|γ|.

Since suppf0 ⊂ B+(x, r), and from Theorem 1, we get

(Mγf0(x))
q(x) ≤

(
sup

|x|−r<r

|B+(x, r)|−1
γ

∫
B+(x,r)

T y|f0(x)|(y′)γdy

)q(x)

≤

(
|B+(x, |x| − r)|−1

γ

∫
B+(x,r)

T y|f(x)|(y′)γdy

)q(x)
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≤

(
C |x|−n−|γ|

∫
B+(x,r)

T y|f(x)|(y′)γdy

)q(x)

≤

(
C |x|−n−|γ|

∫
B+(x,r)

|f(x)|(y′)γdy

)q(x)

≤

(
C |x|−n−|γ|

∫
B+(x,r)

(|f(x)|p(y) + 1)(y′)γdy

)q(x)

≤
(
C |x|−n−|γ|ρp(·),γ(f)

)q(x)
≤ C(q, γ)|x|−n−|γ|. (4)

Moreover, for x ∈ Rn
k,+\B+(0, 2r),

(Mγf1(x))
q(x) =

(∮
Rn

k,+\B+(0,2r)

|T yf1(x)|(y′)γdy

)q(x)

≤

(∮
Rn

k,+\B+(0,2r)

|T yf1(x)|(y′)γdy

)q∞

≤
∮
Rn

k,+\B+(0,2r)

T y|f1(x)|q∞(y′)γdy

≤
∮
Rn

k,+\B+(0,2r)

T y|f1(x)|q(x)(y′)γdy

≤ Mγ(|f |q(x))(x). (5)

By (3), (4) and (5), we obtain

(Mγf(x))
q(x) ≤ χB+(0,2r) (Mγf(x))

q(x)
+ χRn

k,+\B+(0,2r) (Mγf0(x) +Mγf1(x))
q(x)

≤ χB+(0,2r) (Mγf(x))
q(x)

+ C(q, γ)χRn
k,+\B+(0,2r)

(
(Mγf0(x))

q(x)
+ (Mγf1(x))

q(x)
)

≤ C(q, γ)Mγ(|f |q(·))(x) + χB+(0,2r)C(q, γ)

+

(
sup

x∈Rn
k,+\B+(0,2r)

∮
Rn

k,+\B+(0,2r)

(y′)γdy

)q(x)

≤ C(q, γ)Mγ(|f |q(·))(x) + χB+(0,2r)C(q, γ) + χRn
k,+\B+(0,2r)C(q, γ) |x|−n−|γ|︸ ︷︷ ︸
=:h

,

for all x ∈ Rn
k,+. The fact that h ∈ L1,∞,γ(Rn

k,+) ∩ L∞,γ(Rn
k,+) proves the lemma.

□

Now we can present our main theorem.
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Theorem 2. Let p(·) be as in Lemma 3 with p− > 1. Then Mγ is bounded on
Lp(·),γ(Rn

k,+), i.e.

∥Mγf∥p(·),γ ≤ C(p, γ) ∥f∥p(·),γ .

Proof. Since Mγ(λf) = ∥λ∥Mγf , we have ∥Mγf∥p(·),γ ≤ C, for all ∥f∥p(·),γ ≤ 1.
Since p+ < ∞, it is sufficient to illustrate ρp(·),γ(Mγf) ≤ C for all ∥f∥p(·),γ ≤
1. Let f ∈ Lp(·),γ with ∥f∥p(·),γ ≤ 1. Then ρp(·),γ(Mγf) ≤ 1. Moreover, let

q(·) := p(·)/p−. By Lemma 3, there exists h ∈ L1,∞,γ(Rn
k,+) ∩ L∞,γ(Rn

k,+) such

that (Mγf)
q(·) ≤ C(p, γ)Mγ(|f |q(·)) + h. Thus,

ρp(·),γ(Mγf) =

∫
Rn

k,+

|Mγf |p(x)(x′)γdx

=

∫
Rn

k,+

(
sup
B+

∫
B+

T y|f(x)|(y′)γdy

)p(x)

(x′)γdx

=

∫
Rn

k,+

(
sup
B+

∫
B+

T y|f(x)|(y′)γdy

)q(x)p−

(x′)γdx

=

∫
Rn

k,+

(sup
B+

∫
B+

T y|f(x)|(y′)γdy

)q(x)
p−

(x′)γdx

=

∫
Rn

k,+

(
|Mγf |q(x)

)p−
(x′)γdx

=
∥∥∥(Mγf)

q(x)
∥∥∥p−

p−,γ

≤
(
C(p, γ)

∥∥∥Mγ(|f |q(x))
∥∥∥
p−,γ

+ ∥h∥p−,γ

)p−

holds and since p− > 1, one can see that the B−maximal operator Mγf is contin-
uous on Lp−,γ(Rn

k,+). Therefore, we obtain that

ρp(·),γ(Mγf) ≤
(
C(p, γ) ∥Mγ(|f |q(x))∥p−,γ + ∥h∥p−,γ

)p−

=
(
C(p, γ) ρp(·),γ(f)

1
p− + ∥h∥p−,γ

)p−
≤ C(p, γ),

and this completes the proof. □

4. Concluding Remarks

The Hardy-Littlewood maximal operators, singular integral operators, rough in-
tegral operator, its commutators and their boundedness on the various function
spaces are crucial topics of Harmonic Analysis. In this study, we have shown that
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the B−maximal operator on the variable Lebesgue spaces is bounded under suit-
able assumptions by a different approach. The boundedness of this operator plays a
significant role in order to obtain the boundedness of the singular integral operator,
fractional integral operator and its commutators. The fractional versions of these
operators have recently become an active area of research (see [9–11,15,16]). As a
future direction of this study, one might extend to the case that the Laplace-Bessel
differential operators with coefficient such as a(x) that could be continuous or Van-
ishing Mean Oscillation functions.

Declaration of Competing Interests The author declares no competing in-
terests.

Acknowledgement The authors thank the referees for their valuable suggestions
and comments.

References
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Abstract. In this study, we consider a boundary value problem generated by

the Sturm-Liouville equation with a frozen argument and with non-separated

boundary conditions on a time scale. Firstly, we present some solutions and
the characteristic function of the problem on an arbitrary bounded time scale.

Secondly, we prove some properties of eigenvalues and obtain a formulation for
the eigenvalues-number on a finite time scale. Finally, we give an asymptotic

formula for eigenvalues of the problem on another special time scale: T =

[α, δ1] ∪ [δ2, β].

1. Introduction

A Sturm-Liouville equation with a frozen argument has the form

−y′′(t) + q(t)y(a) = λy(t),

where q(t) is the potential function, a is the frozen argument and λ is the complex
spectral parameter. The spectral analysis of boundary value problems generated
with this equation is studied in several publications [3], [15], [16], [26], [33] and
references therein. This kind problems are related strongly to non-local boundary
value problems and appear in various applications [4], [12], [31] and [38].

A Sturm-Liouville equation with a frozen argument on a time scale T can be
given as

− y∆∆(t) + q(t)y(a) = λyσ(t), t ∈ Tκ2

(1)
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where y∆∆ and σ denote the second order ∆-derivative of y and forward jump
operator on T, respectively, q(t) is a real-valued continuous function, a ∈ Tκ :=

T\ (ρ (supT) , supT] , yσ(t) = y(σ(t)) and Tκ2

= (Tκ)
κ
.

Spectral properties the classical Sturm-Liouville problem on time scales were
given in various publications (see e.g. [1], [2], [5]- [9], [11], [17]- [25], [27]- [30], [34]-
[37], [39] and references therein). However, there is no any publication about the
Sturm-Liouville equation with a frozen argument on an arbitrary time scale.

In the present paper, we consider a boundary value problem which is generated
by equation (1) and the following boundary conditions

U(y) : = a11y (α) + a12y
∆ (α) + a21y (β) + a22y

∆ (β) (2)

V (y) : = b11y (α) + b12y
∆ (α) + b21y (β) + b22y

∆ (β) (3)

where α = inf T, β = ρ(supT), α ̸= β and aij , bij ∈ R for i, j = 1, 2. We aim to
give some properties of some solutions and eigenvalues of (1)-(3) for two different
cases of T

For the basic notation and terminology of time scales theory, we recommend to
see [10], [13], [14] and [32].

2. Preliminaries

Let S(t, λ) and C(t, λ) be the solutions of (1) under the initial conditions

S(a, λ) = 0, S∆(a, λ) = 1, (4)

C(a, λ) = 1, C∆(a, λ) = 0, (5)

respectively. Clearly, S(t, λ) and C(t, λ) satisfy

S∆∆(t, λ) + λSσ(t, λ) = 0

C∆∆(t, λ) + λCσ(t, λ) = q(t),

respectively and so these functions and their ∆-derivatives are entire on λ for each
fixed t (see [34]).

Lemma 1. Let φ(t, λ) be the solution of (1) under the initial conditions φ(a, λ) =
δ1, φ

∆(a, λ) = δ2 for given numbers δ1, δ2. Then φ(t, λ) = δ1C(t, λ) + δ2S(t, λ) is
valid on T.

Proof. It is clear that the function y(t, λ) = δ1C(t, λ) + δ2S(t, λ) is the solution of
the initial value problem

y∆∆(t) + λyσ(t) = q(t)δ1

y(a, λ) = δ1

y∆(a, λ) = δ2.

We obtain by taking into account uniqueness of the solution of an initial value
problem that y(t, λ) = φ(t, λ). □
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Consider the function

∆(λ) : det

(
U(C) V (C)
U(S) V (S)

)
. (6)

It is obvious ∆(λ) is also entire.

Theorem 1. The zeros of the function ∆(λ) coincide with the eigenvalues of the
problem (1)-(3).

Proof. Let λ0 be an eigenvalue and y(t, λ0) = δ1C(t, λ0) + δ2S(t, λ0) is the corre-
sponding eigenfunction, then y(t, λ0) satisfies (2) and (3). Therefore,

δ1U(C(t, λ0)) + δ2U(S(t, λ0)) = 0,

δ1V (C(t, λ0)) + δ2V (S(t, λ0)) = 0.

It is obvious that y(t, λ0) ̸= 0 iff the coefficients-determinant of the above system
vanishes, i.e., ∆(λ0) = 0. □

Since ∆(λ) is an entire function, eigenvalues of the problem (1)-(3) are discrete.

3. Eigenvalues of (1)-(3) on a Finite Time Scale

Let T be a finite time scale such that there are m (or r) many elements which
are larger (or smaller) than a in T. Assume m ≥ 1, r ≥ 0 and r+m ≥ 2. It is clear
that the number of elements of T is n = m+ r + 1. We can write T as follows

T =
{
ρr (a) , ρr−1 (a) , ..., ρ2 (a) , ρ (a) , a, σ(a), σ2(a), ..., σm−1(a), σm(a)

}
,

where σj = σj−1 ◦ σ, ρj = ρj−1 ◦ ρ for j ≥ 2, ρr (a) = α and σm−1(α) = β.

Lemma 2. i) If r ≥ 3 and m ≥ 2, the following equalities hold for all λ

S(α, λ) = (−1)
r
µρ (a)

[
µρ2

(a)µρ3

(a) ...µρr

(a)
]2

λr−1 +O
(
λr−2

)
Sσ(α, λ) = (−1)

r−1
µρ (a)

[
µρ2

(a)µρ3

(a) ...µρr−1

(a)
]2

λr−2 +O
(
λr−3

)
S (β, λ) = Sσm−1

(a, λ) = (−1)
m
[
µ (a)µσ (a) ...µσm−3

(a)
]2

λm−2µσm−2

(a) +O
(
λm−3

)
Sσ (β, λ) = Sσm

(a, λ) = (−1)
m+1

[
µ (a)µσ (a) ...µσm−2

(a)
]2

λm−1µσm−1

(a) +O
(
λm−2

)
C (α, λ) = (−1)

r
[
µρ (a)µρ2

(a) ...µρr

(a)
]2

λr +O
(
λr−1

)
Cσ (α, λ) = (−1)

r−1
[
µρ (a)µρ2

(a) ...µρr−1

(a)
]2

λr−1 +O
(
λr−2

)
C(β, λ) = Cσm−1

(a, λ) = (−1)
m
µ (a)

[
µσ (a)µσ2

(a) ...µσm−3

(a)
]2

µσm−2

(a)λm−2 +O
(
λm−3

)
Cσ(β, λ) = Cσm

(a, λ) = (−1)
m+1

µ (a)
[
µσ (a)µσ2

(a) ...µσm−2

(a)
]2

µσm−1

(a)λm−1 +O
(
λm−2

)
,
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where O(λl) denotes a polynomial whose degree is l.

ii) If r ∈ {0, 1, 2} or m ∈ {0, 1}, degrees of all above functions are vanish.

Proof. It is clear from fσ(t) = f(t)+µ(t)f∆(t) that Sσ(a, λ) = µ(a) and Cσ(a, λ) =
1. On the other hand, since S(t, λ) and C(t, λ) satisfy (1) then the following equal-
ities hold for each t ∈ Tκ and for all λ.

Sσ2

(t, λ) =

(
1 +

µ (t)

µσ(t)
− λµ (t)µσ (t)

)
Sσ (t, λ) (7)

−µσ (t)

µ(t)
S(t, λ)

Cσ2

(t, λ) =

(
−µ (t)µσ (t)λ+ 1 +

µ (t)

µσ(t)

)
Cσ(t, λ) (8)

−µσ (t)

µ(t)
C(t, λ) + µ (t)µσ (t) q(t)

It can be calculated from (7) and (8) that

Sσj

(a, λ) = (−1)
j+1

(
µ(a)µσ(a)...µσj−2

(a)
)2

µσj−1

(a)λj−1 (9)

+O
(
λj−2

)
Sρj

(a, λ) = (−1)
j
µρ(a)

(
µρ2

(a)µρ3

(a)...µρj

(a)
)2

λj−1 (10)

+O
(
λj−2

)
Cσk

(a, λ) = (−1)
k+1

µ (a)
(
µσ (a)µσ2

(a) ...µσk−2

(a)
)2

µσk−1

(a)λk−1 (11)

+O
(
λk−2

)
Cρk

(a, λ) = (−1)
k
(
µρ (a)µρ2

(a) ...µρk

(a)
)2

λk (12)

+O
(
λk−1

)
for j = 2, 3, ...m and k = 2, 3, ..., r. Using (9)-(12) and taking into account α =
ρr (a) and β = σm−1(α) we have our desired relations. □

Corollary 1. degC(α, λ)Sσ (β, λ) =

{
r +m− 1, r > 0 and m > 1
1, the other cases

.

Lemma 3. The following equlaties hold for all λ ∈ C.

Sσ(α, λ)C (α, λ)− S(α, λ)Cσ (α, λ) = Aλδ +O
(
λδ−1

)
Sσ (β, λ)C (β, λ)− S(β, λ)Cσ (β, λ) = Bλγ +O

(
λγ−1

)
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where A = (−1)
r
µ (α)µρ (a)

[
µρ2

(a) ...µρr−1

(a)
]2

µρr

(a) q (α),

B = (−1)
m−1

µ (β)
[
µ (a)µσ (a) ...µσm−2

(a)
]2

q (ρ (β)),

δ =

{
r − 2, r ≥ 3
0, r < 3

and γ =

{
m− 2, m ≥ 3
0, m < 3.

Proof. Consider the function

φ (t, λ) :=
1

µ (t)
[Sσ(t, λ)C (t, λ)− S(t, λ)Cσ (t, λ)] (13)

It is clear that

φ (t, λ) :=
[
S∆(t, λ)C (t, λ)− S(t, λ)C∆ (t, λ)

]
= W [C (t, λ) , S (t, λ)]

and it is the solution of initial value problem

φ∆ (t) = −q (t)Sσ (t, λ)

φ (a) = 1

Therefore, we can obtain the following relations

φσ (t, λ) = φ (t, λ)− µ (t) q (t)Sσ (t, λ) , (14)

φρ (t, λ) = φ (t, λ) + µρ (t) q (ρ (t))S (t, λ) . (15)

By using (9), (10), (14) and (15), the proof is completed. □

Corollary 2. i) deg (Sσ (α, λ)C(α, λ)− S (α, λ)Cσ (α, λ)) < degC(α, λ)Sσ (β, λ) ,

ii) deg (Sσ (β, λ)C (β, λ)− S (β, λ)Cσ (β, λ)) < degC(α, λ)Sσ (β, λ) .

The next theorem gives the number of eigenvalues of the problem (1)-(3) on T.
Recall n = m+ r + 1 denotes the number of elements of T and put

A =

(
a11µ (α)− a12 b11µ (α)− b12

a22 b22

)
.

Theorem 2. If detA ̸= 0, the problem (1)-(3) has exactly n− 2 many eigenvalues
with multiplications, otherwise the eigenvalues-number of (1)-(3) is least than n−2.
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Proof. Since T is finite, ∆(λ) is a polinomial and its degree gives the number
eigenvalues of the problem. It can be calculated from (6)-(14) that

∆(λ) =
1

µ (α)µ (β)
det

(
a11µ (α)− a12 b11µ (α)− b12

a22 b22

)
C(α, λ)Sσ (β, λ)

+
1

µ (α)
det

(
a11 a12
b11 b12

)
(Sσ (α, λ)C(α, λ)− S (α, λ)Cσ (α, λ))

+
1

µ (β)
det

(
a21 a22
b21 b22

)
(Sσ (β, λ)C (β, λ)− S (β, λ)Cσ (β, λ))

+O(λn+m−2).

According to Corollary 1 and Corollary 2, if detA ̸= 0,
deg∆(λ) = degC(α, λ)Sσ (β, λ) = m+ r − 1 = n− 2. □

Corollary 3. i) The eigenvalues-number of (1)-(3) depends only on the elements-
number of T and the coefficients of the boundary conditions (2) and (3). On the
other hand, it does not depend on q(t) and a (neither value nor location of a on T).
ii) If detA ̸= 0, the eigenvalues-number of (1)-(3) and the elements-number of T
determine uniquely each other.

Remark 1. As is known, all eigenvalues of the classical Sturm-Liouville problem
with separated boundary conditions on time scales are real and algebraicly simple [2].
However, the Sturm-Liouville problem with the frozen argument may have non-real
or non-simple eigenvalues even if it is equipped with separated boundary conditions.

We end this section with two example problems that have non-real or non-simple
eigenvalues.

Example 1. Consider the following problem on T = {0, 1, 2, 3, 4, 5}.

L1 :


−y∆∆(t) + q1(t)y(3) = λyσ(t), t ∈ {0, 1, 2, 3}

y∆(0) = 0

y∆(4) + y(4) = 0,

where q1(t) =


0 t = 0
1 t = 1
0 t = 2
2 t = 3

. Eigenvalues of L1 are λ1 = 2 + i, λ2 = 2− i,

λ3 = 3
2 + 1

2

√
5, λ4 = 3

2 − 1
2

√
5.

Example 2. Consider the following problem on T = {0, 1, 2, 3, 4, 5}.

L2 :


−y∆∆(t) + q2(t)y(3) = λyσ(t), t ∈ {0, 1, 2, 3}

y∆(0) + 2y(0) = 0

y∆(4) + y(4) = 0,
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where q2(t) =


−1 t = 0
2 t = 1
0 t = 2
1 t = 3

. Eigenvalues of L2 are λ1 = λ2 = λ3 = 2, λ4 = 3.

4. Eigenvalues of (1)-(3) on the Time Scale T = [α, δ1] ∪ [δ2, β]

In this section, we investigate eigenvalues of the problem (1)-(3) on another
special time scale: T = [α, δ1] ∪ [δ2, β], where α < a < δ1 < δ2 < β. We assume
that a ∈ (α, δ1) . The similar results can be obtained in the case when a ∈ (δ2, β).

The following relations are valid on [α, δ1] (see [15]).

S(t, λ) =
sin

√
λ (t− a)√
λ

C(t, λ) = cos
√
λ (t− a) +

t∫
a

sin
√
λ (t− ξ)√
λ

q(ξ)dξ

The following asymptotic relations for the solutions S(t, λ) and C(t, λ) can be
proved by using a method similar to that in [35].

S(t, λ) =


sin

√
λ (t− a)√
λ

, t ∈ [α, δ1],

δ2
√
λ cos

√
λ (δ1 − a) sin

√
λ(δ2 − t) +O (exp |τ | (t− a− δ)) , t ∈ [δ2, β],

(16)

S∆(t, λ) =


cos

√
λ (t− a) , t ∈ [α, δ1),

−δ2λ cos
√
λ (δ1 − a) cos

√
λ(δ2 − t) +O

(√
λ exp |τ | (t− a− δ)

)
, t ∈ [δ2, β],

(17)

C(t, λ) =


cos

√
λ (t− a) +O

(
1√
λ
exp |τ | |t− a|

)
, t ∈ [α, δ1],

−δ2λ sin
√
λ (δ1 − a) sin

√
λ(δ2 − t) +O

(√
λ exp |τ | (t− a− δ)

)
, t ∈ [δ2, β],

(18)

C∆(t, λ) =

 −
√
λ sin

√
λ (t− a) +O (exp |τ | |t− a|) , t ∈ [α, δ1),

δ2λ3/2 sin
√
λ (δ1 − a) cos

√
λ(δ2 − t) +O (λ exp |τ | (t− a− δ)) , t ∈ [δ2, β],

(19)

where δ = δ2 − δ1, τ =Im
√
λ and O denotes Landau’s symbol.

Lemma 4. The following equlaties hold for all λ ∈ C and t ∈ T.

C∆(t, λ)S (t, λ)− C(t, λ)S∆ (t, λ) = O
(√

λ exp |τ | (β − α− δ)
)
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Proof. It is clear the function

φ (t, λ) := C∆(t, λ)S (t, λ)− C(t, λ)S∆ (t, λ)

satisfies initial value problem

φ∆ (t) = q (t)Sσ (t, λ) , t ∈ [α, δ1]

φ (a) = 1

and

φ∆ (t) = q (t)Sσ (t, λ) , t ∈ [δ2, β]

φ (δ2) = φ (δ1) + δq(δ1)S (δ2, λ) .

Hence, we get proof by using (16). □

Theorem 3. i) The problem (1)-(3) on T = [α, δ1] ∪ [δ2, β] has countable many
eigenvalues such as {λn}n≥0.

ii) The numbers {λn}n≥0 are real for sufficiently large n.

iii) If a22b12 − a12b22 ̸= 0 and β − δ2 = δ1 − α, the following asymptotic formula
holds for n → ∞. √

λn =
(n− 1)π

2 (β − δ2)
+O

(
1

n

)
(20)

Proof. The proof of (i) is obvious, since ∆(λ) is entire on λ.
By calculating directly, we get

∆(λ) = det

(
U(C) V (C)
U(S) V (S)

)
= (a22b12 − a12b22)

[
C∆(β, λ)S∆ (α, λ)− C∆(α, λ)S∆ (β, λ)

]
+

+(a22b21 − a21b22)
[
C∆(β, λ)S (β, λ)− C(β, λ)S∆ (β, λ)

]
+

+(a12b11 − a11b12)
[
C∆(α, λ)S (α, λ)− C(α, λ)S∆ (α, λ)

]
+O (λ exp |τ | (β − α− δ)) .

It follows from (16)-(19) and Lemma 4 that

∆(λ) = (a22b12 − a12b22)δ
2λ3/2 sin

√
λ(δ1 − α) cos

√
λ(β − δ2)

+O (λ exp |τ | (β − α− δ))

is valid for |λ| → ∞. Thus, we obtain the proof of (ii).
Since a22b12−a12b22 ̸= 0 and β− δ2 = δ1−α, the numbers {λn}n≥0 are roots of

λ2 sin 2
√
λ(β − δ2)√
λ

+O (λ exp 2 |τ | (β − δ2)) = 0. (21)

Now, we consider the region

Gn := {λ ∈ C : λ = ρ2, |ρ| < nπ

2 (β − δ2)
+ ε}
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where ε is sufficiently small number. There exist some positive constants Cε such

that,
∣∣∣λ2 sin 2

√
λ(β−δ2)√
λ

∣∣∣ ≥ Cε |λ|3/2 exp 2 |τ | (β − δ2) for sufficiently large λ ∈ ∂Gn.

Therefore, by applying Rouche’s theorem to (21) on Gn, we can show that (20)
holds for sufficiently large n. □

Remark 2. Since µ (α) = 0 in the considered time scale, the term a22b12 − a12b22
is not another than detA in section 3.

5. Conclusion

In this paper, we give some spectral properties of a boundary value problem
generated by the Sturm-Liouville equation with a frozen argument and with non-
separated boundary conditions on time scales. We focus on two different time
scales: a finite set and a union of two discrete closed intervals. On the finite set, we
obtain a formulation for some solutions, characteristic function and the eigenvalues-
number of the problem. On the other time scale, we give some properties and an
asymptotic formula for eigenvalues.
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Abstract. In the present investigation we study a subclass of multivalent

harmonic functions involving multiplier transformation. An equivalent con-
volution class condition and a sufficient coefficient condition for this class is

acquired. We also show that this coefficient condition is necessary for functions

belonging to its subclass. As an application of coefficient condition, a neces-
sary and sufficient hypergeometric inequality is also given. Further, results on

bounds, inclusion relation, extreme points, a convolution property and a result

based on the integral operator are obtained.

1. Introduction

A continuous complex-valued function f = u + iv which is defined in a simply-
connected domain D is said to be harmonic in D if both u and v are real-valued
harmonic in D. In any simply-connected domain D ⊂ C we can write f = h + g,
where h and g are analytic in D, where h is called the analytic part and g is called
the co-analytic part of f . A necessary and sufficient condition for f to be locally
univalent and orientation preserving in D is that |h′(z)| > |g′(z)| in D (see [6]). Let
H denote a class of harmonic functions f = h + g which are harmonic, univalent
and orientation preserving in the open unit disc ∆ = {z : |z| < 1} so that f is
normalized by f(0) = h(0) = fz(0)− 1 = 0.
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It should be worthy to note that the family H reduces to the well known class
S of normalized univalent functions if the co-analytic part of f is identically zero,
that is if g = 0.

The concept of multivalent harmonic complex valued functions by using argu-
ment principle, was given by Duren et al. [8]. Using this concept, Ahuja and
Jahagiri [1], [2] introduced a class H (m) of m-valent harmonic and orientation pre-

serving functions f(z) = h(z) + g(z) , where h(z) and g(z) are m-valent functions
of the form

h(z) = zm +

∞∑
n=m+1

anz
n, g(z) =

∞∑
n=m

bnz
n, |bm| < 1,m ∈ N = {1, 2, 3....} (1)

which are analytic in ∆ = {z : |z| < 1} . For p, q ∈ N0 = N∪{0} complex pa-
rameters αi (i = 1, 2, ..., p) and βi(̸= −n, n ∈ N) (i = 1, 2, .., q), the generalized
hypergeometric function pFq(α1, ....αp, β1, ....βq; z) = pFq ((αi) ; (βi) ; z) is defined
by

pFq ((αi) ; (βi) ; z) =

∞∑
n=0

(α1)n ... (αp)n
(β1)n ...

(
βq

)
n
n!

zn (p ≤ q + 1; z ∈ ∆) (2)

where (λ)n represents the Pochhammer symbol defined, in terms of Gamma func-
tion, by

(λ)n =
Γ (λ+ n)

Γ (λ)
=

{
1, n = 0, λ ̸= 0

λ (λ+ 1) (λ+ 2) ... (λ+ n− 1) , n ∈ N

}

The convolution of two analytic functions ϕ (z) =
∑∞

n=o anz
n and ψ (z) =∑∞

n=0 bnz
n defined on ∆ is an analytic function given by

ϕ (z) ∗ ψ (z) =

∞∑
n=0

anbnz
n = ψ (z) ∗ ϕ (z) .

For αj ∈ C (j = 1, 2, . . . , p) and βj ∈ C\ {0,−1, 2, . . .} (j = 1, 2, . . . , q), Dziok and
Srivastava [9] introduced the following operator for an analytic function h(z) of the
form (1) is given by

Hp,q
m [α1]h (z) = zm pFq(α1, ....αp;β1, ....βq; z) ∗ h (z) (3)

= zm +

∞∑
n=m+1

θn([α1] ; p, q)anz
n (4)
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where

θn([α1] ; p, q) =

p∏
i=1

(αi)n−m

q∏
i=1

(βi)n−m

1

(n−m)!
, n ≥ m. (5)

Several results on harmonic functions by involving generalised hypergeometric func-
tions and involving certain linear operator have recently been studied in [3–5, 11–
16, 18, 19, 22]. Motivated with the operator defined by Srivastava et al. in [20], we

define a mutiplier operator £
t,[α1]
λ,p,q for an analytic function h(z) of the form (1) as

follows:
£

0,[α1]
λ,p,q h(z) = h(z)

£
1,[α1]
λ,p,q h(z) = £α1

λ,p,qh(z) = (1− λ)Hp,q
m [α1]h(z) +

λz
mz′ (H

p,q
m [α1]h(z))

′
, (λ ≥ 0)

£2,α1

λ,p,qh(z) = £α1

λ,p,q

(
£

1,[α1]
λ,p,q h(z)

)
and in general for t ∈ N,
£t,α1

λ,p,qh(z) = £α1

λ,p,q

(
£t−1,α1

λ,p,q h(z)
)
.

The series expression is given by

£t,α1

λ,p,qh(z) = zm +

∞∑
n=m+1

θtn(α1;λ; p; q)anz
n, (6)

where

θtn([α1] ;λ; p; q) =


p∏

i=1

(αi)n−m

q∏
i=1

(βi)n−m

[m+ λ(n−m)]

m(n−m)!


t

, (n ∈ N, n ≥ m, t ∈ N0). (7)

Similarly for the analytic function g(z) given in (1),

£
t,γ1

λ,r,sg(z) =

∞∑
n=m

ϕtn([γ1] ;λ; r; s)bnz
n (8)

where

ϕtn([γ1] ;λ; r; s) =


r∏

i=1

(γi)n−m+1

s∏
i=1

(δi)n−m+1

[m+ λ(n−m)]

m(n−m+ 1)!


t

, (n ∈ N, n ≥ m, t ∈ N0).

(9)

We note that when t = 1 and λ = 0 the linear operator £t,α1

λ,p,q would reduce to the

operatorHp,q
m [α1] which includes (as its special cases) various other linear operators

introduced and studied by Hohlov et al. [7], Owa [17] and Ruscheweyh [21].
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Now, for f = h+g ∈ H(m) (where h(z) and g(z) are of the form (1)), in terms of

the operators defined in (6) and (8) we defined a linear operator£t,p,q
λ,r,s ([α1] ; [γ1]) :=

I : H (m) → H (m) by

If(z)=£t,α1

λ,p,qh(z) +£
t,γ1

λ,r,sg(z). (10)

For the purpose of this paper, on applying the linear operator If(z), moti-

vated with the class defined in [10] we define a class Rt
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
of

functions f ∈ H (m) if it satisfy the condition

ℜ
{
(1− λ)

If(z)
zm

+ λ(1− k)
(If(z))′

(zm)
′ + λk

(If(z))′′

(zm)
′′

}
>

β

m
(11)

where λ ≥ 0, 0 ≤ k ≤ 1, 0 ≤ β < m and z = reiθ (r < 1, θ ∈ R) , z′ = ∂
∂θ (z) , z

′′ =
∂2

∂θ2 (z) , (If(z))′ = ∂
∂θ (If(z)) and (If(z))′′ = ∂2

∂θ2 (If(z)) .
Based on some particular values of λ and k, we denote following classes:

(1) for λ = 0, Rt
m

(
[α1]p,q , [γ1]r,s ;β; 0, k

)
= At

m

(
[α1]p,q , [γ1]r,s ;β, k

)
(2) for λ = 1, Rt

m

(
[α1]p,q , [γ1]r,s ;β; 1, k

)
= Bt

m,k

(
[α1]p,q , [γ1]r,s ;β, k

)
(3) for k = 0, Rt

m

(
[α1]p,q , [γ1]r,s ;β;λ, 0

)
= Ct

m,

(
[α1]p,q , [γ1]r,s ;β;λ

)
(4) for k = 1, Rt

m

(
[α1]p,q , [γ1]r,s ;β;λ, 1

)
= Dt

m

(
[α1]p,q , [γ1]r,s ;β;λ

)
(5) for λ = 1 and k = 0 Rt

m

(
[α1]p,q , [γ1]r,s ;β; 1, 0

)
= Et

m

(
[α1]p,q , [γ1]r,s ;β

)
(6) for λ = 1 and k = 1 Rt

m

(
[α1]p,q , [γ1]r,s ;β; 1, 1

)
= F t

m

(
[α1]p,q , [γ1]r,s ;β

)
Let H̃ (m) be a subclass of H(m) whose members f = h + g are such that, h

and g are of the form

h(z) = zm −
∞∑

n=m+1

|an| zn, g(z) =
∞∑

n=m

|bn| zn, |bm| < 1. (12)

We further denoteR̃t
m,k

(
[α1]p,q , [γ1]r,s ;β;λ

)
= Rt

m,k

(
[α1]p,q , [γ1]r,s ;β;λ

)
∩ H̃ (m) .

In this paper, an equivalent convolution class condition is derived and a coeffi-
cient inequality is obtained for the functions f = h + g ∈ H(m) to be in the class

Rt
m,k

(
[α1]p,q , [γ1]r,s ;β;λ

)
. It is also proved that this inequality is necessary for

f = h + g to be in R̃t
m,k

(
[α1]p,q , [γ1]r,s ;β;λ

)
class. As an application of coeffi-

cient inequality a necessary and sufficient hypergeometric inequality is also given.
Further, based on the coefficient inequality, results on bounds,inclusion relations,
extreme points, convolution and convex combination and on an integral operator
are obtained.

Throughout in this paper, we consider that the parameters involved in the opera-
tor£t,p,q

λ,r,s [m, [α1] ; [γ1]] such as αi (i = 1, 2, ..., p) , γi (i = 1, 2, ..., r) , βi (i = 1, 2, .., q) ,
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δi (i = 1, 2, .., s) , are positive real and θtn(α1;λ; p; q), ϕ
t
n(γ1;λ; r; s) given by (7), (9)

are bounded with θtn(α1;λ; p; q) ≥ n
m , ϕ

t
n(γ1;λ; r; s) ≥ n

m (n ≥ m) .

2. Coefficient Inequality

Theorem 1. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N. If the function f = h+ g ∈
H(m) (where h and g are of the form (1)) satisfies

∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn(α1;λ; p; q) |an|+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn(γ1;λ; r; s) |bn| ≤ 1, (13)

then f is sense-preserving, harmonic multivalent in ∆ and f ∈ Rt
m,k

(
[α1]p,q , [γ1]r,s ;β;λ

)
.

Proof. Under the given parametric constraints, we have

n

m
≤
∣∣m2 + λ(n−m)(kn+m)

∣∣
m (m− β)

θn and
n

m
≤
∣∣m2 + λ(n+m)(kn−m)

∣∣
m (m− β)

ϕn, n ≥ m.

(14)
Thus, for f = h+ g ∈ H(m), where h and g are of the form (1), we get

|h′(z)| ≥ m |z|m−1 −
∞∑

n=m+1

n |an| |z|n−1 ≥ m |z|m−1

[
1−

∞∑
n=m+1

n

m
|an|

]

≥ m |z|m−1

[
1−

∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θn |an|

]

≥ m |z|m−1

[ ∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕn |bn|

]
>

∞∑
n=m

n |bn| |z|n−1

≥ |g′(z)|
which proves that f(z) is sense preserving in ∆. Now to show that

f ∈ Rt
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, we need to show (11), that is

ℜ
{
(1− λ)

If(z)
zm

+ λ(1− k)
(If(z))′

(zm)
′ + λk

(If(z))′′

(zm)
′′

}
>

β

m
, z ∈ ∆. (15)

Suppose

A(z) = (1− λ)
If(z)
zm

+ λ(1− k)
(If(z))′

(zm)
′ + λk

(If(z))′′

(zm)
′′ .

It is suffices to show that ∣∣∣∣∣ A(z)− 1

A(z)− 2β
m + 1

∣∣∣∣∣ < 1.
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Series expansion of A(z) is given by

A(z) = 1 +

∞∑
n=m+1

θtn([α1] ;λ; p; q)

{
1 + λ(

n

m
− 1)(

kn

m
+ 1

}
anz

n−m +

∞∑
n=m

ϕtn([γ1] ;λ; r; s)

{
1 + λ(

n

m
+ 1)(

kn

m
− 1

}
bnz

nz−m

and we have ∣∣∣∣A(z)− 2β

m
+ 1

∣∣∣∣− |A(z)− 1|

=

∣∣∣2(1− β
m ) +

∑∞
n=m+1 θ

t
n([α1] ;λ; p; q)

{
1 + λ( n

m − 1)(knm + 1
}
anz

n−m

+
∑∞

n=m ϕtn([γ1] ;λ; r; s)
{
1 + λ( n

m + 1)(knm − 1)
}
bnz

nz−m
∣∣

−
∣∣∑∞

n=m+1 θ
t
n([α1] ;λ; p; q)

{
1 + λ( n

m − 1)(knm + 1
}
anz

n−m

+
∑∞

n=m ϕtn([γ1] ;λ; r; s)
{
1 + λ( n

m + 1)(knm − 1
}
bnz

nz−m
∣∣

≥ 1

m

[
2(m− β)−

∞∑
n=m+1

θtn([α1] ;λ; p; q)

∣∣∣∣m+ λ(n−m)(
kn

m
+ 1)

∣∣∣∣ |an| ∣∣zn−m
∣∣

−
∞∑

n=m

ϕtn([γ1] ;λ; r; s)

∣∣∣∣m+ λ(n+m)(
kn

m
− 1)

∣∣∣∣ |bn| |zn| ∣∣z−m
∣∣−

∞∑
n=m+1

θtn([α1] ;λ; p; q)

∣∣∣∣m+ λ(n−m)(
kn

m
+ 1)

∣∣∣∣ |an| ∣∣zn−m
∣∣

−
∞∑

n=m

ϕtn([γ1] ;λ; r; s)

∣∣∣∣m+ λ(n+m)(
kn

m
− 1)

∣∣∣∣ |bn| |zn| ∣∣z−m
∣∣]

=
1

m

[
2(m− β)− 2

∞∑
n=m+1

θtn([α1] ;λ; p; q)

∣∣∣∣m+ λ(n−m)(
kn

m
+ 1

∣∣∣∣ |an| ∣∣zn−m
∣∣

−2

∞∑
n=m

ϕtn([γ1] ;λ; r; s)

∣∣∣∣m+ λ(n+m)(
kn

m
− 1)

∣∣∣∣ |bn| |zn| ∣∣z−m
∣∣]

≥ 0

by (13) when z = r → 1 and this proves Theorem 1. □

In our next result we show that the above sufficient coefficient condition is also

necessary for functions in the class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
.

Theorem 2. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N.and let the func-

tion f = h + g ∈ H̃ (m) be such that h and g are given by (12). Then f ∈
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R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
if and only if (13) holds. The inequality (13) is sharp

for the function given by

f (z) = zm −
∞∑

n=m+1

m (m− β)

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)
|xn| zn (16)

+

∞∑
n=m

m (m− β)

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
|yn| zn,

∑∞
n=m+1 |xn|+

∑∞
n=m |yn| = 1.

Proof. The if part, follows from Theorem 1. To prove the ”only if part” let f = h+

g ∈ H̃ (m) be such that h and g are given by (12) and f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
,

then for z = reiθ in ∆ we obtain

ℜ
{
(1− λ)

If(z)
zm

+ λ(1− k)
(If(z))′

(zm)
′ + λk

(If(z))′′

(zm)
′′

}
>

β

m

= ℜ

(1− λ)
£t,α1

λ,p,qh(z) +£
t,γ1

λ,r,sg(z)

zm
+ λ(1− k)

z
(
£t,α1

λ,p,qh(z)
)′

− z
(
£

t,γ1

λ,r,sg(z)
)′

mzm


+ ℜ

λk
z2
(
£t,α1

λ,p,qh(z)
)′′

+ z
(
£t,α1

λ,p,qh(z)
)′

+ z2
(
£

t,γ1

λ,r,sg(z)
)′′

+ z
(
£

t,γ1

λ,r,sg(z)
)′

m2zm


≥ 1−

∞∑
n=m+1

θtn([α1] ;λ; p; q)

∣∣∣∣1 + λ(
n

m
− 1)(

kn

m
+ 1

∣∣∣∣ |an| ∣∣zn−m
∣∣−

∞∑
n=m

ϕtn([γ1] ;λ; r; s)

∣∣∣∣1 + λ(
n

m
+ 1)(

kn

m
− 1)

∣∣∣∣ bn |zn| ∣∣z−m
∣∣

>
β

m
.

The above inequality must hold for all z ∈ ∆. in particular z = r → 1 yields
the required condition (13). Sharpness of the result can easily be verified for the
function given by

(16). □

Corollary 1. f ∈ Ãt
m

(
[α1]p,q , [γ1]r,s ;β, k

)
if and only if

∞∑
n=m+1

m

(m− β)
θtn([α1] ; p; q) |an|+
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∞∑
n=m

m

(m− β)
ϕtn([γ1] ; r; s) |bn| ≤ 1

holds.

Corollary 2. f ∈ B̃t
m

(
[α1]p,q , [γ1]r,s ;β, k

)
if and only if

∞∑
n=m+1

∣∣m2 + (n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ; p; q) |an|+

∞∑
n=m

∣∣m2 + (n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ; r; s) |bn| ≤ 1

holds.

Corollary 3. f ∈ C̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ

)
if and only if

∞∑
n=m+1

∣∣m2 + λ(n−m)m
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|+

∞∑
n=m

∣∣m2 + λ(n+m)m
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn| ≤ 1

holds.

Corollary 4. f ∈ D̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ

)
if and only if

∞∑
n=m+1

∣∣m2 + λ(n2 −m2)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|+

∞∑
n=m

∣∣m2 + λ(n2 −m2)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn| ≤ 1

holds.

Corollary 5. f ∈ Ẽt
m

(
[α1]p,q , [γ1]r,s ;β

)
if and only if

∞∑
n=m+1

∣∣m2 + (n−m)m
∣∣

m (m− β)
θtn([α1] ; p; q) |an|+

∞∑
n=m

∣∣m2 + (n+m)m
∣∣

m (m− β)
ϕtn([γ1] ; r; s) |bn| ≤ 1

holds.

Corollary 6. f ∈ F̃ t
m

(
[α1]p,q , [γ1]r,s ;β;

)
if and only if

∞∑
n=m+1

∣∣m2 + (n2 −m2)
∣∣

m (m− β)
θtn([α1] ; p; q) |an|+
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∞∑
n=m

∣∣m2 + (n2 −m2)
∣∣

m (m− β)
ϕtn([γ1] ; r; s) |bn| ≤ 1

holds.

On applying coefficient inequality (13), we get a sufficient condition in the form
of hypergeometric inequality for certain function f = h + g ∈ H(m) to be in

Rt
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
class and it is proved that this inequality is necessary

for certain f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
.

Corollary 7. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N, and let the function
f = h+ g ∈ H(m) where h and g are of the form (1) be such that

|an| ≤ m (m− β)

|m2 + λ(n−m)(kn+m)|
, n ≥ m+ 1 (17)

and (18)

|bn| ≤ m (m− β)

|m2 + λ(n+m)(kn−m)|
, n ≥ m. (19)

If (in case p = q + 1)
∑q

i=1 βi −
∑p

i=1 αi > 0 and (in case r = s+ 1 )∑s
i=1 δi −

∑r
i=1 γi > 0,

the hypergeometric inequality[
[pFq ((αi) ; (βi) ; 1)− 1]

(m+ λ(n−m))

m

]t
+ (20)

[
rFs ((γi) ; (δi) ; 1)

(m+ λ(n−m))

m

]t
≤ 1

holds, then f ∈ Rt
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
. Further, if

f(z) = zm −
∞∑

n=m+1

m (m− β)

|m2 + λ(n−m)(kn+m)|
zn (21)

+
∞∑

n=m

m (m− β)

|m2 + λ(n+m)(kn−m)|
zn

∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
,

then (20) holds.

Proof. To prove the result, we need to show by Theorem 1 the inequality:

S1 : =

∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|
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+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn|

≤ 1.

By (17) and (19), we get by (20),

S1 ≤
∞∑

n=m+1

θtn([α1] ;λ; p; q) +

∞∑
n=m

ϕtn([γ1] ;λ; r; s)

=

[
[pFq ((αi) ; (βi) ; 1)− 1]

(m+ λ(n−m))

m

]t
+

[
rFs ((γi) ; (δi) ; 1)

(m+ λ(n−m))

m

]t
≤ 1

where, under the given conditions

∞∑
n=m+1

θTn ([α1] ;λ; p; q) =


 ∞∑

n=0

p∏
i=1

(αi)n

q∏
i=1

(βi)n

1

n!
− 1

 (m+ λ(n−m))

m


t

=

[
[pFq ((αi) ; (βi) ; 1)− 1]

(m+ λ(n−m))

m

]t
.

Similarly

∞∑
n=m

ϕTn ([γ1] ;λ; r; s) =

 ∞∑
n=0

r∏
i=1

(γi)n

s∏
i=1

(δi)n

1

n!

(m+ λ(n−m))

m


t

=

[
rFs ((γi) ; (δi) ; 1)

(m+ λ(n−m))

m

]t
.

Further, (20) holds by Theorem 2, if f(z) of the form (21) belongs to the class

R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
. This proves the result. □

In particular if we take λ = 0, t = 1 we get the following hypergeometric
inequality which is sufficient for certain function f = h + g ∈ H(m) to be in

Rt
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
class, and this inequality is necessary for certain f ∈

R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
.

Corollary 8. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N, and let the function
f = h+ g ∈ H(m) where h and g are of the form (1) be such that

|an| ≤ m (m− β)

|m2 + λ(n−m)(kn+m)|
, n ≥ m+ 1 (22)



MULTIVALENT HARMONIC FUNCTIONS 741

|bn| ≤ m (m− β)

|m2 + λ(n+m)(kn−m)|
, n ≥ m. (23)

If (in case p = q + 1)
∑q

i=1 βi −
∑p

i=1 αi > 0 and (in case r = s+ 1 )∑s
i=1 δi −

∑r
i=1 γi > 0, the hypergeometric inequality

pFq ((αi) ; (βi) ; 1) +r Fs ((γi) ; (δi) ; 1) ≤ 2 (24)

holds, then f ∈ Rt
m,k

(
[α1]p,q , [γ1]r,s ;β;λ

)
. Further, if

f(z) = zm −
∞∑

n=m+1

m (m− β)

|m2 + λ(n−m)(kn+m)|
zn (25)

+

∞∑
n=m

m (m− β)

|m2 + λ(n+m)(kn−m)|
zn

∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
,

then (20) holds.

3. Inclusion Relation

The inclusion relations between the classes B̃t
m

(
[α1]p,q , [γ1]r,s ;β, k

)
and

Ãt
m

(
[α1]p,q , [γ1]r,s ;β, k

)
for different values of λ In this section inclusion relation

between the classes and for different values of B̃t
m

(
[α1]p,q , [γ1]r,s ;β, k

)
R̃t

m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
Theorem 3. for n ∈ {1, 2, 3..} and 0 ≤ β < m, we have

(1) B̃t
m

(
[α1]p,q , [γ1]r,s ;β, k

)
⊂ Ãt

m

(
[α1]p,q , [γ1]r,s ;β, k

)
(2) B̃t

m

(
[α1]p,q , [γ1]r,s ;β, k

)
⊂ R̃t

m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, 0 ≤ λ ≤ 1

(3) R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
⊂ B̃t

m

(
[α1]p,q , [γ1]r,s ;β, k

)
, λ ≥ 1.

Proof. (i) Let f(z) ∈ B̃t
m

(
[α1]p,q , [γ1]r,s ;β, k

)
. in view of corollaries 1 and 2, we

have
∞∑

n=m+1

m

(m− β)
θtn([α1] ; p; q) |an|+

∞∑
n=m

m

(m− β)
ϕtn([γ1] ; r; s) |bn|

≤
∞∑

n=m+1

∣∣m2 + (n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ; p; q) |an|+

∞∑
n=m

∣∣m2 + (n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ; r; s) |bn| ≤ 1
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(ii)Let f(z) ∈ B̃t
m

(
[α1]p,q , [γ1]r,s ;β, k

)
.For 0 ≤ λ ≤ 1,we can write

∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn|

≤
∞∑

n=m+1

∣∣m2 + (n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ; p; q) |an|+

∞∑
n=m

∣∣m2 + (n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ; r; s) |bn|

≤ 1

by corollary 2 and (ii) follows from Theorem 2.
(iii) By the Theorem 2, if λ ≥ 1,we have

∞∑
n=m+1

∣∣m2 + (n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ; p; q) |an|

+

∞∑
n=m

∣∣m2 + (n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ; r; s) |bn|

≤
∞∑

n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|

+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn|

≤ 1.

Therefore the result follows from corollary 2. □

4. Bounds

Our next theorems provide the bounds for the function in the class

R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
which are followed by a covering result for this class.

Theorem 4. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N. if f = h+g ∈ H̃ (m) , where

h and g are of the form (12) belongs to the class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, then

for |z| = r < 1,

|If(z)| ≤ (1 + |bm|) rm +
mrm+1

m+ 1

(
1− 1 + 2λ(k − 1)

1− β
m

|bm|

)
, (26)
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and

|If(z)| ≥ (1− |bm|) rm − m

m+ 1

(
1− 1 + 2λ(k − 1)

1− β
m

|bm|

)
rm+1. (27)

The result is sharp.

Proof. Let f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, then on using (13), related to (12),

by (10), we get for |z| = r < 1,

|If(z)|

≤ (1 + |bm|) rm +

∞∑
n=m+1

(
θt([α1] ;λ; p; q) |an|+ ϕtn([γ1] ;λ; r; s) |bn|

)
rn

≤ (1 + |bm|) rm + rm+1
∞∑

n=m+1

(
θtn([α1] ;λ; p; q) |an|+ ϕtn([γ1] ;λ; r; s) |bn|

)
≤ (1 + |bm|) rm +

mrm+1

m+ 1

( ∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn|

)

≤ (1 + |bm|) rm +
mrm+1

m+ 1

(
1− 1 + 2λ(k − 1)

1− β
m

|bm|

)
which proves the result (26). The result (27) can similarly be obtained. The bounds
(26) and (27) are sharp for the function given by

f (z) = zm + |bm| zm +
m

(m+ 1)ϕtm+1([γ1] ;λ; r; s)

(
1− 1 + 2λ(k − 1)

1− β
m

|bm|

)
zm+1

for λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m, |bm| < 1− β
m

1+2λ(k−1) . □

Corollary 9. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N. If f = h+ g ∈ H̃ (m) with

h and g are of the form (12) belongs to the class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, thenω : |ω| < 1− m

m+ 1
+

m (1 + 2λ(k − 1))

(m+ 1)
(
1− β

m

) − 1

 |bm|

 ⊂ f (∆) .

Theorem 5. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N and let

δtm+1([α1] ; [γ1] ;λ; p; q; r; s) ≤ min
(
θtn([α1] ;λ; p; q), ϕ

t
n([γ1] ;λ; r; s)

)
, n ≥ m+ 1
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If f = h + g ∈ H̃ (m), where h and g are of the form (12), belongs to the class

R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, then for |z| = r < 1,

|f(z)| ≤ (1 + |bm|) rm + m
(m+1)δtm+1([α1];[γ1];λ;p;q;r;s)

(
1− 1+2λ(k−1)

1− β
m

|bm|
)
rm+1,

(28)
and

|f(z)| ≥ (1− |bm|) rm − m
(m+1)δtm+1([α1];[γ1];λ;p;q;r;s)

(
1− 1+2λ(k−1)

1− β
m

|bm|
)
rm+1.

(29)
The result is sharp.

Proof. Let f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, then on using (13), from (12), we get

for |z| = r < 1,

|f(z)| ≤ (1 + |bm|) rm +

∞∑
n=m+1

(|an|+ |bn|) rn

≤ (1 + |bm|) rm + rm+1
∞∑

n=m+1

(|an|+ |bn|)

≤ (1 + |bm|) rm +
rm+1

δtm+1([α1] ; [γ1] ;λ; p; q; r; s)

×
∞∑

n=m+1

(
θtn([α1] ;λ; p; q) |an|+ ϕtn([γ1] ;λ; r; s) |bn|

)
≤ (1 + |bm|) rm +

mrm+1

(m+ 1) δtm+1([α1] ; [γ1] ;λ; p; q; r; s)( ∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn|

)
≤ (1 + |bm|) rm

+
mrm+1

(m+ 1) δtm+1([α1] ; [γ1] ;λ; p; q; r; s)

(
1− 1 + 2λ(k − 1)

1− β
m

|bm|

)
rm+1,

which proves (28). The result (29) can similarly be obtained. The bounds (28) and
(29) are sharp for the function given by

f (z) = zm+|bm| zm+
mrm+1

(m+ 1) δtm+1([α1] ; [γ1] ;λ; p; q; r; s)

(
1− 1 + 2λ(k − 1)

1− β
m

|bm|

)
zm+1



MULTIVALENT HARMONIC FUNCTIONS 745

for |bm| < 1− β
m

1+2λ(k−1) . □

Corollary 10. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N and let
δtm+1([α1] ; [γ1] ;λ; p; q; r; s) ≤ min

(
θtn([α1] ;λ; p; q), ϕ

t
n([γ1] ;λ; r; s)

)
, n ≥ m + 1.

If f = h + g ∈ H̃ (m) with h and g are of the form (12) belongs to the class

R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, then{

ω : |ω| < 1− m
(m+1)δtm+1([α1];[γ1];λ;p;q;r;s)

+(
m(1+2λ(k−1))

(m+1)(1− β
m )δtm+1([α1];[γ1];λ;p;q;r;s)

− 1

)
|bm|

} ⊂ f (∆) .

5. Extreme Points

In this section, we determine the extreme points for the class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
.

Theorem 6. let f = h+ g ∈ H̃ (m) and

hm(z) = zm,

hn(z) = zm − m (m− β)

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)
zn (n ≥ m+ 1) ,

gn(z) = zm +
m (m− β)

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
zn (n ≥ m) ,

then the function f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
if and only if it can be expressed

as f(z) =
∑∞

n=m (xnhn(z) + yngn(z)) where xn ≥ 0, yn ≥ 0 and
∑∞

n=m (xn + yn) =

1. In particular, the extreme points of R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
are {hn} and

{gn} .

Proof. Suppose that

f(z) =

∞∑
n=m

(xnhn(z) + yngn(z))

Then,

f(z) =

∞∑
n=m

(xn + yn) z
m −

∞∑
n=m+1

m (m− β)

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)
xnz

n

+

∞∑
n=m

m (m− β)

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
ynzn

= zm −
∞∑

n=m+1

m (m− β)

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)
xnz

n
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+

∞∑
n=m

m (m− β)

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
ynzn

∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
by Theorem 2, since,

∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q)

×
(

m (m− β)

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)
xn

)
+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s)

×
(

m (m− β)

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
yn

)
=

∞∑
n=m+1

xn +

∞∑
n=m

yn = 1− xm ≤ 1.

Conversely, let f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
and let

|an| =
m (m− β)xn

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)

and

|bn| =
m (m− β) yn

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
and

xm = 1−
∞∑

n=m+1

xn −
∞∑

n=m

yn,

then, we get

f (z) = zm −
∞∑

n=m+1

|an| zn +

∞∑
n=m

|bn| zn

= hm(z)−
∞∑

n=m+1

m (m− β)xn

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)
xnz

n

+

∞∑
n=m

m (m− β) yn

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
ynzn

= hm(z) +

∞∑
n=m+1

(hn(z)− hm(z))xn +

∞∑
n=m

(gn(z)− hm(z)) yn
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= hm(z)

(
1−

∞∑
n=m+1

xn −
∞∑

n=m

yn

)
+

∞∑
n=m+1

hn(z)xn +

∞∑
n=m

gn(z)yn

=

∞∑
n=m

(xnhn(z) + yngn(z)) .

This proves the Theorem 6. □

6. Convolution and Convex Combinations

In this section, we show that the class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
is invariant

under convolution and convex combinations of its members.
Let the function f = h+ g ∈ H̃ (m) where h and g are of the form (12) and

F (z) = zm −
∞∑

n=m+1

θtn([α1] ;λ; p; q) |An| zn +

∞∑
n=m

ϕtn([γ1] ;λ; r; s) |Bn| zn ∈ H̃ (m) .

(30)

The convolution between the functions of the class H̃ (m) is defined by

(f ∗ F ) (z) = f (z) ∗ F (z) = zm −
∑∞

n=m+1 θ
t
n([α1] ;λ; p; q) |anAn| zn +

∑∞
n=m ϕtn([γ1] ;λ; r; s) |bnBn| zn

Theorem 7. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N, if f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
and F ∈ R̃t

m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, then f ∗ F ∈ R̃t

m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
.

Proof. Let f = h+ g ∈ H̃ (m) ,where h and g are of the form (12) and F ∈ H̃ (m)

of the form (30) be in R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
class. Then by theorem (2), we

have
∞∑

n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |An|

+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |Bn|

≤ 1

which in view of (14), yields

|An| ≤ m (m− β)

|m2 + λ(n−m)(kn+m)| θtn([α1] ;λ; p; q)
≤ m

n
≤ 1, n ≥ m+ 1

|Bn| ≤ m (m− β)

|m2 + λ(n+m)(kn−m)|ϕtn([γ1] ;λ; r; s)
≤ m

n
≤ 1, n ≥ m.

Hence, by Theorem 2,
∞∑

n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |anAn|
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+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bnBn|

≤
∞∑

n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|

+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn|

≤ 1

which proves that f ∗ F ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
. □

We prove next that the class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
is closed under convex

combination.

Theorem 8. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N, the class

R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
is closed under convex combination.

Proof. Let fj ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
, j ∈ N be of the form

fj (z) = zm −
∞∑

n=m+1

|Aj,n| zn +

∞∑
n=m

|Bj,n| zn, j ∈ N.

Then by Theorem 2, we have for j ∈ N,
∞∑

n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θTn ([α1] ;λ; p; q) |Aj,n| (31)

+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕTn ([γ1] ;λ; r; s) |Bj,n|

≤ 1.

For some 0 ≤ tj ≤ 1, let
∑∞

j=1 tj = 1, the convex combination of fj (z) may be
written as

∞∑
j=1

tj fj (z) = zm −
∞∑

n=m+1

∞∑
j=1

tj |Aj,n| zn +

∞∑
n=m

∞∑
j=1

tj |Bj,n| zn

Now by (31),

∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q)

∞∑
j=1

tj |Aj,n|

+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s)

∞∑
j=1

tj |Bj,n|
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=

∞∑
j=1

tj

[∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |Aj,n|+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |Bj,n|

]
≤

∞∑
j=1

tj = 1

and so again by Theorem 2, we get
∑∞

j=1 tj fj (z) ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
.

This proves the result. □

7. Integral Operator

In this section, we study a closure property of the class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
involving the generalized Bernardi Libera-Livingston Integral operator Lm,c which

is given for f = h+ g ∈ H̃ (m) by

Lm,c(f) =
c+m

zc

z∫
0

tc−1h(t)dt+
c+m

zc

z∫
0

tc−1g(t)dt, c > −m, z ∈ ∆. (32)

Theorem 9. Let λ ≥ 0, 0 ≤ k ≤ 1, 0 < β ≤ m,m ∈ N, if f ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
,

then Lm,c(f) ∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
.

Proof. Let f = h + g ∈ H̃ (m) ,where h and g are of the form (12), belongs to the

class R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
. Then, it follows from (32) that

Lm,c(f) = zm −
∞∑

n=m+1

(
c+m

c+ n

)
|an| zn +

∞∑
n=m

(
c+m

c+ n

)
|bn| zn

∈ R̃t
m

(
[α1]p,q , [γ1]r,s ;β;λ, k

)
by (13), since,

∞∑
n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)

(
c+m

c+ n

)
θtn([α1] ;λ; p; q) |an|+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)

(
c+m

c+ n

)
ϕtn([γ1] ;λ; r; s) |bn|

≤
∞∑

n=m+1

∣∣m2 + λ(n−m)(kn+m)
∣∣

m (m− β)
θtn([α1] ;λ; p; q) |an|

+

∞∑
n=m

∣∣m2 + λ(n+m)(kn−m)
∣∣

m (m− β)
ϕtn([γ1] ;λ; r; s) |bn|

≤ 1.
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This proves the result. □
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POWER SERIES METHODS AND STATISTICAL LIMIT

SUPERIOR
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Abstract. Given a real bounded sequence x = (xj) and an infinite matrix
A = (anj) the Knopp core theorem is equivalent to study the inequality

lim supAx ≤ lim supx. Recently Fridy and Orhan [6] have considered some

variants of this inequality by replacing lim supx with statistical limit superior
st− lim supx. In the present paper we examine similar type of inequalities by

employing a power series method P, a non-matrix sequence-to-function trans-

formation, in place of A = (anj) .

1. Introduction

In order to investigate the effect of matrix transformations upon the derived
set of a sequence x = (xj), Knopp [10] introduced the idea of the core of x and
proved the well-known Core Theorem. This is equivalent to study the inequality
lim supAx ≤ lim supx for the finite matrix and bounded sequences x = (xj) where

Ax :=
∞∑
j=0

anjxj ( [12,15]). Based on the recently introduced concept of a statistical

cluster point [6], a definition is given for the statistical core by Fridy and Orhan [7].
They have also determined a class of regular matrices for which the inequality
lim supAx ≤ st− lim supx holds for real bounded sequences.

In the present paper, we consider similar type of inequalities by replacing the
sequence to sequence transformation with a power series method which is a sequence
to function transformation.

Recall that the core of the sequence x = (xj) is the closed convex hull of the set
of limit points of the sequence x = (xj) .
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Let (pj) be a non-negative real sequence such that p0 > 0 and the corresponding
power series

p (t) :=

∞∑
j=0

pjt
j

has radius of convergence R with 0 < R ≤ ∞.
Let

CP :=

{
f : (−R,R) → R | lim

0<t→R−

f (t)

p (t)
exists

}
and

CPp
:=

x = (xj) : px (t) :=

∞∑
j=0

pjt
jxj has radius of convergence ≥ R and px ∈ Cp


The functional P − lim : CPp → R defined by

P − limx = lim
0<t→R−

1

p (t)

∞∑
j=0

pjt
jxj

is called a power series method and the sequences x = (xj) is said to be P −

convergent. The method P is regular if and only if lim
0<t→R−

pjt
j

p (t)
= 0 for every j

(see, e.g. [2]). We note that the Abel method is a particular case of a power series
method ( [17]).

From now on we assume that t ∈ (0, R) and 0 < R ≤ ∞.

In the subsequent sections we give some inequalities by relating lim sup
t→R−

px (t)

p (t)
to

lim supx and st-lim supx. These inequalities are motivated by those of Maddox [2],
Orhan [15], and, Fridy and Orhan [7].

2. An Inequaility Related to Limit Superior

Let Qx (t) :=
px (t)

p (t)
. In this section for real bounded sequences x = (xj) , we

consider the inequality

lim sup
t→R−

Qx (t) ≤ lim sup
j

xj

which may be interpreted as saying that

K−core {Qx (t)} ⊆ K−core {x}

where K−core {x} denotes the usual Knopp core of x (see,e.g., [8, p.55]). Let ℓ∞

denote the space of all real bounded sequences and let L (x) := lim sup
n

xn and

l (x) := lim inf
n

xn. Now we have the following
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Theorem 1. For every x = (xj) ∈ ℓ∞ we have

lim sup
t→R−

Qx (t) ≤ lim sup
j

xj (1)

if and only if P is regular.

Proof. Necessity. Let x ∈ c. Then by (1) , we immediately get

− lim sup (−x) ≤ − lim sup
t→R−

Q(−x) (t)

Combining this with (1) , one can have

lim inf x ≤ lim inf Qx (t) ≤ lim supQx (t) ≤ lim supx.

Since x ∈ c,

limx = lim
t→R−

Qx (t)

is obtained, i.e., P is regular.
Conversely, assume that P is regular. Let x ∈ ℓ∞ and ε > 0. Then choose an

index m so that xj < L (x) + ε whenever j ≥ m. Hence we have

∞∑
j=0

pjt
jxj =

∑
j<m

pjt
jxj +

∑
j≥m

pjt
jxj

≤ ∥x∥
∑
j<m

pjt
j + (L (x) + ε)

∞∑
j=0

pjt
j .

Multiplying both sides by
1

p (t)
we get

1

p (t)

∞∑
j=0

pjt
jxj ≤

∥x∥
p (t)

∑
j<m

pjt
j + (L (x) + ε)

Taking limit superior as t → R− and using the regularity of P one can observe
that

lim sup
t→R−

Qx (t) ≤ L (x) + ε.

Since ε > 0 is arbitrary we conclude that (1) holds, which proves the theorem. □

3. An Inequality Concerning Statistical Limit Superior

In this section, replacing limit superior by statistical limit superior of a real
bounded sequence we prove an inequality.

Following the concepts of statistical convergence and statistical cluster points
of a sequence x = (xj) , Fridy and Orhan [7] have introduced the definition of
statistical limit superior and inferior.
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We first recall some terminology and notation. IfK ⊆ N0 andKn := {k ≤ n : k ∈ K}
then |Kn| denotes the cardinality of Kn. If the limit δ (K) := lim

n

1

n+ 1
|Kn| ex-

ists, then we say that K has a natural (asymptotic) density. A sequence x =
(xj) is statistically convergent to L, denoted st − limx = L, if for every ε > 0,
δ ({j : |xj − L| ≥ ε}) = 0, (see, e.g., [3, 5, 14,16]).

The number γ is called a statistical cluster point of x = (xj) if for every ε > 0
the set {j : |xj − γ| < ε} does not have density zero ( [6]).

Note that throughout the paper the statement δ (K) ̸= 0 means that either
δ (K) > 0 or K does not have natural density.

Following [7] we recall the following definitions and results. For a real number
sequence x = (xj) let Bx denote the set:

Bx := {b ∈ R : δ {j : xj > b} ≠ 0} ;

similarly

Ax := {a ∈ R : δ {j : xj < a} ≠ 0} .
Then the statistical limit superior of x is given by

st− lim supx :=

{
supBx , if Bx ̸= ∅
−∞ , if Bx = ∅.

Also, the statistical limit inferior of x is given by

st− lim inf x :=

{
inf Ax , if Ax ̸= ∅
∞ , if Ax = ∅.

If β := st − lim supx is finite, then for every ε > 0, δ {j : xj > β − ε} ̸= 0 and
δ {j : xj > β + ε} = 0. We also have that st− lim supx ≤ lim supx.

Recall that, by Wq (q > 0) , we denote the space of all x = (xj) such that for
some L,

1

n+ 1

n∑
j=0

|xj − L|q → 0 , (n → ∞)

If x ∈ Wq then we say that x is strongly Cesàro convergent with index q. When
q = 1 this space is denoted by W and it is called the space of strong Cesàro
convergent sequences ( [13]). It is well-known that strong Cesàro convergence and
statistical convergence are equivalent on bounded sequences ( [1, 3, 9]).

In order to prove an inequality relating Qx (t) to st − lim supx we need the
following result which is an analog of Theorem 1 of Maddox [13] (see also [4, 11]).

Note that P−density of E ⊆ N is defined by

δP (E) := lim
t→R−

1

p (t)

∑
j∈E

pjt
j

whenever the limit exists (see, [18]).
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Theorem 2. The power series method P transforms bounded strongly convergent
sequences, leaving the strong limit invariant, into the space of convergent sequences
if and only if P is regular and for any subset E ⊆ N with δ (E) = 0 implies that

δP (E) = 0. (2)

Proof. Sufficiency. Let x ∈ ℓ∞ and strongly convergent to L. In order to prove the
sufficiency it is enough to show that

lim
t→R−

1

p (t)

∞∑
j=0

pjt
j |xj − L| = 0. (3)

Let ε > 0 and let Eε := {j ∈ N : |xj − L| ≥ ε} .
Since x = (xj) bounded and strongly convergent to L, it is statistically con-

vergent to L (see [3, 9]). Hence δ (Eε) = 0. This implies, by the hypothesis that,
δP (Eε) = 0. From

1

p (t)

∞∑
j=0

pjt
j |xj − L| =

1

p (t)

∑
j∈Eε

pjt
j |xj − L|+ 1

p (t)

∑
j∈Ec

ε

pjt
j |xj − L|

≤ sup
j

|xj − L| 1

p (t)

∑
j∈Eε

pjt
j + ε,

we have

lim
t→R−

1

p (t)

∞∑
j=0

pjt
j |xj − L| ≤ ∥x− Le∥∞

1

p (t)

∑
j∈Eε

pjt
j + ε

≤ ε

because

δP (Eε)) := lim
t→R−

1

p (t)

∑
j∈Eε

pjt
j = 0.

We obtain that (3) is true.
Necessity. Note that any convergent sequence is statistically convergent to the same
value. Since statistical convergence and strong Cesàro convergence are equivalent
on the space of bounded sequences, we observe that P is regular. Assume now that
there is a subset E ⊆ N with δ (E) = 0 such that (2) fails. This implies that E is
an infinite set.

So we may write E = {kj : j ∈ N} = {k1, k2, ...} . Since the continuous method
is regular the corresponding matrix method is also regular. Hence by the Schur
theorem there exists a bounded sequences z =

(
zk1 , zk2 , ...zkj , ...

)
which is not

summable by the regular matrix method. Now define a bounded sequence, x = (xk)
as follows: xk = zk if k = kj (j = 0, 1, 2, ...) and xk = 0 otherwise. Since δ (E) = 0,
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it follows from the fact that

1

n+ 1

n∑
k=0

|xk − 0| =
1

n+ 1

n∑
k=0

|xk|

≤ sup
k

|xk|
1

n+ 1

n∑
k=0

χE (k) → 0, (n → ∞)

i.e., the sequence x = (xk) is a bounded statistically convergent sequence which
is not summable by the regular discrete method. So it is not summable by the
continuous method either. This contradicts the hypothesis. □

In the rest of the paper we use the following notation:

α (x) := st− lim inf x and β (x) := st− lim supx

Theorem 3. For every x = (xk) ∈ ℓ∞ we have

lim sup
t→R−

Qx (t) ≤ st− lim supx (4)

if and only if P is regular and that (2) holds.

Proof. Let x ∈ ℓ∞. Suppose that (4) holds. Since β (x) ≤ lim supx it follows from
(4) and Theorem 1 that P is regular. On the other hand (4) implies that

− β (−x) ≤ lim inf
t→R−

Qx (t) ≤ lim sup
t→R−

Qx (t) ≤ β (x) . (5)

If x = (xk) is a bounded statistically convergent sequence, (5) implies that

P − limx = st− limx.

Hence by Theorem 2, we observe that (2) holds.
Conversely, assume P is regular and (2) holds. Let x be bounded. Then β (x) is

finite. Given ε > 0 let E := {k ∈ N : xj > β (x) + ε} . Hence δ (E) = 0 and if k /∈ E
then xj ≤ β (x) + ε.

For a fixed positive integer m we write

Qx (t) =
1

p (t)

∑
j<m

pjt
jxj +

1

p (t)

∑
j≥m

pjt
jxj

≤ ∥x∥ 1

p (t)

∑
j<m

pjt
j +

1

p (t)

∑
j≥m
j/∈E

pjt
jxj +

1

p (t)

∑
j≥m
j∈E

pjt
jxj

≤ ∥x∥ 1

p (t)

∑
j<m

pjt
j + (β (x) + ε)

1

p (t)

∞∑
j=0

pjt
j + ∥x∥ 1

p (t)

∑
j∈E

pjt
j

Taking the limit superior as t → R− and using the regularity of P we get that

lim sup
t→R−

Qx (t) ≤ (β (x) + ε) + ∥x∥ δP (E) .
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Recall that δP (E) = 0 by (2) . Since ε is arbitrary we conclude that (4) holds.
This proves the theorem. □
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Abstract. In this work, we present some Hardy-type integral inequalities

for 0 < p < 1 via a second parameter q > 0 with sharp constant. These
inequalities are new generalizations to the inequalities given bellow.

1. Introduction

It is well-known that for Lp spaces with 0 < p < 1, the Hardy inequality is
not satisfied for arbitrary non-negative functions, but is satisfied for non-negative
monotone functions. Moreover the sharp constant was found in the Hardy type-
inequality for non-negative monotone functions ( see [4] for more details). Namely
the following statement was proved there.

Theorem 1. Let 0 < p < 1:

• If − 1
p < α < 1− 1

p , then for all functions f non-negative and non-increasing

on (0,+∞)

∥xα(Hf)(x)∥Lp(0,+∞) ≤
(
1− 1

p
− α

)− 1
p

∥xαf(x)∥Lp(0,+∞) . (1)

2020 Mathematics Subject Classification. 26D10, 26D15.
Keywords. Hardy-type inequality, monotone function, sharp constant.

bendaoud@yahoo.fr; 0000-0001-5123-9503

bouharket.benaissa@univ-tiaret.dz; 0000-0002-1195-6169

kamer295@yahoo.fr-Corresponding author; 0000-0002-3620-7455 .

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

759



760 B. ABED SID-AHMED, B. BENAISSA, A. SENOUCI

• If α < − 1
p , then for all functions f non-negative and non-decreasing on

(0,+∞)

∥xα(Hf)(x)∥Lp(0,+∞) ≤ (p β(p,−αp))
1
p ∥xαf(x)∥Lp(0,+∞) . (2)

• If α > 1 − 1
p , then for all functions f non-negative and non-increasing on

(0,+∞)∥∥∥xα(H̃f)(x)
∥∥∥
Lp(0,+∞)

≤ (p β(p, αp+ 1− p))
1
p ∥xαf(x)∥Lp(0,+∞) . (3)

Here

(Hf)(x) =
1

x

∫ x

0

f(t)dt, (H̃f)(x) =
1

x

∫ ∞

x

f(t)dt.

β(u, v) =

∫ 1

0

tu−1(1− t)v−1dt is the Euler -Beta function.

The constants in the inequalities (1), (2), (3) are sharp.

In 2012 W.T. Sulaiman [5] extended Hardy’s integral inequality as follows.

Theorem 2. If f ≥ 0, g > 0, x−1g(x) is non-decreasing p > 1, 0 < a < 1 and

F (x) =

∫ x

0

f(t)dt, then∫ ∞

0

(
F (x)

g(x)

)p

dx ≤ 1

a(p− 1)(1− a)p−1

∫ ∞

0

(
xf(x)

g(x)

)p

dx, (4)

in particular if a = 1
p , g(x) = x, we obtain Hardy’s inequality.

Moreover he proved the reverse inequality.

Theorem 3. If f ≥ 0, g > 0, x−1g(x) is non-increasing 0 < p < 1, a > 0 and

F (x) =

∫ x

0

f(t)dt, then∫ ∞

0

(
F (x)

g(x)

)p

dx ≥ 1

a(1− p)(1 + a)p−1

∫ ∞

0

(
xf(x)

g(x)

)p

dx. (5)

The following Lemmas were established in [4].

Lemma 1. Let 0 < p < 1, −∞ < a < b ≤ +∞ and f a non- negative non-
increasing function on (a, b), then(∫ b

a

f(x)dx

)p

≤ p

∫ b

a

fp(x)(x− a)p−1dx. (6)

Lemma 2. Let 0 < p < 1, −∞ ≤ a < b < +∞ and f a non- negative non-
decreasing function on (a, b), then(∫ b

a

f(x)dx

)p

≤ p

∫ b

a

fp(x)(b− x)p−1dx. (7)
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The factor p is the best possible in inequalities (6) and (7).
About the Hardy inequality, its history and some related results one can consult

[1], [2], [3], [6] and [7].
The aim of this work is includes two objectives, first the power weight func-

tion xα in Theorem 1 is replaced by g(x), where x−αg(x) is non-decreasing or
non-increasing function and we give a new some Hardy-type integral inequalities
with sharp constant. The second objective is to present some generalizations for
the weighted Hardy operator with 0 < p < 1. Moreover we introduce a second
parameter q > 0 for these generalizations.

2. Main Results

In this section, we present our results. We assume that f and g are non-
negative Lebesgue measurable functions on (0,+∞).

Theorem 4. Let 0 < p < 1, q > 0, g > 0 and the function xαg(x) is non-decreasing
for − 1

q < α < p−1
q , then for all non-negative non-increasing function f we have∫ ∞

0

(Hf)p(x)

gq(x)
dx ≤ p

p− α q − 1

∫ ∞

0

fp(x)

gq(x)
dx. (8)

The constant in (8) is sharp.

Proof.
Since f is non-increasing, then by Lemma 1 we get∫ ∞

0

(Hf)p(x)

gq(x)
dx =

∫ ∞

0

x−pg−q(x)

(∫ x

0

f(t)dt

)p

dx

≤ p

∫ ∞

0

x−pg−q(x)

(∫ x

0

fp(t)tp−1dt

)
dx

= p

∫ ∞

0

tp−1fp(t)

(∫ +∞

t

x−pg−q(x)dx

)
dt

≤ p

∫ ∞

0

tp−1fp(t)

(
t−α

g(t)

)q (∫ +∞

t

x−p+αqdx

)
dt

=
p

p− αq − 1

∫ ∞

0

tp−1fp(t)
t−αq

gq(t)
t−p+αq+1dt

=
p

p− αq − 1

∫ ∞

0

fp(t)

gq(t)
dt.
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To proof that
p

p− αq − 1
is the best possible, we put g(x) = x−α and

f(x) =

 1 if x ∈ (0, ξ),

0 if x ∈ (ξ,+∞).

Let RHS and LHS respectively be the right hand side and the left hand side of the
inequality (8), then

RHS =

∫ ∞

0

xαq−p

(∫ x

0

f(t)dt

)p

dx

=
ξαq+1

αq + 1
,

and

LHS =
p

p− α q − 1

∫ ξ

0

xαqdx

=
p

p− α q − 1

ξαq+1

αq + 1
.

Using q = p in the Theorem 4, we get the following Corollary.

Corollary 1. Let 0 < p < 1, g > 0 and the function xαg(x) is non-decreasing for
− 1

p < α < p−1
p , then for all non-negative non-increasing function f we have

∥∥∥∥ (Hf)(x)

g(x)

∥∥∥∥
Lp(0,+∞)

≤
(
1− α− 1

p

)− 1
p
∥∥∥∥f(x)g(x)

∥∥∥∥
Lp(0,+∞)

. (9)

The constant
(
1− α− 1

p

)− 1
p

is sharp.

Remark 1. If we take g(x) = x−α in the inequality (9), we obtain the inequality
(1).

Theorem 5. Let 0 < p < 1, q > 0, g > 0 and the function xαg(x) is non-decreasing
for α < − 1

q , then for all non-negative non-decreasing function f we have∫ ∞

0

(Hf)p(x)

gq(x)
dx ≤ p β(p, −α q)

∫ ∞

0

fp(x)

gq(x)
dx, (10)

where β is the Euler-Beta function. The constant in (10) is sharp.
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Proof.
By using the Lemma 2, we get∫ ∞

0

(Hf)p(x)

gq(x)
dx =

∫ ∞

0

x−pg−q(x)

(∫ x

0

f(t)dt

)p

dx

≤ p

∫ ∞

0

x−pg−q(x)

(∫ x

0

fp(t)(x− t)p−1dt

)
dx

= p

∫ ∞

0

fp(t)

(∫ +∞

t

x−pg−q(x)(x− t)p−1dx

)
dt

≤ p

∫ ∞

0

fp(t)

(
t−α

g(t)

)q (∫ +∞

t

xαq−p(x− t)p−1dx

)
dt.

Using the change of variable z = t
x , then∫ +∞

t

xαq−p(x− t)p−1dx =

∫ 1

0

(
t

z

)αq−p(
t

z
− t

)p−1
t

z2
dz

= tαq
∫ 1

0

z−αq−1(1− z)p−1dz

= tαqβ(p, −αq),

therefore ∫ ∞

0

(Hf)p(x)

gq(x)
dx ≤ pβ(p, −αq)

∫ ∞

0

(
fp(t)

gq(t)

)
dt.

To proof that p β(p, −α q) is the best possible, we put g(x) = x−α and

f(x) =

 0 if x ∈ (0, ξ),

1 if x ∈ (ξ,+∞).

Let RHS and LHS respectively be the right side and the left side of the inequality
(10), then

RHS =

∫ ∞

ξ

xαq−p

(∫ x

ξ

f(t)dt

)p

dx

=

∫ ∞

ξ

xαq−p (x− ξ)
p
dx,
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let µ = ξ
x , then we get

RHS = ξαq+1

∫ 1

0

µ−αq−2(1− µ)pdµ

= ξαq+1β(p+ 1, −αq − 1)

= p
|αq+1|ξ

αq+1β(p, −αq).

On another side

LHS = p β(p, −α q)

∫ +∞

ξ

xαqdx

= p β(p, −α q) 1
|αq+1|ξ

αq+1.

If we set q = p in the Theorem 5, we get the following Corollary.

Corollary 2. Let 0 < p < 1, g > 0 and the function xαg(x) is non-decreasing for
α < − 1

q , then for all non-negative non-decreasing function f we have

∥∥∥∥ (Hf)(x)

g(x)

∥∥∥∥
Lp(0,+∞)

≤ (p β(p, −αp))
1
p

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp(0,+∞)

. (11)

The constant (p β(p, −αp))
1
p is sharp.

Remark 2. If we take g(x) = x−α in the inequality (11), we obtain the inequality
(2).

Theorem 6. Let 0 < p < 1, q > 0, g > 0 and the function xαg(x) is non-increasing
for α > p−1

q , then for all non-negative non-increasing function f we have

∫ ∞

0

(H̃f)p(x)

gq(x)
dx ≤ p β(p, α q + 1− p)

∫ ∞

0

fp(x)

gq(x)
dx, (12)

the constant in (12) is sharp.
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Proof.
By applying the Lemma 1, we obtain∫ ∞

0

(H̃f)p(x)

gq(x)
dx =

∫ ∞

0

x−pg−q(x)

(∫ ∞

x

f(t)dt

)p

dx

≤ p

∫ ∞

0

x−pg−q(x)

(∫ ∞

x

fp(t)(t− x)p−1dt

)
dx

= p

∫ ∞

0

fp(t)

(∫ t

0

x−pg−q(x)(t− x)p−1dx

)
dt

≤ p

∫ ∞

0

fp(t)

(
t−α

g(t)

)q (∫ t

0

xαq−p(t− x)p−1dx

)
dt.

Using the change of variable ν = t−x
t , then∫ t

0

xαq−p(t− x)p−1dx =

∫ 1

0

[(1− ν)t]
αq−p

(νt)
p−1

tdν

= tαq
∫ 1

0

νp−1(1− ν)αq−pdν

= tαqβ(p, αq − p+ 1),

thus ∫ ∞

0

(H̃f)p(x)

gq(x)
dx ≤ pβ(p, αq − p+ 1)

∫ ∞

0

(
fp(t)

gq(t)

)
dt.

The proof that p β(p, αq− p+1) is sharp, is similar to that of Theorem 5 with the
function f defined as follows

f(x) =

 1 if x ∈ (0, ξ),

0 if x ∈ (ξ,+∞).

If we put q = p in the Theorem 6, we have the following Corollary.

Corollary 3. Let 0 < p < 1, g > 0 and the function xαg(x) is non-increasing for
α < − 1

q , then for all non-negative non-increasing function f we have∥∥∥∥∥ (H̃f)(x)

g(x)

∥∥∥∥∥
Lp(0,+∞)

≤ (p β(p, αp+ 1− p))
1
p

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp(0,+∞)

. (13)

The constant (p β(p, αp+ 1− p))
1
p is sharp.

Remark 3. If we take g(x) = x−α in the inequality (13), we obtain the inequality
(3).



766 B. ABED SID-AHMED, B. BENAISSA, A. SENOUCI

In the second part of this work, we consider Theorems 2 and 3 for weighted
Lebesgue space. Let 0 < p < ∞, the weighted Lebesgue space Lp

w(0,∞) is the
space of all Lebesgue measurable functions f such that

∥f∥Lp
w(0,∞) =

(∫ ∞

0

|f(t)|p w(t)dt
) 1

p

< ∞, (14)

where w is the weight function (Lebesgue measurable and positive on (0,∞)).

Theorem 7. Let f ≥ 0, g > 0, 0 < p < 1, 0 < α < 1. If the function w(x)
gp(x) is

non-increasing, then ∥∥∥∥ (Hf)(x)

g(x)

∥∥∥∥
Lp

w(0,∞)

≤ C1

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp

w(0,∞)

, (15)

where the constant C1 = 1
1−α is sharp.

Proof.
By using Holder’s inequality, we have∥∥∥ (Hf)(x)

g(x)

∥∥∥p
Lp

w(0,∞)
=

∫ ∞

0

(Hf)p(x)

gp(x)
w(x)dx

=

∫ ∞

0

g−p(x)

xp

(∫ x

0

f(t)tα(1−
1
p )tα(

1
p−1)dt

)p

w(x)dx

≤
∫ ∞

0

g−p(x)

xp
w(x)

(∫ x

0

tα(p−1)fp(t)dt

)(∫ x

0

t−αdt

)p

dx

=

(
1

1− α

)p−1 ∫ ∞

0

xα(p−1)−1

gp(x)
w(x)

(∫ x

0

tα(p−1)fp(t)dt

)
dx

=

(
1

1− α

)p−1 ∫ ∞

0

tα(p−1)fp(t)

(∫ ∞

t

xα(p−1)−1

gp(x)
w(x)dx

)
dt

=

(
1

1− α

)p−1 ∫ ∞

0

fp(t)

gp(t)
w(t)K(t)dt,

where

K(t) =

[
tα(p−1)gp(t)

w(t)

(∫ ∞

t

xα(p−1)−1

gp(x)
w(x)dx

)]
.
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Now we proof that K(t) is finite for all t > 0. From the assumption w(x)
gp(x) is

non-increasing, we deduce that∫ ∞

t

xα(p−1)−1

gp(x)
w(x)dx ≤ w(t)

gp(t)

∫ ∞

t

xα(p−1)−1dx

=
w(t)

gp(t)

tα(p−1)

α(1− p)
,

hence
for all t > 0, K(t) < ∞.

Thus ∥∥∥ (Hf)(x)
g(x)

∥∥∥p
Lp

w(0,∞)
≤

sup
t>0

K(t)

(1− α)p−1

∥∥∥∥f(x)g(x)

∥∥∥∥
Lp

w(0,∞)

= Cp
∥∥∥ f(x)

g(x)

∥∥∥p
Lp(0,+∞)

.

To proof that C1 =
(

1
1−α

)
is the best possible, taking f(x) = x−α, this gives us

(Hf)(x) = 1
1−αx

−α and∥∥∥ (Hf)(x)
g(x)

∥∥∥p
Lp

w(0,∞)
= 1

(1−α)p

∫ ∞

0

(
1

xαg(x)

)p

w(x)dx,

∥∥∥ f(x)
g(x)

∥∥∥p
Lp

w(0,∞)
=

∫ ∞

0

(
1

xαg(x)

)p

w(x)dx.
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COMBINATORIAL RESULTS OF COLLAPSE FOR

ORDER-PRESERVING AND ORDER-DECREASING

TRANSFORMATIONS

Emrah KORKMAZ

Department of Mathematics, Çukurova University, Adana, TURKEY

Abstract. The full transformation semigroup Tn is defined to consist of
all functions from Xn = {1, . . . , n} to itself, under the operation of com-

position. In [9], for any α in Tn, Howie defined and denoted collapse by

c(α) =
⋃

t∈im(α)

{tα−1 : |tα−1| ≥ 2}. Let On be the semigroup of all order-

preserving transformations and Cn be the semigroup of all order-preserving

and decreasing transformations on Xn under its natural order, respectively.

Let E(On) be the set of all idempotent elements of On, E(Cn) and N(Cn)
be the sets of all idempotent and nilpotent elements of Cn, respectively. Let

U be one of {Cn, N(Cn), E(Cn),On, E(On)}. For α ∈ U , we consider the set

imc(α) = {t ∈ im(α) : |tα−1| ≥ 2}. For positive integers 2 ≤ k ≤ r ≤ n, we
define

U(k) = {α ∈ U : t ∈ imc(α) and |tα−1| = k},

U(k, r) = {α ∈ U(k) :
∣∣ ⋃
t∈imc(α)

tα−1| = r}.

The main objective of this paper is to determine |U(k, r)|, and so |U(k)| for
some values r and k.

1. Introduction

For any non-empty finite set X, the set TX of all transformations of X (i.e., all
maps X to itself) is a semigroup under composition, and is called the full trans-
formation semigroup on X. For any n ∈ N, if X = Xn = {1, . . . , n}, then TX
is denoted by Tn. A transformation α ∈ Tn is called order-preserving, if x ≤ y
implies xα ≤ yα for all x, y ∈ Xn and decreasing (increasing), if xα ≤ x (xα ≥ x)
for all x ∈ Xn. The subsemigroup of all order-preserving transformations in Tn is
denoted by On and the order-decreasing transformations in Tn is denoted by Dn.

2020 Mathematics Subject Classification. 20M20.
Keywords. Order-preserving/decreasing transformation, collapse, nilpotent, idempotent.
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The subsemigroup of all order-preserving and decreasing (increasing) transforma-
tions in Tn is denoted by Cn (C+

n ) i.e., Cn = On ∩ Dn. Umar proved that Dn and
D+

n are isomorphic in [15, Corollary 2.7.]. Furthermore, Higgins proved that Cn and
C+
n are isomorphic semigroups in [8, Remarks, p. 290]. For any transformation

α in Tn, the collapse, the fix, the image and the kernel are denoted and definded,
respectively, by

c(α) =
⋃

t∈im(α)

{tα−1 : |tα−1| ≥ 2}, (α) = {x ∈ Xn : xα = x},

im(α) = {xα : x ∈ Xn}, and ker(α) = {(x, y) : xα = yα for allx, y ∈ Xn}.

Given transformation α in Tn is called collapsible, if there exists t ∈ im(α) such
that |tα−1| ≥ 2.

An element e of a semigroup S is called idempotent if e2 = e and the set of all
idempotents in S is denoted by E(S). An element a of a finite semigroup S with
a zero, denoted by 0, is called nilpotent if am = 0 for some positive integer m, and
furthermore, if am−1 ̸= 0, then a is called an m-nilpotent element of S. Note that
zero element is an 1-nilpotent element. The set of all nilpotent elements of S is
denoted by N(S). It was proven a finite semigroup S with zero is nilpotent when
exactly the unique idempotent of S is the zero element (see, [6, Proposition 8.1.2]).
The reader is referred to [5] and [11] for additional details in semigroup theory.

Recall that Fibonacci sequence {fn} is defined by the recurrence relation fn =
fn−1 + fn−2 for n ≥ 3, where f1 = f2 = 1 (see [10]). As proved in [13, Theorem
2.1], |Cn| = |C+

n | = Cn = 1
n+1

(
2n
n

)
, the n-th Catalan number for n ≥ 1 (see,

[7]). That is why Cn is also called the Catalan monoid. In [13, Proposition 2.3]
and [8, Theorem 3.19], it has been shown that |N(Cn)| = |N(C+

n )| = Cn−1 and
|E(Cn)| = |E(C+

n )| = 2n−1. Also, from [10, Theorem 2.1 and Theorem 2.3], we have
that |On| =

(
2n−1
n−1

)
and |E(On)| = f2n.

As indicated in [5] if α ∈ Cn, we use

α =

(
A1 · · · Ar

a1 · · · ar

)
(1)

to notifty that im(α) = {a1 = 1 < a2 < . . . < ar} and aiα
−1 = Ai for each

1 ≤ i ≤ r. Furthermore, A1, A2, . . . , Ar which are pairwise disjoint subsets of Xn

are called blocks of α. It is clear that such an α is an idempotent if and only if
ai ∈ Ai for all i. As defined in [4] a set K ⊆ Xn is called convex if K is in the
form [i, i + t] = {i, i + 1, . . . , i + t − 1, i + t}. A partition P = {A1, . . . , Ar} of Xn

for 1 ≤ r ≤ n is called an ordered partition, and written P = (A1 < · · · < Ar)
if x < y for all x ∈ Ai and y ∈ Ai+1 (1 ≤ i ≤ r − 1). For a given α ∈ Cn let
im(α) = {a1 = 1 < a2 < . . . < ar} and Ai = aiα

−1 for every 1 ≤ i ≤ r. Then,
the set of kernel clasess of α, Xn/ ker(α) = {A1, . . . , Ar}, is an ordered convex
partition of Xn. Since N(Cn) is a nilpotent subsemigroup of Cn, if α ∈ N(Cn), then
1α = 2α = 1, and that |1α−1| ≥ 2.
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Several authors studied certain problems concerning combinatorial aspects of
semigroup theory during the years. The vast majority of papers have been written
in this area such as [3, 9, 12, 13, 15, 16]. The rank (minimal size of a generating
set) and idempotent rank (minimal size of an idempotent generating set) of several
transformations semigroups have been studied in [9], [12] and [16] by using the
combinatorial methods. A mapping α : dom(α) ⊆ Xn → im(α) ⊆ Xn is called
a partial transformation, and the set of all partial transformations is a semigroup
under composition and denoted by Pn. In the articles [1] and [14] the numbers
|Tn(k, r)| and |Pn(k, r)| were calculated for r = k = 2, 3. Since then, Tn(k, r)
were determined for r = k for 2 ≤ k ≤ n in [2]. In the present paper, we cal-
culate |Cn(k, k)|, |Cn(k, 2k)|, |Cn(2, n)|, |N(Cn)(k, k)|, |N(Cn)(k, 2k)|, |N(Cn)(2, n)|,
|E(Cn)(k, r)|, |On(k, k)| and |E(On)(k, k)|. These invariants could be interesting
and useful in the study of structure of semigroups.

2. Collapsible elements in Cn
Let U(k, r) = Cn(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Then, it is obvious

that |Cn(k, r)| = 0 if k does not divide r, and further |Cn(n, n)| = 1. Note that 1n
which denotes identity element of Cn and On is the only non-collapsible element of
Cn and On then, the number of collapsible elements in Cn and On are Cn − 1 and(
2n−1
n−1

)
− 1, respectively. The proof of the next combinatorial result is easy and is

omitted.

Lemma 1. For positive integers k and n where 1 ≤ k ≤ n,

n−k+1∑
i=1

(
n− i

n− k − i+ 1

)
=

(
n

k

)
.

□

Theorem 1. For positive integers k and n where 2 ≤ k ≤ n,

|Cn(k, k)| =
(
n

k

)
.

Proof. For a given α ∈ Cn(k, k) it is clear that there exists i ∈ im(α) such that
|iα−1| = k and min(iα−1) = i. So,

α =

(
{1} {2} · · · {i− 1} [i, k + i− 1] {k + i} · · · {n}
1 2 · · · i− 1 i (k + i)α · · · nα

)
,

where 1 ≤ i ≤ n − k + 1. As can be seen the above form, we choose elements of

im(α) from the set [i+1, n] for the set [k+i, n]. There are
(
n−(i+1)+1
n−(k+i)+1

)
=

(
n−i

n−k−i+1

)
ways to do that. This yields, there are

(
n−i

n−k−i+1

)
elements in Cn(k, k) for a fixed i.

Since 1 ≤ i ≤ n− k + 1, it follows directly from Lemma 1 that

|Cn(k, k)| =
n−k+1∑
i=1

(
n− i

n− k − i+ 1

)
=

(
n

k

)
.
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□
Our next result computes |Cn(k, 2k)|.

Proposition 1. For positive integers k and n where 2 ≤ k ≤ n,

|Cn(k, 2k)| =
n−2k+1∑

i=1

n−k+1∑
j=i+k

j∑
l=j−k+1

(
l − i− 1

j − k − i

)(
n− l

n− k − j + 1

)
.

Proof. Given α ∈ Cn(k, 2k), let Ai = [i, k+ i− 1] and Aj = [j, k+ j− 1] be any two
blocks of α each of which contain k elements. So,

α =

(
{1} {2} · · · {i− 1} Ai {k + i} · · · Aj · · · {n}
1 2 · · · i− 1 i (k + i)α · · · jα · · · nα

)
,

where 1 ≤ i ≤ n−2k+1 and i+k ≤ j ≤ n−k+1. Let jα = l where j−k+1 ≤ l ≤ j.
As can be seen above form, we choose elements of im(α) from the set [i+1, l−1] for
the set [k+ i, j−1] and from the set [l+1, n] for the set [k+j, n]. However, this can

be done
(
l−i−1
j−k−i

)(
n−l

n−k−j+1

)
ways. This yields, there are

(
l−i−1
j−k−i

)(
n−l

n−k−j+1

)
elements

in Cn(k, 2k) for fixed i, j and l. Since 1 ≤ i ≤ n− 2k+1, i+ k ≤ j ≤ n− k+1 and
j − k + 1 ≤ l ≤ j, it follows quickly that

|Cn(k, 2k)| =
n−2k+1∑

i=1

n−k+1∑
j=i+k

j∑
l=j−k+1

(
l − i− 1

j − k − i

)(
n− l

n− k − j + 1

)
.

□

Theorem 2. For positive even integer n ≥ 2,

|Cn(2, n)| =
2

(n+ 2)

(
n
n
2

)
.

Proof. For any α ∈ Cn(2, n), it is clear that n must be even, and so |Cn(n, 2)| = 0 if
2 does not divide n. Then, the result will clearly follow if we establish a bijection
between Cn(2, n) and Cn

2
. Define a map θ : Cn(2, n) → Cn

2
by (α)θ = α′ where{

(2i− 1)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ;

(2i)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ,

that is, {
jα = ( j+1

2 )α′ + j−1
2 , j = 1, 3, . . . , n− 1;

jα = j
2α

′ + j−2
2 , j = 2, 4, . . . , n.

This yields, θ is a well-defined bijection. Since |Cn
2
| = Cn

2
, the proof is completed.

□
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Example 1. The function θ : C6(2, 6) → C 6
2
defined as in above is a bijection.

Certainly,

C6(2, 6) =

{(
{1, 2} {3, 4} {5, 6}
1 2 3

)
,

(
{1, 2} {3, 4} {5, 6}
1 2 4

)
,(

{1, 2} {3, 4} {5, 6}
1 2 5

)
,

(
{1, 2} {3, 4} {5, 6}
1 3 4

)
,(

{1, 2} {3, 4} {5, 6}
1 3 5

)}
and

C3 =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 2

)
,

(
1 2 3
1 1 3

)
,(

1 2 3
1 2 2

)
,

(
1 2 3
1 2 3

)}
,

as wanted. □

Let U(k, r) = N(Cn)(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Clearly,
|N(Cn)(k, r)| = 0 if k does not divide r, and also |N(Cn)(n, n)| = 1 and |N(Cn(n−
1, n − 1)| = n − 2. Note that α ∈ N(Cn), 1α = 2α = 1 and iα ≤ i − 1 for all
3 ≤ i ≤ n, and so the number of collapsible emenets in N(Cn) is |N(Cn)| = Cn−1.

Lemma 2. For positive integers k and n where 2 ≤ k ≤ n,

|N(Cn)(k, k)| =
(
n− 2

n− k

)
.

Proof. Given α ∈ N(Cn)(k, k), since 1α = 2α = 1 and |1α−1| = k, we have

α =

(
[1, k] {k + 1} {k + 2} · · · {n}
1 (k + 1)α (k + 2)α · · · nα

)
.

As can be seen above form, we choose elements of im(α) from the set [2, n] for the
set [k + 1, n− 1]. However, there are

|N(Cn)(k, k)| =
(
n− 2

n− k

)
ways to do that, as required. □

Proposition 2. For positive integers k and n where 2 ≤ k ≤ n,

|N(Cn)(k, 2k)| =
n−k+1∑
j=k+1

j∑
l=2

(
l − 2

j − k − 1

)(
n− l

n− k − j + 1

)
.
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Proof. Given α ∈ N(Cn)(k, 2k), let A1 = [1, k] and Aj = [j, k + j − 1] be any two
blocks of α which contain k elements. This yields,

α =

(
A1 {k + 1} · · · Aj {n}
1 (k + 1)α · · · jα nα

)
,

where k+1 ≤ j ≤ n−k+1. Let jα = l where 2 ≤ l ≤ j. As can be seen above form,
we choose element of im(α) from the set [2, l− 1] for the set [k+1, j − 1] and from

the set [l+1, n] for the set [k+ j, n]. However, this can be done
(

l−2
j−k−1

)(
n−l

n−k−j−1

)
ways. This yields, there are

(
l−2

j−k−1

)(
n−l

n−k−j−1

)
elements in N(Cn)(k, 2k) for fixed j

and l. Since k + 1 ≤ j ≤ n− k + 1 and 2 ≤ l ≤ j, it follows quickly that

|N(Cn)(k, 2k)| =
n−k+1∑
j=k+1

j∑
l=2

(
l − 2

j − k − 1

)(
n− l

n− k − j + 1

)
.

□

Theorem 3. For positive even integer n ≥ 2,

|N(Cn)(2, n)| =
2

n

(
n− 2
n−2
2

)
.

Proof. Let α be any element of N(Cn)(n, 2). Then, it is clear that n must be
even, and so |N(Cn)(2, n)| = 0 if 2 does not divide n. If we construct a bijection
between N(Cn

2
) and |N(Cn)(2, n)|, then this completes the proof. Define a map

θ : N(Cn)(2, n) → N(Cn
2
) by (α)θ = α′ where{

(2i− 1)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ;

(2i)α = iα′ + i− 1, i = 1, 2, . . . , n
2 ,

that is, {
jα = ( j+1

2 )α′ + j−1
2 , j = 1, 3, . . . , n− 1;

jα = j
2α

′ + j−2
2 , j = 2, 4, . . . , n.

Now it is easy to check that θ is a well-defined bijection. Since |N(Cn
2
)| = Cn

2 −1,
the proof is complete. □

Example 2. The function θ : N(C8)(2, 8) → N(C 8
2
) defined as in above is a bijec-

tion. Indeed, = N(C8)(2, 8) ={(
{1, 2} {3, 4} {5, 6} {7, 8}
1 2 3 4

)
,

(
{1, 2} {3, 4} {5, 6} {7, 8}
1 2 3 5

)
,(

{1, 2} {3, 4} {5, 6} {7, 8}
1 2 3 6

)
,

(
{1, 2} {3, 4} {5, 6} {7, 8}
1 2 4 5

)
,(

{1, 2} {3, 4} {5, 6} {7, 8}
1 2 4 6

)}
and
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N(C4) =

{(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
1 1 1 2

)
,

(
1 2 3 4
1 1 1 3

)
,(

1 2 3 4
1 1 2 2

)
,

(
1 2 3 4
1 1 2 3

)}
,

as required. □

Let U(k, r) = E(Cn)(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Clearly,
|E(Cn)(k, r)| = 0 if k does not divide r, and also |E(Cn)(n, n)| = 1. Note that
the number of collapsible elements in E(Cn) is 2n−1 − 1.

Theorem 4. For positive integers k, r and n where 2 ≤ k ≤ r ≤ n and r = kt,

|E(Cn)(k, r)| =
(
n+ t− r

t

)
.

Proof. If α ∈ E(Cn)(k, r) and r = kt, then α =

(
A1 A2 · · · An+t−r

1 a2 · · · an+t−r

)
, where

ai ∈ Ai for all 1 ≤ i ≤ n+t−r. Since r = kt, ordered partition of α contains n+t−r
blocks such that t blocks contain k elements and n−kt blocks contain one element.
Without loss of generality assume that each of the sets A1, A2, . . . , At contains k
elements and each of the sets At+1, At+2, . . . , An+t−r contains one element. Since
α is an idempotent, it is clear that α is the only element in E(Cn)(k, r) with this
ordered partition. Hence, all elements of E(Cn)(k, r) are entirely determined by
choosing t blocks which contain k elements. Since we choose t blocks

(
n+t−r

t

)
ways,

this completes the proof. □
The next result is clear from the definition of U(k) and U(k, r):

|U(k)| =
t∑

i=1

|U(k, ik)|,

where t = n
k .

Example 3. We obtain |E(C6)(2, 4)| =
(
6+2−4

2

)
= 6 by Theorem 4. Since n =

6, r = 4, k = 2, t = 2, each element in E(C6)(2, 4) have 6 + 2− 4 blocks such that 2
blocks contain 2 elements and 2 blocks are singletons. Indeed, E(C6)(2, 4) ={(

{1, 2} {3, 4} {5} {6}
1 3 5 6

)
,

(
{1, 2} {3} {4, 5} {6}
1 3 4 6

)
,(

{1, 2} {3} {4} {5, 6}
1 3 4 5

)
,

(
{1} {2, 3} {4, 5} {6}
1 2 4 6

)
,(

{1} {2, 3} {4} {5, 6}
1 2 4 5

)
,

(
{1} {2} {3, 4} {5, 6}
1 2 3 5

)}
.
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Furthermore, |E(C6)(2)| =
3∑

i=1

|E(C6)(2, i2)| = |E(C6)(2, 2)| + |E(C6)(2, 4)| +

|E(C6)(2, 6)| =
(
6+1−2

1

)
+
(
6+2−4

2

)
+

(
6+3−6

3

)
= 12. □

3. Collapsible elements in On

Let U(k, r) = On(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Then, it is clear that
|(On)(r, k)| = 0 if k does not divide r, and also |(On)(n, n)| = n. By convention,
we take

(
0
0

)
= 1 in the following theorem.

Theorem 5. For positive integers k and n where 2 ≤ k ≤ n,

|On(k, k)| =
n−k+1∑
i=1

k+i−1∑
j=i

(
j − 1

i− 1

)(
n− j

n− k − i+ 1

)
.

Proof. For any α ∈ On(k, k), let

α =

(
{1} {2} · · · {i− 1} [i, k + i− 1] {k + i} · · · {n}
1α 2α · · · (i− 1)α iα (k + i)α · · · nα

)
,

where 1 ≤ i ≤ n − k + 1. As can be seen above form, the set of all value of iα is
the set [i, k + i − 1] and for all distinct m, r ∈ Xn \ [i, k + i − 1], it is clear that
mα ̸= rα. Let iα = j where i ≤ j ≤ k + i− 1. Then, we choose elements of im(α)
for the left and right sides of iα = j. For the left side, we choose elements from
the set [1, j − 1] for the set [1, i − 1]. There are

(
j−1
i−1

)
ways to do that. For the

right side, we choose the elements from the set [j+1, n] for the set [k+ i, n]. There

are
(

n−j
n−k−i+1

)
ways to do that. This yields, there are

(
j−1
i−1

)(
n−j

n−k−i+1

)
elements in

On(k, k) for fixed i and j. Since 1 ≤ i ≤ n− k + 1 and i ≤ j ≤ k + i− 1, it follows
that

|On(k, k)| =
n−k+1∑
i=1

k+i−1∑
j=i

(
j − 1

i− 1

)(
n− j

n− k − i+ 1

)
.

□
Let U(k, r) = E(On)(k, r) for positive integers 2 ≤ k ≤ r ≤ n. Clearly,

|E(On)(k, r)| = 0 if k does not divide r. Notice that the number of collapsible
elements in E(On) is f2n − 1.

Lemma 3. For positive integers k and n where 2 ≤ k ≤ n,

|E(On)(k, k)| = k(n− k + 1).

Proof. For any α ∈ On(k, k), let

α =

(
{1} {2} · · · {i− 1} [i, k + i− 1] {k + i} · · · {n}
1α 2α · · · (i− 1)α iα (k + i)α · · · nα

)
,

where 1 ≤ i ≤ n − k + 1. As can be seen above form, the set of all value of
iα is the set [i, k + i − 1]. Moreover, since α is an idempotent, mα = m for all
m ∈ Xn \ [i, k + i− 1]. Let iα = j where i ≤ j ≤ k + i− 1. Then, it is easy to see
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that α is the only element in E(On)(k, k) for fixed i and j. Since i ≤ j ≤ k+ i− 1,
there are k elements in E(On)(k, k) for fixed i. Since 1 ≤ i ≤ n− k + 1, it follows
that

|E(On)(k, k)| = k(n− k + 1).

□
Declaration of Competing Interests The author has no competing interests to
declare.
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COEFFICIENTS OF RANDIĆ AND SOMBOR

CHARACTERISTIC POLYNOMIALS OF SOME GRAPH TYPES

Mert Sinan OZ

Department of Mathematics, Bursa Technical University, Bursa, TURKEY

Abstract. Let G be a graph. The energy of G is defined as the summation

of absolute values of the eigenvalues of the adjacency matrix of G. It is pos-
sible to study several types of graph energy originating from defining various

adjacency matrices defined by correspondingly different types of graph invari-

ants. The first step is computing the characteristic polynomial of the defined
adjacency matrix of G for obtaining the corresponding energy of G. In this

paper, formulae for the coefficients of the characteristic polynomials of both
the Randić and the Sombor adjacency matrices of path graph Pn, cycle graph

Cn are presented. Moreover, we obtain the five coefficients of the character-

istic polynomials of both Randić and Sombor adjacency matrices of a special
type of 3−regular graph Rn.

1. Introduction

Let G = (V,E) be a simple graph with the number of n vertices and m edges. If
two vertices vi and vj are connected with an edge e, then they are called adjacent
vertices and they are expressed as e = vivj or e = vjvi. If a vertex v is a terminal
point of edge e, then they are called incident. Degree of a vertex vi is the number
of edges that are incident to the vertex vi and it is denoted by d(vi). A graph does
not contain any cycle is called acyclic. If there is a way between all vertices of a
graph, then it is called connected. Connected acyclic graph is called tree. Path
graph is a tree that is in the form of straight line with degrees of two vertices are
one and degrees of other vertices are two and it is denoted by Pn. Cycle graph is a
graph that contains only one cycle through all vertices and degrees of all vertices
are two. It is denoted by Cn. If degrees of all vertices of G are k, then it is called
k−regular graph.
Let A = [aij ]n×n be a matrix. If vi and vj are adjacent vertices then aij and aji are

2020 Mathematics Subject Classification. 05C09, 05C31, 05C38.
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1 or else 0, see [1]. A is called adjacency matrix of G. Analogous with linear algebra,
det(λ·I−A) is called the characteristic polynomial of G and we denoted it by PG(λ).
Roots of PG(λ) are called eigenvalues of G and the energy of G is defined as the
summation of absolute values of the eigenvalues of G, see [6]. Furthermore, there
are many topological invariants used in several researches. In [16], Randić index is a
molecular descriptor defined by Milan Randić and denoted by

∑
vivj∈E

1√
d(vi)d(vj)

.

In [9], another important molecular descriptor recently introduced by Ivan Gutman

with the name Sombor index is
∑

vivj∈E

√
(d(vi))2 + (d(vj))2. In addition to topo-

logical invariants, several adjacency matrix forms have been defined until today,
for more details see [13]. With the help of various adjacency matrices defined by
correspondingly different types of graph invariants, it is possible to study different
types of graph energy such as laplacian energy, distance energy, Randić energy and
Sombor energy, see for details [15]. Two of the well-known them are Randić and
Sombor matrices that are related to the corresponding topological indices. Re-
searchers have studied these notions from various aspects so far. Some studies
on the subjects Randić and Sombor adjacency matrices and energies can be seen
in [2, 4, 5, 8, 10–12, 14, 17]. The first step to obtaining the desired energy type of
a graph G is to calculate the characteristic polynomials of the corresponding ad-
jacency matrices. In this paper, we obtain formulae for each coefficient of both
Randić and Sombor characteristic polynomials of path graph Pn and cycle graph
Cn by using a well-known equation. Also, we present formulae for some coefficients
of Randić and Sombor characteristic polynomials of a special type of 3−regular
graph.

2. Coefficients of Randić and Sombor Characteristic Polynomials of
Path, Cycle and a Special Type of 3-Regular Graphs

Let G = (V,E) be a simple graph with n vertices and m edges. The Randić
matrix of G was mentioned in the substantial book [3] and the Sombor matrix was
defined in [10]. We denote the Randić and Sombor adjacency matrices of G by
R(G) and S(G), respectively. R(G) = [rij ]n×n and S(G) = [sij ]n×n are formed by
using the adjacency of vertices as the following:

rij =

{
1√

d(vi)d(vj)
, if the vertices vi and vj are adjacent

0, otherwise.

sij =

{ √
(d(vi))2 + (d(vj))2, if the vertices vi and vj are adjacent

0, otherwise.

It is clear that R(G) and S(G) are symmetric matrices with dimension n× n.
Let us denote the ordinary characteristic polynomial of G as follows:

PG(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn.
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Let us denote the number of components in an elementary subgraph G′ which
are single edges and cycles as ρ0(G

′) and ρ1(G
′), respectively.

In [18], the formula for the coefficients of the ordinary characteristic polynomial
are given by

ck =
∑

(−1)ρ0(G
′)+ρ1(G

′)2ρ1(G
′), (1)

where the summation is taken over all elementary subgraphs G′ with k vertices for
1 ≤ k ≤ n. At the present time, the formula is called Sachs theorem, for details
and history of the theorem see [1, 3, 7].

Let ψij denote the nonzero value in the entry ij of the adjacency matrix of a
vertex-degree-based topological index of a regular graph G. As a natural result of
the Sachs theorem, it is clear that the formula for each coefficient c′k of the charac-
teristic polynomial of the adjacency matrix of this vertex-degree-based topological
index is obtained by

c′k = (ψij)
k
∑

(−1)ρ0(G
′)+ρ1(G

′)2ρ1(G
′),

where the summation is taken over all elementary subgraphs G′ with k vertices for
1 ≤ k ≤ n.

In this paper, we aim to obtain all coefficients of the Randić and Sombor charac-
teristic polynomials of path graph Pn and regular graph Cn by using the numbers
of elementary subgraphs. Similarly, we also aim to obtain some coefficients of the
same characteristic polynomials of a special type of 3−regular graph we call Rn.
We begin with the Randić characteristic polynomial of Pn. Let us note that the
Randić characteristic polynomial of P2 is equal to λ2 − 1. Moreover, let us denote
the set of non-negative integer numbers and the set of positive integer numbers by
Z∗ and Z+, respectively.

Theorem 1. Let Pn = (V,E) be a path graph with n vertices and n − 1 edges.
Let PPn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ c be the Randić characteristic
polynomial of Pn, where ck ∈ R, 1 ≤ k ≤ n − 1. The formulae for the coefficients
cks of the Randić characteristic polynomial of Pn, where n ≥ 3, are as follows:

c2 = (−1)
k
2 (n−3

4 + 1),

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2−1

)
· ( 1√

2
)2 · ( 12 )

2( k
2−1) +

((n−2)− k
2

k
2−2

)
· ( 14 ) · (

1
2 )

2( k
2−2) · ( 1√

2
)2

+
∑n−2− k

2

j= k
2−1

( j
k
2−1

)
· ( 12 )

k +
∑n−3− k

2

j= k
2−2

( j
k
2−2

)
· ( 14 ) · (

1
2 )

k−2
]
, where k ≥ 4, k ∈ 2Z+.

Proof. First of all, it is clear that c2 = (−1)
k
2 (n−3

4 + 1) for all n ≥ 3. By the Eqn.
1, we know that ck consists of the contributions of several elementary subgraphs of
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G with k vertices. Also, since Pn does not have any cycle we take into account only
edges that do not have any common vertex. At this point, we will apply a method
that involves an edge removing and continue calculation of remaining part. Let us
consider a path graph Pn with n vertices whose vertices are labelled by 1, 2, · · · , n.
For calculation of ck, if we remove the edge v1v2, then remaining part with k − 2
vertices consists of number of(k

2 − 2
k
2 − 2

)
+

(k
2 − 1
k
2 − 2

)
+ · · ·+

(
n− k

2 − 3
k
2 − 2

)
+

(
n− k

2 − 2
k
2 − 2

)
=

(
n− 1− k

2
k
2 − 1

)
combinations. Moreover, if we remove any edge vivi+1 which is not terminal edges
of Pn, then remaining part consists one of the numbers(k

2 − 1
k
2 − 1

)
,

( k
2

k
2 − 1

)
, · · · ,

(
n− 2− k

2
k
2 − 1

)
.

Hence, contributions of elementary subgraphs that are in the form of v1v2, · · · , vivj
can be ( 1√

2
)2 ·( 12 )

2 · · · ( 12 )
2 ·( 12 )

2 or ( 1√
2
)2 ·( 12 )

2 · · · ( 12 )
2 ·( 1√

2
)2. Hereby, the contribu-

tion of the type subgraphs that contribute to ck in the ( 1√
2
)2 ·( 12 )

2 · · · ( 12 )
2 ·( 12 )

2 form

is obtained as
[((n−1)− k

2
k
2−1

)
−
((n−2)− k

2
k
2−2

)]
· ( 1√

2
)2 · ( 12 )

2( k
2−1). Moreover, the contribu-

tion of the other type subgraphs that contribute to ck in the ( 1√
2
)2 · ( 12 )

2 · · · ( 12 )
2 ·

( 1√
2
)2 form is obtained as

((n−2)− k
2

k
2−2

)
· ( 1√

2
)4 · ( 12 )

2( k
2−2). Thus, the first part of the

formula is obtained as
((n−1)− k

2
k
2−1

)
·( 1√

2
)2 ·( 12 )

2( k
2−1)+

((n−2)− k
2

k
2−2

)
·( 14 )·(

1
2 )

2( k
2−2) ·( 1√

2
)2

by arranging the contribution statements above.
Furthermore, contributions of elementary subgraphs that are in the form of vavb,

· · · , vivj can be ( 12 )
2 ·( 12 )

2 · · · ( 12 )
2 ·( 12 )

2 or ( 12 )
2 ·( 12 )

2 · · · ( 12 )
2 ·( 1√

2
)2, where a ̸= 1, b ̸=

2 or a ̸= 2, b ̸= 1. Similar to the previous part of the proof, two contribution equa-

tions of ck are obtained as
∑n−2− k

2

j= k
2−1

( j
k
2−1

)
· ( 12 )

k and
∑n−3− k

2

j= k
2−2

( j
k
2−2

)
· ( 14 ) · (

1
2 )

k−2,

respectively. As a result, since there is no other elementary subgraph contribution
type, the proof is completed by summing all the above subgraph contributions. □

In the next corollary, we continue with the Sombor characteristic polynomial of
Pn. Firstly, it is clear that the Sombor characteristic polynomial of P2 is equal to
λ2 − 2.

Corollary 1. Let Pn = (V,E) be a path graph with n vertices and n − 1 edges.
Let PPn(λ) = λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ+ c be the Sombor characteristic

polynomial of Pn, where ck ∈ Z, 1 ≤ k ≤ n − 1. The formulae for the coefficients
cks of the Sombor characteristic polynomial of Pn, where n ≥ 3, are as follows:
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c2 = (−1)
k
2 (8(n− 3) + 10),

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2−1

)
· (
√
5)2 · (

√
8)2(

k
2−1) − 3

((n−2)− k
2

k
2−2

)
· (
√
5)2 · (

√
8)2(

k
2−2)

+
∑n−2− k

2

j= k
2−1

( j
k
2−1

)
· (
√
8)k − 3

∑n−3− k
2

j= k
2−2

( j
k
2−2

)
· (
√
8)(k−2)

]
, where k ≥ 4, k ∈ 2Z+.

Proof. Proof is the same with the proof of Thm. 1. Only difference originated from
the difference between the Randić and Sombor adjacency matrices of Pn. □

Theorem 2. Let Pn = (V,E) be a path graph with n vertices and n− 1 edges. Let
PPn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ + cn be the Randić characteristic
polynomial of Pn, where ck ∈ R. The formula for the coefficient cn, where n ≥ 3,
of the Randić characteristic polynomial of Pn is as follows:

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2
−1

)
· ( 1√

2
)2 · ( 1

2 )
2( k

2
−1) +

((n−2)− k
2

k
2
−2

)
· ( 1

4 ) · (
1
2 )

2( k
2
−2) · ( 1√

2
)2

]
, otherwise.

Proof. First of all, it clear that ck = 0, where k ∈ 2Z∗ + 1. Similarly to Thm.
1, let us consider a path graph Pn with n vertices whose vertices are labelled by
1, 2, · · · , n. We keep in view elementary subgraphs with n vertices that consist
of disjoint edges since n = k. At this point, we have only one choice and it is
v1v2, v3v4, · · · , vn−1vn. Thus, by the proof of Thm. 1, we know that the contribu-

tion of this subgraph to ck is equal to
((n−1)− k

2
k
2−1

)
· ( 1√

2
)2 · ( 12 )

2( k
2−1) +

((n−2)− k
2

k
2−2

)
·

( 14 ) · (
1
2 )

2( k
2−2) · ( 1√

2
)2. Finally, by using Eqn. 1, we have the result as follow:

ck = (−1)
k
2

[((n−1)− k
2

k
2−1

)
· ( 1√

2
)2 · ( 12 )

2( k
2−1) +

((n−2)− k
2

k
2−2

)
· ( 14 ) · (

1
2 )

2( k
2−2) · ( 1√

2
)2
]
.

□

Corollary 2. Let Pn = (V,E) be a path graph with n vertices and n− 1 edges. Let
PPn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ + cn be the Sombor characteristic
polynomial of Pn, where ck ∈ Z. The formula for the coefficient cn, where n ≥ 3,
of the Sombor characteristic polynomial of Pn is as follows:

ck = 0, where k ∈ 2Z∗ + 1,

ck = (−1)
k
2

[((n−1)− k
2

k
2
−1

)
· (

√
5)2 · (

√
8)2(

k
2
−1) − 3

((n−2)− k
2

k
2
−2

)
· (

√
5)2 · (

√
8)2(

k
2
−2)

]
, otherwise.

Proof. Proof is the same with the proof of Thm. 2. Only difference originate from
the definitions of Randić and Sombor adjacency matrices of Pn. □
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For the next theorem, we denote the number of elementary subgraphs with k
vertices by N(ck).

Theorem 3. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn

(λ) = λn+ c1λ
n−1+ c2λ

n−2+ · · ·+ cn−1λ+ cn be the Sombor characteristic
polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formulae for the coefficients
ck (k = 2t, t ∈ Z+) of the Sombor characteristic polynomial of Cn are as follows:

c2 = −8n,

c4 = (8)2
((

n− 2

2

)
+

(
n− 3

1

))
,

c6 = −(8)3
((

n− 3

3

)
+

(
n− 4

2

))
,

c8 = (8)4
((

n− 4

4

)
+

(
n− 5

3

))
,

c10 = −(8)5
((

n− 5

5

)
+

(
n− 6

4

))
,

...

ck = (−1)
k
2 · (8) k

2

((
n− k

2
k
2

)
+

(
n− (k2 + 1)

k
2 − 1

))
,

in the case of n = k, then cn = ck − 2 · 8n
2 , where ck is as given above.

Proof. We know that ck consist of the contributions of different elementary sub-
graphs of G with k vertices by Eqn. 1. For the coefficients ck (k = 2t, t ∈ Z+) of
the Sombor characteristic polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n− 1, we
take into account only elementary subgraphs that consist of disjoint edges without
any elementary subgraph that does not involve any cycle. Similarly to proof of
Thm. 1, we apply edge removing method so that we get the number of elementary
subgraphs for forming c4, c6, c8, c10, · · · , ck, where ck ∈ R, 1 ≤ k ≤ n− 1, by using
combinations as follows:

N(c4) =

n−3∑
i=1

(
i

1

)
+

(
n− 3

1

)
,

N(c6) =

n−4∑
i=2

(
i

2

)
+

(
n− 4

2

)
,

N(c8) =

n−5∑
i=3

(
i

3

)
+

(
n− 5

3

)
,
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N(c10) =

n−6∑
i=4

(
i

4

)
+

(
n− 6

4

)
,

...

N(ck) =

n−( k
2+1)∑

i= k
2−1

(
i

k
2 − 1

)
+

(
n− (k2 − 1)

k
2 − 1

)
.

As a result, we get the desired result by using combination properties and Eqn.
1. In addition, if n = k, then there exists one possibility of elementary subgraph
that consists of the cycle Cn itself. Therefore, in this case result is obtained as
cn = ck − 2 · 8n

2 , where ck is as given above. □

In a cycle graph Cn, it is trivial that if k is odd, then ck = 0 whenever 0 ≤ k ≤
n− 1. In the next corollary, the last part of the previous theorem is presented with
a more explicit statement.

Corollary 3. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn

(λ) = λn+ c1λ
n−1+ c2λ

n−2+ · · ·+ cn−1λ+ cn be the Sombor characteristic
polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formula for the coefficient cn
of the Sombor characteristic polynomial of Cn is as follows:

cn =

 −2
3n+2

2 , n = 2t+ 1,where t ∈ Z+

−2
3n+4

2 , n = 2t,where t ∈ {3, 5, 7, · · · }
0, n = 4t,where t ∈ Z+.

Proof. Let us consider a cycle graph Cn. There are three possible cases of elemen-
tary subgraph of Cn with n vertices. The first case is n = 2t + 1, where t ∈ Z+.
For this case, we have just an elementary subgraph that consists of Cn itself and
contribution of this subgraph is equal to −2 · (2

√
2)n by using Eqn. 1.

Second case is n = 2t, where t ∈ {3, 5, 7, · · · }. At this point, there are 2 types of
elementary subgraphs with n vertices. These elementary subgraphs can consist ei-
ther just a cycle Cn or n

2 disjoint edges. Therefore, contribution of these subgraphs

is equal to −2 · 8n
2 − 2 · 8n

2 that is −2
3n+4

2 . Third case is n = 4t, where t ∈ Z+.
Similarly to second case, there are two possible elementary subgraphs of Cn with n
vertices. These consist of either just a cycle Cn or n

2 disjoint edges. At this point,

since n
2 is even number contribution of these subgraphs is equal to 2 · 8n

2 − 2 · 8n
2

that is 0 by Eqn. 1. □

Corollary 4. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn

(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn be the Randić characteristic
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polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formulae for the coefficients
ck (k = 2t, t ∈ Z+) of the Randić characteristic polynomial of Cn are as follows:

c2 = −n
4
,

c4 = (
1

4
)2
((

n− 2

2

)
+

(
n− 3

1

))
,

c6 = −(
1

4
)3
((

n− 3

3

)
+

(
n− 4

2

))
,

c8 = (
1

4
)4
((

n− 4

4

)
+

(
n− 5

3

))
,

c10 = −(
1

4
)5
((

n− 5

5

)
+

(
n− 6

4

))
,

...

ck = (−1)
k
2 · (1

4
)

k
2

((
n− k

2
k
2

)
+

(
n− (k2 + 1)

k
2 − 1

))
,

in the case of n = k, then cn = ck − 2 · ( 14 )
n
2 , where ck is as given above.

Proof. Proof can be followed by using Theorem 3. □

In the previous theorem, it is clear that if k is odd, then ck = 0 as long as
0 ≤ k ≤ n − 1 for each cycle graph Cn. The case n = k is presented in the next
result.

Corollary 5. Let Cn = (V,E) be a cycle graph with n ≥ 3 vertices and n edges.
Let PCn(λ) = λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ+ cn be the Randić characteristic

polynomials of Cn, where ck ∈ R and 1 ≤ k ≤ n. The formula for the coefficient cn
of the Randić characteristic polynomial of Cn is as follows:

cn =

 −21−n, n = 2t+ 1,where t ∈ Z+

−22−n, n = 2t,where t ∈ {3, 5, 7, · · · }
0, n = 4t,where t ∈ Z+.

Proof. Proof can be followed by using Corollary 3. □

Let us define a special regular graph that consists of n (n ≥ 4, n = 2t, t ∈ Z+)
vertices, 3n

2 edges and degrees of all vertices are 3. Also vertices intersect each
others in a point. We denote it by Rn. Let us demonstrate the structures of graphs
R6 and R8 in Figure 1.

Theorem 4. Let Rn = (V,E) be a 3−regular graph with n vertices and 3n
2 edges

as shown in Fig. 1. Let PRn
(λ) = λn + c1λ

n−1 + c2λ
n−2 + · · · + cn−1λ + cn be

the Randić characteristic polynomial of Rn, where ck ∈ R. The formulae for some
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Figure 1. Graphs R6 and R8

coefficients of the Randić characteristic polynomial of Rn are as follows:

c2 = −n
6 ,

c3 = 0, if n = 4, then c3 = −8 · ( 13 )
3,

c5 = 0, if n = 8, then c5 = −16 · ( 13 )
5.

c4 =


−3 · ( 1

3 )
4, n = 4

0, n = 6

−( 1
3 )

4n + ( 1
3 )

4
(∑n−3

j=1 j + (n − 3) + nn−4
2 +

(n
2
2

))
, otherwise.

c6 =



0, n = 4

0, n = 6

−( 1
3 )

6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · ( 1

3 )
6
(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− 2 · ( 1

3 )
6
(
n + n

2

)
, n = 10

−( 1
3 )

6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · ( 1

3 )
6
(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− ( 1

3 )
6n, otherwise.

Proof. It is clear that c1 of PRn(λ) is 0.
First of all, let us consider c2. We know that the number of possible elementary

subgraphs with 2 vertices is equal to the number of edges of Rn. Hence, since Rn

is 3−regular, contribution of these elementary subgraphs to c2 = −( 13 )
2 3n

2 = −n
6

by Eqn. 1.
Secondly, it is clear that 3−cycles just exist in Rn when n is equal to 4. Thus,

by Eqn. 1 if n = 4, then c3 = −( 13 )
3 · 2 · 4, otherwise c3 = 0.

Thirdly, there exists 4 options for elementary subgraphs with 4 vertices. They
can consist of 4−cycles that are in the form of cross labeling such as (1436) in R6

in Fig. 1 and the number of possible elementary subgraphs in this form is n
2 . The
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rest 3 options can be two disjoint edges that one belongs to Cn and other one is a
diagonal edge, two disjoint edges that belong to Cn and lastly two disjoint edges
that are diagonal edges, respectively. The number of possible elementary subgraphs
in the form of second option is nn−4

2 because when we select an edge that belongs

to Cn, we have
(n−4

2
1

)
possibility for an other diagonal edge. Since Rn has n vertices

there are nn−4
2 elementary subgraphs in the second form. For the third option, the

number of possible elementary subgraphs that are in the form of

{v1v2, v3v4} , {v1v2, v4v5} , · · · , {v1v2, vn−1vn},
{v2v3, v4v5} , {v2v3, v5v6} , · · · , {v2v3, vn−1vn} , {v2v3, vnv1},
...
{vn−3vn−2, vn−1vn} , {vn−3vn−2, vnv1}

is equal to 1 + 2 + 3 + · · · + (n − 3) + (n − 3). Also, it is clear that the number

of possible elementary subgraphs of the last option is
(n

2
2

)
. As a result, by using

Eqn. 1 we get c4 = −2 · ( 13 )
4 n
2 +( 13 )

4
(∑n−3

j=1 j + (n− 3) + nn−4
2 +

(n
2
2

))
. However,

additionally when n is equal to 4, for the first option we have one more possible
elementary subgraph that is C4 itself so we get the result as −3 · ( 13 )

4 by adding

−2 · ( 13 )
4. Moreover, when n is equal to 6, for the first option, we have six more

possible elementary subgraphs that are C4 itself so we get result as 0 by adding
−12 · ( 13 )

4.
Fourthly, there exists just one option for an elementary subgraph with 5 vertices

that is a 5−cycle C5 itself and it can be possible only for Rn, where n = 8. There-
fore, c5 is obtained as −16 · ( 13 )

5 by Eqn. 1.
Lastly, let us consider possible elementary subgraphs with 6 vertices, where

n ̸= 6, 10. One of the possible elementary subgraph types consisting of three edges
that are in Cn are in the form

{v1v2, v3v4, v5v6} , {v1v2, v3v4, v6v7} , · · · , {v1v2, vn−3vn−2, vn−1vn},
{v2v3, v4v5, v6v7} , {v2v3, v4v5, v7v8} , · · · , {v2v3, vn−3vn−2, vnv1} , {v2v3, vn−2vn−1, vnv1} ,
...
{vn−4vn−3, vn−2vn−1, vnv1} .

Possible number of these types is equal to
∑n−4

j=2

(
j
2

)
+
(
n−4
2

)
. An another type can consist

of three diagonal edges whose possible number is
(n

2
3

)
. Another type can consist of one edge

that is in Cn and other two edges are diagonal edges. As explained before possible number

of these elementary subgraphs is n
(n−4

2
2

)
. For another type of elementary subgraphs that

consist of two edges in Cn and one in diagonal edges, we get the possible number n(n
2
−

3)(n
2
− 4) + n(n

2
− 3) + n

2
(n
2
− 2) by using processes as mentioned above. The number

of possible elementary subgraphs that consist of cross labeling C4 and an edge in Cn is
n(n−4

2
−1). Also, the number of possible elementary subgraphs that consist of cross labeling
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C4 and a diagonal edge is (n
2

n−4
2

). Moreover, the number of possible elementary subgraphs
that consist of C6 is n

2
. Consequently, we get the formula by using Eqn. 1, where n ̸= 6, 10.

After all, additively when n is equal to 6, there is no possible elementary subgraph in the
form of one edge that is in Cn and other two edges are diagonal edges. Therefore, for the

n = 6 distinctively, we have
∑2

j=2

(
j
2

)
+
(
2
2

)
+
( 6

2
3

)
+6( 6

2
− 3)( 6

2
− 4) + 6( 6

2
− 3) + 6

2
( 6
2
− 2)

times possible elementary subgraphs that consist of disjoint edges of Rn and we have
(6 · 0 + 3 · 1) times possible elementary subgraphs that consist of one cross labeling C4 and
edge in R6. Also, we have 6 possible elementary subgraphs that consist of C6 and we have 6
possible elementary subgraphs consisting of an edge and a C4 that is not cross labeling. As
a consequence, privately for n = 6, we have the result−6·( 1

3
)6+6·( 1

3
)6−12·( 1

3
)6+12·( 1

3
)6 =

0 by using Eqn. 1. Finally, additively, if n = 10, there are n times more possible elementary
subgraphs that consist of a C6 so we have the formula by adding −2 · ( 1

3
)6n to the first

formula. Thus, we complete the proof. □

Corollary 6. Let Rn = (V,E) be a 3−regular graph with n vertices and 3n
2 edges

as shown in Fig. 1. Let PRn(λ) = λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ + cn be
the Sombor characteristic polynomial of Rn, where ck ∈ R. The formulae for some
coefficients of the Sombor characteristic polynomial of Rn are as follows:

c2 = −27n,

c3 = 0, if n = 4, then c3 = −8 · (
√
18)3,

c5 = 0, if n = 8, then c5 = −16 · (
√
18)5,

Also, we get the equations as follows:

c4 =


−3 · (

√
18)4, n = 4

0, n = 6

−(
√
18)4n + (

√
18)4

(∑n−3
j=1 j + (n − 3) + nn−4

2 +
(n

2
2

))
, otherwise

c6 =



0, n = 4

0, n = 6

−(
√
18)6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · (

√
18)6

(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− 2 · (

√
18)6

(
n + n

2

)
, n = 10

−(
√
18)6

(∑n−4
j=2

(j
2

)
+

(n−4
2

)
+

(n
2
3

)
+ n

(n−4
2
2

)
+ n(n

2 − 3)(n
2 − 4) + n(n

2 − 3)

+n
2 (n

2 − 2)
)
+ 2 · (

√
18)6

(
n(n−4

2 − 1) + (n
2

n−4
2 )

)
− (

√
18)6n, otherwise

Proof. The proof can be completed by simply replacing 1
3 with

√
18 in the proof of

the previous theorem. □
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3. Conclusion

The Randić and the Sombor characteristic polynomials of Pn and Cn were ob-
tained. Additionally, the formulae of five coefficients of the Randić and Sombor
characteristic polynomials of Rn were presented. The Randić and the Sombor en-
ergies of Pn and Cn can be studied by using these presented results. Furthermore,
various characteristic polynomials of some similar adjacency matrices defined ac-
cording to some vertex-degree-based topological invariants can be obtained by using
the number of elementary subgraphs that we presented in the theorems and corol-
laries. Especially, this study can also be extended to the multiplicative Sombor
index associated with the Sombor index.

Declaration of Competing Interests The author has no competing interest to

declare.
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ON DIFFERENCE OF BIVARIATE LINEAR POSITIVE

OPERATORS

Saheed Olaosebikan AREMU and Ali OLGUN

Department of Mathematics, Kırıkkale University, 71450 Yahşihan, Kırıkkale, TURKEY

Abstract. In the present paper we give quantitative type theorems for the

differences of different bivariate positive linear operators by using weighted
modulus of continuity. Similar estimates are obtained via K-functional and

for Chebyshev functionals. Moreover, an example involving Szász and Szász-

Kantorovich operators is given.

1. Introduction

Studies in the theory of approximations have been going on for many years.
During these times, the most well-known operator Bernstein operators, the best-
known theorem for convergence was the Korovkin Theorem. Then, Szasz, Baskakov,
Kantorovich operators are defined and their convergence properties are examined.
Many researchers have defined various modification forms of these operators and
examined their convergence properties and their applications are given. In recent
years, some studies have been carried out to obtain general information between the
convergence speeds of the operators by taking the difference of any two operators.

In the recent past, there is a growing interest in studying the difference of linear
positive operators in approximation theory (see [1], [2], [3] and [6])

In 2006, Gonska et al., using Taylor’s expansion with Peano remainder, gave a
Theorem showing that the difference of two operators A and B can be limited by

the concave majorant
∼
ω, where ωk is the k-th order modulus of smoothness [11].

In 2016, A. M. Acu and I. Raşa obtained some inequalities using Taylor’s formula
and obtained some estimations by applying these inequalities on the differences of
Linear Positive operators [1].
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In 2019, A. Aral et al. obtained some estimates for the difference of two general
linear positive operators on unbounded interval [5].

In 2021, A. M. Acu et al. gave some theorems for the difference of linear positive
operators of two variables defined on a simplex [4].

In this study, we will give some theorems given by A. Aral et al. [5] for univariate
operators for bivariate operators.

This paper deals with the difference of certain bivariate operators defined on
unbounded intervals. The differences are estimated in terms of weighted moduli
of smoothness for the operators constructed with the same fundamental functions
and different functionals in front of them.

2. Auxiliary Results

If we can calculate that the difference between the A and B operators is very
small, we can learn the properties of the other by looking at the properties of one.

It is well-known that classical modulus of continuity is a very useful tool in
order to determine the rate of convergence of the corresponding sequence of linear
positive operators defined bounded interval, in case of unbounded intervals, It would
be more appropriate to use a defined modulus of continuity in weighted function
spaces. This allows to enlarge the continuous function space to weighted function
space in approximation problems. For this purpose, we consider the modulus of
continuity defined in suitable polynomial weighted space, defined for univariate case
in [10] by Gadjieva and Doğru and for bivariate case in [12] by İspir and Atakut.

Let D := [0,∞)× [0,∞) and ρ (x, y) := 1+ x2 + y2, (x, y) ∈ D. Throughout the
paper; C (D) will denote the space of real-valued continuous functions on D and
CB (D) will denote the space of all f ∈ C (D) that are bounded on D. Let Bρ (D)
denote the space of functions f satisfying the inequality

|f (x, y)| ≤ mfρ (x, y) , (x, y) ∈ D,

where mf is a positive constant which depend on the function f . Bρ (D) is a linear
normed space with the norm

∥f∥ρ = sup
(x,y)∈D

|f (x, y)|
ρ (x, y)

. (1)

Let Cρ (D) denote the subspace of all continuous functions belonging to Bρ (D).
Also, let C∗

ρ (D) denote the subspace of all functions f ∈ Cρ (D) for which there
exists a constant kf such that

lim√
x2+y2→∞

|f (x, y)|
ρ (x, y)

= kf <∞.

In the case of kf = 0, we will write C0
ρ (D) .
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We use the weighted modulus of continuity, considered in [10] and [12], denoted
by Ωρ (f, ·, ·) and given by

Ωρ (f, δ1, δ2) = sup
(x,y)∈D, |h1|<δ1, |h2|<δ2

f (x+ h1, y + h2)− f (x, y)

(1 + x2 + y2) (1 + h21 + h22)
; f ∈ Cρ (D) .

(2)
The weighted modulus of continuity Ωρ satisfies the following properties for f ∈
C∗

ρ (D):

i: Ωρ (f, δ1, δ2) → 0 as δ1 → 0 and δ2 → 0 for δ1, δ2 > 0.
ii: For any positive real numbers λ1, λ2, δ1 and δ2 the following relation

Ωρ (f, λ1δ1, λ2δ2) ≤ 4 (1 + λ1) (1 + λ2) Ωρ (f, δ1, δ2) (3)

holds.

In the sequel, we will use the notation that ei,j (x, y) := xiyj , i, j ∈ N, (x, y) ∈ D,
1 denotes the constant function

1 : D → R, 1 (x, y) = 1, (x, y) ∈ D, (4)

and D denotes a linear subspace of C (D), which contains Cρ (D). We also consider
the positive linear functional F : D → R such that F (1) = 1. Denoting

θF1 := F (e1,0) , θ
F
2 := F (e0,1) (5)

and

µF
i,j := F

((
e1,0 − θF1 1

)i (
e0,1 − θF2 1

)j)
, i, j ∈ N, (6)

then one has

µF
1,0 = 0, µF

2,0 = F (e1,0)
2 −

(
θF1

)2
≥ 0, (7)

µF
0,1 = 0, µF

0,2 = F (e0,1)
2 −

(
θF2

)2
≥ 0.

Lemma 1. For (x, y) ∈ D, f ∈ C∗
ρ (D) and 0 < δ1, δ2 ≤ 1, we have

|f (t, s)− f (x, y)| ≤ 256ρ (x, y)

(
1 +

(t− x)
4

δ41

)(
1 +

(s− y)
4

δ42

)
Ωρ (f, δ1, δ2) .

Proof. Using the inequality [5] with λ1 = |t−x|
δ1

ve λ2 = |s−y|
δ2

, from (2) and (3), we
have

|f (t, s)− f (x, y)| ≤ 4ρ (x, y) Ωρ (f, δ1, δ2)

(
1 +

|t− x|
δ1

)(
1 +

|s− y|
δ2

)
×
(
1 + (t− x)

2
)(

1 + (s− y)
2
)

≤

{
16ρ (x, y)

(
1 + δ21

) (
1 + δ22

)
Ωρ (f, δ1, δ2) ; |t− x| ≤ δ1, |s− y| ≤ δ2

16ρ (x, y)
(
1 + δ21

) (
1 + δ22

)
Ωρ (f, δ1, δ2)

(t−x)4

δ41

(s−y)4

δ42
; |t− x| > δ1, |s− y| > δ2

.
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Therefore

|f (t, s)− f (x, y)| ≤ 16ρ (x, y)
(
1 + δ21

) (
1 + δ22

) (
1 + (t−x)4

δ41

)(
1 + (t−y)4

δ42

)
Ωρ (f, δ1, δ2).

Choosing 0 < δ1 ≤ 1, 0 < δ2 ≤ 1 for f ∈ C∗
ρ (D) , (x, y) ∈ D, we get

|f (t, s)− f (x, y)| ≤ 256ρ (x, y)

(
1 +

(t− x)
4

δ41

)(
1 +

(s− y)
4

δ42

)
Ωρ (f, δ1, δ2) .

□

Now, we present the following estimate for the difference
∣∣∣F (f)− f

(
θF1 , θ

F
2

)∣∣∣.
Lemma 2. Let f and all of its partial derivatives of order≤ 2 belong to the space
Cρ (D) and 0 < δ1 ≤ 1, 0 < δ2 ≤ 1. Then we have∣∣∣F (f)− f

(
θF1 , θ

F
2

)∣∣∣ ≤Mfρ
(
θF1 , θ

F
2

) [
µF
2,0 + µF

0,2

]
,

where

Mf := max
{
∥fxx∥ρ , ∥fxy∥ρ , ∥fyy∥ρ

}
.

Proof. For f ∈ Cρ (D), (t, s) ∈ D, using the Taylor formula we have

f (t, s)− f
(
θF1 , θ

F
2

)
= fx

(
θF1 , θ

F
2

)(
t− θF1

)
+ fy

(
θF1 , θ

F
2

)(
s− θF2

)
+

1

2

{
fxx (c1, c2)

(
t− θF1

)2
+2fxy (c1, c2)

(
t− θF1

)(
s− θF2

)
+ fyy (c1, c2)

(
s− θF2

)2}
,

where (c1, c2) is a point on the line connecting
(
θF1 , θ

F
2

)
and (t, s). Taking into

account of the fact that F (1) = 1 and (5), one has

F (f)− f
(
θF1 , θ

F
2

)
F (1)

= fx

(
θF1 , θ

F
2

)(
F (e1,0)− θF1 F (1)

)
− fy

(
θF1 , θ

F
2

)(
F (e0,1)− θF2 F (1)

)
+
1

2

{
fxx (c1, c2)µ

F
2,0 + 2fxy (c1, c2)µ

F
1,1 + fyy (c1, c2)µ

F
0,2

}
. (8)

Using the facts

|fxx (c1, c2)| ≤Mf

(
1 +

(
θF1

)2
+
(
θF2

)2)
,

|fxy (c1, c2)| ≤Mf

(
1 +

(
θF1

)2
+
(
θF2

)2)
,

and

|fyy (c1, c2)| ≤Mf

(
1 +

(
θF1

)2
+
(
θF2

)2)
,
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and since

2µF
1,1 ≤ µF

2,0 + µF
0,2,

from (8) we get∣∣∣F (f)− f
(
θF1 , θ

F
2

)∣∣∣ ≤ 1

2
Mf

(
1 +

(
θF1

)2
+
(
θF2

)2){
µF
2,0 + 2µF

1,1 + µF
0,2

}
≤ Mf

(
1 +

(
θF1

)2
+
(
θF2

)2)[
µF
2,0 + µF

0,2

]
.

□

3. Difference of Bivariate Positive Linear Operators

In this section, we will give estimates for the difference of bivariate positive linear
operators, on unbounded set D, in terms of weighted modulus of continuity. Let K
be a set of non-negative integers and consider a family of functions pk,l : D → D,
k, l ∈ K. We consider discrete operators given by

U (f ;x, y) =
∑
k,l∈K

Fk,l (f) pk,l (x, y) , V (f ;x, y) =
∑
k,l∈K

Gk,l (f) pk,l (x, y) ,

where
∑

k,l∈K
pk,l (x, y) = 1, Fk,l, Gk,l : D → R are positive linear functionals such

that Fk,l (1) = 1, Gk,l (1) = 1. U and V are positive linear operators such that
U, V : D → Bρ (D).

Theorem 1. Let f ∈ C∗
ρ (D) with all of its partial derivatives of order≤ 2 belong

to the space Cρ (D). Then we have

|(U − V ) (f ;x, y)| ≤ δ1+ δ2+28Ωρ (f, δ3, δ4)

1 +
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) ,

where

δ1 :=Mf

∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) [
µ
Fk,l

2,0 + µ
Fk,l

0,2

]
,

δ2 :=Mf

∑
k,l∈K

pk,l (x, y) ρ
(
θ
Gk,l

1 , θ
Gk,l

2

) [
µ
Gk,l

2,0 + µ
Gk,l

0,2

]
,

δ43 =
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)(
θ
Fk,l

1 − θ
Gk,l

1

)4
,

and

δ44 =
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)(
θ
Fk,l

2 − θ
Gk,l

2

)4
.
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Proof. We can write

|(U − V ) (f ;x, y)| =

∣∣∣∣∣∣
∑
k,l∈K

{
Fk,l (f)−Gk,l (f)− f

(
θ
Fk,l

1 , θ
Fk,l

2

)
+ f

(
θ
Fk,l

1 , θ
Fk,l

2

)
−f
(
θ
Gk,l

1 , θ
Gk,l

2

)
+ f

(
θ
Gk,l

1 , θ
Gk,l

2

)}
pk,l (x, y)

∣∣∣
≤

∑
k,l∈K

pk,l (x, y)
{∣∣∣Fk,l (f)− f

(
θ
Fk,l

1 , θ
Fk,l

2

)∣∣∣
+
∣∣∣Gk,l (f)− f

(
θ
Gk,l

1 , θ
Gk,l

2

)∣∣∣
+
∣∣∣f (θFk,l

1 , θ
Fk,l

2

)
− f

(
θ
Gk,l

1 , θ
Gk,l

2

)∣∣∣} .
Using Lemma 2, (5), (6) and (7), we get∣∣∣F (f)− f

(
θ
Fk,l

1 , θ
Fk,l

2

)∣∣∣ ≤Mfρ
(
θ
Fk,l

1 , θ
Fk,l

2

){
µ
Fk,l

2,0 + 2µ
Fk,l

1,1 + µ
Fk,l

0,2

}
and ∑

k,l∈K
pk,l (x, y)

∣∣∣Fk,l (f)− f
(
θ
Fk,l

1 , θ
Fk,l

2

)∣∣∣
≤ Mf

∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) [
µ
Fk,l

2,0 + µ
Fk,l

0,2

]
.

Similarly, ∑
k,l∈K

pk,l (x, y)
∣∣∣Gk,l (f)− f

(
θ
Gk,l

1 , θ
Gk,l

2

)∣∣∣
≤ Mf

∑
k,l∈K

pk,l (x, y) ρ
(
θ
Gk,l

1 , θ
Gk,l

2

) [
µ
Gk,l

2,0 + µ
Gk,l

0,2

]
.

Using Lemma 1, we get∣∣∣f (θFk,l

1 , θ
Fk,l

2

)
− f

(
θ
Gk,l

1 , θ
Gk,l

2

)∣∣∣
≤ 28ρ

(
θ
Fk,l

1 , θ
Fk,l

2

)
Ωρ (f, δ3, δ4)

×

1 +

(
θ
Fk,l

1 − θ
Gk,l

1

)4
δ43


1 +

(
θ
Fk,l

2 − θ
Gk,l

2

)4
δ44


≤ 28Ωρ (f, δ3, δ4)

ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)
+ ρ

(
θ
Fk,l

1 , θ
Fk,l

2

) (θFk,l

1 − θ
Gk,l

1

)4
δ43
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+ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) (θFk,l

2 − θ
Gk,l

2

)4
δ44

+ ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) (θFk,l

1 − θ
Gk,l

1

)4
δ43

(
θ
Fk,l

2 − θ
Gk,l

2

)4
δ44


and we can write∑

k,l∈K
pk,l (x, y)

∣∣∣f (θFk,l

1 , θ
Fk,l

2

)
− f

(
θ
Gk,l

1 , θ
Gk,l

2

)∣∣∣
≤ 28Ωρ (f, δ3, δ4)

∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)

+
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) (θFk,l

1 − θ
Gk,l

1

)4
δ43

+
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) (θFk,l

2 − θ
Gk,l

2

)4
δ44

+
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

) (θFk,l

1 − θ
Gk,l

1

)4
δ43

(
θ
Fk,l

2 − θ
Gk,l

2

)4
δ44


= 28Ωρ (f, δ3, δ4) {A0,0 +A1,0 +A0,1 +A1,1} ,

where

Ai,j = qk,l (x, y)


(
θ
Fk,l

1 − θ
Gk,l

1

)4
δ43


i 
(
θ
Fk,l

2 − θ
Gk,l

2

)4
δ44


j

; 0 ≤ i, j ≤ 1

qk,l (x, y) =
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)
.

Choosing

δ43 =
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)(
θ
Fk,l

1 − θ
Gk,l

1

)4
and

δ44 =
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)(
θ
Fk,l

2 − θ
Gk,l

2

)4
,

we reach to the desired result. □
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4. Estimate via K-functional

In this section, we give an estimate for the difference of bivariate positive linear
operators; in terms of K-functional. For this aim, we firstly recall the definition
of K-functional. Let C2

B (D) =
{
f ∈ CB (D) ; f (p,q) ∈ CB (D) , 1 ≤ p, q ≤ 2

}
where

f (p,q) is (p, q) th-order partial derivative with respect to x, y of f , equipped with
the norm

∥f∥C2
B(D) = ∥f∥CB(D) +

2∑
i=1

∥∥∥∥∂if∂xi
∥∥∥∥
CB(D)

+

2∑
i=1

∥∥∥∥∂if∂yi
∥∥∥∥
CB(D)

.

The Peetre K-functional of the function f ∈ CB (D) is given by

K (f ; δ) = inf
g∈C2

B(D)

{
∥f − g∥CB(D) + δ ∥g∥C2

B(D) , δ > 0
}
.

It is known that there is a connection between the second order modulus of smooth-
ness and Peetre’s K-functional for all δ > 0 as follows (see [9, p.192] or [7]):

K (f ; δ) ≤ C0

{
ω2

(
f ;

√
δ
)
+min (1, δ) ∥f∥CB(D)

}
.

Here, the constant C0 is independent of δ and f , and 2nd order modulus of smooth-
ness of f is a function ω2 : CB(D)× (0,∞) → [0,∞) given by

ω2 (f, δ) = sup
0<∥h∥≤δ

sup
x∈D

∆2
hf (x) , δ > 0,

where ∥.∥ is the Euclidean norm in R2 and ∆2
hf is the 2nd order difference on D

given by

∆2
hf (x) =

2∑
k=0

(−1)
2−k

(
2

k

)
f (x+ kh) , x ∈ D, h ∈ D.

Now, assume that C2
B (D) ⊂ D, where, as it is mentioned in page 3, D is the linear

subspace of C (D) containing Cρ (D) .

Lemma 3. Let f ∈ D ∩ CB (D). Then∣∣∣F (f)− f
(
θF1 , θ

F
2

)∣∣∣ ≤ 2K

(
f ;

1

4

[
µF
2,0 + µF

0,2

])
.

Proof. Let g (x, y) ∈ C2
B (D) and (t, s) ∈ D. Using Taylor’s expansion [8], we have

g (t, s)− g (x, y) =
∂g (x, y)

∂x
(t− x) +

∂g (x, y)

∂y
(s− y)

+

∫ t

x

(t− u)
∂2g (u, y)

∂u2
du+

∫ s

y

(s− v)
∂2g (x, v)

∂v2
dv.

Application of the functional F on both sides of the last formula gives∣∣∣F (g)− g
(
θF1 , θ

F
2

)
F (1)

∣∣∣
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≤
∣∣∣gx (θF1 , θF2 )(F (e1,0)− θF1 F (1)

)∣∣∣+ ∣∣∣gy (θF1 , θF2 )(F (e0,1)− θF2 F (1)
)∣∣∣

F

(∣∣∣∣∫ t

x

(t− u)
∂2g (u, y)

∂u2

∣∣∣∣ du;x, y)+ F

(∣∣∣∣∫ s

y

(s− v)
∂2g (x, v)

∂v2
dv

∣∣∣∣ ;x, y)
≤ 1

2

{
∥gxx∥CB(D)

(
F (e1,0)− θF1 F (1)

)2
+ ∥gyy∥CB(D)

(
F (e0,1)− θF2 F (1)

)2}
.

Taking into account of F (1) = 1, (4), (5) and (6), we get∣∣∣F (g)− g
(
θF1 , θ

F
2

)∣∣∣ ≤ 1

2

{
∥gxx∥CB(D) µ

F
2,0 + ∥gyy∥CB(D) µ

F
0,2

}
.

Now, let f ∈ D ∩ CB (D) and (t, s) ∈ D, then we have∣∣∣F (f ;x, y)− f
(
θF1 , θ

F
2

)
F (1)

∣∣∣
=

∣∣∣F (f − g + g;x, y)− f
(
θF1 , θ

F
2

)
F (1) + g

(
θF1 , θ

F
2

)
F (1)− g

(
θF1 , θ

F
2

)
F (1)

∣∣∣
=

∣∣F (f − g;x, y) + F (g;x, y)− g
(
θF1 , θ

F
2

)
F (1)

− f
(
θF1 , θ

F
2

)
F (1) + g

(
θF1 , θ

F
2

)
F (1)

∣∣
≤

∣∣F (f − g;x, y)
∣∣+ ∣∣∣F (g;x, y)− g

(
θF1 , θ

F
2

)
F (1)

∣∣∣
+

∣∣∣f (θF1 , θF2 )F (1)− g
(
θF1 , θ

F
2

)
F (1)

∣∣∣
≤ 2 ∥f − g∥CB(D) +

1

2

{
∥gxx∥CB(D) µ

F
2,0 + ∥gyy∥CB(D) µ

F
0,2

}
≤ 2 ∥f − g∥CB(D) +

1

2
∥g∥C2

B(D)

[
µF
2,0 + µF

0,2

]
.

Therefore, taking the infimum on the right hand side over all g ∈ C2
B (D)∣∣∣F (f ;x, y)− f

(
θF1 , θ

F
2

)∣∣∣ ≤ inf
g∈C2

B(D)

{
2 ∥f − g∥CB(D) +

1

2
∥g∥C2

B(D)

[
µF
2,0 + µF

0,2

]}
= 2K

(
f ;

1

4

[
µF
2,0 + µF

0,2

])
.

□

Now, the following theorem can be given.

Theorem 2. Let f ∈ D∩CB (D) with all of its first order partial derivatives belong
to CB (D). Then

|(U − V ) (f ;x, y)| ≤ 4K

(
f,

1

8
η (x, y)

)
+M ′

fµ (x, y) ,
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where M ′
f := max

{
∥fx∥CB(D) , ∥fx∥CB(D)

}
,

η (x, y) :=
∑
k,l∈K

pk,l (x, y)
(
λFk,l

+ λGk,l

)
,

with λFk,l
:= µ

Fk,l

2,0 + µ
Fk,l

0,2 , λGk,l
:= µ

Gk,l

2,0 + µ
Gk,l

0,2 and

µ (x, y) =
∑
k,l∈K

pk,l (x, y)
{∣∣∣θFk,l

1 − θ
Gk,l

1

∣∣∣+ ∣∣∣θFk,l

2 − θ
Gk,l

2

∣∣∣} .
Proof. By the hypothesis, f is differentiable on the line connecting the points(
θ
Fk,l

1 , θ
Fk,l

2

)
and

(
θ
Gk,l

1 , θ
Gk,l

2

)
. From the mean value theorem for function of two

variables (see, e.g., [7]), there is a point (c1, c2) on this line such that

f
(
θ
Fk,l

1 , θ
Fk,l

2

)
−f
(
θ
Gk,l

1 , θ
Gk,l

2

)
= fx (c1, c2)

(
θ
Fk,l

1 − θ
Gk,l

1

)
+fy (c1, c2)

(
θ
Fk,l

2 − θ
Gk,l

2

)
holds. For f ∈ D ∩ CB (D), using Lemma 3, and the above formula, we have

|(U − V ) (f ;x, y)|
≤

∑
k,l∈K

pk,l (x, y) |Fk,l (f)−Gk,l (f)|

≤
∑
k,l∈K

pk,l (x, y)
{∣∣∣Fk,l (f)− f

(
θ
Fk,l

1 , θ
Fk,l

2

)∣∣∣+ ∣∣∣Gk,l (f)− f
(
θ
Gk,l

1 , θ
Gk,l

2

)∣∣∣∣∣∣fx (c1, c2)(θFk,l

1 − θ
Gk,l

1

)
+ fy (c1, c2)

(
θ
Fk,l

2 − θ
Gk,l

2

)∣∣∣}
≤ 2

∑
k,l∈K

pk,l (x, y)

{
K

(
f ;

1

4

[
µ
Fk,l

2,0 + µ
Fk,l

0,2

])
+K

(
f ;

1

4

[
µ
Gk,l

2,0 + µ
Gk,l

0,2

])}
+
∑
k,l∈K

pk,l (x, y)
{
∥fx∥CB(D)

∣∣∣θFk,l

1 − θ
Gk,l

1

∣∣∣+ ∥fy∥CB(D)

∣∣∣θFk,l

2 − θ
Gk,l

2

∣∣∣}
= 2

∑
k,l∈K

pk,l (x, y)

{
K

(
f ;

1

4
λFk,l

)
+K

(
f ;

1

4
λGk,l

)}
+Kf

∑
k,l∈K

pk,l (x, y)
{∣∣∣θFk,l

1 − θ
Gk,l

1

∣∣∣+ ∣∣∣θFk,l

2 − θ
Gk,l

2

∣∣∣} ,
where we denote

λFk,l
:= µ

Fk,l

2,0 +µ
Fk,l

0,2 , λGk,l
:= µ

Gk,l

2,0 +µ
Gk,l

0,2 and M ′
f := max

{
∥fx∥CB(D) , ∥fx∥CB(D)

}
From the definition of K-functional, for a fixed g ∈ C2

B (D), we can write

|(U − V ) (f ;x, y)| ≤ 4 ∥f − g∥C(D)

∑
k,l∈K

pk,l (x, y)
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+
1

2
∥g∥C2(D)

∑
k,l∈K

pk,l (x, y)
(
λFk,l

+ λGk,l

)
+M ′

f

∑
k,l∈K

pk,l (x, y)
{∣∣∣θFk,l

1 − θ
Gk,l

1

∣∣∣+ ∣∣∣θFk,l

2 − θ
Gk,l

2

∣∣∣}
= 4K

(
f,

1

8
η (x, y)

)
+M ′

fµ (x, y) ,

where

η (x, y) :=
∑
k,l∈K

pk,l (x, y)
(
λFk,l

+ λGk,l

)
and

µ (x, y) =
∑
k,l∈K

pk,l (x, y)
{∣∣∣θFk,l

1 − θ
Gk,l

1

∣∣∣+ ∣∣∣θFk,l

2 − θ
Gk,l

2

∣∣∣} .
□

Note that using (9), from the above theorem we obtain

|(U − V ) (f ;x, y)| ≤ C0

{
ω2

(
f ;

√
1

8
η (x, y)

)
+min (1, λ) ∥f∥CB(D)

}
+M ′

fµ (x, y) .

5. Difference for Chebishev Functionals

For f, g ∈ Cρ, we take the bivariate positive linear operators U and V defined
at the beginning of this section. Assuming that f, g, fg ∈ Cρ (D), we consider the
Chebishev functional of U given by TU (f, g) := U (fg)−U (f)U (g) (similarly for
V ) (see [5] and references therein). In this part, we give an upper estimate related
to the difference

∣∣TU (f, g)− TV (f, g)
∣∣ .

Theorem 3. Let the functions f, g and fg belong to C∗
ρ (D) and all of their partial

derivatives of order ≤ 2 belong to Cρ (D). If

θ
Fk,l

1 = θ
Gk,l

1 = θ1, θ
Fk,l

2 = θ
Gk,l

2 = θ2 ,

U
(
1 + (e1,0)

2
+ (e0,1)

2
;x, y

)
≤Mρ (x, y)

and

V
(
1 + (e1,0)

2
+ (e0,1)

2
;x, y

)
≤M ρ (x, y) ,

then we have∣∣TU (f, g;x, y)− TV (f, g;x, y)
∣∣

≤ (δ1 + δ2)
[
1 +Mρ (x, y)

(
∥f∥ρ + ∥g∥ρ

)]
+ 28 [1 + qk,l (x, y)]

×
{
Ωρ (fg, δ3, δ4) +Mρ (x, y)

(
∥f∥ρ Ωρ (g, δ3, δ4) + ∥g∥ρ Ωρ (f, δ3, δ4)

)}
,
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where δ1 and δ2 are the same as in Theorem 1 and

qk,l (x, y) =
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)
.

Proof. From the definition of Chebyshev functionals, we can write

TU (f, g;x, y)− TV (f, g;x, y)

= U (fg;x, y)− U (f ;x, y)U (g;x, y)− V (fg;x, y) + V (f ;x, y)V (g;x, y)

= U (fg;x, y)− U (f ;x, y)U (g;x, y)− U (f ;x, y)V (g;x, y) + U (f ;x, y)V (g;x, y)

−V (fg;x, y) + V (f ;x, y)V (g;x, y)

= U (fg;x, y)− V (fg;x, y)− U (f ;x, y) [U (g;x, y)− V (g;x, y)]

−V (g;x, y) [U (f ;x, y)− V (f ;x, y)] .

By taking absolute value of both sides we obtain∣∣TU (f, g;x, y)− TV (f, g;x, y)
∣∣

≤ |U (fg;x, y)− V (fg;x, y)|+ |U (f ;x, y)| |U (g;x, y)− V (g;x, y)|
+ |V (g;x, y)| |U (f ;x, y)− V (f ;x, y)| .

From Theorem 1 we have

|U (fg;x, y)− V (fg;x, y)|
≤

∑
k,l∈K

pk,l (x, y) |Fk,l (fg;x, y)−Gk,l (fg;x, y)|

≤ δ1 + δ2 + 28Ωρ (fg, δ3, δ4) (1 + qk,l (x, y))

and

|U (f ;x, y)| |U (g;x, y)− V (g;x, y)|
≤ Mρ (x, y) ∥f∥ρ

[
δ1 + δ2 + 28Ωρ (g, δ3, δ4) (1 + qk,l (x, y))

]
|V (g;x, y)| [U (f ;x, y)− V (f ;x, y)]

≤ Mρ (x, y) ∥g∥ρ
[
δ1 + δ2 + 28Ωρ (f, δ3, δ4) (1 + qk,l (x, y))

]
.

If necessary arrangements are made, the proof is completed. □

6. Application

If we take the well-known bivariate Szász operator as the operator U and the
bivariate Szász-Kantorovich as the operator V given, respectively, by

Un,m (f ;x, y) =

∞∑
k,l=0

e−nx−my (nx)
k

k!

(my)
l

l!
f

(
k

n
,
l

m

)
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and

Vn,m (f ;x, y) =

∞∑
k,l=0

e−nx−my (nx)
k

k!

(my)
l

l!
nm

∫ k+1
n

k
n

∫ l+1
m

l
m

f (t, s) dsdt.

Theorem 4. Let f ∈ C∗
ρ (D) with all of its partial derivatives of order ≤ 2 belong

to the space Cρ (D). Then we have

|(U − V ) (f ;x, y)| ≤ δ2 + 28Ωρ (f, δ3, δ4)ψ (x, y) ,

where

δ2 (x, y) =

{
1 +

(1 + 8nx+ 4nx2)

4n2
+

(1 + 8my + 4my2)

4m2

}{
1

3n2
+

1

3m2

}
,

δ43 (x, y) =
1

16n2
+
nx+ 4nx2

16n4
+
my + 4my2

16n2m2
,

δ44 (x, y) =
1

16m2
+
nx+ 4nx2

16n2m2
+
my + 4my2

16m4

and
ψ (x, y) = 2 + x2 + y2 +

x

n
+
y

m
.

Proof. We use Theorem. By making simple calculations for the operators U and V
given above, we have

Fk,l (f) = f

(
k

n
,
l

m

)
,

θF1 = Fk,l (e1,0) =
k

n
, θF2 =

l

m
,

Gk,l (f) = nm

∫ k+1
n

k
n

∫ l+1
m

l
m

f (t, s) dsdt,

θG1 = Gk,l (e1,0) =
1

2n
(2k + 1) , θF2 =

1

2m
(2l + 1) ,

µF
2,0 = Fk,l

((
e1,0 −

k

n

)2
)

= 0, µF
0,2 = Fk,l

((
e0,1 −

l

m

)2
)

= 0,

µG
2,0 = Gk,l

((
e1,0 −

k

n

)2
)

=
1

3n2
, µG

0,2 = Gk,l

((
e0,1 −

l

m

)2
)

=
1

3m2
.

Therefore, we get

δ1 (x, y) = 0,

δ2 (x, y) =

∞∑
k,l

e−nx−my (nx)
k

k!

(my)
l

l!

{(
1 +

(2k + 1)
2

4n2
+

(2l + 1)
2

4m2

){
1

3n2
+

1

4mn
+

1

3m2

}}

=

{
1 +

(1 + 8nx+ 4nx2)

4n2
+

(1 + 8my + 4my2)

4m2

}{
1

3n2
+

1

4mn
+

1

3m2

}
,
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δ43 =
∑
k,l∈K

e−nx−my (nx)
k

k!

(my)
l

l!
ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)(
θ
Fk,l

1 − θ
Gk,l

1

)4
=

∑
k,l∈K

e−nx−my (nx)
k

k!

(my)
l

l!
ρ

(
k

n
,
l

m

)(
k

n
− 1

2n
(2k + 1)

)4

=
∑
k,l∈K

e−nx−my (nx)
k

k!

(my)
l

l!

(
1 +

k2

n2
+

l2

m2

)(
1

2n

)4

=
1

16n2
+
nx+ 4nx2

16n4
+
my + 4my2

16n2m2

and

δ44 =
∑
k,l∈K

pk,l (x, y) ρ
(
θ
Fk,l

1 , θ
Fk,l

2

)(
θ
Fk,l

2 − θ
Gk,l

2

)4
=

∑
k,l∈K

e−nx−my (nx)
k

k!

(my)
l

l!

(
1 +

k2

n2
+

l2

m2

)(
1

2m

)4

=
1

16m2
+
nx+ 4nx2

16n2m2
+
my + 4my2

16m4
.

ψ (x, y) = 1 +
∑
k,l∈K

e−nx−my (nx)
k

k!

(my)
l

l!
ρ

(
k

n
,
l

m

)

= 1 +
∑
k,l∈K

e−nx−my (nx)
k

k!

(my)
l

l!

(
1 +

k2

n2
+

l2

m2

)
= 2 + x2 + y2 +

x

n
+
y

m
.

This completes the proof. □
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ON INEQUALITIES OF SIMPSON’S TYPE FOR CONVEX

FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
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Abstract. Fractional calculus and applications have application areas in many
different fields such as physics, chemistry, and engineering as well as mathemat-

ics. The application of arithmetic carried out in classical analysis in fractional

analysis is very important in terms of obtaining more realistic results in the
solution of many problems. In this study, we prove an identity involving gen-

eralized fractional integrals by using differentiable functions. By utilizing this

identity, we obtain several Simpson’s type inequalities for the functions whose
derivatives in absolute value are convex. Finally, we present some new results

as the special cases of our main results.

1. Introduction

Simpson’s rules are well-known ways for the numerical integration and numerical
estimation of definite integrals. This method is known as developed by Thomas
Simpson’s (1710–1761). However, Johannes Kepler used the same approximation
about 100 years ago, so that this method is also known as Kepler’s rule. Simpson’s
rule includes the three-point Newton-Cotes quadrature rule, so estimation based
on three steps quadratic kernel is sometimes called as Newton type results.

(1) Simpson’s quadrature formula (Simpson’s 1/3 rule)∫ κ2

κ1

ϑ(χ)dχ ≈ κ2 − κ1

6

[
ϑ(κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ(κ2)

]
.
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(2) Simpson’s second formula or Newton-Cotes quadrature formula (Simpson’s
3/8 rule).∫ κ2

κ1

ϑ(χ)dχ ≈ κ2 − κ1

8

[
ϑ(κ1) + 3ϑ

(
2κ1 + κ2

3

)
+ 3ϑ

(
κ1 + 2κ2

3

)
+ ϑ(κ2)

]
.

There are a large number of estimations related to these quadrature rules in the
literature, one of them is the following estimation known as Simpson’s inequality:

Theorem 1. Suppose that ϑ : [κ1, κ2] → R is a four times continuously differen-

tiable mapping on (κ1, κ2) and
∥∥∥ϑ(4)

∥∥∥
∞

= sup
χ∈(κ1,κ2)

∣∣∣ϑ(4)(χ)
∣∣∣ < ∞. Then, one has

the inequality∣∣∣∣13
[
ϑ(κ1) + ϑ(κ2)

2
+ 2ϑ

(
κ1 + κ2

2

)]
− 1

κ2 − κ1

∫ κ2

κ1

ϑ(χ)dχ

∣∣∣∣
≤ 1

2880

∥∥∥ϑ(4)
∥∥∥
∞

(κ2 − κ1)
4
.

In recent years, many authors have focused on Simpson’s type inequalities for
various classes of functions. Specifically, some mathematicians have worked on
Simpson’s and Newton’s type results for convex mappings, because convexity the-
ory is an effective and powerful method for solving a large number of problems
which arise within different branches of pure and applied mathematics. For exam-
ple, Dragomir et al. [16] presented new Simpson’s type results and their applications
to quadrature formulas in numerical integration. What is more, some inequalities
of Simpson’s type for s-convex functions are deduced by Alomari et al. in [6]. Af-
terwards, Sarikaya et al. observed the variants of Simpson’s type inequalities based
on convexity in [42]. In [34] and [35], the authors provided some Newton’s type in-
equalities for harmonic convex and p-harmonic convex functions. Additionally, new
Newton’s type inequalities for functions whose local fractional derivatives are gen-
eralized convex are given by Iftikhar et al. in [25]. For more recent developments,
one can consult [2–5,7, 11–15,17,18,23,36,47].

2. Generalized Fractional Integrals

Fractional calculus and applications have application areas in many different
fields such as physics, chemistry and engineering as well as mathematics. The
application of arithmetic carried out in classical analysis in fractional analysis is
very important in terms of obtaining more realistic results in the solution of many
problems. Many real dynamical systems are better characterized by using non-
integer order dynamic models based on fractional computation. While integer or-
ders are a model that is not suitable for nature in classical analysis, fractional
computation in which arbitrary orders are examined enables us to obtain more
realistic approaches. This subject has been studied by many scientists in terms
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of its widespread use [20, 21, 27, 30, 31, 37, 40, 44]. One of the most important ap-
plications of the fractional Integrals is the Hermite-Hadamard integral inequality
(see, [1, 22,26,38,39,41]).

In this section, we summarize the generalized fractional integrals defined by
Sarikaya and Ertuğral in [41].

Let’s define a function φ : [0,∞) → [0,∞) satisfying the following conditions:∫ 1

0

φ (τ)

τ
dτ < ∞.

We define the following left-sided and right-sided generalized fractional integral
operators, respectively, as follows:

κ1+Iφϑ(χ) =

∫ χ

κ1

φ (χ− τ)

χ− τ
ϑ(τ)dτ, χ > κ1, (1)

κ2−Iφϑ(χ) =

∫ κ2

χ

φ (τ − χ)

τ − χ
ϑ(τ)dτ, χ < κ2. (2)

The most important feature of generalized fractional integrals is that they gen-
eralize some types of fractional integrals such as Riemann-Liouville fractional in-
tegral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals,
conformable fractional integral, Hadamard fractional integrals, etc. These impor-
tant special cases of the integral operators (1) and (2) are mentioned below.

i) If we take φ (τ) = τ , the operator (1) and (2) reduce to the Riemann integral
as follows:

I
κ1+

ϑ(χ) =

∫ χ

κ1

ϑ(τ)dτ, χ > κ1,

Iκ2−ϑ(χ) =

∫ κ2

χ

ϑ(τ)dτ, χ < κ2.

ii) Let us consider φ (τ) = τα

Γ(α) , α > 0. Then, the operator (1) and (2) reduce to

the Riemann-Liouville fractional integral as follows:

Jα
κ1+

ϑ(χ) =
1

Γ (α)

∫ χ

κ1

(χ− τ)
α−1

ϑ(τ)dτ, χ > κ1,

Jα
κ2−ϑ(χ) =

1

Γ (α)

∫ κ2

χ

(τ − χ)
α−1

ϑ(τ)dτ, χ < κ2.

iii) For φ (τ) = 1
kΓk(α)

τ
α
k , α, k > 0, the operator (1) and (2) reduce to the

k-Riemann-Liouville fractional integral as follows:

Jα
κ1+,kϑ(χ) =

1

kΓk (α)

∫ χ

κ1

(χ− τ)
α
k −1

ϑ(τ)dτ, χ > κ1,
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Jα
κ2−,kϑ(χ) =

1

kΓk (α)

∫ κ2

χ

(τ − χ)
α
k −1

ϑ(τ)dτ, χ < κ2.

Here,

Γk (α) =

∫ ∞

0

τα−1e−
τk

k dτ, R(α) > 0

and

Γk (α) = k
α
k −1Γ

(α
k

)
, R(α) > 0; k > 0

are given by Mubeen and Habibullah in [33].
In the literature, there are several papers on inequalities for generalized fractional

integrals. For more information and unexplained subjects, we refer the reader
to [8–10,19,24,28,29,32,46,48] and the references therein.

3. Simpson’s Type Inequalities for Generalized Fractional Integrals

Throughout this study for brevity, we define

η1(χ, τ) =

τ∫
0

φ ((κ2 − χ)u)

u
du, ν1(χ, τ) =

τ∫
0

φ ((χ− κ1)u)

u
du.

Particularly, if we choose χ = κ1+κ2

2 , then we have

η1

(
κ1 + κ2

2
, τ

)
= ν1

(
κ1 + κ2

2
, τ

)
= Υ1(τ) =

τ∫
0

φ
((

κ2−κ1

2

)
u
)

u
du.

Lemma 1. Let ϑ : [κ1, κ2] → R be an absolutely continuous mapping (κ1, κ2) such
that ϑ′ ∈ L1 ([κ1, κ2]). Then, the following equality holds:

1

6
[ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]

=
κ2 − χ

6η1(χ, 1)

1∫
0

(η1(χ, 1)− 3η1(χ, τ))ϑ
′ (τχ+ (1− τ)κ2) dτ

− χ− κ1

6ν1 (χ, 1)

1∫
0

(ν1(χ, 1)− 3ν1(χ, τ))ϑ
′ ((1− τ)κ1 + τχ) dτ.

Proof. By using integration by parts, we have

H1 =

1∫
0

(η1(χ, 1)− 3η1(χ, τ))ϑ
′ (τχ+ (1− τ)κ2) dτ (3)

=
1

κ2 − χ
η1(χ, 1) [2ϑ(χ) + ϑ(κ2)]
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+
3

χ− κ2

1∫
0

ϑ (τχ+ (1− τ)κ2)
φ ((κ2 − χ)τ)

τ
dτ

=
1

κ2 − χ
η1(χ, 1) [2ϑ(χ) + ϑ(κ2)]−

3

κ2 − χ

κ2∫
χ

ϑ(u)φ(κ2 − u)

κ2 − u
du

=
η1(χ, 1)

κ2 − χ
[2ϑ(χ) + ϑ(κ2)]−

3

κ2 − χ
χ+Iφϑ(κ2).

Similarly, we obtain

H2 =

1∫
0

(ν1(χ, 1)− 3ν1(χ, τ))ϑ
′ (τχ+ (1− τ)κ1) dτ (4)

=
ν1(χ, 1)

χ− κ1
[−2ϑ(χ)− ϑ(κ1)] +

3

χ− κ1
χ−Iφϑ(κ1).

From (3) and (4), we get

κ2 − χ

6η1(χ, 1)
H1 −

χ− κ1

6ν1 (χ, 1)
H2

=
1

6
[ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]
.

This ends the proof of Lemma 1. □

Corollary 1. Under assumptions of Lemma 1 with χ = κ1+κ2

2 , we obtain the
equality

1

6

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]

− 1

2Υ1(1)

[
κ1+κ2

2 +
Iφϑ (κ2) +κ1+κ2

2 − Iφϑ (κ1)
]

=
κ2 − κ1

12η1(χ, 1)

1∫
0

(Υ1(1)− 3Υ1(τ))

×
[
ϑ′
(
τ

2
κ1 +

2− τ

2
κ2

)
− ϑ′

(
2− τ

2
κ1 +

τ

2
κ2

)]
dτ.
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Corollary 2. In Lemma 1, if we choose φ(τ) = τ for all τ ∈ [κ1, κ2] , then we
obtain the equality

1

6
[ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

1

2

 1

κ2 − χ

κ2∫
χ

ϑ(τ)dτ +
1

χ− κ1

χ∫
κ1

ϑ(τ)dτ


=

κ2 − χ

6

1∫
0

(1− 3τ)ϑ′ (τχ+ (1− τ)κ2) dτ

− χ− κ1

6

1∫
0

(1− 3τ)ϑ′ ((1− τ)κ1 + τχ) dτ.

Corollary 3. In Lemma 1, let us consider φ(τ) = τα

Γ(α) , α > 0 for all τ ∈ [κ1, κ2] .

Then, we get the equality

1

6
[ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

Γ(α+ 1)

2

[
Jα
χ+ϑ (κ2)

(κ2 − χ)
α +

Jα
χ−ϑ (κ1)

(χ− κ1)
α

]

=
κ2 − χ

6

1∫
0

(1− 3τα)ϑ′ (τχ+ (1− τ)κ2) dτ

− χ− κ1

6

1∫
0

(1− 3τα)ϑ′ ((1− τ)κ1 + τχ) dτ.

Corollary 4. In Lemma 1, if we assign φ(τ) = τ
α
k

kΓk(α)
, k, α > 0 for all τ ∈ [κ1, κ2] ,

then we have the equality

1

6
[ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

Γk(α+ k)

2

[
Jα
χ+,kϑ (κ2)

(κ2 − χ)
α
k

+
Jα
χ−,kϑ (κ1)

(χ− κ1)
α
k

]

=
κ2 − χ

6

1∫
0

(
1− 3τ

α
k

)
ϑ′ (τχ+ (1− τ)κ2) dτ

− χ− κ1

6

1∫
0

(
1− 3τ

α
k

)
ϑ′ ((1− τ)κ1 + τχ) dτ.

Remark 1. If we set χ = κ1+κ2

2 in Corollaries 2, 3 and 4, then we obtain the
following identities

1

6

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
− 1

κ2 − κ1

∫ κ2

κ1

ϑ (τ) dτ
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=
κ2 − κ1

12

[∫ 1

0

(1− 3τ)ϑ′
(
τ

2
κ1 +

2− τ

2
κ2

)
dτ

−
∫ 1

0

(1− 3τ)ϑ′
(
2− τ

2
κ1 +

τ

2
κ2

)
dτ

]
,

1

6

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
− 2α−1Γ (α+ 1)

(κ2 − κ1)
α

[
Jα

κ1+κ2
2 +

ϑ (κ2) + Jα
κ1+κ2

2 −ϑ (κ1)
]

=
κ2 − κ1

12

[∫ 1

0

(1− 3τα)ϑ′
(
τ

2
κ1 +

2− τ

2
κ2

)
dτ

−
∫ 1

0

(1− 3τα)ϑ′
(
2− τ

2
κ1 +

τ

2
κ2

)
dτ

]
,

and

1

6

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
− 2

α
k −1Γk (α+ k)

(κ2 − κ1)
α
k

[
Jα

κ1+κ2
2 +,k

ϑ (κ2) + Jα
κ1+κ2

2 −,k
ϑ (κ1)

]
=

κ2 − κ1

12

[∫ 1

0

(
1− 3τ

α
k

)
ϑ′
(
τ

2
κ1 +

2− τ

2
κ2

)
dτ

−
∫ 1

0

(
1− 3τ

α
k

)
ϑ′
(
2− τ

2
κ1 +

τ

2
κ2

)
dτ

]
,

respectively.

Theorem 2. Assume that the assumptions of Lemma 1 hold. Assume also that
the mapping

∣∣ϑ′∣∣ is convex on [κ1, κ2] . Then, we have the following inequality

∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
≤ κ2 − χ

6η1(χ, 1)

[
Ξ1

∣∣ϑ′ (χ)
∣∣+ Ξ2

∣∣ϑ′ (κ2)
∣∣]+ χ− κ1

6ν1 (χ, 1)

[
Ξ3

∣∣ϑ′ (κ1)
∣∣+ Ξ4

∣∣ϑ′ (χ)
∣∣] ,
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where 

Ξ1 =
1∫
0

τ |η1(χ, 1)− 3η1(χ, τ)| dτ,

Ξ2 =
1∫
0

(1− τ) |η1(χ, 1)− 3η1(χ, τ)| dτ,

Ξ3 =
1∫
0

(1− τ) |ν1(χ, 1)− 3ν1(χ, τ)| dτ,

Ξ4 =
1∫
0

τ |ν1(χ, 1)− 3ν1(χ, τ)| dτ.

(5)

Proof. By taking modulus in Lemma 1, we obtain∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣ (6)

≤ κ2 − χ

6η1(χ, 1)

1∫
0

|η1(χ, 1)− 3η1(χ, τ)|
∣∣ϑ′ (τχ+ (1− τ)κ2)

∣∣ dτ
+

χ− κ1

6ν1 (χ, 1)

1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)|
∣∣ϑ′ ((1− τ)κ1 + τχ)

∣∣ dτ.
With the help of the convexity of

∣∣ϑ′∣∣, we get∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
≤ κ2 − χ

6η1(χ, 1)

1∫
0

|η1(χ, 1)− 3η1(χ, τ)|
[
τ
∣∣ϑ′ (χ)

∣∣+ (1− τ)
∣∣ϑ′ (κ2)

∣∣] dτ
+

χ− κ1

6ν1 (χ, 1)

1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)|
[
(1− τ)

∣∣ϑ′ (κ1)
∣∣+ τ

∣∣ϑ′ (χ)
∣∣] dτ

=
κ2 − χ

6η1(χ, 1)

[
Ξ1

∣∣ϑ′ (χ)
∣∣+ Ξ2

∣∣ϑ′ (κ2)
∣∣]+ χ− κ1

6ν1 (χ, 1)

[
Ξ3

∣∣ϑ′ (κ1)
∣∣+ Ξ4

∣∣ϑ′ (χ)
∣∣] .

This completes the proof of Theorem 2. □

Corollary 5. Under assumptions of Theorem 2 with χ = κ1+κ2

2 , we have the
following inequalities∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
− 1

2Υ1(1)

[
κ1+κ2

2 +
Iφϑ (κ2) +κ1+κ2

2 − Iφϑ (κ1)
]∣∣∣∣
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≤ κ2 − κ1

12Υ1(1)

[
2Ξ5

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣+ Ξ6

[∣∣ϑ′ (κ2)
∣∣+ ∣∣ϑ′ (κ1)

∣∣]]
≤ κ2 − κ1

12Υ1(1)
(Ξ5 + Ξ6)

[∣∣ϑ′ (κ2)
∣∣+ ∣∣ϑ′ (κ1)

∣∣] .
Here,

Ξ5 =

1∫
0

τ |Υ1(1)− 3Υ1(τ)| dτ and Ξ6 =

1∫
0

(1− τ) |Υ1(1)− 3Υ1(τ)| dτ. (7)

Corollary 6. In Theorem 2, let us note that φ(τ) = τ for all τ ∈ [κ1, κ2] . Then,
we obtain the inequality∣∣∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

1

2

 1

κ2 − χ

κ2∫
χ

ϑ(τ)dτ +
1

χ− κ1

χ∫
κ1

ϑ(τ)dτ

∣∣∣∣∣∣
≤ κ2 − χ

6

[
29

54

∣∣ϑ′ (χ)
∣∣+ 8

27

∣∣ϑ′ (κ2)
∣∣]+ χ− κ1

6

[
8

27

∣∣ϑ′ (κ1)
∣∣+ 29

54

∣∣ϑ′ (χ)
∣∣] .

Corollary 7. In Theorem 2, if we select φ(τ) = τα

Γ(α) , α > 0 for all τ ∈ [κ1, κ2] ,

then we get the inequality∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
Γ(α+ 1)

2

[
Jα
χ+ϑ (κ2)

(κ2 − χ)
α +

Jα
χ−ϑ (κ1)

(χ− κ1)
α

]∣∣∣∣
≤ κ2 − χ

6

[
Θ1(α)

∣∣ϑ′ (χ)
∣∣+Θ2(α)

∣∣ϑ′ (κ2)
∣∣]

+
χ− κ1

6

[
Θ2(α)

∣∣ϑ′ (κ1)
∣∣+Θ1(α)

∣∣ϑ′ (χ)
∣∣] ,

where

Θ1(α) =
α

α+ 2

(
1

3

) 2
α

+
4− α

2 (α+ 2)
, (8)

Θ2(α) =
2α

α+ 1

(
1

3

) 1
α

− α

α+ 2

(
1

3

) 2
α

+
4− 3α− α2

2 (α+ 1) (α+ 2)
.

Corollary 8. In Theorem 2, consider φ(τ) = τ
α
k

kΓk(α)
, k, α > 0 for all τ ∈ [κ1, κ2] ,

then we have the following inequality∣∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
Γk(α+ k)

2

[
Jα
χ+,kϑ (κ2)

(κ2 − χ)
α
k

+
Jα
χ−,kϑ (κ1)

(χ− κ1)
α
k

]∣∣∣∣∣
≤ κ2 − χ

6

[
Ψ1(α, k)

∣∣ϑ′ (χ)
∣∣+Ψ2(α, k)

∣∣ϑ′ (κ2)
∣∣]

+
χ− κ1

6

[
Ψ2(α, k)(α)

∣∣ϑ′ (κ1)
∣∣+Ψ1(α, k)

∣∣ϑ′ (χ)
∣∣] .
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Here,

Ψ1(α, k) =
α

α+ 2k

(
1

3

) 2k
α

+
4k − α

2 (α+ 2k)
, (9)

Ψ2(α, k) =
2α

α+ k

(
1

3

) k
α

− α

α+ 2k

(
1

3

) 2k
α

+
4k2 − 3αk − α2

2 (α+ k) (α+ 2k)
.

Remark 2. If we set χ = κ1+κ2

2 in Corollary 6, then Corollary 6 reduces to [43,
Corollary 1].

Remark 3. Assume χ = κ1+κ2

2 in Corollary 7. Then, we obtain the following
inequality∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
−2α−1Γ (α+ 1)

(κ2 − κ1)
α

[
Jα

κ1+κ2
2 +

ϑ (κ2) + Jα
κ1+κ2

2 −ϑ (κ1)
]∣∣∣∣

≤ κ2 − κ1

12

[
Θ2(α)

(∣∣ϑ′ (κ2)
∣∣+ ∣∣ϑ′ (κ1)

∣∣)+ 2Θ1(α)

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣] ,
which is given by Haı and Wang in [23].

Remark 4. Assume χ = κ1+κ2

2 in Corollary 8. Then, we obtain the following
inequality∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
−2

α
k −1Γk (α+ k)

(κ2 − κ1)
α
k

[
Jα

κ1+κ2
2 +,k

ϑ (κ2) + Jα
κ1+κ2

2 −,k
ϑ (κ1)

]∣∣∣∣∣
≤ κ2 − κ1

12

[
Ψ2(α, k)

(∣∣ϑ′ (κ2)
∣∣+ ∣∣ϑ′ (κ1)

∣∣)+ 2Ψ1(α, k)

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣] .
Theorem 3. Suppose that the assumptions of Lemma 1 hold. Suppose also that the
mapping

∣∣ϑ′∣∣q, q > 1, is convex on [κ1, κ2]. Then, we have the following inequality∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
≤ κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)|
p
dτ


1
p (∣∣ϑ′(χ)

∣∣q + ∣∣ϑ′(κ2)
∣∣q

2

) 1
q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)|p dτ


1
p (∣∣ϑ′(χ)

∣∣q + ∣∣ϑ′(κ1)
∣∣q

2

) 1
q

,

where 1
p + 1

q = 1.
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Proof. By applying Hölder inequality (6), we get

∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
≤ κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)|
p
dτ


1
p
 1∫

0

∣∣ϑ′ (τχ+ (1− τ)κ2)
∣∣q dτ


1
q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)|p dτ


1
p
 1∫

0

∣∣ϑ′ ((1− τ)κ1 + τχ)
∣∣q dτ


1
q

.

By using convexity of
∣∣ϑ′∣∣q, we obtain

∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
≤ κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)|
p
dτ


1
p

×

 1∫
0

(
τ
∣∣ϑ′(χ)

∣∣q + (1− τ)
∣∣ϑ′(κ2)

∣∣q) dτ


1
q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)|p dτ


1
p

×

 1∫
0

(
(1− τ)

∣∣ϑ′ (κ1)
∣∣q + τ

∣∣ϑ′ (χ)
∣∣q) dτ


1
q

=
κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)|
p
dτ


1
p (∣∣ϑ′(χ)

∣∣q + ∣∣ϑ′(κ2)
∣∣q

2

) 1
q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)|p dτ


1
p (∣∣ϑ′(χ)

∣∣q + ∣∣ϑ′(κ1)
∣∣q

2

) 1
q

,

which completes the proof of Theorem 3. □
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Corollary 9. Under assumptions of Theorem 3 with χ = κ1+κ2

2 , we have the
following inequalities∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
− 1

2Υ1(1)

[
κ1+κ2

2 +
Iφϑ (κ2) +κ1+κ2

2 − Iφϑ (κ1)
]∣∣∣∣

≤ κ2 − κ1

12Υ1(1)

 1∫
0

|Υ1(1)− 3Υ1(τ)|p dτ


1
p

×

(∣∣ϑ′ (κ1+κ2

2

)∣∣q + ∣∣ϑ′(κ2)
∣∣q

2

) 1
q

+

(∣∣ϑ′ (κ1+κ2

2

)∣∣q + ∣∣ϑ′(κ1)
∣∣q

2

) 1
q


≤ κ2 − κ1

12Υ1(1)

 1∫
0

|Υ1(1)− 3Υ1(τ)|p dτ


1
p

×

(∣∣ϑ′ (κ1)
∣∣q + 3

∣∣ϑ′(κ2)
∣∣q

4

) 1
q

+

(
3
∣∣ϑ′ (κ1)

∣∣q + ∣∣ϑ′(κ2)
∣∣q

4

) 1
q

 .

Corollary 10. In Theorem 3, let us consider φ(τ) = τ for all τ ∈ [κ1, κ2] . Then,
we obtain the inequality∣∣∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

1

2

 1

κ2 − χ

κ2∫
χ

ϑ(τ)dτ +
1

χ− κ1

χ∫
κ1

ϑ(τ)dτ

∣∣∣∣∣∣
≤ 1

6

(
1 + 2p+1

3 (p+ 1)

) 1
p

×

(κ2 − χ)

(∣∣ϑ′(χ)
∣∣q + ∣∣ϑ′(κ2)

∣∣q
2

) 1
q

+ (χ− κ1)

(∣∣ϑ′(χ)
∣∣q + ∣∣ϑ′(κ1)

∣∣q
2

) 1
q

 .

Corollary 11. In Theorem 3, if we take φ(τ) = τα

Γ(α) , α > 0 for all τ ∈ [κ1, κ2] ,

then we get the inequality∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
Γ(α+ 1)

2

[
Jα
χ+ϑ (κ2)

(κ2 − χ)
α +

Jα
χ−ϑ (κ1)

(χ− κ1)
α

]∣∣∣∣
≤ 1

6

 1∫
0

|1− 3τα|p dτ


1
p
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×

(κ2 − χ)

(∣∣ϑ′(χ)
∣∣q + ∣∣ϑ′(κ2)

∣∣q
2

) 1
q

+ (χ− κ1)

(∣∣ϑ′(χ)
∣∣q + ∣∣ϑ′(κ1)

∣∣q
2

) 1
q

 .

Corollary 12. In Theorem 3, let us note that φ(τ) = τ
α
k

kΓk(α)
, k, α > 0 for all

τ ∈ [κ1, κ2] . Then, we have the inequality∣∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
Γk(α+ k)

2

[
Jα
χ+,kϑ (κ2)

(κ2 − χ)
α
k

+
Jα
χ−,kϑ (κ1)

(χ− κ1)
α
k

]∣∣∣∣∣
≤ 1

6

 1∫
0

∣∣1− 3τ
α
k

∣∣p dτ


1
p

×

(κ2 − χ)

(∣∣ϑ′(χ)
∣∣q + ∣∣ϑ′(κ2)

∣∣q
2

) 1
q

+ (χ− κ1)

(∣∣ϑ′(χ)
∣∣q + ∣∣ϑ′(κ1)

∣∣q
2

) 1
q

 .

Remark 5. If we assign χ = κ1+κ2

2 in Corollary 10, then Corollary 10 reduces
to [43, Corollary 3].

Remark 6. Consider χ = κ1+κ2

2 in Corollaries 11 and 12. Then, we obtain the
following inequalities∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
−2α−1Γ (α+ 1)

(κ2 − κ1)
α

[
Jα

κ1+κ2
2 +

ϑ (κ2) + Jα
κ1+κ2

2 −ϑ (κ1)
]∣∣∣∣

≤ κ2 − κ1

12

 1∫
0

|1− 3τα|p dτ


1
p
(∣∣ϑ′ (κ1+κ2

2

)∣∣q + ∣∣ϑ′(κ2)
∣∣q

2

) 1
q

+

(∣∣ϑ′ (κ1+κ2

2

)∣∣q + ∣∣ϑ′(κ1)
∣∣q

2

) 1
q


and ∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
−2

α
k −1Γk (α+ k)

(κ2 − κ1)
α
k

[
Jα

κ1+κ2
2 +,k

ϑ (κ2) + Jα
κ1+κ2

2 −,k
ϑ (κ1)

]∣∣∣∣∣
≤ κ2 − κ1

12

 1∫
0

∣∣1− 3τ
α
k

∣∣p dτ


1
p
(∣∣ϑ′ (κ1+κ2

2

)∣∣q + ∣∣ϑ′(κ2)
∣∣q

2

) 1
q
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+

(∣∣ϑ′ (κ1+κ2

2

)∣∣q + ∣∣ϑ′(κ1)
∣∣q

2

) 1
q

 ,

respectively.

Theorem 4. Suppose that the assumptions of Lemma 1 hold. If the mapping
∣∣ϑ′∣∣q,

q ≥ 1, is convex on [κ1, κ2], then we have the following inequality∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
≤ κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)| dτ

1− 1
q (

Ξ1

∣∣ϑ′ (χ)
∣∣q + Ξ2

∣∣ϑ′ (κ2)
∣∣q) 1

q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1 (χ, 1)− 3ν1 (χ, τ)| dτ

1− 1
q (

Ξ3

∣∣ϑ′ (κ1)
∣∣q + Ξ4

∣∣ϑ′ (χ)
∣∣q) 1

q ,

where Ξi, i = 1, 2, 3, 4 are defined as in equality (5).

Proof. By applying power mean inequality (6), we get∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
≤ κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)| dτ

1− 1
q

×

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)|
∣∣ϑ′ (τχ+ (1− τ)κ2)

∣∣q dτ


1
q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)| dτ

1− 1
q

×

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)|
∣∣ϑ′ ((1− τ)κ1 + τχ)

∣∣q dτ


1
q

.

Since
∣∣ϑ′∣∣q is convex, we obtain∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

1

2

[
χ+Iφϑ (κ2)

η1(χ, 1)
+

χ−Iφϑ (κ1)

ν1(χ, 1)

]∣∣∣∣
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≤ κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)| dτ

1− 1
q

×

 1∫
0

[
τ |η1(χ, 1)− 3η1(χ, τ)|

∣∣ϑ′ (χ)
∣∣q

+(1− τ) |η1(χ, 1)− 3η1(χ, τ)|
∣∣ϑ′ (κ2)

∣∣q] dτ) 1
q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)| dτ

1− 1
q

×

 1∫
0

[
(1− τ) |ν1(χ, 1)− 3ν1(χ, τ)|

∣∣ϑ′ (κ1)
∣∣q

+τ |ν1(χ, 1)− 3ν1(χ, τ)|
∣∣ϑ′ (χ)

∣∣q dτ]) 1
q

=
κ2 − χ

6η1(χ, 1)

 1∫
0

|η1(χ, 1)− 3η1(χ, τ)| dτ

1− 1
q (

Ξ1

∣∣ϑ′ (χ)
∣∣q + Ξ2

∣∣ϑ′ (κ2)
∣∣q) 1

q

+
χ− κ1

6ν1 (χ, 1)

 1∫
0

|ν1(χ, 1)− 3ν1(χ, τ)| dτ

1− 1
q (

Ξ3

∣∣ϑ′ (κ1)
∣∣q + Ξ4

∣∣ϑ′ (χ)
∣∣q) 1

q .

This completes the proof of Theorem 4. □

Corollary 13. Under assumptions of Theorem 4 with χ = κ1+κ2

2 , we have the
following inequalities∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
− 1

2Υ1(1)

[
κ1+κ2

2 +
Iφϑ (κ2) +κ1+κ2

2 − Iφϑ (κ1)
]∣∣∣∣

≤ κ2 − κ1

12Υ1(1)

 1∫
0

|Υ1(1)− 3Υ1(τ)| dτ

1− 1
q

×

[(
Ξ5

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣q + Ξ6

∣∣ϑ′ (κ2)
∣∣q) 1

q

+

(
Ξ6

∣∣ϑ′ (κ1)
∣∣q + Ξ5

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣q)
1
q

]
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≤ κ2 − κ1

12Υ1(1)

 1∫
0

|Υ1(1)− 3Υ1(τ)| dτ

1− 1
q

×

(Ξ5

∣∣ϑ′ (κ1)
∣∣q + (Ξ5 + 2Ξ6)

∣∣ϑ′ (κ2)
∣∣q

2

) 1
q

+

(
(Ξ5 + 2Ξ6)

∣∣ϑ′ (κ1)
∣∣q + Ξ5

∣∣ϑ′ (κ2)
∣∣q

2

) 1
q

 .

Here, Ξ5 and Ξ6 are defined as in equality (7).

Corollary 14. In Theorem 4, if we choose φ(τ) = τ for all τ ∈ [κ1, κ2] , then we
obtain the inequality∣∣∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

1

2

 1

κ2 − χ

κ2∫
χ

ϑ(τ)dτ +
1

χ− κ1

χ∫
κ1

ϑ(τ)dτ

∣∣∣∣∣∣
≤ κ2 − χ

6

(
5

6

)1− 1
q
(
29

54

∣∣ϑ′ (χ)
∣∣q + 8

27

∣∣ϑ′ (κ2)
∣∣q) 1

q

+
χ− κ1

6

(
5

6

)1− 1
q
(

8

27

∣∣ϑ′ (κ1)
∣∣q + 29

54

∣∣ϑ′ (χ)
∣∣q) 1

q

.

Corollary 15. In Theorem 4, let us note that φ(τ) = τα

Γ(α) , α > 0 for all τ ∈
[κ1, κ2] . Then, we have the inequality∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−

Γ(α+ 1)

2

[
Jα
χ+ϑ (κ2)

(κ2 − χ)
α +

Jα
χ−ϑ (κ1)

(χ− κ1)
α

]∣∣∣∣
≤ κ2 − χ

6
(Θ3(α))

1− 1
q
(
Θ1(α)

∣∣ϑ′ (χ)
∣∣q +Θ2(α)

∣∣ϑ′ (κ2)
∣∣q) 1

q

+
χ− κ1

6
(Θ3(α))

1− 1
q
(
Θ2(α)

∣∣ϑ′ (κ1)
∣∣q +Θ1(α)

∣∣ϑ′ (χ)
∣∣q) 1

q ,

where Θi(α), i = 1, 2 are defined as in equality (8) and

Θ3(α) = 2

(
1

3

) 1
α
[
1− 1

α+ 1

]
+

3

α+ 1
− 1.

Corollary 16. In Theorem 4, if we set φ(τ) = τ
α
k

kΓk(α)
, k, α > 0 for all τ ∈ [κ1, κ2] ,

then we get the inequality∣∣∣∣∣16 [ϑ (κ1) + 4ϑ (χ) + ϑ (κ2)]−
Γk(α+ k)

2

[
Jα
χ+,kϑ (κ2)

(κ2 − χ)
α
k

+
Jα
χ−,kϑ (κ1)

(χ− κ1)
α
k

]∣∣∣∣∣
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≤ κ2 − χ

6
(Ψ3(α, k))

1− 1
q
(
Ψ1(α, k)

∣∣ϑ′ (χ)
∣∣q +Ψ2(α, k)

∣∣ϑ′ (κ2)
∣∣q) 1

q

+
χ− κ1

6
(Ψ3(α, k))

1− 1
q
(
Ψ2(α, k)

∣∣ϑ′ (κ1)
∣∣q +Ψ1(α, k)

∣∣ϑ′ (χ)
∣∣q) 1

q ,

where Ψi(α, k), i = 1, 2 are defined as in equality (9) and

Ψ3(α, k) = 2

(
1

3

) k
α
[
1− k

α+ k

]
+

3k

(α+ k)
− 1.

Remark 7. Considering χ = κ1+κ2

2 in Corollary 14, then Corollary 14 reduces
to [43, Theorem 10 (for s = 1)].

Remark 8. If we take χ = κ1+κ2

2 in Corollaries 15 and 16, then we obtain the
following inequalities∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
−2α−1Γ (α+ 1)

(κ2 − κ1)
α

[
Jα

κ1+κ2
2 +

ϑ (κ2) + Jα
κ1+κ2

2 −ϑ (κ1)
]∣∣∣∣

≤ κ2 − κ1

12
(Θ3(α))

1− 1
q

[(
Θ1(α)

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣q +Θ2(α)
∣∣ϑ′ (κ2)

∣∣q) 1
q

+

(
Θ2(α)

∣∣ϑ′ (κ1)
∣∣q +Θ1(α)

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣q)
1
q

]
and∣∣∣∣16

[
ϑ (κ1) + 4ϑ

(
κ1 + κ2

2

)
+ ϑ (κ2)

]
−2

α
k −1Γk (α+ k)

(κ2 − κ1)
α
k

[
Jα

κ1+κ2
2 +,k

ϑ (κ2) + Jα
κ1+κ2

2 −,k
ϑ (κ1)

]∣∣∣∣∣
≤ κ2 − κ1

12
(Ψ3(α, k))

1− 1
q

[(
Ψ1(α, k)

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣q +Ψ2(α, k)
∣∣ϑ′ (κ2)

∣∣q) 1
q

+

(
Ψ2(α, k)

∣∣ϑ′ (κ1)
∣∣q +Ψ1(α, k)

∣∣∣∣ϑ′
(
κ1 + κ2

2

)∣∣∣∣q)
1
q

]
,

respectively.

4. Conclusion

In this paper, we used the concepts of fractional calculus and proved some new
inequalities of Simpson’s type inequalities for differentiable convex mappings. More-
over, we discussed the special cases of the main results and several new inequalities
of Simpson’s type for differentiable convex functions via the ordinary integral are
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obtained. It is an interesting and new problem that the upcoming researchers can
obtain similar inequalities for co-ordinated convex functions in their future research.
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equalities of Chebyshev-Pólya-Szego type, J. Math. Inequal., 15(4) (2021), 1391–1400.
dx.doi.org/10.7153/jmi-2021-15-94



824 H. KARA, H. BUDAK, M. A. ALI, F. HEZENCI

[12] Butt, S. I., Agarwal, P., Yousaf, S. Guirao, J. L., Generalized fractal Jensen and Jensen-

Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022(1)

(2022), 1–18. https://doi.org/10.1186/s13660-021-02735-3
[13] Butt, S. I., Akdemir, A. O., Nadeem, M., Raza, M. A., Gruss type inequalities via

generalized fractional operators Math. Methods Appl. Sci., 44(17) (2021), 12559–12574.

https://doi.org/10.1002/mma.7563
[14] Butt, S. I., Yousaf, S., Akdemir, A. O., Dokuyucu, M. A., New Hadamard-type integral

inequalities via a general form of fractional integral operators, Chaos Solitons Fractals, 148

(2021), 111025. https://doi.org/10.1016/j.chaos.2021.111025
[15] Butt, S. I., Nadeem, M., Tariq, M., Aslam, A., New integral type inequalities via Raina-

convex functions and its applications Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat.,

70(2) (2021), 1011-1035. https://doi.org/10.31801/cfsuasmas.848853
[16] Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson’s inequality and applications, J.

Inequal. Appl., 5 (2000), 533–579.
[17] Du, T., Li, Y., Yang, Z., A generalization of Simpson’s inequality via differentiable map-

ping using extended (s,m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369.

https://doi.org/10.1016/j.amc.2016.08.045
[18] Erden, S., Iftikhar, S., Delavar, R. M., Kumam, P., Thounthong P., Kumam, W., On gen-

eralizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad.

Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114(3) (2020), 1–15. Doi: 10.1007/s13398-
020-00841-3.
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ASSOCIATED CURVES FROM A DIFFERENT POINT

OF VIEW IN E3
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Abstract. In this paper, tangent, principal normal and binormal wise asso-

ciated curves are defined such that each of these vectors of any given curve
lies on the osculating, normal and rectifying plane of its partner, respectively.

For each associated curve, a new moving frame and the corresponding curva-

tures are formulated in terms of Frenet frame vectors. In addition to this, the
possible solutions for distance functions between the curve and its associated

mate are discussed. In particular, it is seen that the involute curves belong to

the family of tangent associated curves in general and the Bertrand and the
Mannheim curves belong to the principal normal associated curves. Finally,

as an application, we present some examples and map a given curve together

with its partner and its corresponding moving frame.

1. Introduction

In differential geometry, curves are named as associated if there exist a math-
ematical relation among them. Some of those known as involute-evolute curves,
Bertrand curves, Mannheim curves and more recently the successor curves are the
ones on which the researchers most referred ( [1–5]). For such curves, the asso-
ciation is based upon the Frenet elements of the curves. There have been other
studies using different frames such as Darboux and Bishop to associate curves, as
well ( [6–11]). From a distinct point of view, Choi and Kim (2012), introduced new
associated curves of a given Frenet curve as the integral curves of vector fields [12].
Şahiner, on the other hand, established direction curves of “tangent” and “princi-
pal normal” indicatrix of any curve and provided some methods to portray helices
and slant helices by using these curves in his studies, [13] and [14], respectively. In
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this study, we introduce another Frenet frame based associated curves such that
the tangent, the principal normal and the binormal vectors of a given any curve
lies on the osculating, normal and rectifying plane of its partner, respectively. For
each associated curves a new moving frame is established and the distances be-
tween the curve and its offset are given. In particular, it is seen that the involute
curves belong to the family of tangent associated curves. In addition, some traces
of the Bertrand and Mannheim curves are found while examining principal normal
and binormal associated curves. We also provided a few examples to illustrate the
intuitive idea of this paper.

Since we refer the Frenet frame, the formulae and the curvatures of a regular
curve, α through out the paper, we remind the definitions of these once again as:

T (s) =
α′(s)

∥α′(s)∥
, N(s) = B(s)× T (s), B(s) =

α′(s)× α′′(s)

∥α′(s)× α′′(s)∥
, (1)

κ(s) =
∥α′(s)× α′′(s)∥

∥α′(s)∥3
, τ(s) =

⟨α′(s)× α′′(s), α′′′(s)⟩
∥α′(s)× α′′(s)∥2

, (2)

T⃗ ′(s) = νκ(s)N⃗(s), N⃗ ′(s) = −νκ(s)T⃗ (s) + ντ(s)B⃗(s), B⃗′(s) = −ντ(s)N⃗(s), (3)

where ν = ∥α′(s)∥ and, T⃗ , N⃗ , B⃗, κ and τ are called the tangent vector, the
principal normal vector, the binormal vector, the curvature and the torsion of the
curve, respectively.

2. Tangent Associated Curves

In this section we will define tangent associated curves such that the tangent
vector of a given curve lies on the osculating, normal and rectifying plane of its
mate. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and denote α∗ as its associated
mate. Assuming that {T ∗, N∗, B∗} is the Frenet frame of α∗ we write the unit
vectors lying on osculating, normal and rectifying plane of α∗ as following:

O∗ =
aT ∗ + bN∗
√
a2 + b2

, (4)

P ∗ =
cN∗ + dB∗
√
c2 + d2

, (5)

R∗ =
eT ∗ + fB∗√

e2 + f2
, (6)

respectively, where a, b, c, d, e, f ∈ ℜ+ are some arbitrary positive real numbers.
Note that, the representation of the arc length assumed parameter “ s ” of the
main curve α was omitted throughout the paper for simplicity, unless otherwise
stated.

Definition 1. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the tangent vector, T of α is linearly dependent with the vector, O∗, then
we name the curve α∗ as T −O∗ associated curve of α.
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The following figure (Fig. 1) is given to illustrate the main idea for this and the
next definitions.

Figure 1. The curve α (left) and its T −O∗ associated mate α∗

(right)

Theorem 1. If α∗ is T − O∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
a√

a2 + b2
T +

b√
a2 + b2

N

N∗ =
b√

a2 + b2
T − a√

a2 + b2
N

B∗ = −B.

Proof. Since α and α∗ are defined as T −O∗ associated curves, we may write

α∗(s) = α(s) + λ(s)T (s). (7)

By differentiating the relation (7), taking its norm and using the Frenet formulae
given in (3), we have:

T ∗ =
(1 + λ′)T + λκN√
(1 + λ′)2 + (λκ)2

. (8)

Now taking the second derivative of the equation (7) and referring again to (3) we
write

α∗′′ = (λ′′ − λκ2)T +
(
(1 + λ′)κ+ (λκ)′

)
N + λκτB.

The cross production of α∗′ and α∗′′ leads us the following form,

α∗′× α∗′′ =
(
λ2κ2τ

)
T−
(
(λ′ + 1)λκτ

)
N+

(
(λ′ + 1)

( (
λ′ + 1

)
κ+ (λκ)′

)
− λκ(λ′′ − λκ2)

)
B.

(9)
By calling upon (1), we simply calculate N∗ and B∗ as

N∗ = −
λκ
((
λ′ + 1

) ( (
λ′ + 1

)
κ+ λ′κ+ λκ′)− λκ

(
λ′′ − λκ2

))
T

∥ α∗′ ∥ ∥ α∗′ × α∗′′ ∥

+

(
λ′ + 1

)( (
λ′ + 1

) ( (
λ′ + 1

)
κ+ λ′κ+ λκ′)− λκ

(
λ′′ − λκ2

))
N

∥ α∗′ ∥ ∥ α∗′ × α∗′′ ∥
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+
λκτ

(
λ2κ2 +

(
λ′ + 1

)2)
B

∥ α∗′ ∥ ∥ α∗′ × α∗′′ ∥
,

B∗ =
λ2κ2τT − λκτ(λ′ + 1)N +

(
(λ′ + 1)

( (
λ′ + 1

)
κ+ (λκ)′

)
− λκ

(
λ′′ − λκ2

))
B

∥ α∗′ × α∗′′ ∥
.

(10)

Note that we will refer these relations from (8) to (10) in the next two theorems.
We call these as the raw relations.
Now, as we defined the curve α∗ to be the T −O∗ associated curve of α, we deduce
that < T, T ∗ >=< O∗, T ∗ >. By using this deduction and referring both the
relation (4) and (8) we write

(1 + λ′)√
(1 + λ′)2 + (λκ)2

=
a√

a2 + b2
.

Simple elementary operations on this relation result the following linear ordinary
differential equation (ODE) with b ̸= 0 as

1 + λ′ =
a

b
λκ. (11)

When substituted the given ODE, (11) into (8) we complete the first part of the
proof for T ∗.
Similarly, another deductions can be drawn as

< T,N∗ >=< O∗, N∗ >, and < T,B∗ >=< O∗, B∗ >= 0,

and using these we write

−
λκ

[(
λ′ + 1

)( (
λ′ + 1

)
κ+ λ′κ+ λκ′

)
− λκ

(
λ′′ − λκ2

)]
∥ α∗′ ∥ ∥ α∗′ × α∗′′ ∥

=
b√

a2 + b2
, (12)

λ2κ2τ = 0, (13)

respectively. Now when substituted the relations (11), (12) and (13) into both (8)
and (10) we complete the proof. □

Corollary 1. From (11) and (13) κ, λ ̸= 0 that results τ = 0. Therefore it can
be easily said that the curve α is a planar curve or equivalently there is no a space
curve having a T associated partner such that its tangent lies on the osculating
plane of its mate.
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Theorem 2. If α∗ is the T −O∗ associated curve of α then the curvature, κ∗ and
the torsion, τ∗ of α∗ are given as follows.

κ∗ =
b

λ
√
a2 + b2

,

τ∗ = 0.

Proof. By using the equations in (2) and the relation (11) with the fact that τ = 0
the proof is completed. □

Theorem 3. If α∗ is the T −O∗ associated curve of α, then the distance between
the corresponding points of α and α∗ in E3 is given as follows:

d(α, α∗) =

∣∣∣∣e∫ a
b κ

[
−
∫

e−
∫

a
b κ + c1

]∣∣∣∣, (14)

where c1is an integral constant.

Proof. We rewrite (11) as

λ′ − a

b
κλ = −1. (15)

By taking µ as an integrating factor and multiplying the both hand sides of the
latter equation by that we get

µλ′ − µ
a

b
κλ = −µ. (16)

From the product rule of the composite form we write

(µλ)′ = µλ′ + µ′λ (17)

and equate the terms of (17) with those in the left hand side of the (16) we find

µ′ = −µ
a

b
κ.

The solution for the integrating factor µ is given with∫
µ′

µ
= −

∫
a

b
κ ⇒ µ = e−

∫
a
b κ+c

On the other hand, the use of integrating factor let us to write following relation

[µλ]′ = −µ.

Integrating both hand sides of this equation

µλ+ co = −
∫

µ

and leaving λ all alone we get

λ =
−
∫
µ− co
µ

.
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By substituting µ in place, we finally get

λ = e
∫

a
b κ

[
−
∫

e−
∫

a
b κ + c1

]
.

□

Definition 2. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the tangent vector, T of α is linearly dependent with the vector, P ∗, then
we name the curve α∗ as T − P ∗ associated curve of α.

Theorem 4. If α∗ is T − P ∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ = N,

N∗ =
−c√

c2 + d2
T +

d√
c2 + d2

B,

B∗ =
d√

c2 + d2
T +

c√
c2 + d2

B.

Proof. Since we defined the curve α∗ to be as T −P ∗ associated curve of α we could
deduce that < T,N∗ >=< P ∗, N∗ >. Using this, together with the relations (5)
and (10) results the following:

−
λκ

[(
λ′ + 1

)( (
λ′ + 1

)
κ+ λ′κ+ λκ′

)
− λκ

(
λ′′ − λκ2

)]
∥ α∗′ ∥ ∥ α∗′ × α∗′′ ∥

=
c√

c2 + d2
. (18)

By the same manner, it can be derived that < T,B∗ >=< P ∗, B∗ > which results

λ2κ2τ

∥ α∗′ × α∗′′ ∥
=

d√
c2 + d2

. (19)

Another deduction that < T, T ∗ >=< P ∗, T ∗ >= 0 provides 1 + λ′ = 0 and so

λ = −s+ c (20)

where c is the integral constant. Utilizing these three relations, (18), (19) and (20)
results what is stated in the theorem.
Note that, by substituting (20) first in both (18) and (19), we find the following
relations

κ√
κ2 + τ2

=
−c√

c2 + d2
and

τ√
κ2 + τ2

=
d√

c2 + d2
, (21)

respectively which points out that c = −κ and d = τ and since by definition κ ≥ 0,
c ≤ 0. □

Corollary 2. It can be easily seen that if α∗ is T −P ∗ associated curve of α, then
α∗ is the involute of α.
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Theorem 5. If α∗ is the T −P ∗ associated curve of α, then the curvature, κ∗ and
the torsion, τ∗ of α∗ are given as follows,

κ∗ =
τ
√
c2 + d2

dλκ
=

√
κ2 + τ2

λκ
,

τ∗ =
κτ ′ − κ′τ

λκ(κ2 + τ2)
.

(22)

Proof. The proof can be easily done by using (20) and (21). □

Theorem 6. If α∗ is the T − P ∗ associated curve of α, then the distance between
the corresponding points of α and α∗ in E3 is given as follows:

d(α∗, α) =
∣∣− s+ c

∣∣. (23)

Proof. The proof is trivial. □

Definition 3. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the tangent vector, T of α is linearly dependent with the vector, R∗, then
we name the curve α∗ as T −R∗ associated curve of α.

Theorem 7. If α∗ is T − R∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
e√

e2 + f2
T +

f√
e2 + f2

N,

N∗ = B,

B∗ =
f√

e2 + f2
T − e√

e2 + f2
N.

Proof. Since we defined the curve α∗ to be as T −R∗ associated curve of α we could
deduce that < T, T ∗ >=< R∗, T ∗ >. By using this deduction and referring both
the relation (6) and (8) we write

(1 + λ′)√
(1 + λ′)2 + (λκ)2

=
e√

e2 + f2
,

and with some simple elementary operations on this relation we come up with the
following linear ordinary differential equation (ODE), with f ̸= 0.

1 + λ′ =
e

f
λκ. (24)

When substituted the given ODE into (8) we complete the first part of the proof
for T ∗.
Similarly, another deduction can be drawn as < T,B∗ >=< R∗, B∗ > which results

λ2κ2τ

∥ α∗′ × α∗′′ ∥
=

f√
e2 + f2

, and so ∥ α∗′ × α∗′′ ∥= λ2κ2τ

√
e2 + f2

f
. (25)
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Now when substituted the relations (24) and (25) into (10) we complete the proof
for B∗.
A final inference on the idea of T − R∗ association can be drawn as
< T,N∗ >=< R∗, N∗ >= 0. This puts the following equation forward

− λκ

[(
λ′ + 1

)( (
λ′ + 1

)
κ+ λ′κ+ λκ′

)
− λκ

(
λ′′ − λκ2

)]
= 0. (26)

By substituting (24), (25) and (26) in (10) the proof is completed forN∗ and all. □

Theorem 8. If α∗ is the T −R∗ associated curve of α, then the curvature, κ∗ and
the torsion τ∗ of α∗ are given as follows.

κ∗ =
τf2

λκ(e2 + f2)
,

τ∗ =
f
(
κ2τe3 + κ2τef2 + τ3ef2 + κτ ′e2f + κτ ′f3 − κ′τe2f − κ′τf3

)
λκ (τ2e2f2 + τ2f4 + κ2e4 + 2κ2e2f2 + κ2f4)

.

Proof. By the equations given in (2) and substituting (24) and (25) into these, we
may easily derive κ∗. On the other hand the third derivative of (7) is

α∗′′′ =
(
−3λ′κ2 − 3λκκ′ − κ2 + λ′′′)T +

(
−κ3λ− λκτ2 + 3λ′′κ+ 3λ′κ′ + λκ′′ + κ′)N

+
(
3λ′κτ + λκτ ′ + 2λκ′τ + κτ

)
B.

From (2) and using (24), τ∗ can be computed as in the given above form. □

Theorem 9. If α∗ is the T −R∗ associated curve of α, then the distance between
the corresponding points of α and α∗ in E3 is given as follows:

d(α∗, α) =

∣∣∣∣e∫ e
f κ

[
−
∫

e−
∫

e
f κ + c2

]∣∣∣∣ (27)

Proof. The proof is the same as the proof of Theorem (3). □

3. Examples

In this section, we provide an example for the tangent associated curves by
considering each of the three different cases.

(1) Let α be chosen a unit speed circle as a planar curve given with a parame-
terization
α(s) = (cos(s), sin(s), 0). Since α is chosen to be a circle κ = 1. By taking
a = b = 1, the general solution for the given ODE in (11) is

λ(s) = 1 + esc0

where c0 is the integral constant.
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(a) c0 = −1 (b) c0 = 0 (c) c0 = 1

Figure 2. The main curve α (pink) and its T − O∗ associated
mate α∗ (black)

(2) Let α be chosen a unit speed helix given with a parameterization α(s) =
1√
2
(cos(s), sin(s), s). Since κ = τ = 1√

2
, the vector P ∗ should be formed

by the values of c and d such that −c = d = 1√
2
. From theorem (6) we have

λ(s) = −s+ c0

where c0 is the integral constant.

(a) c0 = −1 (b) c0 = 0 (c) c0 = 1

Figure 3. The main curve α (pink) and its T − P ∗ associated
mate α∗ (black)

(3) By referring the same curve given in (ii) we know that κ = 1√
2
. The general

solution for the ODE in (11) for e = f = 1 is this time

λ(s) =
√
2 + e

√
2

2 sc0

where c0 is the integral constant.
One of the animated versions for the figures can be found at the link below
and for all figures see the author’s profile.
https://www.geogebra.org/m/vnbzaghp

https://www.geogebra.org/m/vnbzaghp
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(a) c0 = −1 (b) c0 = 0 (c) c0 = 1

Figure 4. The main curve α (pink) and its T − R∗ associated
mate α∗ (black)

4. Principal Normal Associated Curves

In this section, we define principal normal associated curves such that the prin-
cipal normal vector of a given curve lies on the osculating, normal and rectifying
plane of its mate.

Definition 4. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the principal normal, N of α is linearly dependent with the vector, O∗,
then we name the curve α∗ as N −O∗ associated curve of α.

Theorem 10. If α∗ is N − O∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
1√

a2 + b2

(
(−λκ+ 1) b√

(−λκ+ 1)2 + (λτ)2
T + aN +

λτb√
(−λκ+ 1)2 + (λτ)2

B

)
,

N∗ =
b√

a2 + b2

(
−M

M (λκ− 1)−Kλτ
T +N +

K

M (λκ− 1)−Kλτ
B

)
,

B∗ =
b(KT +MB)

a(M (λκ− 1)−Kλτ)
,

where the coefficients K and M are

K = λ′ (λτ ′ + 2λ′τ
)
− λτ

(
(−λκ+ 1)κ− λτ2 + λ′′) ,

M = (−λκ+ 1)
(
(−λκ+ 1)κ− λτ2 + λ′′)− λ′ (−λκ′ − 2λ′κ

)
.

Proof. Since α and α∗ are defined as N −O∗ associated curves, we write

α∗ = α+ λN. (28)

By differentiating the relation (28), using the Frenet formulae given in (3) and
taking the norm, we have:

T ∗ =
(−λκ+ 1)T + λ′N + λτB√
(−λκ+ 1)2 + (λ′)2 + (λτ)2

. (29)
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Next taking the second derivative of the equation (28) and referring again to (3)
result the following relation.

α∗′′ =
(
−λκ′ − 2λ′κ

)
T +

(
(−λκ+ 1)κ− λτ2 + λ′′)N +

(
λτ ′ + 2λ′τ

)
B.

The cross production of α∗′ and α∗′′ leads us the following form,

α∗′ × α∗′′ = KT + LN +MB,

where K, L and M are assigned to be as

K = λ′ (λτ ′ + 2λ′τ
)
− λτ

(
(−λκ+ 1)κ− λτ2 + λ′′) ,

L = (−λκ+ 1)
(
λτ ′ + 2λ′τ

)
+ λτ

(
−λκ′ − 2λ′κ

)
, (30)

M = (−λκ+ 1)
(
(−λκ+ 1)κ− λτ2 + λ′′)− λ′ (−λκ′ − 2λ′κ

)
,

for the sake of simplicity. Note that the norm, ∥ α∗′ × α∗′′ ∥=
√
K2 + L2 +M2.

By referring again the definitions given by (1), we simply calculate N∗, and B∗ as

N∗ =
(Lλτ −Mλ′)T + (M (λκ− 1)−Kλτ)N + (Kλ′ − L (−λκ+ 1))B√

(−λκ+ 1)2 + (λ′)2 + (λτ)2
√
K2 + L2 +M2

, (31)

B∗ =
KT + LN +MB√
K2 + L2 +M2

.

The intuitive idea is as same as before. Since we defined α∗ to be as the N − O∗

associated curve of α we can write that < N,T ∗ >=< O∗, T ∗ >. By using this
together with the relations (4) and (29) we write

λ′√
(−λκ+ 1)2 + (λ′)2 + (λτ)2

=
a√

a2 + b2
. (32)

Similarly, we can write < N,N∗ >=< O∗, N∗ > which results the following

M (λκ− 1)−Kλτ√
(−λκ+ 1)2 + (λ′)2 + (λτ)2

√
K2 + L2 +M2

=
b√

a2 + b2
. (33)

and by the same idea that < N,B∗ >=< O∗, B∗ >= 0, we get

L√
K2 + L2 +M2

= 0. (34)

When substituted the given three relations (32), (33) and (34) into (29) and (31),
we complete the proof. □

Note that none of the differential equations given above is solvable analytically.
However we might solve them under some assumptions.

Corollary 3. If the curve α is chosen to be a curve with constant curvatures like
helix, then by referring the relation (32), we can derive

λ′
(
λ′′ − a2

b2

(
(λκ− 1)κ+ λτ2

))
= 0,
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which is solvable analytically in two folds. First, λ′ = 0 corresponding to that λ is
a constant. If this is the case, then from the relation (32), a = 0, and if a = 0 then
O∗ = N∗. This is clearly the definition of the Bertrand curve, since α∗ becomes
N −N∗ associated curve of α.
When considered the second factor of the latter relation we come up with a non
homogeneous linear second order differential equation with constant coefficients.
For this case, there we have a complex solution that is as

λ = sin

(
ai
√
κ2 + τ2

b

)
c1 + cos

(
ai
√
κ2 + τ2

b

)
c2 +

κ

κ2 + τ2
, i2 = −1,

and since sin(ix) = isinh(x) and cos(ix) = cosh(x), we can rewrite the solution
as:

λ = i sinh

(
a
√
κ2 + τ2

b

)
c1 + cosh

(
a
√
κ2 + τ2

b

)
c2 +

κ

κ2 + τ2
,

where c1 and c2 are integration constants.
Now, by recalling the relations (30) and (34) under the assumption that α is a helix
like curve with constant curvatures, then we have

λ′τ(−2λκ+ 1) = 0.

This results that λ is a constant of the form, λ =
1

2κ
.

Theorem 11. If α∗ is the N − O∗ associated curve of α, then the curvature, κ∗

and the torsion, τ∗ of α∗ are given as follows,

κ∗ =
a4(M (λκ− 1)−Kλτ)

b(a2 + b2)(λ′)4
,

τ∗ =
bλ′

a(M (λκ− 1)−Kλτ)

(
K
(
λκ3 + λκτ2 − 3λ′κ′ − λκ′′ − 3λ′′κ− κ2

)
+M

(
κτ − λκ2τ − λτ3 + 3λ′τ ′ + λτ ′′ + 3λ′′τ

) ) .

Proof. By taking the third derivative of (28) and using Frenet formulae, we have

α∗′′′ =
(
λκ3 + λκτ2 − 3λ′κ′ − λκ′′ − 3λ′′κ− κ2

)
T

+
(
λ′′′ − 3λ′(κ2 + τ2)− 3λ(κκ′ + ττ ′) + κ′)N (35)

+
(
κτ − λκ2τ − λτ3 + 3λ′τ ′ + λτ ′′ + 3λ′′τ

)
B.

Now by recalling the relations (32), (33) and (34) to substitute these into the
equations given in (2), we complete the proof. □

Definition 5. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the principal normal, N of α is linearly dependent with the vector, P ∗,
then we name the curve α∗ as N − P ∗ associated curve of α.
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Theorem 12. If α∗ is N − P ∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
−λκ+ 1√

(−λκ+ 1)2 + (λτ)2
T +

λ τ√
(−λκ+ 1)2 + (λτ)2

B,

N∗ =
1√

c2 + d2

(
dλτ√

(−λκ+ 1)2 + (λτ)2
T + cN +

−d(−λκ+ 1)√
(−λκ+ 1)2 + (λτ)2

B

)
,

B∗ =
d√

c2 + d2

−
τ
(
λ τ2 + κ2λ− κ

)
λ τκ′ − κτ ′λ+ τ ′

T +N +
(λκ− 1)

(
λ τ2 + (κ)

2
λ− κ

)
λ (−λ τκ′ + κτ ′λ− τ ′)

B

 .

Proof. Now, since again we defined α∗ to be as the N − P ∗ associated curve of α
we can write three of our associative relations as usual which are

• < N,N∗ >=< P ∗, N∗ >,
• < N,B∗ >=< P ∗, B∗ >,
• < N,T ∗ >=< P ∗, T ∗ >= 0.

These relations this time result the following three equations

• M (λκ− 1)−Kλτ√
(−λκ+ 1)2 + (λ′)2 + (λτ)2

√
K2 + L2 +M2

=
c√

c2 + d2
,

• L√
K2 + L2 +M2

=
d√

c2 + d2
, (36)

• λ′√
(−λκ+ 1)2 + (λ′)2 + (λτ)2

= 0.

When substituted the latter relations in (29) and (31) we complete the proof. □

Corollary 4. Note that the third relation in (36) results that λ is constant. What
we know from literature is that a Bertrand curve has a constant distance as well
as the Mannheim curves (see [1], [4] and [2]). For Bertrand curves we also know
that curves share the principal normal vectors as common, on the other hand for
Mannheim curves, they share the property of the parallelization of principal normal
and binormal vectors. By our result, we see that if the principal normal vector of
any given curve coincides the unit vector spanned by principal normal and binormal
vectors of its mate, then the distance of two curves is constant, in general.

Theorem 13. If α∗ is the N − P ∗ associated curve of α, then the curvature, κ∗

and the torsion, τ∗ of α∗ are given as follows.

κ∗ =
l c3

√
c2 + d2

d4 (m(λκ− 1)− kλτ)
3 ,

τ∗ =
l2(c2 + d2)

d2

(
k
(
κ3λ+ κτ2λ− λκ′′ − κ2

)
+ l (−3λ ττ ′ − 3λκ′κ+ κ′)

+m
(
−κ2τλ− τ3λ+ λ τ ′′ + κτ

) )
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where k, l, and m are the coefficients of which K, L, and M reformed with λ′ = 0,
respectively.

Proof. By referring the relations (36) together with (35), the proof is trivial. □

Definition 6. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the principal normal, N of α is linearly dependent with the vector, R∗,
then we name the curve α∗ as N −R∗ associated curve of α.

Theorem 14. If α∗ is N − R∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
1√

e2 + f2

(
(−λκ+ 1) f√

(−λκ+ 1)2 + (λτ)2
T + eN +

λτf√
(−λκ+ 1)2 + (λτ)2

B

)
,

N∗ =
ef√

e2 + f2

((
λτ

λ′ −
(−λκ+ 1)

(
(−λκ+ 1)κ− λτ2 + λ′′)− λ′ (−λκ′ − 2λ′κ

)
(λκ− 1)

(
λτ ′ + 2λ′τ

)
+ λτ

(
−λκ′ − 2λ′κ

) )
T

+

(
λ′ (λτ ′ + 2λ′τ

)
− λτ

(
(−λκ+ 1)κ− λτ2 + λ′′)

(λκ− 1)
(
λτ ′ + 2λ′τ

)
+ λτ

(
−λκ′ − 2λ′κ

) +
λκ− 1

λ′

)
B

)
,

B∗ =
f√

e2 + f2

((
λ′ (λτ ′ + 2λ′τ

)
− λτ

(
(−λκ+ 1)κ− λτ2 + λ′′)

(λκ− 1)
(
λτ ′ + 2λ′τ

)
+ λτ

(
−λκ′ − 2λ′κ

) )
T +N

+

(
(−λκ+ 1)

(
(−λκ+ 1)κ− λτ2 + λ′′)− λ′ (−λκ′ − 2λ′κ

)
(λκ− 1)

(
λτ ′ + 2λ′τ

)
+ λτ

(
−λκ′ − 2λ′κ

) )
B

)
Proof. Now, since again we defined α∗ to be as the N − R∗ associated curve of α
we can write three of our associative relations as usual which are

• < N,T ∗ >=< R∗, T ∗ >,
• < N,B∗ >=< R∗, B∗ >,
• < N,N∗ >=< R∗, N∗ >= 0.

By using these we get

• λ′√
(−λκ+ 1)2 + (λ′)2 + (λτ)2

=
e√

e2 + f2
,

• L√
K2 + L2 +M2

=
f√

e2 + f2
, (37)

• M (λκ− 1)−Kλτ√
(−λκ+ 1)2 + (λ′)2 + (λτ)2

√
K2 + L2 +M2

= 0.

When substituted the above expressions into (29) and (31) the proof is complete.
□

Corollary 5. The only analytically solvable equation in (37) is the first one with the
same assumption that α is helix like curve with constant curvatures. The possible
solutions to that has already been discussed in Corollary (3).
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Theorem 15. If α∗ is the N − R∗ associated curve of α, then the curvature, κ∗

and the torsion, τ∗ of α∗ are given as follows.

κ∗ =
e3L

f(e2 + f2)(λ′)3
,

τ∗ =
L2(e2 + f2)

f2

 K
(
λκ3 + λκτ2 − λκ′′ − κ2 − 3λ′′κ− 3λ′κ′)

+L
(
−3λκκ′ − 3λττ ′ − 3κ2λ′ − 3λ′τ2 + λ′′′ + κ′)

+M
(
−λκ2τ − λτ3 + λτ ′′ + κτ + 3λ′′τ + 3λ′τ ′

)


Proof. By recalling both the third derivative (35) and the relations (37) to substi-
tute into curvatures in (2), we complete the proof. □

5. Binormal Associated Curves

In this section, we define binormal associated curves such that the binormal
vector of a given curve lies on the osculating, normal and rectifying plane of its
mate.

Definition 7. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the binormal, B of α is linearly dependent with the vector, O∗, then we
name the curve α∗ as B −O∗ associated curve of α.

Theorem 16. If α∗ is B − O∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
1√

a2 + b2

(
b√

1 + λ2τ2
T − λτb√

1 + λ2τ2
N + aB

)
,

N∗ =
b√

a2 + b2

(
− λ′Y

a(λτX+Y)
T +

λX

λτX+Y
N +B

)
,

B∗ = − bλ′

a(λτX+Y)
(XT +YN) ,

where the coefficients X and Y are

X = −λτ
(
−λτ2 + λ′′)− λ′ (−λτ ′ − 2λ′τ + κ

)
,

Y = λτ2 − λ′′ + λ′λτκ.

Proof. Since α and α∗ are defined as B −O∗ associated curves, we write

α∗ = α+ λB. (38)

By differentiating the relation (38), using the Frenet formulae given in (3) and
taking the norm, we have:

T ∗ =
T − λτN + λ′B√
1 + λ2τ2 + (λ′)2

(39)
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Next taking the second derivative of the equation (38) and referring again to (3)
result the following relation.

α∗′′ = (λτκ)T + (−λτ ′ − 2λ′τ + κ)N + (−λτ2 + λ′′)B.

The cross production of α∗′ and α∗′′ leads us the following form,

α∗′ × α∗′′ = XT +YN + ZB

where X, Y and Z are assigned to be as

X = −λτ
(
−λτ2 + λ′′)− λ′ (−λτ ′ − 2λ′τ + κ

)
,

Y = λτ2 − λ′′ + λ′λτκ, (40)

Z = −λτ ′ − 2λ′τ + κ+ λ2τ2κ,

for the sake of simplicity. Note that the norm, ∥ α∗′ × α∗′′ ∥=
√
X2 +Y2 + Z2.

By referring again the definitions given by (1), we simply calculate N∗ and B∗ as

N∗ =
(Yλ′ + Zλτ)T + (−Xλ+ Z)N + (−Xλτ −Y)B√

1 + λ2τ2 + (λ′)2
√
X2 +Y2 + Z2

, (41)

B∗ =
XT +YN + ZB√
X2 +Y2 + Z2

.

The intuitive idea is as same as before. Since we defined α∗ to be as the B − O∗

associated curve of α we can write that

• < B, T ∗ >=< O∗, T ∗ >,
• < B,N∗ >=< O∗, N∗ >,
• < B,B∗ >=< O∗, B∗ >= 0.

By using these together with the relations (4) and (39) we write

• λ′√
1 + λ2τ2 + (λ′)2

=
a√

a2 + b2
,

• −Xλτ −Y√
1 + λ2τ2 + (λ′)2

√
X2 +Y2 + Z2

=
b√

a2 + b2
, (42)

• Z√
X2 +Y2 + Z2

= 0.

Substituting these relations into (39) and (41), we complete the proof. □

Corollary 6. If τ is taken to be constant, then from the first relation given in (42)
we can derive the following:

λ′(λ′′ − λ
a2

b2
τ2) = 0.
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This relation holds either λ′ = 0, correspondingly that λ is constant or

λ = c1e
aτ
b + c2e

− aτ
b ,

as a result of the solution of second order differential equation, where c1 and c2
are the integration constants. If λ is taken to be constant then by the first relation
of (42) a = 0, resulting that O∗ = N∗. We remind that this is the definition of
Mannheim curves.
On the other hand, when considered the third equation in (42) and recall (40), we
have the following

Z = −λτ ′ − 2λ′τ + κ+ λ2τ2κ = 0.

Rearranging this equation by dividing each term with (−2τ) results

λ′ + λ2

(
−τκ

2

)
+ λ

(
τ ′

2τ

)
− κ

2τ
= 0, (43)

which is clearly a Riccati type of differential equation. If λ = λ1 is a particu-
lar solution for (43) then we have a general solution by substituting λ = λ1 +

1
µ ,

that converts the Riccati equation into the following first order linear differential
equation:

µ′ −
(
2λ1

(
−τκ

2

)
+

(
τ ′

2τ

))
µ =

(
−τκ

2

)
(44)

where µ is an arbitrary function of the parameter, s. The solution for this (44) can
be done by following the steps given in the proof of Theorem (3).

Theorem 17. If α∗ is the B − O∗ associated curve of α, then the curvature, κ∗

and the torsion, τ∗ of α∗ are given as follows:

κ∗ = − a4(Xλτ +Y)

(λ′)2b(a2 + b2)
√
a2 + b2

,

τ∗ =
b2(λ′)2

a2(Xλτ +Y)2

(
X
(
λτκ′ + 3λ′τκ+ 2λτ ′κ− κ2

)
+Y

(
λτ3 + λτκ2 − λτ ′′ − 3λ′τ ′ − 3λ′′τ + κ′)).

Proof. By taking the third derivative of (38) and using Frenet formulas, we have

α∗′′′ = (λτκ′ + 2λτ ′κ+ 3λ′τκ− κ2)T + (λτκ2 + λτ3 − λτ ′′ − 3λ′′τ − 3λ′τ ′ + κ′)N

+ (λ′′′ − 3λττ ′ − 3λ′τ2 + κτ)B. (45)

Now, using the relations given in (42) together with (45), to substitute into the
definitions (2) lets us to complete the proof. □

Definition 8. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the binormal, B of α is linearly dependent with the vector, P ∗, then we
name the curve α∗ as B − P ∗ associated curve of α.
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Theorem 18. If α∗ is B − P ∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
1√

1 + λ2τ2
T − λ τ√

1 + λ2τ2
N,

N∗ =
1√

c2 + d2

(
dλτ√

1 + λ2τ2
T − d(λ3τ3 − (−λτ ′ + κ+ λ2τ2))

(−λτ ′ + κ+ λ2τ2)
√
1 + λ2τ2

N + cB

)
,

B∗ =
1√

c2 + d2

(
− cλτ√

1 + λ2τ2
T − c√

1 + λ2τ2
N + dB

)
.

Proof. Now, since again we defined α∗ to be as the B − P ∗ associated curve of α
we can write three of our associative relations as usual which are

• < B,N∗ >=< P ∗, N∗ >,
• < B,B∗ >=< P ∗, B∗ >,
• < B, T ∗ >=< P ∗, T ∗ >= 0.

These relations this time result the following three equations

• −Xλτ −Y√
1 + λ2τ2 + (λ′)2

√
X2 +Y2 + Z2

=
c√

c2 + d2
,

• Z√
X2 +Y2 + Z2

=
d√

c2 + d2
, (46)

• λ′√
1 + λ2τ2 + (λ′)2

= 0.

When substituted these relations, (46) in (39) and (41), we complete the proof. □

Corollary 7. When taken into account the third relation of (46) we conclude that
if the binormal vector of a given curve is linearly dependent with the unit vector
lying on the normal plane of its mate, then the distance between these curves is
constant.

Theorem 19. If α∗ is the B − P ∗ associated curve of α, then the curvature, κ∗

and the torsion, τ∗ of α∗ are given as follows.

κ∗ = −
d2
√
c2 + d2

(
λτ2(1 + λ2τ2)

)3
c3(−λτ ′ + κ+ λ2τ2)2

,

τ∗ =

d2(λ2τ3
(
λ τκ′ + 2 τ ′κλ− κ2

)
+ λτ2

(
λ τκ2 + λ τ3 − τ ′′λ+ κ′)

+(−λτ ′ + κ+ λ2τ2) (−3 τ ′τλ+ κτ))

(c2 + d2)(−λτ ′ + κ+ λ2τ2)2

Proof. By substituting the relations given in (37) and the third derivative (45) into
the definitions given in (2), we complete the proof. □
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Definition 9. Let α(s) : I ⊂ ℜ → ℜ3 be a unit speed curve and α∗ be any regular
curve. If the binormal, B of α is linearly dependent with the vector, R∗, then we
name the curve α∗ as B −R∗ associated curve of α.

Theorem 20. If α∗ is B − R∗ associated curve of α, then the relationship of the
corresponding Frenet frames of (α, α∗) pair is given by the following,

T ∗ =
1√

e2 + f2

(
f√

1 + λ2τ2
T − λτf√

1 + λ2τ2
N + eB

)
,

N∗ =
ef√

e2 + f2

(
Yλ′ + Zλτ

Zλ′ T +
−Xλ+ Z

Zλ′

)
,

B∗ =
f√

e2 + f2

(
X

Z
T +

Y

Z
N +B

)
.

Proof. Now, since again we defined α∗ to be as the B − R∗ associated curve of α
we can write three of our associative relations as usual which are

• < B, T ∗ >=< R∗, T ∗ >,
• < B,B∗ >=< R∗, B∗ >,
• < B,N∗ >=< R∗, N∗ >= 0.

These relations this time result the following three equations

• λ′√
1 + λ2τ2 + (λ′)2

=
e√

e2 + f2
,

• Z√
X2 +Y2 + Z2

=
f√

e2 + f2
, (47)

• −Xλτ −Y√
1 + λ2τ2 + (λ′)2

√
X2 +Y2 + Z2

= 0.

For the last time when substituted (47) into (39) and (41), the proof is complete. □

Corollary 8. The only analytically solvable equation is the first one of (47) with
the same assumption given in Corollary (6). The possible solutions can be get by
following the same steps as well.

Theorem 21. If α∗ is the B − R∗ associated curve of α, then the curvature, κ∗

and the torsion, τ∗ of α∗ are given as follows.

κ∗ =
Ze3

f(e2 + f2)(λ′)3
,

τ∗ =
f2

Z2(e2 + f2)

 X
(
λτκ′ + 2λτ ′κ+ 3λ′τκ− κ2

)
+Y

(
λτκ2 + λτ3 − λτ ′′ − 3λ′′τ − 3λ′τ ′ + κ′)

+Z
(
−3λττ ′ − 3

(
λ′) τ2 + κτ + λ′′′)

 .



ASSOCIATED CURVES FROM A DIFFERENT POINT OF VIEW IN E3 845

Proof. Recall the relations (45) and (47) and substitute these in (2), the proof is
complete. □
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[7] Kaya, O., Önder, M., New partner curves in the Euclidean 3-space, International Journal of
Geometry 6(2) (2017), 41-50.
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ON THE SOLUTIONS OF THE q-ANALOGUE OF THE

TELEGRAPH DIFFERENTIAL EQUATION

Döne KARAHAN

Science and Letter Faculty, Mathematics Department, Harran University, Sanlıurfa, TURKEY

Abstract. In this work, q-analogue of the telegraph differential equation is

investigated. The approximation solution of q-analogue of the telegraph differ-
ential equation is founded by using the Laplace transform collocation method

(LTCM). Then, the exact solution is compared with the approximation solu-

tion for q-analogue of the telegraph differential equation. The results showed
that the method is useful and effective for q-analogue of the telegraph differ-

ential equation.

1. Introduction

Quantum calculus (q-calculus) was initiated at the beginning of the 18th century
by Euler [1]. The q-calculus is often called calculus without limits. It allows the
substitution of the classical derivative with the q-derivative operator to deal with
sets of non-differentiable functions. The q-calculus has an unexpected role in sev-
eral mathematical areas such as fractal geometry, quantum theory, hypergeometric
functions, orthogonal polynomials, the calculus of variation and theory of relativity.
The works [2], [3] can be cited for some results related to the history of quantum
calculus, its basic concepts and q-differential equations. In [4], [5], a q-analogue of
Sturm-Liouville problems are investigated.

Partial differential equations are ubiquitous in mathematically-oriented scien-
tific fields, such as physics and engineering. For instance, they are foundational in
the modern scientific understanding of sound, heat, diffusion, electrostatics, elec-
trodynamics, fluid dynamics, elasticity, general relativity, and quantum mechanics.
In [6], an expansion theorem was proved for the analytic function in several variables
which satisfies a system of q-partial differential equations by using the theory of
functions of several variables and q-calculus. In [7], using the theory of functions of
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Keywords. q-analogue of the telegraph differential equation, Laplace transform collocation
method, exact solution, approximation solution.

dkarahan@harran.edu.tr; 0000-0001-6644-5596.

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

846



ON THE SOLUTIONS OF THE q-ANALOGUE OF THE TELEGRAPH DIFFERENTIAL 847

several complex variables, it was proved that if an analytic function in several vari-
ables satisfies a system of q-partial differential equations then, it can be expanded
in terms of the product of the Rogers-Szegő polynomials. In [8], identities and eval-
uate integrals by expanding functions in terms of products of the q-hypergeometric
polynomials was proved by homogeneous q-partial difference equations.

In [9], with the use of Laplace transform technique, a new form of trial func-
tion from the original equation is obtained. The unknown coefficients in the trial
functions are determined using collocation method. In [10], using the Laplace
transform collocation method (LTCM) and Daftar-Gejii-Jafaris method (DGJM),
the fractional order time-varying linear dynamical system was investigated.

In this paper, the following the telegraph differential equation defined by q-
difference operator which we call the q-analogue of the telegraph differential equa-
tion is studied



D2
q,ηφ(η, ξ) +Dq,ηφ(η, ξ) + φ(η, ξ) = D2

q,ξφ(η, ξ) + f(η, ξ),

0 < η < L 0 < ξ < L 0 < q ≤ 1,

φ(0, ξ) = h(ξ), Dq,ηφ(0, ξ) = g(ξ)

φ(η, 0) = φ(η, L) = 0,

(1)

where h, g and f are known continuous functions and the function φ is unknown

function. Dq,ηφ(η, ξ) =
∂qφ(η,ξ)

∂qη
, Dq,ξφ(η, ξ) =

∂qφ(η,ξ)
∂qξ

are q-difference of φ(η, ξ)

respect to η and ξ, respectively. If α = 1, and q = 1 then the equation (1) is called
telegraph partial differential equation.

LTCM method is used for numerical solution of the problem (1). Using the
Laplace transform method, the exact solution of the problem (1) and a new form
of trial function from the basic equation are obtained.

2. Preliminaries

We first recall some basic definition in q-calculus.
Let parameter q be a positive real number and n a non-negative integer. [n]q

denotes a q integer, defined by

[n]q =

{
1−qn

1−q , q ̸= 1

n, q = 1.

Let q > 0 be given. We define a q-factorial, [n]q! of k ∈ N, as

[n]q! =

{
[1]q[2]q...[n]q, n = 1, 2, ...
1, n = 0.



848 D. KARAHAN

The q-binomial coefficient

[
n
r

]
q

by[
n
r

]
q

=
[n]q!

[n− r]q![r]q!
.

The q-shifted factorials (q-Pochhammer symbol) are defined for a ∈ C by

(a; q)n =

n−1∏
j=0

(1− aqj)

and

(a; q)∞ = lim
n→∞

(a; q)n =

∞∏
j=0

(1− aqj).

The q-exponential function is given by

Eq(−z) = ((1− q)z; q)∞ =

∞∑
n=0

(−1)nq
n(n−1)

2

[n]q!
zn.

For t, x, y ∈ R and n ∈ Z ≥ 0, the q-binomial formula is given by

(x+ y)nq =

n−1∏
j=0

(x+ qjy) =

n∑
j=0

[
n
j

]
q

xn−jq
n(n−1)

2 yj .

Let q be a positive number with 0 < q < 1. Let f be a real or complex valued
function on A (A is q-geometric set (see [4])). The q-difference operator Dq (the
Jackson q-derivative) is defined as

Dqf(x) =:
∂qf(x)

∂qx
=

f(x)− f(qx)

x(1− q)
, x ̸= 0.

Let f and g are defined on a q-geometric set A such that the q-derivatives of
f and g exist for all x ∈ A. Then, there is a non-symmetric formula for the
q-differentiation of a product

Dq[f(x)g(x)] = f(qx)Dqg(x) + g(x)Dqf(x).

The q-integral usually associated with the name of Jackson is defined in the interval
(0, x), as ∫ x

0

f(t)dqt = (1− q)

∞∑
n=0

f(xqn)xqn,∫ x

0

Dqf(t)dqt = f(x)− f(0).

The q-integration for a function f over [0,∞) is defined as the following by Hahn
(see [11]) ∫ ∞

0

f(t)dqt =

∞∑
n=−∞

(1− q)qnf(qn).
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The q-analogue of the Laplace transformed is defined by

Fq(s) = £q(f(t)) =

∫ ∞

0

Eq(−qst)f(t)dqt (s > 0). (2)

From (2), we obtain

£q(αf(t) + βg(t)) = α£q(f(t)) + β£q(g(t)),

where α, β are constants. The q-analogue of the Gamma function is defined as the
following in [13]

Γq(t) =

∫ 1
(1−q)

0

xt−1Eq(−qx)dqx, (t > 0) (3)

From (2) and (3), we get

£q(1) =
1

s
(s > 0), £q(t) =

1

s2
(s > 0), ...,£q(t

n) =
Γq(n+ 1)

sn+1
=

[n]q!

sn+1
.

3. LTCM for q-Analogue of the Telegraph Differential Equation

We shall obtain numerical solution of q-analogue of the telegraph differential
equation using the method LTCM. Taking the Laplace transform of the problem
(1), we get

Dq,ηφ(0, ξ)− sφ(0, ξ) + s2φq(s, ξ)

= −£q{Dq,ηφ(η, ξ)} −£q{φ(η, ξ)}+£q{D2
q,ξφ(η, ξ)}+£q{f(η, ξ)} (4)

After simple algebraic simplification and using initial condition of the problem (1),
we have

φq(s, ξ) =
1

s2
[Dq,ηφ(0, ξ) + sφ(0, ξ)−£q{Dq,ηφ(η, ξ)} −£q{φ(η, ξ)}

+£q{D2
q,ξφ(η, ξ)}+£q{f(η, ξ)}

] (5)

The function φq(η, ξ) and its derivative function in the equation (5) are replaced
with a trial function of the form

φq = φ0
q +

n∑
i=1

ciφ
i
q, (6)
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then we will obtain the following equation

φq(s, ξ) =
1

s2

[
Dq,η

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)
+ s

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)

−£q

{
Dq,η

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
−£q

{
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

}

+£q

{
D2

q,ξ

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
+£q{f(η, ξ)}

]
,

(7)
where ci are constants to be stated which satisfy the given conditions in the problem
(1). Taking the inverse q-Laplace transform of the equation (7), we obtain

φnew
q (η, ξ) = £−1

q

[
1

s2

[
Dq,η

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)
+ s

(
φ0
q(0, ξ) +

n∑
i=1

ciφ
i
q(0, ξ)

)

−£q

{
Dq,η

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
−£q

{
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

}

+£q

{
D2

q,ξ

(
φ0
q(η, ξ) +

n∑
i=1

ciφ
i
q(η, ξ)

)}
+£q{f(η, ξ)}

]]
.

(8)
Substituting the equality (8) into the problem (1), we get new collocating at points
ξ = ξk as following

D2
q,ηφ

new
q (η, ξk) + φnew

q (η, ξk) +Dq,ηφ
new
q (η, ξk)−D2

q,ξφ
new
q (η, ξk) = f(η, ξk) (9)

where ξk = L−0
n+1 , k = 1, 2, . . . , n.

Now, we shall define the residual function by the following formula

Rn(η, ξ) = L[φnew
q (η, ξ)]− f(η, ξ). (10)

Here φnew
q (η, ξ) demonstrates the approximate solution, φ(η, ξ) demonstrates the

exact solution and

L[φnew
q (η, ξ)] = D2

q,ηφ
new
q (η, ξ)+Dq,ηφ

new
q (η, ξ)+φnew

q (η, ξ)−D2
q,ξφ

new
q (η, ξ). (11)

From the equality (11), we write

D2
q,ηφ

new
q (η, ξ) +Dq,ηφ

new
q (η, ξ) +φnew

q (η, ξ)−D2
q,ξφ

new
q (η, ξ) = f(η, ξ) +Rn(η, ξ),

(12)
Now since L is a linear operator, we obtain for the error function
en = φnew

q (η, ξ)− φ(η, ξ)

D2
q,ηen(η, ξ) +Dq,ηen(η, ξ) + en(η, ξ)−D2

q,ξen(η, ξ) = Rn(η, ξ). (13)
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From the conditions in the problem (1), we get

en(0, ξ) = Dq,ηen(0, ξ) = D2
q,ηen(0, ξ) = 0, (14)

en(η, 0) = en(η, L) = 0. (15)

By solving (13) subject to the homogeneous conditions (14) and (15), we obtain
the error function en(η, ξ). This allows us to calculate φ(η, ξ)=un(η, ξ) + en(η, ξ)
even for problems without known exact solutions.

4. Numerical Applications

In this section, we shall present one test example for implementation of the
LTCM. In the following example, the numerical solution calculated by the this
method will be compared with the exact solution.

Example 1. Consider the following initial-boundary value problem for q-analogue
of the telegraph differential equation

D2
q,ηφ(η, ξ) +Dq,ηφ(η, ξ) + φ(η, ξ) = D2

q,ξφ(η, ξ) + [3]q!ηξ
3 + [3]qη

2ξ3

+ η3ξ3 − [3]q!ξη
3

0 < η < L 0 < ξ < L 0 < q ≤ 1,

φ(0, ξ) = h(ξ), Dq,ηφ(0, ξ) = g(ξ)

φ(η, 0) = 0 φ(η, 1) = η3

(16)

First, we shall calculate the example problem (16) by LTCM.
We assume that the trial function is the following form:

φ(η, ξ) = c1ξ
2(ξ − 1)η3 + c2ξ(ξ − 1)2η3. (17)

Taking the Laplace transform of the equation (16) and using the formula (7), we
obtain

−Dq,ηφq(0, ξ)− sφq(0, ξ) + s2φq(s, ξ)

= −£q {Dq,ηφ(η, ξ)} − £q {φ(η, ξ)}+ £
{
D2

q,ξφ(η, ξ)
}

(18)

+£
{
[3]q!ηξ

3 + [3]qη
2ξ3 + η3ξ3 − [3]q!ξη

3
}
.

Using the initial condition of the problem (16), the formula (18) is obtained as:

φq(s, ξ) =
1

s2
[−£q{Dq,ηφ(η, ξ)} −£q{φ(η, ξ)}

+£q{D2
q,ξφ(η, ξ)}+£q{[3]q!ηξ3 + [3]qη

2ξ3 + η3ξ3 − [3]q!ξη
3}
] (19)

Using the formulas (17) and (19), we obtain

φq(s, ξ) =
1

s2
£q

{(
−[3]qξ

2(ξ − 1)η2 − ξ2(ξ − 1)η3 + [3]q!ξη
3 − [2]q!η

3
)
c1

+
(
−[3]qξ(ξ − 1)2η2 − ξ(ξ − 1)2η3 + ([3]q!ξ − [4]qη

3
)
c2

+£q

{
[3]q!ηξ

3 + [3]qη
2ξ3 + η3ξ3 − [3]q!ξη

3
}}

. (20)
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From the formula (20), we can get

φq(s, ξ) =

(
−[3]q!ξ

2(ξ − 1)
1

s5
− [3]q!ξ

2(ξ − 1)
1

s6
+ [3]q!([3]q!ξ − [2]q!)

1

s6

)
c1

+

(
−[3]q!ξ(ξ − 1)2

1

s5
− [3]q!ξ(ξ − 1)2

1

s6
+ [3]q!([3]q!ξ − [4]q)

1

s6

)
c2

+

(
[3]q!

s4
+

[3]q!

s5
+

[3]q!

s6

)
ξ3 − [3]q!

2

s6
ξ (21)

Taking the inverse Laplace transform of (21), we get the following new trial solution:

φnew
q (η, ξ) =

[(
− η4

[4]q
− η5

[4]q[5]q

)
(c1 + c2) + η3 +

η4

[4]q
+

η5

[4]q[5]q

]
ξ3

+

[(
η4

[4]q
+

η5

[4]q[5]q

)
(c1 + 2c2)

]
ξ2

+

[
[3]q!

[4]q[5]q
η5c1 −

(
η4

[4]q
+

η5

[4]q[5]q
− [3]q!

[4]q[5]q
η5
)
c2 −

[3]q!

[4]q[5]q
η5
]
ξ

− η5

[5]q
(c1 + c2) (22)

Substituting (22) into (16), we have the following residual formula:

R(η, ξ, c1, c2) = D2
q,ηφ

new
q (η, ξ) +Dq,ηφ

new
q (η, ξ) + φnew

q (η, ξ)−D2
q,ξφ

new
q (η, ξ)

−
(
[3]q!η + [3]qη

2 + η3
)
ξ3 + [3]q!η

3ξ (23)

Taking the derivatives of the equation (22) as to ξ and η, and writing in the formula
(23), we obtain

R(η, ξ, c1, c2) = (Aξ3 −Aξ2 +Dξ −B − C)c1

+ (Aξ3 − 2Aξ2 + (A+D)ξ −B − 2C)c2 −A−D

= 0, (24)

where,

A = − η5

[4]q[5]q
− 2

η4

[4]q
− 2η3 − [3]qη

2,

B = [4]qη
3 + η4 +

η5

[5]q
,

C = [2]q

(
η4

[4]q
+

η5

[4]q[5]q

)
,

D =
2[3]q!

[4]q[5]q
η5 +

2[3]q!

[4]q
η4 + [3]q!η

3.
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From (24), we have

c1 =
A

Aξ3 −Aξ2 +Dξ −B − C

c2 =
D

Aξ3 − 2Aξ2 + (A+D)ξ −B − 2C
.

Errors calculate by the following formula

Error = |exact solution− approximate solution|,
ϵ = max|φexact − φapp|,

where φexact = η3ξ3 is exact solution and φapp = c1ξ
2(ξ − 1)η3 + c2ξ(ξ − 1)2η3 is

numerical solution that is obtained by using LTCM for the problem (16). As shows

Figure 1. Gives the approximation solution of the example (16)
for 1 ≤ ξ ≤ 2, 0 ≤ η ≤ 1 and q = 0.01.

from the figure of Figure 1 the difference better exact solution and approximation
solutions is not clearly obvious. Therefore we present the numerical regents and
error analysis in the following Table 1.

5. Conclusion

In this work, we adopted a combination of Laplace transform collocation method
to develop numerical methods for the q-difference operator for the telegraph differ-
ential equation. Numerical example was considered to demonstrate the accuracy
and efficiency of this method. The exact solution is compared with the approximate
solution. Obtained results are given in the numerical error analysis Table 1 The
simulations are showed for the exact and approximation solution.
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ξ = η α Exact Solution LTCM method Error Analysis
0.99 0.01 0.941480149401000 0.769146969442938 0.172333179958063
0.5 0.01 0.015625000000000 0.032637283173177 0.017012283173177
0.5 0.5 0.015625000000000 0.037117402318906 0.021492402318906
0.5 0.99 0.015625000000000 0.027823738101408 0.012198738101408
0.1 0.01 1.0001× 10−6 2.3185× 10−5 2.2185× 10−5

0.1 0.5 1.0001× 10−6 1.6396× 10−5 1.5396× 10−5

0.1 0.99 1.0001× 10−6 1.1374× 10−5 1.0374× 10−5

0.01 0.01 1.000× 10−12 2.8934× 10−10 2.883410× 10−10

0.01 0.5 1.000× 10−12 1.7618× 10−10 1.7518× 10−10

0.01 0.99 1.000× 10−12 1.1629× 10−10 1.1529× 10−10

Table 1. Table error analysis of Example 1.
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Burcu BEKTAŞ DEMİRCİ1, Murat BABAARSLAN2, and Zehra ÖGE3
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Abstract. In this paper, we examine timelike loxodromes on three kinds of

Lorentzian helicoidal surfaces in Minkowski n–space. First, we obtain the first

order ordinary differential equations which determine timelike loxodromes on
the Lorentzian helicoidal surfaces in En

1 according to the causal characters of

their meridian curves. Then, by finding general solutions, we get the explicit

parametrizations of such timelike loxodromes. In particular, we investigate the
timelike loxodromes on the three kinds of Lorentzian right helicoidal surfaces

in En
1 . Finally, we give an example to visualize the results.

1. Introduction

Loxodromes, which are also known as rhumb lines, are curves that make constant
angles with the meridians on the Earth’s surface. Geodesics which minimize the
distance between two points on Earth’s surface, are different from than loxodromes
on Earth’s surface, [26]. Only the equator and the meridians are both constant
course angle and length minimizing. Since loxodromes give an efficient routing
from one position to another by means of a constant course angle, they are still
primarily used in navigation. For details, we refer to [1,2,25,27]. Since the Earth’s
surface can be thought as a Riemannian sphere, the notion of loxodromes can be
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broaden to an arbitrary surface of revolution, where meridians are copies of the
profile curve.

In early of 20th century, C. A. Noble [21] studied the loxodrome on the surface
of revolution in E3 and he also showed that the loxodrome on sphereoid projects
stereographically into the same spiral as the loxodrome on the sphere which is
tangent to the sphereoid along equator. Then, S. Kos et al. [19] and M. Petrović [23]
got the differential equations related to the loxodromes on a sphere and a sphereoid
and determined the length of such loxodromes, respectively.

Later, the topic of loxodromes has been studied on the rotational surfaces in
Minkowski space which is important in general relativity. In 3–dimensional Minkowski
space, there are three types of rotational surfaces with respect to the casual char-
acters of rotation axes and the concept of angle to define loxodromes is not similar
to Riemannian case. Therefore, the results in the Minkowski space are richer than
the Euclidean space. The authors determined the parametrizations of spacelike and
timelike loxodromes on rotational surfaces in E3

1 which have either spacelike merid-
ians or timelike meridians in [3] and [4], respectively. For 4–dimensional Minkowski
space, there are three types of rotation with 2–dimensional axes such as elliptic,
hyperbolic and parabolic rotation leaving a Riemannian plane, a Lorentzian plane
or a degenerate plane pointwise fixed, respectively. Then, M. Babaarslan and M.
Gümüş found the explicit parametrizations of loxodromes on such rotational sur-
faces of E4

1 in [10].
Helicoidal surfaces are the natural generalizations of rotational surfaces and they

play important roles in nature, science and engineering, see [17, 18, 22]. Thus, this
generalization leads the studies to the loxodromes on helicoidal surfaces in [5–9].
Recently, M. Babaarslan and N. Sönmez constructed the three kinds of helicoidal
surfaces in E4

1 by using rotation with 2–dimensional axes and translation in E4
1 and

they also obtained the general form of spacelike and timelike loxodromes on such
helicoidal surfaces in [11].

With the motivation from geometry, M. Babaarslan, B. B. Demirci, and R. Genç
extended the notion of the helicoidal surfaces in E4

1 to higher dimensional Minkowski
space and they made characterization of spacelike loxodromes on these helicoidal
surfaces of En

1 in [12]. In this context, this paper is a sequel of the article given
by [12].

In this paper, we study timelike loxodromes on three types of Lorentzian heli-
coidal surfaces in Minkowski n–space En

1 . We find the equations of timelike loxo-
dromes on such helicodial surfaces which have either spacelike meridians or timelike
meridians and then we get the explicit parametrizations of these loxodromes by find-
ing the general solution of the equations. As particular cases, we consider timelike
loxodromes on each Lorentzian right helicoidal surfaces in En

1 . Finally, we give an
illustrative example.
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2. Preliminaries

Let En
s denote the pseudo–Euclidean space of dimension n and index s, i.e.,

Rn = {(x1, x2, ..., xn) | x1, x2, ..., xn ∈ R} equipped with the metric

ds2 =

n−s∑
i=1

dx2
i −

n∑
j=n−s+1

dx2
j . (1)

For s = 1, En
1 is known as the Minkowski space which is inspired by general rela-

tivity.
A vector v in En

1 is called spacelike if ⟨v, v⟩ > 0 or v = 0, timelike if ⟨v, v⟩ < 0,
and lightlike (or null) if ⟨v, v⟩ = 0 and v ̸= 0. The length of a vector v in En

1 is

given by ||v|| =
√
|⟨v, v⟩| and v is said to be an unit vector if ||v|| = 1.

Let α : I ⊂ R −→ En
1 be a smooth regular curve in En

1 , where I is an open
interval. Then, the causal character of α is spacelike, timelike or lightlike if α̇ is
spacelike, timelike or lightlike, respectively, where α̇ = dα/dt.

Let M be a pseudo–Riemannian surface in En
1 given by a local parametrization

x(u, v). Then, the coefficients of the first fundamental form of M are

E = ⟨xu,xu⟩, F = ⟨xu,xv⟩, G = ⟨xv,xv⟩, (2)

where xu and xv denote the partial derivatives of x with respect u and v, respec-
tively. Thus, the induced metric g of M in En

1 is given by

g = Edu2 + 2Fdudv +Gdv2. (3)

Also, a pseudo–Riemannian surface M in En
1 is called a spacelike surface or a

timelike surface if and only if EG− F 2 > 0 or EG− F 2 < 0, respectively. For the
case EG − F 2 = 0, a pseudo–Riemannian surface M is called a lightlike surface.
Throughout this work, we will assume that the surface is nondegenerate.

The length of the curve α on the pseudo–Riemannian surface M between two
points u0 and u1 in En

1 is given by

L =

∫ u1

u0

√√√√∣∣∣∣∣E + 2F
dv

du
+G

(
dv

du

)2
∣∣∣∣∣du. (4)

For later use, we give the following definition of Lorentzian angle in En
1 by using [24].

Definition 1. Let x and y be vectors in En
1 . Then, we have the following state-

ments:

i. for a spacelike vector x and a timelike vector y, there is a unique nonnega-
tive real number θ such that

⟨x, y⟩ = ±||x||||y|| sinh θ. (5)

The number θ is called Lorentzian timelike angle between x and y.
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ii. for timelike vectors x and y, there is a unique nonnegative real number θ
such that

⟨x, y⟩ = ||x||||y|| cosh θ. (6)

The number θ is called Lorentzian timelike angle between x and y. Note
that θ = 0 if and only if x and y are positive scalar multiples of each other.

By using [12], the definition of the helicoidal surfaces in En
1 can be given as

follows.
Let β : I ⊂ R −→ Π ⊂ En

1 be a smooth curve in a hyperplane Π ⊂ En
1 , P be a

(n− 2)-plane in the hyperplane Π ⊂ En
1 and ℓ be a line parallel to P . A helicoidal

surface in En
1 is defined as a rotation of the curve β around P with a translation

along the line ℓ. Here, the speed of translation is proportional to the speed of this
rotation. Thus, there are three types of helicoidal surfaces in En

1 as follows:

2.1. Helicoidal surface of type I. Let {e1, e2, ..., en} be a standard orthonormal
basis for En

1 . Then, we choose a Lorentzian (n − 2)–subspace P1 generated by
{e3, e4, ..., en}, Π1 a hyperplane generated by {e1, e3, ..., en} and a line ℓ1 generated
by en. Assume that β1 : I −→ Π1 ⊂ En

1 , β1(u) = (x1(u), 0, x3(u), ..., xn(u)), is
a smooth regular curve lying in Π1 defined on an open interval I ⊂ R and u is
arc length parameter, that is, x′2

1 (u) + x′2
3 (u) + ... − x′2

n (u) = ε with ε = ±1. For
0 ≤ v < 2π and a positive constant c, we consider the surface M1

H1(u, v) = (x1(u) cos v, x1(u) sin v, x3(u), ..., xn−1(u), xn(u) + cv) (7)

which is the parametrization of the helicoidal surface obtained the rotation of the
curve β1 that leaves the Lorentzian subspace P1 pointwise fixed followed by the
translation along ℓ1. The surface M1 in En

1 is called a helicoidal surface of type I.
Also, the surface M1 is called a right helicoidal surface of type I in En

1 if xn is a
constant function.

2.2. Helicoidal surface of type II. Let {e1, e2, ..., en} be a standard orthonor-
mal basis for En

1 . Then, we choose a Riemannian (n−2)–subspace P2 generated by
{e1, e2, ..., en−2}, Π2 a hyperplane generated by {e1, ..., en−2, en} and a line ℓ2 gener-
ated by e1. Assume that β2 : I −→ Π2 ⊂ En

1 , β2(u) = (x1(u), ..., xn−2(u), 0, xn(u)),
is a smooth regular curve lying in Π2 defined on an open interval I ⊂ R and u is
an arc length parameter, that is, x′2

1 (u) + x′2
2 (u) + ...− x′2

n (u) = ε for ε = ±1. For
v ∈ R and a positive constant c, we consider the surface M2

H2(u, v) = (x1(u) + cv, x2(u), ..., xn−2(u), xn(u) sinh v, xn(u) cosh v) (8)

which is the parametrization of the helicoidal surface obtained the rotation of the
curve β2 which leaves Riemannian subspace P2 pointwise fixed followed by the
translation along ℓ2. The surface M2 in En

1 is called a helicoidal surface of type II.
Also, the surface M2 is called a right helicoidal surface of type II in En

1 if x1 is a
constant function.
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2.3. Helicoidal surface of type III. Let define a pseudo–orthonormal basis
{e1, e2, ..., ξn−1, ξn} for En

1 using a standard orthonormal basis {e1, e2, ..., en−1, en}
for En

1 such that

ξn−1 =
1√
2
(en − en−1) and ξn =

1√
2
(en + en−1), (9)

where ⟨ξn−1, ξn−1⟩ = ⟨ξn, ξn⟩ = 0 and ⟨ξn−1, ξn⟩ = −1. Then, we choose a degen-
erate (n − 2)–subspace P3 generated by {e1, e3, ..., ξn−1}, Π3 a hyperplane gener-
ated by {e1, e3, ..., en−2, ξn−1, ξn} and a line ℓ3 generated by ξn−1. Assume that
β3 : I −→ Π3 ⊂ En

1 , β3(u) = x1(u)e1 + x3(u)e3 + ...+ xn−1(u)ξn−1 + xn(u)ξn, is a
smooth curve lying in Π3 defined on an open interval I ⊂ R and u is an arc length
parameter, that is, x′2

1 (u) + x′2
3 (u) + ...− 2x′

n−1(u)x
′
n(u) = ε for ε = ±1. Then, we

consider the surface M3

H3(u, v) =x1(u)e1 +
√
2vxn(u)e2 + x3(u)e3 + ...+ xn−2(u)en−2

+ (xn−1(u) + v2xn(u) + cv)ξn−1 + xn(u)ξn
(10)

which is the parametrization of the helicoidal surface obtained a rotation of the
curve β3 which leaves the degenerate subspace P3 pointwise fixed followed by the
translation along ℓ3. The surface M3 in En

1 is called the helicoidal surface of type
III. If xn is a constant function, then the helicoidal surface M3 is called a right
helicoidal surface of type III in En

1 .

Remark 1. It can be easily seen that the helicoidal surfaces M1–M3 in En
1 defined

by (7), (8) and (10) reduce to the rotational surfaces in En
1 for c = 0.

3. Timelike Loxodrome on Timelike Helicoidal Surface of Type I in
En
1

In this section, we determine the parametrization of timelike loxodrome on the
timelike helicoidal surface of type I in En

1 defined by (7).
Consider the timelike helicoidal surface of type I, M1, in En

1 given by (7). From a
simple calculation, the induced metric g1 on M1 is defined by

g1 = εdu2 − 2cx′
n(u)dudv + (x2

1(u)− c2)dv2. (11)

Since M1 is a timelike surface in En
1 , we have εx2

1(u)− c2(ε+ x′2
n (u)) < 0. Assume

that α1(t) = H1(u(t), v(t)) is a timelike loxodrome on M1 in En
1 , that is, α1(t)

intersects the meridian m1(u) = H1(u, v0) for a constant v0 with a constant angle
ϕ0 at the point p ∈ M1. Then, we have

⟨α̇1(t), (m1)u⟩ = ε
du

dt
− cx′

n(u)
dv

dt
, (12)

ε

(
du

dt

)2

− 2cx′
n(u)

du

dt

dv

dt
+ (x2

1(u)− c2)

(
dv

dt

)2

< 0. (13)

In this context, there are two following cases occur with respect to the causal
character of the meridian curve m1(u).
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Case i. M1 has a spacelike meridian curve m1(u), that is, ε = 1. Using the
equations (12) and (13) in (5), we get

sinhϕ0 = ±
du
dt − cx′

n(u)
dv
dt√

−
(
du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − (x2

1(u)− c2)
(
dv
dt

)2 . (14)

Case ii. M1 has a timelike meridian curve m1(u), that is, ε = −1. Using the
equations (12) and (13) in (6), we obtain

coshϕ0 = −
du
dt + cx′

n(u)
dv
dt√(

du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − (x2

1(u)− c2)
(
dv
dt

)2 . (15)

After a simple calculation in equations (14) and (15), we get the following lemma.

Lemma 1. Let M1 be a timelike helicoidal surface of type I in En
1 defined by (7).

Then, α1(t) = H1(u(t), v(t)) is a timelike loxodrome with u̇ ̸= 0 if and only if one
of the following differential equations is satisfied:

(i.) for having a spacelike meridian,

(sinh2 ϕ0(x
2
1(u)− c2) + c2x′2

n (u))v̇
2 − 2c cosh2 ϕ0x

′
n(u)u̇v̇ + cosh2 ϕ0u̇

2 = 0, (16)

(ii.) for having a timelike meridian,

(cosh2 ϕ0(x
2
1(u)− c2) + c2x′2

n (u))v̇
2 − 2c sinh2 ϕ0x

′
n(u)u̇v̇ − sinh2 ϕ0u̇

2 = 0, (17)

where ϕ0 is a nonnegative constant.

Theorem 1. A timelike loxodrome on a timelike helicoidal surface of type I in En
1

defined by (7) is parametrized by α1(u) = H1(u, v(u)), where v(u) is given by one
of the following functions:

(i.) v(u) = ± 1

2 sinhϕ0

∫ u

u0

dξ√
c2 − x2

1(ξ)
,

(ii.) v(u) = ± 1

2 coshϕ0

∫ u

u0

dξ√
c2 − x2

1(ξ)
,

(iii.) for sinh2 ϕ0(x
2
1(ξ)− c2) + c2x′2

n (ξ) ̸= 0,

v(u) =

∫ u

u0

2c cosh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(c

2(x′2
n (ξ) + 1)− x2

1(ξ))

2 sinh2 ϕ0(x
2
1(ξ)− c2) + 2c2x′2

n (ξ)
dξ,

(iv.) for cosh2 ϕ0(x
2
1(ξ)− c2) + c2x′2

n (ξ) ̸= 0,

v(u) =

∫ u

u0

2c sinh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(c

2(x′2
n (ξ)− 1) + x2

1(ξ))

2 cosh2 ϕ0(x
2
1(ξ)− c2) + 2c2x′2

n (ξ)
dξ,

where ϕ0 is a nonnegative constant and c > 0 is a constant.

Proof. Assume that M1 is a timelike helicoidal surface in En
1 defined by (7) and

α1(t) = H1(u(t), v(t)) is a timelike loxodrome on M1 in En
1 . From Lemma 1, we

have the equations (16) and (17).
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For a spacelike meridian, the equation (16) implies

(sinh2 ϕ0(x
2
1(u)−c2)+c2x′2

n (u))

(
dv

du

)2

−2c cosh2 ϕ0x
′
n(u)

dv

du
+cosh2 ϕ0 = 0. (18)

If sinh2 ϕ0(x
2
1(u)− c2) + c2x′2

n (u) = 0, then the equation (18) becomes

2c cosh2 ϕ0x
′
n(u)

dv

du
− cosh2 ϕ0 = 0 (19)

whose the solution is v(u) = 1
2c

∫ u

u0

dξ
x′
n(ξ)

. On the other side, sinh2 ϕ0(x
2
1(u)− c2) +

c2x′2
n (u) = 0 implies x′

n(u) = ± sinhϕ0

c

√
c2 − x2

1(u) for ϕ0 ̸= 0. Thus, we get the

desired equation in (i). Also, we note that c2 − x2
1(u) > 0 due the fact that M1 is

a timelike surface in En
1 .

If sinh2 ϕ0(x
2
1(u)− c2)+ c2x′2

n (u) ̸= 0, it can be easily obtained that the solution
v(u) of the differential equation (18) is given by the integral in (iii).

Similarly, for a timelike meridian, the equation (17) implies

(cosh2 ϕ0(x
2
1(u)−c2)+c2x′2

n (u))

(
dv

du

)2

−2c sinh2 ϕ0x
′
n(u)

dv

du
− sinh2 ϕ0 = 0. (20)

If cosh2 ϕ0(x
2
1(u) − c2) + c2x′2

n (u) = 0, the equation (20) reduces to the following
equation

2c sinh2 ϕ0x
′
n(u)

dv

du
+ sinh2 ϕ0 = 0 (21)

whose the solution is v(u) = − 1
2c

∫ u

u0

dξ
x′
n(ξ)

for a nonzero constant ϕ0. Since x
′
n(u) =

± coshϕ0

c

√
c2 − x2

1(u), we get the desired equation in (ii). Also, we note that c2 −
x2
1(u) > 0 due the fact that M1 is a timelike surface in En

1 . If cosh2 ϕ0(x
2
1(u) −

c2)+ c2x′2
n (u) ̸= 0, the solution v(u) of the differential equation (20) is given by the

integral in (iv). Thus, we get the parametrization of the loxodrome with respect
to u parameter such that α1(u) = H1(u, v(u)), where v(u) is defined by one of the
integrals in (i)-(iv). □

Now, we consider a timelike right helicoidal surface of type I in En
1 , denoted by

MR
1 , that is,

HR
1 (u, v) = (x1(u) cos v, x1(u) sin v, x3(u), . . . , xn−1(u), xn0

+ cv), (22)

where c ̸= 0 and xn0
are constants. Then, from the equation in (iii) of Theorem 1,

we give the following corollary.

Corollary 1. A timelike loxodrome on a timelike right helicoidal surface of type I
in En

1 defined by (22) is parametrized by αR
1 (u) = HR

1 (u, v(u)) where v(u) is given
by

v(u) = ± cothϕ0

∫ u

u0

dξ√
c2 − x2

1(ξ)
(23)

for constant ϕ0 > 0.
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Using the equation (4) and Corollary 1, we give the following statement:

Corollary 2. The length of a timelike loxodrome on a timelike right helicoidal
surface of type I in En

1 defined by (22) between two points u0 and u1 is given by

L =

∣∣∣∣u1 − u0

sinhϕ0

∣∣∣∣ ,
for constant ϕ0 > 0.

4. Timelike Loxodrome on Timelike Helicoidal Surface of Type II in
En
1

In this section, we determine the parametrization of timelike loxodrome on the
timelike helicoidal surface of type II in En

1 defined by (8).
Consider the timelike helicoidal surface of type II, M2, in En

1 given by (8). From
a simple calculation, the induced metric g2 on M2 is defined by

g2 = εdu2 + 2cx′
1(u)dudv + (c2 + x2

n(u))dv
2. (24)

Since M2 is a timelike surface in En
1 , we have c2(ε− x′2

1 (u)) + εx2
n(u) < 0. Assume

that α2(t) = H2(u(t), v(t)) is a timelike loxodrome on M2 in En
1 , that is, α2(t)

intersects the meridian m2(u) = H2(u, v0) for a constant v0 with a constant angle
ϕ0 at the point p ∈ M2. Then, we have

⟨α̇2(t), (m2)u⟩ = ε
du

dt
+ cx′

1(u)
dv

dt
, (25)

ε

(
du

dt

)2

+ 2cx′
1(u)

du

dt

dv

dt
+ (c2 + x2

n(u))

(
dv

dt

)2

< 0. (26)

In this context, there are two following cases occur with respect to the causal
character of the meridian curve m2(u).
Case i. M2 has a spacelike meridian curve m2(u), that is, ε = 1. Using the
equations (25) and (26) in (5), we get

sinhϕ0 = ±
du
dt + cx′

1(u)
dv
dt√

−
(
du
dt

)2 − 2cx′
1(u)

du
dt

dv
dt − (c2 + x2

n(u))
(
dv
dt

)2 . (27)

Case ii. M2 has a timelike meridian curve m2(u), that is, ε = −1. Using the
equations (25) and (26) in (6), we obtain

coshϕ0 =
−du

dt + cx′
1(u)

dv
dt√(

du
dt

)2 − 2cx′
1(u)

du
dt

dv
dt − (c2 + x2

n(u))
(
dv
dt

)2 . (28)

After a simple calculation in equations (27) and (28), we get the following lemma.

Lemma 2. Let M2 be a timelike helicoidal surface of type II in En
1 defined by (8).

Then, α2(t) = H2(u(t), v(t)) is a timelike loxodrome with u̇ ̸= 0 if and only if one
of the following differential equations is satisfied:
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(i.) for having a spacelike meridian,

(sinh2 ϕ0(x
2
n(u) + c2) + c2x′2

1 (u))v̇
2 + 2c cosh2 ϕ0x

′
1(u)u̇v̇ + cosh2 ϕ0u̇

2 = 0, (29)

(ii.) for having a timelike meridian,

(cosh2 ϕ0(x
2
n(u) + c2) + c2x′2

1 (u))v̇
2 + 2c sinh2 ϕ0x

′
1(u)u̇v̇ − sinh2 ϕ0u̇

2 = 0, (30)

where ϕ0 is a nonnegative constant.

Theorem 2. A timelike loxodrome on a timelike helicoidal surface of type II in En
1

defined by (8) is parametrized by α2(u) = H2(u, v(u)), where v(u) is given by one
of the following functions:

(i.) v(u) =

∫ u

u0

−2c cosh2 ϕ0x
′
1(ξ)±

√
sinh2 (2ϕ0)(c

2(x′2
1 (ξ)− 1)− x2

n(ξ))

2 sinh2 ϕ0(x
2
n(ξ) + c2) + 2c2x′2

1 (ξ)
dξ,

(ii.) v(u) =

∫ u

u0

−2c sinh2 ϕ0x
′
1(ξ)±

√
sinh2 (2ϕ0)(x

2
n(ξ) + c2(x′2

1 (ξ) + 1))

2 cosh2 ϕ0(x
2
n(ξ) + c2) + 2c2x′2

1 (ξ)
dξ,

where ϕ0 is a nonnegative constant.

Proof. Assume that M2 is a timelike helicoidal surface in En
1 defined by (8) and

α2(t) = H2(u(t), v(t)) is a timelike loxodrome on M2 in En
1 . From Lemma 2, we

have the equations (29) and (30).
For a spacelike meridian, the equation (29) implies

(sinh2 ϕ0(x
2
n(u)+c2)+c2x′2

1 (u))

(
dv

du

)2

+2c cosh2 ϕ0x
′
1(u)

dv

du
+cosh2 ϕ0 = 0. (31)

Since sinh2 ϕ0(x
2
n(u)+c2)+c2x′2

1 (u) ̸= 0 for all u ∈ I ⊂ R, it can be easily obtained
that the solution v(u) of the differential equation (31) is given by the integral in
(i).

Similarly, for a timelike meridian, the equation (30) implies

(cosh2 ϕ0(x
2
n(u)+c2)+c2x′2

1 (u))

(
dv

du

)2

+2c sinh2 ϕ0x
′
1(u)

dv

du
− sinh2 ϕ0 = 0. (32)

Due to cosh2 ϕ0(x
2
n(u) + c2) + c2x′2

1 (u) ̸= 0, the solution v(u) of the differential
equation (32) is given by the integral in (ii). Thus, we get a parametrization of the
loxodrome with respect to u parameter such that α2(u) = H2(u, v(u)), where v(u)
is defined by one of the integrals in (i) and (ii). □

Now, we consider a timelike right helicoidal surface of type II in En
1 denoted by

MR
2 , that is,

HR
2 (u, v) = (x10 + cv, x2(u), . . . , xn−2(u), xn(u) sinh v, xn(u) cosh v), (33)

where c ̸= 0 and x10 are constants. Since MR
2 is a timelike surface in En

1 , we have
ε(c2 + x2

n(u)) < 0. This inequality can be only satisfied when ε = −1. Thus,
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the meridian curve of MR
2 must be timelike. Then, from the equations in (ii) of

Theorem 2, we give the following corollary.

Corollary 3. A timelike loxodrome on a timelike right helicoidal surface of type II
in En

1 defined by (33) is parametrized by αR
2 (u) = HR

2 (u, v(u)), where v(u) is given
by

v(u) = ± tanhϕ0

∫ u

u0

dξ√
x2
n(ξ) + c2

(34)

and c, ϕ0 > 0 are constants.

Using the equation (4) and Corollary 3, we give the following statement:

Corollary 4. The length of a timelike loxodrome on a timelike right helicoidal
surface of type II in En

1 defined by (33) between two points u0 and u1 is given by

L =

∣∣∣∣u1 − u0

coshϕ0

∣∣∣∣ , (35)

where ϕ0 is a nonnegative constant.

5. Timelike Loxodrome on Timelike Helicoidal Surface of Type III in
En
1

In this section, we determine the parametrization of timelike loxodrome on the
timelike helicoidal surface of type III in En

1 defined by (10).
Consider the timelike helicoidal surface of type III, M3, in En

1 given by (10). The
induced metric g3 on M3 is defined by

g3 = εdu2 − 2cx′
n(u)dudv + 2x2

n(u)dv
2. (36)

Since M3 is a timelike surface in En
1 , we have 2εx2

n(u)− c2x′2
n (u) < 0. Assume that

α3(t) = H3(u(t), v(t)) is a timelike loxodrome on M3 in En
1 , that is, α3(t) intersects

the meridian m3(u) = H3(u, v0) for a constant v0 with a constant angle ϕ0 at the
point p ∈ M3. Then, we have

⟨α̇3(t), (m3)u⟩ = ε
du

dt
− cx′

n(u)
dv

dt
, (37)

ε

(
du

dt

)2

− 2cx′
n(u)

du

dt

dv

dt
+ 2x2

n(u)

(
dv

dt

)2

< 0. (38)

In this context, there are two following cases occur with respect to the causal
character of the meridian curve m3(u).
Case i. M3 has a spacelike meridian curve m3(u), that is, ε = 1. Using the
equations (37) and (38) in (5), we get

sinhϕ0 = ±
du
dt − cx′

n(u)
dv
dt√

−
(
du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − 2x2

n(u)
(
dv
dt

)2 . (39)
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Case ii. M3 has a timelike meridian curve m3(u), that is, ε = −1. Using the
equations (37) and (38) in (6), we obtain

coshϕ0 = −
du
dt + cx′

n(u)
dv
dt√(

du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − 2x2

n(u)
(
dv
dt

)2 . (40)

After a simple calculation in the equations (39) and (40), we get the following
lemma.

Lemma 3. Let M3 be a timelike helicoidal surface of type III in En
1 defined by (10).

Then, α3(t) = H3(u(t), v(t)) is a timelike loxodrome with u̇ ̸= 0 if and only if one
of the following differential equations is satisfied:

(i.) for having a spacelike meridian,

(2 sinh2 ϕ0x
2
n(u) + c2x′2

n (u))v̇
2 − 2c cosh2 ϕ0x

′
n(u)u̇v̇ + cosh2 ϕ0u̇

2 = 0, (41)

(ii.) for having a timelike meridian,

(2 cosh2 ϕ0x
2
n(u) + c2x′2

n (u))v̇
2 − 2c sinh2 ϕ0x

′
n(u)u̇v̇ − sinh2 ϕ0u̇

2 = 0, (42)

where ϕ0 is a nonnegative constant.

Theorem 3. A timelike loxodrome on a timelike helicoidal surface of type III in
En
1 defined by (10) is parametrized by α3(u) = H3(u, v(u)), where v(u) is given by

one of the following functions:

(i.) v(u) =

∫ u

u0

2c cosh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(c

2x′2
n (ξ)− 2x2

n(ξ))

4 sinh2 ϕ0x
2
n(ξ) + 2c2x′2

n (ξ)
dξ,

(ii.) v(u) =

∫ u

u0

2c sinh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(2x

2
n(ξ) + c2x′2

n (ξ))

4 cosh2 ϕ0x
2
n(ξ) + 2c2x′2

n (ξ)
dξ,

where ϕ0 is a nonnegative constant.

Proof. Assume that M3 is a timelike helicoidal surface in En
1 defined by (10) and

α3(t) = H3(u(t), v(t)) is a timelike loxodrome on M3 in En
1 . From Lemma 3, we

have the equations (41) and (42).
For a spacelike meridian, the equation (41) implies

(2 sinh2 ϕ0x
2
n(u) + c2x′2

n (u))

(
dv

du

)2

− 2c cosh2 ϕ0x
′
n(u)

dv

du
+ cosh2 ϕ0 = 0. (43)

Since 2 sinh2 ϕ0x
2
n(u) + c2x′2

n (u) ̸= 0 for all u ∈ I ⊂ R, it can be easily obtained
that the solution v(u) of the differential equation (43) is given by the integral in
(i).

Similarly, for a timelike meridian, the equation (42) implies

(2 cosh2 ϕ0x
2
n(u) + c2x′2

n (u))

(
dv

du

)2

− 2c sinh2 ϕ0x
′
n(u)

dv

du
− sinh2 ϕ0 = 0. (44)
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Due to 2 cosh2 ϕ0x
2
n(u)+ c2x′2

n (u) ̸= 0, the solution v(u) of the differential equation
(44) is given by the integral in (ii). Thus, we get the parametrization of the lox-
odrome with respect to u parameter such that α3(u) = H3(u, v(u)), where v(u) is
defined by one of the integrals in (i) and (ii). □

Note that the timelike right helicoidal surface of type III with the timelike merid-
ian does not exist.

6. Visualization

In this section, we give an example to visualize our main results.

Example 1. We consider the following spacelike profile curve:

β1(u) = (x1(u), 0, x3(u), ..., xn(u)).

Then, we have the following parametrization of timelike helicoidal surface M1:

H1(u, v) = (x1(u) cos v, x1(u) sin v, x3(u), ..., xn−1(u), xn(u) + cv).

By using (i) of Theorem 1, we have v(u) = ± 1
2 sinhϕ0

∫ u

u0

dξ√
c2−x2

1(ξ)
. If we choose

x1(ξ) = ck sin ξ for 0 < k < 1, then v(u) = ± 1
2c sinhϕ0

∫ u

u0

dξ√
1−k2 sin2 ξ

= ± 1
2c sinhϕ0

F (u, k),

where F (u, k) is an elliptic integral of first kind (see [13]). Then, the parametriza-
tion of timelike loxodrome on timelike helicoidal surface M1 in Minkowski n–space
is given by

α1(u) = (x1(u) cos v(u), x1(u) sin v(u), x3(u), ..., xn−1(u), xn(u) + cv(u)),

where v(u) = ± 1
2c sinhϕ0

F (u, k) for 0 < k < 1.

7. Conclusion

Loxodromes on various surfaces and hypersurfaces in different ambient spaces
have been studied and many significant results have been obtained, see [3, 14–16,
20,21,28]. In this paper, we investigate the timelike loxodromes on Lorentzian he-
licoidal surfaces in Minkowski n–space which were constructed in [12], called type
I, type II and type III. For this reason, we get the first order ordinary differential
equations which determine the parametrizations of the timelike loxodromes on such
helicoidal surfaces. Solving these equations, we obtain the explicit parametrizations
of the such loxodromes parametrized by the parameter of the profile curves of the
helicoidal surfaces. It is known that a particular case of helicoidal surfaces is right
helicoidal surfaces. We observe that the Lorentzian right helicoidal surfaces appear
only for the Lorentzian helicoidal surfaces of type I having spacelike meridians and
the Lorentzian helicoidal surfaces of type II having timelike meridians. Hence, we
look the parametrizations for timelike loxodromes on which the Lorentzian right
helicoidal of En

1 exist. Moreover, we find the lengths of such loxodromes which
just depend on the points and the angle between the loxodromes and the meridians
of the surfaces. Finally, we give a theoretical example to give the concept of the
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loxodromes. In [11], the graphical examples of the loxodromes can be found for the
4–dimensional Minkowski space. Hence, our results in this paper and [12] can be
used as finding the parametrizations of spacelike and timelike loxodromes on the
nondegenerate helicoidal surfaces in the Minkowski space with the higher dimension
than four.

Author Contribution Statements All authors contributed equally to design
and implementation of the research. They jointly analyzed the results and wrote
the manuscript. They read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no
competing of interest.

Acknowledgements The authors are thankful the editor and reviewers for their
valuable comments and suggestions.

References

[1] Alexander, J., Loxodromes: a rhumb way to go, Math. Mag., 77(5) (2004), 349–356.

https://doi.org/10.1080/0025570X.2004.11953279
[2] Aldea, N., Kopacz, P., Generalized loxodromes with application to time-

optimal navigation in arbitrary wind, J. Franklin Inst., 358(1) (2021), 776–799.

https://doi.org/10.1016/j.jfranklin.2020.11.009
[3] Babaarslan, M., Yaylı, Y., Space–like loxodromes on rotational surfaces in Minkowski 3–space,

J. Math. Anal. Appl., 409(1) (2014), 288–298. https://doi.org/10.1016/j.jmaa.2013.06.035

[4] Babaarslan, M., Munteanu, M. I., Time–like loxodromes on rotational surfaces in Minkowski
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Abstract. In this writeup, we have discussed the role of ideals on σ-topological

spaces. Using this idea, we have also studied and discussed two operators ()∗σ

and ψσ . We have extended this concept to a new generalized set and investi-

gated some basic properties of these concepts using ()∗σ and ψσ operators.

1. Introduction

In topological space, the idea of ideal was known by Kuratowski [7] and Vaidyanath-
swamy [13]. After that, in the ideal topological space, local function was introduced
and studied by Vaidyanathswamy. Nj̊astad [12] has introduced compatability of the
topology with the help of an ideal. In [5, 6] Janković and Hamlett introduced fur-
ther the characteristics of ideal topological spaces and ψ-operator was introduced
by them in 1990. A new type of topology from original ideal topological space was
also introduced. In this new topological space, a Kuratowski-closure operator was
defined using the local function. Also from ψ-operator, they proved that interior
operator can be deduced in the new topological space. In 2007, using ψ-operator
Modak and Bandhyopadhyay in [8] introduced generalized open sets. The idea of
ideal m-space was introduced by Al-Omari and Noiri in [1, 2] and they also inves-
tigated two operators identical with ψ-operator and local function in 2012. Their
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extensive works related to this topic can be found in [3, 4].

The idea of σ-topological space have been introduced and studied here. In
this paper, ideal σ-topological space has been introduced and two set operators
σ-local and ψσ and their properties have been studied. Finally σ-codense ideal, σ-
compatible ideal and ψσ −C set using ψσ operator have been introduced. Further
investigation of various properties of that knowledge have been studied.

2. Preliminaries

Related to this paper, we have discussed some definitions, examples and results
in this article.

Definition 1. A family γ of subsets of a set T is called σ-topology if the following
conditions are satisfied:
(i) ∅, T ∈ γ.
(ii) γ is closed under countable union.
(iii) γ is closed under finite intersection.
The couple (T, γ) is said to be a σ-topological space. The member of γ is called
σ-open set in (T, γ) and the complement of σ-open set is called σ-closed set.

Note 1. Every topology on a non-empty set T is a σ-topology but every σ-topology
on T may not be a topology. For an example, let T = R, set of all real numbers and
γ = {∅,R}∪{S⊂ R :S is countable}. Then γ is σ-topology on T . But

⋃
p∈R\Q

{p} /∈ γ,

i.e, γ is not closed under arbitrary union. Hence γ is not a topology on T = R.

Definition 2. A non-empty family J of subsets of T is called an ideal on T , if
(i) M ∈ J and N ⊂M implies N ∈ J (heredity).
(ii) M ∈ J and N ∈ J imply M ∪N ∈ J (finite additivity).

Definition 3. Let (T, γ) be a σ-topological space and M ⊂ T . The σ-interior and
σ-closure of M in (T, γ) are defined as respectively:

∪{V:V⊂ M and V∈ γ} and ∩{C:M⊂ C and T\C ∈ γ}
The σ-interior and σ-closure of M in (T, γ) are denoted as Intσ(M) and Clσ(M)
respectively.

Theorem 1. Let (T, γ) be a σ-topological space and M, N be two subsets of T, then
(i) p ∈ Clσ(M) if and only if for any σ-open set V containing p, V ∩M ̸= ∅.
(ii) If M ⊂ N then Clσ(M) ⊂ Clσ(N).

Proof. (i) Let p ∈ Clσ(M). If possible let there exists a σ-open set V containing
p such that V ∩M = ∅. This implies M ⊂ T \ V . Since T \ V is σ-closed in T
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containingM , so Clσ(M) ⊂ T \V . This implies Clσ(M)∩V = ∅, which contradicts
the fact that p ∈ Clσ(M) ∩ V . Thus if p ∈ Clσ(M), then for any σ-open set V
containing p, V ∩M ̸= ∅.
Conversely, let for any σ-open set V containing p, V ∩ M ̸= ∅. If possible let
p /∈ Clσ(M). Then p ∈ T \ Clσ(M) = V (say). This implies V ∩ Clσ(M) = ∅
and hence V ∩M = ∅, as M ⊂ Clσ(M), which contradicts our assumption. Hence
p ∈ Clσ(M).
(ii) Let p ∈ Clσ(M). Then for any σ-open set V containing p, V ∩M ̸= ∅. This
implies V ∩N ̸= ∅, sinceM ⊂ N . Thus p ∈ Clσ(N). Hence Clσ(M) ⊂ Clσ(N). □

Theorem 2. Let (T, γ) be a σ-topological space and M ⊂ T , then Intσ(M) =
T \ Clσ(T \M).

Proof. Clσ(T \M) = Clσ(M c) = ∩{F : M c ⊂ F, F c ∈ γ} where M c = T \M
and F c = T \ F . This implies {Clσ(T \M)}c = ∪{F c : M ⊃ F c, F c ∈ γ}. Thus
T \ Clσ(T \M) = Intσ(M). Hence the result. □

Definition 4. Let (T, γ) be a σ-topological space and M ⊂ T . Then M is called a
σ-neighbourhood of p ∈ T , if there exists V ∈ γ such that p ∈ V ⊂M .

Definition 5. Let (T, γ) be a σ-topological space and J be an ideal on T . Then the
triplicate (T, γ, J) is called an ideal σ-topological space.

Definition 6. Let (T, γ, J) be an ideal σ-topological space. Then

M∗(J, γ) ={p ∈ T :M ∩V /∈ J for every V ∈ γ(p)}, where γ(p) = {V ∈ γ : p ∈ V }
is said to be the σ-local function of M with respect to J and γ.

When there is no confusion, we will write MJ or simply M∗σ or M∗(J, γ) and call
it the “σ-local function of M”.

Example 1. Let T = {p, q, r}, γ = {∅, T, {p}, {p, q}, {p, r}} and J = {∅, {p}}.
Take M = {p, q}. Then M∗σ ={t ∈ T :M ∩ V /∈ J for every V ∈ γ(t)}={q}.

Theorem 3. Let (T, γ) be a σ-topological space with I and J ideals on T and let
M and N be subsets of T. Then
(i) ∅∗σ = ∅.
(ii) (M∗σ)∗σ ⊂M∗σ.
(iii) If M ⊂ N then M∗σ ⊂ N∗σ.
(iv) If I1 ∈ I then I∗σ1 = ∅.
(v) I ⊂ J implies M∗σ(J) ⊂M∗σ(I).
(vi) M∗σ ∪N∗σ = (M ∪N)∗σ.
(vii) (

⋃
i

Mi)
∗σ =

⋃
i

(M∗σ
i ).

(viii) (M ∩N)∗σ ⊂M∗σ ∩N∗σ.
(ix) M∗σ \N∗σ = (M \N)∗σ \N∗σ.
(x) For any O ∈ γ,O ∩ (O ∩M)∗σ ⊂ O ∩M∗σ.
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(xi) For any I1 ∈ I, (M ∪ I1)∗σ =M∗σ = (M \ I1)∗σ.
(xii) M∗σ(I ∩ J) =M∗σ(I) ∪N∗σ(J).
(xiii) γ ∩ I = {∅} if and only if T = T ∗σ.
(xiv) M∗σ ⊂ Clσ(M).

Proof. (i) Here ∅∗σ ={p ∈ T : ∅ ∩ V /∈ I for every V ∈ γ(p)}. But ∅ ∩ V = ∅ ∈ I
for every V ∈ γ(p). Thus ∅∗σ contains no element of T. Therefore ∅∗σ = ∅.
(ii) Let p ∈ (M∗σ)∗σ. Then for every V ∈ γ(p), V ∩M∗σ /∈ I and hence V ∩M∗σ ̸= ∅.
Let y ∈ V ∩M∗σ. Then V ∈ γ(y) and y ∈M∗σ. This implies V ∩M /∈ I and hence
p ∈M∗σ. Therefore (M∗σ)∗σ ⊂M∗σ.
(iii) Let p ∈ M∗σ. Then for every V ∈ γ(p), V ∩M /∈ I. Since M ⊂ N , therefore
V ∩M ⊂ V ∩ N . Since V ∩M /∈ I, so V ∩ N /∈ I. This implies p ∈ N∗σ and so
M∗σ ⊂ N∗σ.
(iv) Since I1 ∈ I. Then for every V ∈ γ, V ∩I1 ⊂ I1 ∈ I and by heredity, V ∩I1 ∈ I.
So I∗σ1 ={p ∈ T : I1 ∩ V /∈ I for every V ∈ γ(p)} implies I∗σ1 = ∅.
(v) Let p ∈M∗σ(J). Then for every V ∈ γ(p), M ∩V /∈ J impliesM ∩V /∈ I (since
I ⊂ J). So p ∈M∗σ(I). Hence M∗σ(J) ⊂M∗σ(I).
(vi) We know M ⊂M ∪N and N ⊂M ∪N . This implies M∗σ ⊂ (M ∪N)∗σ and
N∗σ ⊂ (M ∪N)∗σ (by Theorem 3 (iii)). So M∗σ ∪N∗σ ⊂ (M ∪N)∗σ. For reverse
inclusion, let p /∈ (M∗σ ∪ N∗σ). Then p /∈ M∗σ and p /∈ N∗σ. So there exist V ,
O ∈ γ(p) such that V ∩M ∈ I and O∩N ∈ I. This implies (V ∩M)∪ (O∩N) ∈ I
since I is additive.
Now

(V ∩M) ∪ (O ∩N) = [(V ∩M) ∪O] ∩ [(V ∩M) ∪N ]

= (V ∪O) ∩ (M ∪O) ∩ (V ∪N) ∩ (M ∪N)

⊃ (V ∩O) ∩ (M ∪N)

This implies (V ∩ O) ∩ (M ∪ N) ∈ I (since I is hereditary). Since V ∩ O ∈ γ(p),
p /∈ (M ∪ N)∗σ. Contrapositively p ∈ (M ∪ N)∗σ implies p ∈ M∗σ ∪ N∗σ. Thus
(M ∪N)∗σ ⊂M∗σ ∪N∗σ. Hence we get M∗σ ∪N∗σ = (M ∪N)∗σ.
(vii) Proof is obvious and hence omitted.
(viii) We know M ∩N ⊂M and M ∩N ⊂ N . This implies (M ∩N)∗σ ⊂M∗σ and
(M ∩N)∗σ ⊂M∗σ (by Theorem 3 (iii)). So (M ∩N)∗σ ⊂M∗σ ∩N∗σ.

Independent Proof: If possible let (M ∩ N)∗σ not be a subset of M∗σ ∩ N∗σ.
Then there exists p ∈ (M ∩N)∗σ but p /∈M∗σ ∩N∗σ. Now p ∈ (M ∩N)∗σ implies
V ∩ (M ∩N) /∈ I for every V ∈ γ(p), i.e., (V ∩M)∩ (V ∩N) /∈ I for every V ∈ γ(p).
This implies V ∩M /∈ I and V ∩N /∈ I for every V ∈ γ(p). So p ∈M∗σ and p ∈ N∗σ

which implies p ∈M∗σ∩N∗σ which contradicts the fact that p /∈M∗σ∩N∗σ. Hence
(M ∩N)∗σ ⊂M∗σ ∩N∗σ.
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(ix) We know M = (M \N) ∪ (M ∩N). This implies

M∗σ = [(M \N) ∪ (M ∩N)]∗σ

= (M \N)∗σ ∪ (M ∩N)∗σ (by Theorem 3 (vii))

⊂ (M \N)∗σ ∪N∗σ (by Theorem 3 (iii))

This implies M∗σ \N∗σ ⊂ (M \N)∗σ \N∗σ.
Again M \ N ⊂ M . Then (M \ N)∗σ ⊂ M∗σ and hence (M \ N)∗σ \ N∗σ ⊂

M∗σ \N∗σ. Thus we obtain M∗σ \N∗σ = (M \N)∗σ \N∗σ

(x) We have O∩M ⊂M . This implies (O∩M)∗σ ⊂M∗σ (by Theorem 3 (iv)). So
O ∩ (O ∩M)∗σ ⊂ O ∩M∗σ.
(xi) We have M ⊂ (M ∪ I1). This implies M∗σ ⊂ (M ∪ I1)∗σ. Let p ∈ (M ∪ I1)∗σ.
Then for every V ∈ γ(p), V ∩(M ∪I1) /∈ I. This implies V ∩M /∈ I. If not, suppose
that V ∩M ∈ I. Since V ∩ I1 ⊂ I1 ∈ I, by heredity V ∩ I1 ∈ I and hence by finite
additivity (V ∩M) ∪ (V ∩ I1) ∈ I. This implies V ∩ (M ∪ I1) ∈ I, a contradiction.
Consequently p ∈M∗σ. Therefore (M ∪ I1)∗σ ⊂M∗σ. So (M ∪ I1)∗σ =M∗σ.
Also M \ I1 ⊂ M implies (M \ I1)∗σ ⊂ M∗σ. For the converse, let p ∈ M∗σ, we
claim that p ∈ (M \ I1)∗σ. If not, there exists V ∈ γ(p) such that V ∩ (M \ I1) ∈ I.
This implies I1 ∪ (V ∩ (M \ I1)) ∈ I, since I1 ∈ I (by finite additivity). Thus
I1 ∪ (V ∩M) ∈ I. So V ∩M ∈ I, a contradiction to the fact that p ∈M∗σ. Hence
M∗σ ⊂ (M \ I1)∗σ. So M∗σ = (M \ I1)∗σ. Consequently (M ∪ I1)∗σ = M∗σ =
(M \ I1)∗σ.
(xii) We have I ∩ J ⊂ I and I ∩ J ⊂ J . This implies M∗σ(I ∩ J) ⊃ M∗σ(I) and
M∗σ(I ∩ J) ⊃M∗σ(J) (by Theorem 3 (v)). So M∗σ(I ∩ J) ⊃M∗σ(I) ∪M∗σ(J).
For reverse, let p ∈ M∗σ(I ∩ J). Then for every V ∈ γ(p), V ∩M /∈ I ∩ J . Thus
V ∩ M /∈ I or V ∩ M /∈ J . This implies p ∈ M∗σ(I) or p ∈ M∗σ(J). These
imply p ∈ M∗σ(I) ∪ M∗σ(J) and hence M∗σ(I) ∪ M∗σ(J) ⊃ M∗σ(I ∩ J). So
M∗σ(I ∩ J) =M∗σ(I) ∪M∗σ(J).
(xiii) From definition T ∗σ ⊂ T .
For reverse inclusion let p ∈ T . If possible let p /∈ T ∗σ. Then there exists V ∈ γ(p)
such that V ∩ T ∈ I. This implies V ∈ I, a contradiction. Hence T ⊂ T ∗σ. Thus
T = T ∗σ.
Conversely, suppose that T = T ∗σ holds. If possible let V ∈ γ ∩ I and p ∈ V . Then
V ∩T ⊂ V ∈ γ ∩ I. This implies V ∩T ∈ γ ∩ I and hence V ∩T ∈ I. Thus p /∈ T ∗σ,
a contradiction.
(xiv) Let p ∈M∗σ. Then for every V ∈ γ(p), V ∩M /∈ I. This implies V ∩M ̸= ∅,
for all p ∈M∗σ. Thus p ∈ Clσ(M). Hence M∗σ ⊂ Clσ(M). □

Result 1. Let (T, γ) be a σ-topological space with J an ideal on T and M ⊂ T .
Then V ∈ γ, V ∩M ∈ J implies V ∩M∗σ = ∅.
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Proof. If possible let V ∩M∗σ ̸= ∅ and let p ∈ V ∩M∗σ. This implies p ∈ V and
for all Np ∈ γ(p) such that Np ∩M /∈ J . Since p ∈ V ∈ γ then V ∩M /∈ J , which
is a contradiction. Hence the result. □

Result 2. Let (T, γ) be a σ-topological space with J an ideal on T . Then (M ∪
M∗σ)∗σ ⊂M∗σ for all M ∈ ℘(T ).

Proof. Let p /∈M∗σ. Then there exists Vp ∈ γ(p) such that Vp∩M ∈ J . This implies
Vp∩M∗σ = ∅. This implies Vp∩(M ∪M∗σ) = (Vp∩M)∪(Vp∩M∗σ) = Vp∩M ∈ J .
Thus p /∈ (M ∪M∗σ)∗σ. Hence (M ∪M∗σ)∗σ ⊂M∗σ. □

Theorem 4. Let (T, γ) be a σ-topological space with J an ideal on T . Then the
operator Cl∗σ : ℘(T ) → ℘(T ) defined by Cl∗σ(M) =M ∪M∗σ for all M ∈ ℘(T ), is
a Kuratowski closure operator and it generates a σ-topology γ∗(J) = {M ∈ ℘(T ) :
Cl∗σ(M c) =M c} which is finer than γ.

Proof. (i) Since ∅∗σ = ∅, then Cl∗σ(∅) = ∅ ∪ ∅∗σ = ∅ ∪ ∅ = ∅.
(ii) Cl∗σ(M) =M ∪M∗σ. This implies M ⊂ Cl∗σ(M).
(iii) Cl∗σ(M ∪ N) = (M ∪ N) ∪ (M ∪ N)∗σ = (M ∪ N) ∪ (M∗σ ∪ N∗σ) =
(M ∪M∗σ) ∪ (N ∪N∗σ) = Cl∗σ(M) ∪ Cl∗σ(N).
(iv) Let M,N ⊂ T with M ⊂ N . Then Cl∗σ(M) = M ∪ M∗σ ⊂ N ∪ N∗σ =
Cl∗σ(N). This implies Cl∗σ(M) ⊂ Cl∗σ(N). We have M ⊂ Cl∗σ(M). This
implies Cl∗σ(M) ⊂ Cl∗σ(Cl∗σ(M)). But Cl∗σ(Cl∗σ(M)) = Cl∗σ(M ∪ M∗σ) =
(M ∪M∗σ) ∪ (M ∪M∗σ)∗σ ⊂ (M ∪M∗σ) ∪M∗σ = M ∪M∗σ = Cl∗σ(M). Hence
Cl∗σ(Cl∗σ(M)) = Cl∗σ(M). Consequently Cl∗σ(M) is a Kuratowski closure oper-
ator.
Now we have to show that γ∗(J) = {M ∈ ℘(T ) : Cl∗σ(M c) =M c} is a σ-topology
on T .
Since Cl∗σ(∅) = ∅, then ∅c ∈ γ∗(J). This implies T ∈ γ∗(J). Also since T ⊂
Cl∗σ(T ) ⊂ T , then Cl∗σ(T ) = T . This implies T c ∈ γ∗(J). Hence ∅ ∈ γ∗(J)
Let M1,M2, ...,Mn, ... ∈ γ∗(J). Then Cl∗σ(M c

i ) = M c
i for all i ∈ N. Now⋂

i∈N
M c

i ⊂ M c
i for all i ∈ N. This implies Cl∗σ(

⋂
i∈N

M c
i ) ⊂ Cl∗σ(M c

i ) = M c
i for

all i ∈ N. This implies Cl∗σ(
⋂
i∈N

M c
i ) ⊂ (

⋂
i∈N

M c
i ) ⊂ Cl∗σ(

⋂
i∈N

M c
i ). This implies

Cl∗σ(
⋂
i∈N

M c
i ) = (

⋂
i∈N

Mi
c). Thus Cl∗σ(

⋃
i∈N

Mi)
c = (

⋃
i∈N

Mi)
c. Hence

⋃
i∈N

Mi ∈ γ∗(J).

Therefore γ∗(J) is closed under countable union.
Again let Mj ∈ γ∗(J), j = 1, 2, 3, ...n. Then Cl∗σ(M c

j ) =M c
j for all j = 1, 2, 3, ...n.

Therefore Cl∗σ{(
n⋂

j=1

Mj)
c} = Cl∗σ(

n⋃
j=1

M c
j ) =

n⋃
j=1

Cl∗σ(M c
j ) =

n⋃
j=1

(M c
j ) = (

n⋂
j=1

Mj)
c.

This implies
n⋂

j=1

Mj ∈ γ∗(J). Therefore γ∗(J) is closed under finite intersection.

Thus γ∗(J) is a σ-topology on T .
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Next from Theorem 3 (xiv), we have M∗σ ⊂ Clσ(M) implies M ∪M∗σ ⊂ M ∪
Clσ(M) = Clσ(M) implies Cl∗σ(M) ⊂ Clσ(M). Hence γ ⊂ γ∗(J). □

The member of γ∗(J) is called σ∗(J)-open set or simply σ∗-open set and the
complement of σ∗(J)-open set is called σ∗(J)-closed set or simply σ∗-closed set.

Result 3. Let (T, γ) be a σ-topological space. If J = {∅}, then γ = γ∗(J).

Proof. If p ∈ Clσ(M), then (by Theorem 1 (i)), Vp ∩M ̸= ∅, for all Vp ∈ γ(p).
This implies Vp ∩M /∈ {∅} = J , for all Vp ∈ γ(p) implies p ∈ M∗σ implies p ∈
M ∪M∗σ = Cl∗σ(M). Since p is an arbitrary member of Clσ(M), then Clσ(M) ⊂
Cl∗σ(M). Also by Theorem 3 (xiv), M∗σ ⊂ Clσ(M). This implies M ∪M∗σ ⊂
M ∪ Clσ(M) implies Cl∗σ(M) ⊂ Clσ(M). Hence Cl∗σ(M) = Clσ(M), for all
M ∈ ℘(T ). Consequently γ∗(J) = γ implies γ = γ∗({∅}). □

Theorem 5. Let (T, γ) be a σ-topological space and J1, J2 be two ideals on T . If
J1 ⊂ J2, then γ

∗(J1) ⊂ γ∗(J2).

Proof. Let O ∈ γ∗(J1). Then Cl
∗σ
J1
(Oc) = Oc ⇒ Oc ∪Oc∗σ (J1) = Oc. This implies

Oc∗σ (J1) ⊂ Oc implies Oc∗σ (J2) ⊂ Oc∗σ (J1) ⊂ Oc (by Theorem 3 (v)). This implies
Oc∗σ (J2) ∪ Oc = Oc implies Cl∗σJ2

(Oc) = Oc implies O ∈ γ∗(J2). Since O ∈ γ∗(J1)
is arbitrary, then γ∗(J1) ⊂ γ∗(J2). □

Theorem 6. Let (T, γ) be a σ-topological space with J an ideal on T . Then
(i) I ∈ J implies Ic ∈ γ∗(J).
(ii) M∗σ = Cl∗σ(M∗σ), for all M ∈ ℘(T ).

Proof. : (i) We have for all I ∈ J , (M ∪ I)∗σ = M∗σ. If we take M = ∅, then
I∗σ = ∅∗σ = ∅, for all I ∈ J . Hence Cl∗σ(I) = I ∪ I∗σ = I ∪ ∅ = I. Therefore
Ic ∈ σ∗(J). This implies I is γ∗(J)-closed, for all I ∈ J .
(ii) We have (M∗σ)∗σ ⊂M∗σ. This implies M∗σ =M∗σ ∪ (M∗σ)∗σ = Cl∗σ(M∗σ).
Hence M∗σ is a σ∗(J)-closed. □

Theorem 7. Let (T, γ) be a σ-topological space and M ⊂ T . Then M is σ∗-closed
if and only if M∗σ ⊂M .

Proof. If M is σ∗-closed, then M = Cl∗σ(M) =M ∪M∗σ. This implies M∗σ ⊂M .
Conversely let M∗σ ⊂ M . This implies M = M ∪M∗σ = Cl∗σ(M). Hence M is
σ∗-closed. □

Theorem 8. Let (T, γ1) and (T, γ2) be two σ-topological spaces and J be an ideal
on T . Then γ1 ⊂ γ2 implies M∗σ(J, γ2) ⊂M∗σ(J, γ1).

Proof. Let p ∈ M∗σ(J, γ2). This implies Vp ∩M /∈ J for all Vp ∈ γ2(p) implies
Vp ∩M /∈ J for all Vp ∈ γ1(p). This implies p ∈M∗σ(J, γ1). Since p is an arbitrary
element of M∗σ(J, γ2), then M

∗σ(J, γ2) ⊂M∗σ(J, γ1). □
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Theorem 9. Let (T, γ) be a σ-topological space and J be an ideal on T . Then the
collection β(J, γ) = {M \ I :M ∈ γ, I ∈ J} is a basis for the σ-topology γ∗(J).

Proof. Let M ∈ γ∗(J) and p ∈M . Then M c is σ∗-closed, i.e, Cl∗σ(M c) =M c and
hence M c ∪ (M c)∗σ = M c implies (M c)∗σ ⊂ M c. This implies p /∈ (M c)∗σ and
there exists Vp ∈ γ(p) such that Vp ∩M c ∈ J . Take K = Vp ∩M c, then p /∈ K
and K ∈ J . Thus p ∈ Vp \K = Vp ∩Kc = Vp ∩ (Vp ∩M c)c = Vp ∩ (V c

p ∪M) =
(Vp∩V c

p )∪(Vp∪M) = Vp∩M ⊂M . Hence p ∈ Vp\K ⊂M , where Vp\K ∈ β(J, γ).
Thus β(J, γ) is an open base of γ∗(J). □

The example given below proves that M∗σ ∩N∗σ = (M ∩N)∗σ is not satisfied
in general.

Example 2. Let T={p,q,r,s}, γ={∅,T,{p},{s},{p,s},{q,s},{r,s},{p,r,s},{p,q,s},{q,r,s}},
J = {∅, {p}}. Then σ-open sets containing p are: T, {p}, {p,s}, {p,r,s}, {p,q,s};
σ-open sets containing q are: T, {q,s}, {p,q,s}, {q,r,s}; σ-open sets containing r
are: T, {r,s}, {p,r,s}, {q,r,s}; σ-open sets containing s are: T, {s}, {p,s}, {q,s},
{r,s}, {p,q,s}, {p,r,s}, {q,r,s}. Take M={p,q} and N={p,s}. Then M∗σ = {q} and
N∗σ = {q, r, s} and hence M∗σ ∩N∗σ = {q}. Now (M ∩N)∗σ = {p}∗σ = ∅ and so
M∗σ ∩N∗σ ̸= (M ∩N)∗σ.

3. ψσ-Operator

In this part, we have introduced another set operator ψσ in (T, γ, J). This
operator is as like similar of ψ-operator [5, 10], in ideal topological space.
Definition of ψσ-operator is given below:

Definition 7. Let (T, γ, J) be an ideal σ-topological space. An operator ψσ :
℘(T ) → γ is defined as follows:

for every M ∈ ℘(T ), ψσ(M)={p ∈ T : there exists a V ∈ γ(p) such that
V \M ∈ J}.

Observe that (T \M)∗σ = {p ∈ T : V ∩ (T \M) /∈ J for every V ∈ γ(p)}.
This implies

T \ (T \M)∗σ = T \ {p ∈ T : V ∩ (T \M) /∈ J for every V ∈ γ(p)}
= {p ∈ T : ∃V ∈ γ(p) such that V ∩ (T \M) ∈ J}
= {p ∈ T : ∃V ∈ γ(p) such that V \M ∈ J}
= ψσ(M)

Hence ψσ(M) = T \ (T \M)∗σ.

Here we have to find out the value of ψσ(M) of a set in σ-topological space.

Example 3. Let T={p,q,r,}, γ={∅,T,{r},{p,r},{q,r}}, J = {∅, {r}}. Then for
M={p,q}, ψσ(M) = T \ (T \M)∗σ = T \ {r}∗σ = T \ ∅ = T .
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The characteristics of the operator ψσ has been studied in the following results:

Theorem 10. Let (T, γ, J) be an ideal σ-topological space. Then the following
properties hold:
(i) If M ⊂ N , then ψσ(M) ⊂ ψσ(N).
(ii) If M,N ∈ ℘(T ), then ψσ(M) ∪ ψσ(N) ⊂ ψσ(M ∪N).
(iii) If M,N ∈ ℘(T ), then ψσ(M) ∩ ψσ(N) = ψσ(M ∩N).
(iv) IfM ⊂ T , then ψσ(M) = ψσ(ψσ(M)) if and only if (T \M)∗σ ⊂ ((T \M)∗σ)∗σ.
(v) If M ∈ J , then ψσ(M) = T \ T ∗σ.
(vi) If M ⊂ T, J1 ∈ J , then ψσ(M \ J1) = ψσ(M).
(vii) If M ⊂ T, J1 ∈ J , then ψσ(M ∪ J1) = ψσ(M).
(viii) If V ∈ γ, then V ⊂ ψσ(V ).
(ix) If (M \N) ∪ (N \M) ∈ J , then ψσ(M) = ψσ(N).
(x) Intσ

∗
(M) =M ∩ ψσ(M).

Proof. (i)M ⊂ N implies (T \M) ⊃ (T \N). This implies (T \M)∗σ ⊃ (T \N)∗σ (by
Theorem 3 (iii)). This implies T \(T \M)∗σ ⊂ T \(T \N)∗σ. Hence ψσ(M) ⊂ ψσ(N).
(ii) We knowM ⊂M ∪N and N ⊂M ∪N . This implies ψσ(M) ⊂ ψσ(M ∪N) and
ψσ(N) ⊂ ψσ(M ∪N) (by Theorem 10 (i)). Hence ψσ(M) ∪ ψσ(N) ⊂ ψσ(M ∪N).
(iii) Since M ∩N ⊂ M and M ∩N ⊂ N . This implies ψσ(M ∩N) ⊂ ψσ(M) and
ψσ(M ∩N) ⊂ ψσ(N) (by Theorem 10 (i)). Hence ψσ(M ∩N) ⊂ ψσ(M)∩ψσ(N) .

For reverse inclusion let p ∈ ψσ(M)∩ ψσ(N). Then p ∈ ψσ(M) and p ∈ ψσ(N).
Then there exist V,O ∈ γ(p) such that V \M ∈ J and O \ N ∈ J . This implies
(V \M) ∪ (O \N) ∈ J , since J is finite additive. Now

(V \M) ∪ (O \N) = [(V ∩M c) ∪O] ∩ [(V ∩M c) ∪N c]

= (V ∪O) ∩ (M c ∪O) ∩ (V ∪N c) ∩ (M c ∪N c)

⊃ (V ∩O) ∩ (M c ∪N c)

= (V ∩O) \ (M ∩N)

This implies (V ∩ O) \ (M ∩ N) ∈ J , since J is heredity. Since V ∩ O ∈ γ(p)
then p ∈ ψσ(M ∩ N). Thus ψσ(M) ∩ ψσ(N) ⊂ ψσ(M ∩ N). Hence we obtain
ψσ(M) ∩ ψσ(N) = ψσ(M ∩N).
(iv) Let ψσ(M) = ψσ(ψσ(M)). Then T \ (T \ M)∗σ = T \ [T \ ψσ(M)]∗σ =
T \ [T \ {T \ (T \ ψσ(M))}]∗σ. This implies (T \M)∗σ = ((T \M)∗σ)∗σ.

Conversely, suppose that (T \M)∗σ = ((T \M)∗σ)∗σ holds. Then T \(T \M)∗σ =
T \ ((T \M)∗σ)∗σ = T \ [T \ {T \ (T \ψσ(M))}]∗σ. This implies ψσ(M) = T \ (T \
ψσ(M))∗σ = ψσ(ψσ(M)).

(v) We have ψσ(M) = T \ (T \M)∗σ = T \ T ∗σ (by Theorem 3 (xi)).
(vi) We have T \ [T \ (M \J1)]∗σ = T \ [T \ (M ∩Jc

1)]
∗σ = T \ [T ∩ (M c∪J1)]∗σ =

T \ [(T ∩M c)∪ (T ∩ J1)]∗σ = T \ [(T \M)∪ J1]∗σ = T \ (T \M)∗σ (by Theorem 3
(xi)). So ψσ(M \ J1) = ψσ(M).
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(vii) We have T \ [T \ (M ∪J1)]∗σ = T \ [T ∩ (M c∩Jc
1)]

∗σ = T \ [(T \M)\J1]∗σ =
T \ (T \M)∗σ (by Theorem 3 (xi)). So ψσ(M ∪ J1) = ψσ(M).

(viii) Let p ∈ V . Then p /∈ T \ V and hence V ∩ (T \ V ) = ∅ ∈ J . Thus
p /∈ (T \V )∗σ. This implies p ∈ T \ (T \V )∗σ and hence p ∈ ψσ(V ). So V ⊂ ψσ(V ).

(ix) Let J1 = M \ N and J2 = N \M . Since J1 ∪ J2 ∈ J , then by heredity
J1, J2 ∈ J . Also N = (M \ J1) ∪ J2. This implies ψσ(N) = ψσ((M \ J1) ∪ J2). So
ψσ(N) = ψσ((M \J1) and hence ψσ(N) = ψσ(M), (by Theorem 10 (vi) and (vii)).

(x) Let p ∈ M ∩ ψσ(M). Then p ∈ M and p ∈ ψσ(M). Thus p ∈ M and
there exists a Vp ∈ γ(p) such that Vp \M ∈ J implies Vp \ (Vp \M) is a σ∗-open

neighborhood of p and hence p ∈ Intσ
∗
(M). Hence M ∩ ψσ(M) ⊂ Intσ

∗
(M).

Again, if p ∈ Intσ
∗
(M), then there exists a σ∗-open neighborhood Vp \ I of p where

Vp ∈ γ and I ∈ J such that p ∈ Vp \ I ⊂ M which implies Vp \ M ⊂ I and

Vp \M ∈ J . Hence p ∈M ∩ ψσ(M). Hence Intσ
∗
(M) =M ∩ ψσ(M). □

Note 2. We have V ⊂ ψσ(V ), for every V ∈ γ. But there exists a set M which is
not σ-open set but satisfies M ⊂ ψσ(M).

Example 4. Let T={p,q,r,}, γ={∅,T,{r},{p,r},{q,r}}, J = {∅, {r}}. Then for
M={p,q}, ψσ(M) = T \ (T \M)∗σ = T \ {r}∗σ = T \ ∅ = T . Thus M ⊂ ψσ(M)
but M is not a σ-open set.

The example given below shows that ψσ(M) ∪ ψσ(N) = ψσ(M ∪ N) does not
hold in general.

Example 5. In Example 2 we considerM = {r, s} and N = {q, r}. Then ψσ(M) =
T \ {p, q}∗σ = T \ {q} = {p, r, s} and ψσ(N) = T \ {p, s}∗σ = T \ {q, r, s} = {p}.
Therefore ψσ(M) ∪ ψσ(N) = {p, r, s} and ψσ(M ∪N) = T \ {p}∗σ = T \ ∅ = T .
Hence ψσ(M) ∪ ψσ(N) ̸= ψσ(M ∪N).

Definition 8. Let γ be a σ-topological space on a non empty set T . If an ideal J
satisfies the property γ ∩ J = {∅} then the ideal J is called σ-codense ideal.

Theorem 11. Let (T, γ, J) be an ideal σ-topological space. Then the properties
given below are equivalent.
(i) γ ∩ J = {∅}.
(ii) ψσ(∅) = ∅.
(iii) If J1 ∈ J then ψσ(J1) = ∅.

Proof. (i) ⇒ (ii) : Let γ ∩ J = {∅}. Then T = T ∗σ . Then ψσ(∅) = T \ (T \ ∅)∗σ =
T \ T ∗σ = ∅.

(ii) ⇒ (iii) : Let ψσ(∅) = ∅ holds. Then ψσ(J1) = T \ (T \ J1)∗σ = T \ T ∗σ (by
Theorem 3 (xi)) = T \ (T \ ∅)∗σ = ψσ(∅) = ∅.

(iii) ⇒ (i) : Let J1 ∈ J be such that ψσ(J1) = ∅. Now ψσ(J1) = ∅ implies
T \ (T \ J1)∗σ = ∅. This implies T \ T ∗σ = ∅, since J1 ∈ J (by Theorem 3 (xi)).
Thus T = T ∗σ. Hence γ ∩ J = {∅}. □
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4. σ-Compatible Ideal

In this section, we have studied a particular type of ideal and its several features.
This ideal is as like similar of µ-compatible ideal [9] on supra topological space. This
particular type of ideal is:

Definition 9. Let (T, γ, J) be an ideal σ-topological space. We say the σ-structure
is σ-compatible with the ideal J denoted γ ∼ J , if the condition holds: for every
M ⊂ T , if for all p ∈M , there exists V ∈ γ(p) such that V ∩M ∈ J , then M ∈ J .

Theorem 12. Let (T, γ, J) be an ideal σ-topological space. Then γ ∼ J if and only
if ψσ(M) \M ∈ J for every M ⊂ T .

Proof. Suppose γ ∼ J . Observe that p ∈ ψσ(M) \M if and only if p /∈ M and
there exists Vp ∈ γ(p) such that Vp \M ∈ J . Now for each p ∈ ψσ(M) \M and
Vp ∈ γ(p), Vp ∩ (ψσ(M) \M) ∈ J (by heredity) and hence (ψσ(M) \M) ∈ J , since
γ ∼ J .
Conversely, suppose the given condition holds andM ⊂ T and assume that for each
p ∈M , there exists Vp ∈ γ(p) such that Vp∩M ∈ J . Observe that ψσ(T \M)\ (T \
M) = M \M∗σ={p ∈ T : there exists Vp ∈ γ(p) such that p ∈ Vp ∩M ∈ J}. Thus
we have M ⊂ ψσ(T \M) \ (T \M) ∈ J and hence M ∈ J , by heredity of J. □

Example 6. Let T={p,q}, γ={∅,T,{p},{q}}, J = {∅, {p}}. Then ∅∗σ = ∅, {p}∗σ =
∅, {q}∗σ = {q} and {T}∗σ = {q}. Then ψσ(∅) = T \ T ∗σ = {p, q} \ {q} = {p},
ψσ({p}) = T \ (T \{p})∗σ = T \{q}∗σ = T \{q} = {p}, ψσ({q}) = T \ (T \{q})∗σ =
T \ {p}∗σ = T \ ∅ = T , ψσ(T ) = T \ ∅∗σ = T \ ∅ = T . Then we see that ψσ(∅) \ ∅ =
{p} ∈ J , ψσ({q}) \ {q} = T \ {q} = {p} ∈ J , ψσ({p}) \ {p} = {p} \ {p} = ∅ ∈ J
and ψσ(T ) \ T = T \ T = ∅ ∈ J . So γ ∼ J .

Corollary 1. Let (T, γ, J) be an ideal σ-topological space with γ ∼ J . Then
ψσ(ψσ(M)) = ψσ(M) for every M ⊂ T .

Proof. We know ψσ(M) ⊂ ψσ(ψσ(M)). Also since γ ∼ J , then for every M ⊂ T ,
ψσ(M) \M ∈ J . This implies ψσ(M) \M = J1 for some J1 ∈ J . This implies
ψσ(M) ⊂M ∪J1. Then ψσ(ψσ(M)) ⊂ ψσ(M ∪J1) = ψσ(M). Thus ψσ(ψσ(M)) =
ψσ(M). □

Example 7. Consider T={p,q}, γ={∅,T,{p},{q}} and J = {∅, {p}}. Then by Ex-
ample 6, γ ∼ J and ψσ(ψσ(ϕ)) = ψσ(∅), ψσ(ψσ({p})) = ψσ({p}), ψσ(ψσ({q})) =
ψσ(T ) = T = ψσ({q}) and ψσ(ψσ(T )) = ψσ(T )

Newcomb in [11] has definedM = N (mod J), if (M \N)∪(N \M) ∈ J . Further,
he studied several characteristics of M = N (mod J). Here we shall observe that if
M = N (mod J) then ψσ(M) = ψσ(N).
Now we define Baire set in (T, γ, J).
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Definition 10. Let (T, γ, J) be an ideal σ-topological space. A subset M of T is
called a Baire set with respect to γ and J denoted by M ∈ Br(T, γ, J), if there
exists a σ-open set V ∈ γ such that M = V (mod J).

Theorem 13. Let (T, γ, J) be an ideal σ-topological space with γ ∼ J . If V ∪O ∈ γ
and ψσ(V ) = ψσ(O), then V = O (mod J).

Proof. V ∈ γ implies V ⊂ ψσ(V ) and hence V \O ⊂ ψσ(V ) \O = ψσ(O) \O ∈ J .
By heredity of J, V \O ∈ J . Similarly, O \ V ∈ J . Then (V \O)∪ (O \ V ) ∈ J , by
finite additivity of J. So V = O (mod J). □

Clearly, M = N (mod J) is an equivalence relation. In this favour, following
theorem is observable:

Theorem 14. Let (T, γ, J) be an ideal σ-topological space with γ ∼ J . If M,N ∈
Br(T, γ, J) and ψσ(M) = ψσ(N). Then M = N (mod J).

Proof. Let V,O ∈ γ such thatM = V (mod J) and N = O (mod J). Now ψσ(M) =
ψσ(N) and ψσ(N) = ψσ(O) (by Theorem 10 (ix)). Since ψσ(M) = ψσ(V ) implies
that ψσ(V ) = ψσ(O), hence V = O (mod J) (by Theorem 13). Hence M = N
(mod J), by transitivity. □

Theorem 15. Let (T, γ, J) be an ideal σ-topological space.
(i) If N ∈ Br(T, γ, J)\J , then there exists M ∈ γ \{∅} such that N =M (mod J).
(ii) Let γ∩J = {∅}, then N ∈ Br(T, γ, J)\J if and only if there exists M ∈ γ \{∅}
such that N =M (mod J).

Proof. (i) Let N ∈ Br(T, γ, J) \ J , then N ∈ Br(T, γ, J). Now if there does not
existM ∈ γ \{∅} such that N =M (mod J), we have N = ∅ (mod J). This implies
N ∈ J , which is a contradiction.
(ii) Here we shall prove converse part only. Let M ∈ γ \ {∅} such that N = M
(mod J). Then M = (N \ J2) ∪ J1, where J2 = N \M , J1 = M \N both belong
to J . If N ∈ J , then M ∈ J , by heredity and additivity, which contradicts the fact
γ ∩ J = {∅}. □

5. ψσ − C sets

Modak and Bandyopadhyay in [8] have introduced a generalized set with the help
of ψ-operator in ideal topological space. In this part, we have studied a set with
the help of ψσ-operator in (T, γ, J) space. Further, we have studied the properties
of this type of sets.

Definition 11. Let (T, γ, J) be an ideal σ-topological space. A subset M of T is
called a ψσ − C sets, if M ⊂ Clσ(ψσ(M)).
The family of all ψσ-C sets in (T, γ, J) is denoted by ψσ(T, γ).
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Theorem 16. Let (T, γ, J) be an ideal σ-topological space. If M ∈ γ then M ∈
ψσ(T, γ).

Proof. By Theorem 10 (viii), it follows that γ ⊂ ψσ(T, γ). □

Now by the given example we are to show that the reverse inclusion is not true:

Example 8. From Example 4 we get M ∈ ψσ(T, γ) but M /∈ γ.

By the following example, we are to show that any σ-closed in (T, γ, J) may not
be a ψσ − C set.

In the following example, by Cσ(γ) we denote the family of all σ-closed sets in
(T, γ).

Example 9. We consider Example 2. Here M = {q} ∈ Cσ(γ). Then ψσ(M) =
T \ (T \M)∗σ = T \ {p, r, s}∗σ = T \ {q, r, s} = {p}. Hence Clσ(ψσ(M)) = ∩{C :
ψσ(M) ⊂ C, T \ C ∈ γ} = {p}. Therefore M ∈ Cσ(γ) but M /∈ ψσ(T, γ).

Theorem 17. Let {Mα : α ∈ ∆} be a family of non-empty ψσ −C sets in an ideal
σ-topological space (T, γ, J), then

⋃
α∈∆

∈ ψσ(T, γ).

Proof. For each α ∈ ∆, Mα ⊂ Clσ(ψσ(Mα)) ⊂ Clσ(ψσ(
⋃

α∈∆

Mα)). This implies

that
⋃

α∈∆

Mα ⊂ Clσ(ψσ(
⋃

α∈∆

Mα)). Thus
⋃

α∈∆

Mα ∈ ψσ(T, γ). □

6. Conclusion

In this writeup, we have introduced a new topology called σ-topology and de-
fined ideals on that spaces. Using this idea, we have discussed relationship of various
operators namely ()∗σ operator, ψσ-operator. The result of this writeup can be ex-
tended to σ-connected sets, σ-compact sets, σ-paracompact sets. The separation
axioms can also be introduced in this space. The other properties of ψσ-sets can be
found and one can introduce some operators on this type of sets to the development
of mathematical knowledge.
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Abstract. In this article, inequalities of reverse Minkowski type involving

weighted fractional operators are investigated. In addition, new fractional
integral inequalities related to Minkowski type are also established.

1. Introduction

Fractional analysis has drawn attention highly because of its aplications in dif-
ferent areas. Researchers focus on developing different fractional operators in the
development of fractional analysis. These different fractional operators are also
used in integral inequalities. Hence fractional analysis plays an important role in
the development of inequality theory. One of the most useful fractional integral
operator is Riemann-liouville fractional integral operator. Scientist who suggested
that Riemann-Liouville fractional operator can be used in fractional analysis is
Joseph Liouville ( [20]). Then, several researchers studied these operators with
different inequalities and thus introduced the notion of fractional conformable in-
tegrals. In [1], Abdeljawad presented the properties of the conformable fractional
operators. Also, in [18], Khan et al. investigated fractional conformable derivatives
operators. Similarly, several mathematicians have been interested in and studied
conformable fractional operators ( [17], [29]). In [15], Katugampola defined a new
fractional derivative operator. Also, Katugampola developed a new approach to
generalized fractional derivatives. Based on these operators, new theorems were
proved by the researchers.
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In [1]- [32], some researchers used new fractional derivative or integral operators
such as Riemann-Liouville, Caputo, Hadamard and Katugampola types. Many new
results are obtained for functions in Lp[a, b] which is defined as follows:

Definition 1. For p ∈ [1,∞) , if the function ℘ holds the following inequality(∫ b

a

|℘(τ)|p dτ

) 1
p

< ∞,

then it is said to be in Lp[a, b].

In the mathematical literature the Minkowski’s inequality, which is very well
known in the literature, has been stated as follows (see [12]):

Theorem 1.
∫ b

a
℘p(τ)dτ and

∫ b

a
ℏp(τ)dτ are positive finite reals for p ≥ 1. Then

the inequality(∫ b

a

(℘(τ) + ℏ(τ))pdτ

) 1
p

≤

(∫ b

a

℘p(τ)dτ

) 1
p

+

(∫ b

a

ℏp(τ)dτ

) 1
p

holds.

The reverse Minkowski inequality for classical Riemann integrals is obtained by
L. Bougoffa in [5] which is given as the following:

Theorem 2. Let ℘, ℏ ∈ Lp[a, b] be two positive functions, with 1 ≤ p < ∞, 0 <∫ b

a
℘p(τ)dτ < ∞ and 0 <

∫ b

a
ℏp(τ)dτ < ∞. If 0 ≤ n ≤ ℘(τ)

ℏ(τ) ≤ N for n,N ∈ R+ and

every τ ∈ [a, b], then the inequality(∫ b

a

℘p(τ)dτ

) 1
p

+

(∫ b

a

ℏp(τ)dτ

) 1
p

≤ c

(∫ b

a

(℘(τ) + ℏ(τ))pdτ

) 1
p

holds where c = N(n+1)+(N+1)
(n+1)(N+1) .

The following theorem is called ”Young’s inequality” (see [22]):

Theorem 3. Let [0, k] where k > 0 be an interval and h be a function which is
increasing and continuous on [0, k] . If b ∈ [0, ℏ(k)], a ∈ [0, k], ℏ(0) = 0 and ℏ−1

stands for the inverse function of h, then∫ a

0

ℏ(τ)dτ +

∫ b

0

ℏ−1(τ)dτ ≥ ab. (1)

Example 1. The function ℏ : (0, c) → R, ℏ(τ) = τ r−1 satisfies the conditions
mentioned in Theorem 3 for r > 1. Applying ℏ to (1) we have

1

r
ar +

1

s
bs ≥ ab, a, b ≥ 0, r ≥ 1 and

1

r
+

1

s
= 1.
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In other terms, this inequality puts forward the relation between arithmetic mean
and geometric mean.

Definition 2. ( [4]) Let ℏ ∈ L1[a, b]. The Riemann-Liouville integrals Jα
a+ℏ and

Jα
b−ℏ of order α > 0 with a ≥ 0 are defined by

Jα
a+ℏ(τ) =

1

Γ(α)

∫ τ

a

(τ − θ)
α−1 ℏ(θ)dθ, τ > a

and

Jα
b−ℏ(τ) =

1

Γ(α)

∫ b

τ

(θ − τ)
α−1 ℏ(θ)dθ, τ < b

respectively where Γ(α) =
∞∫
0

e−uuα−1du. By choosing α = 0 in above definitions, we

get the function ℏ itself. In the case of α = 1, the fractional integral reduces to the
classical integral.

Definition 3. ( [27])Let (a, b) be an infinite or finite interval on positive real axis
and let ℏ is defined on (a, b) with ℏ ∈ Lp(a, b). Then for α ∈ C, Re(α) > 0,
definitions of the left-sided and right-sided Hadamard fractional integrals of order
α of a real function ℏ are given as

Hα
a+ℏ(τ) =

1

Γ(α)

∫ τ

a

(
log

τ

θ

)α−1 ℏ(θ)
θ

dθ, a < τ < b

and

Hα
b−ℏ(τ) =

1

Γ(α)

∫ b

τ

(
log

θ

τ

)α−1 ℏ(θ)
θ

dθ, a < τ < b,

respectively.

Definition 4. ( [16]) Let [a, b] be a finite interval and ℏ ∈ Xp
c (a, b) be a real

function. Then for α ∈ C, ρ > 0, Re(α) > 0, the definitions of left-sided and right
sided Katugampola fractional integrals of order α of ℏ are given as

ρIαa+ℏ(τ) =
ρ1−α

Γ(α)

∫ τ

a

θρ−1

(τρ − θρ)1−α
ℏ(θ)dθ, τ > a

and

ρIαb−ℏ(τ) =
ρ1−α

Γ(α)

∫ b

τ

θρ−1

(θρ − τρ)1−α
ℏ(θ)dθ, τ < b,

respectively.

As the use of fractional integral operators increased, it became necessary to ob-
tain more general versions of the new results obtaibed. Thus, weighted integral
operators began to be presented. While new results are obtained with these op-
erators, general versions of the results in the literature can also be obtained. One
of the most effective weighted integral operator presented recently is given in the
following:
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Definition 5. ( [24]) Let ϕ(τ) be a monotonic, positive and increasing function
on the finite interval [a, b] and continuously differentiable on (a, b) with ϕ(0) = 0,
0 ∈ [a, b]. Then for w(τ) ̸= 0 and w−1(τ) = 1

w(τ) , the definitions of the weighted

fractional integrals of a function (the left-side and right-side respectively) ℏ with
respect to ϕ on [a, b] are given as

(
a+ℑℓ:ϕ

w ℏ
)
(τ) =

w−1(τ)

Γ(ℓ)

∫ τ

a

ϕ′(θ) [ϕ(τ)− ϕ(θ)]
ℓ−1 ℏ(θ)w(θ)dθ, (2)(

wℑℓ:ϕ
b−ℏ

)
(τ) =

w−1(τ)

Γ(ℓ)

∫ b

τ

ϕ′(θ) [ϕ(θ)− ϕ(τ)]
ℓ−1 ℏ(θ)w(θ)dθ, ℓ > 0. (3)

The fractional integral operator given above is studied on in this study because
it can give very efficient results in terms of application. Since by choosing ϕ(τ) = τ
and w(θ) = 1, the weighted fractional integral operators ((2) and (3)) reduce to
the classical Riemann–Liouville fractional integral operators and by choosing other
special cases, many forms of fractional integral operators can be obtained.

Obtaining some new general forms of the Minkowski type inequalities using
weighted fractional operators is the main aim of this study.

2. Reverse Minkowski Inequalities for Weighted Fractional
Operators

Theorem 4. Let ℘, ℏ ∈ L[a, τ ] be two positive functions on [0,∞), such that(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are finite reals for τ > a > 0, ℓ > 0, p ≥ 1.

If 0 ≤ n ≤ ℘(t)
ℏ(t) ≤ N holds for n,N ∈ R+ and t ∈ [a, τ ], then(

a+ℑℓ:ϕ
w ℘p

) 1
p (τ) +

(
a+ℑℓ:ϕ

w ℏp
) 1

p (τ) ≤ c1
(
a+ℑℓ:ϕ

w (℘+ ℏ)p
) 1

p (τ) , (4)

with c1 = N(n+1)+(N+1)
(n+1)(N+1) .

Proof. Under the given condition ℘(t)
ℏ(t) ≤ N, t ∈ [a, τ ], it can be written as

℘(t) ≤ N(℘(t) + ℏ(t))−N℘(t)

which implies that

(N + 1)p℘p(t) ≤ Np(℘(t) + ℏ(t))p. (5)

Multiplying both sides of (5) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then integrat-

ing with respect to t from a to τ , we have

(N + 1)pw−1(τ)

Γ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

℘p(t)w(t)dt

≤ Npw−1(τ)

Γ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

(℘+ ℏ)p(t)w(t)dt.
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Consequently, we can write(
a+ℑℓ:ϕ

w ℘p
) 1

p (τ) ≤ N

N + 1

(
a+ℑℓ:ϕ

w (℘+ ℏ)p
) 1

p (τ) . (6)

On the other hand, as nℏ(t) ≤ ℘(t), it follows(
1 +

1

n

)p

ℏp(t) ≤
(
1

n

)p

(℘(t) + ℏ(t))p. (7)

Next, multiplying both sides of (7) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then

integrating with respect to t from a to τ , we obtain(
a+ℑℓ:ϕ

w ℏp
) 1

p (τ) ≤ 1

n+ 1

(
a+ℑℓ:ϕ

w (℘+ ℏ)p
) 1

p (τ) . (8)

From (6) and (8), the required result follows. □

Remark 1. Applying Theorem 4 for ϕ(τ) = τ and w(θ) = 1, we obtain Theorem
2.1 in [9].

Remark 2. In Theorem 4, if we choose ϕ(τ) = τ , w(θ) = 1 and ℓ = 1, we have
the reverse Minkowski inequality in [5].

Inequality (4) is a version of reverse Minkowski inequality obtained with weighted
fractional operators.

Theorem 5. Let ℘, ℏ ∈ L[a, τ ] be two positive functions on [0,∞), such that(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are finite reals for τ > a > 0, ℓ > 0, p ≥ 1.

If 0 ≤ n ≤ ℘(t)
ℏ(t) ≤ N holds for n,N ∈ R+ and t ∈ [a, τ ], then(

a+ℑℓ:ϕ
w ℘p

) 2
p (τ) +

(
a+ℑℓ:ϕ

w ℏp
) 2

p (τ) ≥ c2
(
a+ℑℓ:ϕ

w ℘p
) 1

p (τ)
(
a+ℑℓ:ϕ

w ℏp
) 1

p (τ) ,

with c2 = (N+1)(n+1)
N − 2.

Proof. Multiplying inequality (6) by inequality (8), we obtain

(N + 1)(n+ 1)

N

(
a+ℑℓ:ϕ

w ℘p
) 1

p (τ)
(
a+ℑℓ:ϕ

w ℏp
) 1

p (τ) ≤
(
a+ℑℓ:ϕ

w (℘+ ℏ)p
) 2

p (τ) . (9)

Using the Minkowski inequality, on the right side of (9), we get

(N + 1)(n+ 1)

N

(
a+ℑℓ:ϕ

w ℘p
) 1

p (τ)
(
a+ℑℓ:ϕ

w ℏp
) 1

p (τ)

≤
[(

a+ℑℓ:ϕ
w ℘p

) 1
p (τ) +

(
a+ℑℓ:ϕ

w ℏp
) 1

p (τ)
]2

.

Then, we have (
a+ℑℓ:ϕ

w ℘p
) 2

p (τ) +
(
a+ℑℓ:ϕ

w ℏp
) 2

p (τ)

≥
[
(N + 1)(n+ 1)

N
− 2

] (
a+ℑℓ:ϕ

w ℘p
) 1

p (τ)
(
a+ℑℓ:ϕ

w ℏp
) 1

p (τ)

which is the desired result. □
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Remark 3. Applying Theorem 5 for ϕ(τ) = τ and w(θ) = 1, we obtain Theorem
2.3 in [9].

Remark 4. In Theorem 5, if we choose ϕ(τ) = τ , w(θ) = 1 and ℓ = 1, we have
Theorem 2.2 in [30].

3. Other Fractional Integral Inequalities

Theorem 6. Let ℘, ℏ ∈ L[a, τ ] be two positive functions on [0,∞), such that(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are finite reals for τ > a > 0, ℓ > 0, p, q ≥ 1

and 1
p + 1

q = 1. If 0 ≤ n ≤ ℘(t)
ℏ(t) ≤ N holds for n,N ∈ R+ and t ∈ [a, τ ], then the

following inequality for weighted fractional operators holds:

(
a+ℑℓ:ϕ

w ℘
) 1

p (τ)
(
a+ℑℓ:ϕ

w ℏ
) 1

q (τ) ≤
(
N

n

) 1
qp (

a+ℑℓ:ϕ
w ℘

1
p .ℏ

1
q

)
(τ) .

Proof. Using the given condition ℘(t)
ℏ(t) ≤ N, t ∈ [a, τ ], it can be written

℘(t) ≤ Nℏ(t)

N− 1
q ℘

1
q (t) ≤ ℏ

1
q (t). (10)

Multiplying both sides of (10) by ℘
1
p (t), we can rewrite as follows

N− 1
q ℘(t) ≤ ℘

1
p (t)ℏ

1
q (t) (11)

where 1
p + 1

q = 1.

Multiplying both sides of (11) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then in-

tegrating we have

N− 1
q w−1(τ)

Γ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

℘(t)w(t)dt

≤ w−1(τ)

Γ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

℘
1
p (t)ℏ

1
q (t)w(t)dt.

From weighted fractional operators, we obtain

N− 1
pq
(
a+ℑℓ:ϕ

w ℘
) 1

p (τ) ≤
(
a+ℑℓ:ϕ

w ℘
1
p .ℏ

1
q

) 1
p

(τ) . (12)

On the contrary, as n ≤ ℘(t)
ℏ(t) , it follows

n
1
p ℏ

1
p (t) ≤ ℘

1
p (t). (13)

Multiplying both sides of (13) by ℏ
1
q (t) and using the relation 1

p +
1
q = 1, we obtain

n
1
p ℏ(t) ≤ ℘

1
p (t)ℏ

1
q (t). (14)
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Multiplying both sides of (14) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then inte-

grating we get

n
1
pq
(
a+ℑℓ:ϕ

w ℏ
) 1

q (τ) ≤
(
a+ℑℓ:ϕ

w ℘
1
p .ℏ

1
q

) 1
q

(τ) . (15)

Conducting the product between (12) and (15), we have

(
a+ℑℓ:ϕ

w ℘
) 1

p (τ)
(
a+ℑℓ:ϕ

w ℏ
) 1

q (τ) ≤
(
N

n

) 1
qp (

a+ℑℓ:ϕ
w ℘

1
p ℏ

1
q

)
(τ) .

where 1
p + 1

q = 1. So the proof is completed. □

Theorem 7. For ℓ > 0, p, q ≥ 1 and 1
p + 1

q = 1. Let ℘, ℏ ∈ L[a, τ ] be two positive

functions on [0,∞), such that
(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are finite reals for

τ > a > 0. If 0 ≤ n ≤ ℘(t)
ℏ(t) ≤ N for n,N ∈ R+ and for all t ∈ [a, τ ], then(

a+ℑℓ:ϕ
w ℘ℏ

)
(τ) ≤ c3

(
a+ℑℓ:ϕ

w (℘p + ℏp
)
)(τ) + c4

(
a+ℑℓ:ϕ

w (℘q + ℏq
)
)(τ)

with c3 = 2p−1Np

p(N+1)p and c4 = 2q−1

q(n+1)q .

Proof. Using the hypothesis, we obtain the following inequality:

(N + 1)p℘p(t) ≤ Np(℘+ ℏ)p(t). (16)

Multiplying both sides of (16) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then inte-

grating we have (
a+ℑℓ:ϕ

w ℘p
)
(τ) ≤ Np

(N + 1)p
(
a+ℑℓ:ϕ

w (℘+ ℏ)p
)
(τ). (17)

For t ∈ [a, τ ], since 0 ≤ n ≤ ℘(t)
ℏ(t) holds we get

(n+ 1)qℏq(t) ≤ (℘+ ℏ)q(t). (18)

Similarly, multiplying both sides of (18) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and

then integrating we can write(
a+ℑℓ:ϕ

w ℏq
)
(τ) ≤ 1

(n+ 1)q
(
a+ℑℓ:ϕ

w (℘+ ℏ)q
)
(τ). (19)

Using the Young’s inequality, we have

℘(t)ℏ(t) ≤ 1

p
℘p(t) +

1

q
ℏq(t), (20)

again multiplying both sides of (20) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then

integrating we obtain(
a+ℑℓ:ϕ

w ℘ℏ
)
(τ) ≤ 1

p

(
a+ℑℓ:ϕ

w ℘p
)
(τ) +

1

q

(
a+ℑℓ:ϕ

w ℏq
)
(τ) . (21)
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Using (17) and (19) in (21), we obtain(
a+ℑℓ:ϕ

w ℘ℏ
)
(τ) ≤ Np

p(N + 1)p
(
a+ℑℓ:ϕ

w (℘+ ℏ)p
)
(τ) (22)

+
1

q(n+ 1)q
(
a+ℑℓ:ϕ

w (℘+ ℏ)q
)
(τ).

Using the inequality (x+ y)r ≤ 2r−1(xr + yr), r > 1, x, y > 0 in (22), we have(
a+ℑℓ:ϕ

w ℘ℏ
)
(τ) ≤ 2p−1Np

p(N + 1)p
(
a+ℑℓ:ϕ

w (℘p + ℏp
)
)(τ)

+
2q−1

q(n+ 1)q
(
a+ℑℓ:ϕ

w (℘q + ℏq
)
)(τ).

This is the required result. □

Theorem 8. For ℓ > 0, p ≥ 1. Let ℘, ℏ ∈ L[a, τ ] be two positive functions on
[0,∞), such that

(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are finite reals for τ > a > 0.

If 0 < c < n ≤ ℘(t)
ℏ(t) ≤ N for n,N ∈ R+ and for all t ∈ [a, τ ], then

N + 1

N − c

(
a+ℑℓ:ϕ

w (℘− cℏ)p
) 1

p (τ) ≤ (a+ℑℓ:ϕ
w ℘p)

1
p (τ) + (a+ℑℓ:ϕ

w ℏp)
1
p (τ)

≤ n+ 1

n− c

(
a+ℑℓ:ϕ

w (℘− cℏ)p
) 1

p (τ) .

Proof. Using the hypothesis 0 < c < n ≤ N, we have

nc ≤ Nc =⇒ nc+n ≤ nc+N ≤ Nc+N =⇒ (N+1)(n−c) ≤ (n+1)(N−c).

It can be concluded that
N + 1

N − c
≤ n+ 1

n− c
.

Also,

n ≤ ℘(t)

ℏ(t)
≤ N =⇒ n− c ≤ ℘(t)− cℏ(t)

ℏ(t)
≤ N − c

=⇒ (℘(t)− cℏ(t))p

(N − c)p
≤ ℏp(t) ≤ (℘(t)− cℏ(t))p

(n− c)p
.

(23)

Multiplying both sides of (23) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then in-

tegrating we get

w−1(τ)

(N − c)pΓ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

(℘(t)− cℏ(t))p w(t)dt

≤ w−1(τ)

Γ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1 ℏp(t)w(t)dt

≤ w−1(τ)

(n− c)pΓ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

(℘(t)− cℏ(t))p w(t)dt
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Then, we can write

1

N − c

(
a+ℑℓ:ϕ

w (℘− cℏ)p
) 1

p (τ) ≤ (a+ℑℓ:ϕ
w ℏp)

1
p (τ) (24)

≤ 1

n− c

(
a+ℑℓ:ϕ

w (℘− cℏ)p
) 1

p (τ) .

Again, we obtain

1

N
≤ ℏ(t)

℘(t)
≤ 1

n
=⇒ n− c

nc
≤ ℘(t)− cℏ(t)

c℘(t)
≤ N − c

cN

which implies(
N

N − c

)p

(℘(t)− cℏ(t))p ≤ ℘p(t) ≤
(

n

n− c

)p

(℘(t)− cℏ(t))p . (25)

Repeating the same procedure with (25), we have

N

N − c

(
a+ℑℓ:ϕ

w (℘− cℏ)p
) 1

p (τ) ≤ (a+ℑℓ:ϕ
w ℘p)

1
p (τ) (26)

≤ n

n− c

(
a+ℑℓ:ϕ

w (℘− cℏ)p
) 1

p (τ) .

Adding (24) and (26), the required result is obtained. □

Theorem 9. For ℓ > 0, p ≥ 1. Let ℘, ℏ ∈ L[a, τ ] be two positive functions on
[0,∞), such that

(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are finite reals for τ > a > 0.

If 0 ≤ a ≤ ℘(t) ≤ A and 0 ≤ b ≤ ℏ(t) ≤ B, t ∈ [a, τ ], then

(a+ℑℓ:ϕ
w ℘p)

1
p (τ) + (a+ℑℓ:ϕ

w ℏp)
1
p (τ) ≤ c5

(
a+ℑℓ:ϕ

w (℘+ ℏ)p
) 1

p (τ) (27)

with c5 = A(a+B)+B(b+A)
(a+B)(b+A) .

Proof. Under the given conditions, it follows that

1

B
≤ 1

ℏ(t)
≤ 1

b
. (28)

Considering the product of (28) and 0 ≤ a ≤ ℘(t) ≤ A, we have

a

B
≤ ℘(t)

ℏ(t)
≤ A

b
. (29)

From (29), we get

ℏp(t) ≤
(

B

a+B

)p

(℘(t) + ℏ(t))p (30)

and

℘p(t) ≤
(

A

b+A

)p

(℘(t) + ℏ(t))p. (31)
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Multiplying both sides of (30) and (31) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and

then integrating we obtain

(a+ℑℓ:ϕ
w ℏp)

1
p (τ) ≤ B

a+B

(
a+ℑℓ:ϕ

w (℘+ ℏ)p
) 1

p (τ) (32)

and

(a+ℑℓ:ϕ
w ℘p)

1
p (τ) ≤ A

b+A

(
a+ℑℓ:ϕ

w (℘+ ℏ)p
) 1

p (τ) . (33)

respectively. The proof of (27) can be concluded by adding (32) and (33). □

Theorem 10. Let ℘, ℏ ∈ L[a, τ ] be two positive functions on [0,∞), such that(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are positive reals for τ > a > 0. If 0 ≤ n ≤

℘(t)
ℏ(t) ≤ N for n,N ∈ R+ and for all t ∈ [a, τ ], then

1

N
(a+ℑℓ:ϕ

w ℘ℏ)(τ) ≤ 1

(n+ 1)(N + 1)

(
a+ℑℓ:ϕ

w (℘+ ℏ)2
)
(τ) ≤ 1

n
(a+ℑℓ:ϕ

w ℘ℏ)(τ)

for ℓ > 0.

Proof. Using 0 ≤ n ≤ ℘(t)
ℏ(t) ≤ N, we obtain

ℏ(t)(n+ 1) ≤ ℏ(t) + ℘(t) ≤ ℏ(t)(N + 1). (34)

Also, it follows that 1
N ≤ ℏ(t)

℘(t) ≤
1
n , which yields

℘(t)

(
N + 1

N

)
≤ ℏ(t) + ℘(t) ≤ ℘(t)

(
n+ 1

n

)
. (35)

Evaluating the product between (34) and (35), we get

℘(t)ℏ(t)
N

≤ (ℏ(t) + ℘(t))
2

(n+ 1)(N + 1)
≤ ℘(t)ℏ(t)

n
. (36)

Multiplying both sides of (36) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then inte-

grating we obtain

w−1(τ)

NΓ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

℘(t)ℏ(t)w(t)dt

≤ w−1(τ)

(n+ 1)(N + 1)Γ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

(ℏ(t) + ℘(t))
2
w(t)dt

≤ w−1(τ)

nΓ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

℘(t)ℏ(t)w(t)dt.

Hence

1

N
(a+ℑℓ:ϕ

w ℘ℏ)(τ) ≤ 1

(n+ 1)(N + 1)

(
a+ℑℓ:ϕ

w (℘+ ℏ)2
)
(τ) ≤ 1

n
(a+ℑℓ:ϕ

w ℘ℏ)(τ).

This completes the proof. □
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Theorem 11. Let ℘, ℏ ∈ L[a, τ ] be two positive functions on [0,∞), such that(
a+ℑℓ:ϕ

w ℘p
)
(τ) and

(
a+ℑℓ:ϕ

w ℏp
)
(τ) are finite reals for τ > a > 0. If 0 < n ≤ ℘(t)

ℏ(t) ≤
N holds for n,N ∈ R+ and for all t ∈ [a, τ ], then

(a+ℑℓ:ϕ
w ℘p)

1
p (τ) + (a+ℑℓ:ϕ

w ℏp)
1
p (τ) ≤ 2

(
a+ℑℓ:ϕ

w Ψp(℘, ℏ)
) 1

p (τ) (37)

holds for ℓ > 0 where Ψ(℘(t), ℏ(t)) = max
{
N
[(

N
n + 1

)
℘(t)−Nℏ(t)

]
, (N+n)ℏ(t)−℘(t)

n

}
.

Proof. From the hypothesis 0 < n ≤ ℘(t)
ℏ(t) ≤ N , we have

0 < n ≤ N + n− ℘(t)

ℏ(t)
(38)

and

N + n− ℘(t)

ℏ(t)
≤ N. (39)

Hence, using (38) and (39), we get

ℏ(t) <
(N + n)ℏ(t)− ℘(t)

n
≤ h(℘(t), ℏ(t)), (40)

where Ψ(℘(t), ℏ(t)) = max
{
N
[(

N
n + 1

)
℘(t)−Nℏ(t)

]
, (N+n)ℏ(t)−℘(t)

n

}
.

Using the hypothesis, it follows that 0 < 1
N ≤ ℏ(t)

℘(t) ≤
1
n . In this way, we have

1

N
≤ 1

N
+

1

n
− ℏ(t)

℘(t)
(41)

and
1

N
+

1

n
− ℏ(t)

℘(t)
≤ 1

n
. (42)

From (41) and (42), we obtain

1

N
≤
(

1
N + 1

n

)
℘(t)− ℏ(t)

℘(t)
≤ 1

n
,

which can be rewritten as

℘(t) ≤ N

(
1

N
+

1

n

)
℘(t)−Nℏ(t)

=

(
N

n
+ 1

)
℘(t)−Nℏ(t)

≤ N

[(
N

n
+ 1

)
℘(t)−Nℏ(t)

]
≤ Ψ(℘(t), ℏ(t)). (43)

We can write from (40) and (43)

℘p(t) ≤ Ψp(℘(t), ℏ(t)) (44)



MINKOWSKI TYPE INEQUALITIES 895

ℏp(t) ≤ Ψp(℘(t), ℏ(t)). (45)

Multiplying both sides of (44) by w−1(τ)
Γ(ℓ) ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
w(t) and then inte-

grating we obtain

w−1(τ)

Γ(ℓ)

∫ τ

a

ϕ′(t) [ϕ(τ)− ϕ(t)]
ℓ−1

℘p(t)w(t)dt

≤ w−1(τ)

Γ(ℓ)
ϕ′(t) [ϕ(τ)− ϕ(t)]

ℓ−1
Ψp(℘(t), ℏ(t))w(t)dt.

Accordingly, it can be written as

(a+ℑℓ:ϕ
w ℘p)

1
p (τ) ≤

(
a+ℑℓ:ϕ

w Ψp(℘, ℏ)
) 1

p (τ) . (46)

Using the same procedure as above, for (45), we have

(a+ℑℓ:ϕ
w ℏp)

1
p (τ) ≤

(
a+ℑℓ:ϕ

w Ψp(℘, ℏ)
) 1

p (τ) . (47)

The required result (37) follows from (46) and (47). □

4. Conclusion

In this paper, first we gave different definitions of fractional integral operators
and then we introduced the reverse Minkowski type inequalities using weighted
fractional operators. The obtained results are an extension of some known results
in the literature. Especially, we would like to emphasize that different types all
integral inequalities can be obtained using this operators.
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