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Abstract − In this work, we introduce a system computational programming of the ultra-group

notions with GAP, Groups, Algorithms and Programming. We have constructed some algorithms

about ultra-groups and their substructures with GAP language. Also, we give the GAP algorithm

about ultra-group homomorphism. So we have presented a GAP application for ultra-group theory.

Subject Classification (2020): 68W30, 20B05.

1. Introduction

The notion of ultra-groups over a group was introduced in [6] by Moghaddasi et al. In fact, an ultra-group

is an algebraic structure whose underlying set is determined by a group and its subgroup. An ultra-group is

a special subset of a group that has a binary operation that combines any two elements to generate a third

element and a unary operation. Every group is an ultra-group, but the reverse is not always valid. The idea

of an ultra-group was studied in [7],[12] and [13] with details.

By similarity with “ computational group theory,” we provide new GAP functions in this study. As an ap-

plication, we have constructed some algorithms to create ultra-groups and subultra-groups. Also, the algo-

rithm for checking the ultra-group homomorphism conditions as well as controlling an ultra-group struc-

ture and its various substructures has been presented. In [2], [1], [9] and [10], one can find several algorithms

for many concepts which are implemented in the GAP packages.

2. Theory of Ultra-Groups

The concept of transversals was first introduced by Kurosh in [5], which is the foundation of the ultra-group

concept.

We will recall this notion and some fundamental notions such as ultra-groups and their substructures from

[6].
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Definition 2.1. Let G be a finite group. Assume M and H are two any subsets of group G . Obviously, H M ̸=
M H . (A,B) is a pair of subsets of group G and is named transversal if the equality x y = x ′y ′ implies x = x ′

and y = y ′ for x, x ′ ∈ A, y, y ′ ∈ B .

From this definition, it is easy to understand that a pair (H , M) of subgroups of G is transversal if and only if

H
⋂

M = {e}.

Furthermore, if G is a group, H is a subgroup of G, and M is a subset of G, then we conclude that the pair

(H , M) is a transversal if and only if M
⋂

H g contains at most one element, for all g ∈G [12].

We demonstrate the left and right quotient sets by

G/H = {xH |x ∈G}

H/G = {H x|x ∈G}

respectively. These sets are the partitions of G where H is the subgroup of G .

A transversal of a partition is a set with just one member from each part of the partition. Throughout the

work, we will assume that a right transversal contains the identity of the group. In other words, |M ⋂
H g | = 1

with all g ∈G , subgroup H and a set M . Then G = H M . And so, we have M H ⊆G = H M , [6].

Definition 2.2. Let G be a group with multiplication and H be a subgroup of G . A subset M of G is described

as (right unitary) complementary set concerning the subgroup H , if for all elements h ∈ H and m ∈ M there

exist the unique members m′ ∈ M and h′ ∈ H satisfying

h′m′ = mh

and the identity of G in M . We denote m′ and h′ by mh and mh, respectively.

In a similar way, for all m1,m2 ∈ M there is a unique [m1,m2] ∈ M and (m1,m2) ∈ H satisfying

m1m2 = (m1,m2)[m1,m2]

For all x ∈ M , there exists x−1 ∈G .

In G = H M , there exists x[−1] ∈ M and x(−1) ∈ H satisfying

x−1 = x(−1)x[−1]

[6].

Definition 2.3. A complementary set of H over group G namely H M is called a (right) ultra-group with a

binary operation

α :H M ×H M −→H M
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and unary operation

β :H M −→H M

which is defined as α(m1,m2) := [m1,m2], βh(m) := mh , for all h ∈ H , respectively.

Example 2.4. Let G = S3 then H = {(1), (13)} is a subgroup of G . With the right quotient set H/G = {{(1), (13)},

{(12), (132)}, {(23), (123)}}, we have four alternatives for M . For instance, if we choose the set M = {(1), (12),

(23)}, we get the following multiplication tables:

α (1) (23) (12)

(1) (1) (23) (12)

(23) (23) (1) (23)

(12) (12) (12) (1)

β (1) (13)

(1) (1) (1)

(23) (23) (12)

(12) (12) (23)

(M ,α,β) is an ultra-group of H over group G .

Example 2.5. Let G = S3 then H = {(1), (13)} is a subgroup of G . With the quotient set H/G = {{(1), (13)}, {(12),

(132)}, {(23), (123)}}, we have four candidates for M . For instance if we choose the set M = {(1), (123), (132)},

we get the following multiplication tables:

α (1) (123) (132)

(1) (1) (123) (132)

(123) (123) (132) (1)

(132) (132) (1) (123)

β (1) (13)

(1) (1) (1)

(123) (123) (123)

(132) (132) (123)

(M ,α,β) is an ultra-group of H over group G .

Example 2.6. Let D9 be a dihedral group of order 18 and H =< a3 > its subgroup. We get 243 ultra-groups

and two of them are the following:

M = {e, a,b, a2, ab, a2b}

α e a b a2 ab a2b

e e a b a2 ab a2b

a a a2 ab e a2b b

b b a2b e ab a2 a

a2 a2 e a2b a ab ab

ab ab b a a2b b a2

a2b a2b ab a2 b a e

β e a3 a6

e e e e

a a a a

b b b b

a2 a2 a2 a2

ab ab ab ab

a2b a2b a2b a2b

and

M = {e,b, ab, a2b, a5, a4}
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α e b ab a2b a5 a4

e e b ab a2b a5 a4

b b e a5 a4 ab a2b

ab ab a4 b a5 a2b b

a2b a2b a5 a4 e b ab

a5 a5 a2b b ab a4 e

a4 a4 ab a2b b e a5

β e a3 a6

e e e e

b b b b

ab ab ab ab

a2b a2b a2b a2b

a5 a5 a5 a5

a4 a4 a4 a4

Definition 2.7. Let M be an ultra-group of H over G . A subset U ⊆ M that includes the identity is defined as

subultra-group of H over G , if U is closed under the operations α and βh in the Definition 3.

It is clear that {e} is a trivial subultra-group for all ultra-groups H M where e is the identity element of H .

Definition 2.8. Let H M be a ultra-group and A,B are the subsets of H M . [A,B] is defined as the set

{[x, y]|x ∈ A, y ∈ B}

Furthermore, if A is a subultra-group H M and y ∈H M so the subset [A, y] is named a right coset of A in H M

[6].

Definition 2.9. A N subultra-group of H M is named normal if

[N , [x, y]] = [x, [N , y]]

for all x, y ∈H M .

So we get the following features for normal ultra-groups:

• [x, N ] = [N , x], for every x ∈H M

• [[N , x], [N , y]] = [N , [x, y]], for all x, y ∈H M .

• If [N , y] = N , then y ∈ N

[6].

Definition 2.10. Let Hi Mi be the ultra-group of Hi with Gi for i = 1,2. A mapping from H1 M1 to H2 M2 is an

ultra-group homomorphism with

• a) f ([m1,m2]) = [ f (m1,m2)]

• b) ( f (m))φ(h) = f (mh)

for φ is an group homomorphism from H1 to H2 and m,m1,m2 ∈ M1, h ∈ H1.
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Example 2.11. Let M1 = {e, a,b, a2, ab, a2b} and M2 = {e,b, ab, a2b, a5, a4} be as in example 2.6. Then there

is an ultra-group isomorphism f : M1 −→ M2

f (x) =


a4 , x = a

a5 , x = a2

x , other wi se.

3. GAP Application

For computational discrete algebra, GAP is the most often used system. It is used to address problems

involving symbolic computation. This type of computation illuminates number theory, combinatorics, and

coding theory calculations in Mathematics and Computer Science.

GAP programming language;

• Free

• Open source

• Expandable seperate package library

It is published with GNU Public License. The kernel of the system is written in C programming language.The

library of functions and additional packages are in a special language, also called GAP [11].

In the GAP system and extension packages, there are now 900K lines of GAP code and 360K lines of C code

exist. The Small Groups library in these packages has been given in landmark computations with the Mille-

nium Project in [4] which classifies all finite groups of order smaller than 2000.

Besche and Eick [2] used group isomorphism to classify small group libraries up to rank of 1000, with the

exception of 512 and 768. With technological advancements over the years, some higher computers now

calculate a rank of 2000 [3, 8].

The following are the language characteristics:

• Streams,

• Garbage collection,

• Flexible list and record data types,

• Built-in data types for key algebraic objects,

• Control structures akin to those found in Pascal.

GAP is an interactive environment that includes features such as online help, break loops for debug-

ging and profiling GAP programs, completion of tab, a graphical user interface for GAP, and other GAP

interface programs created by users.

SmallGroup(n,k)
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function makes a small group with a rank of n and group isomorphism class of k.

StructureDescription(G)

function gives the isomorphism class of group G.

In GAP [3] a polycyclic group(PC) is formed. It means that a group uses the polycyclic presentation for

element arithmetic.

The Cayley Theorem is used in GAP to illustrate groups with permutation groups that are isomorphic to

groups.

We define the functions that give ultra group structure and control some substructures in a short amount of

time in this paper.

• The ugroup function is used to create an ultra-group object.

• The isUltra function determines whether or not an ultra-group exists.

• The subultra structure is controlled by the iSubUltra function.

• The rightCoset function creates the ultra-right group’s coset.

• The isNormalSubgroup function determines whether or not an ultra-group is normal.

• With ultra-group, bracket function is employed for the alpha function.

The theoritical definition of the ultra-group structure is defined by the Ugroup function. With the subgroup

H and the quotient group, it generates a suitable ultra-group. The alpha and beta function computations

are listed in this function.

Take the symmetric group G := S3 as an example. G has a subgroup called H . As a result, we get the possibil-

ities to satify the ultra-group conditions. The first input demonstrated the group G , the second is subgroup

H .

gap>G:=SymmetricGroup(3);;eG:=Elements(G);;

gap>Ugroup(G,Subgroup(G,[eG[6]]));

[[(),(2,3),(1,2)],[(),(2,3),(1,3,2)],[(),(1,2),(1,2,3)],[(),(1,2,3),(1,3,2)]]

Let take the main group S4 symmetric group of order 4. We get 2048 ultra-group. Some are

gap>T:=SymmetricGroup(4);;eT:=Elements(T);;

gap>Ugroup(T,Subgroup(T,[eT[6]]));

[[ (), (3,4), (2,3), (1,2), (1,2)(3,4), (1,2,3), (1,3,2), (1,3), (1,3,4),

(1,4,3), (1,4), (1,4)(2,3) ],

[ (), (3,4), (2,3), (1,2), (1,2)(3,4), (1,2,3), (1,3,2), (1,3,4), (1,3)(2,4),
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(1,4,3), (1,4), (1,4)(2,3) ],

[ (), (3,4), (2,3), (1,2), (1,2)(3,4), (1,2,3), (1,3,4,2), (1,3), (1,3,2,4)

, (1,4,3), (1,4), (1,4)(2,3) ],

...

Another example of this function is the Dihedral group of order 18 also known as D9. We get 243 ultra-groups

and the computation tables arise from the H =< a3,b > subgroup which is the second parameter:

gap>G:=SmallGroup(18,1);;eG:=Elements(G);;

gap>Ugroup(G,Subgroup(G,[eG[4]]));

[[<identity> of ..., f1, f2, f3, f1*f2, f2^2, f2*f3, f1*f2^2, f2^2*f3 ],

[<identity> of ...,f1*f2,f2^2,f2*f3,f3^2,f1*f2^2,f1*f2*f3,f1*f3^2,f2^2*f3],

[<identity>of..,f2*f3,f3^2,f1*f2^2,f1*f2*f3,f1*f3^2,f2^2*f3,f2*f3^2,f1*f2^2*f3],

[<identity> of ...,f1*f2,f2^2,f2*f3,f3^2,f1*f2*f3,f1*f3^2,f2^2*f3,f2^2*f3^2],

[<identity> of..., f3^2, f1*f2*f3, f1*f3^2, f2*f3^2, f1*f2^2*f3, f1*f2*f3^2,

f2^2*f3^2, f1*f2^2*f3^2]

[<identity> of ..., f1*f2, f2^2, f3^2, f1*f2*f3, f1*f3^2, f1*f2*f3^2,

f2^2*f3^2, f1*f2^2*f3^2]

[<identity> of ..., f3^2, f1*f2^2, f1*f2*f3, f1*f3^2, f2*f3^2,

f1*f2^2*f3, f1*f2*f3^2, f1*f2^2*f3^2]

[<identity> of ..., f3, f1*f2, f3^2, f1*f2*f3, f1*f2^2*f3,

f1*f2*f3^2, f2^2*f3^2, f1*f2^2*f3^2]

[<identity> of ..., f1, f2, f3, f2^2, f2*f3, f1*f2^2, f2^2*f3, f2*f3^2],

...

Each list corresponds to the ultra-group M .

The isUltra control function is a control function. The boolean data type is what it responds to. Three

parameters are required for this function. The first parameter M is the set over which we have control,

whether or not this set is an ultra-group. The main group G last parameter and the subgroup H , the second

list, are required.

gap>isUltra([(),(1,2),(2,3)],[(),(1,3)],SymmetricGroup(3));

true

A control function is the iSubultra function. It responds to the boolean data type. In this function, we need

four parameters. S, the second parameter, is the set that we control whether this set is the subultra-group

or not of the first parameter, the list M . We need the main group the last input G and the subgroup H , the

third parameter.

gap>G:=SymmetricGroup(3);;eG:=Elements(G);;

gap>iSubultra([(),(1,2),(2,3)],[()],Subgroup(G,[eG[6]]),G);

true
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The Subultra function defines subultra-groups of the M ultra-group with H over the G group. It generates

the subultra-groups with three parameter, M , H ,G .

gap>G:=SymmetricGroup(3);;eG:=Elements(G);;

gap>Subultra([(),(1,2),(2,3)],Subgroup(G,[eG[6]]),G);

[ [ () ], [ (), (2,3) ], [ (), (2,3), (1,2) ], [ (), (1,2) ] ],

[ [ () ], [ (), (2,3) ] ],[ [ () ], [ (), (1,2) ] ],

[ [ () ], [ (), (1,2,3), (1,3,2) ] ]

rightCoset function composes the right coset for an ultra-group like group version. It takes four parameters.

The main group and ultra-group must be given. For A and B subultra-groups, we find [A,B ] set with the GAP

function.

gap>rightCoset([(),(1,2),(2,3)],[()],[()],SymmetricGroup(3));

[(),(2,3)]

isNormalSubGrp function checks whether the second parameter is normal for the first parameter or not.

For example in G := S3 symmetric group

gap>isNormalsubGrp([(),(1,2),(2,3)],[(),(1,2),(2,3)],SymmetricGroup(3));

True

An ultra-group structure is a triple notation. A set M , an alpha function and a beta function. The alpha

function is called with bracket notation. So, we use this function occasionally. In GAP,

gap>bracket((1,2),(2,3),[(),(1,2),(2,3)],[(),(1,3)]);

(1,2)

As we mentioned in the example 2.6 we build an ultra-group homomorphism. We have some outputs about

ultra-group homomorphism control function.

gap>G:=SmallGroup(18,1);

<pc group of size 18 with 3 generators>

gap>eG:=Elements(G);

[<identity>of ...,f1,f2,f3, f1*f2, f1*f3, f2^2, f2*f3, f3^2, f1*f2^2,f1*f2*f3,

f1*f3^2, f2^2*f3, f2*f3^2, f1*f2^2*f3, f1*f2*f3^2, f2^2*f3^2, f1*f2^2*f3^2 ]

gap>H:=Subgroup(G,[eG[9]]);

Group([ f3^2 ])

gap>M:=Ugroup(G,H);;
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gap>f:=GeneralMappingByElements(Domain(M[12]),Domain(M[76]),

gap>[Tuple([M[12][1],M[76][1]]),Tuple([M[12][2],M[76][2]]),Tuple([M[12][3],

gap>M[76][4]]),Tuple([M[12][4],M[76][6]]),Tuple([M[12][5],M[76][3]])

gap>,Tuple([M[12][6],M[76][5]])]);;

gap>IsUltraHom(f,G,G,H,H);

True

and the algorithm of ultra-group homomorphism is below.

An algorithm of the ultra-group homomorphism is located at the end of this.

Input: f ,G1,G2, H1, H2, Homomorphism, Domain, Codomain

Output: true iff f is an ultra-group homomorphism

begin
M1 ← the ultra-group of H1 over G1

M2 ← the ultra-group of H2 over G2

l ← the parameter of H2

α1 ← the equality of l ∗ f (m)∗ f (z)

α2 ← the equality of f (h ∗m ∗ z)

β1 ← the equality of l ∗ f (m)∗p(t )

β2 ← the equality of f (h ∗m ∗ t )

if α1 and α2 are in ultra-groups then

if α1 =α2 then
return true

else
return false

end

else
return false

end

if β1 and β2 are in ultra-groups then

if β1 =β2 then
return true

else
return false

end

else
return false

end

end

A screen of the ultra-group homomorphism process is as follows.
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Abstract − Albertson and the reduced Sombor indices are vertex-degree-based graph invariants

that given in [7] and [20], defined as

Alb(G) = ∑
uv∈E(G)

|du −dv | , SOr ed (G) = ∑
uv∈E(G)

√
(du −1)2 + (dv −1)2,

respectively. In this work we show that a calculation of Albertson and reduced Sombor index which

are vertex-degree-based topological indices over monogenic semigroup graphs.

Subject Classification (2020): 05C12, 05C50, 15A18, 15A36, 15A42.

1. Introduction and Preliminaries

Let G = (V ,E) denotes a simple graph in which vertex and edge sets are indicated by V = {v1, v2, . . . , vn} and

E = {e1,e2, . . . ,em}, respectively. Throught this paper the degree of a vertex v ∈V will be stipulated by dv and

if the u and v vertices are connected, this will be specified by uv . See [40] for detailed information about

graph theory. In [15], the authors introduced a new type of graph relevant to monogenic semigroups, called

monogenic semigroup graph. Initially, the authors identified a multiplicative monogenic semigroup that is

finite and has one zero element as noted below

SM = {
0, x, x2, x3, ..., xn}

. (1.1)

The researchers indicated the graph of a monogenic semigroup given in (1.1) with Γ(SM ). The vertex set

of Γ(SM ) is
{

x, x2, x3, ..., xn
}

i.e. all elements in SM except zero element and the necessary and the sufficent

condition for any two different vertices, xi and x j in Γ(SM ) to be linked to each other is that i + j ≻ n. See

[2–4] for detailed knowledge about a graph of a monogenic semigroup. Since graphs of monogenic semi-

group are inspired by zero divisor graphs, we will briefly mention about zero divisor graphs. Zero divisor

graphs were primarily studied on commutative rings [13]. After this study, studies were also carried out

on commutative and non-commutative rings [10–12]. After the studies on zero-divisor graphs on rings, re-

searchers worked on zero-divisor graphs over semigroups [17, 18]. Topological invariants, which have been
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studied for many years in the field of chemistry [39], have recently attracted the attention of mathemati-

cians. Topological indices create structural properties of molecules and equip us with data for industrial

science, applied physics, environmental science, and toxicology [19]. The vertex-degree based Sombor in-

dex initially presented by Gutman in [20]. It was first used in chemistry [8, 9, 14, 24, 25, 35]. Subsequently

fascinated the interest of mathematicians. [16, 23, 26, 32–34]. Network science has exploited the dynamic

effect of modeling complex systems in biology and social technology [38]. There are also studies on the

Sombor index related to military use [21]. Since its beggining (less than a year after its publication), the

Sombor index has also been of interest to mathematicians. In this paper we will compute the Albertson and

reduced Sombor index of a monogenic semigroup graph. In [7] the Albertson index given as

Alb(G) = ∑
uv∈E(G)

|du −dv | (1.2)

The reduced Sombor index which is a vertex-degree-based index introduced in [20], stated as given

below

SOr ed (G) = ∑
uv∈E(G)

√
(du −1)2 + (dv −1)2 (1.3)

Every vertex-degree-based topological index can be taken as a special case of a Sombor-type index [22].

Besides, for a real number r , we indicate by ⌊r ⌋ the greatest integer ≤ r and by ⌈r ⌉, the least integer ≥ r . It is

quite obvious that r −1 < ⌊r ⌋ ≤ r and r ≤ ⌈r ⌉ < r +1. Furthermore, for a natural number n, we have

⌊n

2

⌋
=

{
n
2 i f n i s even
n−1

2 i f n i s odd
(1.4)

For further information about monogenic semigroup see [5, 6, 30, 31] and for the applications of some

important topological indices in graph theory see [27–29]. In this study, we aim to calculate the Albertson

and reduced Sombor index, which are vertex-degree-based indexes of a monogenic semigroup graph.

2. An Algorithm

In [2], the researchers developed an algorithm in relation to the neighborhood of vertices to facilitate the

operations. We will consider this algorithm when calculating Albertson and reduced Sombor indices on

monogenic semigroups graphs.

In : The vertex xn is linked to every vertex xa1 (1 ≤ a1 ≤ n −1) except itself.

In−1: The vertex xn−1 is linked to every vertex xa2 (2 ≤ a2 ≤ n −2) except itself and the vertex xn .

In−2: The vertex xn−2 is linked to every vertex xa3 (3 ≤ a3 ≤ n −3) except itself and the vertices xn and

xn−1.

Persisting the algorithm in this way and based on if the number n is odd or even, we get the result given

below.

If n is even:

I n
2 +2: The vertex x

n
2 +2 is linked not only to the vertices x

n
2 −1, x

n
2 and x

n
2 +1 also linked to the vertices xn ,
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xn−1, xn−2, . . ., x
n
2 +3.

I n
2 +1: The vertex x

n
2 +1 is linked not only to the single vertex x

n
2 also linked to the vertices xn , xn−1, xn−2,

. . . , x
n
2 +2.

If n is odd:

I n+1
2

: The vertex x
n+1

2 +2 is linked not only to the vertices x
n+1

2 −2, x
n+1

2 −1, x
n+1

2 and x
n+1

2 +1 also linked to the

vertices xn , xn−1, xn−2, . . . , x
n+1

2 +3.

I n+1
2 +1: The vertex x

n+1
2 +1 is linked not only to the vertices x

n+1
2 −1 and x

n+1
2 also linked to the vertices

xn−1, xn−2, . . . , x
n+1

2 +2.

In Lemma 2.1, the degrees of vertices in Γ(SM ) are indicated by d1,d2, . . . ,dn . For more information

about degree series see [1, 15] and citations in these papers. You see the proof of Lemma 2.1 in [15].

Lemma 2.1

d1 = 1, d2 = 2, . . . ,d⌊ n
2 ⌋ =

⌊n

2

⌋
, d⌊ n

2 ⌋+1 =
⌊n

2

⌋
, d⌊ n

2 ⌋+2 =
⌊n

2

⌋
+1, . . . ,dn = n −1 (2.1)

Remark 2.2 Note the repetitive terms given in Lemma 2.1 as follows,

d⌊ n
2 ⌋ =

⌊n

2

⌋
= d⌊ n

2 ⌋+1. (2.2)

3. Calculating Albertson Index of Γ(SM )

An accurate formula of Albertson index over a graph of a monogenic semigroup will be given in this part

Theorem 3.1. Let SM denote a monogenic semigroup, as given in (1.1), the Albertson index of the mono-

genic semigroup graph Γ(SM ) is stated as below

Alb(Γ(SM )) =


∑ n
2 −1

k=1

∑n−k−1
i=k |(n −k)− i |+∑ n

2

k=1

∣∣(n −k)−⌊n
2

⌋∣∣ i f n i s even∑ n−1
2

k=1

∑n−k−1
i=k |(n −k)− i |+∑ n−1

2

k=1

∣∣(n −k)−⌊n
2

⌋∣∣ i f n i s odd
(3.1)

Proof.

Here our goal is to find a formula for Alb(Γ(SM )) by utilising the algorithm given in Section 2. In addi-

tion, we will use (1.4), (2.1) equations and Remark 2.2 during our operations.

If n is odd:

[Alb] (Γ(SM )) = |dn −d1|+ |dn −d2|+ |dn −d3|+ . . .+|dn −dn−2|+ |dn −dn−1|+
+|dn−1 −d2|+ |dn−1 −d3|+ . . .+|dn−1 −dn−2|+
+ . . .+
+

∣∣∣d n+1
2 +2 −d n+1

2 −2

∣∣∣+ ∣∣∣d n+1
2 +2 −d n+1

2 −1

∣∣∣+ ∣∣∣d n+1
2 +2 −d n+1

2

∣∣∣+ ∣∣∣d n+1
2 +2 −d n+1

2 +1

∣∣∣
+

∣∣∣d n+1
2 +1 −d n+1

2 −1

∣∣∣+ ∣∣∣d n+1
2 +1 +d n+1

2

∣∣∣
(3.2)

Consequently, the Albertson index of Γ(SM ) is written as given in the following

[Alb] (Γ(SM ) = ∑
i j∈E(G)

∣∣di −d j
∣∣= [Alb]n + [Alb]n−1 + . . .+ [Alb] n+1

2 +2 + [Alb] n+1
2 +1 . (3.3)
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Equality
⌊n

2

⌋= n−1
2 given in (1.4) is used while performing these operations (if n is odd).

[Alb]n = |(n −1)−1|+ |(n −1)−2|+ |(n −1)−3|+ . . .+
∣∣∣(n −1)−

⌊n

2

⌋∣∣∣+ . . .+

+|(n −1)− (n −2)|+
∣∣∣(n −1)−

⌊n

2

⌋∣∣∣
=

n−2∑
i=1

|(n −1)− i |+
∣∣∣∣(n −1)− (

n −1

2
)

∣∣∣∣
(3.4)

In case analogous operations are applied to [Alb]n−1, . . . [Alb] n+1
2 +2 and [Alb] n+1

2 +1; we obtain

[Alb]n−1 =
n−3∑
i=2

|(n −2)− i |+
∣∣∣∣(n −2)− (

n −1

2
)

∣∣∣∣ , (3.5)

[Alb] n+1
2 +2 =

∣∣∣∣( n +3

2
)− (

n −3

2
)

∣∣∣∣+ ∣∣∣∣( n +3

2
)− (

n −1

2
)

∣∣∣∣+ ∣∣∣∣( n +3

2
)− (

n −1

2
)

∣∣∣∣+ ∣∣∣∣( n +3

2
)− (

n +1

2
)

∣∣∣∣ (3.6)

and finally

[Alb] n+1
2 +1 =

∣∣∣∣( n +1

2
)− (

n −1

2
)

∣∣∣∣+ ∣∣∣∣( n +1

2
)− (

n −1

2
)

∣∣∣∣ . (3.7)

Hence

[Alb]n + [Alb]n−1 + . . .+ [Alb] n+1
2 +2 + [Alb] n+1

2 +1 =
n−1

2∑
k=1

n−k−1∑
i=k

|(n −k)− i |+
n−1

2∑
k=1

∣∣∣∣(n −k)− (
n −1

2
)

∣∣∣∣ (3.8)

If similar operations are performed in case n is even, the following sum is obtained

[Alb]n + [Alb]n−1 + . . .+ [Alb] n
2 +2 + [Alb] n

2 +1 =
n
2 −1∑
k=1

n−k−1∑
i=k

|(n −k)− i |+
n
2∑

k=1

∣∣∣(n −k)− (
n

2
)
∣∣∣ . (3.9)

4. Calculating Reduced Sombor Index of Γ(SM )

An accurate formula of replaced Sombor index over a graph of a monogenic semigroup will be given in this

part.

Theorem 4.1. Let SM denote a monogenic semigroup, as given in (1.1), the reduced Sombor index of the

monogenic semigroup graph Γ(SM ) is stated as below

SOr ed (Γ(SM )) =


∑ n
2 −1

k=1

∑n−k−1
i=k

√
(n −k −1)2 + (i −1)2 +∑ n

2

k=1

√
(n −k −1)2 + (n

2 −1
)2 i f n i s even∑ n−1

2

k=1

∑n−k−1
i=k

√
(n −k −1)2 + (i −1)2 +∑ n−1

2

k=1

√
(n −k −1)2 + (n−1

2 −1
)2

i f n i s odd
(4.1)

Proof.

Here our goal is to find an exact formula for SOr ed (Γ(SM )) by utilising the algorithm given in Section 2.

Besides, we will utilise (1.4), (2.1) equations and Remark 2.2 during our operations. If n is odd:
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[SOr ed ] (Γ(SM ) =
√

(dn −1)2 + (d1 −1)2 +
√

(dn −1)2 + (d2 −1)2 +
√

(dn −1)2 + (d3 −1)2 + . . .

+
√

(dn −1)2 + (dn−2 −1)2 +
√

(dn −1)2 + (dn−1 −1)2 +
√

(dn−1 −1)2 + (d2 −1)2

+
√

(dn−1 −1)2 + (d3 −1)2 + . . .+
√

(dn−1 −1)2 + (dn−2 −1)2 + . . .+
+

√
(d n+1

2 +2 −1)2 + (d n+1
2 −2 −1)2 +

√
(d n+1

2 +2 −1)2 + (d n+1
2 −1 −1)2 +

√
(d n+1

2 +2 −1)2 + (d n+1
2
−1)2

+
√

(d n+1
2 +2 −1)2 + (d n+1

2 +1 −1)2 +
√

(d n+1
2 +1 −1)2 + (d n+1

2 −1 −1)2 +
√

(d n+1
2 +1 −1)2 + (d n+1

2
−1)2

(4.2)

Consequently, the replaced Sombor index of Γ(SM ) is written as stated below

[SOr ed ] (Γ(SM ) = ∑
i j∈E(G)

√
(di −1)2 + (d j −1)2 = [SOr ed ]n + [SOr ed ]n−1 + . . .+ [SOr ed ] n+1

2 +2 + [SOr ed ] n+1
2 +1

(4.3)⌊n
2

⌋= n−1
2 equality which is given in (1.4) is utilised while performing these operations (if n is odd).

[SOr ed ]n =
√

((n −1)−1)2 + (1−1)2 +
√

((n −1)−1)2 + (2−1)2 +
√

((n −1)−1)2 + (3−1)2 + . . .

+
√

((n −1)−1)2 +
⌊n

2

⌋2
+ . . .+

√
((n −1)−1)2 + ((n −2)−1)2 +

√
((n −1)−1)2 +

⌊n

2

⌋2

=
n−2∑
i=1

√
((n −1)−1)2 + (i −1)2 +

√
((n −1)−1)2 + (

n −1

2
−1)2

(4.4)

In case analogous operations are applied to [SOr ed ]n−1, we have the following

[SOr ed ]n−1 =
n−3∑
i=2

√
((n −2)−1)2 + (i −1)2 +

√
((n −2)−1)2 + (

n −1

2
−1)2, (4.5)

[SOr ed ] n+1
2 +2 =

√
(

n +3

2
−1)2 + (

n −3

2
−1)2

+
√

(
n +3

2
−1)2 + (

n −1

2
−1)2 +

√
(

n +3

2
−1)2 + (

n −1

2
−1)2 +

√
(

n +3

2
−1)2 + (

n +1

2
−1)2

(4.6)

and finally

[SOr ed ] n+1
2 +1 =

√
(

n +1

2
−1)2 + (

n1

2
−1)2 +

√
(

n +1

2
−1)2 + (

n −1

2
−1)2. (4.7)

Hence

[SOr ed ]n + [SOr ed ]n−1 + . . .+ [SOr ed ] n+1
2 +2 + [SOr ed ] n+1

2 +1 =
n−1

2∑
k=1

n−k−1∑
i=k

√
(n −k −1)2 + (i −1)2

+
n−1

2∑
k=1

√
(n −k −1)2 + (

n −1

2
−1)2

(4.8)
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If similar operations are performed in case n is even, the following sum is obtained

[SOr ed ]n + [SOr ed ]n−1 + . . .+ [SOr ed ] n
2 +2 + [SOr ed ] n

2 +1 =
n
2 −1∑
k=1

n−k−1∑
i=k

√
(n −k −1)2 + (i −1)2

+
n
2∑

k=1

√
(n −k −1)2 + (

n

2
−1)2.

(4.9)

The following examples reinforce Theorem 3.1 and Theorem 4.1.

Example 4.2. We will compute the Albertson index over a graph of a monogenic semigroup S4
M . S4

M mono-

genic semigroup and the graph of S4
M is given below.

S4
M = {

x, x2, x3, x4}∪ {0}

x

x2 x3

x4

Figure 1. S4
M monogenic semigroup graph

Alb(Γ(S4
M )) = ∑

k=1

2∑
i=1

|(4−k)− i |+
2∑

k=1

∣∣∣∣(4−k)−
(

4

2

)∣∣∣∣
= |(4−1)−1|+ |(4−1)−2|+ |(4−1)−2|+ |(4−2)−2| = 2+1+1+0 = 4

(4.10)

The reduced Sombor index ofΓ(S6
M ) monogenic semigroup graph, is computed in the folowing example.

Example 4.3. We will compute the replaced Sombor index of Γ(S6
M ) graph. S6

M monogenic semigroup and

the graph of S6
M is given below:

S6
M = {

x, x2, x3, x4, x5, x6}∪ {0} .
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x x2

x6 x5

x3x4

Figure 2. S6
M monogenic semigroup graph

SOr ed (Γ(S6
M ) =

2∑
k=1

5−k∑
i=k

√
(6−k −1)2 + (i −1)2 +

3∑
k=1

√
(6−k −1)2 + (3−1)2

=
√

42 +
√

42 +12 +
√

42 +22 +
√

42 +32 +
√

32 +12 +
√

32 +22

+
√

42 +22 +
√

32 +22 +
√

22 +22

=p
20+p

13+p
8

(4.11)

As can be clearly seen, with the help of the given main theorems, the monogenic semigroup graphs of

Albertson and replaced Sombor indices are easily computed.
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[28] Nacaroğlu Y., Maden, A. D. (2017) The multiplicative Zagreb coindices of graph operations. Utilitas

Mathematica, 102:19-38.
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Abstract − The classical   Gauss   hypergeometric function  and the 

Kumar confluent hypergeometric function are defined using a classical 

Pochammer symbol  and a factorial function. This research paper will present 

a two-parameter Pochhammer symbol 
 
and discuss some of its properties 

such as recursive formulae and integral representation. In addition, the generalized 
Gauss and Kumar confluent hypergeometric functions are defined using the two-

parameter Pochhammer symbol and a two-parameter factorial function (m, j )! and 

some of the properties of the new generalized hypergeometric functions were also 

discussed. 

Subject Classification (2020): 33B99, 33C05, 33C15, 33C20. 

1. Introduction 

The pochhammer symbol is named after the German mathematician Leo Pochhammer, defined as a shifted 

(rising) factorial [2] and given by 

    (1.1) 

Rafael and Pariguan in [7] presented the definition of the pochhammer m -symbol as 

     (1.2) 

( and ) 

and introduced the m -analogue of the gamma function. 

Remark 1.1.  When   (the classical Pochhammer symbol). 

Srivastava in [11] generalized the Pochhammer symbol using the extended gamma function in [14] as  
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    (1.3) 

A new generalization of the Pochhammer symbol in [11] was proposed by Sahin [14] as 

            (1.4) 

Where  is the generalized extended gamma function.  

Sahai [18] generalized the Pochhammer symbol using an extended gamma function in [20] as 

        (1.5) 

Srivastava [16] introduced a generalized Pochhammer symbol from an extended gamma function in [14] as  

           (1.6) 

Another generalized Pochhammer symbol was defined by Safdar [21] using an extended gamma function in 

[22] as  

    (1.7) 

A factorial function denoted by  is given by  

   (1.8) 

In 2014, Mubeen and Rehman [3] generalized the classical factorial function called -factorials as  

                 (1.9) 

On simplifying the right-hand side of (1.8), we have 

         (1.10) 

(1.10) is the relationship between the generalized factorial function  and the gamma function. 

Remark 1.2.  When ,  (the classical factorial function).  

Other related literatures can be obtained [23, 24, 25 & 26]. 

Motivated by (1.9), the second part the paper will propose a new generalized Pochhammer symbol  

and give some of its properties. 

2. New Generalised Pochhammer Symbol  

The  Pochhammer symbol is defined as  
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                     (2.1) 

(2.1) can be simplified as  

                   (2.2) 

Remark 2.1. When   in (2.2), (i.e. the classical Pochhammer symbol) 

Theorem 2.1. The following formulas holds 

                                (2.3) 

                                 (2.4) 

                                                    (2.5) 

From (2.2),     

                     (2.6) 

(2.6) is the relationship between the two parameters Pochhammer symbol and the classical gamma function. 

Proof  To prove equations (2.3), (2.4) and (2.5), put  and in (2.2) 

respectively.   

The proof of (2.6) follows from the fact that . 

In the third part of the paper, we are going to state some recurrence formulae. 

3. Main Results 

Theorem 3.1. The following formula holds true 

 

                    (3.1) 

 

Proof 

 

Using (2.2) in the above equation, we obtained the desired result. 

Theorem 3.2. The following formula holds true 

                   (3.2) 

Proof  

 

Multiplying both sides of the equation by   and dividing through by  , we get the required result. 
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Theorem 3.2. 

                     (3.3) 

Proof  

 

On using (2.2), we obtained the desired result. 

Theorem 3.3. 

                          (3.4)          

Proof  

         

                         

             . 
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                                 (3.5) 

Proof  

  

   .   

Theorem 3.5. 

                       (3.6) 

Proof  

                                  (3.7) 

Multiplying both sides of (3.7) by , we get the desired result.  

Theorem 3.6. 

                     (3.8) 

Proof  

 

Multiplying through by  and dividing the result by , we get (3.8). 
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Proof  

  

            

Multiplying both sides by , we’ve 

 

on dividing both sides by , we get the desired result. 

Theorem 3.8. 

                                (3.10) 

Proof  

 

Multiplying both sides by , we’ve 

 

     

Dividing through by , we get the desired result. 

Theorem 3.9. 

                    (3.11) 

Proof  Taking the right-hand side of (3.11) and using (2.6), we get 

 

           

Theorem 3.10. 

                    (3.12) 

Proof Taking the right-hand side of (3.12) and using (2.6), we get 
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Corrolary 3.1. The following integral representation holds 

                                                                          (3.13) 

The hypergeometric functions is defined using a factorial function and a Pochhammer symbol. In the fourth 

part of this paper, we will define new generalized hypergeometric functions using (1.10) and (2.1). 

4. Generalized Hypergeometric Functions 

The new generalized Gauss and confluent hypergeometric functions are given by  
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   (4.5) 

                    

Proof 

                              

                                    

                                    

                                         

Corollary 4.1. The following integral representations hold true 

                       (4.6)                  

    (4.7)                  

        (4.8) 

                         (4.9) 

Theorem 4.3. The following derivative holds 

      (4.10) 
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Proof 

 

As , 

 

Using (1.6), yields 

 

Applying (4.1), we obtain the required result. 

Corollary 4.2.  
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5. Families of Generating Functions Relations 

In this section, we denote the following array of numbers  by  

Theorem 5.1. The following relation holds true          

      

                                    (5.1) 

Proof: Given that  

                                                         

Since  

                                                                                                                           (5.2) 

Yields 

                                                                    

Applying (5.2) again and (4.1), we get the desired result. 

 

Theorem 5.2 

                         

                                                                (5.3)     

Proof: The proof of (5.3) is similar to (5.1). This can be obtained from the fact that 
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Abstract − The intuitionistic fuzzy TOPSIS method is one of the popular multi-criteria decision

making methods today, as it allows decision makers to reflect their views objectively. In this study,

an intuitionistic fuzzy based decision making mechanism was created for the selection of UAVs,

which have a very important place in today’s military and civil sense. Experts in the field that is

decision makers determined the criteria that are important in the selection of UAVs in this method.

Afterward, they expressed their opinions about the UAVs to be evaluated according to these criteria,

provided that each criterion is independent of each other. The most suitable UAV was selected

among the target-oriented UAVs. The method used in the study and the mechanism established

will shed light on many studies.

Subject Classification (2020): 03E72,90B50.

1. Introduction

UAV (Unmanned Aerial Vehicle) is air vehicles that are sent by a pilot on the ground and performed with

remote control or that are automatically flown by uploading a previously made flight program. Very gener-

ally, it is collected in two main classes according to its technical features and usage purposes. According to

their technical features; according to their weight, fuel/energy source, wing structure, automatic or remote

control, etc. Moreover according to their intended use; military (reconnaissance and surveillance, target

and weapon, attack, etc.) and civil (logistics, hobby, scientific and commercial) [19].

UAVs have played an active role in the tasks they have performed in the operational fields and as a devel-

oping technology with enormous potential, they have been indispensable in the execution of the duties of

the navies. Unmanned aerial vehicles will also find use only if they gain an advantage over manned aircraft.

Unmanned aerial vehicles operate in Dull, Dirty, Dangerous environments called 3D without endangering

human life [22].

There are many studies on UAV and its selection in the relevant literature, such as UAVs sensors and ap-

plications for monitoring, selection of UAV for military fields, selection of UAV by using MCDM, selection
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using fuzzy Choquet integral,UAV selecting under group decision making, drone selection and evaluation

using the interval-valued inferential fuzzy TOPSIS, algorithm in UAV formation network, classification of

UAV vehicles, UAV landing, UAV history and legal status, electro-optical camera design for UAV, role of UAV,

development of UAV, application of MCDM techniques in electro-optics and infrared sensor selection in

UAV [1–4, 11, 11, 17, 19, 21–23, 25, 33].

Fuzzy logic, which reveals the feature of expressing the members even better with the rating method rather

than just binary logic, was first defined by Zadeh ([40]). Furthermore, Atanassov described and developed

intuitionistic fuzzy (IF) sets that are are a generalization of fuzzy sets ([5]). IF sets have shed light on many

researchers because of their advantages such as membership degree and nonmembership degree, as well as

expressing unstable states with hesitation degree. For a long time, multi-criteria decision making (MCDM)

problems have been the focus of attention for all researchers. There are many MCDM methods defined so

far ([24]). TOPSIS method is one of the MCDM methods. The TOPSIS method makes a ranking based on

the positive ideal and negative ideal relationship [18]. In the IF TOPSIS method, this method is preferred

because decision makers are free to express their ideas in linguistic terms. Many researchers have benefited

from the TOPSIS method, fuzzy logic and intuitionistic fuzzy sets in theoretically and their application ar-

eas such as; supplier selection, renewable energy technologies, topology, algebra, statistics, controlled set,

paper quality, education, mobile phone selection, etc. [7–10, 13–16, 20, 26, 27, 29–31, 34–36, 39]

2. Preliminaries

Definition 2.1. [5, 6] Let X ̸= ; . An intuitionistic fuzzy set A in X ;

A = {〈x,µA(x),νA(x)〉| x ∈ X
}

,

µA(x),νA(x),πA(x) : X → [0,1]

defined membership, nonmembership and hesitation degree of the element x ∈ X respectively.

µA(x)+νA(x)+πA(x) = 1.

IF TOPSIS model was presented an introduced by Rouyendegh (2015) ([28]). A = A1, A2, · · · , Am is set of

alternatives, C =C1,C2, · · · ,Cn is set of criteria, and L = l1, l2, · · · , ll is set of decision makers represents. The

algorithm consists of seven steps as follows.

Step 1 The contribution of the decision-makers was determined thanks to IF numbers in Table 1 ([37]).

Table 1. Linguistic Terms for Rating DMs

Linguistic Terms IFNs
Very Important (VI) (0.80,0.10)
Important (I) (0.50,0.20)
Medium (M) (0.50,0.50)
Bad (B) (0.30,0.50)
Very Bad (VB) (0.20,0.70)
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Dl = [µl ,νl ,πl ] is the IFN for l th DM ranking. As DMs express their opinions, their own weight of impor-

tance is assigned. It is expressed by the formula:

λl =
[µl +πl ( µl

µl+νl )]∑k
l=1[µl +πl ( µl

µl+νl )]
(2.1)

λ1 ∈ [0,1] and
∑k

l=1λl = 1.

Step 2 The importance of criterion is represented as linguistic terms in Table 2.

Table 2. Linguistic Terms for Rating the Criterion

Linguistic Terms IFNs
Very Important (VI) (0.90,0.10)
Important (I) (0.75,0.20)
Medium (M) (0.50,0.45)
Unimportant (U) (0.35,0.60)
Very Unimportant (VU) (0.10,0.90)

The IF weighted averaging (IFWA) operator is used to calculate the weights of the criterion. The IFWA opera-

tor is developed by Xu (2007)[38]. According to linguistic terms in Table 2, the weight of criteria is calculated

as:

w j =I FW Arλ(w (1)
j , w (2)

j , . . . , w (l )
j ) =λ1w (1)

j ⊕λ2w (2)
j ⊕, . . . ,λk w (k)

j

=
[

1−
k∏

l=1
(1−µ(l )

i j )λl , (
k∏

l=1
ν(l )

i j )λl ,
k∏

l=1
(1−µ(l )

i j )λl − (
k∏

l=1
ν(l )

i j )λl

]
(2.2)

Step 3 Using the linguistic terms in Table 3, the alternatives are evaluated individually for all criteria by each

decision maker. At the end of this evaluation, Intuitionistic Fuzzy Decision Matrix (IFDM) is obtained.

Table 3. Linguistic Terms for Rating the Alternatives

Linguistic Terms IFNs
Very Good (VG) (1.00,0.00)
Good (G) (0.85,0.05)
Medium Good (MG) (0.70,0.20)
Fair (F) (0.50,0.50)
Medium Poor (MP) (0.40,0.50)
Poor (P) (0.25,0.60)
Very Poor (VP) (0.00,0.90)

Aggregated Intuitionistic Fuzzy Decision Matrix (AIFDM) is obtained as follows:
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R(l ) = (r (l )
i j )m∗n is the IFDM of each DM.

λ=λ1,λ2,λ3, . . . ,λk is the weight of the DM.

R = (ri j )m′×n′

ri j = I FW Arλ(r (1)
i j ,r (2)

i j , . . . ,r (k)
i j ) =λ1r (1)

i j ⊕λ2r (2)
i j ⊕, . . . ,λk r (k)

i j

=
[

1−
k∏

l=1
(1−µ(l )

i j )λl , (
k∏

l=1
ν(l )

i j )λl ,
k∏

l=1
(1−µ(l )

i j )λl − (
k∏

l=1
ν(l )

i j )λl

]
(2.3)

Step 4 S matrix is obtained as follows:

S = R ×W (2.4)

R ⊗W = (µ
′
i j ,ν

′
i j ) = {< x,µi j ×µ j ,νi j +ν j −νi j ×ν j >} (2.5)

Step 5 Positive and negative ideal solutions vary according to the criteria and alternatives. The ideal solution

approach; the closer an alternative is to the positive, the farther from the negative, which represents the best

alternative for the decision-maker. In this step, positive and negative ideal solutions are calculated. The IF

positive and negative ideal solutions, A+ and A− respectively, in which J1:benefit and J2: cost criteria; are

determined as follows:

A+ = (r
′∗
1 ,r

′∗
2 , . . . ,r

′∗
n ),r

′∗
j = (µ

′∗
j ,ν

′∗
j ,π

′∗
j ), j = 1,2, . . . ,n (2.6)

A− = (r
′−
1 ,r

′−
2 , . . . ,r

′−
n ),r

′−
j = (µ

′−
j ,ν

′−
j ,π

′−
j ), j = 1,2, . . . ,n (2.7)

where

µ
′∗
j = {(max

i
{µ

′
i j } j ∈ J1), (min

i
{µ

′
i j } j ∈ J2)} (2.8)

ν
′∗
j = {(min

i
{ν

′
i j } j ∈ J1), (max

i
{ν

′
i j } j ∈ J2)} (2.9)

µ
′−
j = {(min

i
{µ

′
i j } j ∈ J1), (max

i
{µ

′
i j } j ∈ J2)} (2.10)

ν
′−
j = {(max

i
{ν

′
i j } j ∈ J1), (min

i
{ν

′
i j } j ∈ J2)} (2.11)

Step 6 The separation measures between the alternatives are determined. Many distance measures were

defined on intuitionistic fuzzy sets ([32],[12]). In this step of the study, unlike other methods, the normal-

ized Hamming measure was used. Studies have shown that the normalized Hamming measure is the most

sensitive measure of distance compared to other distance measures. Therefore, in this study, the normalized

Hamming distance measure will be used when calculating positive and negative ideal solutions. Through

the positive and negative ideal solutions, S+
i and S−

i , respectively, the separation measures of the alterna-
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tives are calculated.

S+
i = 1

2n

n∑
i=1

[|µ′
i j −µ

′∗
i j | + | ν′

i j −ν
′∗
i j | + |π′

i j −π
′∗
i j |] (2.12)

S−
i = 1

2n

n∑
i=1

[|µ′
i j −µ

′−
i j | + | ν′

i j −ν
′∗−
i j | + |π′

i j −π
′−
i j |] (2.13)

Step 7 In the last step, the coefficient of closeness with respect to the positive and negative ideal solutions

is calculated by the formula 2.14:

C∗
i = S−

i

S+
i +S−

i

,and0 ≤C∗
i ≤ 1 (2.14)

The resulting value is sorted from largest to smallest. A larger C∗
i value indicates better alternative. The

hierarchy for the UAV selection decision mechanism is as follows:

Figure 1. Hierarchy for the UAV selection decision mechanism

3. Selection of UAV Utilizing the Intuitionistic Fuzzy TOPSIS Method

UAVs play a very important role because of their benefits such as low fuel and flight costs, no risk of loss

of life, less exposure to weather conditions, working at any time of the day, and scanning more areas. It is

very important to determine purpose-oriented criteria when choosing a UAV. The criteria to be considered

in the selection of UAVs were determined by the decision makers consisting of experts in the field of UAV.

Afterwards, UAVs were evaluated according to the criteria determined by the decision makers. Decision

makers first evaluated the criteria using linguistic terms and then evaluated the alternatives one by one

independently for all criteria. U = {U AV1,U AV2,U AV3} is set of alternatives. Alternatives represent different

sensors. C = {C1,C2,C3,C4,C5,C6} is set of criteria. All criteria in this study were evaluated independently of

each other. The classification of the criteria is as follows:
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• C1 : Performance

• C2 : Cost

• C3 : Power

• C4 : Height

• C5 : Durability

• C6 : Weight

In this study, the opinions of 2 decision makers were consulted while using the intuitionistic fuzzy TOPSIS

method. The importance of the contribution of decision makers;DM1 is very important and DM2 is impor-

tant according to Table 1. Equation 2.1 is used when calculating the contributions of decision makers. As

to; numerical values of DM1, DM2’s importance weight are 0,554 and 0,446 respectively. Furthermore both

decision makers specified the same linguistic terms when determining the importance of the criteria and

showed in Table 4.

Table 4. Importance Weights of Criteria as to Decision Makers

Criteria DM1 DM2

C1 VI VI
C2 VI VI
C3 I I
C4 M I
C5 I I
C6 I VI

According to the results obtained by using the values in the Table 4 and Equation 2.2; the weights of the

criteria are shown in the Table 5. The importance of the alternatives for each criterion has been determined

by the decision makers according to the linguistic expressions in Table 3 and has shown in Table 5.

Table 5. Values of Alternatives for Criteria

DM1 DM2
C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

U AV1 MG F P MG MP MP MP P F MG MP P
U AV2 MG MP F MG MG F MP F MP F MP MP
U AV3 G G MG G G MG MG MG G MG G MG

R matrix was created with the help of Equation 2.3. Afterwards, the S matrix was obtained with the help of

the Equation 2.4 and the S matrix was shown in Table 6.

The positive ideal A+ and negative ideal A− solutions were calculated with the help of Equation 2.6 and

shown in Table 7.



Feride TuĞrul / IKJM / 4(2) (2022) 32-41 38

Table 6. S Matrix

C1 C2 C3 C4 C5 C6
U AV1 (0.532,0.371) (0.361,0.588) (0.281,0.643) (0.443,0.451) (0.300,0.600) (0.281,0.609)
U AV2 (0.532,0.371) (0.402,0.550) (0.343,0.600) (0.394,0.521) (0.444,0.441) (0.382,0.573)
U AV3 (0.716,0.183) (0.716,0.183) (0.585,0.286) (0.504,0.377) (0.638,0.240) (0.584,0.317)

Table 7. The IF Positive and Negative Ideal Solution

C1 C2 C3 C4 C5 C6
A+

(0.72,0.18) (0.72,0.18) (0.58,0.29) (0.51,0.37) (0.64,0.24) (0.58,0.32)
A−

(0.53,0.37) (0.36,0.58) (0.28,0.64) (0.39,0.52) (0.30,0.60) (0.28,0.60)

The separation measures S+ and S− of the alternatives calculated using the normalized Hamming measure

and the closeness coefficient values were calculated in Table 8. In addition, the graphs of values were shown

in Figure 2.

Table 8. Separation Measures and Closeness Coefficient Values

S+ S− C∗
i

U AV1 0.2807 0.0115 0.0395
U AV2 0.2445 0.0606 0.1986
U AV3 0.0000 0.2923 1.0000

As a result of the evaluation made according to the opinions of the decision makers consisting of experts

in the field with the intuitionistic fuzzy TOPSIS method, the ranking among the decision makers from the

best to the worst is as follows:U AV3-U AV2-U AV1 According to the result obtained in the decision making

mechanism created, the best UAV is the U AV3. It is recommended to select U AV3 among the determined

UAVs.

4. Conclusion and Suggestions

UAVs, which are non-pilot, remotely controlled by a pilot from the ground, or autonomously flying with

various devices depending on the characteristics of the mission, have played an active role in the tasks they

have performed in the operational fields and are developing technology with enormous potential. In ad-

dition, it has been indispensable in the execution of the duties of the navies. Using the intuitionistic fuzzy

sets, membership, non-membership, and sensitivity degrees were all evaluated simultaneously. Thanks to

the intuitionistic fuzzy TOPSIS method, the decision makers easily expressed their opinions in linguistic

terms, which they had difficulty expressing with numerical values. In the study, 2 decision makers who

are experts in their fields shared their views. Intuitionistic fuzzy TOPSIS method based decision making

mechanism was created according to 6 criteria determined by the decision makers among a total of 3 UAVs.

The most suitable UAV for the target was determined according to the decision making mechanism. Re-

cently, the intuitionistic fuzzy TOPSIS method has attracted the attention of many researchers due to its
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Figure 2. Graphic of values for the UAVs

advantages. UAV selection is a very important issue today. Instead of the intuitionistic fuzzy TOPSIS used

in the study, evaluations may be made with different methods. The opinions of different experts may be

consulted for the criteria. The range of UAVs to be evaluated may be expanded. This study, which will guide

many researchers, has an important place for UAV selection. In addition to contributing to the literature in

the future, it will give researchers a new perspective.
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[13] Çuvalcıoğlu, G. (2014) Some Properties of Controlled Set Theory. Notes on Intuitionistic Fuzzy Set,

20(2):37-42.
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Abstract − Conformable space-time fractional linear telegraph equations are examined using a 

new method known as conformable fractional Elzaki decomposition method. The suggested 

method combines the Adomian decomposition method with the conformable fractional Elzaki 

transform. It is found that numerical simulations confirm the effectiveness and reliability of the 

proposed method.  

Subject Classification (2020): 65R10. 

1. Introduction 

The appearance of fractional calculus is based on a question that Leibniz asked L’Hospital on 30 

September, 1695. Since 1695, the mathematicians have developed in fractional derivatives and 

produced derivatives of various orders. Recently, we have observed that fractional analysis allows an 

elegant modelling of a lot of interdisciplinary problems [1-7]. Until recently, the fractional derivative 

definitions such as Grunwald–Letnikov, Riesz, Riemann–Liouville, Caputo [2-3, 8 ] have been widely 

used in the solution methods to obtain the approximate solutions of differential equations. Since these 

derivative definitions include integral operators, the calculations are extremely challenging. Besides, 

analytical solutions usually can not be obtained in the models using these derivative definitions and to 

solve these equations scientists sometimes benefit from numerical methods.  

Different fractional-order models are utilized in engineering and the applied sciences because these 

models provide a more accurate description of real-world scenarios. Various researchers have already 

utilized conformable fractional derivatives in numerous disciplines. [9]. The conformable fractional 

operator [3, 10-12] overcomes certain limitations of the existing fractional operators and provides 

traditional calculus with properties including the mean value theorem, the chain rule, the product of 

two functions, the derivative of the quotient of two functions, and Rolle's theorem. 
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The telegraph equation has been improved by Oliver Heaviside in the 1880s, which defines the distance 

and time on an electric transmission line with voltage and current. The telegraph equation is usually 

implemented in the investigation of electric signals, as well as wave propagations in the wave 

phenomena and cable transmission line. The telegraph equation has a lot of applications in areas such 

as radio frequency, wireless signals, telephone lines, and microwave transmission [13]. Many numerical 

and analytical methods have been utilised to solve fractional-order telegraph equations, such as Laplace 

transform (LT) [14], homotopy perturbation method (HPM) [15], variational iteration method (VIM) 

[16] . Recently, Keskin and Oturanc has extended FRDM for FDEs, where they showed that FRDTM can 

simply obtain the exact solution for both linear and nonlinear FDEs [17-18]. In the literature, there are 

a lot of numerical and analytical methods such as conformable variational iteration method (C-VIM) 

[19], conformable fractional reduced differential transform method (CFRDTM) [19], conformable 

homotopy analysis method (C-HAM) [19], conformable fractional differential transform method 

(CFDTM) [20], conformable fractional adomian decomposition method (CFADM) [21] , and conformable 

modified homotopy perturbation method (CMHPM) [21]. The main motivation of writing this paper is 

to suggest a new method which is called conformable fractional Elzaki decomposition method (CFEDM) 

to obtain numerical solutions for the conformable time-fractional linear telegraph equations. 

In this study, CFEDM is applied to solve the following types of the conformable time-fractional linear 

telegraph equations.  

In this study, CFEDM is applied to solve the following types of the conformable time-fractional linear 

telegraph equations.  

1) One-dimensional space-time conformable fractional telegraph equation is introduced by 

𝜕2𝜇𝑤(𝑥, 𝑡)

𝜕𝑡2𝜇
+ 2𝛼

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝛽2𝑤(𝑥, 𝑡) =

𝜕2𝜗𝑤(𝑥, 𝑡)

𝜕𝑡2𝜗
+ ℎ(𝑥, 𝑡), 0 < 𝜗, 𝜇 ≤ 1.                                               (1) 

with the initial and boundary conditions  

𝑤(𝑥, 0) = 𝛷1(𝑥), 𝑤𝑡(𝑥, 0) = 𝛷2(𝑥), 𝑤(0, 𝑡) = 𝛷3(𝑡), 𝑤𝑥(0, 𝑡) = 𝛷4(𝑡).                                                            (2) 

2) Two-dimensional conformable fractional-order telegraph equation is given by 

𝜕2𝜇𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2𝜇
+ 2𝛼

𝜕𝜇𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡𝜇
+ 𝛽2𝑤(𝑥, 𝑦, 𝑡) =

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦2
+ ℎ(𝑥, 𝑦, 𝑡),  

0 < 𝜇 ≤ 1, 𝜗 = 1.                                                                                                                                                               (3) 

with the initial and boundary conditions  

𝑤(𝑥, 𝑦, 0) = 𝜉1(𝑥, 𝑦), 𝑤𝑡(𝑥, 𝑦, 0) = 𝜉2(𝑥, 𝑦).                                                                                                             (4) 

3) Three-dimensional conformable fractional-order telegraph equation is introduced by 

𝜕2𝜇𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡2𝜇
+ 2𝛼

𝜕𝜇𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡𝜇
+ 𝛽2𝑤(𝑥, 𝑦, 𝑧, 𝑡) =

𝜕2𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥2
+

𝜕2𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦2
 

+
𝜕2𝑤(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧2
+ ℎ(𝑥, 𝑦, 𝑧, 𝑡), 0 < 𝜇 ≤ 1, 𝜗 = 1.                                                                                                   (5) 

with the initial and boundary conditions  

𝑤(𝑥, 𝑦, 𝑧, 0) = 𝜅1(𝑥, 𝑦, 𝑧), 𝑤𝑡(𝑥, 𝑦, 0) = 𝜅2(𝑥, 𝑦, 𝑧).                                                                                                 (6) 

In this study, the symbol 𝐷𝜇 represents the conformable fractional derivative operator. 
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2. Preliminaries 

In this section, the definitions of conformable fractional calculus and Elzaki transform that should be 

utilized in the current study are presented. 

 

Definition 1 [11-12, 22 ]. Given a function 𝑓: [0, ∞) → ℝ. Then, the conformable fractional derivative of 

𝑓 order 𝛼 is defined by  

𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥 + 𝜀𝑥1−𝛼) − 𝑓(𝑥)

𝜀
,                                                                                                                        (7) 

for all 𝑥 > 0, 𝛼 ∈ (0, 1]. 

 

Theorem 1 [11, 23]. Let 𝛼 ∈ (0, 1] and 𝑓, 𝑔 be 𝛼 −differentiable at a point 𝑥 > 0. Then it is obtained as  

(𝑖) 𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝛼(𝑓) + 𝑏𝑇𝛼(𝑔), for all 𝑎, 𝑏 ∈ ℝ,                                                                                             (8) 

(𝑖𝑖)𝑇𝛼(𝑥𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ,                                                                                                                                (9) 

 (𝑖𝑖𝑖) 𝑇𝛼(𝜆) = 0, for all constant functions 𝑓(𝑡) = 𝜆,                                                                                            (10) 

(𝑖𝑣) 𝑇𝛼(𝑓𝑔) = 𝑓𝑇𝛼(𝑔) + 𝑔𝑇𝛼(𝑓),                                                                                                                               (11) 

(𝑣) 𝑇𝛼 (
𝑓

𝑔
) =

𝑔𝑇𝛼(𝑓) − 𝑓𝑇𝛼(𝑔)

𝑔2
.                                                                                                                                 (12) 

(vi) If 𝑓 is differentiable, then 𝑇𝛼(𝑓)(𝑡) = 𝑡1−𝛼 𝑑

𝑑𝑡
𝑓(𝑡).                                                                                      (13) 

 

Definition 2 [12]. Let 𝑓 be an 𝑛 −times differentiable at 𝑥. Then, the conformable fractional derivative of 

𝑓 order 𝛼 is defined by: 

𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓([𝛼]−1)(𝑥 + 𝜀𝑥([𝛼]−𝛼)) − 𝑓([𝛼]−1)(𝑥)

𝜀
,                                                                                       (14) 

for all 𝑥 > 0, 𝛼 ∈ (𝑛, 𝑛 + 1], [𝛼] is the smallest integer greater than or equal to 𝛼. 

 

Theorem 2 [12]. Let 𝑓 be an 𝑛 −times differentiable at 𝑥. Then 

𝑇𝛼(𝑓(𝑥)) = 𝑥[𝛼]−𝛼𝑓[𝛼](𝑥),                                                                                                                                           (15) 

for all 𝑥 > 0, 𝛼 ∈ (𝑛, 𝑛 + 1]. 

 

Definition 3 [23]. The Mittag-Leffler function 𝐸𝑎 is given as follows:  

𝐸𝑎(𝑧) = ∑
𝑧𝑎

Г(𝑛𝑎 + 1)

∞

𝑛=0

.                                                                                                                                                (16) 

 

Definition 4 [12]. The conformable fractional exponential function is defined for every 𝑡 ≥ 0 by  
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𝐸𝑎(𝑐, 𝑡) = 𝑒𝑥𝑝 (𝑐
𝑡𝛼

𝛼
),                                                                                                                                                   (17) 

where 𝑐 ∈ ℝ and 0 < 𝛼 ≤ 1. 

 

Definition 5 [24]. Let 0 <  𝛼 ≤ 1, 𝑓: [0,∞) → ℝ  be real valued function. The conformable fractional Elzaki 

transform of order 𝛼 of 𝑓  is defined by 

𝐸𝛼[𝑓(𝑡)](𝑣) = ∫ 𝑣

∞

0

𝐸𝛼 [−
1

𝑣
, 𝑡] 𝑓(𝑡)𝑑𝛼𝑡, 𝑣 > 0.                                                                                                      (18) 

The Elzaki transform for the conformable fractional-order derivative is described by 

𝐸𝛼[𝑇𝛼𝑓(𝑡)](𝑣) =
1

𝑣
𝐸𝛼[𝑓(𝑡)](𝑣) − 𝑣𝑓(0).                                                                                                                (19) 

 

Theorem 3. Let 𝐹𝛼[𝑣] = 𝐸𝛼[𝑓(𝑡)](v) exists for 𝑣 > 0. Then, it is obtained as  

1. If 𝑐 is a constant, then 

𝐸𝛼[𝑐] = 𝑣2,                                                                                                                                                                       (20) 

2. If w is a constant, then 

𝐸𝛼[𝑡𝑤] = 𝛼
𝑤
𝛼 Г (1 +

𝑤

𝛼
) 𝑣2+

𝑤
𝛼 .                                                                                                                                      (21) 

 

3. Conformable Fractional Elzaki Decomposition Method (CFEDM) 

Now to present the fundamental idea of CFEDM, we consider the conformable fractional order nonlinear 

partial differential equation: 

𝜕𝜇𝑢(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝜇 ≤ 𝑛,                                                                     (22) 

where 𝑅 indicates the linear operator, 𝑁 denotes the nonlinear operator, 𝑓(𝑥, 𝑡) symbolizes source term, and 
𝜕𝜇𝑢(𝑥,𝑡)

𝜕𝑡𝜇  is the conformable fractional derivative operator 𝜇. 

 

Now, by performing conformable Elzaki transform on Eq. (22) and using initial condition, we have  

1

𝑣
𝐸𝜇[𝑢(𝑥, 𝑡)] − 𝑣𝑢(𝑥, 0) + 𝐸𝜇[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)] = 𝐸𝜇[𝑓(𝑥, 𝑡)].                                                                   (23) 

If we simplify the Eq. (23), we get 

𝐸𝜇[𝑢(𝑥, 𝑡)] = 𝑣2𝑢(𝑥, 0) + 𝑣𝐸𝜇[𝑓(𝑥, 𝑡)] − 𝑣𝐸𝜇[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)].                                                               (24)  

On applying inverse conformable Elzaki transform to Eq. (24), we get 

𝑢(𝑥, 𝑡) = 𝐻(𝑥, 𝑡) − 𝐸𝜇
−1{𝑣𝐸𝜇[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)]},                                                                                          (25) 
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where 𝐻(𝑥, 𝑡) is obtained from initial condition and non-homogeneous term. Now, assume that, the infinite 

series solution is of the form: 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡).

∞

𝑚=0

                                                                                                                                                (26) 

By employing Eqs. (25)-(26), we have 

∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

= 𝐻(𝑥, 𝑡) − 𝐸𝜇
−1 (𝑣𝐸𝜇 [𝑅 ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

+ ∑ 𝐴𝑚

∞

𝑚=0

]).                                                                (27) 

where 𝐴𝑚 is the Adomian polynomial and which denotes the nonlinear term 𝑁𝑢(𝑥, 𝑡). By comparing both 

sides of Eq. (27), we get  

𝑢0(𝑥, 𝑡) = 𝐻(𝑥, 𝑡),                                                                                                                                                           (28) 

𝑢1(𝑥, 𝑡) = −𝐸𝜇
−1(𝑣𝐸𝜇[𝑅𝑢0(𝑥, 𝑡) + 𝐴0]),                                                                                                                 (29) 

𝑢2(𝑥, 𝑡) = −𝐸𝜇
−1(𝑣𝐸𝜇[𝑅𝑢1(𝑥, 𝑡) + 𝐴1]),                                                                                                                 (30) 

⋮ 

 

Similarly, we obtain the general recursive relation by  

𝑢𝑚+1(𝑥, 𝑡) = −𝐸𝜇
−1(𝑣𝐸𝜇[𝑅𝑢𝑚(𝑥, 𝑡) + 𝐴𝑚]), 𝑚 ≥ 1.                                                                                           (31) 

Finally, the approximate solution 𝑢(𝑥, 𝑡) is given by 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡)

∞

𝑚=0

.                                                                                                                                                 (32) 

4. Convergence Analysis  

Theorem 4.1. Let's assume that A is a Banach space. Then, the expansion result of 𝑢(𝑥, 𝑡) converges 

uncertainty; there becomes 𝜌, 0 <  𝜌 <  1, so that  ‖𝑢𝑖(𝑥, 𝑡)‖ ≤ 𝜌‖𝑢𝑖−1(𝑥, 𝑡)‖, for all i ∈ Ν. 

Proof. Consider the subsequent succession 

𝐻𝑖(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯ + 𝑢𝑖(𝑥, 𝑡).                                                                                     (33) 

It is vital to verify that successions of 𝑖-th partial sums 𝐻𝑖 (𝑥, 𝑡) are a Cauchy series in Banach space. In this 

regard, we consider the following: 

‖𝐻𝑖+1(𝑥, 𝑡) − 𝐻𝑖(𝑥, 𝑡)‖ ≤ ‖𝑢𝑖+1(𝑥, 𝑡)‖ ≤ 𝜌‖𝑢𝑖(𝑥, 𝑡)‖ ≤ 𝜌2‖𝑢𝑖−1(𝑥, 𝑡)‖ ≤ ⋯ ≤ 𝜌𝑖+1‖𝑢0(𝑥, 𝑡)‖.           (34) 

For every 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≤ 𝑗, it is obtained as 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ ‖𝐻𝑗+1(𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ + ‖𝐻𝑗+2(𝑥, 𝑡) − 𝐻𝑗+1(𝑥, 𝑡)‖ + ⋯ 

+‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑖+1(𝑥, 𝑡)‖.                                                                                                                                              (35) 

Using the triangle inequality, then the inequality (35) transforms into the inequality (36): 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ ‖𝐻𝑗+1(𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ + ‖𝐻𝑗+2(𝑥, 𝑡) − 𝐻𝑗+1(𝑥, 𝑡)‖ 

+ ⋯ + ‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑖+1(𝑥, 𝑡)‖.                                                                                                                                 (36) 
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The inequality (36) can be represented as follows: 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ 𝜌𝑗+1‖𝑢0(𝑥, 𝑡)‖ + 𝜌𝑗+2‖𝑢0(𝑥, 𝑡)‖ + ⋯ + 𝜌𝑖‖𝑢0(𝑥, 𝑡)‖.                                            (37) 

The simple calculation enables us to write the inequality (37) as 

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ 𝜌𝑗+1(1 + 𝜌 + 𝜌2 + ⋯ + 𝜌𝑖−𝑗−1)‖𝑢0(𝑥, 𝑡)‖,                                                                (38) 

where (
1−𝜌𝑖−𝑗

1−𝜌
) = 1 + 𝜌 + 𝜌2 + ⋯ + 𝜌𝑖−𝑗−1.  

Thus, inequality (38) is obtained as  

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤ 𝜌𝑗+1 (
1 − 𝜌𝑖−𝑗

1 − 𝜌
) ‖𝑢0(𝑥, 𝑡)‖.                                                                                            (39) 

Hence it is acquired as 0 < 𝜌 < 1, and  1 − 𝜌𝑖−𝑗 ≤ 1. 

Using inequality (39), we have  

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ ≤
𝜌𝑖+1

1 − 𝜌
‖𝑢0(𝑥, 𝑡)‖.                                                                                                                 (40) 

Since 𝑢0(𝑥, 𝑡) is bounded, it is obtained as 

lim
𝑖,𝑗→∞

‖𝐻𝑖 (𝑥, 𝑡) − 𝐻𝑗 (𝑥, 𝑡)‖ = 0.                                                                                                                                   (41) 

Thus, {𝐻𝑖} is a Cauchy series in Banach space. Hence, Eq. (32) converges.  

5. Applications  

Example 5.1 Consider the conformable time-fractional linear telegraph equation (CTFLTE) [25]  

𝜕2𝜇𝑤(𝑥, 𝑡)

𝜕𝑡2𝜇
+ 2

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) =

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
, 0 < 𝜇 ≤ 1, 𝑡 ≥ 0,                                                                (42) 

with the initial condition  

𝑤(𝑥, 0) = 𝑒𝑥 , 𝑤𝑡(𝑥, 0) = −2𝑒𝑥 .                                                                                                                                  (43)  

Now, by performing conformable Elzaki transform on Eq. (42), then we get 

1

𝑣2
𝐸𝜇{𝑤(𝑥, 𝑡)} − 𝑤(𝑥, 0) − 𝑣𝑤𝑡(𝑥, 0) + 𝐸𝜇 [2

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) −

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
] = 0.                               (44) 

If we simplify the Eq. (44), then we have 

𝐸𝜇{𝑤(𝑥, 𝑡)} = 𝑣2 𝑤(𝑥, 0) + 𝑣3𝑤𝑡(𝑥, 0) − 𝑣2𝐸𝜇 [2
𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) −

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
] .                               (45) 

Applying the inverse conformable Elzaki transform,  

𝑤(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2 𝑤(𝑥, 0) + 𝑣3𝑤𝑡(𝑥, 0) − 𝑣2𝐸𝜇 [2

𝜕𝜇𝑤(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤(𝑥, 𝑡) −

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
]].                          (46) 

Using the ADM procedure, we obtain 

𝑤0(𝑥, 𝑡) = 𝐸𝜇
−1[𝑣2 𝑤(𝑥, 0) + 𝑣3𝑤𝑡(𝑥, 0)] = 𝐸𝜇

−1[𝑣2 𝑒𝑥 − 2𝑒𝑥𝑣3] =  𝑒𝑥 − 2𝑒𝑥
𝑡𝜇

𝜇
,                                 (47) 
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 𝑤𝑠+1(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤𝑠(𝑥,𝑡)

𝜕𝑡𝜇 + 𝑤𝑠(𝑥, 𝑡) −
𝜕2𝑤𝑠(𝑥,𝑡)

𝜕𝑥2
]] ,              𝑠 = 0,1,2, …                                 (48) 

For 𝑠 = 0 in Eq. (48), we obtain  

 𝑤1(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤0(𝑥,𝑡)

𝜕𝑡𝜇 + 𝑤0(𝑥, 𝑡) −
𝜕2𝑤0(𝑥,𝑡)

𝜕𝑥2
]],                                                                          (49) 

𝑤1(𝑥, 𝑡) = −𝐸𝜇
−1 [4𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1

𝜇
) 𝑣

2+
𝜇−1

𝜇
+2

] =
4𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) 𝑡3𝜇−1

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
)

.                           (50) 

We get the subsequent terms, recursively 

𝑤2(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤1(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤1(𝑥, 𝑡) −

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑥2
]] 

=
−8𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
) 𝑡5𝜇−2

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

)

,                                                                               (51) 

 

𝑤3(𝑥, 𝑡) = −𝐸𝜇
−1 [𝑣2𝐸𝜇 [2

𝜕𝜇𝑤2(𝑥, 𝑡)

𝜕𝑡𝜇
+ 𝑤2(𝑥, 𝑡) −

𝜕2𝑤2(𝑥, 𝑡)

𝜕𝑥2
]] 

=
16𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)(5𝜇 − 2)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
)

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

)

,  

×
𝜇

5𝜇−3
𝜇 Г (1 +

5𝜇 − 3
𝜇

) 𝑡7𝜇−3

𝜇
7𝜇−3

𝜇 Г (1 +
7𝜇 − 3

𝜇
)

.                                                                                                                                               (52) 

⋮ 

Proceeding in a similar way, we obtain  

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯ = 𝑒𝑥 − 2𝑒𝑥
𝑡𝜇

𝜇
                   

+
4𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) 𝑡3𝜇−1

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
)

−
8𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
) 𝑡5𝜇−2

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

)

 

+
16𝑒𝑥𝜇

𝜇−1
𝜇 Г (1 +

𝜇 − 1
𝜇

) (3𝜇 − 1)(5𝜇 − 2)𝜇
3𝜇−2

𝜇 Г (1 +
3𝜇 − 2

𝜇
) 𝜇

5𝜇−3
𝜇 Г (1 +

5𝜇 − 3
𝜇

) 𝑡7𝜇−3

𝜇
3𝜇−1

𝜇 Г (1 +
3𝜇 − 1

𝜇
) 𝜇

5𝜇−2
𝜇 Г (1 +

5𝜇 − 2
𝜇

) 𝜇
7𝜇−3

𝜇 Г (1 +
7𝜇 − 3

𝜇
)

+ ⋯                                                                                                                                                       (53) 
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Subsituting 𝜇 = 1 in Eq. (53), then CFEDM solution is reduced as 

𝑤(𝑥, 𝑡) = 𝑒𝑥 [1 − 2𝑡 +
(2𝑡)2

2!
−

(2𝑡)3

3!
+

(2𝑡)4

4!
− ⋯ ].                                                                                         (54) 

 This result is evaluated to the exact solution in a closed form: 

𝑤(𝑥, 𝑡) = 𝑒𝑥−2𝑡 .                                                                                                                                                              (55) 

The CFEDM solutions of  𝑤(𝑥, 𝑡) is found to be in excellent agreement  with the exact solution of problem. 

For more understanding the results for the variable 𝑤(𝑥, 𝑡) of Example 4.1 are plotted in Figure 1. In Figure 

1, we observe that this solution is higher accuracy.  

 

 

Fig. 1. (a) Nature of CFEDM solution for 𝑤(𝑥, 𝑡) (b) Nature of exact solution for 𝑤(𝑥, 𝑡) 

(c) Nature of absolute error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝐹𝐸𝐷𝑀| in Ex. 5.1 at 𝜇 = 1. 

 

 

Fig. 2. Nature of CFEDM solution for 𝑤(𝑥, 𝑡) in Ex. 5.1 at 𝑥 = 0.5 with distinct 𝜇. 

Table 1. Numerical solution of 𝑤(𝑥, 𝑡) for CTFLTE by CFEDM in Ex. 5.1 at with distinct values of 𝑥 and 

𝑡 for diverse 𝜇.  
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𝒙 𝒕 𝝁 = 𝟎. 𝟕𝟓 𝝁 = 𝟎. 𝟖 𝝁 = 𝟎. 𝟖𝟓 𝝁 = 𝟎. 𝟗 𝝁 = 𝟏 

0.1 0.001 1.3 × 10−2 8.4 × 10−3 5.0 × 10−3 2.6 × 10−3 2.9 × 10−16 

 0.002 2.0 × 10−2 1.3 × 10−2 8.5 × 10−3 4.6 × 10−3 9.4 × 10−15 

 0.003 2.6 × 10−2 1.8 × 10−2 1.1 × 10−2 6.3 × 10−3 7.1 × 10−14 

 0.004 3.1 × 10−2 2.2 × 10−2 1.4 × 10−2 7.9 × 10−3 3.0 × 10−13 

 0.005 3.5 × 10−2 2.5 × 10−2 1.6 × 10−2 9.4 × 10−3 9.1 × 10−13 

0.2 0.001 1.4 × 10−2 9.3 × 10−2 5.5 × 10−3 2.9 × 10−3 3.2 × 10−16 

 0.002 2.2 × 10−2 1.5 × 10−2 9.4 × 10−3 5.1 × 10−3 1.0 × 10−14 

 0.003 2.9 × 10−2 2.0 × 10−2 1.2 × 10−2 7.0 × 10−3 7.9 × 10−14 

 0.004 3.4 × 10−2 2.4 × 10−2 1.5 × 10−2 8.8 × 10−3 3.3 × 10−13 

 0.005 3.9 × 10−2 2.8 × 10−2 1.8 × 10−2 1.0 × 10−2 1.0 × 10−12 

0.3 0.001 1.6 × 10−2 1.0 × 10−2 0.6 × 10−3 3.2 × 10−3 3.5 × 10−16 

 0.002 2.5 × 10−2 1.6 × 10−2 1.0 × 10−2 5.6 × 10−3 1.1 × 10−14 

 0.003 3.2 × 10−2 2.2 × 10−2 1.4 × 10−2 7.8 × 10−3 8.7 × 10−14 

 0.004 3.8 × 10−2 2.7 × 10−2 1.7 × 10−2 9.7 × 10−3 3.6 × 10−13 

 0.005 4.3 × 10−2 3.1 × 10−2 2.0 × 10−2 1.1 × 10−2 1.1 × 10−12 

0.4 0.001 1.7 × 10−2 1.1 × 10−2 6.7 × 10−3 3.5 × 10−3 3.9 × 10−16 

 0.002 2.7 × 10−2 1.8 × 10−2 1.1 × 10−2 6.2 × 10−3 1.2 × 10−14 

 0.003 3.5 × 10−2 2.4 × 10−2 1.5 × 10−2 8.6 × 10−3 9.6 × 10−14 

 0.004 4.2 × 10−2 3.0 × 10−2 1.9 × 10−2 1.0 × 10−2 4.0 × 10−13 

 0.005 4.8 × 10−2 3.4 × 10−2 2.2 × 10−2 1.2 × 10−2 1.2 × 10−12 

0.5 0.001 1.9 × 10−2 1.2 × 10−2 7.5 × 10−3 3.9 × 10−3 4.3 × 10−16 

 0.002 3.0 × 10−2 2.0 × 10−2 1.2 × 10−2 6.9 × 10−3 1.4 × 10−14 

 0.003 3.9 × 10−2 2.7 × 10−2 1.7 × 10−2 9.5 × 10−3 1.0 × 10−13 

 0.004 4.7 × 10−2 3.3 × 10−2 2.1 × 10−2 1.1 × 10−2 4.4 × 10−13 

 0.005 5.3 × 10−2 3.8 × 10−2 2.4 × 10−2 1.4 × 10−2 1.3 × 10−12 
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Example 5.2 Consider the conformable space-fractional linear telegraph equation (CSFLTE) [26-27] 

𝜕2𝜇𝑤(𝑥, 𝑡)

𝜕𝑥2𝜇
=

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡), 1 < 𝜇 ≤ 2, 𝑡 ≥ 0,                                                                       (56) 

with the initial condition  

𝑤(0, 𝑡) = 𝑒−𝑡 , 𝑤𝑥(0, 𝑡) = 𝑒−𝑡 .                                                                                                                                     (57)  

Now, by performing conformable Elzaki transform on Eq. (56), then we get 

1

𝑣2
𝐸𝜇{𝑤(𝑥, 𝑡)} − 𝑤(0, 𝑡) − 𝑣𝑤𝑥(0, 𝑡) = 𝐸𝜇 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡)] .                                             (58) 

If we simplify the Eq. (58), then we have 

𝐸𝜇{𝑤(𝑥, 𝑡)} = 𝑣2𝑤(0, 𝑡) + 𝑣3𝑤𝑥(0, 𝑡) + 𝑣2𝐸𝜇 [
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡)] .                                       (59) 

Applying the inverse conformable Elzaki transform,  

𝑤(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2 𝑤(0, 𝑡) + 𝑣3𝑤𝑡(0, 𝑡) + 𝑣2𝐸𝜇 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
+ 𝑤(𝑥, 𝑡)]].                                 (60) 

Using the ADM procedure, we obtain 

𝑤0(𝑥, 𝑡) = 𝐸𝜇
−1[𝑣2 𝑤(0, 𝑡) + 𝑣3𝑤𝑡(0, 𝑡)] = 𝐸𝜇

−1[𝑣2 𝑒−𝑡 + 𝑣3𝑒−𝑡] = 𝑒−𝑡 + 𝑒−𝑡
𝑥𝜇

𝜇
.                                (61) 

 𝑤𝑠+1(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤𝑠(𝑥,𝑡)

𝜕𝑡2 +
𝜕𝑤𝑠(𝑥,𝑡)

𝜕𝑡
+ 𝑤𝑠(𝑥, 𝑡)]] ,              𝑠 = 0,1,2, …                                           (62) 

For 𝑠 = 0 in Eq. (62), we obtain  

𝑤1(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤0(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤0(𝑥, 𝑡)

𝜕𝑡
+ 𝑤0(𝑥, 𝑡)]],                                                                           (63) 

𝑤1(𝑥, 𝑡) = 𝐸𝜇
−1[𝑣4 𝑒−𝑡 + 𝑒−𝑡𝑣5] =  𝑒−𝑡

𝑥2𝛼

2! 𝛼2
+ 𝑒−𝑡

𝑥3𝛼

3! 𝛼3
.                                                                              (64) 

We get the subsequent terms, recursively 

𝑤2(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤1(𝑥, 𝑡)

𝜕𝑡
+ 𝑤1(𝑥, 𝑡)]] = 𝑒−𝑡

𝑥4𝛼

4! 𝛼4
+ 𝑒−𝑡

𝑥5𝛼

5! 𝛼5
,                             (65) 

𝑤3(𝑥, 𝑡) = 𝐸𝜇
−1 [𝑣2𝐸𝜇 [

𝜕2𝑤2(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑤2(𝑥, 𝑡)

𝜕𝑡
+ 𝑤2(𝑥, 𝑡)]] = 𝑒−𝑡

𝑥6𝛼

6! 𝛼6
+ 𝑒−𝑡

𝑥7𝛼

7! 𝛼7
.                            (66) 

⋮ 

Proceeding in a similar way, we obtain  

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) + ⋯ = 𝑒−𝑡 + 𝑒−𝑡
𝑥𝜇

𝜇
+ 𝑒−𝑡

𝑥2𝛼

2! 𝛼2
                   

+𝑒−𝑡
𝑥3𝜇

3! 𝜇3
+ 𝑒−𝑡

𝑥4𝜇

4! 𝜇4
+ 𝑒−𝑡

𝑥5𝜇

5! 𝜇5
+ 𝑒−𝑡

𝑥6𝜇

6! 𝜇6
+ 𝑒−𝑡

𝑥7𝜇

7! 𝜇7
+ ⋯                                                                      (67) 

Subsituting 𝜇 = 1 in Eq. (67), then CFEDM solution is reduced as 
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𝑤(𝑥, 𝑡) = 𝑒−𝑡 [1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+ ⋯ ].                                                                            (68) 

 This result is evaluated to the exact solution in a closed form: 

𝑤(𝑥, 𝑡) = 𝑒𝑥−𝑡 .                                                                                                                                                                (69) 

The CFEDM solutions of  𝑤(𝑥, 𝑡) is found to be in excellent agreement  with the exact solution of problem. 

For more understanding the results for the variable 𝑤(𝑥, 𝑡) of Example 5.2 are plotted in Figure 3. In Figure 

3, we conclude that this solution is higher accuracy.  

 

 

Fig. 3. (a) Nature of CFEDM solution for 𝑤(𝑥, 𝑡) (b) Nature of exact solution for 𝑤(𝑥, 𝑡)  

(c) Nature of absolute error=|𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐶𝐹𝐸𝐷𝑀| in Ex. 5.2 at 𝜇 = 1. 

 

Fig. 4. Nature of CFEDM solution for 𝑤(𝑥, 𝑡) in Ex. 5.2 at 𝑥 = 0.5 with distinct 𝜇. 

Table 2. Numerical solution of 𝑤(𝑥, 𝑡) for CSFLTE by CFEDM in Ex. 4.2 at with distinct values of 𝑥 and 

𝑡 for diverse 𝜇.  
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𝒙 𝒕 𝝁 = 𝟎. 𝟕𝟓 𝝁 = 𝟎. 𝟖 𝝁 = 𝟎. 𝟖𝟓 𝝁 = 𝟎. 𝟗 𝝁 = 𝟏 

0.1 0.001 1.3 × 10−2 8.4 × 10−3 5.0 × 10−3 2.6 × 10−3 2.9 × 10−16 

 0.002 2.0 × 10−2 1.3 × 10−2 8.5 × 10−3 4.6 × 10−3 9.4 × 10−15 

 0.003 2.6 × 10−2 1.8 × 10−2 1.1 × 10−2 6.3 × 10−3 7.1 × 10−14 

 0.004 3.1 × 10−2 2.2 × 10−2 1.4 × 10−2 7.9 × 10−3 3.0 × 10−13 

 0.005 3.5 × 10−2 2.5 × 10−2 1.6 × 10−2 9.4 × 10−3 9.1 × 10−13 

0.2 0.001 1.4 × 10−2 9.3 × 10−2 5.5 × 10−3 2.9 × 10−3 3.2 × 10−16 

 0.002 2.2 × 10−2 1.5 × 10−2 9.4 × 10−3 5.1 × 10−3 1.0 × 10−14 

 0.003 2.9 × 10−2 2.0 × 10−2 1.2 × 10−2 7.0 × 10−3 7.9 × 10−14 

 0.004 3.4 × 10−2 2.4 × 10−2 1.5 × 10−2 8.8 × 10−3 3.3 × 10−13 

 0.005 3.9 × 10−2 2.8 × 10−2 1.8 × 10−2 1.0 × 10−2 1.0 × 10−12 

0.3 0.001 1.6 × 10−2 1.0 × 10−2 0.6 × 10−3 3.2 × 10−3 3.5 × 10−16 

 0.002 2.5 × 10−2 1.6 × 10−2 1.0 × 10−2 5.6 × 10−3 1.1 × 10−14 

 0.003 3.2 × 10−2 2.2 × 10−2 1.4 × 10−2 7.8 × 10−3 8.7 × 10−14 

 0.004 3.8 × 10−2 2.7 × 10−2 1.7 × 10−2 9.7 × 10−3 3.6 × 10−13 

 0.005 4.3 × 10−2 3.1 × 10−2 2.0 × 10−2 1.1 × 10−2 1.1 × 10−12 

0.4 0.001 1.7 × 10−2 1.1 × 10−2 6.7 × 10−3 3.5 × 10−3 3.9 × 10−16 

 0.002 2.7 × 10−2 1.8 × 10−2 1.1 × 10−2 6.2 × 10−3 1.2 × 10−14 

 0.003 3.5 × 10−2 2.4 × 10−2 1.5 × 10−2 8.6 × 10−3 9.6 × 10−14 

 0.004 4.2 × 10−2 3.0 × 10−2 1.9 × 10−2 1.0 × 10−2 4.0 × 10−13 

 0.005 4.8 × 10−2 3.4 × 10−2 2.2 × 10−2 1.2 × 10−2 1.2 × 10−12 

0.5 0.001 1.9 × 10−2 1.2 × 10−2 7.5 × 10−3 3.9 × 10−3 4.3 × 10−16 

 0.002 3.0 × 10−2 2.0 × 10−2 1.2 × 10−2 6.9 × 10−3 1.4 × 10−14 

 0.003 3.9 × 10−2 2.7 × 10−2 1.7 × 10−2 9.5 × 10−3 1.0 × 10−13 

 0.004 4.7 × 10−2 3.3 × 10−2 2.1 × 10−2 1.1 × 10−2 4.4 × 10−13 

 0.005 5.3 × 10−2 3.8 × 10−2 2.4 × 10−2 1.4 × 10−2 1.3 × 10−12 



54 

 

Halil Anaç / IKJM/ 4(2) (2022) 42-55 

6. Discussion 

In Figure 1, the behaviours of the exact solution, CFEDM solution and absolute error for Ex. 5.1 are plotted. 

Therefore, we observe that CFEDM solution is close to the exact solution. The numerical solutions for different 

𝜇 values are evaluated in Table 1. From Table 1, it has been observed that the solutions get closer to the exact 

solution, when 𝜇 gets closer to 1. Also, especially for 𝜇 = 1, it is concluded that the absolute error is extremely 

small in Table1. Similarly, the behaviours of the exact solution, CFEDM solution and absolute error for Ex. 

5.2 are plotted in Figure 3. Therefore, we observe that CFEDM solution is close to the exact solution. The 

numerical solutions for different 𝜇 values are evaluated in Table 2. From Table 2, it has been observed that the 

solutions get closer to the exact solution, when 𝜇 gets closer to 1. Also, especially for 𝜇 = 1, it is concluded 

that the absolute error is extremely small in Table 2. Additionally, 2D graphs of solutions of Ex. 5.1 and Ex. 

5.2 for distinct 𝜇 values illustrate the behavior of CFEDM in Figures 2 and 5. 

  

7. uld be given briefly. Besides, forward-looking suggestions and opinions related to the 

study results can be stated. 

In the present framework, we profitably applied a new hybrid method, namely CFEDM to solve the 

conformable time-fractional linear telegraph equations. During the investigation, the obtained solutions are 

illustrated in terms of plots and tables with diverse values of space and time variables. We have observed that 

CFEDM is powerful, fast and efficient method to solve the conformable time-fractional linear telegraph 

equations.  
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1. Introduction

A rack is a set equipped with a binary operation satisfying two axioms that match to the second and third

Reidemeister moves in knot theory. The most important and common rack which additionally satisfies an

extra axiom analogues to the first Reidemeister move called quandle [11].

Crossed modules of groups are first introduced by Whitehead in [13] as models for homotopy 2-types. Af-

terwards, the notion of crossed module is also adapted to various algebraic structures such as algebras, Lie

algebras, Hopf algebras; see [10] for more.

Crossed modules of racks are defined by Crans and Wagemann in [4]. They generalize the notion of crossed

modules from the case of groups such that satisfying two Peiffer conditions as well. An interesting result

of this notion is: the adjoint functors As : Rack → Grp and Conj : Grp → Rack between the categories of

groups and racks are both preserving crossed module structures, see [4]. Therefore, one can consider them

as (induced) functors between the category of group crossed modules XGrp and the category of rack crossed

modules XRack; hence we get the following extended adjunction:

HomXGrp
(
As⋆(X ),G

)∼= HomXRack
(
X ,Conj⋆(G )

)
, (1.1)

where X is a rack crossed module and G is a group crossed module [7].

A category C is said to be finitely complete if it has all (finite) limits. On the other hand, a category C has all

finite limits iff one of the following conditions hold:
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• C has a terminal object and pullbacks,

• C has products and equalisers.

In this paper, we define such objects for rack crossed modules which will prove the completeness of the

category of rack crossed modules. As another outcome, these constructions will be preserved under the

functor Conj by using the properties of (1.1).

Many of these notions are examined for various algebraic structures such as (crossed modules and cat1

objects of) groups, (associative) algebras, Lie algebras, etc. in [1–3, 5, 6, 8, 12].

2. Preliminaries

We recall some notions from [4, 9] which will be used in sequel.

2.1. Racks

Definition 2.1. A (right) rack consists of a set A equipped with a binary operation, satisfying:

R1) For each a, a′ ∈ A, there exists a unique a′′ ∈ A such that:

a′′ ◁ a = a′,

R2) For all a, a′, a′′ ∈ A, we have:

(
a ◁ a′)◁ a′′ = (

a ◁ a′′)◁ (
a′ ◁ a′′).

Definition 2.2. A pointed rack A is a rack equipped with a fixed element 1 ∈ A such that:

1◁ a = 1 and a ◁ 1 = a,

for all a ∈ A.

Remark 2.3. In this paper we only work with the pointed racks.

Definition 2.4. Let A and B be two racks. A rack morphism is a map:

f : A → B

such that:

f
(
a ◁ a′)= f (a)◁ f

(
a′) (

and f (1) = 1
)

for all a, a′ ∈ A.

Thus we get the category of racks, denoted by Rack.

Some well-known examples of racks are given below:

1) If A is a group, one can define a rack (conjugation rack) with:

a ◁ a′ = (a′)−1aa′,
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for all a, a′ ∈ A. This yields a functor:

Conj : Grp → Rack

from the category of groups to the category of racks.

2) Another rack structure in a group A is defined by:

a ◁ a′ = a′a−1a′,

for all a, a′ ∈ A, which is called a core rack. But this is not functorial.

3) If A and B are two racks, then the set

A×B = {(a,b) | a ∈ A,b ∈ B}

which is the cartesian product of A and B , defines a rack structure with: (a, a′ ∈ A, b,b′ ∈ B)

(a,b)◁
(
a′,b′)= (

a ◁ a′,b ◁ b′) .

Notice that A×B is the product object in Rack.

Definition 2.5. Let A be a rack and B be a non empty subset of A . We say that B is a subrack of A if b ◁ b′ ∈ B

for each b,b′ ∈ B .

Definition 2.6. For a given rack A, a normal subrack N is a subrack if it further satisfies n ◁ a ∈ N , for all

n ∈ N and a ∈ A.

2.2. Rack Action

Definition 2.7. Let A be a rack and S be a set. We say that S is an A-set when there are bijections (· a) : S → S

for each a ∈ A such that:

(s ·a) ·a′ = (
s ·a′) · (a ◁ a′) ,

for all s ∈ S and a′ ∈ A.

Definition 2.8. Let A be a rack and S be a A-set. We say that the hemi-semi-direct product S ⋊ A is a rack

with:

(s, a)◁
(
s′, a′)= (

s ·a′, a ◁ a′)
for all a, a′ ∈ A, s, s′ ∈ S.

Definition 2.9. Let A,S be two racks. We say that S acts on A by automorphisms when there is a (right) rack

action of S on A and:

(a ◁ a′) · s = (a · s)◁ (a′ · s)

for all a, a′ ∈ A, s ∈ S.
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3. Crossed Modules of Racks

Definition 3.1. A rack crossed module [4] is a rack morphism ∂ : A → B together with a (right) rack action of

B on A such that satisfying:

X1) ∂ (a ·b) = ∂ (a)◁ b,

X2) a ·∂(
a′)= a ◁ a′,

for all a, a′ ∈ A and b ∈ B . We denote any crossed module by (A,B ,∂).

If (A,B ,∂) and
(

A′,B ′,∂′
)

are two rack crossed modules, a crossed module morphism:

(
f1, f0

)
: (A,B ,∂) → (

A′,B ′,∂′
)

is a tuple which consists of rack morphisms f1 : A → A′, f0 : B → B ′ such that making the following diagram

commutative:

A

f1

��

∂ // B

f0

��
A′

∂′
// B ′

and:

f1 (a ·b) = f1 (a) · f0 (b)

for all a ∈ A, b ∈ B .

Thus we get the category of rack crossed modules, denoted by XRack. We also have a full subcategory

XRack/B where the codomain B is fixed for any rack crossed module.

Some examples of rack crossed modules are given below:

1) For any normal subrack N of S, the inclusion map N → S defines a rack crossed module with: (n ∈ N , s ∈ S)

n · s = n ◁ s.

2) If (X ,Y ,µ) is a group crossed module, we obtain a rack crossed module by passing to the associated

conjugation racks of X and Y as being:

Conj(µ) : Conj(X) → Conj(Y).

3) If (X ,Y ,µ) and (X ′,Y ′,µ′) are rack crossed modules, then:

(X ×X ′,Y ×Y ′,µ×µ′)

defines a rack crossed module where the action is defined in a natural way.

Definition 3.2. Letλ : A →C and θ : B →C be two rack morphisms. The fiber product is the subrack of A×B
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defined by:

A×C B = {(a,b) |λ (a) = θ (b)} .

From the categorical point of view, the fiber product is the equalizer of the two parallel rack morphisms:

A×B
λ◦π1 //
θ◦π2

// C .

Proposition 3.3. Let (A,C ,λ) and (B ,C ,θ) be two rack crossed modules. The map:

∂ : A×C B →C

defined by:

∂(a,b) =λ(a) = θ(b)

yields a crossed module (A×C B ,C ,∂) with the rack action:

(A×C B)×C → A×C B

((a,b) ,c) 7→ (a,b) · c = (a · c,b · c)

Proposition 3.4. Let (A,C ,µ) and (B ,C ,λ) be two rack crossed modules. Then we have the following natural

rack crossed module morphisms:

(
p1, i dC

)
: (A×C B ,C ,∂) → (

A,C ,µ
)

,(
p2, i dC

)
: (A×C B ,C ,∂) → (B ,C ,λ) .

4. Some Categorical Constructions in XRack/C

Recall that, the trivial rack is the zero object in the category of racks. Moreover, for given two rack morphisms

f : A →C and g : B →C , we have the rack A×C B which is the pullback. Therefore, we say that the category

of racks Rack is finitely complete.

In this section, we give some categorical constructions for the case of rack crossed modules which will prove

the completeness of XRack/C.

Theorem 4.1. The category XRack/C has products.

Proof.

Let (A,C ,µ) and (B ,C ,λ) be two rack crossed modules. Define

∂ : A×C B →C

where:

∂ (a,b) =µ (a) =λ (b) .

We already know from Proposition 3.3 that ∂ is a crossed module. Also we have crossed module morphisms(
p1, i dC

)
and

(
p2, i dC

)
from Proposition 3.4. Now we need to check the universal property.
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Let (P,C ,α) be a crossed module with two crossed module morphisms:

(ϵ, i dC ) : (P,C ,α) → (
A,C ,µ

)
,

(δ, i dC ) : (P,C ,α) → (B ,C ,λ) .

Then there must be a unique crossed module morphism:

(
φ, i dC

)
: (P,C ,α) → (A×C B ,C ,∂)

such that the diagram:

(P,C ,α)

(ϵ,i dC )

yyttt
tt
tt
tt
tt
tt
tt
tt
tt
t

(δ,i dC )

%%JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

J

(φ,i dC )

��(
A,C ,µ

)
(A×C B ,C ,∂)

(p1,i dC )
oo

(p2,i dC )
// (B ,C ,λ)

(4.1)

commutative. Define:

φ
(
p

)= (
ϵ
(
p

)
,δ

(
p

))
,

for all p ∈ P . By the diagram:

P

φ

��

α // C

i dC

��
A×C B

∂
// C(

φ, i dC
)

becomes a crossed module morphism since:

φ
(
p · c

)= (
ϵ
(
p · c

)
,δ

(
p · c

))
= (

ϵ
(
p

) · i dC (c) ,δ
(
p

) · i dC (c)
)

= (
ϵ
(
p

)
,δ

(
p

)) · i dC (c)

=φ(
p

) · i dC (c) ,

and

∂φ
(
p

)= ∂(
ϵ
(
p

)
,δ

(
p

))
=µ(

ϵ
(
p

))
= i dCα

(
p

)
,

for all p ∈ P and for all c ∈C .
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Furthermore diagram (4.1) is commutative because:

p1φ
(
p

)= p1
(
ϵ
(
p

)
,δ

(
p

))
= ϵ(p

)
,

p2φ
(
p

)= p2
(
ϵ
(
p

)
,δ

(
p

))
= δ(

p
)

,

for all p ∈ P .

Let
(
φ′, i dC

)
be a crossed module with:

(
p1, i dC

)(
φ′, i dC

)= (ϵ, i dC ) ,(
p2, i dC

)(
φ′, i dC

)= (δ, i dC ) .

Define (a,b) ∈ A×C B by φ′ (p
)= (a,b). Then we get:

p1φ
′ (p

)= ϵ(p
)⇔ p1 (a,b) = ϵ(p

)
⇔ a = ϵ(p

)
,

p2φ
′ (p

)= δ(
p

)⇔ p2 (a,b) = δ(
p

)
⇔ b = δ(

p
)

for all p ∈ P that proves the uniqueness of φ by:

φ′ (p
)= (a,b) = (

ϵ
(
p

)
,δ

(
p

))=φ(
p

)
.

Theorem 4.2. The category XRack/C has pullbacks.

Proof.

Let
(

f , i dC
)

:
(

A,C ,µ
)→ (D,C ,θ) and

(
g , i dC

)
: (B ,C ,λ) → (D,C ,θ) be two crossed module morphisms. We

already know from Proposition 3.3 that,

∂ : A×D B →C

is a crossed module. Also we have crossed module morphisms
(
p1, i dC

)
and

(
p2, i dC

)
from Proposition 3.4.

Then we get the diagram:

(A×D B ,C ,∂)

(p1,i dC )

��

(p2,i dC ) // (B ,C ,λ)

(g ,i dC )

��(
A,C ,µ

)
( f ,i dC )

// (D,C ,θ)
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which is commutative. Let (P,C ,δ) be a crossed module with the following crossed module morphisms:

(α, i dC ) : (P,C ,δ) → (
A,C ,µ

)
,(

β, i dC
)

: (P,C ,δ) → (B ,C ,λ) ,

where:

(
f , i dC

)
(α, i dC ) = (

g , i dC
)(
β, i dC

)
.

Then there must be a unique crossed module morphism:

(
φ, i dC

)
: (P,C ,δ) → (A×D B ,C ,∂)

such that the diagram:

(P,C ,δ)

(α,i dC )

!!

(β,i dC )

))

(φ,i dC )
M

M
M

&&M
M

M

(A×D B ,C ,∂)

(p1,i dC )

��

(p2,i dC )
// (B ,C ,λ)

(g ,i dC )

��(
A,C ,µ

)
( f ,i dC )

// (D,S,θ) .

(4.2)

commutes. Define

φ(p) = (α(p),β(p))

for all p ∈ P . By the diagram:

P
δ //

φ

��

C

i dC

A×D C
∂

// C

(φ, i dC ) becomes a crossed module morphism since:

φ
(
p · c

)= (
α

(
p · c

)
,β

(
p · c

))
= (

α
(
p

) · i dC (c) ,β
(
p

) · i dC (c)
)

= (α(p),β(p)) · i dC (c)

=ϕ(p) · i dC (c) ,
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and

∂φ(p) = ∂(α(p),β(p))

=µα(
p

)
= i dCδ

(
p

)
,

for all p ∈ P and for all c ∈C .

Furthermore we get:

p1φ
(
p

)= p1
(
α(p),β(p)

)
=α(p),

and

p2φ
(
p

)= p2
(
α(p),β(p)

)
=β(p),

for all p ∈ P that proves the commutativity of diagram (4.2).

Consider
(
φ′, i dC

)
with the same property as

(
φ, i dC

)
, i.e. the following conditions hold:

(
p1, i dC

)(
φ′, i dC

)= (α, i dC ) ,(
p2, i dC

)(
φ′, i dC

)= (
β, i dC

)
.

Define (a,b) ∈ A×D B by φ′(p) = (a,b). We get:

p1φ
′ (p

)=α(
p

)⇔ p1(a,b) =α(
p

)
⇔ a =α(

p
)

p2φ
′ (p

)=β(
p

)⇔ p2 (a,b) =β(
p

)
⇔ b =β(

p
)

for all p ∈ P that proves the uniquness of φ by:

φ′(p) = (a,b)

= (
α

(
p

)
,β

(
p

))
=φ(p).

Theorem 4.3. The category XRack/C has equalizers.

Proof.
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Let we have two parallel crossed module morphisms:

(
A,C ,µ

) ( f ,i dC ) //
(g ,i dC )

// (B ,C ,λ) .

Define:

P = {
a ∈ A | f (a) = g (a)

}
.

P is a subrack of A, since:

f
(
a ◁ a′)= f (a)◁ f

(
a′)

= g (a)◁ g
(
a′)

= g
(
a ◁ a′) ,

for all a, a′ ∈ P .

Define ∂ : P →C by ∂ (a) =µ (a), for all a ∈ P . Here ∂ becomes a rack morphism since:

∂
(
a ◁ a′)=µ(

a ◁ a′)
=µ (a)◁µ

(
a′)

= ∂ (a)◁ ∂
(
a′) ,

for all a, a′ ∈ P.

Moreover, (P,C ,∂) is a rack crossed module since:

XM1)

∂ (a · c) =µ (a · c)

=µ (a)◁ c

= ∂ (a)◁ c,

XM2)

a ·∂(
a′)= a ·µ(

a′)
= a ◁ a′,

for all a, a′ ∈ P and c ∈C .

The tuple:

(i , i dC ) : (P,C ,∂) → (
A,C ,µ

)
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where i is the inclusion map is a crossed module morphism since:

i (a · c) = a · c

= i (a) · c

= i (a) · i dC (c) ,

and

µi (a) =µ (a)

= ∂ (a)

= i dC∂ (a) ,

for all a ∈ P and c ∈C .

Furthermore, we get:

(
f i

)
(a) = f (i (a))

= f (a)

= g (a)

= g (i (a))

= (
g i

)
(a) ,

for all a ∈ P that proves the commutativity of diagram:

(P,C ,∂) �
� (i ,i dC ) //

(
A,C ,µ

) ( f ,i dC ) //
(g ,i dC )

// (B ,C ,λ) .

Let

(h, i dC ) : (Q,C ,δ) → (
A,C ,µ

)
be any crossed module morphism such that the diagram:

(Q,C ,δ)
(h,i dC ) //

(
A,C ,µ

) ( f ,i dC ) //
(g ,i dC )

// (B ,C ,λ)

commutes. Then there must be a unique crossed module morphism:

(
ϕ, i dC

)
: (Q,C ,δ) → (P,C ,∂) ,
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such that the diagram:

(P,C ,∂) �
� (i ,i dC ) //

(
A,C ,µ

) ( f ,i dC ) //
(g ,i dC )

// (B ,C ,λ)

(Q,C ,δ)

(ϕ,i dC )

OO

(h,i dC )

::uuuuuuuuuuuuuuu

(4.3)

commutes. We can say that h
(
q
) ∈ P since:

f (h
(
q
)
) = g (h

(
q
)
),

for all q ∈Q. Define ϕ by ϕ
(
q
)= h

(
q
)

for all q ∈Q. Then we get:

iϕ(q) = i h(q)

= h(q),

for all q ∈Q proves the commutativity of (4.3).

Consider
(
ϕ′, i dC

)
with the same property as

(
ϕ, i dC

)
, i.e. the following condition hold:

(i , i dC )
(
ϕ′, i dC

)= (h, i dC )

Define q ∈Q by ϕ′ (q
)= a. We get:

iϕ′ (q
)= h

(
q
)⇔ i

(
q
)= h

(
q
)

⇔ a = h
(
q
)

for all q ∈Q that proves the uniquness of ϕ by:

ϕ′ (q
)= a

=ϕ(
q
)

.

Therefore, we have proved the following:

Theorem 4.4. The category of rack crossed modules XRack/C is (finitely) complete.

5. Conclusion

We already know that, we have the adjunction:

HomXGrp
(
As⋆(X ),G

)∼= HomXRack
(
X ,Conj⋆(G )

)
,

between the category of rack crossed modules and the category of group crossed modules. As a result of

this adjunction, we can say that the functor Conj⋆ preserve limits and As⋆ preserve colimits. Therefore, all
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the constructions given in the previous section which are the certain cases of limits are preserved under the

functor Conj⋆.

For instance, let A and B be two group crossed modules with the same codomain. Their product is the

crossed module D which is defined by using the fiber product of groups. By using the adjunction above, we

can say that the product of rack crossed modules Conj⋆(A ) and Conj⋆(B) is Conj⋆(D). As we mentioned

above, not only the product object, we can also give the similar properties for all of the notions we have

defined.
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