C O M M U N I C A TIONS

Series A1: Mathematics and Statistics

C O M M U N I C A T I O N S

FACULTY OF SCIENCES
DE LA FACULTE DES SCIENCES
UNIVERSITY OF ANKARA
DE L'UNIVERSITE D'ANKARA

Series A1: Mathematics and Statistics
Volume:71
Number: 3
Year:2022
Owner (Sahibi)
Sait HALICIOĞLU, Dean of Faculty of Sciences
Editor in Chief (Yazı İşleri Müdürü)
Fatma KARAKOÇ

Associate Editor	Managing Editor
Arzu ÜNAL	Elif DEMIRCİ

Area Editors			
Nuri OZALP (Applied Mathematics)	Murat OLGUN (Functional Analysis, Fuzzy Set Theory, Decision Making)	Burcu UNGOR (Module Theory)	Halil AYDOGDU (Stochastic ProcessProbability)
Arzu ÜNAL (Partial Differential Equations)	Gülen TUNCA (Analysis-Operator Theory)	Elif TAN (Number Theory, Combinatorics)	Olcay ARSLAN (Robust Statistics-Regression-Distribution Theory)
Elif DEMIRCİ (Mathematical ModellingComput. Mathematics)	Mehmet UNVER (Analysis, Fuzzy Set Theory, Decision Making)	Ahmet ARIKAN (GroupTheory)	Birdal SENOGLU (Theory of Statistics \& Applied Statistics)
Hijaz AHMAD (Numerical AnalysisMathematical Techniques)	Oktay DUMAN (Summability and Approximation Theory)	Tuğce ÇALCI (Ring Theory)	Yılmaz AKDİ (Econometrics-Mathematical Statistics)
Gizem SEYHAN OZTEPE (Differential Equations)	İshak ALTUN (Topology)	İsmail GÖK (Geometry)	Mehmet YILMAZ (Computational Statistics)
Shengda ZENG (Mathematical modeling of physical systems, Applications of PDEs)	Sevda SAĞIROĞLU PEKER (Topology)		Cemal ATAKAN (Multivariate Analysis)

Editors

P. AGARWAL
Anand Int. College of Eng., INDIA
A. AYTUNA
METU, retired, TURKEY
C. Y. CHAN
University of Louisiana, USA
V. GREGORI
Universitat Politècnica de València,
SPAIN
K. ILARSLAN
Kırikkkale University, TURKEY
H. T. LIU
Tatung University, TAIWAN
S. ROMAGUERA
Universitat Politècnica de València,
SPAIN
R. P. AGARWAL
Texas A\&M University, USA
E. BAIRAMOV
Ankara University, TURKEY
A. EDEN
Bogaziçi University, retired, TURKEY
V. S. GULIYEV
Nat. Acad. of Sciences, AZERBAIJAN
A. KABASINSKAS
Kaunas Univ. of Tech. LITHUANIA
V. N. MISHRA
Indira Gandhi National Tribal
University, INDIA
H. M. SRIVASTAVA
University of Victoria, CANADA

M. AKHMET	A. ATANGANA
METU, TURKEY	University of the Free State, SOUTH AFRICA
H. BEREKETOĞLU	H. BOZDOĞAN
Ankara University, TURKEY	University of Tennessee, USA
A. B. EKIN	D. GEORGIOU
Ankara University, TURKEY	University of Patras, GREECE
A. HARMANCI	F. HATHOUT
Hacettepe University, TURKEY	Université de Saïda, ALGERIA
V. KALANTAROV	A. M. KRALL
Koç University, TURKEY	The Pennsylvania State University, USA
C. ORHAN	M. PITUK
Ankara University, TURKEY	University of Pannonia, HUNGARY
I. P. STAVROULAKIS	S. YARDIMCI
Univ. of Ioannina, GREECE	Ankara University, TURKEY

This Journal is published four issues in a year by the Faculty of Sciences, University of Ankara. Articles and any other material published in this journal represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s) and the Publisher(s).

Correspondence Address:	Print:
COMMUNICATIONS EDITORIAL OFFICE	Ankara University Press
Ankara University, Faculty of Sciences,	Incitaş Sokak No:10 06510 Beşevler
06100 Tandoğan, ANKARA - TURKEY	ANKARA - TURKEY
Tel: $\mathbf{(9 0) \mathbf { 3 1 2 - 2 1 2 6 7 2 0 } \text { Fax: } \mathbf { (9 0) } \mathbf { 3 1 2 - 2 2 3 5 0 0 0 }}$	Tel: (90) 312-2136655
e-mail: commun@ science.ankara.edu.tr	
http://communications.science.ankara.edu.tr/index.php?series=A1	

C O M M U N I C A T I O N

FACULTY OF SCIENCES
DE LA FACULTE DES SCIENCES DE UNIVERSITY OF ANKARA
L'UNIVERSITE D'ANKARA

Series A1:Mathematics and Statistics

Research Articles

Sumeera SHAFI, A new system of generalized nonlinear variational inclusion problems in semi-inner product spaces.........	616
Ayşe KABATAŞ, On eigenfunctions of Hill's equation with symmetric double well potential...	634
Selim Orhun SUSAM, Tail dependence estimation based on smooth estimation of diagonal section..................................	650
Shabir Ahmad MALIK, Ashish KUMAR, On the maximum modulus of a complex polynomial.......................................	666
Haşim CAYIR, Tarana SULTANOVA, α-Sasakian, β-Kenmotsu and trans-Sasakian structures on the tangent bundle....	682
Rasoul MOUSAREZAEI, Bijan DAVVAZ, Soft semi-topological polygroups	689
Esra KAYA, A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces.................	710
Zeynep DURNA, Ahmet Sinan OZKAN, Eigenvalue problems for a class of Sturm-Liouville operators on two different time scales.	720
Vimlesh Kumar GUPTA, Saurabh PORWAL, Omendra MISHRA, Multivalent harmonic functions involving multiplier transformation.	731
Nilay ŞAHİN BAYRAM, Power series methods and statistical limit supe	752
Bendaoud ABED SID-AHMED, Bouharket BENAISSA, Abdelkader SENOUCI, Some Hardy-type integral inequalities with sharp constant involving monotone functions.	759
Emrah KORKMAZ, Combinatorial results of collapse for order-preserving and order-decreasing transformations...............	769
Mert Sinan OZ, Coefficients of Randic and Sombor characteristic polynomials of some graph types.................................	778
Saheed Olaosebikan AREMU, Ali OLGUN, On difference of bivariate linear positive ope	791
Hasan KARA, Hüseyin BUDAK, Muhammad Aamir ALI, Fatih HEZENCI, On inequalities of Simpson's type for convex functions via generalized fractional integrals.	806
Süleyman ŞENYURT, Davut CANLI, Kebire Hilal AYVACI, Associated curves from a different point of view in E^{3}.........	826
Döne KARAHAN, On the solutions of the q-analogue of the telegraph differential equation..	846
Burcu BEKTAȘ DEMİRCİ, Murat BABAARSLAN, Zehra ÖGE, Timelike loxodromes on Lorentzian helicoidal surfaces in Minkowski n-space.	856
Chhapikul MIAH, MD. Monirul ISLAM, Shyamapada MODAK, Sukalyan MISTRY, Role of ideals on σ-topological spaces.	870
Çetin YILDIZ, Mustafa GÜRBÜZ, The Minkowski type inequalities for weighted fractional operator	884

Erratum

http://communications.science.ankara.edu.tr

A NEW SYSTEM OF GENERALIZED NONLINEAR VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

Sumeera SHAFI
Department of Mathematics, University of Kashmir, Srinagar-190006, INDIA

Abstract

In this work we reflect a new system of generalized nonlinear variational inclusion problems in 2-uniformly smooth Banach spaces. By using resolvent operator technique, we offer an iterative algorithm for figuring out the approximate solution of the said system. The motive of this paper is to review the convergence analysis of a system of generalized nonlinear variational inclusion problems in 2-uniformly smooth Banach spaces. The proposition used in this paper can be considered as an extension of propositions for examining the existence of solution for various classes of variational inclusions considered and studied by many authors in 2-uniformly smooth Banach spaces.

1. Introduction

In recent past, variational inequalities have been elongated in dissimilar directions and sections of studies, using peculiar and ingenious techniques. One of such conception is variational inclusions. Numerous problems that exist in engineering, optimization and control situations can be designed by free boundary problems which conveys to variational inequality and variational inclusion problems. For details, please refer $[1-5,8-14,18,20-23,25,26]$.

2. Resolvent Operator and Formulation of Problem

Let X be a real 2-uniformly smooth Banach space equipped with norm $\|\cdot\|$ and a semi-inner product [., .]. Let $C(X)$ be the family of all nonempty compact subsets of X and 2^{X} be the power set of X.

We need the following definitions and results from the literature.

[^0]Definition 1. Let X be a vector space over the field F of real or complex numbers. A functional [.,.] : $X \times X \rightarrow F$ is called a semi-inner product if it satisfies the following:
(i) $[x+y, z]=[x, z]+[y, z], \forall x, y, z \in X$;
(ii) $[\lambda x, y]=\lambda[x, y], \forall \lambda \in F$ and $x, y \in X$;
(iii) $[x, x]>0$, for $x \neq 0$;
(iv) $|[x, y]|^{2} \leq[x, x][y, y]$.

The pair $(X,[.,]$.$) is called a semi-inner product space.$
We observe that $\|x\|=[x, x]^{\frac{1}{2}}$ is a norm on X. Hence every semi-inner product space is a normed linear space. On the other hand, in a normed linear space, one can generate semi-inner product in infinitely many different ways. Giles [7] had proved that if the underlying space X is a uniformly convex smooth Banach space then it is possible to find a semi-inner product, uniquely. Also the unique semi-inner product has the following nice properties:
(i) $[x, y]=0$ if and only if y is orthogonal to x, that is if and only if $\|y\| \leq$ $\|y+\lambda x\|, \forall$ scalars λ.
(ii) Generalized Riesz representation theorem: If f is a continuous linear functional on X then there is a unique vector $y \in X$ such that $f(x)=[x, y], \forall x \in$ X.
(iii) The semi-inner product is continuous, that is for each $x, y \in X$, we have $\operatorname{Re}[y, x+\lambda y] \rightarrow \operatorname{Re}[y, x]$ as $\lambda \rightarrow 0$.
The sequence space $l^{p}, p>1$ and the function space $L^{p}, p>1$ are uniformly convex smooth Banach spaces. So one can define semi-inner product on these spaces, uniquely.

Example 1. [19] The real sequence space l^{p} for $1<p<\infty$ is a semi-inner product space with the semi-inner product defined by

$$
[x, y]=\frac{1}{\|y\|_{p}^{p-2}} \sum_{i} x_{i} y_{i}\left|y_{i}\right|^{p-2}, x, y \in l^{p}
$$

Example 2. [7,19] The real Banach space $L^{p}(X, \mu)$ for $1<p<\infty$ is a semi-inner product space with the semi-inner product defined by

$$
[f, g]=\frac{1}{\|g\|_{p}^{p-2}} \int_{X} f(x)|g(x)|^{p-1} \operatorname{sgn}(g(x)) d \mu, f, g \in L^{p}
$$

Definition 2. $[19,24]$ Let X be a real Banach space. Then:
(i) The modulus of smoothness of X is defined as

$$
\rho_{X}(t)=\sup \left\{\frac{\|x+y\|+\|x-y\|}{2}-1:\|x\|=1,\|y\|=t, t>0\right\}
$$

(ii) X is said to be uniformly smooth if $\lim _{t \rightarrow 0} \frac{\rho_{X}(t)}{t}=0$.
(iii) X is said to be p-uniformly smooth if there exists a positive real constant c such that $\rho_{X}(t) \leq c t^{p}, p>1$. Clearly, X is 2 -uniformly smooth if there exists a positive real constant c such that $\rho_{X}(t) \leq c t^{2}$.
Lemma 1. $[19,24]$ Let $p>1$ be a real number and X be a smooth Banach space. Then the following statements are equivalent:
(i) X is 2-uniformly smooth.
(ii) There is a constant $c>0$ such that for every $x, y \in X$, the following inequality holds

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\left\langle y, f_{x}\right\rangle+c\|y\|^{2}
$$

where $f_{x} \in J(x)$ and $J(x)=\left\{x^{\star} \in X^{\star}:\left\langle x, x^{\star}\right\rangle=\|x\|^{2}\right.$ and $\left.\left\|x^{\star}\right\|=\|x\|\right\}$ is the normalized duality mapping.

Remark 1. [19] Every normed linear space is a semi-inner product space (see[15]). In fact by Hahn Banach theorem, for each $x \in X$, there exists atleast one functional $f_{x} \in X^{\star}$ such that $\left\langle x, f_{x}\right\rangle=\|x\|^{2}$. Given any such mapping f from X into X^{\star}, we can verify that $[y, x]=\left\langle y, f_{x}\right\rangle$ defines a semi-inner product. Hence we can write (ii) of above Lemma as

$$
\|x+y\|^{2} \leq\|x\|^{2}+2[y, x]+c\|y\|^{2}, \forall x, y \in X
$$

The constant c is chosen with best possible minimum value. We call c, as the constant of smoothness of X.

Example 3. The function space L^{p} is 2-uniformly smooth for $p \geq 2$ and it is p-uniformly smooth for $1<p<2$. If $2 \leq p<\infty$, then we have for all $x, y \in L^{p}$,

$$
\|x+y\|^{2} \leq\|x\|^{2}+2[y, x]+(p-1)\|y\|^{2}
$$

Here the constant of smoothness is $p-1$.
Definition 3. $[16,19]$ Let X be a real 2-uniformly smooth Banach space. A mapping $S: X \rightarrow X$ is said to be:
(i) monotone, if $[S x-S y, x-y] \geq 0, \forall x, y \in X$,
(ii) strictly monotone, if $[S x-S y, x-y]>0, \forall x, y \in X$, and equality holds if and only if $x=y$,
(iii) r-strongly monotone if there exists a positive constant $r>0$ such that

$$
[S x-S y, x-y] \geq r\|x-y\|^{2}, \forall x, y \in X
$$

(iv) δ-Lipschitz continuous, if there exists a constant $\delta>0$ such that

$$
\|S(x)-S(y)\| \leq \delta\|x-y\|, \forall x, y \in X
$$

(v) η-monotone, if $[S x-S y, \eta(x, y)] \geq 0, \forall x, y \in X$,
(vi) strictly η-monotone, if $[S x-S y, \eta(x, y)]>0, \forall x, y \in X$, and equality holds if and only if $x=y$,
(vii) r-strongly η-monotone if there exists a positive constant $r>0$ such that

$$
[S x-S y, \eta(x, y)] \geq r\|x-y\|^{2}, \forall x, y \in X
$$

(viii) ξ-cocoercive if there exists a constant $\xi>0$ such that

$$
[S x-S y, x-y] \geq \xi\|S x-S y\|^{2}, \forall x, y \in X
$$

(ix) relaxed (ξ, δ)-cocoercive if there exist two constants $\xi, \delta>0$ such that

$$
[S x-S y, x-y] \geq-\xi\|S x-S y\|^{2}+\delta\|x-y\|^{2}, \forall x, y \in X
$$

For $\xi=0 S$ is δ-strongly monotone.
This class of mappings is more general than the class of strongly monotone mappings.

Definition 4. Let X be a 2-uniformly smooth Banach space. Let $\eta: X \times X \rightarrow X$ be single-valued mappings and $M: X \times X \rightarrow 2^{X}$ be multi-valued mapping. Then
(i) η is said to be accretive, if

$$
[\eta(x, y), x-y] \geq 0, \forall x, y \in X
$$

(ii) η is said to be strictly accretive, if

$$
[\eta(x, y), x-y]>0, \forall x, y \in X
$$

and equality holds only when $x=y$.
(iii) η is said to be r-strongly-accretive if there exists a constant $r>0$ such that

$$
[\eta(x, y), x-y] \geq r\|x-y\|^{2}, \forall x, y \in X
$$

(iv) η is said to be m-Lipschitz continuous, if there exists a constant $m>0$ such that

$$
\|\eta(x, y)\| \leq m\|x-y\|, \forall x, y \in X
$$

(v) M is said to be η-accretive in the first argument if $[u-v, \eta(x, y)] \geq 0, \forall x, y \in X, \forall u \in M(x, t), v \in M(y, t)$, for each fixed $t \in X$,
(vi) μ-strongly η-accretive if there exists a positive constant $\mu>0$ such that

$$
[u-v, \eta(x, y)] \geq \mu\|x-y\|^{2}, \forall x, y \in X, u \in M(x, t), v \in M(y, t)
$$

Definition 5. Let X be a 2-uniformly smooth Banach space. Let $\eta: X \times X \rightarrow X$ be single-valued mappings, $M: X \times X \rightarrow 2^{X}$ be a multi-valued mapping, then M is said to be $m-\eta$-accretive mapping if for each fixed $t \in X, M(., t)$ is η-accretive in the first argument and $(I+\rho M(., t)) X=X, \forall \rho>0$.

Theorem 1. Let X be a 2-uniformly smooth Banach space. Let $\eta: X \times X \rightarrow X$ be q-strongly accretive mapping. Let $M: X \times X \rightarrow 2^{X}$ be $m-\eta$-accretive mapping. If the following inequality : $[u-v, \eta(x, y)] \geq 0$, holds $\forall(y, v) \in \operatorname{Graph}(M(., t))$, then $(x, u) \in \operatorname{Graph}(M(., t))$, where Graph $(M(., t)):=\{(x, u) \in X \times X: u \in M(x, t)\}$.

Theorem 2. Let $\eta: X \times X \rightarrow X$ be q-strongly accretive mapping. Let M : $X \times X \rightarrow 2^{X}$ be $m-\eta$-accretive mapping. Then the mapping $(I+\rho M(., t))^{-1}$ is single-valued, $\forall \rho>0$.
Definition 6. Let $\eta: X \times X \rightarrow X$ be single-valued mapping. Let $M: X \times X \rightarrow 2^{X}$ be $m-\eta$-accretive mapping. Then for each fixed $t \in X$, the resolvent operator $R_{\rho, \eta}^{M(\cdot, t)}: X \rightarrow X$ is defined by

$$
R_{\rho, \eta}^{M(., t)}(x)=(I+\rho M(., t))^{-1}(x), \forall x \in X
$$

Theorem 3. Let $\eta: X \times X \rightarrow X$ be p-Lipschitz continuous and q-strongly accretive mapping. Let $M: X \times X \rightarrow 2^{X}$ be $m-\eta$-accretive mapping. Then for each fixed $t \in X$ the resolvent operator of $M, R_{\rho, \eta}^{M(\cdot, t)}(x)=(I+\rho M(., t))^{-1}(x)$ is $\frac{p}{q}$-Lipschitz continuous, that is,

$$
\left\|R_{\rho, \eta}^{M(., t)}(x)-R_{\rho, \eta}^{M(., t)}(y)\right\| \leq L\|x-y\|, \forall x, y, t \in X
$$

where $L=\frac{p}{q}$.
Definition 7. The Hausdorff metric $D(\cdot, \cdot)$ on $C B(X)$, is defined by

$$
D(A, B)=\max \left\{\sup _{u \in A} \inf _{v \in B} d(u, v), \sup _{v \in B} \inf _{u \in A} d(u, v)\right\}, A, B \in C B(X)
$$

where $d(\cdot, \cdot)$ is the induced metric on X and $C B(X)$ denotes the family of all nonempty closed and bounded subsets of X.
Definition 8. [6] A set-valued mapping $T: X \rightarrow C B(X)$ is said to be $\gamma-D$ Lipschitz continuous, if there exists a constant $\gamma>0$ such that

$$
D(T(x), T(y)) \leq \gamma\|x-y\|, \forall x, y \in X
$$

Theorem 4. [17] Let $T: X \rightarrow C B(X)$ be a set-valued mapping on X and (X, d) be a complete metric space. Then:
(i) For any given $\nu>0$ and for any given $u, v \in X$ and $x \in T(u)$, there exists $y \in T(v)$ such that

$$
d(x, y) \leq(1+\nu) D(T(u), T(v))
$$

(ii) If $T: X \rightarrow C(X)$, then (i) holds for $\nu=0$, (where $C(X)$ denotes the family of all nonempty compact subsets of X).

Lemma 2. Let $\left\{b^{n}\right\}$ be a sequence of nonnegative real numbers such that

$$
b^{n+1} \leq\left(1-a^{n}\right) b^{n}+c^{n}+h^{n}, \forall n \geq n_{0}
$$

where n_{0} is a nonnegative integer, $\left\{a^{n}\right\}$ is a sequence in $(0,1)$ with $\sum_{n=1}^{\infty} a^{n}=\infty$, $c^{n}=o\left(a^{n}\right)$ and $\sum_{n=0}^{\infty} h^{n}<\infty$. Then $\lim _{n \rightarrow \infty} b^{n}=0$.

Definition 9. A mapping $S: X \times X \times X \rightarrow X$ is said to be relaxed (ξ, δ)-cocoercive if there exist constants $\xi, \delta>0$ such that

$$
\begin{gather*}
{\left[S(x, y, z)-S\left(x_{1}, y_{1}, z_{1}\right), x-x_{1}\right] \geq-\xi\left\|S(x, y, z)-S\left(x_{1}, y_{1}, z_{1}\right)\right\|^{2}+\delta\left\|x-x_{1}\right\|^{2}} \\
\forall x, x_{1}, y, y_{1}, z, z_{1} \in X \tag{1}
\end{gather*}
$$

Definition 10. A mapping $S: X \times X \times X \rightarrow X$ is said to be β-Lipschitz continuous in the first variable if there exist constant $\beta>0$ such that

$$
\begin{equation*}
\left\|S(x, y, z)-S\left(x_{1}, y_{1}, z_{1}\right)\right\| \leq \beta\left\|x-x_{1}\right\|, \forall x, x_{1}, y, y_{1}, z, z_{1} \in X \tag{2}
\end{equation*}
$$

Now, we formulate our main problem.
For each $i=1,2,3$, let $N_{i}: X \times X \times X \rightarrow X, f_{i}: X \rightarrow X, \eta_{i}: X \times X \rightarrow X$ be singlevalued mappings. Let $A_{i}, B_{i}, F_{i}: X \rightarrow C(X)$ be set-valued mappings. Suppose that $M_{i}: X \times X \rightarrow 2^{X}$ is $m_{i}-\eta_{i}-$ accretive mapping. Then we consider the following system of generalized nonlinear variational inclusion problems (in short, SGNVIP): Find $\left(x_{1}, x_{2}, x_{3}\right) \in X \times X \times X, u_{i} \in A_{i}\left(x_{i}\right), v_{i} \in B_{i}\left(x_{i}\right), w_{i} \in F_{i}\left(x_{i}\right)$ such that

$$
\begin{align*}
& 0 \in f_{1}\left(x_{1}\right)-f_{1}\left(x_{2}\right)+\rho_{1}\left\{N_{1}\left(u_{2}, u_{3}, u_{1}\right)+M_{1}\left(f_{1}\left(x_{1}\right), x_{1}\right)\right\} \\
& 0 \in f_{2}\left(x_{2}\right)-f_{2}\left(x_{3}\right)+\rho_{2}\left\{N_{2}\left(v_{3}, v_{1}, v_{2}\right)+M_{2}\left(f_{2}\left(x_{2}\right), x_{2}\right)\right\} \\
& 0 \in f_{3}\left(x_{3}\right)-f_{3}\left(x_{1}\right)+\rho_{3}\left\{N_{3}\left(w_{1}, w_{2}, w_{3}\right)+M_{3}\left(f_{3}\left(x_{3}\right), x_{3}\right)\right\}, \forall \rho_{i}>0 \tag{3}
\end{align*}
$$

Special Cases:

I. If in problem (3), $f_{1}\left(x_{1}\right)=G(x), f_{1}\left(x_{2}\right)=H(x)$, such that $G, H: X \rightarrow X, f_{2}=$ $f_{3} \equiv 0, N_{1}=N_{2}=N_{3} \equiv 0, \rho_{1}=\rho_{2}=\rho_{3}=1$, then problem (3) reduces to the following problem: Find $x \in X$ such that

$$
\begin{equation*}
0 \in G(x)-H(x)+M(G(x), x) \tag{4}
\end{equation*}
$$

This type of problem has been considered and studied by Sahu et al.[19].

3. Iterative Algorithm

First, we give the following technical lemma:
Lemma 3. Let X be a real 2-uniformly smooth Banach space. Let for each $i \in\{1,2,3\} N_{i}, f_{i}, \eta_{i}$ be single-valued mappings. Let $A_{i}, B_{i}, F_{i}: X \rightarrow C(X)$ be set-valued mappings, $M_{i}: X \times X \rightarrow 2^{X}$ be $m_{i}-\eta_{i}$-accretive mappings. Then $\left(x_{i}, u_{i}, v_{i}, w_{i}\right)$ where $x_{i} \in X, u_{i} \in A_{i}\left(x_{i}\right), v_{i} \in B_{i}\left(x_{i}\right), w_{i} \in F_{i}\left(x_{i}\right)$ is a solution of
(3) if and only if $\left(x_{i}, u_{i}, v_{i}, w_{i}\right)$ satisfies
$\left.\begin{array}{l}f_{1}\left(x_{1}\right)=R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}\right)}\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\} \\ f_{2}\left(x_{2}\right)=R_{\rho_{2}, \eta_{2}}^{M_{2}\left(., x_{2}\right)}\left\{f_{2}\left(x_{3}\right)-\rho_{2} N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\} \\ f_{3}\left(x_{3}\right)=R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}\right)}\left\{f_{3}\left(x_{1}\right)-\rho_{3} N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\}\end{array}\right\}$
where $R_{\rho_{i}, \eta_{i}}^{M_{i}\left(., x_{i}\right)}=\left(I+\rho_{i} M_{i}\left(., x_{i}\right)\right)^{-1}$ are the resolvent operators.
Proof. Let $\left(x_{i}, u_{i}, v_{i}, w_{i}\right)$ is a solution of (3), then we have

$$
\begin{aligned}
& f_{1}\left(x_{1}\right)=R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}\right)}\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\} \\
& \Longleftrightarrow \Longleftrightarrow f_{1}\left(x_{1}\right)=\left(I+\rho_{1} M_{1}\left(., x_{1}\right)\right)^{-1}\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\} \\
& \Longleftrightarrow f_{1}\left(x_{1}\right)+\rho_{1} M_{1}\left(f_{1}\left(x_{1}\right), x_{1}\right)=\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\} \\
& \Longleftrightarrow 0 \in f_{1}\left(x_{1}\right)-f_{1}\left(x_{2}\right)+\rho_{1}\left\{N_{1}\left(u_{2}, u_{3}, u_{1}\right)+M_{1}\left(f_{1}\left(x_{1}\right), x_{1}\right)\right\}
\end{aligned}
$$

Proceeding likewise by using (5), we have

$$
\begin{aligned}
& f_{2}\left(x_{2}\right)=R_{\rho_{2}, \eta_{2}}^{M_{2}\left(., x_{2}\right)}\left\{f_{2}\left(x_{3}\right)-\rho_{2} N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\} \\
& \quad \Longleftrightarrow 0 \in f_{2}\left(x_{2}\right)-f_{2}\left(x_{3}\right)+\rho_{2}\left\{N_{2}\left(v_{3}, v_{1}, v_{2}\right)+M_{2}\left(f_{2}\left(x_{2}\right), x_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{3}\left(x_{3}\right)=R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}\right)}\left\{f_{3}\left(x_{1}\right)-\rho_{3} N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\} \\
& \quad \Longleftrightarrow 0
\end{aligned}
$$

Lemma 3 allows us to suggest the following iterative algorithm for finding the approximate solution of (3).

Iterative Algorithm 1. For each $i=\{1,2,3\}$ given $\left\{x_{i}^{0}, u_{i}^{0}, v_{i}^{0}, w_{i}^{0}\right\}$ where $x_{i}^{0} \in$ $X_{i}, u_{i}^{0} \in A_{i}\left(x_{i}^{0}\right), v_{i}^{0} \in B_{i}\left(x_{i}^{0}\right), w_{i}^{0} \in F_{i}\left(x_{i}^{0}\right)$ compute the sequences $\left\{x_{i}^{n}, u_{i}^{n}, v_{i}^{n}, w_{i}^{n}\right\}$ defined by the iterative schemes

$$
\begin{gathered}
f_{3}\left(x_{3}^{n}\right)=R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}^{n}\right)}\left\{f_{3}\left(x_{1}^{n}\right)-\rho_{3} N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)\right\} \\
f_{2}\left(x_{2}^{n}\right)=R_{\rho_{2}, \eta_{2}}^{M_{2}\left(., x_{2}^{n}\right)}\left\{f_{2}\left(x_{3}^{n}\right)-\rho_{2} N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)\right\} \\
x_{1}^{n+1}=\left(1-\alpha^{n}\right) x_{1}^{n}+\alpha^{n}\left(x_{1}^{n}-f_{1}\left(x_{1}^{n}\right)+R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}^{n}\right)}\left\{f_{1}\left(x_{2}^{n}\right)-\rho_{1} N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)\right\}\right)
\end{gathered}
$$

where α^{n} is a sequence of real numbers such that $\sum_{n=0}^{\infty} \alpha^{n}=\infty, \forall n \geq 0$.

4. Existence of Solution and Convergence Analysis

Theorem 5. For each $i \in\{1,2,3\}$, let X be a real 2-uniformly smooth Banach space with k as constant of smoothness. Let $N_{i}: X \times X \times X \rightarrow X$ be a relaxed $\left(\xi_{i}, \delta_{i}\right)$-cocoercive and ν_{i}-Lipschitz continuous in the first argument. Let f_{i} be a relaxed $\left(r_{i}, s_{i}\right)$-cocoercive and β_{i}-Lipschitz continuous in the first argument. Let $A_{i}, B_{i}, F_{i}: X_{i} \rightarrow C\left(X_{i}\right)$ be set-valued mappings such that A_{i} is $L_{A_{i}}-D-$ Lipschitz continuous, B_{i} is $L_{B_{i}}-D$-Lipschitz continuous and F_{i} is $L_{F_{i}}-D$-Lipschitz continuous. In addition, if there are constants $t_{i}>0$ such that

$$
\begin{equation*}
\left\|R_{\rho_{i}, \eta_{i}}^{M_{i}\left(\cdot, x_{i}^{n}\right)}\left(z_{i}\right)-R_{\rho_{i}, \eta_{i}}^{M_{i}\left(\cdot, x_{i}\right)}\left(z_{i}\right)\right\|_{i} \leq t_{i}\left\|x_{i}^{n}-x_{i}\right\|_{i}, \forall z_{i} \in X_{i} \tag{6}
\end{equation*}
$$

and

$$
1-\left(t_{2}+\Phi_{5}\right)>0,1-\left(t_{3}+\Phi_{6}\right)>0
$$

such that

$$
\begin{align*}
& 0<\left(\Phi_{4}+\Phi_{4} \frac{L_{1} L_{2} L_{3}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\right. \\
& \left.+\frac{L_{1} L_{2} L_{3} \Phi_{1}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}+t_{1}\right)<1 \tag{7}
\end{align*}
$$

where

$$
\begin{gathered}
\Phi_{1}=\sqrt{1+2 \rho_{1}\left(\xi_{1} \nu_{1}^{2} L_{A_{2}}^{2}-\delta_{1}\right)+k \rho_{1}^{2} \nu_{1}^{2} L_{A_{2}}^{2}} ; \Phi_{2}=\sqrt{1+2 \rho_{2}\left(\xi_{2} \nu_{2}^{2} L_{B_{3}}^{2}-\delta_{2}\right)+k \rho_{2}^{2} \nu_{2}^{2} L_{B_{3}}^{2}} . \\
\Phi_{3}=\sqrt{1+2 \rho_{3}\left(\xi_{3} \nu_{3}^{2} L_{F_{1}}^{2}-\delta_{3}\right)+k \rho_{3}^{2} \nu_{3}^{2} L_{F_{1}}^{2}} ; \Phi_{4}=\sqrt{1+2\left(r_{1} \beta_{1}^{2}-s_{1}\right)+k \beta_{1}^{2}} . \\
\Phi_{5}=\sqrt{1+2\left(r_{2} \beta_{2}^{2}-s_{2}\right)+k \beta_{2}^{2}} ; \quad \Phi_{6}=\sqrt{1+2\left(r_{3} \beta_{3}^{2}-s_{3}\right)+k \beta_{3}^{2}} .
\end{gathered}
$$

Then the sequences $\left\{x_{i}^{n}\right\},\left\{u_{i}^{n}\right\},\left\{v_{i}^{n}\right\},\left\{w_{i}^{n}\right\}$ generated by above iterative algorithm 1 converges strongly to $\left(x_{i}, u_{i}, v_{i}, w_{i}\right)$ where $\left(x_{i}, u_{i}, v_{i}, w_{i}\right)$ is a solution of above problem (3).

Proof. From Lemma 3, Iterative Algorithm 1, (6) and by using Theorem 3, it follows that

$$
\left\|x_{1}^{n+1}-x_{1}\right\|
$$

$$
\begin{aligned}
= & \|\left(1-\alpha^{n}\right) x_{1}^{n}+\alpha^{n}\left(x_{1}^{n}-f_{1}\left(x_{1}^{n}\right)+R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}^{n}\right)}\left\{f_{1}\left(x_{2}^{n}\right)-\rho_{1} N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)\right\}\right) \\
& -\left[\left(1-\alpha^{n}\right) x_{1}+\alpha^{n}\left(x_{1}-f_{1}\left(x_{1}\right)+R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}\right)}\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\}\right)\right] \|
\end{aligned}
$$

$$
\leq\left(1-\alpha^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\alpha^{n}\left\|\left(x_{1}^{n}-x_{1}\right)-\left(f_{1}\left(x_{1}^{n}\right)-f_{1}\left(x_{1}\right)\right)\right\|
$$

$$
+\alpha^{n} \| R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}^{n}\right)}\left\{f_{1}\left(x_{2}^{n}\right)-\rho_{1} N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)\right\}
$$

$$
-R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}^{n}\right)}\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\}
$$

$$
+R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}^{n}\right)}\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\}
$$

$$
-R_{\rho_{1}, \eta_{1}}^{M_{1}\left(., x_{1}\right)}\left\{f_{1}\left(x_{2}\right)-\rho_{1} N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\} \|
$$

$$
\leq\left(1-\alpha^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\alpha^{n}\left\|\left(x_{1}^{n}-x_{1}\right)-\left(f_{1}\left(x_{1}^{n}\right)-f_{1}\left(x_{1}\right)\right)\right\|
$$

$$
+\alpha^{n} L_{1}\left\|f_{1}\left(x_{2}^{n}\right)-f_{1}\left(x_{2}\right)-\rho_{1}\left(N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right)\right\|
$$

$$
+\alpha^{n} t_{1}\left\|x_{1}^{n}-x_{1}\right\|
$$

$$
\leq\left(1-\alpha^{n}\right)\left\|x_{1}^{n}-x_{1}\right\|+\alpha^{n}\left\|\left(x_{1}^{n}-x_{1}\right)-\left(f_{1}\left(x_{1}^{n}\right)-f_{1}\left(x_{1}\right)\right)\right\|
$$

$$
+\alpha^{n} L_{1} \|\left(x_{2}^{n}-x_{2}\right)-\left(f_{1}\left(x_{2}^{n}\right)-f_{1}\left(x_{2}\right) \|\right.
$$

$$
+\alpha^{n} L_{1}\left\|\left(x_{2}^{n}-x_{2}\right)-\rho_{1}\left(N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right)\right\|
$$

$$
\begin{equation*}
+\alpha^{n} t_{1}\left\|x_{1}^{n}-x_{1}\right\| . \tag{8}
\end{equation*}
$$

Since N_{1} is relaxed $\left(\xi_{1}, \delta_{1}\right)$-cocoercive and ν_{1}-Lipschitz continuous in the first argument, therefore by using Remark 1, it follows that

$$
\left\|\left(x_{2}^{n}-x_{2}\right)-\rho_{1}\left(N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right)\right\|^{2}
$$

$$
\begin{align*}
& \text { A NEW SYSTEM OF GENERALIZED NONLINEAR VARIATIONAL INCLUSION } 625 \\
= & \left\|x_{2}^{n}-x_{2}\right\|^{2}-2 \rho_{1}\left[N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right), x_{2}^{n}-x_{2}\right] \\
& +k \rho_{1}^{2}\left\|N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\|^{2} \\
\leq & \left\|x_{2}^{n}-x_{2}\right\|^{2}-2 \rho_{1}\left\{-\xi_{1}\left\|N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right\|^{2}+\delta_{1}\left\|x_{2}^{n}-x_{2}\right\|^{2}\right\} \\
& +k \rho_{1}^{2} \nu_{1}^{2}\left\|u_{2}^{n}-u_{2}\right\|^{2} \\
\leq & \left\|x_{2}^{n}-x_{2}\right\|^{2}+2 \rho_{1} \xi_{1} \nu_{1}^{2}\left\|u_{2}^{n}-u_{2}\right\|^{2} \\
& -2 \rho_{1} \delta_{1}\left\|x_{2}^{n}-x_{2}\right\|^{2}+k \rho_{1}^{2} \nu_{1}^{2}\left\|u_{2}^{n}-u_{2}\right\|^{2} \\
\leq & \left\|x_{2}^{n}-x_{2}\right\|^{2}+2 \rho_{1} \xi_{1} \nu_{1}^{2}\left(D\left(A_{2}\left(x_{2}^{n}\right), A_{2}\left(x_{2}\right)\right)\right)^{2} \\
& -2 \rho_{1} \delta_{1}\left\|x_{2}^{n}-x_{2}\right\|^{2}+k \rho_{1}^{2} \nu_{1}^{2}\left(D^{2}\left(A_{2}\left(x_{2}^{n}\right), A_{2}\left(x_{2}\right)\right)\right)^{2} \\
\leq & \left\|x_{2}^{n}-x_{2}\right\|^{2}+2 \rho_{1} \xi_{1} \nu_{1}^{2} L_{A_{2}}^{2}\left\|x_{2}^{n}-x_{2}\right\|^{2} \\
\leq & \left(1+2 \rho_{1}\left(\xi_{1} \nu_{1}^{2} L_{A_{2}}^{2}-\delta_{1}\right)+k \rho_{1}^{2} \nu_{1}^{2} L_{A_{2}}^{2}\right)\left\|x_{2}^{n}-x_{2}\right\|^{2} \\
& -2 \rho_{1} \delta_{1}\left\|x_{2}^{n}-x_{2}\right\|^{2}+k \rho_{1}^{2} \nu_{1}^{2} L_{A_{2}}^{2}\left\|x_{2}^{n}-x_{2}\right\|^{2} \\
\Longrightarrow & \left\|\left(x_{2}^{n}-x_{2}\right)-\rho_{1}\left(N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right)\right\|^{2} \leq \Phi_{1}\left\|x_{2}^{n}-x_{2}\right\|
\end{align*}
$$

where

$$
\Phi_{1}=\sqrt{1+2 \rho_{1}\left(\xi_{1} \nu_{1}^{2} L_{A_{2}}^{2}-\delta_{1}\right)+k \rho_{1}^{2} \nu_{1}^{2} L_{A_{2}}^{2}}
$$

Also

$$
\begin{align*}
\left\|x_{2}^{n}-x_{2}\right\| & =\left\|\left(x_{2}^{n}-x_{2}\right)-\left(f_{2}\left(x_{2}^{n}\right)-f_{2}\left(x_{2}\right)\right)+\left(f_{2}\left(x_{2}^{n}\right)-f_{2}\left(x_{2}\right)\right)\right\| \\
& \leq\left\|\left(x_{2}^{n}-x_{2}\right)-\left(f_{2}\left(x_{2}^{n}\right)-f_{2}\left(x_{2}\right)\right)\right\| \\
& +\left\|f_{2}\left(x_{2}^{n}\right)-f_{2}\left(x_{2}\right)\right\| \tag{10}
\end{align*}
$$

Now,

$$
\begin{align*}
&\left\|f_{2}\left(x_{2}^{n}\right)-f_{2}\left(x_{2}\right)\right\| \\
&=\left\|R_{\rho_{2},,_{2}}^{M_{2}\left(\cdot, x_{2}^{n}\right)}\left\{f_{2}\left(x_{3}^{n}\right)-\rho_{2} N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)\right\}-R_{\rho_{2},,_{2}}^{M_{2}\left(,, x_{2}\right)}\left\{f_{2}\left(x_{3}\right)-\rho_{2} N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\}\right\| \\
&= \| R_{\rho_{2}, \eta_{2}}^{M_{2}\left(, x_{2}^{n}\right)}\left\{f_{2}\left(x_{3}^{n}\right)-\rho_{2} N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)\right\} \\
&-R_{\rho_{2}, \eta_{2}}^{\left.M_{2}, ., x_{2}\right)}\left\{f_{2}\left(x_{3}\right)-\rho_{2} N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\} \| \\
& \leq \| R_{\rho_{2}, \eta_{2}}^{M_{2}\left(\cdot, x_{2}^{n}\right)}\left\{f_{2}\left(x_{3}^{n}\right)-\rho_{2} N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)\right\} \\
&-R_{\rho_{2}, \eta_{2}}^{M_{2}\left(, ., x_{2}^{n}\right)}\left\{f_{2}\left(x_{3}\right)-\rho_{2} N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\} \| \\
&+\| R_{\rho_{2}, \eta_{2}}^{M_{2}\left(., x_{2}^{n}\right)}\left\{f_{2}\left(x_{3}\right)-\rho_{2} N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\} \\
&-R_{\rho_{2}, \eta_{2}}^{\left.M_{2}, ., x_{2}\right)}\left\{f_{2}\left(x_{3}\right)-\rho_{2} N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\} \| \\
& \leq L_{2}\left\|f_{2}\left(x_{3}^{n}\right)-f_{2}\left(x_{3}\right)-\rho_{2}\left(N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)-N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right)\right\| \\
&+t_{2}\left\|x_{2}^{n}-x_{2}\right\| \\
& \leq L_{2}\left\|\left(x_{3}^{n}-x_{3}\right)-\left(f_{2}\left(x_{3}^{n}\right)-f_{2}\left(x_{3}\right)\right)\right\| \\
&+L_{2}\left\|\left(x_{3}^{n}-x_{3}\right)-\rho_{2}\left(N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)-N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right)\right\| \\
&+t_{2}\left\|x_{2}^{n}-x_{2}\right\| . \tag{11}
\end{align*}
$$

Since N_{2} is relaxed $\left(\xi_{2}, \delta_{2}\right)$-cocoercive and ν_{2}-Lipschitz continuous in the first argument, therefore by using Remark 1, we have

$$
\left\|\left(x_{3}^{n}-x_{3}\right)-\rho_{2}\left(N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)-N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right)\right\|^{2}
$$

$$
\begin{align*}
= & \left\|x_{3}^{n}-x_{3}\right\|^{2}-2 \rho_{2}\left[N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)-N_{2}\left(v_{3}, v_{1}, v_{2}\right), x_{3}^{n}-x_{3}\right] \\
& +k \rho_{2}^{2}\left\|N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)-N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\|^{2} \\
\leq & \left\|x_{3}^{n}-x_{3}\right\|^{2}-2 \rho_{2}\left\{-\xi_{2}\left\|N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)-N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right\|^{2}+\delta_{2}\left\|x_{3}^{n}-x_{3}\right\|^{2}\right\} \\
& +k \rho_{2}^{2} \nu_{2}^{2}\left\|v_{3}^{n}-v_{3}\right\|^{2} \\
\leq & \left\|x_{3}^{n}-x_{3}\right\|^{2}-2 \rho_{2}\left\{-\xi_{2} \nu_{2}^{2}\left\|v_{3}^{n}-v_{3}\right\|^{2}+\delta_{2}\left\|x_{3}^{n}-x_{3}\right\|^{2}\right\} \\
& +k \rho_{2}^{2} \nu_{2}^{2}\left\|v_{3}^{n}-v_{3}\right\|^{2} \\
\leq & \left\|x_{3}^{n}-x_{3}\right\|^{2}+2 \rho_{2} \xi_{2} \nu_{2}^{2}\left(D\left(B_{3}\left(x_{3}^{n}\right), B_{3}\left(x_{3}\right)\right)\right)^{2} \\
& -2 \rho_{2} \delta_{2}\left\|x_{3}^{n}-x_{3}\right\|^{2}+k \rho_{2}^{2} \nu_{2}^{2}\left(D\left(B_{3}\left(x_{3}^{n}\right), B_{3}\left(x_{3}\right)\right)\right)^{2} \\
\leq & \left\|x_{3}^{n}-x_{3}\right\|^{2}+2 \rho_{2} \xi_{2} \nu_{2}^{2} L_{B_{3}}^{2}\left\|x_{3}^{n}-x_{3}\right\|^{2} \\
\leq & -2 \rho_{2} \delta_{2}\left\|x_{3}^{n}-x_{3}\right\|^{2}+k \rho_{2}^{2} \nu_{2}^{2} L_{B_{3}}^{2}\left\|x_{3}^{n}-x_{3}\right\|^{2} \\
\leq & \left(1+2 \rho_{2}\left(\xi_{2} \nu_{2}^{2} L_{B_{3}}^{2}-\delta_{2}\right)+k \rho_{2}^{2} \nu_{2}^{2} L_{B_{3}}^{2}\right)\left\|x_{3}^{n}-x_{3}\right\|^{2} \\
& \Longrightarrow\left\|\left(x_{3}^{n}-x_{3}\right)-\rho_{2}\left(N_{2}\left(v_{3}^{n}, v_{1}^{n}, v_{2}^{n}\right)-N_{2}\left(v_{3}, v_{1}, v_{2}\right)\right)\right\| \leq \Phi_{2}\left\|x_{3}^{n}-x_{3}\right\| \tag{12}
\end{align*}
$$

where

$$
\Phi_{2}=\sqrt{1+2 \rho_{2}\left(\xi_{2} \nu_{2}^{2} L_{B_{3}}^{2}-\delta_{2}\right)+k \rho_{2}^{2} \nu_{2}^{2} L_{B_{3}}^{2}}
$$

Since f_{2} is relaxed $\left(r_{2}, s_{2}\right)$-cocoercive and β_{2}-Lipschitz continuous, therefore by using Remark 1, we have

$$
\left\|x_{3}^{n}-x_{3}-\left(f_{2}\left(x_{3}^{n}\right)-f_{2}\left(x_{3}\right)\right)\right\|^{2}
$$

$$
\begin{align*}
& =\left\|x_{3}^{n}-x_{3}\right\|^{2}-2\left[f_{2}\left(x_{3}^{n}\right)-f_{2}\left(x_{3}\right), x_{3}^{n}-x_{3}\right]+k\left\|f_{2}\left(x_{3}^{n}\right)-f_{2}\left(x_{3}\right)\right\|^{2} \\
& \leq\left\|x_{3}^{n}-x_{3}\right\|^{2}-2\left\{-r_{2}\left\|f_{2}\left(x_{3}^{n}\right)-f_{2}\left(x_{3}\right)\right\|^{2}+s_{2}\left\|x_{3}^{n}-x_{3}\right\|^{2}\right\}+k \beta_{2}^{2}\left\|x_{3}^{n}-x_{3}\right\|^{2} \\
& \leq\left\|x_{3}^{n}-x_{3}\right\|^{2}+2 r_{2} \beta_{2}^{2}\left\|x_{3}^{n}-x_{3}\right\|^{2}-2 s_{2}\left\|x_{3}^{n}-x_{3}\right\|^{2}+k \beta_{2}^{2}\left\|x_{3}^{n}-x_{3}\right\|^{2} \\
& \leq\left(1+2\left(r_{2} \beta_{2}^{2}-s_{2}\right)+k \beta_{2}^{2}\right)\left\|x_{3}^{n}-x_{3}\right\|^{2} \\
& \quad \Longrightarrow\left\|x_{3}^{n}-x_{3}-\left(f_{2}\left(x_{3}^{n}\right)-f_{2}\left(x_{3}\right)\right)\right\| \leq \Phi_{5}\left\|x_{3}^{n}-x_{3}\right\| \tag{13}
\end{align*}
$$

where

$$
\Phi_{5}=\sqrt{1+2\left(r_{2} \beta_{2}^{2}-s_{2}\right)+k \beta_{2}^{2}}
$$

Similarly

$$
\begin{equation*}
\left\|x_{2}^{n}-x_{2}-\left(f_{2}\left(x_{2}^{n}\right)-f_{2}\left(x_{2}\right)\right)\right\| \leq \Phi_{5}\left\|x_{2}^{n}-x_{2}\right\| \tag{14}
\end{equation*}
$$

Substituting (12), (13) in (11), we have

$$
\begin{equation*}
\left\|f_{2}\left(x_{2}^{n}\right)-f_{2}\left(x_{2}\right)\right\| \leq L_{2}\left(\Phi_{2}+\Phi_{5}\right)\left\|x_{3}^{n}-x_{3}\right\|+t_{2}\left\|x_{2}^{n}-x_{2}\right\| \tag{15}
\end{equation*}
$$

Combining (10), (14) and (15), we have

$$
\begin{align*}
\left\|x_{2}^{n}-x_{2}\right\| & \leq \Phi_{5}\left\|x_{2}^{n}-x_{2}\right\|+L_{2}\left(\Phi_{2}+\Phi_{5}\right)\left\|x_{3}^{n}-x_{3}\right\|+t_{2}\left\|x_{2}^{n}-x_{2}\right\| \\
& \leq\left(\Phi_{5}+t_{2}\right)\left\|x_{2}^{n}-x_{2}\right\|+L_{2}\left(\Phi_{2}+\Phi_{5}\right)\left\|x_{3}^{n}-x_{3}\right\| \tag{16}
\end{align*}
$$

Again, we have

$$
\begin{align*}
\left\|x_{3}^{n}-x_{3}\right\| & =\left\|\left(x_{3}^{n}-x_{3}\right)-\left(f_{3}\left(x_{3}^{n}\right)-f_{3}\left(x_{3}\right)\right)+\left(f_{3}\left(x_{3}^{n}\right)-f_{3}\left(x_{3}\right)\right)\right\| \\
& \leq\left\|\left(x_{3}^{n}-x_{3}\right)-\left(f_{3}\left(x_{3}^{n}\right)-f_{3}\left(x_{3}\right)\right)\right\|+\left\|\left(f_{3}\left(x_{3}^{n}\right)-f_{3}\left(x_{3}\right)\right)\right\| . \tag{17}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \left\|f_{3}\left(x_{3}^{n}\right)-f_{3}\left(x_{3}\right)\right\| \\
& =\left\|R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}^{n}\right)}\left\{f_{3}\left(x_{1}^{n}\right)-\rho_{3} N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)\right\}-R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}\right)}\left\{f_{3}\left(x_{1}\right)-\rho_{3} N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\}\right\| \\
& \leq \quad\left\|R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}^{n}\right)}\left\{f_{3}\left(x_{1}^{n}\right)-\rho_{3} N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)\right\}-R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}^{n}\right)}\left\{f_{3}\left(x_{1}\right)-\rho_{3} N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\}\right\| \\
& \quad+\left\|R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}^{n}\right)}\left\{f_{3}\left(x_{1}\right)-\rho_{3} N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\}-R_{\rho_{3}, \eta_{3}}^{M_{3}\left(., x_{3}\right)}\left\{f_{3}\left(x_{1}\right)-\rho_{3} N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\}\right\| \\
& \leq \quad L_{3}\left\|f_{3}\left(x_{1}^{n}\right)-f_{3}\left(x_{1}\right)-\rho_{3}\left(N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)-N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right)\right\|+t_{3}\left\|x_{3}^{n}-x_{3}\right\| \\
& \leq \\
& \leq
\end{aligned}
$$

$$
\begin{equation*}
+L_{3}\left\|x_{1}^{n}-x_{1}-\rho_{3}\left(N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)-N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right)\right\|+t_{3}\left\|x_{3}^{n}-x_{3}\right\| \tag{18}
\end{equation*}
$$

Since N_{3} is relaxed $\left(\xi_{3}, \delta_{3}\right)$-cocoercive and ν_{3}-Lipschitz continuous in the first argument, therefore by using Remark 1, we have

$$
\left.\begin{array}{rl}
\| & \left(x_{1}^{n}-x_{1}\right)-\rho_{3}\left(N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)-N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right) \|^{2} \\
= & \left\|x_{1}^{n}-x_{1}\right\|^{2}-2 \rho_{3}\left[N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)-N_{3}\left(w_{1}, w_{2}, w_{3}\right), x_{1}^{n}-x_{1}\right] \\
& +k \rho_{3}^{2}\left\|N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)-N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\|^{2} \\
\leq & \left\|x_{1}^{n}-x_{1}\right\|^{2}-2 \rho_{3}\left\{-\xi_{3}\left\|N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)-N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right\|^{2}+\delta_{3}\left\|x_{1}^{n}-x_{1}\right\|^{2}\right\} \\
& +k \rho_{3}^{2} \nu_{3}^{2}\left\|w_{1}^{n}-w_{1}\right\|^{2} \\
\leq & \left\|x_{1}^{n}-x_{1}\right\|^{2}+2 \rho_{3} \xi_{3} \nu_{3}^{2}\left\|w_{1}^{n}-w_{1}\right\|^{2} \\
& -2 \rho_{3} \delta_{3}\left\|x_{1}^{n}-x_{1}\right\|^{2}+k \rho_{3}^{2} \nu_{3}^{2}\left\|w_{1}^{n}-w_{1}\right\|^{2} \\
\leq & \left\|x_{1}^{n}-x_{1}\right\|^{2}+2 \rho_{3} \xi_{3} \nu_{3}^{2}\left(D\left(F_{1}\left(x_{1}^{n}\right), F_{1}\left(x_{1}\right)\right)\right)^{2} \\
& -2 \rho_{3} \delta_{3}\left\|x_{1}^{n}-x_{1}\right\|^{2}+k \rho_{3}^{2} \nu_{3}^{2}\left(D\left(F_{1}\left(x_{1}^{n}\right), F_{1}\left(x_{1}\right)\right)\right)^{2} \\
\leq & \left\|x_{1}^{n}-x_{1}\right\|^{2}+2 \rho_{3} \xi_{3} \nu_{3}^{2} L_{F_{1}}^{2}\left\|x_{1}^{n}-x_{1}\right\|^{2} \\
= & -2 \rho_{3} \delta_{3}\left\|x_{1}^{n}-x_{1}\right\|^{2}+k \rho_{3}^{2} \nu_{3}^{2} L_{F_{1}}^{2}\left\|x_{1}^{n}-x_{1}\right\|^{2} \\
\leq & \left(1+2 \rho_{3}\left(\xi_{3} \nu_{3}^{2} L_{F_{1}}^{2}-\delta_{3}\right)+k \rho_{3}^{2} \nu_{3}^{2} L_{F_{1}}^{2}\right)\left\|x_{1}^{n}-x_{1}\right\|^{2} \\
\Longrightarrow & \left\|\left(x_{1}^{n}-x_{1}\right)-\rho_{3}\left(N_{3}\left(w_{1}^{n}, w_{2}^{n}, w_{3}^{n}\right)-N_{3}\left(w_{1}, w_{2}, w_{3}\right)\right)\right\|^{2} \leq \Phi_{3}\left\|x_{1}^{n}-x_{1}\right\| \tag{19}
\end{array}(19)\right\}
$$

where

$$
\Phi_{3}=\sqrt{1+2 \rho_{3}\left(\xi_{3} \nu_{3}^{2} L_{F_{1}}^{2}-\delta_{3}\right)+k \rho_{3}^{2} \nu_{3}^{2} L_{F_{1}}^{2}}
$$

Since f_{3} is relaxed $\left(r_{3}, s_{3}\right)$-cocoercive and β_{3}-Lipschitz continuous, therefore by using Remark 1, it follows that

$$
\left\|x_{1}^{n}-x_{1}-\left(f_{3}\left(x_{1}^{n}\right)-f_{3}\left(x_{1}\right)\right)\right\|^{2}
$$

$$
\begin{align*}
= & \left\|x_{1}^{n}-x_{1}\right\|^{2}-2\left[f_{3}\left(x_{1}^{n}\right)-f_{3}\left(x_{1}\right), x_{1}^{n}-x_{1}\right] \\
& +k\left\|f_{3}\left(x_{1}^{n}\right)-f_{3}\left(x_{1}\right)\right\|^{2} \\
\leq & \left\|x_{1}^{n}-x_{1}\right\|^{2}-2\left\{-r_{3}\left\|f_{3}\left(x_{1}^{n}\right)-f_{3}\left(x_{1}\right)\right\|^{2}+s_{3}\left\|x_{1}^{n}-x_{1}\right\|^{2}\right\} \\
& +k \beta_{3}^{2}\left\|x_{1}^{n}-x_{1}\right\|^{2} \\
\leq & \left\|x_{1}^{n}-x_{1}\right\|^{2}+2 r_{3} \beta_{3}^{2}\left\|x_{1}^{n}-x_{1}\right\|^{2} \\
& -2 s_{3}\left\|x_{1}^{n}-x_{1}\right\|^{2}+k \beta_{3}^{2}\left\|x_{1}^{n}-x_{1}\right\|^{2} \\
\leq & \left(1+2\left(r_{3} \beta_{3}^{2}-s_{3}\right)+k \beta_{3}^{2}\right)\left\|x_{1}^{n}-x_{1}\right\|^{2} \\
& \Longrightarrow\left\|x_{1}^{n}-x_{1}-\left(f_{3}\left(x_{1}^{n}\right)-f_{3}\left(x_{1}\right)\right)\right\|^{\leq} \Phi_{6}\left\|x_{1}^{n}-x_{1}\right\| \tag{20}
\end{align*}
$$

where

$$
\Phi_{6}=\sqrt{1+2\left(r_{3} \beta_{3}^{2}-s_{3}\right)+k \beta_{3}^{2}}
$$

Similarly

$$
\begin{equation*}
\left\|x_{3}^{n}-x_{3}-\left(f_{3}\left(x_{3}^{n}\right)-f_{3}\left(x_{3}\right)\right)\right\| \leq \Phi_{6}\left\|x_{3}^{n}-x_{3}\right\| \tag{21}
\end{equation*}
$$

Substituting (19), (20) in (18), we have

$$
\begin{equation*}
\left\|f_{3}\left(x_{3}^{n}\right)-f_{3}\left(x_{3}\right)\right\| \leq L_{3}\left(\Phi_{3}+\Phi_{6}\right)\left\|x_{1}^{n}-x_{1}\right\|+t_{3}\left\|x_{3}^{n}-x_{3}\right\| \tag{22}
\end{equation*}
$$

Combining (17), (21) and (22), we have

$$
\begin{align*}
& \left\|x_{3}^{n}-x_{3}\right\| \\
& \leq \quad \Phi_{6}\left\|x_{3}^{n}-x_{3}\right\|+L_{3}\left(\Phi_{3}+\Phi_{6}\right)\left\|x_{1}^{n}-x_{1}\right\|+t_{3}\left\|x_{3}^{n}-x_{3}\right\| \\
& \leq \quad\left(\Phi_{6}+t_{3}\right)\left\|x_{3}^{n}-x_{3}\right\|+L_{3}\left(\Phi_{3}+\Phi_{6}\right)\left\|x_{1}^{n}-x_{1}\right\| \\
& \Longrightarrow \quad\left(1-\left(t_{3}+\Phi_{6}\right)\right)\left\|x_{3}^{n}-x_{3}\right\| \leq L_{3}\left(\Phi_{3}+\Phi_{6}\right)\left\|x_{1}^{n}-x_{1}\right\| \\
& \Longrightarrow\left\|x_{3}^{n}-x_{3}\right\| \leq \frac{L_{3}\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\left\|x_{1}^{n}-x_{1}\right\| \tag{23}
\end{align*}
$$

Substituting (23) in (16), we have

$$
\begin{align*}
& \left\|x_{2}^{n}-x_{2}\right\| \\
& \leq\left(t_{2}+\Phi_{5}\right)\left\|x_{2}^{n}-x_{2}\right\|+\frac{L_{2} L_{3}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\left\|x_{1}^{n}-x_{1}\right\| \\
\Longrightarrow & \left(1-\left(t_{2}+\Phi_{5}\right)\right)\left\|x_{2}^{n}-x_{2}\right\| \leq \frac{L_{2} L_{3}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\left\|x_{1}^{n}-x_{1}\right\| \\
& \Longrightarrow x_{2}^{n}-x_{2}\left\|\leq \frac{L_{2} L_{3}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\right\| x_{1}^{n}-x_{1} \| \tag{24}
\end{align*}
$$

Substituting (24) in (9),

$$
\begin{align*}
& \left\|\left(x_{2}^{n}-x_{2}\right)-\rho_{1}\left(N_{1}\left(u_{2}^{n}, u_{3}^{n}, u_{1}^{n}\right)-N_{1}\left(u_{2}, u_{3}, u_{1}\right)\right)\right\| \\
& \quad \leq \frac{L_{2} L_{3} \Phi_{1}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\left\|x_{1}^{n}-x_{1}\right\| \tag{25}
\end{align*}
$$

Since f_{1} is relaxed (r_{1}, s_{1})-cocoercive and β_{1}-Lipschitz continuous, therefore following the same procedure as in (13), (20), we have

$$
\begin{equation*}
\left\|x_{1}^{n}-x_{1}-\left(f_{1}\left(x_{1}^{n}\right)-f_{1}\left(x_{1}\right)\right)\right\| \leq \Phi_{4}\left\|x_{1}^{n}-x_{1}\right\| \tag{26}
\end{equation*}
$$

and similarly, we have

$$
\begin{equation*}
\left\|x_{2}^{n}-x_{2}-\left(f_{1}\left(x_{2}^{n}\right)-f_{1}\left(x_{2}\right)\right)\right\| \leq \Phi_{4}\left\|x_{2}^{n}-x_{2}\right\|, \tag{27}
\end{equation*}
$$

where

$$
\Phi_{4}=\sqrt{1+2\left(r_{1} \beta_{1}^{2}-s_{1}\right)+k \beta_{1}^{2}} .
$$

Combining (24) and (27)

$$
\begin{align*}
& \left\|x_{2}^{n}-x_{2}-\left(f_{1}\left(x_{2}^{n}\right)-f_{1}\left(x_{2}\right)\right)\right\| \\
& \leq \Phi_{4} \frac{L_{2} L_{3}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\left\|x_{1}^{n}-x_{1}\right\| \tag{28}
\end{align*}
$$

Substituting (25), (26), (28) in (8), it follows that

$$
\begin{gathered}
\left\|x_{1}^{n+1}-x_{1}^{n}\right\| \\
\leq\left\{\left(1-\alpha^{n}\right)+\alpha^{n} \Phi_{4}+\alpha^{n} \Phi_{4} \frac{L_{1} L_{2} L_{3}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\right.
\end{gathered}
$$

$$
\begin{align*}
& \left.+\alpha^{n} \frac{L_{1} L_{2} L_{3} \Phi_{1}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}+\alpha^{n} t_{1}\right\}\left\|x_{1}^{n}-x_{1}\right\| \\
& \leq\left\{1-\alpha^{n}\left(1-\Phi_{4}-\Phi_{4} \frac{L_{1} L_{2} L_{3}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}\right.\right. \\
& \left.\left.-\frac{L_{1} L_{2} L_{3} \Phi_{1}\left(\Phi_{2}+\Phi_{5}\right)\left(\Phi_{3}+\Phi_{6}\right)}{\left(1-\left(t_{2}+\Phi_{5}\right)\right)\left(1-\left(t_{3}+\Phi_{6}\right)\right)}-t_{1}\right)\right\}\left\|x_{1}^{n}-x_{1}\right\| \\
& \leq\left(1-\alpha^{n}(1-\hbar)\right)\left\|x_{1}^{n}-x_{1}\right\| \tag{29}
\end{align*}
$$

where $\hbar<1$ by assumption (7). Therefore by using Lemma 2 , $\left\{x_{i}^{n}\right\}$ converges strongly to a solution of (3). This completes the proof.

5. Conclusion

A new system of generalized nonlinear variational inclusion problems has been introduced in semi-inner product spaces. Using resolvent operator technique, an iterative algorithm has been constructed to solve the proposed system and the convergence analysis of the iterative algorithm has been investigated. The obtained results generalizes many known classes of variational inequalities and variational inclusions in the literature. The results presented can be used for approximation solvability of some different classes of problems in the literature.

Declaration of Competing Interests The author declare that there is no conflict of interest regarding the publication of this article.

References

[1] Basem, S. M., Iterative approximation of a solution of a multi-valued variational-like inclusion involving δ-strongly maximal $P-\eta-$ monotone mapping in real Hilbert space, IJMSEA, 10(2) (2016), 197-206.
[2] Bhat, M.I., Shafi, S., Malik, M. A., H-mixed accretive mapping and proximal point method for solving a system of generalized set-valued variational inclusions, Numerical Functional Analysis and Optimization, (2021). https://doi.org/10.1080/01630563.2021.1933527
[3] Cai, G., Bu, S., Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly smooth and uniformly convex Banach spaces, Math. Comput. Model., 55 (2012), 538-546.
[4] Ceng, L. C., Shang, M., Strong convergence theorems for variational inequalities and common fixed-point problems using relaxed mann implicit iteration methods, Mathematics, 7(5) (2019), 1-16. doi: 10.3390/math7050424
[5] Ceng, L. C., Postolache, M., Yao, Y., Iterative algorithms for a system of variational inclusions in Banach spaces, Symmetry, 11 (2019), 1-12. doi: 10.3390/sym11060811
[6] Chang, S. S., Kim, J. K., Kim, K. H., On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl., 268 (2002), 89-108.
[7] Giles, J. R., Classes of semi-inner product spaces, Trans. Am. Math. Soc., 129 (1967), 436446.
[8] Gong, X., Wang, W., A new convergence theorem in a reflexive Banach space, J. Nonlinear Sci. Appl., 9 (2016), 1891-1901.
[9] Gupta, S., Singh, M., Generalized monotone mapping and resolvent equation with an application, J. Math. Comput. Sci., 11(2) (2021), 1767-1783.
[10] Gupta, S., Husain, S., Mishra, V. N., Variational inclusion governed by $\alpha \beta-H((.,),.(.,))-$. mixed accretive mapping, Filomat, 31(20) (2017), 6529-6542.
[11] Jeong, J. U., Convergence of parallel iterative algorithms for a system of nonlinear variational inequalities in Banach spaces, J. Appl. Math. and Informatics, 34 (2016), 61-73.
[12] Kim, J. K., Bhat, M. I., Shafi, S., Convergence and stability of a perturbed mann iterative algorithm with errors for a system of generalized variational-like inclusion problems in quniformly smooth Banach spaces, Communications in Mathematics and Applications, 12(1) (2021), 29-50. doi: 10.26713/cma.v12i1. 1401
[13] Kim, J. K., Bhat, M. I., Shafi, S., Convergence and stability of iterative algorithm of system of generalized implicit variational-like inclusion problems using $(\theta, \varphi, \gamma)-$ relaxed cocoercivity, Nonlinear Functional Analysis and Applications, 26(4) (2021), 749-780. https://doi.org/10.22771/nfaa.2021.26.04.07
[14] Liu, Y., Kong, H., Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces, Indian J. Pure Appl. Math., 50(4) (2019), 1049-1065.
[15] Lumer, G., Semi inner product spaces, Trans. Am. Math. Soc., 100 (1961), 29-43.
[16] Luo, X. P., Huang, N. J., $(H, \phi)-\eta$-monotone operators in Banach spaces with an application to variational inclusions, Appl. Math. Comput., 216 (2010), 1131-1139.
[17] Nadler, S. B., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
[18] Sahu, N. K., Chadli, O., Mohapatra, R. N., Variational inequalities in semi-inner product spaces, Computational Mathematics and Variational Analysis, Springer Optimization and Its Applications, 159 (2020), 421-439. doi: 10.1007/978-3-030-44625-3-23
[19] Sahu, N. K., Mohapatra, R. N., Nahak, C., Nanda, S., Approximation solvability of a class of A-monotone implicit variational inclusion problems in semi-inner product spaces, Appl. Math. Comput., 236 (2014), 109-117.
[20] Shafi, S., System of generalized nonlinear variational-like inclusion problems in 2-uniformly smooth Banach spaces, International Journal of Nonlinear Analysis and Applications, 13(1) (2022), 267-287. http://dx.doi.org/10.22075/ijnaa.2020.20694.2197
[21] Shafi, S., Mishra, L. N., Existence of solution and convergence of resolvent iterative algorithms for a system of nonlinear variational inclusion problem, Electronic Journal of Mathematical Analysis and Applications, 9(2) (2021), 48-60. http://math-frac.org/Journals/EJMAA/
[22] Shafi, S., Mishra, V. N., $(A(.,),. \eta)$-monotone mappings and a system of generalized set-valued variational-like inclusion problem, Jnanabha, 51(1) (2021), 245-253.
[23] Sow, T. M. M., Diop, C., Gueye, M. M., General iterative algorithm for solving system of variational inequality problems in real Banach spaces, Results in Nonlinear Analysis, 3(1) (2020), 1-11.
[24] Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16(12) (1991), 1127-1138.
[25] Xu, H. K., Muglia, L., On solving variational inequalities defined on fixed point sets of multivalued mappings in Banach spaces, J. Fixed Point Theory Appl., 22(79) (2020). doi.org/10.1007/s11784-020-00817-1
[26] Xu, Y., Guan, J., Tang, Y., Su, Y., Multivariate systems of nonexpansive operator equations and iterative algorithms for solving them in uniformly convex and uniformly smooth Banach spaces with applications, Journal of Inequalities and Applications, 2018(37) (2018). doi.org/10.1186/s13660-018-1629-7
\square

৷

$$
\begin{array}{cccc}
\square & \square & \square \\
& \square
\end{array}
$$

\square

\square

$$
\begin{aligned}
& \square \quad \square \\
& \begin{array}{lll}
\square \\
\square & \square
\end{array} \\
& \square \\
& \square \square \square \\
& \text { — } \\
& \text { — }
\end{aligned}
$$

ㅁ口 ロ

-

\qquad
\qquad -
-

TAIL DEPENDENCE ESTIMATION BASED ON SMOOTH ESTIMATION OF DIAGONAL SECTION

Selim Orhun SUSAM
Department of Econometrics, M unzur University, Tunceli, TURKEY

Abstract

This paper is mainly developed around the diagonal section which is strongly related to tail dependence coetients as defied in Nelsen [19]. Hence, we propose a exible method for estimating tail dependence coefients based on the new smooth estimation of the diagonal section based on the Bernstein polynomial approximation. To assess the performance of the new estimators we conduct the M onte-Carlo simulation study. As a result of the simulation study, both estimators perform satisfactory performance. A Iso, the estimation methods are illustrated by real data examples.

Introduction

[^1]$\square \quad \square \square$
\square

\square

Estimation of Diagonal Section

(A) Gumbel Copula with $\tau=0.25$

(c) Clayton Copula with $\tau=0.25$

(в) Gumbel Copula with $\tau=0.50$

(D) Clayton Copula with $\tau=0.50$

Figure 1.

Figure 2.

$$
\begin{array}{r}
\square \\
-\quad-\quad\{--\}
\end{array}
$$

Theorem 1. If is a bounded and continuous function on the interval then as

$$
\sum-
$$

Theorem 2. Let be a continuous diagonal section on the interval . If

Proof.

$$
\sum(\quad)
$$

\qquad

Proposition 1. The Bernstein empirical diagonal section with order has the following properties:
and
for all ;
is non-decreasing function;

Proof.
(-

$$
\begin{aligned}
& \text { - } \Sigma-() \\
& \Sigma-() \\
& \Sigma-() \quad \Sigma() \\
& \Sigma() \quad \Sigma() \\
& \Sigma() \Sigma() \\
& \Sigma() \\
& \Sigma(-\quad \text {) () }
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma-
\end{aligned}
$$

-)

$$
\left(\int(\quad)\right)
$$

Tail Dependence Estimation
$\mathbf{I}^{\mathbf{2}}$

Proposition 2. Let be the estimator of diagonal section based on Bernstein polynomial approximation and be empirical diagonal section. The estimation of the lower tail and the upper tail dependence for copulas are obtained by

$$
\left({ }_{(-)}^{(-)}\right.
$$

Table 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Case Study

Figure 7.

Conclusion

Figure 8.

Declaration of Competing Interests

References

[1] Amblard, C., Girard, S., Estimation procedures for a semiparametric family of bivariate copulas, Journal of Computational and Graphical Statistics, 14(2) (2005), 363-377. DOI: 10.1198/106186005X 48722
[2] Babu, G. J., Canty, A. J., Chaubey, Y. P., A pplication of Bernstein polynomials for smooth estimation of a distribution and density function, Journal of Statistical Planning and Inference, 105 (2002), 377-392. DOI:10.1016/S0378-3758(01)00265-8
[3] Brown, B. M., Elliot, D., Paget, D. F., Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, Journal of Approximation Theory, 49 (1987), 196-199. DOI:10.1016/0021-9045(87)90087-6
[4] Caillault, C., Geǵan, D., Empirical estimation of tail dependence using copulas: application to A sian markets, \quad Quantitative Finance, 5 (2007), 489-501. DOI: 10.1080/14697680500147853
[5] Deheuvels, P., La fonction de épendance empirique et ses propit's un test non pararet́rique d ineṕendance, Acad. Roy. Belg. Bull. Cl. Sci., 65(5) (1979), 274-292.
[6] Dimitrova, D., K aishev, K., Penev, I., GeD spline estimation of multivariate Archimedean copulas, Computational Statistics and Data Analysis, 52 (2008), 3570-3582. DOI: 10.1016/j.csda.2007.11.010
[7] Duncan, M., A pplied Geometry for Computer Graphics and CAD, Springer Verlag, London, 2005.
[8] Durante, F., Okhrin, O., Estimation procedures for exchangeable M arshall copulas with hydrological application, Stoch. Environ. Res. Risk Assess, 29 (2015), 205-226. DOI:10.1007/s00477-014-0866-7
[9] Durante, F., Ferańdez-§ńchez, J., Pappad,' R., Copulas, diagonals, and tail dependence, Fuzzy Sets and Systems, 264 (2015), 22-41. DOI: 10.1016/j.fss.2014.03.014
[10] Durante, F., K olestrox,' A., M esiar, R., Sempi, C., Copulas with given diagonal sections: novel constructions and applications, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(4) (2007), 397-410. DOI: 10.1142/S0218488507004753
[11] Embrechts, P., M cneil, A., Straumann, D., Correlation and dependence in risk management: properties and pitfalls. In: Risk management: value at risk and beyond, Cambridge University Press, Cambridge, (2002), 176-223.
[12] Erdely, A., Exact distribution under independence of the diagonal section of the empirical copula, Kybernetika, 44(6) (2008), 826-845.
[13] Ferreira, M., Nonparametric estimation of the tail-dependence coefient, REVSTATStatistical Journal, 11(1) (2013), 1-16.
[14] Ferreira, H., Ferreira, M., Tail dependence between order statistics, Journal of Multivariate Analysis, 105(1) (2012), 176-192. DOI:10.1016/j.jmva.2011.09.001
[15] Feller, W., An Introduction to Probability Theory and its Applications, Wiley, New York, 1965.
[16] Frahm, G., Junker, M., Schmidt, R., Estimating the tail-dependence coefient: properties and pitfalls, Insur. Math. Econ., 37(1) (2005), 80-100. DOI:10.1016/j.insmatheco.2005.05.008
[17] Goegebeur, Y., Guillou, A., A symptotically unbiased estimation of the coefient of tail dependence, Scandinavian Journal of Statistics, 40(1) (2012), 174-189. DOI:10.2307/23357259
[18] Joe, H., M ultivariate M odels and Dependence Concepts, Chapman Hall, London, 1997.
[19] Nelsen, R., An Introduction to Copulas, Springer Series in Statistics, Springer, New York, 2006.
[20] Schmidt, R., Stadtmuller, U., N on-parametric estimation of tail dependence, Scand. J. Stat., 33(2) (2006), 307-335. DOI: 10.1111/j.1467-9469.2005.00483.x
[21] Susam, S. O., Hudaverdi, B. U., Testing independence for Archimedean copula based on Bernstein estimate of K endall distribution function, Journal of Statistical Computation and Simulation, 88(13) (2018), 2589-2599. DOI:10.1080/00949655.2018.1478978
[22] Susam, S. O., Hudaverdi, B. U., A goodness-of-f test based on 路ier curve estimation of K endall distribution, Journal of Statistical Computation and Simulation, 90(13) (2020), 1194-1215. DOI:10.1080/00949655.2020.1720680
[23] Susam, S. O., Erdogan, M., Plug-in estimation of dependence characteristics of Archimedean copula via 趹ier curve, RevStat-Statistical Journal, (In Press).
[24] Sklar, A., Fonctions de repartition a n dimensions et leurs marges, Publications de lInstitut de Statistique de lUniversite de Paris, 8 (1959), 229-231.
http://communications.science.ankara.edu.tr

ON THE MAXIMUM MODULUS OF A COMPLEX POLYNOMIAL

Shabir Ahmad MALIK and Ashish KUMAR
Department of Mathematics, University of Kashmir, Srinagar - 190006, INDIA

AbStract. In this paper we impose distinct restrictions on the moduli of the zeros of $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ and investigate the dependence of $\|p(R z)-p(\sigma z)\|$, $R>\sigma \geq 1$ on M_{α} and $M_{\alpha+\pi}$, where $M_{\alpha}=\max _{1 \leq k \leq n}\left|p\left(e^{i(\alpha+2 k \pi) / n}\right)\right|$ and on certain coefficients of $p(z)$. This paper comprises several results, which in particular yields some classical polynomial inequalities as special cases. Moreover, the problem of estimating $p\left(1-\frac{w}{n}\right), 0<w \leq n$ given $p(1)=0$ is considered.

1. Introduction

Let $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ be a polynomial of degree n over \mathbb{C}. Then it is well known that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1}
\end{equation*}
$$

The result in (1) is sharp and equality holds when $p(z)=\lambda z^{n}$, where $\lambda \in \mathbb{C}$.
The inequality (1), known as Bernstein's inequality, was proved by Bernstein 4 in 1926, however it was also proved earlier by Riesz 14 . By the maximum modulus principle, $\max _{|z| \leq 1}|p(z)|=\max _{|z|=1}|p(z)|$ and so if we consider $\|p\|=\max _{|z|=1}|p(z)|$, then inequality (1) can be written as

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq n\|p\| \tag{2}
\end{equation*}
$$

For $R \geq 1$, the inequality pertaining to the estimate of $\|p\|$ on a large circle

[^2]$|z|=R$ given below is well known 11, Problem 269] or 15.
\[

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq R^{n}\|p\| \tag{3}
\end{equation*}
$$

\]

equality holds in (3) when $p(z)=\lambda z^{n}, \lambda \in \mathbb{C}$.
Marden 9, Milovanović et al. 10 and Rahman and Schmeisser 12 have presented an exceptional introduction to this topic. Frappier, Rahman and Ruscheweyh 6 were able to refine (1) under the same hypothesis, by replacing the estimate of the maximum modulus of $|p(z)|$ on a unit circle $|z|=1$ with the estimate of the maximum modulus of $|p(z)|$ taken over $(2 n)^{t h}$ roots of unity. The maximum modulus of $|p(z)|$ taken over $(2 n)^{t h}$ roots of unity may be less than the maximum modulus of $|p(z)|$ on unit circle $|z|=1$ which is shown by a simple example $p(z)=z^{n}+i a, a>0$. In fact they proved that

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq n \max _{1 \leq k \leq 2 n}\left|p\left(e^{i k \pi / n}\right)\right| \tag{4}
\end{equation*}
$$

As an improvement of (4) A.Aziz 2 showed that the maximum modulus of $|p(z)|$ taken over $(2 n)^{t h}$ roots of unity in (4) can be replaced by maximum modulus of $|p(z)|$ taken over $n^{t h}$ roots of the equation $w^{n}=e^{i \alpha}$. In fact he proved that, for a polynomial $p(z)$ of degree n and for every $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq \frac{n}{2}\left(M_{\alpha}+M_{\alpha+\pi}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\alpha}=\max _{1 \leq k \leq n}\left|p\left(e^{i(\alpha+2 k \pi) / n}\right)\right| \tag{6}
\end{equation*}
$$

and $M_{\alpha+\pi}$ is obtained by replacing α by $\alpha+\pi$. The result is sharp and equality in (5) holds for the polynomial $p(z)=z^{n}+r e^{i \alpha},-1 \leq r \leq 1$.

As an application of inequality (5) A.Aziz 2 was able to establish the following refinement of (3).
For a polynomial $p(z)$ of degree n, and for every α and $R>1$

$$
\begin{equation*}
\|p(R z)-p(z)\| \leq \frac{R^{n}-1}{2}\left[M_{\alpha}+M_{\alpha+\pi}\right] \tag{7}
\end{equation*}
$$

where M_{α} is defined by (6) and $M_{\alpha+\pi}$ is obtained by replacing α by $\alpha+\pi$. The result is the best possible and equality in (7) holds for $p(z)=z^{n}+r e^{i \alpha},-1 \leq r \leq 1$.

In the same paper A.Aziz 2 also proved that if $p(z)$ is a polynomial of degree n such that $p(1)=0$, then for $0<w \leq n$

$$
\begin{equation*}
\left|p\left(1-\frac{w}{n}\right)\right| \leq \frac{1}{2}\left[1-\left(1-\frac{w}{n}\right)^{n}\right]\left\{M_{0}+M_{\pi}\right\} \tag{8}
\end{equation*}
$$

where M_{α} is defined by (6). The result is the best possible and equality in (8) holds for $p(z)=z^{n}-1$.

The study of mathematical objects associated with Bernstein type inequalities has been very active over the years, many papers are published each year in a variety of journals and different approaches are being employed for different purposes. In
the present article we have come up with the similar type of inequalities, their refined and improved forms. If we restrict ourselves to the class of polynomials having no zero in $|z|<1$, then one would expect, the further developments of the upper bound estimate in (1). In fact, P. Erdös conjectured and later P.D. Lax 8 proved that if $p(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq \frac{n}{2}\|p\| \tag{9}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$. In this connection A. Aziz 2, improved the inequality (5) by showing that if $p(z)$ is a polynomial of degree n having no zero in $|z|<1$, then for every given real α

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq \frac{n}{2}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

where M_{α} is defined by (6) for all real α. The result is the best possible and equality in (10) holds for $p(z)=z^{n}+e^{i \alpha}$. Furthermore, A. Aziz 2 also established that if $p(z)$ is a polynomial of degree n having no zero in $|z|<1$, then for every given real α and $R>1$

$$
\begin{equation*}
\|p(R z)-p(z)\| \leq \frac{R^{n}-1}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right]^{1 / 2} \tag{11}
\end{equation*}
$$

where M_{α} is defined by (6). The result is the best possible and equality in (11) holds for $p(z)=z^{n}+e^{i \alpha}$. By estimating the minimum modulus of $|p(z)|$ on the unit circle inequality (11) was refined and generalized by Ahmad 1. In fact proved the following result.
If $p(z)$ is a polynomial of degree n having all its zero in $|z| \geq 1$ and $m=\min _{|z|=1}|p(z)|$, then for all real λ and $R>r \geq 1$

$$
\begin{equation*}
\|p(R z)-p(r z)\| \leq \frac{R^{n}-r^{n}}{2}\left[M_{\lambda}^{2}+M_{\lambda+\pi}^{2}-2 m^{2}\right]^{1 / 2} \tag{12}
\end{equation*}
$$

where M_{λ} is defined by (6). Just replace argument α of z simply by λ, unless otherwise stated. In the same paper Ahmad 1 also proved that if $p(z)$ is a polynomial of degree n having all its zero in $|z| \geq k \geq 1$ and $m=\min _{|z|=1}|p(z)|$, then for all real λ and $R>r \geq 1$

$$
\begin{equation*}
\|p(R z)-p(r z)\| \leq \frac{R^{n}-r^{n}}{\sqrt{2\left(1+k^{2}\right)}}\left[M_{\lambda}^{2}+M_{\lambda+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}} \tag{13}
\end{equation*}
$$

where M_{λ} is defined by (6).
While establishing the inequality analogous to (11) for the class of polynomials having all zeros in $|z| \leq k, k \leq 1$, M. H. Gulzar 7 proved that if $p(z)$ is a polynomial of degree n having all its zero in $|z| \leq k \leq 1$, then for all real λ and $R>1$

$$
\begin{equation*}
\|p(R z)-p(z)\| \leq \frac{R^{n}-1}{\sqrt{2\left(1+k^{2 n}\right)}}\left[M_{\lambda}^{2}+M_{\lambda+\pi}^{2}\right]^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

where M_{λ} is defined by (6) and $M_{\lambda+\pi}$ is obtained by replacing λ by $\lambda+\pi$ in M_{λ}. While seeking the generalization of (14). Formerly, in the same paper Ahmad 1 proved that if $p(z)$ is a polynomial of degree n having all its zero in $|z| \leq k \leq 1$, then for all real λ and $R>r \geq 1$

$$
\begin{equation*}
\|p(R z)-p(r z)\| \leq \frac{R^{n}-r^{n}}{\sqrt{2\left(1+k^{2 n}\right)}}\left[M_{\lambda}^{2}+M_{\lambda+\pi}^{2}\right]^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

We conclude this section by stating the following result for the case when $p(z)$ has no zero in $|z|<k, k \leq 1$.
If $p(z)$ is a polynomial of degree n and $p(z)$ has no zero in $|z|<k, k \leq 1$, then for every real α and $R>1$

$$
\begin{equation*}
\|p(R z)-p(z)\| \leq \frac{R^{n}-1}{\sqrt{2\left(1+k^{2 n}\right)}}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

provided $\left|\underline{p^{\prime}(z)}\right|$ and $\left|q^{\prime}(z)\right|$ attain maximum at the same point on $|z|=1$, where $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$. The result is best possible and equality in (16) holds for $p(z)=$ $z^{n}+k^{n}$. This result is ascribed to Rather and Shah 13 .

2. Lemmas

Lemma 1. If $p(z)$ is a polynomial of degree n having all its zeros $|z| \leq k \leq 1$, then for all real λ

$$
\left|p^{\prime}(z)\right| \leq \frac{n}{2^{\frac{1}{2}}\left(1+k^{2 n}\right)^{\frac{1}{2}}}\left[M_{\lambda}^{2}+M_{\lambda+\pi}^{2}\right]^{\frac{1}{2}}
$$

This lemma is a special case of the result due to M.H.Gulzar 7 .
Lemma 2. If $P(z)$ is a polynomial of degree n, then for $R \geq 1$

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq R^{n}| | p \|-2 \frac{\left(R^{n}-1\right)}{n+2}\left|a_{0}\right|-\left|a_{1}\right|\left[\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right], \text { for } n>2 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq R^{2}\|p\|-\frac{(R-1)}{2}\left[(R+1)\left|a_{0}\right|+(R-1)\left|a_{1}\right|\right], \text { for } n=2 \tag{18}
\end{equation*}
$$

The above lemma is ascribed to Dewan et.al 5.
Lemma 3. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \geq k \geq 1$, then for $|z|=1$

$$
k\left|p^{\prime}(z)\right| \leq\left|n p(z)-z p^{\prime}(z)\right|-n m
$$

where $m=\min _{|z|=k}|p(z)|$.
Lemma 3 is a special case of a result due to A. Aziz and N. A. Rather 3.

Lemma 4. If $p(z)$ is a polynomial of degree n, then for $|z|=1$ and for every real λ

$$
\left|p^{\prime}(z)\right|^{2}+\left|n p(z)-z p^{\prime}(z)\right|^{2} \leq \frac{n^{2}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right]
$$

The above lemma is due to A.Aziz 2 .
Lemma 5. If $p(z)$ is a polynomial of degree n which has no zeros in $|z|<k, k \geq 1$ and $m=\min _{|z|=k}|p(z)|$ then for every real α

$$
\left\|p^{\prime}\right\| \leq \frac{n}{\sqrt{2\left(1+k^{2}\right)}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right)^{\frac{1}{2}}
$$

where M_{α} is defined by (6).
Lemma 6. If $p(z)$ is a polynomial of degree n which does not vanish in $|z|<k$, $k \leq 1$ and $m=\min _{|z|=k}|p(z)|$, then for $|z|=1$

$$
k^{n}\left\|p^{\prime}\right\|+n m \leq\left\|q^{\prime}\right\|
$$

where $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.
Lemmas 5 and 6 are due to Rather and Shah 13 .

3. Main Results

In this paper we first prove the generalization of inequality (7) which is ascribed to A.Aziz 2. More precisely we prove the following result.
Theorem 1. If $p(z)$ is a polynomial of degree n, then for every real α and $R>$ $\sigma \geq 1$

$$
\begin{aligned}
\|p(R z)-p(\sigma z)\| & \leq \frac{R^{n}-\sigma^{n}}{2}\left[M_{\alpha}+M_{\alpha+\pi}\right]-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n-2}-\sigma^{n-2}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right]
\end{aligned}
$$

for $n>3$
and

$$
\begin{align*}
\|P(R z)-P(\sigma z)\| & \leq \frac{R^{3}-\sigma^{3}}{2}\left[M_{\alpha}+M_{\alpha+\pi}\right]-\left|a_{1}\right|\left(\frac{R^{3}-\sigma^{3}-3(R-\sigma)}{6}\right) \\
& -\left|a_{2}\right|\left[\frac{(R-1)^{3}-(\sigma-1)^{3}}{3}\right], \text { for } n=3, \tag{20}
\end{align*}
$$

where M_{α} is defined by (6) and $M_{\alpha+\pi}$ is obtained by replacing α by $\alpha+\pi$. The result is the best possible and equality in (19) and (20) holds for $p(z)=z^{n}+r e^{i \alpha},-1 \leq$ $r \leq 1$.

Proof. Let $n>3$. Since $p(z)$ is a polynomial of degree $n>3$, therefore $p^{\prime}(z)$ is of degree $n \geq 3$, applying inequality (17) of Lemma 2 we obtain for all $v \geq 1$ and $0 \leq \theta<2 \pi$

$$
\left|p^{\prime}\left(v e^{i \theta}\right)\right| \leq v^{n-1}\left\|p^{\prime}\right\|-2 \frac{\left(v^{n-1}-1\right)}{n+1}\left|a_{1}\right|-2\left|a_{2}\right|\left[\frac{v^{n-1}-1}{n-1}-\frac{v^{n-3}-1}{n-3}\right]
$$

Using inequality (5) we get,
$\left|p^{\prime}\left(v e^{i \theta}\right)\right| \leq \frac{n v^{n-1}}{2}\left(M_{\alpha}+M_{\alpha+\pi}\right)-2 \frac{\left(v^{n-1}-1\right)}{n+1}\left|a_{1}\right|-2\left|a_{2}\right|\left[\frac{v^{n-1}-1}{n-1}-\frac{v^{n-3}-1}{n-3}\right]$.
For each $\theta, 0 \leq \theta<2 \pi$ and $R>\sigma \geq 1$, it follows that

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)-p\left(\sigma e^{i \theta}\right)\right| & =\left|\int_{\sigma}^{R} e^{i \theta} p^{\prime}\left(v e^{i \theta}\right) d v\right| \\
& \leq \int_{\sigma}^{R}\left|p^{\prime}\left(v e^{i \theta}\right)\right| d v \\
& \leq \frac{n\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}{2} \int_{\sigma}^{R} v^{n-1} d v-\frac{2\left|a_{1}\right|}{n+1} \int_{\sigma}^{R}\left(v^{n-1}-1\right) d v \\
& -2\left|a_{2}\right| \int_{\sigma}^{R}\left(\frac{v^{n-1}-1}{n-1}-\frac{v^{n-3}-1}{n-3}\right) d v \\
& =\frac{n\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)}{2} \frac{\left(R^{n}-\sigma^{n}\right)}{n}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{1}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n-2}-\sigma^{n-2}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right]
\end{aligned}
$$

equivalently

$$
\begin{aligned}
\|p(R z)-p(\sigma z)\| & \leq \frac{R^{n}-\sigma^{n}}{2}\left[M_{\alpha}+M_{\alpha+\pi}\right]-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n-2}-\sigma^{n-2}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right] .
\end{aligned}
$$

This is the desired result for $n>3$. Furthermore the case for $n=3$ follows on the same lines but instead of using inequality (17) of Lemma 2 we use inequality (18) of the same Lemma.

Theorem 2. If $p(z)$ is a polynomial of degree n such that $p(1)=0$, then for $0<w \leq n$ and $\alpha=0$

$$
\begin{align*}
\left|p\left(1-\frac{w}{n}\right)\right| & \leq \frac{1}{2}\left[1-\left(1-\frac{w}{n}\right)^{n}\right]\left\{M_{0}+M_{\pi}\right\} \\
& -\frac{2\left|a_{n-1}\right|}{n+1}\left(\frac{1-(1-w / n)^{n}}{n}-\frac{w}{n}(1-w / n)^{n-1}\right) \tag{21}\\
& -2\left|a_{n-2}\right| \chi(w, n), \text { for } n>3
\end{align*}
$$

and

$$
\begin{align*}
\left|p\left(1-\frac{w}{n}\right)\right| & \leq \frac{1}{2}\left[1-\left(1-\frac{w}{n}\right)^{3}\right]\left\{M_{0}+M_{\pi}\right\}-\frac{\left|a_{n-1}\right|}{6}\left(1-\left(1-\frac{w}{3}\right)^{3}-w\left(1-\frac{w}{3}\right)^{2}\right) \\
& -\frac{\left|a_{n-2}\right|}{3}\left(\frac{w}{3}\right)^{3}, \text { for } n=3 \tag{22}
\end{align*}
$$

where

$$
\begin{aligned}
\chi(w, n) & =\left[\frac{1-(1-w / n)^{n}-w(1-w / n)^{n-1}}{n(n-1)}\right. \\
& \left.-\frac{(1-w / n)^{2}-(1-w / n)^{n}-(w-2 w / n)(1-w / n)^{n-1}}{(n-2)(n-3)}\right]
\end{aligned}
$$

and M_{0} is defined by (6). The result is the best possible and equality in (21) holds for $p(z)=z^{n}-1$.

Proof. Case I, $\mathbf{n}>3$: If $t(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$, then $|t(z)|=|p(z)|$ for $|z|=1$ and by the hypothesis we have $t(1)=\overline{p(1)}=0$. On using inequality (19) of Theorem 1 to the polynomial $t(z)$ for $\alpha=0$ and $\sigma=1$, we get for $R>1$

$$
\begin{aligned}
|t(R)| & \leq \frac{R^{n}-1}{2}\left[M_{0}+M_{\pi}\right]-\frac{2\left|a_{n-1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{n-2}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n-2}-\sigma^{n-2}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right] .
\end{aligned}
$$

This gives for $R>1$

$$
\begin{aligned}
|t(1 / R)| & \leq \frac{1}{2}\left(1-R^{-n}\right)\left[M_{0}+M_{\pi}\right]-\frac{2\left|a_{n-1}\right|}{n+1}\left(\frac{1-R^{-n}}{n}-\left(R^{1-n}-R^{-n}\right)\right) \\
& -2\left|a_{n-2}\right|\left[\frac{\left(1-R^{-n}\right)-n\left(R^{1-n}-R^{-n}\right)}{n(n-1)}-\frac{\left(R^{-2}-R^{-n}\right)-(n-2)\left(R^{1-n}-R^{-n}\right)}{(n-2)(n-3)}\right]
\end{aligned}
$$

Since $0<w \leq n$, so that $(1-w / n)^{-1}>1$ and therefore, in particular, replace R by $(1-w / n)^{-1}>1$ and after simplification we have,

$$
\begin{aligned}
\left|p\left(1-\frac{w}{n}\right)\right| & \leq \frac{1}{2}\left[1-\left(1-\frac{w}{n}\right)^{n}\right]\left\{M_{0}+M_{\pi}\right\} \\
& -\frac{2\left|a_{n-1}\right|}{n+1}\left(\frac{1-(1-w / n)^{n}}{n}-\frac{w}{n}(1-w / n)^{n-1}\right) \\
& -2\left|a_{n-2}\right| \chi(w, n),
\end{aligned}
$$

where

$$
\begin{aligned}
\chi(w, n) & =\left[\frac{1-(1-w / n)^{n}-w(1-w / n)^{n-1}}{n(n-1)}\right. \\
& \left.-\frac{(1-w / n)^{2}-(1-w / n)^{n}-(w-2 w / n)(1-w / n)^{n-1}}{(n-2)(n-3)}\right]
\end{aligned}
$$

Case II, $\mathbf{n}=\mathbf{3}$: This can be established identically as above by using inequality (20) of Theorem 1.

Now we present the refinement of inequality (12). Here we are able to prove
Theorem 3. If $p(z)$ is a polynomial of degree $n \geq 3$ having all its zeros in $|z| \geq 1$ and $m=\min _{|z|=1}|p(z)|$, then for all real α and $R>\sigma \geq 1$

$$
\begin{aligned}
\|p(R z)-p(\sigma z)\| & \leq \frac{R^{n}-\sigma^{n}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n-2}-\sigma^{n-2}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right]
\end{aligned}
$$

$$
\begin{equation*}
\text { if } n>3 \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
\|p(R z)-p(\sigma z)\| & \leq \frac{R^{3}-\sigma^{3}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}}-\left|a_{1}\right|\left(\frac{\left(R^{3}-\sigma^{3}\right)-3(R-\sigma)}{6}\right) \\
& -\left|a_{2}\right|\left[\frac{(R-1)^{2}-(\sigma-1)^{3}}{3}\right], \text { if } n=3 \tag{24}
\end{align*}
$$

Proof. Since $p(z)$ has all its zeros in $|z| \geq 1$ and $m=\min _{|z|=1}|p(z)|$, therefore by Lemma 3 with $k=1$, we have for $|z|=1$

$$
\left(\left|p^{\prime}(z)\right|+m n\right)^{2} \leq\left|n p(z)-z p^{\prime}(z)\right|^{2}
$$

. This in conjunction with Lemma 4 gives

$$
\begin{aligned}
\left|p^{\prime}(z)\right|^{2}+\left(\left|p^{\prime}(z)\right|+m n\right)^{2} & \leq\left|p^{\prime}(z)\right|^{2}+\left|n p(z)-z p^{\prime}(z)\right|^{2} \\
& \leq \frac{n^{2}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right]
\end{aligned}
$$

Since we have $\left(\left|p^{\prime}(z)\right|+m n\right)^{2}=\left|p^{\prime}(z)\right|^{2}+(m n)^{2}+2 m n\left|p^{\prime}(z)\right|$.
This gives

$$
\left(\left|p^{\prime}(z)\right|+m n\right)^{2} \geq\left|p^{\prime}(z)\right|^{2}+(m n)^{2}
$$

Therefore, we have

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq \frac{n}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}} \tag{25}
\end{equation*}
$$

Applying inequality (17) of Lemma 2 with $R=s \geq 1$ to the polynomial $p^{\prime}(z)$ which is of degree $n-1$, we obtain for $n>3$

$$
\left|p^{\prime}\left(s e^{i \theta}\right)\right| \leq s^{n-1}\left\|p^{\prime}\right\|-\frac{2\left(s^{n-1}-1\right)}{n+1}\left|a_{1}\right|-2\left|a_{2}\right|\left[\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right]
$$

With the help of inequality (25), we obtain for $n>3$

$$
\left|p^{\prime}\left(s e^{i \theta}\right)\right| \leq \frac{n s^{n-1}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}}-\frac{2\left(s^{n-1}-1\right)}{n+1}\left|a_{1}\right|-2\left|a_{2}\right|\left[\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right] .
$$

Now for each $0 \leq \theta<2 \pi$ and $R>\sigma \geq 1$, we have

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)-p\left(\sigma e^{i \theta}\right)\right| & =\left|\int_{\sigma}^{R} e^{i \theta} p^{\prime}\left(s e^{i \theta}\right) d s\right| \\
& \leq \int_{\sigma}^{R}\left|p^{\prime}\left(s e^{i \theta}\right)\right| d s \\
& \leq \frac{n}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}} \int_{\sigma}^{R} s^{n-1} d s-\frac{2\left|a_{1}\right|}{n+1} \int_{\sigma}^{R}\left(s^{n-1}-1\right) d s \\
& -2\left|a_{2}\right| \int_{\sigma}^{R}\left(\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right) d s \\
& =\frac{R^{n}-\sigma^{n}}{2}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right)^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n}-\sigma^{n}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right]
\end{aligned}
$$

which implies

$$
\begin{aligned}
\|p(R z)-p(\sigma z)\| & \leq \frac{R^{n}-\sigma^{n}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n}-\sigma^{n}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right]
\end{aligned}
$$

This proves the result in case $n>3$. For the case $n=3$, the result follows from similar lines but instead of using inequality (17) of Lemma 2, we use inequality (18) of the same Lemma and this proves the theorem completely.

As a refinement of inequality (13), we prove the following result.
Theorem 4. If $p(z)$ is a polynomial of degree $n \geq 3$ having all its zeros in $|z| \geq$ $k \geq 1$ and $m=\min _{|z|=k}|p(z)|$, then for all real α and $R>\sigma \geq 1$

$$
\begin{aligned}
\|p(R z)-p(\sigma z)\| & \leq \frac{R^{n}-\sigma^{n}}{\sqrt{2\left(1+k^{2}\right)}}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\sigma^{n}}{n}-(R-\sigma)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\sigma^{n}\right)-n(R-\sigma)}{n(n-1)}-\frac{\left(R^{n}-\sigma^{n}\right)-(n-2)(R-\sigma)}{(n-2)(n-3)}\right],
\end{aligned}
$$

$$
\begin{equation*}
\text { if } n>3 \tag{26}
\end{equation*}
$$

and

$$
\begin{align*}
\|p(R z)-p(\sigma z)\| & \leq \frac{R^{3}-\sigma^{3}}{\sqrt{2\left(1+k^{2}\right)}}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}}-\left|a_{1}\right|\left(\frac{\left(R^{3}-\sigma^{3}\right)-3(R-\sigma)}{6}\right) \\
& -\left|a_{2}\right|\left[\frac{(R-1)^{2}-(\sigma-1)^{3}}{3}\right], \text { if } n=3 \tag{27}
\end{align*}
$$

where M_{α} is defined by (6).
Proof. The proof of this theorem follows easily on using arguments similar to that used in the proof of Theorem 3 but instead of using inequality (25) we use Lemma 5 . We omit the details.

Next we establish the upper bound estimate for $\|p(R z)-p(\xi z)\|$ and thereby prove the following improvement of inequality (15).

Theorem 5. Let $p(z)$ be a polynomial of degree $n \geq 3$ having all its zeros in $|z| \leq k$, $k \leq 1$, then for all real α and $R>\xi \geq 1$

$$
\begin{aligned}
\|p(R z)-p(\xi z)\| & \leq \frac{R^{n}-\xi^{n}}{\sqrt{2\left(1+k^{2 n}\right)}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\xi^{n}}{n}-(R-\xi)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\xi^{n}\right)-n(R-\xi)}{n(n-1)}-\frac{\left(R^{n-2}-\xi^{n-2}\right)-(n-2)(R-\xi)}{(n-2)(n-3)}\right]
\end{aligned}
$$

for $n>3$
and

$$
\begin{align*}
\|p(R z)-p(\xi z)\| & \leq \frac{R^{3}-\xi^{3}}{\sqrt{2\left(1+k^{6}\right)}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}-\left|a_{1}\right|\left(\frac{\left(R^{3}-\xi^{3}\right)-3(R-\xi)}{6}\right) \\
& -\left|a_{2}\right|\left[\frac{(R-1)^{3}-(\xi-1)^{3}}{3}\right], \text { for } n=3 \tag{29}
\end{align*}
$$

Proof. Let $n>3$. Since $p(z)$ is a polynomial of degree $n>3$, it follows that $p^{\prime}(z)$ is a polynomial of degree $n \geq 3$. Hence applying inequality (17) of Lemma 2 to the polynomial $p^{\prime}(z)$ with $k=s \geq 1$, we have for $n>3$

$$
\left|p^{\prime}\left(s e^{i \theta}\right)\right| \leq s^{n-1}\left\|p^{\prime}\right\|-2 \frac{\left(s^{n}-1\right)}{n+1}\left|a_{1}\right|-2\left|a_{2}\right|\left[\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right]
$$

This gives with the help of Lemma 1,

$$
\left|p^{\prime}\left(s e^{i \theta}\right)\right| \leq s^{n-1}\left[\frac{n}{2^{\frac{1}{2}}\left(1+k^{2 n}\right)^{\frac{1}{2}}}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right]^{\frac{1}{2}}\right]-2 \frac{\left(s^{n}-1\right)}{n+1}\left|a_{1}\right|-2\left|a_{2}\right|\left[\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right] .
$$

Hence for each $\theta, 0 \leq \theta<2 \pi$ and $R>\xi \geq 1$

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)-p\left(\xi e^{i \theta}\right)\right| & =\left|\int_{\xi}^{R} e^{i \theta} p^{\prime}\left(s e^{i \theta}\right) d s\right| \\
& \leq \int_{\xi}^{R}\left|p^{\prime}\left(s e^{i \theta}\right)\right| d s \\
& \leq \frac{n\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}}{\sqrt{2}\left(1+k^{2 n}\right)^{\frac{1}{2}}} \int_{\xi}^{R} s^{n-1} d s-\frac{2\left|a_{1}\right|}{n+1} \int_{\xi}^{R}\left(s^{n-1}-1\right) d s \\
& -2\left|a_{2}\right| \int_{\xi}^{R}\left(\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right) d s \\
& =\frac{n\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}}{\sqrt{2}\left(1+k^{2 n}\right)^{\frac{1}{2}}} \frac{\left(R^{n}-\xi^{n}\right)}{n}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\xi^{n}}{n}-(R-\xi)\right) \\
& -2\left|a_{1}\right|\left[\frac{\left(R^{n}-\xi^{n}\right)-n(R-\xi)}{n(n-1)}-\frac{\left(R^{n-2}-\xi^{n-2}\right)-(n-2)(R-\xi)}{(n-2)(n-3)}\right] .
\end{aligned}
$$

This implies,

$$
\begin{aligned}
\|p(R z)-p(\xi z)\| & \leq \frac{R^{n}-\xi^{n}}{\sqrt{2}\left(1+k^{2 n}\right)^{\frac{1}{2}}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\xi^{n}}{n}-(R-\xi)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\xi^{n}\right)-n(R-\xi)}{n(n-1)}-\frac{\left(R^{n-2}-\xi^{n-2}\right)-(n-2)(R-\xi)}{(n-2)(n-3)}\right]
\end{aligned}
$$

This is the desired result for the case $n>3$. For $n=3$, using inequality (18) of Lemma 2 with $k=s \geq 1$ to the polynomial $p^{\prime}(z)$ we obtain

$$
\left|p^{\prime}\left(s e^{i \theta}\right)\right| \leq s^{2}\left\|p^{\prime}\right\|-\frac{(s-1)}{2}\left[(s+1)\left|a_{1}\right|+(s-1)\left|a_{2}\right|\right] .
$$

As before, again this gives with the help of Lemma 1 that

$$
\left|p^{\prime}\left(s e^{i \theta}\right)\right| \leq s^{2} \frac{3}{\sqrt{2}\left(1+k^{6}\right)^{\frac{1}{2}}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}-\frac{(s-1)}{2}\left[(s+1)\left|a_{1}\right|+(s-1)\left|a_{2}\right|\right] .
$$

Now for each $\theta, 0 \leq \theta<2 \pi$ and $R>\xi \geq 1$

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)-p\left(\xi e^{i \theta}\right)\right| & \leq \int_{\xi}^{R}\left|p^{\prime}\left(s e^{i \theta}\right)\right| d s \\
& \leq \int_{\xi}^{R}\left[\frac{3\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}}{\sqrt{2}\left(1+k^{6}\right)^{\frac{1}{2}}} s^{2}-\frac{s^{2}-1}{2}\left|a_{1}\right|-(s-1)^{2}\left|a_{2}\right|\right] d s \\
& =\frac{3\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}}{\sqrt{2}\left(1+k^{6}\right)^{\frac{1}{2}}} \frac{R^{3}-\xi^{3}}{3}-\frac{1}{2}\left[\frac{R^{3}-\xi^{3}}{3}-(R-\xi)\right]\left|a_{1}\right| \\
& -\left[\frac{(R-1)^{3}-(\xi-1)^{3}}{3}\right]\left|a_{2}\right|
\end{aligned}
$$

i.e,

$$
\begin{aligned}
\|p(R z)-p(\xi z)\| & \leq \frac{R^{3}-\xi^{3}}{2^{\frac{1}{2}}\left(1+k^{6}\right)^{\frac{1}{2}}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right)^{\frac{1}{2}}-\left|a_{1}\right|\left(\frac{\left(R^{3}-\xi^{3}\right)-3(R-\xi)}{6}\right) \\
& -\left|a_{2}\right|\left[\frac{(R-1)^{3}-(\xi-1)^{3}}{3}\right]
\end{aligned}
$$

This proves the theorem for the case $n=3$.
Finally we present the refinement and generalization for the upper bound of inequality (16). More precisely we prove the following result.

Theorem 6. Let $p(z)$ be a polynomial of degree $n \geq 3$ which has no zeros in $|z|<k$, $k \leq 1$ and $m=\min _{|z|=k}|p(z)|$ then for all real α and $R>\xi \geq 1$

$$
\begin{aligned}
\|p(R z)-p(\xi z)\| & \leq \frac{R^{n}-\xi^{n}}{\sqrt{2\left(1+k^{2 n}\right)}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right)^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\xi^{n}}{n}-(R-\xi)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\xi^{n}\right)-n(R-\xi)}{n(n-1)}-\frac{\left(R^{n-2}-\xi^{n-2}\right)-(n-2)(R-\xi)}{(n-2)(n-3)}\right]
\end{aligned}
$$

$$
\begin{equation*}
\text { if } n>3 \tag{30}
\end{equation*}
$$

and

$$
\begin{align*}
\|p(R z)-p(\xi z)\| & \leq \frac{R^{3}-\xi^{3}}{\sqrt{2\left(1+k^{6}\right)}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right)^{\frac{1}{2}}-\left|a_{1}\right|\left(\frac{\left(R^{3}-\xi^{3}\right)-3(R-\xi)}{6}\right) \\
& -\left|a_{2}\right|\left[\frac{(R-1)^{3}-(\xi-1)^{3}}{3}\right], \text { if } n=3 \tag{31}
\end{align*}
$$

provided $\left|\underline{p^{\prime}(z)}\right|$ and $\left|q^{\prime}(z)\right|$ attain maximum at the same point on $|z|=1$, where $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$. The result is best possible and equality in (30) holds for $p(z)=$ $z^{n}+k^{n}$.
Proof. Since $q(z)=z^{n} \overline{p\left(\frac{1}{z}\right)}$, therefore,

$$
\left|q^{\prime}(z)\right|=\left|n p(z)-z p^{\prime}(z)\right| \text { for }|z|=1
$$

By hypothesis $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$ attain maximum at the same point on $|z|=1$. If we consider

$$
\max _{|z|=1}\left|p^{\prime}(z)\right|=\left|p\left(e^{i \alpha}\right)\right|, \quad 0 \leq \alpha<2 \pi
$$

then it is clear that,

$$
\max _{|z|=1}\left|q^{\prime}(z)\right|=\left|q\left(e^{i \alpha}\right)\right|, 0 \leq \alpha<2 \pi
$$

Since $p(z)$ does not vanish in $|z|<k, k \leq 1$ and $m=\min _{|z|=k}|p(z)|$. Therefore by Lemma 6 and by using above maximum values of $\left|p^{\prime}(z)\right|$ and $\left|q^{\prime}(z)\right|$, we get

$$
\left(k^{n}\left|p^{\prime}\left(e^{i \alpha}\right)\right|+n m\right)^{2} \leq\left|q^{\prime}\left(e^{i \alpha}\right)\right|^{2}
$$

This gives with the help of Lemma 4

$$
\begin{gathered}
\left|p^{\prime}\left(e^{i \alpha}\right)\right|^{2}+\left(k^{n}\left|p^{\prime}\left(e^{i \alpha}\right)\right|+n m\right)^{2} \leq\left|p^{\prime}\left(e^{i \alpha}\right)\right|^{2}+\left|q^{\prime}\left(e^{i \alpha}\right)\right|^{2} \\
\frac{n^{2}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right]
\end{gathered}
$$

Since

$$
\left(k^{n}\left|p^{\prime}\left(e^{i \alpha}\right)\right|+n m\right)^{2} \geq k^{2 n}\left|p^{\prime}\left(e^{i \alpha}\right)\right|^{2}+n^{2} m^{2}
$$

Consequently,

$$
\left|p^{\prime}\left(e^{i \alpha}\right)\right|^{2}+k^{2 n}\left|p^{\prime}\left(e^{i \alpha}\right)\right|^{2}+n^{2} m^{2} \leq \frac{n^{2}}{2}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}\right]
$$

Equivalently,

$$
\left|p^{\prime}\left(e^{i \alpha}\right)\right|^{2} \leq \frac{n^{2}}{2\left(1+k^{2}\right)}\left[M_{\lambda}^{2}+M_{\lambda+\pi}^{2}-2 m^{2}\right]
$$

and therefore, we have

$$
\begin{equation*}
\left\|p^{\prime}\right\| \leq \frac{n}{\sqrt{2\left(1+k^{2 n}\right)}}\left[M_{\lambda}^{2}+M_{\lambda+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}} \tag{32}
\end{equation*}
$$

Since $p(z)$ is a polynomial of degree $n>3$, it follows that $p^{\prime}(z)$ is a polynomial of degree $n \geq 3$. Hence applying inequality (17) of Lemma 2 to the polynomial $p^{\prime}(z)$ with $k=s \geq 1$, we have for $n>3$

$$
\left|p^{\prime}\left(s e^{i \theta}\right)\right| \leq s^{n-1}\left\|p^{\prime}\right\|-2 \frac{\left(s^{n-1}-1\right)}{n+1}\left|a_{1}\right|-2\left|a_{2}\right|\left[\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right]
$$

This in conjunction with (32) gives,

$$
\begin{aligned}
\left|p^{\prime}\left(s e^{i \theta}\right)\right| & \leq s^{n-1}\left[\frac{n}{\sqrt{2\left(1+k^{2 n}\right)}}\left[M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right]^{\frac{1}{2}}\right]-2 \frac{\left(s^{n-1}-1\right)}{n+1}\left|a_{1}\right| \\
& -2\left|a_{2}\right|\left[\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right]
\end{aligned}
$$

Hence for each $\theta, 0 \leq \theta<2 \pi$ and $R>\xi \geq 1$

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)-p\left(\xi e^{i \theta}\right)\right| & =\left|\int_{\xi}^{R} e^{i \theta} p^{\prime}\left(s e^{i \theta}\right) d s\right| \\
& \leq \int_{\xi}^{R}\left|p^{\prime}\left(s e^{i \theta}\right)\right| d s \\
& \leq \frac{n\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right)^{\frac{1}{2}}}{\sqrt{2\left(1+k^{2 n}\right)}} \int_{\xi}^{R} s^{n-1} d s-\frac{2\left|a_{1}\right|}{n+1} \int_{\xi}^{R}\left(s^{n-1}-1\right) d s \\
& -2\left|a_{2}\right| \int_{\xi}^{R}\left(\frac{s^{n-1}-1}{n-1}-\frac{s^{n-3}-1}{n-3}\right) d s \\
& =\frac{n\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right)^{\frac{1}{2}}}{\sqrt{2\left(1+k^{2 n}\right)}} \frac{\left(R^{n}-\xi^{n}\right)}{n}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\xi^{n}}{n}-(R-\xi)\right) \\
& -2\left|a_{1}\right|\left[\frac{\left(R^{n}-\xi^{n}\right)-n(R-\xi)}{n(n-1)}-\frac{\left(R^{n-2}-\xi^{n-2}\right)-(n-2)(R-\xi)}{(n-2)(n-3)}\right]
\end{aligned}
$$

This implies,

$$
\begin{aligned}
\|p(R z)-p(\xi z)\| & \leq \frac{R^{n}-\xi^{n}}{\sqrt{2\left(1+k^{2 n}\right)}}\left(M_{\alpha}^{2}+M_{\alpha+\pi}^{2}-2 m^{2}\right)^{\frac{1}{2}}-\frac{2\left|a_{1}\right|}{n+1}\left(\frac{R^{n}-\xi^{n}}{n}-(R-\xi)\right) \\
& -2\left|a_{2}\right|\left[\frac{\left(R^{n}-\xi^{n}\right)-n(R-\xi)}{n(n-1)}-\frac{\left(R^{n-2}-\xi^{n-2}\right)-(n-2)(R-\xi)}{(n-2)(n-3)}\right]
\end{aligned}
$$

This proves inequality (30). For the proof of inequality (31), we use inequality (18) of Lemma 2 rather than inequality (17) of the same Lemma.

Author Contribution Statements The authors have made substantial contributions to the analysis and interpretation of the results and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments The authors are extremely thankful to the referees and editors for their valuable suggestions which made this paper much improved.

References

[1] Ahmad, I., Some generalizations of Bernstein type inequalities, Int. J. Modern Math. Sci., 4(3) (2012), 133-138.
[2] Aziz, A., A refinement of an inequality of S. Bernstein, J. Math. Anal. Appl., 144 (1989), 226-235. https://doi.org/10.1016/0022-247X(89)90370-3
[3] Aziz, A., Rather, N. A., New L^{q} inequalities for polynomials, Mathematical Inequalities and Applications, 2 (1998), 177-191.
[4] Bernstein, S. N., ÉMales Et La Meilleure Approximation Des Fonctions Analytiques D'une Variable RÉElle, Gauthier-Villars, Paris, 1926.
[5] Dewan, K. K., Kaur, J., Mir, A., Inequalities for the derivative of a polynomial, J. Math. Anal. Appl., 269 (2002), 489-499. https://doi.org/10.1016/S0022-247X(02)00030-6
[6] Frappier, C., Rahman, Q. I., Ruscheweyh, St., New inequalities for polynomials, Trans. Amer. Math. Soc., 288 (1985), 69-99. https://doi.org/10.2307/2000427
[7] Gulzar, M. H., Inequalities for a polynomial and its derivative, International Journal of Mathematical Archive, 3(2) (2012), 528-533.
[8] Lax, P. D., Proof of a conjecture of P. Erdös on the derivatives of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
[9] Marden, M., Geometry of Polynomials, Second Edition, Mathematical Surveys, Amer. Math. Soc. Providence R.I. 1996.
[10] Milovanović, G. V., Mitrinović, D. S., Rassias, Th.M., Topics in Polynomials Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[11] Pólya, G., Szegö, G., Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin, 1925.
[12] Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[13] Rather, N. A., Shah, M. A., On the derivative of a polynomial, Applied Mathematics, 3 (2012), 746-749. http://dx.doi.org/10.4236/am.2012.37110
[14] Riesz, M., Eine trigonometrische interpolation formel und einige Ungleichung für Polynome, Jahresber. Dtsch. Math. Verein, 23 (1914), 354-368.
[15] Riesz, M., Über einen Sat'z des Herrn Serge Bernstein, Acta Math., 40 (1916), 337-347.
http://communications.science.ankara.edu.tr

α-SASAKIAN, β-KENMOTSU AND TRANS-SASAKIAN STRUCTURES ON THE TANGENT BUNDLE

Haşim CAYIR ${ }^{1}$ and Tarana SULTANOVA ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200 Giresun, TURKEY
${ }^{2}$ Department Algebra and Geometry, Baku State University, AZ1141
Baku, AZERBAIJAN

Abstract

This paper consists of two main sections. In the first part, we give some general information about the almost contact manifold, α-Sasakian, β-Kenmotsu and Trans-Sasakian Structures on the manifolds. In the second part, these structures were expressed on the tangent bundle with the help of lifts and the most general forms were tried to be obtained.

1. Introduction

1.1. Lifts of Vector Fields.

Definition 1. Let M^{n} be an n-dimensional differentiable manifold of class C^{∞} and let $T_{p}\left(M^{n}\right)$ be the tangent space of M^{n} at a point p of M^{n}. Then the set [12]

$$
\begin{equation*}
T\left(M^{n}\right)=\underset{p \in M^{n}}{\cup} T_{p}\left(M^{n}\right) \tag{1}
\end{equation*}
$$

is called the tangent bundle over the manifold M^{n}.
For any point \tilde{p} of $T\left(M^{n}\right)$, the correspondence $\tilde{p} \rightarrow p$ determines the bundle projection $\pi: T\left(M^{n}\right) \rightarrow M^{n}$, Thus $\pi(\tilde{p})=p$, where $\pi: T\left(M^{n}\right) \rightarrow M^{n}$ defines the bundle projection of $T\left(M^{n}\right)$ over M^{n}. The set $\pi^{-1}(p)$ is called the fibre over $p \in M^{n}$ and M^{n} the base space.

[^3]1.1.1. Vertical Lifts. If f is a function in M^{n}, we write f^{v} for the function in $T\left(M^{n}\right)$ obtained by forming the composition of $\pi: T\left(M^{n}\right) \rightarrow M^{n}$ and $f: M^{n} \rightarrow R$, so that
\[

$$
\begin{equation*}
f^{v}=f o \pi . \tag{2}
\end{equation*}
$$

\]

Thus, if a point $\tilde{p} \in \pi^{-1}(U)$ has induced coordinates $\left(x^{h}, y^{h}\right)$, then

$$
\begin{equation*}
f^{v}(\tilde{p})=f^{v}(\sigma, \theta)=f o \pi(\tilde{p})=f(p)=f(\sigma) \tag{3}
\end{equation*}
$$

Thus the value of $f^{v}(\tilde{p})$ is constant along each fibre $T_{p}\left(M^{n}\right)$ and equal to the value $f(p)$. We call f^{v} the vertical lift of $f 12$.

Let $\sigma \in \Im_{0}^{1}\left(T\left(M^{n}\right)\right)$ be such that $\sigma f^{v}=0$ for all $f \in \Im_{0}^{0}\left(M^{n}\right)$. Then we say that σ is a vertical vector field. Let $\left[\begin{array}{c}\sigma^{h} \\ \sigma^{\bar{h}}\end{array}\right]$ be components of σ with respect to the induced coordinates. Then σ is vertical if and only if its components in $\pi^{-1}(U)$ satisfy

$$
\left[\begin{array}{c}
\sigma^{h} \tag{4}\\
\sigma^{\bar{h}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\sigma^{\bar{h}}
\end{array}\right] .
$$

Suppose that $\sigma \in \Im_{0}^{1}\left(M^{n}\right)$, so that is a vector field in M^{n}. We define a vector field σ^{v} in $T\left(M^{n}\right)$ by

$$
\begin{equation*}
\sigma^{v}(\iota \zeta)=(\zeta \sigma)^{v} \tag{5}
\end{equation*}
$$

ζ being an arbitrary 1 -form in M^{n}. We cal σ^{v} the vertical lift of $\sigma 12$.
Let $\zeta \in \Im_{1}^{0}\left(T\left(M^{n}\right)\right)$ be such that $\zeta(\sigma)^{v}=0$ for all $\sigma \in \Im_{0}^{1}\left(M^{n}\right)$. Then we say that ζ is a vertical 1 -form in $T\left(M^{n}\right)$. We define the vertical lift ζ^{v} of the 1 -form ζ by

$$
\begin{equation*}
\zeta^{v}=\left(\zeta_{i}\right)^{v}\left(d x^{i}\right)^{v} \tag{6}
\end{equation*}
$$

in each open set $\pi^{-1}(U)$, where $\left(U ; x^{h}\right)$ is coordinate neighbourhood in M^{n} and ζ is given by $\zeta=\zeta_{i} d x^{i}$ in U. The vertical lift ζ^{v} with local expression $\zeta=\zeta_{i} d x^{i}$ has components of the form

$$
\begin{equation*}
\zeta^{v}:\left(\zeta^{i}, 0\right) \tag{7}
\end{equation*}
$$

with respect to the induced coordinates in $T\left(M^{n}\right)$.
Vertical lift has the following formulas 10, 12 :

$$
\begin{align*}
(f \sigma)^{v} & =f^{v} \sigma^{v}, I^{v} \sigma^{v}=0, \eta^{v}\left(\sigma^{v}\right)=0 \tag{8}\\
(f \eta)^{v} & =f^{v} \eta^{v}, \quad\left[\sigma^{v}, \theta^{v}\right]=0, \varphi^{v} \sigma^{v}=0 \\
\sigma^{v} f^{v} & =0, \sigma^{v} f^{v}=0
\end{align*}
$$

hold good, where $f \in \Im_{0}^{0}\left(M_{n}^{n}\right), \sigma, \theta \in \Im_{0}^{1}\left(M_{n}^{n}\right), \eta \in \Im_{1}^{0}\left(M_{n}^{n}\right), \varphi \in \Im_{1}^{1}\left(M_{n}^{n}\right), I=$ $i d_{M_{n}^{n}}$.
1.1.2. Complete Lifts. If f is a function in M^{n}, we write f^{c} for the function in $T\left(M^{n}\right)$ defined by

$$
\begin{equation*}
f^{c}=\iota(d f) \tag{9}
\end{equation*}
$$

and call f^{c} the comple lift of f. The complete lift f^{c} has the local expression

$$
\begin{equation*}
f^{c}=y^{i} \partial_{i} f=\partial f \tag{10}
\end{equation*}
$$

with respect to the induced coordinates in $T\left(M^{n}\right)$, where ∂f denotes $y^{i} \partial_{i} f$.
Suppose that $\sigma \in \Im_{0}^{1}\left(M^{n}\right)$. We define a vector field σ^{c} in $T\left(M^{n}\right)$ by

$$
\begin{equation*}
\sigma^{c} f^{c}=(\sigma f)^{c}, \tag{11}
\end{equation*}
$$

f being an arbitrary function in M^{n} and call σ^{c} the complete lift of σ in $T\left(M^{n}\right)$ 3, 12. The complete lift σ^{c} with components x^{h} in M^{n} has components

$$
\begin{equation*}
\sigma^{c}=\binom{\sigma^{h}}{\partial \sigma^{h}} \tag{12}
\end{equation*}
$$

with respect to the induced coordinates in $T\left(M^{n}\right)$.
Suppose that $\zeta \in \Im_{1}^{0}\left(M^{n}\right)$, then a 1 -form ζ^{c} in $T\left(M^{n}\right)$ defined by

$$
\begin{equation*}
\zeta^{c}\left(\sigma^{c}\right)=(\zeta \sigma)^{c} \tag{13}
\end{equation*}
$$

σ being an arbitrary vector field in M^{n}. We call ζ^{c} the complete lift of ζ. The complete lift ζ^{c} of ζ with components ζ_{i} in M^{n} has components of the form

$$
\begin{equation*}
\zeta^{c}:\left(\partial \zeta_{i,} \zeta_{i}\right) \tag{14}
\end{equation*}
$$

according to the induced coordinates in $T\left(M^{n}\right) 3$.

$$
\begin{align*}
\sigma^{c} f^{v} & =(\sigma f)^{v}, \eta^{v}\left(\sigma^{c}\right)=(\eta(\sigma))^{v} \tag{15}\\
(f \sigma)^{c} & =f^{c} \sigma^{v}+f^{v} \sigma^{c}=(\sigma f)^{c}, \\
\sigma^{v} f^{c} & =(\sigma f)^{v}, \varphi^{v} \sigma^{c}=(\varphi \sigma)^{v} \\
\varphi^{c} \sigma^{v} & =(\varphi \sigma)^{v},(\varphi \sigma)^{c}=\varphi^{c} \sigma^{c}, \\
\eta^{v}\left(\sigma^{c}\right) & =(\eta(\sigma))^{c}, \eta^{c}\left(\sigma^{v}\right)=(\eta(\sigma))^{v}, \\
{\left[\sigma^{v}, \theta^{c}\right] } & =[\sigma, \theta]^{v}, I^{c}=I, I^{v} \sigma^{c}=\sigma^{v}, \quad\left[\sigma^{c}, \theta^{c}\right]=[\sigma, \theta]^{c}
\end{align*}
$$

1.2. Almost Contact Manifolds. An almost contact manifold is an odd-dimensional C^{∞} manifold whose structural group can be reduced to $U(x) \times 1$. This is equivalent to the existence of a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1 -form η satisfying $\phi^{2}=-I+\eta \otimes \xi$ and $\eta(\xi)=1$. From these conditions one can deduce that $\phi \xi=0$ and $\eta \circ \phi=0$. A Riemannian metric g is compatible with these structure tensors if

$$
\begin{equation*}
g(\phi \sigma, \phi \theta)=g(\sigma, \theta)-\eta(\sigma) \eta(\theta) \tag{16}
\end{equation*}
$$

and we refer to an almost contact metric structure (ϕ, ξ, η, g). Note also that $\eta(\sigma)=g(\sigma, \xi)$.

Let M^{n} be an almost contact manifold and define an almost complex structure J on $M^{n} \times R$ by

$$
\begin{equation*}
J\left(\sigma, f \frac{d}{d t}\right)=\left(\phi \sigma-f \xi, \eta(\sigma) \frac{d}{d t}\right) . \tag{17}
\end{equation*}
$$

A Sasakian manifold is a normal contact metric manifold. It is well known that the Sasakian condition may be expressed as an almost contact metric structure satisfying

$$
\begin{equation*}
\left(\nabla_{\sigma} \phi\right) \theta=g(\sigma, \theta) \xi-\eta(\theta) \sigma \tag{18}
\end{equation*}
$$

again see e.g. 1.

2. α-Sasakian and β-Kenmotsu structures on the tangent bundle

A α-Sasakian structure 6 which may be defined by the requirement

$$
\begin{equation*}
(\nabla \sigma \phi) \theta=\alpha(g(\sigma, \theta) \xi-\eta(\theta) \sigma) \tag{19}
\end{equation*}
$$

where α is a non-zero constant. Setting $\theta=\xi$ in this formula, one readily obtains

$$
\begin{equation*}
\nabla_{\sigma} \xi=-\alpha \phi \sigma \tag{20}
\end{equation*}
$$

Theorem 1. Let a vector field ξ, ϕ be a tensor field of type (1,1), 1-form η satisfying $\phi^{2}=-I+\eta \otimes \xi$ i.e. $\eta(\xi)=1, \phi \xi=0$ and $\eta \circ \phi=0$. $A \alpha-$ Sasakian structure on tangent bundle defined by

$$
\left(\nabla_{\sigma^{c}}^{c} \phi^{c}\right) \theta^{c}=\alpha\left((g(\sigma, \theta))^{V} \xi^{C}+(g(\sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C} \sigma^{V}-(\eta(\theta))^{V} \sigma^{C}\right)
$$

where g is a Riemannian metric, α is a non-zero constant. In addition, if we put $\theta=\xi$, we get

$$
\nabla_{\sigma^{C}}^{C} \xi^{C}=-\alpha \phi^{C} \sigma^{C}
$$

Proof. From (19), we get the α-Sasakian structure on the bundle

$$
\begin{aligned}
\left(\nabla_{\sigma^{c}}^{c} \phi^{c}\right) \theta^{c} & =\nabla_{\sigma^{C}}^{C} \phi^{c} \theta^{C}-\phi^{C} \nabla_{\sigma^{C}}^{C} \theta^{C} \\
& =\alpha\left((g(\sigma, \theta))^{V} \xi^{C}+(g(\sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C} \sigma^{V}-(\eta(\theta))^{V} \sigma^{C}\right)
\end{aligned}
$$

If we put $\theta=\xi$, we get

$$
\begin{aligned}
\left(\nabla_{\sigma^{C}}^{C} \phi^{C}\right) \xi^{C} & =\nabla_{\sigma^{C}}^{C} \phi^{C} \xi^{C}-\phi^{C} \nabla_{\sigma^{C}}^{C} \xi^{C} \\
& =-\phi^{C} \nabla_{\sigma^{C}}^{C} \xi^{C} \\
& =\alpha\left(\eta(\sigma)^{V} \xi^{C}+(\eta(\sigma))^{C} \xi^{V}-(\eta(\xi))^{C} \sigma^{V}-\left(\eta(\xi)^{V} \sigma^{C}\right)\right. \\
& =\alpha\left((\eta(\sigma))^{V} \xi^{C}+(\eta(\sigma))^{C} \xi^{V}-\sigma^{C}\right) \\
-\phi^{C} \nabla_{\sigma^{C}}^{C} \xi^{C} & =\alpha\left(\phi^{C}\right)^{2} \sigma^{C} \\
\nabla_{\sigma^{C}}^{C} \xi^{C} & =-\alpha \phi^{C} \sigma^{C}
\end{aligned}
$$

In particular the almost contact metric structure in this case satisfies

$$
\begin{equation*}
\left(\nabla{ }_{\sigma} \phi\right) \theta=g(\phi \sigma, \theta) \xi-\eta(\theta) \phi \sigma \tag{21}
\end{equation*}
$$

and an almost contact metric manifold satisfying this condition is called a Kenmotsu manifold 6, 7. Again one has the more general notion of a β-Kenmotsu structure 6 which may be defined by

$$
\begin{equation*}
\left(\nabla_{\sigma} \phi\right) \theta=\beta(g(\phi \sigma, \theta) \xi-\eta(\theta) \phi \sigma) \tag{22}
\end{equation*}
$$

where β is a non-zero constant. From the condition one may readily deduce that

$$
\begin{equation*}
\nabla_{\sigma} \xi=\beta(\sigma-\eta(\sigma) \xi) \tag{23}
\end{equation*}
$$

Theorem 2. Let ϕ be a tensor field of type (1,1), a vector field ξ, 1 -form η satisfying $\phi^{2}=-I+\eta \otimes \xi$ i.e. $\eta(\xi)=1, \phi \xi=0$ and $\eta \circ \phi=0$. $A \beta-$ Kenmotsu structure on tangent bundle defined by
$((\nabla \sigma \phi) \theta)^{C}=\beta\left((g(\phi \sigma, \theta))^{V} \xi^{C}+(g(\phi \sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C}(\phi \sigma)^{V}-(\eta(\theta))^{V}(\phi \sigma)^{C}\right)$,
where g is a Riemannian metric, β is a non-zero constant. In addition, if we put $\theta=\xi$, we get

$$
\begin{equation*}
\nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left(\sigma^{C}-((\eta(\sigma)) \xi)^{C}\right) \tag{24}
\end{equation*}
$$

Proof. From (22), we get the β-Kenmotsu structure on the bundle

$$
\begin{aligned}
\left(\left(\nabla_{\sigma} \phi\right) \theta\right)^{C} & =\nabla_{\sigma^{C}}^{C} \phi^{C} \theta^{C}-\phi^{C} \nabla_{\sigma^{C}}^{C} \theta^{C} \\
& =\beta\left((g(\phi \sigma, \theta))^{V} \xi^{C}+(g(\phi \sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C}(\phi \sigma)^{V}-(\eta(\theta))^{V}(\phi \sigma)^{C}\right)
\end{aligned}
$$

If we put $\theta=\xi$, we get
$-\phi^{C} \nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left((\eta(\phi \sigma))^{V} \xi^{C}+(\eta(\phi \sigma))^{C} \xi^{V}-(\eta(\xi))^{C}(\phi \sigma)^{V}-(\eta(\xi))^{V}(\phi \sigma)^{C}\right)$
$-\phi^{C} \nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left(-(\phi \sigma)^{C}+(\eta(\phi \sigma))^{V} \xi^{C}+(\eta(\phi \sigma))^{C} \xi^{V}\right)$ $\phi^{2} \nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left((\phi \sigma)^{C}-(\eta(\phi \sigma))^{V} \xi^{C}-(\eta(\phi \sigma))^{C} \xi^{V}\right)$
$\phi \nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left(\phi^{C} \sigma^{C}-\eta^{V}\left(\phi^{C} \sigma^{C}\right) \xi^{C}-\eta^{C}\left(\phi^{C} \sigma^{C}\right) \xi^{V}\right)$ $\nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left(\sigma^{C}-\left(\eta^{V} \sigma^{C}\right) \xi^{C}-\left(\eta^{C} \sigma^{C}\right) \xi^{V}\right)$ $\nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left(\sigma^{C}-(\eta \sigma)^{V} \xi^{C}-(\eta \sigma)^{C} \xi^{V}\right)$ $\nabla_{\sigma^{C}}^{C} \xi^{C}=\beta\left(\sigma^{C}-((\eta(\sigma)) \xi)^{C}\right)$

3. Trans-SASAKIAN MANIFOLDS ON THE TANGENT BUNDLE

An almost contact metric structure (ϕ, ξ, η, g) on M^{n} is trans-Sasakian 9 if $\left(M^{n} \times R, J, G\right)$ belongs to the class W_{4}, where J is the almost complex structure on $M^{n} \times R$ defined by (17) and G is the product metric on $M^{n} \times R$. This expressed by the condition

$$
\begin{equation*}
\left(\nabla{ }_{\sigma} \phi\right) \theta=\alpha(g(\sigma, \theta) \xi-\eta(\theta) \sigma)+\beta(g(\phi \sigma, \theta) \xi-\eta(\theta) \phi \sigma) \tag{25}
\end{equation*}
$$

for functions α and β on M^{n}, and we shall say that the trans-Sasakian structure is of type (α, β); in particular, it is normal and it generalizes both $\alpha-$ Sasakian and $\beta-$ Kenmotsu structures. From the formula one obtain

$$
\begin{gather*}
\nabla_{\sigma} \xi=-\alpha \phi \sigma+\beta(\sigma-\eta(\sigma) \xi) \tag{26}\\
\left(\nabla_{\sigma} \eta\right)(\theta)=-\alpha g(\phi \sigma, \theta)+\beta(g(\sigma, \theta)-\eta(\sigma) \eta(\theta)) \tag{27}
\end{gather*}
$$

$$
\begin{equation*}
\left(\nabla{ }_{\sigma} \phi\right)(\theta, Z)=\alpha(g(\sigma, Z) \eta(\theta)-g(\sigma, \theta) \eta(Z))-\beta(g(\sigma, \phi Z) \eta(\theta)-g(\sigma, \phi \theta) \eta(Z)) \tag{28}
\end{equation*}
$$

where ϕ is the fundamental $2-$ form of the structure, given by $\phi(\sigma, \theta)=g(\sigma, \phi \theta)$.
Theorem 3. Let ϕ be a tensor field of type $(1,1)$, a vector field ξ, 1 -form η satisfying $\phi^{2}=-I+\eta \otimes \xi$ i.e. $\eta(\xi)=1, \phi \xi=0$ and $\eta \circ \phi=0$. A trans-Sasakian structure on tangent bundle defined by

$$
\begin{aligned}
& \left(\nabla_{\sigma^{C}}^{C} \phi^{C}\right) \theta^{C}=\alpha\left((g(\sigma, \theta))^{V} \xi^{C}+(g(\sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C} \sigma^{V}-(\eta(\theta))^{V} \sigma^{C}\right) \\
& +\beta\left((g(\phi \sigma, \theta))^{V} \xi^{C}+(g(\phi \sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C}(\phi \sigma)^{V}-(\eta(\theta))^{V}(\phi \sigma)^{C}\right)
\end{aligned}
$$

where g is a Riemannian metric, α, β are non-zero constants. In addition, if we put $\theta=\xi$, we get

$$
\nabla_{\sigma^{C}}^{C} \xi^{C}=-\alpha \phi^{C} \sigma^{C}+\beta\left(\sigma^{C}-((\eta(\sigma)) \xi)^{C}\right)
$$

Proof. From (25), we get the trans-Sasakian structure on the bundle
$\left(\nabla_{\sigma^{C}}^{C} \phi^{C}\right) \theta^{C}=\nabla_{\sigma^{C}}^{C} \phi^{C} \theta^{C}-\phi^{C} \nabla_{\sigma^{C}}^{C} \theta^{C}$
$=\alpha\left((g(\sigma, \theta))^{V} \xi^{C}+(g(\sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C} \sigma^{V}-(\eta(\theta))^{V} \sigma^{C}\right)$
$+\beta\left((g(\phi \sigma, \theta))^{V} \xi^{C}+(g(\phi \sigma, \theta))^{C} \xi^{V}-(\eta(\theta))^{C}(\phi \sigma)^{V}-(\eta(\theta))^{V}(\phi \sigma)^{C}\right)$.
If we put $\theta=\xi$ and using the formulas of (8), (15), similarly we get

$$
\nabla_{\sigma^{C}}^{C} \xi^{C}=-\alpha \phi^{C} \sigma^{C}+\beta\left(\sigma^{C}-((\eta(\sigma)) \xi)^{C}\right)
$$

Theorem 4. Let a vector field ξ, ϕ be a tensor field of type (1, 1), 1-form η satisfying $\phi^{2}=-I+\eta \otimes \xi$ i.e. $\eta(\xi)=1, \phi \xi=0$ and $\eta \circ \phi=0$. The term $\left(\nabla_{\sigma^{C}}^{C} \eta^{C}\right) \theta^{C}$ in a trans-Sasakian structure on tangent bundle defined by

$$
\left(\nabla_{\sigma^{C}}^{C} \eta^{C}\right) \theta^{C}=-\alpha g^{C}\left(\phi^{C} \sigma^{C}, \theta^{C}\right)+\beta g^{C}\left(\phi^{C} \sigma^{C}, \phi^{C} \theta^{C}\right)
$$

where g is a Riemannian metric, α, β is a non-zero constant.
Proof. From 27, we get

$$
\begin{aligned}
\left(\nabla_{\sigma^{C}}^{C} \eta^{C}\right) \theta^{C}= & \nabla_{\sigma^{C}}^{C} \eta^{C} \theta^{C}-\eta^{C} \nabla_{\sigma^{C}}^{C} \theta^{C} \\
= & \nabla_{\sigma^{C}}^{C}(g(\theta, \xi))^{C}-\left(g\left(\nabla_{\sigma} \theta, \xi\right)\right)^{C} \\
= & \left.\nabla_{\sigma^{C}}^{C} g^{C}\right)\left(\theta^{C}, \xi^{C}\right)+g^{C}\left(\nabla_{\sigma^{C}}^{C} \theta^{C}, \xi^{C}\right)+g^{C}\left(\theta^{C}, \nabla_{\sigma^{C}}^{C} \xi^{C}\right) \\
& -g^{C}\left(\nabla_{\sigma^{C}}^{C} \theta^{C}, \xi^{C}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & g^{C}\left(\theta^{C}, \nabla_{\sigma^{C}}^{C} \xi^{C}\right)=g^{C}\left(\theta^{C},-\alpha \phi^{C} \sigma^{C}+\beta\left(\sigma^{C}((\eta(\sigma)) \xi)^{C}\right)\right. \\
= & -\alpha g^{C}\left(\theta^{C}, \phi^{C} \sigma^{C}\right)+\beta g^{C}\left(\theta^{C}, \sigma^{C}-((\eta(\sigma)) \xi)^{C}\right) \\
= & -\alpha g^{C}\left(\phi^{C} \sigma^{C}, \theta^{C}\right)+\beta g^{C}\left(\theta^{C}, \sigma^{C}-(\eta(\sigma))^{V} \xi^{C}-(\eta(\sigma))^{C} \xi^{V}\right) \\
= & -\alpha g^{C}\left(\phi^{C} \sigma^{C}, \theta^{C}\right)+\beta\left(g^{C}\left(\theta^{C}, \sigma^{C}\right)-(\eta(\sigma))^{V} g^{C}\left(\theta^{C}, \xi^{C}\right)\right. \\
& \left.-(\eta(\sigma))^{C} g^{C}\left(\theta^{C}, \xi^{V}\right)\right) \\
= & -\alpha g^{C}\left(\phi^{C} \sigma^{C}, \theta^{C}\right)+\beta g^{C}\left(\phi^{C} \sigma^{C}, \phi^{C} \theta^{C}\right),
\end{aligned}
$$

where $g^{C}\left(\theta^{C}, \xi^{V}\right)=(\eta(\theta))^{V}$ and $g^{C}\left(\phi^{C} \sigma^{C}, \phi^{C} \theta^{C}\right)=g^{C}\left(\sigma^{C}, \theta^{C}\right)-(\eta(\sigma))^{C}(\eta(\theta))^{V}-$ $(\eta(\sigma))^{V}(\eta(\theta))^{C}$.

Author Contribution Statements Authors made a good contribution to design the research. Authors read and approved the final manuscript.

Declaration of Competing Interests The authors declares that they have no competing interests.

References

[1] Blair, D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics 509, Springer, 1976.
[2] Capursi, M., Some remarks on the product of two almost contact manifolds, An. Sti. Univ. Al. I. Cuza XXX, (1984), 75-79.
[3] Das Lovejoy, S., Fiberings on almost r-contact manifolds, Publicationes Mathematicae, 43 (1993), 161-167. DOI: 10.5486/PMD.1993.1258
[4] Gray, A., Hervella, L. M., The sixteen classes of almost Hermitianmanifolds and their linear invariant, Ann. Math. Pura Appl., 4(123) (1980), 35-58. https://doi.org/10.1007/BF01796539
[5] Ianus, S., Smaranda, D., Some remarkable structures on the product of an almost contact metric manifold with the real line, Papers from the National Colloquium on Geometry and Topology, Univ. Timisoara, (1977), 107-110.
[6] Janssesns, D., Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981), 1-27.
[7] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tôhoku Math. J., 24 (1972), 93-103.
[8] Morimoto, A., On normal almost contact structures, J. Math. Soc. Japan, 15 (1963), 420-436.
[9] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae Debrecen, 32 (1985), 187-193.
[10] Omran, T., Sharffuddin, A., Husain, S.I., Lift of structures on manifolds, Publications de 1'Instıtut Mathematıqe, Nouvelle serie, 360(50) (1984), 93-97.
[11] Tanno, S., The automorphism groups of almost contact Riemannian manifolds, Tôhoku Math. J., 21 (1969), 21-38.
[12] Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.
http://communications.science.ankara.edu.tr

SOFT SEMI-TOPOLOGICAL POLYGROUPS

Rasoul MOUSAREZAEI and Bijan DAVVAZ
Department of Mathematical Sciences, Yazd University, Yazd, IRAN

Abstract

By removing the condition that the inverse function is continuous in soft topological polygroups, we will have less constraint to obtain the results. We offer different definitions for soft topological polygroups and eliminate the inverse function continuity condition to have more freedom of action.

1. Introduction

To answer the types of uncertainties that abound in various sciences, we insert soft sets into mathematical structures. Specifically, we equip topological polygroups with soft sets. This is a process that began in 1934 by Marty 16 with the introduction of hypergroups and continued with the introduction of soft sets by Molodtsov in 1999 17. Since then, many efforts have been made to deepen the discussion, some of which we can mention below.

A good description of the Groupoides, demi-hypergroupes et hypergroupes is given by M. Koskas in 14, also useful information about the Soft subsets and soft product operations is provided by F. Feng, Y.M. Li in 8. There is a beautiful writing about the topological spaces from the S. Nazmul, SK. Samanta under the name Neighbourhood properties of soft topological spaces in 20, also about Soft set theory by P. K. Maji, R. Biswas and A. R. Roy in 15, Soft topological groups and rings by T. Shah and S. Shaheen in 27 , On soft topological hypergroups by G. Oguz in 24, On soft topological spaces by M. Shabir and M. Naz in 26. Only a genius like T. Hida can write such a beautiful story about the Soft topological group in 11, also G. Oguz with article Soft topological hyperstructure in 25 and M. Shabir, M. Naz With their own handwriting about the On soft topological spaces in 26. If you want to read interesting articles about the topological polygroups,

[^4]you can read Heidari's article about the Topological polygroups in 9, also about the Idealistic soft topological hyperrings by G. Oguz in 23 and A new view on topological polygroups by G. Oguz in 22 , Soft sets and soft groups by H. Aktas and N. Cagman in 1, Prolegomena of Hypergroup Theory by P. Corsini in 5 .

2. Preliminaries

2.1. Soft Sets. Let U be an initial universe and E be a set of parameters. Let $P(U)$ denotes the power set of U and A be a non-empty subset of E. A pair (\mathbb{F}, A) is called a soft set over U, where \mathbb{F} is a mapping given by $\mathbb{F}: A \rightarrow P(U)$. In other words, a soft set over U is a parametrized family of subsets of the universe U. For $a \in A, \mathbb{F}(a)$ may be considered as the set of approximate elements of the soft set (\mathbb{F}, A). Clearly a soft set is not a set. For two soft sets (\mathbb{F}, A) and (\mathbb{G}, B) over a common universe U, we say that (\mathbb{F}, A) is a soft subset of $(\mathbb{G}, B)(i . e .,(\mathbb{F}, A) \widehat{\subset}(\mathbb{G}, B))$ if $A \subseteq B$ and $\mathbb{F}(a) \subseteq \mathbb{G}(a)$ for all $a \in A$. (\mathbb{F}, A) is said to be a soft super set of (\mathbb{G}, B), if (\mathbb{G}, B) is a soft subset of (\mathbb{F}, A) and it is denoted by $(\mathbb{F}, A) \widehat{\supset}(\mathbb{G}, B)$. Two soft sets (\mathbb{F}, A) and (\mathbb{G}, B) over a common universe U are said to be soft equal if (\mathbb{F}, A) is a soft subset of (\mathbb{G}, B) and (\mathbb{G}, B) is a soft subset of (\mathbb{F}, A). A soft set (\mathbb{F}, A) over U is said to be a NULL soft set, denoted by $\widehat{\varnothing}$, if $\mathbb{F}(a)=\varnothing$ (null set) for all $a \in A$. A soft set (\mathbb{F}, A) over U is said to be ABSOLUTE soft set, denoted by \widehat{A}, if $\mathbb{F}(a)=U$ for all $a \in A .(\mathbb{F}, A)$ AND (\mathbb{G}, B) denoted by $(\mathbb{F}, A) \widehat{\wedge}(\mathbb{G}, B)$ is defined by $(\mathbb{F}, A) \widehat{\wedge}(\mathbb{G}, B)=$ $(\mathbb{H}, A \times B)$, where $\mathbb{H}((a, b))=\mathbb{F}(a) \cap \mathbb{G}(b)$ for all $(a, b) \in A \times B$. ($\mathbb{F}, A)$ OR (\mathbb{G}, B) denoted by $(\mathbb{F}, A) \widehat{\vee}(\mathbb{G}, B)$ is defined by $(\mathbb{F}, A) \widehat{\vee}(\mathbb{G}, B)=(O, A \times B)$ where, $O((a, b))=\mathbb{F}(a) \cup \mathbb{G}(b)$ for all $(a, b) \in A \times B$. Union of two soft sets (\mathbb{F}, A) and (\mathbb{G}, B) over the common universe U denoted by $(\mathbb{F}, A) \widehat{\cup}(\mathbb{G}, B)$ is defined by (\mathbb{H}, C), where $C=A \cup B$ and for all $a \in C$,

$$
\mathbb{H}(a)= \begin{cases}\mathbb{F}(a) & \text { if } a \in A-B \\ \mathbb{G}(a) & \text { if } a \in B-A \\ \mathbb{F}(a) \cup \mathbb{G}(a) & \text { if } a \in A \cap B\end{cases}
$$

Bi-intersection of two soft sets (\mathbb{F}, A) and (\mathbb{G}, B) over the common universe U is the soft set (\mathbb{H}, C) is defined by $(\mathbb{F}, A) \widehat{\cap}(\mathbb{G}, B)=(\mathbb{H}, C)$, where $C=A \cap B$ and $\mathbb{H}(a)=\mathbb{F}(a) \cap \mathbb{G}(a)$ for all $a \in C$. Extended intersection of two soft sets (\mathbb{F}, A) and (\mathbb{G}, B) over the common universe U denoted by $(\mathbb{F}, A) \cap_{E}(\mathbb{G}, B)$ and is defined by (\mathbb{H}, C), where $C=A \cup B$ and for all $a \in C$,

$$
\mathbb{H}(a)= \begin{cases}\mathbb{F}(a) & \text { if } a \in A-B \\ \mathbb{G}(a) & \text { if } a \in B-A \\ \mathbb{F}(a) \cap \mathbb{G}(a) & \text { if } a \in A \cap B\end{cases}
$$

Let (\mathbb{F}, A) be a soft set. The set $\operatorname{Supp}(\mathbb{F}, A)=\{a \in A: \mathbb{F}(a) \neq \varnothing\}$ is called the support of the soft set (\mathbb{F}, A). A soft set is said to be non-null if its support is not equal to the empty set. If A is equal to E we write \mathbb{F} instead of (\mathbb{F}, A). Let $\theta: U \longmapsto U^{\prime}$ be a function and $\mathbb{F}\left(\right.$ resp. $\left.\mathbb{F}^{\prime}\right)$ be a soft set over $U\left(\right.$ resp. $\left.U^{\prime}\right)$ with a parameter set E. Then $\theta(\mathbb{F})\left(\right.$ resp. $\left.\theta^{-1}\left(\mathbb{F}^{\prime}\right)\right)$ is the soft set on $U^{\prime}($ resp. $U)$ is defined
by $(\theta(\mathbb{F}))(e)=\theta(\mathbb{F}(e))\left(\operatorname{resp} .\left(\theta^{-1}\left(\mathbb{F}^{\prime}\right)\right)(e)=\theta^{-1}\left(\mathbb{F}^{\prime}(e)\right)\right)$. We will use the symbol $\mathbb{F}^{\widehat{c}}$ to denote soft complement of \mathbb{F} and is defined by $\mathbb{F}^{\hat{c}}(e)=U \backslash \mathbb{F}(e)(e \in E)$. Let \mathbb{F} be a soft set over U and x be an element of U we call x is a soft element of \mathbb{F}, if $x \in \mathbb{F}(e)$ for all parameters $e \in E$ and denoted by $x \widehat{\in} \mathbb{F}$. We recall the above definitions from 11,27.
2.2. Polygroups. Let H be a non-empty set. A mapping $\circ: H \times H \longmapsto P^{*}(H)$ is called a hyperoperation, where $P^{*}(H)$ is the family of non-empty subsets of H. The couple (H, \circ) is called a hypergroupoid. In the above definition, if A and B are two non-empty subsets of H and $x \in H$, then we define:

$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b, x \circ A=\{x\} \circ A \text { and } A \circ x=A \circ\{x\}
$$

A hypergroupoid (H, \circ) is called a semihypergroup if for every $x, y, z \in H$, we have $x \circ(y \circ z)=(x \circ y) \circ z$ and is called a quasihypergroup if for every $x \in H$, we have $x \circ H=H=H \circ x$. This condition is called the reproduction axiom. The couple (H, \circ) is called a hypergroup if it is a semihypergroup and a quasihypergroup 5 .

Let (H, \circ) be a semihypergroup and A be a non-empty subset of H. We say that A is a complete part of H if for any non-zero natural number n and for all a_{1}, \ldots, a_{n} of H, the following implication holds:

$$
A \cap \prod_{i=1}^{n} a_{i} \neq \varnothing \Rightarrow \prod_{i=1}^{n} a_{i} \subseteq A
$$

The complete parts were introduced for the first time by Koskas 14. Let (G, \circ) and $(H, *)$ be two hypergroups. A map $f: G \longmapsto H$, is called a homomorphism if for all x, y of G, we have $f(x \circ y) \subseteq f(x) * f(y)$; a good homomorphism if for all x, y of G, we have $f(x \circ y)=f(x) * f(y) ; \mathrm{f}$ is an isomorphism if it is a good homomorphism , and its inverse f^{-1} is a homomorphism, too.

Definition 1. A special sub class of hypergroups is the class of polygroups.A polygroup is a system $P=<P, \circ, e,-1>$, where $\circ: P \times P \longmapsto P^{*}(P), e \in P,-1$ is a unitary operation on P and the following axioms hold for all $x, y, z \in P$:
(1) $(x \circ y) \circ z=x \circ(y \circ z)$;
(2) $e \circ x=x \circ e=x$;
(3) $x \in y \circ z$ implies $y \in x \circ z^{-1}$ and $z \in y^{-1} \circ x$.

The following elementary facts about polygroups follow easily from the axioms: $e \in x \circ x^{-1} \cap x^{-1} \circ x, e^{-1}=e,\left(x^{-1}\right)^{-1}=x$, and $(x \circ y)^{-1}=y^{-1} \circ x^{-1}$. A nonempty subset K of a polygroup P is a subpolygroup of P if and only if $a, b \in K$ implies $a \circ b \subseteq K$ and $a \in K$ implies $a^{-1} \in K$.

The subpolygroup N of P is normal in P if and only if $a^{-1} \circ N \circ a \subseteq N$ for all $a \in P$.

Theorem 1. Let N be a normal subpolygroup of P then:
(1) $N a=a N$ for all $a \in P$;
(2) $(a N)(b N)=a b N$ for all $a, b \in P$;
(3) $a N=b N$ for all $b \in a N$.

Example 1. Let P be $\{1,2\}$ and hyperoperation $*$ be as follow:

$*$	1	2
1	1	2
2	2	$\{1,2\}$

With the above multiplication table, P is a polygroup [7].
Let P is polygroup and (\mathbb{F}, A) be a soft set on P. Then (\mathbb{F}, A) is called a (normal)soft polygroup on P if $\mathbb{F}(x)$ be a (normal)subpolygroup of P for all $x \in$ $\operatorname{Supp}(\mathbb{F}, A)$.

Example 2. Let P be $\{e, a, b\}$ and multiplication table be:

\circ	e	a	b
e	e	a	b
a	a	e	b
b	b	b	$\{e, a\}$

Subpolygroups of P are $\varnothing, P,\{e\},\{e, a\}$. Let A be equal with P and define soft set \mathbb{F} as follow:

$$
\mathbb{F}(x)= \begin{cases}\{e\} & \text { if } x=e \\ \{e, a\} & \text { if } x=a \\ \{e, a, b\} & \text { if } x=b\end{cases}
$$

Therefore (\mathbb{F}, A) is a soft polygroup. We recall the above definitions and theorems from (7].
2.3. Topological Hyperstructure. Suppose that T is a topology on G, where G is a group, then (G, T) is called a topological group over G if φ and ${ }^{-1}$ are continuous, where φ and ${ }^{-1}$ are as follow:
(1) The mapping $\varphi: G \times G \longmapsto G$ is defined by $\varphi(g, h)=g h$ and $G \times G$ is endowed with the product topology.
(2) The mapping ${ }^{-1}: G \longmapsto G$ is defined by ${ }^{-1}(g)=g^{-1} 10$.

If the condition (2) of previous definition is not met, then the (G, T) is called semi-topological group over G.

Let (\mathbb{F}, A) be a soft set over G. Then the (\mathbb{F}, A, T) is called soft topological group over G if the following conditions hold:
(1) $\mathbb{F}(a)$ be a subgroup of G for all $a \in A$.
(2) The mapping $\varphi:(x, y) \longmapsto x y$ of the topological space $\mathbb{F}(a) \times \mathbb{F}(a)$ onto $\mathbb{F}(a)$ be continuous for all $a \in A$.
(3) The mapping ${ }^{-1}: \mathbb{F}(a) \longmapsto \mathbb{F}(a)$ is defined by ${ }^{-1}(g)=g^{-1}$ be continuous for all $a \in A$.

If the condition (3) of previous definition is not met, then the (\mathbb{F}, A, T) is called soft semi-topological group over G.

In 9 is proved that condition continuity φ is equivalent to following statement;
If $U \subseteq G$ is open, and $g h \in U$, then there exist open sets V_{g} and V_{h} with the property that $g \in V_{g}, h \in V_{h}$, and $V_{g} V_{h}=\left\{v_{1} v_{2} \mid v_{1} \in V_{g}, v_{2} \in V_{h}\right\} \subseteq U$.

Also, condition continuity ${ }^{-1}$ is equivalent to following statement; If U subset of G is open, then $U^{-1}=\left\{g^{-1} \mid g \in U\right\}$ be open.

Let (H, T) be a topological space. The following theorem give us a topology on $P^{*}(H)$ that is induced by T.

Theorem 2. Let (H, T) be a topological space. Then the family β consisting of all sets $S_{V}=\left\{U \in P^{*}(H) \mid U \subseteq V\right\}, V \in T$ is a base for a topology on $P^{*}(H)$. This topology is denoted by T^{*} 12].

Let (H, T) be a topological space, where (H, \circ) be a hypergroup. Then the triple (H, \circ, T) is called a topological hypergroup if the following functions are continuous:
(1) The mapping $\varphi:(x, y) \longmapsto x \circ y$, from $H \times H$ onto $P^{*}(H)$;
(2) The mapping $\psi:(x, y) \longmapsto x / y$, from $H \times H$ onto $P^{*}(H)$, where $x / y=$ $\{z \in H \mid x \in z \circ y\}$.

If the condition (2) of previous definition is not met, then (H, \circ, T) is called a semi-topological hypergroup.
Let (P, T) be a topological space, where $\left(P, \circ, e,^{-1}\right)$ be a polygroup. Then the (P, T) is called a topological polygroup (in short TP) if the following axioms hold:
(1) The mapping $\circ: P \times P \longmapsto P^{*}(P)$ be continuous, where $\circ(x, y)=x \circ y$;
(2) The mapping ${ }^{-1}: P \longmapsto P$ be continuous, where ${ }^{-1}(x)=-x$.

We can combine items (1),(2) and present the following case:
The mapping $\varphi: P \times P \longmapsto P^{*}(P)$ be continuous, where $\varphi(x, y)=x \circ y^{-1}$.
The following theorem help us to determine the continuity of hyperoperation. We us to use the following theorem for the continuity test.

Theorem 3. The hyperoperation $\circ: P \times P \longmapsto P^{*}(P)$ is continuous, where P is a polygroup $\Longleftrightarrow \forall a, b \in P$ and $C \in T$ with the property that $a \circ b \subseteq C$ then there exist $A, B \in T$ with the property that $a \in A$ and $b \in B$ and $A \circ B \subseteq C$ [g].
Example 3. 18 Let P be $\{e, a, b, c\}$ and multiplication table be:

\circ	e	a	b	c
e	e	a	b	c
a	a	$\{e, a\}$	c	$\{b, c\}$
b	b	c	e	a
c	c	$\{b, c\}$	a	$\{e, a\}$

Hyperoperation $\circ: P \times P \longmapsto P^{*}(P)$ is continuous with topologies:
$T_{d i s}$,
$T_{n d i s}$,
$T_{1}=\{\varnothing, P,\{e, b\}\}$,
$T_{2}=\{\varnothing, P,\{e\},\{b\}\}$,
since $x^{-1}=x$ for all $x \in P$, inverse operation is identity and identity function is continuous with every topology, it follows that P with topologies T_{1}, T_{2} is topological polygroup.

Hyperoperation $\circ: P \times P \longmapsto P^{*}(P)$ with below topologies is not continuous.

$$
\begin{aligned}
& T_{3}=\{\varnothing, P,\{e\}\}, \\
& T_{4}=\{\varnothing, P,\{a\}\}, \\
& T_{5}=\{\varnothing, P,\{b\}\}, \\
& T_{6}=\{\varnothing, P,\{c\}\}, \\
& T_{7}=\{\varnothing, P,\{e, a\}\}, \\
& T_{8}=\{\varnothing, P,\{e, c\}\}, \\
& T_{9}=\{\varnothing, P,\{a, b\}\}, \\
& T_{10}=\{\varnothing, P,\{a, c\}\}, \\
& T_{11}=\{\varnothing, P,\{b, c\}\}, \\
& T_{12}=\{\varnothing, P,\{e, a, b\}\}, \\
& T_{13}=\{\varnothing, P,\{e, a, c\}\}, \\
& T_{14}=\{\varnothing, P,\{e, b, c\}\}, \\
& T_{15}=\{\varnothing, P,\{a, b, c\}\}, \\
& T_{16}=\{\varnothing, P,\{e\},\{a\}\} .
\end{aligned}
$$

If the condition (2) of previous defintion is not met, then $\left(P, \circ, e,,^{-1}, T\right)$ is called a semi-topological polygroup.

3. Soft Semi-Topological Polygroups

The first definition we provide for soft semi-topological polygroups is as follows, and the examples and results that follow from this definition will be given below.

Definition 2. Let T be a topology on a polygroup P. Let (\mathbb{F}, A) be a soft set over P. Then the system (\mathbb{F}, A, T) said to be soft semi-topological polygroup over P if the following axioms hold:
(a) $\mathbb{F}(a)$ is a subpolygroup of P for all $a \in A$.
(b) The mapping $(x, y) \longmapsto x \circ y$ of the topological space $\mathbb{F}(a) \times \mathbb{F}(a)$ onto $P^{*}(\mathbb{F}(a))$ is continuous for all $a \in A$.

Topology T on P induces topologies on $\mathbb{F}(a), \mathbb{F}(a) \times \mathbb{F}(a)$ and by Theorem 2 on $P^{*}(\mathbb{F}(a))$.

If A be $\left\{e, a_{1}, a_{2}, \ldots\right\}, B$ be $\left\{e, b_{1}, b_{2}, \ldots\right\}$, and the table for $*$ in $A[B]$ be the following form:

	e	a_{1}	a_{2}	\ldots	b_{1}	b_{2}	\ldots
e	e	a_{1}	a_{2}	\ldots	b_{1}	b_{2}	\ldots
a_{1}	a_{1}	$a_{1} a_{1}$	$a_{1} a_{2}$	\ldots	b_{1}	b_{2}	\ldots
a_{2}	a_{2}	$a_{2} a_{1}$	$a_{2} a_{2}$	\ldots	b_{1}	b_{2}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
b_{1}	b_{1}	b_{1}	b_{1}	\ldots	$b_{1} * b_{1}$	$b_{1} * b_{2}$	\ldots
b_{2}	b_{2}	b_{2}	b_{2}	\ldots	$b_{2} * b_{1}$	$b_{2} * b_{2}$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Then several special cases of the algebra $A[B]$ are useful $[6,7$. Before describing them we need to assign names to the 2 -elements polygroups. Let 2 denotes the group \mathbb{Z}_{2} and let 3 denotes the polygroup $\mathbb{S}_{3} / /\langle(12)\rangle \cong \mathbb{Z}_{3} / T$, where T is the special conjugation with blocks $\{0\},\{1,2\}$. The multiplication table for 3 is

$$
\begin{array}{c|cc}
& 0 & 1 \\
\hline 0 & 0 & 2 \\
1 & 1 & \{0,1\}
\end{array}
$$

The system $3[M]$ is the result of adding a new identity to the polygroup $[M]$. The system $2[M]$ is almost as good. For example, suppose that R is the system with table

	0	1	2
0	0	1	2
1	1	$\{0,2\}$	$\{1,2\}$
2	2	$\{1,2\}$	$\{0,1\}$

EXAMPLE 4. With the above description, polygroup $2[R]$ will be as follows:

\circ	0	a	1	2
0	0	a	1	2
a	a	0	1	2
1	1	1	$\{0, a, 2\}$	$\{1,2\}$
2	2	2	$\{1,2\}$	$\{0, a, 1\}$

Hyperoperation $\circ: 2[R] \times 2[R] \longmapsto P^{*}(2[R])$ is not continuous with the following topologies:
$T_{1}=\{\varnothing, 2[R],\{0\}\}$,
$T_{2}=\{\varnothing, 2[R],\{a\}\}$,
$T_{3}=\{\varnothing, 2[R],\{1\}\}$,
$T_{4}=\{\varnothing, 2[R],\{2\}\}$,
$T_{5}=\{\varnothing, 2[R],\{0,1\}\}$,
$T_{6}=\{\varnothing, 2[R],\{0,2\}\}$,

$$
\begin{aligned}
& T_{7}=\{\varnothing, 2[R],\{a, 1\}\} \\
& T_{8}=\{\varnothing, 2[R],\{a, 2\}, \\
& T_{9}=\{\varnothing, 2[R],\{1,2\}\}, \\
& T_{10}=\{\varnothing, 2[R],\{0, a, 1\}\}, \\
& T_{11}=\{\varnothing, 2[R],\{0, a, 2\}\}, \\
& T_{12}=\{\varnothing, 2[R],\{a, 1,2\}\}, \\
& T_{13}=\{\varnothing, 2[R],\{0,1,2\}\} . \\
& \text { But } \circ: 2[R] \times 2[R] \longmapsto P^{*}(2[R]) \text { is continuous with } \\
& \qquad T_{14}=\{\varnothing, 2[R],\{0, a\}\}, T_{15}=\{\varnothing, 2[R],\{0\},\{a\}\}
\end{aligned}
$$

This means that $\left(2[R], T_{\text {dis }}\right),\left(2[R], T_{\text {ndis }}\right),\left(2[R], T_{14}\right)$ and $\left(2[R], T_{15}\right)$ are semitopological polygroups. Subpolygroups of $2[R]$ are $\varnothing, 2[R],\{0\},\{0, a\}$. Let A be a arbitrary set and $a_{1}, a_{2}, a_{3} \in A$ and define a soft set \mathbb{F} by

$$
\mathbb{F}(x)= \begin{cases}\{0\} & \text { if } x=a_{1} \\ \{0, a\} & \text { if } x=a_{2} \\ 2[R] & \text { if } x=a_{3} \\ \varnothing & \text { otherwise }\end{cases}
$$

In conclusion $\left(\mathbb{F}, A, T_{14}\right)$ and $\left(\mathbb{F}, A, T_{15}\right)$ are soft semi-topological polygroups 18 .
Example 5. Polygroup $3[R]$ will be as follows:

\circ	0	a	1	2
0	0	a	1	2
a	a	$\{0, a\}$	1	2
1	1	1	$\{0, a, 2\}$	$\{1,2\}$
2	2	2	$\{1,2\}$	$\{0, a, 1\}$

Hyperoperation $\circ: 3[R] \times 3[R] \longmapsto P^{*}(3[R])$ is not continuous with the following topologies:
$T_{1}=\{\varnothing, 3[R],\{a\}\}$,
$T_{2}=\{\varnothing, 3[R],\{1\}\}$,
$T_{3}=\{\varnothing, 3[R],\{2\}\}$,
$T_{4}=\{\varnothing, 3[R],\{0,1\}\}$,
$T_{5}=\{\varnothing, 3[R],\{0,2\}\}$,
$T_{6}=\{\varnothing, 3[R],\{a, 1\}\}$,
$T_{7}=\{\varnothing, 3[R],\{a, 2\}\}$,
$T_{8}=\{\varnothing, 3[R],\{1,2\}\}$,
$T_{9}=\{\varnothing, 3[R],\{0, a, 1\}\}$,
$T_{10}=\{\varnothing, 3[R],\{0, a, 2\}\}$,
$T_{11}=\{\varnothing, 3[R],\{a, 1,2\}\}$.
Nevertheless hyperoperation $\circ: 3[R] \times 3[R] \longmapsto P^{*}(3[R])$ is continuous with
$T_{12}=\{\varnothing, 3[R],\{0\}\}$,
$T_{13}=\{\varnothing, 3[R],\{0, a\}\}$,
$T_{14}=\{\varnothing, 3[R],\{0\},\{a\}\}$.

Therefore, $\left(3[R],\left(T_{i}\right)_{i=12,13,14}\right)$ are semi-topological polygroups. Subpolygroups of $3[R]$ are $\varnothing, 3[R],\{0\},\{0, a\}$. Let A be $3[R]$ and define a soft set \mathbb{F} by

$$
\mathbb{F}(x)= \begin{cases}\{0\} & \text { if } x=0 \\ \{0, a\} & \text { if } x=a \\ 3[R] & \text { if } x=1 \\ \varnothing & \text { if } x=2\end{cases}
$$

Then, $\left.\left(\mathbb{F}, A,\left(T_{i}\right)_{i=12,13,14}\right)\right)$ is a soft semi-topological polygroup. Now, let A be arbitrary set and $a_{1}, a_{2} \in A$ and define a soft set \mathbb{F} by

$$
\mathbb{F}(x)= \begin{cases}\varnothing & \text { if } x=a_{1} \\ \{0, a\} & \text { if } x=a_{2} \\ \{0\} & \text { otherwise }\end{cases}
$$

In this case $\left(\mathbb{F}, A,\left(T_{i}\right)_{i=3,4,5,8,9,10}\right)$ are soft semi-topological polygroups.
Theorem 4. [22] Let (\mathbb{F}, A) be a soft polygroup over P and (P, T) be a semitopological polygroup. then (\mathbb{F}, A, T) is a soft semi-topological polygroup over P.

Theorem 5. 22] Let (\mathbb{F}, A, T) and (\mathbb{G}, B, T) be soft semi-topological polygroups over P. Then $(\mathbb{F}, A, T) \widehat{\cap}(\mathbb{G}, B, T)$ and $(\mathbb{F}, A, T) \cap_{E}(\mathbb{G}, B, T)$ are soft semi-topological polygroup over P.
Theorem 6. 22 If $\left(\mathbb{F}_{i}, A_{i}, T\right)$ be a nonempty family of soft semi-topological polygroups, then $\hat{\cap}_{i \in I}\left(\mathbb{F}_{i}, A_{i}, T\right)$ is a soft semi-topological polygroup over P.

Theorem 7. [22] Let (\mathbb{F}, A, T) and (\mathbb{G}, B, T) be soft semi-topological polygroups over P. Then $(\mathbb{F}, A, T) \widehat{\wedge}(\mathbb{G}, B, T)$ and $(\mathbb{F}, A, T) \widehat{\cup}(\mathbb{G}, B, T)$ are soft semi-topological polygroup.

Theorem 8. [22] Let $\left(\mathbb{F}_{i}, A_{i}, T\right)$ be a nonempty family of soft semi-topological polygroups over P. Then $\widehat{\wedge}_{i \in I}\left(\mathbb{F}_{i}, A_{i}, T\right)$ and $\widehat{\cup}_{i \in I}\left(\mathbb{F}_{i}, A_{i}, T\right)$ are soft semi-topological polygroup.

Definition 3. Let (\mathbb{F}, A, T) be a soft semi-topological polygroup over P. Then (\mathbb{G}, B, T) is called a soft semi-topological subpolygroup (resp. normal subpolygroup) of (\mathbb{F}, A, T) if the following items hold:
(a) B subset of A and $\mathbb{G}(b)$ is a subpolygroup (resp. normal subpolygroup) of $\mathbb{F}(b)$ for every $b \in \operatorname{supp}(\mathbb{G}, B)$.
(b) the mapping $(x, y) \longmapsto x \circ y$ of the topological space $\mathbb{G}(b) \times \mathbb{G}(b)$ onto $P^{*}(\mathbb{G}(b))$ is continuous for every $b \in \operatorname{supp}(\mathbb{G}, B)$.

Theorem 9. Let (\mathbb{F}, A, T) be a soft semi-topological polygroup over P, and $\left(\mathbb{G}_{i}, B_{i}, T\right)_{i \in I}$ be a non-empty family of (normal) soft semi-topological subpolygroups of (\mathbb{F}, A, T). Then
(1) If $\cap_{i \in I} B_{i} \neq \varnothing$, then $\hat{\cap}_{i \in I}\left(\mathbb{G}_{i}, B_{i}, T\right)$ is a (normal) soft subpolygroup of (\mathbb{F}, A, T).
(2) If $B_{i} \cap B_{j}=\varnothing$ for all $i, j \in I$ and $i \neq j$, then $\left(\cap_{E}\right)_{i \in I}\left(\mathbb{G}_{i}, B_{i}, T\right)$ is a (normal) soft subpolygroup of (\mathbb{F}, A, T).
(3) If $B_{i} \cap B_{j}=\varnothing$ for all $i, j \in I$ and $i \neq j$, then $\widehat{\cup}_{i \in I}\left(\mathbb{G}_{i}, B_{i}, T\right)$ is a (normal) soft subpolygroup of (\mathbb{F}, A, T).
(4) The $\widehat{\wedge}_{i \in I}\left(\mathbb{G}_{i}, B_{i}, T\right)$ is a (normal) soft subpolygroup of the soft polygroup $\widehat{\wedge}_{i \in I}(\mathbb{F}, A, T)$.

Proof.
(1) Suppose that $C=\cap_{i \in I}\left(B_{i}\right)$ and $\mathbb{H}(c)=\cap_{i \in I}\left(\mathbb{G}_{i}(c)\right)$ Furthermore $C \subseteq A$ and $\mathbb{H}(c)$ is a (normal) soft subpolygroup of A and the mapping in Definition 3 (b) is continuous on $\mathbb{H}(c)$.
(2) Give $C=\cup_{i \in I}\left(B_{i}\right), \mathbb{H}(c)=\mathbb{G}_{i}(c)$ where $c \in B_{i}$ and $\mathbb{H}(c)$ is a (normal) soft subpolygroup of $F(c)$ and the mapping in Definition $3(\mathrm{~b})$ is continuous on $\mathbb{H}(c)$.
(3) Take $C=\cup_{i \in I} B_{i}, \mathbb{H}(c)=\mathbb{G}_{i}(c)$, where $c \in B_{i}$ thus $B_{i} \subseteq A$ notably $\cup_{i \in I}\left(B_{i}\right) \subseteq$ A in conclusion $\mathbb{H}(c)=\mathbb{G}_{i}(c)$ is a (normal) soft subpolygroup of $\mathbb{F}(c)$ and the mapping in Definition $3(b)$ is continuous on $\mathbb{H}(c)$.
(4) Select $C=\times_{i \in I}\left(B_{i}\right), \mathbb{H}\left(\left(c_{i}\right)_{i \in I}\right)=\cap_{i \in I} \mathbb{G}_{i}\left(\left(c_{i}\right)_{i \in I}\right)$ and $\mathbb{G}_{i}\left(c_{i}\right)$ is a (normal) soft subpolygroup of $\times_{i \in I} \mathbb{F}\left(c_{i}\right)$ in conclusion the mapping in Definition 3 (b) is continuous on $\mathbb{H}\left(\left(c_{i}\right)_{i \in I}\right)$.

Definition 4. Let (\mathbb{F}, A, T) and (\mathbb{G}, B, ξ) be the soft semi-topological polygroups over P_{1} and P_{2}, where T and ξ are topologies are defined over P_{1} and P_{2} respectively. Let $f: P_{1} \longmapsto P_{2}$ and $g: A \longmapsto B$ be two mappings. Then the pair (f, g) is called a soft semi-topological polygroup homomorphism if the following condition true:
(a) f be strong epimorphism and g be surjection.
(b) $f(\mathbb{F}(a))=\mathbb{G}(g(a))$.
(c) $f_{a}:\left(\mathbb{F}(a), T_{\mathbb{F}(a)}\right) \longmapsto\left(\mathbb{G}(g(a)), \xi_{\mathbb{G}(g(a))}\right)$ is continuous.

Then (\mathbb{F}, A, T) is said to be soft semi-topologically homomorphic to (\mathbb{G}, B, ξ) and denoted by $(\mathbb{F}, A, T) \sim(\mathbb{G}, B, \xi)$. If f is a polygroup isomorphism, g is bijective and f_{a} is continuous as well as open, then the pair (f, g) is called a soft semi-topological polygroup isomorphism. In this case (\mathbb{F}, A, T) is soft topologically isomorphic to (\mathbb{G}, B, ξ), which is denoted by $(\mathbb{F}, A, T) \simeq(\mathbb{G}, B, \xi)$.

Theorem 10. If $(\mathbb{F}, A, T) \sim(\mathbb{G}, B, \xi)$ and (\mathbb{F}, A, T) is a normal soft polygroup over P, then (\mathbb{G}, B, ξ) is a normal soft polygroup over Q, where (\mathbb{F}, A, T) and (\mathbb{G}, B, ξ) be soft semi-topological polygroups over P and Q.

Proof. Let (f, g) be a soft semi-topological homomorphism from (\mathbb{F}, A) to (\mathbb{G}, B). For all $x \in \operatorname{supp}(\mathbb{F}, A), \mathbb{F}(x)$ is a normal subpolygroup of P; then $f(\mathbb{F}(x))$ is a normal subpolygroup of Q. For all $y \in \operatorname{supp}(\mathbb{G}, B)$, there exists $x \in \operatorname{supp}(\mathbb{F}, A)$ with the property that $g(x)=y$. In conclusion $\mathbb{G}(y)=\mathbb{G}(g(x))=f(\mathbb{F}(x))$ is a normal subpolygroup of Q. Thus (\mathbb{G}, B) is a normal soft polygroup on Q.

Theorem 11. Let N be a normal subpolygroup of P, and (\mathbb{F}, A, T) be a soft semitopological polygroup over P. Then $(\mathbb{F}, A, T) \sim(\mathbb{G}, A, T)$, where $\mathbb{G}(x)=\mathbb{F}(x) / N$ for all $x \in A$, and $N \subseteq \mathbb{F}(x)$ for all $x \in \operatorname{supp}(\mathbb{F}, A)$.
Proof. Firstly $\operatorname{supp}(\mathbb{G}, A)=\operatorname{supp}(\mathbb{F}, A)$ and we know that P / N is a factor polygroup. Since for every $x \in \operatorname{supp}(\mathbb{F}, A), \mathbb{F}(x)$ is a subpolygroup of P and $N \subseteq \mathbb{F}(x)$, it follows that $\mathbb{F}(x) / N$ is also a factor polygroup, which is a subpolygroup of P / N. Thus (\mathbb{G}, A) is a soft polygroup over P / N. Therefore $f: P \longmapsto P / N, f(a)=a N$. Clearly, f is a strong epimorphism. In other words $g: A \longmapsto A, g(x)=x$. Then g is a surjective mapping. For all $x \in \operatorname{supp}(\mathbb{F}, A), f(\mathbb{F}(x))=\mathbb{F}(x) / N=\mathbb{G}(x)=\mathbb{G}(g(x))$. For all $x \in A-\operatorname{supp}(\mathbb{F}, A)$, notably $f(\mathbb{F}(x))=\varnothing=\mathbb{G}(g(x))$. Therefore, (f, g) is a soft semi-topological homomorphism, and $(\mathbb{F}, A, T) \sim(\mathbb{G}, B, \xi)$.

Definition 5. Closure of (\mathbb{F}, A, T) denoted by $(\overline{\mathbb{F}}, A, T)$ and is defined by $\overline{\mathbb{F}}(a)=$ $\overline{\mathbb{F}(a)}$ where $\overline{\mathbb{F}(a)}$ is the closure of $\mathbb{F}(a)$ in topology on P.

Theorem 12. [9] Let P be a semi-topological polygroup with the property that every open subset of P is a complete part. Then:
(1) If K is a subhypergroup of P, then as well as \bar{K}.
(2) If K is a subpolygroup of P, then as well as \bar{K}.

Theorem 13. Let (\mathbb{F}, A, T) be a soft semi-topological polygroup over a semi-topological polygroup (P, T) and every open subset of P is a complete part Then:
(1) $(\overline{\mathbb{F}}, A, T)$ is also a soft semi-topological polygroup over (P, T).
(2) $(\mathbb{F}, A, T) \widehat{\subset}(\overline{\mathbb{F}}, A, T)$.

Proof. (1) By Theorem $12 \overline{\mathbb{F}(a)}$ is subpolygroup P and since (P, T) is a semitopological polygroup, it follows that condition (b) of Definition 2 holds on $\overline{\mathbb{F}(a)}$.
(2) It is clear.

Definition 6. Let $(\mathbb{F}, A),(\mathbb{G}, B)$ be soft sets over polygroup $<P, e, \circ,-1>$ define $(\mathbb{F}, A) \widehat{\circ}(\mathbb{G}, B)=(H, C)$ where $C=A \cup B$ for all $a \in C$, and

$$
H(a)= \begin{cases}\mathbb{F}(a) & \text { if } a \in A-B \\ \mathbb{G}(a) & \text { if } a \in B-A \\ \mathbb{F}(a) \circ \mathbb{G}(a) & \text { if } a \in A \cap B\end{cases}
$$

Theorem 14. [9] Let A and B be subsets of polygroup P with the property that every open subset of P is a complete part. Then:
(1) $\bar{A} \circ \bar{B} \subseteq \overline{A \circ B}$.
(2) $(\bar{A})^{-1}=\overline{\left(A^{-1}\right)}$.

Theorem 15. 9] In every topological space (X, T) if $A, B \subseteq X$ we have:
(1) $\bar{A} \cup \bar{B}=\overline{A \cup B}$.
(2) $\bar{A} \cap \bar{B}=\overline{A \cap B}$.

Theorem 16. Let $(\mathbb{F}, A, T),(\mathbb{F}, B, T)$ be soft semi-topological polygroups over a semi-topological polygroup (P, T) and every open subset of P is a complete part Then:
(1) $(\overline{\mathbb{F}}, A, T) \widehat{\cup}(\overline{\mathbb{G}}, B, T)=\overline{(\mathbb{F}, A, T) \widehat{\cup}(\mathbb{G}, B, T)}$.
(2) $(\overline{\mathbb{F}}, A, T) \widehat{\cap}(\overline{\mathbb{G}}, B, T)=\overline{(\mathbb{F}, A, T) \widehat{\cap}(\mathbb{G}, B, T)}$.
(3) $(\overline{\mathbb{F}}, A, T) \widehat{\wedge}(\overline{\mathbb{G}}, B, T)=\overline{(\mathbb{F}, A, T) \widehat{\wedge}(\mathbb{G}, B, T)}$.
(4) $(\overline{\mathbb{F}}, A, T) \widehat{\circ}(\overline{\mathbb{G}}, B, T) \widehat{\subseteq} \overline{(\mathbb{F}, A, T) \widehat{\circ}(\mathbb{G}, B, T)}$.
(5) $(\bar{F}, A, T) \cap_{E}(\overline{\mathbb{G}}, B, T)=\overline{(\mathbb{F}, A, T) \cap_{E}(\mathbb{G}, B, T)}$.

Proof.
(1) Let a be element of $A-B$. then $(\overline{\mathbb{F}}, A, T) \widehat{\cup}(\overline{\mathbb{G}}, B, T)(a)=(\overline{\mathbb{F}}, A, T)(a)=$ $\overline{\mathbb{F}(a)}$ In conclusion, $\overline{(\mathbb{F}, A, T) \widehat{\cup}(\mathbb{G}, B, T)}(a)=\overline{\mathbb{F}}(a)=\overline{\mathbb{F}(a)}$.

Let a be element of $B-A$. Then $(\overline{\mathbb{F}}, A, T) \widehat{\cup}(\overline{\mathbb{G}}, B, T)(a)=(\overline{\mathbb{G}}, B, T)(a)=$ $\overline{\mathbb{G}(a)}$ In conclusion, $\overline{(\mathbb{F}, A, T) \widehat{\cup}(\mathbb{G}, B, T)}(a)=\bar{G}(a)=\overline{\mathbb{G}(a)}$.

Let a be element of $A \cap B$. Then $(\overline{\mathbb{F}}, A, T) \widehat{\cup}(\overline{\mathbb{G}}, B, T)(a)=\overline{\mathbb{F}(a)} \cup \overline{\mathbb{G}(a)}$ In conclusion, $\overline{(\mathbb{F}, A, T) \widehat{\cup}(\mathbb{G}, B, T)}(a)=\overline{\mathbb{F}(a) \cup \mathbb{G}(a)}$. By Theorem 15 proof is complete.
(4) Let a be element of $A-B$. Then $(\overline{\mathbb{F}}, A, T) \widehat{\circ}(\overline{\mathbb{G}}, B, T)(a)=(\overline{\mathbb{F}}, A, T)(a)=$ $\overline{\mathbb{F}(a)}$ In conclusion, $\overline{(\mathbb{F}, A, T) \widehat{o}(\mathbb{G}, B, T)}(a)=\overline{\mathbb{F}}(a)=\overline{\mathbb{F}(a)}$.

Let a be element of $B-A$. Then $(\overline{\mathbb{F}}, A, T) \widehat{\circ}(\overline{\mathbb{G}}, B, T)(a)=(\overline{\mathbb{G}}, B, T)(a)=$ $\overline{\mathbb{G}(a)}$ In conclusion, $\overline{(\mathbb{F}, A, T) \widehat{\circ}(\mathbb{G}, B, T)}(a)=\overline{\mathbb{G}}(a)=\overline{\mathbb{G}(a)}$.

Let a be element of $A \cap B$. Then $(\overline{\mathbb{F}}, A, T) \widehat{\circ}(\overline{\mathbb{G}}, B, T)(a)=\overline{\mathbb{F}(a)} \circ \overline{\mathbb{G}(a)}$ In conclusion, $\overline{(\mathbb{F}, A, T) \widehat{\circ}(\mathbb{G}, B, T)}(a)=\overline{\mathbb{F}(a) \circ \mathbb{G}(a)}$. By Theorem 14 proof is complete.
Other items are similar (1) or (4).

The second definition of soft semi-topological polygroups is as follows, and this definition is based on soft topologies and soft continuity. The results of this definition follow. To distinguish the latter Definition from the previous one, we use distinct symbols.

A family θ of soft sets over U is called a soft topology on U if the following axioms hold:
(1) $\widehat{\varnothing}$ and \widehat{U} are in θ,
(2) θ is closed under finite soft intersection,
(3) θ is closed under (arbitrary) soft union.

We will use the symbol (U, θ, E) to denote a soft topological space and soft set \mathbb{F} is called a soft close set if $\mathbb{F}^{\widehat{c}}$ is soft open set, where each member of θ said to be a soft open set 4,26 .

EXAMPLE 6. Let U be \mathbb{Z}_{2} and θ be $\left\{\widehat{\varnothing},\left\{e_{2}\right\} \times \mathbb{Z}_{2}, \widehat{\mathbb{Z}_{2}}\right\}$, where $E=\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{2}\right\} \times \mathbb{Z}_{2}$ be soft set $\mathbb{F}: E \longmapsto P\left(\mathbb{Z}_{2}\right)$ with the property that $\mathbb{F}\left(e_{1}\right)=\varnothing ; \mathbb{F}\left(e_{2}\right)=\mathbb{Z}_{2}$. Then $\left(\mathbb{Z}_{2}, \theta, E\right)$ is soft topological space.

Example 7. Let P be $\{e, a, b, c\}$ and hyperoparation \circ be as follow:

\circ	e	a	b	c
e	e	a	b	c
a	a	$\{e, a\}$	c	$\{b, c\}$
b	b	c	e	a
c	c	$\{b, c\}$	a	$\{e, a\}$

polygroup P with topologies $\theta_{1}=\left\{\widehat{\varnothing},\left\{e_{1}\right\} \times P, \widehat{P}\right\}, \theta_{2}=\left\{\widehat{\varnothing},\left\{e_{2}\right\} \times P, \widehat{P}\right\}$ are soft topological spaces.

Closure of \mathbb{F} denoted by $\widehat{C l}(\mathbb{F})$ and define soft intersection of all soft closed supersets of \mathbb{F}, where \mathbb{F} be soft set over U.

A soft set \mathbb{F} said to be a soft neighborhood of x if there exists a soft open set \mathbb{G} with the property that $x \widehat{\in} \mathbb{G} \widehat{\subseteq} \mathbb{F}$, where x be an element of the universe U. The soft neighborhood system of x we will consider the collection of all soft neighborhoods of x.

Let V be a subset of the universe U. A soft set \mathbb{F} said to be a soft neighborhood of V if there exists a soft open set \mathbb{G} with the property that $V \widehat{\subseteq} \mathbb{G} \widehat{\subseteq} \mathbb{F}$. (i.e $\forall e \in E$: $V \subseteq \mathbb{G}(e) \subseteq \mathbb{F}(e))$.

The collection of all soft neighborhoods of V said to be the soft neighborhood system of V.

Definition 7. Let P_{1}, P_{2} be polygroups and $\left(P_{1}, \theta_{1}, E\right),\left(P_{2}, \theta_{2}, E\right)$ be soft topological spaces. The function $\varphi:\left(P_{1}, \theta_{1}, E\right) \longmapsto\left(P_{2}, \theta_{2}, E\right)$ said to be a soft continuous function if for all $x \in P_{1}$ and for all soft neighborhood $\mathbb{F}_{\varphi(x)}$ of $\varphi(x)$, there exists a soft neighborhood \mathbb{F}_{x} of x with the property that $\varphi\left(\mathbb{F}_{x}\right) \widehat{\subseteq} \mathbb{F}_{\varphi(x)}$.
Theorem 17. The function $\varphi:\left(P_{1}, \theta_{1}, E\right) \longmapsto\left(P_{2}, \theta_{2}, E\right)$ is soft continuous function if and only if for every soft closed set \mathbb{F}^{\prime}, the inverse image $\varphi^{-1}\left(\mathbb{F}^{\prime}\right)$ is also soft closed.

Proof. This is easily seen to be an equivalence relation.

Theorem 18. Let $\varphi:\left(P_{1}, \theta_{1}, E\right) \longmapsto\left(P_{2}, \theta_{2}, E\right)$ be function in this case, for every soft closed set \mathbb{F}^{\prime}, the inverse image $\varphi^{-1}\left(\mathbb{F}^{\prime}\right)$ is also soft closed if and only if for all soft set \mathbb{F}, we have $\varphi(\widehat{C l}(\mathbb{F})) \widehat{\subseteq} \widehat{C l}(\varphi(\mathbb{F}))$.
Proof. (i) \Longleftarrow Let \mathbb{F}^{\prime} be soft closed set. Then we have $\varphi\left(\varphi^{-1}\left(\mathbb{F}^{\prime}\right)\right) \widehat{\subseteq} \mathbb{F}^{\prime}$. The soft closeness of \mathbb{F}^{\prime}, together with the assumption (for all soft set \mathbb{F}, we have $\varphi(\widehat{C l}(\mathbb{F})) \widehat{\subseteq} \widehat{C l}(\varphi(\mathbb{F})))$, proves that

$$
\varphi\left(\widehat{C l}\left(\varphi^{-1}\left(\mathbb{F}^{\prime}\right)\right)\right) \widehat{\subseteq} \widehat{C l}\left(\varphi\left(\varphi^{-1}\left(\mathbb{F}^{\prime}\right)\right)\right) \widehat{\subseteq} \mathbb{F}^{\prime}
$$

Therefore, it holds that $\widehat{C l}\left(\varphi^{-1}\left(\mathbb{F}^{\prime}\right)\right) \widehat{\subseteq} \varphi^{-1}\left(\mathbb{F}^{\prime}\right) \widehat{\subseteq} \widehat{C l}\left(\varphi^{-1}\left(\mathbb{F}^{\prime}\right)\right)$, which shows that $\varphi^{-1}\left(\mathbb{F}^{\prime}\right)$ is soft closed.
(ii) \Longrightarrow We have $\mathbb{F} \widehat{\subseteq} \varphi^{-1}(\widehat{C l}(\varphi(\mathbb{F}))$) for any soft set \mathbb{F}. Since (for every soft closed set \mathbb{F}^{\prime}, the inverse image $\varphi^{-1}\left(\mathbb{F}^{\prime}\right)$ is also soft closed), we have $\widehat{C l}(\mathbb{F}) \widehat{\subseteq} \varphi^{-1}(\widehat{C l}(\varphi(\mathbb{F})))$. Thus, we have

$$
\varphi(\widehat{C l}(\mathbb{F})) \widehat{\subseteq} \varphi\left(\varphi^{-1}(\widehat{C l}(\varphi(\mathbb{F})))\right) \widehat{=} \widehat{C l}(\varphi(\mathbb{F}))
$$

Theorem 19. Let $\varphi:\left(P_{1}, \theta_{1}, E\right) \longmapsto\left(P_{2}, \theta_{2}, E\right)$ be a function. If for all soft open set $\mathbb{F}^{\prime} \in \theta_{2}$, the inverse image $\varphi^{-1}\left(\mathbb{F}^{\prime}\right)$ is also soft open set then φ is a soft continuous function.

Proof. For all $x \in P_{1}$ and a soft open neighborhood \mathbb{F}^{\prime} of $\varphi(x), \varphi^{-1}\left(\mathbb{F}^{\prime}\right)$ is a soft open set having x as a soft element. Since $\varphi\left(\varphi^{-1}\left(\mathbb{F}^{\prime}\right)\right) \widehat{\subseteq} \mathbb{F}^{\prime}$, give $F=\varphi^{-1}\left(\mathbb{F}^{\prime}\right)$ in this case $\varphi(\mathbb{F}) \widehat{\subseteq} \mathbb{F}^{\prime}$.

Example 8. We prove that the opposite Theorem 19 is not true.
Let P_{1} be $<\{u\}, \theta_{1},\left\{e_{1}, e_{2}\right\}>$ and P_{2} be $<\{u\}, \theta_{2},\left\{e_{1}, e_{2}\right\}>$, where

$$
\begin{gathered}
\theta_{1}=\left\{\widehat{\varnothing},\left\{\left(e_{1}, u\right),\left(e_{2}, u\right)\right\}\right\} \\
\theta_{2}=\left\{\widehat{\varnothing},\left\{\left(e_{2}, u\right)\right\},\left\{\left(e_{1}, u\right),\left(e_{2}, u\right)\right\}\right\}
\end{gathered}
$$

In soft topologies, $\left\{e_{1}, e_{2}\right\} \times\{u\}$ is the soft neighborhood of the point u. Thus id $: P_{1} \longmapsto P_{2}$ satisfies in second part Theorem 19. However, $i d^{-1}\left(\left\{\left(e_{2}, u\right)\right\}\right)$ is not soft open in P_{1}, showing that the inverse images of soft open sets are, in general, not soft open. Show that, not only id : $P_{1} \longmapsto P_{2}$ but also $i d^{-1}: P_{2} \longmapsto P_{1}$ satisfy in second part Theorem 19 .
Definition 8. A bijection $\varphi: P_{1} \longmapsto P_{2}$ said to be a soft homeomorphism between $\left(P_{1}, \theta_{1}, E\right)$ and $\left(P_{2}, \theta_{2}, E\right)$ if φ and φ^{-1} are soft continuous.

Theorem 20. Let $\varphi:\left(P_{1}, \theta_{1}, E\right) \longmapsto\left(P_{2}, \theta_{2}, E\right)$ be a soft continuous function and for all soft open set $\mathbb{F}_{2} \in \theta_{2}$, there exists a soft open set $\mathbb{F}_{1} \in \theta_{1}$ with the property that for all $x \in P_{1} ; x \hat{\in} \mathbb{F}_{1}$ if and only if $x \widehat{\in} \varphi^{-1}\left(\mathbb{F}_{2}\right)$.

Proof. For every $x \in P_{1}$ with $\varphi(x) \widehat{\in} \mathbb{F}_{2}$, choose a soft open $\mathbb{F}_{x} \in \theta_{1}$ with the property that $x \widehat{\in} \mathbb{F}_{x}$ and $\varphi\left(\mathbb{F}_{x}\right) \widehat{\subseteq} \mathbb{F}_{2}$. Then define $\mathbb{F}_{1}=\widehat{\bigcup}\left\{\mathbb{F}_{x} \mid x \in P_{1}, \varphi(x) \widehat{\in} \mathbb{F}_{2}\right\}$ is the desired soft open set.

Definition 9. Let $\left(P, \circ, e,^{-1}\right)$ be a polygroup and θ be a soft topology on P with a parameter set E. then (P, θ, E) is a soft semi-Topological polygroup if the following item true:

For each soft neighborhood \mathbb{F} of $p \circ q$, where $(p, q) \in P \times P$ there exist soft neighborhoods \mathbb{F}_{p} and \mathbb{F}_{q} of p and q with the property that $\mathbb{F}_{p} \circ \mathbb{F}_{q} \widehat{\subseteq} \mathbb{F}$.

Every soft semi-topological group is soft semi-Topological polygroup.
Example 9. Let E be $\left\{e_{1}, e_{2}\right\}$ and θ be $\left\{\widehat{\varnothing},\left\{\left(e_{1}, \overline{1}\right)\right\}, \widehat{\mathbb{Z}_{2}}\right\}$. Conclusion $\left(\mathbb{Z}_{2}, \theta, E\right)$ is a soft semi-Topological polygroup.

Example 10. Let P be $\{e, a, b, c\}$ and hyperoparation \circ be as follow:

\circ	e	a	b	c
e	e	a	b	c
a	a	$\{e, a\}$	c	$\{b, c\}$
b	b	c	e	a
c	c	$\{b, c\}$	a	$\{e, a\}$

And E be $\left\{e_{1}, e_{2}, e_{3}\right\}$. Then the polygroup P with each of the following topologies

$$
\begin{aligned}
& \theta_{1}=\left\{\widehat{\varnothing},\left\{e_{1}\right\} \times P, \widehat{P}\right\} \\
& \theta_{2}=\left\{\widehat{\varnothing},\left\{e_{2}\right\} \times P, \widehat{P}\right\} \\
& \theta_{3}=\left\{\widehat{\varnothing},\left\{e_{3}\right\} \times\{a, b\}, \widehat{P}\right\} \\
& \theta_{3}=\left\{\widehat{\varnothing},\left\{e_{3}\right\} \times\{a, b\},\left\{e_{1}\right\} \times\{e, b\}, \widehat{P}\right\} \\
& \theta_{4}=\left\{\widehat{\varnothing},\left\{e_{3}\right\} \times\{a, b\},\left\{e_{1}\right\} \times\{e, b\},\left\{e_{2}\right\} \times\{e, b, c\}, \widehat{P}\right\}
\end{aligned}
$$

is a soft semi-Topological polygroup.
The family of soft sets Θ, is said to be a soft indiscrete (soft discrete) topology on P if $\Theta=\{\widehat{\varnothing}, \widehat{P}\}(\Theta=S S(P))$, in this case (P, Θ) is called a soft indiscrete space (soft discrete space) over P, where $S S(P)$ is the set of all soft sets over P 26.

Example 11. Every polygroup with soft discrete or indiscrete topology is a soft semi-Topological polygroup.

If we want to merge the previous two Definitions of soft semi-topological polygroups into one Definition, it will be as follows. We will show with an example how the generalized Definition refers to the first Definition and under what conditions the second Definition.

Definition 10. Let (P, θ, A) be a soft topology on P and (\mathbb{F}, E) be a soft set over P, where $A \neq E$ are sets of parameters. Then $(\mathbb{F}, \theta, A, E, \circ)$ is called a generalized soft semi-topological polygroup over P if the following axioms satisfies:
(1) $\mathbb{F}(e)$ is a subpolygroup of P for all $e \in E$.
(2) For all $e \in E$ and every soft open neighborhoods $\mathbb{F}_{p \circ q}$ of $p \circ q$ subset of $\mathbb{F}(e)$, there exist an soft open neighborhood \mathbb{F}_{p} of p and an soft open neighborhood \mathbb{F}_{q} of q, such that $\mathbb{F}_{p} \circ \mathbb{F}_{q} \widehat{\subseteq} \mathbb{F}_{p \circ q}$, with the restricted soft topology θ to $\mathbb{F}(e)$ which is denoted by $\left.\theta\right|_{\mathbb{F}(e)}$.

The following example proves that the two Definitions soft semi-topological polygroup are a special case of Definition 10 .
Example 12. Let (F, E) be \widehat{P} in this case $(\mathbb{F}, \theta, A, E, \circ)$ is a soft semi-Topological polygroup via Definition 9 and if A be a single member set then $(\mathbb{F}, \theta, A, E, \circ)$ is a soft semi-topological polygroup via Definition 2. It should be noted that in case that set A contains a parameter, the soft topology becomes a normal topology.

Example 13. Let $P=\left(\mathbb{Z}_{4},+\right), \theta=\left\{\widehat{\varnothing}, \widehat{\mathbb{Z}_{4}},\left\{\left(a_{1},\{\widehat{0}, \widehat{2}\}\right),\left(a_{2}, \varnothing\right)\right\},\left\{\left(a_{1},\{\hat{1}, \widehat{3}\}\right),\left(a_{2}, \mathbb{Z}_{4}\right)\right\}\right\}$, where $A=\left\{a_{1}, a_{2}\right\}$ and $E=\left\{e_{1}, e_{2}\right\},(E, F)=\left\{\left(e_{1},\{\widehat{0}, \widehat{2}\}\right),\left(e_{2}, \mathbb{Z}_{4}\right)\right\}$. In this case we have $\left.\theta\right|_{\mathbb{F}\left(e_{1}\right)}=\left\{\widehat{\varnothing},\{\widehat{0}, \widehat{2}\},\left\{\left(a_{1},\{\widehat{0}, \widehat{2}\}\right),\left(a_{2}, \varnothing\right)\right\},\left\{\left(a_{1}, \varnothing\right),\left(a_{2},\{\widehat{0}, \widehat{2}\}\right)\right\}\right\}$, and $\left.\theta\right|_{\mathbb{F}\left(e_{2}\right)}=\theta$.

With above condition $(\mathbb{F}, \theta, A, E,+)$ is a generalized soft semi-topological polygroup over P.

Definition 11. Let $(\mathbb{F}, \theta, A, E, \circ)$ be a generalized soft semi-topological polygroup over P and \mathbb{G} be a soft subset of \mathbb{F}. Then $(\mathbb{G}, \theta, A, E, \circ)$ sub-gstp(sub-generalized soft semi-topological polygroup) of $(\mathbb{F}, \theta, A, E, \circ)$ if $(\mathbb{G}, \theta, A, E, \circ)$ also is a generalized soft semi-topological polygroup over P.
Example 14. Let $(\mathbb{F}, \theta, A, E,+)$ be in Example 13, in conclusion $(\mathbb{F}, \theta, A, E,+)$ $\left(\mathbb{F}, \theta,\left\{a_{1}\right\}, E,+\right),\left(\mathbb{Z}_{4}, \theta, A, E,+\right)$ are sub-gstp of $(\mathbb{F}, \theta, A, E,+)$.
Definition 12. Let $\left(P, \circ, e_{n},^{-1}\right)$ and $\left(Q, \star, e_{n}^{\prime},{ }^{-1}\right)$ be polygruops if $P^{*} \subseteq P, Q \subseteq$ Q with the property that $\left(\widehat{P^{*}}, \theta, A, E, \circ\right),(\widehat{Q}, \theta, A, E, \star)$ are generalized soft semitopological polygroup over P^{*} and Q then $F=\left(f_{1}, f_{2}\right)$ said to be a morphism if the following conditions are true:
(i) $f_{1}:(P, \theta, A) \longmapsto(Q, \theta, A)$ is soft continuous.
(ii) $f_{2}:(P, \circ) \longmapsto(Q, \star)$ is a polygroup homomorphism.

Theorem 21. The image of a generalized soft semi-topological polygroup under a morphism, is also a generalized soft semi-topological polygroup.
Proof. Let $\left(P, \circ, e_{n},{ }^{-1}\right),\left(Q, \star, e_{n}^{\prime},,^{-1}\right)$ be polygruops, $P^{*} \subseteq P, Q \subseteq Q$ with the property that $\left(\widehat{P^{*}}, \theta, A, E, \circ\right),(\widehat{Q}, \theta, A, E, \star)$ are generalized soft semi-topological polygroup over P^{*} and Q and $F=\left(f_{1}, f_{2}\right)$ be a morphism. since for every $e \in E$, $f_{2}(F(e))$ is subpolygroup of Q as f_{2} is a polygroup homomorphism, it follows that $F\left(\left(\widehat{P^{*}}, \theta, A, E, \circ\right)\right)$ is a generalized soft semi-topological polygroup. Furthemore the composition of two continuous functions is continuous, this proves the second and third conditions.

Definition 13. Let $(\mathbb{F}, \theta, A, E, \circ)$ be a generalized soft semi-topological polygroup over P. The $(\mathbb{F}, \theta, A, E, \circ)$ is called T_{i} generalized soft semi-topological polygroup if (P, θ, A) is a soft T_{i} space.

Theorem 22. $11 \operatorname{Let}(\mathbb{F}, \theta, A, E, \circ)$ be a generalized soft semi-topological polygroup over P. the following items are equivalents:
(i) $(\mathbb{F}, \theta, A, E, \circ) T_{0}$ generalized soft semi-topological polygroup.
(ii) $(\mathbb{F}, \theta, A, E, \circ) T_{1}$ generalized soft semi-topological polygroup.
(iii) $(\mathbb{F}, \theta, A, E, \circ) T_{2}$ generalized soft semi-topological polygroup.

Let P, Q, R are polygroups and hyperoperation of polygroups is "o" and $S S(P)$ is all soft sets are defined on the set of parameters E. Note that in a polygroup, the combination of two members will be a set.

Definition 14. 13 Consider $\mathbb{F}_{A} \in S S(P), \mathbb{G}_{B} \in S S(Q)$ and $\psi: P \longmapsto Q$, $\varphi: A \longmapsto B$ be two mappings. The (φ, ψ) is a soft mapping from \mathbb{F}_{A} to \mathbb{G}_{B} denoted by $(\varphi, \psi): \mathbb{F}_{A} \longmapsto \mathbb{G}_{B}$ if and only if

$$
\psi\left(\mathbb{F}_{A}(a)\right)=\mathbb{G}_{B}(\varphi(a)), \forall a \in A
$$

We consider that all soft sets are defined on the set of parameters E and all soft mappings are defined with respect to the identity on E. Note that if $\left(i d_{E}, f\right)$: $\mathbb{F} \longmapsto \mathbb{G}$ is a soft mapping we write f instead of $\left(i d_{E}, f\right)$.

Definition 15. The cartesian product of \mathbb{F}_{A} and \mathbb{G}_{B} is shown with soft set $\left(\mathbb{F}_{A} \widehat{\times} \mathbb{G}_{B}\right) \in$ $S S(P \times Q)$, such that $\left(\mathbb{F}_{A} \widehat{\times} \mathbb{G}_{B}\right)(a, b)=\mathbb{F}_{A}(a) \times \mathbb{G}_{B}(b), \forall(a, b) \in A \times B$, where $\mathbb{F}_{A} \in S S(P)$ and $\mathbb{G}_{B} \in S S(Q)$ [3].

Throughout this section, we will deal with soft topological spaces defined over a soft set $\mathbb{F} \in S S(P)$. Thus, we will recall the following Definition for soft topology 26.

Definition 16. Consider $\mathbb{F} \in S S(P)$ and Θ be a family of soft subsets of \mathbb{F} and
(i) $\widehat{\varnothing}, \mathbb{F} \in \Theta$;
(ii) Θ is closed under finite intersection;
(iii) Θ is closed under arbitrary union.

We say that Θ is a soft topology on \mathbb{F} and (\mathbb{F}, Θ) is called the soft topological space (in short STS) and $V \in S S(P)$ is called a soft open set if $V \in \Theta$ [4].

Example 15. Assume that $E=\mathbb{R}^{+}$(the set of all positive real numbers), where \mathbb{R} be the set of all real numbers. Let $\varepsilon \in E$ and $\mathbb{F}_{\varepsilon} \in S S(\mathbb{R})$ such that $\mathbb{F}_{\varepsilon}(e)=(e-\varepsilon, e+\varepsilon)$, for all $e \in E$. Consider $\Theta=\left\{\mathbb{F}_{\varepsilon} \mid \varepsilon \in E\right\}$. Then (\mathbb{R}, Θ) is a soft semi-topological space [2].

Definition 17. Assume that (P, Θ) and (Q, Λ) are soft topological spaces and f be mapping $f: P \longmapsto Q$ then
(1) If f satisfies in the condition $\mathbb{F} \in \Theta \Longrightarrow f(\mathbb{F}) \in \Lambda$, then f is said to be soft open;
(2) f is said to be soft continuous, if and only if for any $x \in P$ and any soft open neighborhoods $\mathbb{F}_{f(x)}$ of $f(x)$, there exist an soft open neighborhood \mathbb{F}_{x} of x such that $f(x) \widehat{\in} f\left(\mathbb{F}_{x}\right) \widehat{\subseteq} \mathbb{F}_{f(x)}$;
(3) If f is bijective and f, f^{-1} are soft continuous, then f is said to be soft homeomorphism;
(4) Assume that $\mathbb{F} \in S S(P)$ and $\mathbb{G} \in S S(Q)$, then the mapping $f: \mathbb{F} \longmapsto \mathbb{G}$ is said to be soft continuous, if and only if for any $x \widehat{\in \mathbb{F}}$ and any soft open neighborhoods $\mathbb{F}_{f(x)}$ of $f(x)$, there exist an soft open neighborhood \mathbb{F}_{x} of x such that $f(x) \widehat{\in} f\left(\mathbb{F}_{x}\right) \widehat{\subseteq} \mathbb{F}_{f(x)}, 11$.
In the above Definition, $f(x)$ may be a set. In particular, when f is hyperoperation of polygroup.
Definition 18. Assume that (P, Θ) and (Q, Λ) be soft topological spaces. We can make soft product topological space $(P \times Q, \Theta \widehat{\times} \Lambda)$, where the collection of all unions of soft sets in $\{\mathbb{F} \widehat{\times} \mathbb{G} \mid \mathbb{F} \in \Theta, \mathbb{G} \in \Lambda\}$ is a soft topology on $P \times Q$ and it is said to be soft product topology on $P \times Q$ and denoted by $(\Theta \times \Lambda)$ [19].
Theorem 23. Assume that (P, Θ) and (Q, Λ) is soft topological spaces. Then
$\operatorname{proj}_{p}:(P \times Q, \Theta \widehat{\times} \Lambda) \longmapsto(P, \Theta)$ and $_{\text {proj}}^{q}: ~(P \times Q, \Theta \widehat{\times} \Lambda) \longmapsto(Q, \Lambda)$ are soft continuous and soft open too the smallest soft topology on $P \times Q$ for which proj${ }_{p}$, proj $_{q}$ be soft continuous is $\Theta \widehat{\times} \Lambda$ 19.

Theorem 24. The mapping $f:(R, \phi) \longmapsto(P \times Q, \Theta \widehat{\times} \Lambda)$ is soft continuous, if and only if the mappings $\left(\operatorname{proj}_{q} \circ f\right)$ and $\left(\operatorname{proj}_{p} \circ f\right)$ are soft continuous, where $(P, \Theta),(Q, \Lambda)$ and (R, ϕ) are soft topological spaces 19 .

Theorem 25. Assume that $f: P \longmapsto Q$ and $g: Q \longmapsto R$ be soft continuous. Then the mapping $g \circ f$ is soft continuous, where $(P, \Theta),(Q, \Lambda)$ and (R, ϕ) be soft topological spaces 19].
Definition 19. The set β is a base for a soft topological space (P, Θ) if we can make every soft open set in Θ as a union of elements of β [26].

Definition 20. Suppose that Q is subset of P and (P, Θ) is a soft topological space. Then the set $\Theta_{\widehat{Q}}=\{\widehat{Q} \widehat{\cap} \mathbb{F} \mid \mathbb{F} \in \Theta\}$ is said to be the soft relative topology on Q, and $\left(Q, \Theta_{\widehat{Q}}\right)$ is a soft subspace of $\left.(P, \Theta), 26\right]$.
Theorem 26. Assume that (P, Θ) is a soft topological space and $\mathbb{F} \in S S(P)$. Then the collection $\Theta_{\mathbb{F}}=\{\mathbb{F} \widehat{\cap} \mid \mathbb{G} \in \Theta\}$ is a soft topology over \mathbb{F}.
Proof. The first, Θ is closed under the finite intersection and arbitrary union for all soft sets over P that is indeed $\Theta_{\mathbb{F}}$ is closed under the finite intersection and arbitrary union since the elements of $\Theta_{\mathbb{F}}$ are soft sets over P.

The second, since $\Theta_{\mathbb{F}}=\{\mathbb{F} \widehat{\cap} \mathbb{G} \mid \mathbb{G} \in \Theta\}$ and $\mathbb{F} \widehat{\cap} \mathbb{\subseteq} \subseteq \mathbb{F}$, it follows that element soft $\Theta_{\mathbb{F}}$ are soft subsets of \mathbb{F}. Moreover, since (P, Θ) be a soft topological space over P, then $\widehat{P}, \widehat{\varnothing} \in \Theta$. So, $\mathbb{F}=\mathbb{F} \widehat{\cap} \widehat{P} \in \Theta_{\mathbb{F}}$ and $\widehat{\varnothing}=\mathbb{F} \hat{\cap} \widehat{\varnothing} \in \Theta_{\mathbb{F}}$.
$\left(\mathbb{F}, \Theta_{\mathbb{F}}\right)$ is referred to as a soft subspace of (P, Θ), where $\Theta_{\mathbb{F}}$ is said to be the soft relative topology on \mathbb{F}.

Theorem 27. The union of two STS is not necessary a STS. However, the intersection of two STS is a STS [21].

Definition 21. Assume that Θ is a soft topology on P and $\mathbb{F} \in S S(P)$ is a soft polygroup, then the soft topological space (\mathbb{F}, Θ) is said to be soft semi-topological soft polygroup over P (in short SSTSP) if the soft mappings $f:(a, b) \longmapsto a \circ b$ from $(\mathbb{F} \widehat{\times} \mathbb{F}, \Theta \widehat{\times} \Theta)$ to $\left(\mathbb{F}, \Theta_{\mathbb{F}}\right)$ is soft continuous.
Definition 22. The sum of \mathbb{F} and \mathbb{G} is the soft set $\mathbb{F} \widehat{\mathbb{G}} \in S S(P)$, such that $(\mathbb{F} \widehat{\mathbb{G}})(e)=\mathbb{F}(e) \circ \mathbb{G}(e)$, for all $e \in E$, where that $\mathbb{F}, \mathbb{G} \in S S(P)$ are soft polygroups.

The following theorem presents an equivalent definition for SSTSP.
Theorem 28. Suppose that \mathbb{F} is a soft polygroup over P where Θ is a soft topology on P. Then (\mathbb{F}, Θ) is an SSTSP over P if and only if the following condition be true:

For all $a, b \widehat{\in} \mathbb{F}$ and every soft open neighborhoods $\mathbb{F}_{a \circ b}$ of $a \circ b$, there exist an soft open neighborhood \mathbb{F}_{a} of a and an soft open neighborhood \mathbb{F}_{b} of b, such that $\mathbb{F}_{a} \widehat{\widehat{F}} \vec{b} \widehat{\widehat{\subseteq}} \mathbb{F}_{a \circ b}$.

Proof. $[\Rightarrow$] The first assume that (\mathbb{F}, Θ) is an SSTSP. Then $f:(a, b) \longmapsto a \circ b$ from $(\mathbb{F} \widehat{\times} \mathbb{F}, \Theta \widehat{\times} \Theta)$ to $\left(\mathbb{F}, \Theta_{\mathbb{F}}\right)$, is soft continuous. Suppose that $a, b \widehat{\in} \mathbb{F}$, and $\mathbb{F}_{a \circ b}$ of an arbitrary soft open neighborhood of $f(a, b)=a \circ b$. Then by soft-continuity in Definition 17 , for every $(a, b) \in \mathbb{F} \widehat{\times} \mathbb{F}$ and every soft open neighborhoods $\mathbb{F}_{f(a, b)}$ of $f(a, b)$, there is an soft open neighborhood $\mathbb{F}_{(a, b)}$ of (a, b) such that $a \circ b \widehat{\in} f\left(\mathbb{F}_{(a, b)}\right) \widehat{\subseteq} \mathbb{F}_{f(a, b)}$.

Now $\mathbb{F}_{(a, b)}$ is a soft open set in $\Theta \widehat{\times} \Theta$, which means there exist $\left\{\mathbb{F}_{a_{i}}, \mathbb{F}_{b_{i}} \in \Theta, i \in I\right\}$ such that $\mathbb{F}_{(a, b)}=\bigcup_{i \in I} \mathbb{F}_{a_{i}} \widehat{\times} \mathbb{F}_{b_{i}}$. That shows there exist $i \in I$ such that $a \widehat{\in} \mathbb{F}_{a_{i}}$ and $b \widehat{\in} \mathbb{F}_{b_{i}}$. So, $\mathbb{F}_{a_{i}} \widehat{\times} \mathbb{F}_{b_{i}} \in \Theta \widehat{\times} \Theta$ and $\mathbb{F}_{a_{i}} \widehat{\times} \mathbb{F}_{b_{i}} \widehat{\subseteq} \mathbb{F}_{(a, b)}$ and

$$
\mathbb{F}_{a_{i}} \widehat{\widehat{ }} \mathbb{F}_{b_{i}}=f\left(\mathbb{F}_{a_{i}} \widehat{\times} \mathbb{F}_{b_{i}}\right) \widehat{\subseteq} f\left(\mathbb{F}_{(a, b)}\right) \widehat{\subseteq} \mathbb{F}_{f(a, b)}
$$

$\left[\Leftarrow\right.$] For all $a, b \widehat{\in} \mathbb{F}$ and every soft open neighborhoods $\mathbb{F}_{a \circ b}$ of $a \circ b$, there exist an soft open neighborhood \mathbb{F}_{a} of a and an soft open neighborhood \mathbb{F}_{b} of b, such that $\mathbb{F}_{a} \widehat{\circ} \mathbb{F}_{b} \widehat{\subseteq} \mathbb{F}_{a \circ b}$.

However, $\mathbb{F}_{a} \widehat{\circ} \mathbb{F}_{b}=f\left(\mathbb{F}_{a} \widehat{\times} \mathbb{F}_{b}\right)$, since $a \widehat{\in} \mathbb{F}_{a}$ and $b \widehat{\in} \mathbb{F}_{b}$ and they are soft open neighborhoods in Θ, then $\mathbb{F}_{a} \widehat{\times} \mathbb{F}_{b}$ is an soft open neighborhood in $\Theta \widehat{\times} \Theta$ contains (a, b). Therefore, by Definition of soft continuity 17, the mapping f is soft continuous.

Author Contribution Statements The authors contributed equally. All authors read and approved the final copy of the manuscript.

Declaration of Competing Interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements The authors would like to thank to the referees for their valuable comments and suggestions.

References

[1] Aktas, H., Cagman, N., Soft sets and soft groups, Information Sciences, 77(13) (2007), 27262735. https://doi.org/10.1016/j.ins.2006.12.008
[2] Aygunoglu, A., Aygun, H., Some notes on soft topological spaces, Neural Comput. \& Applic., 21(1) (2012), 113-119. https://doi.org/10.1007/s00521-011-0722-3
[3] Babitha, K.V., Sunil, J.J., Soft set relations and functions, Comput. Math. Appl., 60(7) (2010), 1840-1849. https://doi.org/10.1016/j.camwa.2010.07.014
[4] Cagman, N., Karatas, S., Enginoglu, S., Soft topology, Comput. Math. Appl., 62(1) (2011), 351-358. https://doi.org/10.1016/j.camwa.2011.05.016
[5] Corsini, P., Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, Italy, 1993.
[6] Comer, S.D., Extension of polygroups by polygroups and their representations using color schemes, Universal algebra and lattice theory (Puebla, 1982), 91-103, Lecture Notes in Math., 1004, Springer, Berlin, 1983. https://doi.org/10.1007/BFb0063431
[7] Davvaz, B., Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte.Ltd., Hackensack, NJ, 2013. https://doi.org/10.1142/8593
[8] Feng, F., Li, Y.M., Soft subsets and soft product operations, Information Sciences, 232 (2013), 44-57. https://doi.org/10.1016/j.ins.2013.01.001
[9] Heidari, D., Davvaz, B., Modarres, S.M.S., Topological polygroups, Bull. Malays. Math. Sci. Soc., 39 (2016), 707-721. https://doi.org/10.1007/s40840-015-0136-y
[10] Hewitt, E., Ross, K.A., Abstract Harmonic Analysis, vol. 1, Springer Verlag, Berlin, 1963.
[11] Hida, T., Soft topological group, Annals Fuzzy Mathematics and Informatics, 8(6) (2014), 1001-1025.
[12] Hoskova-Mayerova, S., Topological hypergroupoids, Comput. Math. Appl., 64(9) (2012), 2845-2849. https://doi.org/10.1016/j.camwa.2012.04.017
[13] Kharal, A., Ahmad, B., Mappings on soft classes, New Math Nat. Comput., 7(3) (2011), 471-481. https://doi.org/10.1142/S1793005711002025
[14] Koskas, M., Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49(9) (1970), 155-192.
[15] Maji, P.K., Biswas, R., Roy, A.R., Soft set theory, Comput. Math. Appl. 45(4-5) (2003), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
[16] Marty, F., Sur une généralization de la notion de groupe, $8^{i e m}$, Congress Math. Scandinaves, Stockholm, (1934) 45-49.
[17] Molodtsov, D., Soft set Theory-First Results, Comput. Math. Appl., 37 (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5
[18] Mousarezaei, R., Davvaz, B., On soft topological polygroups and their examples, International Journal of Fuzzy Logic and Intelligent Systems, 21(1) (2021), 29-37. http://doi.org/10.5391/IJFIS.2021.21.1.29
[19] Nazmul, S., Samanta, S.K., Group soft topology, J. Fuzzy Math., 22(2) (2014), 435-450.
[20] Nazmul, S., Samanta, S.K., Neighbourhood properties of soft topological spaces, Annals Fuzzy Mathematics and Informatics, 6(1) (2013), 1-15.
[21] Nazmul, S., Samanta, S.K., Soft topological soft groups, Mathematical Sciences, 6 (2012) 1-10. https://doi.org/10.1186/2251-7456-6-66
[22] Oguz, G., A new view on topological polygroups, Turkish Journal of Science, 5(2) (2020), 110-117.
[23] Oguz, G., Idealistic soft topological hyperrings, Scientific Inquiry and Review, 4(3) (2020), 61-70.
[24] Oguz, G., On soft topological hypergroups, Journal of Hyperstructures, 9(2) (2021), 81-95.
[25] Oguz, G., Davvaz, B., Soft topological hyperstructure, Journal of Intelligent and Fuzzy Systems, 40(5) (2021), 8755-8764. https://doi.org/10.3233/JIFS-200242
[26] Shabir, M., Naz, M., On soft topological spaces, Comput. Math. Appl., 61(7) (2011), 17861799. https://doi.org/10.1016/j.camwa.2011.02.006
[27] Shah, T., Shaheen, S., Soft topological groups and rings, Annals Fuzzy Mathematics and Informatics, 7(5) (2014), 725-743.
http://communications.science.ankara.edu.tr

A DIFFERENT APPROACH TO BOUNDEDNESS OF THE B-MAXIMAL OPERATORS ON THE VARIABLE LEBESGUE SPACES

Esra KAYA
Department of Mathematics, Faculty of Science, Bilecik Seyh Edebali University, 11230 Bilecik, TURKEY

Abstract

By using the $L_{p(\cdot)}$-boundedness of a maximal operator defined on homogeneous space, it has been shown that the B-maximal operator is bounded. In the present paper, we aim to bring a different approach to the boundedness of the B-maximal operator generated by generalized translation operator under a continuity assumption on $p(\cdot)$. It is noteworthy to mention that our assumption is weaker than uniform Hölder continuity.

1. Introduction

Nowadays, there is a big attention on the singular integral operator and maximal operators which are defined on variable Lebesgue spaces. The problem that such operators are bounded under which conditions is well-studied and it is the main topic of harmonic analysis. $L_{p(\cdot)}$-boundedness of the Hardy-Littlewood maximal operator and singular integral operators have been investigated in 1.5 .

This study is dealing with the boundedness of maximal operator generated by the Laplace-Bessel differential operator

$$
\Delta_{B}:=\sum_{i=1}^{k} B_{i}+\sum_{i=k+1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, \quad B_{i}=\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\gamma_{i}}{x_{i}} \frac{\partial}{\partial x_{i}}, \quad 1 \leq k \leq n
$$

which has big importance in harmonic analysis. In 8, Guliyev has obtained the $L_{p, \gamma}$-boundedness of the B-maximal operator. Moreover, in 6,12 , it has been shown that the B-maximal operator is $L_{p(\cdot), \gamma}$ - bounded by using the $L_{p(\cdot)}$ - boundedness of a maximal operator whose domain is a homogeneous space.

[^5]In this study, we obtain that the B-maximal operator is bounded on the variable Lebesgue spaces. Here, there are some difficulties while studying the theory of variable Lebesgue spaces. One of them, the generalized translation operator is in general not continuous on the spaces $L_{p(\cdot), \gamma}$. Particularly, if $p(\cdot)$ is not constant, then the generalized translation operator T^{y} is not continuous on the variable Lebesgue spaces. But, it is still possible to overcome these difficulties by taking some regularity conditions on this exponent function. In $\sqrt[7]{7}$, it has been obtained that the generalized translation operator on the spaces $L_{p(\cdot), \gamma}$ is bounded. The construction of the article is as follows: The first section is devoted to introduction. In the second section, we recall some basic concepts, notations and some known results which we need throughout the paper. In the third section, we present that the B-maximal operator on the spaces $L_{p(\cdot), \gamma}$ is bounded under suitable assumptions by a different approach.

2. Preliminaries

Now, we pause to collect some basic concepts, notations and known results which are beneficial for us.

Let $x=\left(x^{\prime}, x^{\prime \prime}\right), x^{\prime}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$, and $x^{\prime \prime}=\left(x_{k+1}, \ldots, x_{n}\right) \in \mathbb{R}^{n-k}$. Denote $\mathbb{R}_{k,+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{1}>0, \ldots, x_{k}>0,1 \leq k \leq n\right\}, \gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right)$, $\gamma_{1}>0, \ldots, \gamma_{k}>0,|\gamma|=\gamma_{1}+\ldots+\gamma_{k}$, and $S_{+}=\left\{x \in \mathbb{R}_{k,+}^{n}:|x|=1\right\}$. Denote by $B_{+}(x, r)$ the open ball of radius r centered at x, namely,
$B_{+}(x, r)=\left\{y \in \mathbb{R}_{k,+}^{n}:|x-y|<r\right\}$. Let $B_{+}(0, r) \subset \mathbb{R}_{k,+}^{n}$ be a measurable set, then

$$
\left|B_{+}(0, r)\right|_{\gamma}=\int_{B_{+}(0, r)}\left(x^{\prime}\right)^{\gamma} d x=\omega(n, k, \gamma) r^{n+|\gamma|}
$$

where $\omega(n, k, \gamma)=\frac{\pi^{\frac{n-k}{2}}}{2^{k}} \prod_{i=1}^{k} \frac{\Gamma\left(\frac{\gamma_{i}+1}{2}\right)}{\left(\frac{\gamma_{i}}{2}\right)}$.
We will now introduce the spaces $L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ and recall the basic properties of it. Let $\mathcal{P}\left(\mathbb{R}_{k,+}^{n}\right)$ be the set of all measurable functions $p(\cdot): \mathbb{R}_{k,+}^{n} \rightarrow[1, \infty]$. The elements of $\mathcal{P}\left(\mathbb{R}_{k,+}^{n}\right)$ are called variable exponent functions and also let

$$
p_{-}:=\underset{x \in \mathbb{R}_{k,+}^{n}}{\operatorname{ess} \inf } p(x), \quad p_{+}:=\underset{x \in \mathbb{R}_{k,+}^{n}}{\operatorname{ess} \sup } p(x)
$$

Given $p(\cdot)$, the conjugate exponent function is as follows:

$$
\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1, \quad x \in \mathbb{R}_{k,+}^{n}
$$

The analog of log-Hölder continuity for variable Lebesgue spaces related to the Laplace-Bessel differential operator is defined by the following.

Definition 1. Given a function $p(\cdot): \mathbb{R}_{k,+}^{n} \rightarrow[1, \infty), p(\cdot)$ is called log-Hölder continuous on $\mathbb{R}_{k,+}^{n}$, if there exist constants $C_{0}, C_{\infty}>0$ and p_{∞} such that for all $|x-y| \leq \frac{1}{2}$, and $x, y \in \mathbb{R}_{k,+}^{n}$,

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{C_{0}}{-\log |x-y|} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p(x)-p_{\infty}\right| \leq \frac{C_{\infty}}{\log (e+|x|)} \tag{2}
\end{equation*}
$$

where $p_{\infty}=\lim _{x \rightarrow \infty} p(x)>1$. If (1) and (2) hold for $p(\cdot)$, then it is denoted by $p(\cdot) \in \mathcal{P}^{\log }\left(\mathbb{R}_{k,+}^{n}\right)$, and $\left.p(\cdot) \in \mathcal{P}_{\infty}^{\log }{\underset{\mathbb{R}}{k,+}}_{n}\right)$, respectively.
Lemma 1. [7] Let $p(\cdot): \mathbb{R}_{k,+}^{n} \rightarrow[1, \infty)$ be continuous. The followings are equivalent:
(i) $p(\cdot)$ is uniformly continuous with $|p(x)-p(y)| \leq \frac{C_{0}}{\ln |x-y|^{-1}}$ for all $0<$ $|x-y| \leq \frac{1}{2}$
(ii) $\left|B_{+}\right|_{\gamma}^{p_{-} p_{+}} \leq C_{1}$ holds for all open balls B_{+}.

The space $L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ is known as the set of measurable functions f such that for a variable exponent $p(\cdot): \mathbb{R}_{k,+}^{n} \rightarrow[1, \infty]$,

$$
\|f\|_{L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right)}=\inf \left\{\lambda>0: \rho_{p(\cdot), \gamma}(f / \lambda) \leq 1\right\}<\infty
$$

where

$$
\rho_{p(\cdot), \gamma}:=\int_{\mathbb{R}_{k,+}^{n}}|f(x)|^{p(x)}\left(x^{\prime}\right)^{\gamma} d x
$$

Note that the variable Lebesgue space $L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ is a Banach space for $1<p_{-} \leq$ $p(x) \leq p_{+}<\infty$.

The definition of the generalized translation operator is as follows:

$$
T^{y} f(x):=C_{\gamma, k} \int_{0}^{\pi} \ldots \int_{0}^{\pi} f\left[\left(x_{1}, y_{1}\right)_{\alpha_{1}}, \ldots,\left(x_{k}, y_{k}\right)_{\alpha_{k}}, x^{\prime \prime}-y^{\prime \prime}\right] d \gamma(\alpha)
$$

where $C_{\gamma, k}=\pi^{-\frac{k}{2}} \Gamma\left(\frac{\gamma_{i}+1}{2}\right)\left[\Gamma\left(\frac{\gamma_{i}}{2}\right)\right]^{-1},\left(x_{i}, y_{i}\right)_{\alpha_{i}}=\left(x_{i}^{2}-2 x_{i} y_{i} \cos \alpha_{i}+y_{i}^{2}\right)^{\frac{1}{2}}, 1 \leq i \leq k$, $1 \leq k \leq n$, and $d \gamma(\alpha)=\prod_{i=1}^{k} \sin ^{\gamma_{i}-1} \alpha_{i} d \alpha_{i} 13,14$. Notice that the generalized translation operator is related to the Laplace-Bessel differential operator.

The definition of the B-convolution operator is as follows:

$$
(f \otimes g)(x)=\int_{\mathbb{R}_{k,+}^{n}} f(y) T^{y} g(x)\left(y^{\prime}\right)^{\gamma} d y
$$

```
A DIFFERENT APPROACH TO BOUNDEDNESS OF THE M M ON L L(\cdot),\gamma}(\mp@subsup{\mathbb{R}}{k,+}{n})\quad71
```

Given a function $f \in L_{1, \gamma}^{\text {loc }}\left(\mathbb{R}_{k,+}^{n}\right)$, then the maximal operator associated with the Laplace-Bessel differential operator (B-maximal operator) (see [8) is as follows:

$$
M_{\gamma} f(x)=\sup _{r>0}\left|B_{+}(0, r)\right|_{\gamma}^{-1} \int_{B_{+}(0, r)} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y
$$

Let $B_{+} \in \mathbb{R}_{k,+}^{n}$ be an arbitrary ball and $f \in L_{1, \gamma}^{\text {loc }}\left(\mathbb{R}_{k,+}^{n}\right)$, then define

$$
M_{\gamma, B_{+}} f:=\left|B_{+}(0, r)\right|_{\gamma}^{-1} \int_{B_{+}} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y
$$

By taking supremum over all balls centered at x, one can easily observe that

$$
M_{\gamma} f:=\sup _{B_{+}(x)} M_{\gamma, B_{+}(x)} f
$$

As mentioned earlier, the variable Lebesgue spaces $L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ have some undesired properties about the generalized translation operator. In order to overcome this problem, it is necessary to give some smoothness conditions on $p(\cdot)$. The following theorem states the necessary condition for the boundedness of generalized translation operator.
Theorem 1. 7 Let $p(\cdot) \in \mathcal{P}^{\log }\left(\mathbb{R}_{k,+}^{n}\right)$ with $1<p_{-} \leq p_{+}<\infty$. Then for all $f \in L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right) \cap \mathcal{S}_{+}^{\prime}\left(\mathbb{R}_{k,+}^{n}\right)$ with $\operatorname{supp} F_{B} f \subset\left\{\xi \in \mathbb{R}_{k,+}^{n}:|\xi| \leq 2^{v+1}\right\}, v \in \mathbb{N}_{0}$,

$$
\left\|T^{y} f(x)\right\|_{p(\cdot), \gamma} \leq c \exp \left(\left(2+2^{v n}|y|\right) c_{\log }(p)\right)\|f\|_{p(\cdot), \gamma},
$$

holds, where $c>0$ is independent of v.

3. Main Results

This section is devoted to our main results. First of all we obtain some lemmas which we need to prove that the B-maximal operator is bounded on variable Lebesgue spaces.

Lemma 2. Let $p(\cdot) \in \mathbb{R}_{k,+}^{n}$ be as in Lemma 1. Then there exists a positive constant $C(p, \gamma)>0$ such that

$$
\left(M_{\gamma} f(x)\right)^{\frac{p(x)}{p_{-}}} \leq C(p, \gamma)\left(M_{\gamma}\left(|f|^{\frac{p(\cdot)}{p_{-}}}\right)(x)+1\right), \quad \text { for all } \quad x \in \mathbb{R}_{k,+}^{n}
$$

holds for all $\|f\|_{p(\cdot), \gamma} \leq 1$.
Proof. Define $q(\cdot):=\frac{p(\cdot)}{p_{-}}$, then $q(\cdot)$ is also as in Lemma 1. Let $\|f\|_{p(\cdot), \gamma} \leq 1$, then $\rho_{p(\cdot), \gamma}(f) \leq 1$. By Theorem 1 , for $r \geq \frac{1}{2}$, we get
$\left(M_{\gamma} f\right)^{q(x)}=\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)}$

$$
\begin{aligned}
& \leq\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}}\left(\frac{1}{p(y)} T^{y}|f(x)|^{p(y)}\left(y^{\prime}\right)^{\gamma}+\frac{1}{p^{\prime}(y)}\left(y^{\prime}\right)^{\gamma}\right) d y\right)^{q(x)} \\
& \leq\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} \frac{1}{p(y)} T^{y}|f(x)|^{p(y)}\left(y^{\prime}\right)^{\gamma} d y+\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} \frac{1}{p^{\prime}(y)}\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} T^{y}|f(x)|^{p(y)}\left(y^{\prime}\right)^{\gamma} d y+\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}}\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}}|f(x)|^{p(y)}\left(y^{\prime}\right)^{\gamma} d y+\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}}\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}}\left(|f(x)|^{p(y)}+1\right)\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(\left|B_{+}\right|_{\gamma}^{-1} \rho_{p(\cdot), \gamma}(f)+1\right)^{q(x)} \\
& \leq\left(\left|B_{+}\left(0, \frac{1}{2}\right)\right|_{\gamma}^{-1}+1\right)^{q_{+}} .
\end{aligned}
$$

If $0<r<\frac{1}{2}$, then $\left|B_{+}\right|_{\gamma} \leq(2 r)^{n+|\gamma|}<1$, and

$$
\begin{aligned}
\left(M_{\gamma} f\right)^{q(x)}= & \left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
\leq & {\left[\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} T^{y}|f(x)|^{q_{-}}\left(y^{\prime}\right)^{\gamma} d y\right)^{\frac{1}{q_{-}}}\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}}\left(y^{\prime}\right)^{\gamma} d y\right)^{\frac{1}{q_{-}^{\prime}}}\right]^{q(x)} } \\
\leq & \left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} T^{y}|f(x)|^{q_{-}}\left(y^{\prime}\right)^{\gamma} d y\right)^{\frac{q(x)}{q_{-}}} \\
\leq & \left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}} T^{y}|f(x)|^{q(y)}\left(y^{\prime}\right)^{\gamma} d y\right)^{\frac{q(x)}{q_{-}}} \\
& \leq\left(\left|B_{+}\right|_{\gamma}^{-1} \int_{B_{+}}\left(T^{y}|f(x)|^{q(y)}+1\right)\left(y^{\prime}\right)^{\gamma} d y\right)^{\frac{q(x)}{q_{-}}} \\
& \leq\left|B_{+}\right|_{\gamma}^{-\frac{q(x)}{q_{-}}} 3^{q_{+}}\left(\frac{1}{3} \int_{B_{+}}\left(T^{y}|f(x)|^{q(y)}+1\right)\left(y^{\prime}\right)^{\gamma} d y\right)^{\frac{q(x)}{q_{-}}}
\end{aligned}
$$

Since,

$$
\begin{aligned}
\frac{1}{3} \int_{B_{+}}\left(T^{y}|f(x)|^{q(y)}+1\right)\left(y^{\prime}\right)^{\gamma} d y & \leq \frac{1}{3} \int_{B_{+}}\left(T^{y}|f(x)|^{p(y)}+2\right)\left(y^{\prime}\right)^{\gamma} d y \\
& \leq \frac{1}{3} \int_{B_{+}} T^{y}|f(x)|^{p(y)}\left(y^{\prime}\right)^{\gamma} d y+\frac{2}{3}\left|B_{+}\right|_{\gamma}<1
\end{aligned}
$$

and from Lemma 1. we obtain

$$
\begin{aligned}
\left(M_{\gamma} f\right)^{q(x)} & \leq\left|B_{+}\right|_{\gamma}^{-\frac{q(x)}{q_{-}}} 3^{q_{+}}\left(\frac{1}{3} \int_{B_{+}} T^{y}|f(x)|^{q(y)}\left(y^{\prime}\right)^{\gamma} d y+\frac{2}{3}\left|B_{+}\right|_{\gamma}\right) \\
& \leq\left|B_{+}\right|_{\gamma}^{-\frac{q(x)}{q_{-}}}\left|B_{+}\right| 3^{q_{+}-1}\left(\int_{B_{+}} T^{y}|f(x)|^{q(y)}\left(y^{\prime}\right)^{\gamma} d y+2\right) \\
& \leq\left|B_{+}\right|_{\gamma}^{\frac{q_{-}-q_{+}}{q_{-}}} 3^{q_{+}-1}\left(\oint_{B_{+}} T^{y}|f(x)|^{q(y)}\left(y^{\prime}\right)^{\gamma} d y+2\right) \\
& \leq C_{0} 3^{q_{+}-1}\left(M_{\gamma}\left(|f|^{q(y)}\right)+2\right) .
\end{aligned}
$$

If one takes supremum over all balls B_{+}, then the proof is completed.
Lemma 3. Let $p(\cdot) \in \mathbb{R}_{k,+}^{n}$ be as in Lemma 1 and be constant outside some ball $B_{+}(0, r)$. Then there exist a constant $C(p, \gamma)>0$, and $h \in L_{1, \infty, \gamma}\left(\mathbb{R}_{k,+}^{n}\right) \cap L_{\infty, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ such that

$$
\left(M_{\gamma} f(x)\right)^{\frac{p(x)}{p_{-}}} \leq C(p, \gamma) M_{\gamma}\left(|f|^{\frac{p(\cdot)}{p_{-}}}\right)(x)+h(x) \quad \text { for a.a. } x \in \mathbb{R}_{k,+}^{n}
$$

holds for all $\|f\|_{p(\cdot), \gamma} \leq 1$.
Proof. Define $q(\cdot):=\frac{p(\cdot)}{p_{-}}$, and $q_{\infty}:=\frac{p_{\infty}}{p_{-}}$, then $q(\cdot)$ satisfies the equivalent conditions of Lemma 1. Let $\|f\|_{p(\cdot), \gamma} \leq 1$, then $\rho_{p(\cdot), \gamma}(f) \leq 1$. Split $f=f_{0}+f_{1}$ such that $f_{0}:=\chi_{B_{+}} f$, and $f_{1}:=\chi_{\mathbb{R}_{k,+}^{n} \backslash B_{+}} f$. Thus, for all $x \in B_{+}(0,2 r)$,

$$
\begin{equation*}
\left(M_{\gamma} f(x)\right)^{q(x)} \leq C(q, \gamma)\left(M_{\gamma}\left(|f|^{q(\cdot)}\right)+1\right) \tag{3}
\end{equation*}
$$

Now let $x \in \mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)$. Then $|x|-r \geq \frac{1}{2}|x|$, and $\left|B_{+}(x,|x|-r)\right|_{\gamma} \geq C|x|^{n+|\gamma|}$. Since $\operatorname{supp} f_{0} \subset B_{+}(x, r)$, and from Theorem 1 we get

$$
\begin{aligned}
\left(M_{\gamma} f_{0}(x)\right)^{q(x)} & \leq\left(\sup _{|x|-r<r}\left|B_{+}(x, r)\right|_{\gamma}^{-1} \int_{B_{+}(x, r)} T^{y}\left|f_{0}(x)\right|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(\left|B_{+}(x,|x|-r)\right|_{\gamma}^{-1} \int_{B_{+}(x, r)} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)}
\end{aligned}
$$

$$
\begin{align*}
& \leq\left(C|x|^{-n-|\gamma|} \int_{B_{+}(x, r)} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(C|x|^{-n-|\gamma|} \int_{B_{+}(x, r)}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(C|x|^{-n-|\gamma|} \int_{B_{+}(x, r)}\left(|f(x)|^{p(y)}+1\right)\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(C|x|^{-n-|\gamma|} \rho_{p(\cdot), \gamma}(f)\right)^{q(x)} \\
& \leq C(q, \gamma)|x|^{-n-|\gamma|} . \tag{4}
\end{align*}
$$

Moreover, for $x \in \mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)$,

$$
\begin{align*}
\left(M_{\gamma} f_{1}(x)\right)^{q(x)} & =\left(\oint_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)}\left|T^{y} f_{1}(x)\right|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq\left(\oint_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)}\left|T^{y} f_{1}(x)\right|\left(y^{\prime}\right)^{\gamma} d y\right)^{q_{\infty}} \\
& \leq \oint_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)} T^{y}\left|f_{1}(x)\right|^{q_{\infty}}\left(y^{\prime}\right)^{\gamma} d y \\
& \leq \oint_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)} T^{y}\left|f_{1}(x)\right|^{q(x)}\left(y^{\prime}\right)^{\gamma} d y \\
& \leq M_{\gamma}\left(|f|^{q(x)}\right)(x) \tag{5}
\end{align*}
$$

By (3), (4) and (5), we obtain

$$
\begin{aligned}
\left(M_{\gamma} f(x)\right)^{q(x)} & \leq \chi_{B_{+}(0,2 r)}\left(M_{\gamma} f(x)\right)^{q(x)}+\chi_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)}\left(M_{\gamma} f_{0}(x)+M_{\gamma} f_{1}(x)\right)^{q(x)} \\
& \leq \chi_{B_{+}(0,2 r)}\left(M_{\gamma} f(x)\right)^{q(x)}+C(q, \gamma) \chi_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)}\left(\left(M_{\gamma} f_{0}(x)\right)^{q(x)}+\left(M_{\gamma} f_{1}(x)\right)^{q(x)}\right) \\
& \leq C(q, \gamma) M_{\gamma}\left(|f|^{q(\cdot)}\right)(x)+\chi_{B_{+}(0,2 r)} C(q, \gamma) \\
& +\left(\sup _{x \in \mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)} \oint_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)}\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)} \\
& \leq C(q, \gamma) M_{\gamma}\left(|f|^{q(\cdot)}\right)(x)+\underbrace{\chi_{B_{+}(0,2 r)} C(q, \gamma)+\chi_{\mathbb{R}_{k,+}^{n} \backslash B_{+}(0,2 r)} C(q, \gamma)|x|^{-n-|\gamma|}}_{=: h},
\end{aligned}
$$

for all $x \in \mathbb{R}_{k,+}^{n}$. The fact that $h \in L_{1, \infty, \gamma}\left(\mathbb{R}_{k,+}^{n}\right) \cap L_{\infty, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ proves the lemma.

Now we can present our main theorem.

Theorem 2. Let $p(\cdot)$ be as in Lemma 3 with $p_{-}>1$. Then M_{γ} is bounded on $L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$, i.e.

$$
\left\|M_{\gamma} f\right\|_{p(\cdot), \gamma} \leq C(p, \gamma)\|f\|_{p(\cdot), \gamma}
$$

Proof. Since $M_{\gamma}(\lambda f)=\|\lambda\| M_{\gamma} f$, we have $\left\|M_{\gamma} f\right\|_{p(\cdot), \gamma} \leq C$, for all $\|f\|_{p(\cdot), \gamma} \leq 1$. Since $p_{+}<\infty$, it is sufficient to illustrate $\rho_{p(\cdot), \gamma}\left(M_{\gamma} f\right) \leq C$ for all $\|f\|_{p(\cdot), \gamma} \leq$ 1. Let $f \in L_{p(\cdot), \gamma}$ with $\|f\|_{p(\cdot), \gamma} \leq 1$. Then $\rho_{p(\cdot), \gamma}\left(M_{\gamma} f\right) \leq 1$. Moreover, let $q(\cdot):=p(\cdot) / p_{-}$. By Lemma 3, there exists $h \in L_{1, \infty, \gamma}\left(\mathbb{R}_{k,+}^{n}\right) \cap L_{\infty, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ such that $\left(M_{\gamma} f\right)^{q(\cdot)} \leq C(p, \gamma) M_{\gamma}\left(|f|^{q(\cdot)}\right)+h$. Thus,

$$
\begin{aligned}
\rho_{p(\cdot), \gamma}\left(M_{\gamma} f\right) & =\int_{\mathbb{R}_{k,+}^{n}}\left|M_{\gamma} f\right|^{p(x)}\left(x^{\prime}\right)^{\gamma} d x \\
& =\int_{\mathbb{R}_{k,+}^{n}}\left(\sup _{B_{+}} \int_{B_{+}} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{p(x)}\left(x^{\prime}\right)^{\gamma} d x \\
& =\int_{\mathbb{R}_{k,+}^{n}}\left(\sup _{B_{+}} \int_{B_{+}} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x) p_{-}}\left(x^{\prime}\right)^{\gamma} d x \\
& =\int_{\mathbb{R}_{k,+}^{n}}\left(\left(\sup _{B_{+}} \int_{B_{+}} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)^{q(x)}\right)^{p_{-}}\left(x^{\prime}\right)^{\gamma} d x \\
& =\int_{\mathbb{R}_{k,+}^{n}}\left(\left|M_{\gamma} f\right|^{q(x)}\right)^{p_{-}}\left(x^{\prime}\right)^{\gamma} d x \\
& =\left\|\left(M_{\gamma} f\right)^{q(x)}\right\|_{p_{-}, \gamma}^{p_{-}} \\
& \leq\left(C(p, \gamma)\left\|M_{\gamma}\left(|f|^{q(x)}\right)\right\|_{p_{-}, \gamma}+\|h\|_{p_{-}, \gamma}\right)^{p_{-}}
\end{aligned}
$$

holds and since $p_{-}>1$, one can see that the B-maximal operator $M_{\gamma} f$ is continuous on $L_{p_{-}, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$. Therefore, we obtain that

$$
\begin{aligned}
\rho_{p(\cdot), \gamma}\left(M_{\gamma} f\right) & \leq\left(C(p, \gamma)\left\|M_{\gamma}\left(|f|^{q(x)}\right)\right\|_{p_{-}, \gamma}+\|h\|_{p_{-}, \gamma}\right)^{p_{-}} \\
& =\left(C(p, \gamma) \rho_{p(\cdot), \gamma}(f)^{\frac{1}{p_{-}}}+\|h\|_{p_{-}, \gamma}\right)^{p_{-}} \leq C(p, \gamma)
\end{aligned}
$$

and this completes the proof.

4. Concluding Remarks

The Hardy-Littlewood maximal operators, singular integral operators, rough integral operator, its commutators and their boundedness on the various function spaces are crucial topics of Harmonic Analysis. In this study, we have shown that
the B-maximal operator on the variable Lebesgue spaces is bounded under suitable assumptions by a different approach. The boundedness of this operator plays a significant role in order to obtain the boundedness of the singular integral operator, fractional integral operator and its commutators. The fractional versions of these operators have recently become an active area of research (see $9,11,15,16$). As a future direction of this study, one might extend to the case that the Laplace-Bessel differential operators with coefficient such as $a(x)$ that could be continuous or Vanishing Mean Oscillation functions.

Declaration of Competing Interests The author declares no competing interests.

Acknowledgement The authors thank the referees for their valuable suggestions and comments.

References

[1] Adamowicz, T., Harjulehto, P., Hästö, P., Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces, Math. Scand., 116(1) (2015), 5-22. https://doi.org/10.7146/math.scand.a-20448
[2] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C., The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223-238.
[3] Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C., The boundedness of classical operators on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239-264.
[4] Diening, L., Maximal function on Orlicz-Musielak spaces and generalized Lebesgue space, Bull. Sci. Math., 129(8) (2005), 657-700. https://doi.org/10.1016/j.bulsci.2003.10.003
[5] Diening, L., Maximal function on generalized Lebesgue spaces $L^{p(x)}$, Mathematical Ineq. \& App., 7(2) (2004), 245-253. dx.doi.org/10.7153/mia-07-27
[6] Ekincioglu, I., Guliyev, V. S., Kaya, E., B_{n}-maximal operator and B_{n}-singular integral operators on variable exponent Lebesgue spaces, Mathematica Slovaca, 70(4) (2020), 893902. https://doi.org/10.1515/ms-2017-0401
[7] Ekincioglu, I., Shishkina, E. L., Kaya, E., On the boundedness of the generalized translation operator on variable exponent Lebesgue spaces, Acta Applicandae Mathematicae, 173 (2021), 1-14. https://doi.org/10.1007/s10440-021-00411-8
[8] Guliev, V. S., On maximal function and fractional integral, associated with the Bessel differential operator, Math. Inequal. Appl., 6(2) (2003), 317-330. dx.doi.org/10.7153/mia-06-30
[9] Gürbüz, F., Değişken üstlü Lebesgue uzaylarında kaba çekirdekli kesirli maksimal ve integral operatörlerinin genelleştirilmiş komütatörleri için bazı tahminler için Mühendislik, Matematik ve Dog̃a Bilimlerinde Yenilikçi Yaklaşımlar, Ekin Yayınevi, Türkiye, 2019, 1-11.
[10] Gürbüz, F., Ding, S., Han, H., Long, P., Characterizations of Rough Fractional-Type Integral Operators on Variable Exponent Vanishing Morrey-Type Spaces, in Topics in Contemporary Mathematical Analysis and Applications, CRC Press, 2020. 10.1201/9781003081197-4
[11] Gürbüz, F., Ding, S., Han, H., Long, P., Norm inequalities on variable exponent vanishing Morrey type spaces for the rough singular type integral operators, Int. J. Nonlinear Sci. Numer. Simul., 22(6) (2021), 721-739. https://doi.org/10.1515/ijnsns-2019-0180
[12] Kaya, E., A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces, Open Mathematics, 19(1) (2021), 306-315. https://doi.org/10.1515/math-2021-0041

$$
\text { A DIFFERENT APPROACH TO BOUNDEDNESS OF THE } M_{\gamma} \text { ON } L_{p(\cdot), \gamma}\left(\mathbb{R}_{k,+}^{n}\right)
$$

[13] Klyuchantsev, M. I., On singular integrals generated by the generalized shift operator I, Sibirsk. Math. Zh., 11(4) (1970), 810-821. http://mi.mathnet.ru/eng/smj/v11/i4/p810
[14] Levitan, B. M., Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk, 6:2(42) (1951), 102-143. http://mi.mathnet.ru/eng/umn/v6/i2/p102
[15] Sarfraz, N., Jarad, F., Estimates for a rough fractional integral operator and its commutators on p-adic central Morrey spaces, Fractal Fract., 6(2) (2022), 117. https://doi.org/10.3390/fractalfract6020117
[16] Sarfraz, N., Aslam, M., Jarad, F., Boundedness for commutators of rough p-adic Hardy operator on p-adic central Morrey spaces, J. Funct. Spaces, 2021 (2021), 1-5. https://doi.org/10.1155/2021/4886197

\square

$\square \square$

$\square \square \square \quad \square$
\square

Consider the function

$$
\Delta(\lambda): \operatorname{det}\left(\begin{array}{cc}
U(C) & V(C) \tag{6}\\
U(S) & V(S)
\end{array}\right)
$$

It is obvious $\Delta(\lambda)$ is also entire.
Theorem 1. The zeros of the function $\Delta(\lambda)$ coincide with the eigenvalues of the problem (1)-(3).
Proof. Let λ_{0} be an eigenvalue and $y\left(t, \lambda_{0}\right)=\delta_{1} C\left(t, \lambda_{0}\right)+\delta_{2} S\left(t, \lambda_{0}\right)$ is the corresponding eigenfunction, then $y\left(t, \lambda_{0}\right)$ satisfies (2) and (3). Therefore,

$$
\begin{aligned}
& \delta_{1} U\left(C\left(t, \lambda_{0}\right)\right)+\delta_{2} U\left(S\left(t, \lambda_{0}\right)\right)=0 \\
& \delta_{1} V\left(C\left(t, \lambda_{0}\right)\right)+\delta_{2} V\left(S\left(t, \lambda_{0}\right)\right)=0
\end{aligned}
$$

It is obvious that $y\left(t, \lambda_{0}\right) \neq 0$ iff the coefficients-determinant of the above system vanishes, i.e., $\Delta\left(\lambda_{0}\right)=0$.

Since $\Delta(\lambda)$ is an entire function, eigenvalues of the problem (1)-(3) are discrete.

3. Eigenvalues of (1)-(3) on a Finite Time Scale

Let \mathbb{T} be a finite time scale such that there are m (or r) many elements which are larger (or smaller) than a in \mathbb{T}. Assume $m \geq 1, r \geq 0$ and $r+m \geq 2$. It is clear that the number of elements of \mathbb{T} is $n=m+r+1$. We can write \mathbb{T} as follows

$$
\mathbb{T}=\left\{\rho^{r}(a), \rho^{r-1}(a), \ldots, \rho^{2}(a), \rho(a), a, \sigma(a), \sigma^{2}(a), \ldots, \sigma^{m-1}(a), \sigma^{m}(a)\right\}
$$ where $\sigma^{j}=\sigma^{j-1} \circ \sigma, \rho^{j}=\rho^{j-1} \circ \rho$ for $j \geq 2, \rho^{r}(a)=\alpha$ and $\sigma^{m-1}(\alpha)=\beta$.

Lemma 2. i) If $r \geq 3$ and $m \geq 2$, the following equalities hold for all λ

$$
\begin{aligned}
& S(\alpha, \lambda)=(-1)^{r} \mu^{\rho}(a)\left[\mu^{\rho^{2}}(a) \mu^{\rho^{3}}(a) \ldots \mu^{\rho^{r}}(a)\right]^{2} \lambda^{r-1}+O\left(\lambda^{r-2}\right) \\
& S^{\sigma}(\alpha, \lambda)=(-1)^{r-1} \mu^{\rho}(a)\left[\mu^{\rho^{2}}(a) \mu^{\rho^{3}}(a) \ldots \mu^{\rho^{r-1}}(a)\right]^{2} \lambda^{r-2}+O\left(\lambda^{r-3}\right) \\
& S(\beta, \lambda)=S^{\sigma^{m-1}}(a, \lambda)=(-1)^{m}\left[\mu(a) \mu^{\sigma}(a) \ldots \mu^{\sigma^{m-3}}(a)\right]^{2} \lambda^{m-2} \mu^{\sigma^{m-2}}(a)+O\left(\lambda^{m-3}\right) \\
& S^{\sigma}(\beta, \lambda)=S^{\sigma^{m}}(a, \lambda)=(-1)^{m+1}\left[\mu(a) \mu^{\sigma}(a) \ldots \mu^{\sigma^{m-2}}(a)\right]^{2} \lambda^{m-1} \mu^{\sigma^{m-1}}(a)+O\left(\lambda^{m-2}\right) \\
& C(\alpha, \lambda)=(-1)^{r}\left[\mu^{\rho}(a) \mu^{\rho^{2}}(a) \ldots \mu^{\rho^{r}}(a)\right]^{2} \lambda^{r}+O\left(\lambda^{r-1}\right) \\
& C^{\sigma}(\alpha, \lambda)=(-1)^{r-1}\left[\mu^{\rho}(a) \mu^{\rho^{2}}(a) \ldots \mu^{\rho^{r-1}}(a)\right]^{2} \lambda^{r-1}+O\left(\lambda^{r-2}\right) \\
& C(\beta, \lambda)=C^{\sigma^{m-1}}(a, \lambda)=(-1)^{m} \mu(a)\left[\mu^{\sigma}(a) \mu^{\sigma^{2}}(a) \ldots \mu^{\sigma^{m-3}}(a)\right]^{2} \mu^{\sigma^{m-2}}(a) \lambda^{m-2}+O\left(\lambda^{m-3}\right) \\
& C^{\sigma}(\beta, \lambda)=C^{\sigma^{m}}(a, \lambda)=(-1)^{m+1} \mu(a)\left[\mu^{\sigma}(a) \mu^{\sigma^{2}}(a) \ldots \mu^{\sigma^{m-2}}(a)\right]^{2} \mu^{\sigma^{m-1}}(a) \lambda^{m-1}+O\left(\lambda^{m-2}\right),
\end{aligned}
$$

where $O\left(\lambda^{l}\right)$ denotes a polynomial whose degree is l.
ii) If $r \in\{0,1,2\}$ or $m \in\{0,1\}$, degrees of all above functions are vanish.

Proof. It is clear from $f^{\sigma}(t)=f(t)+\mu(t) f^{\Delta}(t)$ that $S^{\sigma}(a, \lambda)=\mu(a)$ and $C^{\sigma}(a, \lambda)=$ 1. On the other hand, since $S(t, \lambda)$ and $C(t, \lambda)$ satisfy (1) then the following equalities hold for each $t \in \mathbb{T}^{\kappa}$ and for all λ.

$$
\begin{align*}
S^{\sigma^{2}}(t, \lambda)= & \left(1+\frac{\mu(t)}{\mu^{\sigma}(t)}-\lambda \mu(t) \mu^{\sigma}(t)\right) S^{\sigma}(t, \lambda) \tag{7}\\
& -\frac{\mu^{\sigma}(t)}{\mu(t)} S(t, \lambda) \\
C^{\sigma^{2}}(t, \lambda)= & \left(-\mu(t) \mu^{\sigma}(t) \lambda+1+\frac{\mu(t)}{\mu^{\sigma}(t)}\right) C^{\sigma}(t, \lambda) \tag{8}\\
& -\frac{\mu^{\sigma}(t)}{\mu(t)} C(t, \lambda)+\mu(t) \mu^{\sigma}(t) q(t)
\end{align*}
$$

It can be calculated from (7) and (8) that

$$
\begin{align*}
S^{\sigma^{j}}(a, \lambda)= & (-1)^{j+1}\left(\mu(a) \mu^{\sigma}(a) \ldots \mu^{\sigma^{j-2}}(a)\right)^{2} \mu^{\sigma^{j-1}}(a) \lambda^{j-1} \tag{9}\\
& +O\left(\lambda^{j-2}\right) \\
S^{\rho^{j}}(a, \lambda)= & (-1)^{j} \mu^{\rho}(a)\left(\mu^{\rho^{2}}(a) \mu^{\rho^{3}}(a) \ldots \mu^{\rho^{j}}(a)\right)^{2} \lambda^{j-1} \tag{10}\\
& +O\left(\lambda^{j-2}\right) \\
C^{\sigma^{k}}(a, \lambda)= & (-1)^{k+1} \mu(a)\left(\mu^{\sigma}(a) \mu^{\sigma^{2}}(a) \ldots \mu^{\sigma^{k-2}}(a)\right)^{2} \mu^{\sigma^{k-1}}(a) \lambda^{k-1} \tag{11}\\
& +O\left(\lambda^{k-2}\right) \\
C^{\rho^{k}}(a, \lambda)= & (-1)^{k}\left(\mu^{\rho}(a) \mu^{\rho^{2}}(a) \ldots \mu^{\rho^{k}}(a)\right)^{2} \lambda^{k} \tag{12}\\
& +O\left(\lambda^{k-1}\right)
\end{align*}
$$

for $j=2,3, \ldots m$ and $k=2,3, \ldots, r$. Using (9)-(12) and taking into account $\alpha=$ $\rho^{r}(a)$ and $\beta=\sigma^{m-1}(\alpha)$ we have our desired relations.

Corollary 1. $\operatorname{deg} C(\alpha, \lambda) S^{\sigma}(\beta, \lambda)=\left\{\begin{array}{cc}r+m-1, & r>0 \text { and } m>1 \\ 1, & \text { the other cases }\end{array}\right.$.

Lemma 3. The following equlaties hold for all $\lambda \in \mathbb{C}$.

$$
\begin{aligned}
S^{\sigma}(\alpha, \lambda) C(\alpha, \lambda)-S(\alpha, \lambda) C^{\sigma}(\alpha, \lambda) & =A \lambda^{\delta}+O\left(\lambda^{\delta-1}\right) \\
S^{\sigma}(\beta, \lambda) C(\beta, \lambda)-S(\beta, \lambda) C^{\sigma}(\beta, \lambda) & =B \lambda^{\gamma}+O\left(\lambda^{\gamma-1}\right)
\end{aligned}
$$

where $A=(-1)^{r} \mu(\alpha) \mu^{\rho}(a)\left[\mu^{\rho^{2}}(a) \ldots \mu^{\rho^{r-1}}(a)\right]^{2} \mu^{\rho^{r}}(a) q(\alpha)$,
$B=(-1)^{m-1} \mu(\beta)\left[\mu(a) \mu^{\sigma}(a) \ldots \mu^{\sigma^{m-2}}(a)\right]^{2} q(\rho(\beta))$,
$\delta=\left\{\begin{array}{c}r-2, \quad r \geq 3 \\ 0, \quad r<3\end{array} \quad\right.$ and $\gamma=\left\{\begin{array}{c}m-2, \quad m \geq 3 \\ 0, \quad m<3 .\end{array}\right.$
Proof. Consider the function

$$
\begin{equation*}
\varphi(t, \lambda):=\frac{1}{\mu(t)}\left[S^{\sigma}(t, \lambda) C(t, \lambda)-S(t, \lambda) C^{\sigma}(t, \lambda)\right] \tag{13}
\end{equation*}
$$

It is clear that

$$
\varphi(t, \lambda):=\left[S^{\Delta}(t, \lambda) C(t, \lambda)-S(t, \lambda) C^{\Delta}(t, \lambda)\right]=W[C(t, \lambda), S(t, \lambda)]
$$

and it is the solution of initial value problem

$$
\begin{aligned}
\varphi^{\Delta}(t) & =-q(t) S^{\sigma}(t, \lambda) \\
\varphi(a) & =1
\end{aligned}
$$

Therefore, we can obtain the following relations

$$
\begin{align*}
\varphi^{\sigma}(t, \lambda) & =\varphi(t, \lambda)-\mu(t) q(t) S^{\sigma}(t, \lambda) \tag{14}\\
\varphi^{\rho}(t, \lambda) & =\varphi(t, \lambda)+\mu^{\rho}(t) q(\rho(t)) S(t, \lambda) \tag{15}
\end{align*}
$$

By using (9), (10), (14) and (15), the proof is completed.

Corollary 2. i) $\operatorname{deg}\left(S^{\sigma}(\alpha, \lambda) C(\alpha, \lambda)-S(\alpha, \lambda) C^{\sigma}(\alpha, \lambda)\right)<\operatorname{deg} C(\alpha, \lambda) S^{\sigma}(\beta, \lambda)$,
ii) $\operatorname{deg}\left(S^{\sigma}(\beta, \lambda) C(\beta, \lambda)-S(\beta, \lambda) C^{\sigma}(\beta, \lambda)\right)<\operatorname{deg} C(\alpha, \lambda) S^{\sigma}(\beta, \lambda)$.

The next theorem gives the number of eigenvalues of the problem (1)-(3) on \mathbb{T}. Recall $n=m+r+1$ denotes the number of elements of \mathbb{T} and put $A=\left(\begin{array}{cc}a_{11} \mu(\alpha)-a_{12} & b_{11} \mu(\alpha)-b_{12} \\ a_{22} & b_{22}\end{array}\right)$.

Theorem 2. If $\operatorname{det} A \neq 0$, the problem (1)-(3) has exactly $n-2$ many eigenvalues with multiplications, otherwise the eigenvalues-number of (1)-(3) is least than $n-2$.
\qquad
\qquad

where ε is sufficiently small number. There exist some positive constants C_{ε} such that, $\left|\lambda^{2} \frac{\sin 2 \sqrt{\lambda}(\beta-\delta)}{\sqrt{\lambda}}\right| \geq C_{\varepsilon}|\lambda|^{3 / 2} \exp 2|\tau|\left(\beta-\delta_{2}\right)$ for sufficiently large $\lambda \in \partial G_{n}$. Therefore, by applying Rouche's theorem to (21) on G_{n}, we can show that (20) holds for sufficiently large n.

Remark 2. Since $\mu(\alpha)=0$ in the considered time scale, the term $a_{22} b_{12}-a_{12} b_{22}$ is not another than $\operatorname{det} A$ in section 3.
5.

In this paper, we give some spectral properties of a boundary value problem generated by the Sturm-Liouville equation with a frozen argument and with nonseparated boundary conditions on time scales. We focus on two different time scales: a finite set and a union of two discrete closed intervals. On the finite set, we obtain a formulation for some solutions, characteristic function and the eigenvaluesnumber of the problem. On the other time scale, we give some properties and an asymptotic formula for eigenvalues.

Authors Contributions Statements All authors contributed equally and significantly to this manuscript, and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest.
\square

\qquad
\square

—

$$
\Sigma-
$$

holds.

$$
\begin{aligned}
& \sim(\quad) \text { if and only if } \\
& \sum \sum \mid
\end{aligned}
$$

holds.

holds.

holds.

holds.

$\square \quad \square \quad \square$

—

■
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\longrightarrow

$$
-
$$

\qquad
\qquad
$\longrightarrow-$
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\longrightarrow
\qquad
http://communications.science.ankara.edu.tr

POWER SERIES METHODS AND STATISTICAL LIMIT SUPERIOR

Nilay ŞAHIN BAYRAM
Department of Electrical and Electronics Engineering, Faculty of Engineering, Başkent University, Ankara, TURKEY

Abstract

Given a real bounded sequence $x=\left(x_{j}\right)$ and an infinite matrix $A=\left(a_{n j}\right)$ the Knopp core theorem is equivalent to study the inequality $\lim \sup A x \leq \lim \sup x$. Recently Fridy and Orhan [6] have considered some variants of this inequality by replacing $\lim \sup x$ with statistical limit superior st $-\lim \sup x$. In the present paper we examine similar type of inequalities by employing a power series method P, a non-matrix sequence-to-function transformation, in place of $A=\left(a_{n j}\right)$.

1. Introduction

In order to investigate the effect of matrix transformations upon the derived set of a sequence $x=\left(x_{j}\right)$, Knopp 10 introduced the idea of the core of x and proved the well-known Core Theorem. This is equivalent to study the inequality $\lim \sup A x \leq \lim \sup x$ for the finite matrix and bounded sequences $x=\left(x_{j}\right)$ where $A x:={ }_{j=0}^{\infty} a_{n j} x_{j}(12,15)$. Based on the recently introduced concept of a statistical cluster point [6, a definition is given for the statistical core by Fridy and Orhan 7. They have also determined a class of regular matrices for which the inequality $\lim \sup A x \leq s t-\lim \sup x$ holds for real bounded sequences.

In the present paper, we consider similar type of inequalities by replacing the sequence to sequence transformation with a power series method which is a sequence to function transformation.

Recall that the core of the sequence $x=\left(x_{j}\right)$ is the closed convex hull of the set of limit points of the sequence $x=\left(x_{j}\right)$.

[^6]Let $\left(p_{j}\right)$ be a non-negative real sequence such that $p_{0}>0$ and the corresponding power series

$$
p(t):={ }_{j=0}^{\infty} p_{j} t^{j}
$$

has radius of convergence R with $0<R \leq \infty$.
Let

$$
C_{P}:=f:\left.(-R, R) \rightarrow \mathbb{R}\right|_{0<t \rightarrow R^{-}} \frac{f(t)}{p(t)} \text { exists }
$$

and
$C_{P_{p}}:=x=\left(x_{j}\right): p_{x}(t):={ }_{j=0}^{\infty} p_{j} t^{j} x_{j}$ has radius of convergence $\geq R$ and $p_{x} \in C_{p}$
The functional $P-\lim : C_{P_{p}} \rightarrow \mathbb{R}$ defined by

$$
P-\lim x=\lim _{0<t \rightarrow R^{-}} \frac{1}{p(t)}_{j=0}^{\infty} p_{j} t^{j} x_{j}
$$

is called a power series method and the sequences $x=\left(x_{j}\right)$ is said to be P convergent. The method P is regular if and only if $\lim _{0<t \rightarrow R^{-}} \frac{p_{j} t^{j}}{p(t)}=0$ for every j (see, e.g. $\sqrt{2}$). We note that the Abel method is a particular case of a power series method (17).

From now on we assume that $t \in(0, R)$ and $0<R \leq \infty$.
In the subsequent sections we give some inequalities by relating $\limsup _{t \rightarrow R^{-}} \frac{p_{x}(t)}{p(t)}$ to $\lim \sup x$ and $s t$-limsup x. These inequalities are motivated by those of Maddox 2, Orhan 15, and, Fridy and Orhan 7 .

2. An Inequaility Related to Limit Superior

Let $Q_{x}(t):=\frac{p_{x}(t)}{p(t)}$. In this section for real bounded sequences $x=\left(x_{j}\right)$, we consider the inequality

$$
\limsup _{t \rightarrow R^{-}} Q_{x}(t) \leq \limsup _{j} x_{j}
$$

which may be interpreted as saying that

$$
\mathcal{K}-\text { core }\left\{Q_{x}(t)\right\} \subseteq \mathcal{K}-\operatorname{core}\{x\}
$$

where \mathcal{K}-core $\{x\}$ denotes the usual Knopp core of x (see,e.g., 8, p.55]). Let ℓ^{∞} denote the space of all real bounded sequences and let $L(x):=\lim \sup x_{n}$ and $l(x):=\liminf _{n} x_{n}$. Now we have the following

Theorem 1. For every $x=\left(x_{j}\right) \in \ell^{\infty}$ we have

$$
\begin{equation*}
\limsup _{t \rightarrow R^{-}} Q_{x}(t) \leq \limsup _{j} x_{j} \tag{1}
\end{equation*}
$$

if and only if P is regular.
Proof. Necessity. Let $x \in c$. Then by (1), we immediately get

$$
-\lim \sup (-x) \leq-\limsup _{t \rightarrow R^{-}} Q_{(-x)}(t)
$$

Combining this with (1), one can have

$$
\lim \inf x \leq \lim \inf Q_{x}(t) \leq \lim \sup Q_{x}(t) \leq \lim \sup x
$$

Since $x \in c$,

$$
\lim x=\lim _{t \rightarrow R^{-}} Q_{x}(t)
$$

is obtained, i.e., P is regular.
Conversely, assume that P is regular. Let $x \in \ell^{\infty}$ and $\varepsilon>0$. Then choose an index m so that $x_{j}<L(x)+\varepsilon$ whenever $j \geq m$. Hence we have

$$
\begin{aligned}
{ }_{j=0}^{\infty} p_{j} t^{j} x_{j} & =p_{j<m} p_{j} t^{j} x_{j}+{ }_{j \geq m} p_{j} t^{j} x_{j} \\
& \leq\|x\|_{j<m} p_{j} t^{j}+(L(x)+\varepsilon)_{j=0}^{\infty} p_{j} t^{j} .
\end{aligned}
$$

Multiplying both sides by $\frac{1}{p(t)}$ we get

$$
\frac{1}{p(t)}_{j=0}^{\infty} p_{j} t^{j} x_{j} \leq \frac{\|x\|}{p(t)}{ }_{j<m} p_{j} t^{j}+(L(x)+\varepsilon)
$$

Taking limit superior as $t \rightarrow R^{-}$and using the regularity of P one can observe that

$$
\limsup _{t \rightarrow R^{-}} Q_{x}(t) \leq L(x)+\varepsilon
$$

Since $\varepsilon>0$ is arbitrary we conclude that (1) holds, which proves the theorem.

3. An Inequality Concerning Statistical Limit Superior

In this section, replacing limit superior by statistical limit superior of a real bounded sequence we prove an inequality.

Following the concepts of statistical convergence and statistical cluster points of a sequence $x=\left(x_{j}\right)$, Fridy and Orhan 7 have introduced the definition of statistical limit superior and inferior.

We first recall some terminology and notation. If $K \subseteq \mathbb{N}_{0}$ and $K_{n}:=\{k \leq n: k \in K\}$ then $\left|K_{n}\right|$ denotes the cardinality of K_{n}. If the limit $\delta(K):=\lim _{n} \frac{1}{n+1}\left|K_{n}\right|$ exists, then we say that K has a natural (asymptotic) density. A sequence $x=$ $\left(x_{j}\right)$ is statistically convergent to L, denoted $s t-\lim x=L$, if for every $\varepsilon>0$, $\delta\left(\left\{j:\left|x_{j}-L\right| \geq \varepsilon\right\}\right)=0$, (see, e.g., 3, 5, 14, 16).

The number γ is called a statistical cluster point of $x=\left(x_{j}\right)$ if for every $\varepsilon>0$ the set $\left\{j:\left|x_{j}-\gamma\right|<\varepsilon\right\}$ does not have density zero ($|6|$).

Note that throughout the paper the statement $\delta(K) \neq 0$ means that either $\delta(K)>0$ or K does not have natural density.

Following 7 we recall the following definitions and results. For a real number sequence $x=\left(x_{j}\right)$ let B_{x} denote the set:

$$
B_{x}:=\left\{b \in \mathbb{R}: \delta\left\{j: x_{j}>b\right\} \neq 0\right\} ;
$$

similarly

$$
A_{x}:=\left\{a \in \mathbb{R}: \delta\left\{j: x_{j}<a\right\} \neq 0\right\} .
$$

Then the statistical limit superior of x is given by

$$
s t-\limsup x:=\quad \begin{array}{cl}
\sup B_{x} & , \text { if } B_{x} \neq \varnothing \\
-\infty & \text {, if } B_{x}=\varnothing
\end{array}
$$

Also, the statistical limit inferior of x is given by

$$
s t-\liminf x:=\begin{array}{cl}
\inf A_{x} & , \text { if } A_{x} \neq \varnothing \\
\infty & , \text { if } A_{x}=\varnothing
\end{array}
$$

If $\beta:=s t-\lim \sup x$ is finite, then for every $\varepsilon>0, \delta\left\{j: x_{j}>\beta-\varepsilon\right\} \neq 0$ and $\delta\left\{j: x_{j}>\beta+\varepsilon\right\}=0$. We also have that st $-\lim \sup x \leq \lim \sup x$.

Recall that, by $W_{q}(q>0)$, we denote the space of all $x=\left(x_{j}\right)$ such that for some L,

$$
\frac{1}{n+1}{ }_{j=0}^{n}\left|x_{j}-L\right|^{q} \rightarrow 0 \quad, \quad(n \rightarrow \infty)
$$

If $x \in W_{q}$ then we say that x is strongly Cesàro convergent with index q. When $q=1$ this space is denoted by W and it is called the space of strong Cesàro convergent sequences (13). It is well-known that strong Cesàro convergence and statistical convergence are equivalent on bounded sequences ($[1,3,9)$.

In order to prove an inequality relating $Q_{x}(t)$ to $s t-\lim \sup x$ we need the following result which is an analog of Theorem 1 of Maddox 13 (see also 4,11).

Note that P-density of $E \subseteq \mathbb{N}$ is defined by

$$
\delta_{P}(E):=\lim _{t \rightarrow R^{-}} \frac{1}{p(t)} p_{j \in E} t^{j}
$$

whenever the limit exists (see, 18).

Theorem 2. The power series method P transforms bounded strongly convergent sequences, leaving the strong limit invariant, into the space of convergent sequences if and only if P is regular and for any subset $E \subseteq \mathbb{N}$ with $\delta(E)=0$ implies that

$$
\begin{equation*}
\delta_{P}(E)=0 \tag{2}
\end{equation*}
$$

Proof. Sufficiency. Let $x \in \ell^{\infty}$ and strongly convergent to L. In order to prove the sufficiency it is enough to show that

$$
\begin{equation*}
\lim _{t \rightarrow R^{-}} \frac{1}{p(t)}_{j=0}^{\infty} p_{j} t^{j}\left|x_{j}-L\right|=0 \tag{3}
\end{equation*}
$$

Let $\varepsilon>0$ and let $E_{\varepsilon}:=\left\{j \in \mathbb{N}:\left|x_{j}-L\right| \geq \varepsilon\right\}$.
Since $x=\left(x_{j}\right)$ bounded and strongly convergent to L, it is statistically convergent to L (see 3, 9). Hence $\delta\left(E_{\varepsilon}\right)=0$. This implies, by the hypothesis that, $\delta_{P}\left(E_{\varepsilon}\right)=0$. From

$$
\begin{aligned}
\frac{1}{p(t)}_{j=0}^{\infty} p_{j} t^{j}\left|x_{j}-L\right| & =\frac{1}{p(t)} p_{j \in E_{\varepsilon}} p^{j}\left|x_{j}-L\right|+\frac{1}{p(t)} p_{j \in E_{\varepsilon}^{c}} p_{j}^{j}\left|x_{j}-L\right| \\
& \leq \sup _{j}\left|x_{j}-L\right| \frac{1}{p(t)} \underset{j \in E_{\varepsilon}}{ } p_{j} t^{j}+\varepsilon,
\end{aligned}
$$

we have

$$
\left.\begin{array}{rl}
\lim _{t \rightarrow R^{-}} \frac{1}{p(t)} & p_{j=0}^{\infty} p_{j} t^{j}\left|x_{j}-L\right|
\end{array}\right)\|x-L e\|_{\infty} \frac{1}{p(t)} p_{j \in E_{\varepsilon}} t^{j}+\varepsilon .
$$

because

$$
\left.\delta_{P}\left(E_{\varepsilon}\right)\right):=\lim _{t \rightarrow R^{-}} \frac{1}{p(t)} p_{j \in E_{\varepsilon}} p_{j} t^{j}=0
$$

We obtain that (3) is true.
Necessity. Note that any convergent sequence is statistically convergent to the same value. Since statistical convergence and strong Cesàro convergence are equivalent on the space of bounded sequences, we observe that P is regular. Assume now that there is a subset $E \subseteq \mathbb{N}$ with $\delta(E)=0$ such that (2) fails. This implies that E is an infinite set.

So we may write $E=\left\{k_{j}: j \in \mathbb{N}\right\}=\left\{k_{1}, k_{2}, \ldots\right\}$. Since the continuous method is regular the corresponding matrix method is also regular. Hence by the Schur theorem there exists a bounded sequences $z=z_{k_{1}}, z_{k_{2}}, \ldots z_{k_{j}}, \ldots$ which is not summable by the regular matrix method. Now define a bounded sequence, $x=\left(x_{k}\right)$ as follows: $x_{k}=z_{k}$ if $k=k_{j}(j=0,1,2, \ldots)$ and $x_{k}=0$ otherwise. Since $\delta(E)=0$,
it follows from the fact that

$$
\begin{aligned}
\frac{1}{n+1}{ }_{k=0}^{n}\left|x_{k}-0\right| & =\frac{1}{n+1}_{k=0}^{n}\left|x_{k}\right| \\
& \leq \sup _{k}\left|x_{k}\right| \frac{1}{n+1}{ }_{k=0}^{n} \chi_{E}(k) \rightarrow 0, \quad(n \rightarrow \infty)
\end{aligned}
$$

i.e., the sequence $x=\left(x_{k}\right)$ is a bounded statistically convergent sequence which is not summable by the regular discrete method. So it is not summable by the continuous method either. This contradicts the hypothesis.

In the rest of the paper we use the following notation:

$$
\alpha(x):=s t-\liminf x \text { and } \beta(x):=s t-\lim \sup x
$$

Theorem 3. For every $x=\left(x_{k}\right) \in \ell^{\infty}$ we have

$$
\begin{equation*}
\limsup _{t \rightarrow R^{-}} Q_{x}(t) \leq s t-\lim \sup x \tag{4}
\end{equation*}
$$

if and only if P is regular and that (2) holds.
Proof. Let $x \in \ell^{\infty}$. Suppose that (4) holds. Since $\beta(x) \leq \lim \sup x$ it follows from (4) and Theorem 1 that P is regular. On the other hand (4) implies that

$$
\begin{equation*}
-\beta(-x) \leq \liminf _{t \rightarrow R^{-}} Q_{x}(t) \leq \limsup _{t \rightarrow R^{-}} Q_{x}(t) \leq \beta(x) \tag{5}
\end{equation*}
$$

If $x=\left(x_{k}\right)$ is a bounded statistically convergent sequence, (5) implies that

$$
P-\lim x=s t-\lim x
$$

Hence by Theorem 2, we observe that (2) holds.
Conversely, assume P is regular and (2) holds. Let x be bounded. Then $\beta(x)$ is finite. Given $\varepsilon>0$ let $E:=\left\{k \in \mathbb{N}: x_{j}>\beta(x)+\varepsilon\right\}$. Hence $\delta(E)=0$ and if $k \notin E$ then $x_{j} \leq \beta(x)+\varepsilon$.

For a fixed positive integer m we write

$$
\begin{aligned}
Q_{x}(t) & =\frac{1}{p(t)} p_{j<m}^{j t^{j} x_{j}+\frac{1}{p(t)}} p_{j \geq m}^{j \geq m} p_{j} t^{j} x_{j} \\
& \leq\|x\| \frac{1}{p(t)} \underset{\substack{j<m}}{ } p_{j} t^{j}+\frac{1}{p(t)} \underset{\substack{j \geq m \\
j \notin E}}{ } p_{j} t^{j} x_{j}+\frac{1}{p(t)} \underset{\substack{j \geq m \\
j \in E}}{\infty} p_{j} t^{j} x_{j} \\
& \leq\|x\| \frac{1}{p(t)} \underset{j<m}{\infty} p_{j} t^{j}+(\beta(x)+\varepsilon)^{p(t)} p_{j=0}^{j}+\|x\| \frac{1}{p(t)} \underset{j \in E}{ } p_{j} t^{j}
\end{aligned}
$$

Taking the limit superior as $t \rightarrow R^{-}$and using the regularity of P we get that

$$
\limsup _{t \rightarrow R^{-}} Q_{x}(t) \leq(\beta(x)+\varepsilon)+\|x\| \delta_{P}(E)
$$

Recall that $\delta_{P}(E)=0$ by (2). Since ε is arbitrary we conclude that (4) holds. This proves the theorem.

Declaration of Competing Interests The author declares that there are no conflicts of interest about the publication of this paper.

Acknowledgements The author thanks the referees for their valuable suggestions which made this paper much improved.

References

[1] Belen, C., Yildirim, M., Sümbül, C., On statistical and strong convergence with respect to a modulus function and a power series method, Filomat, 34(12) (2020), 3981-3993. https://doi.org/10.2298/FIL2012981B
[2] Boos, J., Classical and Modern Methods in Summability, Oxford University Press, 2000.
[3] Connor, J., The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47-63. https://doi.org/10.1524/anly.1988.8.12.47
[4] Demirci, K., Khan, M. K., Orhan, C., Strong and A-statistical comparisons for sequences, J. Math. Anal. Appl., 278 (2003), 27-33. https://doi.org/10.1016/S0022-247X(02)00456-0
[5] Fridy, J. A., On statistical convergence, Analysis, 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
[6] Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
[7] Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125 (1997), 3625-3631. Doi: S 0002-9939(97)04000-8.
[8] Hardy, G. H., Divergent Series, Oxford Univ. Press, London, 1949.
[9] Khan, M. K., Orhan, C., Matrix characterization of A-statistical convergence, J. Math. Anal. Appl., 335 (2007), 406-417. https://doi.org/10.1016/j.jmaa.2007.01.084
[10] Knopp, K., Zur Theorie der Limitierungsverfahren (Erste Mittilung), Math. Zeit., 31 (1930), 97-127.
[11] Kolk, E., Matrix summability of statistically convergent sequences, Analysis, 1993.
[12] Maddox, I. J., Some analogues of Knopp's core theorem, Inter. J. Math. and Math. Sci., 2 (1979), 605-614. https://doi.org/10.1155/S0161171279000454
[13] Maddox, I. J., Steinhaus type theorems for summability matrices, Proc. Amer. Math. Soc., 45 (1974), 209-213.
[14] Miller, H. I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1995), 1881-1819.
[15] Orhan, C., Sublinear functionals and Knopp's core theorem, Internat. J. Math. and Math. Sci., 2 (1979), 605-614. https://doi.org/10.1155/S0161171290000680
[16] Salat, T., On statistically convergent sequences of real numbers, Math Slovaca, 30(2) (1980), 139-140.
[17] Ünver, M., Abel summability in topological spaces, Monatshefte für Mathematik, 178(4) (2015), 633-643. https://doi.org/10.1007/s00605-014-0717-0
[18] Ünver, M., Orhan, C., Statistical convergence with respect to power series methods and applications to approximation theory, Numerical and Functional Analysis and Optimization, $40(5)$ (2019), 533-547. https://doi.org/10.1080/01630563.2018.1561467
http://communications.science.ankara.edu.tr

SOME HARDY-TYPE INTEGRAL INEQUALITIES WITH SHARP CONSTANT INVOLVING MONOTONE FUNCTIONS

Bendaoud ABED SID-AHMED ${ }^{1}$, Bouharket BENAISSA ${ }^{2}$, and Abdelkader SENOUCI ${ }^{3}$
${ }^{1}$ Faculty of Science Economics and Commercial, Laboratory of Informatics and Mathematics, University of Tiaret, ALGERIA
${ }^{2}$ Faculty of Material Sciences, Laboratory of Informatics and Mathematics, University of Tiaret-ALGERIA
${ }^{3}$ Faculty of Mathematics and Informatics, Laboratory of Informatics and Mathematics, University of Tiaret-ALGERIA

Abstract

In this work, we present some Hardy-type integral inequalities for $0<p<1$ via a second parameter $q>0$ with sharp constant. These inequalities are new generalizations to the inequalities given bellow.

1. Introduction

It is well-known that for L^{p} spaces with $0<p<1$, the Hardy inequality is not satisfied for arbitrary non-negative functions, but is satisfied for non-negative monotone functions. Moreover the sharp constant was found in the Hardy typeinequality for non-negative monotone functions (see 4 for more details). Namely the following statement was proved there.

Theorem 1. Let $0<p<1$:

- If $-\frac{1}{p}<\alpha<1-\frac{1}{p}$, then for all functions f non-negative and non-increasing on $(0,+\infty)$

$$
\begin{equation*}
\left\|x^{\alpha}(H f)(x)\right\|_{L^{p}(0,+\infty)} \leq\left(1-\frac{1}{p}-\alpha\right)^{-\frac{1}{p}}\left\|x^{\alpha} f(x)\right\|_{L^{p}(0,+\infty)} \tag{1}
\end{equation*}
$$

[^7]- If $\alpha<-\frac{1}{p}$, then for all functions f non-negative and non-decreasing on ($0,+\infty$)

$$
\begin{equation*}
\left\|x^{\alpha}(H f)(x)\right\|_{L^{p}(0,+\infty)} \leq(p \beta(p,-\alpha p))^{\frac{1}{p}}\left\|x^{\alpha} f(x)\right\|_{L^{p}(0,+\infty)} \tag{2}
\end{equation*}
$$

- If $\alpha>1-\frac{1}{p}$, then for all functions f non-negative and non-increasing on $(0,+\infty)$

$$
\begin{equation*}
\left\|x^{\alpha}(\widetilde{H} f)(x)\right\|_{L^{p}(0,+\infty)} \leq(p \beta(p, \alpha p+1-p))^{\frac{1}{p}}\left\|x^{\alpha} f(x)\right\|_{L^{p}(0,+\infty)} \tag{3}
\end{equation*}
$$

Here

$$
(H f)(x)=\frac{1}{x} \int_{0}^{x} f(t) d t, \quad(\tilde{H} f)(x)=\frac{1}{x} \int_{x}^{\infty} f(t) d t
$$

$\beta(u, v)=\int_{0}^{1} t^{u-1}(1-t)^{v-1} d t$ is the Euler-Beta function.
The constants in the inequalities (1), (2), (3) are sharp.
In 2012 W.T. Sulaiman 5 extended Hardy's integral inequality as follows.
Theorem 2. If $f \geq 0, g>0, x^{-1} g(x)$ is non-decreasing $p>1,0<a<1$ and $F(x)=\int_{0}^{x} f(t) d t$, then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{F(x)}{g(x)}\right)^{p} d x \leq \frac{1}{a(p-1)(1-a)^{p-1}} \int_{0}^{\infty}\left(\frac{x f(x)}{g(x)}\right)^{p} d x \tag{4}
\end{equation*}
$$

in particular if $a=\frac{1}{p}, g(x)=x$, we obtain Hardy's inequality.
Moreover he proved the reverse inequality.
Theorem 3. If $f \geq 0, g>0, x^{-1} g(x)$ is non-increasing $0<p<1, a>0$ and $F(x)=\int_{0}^{x} f(t) d t$, then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{F(x)}{g(x)}\right)^{p} d x \geq \frac{1}{a(1-p)(1+a)^{p-1}} \int_{0}^{\infty}\left(\frac{x f(x)}{g(x)}\right)^{p} d x \tag{5}
\end{equation*}
$$

The following Lemmas were established in 4 .
Lemma 1. Let $0<p<1,-\infty<a<b \leq+\infty$ and f a non- negative nonincreasing function on (a, b), then

$$
\begin{equation*}
\left(\int_{a}^{b} f(x) d x\right)^{p} \leq p \int_{a}^{b} f^{p}(x)(x-a)^{p-1} d x \tag{6}
\end{equation*}
$$

Lemma 2. Let $0<p<1,-\infty \leq a<b<+\infty$ and f a non- negative nondecreasing function on (a, b), then

$$
\begin{equation*}
\left(\int_{a}^{b} f(x) d x\right)^{p} \leq p \int_{a}^{b} f^{p}(x)(b-x)^{p-1} d x \tag{7}
\end{equation*}
$$

The factor p is the best possible in inequalities (6) and (7).
About the Hardy inequality, its history and some related results one can consult 1, 2, 3,6 and 7 .

The aim of this work is includes two objectives, first the power weight function x^{α} in Theorem 1 is replaced by $g(x)$, where $x^{-\alpha} g(x)$ is non-decreasing or non-increasing function and we give a new some Hardy-type integral inequalities with sharp constant. The second objective is to present some generalizations for the weighted Hardy operator with $0<p<1$. Moreover we introduce a second parameter $q>0$ for these generalizations.

2. Main Results

In this section, we present our results. We assume that f and g are nonnegative Lebesgue measurable functions on $(0,+\infty)$.

Theorem 4. Let $0<p<1, q>0, g>0$ and the function $x^{\alpha} g(x)$ is non-decreasing for $-\frac{1}{q}<\alpha<\frac{p-1}{q}$, then for all non-negative non-increasing function f we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{(H f)^{p}(x)}{g^{q}(x)} d x \leq \frac{p}{p-\alpha q-1} \int_{0}^{\infty} \frac{f^{p}(x)}{g^{q}(x)} d x . \tag{8}
\end{equation*}
$$

The constant in (8) is sharp.
Proof.
Since f is non-increasing, then by Lemma 1 we get

$$
\begin{aligned}
\int_{0}^{\infty} \frac{(H f)^{p}(x)}{g^{q}(x)} d x & =\int_{0}^{\infty} x^{-p} g^{-q}(x)\left(\int_{0}^{x} f(t) d t\right)^{p} d x \\
& \leq p \int_{0}^{\infty} x^{-p} g^{-q}(x)\left(\int_{0}^{x} f^{p}(t) t^{p-1} d t\right) d x \\
& =p \int_{0}^{\infty} t^{p-1} f^{p}(t)\left(\int_{t}^{+\infty} x^{-p} g^{-q}(x) d x\right) d t \\
& \leq p \int_{0}^{\infty} t^{p-1} f^{p}(t)\left(\frac{t^{-\alpha}}{g(t)}\right)^{q}\left(\int_{t}^{+\infty} x^{-p+\alpha q} d x\right) d t \\
& =\frac{p}{p-\alpha q-1} \int_{0}^{\infty} t^{p-1} f^{p}(t) \frac{t^{-\alpha q}}{g^{q}(t)} t^{-p+\alpha q+1} d t \\
& =\frac{p}{p-\alpha q-1} \int_{0}^{\infty} \frac{f^{p}(t)}{g^{q}(t)} d t
\end{aligned}
$$

To proof that $\frac{p}{p-\alpha q-1}$ is the best possible, we put $g(x)=x^{-\alpha}$ and

$$
f(x)= \begin{cases}1 & \text { if } x \in(0, \xi) \\ 0 & \text { if } x \in(\xi,+\infty)\end{cases}
$$

Let RHS and LHS respectively be the right hand side and the left hand side of the inequality (8), then

$$
\begin{aligned}
R H S & =\int_{0}^{\infty} x^{\alpha q-p}\left(\int_{0}^{x} f(t) d t\right)^{p} d x \\
& =\frac{\xi^{\alpha q+1}}{\alpha q+1}
\end{aligned}
$$

and

$$
\begin{aligned}
L H S & =\frac{p}{p-\alpha q-1} \int_{0}^{\xi} x^{\alpha q} d x \\
& =\frac{p}{p-\alpha q-1} \frac{\xi^{\alpha q+1}}{\alpha q+1}
\end{aligned}
$$

Using $q=p$ in the Theorem 4, we get the following Corollary.
Corollary 1. Let $0<p<1, g>0$ and the function $x^{\alpha} g(x)$ is non-decreasing for $-\frac{1}{p}<\alpha<\frac{p-1}{p}$, then for all non-negative non-increasing function f we have

$$
\begin{equation*}
\left\|\frac{(H f)(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} \leq\left(1-\alpha-\frac{1}{p}\right)^{-\frac{1}{p}}\left\|\frac{f(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} \tag{9}
\end{equation*}
$$

The constant $\left(1-\alpha-\frac{1}{p}\right)^{-\frac{1}{p}}$ is sharp.
Remark 1. If we take $g(x)=x^{-\alpha}$ in the inequality (9), we obtain the inequality (1).

Theorem 5. Let $0<p<1, q>0, g>0$ and the function $x^{\alpha} g(x)$ is non-decreasing for $\alpha<-\frac{1}{q}$, then for all non-negative non-decreasing function f we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{(H f)^{p}(x)}{g^{q}(x)} d x \leq p \beta(p,-\alpha q) \int_{0}^{\infty} \frac{f^{p}(x)}{g^{q}(x)} d x \tag{10}
\end{equation*}
$$

where β is the Euler-Beta function. The constant in (10) is sharp.

Proof.
By using the Lemma 2, we get

$$
\begin{aligned}
\int_{0}^{\infty} \frac{(H f)^{p}(x)}{g^{q}(x)} d x & =\int_{0}^{\infty} x^{-p} g^{-q}(x)\left(\int_{0}^{x} f(t) d t\right)^{p} d x \\
& \leq p \int_{0}^{\infty} x^{-p} g^{-q}(x)\left(\int_{0}^{x} f^{p}(t)(x-t)^{p-1} d t\right) d x \\
& =p \int_{0}^{\infty} f^{p}(t)\left(\int_{t}^{+\infty} x^{-p} g^{-q}(x)(x-t)^{p-1} d x\right) d t \\
& \leq p \int_{0}^{\infty} f^{p}(t)\left(\frac{t^{-\alpha}}{g(t)}\right)^{q}\left(\int_{t}^{+\infty} x^{\alpha q-p}(x-t)^{p-1} d x\right) d t
\end{aligned}
$$

Using the change of variable $z=\frac{t}{x}$, then

$$
\begin{aligned}
\int_{t}^{+\infty} x^{\alpha q-p}(x-t)^{p-1} d x & =\int_{0}^{1}\left(\frac{t}{z}\right)^{\alpha q-p}\left(\frac{t}{z}-t\right)^{p-1} \frac{t}{z^{2}} d z \\
& =t^{\alpha q} \int_{0}^{1} z^{-\alpha q-1}(1-z)^{p-1} d z \\
& =t^{\alpha q} \beta(p,-\alpha q)
\end{aligned}
$$

therefore

$$
\int_{0}^{\infty} \frac{(H f)^{p}(x)}{g^{q}(x)} d x \quad \leq p \beta(p,-\alpha q) \int_{0}^{\infty}\left(\frac{f^{p}(t)}{g^{q}(t)}\right) d t
$$

To proof that $p \beta(p,-\alpha q)$ is the best possible, we put $g(x)=x^{-\alpha}$ and

$$
f(x)= \begin{cases}0 & \text { if } x \in(0, \xi) \\ 1 & \text { if } x \in(\xi,+\infty)\end{cases}
$$

Let RHS and LHS respectively be the right side and the left side of the inequality (10), then

$$
\begin{aligned}
R H S & =\int_{\xi}^{\infty} x^{\alpha q-p}\left(\int_{\xi}^{x} f(t) d t\right)^{p} d x \\
& =\int_{\xi}^{\infty} x^{\alpha q-p}(x-\xi)^{p} d x
\end{aligned}
$$

let $\mu=\frac{\xi}{x}$, then we get

$$
\begin{aligned}
R H S & =\xi^{\alpha q+1} \int_{0}^{1} \mu^{-\alpha q-2}(1-\mu)^{p} d \mu \\
& =\xi^{\alpha q+1} \beta(p+1,-\alpha q-1) \\
& =\frac{p}{|\alpha q+1|} \xi^{\alpha q+1} \beta(p,-\alpha q)
\end{aligned}
$$

On another side

$$
\begin{aligned}
L H S & =p \beta(p,-\alpha q) \int_{\xi}^{+\infty} x^{\alpha q} d x \\
& =p \beta(p,-\alpha q) \frac{1}{|\alpha q+1|} \xi^{\alpha q+1} .
\end{aligned}
$$

If we set $q=p$ in the Theorem 5 we get the following Corollary.

Corollary 2. Let $0<p<1, g>0$ and the function $x^{\alpha} g(x)$ is non-decreasing for $\alpha<-\frac{1}{q}$, then for all non-negative non-decreasing function f we have

$$
\begin{equation*}
\left\|\frac{(H f)(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} \leq(p \beta(p,-\alpha p))^{\frac{1}{p}}\left\|\frac{f(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} . \tag{11}
\end{equation*}
$$

The constant $(p \beta(p,-\alpha p))^{\frac{1}{p}}$ is sharp.

Remark 2. If we take $g(x)=x^{-\alpha}$ in the inequality (11), we obtain the inequality (2).

Theorem 6. Let $0<p<1, q>0, g>0$ and the function $x^{\alpha} g(x)$ is non-increasing for $\alpha>\frac{p-1}{q}$, then for all non-negative non-increasing function f we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{(\widetilde{H f})^{p}(x)}{g^{q}(x)} d x \leq p \beta(p, \alpha q+1-p) \int_{0}^{\infty} \frac{f^{p}(x)}{g^{q}(x)} d x \tag{12}
\end{equation*}
$$

the constant in (12) is sharp.

Proof.
By applying the Lemma 1 we obtain

$$
\begin{aligned}
\int_{0}^{\infty} \frac{(\widetilde{H f})^{p}(x)}{g^{q}(x)} d x & =\int_{0}^{\infty} x^{-p} g^{-q}(x)\left(\int_{x}^{\infty} f(t) d t\right)^{p} d x \\
& \leq p \int_{0}^{\infty} x^{-p} g^{-q}(x)\left(\int_{x}^{\infty} f^{p}(t)(t-x)^{p-1} d t\right) d x \\
& =p \int_{0}^{\infty} f^{p}(t)\left(\int_{0}^{t} x^{-p} g^{-q}(x)(t-x)^{p-1} d x\right) d t \\
& \leq p \int_{0}^{\infty} f^{p}(t)\left(\frac{t^{-\alpha}}{g(t)}\right)^{q}\left(\int_{0}^{t} x^{\alpha q-p}(t-x)^{p-1} d x\right) d t
\end{aligned}
$$

Using the change of variable $\nu=\frac{t-x}{t}$, then

$$
\begin{aligned}
\int_{0}^{t} x^{\alpha q-p}(t-x)^{p-1} d x & =\int_{0}^{1}[(1-\nu) t]^{\alpha q-p}(\nu t)^{p-1} t d \nu \\
& =t^{\alpha q} \int_{0}^{1} \nu^{p-1}(1-\nu)^{\alpha q-p} d \nu \\
& =t^{\alpha q} \beta(p, \alpha q-p+1)
\end{aligned}
$$

thus

$$
\int_{0}^{\infty} \frac{(\widetilde{H f})^{p}(x)}{g^{q}(x)} d x \quad \leq p \beta(p, \alpha q-p+1) \int_{0}^{\infty}\left(\frac{f^{p}(t)}{g^{q}(t)}\right) d t
$$

The proof that $p \beta(p, \alpha q-p+1)$ is sharp, is similar to that of Theorem 5 with the function f defined as follows

$$
f(x)= \begin{cases}1 & \text { if } x \in(0, \xi) \\ 0 & \text { if } x \in(\xi,+\infty)\end{cases}
$$

If we put $q=p$ in the Theorem 6, we have the following Corollary.
Corollary 3. Let $0<p<1, g>0$ and the function $x^{\alpha} g(x)$ is non-increasing for $\alpha<-\frac{1}{q}$, then for all non-negative non-increasing function f we have

$$
\begin{equation*}
\left\|\frac{(\widetilde{H f})(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} \leq(p \beta(p, \alpha p+1-p))^{\frac{1}{p}}\left\|\frac{f(x)}{g(x)}\right\|_{L^{p}(0,+\infty)} \tag{13}
\end{equation*}
$$

The constant $(p \beta(p, \alpha p+1-p))^{\frac{1}{p}}$ is sharp.
Remark 3. If we take $g(x)=x^{-\alpha}$ in the inequality (13), we obtain the inequality (3).

In the second part of this work, we consider Theorems 2 and 3 for weighted Lebesgue space. Let $0<p<\infty$, the weighted Lebesgue space $L_{w}^{p}(0, \infty)$ is the space of all Lebesgue measurable functions f such that

$$
\begin{equation*}
\|f\|_{L_{w}^{p}(0, \infty)}=\left(\int_{0}^{\infty}|f(t)|^{p} w(t) d t\right)^{\frac{1}{p}}<\infty \tag{14}
\end{equation*}
$$

where w is the weight function (Lebesgue measurable and positive on $(0, \infty)$).
Theorem 7. Let $f \geq 0, g>0,0<p<1,0<\alpha<1$. If the function $\frac{w(x)}{g^{p}(x)}$ is non-increasing, then

$$
\begin{equation*}
\left\|\frac{(H f)(x)}{g(x)}\right\|_{L_{w}^{p}(0, \infty)} \leq C_{1}\left\|\frac{f(x)}{g(x)}\right\|_{L_{w}^{p}(0, \infty)} \tag{15}
\end{equation*}
$$

where the constant $C_{1}=\frac{1}{1-\alpha}$ is sharp.
Proof.
By using Holder's inequality, we have

$$
\begin{aligned}
\left\|\frac{(H f)(x)}{g(x)}\right\|_{L_{w}^{p}(0, \infty)}^{p} & =\int_{0}^{\infty} \frac{(H f)^{p}(x)}{g^{p}(x)} w(x) d x \\
& =\int_{0}^{\infty} \frac{g^{-p}(x)}{x^{p}}\left(\int_{0}^{x} f(t) t^{\alpha\left(1-\frac{1}{p}\right)} t^{\alpha\left(\frac{1}{p}-1\right)} d t\right)^{p} w(x) d x \\
& \leq \int_{0}^{\infty} \frac{g^{-p}(x)}{x^{p}} w(x)\left(\int_{0}^{x} t^{\alpha(p-1)} f^{p}(t) d t\right)\left(\int_{0}^{x} t^{-\alpha} d t\right)^{p} d x \\
& =\left(\frac{1}{1-\alpha}\right)^{p-1} \int_{0}^{\infty} \frac{x^{\alpha(p-1)-1}}{g^{p}(x)} w(x)\left(\int_{0}^{x} t^{\alpha(p-1)} f^{p}(t) d t\right) d x \\
& =\left(\frac{1}{1-\alpha}\right)^{p-1} \int_{0}^{\infty} t^{\alpha(p-1)} f^{p}(t)\left(\int_{t}^{\infty} \frac{x^{\alpha(p-1)-1}}{g^{p}(x)} w(x) d x\right) d t \\
& =\left(\frac{1}{1-\alpha}\right)^{p-1} \int_{0}^{\infty} \frac{f^{p}(t)}{g^{p}(t)} w(t) K(t) d t
\end{aligned}
$$

where

$$
K(t)=\left[\frac{t^{\alpha(p-1)} g^{p}(t)}{w(t)}\left(\int_{t}^{\infty} \frac{x^{\alpha(p-1)-1}}{g^{p}(x)} w(x) d x\right)\right]
$$

Now we proof that $K(t)$ is finite for all $t>0$. From the assumption $\frac{w(x)}{g^{p}(x)}$ is non-increasing, we deduce that

$$
\begin{aligned}
\int_{t}^{\infty} \frac{x^{\alpha(p-1)-1}}{g^{p}(x)} w(x) d x & \leq \frac{w(t)}{g^{p}(t)} \int_{t}^{\infty} x^{\alpha(p-1)-1} d x \\
& =\frac{w(t)}{g^{p}(t)} \frac{t^{\alpha(p-1)}}{\alpha(1-p)}
\end{aligned}
$$

hence

$$
\text { for all } t>0, K(t)<\infty
$$

Thus

$$
\begin{aligned}
\left\|\frac{(H f)(x)}{g(x)}\right\|_{L_{w}^{p}(0, \infty)}^{p} & \leq \frac{\sup _{t>0} K(t)}{(1-\alpha)^{p-1}}\left\|\frac{f(x)}{g(x)}\right\|_{L_{w}^{p}(0, \infty)} \\
& =C^{p}\left\|\frac{f(x)}{g(x)}\right\|_{L^{p}(0,+\infty)}^{p}
\end{aligned}
$$

To proof that $C_{1}=\left(\frac{1}{1-\alpha}\right)$ is the best possible, taking $f(x)=x^{-\alpha}$, this gives us $(H f)(x)=\frac{1}{1-\alpha} x^{-\alpha}$ and

$$
\begin{aligned}
\left\|\frac{(H f)(x)}{g(x)}\right\|_{L_{w}^{p}(0, \infty)}^{p} & =\frac{1}{(1-\alpha)^{p}} \int_{0}^{\infty}\left(\frac{1}{x^{\alpha} g(x)}\right)^{p} w(x) d x \\
\left\|\frac{f(x)}{g(x)}\right\|_{L_{w}^{p}(0, \infty)}^{p} & =\int_{0}^{\infty}\left(\frac{1}{x^{\alpha} g(x)}\right)^{p} w(x) d x
\end{aligned}
$$

Author Contribution Statements All authors contributed equally to design and implementation of the research.

Declaration of Competing Interests The authors declare that they have no competing interest.

Acknowledgements The authors thank the anonymous referees for their valuable comments and suggestions that led to the final version of this article. They would also like to thank the Directorate General for Scientific Research and Technological Development (DGRSDT) - Algeria for supporting this research.

References

[1] Benaissa, B., Budak, H., On Hardy-type integral inequalities with negative parameter, Turkish Journal of Inequalities, 5(2) (2021), 42-47.
[2] Benaissa, B., Sarikaya, M. Z., Senouci, A., On some new Hardy-type inequalities, J. Math. Meth. Appl. Sci., 43 (2020), 8488-8495. https/doi.org/10.1002/mma. 6503
[3] Yang, B., On a new Hardy type integral inequalities, Int. Math. Forum., 67(2) (2007), 33173322.
[4] Burenkov, V. I., On the best constant in Hardy's inequality with $0<p<1$ for monotone functions, Proc. Steklov Inst. Math., 194 (1993), 59-63.
[5] Sulaiman, W. T., Some Hardy type integral inequalities, Appl. Math. Lett, 25 (2012), 520-525. https://doi.org/10.1016/j.aml.2011.09.050
[6] Kufner, A., Maligranda, L., Person, L. E., The Hardy Inequality: About Its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
[7] Banyat, S., More on some Hardy type integral inequalities, J. Math. Inequal., 8(3) (2014), 497-501.
http://communications.science.ankara.edu.tr

COMBINATORIAL RESULTS OF COLLAPSE FOR ORDER-PRESERVING AND ORDER-DECREASING TRANSFORMATIONS

Emrah KORKMAZ
Department of Mathematics, Çukurova University, Adana, TURKEY

$$
\begin{aligned}
& \text { AbSTRACT. The full transformation semigroup } \mathcal{T}_{n} \text { is defined to consist of } \\
& \text { all functions from } X_{n}=\{1, \ldots, n\} \text { to itself, under the operation of com- } \\
& \text { position. In } 9 \text {, for any } \alpha \text { in } \mathcal{T}_{n} \text {, Howie defined and denoted collapse by } \\
& c(\alpha)=\bigcup_{t \in i m(\alpha)}\left\{t \alpha^{-1}:\left|t \alpha^{-1}\right| \geq 2\right\} \text {. Let } \mathcal{O}_{n} \text { be the semigroup of all order- } \\
& \text { preserving transformations and } \mathcal{C}_{n} \text { be the semigroup of all order-preserving } \\
& \text { and decreasing transformations on } X_{n} \text { under its natural order, respectively. } \\
& \text { Let } E\left(\mathcal{O}_{n}\right) \text { be the set of all idempotent elements of } \mathcal{O}_{n}, E\left(\mathcal{C}_{n}\right) \text { and } N\left(\mathcal{C}_{n}\right) \\
& \text { be the sets of all idempotent and nilpotent elements of } \mathcal{C}_{n} \text {, respectively. Let } \\
& U \text { be one of }\left\{\mathcal{C}_{n}, N\left(\mathcal{C}_{n}\right), E\left(\mathcal{C}_{n}\right), \mathcal{O}_{n}, E\left(\mathcal{O}_{n}\right)\right\} \text {. For } \alpha \in U \text {, we consider the set } \\
& \text { im }(\alpha)=\left\{t \in \operatorname{im}(\alpha):\left|t \alpha^{-1}\right| \geq 2\right\} \text {. For positive integers } 2 \leq k \leq r \leq n \text {, we } \\
& \text { define }
\end{aligned} \begin{array}{r}
\qquad \begin{aligned}
\mathcal{U}(k) & =\left\{\alpha \in \mathcal{U}: t \in i m^{c}(\alpha) \text { and }\left|t \alpha^{-1}\right|=k\right\}, \\
\mathcal{U}(k, r) & =\left\{\alpha \in \mathcal{U}(k):\left|\bigcup_{t \in i m^{c}(\alpha)} t \alpha^{-1}\right|=r\right\} .
\end{aligned}
\end{array}
$$

The main objective of this paper is to determine $|\mathcal{U}(k, r)|$, and so $|\mathcal{U}(k)|$ for some values r and k.

1. Introduction

For any non-empty finite set X, the set \mathcal{T}_{X} of all transformations of X (i.e., all maps X to itself) is a semigroup under composition, and is called the full transformation semigroup on X. For any $n \in \mathbb{N}$, if $X=X_{n}=\{1, \ldots, n\}$, then \mathcal{T}_{X} is denoted by \mathcal{T}_{n}. A transformation $\alpha \in \mathcal{T}_{n}$ is called order-preserving, if $x \leq y$ implies $x \alpha \leq y \alpha$ for all $x, y \in X_{n}$ and decreasing (increasing), if $x \alpha \leq x(x \alpha \geq x)$ for all $x \in X_{n}$. The subsemigroup of all order-preserving transformations in \mathcal{T}_{n} is denoted by \mathcal{O}_{n} and the order-decreasing transformations in \mathcal{T}_{n} is denoted by \mathcal{D}_{n}.

[^8]The subsemigroup of all order-preserving and decreasing (increasing) transformations in \mathcal{T}_{n} is denoted by $\mathcal{C}_{n}\left(\mathcal{C}_{n}^{+}\right)$i.e., $\mathcal{C}_{n}=\mathcal{O}_{n} \cap \mathcal{D}_{n}$. Umar proved that \mathcal{D}_{n} and \mathcal{D}_{n}^{+}are isomorphic in 15, Corollary 2.7.]. Furthermore, Higgins proved that \mathcal{C}_{n} and \mathcal{C}_{n}^{+}are isomorphic semigroups in 8, Remarks, p. 290]. For any transformation α in \mathcal{T}_{n}, the collapse, the fix, the image and the kernel are denoted and definded, respectively, by

$$
\begin{aligned}
c(\alpha) & =\bigcup_{t \in i m(\alpha)}\left\{t \alpha^{-1}:\left|t \alpha^{-1}\right| \geq 2\right\}, \quad(\alpha)=\left\{x \in X_{n}: x \alpha=x\right\} \\
i m(\alpha) & =\left\{x \alpha: x \in X_{n}\right\}, \text { and } \operatorname{ker}(\alpha)=\left\{(x, y): x \alpha=y \alpha \text { for all } x, y \in X_{n}\right\} .
\end{aligned}
$$

Given transformation α in \mathcal{T}_{n} is called collapsible, if there exists $t \in \operatorname{im}(\alpha)$ such that $\left|t \alpha^{-1}\right| \geq 2$.

An element e of a semigroup S is called idempotent if $e^{2}=e$ and the set of all idempotents in S is denoted by $E(S)$. An element a of a finite semigroup S with a zero, denoted by 0 , is called nilpotent if $a^{m}=0$ for some positive integer m, and furthermore, if $a^{m-1} \neq 0$, then a is called an m-nilpotent element of S. Note that zero element is an 1-nilpotent element. The set of all nilpotent elements of S is denoted by $N(S)$. It was proven a finite semigroup S with zero is nilpotent when exactly the unique idempotent of S is the zero element (see, [6, Proposition 8.1.2]). The reader is referred to 5 and 11 for additional details in semigroup theory.

Recall that Fibonacci sequence $\left\{f_{n}\right\}$ is defined by the recurrence relation $f_{n}=$ $f_{n-1}+f_{n-2}$ for $n \geq 3$, where $f_{1}=f_{2}=1$ (see 10). As proved in 13, Theorem 2.1], $\left|\mathcal{C}_{n}\right|=\left|\mathcal{C}_{n}^{+}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, the n-th Catalan number for $n \geq 1$ (see, (7). That is why \mathcal{C}_{n} is also called the Catalan monoid. In 13, Proposition 2.3] and 8, Theorem 3.19], it has been shown that $\left|N\left(C_{n}\right)\right|=\left|N\left(C_{n}^{+}\right)\right|=C_{n-1}$ and $\left|E\left(\mathcal{C}_{n}\right)\right|=\left|E\left(\mathcal{C}_{n}^{+}\right)\right|=2^{n-1}$. Also, from 10, Theorem 2.1 and Theorem 2.3], we have that $\left|\mathcal{O}_{n}\right|=\binom{2 n-1}{n-1}$ and $\left|E\left(\mathcal{O}_{n}\right)\right|=f_{2 n}$.

As indicated in 5 if $\alpha \in \mathcal{C}_{n}$, we use

$$
\alpha=\left(\begin{array}{ccc}
A_{1} & \cdots & A_{r} \tag{1}\\
a_{1} & \cdots & a_{r}
\end{array}\right)
$$

to notifty that $\operatorname{im}(\alpha)=\left\{a_{1}=1<a_{2}<\ldots<a_{r}\right\}$ and $a_{i} \alpha^{-1}=A_{i}$ for each $1 \leq i \leq r$. Furthermore, $A_{1}, A_{2}, \ldots, A_{r}$ which are pairwise disjoint subsets of X_{n} are called blocks of α. It is clear that such an α is an idempotent if and only if $a_{i} \in A_{i}$ for all i. As defined in 4 a set $K \subseteq X_{n}$ is called convex if K is in the form $[i, i+t]=\{i, i+1, \ldots, i+t-1, i+t\}$. A partition $P=\left\{A_{1}, \ldots, A_{r}\right\}$ of X_{n} for $1 \leq r \leq n$ is called an ordered partition, and written $P=\left(A_{1}<\cdots<A_{r}\right)$ if $x<y$ for all $x \in A_{i}$ and $y \in A_{i+1}(1 \leq i \leq r-1)$. For a given $\alpha \in \mathcal{C}_{n}$ let $\operatorname{im}(\alpha)=\left\{a_{1}=1<a_{2}<\ldots<a_{r}\right\}$ and $A_{i}=a_{i} \alpha^{-1}$ for every $1 \leq i \leq r$. Then, the set of kernel clasess of $\alpha, X_{n} / \operatorname{ker}(\alpha)=\left\{A_{1}, \ldots, A_{r}\right\}$, is an ordered convex partition of X_{n}. Since $N\left(\mathcal{C}_{n}\right)$ is a nilpotent subsemigroup of \mathcal{C}_{n}, if $\alpha \in N\left(\mathcal{C}_{n}\right)$, then $1 \alpha=2 \alpha=1$, and that $\left|1 \alpha^{-1}\right| \geq 2$.

Several authors studied certain problems concerning combinatorial aspects of semigroup theory during the years. The vast majority of papers have been written in this area such as $3,9,12,13,15,16$. The rank (minimal size of a generating set) and idempotent rank (minimal size of an idempotent generating set) of several transformations semigroups have been studied in 9,12 and 16 by using the combinatorial methods. A mapping $\alpha: \operatorname{dom}(\alpha) \subseteq X_{n} \rightarrow i m(\alpha) \subseteq X_{n}$ is called a partial transformation, and the set of all partial transformations is a semigroup under composition and denoted by \mathcal{P}_{n}. In the articles 1 and 14 the numbers $\left|\mathcal{T}_{n}(k, r)\right|$ and $\left|\mathcal{P}_{n}(k, r)\right|$ were calculated for $r=k=2,3$. Since then, $\mathcal{T}_{n}(k, r)$ were determined for $r=k$ for $2 \leq k \leq n$ in $[2$. In the present paper, we calculate $\left|\mathcal{C}_{n}(k, k)\right|,\left|\mathcal{C}_{n}(k, 2 k)\right|,\left|\mathcal{C}_{n}(2, n)\right|,\left|N\left(\mathcal{C}_{n}\right)(k, k)\right|,\left|N\left(\mathcal{C}_{n}\right)(k, 2 k)\right|,\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|$, $\left|E\left(\mathcal{C}_{n}\right)(k, r)\right|,\left|\mathcal{O}_{n}(k, k)\right|$ and $\left|E\left(\mathcal{O}_{n}\right)(k, k)\right|$. These invariants could be interesting and useful in the study of structure of semigroups.

2. Collapsible elements in \mathcal{C}_{n}

Let $\mathcal{U}(k, r)=\mathcal{C}_{n}(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Then, it is obvious that $\left|\mathcal{C}_{n}(k, r)\right|=0$ if k does not divide r, and further $\left|\mathcal{C}_{n}(n, n)\right|=1$. Note that 1_{n} which denotes identity element of \mathcal{C}_{n} and \mathcal{O}_{n} is the only non-collapsible element of \mathcal{C}_{n} and \mathcal{O}_{n} then, the number of collapsible elements in \mathcal{C}_{n} and \mathcal{O}_{n} are $C_{n}-1$ and $\binom{2 n-1}{n-1}-1$, respectively. The proof of the next combinatorial result is easy and is omitted.

Lemma 1. For positive integers k and n where $1 \leq k \leq n$,

$$
\sum_{i=1}^{n-k+1}\binom{n-i}{n-k-i+1}=\binom{n}{k}
$$

Theorem 1. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|\mathcal{C}_{n}(k, k)\right|=\binom{n}{k}
$$

Proof. For a given $\alpha \in \mathcal{C}_{n}(k, k)$ it is clear that there exists $i \in i m(\alpha)$ such that $\left|i \alpha^{-1}\right|=k$ and $\min \left(i \alpha^{-1}\right)=i$. So,

$$
\alpha=\left(\begin{array}{cccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & {[i, k+i-1]} & \{k+i\} & \cdots & \{n\} \\
1 & 2 & \cdots & i-1 & i & (k+i) \alpha & \cdots & n \alpha
\end{array}\right)
$$

where $1 \leq i \leq n-k+1$. As can be seen the above form, we choose elements of $i m(\alpha)$ from the set $[i+1, n]$ for the set $[k+i, n]$. There are $\binom{n-(i+1)+1}{n-(k+i)+1}=\binom{n-i}{n-k-i+1}$ ways to do that. This yields, there are $\binom{n-i}{n-k-i+1}$ elements in $\mathcal{C}_{n}(k, k)$ for a fixed i. Since $1 \leq i \leq n-k+1$, it follows directly from Lemma 1 that

$$
\left|\mathcal{C}_{n}(k, k)\right|=\sum_{i=1}^{n-k+1}\binom{n-i}{n-k-i+1}=\binom{n}{k}
$$

Our next result computes $\left|\mathcal{C}_{n}(k, 2 k)\right|$.
Proposition 1. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|\mathcal{C}_{n}(k, 2 k)\right|=\sum_{i=1}^{n-2 k+1} \sum_{j=i+k}^{n-k+1} \sum_{l=j-k+1}^{j}\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}
$$

Proof. Given $\alpha \in \mathcal{C}_{n}(k, 2 k)$, let $A_{i}=[i, k+i-1]$ and $A_{j}=[j, k+j-1]$ be any two blocks of α each of which contain k elements. So,

$$
\alpha=\left(\begin{array}{cccccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & A_{i} & \{k+i\} & \cdots & A_{j} & \cdots & \{n\} \\
1 & 2 & \cdots & i-1 & i & (k+i) \alpha & \cdots & j \alpha & \cdots & n \alpha
\end{array}\right)
$$

where $1 \leq i \leq n-2 k+1$ and $i+k \leq j \leq n-k+1$. Let $j \alpha=l$ where $j-k+1 \leq l \leq j$. As can be seen above form, we choose elements of $\operatorname{im}(\alpha)$ from the set $[i+1, l-1]$ for the set $[k+i, j-1]$ and from the set $[l+1, n]$ for the set $[k+j, n]$. However, this can be done $\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}$ ways. This yields, there are $\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}$ elements in $\mathcal{C}_{n}(k, 2 k)$ for fixed i, j and l. Since $1 \leq i \leq n-2 k+1, i+k \leq j \leq n-k+1$ and $j-k+1 \leq l \leq j$, it follows quickly that

$$
\left|\mathcal{C}_{n}(k, 2 k)\right|=\sum_{i=1}^{n-2 k+1} \sum_{j=i+k}^{n-k+1} \sum_{l=j-k+1}^{j}\binom{l-i-1}{j-k-i}\binom{n-l}{n-k-j+1}
$$

Theorem 2. For positive even integer $n \geq 2$,

$$
\left|\mathcal{C}_{n}(2, n)\right|=\frac{2}{(n+2)}\binom{n}{\frac{n}{2}}
$$

Proof. For any $\alpha \in \mathcal{C}_{n}(2, n)$, it is clear that n must be even, and so $\left|\mathcal{C}_{n}(n, 2)\right|=0$ if 2 does not divide n. Then, the result will clearly follow if we establish a bijection between $\mathcal{C}_{n}(2, n)$ and $\mathcal{C}_{\frac{n}{2}}$. Define a map $\theta: \mathcal{C}_{n}(2, n) \rightarrow \mathcal{C}_{\frac{n}{2}}$ by $(\alpha) \theta=\alpha^{\prime}$ where

$$
\begin{cases}(2 i-1) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2} \\ (2 i) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2}\end{cases}
$$

that is,

$$
\begin{cases}j \alpha=\left(\frac{j+1}{2}\right) \alpha^{\prime}+\frac{j-1}{2}, & j=1,3, \ldots, n-1 ; \\ j \alpha=\frac{j}{2} \alpha^{\prime}+\frac{j-2}{2}, & j=2,4, \ldots, n .\end{cases}
$$

This yields, θ is a well-defined bijection. Since $\left|\mathcal{C}_{\frac{n}{2}}\right|=C_{\frac{n}{2}}$, the proof is completed.

Example 1. The function $\theta: \mathcal{C}_{6}(2,6) \rightarrow \mathcal{C}_{\frac{6}{2}}$ defined as in above is a bijection. Certainly,

$$
\begin{aligned}
\mathcal{C}_{6}(2,6)= & \left\{\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 4
\end{array}\right),\right. \\
& \left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 5
\end{array}\right),\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 3 & 4
\end{array}\right), \\
& \left.\left(\begin{array}{ccc}
\{1,2\} & \{3,4\} & \{5,6\} \\
1 & 3 & 5
\end{array}\right)\right\} \text { and } \\
\mathcal{C}_{3}= & \left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right),\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 3
\end{array}\right)\right. \\
& \left.\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 2
\end{array}\right),\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)\right\}
\end{aligned}
$$

as wanted.
Let $\mathcal{U}(k, r)=N\left(\mathcal{C}_{n}\right)(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $\left|N\left(\mathcal{C}_{n}\right)(k, r)\right|=0$ if k does not divide r, and also $\left|N\left(\mathcal{C}_{n}\right)(n, n)\right|=1$ and $\mid N\left(\mathcal{C}_{n}(n-\right.$ $1, n-1) \mid=n-2$. Note that $\alpha \in N\left(\mathcal{C}_{n}\right), 1 \alpha=2 \alpha=1$ and $i \alpha \leq i-1$ for all $3 \leq i \leq n$, and so the number of collapsible emenets in $N\left(\mathcal{C}_{n}\right)$ is $\left|N\left(\mathcal{C}_{n}\right)\right|=C_{n-1}$.

Lemma 2. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|N\left(\mathcal{C}_{n}\right)(k, k)\right|=\binom{n-2}{n-k}
$$

Proof. Given $\alpha \in N\left(\mathcal{C}_{n}\right)(k, k)$, since $1 \alpha=2 \alpha=1$ and $\left|1 \alpha^{-1}\right|=k$, we have

$$
\alpha=\left(\begin{array}{ccccc}
{[1, k]} & \{k+1\} & \{k+2\} & \cdots & \{n\} \\
1 & (k+1) \alpha & (k+2) \alpha & \cdots & n \alpha
\end{array}\right) .
$$

As can be seen above form, we choose elements of $\operatorname{im}(\alpha)$ from the set $[2, n]$ for the set $[k+1, n-1]$. However, there are

$$
\left|N\left(\mathcal{C}_{n}\right)(k, k)\right|=\binom{n-2}{n-k}
$$

ways to do that, as required.
Proposition 2. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|N\left(\mathcal{C}_{n}\right)(k, 2 k)\right|=\sum_{j=k+1}^{n-k+1} \sum_{l=2}^{j}\binom{l-2}{j-k-1}\binom{n-l}{n-k-j+1} .
$$

Proof. Given $\alpha \in N\left(\mathcal{C}_{n}\right)(k, 2 k)$, let $A_{1}=[1, k]$ and $A_{j}=[j, k+j-1]$ be any two blocks of α which contain k elements. This yields,

$$
\alpha=\left(\begin{array}{ccccc}
A_{1} & \{k+1\} & \cdots & A_{j} & \{n\} \\
1 & (k+1) \alpha & \cdots & j \alpha & n \alpha
\end{array}\right)
$$

where $k+1 \leq j \leq n-k+1$. Let $j \alpha=l$ where $2 \leq l \leq j$. As can be seen above form, we choose element of $i m(\alpha)$ from the set $[2, l-1]$ for the set $[k+1, j-1]$ and from the set $[l+1, n]$ for the set $[k+j, n]$. However, this can be done $\binom{l-2}{j-k-1}\binom{n-l}{n-k-j-1}$ ways. This yields, there are $\binom{l-2}{j-k-1}\binom{n-l}{n-k-j-1}$ elements in $N\left(\mathcal{C}_{n}\right)(k, 2 k)$ for fixed j and l. Since $k+1 \leq j \leq n-k+1$ and $2 \leq l \leq j$, it follows quickly that

$$
\left|N\left(\mathcal{C}_{n}\right)(k, 2 k)\right|=\sum_{j=k+1}^{n-k+1} \sum_{l=2}^{j}\binom{l-2}{j-k-1}\binom{n-l}{n-k-j+1} .
$$

Theorem 3. For positive even integer $n \geq 2$,

$$
\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|=\frac{2}{n}\binom{n-2}{\frac{n-2}{2}}
$$

Proof. Let α be any element of $N\left(\mathcal{C}_{n}\right)(n, 2)$. Then, it is clear that n must be even, and so $\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|=0$ if 2 does not divide n. If we construct a bijection between $N\left(\mathcal{C}_{\frac{n}{2}}\right)$ and $\left|N\left(\mathcal{C}_{n}\right)(2, n)\right|$, then this completes the proof. Define a map $\theta: N\left(\mathcal{C}_{n}\right)(2, n) \rightarrow N\left(\mathcal{C}_{\frac{n}{2}}\right)$ by $(\alpha) \theta=\alpha^{\prime}$ where

$$
\begin{cases}(2 i-1) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2} \\ (2 i) \alpha=i \alpha^{\prime}+i-1, & i=1,2, \ldots, \frac{n}{2}\end{cases}
$$

that is,

$$
\begin{cases}j \alpha=\left(\frac{j+1}{2}\right) \alpha^{\prime}+\frac{j-1}{2}, & j=1,3, \ldots, n-1 \\ j \alpha=\frac{j}{2} \alpha^{\prime}+\frac{j-2}{2}, & j=2,4, \ldots, n\end{cases}
$$

Now it is easy to check that θ is a well-defined bijection. Since $\left|N\left(\mathcal{C}_{\frac{n}{2}}\right)\right|=C_{\frac{n}{2}-1}$, the proof is complete.
Example 2. The function $\theta: N\left(\mathcal{C}_{8}\right)(2,8) \rightarrow N\left(\mathcal{C}_{\frac{8}{2}}\right)$ defined as in above is a bijection. Indeed, $=N\left(\mathcal{C}_{8}\right)(2,8)=$

$$
\begin{aligned}
& \left\{\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 3 & 4
\end{array}\right),\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 3 & 5
\end{array}\right),\right. \\
& \left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 3 & 6
\end{array}\right),\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 4 & 5
\end{array}\right), \\
& \left.\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5,6\} & \{7,8\} \\
1 & 2 & 4 & 6
\end{array}\right)\right\} \text { and }
\end{aligned}
$$

$$
\begin{aligned}
N\left(\mathcal{C}_{4}\right)= & \left\{\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 3
\end{array}\right),\right. \\
& \left.\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3
\end{array}\right)\right\},
\end{aligned}
$$

as required.
Let $\mathcal{U}(k, r)=E\left(\mathcal{C}_{n}\right)(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $\left|E\left(\mathcal{C}_{n}\right)(k, r)\right|=0$ if k does not divide r, and also $\left|E\left(\mathcal{C}_{n}\right)(n, n)\right|=1$. Note that the number of collapsible elements in $E\left(\mathcal{C}_{n}\right)$ is $2^{n-1}-1$.

Theorem 4. For positive integers k, r and n where $2 \leq k \leq r \leq n$ and $r=k t$,

$$
\left|E\left(\mathcal{C}_{n}\right)(k, r)\right|=\binom{n+t-r}{t}
$$

Proof. If $\alpha \in E\left(\mathcal{C}_{n}\right)(k, r)$ and $r=k t$, then $\alpha=\left(\begin{array}{cccc}A_{1} & A_{2} & \cdots & A_{n+t-r} \\ 1 & a_{2} & \cdots & a_{n+t-r}\end{array}\right)$, where $a_{i} \in A_{i}$ for all $1 \leq i \leq n+t-r$. Since $r=k t$, ordered partition of α contains $n+t-r$ blocks such that t blocks contain k elements and $n-k t$ blocks contain one element. Without loss of generality assume that each of the sets $A_{1}, A_{2}, \ldots, A_{t}$ contains k elements and each of the sets $A_{t+1}, A_{t+2}, \ldots, A_{n+t-r}$ contains one element. Since α is an idempotent, it is clear that α is the only element in $E\left(\mathcal{C}_{n}\right)(k, r)$ with this ordered partition. Hence, all elements of $E\left(\mathcal{C}_{n}\right)(k, r)$ are entirely determined by choosing t blocks which contain k elements. Since we choose t blocks $\binom{n+t-r}{t}$ ways, this completes the proof.

The next result is clear from the definition of $\mathcal{U}(k)$ and $\mathcal{U}(k, r)$:

$$
|\mathcal{U}(k)|=\sum_{i=1}^{t}|\mathcal{U}(k, i k)|
$$

where $t=\frac{n}{k}$.
Example 3. We obtain $\left|E\left(\mathcal{C}_{6}\right)(2,4)\right|=\binom{6+2-4}{2}=6$ by Theorem 4 . Since $n=$ $6, r=4, k=2, t=2$, each element in $E\left(\mathcal{C}_{6}\right)(2,4)$ have $6+2-4$ blocks such that 2 blocks contain 2 elements and 2 blocks are singletons. Indeed, $E\left(\mathcal{C}_{6}\right)(2,4)=$

$$
\begin{aligned}
& \left\{\left(\begin{array}{cccc}
\{1,2\} & \{3,4\} & \{5\} & \{6\} \\
1 & 3 & 5 & 6
\end{array}\right),\left(\begin{array}{cccc}
\{1,2\} & \{3\} & \{4,5\} & \{6\} \\
1 & 3 & 4 & 6
\end{array}\right),\right. \\
& \left(\begin{array}{cccc}
\{1,2\} & \{3\} & \{4\} & \{5,6\} \\
1 & 3 & 4 & 5
\end{array}\right),\left(\begin{array}{ccc}
\{1\} & \{2,3\} & \{4,5\} \\
1 & 2 & 4
\end{array}\right) \\
& \left.\left(\begin{array}{cccc}
\{1\} & \{2,3\} & \{4\} & \{5,6\} \\
1 & 2 & 4 & 5
\end{array}\right),\left(\begin{array}{cccc}
\{1\} & \{2\} & \{3,4\} & \{5,6\} \\
1 & 2 & 3 & 5
\end{array}\right)\right\} .
\end{aligned}
$$

Furthermore, $\left|E\left(\mathcal{C}_{6}\right)(2)\right|=\sum_{i=1}^{3}\left|E\left(\mathcal{C}_{6}\right)(2, i 2)\right|=\left|E\left(\mathcal{C}_{6}\right)(2,2)\right|+\left|E\left(\mathcal{C}_{6}\right)(2,4)\right|+$ $\left|E\left(\mathcal{C}_{6}\right)(2,6)\right|=\binom{6+1-2}{1}+\binom{6+2-4}{2}+\binom{6+3-6}{3}=12$.

3. Collapsible elements in \mathcal{O}_{n}

Let $U(k, r)=\mathcal{O}_{n}(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Then, it is clear that $\left|\left(\mathcal{O}_{n}\right)(r, k)\right|=0$ if k does not divide r, and also $\left|\left(\mathcal{O}_{n}\right)(n, n)\right|=n$. By convention, we take $\binom{0}{0}=1$ in the following theorem.

Theorem 5. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|\mathcal{O}_{n}(k, k)\right|=\sum_{i=1}^{n-k+1} \sum_{j=i}^{k+i-1}\binom{j-1}{i-1}\binom{n-j}{n-k-i+1}
$$

Proof. For any $\alpha \in \mathcal{O}_{n}(k, k)$, let

$$
\alpha=\left(\begin{array}{cccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & {[i, k+i-1]} & \{k+i\} & \cdots & \{n\} \\
1 \alpha & 2 \alpha & \cdots & (i-1) \alpha & i \alpha & (k+i) \alpha & \cdots & n \alpha
\end{array}\right),
$$

where $1 \leq i \leq n-k+1$. As can be seen above form, the set of all value of $i \alpha$ is the set $[i, k+i-1]$ and for all distinct $m, r \in X_{n} \backslash[i, k+i-1]$, it is clear that $m \alpha \neq r \alpha$. Let $i \alpha=j$ where $i \leq j \leq k+i-1$. Then, we choose elements of $i m(\alpha)$ for the left and right sides of $i \alpha=j$. For the left side, we choose elements from the set $[1, j-1]$ for the set $[1, i-1]$. There are $\binom{j-1}{i-1}$ ways to do that. For the right side, we choose the elements from the set $[j+1, n]$ for the set $[k+i, n]$. There are $\binom{n-j}{n-k-i+1}$ ways to do that. This yields, there are $\binom{j-1}{i-1}\binom{n-j}{n-k-i+1}$ elements in $\mathcal{O}_{n}(k, k)$ for fixed i and j. Since $1 \leq i \leq n-k+1$ and $i \leq j \leq k+i-1$, it follows that

$$
\left|\mathcal{O}_{n}(k, k)\right|=\sum_{i=1}^{n-k+1} \sum_{j=i}^{k+i-1}\binom{j-1}{i-1}\binom{n-j}{n-k-i+1}
$$

Let $\mathcal{U}(k, r)=E\left(\mathcal{O}_{n}\right)(k, r)$ for positive integers $2 \leq k \leq r \leq n$. Clearly, $\left|E\left(\mathcal{O}_{n}\right)(k, r)\right|=0$ if k does not divide r. Notice that the number of collapsible elements in $E\left(\mathcal{O}_{n}\right)$ is $f_{2 n}-1$.
Lemma 3. For positive integers k and n where $2 \leq k \leq n$,

$$
\left|E\left(\mathcal{O}_{n}\right)(k, k)\right|=k(n-k+1)
$$

Proof. For any $\alpha \in \mathcal{O}_{n}(k, k)$, let

$$
\alpha=\left(\begin{array}{cccccccc}
\{1\} & \{2\} & \cdots & \{i-1\} & {[i, k+i-1]} & \{k+i\} & \cdots & \{n\} \\
1 \alpha & 2 \alpha & \cdots & (i-1) \alpha & i \alpha & (k+i) \alpha & \cdots & n \alpha
\end{array}\right)
$$

where $1 \leq i \leq n-k+1$. As can be seen above form, the set of all value of $i \alpha$ is the set $[i, k+i-1]$. Moreover, since α is an idempotent, $m \alpha=m$ for all $m \in X_{n} \backslash[i, k+i-1]$. Let $i \alpha=j$ where $i \leq j \leq k+i-1$. Then, it is easy to see
that α is the only element in $E\left(\mathcal{O}_{n}\right)(k, k)$ for fixed i and j. Since $i \leq j \leq k+i-1$, there are k elements in $E\left(\mathcal{O}_{n}\right)(k, k)$ for fixed i. Since $1 \leq i \leq n-k+1$, it follows that

$$
\left|E\left(\mathcal{O}_{n}\right)(k, k)\right|=k(n-k+1)
$$

Declaration of Competing Interests The author has no competing interests to declare.

References

[1] Adenji, A.O., Science, C., Makanjuola, S.O., On some combinatorial results of collapse and properties of height in full transformation semigroups, Afr. J. Comp. ICT., 1(2) (2008), 61-63.
[2] Adenji, A.O., Science, C., Makanjuola, S.O., A combinatorial property of the full transformation semigroup, Afr. J. Comp. ICT., 2(1) (2009), 15-19.
[3] Ayık, G., Ayık, H., Koç, M., Combinatorial results for order-preserving and order-decreasing transformations, Turk. J. Math., 35(4) (2011), 1-9. https://doi.org/10.3906/mat-1010-432
[4] Catarino P. M., Higgins, P.M., The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58(2) (1999), 190-206. https://doi.org/10.1007/s002339900014
[5] Clifford, A.H., Preston, G.B., The algebraic theory of semigroups. Vol.II., American Math. Soc., Providence, 1967.
[6] Ganyushkin, O., Mazorchuk, V., Classical Finite Transformation Semigroups, SpringerVerlag, London, 2009.
[7] Grimaldi R.P., Discrete and combinatorial mathematics, Pearson Education Inc., USA, 2003.
[8] Higgins, P.M., Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Cambridge Phil. Soc., 113(2) (1993), 281-296. https://doi.org/10.1017/S0305004100075964
[9] Howie, J. M., The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc., 41(1) (1966), 707-716. https://doi.org/10.1112/jlms/s141.1.707
[10] Howie, J. M., Products of idempotents in certain semigroups of transformations, Proc. Edinb. Math. Soc., 17(3) (1970/71), 223-236. https://doi.org/10.1017/S0013091500026936
[11] Howie, J.M., Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[12] Korkmaz, E., Ayık, H., Ranks of nilpotent subsemigroups of order-preserving and decreasing transformation semigroups, Turk. J. Math., 45(4) (2021), 1626-1634. https://doi.org/10.3906/mat-2008-19
[13] Laradji, A., Umar, A., On certain finite semigroups of order-decreasing transformations I, Semigroup Forum, 69(2) (2004), 184-200. https://doi.org/10.1007/s00233-004-0101-9
[14] Mbah, M. A., Ndubisi, R. U., Achaku, D. T., On some combinatorial results of collapse in partial transformation semigroups, Canadian Journal of Pure and Applied Sciences, 1, (2020) 257-261. https://doi.org/10.15864/jmscm. 1301
[15] Umar, A., Semigroups of order-decreasing transformations: The isomorphism theorem, Semigroup Forum, 53(1) (1996), 220-224. https://doi.org/10.1007/BF02574137
[16] Yağcı, M., Korkmaz, E., On nilpotent subsemigroups of the order-preserving and decreasing transformation semigroups, Semigroup Forum, 101(2) (2020), 486-289. https://doi.org/10.1007/s00233-020-10098-2
http://communications.science.ankara.edu.tr

COEFFICIENTS OF RANDIĆ AND SOMBOR CHARACTERISTIC POLYNOMIALS OF SOME GRAPH TYPES

Mert Sinan OZ
Department of Mathematics, Bursa Technical University, Bursa, TURKEY

Abstract

Let G be a graph. The energy of G is defined as the summation of absolute values of the eigenvalues of the adjacency matrix of G. It is possible to study several types of graph energy originating from defining various adjacency matrices defined by correspondingly different types of graph invariants. The first step is computing the characteristic polynomial of the defined adjacency matrix of G for obtaining the corresponding energy of G. In this paper, formulae for the coefficients of the characteristic polynomials of both the Randić and the Sombor adjacency matrices of path graph P_{n}, cycle graph C_{n} are presented. Moreover, we obtain the five coefficients of the characteristic polynomials of both Randić and Sombor adjacency matrices of a special type of 3-regular graph R_{n}.

1. Introduction

Let $G=(V, E)$ be a simple graph with the number of n vertices and m edges. If two vertices v_{i} and v_{j} are connected with an edge e, then they are called adjacent vertices and they are expressed as $e=v_{i} v_{j}$ or $e=v_{j} v_{i}$. If a vertex v is a terminal point of edge e, then they are called incident. Degree of a vertex v_{i} is the number of edges that are incident to the vertex v_{i} and it is denoted by $d\left(v_{i}\right)$. A graph does not contain any cycle is called acyclic. If there is a way between all vertices of a graph, then it is called connected. Connected acyclic graph is called tree. Path graph is a tree that is in the form of straight line with degrees of two vertices are one and degrees of other vertices are two and it is denoted by P_{n}. Cycle graph is a graph that contains only one cycle through all vertices and degrees of all vertices are two. It is denoted by C_{n}. If degrees of all vertices of G are k, then it is called k-regular graph.
Let $A=\left[a_{i j}\right]_{n \times n}$ be a matrix. If v_{i} and v_{j} are adjacent vertices then $a_{i j}$ and $a_{j i}$ are

[^9]1 or else 0 , see 1. A is called adjacency matrix of G. Analogous with linear algebra, $\operatorname{det}(\lambda \cdot I-A)$ is called the characteristic polynomial of G and we denoted it by $P_{G}(\lambda)$. Roots of $P_{G}(\lambda)$ are called eigenvalues of G and the energy of G is defined as the summation of absolute values of the eigenvalues of G, see 6 . Furthermore, there are many topological invariants used in several researches. In 16 , Randić index is a molecular descriptor defined by Milan Randić and denoted by $\sum_{v_{i} v_{j} \in E} \frac{1}{\sqrt{d\left(v_{i}\right) d\left(v_{j}\right)}}$. In 9 , another important molecular descriptor recently introduced by Ivan Gutman with the name Sombor index is $\sum_{v_{i} v_{j} \in E} \sqrt{\left(d\left(v_{i}\right)\right)^{2}+\left(d\left(v_{j}\right)\right)^{2}}$. In addition to topological invariants, several adjacency matrix forms have been defined until today, for more details see 13. With the help of various adjacency matrices defined by correspondingly different types of graph invariants, it is possible to study different types of graph energy such as laplacian energy, distance energy, Randić energy and Sombor energy, see for details 15. Two of the well-known them are Randić and Sombor matrices that are related to the corresponding topological indices. Researchers have studied these notions from various aspects so far. Some studies on the subjects Randić and Sombor adjacency matrices and energies can be seen in $2,4,5,8,10,12,14,17$. The first step to obtaining the desired energy type of a graph G is to calculate the characteristic polynomials of the corresponding adjacency matrices. In this paper, we obtain formulae for each coefficient of both Randić and Sombor characteristic polynomials of path graph P_{n} and cycle graph C_{n} by using a well-known equation. Also, we present formulae for some coefficients of Randic and Sombor characteristic polynomials of a special type of 3-regular graph.

2. Coefficients of Randić and Sombor Characteristic Polynomials of Path, Cycle and a Special Type of 3-Regular Graphs

Let $G=(V, E)$ be a simple graph with n vertices and m edges. The Randić matrix of G was mentioned in the substantial book 3 and the Sombor matrix was defined in 10 . We denote the Randić and Sombor adjacency matrices of G by $R(G)$ and $S(G)$, respectively. $R(G)=\left[r_{i j}\right]_{n \times n}$ and $S(G)=\left[s_{i j}\right]_{n \times n}$ are formed by using the adjacency of vertices as the following:

$$
\begin{gathered}
r_{i j}= \begin{cases}\frac{1}{\sqrt{d\left(v_{i}\right) d\left(v_{j}\right)}}, & \text { if the vertices } v_{i} \text { and } v_{j} \text { are adjacent } \\
0, & \text { otherwise. }\end{cases} \\
s_{i j}= \begin{cases}\sqrt{\left(d\left(v_{i}\right)\right)^{2}+\left(d\left(v_{j}\right)\right)^{2}}, & \text { if the vertices } v_{i} \text { and } v_{j} \text { are adjacent } \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

It is clear that $R(G)$ and $S(G)$ are symmetric matrices with dimension $n \times n$. Let us denote the ordinary characteristic polynomial of G as follows:

$$
P_{G}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n} .
$$

Let us denote the number of components in an elementary subgraph G^{\prime} which are single edges and cycles as $\rho_{0}\left(G^{\prime}\right)$ and $\rho_{1}\left(G^{\prime}\right)$, respectively.

In 18, the formula for the coefficients of the ordinary characteristic polynomial are given by

$$
\begin{equation*}
c_{k}=\sum(-1)^{\rho_{0}\left(G^{\prime}\right)+\rho_{1}\left(G^{\prime}\right)} 2^{\rho_{1}\left(G^{\prime}\right)} \tag{1}
\end{equation*}
$$

where the summation is taken over all elementary subgraphs G^{\prime} with k vertices for $1 \leq k \leq n$. At the present time, the formula is called Sachs theorem, for details and history of the theorem see [1,3,7.

Let $\psi_{i j}$ denote the nonzero value in the entry $i j$ of the adjacency matrix of a vertex-degree-based topological index of a regular graph G. As a natural result of the Sachs theorem, it is clear that the formula for each coefficient c_{k}^{\prime} of the characteristic polynomial of the adjacency matrix of this vertex-degree-based topological index is obtained by

$$
c_{k}^{\prime}=\left(\psi_{i j}\right)^{k} \sum(-1)^{\rho_{0}\left(G^{\prime}\right)+\rho_{1}\left(G^{\prime}\right)} 2^{\rho_{1}\left(G^{\prime}\right)}
$$

where the summation is taken over all elementary subgraphs G^{\prime} with k vertices for $1 \leq k \leq n$.

In this paper, we aim to obtain all coefficients of the Randić and Sombor characteristic polynomials of path graph P_{n} and regular graph C_{n} by using the numbers of elementary subgraphs. Similarly, we also aim to obtain some coefficients of the same characteristic polynomials of a special type of 3 -regular graph we call R_{n}. We begin with the Randić characteristic polynomial of P_{n}. Let us note that the Randić characteristic polynomial of P_{2} is equal to $\lambda^{2}-1$. Moreover, let us denote the set of non-negative integer numbers and the set of positive integer numbers by \mathbb{Z}^{*} and \mathbb{Z}^{+}, respectively.

Theorem 1. Let $P_{n}=(V, E)$ be a path graph with n vertices and $n-1$ edges. Let $P_{P_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c$ be the Randić characteristic polynomial of P_{n}, where $c_{k} \in \mathbb{R}, 1 \leq k \leq n-1$. The formulae for the coefficients $c_{k} s$ of the Randić characteristic polynomial of P_{n}, where $n \geq 3$, are as follows:

$$
\begin{aligned}
& c_{2}=(-1)^{\frac{k}{2}}\left(\frac{n-3}{4}+1\right), \\
& c_{k}=0, \text { where } k \in 2 \mathbb{Z}^{*}+1, \\
& c_{k}=(-1)^{\frac{k}{2}}\left[\begin{array}{c}
\binom{n-1)-\frac{k}{2}}{\frac{k}{2}-1} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-1\right)}+\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2} \cdot\left(\frac{1}{4}\right) \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-2\right)} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2} \\
\left.+\sum_{j=\frac{k}{2}-1}^{n-2-\frac{k}{2}}\binom{j}{\frac{k}{2}-1} \cdot\left(\frac{1}{2}\right)^{k}+\sum_{j=\frac{k}{2}-2}^{n-3-\frac{k}{2}}\binom{j}{\frac{k}{2}-2} \cdot\left(\frac{1}{4}\right) \cdot\left(\frac{1}{2}\right)^{k-2}\right], \text { where } k \geq 4, k \in 2 \mathbb{Z}^{+} .
\end{array} . . \begin{array}{l}
n \\
\end{array} .\right.
\end{aligned}
$$

Proof. First of all, it is clear that $c_{2}=(-1)^{\frac{k}{2}}\left(\frac{n-3}{4}+1\right)$ for all $n \geq 3$. By the Eqn. 1. we know that c_{k} consists of the contributions of several elementary subgraphs of
G with k vertices. Also, since P_{n} does not have any cycle we take into account only edges that do not have any common vertex. At this point, we will apply a method that involves an edge removing and continue calculation of remaining part. Let us consider a path graph P_{n} with n vertices whose vertices are labelled by $1,2, \cdots, n$. For calculation of c_{k}, if we remove the edge $v_{1} v_{2}$, then remaining part with $k-2$ vertices consists of number of

$$
\binom{\frac{k}{2}-2}{\frac{k}{2}-2}+\binom{\frac{k}{2}-1}{\frac{k}{2}-2}+\cdots+\binom{n-\frac{k}{2}-3}{\frac{k}{2}-2}+\binom{n-\frac{k}{2}-2}{\frac{k}{2}-2}=\binom{n-1-\frac{k}{2}}{\frac{k}{2}-1}
$$

combinations. Moreover, if we remove any edge $v_{i} v_{i+1}$ which is not terminal edges of P_{n}, then remaining part consists one of the numbers

$$
\binom{\frac{k}{2}-1}{\frac{k}{2}-1},\binom{\frac{k}{2}}{\frac{k}{2}-1}, \cdots,\binom{n-2-\frac{k}{2}}{\frac{k}{2}-1}
$$

Hence, contributions of elementary subgraphs that are in the form of $v_{1} v_{2}, \cdots, v_{i} v_{j}$ can be $\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdots\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2}$ or $\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdots\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}$. Hereby, the contribution of the type subgraphs that contribute to c_{k} in the $\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdots\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2}$ form is obtained as $\left[\binom{(n-1)-\frac{k}{2}}{\frac{k}{2}-1}-\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2}\right] \cdot\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-1\right)}$. Moreover, the contribution of the other type subgraphs that contribute to c_{k} in the $\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdots\left(\frac{1}{2}\right)^{2}$. $\left(\frac{1}{\sqrt{2}}\right)^{2}$ form is obtained as $\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2} \cdot\left(\frac{1}{\sqrt{2}}\right)^{4} \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-2\right)}$. Thus, the first part of the formula is obtained as $\binom{(n-1)-\frac{k}{2}}{\frac{k}{2}-1} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-1\right)}+\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2} \cdot\left(\frac{1}{4}\right) \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-2\right)} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}$ by arranging the contribution statements above.

Furthermore, contributions of elementary subgraphs that are in the form of $v_{a} v_{b}$, $\cdots, v_{i} v_{j}$ can be $\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdots\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2}$ or $\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdots\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}$, where $a \neq 1, b \neq$ 2 or $a \neq 2, b \neq 1$. Similar to the previous part of the proof, two contribution equations of c_{k} are obtained as $\sum_{j=\frac{k}{2}-1}^{n-2-\frac{k}{2}}\binom{j}{\frac{k}{2}-1} \cdot\left(\frac{1}{2}\right)^{k}$ and $\sum_{j=\frac{k}{2}-2}^{n-3-\frac{k}{2}}\binom{j}{\frac{k}{2}-2} \cdot\left(\frac{1}{4}\right) \cdot\left(\frac{1}{2}\right)^{k-2}$, respectively. As a result, since there is no other elementary subgraph contribution type, the proof is completed by summing all the above subgraph contributions.

In the next corollary, we continue with the Sombor characteristic polynomial of P_{n}. Firstly, it is clear that the Sombor characteristic polynomial of P_{2} is equal to $\lambda^{2}-2$.

Corollary 1. Let $P_{n}=(V, E)$ be a path graph with n vertices and $n-1$ edges. Let $P_{P_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c$ be the Sombor characteristic polynomial of P_{n}, where $c_{k} \in \mathbb{Z}, 1 \leq k \leq n-1$. The formulae for the coefficients $c_{k} s$ of the Sombor characteristic polynomial of P_{n}, where $n \geq 3$, are as follows:

$$
\begin{aligned}
& c_{2}=(-1)^{\frac{k}{2}}(8(n-3)+10), \\
& c_{k}=0, \text { where } k \in 2 \mathbb{Z}^{*}+1, \\
& c_{k}=(-1)^{\frac{k}{2}}\left[\begin{array}{c}
(n-1)-\frac{k}{2} \\
\frac{k}{2}-1
\end{array}\right) \cdot(\sqrt{5})^{2} \cdot(\sqrt{8})^{2\left(\frac{k}{2}-1\right)}-3\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2} \cdot(\sqrt{5})^{2} \cdot(\sqrt{8})^{2\left(\frac{k}{2}-2\right)} \\
& \left.+\sum_{j=\frac{k}{2}-1}^{n-2-\frac{k}{2}}\binom{j}{\frac{k}{2}-1} \cdot(\sqrt{8})^{k}-3 \sum_{j=\frac{k}{2}-2}^{n-3-\frac{k}{2}}\binom{j}{\frac{k}{2}-2} \cdot(\sqrt{8})^{(k-2)}\right], \text { where } k \geq 4, k \in 2 \mathbb{Z}^{+} .
\end{aligned}
$$

Proof. Proof is the same with the proof of Thm. 1. Only difference originated from the difference between the Randić and Sombor adjacency matrices of P_{n}.
Theorem 2. Let $P_{n}=(V, E)$ be a path graph with n vertices and $n-1$ edges. Let $P_{P_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Randić characteristic polynomial of P_{n}, where $c_{k} \in \mathbb{R}$. The formula for the coefficient c_{n}, where $n \geq 3$, of the Randić characteristic polynomial of P_{n} is as follows:

$$
\begin{aligned}
& c_{k}=0, \text { where } k \in 2 \mathbb{Z}^{*}+1 \\
& c_{k}=(-1)^{\frac{k}{2}}\left[\binom{(n-1)-\frac{k}{2}}{\frac{k}{2}-1} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-1\right)}+\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2} \cdot\left(\frac{1}{4}\right) \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-2\right)} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}\right], \text { otherwise. }
\end{aligned}
$$

Proof. First of all, it clear that $c_{k}=0$, where $k \in 2 \mathbb{Z}^{*}+1$. Similarly to Thm. 1. let us consider a path graph P_{n} with n vertices whose vertices are labelled by $1,2, \cdots, n$. We keep in view elementary subgraphs with n vertices that consist of disjoint edges since $n=k$. At this point, we have only one choice and it is $v_{1} v_{2}, v_{3} v_{4}, \cdots, v_{n-1} v_{n}$. Thus, by the proof of Thm. [1 we know that the contribution of this subgraph to c_{k} is equal to $\binom{(n-1)-\frac{k}{2}}{\frac{k}{2}-1} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-1\right)}+\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2}$. $\left(\frac{1}{4}\right) \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-2\right)} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}$. Finally, by using Eqn. 1] we have the result as follow:

$$
c_{k}=(-1)^{\frac{k}{2}}\left[\binom{(n-1)-\frac{k}{2}}{\frac{k}{2}-1} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-1\right)}+\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2} \cdot\left(\frac{1}{4}\right) \cdot\left(\frac{1}{2}\right)^{2\left(\frac{k}{2}-2\right)} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}\right] .
$$

Corollary 2. Let $P_{n}=(V, E)$ be a path graph with n vertices and $n-1$ edges. Let $P_{P_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Sombor characteristic polynomial of P_{n}, where $c_{k} \in \mathbb{Z}$. The formula for the coefficient c_{n}, where $n \geq 3$, of the Sombor characteristic polynomial of P_{n} is as follows:

$$
\begin{aligned}
& c_{k}=0, \text { where } k \in 2 \mathbb{Z}^{*}+1, \\
& c_{k}=(-1)^{\frac{k}{2}}\left[\binom{(n-1)-\frac{k}{2}}{\frac{k}{2}-1} \cdot(\sqrt{5})^{2} \cdot(\sqrt{8})^{2\left(\frac{k}{2}-1\right)}-3\binom{(n-2)-\frac{k}{2}}{\frac{k}{2}-2} \cdot(\sqrt{5})^{2} \cdot(\sqrt{8})^{2\left(\frac{k}{2}-2\right)}\right], \text { otherwise. }
\end{aligned}
$$

Proof. Proof is the same with the proof of Thm. 2. Only difference originate from the definitions of Randić and Sombor adjacency matrices of P_{n}.

For the next theorem, we denote the number of elementary subgraphs with k vertices by $N\left(c_{k}\right)$.

Theorem 3. Let $C_{n}=(V, E)$ be a cycle graph with $n \geq 3$ vertices and n edges. Let $P_{C_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Sombor characteristic polynomials of C_{n}, where $c_{k} \in \mathbb{R}$ and $1 \leq k \leq n$. The formulae for the coefficients $c_{k}\left(k=2 t, t \in \mathbb{Z}^{+}\right)$of the Sombor characteristic polynomial of C_{n} are as follows:

$$
\begin{aligned}
& c_{2}=-8 n \\
& c_{4}=(8)^{2}\left(\binom{n-2}{2}+\binom{n-3}{1}\right) \\
& c_{6}=-(8)^{3}\left(\binom{n-3}{3}+\binom{n-4}{2}\right) \\
& c_{8}=(8)^{4}\left(\binom{n-4}{4}+\binom{n-5}{3}\right) \\
& c_{10}=-(8)^{5}\left(\binom{n-5}{5}+\binom{n-6}{4}\right) \\
& \vdots \\
& c_{k}=(-1)^{\frac{k}{2}} \cdot(8)^{\frac{k}{2}}\left(\binom{n-\frac{k}{2}}{\frac{k}{2}}+\binom{n-\left(\frac{k}{2}+1\right)}{\frac{k}{2}-1}\right)
\end{aligned}
$$

in the case of $n=k$, then $c_{n}=c_{k}-2 \cdot 8^{\frac{n}{2}}$, where c_{k} is as given above.
Proof. We know that c_{k} consist of the contributions of different elementary subgraphs of G with k vertices by Eqn. 1. For the coefficients $c_{k}\left(k=2 t, t \in \mathbb{Z}^{+}\right)$of the Sombor characteristic polynomials of C_{n}, where $c_{k} \in \mathbb{R}$ and $1 \leq k \leq n-1$, we take into account only elementary subgraphs that consist of disjoint edges without any elementary subgraph that does not involve any cycle. Similarly to proof of Thm. 1. we apply edge removing method so that we get the number of elementary subgraphs for forming $c_{4}, c_{6}, c_{8}, c_{10}, \cdots, c_{k}$, where $c_{k} \in \mathbb{R}, 1 \leq k \leq n-1$, by using combinations as follows:

$$
\begin{aligned}
& N\left(c_{4}\right)=\sum_{i=1}^{n-3}\binom{i}{1}+\binom{n-3}{1} \\
& N\left(c_{6}\right)=\sum_{i=2}^{n-4}\binom{i}{2}+\binom{n-4}{2} \\
& N\left(c_{8}\right)=\sum_{i=3}^{n-5}\binom{i}{3}+\binom{n-5}{3}
\end{aligned}
$$

$$
\begin{gathered}
N\left(c_{10}\right)=\sum_{i=4}^{n-6}\binom{i}{4}+\binom{n-6}{4} \\
\vdots \\
N\left(c_{k}\right)=\sum_{i=\frac{k}{2}-1}^{n-\left(\frac{k}{2}+1\right)}\binom{i}{\frac{k}{2}-1}+\binom{n-\left(\frac{k}{2}-1\right)}{\frac{k}{2}-1}
\end{gathered}
$$

As a result, we get the desired result by using combination properties and Eqn. 1. In addition, if $n=k$, then there exists one possibility of elementary subgraph that consists of the cycle C_{n} itself. Therefore, in this case result is obtained as $c_{n}=c_{k}-2 \cdot 8^{\frac{n}{2}}$, where c_{k} is as given above.

In a cycle graph C_{n}, it is trivial that if k is odd, then $c_{k}=0$ whenever $0 \leq k \leq$ $n-1$. In the next corollary, the last part of the previous theorem is presented with a more explicit statement.

Corollary 3. Let $C_{n}=(V, E)$ be a cycle graph with $n \geq 3$ vertices and n edges. Let $P_{C_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Sombor characteristic polynomials of C_{n}, where $c_{k} \in \mathbb{R}$ and $1 \leq k \leq n$. The formula for the coefficient c_{n} of the Sombor characteristic polynomial of C_{n} is as follows:

$$
c_{n}= \begin{cases}-2^{\frac{3 n+2}{2}}, & n=2 t+1, \text { where } t \in \mathbb{Z}^{+} \\ -2^{\frac{3 n+4}{2}}, & n=2 t, \text { where } t \in\{3,5,7, \cdots\} \\ 0, & n=4 t, \text { where } t \in \mathbb{Z}^{+} .\end{cases}
$$

Proof. Let us consider a cycle graph C_{n}. There are three possible cases of elementary subgraph of C_{n} with n vertices. The first case is $n=2 t+1$, where $t \in \mathbb{Z}^{+}$. For this case, we have just an elementary subgraph that consists of C_{n} itself and contribution of this subgraph is equal to $-2 \cdot(2 \sqrt{2})^{n}$ by using Eqn. 1.

Second case is $n=2 t$, where $t \in\{3,5,7, \cdots\}$. At this point, there are 2 types of elementary subgraphs with n vertices. These elementary subgraphs can consist either just a cycle C_{n} or $\frac{n}{2}$ disjoint edges. Therefore, contribution of these subgraphs is equal to $-2 \cdot 8^{\frac{n}{2}}-2 \cdot 8^{\frac{n}{2}}$ that is $-2^{\frac{3 n+4}{2}}$. Third case is $n=4 t$, where $t \in \mathbb{Z}^{+}$. Similarly to second case, there are two possible elementary subgraphs of C_{n} with n vertices. These consist of either just a cycle C_{n} or $\frac{n}{2}$ disjoint edges. At this point, since $\frac{n}{2}$ is even number contribution of these subgraphs is equal to $2 \cdot 8^{\frac{n}{2}}-2 \cdot 8^{\frac{n}{2}}$ that is 0 by Eqn. 1 .

Corollary 4. Let $C_{n}=(V, E)$ be a cycle graph with $n \geq 3$ vertices and n edges. Let $P_{C_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Randić characteristic
polynomials of C_{n}, where $c_{k} \in \mathbb{R}$ and $1 \leq k \leq n$. The formulae for the coefficients $c_{k}\left(k=2 t, t \in \mathbb{Z}^{+}\right)$of the Randic characteristic polynomial of C_{n} are as follows:

$$
\begin{aligned}
c_{2} & =-\frac{n}{4} \\
c_{4} & =\left(\frac{1}{4}\right)^{2}\left(\binom{n-2}{2}+\binom{n-3}{1}\right) \\
c_{6} & =-\left(\frac{1}{4}\right)^{3}\left(\binom{n-3}{3}+\binom{n-4}{2}\right) \\
c_{8}= & \left(\frac{1}{4}\right)^{4}\left(\binom{n-4}{4}+\binom{n-5}{3}\right) \\
c_{10}= & -\left(\frac{1}{4}\right)^{5}\left(\binom{n-5}{5}+\binom{n-6}{4}\right) \\
& \vdots \\
c_{k} & =(-1)^{\frac{k}{2}} \cdot\left(\frac{1}{4}\right)^{\frac{k}{2}}\left(\binom{n-\frac{k}{2}}{\frac{k}{2}}+\binom{n-\left(\frac{k}{2}+1\right)}{\frac{k}{2}-1}\right)
\end{aligned}
$$

in the case of $n=k$, then $c_{n}=c_{k}-2 \cdot\left(\frac{1}{4}\right)^{\frac{n}{2}}$, where c_{k} is as given above.
Proof. Proof can be followed by using Theorem 3 .
In the previous theorem, it is clear that if k is odd, then $c_{k}=0$ as long as $0 \leq k \leq n-1$ for each cycle graph C_{n}. The case $n=k$ is presented in the next result.

Corollary 5. Let $C_{n}=(V, E)$ be a cycle graph with $n \geq 3$ vertices and n edges. Let $P_{C_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Randić characteristic polynomials of C_{n}, where $c_{k} \in \mathbb{R}$ and $1 \leq k \leq n$. The formula for the coefficient c_{n} of the Randic characteristic polynomial of C_{n} is as follows:

$$
c_{n}= \begin{cases}-2^{1-n}, & n=2 t+1, \text { where } t \in \mathbb{Z}^{+} \\ -2^{2-n}, & n=2 t, \text { where } t \in\{3,5,7, \cdots\} \\ 0, & n=4 t, \text { where } t \in \mathbb{Z}^{+}\end{cases}
$$

Proof. Proof can be followed by using Corollary 3.
Let us define a special regular graph that consists of $n\left(n \geq 4, n=2 t, t \in \mathbb{Z}^{+}\right)$ vertices, $\frac{3 n}{2}$ edges and degrees of all vertices are 3 . Also vertices intersect each others in a point. We denote it by R_{n}. Let us demonstrate the structures of graphs R_{6} and R_{8} in Figure 1

Theorem 4. Let $R_{n}=(V, E)$ be a 3 -regular graph with n vertices and $\frac{3 n}{2}$ edges as shown in Fig. 1. Let $P_{R_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Randić characteristic polynomial of R_{n}, where $c_{k} \in \mathbb{R}$. The formulae for some

Figure 1. Graphs R_{6} and R_{8}
coefficients of the Randic characteristic polynomial of R_{n} are as follows:

$$
\begin{aligned}
& c_{2}=-\frac{n}{6}, \\
& c_{3}=0, \text { if } n=4, \text { then } c_{3}=-8 \cdot\left(\frac{1}{3}\right)^{3}, \\
& c_{5}=0, \text { if } n=8, \text { then } c_{5}=-16 \cdot\left(\frac{1}{3}\right)^{5} . \\
& c_{4}= \begin{cases}-3 \cdot\left(\frac{1}{3}\right)^{4}, & n=4 \\
0, & n=6 \\
-\left(\frac{1}{3}\right)^{4} n+\left(\frac{1}{3}\right)^{4}\left(\sum_{j=1}^{n-3} j+(n-3)+n \frac{n-4}{2}+\binom{\frac{n}{2}}{2}\right), & \text { otherwise. } \\
0, & n=4 \\
0, & n=6 \\
-\left(\frac{1}{3}\right)^{6}\left(\sum_{j=2}^{n-4}\binom{j}{2}+\binom{n-4}{2}+\left(\frac{n}{2}\right)+n\left(\frac{n-4}{2}\right)+n\left(\frac{n}{2}-3\right)\left(\frac{n}{2}-4\right)+n\left(\frac{n}{2}-3\right)\right. \\
\left.+\frac{n}{2}\left(\frac{n}{2}-2\right)\right)+2 \cdot\left(\frac{1}{3}\right)^{6}\left(n\left(\frac{n-4}{2}-1\right)+\left(\frac{n}{2} \frac{n-4}{2}\right)\right)-2 \cdot\left(\frac{1}{3}\right)^{6}\left(n+\frac{n}{2}\right), & n=10 \\
-\left(\frac{1}{3}\right)^{6}\left(\sum_{j=2}^{n-4}\binom{j}{2}+\binom{n-4}{2}+\binom{\frac{n}{2}}{3}+n\left(\frac{n-4}{2}\right)+n\left(\frac{n}{2}-3\right)\left(\frac{n}{2}-4\right)+n\left(\frac{n}{2}-3\right)\right. \\
\left.+\frac{n}{2}\left(\frac{n}{2}-2\right)\right)+2 \cdot\left(\frac{1}{3}\right)^{6}\left(n\left(\frac{n-4}{2}-1\right)+\left(\frac{n}{2} \frac{n-4}{2}\right)\right)-\left(\frac{1}{3}\right)^{6} n, & \\
c_{6}= \begin{cases}0\end{cases} \\
\hline\end{cases}
\end{aligned}
$$

Proof. It is clear that c_{1} of $P_{R_{n}}(\lambda)$ is 0 .
First of all, let us consider c_{2}. We know that the number of possible elementary subgraphs with 2 vertices is equal to the number of edges of R_{n}. Hence, since R_{n} is 3 -regular, contribution of these elementary subgraphs to $c_{2}=-\left(\frac{1}{3}\right)^{2} \frac{3 n}{2}=-\frac{n}{6}$ by Eqn. 1 .

Secondly, it is clear that 3 -cycles just exist in R_{n} when n is equal to 4 . Thus, by Eqn. 1 if $n=4$, then $c_{3}=-\left(\frac{1}{3}\right)^{3} \cdot 2 \cdot 4$, otherwise $c_{3}=0$.

Thirdly, there exists 4 options for elementary subgraphs with 4 vertices. They can consist of 4 -cycles that are in the form of cross labeling such as (1436) in R_{6} in Fig. 1 and the number of possible elementary subgraphs in this form is $\frac{n}{2}$. The
rest 3 options can be two disjoint edges that one belongs to C_{n} and other one is a diagonal edge, two disjoint edges that belong to C_{n} and lastly two disjoint edges that are diagonal edges, respectively. The number of possible elementary subgraphs in the form of second option is $n \frac{n-4}{2}$ because when we select an edge that belongs to C_{n}, we have $\left(\frac{n-4}{2}\right)$ possibility for an other diagonal edge. Since R_{n} has n vertices there are $n \frac{n-4}{2}$ elementary subgraphs in the second form. For the third option, the number of possible elementary subgraphs that are in the form of
$\left\{v_{1} v_{2}, v_{3} v_{4}\right\},\left\{v_{1} v_{2}, v_{4} v_{5}\right\}, \cdots,\left\{v_{1} v_{2}, v_{n-1} v_{n}\right\}$,
$\left\{v_{2} v_{3}, v_{4} v_{5}\right\},\left\{v_{2} v_{3}, v_{5} v_{6}\right\}, \cdots,\left\{v_{2} v_{3}, v_{n-1} v_{n}\right\},\left\{v_{2} v_{3}, v_{n} v_{1}\right\}$,
$\left\{v_{n-3} v_{n-2}, v_{n-1} v_{n}\right\},\left\{v_{n-3} v_{n-2}, v_{n} v_{1}\right\}$
is equal to $1+2+3+\cdots+(n-3)+(n-3)$. Also, it is clear that the number of possible elementary subgraphs of the last option is $\binom{\frac{n}{2}}{2}$. As a result, by using Eqn. 1 we get $c_{4}=-2 \cdot\left(\frac{1}{3}\right)^{4} \frac{n}{2}+\left(\frac{1}{3}\right)^{4}\left(\sum_{j=1}^{n-3} j+(n-3)+n \frac{n-4}{2}+\binom{\frac{n}{2}}{2}\right)$. However, additionally when n is equal to 4 , for the first option we have one more possible elementary subgraph that is C_{4} itself so we get the result as $-3 \cdot\left(\frac{1}{3}\right)^{4}$ by adding $-2 \cdot\left(\frac{1}{3}\right)^{4}$. Moreover, when n is equal to 6 , for the first option, we have six more possible elementary subgraphs that are C_{4} itself so we get result as 0 by adding $-12 \cdot\left(\frac{1}{3}\right)^{4}$.

Fourthly, there exists just one option for an elementary subgraph with 5 vertices that is a 5 -cycle C_{5} itself and it can be possible only for R_{n}, where $n=8$. Therefore, c_{5} is obtained as $-16 \cdot\left(\frac{1}{3}\right)^{5}$ by Eqn. 1 .

Lastly, let us consider possible elementary subgraphs with 6 vertices, where $n \neq 6,10$. One of the possible elementary subgraph types consisting of three edges that are in C_{n} are in the form

```
{v, v}\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}\mp@subsup{v}{4}{},\mp@subsup{v}{5}{}\mp@subsup{v}{6}{}},{\mp@subsup{v}{1}{}\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}\mp@subsup{v}{4}{},\mp@subsup{v}{6}{}\mp@subsup{v}{7}{}},\cdots,{\mp@subsup{v}{1}{}\mp@subsup{v}{2}{},\mp@subsup{v}{n-3}{}\mp@subsup{v}{n-2}{},\mp@subsup{v}{n-1}{}\mp@subsup{v}{n}{}}
{v2}\mp@subsup{v}{3}{},\mp@subsup{v}{4}{}\mp@subsup{v}{5}{},\mp@subsup{v}{6}{}\mp@subsup{v}{7}{}},{\mp@subsup{v}{2}{}\mp@subsup{v}{3}{},\mp@subsup{v}{4}{}\mp@subsup{v}{5}{\prime},\mp@subsup{v}{7}{}\mp@subsup{v}{8}{}},\cdots,{\mp@subsup{v}{2}{}\mp@subsup{v}{3}{},\mp@subsup{v}{n-3}{}\mp@subsup{v}{n-2}{},\mp@subsup{v}{n}{}\mp@subsup{v}{1}{}},{\mp@subsup{v}{2}{}\mp@subsup{v}{3}{},\mp@subsup{v}{n-2}{}\mp@subsup{v}{n-1}{},\mp@subsup{v}{n}{}\mp@subsup{v}{1}{}}
\vdots
{\mp@subsup{v}{n-4}{*}\mp@subsup{v}{n-3}{},\mp@subsup{v}{n-2}{2}\mp@subsup{v}{n-1}{},\mp@subsup{v}{n}{}\mp@subsup{v}{1}{}}.
```

Possible number of these types is equal to $\sum_{j=2}^{n-4}\binom{j}{2}+\binom{n-4}{2}$. An another type can consist of three diagonal edges whose possible number is $\binom{\frac{n}{2}}{3}$. Another type can consist of one edge that is in C_{n} and other two edges are diagonal edges. As explained before possible number of these elementary subgraphs is $n\left(\frac{n-4}{2}\right)$. For another type of elementary subgraphs that consist of two edges in C_{n} and one in diagonal edges, we get the possible number $n\left(\frac{n}{2}-\right.$ $3)\left(\frac{n}{2}-4\right)+n\left(\frac{n}{2}-3\right)+\frac{n}{2}\left(\frac{n}{2}-2\right)$ by using processes as mentioned above. The number of possible elementary subgraphs that consist of cross labeling C_{4} and an edge in C_{n} is $n\left(\frac{n-4}{2}-1\right)$. Also, the number of possible elementary subgraphs that consist of cross labeling
C_{4} and a diagonal edge is $\left(\frac{n}{2} \frac{n-4}{2}\right)$. Moreover, the number of possible elementary subgraphs that consist of C_{6} is $\frac{n}{2}$. Consequently, we get the formula by using Eqn. 1 where $n \neq 6,10$. After all, additively when n is equal to 6 , there is no possible elementary subgraph in the form of one edge that is in C_{n} and other two edges are diagonal edges. Therefore, for the $n=6$ distinctively, we have $\sum_{j=2}^{2}\binom{j}{2}+\binom{2}{2}+\binom{\frac{6}{2}}{3}+6\left(\frac{6}{2}-3\right)\left(\frac{6}{2}-4\right)+6\left(\frac{6}{2}-3\right)+\frac{6}{2}\left(\frac{6}{2}-2\right)$ times possible elementary subgraphs that consist of disjoint edges of R_{n} and we have $(6 \cdot 0+3 \cdot 1)$ times possible elementary subgraphs that consist of one cross labeling C_{4} and edge in R_{6}. Also, we have 6 possible elementary subgraphs that consist of C_{6} and we have 6 possible elementary subgraphs consisting of an edge and a C_{4} that is not cross labeling. As a consequence, privately for $n=6$, we have the result $-6 \cdot\left(\frac{1}{3}\right)^{6}+6 \cdot\left(\frac{1}{3}\right)^{6}-12 \cdot\left(\frac{1}{3}\right)^{6}+12 \cdot\left(\frac{1}{3}\right)^{6}=$ 0 by using Eqn. 1 Finally, additively, if $n=10$, there are n times more possible elementary subgraphs that consist of a C_{6} so we have the formula by adding $-2 \cdot\left(\frac{1}{3}\right)^{6} n$ to the first formula. Thus, we complete the proof.

Corollary 6. Let $R_{n}=(V, E)$ be a 3 -regular graph with n vertices and $\frac{3 n}{2}$ edges as shown in Fig. 1. Let $P_{R_{n}}(\lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n-1} \lambda+c_{n}$ be the Sombor characteristic polynomial of R_{n}, where $c_{k} \in \mathbb{R}$. The formulae for some coefficients of the Sombor characteristic polynomial of R_{n} are as follows:

$$
\begin{aligned}
& c_{2}=-27 n \\
& c_{3}=0, \text { if } n=4, \text { then } c_{3}=-8 \cdot(\sqrt{18})^{3} \\
& c_{5}=0, \text { if } n=8, \text { then } c_{5}=-16 \cdot(\sqrt{18})^{5}
\end{aligned}
$$

Also, we get the equations as follows:

$$
c_{4}= \begin{cases}-3 \cdot(\sqrt{18})^{4}, & n=4 \\ 0, & n=6 \\ -(\sqrt{18})^{4} n+(\sqrt{18})^{4}\left(\sum_{j=1}^{n-3} j+(n-3)+n \frac{n-4}{2}+\binom{\frac{n}{2}}{2}\right), & \text { otherwise }\end{cases}
$$

$$
c_{6}= \begin{cases}0, & n=4 \\ 0, & n=6 \\ -(\sqrt{18})^{6}\left(\sum_{j=2}^{n-4}\binom{j}{2}+\binom{n-4}{2}+\binom{\frac{n}{2}}{3}+n\left(\frac{n-4}{2}\right)+n\left(\frac{n}{2}-3\right)\left(\frac{n}{2}-4\right)+n\left(\frac{n}{2}-3\right)\right. & \\ \left.+\frac{n}{2}\left(\frac{n}{2}-2\right)\right)+2 \cdot(\sqrt{18})^{6}\left(n\left(\frac{n-4}{2}-1\right)+\left(\frac{n}{2} \frac{n-4}{2}\right)\right)-2 \cdot(\sqrt{18})^{6}\left(n+\frac{n}{2}\right), & n=10 \\ -(\sqrt{18})^{6}\left(\sum_{j=2}^{n-4}\binom{j}{2}+\binom{n-4}{2}+\binom{\frac{n}{2}}{3}+n\left(\frac{n-4}{2}\right)+n\left(\frac{n}{2}-3\right)\left(\frac{n}{2}-4\right)+n\left(\frac{n}{2}-3\right)\right. & \\ \left.+\frac{n}{2}\left(\frac{n}{2}-2\right)\right)+2 \cdot(\sqrt{18})^{6}\left(n\left(\frac{n-4}{2}-1\right)+\left(\frac{n}{2} \frac{n-4}{2}\right)\right)-(\sqrt{18})^{6} n, & \text { otherwise }\end{cases}
$$

Proof. The proof can be completed by simply replacing $\frac{1}{3}$ with $\sqrt{18}$ in the proof of the previous theorem.

3. Conclusion

The Randić and the Sombor characteristic polynomials of P_{n} and C_{n} were obtained. Additionally, the formulae of five coefficients of the Randic and Sombor characteristic polynomials of R_{n} were presented. The Randić and the Sombor energies of P_{n} and C_{n} can be studied by using these presented results. Furthermore, various characteristic polynomials of some similar adjacency matrices defined according to some vertex-degree-based topological invariants can be obtained by using the number of elementary subgraphs that we presented in the theorems and corollaries. Especially, this study can also be extended to the multiplicative Sombor index associated with the Sombor index.

Declaration of Competing Interests The author has no competing interest to declare.

References

[1] Bapat, R. B., Graphs and Matrices, Springer, London, 2010. http://dx.doi.org/10.1007/978-1-84882-981-7
[2] Bozkurt, S. B., Güngör, A. D., Gutman, I., Çevik, A. S., Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem., 64(1) (2010), 239-250.
[3] Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[4] Das, K. C., Sorgun, S., Xu, K., On the Randić energy of graphs, MATCH Commun. Math. Comput. Chem., 72(1) (2014), 227-238.
[5] Ghanbari, N., On the Sombor characteristic polynomial and Sombor energy of a graph, arXiv: 2108.08552, 2021. https://doi.org/10.48550/arXiv.2108.08552
[6] Gutman, I., The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
[7] Gutman, I., Impact of the Sachs theorem on theoretical chemistry: A participant's testimony, MATCH Commun. Math. Comput. Chem., 48 (2003), 17-34.
[8] Gutman, I., Furtula, B., Bozkurt, S. B., On Randić energy, Linear Algebra Appl., 442 (2014), 50-57. http://dx.doi.org/10.1016/j.laa.2013.06.010
[9] Gutman, I., Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86(1) (2021), 11-16.
[10] Gutman, I., Spectrum and energy of the Sombor matrix, Vojno tehn. glas., 69(3) (2021), 551-561. http://dx.doi.org/10.5937/vojtehg69-31995
[11] Gutman, I., Redžepović, I., Rada, J., Relating energy and Sombor energy, Contrib. Math., 4 (2021), 41-44. DOI: $10.47443 / \mathrm{cm} .2021 .0054$
[12] Gutman, I., Redžepović, I., Sombor energy and Huckel rule, Discrete Math. Lett., 9 (2022), 67-71. DOI: $10.47443 / \mathrm{dml} .2021 . \mathrm{s} 211$
[13] Janežič, D., Miličević, A., Nikolić, S., Trinajstić, N., Graph Theoretical Matrices in Chemistry, CRC Press, Boca Raton, 2015. http://dx.doi.org/10.1201/b18389
[14] Jayanna, G. K., Gutman, I., On characteristic polynomial and energy of Sombor matrix, Open J. Discret. Appl. Math., 4 (2021), 29-35. http://dx.doi.org/10.30538/psrp-odam2021.0062
[15] Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4220-2
[16] Randić, M., On characterization of molecular branching, J. Am. Chem. Soc., 97(23) (1975), 6609-6615. http://dx.doi.org/10.1021/ja00856a001
[17] Redžepović, I., Gutman, I., Comparing energy and Sombor energy-An empirical study, MATCH Commun. Math. Comput. Chem., 88(1) (2022), 133-140.
[18] Sachs, H., Über selbstkomplementäre graphen, Publ. Math. Debrecen, 9 (1962), 270-288.
http://communications.science.ankara.edu.tr

ON DIFFERENCE OF BIVARIATE LINEAR POSITIVE OPERATORS

Saheed Olaosebikan AREMU and Ali OLGUN
Department of Mathematics, Kırıkkale University, 71450 Yahşihan, Kırıkkale, TURKEY

Abstract

In the present paper we give quantitative type theorems for the differences of different bivariate positive linear operators by using weighted modulus of continuity. Similar estimates are obtained via K-functional and for Chebyshev functionals. Moreover, an example involving Szász and SzászKantorovich operators is given.

1. Introduction

Studies in the theory of approximations have been going on for many years. During these times, the most well-known operator Bernstein operators, the bestknown theorem for convergence was the Korovkin Theorem. Then, Szasz, Baskakov, Kantorovich operators are defined and their convergence properties are examined. Many researchers have defined various modification forms of these operators and examined their convergence properties and their applications are given. In recent years, some studies have been carried out to obtain general information between the convergence speeds of the operators by taking the difference of any two operators.

In the recent past, there is a growing interest in studying the difference of linear positive operators in approximation theory (see |1, 2], [3 and 6])

In 2006, Gonska et al., using Taylor's expansion with Peano remainder, gave a Theorem showing that the difference of two operators A and B can be limited by the concave majorant $\tilde{\omega}$, where ω_{k} is the k-th order modulus of smoothness 11 .

In 2016, A. M. Acu and I. Raşa obtained some inequalities using Taylor's formula and obtained some estimations by applying these inequalities on the differences of Linear Positive operators 1 .

[^10]In 2019, A. Aral et al. obtained some estimates for the difference of two general linear positive operators on unbounded interval 5.

In 2021, A. M. Acu et al. gave some theorems for the difference of linear positive operators of two variables defined on a simplex 4.

In this study, we will give some theorems given by A. Aral et al. 5 for univariate operators for bivariate operators.

This paper deals with the difference of certain bivariate operators defined on unbounded intervals. The differences are estimated in terms of weighted moduli of smoothness for the operators constructed with the same fundamental functions and different functionals in front of them.

2. Auxiliary Results

If we can calculate that the difference between the A and B operators is very small, we can learn the properties of the other by looking at the properties of one.

It is well-known that classical modulus of continuity is a very useful tool in order to determine the rate of convergence of the corresponding sequence of linear positive operators defined bounded interval, in case of unbounded intervals, It would be more appropriate to use a defined modulus of continuity in weighted function spaces. This allows to enlarge the continuous function space to weighted function space in approximation problems. For this purpose, we consider the modulus of continuity defined in suitable polynomial weighted space, defined for univariate case in 10 by Gadjieva and Doğru and for bivariate case in 12 by İspir and Atakut.

Let $\mathcal{D}:=[0, \infty) \times[0, \infty)$ and $\rho(x, y):=1+x^{2}+y^{2},(x, y) \in \mathcal{D}$. Throughout the paper; $C(\mathcal{D})$ will denote the space of real-valued continuous functions on \mathcal{D} and $C_{B}(\mathcal{D})$ will denote the space of all $f \in C(\mathcal{D})$ that are bounded on \mathcal{D}. Let $B_{\rho}(\mathcal{D})$ denote the space of functions f satisfying the inequality

$$
|f(x, y)| \leq m_{f} \rho(x, y), \quad(x, y) \in \mathcal{D}
$$

where m_{f} is a positive constant which depend on the function $f . B_{\rho}(\mathcal{D})$ is a linear normed space with the norm

$$
\begin{equation*}
\|f\|_{\rho}=\sup _{(x, y) \in \mathcal{D}} \frac{|f(x, y)|}{\rho(x, y)} \tag{1}
\end{equation*}
$$

Let $C_{\rho}(\mathcal{D})$ denote the subspace of all continuous functions belonging to $B_{\rho}(\mathcal{D})$. Also, let $C_{\rho}^{*}(\mathcal{D})$ denote the subspace of all functions $f \in C_{\rho}(\mathcal{D})$ for which there exists a constant k_{f} such that

$$
\lim _{\sqrt{x^{2}+y^{2}} \rightarrow \infty} \frac{|f(x, y)|}{\rho(x, y)}=k_{f}<\infty .
$$

In the case of $k_{f}=0$, we will write $C_{\rho}^{0}(\mathcal{D})$.

We use the weighted modulus of continuity, considered in 10 and 12 , denoted by $\Omega_{\rho}(f, \cdot, \cdot)$ and given by

$$
\begin{equation*}
\Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right)=\sup _{(x, y) \in \mathcal{D},\left|h_{1}\right|<\delta_{1},\left|h_{2}\right|<\delta_{2}} \frac{f\left(x+h_{1}, y+h_{2}\right)-f(x, y)}{\left(1+x^{2}+y^{2}\right)\left(1+h_{1}^{2}+h_{2}^{2}\right)} ; f \in C_{\rho}(\mathcal{D}) \tag{2}
\end{equation*}
$$

The weighted modulus of continuity Ω_{ρ} satisfies the following properties for $f \in$ $C_{\rho}^{*}(\mathcal{D})$:
$i: \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right) \rightarrow 0$ as $\delta_{1} \rightarrow 0$ and $\delta_{2} \rightarrow 0$ for $\delta_{1}, \delta_{2}>0$.
$i i$: For any positive real numbers $\lambda_{1}, \lambda_{2}, \delta_{1}$ and δ_{2} the following relation

$$
\begin{equation*}
\Omega_{\rho}\left(f, \lambda_{1} \delta_{1}, \lambda_{2} \delta_{2}\right) \leq 4\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right) \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right) \tag{3}
\end{equation*}
$$

holds.
In the sequel, we will use the notation that $e_{i, j}(x, y):=x^{i} y^{j}, i, j \in \mathbb{N},(x, y) \in \mathcal{D}$, 1 denotes the constant function

$$
\begin{equation*}
\mathbf{1}: \mathcal{D} \rightarrow \mathbb{R}, \mathbf{1}(x, y)=1,(x, y) \in \mathcal{D} \tag{4}
\end{equation*}
$$

and \mathbb{D} denotes a linear subspace of $C(\mathcal{D})$, which contains $C_{\rho}(\mathcal{D})$. We also consider the positive linear functional $F: \mathbb{D} \rightarrow \mathbb{R}$ such that $F(\mathbf{1})=1$. Denoting

$$
\begin{equation*}
\theta_{1}^{F}:=F\left(e_{1,0}\right), \theta_{2}^{F}:=F\left(e_{0,1}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{i, j}^{F}:=F\left(\left(e_{1,0}-\theta_{1}^{F} \mathbf{1}\right)^{i}\left(e_{0,1}-\theta_{2}^{F} \mathbf{1}\right)^{j}\right), \quad i, j \in \mathbb{N} \tag{6}
\end{equation*}
$$

then one has

$$
\begin{align*}
& \mu_{1,0}^{F}=0, \quad \mu_{2,0}^{F}=F\left(e_{1,0}\right)^{2}-\left(\theta_{1}^{F}\right)^{2} \geq 0 \tag{7}\\
& \mu_{0,1}^{F}=0, \quad \mu_{0,2}^{F}=F\left(e_{0,1}\right)^{2}-\left(\theta_{2}^{F}\right)^{2} \geq 0
\end{align*}
$$

Lemma 1. For $(x, y) \in \mathcal{D}, f \in C_{\rho}^{*}(\mathcal{D})$ and $0<\delta_{1}, \delta_{2} \leq 1$, we have

$$
|f(t, s)-f(x, y)| \leq 256 \rho(x, y)\left(1+\frac{(t-x)^{4}}{\delta_{1}^{4}}\right)\left(1+\frac{(s-y)^{4}}{\delta_{2}^{4}}\right) \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right)
$$

Proof. Using the inequality 5 with $\lambda_{1}=\frac{|t-x|}{\delta_{1}}$ ve $\lambda_{2}=\frac{|s-y|}{\delta_{2}}$, from (2) and (3), we have

$$
\begin{gathered}
|f(t, s)-f(x, y)| \leq 4 \rho(x, y) \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right)\left(1+\frac{|t-x|}{\delta_{1}}\right)\left(1+\frac{|s-y|}{\delta_{2}}\right) \\
\times\left(1+(t-x)^{2}\right)\left(1+(s-y)^{2}\right) \\
\leq\left\{\begin{array}{cc}
16 \rho(x, y)\left(1+\delta_{1}^{2}\right)\left(1+\delta_{2}^{2}\right) \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right) ; & |t-x| \leq \delta_{1},|s-y| \leq \delta_{2} \\
16 \rho(x, y)\left(1+\delta_{1}^{2}\right)\left(1+\delta_{2}^{2}\right) \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right) \frac{\left(t-x 4^{4}\right.}{\delta_{1}^{4}} \frac{(s-y)^{4}}{\delta_{2}^{4}} ; & |t-x|>\delta_{1},|s-y|>\delta_{2}
\end{array} .\right.
\end{gathered}
$$

Therefore

$$
|f(t, s)-f(x, y)| \leq 16 \rho(x, y)\left(1+\delta_{1}^{2}\right)\left(1+\delta_{2}^{2}\right)\left(1+\frac{(t-x)^{4}}{\delta_{1}^{4}}\right)\left(1+\frac{(t-y)^{4}}{\delta_{2}^{4}}\right) \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right)
$$

Choosing $0<\delta_{1} \leq 1,0<\delta_{2} \leq 1$ for $f \in C_{\rho}^{*}(\mathcal{D}),(x, y) \in \mathcal{D}$, we get

$$
|f(t, s)-f(x, y)| \leq 256 \rho(x, y)\left(1+\frac{(t-x)^{4}}{\delta_{1}^{4}}\right)\left(1+\frac{(s-y)^{4}}{\delta_{2}^{4}}\right) \Omega_{\rho}\left(f, \delta_{1}, \delta_{2}\right)
$$

Now, we present the following estimate for the difference $\left|F(f)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\right|$.
Lemma 2. Let f and all of its partial derivatives of order ≤ 2 belong to the space $C_{\rho}(\mathcal{D})$ and $0<\delta_{1} \leq 1,0<\delta_{2} \leq 1$. Then we have

$$
\left|F(f)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\right| \leq M_{f} \rho\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\left[\mu_{2,0}^{F}+\mu_{0,2}^{F}\right]
$$

where

$$
M_{f}:=\max \left\{\left\|f_{x x}\right\|_{\rho},\left\|f_{x y}\right\|_{\rho},\left\|f_{y y}\right\|_{\rho}\right\}
$$

Proof. For $f \in C_{\rho}(\mathcal{D}),(t, s) \in \mathcal{D}$, using the Taylor formula we have

$$
\begin{aligned}
& f(t, s)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right) \\
= & f_{x}\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\left(t-\theta_{1}^{F}\right)+f_{y}\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\left(s-\theta_{2}^{F}\right)+\frac{1}{2}\left\{f_{x x}\left(c_{1}, c_{2}\right)\left(t-\theta_{1}^{F}\right)^{2}\right. \\
& \left.+2 f_{x y}\left(c_{1}, c_{2}\right)\left(t-\theta_{1}^{F}\right)\left(s-\theta_{2}^{F}\right)+f_{y y}\left(c_{1}, c_{2}\right)\left(s-\theta_{2}^{F}\right)^{2}\right\}
\end{aligned}
$$

where $\left(c_{1}, c_{2}\right)$ is a point on the line connecting $\left(\theta_{1}^{F}, \theta_{2}^{F}\right)$ and (t, s). Taking into account of the fact that $F(\mathbf{1})=1$ and (5), one has

$$
\begin{align*}
& F(f)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1}) \\
= & f_{x}\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\left(F\left(e_{1,0}\right)-\theta_{1}^{F} F(\mathbf{1})\right)-f_{y}\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\left(F\left(e_{0,1}\right)-\theta_{2}^{F} F(\mathbf{1})\right) \\
& +\frac{1}{2}\left\{f_{x x}\left(c_{1}, c_{2}\right) \mu_{2,0}^{F}+2 f_{x y}\left(c_{1}, c_{2}\right) \mu_{1,1}^{F}+f_{y y}\left(c_{1}, c_{2}\right) \mu_{0,2}^{F}\right\} . \tag{8}
\end{align*}
$$

Using the facts

$$
\begin{aligned}
& \left|f_{x x}\left(c_{1}, c_{2}\right)\right| \leq M_{f}\left(1+\left(\theta_{1}^{F}\right)^{2}+\left(\theta_{2}^{F}\right)^{2}\right) \\
& \left|f_{x y}\left(c_{1}, c_{2}\right)\right| \leq M_{f}\left(1+\left(\theta_{1}^{F}\right)^{2}+\left(\theta_{2}^{F}\right)^{2}\right)
\end{aligned}
$$

and

$$
\left|f_{y y}\left(c_{1}, c_{2}\right)\right| \leq M_{f}\left(1+\left(\theta_{1}^{F}\right)^{2}+\left(\theta_{2}^{F}\right)^{2}\right)
$$

and since

$$
2 \mu_{1,1}^{F} \leq \mu_{2,0}^{F}+\mu_{0,2}^{F}
$$

from (8) we get

$$
\begin{aligned}
\left|F(f)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\right| & \leq \frac{1}{2} M_{f}\left(1+\left(\theta_{1}^{F}\right)^{2}+\left(\theta_{2}^{F}\right)^{2}\right)\left\{\mu_{2,0}^{F}+2 \mu_{1,1}^{F}+\mu_{0,2}^{F}\right\} \\
& \leq M_{f}\left(1+\left(\theta_{1}^{F}\right)^{2}+\left(\theta_{2}^{F}\right)^{2}\right)\left[\mu_{2,0}^{F}+\mu_{0,2}^{F}\right]
\end{aligned}
$$

3. Difference of Bivariate Positive Linear Operators

In this section, we will give estimates for the difference of bivariate positive linear operators, on unbounded set \mathcal{D}, in terms of weighted modulus of continuity. Let \mathbb{K} be a set of non-negative integers and consider a family of functions $p_{k, l}: \mathcal{D} \rightarrow \mathcal{D}$, $k, l \in \mathbb{K}$. We consider discrete operators given by

$$
U(f ; x, y)=\sum_{k, l \in \mathbb{K}} F_{k, l}(f) p_{k, l}(x, y), V(f ; x, y)=\sum_{k, l \in \mathbb{K}} G_{k, l}(f) p_{k, l}(x, y)
$$

where $\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)=1, F_{k, l}, G_{k, l}: \mathbb{D} \rightarrow \mathbb{R}$ are positive linear functionals such that $F_{k, l}(\mathbf{1})=1, G_{k, l}(\mathbf{1})=1 . U$ and V are positive linear operators such that $U, V: \mathbb{D} \rightarrow B_{\rho}(\mathcal{D})$.

Theorem 1. Let $f \in C_{\rho}^{*}(\mathcal{D})$ with all of its partial derivatives of order ≤ 2 belong to the space $C_{\rho}(\mathcal{D})$. Then we have
$|(U-V)(f ; x, y)| \leq \delta_{1}+\delta_{2}+2^{8} \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right)\left(1+\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\right)$,
where

$$
\begin{aligned}
\delta_{1} & :=M_{f} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left[\mu_{2,0}^{F_{k, l}}+\mu_{0,2}^{F_{k, l}}\right] \\
\delta_{2} & :=M_{f} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\left[\mu_{2,0}^{G_{k, l}}+\mu_{0,2}^{G_{k, l}}\right] \\
\delta_{3}^{4} & =\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}
\end{aligned}
$$

and

$$
\delta_{4}^{4}=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4}
$$

Proof. We can write

$$
\begin{aligned}
|(U-V)(f ; x, y)|= & \mid \sum_{k, l \in \mathbb{K}}\left\{F_{k, l}(f)-G_{k, l}(f)-f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)+f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\right. \\
& \left.-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)+f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\right\} p_{k, l}(x, y) \mid \\
\leq & \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{\left|F_{k, l}(f)-f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\right|\right. \\
& +\left|G_{k, l}(f)-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\right| \\
& \left.+\left|f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\right|\right\} .
\end{aligned}
$$

Using Lemma 2, (5), (6) and (7), we get

$$
\left|F(f)-f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\right| \leq M_{f} \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left\{\mu_{2,0}^{F_{k, l}}+2 \mu_{1,1}^{F_{k, l}}+\mu_{0,2}^{F_{k, l}}\right\}
$$

and

$$
\begin{aligned}
& \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left|F_{k, l}(f)-f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\right| \\
\leq & M_{f} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left[\mu_{2,0}^{F_{k, l}}+\mu_{0,2}^{F_{k, l}}\right] .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left|G_{k, l}(f)-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\right| \\
\leq & M_{f} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\left[\mu_{2,0}^{G_{k, l}}+\mu_{0,2}^{G_{k, l}}\right] .
\end{aligned}
$$

Using Lemma 1. we get

$$
\begin{aligned}
& \left|f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\right| \\
\leq & 2^{8} \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right) \\
& \times\left(1+\frac{\left.\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}\right)\left(1+\frac{\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4}}{\delta_{4}^{4}}\right)}{\leq} \quad 2^{8} \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right)\left\{\rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)+\rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) \frac{\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}}{\delta_{3}^{4}}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) \frac{\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4}}{\delta_{4}^{4}} \\
& \left.+\rho\left(\theta_{1}^{F_{k, l},}, \theta_{2}^{F_{k, l}}\right) \frac{\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}}{\delta_{3}^{4}} \frac{\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4}}{\delta_{4}^{4}}\right\}
\end{aligned}
$$

and we can write

$$
\begin{aligned}
& \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left|f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\right| \\
\leq & 2^{8} \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right)\left\{\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\right. \\
& +\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) \frac{\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}}{\delta_{3}^{4}} \\
& +\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) \frac{\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4}}{\delta_{4}^{4}} \\
+\quad & \left.\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) \frac{\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}}{\delta_{3}^{4}} \frac{\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4}}{\delta_{4}^{4}}\right\} \\
= & 2^{8} \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right)\left\{A_{0,0}+A_{1,0}+A_{0,1}+A_{1,1}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
A_{i, j} & =q_{k, l}(x, y)\left[\frac{\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}}{\delta_{3}^{4}}\right]^{i}\left[\frac{\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4}}{\delta_{4}^{4}}\right]^{j} ; 0 \leq i, j \leq 1 \\
q_{k, l}(x, y) & =\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) .
\end{aligned}
$$

Choosing

$$
\delta_{3}^{4}=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4}
$$

and

$$
\delta_{4}^{4}=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4},
$$

we reach to the desired result.

4. Estimate via K-functional

In this section, we give an estimate for the difference of bivariate positive linear operators; in terms of K-functional. For this aim, we firstly recall the definition of K-functional. Let $C_{B}^{2}(\mathcal{D})=\left\{f \in C_{B}(\mathcal{D}) ; f^{(p, q)} \in C_{B}(\mathcal{D}), 1 \leq p, q \leq 2\right\}$ where $f^{(p, q)}$ is (p, q) th-order partial derivative with respect to x, y of f, equipped with the norm

$$
\|f\|_{C_{B}^{2}(\mathcal{D})}=\|f\|_{C_{B}(\mathcal{D})}+\sum_{i=1}^{2}\left\|\frac{\partial^{i} f}{\partial x^{i}}\right\|_{C_{B}(\mathcal{D})}+\sum_{i=1}^{2}\left\|\frac{\partial^{i} f}{\partial y^{i}}\right\|_{C_{B}(\mathcal{D})}
$$

The Peetre K-functional of the function $f \in C_{B}(\mathcal{D})$ is given by

$$
K(f ; \delta)=\inf _{g \in C_{B}^{2}(\mathcal{D})}\left\{\|f-g\|_{C_{B}(\mathcal{D})}+\delta\|g\|_{C_{B}^{2}(\mathcal{D})}, \delta>0\right\}
$$

It is known that there is a connection between the second order modulus of smoothness and Peetre's K-functional for all $\delta>0$ as follows (see 9, p.192] or [7):

$$
K(f ; \delta) \leq C_{0}\left\{\omega_{2}(f ; \sqrt{\delta})+\min (1, \delta)\|f\|_{C_{B}(\mathcal{D})}\right\}
$$

Here, the constant C_{0} is independent of δ and f, and 2 nd order modulus of smoothness of f is a function $\omega_{2}: C_{B}(\mathcal{D}) \times(0, \infty) \rightarrow[0, \infty)$ given by

$$
\omega_{2}(f, \delta)=\sup _{0<\|h\| \leq \delta} \sup _{x \in \mathcal{D}} \Delta_{h}^{2} f(x), \quad \delta>0
$$

where $\|$.$\| is the Euclidean norm in \mathbb{R}^{2}$ and $\Delta_{h}^{2} f$ is the 2nd order difference on \mathcal{D} given by

$$
\Delta_{h}^{2} f(x)=\sum_{k=0}^{2}(-1)^{2-k}\binom{2}{k} f(x+k h), x \in \mathcal{D}, h \in \mathcal{D}
$$

Now, assume that $C_{B}^{2}(\mathcal{D}) \subset \mathbb{D}$, where, as it is mentioned in page $3, \mathbb{D}$ is the linear subspace of $C(\mathcal{D})$ containing $C_{\rho}(\mathcal{D})$.
Lemma 3. Let $f \in \mathbb{D} \cap C_{B}(\mathcal{D})$. Then

$$
\left|F(f)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\right| \leq 2 K\left(f ; \frac{1}{4}\left[\mu_{2,0}^{F}+\mu_{0,2}^{F}\right]\right)
$$

Proof. Let $g(x, y) \in C_{B}^{2}(\mathcal{D})$ and $(t, s) \in \mathcal{D}$. Using Taylor's expansion 8, we have

$$
\begin{aligned}
g(t, s)-g(x, y)= & \frac{\partial g(x, y)}{\partial x}(t-x)+\frac{\partial g(x, y)}{\partial y}(s-y) \\
& +\int_{x}^{t}(t-u) \frac{\partial^{2} g(u, y)}{\partial u^{2}} d u+\int_{y}^{s}(s-v) \frac{\partial^{2} g(x, v)}{\partial v^{2}} d v
\end{aligned}
$$

Application of the functional F on both sides of the last formula gives

$$
\left|F(g)-g\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})\right|
$$

$$
\begin{aligned}
\leq & \left|g_{x}\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\left(F\left(e_{1,0}\right)-\theta_{1}^{F} F(\mathbf{1})\right)\right|+\left|g_{y}\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\left(F\left(e_{0,1}\right)-\theta_{2}^{F} F(\mathbf{1})\right)\right| \\
& F\left(\left|\int_{x}^{t}(t-u) \frac{\partial^{2} g(u, y)}{\partial u^{2}}\right| d u ; x, y\right)+F\left(\left|\int_{y}^{s}(s-v) \frac{\partial^{2} g(x, v)}{\partial v^{2}} d v\right| ; x, y\right) \\
\leq & \frac{1}{2}\left\{\left\|g_{x x}\right\|_{C_{B}(\mathcal{D})}\left(F\left(e_{1,0}\right)-\theta_{1}^{F} F(\mathbf{1})\right)^{2}+\left\|g_{y y}\right\|_{C_{B}(\mathcal{D})}\left(F\left(e_{0,1}\right)-\theta_{2}^{F} F(\mathbf{1})\right)^{2}\right\} .
\end{aligned}
$$

Taking into account of $F(\mathbf{1})=1,(4),(5)$ and (6), we get

$$
\left|F(g)-g\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\right| \leq \frac{1}{2}\left\{\left\|g_{x x}\right\|_{C_{B}(\mathcal{D})} \mu_{2,0}^{F}+\left\|g_{y y}\right\|_{C_{B}(\mathcal{D})} \mu_{0,2}^{F}\right\}
$$

Now, let $f \in \mathbb{D} \cap C_{B}(\mathcal{D})$ and $(t, s) \in \mathcal{D}$, then we have

$$
\begin{aligned}
& \left|F(f ; x, y)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})\right| \\
= & \left|F(f-g+g ; x, y)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})+g\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})-g\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})\right| \\
= & \mid F(f-g ; x, y)+F(g ; x, y)-g\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1}) \\
- & f\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})+g\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1}) \mid \\
\leq & |F(f-g ; x, y)|+\left|F(g ; x, y)-g\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})\right| \\
+ & \left|f\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})-g\left(\theta_{1}^{F}, \theta_{2}^{F}\right) F(\mathbf{1})\right| \\
\leq & 2\|f-g\|_{C_{B}(\mathcal{D})}+\frac{1}{2}\left\{\left\|g_{x x}\right\|_{C_{B}(\mathcal{D})} \mu_{2,0}^{F}+\left\|g_{y y}\right\|_{C_{B}(\mathcal{D})} \mu_{0,2}^{F}\right\} \\
\leq & 2\|f-g\|_{C_{B}(\mathcal{D})}+\frac{1}{2}\|g\|_{C_{B}^{2}(\mathcal{D})}\left[\mu_{2,0}^{F}+\mu_{0,2}^{F}\right] .
\end{aligned}
$$

Therefore, taking the infimum on the right hand side over all $g \in C_{B}^{2}(D)$

$$
\begin{aligned}
\left|F(f ; x, y)-f\left(\theta_{1}^{F}, \theta_{2}^{F}\right)\right| & \leq \inf _{g \in C_{B}^{2}(D)}\left\{2\|f-g\|_{C_{B}(\mathcal{D})}+\frac{1}{2}\|g\|_{C_{B}^{2}(\mathcal{D})}\left[\mu_{2,0}^{F}+\mu_{0,2}^{F}\right]\right\} \\
& =2 K\left(f ; \frac{1}{4}\left[\mu_{2,0}^{F}+\mu_{0,2}^{F}\right]\right)
\end{aligned}
$$

Now, the following theorem can be given.
Theorem 2. Let $f \in \mathbb{D} \cap C_{B}(\mathcal{D})$ with all of its first order partial derivatives belong to $C_{B}(\mathcal{D})$. Then

$$
|(U-V)(f ; x, y)| \leq 4 K\left(f, \frac{1}{8} \eta(x, y)\right)+M_{f}^{\prime} \mu(x, y)
$$

where $M_{f}^{\prime}:=\max \left\{\left\|f_{x}\right\|_{C_{B}(\mathcal{D})},\left\|f_{x}\right\|_{C_{B}(\mathcal{D})}\right\}$,

$$
\eta(x, y):=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left(\lambda_{F_{k, l}}+\lambda_{G_{k, l}}\right)
$$

with $\lambda_{F_{k, l}}:=\mu_{2,0}^{F_{k, l}}+\mu_{0,2}^{F_{k, l}}, \lambda_{G_{k, l}}:=\mu_{2,0}^{G_{k, l}}+\mu_{0,2}^{G_{k, l}}$ and

$$
\mu(x, y)=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{\left|\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right|+\left|\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right|\right\}
$$

Proof. By the hypothesis, f is differentiable on the line connecting the points $\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)$ and $\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)$. From the mean value theorem for function of two variables (see, e.g., (7) , there is a point $\left(c_{1}, c_{2}\right)$ on this line such that
$f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)=f_{x}\left(c_{1}, c_{2}\right)\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)+f_{y}\left(c_{1}, c_{2}\right)\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)$
holds. For $f \in \mathbb{D} \cap C_{B}(\mathcal{D})$, using Lemma 3, and the above formula, we have

$$
\begin{aligned}
& |(U-V)(f ; x, y)| \\
\leq & \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left|F_{k, l}(f)-G_{k, l}(f)\right| \\
\leq & \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{\left|F_{k, l}(f)-f\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\right|+\left|G_{k, l}(f)-f\left(\theta_{1}^{G_{k, l}}, \theta_{2}^{G_{k, l}}\right)\right|\right. \\
& \left.\left|f_{x}\left(c_{1}, c_{2}\right)\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)+f_{y}\left(c_{1}, c_{2}\right)\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)\right|\right\} \\
\leq & 2 \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{K\left(f ; \frac{1}{4}\left[\mu_{2,0}^{F_{k, l}}+\mu_{0,2}^{F_{k, l}}\right]\right)+K\left(f ; \frac{1}{4}\left[\mu_{2,0}^{G_{k, l}}+\mu_{0,2}^{G_{k, l}}\right]\right)\right\} \\
& +\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{\left\|f_{x}\right\|_{C_{B}(\mathcal{D})}\left|\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right|+\left\|f_{y}\right\|_{C_{B}(\mathcal{D})}\left|\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right|\right\} \\
= & 2 \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{K\left(f ; \frac{1}{4} \lambda_{F_{k, l}}\right)+K\left(f ; \frac{1}{4} \lambda_{G_{k, l}}\right)\right\} \\
& +K_{f} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{\left|\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right|+\left|\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right|\right\},
\end{aligned}
$$

where we denote
$\lambda_{F_{k, l}}:=\mu_{2,0}^{F_{k, l}}+\mu_{0,2}^{F_{k, l}}, \lambda_{G_{k, l}}:=\mu_{2,0}^{G_{k, l}}+\mu_{0,2}^{G_{k, l}}$ and $M_{f}^{\prime}:=\max \left\{\left\|f_{x}\right\|_{C_{B}(\mathcal{D})},\left\|f_{x}\right\|_{C_{B}(\mathcal{D})}\right\}$
From the definition of K-functional, for a fixed $g \in C_{B}^{2}(\mathcal{D})$, we can write

$$
|(U-V)(f ; x, y)| \leq 4\|f-g\|_{C(\mathcal{D})} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)
$$

$$
\begin{aligned}
& +\frac{1}{2}\|g\|_{C^{2}(\mathcal{D})} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left(\lambda_{F_{k, l}}+\lambda_{G_{k, l}}\right) \\
& +M_{f}^{\prime} \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{\left|\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right|+\left|\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right|\right\} \\
= & 4 K\left(f, \frac{1}{8} \eta(x, y)\right)+M_{f}^{\prime} \mu(x, y)
\end{aligned}
$$

where

$$
\eta(x, y):=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left(\lambda_{F_{k, l}}+\lambda_{G_{k, l}}\right)
$$

and

$$
\mu(x, y)=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left\{\left|\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right|+\left|\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right|\right\}
$$

Note that using (9), from the above theorem we obtain

$$
|(U-V)(f ; x, y)| \leq C_{0}\left\{\omega_{2}\left(f ; \sqrt{\frac{1}{8} \eta(x, y)}\right)+\min (1, \lambda)\|f\|_{C_{B}(\mathcal{D})}\right\}+M_{f}^{\prime} \mu(x, y)
$$

5. Difference for Chebishev Functionals

For $f, g \in C_{\rho}$, we take the bivariate positive linear operators U and V defined at the beginning of this section. Assuming that $f, g, f g \in C_{\rho}(\mathcal{D})$, we consider the Chebishev functional of U given by $T^{U}(f, g):=U(f g)-U(f) U(g)$ (similarly for V) (see 5 and references therein). In this part, we give an upper estimate related to the difference $\left|T^{U}(f, g)-T^{V}(f, g)\right|$.
Theorem 3. Let the functions f, g and $f g$ belong to $C_{\rho}^{*}(\mathcal{D})$ and all of their partial derivatives of order ≤ 2 belong to $C_{\rho}(\mathcal{D})$. If

$$
\begin{gathered}
\theta_{1}^{F_{k, l}}=\theta_{1}^{G_{k, l}}=\theta_{1}, \theta_{2}^{F_{k, l}}=\theta_{2}^{G_{k, l}}=\theta_{2} \\
U\left(1+\left(e_{1,0}\right)^{2}+\left(e_{0,1}\right)^{2} ; x, y\right) \leq M \rho(x, y)
\end{gathered}
$$

and

$$
V\left(1+\left(e_{1,0}\right)^{2}+\left(e_{0,1}\right)^{2} ; x, y\right) \leq M \rho(x, y)
$$

then we have

$$
\begin{aligned}
& \left|T^{U}(f, g ; x, y)-T^{V}(f, g ; x, y)\right| \\
\leq & \left(\delta_{1}+\delta_{2}\right)\left[1+M \rho(x, y)\left(\|f\|_{\rho}+\|g\|_{\rho}\right)\right]+2^{8}\left[1+q_{k, l}(x, y)\right] \\
& \times\left\{\Omega_{\rho}\left(f g, \delta_{3}, \delta_{4}\right)+M \rho(x, y)\left(\|f\|_{\rho} \Omega_{\rho}\left(g, \delta_{3}, \delta_{4}\right)+\|g\|_{\rho} \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right)\right)\right\}
\end{aligned}
$$

where δ_{1} and δ_{2} are the same as in Theorem 1 and

$$
q_{k, l}(x, y)=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right) .
$$

Proof. From the definition of Chebyshev functionals, we can write

$$
\begin{aligned}
& T^{U}(f, g ; x, y)-T^{V}(f, g ; x, y) \\
= & U(f g ; x, y)-U(f ; x, y) U(g ; x, y)-V(f g ; x, y)+V(f ; x, y) V(g ; x, y) \\
= & U(f g ; x, y)-U(f ; x, y) U(g ; x, y)-U(f ; x, y) V(g ; x, y)+U(f ; x, y) V(g ; x, y) \\
& -V(f g ; x, y)+V(f ; x, y) V(g ; x, y) \\
= & U(f g ; x, y)-V(f g ; x, y)-U(f ; x, y)[U(g ; x, y)-V(g ; x, y)] \\
& -V(g ; x, y)[U(f ; x, y)-V(f ; x, y)] .
\end{aligned}
$$

By taking absolute value of both sides we obtain

$$
\begin{aligned}
& \left|T^{U}(f, g ; x, y)-T^{V}(f, g ; x, y)\right| \\
\leq & |U(f g ; x, y)-V(f g ; x, y)|+|U(f ; x, y)||U(g ; x, y)-V(g ; x, y)| \\
& +|V(g ; x, y)||U(f ; x, y)-V(f ; x, y)| .
\end{aligned}
$$

From Theorem we have

$$
\begin{aligned}
& |U(f g ; x, y)-V(f g ; x, y)| \\
\leq & \sum_{k, l \in \mathbb{K}} p_{k, l}(x, y)\left|F_{k, l}(f g ; x, y)-G_{k, l}(f g ; x, y)\right| \\
\leq & \delta_{1}+\delta_{2}+2^{8} \Omega_{\rho}\left(f g, \delta_{3}, \delta_{4}\right)\left(1+q_{k, l}(x, y)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& |U(f ; x, y)||U(g ; x, y)-V(g ; x, y)| \\
\leq & M \rho(x, y)\|f\|_{\rho}\left[\delta_{1}+\delta_{2}+2^{8} \Omega_{\rho}\left(g, \delta_{3}, \delta_{4}\right)\left(1+q_{k, l}(x, y)\right)\right] \\
& |V(g ; x, y)|[U(f ; x, y)-V(f ; x, y)] \\
\leq & M \rho(x, y)\|g\|_{\rho}\left[\delta_{1}+\delta_{2}+2^{8} \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right)\left(1+q_{k, l}(x, y)\right)\right] .
\end{aligned}
$$

If necessary arrangements are made, the proof is completed.

6. Application

If we take the well-known bivariate Szász operator as the operator U and the bivariate Szász-Kantorovich as the operator V given, respectively, by

$$
U_{n, m}(f ; x, y)=\sum_{k, l=0}^{\infty} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!} f\left(\frac{k}{n}, \frac{l}{m}\right)
$$

and

$$
V_{n, m}(f ; x, y)=\sum_{k, l=0}^{\infty} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!} n m \int_{\frac{k}{n}}^{\frac{k+1}{n}} \int_{\frac{l}{m}}^{\frac{l+1}{m}} f(t, s) d s d t
$$

Theorem 4. Let $f \in C_{\rho}^{*}(\mathcal{D})$ with all of its partial derivatives of order ≤ 2 belong to the space $C_{\rho}(\mathcal{D})$. Then we have

$$
|(U-V)(f ; x, y)| \leq \delta_{2}+2^{8} \Omega_{\rho}\left(f, \delta_{3}, \delta_{4}\right) \psi(x, y)
$$

where

$$
\begin{gathered}
\delta_{2}(x, y)=\left\{1+\frac{\left(1+8 n x+4 n x^{2}\right)}{4 n^{2}}+\frac{\left(1+8 m y+4 m y^{2}\right)}{4 m^{2}}\right\}\left\{\frac{1}{3 n^{2}}+\frac{1}{3 m^{2}}\right\}, \\
\delta_{3}^{4}(x, y)=\frac{1}{16 n^{2}}+\frac{n x+4 n x^{2}}{16 n^{4}}+\frac{m y+4 m y^{2}}{16 n^{2} m^{2}} \\
\delta_{4}^{4}(x, y)=\frac{1}{16 m^{2}}+\frac{n x+4 n x^{2}}{16 n^{2} m^{2}}+\frac{m y+4 m y^{2}}{16 m^{4}}
\end{gathered}
$$

and

$$
\psi(x, y)=2+x^{2}+y^{2}+\frac{x}{n}+\frac{y}{m}
$$

Proof. We use Theorem. By making simple calculations for the operators U and V given above, we have

$$
\begin{gathered}
F_{k, l}(f)=f\left(\frac{k}{n}, \frac{l}{m}\right), \\
\theta_{1}^{F}=F_{k, l}\left(e_{1,0}\right)=\frac{k}{n}, \quad \theta_{2}^{F}=\frac{l}{m}, \\
G_{k, l}(f)=n m \int_{\frac{k}{n}}^{\frac{k+1}{n}} \int_{\frac{l}{m}}^{\frac{l+1}{m}} f(t, s) d s d t \\
\theta_{1}^{G}=G_{k, l}\left(e_{1,0}\right)=\frac{1}{2 n}(2 k+1), \quad \theta_{2}^{F}=\frac{1}{2 m}(2 l+1), \\
\mu_{2,0}^{F}=F_{k, l}\left(\left(e_{1,0}-\frac{k}{n}\right)^{2}\right)=0, \quad \mu_{0,2}^{F}=F_{k, l}\left(\left(e_{0,1}-\frac{l}{m}\right)^{2}\right)=0, \\
\mu_{2,0}^{G}=G_{k, l}\left(\left(e_{1,0}-\frac{k}{n}\right)^{2}\right)=\frac{1}{3 n^{2}}, \mu_{0,2}^{G}=G_{k, l}\left(\left(e_{0,1}-\frac{l}{m}\right)^{2}\right)=\frac{1}{3 m^{2}} .
\end{gathered}
$$

Therefore, we get

$$
\begin{aligned}
\delta_{1}(x, y) & =0, \\
\delta_{2}(x, y) & =\sum_{k, l}^{\infty} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!}\left\{\left(1+\frac{(2 k+1)^{2}}{4 n^{2}}+\frac{(2 l+1)^{2}}{4 m^{2}}\right)\left\{\frac{1}{3 n^{2}}+\frac{1}{4 m n}+\frac{1}{3 m^{2}}\right\}\right\} \\
& =\left\{1+\frac{\left(1+8 n x+4 n x^{2}\right)}{4 n^{2}}+\frac{\left(1+8 m y+4 m y^{2}\right)}{4 m^{2}}\right\}\left\{\frac{1}{3 n^{2}}+\frac{1}{4 m n}+\frac{1}{3 m^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{3}^{4} & =\sum_{k, l \in \mathbb{K}} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!} \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left(\theta_{1}^{F_{k, l}}-\theta_{1}^{G_{k, l}}\right)^{4} \\
& =\sum_{k, l \in \mathbb{K}} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!} \rho\left(\frac{k}{n}, \frac{l}{m}\right)\left(\frac{k}{n}-\frac{1}{2 n}(2 k+1)\right)^{4} \\
& =\sum_{k, l \in \mathbb{K}} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!}\left(1+\frac{k^{2}}{n^{2}}+\frac{l^{2}}{m^{2}}\right)\left(\frac{1}{2 n}\right)^{4} \\
& =\frac{1}{16 n^{2}}+\frac{n x+4 n x^{2}}{16 n^{4}}+\frac{m y+4 m y^{2}}{16 n^{2} m^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta_{4}^{4}=\sum_{k, l \in \mathbb{K}} p_{k, l}(x, y) \rho\left(\theta_{1}^{F_{k, l}}, \theta_{2}^{F_{k, l}}\right)\left(\theta_{2}^{F_{k, l}}-\theta_{2}^{G_{k, l}}\right)^{4} \\
&= \sum_{k, l \in \mathbb{K}} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!}\left(1+\frac{k^{2}}{n^{2}}+\frac{l^{2}}{m^{2}}\right)\left(\frac{1}{2 m}\right)^{4} \\
&= \frac{1}{16 m^{2}}+\frac{n x+4 n x^{2}}{16 n^{2} m^{2}}+\frac{m y+4 m y^{2}}{16 m^{4}} . \\
& \begin{aligned}
\psi(x, y) & =1+\sum_{k, l \in \mathbb{K}} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!} \rho\left(\frac{k}{n}, \frac{l}{m}\right) \\
& =1+\sum_{k, l \in \mathbb{K}} e^{-n x-m y} \frac{(n x)^{k}}{k!} \frac{(m y)^{l}}{l!}\left(1+\frac{k^{2}}{n^{2}}+\frac{l^{2}}{m^{2}}\right) \\
& =2+x^{2}+y^{2}+\frac{x}{n}+\frac{y}{m} .
\end{aligned}
\end{aligned}
$$

This completes the proof.

Author Contributions Statements The authors jointly worked on the results and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest.

References

[1] Acu, A. M., Raşa, I., New estimates for the differences ofpositive linear operators, Numer. Algor., 73(3) (2016), 775-789. https://doi.org/10.1007/s11075-016-0117-8
[2] Acu, A. M., Hodiş, S., Raşa, I., A survey on estimates for the differences of positive linear operators, Constructive Mathematical Analysis, (1)2 (2018), 113-127. https://doi.org/10.33205/cma. 478408
[3] Acu, A. M., Raşa, I., Estimates for the differences of positive linear operators and their derivatives, Numer. Algor., 85(1) (2020), 191-208. https://doi.org/10.1007/s11075-019-00809-4
[4] Acu, A. M., Başcanbaz-Tunca, G., Raşa, I., Differences of positive linear operators on simplices, Journal of Function Spaces, 2021 (2021), Article ID 5531577, 11 pages. https://doi.org/10.1155/2021/5531577
[5] Aral, A., Inoan, D., Raşa, I., On differences of linear positive operators, Analysis and Mathematical Physics, (9)3 (2019), 1227-1239. https://doi.org/10.1007/s13324-018-0227-7
[6] Aral, A., Erbay, H., A note on the difference of positive operators and numerical aspects, Mediterr. J. Math., 17(45) (2020), 20 pp. https://doi.org/10.1007/s00009-020-1489-5
[7] Bartle, R. G., The Elements of Real Analysis, John Wiley \& Sons Ltd, 1964.
[8] Begen, S., Ince Ilarslan, H. G., Degree of approximation for bivariate Százs-Kantorovich type based on Brenke type polynomials, Honam Math. J., (2020), 42(2), 251-268. https://doi.org/10.5831/HMJ.2020.42.2.251
[9] Butzer, P. L., Berens, H., Semi-Groups of Operators and Approximation, Springer, New York, 1967.
[10] Gadjieva, E., Doğru, O., Szász Tipinde Operatörler Dizisinin Sürekli Fonksiyonlara Yaklaşımı, II. Uluslararası Kızılırmak Fen Bilimleri Kongresi, May 20-22, 1998.
[11] Gonska, H., Piţul, P., Raşa, I., On differences of positive linear operators, Carpathian J. Math., 22(1-2) (2006), 65-78. https://www.jstor.org/stable/43998909
[12] İspir, N., Atakut, Ç., Approximation by modified Szász-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112(4) (2002), 571-578. https://doi.org/10.1007/BF02829690
http://communications.science.ankara.edu.tr

ON INEQUALITIES OF SIMPSON'S TYPE FOR CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS

Hasan KARA ${ }^{1}$, Hüseyin BUDAK ${ }^{1}$, Muhammad Aamir ALI 2 and, Fatih HEZENCI ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, TURKEY
${ }^{2}$ Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, CHINA

Abstract

Fractional calculus and applications have application areas in many different fields such as physics, chemistry, and engineering as well as mathematics. The application of arithmetic carried out in classical analysis in fractional analysis is very important in terms of obtaining more realistic results in the solution of many problems. In this study, we prove an identity involving generalized fractional integrals by using differentiable functions. By utilizing this identity, we obtain several Simpson's type inequalities for the functions whose derivatives in absolute value are convex. Finally, we present some new results as the special cases of our main results.

1. Introduction

Simpson's rules are well-known ways for the numerical integration and numerical estimation of definite integrals. This method is known as developed by Thomas Simpson's (1710-1761). However, Johannes Kepler used the same approximation about 100 years ago, so that this method is also known as Kepler's rule. Simpson's rule includes the three-point Newton-Cotes quadrature rule, so estimation based on three steps quadratic kernel is sometimes called as Newton type results.
(1) Simpson's quadrature formula (Simpson's $1 / 3$ rule)

$$
\int_{\kappa_{1}}^{\kappa_{2}} \vartheta(\chi) \mathrm{d} \chi \approx \frac{\kappa_{2}-\kappa_{1}}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right] .
$$

[^11](2) Simpson's second formula or Newton-Cotes quadrature formula (Simpson's $3 / 8$ rule).
$$
\int_{\kappa_{1}}^{\kappa_{2}} \vartheta(\chi) \mathrm{d} \chi \approx \frac{\kappa_{2}-\kappa_{1}}{8}\left[\vartheta\left(\kappa_{1}\right)+3 \vartheta\left(\frac{2 \kappa_{1}+\kappa_{2}}{3}\right)+3 \vartheta\left(\frac{\kappa_{1}+2 \kappa_{2}}{3}\right)+\vartheta\left(\kappa_{2}\right)\right] .
$$

There are a large number of estimations related to these quadrature rules in the literature, one of them is the following estimation known as Simpson's inequality:

Theorem 1. Suppose that $\vartheta:\left[\kappa_{1}, \kappa_{2}\right] \rightarrow \mathbb{R}$ is a four times continuously differentiable mapping on $\left(\kappa_{1}, \kappa_{2}\right)$ and $\left\|\vartheta^{(4)}\right\|_{\infty}=\sup _{\chi \in\left(\kappa_{1}, \kappa_{2}\right)}\left|\vartheta^{(4)}(\chi)\right|<\infty$. Then, one has the inequality

$$
\begin{aligned}
& \left|\frac{1}{3}\left[\frac{\vartheta\left(\kappa_{1}\right)+\vartheta\left(\kappa_{2}\right)}{2}+2 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right]-\frac{1}{\kappa_{2}-\kappa_{1}} \int_{\kappa_{1}}^{\kappa_{2}} \vartheta(\chi) d \chi\right| \\
& \leq \frac{1}{2880}\left\|\vartheta^{(4)}\right\|_{\infty}\left(\kappa_{2}-\kappa_{1}\right)^{4} .
\end{aligned}
$$

In recent years, many authors have focused on Simpson's type inequalities for various classes of functions. Specifically, some mathematicians have worked on Simpson's and Newton's type results for convex mappings, because convexity theory is an effective and powerful method for solving a large number of problems which arise within different branches of pure and applied mathematics. For example, Dragomir et al. 16 presented new Simpson's type results and their applications to quadrature formulas in numerical integration. What is more, some inequalities of Simpson's type for s-convex functions are deduced by Alomari et al. in 6. Afterwards, Sarikaya et al. observed the variants of Simpson's type inequalities based on convexity in 42 . In 34 and 35 , the authors provided some Newton's type inequalities for harmonic convex and p-harmonic convex functions. Additionally, new Newton's type inequalities for functions whose local fractional derivatives are generalized convex are given by Iftikhar et al. in 25 . For more recent developments, one can consult $2,5,7,11,15,17,18,23,36,47$.

2. Generalized Fractional Integrals

Fractional calculus and applications have application areas in many different fields such as physics, chemistry and engineering as well as mathematics. The application of arithmetic carried out in classical analysis in fractional analysis is very important in terms of obtaining more realistic results in the solution of many problems. Many real dynamical systems are better characterized by using noninteger order dynamic models based on fractional computation. While integer orders are a model that is not suitable for nature in classical analysis, fractional computation in which arbitrary orders are examined enables us to obtain more realistic approaches. This subject has been studied by many scientists in terms
of its widespread use $20,21,27,30,31,37,40,44$. One of the most important applications of the fractional Integrals is the Hermite-Hadamard integral inequality (see, 1, 22, 26, 38, 39, 41).

In this section, we summarize the generalized fractional integrals defined by Sarikaya and Ertuğral in 41.

Let's define a function $\varphi:[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:

$$
\int_{0}^{1} \frac{\varphi(\tau)}{\tau} d \tau<\infty
$$

We define the following left-sided and right-sided generalized fractional integral operators, respectively, as follows:

$$
\begin{align*}
& \kappa_{1}+I_{\varphi} \vartheta(\chi)=\int_{\kappa_{1}}^{\chi} \frac{\varphi(\chi-\tau)}{\chi-\tau} \vartheta(\tau) d \tau, \quad \chi>\kappa_{1}, \tag{1}\\
& \kappa_{2}-I_{\varphi} \vartheta(\chi)=\int_{\chi}^{\kappa_{2}} \frac{\varphi(\tau-\chi)}{\tau-\chi} \vartheta(\tau) d \tau, \quad \chi<\kappa_{2} \tag{2}
\end{align*}
$$

The most important feature of generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals, etc. These important special cases of the integral operators (1) and (2) are mentioned below.
i) If we take $\varphi(\tau)=\tau$, the operator (1) and (2) reduce to the Riemann integral as follows:

$$
\begin{aligned}
& I_{\kappa_{1}+} \vartheta(\chi)=\int_{\kappa_{1}}^{\chi} \vartheta(\tau) d \tau, \quad \chi>\kappa_{1}, \\
& I_{\kappa_{2}-} \vartheta(\chi)=\int_{\chi}^{\kappa_{2}} \vartheta(\tau) d \tau, \quad \chi<\kappa_{2} .
\end{aligned}
$$

ii) Let us consider $\varphi(\tau)=\frac{\tau^{\alpha}}{\Gamma(\alpha)}, \alpha>0$. Then, the operator 11 and 2) reduce to the Riemann-Liouville fractional integral as follows:

$$
\begin{aligned}
& J_{\kappa_{1}+}^{\alpha} \vartheta(\chi)=\frac{1}{\Gamma(\alpha)} \int_{\kappa_{1}}^{\chi}(\chi-\tau)^{\alpha-1} \vartheta(\tau) d \tau, \quad \chi>\kappa_{1}, \\
& J_{\kappa_{2}-}^{\alpha} \vartheta(\chi)=\frac{1}{\Gamma(\alpha)} \int_{\chi}^{\kappa_{2}}(\tau-\chi)^{\alpha-1} \vartheta(\tau) d \tau, \quad \chi<\kappa_{2} .
\end{aligned}
$$

iii) For $\varphi(\tau)=\frac{1}{k \Gamma_{k}(\alpha)} \tau^{\frac{\alpha}{k}}, \alpha, k>0$, the operator 1 and reduce to the k-Riemann-Liouville fractional integral as follows:

$$
J_{\kappa_{1}+, k}^{\alpha} \vartheta(\chi)=\frac{1}{k \Gamma_{k}(\alpha)} \int_{\kappa_{1}}^{\chi}(\chi-\tau)^{\frac{\alpha}{k}-1} \vartheta(\tau) d \tau, \quad \chi>\kappa_{1},
$$

$$
J_{\kappa_{2}-, k}^{\alpha} \vartheta(\chi)=\frac{1}{k \Gamma_{k}(\alpha)} \int_{\chi}^{\kappa_{2}}(\tau-\chi)^{\frac{\alpha}{k}-1} \vartheta(\tau) d \tau, \quad \chi<\kappa_{2} .
$$

Here,

$$
\Gamma_{k}(\alpha)=\int_{0}^{\infty} \tau^{\alpha-1} e^{-\frac{\tau^{k}}{k}} d \tau, \quad \mathcal{R}(\alpha)>0
$$

and

$$
\Gamma_{k}(\alpha)=k^{\frac{\alpha}{k}-1} \Gamma\left(\frac{\alpha}{k}\right), \quad \mathcal{R}(\alpha)>0 ; k>0
$$

are given by Mubeen and Habibullah in 33 .
In the literature, there are several papers on inequalities for generalized fractional integrals. For more information and unexplained subjects, we refer the reader to $\mid 8,10,19,24,28,29,32,46,48$ and the references therein.
3. Simpson's Type Inequalities for Generalized Fractional Integrals

Throughout this study for brevity, we define

$$
\eta_{1}(\chi, \tau)=\int_{0}^{\tau} \frac{\varphi\left(\left(\kappa_{2}-\chi\right) u\right)}{u} d u, \quad \nu_{1}(\chi, \tau)=\int_{0}^{\tau} \frac{\varphi\left(\left(\chi-\kappa_{1}\right) u\right)}{u} d u
$$

Particularly, if we choose $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$, then we have

$$
\eta_{1}\left(\frac{\kappa_{1}+\kappa_{2}}{2}, \tau\right)=\nu_{1}\left(\frac{\kappa_{1}+\kappa_{2}}{2}, \tau\right)=\Upsilon_{1}(\tau)=\int_{0}^{\tau} \frac{\varphi\left(\left(\frac{\kappa_{2}-\kappa_{1}}{2}\right) u\right)}{u} d u
$$

Lemma 1. Let $\vartheta:\left[\kappa_{1}, \kappa_{2}\right] \rightarrow \mathbb{R}$ be an absolutely continuous mapping $\left(\kappa_{1}, \kappa_{2}\right)$ such that $\vartheta^{\prime} \in L_{1}\left(\left[\kappa_{1}, \kappa_{2}\right]\right)$. Then, the following equality holds:

$$
\begin{aligned}
& \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right] \\
= & \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)} \int_{0}^{1}\left(\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right) \vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right) d \tau \\
& -\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)} \int_{0}^{1}\left(\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right) \vartheta^{\prime}\left((1-\tau) \kappa_{1}+\tau \chi\right) d \tau .
\end{aligned}
$$

Proof. By using integration by parts, we have

$$
\begin{align*}
H_{1}= & \int_{0}^{1}\left(\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right) \vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right) d \tau \tag{3}\\
& =\frac{1}{\kappa_{2}-\chi} \eta_{1}(\chi, 1)\left[2 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& +\frac{3}{\chi-\kappa_{2}} \int_{0}^{1} \vartheta\left(\tau \chi+(1-\tau) \kappa_{2}\right) \frac{\varphi\left(\left(\kappa_{2}-\chi\right) \tau\right)}{\tau} d \tau \\
= & \frac{1}{\kappa_{2}-\chi} \eta_{1}(\chi, 1)\left[2 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{3}{\kappa_{2}-\chi} \int_{\chi}^{\kappa_{2}} \frac{\vartheta(u) \varphi\left(\kappa_{2}-u\right)}{\kappa_{2}-u} d u \\
= & \frac{\eta_{1}(\chi, 1)}{\kappa_{2}-\chi}\left[2 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{3}{\kappa_{2}-\chi} \chi+I_{\varphi} \vartheta\left(\kappa_{2}\right) .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{align*}
H_{2} & =\int_{0}^{1}\left(\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right) \vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{1}\right) d \tau \tag{4}\\
& =\frac{\nu_{1}(\chi, 1)}{\chi-\kappa_{1}}\left[-2 \vartheta(\chi)-\vartheta\left(\kappa_{1}\right)\right]+\frac{3}{\chi-\kappa_{1}}{ }_{\chi-} I_{\varphi} \vartheta\left(\kappa_{1}\right) .
\end{align*}
$$

From (3) and (4), we get

$$
\begin{aligned}
& \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)} H_{1}-\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)} H_{2} \\
& =\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]
\end{aligned}
$$

This ends the proof of Lemma 1
Corollary 1. Under assumptions of Lemma 1 with $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$, we obtain the equality

$$
\begin{aligned}
& \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right] \\
& \quad-\frac{1}{2 \Upsilon_{1}(1)}\left[\frac{\kappa_{1}+\kappa_{2}}{2}+I_{\varphi} \vartheta\left(\kappa_{2}\right)+\frac{\kappa_{1}+\kappa_{2}}{2}-I_{\varphi} \vartheta\left(\kappa_{1}\right)\right] \\
& =\frac{\kappa_{2}-\kappa_{1}}{12 \eta_{1}(\chi, 1)} \int_{0}^{1}\left(\Upsilon_{1}(1)-3 \Upsilon_{1}(\tau)\right) \\
& \quad \times\left[\vartheta^{\prime}\left(\frac{\tau}{2} \kappa_{1}+\frac{2-\tau}{2} \kappa_{2}\right)-\vartheta^{\prime}\left(\frac{2-\tau}{2} \kappa_{1}+\frac{\tau}{2} \kappa_{2}\right)\right] d \tau
\end{aligned}
$$

Corollary 2. In Lemma 1, if we choose $\varphi(\tau)=\tau$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$, then we obtain the equality

$$
\begin{aligned}
& \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{1}{\kappa_{2}-\chi} \int_{\chi}^{\kappa_{2}} \vartheta(\tau) d \tau+\frac{1}{\chi-\kappa_{1}} \int_{\kappa_{1}}^{\chi} \vartheta(\tau) d \tau\right] \\
& =\frac{\kappa_{2}-\chi}{6} \int_{0}^{1}(1-3 \tau) \vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right) d \tau \\
& \quad-\frac{\chi-\kappa_{1}}{6} \int_{0}^{1}(1-3 \tau) \vartheta^{\prime}\left((1-\tau) \kappa_{1}+\tau \chi\right) d \tau
\end{aligned}
$$

Corollary 3. In Lemma 1, let us consider $\varphi(\tau)=\frac{\tau^{\alpha}}{\Gamma(\alpha)}, \alpha>0$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$. Then, we get the equality

$$
\begin{aligned}
& \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma(\alpha+1)}{2}\left[\frac{J_{\chi+}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\alpha}}+\frac{J_{\chi-}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\alpha}}\right] \\
& =\frac{\kappa_{2}-\chi}{6} \int_{0}^{1}\left(1-3 \tau^{\alpha}\right) \vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right) d \tau \\
& \quad-\frac{\chi-\kappa_{1}}{6} \int_{0}^{1}\left(1-3 \tau^{\alpha}\right) \vartheta^{\prime}\left((1-\tau) \kappa_{1}+\tau \chi\right) d \tau
\end{aligned}
$$

Corollary 4. In Lemma 1, if we assign $\varphi(\tau)=\frac{\tau^{\frac{\alpha}{k}}}{k \Gamma_{k}(\alpha)}, k, \alpha>0$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$, then we have the equality

$$
\begin{aligned}
& \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma_{k}(\alpha+k)}{2}\left[\frac{J_{\chi+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\frac{\alpha}{k}}}+\frac{J_{\chi-, k}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\frac{\alpha}{k}}}\right] \\
& =\frac{\kappa_{2}-\chi}{6} \int_{0}^{1}\left(1-3 \tau^{\frac{\alpha}{k}}\right) \vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right) d \tau \\
& \quad-\frac{\chi-\kappa_{1}}{6} \int_{0}^{1}\left(1-3 \tau^{\frac{\alpha}{k}}\right) \vartheta^{\prime}\left((1-\tau) \kappa_{1}+\tau \chi\right) d \tau .
\end{aligned}
$$

Remark 1. If we set $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollaries 2, 3 and 4, then we obtain the following identities

$$
\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{\kappa_{2}-\kappa_{1}} \int_{\kappa_{1}}^{\kappa_{2}} \vartheta(\tau) d \tau
$$

$$
\begin{aligned}
& =\frac{\kappa_{2}-\kappa_{1}}{12}\left[\int_{0}^{1}(1-3 \tau) \vartheta^{\prime}\left(\frac{\tau}{2} \kappa_{1}+\frac{2-\tau}{2} \kappa_{2}\right) d \tau\right. \\
& \left.-\int_{0}^{1}(1-3 \tau) \vartheta^{\prime}\left(\frac{2-\tau}{2} \kappa_{1}+\frac{\tau}{2} \kappa_{2}\right) d \tau\right] \\
& \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right] \\
& \quad-\frac{2^{\alpha-1} \Gamma(\alpha+1)}{\left(\kappa_{2}-\kappa_{1}\right)^{\alpha}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}}{2}-}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \\
& = \\
& \frac{\kappa_{2}-\kappa_{1}}{12}\left[\int_{0}^{1}\left(1-3 \tau^{\alpha}\right) \vartheta^{\prime}\left(\frac{\tau}{2} \kappa_{1}+\frac{2-\tau}{2} \kappa_{2}\right) d \tau\right. \\
& \left.\quad-\int_{0}^{1}\left(1-3 \tau^{\alpha}\right) \vartheta^{\prime}\left(\frac{2-\tau}{2} \kappa_{1}+\frac{\tau}{2} \kappa_{2}\right) d \tau\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{6} & {\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right] } \\
& -\frac{2^{\frac{\alpha}{k}-1} \Gamma_{k}(\alpha+k)}{\left(\kappa_{2}-\kappa_{1}\right)^{\frac{\alpha}{k}}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}-, k}{\alpha}}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \\
= & \frac{\kappa_{2}-\kappa_{1}}{12}\left[\int_{0}^{1}\left(1-3 \tau^{\frac{\alpha}{k}}\right) \vartheta^{\prime}\left(\frac{\tau}{2} \kappa_{1}+\frac{2-\tau}{2} \kappa_{2}\right) d \tau\right. \\
& \left.-\int_{0}^{1}\left(1-3 \tau^{\frac{\alpha}{k}}\right) \vartheta^{\prime}\left(\frac{2-\tau}{2} \kappa_{1}+\frac{\tau}{2} \kappa_{2}\right) d \tau\right]
\end{aligned}
$$

respectively.
Theorem 2. Assume that the assumptions of Lemma 1 hold. Assume also that the mapping $\left|\vartheta^{\prime}\right|$ is convex on $\left[\kappa_{1}, \kappa_{2}\right]$. Then, we have the following inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left[\Xi_{1}\left|\vartheta^{\prime}(\chi)\right|+\Xi_{2}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|\right]+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left[\Xi_{3}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|+\Xi_{4}\left|\vartheta^{\prime}(\chi)\right|\right]
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
\Xi_{1}=\int_{0}^{1} \tau\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right| d \tau \tag{5}\\
\Xi_{2}=\int_{0}^{1}(1-\tau)\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right| d \tau \\
\Xi_{3}=\int_{0}^{1}(1-\tau)\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right| d \tau \\
\Xi_{4}=\int_{0}^{1} \tau\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right| d \tau
\end{array}\right.
$$

Proof. By taking modulus in Lemma 1. we obtain

$$
\begin{align*}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right| \tag{6}\\
& \leq \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)} \int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right)\right| d \tau \\
& \quad+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)} \int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}\left((1-\tau) \kappa_{1}+\tau \chi\right)\right| d \tau
\end{align*}
$$

With the help of the convexity of $\left|\vartheta^{\prime}\right|$, we get

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)} \int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|\left[\tau\left|\vartheta^{\prime}(\chi)\right|+(1-\tau)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|\right] d \tau \\
& \quad+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)} \int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|\left[(1-\tau)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|+\tau\left|\vartheta^{\prime}(\chi)\right|\right] d \tau \\
& =\frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left[\Xi_{1}\left|\vartheta^{\prime}(\chi)\right|+\Xi_{2}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|\right]+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left[\Xi_{3}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|+\Xi_{4}\left|\vartheta^{\prime}(\chi)\right|\right]
\end{aligned}
$$

This completes the proof of Theorem 2
Corollary 5. Under assumptions of Theorem 2 with $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$, we have the following inequalities

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{1}{2 \Upsilon_{1}(1)}\left[\frac{\kappa_{1}+\kappa_{2}}{2}+I_{\varphi} \vartheta\left(\kappa_{2}\right)+\frac{\kappa_{1}+\kappa_{2}}{2}-I_{\varphi} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\kappa_{2}-\kappa_{1}}{12 \Upsilon_{1}(1)}\left[2 \Xi_{5}\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|+\Xi_{6}\left[\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|\right]\right] \\
& \leq \frac{\kappa_{2}-\kappa_{1}}{12 \Upsilon_{1}(1)}\left(\Xi_{5}+\Xi_{6}\right)\left[\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|\right]
\end{aligned}
$$

Here,

$$
\begin{equation*}
\Xi_{5}=\int_{0}^{1} \tau\left|\Upsilon_{1}(1)-3 \Upsilon_{1}(\tau)\right| d \tau \text { and } \Xi_{6}=\int_{0}^{1}(1-\tau)\left|\Upsilon_{1}(1)-3 \Upsilon_{1}(\tau)\right| d \tau \tag{7}
\end{equation*}
$$

Corollary 6. In Theorem 2, let us note that $\varphi(\tau)=\tau$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$. Then, we obtain the inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{1}{\kappa_{2}-\chi} \int_{\chi}^{\kappa_{2}} \vartheta(\tau) d \tau+\frac{1}{\chi-\kappa_{1}} \int_{\kappa_{1}}^{\chi} \vartheta(\tau) d \tau\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6}\left[\frac{29}{54}\left|\vartheta^{\prime}(\chi)\right|+\frac{8}{27}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|\right]+\frac{\chi-\kappa_{1}}{6}\left[\frac{8}{27}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|+\frac{29}{54}\left|\vartheta^{\prime}(\chi)\right|\right] .
\end{aligned}
$$

Corollary 7. In Theorem 2, if we select $\varphi(\tau)=\frac{\tau^{\alpha}}{\Gamma(\alpha)}, \alpha>0$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$, then we get the inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma(\alpha+1)}{2}\left[\frac{J_{\chi+}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\alpha}}+\frac{J_{\chi-}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\alpha}}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6}\left[\Theta_{1}(\alpha)\left|\vartheta^{\prime}(\chi)\right|+\Theta_{2}(\alpha)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|\right] \\
& \quad+\frac{\chi-\kappa_{1}}{6}\left[\Theta_{2}(\alpha)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|+\Theta_{1}(\alpha)\left|\vartheta^{\prime}(\chi)\right|\right]
\end{aligned}
$$

where

$$
\begin{align*}
& \Theta_{1}(\alpha)=\frac{\alpha}{\alpha+2}\left(\frac{1}{3}\right)^{\frac{2}{\alpha}}+\frac{4-\alpha}{2(\alpha+2)} \tag{8}\\
& \Theta_{2}(\alpha)=\frac{2 \alpha}{\alpha+1}\left(\frac{1}{3}\right)^{\frac{1}{\alpha}}-\frac{\alpha}{\alpha+2}\left(\frac{1}{3}\right)^{\frac{2}{\alpha}}+\frac{4-3 \alpha-\alpha^{2}}{2(\alpha+1)(\alpha+2)}
\end{align*}
$$

Corollary 8. In Theorem 2, consider $\varphi(\tau)=\frac{\tau^{\frac{\alpha}{k}}}{k \Gamma_{k}(\alpha)}, k, \alpha>0$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$, then we have the following inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma_{k}(\alpha+k)}{2}\left[\frac{J_{\chi+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\frac{\alpha}{k}}}+\frac{J_{\chi-, k}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\frac{\alpha}{k}}}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6}\left[\Psi_{1}(\alpha, k)\left|\vartheta^{\prime}(\chi)\right|+\Psi_{2}(\alpha, k)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|\right] \\
& \quad+\frac{\chi-\kappa_{1}}{6}\left[\Psi_{2}(\alpha, k)(\alpha)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|+\Psi_{1}(\alpha, k)\left|\vartheta^{\prime}(\chi)\right|\right] .
\end{aligned}
$$

Here,

$$
\begin{align*}
& \Psi_{1}(\alpha, k)=\frac{\alpha}{\alpha+2 k}\left(\frac{1}{3}\right)^{\frac{2 k}{\alpha}}+\frac{4 k-\alpha}{2(\alpha+2 k)} \tag{9}\\
& \Psi_{2}(\alpha, k)=\frac{2 \alpha}{\alpha+k}\left(\frac{1}{3}\right)^{\frac{k}{\alpha}}-\frac{\alpha}{\alpha+2 k}\left(\frac{1}{3}\right)^{\frac{2 k}{\alpha}}+\frac{4 k^{2}-3 \alpha k-\alpha^{2}}{2(\alpha+k)(\alpha+2 k)} .
\end{align*}
$$

Remark 2. If we set $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollary 6, then Corollary 6 reduces to 43 , Corollary 1].
Remark 3. Assume $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollary 7. Then, we obtain the following inequality

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{2^{\alpha-1} \Gamma(\alpha+1)}{\left(\kappa_{2}-\kappa_{1}\right)^{\alpha}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}}{2}-}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
& \leq \frac{\kappa_{2}-\kappa_{1}}{12}\left[\Theta_{2}(\alpha)\left(\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|\right)+2 \Theta_{1}(\alpha)\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|\right]
\end{aligned}
$$

which is given by Har and Wang in [23].
Remark 4. Assume $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollary 8. Then, we obtain the following inequality

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{2^{\frac{\alpha}{k}-1} \Gamma_{k}(\alpha+k)}{\left(\kappa_{2}-\kappa_{1}\right)^{\frac{\alpha}{k}}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}}{2}-, k}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
& \leq \frac{\kappa_{2}-\kappa_{1}}{12}\left[\Psi_{2}(\alpha, k)\left(\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|\right)+2 \Psi_{1}(\alpha, k)\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|\right] .
\end{aligned}
$$

Theorem 3. Suppose that the assumptions of Lemma 1 hold. Suppose also that the mapping $\left|\vartheta^{\prime}\right|^{q}, q>1$, is convex on $\left[\kappa_{1}, \kappa_{2}\right]$. Then, we have the following inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}}\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}} \\
& \quad+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}}\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.

Proof. By applying Hölder inequality (6), we get

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|\vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right)\right|^{q} d \tau\right)^{\frac{1}{q}} \\
& \quad+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|\vartheta^{\prime}\left((1-\tau) \kappa_{1}+\tau \chi\right)\right|^{q} d \tau\right)^{\frac{1}{q}} .
\end{aligned}
$$

By using convexity of $\left|\vartheta^{\prime}\right|^{q}$, we obtain

$$
\begin{aligned}
\left\lvert\, \frac{1}{6}\right. & { \left.\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right] \right\rvert\, } \\
\leq & \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{1}\left(\tau\left|\vartheta^{\prime}(\chi)\right|^{q}+(1-\tau)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right) d \tau\right)^{\frac{1}{q}} \\
& +\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{1}\left((1-\tau)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\tau\left|\vartheta^{\prime}(\chi)\right|^{q}\right) d \tau\right)^{\frac{1}{q}} \\
= & \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}}\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}} \\
& +\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|^{p} d \tau\right)^{\frac{1}{p}}\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}},
\end{aligned}
$$

which completes the proof of Theorem 3

Corollary 9. Under assumptions of Theorem 3 with $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$, we have the following inequalities

$$
\begin{aligned}
\left\lvert\, \frac{1}{6}\right. & {\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right] } \\
& \left.-\frac{1}{2 \Upsilon_{1}(1)}\left[\frac{\kappa_{1}+\kappa_{2}}{2}+I_{\varphi} \vartheta\left(\kappa_{2}\right)+\frac{\kappa_{1}+\kappa_{2}}{2}-I_{\varphi} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
\leq & \frac{\kappa_{2}-\kappa_{1}}{12 \Upsilon_{1}(1)}\left(\int_{0}^{1}\left|\Upsilon_{1}(1)-3 \Upsilon_{1}(\tau)\right|^{p} d \tau\right)^{\frac{1}{p}} \\
& \times\left[\left(\frac{\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}+\left(\frac{\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right] \\
\leq & \left.\frac{\kappa_{2}-\kappa_{1}}{12 \Upsilon_{1}(1)}\left(\int_{0}^{1}\left|\Upsilon_{1}(1)-3 \Upsilon_{1}(\tau)\right|^{p} d \tau\right)^{\frac{1}{p}}\right] \\
& \times\left[\left(\frac{\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+3\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{4}\right)^{\frac{1}{q}}+\left(\frac{3\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{4}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

Corollary 10. In Theorem 3. let us consider $\varphi(\tau)=\tau$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$. Then, we obtain the inequality

$$
\begin{aligned}
& \left.\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{1}{\kappa_{2}-\chi} \int_{\chi}^{\kappa_{2}} \vartheta(\tau) d \tau+\frac{1}{\chi-\kappa_{1}} \int_{\kappa_{1}}^{\chi} \vartheta(\tau) d \tau\right] \right\rvert\, \\
& \leq \frac{1}{6}\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}} \\
& \quad \times\left[\left(\kappa_{2}-\chi\right)\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}+\left(\chi-\kappa_{1}\right)\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right] .
\end{aligned}
$$

Corollary 11. In Theorem 3, if we take $\varphi(\tau)=\frac{\tau^{\alpha}}{\Gamma(\alpha)}, \alpha>0$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$, then we get the inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma(\alpha+1)}{2}\left[\frac{J_{\chi+}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\alpha}}+\frac{J_{\chi-}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\alpha}}\right]\right| \\
& \leq \frac{1}{6}\left(\int_{0}^{1}\left|1-3 \tau^{\alpha}\right|^{p} d \tau\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
\times\left[\left(\kappa_{2}-\chi\right)\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}+\left(\chi-\kappa_{1}\right)\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right]
$$

Corollary 12. In Theorem 3. let us note that $\varphi(\tau)=\frac{\tau^{\frac{\alpha}{k}}}{k \Gamma_{k}(\alpha)}, k, \alpha>0$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$. Then, we have the inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma_{k}(\alpha+k)}{2}\left[\frac{J_{\chi+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\frac{\alpha}{k}}}+\frac{J_{\chi-, k}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\frac{\alpha}{k}}}\right]\right| \\
& \leq \frac{1}{6}\left(\int_{0}^{1}\left|1-3 \tau^{\frac{\alpha}{k}}\right|^{p} d \tau\right)^{\frac{1}{p}} \\
& \quad \times\left[\left(\kappa_{2}-\chi\right)\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}+\left(\chi-\kappa_{1}\right)\left(\frac{\left|\vartheta^{\prime}(\chi)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right] .
\end{aligned}
$$

Remark 5. If we assign $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollary 10, then Corollary 10 reduces to 43, Corollary 3].
Remark 6. Consider $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollaries 11 and 12. Then, we obtain the following inequalities

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{2^{\alpha-1} \Gamma(\alpha+1)}{\left(\kappa_{2}-\kappa_{1}\right)^{\alpha}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}}{2}-}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
& \leq \\
& \quad \frac{\kappa_{2}-\kappa_{1}}{12}\left(\int_{0}^{1}\left|1-3 \tau^{\alpha}\right|^{p} d \tau\right)^{\frac{1}{p}}\left[\left(\frac{\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right. \\
& \left.\quad+\left(\frac{\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{2^{\frac{\alpha}{k}-1} \Gamma_{k}(\alpha+k)}{\left(\kappa_{2}-\kappa_{1}\right)^{\frac{\alpha}{k}}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}}{2}-, k}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
& \leq \frac{\kappa_{2}-\kappa_{1}}{12}\left(\int_{0}^{1}\left|1-3 \tau^{\frac{\alpha}{k}}\right|^{p} d \tau\right)^{\frac{1}{p}}\left[\left(\frac{\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right.
\end{aligned}
$$

$$
\left.+\left(\frac{\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right]
$$

respectively.
Theorem 4. Suppose that the assumptions of Lemma 1 hold. If the mapping $\left|\vartheta^{\prime}\right|^{q}$, $q \geq 1$, is convex on $\left[\kappa_{1}, \kappa_{2}\right]$, then we have the following inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right| d \tau\right)^{1-\frac{1}{q}}\left(\Xi_{1}\left|\vartheta^{\prime}(\chi)\right|^{q}+\Xi_{2}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}} \\
& \quad+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right| d \tau\right)^{1-\frac{1}{q}}\left(\Xi_{3}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Xi_{4}\left|\vartheta^{\prime}(\chi)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

where $\Xi_{i}, i=1,2,3,4$ are defined as in equality (5).
Proof. By applying power mean inequality (6), we get

$$
\begin{aligned}
&\left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right| d \tau\right)^{1-\frac{1}{q}} \\
& \times\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}\left(\tau \chi+(1-\tau) \kappa_{2}\right)\right|^{q} d \tau\right)^{\frac{1}{q}} \\
&+\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right| d \tau\right)^{1-\frac{1}{q}} \\
& \quad \times\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}\left((1-\tau) \kappa_{1}+\tau \chi\right)\right|^{q} d \tau\right)^{\frac{1}{q}}
\end{aligned}
$$

Since $\left|\vartheta^{\prime}\right|^{q}$ is convex, we obtain

$$
\left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{\chi+I_{\varphi} \vartheta\left(\kappa_{2}\right)}{\eta_{1}(\chi, 1)}+\frac{\chi-I_{\varphi} \vartheta\left(\kappa_{1}\right)}{\nu_{1}(\chi, 1)}\right]\right|
$$

$$
\begin{aligned}
\leq & \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right| d \tau\right)^{1-\frac{1}{q}} \\
& \times\left(\int _ { 0 } ^ { 1 } \left[\tau\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}(\chi)\right|^{q}\right.\right. \\
& \left.\left.+(1-\tau)\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right] d \tau\right)^{\frac{1}{q}} \\
& +\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1-\frac{1}{q}}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right| d \tau\right)^{1} \\
& \times\left(\int _ { 0 } ^ { 1 } \left[(1-\tau)\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}\right.\right. \\
& \left.\left.+\tau\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right|\left|\vartheta^{\prime}(\chi)\right|^{q} d \tau\right]\right)^{\frac{1}{q}} \\
= & \frac{\kappa_{2}-\chi}{6 \eta_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\eta_{1}(\chi, 1)-3 \eta_{1}(\chi, \tau)\right| d \tau\right)^{1-\frac{1}{q}}\left(\Xi_{1}\left|\vartheta^{\prime}(\chi)\right|^{q}+\Xi_{2}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}} \\
& +\frac{\chi-\kappa_{1}}{6 \nu_{1}(\chi, 1)}\left(\int_{0}^{1}\left|\nu_{1}(\chi, 1)-3 \nu_{1}(\chi, \tau)\right| d \tau\right)^{1-\frac{1}{q}}\left(\Xi_{3}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Xi_{4}\left|\vartheta^{\prime}(\chi)\right|^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

This completes the proof of Theorem 4
Corollary 13. Under assumptions of Theorem 4 with $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$, we have the following inequalities

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{1}{2 \Upsilon_{1}(1)}\left[\frac{\kappa_{1}+\kappa_{2}}{2}+I_{\varphi} \vartheta\left(\kappa_{2}\right)+\frac{\kappa_{1}+\kappa_{2}}{2}-I_{\varphi} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
& \leq \\
& \quad \frac{\kappa_{2}-\kappa_{1}}{12 \Upsilon_{1}(1)}\left(\int_{0}^{1}\left|\Upsilon_{1}(1)-3 \Upsilon_{1}(\tau)\right| d \tau\right)^{1-\frac{1}{q}} \\
& \quad \times\left[\left(\Xi_{5}\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\Xi_{6}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}}\right. \\
& \left.\quad+\left(\Xi_{6}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Xi_{5}\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{\kappa_{2}-\kappa_{1}}{12 \Upsilon_{1}(1)}\left(\int_{0}^{1}\left|\Upsilon_{1}(1)-3 \Upsilon_{1}(\tau)\right| d \tau\right)^{1-\frac{1}{q}} \\
& \times\left[\left(\frac{\Xi_{5}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\left(\Xi_{5}+2 \Xi_{6}\right)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\frac{\left(\Xi_{5}+2 \Xi_{6}\right)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Xi_{5}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}}{2}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

Here, Ξ_{5} and Ξ_{6} are defined as in equality (7).
Corollary 14. In Theorem 4, if we choose $\varphi(\tau)=\tau$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$, then we obtain the inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{1}{2}\left[\frac{1}{\kappa_{2}-\chi} \int_{\chi}^{\kappa_{2}} \vartheta(\tau) d \tau+\frac{1}{\chi-\kappa_{1}} \int_{\kappa_{1}}^{\chi} \vartheta(\tau) d \tau\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6}\left(\frac{5}{6}\right)^{1-\frac{1}{q}}\left(\frac{29}{54}\left|\vartheta^{\prime}(\chi)\right|^{q}+\frac{8}{27}\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}} \\
& \quad+\frac{\chi-\kappa_{1}}{6}\left(\frac{5}{6}\right)^{1-\frac{1}{q}}\left(\frac{8}{27}\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\frac{29}{54}\left|\vartheta^{\prime}(\chi)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

Corollary 15. In Theorem 4, let us note that $\varphi(\tau)=\frac{\tau^{\alpha}}{\Gamma(\alpha)}, \alpha>0$ for all $\tau \in$ [κ_{1}, κ_{2}]. Then, we have the inequality

$$
\begin{aligned}
& \left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma(\alpha+1)}{2}\left[\frac{J_{\chi+}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\alpha}}+\frac{J_{\chi-}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\alpha}}\right]\right| \\
& \leq \frac{\kappa_{2}-\chi}{6}\left(\Theta_{3}(\alpha)\right)^{1-\frac{1}{q}}\left(\Theta_{1}(\alpha)\left|\vartheta^{\prime}(\chi)\right|^{q}+\Theta_{2}(\alpha)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}} \\
& \quad+\frac{\chi-\kappa_{1}}{6}\left(\Theta_{3}(\alpha)\right)^{1-\frac{1}{q}}\left(\Theta_{2}(\alpha)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Theta_{1}(\alpha)\left|\vartheta^{\prime}(\chi)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

where $\Theta_{i}(\alpha), i=1,2$ are defined as in equality (8) and

$$
\Theta_{3}(\alpha)=2\left(\frac{1}{3}\right)^{\frac{1}{\alpha}}\left[1-\frac{1}{\alpha+1}\right]+\frac{3}{\alpha+1}-1
$$

Corollary 16. In Theorem 4, if we set $\varphi(\tau)=\frac{\tau^{\frac{\alpha}{k}}}{k \Gamma_{k}(\alpha)}, k, \alpha>0$ for all $\tau \in\left[\kappa_{1}, \kappa_{2}\right]$, then we get the inequality

$$
\left|\frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta(\chi)+\vartheta\left(\kappa_{2}\right)\right]-\frac{\Gamma_{k}(\alpha+k)}{2}\left[\frac{J_{\chi+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)}{\left(\kappa_{2}-\chi\right)^{\frac{\alpha}{k}}}+\frac{J_{\chi-, k}^{\alpha} \vartheta\left(\kappa_{1}\right)}{\left(\chi-\kappa_{1}\right)^{\frac{\alpha}{k}}}\right]\right|
$$

$$
\begin{aligned}
\leq & \frac{\kappa_{2}-\chi}{6}\left(\Psi_{3}(\alpha, k)\right)^{1-\frac{1}{q}}\left(\Psi_{1}(\alpha, k)\left|\vartheta^{\prime}(\chi)\right|^{q}+\Psi_{2}(\alpha, k)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}} \\
& +\frac{\chi-\kappa_{1}}{6}\left(\Psi_{3}(\alpha, k)\right)^{1-\frac{1}{q}}\left(\Psi_{2}(\alpha, k)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Psi_{1}(\alpha, k)\left|\vartheta^{\prime}(\chi)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

where $\Psi_{i}(\alpha, k), i=1,2$ are defined as in equality (g) and

$$
\Psi_{3}(\alpha, k)=2\left(\frac{1}{3}\right)^{\frac{k}{\alpha}}\left[1-\frac{k}{\alpha+k}\right]+\frac{3 k}{(\alpha+k)}-1
$$

Remark 7. Considering $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollary 14, then Corollary 14 reduces to [43, Theorem 10 (for $s=1$)].

Remark 8. If we take $\chi=\frac{\kappa_{1}+\kappa_{2}}{2}$ in Corollaries 15 and 16 , then we obtain the following inequalities

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{2^{\alpha-1} \Gamma(\alpha+1)}{\left(\kappa_{2}-\kappa_{1}\right)^{\alpha}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}}{2}-}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
& \leq \\
& \quad \frac{\kappa_{2}-\kappa_{1}}{12}\left(\Theta_{3}(\alpha)\right)^{1-\frac{1}{q}}\left[\left(\Theta_{1}(\alpha)\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\Theta_{2}(\alpha)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}}\right. \\
& \left.\quad+\left(\Theta_{2}(\alpha)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Theta_{1}(\alpha)\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\left[\vartheta\left(\kappa_{1}\right)+4 \vartheta\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)+\vartheta\left(\kappa_{2}\right)\right]\right. \\
& \left.\quad-\frac{2^{\frac{\alpha}{k}-1} \Gamma_{k}(\alpha+k)}{\left(\kappa_{2}-\kappa_{1}\right)^{\frac{\alpha}{k}}}\left[J_{\frac{\kappa_{1}+\kappa_{2}}{2}+, k}^{\alpha} \vartheta\left(\kappa_{2}\right)+J_{\frac{\kappa_{1}+\kappa_{2}}{2}-, k}^{\alpha} \vartheta\left(\kappa_{1}\right)\right] \right\rvert\, \\
& \leq \\
& \quad \frac{\kappa_{2}-\kappa_{1}}{12}\left(\Psi_{3}(\alpha, k)\right)^{1-\frac{1}{q}}\left[\left(\Psi_{1}(\alpha, k)\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}+\Psi_{2}(\alpha, k)\left|\vartheta^{\prime}\left(\kappa_{2}\right)\right|^{q}\right)^{\frac{1}{q}}\right. \\
& \left.\quad+\left(\Psi_{2}(\alpha, k)\left|\vartheta^{\prime}\left(\kappa_{1}\right)\right|^{q}+\Psi_{1}(\alpha, k)\left|\vartheta^{\prime}\left(\frac{\kappa_{1}+\kappa_{2}}{2}\right)\right|^{q}\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

respectively.

4. Conclusion

In this paper, we used the concepts of fractional calculus and proved some new inequalities of Simpson's type inequalities for differentiable convex mappings. Moreover, we discussed the special cases of the main results and several new inequalities of Simpson's type for differentiable convex functions via the ordinary integral are
obtained. It is an interesting and new problem that the upcoming researchers can obtain similar inequalities for co-ordinated convex functions in their future research.

Author Contribution Statements All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interests.

Acknowledgments The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

References

[1] Agarwal, P., Vivas-Cortez, M., Rangel-Oliveros, Y., Ali, M. A., New Ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula, AIMS Mathematics, 7(1) (2022), 1429-1444. doi: 10.3934/math. 2022084
[2] Ali, M. A., Budak, H., Zhang, Z., Yildirim, H., Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Methods Appl. Sci., 44(6) (2021), 4515-4540 https://doi.org/10.1002/mma. 7048
[3] Ali, M. A., Budak, H., Abbas, M., Chu, Y.-M., Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second $q^{\kappa_{2}}$-derivatives, Adv. Difference Equ., 2021(7) (2021). https://doi.org/10.1186/s13662-020-03163-1
[4] Ali, M. A., Chu, Y. M., Budak, H., Akkurt, A., Yildirim, H., New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Difference Equ., 2021(64) (2021). https://doi.org/10.1186/s13662-021-03226-x
[5] Ali, M. A., Abbas, M., Budak, H., Agarwal, P., Murtaza, G., Chu, Y.-M., Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Difference Equ., 2021(25) (2021). https://doi.org/10.1186/s13662-020-03195-7
[6] Alomari, M., Darus, M., Dragomir, S. S., New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009).
[7] Budak, H., Erden, S., Ali, M. A., Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci., 44(1) (2021), 378-390 https://doi.org/10.1002/mma.6742.
[8] Budak, H., Kara, H., Kapucu, R., New midpoint type inequalities for generalized fractional integral, Comput. Methods Differ. Equ., 10(1) (2022), 93-108. DOI:10.22034/cmde.2020.40684.1772
[9] Budak, H., Pehlivan E., Kösem, P., On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Sahand Communications in Mathematical Analysis, 18(1) (2021), 73-88.
[10] Budak, H., Hezenci, F., Kara, H., On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci., $44(17)(2021), 12522-12536$. DOI: $10.1002 / \mathrm{mma} .7558$
[11] Butt, S. I., Akdemir, A. O., Agarwal, P., Baleanu, D., Non-conformable integral inequalities of Chebyshev-Pólya-Szego type, J. Math. Inequal., 15(4) (2021), 1391-1400. dx.doi.org/10.7153/jmi-2021-15-94
[12] Butt, S. I., Agarwal, P., Yousaf, S. Guirao, J. L., Generalized fractal Jensen and JensenMercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022(1) (2022), 1-18. https://doi.org/10.1186/s13660-021-02735-3
[13] Butt, S. I., Akdemir, A. O., Nadeem, M., Raza, M. A., Gruss type inequalities via generalized fractional operators Math. Methods Appl. Sci., 44(17) (2021), 12559-12574. https://doi.org/10.1002/mma. 7563
[14] Butt, S. I., Yousaf, S., Akdemir, A. O., Dokuyucu, M. A., New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Solitons Fractals, 148 (2021), 111025. https://doi.org/10.1016/j.chaos.2021.111025
[15] Butt, S. I., Nadeem, M., Tariq, M., Aslam, A., New integral type inequalities via Rainaconvex functions and its applications Commun. Fac. Sci. Univ. Ank. S'er. A1 Math. Stat., $70(2)$ (2021), 1011-1035. https://doi.org/10.31801/cfsuasmas. 848853
[16] Dragomir, S. S., Agarwal, R. P., Cerone, P., On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533-579.
[17] Du, T., Li, Y., Yang, Z., A generalization of Simpson's inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358-369. https://doi.org/10.1016/j.amc.2016.08.045
[18] Erden, S., Iftikhar, S., Delavar, R. M., Kumam, P., Thounthong P., Kumam, W., On generalizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 114(3) (2020), 1-15. Doi: 10.1007/s13398-020-00841-3.
[19] Ertuğral, F., Sarikaya, M. Z., Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113(4) (2019), 3115-3124. https://doi.org/10.1007/s13398-019-00680-x
[20] Farid, G., Rehman, A., Zahra, M., On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21(3) (2016), 463-478.
[21] Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Wien: Springer-Verlag, 1997, 223-276.
[22] Hadamard, J., Etude sur les proprietes des fonctions entieres et en particulier d'une fonction considree par, Riemann, J. Math. Pures. et Appl., 58 (1893), 171-215.
[23] Hai, X., Wang S. H., Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Math., 5(1) (2021), 1-15.
[24] Han, J., Mohammed, P. O., Zeng, H., Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18(1) (2020), 794-806. https://doi.org/10.1515/math-2020-0038
[25] Iftikhar, S., Komam, P., Erden, S., Newton's type integral inequalities via local fractional integrals, Fractals, 28(3) (2020), 2050037, 13 pages. Doi: 10.1142/S0218348X20500371.
[26] Jain, S., Goyal, R., Agarwal, P., Guirao, J. L., Some inequalities of extended hypergeometric functions, Mathematics, 9 (21) (2021), 2702. https://doi.org/10.3390/math9212702
[27] Katugampola, U. N., A new fractional derivative with classical properties, (2014) e-print arXiv:1410.6535.
[28] Kashuri, A., Ali, M. A., Abbas M., Budak, H., New inequalities for generalized m-convex functions via generalized fractional integral operators and their applications, International Journal of Nonlinear Analysis and Applications, 10(2) (2019), 275-299. doi: 10.22075/ijnaa.2019.18455.2014
[29] Kashuri, A., Liko, R., On Fejér type inequalities for convex mappings utilizing generalized fractional integrals, Appl. Appl. Math., 15(1) (2020), 240-255.
[30] Khalil, R., Alomari, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
[31] Miller, S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York, Wiley, 1993.
[32] Mohammed, P. O., Sarikaya, M. Z., On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. https://doi.org/10.1016/j.cam.2020.112740
[33] Mubeen, S., Habibullah, G. M., k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7(2) (2012), 89-94.
[34] Noor, M. A., Noor, K. I., Iftikhar, S., Some Newton's type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9(1) (2016), 07-16.
[35] Noor, M. A., Noor K. I., Iftikhar, S., Newton inequalities for p-harmonic convex functions, Honam Math. J., 40(2) (2018), 239-250. https://doi.org/10.5831/HMJ.2018.40.2.239
[36] Park, J., On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci., 7(121) (2013), 6009-6021. http://dx.doi.org/10.12988/ams.2013.39498
[37] Podlubni, I., Fractional Differential Equations, San Diego, CA: Academic Press, 1999.
[38] Sarikaya, M. Z., Set, E., Yaldiz, H., Basak, N., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57(9-10) (2013), 24032407. https://doi.org/10.1016/j.mcm.2011.12.048
[39] Sarikaya, M. Z., Akkurt, A., Budak, H., Yildirim, M. E., Yildirim, H., Hermite-Hadamard's inequalities for conformable fractional integrals, Konuralp Journal of Mathematics, 8(2) (2020), 376-383.
[40] Sarikaya, M. Z., Ogunmez, H., On new inequalities via Riemann-Liouville fractional integration, Abs Appl Anal. 2012. Article ID 428983, 10 pages. doi:10.1155/2012/428983.
[41] Sarikaya, M. Z., Ertugral, F., On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47(1) (2020), 193-213.
[42] Sarikaya, M. Z., Set, E., Özdemir, M. E., On new inequalities of Simpson's type for convex functions, RGMIA Res. Rep. Coll., 13(2) (2010), Article2.
[43] Sarikaya, M. Z., Set, E., Özdemir, M. E., On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60(8) (2020), 2191-2199. https://doi.org/10.1016/j.camwa.2010.07.033
[44] Set, E., Butt, S. I., Akdemir, A. O., Karaoglan, A., Abdeljawad, T., New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 110554. https://doi.org/10.1016/j.chaos.2020.110554
[45] Turkay, M. E., Sarikaya, M. Z., Budak, H., Yildirim, H., Some Hermite-Hadamard type inequalities for co-ordinated convex functions via generalized fractional integrals, Submitted, ResearchGate Article: https://www.researchgate.net/publication/321803898.
[46] Qi, F., Mohammed, P. O., Yao, J.-C., Yao, Y.-H., Generalized fractional integral inequalities of Hermite-Hadamard type for (α, m)-convex functions, J. Inequal. Appl. 2019, 135 (2019). https://doi.org/10.1186/s13660-019-2079-6
[47] Vivas-Cortez, M., Ali, M. A., Kashuri, A., Sial, I. B., Zhang, Z., Some new Newton's type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12(9) (2020) 1476; https://doi.org/10.3390/sym12091476.
[48] Zhao, D., Ali, M. A., Kashuri, A., Budak, H., Sarikaya, M. Z., Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl., $2020(222)$ (2020), 1-38. https://doi.org/10.1186/s13660-020-02488-5

> http://communications.science.ankara.edu.tr

ASSOCIATED CURVES FROM A DIFFERENT POINT OF VIEW IN E^{3}

Süleyman ŞENYURT, Davut CANLI, and Kebire Hilal AYVACI

Department of Mathematics, Ordu University, Ordu, TURKEY

Abstract

In this paper, tangent, principal normal and binormal wise associated curves are defined such that each of these vectors of any given curve lies on the osculating, normal and rectifying plane of its partner, respectively. For each associated curve, a new moving frame and the corresponding curvatures are formulated in terms of Frenet frame vectors. In addition to this, the possible solutions for distance functions between the curve and its associated mate are discussed. In particular, it is seen that the involute curves belong to the family of tangent associated curves in general and the Bertrand and the Mannheim curves belong to the principal normal associated curves. Finally, as an application, we present some examples and map a given curve together with its partner and its corresponding moving frame.

1. Introduction

In differential geometry, curves are named as associated if there exist a mathematical relation among them. Some of those known as involute-evolute curves, Bertrand curves, Mannheim curves and more recently the successor curves are the ones on which the researchers most referred ($1-5)$. For such curves, the association is based upon the Frenet elements of the curves. There have been other studies using different frames such as Darboux and Bishop to associate curves, as well ($6-11$). From a distinct point of view, Choi and Kim (2012), introduced new associated curves of a given Frenet curve as the integral curves of vector fields 12 . Şahiner, on the other hand, established direction curves of "tangent" and "principal normal" indicatrix of any curve and provided some methods to portray helices and slant helices by using these curves in his studies, 13 and 14 , respectively. In

[^12]this study, we introduce another Frenet frame based associated curves such that the tangent, the principal normal and the binormal vectors of a given any curve lies on the osculating, normal and rectifying plane of its partner, respectively. For each associated curves a new moving frame is established and the distances between the curve and its offset are given. In particular, it is seen that the involute curves belong to the family of tangent associated curves. In addition, some traces of the Bertrand and Mannheim curves are found while examining principal normal and binormal associated curves. We also provided a few examples to illustrate the intuitive idea of this paper.

Since we refer the Frenet frame, the formulae and the curvatures of a regular curve, α through out the paper, we remind the definitions of these once again as:

$$
\begin{gather*}
T(s)=\frac{\alpha^{\prime}(s)}{\left\|\alpha^{\prime}(s)\right\|}, \quad N(s)=B(s) \times T(s), \quad B(s)=\frac{\alpha^{\prime}(s) \times \alpha^{\prime \prime}(s)}{\left\|\alpha^{\prime}(s) \times \alpha^{\prime \prime}(s)\right\|} \tag{1}\\
\kappa(s)=\frac{\left\|\alpha^{\prime}(s) \times \alpha^{\prime \prime}(s)\right\|}{\left\|\alpha^{\prime}(s)\right\|^{3}}, \quad \tau(s)=\frac{\left\langle\alpha^{\prime}(s) \times \alpha^{\prime \prime}(s), \alpha^{\prime \prime \prime}(s)\right\rangle}{\left\|\alpha^{\prime}(s) \times \alpha^{\prime \prime}(s)\right\|^{2}}, \tag{2}\\
\overrightarrow{T^{\prime}}(s)=\nu \kappa(s) \vec{N}(s), \vec{N}^{\prime}(s)=-\nu \kappa(s) \vec{T}(s)+\nu \tau(s) \vec{B}(s), \overrightarrow{B^{\prime}}(s)=-\nu \tau(s) \vec{N}(s), \tag{3}
\end{gather*}
$$

where $\nu=\left\|\alpha^{\prime}(s)\right\|$ and, $\vec{T}, \vec{N}, \vec{B}, \kappa$ and τ are called the tangent vector, the principal normal vector, the binormal vector, the curvature and the torsion of the curve, respectively.

2. Tangent Associated Curves

In this section we will define tangent associated curves such that the tangent vector of a given curve lies on the osculating, normal and rectifying plane of its mate. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and denote α^{*} as its associated mate. Assuming that $\left\{T^{*}, N^{*}, B^{*}\right\}$ is the Frenet frame of α^{*} we write the unit vectors lying on osculating, normal and rectifying plane of α^{*} as following:

$$
\begin{align*}
O^{*} & =\frac{a T^{*}+b N^{*}}{\sqrt{a^{2}+b^{2}}} \tag{4}\\
P^{*} & =\frac{c N^{*}+d B^{*}}{\sqrt{c^{2}+d^{2}}} \tag{5}\\
R^{*} & =\frac{e T^{*}+f B^{*}}{\sqrt{e^{2}+f^{2}}} \tag{6}
\end{align*}
$$

respectively, where $a, b, c, d, e, f \in \Re^{+}$are some arbitrary positive real numbers. Note that, the representation of the arc length assumed parameter " s " of the main curve α was omitted throughout the paper for simplicity, unless otherwise stated.

Definition 1. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the tangent vector, T of α is linearly dependent with the vector, O^{*}, then we name the curve α^{*} as $T-O^{*}$ associated curve of α.

The following figure (Fig. 1) is given to illustrate the main idea for this and the next definitions.

Figure 1. The curve α (left) and its $T-O^{*}$ associated mate α^{*} (right)

Theorem 1. If α^{*} is $T-O^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =\frac{a}{\sqrt{a^{2}+b^{2}}} T+\frac{b}{\sqrt{a^{2}+b^{2}}} N \\
N^{*} & =\frac{b}{\sqrt{a^{2}+b^{2}}} T-\frac{a}{\sqrt{a^{2}+b^{2}}} N \\
B^{*} & =-B .
\end{aligned}
$$

Proof. Since α and α^{*} are defined as $T-O^{*}$ associated curves, we may write

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+\lambda(s) T(s) \tag{7}
\end{equation*}
$$

By differentiating the relation (7), taking its norm and using the Frenet formulae given in (3), we have:

$$
\begin{equation*}
T^{*}=\frac{\left(1+\lambda^{\prime}\right) T+\lambda \kappa N}{\sqrt{\left(1+\lambda^{\prime}\right)^{2}+(\lambda \kappa)^{2}}} \tag{8}
\end{equation*}
$$

Now taking the second derivative of the equation (7) and referring again to (3) we write

$$
\alpha^{* \prime \prime}=\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right) T+\left(\left(1+\lambda^{\prime}\right) \kappa+(\lambda \kappa)^{\prime}\right) N+\lambda \kappa \tau B
$$

The cross production of $\alpha^{* \prime}$ and $\alpha^{* \prime \prime}$ leads us the following form,

$$
\begin{equation*}
\alpha^{* \prime} \times \alpha^{* \prime \prime}=\left(\lambda^{2} \kappa^{2} \tau\right) T-\left(\left(\lambda^{\prime}+1\right) \lambda \kappa \tau\right) N+\left(\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right) \kappa+(\lambda \kappa)^{\prime}\right)-\lambda \kappa\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right)\right) B \tag{9}
\end{equation*}
$$

By calling upon (1), we simply calculate N^{*} and B^{*} as

$$
\begin{aligned}
N^{*}= & -\frac{\lambda \kappa\left(\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right) \kappa+\lambda^{\prime} \kappa+\lambda \kappa^{\prime}\right)-\lambda \kappa\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right)\right) T}{\left\|\alpha^{* \prime}\right\|\left\|\alpha^{* \prime} \times \alpha^{*^{\prime \prime}}\right\|} \\
& +\frac{\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right) \kappa+\lambda^{\prime} \kappa+\lambda \kappa^{\prime}\right)-\lambda \kappa\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right)\right) N}{\left\|\alpha^{* \prime}\right\|\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\lambda \kappa \tau\left(\lambda^{2} \kappa^{2}+\left(\lambda^{\prime}+1\right)^{2}\right) B}{\left\|\alpha^{* \prime}\right\|\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|} \\
B^{*}= & \frac{\lambda^{2} \kappa^{2} \tau T-\lambda \kappa \tau\left(\lambda^{\prime}+1\right) N+\left(\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right) \kappa+(\lambda \kappa)^{\prime}\right)-\lambda \kappa\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right)\right) B}{\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|} . \tag{10}
\end{align*}
$$

Note that we will refer these relations from (8) to 10 in the next two theorems. We call these as the raw relations.
Now, as we defined the curve α^{*} to be the $T-O^{*}$ associated curve of α, we deduce that $<T, T^{*}>=<O^{*}, T^{*}>$. By using this deduction and referring both the relation (4) and (8) we write

$$
\frac{\left(1+\lambda^{\prime}\right)}{\sqrt{\left(1+\lambda^{\prime}\right)^{2}+(\lambda \kappa)^{2}}}=\frac{a}{\sqrt{a^{2}+b^{2}}}
$$

Simple elementary operations on this relation result the following linear ordinary differential equation (ODE) with $b \neq 0$ as

$$
\begin{equation*}
1+\lambda^{\prime}=\frac{a}{b} \lambda \kappa . \tag{11}
\end{equation*}
$$

When substituted the given ODE, (11) into we complete the first part of the proof for T^{*}.
Similarly, another deductions can be drawn as

$$
<T, N^{*}>=<O^{*}, N^{*}>, \text { and }<T, B^{*}>=<O^{*}, B^{*}>=0
$$

and using these we write

$$
\begin{gather*}
-\frac{\lambda \kappa\left[\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right) \kappa+\lambda^{\prime} \kappa+\lambda \kappa^{\prime}\right)-\lambda \kappa\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right)\right]}{\left\|\alpha^{* \prime}\right\|\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|}=\frac{b}{\sqrt{a^{2}+b^{2}}}, \tag{12}\\
\lambda^{2} \kappa^{2} \tau=0, \tag{13}
\end{gather*}
$$

respectively. Now when substituted the relations (11), (12) and (13) into both (8) and 10 we complete the proof.

Corollary 1. From (11) and (13) $\kappa, \lambda \neq 0$ that results $\tau=0$. Therefore it can be easily said that the curve α is a planar curve or equivalently there is no a space curve having a T associated partner such that its tangent lies on the osculating plane of its mate.

Theorem 2. If α^{*} is the $T-O^{*}$ associated curve of α then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows.

$$
\begin{aligned}
\kappa^{*} & =\frac{b}{\lambda \sqrt{a^{2}+b^{2}}} \\
\tau^{*} & =0
\end{aligned}
$$

Proof. By using the equations in (2) and the relation (11) with the fact that $\tau=0$ the proof is completed.

Theorem 3. If α^{*} is the $T-O^{*}$ associated curve of α, then the distance between the corresponding points of α and α^{*} in E^{3} is given as follows:

$$
\begin{equation*}
d\left(\alpha, \alpha^{*}\right)=\left|e^{\int \frac{a}{b} \kappa}\left[-\int e^{-\int \frac{a}{b} \kappa}+c_{1}\right]\right| \tag{14}
\end{equation*}
$$

where c_{1} is an integral constant.
Proof. We rewrite (11) as

$$
\begin{equation*}
\lambda^{\prime}-\frac{a}{b} \kappa \lambda=-1 \tag{15}
\end{equation*}
$$

By taking μ as an integrating factor and multiplying the both hand sides of the latter equation by that we get

$$
\begin{equation*}
\mu \lambda^{\prime}-\mu \frac{a}{b} \kappa \lambda=-\mu \tag{16}
\end{equation*}
$$

From the product rule of the composite form we write

$$
\begin{equation*}
(\mu \lambda)^{\prime}=\mu \lambda^{\prime}+\mu^{\prime} \lambda \tag{17}
\end{equation*}
$$

and equate the terms of (17) with those in the left hand side of the we find

$$
\mu^{\prime}=-\mu \frac{a}{b} \kappa
$$

The solution for the integrating factor μ is given with

$$
\int \frac{\mu^{\prime}}{\mu}=-\int \frac{a}{b} \kappa \quad \Rightarrow \quad \mu=e^{-\int \frac{a}{b} \kappa+c}
$$

On the other hand, the use of integrating factor let us to write following relation

$$
[\mu \lambda]^{\prime}=-\mu
$$

Integrating both hand sides of this equation

$$
\mu \lambda+c_{o}=-\int \mu
$$

and leaving λ all alone we get

$$
\lambda=\frac{-\int \mu-c_{o}}{\mu}
$$

By substituting μ in place, we finally get

$$
\lambda=e^{\int \frac{a}{b} \kappa}\left[-\int e^{-\int \frac{a}{b} \kappa}+c_{1}\right] .
$$

Definition 2. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the tangent vector, T of α is linearly dependent with the vector, P^{*}, then we name the curve α^{*} as $T-P^{*}$ associated curve of α.

Theorem 4. If α^{*} is $T-P^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =N \\
N^{*} & =\frac{-c}{\sqrt{c^{2}+d^{2}}} T+\frac{d}{\sqrt{c^{2}+d^{2}}} B \\
B^{*} & =\frac{d}{\sqrt{c^{2}+d^{2}}} T+\frac{c}{\sqrt{c^{2}+d^{2}}} B
\end{aligned}
$$

Proof. Since we defined the curve α^{*} to be as $T-P^{*}$ associated curve of α we could deduce that $<T, N^{*}>=<P^{*}, N^{*}>$. Using this, together with the relations (5) and (10) results the following:

$$
\begin{equation*}
-\frac{\lambda \kappa\left[\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right) \kappa+\lambda^{\prime} \kappa+\lambda \kappa^{\prime}\right)-\lambda \kappa\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right)\right]}{\left\|\alpha^{* \prime}\right\|\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|}=\frac{c}{\sqrt{c^{2}+d^{2}}} \tag{18}
\end{equation*}
$$

By the same manner, it can be derived that $\left.<T, B^{*}>=<P^{*}, B^{*}\right\rangle$ which results

$$
\begin{equation*}
\frac{\lambda^{2} \kappa^{2} \tau}{\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|}=\frac{d}{\sqrt{c^{2}+d^{2}}} \tag{19}
\end{equation*}
$$

Another deduction that $<T, T^{*}>=<P^{*}, T^{*}>=0$ provides $1+\lambda^{\prime}=0$ and so

$$
\begin{equation*}
\lambda=-s+c \tag{20}
\end{equation*}
$$

where c is the integral constant. Utilizing these three relations, (18), 19) and 20 results what is stated in the theorem.
Note that, by substituting (20) first in both (18) and (19), we find the following relations

$$
\begin{equation*}
\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}}=\frac{-c}{\sqrt{c^{2}+d^{2}}} \text { and } \frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}}=\frac{d}{\sqrt{c^{2}+d^{2}}}, \tag{21}
\end{equation*}
$$

respectively which points out that $c=-\kappa$ and $d=\tau$ and since by definition $\kappa \geq 0$, $c \leq 0$.

Corollary 2. It can be easily seen that if α^{*} is $T-P^{*}$ associated curve of α, then α^{*} is the involute of α.

Theorem 5. If α^{*} is the $T-P^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows,

$$
\begin{align*}
\kappa^{*} & =\frac{\tau \sqrt{c^{2}+d^{2}}}{d \lambda \kappa}=\frac{\sqrt{\kappa^{2}+\tau^{2}}}{\lambda \kappa} \\
\tau^{*} & =\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{\lambda \kappa\left(\kappa^{2}+\tau^{2}\right)} \tag{22}
\end{align*}
$$

Proof. The proof can be easily done by using (20) and 21.
Theorem 6. If α^{*} is the $T-P^{*}$ associated curve of α, then the distance between the corresponding points of α and α^{*} in E^{3} is given as follows:

$$
\begin{equation*}
d\left(\alpha^{*}, \alpha\right)=|-s+c| \tag{23}
\end{equation*}
$$

Proof. The proof is trivial.
Definition 3. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the tangent vector, T of α is linearly dependent with the vector, R^{*}, then we name the curve α^{*} as $T-R^{*}$ associated curve of α.

Theorem 7. If α^{*} is $T-R^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =\frac{e}{\sqrt{e^{2}+f^{2}}} T+\frac{f}{\sqrt{e^{2}+f^{2}}} N \\
N^{*} & =B \\
B^{*} & =\frac{f}{\sqrt{e^{2}+f^{2}}} T-\frac{e}{\sqrt{e^{2}+f^{2}}} N
\end{aligned}
$$

Proof. Since we defined the curve α^{*} to be as $T-R^{*}$ associated curve of α we could deduce that $<T, T^{*}>=<R^{*}, T^{*}>$. By using this deduction and referring both the relation (6) and (8) we write

$$
\frac{\left(1+\lambda^{\prime}\right)}{\sqrt{\left(1+\lambda^{\prime}\right)^{2}+(\lambda \kappa)^{2}}}=\frac{e}{\sqrt{e^{2}+f^{2}}}
$$

and with some simple elementary operations on this relation we come up with the following linear ordinary differential equation (ODE), with $f \neq 0$.

$$
\begin{equation*}
1+\lambda^{\prime}=\frac{e}{f} \lambda \kappa . \tag{24}
\end{equation*}
$$

When substituted the given ODE into (8) we complete the first part of the proof for T^{*}.
Similarly, another deduction can be drawn as $<T, B^{*}>=<R^{*}, B^{*}>$ which results

$$
\begin{equation*}
\frac{\lambda^{2} \kappa^{2} \tau}{\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|}=\frac{f}{\sqrt{e^{2}+f^{2}}}, \text { and so }\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|=\lambda^{2} \kappa^{2} \tau \frac{\sqrt{e^{2}+f^{2}}}{f} \tag{25}
\end{equation*}
$$

Now when substituted the relations (24) and into we complete the proof for B^{*}.
A final inference on the idea of $T-R^{*}$ association can be drawn as $<T, N^{*}>=<R^{*}, N^{*}>=0$. This puts the following equation forward

$$
\begin{equation*}
-\lambda \kappa\left[\left(\lambda^{\prime}+1\right)\left(\left(\lambda^{\prime}+1\right) \kappa+\lambda^{\prime} \kappa+\lambda \kappa^{\prime}\right)-\lambda \kappa\left(\lambda^{\prime \prime}-\lambda \kappa^{2}\right)\right]=0 \tag{26}
\end{equation*}
$$

By substituting (24), (25) and (26) in (10) the proof is completed for N^{*} and all.
Theorem 8. If α^{*} is the $T-R^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion τ^{*} of α^{*} are given as follows.

$$
\begin{aligned}
\kappa^{*} & =\frac{\tau f^{2}}{\lambda \kappa\left(e^{2}+f^{2}\right)} \\
\tau^{*} & =\frac{f\left(\kappa^{2} \tau e^{3}+\kappa^{2} \tau e f^{2}+\tau^{3} e f^{2}+\kappa \tau^{\prime} e^{2} f+\kappa \tau^{\prime} f^{3}-\kappa^{\prime} \tau e^{2} f-\kappa^{\prime} \tau f^{3}\right)}{\lambda \kappa\left(\tau^{2} e^{2} f^{2}+\tau^{2} f^{4}+\kappa^{2} e^{4}+2 \kappa^{2} e^{2} f^{2}+\kappa^{2} f^{4}\right)}
\end{aligned}
$$

Proof. By the equations given in (2) and substituting (24) and (25) into these, we may easily derive κ^{*}. On the other hand the third derivative of (7) is

$$
\begin{aligned}
\alpha^{* \prime \prime \prime} & =\left(-3 \lambda^{\prime} \kappa^{2}-3 \lambda \kappa \kappa^{\prime}-\kappa^{2}+\lambda^{\prime \prime \prime}\right) T+\left(-\kappa^{3} \lambda-\lambda \kappa \tau^{2}+3 \lambda^{\prime \prime} \kappa+3 \lambda^{\prime} \kappa^{\prime}+\lambda \kappa^{\prime \prime}+\kappa^{\prime}\right) N \\
& +\left(3 \lambda^{\prime} \kappa \tau+\lambda \kappa \tau^{\prime}+2 \lambda \kappa^{\prime} \tau+\kappa \tau\right) B
\end{aligned}
$$

From (2) and using (24), τ^{*} can be computed as in the given above form.
Theorem 9. If α^{*} is the $T-R^{*}$ associated curve of α, then the distance between the corresponding points of α and α^{*} in E^{3} is given as follows:

$$
\begin{equation*}
d\left(\alpha^{*}, \alpha\right)=\left|e^{\int \frac{e}{f} \kappa}\left[-\int e^{-\int \frac{e}{f} \kappa}+c_{2}\right]\right| \tag{27}
\end{equation*}
$$

Proof. The proof is the same as the proof of Theorem (3).

3. Examples

In this section, we provide an example for the tangent associated curves by considering each of the three different cases.
(1) Let α be chosen a unit speed circle as a planar curve given with a parameterization
$\alpha(s)=(\cos (s), \sin (s), 0)$. Since α is chosen to be a circle $\kappa=1$. By taking $a=b=1$, the general solution for the given ODE in 11) is

$$
\lambda(s)=1+e^{s} c_{0}
$$

where c_{0} is the integral constant.

Figure 2. The main curve α (pink) and its $T-O^{*}$ associated mate α^{*} (black)
(2) Let α be chosen a unit speed helix given with a parameterization $\alpha(s)=$ $\frac{1}{\sqrt{2}}(\cos (s), \sin (s), s)$. Since $\kappa=\tau=\frac{1}{\sqrt{2}}$, the vector P^{*} should be formed by the values of c and d such that $-c=d=\frac{1}{\sqrt{2}}$. From theorem (6) we have

$$
\lambda(s)=-s+c_{0}
$$

where c_{0} is the integral constant.

Figure 3. The main curve α (pink) and its $T-P^{*}$ associated mate α^{*} (black)
(3) By referring the same curve given in (ii) we know that $\kappa=\frac{1}{\sqrt{2}}$. The general solution for the ODE in (11) for $e=f=1$ is this time

$$
\lambda(s)=\sqrt{2}+e^{\frac{\sqrt{2}}{2} s} c_{0}
$$

where c_{0} is the integral constant.
One of the animated versions for the figures can be found at the link below and for all figures see the author's profile.
https://www.geogebra.org/m/vnbzaghp

Figure 4. The main curve α (pink) and its $T-R^{*}$ associated mate α^{*} (black)

4. Principal Normal Associated Curves

In this section, we define principal normal associated curves such that the principal normal vector of a given curve lies on the osculating, normal and rectifying plane of its mate.
Definition 4. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the principal normal, N of α is linearly dependent with the vector, O^{*}, then we name the curve α^{*} as $N-O^{*}$ associated curve of α.
Theorem 10. If α^{*} is $N-O^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =\frac{1}{\sqrt{a^{2}+b^{2}}}\left(\frac{(-\lambda \kappa+1) b}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} T+a N+\frac{\lambda \tau b}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} B\right), \\
N^{*} & =\frac{b}{\sqrt{a^{2}+b^{2}}}\left(\frac{-\mathbf{M}}{\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau} T+N+\frac{\mathbf{K}}{\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau} B\right), \\
B^{*} & =\frac{b(\mathbf{K} T+\mathbf{M} B)}{a(\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau)},
\end{aligned}
$$

where the coefficients \mathbf{K} and \mathbf{M} are

$$
\begin{aligned}
\mathbf{K} & =\lambda^{\prime}\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)-\lambda \tau\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right) \\
\mathbf{M} & =(-\lambda \kappa+1)\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right)-\lambda^{\prime}\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)
\end{aligned}
$$

Proof. Since α and α^{*} are defined as $N-O^{*}$ associated curves, we write

$$
\begin{equation*}
\alpha^{*}=\alpha+\lambda N . \tag{28}
\end{equation*}
$$

By differentiating the relation (28), using the Frenet formulae given in (3) and taking the norm, we have:

$$
\begin{equation*}
T^{*}=\frac{(-\lambda \kappa+1) T+\lambda^{\prime} N+\lambda \tau B}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}}} \tag{29}
\end{equation*}
$$

Next taking the second derivative of the equation (28) and referring again to (3) result the following relation.

$$
\alpha^{* \prime \prime}=\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right) T+\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right) N+\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right) B
$$

The cross production of $\alpha^{* \prime}$ and $\alpha^{* \prime \prime}$ leads us the following form,

$$
\alpha^{* \prime} \times \alpha^{* \prime \prime}=\mathbf{K} T+\mathbf{L} N+\mathbf{M} B
$$

where \mathbf{K}, \mathbf{L} and \mathbf{M} are assigned to be as

$$
\begin{align*}
\mathbf{K} & =\lambda^{\prime}\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)-\lambda \tau\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right) \\
\mathbf{L} & =(-\lambda \kappa+1)\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)+\lambda \tau\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right) \tag{30}\\
\mathbf{M} & =(-\lambda \kappa+1)\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right)-\lambda^{\prime}\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)
\end{align*}
$$

for the sake of simplicity. Note that the norm, $\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|=\sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}$. By referring again the definitions given by (1), we simply calculate N^{*}, and B^{*} as

$$
\begin{align*}
N^{*} & =\frac{\left(\mathbf{L} \lambda \tau-\mathbf{M} \lambda^{\prime}\right) T+(\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau) N+\left(\mathbf{K} \lambda^{\prime}-\mathbf{L}(-\lambda \kappa+1)\right) B}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}} \sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}} \tag{31}\\
B^{*} & =\frac{\mathbf{K} T+\mathbf{L} N+\mathbf{M} B}{\sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}}
\end{align*}
$$

The intuitive idea is as same as before. Since we defined α^{*} to be as the $N-O^{*}$ associated curve of α we can write that $<N, T^{*}>=<O^{*}, T^{*}>$. By using this together with the relations (4) and (29) we write

$$
\begin{equation*}
\frac{\lambda^{\prime}}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}}}=\frac{a}{\sqrt{a^{2}+b^{2}}} \tag{32}
\end{equation*}
$$

Similarly, we can write $<N, N^{*}>=<O^{*}, N^{*}>$ which results the following

$$
\begin{equation*}
\frac{\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}} \sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}}=\frac{b}{\sqrt{a^{2}+b^{2}}} \tag{33}
\end{equation*}
$$

and by the same idea that $<N, B^{*}>=<O^{*}, B^{*}>=0$, we get

$$
\begin{equation*}
\frac{\mathbf{L}}{\sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}}=0 . \tag{34}
\end{equation*}
$$

When substituted the given three relations (32), (33) and (34) into (29) and (31), we complete the proof.

Note that none of the differential equations given above is solvable analytically. However we might solve them under some assumptions.

Corollary 3. If the curve α is chosen to be a curve with constant curvatures like helix, then by referring the relation (32), we can derive

$$
\lambda^{\prime}\left(\lambda^{\prime \prime}-\frac{a^{2}}{b^{2}}\left((\lambda \kappa-1) \kappa+\lambda \tau^{2}\right)\right)=0
$$

which is solvable analytically in two folds. First, $\lambda^{\prime}=0$ corresponding to that λ is a constant. If this is the case, then from the relation 32), $a=0$, and if $a=0$ then $O^{*}=N^{*}$. This is clearly the definition of the Bertrand curve, since α^{*} becomes $N-N^{*}$ associated curve of α.
When considered the second factor of the latter relation we come up with a non homogeneous linear second order differential equation with constant coefficients. For this case, there we have a complex solution that is as

$$
\lambda=\sin \left(\frac{a i \sqrt{\kappa^{2}+\tau^{2}}}{b}\right) c_{1}+\cos \left(\frac{a i \sqrt{\kappa^{2}+\tau^{2}}}{b}\right) c_{2}+\frac{\kappa}{\kappa^{2}+\tau^{2}}, \quad i^{2}=-1
$$

and since $\sin (i x)=i \sinh (x)$ and $\cos (i x)=\cosh (x)$, we can rewrite the solution as:

$$
\lambda=i \sinh \left(\frac{a \sqrt{\kappa^{2}+\tau^{2}}}{b}\right) c_{1}+\cosh \left(\frac{a \sqrt{\kappa^{2}+\tau^{2}}}{b}\right) c_{2}+\frac{\kappa}{\kappa^{2}+\tau^{2}}
$$

where c_{1} and c_{2} are integration constants.
Now, by recalling the relations (30) and (34) under the assumption that α is a helix like curve with constant curvatures, then we have

$$
\lambda^{\prime} \tau(-2 \lambda \kappa+1)=0
$$

This results that λ is a constant of the form, $\lambda=\frac{1}{2 \kappa}$.
Theorem 11. If α^{*} is the $N-O^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows,

$$
\begin{aligned}
\kappa^{*} & =\frac{a^{4}(\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau)}{b\left(a^{2}+b^{2}\right)\left(\lambda^{\prime}\right)^{4}} \\
\tau^{*} & =\frac{b \lambda^{\prime}}{a(\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau)}\binom{\mathbf{K}\left(\lambda \kappa^{3}+\lambda \kappa \tau^{2}-3 \lambda^{\prime} \kappa^{\prime}-\lambda \kappa^{\prime \prime}-3 \lambda^{\prime \prime} \kappa-\kappa^{2}\right)}{+\mathbf{M}\left(\kappa \tau-\lambda \kappa^{2} \tau-\lambda \tau^{3}+3 \lambda^{\prime} \tau^{\prime}+\lambda \tau^{\prime \prime}+3 \lambda^{\prime \prime} \tau\right)}
\end{aligned}
$$

Proof. By taking the third derivative of (28) and using Frenet formulae, we have

$$
\begin{align*}
\alpha^{* \prime \prime \prime}= & \left(\lambda \kappa^{3}+\lambda \kappa \tau^{2}-3 \lambda^{\prime} \kappa^{\prime}-\lambda \kappa^{\prime \prime}-3 \lambda^{\prime \prime} \kappa-\kappa^{2}\right) T \\
& +\left(\lambda^{\prime \prime \prime}-3 \lambda^{\prime}\left(\kappa^{2}+\tau^{2}\right)-3 \lambda\left(\kappa \kappa^{\prime}+\tau \tau^{\prime}\right)+\kappa^{\prime}\right) N \tag{35}\\
& +\left(\kappa \tau-\lambda \kappa^{2} \tau-\lambda \tau^{3}+3 \lambda^{\prime} \tau^{\prime}+\lambda \tau^{\prime \prime}+3 \lambda^{\prime \prime} \tau\right) B
\end{align*}
$$

Now by recalling the relations (32), (33) and (34) to substitute these into the equations given in (2), we complete the proof.

Definition 5. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the principal normal, N of α is linearly dependent with the vector, P^{*}, then we name the curve α^{*} as $N-P^{*}$ associated curve of α.

Theorem 12. If α^{*} is $N-P^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =\frac{-\lambda \kappa+1}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} T+\frac{\lambda \tau}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} B \\
N^{*} & =\frac{1}{\sqrt{c^{2}+d^{2}}}\left(\frac{d \lambda \tau}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} T+c N+\frac{-d(-\lambda \kappa+1)}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} B\right) \\
B^{*} & =\frac{d}{\sqrt{c^{2}+d^{2}}}\left(-\frac{\tau\left(\lambda \tau^{2}+\kappa^{2} \lambda-\kappa\right)}{\lambda \tau \kappa^{\prime}-\kappa \tau^{\prime} \lambda+\tau^{\prime}} T+N+\frac{(\lambda \kappa-1)\left(\lambda \tau^{2}+(\kappa)^{2} \lambda-\kappa\right)}{\lambda\left(-\lambda \tau \kappa^{\prime}+\kappa \tau^{\prime} \lambda-\tau^{\prime}\right)} B\right)
\end{aligned}
$$

Proof. Now, since again we defined α^{*} to be as the $N-P^{*}$ associated curve of α we can write three of our associative relations as usual which are

$$
\begin{aligned}
& \bullet<N, N^{*}>=<P^{*}, N^{*}> \\
& \bullet<N, B^{*}>=<P^{*}, B^{*}> \\
& \bullet<N, T^{*}>=<P^{*}, T^{*}>=0
\end{aligned}
$$

These relations this time result the following three equations

$$
\begin{align*}
& \text { - } \frac{\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}} \sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}}=\frac{c}{\sqrt{c^{2}+d^{2}}} \\
& \text { - } \frac{\mathbf{L}}{\sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}}=\frac{d}{\sqrt{c^{2}+d^{2}}}, \tag{36}\\
& \text { - } \frac{\lambda^{\prime}}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}}}=0
\end{align*}
$$

When substituted the latter relations in (29) and (31) we complete the proof.
Corollary 4. Note that the third relation in (36) results that λ is constant. What we know from literature is that a Bertrand curve has a constant distance as well as the Mannheim curves (see [1], [4] and [2]). For Bertrand curves we also know that curves share the principal normal vectors as common, on the other hand for Mannheim curves, they share the property of the parallelization of principal normal and binormal vectors. By our result, we see that if the principal normal vector of any given curve coincides the unit vector spanned by principal normal and binormal vectors of its mate, then the distance of two curves is constant, in general.
Theorem 13. If α^{*} is the $N-P^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows.

$$
\begin{aligned}
\kappa^{*} & =\frac{\mathbf{l} c^{3} \sqrt{c^{2}+d^{2}}}{d^{4}(\mathbf{m}(\lambda \kappa-1)-\mathbf{k} \lambda \tau)^{3}} \\
\tau^{*} & =\frac{\mathbf{l}^{2}\left(c^{2}+d^{2}\right)}{d^{2}}\binom{\mathbf{k}\left(\kappa^{3} \lambda+\kappa \tau^{2} \lambda-\lambda \kappa^{\prime \prime}-\kappa^{2}\right)+\mathbf{l}\left(-3 \lambda \tau \tau^{\prime}-3 \lambda \kappa^{\prime} \kappa+\kappa^{\prime}\right)}{+\mathbf{m}\left(-\kappa^{2} \tau \lambda-\tau^{3} \lambda+\lambda \tau^{\prime \prime}+\kappa \tau\right)}
\end{aligned}
$$

where \mathbf{k}, \mathbf{l}, and \mathbf{m} are the coefficients of which \mathbf{K}, \mathbf{L}, and \mathbf{M} reformed with $\lambda^{\prime}=0$, respectively.
Proof. By referring the relations (36) together with (35), the proof is trivial.
Definition 6. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the principal normal, N of α is linearly dependent with the vector, R^{*}, then we name the curve α^{*} as $N-R^{*}$ associated curve of α.

Theorem 14. If α^{*} is $N-R^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*}=\frac{1}{\sqrt{e^{2}+f^{2}}} & \left(\frac{(-\lambda \kappa+1) f}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} T+e N+\frac{\lambda \tau f}{\sqrt{(-\lambda \kappa+1)^{2}+(\lambda \tau)^{2}}} B\right) \\
N^{*}=\frac{e f}{\sqrt{e^{2}+f^{2}}}(& \left(\frac{\lambda \tau}{\lambda^{\prime}}-\frac{(-\lambda \kappa+1)\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right)-\lambda^{\prime}\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)}{(\lambda \kappa-1)\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)+\lambda \tau\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)}\right) T \\
& \left.+\left(\frac{\lambda^{\prime}\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)-\lambda \tau\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right)}{(\lambda \kappa-1)\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)+\lambda \tau\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)}+\frac{\lambda \kappa-1}{\lambda^{\prime}}\right) B\right) \\
B^{*}=\frac{f}{\sqrt{e^{2}+f^{2}}}(& \left(\frac{\lambda^{\prime}\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)-\lambda \tau\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right)}{(\lambda \kappa-1)\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)+\lambda \tau\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)}\right) T+N \\
& \left.+\left(\frac{(-\lambda \kappa+1)\left((-\lambda \kappa+1) \kappa-\lambda \tau^{2}+\lambda^{\prime \prime}\right)-\lambda^{\prime}\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)}{(\lambda \kappa-1)\left(\lambda \tau^{\prime}+2 \lambda^{\prime} \tau\right)+\lambda \tau\left(-\lambda \kappa^{\prime}-2 \lambda^{\prime} \kappa\right)}\right) B\right)
\end{aligned}
$$

Proof. Now, since again we defined α^{*} to be as the $N-R^{*}$ associated curve of α we can write three of our associative relations as usual which are
$\bullet<N, T^{*}>=<R^{*}, T^{*}>$,

- $<N, B^{*}>=<R^{*}, B^{*}>$,
$\bullet<N, N^{*}>=<R^{*}, N^{*}>=0$.
By using these we get
- $\frac{\lambda^{\prime}}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}}}=\frac{e}{\sqrt{e^{2}+f^{2}}}$,
- $\frac{\mathbf{L}}{\sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}}=\frac{f}{\sqrt{e^{2}+f^{2}}}$,
- $\frac{\mathbf{M}(\lambda \kappa-1)-\mathbf{K} \lambda \tau}{\sqrt{(-\lambda \kappa+1)^{2}+\left(\lambda^{\prime}\right)^{2}+(\lambda \tau)^{2}} \sqrt{\mathbf{K}^{2}+\mathbf{L}^{2}+\mathbf{M}^{2}}}=0$.

When substituted the above expressions into (29) and (31) the proof is complete.

Corollary 5. The only analytically solvable equation in (37) is the first one with the same assumption that α is helix like curve with constant curvatures. The possible solutions to that has already been discussed in Corollary (3).

Theorem 15. If α^{*} is the $N-R^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows.

$$
\begin{aligned}
\kappa^{*} & =\frac{e^{3} \mathbf{L}}{f\left(e^{2}+f^{2}\right)\left(\lambda^{\prime}\right)^{3}}, \\
\tau^{*} & =\frac{\mathbf{L}^{2}\left(e^{2}+f^{2}\right)}{f^{2}}\left(\begin{array}{r}
\mathbf{K}\left(\lambda \kappa^{3}+\lambda \kappa \tau^{2}-\lambda \kappa^{\prime \prime}-\kappa^{2}-3 \lambda^{\prime \prime} \kappa-3 \lambda^{\prime} \kappa^{\prime}\right) \\
+\mathbf{L}\left(-3 \lambda \kappa \kappa^{\prime}-3 \lambda \tau \tau^{\prime}-3 \kappa^{2} \lambda^{\prime}-3 \lambda^{\prime} \tau^{2}+\lambda^{\prime \prime \prime}+\kappa^{\prime}\right) \\
+\mathbf{M}\left(-\lambda \kappa^{2} \tau-\lambda \tau^{3}+\lambda \tau^{\prime \prime}+\kappa \tau+3 \lambda^{\prime \prime} \tau+3 \lambda^{\prime} \tau^{\prime}\right)
\end{array}\right)
\end{aligned}
$$

Proof. By recalling both the third derivative (35) and the relations (37) to substitute into curvatures in (2), we complete the proof.

5. Binormal Associated Curves

In this section, we define binormal associated curves such that the binormal vector of a given curve lies on the osculating, normal and rectifying plane of its mate.

Definition 7. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the binormal, B of α is linearly dependent with the vector, O^{*}, then we name the curve α^{*} as $B-O^{*}$ associated curve of α.

Theorem 16. If α^{*} is $B-O^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =\frac{1}{\sqrt{a^{2}+b^{2}}}\left(\frac{b}{\sqrt{1+\lambda^{2} \tau^{2}}} T-\frac{\lambda \tau b}{\sqrt{1+\lambda^{2} \tau^{2}}} N+a B\right) \\
N^{*} & =\frac{b}{\sqrt{a^{2}+b^{2}}}\left(-\frac{\lambda^{\prime} \mathbf{Y}}{a(\lambda \tau \mathbf{X}+\mathbf{Y})} T+\frac{\lambda \mathbf{X}}{\lambda \tau \mathbf{X}+\mathbf{Y}} N+B\right), \\
B^{*} & =-\frac{b \lambda^{\prime}}{a(\lambda \tau \mathbf{X}+\mathbf{Y})}(\mathbf{X} T+\mathbf{Y} N)
\end{aligned}
$$

where the coefficients \mathbf{X} and \mathbf{Y} are

$$
\begin{aligned}
& \mathbf{X}=-\lambda \tau\left(-\lambda \tau^{2}+\lambda^{\prime \prime}\right)-\lambda^{\prime}\left(-\lambda \tau^{\prime}-2 \lambda^{\prime} \tau+\kappa\right) \\
& \mathbf{Y}=\lambda \tau^{2}-\lambda^{\prime \prime}+\lambda^{\prime} \lambda \tau \kappa
\end{aligned}
$$

Proof. Since α and α^{*} are defined as $B-O^{*}$ associated curves, we write

$$
\begin{equation*}
\alpha^{*}=\alpha+\lambda B . \tag{38}
\end{equation*}
$$

By differentiating the relation (38), using the Frenet formulae given in (3) and taking the norm, we have:

$$
\begin{equation*}
T^{*}=\frac{T-\lambda \tau N+\lambda^{\prime} B}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}}} \tag{39}
\end{equation*}
$$

Next taking the second derivative of the equation (38) and referring again to (3) result the following relation.

$$
\alpha^{* \prime \prime}=(\lambda \tau \kappa) T+\left(-\lambda \tau^{\prime}-2 \lambda^{\prime} \tau+\kappa\right) N+\left(-\lambda \tau^{2}+\lambda^{\prime \prime}\right) B
$$

The cross production of $\alpha^{* \prime}$ and $\alpha^{* \prime \prime}$ leads us the following form,

$$
\alpha^{* \prime} \times \alpha^{* \prime \prime}=\mathbf{X} T+\mathbf{Y} N+\mathbf{Z} B
$$

where \mathbf{X}, \mathbf{Y} and \mathbf{Z} are assigned to be as

$$
\begin{align*}
& \mathbf{X}=-\lambda \tau\left(-\lambda \tau^{2}+\lambda^{\prime \prime}\right)-\lambda^{\prime}\left(-\lambda \tau^{\prime}-2 \lambda^{\prime} \tau+\kappa\right) \\
& \mathbf{Y}=\lambda \tau^{2}-\lambda^{\prime \prime}+\lambda^{\prime} \lambda \tau \kappa \tag{40}\\
& \mathbf{Z}=-\lambda \tau^{\prime}-2 \lambda^{\prime} \tau+\kappa+\lambda^{2} \tau^{2} \kappa
\end{align*}
$$

for the sake of simplicity. Note that the norm, $\left\|\alpha^{* \prime} \times \alpha^{* \prime \prime}\right\|=\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}$. By referring again the definitions given by (1), we simply calculate N^{*} and B^{*} as

$$
\begin{align*}
N^{*} & =\frac{\left(\mathbf{Y} \lambda^{\prime}+\mathbf{Z} \lambda \tau\right) T+(-\mathbf{X} \lambda+\mathbf{Z}) N+(-\mathbf{X} \lambda \tau-\mathbf{Y}) B}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}} \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}} \tag{41}\\
B^{*} & =\frac{\mathbf{X} T+\mathbf{Y} N+\mathbf{Z} B}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}}
\end{align*}
$$

The intuitive idea is as same as before. Since we defined α^{*} to be as the $B-O^{*}$ associated curve of α we can write that

- $<B, T^{*}>=<O^{*}, T^{*}>$,
- $<B, N^{*}>=<O^{*}, N^{*}>$,
- $<B, B^{*}>=<O^{*}, B^{*}>=0$.

By using these together with the relations (4) and (39) we write

- $\frac{\lambda^{\prime}}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}}}=\frac{a}{\sqrt{a^{2}+b^{2}}}$,
- $\frac{-\mathbf{X} \lambda \tau-\mathbf{Y}}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}} \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}}=\frac{b}{\sqrt{a^{2}+b^{2}}}$,
- $\frac{\mathbf{Z}}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}}=0$.

Substituting these relations into (39) and (41), we complete the proof.
Corollary 6. If τ is taken to be constant, then from the first relation given in 42) we can derive the following:

$$
\lambda^{\prime}\left(\lambda^{\prime \prime}-\lambda \frac{a^{2}}{b^{2}} \tau^{2}\right)=0
$$

This relation holds either $\lambda^{\prime}=0$, correspondingly that λ is constant or

$$
\lambda=c_{1} e^{\frac{a \tau}{b}}+c_{2} e^{-\frac{a \tau}{b}}
$$

as a result of the solution of second order differential equation, where c_{1} and c_{2} are the integration constants. If λ is taken to be constant then by the first relation of (42) $a=0$, resulting that $O^{*}=N^{*}$. We remind that this is the definition of Mannheim curves.
On the other hand, when considered the third equation in (42) and recall (40), we have the following

$$
\mathbf{Z}=-\lambda \tau^{\prime}-2 \lambda^{\prime} \tau+\kappa+\lambda^{2} \tau^{2} \kappa=0
$$

Rearranging this equation by dividing each term with (-2τ) results

$$
\begin{equation*}
\lambda^{\prime}+\lambda^{2}\left(\frac{-\tau \kappa}{2}\right)+\lambda\left(\frac{\tau^{\prime}}{2 \tau}\right)-\frac{\kappa}{2 \tau}=0 \tag{43}
\end{equation*}
$$

which is clearly a Riccati type of differential equation. If $\lambda=\lambda_{1}$ is a particular solution for (43) then we have a general solution by substituting $\lambda=\lambda_{1}+\frac{1}{\mu}$, that converts the Riccati equation into the following first order linear differential equation:

$$
\begin{equation*}
\mu^{\prime}-\left(2 \lambda_{1}\left(\frac{-\tau \kappa}{2}\right)+\left(\frac{\tau^{\prime}}{2 \tau}\right)\right) \mu=\left(\frac{-\tau \kappa}{2}\right) \tag{44}
\end{equation*}
$$

where μ is an arbitrary function of the parameter, s. The solution for this 44) can be done by following the steps given in the proof of Theorem (3).

Theorem 17. If α^{*} is the $B-O^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows:

$$
\begin{aligned}
\kappa^{*}= & -\frac{a^{4}(\mathbf{X} \lambda \tau+\mathbf{Y})}{\left(\lambda^{\prime}\right)^{2} b\left(a^{2}+b^{2}\right) \sqrt{a^{2}+b^{2}}} \\
\tau^{*}= & \frac{b^{2}\left(\lambda^{\prime}\right)^{2}}{a^{2}(\mathbf{X} \lambda \tau+\mathbf{Y})^{2}}\left(\mathbf{X}\left(\lambda \tau \kappa^{\prime}+3 \lambda^{\prime} \tau \kappa+2 \lambda \tau^{\prime} \kappa-\kappa^{2}\right)\right. \\
& \left.\quad+\mathbf{Y}\left(\lambda \tau^{3}+\lambda \tau \kappa^{2}-\lambda \tau^{\prime \prime}-3 \lambda^{\prime} \tau^{\prime}-3 \lambda^{\prime \prime} \tau+\kappa^{\prime}\right)\right)
\end{aligned}
$$

Proof. By taking the third derivative of (38) and using Frenet formulas, we have

$$
\begin{align*}
\alpha^{* \prime \prime \prime}= & \left(\lambda \tau \kappa^{\prime}+2 \lambda \tau^{\prime} \kappa+3 \lambda^{\prime} \tau \kappa-\kappa^{2}\right) T+\left(\lambda \tau \kappa^{2}+\lambda \tau^{3}-\lambda \tau^{\prime \prime}-3 \lambda^{\prime \prime} \tau-3 \lambda^{\prime} \tau^{\prime}+\kappa^{\prime}\right) N \\
& +\left(\lambda^{\prime \prime \prime}-3 \lambda \tau \tau^{\prime}-3 \lambda^{\prime} \tau^{2}+\kappa \tau\right) B \tag{45}
\end{align*}
$$

Now, using the relations given in (42) together with (45), to substitute into the definitions (2) lets us to complete the proof.

Definition 8. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the binormal, B of α is linearly dependent with the vector, P^{*}, then we name the curve α^{*} as $B-P^{*}$ associated curve of α.

Theorem 18. If α^{*} is $B-P^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =\frac{1}{\sqrt{1+\lambda^{2} \tau^{2}}} T-\frac{\lambda \tau}{\sqrt{1+\lambda^{2} \tau^{2}}} N, \\
N^{*} & =\frac{1}{\sqrt{c^{2}+d^{2}}}\left(\frac{d \lambda \tau}{\sqrt{1+\lambda^{2} \tau^{2}}} T-\frac{d\left(\lambda^{3} \tau^{3}-\left(-\lambda \tau^{\prime}+\kappa+\lambda^{2} \tau^{2}\right)\right)}{\left(-\lambda \tau^{\prime}+\kappa+\lambda^{2} \tau^{2}\right) \sqrt{1+\lambda^{2} \tau^{2}}} N+c B\right), \\
B^{*} & =\frac{1}{\sqrt{c^{2}+d^{2}}}\left(-\frac{c \lambda \tau}{\sqrt{1+\lambda^{2} \tau^{2}}} T-\frac{c}{\sqrt{1+\lambda^{2} \tau^{2}}} N+d B\right) .
\end{aligned}
$$

Proof. Now, since again we defined α^{*} to be as the $B-P^{*}$ associated curve of α we can write three of our associative relations as usual which are

- $<B, N^{*}>=<P^{*}, N^{*}>$,
- $<B, B^{*}>=<P^{*}, B^{*}>$,
$\bullet<B, T^{*}>=<P^{*}, T^{*}>=0$.
These relations this time result the following three equations
- $\frac{-\mathbf{X} \lambda \tau-\mathbf{Y}}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}} \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}}=\frac{c}{\sqrt{c^{2}+d^{2}}}$,
- $\frac{\mathbf{Z}}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}}=\frac{d}{\sqrt{c^{2}+d^{2}}}$,
- $\frac{\lambda^{\prime}}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}}}=0$.

When substituted these relations, (46) in (39) and (41), we complete the proof.
Corollary 7. When taken into account the third relation of (46) we conclude that if the binormal vector of a given curve is linearly dependent with the unit vector lying on the normal plane of its mate, then the distance between these curves is constant.

Theorem 19. If α^{*} is the $B-P^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows.

$$
\begin{aligned}
& \kappa^{*}=-\frac{d^{2} \sqrt{c^{2}+d^{2}}\left(\lambda \tau^{2}\left(1+\lambda^{2} \tau^{2}\right)\right)^{3}}{c^{3}\left(-\lambda \tau^{\prime}+\kappa+\lambda^{2} \tau^{2}\right)^{2}}, \\
& \tau *= \frac{d^{2}\left(\lambda^{2} \tau^{3}\left(\lambda \tau \kappa^{\prime}+2 \tau^{\prime} \kappa \lambda-\kappa^{2}\right)+\lambda \tau^{2}\left(\lambda \tau \kappa^{2}+\lambda \tau^{3}-\tau^{\prime \prime} \lambda+\kappa^{\prime}\right)\right.}{\left.+\left(-\lambda \tau^{\prime}+\kappa+\lambda^{2} \tau^{2}\right)\left(-3 \tau^{\prime} \tau \lambda+\kappa \tau\right)\right)} \\
&\left(c^{2}+d^{2}\right)\left(-\lambda \tau^{\prime}+\kappa+\lambda^{2} \tau^{2}\right)^{2}
\end{aligned}
$$

Proof. By substituting the relations given in (37) and the third derivative (45) into the definitions given in (2), we complete the proof.

Definition 9. Let $\alpha(s): I \subset \Re \rightarrow \Re^{3}$ be a unit speed curve and α^{*} be any regular curve. If the binormal, B of α is linearly dependent with the vector, R^{*}, then we name the curve α^{*} as $B-R^{*}$ associated curve of α.

Theorem 20. If α^{*} is $B-R^{*}$ associated curve of α, then the relationship of the corresponding Frenet frames of $\left(\alpha, \alpha^{*}\right)$ pair is given by the following,

$$
\begin{aligned}
T^{*} & =\frac{1}{\sqrt{e^{2}+f^{2}}}\left(\frac{f}{\sqrt{1+\lambda^{2} \tau^{2}}} T-\frac{\lambda \tau f}{\sqrt{1+\lambda^{2} \tau^{2}}} N+e B\right) \\
N^{*} & =\frac{e f}{\sqrt{e^{2}+f^{2}}}\left(\frac{\mathbf{Y} \lambda^{\prime}+\mathbf{Z} \lambda \tau}{\mathbf{Z} \lambda^{\prime}} T+\frac{-\mathbf{X} \lambda+\mathbf{Z}}{\mathbf{Z} \lambda^{\prime}}\right) \\
B^{*} & =\frac{f}{\sqrt{e^{2}+f^{2}}}\left(\frac{\mathbf{X}}{\mathbf{Z}} T+\frac{\mathbf{Y}}{\mathbf{Z}} N+B\right) .
\end{aligned}
$$

Proof. Now, since again we defined α^{*} to be as the $B-R^{*}$ associated curve of α we can write three of our associative relations as usual which are

- $<B, T^{*}>=<R^{*}, T^{*}>$,
- $<B, B^{*}>=<R^{*}, B^{*}>$,
- $<B, N^{*}>=<R^{*}, N^{*}>=0$.

These relations this time result the following three equations

$$
\begin{align*}
& \bullet \frac{\lambda^{\prime}}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}}}=\frac{e}{\sqrt{e^{2}+f^{2}}} \\
& \bullet \frac{\mathbf{Z}}{\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}}=\frac{f}{\sqrt{e^{2}+f^{2}}} \tag{47}\\
& \bullet \frac{-\mathbf{X} \lambda \tau-\mathbf{Y}}{\sqrt{1+\lambda^{2} \tau^{2}+\left(\lambda^{\prime}\right)^{2}} \sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}+\mathbf{Z}^{2}}}=0
\end{align*}
$$

For the last time when substituted (47) into (39) and (41), the proof is complete.
Corollary 8. The only analytically solvable equation is the first one of 47) with the same assumption given in Corollary (6). The possible solutions can be get by following the same steps as well.

Theorem 21. If α^{*} is the $B-R^{*}$ associated curve of α, then the curvature, κ^{*} and the torsion, τ^{*} of α^{*} are given as follows.

$$
\begin{aligned}
\kappa^{*} & =\frac{\mathbf{Z} e^{3}}{f\left(e^{2}+f^{2}\right)\left(\lambda^{\prime}\right)^{3}}, \\
\tau^{*} & =\frac{f^{2}}{\mathbf{Z}^{2}\left(e^{2}+f^{2}\right)}\left(\begin{array}{c}
\mathbf{X}\left(\lambda \tau \kappa^{\prime}+2 \lambda \tau^{\prime} \kappa+3 \lambda^{\prime} \tau \kappa-\kappa^{2}\right) \\
+\mathbf{Y}\left(\lambda \tau \kappa^{2}+\lambda \tau^{3}-\lambda \tau^{\prime \prime}-3 \lambda^{\prime \prime} \tau-3 \lambda^{\prime} \tau^{\prime}+\kappa^{\prime}\right) \\
+\mathbf{Z}\left(-3 \lambda \tau \tau^{\prime}-3\left(\lambda^{\prime}\right) \tau^{2}+\kappa \tau+\lambda^{\prime \prime \prime}\right)
\end{array}\right)
\end{aligned}
$$

Proof. Recall the relations (45) and (47) and substitute these in (2), the proof is complete.

Author Contribution Statements All authors jointly worked on the results and findings. They both read and approved the final manuscript.

Declaration of Competing Interests There is no competing interests to declare among the authors.

References

[1] Bertrand, J., Mémoire sur la théorie des courbes à double courbure, Journal de Mathématiques Pures et Appliquées 15 (1850), 332-350.
[2] Mannheim, A., De l'emploi de la courbe représentative de la surface des normales principales d'une courbe gauche pour la démonstration de propriétés relatives à cette courbure, C.R. Comptes Rendus des Séances de l'Académie des Sciences, 86 (1878), 1254-1256.
[3] O'Neill, B., Elementary differential geometry, Academic Press Inc., New York, 1966.
[4] Liu, H., Wang, F., Mannheim partner curves in 3-space, Journal of Geometry 88(1-2) (2008), 120-126. https://doi.org/10.1007/s00022-007-1949-0
[5] Menninger, T., Characterization of the slant helix as successor curve of the general helix, International Electronic Journal of Geometry, 7(2) (2014), 84-91. https://doi.org/10.36890/iejg. 593986
[6] Kazaz, M., Uğurlu, H. H., Önder, M., Oral, S., Bertrand partner D- curves in the Euclidean 3-space E^{3}, Afyon Kocatepe University Journal of Science and Engineering, 16(1) (2016), 76-83. https://doi.org/10.5578/fmbd. 25270
[7] Kaya, O., Onder, M., New partner curves in the Euclidean 3-space, International Journal of Geometry 6(2) (2017), 41-50.
[8] Kaya, O., Önder, M., C-partner curves and their applications, Differential GeometryDynamical Systems 19 (2017), 64-74.
[9] Körpınar, T., Sarı aydın, M. T., Turhan, E., Associated curves according to Bishop frame in Euclidean 3 space, Advanced Modeling and Optimization, 15(3) (2013), 713-717.
[10] Masal, M., Azak, A. Z., Mannheim B-curves in the Euclidean 3-space E ${ }^{3}$, Kuwait Journal of Science, 44(1) (2017), 36-41.
[11] Yılmaz, B., Has, A., Alternative partner curves in the Euclidean 3-space, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1) (2020), 900-909. https://doi.org/10.31801/cfsuasmas. 538177
[12] Choi, J. H., Kim, Y. H., Associated curves of a Frenet curve and their applications, Applied Mathematics and Computation, 218(18) (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
[13] Şahiner, B., Direction curves of principal normal indicatrix of a curve, Journal of Technical Sciences, 8(2) (2018), 46-54.
[14] Şahiner, B., Direction curves of tangent indicatrix of a curve, Applied Mathematics and Computation, 343 (2019), 273-284. https://doi.org/10.1016/j.amc.2018.09.021

■

——
प

■

\qquad

TIMELIKE LOXODROMES ON LORENTZIAN HELICOIDAL SURFACES IN MINKOWSKI n-SPACE
${ }^{1}$,
1

2

3

Abstract.

\mathbb{E}_{1}^{n}

n

Introduction
Mathematics Subject Classification.
Keywords.
\square
-
(D)
(D)

PRELIMINARIES

$\mathbb{R}^{n} \quad \begin{aligned} & \mathbb{E}_{s}^{n} \\ & \left\{x, x, \ldots, x_{n} \mid x, x, \ldots, x_{n} \in \mathbb{R}\right\}\end{aligned}$

$$
d s \quad \sum_{i}^{n-s} d x_{i}-\sum_{j}^{n} d x_{j} .
$$

s \mathbb{E}^{n}
$v \quad \mathbb{E}^{n}$
$\langle v, v\rangle>\quad v$
v
$\|v\| \quad \sqrt{|\langle v, v\rangle|} \quad\langle v, v\rangle$
$v /$
$\alpha \quad I \subset \mathbb{R} \longrightarrow \mathbb{E}^{n}$
$\mathbb{E}^{n} \quad I$
n
s
α
α

M
\mathbb{E}^{n}
$\mathbf{x} u, v$
M

\mathbb{E}^{n}
Definition 1. Let x and y be vectors in \mathbb{E}^{n}. Then, we have the following statements:
for a spacelike vector x and a timelike vector y, there is a unique nonnegative real number θ such that

$$
\langle x, y\rangle \quad \pm\|x\|\| \| y \| \quad \theta
$$

The number θ is called Lorentzian timelike angle between x and y.
for timelike vectors x and y, there is a unique nonnegative real number θ such that

$$
\langle x, y\rangle \quad\|x\|\|y\| \quad \theta .
$$

The number θ is called Lorentzian timelike angle between x and y. Note that $\theta \quad$ if and only if x and y are positive scalar multiples of each other.

Helicoidal surface of type I. $\left\{e, e, \ldots, e_{n}\right\}$

Helicoidal surface of type II. $\quad\left\{e, e, \ldots, e_{n}\right\}$

β
P

ℓ

M
\mathbb{E}^{n}
$\mathbb{E}^{n} \quad x$

Helicoidal surface of type III.

$\left\{e, e, \ldots, \xi_{n-}, \xi_{n}\right\} \quad \mathbb{E}^{n} \quad\left\{e, e, \ldots, e_{n-}, e_{n}\right\}$
$\xi_{n-} \quad \overline{\sqrt{V}} e_{n}-e_{n-} \quad \xi_{n} \quad \overline{\sqrt{r}} e_{n} \quad e_{n-}$,
$\begin{array}{ccc}\left\langle\xi_{n-}, \xi_{n-}\right\rangle & \left\langle\xi_{n}, \xi_{n}\right\rangle & \left\langle\xi_{n-}, \xi_{n}\right\rangle- \\ n- & \mathbf{P} & \left\{e, e, \ldots, \xi_{n-}\right\}\end{array}$
$\left\{e, e, \ldots, e_{n-}, \xi_{n-}, \xi_{n}\right\}$
$\xrightarrow{ } \subset \mathbb{E}^{n}, \beta \quad u \quad x \quad u e \quad x \quad u e^{\ell} \quad \ldots$
\mathbb{E}_{n-}
$x^{\prime} u \quad x^{\prime} u \quad \ldots-x_{n-}^{\prime} u x_{n}^{\prime} u \quad \varepsilon \quad \varepsilon \quad \pm$
$H \quad u, v \quad x \quad u e \quad \sqrt{v x_{n}} u e \quad x \quad u e \quad \ldots \quad x_{n-} \quad$ u e_{n-}
$x_{n-} u \quad v x_{n} u \quad c v \xi_{n-} \quad x_{n} u \xi_{n}$
β
$\ell \quad M \quad \mathbb{E}^{n}$
x_{n}
\mathbb{E}^{n}

Remark 1. It can be easily seen that the helicoidal surfaces $M-M$ in \mathbb{E}^{n} defined by \square, \square and \square reduce to the rotational surfaces in \mathbb{E}^{n} for c.

Timelike Loxodrome on Timelike Helicoidal Surface of Type I in \mathbb{E}^{n}

$$
p \in M
$$

$$
\left\langle\alpha \quad t, m_{u}\right\rangle \varepsilon \frac{d u}{d t}-c x_{n}^{\prime} u \frac{d v}{d t}
$$

$$
\varepsilon\left(\frac{d u}{d t}\right)-c x_{n}^{\prime} u \frac{d u}{d t} \frac{d v}{d t} \quad x \quad u-c \quad\left(\frac{d v}{d t}\right)<
$$

$$
\begin{aligned}
& \text { M } \\
& \alpha t \quad H \quad u t, v t \\
& \mathbb{E}^{n} \quad \varepsilon x u-c \varepsilon x_{n}^{\prime} u< \\
& \begin{array}{rrrrrr}
H \quad u t, v t & & M & \mathbb{E}^{n} & \alpha \quad t \\
m & u & H
\end{array}
\end{aligned}
$$

Case i. M

$$
\begin{array}{cccc}
\square & \begin{array}{c}
\square \\
\\
\\
\\
\hline-\left(\frac{d u}{d t}\right) \\
c x_{n}^{\prime} u \frac{d u}{d t} \frac{d v}{d t}-x
\end{array} & \varepsilon \\
\frac{d u}{d t}-c x_{n}^{\prime} u \frac{d v}{d t} & \\
\hline
\end{array}
$$

Case ii. M

$$
\phi \quad-\frac{\frac{d u}{d t} c x_{n}^{\prime} u \frac{d v}{d t}}{\sqrt{\left(\frac{d u}{d t}\right) \quad c x_{n}^{\prime} u \frac{d u}{d t} \frac{d v}{d t}-x \quad u-c \quad\left(\frac{d v}{d t}\right)}} .
$$

Lemma 1. Let M be a timelike helicoidal surface of type I in \mathbb{E}^{n} defined by \square. Then, $\alpha \quad t \quad H \quad u t, v t \quad$ is a timelike loxodrome with u / \quad if and only if one of the following differential equations is satisfied:
for having a spacelike meridian,
$\begin{array}{lll}\phi & x & u-c\end{array}$
$c x_{n}^{\prime} u v-c$
$\phi x_{n}^{\prime} u u v$
$\phi u \quad$,
for having a timelike meridian,
$\phi \quad x \quad u-c$
$c x_{n}^{\prime} u v-c$
$\phi x_{n}^{\prime} u u v-$
$\phi u \quad$,
where ϕ is a nonnegative constant.
Theorem 1. A timelike loxodrome on a timelike helicoidal surface of type I in \mathbb{E}^{n} defined by \square is parametrized by $\alpha \quad u \quad H \quad u, v u$, where $v u$ is given by one of the following functions:
$v u \quad \pm \frac{\phi}{\phi} \int_{u_{0}}^{u} \frac{d \xi}{\sqrt{c-x \quad \xi}}$,
$v u \pm \frac{\phi}{\phi} \int_{u_{0}}^{u} \frac{d \xi}{\sqrt{c-x \quad \xi}}$,
for $\quad \phi \quad x \quad \xi-c \quad c x_{n}^{\prime} \xi /$,
$v u$

for

where ϕ is a nonnegative constant and $c>$ is a constant.

$$
\begin{aligned}
& \phi \quad x \quad u-c \\
& c x_{n}^{\prime} u\left(\frac{d v}{d u}\right)-c \\
& \phi x_{n}^{\prime} u \frac{d v}{d u} \\
& \begin{array}{lll}
\phi & x & u-c
\end{array} \\
& \text { c } x_{n}^{\prime} u \\
& c \quad \phi x_{n}^{\prime} u \frac{d v}{d u}- \\
& \phi \\
& v u \quad-\quad \int_{u_{0}}^{u} \frac{d \xi}{x_{n}^{\prime} \xi} \quad \begin{array}{l}
\phi \\
x
\end{array} \quad u-c \\
& \text { c } x_{n}^{\prime} u \\
& x_{n}^{\prime} u \quad \pm \frac{\phi_{0}}{c} \sqrt{c-x \quad u} \quad \phi \quad / \\
& c-x u> \\
& \text { M } \\
& \mathbb{E}^{n} \\
& v u \\
& \phi \quad x \quad u-c \\
& c x_{n}^{\prime} u\left(\frac{d v}{d u}\right)-c \\
& \phi x_{n}^{\prime} u \frac{d v}{d u}- \\
& \phi \quad x \quad u-c \\
& \text { c } x_{n}^{\prime} u \\
& c \quad \phi x_{n}^{\prime} u \frac{d v}{d u} \\
& \phi \\
& v u \quad-\frac{}{c} \int_{u_{0}}^{u} \frac{d \xi}{x_{n}^{\prime} \xi} \\
& \square \\
& \phi x_{n}^{\prime} u \frac{d v}{d u} \quad \phi \\
& \pm \frac{\phi_{0}}{c} \sqrt{c-x \quad u} \\
& \begin{array}{ccc}
x & u> & M \\
c & c & x_{n}^{\prime} u
\end{array} \quad \begin{array}{c}
\\
v u
\end{array} \\
& \phi \quad x_{n}^{\prime} u \\
& c \text { - } \\
& c \quad c x_{n}^{\prime} u /
\end{aligned}
$$

$\begin{array}{cc}\alpha & H \\ u\end{array}, v u \quad v u$
u
\mathbb{E}^{n}
M^{R}

$$
\begin{gathered}
H^{R} u, v \quad x \quad u \quad v, x \quad u \quad v, x \quad u, \ldots, x_{n-} \quad u, x_{n_{0}} \quad c v, \\
c / \quad x_{n_{0}}
\end{gathered}
$$

Corollary 1. A timelike loxodrome on a timelike right helicoidal surface of type I in \mathbb{E}^{n} defined by \square is parametrized by $\alpha^{R} u \quad H^{R} u, v u \quad$ where $v u$ is given by

$$
v u \quad \pm \quad \phi \int_{u_{0}}^{u} \frac{d \xi}{\sqrt{c-x \quad}}
$$

for constant $\phi>$.

Corollary 2. The length of a timelike loxodrome on a timelike right helicoidal surface of type I in \mathbb{E}^{n} defined by \square between two points u and u is given by

$$
L \quad\left|\frac{u-u}{\phi}\right|
$$

for constant $\phi>$.
Timelike Loxodrome on Timelike Helicoidal Surface of Type II in \mathbb{E}^{n}

ϕ

$$
p \in M
$$

$$
\left\langle\alpha \quad t, m_{u}\right\rangle \quad \varepsilon \frac{d u}{d t} \quad c x^{\prime} u \frac{d v}{d t}
$$

$$
\varepsilon\left(\frac{d u}{d t}\right) \quad c x^{\prime} u \frac{d u}{d t} \frac{d v}{d t} \quad c \quad x_{n} u \quad\left(\frac{d v}{d t}\right)<
$$

$m \quad u$
Case i. M

Lemma 2. Let M be a timelike helicoidal surface of type II in \mathbb{E}^{n} defined by \square. Then, $\alpha \quad t \quad H \quad u t, v t \quad$ is a timelike loxodrome with u / \quad if and only if one of the following differential equations is satisfied:
for having a spacelike meridian,
$\phi \quad x_{n} u \quad c$
$c x^{\prime} \quad u \quad v$
c
$\phi x^{\prime} u u v$
$\phi u \quad$,
for having a timelike meridian,
$\phi \quad x_{n} u \quad c$
$\begin{array}{cccccc}c & x^{\prime} & u & v & c\end{array}$
$\phi x^{\prime} u u v-$
$\phi u \quad$,
where ϕ is a nonnegative constant.
Theorem 2. A timelike loxodrome on a timelike helicoidal surface of type II in \mathbb{E}^{n} defined by \square is parametrized by $\alpha \quad u \quad H \quad u, v u$, where $v u$ is given by one of the following functions:
$v u \quad \int_{u_{0}}^{u} \frac{-c \quad \phi x^{\prime} \xi \pm \sqrt{ } \begin{array}{lllllll} & \phi & c & x^{\prime} & \xi & - & -x_{n} \xi \\ \phi & x_{n} \xi & c & c & x^{\prime} & \xi\end{array}}{l} d \xi$,
$v u \quad \int_{u_{0}}^{u} \frac{-c}{} \quad \phi x^{\prime} \xi \pm \sqrt{ } \begin{array}{lllllll} & \xi & x_{n} \xi & c & x^{\prime} & \xi \\ \phi & x_{n} \xi & c & c & x^{\prime} & \xi & \end{array} d \xi$,
where ϕ is a nonnegative constant.

$$
M^{R}
$$

Corollary 3. A timelike loxodrome on a timelike right helicoidal surface of type II in \mathbb{E}^{n} defined by \square is parametrized by $\alpha^{R} u \quad H^{R} u, v u$, where $v u$ is given by

$$
v u \quad \pm \quad \phi \int_{u_{0}}^{u} \frac{d \xi}{\sqrt{x_{n} \xi c}}
$$

and $c, \phi>$ are constants.

Corollary 4. The length of a timelike loxodrome on a timelike right helicoidal surface of type II in \mathbb{E}^{n} defined by \square between two points u and u is given by

$$
L \quad\left|\frac{u-u}{\phi}\right|
$$

where ϕ is a nonnegative constant.
Timelike Loxodrome on Timelike Helicoidal Surface of Type III in \mathbb{E}^{n}
\mathbb{E}^{n}

$$
M
$$

$g \quad \varepsilon d u-c x_{n}^{\prime} u d u d v \quad x_{n} u d v$.
$M \quad \mathbb{E}^{n} \quad \varepsilon x_{n} u-c x_{n}^{\prime} u<$
$\alpha t \quad H u t, v t$
$m \quad u \quad H \quad u, v$

v
$p \in M$

$$
\begin{aligned}
& \left\langle\alpha \quad t, m_{u}\right\rangle \varepsilon \frac{d u}{d t}-c x_{n}^{\prime} u \frac{d v}{d t} \\
& \varepsilon\left(\frac{d u}{d t}\right)-c x_{n}^{\prime} u \frac{d u}{d t} \frac{d v}{d t} \quad x_{n} u\left(\frac{d v}{d t}\right)<.
\end{aligned}
$$

$m \quad u$
Case i. M

$$
\phi \quad \pm \frac{\frac{d u}{d t}-c x_{n}^{\prime} u \frac{d v}{d t}}{\sqrt{-\left(\frac{d u}{d t}\right) \quad c x_{n}^{\prime} u \frac{d u}{d t} \frac{d v}{d t}-x_{n} u\left(\frac{d v}{d t}\right)}}
$$

Case ii. M

Lemma 3. Let M be a timelike helicoidal surface of type III in \mathbb{E}^{n} defined by \square. Then, $\alpha \quad t \quad H \quad u t, v t \quad$ is a timelike loxodrome with u / \quad if and only if one of the following differential equations is satisfied:
for having a spacelike meridian,
$\phi x_{n} u$
$c x_{n}^{\prime} u v-c$
$\phi x_{n}^{\prime} u u v$
$\phi u \quad$,
for having a timelike meridian,

$$
\phi x_{n} u \quad c x_{n}^{\prime} u \quad v-c \quad \phi x_{n}^{\prime} u u v-\quad \phi u
$$

where ϕ is a nonnegative constant.
Theorem 3. A timelike loxodrome on a timelike helicoidal surface of type III in \mathbb{E}^{n} defined by \square is parametrized by $\alpha u \quad H u, v u$, where $v u$ is given by one of the following functions:
$v u$

$$
\begin{aligned}
& \int_{u_{0}}^{u} \frac{c \quad \phi x_{n}^{\prime} \xi \pm \sqrt{\phi \quad c x_{n}^{\prime} \xi-x_{n} \xi}}{\phi x_{n} \xi \quad c x_{n}^{\prime} \xi} d \xi, \\
& \int_{u_{0}}^{u} \frac{c \quad \phi x_{n}^{\prime} \xi \pm \sqrt{\phi \quad x_{n} \xi \quad c x_{n}^{\prime} \xi}}{\phi x_{n} \xi \quad c x_{n}^{\prime} \xi} d \xi,
\end{aligned}
$$

$v u$
where ϕ is a nonnegative constant.

$$
\phi x_{n} u \quad c x_{n}^{\prime} u \quad v \quad v
$$

u
$\alpha \quad u$
$H u, v u$
$v u$

Visualization

Example 1. We consider the following spacelike profile curve:

$$
\beta \quad u \quad x \quad u,, x \quad u, \ldots, x_{n} u .
$$

Then, we have the following parametrization of timelike helicoidal surface M :

$$
\begin{array}{ccccccccc}
H & u, v & x & u & v, x & u & v, x & u, \ldots, x_{n-} u, x_{n} u & c v .
\end{array}
$$

By using (i) of Theorem 1, we have $v u \quad \pm-\phi_{0} \int_{u_{0}}^{u} \frac{d \xi}{\sqrt{c^{2}-x_{1}^{2} \xi}}$. If we choose $x \quad \xi \quad c k \quad \xi$ for $<k<$, thenv $u \quad \pm \frac{}{c} \phi_{0} \int_{u_{0}}^{u} \frac{d \xi}{\sqrt{-k^{2}{ }^{2} \xi}} \pm \frac{\phi_{0}}{c} F u, k$, where $F u, k$ is an elliptic integral of first kind (see [13]). Then, the parametrization of timelike loxodrome on timelike helicoidal surface M in Minkowski n-space is given by

| α | u | x | u | $v u, x \quad u$ | $v u, x$ | u, \ldots, x_{n-} | $u, x_{n} u$ | $c v u$ |
| ---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |,

Conclusion

n

Author Contribution Statements

Declaration of Competing Interests

Acknowledgements

References
 Math. Mag.
 J. Franklin Inst.
 J. Math. Anal. Appl.
 An. Ştiint. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat.
 Navig.
 Filomat
 \mathbb{E}^{4} Commun. Fac. Sci. Univ. Ank. Ser. A1, Math. Stat. Differ. Equ. Dyn. Syst.
 Appl.
 Math. E-Notes

Asian-Eur. J. Math.

Indian J. Pure Appl. Math.

Mediterr. J. Math

An. Acad. Bras. Ci
Phys. Rev. A

Proceedings of the 2009 International Technical Meeting of the Institute of Navigation

Ann. Mat. Pura Appl.

Amer. M. S. Bull.
"Our Sea"

J. Navig.

J. Navig.

Int. J. Mar. Navig. Saf. Sea
Transp.

Geom.
http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 71, Number 3, Pages 870-883 (2022)
DOI:10.31801/cfsuasmas. 1038097
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: December 19, 2021; Accepted: April 27, 2022

22	${ }_{\text {SERIES }}$ a

ROLE OF IDEALS ON σ-TOPOLOGICAL SPACES

Chhapikul MIAH ${ }^{1}$, MD. Monirul ISLAM ${ }^{2}$, Shyamapada MODAK ${ }^{3}$ and Sukalyan MISTRY ${ }^{4}$
${ }^{1}$ Sukanta Mahavidyalaya, Dhupguri, Jalpaiguri 735210, West Bengal, INDIA
${ }^{2}$ Kaliachak College, Sultanganj, Malda 732201, West Bengal, INDIA
${ }^{3}$ Department of Mathematics, University of Gour Banga, Mokdumpur, Malda 732103, West Bengal, INDIA
${ }^{4}$ Alipurduar University, Alipurduar 736121, West Bengal, INDIA

Abstract

In this writeup, we have discussed the role of ideals on σ-topological spaces. Using this idea, we have also studied and discussed two operators ()* ${ }^{* \sigma}$ and ψ_{σ}. We have extended this concept to a new generalized set and investigated some basic properties of these concepts using ()* $)^{* \sigma}$ and ψ_{σ} operators.

1. Introduction

In topological space, the idea of ideal was known by Kuratowski 7 and Vaidyanathswamy 13. After that, in the ideal topological space, local function was introduced and studied by Vaidyanathswamy. Njåstad 12 has introduced compatability of the topology with the help of an ideal. In 5,6 Jankovic and Hamlett introduced further the characteristics of ideal topological spaces and ψ-operator was introduced by them in 1990. A new type of topology from original ideal topological space was also introduced. In this new topological space, a Kuratowski-closure operator was defined using the local function. Also from ψ-operator, they proved that interior operator can be deduced in the new topological space. In 2007, using ψ-operator Modak and Bandhyopadhyay in 8 introduced generalized open sets. The idea of ideal m-space was introduced by Al-Omari and Noiri in 1, 2 and they also investigated two operators identical with ψ-operator and local function in 2012. Their

[^13]extensive works related to this topic can be found in 3,4 .
The idea of σ-topological space have been introduced and studied here. In this paper, ideal σ-topological space has been introduced and two set operators σ-local and ψ_{σ} and their properties have been studied. Finally σ-codense ideal, σ compatible ideal and $\psi_{\sigma}-C$ set using ψ_{σ} operator have been introduced. Further investigation of various properties of that knowledge have been studied.

2. Preliminaries

Related to this paper, we have discussed some definitions, examples and results in this article.

Definition 1. A family γ of subsets of a set T is called σ-topology if the following conditions are satisfied:
(i) $\emptyset, T \in \gamma$.
(ii) γ is closed under countable union.
(iii) γ is closed under finite intersection.

The couple (T, γ) is said to be a σ-topological space. The member of γ is called σ-open set in (T, γ) and the complement of σ-open set is called σ-closed set.

Note 1. Every topology on a non-empty set T is a σ-topology but every σ-topology on T may not be a topology. For an example, let $T=\mathbb{R}$, set of all real numbers and $\gamma=\{\emptyset, \mathbb{R}\} \cup\{S \subset \mathbb{R}: S$ is countable $\}$. Then γ is σ-topology on T. But $\bigcup_{p \in \mathbb{R} \backslash \mathbb{Q}}\{p\} \notin \gamma$, i.e, γ is not closed under arbitrary union. Hence γ is not a topology on $T=\mathbb{R}$.

Definition 2. A non-empty family J of subsets of T is called an ideal on T, if (i) $M \in J$ and $N \subset M$ implies $N \in J$ (heredity).
(ii) $M \in J$ and $N \in J$ imply $M \cup N \in J$ (finite additivity).

Definition 3. Let (T, γ) be a σ-topological space and $M \subset T$. The σ-interior and σ-closure of M in (T, γ) are defined as respectively:

$$
\cup\{V: V \subset M \text { and } V \in \gamma\} \text { and } \cap\{C: M \subset C \text { and } T \backslash C \in \gamma\}
$$

The σ-interior and σ-closure of M in (T, γ) are denoted as $\operatorname{Int}^{\sigma}(M)$ and $C l^{\sigma}(M)$ respectively.

Theorem 1. Let (T, γ) be a σ-topological space and M, N be two subsets of T, then (i) $p \in C l^{\sigma}(M)$ if and only if for any σ-open set V containing $p, V \cap M \neq \emptyset$.
(ii) If $M \subset N$ then $C l^{\sigma}(M) \subset C l^{\sigma}(N)$.

Proof. (i) Let $p \in C l^{\sigma}(M)$. If possible let there exists a σ-open set V containing p such that $V \cap M=\emptyset$. This implies $M \subset T \backslash V$. Since $T \backslash V$ is σ-closed in T
containing M, so $C l^{\sigma}(M) \subset T \backslash V$. This implies $C l^{\sigma}(M) \cap V=\emptyset$, which contradicts the fact that $p \in C l^{\sigma}(M) \cap V$. Thus if $p \in C l^{\sigma}(M)$, then for any σ-open set V containing $p, V \cap M \neq \emptyset$.
Conversely, let for any σ-open set V containing $\mathrm{p}, V \cap M \neq \emptyset$. If possible let $p \notin C l^{\sigma}(M)$. Then $p \in T \backslash C l^{\sigma}(M)=V($ say $)$. This implies $V \cap C l^{\sigma}(M)=\emptyset$ and hence $V \cap M=\emptyset$, as $M \subset C l^{\sigma}(M)$, which contradicts our assumption. Hence $p \in C l^{\sigma}(M)$.
(ii) Let $p \in C l^{\sigma}(M)$. Then for any σ-open set V containing $p, V \cap M \neq \emptyset$. This implies $V \cap N \neq \emptyset$, since $M \subset N$. Thus $p \in C l^{\sigma}(N)$. Hence $C l^{\sigma}(M) \subset C l^{\sigma}(N)$.

Theorem 2. Let (T, γ) be a σ-topological space and $M \subset T$, then $\operatorname{Int}^{\sigma}(M)=$ $T \backslash C l^{\sigma}(T \backslash M)$.

Proof. $C l^{\sigma}(T \backslash M)=C l^{\sigma}\left(M^{c}\right)=\cap\left\{F: M^{c} \subset F, F^{c} \in \gamma\right\}$ where $M^{c}=T \backslash M$ and $F^{c}=T \backslash F$. This implies $\left\{C l^{\sigma}(T \backslash M)\right\}^{c}=\cup\left\{F^{c}: M \supset F^{c}, F^{c} \in \gamma\right\}$. Thus $T \backslash C l^{\sigma}(T \backslash M)=I n t^{\sigma}(M)$. Hence the result.

Definition 4. Let (T, γ) be a σ-topological space and $M \subset T$. Then M is called a σ-neighbourhood of $p \in T$, if there exists $V \in \gamma$ such that $p \in V \subset M$.

Definition 5. Let (T, γ) be a σ-topological space and J be an ideal on T. Then the triplicate (T, γ, J) is called an ideal σ-topological space.
Definition 6. Let (T, γ, J) be an ideal σ-topological space. Then
$M^{*}(J, \gamma)=\{p \in T: M \cap V \notin J$ for every $V \in \gamma(p)\}$, where $\gamma(p)=\{V \in \gamma: p \in V\}$
is said to be the σ-local function of M with respect to J and γ.
When there is no confusion, we will write M^{J} or simply $M^{* \sigma}$ or $M^{*}(J, \gamma)$ and call it the " σ-local function of M ".

Example 1. Let $T=\{p, q, r\}, \gamma=\{\emptyset, T,\{p\},\{p, q\},\{p, r\}\}$ and $J=\{\emptyset,\{p\}\}$. Take $M=\{p, q\}$. Then $M^{* \sigma}=\{t \in T: M \cap V \notin J$ for every $V \in \gamma(t)\}=\{q\}$.

Theorem 3. Let (T, γ) be a σ-topological space with I and J ideals on T and let M and N be subsets of T. Then
(i) $\emptyset^{* \sigma}=\emptyset$.
(ii) $\left(M^{* \sigma}\right)^{* \sigma} \subset M^{* \sigma}$.
(iii) If $M \subset N$ then $M^{* \sigma} \subset N^{* \sigma}$.
(iv) If $I_{1} \in I$ then $I_{1}^{* \sigma}=\emptyset$.
(v) $I \subset J$ implies $M^{* \sigma}(J) \subset M^{* \sigma}(I)$.
(vi) $M^{* \sigma} \cup N^{* \sigma}=(M \cup N)^{* \sigma}$.
(vii) $\left(\bigcup_{i} M_{i}\right)^{* \sigma}=\bigcup_{i}\left(M_{i}^{* \sigma}\right)$.
(viii) $\stackrel{i}{(} M \cap N)^{* \sigma} \stackrel{i}{\subset} M^{* \sigma} \cap N^{* \sigma}$.
(ix) $M^{* \sigma} \backslash N^{* \sigma}=(M \backslash N)^{* \sigma} \backslash N^{* \sigma}$.
(x) For any $O \in \gamma, O \cap(O \cap M)^{* \sigma} \subset O \cap M^{* \sigma}$.
(xi) For any $I_{1} \in I,\left(M \cup I_{1}\right)^{* \sigma}=M^{* \sigma}=\left(M \backslash I_{1}\right)^{* \sigma}$.
(xii) $M^{* \sigma}(I \cap J)=M^{* \sigma}(I) \cup N^{* \sigma}(J)$.
(xiii) $\gamma \cap I=\{\emptyset\}$ if and only if $T=T^{* \sigma}$.
(xiv) $M^{* \sigma} \subset C l^{\sigma}(M)$.

Proof. (i) Here $\emptyset^{* \sigma}=\{p \in T: \emptyset \cap V \notin I$ for every $V \in \gamma(\mathrm{p})\}$. But $\emptyset \cap V=\emptyset \in I$ for every $V \in \gamma(p)$. Thus $\emptyset^{* \sigma}$ contains no element of T. Therefore $\emptyset^{* \sigma}=\emptyset$.
(ii) Let $p \in\left(M^{* \sigma}\right)^{* \sigma}$. Then for every $V \in \gamma(p), V \cap M^{* \sigma} \notin I$ and hence $V \cap M^{* \sigma} \neq \emptyset$. Let $y \in V \cap M^{* \sigma}$. Then $V \in \gamma(y)$ and $y \in M^{* \sigma}$. This implies $V \cap M \notin I$ and hence $p \in M^{* \sigma}$. Therefore $\left(M^{* \sigma}\right)^{* \sigma} \subset M^{* \sigma}$.
(iii) Let $p \in M^{* \sigma}$. Then for every $V \in \gamma(p), V \cap M \notin I$. Since $M \subset N$, therefore $V \cap M \subset V \cap N$. Since $V \cap M \notin I$, so $V \cap N \notin I$. This implies $p \in N^{* \sigma}$ and so $M^{* \sigma} \subset N^{* \sigma}$.
(iv) Since $I_{1} \in I$. Then for every $V \in \gamma, V \cap I_{1} \subset I_{1} \in I$ and by heredity, $V \cap I_{1} \in I$. So $I_{1}^{* \sigma}=\left\{p \in T: I_{1} \cap V \notin I\right.$ for every $\left.V \in \gamma(\mathrm{p})\right\}$ implies $I_{1}^{* \sigma}=\emptyset$.
(v) Let $p \in M^{* \sigma}(J)$. Then for every $V \in \gamma(p), M \cap V \notin J$ implies $M \cap V \notin I$ (since $I \subset J)$. So $p \in M^{* \sigma}(I)$. Hence $M^{* \sigma}(J) \subset M^{* \sigma}(I)$.
(vi) We know $M \subset M \cup N$ and $N \subset M \cup N$. This implies $M^{* \sigma} \subset(M \cup N)^{* \sigma}$ and $N^{* \sigma} \subset(M \cup N)^{* \sigma}$ (by Theorem3(iii)). So $M^{* \sigma} \cup N^{* \sigma} \subset(M \cup N)^{* \sigma}$. For reverse inclusion, let $p \notin\left(M^{* \sigma} \cup N^{* \sigma}\right)$. Then $p \notin M^{* \sigma}$ and $p \notin N^{* \sigma}$. So there exist V, $O \in \gamma(p)$ such that $V \cap M \in I$ and $O \cap N \in I$. This implies $(V \cap M) \cup(O \cap N) \in I$ since I is additive.
Now

$$
\begin{aligned}
(V \cap M) \cup(O \cap N) & =[(V \cap M) \cup O] \cap[(V \cap M) \cup N] \\
& =(V \cup O) \cap(M \cup O) \cap(V \cup N) \cap(M \cup N) \\
& \supset(V \cap O) \cap(M \cup N)
\end{aligned}
$$

This implies $(V \cap O) \cap(M \cup N) \in I$ (since I is hereditary). Since $V \cap O \in \gamma(p)$, $p \notin(M \cup N)^{* \sigma}$. Contrapositively $p \in(M \cup N)^{* \sigma}$ implies $p \in M^{* \sigma} \cup N^{* \sigma}$. Thus $(M \cup N)^{* \sigma} \subset M^{* \sigma} \cup N^{* \sigma}$. Hence we get $M^{* \sigma} \cup N^{* \sigma}=(M \cup N)^{* \sigma}$.
(vii) Proof is obvious and hence omitted.
(viii) We know $M \cap N \subset M$ and $M \cap N \subset N$. This implies $(M \cap N)^{* \sigma} \subset M^{* \sigma}$ and $(M \cap N)^{* \sigma} \subset M^{* \sigma}$ (by Theorem 3 (iii)). So $(M \cap N)^{* \sigma} \subset M^{* \sigma} \cap N^{* \sigma}$.

Independent Proof: If possible let $(M \cap N)^{* \sigma}$ not be a subset of $M^{* \sigma} \cap N^{* \sigma}$. Then there exists $p \in(M \cap N)^{* \sigma}$ but $p \notin M^{* \sigma} \cap N^{* \sigma}$. Now $p \in(M \cap N)^{* \sigma}$ implies $V \cap(M \cap N) \notin I$ for every $V \in \gamma(p)$, i.e., $(V \cap M) \cap(V \cap N) \notin I$ for every $V \in \gamma(p)$. This implies $V \cap M \notin I$ and $V \cap N \notin I$ for every $V \in \gamma(p)$. So $p \in M^{* \sigma}$ and $p \in N^{* \sigma}$ which implies $p \in M^{* \sigma} \cap N^{* \sigma}$ which contradicts the fact that $p \notin M^{* \sigma} \cap N^{* \sigma}$. Hence $(M \cap N)^{* \sigma} \subset M^{* \sigma} \cap N^{* \sigma}$.
(ix) We know $M=(M \backslash N) \cup(M \cap N)$. This implies

$$
\begin{aligned}
M^{* \sigma} & =[(M \backslash N) \cup(M \cap N)]^{* \sigma} \\
& =(M \backslash N)^{* \sigma} \cup(M \cap N)^{* \sigma}(\text { by Theorem } 3 \text { (vii) }) \\
& \subset(M \backslash N)^{* \sigma} \cup N^{* \sigma}(\text { by Theorem } 3 \text { (iii)) }
\end{aligned}
$$

This implies $M^{* \sigma} \backslash N^{* \sigma} \subset(M \backslash N)^{* \sigma} \backslash N^{* \sigma}$.
Again $M \backslash N \subset M$. Then $(M \backslash N)^{* \sigma} \subset M^{* \sigma}$ and hence $(M \backslash N)^{* \sigma} \backslash N^{* \sigma} \subset$ $M^{* \sigma} \backslash N^{* \sigma}$. Thus we obtain $M^{* \sigma} \backslash N^{* \sigma}=(M \backslash N)^{* \sigma} \backslash N^{* \sigma}$
(x) We have $O \cap M \subset M$. This implies $(O \cap M)^{* \sigma} \subset M^{* \sigma}$ (by Theorem 3 (iv)). So $O \cap(O \cap M)^{* \sigma} \subset O \cap M^{* \sigma}$.
(xi) We have $M \subset\left(M \cup I_{1}\right)$. This implies $M^{* \sigma} \subset\left(M \cup I_{1}\right)^{* \sigma}$. Let $p \in\left(M \cup I_{1}\right)^{* \sigma}$. Then for every $V \in \gamma(p), V \cap\left(M \cup I_{1}\right) \notin I$. This implies $V \cap M \notin I$. If not, suppose that $V \cap M \in I$. Since $V \cap I_{1} \subset I_{1} \in I$, by heredity $V \cap I_{1} \in I$ and hence by finite additivity $(V \cap M) \cup\left(V \cap I_{1}\right) \in I$. This implies $V \cap\left(M \cup I_{1}\right) \in I$, a contradiction. Consequently $p \in M^{* \sigma}$. Therefore $\left(M \cup I_{1}\right)^{* \sigma} \subset M^{* \sigma}$. So $\left(M \cup I_{1}\right)^{* \sigma}=M^{* \sigma}$.
Also $M \backslash I_{1} \subset M$ implies $\left(M \backslash I_{1}\right)^{* \sigma} \subset M^{* \sigma}$. For the converse, let $p \in M^{* \sigma}$, we claim that $p \in\left(M \backslash I_{1}\right)^{* \sigma}$. If not, there exists $V \in \gamma(p)$ such that $V \cap\left(M \backslash I_{1}\right) \in I$. This implies $I_{1} \cup\left(V \cap\left(M \backslash I_{1}\right)\right) \in I$, since $I_{1} \in I$ (by finite additivity). Thus $I_{1} \cup(V \cap M) \in I$. So $V \cap M \in I$, a contradiction to the fact that $p \in M^{* \sigma}$. Hence $M^{* \sigma} \subset\left(M \backslash I_{1}\right)^{* \sigma}$. So $M^{* \sigma}=\left(M \backslash I_{1}\right)^{* \sigma}$. Consequently $\left(M \cup I_{1}\right)^{* \sigma}=M^{* \sigma}=$ $\left(M \backslash I_{1}\right)^{* \sigma}$.
(xii) We have $I \cap J \subset I$ and $I \cap J \subset J$. This implies $M^{* \sigma}(I \cap J) \supset M^{* \sigma}(I)$ and $M^{* \sigma}(I \cap J) \supset M^{* \sigma}(J)$ (by Theorem 3 (v)). So $M^{* \sigma}(I \cap J) \supset M^{* \sigma}(I) \cup M^{* \sigma}(J)$.
For reverse, let $p \in M^{* \sigma}(I \cap J)$. Then for every $V \in \gamma(p), V \cap M \notin I \cap J$. Thus $V \cap M \notin I$ or $V \cap M \notin J$. This implies $p \in M^{* \sigma}(I)$ or $p \in M^{* \sigma}(J)$. These imply $p \in M^{* \sigma}(I) \cup M^{* \sigma}(J)$ and hence $M^{* \sigma}(I) \cup M^{* \sigma}(J) \supset M^{* \sigma}(I \cap J)$. So $M^{* \sigma}(I \cap J)=M^{* \sigma}(I) \cup M^{* \sigma}(J)$.
(xiii) From definition $T^{* \sigma} \subset T$.

For reverse inclusion let $p \in T$. If possible let $p \notin T^{* \sigma}$. Then there exists $V \in \gamma(p)$ such that $V \cap T \in I$. This implies $V \in I$, a contradiction. Hence $T \subset T^{* \sigma}$. Thus $T=T^{* \sigma}$.
Conversely, suppose that $T=T^{* \sigma}$ holds. If possible let $V \in \gamma \cap I$ and $p \in V$. Then $V \cap T \subset V \in \gamma \cap I$. This implies $V \cap T \in \gamma \cap I$ and hence $V \cap T \in I$. Thus $p \notin T^{* \sigma}$, a contradiction.
(xiv) Let $p \in M^{* \sigma}$. Then for every $V \in \gamma(p), V \cap M \notin I$. This implies $V \cap M \neq \emptyset$, for all $p \in M^{* \sigma}$. Thus $p \in C l^{\sigma}(M)$. Hence $M^{* \sigma} \subset C l^{\sigma}(M)$.

Result 1. Let (T, γ) be a σ-topological space with J an ideal on T and $M \subset T$. Then $V \in \gamma, V \cap M \in J$ implies $V \cap M^{* \sigma}=\emptyset$.

Proof. If possible let $V \cap M^{* \sigma} \neq \emptyset$ and let $p \in V \cap M^{* \sigma}$. This implies $p \in V$ and for all $N_{p} \in \gamma(p)$ such that $N_{p} \cap M \notin J$. Since $p \in V \in \gamma$ then $V \cap M \notin J$, which is a contradiction. Hence the result.

Result 2. Let (T, γ) be a σ-topological space with J an ideal on T. Then $(M \cup$ $\left.M^{* \sigma}\right)^{* \sigma} \subset M^{* \sigma}$ for all $M \in \wp(T)$.

Proof. Let $p \notin M^{* \sigma}$. Then there exists $V_{p} \in \gamma(p)$ such that $V_{p} \cap M \in J$. This implies $V_{p} \cap M^{* \sigma}=\emptyset$. This implies $V_{p} \cap\left(M \cup M^{* \sigma}\right)=\left(V_{p} \cap M\right) \cup\left(V_{p} \cap M^{* \sigma}\right)=V_{p} \cap M \in J$. Thus $p \notin\left(M \cup M^{* \sigma}\right)^{* \sigma}$. Hence $\left(M \cup M^{* \sigma}\right)^{* \sigma} \subset M^{* \sigma}$.

Theorem 4. Let (T, γ) be a σ-topological space with J an ideal on T. Then the operator $C l^{* \sigma}: \wp(T) \rightarrow \wp(T)$ defined by $C l^{* \sigma}(M)=M \cup M^{* \sigma}$ for all $M \in \wp(T)$, is a Kuratowski closure operator and it generates a σ-topology $\gamma^{*}(J)=\{M \in \wp(T)$: $\left.C l^{* \sigma}\left(M^{c}\right)=M^{c}\right\}$ which is finer than γ.

Proof. (i) Since $\emptyset^{* \sigma}=\emptyset$, then $C l^{* \sigma}(\emptyset)=\emptyset \cup \emptyset^{* \sigma}=\emptyset \cup \emptyset=\emptyset$.
(ii) $C l^{* \sigma}(M)=M \cup M^{* \sigma}$. This implies $M \subset C l^{* \sigma}(M)$.
(iii) $C l^{* \sigma}(M \cup N)=(M \cup N) \cup(M \cup N)^{* \sigma}=(M \cup N) \cup\left(M^{* \sigma} \cup N^{* \sigma}\right)=$ $\left(M \cup M^{* \sigma}\right) \cup\left(N \cup N^{* \sigma}\right)=C l^{* \sigma}(M) \cup C l^{* \sigma}(N)$.
(iv) Let $M, N \subset T$ with $M \subset N$. Then $C l^{* \sigma}(M)=M \cup M^{* \sigma} \subset N \cup N^{* \sigma}=$ $C l^{* \sigma}(N)$. This implies $C l^{* \sigma}(M) \subset C l^{* \sigma}(N)$. We have $M \subset C l^{* \sigma}(M)$. This implies $C l^{* \sigma}(M) \subset C l^{* \sigma}\left(C l^{* \sigma}(M)\right)$. But $C l^{* \sigma}\left(C l^{* \sigma}(M)\right)=C l^{* \sigma}\left(M \cup M^{* \sigma}\right)=$ $\left(M \cup M^{* \sigma}\right) \cup\left(M \cup M^{* \sigma}\right)^{* \sigma} \subset\left(M \cup M^{* \sigma}\right) \cup M^{* \sigma}=M \cup M^{* \sigma}=C l^{* \sigma}(M)$. Hence $C l^{* \sigma}\left(C l^{* \sigma}(M)\right)=C l^{* \sigma}(M)$. Consequently $C l^{* \sigma}(M)$ is a Kuratowski closure operator.
Now we have to show that $\gamma^{*}(J)=\left\{M \in \wp(T): C l^{* \sigma}\left(M^{c}\right)=M^{c}\right\}$ is a σ-topology on T.
Since $C l^{* \sigma}(\emptyset)=\emptyset$, then $\emptyset^{c} \in \gamma^{*}(J)$. This implies $T \in \gamma^{*}(J)$. Also since $T \subset$ $C l^{* \sigma}(T) \subset T$, then $C l^{* \sigma}(T)=T$. This implies $T^{c} \in \gamma^{*}(J)$. Hence $\emptyset \in \gamma^{*}(J)$
Let $M_{1}, M_{2}, \ldots, M_{n}, \ldots \in \gamma^{*}(J)$. Then $C l^{* \sigma}\left(M_{i}^{c}\right)=M_{i}^{c}$ for all $i \in \mathbb{N}$. Now $\bigcap_{i \in \mathbb{N}} M_{i}^{c} \subset M_{i}^{c}$ for all $i \in \mathbb{N}$. This implies $C l^{* \sigma}\left(\bigcap_{i \in \mathbb{N}} M_{i}^{c}\right) \subset C l^{* \sigma}\left(M_{i}^{c}\right)=M_{i}^{c}$ for all $i \in \mathbb{N}$. This implies $C l^{* \sigma}\left(\bigcap_{i \in \mathbb{N}} M_{i}^{c}\right) \subset\left(\bigcap_{i \in \mathbb{N}} M_{i}^{c}\right) \subset C l^{* \sigma}\left(\bigcap_{i \in \mathbb{N}} M_{i}^{c}\right)$. This implies $C l^{* \sigma}\left(\bigcap_{i \in \mathbb{N}} M_{i}^{c}\right)=\left(\bigcap_{i \in \mathbb{N}} M_{i}^{c}\right)$. Thus $C l^{* \sigma}\left(\bigcup_{i \in \mathbb{N}} M_{i}\right)^{c}=\left(\bigcup_{i \in \mathbb{N}} M_{i}\right)^{c}$. Hence $\bigcup_{i \in \mathbb{N}} M_{i} \in \gamma^{*}(J)$.
Therefore $\gamma^{*}(J)$ is closed under countable union.
Again let $M_{j} \in \gamma^{*}(J), j=1,2,3, \ldots n$. Then $C l^{* \sigma}\left(M_{j}^{c}\right)=M_{j}^{c}$ for all $j=1,2,3, \ldots n$.
Therefore $C l^{* \sigma}\left\{\left(\bigcap_{j=1}^{n} M_{j}\right)^{c}\right\}=C l^{* \sigma}\left(\bigcup_{j=1}^{n} M_{j}^{c}\right)=\bigcup_{j=1}^{n} C l^{* \sigma}\left(M_{j}^{c}\right)=\bigcup_{j=1}^{n}\left(M_{j}^{c}\right)=\left(\bigcap_{j=1}^{n} M_{j}\right)^{c}$.
This implies $\bigcap_{j=1}^{n} M_{j} \in \gamma^{*}(J)$. Therefore $\gamma^{*}(J)$ is closed under finite intersection.
Thus $\gamma^{*}(J)$ is a σ-topology on T.

Next from Theorem 3 (xiv), we have $M^{* \sigma} \subset C l^{\sigma}(M)$ implies $M \cup M^{* \sigma} \subset M \cup$ $C l^{\sigma}(M)=C l^{\sigma}(M)$ implies $C l^{* \sigma}(M) \subset C l^{\sigma}(M)$. Hence $\gamma \subset \gamma^{*}(J)$.

The member of $\gamma^{*}(J)$ is called $\sigma^{*}(J)$-open set or simply σ^{*}-open set and the complement of $\sigma^{*}(J)$-open set is called $\sigma^{*}(J)$-closed set or simply σ^{*}-closed set.
Result 3. Let (T, γ) be a σ-topological space. If $J=\{\emptyset\}$, then $\gamma=\gamma^{*}(J)$.
Proof. If $p \in C l^{\sigma}(M)$, then (by Theorem 1 (i)), $V_{p} \cap M \neq \emptyset$, for all $V_{p} \in \gamma(p)$. This implies $V_{p} \cap M \notin\{\emptyset\}=J$, for all $V_{p} \in \gamma(p)$ implies $p \in M^{* \sigma}$ implies $p \in$ $M \cup M^{* \sigma}=C l^{* \sigma}(M)$. Since p is an arbitrary member of $C l^{\sigma}(M)$, then $C l^{\sigma}(M) \subset$ $C l^{* \sigma}(M)$. Also by Theorem 3 (xiv), $M^{* \sigma} \subset C l^{\sigma}(M)$. This implies $M \cup M^{* \sigma} \subset$ $M \cup C l^{\sigma}(M)$ implies $C l^{* \sigma}(M) \subset C l^{\sigma}(M)$. Hence $C l^{* \sigma}(M)=C l^{\sigma}(M)$, for all $M \in \wp(T)$. Consequently $\gamma^{*}(J)=\gamma$ implies $\gamma=\gamma^{*}(\{\emptyset\})$.
Theorem 5. Let (T, γ) be a σ-topological space and J_{1}, J_{2} be two ideals on T. If $J_{1} \subset J_{2}$, then $\gamma^{*}\left(J_{1}\right) \subset \gamma^{*}\left(J_{2}\right)$.

Proof. Let $O \in \gamma^{*}\left(J_{1}\right)$. Then $C l_{J_{1}}^{* \sigma}\left(O^{c}\right)=O^{c} \Rightarrow O^{c} \cup O^{c^{* \sigma}}\left(J_{1}\right)=O^{c}$. This implies $O^{c^{* \sigma}}\left(J_{1}\right) \subset O^{c}$ implies $O^{c^{* \sigma}}\left(J_{2}\right) \subset O^{c^{* \sigma}}\left(J_{1}\right) \subset O^{c}$ (by Theorem $3(\mathrm{v})$). This implies $O^{c^{* \sigma}}\left(J_{2}\right) \cup O^{c}=O^{c}$ implies $C l_{J_{2}}^{* \sigma}\left(O^{c}\right)=O^{c}$ implies $O \in \gamma^{*}\left(J_{2}\right)$. Since $O \in \gamma^{*}\left(J_{1}\right)$ is arbitrary, then $\gamma^{*}\left(J_{1}\right) \subset \gamma^{*}\left(J_{2}\right)$.
Theorem 6. Let (T, γ) be a σ-topological space with J an ideal on T. Then
(i) $I \in J$ implies $I^{c} \in \gamma^{*}(J)$.
(ii) $M^{* \sigma}=C l^{* \sigma}\left(M^{* \sigma}\right)$, for all $M \in \wp(T)$.

Proof. : (i) We have for all $I \in J,(M \cup I)^{* \sigma}=M^{* \sigma}$. If we take $M=\emptyset$, then $I^{* \sigma}=\emptyset^{* \sigma}=\emptyset$, for all $I \in J$. Hence $C l^{* \sigma}(I)=I \cup I^{* \sigma}=I \cup \emptyset=I$. Therefore $I^{c} \in \sigma^{*}(J)$. This implies I is $\gamma^{*}(J)$-closed, for all $I \in J$.
(ii) We have $\left(M^{* \sigma}\right)^{* \sigma} \subset M^{* \sigma}$. This implies $M^{* \sigma}=M^{* \sigma} \cup\left(M^{* \sigma}\right)^{* \sigma}=C l^{* \sigma}\left(M^{* \sigma}\right)$. Hence $M^{* \sigma}$ is a $\sigma^{*}(J)$-closed.
Theorem 7. Let (T, γ) be a σ-topological space and $M \subset T$. Then M is σ^{*}-closed if and only if $M^{* \sigma} \subset M$.

Proof. If M is σ^{*}-closed, then $M=C l^{* \sigma}(M)=M \cup M^{* \sigma}$. This implies $M^{* \sigma} \subset M$. Conversely let $M^{* \sigma} \subset M$. This implies $M=M \cup M^{* \sigma}=C l^{* \sigma}(M)$. Hence M is σ^{*}-closed.

Theorem 8. Let $\left(T, \gamma_{1}\right)$ and $\left(T, \gamma_{2}\right)$ be two σ-topological spaces and J be an ideal on T. Then $\gamma_{1} \subset \gamma_{2}$ implies $M^{* \sigma}\left(J, \gamma_{2}\right) \subset M^{* \sigma}\left(J, \gamma_{1}\right)$.
Proof. Let $p \in M^{* \sigma}\left(J, \gamma_{2}\right)$. This implies $V_{p} \cap M \notin J$ for all $V_{p} \in \gamma_{2}(p)$ implies $V_{p} \cap M \notin J$ for all $V_{p} \in \gamma_{1}(p)$. This implies $p \in M^{* \sigma}\left(J, \gamma_{1}\right)$. Since p is an arbitrary element of $M^{* \sigma}\left(J, \gamma_{2}\right)$, then $M^{* \sigma}\left(J, \gamma_{2}\right) \subset M^{* \sigma}\left(J, \gamma_{1}\right)$.

Theorem 9. Let (T, γ) be a σ-topological space and J be an ideal on T. Then the collection $\beta(J, \gamma)=\{M \backslash I: M \in \gamma, I \in J\}$ is a basis for the σ-topology $\gamma^{*}(J)$.

Proof. Let $M \in \gamma^{*}(J)$ and $p \in M$. Then M^{c} is σ^{*}-closed, i.e, $C l^{* \sigma}\left(M^{c}\right)=M^{c}$ and hence $M^{c} \cup\left(M^{c}\right)^{* \sigma}=M^{c}$ implies $\left(M^{c}\right)^{* \sigma} \subset M^{c}$. This implies $p \notin\left(M^{c}\right)^{* \sigma}$ and there exists $V_{p} \in \gamma(p)$ such that $V_{p} \cap M^{c} \in J$. Take $K=V_{p} \cap M^{c}$, then $p \notin K$ and $K \in J$. Thus $p \in V_{p} \backslash K=V_{p} \cap K^{c}=V_{p} \cap\left(V_{p} \cap M^{c}\right)^{c}=V_{p} \cap\left(V_{p}^{c} \cup M\right)=$ $\left(V_{p} \cap V_{p}^{c}\right) \cup\left(V_{p} \cup M\right)=V_{p} \cap M \subset M$. Hence $p \in V_{p} \backslash K \subset M$, where $V_{p} \backslash K \in \beta(J, \gamma)$. Thus $\beta(J, \gamma)$ is an open base of $\gamma^{*}(J)$.

The example given below proves that $M^{* \sigma} \cap N^{* \sigma}=(M \cap N)^{* \sigma}$ is not satisfied in general.

Example 2. Let $T=\{p, q, r, s\}, \gamma=\{\emptyset, T,\{p\},\{s\},\{p, s\},\{q, s\},\{r, s\},\{p, r, s\},\{p, q, s\},\{q, r, s\}\}$, $J=\{\emptyset,\{p\}\}$. Then σ-open sets containing p are: $T,\{p\},\{p, s\},\{p, r, s\},\{p, q, s\}$; σ-open sets containing q are: $T,\{q, s\},\{p, q, s\},\{q, r, s\} ; \sigma$-open sets containing r are: $T,\{r, s\},\{p, r, s\},\{q, r, s\} ; \sigma$-open sets containing s are: $T,\{s\},\{p, s\},\{q, s\}$, $\{r, s\},\{p, q, s\},\{p, r, s\},\{q, r, s\}$. Take $M=\{p, q\}$ and $N=\{p, s\}$. Then $M^{* \sigma}=\{q\}$ and $N^{* \sigma}=\{q, r, s\}$ and hence $M^{* \sigma} \cap N^{* \sigma}=\{q\}$. Now $(M \cap N)^{* \sigma}=\{p\}^{* \sigma}=\emptyset$ and so $M^{* \sigma} \cap N^{* \sigma} \neq(M \cap N)^{* \sigma}$.

3. ψ_{σ}-Operator

In this part, we have introduced another set operator ψ_{σ} in (T, γ, J). This operator is as like similar of ψ-operator 5, 10, in ideal topological space.
Definition of ψ_{σ}-operator is given below:
Definition 7. Let (T, γ, J) be an ideal σ-topological space. An operator ψ_{σ} : $\wp(T) \rightarrow \gamma$ is defined as follows:
for every $M \in \wp(T), \psi_{\sigma}(M)=\{p \in T$: there exists a $V \in \gamma(p)$ such that $V \backslash M \in J\}$.

Observe that $(T \backslash M)^{* \sigma}=\{p \in T: V \cap(T \backslash M) \notin J$ for every $V \in \gamma(p)\}$.
This implies

$$
\begin{aligned}
T \backslash(T \backslash M)^{* \sigma} & =T \backslash\{p \in T: V \cap(T \backslash M) \notin J \text { for every } V \in \gamma(p)\} \\
& =\{p \in T: \exists V \in \gamma(p) \text { such that } V \cap(T \backslash M) \in J\} \\
& =\{p \in T: \exists V \in \gamma(p) \text { such that } V \backslash M \in J\} \\
& =\psi_{\sigma}(M) \\
\text { Hence } \psi_{\sigma}(M) & =T \backslash(T \backslash M)^{* \sigma} .
\end{aligned}
$$

Here we have to find out the value of $\psi_{\sigma}(M)$ of a set in σ-topological space.
Example 3. Let $T=\{p, q, r\},, \gamma=\{\emptyset, T,\{r\},\{p, r\},\{q, r\}\}, J=\{\emptyset,\{r\}\}$. Then for $M=\{p, q\}, \psi_{\sigma}(M)=T \backslash(T \backslash M)^{* \sigma}=T \backslash\{r\}^{* \sigma}=T \backslash \emptyset=T$.

The characteristics of the operator ψ_{σ} has been studied in the following results:
Theorem 10. Let (T, γ, J) be an ideal σ-topological space. Then the following properties hold:
(i) If $M \subset N$, then $\psi_{\sigma}(M) \subset \psi_{\sigma}(N)$.
(ii) If $M, N \in \wp(T)$, then $\psi_{\sigma}(M) \cup \psi_{\sigma}(N) \subset \psi_{\sigma}(M \cup N)$.
(iii) If $M, N \in \wp(T)$, then $\psi_{\sigma}(M) \cap \psi_{\sigma}(N)=\psi_{\sigma}(M \cap N)$.
(iv) If $M \subset T$, then $\psi_{\sigma}(M)=\psi_{\sigma}\left(\psi_{\sigma}(M)\right)$ if and only if $(T \backslash M)^{* \sigma} \subset\left((T \backslash M)^{* \sigma}\right)^{* \sigma}$.
(v) If $M \in J$, then $\psi_{\sigma}(M)=T \backslash T^{* \sigma}$.
(vi) If $M \subset T, J_{1} \in J$, then $\psi_{\sigma}\left(M \backslash J_{1}\right)=\psi_{\sigma}(M)$.
(vii) If $M \subset T, J_{1} \in J$, then $\psi_{\sigma}\left(M \cup J_{1}\right)=\psi_{\sigma}(M)$.
(viii) If $V \in \gamma$, then $V \subset \psi_{\sigma}(V)$.
(ix) If $(M \backslash N) \cup(N \backslash M) \in J$, then $\psi_{\sigma}(M)=\psi_{\sigma}(N)$.
(x) $\operatorname{Int}^{\sigma^{*}}(M)=M \cap \psi_{\sigma}(M)$.

Proof. (i) $M \subset N$ implies $(T \backslash M) \supset(T \backslash N)$. This implies $(T \backslash M)^{* \sigma} \supset(T \backslash N)^{* \sigma}$ (by Theorem 3 (iii)). This implies $T \backslash(T \backslash M)^{* \sigma} \subset T \backslash(T \backslash N)^{* \sigma}$. Hence $\psi_{\sigma}(M) \subset \psi_{\sigma}(N)$. (ii) We know $M \subset M \cup N$ and $N \subset M \cup N$. This implies $\psi_{\sigma}(M) \subset \psi_{\sigma}(M \cup N)$ and $\psi_{\sigma}(N) \subset \psi_{\sigma}(M \cup N)$ (by Theorem $\left.10(i)\right)$. Hence $\psi_{\sigma}(M) \cup \psi_{\sigma}(N) \subset \psi_{\sigma}(M \cup N)$. (iii) Since $M \cap N \subset M$ and $M \cap N \subset N$. This implies $\psi_{\sigma}(M \cap N) \subset \psi_{\sigma}(M)$ and $\psi_{\sigma}(M \cap N) \subset \psi_{\sigma}(N)$ (by Theorem 10 (i)). Hence $\psi_{\sigma}(M \cap N) \subset \psi_{\sigma}(M) \cap \psi_{\sigma}(N)$.

For reverse inclusion let $p \in \psi_{\sigma}(M) \cap \psi_{\sigma}(N)$. Then $p \in \psi_{\sigma}(M)$ and $p \in \psi_{\sigma}(N)$. Then there exist $V, O \in \gamma(p)$ such that $V \backslash M \in J$ and $O \backslash N \in J$. This implies $(V \backslash M) \cup(O \backslash N) \in J$, since J is finite additive. Now

$$
\begin{aligned}
(V \backslash M) \cup(O \backslash N) & =\left[\left(V \cap M^{c}\right) \cup O\right] \cap\left[\left(V \cap M^{c}\right) \cup N^{c}\right] \\
& =(V \cup O) \cap\left(M^{c} \cup O\right) \cap\left(V \cup N^{c}\right) \cap\left(M^{c} \cup N^{c}\right) \\
& \supset(V \cap O) \cap\left(M^{c} \cup N^{c}\right) \\
& =(V \cap O) \backslash(M \cap N)
\end{aligned}
$$

This implies $(V \cap O) \backslash(M \cap N) \in J$, since J is heredity. Since $V \cap O \in \gamma(p)$ then $p \in \psi_{\sigma}(M \cap N)$. Thus $\psi_{\sigma}(M) \cap \psi_{\sigma}(N) \subset \psi_{\sigma}(M \cap N)$. Hence we obtain $\psi_{\sigma}(M) \cap \psi_{\sigma}(N)=\psi_{\sigma}(M \cap N)$.
(iv) Let $\psi_{\sigma}(M)=\psi_{\sigma}\left(\psi_{\sigma}(M)\right)$. Then $T \backslash(T \backslash M)^{* \sigma}=T \backslash\left[T \backslash \psi_{\sigma}(M)\right]^{* \sigma}=$ $T \backslash\left[T \backslash\left\{T \backslash\left(T \backslash \psi_{\sigma}(M)\right)\right\}\right]^{* \sigma}$. This implies $(T \backslash M)^{* \sigma}=\left((T \backslash M)^{* \sigma}\right)^{* \sigma}$.

Conversely, suppose that $(T \backslash M)^{* \sigma}=\left((T \backslash M)^{* \sigma}\right)^{* \sigma}$ holds. Then $T \backslash(T \backslash M)^{* \sigma}=$ $T \backslash\left((T \backslash M)^{* \sigma}\right)^{* \sigma}=T \backslash\left[T \backslash\left\{T \backslash\left(T \backslash \psi_{\sigma}(M)\right)\right\}\right]^{* \sigma}$. This implies $\psi_{\sigma}(M)=T \backslash(T \backslash$ $\left.\psi_{\sigma}(M)\right)^{* \sigma}=\psi_{\sigma}\left(\psi_{\sigma}(M)\right)$.
(v) We have $\psi_{\sigma}(M)=T \backslash(T \backslash M)^{* \sigma}=T \backslash T^{* \sigma}$ (by Theorem 3 (xi)).
(vi) We have $T \backslash\left[T \backslash\left(M \backslash J_{1}\right)\right]^{* \sigma}=T \backslash\left[T \backslash\left(M \cap J_{1}^{c}\right)\right]^{* \sigma}=T \backslash\left[T \cap\left(M^{c} \cup J_{1}\right)\right]^{* \sigma}=$ $T \backslash\left[\left(T \cap M^{c}\right) \cup\left(T \cap J_{1}\right)\right]^{* \sigma}=T \backslash\left[(T \backslash M) \cup J_{1}\right]^{* \sigma}=T \backslash(T \backslash M)^{* \sigma}$ (by Theorem 3 (xi)). So $\psi_{\sigma}\left(M \backslash J_{1}\right)=\psi_{\sigma}(M)$.
(vii) We have $T \backslash\left[T \backslash\left(M \cup J_{1}\right)\right]^{* \sigma}=T \backslash\left[T \cap\left(M^{c} \cap J_{1}^{c}\right)\right]^{* \sigma}=T \backslash\left[(T \backslash M) \backslash J_{1}\right]^{* \sigma}=$ $T \backslash(T \backslash M)^{* \sigma}$ (by Theorem 3 $\left.(\mathrm{xi})\right)$. So $\psi_{\sigma}\left(M \cup J_{1}\right)=\psi_{\sigma}(M)$.
(viii) Let $p \in V$. Then $p \notin T \backslash V$ and hence $V \cap(T \backslash V)=\emptyset \in J$. Thus $p \notin(T \backslash V)^{* \sigma}$. This implies $p \in T \backslash(T \backslash V)^{* \sigma}$ and hence $p \in \psi_{\sigma}(V)$. So $V \subset \psi_{\sigma}(V)$.
(ix) Let $J_{1}=M \backslash N$ and $J_{2}=N \backslash M$. Since $J_{1} \cup J_{2} \in J$, then by heredity $J_{1}, J_{2} \in J$. Also $N=\left(M \backslash J_{1}\right) \cup J_{2}$. This implies $\psi_{\sigma}(N)=\psi_{\sigma}\left(\left(M \backslash J_{1}\right) \cup J_{2}\right)$. So $\psi_{\sigma}(N)=\psi_{\sigma}\left(\left(M \backslash J_{1}\right)\right.$ and hence $\psi_{\sigma}(N)=\psi_{\sigma}(M)$, (by Theorem 10 (vi) and (vii)).
(x) Let $p \in M \cap \psi_{\sigma}(M)$. Then $p \in M$ and $p \in \psi_{\sigma}(M)$. Thus $p \in M$ and there exists a $V_{p} \in \gamma(p)$ such that $V_{p} \backslash M \in J$ implies $V_{p} \backslash\left(V_{p} \backslash M\right)$ is a σ^{*}-open neighborhood of p and hence $p \in \operatorname{Int} t^{\sigma^{*}}(M)$. Hence $M \cap \psi_{\sigma}(M) \subset \operatorname{Int}^{\sigma^{*}}(M)$. Again, if $p \in \operatorname{Int} t^{\sigma^{*}}(M)$, then there exists a σ^{*}-open neighborhood $V_{p} \backslash I$ of p where $V_{p} \in \gamma$ and $I \in J$ such that $p \in V_{p} \backslash I \subset M$ which implies $V_{p} \backslash M \subset I$ and $V_{p} \backslash M \in J$. Hence $p \in M \cap \psi_{\sigma}(M)$. Hence $\operatorname{Int}^{\sigma^{*}}(M)=M \cap \psi_{\sigma}(M)$.

Note 2. We have $V \subset \psi_{\sigma}(V)$, for every $V \in \gamma$. But there exists a set M which is not σ-open set but satisfies $M \subset \psi_{\sigma}(M)$.

Example 4. Let $T=\{p, q, r\},, \gamma=\{\emptyset, T,\{r\},\{p, r\},\{q, r\}\}, J=\{\emptyset,\{r\}\}$. Then for $M=\{p, q\}, \psi_{\sigma}(M)=T \backslash(T \backslash M)^{* \sigma}=T \backslash\{r\}^{* \sigma}=T \backslash \emptyset=T$. Thus $M \subset \psi_{\sigma}(M)$ but M is not a σ-open set.

The example given below shows that $\psi_{\sigma}(M) \cup \psi_{\sigma}(N)=\psi_{\sigma}(M \cup N)$ does not hold in general.
Example 5. In Example 2 we consider $M=\{r, s\}$ and $N=\{q, r\}$. Then $\psi_{\sigma}(M)=$ $T \backslash\{p, q\}^{* \sigma}=T \backslash\{q\}=\{p, r, s\}$ and $\psi_{\sigma}(N)=T \backslash\{p, s\}^{* \sigma}=T \backslash\{q, r, s\}=\{p\}$. Therefore $\psi_{\sigma}(M) \cup \psi_{\sigma}(N)=\{p, r, s\}$ and $\psi_{\sigma}(M \cup N)=T \backslash\{p\}^{* \sigma}=T \backslash \emptyset=T$. Hence $\psi_{\sigma}(M) \cup \psi_{\sigma}(N) \neq \psi_{\sigma}(M \cup N)$.

Definition 8. Let γ be a σ-topological space on a non empty set T. If an ideal J satisfies the property $\gamma \cap J=\{\emptyset\}$ then the ideal J is called σ-codense ideal.

Theorem 11. Let (T, γ, J) be an ideal σ-topological space. Then the properties given below are equivalent.
(i) $\gamma \cap J=\{\emptyset\}$.
(ii) $\psi_{\sigma}(\emptyset)=\emptyset$.
(iii) If $J_{1} \in J$ then $\psi_{\sigma}\left(J_{1}\right)=\emptyset$.

Proof. $(i) \Rightarrow(i i)$: Let $\gamma \cap J=\{\emptyset\}$. Then $T=T^{* \sigma}$. Then $\psi_{\sigma}(\emptyset)=T \backslash(T \backslash \emptyset)^{* \sigma}=$ $T \backslash T^{* \sigma}=\emptyset$.
(ii) $\Rightarrow($ iii $)$: Let $\psi_{\sigma}(\emptyset)=\emptyset$ holds. Then $\psi_{\sigma}\left(J_{1}\right)=T \backslash\left(T \backslash J_{1}\right)^{* \sigma}=T \backslash T^{* \sigma}$ (by Theorem 3 (xi)) $=T \backslash(T \backslash \emptyset)^{* \sigma}=\psi_{\sigma}(\emptyset)=\emptyset$.
$($ iii $) \Rightarrow(i)$: Let $J_{1} \in J$ be such that $\psi_{\sigma}\left(J_{1}\right)=\emptyset$. Now $\psi_{\sigma}\left(J_{1}\right)=\emptyset$ implies $T \backslash\left(T \backslash J_{1}\right)^{* \sigma}=\emptyset$. This implies $T \backslash T^{* \sigma}=\emptyset$, since $J_{1} \in J$ (by Theorem 3 (xi)). Thus $T=T^{* \sigma}$. Hence $\gamma \cap J=\{\emptyset\}$.

4. σ-Compatible Ideal

In this section, we have studied a particular type of ideal and its several features. This ideal is as like similar of μ-compatible ideal 9 on supra topological space. This particular type of ideal is:

Definition 9. Let (T, γ, J) be an ideal σ-topological space. We say the σ-structure is σ-compatible with the ideal J denoted $\gamma \sim J$, if the condition holds: for every $M \subset T$, if for all $p \in M$, there exists $V \in \gamma(p)$ such that $V \cap M \in J$, then $M \in J$.

Theorem 12. Let (T, γ, J) be an ideal σ-topological space. Then $\gamma \sim J$ if and only if $\psi_{\sigma}(M) \backslash M \in J$ for every $M \subset T$.

Proof. Suppose $\gamma \sim J$. Observe that $p \in \psi_{\sigma}(M) \backslash M$ if and only if $p \notin M$ and there exists $V_{p} \in \gamma(p)$ such that $V_{p} \backslash M \in J$. Now for each $p \in \psi_{\sigma}(M) \backslash M$ and $V_{p} \in \gamma(p), V_{p} \cap\left(\psi_{\sigma}(M) \backslash M\right) \in J$ (by heredity) and hence $\left(\psi_{\sigma}(M) \backslash M\right) \in J$, since $\gamma \sim J$.
Conversely, suppose the given condition holds and $M \subset T$ and assume that for each $p \in M$, there exists $V_{p} \in \gamma(p)$ such that $V_{p} \cap M \in J$. Observe that $\psi_{\sigma}(T \backslash M) \backslash(T \backslash$ $M)=M \backslash M^{* \sigma}=\left\{p \in T\right.$: there exists $V_{p} \in \gamma(p)$ such that $\left.p \in V_{p} \cap M \in J\right\}$. Thus we have $M \subset \psi_{\sigma}(T \backslash M) \backslash(T \backslash M) \in J$ and hence $M \in J$, by heredity of J .

Example 6. Let $T=\{p, q\}, \gamma=\{\emptyset, T,\{p\},\{q\}\}, J=\{\emptyset,\{p\}\}$. Then $\emptyset^{* \sigma}=\emptyset,\{p\}^{* \sigma}=$ $\emptyset,\{q\}^{* \sigma}=\{q\}$ and $\{T\}^{* \sigma}=\{q\}$. Then $\psi_{\sigma}(\emptyset)=T \backslash T^{* \sigma}=\{p, q\} \backslash\{q\}=\{p\}$, $\psi_{\sigma}(\{p\})=T \backslash(T \backslash\{p\})^{* \sigma}=T \backslash\{q\}^{* \sigma}=T \backslash\{q\}=\{p\}, \psi_{\sigma}(\{q\})=T \backslash(T \backslash\{q\})^{* \sigma}=$ $T \backslash\{p\}^{* \sigma}=T \backslash \emptyset=T, \psi_{\sigma}(T)=T \backslash \emptyset^{* \sigma}=T \backslash \emptyset=T$. Then we see that $\psi_{\sigma}(\emptyset) \backslash \emptyset=$ $\{p\} \in J, \psi_{\sigma}(\{q\}) \backslash\{q\}=T \backslash\{q\}=\{p\} \in J, \psi_{\sigma}(\{p\}) \backslash\{p\}=\{p\} \backslash\{p\}=\emptyset \in J$ and $\psi_{\sigma}(T) \backslash T=T \backslash T=\emptyset \in J$. So $\gamma \sim J$.

Corollary 1. Let (T, γ, J) be an ideal σ-topological space with $\gamma \sim J$. Then $\psi_{\sigma}\left(\psi_{\sigma}(M)\right)=\psi_{\sigma}(M)$ for every $M \subset T$.

Proof. We know $\psi_{\sigma}(M) \subset \psi_{\sigma}\left(\psi_{\sigma}(M)\right)$. Also since $\gamma \sim J$, then for every $M \subset T$, $\psi_{\sigma}(M) \backslash M \in J$. This implies $\psi_{\sigma}(M) \backslash M=J_{1}$ for some $J_{1} \in J$. This implies $\psi_{\sigma}(M) \subset M \cup J_{1}$. Then $\psi_{\sigma}\left(\psi_{\sigma}(M)\right) \subset \psi_{\sigma}\left(M \cup J_{1}\right)=\psi_{\sigma}(M)$. Thus $\psi_{\sigma}\left(\psi_{\sigma}(M)\right)=$ $\psi_{\sigma}(M)$.
Example 7. Consider $T=\{p, q\}, \gamma=\{\emptyset, T,\{p\},\{q\}\}$ and $J=\{\emptyset,\{p\}\}$. Then by Example 6, $\gamma \sim J$ and $\psi_{\sigma}\left(\psi_{\sigma}(\phi)\right)=\psi_{\sigma}(\emptyset), \psi_{\sigma}\left(\psi_{\sigma}(\{p\})\right)=\psi_{\sigma}(\{p\}), \psi_{\sigma}\left(\psi_{\sigma}(\{q\})\right)=$ $\psi_{\sigma}(T)=T=\psi_{\sigma}(\{q\})$ and $\psi_{\sigma}\left(\psi_{\sigma}(T)\right)=\psi_{\sigma}(T)$

Newcomb in 11 has defined $M=N(\bmod J)$, if $(M \backslash N) \cup(N \backslash M) \in J$. Further, he studied several characteristics of $M=N(\bmod J)$. Here we shall observe that if $M=N(\bmod J)$ then $\psi_{\sigma}(M)=\psi_{\sigma}(N)$.
Now we define Baire set in (T, γ, J).

Definition 10. Let (T, γ, J) be an ideal σ-topological space. A subset M of T is called a Baire set with respect to γ and J denoted by $M \in \boldsymbol{B}_{r}(T, \gamma, J)$, if there exists a σ-open set $V \in \gamma$ such that $M=V(\bmod J)$.
Theorem 13. Let (T, γ, J) be an ideal σ-topological space with $\gamma \sim J$. If $V \cup O \in \gamma$ and $\psi_{\sigma}(V)=\psi_{\sigma}(O)$, then $V=O(\bmod J)$.

Proof. $V \in \gamma$ implies $V \subset \psi_{\sigma}(V)$ and hence $V \backslash O \subset \psi_{\sigma}(V) \backslash O=\psi_{\sigma}(O) \backslash O \in J$. By heredity of J, $V \backslash O \in J$. Similarly, $O \backslash V \in J$. Then $(V \backslash O) \cup(O \backslash V) \in J$, by finite additivity of J . So $V=O(\bmod J)$.

Clearly, $M=N(\bmod J)$ is an equivalence relation. In this favour, following theorem is observable:
Theorem 14. Let (T, γ, J) be an ideal σ-topological space with $\gamma \sim J$. If $M, N \in$ $\boldsymbol{B}_{r}(T, \gamma, J)$ and $\psi_{\sigma}(M)=\psi_{\sigma}(N)$. Then $M=N(\bmod J)$.

Proof. Let $V, O \in \gamma$ such that $M=V(\bmod J)$ and $N=O(\bmod J)$. Now $\psi_{\sigma}(M)=$ $\psi_{\sigma}(N)$ and $\psi_{\sigma}(N)=\psi_{\sigma}(O)$ (by Theorem $10(\mathrm{ix})$). Since $\psi_{\sigma}(M)=\psi_{\sigma}(V)$ implies that $\psi_{\sigma}(V)=\psi_{\sigma}(O)$, hence $V=O(\bmod J)$ (by Theorem 13). Hence $M=N$ $(\bmod J)$, by transitivity.
Theorem 15. Let (T, γ, J) be an ideal σ-topological space.
(i) If $N \in \boldsymbol{B}_{r}(T, \gamma, J) \backslash J$, then there exists $M \in \gamma \backslash\{\emptyset\}$ such that $N=M(\bmod J)$.
(ii) Let $\gamma \cap J=\{\emptyset\}$, then $N \in \boldsymbol{B}_{r}(T, \gamma, J) \backslash J$ if and only if there exists $M \in \gamma \backslash\{\emptyset\}$ such that $N=M(\bmod J)$.

Proof. (i) Let $N \in \mathbf{B}_{r}(T, \gamma, J) \backslash J$, then $N \in \mathbf{B}_{r}(T, \gamma, J)$. Now if there does not exist $M \in \gamma \backslash\{\emptyset\}$ such that $N=M(\bmod J)$, we have $N=\emptyset(\bmod J)$. This implies $N \in J$, which is a contradiction.
(ii) Here we shall prove converse part only. Let $M \in \gamma \backslash\{\emptyset\}$ such that $N=M$ $(\bmod J)$. Then $M=\left(N \backslash J_{2}\right) \cup J_{1}$, where $J_{2}=N \backslash M, J_{1}=M \backslash N$ both belong to J. If $N \in J$, then $M \in J$, by heredity and additivity, which contradicts the fact $\gamma \cap J=\{\emptyset\}$.

$$
\text { 5. } \psi_{\sigma}-C \text { SETS }
$$

Modak and Bandyopadhyay in 8 have introduced a generalized set with the help of ψ-operator in ideal topological space. In this part, we have studied a set with the help of ψ_{σ}-operator in (T, γ, J) space. Further, we have studied the properties of this type of sets.

Definition 11. Let (T, γ, J) be an ideal σ-topological space. A subset M of T is called $a \psi_{\sigma}-C$ sets, if $M \subset C l^{\sigma}\left(\psi_{\sigma}(M)\right)$.
The family of all $\psi_{\sigma}-C$ sets in (T, γ, J) is denoted by $\psi_{\sigma}(T, \gamma)$.

Theorem 16. Let (T, γ, J) be an ideal σ-topological space. If $M \in \gamma$ then $M \in$ $\psi_{\sigma}(T, \gamma)$.

Proof. By Theorem 10 (viii), it follows that $\gamma \subset \psi_{\sigma}(T, \gamma)$.
Now by the given example we are to show that the reverse inclusion is not true:
Example 8. From Example 4 we get $M \in \psi_{\sigma}(T, \gamma)$ but $M \notin \gamma$.
By the following example, we are to show that any σ-closed in (T, γ, J) may not be a $\psi_{\sigma}-C$ set.

In the following example, by $C^{\sigma}(\gamma)$ we denote the family of all σ-closed sets in (T, γ).

Example 9. We consider Example 2. Here $M=\{q\} \in C^{\sigma}(\gamma)$. Then $\psi_{\sigma}(M)=$ $T \backslash(T \backslash M)^{* \sigma}=T \backslash\{p, r, s\}^{* \sigma}=T \backslash\{q, r, s\}=\{p\}$. Hence $C l^{\sigma}\left(\psi_{\sigma}(M)\right)=\cap\{C$: $\left.\psi_{\sigma}(M) \subset C, T \backslash C \in \gamma\right\}=\{p\}$. Therefore $M \in C^{\sigma}(\gamma)$ but $M \notin \psi_{\sigma}(T, \gamma)$.
Theorem 17. Let $\left\{M_{\alpha}: \alpha \in \Delta\right\}$ be a family of non-empty $\psi_{\sigma}-C$ sets in an ideal σ-topological space (T, γ, J), then $\bigcup_{\alpha \in \Delta} \in \psi_{\sigma}(T, \gamma)$.

Proof. For each $\alpha \in \Delta, M_{\alpha} \subset C l^{\sigma}\left(\psi_{\sigma}\left(M_{\alpha}\right)\right) \subset C l^{\sigma}\left(\psi_{\sigma}\left(\bigcup_{\alpha \in \Delta} M_{\alpha}\right)\right)$. This implies that $\bigcup_{\alpha \in \Delta} M_{\alpha} \subset C l^{\sigma}\left(\psi_{\sigma}\left(\bigcup_{\alpha \in \Delta} M_{\alpha}\right)\right)$. Thus $\bigcup_{\alpha \in \Delta} M_{\alpha} \in \psi_{\sigma}(T, \gamma)$.

6. CONCLUSION

In this writeup, we have introduced a new topology called σ-topology and defined ideals on that spaces. Using this idea, we have discussed relationship of various operators namely ()$^{* \sigma}$ operator, ψ_{σ}-operator. The result of this writeup can be extended to σ-connected sets, σ-compact sets, σ-paracompact sets. The separation axioms can also be introduced in this space. The other properties of ψ_{σ}-sets can be found and one can introduce some operators on this type of sets to the development of mathematical knowledge.

Author Contribution Statements All authors contributed equally in preparing this research article.

Declaration of Competing Interests The authors declare that there is no conflict of interest.

Acknowledgement The authors are thankful to the respected referees for their helpful comments, guidance and valuable suggestions on how to improve the paper.

References

1. Al-Omari, A., Noiri, T., On ψ_{*}-operator in ideal m-spaces, Bol. Soc. Paran. Mat., (3s.), 30(1) (2012), 53-66. https://doi.org/10.5269/bspm.v30i1.12787
2. Al-Omari, A., Noiri, T., Corrigendum to on ψ_{*}-operator in ideal m-spaces, Bol. Soc. Paran. Mat., (3s.), 30(2) (2012), 119-119. https://doi.org/10.5269/bspm.v30i2.14925
3. Al-Omari, A., Noiri, T., On operators in ideal minimal spaces, Mathematica, 58(81)(1-2) (2016), 3-13.
4. Al-Saadi, H., Al-Omari, A., Some operators in ideal topological spaces, Missouri J. Math. Sci., 30(1) (2018), 59-71. https://doi.org/ $10.35834 / \mathrm{mjms} / 1534384955$
5. Hamlett, T.R., Janković, D., Ideals in topological spaces and set operator ψ, Bull. U.M.I., 7(4-B) (1990), 863-874.
6. Janković, D., Hamlett, T.R., New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-300. https://doi.org/10.1080/00029890.1990.11995593
7. Kuratowski, K., Topology, Vol. 1, Academic Press, New York, 1966.
8. Modak, S., Bandhyopadhyay, C., A note on ψ-operator, Bull. Malyas. Math. Sci. Soc., 30(1) (2007), 43-48.
9. Modak, S., Mistry, S., Ideal on supra topological space, Int. Journal of Math. Analysis, 6(1) (2012), 1-10.
10. Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca, 36(3) (1986), 297312.
11. Newcomb, R.L., Topologies Which are Compact Codulo an Ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
12. Njåstad, O., On some classes of nearly open sets, Pacific J. Math., 15(3) (1965), 961-970. https://doi.org/10.2140/pjm.1965.15.961
13. Vaidyanathaswamy, R., Set Topology, Chelsea Publishing Co., New York, 1960.

\square

$\square \square \quad \square$
\square

■
－－
\square
\square
\square

-

$$
-
$$

-
-
-
-

\longrightarrow
-
-
-

-
-
-
-

\qquad

\square

-

\qquad
\longrightarrow
\square

-

- \qquad -
-

— \qquad
-
$-\quad-$
\square

———
\qquad
\longrightarrow

\qquad
\qquad
http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat
Volume 71, Number 3, Pages 898-898 (2022)
DOI:10.31801/cfsuasmas. 1161813
ISSN 1303-5991 E-ISSN 2618-6470
Erratum; Received: August 14, 2022; Accepted: August 20, 2022

ERRATUM TO: ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN SPACE

Fatiha BOUABDALLAH and Zohra BENDAOUD

Mathematics, Higher School of Teachers, Laghouat, ALGERIA

Abstract

In this Erratum we would like to clarify statement and the proof of Theorem 2 in our paper: "Zero-based invariant subspaces in the Bergman space Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1) (2018), 277-285."

1. Main Part

Theorem 2 in the paper 2 had been already proved in 1 . The citation of the Reference [1] was omitted in the original article [2. The authors would like to correct this deficiency as follows:

Theorem 2 (1) Let M be a zero-based invariant subspace of $L_{a}^{p}(D), 0<p<+\infty$. Then M is generated by its extremal function G, that is, $M=[G]$.

References
[1] Abkar, A., A Beuling-type theorem in Bergman spaces, Turk. J. Math., 35 (2011), 711-716. doi:10.3906/mat-0911-115
[2] Bouabdallah, F., Bendaoud, Z., Zero-based invariant subspaces in the Bergman space, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1) (2018), 277-285. doi:10.1501/Commua1_00000000849

Keywords. Invariant subspace, reproducing kernel, Bergman space.
fatihabouab@gmail.com-Corresponding author; ©0000-0002-4890-3386
® $_{\text {zbendaoud }}$ @gmail.com; ©0000-0002-7127-2332

INSTRUCTIONS TO CONTRIBUTORS

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics (Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.) is a single-blind peer reviewed open access journal which has been published biannually since 1948 by Ankara University, accepts original research articles written in English in the fields of Mathematics and Statistics. It will be published four times a year from 2022. Review articles written by eminent scientists can also be invited by the Editor.

The publication costs for Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics are covered by the journal, so authors do not need to pay an article-processing and submission charges. The PDF copies of accepted papers are free of charges and can be downloaded from the website. Hard copies of the paper, if required, are due to be charged for the amount of which is determined by the administration each year.

All manuscripts should be submitted via our online submission system https://dergipark.org.tr/en/journal/2457/submission/step/manuscript/new. Note that only two submissions per author per year will be considered. Once a paper is submitted to our journal, all co-authors need to wait 6 months from the submission date before submitting another paper to Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Manuscripts should be submitted in the PDF form used in the peer-review process together with the COVER LETTER and the TEX file (Source File). In the cover letter the authors should suggest the most appropriate Area Editor for the manuscript and potential four reviewers with full names, universities and institutional email addresses. Proposed reviewers must be experienced researchers in your area of research and at least two of them should be from different countries. In addition, proposed reviewers must not be co-authors, advisors, students, etc. of the authors. In the cover letter, the author may enter the name of anyone who he/she would prefer not to review the manuscript, with detailed explanation of the reason. Note that the editorial office may not use these nominations, but this may help to speed up the selection of appropriate reviewers.

Manuscripts should be typeset using the LATEX typesetting system. Authors should prepare the article using the Journal's templates (commun.cls and commun.cst). Manuscripts written in AMS LaTeX format are also acceptable. A template of manuscript can be downloaded in tex form from the link https://dergipark.org.tr/en/download/journal-file/22173(or can be reviewed in pdf form). The title page should contain the title of the paper, full names of the authors, affiliations addresses and e-mail addresses of all authors. Authors are also required to submit their Open Researcher and Contributor ID (ORCID)'s which can be obtained from http://orcid.org as their URL address in the format http://orcid.org/xxxx-xxxx-xxxx-xxxx. Please indicate the corresponding author. Each manuscript should be accompanied by classification numbers from the Mathematics Subject Classification 2020 scheme. The abstract should state briefly the purpose of the research. The length of the Abstract should be between 50 to 5000 characters. At least 3 keywords are required. Formulas should be numbered consecutively in the parentheses. All tables must have numbers (TABLE 1) consecutively in accordance with their appearance in the text and a legend above the table. Please submit tables as editable text not as images. All figures must have numbers (FIGURE 1) consecutively in accordance with their appearance in the text and a caption (not on the figure itself) below the figure. Please submit figures as EPS, TIFF or JPEG format. Authors Contribution Statement, Declaration of Competing Interests and Acknowledgements should be given at the end of the article before the references. Authors are urged to use the communication.bst style in BibTeX automated bibliography. If manual entry is preferred for bibliography, then all citations must be listed in the references part and vice versa. Number of the references (numbers in squared brackets) in the list can be in alphabetical order or in the order in which they appear in the text. Use of the DOI is highly encouraged. Formal abbreviations of the journals can be used. The Editor may seek the advice of two, or three referees, depending on the response of the referees, chosen in consultation with appropriate members of the Editorial Board, from among experts in the field of specialization of the paper. The reviewing process is conducted in strict confidence and the identity of a referee is not disclosed to the authors at any point since we use a single-blind peer review process.

Copyright on any open access article in Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics is licensed under a Creative Commons Attribution 4.0 International License (CC BY). Authors grant Faculty of Sciences of Ankara University a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. It is a fundamental condition that articles submitted to COMMUNICATIONS have not been previously published and will not be simultaneously submitted or published elsewhere. After the manuscript has been accepted for publication, the author will not be permitted to make any new additions to the manuscript. Before publication the galley proof is always sent to the author for correction. Thus it is solely the author's responsibility for any typographical mistakes which occur in their article as it appears in the Journal. The contents of the manuscript published in the COMMUNICATIONS are the sole responsibility of the authors.

Declarations/Ethics
With the submission of the manuscript authors declare that:

- All authors of the submitted research paper have directly participated in the planning, execution, or analysis of study;
- All authors of the paper have read and approved the final version submitted;
- The contents of the manuscript have not been submitted, copyrighted or published elsewhere and the visual-graphical materials such as photograph, drawing, picture, and document within the article do not have any copyright issue;
- The contents of the manuscript will not be copyrighted, submitted, or published elsewhere, while acceptance by the Journal is under consideration.
- The article is clean in terms of plagiarism, and the legal and ethical responsibility of the article belongs to the author(s). Author(s) also accept that the manuscript may go through plagiarism check using iThenticate software;
- The objectivity and transparency in research, and the principles of ethical and professional conduct have been followed. Authors have also declared that they have no potential conflict of interest (financial or non-financial), and their research does not involve any human participants and/or animals.

Research papers published in Communications Faculty of Sciences University of Ankara are archived in the Library of Ankara University and in Dergipark immediately following publication with no embargo.

Editor in Chief
http://communications.science.ankara.edu.tr
Ankara University, Faculty of Sciences
06100, Besevler - ANKARA TURKEY

COMMUNICATIONS

FACULTY OF SCIENCES
 DE LA FACULTE DES SCIENCES UNIVERSITY OF ANKARA

Series A1:Mathematics and Statistics

Number: 3
Year:2022

Research Articles

Sumeera SHAFI, A new system of generalized nonlinear variational inclusion problems in semi-inner product spaces.
Ayşe KABATAS, On eigenfunctions of Hill's equation with symmetric double well potenti.. 634
Selim Orhun SUSAM, Tail dependence estimation based on smooth estimation of diagonal section................................... 650
Shabir Ahmad MALIK, Ashish KUMAR, On the maximum modulus of a complex polynomial
Shabir Ahmad MALIK, Ashish KUMAR, On the maximum modulus of a complex polynomial.. 666
Haşim CAYIR, Tarana SULTANOVA, α-Sasakian, β-Kenmotsu and trans-Sasakian structures on the tangent bundle........ 682
Rasoul MOUSAREZAEI, Bijan DAVVAZ, Soft semi-topological polygroups.
Esra KAYA, A different approach to boundedness of the B-maximal operators on the variable Lebesgue spaces............... 710
Zeynep DURNA, Ahmet Sinan OZKAN, Eigenvalue problems for a class of Sturm-Liouville operators on two different

time scales.
Vimlesh Kumar GUPTA, Saurabh PORWAL, Omendra MISHRA, Multivalent harmonic functions involving multiplier transformation..
731
Nilay ŞAHIN BAYRAM, Power series methods and statistical limit superior... 752
Bendaoud ABED SID-AHMED, Bouharket BENAISSA, Abdelkader SENOUCI, Some Hardy-type integral inequalities
with sharp constant involving monotone functions.759
Emrah KORKMAZ, Combinatorial results of collapse for order-preserving and order-decreasing transformations............. 769
Mert Sinan OZ, Coefficients of Randic and Sombor characteristic polynomials of some graph types.................................. 778
Saheed Olaosebikan AREMU, Ali OLGUN, On difference of bivariate linear positive operators.. 791
Hasan KARA, Hüseyin BUDAK, Muhammad Aamir ALI, Fatih HEZENCI, On inequalities of Simpson's type for convex functions via generalized fractional integrals.
Süleyman ŞENYURT, Davut CANLI, Kebire Hilal AYVACI, Associated curves from a different point of view in E^{3}...
Döne KARAHAN, On the solutions of the q-analogue of the telegraph differential equation..
Burcu BEKTAŞ DEMIRCİ, Murat BABAARSLAN, Zehra ÖGE, Timelike loxodromes on Lorentzian helicoidal surfaces
in Minkowski n-space.. spaces..
spaces...
Çetin YILDIZ, Mustafa GÜRBÜZ, The Minkowski type inequalities for weighted fractional operators............................. 884

Erratum

[^0]: 2020 Mathematics Subject Classification. 47H09, 47J20, 49J40.
 Keywords. System of generalized nonlinear variational inclusion problems, 2-uniformly smooth Banach spaces, resolvent operator, iterative algorithm, convergence analysis.
 $\square_{\text {sumeera.shafi@gmail.com; © } 0000-0003-1531-5649 .}$

[^1]: 2020 Mathematics Subject Classification. 62H20, 62G 05.
 Keywords. Copula, tail dependence, Bernstein polynomial, diagonal section.
 ■orhunsusam@munzur.edu.tr; ©0000-0001-7896-9055.

[^2]: 2020 Mathematics Subject Classification. 26D10, 30C15, 41A17.
 Keywords. Polynomials, definite integral, zeros, inequalities.
 $\Xi_{\text {shabir2101@gmail.com-Corresponding author; ©0000-0002-6906-6513 }}$
 ■ashishsanthal@gmail.com; ©0000-0002-7423-4403

[^3]: 2020 Mathematics Subject Classification. Primary 15A72, 47B47; Secondary 53A45, 53C15.
 Keywords. α-Sasakian, β-Kenmotsu, trans-Sasakian structures, lifts, tangent bundle.

 - hasim.cayir@giresun.edu.tr-Corresponding author; ©0000-0003-0348-8665
 $\square_{\text {tsultanova92@mail.ru; ©0000-0003-2936-7837 }}$

[^4]: 2020 Mathematics Subject Classification. 20N20.
 Keywords. Soft sets, polygroups, soft polygroups, topological polygroups, soft topological polygroups, complete part, closure sets, semi-topological polygroups, soft semi-topological polygroups.
 $\square_{\text {rasoul.mousarezaei@stu.yazd.ac.ir; ©0000-0002-6163-4037 }}$
 ■davvaz@yazd.ac.ir-Corresponding author; (D0000-0003-1941-5372.

[^5]: 2020 Mathematics Subject Classification. Primary 42B25; Secondary 42A50, 42B35.
 Keywords. Maximal operator, singular integrals, variable Lebesgue space.
 $\bullet_{\text {esra.kaya@bilecik.edu.tr; © } 0000-0002-6971-0452 \text {. }}$

[^6]: 2020 Mathematics Subject Classification. 40A35, 40G10.
 Keywords. Natural density, statistical convergence, statistical limit superior, core of a sequence, power series methods.
 ■ nsbayram@baskent.edu.tr; (D0000-0003-3263-8589.

[^7]: 2020 Mathematics Subject Classification. 26D10, 26D15.
 Keywords. Hardy-type inequality, monotone function, sharp constant.

 - bendaoud@yahoo.fr; ©0000-0001-5123-9503
 © ${ }^{\text {bouharket.benaissa@univ-tiaret.dz; (D0000-0002-1195-6169 }}$
 - kamer295@yahoo.fr-Corresponding author; ©0000-0002-3620-7455 .

[^8]: 2020 Mathematics Subject Classification. 20M20.
 Keywords. Order-preserving/decreasing transformation, collapse, nilpotent, idempotent.
 ■emrahkorkmaz90@gmail.com; ©0000-0002-4085-0419.

[^9]: 2020 Mathematics Subject Classification. 05C09, 05C31, 05 C 38.
 Keywords. Graphs, Randić matrix, Sombor matrix, paths, cycles, adjacency.
 ⓢinan.oz@btu.edu.tr; © 0000-0002-6206-0362.

[^10]: 2020 Mathematics Subject Classification. Primary 41A36; Secondary 41A25.
 Keywords. Chebyshev functionals, bivariate positive linear operators, weighted modulus of continuity.
 -Saheedabdulhameed@gmail.com; ©0000-0002-7016-5885
 ⓐolgun@kku.edu.tr-Corresponding author; ©0000-0001-5365-4110

[^11]: 2020 Mathematics Subject Classification. 26D07, 26D10, 26D15.
 Keywords. Simpson type inequalities, convex function, generalized fractional integrals.

 - hasan64kara@gmail.com; ©0000-0002-2075-944X
 - hsyn.budak@gmail.com; ©0000-0001-8843-955X
 - mahr.muhammad.aamir@gmail.com; ©0000-0001-5341-4926
 - fatihezenci@gmail.com-Corresponding author; ©0000-0003-1008-5856

[^12]: 2020 Mathematics Subject Classification. 53A04, 53A05.
 Keywords. Curve theory, special curves, associated curves, Frenet frame, Euclidean space.
 $\square_{\text {senyurtsuleyman52@gmail.com; © } 0000-0003-1097-5541}$
 $\square_{\text {davutcanli@odu.edu.tr-Corresponding author; ©0000-0003-0405-9969 }}$
 ©hilal.ayvaci55@gmail.com; ©0000-0002-5114-5475.

[^13]: 2020 Mathematics Subject Classification. 54A10, 54A05.
 Keywords. σ-topological space, ($)^{* \sigma}$-operator, ψ_{σ}-operator, σ-compatible, ψ_{σ}-C set.
 $\square_{\text {chhapikul.77@gmail.com-Corresponding author; ©0000-0002-4965-1758 }}$
 $\square_{\text {moni.math007@gmail.com; (D0000-0003-4748-4690 }}$
 $\square_{\text {spmodak2000@yahoo.co.in; (D0000-0002-0226-2392 }}$
 $\boxtimes_{\text {sukalyan.mistry@gmail.com; ©0000-0002-3308-5878 }}$

