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STOCHASTIC INTEGRATION WITH RESPECT TO A

CYLINDRICAL SPECIAL SEMI-MARTINGALE

Saeed HASHEMI SABABE

Department of Mathematical and Statistical Sciences, University of Alberta,

Edmonton, CANADA

Young Researchers and Elite Club, Malard Branch, Islamic Azad University, Malard, IRAN

Abstract. In this research, we introduce the stochastic integration with re-

spect to a cylindrical special semi-martingale, which is a specific case of general
integration, with specific properties of special semi-martingales.

1. Introduction

Cylindrical semi-martingales play a key role in application, specially in stochastic
partial differential equations. Among the wide class of cylindrical semi-martingales,
cylindrical Brownian motions are used widely as models in stochastic analysis [3,
5,8,9,11,14,18,19]. Although Brownian motions work as good models, motivation
of using other classes of cylindrical semi-martingales appears in recent research.
Interesting examples of such a view can be found in [1, 2, 6, 12, 13, 15]. In spite of
the fact that most of the past articles have an applied view to extend the concepts
and utilities the stochastic integration, none of these works considers stochastic
integration with respect to cylindrical special semi-martingales.

In this work, our main objective is to introduce a theory of stochastic inte-
gration for cylindrical special semi-martingales, which are a particular family of
semi-martingales with complex behavior in relation with the measure of the space,
defined on. P is a special semi-martingale if P can be decomposed into P = M +A
whereM is a local martingale and A a process with predictable finite variation, with
A0 = 0. Such a decomposition is then unique and is called canonical decomposition.

2020 Mathematics Subject Classification. 60H05, 60B11, 60G44, 47D06.
Keywords. Cylindrical martingale, special martingales, stochastic integration, Banach space.
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On the other hand, for a Banach space X , the cylindrical σ-algebra is defined
to be the coarsest σ-algebra, i.e. the one with the fewest measurable sets, such that
every continuous linear function on X is a measurable function. That is important
to note that in general, the cylindrical σ-algebra is not the same as the Borel σ-
algebra on X , which is the coarsest σ-algebra that contains all open subsets of
X .

In the following, we study the cylindrical special semi-martingale M : X ∗ →
SSP from the dual of a separable Banach space X to the space of special semi-
martingales. Moreover, we define the integral of a progressive process with respect
to a cylindrical special semi-martingale.

2. Preliminaries

Let X ,Y be two Banach spaces. We will denote the space of all bilinear oper-
ators from X × Y to R as B(X ,Y ). Note that for a continuous b ∈ B(X ,Y )
there exists an operator B ∈ L (X ,Y ∗) such that

b(x, y) = ⟨Bx, y⟩ = Bx(y), x ∈ X, y ∈ Y. (1)

An operator B : X → X ∗ is called self-adjoint, if for each x, y ∈ X

⟨Bx, y⟩ = ⟨By, x⟩.

and is called positive, if B is self-adjoint and Bx(x) = ⟨Bx, x⟩ ≥ 0 for all x ∈ X .

Recall that if B : X → X ∗ is a positive self-adjoint operator, then the Cauchy-
Schwartz inequality holds for the bilinear form ⟨Bx, y⟩ . In a natural way in func-
tional analysis, the norm of B is defined as

∥B∥ = sup
x∈X ,∥x∥=1

|⟨Bx, x⟩| (2)

Note that if X is a Hilbert space, then (2) would be coincides with the induced
norm of the inner product defined on X .

Let (Ω,F , µ) be a measure space and X a Banach space. A function f : Ω → X
is called simple if there exist x1, x2, . . . xn ∈ X and E1, E2, . . . , En ∈ F such that
f =

∑n
i=1 xiχEi

, where χEi
(ω) = 1 if ω ∈ Ei and χEi

(ω) = 0 if ω ̸= Ei. A
function f : Ω → X is called strong measurable if there exists a sequence of simple
functions (fn) with limn ∥fn−f∥ = 0, µ-almost everywhere. A function f : Ω → X
is called scalar measurable if for each x∗ ∈ X ∗ the numerical function x∗f is strong
measurable.

Further we will need the following lemma.

Lemma 1. [15, Proposition 32] Let (S,Σ) be a measurable space, H be a separable
Hilbert space, f : S → L (H ) be a scalar measurable self-adjoint operator-valued
function. Let F : R → R be locally bounded measurable. Then F (f) : S → L (H )
is a scalar measurable self-adjoint operator-valued function.
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That is trivial to think about the square root of a positive operator. It would be
appreciated if the square root drops us in to a Hilbert space, even in a special case.

Lemma 2. [19, Lemma 2.4] Let X be a reflexive separable Banach space, B :
X → X ∗ be a positive operator. Then there exists a separable Hilbert space H
and an operator B1/2 : X → H such that B = B1/2∗B1/2.

A scalar-valued process M is called a continuous local martingale if there exists
a sequence of stopping times (τn)n≥1 such that τn ↑ ∞ almost surely as n → ∞
and 1τn>0M

τn is a continuous martingale.

We denote by M and M loc the class of continuous and continuous local mar-
tingales, respectively. It is well known that M loc is a vector space with respect
to usual operations. Several topologies can be defined on M loc, for example UCP,
which is based on convergence in probability, or Emery topology [4, 7]. Although,
we can define a norm on M loc as

∥M∥M loc =

∞∑
n=1

2−nE[1 ∧ sup
t∈[0,n]

|Mt|]. (3)

It can be seen that the topology induced by the norm in (3) in coincides with the
UCP and Emery topology (because of the continuity property). That is proved in
several articles that M loc equipped with the norm (3) is a complete metric space.

Let X be a Banach space. In general, a cylindrical semi-martingale on X is
a continuous linear mapping φ : X ∗ → S0, where S0 denotes the space of real
semi-martingales with respect to a common stochastic basis (Ω,F , (Ft)0≤t≤1, P ),
endowed with the Emery topology. The general case is studied before in literature.
(see for example [10]). As a special case, a continuous linear mapping M : X ∗ →
M loc is called a cylindrical continuous local martingale.

In the following, we interested to study the continuous linear mapping M : X∗ →
S where S is the collection of locally integrable semi-martingales. Our motivation
comes from the collection of particular type of martingales, called as Special Semi-
martingales SSP, coincides with S.

A processes P = M +A which can be decomposed, by Doob decomposition, into
a local martingale M and a predictable cádlag locally finite variation process A is
known as special semimartingales. On the space of special semimartingales, we can
define p-norm for p > 0 as follows and denote the semimartingales with finite p
norm by Hp:

∥P∥Hp =

(
E

[
[M,M ]p/2∞ + (

∫ ∞

0

|dA|)p
])1/p

.

One of the most interesting properties of special semi-martingales is compatibility of
integration with the canonical decomposition in the construction of the stochastic
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integrals. That is, for a special semi-martingale P = M + A and a predictable
process ξ we have ∫

ξdP =

∫
ξdM +

∫
ξdA

3. Cylindrical Special Martingales

In this section, we define the notion of a cylindrical special martingale and inte-
gration with respect to a cylindrical special martingale.

Definition 1. Let X be a Banach space. A continuous linear mapping P : X ∗ →
SSP is called a cylindrical continuous special martingale. In this way, Px∗ = Mx∗+
Ax∗, where Mx∗ is a local martingale and Ax∗ is a finite variation process, for any
x∗ ∈ X∗,

For a cylindrical continuous special martingale P and a stopping time τ , one can
define P τ : X ∗ → SSP by P τx∗(t) = Px∗(t ∧ τ). Clearly P τ is also a cylindrical
continuous special martingale.

We expect that our definition of a cylindrical continuous special martingale be a
generalization of a cylindrical continuous local martingale. A characteristic prop-
erty of a local martingale is its quadratic variation. Thanks to the finite variation
part of P , which has the zero quadratic variation, we can easily define the qua-
dratic variation [[P ]] of P similar to the quadratic variation of mapping to its local
martingale part M .

Recall that If M is a continuous local martingale with values in a Hilbert space,
then it is well known that it has a classical quadratic variation [M ] in the sense
that there exists an a.s. unique increasing continuous process [M ] starting at zero
such that ∥M∥2 − [M ] is a continuous local martingale again.

Definition 2. Let P : X ∗ → SSP be a linear mapping. The quadratic variation
[[P ]] of P is defined as

[[P ]]t = sup
N∈N

N∑
n=1

sup
m

([Mx∗
m]ti+1 − [Mx∗

m]ti), t ≥ 0,

where Mx∗ is the local martingale part of Px∗ and the limit is taken over all rational
partitions 0 = t0 < · · · < tN = t and (x∗

m)m≥1 is a dense subset of the unit ball in
X∗.

Note that existence of (x∗
m)m≥1 follows from the separability of X ∗. For a

cylindrical special semi-martingale P on a Banach space X , one can think about
covariance [Px∗, Py∗]t for any x∗, y∗ ∈ X∗. However, by the ineffectiveness of finite
variation part A of P , we have [Px∗, Py∗]t = [Mx∗,My∗]t. Therefore, by the polar
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decomposition, there exists a process QP : R+ × Ω → L (X ∗,X ∗∗) such that for
almost surly t > 0

[Px∗, Py∗]t =

∫ t

0

QPx
∗(y∗)d[[P ]]s, x∗, y∗ ∈ X∗.

The process QP is self-adjoint and ∥QP (t)∥ = 1.

Let X ,Y be two Banach spaces. For any x∗ ∈ X ∗, y ∈ Y , we can define the
linear operator x∗⊛y ∈ L (X ,Y ) such that x∗⊛y : x 7→ x∗(x)y. Using the defined
operator, the process ϕ : R+×Ω → L (H ,X ) is called elementary progressive with
respect to the filtration F = (Ft)t∈R+

if it is of the form

ϕ(t, ω) =

N∑
n=1

M∑
m=1

1(tn−1,tn]×Bmn
(t, ω)

K∑
k=1

vk ⊛ xkmn,

where 0 ≤ t0 < · < tn < ∞, for each n = 1, ·, N the sets B1n, . . . , BMn ∈ Ftn−1

and vectors v1, . . . , vK are orthogonal.

For each elementary progressive ϕ we define the stochastic integral with respect
to X ∈ M sp

var(H ) as an element of L0(Ω;Cb(R+;X )) as

∫ t

0

ϕ(s) dP (s) =

N∑
n=1

M∑
m=1

1Bmn

K∑
k=1

(M(tn ∧ t)vk −M(tn−1 ∧ t)vk +Vn(A)vk)xkmn,

(4)

where Vn(A) is the total variation of process A in the n-th interval, [tn−1, tn],
and Cb is the set of all continuous and bounded mappings. This is usual to use the
notation ϕ · P for the process

∫ ·
0
ϕ(s) dP (s).

Clearly, the definition in (4) is a generalization of integration with respect to a
cylindrical local martingale.

Lemma 3. For all progressively measurable processes ϕ : R+×Ω → L (H ,R) with
ϕQ

1/2
P ∈ L2(R+, [[P ]];L (H ,R)) we have[∫ ·

0

ϕdP

]
t

=

∫ t

0

ϕ(s)QP (s)ϕ
∗(s) d[[P ]]s. (5)

Proof. Note that our definition of quadratic variation for cylindrical special semi-
martingales P is reduced to its local martingale part M . Therefore, the proof is
similar to the proof of [13, Theorem 14.7.4]. □

It is important to note that for any (t, ω) in R+ ×Ω, the mapping QP (t, ω) is a
positive mapping from X ∗ to X ∗∗. Therefore, there exists a Hilbert space H such

that Q
1/2
P (t, ω) maps X ∗ to H and QP (t, ω) = Q

1/2∗
P (t, ω)Q

1/2
P (t, ω). Moreover,

ϕ(t, ω)Q
1/2
P (t, ω) is an operator and we may think about (ϕ(t, ω)Q

1/2
P (t, ω))∗ =

Q
1/2
P (t, ω)∗ϕ(t, ω)∗. On the other hand, ϕ(t, ω) is an operator from H to R and
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ϕ(t, ω)∗ is well defined. Breaking the QP appears in (5) to its roots and have an
inner product scheme can make a transparent illustration of the idea behind the
lemma.

Theorem 1. Let H be a Hilbert space and P ∈ M sp
var(H ). Let ϕ : R+ × Ω →

L (H ,X ) be such that ϕ∗x∗ is progressively measurable for each x∗ ∈ X ∗, and
assume ϕ(ω)QP (ω)ϕ

∗(ω)x∗(x∗) ∈ L1
loc(R+, [[P ]](ω)), for all x∗ ∈ X ∗, ω ∈ Ω. Set

M := ϕ · P by

Mx∗(t) :=

∫ t

0

ϕ∗x∗ dP, x∗ ∈ X ∗. (6)

If ∥ϕQPϕ
∗∥∞ < ∞ then M ∈ M sp

var(X ).

Proof. It is clear that for each x∗ ∈ X ∗, mapping Mx∗ is a continuous local
martingale. We need just to show theta the mapping x∗ 7→ Mx∗ is continuous in
the UPC topology. Fix T > 0 and set Ω0 be a subset of Ω such that for almost
every ω ∈ Ω0 we have

t 7→ ⟨ϕ(t, ω)QN (t, ω)∗ϕ(t, ω)∗x∗, x∗⟩ ∈ L 1(0, T ).

Therefore, we have a bounded operator and there exists a constant C such that

∥⟨ϕ(·, ω)QN (·, ω)∗ϕ(·, ω)∗x∗, y∗⟩∥L1(0,T,[[N ]](ω)) ≤ C∥x∗∥ ∥y∗∥.

Moreover, we have

[Mx∗]t =

∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗, x∗⟩d[[P ]], for all x∗ ∈ X ∗.

Note that ∥ϕ(s)QP
1/2∥∞ < ∞ by definition of ϕ and QP . Now let (x∗

n) be a
sequence in X ∗ and limn→∞ xn = x. We have

∥[Mx∗
n]t − [Mxn]t∥

=

∥∥∥∥∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗

n, x
∗
n⟩d[[P ]]−

∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗, x∗⟩d[[P ]]

∥∥∥∥
1

=

∥∥∥∥∫ t

0

⟨ϕ(s)QPϕ
∗(s)x∗

n, x
∗
n⟩ − ⟨ϕ(s)QPϕ

∗(s)x∗, x∗⟩d[[P ]]

∥∥∥∥
1

≤ ∥ϕ(s)QPϕ
∗(s)∥∞∥xn − x∥ → 0

□

Corollary 1. Let M be the cylindrical continuous local martingale defined in The-
orem 1. Then we have

[[M ]]t =

∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥ d[[P ]], t ≥ 0.
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Proof. To prove the equivalence it suffices to observe that

[[M ]]t = lim

J∑
j=1

sup
x∗∈X ∗,∥x∗∥=1

([Px∗]tj − [Px∗]tj−1
)

= lim

J∑
j=1

sup
x∗∈X ∗,∥x∗∥=1

∫ tj

tj−1

⟨ϕ(s)QP (s)ϕ
∗(s)x∗, x∗⟩d[[P ]]s

=

∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥d[[P ]]s.

The limit takes when the partition of 0 = t0 < t1 < · · · < tn = t of [0, t] becomes
refined, when n tends to infinity. Note that the space X ∗ is assumed to be a
separable space which helps us to justify the last equation. □

Corollary 2. Let M be the cylindrical continuous local martingale defined in The-
orem 1. Then we have

ϕ(s)QP (s)ϕ
∗(s) = QM (s)∥ϕ(s)QP (s)ϕ

∗(s)∥

Proof. By the Corollary 1, we have

[[M ]]t =

∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥d[[P ]]

⇒ d

d[[P ]]
[[M ]]t =

d

d[[P ]]

(∫ t

0

∥ϕ(s)QP (s)ϕ
∗(s)∥d[[P ]]

)
⇒ d[[M ]]s = ∥ϕ(s)QN (s)ϕ∗(s)∥ d[[P ]]s. (7)

In the other way,

[Mx∗,My∗]t =

∫ t

0

⟨QP (s)ϕ
∗(s)x∗, ϕ∗(s)y∗⟩d[[P ]]s

=

∫ t

0

⟨ϕ(s)QP (s)ϕ
∗(s)x∗, y∗⟩d[[P ]]s. (8)

Replacing (7) in (8) implies the statement. □

Conclusion

The stochastic integration with respect to a cylindrical Semi-martingale is stud-
ied before in general case. In this research, we specified the general case to special
semi-martingales and used their specific properties to refine the definition. Since
the case of semi-martingales would be studied in relation with the Banach space
and some convergence theorems, our refined definition would affect the convergence
accuracy.
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Abstract. In this paper, we characterize explicitly the separation properties
T0 and T1 at a point p in the topological category of quantale-valued preordered

spaces and investigate how these characterizations are related. Moreover, we

prove that local T0 and T1 quantale-valued preordered spaces are hereditary
and productive.

1. Introduction

Classical separation axioms of topology have been extended to topological cat-
egory by several authors. Baran [2], in 1991, introduced these axioms in a set-
based topological category in terms of initial, final structures and discreteness. He
defined separation properties first locally, i.e., at a point p [4], then they are ex-
panded to point-free concepts. Using local lower separation axioms, Baran [2, 3]
introduced the notion of (strongly) closedness in set-based topological categories
that creates closure operators in sense of Dikranjan and Giuli [16] in some well-
known topological categories Conv (the category of convergence spaces and filter
convergence maps) [11], Lim (the category of limit spaces and filter convergence
maps) [9], Prord (the category of preordered sets and monotone maps) [12] and
SUConv (the category of semiuniform convergence spaces and uniformly continu-
ous maps) [14]. The other significant use of these concepts to define the notions of
Hausdorffness [5], compactness, perfectness [9], connectedness [10], regular, com-
pletely regular, normal objects [7, 8] in set-based topological categories.

A topological space defines a preorder (reflexive and transitive) relation, and a
topology can be obtained from a preorder relation on a set [17, 20]. This indicates
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a connection between topology and order. Domain theory that was introduced by
Dana Scott in the 1960s, is a branch of order theory which studies special kinds of
partially ordered sets generally named as domains. In computer science, this field is
used to establish denotational semantics, particularly for functional programming
languages [18,29]. Domain theory is closely related to topology and formalizes the
intuitive principles of convergence and approximation in a general way.

With the advancement of lattice theory, distinct mathematical frameworks have
been studied with lattice structures including lattice-valued topology [15], quantale-
valued approach space [23,24,28], quantale-valued metric space [25], lattice-valued
convergence space [22] and lattice-valued preordered space [15]. This motivates us
to study local T0 and T1 separation axioms in quantale-valued preordered spaces.

The main purpose of this paper is to give an explicit characterization for the
local T0 and T1 separation axioms in the category of quantale-valued preordered
spaces as well as to examine the relationship between them and to investigate their
some invariance properties.

2. Preliminaries

Recall [24] that a partially ordered set (L,≤) is called a complete lattice if all
subsets of L have both infimum (

∧
) and supremum (

∨
). For any complete lattice,

the bottom element and top element is denoted by ⊥ and ⊤, respectively.

Definition 1. Let (L,≤) be a complete lattice. We identify

(1) α ◁ β (the well-below relation) if ∀X ⊆ L such that β ≤
∨

X there exists
δ ∈ X such that α ≤ δ.

(2) α ≺ β (the well-above relation) if ∀X ⊆ L such that
∧
X ≤ α there exists

δ ∈ X such that δ ≤ β.

Definition 2. A complete lattice (L,≤) is called a completely distributive iff for
any α ∈ L, α =

∨
{β : β ◁ α} .

Definition 3. The triple (L,≤, ∗) is called a quantale if the following conditions
are satisfied.

(1) (L,≤) is a complete lattice.
(2) (L, ∗) is a semi group.
(3) (

∨
i∈I αi)∗β =

∨
i∈I(αi∗β) and β∗(

∨
i∈I αi) =

∨
i∈I(β∗αi) for all αi, β ∈ L,

Note that if (L, ∗) is a commutative semi group, then the quantale (L,≤, ∗) is
named as commutative and if for all α ∈ L, α ∗ ⊤ = ⊤ ∗ α = α, then it is called
integral.

We denote a quantale by L = (L,≤, ∗) if it is integral and commutative, where
(L,≤) is completely distributive.

A quantale L = (L,≤, ∗) is named as a value quantale if (L,≤) is completely
distributive lattice such that ∀α, β ◁⊤, α ∨ β ◁⊤ [19].
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Definition 4. [25, 30] Let X ̸= ∅ be a set. A map R : X × X → L = (L,≤, ∗)
is called an L-preorder relation on X and the pair (X,R) is called an L-preordered
space if it satisfies

(1) reflexivity, i.e., for all x ∈ X, R(x, x) = ⊤,
(2) transitivity, i.e., for all x, y, z ∈ X, R(x, y) ∗ R(y, z) ≤ R(x, z).

Note that an L-preordered space (X,R) is named as an L-equivalence space (X,R)
if for all x, y ∈ X, R(x, y) = R(y, x) (symmetry). Also, (X,R) is called separated
L-preordered space if x = y whenever R(x, y) = ⊤.

A map f : (X,RX) → (Y,RY ) is called an L-order preserving map if for all
x1, x2 ∈ X, RX(x1, x2) ≤ RY (f(x1), f(x2)).

Let L-Prord denotes the category whose objects are L-preordered spaces and
morphisms are L-order preserving mappings.

Example 1. (i) For L = 2 = ({0, 1},≤,∧), 2-Prord ∼= Prord, where Prord
is the category of preordered sets and order preserving maps.

(ii) For L = ([0,∞],≥,+) (Lawvere’s quantale), [0,∞]-Prord ∼= ∞qMet,
where ∞qMet is the category of extended quasi metric spaces and non-
expansive maps.

(iii) For L = (△+,≤, ∗) (distance distribution functions quantale defined in
[24]), then △+-Prord ∼= ProbqMet, where ProbqMet is the category of
probabilistic quasi metric spaces and non-expansive maps [19].

Note that in some literature, L-preordered space is often called a continuity space
if L is a value quantale (see [19]), an L-metric space (see [25]) and an L-category
(see [21]).

Recall [1], let E be a category, Set be the category of sets and functions and
U : E → Set be a functor. U is called topological or E is called topological category
on Set if

(i) U is amnestic and faithful (i.e., concrete),
(ii) U consists of small fibers,
(iii) Every U-source has a unique initial lift.

In addition, a topological functor is said to be normalized if constant objects,
i.e., subterminals, have a unique structure.

Note that the forgetful functor U : L-Prord → Set is topological (see [21]) and
it is also normalized.

Lemma 1. [21] Let (Xi,Ri) be a collection of L-preordered spaces. A source (fi :
(X,R) → (Xi,Ri))i∈I is initial in L-Prord iff ∀a, b ∈ X,

R(a, b) =
∧
i∈I

Ri(fi(a), fi(b)).

Lemma 2. [21] Let X be a non-empty set and (X,R) be an L-preordered space.
For all a, b ∈ X,
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(i) The discrete L-preorder structure on X is stated by

Rdis(a, b) =

{
⊤, a = b,

⊥, a ̸= b.

(ii) The indiscrete L-preorder structure on X is stated by

Rind(a, b) = ⊤.

3. Local T0 and T1 Objects

Let X be a set, p ∈ X be a point and X ∨p X be the wedge product of X at
p [2], i.e., two separate copies of X identified at p.

In the wedgeX∨pX, a point x is represented as xk if it lies in the k-th component
for k = 1, 2.

Definition 5. [2] Let X ∨p X be the wedge product at p and X2 be the cartesian
product of X.

(1) Ap : X ∨p X → X2 (the principal p-axis mapping) is given by

Ap(x1) = (x, p) and Ap(x2) = (p, x).

(2) Sp : X ∨p X → X2 (the skewed p-axis mapping) is given by

Sp(x1) = (x, x) and Sp(x2) = (p, x).

(3) ∇p : X ∨p X → X (the fold mapping at p) is given by

∇p(x1) = ∇p(x2) = x.

Definition 6. Let (X, τ) be topological space and p ∈ X. For each point x ̸= p,
there exists an open set A such that p ∈ A, x /∈ A or (resp. and) there exists an
open set B such that x ∈ B, p /∈ B, then (X, τ) is said to be T0 (resp. T1) at
p [2, 6].

Theorem 1. Let (X, τ) be topological space and p ∈ X. Then (X, τ) is T0 (resp.
T1) at p iff the initial topology induced by {Ap (resp. Sp) : X ∨p X → (X2, τ∗) and
∇p : X ∨p X → (X,P (X))} is discrete, where τ∗ is the product topology on X2.

Proof. The proofs are given in [6]. □

Definition 7. [2] Let U : E → Set be topological functor, X ∈ Ob(E) with U(X) =
B and p ∈ B.

(i) X is T0 at p provided that the initial lift of the U-source {Ap : B ∨p B →
U(X2) = B2 and ∇p : B ∨p B → UD(B) = B} is discrete, where D is the
discrete functor that is a left adjoint to U.

(ii) X is T1 at p provided that the initial lift of the U-source {Sp : B ∨p B →
U(X2) = B2 and ∇p : B ∨p B → UD(B) = B} is discrete.
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Remark 1. (1) Separation axioms T 0 at p and T1 at p are used to identify the
notions of (strong) closedness in arbitrary set-based topological categories
[2, 3].

(2) In Top (the category of topological spaces and continuous mappings), by
Theorem 1, T 0 at p and T1 at p reduce to Definition 6 [2].

(3) A topological space X is Ti, i = 0, 1 if and only if X is Ti, i = 0, 1, at p for
all points p in X ( [6], Theorem 1.5(5)).

(4) Let U : E → Set be a topological functor, X an object in E and p ∈ U(X) be
a retract of X, i.e., the initial lift h : 1 → X of the U-source p : 1 → U(X)
is a retract, where 1 is the terminal object in Set. Then if X is T0 (resp.
T1), then X is T0 at p (resp. T1 at p) but the converse of implication is not
true, in general ( [4], Theorem 2.6).

(5) Specially, if U : E → Set is normalized, then T0 and T1 imply T0 at p and
T1 at p, respectively. ( [4], Corollary 2.7).

Theorem 2. An L-preordered space (X,R) is T0 at p iff R(x, p) ∧ R(p, x) = ⊥ for
all x ∈ X distinct from p.

Proof. Assume (X,R) is T0 at p and x ∈ X with x ̸= p. Let Rdis be the discrete
L-preorder relation on X and for i = 1, 2, πi : X

2 → X be the projection maps.
For x1, x2 ∈ X ∨p X,

R(π1Ap(x1), π1Ap(x2)) = R(π1(x, p), π1(p, x)) = R(x, p)

R(π2Ap(x1), π2Ap(x2)) = R(π2(x, p), π2(p, x)) = R(p, x)

Rdis(∇p(x1),∇p(x2)) = Rdis(x, x) = ⊤

Since (A,R) is T0 and x1 ̸= x2, by Definition 7 and Lemmas 1, 2,

⊥ =
∧

{R(π1Ap(x1), π1Ap(x2)),R(π2Ap(x1), π2Ap(x2)),Rdis(∇p(x1),∇p(x2))}

=
∧

{R(x, p),R(p, x),⊤}
= R(x, p) ∧ R(p, x)

Hence, we have R(x, p) ∧ R(p, x) = ⊥.
Conversely, let R′ be the initial L-preorder relation on X ∨p X induced by Ap :

X ∨p X → U(X2,R2) = X2 and ∇p : X ∨p X → U(X,Rdis) = X, where R2 is the
product structure on X2 induced by the projection maps π1 and π2.

Assume that the condition holds, i.e., for all x ∈ X distinct from p, R(x, p) ∧
R(p, x) = ⊥. Let v and w be any points in the wedge.

(1) If v = w, then R′(v, w) = ⊤.
(2) If v ̸= w and ∇pv ̸= ∇pw, then Rdis(∇pv,∇pw) = ⊥. By Lemma 1,

R′(v, w) =
∧

{R(π1Apv, π1Apw),R(π2Apv, π2Apw),Rdis(∇pv,∇pw)}
= ⊥
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(3) Suppose v ̸= w and ∇pv = ∇pw. It follows that ∇pv = x = ∇pw for some
points x ∈ X with x ̸= p. We must have v = x1 and w = x2 or v = x2 and
w = x1 since v ̸= w.
(a) If v = x1 and w = x2, then

R(π1Apv, π1Apw) = R(x, p)

R(π2Apv, π2Apw) = R(p, x)

Rdis(∇pv,∇pw) = Rdis(x, x) = ⊤
and it follows that

R′(v, w) =
∧

{R(π1Apv, π1Apw),R(π2Apv, π2Apw),Rdis(∇pv,∇pw)}

=
∧

{R(x, p),R(p, x),⊤}
= R(x, p) ∧ R(p, x)

By the assumption R(x, p) ∧ R(p, x) = ⊥, we get R′(v, w) = ⊥.
(b) Similarly, if v = x2 and w = x1, then R′(v, w) = ⊥.

Consequently, for all v, w in the wedge X ∨p X, we obtain

R′(v, w) =

{
⊤, v = w

⊥, v ̸= w

By Lemma 2, R′ is the discrete L-preorder relation on the wedge. Hence, by Defi-
nition 7, (X,R) is T0 at p. □

Theorem 3. An L-preordered space (X,R) is T1 at p iff R(x, p) = ⊥ = R(p, x) for
all x ∈ X distinct from p.

Proof. Assume that (X,R) is T1 at p and x ∈ X with x ̸= p. Let v = x1, w = x2 ∈
X ∨p X. Note that,

R(π1Spv, π1Spw) = R(π1(x, x), π1(p, x)) = R(x, p)

R(π2Spv, π2Spw) = R(π2(x, x), π2(p, x)) = R(x, x) = ⊤
Rdis(∇pv,∇pw) = Rdis(x, x) = ⊤

where Rdis is the discrete L-preorder relation on X and for each i = 1, 2, πi : X
2 →

X is the projection map. Since v ̸= w and (X,R) is T1 at p, by Definition 7 and
Lemmas 1, 2,

⊥ =
∧

{R(π1Spv, π1Spw),R(π2Spv, π2Spw),Rdis(∇pv,∇pw)}

=
∧

{R(x, p),⊤}
= R(x, p)

Similarly, if v = x2, w = x1 ∈ X ∨p X, then by Lemma 1, we have

⊥ =
∧

{R(p, x),⊤} = R(p, x)
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Conversely, let R′ be the initial L-preorder relation on X ∨p X induced by Sp :
X ∨p X → U(X2,R2) = X2 and ∇p : X ∨p X → U(X,Rdis) = X, where R2 is the
product structure on X2 induced by the projection maps π1 and π2.

Assume that for all x ∈ X distinct from p, R(x, p) = ⊥ = R(p, x). Let v and w
be any points in the wedge.

(1) If v = w, then R′(v, w) = ⊤.
(2) If v ̸= w and ∇pv ̸= ∇pw, then Rdis(∇pv,∇pw) = ⊥ since Rdis is the

discrete structure. By Lemma 1,

R′(v, w) =
∧

{R(π1Spv, π1Spw),R(π2Spv, π2Spw),Rdis(∇pv,∇pw)}
= ⊥

(3) Suppose v ̸= w and ∇pv = ∇pw. It follows that we must have v = x1 and
w = x2 or v = x2 and w = x1.

If v = x1 and w = x2, then by Lemma 1,

R′(v, w) =
∧

{R(x, p),⊤} = R(x, p)

By the assumption R(x, p) = ⊥ = R(p, x), we get R′(v, w) = ⊥.
Similarly, we obtain R′(v, w) = ⊥ for v = x2 and w = x1.

Hence, for all v, w ∈ X ∨p X, we have

R′(v, w) =

{
⊤, v = w

⊥, v ̸= w

By Lemma 2, it follows that R′ is the discrete L-preorder relation on the wedge.
Consequently, by Definition 7, (X,R) is T1 at p. □

Example 2. Let ∗ be a binary operation identified as ∀α, β ∈ [0, 1], α ∗ β =
(α − 1 + β) ∨ 0 and L = ([0, 1],≤, ∗) be a triangular norm (Lukasiewicz t-norm)
[26], where the bottom and top elements are ⊥ = 0 and ⊤ = 1, respectively. Let
X = {a, b, c} and an L-preorder relation R : X ×X → L defined by

R(v, w) =


⊤, v = w
1

2
, (v, w) = (a, c)

⊥, otherwise.

Clearly, (X,R) is an L-preordered space. By Theorem 2, (X,R) is T 0 at p for all
p ∈ X, and by Theorem 3, (X,R) is T1 at b but it is neither T1 at a nor at c.

Remark 2. (1) By Theorems 2 and 3, if an L-preordered space (X,R) is T1 at
p, then it is T 0 at p. But in general, the converse is not true (see previous
Example).

(2) In an arbitrary set-based topological category, T0 at p and T1 at p objects
may be equivalent, for example, in Prox (the category of proximity spaces
and p-maps) [27], CP (the category of pairs and pair preserving maps) [3],



914 S. ÖZKAN, M. GÜNEŞ

Born (the category of bornological spaces and bounded maps) [3], SULim
(the category of semiuniform limit spaces and uniformly continuous maps)
[13], Remark 3.6.

4. Hereditary and Productive Properties

Definition 8. Let (X,R) be an L-preordered space and A ⊂ X. A subspace (A,RA)
is defined by RA(x, y) = R(x, y) for all x, y ∈ A, where RA is the initial L-preorder
structure on A induced by the inclusion map i : A → X.

Theorem 4. Let (X,R) be an L-preordered space, A ⊂ X and p ∈ A.

(i) If (X,R) is T 0 at p, then (A,RA) is T 0 at p.
(ii) If (X,R) is T1 at p, then (A,RA) is T1 at p.

Proof. (i) Suppose that p ∈ A and (X,R) is T 0 at p. By Theorem 2, R(x, p)∧
R(p, x) = ⊥ for x ∈ A ⊂ X with x ̸= p. By Definition 8, we have RA(x, p) =
R(x, p) and RA(p, x) = R(p, x) for x, p ∈ A ⊂ X. It follows that RA(x, p) ∧
RA(p, x) = ⊥. Hence, by Theorem 2, the subspace (A,RA) is also T 0 at p.

(ii) Similarly, let p ∈ A and (X,R) be T1 at p. By Theorem 3 and Definition
8, we have RA(x, p) = R(x, p) = ⊥ = R(p, x) = RA(p, x) for x, p ∈ A ⊂ X
with x ̸= p. Hence, by Theorem 3, the subspace (A,RA) is also T1 at p.

□

Theorem 5. Let (Xi,Ri) be an L-preordered space for each i ∈ I and (X,R) be the
product of the spaces {(Xi,Ri) : i ∈ I}, where X =

∏
i∈I Xi and for all x, y ∈ X,

R(x, y) =
∧

i∈I Ri(πi(x), πi(y)). For all i ∈ I, the L-preordered space (Xi,Ri) is
isomorphic to a subspace of the product space (X,R).

Proof. Suppose that (Xi,Ri) is an L-preordered space for each i ∈ I and (X,R) is
the product space. Firstly, we choose a fixed point zj in Xj for each j ∈ I with
j ̸= i. Let A = {z1} × {z2} × ... × {zi−1} ×Xi × {zi+1} × ... ⊂ X. Then, (A,RA)
is a subspace of the product space (X,R), where RA(x, y) = R(x, y) for all x, y ∈
A. Clearly, i-th projection map πi : (A,RA) → (Xi,Ri) defined by for ai ∈ Xi,
πi(z1, z2, ..., zi−1, ai, zi+1, ...) = ai is bijective. For all (z1, z2, ..., zi−1, ai, zi+1, ...),
(z1, z2, ..., zi−1, bi, zi+1, ...) ∈ A, we have

RA((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

= R((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

=
∧
j ̸=i

{Ri(ai, bi),Rj(zj , zj) = ⊤}

≤ Ri(ai, bi)

= Ri(πi(z1, z2, ..., zi−1, ai, zi+1, ...), πi(z1, z2, ..., zi−1, bi, zi+1, ...))

and it follows that πi is an L-order preserving map.
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On the other hand, let fi : (Xi,Ri) → (A,RA) be function defined by fi(ai) =
(z1, z2, ..., zi−1, ai, zi+1, ...) for ai ∈ Xi. Then, we have

(πi ◦ fi)(ai) = πi(fi(ai))

= πi(z1, z2, ..., zi−1, ai, zi+1, ...)

= ai

= 1Xi
(ai)

and

(fi ◦ πi)(z1, z2, ..., zi−1, ai, zi+1, ...) = fi(πi(z1, z2, ..., zi−1, ai, zi+1, ...))

= fi(ai)

= (z1, z2, ..., zi−1, ai, zi+1, ...)

= 1A(z1, z2, ..., zi−1, ai, zi+1, ...)

It follows that fi = (πi)
−1 since πi ◦ fi = 1Xi

and fi ◦ πi = 1A.
For all ai, bi ∈ Xi, we obtain

Ri(ai, bi) =
∧
j ̸=i

{Ri(ai, bi),Rj(zj , zj) = ⊤}

= R((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

= RA((z1, z2, ..., zi−1, ai, zi+1, ...), (z1, z2, ..., zi−1, bi, zi+1, ...))

= RA(fi(ai), fi(bi)) ≤ RA(fi(ai), fi(bi))

and it follows that fi is an L-order preserving map.
Consequently, L-preordered space (Xi,Ri) and the subspace (A,RA) are isomor-

phic. □

Theorem 6. Let {(Xi,Ri) : i ∈ I} be a collection of L-preordered spaces and (X,R)
be the product space, where X =

∏
i∈I Xi and R(x, y) =

∧
i∈I Ri(πi(x), πi(y)) for

x, y ∈ X. Let p = (pi)i∈I be a point in X.

(i) (X,R) is T 0 at p iff (Xi,Ri) is T 0 at pi for each i ∈ I.
(ii) (X,R) is T1 at p iff (Xi,Ri) is T1 at pi for each i ∈ I.

Proof. (i) Assume that the product space (X,R) is T 0 at p. By Theorem 5, for
each i ∈ I, (Xi,Ri) is isomorphic to a subspace of (X,R) and by Theorem
4, a subspace of a local T 0 L-preordered space is T 0 at p. Since (X,R) is
T 0 at p, it follows that (Xi,Ri) is T 0 at pi for each i ∈ I.

Conversely, suppose that (Xi,Ri) is T 0 at pi for each i ∈ I. Let x =
(xi)i∈I be a point in X with x ̸= p = (pi)i∈I . Since x ̸= p, there exists
i0 ∈ I such that xi0 ̸= pi0 . By the assumption L-preordered space (Xi0 ,Ri0)
is T 0 at p and by Theorem 2, we have Ri0(xi0 , pi0) ∧ Ri0(pi0 , xi0) = ⊥. It
follows that

R(x, p) =
∧
i∈I

{Ri(xi, pi)} ≤ Ri0(xi0 , pi0)
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and

R(p, x) =
∧
i∈I

{Ri(pi, xi)} ≤ Ri0(pi0 , xi0)

Since Ri0(xi0 , pi0) ∧ Ri0(pi0 , xi0) = ⊥, we get R(x, p) ∧ R(p, x) = ⊥. Hence,
by Theorem 2, the product space (X,R) is T 0 at p.

(ii) Similarly, suppose that the product space (X,R) is T1 at p. By the assump-
tion and Theorems 4 and 5, we have (Xi,Ri) is T1 at pi for each i ∈ I.

Conversely, assume that (Xi,Ri) is T1 at pi for each i ∈ I. Let x ∈
X with x ̸= p. Then, there exists i0 ∈ I such that xi0 ̸= pi0 . By the
assumption L-preordered space (Xi0 ,Ri0) is T1 at p and by Theorem 3, we
have Ri0(xi0 , pi0) = Ri0(pi0 , xi0) = ⊥. It follows that

R(x, p) =
∧

{R1(x1, p1),R2(x2, p2), ...,Ri0−1(xi0−1, pi0−1),

Ri0(xi0 , pi0) = ⊥,Ri0+1(xi0+1, pi0+1), ...}
= ⊥

and similarly,

R(p, x) =
∧

{R1(p1, x1), ...,Ri0(pi0 , xi0) = ⊥, ...}
= ⊥

Consequently, by Theorem 3, we get the product space (X,R) is T1 at p.
□
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[25] Jäger, G., The Wijsman structure of a quantale-valued metric space, Iran. J. Fuzzy Syst.,
17(1) (2020), 171–184. https://doi.org/10.22111/IJFS.2020.5118

[26] Klement, E. P., Mesiar, R., Pap, E., Triangular Norms, Springer, Dordrecht, 2000.
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Abstract. The current paper establishes the sharp weak bounds of p-adic

fractional Hardy operator. Furthermore, optimal weak type estimates for p-
adic Hardy operator on central Morrey space are also acquired.

1. Introduction

For every non-zero rational number x there is a unique k = k(x) ∈ Z such that
x = pks/t, where p ≥ 2 is a fixed prime number which is coprime to s, t ∈ Z. We
define a mapping |.|p : Q → R+ as follows:

|x|p =

{
p−k if x ̸= 0,

0 if x = 0.
(1)

The p-adic norm | · |p undergoes many properties of the usual real norm | · | with
an additional non-Archimedean property,

|x+ y|p ≤ max{|x|p, |y|p}. (2)

The field of p-adic numbers, denoted by Qp, is the completion of rational numbers
with respect to the p-adic norm | · |p. A p-adic number x ∈ Qp can be written in
the formal power series as (see [30]):

x = pk(α0 + α1p+ α2p
2 + ...) (3)
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where αi, k ∈ Z, α0 ̸= 0, αi ∈ {0, 1, 2, ..., p−1}, i = 1, 2, · · ·. The p-adic norm ensures
the convergence of series (3) in Qp, because |pkαip

i|p ≤ p−k−i.
The n-dimensional vector spaceQn

p , n ≥ 1, consists of tuples x = (x1, x2, . . . , xn),
where xj ∈ Qp and j = 1, 2, . . . , n. The norm on this space is given by

|x|p = max
1≤j≤n

|xj |p.

In non-Archimedean geometry, the ball and its boundary are defined, respec-
tively, as:

Bk(a) = {x ∈ Qn
p : |x− a|p ≤ pk}, Sk(a) = {x ∈ Qn

p : |x− a|p = pk}.

For convenience we denote Bk(0)and Sk(0) by Bk and Sk, respectively.
The local compactness and commutativity of the group Qn

p under addition im-
plies the existence of Haar measure dx on Qn

p , such that∫
B0

dx = |B0|H = 1,

where the notation |B|H refers to the Haar measure of a measurable subset B of Qn
p .

Furthermore, it is not hard to see that |Bk(a)|H = pnk, |Sk(a)|H = pnk(1 − p−n),
for any a ∈ Qn

p .
Let w(x) be a nonnegative locally integrable function on Qn

p and w(E) the

weighted measure of measurable subset E ⊂ Qn
p , that is w(E) =

∫
E
w(x)dx re-

spectively. The space of all complex-valued functions f with norm conditions:

∥f∥Lr(w;Qn
p )

=

(∫
Qn

p

|f(x)|rw(x)dx
)1/r

< ∞,

is denoted by Lr(w,Qn
p ), (0 < r < ∞), and is known as weighted Lebesgue space.

Note that Lr(1,Qn
p ) = Lr(Qn

p ).
In [22], authors have defined the weighted p-adic weak Lebesgue space Lr,∞(w;Qn

p )
by

∥f∥Lr,∞(w,Qn
p )

= sup
µ>0

µw

(
{x ∈ Qn

p : |f(x)| > µ}
)1/r

< ∞.

When w = 1, we get the weak Lebesgue space Lr,∞(Qn
p ) defined in [32]. Next, we

give the relevant p-adic function spaces.

Definition 1. [34] Suppose 1 < r < ∞ and µ ∈ R. The p-adic space Ḃr,µ(Qn
p ) is

the set of all measurable functions f : Qn
p → R which satisfy

∥f∥Ḃr,µ(Qn
p )

= sup
γ∈Z

(
1

|Bγ |1+µr
H

∫
Bγ

|f(x)|rdx
)1/r

< ∞.

When µ = −1/r, then

Ḃr,µ(Qn
p ) = Lr(Qn

p ). It is easy to see that Ḃr,µ(Qn
p ) is reduced to {0} whenever

µ < −1/r.
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Definition 2. [35] Suppose µ ∈ R and 1 < r < ∞. The p-adic space WḂr,µ(Qn
p )

is defined as

WḂr,µ(Qn
p ) = {f : ∥f∥WḂr,µ(Qn

p )
< ∞},

where

∥f∥WḂr,µ(Qn
p )

= sup
γ∈Z

|Bγ |−µ−1/r
H ∥f∥WLr(Bγ),

and ∥f∥WLr(Bγ) is the local p-adic Lr-norm of f(x) restricted to the ball Bγ , that
is

∥f∥WLr(Bγ) = sup
µ>0

|{x ∈ Bγ : |f(x)| > µ}|1/r.

Evidently, if µ = −1/r, then WḂr,µ(Qn
p ) = Lr,∞(Qn

p ). Also, Ḃ
r,µ(Qn

p ) ⊆ WḂr,µ(Qn
p )

for −1/r < µ < 0 and 1 ≤ r < ∞.

In the last several decades, a growing interest to p-adic models have been seen
because p-adic analysis is a natural base for development of various models of
ultrametric diffusion energy landscape [4]. It also attracts great deal of interest
towards quantum mechanics [30], theoretical biology [11], quantum gravity [1, 7],
string theory [31], spin glass theory [3, 26]. In [4], it was shown that the p-adic
analysis can be efficiently applied both to relaxation in complex speed systems
and processes combined with the relaxation of a complex environment. Besides,
the applications of p-adic analysis can be found in harmonic analysis and pseudo-
differential equations, see for example [5, 9, 10,21,28,29].

The one-dimensional Hardy operator

Hf(x) =
1

x

∫ x

0

f(t)dt, x > 0, (4)

has been introduced by Hardy in [18] for measurable functions f : R+ → R+. This
operator satisfies the inequality

∥Hf∥Lr(R+) ≤
r

r − 1
∥f∥Lr(R+), 1 < r < ∞, (5)

where the constant r/(r − 1) is sharp.
In [12], Faris has proposed an extension of the Hardy operator H on higher

dimensional Euclidean space Rn by

Hf(x) =
1

|x|n

∫
|t|≤|x|

f(t)dt. (6)

where |x| = (
∑n

i=1 x
2
i )

1/2 for x = (x1, · · ·, xn). In addition, Christ and Grafakos [8]
have obtained the exact value of the norm of (6). For more details related to Hardy
type operators and, in particular, to boundedness of these operators, we refer to
publications [6, 13,19,23,24,27,36,39].

On the other hand, the fractional Hardy operator is obtained by merely writing
| · |n−α (0 ≤ α < n) instead of | · |n with in (6). The weak type estimates for the
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fractional Hardy type operators has also spotlighted many researchers in the past,
see for example [2, 13,15,16,20,37,38].

In what follows, the higher dimensional fractional Hardy operator in the p-adic
field

Hp
αf(x) =

1

|x|n−α
p

∫
|t|p≤|x|p

f(t)dt, x ∈ Qn
p \ {0}.

has been defined and studied for 0 ≤ α < n and f ∈ Lloc(Qn
p ) in [33]. When α = 0,

the operator Hp
α transfers to the p-adic Hardy operator (see [14]). Fu et al. in [14]

have acquired the optimal bounds of p-adic Hardy operator on Lebesgue spaces.
For more details, we refer the publications [17,22,25,34] and the references therein.

The purpose of the current paper is to study the sharp weak bounds for fractional
Hardy operator in the p-adic field on p-adic Lebesgue space. Moreover, we also
discuss the optimal weak type estimates for Hardy operator in the p-adic field on
central Morrey spaces.

2. Sharp weak bounds for p-adic fractional Hardy Operator on
Lebesgue spaces

Our main result for this section is as follows.

Theorem 1. Suppose 0 < α < n and n+ γ > 0. If f ∈ L1(Qn
p ), then

∥Hp
αf∥L(n+γ)/(n−α),∞(|x|γp ;Qn

p )
≤C∥f∥L1(Qn

p )
,

where the constant

C =

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

is optimal.

Proof. We have

|Hp
αf(x)| =

∣∣∣∣ 1

|x|n−α
p

∫
|t|p≤|x|p

f(t)dt

∣∣∣∣
≤|x|−(n−α)

p ∥f∥L1(Qn
p )
. (7)

Let C1 = ∥f∥L1(Qn
p )
, then

{x ∈ Qn
p : |Hp

αf(x)| > µ} ⊂ {x ∈ Qn
p : |x|p < (C1/µ)

1/(n−α)}.
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Thus,

∥Hp
αf∥L(n+γ)/(n−α),∞(|x|γp ;Qn

p )

≤ sup
µ>0

µ

(∫
Qn

p

χ{x∈Qn
p :|H

p
αf(x)|>µ}(x)|x|γpdx

)(n−α)/(n+γ)

≤ sup
µ>0

µ

(∫
Qn

p

χ{
x∈Qn

p :|x|p<
(
C1/µ

)1/(n−α)}(x)|x|γpdx)(n−α)/(n+γ)

=sup
µ>0

µ

(∫
|x|p<

(
C1/µ

)1/(n−α)
|x|γpdx

)(n−α)/(n+γ)

=sup
µ>0

µ

( logp

(
C1/µ

)1/(n−α)∑
j=−∞

∫
Sj

|x|γpdx
)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
µ>0

µ

( logp

(
C1/µ

)1/(n−α)∑
j=−∞

pj(n+γ)dx

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

sup
µ>0

µ

(
C1

µ

)
≤
(

1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

∥f∥L1(|x|βp ). (8)

To show that the constant (
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

,

appeared in (8) is optimal, we proceed as, consider

f0(x) = χ{x∈Qn
p :|x|p≤1}(x),

then

∥f0∥L1(Qn
p )

= 1.

Also,

Hp
αf0(x) =

1

|x|n−α
p

∫
|t|p≤|x|p

f0(t)dt

=
1

|x|n−α
p

∫
|t|p≤|x|p

χ{x∈Qn
p :|t|p≤1}(t)dt

=
1

|x|n−α
p

{∫
|t|p≤|x|p dt, |x|p ≤ 1;∫
|t|p≤1

dt, |x|p > 1.
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Since |Blogp |x|p |H = |x|np |B0|H , therefore,

Hp
αf0(x) =

{
|x|αp , |x|p ≤ 1;

|x|α−n
p , |x|p > 1.

Now,

{x ∈ Qn
p : |Hp

αf0(x)| > µ} ={|x|p ≤ 1 : |x|αp > µ} ∪ {|x|p > 1 : |x|α−n
p > µ}.

Since 0 < α < n, therefore, when µ ≥ 1, then

{x ∈ Qn
p : |Hp

αf0(x)| > µ} = ∅,

and when 0 < µ < 1, then

{x ∈ Qn
p : |Hp

αf0(x)| > µ} = {x ∈ Qn
p : (µ)1/α < |x|p < (1/µ)1/n−α}.

Ultimately we are down to:

∥Hp
αf0∥L(n+γ)/(n−α))),∞(|x|γp ;Qn

p )

= sup
0<µ<1

µ

(∫
Qn

p

χ{x∈Qn
p :(µ)

1/α<|x|p<(1/µ)1/(n−α)}(x)|x|γpdx
)(n−α)/(n+γ)

= sup
0<µ<1

µ

(∫
(µ)1/α<|x|p<(1/µ)1/(n−α)

|x|γpdx
)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

µ

( logp µ1/(α−n)∑
j=logp µ1/α+1

pj(n+γ)

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

µ

(
p(logp µ1/α+1)(n+γ) − p(logp µ1/(α−n)+1)(n+γ)

1− p(n+γ)

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

µ

(
µ(n+γ)/α − µ(n+γ)/(α−n)

p−(n+γ) − 1

)(n−α)/(n+γ)

=(1− p−n)(n−α)/(n+γ) sup
0<µ<1

(
1− µ(n+γ)/αµ(n+γ)/(n−α)

1− p−(n+γ)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

sup
0<µ<1

(
1− µ(n+γ)/αµ(n+γ)/(n−α)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

=

(
1− p−n

1− p−(n+γ)

)(n−α)/(n+γ)

∥f0∥L1(Qn
p )
. (9)
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We thus conclude from (8) and (9) that

∥Hp
α∥L1(Qn

p )→L(n+γ)/(n−α),∞(|x|γp ;Qn
p )

=

(
1− p−n

1− p−(n+γ)

)1/q

.

□

3. Optimal Weak Type Estimates for p-adic Hardy Operator on
Weak Central Morrey Spaces

In the current section we investigate the boundedness of p-adic Hardy operator
on p-adic weak central Morrey spaces. It is shown the constant obtained in this
case is also optimal.

Theorem 2. Suppose −1/r ≤ µ < 0, 1 ≤ r < ∞ and if f ∈ Ḃr,µ(Qn
p ), then

∥Hpf∥WḂr,µ(Qn
p )

≤ ∥f∥Ḃr,µ(Qn
p )
,

and the constant 1 is optimal.

Proof. Applying Hölder’s inequality, we obtain

|Hpf(x)| ≤ 1

|x|np

(∫
B(0,|x|p)

|f(t)|rdt
)1/r(∫

B(0,|x|p)
dt

)1/r′

=|x|nµp ∥f∥Ḃr,µ(Qn
p )
.

Let C2 = ∥f∥Ḃr,µ(Qn
p )
. Since µ < 0, we have

∥Hpf∥WḂr,µ(Qn
p )

≤ sup
γ∈Z

sup
y>0

y|Bγ |−µ−1/r
H

∣∣{x ∈ Bγ : C2|x|nµp > y}
∣∣1/r

=sup
γ∈Z

sup
y>0

y|Bγ |−µ−1/r
H

∣∣{|x|p ≤ pγ : |x|p < (y/C2)
1/nµ}

∣∣1/r.
If γ ≤ logp(y/C2)

1/nµ, then for µ < 0, we obtain

sup
y>0

sup
γ≤logp(y/C2)1/nµ

y|Bγ |−µ−1/r
H

∣∣{|x|p ≤ pγ : |x|p < (y/C2)
1/nµ}

∣∣1/r
≤ sup

y>0
sup

γ≤logp(y/C2)1/nµ

tp−γnµ

= C2

≤ ∥f∥Ḃr,µ(Qn
p )
.
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If γ > logp(y/C2)
1/nµ, then for µ+ 1/r > 0, we get

sup
y>0

sup
γ>logp(y/C2)1/nµ

y|Bγ |−µ−1/r
H |{|x|p ≤ pγ : |x|p < (y/C2)

1/nµ}|1/r

≤ sup
y>0

sup
γ>logp(y/C2)1/nµ

yp−γn(µ+1/r)(y/C2)
1/rµ

= C2

≤ ∥f∥Ḃr,µ(Qn
p )
.

Therefore,

∥Hpf∥WḂr,µ(Qn
p )

≤ ∥f∥Ḃr,µ(Qn
p )
. (10)

Conversely, to prove that the constant 1 is optimal, consider

f0(x) = χ{|x|p≤1}(x),

then,

∥f0∥Ḃq,µ(Qn
p )

= sup
γ∈Z

(
1

|Bγ |1+µr
H

∫
Bγ

χ{|x|p≤1}(x)dx

)1/r

.

If γ < 0, then

sup
γ∈Z
γ<0

(
1

|Bγ |1+µr
H

∫
Bγ

dx

)1/r

= sup
γ∈Z
γ<0

p−nγµ = 1,

since µ < 0. If γ ≥ 0, then using the condition that µ+ 1/r > 0, we have

sup
γ∈Z
γ≥0

(
1

|Bγ |1+µr
H

∫
B0

dx

)1/r

= sup
γ∈Z
γ≥0

p−nγ(µ+1/r) = 1.

Therefore,
∥f0∥Ḃr,µ(Qn

p )
= 1.

Moreover,

Hpf0(x) =

{
1, |x|p ≤ 1;

|x|−n
p , |x|p > 1,

which implies that |Hpf0(x)| ≤ 1. Next, in order to construct weak central Morrey
norm we divide our analysis into following two cases:
Case 1. When γ ≤ 0, then

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y|{x ∈ Bγ : 1 > y}|1/r = pnγ/r,

and

∥Hpf0∥WḂr,µ(Qn
p )

= sup
γ≤0

|Bγ |−µ−1/r
H ∥f∥WLr(Bγ) = sup

γ≤0
p−nγµ = 1 = ∥f0∥Ḃr,µ(Qn

p )
.
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Case 2. When γ > 0, we have

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y|{x ∈ B0 : 1 > y} ∪ {1 < |x|p < pγ : |x|−n
p > y}|1/r.

For further analysis, this case is further divided into the following subcases:
Case 2(a). If 1 < γ < logp y

−1/n, then

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y{1 + pnγ − 1}1/r = sup
0<t≤1

tpnγ/r.

Case 2(b). If 1 < logp y
−1/n < γ, then:

∥Hpf0∥WLr(Bγ) = sup
0<y≤1

y(1 + y−1 − 1)1/r = sup
0<y≤1

y1−1/r.

Now, for 1 ≤ r < ∞ and −1/r ≤ µ < 0, from case 2(a) and 2(b), we obtain

∥Hpf0∥WḂr,µ(Qn
p )

= max

{
sup

0<y≤1
sup

1<γ≤logp(1/y)
−1/n

yp−nγµ, sup
0<y≤1

sup
1<logp(1/y)

−1/n<γ

y1−1/rp−nγ(µ+1/r)

}
= max

{
sup

0<y≤1
t1+µ, sup

0<y≤1
y1+µ

}
= 1 = ∥f0∥Ḃr,µ(Qn

p )
. (11)

Finally, using (10) and (11), we arrive at:

∥H∥Ḃr,µ(Qn
p )→WḂr,µ(Qn

p )
= 1.

□
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Littlewood-Pólya operators, Acta Math. Sin. (Engl. Ser.), 29(1) (2013), 137–150.

https://doi.org/10.1007/s10114-012-0695-x

[15] Gao, G., Zhao, F. Y., Sharp weak bounds for Hausdorff operators, Anal Math., 41(3) (2015),
163–173. https://doi.org/10.1007/s10476-015-0204-4

[16] Gao, G., Hu, X., Zhang, C., Sharp weak estimates for Hardy-type operators, Ann. Funct.

Anal., 7(3) (2016), 421–433. https://doi.org/10.1215/20088752-3605447
[17] Gao, G., Zhong, Y., Some estimates of Hardy operators and their commutators on Morrey-

Herz spaces, J. Math. Inequal., 11(1) (2017), 49–58. DOI: 10.7153/jmi-11-05

[18] Hardy, G. H., Note on a theorem of Hilbert, Math. Z., 6(3-4) (1920), 314–317.
https://doi.org/10.1007/BF01199965

[19] Ho, K.-P., Hardy’s inequality on Hardy–Morrey spaces, Georg. Math. J., 26(3) (2019), 405–
413. https://doi.org/10.1515/gmj-2017-0046

[20] Hussain A., Asim, M., Aslam, M., Jarad, F., Commutators of the fractional Hardy operator

on weighted variable Herz-Morrey spaces, J. Funct. Spaces, (2021), Art. ID 9705250, 10 pp.
https://doi.org/10.1155/2021/9705250

[21] Hussain, A., Sarfraz, N., The Hausdorff operator on weighted p-adic Morrey and
Herz type spaces, p-Adic Numbers Ultrametric Anal. Appl., 11(2) (2019), 151–162.
https://doi.org/10.1134/S2070046619020055



SHARP WEAK BOUNDS FOR p-ADIC HARDY OPERATORS 929

[22] Hussain, A., Sarfraz, N., Optimal weak type estimates for p-adic Hardy

operators, p-Adic Numbers Ultrametric Anal. Appl., 12(1) (2020), 29–38.

https://doi.org/10.1134/S2070046620010033
[23] Hussain, A., Ahmed, M., Weak and strong type estimates for the commutators of Hausdorff

operator, Math. Inequal. Appl., 20(1) (2017), 49–56. DOI: 10.7153/mia-20-04

[24] Hussain, A., Gao, G., Multidimensional Hausdorff operators and commutators on Herz-type
spaces, J. Inequal. Appl., 2013(594) (2013), 12 pp. https://doi.org/10.1186/1029-242X-2013-

594

[25] Liu, R.H., Zhou, J., Sharp estimates for the p-adic Hardy type operator on higher-dimensional
product spaces, J. Inequal. Appl., 2017(219) (2017), 13 pp. https://doi.org/10.1186/s13660-

017-1491-z

[26] Parisi, G., Sourlas, N., p-adic numbers and replica symmetry, Eur. Phys. J. B Condens.
Matter Phys., 14(3) (2000), 535–542. https://doi.org/10.1007/s100510051063

[27] Persson, L.-E., Samko, S. G., A note on the best constants in some hardy inequalities, J.
Math. Inequal., 9(2) (2015), 437–447. DOI:10.7153/jmi-09-37
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Abstract. Let G =(V,E) be a simple graph. A subset S is said to be Semi-

Strong if for every vertex v in V , |N(v) ∩ S| ≤ 1, or no two vertices of S have
the same neighbour in V , that is, no two vertices of S are joined by a path of

length two in V . The minimum cardinality of a semi-strong partition of G is

called the semi-strong chromatic number of G and is denoted by χsG. A proper
colour partition is called a dominator colour partition if every vertex dominates

some colour class, that is , every vertex is adjacent with every element of some

colour class. In this paper, instead of proper colour partition, semi-strong
colour partition is considered and every vertex is adjacent to some class of the

semi-strong colour partition.Several interesting results are obtained.

1. Introduction

Let G = (V,E) be a finite, undirected graph. We follow standard definitions
of graph theory [2, 8]. A proper vertex coloring of a graph is defined as coloring
the vertices of a graph such that no two adjacent vertices are colored using same
color. A subset S of a graph G = (V,E) is said to be a dominting set if every
vertex not in S is adjacent to at least one vertex of V −S. The domination number
γ(G) is the number of vertices in a smallest dominating set for G [9, 10]. S. M.
Hedetniemi [11,12] introduced and discussed the concept of dominator coloring and
dominator partition of graphs. S.Arumugam et.al. discussed further in dominator
coloring in graphs [1]. The combination of the two most important fields in graph
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theory namely, Coloring and domination have a lot of research results. A dominator
coloring of a graph G is a proper coloring, such that every vertex of G dominates
at least one color class (possibly its own class). Gera et. al. [6] defined dominator
colouring in a graph G as a proper colour partition in which every vertex dominates
some color class. The dominator chromatic number of G, denoted by χd(G), is the
minimum number of colors among all dominator colorings of G. Gera researched
further in [7] on dominator coloring and safe clique partitions. Kazemi proposed
the concept of total dominator coloring in graphs and studied its properties [15].
A proper coloring, such that each vertex of the graph is adjacent to every vertex
of some (other) color class. For more results on the total dominator coloring, refer
to [14,16]. M. Chellali and F. Maffray discussed Dominator colorings in some classes
of graphs [4]. In 2015, Merouane et al. [17] proposed the dominated coloring which
is defined as a proper coloring such that every color class is dominated by at least
one vertex. The dominated chromatic number of G, denoted by χdom(G), is the
minimum number of colors among all dominated colorings of G. For comprehensive
results of coloring and domination in graphs, color class domination in graphs
introudced and studied in detail. refer to [5, 20, 21]. As a generalization of strong
set introduced by Claude Berge [3], E.Sampathkumar defined semi-strong sets [18]
in a graph. In a simple graph G, a subset S of the vertex set V (G) of G is called
a semi-strong set of G if |N [v] ∩ S| ≤ 1 for v in V (G). E.Sampathkumar also
introduced Chromatic partition of a graph [19] and studied its properties. Also, G.
Jothilakshmi et al studied (k,r) - Semi Strong Chromatic Number of a Graph [13].
Instead of proper color partition, semi-strong partition [18] of V (G) is considered
and domination property that every vertex dominates semi-strong color class is
added. The minimum cardinality of such a partition is found for some classes of
graphsand bounds are obtained. Interesting results in this new concepts are derived.

Definition 1. A subset S of V (G) is called a maximal semi-strong set of G if S is
semi-strong and no proper super set of S is semi-strong. The maximum cardinality
of a maximal semi-strong set of G is called semi-strong number of G and is denoted
by ss(G).

Definition 2. A dominator coloring of a graph G is a proper coloring in which
each vertex of the graph dominates every vertex of some color class.

Definition 3. A semi-strong coloring of G is called a dominator semi-strong
color partition of G if every vertex of G dominates an element of the partition.
The minimum cardinality of such a partition is called the dominator semi-strong
color partition number of G and is denoted by χd

s(G).

Since the trivial partition is a semi-strong coloring of G, the existence of domi-
nator semi-strong color partition is guaranteed in any graph.
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2. χd
s(G) for Some Well-Known Graphs

Observation 1. (i) χd
s(Kn) = χd(Kn) = n.

(ia) χd
s(Kn − e) = n (since Kn − e has a full degree vertex).

(ii) χd
s(K1,n) = n+ 1, χs(K1,n) + γ(K1,n) = n+ 1.

(iii) χd(Km,n) = 2 < χd
s(Km,n) if m ≤ n and n ≥ 3.

Remark 1. Let Π = {V1, V2, . . . , Vk} be a dominator semi-strong color partition of
G. A vertex u ∈ V can dominate Vi if and only if |Vi| = 1.

Theorem 1. For any Path Pn, χ
d
s(Pn) =

⌈
n
2

⌉
+ 1, n ≥ 2.

Proof. Let Pn be a path on n vertices.
Case 1: n = 4k, k ≥ 1
Let Π = {V1, V2, . . . , V2k, V2k+1} where V1 = {v2, v3, v6, v7, . . . , v4k−2, v4k−1}, V2 =

{v1}, V3 = {v5}, . . . , Vk = {v4k−3}, Vk+1 = {v4}, Vk+2 = {v8}, . . . , V2k+1 = {v4k}.
Then Π is a dominator semi-strong color partition of Pn. Therefore χd

s(Pn) ≤
2k + 1 =

⌈
n
2

⌉
+ 1.

Let Π1 be a χd
s-partition of Pn. The maximum cardinality of an element of Π1

is at most 2k. There are at least 2k singletons to dominate 4k elements, since no
single element can dominate two elements of a set which are at a distance 2. There-
fore |Π| ≥ 2k + 1. Therefore χd

s(P4k) = 2k + 1 =
⌈
n
2

⌉
+ 1.

Case 2: Let n = 4k + 1, k ≥ 1
Let Π = {V1, V2, . . . , V2k, V2k+1, V2k+2} where V1 = {v2, v3, v6, v7, . . . , v4k−2, v4k−1},

V2 = {v1}, V3 = {v5}, . . . , Vk = {v4k−3}, Vk+1 = {v4k+1}, Vk+2 = {v4},
Vk+3 = {v8}, . . . , V2k+2 = {v4k}. Then Π is a dominator semi-strong color partition
of Pn. Therefore χd

s(Pn) ≤ 2k + 2 =
⌈
n
2

⌉
+ 1.

Arguing as in case 1, χd
s(P4k+1) ≥ 2k+2 =

⌈
n
2

⌉
+1. Therefore χd

s(Pn) =
⌈
n
2

⌉
+1,

where n = 4k + 1.
Case 3: Let n = 4k + 2, k ≥ 0
Let Π = {V1, V2, . . . , V2k, V2k+1, V2k+2} where

V1 = {v2, v3, v6, v7, . . . , v4k−2, v4k−1, v4k+2}, V2 = {v1}, V3 = {v5}, . . ., Vk =
{v4k−3}, Vk+1 = {v4k+1}, Vk+2 = {v4}, Vk+3 = {v8}, . . ., V2k+2 = {v4k}. Then Π is
a dominator semi-strong color partition of Pn. Therefore χ

d
s(Pn) ≤ 2k+2 =

⌈
n
2

⌉
+1.

Arguing as in case 1, χd
s(P4k+2) ≥ 2k+2 =

⌈
n
2

⌉
+1. Therefore χd

s(Pn) =
⌈
n
2

⌉
+1,

where n = 4k + 2.
Case 4: Let n = 4k + 3, k ≥ 0
Let Π = {V1, V2, . . . , V2k, V2k+1, V2k+2, V2k+3} where

V1 = {v2, v3, v6, v7, . . . , v4k−2, v4k−1, v4k+2}, V2 = {v1}, V3 = {v5}, . . . , Vk =
{v4k−3}, Vk+1 = {v4k−3}, Vk+2 = {v4k+1}, Vk+3 = {v4}, Vk+4 = {v8}, . . . , V2k+2 =
{v4k}, V2k+3 = {v4k+3}. Then Π is a dominator semi-strong color partition of Pn.
Therefore χd

s(Pn) ≤ 2k + 3 =
⌈
n
2

⌉
+ 1.

Arguing as in case 1, χd
s(P4k+3) ≥ 2k+3 =

⌈
n
2

⌉
+1. Therefore χd

s(Pn) =
⌈
n
2

⌉
+1,

where n = 4k + 3. □
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Theorem 2. χd
s(Cn) =

⌈
n
2

⌉
+ 1, n ≥ 3.

Proof. Let Cn be a cycle on n vertices.
Case 1: n = 4k, k ≥ 1
Let V (Cn) = {v1, v2, . . . , v4k}. Let Π = {V1, V2, . . . , V2k, V2k+1} where

V1 = {v2, v3, v6, v7, . . . , v4k−2, v4k−1}, V2 = {v1}, V3 = {v5}, . . . , Vk+1 = {v4k−3}, Vk+2 =
{v4}, Vk+3 = {v8}, . . . , V2k+1 = {v4k}. Then Π is a dominator semi-strong color
partition of Cn. Therefore χd

s(Cn) ≤ |Π| = 2k + 1 = 4k
2 + 1 =

⌈
n
2

⌉
+ 1.

There are at least 2k singletons and no single element can dominate a two
element set which are at a distance 2. Therefore χd

s(C4k) ≥
⌈
n
2

⌉
+ 1. There-

fore χd
s(C4k) =

⌈
n
2

⌉
+ 1.

Case 2: Let n = 4k + 1, k ≥ 1
Let Π = {V1, V2, . . . , V2k, V2k+1, V2k+2} where V1 = {v2, v3, v6, v7, . . . , v4k−2, v4k−1},

V2 = {v1}, V3 = {v5}, . . . , Vk+1 = {v4k−3}, Vk+2 = {v4k+1}, Vk+3 = {v4},
. . . , V2k+2 = {v4k}. Then Π is a dominator semi-strong color partition of Pn.
Therefore χd

s(C4k+1) ≤ |Π| = 2k + 2 =
⌈
4k+1

2

⌉
+ 1 =

⌈
n
2

⌉
+ 1.

There are at least 2k singletons and no single element can dominate a two element
set which are at a distance 2. Therefore χd

s(C4k+1) ≥
⌈
n
2

⌉
+1 and hence χd

s(C4k+1) =⌈
n
2

⌉
+ 1.

Case 3: Let n = 4k + 2, k ≥ 1
Let Π = {V1, V2, . . . , V2k, V2k+1, V2k+2} where V1 = {v2, v3, v6, v7, . . . , v4k−2, v4k−1},

V2 = {v4k+1, v4k+2}, V3 = {v1}, V4 = {v5}, . . . , Vk+2 = {v4k−3}, Vk+3 = {v4}, Vk+4 =
{v8}, . . . , V2k+2 = {v4k}. Then Π is a dominator semi-strong color partition of Cn.
Therefore χd

s(C4k+2) ≤ |Π| = 2k + 2 + 1 =
⌈
n
2

⌉
+ 1.

There are at least 2k singletons and no single element can dominate a two el-
ement set which are at a distance 2. Any doubleton must consist of consecutive
vertices. Therefore χd

s(C4k+2) ≥
⌈
n
2

⌉
+ 1. Therefore χd

s(C4k+2) =
⌈
n
2

⌉
+ 1.

Case 4: Let n = 4k + 3, k ≥ 0
Let Π = {V1, V2, . . . , V2k, V2k+1, V2k+2, V2k+3} where

V1 = {v2, v3, v6, v7, . . . , v4k−1, v4k+2}, V2 = {v1}, V3 = {v5}, . . . , Vk+1 = {v4k−3},
Vk+2 = {v4k+1}, Vk+3 = {v4}, . . . , V2k+2 = {v4k}, V2k+3 = {v4k+3}. Then Π is a
dominator semi-strong color partition of Cn. Therefore χ

d
s(C4k+3) ≤ |Π| = 2k+3 =⌈

4k+3
2

⌉
+ 1 =

⌈
n
2

⌉
+ 1.

There are at least 2k + 1 singletons and no single element can dominate a two
element set which are at a distance 2. Any doubleton set must consist of consecutive
vertices. Therefore χd

s(C4k+3) ≥
⌈
n
2

⌉
+ 1. Therefore χd

s(C4k+3) =
⌈
n
2

⌉
+ 1. □

Theorem 3. For Complete bi-partite graph Km,n, χ
d
s(Km,n) = max{m,n}+ 1.

Proof. Let V1, V2 be the partite sets of Km,n.



934 P. VENKATRENGAN, S. VENKATASUBRAMANIAN, R. SUNDARESWARAN

Case 1: Let m < n.
Let V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn}.
Let Π = {{u1, v1}, . . ., {um−1, vm−1}, {um}, {vm}, . . . , {vn}}. Then each of v1, v2, . . . ,
vn dominates {um}, and each of u1, u2, . . . , um−1 dominates {vn}. Therefore Π is
a dominator semi-strong color partition of Km,n.
Therefore χd

s(Km,n) ≤ |Π| = m+ n− (m− 1) = n+ 1.
No two elements of V1 can belong to an element of Π. Also no two elements of

V2 can belong to an element of Π. Any element of V1 dominates all elements of V2.
So is the case with V2. Therefore Π must consist of at least one singleton from V1

and one singletons from V2. Therefore χd
s(Km,n) ≥ m − 1 + 2 + (n −m) = n + 1.

Therefore χd
s(Km,n) = n+ 1 = max{m,n}+ 1.

Case 2: Let m = n
Let Π = {{u1, v1}, . . . , {um−1, vm−1}, {um}, . . . , {vn}}. Proceeding as in case 1,

χd
s(Km,n) = m+ 1 = max{m,n}+ 1. □

Corollary 1. χd
s(K1,n) = n+ 1.

Theorem 4. χd
s(Km(a1, a2, . . . , am)) = m+max{a1, a2, . . . , am}.

Proof. Let a1 ≤ a2 ≤ . . . ≤ am. Let V (Km(a1, a2, . . . , am)) = {u1, u2, . . . , um,
v1,1, v1,2, . . . , v1,a1 , . . . , vm,1, . . . , vm,am}. Let Π = {{u1}, . . . , {um}, {v1,1, v2,1, . . .,
vm,1}, . . . , {v1,a1

, v2,a1
, . . . , vm,a1

}, {v2,a2
, v3,a2

, . . . , vm,a2
}, . . . , {vm,am

}}. Then
|Π| = m+ am = m+max{a1, a2, . . . , am}.

Therefore χd
s(Km(a1, a2, . . . , am)) ≤ m+max{a1, a2, . . . , am}. Any χd

s-partition
must contain u1, u2, . . . , um as singletons for dominating the pendent vertices. Fur-
ther no two pendent vertices at any ui, 1 ≤ i ≤ m can belong to an element of the
partition. Therefore χd

s(Km(a1, a2, . . . , am)) ≥ m+max{a1, a2, . . . , am}. Therefore
χd
s(Km(a1, a2, . . . , am)) = m+max{a1, a2, . . . , am}. □

Let G be the graph shown in Figure 1

Figure 1. G = K4(1, 2, 3, 3) with χd
s(G) = 7

Let Π = {{v1}, {v2}, {v3}, {v4}, {v5, v6, v8, v11}, {v7, v9, v12}, {v10, v13}}. Then
Π is a χd

s-partition of G. Therefore χd
s(G) = |Π| = 4 + 3 = 7.
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Theorem 5. χd
s(Ka1,a2,...,am

) = a1 + a2 + . . .+ am if m ≥ 3.

Proof. Let m ≥ 3. Then any vertex of Ka1,a2,...,am is a common vertex of two
vertices. Hence no two vertices can be included in an element of a χd

s-partition.
Hence χd

s(Ka1,a2,...,am
) = a1 + a2 + . . .+ am if m ≥ 3. □

Theorem 6. χd
s(P ) = 7 where P is the Petersen graph.

Proof. Consider the graph in Figure 2. Let V (P ) = {v1, v2, . . . , v10}.
Let Π = {{v1, v2}, {v3, v4}, {v5}, {v6, v9}, {v7}, {v8}, {v10}}. Then Π is a dominator
semi-strong color partition of P . Therefore χd

s(P ) ≤ 7.

Figure 2. Petersen Graph

In any χd
s-partition of P , no three-element set can appear. Since for any three

element set of P , there exists a vertex which is adjacent to two of the element
of that set. Any three 2 element sets must have three singletons for domination.
Hence the remaining one element must appear as a singleton. Therefore χd

s(P ) ≥ 7.
Therefore χd

s(P ) = 7. □

Remark 2. (i) 1 ≤ χd
s(G) ≤ n.

(ii) χd
s(G) = 1 if and only if G = K1.

Observation 2. Let G be a graph with full degree vertex. Then χd
s(G) = |V (G)|.

Proof. Let Π be a χd
s-partition of G. Let V1 ∈ Π. If |V1| ≥ 2, then any two points

of V1 are adjacent with full degree vertex, a contradiction. Therefore |V1| = 1.
Therefore χd

s(G) = |V (G)|. □

Corollary 2. χd
s(Wn) = n.

Corollary 3. χd
s(Fn) = n.
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3. Main Results

Theorem 7. max{χs(G), γ(G)} ≤ χd
s(G) ≤ χs(G) + γ(G).

Proof. Since any χd
s-partition of G is a χs-partition of G, χs(G) ≤ χd

s(G). Let Π =
{V1, V2, . . . , Vk} where k = χd

s(G) be a χd
s-partition of G. Let xi ∈ Vi, 1 ≤ i ≤ k.

Let S = {x1, x2, . . . , xk}. Let v ∈ V − S. Then v dominates some color class,
say Vi. Therefore v is adjacent with xi. Therefore {x1, x2, . . . , xk} dominates G.
That is, S is a dominating set of G. That is, γ(G) ≤ |S| = k = χd

s(G). Therefore
max{χs(G), γ(G)} ≤ χd

s(G).
Let Π = {V1, V2, . . . , Vk} be a χs-coloring ofG. Assign colors χs(G)+1, . . . , χs(G)

+ γ(G) to the vertices of a minimum dominating set of G, leaving the rest of the
vertices colored as before. Then the resulting partition is a dominator semi-strong
color partition of G. Therefore, χd

s(G) ≤ |Π|+ γ(G) = χs(G) + γ(G). □

Remark 3. The set S need not be a minimum dominating set. For example, when
G = P6, χ

d
s(G) = 4. But γ(P6) = 2.

Theorem 8. Let a, b be positive integers with a ≤ b. Then there exists a graph G
such that χd(G) = a and χd

s(G) = b.

Proof. When a = b, χd(Ka) = χd
s(Ka) = a. Let a < b. Let G = Ka1,a2,...,ak

where
k = a. Then χd(G) = a. Choose a1, a2, . . . , ak such that a1 + a2 + . . . + ak =
b. Then χd

s(G) = b. □

Theorem 9. χd
s(G) = 2 if and only if G = K2.

Proof. If G = K2, then χd
s(G) = 2. Suppose χd

s(G) = 2. Let Π = {V1, V2} be a
χd
s-partition of G. Suppose |V1| ≥ 2. Then any vertex of V2 dominates V1 unless

|V2| = 1. If |V2| > 1, then it is a contradiction. Therefore |V2| = 1. Similarly,
|V1| = 1. Therefore G = K2. □

Corollary 4. Suppose T is a tree of order n ≥ 2. Then χ(T ) = 2. χd
s(T ) = χ(T )

if and only if χd
s(T ) = 2. That is if and only if G = K2.

Theorem 10. Let G be a connected unicyclic graph. Then χd
s(G) = χ(G) if and

only if G = C3.

Proof. If G is a cycle, then χd
s(G) = χ(G) if and only if G = C3. Suppose G

contains C2n. Then χ(G) = 2, but χd
s(G) ≥ 3, a contradiction. Therefore G

contains an odd cycle C2n+1. Then χ(G) = 3. If there exists a path attached with
a vertex of C2n+1, then χd

s(G) ≥ 4, a contradiction. Therefore G is a cycle. Since
χd
s(G) = χ(G), G = C3. □

Theorem 11. Let G be a connected graph. Then χd
s(G) = n if and only if either

G has a full degree vertex or N(G) = Kn.
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Proof. Let χd
s(G) = n. Let V (G) = {u1, u2, . . . , un}. Then Π = {{u1}, {u2}, . . . , {un}}

is a χd
s-partition of G. Let diam(G) = k ≥ 3. Let u and v be the end vertices of

a diametrical path. Let u = u1, u2, . . . , uk+1 = v. Then u and v have no com-
mon adjacent vertex. Therefore Π1 = {{u, v}, . . . , {un}}. Then u dominates {u2}
and v dominates {uk}. Also {u, v} is dominated by a single vertex. Therefore
Π1 is a dominator semi-strong color partition of G. Therefore χd

s(G) ≤ n − 1, a
contradiction. Therefore diam(G) ≤ 2.

Suppose u1 and u2 are adjacent and u1u2 is not the edge of a triangle. Then
{u1, u2} can be taken as an element of a dominator semi-strong color partition of
G with all other vertices as singletons. If u1 is adjacent with some ui, i ≥ 3 and
u2 is adjacent with some uj , j ̸= {1, 2}, then χd

s(G) ≤ n − 1, a contradiction.
Therefore if |V (G)| ≥ 4 and diam(G) ≤ 2 and u1u2 is an edge such that u1 and u2

have separate adjacent vertices, then u1u2 is the edge of a triangle. In such case,
N(G) = Kn. Suppose u1 is adjacent with some vertex u3 and u2 is not adjacent
with any vertex of G other than u1. Suppose u3 is adjacent with some vertex
u4. If u1 is not adjacent with u4, then Π2 = {{u1, u3}, {u2}, {u4}, . . . , {un}} is a
dominator semi-strong color partition of G, a contradiction. If u3 is adjacent with
u1, then u4 is also adjacent with u1. Therefore G is a connected graph with a full
degree vertex.

Suppose G has no full degree vertex. Then the case that only one of u1, u2

which are adjacent, has some other adjacent vertex does not hold. Therefore both
u1 and u2 have different adjacent vertices. Therefore u1u2 is the edge of a triangle.
Therefore diam(G) ≤ 2 and when u1u2 is an edge, then u1u2 is the edge of a
triangle. Therefore N(G) = Kn. The converse is obvious. □

Remark 4. Let G be the graph given in Figure 3.
Then G = N(G), N(G) is not complete and G has no full degree vertex. There-

fore χd
s(G) = 4 and χs(G) = 3.

Remark 5. Let G be the graph shown in Figure 4.
Then N(G) = K5 − {e}. G has a full degree vertex and hence χd

s(G) = 5 even-
though N(G) is not complete. Hence χs(G) = 4 and χd

s(G) = 5.

Remark 6. Let G be a complete multipartite graph Ka1,a2,...,an
, n ≥ 3. Then G

has no full degree vertex. χd
s(G) = n and hence N(G) = Kn.

Observation 3. Let G be a cycle Cn with pendent vertex attached with exactly one

vertex of Cn. Then χd
s(G) =

{
χd
s(Cn) + 1 if n ̸≡ 1 (mod 4)

χd
s(Cn) otherwise

Proof. Let V (Cn) = {u1, u2, . . . , un}. Let un+1 be a pendent vertex attached with
u1.
Case 1: Let n = 4k.
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Figure 3. G = N(G) = C5

Figure 4. G and N(G)

Let Π = {{u4k+1, u3, u4, u7, u8, . . . , u4k−5, u4k−4, u4k−1}, {u1}, {u2}, {u5}, {u6},
. . . , {u4k−3}, {u4k−2}, {u4k}}. Then Π is a dominator semi-strong color partition
of G. Therefore χd

s(G) ≤ 1 + 2k + 1 = 2k + 2 =
⌈
n
2

⌉
+ 2 = χd

s(Cn) + 1.
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There are at least 2k singletons and no single element can dominate a 2 element
set whose elements are at distance 2. Also for the pendent vertex either it appears
as a singleton or its support appears as a singleton. Therefore χd

s(G) ≥
⌈
n
2

⌉
+ 2.

Therefore χd
s(G) =

⌈
n
2

⌉
+ 2 = χd

s(Cn) + 1.
Case 2: Let n = 4k + 1.
Let Π = {{u4k+2, u3, u4, u7, u8, . . . , u4k−1, u4k}, {u1}, {u2}, {u5}, {u6}, . . . , {u4k+1}}.

Then Π is a dominator semi-strong color partition of G. Therefore χd
s(G) ≤ 1+k+

1 + k = 2k + 2 =
⌈
n
2

⌉
+ 1 = χd

s(Cn).

If χd
s(G) <

⌈
n
2

⌉
+ 1, then removing the pendent vertex we get that χd

s(Cn) <⌈
n
2

⌉
+ 1, a contradiction. Therefore χd

s(G) =
⌈
n
2

⌉
+ 1 = χd

s(Cn).
Case 3: Let n = 4k + 2.
Let Π = {{u4k+3, u3, u4, u7, u8, . . . , u4k−5, u4k−4, u4k−1, u4k}, {u1}, {u2}, {u5}, {u6},

. . . , {u4k−3}, {u4k−2}, {u4k+1}, {u4k+2}}. Then Π is a dominator semi-strong color
partition of G. Therefore χd

s(G) ≤
⌈
n
2

⌉
+ 2 = χd

s(Cn) + 1.

Arguing as in case 1, we get that χd
s(G) ≥

⌈
n
2

⌉
+ 2.

Therefore χd
s(G) =

⌈
n
2

⌉
+ 2 = χd

s(Cn) + 1.
Case 4: Let n = 4k + 3.
Let Π = {{u4k+4, u3, u4, u7, u8, . . . , u4k−1, u4k}, {u1}, {u2}, {u5}, {u6}, . . ., {u4k+1},

{u4k+2}, {u4k+3}}. Then Π is a dominator semi-strong color partition of G. There-
fore χd

s(G) ≤ |Π| = 1 + k + 1 + k + 2 = 2k + 4 =
⌈
n
2

⌉
+ 2 = χd

s(Cn) + 1.

Arguing as in case 1, we get that χd
s(G) ≥

⌈
n
2

⌉
+ 2.

Therefore χd
s(G) =

⌈
n
2

⌉
+ 2 = χd

s(Cn) + 1. □

Proposition 1. If diam(G) ≤ 2, then χd
s(G) ≥

⌈
n
2

⌉
, where |V (G)| = n.

Proof. Let G be a connected graph and diam(G) ≤ 2. If diam(G) = 1, then
G = Kn and χd

s(G) = n ≥
⌈
n
2

⌉
. Suppose diam(G) = 2. Then χd

s(G) ≥ χs(G) ≥⌈
n
2

⌉
[?]. □

Remark 7. The converse of the above proposition need not be true.
For: χd

s(Cn) =
⌈
n
2

⌉
+ 1 >

⌈
n
2

⌉
for all n ≥ 3. When n ≥ 6, diam(Cn) ≥ 3.

Definition 4. Cm(a1, a2, . . . , am) is the graph obtained from the cycle Cm by at-
taching ai (≥ 1) pendent vertices at the vertex ui of Cm, 1 ≤ i ≤ m.

Proposition 2. χd
s(Cm(a1, a2, . . . , am)) = m+max{a1, a2, . . . , am}.

Proof. The proof follows on the same line as the proof of the Theorem 4. □

Theorem 12. Let G be a connected graph. Then χd
s(G) = n−1, where |V (G)| = n

if and only if n ≥ 4. When n = 4, G = P4 or C4. When n = 5, G is one of
the ten graphs P5, C5, D1,2 or Gi, (1 ≤ i ≤ 7) given in Figure 5. When n ≥ 6,
there exist two vertices say u1, u2 such that u1 and u2 may be either adjacent or
independent and there exist ui, (3 ≤ i ≤ n) adjacent with u1 and not with u2, there
exist uj, (j ̸= i), (3 ≤ k ≤ n) such that ur and us are adjacent with uk and u1 may
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Figure 5. A set of graphs G1, G2, G3, G4, G5, G5, G7 with n = 5
and χd

s(G) = n− 1

be adjacent with any uk, (k ̸= j), u2 may be adjacent with any uk, (k ̸= i) but u1

and u2 are not together adjacent with any uk.

Proof. Let G be a connected graph. Let χd
s(G) = n− 1. Let Π = {{u1, u2}, {u3},

{u4}, . . . , {un}} be a χd
s-partition of G.

Case 1: u1 and u2 are adjacent.
Let ui, 3 ≤ i ≤ n, be such that ui is not adjacent with both u1 and u2. That

is, either ui is adjacent with u1 and not with u2 or ui is adjacent with u2 and not
with u1 or ui is not adjacent with both u1 and u2. Since Π is a χd

s-partition, there
exist some ui, 3 ≤ i ≤ n adjacent with u1 and some uj , j ̸= i, 3 ≤ j ≤ n, adjacent
with u2. Then ui, u2 have a common vertex u1 and uj , u1 have a common vertex
u2. Any two of the vertices u3, . . . , un have a common vertex that is, d(ur, us) ≤ 2.
Let n ≥ 6. Suppose ur and us are adjacent, r ̸= s, r, s /∈ {1, 2}, 3 ≤ r, s ≤ n.
Then there exist uk, 3 ≤ k ≤ n, k ̸= {r, s} such that ui, uj , uk form a triangle. If
ur and us are independent, then there exist uk, 3 ≤ k ≤ n, k ̸= {i, j} such that
ur, us, uk form a path of length 2. If n = 5, then only one vertex is left other than
u1, u2, ui, uj , and the graph is either P5 or D1,2 or C5, a contradiction.
Subcase 1: n = 3

Then G = P3 or K3. Then χd
s(G) = 3, a contradiction. Therefore n ≥ 4.

Subcase 2: n = 4
Then G = P4, C4, K4, K1,3, K4 − {e}. When G = K4,K1,3,K4 − {e}, G has a

full degree vertex. Therefore χd
s(G) = 4, a contradiction. Hence G = P4 or C4.

Subcase 3: n = 5
Then G = P5, C5, K5, K1,4, K5 − {e}, K5 − {e1, e2} or one of the following

graphs shown in Figure 6:
Therefore χd

s(G) = 4 if G = P5, C5, D1,2 or one of the following graphs shown in
Figure 7:
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Figure 6. A set of graphs G1, G2, G3, G4, G5, G5, G7 with n = 5

Case 2: ui and uj are independent.
Let ui, 3 ≤ i ≤ n, be not adjacent with both u1 and u2. That is, either ui is

adjacent with u1 and not with u2 or ui is adjacent with u2 and not with u1 or ui

is not adjacent with both u1 and u2. Then Π is a χd
s-partition, there exist some ui,

3 ≤ i ≤ n adjacent with u1 and some uj , j ̸= i, 3 ≤ j ≤ n, adjacent with u2. Then
ui, u2 have a common vertex u1 and uj , u1 have a common vertex u2. Any two
of the vertices u3, . . . , un have a common vertex that is, d(ur, us) ≤ 2. Let n ≥ 6.
Suppose ur and us are adjacent, r ̸= s, r, s /∈ {1, 2}, 3 ≤ r, s ≤ n. Then there exist
uk, 3 ≤ k ≤ n, k ̸= {r, s} such that ur, us, uk form a triangle. If ur and us are
independent, then there exist uk, 3 ≤ k ≤ n, k ̸= {r, s} such that ur, us, uk form a
path of length 2. If n = 5, then only one vertex is left other than u1, u2, ui, uj , and
the graph is either P5 or a contraction.

□

4. Conclusion

In this paper, a study of dominator semi-strong partition and the parameter
χd
s(G) is initiated. Further study can be made on the complexity of the parameter

and Nordhaus-Gaddum type results for χd
s(G).
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Figure 7. A set of graphs G1, G2, G3, G4, G5, G5, G7 with n = 5
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IDEAL CONVERGENCE OF A SEQUENCE OF CHEBYSHEV

RADII OF SETS

Hüseyin ALBAYRAK

Department of Statistics, Süleyman Demirel University, Isparta, TURKEY

Abstract. In this paper, we investigate the diameters, Chebyshev radii, Che-

byshev self-radii and inner radii of a sequence of sets in the normed spaces.
We prove that if a sequence of sets is I-Hausdorff convergent to a set, the

sequence of Chebyshev radii of that sequence is I-convergent. Similar relations

are showed for the sequence of diameters, Chebyshev self-radii and inner radii
of that sequence.

1. Introduction

The concept of statistical convergence, which is a generalization of the ordinary
convergence of sequences, was first introduced by Fast [3] and Stainhaus [13], in-
dependently. Fridy [4, 5] contributed greatly to the development of the theory of
statistical convergence. In 2000, Kostyrko et al [7] introduced ideal convergence,
which is a generalization of statistical convergence. Recently the ideal convergence
theory continues to be popularly studied (see [9,10]). On the other hand, Hausdorff
convergence of a sequence of sets, which is defined by the Hausdorff distance, cor-
responds to the uniform convergence of the sequence of distance (see [2,6,8]). The
theory of statistical convergence and the theory of ideal convergence were combined
with the theory of convergence of sequences of sets by Nuray and Rhoades [11] and
by Talo and Sever [14], respectively.

In [12], Papini andWu examined Kuratowski convergence and Hausdorff convergen-
ce of sequences of sets in Banach spaces. They showed that if a sequence of sets is
Hausdorff convergent then the sequences of diameters, Chebyshev radii, Chebyshev
self-radii, and inner radii, respectively, of this sequence are convergent.
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In this study, by generalizing some of the results in [12], we show that if a
sequence (An)n∈N of sets is I-Hausdorff convergent to a set A then the sequence
of Chebyshev radii of An’s is I-convergent to the Chebyshev radius of A. We give
similar relations for diameter, relative Chebyshev radius, Chebyshev self-radius and
inner radius.

2. Preliminaries

Let (X, ∥·∥) be normed space. We denote the family of all nonempty closed
subsets, the family of all nonempty closed and bounded subsets and the family of
all nonempty closed, convex and bounded subsets of X by Cl(X), B (X) and C (X),
respectively.

The distance d(x,A) from a point x ∈ X to a subset A of X is defined to be

d(x,A) = inf
a∈A

∥x− a∥ .

The set A is said to be bounded if diam(A) < ∞, where diameter diam(A) of a
nonempty set A in a normed space (X, ∥·∥) is defined by

diam(A) = sup
a1,a2∈A

∥a1 − a2∥ .

The open ball with centre x ∈ X and radius δ > 0 is the set

S(x, δ) = {y ∈ X : ∥x− y∥ < δ}.

Hausdorff distance of sets A,B ⊆ X is defined as

H (A,B) = max {h (A,B) , h (B,A)}

where h (A,B) = supa∈A d (a,B), or equivalently

H (A,B) = inf {ε > 0 : A ⊆ Bε and B ⊆ Aε}

where Aε =
⋃

a∈A {x ∈ X : ∥x− a∥ < ε} = {x ∈ X : d(x,A) < ε} is the ε-enlarge-
ment of A.

Briefly, we recall some of basic notations in the theory of I−convergence and we
refer readers to [7,8] for more details. A family I ⊆ 2N of subsets of N is said to be
an ideal in N if ∅ ∈ I, and A∪B ∈ I for each A,B ∈ I, and B ∈ I for each A ∈ I
such that B ⊆ A (see [8]). An ideal is called proper if N /∈ I, and a proper ideal is
called admissible if {n} ∈ I for each n ∈ N. Obviously, an admissible ideal includes
all finite subset of N (see [7]).

The definition of ideal convergence for real numbers is as follows: Let (xn)n∈N
be a sequence in R and x0 ∈ R. Let I be any ideal on N. If for every ε > 0

{n ∈ N : |xn − x0| ≥ ε} ∈ I

then (xn) is said to be ideal convergent (briefly, I-convergent) to x0. Then we write
I − limxn = x0 (see [7]).
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Define If = {A ⊂ N : the set A has finite number of elements}. Then If -conver-
gence and classical convergence is equivalent to each other. Similarly, if we denote
Id = {A ⊂ N : the set A has natural density zero} , then Id-convergence and statis-
tical convergence is equivalent to each other. We note that the ideals If and Id are
admissible.

Let I ⊂ 2N be a proper ideal in N. We say that the sequence (An) is I-Hausdorff
convergent to the set A if{

n ∈ N : sup
x∈X

|d(x,An)− d(x,A)| ≥ ε

}
∈ I

for every ε > 0, or if I − limH (An, A) = 0, i.e., for every ε > 0

{n ∈ N : H (An, A) ≥ ε} ∈ I

or equivalently

{n ∈ N : h (An, A) ≥ ε or h (A,An) ≥ ε} ∈ I.

In this case, we write An
I-H−→ A (see [14]).

Now, we list some definitions of radii and centers associated with these radii
(see [1, 12,15]). Let A be a bounded subset of X and Y ⊆ X.

R (x,A) = supa∈A ∥a− x∥ (x ∈ X)
RY (A) = infy∈Y R (y,A)

= infy∈Y supa∈A ∥a− y∥
: Relative Chebyshev radius of A in Y

R (A) = RX (A) : Chebyshev radius of A
RA (A) : Chebyshev self-radius of A
R′ (A) = supa∈A infx/∈A ∥x− a∥ : Inner radius of A
ZY (A) = {y ∈ Y : R (y,A) = RY (A)} : Relative Chebyshev center set of A in Y
Z (A) = {x ∈ X : R (x,A) = R (A)} : Chebyshev center set of A
ZA (A) = {a ∈ A : R (a,A) = RA (A)} : Chebyshev self center set of A
Z ′ (A) = {a ∈ A : R (a,A) = R′ (A)} : Inner center set of A

Example 1. Consider the normed space
(
R2, ∥·∥1

)
where ∥·∥1 is the ℓ1 norm (aka

the taxicab norm). Let A be a square whose vertices are on the points (−1,−1),
(−1, 1), (1,−1) and (1, 1), and let Y =

{
(x, y) ∈ R2 : x = 3

}
. We have the following

results:

R (A) = 2 Z (A) = {(0, 0)}
RA (A) = 3 ZA (A) = {(−1, 0) , (1, 0) , (0,−1) , (0, 1)}
R′ (A) = 0 Z ′ (A) = ∅
RY (A) = 5 ZY (A) = {(3, 0)}

Lemma 1. Let A ∈ B (X) , Y ⊆ X and ε > 0. Then the following is provided:
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(i) diam (Aε) ≤ diam (A) + 2ε

(ii) R (x,Aε) ≤ R (x,A) + ε for every x ∈ X

(iii) RY (Aε) ≤ RY (A) + ε

(iv) R (Aε) ≤ R (A) + ε

(v) RAε (Aε) ≤ RA (A) + ε

Proof. (i)

α1, α2 ∈ Aε =⇒ ∃a1, a2 ∈ A such that ∥α1 − a1∥ < ε and ∥α2 − a2∥ < ε

Then, for every α1, α2 ∈ Aε we have

∥α1 − α2∥ ≤ ∥α1 − a1∥+ ∥a1 − a2∥+ ∥α2 − a2∥
< ∥a1 − a2∥+ 2ε
≤ sup

a1,a2∈A
∥a1 − a2∥+ 2ε

= diam (A) + 2ε

and so

diam (Aε) = sup
α1,α2∈Aε

∥α1 − α2∥ ≤ diam (A) + 2ε.

(ii)

α ∈ Aε =⇒ ∃a ∈ A such that ∥α− a∥ < ε

Let x ∈ X. For every α ∈ Aε we have

∥α− x∥ ≤ ∥α− a∥+ ∥a− x∥
< ∥a− x∥+ ε
≤ sup

a∈A
∥a− x∥+ ε

= R (x,A) + ε

and so

R (x,Aε) = sup
α∈Aε

∥α− x∥ ≤ R (x,A) + ε.

(iii) From (ii), we have R (y,Aε) ≤ R (y,A) + ε for every y ∈ Y . Then we get

inf
y∈Y

R (y,Aε) ≤ inf
y∈Y

R (y,A) + ε

RY (Aε) ≤ RY (A) + ε.

(iv) It is easily obtained by taking Y = X in (iii).
(v) From (ii), we have

R (a,Aε) ≤ R (a,A) + ε
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for every a ∈ A, and so

inf
a∈A

R (a,Aε) ≤ inf
a∈A

R (a,A) + ε.

From the fact that

inf
α∈Aε

R (α,Aε) ≤ inf
a∈A

R (a,Aε) ,

we get

inf
α∈Aε

R (α,Aε) ≤ inf
a∈A

R (a,A) + ε

RAε (Aε) ≤ RA (A) + ε.

□

We cannot give similar results above for the inner radius, i.e., the inequality
R′ (Aε) ≤ R′ (A) + ε may not be satisfied. Such as, if we take ε = 3

2 in Example 1,
we get

R′ (Aε) =
5

2
̸≤ R′ (A) + ε = 0 +

3

2
.

Also, we cannot say a general upper bound for the difference R′ (Aε) − R′ (A).
For example, in the Euclidean space R2, let the set A be a spiral with r = θ
(0 ≤ θ ≤ 2nπ, n ∈ N) polar equation. Let’s take ε > π. Then we have R′ (A) = 0
and R′ (Aε) ≥ (2n− 1)π. Thus the difference R′ (Aε) − R′ (A) depends not only
on ε but also on n.

3. Main Results

For a sequence of closed and bounded sets, we show that I-Hausdorff conver-
gence implies I-convergence of the sequence of Chebyshev radii (diameters, relative
Chebyshev radii and Chebyshev self-radii, respectively) of this sequence. If the sets
are convex as an additional condition, this proposition is also true for the sequence
of inner radii.

Proposition 1. Let A,An ∈ B (X) (n ∈ N) and Y ⊆ X. If An
I−H−→ A then the

following hold:

(i) I − lim diam (An) = diam (A)
(ii) I − limRY (An) = RY (A)
(iii) I − limR (An) = R (A)
(iv) I − limRAn

(An) = RA (A)
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Proof. (i) Let ε > 0. From An
I−H−→ A we have

L (ε) :=
{
n ∈ N : H(An, A) ≥

ε

3

}
∈ I.

For every n ∈ N \ L (ε) we have

A ⊆ Aε/3
n and An ⊆ Aε/3.

Then

A ⊆ Aε/3
n =⇒ diam (A) ≤ diam

(
A

ε/3
n

)
≤ diam (An) +

2ε

3

=⇒ diam (A)− diam (An) ≤
2ε

3

An ⊆ Aε/3 =⇒ diam (An) ≤ diam
(
Aε/3

)
≤ diam (A) +

2ε

3

=⇒ diam (An)− diam (A) ≤ 2ε

3

for every n ∈ N \ L (ε). Hence we get

{n ∈ N : |diam (An)− diam (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |diam (An)− diam (A)| ≥ ε} ∈ I

for every ε > 0. Consequently, we obtain I − lim diam (An) = diam (A).

(ii) Let Y be any subset of X. From the triangle inequality, we have

∥an − y∥ − ∥a− y∥ ≤ ∥an − a∥ (1)

∥a− y∥ − ∥an − y∥ ≤ ∥an − a∥ (2)

where y ∈ Y, an ∈ An and a ∈ A. Then, from (1)

inf
a∈A

(∥an − y∥ − ∥a− y∥) ≤ inf
a∈A

∥an − a∥

∥an − y∥ − sup
a∈A

∥a− y∥ ≤ inf
a∈A

∥an − a∥

sup
an∈An

∥an − y∥ − sup
a∈A

∥a− y∥ ≤ sup
an∈An

inf
a∈A

∥an − a∥

RY (An)−RY (A) = inf
y∈Y

sup
an∈An

∥an − y∥ − inf
y∈Y

sup
a∈A

∥a− y∥

≤ sup
an∈An

inf
a∈A

∥an − a∥ = h (An, A)
(3)

and similarly, from (2)

RY (A)−RY (An) = inf
y∈Y

sup
a∈A

∥a− y∥ − inf
y∈Y

sup
an∈An

∥an − y∥

≤ sup
a∈A

inf
an∈An

∥an − a∥ = h (A,An) .
(4)

Take ε > 0. From An
I−H−→ A, we have

L (ε) := {n ∈ N : h (An, A) ≥ ε or h (A,An) ≥ ε} ∈ I.
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From (3) and (4), we get

RY (An)−RY (A) ≤ h (An, A) < ε,

RY (A)−RY (An) ≤ h (A,An) < ε

and so

|RY (An)−RY (A)| < ε

for every n ∈ N \ L (ε). Hence we get

{n ∈ N : |RY (An)−RY (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |RY (An)−RY (A)| ≥ ε} ∈ I

for every ε > 0. This means that I − limRY (An) = RY (A).

(iii) It is the special case of (ii), with Y = X.

(iv) Let ε > 0. From An
I−H−→ A we have

L (ε) :=
{
n ∈ N : h (An, A) ≥

ε

2
or h (A,An) ≥

ε

2

}
∈ I.

If a0 ∈ ZA (A) then a0 ∈ A and

R (a0, A) = sup
a∈A

∥a− a0∥ = RA (A) . (5)

Take n ∈ N \ L (ε). From h (A,An) <
ε
2 we have

sup
a∈A

d (a,An) <
ε

2
. (6)

From the closeness of An there exists an a
(1)
n ∈ An such that∥∥∥a0 − a(1)n

∥∥∥ <
ε

2
. (7)

Also, there exists an a
(2)
n ∈ An such that

sup
an∈An

∥∥∥an − a(1)n

∥∥∥ =
∥∥∥a(2)n − a(1)n

∥∥∥ . (8)

From h (An, A) <
ε
2 we get

d
(
a(2)n , A

)
≤ sup

an∈An

d (an, A) <
ε

2
(9)

and so ∥∥∥a0 − a(2)n

∥∥∥ < RA (A) +
ε

2
. (10)

From (7) and (10) we obtain

RAn
(An) ≤

∥∥∥a(1)n − a(2)n

∥∥∥ ≤
∥∥∥a(1)n − a0

∥∥∥+
∥∥∥a0 − a

(2)
n

∥∥∥
< RA (A) + ε
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for every n ∈ N \ L (ε).
Similarly, it can be shown that

RA (A) < RAn
(An) + ε

for every n ∈ N \ L (ε).
Consequently, we get

{n ∈ N : |RAn (An)−RA (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |RAn (An)−RA (A)| ≥ ε} ∈ I

for every ε > 0, and so I − limRAn
(An) = RA (A).

□

Lemma 2. (see [12, Lemma 1]) Let A,B ∈ C (X). If R′ (A) > 0 and H (A,B) <
R′ (A)

2
then

R′ (B) ≥ R′ (A)−H (A,B) > 0.

As a result of the above lemma we can give the following corollary.

Corollary 1. Let A ∈ C (X) and ε > 0. If R′ (Aε) > 2ε then

R′ (A) ≥ R′ (Aε)− ε

(That is, R′ (Aε) ≤ R′ (A) + ε). Of course, for the condition here to be satisfied,
R′ (A) > ε must be.

Proposition 2. Let A,An ∈ C (X) (n ∈ N). If An
I−H−→ A then

I − limR′ (An) = R′ (A) .

Proof. First let’s assume that R′ (A) = 0. Suppose that I − limR′ (An) ̸= 0. Then
there is an ε0 > 0 such that

K (ε0) := {n ∈ N : R′ (An) ≥ ε0} /∈ I.

From An
I−H−→ A we have

L (ε0) :=
{
n ∈ N : H(An, A) ≥

ε0
2

}
∈ I.

Then (N \ L (ε0)) ∩K (ε0) ̸= ∅ and so we have

H(An, A) <
ε0
2

≤ 1

2
R′ (An)

for every n ∈ (N \ L (ε0)) ∩K (ε0). From Lemma 2, we get

R′ (A) > 0
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and this is a contradiction. Therefore, I − limR′ (An) = 0 = R′ (A) holds.

Now let’s assume that R′ (A) > 0. Let 0 < ε <
R′ (A)

3
. From An

I−H−→ A we have

L (ε) := {n ∈ N : H (An, A) ≥ ε} ∈ I.
Then we have

H (An, A) < ε <
R′ (A)

3
<

R′ (A)

2
for every n ∈ N \ L (ε). From Lemma 2, we get

R′ (An) ≥ R′ (A)−H (An, A) > R′ (A)− ε (11)

for every n ∈ N \ L (ε). We also have

H (An, A) < ε <
1

2
(R′ (A)− ε) <

R′ (An)

2

for every n ∈ N \ L (ε). Again from Lemma 2, we get

R′ (A) ≥ R′ (An)−H (A,An) > R′ (An)− ε (12)

for every n ∈ N \ L (ε). From (11) and (12) we obtain

{n ∈ N : |R′ (An)−R′ (A)| ≥ ε} ⊆ L (ε) ∈ I
{n ∈ N : |R′ (An)−R′ (A)| ≥ ε} ∈ I

for every ε > 0, and so I − limR′ (An) = R′ (A). □
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Abstract. The work handles a Fredholm integro-differential equation involv-
ing boundary layers. A fitted second-order difference scheme has been created

on a uniform mesh utilizing interpolating quadrature rules and exponential

basis functions. The stability and convergence of the proposed discretization
technique are analyzed and one example is solved to display the advantages of

the presented technique.

1. Introduction

In the study, we deal with singularly perturbed Fredholm integro-differential
equation (SPFIDE) in the form:

Lv := L1v + λ

l∫
0

M(x, ζ)v(ζ)dζ = f(x), 0 < x < 1, (1)

v(0) = A, v(l) = B, (2)

where L1v = −εv′′ (x)+a(x)v (x), 0 < ε≪ 1 is a singular perturbation parameter, λ
is a given parameter. The functions a(x) ≥ α > 0, f(x) andM(x, ζ) are considered
to be sufficiently smooth and satisfy certain regularity criteria. The solution v(x)
of (1)-(2) has in general boundary layers near x = 0 and x = l.
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Singularly perturbed problems (SPPs) are defined by a small parameter ε mul-
tiplying the highest order derivative term. The solution to them generally involves
boundary or initial layers. To quote a few, the exact solutions of SPPs and their
applications may be found in [15, 18, 21]. SPPs have a wide range of applications
in the fields of population dynamics, nanofluid, neurobiology, fluid dynamics, vis-
coelasticity, heat transfer problems, simultaneous control systems and mathematical
biology etc. It is worth noting that when a small ε parameter is multiplied with the
derivative, the great majority of classic numerical techniques on uniform meshes
are ineffective at solving issues unless the step-size of discretization is drastically
reduced. Thus, as the perturbation parameter ε goes smaller, the truncation error
becomes boundless. To solve SPPs numerically, general approaches are done with
the fitted finite difference method and are widely utilized [9, 12,19,20].

Most engineering applications and scientific disciplines have been expressed by
Fredholm integro-differential equations (FIDEs). Plasma physics, biomechanics,
financial mathematics, artificial neural networks, oceanopraphy, epidemic models,
electromagnetic theory, fluid mechanics, biological and population dynamics pro-
cesses are amongst these (see, e.g., [5, 7, 13]). For this reason, several studies have
been conducted on FIDEs. Solving problems of this type is quite difficult. There-
fore, we require robust and consistent numerical methods [6,8,14,16,23,26](see, as
well as the references therein).

These investigations in relation to FIDEs are just in relation to regular situations.
Numerical examination of SPFIDEs has not been widespread till recently. Finite
difference schemes for solving linear SPFIDEs are constructed in [1, 2]. A second
order numerical tecnique for solving FIDE with boundary layer is developed in
[10,11].

The goal of this work is to propose a uniform convergence numerical technique
to solve linear second-order FIDEs with boundary layers. A numerical technique
that uses suitable interpolating quadrature rules and exponential basis functions is
proposed on a uniform mesh. Error estimates are acquired in the discrete maxi-
mum norm with regard to the perturbation parameter. To corroborate theoretical
estimates, numerical experiments are conducted and the results are presented.

The rest of the contents is organized kind of following. In Section 2, some
properties of solutions (1)–(3) are presented, as well as a finite difference scheme.
In Section 3, the stability and convergence analysis of this scheme are shown. In
Section 4, the numerical results of an example to verify the theoretical estimates
are presented. Finally, the work ends with a summary of the conclusions in Section
5.

2. Discretization Techniques

We have mentioned certain analytical bounds here, which we will use later in
our error analysis.
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Lemma 1. Let a, f ∈ C2[0, l], ∂mM
∂xm ∈ C[0, l]2, (m = 0, 1, 2) and

|λ| < α

max
0≤x≤l

l∫
0

|M(x, ζ)| dζ

.

Then the solution u(x) of the problem (1)-(2) satisfies the following estimates:

∥v∥∞ ≤ C, (3)∣∣∣v(k)(x)∣∣∣ ≤ C

{
1 + ε−

k
2

(
e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

)}
, (k = 1, 2) , 0 ≤ x ≤ 1. (4)

Proof. The proof of Lemma 1 is by like approach as in [2, 10,17]. □

Let ωN be an equidistant mesh on [0, l]:

ωN = {xi = ih, i = 1, 2, ..., N − 1, h = lN−1}, ω̄N = ωN ∪ {x0 = 0, xN = l}.

We utilize the following difference approximations for any mesh function q(x) de-
fined on ω̄N :

q
x,i

=
qi+1 − qi

h
, q

x,i
=
qi − qi−1

h
, q

xx,i
=
q
x,i

− q
x,i

h
.

For the equation (1), we begin with the following integral identity:

1

χih

xi+1∫
xi−1

Lv(x)ψi(x)dx =
1

χih

xi+1∫
xi−1

f(x)ψi(x)dx, 1 ≤ i ≤ N − 1, (5)

with the basis functions

ψ(x) =



ψ
(1)
i (x) ≡ sinhγi(x−xi)

sinhγih
, x ∈ (xi−1, xi),

ψ
(2)
i (x) ≡ sinhγi(xi+1−x)

sinhγih
, x ∈ (xi, xi+1),

0, x /∈ (xi−1, xi+1),

where

γi =

√
a(xi)

ε
, χi =

1

h

xi+1∫
xi−1

ψi(x)dx =
2tanh(γih/2)

γih
.

We should remark that the functions ψ
(1)
i and ψ

(2)
i are the solutions to the following

problems:

− εψ′′ + aiψ = 0, xi−1 < x < xi, ψ(xi−1) = 0, ψ(xi) = 1,

− εψ′′ + aiψ = 0, xi < x < xi+1 ψ(xi) = 1, ψ(xi+1) = 0.
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By using the technique of the exact difference approximations [3, 4, 11, 24, 25] (see
also [22], pp. 207-214), it follows that

− ε

χih

xi+1∫
xi−1

ψi(x)v
′′(x)dx+

ai
χih

ai

xi+1∫
xi−1

ψi(x)v(x)dx =

− ε

χi

1 + aiε
−1

xi∫
xi−1

ψ
(1)
i (x)(x− xi)dx

 vxx,i

+
ai
χi

h−1

xi∫
xi−1

ψ
(1)
i dx+ h−1

xi+1∫
xi

ψ
(2)
i dx

 vi = −εθivxx,i + aivi

where

θi =
aiρ

2

4sinh2
(√
ai

ρ
2

) , (
ρ =

h√
ε

)
. (6)

Thus

1

χih

xi+1∫
xi−1

εv′′ (x)ψi (x) dx+
1

χih

xi+1∫
xi−1

a (x) v (x)ψi (x) dx = −εθivxx,i + aivi

+R
(1)
i , (7)

with remainder term

R
(1)
i =

1

χih

xi+1∫
xi−1

[a(x)− a(xi)] v(x)ψi(x)dx. (8)

Furthermore, for the right-side in (5) we get

1

χih

xi+1∫
xi−1

f(x)ψi(x)dx = fi +R
(2)
i , (9)

with remainder term

R
(2)
i =

1

χih

xi+1∫
xi−1

[f(x)− f(xi)]ψi(x)dx. (10)

For integral term that include the kernel function, from (5), we have

λ

χih

xi+1∫
xi−1

dxψi(x)

l∫
0

M(x, ζ)v(ζ)dζ = λ

l∫
0

M(xi, ζ)v(ζ)dζ
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+
λ

χih

xi+1∫
xi−1

dxψi(x)

xi+1∫
xi−1

 l∫
0

∂2M (ξ, ζ)

∂ξ2
v (ζ) dζ

M1 (x, ξ) dξ,

where

M1 (x, ξ) = T1 (x− ξ)− T1 (xi − ξ) + (2h)
−1

(xi+1 − ξ) (xi − x) ,

T1 (λ) = λ, λ ≥ 0; T1 (λ) = 0 λ < 0.

We computed by using composite trapezoidal integration with the remainder term
in integral form for the second integral term in the left side of the identity of (5):

l∫
0

M(xi, ζ)v(ζ)dζ =

N∑
j=0

ℏjMijvj +
1

2

N∑
j=1

xj∫
xj−1

(xj − ξ) (xj−1 − ξ)
(
M (xi, ξ) v (ξ)

)′′
dξ,

where

ℏ0 = ℏN =
h

2
, ℏi = h, 1 ≤ i ≤ N − 1.

Thus we get

λ

χih

xi+1∫
xi−1

dxψi(x)

l∫
0

M(x, ζ)v(ζ)dζ = λ

N∑
j=0

ℏjMijvj +R
(3)
i , (11)

with remainder term

R
(3)
i =

λ

χih

xi+1∫
xi−1

dxψi(x)

xi+1∫
xi−1

 l∫
0

∂2M (ξ, ζ)

∂ξ2
v (ζ) dζ

M1 (x, ξ) dξ

+
1

2
λ

N∑
j=1

xj∫
xj−1

(xj − ξ) (xj−1 − ξ)
(
M (xi, ξ) v (ξ)

)′′
dξ. (12)

Combining (7), (9) and (11) in (5) we obtain the following difference scheme:

LNvi := −εθivxx,i + aivi + λ

N∑
j=0

ℏjMijvj +Ri = fi, 1 ≤ i ≤ N − 1, (13)

with remainder term
Ri = R

(1)
i +R

(2)
i +R

(3)
i , (14)

where the remainder terms R
(1)
i , R

(2)
i and R

(3)
i are defined by (8), (10) and (12)

respectively.
Based on (13) we achieve the following difference approximate for approximating

(1)-(2):

LNyi := −εθiyxx,i + aiyi + λ

N∑
j=0

ℏjMijyj = fi, 1 ≤ i ≤ N − 1, (15)
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y0 = A, yN = B, (16)

where θi is defined by (6).

3. Error Analysis

For the error function zi = yi − vi (i = 0, 1, ..., N) considering (13) and (15), we
get

LNzi := Ri, 1 ≤ i ≤ N − 1, (17)

z0 = 0, zN = 0, (18)

where the remainder term Ri is defined by (14).

Theorem 1. Let ∂mM
∂xm ∈ C2 [0, l]

2
, (m = 0, 1, 2), M(x, 0) = M(x, l) = 0; a, f ∈

C2 [0, l], a′(0) = a′(l) = 0, and

|λ| < α

max
1≤i≤N

N∑
j=0

ℏj |Mij |

.

Then for the error of the scheme (15)-(16), we have

||y − v||∞,ω̄N
≤ Ch2.

Proof. Applying the discrete maximum principle to discrete problem (17) and (18),
we get

∥z∥∞,ω̄N
≤ α−1

∥∥∥∥∥∥R− λ

N∑
j=0

ℏjMijzj

∥∥∥∥∥∥
∞,ωN

≤ α−1 ∥R∥∞,ωN
+ α−1 |λ| max

1≤i≤N

N∑
j=0

ℏj |Mij | ∥z∥∞,ω̄N
.

Hence

∥z∥∞,ω̄N
≤

α−1 ∥R∥∞,ωN

1− α−1 |λ| max
1≤i≤N

N∑
j=0

ℏj |Mij |

,

which leads to

∥z∥∞,ωN
≤ C ∥R∥∞,ωN

. (19)

Now we estimate the remainder terms R
(1)
i , R

(2)
i and R

(3)
i separately.

First we will show that, for R
(1)
i the estimate∣∣∣R(1)

i

∣∣∣ ≤ Ch2, (20)
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holds. Using relations

v(x) = v(xi) + (x− xi) v
′ (ηi) , ηi ∈ (xi, x) ,

a (x) = a (xi) + (x− xi) a
′(xi) +

(x− xi)
2

2
a′′ (ξi) , ξi ∈ (xi, x)

and
xi+1∫

xi−1

(x− xi)ψi (x) dx = 0,

we take

R
(1)
i =

1

χih

xi+1∫
xi−1

[a(x)− a(xi)] v(x)ψi(x)dx =
a′ (xi) v(xi)

χih

xi+1∫
xi−1

(x− xi)ψi (x) dx

+
a′ (xi)

χih

xi+1∫
xi−1

(x− xi)
2
v′ (ηi (x))ψi (x) dx

+
1

2χih

xi+1∫
xi−1

(x− xi)
2
a′′ (ξi (x)) v (x)ψi (x) dx

≡ a′ (xi)

χih

xi+1∫
xi−1

(x− xi)
2
v′ (ηi (x))ψi (x) dx

+
1

2χih

xi+1∫
xi−1

(x− xi)
2
a′′ (ξi (x)) v (x)ψi (x) dx. (21)

Since a ∈ C2 [0, l], |v (x)| ≤ C and |x−xi| ≤ h for the second term in the right side
of (21), we have

1

2χih

∣∣∣∣∣∣
xi+1∫

xi−1

(x− xi)
2
a′′ (ξi (x)) v (x)ψi (x) dx

∣∣∣∣∣∣ ≤ Ch2

χih

xi+1∫
xi−1

ψi (x) dx

= O
(
h2

)
. (22)

Next, according to Lemma 1, we take the following inequality

|v′(ηi)| ≤ C

{
1 +

1√
ε

(
e
−

√
αηi√
ε + e

−
√

α(l−ηi)√
ε

)}
≤ C

{
1 +

1√
ε

(
e
−

√
αxi−1√

ε + e
−

√
α(l−xi+1)√

ε

)}
, 1 < i < N − 1.
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Hence, for the first term in the right side of (21), we have

1

χih

∣∣∣∣∣∣a′ (xi)
xi+1∫

xi−1

(x− xi)
2
v′ (ηi (x))ψi (x) dx

∣∣∣∣∣∣ ≤ C

χih
|a′ (xi)|

xi+1∫
xi−1

(x− xi)
2
ψi (x) dx

+
C√
εχih

|a′ (xi)|
xi+1∫

xi−1

(x− xi)
2
ψi (x) e

−
√

αxi−1√
ε dx

+
C√
εχih

|a′ (xi)|
xi+1∫

xi−1

(x− xi)
2
ψi (x) e

−
√

αxi+1√
ε dx. (23)

We can easily view that the first term in the right side of (23) is that O(h2).
From a′(0) = 0 and xe−x ≤ e−

x
2 , (x ≥ 0) for the second term of (21), we have∣∣∣∣∣∣ C√

εχih
a′ (xi)

xi+1∫
xi−1

(x− xi)
2
ψi (x) e

−
√

αxi−1√
ε dx

∣∣∣∣∣∣
≤ C√

εχih

∣∣a′′ (ξ̄i)∣∣ e−√
αxi−1√

ε

xi+1∫
xi−1

(x− xi)
2
ψi (x) dx

≤ Ch2
xi√
ε
e
−

√
αxi−1√

ε

≤ Ch2
xi
xi−1

xi−1√
ε
e
−

√
αxi−1√

ε

≤ Ch2i (i− 1)
−1
e
−

√
αxi−1
2
√

ε

≤ Ch2, i > 1.

The same evaluation is achieved for the third term in the right side of (23) from
a′(l) = 0, for i < N − 1. Thus, identity (21) is proved for i = 2, 3, ..., N − 2.

Also for i = 1, using relations

a (x) = a (x1) + (x− x1) a
′(x1) +

(x− x1)
2

2
a′′ (ξ1) , ξ1 ∈ (x1, x)

and

v(x) = v(x0) +

x∫
x0

v′ (ξ) dξ,

we get

R
(1)
1 =

1

χ1h
a′ (x1)

x2∫
x0

(x− x1)

 x∫
x0

v′ (ξ) dξ

ψ1 (x) dx
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+
1

2χ1h

x2∫
x0

(x− x1)
2
a′′ (ξ1 (x)) v (x)ψ1 (x) dx. (24)

From (22), the second term in the right side of (24) will be O(h2). From a′ (0) and
Lemma 1, we can evaluate the first as following∣∣∣∣∣∣a

′ (x1)

χ1h

x2∫
x0

(x− x1)

 x∫
x0

v′ (ξ) dξ

ψ1 (x) dx

∣∣∣∣∣∣ ≤ |a′ (x1)|h
x2∫

x0

|v′ (x)| dx

≤ Cx1h |a′′ (η̄1)|
x2∫

x0

{
1 +

1√
ε

(
e
−

√
αx√
ε + e

−
√

α(l−x)√
ε

)}
dx

≤ Ch2

h+
1√
ε

x2∫
x0

e
−

√
αx√
ε dx


≤ Ch2

{
h+

√
α
−1

(
1− e

2
√

αh√
ε

)}
= O

(
h2

)
.

Thus, ∣∣∣R(1)
1

∣∣∣ = O
(
h2

)
are proved. The proof of

∣∣∣R(1)
N−1

∣∣∣ = O
(
h2

)
is similar. So, the inequality (20) is

proved.
Next, it is not difficult to see that, for f ∈ C2[0, l]∣∣∣R(2)

i

∣∣∣ = O
(
h2

)
, 1 ≤ i ≤ N − 1. (25)

Finally, for R
(3)
i we have∣∣∣R(3)

i

∣∣∣ ≤
∣∣∣∣∣∣ λχih

xi+1∫
xi−1

dxψi(x)

xi+1∫
xi−1

 l∫
0

∂2M (ξ, ζ)

∂ξ2
v (ζ) dζ

M1 (x, ξ) dξ

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

2
λ

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1)
(
M (xi, ξ) v (ξ)

)′′
dξ

∣∣∣∣∣∣∣ . (26)

By virtue of boundedness of ∂2M
∂x2 , v (x) and |M1(x, ζ)| ≤ Ch the first term in the

right side of (26) will be O(h2).
Rearranging the second term in the right side of (26) gives

1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1)
∣∣(M (xi, ξ) v (ξ)

)∣∣′′ dξ
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≤ 1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′′ (xi, ξ)| |v (ξ)| dξ

+ |λ|
N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′ (xi, ξ)| |v′ (ξ)| dξ

+
1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)| |v′′ (ξ)| dξ. (27)

Hence, from |v (x)| ≤ C and ∂2M
∂x2 ∈ C2[0, l] for the first term on the right side (27)

will be O(h2).
For the second term in the right side (27), we have the estimate

|λ|
N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′ (xi, ξ)| |v′ (ξ)| dξ ≤ |λ|h2
l∫

0

|M ′ (xi, ξ)| |v′ (ξ)| dξ

≤ |λ|h2
l∫

0

{|M ′ (xi, ξ)| |v (ξ)|+ |M (xi, ξ)| |v′ (ξ)|} dξ.

From here using Lemma 1 it is obtained the estimate

|λ|
N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M ′ (xi, ξ)| |v′ (ξ)| dξ

≤ C |λ|h2
l∫

0

(
1 + 1⧸

√
ε

(
e
−

√
αξ√
ε + e

−
√

α(l−ξ)√
ε

))
dξ

≤ Ch2. (28)

For the third term in the right side (27), by virtue of (4) for k = 2, we have

1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)| |v′′ (ξ)| dξ

≤ C

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)|
{
1 +

1

ε
e
−

√
αξ√
ε +

1

ε
e
−

√
α(l−ξ)√

ε

}
dξ

≤ Ch2

1 +

N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
(
1

ε
e
−

√
αξ√
ε +

1

ε
e
−

√
α(l−ξ)√

ε

) .
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Taking into account the relations (the partial derivatives are estimated at interme-
diate points, as required by the mean value theorem, as indicated by the bar.)

M(xi, ξ) =M(x, 0) +
¯∂M

∂ξ
ξ, M(x, 0) = 0,

we get

Ch2
N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
1

ε
e
−

√
αξ√
ε dξ = Ch2

N∑
j=1

xj∫
xj−1

∣∣∣∣M(xi, 0) +
¯∂M

∂ξ
ξ

∣∣∣∣ 1εe−
√

αξ√
ε

≤ Ch2
l∫

0

ξ

ε
e
−

√
αξ√
ε dξ,

from which after taking into consideration xe−x ≤ e−
x
2 , we obtain

Ch2
N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
1

ε
e
−

√
αξ√
ε dξ ≤ Ch2

1√
α

l∫
0

1√
ε
e
−

√
αξ

2
√

ε dξ

= Ch2
2

α

(
1− e

−
√

αl√
ε

)
≤ Ch2.

Analogously, after using the relation

M(xi, ξ) =M(xi, l) +
¯∂M

∂ξ
(ξ − l), M(x, l) = 0,

it is not difficult to confirm that

Ch2
N∑
j=1

xj∫
xj−1

|M(xi, ξ)|
1

ε
e
−

√
α(l−ξ)√

ε dξ ≤ Ch2.

Therefore, we obtain

1

2
|λ|

N∑
j=1

xj∫
xj−1

(xj − ξ) (ξ − xj−1) |M (xi, ξ)| |v′′ (ξ)| dξ ≤ Ch2. (29)

Thus, it can be easily seen that the first term in the right side of (26) is that O(h2).
In addition, after taking into account (28) and (29) we obtain∣∣∣R(3)

i

∣∣∣ ≤ Ch2. (30)

From (20), (25) and (30), we have

|Ri| ≤ Ch2. (31)

The bound (19) together with (31) finish the proof. □
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4. Numerical Calculates

In this section, theoretical calculates are tested on one sample.
Our particular example is

Lv := −εv′′ (x) +
(
2− cos2 (πx)

)
v (x) +

1

2

1∫
0

(
exsin(πζ) − 1

)
v(ζ)dζ = (1 + x)

−1
,

(0 < x < 1) ,

v(0) = 1, v(1) = 0.

The exact solution to this problem is unknown. For this reason, we estimate errors
and calculate solutions using the double-mesh method, which compares the obtained
solution to a solution computed on a mesh that is twice as fine. We introduce
the maximum point-wise errors and the computed ε-uniform maximum point-wise
errors as

eNε = max
i

|yε,Ni − ỹε,2N2i |∞,ωN
, eN = max

ε
eNε ,

where ỹε,2N2i is the approximate solution of the related method on the mesh

ω̃2N = {x i
2
: i = 0, 1, ..., 2N}, xi+ 1

2
=
xi + xi+1

2
for 0 ≤ i ≤ N − 1.

We also describe the computed ε-uniform the rates of convergence and the rates of
convergence as follows

pNε =
ln

(
eNε
e2Nε

)
ln 2

, pN =
ln

(
eN

e2N

)
ln 2

.

The rate of convergence of the difference approximation is significantly in agreement
with the theoretical analysis, as shown in the Table 1.

5. Conclusion

In this paper, we described a new second-order difference scheme, which was
constructed on the uniform mesh by using composite trapezoidal rule for integral
term involving kernel function to solve linear FIDEs with singular perturbation. We
tested the technique on one example with various values of ε and N to demonstrate
the appropriateness of the method. Numerical investigations can be sustained for
more sophisticated types such as partial integro-differential equations, nonlinear,
delay form, higher dimensional, etc.

Author Contribution Statements The authors contributed equally to this work.
All authors read and approved the final copy of this paper.
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ε N = 26 N = 27 N = 28 N = 29 N = 210

1 0,00873286 0,00220145 0,00055304 0,00013874 0,00003471

1,988 1,993 1,995 1,999

10−2 0,01038533 0,00262165 0,00065997 0,00016591 0,00004165

1,986 1,99 1,992 1,994

10−4 0,01110798 0,00281381 0,00071081 0,00017931 0,00004514

1,981 1,985 1,987 1,99

10−6 0,01173901 0,00297572 0,00075327 0,00019055 0,00004817

1,98 1,982 1,983 1,984

10−8 0,01168824 0,00296902 0,00075366 0,00019131 0,00004853

1,977 1,978 1,978 1,979

eN 0,01173901 0,00297572 0,00075366 0,00019131 0,00004853

pN 1,98 1,982 1,978 1,979

Table 1. Maximum point-wise errors and convergence rates for
various ε and N values.

Declaration of Competing Interests The authors declare that they have no
known competing financial interests or personal relationships that could have ap-
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ON F-COSMALL MORPHISMS

Berke KALEBOĞAZ and Derya KESKİN TÜTÜNCÜ

Department of Mathematics, Hacettepe University, Ankara, TURKEY

Abstract. In this paper, we first define the notion of F-cosmall quotients

for an additive exact substructure F of an exact structure E in an additive
category A. We show that every F-cosmall quotient is right minimal in some

cases. We also give the definition of F-superfluous quotients and we relate it

the approximation of modules. As an application, we investigate our results
in a pure-exact substructure F .

1. Introduction

In [12], Ziegler introduced the partial morphisms by using model theory of mod-
ules. Then in [9], the partial morphisms was investigated by Monari Martinez
in terms of systems of linear equations. But this algebraic definition of partial
morphisms was not useful in the categorical studies of purity. Then in [4] Cortés-
Izurdiaga, Guil Asensio, Kalebog̃az and Srivastava studied partial morphisms by us-
ing category theory. In [4], the authors defined partial morphisms by using pushout
with respect to an additive exact substructure F of an exact structure E in an ad-
ditive category A and they call them F-partial morphisms. They showed that the
definition of F-partial morphisms with the pure-exact substructure F in the cat-
egory of right R-modules are coincide with the partial morphisms that defined by
Ziegler in [12]. By using F-partial morphisms they also define F-small extension
and gave an application of this definition to the pure-exact substructure F in the
category of right modules over a ring and called it Ziegler small extension. As a
dual notion of F-partial morphisms, in [6] F-copartial morphisms was defined by
Kalebog̃az: a morphism f : X −→ U is F-copartial morphism with respect to a
quotient map p : Y −→ U if and only if Ext1(f,−) transforms p in an F-deflation.
She studied the properties of F-copartial morphisms and investigated the applica-
tions of F-copartial morphisms to some exact substructures of E in the category of
right R-modules.

Keywords. F-cosmall quotients, right minimal morphisms, F-superfluous quotients.
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In this paper, by using F-copartial morphisms, we first introduce F-cosmall quo-
tients for any additive exact substructure F of an exact structure E in an additive
category A (see Definition 2). We also give a new characterization of F-cosmall
quotients (see Proposition 1). As an application to a pure-exact structure F , we
give the definition of pure-cosmall quotients and we say that pure-cosmall quotients
are dual of Ziegler small extensions.

A morphism p : M −→ N is called right minimal if any endomorphism g : M −→
M with pg = p is an isomorphism (see [1, page 6]). In [8], right minimal morphisms
are studied by Keskin Tütüncü. In [8] the author dualizes some results in [3] and
gets several useful results by investigating the relationship between EndR(N) and
EndR(M) when there is a right minimal epimorphism p : M −→ N . The author also
proves that there is an isomorphism between two rings ENDM

R (N)/J(ENDM
R (N))

and ENDN
R (M)/J(ENDN

R (M)) if there exists a right minimal epimorphism p :
M −→ N in [8, Theorem 2.6 (1)]. As a consequence of this result the structure
of the endomorphism ring of a quasi-projective module and an automorphism-
coinvariant module are explained. One of the main purposes of this paper is to
give an example of right minimal morphisms. In Theorem 1, we prove that every
F-cosmall quotient f : P −→ M with P an F-projective object (projective objects
with respect to F-deflations) is right minimal. An application of this theorem to
the pure-exact structure gives us the dual version of [3, Proposition 1.6]. Moreover,
we give the definitions of F-superfluous quotient and weakly F-superfluous quotient
(see Definition 5). Then we investigate the relation between F-cosmall quotient and
F-superfluous quotient (see Proposition 2). And finally we relate to the existence
of approximations of modules. In Theorem 2, we show that a weakly F-superfluous
quotient p : Y −→ U with F-projective Y is an F-Proj-cover when F-Proj is the
class of F-projective objects of A.

2. Results

Let A be an additive category and (i, p) be a pair of composable morphisms in
A:

A
i // B

p // C

If i is a kernel of p and p is a cokernel of i then (i, p) is called kernel-cokernel pair
in A. Let E be the class of kernel-cokernel pairs on A. i is called an admissible
monomorphism if there exists a morphism p such that (i, p) ∈ E . Similarly, p is
called an admissible epimorphism if there exists a morphism i such that (i, p) ∈ E .

The class of kernel-cokernel pairs E is said to be an exact structure on A if it is
closed under isomorphisms and satisfies the following conditions;

[E0 ] For every object A ∈ A, the identity morphism 1A is an admissible
monomorphism.

[E0op ] For every object A ∈ A, the identity morphism 1A is an admissible epi-
morphism.

[E1 ] The classes of admissible monomorphisms are closed under compositions.
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[E1op ] The classes of admissible epimorphisms are closed under compositions.
[E2 ] The pushout of an admissible monomorphism along an arbitrary morphism

exists and yields an admissible monomorphism, that is, for any admissible
monomorphism i : A −→ B and any morphism f : A −→ B′, there is a
pushout diagram;

A

f

��

i // B

f ′

��
B′ i′ // P

with i′ an admissible monomorphism.
[E2op ] The pullback of an admissible epimorphism along an arbitrary morphism

exists and yields an admissible epimorphism, that is, for any admissible
epimorphism p : B −→ C and any morphism g : B′ −→ C there is a
pullback diagram;

Q

g′

��

p′
// B′

g

��
B

p // C

with p′ an admissible epimorphism.

An exact category is a pair (A, E) with an additive category A and an exact
structure E on A. Elements of E are called short exact sequences. Keller [7] uses
conflation, inflation and deflation for what we call short exact sequence, admissible
monomorphism and admissible epimorphism, respectively. Throughout the paper
we also use this terminology. Let A be an object of A. An admissible quotient
of A is a quotient object U of an object A such that one (and any) quotient map
p : A −→ U is a deflation.

An exact substructure F of E is just an exact structure on A such that each
conflation in F (that we shall call F-conflation) is also a conflation in E . Infla-
tions, deflations and admissible quotient objects with respect to F will be called
F-inflations, F-deflations and F-admissible quotient objects, respectively.

We shall start with giving the definition of F-copartial morphisms (respectively,
F-copartial isomorphisms) for an additive substructure F of an exact structure E
in an additive category A. F-copartial morphisms first introduced and investigated
in [6] by Kaleboğaz as the dual notion of F-partial morphism that are studied in [4].

For the rest of the paper, we fix an exact category of (A, E) and an additive
exact substructure F of E .

Definition 1. Let X, Y be objects of A and U an admissible quotient of Y with
the quotient map p : Y −→ U .
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Let f : X −→ U be a morphism and consider the pullback of f along the quotient
map p:

Q

f

��

p // X

f

��
Y

p // U
Then:

(1) f is called an F-copartial morphism from X to Y with codomain U if p is
an F-deflation.

(2) f is called an F-copartial isomorphism from X to Y with codomain U if
both p and f are F-deflations.

Now we recall two lemmas from [6], without proofs, that we will use in the rest
of the paper. The first lemma given below is a special case of the dual of Obscure
Axiom in [2, Proposition 2.16] (see [6, Proposition 2.3]). The other one is one of
the main properties of F-copartial morphisms (see [6, Proposition 2.5(1)]).

Lemma 1. Let X, Y , Z be objects of A. If an F-deflation f : Z −→ Y factors
through an deflation p : X −→ Y as follows;

Z

f

��

g

~~
X

p // Y
then p is an F-deflation too.

Lemma 2. Let X, Y be objects of A and U , an admissible quotient of Y with the
quotient morphism p : Y −→ U . Suppose that p is an F-deflation. A morphism
f : X −→ U is an F-deflation if and only if f is an F-copartial isomorphism from
X to Y with codomain U .

As a consequence of this lemma, we can give the following corollary:

Corollary 1. Let Y be an object of A and g : Z −→ Y be any morphism with any
object Z in A. g is an F-deflation if and only if g is an F-copartial isomorphism
from Z to Y with codomain Y .

Proof. Let us take the pullback of g along 1Y . Since 1Y is an F-deflation, g is
an F-deflation if and only if g is an F-copartial isomorphism from Z to Y with
codomain Y by Lemma 2. □

One of the aims of this paper is to give an example of right minimal morphisms.
To attain our goal we shall first give the definition of F-cosmall quotient morphisms.
These morphisms are dual of F-small extensions that are defined in [4, Definition
3.4].
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Definition 2. Let the object Y of A be an admissible quotient of any objectX with
the quotient map p′ : X −→ Y , U be an admissible quotient of X and p : Y −→ U
be a deflation.

(1) We shall say that Y is F-cosmall in U over X if for any F-copartial mor-
phism g : Z −→ Y from any object Z to X with codomain Y , the following
holds:

pg is an F-copartial isomorphism from Z to X with codomain U implies
that g is an F-copartial isomorphism from Z to X with codomain Y .

(2) We shall say that Y is F-cosmall in U if Y is F-cosmall in U over Y .
Namely, the deflation p′ is the identity morphism of Y .

With the notion of F-cosmall object which is defined above, now we can define
F-cosmall quotient morphisms as in the following:

Definition 3. Let p : Y −→ U be a deflation. If Y is F-cosmall in U then the
deflation p : Y −→ U is called an F-cosmall quotient.

Namely, if Y is F-cosmall in U over Y then p is an F-cosmall quotient.

Here we will give a characterization of F-cosmall quotient which will be used in
the rest of the paper.

Proposition 1. Let p : Y −→ U be a deflation. p is an F-cosmall quotient if
and only if for any morphism g : Z −→ Y for any object Z such that pg is an
F-copartial isomorphism from Z to Y with codomain U , g is an F-deflation.

Proof. Let Z be an object of A and g : Z −→ Y be a morphism such that pg is
an F-copartial isomorphism from Z to Y with codomain U . We will show that
g is an F-deflation. If we take pullback of g along 1Y , then we get the following
commutative diagram:

Q

g

��

h // Z

g

��
Y

1Y // Y
Since 1Y is an F-deflation, h is an F-deflation. Therefore, g is an F-copartial
morphism from Z to Y with codomain Y . As p is an F-cosmall quotient, g is also
an F-copartial isomorphism from Z to Y with codomain Y . Then, by Corollary 1,
g is an F-deflation.

For the converse, to show that p is an F-cosmall quotient, let us take an F-
copartial morphism g : Z −→ Y from Z to Y with codomain Y such that pg is an
F-copartial isomorphism from Z to Y with codomain U . By assumption, g is an
F-deflation. By Corollary 1, g is an F-copartial isomorphism from Z to Y with
codomain Y . Therefore, p is an F-cosmall quotient. □

Let R be a ring, Y and Z be right R-modules and f : Y −→ Z be an epimor-
phism. Recall that, f is called pure epimorphism if HomR(M,f) : HomR(M,Y ) −→
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HomR(M,Z) is an epimorphism for all finitely presented right R-modules M . Let
X be the kernel of f with the inclusion u : X −→ Y . Then by the theorem of
Fieldhouse [5] and Warfield [10], f is pure epimorphism if and only if X is pure
in Y (u is a pure monomorphism) in the sense that the natural homomorphism
X ⊗R N −→ Y ⊗R N derived from the inclusion map u : X −→ Y is a monomor-
phism for all left R-modules N . Then, the conflation X −→ Y −→ Z is said to be
a pure conflation if f is a pure epimorphism (or u is a pure monomorphism). The
class of all pure conflations is exact substructure of exact structure of the class of all
conflations from [2, Exercise 5.6]. F-copartial morphisms (respectively, F-copartial
isomorphisms) with respect to a pure-exact substructure F in the category of right
R-modules are called copartial morphisms (respectively, copartial isomorphisms),
(see [6]). Here we will define pure-cosmall quotient morphisms as an application of
F-cosmall quotient with respect to a pure-exact substructure F in the category of
right R-modules.

Definition 4. Let Y and U be right R-modules. An epimorphism p : Y −→ U is
called a pure-cosmall quotient if Y is pure-cosmall in U , that means, for any right
R-module Z, any copartial morphism g : Z −→ Y from Z to Y with codomain Y ,
the following holds:

If pg is a copartial isomorphism from Z to Y with codomain U then g is a
copartial isomorphism from Z to Y with codomain Y .

Corollary 2. Let Y and U be right R-modules, p : Y −→ U be a deflation. p
is a pure-cosmall quotient if and only if for any right R-module Z, any morphism
g : Z −→ Y such that pg is a copartial isomorphism from Z to Y with codomain U
is a pure epimorphism.

Pure-cosmall quotients are the dual of Ziegler small extensions that are intro-
duced in [4] and are studied in [3]. In [3], the authors proved that every Ziegler small
extension u : M −→ E with E being pure-injective is a left minimal morphism.
Now we proceed to extend dual of this result to any exact substructure F . We will
show that F-cosmall quotient morphisms are right minimal under a condition. So
the following theorem gives us an example of right minimal morphisms.

Let P be an object of A and p : Y −→ Z be a deflation. Recall that, P is said to
be p-projective (or projective with respect to p) if for each morphism f : P −→ Z
there exist a morphism g : P −→ Y with pg = f . P is said to be a projective
object in A if it is projective with respect to each deflation. Projective objects with
respect to F-deflations will be called F-projective objects.

Theorem 1. Every F-cosmall quotient f : P −→ M with P being an F-projective
object is right minimal.

Proof. Let g : P −→ P be a morphism such that fg = f . Now we will show that g
is an isomorphism. If we consider the pullback of f along fg we get the following
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commutative diagram;

Q

h1

��

h2 // P

fg

��
P

f // M

Since fg = f , the identity map 1P satisfies that fg1P = f1P . Then by the universal
property of pullback, there exist α : P −→ Q such that h1α = 1P and h2α = 1P .
By Lemma 1, h1 and h2 are both F-deflations. Therefore, fg is an F-copartial
isomorphism from P to P with codomain M . Since f is an F-cosmall quotient, g
is an F-deflation by Proposition 1. So it is an epimorphism.

Now, using that P is an F-projective, we get that there exists h : P −→ P such
that gh = 1P . Then f = f1P = fgh = fh. By using the previous argument we
conclude that h is an epimorphism. Then as hgh = h = 1ph, we get that hg = 1p.
Therefore, g is a monomorphism. So g is an isomorphism. □

Corollary 3. Every pure-cosmall quotient f : P −→ M with P being a pure-
projective right R-module is right minimal.

Now we will give the definition of F-superfluous and weakly F-superfluous quo-
tients.

Definition 5. Let X and Y be objects of A.

(1) An F-superfluous quotient is an F-deflation p : X −→ Y such that for any
object of Z in A and any morphism α : Z −→ X the following holds:

pα is an F-deflation implies that α is an F-deflation.

(2) A weakly F-superfluous quotient is an F-deflation p : X −→ Y such that
for any object of Z in A and any morphism α : Z −→ X the following
holds:

pα is an F-deflation implies that α is a deflation.

Remark 1. (1) If A is the category of right R-modules and E is the abelian
exact structure, then E-superfluous quotient morphism is coincide with the
small epimorphism that is recalled in [8, Example 2.2(2)].

(2) If A is the category of right R-modules and F is the pure-exact structure,
then F-superfluous quotient morphism is coincide with the S-superfluous
epimorphism for S being the class of finitely presented modules that is
introduced in [11].

Now we give the relation between F-cosmall quotient and F-superfluous quo-
tient.

Proposition 2. Let p : Y −→ U be a deflation. p is an F-superfluous quotient if
and only if p is an F-deflation and F-cosmall quotient.
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Proof. Suppose that p is an F-superfluous quotient. So p is an F-deflation. Now we
will show that p is an F-cosmall quotient. Let us take an object Z and a morphism
g : Z −→ Y such that pg is an F-copartial isomorphism from Z to Y with codomain
U . Now if we take the pullback of pg along p we get the following commutative
diagram:

Q

h

��

p // Z

pg

��
Y

p // U
By Lemma 2, pg is an F-deflation. Then g is an F-deflation by the definition of
F-superfluous quotient. Therefore, by Proposition 1, p is an F-cosmall quotient.

For the converse, assume that p is an F-deflation and F-cosmall quotient. To
show that p is an F-superfluous quotient let us take a morphism α : Z −→ Y such
that pα is an F-deflation. Now take the pullback of pα along p we get the following
commutative diagram:

Q

h

��

p // Z

pα

��
Y

p // U
By Lemma 2, pα is an F-copartial isomorphism from Z to Y with codomain
U . Since p is an F-cosmall quotient, α is an F-deflation. Therefore p is an F-
superfluous quotient. □

Let A be any category and X be a class of objects in A. Recall that, a morphism
ϕ : X −→ Y in A is a X -precover of Y if X ∈ X and for any morphism f : Z −→ Y
with Z ∈ X , there is a morphism g : Z −→ X such that ϕg = f . A X -precover
ϕ : X −→ Y is said to be a X -cover if every morphism g : X −→ X such that
ϕg = ϕ is an isomorphism. It is clear that, an X -cover is an X -precover which is a
right minimal morphism.

In the next result we will show that, under certain circumstances, a weakly
F-superfluous quotient p : Y −→ U with Y being F-projective is actually an F-
Proj-cover for F-Proj being the class of F-projective objects of A.

Theorem 2. Let p : Y −→ U be a deflation. Consider the following assertions:

(1) p is an F-superfluous quotient and Y is an F-projective object.
(2) p is an F-deflation, Y is an F-projective and p is an F-cosmall quotient.
(3) p is an F-deflation, Y is an F-projective and for any object X, each mor-

phism f : X −→ Y satisfying that pf is an F-deflation, is a split epimor-
phism.

(4) p is an F-Proj-cover for F-Proj being the class of F-projective objects of
A.

(5) p is a weakly F-superfluous quotient with Y being F-projective object.
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We have (1) ⇔ (2) ⇔ (3), (2) ⇒ (4), (1) ⇒ (5).
If there exists an F-deflation α : P −→ U with P being an F-projective object

then (4) ⇒ (3).
If there exists an F-superfluous quotient α : P −→ U with P being an F-

projective object then (5) ⇒ (1).

Proof. (1) ⇔ (2) Obvious from Proposition 2.
(1) ⇒ (3) Let f : X −→ Y be a morphism with pf being an F-deflation. Since p

is an F-superfluous quotient, f is an F-deflation. As Y is an F-projective module,
f is a split epimorphism.

(3) ⇒ (1) It is clear since split epimorphisms are F-deflations.
(2) ⇒ (4) Since p is an F-deflation, it is an F-Proj-precover for F-Proj being

the class of F-projective objects of A. As p is an F-cosmall quotient, p is right
minimal by Theorem 1. Therefore, p is an F-Proj-cover for F-Proj being the class
of F-projective objects of A.

(1) ⇒ (5) It is clear, since every F-superfluous quotient is weakly F-superfluous
quotient.

(4) ⇒ (3) Assume that there exists an F-deflation α : P −→ U with P being
an F-projective object. Since p is an F-Proj-precover for F-Proj being the class of
F-projective objects of A, there exists g : P −→ Y such that pg = α. Since α is an
F-deflation, then p is also an F-deflation by Lemma 1. Now let f : X −→ Y be a
morphism such that pf is an F-deflation. Since Y is an F-projective object then
there exists h : Y −→ X such that pfh = p. As p is an F-Proj-cover then fh is an
isomorphism. Therefore, f is split.

(5) ⇒ (1) There exists an F-superfluous quotient α : P −→ U with P is an
F-projective object. Since Y is F-projective, there exists a morphism w : Y −→ P
such that αw = p. Since p is an F-deflation and α is an F-superfluous then w
is an F-deflation. And α is an F-deflation too by Lemma 1. As P is an F-
projective object then there exists h : P −→ Y such that wh = 1P . So w is an
epimorphism. We get ph = αwh = α1P = α. Then h is an F-deflation as p is
a weakly F-superfluous. Then hwh = h1P = 1Ph. Since h is epic hw = 1P . So
w is a monomorphism. Therefore, w is an isomorphism. By αw = p and α is an
F-superfluous quotient then p is an F-superfluous quotient. □

Remark 2. Let p : Y −→ U be a deflation with Y an F-projective object of A.
From Theorem 2 (4)⇒(2), we can say that if p is an F-Proj-cover of U for F-Proj
being the class of F-projective objects of A, then p is an F-cosmall quotient. But
Theorem 1 shows that p can be an F-cosmall quotient map which is not an F-Proj-
cover (since here p need not be an F-deflation). But p is always right minimal.
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Abstract. The purpose of the present paper is to examine the zeros of R-

Bonacci polynomials and their derivatives. We obtain new characterizations
for the zeros of these polynomials. Our results generalize the ones obtained

for the special case r = 2. Furthermore, we find explicit formulas of the roots
of derivatives of R-Bonacci polynomials in some special cases. Our formulas

are substantially simple and useful.

1. Introduction

The problem finding a convenient method to determine the zeros of a polynomial
has a long history that dates back to the work of Cauchy [14]. Zeros of polynomials,
which can be real or complex conjugate, have been perhaps among the most popular
topics of study for centuries. When the historical development of polynomial studies
have been examined, in 2000 BC, the ancient Babylon Tribe living in Mesopotamia
stands out. This tribe knowing how to calculate positive roots is perhaps the best
example. Some recent applications of the theory of polynomials with symmetric
zeros can be found in [21]. This is a short review on the polynomials whose zeros
are symmetric either to the real line or to the unit circle. These kind polynomials
are very important in mathematics and physics (for more details see [21] and the
references therein). On the other hand, the open problem of determining the exact
number of zeros of a given polynomial on the unit circle was studied in [22]. Several
classes of polynomials with symmetric zeros are also discussed in detail.
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Fibonacci polynomials, a broad class of polynomials, were first described by Bel-
gian mathematician Eugene Charles Catalan (1814-1894), German mathematician
E. Jacobsthal and Lucas polynomials in 1970 by M. Bicknell. The starting point of
this polynomial class is based on well-known Golden Ratio and Fibonacci numbers,
which are still of great interest in the world of modern applied sciences and whose
new applications are still found (see, for instance, [1]- [16] and [18]- [20]). For any
positive real number x, the Fibonacci polynomials are defined by

Fn+2 (x) = xFn+1 (x) + Fn (x) ,

with initial values F0(x) = 0, F1(x) = 1. In [10], V. E. Hoggat and M. Bicknell
are found explicitly the zeros of these polynomials using hyperbolic trigonometric
functions. The symmetric polynomials of the zeros of Fibonacci polynomials were
found by M. X. He, D. Simon and P. E. Ricci in [7]. Furthermore, in [8], the
location and distribution of the zeros of the Fibonacci polynomials were determined.
Fibonacci polynomials and their different properties have been examined (see, for
example, [3], [24], [25], and the references therein).

In this paper our aim is to examine the zeros of R-Bonacci polynomials and their
derivatives. R-Bonacci polynomials Rn(x) are defined by the following recursive
equation in [9] for any integer n and r ≥ 2 :

Rn+r(x) = xr−1Rn+r−1 (x) + xr−2Rn+r−2 (x) + · · ·+Rn (x) , (1)

with the initial values R−k(x) = 0, k = 0, 1, · · · , r − 2, R1(x) = 1. For r = 2, 3 in
the recurrence relation (1), R-Bonacci polynomials become the so called Fibonacci
and Tribonacci polynomials, respectively. Although, there are a large number of
publications regarding to Fibonacci polynomials and their generalizations (see [7]-
[9], [11] and [13]), the open expressions have not been found for the zeros of Tri-
bonacci polynomials and their derivatives yet. Instead, numerical studies have been
done more intensively in recent years. Zero attractors of these polynomials were
obtained by W. Goh, M. X. He and P. E. Ricci in [6]. In [15], the number of the real
roots of Tribonacci-coefficient polynomials were found. Recently, the smallest disc
or annulus containing the zeros of Tribonacci polynomials have been examined by
Ö. Öztunç Kaymak and an algorithm has given to use in other boundary problems
in [12].

In this study, in order to determine the distribution of the zeros of R-Bonacci
polynomials, we examine some properties of R-bonacci polynomials, a more gen-
eral class of Fibonacci and Tribonacci polynomials. In Section 2, we consider some
classes of R-Bonacci polynomials. We find the symmetric polynomials which are
made up of the rth order of the zeros of R-Bonacci polynomials. Using these sym-
metric polynomials, we determine the reference roots for the polynomials Rrn+p(x)
for p = 0, 1 and n = 1. So, we have generalized the results obtained for the special
case r = 2 in [10].

On the other hand, there are several papers on the derivatives of the Fibonacci
polynomials (see [4], [5], [17], [23] and the references therein). In Section 3, we
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study the roots of the derivatives of R-Bonacci polynomials. We obtain the most
general symmetric polynomials which are made up of the rth order of the zeros
of derivatives of R-Bonacci polynomials. Using these symmetric polynomials, we
find some formulas for the zeros of derivatives of R-Bonacci polynomials for some
special values of t.

2. Zeros of Some Classes of R-Bonacci Polynomials

The general representations for R-Bonacci polynomials was given in [9] as

Rn(x) =

[ (r−1)(n−1)
r ]∑

j=0

(
n− j − 1

j

)
r

x(r−1)(n−1)−rj . (2)

Here rn,j =
(
n
j

)
r
denotes the r-nomial coefficient and [.] denotes the greatest integer

function. In this section, we obtain the symmetric polynomials including the zeros
of R-Bonacci polynomials. Before finding symmetric polynomial of the zeros of
R-Bonacci polynomials, the following observation based on 2:

Observation 1. The zeros of Rn(x) and Rn(xe
2π
r i) are identical.

To see the above observation, the following result is obtained by writing xe
2π
r i

instead of x in 2:

Rn(xe
2π
r i) =

[ (r−1)(n−1)
r ]∑

j=0

rn,j

(
xe

2πi
r

)(r−1)(n−1)−rj

. (3)

Then, the desired result is easily seen by taking a parenthesis
(
e

2πi
r

)(r−1)(n−1)

and we have

Rn(xe
2π
r i) =

(
e

2πi
r

)(r−1)(n−1)
(
rn,0 x

(r−1)(n−1) + rn,1 x
(r−1)(n−1)−r

+ · · ·+ r
n,[ (r−1)(n−1)

r ] x

)

=
(
e

2πi
r

)(r−1)(n−1)

Rn(x).

By this observation, we can simply state that the zeros of R-Bonacci polynomials
can be created by rotating the angle of 2π

r degrees in the complex plane. The zeros

of Rn(x) are same as Rn(xe
2πi
r ), as they are with Rn(xe

− 2πi
r ). Thus, the zeros of

Rn(x) can be divided into r sets: {xi} ,
{
xie

2πi
r

}
, · · · ,

{
xie

2πi
r

}
. Here we refer to

this set {xi} as a set of reference zeros. The zeros of the 20th Tribonacci polynomial
are seen in Figure 1. Notice that the zeros of this polynomial can be generated at
an angle of 120 degrees with reference to the set {xi}.
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{xi}

�xi �
2πi

3  xi ⅇ
-2πi
3 

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 1. The zeros of T20 (x)

Our theorems are coincide with the ones obtained in [7] for R = 2, 3. Actually,
Theorem 1 and Theorem 2 are the most generalized versions of the results ob-
tained for Tribonacci and Fibonacci polynomials. For the definition of a symmetric
polynomial one can see [7].

Theorem 1. The most general form of the jthsymmetric polynomials consisting of
over the rth zeros of Rrn (x) is as follows:

σj

(
xr1, · · · , xr(r−1)n−1

)
=(−1)j

(
rn− j − 1

j

)
r

. (4)

Proof. It is known that the zeros of R-Bonacci polynomials lie in the argument 2π
r

and hence the polynomial Rrn (x) can be factorized as

Rrn (x)= x

(r−1)n−1∏
k=1

(x− xk)
(
x− xke

2πi
r

)
· · ·
(
x− xke

− 2πi
r

)
.

If we rearrange this equation, we obtain

Rrn (x) = x{xr
2n−rn−r −

xr
2n−rn−2r

(r−1)n−1∑
k=1

xrk + xr
2n−rn−3r

∑
j ̸=k

xrjx
r
k
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−xr
2n−rn−4r

∑
j ̸=k ̸=l

xrjx
r
kx

r
l + · · · −

(r−1)n−1∏
k=1

xrk}

=


(r−1)n−1∑

j=0

(−1)jx(r−1)(rn−1)−rj

 ∑
1=l1<l2<···<lj

j∏
i=1

xrli




=

(r−1)n−1∑
j=0

(−1)jσj

(
xr1, x

r
2, · · · , xr(r−1)n−1

)
x(r−1)(rn−1)−rj . (5)

On the other hand by (2) we can write

Rrn(x) =

(r−1)n−1∑
j=0

(
rn− j − 1

j

)
r

x(r−1)(rn−1)−rj . (6)

Since the equations (5) and (6) are equal, we obtain the desired result (4). □

Corollary 1. The following equations are satisfied by the zeros of Rrn (x) :

(r−1)n−1∑
k=1

xrk = −
(
rn− 2

1

)
r

. (7)

Proof. By setting j = 1 in the equation (4) desired result is obtained. □

Theorem 2. The most general form of the jth symmetric polynomials consisting
of the rth zeros of Rrn+1 (x) is as follows :

σj

(
xr1, · · · , xr(r−1)n

)
=(−1)j

(
rn− j

j

)
r

. (8)

Proof. By a similar way used in the proof of Theorem 1, we can write

Rrn+1 (x)=

(r−1)n∏
k=1

(x− xk)
(
x− xke

2πi
r

)
· · ·
(
x− xke

− 2πi
r

)
.

Then we get

Rrn+1 (x) = {xr
2n−rn −

xr
2n−rn−r

(r−1)n∑
k=1

xrk + xr
2n−rn−2r

∑
j ̸=k

xrjx
r
k

−xr
2n−rn−3r

∑
j ̸=k ̸=l

xrjx
r
kx

r
l + · · · −

(r−1)n∏
k=1

xrk}

=


(r−1)n∑
j=0

(−1)jxrn(r−1)−rj

 ∑
1=l1<l2<···<lj

j∏
i=1

xrli



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=

(r−1)n∑
j=0

(−1)j σj

(
xr1, x

r
2, · · · , xr(r−1)n

)
xrn(r−1)−rj . (9)

By putting rn+ 1 instead of n in (2), we find

Rrn+1 (x) =

n(r−1)∑
j=0

(
rn− j

j

)
r

x(r−1)rn−rj . (10)

It follows from the comparison (9) and (10), it is possible to write the desired
result (8). □

Corollary 2. The following equations are satisfied by the zeros of Rrn+1 (x) :

(r−1)n∑
k=1

xrk = −
(
rn− 1

1

)
r

. (11)

Proof. If we set j = 1 in the equation (8) then we get the equation (11). □

Now, using these symmetric polynomials, we obtain the reference roots ofRrn+p(x)
for p = 0, 1.

Theorem 3. For p = 0, 1 and n = 1, let xj(1 ≤ j ≤ r) be the reference zeros of
Rrn+p (x) . Then we have

xrj = −1. (12)

Proof. Let p = 0 or p = 1 and let the set of the reference zeros of Rrn+p (x) be
{x1, · · · , xr}. The other zeros of the polynomial Rrn+p (x) will be generated by the
argument 2π

r except the root x = 0. For a fixed j, using the equations (11) and (7),
we have

r−1∑
k=1

xrk = xr1 + xr2 + · · ·+ xrr−1

= xrj +
(
xje

2πi
r

)r
+
(
xje

4πi
r

)r
+ · · ·+

(
xje

2(r−2)πi
r

)r
= −(r − 1)

and
r−2∑
k=1

xrk = xr1 + xr2 + · · ·+ xrr−1

= xrj +
(
xj e

2πi
r

)r
+
(
xj e

4πi
r

)r
+ · · ·+

(
xje

2(r−3)πi
r

)r
= −(r − 2),

respectively. Rearranging the above equations, it can be easily seen that the refer-
ence roots of Rrn+p (x) as in the equation (12). □
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Figure 2. The zeros of B6 (x)

Example 1. Let us consider the following 5-Bonacci polynomial

B6 (x) = (x5 + 1)4.

Using (12), if we solve the equation x5j = −1(1 ≤ j ≤ 5), the reference roots of the
polynomial B6 (x) are found as follows (see Figure 2) :

x1 = (−1) , x2 = (−1)
1
5 , x3 = − (−1)

2
5 , x4 = (−1)

3
5 , x5 = − (−1)

4
5 .

3. Zeros of Derivatives of R-Bonacci Polynomials

Before we find the symmetric polynomials which are made up of the rth order of

the zeros of the derivatives of R-Bonacci polynomials R
(t)
n (x), we write the algebraic

representations of them. For any fixed n, using the equation (2), the algebraic

representation of the derivative polynomial R
(t)
n (x) is obtained as follows:

R(t)
n (x) =

[ (r−1)(n−1)
rt ]∑

j=0

(
n− j − 1

j

)
r

((r−1)(n−1)−rj)...((r−1)(n−1)−rj−t+1)x(r−1)(n−1)−rj−t.

(13)

Now, we determine the symmetric polynomials for R
(t)
rn+p(x) for special values

of t. We give the following theorem.

Theorem 4. Let k ∈ N+, p ∈ {0, 1, · · · , r − 1}. If we consider

t = rk − (1− p)(r − 1), (14)
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µ = ((r − 1)(rn+ p− 1)) · · · (rn(r − 1)− t+ (p− 1)r + (2− p)) (15)

and

η = (r − 1)n−
(
t+ (1− p)(r − 1)

r

)
, (16)

then the most general form of the symmetric polynomials consisting of the zeros of

R
(t)
rn+p (x) is as follows:

σ
(
xr1, ..., x

r
η

)
= (17)

(−1)j((r − 1)(rn+ p− 1)− rj)...((r − 1)(rn+ p− 1)− rj − t+ 1)

µ

(
rn+ p− j − 1

j

)
r

.

Proof. It can be easily seen that

R
(t)
rn+p (x)=µ

η∏
k=1

(x− xk)
(
x− xke

2πi
r

)
· · ·
(
x− xke

− 2πi
r

)
,

where µ is a constant. Then we have

R
(t)
rn+p (x) = µ{xr

2n−rn−(t+(1−p)(r−1)) −

xr
2n−rn−(t+(1−p)(r−1))−r

η∑
k=1

xrk + xr
2n−rn−(t+(1−p)(r−1))−2r

∑
j ̸=k

xrj x
r
k

−xr
2n−rn−(t+(1−p)(r−1))−3r

∑
j ̸=k ̸=l

xrjx
r
kx

r
l + · · · −

η∏
k=1

xrk}

= µ


η∑

j=0

(−1)jxr
2n−rn−(t+(1−p)(r−1))−rj

 ∑
1=l1<l2<···<lj

j∏
i=1

xrli




= µ

η∑
j=0

(−1)jσj

(
xr1, x

r
2, · · · , xrη

)
x(r−1)(rn+p−1)−rj−t. (18)

By using the equation (13) and taking rn+ p instead of n we can write

R
(t)
rn+p(x) =

[ (r−1)(rn+p−1)
rt ]∑

j=0

(
rn+ p− j − 1

j

)
r

×

((r−1)(rn+p−1)−rj)...((r−1)(rn+p−1)−rj− t+1)x(r−1)(rn+p−1)−rj−t. (19)

Since the equations (18) and (19) are equal, then the proof follows. □

Corollary 3. Let t and η be as in the equations (14) and (16), respectively. For
k ∈ N+ and p ∈ {0, 1, · · · , r − 1}, the following equations are satisfied by the zeros
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of R
(t)
rn+p (x) :

(i)

η∏
k=1

xrk = (20)

(−1)ηt (t− 1)...(1)

((r − 1)(rn+ p− 1))...(rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− η − 1

η

)
r

.

and

(ii)

η∑
k=1

xrk = (21)

− ((r − 1)(rn+ p− 1)− r)...((r − 1)(rn+ p− 1)− r − t+ 1)

((r − 1)(rn+ p− 1))...(rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− 2

1

)
r

.

Proof. In the equation (4), if we put j = η and j = 1 we obtain the desired results,
respectively. □

Let

υη = (22)

(−1)ηt (t− 1) · · · (1)
((r − 1)(rn+ p− 1)) · · · (rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− η − 1

η

)
r

and

ψη = (23)

− ((r − 1)(rn+ p− 1)− r) · · · ((r − 1)(rn+ p− 1)− r − t+ 1)

((r − 1)(rn+ p− 1)) · · · (rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− 2

1

)
r

.

Then we can give the following theorem.

Theorem 5. For t = r(r − 1)n− 2r − (1− p)(r − 1), R
(t)
rn+p (x) has

r
(
(r − 1)n−

(
t+(1−p)(r−1)

r

))
roots and these roots are

xk =

ψ2 ±
√
ψ2
2 − 4υ2

2


1
r

e
2kπi

r , (k = 0, 1, · · · , r − 1), (24)

where υ2 and ψ2 are defined by the equations (3) and (3), respectively.

Proof. Since R
(r(r−1)n−2r−(1−p)(r−1))
rn+p (x) is a polynomial of

r
(
(r − 1)n−

(
t+(1−p)(r−1)

r

))
-th degree then by using the equations (3) and (3) we

have
2∏

k=1

xrk = xr1x
r
2 = υ2 (25)
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and
2∑

k=1

xrk = xr1 + xr2 = ψ2. (26)

Since we know that xr1 = υ2

xr
2
it can be easily seen that

x2r2 − ψ2 x
r
2 + υ2 = 0.

Solving this last equation of the second degree, the roots can be easily found. So

the roots of R
(t)
rn+p (x) must be as in the equation (24). □

Since we have Fibonacci and Tribonacci polynomials for r = 2 and r = 3,
respectively, we can give the following corollaries.

Corollary 4. Let p ∈ {0, 1} and t = 2n − 5 + p. The zeros of the polynomial

F
(t)
2n+p (x) can be formulized as follows:

xk =

ψ2 ±
√
ψ2
2 − 4υ2

2


1
2

ekπi, (k = 0, 1)

where υ2 and ψ2 are defined by the equations (3) and (3), respectively.

In [23], J. Wang proved the following equation for any fixed n

L
(t)

n (x) = nF (t−1)
n (x) , n ≥ 1, (27)

where Ln (x) are Lucas polynomials. Hence the zeros of L
(t+1)

n (x) and F
(t)
n (x) are

identical.

Corollary 5. Let p ∈ {0, 1, 2} and t = 6n − 8 + 2p. The zeros of the polynomial

T
(t)
3n+p (x) are

xk =

ψ2 ±
√
ψ2
2 − 4υ2

2


1
3

e
2kπi

3 (k = 0, 1, 2), (28)

where υ2 and ψ2 are defined by the equations (3) and (3), respectively.

Now we give some examples.

Example 2. Consider the zeros of the polynomial

T
(ıv)
6 (x) = 5040x6 + 3360x3 + 144.

In the equation (28), writing ψ2 = 2/3, υ2 = 1/35, we find the zeros of this poly-
nomial as

xk =
3

√√√√2/3±
√
(2/3)

2 − 4/35

2
e

2kπi
3 , (k = 0, 1, 2)

(see Figure 3).
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Figure 3. The roots of T
(ıv)
6 (x).
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Figure 4. The roots of Q
(13)
8 (x)

Example 3. For p = 0, n = 2 and r = 4, let us consider the polynomial

Q
(13)
8 (x) = 93405312000 + 88921857024000x4 + 1267136462592000x8.
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Using the equations (3) and (3) we have

2∏
k=1

x4k =
1

13566
= υ2

and
2∑

k=1

x4k = − 4

57
= ψ2.

Then the roots of Q
(13)
8 (x) are generated by xk (k = 0, 1, 2, 3). By (24), the roots

of the polynomial Q
(13)
8 (x) are obtained as

x1 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
= 0.127788 + 0.127788i,

and

x2 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
= 0.36255 + 0.36255i

for k = 0,

x3 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
e

πi
2 = −0.36255 + 0.36255i

and

x4 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
e

πi
2 = −0.127788 + 0.127788i

for k = 1,

x5 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
eπi = −0.127788− 0.127788i

and

x6 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
eπi = −0.36255− 0.36255i,

for k = 2,

x7 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
e

3πi
2 = 0.127788− 0.127788i
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Figure 5. The roots of B
(18)
8 (x)

and

x8 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
e

3πi
2 = 0.36255− 0.36255i,

for k = 3 (see Figure 4).

Example 4. Let us consider the 5-Bonacci polynomials B18
8 (x). In this case, we

have p = 3, n = 1, r = 5 and we obtain

B18
8 (x) = 96035605585920000 + 1292600836944248832000x5

+84019054401376174080000x10.

The roots of this polynomial are found as follows (see Figure 5) :

xk =
5

√√√√ψ2 ±
√
ψ2
2 − 4υ2

2
e

2kπi
5 , k = 0, 1, 2, 3, 4.

4. Conclusion and Future Work

In this paper, in order to obtain new formulas for the zeros of R-Bonacci polyno-
mials and their derivatives, the most general form of the jthsymmetric polynomials

consisting of over the rth zeros of Rn(x) and R
(t)
rn+p (x) are given. Using some con-

sequences of these symmetric polynomials, some explicit formulas for the zeros of
these polynomials, which have been given in (12) and (24), are found. Although
these formulas are simple, they are valuable because they formulate the zero values
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of many R-Bonacci polynomials, which is the most general form of the Fibonacci
polynomials, and their derivatives.

Given the future studies on this topic, the zeros of the remaining R-Bonacci poly-
nomials can be formulated using different methods. For this reason, it is thought
that formulating the zeros of a R-Bonacci polynomial will increase the applicability
of this problem in different engineering applications. In addition, this study is also
thought to be a guide for formulating the zero locations of polynomials with un-
known zero locations. Because this method is applicable for all polynomial classes.
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Abstract. This paper focuses on the set-oriented operations and set-oriented

algebraic structures of soft sets. Relatedly, in this paper, firstly some essential
properties of α-intersection of soft set are investigated, where α is a non-empty

subset of the universal set. Later, by using α-intersection of soft set, the notion

of set-generated soft subring of a ring is introduced. The generators of soft
intersections and products of soft subrings are given. Some related properties

about generators of soft subrings are investigated and illustrated by several

examples.

1. Introduction

Since the modeling of uncertain data in medical science, economics, sociology,
environmental science, engineering and many other fields is very complex, it is diffi-
cult to successfully deal with them by classical methods. In the last century, many
approaches that are useful in modeling uncertainties have been proposed. The fuzzy
set theory [1, 2], the interval mathematics [3], vague set theory [4] and rough set
theory [5, 6] and are favorable approaches to describing uncertain data, but each
of these theories has its own difficulties in classifying data parametrically. To fill
this gap, Molodtsov [7] proposed a completely new approach named soft set theory.
This approach allowed the uncertain data frequently encountered in many areas to
be classified parametrically, thereby providing a better representation of them. In
the years following the budding of soft sets, the theoretical and practical aspects
of these sets were discussed. Maji et al. conceptualized the some set operations
of soft sets [8] and made further efforts to show the implementation of soft sets in
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decision making [9]. Ali et al. [10] introduced some new soft set operations such as
the restricted difference, the restricted intersection, the extended intersection and
the restricted union. Çag̃man and Enginog̃lu [11] revisited some basic operations
of soft sets to make them more efficient in some cases. In [12–14], the authors
studied the operations of difference and symmetric difference of soft sets. Aygün
and Kamacı [15] developed some functional operations of soft sets and then demon-
strated their efficiency in handling decision making problems. Also, they defined
XOR and XNOR products of soft sets and derived new soft algebraic structures by
using these soft set products [16]. Çag̃man and Enginog̃lu [17] introduced the soft
matrices representing soft sets and their handy operations to create a soft max-
min decision making procedure which can be successfully applied to the problems
containing uncertainties. In [18–21], the researchers discussed specific kinds of soft
matrices and construct new improved types of soft max-min decision making pro-
cedure. Moreover, the inverse types of soft matrices were investigated and their
applications to decision making were presented [22,23]. Recently, the works on the
operations of soft sets and soft matrices are progressing rapidly.
On the other hand, many algebraic structures based on the basic principles and
operations of soft sets have been proposed. In 2007, Aktaş and Çag̃man [24] in-
troduced the rudiments of soft groups and studied their basic properties. Uluçay
et al. [25] studied soft representation of soft groups. Feng et al. [26] defined the
concepts of soft subsemirings, soft semirings, soft semiring homomorphisms, soft
ideals and idealistic soft semirings. In , the authors [27, 28] introduced the funda-
mentals of soft rings and soft normed rings. In [29], Atagün and Sezgin discussed
the algebraic soft substructures of rings and defined soft subring of a ring, soft ideal
of a ring, soft submodule of a module and soft subfield of a field. Sezgin et al. [30]
expanded the study of soft near-rings, especially according to the idealistic soft
near-rings. Ostadhadi-Dehkordi and Shum [31] investigated regular and strongly
regular relations on the soft hyperrings. Tahat et al. [32] discussed the character-
izations of soft topological soft groups and soft rings. Karaaslan [33] investigated
some outstanding properties of collection of soft sets over AG-groupoid, AG-band
and AG∗-groupoid. In [34], Yousafzai et al. introduced the notion of soft sets in an
ordered AG-groupoid and they studied different type ideals and strongly regular
elements. Zhan et al. [35] defined some new soft algebraic structures such as (M,N)-
soft union hemiring and (M,N)-soft union h-ideal, which are generalisations of soft
union hemiring and soft union h-ideal to tackle many uncertainty problems. Atagün
and Sezgin [36] described the notions of soft N -subgroups, soft subnear-rings and
soft ideals of near-rings and also derived the product operation and bi-intersection
of soft N -groups, soft subnear-rings and soft ideals of near-rings. On the other
hand, some authors developed soft topology in various aspects and discussed real
life examples [37–39].
In [40], Sezer et al. argued that the set-oriented approaches based on inclusion of
soft set can be extended the range of operations, algebraic structures, topological
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structures, application aspects of soft sets. Thus, they defined the lower α-inclusion
and upper α-inclusion of a soft set over the universal set U , where α ⊆ U . More-
over, by using the upper α-inclusion of a soft set, they proposed the idea of upper
α-semigroups for the soft sets. In [41], the authors made some analyzes with re-
spect to group theory and showed that some subgroups of a group can be achieved
easily by means of the notions of upper and lower α-inclusions of soft sets. They
also demonstrated that a soft uni-group and a soft int-group can be derived by
its lower α-subgroup and upper α-subgroup, respectively. In [40, 41], the authors
focused on the α-oriented subgroup structures of soft sets. However, the α-oriented
subring structure of soft sets is a gap in the literature. By filling this gap, both
the theoretical aspects and practical aspects of the soft sets will be contributed.
Relatedly, this paper aims to introduce soft subrings of a ring generated by the set
α and to investigate their fundamental properties.
This paper is organized as follows. Section 2 recalls the rudiments of soft sets.
Section 3 presents a detailed theoretical study for the α-intersection of a soft set.
Section 4 introduces a new concept namely a soft subring of a ring generated by
a set and gives many remarkable properties of this concept. Also, this section in-
cludes our main theorems, in which we examine generator sets under operations
soft intersection and product. Some theoretical results are illustrated by several
examples. Section 5 consists of the conclusions of the paper and the direction for
future studies.

2. Preliminaries

In this section, we recall the rudiments of rings, soft sets and soft subrings.

By a ring, we mean an algebraic system (ℜ,+, .), where (the multiplication . will
be omitted in formulas)

i) (ℜ,+) is a abelian group,
ii) (ℜ, .) is a semi-group,
iii) a.(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ ℜ (i.e., left and

right distributive rules hold)

Throughout this paper, ℜ denotes a ring and the zero of ℜ is symbolized by 0ℜ.

A subgroup S of (ℜ,+) with SS ⊆ S is named a subring of ℜ and symbolized
by S < ℜ. Therefore, S < ℜ if and only if

i) S ⊆ ℜ,
ii) 0ℜ ∈ S,
iii) a− b ∈ S for all a, b ∈ S,
iv) ab ∈ S for all a, b ∈ S.

Molodtsov [7] described the soft set in the following manner:
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Let U be a universal set and its power set be P (U), T be a set of parameters
and X ⊆ T .

Definition 1. ( [7]) A pair (Ψ,X ) (or simply ΨX ) is termed to be a soft set over
U , where Ψ is a mapping described by

Ψ : X → P (U).

Stated in other words, a soft set over the universal set U can be considered as a
parameterized family of the subsets of universal set U . For t ∈ X , Ψ(t) is the set of
t-elements of the soft set (Ψ,X ), or simplistically the set of t-approximate elements
of this soft set. To support this idea, Molodtsov presented various examples (see [7]).
Indeed, there is a mutual correspondence among soft sets and binary relations as
given in [42,43]. Namely, let T and U be non-empty sets and suppose that σ refers
to an arbitral binary relation between an element of T and an element of U . A
set-valued function Ψ : T → P (U) can be described as Ψ(t) = {u ∈ U | (t, u) ∈ σ}
for all t ∈ T . Hence, the pair (Ψ, T ) is a soft set over U , which is derived from the
relation σ.

Definition 2. ( [8]) A soft set (Ψ,X ) over U is termed to be a null soft set sym-
bolized by ΦX , if for all t ∈ X , Ψ(t) = ∅ (null set).

Definition 3. ( [8]) A soft set (Ψ,X ) over U is termed to be an absolute soft set,
if for all t ∈ X , Ψ(t) = U .

Note that we denote the absolute soft set (Ψ,X ) over U by UX throughout this
paper.

Definition 4. ( [10]) The relative complement of a soft set (Ψ,X ) is symbolized by
(Ψ,X )c and is defined as (Ψ,X )c = (Ψc,X ), where Ψc : X → P (U) is a mapping
given by Ψc(t) = U \Ψ(t) for all t ∈ X .

Definition 5. ( [8, 10]) Let (Ψ,X ) and (Υ,Y) be two soft sets over the universal
set U .

a): The restricted intersection of (Ψ,X ) and (Υ,Y) is denoted and defined as
(Ψ,X ) ⋒ (Υ,Y) = (Θ,Z), where Z = X ∩ Y ̸= ∅ and Θ(t) = Ψ(t) ∩ Υ(t)
for all t ∈ Z.

b): The extended intersection of (Ψ,X ) and (Υ,Y) is denoted and defined as
(Ψ,X ) ⊓ (Υ,Y) = (Θ,Z), where Z = X ∪ Y and for all t ∈ Z

Θ(t) =

 Ψ(t), if t ∈ X \ Y
Υ(t), if t ∈ Y \ X
Ψ(t) ∩Υ(t), if t ∈ X ∩ Y

c): The union intersection of (Ψ,X ) and (Υ,Y) is denoted and defined as
(Ψ,X ) ⋓ (Υ,Y) = (Θ,Z), where Z = X ∩ Y ̸= ∅ and Θ(t) = Ψ(t) ∪ Ψ(t)
for all t ∈ Z.
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d): The extended union of (Ψ,X ) and (Υ,Y) is denoted and defined as (Ψ,X )⊔
(Υ,Y) = (Θ,Z), where Z = X ∪ Y and for all t ∈ Z

Θ(t) =

 Ψ(t), if t ∈ X \ Y
Υ(t), if t ∈ Y \ X
Ψ(t) ∪Υ(t), if t ∈ X ∩ Y

In 2010, Çag̃man and Enginog̃lu [11] redescribed the approximate function Ψ of
soft set (Ψ,X ) from T to P (U) such that Ψ(t) = ∅ if t /∈ X . Thus, they revisited
the operations of intersection and union of soft sets as follows:

Definition 6. ( [11]) Let ΨX and ΥY be soft sets over U . Then,

a): the soft union of ΨX and ΥY , denoted by ΘZ = ΨX ∪̃ΥY , is defined as
Θ(t) = Ψ(t) ∪Υ(t) for all t ∈ T .

b): the soft intersection of ΨX and ΥY , denoted by ΘZ = ΨX ∩̃ΥY , is defined
as Θ(t) = Ψ(t) ∩Ψ(t) for all t ∈ T .

For more details, it can be reviewed the concepts in [11].

The following definition first introduced the soft substructures of an algebraic struc-
ture to the literature.

Definition 7. ( [29]) Let S be a subring of ℜ and (Ψ, S) be a soft set over ℜ. If
for all t, v ∈ S,

s1) Ψ(t− v) ⊇ Ψ(t) ∩Ψ(v),
s2) Ψ(tv) ⊇ Ψ(t) ∩Ψ(v),

then it is said to be a soft subring of ℜ and symbolized by (Ψ, S)<̃ℜ or simplistically
ΨS<̃ℜ.

Proposition 1. ( [29]) If ΨS<̃ℜ, then Ψ(0) ⊇ Ψ(t) for all t ∈ S.

Theorem 1. ( [29]) If ΨS1<̃ℜ and ΥS2<̃ℜ, then ΨS1 ⋒ΥS2<̃ℜ.

Definition 8. ( [26]) Let (Ψ,X ) be soft set over U . Then, the set

supp(Ψ,X ) = {t ∈ X | Ψ(t) ̸= ∅}
is said to be the support of the soft set (Ψ,X ). A soft set (Ψ,X ) is called non-null
if supp(Ψ,X ) ̸= ∅.

3. Some Aspects on α-Intersection of Soft Sets

In this section, we present some theoretical findings for the α-intersection of soft
sets.

Definition 9. ( [44]) Let (Ψ,X ) be a soft set over U and ∅ ̸= α ⊆ U . Then, the
subset of X given by

(Ψ,X )∩α = {t ∈ X | Ψ(t) ∩ α ̸= ∅}
is called the α-intersection of (Ψ,X ).
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It seen that if α = U and Ψ(t) ̸= ∅ for all t ∈ X , then (Ψ,X )∩U = X .

Proposition 2. Let (Ψ,X ) be a soft set over U and let ∅ ≠ α ⊆ U .Then

i) (Ψ,X )∩α ⊆ supp(Ψ,X ).
ii) If α ⊆ Ψ(t) for all t ∈ X , then (Ψ,X )∩α = supp(Ψ,X ) = X .
iii) If Ψ(t) ̸= ∅ and Ψ(t) ⊆ α for all t ∈ X , (Ψ,X )∩α = supp(Ψ,X ) = X .
iv) If (Ψ,X ) = UX , then (Ψ,X )∩α = supp(Ψ,X ) = X .
v) If (Ψ,X ) = ΦX or supp(Ψ,X ) = ∅, then (Ψ,X )∩α = ∅.

Proof. The proof of (i) is seen from the Definitions 8 and 9.
(ii) Since α ⊆ Ψ(t) for all t ∈ X and ∅ ≠ α ⊆ U , then Ψ(t) ̸= ∅ for all t ∈ X
and supp(Ψ,X ) = X . Under the assumption Ψ(t) ∩ α ̸= ∅ for all t ∈ X , then
supp(Ψ,X ) ⊆ (Ψ,X )∩α. Hence the equality obtained from (i).
The proof of (iii) is similar to proof of (ii). The rest of the proof is easily seen. □

Proposition 3. Let (Ψ,X ) be a soft set over U and ∅ ≠ α ⊆ U .Then

i) If α ⊆ β, then (Ψ,X )∩α ⊆ (Ψ,X )∩β.
ii) (Ψc,X )∩α = {t ∈ X | α \Ψ(t) ̸= ∅}.
iii) (Ψ,X )∩(U\α) = {t ∈ X | Ψ(t) \ α ̸= ∅}.
iv) (Ψc,X )∩(U\α) = {t ∈ X | U \ (Ψ(t) ∪ α) ̸= ∅}.

Proof. If α ⊆ β, then Ψ(t) ∩ α ̸= ∅ implies Ψ(t) ∩ β ̸= ∅. Hence the proof of (i) is
done. The rest of proof is obtained using algebraic operations, easily. □

Proposition 4. Let (Ψ,X ) be a soft set over U and ∅ ≠ α ⊆ U . If (Ψc,X )∩(U\α) =
∅ then (Ψ,X )∩α ∪ (Ψc,X )∩α ∪ (Ψ,X )∩(U\α) = X .

Proof. Let (Ψ,X ) be a soft set over U and ∅ ≠ α ⊆ U . We assume that (Ψc,X )∩(U\α) =
∅. Then, by Proposition 3 (iv), we have Ψ(t) ∪ α = U for all t ∈ X . Hence, the
proof is obvious from Definition 9 and Proposition 3 (ii) and (iii). □

Proposition 5. Let (Ψ,X ) be a soft set over U and let ∅ ≠ α ⫋ U . If Ψ(t)∪α ̸= U
for all t ∈ X , then

i) supp(Ψ,X ) ⊆ (Ψc,X )∩(U\α).
ii) (Ψ,X )∩α ⊆ (Ψc,X )∩(U\α).

Proof. (i) Let t ∈ supp(Ψ,X ). Since Ψ(t)∪α ̸= U for all t ∈ X , then U\(Ψ(t)∪α) ̸=
∅, which implies t ∈ (Ψc,X )∩(U\α) by Proposition 3 (iv).
(ii) It is seen from the assertion (i) and Proposition 2 (i). □

Proposition 6. Let (Ψ,X ) be a soft set over U and ∅ ≠ α, β ⊆ U . Then

i) (Ψ,X )∩α ∩ (Ψ,X )∩β ⊆ (Ψ,X )∩(α∪β). Here the equality does not hold in
general, even if α ∩ β = ∅.

ii) (Ψ,X )∩α ∪ (Ψ,X )∩β = (Ψ,X )∩(α∪β).
iii) (Ψ,X )∩(α∩β) ⊆ (Ψ,X )∩α ∩ (Ψ,X )∩β.
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Proof. (i) Let t ∈ (Ψ,X )∩α∩ (Ψ,X )∩β . Then Ψ(t)∩α ̸= ∅ and Ψ(t)∩β ̸= ∅, which
implies Ψ(t) ∩ (α ∪ β) ̸= ∅. For the rest of the proof, we have the Example 1.
(ii) □

(Ψ,X )∩α ∪ (Ψ,X )∩β = {t ∈ supp(Ψ,X )| (Ψ(t) ∩ α ̸= ∅) ∨ (Ψ(t) ∩ β ̸= ∅)}
= {t ∈ supp(Ψ,X )| Ψ(t) ∩ (α ∪ β) ̸= ∅)}
= (Ψ,X )∩(α∪β)

(iii) Let t ∈ (Ψ,X )∩(α∩β). Then Ψ(t) ∩ (α ∩ β) ̸= ∅, which implies Ψ(t) ∩ α ̸= ∅
and Ψ(t) ∩ β ̸= ∅. Therefore t ∈ (Ψ,X )∩α ∩ (Ψ,X )∩β .

Example 1. Let the universe U = {u1, u2, u3, u4, u5, u6}, the parameter set T =
{t1, t2, t3, t4, t5, t6, t7}, and X = {t1, t3, t4, t5} and Y = {t1, t2, t3, t4} be two subsets
of T . Suppose that corresponding soft sets of X and Y are

(Ψ,X ) = {(t1, {u1, u2}), (t3, {u1, u4, u5}), (t4, {u6}), (t5, ∅)}

and

(Υ,Y) = {(t1, {u3, u4}), (t2, {u1, u2, u5}), (t3, {u3, u5}), (t4, {u1, u5, u6})}.

If α = {u4, u6} and β = {u1}, then it is seen that (Ψ,X )∩α = {t3, t4}, (Ψ,X )∩β =
{t1, t3} and (Ψ,X ))∩(α∪β) = {t1, t3, t4}. (Because, it is obtained that Ψ(t3) ∩ α =
{u4} ≠ ∅, Ψ(t4) ∩ α = {u6} ≠ ∅, Ψ(t1) ∩ β = {u1} ≠ ∅, Ψ(t3) ∩ β = {u1} ≠ ∅,
Ψ(t1) ∩ (α ∪ β) = {u1} ̸= ∅, Ψ(t3) ∩ (α ∪ β) = {u1, u4} ̸= ∅ and Ψ(t3) ∩ (α ∪ β) =
{u6} ≠ ∅). Thus, the proof of Proposition 6 (i) is completed. Since α ∩ β = ∅, we
have (Ψ,X )∩(α∩β) = ∅.
If α = {u3, u6} and β = {u5, u6} (i.e., α ∩ β = {u6}), then it is seen that
(Υ,Y)∩α = {t1, t3, t4}, (Υ,Y)∩β = {t2, t3, t4} and (Υ,Y)∩(α∩β) = {t4}. So, we
have (Υ,Y)∩(α∩β) ⊆ (Υ,Y)∩α ∩ (Υ,Y)∩β.

4. Set-Generated Soft Subrings of Rings

In this section, we propose the set-generated soft subrings of a ring by employ-
ing the α-intersection of soft sets. We also discuss some of the main properties and
theoretical implications of this newly emerging soft algebraic structure.

Throughout this section, ℜ is a ring and (Ψ,ℜ) is a soft set over ℜ. A subring
S of ℜ denoted by S < ℜ.

Definition 10. Let ℜ be a ring, ∅ ≠ α ⊆ ℜ and (Ψ,ℜ) be a soft set over ℜ. If the
soft set (Ψ, (Ψ,ℜ)∩α) is a soft subring of ℜ, then this soft set is said to be a soft
subring of ℜ generated by the set α and denoted by ⟨Ψ∩α⟩ℜ. If the set α = {t},
⟨Ψ∩α⟩ℜ is a soft subring of ℜ generated by the element t ∈ ℜ.
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As can be seen Definition 10, ⟨Ψ∩α⟩ℜ<̃ℜ if and only if there exists at least an
∅ ̸= α ⊆ ℜ such that (Ψ,ℜ)∩α is a subring of ℜ and the conditions s1, s2 of the
Definition 7 are satisfied for S = (Ψ,ℜ)∩α.

Example 2. Given the ring ℜ = (Z6,+, .), a soft set (Ψ,ℜ) over ℜ, where Ψ :
ℜ → P (ℜ) is a set-valued function defined by Ψ(0) = {0, 1, 4, 5},Ψ(1) = {3},Ψ(2) =
{2},Ψ(3) = {0, 4, 5},Ψ(4) = {1, 2} and Ψ(5) = {3}. Let α = {4, 5} ⊆ ℜ. Then,
(Ψ,ℜ)∩α = {0, 3} is a subring of ℜ and the soft set (Ψ, (Ψ,ℜ)∩α) = {(0, {0, 1, 4, 5}),
(3, {0, 4, 5})} satisfies the conditions s1, s2 of the Definition 7. (That is, Ψ∩α(t −
v) ⊇ Ψ∩α(t) ∩ Ψ∩α(v) and Ψ∩α(tv) ⊇ Ψ∩α(t) ∩ Ψ∩α(v) for all t, v ∈ ℜ). Hence
(Ψ, (Ψ,ℜ)∩α) = ⟨Ψ∩α⟩ℜ<̃ℜ. If β = {4} a single point set, then it is seen that
(Ψ,ℜ)∩α = (Ψ,ℜ)∩β and then ⟨Ψ∩α⟩ℜ = ⟨Ψ∩β⟩ℜ. Therefore, the soft set {(0, {0, 1, 4, 5},
(3, {0, 4, 5})} is a soft subring of ℜ, generated by the element 4 ∈ ℜ.

Let (Ψ,ℜ) be a soft set over ℜ. Since {0ℜ} is a subring of ℜ, it is easily seen
that (Ψ, {0ℜ})<̃ℜ.

Definition 11. The soft subring (Ψ, {0ℜ}) of ℜ is called a trivial soft subring of
ℜ and denoted by ⟨0ℜ⟩Ψ.

It is important to note that the soft sets ⟨0ℜ⟩Ψ and (Ψ, (Ψ,ℜ)∩{0ℜ}) are dif-
ferent, in general. In Example 2, ⟨0ℜ⟩Ψ = (Ψ, {0ℜ}) = {(0, {0, 1, 4, 5})} and
(Ψ, (Ψ,ℜ)∩{0ℜ}) = {(0, {0, 1, 4, 5}), (3, {0, 4, 5})}. Furthermore, (Ψ, (Ψ,ℜ)∩{0ℜ})
does not have to be a soft subring of ℜ.

Proposition 7. If ⟨Ψ∩α⟩ℜ<̃ℜ, then the generator α doesn’t have to be unique.
Furthermore, if ⟨Ψ∩{t}⟩ℜ = ⟨Ψ∩{v}⟩ℜ for t, v ∈ ℜ, then ⟨Ψ∩{t,v}⟩ℜ = ⟨Ψ∩{t}⟩ℜ.

Proof. In the example 2, if we take η = {5} ⊆ ℜ, then it is seen that (Ψ,ℜ)∩η =
(Ψ,ℜ)∩β and then ⟨Ψ∩η⟩ℜ = ⟨Ψ∩β⟩ℜ. Hence the generator doesn’t have to be
unique, even if it is a single point set. Now, let ⟨Ψ∩{t}⟩ℜ = ⟨Ψ∩{v}⟩ℜ for t, v ∈ ℜ.
Consider the sets X = {t ∈ ℜ : Ψ(t) ∩ {t} ≠ ∅} = {t ∈ ℜ : Ψ(t) ∩ {v} ̸= ∅} and
Y = {t ∈ ℜ : Ψ(t) ∩ {t, v} ≠ ∅}. Obviously X ⊆ Y. Let t ∈ Y. Then,

Ψ(t) ∩ {t, v} ≠ ∅ ⇒ Ψ(t) ∩ {t} ≠ ∅ or Ψ(t) ∩ {v} ≠ ∅
⇒ t ∈ X or t ∈ X
⇒ t ∈ X

Hence Y ⊆ X . Therefore, (Ψ,ℜ)∩{t} = (Ψ,ℜ)∩{v} = (Ψ,ℜ)∩{t,v}, which implies
that ⟨Ψ∩{t,v}⟩ℜ = ⟨Ψ∩{t}⟩ℜ. □

Proposition 8. If ⟨Ψ∩α⟩ℜ<̃ℜ, then Ψ(0ℜ)∩α ̸= ∅. But the reverse implication is
not true, in general.

Proof. Let ⟨Ψ∩α⟩ℜ<̃ℜ. Then the set (Ψ,ℜ)∩α = {t ∈ ℜ : Ψ(t)∩α ̸= ∅} is a subring
of ℜ. Then Ψ(0ℜ) ⊇ Ψ(t) for all t ∈ (Ψ,ℜ)∩α by Proposition 1. Since Ψ(t)∩α ̸= ∅
and Ψ(0ℜ) ⊇ Ψ(t) for all t ∈ (Ψ,ℜ)∩α, then Ψ(0ℜ) ∩ α ̸= ∅. For the rest of the
proof, let λ = {0, 1, 5} ⊆ ℜ in Example 2. Then it is seen that Ψ(0ℜ) ∩ λ ̸= ∅, but
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(Ψ,ℜ)∩λ = {0, 3, 4} is not a subring of ℜ. Therefore, (Ψ, (Ψ,ℜ)∩λ) is not a soft
subring of ℜ. □

Proposition 9. Let ⟨Ψ∩α⟩ℜ<̃ℜ and ⟨Ψ∩β⟩ℜ<̃ℜ. If α ⊆ β, then ⟨Ψ∩α⟩ℜ ⊆ ⟨Ψ∩β⟩ℜ.

Proof. Let t ∈ (Ψ,ℜ)∩α. Then Ψ(t) ∩ α ̸= ∅. Since α ⊆ β, Ψ(t) ∩ β ̸= ∅. Hence
(Ψ,ℜ)∩α ⊆ (Ψ,ℜ)∩β . Therefore (Ψ, (Ψ,ℜ)∩α) ⊆ (Ψ, (Ψ,ℜ)∩β), which completes
the proof. □

The following Theorem shows that Theorem 1 is also true for the operation soft
intersection instead of restricted intersection when taking the soft set (Ψ,ℜ) instead
of (Ψ, S).

Theorem 2. If (Ψ,ℜ)<̃ℜ and (Υ,ℜ)<̃ℜ, then (Ψ,ℜ)∩̃(Υ,ℜ)<̃ℜ.

Proof. By Definition 6 (Ψ,ℜ)∩̃(Υ,ℜ) = (Θ,ℜ), where Θ(t) = Ψ(t) ∩ Υ(t) for all
t ∈ ℜ. Then for all t, v ∈ ℜ,

Θ(t− v) = Ψ(t− v) ∩Υ(t− v)

⊇ (Ψ(t) ∩Ψ(v)) ∩ (Υ(t) ∩Υ(v))

= (Ψ(t) ∩Υ(t)) ∩ (Ψ(v) ∩Υ(v))

= Θ(t) ∩Θ(v),

Θ(tv) = Ψ(tv) ∩Υ(tv)

⊇ (Ψ(t) ∩Ψ(v)) ∩ (Υ(t) ∩Υ(v))

= (Ψ(t) ∩Υ(t)) ∩ (Ψ(v) ∩Υ(v))

= Θ(t) ∩Θ(v).

Therefore (Ψ,ℜ)∩̃(Υ,ℜ)<̃ℜ. □

Now, some problems arise such that: Is the soft intersection of two set-generated
soft subrings of ℜ, again a set-generated soft subring of ℜ? And, if ⟨Ψ∩α⟩ℜ<̃ℜ,
⟨Ψ∩β⟩ℜ<̃ℜ such that ⟨Ψ∩α⟩ℜ∩̃⟨Ψ∩β⟩ℜ = ⟨Ψ∩ξ⟩ℜ, then can the subset ξ be ex-
pressed using α and β? The answer of the first problem is ”No”, we have the
following example:

Example 3. Given the ring ℜ = (Z12,+, .), a soft set (Ψ,ℜ) over ℜ, where Ψ :
ℜ → P (ℜ) is a set-valued function defined by Ψ(0) = {1, 3, 5, 6, 7, 9, 11}, Ψ(1) =
{2, 4}, Ψ(2) = {3, 6, 7, 11}, Ψ(3) = {1, 5, 9}, Ψ(4) = {3, 6, 7, 11}, Ψ(5) = {8, 10},
Ψ(6) = {1, 3, 5, 6, 7, 9, 11}, Ψ(7) = {2, 10}, Ψ(8) = {3, 6, 7, 11}, Ψ(9) = {1, 5, 9},
Ψ(10) = {3, 6, 7, 11} and Ψ(11) = {2, 8}. Let α = {11} and β = {5}. Then,
(Ψ,ℜ)∩α = {0, 2, 4, 6, 8, 10} and (Ψ,ℜ)∩β = {0, 3, 6, 9} are subrings of ℜ and the
soft sets

(Ψ, (Ψ,ℜ)∩α) =

{
(0, {1, 3, 5, 6, 7, 9, 11}), (2, {3, 6, 7, 11}), (4, {3, 6, 7, 11}),
(6, {1, 3, 5, 6, 7, 9, 11}), (8, {3, 6, 7, 11}), (10, {3, 6, 7, 11})

}
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and

(Ψ, (Ψ,ℜ)∩β) =

{
(0, {1, 3, 5, 6, 7, 9, 11}), (3, {1, 5, 9}),
(6, {1, 3, 5, 6, 7, 9, 11}), (9, {1, 5, 9})

}
satisfy the conditions s1, s2 of Definition 7. Hence ⟨Ψ∩α⟩ℜ<̃ℜ and ⟨Ψ∩β⟩ℜ<̃ℜ.
Then,

⟨Ψ∩α⟩ℜ∩̃⟨Ψ∩β⟩ℜ = {(0, {1, 3, 5, 6, 7, 9, 11}), (6, {1, 3, 5, 6, 7, 9, 11})} = (Ψ, S)<̃ℜ.

But, there is no subset ξ of ℜ such that (Ψ, S) = ⟨Ψ∩ξ⟩ℜ.

Corollary 1. The soft intersection of two set-generated soft subrings of ℜ is not
a set-generated soft subring of ℜ, in general.

But, we have the following:

Theorem 3. Let ⟨Ψ∩α⟩ℜ<̃ℜ and ⟨Ψ∩β⟩ℜ<̃ℜ. Then, either ⟨Ψ∩α⟩ℜ∩̃⟨Ψ∩β⟩ℜ =
⟨0ℜ⟩Ψ trivial soft subring or if ⟨Ψ∩α⟩ℜ∩̃⟨Ψ∩β⟩ℜ = ⟨Ψ∩ξ⟩ℜ, then there exists ξ ⊆ ℜ
such that ∅ ≠ ξ ⊆ α ∪ β.

Proof. If ⟨Ψ∩α⟩ℜ∩̃⟨Ψ∩β⟩ℜ = ⟨0ℜ⟩Ψ, it is obvious. Assume that

⟨0ℜ⟩Ψ ̸= ⟨Ψ∩α⟩ℜ∩̃⟨Ψ∩β⟩ℜ = ⟨Ψ∩ξ⟩ℜ.

Then ⟨Ψ∩ξ⟩ℜ<̃ℜ by Theorem 2. Since ⟨Ψ∩α⟩ℜ∩̃⟨Ψ∩β⟩ℜ = ⟨Ψ∩ξ⟩ℜ, then we have

U ∩ α ̸= ∅ ∧ U ∩ β ̸= ∅ ⇔ U ∩ ξ ̸= ∅

for (t, U) ∈ ⟨Ψ∩ξ⟩ℜ. The requirement (1) holds for:

i) α ⊆ β ⇒ ξ = β,
ii) β ⊆ α ⇒ ξ = α,
iii) α ∩ β = ∅ ⇒ ξ = α ∪ β,
iv) α ̸= β and α ∩ β ̸= ∅ ⇒ ξ = α ∪ β.

Although the requirement (1) also holds for ξ ⊇ α∪β, it is enough to show existing
ξ ⊆ ℜ such that ∅ ≠ ξ ⊆ α ∪ β to complete the proof. □

Definition 12. ( [29]) Let ℜ1 and ℜ2 be two rings, and (Ψ, S1) and (Υ, S2) be two
soft subrings of ℜ1 and ℜ2, respectively. The product of soft subrings (Ψ, S1) and
(Υ, S2) is defined as (Ψ, S1)× (Υ, S2) = (Ω, S1 × S2), where Ω(t, v) = Ψ(t)×Υ(v)
for all (t, v) ∈ S1 × S2.

Theorem 4. ( [29]) If ΨS1
<̃ℜ1 and ΥS2

<̃ℜ2, then ΨS1
×ΥS2

<̃ℜ1 ×ℜ2.

Theorem 4 leads to the problem: Is the product of two set-generated soft subrings
of two rings, again a set-generated soft subring of the ring of product of rings? The
answer is ”Yes”, we have the following:
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Theorem 5. Let ℜ1 and ℜ2 be two rings and let (Ψ,ℜ1), (Υ,ℜ2) be two soft
sets over ℜ1 and ℜ2, respectively. If there exist α ⊆ ℜ1 and β ⊆ ℜ2 such that
⟨Ψ∩α⟩ℜ1<̃ℜ1 and ⟨Υ∩β⟩ℜ2<̃ℜ2, then

⟨Ψ∩α⟩ℜ1
× ⟨Υ∩β⟩ℜ2

= ⟨Θ∩(α×β)⟩ℜ1×ℜ2
.

Proof. Let ⟨Ψ∩α⟩ℜ1<̃ℜ1 and ⟨Υ∩β⟩ℜ2<̃ℜ2. Then (Ψ,ℜ1)
∩α is a subring of ℜ1 and

(Υ,ℜ2)
∩β is a subring of ℜ2. So (Ψ,ℜ1)

∩α × (Υ,ℜ2)
∩β is a subring of ℜ1 × ℜ2.

Therefore, ⟨Ψ∩α⟩ℜ1
×⟨Υ∩β⟩ℜ2

<̃ℜ1×ℜ2 by Theorem 4. Now, let (t,Ψ(t)) ∈ ⟨Ψ∩α⟩ℜ1

and (v,Υ(v)) ∈ ⟨Υ∩β⟩ℜ2
. Then Ψ(t) ∩ α ̸= ∅ and Υ(v) ∩ β ̸= ∅. Since

Ψ(t) ∩ α ̸= ∅ ∧Υ(v) ∩ β ̸= ∅ ⇔ (Ψ(t)×Υ(v)) ∩ (α× β) ̸= ∅,

then we have

(t,Ψ(t)) ∈ ⟨Ψ∩α⟩ℜ1
∧ (v,Υ(v)) ∈ ⟨Υ∩β⟩ℜ2

⇔ ((t, v),Ψ(t)×Υ(v)) ∈ ⟨Θ∩(α×β)⟩ℜ1×ℜ2
.

(Θ,ℜ1×ℜ2) is a soft set over ℜ1×ℜ2, where Θ : ℜ1×ℜ2 → P (ℜ1×ℜ2) is a set-valued
function defined by Θ(t, v) = Ψ(t)×Υ(v). Hence, the proof is completed. □

Example 4. Over the ring ℜ1 = (Z4,+, .), a soft set (Ψ,ℜ1) given by Ψ(0) =
{1, 2, 3}, Ψ(1) = {0}, Ψ(2) = {1, 3}, Ψ(3) = {2}. For α = {3}, (Ψ,ℜ1)

∩α = {0, 2}
and ⟨Ψ∩α⟩ℜ1

= {(0, {1, 2, 3}), (2, {1, 3})}<̃ℜ1. Given the ring ℜ2 = (Z6,+, .), a
soft set (Υ,ℜ2) over ℜ2, defined by Υ(0) = {0, 1, 2, 5}, Υ(1) = {3, 4}, Υ(2) = {4},
Υ(3) = {0, 2}, Υ(4) = {3} and Υ(5) = {4}. For β = {2}, (Υ,ℜ2)

∩β = {0, 3} and
⟨Υ∩β⟩ℜ2

= {(0, {0, 1, 2, 5}), (3, {0, 2})}<̃ℜ2. ⟨Ψ∩α⟩ℜ1
× ⟨Υ∩β⟩ℜ2

is a soft set given
by

((0, 0), {(1, 0), (1, 1), (1, 2), (1, 5), (2, 0), (2, 1), (2, 2), (2, 5), (3, 0), (3, 1), (3, 2), (3, 5)}),
((2, 0), {(1, 0), (1, 1), (1, 2), (1, 5), (3, 0), (3, 1), (3, 2), (3, 5)}),
((0, 3), {(1, 0), (1, 2), (2, 0), (2, 2), (3, 0), (3, 2)}),
((2, 3), {(1, 0), (1, 2), (3, 0), (3, 2)})

 .

Now, let the soft set (Θ,ℜ1×ℜ2) over ℜ1×ℜ2, where Θ : ℜ1×ℜ2 → P (ℜ1×ℜ2) is
a set-valued function defined by Θ(t, v) = Ψ(t)×Υ(v). Then, for α× β = {(3, 2)},
it is easily seen that ⟨Θ∩(α×β)⟩ℜ1×ℜ2 = ⟨Ψ∩α⟩ℜ1 × ⟨Υ∩β⟩ℜ2 .

5. Conclusions

In this paper, we are interested in the algebraic soft substructures of rings given
in the article [29]. We introduced set-generated soft subrings of rings using non-
empty subsets of rings. By theoretical directions, we applied some of the operations
derived on soft sets to set-generated soft subrings. Moreover, we gave some rela-
tionships between the generators of soft subrings and studied their related various
properties with assorted examples. To further this work, one could study the set-
generated soft substructures of other algebraic structures such as fields, modules,
vector spaces and algebras. Our future work will be based on the derivation of
these algebraic structures and the investigation their application aspects.
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[20] Kamacı, H., Atagün, A. O., Toktaş, E., Bijective soft matrix theory and

multi-bijective linguistic soft decision system, Filomat, 32 (2018), 3799–3814.

https://doi.org/10.2298/FIL1811799K
[21] Petchimuthu, S., Garg, H., Kamacı, H., Atagün, A. O., The mean operators and generalized

products of fuzzy soft matrices and their applications in MCGDM, Comput. Appl. Math., 39

(2020), Article Number 68. https://doi.org/10.1007/s40314-020-1083-2
[22] Kamacı, H., Saltık, K., Akız, H. F., Atagün, A. O., Cardinality inverse soft matrix theory

and its applications in multicriteria group decision making, J. Intell. Fuzzy Syst., 34 (2018),
2031–2049. doi: 10.3233/JIFS-17876

[23] Petchimuthu, S., Kamacı, H., The row-products of inverse soft matrices in multicriteria de-

cision making, J. Intell. Fuzzy Syst., 36 (2019), 6425–6441. doi: 10.3233/JIFS-182709
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Abstract. In this paper, an optimal inequality involving the delta curvature

is exposed. With the help of this inequality some characterizations about the
vertical motion and the horizontal divergence are obtained.

1. Introduction

The celebrated divergence theorem states that divergence of a vector field indi-
cates how much the vector spreads out from the certain point. In fluid kinematics,
if a vector field X is considered as velocity of a fluid or a gas, then sign of div(X)
describes the expansion or compression of flow. Therefore, the total expansion or
compression of flow can be calculated by the help of divergence theorem so diver-
gence is a useful tool to measuring the net flow of fluid diverging from a point or
approaching a point. The first phenomenon is called as horizontal divergence and
the other is called as horizontal convergence.

The continuity equation simple states that any matter can either be created or
destroyed and implies for the atmosphere that its mass may be redistributed but
can never be disappeared. Therefore, this equation gives us that

div(U) = 0 (1)

for any vector field U = (u1, u2, u3) on E3. It can be written from (1) that

divH(U) +
∂u3

∂z
= 0, (2)
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where divH(U) is the horizontal divergence of U defined by

divH(U) =
∂u1

∂x
+

∂u2

∂y
. (3)

The equation given (2) is also known as the continuity equation in literature. Inte-
grating (2), we have

ω(p1, p0) ≡ u3(p1)− u3(p0) = −
∫ p1

p0

(
∂u1

∂x
+

∂u2

∂y
)dz, (4)

where p1 and p0 is some pressure levels on the atmosphere. If we assume that p0 is
the surface pressure then u3(p0) = 0 and thus we get

ω(p1) = −
∫ p1

p0

(
∂u1

∂x
+

∂u2

∂y
)dz. (5)

This formula tells us that w at a given pressure level is proportional to the integral
of the horizontal divergence. Here, ω(p1) is called the vertical motion at p1. If
ω(p) < 0 at every point p then this statement is called rising motion, ω(p) > 0
at every point p then this statement is called descending motion, (in this case,
divergence is called convergence) in meteorology. There is no divergence and it is
clear that there is a local maximum or minimum of w.

Beside these facts , B.-Y. Chen [7] initially introduced a new invariant the so-
called delta curvature δ for an n-dimensional Riemannian manifold M by

δk(p) = τ(p)− (infτ (Πk)) (p) , (6)

where 2 ≤ k ≤ n− 1, τ(p) is the scalar curvature at p ∈ M and

(infτ (Πk)) (p) = inf{τ(Πk) |Πk is a k-plane section ⊂ TpM}.
Furthermore, he gave a relation involving the delta curvature, the main intrinsic
and extrinsic invariants of submanifolds in a real space form (cf. Lemma 3.2 in [7]).
Then, this curvature drew attention of many authors and the notion of discovering
simple basic relationships between intrinsic and extrinsic invariants of a submanifold
becomes one of the most fundamental problems in submanifold theory (cf. [1, 3, 8,
10, 11, 19, 23, 24], etc.). Furthermore, various inequalities and their applications on
Riemannian submersions were studied recently in [4, 12,15,22].

Apart from isometric immersions and submanifolds theory, Riemannian sub-
mersions have played a substantial role in differential geometry since this frame
of maps also makes possible to compare geometrical properties between smooth
manifolds. Besides the mathematical significance, Riemannian submersions have
important physical and engineering aspects. There exist very nice applications
of these mappings in the Kaluza-Klein theory [13, 16, 25], in the statical machine
learning process [26], in the medical imaging [18], in the statical analysis [6], in the
robotic theory [2, 20,21].

Motivated by these facts, we firstly establish an optimal inequality involving the
delta curvature for Riemannian manifolds admitting a Riemannian submersion.
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Then, we investigate this inequality for some special cases. Finally, we obtain some
results dealing the vertical motion and horizontal divergence.

2. Preliminaries

Let (M, g) be and n dimensional Riemannian manifold with Riemannian metric
g. The sectional curvature, denoted KM (ei ∧ ej), of the plane section spanned by
orthogonal unit vectors ei and ej at p ∈ M is

K(ei ∧ ej) ≡ R (ei, ej , ej , ei) = R (ej , ei, ei, ej) , (7)

where R is the Riemann curvature tensor. Usually the sectional curvatureK(ei∧ej)
is denoted by Kij .

Let {e1, . . . , en} be any orthonormal basis for TpM . In particular, the Ricci
curvature Ric is defined by

Ric (X) =

n∑
j=1

K (X ∧ ej) . (8)

for each fixed ei, i ∈ {1, ..., n} we have

Ric(ei) =

n∑
j ̸=i

K(ei ∧ ej).

The scalar curvature τ (p) at p is defined by

τ (p) =
∑

1≤i<j≤n

K(ei ∧ ej). (9)

In particular, for a 2-dimensional Riemannian manifold, the scalar curvature is its
Gaussian curvature.

Let Πk be a k-plane section of TpM and X a unit vector in Πk. If k = n
then Πn = TpM ; and if k = 2 then Π2 is a plane section of TpM . We choose an
orthonormal basis {e1, . . . , ek} of Πk such that e1 = X. The k-Ricci curvature of
Πk at X, denoted RicΠk

(X), is defined by [9]

RicΠk
(X) = K(e1 ∧ e2) +K(e1 ∧ e3) + · · ·+K(e1 ∧ ek). (10)

Thus for each fixed ei, i ∈ {1, . . . , k} we get

RicΠk
(ei) =

k∑
j ̸=i

K(ei ∧ ej) =

k∑
j ̸=i

Kij . (11)

We note that an n-Ricci curvature RicTpM (ei) is the usual Ricci curvature of ei,
denoted Ric (ei). Thus for any orthonormal basis {e1, . . . , en} for TpM and for a
fixed i ∈ {1, . . . , n}, we have

RicTpM (ei) ≡ Ric (ei) =

n∑
j ̸=i

Kij .
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The scalar curvature τ (Πk) of the k-plane section Πk is given by

τ (Πk) =
∑

1≤i<j≤k

K(ei ∧ ej) =
∑

1≤i<j≤k

Kij , (12)

where {e1, ..., ek} is any orthonormal basis of the k-plane section Πk. We note that

τ (Πk) =
1

2

k∑
i=1

k∑
j ̸=i

K(ei ∧ ej) =
1

2

k∑
i=1

RicΠk
(ei). (13)

Given an orthonormal basis {e1, ..., en} for TpM , τ1···k will denote the scalar cur-
vature of the k-plane section spanned by e1, ..., ek.

The scalar curvature τ(p) of M at p is identical with the scalar curvature of the
tangent space TpM of M at p, that is,

τ (p) = τ (TpM) .

Let (M, g) and (B, g̃) be m and n dimensional Riemannian manifolds with Rie-
mannian metrics g and g̃, respectively. A smooth map π : (M, g) → (B, g̃) is called
a Riemannian submersion if

i) π has maximal rank.
ii) The differential π∗ preserves the lengths of horizontal vectors.

Now, let π : (M, g) → (B, g̃) be a Riemannian submersion. For any b ∈ B,
π−1(b) is closed r-dimensional submanifold of M . The submanifolds π−1(b) are
called fibers. A vector field tangent to fibers is called vertical and a vector field
orthogonal to fibers is called horizontal. If we put

Vp = kernel(π∗) (14)

at a point p ∈ M , then it can be obtained an integrable distribution V corresponding
to the foliation of M determined by the fibres of π. The distribution Vp is called
vertical space at p ∈ M .

Let H be a complementary distribution of V determined by the Riemannian
metric g. For any p ∈ M , the distribution Hp = (Vp)

⊥ is called horizontal space
on M [17]. Thus, we have the following orthogonal decomposition:

TM = V ⊕H. (15)

A vector field E on M is called basic if it is horizontal and π− related to a vector
field E∗ on B i.e., π∗Ep = E∗π(p) for all p ∈ M . Furthermore, it is known that if E
and F are the basic vector fields respectively π−related to E∗ and F∗, one has

g(E,F ) = g̃(E∗, F∗) ◦ π. (16)

Let h and v are the projections of Γ(TM) onto Γ(H) and Γ(V), respectively.
The fundamental tensor fields of π, denoted by A and T , are defined respectively
by

AEF = h∇hEvF + v∇hEhF, (17)
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TEF = h∇vEvF + v∇vEhF (18)

for any E,F ∈ Γ(TM), where ∇ is the Levi-Civita connection on M .
Now, let us define the following mappings:

TH : Γ(V)× Γ(V) → Γ(H),

(U, V ) → TH(U, V ) = h∇UV,

TV : Γ(V)× Γ(H) → Γ(V),
(U,X) → TV(U,X) = v∇UX,

and

AH : Γ(H)× Γ(V) → Γ(H),

(X,U) → AH(X,U) = h∇XU,

AV : Γ(H)× Γ(H) → Γ(V),
(X,Y ) → AV(X,Y ) = v∇XY,

Then, it is clear from (17) and (18) that TH is a symmetric operator on Γ(V)×Γ(V)
and AV is an anti-symmetric operator on Γ(H)× Γ(H). If (17) and (18) are taken
into account in (15), we can write

∇UV = TH(U, V ) + v∇UV, (19)

∇V X = h∇V X + TV(V,X), (20)

∇XU = AH(X,U) + v∇XU, (21)

∇XY = h∇XY +AV(X,Y ) (22)

for any U, V ∈ Γ(V) and X,Y ∈ Γ(H).
Let {U1, . . . , Ur, X1, . . . , Xn} be an orthonormal basis on TpM , where

V = Span{U1, . . . , Ur} and H = Span{X1, . . . , Xn}. The mean curvature vector
field ℏ(p) of any fibre is defined by

N (p) =
1

r

r∑
j=1

TH(Uj , Uj). (23)

Note that each fiber is a minimal submanifold of M if and only if ℏ(p) = 0 for all
p ∈ M . Furthermore, each fiber is called totally geodesic if both TH and TV vanish
identically and it is called totally umbilical if

TH(U, V ) = g (U, V ) ℏ

for all U, V ∈ Γ(V).
Now we recall the following Theorem [14]:

Theorem 1. Let π : (M, g) → (B, g̃) be a Riemann submersion. Then the hori-
zontal space H is an integrable distribution if and only if A vanishes identically.
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Remark 1. As a consequence of Theorem 1, we see that both AH and AV are
related to integrability of H, that is, they are identically zero if and only if H is
integrable.

Let R, R̃ and R̂ are the curvature tensors on M , B and be the collection of all
curvature tensors on fibers π−1(b) respectively, and Ř(X,Y )Z be the horizontal lift

of R̃π(b)(π∗pXb, π∗pYb)Zb at any point b ∈ M satisfying

π∗(Ř(X,Y )Z) = R̃(π∗X,π∗Y )π∗Z.

Then, there exist the following relations between these tensors:

R (U, V,W,G) = R̂ (U, V,W,G) + g
(
(TH(U,G), TH(V,W )

)
−g
(
TH(V,G), TH(U,W )

)
, (24)

R (X,Y, Z,H) = Ř(X,Y, Z,H)− 2g
(
AV(X,Y ), AV(Z,H)

)
+g
(
AV(Y,Z), AV(X,H)

)
− g

(
AV(X,Z), AV(Y,H)

)
, (25)

R (X,V, Y,W ) = g ((∇XT ) (V,W ) , Y ) + g ((∇V A) (X,Y ) ,W )

−g
(
TV(V,X), TV(W,Y )

)
+g
(
AH(X,V ), AH(Y,W )

)
, (26)

for any U, V,W,G ∈ Γ(V) andX,Y, Z,H ∈ Γ(H). Note that the above equalities are
known as Gauss–Codazzi equations for a Riemannian submersion. With the help
of Gauss–Codazzi equations, we get the following relations between the sectional
curvatures as follows:

K (U ∧ V ) = K̂ (U ∧ V )−
∥∥TH(U, V )

∥∥2
+g
(
TH(U,U), TH(V, V )

)
, (27)

K(X ∧ Y ) = Ǩ(X̌ ∧ Y̌ ) + 3∥AV(X,Y )∥2, (28)

K (X ∧ V ) = −g ((∇XT ) (V, V ) , X) +
∥∥TV(V,X)

∥∥2
−
∥∥AH(X,V )

∥∥2 , (29)

where K, K̂ and Ǩ denote the sectional curvatures in M , any fiber π−1(b) and the
horizontal distribution H, respectively. The scalar curvatures of the vertical and
horizontal spaces at a point p ∈ M are given respectively by

τ̂ (p) =
∑

1≤i<j≤r

K̂ (Ui, Uj) (30)

and

τ̌ (p) =
∑

1≤i<j≤n

Ǩ (Xi, Xj) . (31)

Now, we recall the following definition of [5].
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Definition 1. Let π : (M, g) → (B, g̃) be a Riemann submersion and X be a
horizontal vector field on π. Then, horizontal divergence of X is defined by

divH(X) =

n∑
i=1

g(∇XiX,Xi). (32)

Lemma 1. [14] Let π : (M, g) → (B, g̃) be a Riemann submersion and
{U1, . . . , Ur} be any orthonormal basis of Γ(V). For any E ∈ Γ(TM) and X ∈
Γ(H), we have

g (∇EN , X) =
1

r

r∑
j=1

g ((∇ET ) (Uj , Uj) , X) . (33)

As a consequence of Lemma 1, we obtain that

divH(N ) =
1

r

n∑
i=1

r∑
j=1

g ((∇Xi
T ) (Uj , Uj) , Xi) . (34)

3. An Optimal Inequality for Riemannian Submersions

We begin this section with the following algebraic lemma:

Lemma 2. If n > k ≥ 2 and a1, . . . , an, a are real numbers such that(
n∑

i=1

ai

)2

= (n− k + 1)

(
n∑

i=1

a2i + a

)
, (35)

then
2

∑
1≤i<j≤k

aiaj ≥ a,

with equality holding if and only if

a1 + a2 + · · ·+ ak = ak+1 = · · · = an.

Proof. By the Cauchy-Schwartz inequality, we have(
n∑

i=1

ai

)2

≤(n−k+1)((a1+a2+· · ·+ak)
2+a2k+1+· · ·+a2n). (36)

From (35) and (36), we get
n∑

i=1

a2i + a ≤ (a1 + a2 + · · ·+ ak)
2
+ a2k+1 + · · ·+ a2n.

The above equation is equivalent to

2
∑

1≤i<j≤k

aiaj ≥ a.

The equality holds if and only if a1 + a2 + · · ·+ ak = ak+1 = · · · = an. □
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Let π : (M, g) → (B, g̃) be a Riemannian submersion between Riemannian
manifolds (M, g) and (B, g̃). Suppose {U1, . . . , Ur, X1, . . . , Xn} be an orthonormal
basis on TpM , where V = Span{U1, . . . , Ur} and H = Span{X1, . . . , Xn}. Then,
we have

∥TH∥2 =

r∑
i,j=1

g
(
TH(Ui, Uj), T

H(Ui, Uj)
)
, (37)

∥TV∥2 =

r∑
i=1

n∑
j=1

g
(
TV(Ui, Xj), T

V(Ui, Xj)
)
, (38)

∥AH∥2 =

r∑
i=1

n∑
j=1

g
(
AH(Xj , Ui), A

H(Xj , Ui)
)
, (39)

∥AV∥2 =

n∑
i,j=1

g
(
AV(Xi, Xj), A

V(Xi, Xj)
)
. (40)

Putting (27)− (29), (34) and (37)− (40) in

τ(p) =
∑

1≤i<j≤n

[K(Ui, Uj) +K(Xi, Uj) +K(Xi, Xj)],

we obtain the following lemma:

Lemma 3. Let (M, g) and (B, g̃) be a Riemannian manifolds admitting a Rie-
mannian submersion π : (M, g) → (B, g̃). For any point p ∈ M , we have

2τ (p) = 2τ̂ (p) + 2τ̌(p) + r2 ∥ℏ(p)∥2 −
∥∥TH∥∥2 + 3

∥∥AV∥∥2
−r divH(ℏ(p)) + ∥TV∥2 − ∥AH∥2. (41)

Now, we are going to give an optimal inequality involving the δ−curvature for
Riemannian manifolds admitting a Riemannian submersion.

Theorem 2. Let π : (M, g) → (B, g̃) be a Riemannian submersion. Then, for each
point p ∈ M and each k-plane section Lk ⊂ Vp (r > k ≥ 2), we have

δ(k) ≤ τ̂(p)− τ̂(Lk) + τ̌(p) +
r2(r − k)

2(r − k + 1)
∥ℏ∥2 − r

2
divH(ℏ(p))

+
3

2
∥AV∥2 + 1

2
∥TV∥2. (42)
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The equality of (42) holds at p ∈ M if and only if AH vanishes identically and the
shape operators SX1 , . . . , SXn of Vp take forms as follows:

SX1
=



T 1
11 0 · · · 0
0 T 1

22 · · · 0
...

...
. . .

...
0 0 · · · T 1

kk

0

0

(
k∑

i=1

T 1
ii

)
Ir−k


, (43)

SXs
=



T s
11 T s

12 · · · T s
1k

T s
12 T s

22 · · · T s
2k

...
...

. . .
...

T s
1k T s

2k · · · −
k−1∑
i=1

T s
ii

0

0 0n−k


, s ∈ {2, . . . , n} . (44)

Proof. Let Lk be a k-plane section of Vp. We choose an orthonormal basis
{U1, . . . , Ur, X1, . . . , Xn} on TpM such that V = Span{U1, . . . , Ur} and
H = Span{X1, . . . , Xn}. We write

T s
ij = g(TH(Ui, Uj), Xs) (45)

for any i, j ∈ {1, . . . , r} and s ∈ {1, . . . , n}. Suppose that the mean curvature vector
ℏ(p) is in the direction of X1 and X1, ..., Xn diagonalize the shape operator SX1

. If
we put

η = 2τ(p)− 2τ̂(p)− 2τ̌(p)− r2(r − k)

(r − k + 1)
∥ℏ∥2 + r divH(ℏ(p))

−3
∥∥AV∥∥2 − ∥TV∥2 + ∥AH∥2 (46)

in (41), it follows that

r2∥ℏ∥2 = (n− k + 1)(η + ∥TH∥2). (47)

The equation (47) is equivalent to(
r∑

i=1

T 1
ii

)2

= (n− k + 1)

η +

r∑
i=1

(
T 1
ii

)2
+

n∑
s=2

r∑
i,j=1

(
T s
ij

)2 . (48)

Applying Lemma 2 to equation (48), we get

2
∑

1≤i<j≤k

Tn+1
ii Tn+1

jj ≥ η +

n∑
s=2

r∑
i,j=1

(
T s
ij

)2
. (49)
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On the other hand, we have from (41) that

τ (Lk) = τ̂ (Lk) +
∑

1≤i<j≤k

T 1
iiT

1
jj +

n∑
s=2

∑
1≤i<j≤k

(
T s
iiT

s
jj −

(
T s
ij

)2)
. (50)

From (49) and (50), we get

τ (Lk) ≥ τ̂ (Lk) +
1

2
η +

n∑
s=2

∑
j>k

{(T s
1j)

2 + (T s
2j)

2 + · · ·+ (T s
kj)

2}

+
1

2

n∑
s=2

(T s
11 + T s

22 + · · ·+ T s
kk)

2 +
1

2

n∑
s=2

∑
i,j>k

(T s
ij)

2. (51)

In view of (51), we see that

τ (Πk) ≥ τ̃ (Πk) +
1

2
η. (52)

From (47) and (52), we obtain (42).
If the equality case of (42) holds, then we have AH vanishes identically and

T 1
1j = T 1

2j = T 1
kj = 0, j = k + 1, . . . , r,

T s
ij = 0, i, j = k + 1, . . . , r,

T r
11 + T r

22 + · · ·+ T r
kk = 0

(53)

for s = 2, . . . , n. Applying Lemma 2, we also have

T 1
11 + T 1

22 + · · ·+ T 1
kk = T 1

ll, l = k + 1, . . . , n. (54)

Thus, with respect to a suitable orthonormal basis {X1, . . . , Xm} on Hp, the shape
operator of Vp becomes of the form given by (43) and (44). The proof of the
converse part is straightforward. □

In particular case of k = 2, we have the following:

Corollary 1. Let π : (M, g) → (B, g̃) be a Riemannian submersion. Then, for
each point p ∈ M and each plane section L ⊂ Vp, we have

δ(2) ≤ τ̂(p)− K̂(L) + τ̌(p) +
r2(r − 2)

2(r − 1)
∥ℏ∥2 − r

2
divH(ℏ)

+
3

2
∥AV∥2 + 1

2
∥TV∥2. (55)

The equality of (55) holds at p ∈ M if and only if AH vanishes identically and the
shape operators SX1 , . . . , SXn of Vp take forms

SX1 =

 a 0 0
0 b 0
0 0 (a+ b) Ir−2

 , (56)
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SXs
=

 cs ds 0
ds −cs 0
0 0 0r−2

 , s ∈ {2, . . . , n} . (57)

In particular case of k = r − 1, we have the following

Corollary 2. Let π : (M, g) → (B, g̃) be a Riemannian submersion. For each
vertical unit vector U , we have

RicV (U) ≤ R̂ic(U) + τ̌(p) +
r2

4
∥ℏ∥2 − r

2
divH(ℏ) +

3

2
∥AV∥2 + 1

2
∥TV∥2. (58)

The equality case of (58) holds for all unit vectors U ∈ Vp if and only if AH vanishes
identically and we have either

(i) if r = 2, π has totally umbilical fibers at p ∈ M ,
(i) if r ̸= 2, π has totally geodesic fibers at p ∈ M .

Proof. Let Lr−1 be a (r − 1)-plane section of Vp. We get from Theorem 2 that

δ(r − 1) ≤ τ̂(p)− τ̂(Lr−1) + τ̌(p) +
r2

4
∥ℏ∥2 − r

2
divH(ℏ)

+
3

2
∥AV∥2 + 1

2
∥TV∥2. (59)

Now, let U be a unit vertical vector field such that U = Ur. By a straightforward
computation, we obtain (58).

The equality of (59) holds if and only if the forms of shape operators SXs ,
s = 1, . . . , n, become

SX1
=



T 1
11 0 · · · 0 0
0 T 1

22 · · · 0 0
...

...
. . .

...
...

0 0 · · · T 1
(r−1)(r−1) 0

0 0 · · · 0

(
r−1∑
i=1

T 1
ii

)


, (60)

SXs
=



T s
11 T s

12 · · · T r
1(r−1) 0

T s
12 T s

22 · · · T s
2(r−1) 0

...
...

. . .
...

...

T s
1(r−1) T s

2(r−1) · · · −
r−2∑
i=1

T s
ii 0

0 0 · · · 0 0


, r ∈ {2, . . . , n} . (61)
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From (60) and (61), we see that the equality in (58) is valid for a unit vertical
vector field U = Ur if and only if{

T s
rr = T s

11 + T s
22 + · · ·+ T s

(r−1)(r−1)

T s
1r = T s

2r = · · · = T s
(r−1)r = 0.

(62)

for s ∈ {1, . . . , n}.
Assuming the equality case of (58) holds for all unit vertical vector fields, in view

of (62), for each s ∈ {1, . . . , n}, we have{
2T s

ii = T s
11 + T s

22 + · · ·+ T s
rr,

T s
ij = 0, i ̸= j

(63)

for all i ∈ {1, ..., r} and s ∈ {1, . . . , n}. Thus, we have two cases, namely either
r = 2 or r ̸= 2. In the first case we see that π has totally umbilical fibers, while
in the second case π has totally geodesic fibers. The proof of converse part is
straightforward. □

Remark 2. We note that (58) was also proved in [15] (see Theorem 4.1 in [15]).
In Theorem 2, we gave a new proof for this inequality.

4. Main Conclusions

In this section, we shall present a solution way with the help of differential
geometry tools for the following natural problem:

”Which conditions should provide to the horizontal divergence or the convergence
receives to the maximum value or minimum value?”

To obtain minimum or maximum values of the vertical motion (or horizontal
divergence) it can be considered a Riemannian submersion on E3 to E2. Moreover,
we can regard to different Riemannian submersions such as a Riemannian submer-
sion on a three dimensional Riemannian manifold to two dimensional Riemannian
manifold as

π : M3 → N2. (64)

It can also be considered globally in high dimensional Riemannian manifolds with
taking a Riemannian submersion on m-dimensional Riemannian manifold to n-
dimensional Riemannian manifold.

Taking into account of the continuity equation and (42), (55) and (58) inequal-
ities, we get some result dealing minimum or maximum values of vertical motion
for a manifold admitting a Riemannain submersion.

As a consequence of (42), we obtain the following:

Corollary 3. Let π : En+r → En be a Riemannian submersion. Then we have

r

2
ω(p) ≥ δ(k)− r2(r − k)

2(r − k + 1)
∥ℏ∥2 − 3

2
∥AV∥2 − 1

2
∥TV∥2. (65)
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The vertical motion at a point p takes the minimum value if and only if AH vanishes
identically and the matrixes of shape operators of the vertical space of M take the
form as (43) and (44).

As a consequence of (55), we obtain the followings:

Corollary 4. Let π : En+r → En be a Riemannian submersion with integrable
horizontal distribution. Then we have

r

2
ω(p) ≥ δ(2)− r2(r − 2)

2(r − 1)
∥ℏ∥2 − 1

2
∥TV∥2. (66)

The vertical motion takes the minimum value if and only if the matrixes of shape
operators Sx1 , . . . , Sxn of the vertical space of M take the form as (56) and (57).

Corollary 5. Let π : En+r → En be a Riemannian submersion with totally geodesic
leaves and integrable horizontal distribution. Then we have

r

2
ω(p) = δ(2). (67)

From (58), we get the followings:

Corollary 6. Let π : En+r → En be a Riemannian submersion. For each vertical
unit vector U , we have

r

2
ω(p) ≥ RicV (U)− r2

4
∥ℏ∥2 − 3

2
∥AV∥2 − 1

2
∥TV∥2. (68)

The equality case of (68) holds for all unit vectors U ∈ Vp if and only if AH vanishes
identically and we have either

(i) if r = 2, π has totally umbilical fibers at p ∈ M ,
(ii) if r ̸= 2, π has totally geodesic fibers at p ∈ M .

Corollary 7. Let π : En+r → En be a Riemannian submersion with totally geodesic
fibers. For each vertical unit vector U , we have

r

2
ω(p) = RicV (U)− 3

2
∥AV∥2. (69)

Now we shall mention some examples:

Example 1. Consider the mapping π : E5 → E2 which is defined by

π(x1, x2, x3, x4, x5) =

(
1√
2
(x1 + x2),

1√
2
(x3 + x4)

)
.

Then, it is clear that π is a Riemannian submersion and the Jacobian of π is equal
to (

1√
2

1√
2

0 0 0

0 0 1√
2

1√
2

0

)
.
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The horizontal space and the vertical space are given by

H = Span{X1 =
1√
2

∂

∂x1
+

1√
2

∂

∂x2
, X2 =

1√
2

∂

∂x3
+

1√
2

∂

∂x4
}

and

V = Span{U1 = − 1√
2

∂

∂x1
+

1√
2

∂

∂x1
, U2 = − 1√

2

∂

∂x3
+

1√
2

∂

∂x4
, U3 =

∂

∂x5
},

respectively. By a straightforward computation, we get the tensor fields A, T , RicV
vanish and ω(p) = divH(ℏ) = 0 from (3). Therefore, π is a trivial example satisfying
Corollary 3-Corollary 7.

Example 2. (Example 5.1 in [15])
Let us consider the Remannian submesion π : M → E3 defined by

π(x1, x2, x3, x4, x5) = (x1 cosx3 + x2 sinx3, x4, x5) ,

where M is a non-flat submanifold of E5 such that cotx3 = x1

x2
, x2 ̸= 0 and x3 ∈(

0, π
2

)
. Here, the horizontal space and the vertical space of M are given by

H = Span{X1 = sinx3
∂

∂x1
+ cosx3

∂

∂x2
, X2 =

∂

∂x4
, X3 =

∂

∂x5
}

and

V = Span{U1 = − cosx3
∂

∂x1
+ sinx3

∂

∂x2
, U2 =

∂

∂x3
},

respectively. By straightforward computations, we have TV(U2, X1) = −U1,
TH(U1, U2) = X1 and the other components of operators TH, TV , AH, AV vanish

identically. Moreover, we have R̂ic(U1) = 1, RicV (U1) = RicV (U2) = 0 and ω(p) =
0 from (3). Considering these facts, we obtain the left hand side of 68 is equal to
0 and the right hand side of (68) is equal to −1 for U = U1. This inequality also
satisfies for U = U2. This shows that the correctness of (68) and π is an example
of Corollary 6.
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PARITY OF AN ODD DOMINATING SET

Ahmet BATAL

Department of Mathematics, Izmir Institute of Technology, 35430, Urla, Izmir, TURKEY

Abstract. For a simple graph G with vertex set V (G) = {v1, ..., vn}, we de-

fine the closed neighborhood set of a vertex u as N [u] = {v ∈ V (G) | v is adja-
cent to u or v = u} and the closed neighborhood matrix N(G) as the matrix

obtained by setting to 1 all the diagonal entries of the adjacency matrix of G.

We say a set S is odd dominating if N [u] ∩ S is odd for all u ∈ V (G). We
prove that the parity of an odd dominating set of G is equal to the parity of

the rank of G, where the rank of G is defined as the dimension of the column

space of N(G). Using this result we prove several corollaries in one of which
we obtain a general formula for the nullity of the join of graphs.

1. Introduction

Let N [u] denote the closed neighborhood set of a vertex u in a simple graph G,
i.e.;

N [u] = {v ∈ V (G) |v is adjacent to u or v = u}.
Then, we say a subset S of vertices is odd (even) dominating if N [u] ∩ S is odd
(even) for all u ∈ V (G). In general, for an arbitrary subset C of vertices, we say a
set S is a C-parity set if N [u] ∩ S is odd for all u ∈ C and even otherwise [2]. If
there is a C-parity set for a given set C, we say that C is solvable. If there exists
a C-parity set for every set C of vertices in a graph G, then we say G is always
solvable.

Let n be the order of G, V (G) = {v1, ..., vn} and W be a subset of V (G). The
column vector xW = (x1, ..., xn)

t, which is defined as xi = 1 if vi ∈ W and xi = 0
otherwise, is called the characteristic vector of W . The closed neighbourhood
matrix N = N(G) of a graph G is obtained by setting to 1 all the diagonal entries
of the adjacency matrix of G. Equivalently, N(G) is the matrix whose ith column
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Keywords. Lights out, all-ones problem, odd dominating set, parity domination, domination
number.
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is equal to xN [vi]. It is easy to observe that S is a C-parity set if and only if

N(G)xS = xC (1)

over the field Z2 [9], [10].
Let us denote the vectors whose components are all 0 and all 1 by 0 and 1,

respectively. Then the following are equivalent. (a1 ) S is an odd dominating set,
(a2 ) S is a V (G)-parity set, (a3 ) N(G)xS = 1. Similarly, (b1 ) S is an even dom-
inating set, (b2 ) S is a ∅-parity set, (b3 ) N(G)xS = 0, are equivalent statements.
Note that every graph has an even dominating set, which is ∅. On the other hand,
it is proved by Sutner that every graph has an odd dominating set as well [9] (see
also [6], [7], [8]).

Let Ker(N) and Col(N) denote the kernel and column space of N , respectively.
Let ν(G) := dim(Ker(N(G)) and ρ(G) := dim(Col(N(G)). We call ν(G), the
nullity of G (Amin et al. [3] call it the parity dimension of G) and ρ(G), the rank
of G. We have ν(G) + ρ(G) = n by the rank nullity theorem.

From the matrix equation (1), we see that G is always solvable if and only if
ν(G) = 0. Moreover, ν(G) > 0 if and only if G has a nonempty even dominating
set.

We write pr(a) to denote the parity function of a number a, i.e.; pr(a) = 0 if a
is even and pr(a) = 1 if a is odd. In the case where A is a matrix, pr(A) is the
parity function of the sum of its entries. For a set S, we write pr(S) to denote
the parity function of the cardinality of S and say the parity of S instead of the
parity of the cardinality of S. Note that pr(S) = pr(xS). It was first noticed by
Amin et al. [ [1], Lemma 3], and follows immediately from Sutner’s theorem, that
for a given graph, the parity of all odd dominating sets are the same. Hence, the
value of pr(S), where S is an odd dominating set of a graph is independent of the
particular odd dominating set S taken into account.

Our main result Theorem 1 states that the parity of an odd dominating set is
equal to the parity of the rank of the graph.

2. Main Result

Lemma 1. Let A be a n × n, symmetric, invertible matrix over the field Z2 with
diagonal entries equal to 1. Then pr(A−1) = pr(A) = pr(n).

Proof. In the proof, all algebraic operations are considered over the field Z2. First
of all, note that since A is a symmetric matrix with nonzero diagonal entries, we
have

pr(A) =
∑
i,j

Aij =
∑
i

Aii =
∑
i

1 = pr(n).

Similarly,

pr(A−1) =
∑
i

(A−1)ii.

On the other hand,
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pr(n) = Tr(I) = Tr(AA−1)

=
∑
i,j

Aij(A
−1)ij

=
∑
i

Aii(A
−1)ii

=
∑
i

(A−1)ii.

□

We call a vertex a null vertex of a graph G if it belongs to an even dominating
set of G. Since the set of all characteristic vectors for even dominating sets of G is
a subspace of the vector space of all binary n-tuples, if v is a null vertex of G, then
precisely half of the even dominating sets of G contain v.

Lemma 2. Let G be a graph and v be a null vertex of G. Then there exists an odd
dominating set of G which does not contain v.

Proof. Let R be an even dominating set containing v and S1 be an odd dominating
set of G. Assume S1 contains v, otherwise we are done. Let S2 be the symmetric
difference of S1 and R. Clearly S2 is an odd dominating set which does not contain
v. □

Let G− v denote the graph obtained by removing a vertex v and all its incident
edges from a graph G. The number nd(v) := ν(G − v) − ν(G) is called the null
difference number. It turns out that nd(v) can be either −1, 0, or 1. Moreover,
Ballard et al. proved the following lemma in [ [5], Proposition 2.4.].

Lemma 3 ( [5]). Let v be a vertex of a graph G. Then v is a null vertex if and
only if nd(v) = −1.

Now we are ready to state our main result.

Theorem 1. Let G be a graph and S be an odd dominating set of G. Then pr(S) =
pr(ρ(G)). Equivalently, pr(V (G)\S) = pr(ν(G)).

Proof. We prove the claim by applying induction on the nullity of the graph. Let n
be the order of G. In the case where ν(G) = 0, there exists a unique odd dominating
set S such that NxS = 1. Note that N satisfies the conditions of Lemma 1. Hence,
together with the rank nullity theorem, we have

pr(S) = pr(xS) = pr(N−11) = pr(N−1) = pr(N) = pr(n) = pr(ρ(G)).

Now assume that ν(G) > 0 and the claim holds true for all graphs with nullity
less than ν(G). Since ν(G) is nonzero, there exists a non-empty even dominating
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set. Hence, there exists a null vertex v of G. By Lemma 2, there is an odd
dominating set S of G which does not contain v. Since S does not contain v, it is
also an odd dominating set of the graph G−v. Moreover, by Lemma 3, nd(v) = −1.
Hence, ν(G− v) = ν(G) + nd(v) = ν(G)− 1 < ν(G). By the induction hypothesis
pr(S) = pr(ρ(G−v)). On the other hand, using the rank nullity theorem we obtain
ρ(G− v) = n− 1− ν(G− v) = n− 1− ν(G) + 1 = n− ν(G) = ρ(G). We complete
the proof by noting that all odd dominating sets in G have the same parity. □

3. Some Corollaries

Corollary 1. Let G be an always solvable graph of order n. Then the odd domi-
nating set of G has odd (even) cardinality if n is odd (even).

Note that if every vertex of a graph G has even degree, then V (G) itself is an
odd dominating set. This, together with Theorem 1, gives the following.

Corollary 2. If every vertex of a graph G has even degree, then ν(G) is even.

Corollary 3. If the number of even degree vertices of a tree T is at most one, then
every odd dominating set of T has odd cardinality.

Proof. Let n be the order of T . By [ [3], Theorem 3] if every vertex of T has odd
degree, then ν(T ) = 1. By the handshaking lemma, n must be even, hence ρ(T ) is
odd. By [ [3], Theorem 4], if exactly one vertex of T has even degree, then ν(T ) = 0.
Since n must be odd, ρ(T ) is also odd. Hence in either case, every odd dominating
set has odd cardinality by Theorem 1. □

Corollary 4. Every odd dominating set of a graph G has an odd (even) num-
ber of vertices of odd degree if and only if ν(G) is odd (even). In particular, the
odd dominating set of an always solvable graph has an even number of odd degree
vertices.

Proof. Observe that for any subsets A, B of V (G), pr(A∩B) = xt
AxB . In particular,

pr(A) = xt
A1. Let A

c be the complement of A in V (G). Then we have xAc = xA+1.
Now let S be an odd dominating set of G and D be the set of vertices with odd
degree. Observe that N1 = xDc . Therefore NxSc = N(xS + 1) = 1 + xDc = xD.
Then, pr(D ∩S) = xt

DxS = (NxSc)txS = xt
ScNxS = xt

Sc1 = pr(Sc). On the other
hand, pr(Sc) = pr(ν(G)) by Theorem 1. Hence, the result follows. □

We define the join G1 ⊕ ... ⊕ Gm of m pairwise disjoint graphs G1, ..., Gm as
follows. We take the vertex set as V (G1 ⊕ ... ⊕ Gm) = ∪m

i=1V (Gi) and the edge
set as E(G1 ⊕ ... ⊕ Gm) = ∪m

i=1E(Gi) ∪ {(u, v) | u ∈ V (Gk), v ∈ V (Gl) k, l ∈
{1, ...,m} such that k ̸= l}. Then Amin et al. prove the following proposition in
[ [4], Corollary 6].

Proposition 1 ( [4]). ν(G1 ⊕G2) = ν(G1) + ν(G2) if either G1 or G2 has an odd
dominating set of even cardinality, and ν(G1⊕G2) = ν(G1)+ν(G2)+1, otherwise.
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Together with Theorem 1, the above proposition implies the following.

ν(G1 ⊕G2) = ν(G1) + ν(G2) + pr(ρ(G1)ρ(G2)). (2)

Equivalently,

ρ(G1 ⊕G2) = ρ(G1) + ρ(G2)− pr(ρ(G1)ρ(G2)). (3)

Equivalence of (2) and (3) follows from the rank nullity theorem.
Expressing the nullity/rank of G1 ⊕ G2 as a single formula involving nulli-

ties/ranks of G1 and G2 as above enables us to extend this result and to write
a formula for the nullity/rank of the join of arbitrary number of graphs as follows.

Proposition 2. Let {G1, ..., Gm} be a collection of pairwise disjoint graphs. Let j
be the number of graphs in {G1, ..., Gm} with odd rank. Then

ν(G1 ⊕ ...⊕Gm) =

{ ∑m
i=1 ν(Gi) if j = 0∑m

i=1 ν(Gi) + j − 1 otherwise

}
. (4)

Equivalently,

ρ(G1 ⊕ ...⊕Gm) =

{ ∑m
i=1 ρ(Gi) if j = 0∑m

i=1 ρ(Gi)− j + 1 otherwise

}
. (5)

Proof. We prove (5), then (4) follows from the rank nullity theorem. If j = 0,
then all graphs have even rank and the result follows applying (3) successively.
Now let j ̸= 0. Without loss of generality, we can assume that the first j graphs
have odd rank. Then, by (3), ρ(G1⊕G2) = ρ(G1)+ ρ(G2)–1, which is odd. Hence,
ρ(G1⊕G2⊕G3) = ρ(G1)+ρ(G2)−1+ρ(G3)–1 = ρ(G1)+ρ(G2)+ρ(G3)–2, which is
odd, and so on, yielding ρ(G1⊕G2⊕· · ·⊕Gj) = ρ(G1)+ρ(G2)+ · · ·+ρ(Gj)–(j−1),
which is odd. Since the rank of the joins of the m− j even ones is the sum of the
ranks (which is even), the join of all m of them is the sum of the ranks minus (j−1).
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Abstract. Fixed points of matrices have many applications in various areas

of science and mathematics. The extended modular group Γ is the group of
2 × 2 matrices with integer entries and determinant ±1. There are strong

connections between the extended modular group, continued fractions and

Farey graph. The Farey graph is a graph with vertex set Q∞ = Q ∪ {∞}. In

this study we consider the elements in Γ that fix rationals. For a given rational

number, we use its Farey neighbours to obtain the matrix representation of
the element in Γ that fixes the given rational. Then we express such elements

as words in terms of generators using the relations between the Farey graph

and continued fractions. Finally we give the new block reduced form of these
words which all blocks have Fibonacci numbers entries.

1. Introduction

The modular group Γ = PSL(2,Z) is the projective special linear group of 2× 2
matrices over the ring of integers with determinant one. This group is the quotient

group SL(2,Z)/±I, hence each matrix

(
a b
c d

)
represents the same element with

its negative

(
−a −b
−c −d

)
. The modular group acts on the upper half plane H via

linear fractional transformations z → az+b
cz+d . These transformations are orientation

preserving isometries of H. Modular group is generated by two elements;

T =

(
0 −1
1 0

)
U =

(
1 1
0 1

)
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The presentation of Γ is;

Γ =< T, S : T 2 = S3 = I >≂ Z2 ∗ Z3,

the free product of Z2 and Z3 where S = TU =

(
0 −1
1 1

)
. Let us denote the set

G =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = −1

}
. The corresponding transformations

of elements in G are anti-automorphisms. Thus the extended modular group can be
defined as Γ = PSL(2,Z)∪G. Hence, the extended modular group is the projective
linear group PGL(2,Z) and isomorphic to the free product of two dihedral groups
of order four and six amalgamated with the cyclic group of order 2 i.e.

Γ =< T, S,R : T 2 = S3 = R2 = (TR)
2
= (SR)

2
= I >≂ D2 ∗Z2

D3

where R =

(
0 1
1 0

)
as a reflection map. So the modular group is normal in the

extended modular group with index 2.
For each V ∈ Γ; the number z ∈ C∪{∞} is called a fixed point of V if V (z) = z

where V (z) is the corresponding transformation. There is a relation between the
number fixed points and trace of V . Elements of Γ are classified according to the
number of fixed points. There are five types of elements in Γ. Now we list the
certain types of elements.

If V ∈ Γ then V has at most two fixed points. Also if;

• |trV | > 2, then there are two fixed points in R ∪ {∞} and V is called a
hyperbolic element.

• |trV | = 2, then there is one fixed point in R ∪ {∞} and V is called a
parabolic element.

• |trV | < 2, then there are two conjugate fixed points in C ∪ {∞} and V is
called an elliptic element.

If V ∈ G then it has either two fixed points in the real line or the fixed point set is
a circle perpendicular to real line. Also if;

• |trV | ̸= 0, then there is one fixed point in R ∪ {∞} and V is called a glide
reflection.

• |trV | = 0, then the set of fixed points is a circle perpendecular to the real
line and V is called a reflection.

For more information see [1, 2, 11].
There are impressive relations between the modular group and continued frac-

tions. In [25], Rosen defined λ continued fractions for λ ∈ R;

[r0λ; r1λ, ..., rnλ] = r0λ− 1

r1λ− 1
r2λ− 1

...rn−1λ− 1
rnλ
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In this expansion, for i ≤ n, Ci =
pi

qi
= [r0λ; r1λ, ..., riλ] is called ith convergent of

the expansion. And it can be seen by calculation pi.qi−1 − qi.pi−1 = ±1. Owing to
this viewpoint, Rosen revealed a criteria for membership problem for Hecke groups

H(λ), a general class of modular group. He proved that an element

(
a b
c d

)
∈

H(λ) if and only if a
c has a finite λ continued fraction expansion. For λ = 1 this

expression is called integer continued fraction and related to the modular group,
on the contrary the membership problem for the modular group is obvious because
Γ = PSL(2,Z). On the other hand, for λ = 1 it is possible to make connections
between Rosen’s fractions and the Farey sequence.

The Farey sequence of order n is a complete and ordered set of reduced rational
numbers in the interval [0, 1] which have the denominators not exceeding n.

F1 =

{
0

1
,
1

1

}

F2 =

{
0

1
,
1

2
,
1

1

}
F3 =

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
F4 =

{
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

}
It can be seen that if a

c and b
d appears one after another in some Fn then ad− bc =

±1. We called such rationals Farey neighbours. All Farey neighbours of a rational
x is denoted by N (x). The Farey sum of a

c and b
d defined as;

a

c
⊕ b

d
=

a+ b

c+ d

All Farey neigbours of a rational number can be obtained by Farey sum. More
precisely if a rational p

q first appears in Fn by the Farey sum of a
c and b

d in Fn−1

i.e. a
c ⊕ b

d = a+b
c+d = p

q then a
c and b

d are Farey neighbours of p
q . Here a

c and b
d are

called the Farey parents of p
q , and conversely p

q is called the Farey child of a
c and

b
d . If

ai

ci
is a Farey neighbour of p

q then ai

ci
⊕ p

q is also a Farey neighbour of p
q .

Observe that every Fn includes Fn−1 and new members are obtained by Farey
sum of its neighbours. For instance 1

2 ∈ F2 is the Farey sum of 0
1 and 1

1 in F1.
This rule is known as the mediant rule. It should be noted that if the denominator
of a Farey sum of two neighbours in Fn−1 exceeds n then this will not be appear
in Fn since the definition of Farey sequence. Definition of Farey sequence can
be extended to Q∞ by assuming ∞ = 1

0 . Hence for a given rational a
c ; it is

known that a
c has finite integer continued fraction expansion. In addition b

d is
the penultimate convergent of the integer continued fraction expansion of a

c . This
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Figure 1. Farey graph

yields ad − bc = ±1; in other words a
c and b

d are Farey neighbours. As a result(
a b
c d

)
∈ Γ.

The Farey graph is a graph with vertex set Q∞. And two reduced fractions p
q

and r
s are adjacent if and only if ps− rq = ±1, i.e they are Farey neighbours. An

edge between two vertices is drawn by a hyperbolic line in H. The edges between
1
0 = ∞ and every integer a are vertical lines. To construct the graph, first join the

vertices 1
0 ,

0
1 and 1

1 and obtain a big triangle. Then by induction if the endpoints of

a long edge are a
c and b

d , the label of the third vertex of the triangle is a
c ⊕

b
d = a+b

c+d ,
see Figure 1.

2. Motivation

There are numerous studies about modular and extended modular group in the
literature, related to many branches of mathematics such as group theory, number
theory automorphic functions, etc. Algebric structures of subgroups of modular
and extended modular group and related topics are studied in [3, 4, 8, 17–21, 26,
31, 33, 34]. In recent years, many studies have contributed the theory of continued
fractions related to the action of some subgroups of Möbius transformations. Series
studied the relations between geodesics on the quotient of the hyperbolic plane by
the modular group and continued fractions [28]. In [2], integer continued fraction
expansions and geodesic expansions were studied from the perspective of graph
theory. Short and Walker represented Rosen continued fractions by path in a class
of graphs in hyperbolic geometry [30]. Same authors defined even integer continued
fractions which all digits are even integers. And they studied connections between
even integer continued fractions and the Farey graph [29].

The fixed points of automorphisms and anti-automorphisms of the extended
complex plane have especially been of great interest in many fields of mathematics
such as number theory, functional analysis, theory of complex functions, geometry
and group theory [22,24,27]. Also fixed points of elements in GL (2,R) in tropical
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algebra are discussed in [7]. In this study we focus on the fixed points of the
elements in extended modular group Γ.

Fixed points of an element V =

(
a b
c d

)
∈ Γ can be calculated by solving the

equation az+b
cz+d = z i.e.

z =
a− d±

√
(a+ d)

2 − 4

2c
(1)

where ad − bc = 1 in other words the corresponding transformation V (z) is auto-
morphism. And similarly fixed points of an anti-automorphism are

z =
a− d±

√
(a+ d)

2
+ 4

2c
(2)

where ad − bc = −1. The action of extended modular group on extended rational
numbers Q∞ is intriguing. This action is defined as;(

a b
c d

)
.

(
p
q

)
=

(
ap+ bq
cp+ dq

)
where

(
a b
c d

)
∈ Γ and the column vector

(
p
q

)
represents the rational number p

q .

Fixed points of an element in Γ are rationals if and only if a+ d = 2 or −2 for the
equation (1) and a+ d = 0 for the equation (2). This means that rational numbers
are fixed only by parabolic or reflection elements.

In this study we establish relations between the Farey graph and elements of Γ
that fixes a given rational p

q . Firstly we obtain matrix representation of the element

fixing the rational p
q via the Farey neighbours of p

q . Then, we consider the relations

between paths in the Farey graph and integer continued fractions and obtain the
element as a word of the generators U and T . Afterwards, we express this word in
block reduced forms and new block reduced forms, related to Fibonacci numbers.
Finally, we give some relevant examples of our results.

3. Matrix Representations of the Parabolic and Reflection
Elements

In this section we obtain the parabolic and reflection elements in Γ as matrices
that fix a given rational. To do this, we use Farey neighbours.

Theorem 1. Let z = p
q ∈ Q∞ and r

s ,
m
k ∈ N (z) then the element

V =

(
ps−mq pm− pr
qs− qk pk − qr

)
(3)

fixes the rational z.



1034 B. DEMİR, M. KARATAŞ

Proof. Since r
s ,

m
k are Farey neighbours of z, the elements V1 =

(
p r
q s

)
and V2 =(

p m
q k

)
belong to Γ. Furhermore V1 and V2 both send ∞ to p

q . As a result

V = V2.V
−1
1 is the desired element. □

Let p
q and r

s are adjacent such that r
s < p

q then ps − qr = 1 otherwise −1.

The trace of the element mentioned in (3) is ps −mq + pk − qr. By the fact that
r
s ,

m
k are Farey neighbours of p

q we have ps − qr = ±1 and pk −mq = ±1. Hence

tr (V ) = 0,±2 and we have proved the following corollary.

Corollary 1. Let z = p
q ∈ Q∞ and r

s ,
m
k ∈ N (z). If r

s and m
k are at the same side

of p
q then the element in (3) is parabolic otherwise a reflection.

We know that the fixed point set of a reflection map is a circle perpendicular to
real axis. If the element V mentioned in (3) is a reflection then we know from [5]

that V fixes the circle centered at
(

ps−mq
qs−qk , 0

)
with radius 1

|qs−qk| .

Example 1. For the rational 8
3 one can choose Farey neighbours as 5

2 and 13
5 .

Then, we have the parabolic element

V =

(
−23 64
−9 25

)
fixes 8

3 . And if one chooses the neighbours as 5
2 and 11

4 then the reflection element

V ′ =

(
−17 48
−6 17

)
fixes not only 8

3 but also the circle centered at
(
17
6 , 0

)
with radius r = 1

6 .

Suppose a Farey neighbour of p
q is r

s . Then some other neighbours can be

obtained by the mediant rule. The following two theorems based on this idea.

Theorem 2. Let p
q ∈ Q∞ then the parabolic element that fixes p

q is

V =

(
±1− pq p2

−q2 ±1 + pq

)
Proof. Let p

q ∈ Q∞ and r
s is a Farey neighbour of p

q . By the mediant rule we have

another Farey neighbour p+r
q+s on the same side with r

s . Using the same technique

in the proof of Theorem 1 we have the element V as stated. Additionally the trace
of the element V is ±2 with determinant 1 which proves V is parabolic in Γ. □

Unlike the Theorem 1, Theorem 2 gives an algorithm to obtain a parabolic
element that fixes a given rational, without using anything but the rational. Here we
do similar things to obtain a reflection whose fixed circle includes a given rational.
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Theorem 3. Let p
q ∈ Q∞ and r

s is a Farey parent of p
q . Then the reflection element

in Γ that fixes p
q is

V =

(
ps− pq + qr p2 − 2pr
2qs− q2 −qr + qp− ps

)
Proof. Suppose p

q ∈ Q∞ and r
s is a Farey parent of p

q . Another Farey parent of p
q

which is at the opposite side of r
s can be obtained by the madiant rule. So we have

this parent as p−r
q−s . The elements V1 =

(
p r
q s

)
and V2 =

(
p p− r
q q − s

)
belong to Γ.

Although one of them is automorphism, the other is anti-automorphism since the
Farey parents are at the opposite side of p

q . Hence the element V = V2.V
−1
1 ∈ Γ

fixes p
q . Since trV = 0, V is a reflection that the fixed point set is a circle that

centered at
(

ps−pq+qr
2qs−q2 , 0

)
with radius r = 1

|2qs−q2| which proves the result. □

So far to this point, we have focused on Farey neighbours. Now observe all
the Farey neighbours of a given reduced rational p

q . Suppose r
s and m

k are Farey

parents of p
q such that r

s < p
q < m

k . Then p
q appears in Fq via r

s ⊕ m
k = p

q . In

other words, the hyperbolic line segment joining r
s and m

k covers all the neighbours.
Consequently all neighbours of p

q can be obtained by the mediant rule;

r

s
<

r

s
⊕ p

q
=

p+ r

q + s
<

p+ r

q + s
⊕ p

q
=

2p+ r

2q + s
< ... <

p

q
< ...

p

q
⊕ m

k
=

p+m

q + k
<

m

k

4. Farey Paths, Integer Continued Fractions and Blocks in
Extended Modular Group Γ

In this section, the relation between integer continued fractions and Farey paths
is used to obtain the word form of the element in Γ, which fixes a given rational
number, in terms of generators. A path in a graph consists of consequtive adjacent
vertices. So a Farey path < v1, v2, ..., vn > is a path such that vi = pi

qi
for i =

1, 2, ..., n are reduced rationals and since the consequtive vi’s are adjacent pi.qi−1−
qi.pi−1 = ±1. The Farey graph is connected hence there is a natural distance
between two rationals v and w that is d(v, w), the minimum number of edges in
any path from v to w in Fn. The distance of an integer to ∞ is d (∞, x) = 1.

Lemma 1. [25] Let p
q = [r0; r1, r2, ..., rn] be a reduced rational number then;

Ur0TUr1TUr2T...UrnT

(
1
0

)
=

(
p
q

)
Theorem 4. Let p

q be a reduced rational and have an integer continued fraction

expansion as [r0; r1, r2, ..., rn], then the parabolic element fixing p
q is

Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0 (4)
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Proof. Let p
q = [r0; r1, r2, ..., rn]. By Lemma 1, we have

Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0

(
p
q

)
= Ur0TUr1TUr2T...UrnT.U

(
1
0

)
= Ur0TUr1TUr2T...UrnT

(
1
0

)
=

(
p
q

)
Since conjugacy preserves the trace we have

tr
(
Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0

)
= tr (U) = 2

which proves the element given in (4) is parabolic. □

We know from [9] that stabilizer of a point in Γ is an infinite cyclic group. So
we can give the following corollary.

Corollary 2. Let p
q = [r0; r1, r2, ..., rn] ∈ Q; then for all 0 ̸= k ∈ Z;

Ur0TUr1TUr2T...UrnT.Uk.TU−rnTU−rn−1T...U−r1TU−r0

is a parabolic element in Γ whose fixed point is p
q .

Now we obtain a reflection element as a word in generators of Γ that fixes a
given rational p

q .

Theorem 5. Let p
q be a reduced rational and have an integer continued fraction

expansion as [r0; r1, r2, ..., rn], then the reflection element in Γ fixing p
q is

Ur0TUr1TUr2T...UrnT.RTU.TU−rnTU−rn−1T...U−r1TU−r0

Proof. We have RTU =

(
1 1
0 −1

)
as a reflection map. Furthermore RTU

(
1
0

)
=(

1
0

)
. The rest of the proof follows similar to the proof of Theorem 4. □

Example 2. Choose the rational 8
5 . The integer continued fraction expansion of 8

5
is

8

5
= 2− 1

3− 1
2

= [2; 3, 2] .

Then the parabolic element fixing 8
5 is

U2TU3TU2TUTU−2TU−3TU−2 =

(
−39 64
−25 41

)
.
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And the reflection element is

U2TU3TU2TRTUTU−2TU−3TU−2 =

(
−89 104
−55 89

)
Here we mention about relations between paths in the Farey graph and integer

continued fractions. The convergents of a certain continued fraction expansion of
a reduced rational p

q = [r0; r1, ..., rn], are defined as Ci = pi

qi
= [r0; r1, ..., ri] for

0 ≤ i ≤ n, where C0 = p0

q0
= r0

1 and Cn = pn

qn
= p

q . Furthermore we know

that pi.qi−1 − qi.pi−1 = ±1. Hence every consequtive pair Ci and Ci−1 are Farey
neighbours. Also, since C0 = r0 ∈ Z and every integer is adjacent to infinity with
a vertical line, < ∞, C0, C1, ..., Cn−1, Cn > is a path from ∞ to p

q . To sum up

every integer fraction expansion of a rational p
q is related to a path from ∞ to

p
q . Moreover the shortest integer continued fraction of p

q is related to a geodesic

path from ∞ to p
q . In Theorem 4 and Theorem 5, the integer continued fraction

expansion of a given rational is related to an element in Γ that fixes the rational.
It is possible to make connections with Farey paths.

5. Block Reduced Forms in the Extended Modular Group Γ

Every element in Γ can be expressed as a word of T, S and R denoted by
W (T, S,R). Consider the blocks

TS =

(
1 1
0 1

)
and TS2 =

(
1 0
1 1

)
Using these blocks every reduced word W (T, S,R) in Γ where the sum of exponents
of R is an even number can be expressed as;

Si (TS)
m0

(
TS2

)n0
... (TS)

mk
(
TS2

)nk
T j ,

and every reduced word W (T, S,R) in Γ where the sum of exponents of R is an
odd number can be expressed as;

Si (TS)
m0

(
TS2

)n0
... (TS)

mk
(
TS2

)nk
T jR

Here i = 0, 1, 2, j = 0, 1, m0 and nk may be zero and other exponents are pos-
itive integers. This representetion is known as the block reduced form [13]. For
example, the block reduced form of the word W (T, S,R) = TSTSTSSTSST is

(TS)
2
.
(
TS2

)2
T . And the block reduced form of the wordW (T, S,R) = RTS2RTS2R

is (TS) .
(
TS2

)2
R. Trace classes of the modular group and extended modular group

are studied in [6, 13] by using the block reduced form. In this section we give the
block reduced form of the element in Γ fixing a given rational p

q .

Theorem 6. Let p
q be a reduced rational number and have an integer continued

fraction expansion [r0; r1, ..., rn] then the block form of the parabolic element fixing
p
q is
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W (T, S,R) = (TS)
r0−1 (

TS2
)
(TS)

r1−2 (
TS2

)
... (TS)

rn−1−2 (
TS2

)
.

(TS)
rn−1 (

TS2
)−1

(TS)
−rn−1 (

TS2
)
(TS)

−rn−1−2 (
TS2

)
.

... (TS)
−r1−2 (

TS2
)
(TS)

−r0−1

Proof. By Theorem 4, we know that

Ur0TUr1TUr2T...UrnT.U.TU−rnTU−rn−1T...U−r1TU−r0

fixes p
q . Considering U = TS we have

W (T, S,R) = (TS)
r0 .T. (TS)

r1 .T... (TS)
rn−1 .T. (TS)

rn .T

(TS) .T. (TS)
−rn .T. (TS)

−rn−1 .T..... (TS)
−r1 .T. (TS)

−r0

= (TS)
r0−1

TS.T.TS. (TS)
r1−2

TS.T...TS (TS)
rn−1−2

TS.

T.TS (TS)
rn−1

.T (TS) .T. (TS)
−rn−1

TS.T.TS (TS)
−rn−2

.

TS.T.....TS (TS)
−r1−2

TS.T.TS (TS)
−r0−1

Using the relations T 2 = I and
(
TS2

)−1
= ST ,

W (T, S,R) = (TS)
r0−1

.
(
TS2

)
. (TS)

r1−2
.
(
TS2

)
...
(
TS2

)
. (TS)

rn−1−2
.(

TS2
)
. (TS)

rn−1
.
(
TS2

)−1
(TS)

−rn−1
.
(
TS2

)
. (TS)

−rn−2 .(
TS2

)
.....

(
TS2

)
. (TS)

−r1−2
.
(
TS2

)
. (TS)

−r0−1

□

Theorem 7. Let p
q be a reduced rational number and have an integer continued

fraction expansion [r0; r1, ..., rn] then the block form of the reflection element fixing
p
q is

W (T, S,R) = (TS)
r0−1

.
(
TS2

)
. (TS)

r1−2
.
(
TS2

)
..... (TS)

rn−1−2
.
(
TS2

)
.

(TS)
rn .

(
TS2

)−rn−2
. (TS) .

(
TS2

)−rn−1−2
. (TS) ....

(TS) .
(
TS2

)−r1−2
. (TS)

(
TS2

)−r0−1
.R

Proof. From Theorem 5, the reflection element fixing p
q is

Ur0TUr1TUr2T...UrnT.RTU.TU−rnTU−rn−1T...U−r1TU−r0 .

After substituting U = TS in the word above, we have

W (T, S,R) = (TS)
r0 T (TS)

r1 T... (TS)
rn−1 T (TS)

rn T

RT (TS)T (TS)
−rn T (TS)

−rn−1 T... (TS)
−r1 T (TS)

−r0

= (TS)
r0−1

TSTTS (TS)
r1−2

TSTTS...TS (TS)
rn−1−2

TS

TTS (TS)
rn−1

TRST (TS) (TS)
−rn−2

TSTTS (TS)
−rn−1−2
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TST...TS (TS)
−r1−2

TSTTS (TS)
−r0−1

Since (TR)
2
= (SR)

2
= I we obtain TR = RT and SR = RS2. Hence,

W (T, S,R) = (TS)
r0−1 (

TS2
)
(TS)

r1−2 (
TS2

)
... (TS)

rn−1−2 (
TS2

)
(TS)

rn
(
TS2

)−rn−2
(TS)

(
TS2

)−rn−1−2
(TS) ...

(TS)
(
TS2

)−r1−2
(TS)

(
TS2

)−r0−1
R

□

We can obtain elements which fix a given rational p
q in terms of TS and TS2 by

finding a path from ∞ to p
q in the Farey graph. We explain this with an example:

Example 3. Suppose the given rational is −10
3 . Then one may choose the path <

∞,−3, −13
4 , −10

3 >, see Figure 2. We know the consequtive vertices in this path are
consequtive convergents of the integer continued fraction expansion of the rational
−10
3 i.e., C0 = −3, C1 = −13

4 and C2 = −10
3 . Hence, we obtain the integer continued

fraction expansion as

−3− 1

4− 1
1

= [−3, 4, 1]

Using the values r0 = −3, r1 = 4 and r2 = 1 in Theorem 6 we have the parabolic
element fixing −10

3 in blocks TS and TS2 as follows:

W (T, S,R) = (TS)
−4 (

TS2
)
(TS)

2 (
TS2

)
(TS)

0 (
TS2

)−1
(TS)

−2(
TS2

)
(TS)

−6
.
(
TS2

)
(TS)

2

We can reduce this word by the presentation of Γ as;

W (T, S,R) = S2.
(
TS2

)2
. (TS)

2
.
(
TS2

)4
. (TS)

3

For the reflection element fixing −10
3 we use Theorem 7;

W (T, S,R) = (TS)
−4 (

TS2
)
(TS)

2 (
TS2

)
(TS)

1 (
TS2

)−3
(TS)(

TS2
)−6

(TS)
(
TS2

)2
R

The block reduced form of this word can be obtained by the relators of Γ;

W (T, S,R) = S2.
(
TS2

)2
. (TS)

3
.
(
TS2

)3
. (TS)

3
.
(
TS2

)3
.R

6. Fibonacci Sequence and New Block Reduced Forms

Jones and Thornton obtained relations between elements of extended modular
group and Fibonacci numbers in [10]. Özgür defined two new sequences which are
generalizations of Fibonacci and Lucas sequences for the Hecke group H(

√
q) where

q ≥ 5 prime [32]. Also there are some results for Modular group and Pell Fibonacci
and Lucas numbers in [14–16, 23]. Koruoğlu and Şahin used a generalized version
of Fibonacci sequence to get relations with extended Hecke groups H (λ) in [12]. In
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Figure 2. The path < ∞,−3, −13
4 , −10

3 >

same study they give an application to extended modular group Γ. They considered
the following elements:

f = RTS =

(
0 1
1 1

)
and h = TSR =

(
1 1
1 0

)
The kth power of f and h are;

fk =

(
fk−1 fk
fk fk+1

)
and hk =

(
fk+1 fk
fk fk−1

)
where fk denotes the kth Fibonacci number. Hence every element in extended
modular group can be expressed as a word in f and h. This reduced word called
New Block Reduced Form. The relations between block reduced forms and new
block reduced forms are;

TS = Rf = hR (5)

TS2 = Rh = fR (6)

It is proved that every block reduced word has a New Block Reduced Form. From
this viewpoint we can express the element given in Theorem 6 and Theorem 7 in
new block reduced form. We explain this with an example.

In example 3 the parabolic element fixing −10
3 is;

S2
(
TS2

)2
(TS)

2 (
TS2

)4
(TS)

3

Using the relations 5 and 6 and S2 = TfR; we can write this word;

TfR. (Rh.fR) . (Rf.hR) . (Rh.fR.Rh.fR) . (Rf.hR.Rf)
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Since R2 = I we have the block reduced form;

T.f.h.f2.h2.f.h.f2.h.f =

(
0 −1
1 0

)(
0 f1
f1 f2

)
.

(
f2 f1
f1 0

)(
f1 f2
f2 f3

)(
f3 f2
f2 f1

)
(
0 f1
f1 f2

)(
f2 f1
f1 0

)(
f1 f2
f2 f3

)(
f2 f1
f1 0

)(
0 f1
f1 f2

)
It is stated in the same example that the reflection element fixing −10

3 is;

S2
(
TS2

)2
(TS)

3 (
TS2

)3
(TS)

3 (
TS2

)3
R

Following the same procedure above we have the new block reduced form of this
word as;

T.f.h.
(
f2.h

)4
.f =

(
0 −1
1 0

)(
0 f1
f1 f2

)(
f2 f1
f1 0

)[(
f1 f2
f2 f3

)(
f2 f1
f1 f0

)]4 (
0 f1
f1 f2

)
7. Conclusion

In this article, elements in the extended modular group Γ which fix rationals,
are considered. Matrix representations of parabolic and reflection elements which
fix a given rational are mentioned in Section 3 via Farey neighbours. In Section
4 relationship between Farey paths and elements of Γ which have rational fixed
points, is established. And these elements obtained as words in generators U and
T . Then, block reduced form of these words are given in Section 5. We use new
block reduced forms in Section 6 to establish relations with Fibonacci numbers. As
a summary of this work we give a final example, see Table 1.

Path < ∞, 0, 1
2 ,

3
7 >

ICF [0;−2, 3]
W(U,T) for parabolic element T.U−2.T.U3.T.U.T.U−3.T.U2.T

BRF for parabolic element
(
TS2

)2
. (TS)

2
.
(
TS2

)4
. (TS)

2
.T

NBRF for parabolic element f.h2.f2.h.f.h2.f.T
W(U,T) for reflection element T.U−2.T.U3.T.R.T.U.T.U−3.T.U2.T

BRF for reflection element
(
TS2

)2
. (TS)

3
.
(
TS2

)
. (TS)

3
.
(
TS2

)2
.T.R

NBRF for reflection element f.h2.f.h3.f.h2.f.T

Table 1. Elements in Γ fixing 3
7
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[3] Şahin, R., On the some normal subgroups of the extended modular
group, Applied Mathematics and Computation, 218 (3) (2011), 1025–1029,

https://dx.doi.org/10.1016/j.amc.2011.03.074.
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Abstract. In this article, the M -projective and Weyl curvature tensors on
a normal paracontact metric manifold are discussed. For normal paracontact

metric manifolds, pseudosymmetric cases are investigated and some interest-

ing results are obtained. We show that a semisymmetric normal paracontact
manifold is of constant sectional curvature. We also obtain that a pseudosym-

metric normal paracontact metric manifold is an η−Einstein manifold. Finally,
we support our topic with an example.

1. Introduction

The notion of odd-dimensional manifolds with contact and almost contact struc-
tures was initiated by Boothby and Wang [1]. In [2], Sasaki and Hatakeyama
reinvestigated them using tensor calculus. Tanno in [3] classified connected almost
contact metric manifolds whose automorphism groups possess maximum dimen-
sion. For such manifolds, the sectional curvature of a plane section containing ξ
is a constant named c. He showed that it can be divided into the following three
classes.

• Class-1⇒ Homogeneous normal contact Riemannian manifolds with c > 0.

• Class-2⇒ Global Riemannian products of a line or a circle with a Kähler
manifold of constant holomorphic sectional curvature if c = 0.
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• Class-3⇒ A warped product space R×f C if c < 0.

It is well known that the manifolds of class-1 are characterized by admitting a
Sasakian structure. In [4], Kenmotsu investigated the differential geometric prop-
erties of the manifolds of class-3. In general, these structures are not Sasakian [5].

In [6], S. Zamkovoy and G. Nakova reviewed the decomposition of almost con-
tact metric manifolds in eleven classes. In addition to almost paracontact metric
manifolds, K. Mandal and U.C De in [7], N. Özdemir, S. Aktay and M.solgun
in [8] examined paracontact metric manifolds and obtained their various geomet-
ric properties. Also, in [9], H. Pandey and A. Kumar examined the anti-invariant
submanifolds of almost paracontact manifolds. Similarly, J. Welyczko [10] studied
Legendre curves on 3-dimensional normal paracontact metric manifolds.

After then, in [11], Pokhariyal and Mishra have introduced an M-projective
curvature tensor on a Riemannian manifold. The properties of the M-projective
curvature tensor in Sasakian and Kähler manifolds were developed by Ojha in [12].
He showed that it bridges the gap between conformal curvature tensor, conharmonic
curvature tensor, and concircular curvature tensor. M-projective curvature tensor
on different manifolds studied by many geometers such as Kenmotsu, Sasakian, and
generalized Sasakian space form.

In [14], by using some tensors, invariant submanifolds of an almost Kenmotsu
(κ, µ, ν)-space are characterized. Similarly, many authors have presented important
work with various manifolds and some curvature tensors on them ( [13], [15]- [18]).

Motivated by these ideas, we have attempted to study properties of the Weyl-
conformal curvature tensor in a normal paracontact metric manifold. We think
that some interesting results contribute differential geometry.

The present paper is organized as follows.
In section 2, we give the notations and preliminary results of normal paracontact

metric manifolds that will be used later. In section 3, we show that a normal
paracontact metric manifold satisfying R(X,Y ) ·R = 0 if and only if it has constant
sectional curvature and R(X,Y ) · M = 0 implies that it η-Einstein manifold.

2. Preliminaries

An almost paracontact structure on a n-dimensional smooth manifold M is given
by a (1, 1)-type tensor field φ, a vector field ξ, and a 1-form η satisfying the following
condition

φ2 = I − η ⊗ ξ, η(ξ) = 1. (1)

As an immediate consequent φξ = 0, η ◦ φ = 0 and the tensor φ has constant
rank n− 1. If an almost paracontact manifold is endowed with a semi-Riemannian
metric g such that

g(φX,φY ) = −g(X,Y ) + η(X)η(Y ), g(X, ξ) = η(X), (2)
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for any X,Y ∈ Γ(TM), then Mn(φ, ξ, η, g) is called an almost paracontact metric
manifold, where Γ(TM) is the set of the differentiable vector fields on M .
It follows that

g(φX, Y ) = −g(X,φY ).

The fundamental 2-form of the almost paracontact metric manifold is given by

Φ(X,Y ) = g(φX, Y ).

If dη = Φ, then η becomes a contact form, that is, η ∧ (dη)n ̸= 0 and Mn(φ, ξ, η, g)
is said to be a paracontact metric manifold. Any such pseudo-Riemannian metric
manifold is of signature (n+1

2 , n−1
2 ) for n = 2m+ 1. In this case, we have

(∇Xφ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (3)

for any X,Y ∈ Γ(TM), where ∇ denote the Levi-Civita connection on M . (1) and
(3) imply that

∇Xξ = φX.

An almost paracontact structure is said to be normal if the tensor Nφ−2dη⊕ξ = 0
[13], where Nφ the Nijenhuis tensor of φ given by

Nφ(X,Y ) = φ2[X,Y ] + [φX,φY ]− φ[φX, Y ]− φ[X,φY ]

For the sake of brevity, a normal paracontact metric manifold is said to be para-
contact metric manifold [8].

A normal paracontact metric manifold M is of a constant sectional curvature c,
then its Riemannian curvature tensor R is given by

R(X,Y )Z =
c+ 1

4

{
g(Y,Z)X − g(X,Z)Y

}
(4)

+
c− 1

4

{
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y,Z)η(X)ξ + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φY

}
,

for any X,Y, Z ∈ Γ(TM) [8].

For a (0, k)-type tensor field T and a (0, 2)-type tensor field A on a semi-
Riemannian manifold (M, g), the Tachibana tensor Q(A, T ) is defined as

Q(A, T )(X1, X2, ..., Xk;X,Y ) = −T ((X ∧A Y )X1, X2, ...Xk)

−T (X1, (X ∧A Y )X2, ...Xk)

.

.

.

− T (X1, ...Xk−1, (X ∧A Y )Xk), (5)
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for all X1, X2, ...Xk, X, Y ∈ Γ(TM), where X ∧A Y is an endomorphism defined by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y. (6)

A semi-Riemannian manifold (M, g) is pseudosymmetric if its the Riemannian
curvature tensor R satisfies

R ·R = LQ(g,R), (7)

where L is a function on M . Particularly, if L = 0, it is called a semisymmetric
manifold.

On a normal paracontact metric manifold Mn, the following relations hold;

R(X,Y )ξ = η(X)Y − η(Y )X (8)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ (9)

η(R(X,Y )Z) = η(Y )g(X,Z)− η(X)g(Y,Z) (10)

S(X, ξ) = (1− n)η(X), Qξ = (1− n)ξ, (11)

for any X,Y, Z ∈ Γ(TM), where S and Q are, respectively, the Ricci tensor and
Ricci operatory of M given by g(QX,Y ) = S(X,Y ).

On the other hand, the Weyl-conformal curvature and M -projective curvature
tensors play an important role in differential geometry as well as in relativity. The
Weyl-conformal curvature tensor and M-projective curvature tensor of a Riemann-
ian manifold (Mn, g), n > 2, are respectively, defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2
{g(Y,Z)QX − g(X,Z)QY

+ S(Y,Z)X − S(X,Z)Y }

+
τ

(n− 1)(n− 2)
{g(Y, Z)X − g(X,Z)Y } (12)

and

M(X,Y )Z = R(X,Y )Z − 1

2(n− 1)
{S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY }, (13)

for any X,Y, Z ∈ Γ(TM), where τ denote the scalar curvature of M .
A normal paracontact metric manifold M is called η-Einstein if its Ricci tensor

S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (14)

for any X,Y ∈ Γ(TM), where a and b are arbitrary constants. If b = 0, then
manifold is said to be Einstein.
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If a normal paracontact manifold Mn(φ, η, ξ, g) is an η-Einstein, from (11) and
(14), we get 1− n = a+ b, τ = na+ b, that is,

a = 1 +
τ

n− 1
and b = −n− τ

n− 1
.

Thus (14) takes form

S(X,Y ) = g(X,Y )(1 +
τ

n− 1
)− (n+

τ

n− 1
)η(X)η(Y ). (15)

Theorem 1. An n-dimensional M -projectively flat normal paracontact metric man-
ifold Mn is an Einstein manifold.

Proof. Let us assume that normal paracontact metric manifoldMn isM -projectively
flat, then from (8) and (13), we obtain

R(X,Y )Z =
1

2(n− 1)
{S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY }.

Here replacing Z = ξ and using (8), we obtain

η(X)Y − η(Y )X =
1

n− 1
{η(Y )X − η(X)Y },

which implies that

QX = (1− n)X,

or

S(X,Y ) = (1− n)g(X,Y ), (16)

for all X,Y ∈ Γ(TM). □

Proposition 1. If A normal paracontact metric manifold Mn(φ, η, ξ, g) is Weyl-
conformally flat, then it an η-Einstein manifold.

Next, let us suppose that normal paracontact metric manifold Mn is Weyl-
conformal flat, then from (12), we have

R(X,Y )Z =
1

n− 2

{
g(Y, Z)QX − g(X,Z)QY + S(Y,Z)X

− S(X,Z)Y

}
− τ

(n− 1)(n− 2)

{
g(Y, Z)X − g(X,Z)Y

}
, (17)

for any X,Y, Z ∈ Γ(TM). Taking Z = ξ and making use of (8) and (11), we have

η(X)Y − η(Y )X =
1

n− 2

{
η(Y )QX − η(X)QY + (n− 1)η(Y )X

− (n− 1)η(X)Y

}
− τ

(n− 1)(n− 2)
{η(Y )X − η(X)Y }. (18)
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This implies that

(1 +
τ

n− 1
)(η(X)Y − η(Y )X) + η(Y )QX − η(X)QY = 0.

It follows for Y = ξ,

QX = −(n+
τ

n− 1
)η(X)ξ + (1 +

τ

n− 1
)X,

that is, the Weyl- projectively flat normal paracontact metric manifold is an η-
Einstein. Thus we have

S(X,Y ) = (1 +
τ

n− 1
)g(X,Y )− (n+

τ

n− 1
)η(X)η(Y ). (19)

From (15) and (19), we have the following Proposition.

Proposition 2. A normal paracontact metric manifold Mn(φ, η, ξ, g) is an η-
Einstein manifold if it is Weyl-projectively flat.

3. Pseudosymmetric Normal Paracontact Metric Manifolds

In this section, we consider pseudosymmetric normal paracontact metric mani-
folds.

Theorem 2. If a normal paracontact metric manifold Mn(φ, ξ, η, g) is pseudosym-
metric provided L ̸= −1, then it is an η-Einstein manifold. Furthermore, it is a
semisymmetric if and only if it has a constant sectional curvature 1.

Proof. We suppose that n-dimensional normal paracontact metric manifold Mn is
pseudosymmetric. Then from (7), we have

(R(X,Y ) ·R)(U, V, Z) = LQ(g,R)(U, V, Z;X,Y ),

for all X,Y, Z, U, V ∈ Γ(TM). It follows that

R(X,Y )R(U, V )Z − R(R(X,Y )U, V )Z −R(U,R(X,Y )V )Z

− R(U, V )R(X,Y )Z = −L{R((X ∧g Y )U, V )Z

+ R(U, (X ∧g Y )V )Z +R(U, V )(X ∧g Y )Z}. (20)

Putting Y = Z = ξ in (20) and by virtue of (9), we have

R(X, ξ)R(U, V )ξ − R(R(X, ξ)U, V )ξ −R(U,R(X, ξ)V )ξ

− R(U, V )R(X, ξ)ξ = −L{R(η(U)X − g(X,U)ξ, V )ξ

+ R(U, η(V )X − g(X,V )ξ)ξ +R(U, V )(X − η(X)ξ)}.
after necessary arrangements are made, we conclude

R(U, V )X + g(X,V )U − g(X,U)V = L{g(X,U)V − g(X,V )U

+ g(X,V )η(U)ξ − g(X,U)η(V )ξ −R(U, V )X}.
if both sides of this expression are multiplied by W , we have

g(R(U, V )X,W ) + g(X,V )g(U,W )− g(X,U)g(V,W )
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= L{g(X,U)g(V,W )− g(X,V )g(U,W )

+ g(X,V )η(U)η(W )− g(X,U)η(V )η(W )

− g(R(U, V )X,W )}, (21)

for all W ∈ Γ(TM). Here replacing X = V = e1, e2, ..., en−1, en = ξ in (21) for the
orthonormal basis of Γ(TM) and by means of Ricci tensor, we get

S(U,W ) + (n− 1)g(U,W ) = L{(1− n)g(U,W )

+ (n− 1)η(U)η(W )− S(U,W )},
After the necessary arrangements are made, we conclude

S(U,Z) + (n− 1)g(U,Z) = L

{
(1− n)g(U,W ) + (n− 1)η(U)η(W )

−S(U,W )

}
,

that is,

S(U,W ) = (1− n)g(U,W ) + (n− 1)
L

L+ 1
η(U)η(W ). (22)

If it is a semisymmetric, then L = 0 and (21) takes form

R(U, V )X = g(X,U)V − g(X,V )U.

This tells us that M has a constant sectional curvature 1. Conversely, if it has a
constant sectional curvature 1, then we have

(R(X,Y )R)(U, V, Z) = R(X,Y )R(U, V )Z −R(R(X,Y )U, V )Z −R(U,R(X,Y )V )Z

− R(U, V )R(X,Y )Z

= R(X,Y ){g(U,Z)V − g(V,Z)U} −R(g(X,U)Y − g(Y, U)X,V )Z

− R(U, g(X,V )Y − g(Y, V )X)Z −R(U, V ){g(X,Z)Y − g(Y,Z)X}
= g(Z,U){g(X,V )Y − g(Y, V )X} − g(V,Z){g(X,U)Y − g(Y,U)X}
− g(X,U){g(Y,Z)V − g(V,Z)Y }+ g(Y,U){g(X,Z)V − g(V,Z)X}
− g(X,V ){g(U,Z)Y − g(Y,Z)U}+ g(Y, V ){g(U,Z)X − g(X,Z)U}
− g(X,Z){g(U, Y )V − g(Y, V )U}+ g(Y,Z){g(U,X)V − g(V,X)U}
= 0.

This completes the proof. □

Now, we will calculate M(X,Y )ξ for later use. From (8)- (11), we obtain

M(X,Y )ξ =
1

2
{η(X)Y − η(Y )X}+ 1

2(n− 1)
{η(X)QY − η(Y )QX}, (23)

M(ξ, Y )Z =
1

2
{η(Z)Y − g(Y, Z)ξ} − 1

2(n− 1)
{S(Y,Z)ξ − η(Z)QY } (24)
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and

η(M(X,Y )Z) =
1

2(n− 1)
{η(Y )S(X,Z)− η(X)S(Y, Z)}

+
1

2
{η(Y )g(X,Z)− η(X)g(Y,Z)}, (25)

M(ξ,X)Y =
1

2
{η(Y )X − g(X,Y )ξ}+ 1

2(n− 1)
{η(Y )QX

− S(X,Y )ξ}. (26)

Theorem 3. A normal paracontact metric manifold Mn satisfying M · R = 0 is
an Einstein manifold.

Proof. We suppose that (M(X,Y )·R)(U, V, Z) = 0, for anyX,Y, Z, U, V ∈ Γ(TM).
This implies that

M(X,Y )R(U, V )Z − R(M(X,Y )U, V )Z −R(U,M(X,Y )V )Z

− R(U, V )M(X,Y )Z = 0. (27)

Putting Y = Z = ξ in (27), we obtain

M(X, ξ)R(U, V )ξ − R(M(X, ξ)U, V )ξ −R(U,M(X, ξ)V )ξ

− R(U, V )M(X, ξ)ξ = 0.

By using (9) and (24), we conclude

1

2
g(X,V )U +

1

2(n− 1)
S(X,V )U +

1

2
R(U, V )X

+
1

2(n− 1)
R(U, V )QX = 0. (28)

Taking the inner product with ξ, we reach

η(U)S(X,V ) + (n− 1)η(U)g(X,V ) + (n− 1){η(V )g(X,U)

− η(U)g(X,V )}+ η(V )S(X,U)− η(U)S(X,V )

= 0,

that is,

S(X,U) = (1− n)g(X,U).

This proves our assertion. □

Definition 1. A semi-Riemannian manifold (M, g) is said to be the mathcalMprojective
pseudosymmetric if there exists a function L on M such that

R · M = LQ(g,M),

where R and M denote the Riemannian and M- projectively curvature tensors of
M . If L = 0, it also called the M-projectively semisymmetric.
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Theorem 4. An M-projective pseudosymmetric normal paracontact manifold
Mn(φ, η, ξ, g) is an η-Einstein manifold.

Proof. Let us take M-projective pseudosymmetric normal paracontact manifold
Mn(φ, η, ξ, g). From (5), (6), we have

−L

{
M((X ∧g Y )U, V )Z + M(U, (X ∧g Y )V )Z +M(U, V )(X ∧g Y )Z

}
= R(X,Y )M(U, V )Z −M(R(X,Y )U, V )Z

− M(U,R(X,Y )V )Z −M(U, V )R(X,Y )Z, (29)

for all X,Y, U, V, Z ∈ Γ(TM). Setting X = Z = ξ in (29), by using (23)-(26), we
have

− L{1
2
[g(Y, U)V − g(Y, V )U + g(V, Y )η(U)ξ − g(Y,U)η(V )ξ]

+
1

2(n− 1)
[g(Y, U)QV − g(Y, V )QU + g(Y, V )η(U)Qξ

− g(Y,U)η(V )Qξ]−M(U, V )Y } =
1

2
[g(Y,U)V − g(Y, V )U ]

+
1

2(n− 1)
[η(V )S(Y,U)ξ − η(U)S(V, Y )ξ + g(Y, U)QV

− η(V )g(Y, U)Qξ + η(U)g(Y, V )Qξ − g(Y, V )QU ]

− M(U, V )Y.

If both sides of this equality are multiplied by W and by means of definition of the
Ricci tensor, we obtain

− L

{
1

2
[g(Y, U)g(V,W )− g(Y, V )g(U,W ) + g(V, Y )η(U)η(W )

− g(Y,U)η(V )η(W )] +
1

2(n− 1)
[g(Y,U)S(V,W )− g(Y, V )S(U,W )

+ g(Y, V )η(U)S(ξ,W )− g(Y,U)η(V )S(ξ,W )]− g(M(U, V )Y,W )

}
=

1

2
[g(Y, U)g(V,W )− g(Y, V )g(U,W )]

+
1

2(n− 1)

[
η(V )S(Y,U)η(W )− η(U)S(V, Y )η(W )

+ g(Y,U)S(V,W )− η(V )g(Y,U)S(ξ,W ) + η(U)g(Y, V )S(ξ,W )

− g(Y, V )S(U,W )

]
− g(M(U, V )Y,W ).
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Here taking trace boht of sides for Y = V = ei, for 1 ≤ i ≤ n, in the last equality,

−L

n∑
i=1

{
1

2
[ϵig(ei, U)g(ei,W ) − ϵig(ei, ei)g(U,W ) + ϵig(ei, ei)η(U)η(W )

−ϵig(ei, U)η(ei)η(W )] +
1

2(n− 1)
[ϵig(ei, U)S(ei,W )− ϵig(ei, ei)S(U,W )

+ ϵig(ei, ei)η(U)S(ξ,W )− ϵig(ei, U)η(ei)S(ξ,W )]

− ϵig(M(U, ei)ei,W )

}
=

n∑
i=1

ϵi

{
1

2
[ϵig(ei, U)g(ei,W )− ϵig(ei, ei)g(U,W )]

+
1

2(n− 1)
[ϵiη(ei)S(ei, U)η(W )− ϵiη(U)S(ei, ei)η(W )

+ ϵig(ei, U)S(ei,W )− ϵiη(ei)g(ei, U)S(ξ,W )

+ ϵiη(U)g(ei, ei)S(ξ,W )− ϵig(ei, ei)S(U,W )]

− ϵig(M(U, ei)ei,W )

}
, (30)

where ϵi is the signature {ei}. On the other hand, by direct calculations, we have

ϵig(M(U, ei)ei,W ) =
1

2(n− 1)
{n.S(U,W )− τ .g(U,W )}.

Making use of (30) and after the necessary arrangements are revised, we get

S(U,W ) =
(1− n)(n− 1) + τ

2n− 1
g(U,W ) +

n(1− n)− τ

(2n− 1)(1 + L)
η(U)η(W ),

which proves the theorem. □

Definition 2. A normal paracontact manifold Mn(φ, η, ξ, g) is said to be the Weyl-
pseudosymmetric if there exists a function L on M such that

R · C = LQ(g, C),

where R and C denote the Riemannian and Weyl-conformal curvature tensors of
M . If L = 0, then it also called the Weyl-semisymmetric.

Now, we consider the Weyl-conformal curvature tensor of Mn given by (12) for
later use.

C(X,Y )ξ =

(
1− n− τ

(n− 1)(n− 2)

)
(η(X)Y − η(Y )X)

+
1

n− 2
(η(X)QY − η(Y )QX) (31)
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and

C(ξ,X)Y =

(
1− n− τ

(n− 1)(n− 2)

)
(η(Y )X − g(X,Y )ξ)

+
1

n− 2
(η(Y )QX − S(X,Y )ξ). (32)

Theorem 5. The Weyl-pseudosymmetric normal paracontact metric manifold
Mn(φ, η, ξ, g) is an η-Einstein manifold.

Proof. Let Mn(φ, η, ξ, g) be the Weyl-pseudosymmetric, then there is a function L
such that

(R(X,Y ) · C)(U, V, Z) = LQ(g, C)(U, V, Z;X,Y ),

for all X,Y, U, V, Z ∈ Γ(TM). This implies that

R(X,Y )C(U, V )Z − C(R(X,Y )U, V )Z − C(U,R(X,Y )V )Z

− C(U, V )R(X,Y )Z = −L

{
C((X ∧g Y )U, V )Z

+ C(U, (X ∧g Y )V )Z + C(U, V )(X ∧g Y )Z

}
. (33)

Here setting X = Z = ξ in (33), we have

R(ξ, Y )C(U, V )ξ − C(R(ξ, Y )U, V )ξ − C(U,R(ξ, Y )V )ξ

− C(U, V )R(ξ, Y )ξ = −L

{
C((ξ ∧g Y )U, V )ξ

+ C(U, (ξ ∧g Y )V )ξ + C(U, V )(ξ ∧g Y )ξ

}
. (34)

After the necessary calculations, we reach at

1− n− τ

(n− 1)(n− 2)
{g(Y, U)V − g(Y, V )U}

+
1

n− 2
{η(V )S(Y, U)ξ − η(U)S(V, Y )ξ

+ g(Y,U)QV − η(V )g(Y,U)Qξ

+ η(U)g(Y, V )Qξ − g(Y, V )QU} − C(U, V )Y

= −L{ 1− n− τ

(n− 1)(n− 2)
(g(Y, U)V − g(Y, V )U − g(Y,U)η(V )ξ

+ g(Y, V )η(U)ξ) +
1

n− 2
(g(Y,U)QV − g(Y, V )QU

− η(V )g(Y, U)Qξ + η(U)g(Y, V )Qξ)− C(U, V )Y }. (35)

If both sides of the equality are multiplied by W , we obtain

1− n− τ

(n− 1)(n− 2)
{g(Y,U)g(V,W )− g(Y, V )g(U,W )}
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+
1

n− 2
{η(V )S(Y,U)η(W )− η(U)S(V, Y )η(W )

+ g(Y,U)S(V,W )− η(V )g(Y,U)S(ξ,W )

+ η(U)g(Y, V )S(ξ,W )− g(Y, V )S(W,U)}
− g(C(U, V )Y,W )

= −L{ 1− n− τ

(n− 1)(n− 2)
(g(Y, U)g(V,W )− g(Y, V )g(U,W )

− g(Y,U)η(V )η(W ) + g(Y, V )η(U)η(W ))

+
1

n− 2
(g(Y,U)S(V,W )− g(Y, V )S(U,W )

− η(V )g(Y,U)S(ξ,W ) + η(U)g(Y, V )S(ξ,W ))

− g(C(U, V )Y,W )}. (36)

Putting Y = V = e1, e2, ...en−1, en = ξ in (36) for the orthonormal basis of Γ(TM)
and taking into account definition of Ricci tensor, we have

1− n− τ

(n− 1)(n− 2)

n∑
i=1

{
ϵi{g(ei, U)g(ei,W )− ϵig(ei, ei)g(U,W )}

+
1

n− 2
{ϵiη(ei)S(ei, U)η(W )− ϵiη(U)S(ei, ei)η(W )

+ ϵig(ei, U)S(ei,W )− ϵiη(ei)g(ei, U)S(ξ,W )

+ ϵiη(U)g(ei, ei)S(ξ,W )− ϵig(ei, ei)S(W,U)}

− ϵig(C(U, ei)ei,W )

}
= −L{ 1− n− τ

(n− 1)(n− 2)

n∑
i=1

{
ϵi(g(ei, U)g(ei,W )− ϵig(ei, ei)g(U,W )

− ϵig(ei, U)η(ei)η(W ) + ϵig(ei, ei)η(U)η(W ))

+
1

n− 2
(ϵig(ei, U)S(ei,W )− ϵig(ei, ei)S(U,W )

− ϵiη(ei)g(ei, U)S(ξ,W ) + ϵiη(U)g(ei, ei)S(ξ,W ))

− ϵig(C(U, ei)ei,W )}
}
. (37)

By using (11) and after the necessary abbreviations, (37) implies that

S(U,W ) = (1− τ

n− 1
)g(U,W )− (n+

τ

n− 1
)η(U)η(W ).

This proves our assertion. □

Now, we will give an non-trivial example for illustration our results.
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Example 1. Let us the 5-dimensional manifold

M5 = {(x1, x2, x3, x4, x5) : xi ∈ R, }

where (xi) denote the cartesian coordinate in R5 for 1 ≤ i ≤ 5. Then the vector
fields

e1 =
∂

∂x1
, e2 =

∂

∂x2
, e3 = 2x2

∂

∂x1
+

∂

∂x3
, e4 = 2x3

∂

∂x1
+

∂

∂x4
, e5 = −2x4

∂

∂x1
+

∂

∂x4

are linearly independent at each point of M5. By g, we denote the semi-Riemannian
metric tensor such that

g(ei, ej) =


1; i = j = 1, 3, 4

−1; i = j = 2, 5

0; i ̸= j

Let η be the 1-form defined by η(X) = g(X, e1) for all X ∈ Γ(TM). Now, we
definite the paracontact metric structure φ such that

φe1 = 0, φe2 = −e3, φe3 = −e2, φe4 = −e5, φe5 = −e4.

Then we can easily see that

η(e5) = 1, φ2X = X − η(X)ξ, e5 = ξ

and
g(φX,φY ) = −g(X,Y ) + η(X)η(Y )

for all X,Y ∈ Γ(M̃). Thus M5(φ, η, ξ, g) defines an almost paracontact metric

manifold. By ∇̃, we denote the Levi-Civita connection on M̃ . Then by direct
calculations, we have non-zero the components

[e2, e3] = 2e1, [e3, e4] = 2e1, [e4, e5] = −2e1.

Let ∇ be the Levi-Civita connection on M . Using the properties of paracontact
metric structure and Kozsul formulae, we can observe the non-zero components

∇e2e1 = −e3 = φe2, ∇e3e1 = −e2 = φe3, ∇e4e1 = −e5 = φe4, ∇e5e1 = −e4 = φe5

Thus one can easily verified

∇̃Xe1 = φX,

for all X ∈ Γ(TM) This tells us that M5(φ, η, ξ, g) is a normal paracontact metric
manifold with paracontact metric structure (φ, η, ξ, g). By straightforward calcu-
lations, we can easily see that non-zero components of the Riemannian curvature
tensor R,

R(ei, e1)e1 = −ei, 2 ≤ i ≤ 5.

This tell us that
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R(X,Y )Z = g(X,Z)Y − g(Y,Z)X,

for all X,Y, Z ∈ Γ(TM), that is, M̃(φ, η, ξ, g) is real space form with constant
sectional curvature 1.
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APPROXIMATION PROPERTIES OF BERNSTEIN’S SINGULAR

INTEGRALS IN VARIABLE EXPONENT LEBESGUE SPACES
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Abstract. In generalized Lebesgue spaces Lp(·) with variable exponent p (·)
defined on the real axis, we obtain several inequalities of approximation by inte-

gral functions of finite degree. Approximation properties of Bernstein singular
integrals in these spaces are obtained. Estimates of simultaneous approxima-

tion by integral functions of finite degree in Lp(·) are proved.

1. Introduction

In this work we consider approximation properties of Bernstein’s singular inte-
grals for functions given in the variable exponent Lebesgue spaces Lp(x) (R). This
scale of function spaces were studied in detail in books Uribe-Fiorenza [15], Dien-
ing, Harjulehto, Hästö, Růžička [17] and Sharapudinov [40]. Lp(x) (R) has many
applications in several branches of mathematics such as elasticity theory [50], fluid
mechanics [38], [37], differential operators [38], [18], nonlinear Dirichlet bound-
ary value problems [32], nonstandard growth [50] and variational calculus. Vari-
able exponent works started with W. Orlicz [35] and developed in many direc-
tions. For example, Lp(x) (R) is a modular space ( [33]) and under the condition
p+ := esssupx∈Rp (x) < ∞, Lp(x) (R) becomes a particular case of the Musielak-
Orlicz spaces [33]. Starting from nineties, studies on Lp(x) (R) has reached a positive
momentum: See [32], [39], [20], [16] and many others.
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In variable exponent Lebesgue spaces on [0, 2π] (or [0, 1]), some fundamental re-
sults corresponding to the approximation of function have been obtained by Shara-
pudinov [41–45]. Some results on approximation in Lp(x) ([0, 2π]) or other function
classes can be seen e.g. in [1, 3–6,8, 9, 19,21–25,27–30,48].

In this work, we aim to obtain simultaneous theorems on approximation by entire
functions of finite degree in variable exponent Lebesgue spaces on the whole real
axis R.

Approximation by entire function of finite degree in the real axis started by the
works of Bernstein [11, 12], N. Wiener and R. Paley [36], N. I. Ahiezer [2], S. M.
Nikolskii [34]. Note that an entire function of finite exponential type is merely
an entire function of order 1 and finite type that in approximation theory, these
often play an important role similar to trigonometric polynomials in the case of
approximation of periodic functions.

Note that, some results on approximation by entire integral functions of finite de-
gree were obtained by Ibragimov [26] and Taberski [46,47] in the classical Lebesgue
spaces Lp (R).

We can give some required definitions. We denote by P the class of exponents
p(x) : R → [1,∞) such that p(x) is a measurable function and p(x) satisfy conditions

1 ≤ p− := essinfx∈Rp(x), p+ := esssupx∈Rp (x) < ∞. (1)

We define Lp(·) := Lp(·)(R) as the set of all functions f : R → C such that

Ip(·)

(
f

λ

)
:=

∫
R

∣∣∣∣f(y)λ

∣∣∣∣p(y) dy < ∞ (2)

for some λ > 0. The set of functions Lp(·), with norm

∥f∥p(·) := inf

{
η > 0 : Ip(·)

(
f

η

)
< 1

}
is a Banach space.

For p ∈ P we define its conjugate p′(x) := p(x)
p(x)−1 for p(x) > 1 and p′(x) := ∞

for p(x) = 1.
For i ∈ N, all constants ci (or c) will be some positive numbers such that ci will

depend on main parameters of the problem. In some cases we will use temporaryly
some generic constans C, c > 0 for clarity (for example in statements of some
theorems). We will give explicit constants in the proofs but these constants are not
best constants.

Throughout this paper symbol A ≲ B will mean that there exists a constant C
depending only on unimportant parameters in question such that inequality A ≤CB
holds.

Definition 1. Let PLog be a subclass ( [17]) of P such that there exist constants
c1, c2 > 0, c3 ∈ R with properties

|p(x)− p(y)| ln (e+ 1/|x− y|) ≤ c1 < ∞, ∀x, y ∈ R, (3)
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|p(x)− c3| ln (e+ |x|) ≤ c2 < ∞, ∀x ∈ R. (4)

2. Transference Result

Let C∞
0 be class of infinitely times continuously differentiable functions ϕ with

compact support sptϕ := {x ∈ R : ϕ (x) ̸= 0}. Let C(A) be the class of continuous
functions defined on A. Define ∥f∥C(A) := sup {|f (x)| : x ∈ A} for f ∈ C(A).

For given f ∈ Lp(·) we can define an auxiliary function as follows: Define

Ff (u) :=Ff,G (u) :=

∫
R
f (u+ x) |G (x)| dx, u ∈ R, (5)

where G ∈ Lp′(·) ∩ C∞
0 and ∥G∥p′(·) ≤ 1. Also we set c0:=∥G∥C(R).

Theorem 1. Let p ∈ PLog and f ,g ∈ Lp(·). If

∥Ff,G∥C(R) ≲ ∥Fg,G∥C(R) ,

with an absolute positive constant, then, we have following norm inequality

∥f∥p(·) ≲ ∥g∥p(·)
with a positive constant depending only on p.

3. Mollifiers and forward Steklov means in Lp(·)

Definition 2. Suppose that 0 < δ < ∞ and τ ∈ R. We define ( [44]) family of
translated Steklov operators {Sδ,τf}, by

Sδ,τf(x) :=
1

δ

∫ x+τ+δ/2

x+τ−δ/2

f (t) dt, x ∈ R (6)

for locally integrable function f defined on R.

Let f and g be two real-valued measurable functions on R. We define the con-
volution f ∗ g of f and g by setting (f ∗ g)(x) =

∫
R f(y)g(x − y)dy for x ∈ R for

which the integral exists in R.
The following result on mollifiers in variable exponent Lebesgue spaces is ob-

tained by D. Cruz-Uribe and A. Fiorenza (see [14]).

Definition 3. Let ϕ ∈ L1 (R) and
∫
R ϕ (t) dt = 1. For each t > 0 we define

ϕt (x) =
1
tϕ
(
x
t

)
. Such sequence {ϕt} will be called approximate identity. A function

ϕ˜ (x) = sup
|y|≥|x|

|ϕ (y)|

will be called radial majorant of ϕ. If ϕ˜ ∈ L1 (R), then, sequence {ϕt} will be called
potential-type approximate identity.
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Theorem 2. ( [14]) Suppose p ∈ PLog, f ∈ Lp(·), ϕ is a potential-type approximate
identity. Then, for any t > 0,

∥f ∗ ϕt∥p(·) ≲ ∥f∥p(·)
and

lim
t→0

∥f ∗ ϕt − f∥p(·) = 0

hold with a positive constant depend on p.

As a corollary of Theorem 1 we have

Theorem 3. Suppose that p ∈ PLog, 0 < δ < ∞ and τ ∈ R. Then, the family
of operators {Sδ,τf}, defined by (6), is uniformly bounded (in δ and τ) in Lp(·),
namely, for any 0 < δ < ∞ and τ ∈ R norm inequality

∥Sδ,τf∥p(·) ≲ ∥f∥p(·)
holds with a positive constant depend on p.

As a corollary of Theorem 3 we get

Corollary 1. Let p ∈ PLog, 0 < δ < ∞, f ∈ Lp(·). If τ = δ/2 then,

Tδf (x) := Sδ,δ/2f (x) =
1

δ

∫ δ

0

f (x+ t) dt

and

∥Tδf∥p(·) ≲ ∥f∥p(·)
holds with a positive constant depend on p.

4. Modulus of Smoothness and K-functional

If f ∈ Lp(·) and 0 ≤ δ < ∞, r ∈ N, then

Ωr (f, δ)p(·) := ∥(I − Tδ)
r
f∥p(·) ≲ ∥f∥p(·) . (7)

Here I is the identity operator. In what follows W
p(·)
r , r ∈ N, will be the class of

functions f ∈ Lp(·) such that f (r−1) is absolutely continuous and f (r) ∈ Lp(·).

Remark 1. For p ∈ PLog, f , g ∈ Lp(·) and 0 ≤ δ < ∞, the modulus of smoothness
Ωr (f, δ)p(·), has the following usual properties:

(i) Ωr (f, δ)p(·) is non-negative; non-decreasing function of δ ≥ 0;

(ii) Ωr (f + g, ·)p(·) ≤ Ωr (f, ·)p(·) +Ωr (g, ·)p(·);
(iii) limδ→0+ Ωr (f, δ)p(·) = 0;

(iv) Ωr (f, δ)p(·) ≲ δr
∥∥f (r)

∥∥
p(·) for r ∈ N, f ∈ W

p(·)
r and δ > 0.

Indeed: (ii) follows from definition. (iii) is follow from (7), (3.4) and Theorem
3.1 of [7]. (iv) follows from Lemma 3.2 of [7]. (i) follows from Lemma 1 given below.
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Definition 4. Define, for f ∈ Lp(·), p ∈ PLog, and δ > 0,

(Rδf) (·) :=
2

δ

∫ δ

δ/2

(
1

h

∫ h

0

f (·+ t) dt

)
dh.

Remark 2. Note that, for 0 < δ < ∞, p ∈ PLog we know from Corollary 1 that

∥Rδf∥p(·) ≲ ∥f∥p(·)
and, hence, f −Rδf ∈ Lp(·) for f ∈ Lp(·).

We set Rr
δf := (Rδf)

r
.

Lemma 1. Let 0 < h ≤ δ < ∞, p ∈ PLog and f ∈ Lp(·). Then

∥(I − Th) f∥p(·) ≲ ∥(I − Tδ) f∥p(·) (8)

holds with a positive constant depend on p.

Lemma 2. Let 0 < δ < ∞, p ∈ PLog and f ∈ Lp(·). Then

∥(I −Rδ) f∥p(·) ≲ ∥(I − Tδ) f∥p(·)
holds with a positive constant depend on p.

Remark 3. The function Rδf is absolutely continuous and differentiable a.e. (al-
most everywhere) on R (see [43, (5.2) of Theorem 4]).

The following lemma is obvious from definitions.

Lemma 3. Let 0 < δ < ∞, p ∈ PLog and f ∈ W
p(·)
1 . Then

d

dx
Rδf = Rδ

d

dx
f and

d

dx
Tδf = Tδ

d

dx
f (9)

a.e. on R.

Lemma 4. Let 0 < δ < ∞, p ∈ PLog and f ∈ Lp(·) be given. Then

δ

∥∥∥∥ d

dx
Rδf

∥∥∥∥
p(·)

≲ ∥(I − Tδ) f∥p(·) (10)

holds with a positive constant depend on p.

The following lemma can be proved using induction on r.

Lemma 5. Let 0 < δ < ∞, r − 1 ∈ N, p ∈ PLog, and f ∈ Lp(·) be given. Then

dr

dxr
Rr

δf =
d

dx
Rδ

dr−1

dxr−1
Rr−1

δ f.

Modulus of smoothness ∥(I − Tδ)
r
f∥p(·) and the K -functional

Kr

(
f, δ;Lp(·),W p(·)

r

)
p(·)

:= inf
g∈W

p(·)
r

{
∥f − g∥p(·) + δr

∥∥∥g(r)∥∥∥
p(·)

}
are equivalent:
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Theorem 4. If r ∈ N, p ∈ PLog, f ∈ Lp(·), and δ > 0, then

∥(I − Tδ)
r
f∥p(·)

Kr

(
f, δ;Lp(·),W

p(·)
r

)
p(·)

≈ 1 (11)

holds for some positive constants depend on p, r.

5. Results on Simultaneous Approximation

Let Gσ (X) be the subclass of entire integral functions f(z) of exponential type
≤ σ that belonging to X and

Aσ(f)X := inf
g
{∥f − g∥X : g ∈ Gσ (X)}.

Let C be the class of bounded uniformly continuous functions defined on R. We set
Gσ,∞ := Gσ (C) and Gσ,p(·) := Gσ

(
Lp(·)).

Remark 4. ( [10, definition given in (5.3)]) Let σ > 0, 1 ≤ p ≤ ∞, f ∈ Lp (R),

ϑ (x) :=
2

π

sin (x/2) sin(3x/2)

x2

and

J (f, σ) = σ

∫
R
f (x− u)ϑ (σu) du

be the delà Valèe Poussin operator ( [10, definition given in (5.3)]). It is known
(see (5.4)-(5.5) of [10]) that, if f ∈ Lp (R), 1 ≤ p ≤ ∞, then,

(i) J (f, σ) ∈ G2σ (L
p (R)),

(ii) J (gσ, σ) = gσ for any gσ ∈ Gσ (L
p (R)),

(iii) ∥J (f, σ) ∥Lp(R) ≤ 3
2∥f∥Lp(R),

(iv) (J (f, σ))
(r)

= J
(
f (r), σ

)
for any r ∈ N and f ∈ W p

r (R),
(v) ∥J

(
f, σ

2

)
− f∥Lp(R) → 0 (as σ → ∞) and hence

∥
(
J
(
f,

σ

2

))(k)
− f (k)∥Lp(R) → 0 as σ → ∞,

for f ∈ W p
r (R) and 1 ≤ k ≤ r,

(vi)
∥∥f − J

(
f, σ

2

)∥∥
Lp(R) ≤

5π
4

4r

σr ∥f (r)∥Lp(R) for f ∈ W p
r (R) .

Theorem 5. Let p ∈ PLog, σ > 0, r ∈ N and f ∈ W
p(·)
r . Then

Aσ (f)p(·) ≲
1

σr
Aσ

(
f (r)

)
p(·)

(12)

holds with a positive constant depend on p, r.

Theorem 6. Let p ∈ PLog, σ > 0, k ∈ N, r ∈ {0} ∪ N and f ∈ W
p(·)
r . Then

Aσ (f)p(·) ≲
1

σr
Ωk

(
f (r),

1

σ

)
p(·)

. (13)
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with positive constants depend on p, k, r.

Theorem 7. Let p ∈ PLog, σ > 0 and gσ ∈ Gσ,p(·). Then, Bernstein’s inequality

∥ (gσ)(r) ∥p(·) ≲ σr∥gσ∥p(·)
holds with a positive constant depend on p, r.

Definition 5. [47, p.161] For r,k ∈ N, σ > 0, we define

g (σ, r, x) =

(
1

x
sin

σx

2r

)2r

, and

G (σ, r, k, ζ) =

k∑
v=1

(−1)
k−v 1

v

(
k

v

)
g

(
σ, r,

ζ

v

)
.

For r ≥ 1
2 (k + 2) we set

γr,σ :=

∫
R

(
1

t
sin

σt

2r

)2r

dt.

Let us introduce the Bernstein’s singular integral ( [47, p.161])

Dσ,kf(x) :=
(−1)

k+1

γr,σ

∫
R
f(u)G (σ, r, k, u− x) dt (14)

for r,k ∈ N, σ > 0, and measurable complex valued f satisfying
∫
R

|f(u)|
1+u2r du < ∞.

Remark 5. It is well known that, if r,k ∈ N, σ ∈ (0,∞), r ≥ 1
2 (k + 2), then

Dσ,kf ∈ Gσ (L
p (R)) for p ≥ 1.( [47, p.161]).

Lemma 6. If r ∈ N, σ ∈ (0,∞), then,
(i) we have

γr,σ =
σ2r−1

(2r)
2r−1

∫
R

(
sin v

v

)2r

dv

(ii) (see, e.g. [13, (5)])∫
R
(
sin v
v

)2r
dv= 2π

(2r−1)!22r

{
(2r)

2r−1
-
(
2r
1

)
(2r − 2)

2r−1
+
(
2r
2

)
(2r − 4)

2r−1
- · · ·

}
(iii) and, as a result,

γr,σ =
σ2r−1

(2r)
2r−1 br

where br is the right hand side of equality in (ii), having r terms.

Define ⌈a⌉ := min {n ∈ N : n ≥ a} and ⌊σ⌋ := max {n ∈ Z : n ≤ σ}. We will take
r := ⌈ 1

2 (k + 2)⌉ in the next Theorems.
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Theorem 8. Let p ∈ PLog, k ∈ N, σ > 0, f ∈ W
p(·)
k , then

∥f −Dσ,kf∥p(·) ≲
1

σk

∥∥∥f (k)
∥∥∥
p(·)

(15)

holds with a positive constant depend on p, k.

Theorem 9. Let p ∈ PLog, k ∈ N, σ > 0. If f ∈ Lp(·), then

∥Dσ,kf∥p(·) ≲ ∥f∥p(·)
holds with a positive constant depend on p, k.

Theorem 10. Let p ∈ PLog, k ∈ N, σ > 0, f ∈ Lp(·), then

∥f −Dσ,kf∥p(·) ≲ Ωk

(
f,

1

σ

)
p(·)

holds with a positive constant depend on p, k.

Corollary 2. By Theorem 9, if r,k ∈ N, σ ∈ (0,∞), r ≥ 1
2 (k + 2), then Dσ,kf ∈

Gσ,p(·) for p ∈ PLog and f ∈ Lp(·).

Theorem 11. Let r ∈ N, p ∈ PLog, σ > 0 and f ∈ W
p(·)
r . Then for all k =

0, 1, . . . , r, there exist positive constants depending only on k, r and p (·) such that∥∥∥f (k) − (g∗σ)
(k)
∥∥∥
p(·)

≲
1

σr−k
Aσ

(
f (r)

)
p(·)

holds for any g∗σ ∈ Gσ,p(·) satisfying Aσ (f)p(·) = ∥f − g∗σ∥p(·).

Theorem 12. Let r, s ∈ N, p ∈ PLog and f ∈ W
p(·)
r . Then there exists a Φ ∈

G2σ,p(·) such that for all k = 0, 1, . . . , r inequalities∥∥∥f (k) − Φ(k)
∥∥∥
p(·)

≲
1

σr−k
Ωs

(
f (r),

1

σ

)
p(·)

are hold with a positive constant depending only on k, r and p (·) .

Definition 6. Set σ, η > 0, f ∈ L1 (R), Θηf (x, y) := f(x+ ηy) and

Bσf(x, t) :=

∫
R
Θ 2

σ
f (x, y)h (y, t) dy.

Remark 6. The following theorem was poved in [31] for σ = 2 with three minor
mistypes. For the sake of completeness here we will prove it when σ > 0.

Theorem 13. Suppose that h (y, t) , y, t ∈ R, is positive measurable function with
respect to y and ∫

R
h (y, t) dy ≲ 1,

∫
R

∣∣yh′
y (y, t)

∣∣ dy ≲ 1
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with constants independent of t. If σ > 0 and f ∈ L1 (R), then
sup
t>0

|Bσf(·, t)| ≲ Mf (·)

for t > 0 and a.e. on R where Mf is the Hardy-Littlewood maximal function of f .

6. Proof of the Results

Let C(A) be the class of continuous functions defined on A. For r ∈ N, we define
Cr (A) consisting of every member f ∈ C(A) such that the derivative f (k) exists and
is continuous on A for k = 1, ..., r. We set C∞ (A) := {f ∈ Cr (A) for any r ∈ N}.
We denote by Cc (A), the collection of real valued continuous functions on A and
support of f is compact set in A. We define Cr

c (A) := Cr (A) ∩ Cc (A) for r ∈ N
and C∞

c (A) := C∞ (A) ∩ Cc (A). Let Lp (A), 1 ≤ p ≤ ∞ be the classical Lebesgue
space of functions on A.

Definition 7. ( [17]) Let N : = {1, 2, 3, · · · } be natural numbers and N0 := N∪{0}.
(a) A family Q of measurable sets E ⊂ R is called locally N -finite (N ∈ N) if∑

E∈Q

χE (x) ≤ N

almost everywhere in R where χU is the characteristic function of the set U .
(b) A family Q of open bounded sets U ⊂ R is locally 1-finite if and only if the

sets U ∈ Q are pairwise disjoint.
(c) Let U ⊂ R be a measurable set and

AUf :=
1

|U |

∫
U

|f (t)| dt.

(d) For a family Q of open sets U ⊂ R we define averaging operator by

TQ : L1
loc → L0,

TQf (x) :=
∑
U∈Q

χU (x)AUf, x ∈ R,

where L0 is the set of measurable functions on R.
(e) For a measurable set A ⊂ R, symbol |A| will represent the Lebesgue measure

of A.

Theorem 14. ( [17]) Suppose that p ∈ PLog, and f ∈ Lp(·). If Q is 1-finite
family of open bounded subsets of R having Lebesgue measure 1, then, the averaging
operator TQ is uniformly bounded in Lp(·), namely,

∥TQf∥p(·) ≤ c4 ∥f∥p(·)
holds with a positive constant c4 depending only on p.

We define ⟨f, g⟩ :=
∫
R f(x)g(x)dx when integral exists. We will need the follow-

ing Propositions.
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Proposition 1. ( [17]) Let p ∈ PLog. Then

1

12c4
∥f∥p(·) ≤ sup

g∈Lp′(·)∩C∞
0 :∥g∥p′(·)≤1

⟨|f | , |g|⟩ ≤ 2 ∥f∥p(·)

holds for all f ∈ Lp(·).

Proposition 2. (a) Cc (R) and C∞
c (R) are dense subsets of Lp (R), 1 ≤ p <

∞.(Theorems 17.10 and 23.59 of [49, p. 415 and p. 575]).
(b) Cc (R) contained L∞ (R) but not dense (Remark 17.11 of [49, p.416]) in

L∞ (R) .

Theorem 15. Let p ∈ PLog. In this case,
(a) if f ∈ Lp(·), then, the function Ff := Ff,G defined in (5) is a bounded,

uniformly continuous function on R,
(b) if r ∈ N, and f ∈ W

p(·)
r , then, dk

duk (Ff ) exists and

dk

duk (Ff ) = Ff(k)

for k ∈ {1, ..., r}.

Proof. (a) Since C∞
0 is a dense subset of Lp(·), we consider functions f ∈ C∞

0 and
its corresponding Ff,G given in (5). For any ε > 0, there exists δ := δ (ε) > 0 so
that

|f (x+ u1)− f (x+ u2)| <
ε

1 + |sptG|
for any u1, u2 ∈ R with |u1 − u2| < δ, where sptG is the support of the function

G ∈ Lp′(·) ∩ C∞
0 . Then, there holds inequality

|Ff,G (u1)− Ff,G (u2)| ≤
∫
R
|f (x+ u1)− f (x+ u2)| |G (x)| dx

=

∫
sptG

|f (x+ u1)− f (x+ u2)| |G (x)| dx

≤ sup
x,u1,u2∈sptG

|f (x+ u1)− f (x+ u2)| ∥G∥1,sptG

≤ ε

1 + |sptG|
(1 + |sptG|) ∥G∥p′(·) ≤ ε

for any u1, u2 ∈ R with |u1 − u2| < δ. Thus conclusion of Theorem 15 follows. For
the general case f ∈ Lp(·) there exists an g ∈ C∞

0 so that

∥f − g∥p(·) <
ξ

4 (1 + |sptG|) c0
for any ξ > 0. Therefore

|Ff,G (u1)− Ff,G (u2)| = |Ff,G (u1)− Fg,G (u1)|+ |Fg,G (u1)− Fg,G (u2)|+

+ |Fg,G (u2)− Ff,G (u2)| = |Ff−g,G (u1)|+
ξ

2
+ |Fg−f,G (u2)|



APPROXIMATION PROPERTIES OF BERNSTEIN’S SINGULAR INTEGRALS 1069

≤ 2 (1 + |sptG|) c0 ∥f − g∥p(·),ω +
ξ

2
< ξ.

As a result Ff,G is uniformly continuous on R.
(b) is follow from definitions. □

Proof of Theorem 1. Let 0 ≤ f, g ∈ Lp(·). In this case there exists a constant
C > 0 such that

∥Ff,G∥C(R) ≤ C ∥Fg,G (u)∥C(R) = C

∥∥∥∥∫
R
g (u+ x) |G (x)| dx

∥∥∥∥
C(R)

= C sup
u∈R

∫
R
g (u+ x) |G (x)| dx = C sup

u∈sptG

∫
sptG

g (u+ x) |G (x)| dx

≤ C sup
u∈sptG

∥g (u+ ·)∥1,sptG ∥G∥∞ ≤ C (1 + |sptG|) c0 ∥g∥p(·) .

On the other hand, for any ε > 0 and appropriately chosen G̃ε ∈ Lp′(·) with∫
R
g (x) G̃ε (x) dx ≥ 1

12c4
∥g∥p(·) − ε,

∥∥∥G̃ε

∥∥∥
p′(·)

≤ 1,

(see Proposition 1), one can find

∥Ff,G∥C(R) ≥ |Ff,G (0)| ≥
∫
R
f (x) |G (x)| dx >

1

12c4
∥f∥p(·) − ε.

In the last inequality we take as ε → 0+ and obtain

∥Ff,G∥C(R) >
1

12c4
∥f∥p(·) .

Combining these inequalities we get

∥f∥p(·) < 12c4 ∥Ff,G∥C(R) ≤ 12c4C ∥Fg,G∥C(R)

≤ 12c4C (1 + |sptG|) c0 ∥g∥p(·) .

For general case f, g ∈ Lp(·) we obtain

∥f∥p(·) < 24c4 (1 + |sptG|) c0C ∥g∥p(·) (16)

and proof is finished. □

Remark 7. Note that, in (16) constant depend on |sptG| and ∥G∥∞ but it is
possible to avoid dependence on |sptG| and ∥G∥∞. To do so, we can change the
definition of Ff with

Ff (u) :=

∫
R
S1,uf(x) |G (x)| dx, u ∈ R,

where G ∈ Lp′(·) ∩ C∞
0 and ∥G∥p′(·) ≤ 1. Now, boundedness of S1,uf in Lp(·) for

any u ∈ R, and the same procedure give (16) with a constant does not depend on
|sptG| and ∥G∥∞. Hence, constants in other results can be free of dependence on
|sptG| and ∥G∥∞ .
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Proof of Lemma 1. Let 0 < h ≤ δ < ∞, p ∈ PLog and f ∈ Lp(·). Then, using
(16) we get

∥(I − Th) f∥p(·) < 24c4
∥∥F(I−Th)f,G

∥∥
C(R) ≤ 24 · 72c4

∥∥F(I−Tδ)f,G

∥∥
C(R)

≤ 1728c4 (1 + |sptG|) c0 ∥(I − Tδ) f∥p(·) .
□

Proof of Lemma 2. If f ∈ Lp(·), then, using generalized Minkowski’s integral
inequality and Lemma 1 we obtain

∥(I −Rδ) f∥p(·) =

∥∥∥∥∥2δ
∫ δ

δ/2

(
1

h

∫ h

0

(f (x+ t)− f (x)) dt

)
dh

∥∥∥∥∥
p(·)

=

∥∥∥∥∥2δ
∫ δ

δ/2

(Thf (x)− f (x)) dh

∥∥∥∥∥
p(·)

≤ 2

δ

∫ δ

δ/2

∥Tδf − f∥p(·) dh

≤ 1728c4 (1 + |sptG|) c0 ∥Tδf − f∥p(·)
2

δ

∫ δ

δ/2

dh

= 1728c4 (1 + |sptG|) c0 ∥(I − Tδ) f∥p(·) .
□

Proof of Lemma 4. Using∥∥Fδ(Rδf)
′,G

∥∥
C(R) =

∥∥∥δ (F(Rδf),G

)′∥∥∥
C(R)

= δ
∥∥(Rδ(Ff,G))

′∥∥
C(R)

≤ · · · ≤ 2
(
37 + 146 ln 236

)
∥(I − Tδ) (Ff,G)∥C(R)

= 2
(
37 + 146 ln 236

) ∥∥(F(I−Tδ)f,G)
∥∥
C(R)

we conclude from Transference Result that

δ ∥(Rδf)
′∥p(·) ≤ c5 ∥(I − Tδ) f∥p(·) .

with c5 := 24c4 (1 + |sptG|) c0
(
37 + 146 ln 236

)
. □

Proof of Theorem 4. For r = 1, 2, 3, . . . we consider the operator

Ar
δ := I − (I −Rr

δ)
r
=
∑r−1

j=0
(−1)

r−j+1

(
r

j

)
R

r(r−j)
δ .

From the identity I −Rr
δ = (I −Rδ)

∑r−1
j=0 R

j
δ we find

∥(I −Rr
δ) g∥p(·) ≤

r−1∑
j=0

cj6

 ∥(I −Rδ) g∥p(·)
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with c6 := 24c4 (1 + |sptG|) c0. Therefore

∥(I −Rr
δ) g∥p(·) ≤

1728c4 (1 + |sptG|) c0
r−1∑
j=0

cj6

 ∥(I − Tδ) g∥p(·) (17)

= c7 ∥(I − Tδ) g∥p(·)
when 0 < δ < ∞, p ∈ P and g ∈ Lp(·). Since ∥f −Ar

δf∥p(·) = ∥(I −Rr
δ)

r
f∥p(·),

recursive procedure gives

∥f −Ar
δf∥p(·)

= ∥(I −Rr
δ)

r
f∥p(·) ≤ · · · ≤ cr7 ∥(I − Tδ)

r
f∥p(·) .

On the other hand, using Lemmas 5 and 4,

δr
∥∥∥∥ dr

dxr
Rr

δf

∥∥∥∥
p(·)

= δr−1δ

∥∥∥∥ d

dx
Rδ

dr−1

dxr−1
Rr−1

δ f

∥∥∥∥
p(·)

≤ c5δ
r−1

∥∥∥∥(I − Tδ)
dr−1

dxr−1
Rr−1

δ f

∥∥∥∥
p(·)

≤ · · · ≤

≤ cr−1
5 δ

∥∥∥∥ d

dx
Rδ (I − Tδ)

r−1
f

∥∥∥∥
p(·)

≤ cr5 ∥(I − Tδ)
r
f∥p(·) .

Thus

Kr

(
f, δ;Lp(·),W p(·)

r

)
p(·)

≤ ∥f −Ar
δf∥p(·) + δr

∥∥∥∥ dr

dxr
Ar

δf (x)

∥∥∥∥
p(·)

≤ cr7 ∥(I − Tδ)
r
f∥p(·) +

r−1∑
j=0

∣∣∣∣(rj
)∣∣∣∣ δr ∥∥∥∥ dr

dxr
R

r(r−j)
δ f (x)

∥∥∥∥
p(·)

≤ cr7 ∥(I − Tδ)
r
f∥p(·) + cr5

r−1∑
j=0

∣∣∣∣(rj
)∣∣∣∣ ∥∥∥(I − Tδ)

r
R

(r−j)
δ f

∥∥∥
p(·)

≤ cr7 ∥(I − Tδ)
r
f∥p(·) + cr5

r−1∑
j=0

∣∣∣∣(rj
)∣∣∣∣ cr−j

6 ∥(I − Tδ)
r
f∥p(·)

≤ c8 ∥(I − Tδ)
r
f∥p(·)

where

c8 := max

cr7, c
r
5

r−1∑
j=0

∣∣∣∣(rj
)∣∣∣∣ cr−j

6

 .

For the reverse of the last inequality, when g ∈ W
p(·)
r , we get

Ωr (f, δ)p(·) ≤ (1 + c6)
r ∥f − g∥p(·) +Ωr (g, δ)p(·)

≤ (1 + c6)
r ∥f − g∥p(·) + 2−rcr6δ

r
∥∥∥g(r)∥∥∥

p(·)
, (18)
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and taking infimum on g ∈ W r
p(·) in (18) we obtain

Ωr (f, δ)p(·) ≤ (1 + c6)
r
Kr

(
f, δ;Lp(·),W p(·)

r

)
p(·)

.

□

Proof of Theorem 5. The following inequality

Aσ (f)C(R) ≤
∥∥∥f − J

(
f,

σ

2

)∥∥∥
C(R)

≤ 5π

4

4r

σr
∥f (r)∥C(R), ∀f ∈ Cr(R)

known (see (vi) of Remark 4). Now using TR we find∥∥∥f − J
(
f,

σ

2

)∥∥∥
p(·)

≤ 5π

2

4rc6
σr

∥f (r)∥p(·), ∀f ∈ W p(·)
r . (19)

Let r = 1. Suppose that

Aσ (f
′)p(·) = ∥f ′ − g∗σ(f

′)∥p(·) , g∗σ(f
′) ∈ Gσ,p(·)

and

𭟋 (x) :=

∫ x

0

g∗σ(f
′) (t) dt.

Then 𭟋 ∈ Gσ ( [26, p.397]). Setting

φ (x) = f (x)−𭟋 (x)

one has

∥φ′∥p(·) = ∥f ′ − g∗σ(f
′)∥p(·) = Aσ (f

′)p(·) .

Thus

Aσ (f)p(·) = Aσ (f −𭟋)p(·)
(19)

≤ 10πc6
1

σ

∥∥(f −𭟋)
′∥∥

p(·)

=
10πc6
σ

∥f ′ −𭟋′∥p(·) =
10πc6
σ

∥f ′ − g∗σ(f
′)∥p(·)

= 10πc6
1

σ
Aσ (f

′)p(·) .

Now, result follows from the last inequality:

Aσ (f)p(·) ≤ 10πc6
1

σ
Aσ (f

′)p(·) ≤ · · · ≤ (10πc6)
r 1

σr
Aσ

(
f (r)

)
p(·)

.

□

Proof of Theorem 6. Let p ∈ PLog, σ > 0, k ∈ N, r ∈ {0} ∪ N and f ∈ W
p(·)
r .

First we consider the case r = 0. For every g ∈ W
p(·)
k we find

Aσ (f)p(·) ≤ Aσ (f − g)p(·) +Aσ (g)p(·)

≤ ∥f − g∥p(·) +
5π

2

4kc6
σk

∥f (k)∥p(·).
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Taking infimum on g in the last inequality

Aσ (f)p(·) ≤
5π

2
4kc6Kk

(
f, δ;Lp(·),W

p(·)
k

)
p(·)

.

Now using (11)

Aσ (f)p(·) ≤ c8
5π

2
4kc6Ωk

(
f,

1

σ

)
p(·)

.

In the second stage we consider the case r ∈ N. In this case

Aσ (f)p(·) ≤ (10πc6)
r 1

σr
Aσ

(
f (r)

)
p(·)

≤ 5πc8 (10)
r
πrcr+1

6 22k−1 1

σr
Ωk

(
f (r),

1

σ

)
p(·)

.

□

Proof of Theorem 7. Let p ∈ PLog, σ > 0 and gσ ∈ Gσ,p(·). Then, Bernstein’s
inequality

∥ (gσ)(r) ∥C(R) ≤ σr∥gσ∥C(R), ∀gσ ∈ Gσ,∞

and TR gives

∥ (gσ)(r) ∥p(·) ≤ c6σ
r∥gσ∥p(·), ∀gσ ∈ Gσ,p(·).

□

Proof of Theorem 8. Define for k ∈ N the classical modulus of smoothness of
function f ∈ C (R) of step δ > 0 by

ωk (f, δ)C(R) := sup
|h|≤δ

∥∥∆k
t f
∥∥
C(R)

where ∆k
t f (·) :=

(
I − T̃h

)k
f (·), T̃hf (·) := f (·+ h) and I is the identity operator.

From (14), one can write

∥f −Dσ,kf∥C(R) =

∥∥∥∥∥ (−1)
k

γr,σ

∫
R

k∑
v=0

(−1)
k−v

(
k

v

)
f (x+ vt) g (σ, r, t) dt

∥∥∥∥∥
C(R)

≤ 1

σ2r−1 br
(2r)2r−1

∫
R

∥∥∆k
t f (x)

∥∥
C(R) g (σ, r, t) dt ≤

(2r)
2r−1

brσ2r−1

∫
R
ωk (f, t)C(R) g (σ, r, t) dt

≤ (2r)
2r−1

σk

brσ2r−1
ωk

(
f,

1

σ

)
C(R)

∫
R

(
t+

1

σ

)k

g (σ, r, t) dt

≤ (2r)
2r−1

σk

brσ2r−1

1

σk

∥∥∥f (k)
∥∥∥
C(R)

∫
R

(
t+

1

σ

)k

g (σ, r, t) dt
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≤ (2r)
2r−1

brσ2r−1

∥∥∥f (k)
∥∥∥
C(R)

 2k

σk

∫
|t|≤ 1

σ

|g (σ, r, t)| dt+ 2k
∫

|t|≥ 1
σ

|t|k |g (σ, r, t)| dt

 .

Using r = ⌈ 1
2 (k + 2)⌉

(2r)
2r−1

2k

brσ2r−1

∫
|t|≥1/σ

|t|k
(
1

t
sin

σt

2r

)2r

dt

≤ (2r)
2r−1

2k

brσ2r−1

∫
|t|≥1/σ

(
1

t
sin

σt

2r

)2r−k

dt

≤ (2r)
2r−1

2k

brσ2r−1

σ2r−k+1

(2r)
2r−k+1

∫
R

(
sinu

u

)2

dt =
1

σk

22krk

br
π.

On the other hand

(2r)
2r−1

brσ2r−1

2k

σk

∫
|t|≤1/σ

(
1

t
sin

σt

2r

)2r

dt

≤ (2r)
2r−1

brσ2r−1

2k

σk

∫
R

(
1

t
sin

σt

2r

)2r

dt

=
(2r)

2r−1

brrσ
2r−1

σ2r−1 br

(2r)
2r−1 =

2k

σk
.

Thus

∥f −Dσ,kf∥C(R) ≤
(
22krk

br
+ 2k

)
1

σk

∥∥∥f (k)
∥∥∥
C(R)

.

From this and TR we get

∥f −Dσ,kf∥p(·) ≤ c6

(
22krk

br
+ 2k

)
1

σk

∥∥∥f (k)
∥∥∥
p(·)

= c6c (k, r)
1

σk

∥∥∥f (k)
∥∥∥
p(·)

.

□

Proof of Theorem 9. Fixed σ > 0, we find

∥Dσ,kf∥C(R) =

∥∥∥∥∥ (−1)
k+1

γr,σ

∫
R
f(u)G (σ, r, k, u− x) du

∥∥∥∥∥
C(R)∥∥∥∥∥ (−1)

k+1

γr,σ

∫
R

k∑
v=1

(−1)
k−v

(
k

v

)
f (u) g

(
σ, r,

u− x

v

)
du

∥∥∥∥∥
C(R)

≤

∥∥∥∥∥ (−1)
k+1

γr,σ

∫
R

k∑
v=1

(−1)
k−v

(
k

v

)
f (x+ vt) g (σ, r, t) vdt

∥∥∥∥∥
C(R)

≤ k

γr,σ

∫
R

k∑
v=1

∣∣∣∣(kv
)∣∣∣∣ ∥f (x+ vt)∥C(R) g (σ, r, t) dt
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≤ ∥f∥C(R)

k∑
v=1

∣∣∣∣(kv
)∣∣∣∣ k

γr,σ

∫
R
g (σ, r, t) dt ≤ k2k ∥f∥C(R) .

Now, transference result TR gives

∥Dσ,kf∥p(·) ≤ k2kc6 ∥f∥p(·) .

□

Proof of Theorem 10. We can write

∥f −Dσ,kf∥p(·) =
∥∥∥f −Ak

1
σ
f +Ak

1
σ
f −Dσ,kAk

1
σ
f +Dσ,kAk

1
σ
f −Dσ,kf

∥∥∥
p(·)

≤
∥∥∥f −Ak

1
σ
f
∥∥∥
p(·)

+
∥∥∥Ak

1
σ
f −Dσ,kAk

1
σ
f
∥∥∥
p(·)

+
∥∥∥Dσ,k(Ak

1
σ
f − f)

∥∥∥
p(·)

≤ ck7Ωk

(
f,

1

σ

)
p(·)

+ c6c (k)
1

σk

∥∥∥(Ak
1
σ
f)(k)

∥∥∥
p(·)

+ k2kc6

∥∥∥Ak
1
σ
f − f

∥∥∥
p(·)

≤

ck7 + c6c (k, r) c
k
5

k−1∑
j=0

∣∣∣∣(kj
)∣∣∣∣ ck−j

6 + 2kkc6c
k
7

Ωk

(
f,

1

σ

)
p(·)

= c9Ωk

(
f,

1

σ

)
p(·)

and the result follows. □

Proof of Theorem 11. Let q ∈ Gσ and Aσ

(
f (k)

)
p(·) =

∥∥f (k) − q
∥∥
p(·) . Then∥∥∥f (k) − (g∗σ)

(k)
∥∥∥
p(·)

≤
∥∥∥f (k) − (J (f, σ))

(k)
∥∥∥
p(·)

+
∥∥∥(J (f, σ))(k) − (g∗σ)

(k)
∥∥∥
p(·)

≤
∥∥∥f (k) − q

∥∥∥
p(·)

+
∥∥∥q − J

(
f (k), σ

)∥∥∥
p(·)

+
∥∥∥(J (f, σ)− g∗σ)

(k)
∥∥∥
p(·)

≤ Aσ

(
f (k)

)
p(·)

+
∥∥∥J (q − f (k), σ

)∥∥∥
p(·)

+ 2kc6σ
k ∥J (f, σ)− g∗σ∥p(·)

≤ (1 + 3c6)Aσ

(
f (k)

)
p(·)

+ 2kc6σ
k ∥J (f, σ)− J (g∗σ, σ)∥p(·)

≤ (1 + 3c6)
2c6

(
5π4r−1

)r
σr−k

Aσ

(
f (r)

)
p(·)

+ 3c262
k 2c6

(
5π4r−1

)r
σr−k

Aσ

(
f (r)

)
p(·)

≤
(
2c6

(
5π4r−1

)r) (
1 + 3c6 + 3c262

k
) σk

σr
Aσ

(
f (r)

)
p(·)

= c10σ
k−rAσ

(
f (r)

)
p(·)

and the proof of Theorem 11 is completed. □
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Proof of Theorem 12. Let g∗σ ∈ Gσ, Aσ (f)p(·) = ∥f − g∗σ∥p(·) and Φ = J (f, σ) .

Then
∥f − J (f, σ)∥p(·) ≤ ∥f − g∗σ + g∗σ − J (f, σ)∥p(·)

= ∥f − g∗σ + J (g∗σ, σ)− J (f, σ)∥p(·)
≤ Aσ (f)p(·) + 3c6 ∥f − g∗σ∥p(·) = (1 + 3c6)Aσ (f)p(·)

and
∥f − J (f, σ)∥p(·) ≤ (1 + 3c6)Aσ (f)p(·)

≤ (1 + 3c6) 5πc8 (10)
r
πrcr+1

6 22s−1 1

σr
Ωs

(
f (r), 1/σ

)
p(·)

.

Now, from

∥f − g∗σ∥p(·) ≤
πc8 (10)

r
πrcr+1

6 22s−1

σr
Ωs

(
f (r),

1

σ

)
p(·)

we obtain

∥J (f, σ)− g∗σ∥p(·) ≤
c11
σr

Ωs

(
f (r),

1

σ

)
p(·)

with
c11 = πc8 (10)

r
πrcr+1

6 22s−1 ((1 + 3c6) 5 + 1) .

Hence∥∥∥f (k) − (J (f, σ))
(k)
∥∥∥
p(·)

≤
∥∥∥f (k) − (g∗σ)

(k)
∥∥∥
p(·)

+
∥∥∥(J (f, σ))

(k) − (g∗σ)
(k)
∥∥∥
p(·)

≤ c10σ
k−rAσ

(
f (r)

)
p(·)

+ 2kc6σ
k c11
σr

Ωs

(
f (r),

1

σ

)
p(·)

≤
(
c10

5πc8
2

4sc6 + 2kc6c11

)
σk−rΩs

(
f (r), 1/σ

)
p(·)

and the proof is completed. □

Proof of Theorem 13. Given x ∈ R, let

Γ (y) :=

∫ y

0

Θ 2
σ
f (x, u) du, y > 0,

and a, b > 0. Integration by parts gives∫ b

−a

Θ 2
σ
f (x, y)h (y, t) dy =

∫ b

−a

h (y, t) dΓ (y)

= Γ (y)h (y, t) |b−a −
∫ b

−a

h′
y (y, t) Γ (y) dy.

Since Γ (y) ≤ |y|Mf (x) we obtain∣∣∣∣∣
∫ b

−a

Θ 2
σ
f (x, y)h (y, t) dy

∣∣∣∣∣ ≤ Mf (x)

(∫ b

−a

∣∣yh′
y (y, t)

∣∣ dy + h (y, t) |b−a

)
.
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Now

c12 ≥
∫
R
h (y, t) dy ≥

∫ b

−a

h (y, t) dy = h (y, t) |b−a −
∫ b

−a

yh′
y (y, t) dy

gives ∣∣∣∣∣
∫ b

−a

Θ 2
σ
f (x, y)h (y, t) dy

∣∣∣∣∣ ≤ (c12 + 2c13)Mf (x)

for any t > 0. The last inequality implies the result. □
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Abstract. In this paper, we handle an impulsive Sturm–Liouville equation
with complex potential on the semi axis. The objective of this work is to ex-

amine some spectral properties of this impulsive Sturm–Liouville equation. By
the help of a transfer matrix B, we obtain Jost solution of this problem. Fur-

thermore, using Jost solution, we find Green function and resolvent operator

of this equation. Finally, we consider two unperturbated impulsive Sturm–
Liouville operators. We examine the eigenvalues and spectral singularities of

these problems.

1. Introduction

The modeling of most of the problems encountered in the fields of mathematics,
physics, mechanics and engineering in daily life is done with boundary value or ini-
tial value problems in applied mathematics and spectral analysis. Operator theory
is used to solve these problems in spectral theory. First, many physicists and mathe-
maticians studied the spectral theory of differential operators. The Sturm–Liouville
operator, which is the equivalent of the one dimensional Schrödinger operator, has
gained a wide place in the literature. Let us shortly give information about the
literature of spectral theory of Sturm–Liouville operator. Spectral analysis of the
nonself-adjoint Schrödinger operator was first investigated by Naimark in 1960 [20].
He proved that the spectrum of this operator consists of eigenvalues, continuous
spectrum and spectral singularities. Furthermore, he discovered that the spectral
singularities are poles of the resolvent operator’s kernel on the continuous spectrum
but not the eigenvalues of the operator. Kemp extended the results obtained by
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Naimark to differential operators defined on the whole real axis [16]. Gasymov
also extended these results to three-dimensional Schrödinger operators [12]. Then,
Schwartz investigated the spectral singularities of a certain class of abstract linear
operators in Hilbert space and proved that self-adjoint operators have no spectral
singularity [23]. Furthermore, these equations were studied under different initial
and boundary conditions by Pavlov, Guseinov and Bairamov et al. [7, 9, 10,14,22].

On the other hand, in some processes, instant changes are encountered due to ex-
ternal factors. These are short term sudden changes and can be neglected compared
to the whole process. Ordinary differential equations are not sufficient to model
these processes. For this reason, impulsive differential equations are used to ex-
plain these processes mathematically. Unlike the Schrödinger equation, differential
equations with impulsive conditions do not have a long history in the literature. Im-
pulsive differential systems were first studied by Myshkis and Mil’man [18]. After,
these equations were investigated by Bainov, Simenov and Lakshmikantham [3, 4].
Recently, many authors have examined impulsive differential equations in detail, be-
cause impulsive differential equations have been used in many scientific phenomena
such as heart beat, population dynamics, atomic physics, mathematical economics,
ecology, engineering, medicine and so forth [13, 15, 19]. Bairamov et al, Yardimci
and Erdal investigated scattering analysis and spectral theory of different kinds of
impulsive Sturm–Liouville equations [2, 5, 6, 8, 11, 24]. Different from these stud-
ies, in this paper, we consider the Sturm–Liouville equation with complex valued
potential and impulsive condition in matrix form. Therefore, it creates different
perspective.

Let us introduce the Sturm–Liouville operator T in L2(0,∞), generated by the
equation

−υ′′ + q(z)υ = λ2υ, z ∈ [0, z0) ∪ (z0,∞) (1)

with the boundary condition

(η0 + η1λ) υ
′(0) + (ζ0 + ζ1λ) υ(0) = 0 (2)

and the impulsive condition[
υ
(
z+0

)
υ′ (z+0 )

]
= B

[
υ
(
z−0

)
υ′ (z−0 )] , B =

[
β1 β2

β3 β4

]
, (3)

where βi, ηj , ζj , i = 1, 2, 3, 4, j = 0, 1 are complex numbers such that detB ̸= 0
and η0ζ1−η1ζ0 ̸= 0, z0 is a positive real constant and q is a complex valued function
satisfying the following condition

∞∫
0

(1 + z)|q(z)|dz < ∞. (4)

Throughout the paper, we will show impulsive boundary value problem (1)-(3)
by ISBVP, shortly.

This paper is organized as follows: This study consists of five chapters including
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the introduction. In the next Section, we give basic solutions and definitions. Unlike
other studies in the literature, we examine the effect of the impulsive condition on
the Sturm–Liouville equation with complex potential in Section 3. We find the
Jost solution of ISBVP (1)-(3). In Section 4, we obtain the set of eigenvalues and
spectral singularities of (1)-(3). Also, we present an asymptotic equation to obtain
the properties of eigenvalues. Then, we get the resolvent operator of the Sturm–
Liouville operator T. Finally, we handle two different problems to apply our main
results in Section 5.

2. Preliminaries

Let S
(
z, λ2

)
and C

(
z, λ2

)
be the fundamental solutions of (1) in the interval

[0, z0) satisfying the initial conditions

S(0, λ2) = 0, S′(0, λ2) = 1,

C(0, λ2) = 1, C ′(0, λ2) = 0.

It is evident that the solutions S
(
z, λ2

)
and C

(
z, λ2

)
are entire functions of λ and

W [S(z, λ2), C(z, λ2)] = −1, λ ∈ C,
where W [υ1, υ2] denotes the Wronskian of the solutions υ1 and υ2 of the equation
(1). The integral representations of S

(
z, λ2

)
and C

(
z, λ2

)
are well known in the

literature as

S(z, λ2) =
sinλz

λ
+

z∫
0

Q(z, t)
sinλt

λ
dt (5)

C(z, λ2) = cosλz +

z∫
0

R(z, t) cosλtdt, (6)

where Q(z, t) and R(z, t) are expressed in terms of the potential function q [17].
On the other hand, e(z, λ) is bounded solution of the equation (1) in the interval

(z0,∞) fulfilling the following condition

lim
z→∞

e(z, λ)e−iλz = 1, λ ∈ C+ := {λ ∈ C : Imλ ≥ 0}

and it has an integral representation

e(z, λ) = eiλz +

∞∫
z

K(z, t)eiλtdt, λ ∈ C+, (7)

where K(z, t) is defined by the potential function q [1]. The bounded solution
e(z, λ) is analytic with respect to λ in C+ := {λ ∈ C : Imλ > 0} and continuous up
to the real axis. Similarly, e (z,−λ) is bounded solution of (1) in (z0,∞) satisfying
the condition

lim
z→∞

e(z,−λ)eiλz = 1, λ ∈ C− := {λ ∈ C : Imλ ≤ 0}.
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It is well known that

W [e (z, λ) , e (z,−λ)] = −2iλ, λ ∈ R\{0}.
Furthermore, ĕ(z, λ) is unbounded solution of (1) in (z0,∞) subjecting the con-

ditions [21]

lim
z→∞

ĕ(z, λ)eiλz = 1, lim
z→∞

ĕ′(z, λ)eiλz = −iλ, λ ∈ C+.

It is clear that

W [e (z, λ) , ĕ (z, λ)] = −2iλ, z ∈ (z0,∞) , λ ∈ C+.

3. Solutions of Impulsive Sturm–Liouville Equation

By the help of linearly independent solutions (1), we will define the general
solutions of (1) for λ ∈ R\{0},

Ψ1 (z, λ) =

{
υ−
1 (z, λ) = a−(λ)S

(
z, λ2

)
+ b−(λ)C

(
z, λ2

)
; 0 ≤ z < z0

υ+
1 (z, λ) = a+(λ)e (z, λ) + b+(λ)e (z,−λ) ; z0 < z < ∞,

(8)

Ψ2 (z, λ) =

{
υ−
2 (z, λ) = c−(λ)S

(
z, λ2

)
+ d−(λ)C

(
z, λ2

)
; 0 ≤ z < z0

υ+
2 (z, λ) = c+(λ)e (z, λ) + d+(λ)e (z,−λ) ; z0 < z < ∞

(9)

and for λ ∈ C+\{0},

Ψ3 (z, λ) =

{
υ−
3 (z, λ) = f−(λ)S

(
z, λ2

)
+ h−(λ)C

(
z, λ2

)
; 0 ≤ z < z0

υ+
3 (z, λ) = f+(λ)e (z, λ) + h+(λ)ĕ (z, λ) ; z0 < z < ∞,

(10)

respectively.
Using (3) and (8), we obtain [

a+(λ)
b+(λ)

]
= N

[
a−(λ)
b−(λ)

]
, (11)

where

N :=

[
N11(λ) N12(λ)
N21(λ) N22(λ)

]
= L−BM (12)

such that

L =

[
e (z0, λ) e (z0,−λ)
e′ (z0, λ) e′ (z0,−λ)

]
and

M =

[
S
(
z0, λ

2
)

C
(
z0, λ

2
)

S′ (z0, λ2
)

C ′ (z0, λ2
)] .

Since detL = −2iλ, in accordance with (12), we find that

N21(λ) =
i

2λ
[−e′(z0, λ)

(
β1S

(
z0, λ

2
)
+ β2S

′ (z0, λ2
))

+e (z0, λ)
(
β3S

(
z0, λ

2
)
+ β4S

′ (z0, λ2
))
] (13)
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N22(λ) =
i

2λ
[−e′(z0, λ)

(
β1C

(
z0, λ

2
)
+ β2C

′ (z0, λ2
))

+e (z0, λ)
(
β3C

(
z0, λ

2
)
+ β4C

′ (z0, λ2
))
]. (14)

Now, we shall consider the Jost solution of ISBVP (1)-(3) and denote by E.
Thus, by using (8), the coefficients a+(λ) and b+(λ) turn into 1 and 0, respectively.
For λ ∈ C+, we write the following solution of (1)-(3)

E(z, λ) =

{
a−(λ)S(z, λ2) + b−(λ)C(z, λ2); z ∈ [0, z0)

e(z, λ); z ∈ (z0,∞).

By the help of (11) and (12), we easily obtain the coefficients a−(λ) and b−(λ) as
follows

a−(λ) =
N22(λ)

detN
, b−(λ) = −N21(λ)

detN
. (15)

Let us consider the solution of (1)-(3) satisfying the boundary condition (2) and
denote by F . By (2) and (9), the following can be easily seen

c−(λ) = (ζ0 + ζ1λ) , d−(λ) = (η0 + η1λ) .

For λ ∈ R\{0}, we will consider the following solution of ISBVP (1)-(3)

F (z, λ) =

{
− (ζ0 + ζ1λ)S(z, λ

2) + (η0 + η1λ)C(z, λ2); z ∈ [0, z0)

c+(λ)e(z, λ) + d+(λ)e(z,−λ); z ∈ (z0,∞).

From (3) and (12), we get

c+(λ) = − (ζ0 + ζ1λ)N11(λ) + (η0 + η1λ)N12(λ) (16)

d+(λ) = − (ζ0 + ζ1λ)N21(λ) + (η0 + η1λ)N22(λ), (17)

respectively.

Lemma 1. For λ ∈ R\{0}, the Wronskian of the solutions E (z, λ) and F (z, λ) is
given by

W [E(z, λ), F (z, λ)] =

{
H (λ) ; z ∈ [0, z0)

2iλH (λ) detN ; z ∈ (z0,∞),

where

H (λ) :=
(ζ0 + ζ1λ)N21(λ)− (η0 + η1λ)N22(λ)

detN
. (18)

Proof. Using the definition of Wronskian for z ∈ [0, z0), we find

W [E (z, λ) , F (z, λ)] = − (ζ0 + ζ1λ) b
−(λ)− (η0 + η1λ) a

−(λ).

By using (15), the following can be easily seen

W [E (z, λ) , F (z, λ)] = H(λ)
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for z ∈ [0, z0).
Similarly, we write

W [E (z, λ) , F (z, λ)] = −2iλd+(λ), z ∈ (z0,∞).

By the help of (17), it is clear that

W [E (z, λ) , F (z, λ)] = 2iλH (λ) detN

for z ∈ (z0,∞).
This completes the proof. □

Since H is composed of e (z, λ) , C
(
z, λ2

)
and S

(
z, λ2

)
, it is analytic in C+ and

continuous up to the real axis.

4. Eigenvalues, Spectral Singularities And Resolvent Operator of T

From Lemma 1, a necessary and sufficient condition to investigate the eigen-
values and spectral singularities of the Sturm–Liouville operator T with impulsive
condition (3) is to investigate the zeros of the function H.
The set of eigenvalues and spectral singularities of the operator T are defined as

σd (T) = {µ = λ2 : Imλ > 0 and H(λ) = 0},

σss (T) = {µ = λ2, Imλ = 0, λ ̸= 0 and H(λ) = 0},
respectively.

Theorem 1. Under the condition (4), the function H satisfies the following as-
ymptotic equation

H (λ) =
µ1β2λ

2

detN

(
i

4
+O

(
1

λ

))
, λ ∈ C+, |λ| → ∞,

where µ1β2 ̸= 0.

Proof. By means of (5)-(7), we easily find for λ ∈ C

S′ (z0, λ2
)
= cosλz0 +Q (z0, z0)

sinλz0
λ

+

z0∫
0

Q(z0, t)
sinλt

λ
dt (19)

C ′ (z0, λ2
)
= −λ sinλz0 +R (z0, z0) cosλz0 +

z0∫
0

R(z0, t) cosλtdt (20)

and for λ ∈ C+

e′(z0, λ) = iλeiλz0 −K (z0, z0) e
iλz0 +

∞∫
z0

Kz(z0, t)e
iλtdt. (21)
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From (5)-(7), we get

S
(
z0, λ

2
)
=

e−iλz0

λ

(
i

2
+ o (1)

)
C
(
z0, λ

2
)
= e−iλz0

(
1

2
+ o (1)

)
(22)

e (z0, λ) = eiλz0 (1 + o (1)) ,

where λ ∈ C+ and |λ| → ∞.
In a similar way, by using (19)-(21), we obtain for λ ∈ C+ and |λ| → ∞

S′ (z0, λ2
)
= e−iλz0

(
1

2
+O

(
1

λ

))
C ′ (z0, λ2

)
= λe−iλz0

(
− i

2
+O

(
1

λ

))
(23)

e′ (z0, λ) = λeiλz0
(
i+O

(
1

λ

))
.

By means of (22) and (23), it is obvious that H (λ) satisfies the asymptotic equation
given in Theorem 1. This completes the proof. □

Now, let us define another solution of (1)-(3)

G (z, λ) =

{
− (ζ0 + ζ1λ)S(z, λ

2) + (η0 + η1λ)C(z, λ2); z ∈ [0, z0)

f+(λ)e(z, λ) + h+(λ)ĕ(z, λ); z ∈ (z0,∞)

for all λ ∈ C+\{0}. By the help of (3), we obtain that[
f+(λ)
h+(λ)

]
= V

[
− (ζ0 + ζ1λ)
(η0 + η1λ)

]
, (24)

where

V :=

[
V11(λ) V12(λ)
V21(λ) V22(λ)

]
= U−BM (25)

with

U =

[
e (z0, λ) ĕ (z0, λ)
e′ (z0, λ) ĕ′ (z0, λ)

]
. (26)

From (25) and (26), the following equations can be found as

V21(λ) =
i

2λ
[−e′(z0, λ)

(
β1S

(
z0, λ

2
)
+ β2S

′ (z0, λ2
))

+e (z0, λ)
(
β3S

(
z0, λ

2
)
+ β4S

′ (z0, λ2
))
] (27)

V22(λ) =
i

2λ
[−e′(z0, λ)

(
β1C

(
z0, λ

2
)
+ β2C

′ (z0, λ2
))

+e (z0, λ)
(
β3C

(
z0, λ

2
)
+ β4C

′ (z0, λ2
))
]. (28)
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By using (24), the coefficients f+ (λ) and h+ (λ) must be as follows

f+(λ) = − (ζ0 + ζ1λ)V11(λ) + (η0 + η1λ)V12(λ)

h+(λ) = − (ζ0 + ζ1λ)V21(λ) + (η0 + η1λ)V22(λ).

By using (13), (14), (27) and (28), it is clear that

N21(λ) = V21(λ), N22(λ) = V22(λ).

Therefore, using (18), we rewrite h+(λ) as

h+(λ) = −H(λ) detN. (29)

In view of (29), we obtain that

W [E(z, λ), G(z, λ)] =

{
H (λ) ; z ∈ [0, z0)

2iλH (λ) detN ; z ∈ (z0,∞)

for λ ∈ C+\{0}.

Theorem 2. Assume (4). Then the resolvent operator of T is defined by

Rλϕ =

∞∫
0

R(z, t;λ)ϕ(t)dt,

where

R(z, t;λ) =


E(z, λ)G(t, λ)

W [E(z, λ), G(z, λ)]
; 0 ≤ t < z

G(z, λ)E(t, λ)

W [E(z, λ), G(z, λ)]
; z ≤ t < ∞

is the Green function of (1)-(3) for z ̸= z0, t ̸= z0.

Proof. Let us consider the following equation

−υ′′ + q(z)υ − λ2υ = ϕ(z), z ∈ [0, z0) ∪ (z0,∞). (30)

By using the solutions E (z, λ) and G (z, λ) , we write the solution of (30)

ϕ (z, λ) = θ1(z)E (z, λ) + θ2(z)G (z, λ) .

Using the method of variation of parameters, we get the coefficients θ1(z) and θ2(z)
as follows

θ1(z) = k +

z∫
0

ϕ(t)G(t, λ)

W [E(z, λ), G(z, λ)]
dt

θ2(z) = m+

∞∫
z

ϕ(t)E(t, λ)

W [E(z, λ), G(z, λ)]
dt,
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where k and m are real numbers. Let us write the coefficients θ1(z) and θ2(z) in
solution ϕ (z, λ)

ϕ (z, λ) = kE (z, λ) +

z∫
0

ϕ(t)G(t, λ)

W [E(z, λ), G(z, λ)]
dtE (z, λ)

+mG (z, λ) +

∞∫
z

ϕ(t)E(t, λ)

W [E(z, λ), G(z, λ)]
dtG (z, λ) .

Since the solution ϕ(z, λ) is in L2(0,∞), m becomes zero. In accordance with
the boundary condition (2), we also find that k is equal to zero. The proof is
completed. □

5. Unperturbated Impulsive Operators

In this section, we will investigate two unperturbated impulsive Sturm–Liouville
operators.

Example 1. Now, we consider the Sturm–Liouville operator T0 in L2 [0,∞) cor-
responding to the following impulsive problem

−υ′′ = λ2υ, z ∈ [0, 1) ∪ (1,∞)

(η0 + η1λ) υ
′(0) + (ζ0 + ζ1λ) υ(0) = 0 (31)[

υ (1+)
υ′ (1+)

]
= B

[
υ (1−)
υ′ (1−)

]
, B =

[
γ1 0
0 γ2

]
,

where γ1, γ2, ηj, ζj, j = 0, 1 are complex numbers such that η0ζ1 − η1ζ0 ̸= 0 and
γ1γ2 ̸= 0. Since q = 0, it is evident that

e (z, λ) = eiλz, C
(
z, λ2

)
= cosλz, S

(
z, λ2

)
=

sinλz

λ
.

By using (18), we write that

H(λ) =
ieiλ

2λ detN
[(η0 + η1λ)(iγ1λ cosλ+ γ2λ sinλ)

+(ζ0 + ζ1λ)(γ2 cosλ− iγ1 sinλ)]. (32)

To investigate the eigenvalues and spectral singularities of (31), we examine the
zeros of H. Let us choose ζ1 = η0 = 1 and ζ0 = η1 = 0 in (32) for the simplicity.
Therefore, we rewrite the equation (32)

H(λ) =
ieiλ

2 detN
[iγ1 cosλ+ γ2 sinλ− iγ1 sinλ+ γ2 cosλ].

We obtain that

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ 1

2
Arg

(
1 +D

1−D

)
+ kπ, k ∈ Z,
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where D =
γ1 − iγ2

γ2 − iγ1

. There appear three cases:

Case1: Let D =
eiθ − 1

eiθ + 1
such that θ ∈ R. Since D =

eiθ − 1

eiθ + 1
, it is easily seen that

Arg

(
1 +D

1−D

)
= θ and

∣∣∣∣1 +D

1−D

∣∣∣∣ = 1. Then, we find that

λk =
θ

2
+ kπ, k ∈ Z.

In this case, λk ∈ R\{0}, k ∈ Z are the spectral singularities of (31). However,
there is no eigenvalues.
Case2: Let ImD ̸= 0.
2a: Let D be purely imaginary. We obtain that

λk =
1

2
Arg

(
1 +D

1−D

)
+ kπ, k ∈ Z.

In this case, similar with Case1, the ISBVP (31) has no eigenvalues. But it has
spectral singularity.
2b: Assume ReD < 0. We get

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ 1

2
Arg

(
1 +D

1−D

)
+ kπ, k ∈ Z.

Since 0 <

∣∣∣∣1 +D

1−D

∣∣∣∣ < 1, λk ∈ C+, k ∈ Z are the eigenvalues of (31). However, the

operator T0 doesn’t have any spectral singularity.
2c: For 0 < ReD, the impulsive Sturm–Liouville boundary value problem (31) has
no eigenvalues and spectral singularity.
Case3: Let D be a real number.

3a: If 0 < D < 1, then 1 <

∣∣∣∣1 +D

1−D

∣∣∣∣ . Similar to the Case2c, the eigenvalues and

spectral singularity of (31) are not existing.
3b: For 1 < D < ∞, we see that

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ (2k + 1)
π

2
, k ∈ Z.

Since λk ∈ C−, there are no eigenvalues and spectral singularity.
3c: Assume −1 < D < 0. We obtain that

λk = − i

2
ln

(
1 +D

1−D

)
+ kπ, k ∈ Z.

Since 0 <

∣∣∣∣1 +D

1−D

∣∣∣∣ < 1, there exists eigenvalues but the problem (31) has no spectral

singularty.
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3d: For −∞ < D < 1, we find that

λk = − i

2
ln

∣∣∣∣1 +D

1−D

∣∣∣∣+ (2k + 1)
π

2
, k ∈ Z,

where 0 <

∣∣∣∣1 +D

1−D

∣∣∣∣ < 1. Hence, λk ∈ C+, k ∈ Z are the eigenvalues of T0. But this

operator has no spectral singularity.

Example 2. We investigate the Sturm–Liouville operator T1 in L2 [0,∞) created
by the following ISBVP

−υ′′ = λ2ρ(z)υ, z ∈ [0, 1) ∪ (1,∞)

(η0 + η1λ) υ
′(0) + (ζ0 + ζ1λ) υ(0) = 0 (33)[

υ (1+)
υ′ (1+)

]
= B

[
υ (1−)
υ′ (1−)

]
, B =

[
τ1 0
0 τ2

]
,

where τ1, τ2, ηj, ζj, j = 0, 1 are complex numbers, η0ζ1 − η1ζ0 ̸= 0, τ1τ2 ̸= 0 and
ρ is density function defined as

ρ(z) =

{
ω2; 0 ≤ z < 1

1; 1 < z

such that ω ∈ C\{−1, 0, 1}. It is evident that for this example

e (z, λ) = eiλz, C
(
z, λ2

)
= cos (λωz) , S

(
z, λ2

)
=

sin (λωz)

λω
.

From (18), we obtain that

H(λ) =
ieiλ

2λ detN
[(η0 + η1λ)(iτ1λ cos (λω) + τ2λω sin (λω))

+(ζ0 + ζ1λ)(τ2 cos (λω)− iτ1
sin (λω)

ω
)]. (34)

For the simplicity on calculations, if we choose ζ1 = η0 = 1 and ζ0 = η1 = 0 in
(34), we get

H(λ) =
ieiλ

2 detN
[iτ1 cos (λω) + τ2ω sin (λω)− iτ1

sin (λω)

ω
+ τ2 cos (λω)].

We easily find that

λk = − i

2ω
ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ 1

2ω

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z,

where P =
τ1ω − iτ2ω

τ2ω2 − iτ1
. Let ω = m+ in. We can write the real and imaginary parts

of λk as follows

Reλk =
1

2 |ω|2

{
m

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
− n ln

∣∣∣∣1 + P

1− P

∣∣∣∣}
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and

Imλk = − 1

2 |ω|2

{
m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]}
,

respectively.
It is evident that if[

m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

(
Arg

(
1 + P

1− P

)
+ 2kπ

)]
= 0

then the operator T1 has spectral singularities, and if[
m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

(
Arg

(
1 + P

1− P

)
+ 2kπ

)]
< 0

then the operator T1 has eigenvalues.

Case1: If P =
eiθ − 1

eiθ + 1
, θ ∈ R, then Arg

(
1 + P

1− P

)
= θ and

∣∣∣∣1 + P

1− P

∣∣∣∣ = 1. We find

that

λk =
θ + 2kπ

2ω
, k ∈ Z.

1a: Assume ω ∈ R. λk ∈ R\{0}, k ∈ Z are spectral singularities of the operator T1

but ISBVP (33) has no eigenvalues.
2a: Assume ω ∈ C. We write

Imλk = − 1

2 |ω|2
[n (θ + 2kπ)] , k ∈ Z.

If n (θ + 2kπ) < 0, then λk ∈ C+, k ∈ Z are eigenvalues of this problem (33).
Otherwise, the eigenvalues and spectral singularities of (33) are not existing.
Case2: Let ImP ̸= 0.
2a: Let P be purely imaginary. We write

λk =
1

2ω

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z.

For ω ∈ R, λk ∈ R\{0}, k ∈ Z are spectral singularities of the operator T1. However,
the problem (33) has no eigenvalues.
If ω ∈ C, then we find that

Imλk = − n

2 |ω|2

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z.

It is easily seen that, for n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0, the impulsive Sturm–Liouville

boundary value problem (33) has eigenvalues. Otherwise, the problem (33) has no
eigenvalues and spectral singularities.
2b: Assume ReA < 0. For ω ∈ R, we get

Imλk = − m

2 |ω|2

(
ln

∣∣∣∣1 + P

1− P

∣∣∣∣) , k ∈ Z.
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If m > 0, then the operator T1 has eigenvalues. Otherwise, there are no eigenvalues
and spectral singularities of (33).
For ω ∈ C, we obtain that

Imλk = − 1

2 |ω|2

{
m ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]}
, k ∈ Z.

If m > 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0, then λk ∈ C+, k ∈ Z are eigenvalues

of (33). However, if m < 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
> 0 then the operator T1

has no eigenvalues and spectral singularities.
2c: Assume ReP > 0. Similar with case2b, if ω ∈ R and m < 0, then there exist
eigenvalues of (33). However, for ω ∈ R and m > 0, there are no eigenvalues and
spectral singularities of ISBVP (33).

Let ω ∈ C, it is clear that if m < 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0, then the

problem (33) has eigenvalues. If m > 0 and n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
> 0, then the

eigenvalues and spectral singularities of (33) are not existing.
Case3: Let P be a real number.
3a: For 0 < P < 1, we find that

λk = − i

2ω
ln

(
1 + P

1− P

)
+

kπ

ω
, k ∈ Z.

Assume ω ∈ R. If m < 0, then the operator T1 has eigenvalues. However, if m > 0,
then the problem (33) does not have any spectral singularity and eigenvalues.
Assume ω ∈ C. If m < 0 and n (2kπ) < 0, then λk ∈ C+, k ∈ Z are eigenvalues of
ISBVP (33) but if m > 0 and n (2kπ) > 0, then the operator T1 has no eigenvalues
and spectral singularity.
3b: For 1 < P < ∞, it is evident that

λk = − i

2ω
ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ 1

2ω
[(2k + 1)π] , k ∈ Z.

Let ω ∈ R. Similar with Case3a, for m < 0, the problem (33) has eigenvalues.
Otherwise, the operator T1 has no eigenvalues and spectral singularities.
Let ω ∈ C. If m < 0 and n (2k + 1)π < 0, then there exists eigenvalues of (33) but if
m > 0 and n (2k + 1)π > 0, then there are no eigenvalues and spectral singularities.
3c: For −1 < P < 0, we obtain

λk = − i

2ω
ln

(
1 + P

1− P

)
+

kπ

2ω
, k ∈ Z.

Assume ω ∈ R. The operator T1 has eigenvalues if and only if m > 0.
Assume ω ∈ C. If m > 0 and n (2kπ) < 0, then the problem (33) has eigenvalues.
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But if m < 0 and n (2kπ) > 0, then ISBVP (33) has no eigenvalues and spectral
singularities.
3d: For −∞ < P < 1, we get

λk = − i

2ω
ln

∣∣∣∣1 + P

1− P

∣∣∣∣+ 1

2ω
[(2k + 1)π] , k ∈ Z.

Let ω ∈ R. λk ∈ C+, k ∈ Z are eigenvalues of this example (33) if and only if
m > 0.
Let ω ∈ C. If m > 0 and n (2k + 1)π < 0, then there exists eigenvalues of (33). If
m < 0 and n (2k + 1)π > 0, then the eigenvalues and spectral singularities of (33)
are not existing.
Case4: Let ω be purely imaginary. We easily find that

Imλk = − n

2 |ω|2

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
, k ∈ Z.

The operator T1 has spectral singularities if and only is

Arg

(
1 + P

1− P

)
+ 2kπ = 0.

The problem (33) has eigenvalues if and only if

n

[
Arg

(
1 + P

1− P

)
+ 2kπ

]
< 0.
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Abstract. In this paper, the analyticity conditions of dual functions are

clearly examined and the properties of the concept derivative are given in
detail. Then, using the dual order relation, the dual analytic regions of dual

analytic functions are constructed such that a collection of these regions forms

a basis on Dn. Finally, the equivalent of the inverse function theorem in dual
space is given by a theorem and proved.

1. Introduction

In 1873, W. K. Clifford originally introduced the theory of algebra of dual num-
bers as a tool for his geometrical researches. Clifford showed that they constitute
an algebra but not a field because only dual numbers with real part not zero have
an inverse element [1]. An ordered pair of real numbers x = (x, x∗) is called a dual
number, where x and x∗ are termed by real part and dual part of the dual number,
respectively. Dual numbers may be formally stated by x = x+εx∗, where ε = (0, 1)
is entitled by dual unit satisfying the condition that ε2 = 0. The algebra of dual
numbers is derived from this description. If x = y, x∗ = y∗ for x = x + εx∗ and
y = y+εy∗, x and y are equal, and it is indicated as x = y. As for complex numbers,
addition and product of two dual numbers are defined as follows, respectively:

(x+ εx∗) + (y + εy∗) = x+ y + ε (x∗ + y∗) ,

(x+ εx∗) · (y + εy∗) = xy + ε (xy∗ + x∗y) .

The set of all dual numbers which is symbolized as D, i.e.,

D =
{
x = x+ εx∗ | x, x∗ ∈ R, ε2 = 0

}
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is a commutative ring over the real numbers field according to the operators +
and ·. The unit element of multiplication operation · in D is the dual number 1
= (1, 0) = 1+ ε0. The dual number x = x+ εx∗ that is divided by the dual number
y = y + εy∗ providing y ̸= 0 can be described as

x

y
=

x+ εx∗

y + εy∗
=

x

y
+ ε

(
x∗y − xy∗

y2

)
(see [1] and [2]). The dual number has a geometrical meaning which is discussed
in detail in Yaglom [3]. It has contemporary applications within the curve design
methods in computer aided geometric design and computer modeling of rigid bodies,
linkages, robots, modelling human body dynamics, mechanism design, etc. [4]. The
dual vectors were improved by A. P. Kotelnikov in the early part of the twentieth
century [5]. After W. K. Clifford, E. Study applied dual numbers and dual vectors
to his study on kinematics and line geometry [6]. There exist several articles with
regard to algebraic study of dual numbers (see [1] and [2]). This nice notion was first
performed by Kotelnikov to mechanics. Besides, the notion is often used in several
fields of fundamental sciences such as astronomy, algebraic geometry, quantum
mechanics and Riemannian geometry. For more details, we refer the reader to [3]-
[12].

The set Dn =
{−→
x = (x1, x2, ..., xn) | xi ∈ D, 1 ≤ i ≤ n

}
is a module over the

ring D according to the operators
−→
x +

−→
y = (x1 + y1, x2 + y2, ..., xn + yn)

and

λ
−→
x =

(
λx1, λx2, ..., λxn

)
.

This module is called D−module or dual space. The elements of Dn are called dual

vectors and a dual vector
−→
x can be expressed as

−→
x = −→x + ε−→x ∗,

where −→x and −→x ∗ are real vectors in Rn [1].
The dual function ⟨, ⟩D : Dn ×Dn → D,〈−→

x ,
−→
y
〉
D
= ⟨−→x ,−→y ⟩+ ε (⟨−→x ,−→y ∗⟩+ ⟨−→x ∗,−→y ⟩)

is called dual inner product function on Dn, where the notation ⟨, ⟩ is Euclidean
inner product on Rn.

Similar to dual inner product function, dual norm function ∥.∥D : Dn → D is
defined as follows: ∥∥∥−→x ∥∥∥

D
=

 0 ,−→x =
−→
0

∥−→x ∥+ ε
⟨−→x ,−→x ∗⟩
∥−→x ∥

,−→x ̸= −→
0 ,

where the notation ∥.∥ is Euclidean norm on Rn.
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Given the vectors
−→
e i =

(
δi1, δi2, ..., δin

)
, where

δij =

{
1 + ε0 , i = j
0 + ε0 , i ̸= j

, 1 ≤ i, j ≤ n,

the set
{−→
e 1,

−→
e 2, ...,

−→
e n

}
is standard basis of Dn. It turns out that every dual

vector
−→
x ∈ Dn can be written in the form

−→
x = x1

−→
e 1 + x2

−→
e 2 + ...+ xn

−→
e n,

where
−→
e i =

−→e i + ε
−→
0 for 1 ≤ i ≤ n.

Consider that x = x + εx∗ and y = y + εy∗ are dual numbers. The relation
x <D y (resp. x ≤D y) between these dual numbers is as follows (see [13], [14]):

1) Firstly, one compares the real parts of these dual numbers and must be x < y
(resp. x < y).

2) If the real parts of these dual numbers are the same, one compares their dual
parts and must be x∗ < y∗ ( resp. x∗ ≤ y∗).

We can infer that there exist the following relations:

x <D y ⇔ x < y or (x = y and x∗ < y∗)

and

x ≤D y ⇔ x < y or (x = y and x∗ ≤ y∗) .

For the historical development of the term derivative, the expression ”The de-
rivative was first used, then discovered, and then studied and developed and finally
defined.” was used. The reason for using this expression is development process
of the derivative starting with P. de Fermat in 1630s, continuing with I. Newton,
J. L. Lagrange, G.W. Leibniz, A. L. Cauchy and reaching maturity in the 1870s
with K. Weierstrass. The approaches to the derivative put forward by Leibniz and
Newton were sufficient to find answers to the questions about the tangent of the
curve and the velocity of the bodies. In fact, in the 19th century, this concept
reached a consistent and solid foundation with the definition of derivative created
by Cauchy using the term limit. It is well known that Cauchy put forward the first
popularly acceptable account of the fundamental notions of the calculus. In order
to prove the theorems related to the derivative, he used his own definitions. He
described the derivative ξ′ (x) of a continuous function ξ as the limit when it exists,

of the ratio
ξ (x+ h)− ξ (x)

h
as h went to zero. The instantaneous rate of change

is entitled by the derivative. A comparison of the change in one quantity to the
simultaneous change in a second quantity is expressed as a rate of change. Many
of today’s important problems in several fields such as engineering, biology, chem-
istry, physics, economics, involve finding the rate at which one quantity changes
with respect to another, that is, they involve finding the derivative [15].

Topology is a mathematical discipline which originated at the turn of the 20th
century. On the other hand, some isolated results about topology can be traced
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back several centuries. In mathematics, topology is interested in the properties
of a geometric object which is preserved under continuous deformations including
twisting, crumpling, stretching and bending. For many years, topology has been
one of the most influential and exciting fields of research in modern mathematics.
Topology is used for application fields such as physics, computer science, biology,
robotics, fiber art, puzzles and games. Besides, topology has lots of applications
in several branches of mathematics including differential equations, knot theory,
dynamical systems, and Riemann surfaces in complex analysis. It also has some
applications for describing the space-time structure of universe and analyzing many
biological systems such as nanostructure and molecules, and in string theory in
physics (see [16]- [29]).

In this paper, using the order relation on dual numbers, we obtain the topology
on Dn denoted by τd. Then, how the analyticity conditions of a dual function which
is often expressed in other studies are obtained is given clearly. Making use of this
topology, dual analytic areas of dual analytic functions are determined. Besides,
inner and external operations on the set constituted by dual analytic functions are
given. With the help of these operations, some properties regarding dual analytic
functions are expressed and proved. The relations between the elements of dual
space and real space which will be used to define the basic concepts of differential
geometry are examined. The terms dual tangent space, dual directional derivative,
dual vector field and dual tangent map which are the basic tools of differential
geometry are given in detail. The concepts of injective function, surjective function,
inverse function and diffeomorphism in dual space is firstly expressed in this study.
Some theorems related to these terms are obtained and proved. The foundation of
term surface in dual space is constituted via these terms [13].

2. On Dual Analytic Functions

Firstly, we shall study the concept of topology generating the basic structure of
theory of curves and surfaces given by means of the expression of distance function
in dual space. Previously, we talked about this basis [13]. After constructing a
topology structure in dual space, we will determine the dual analytic regions of
dual analytic functions by means of this topology.

Theorem 1. Given the sets

B (a, r) = {x = x+ εx∗ ∈ Dn | ∥x− a∥ < r, x∗ ∈ R}

∪
{
x = x+ εx∗ ∈ Dn | ∥x− a∥ = r and

⟨x− a, x∗ − a∗⟩
∥x− a∥

< r∗
}

= U1 ∪ U2

= U1 ∪ C1 ∪ ... ∪ Ck, (k ∈ I = {1, 2, ...})
and

U3 =
{
x = x+ εx∗ ∈ Dn | x = a′, m < x∗

1 < n, x∗
j+1 = cj ∈ R, m, n ∈ [−∞,∞]

}
,
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then a collection of all the sets U1, U3, C1, ..., Ck (k ∈ I) forms a basis β on Dn,
where a = a+ εa∗ ∈ Dn, r ∈ R+, r∗ ∈ R and 1 ≤ j ≤ n− 1.

Proof. It is enough to remark that two conditions given in definition of the term
basis are satisfied.

i) It is easily seen that ⋃
A∈β

A = Dn.

ii) The set A1 ∩ A2 is an arbitrary union of some sets belonging to class β for all
A1, A2 ∈ β expect for A1∩A2 = ∅. Now, let us show that this expression is correct.
Suppose that y belongs to A1 ∩ A2. Taking into account the sets B1, B2, U

′
3 and

U ′′
3 , the following situations hold, where

B1 (a1, r1) = {x = x+ εx∗ ∈ Dn | ∥x− a1∥ < r1, x∗ ∈ Rn}

∪
{
x = x+ εx∗ ∈ Dn | ∥x− a1∥ = r1 and

⟨x− a1, x
∗ − a∗1⟩

∥x− a1∥
< r∗1

}
= U1 ∪ C ′

1 ∪ ... ∪ C ′
l ,

B2 (a2, r2) = {x = x+ εx∗ ∈ Dn | ∥x− a2∥ < r2, x∗ ∈ Rn}

∪
{
x = x+ εx∗ ∈ Dn | ∥x− a2∥ = r2 and

⟨x− a2, x
∗ − a∗2⟩

∥x− a2∥
< r∗2

}
= U ′

1 ∪ C ′′
1 ∪ ... ∪ C ′′

l′ ,

U ′
3 =

{
x = x+ εx∗ ∈ Dn | x = b′, m1 < x∗

1 < n1, x∗
j+1 = c′j ∈ R, m1, n1 ∈ [−∞,∞]

}
and

U ′′
3 =

{
x = x+ εx∗ ∈ Dn | x = b′′, m2 < x∗

1 < n2, x∗
j+1 = c′′j ∈ R, m2, n2 ∈ [−∞,∞]

}
.

1) Suppose that y ∈ U ′
3 ∩ U ′′

3 . The following set can be written:

U ′
3∩U ′′

3 =
{
x = x+ εx∗ ∈ Dn | x = a, m < x∗

1 < n, x∗
j+1 = cj ∈ R, m, n ∈ [−∞,∞]

}
∈ β,

where y = b′ = b′′ = a, m < y∗1 < n, y∗j+1 = c′j = c′′j = cj ∈ R, m = max {m1,m2}
and n = min {n1, n2}.

2) Assume that y ∈ U1 ∩ U ′′
3 . Hence, it is clear that U1 ∩ U ′′

3 = U ′′
3 ∈ β.

3) Suppose that y ∈ C ′
l ∩ U ′′

3 for any l ∈ I. In this case, the set C ′
l ∩ U ′′

3 can be
written as

U j
3 =

{
x = x+ εx∗ ∈ Dn | x = aj , mj < x∗

1 < nj , x∗
j+1 = c′j ∈ R, mj , nj ∈ [−∞,∞]

}
.

Therefore, C ′
l ∩ U ′′

3 ∈ β.
4) Assume that y ∈ U1 ∩ U ′

1. The set U1 ∩ U ′
1 can be written as an arbitrary

union of the sets

U = {x = x+ εx∗ ∈ Dn | ∥x− a∥ < r, x∗ ∈ Rn} .
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5) Suppose that y ∈ U1 ∩ C ′′
l′ for any l′ ∈ I. It is easy to check that U1 ∩ C ′′

l′ =

C ′′
l′ ∈ β.
6) Assume that y ∈ C ′

l ∩ C ′′
l′ for any l, l′ ∈ I. The set C ′

l ∩ C ′′
l′ is expressed as

Cl ∈ β, for l ∈ I or an arbitrary union of the sets U3 belonging to class β.
With these conventions, we have

A1 ∩A2 =
⋃

A∈Å⊆β

A

for all A1, A2 ∈ β expect for A1 ∩A2 = ∅, where the class Å is a class of some sets
belonging to the class β. □

Definition 1. The class β given in the above mentioned theorem is called dual basis
on Dn. The topology obtained from this basis is symbolized as τd. Each element of
this topology is termed by dual open set.

Theorem 2. Suppose that the class of the sets

U = {x = x+ εx∗ ∈ Dn | ∥x− a∥ < r, x∗ ∈ Rn}
= U × Rn

belonging to the topology τd is symbolized as β1, where U is open set with respect to

the standard topology of Rn. Then the class β1 also constitutes a basis on Dn and
the relationship between the topology τ obtained from this basis and the topology τd
is τ ⊆ τd.

For example; let us study the topology τd on D. Assume that

B (a, r) = {x = x+ εx∗ ∈ D | |x− a| < r, x∗ ∈ R}

∪
{
x = x+ εx∗ ∈ D | |x− a| = r and

(x− a) (x∗ − a∗)

|x− a|
< r∗

}
= U1 ∪ U2

= U1 ∪ C1 ∪ C2,

where a = a+ εa∗ ∈ D, r ∈ R+, r∗ ∈ R and

U2 = {x = x+ εx∗ ∈ D | x = a+ r, x∗ < a∗ + r∗}
∪ {x = x+ εx∗ ∈ D | x = a− r, x∗ > a∗ − r∗}

= C1 ∪ C2.

Taking into consideration the set

U3 = {x = x+ εx∗ ∈ D | x = a′, m < x∗ < n, m, n ∈ [−∞,∞]} ,
the collection of the sets U1, C1, C2 and U3 forms a basis on D. The topology
obtained from this basis is symbolized as τd. Besides, the collection of the sets
U1 ∪U2 and U3 is also a basis on D and the topology generated by this basis is also
τd.
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Observe that

B =
{
x̃ = (x, x∗) ∈ R2 | a < x < b, c < x∗ < d, a, b, c, d ∈ R

}
.

The collection of all the sets B forms a basis on R2. If the topology generated by
this basis is symbolized as τ1, the relationship between τd and τ1 is τ1 ⊆ τd. On
the other hand, if the topology derived from the collection of only the sets U1 is
symbolized as τ , then there exists the following relationship:

τ ⊆ τ1 ⊆ τd.

Definition 2. Let x = x+ εx∗ be a dual variable. The function ξ : D → D of the
dual variable x = x+ εx∗ is defined as follows:

ξ (x) = ξ (x, x∗) + εξ0 (x, x∗) ,

where ξ and ξ0 are real functions of the two real variables x and x∗.

In the following theorem, by eliminating the deficiencies in other studies, we
shall discuss analyticity conditions of dual functions.

Theorem 3. The dual function ξ : U ⊆ D → D, ξ (x = x+ εx∗) = ξ (x, x∗) +
εξ0 (x, x∗) is said to be analytic at the point x ∈ U if and only if the functions ξ
and ξ0 have continuous partial derivatives ξx and ξ0x and there exist the equalities

ξx∗ = 0 and ξ0x∗ = ξx, where ξx =
∂ξ

∂x
.

Proof. Firstly, let the dual function ξ be analytic at the point x ∈ U . Thus, this
assumption permits us to write the following relation:

dξ

dx
= lim

h→0

ξ
(
x+ h

)
− ξ (x)

h
. (1)

Observe that x = x+ εx∗ and h = h+ εh∗. By definition of dual variable functions
and ε2 = 0, the following equality holds:

dξ

dx
= lim

h→0

ξ
(
x+ h

)
− ξ (x)

h

= lim
(h,h∗)→(0,0)

ξ (x+ h, x∗ + h∗) + εξ0 (x+ h, x∗ + h∗)− ξ (x, x∗)− εξ0 (x, x∗)

h+ εh∗

= lim
(h,h∗)→(0,0)

ξ (x+ h, x∗ + h∗)− ξ (x, x∗)

h

+ lim
(h,h∗)→(0,0)

ε

(
ξ0(x+h,x∗+h∗)−ξ0(x,x∗)

h

−h∗

h2 (ξ (x+ h, x∗ + h∗)− ξ (x, x∗))

)

=
∂ξ

∂x
+ ε

∂ξ0

∂x
.
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In view of equation (1), it is seen that the limit for (h, h∗) → (0, 0) of real part of

the expression
ξ
(
x+ h

)
− ξ (x)

h
is

∂ξ

∂x
. Then, it is easy to check that

ξ (x+ h, x∗ + h∗)− ξ (x, x∗)

h

=
ξ (x+ h, x∗ + h∗)− ξ (x, x∗ + h∗)

h
+

ξ (x, x∗ + h∗)− ξ (x, x∗)

h
. (2)

From the hypothesis and the equality (2), we have

lim
(h,h∗)→(0,0)

ξ (x, x∗ + h∗)− ξ (x, x∗)

h
= 0.

If this limit exists and equals to zero, it is obvious from discussion that

ξ (x, x∗ + h∗)− ξ (x, x∗) = 0

such that ξ (x, x∗) = ξ (x). Thus, the function ξ depends only on the variable x,

i.e.,
∂ξ

∂x∗ = 0. It is well known from equation (1) that the limit for (h, h∗) → (0, 0)

of dual part of the expression
ξ
(
x+ h

)
− ξ (x)

h
is

∂ξ0

∂x
. By some calculations, the

following equality holds:

ξ0 (x+ h, x∗ + h∗)− ξ0 (x, x∗)

h
− ξ (x+ h, x∗ + h∗)− ξ (x, x∗)

h

h∗

h

=
ξ0 (x+ h, x∗ + h∗)− ξ0 (x, x∗ + h∗)

h
(3)

+
ξ0 (x, x∗ + h∗)− ξ0 (x, x∗)

h
− ξ (x+ h)− ξ (x)

h

h∗

h
.

From the hypothesis and the equality (3), we get

lim
h∗→0

(
lim
h→0

h
(
ξ0 (x, x∗ + h∗)− ξ0 (x, x∗)

)
− h∗ (ξ (x+ h)− ξ (x))

h2

)
= 0. (4)

Since the statement

lim
h→0

h
(
ξ0 (x, x∗ + h∗)− ξ0 (x, x∗)

)
− h∗ (ξ (x+ h)− ξ (x))

h2

has the indefiniteness
(
0
0

)
, we write the following equality:

lim
h∗→0

(
lim
h→0

(
ξ0 (x, x∗ + h∗)− ξ0 (x, x∗)

)
− h∗ξx (x+ h)

2h

)
= 0. (5)

From (5), we obtain

ξ0 (x, x∗ + h∗)− ξ0 (x, x∗) = h∗ξx (x) .
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Therefore, it is possible to express that

ξ0 (x, x∗ + h∗)− ξ0 (x, x∗)

h∗ = ξx (x) ,

where h∗ ̸= 0. The limit of both sides of this identity for h∗ → 0 is ξ0x∗ = ξx.
Conversely, suppose that the functions ξ and ξ0 have continuous partial deriva-

tives ξx and ξ0x and there are the equalities ξx∗ = 0 and ξ0x∗ = ξx. The expression
of dual function ξ is simplified to the following form

ξ (x) = ξ (x) + ε
(
x∗ξ′ (x) + ξ̃ (x)

)
, (6)

where ξ ∈ C2, ξ̃ ∈ C1. Given a point x ∈ U, we must show that the expres-

sion lim
h→0

ξ
(
x+ h

)
− ξ (x)

h
exists. From the equality (6) , the derivative of the dual

function ξ with respect to dual variable x can be expressed as follows:

I = lim
h→0

ξ
(
x+ h

)
− ξ (x)

h
= lim

(h,h∗)→(0,0)


ξ(x+h)−ξ(x)

h

+ε

(
x∗
(

ξ′(x+h)−ξ′(x)
h

)
+ ξ̃(x+h)−ξ̃(x)

h

+h∗

h ξ′ (x+ h)− ξ(x+h)−ξ(x)
h

h∗

h

)  .

From the hypothesis, we have

I1 = lim
(h,h∗)→(0,0)

ξ (x+ h)− ξ (x)

h
= ξ′ (x) ,

I2 = lim
(h,h∗)→(0,0)

x∗
(
ξ′ (x+ h)− ξ′ (x)

h

)
= x∗ξ′′ (x) ,

I3 = lim
(h,h∗)→(0,0)

ξ̃ (x+ h)− ξ̃ (x)

h
= ξ̃′ (x) ,

I4 = lim
(h,h∗)→(0,0)

h∗

h
ξ′ (x+ h)− ξ (x+ h)− ξ (x)

h

h∗

h
= 0

such that

I = I1 + ε (I2 + I3 + I4) = ξ′ (x) + ε
(
x∗ξ′′ (x) + ξ̃′ (x)

)
.

Thus, this obviously completes the proof of the theorem. □

We are now ready to state the following corollaries.

Corollary 1. Theorem 3 implies that the derivative of dual function ξ : U ⊆ D → D
with respect to dual variable x is

dξ

dx
= lim

∆x→0

ξ (x+∆x)− ξ (x)

∆x
.

This limit is independent of the ratio
∆x∗

∆x
[30].
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Corollary 2. Taking into account Theorem 3, the analyticity conditions of dual

function ξ : U ⊆ D → D, ξ (x) = ξ (x, x∗)+εξ0 (x, x∗) are
∂ξ

∂x∗ = 0 and
∂ξ0

∂x∗ =
∂ξ

∂x
.

Thus, the general representation of dual analytic functions is

ξ (x) = ξ (x, x∗) + εξ0 (x, x∗) = ξ (x) + ε
(
x∗ξ′ (x) + ξ̃ (x)

)
,

where ξ, ξ̃ : U ⊆ R → R and ξ ∈ C2, ξ̃ ∈ C1. In the proof of Theorem 3, it is clearly
seen that the derivative of this analytic function ξ with respect to dual variable x is

dξ

dx
=

∂ξ

∂x
+ ε

∂ξ0

∂x
= ξ′ (x) + ε

(
x∗ξ′′ (x) + ξ̃′ (x)

)
[30].

Now, based on Theorem 3, let us determine the analyticity conditions of dual
function ξ : U ⊆ Dn → D,

ξ (x) = ξ (x1, ..., xn, x
∗
1, ..., x

∗
n) + εξ0 (x1, ..., xn, x

∗
1, ..., x

∗
n) = ξ + εξ0.

The partial derivatives of dual function ξ at any dual point a ∈ U ⊆ Dn (if there
exists) are

∂ξ

∂xi
(a) = lim

∆xi→0

ξ (a1, ..., ai +∆xi, ..., an)− ξ (a1, ..., an)

∆xi
, 1 ≤ i ≤ n.

The above formula is simplified to the following form:

∂ξ

∂xi
(a) =

d

dxi
ξ (a1, ..., xi, ..., an) |xi=ai

= lim
xi→ai

µ (xi)− µ (ai)

xi − ai
,

where µ (xi) = ξ (a1, ..., xi, ..., an) . When Theorem 3 is taken into consideration,
one can check that if this limit exists, for 1 ≤ i ≤ n, then the functions ξ and ξ0

have continuous partial derivatives ξxi and ξ0xi
at any dual point a ∈ U and these

relations
∂ξ

∂x∗
i

= 0 and
∂ξ0

∂x∗
i

=
∂ξ

∂xi
are satisfied. From Theorem 3, it is easy to see

that the reverse exists. This result follows by proceeding as in the proof of the first
assertion. Thus, these conventions permit us to write the following relation:

∂ξ

∂xi
(a) =

∂ξ

∂xi
(a1, ..., an, a

∗
1, ..., a

∗
n) + ε

∂ξ0

∂xi
(a1, ..., an, a

∗
1, ..., a

∗
n) .

Besides, the expression lim
∆xi→0

∆ξ

∆xi
is independent of the ratio

∆x∗
i

∆xi
. Note that

the analyticity conditions of dual function ξ : U ⊆ Dn → D are
∂ξ

∂x∗
i

= 0 and

∂ξ0

∂x∗
i

=
∂ξ

∂xi
(1 ≤ i ≤ n). In view of these equalities, we can write the following

expressions:
ξ (x1, ..., xn, x

∗
1, ..., x

∗
n) = ξ (x1, ..., xn)
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and

ξ0 (x1, ..., xn, x
∗
1, ..., x

∗
n) =

n∑
i=1

x∗
i

∂ξ

∂xi
+ ξ̃ (x1, ..., xn) ,

where ξ ∈ C2, ξ̃ ∈ C1. By definition of the analyticity conditions of dual function
ξ : U ⊆ Dn → D, the general representation of these dual analytic functions is

ξ (x) = ξ (x1, ..., xn) + ε

(
n∑

i=1

x∗
i

∂ξ

∂xi
+ ξ̃ (x1, ..., xn)

)
. (7)

The partial derivatives of this function with respect to dual variables xj are

∂ξ

∂xj
=

∂ξ

∂xj
+ ε

(
n∑

i=1

x∗
i

∂2ξ

∂xj∂xi
+

∂ξ̃

∂xj

)

(1 ≤ j ≤ n). Throughout this paper, the functions ξ and ξ̃ will be considered as be-
longing to C∞−class. Note that the sets of the topology τ mentioned in Theorem 2
is dual analytic regions of dual analytic functions. The set of dual analytic functions
is symbolized as C

(
U ⊆ Dn,D

)
. Therefore, the following expression holds:

C
(
U ⊆ Dn,D

)
=

{
ξ | ξ : U ⊆ Dn → D, ξ (x) = ξ (x) + ε

(
n∑

i=1

x∗
i

∂ξ

∂xi
+ ξ̃ (x)

)}
.

Given the dual functions ξ : U ⊆ Dn → Dm, ξ =
(
ξ1, ..., ξm

)
, we conclude that if

the dual functions ξj : U ⊆ Dn → D, (1 ≤ j ≤ m) are dual analytic, then the dual

function ξ is dual analytic. When the above information is taken into consideration,
the following functions can be defined:

i) +C : C
(
U ⊆ Dn,D

)
×C

(
U ⊆ Dn,D

)
→ C

(
U ⊆ Dn,D

)
, for ξ, µ ∈ C

(
U ⊆ Dn,D

)
and x ∈ U ⊆ Dn, we have(
ξ +C µ

)
(x) = ξ (x) + µ (x) = ξ (x) + µ (x) + ε

(
n∑

i=1

x∗
i

∂ (ξ + µ)

∂xi
+ ξ̃ (x) + µ̃ (x)

)
.

ii) ·C : D × C
(
U ⊆ Dn,D

)
→ C

(
U ⊆ Dn,D

)
, for ξ ∈ C

(
U ⊆ Dn,D

)
, λ =

λ+ ελ∗ ∈ D and x ∈ U ⊆ Dn, we have(
λ ·C ξ

)
(x) = λ · ξ (x) = λξ (x) + ε

(
n∑

i=1

x∗
i

∂ (λξ)

∂xi
+ λξ̃ (x) + λ∗ξ (x)

)
.

iii) ·1C : C
(
U ⊆ Dn,D

)
×C

(
U ⊆ Dn,D

)
→ C

(
U ⊆ Dn,D

)
, for ξ, µ ∈ C

(
U ⊆ Dn,D

)
and x ∈ U ⊆ Dn, we have
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(
ξ ·1C µ

)
(x) = ξ (x)·µ (x) = ξ (x)µ (x)+ε

(
n∑

i=1

x∗
i

∂ (ξµ)

∂xi
+ ξ (x) µ̃ (x) + ξ̃ (x)µ (x)

)
[31].
We are interested now to some properties regarding dual analytic functions.

Proposition 1. Consider µ : I ⊆ D → Dn and ξ : U ⊆ Dn → D are dual analytic
functions, where the functions µ and ξ are as below:

µ
(
t
)
= µ (t) + ε (t∗µ′ (t) + µ̃ (t))

and

ξ (x) = ξ (x) + ε

(
n∑

i=1

x∗
i

∂ξ

∂xi
+ ξ̃ (x)

)
such that the functions ξ, ξ̃, µ and µ̃ belong to C∞−class. If the functions ξ and µ
are dual analytic at the dual points µ

(
t
)
and t, respectively, then the composition

of µ and ξ ,i.e., ξ ◦ µ is dual analytic function. The derivative of this dual analytic
function with respect to dual variable t is

d

dt

(
ξ ◦ µ

) (
t
)
= (ξ ◦ µ)′ (t)+ε

 t∗ (ξ ◦ µ)′′ (t) +
〈
µ̃ (t) ,

n∑
i=1

(
∂ξ

∂xi
◦ µ
)
(t)−→e i

〉′

+
(
ξ̃ ◦ µ

)′
(t)

 ,

where (ξ ◦ µ)′ (t) = d

dt
(ξ ◦ µ) (t).

Theorem 4. Let ξ : U ⊆ Dn → D be dual analytic function. Then the following
identity holds

∂2ξ

∂xk∂xj
=

∂2ξ

∂xj∂xk
(1 ≤ j, k ≤ n) ,

for any dual point of U ⊆ Dn.

Proof. Let ξ : U ⊆ Dn → D be dual analytic function. From the equality (7), we
can write

ξ (x) = ξ (x) + ε

(
n∑

i=1

x∗
i

∂ξ

∂xi
+ ξ̃ (x)

)
,

where ξ, ξ̃ ∈ C∞. The partial derivatives of dual function ξ with respect to dual
variable xj are

∂ξ

∂xj
=

∂ξ

∂xj
+ ε

(
n∑

i=1

x∗
i

∂2ξ

∂xj∂xi
+

∂ξ̃

∂xj

)

=
∂ξ

∂xj
+ ε

(
n∑

i=1

x∗
i

∂2ξ

∂xi∂xj
+

∂ξ̃

∂xj

)
.
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The above formula are simplified to the following form

∂ξ

∂xj
= µ (x) + ε

(
n∑

i=1

x∗
i

∂µ

∂xi
+ µ̃ (x)

)
,

where
∂ξ

∂xj
= µ (x) and

∂ξ̃

∂xj
= µ̃ (x), i.e., µ, µ̃ ∈ C∞. Thus, we deduce that

∂ξ

∂xj
∈ C

(
U ⊆ Dn,D

)
. In analogous to the derivative

∂ξ

∂xj
, the partial derivatives

of dual function
∂ξ

∂xj
with respect to dual variable xk are

∂2ξ

∂xk∂xj
=

∂µ

∂xk
+ ε

(
n∑

i=1

x∗
i

∂2µ

∂xk∂xi
+

∂µ̃

∂xk

)

=
∂µ

∂xk
+ ε

(
n∑

i=1

x∗
i

∂2µ

∂xi∂xk
+

∂µ̃

∂xk

)
,

where
∂µ

∂xk
=

∂2ξ

∂xk∂xj
=

∂2ξ

∂xj∂xk
and

∂µ̃

∂xk
=

∂2ξ̃

∂xk∂xj
=

∂2ξ̃

∂xj∂xk
. Therefore, this

yields

∂2ξ

∂xk∂xj
=

∂2ξ

∂xj∂xk
+ ε

(
n∑

i=1

x∗
i

∂

∂xi

(
∂2ξ

∂xj∂xk

)
+

∂2ξ̃

∂xj∂xk

)
. (8)

On the other hand, it is easy to compute

∂2ξ

∂xj∂xk
=

∂2ξ

∂xj∂xk
+ ε

(
n∑

i=1

x∗
i

∂

∂xi

(
∂2ξ

∂xj∂xk

)
+

∂2ξ̃

∂xj∂xk

)
. (9)

Comparing these two equations (8) and (9), we have
∂2ξ

∂xk∂xj
=

∂2ξ

∂xj∂xk
. Thus,

this achieves the proof. □

Remark 1. On the set Rn ×Rn = {(x, x∗) | x, x∗ ∈ Rn}, the equality, inner oper-
ation and external operation can be defined as follows:

(i) For any (x, x∗) , (y, y∗) ∈ Rn × Rn, we get

(x, x∗) = (y, y∗) ⇔ x = y and x∗ = y∗.

(ii) +1 : (Rn × Rn)× (Rn × Rn) → Rn ×Rn, for (x, x∗) , (y, y∗) ∈ Rn ×Rn, we
get

(x, x∗) +1 (y, y
∗) = (x+ y, x∗ + y∗) .

(iii) ·1 : D× (Rn × Rn) → Rn×Rn, for (x, x∗) ∈ Rn×Rn and λ = λ+ ελ∗ ∈ D,
we get

λ ·1 (x, x∗) = (λx, λx∗ + λ∗x) .
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According to the above operations, the set (Rn × Rn,+1, ·1) constitutes a module
over the set (D,+, ·).

We are now ready to express the following theorem:

Theorem 5. Let the sets (Rn × Rn,+1, ·1) and (Dn,+, ·) be modules over the set
(D,+, ·). Then the function f : Rn × Rn → Dn, f (x, x∗) = x + εx∗ is a (module)
isomorphism.

Proof. It is easy to check that f is bijective function. Now, for (x, x∗) , (y, y∗) ∈
Rn × Rn and λ = λ+ ελ∗ ∈ D, the following equality can be written

f
(
λ ·1 (x, x∗) +1 (y, y

∗)
)

= f (λx+ y, λx∗ + λ∗x+ y∗)

= λx+ y + ε (λx∗ + λ∗x+ y∗)

= (λ+ ελ∗) (x+ εx∗) + (y + εy∗)

= λf (x, x∗) + f (y, y∗)

such that f is a (module) linear function. In view of these conventions, we deduce
that f is a (module) isomorphism. This permits us to conclude the proof. □

Theorem 6. The real vector space Rn is isomorphic to a subset of Dn defined as

A =
{−→
x = −→x + ε

−→
0 | −→x ∈ Rn

}
[32].

Definition 3. Let {x1, ..., xn, x
∗
1, ..., x

∗
n} be coordinate functions of R2n and p̃ =

(p1, ..., pn, p
∗
1, ..., p

∗
n) ∈ R2n. Then we have

x̃i = (xi, x
∗
i ) : R2n → R× R, x̃i (p̃) = (xi (p̃) , x

∗
i (p̃)) ,

where xi : R2n → R, xi (p̃) = pi and x∗
i : R2n → R, x∗

i (p̃) = p∗i . Since the function
hn : Dn → R2n, hn (p) = p̃ is bijective function, we can write the following diagram:

Dn xi−→ D
hn ↓ ↓ h1

R2n −→̃
xi

R× R

such that dual coordinate functions xi can be stated by xi = h−1
1 ◦ x̃i ◦hn. Therefore,

for dual coordinate functions xi (1 ≤ i ≤ n), we obtain

xi (p) = xi (p̃) + εx∗
i (p̃) = pi + εp∗i = pi,

where p = (p1, ..., pn) ∈ Dn and pi = pi + εp∗i ∈ D.

Definition 4. Suppose that p ∈ Dn is a dual point and
−→
x ∈ Dn is a dual vector.

On the set

TpD
n = {p} ×Dn =

{(
p,
−→
x
)
| −→x ∈ Dn

}
,

equality, inner operation and external operation can be determined as follows:
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(i) For any
(
p,
−→
x
)
and

(
q,
−→
y
)
, we have(

p,
−→
x
)
=
(
q,
−→
y
)
⇔ p = q and

−→
x =

−→
y .

(ii) ⊕ : TpD
n × TpD

n → TpD
n, for

(
p,
−→
x
)
,
(
p,
−→
y
)
∈ TpD

n, we have(
p,
−→
x
)
⊕
(
p,
−→
y
)
=
(
p,
−→
x +

−→
y
)
.

(iii) ⊙ : D× TpD
n → TpD

n for
(
p,
−→
x
)
∈ TpD

n and λ ∈ D, we have

λ⊙
(
p,
−→
x
)
=
(
p, λ

−→
x
)
.

Corollary 3. Taking into account the operations ⊕ and ⊙ defined on the set

TpD
n = {p} × Dn =

{(
p,
−→
x
)
| −→x ∈ Dn

}
, this set generates a module over the

set (D,+, ·). This module (TpD
n,⊕, (D,+, .) ,⊙) is called dual tangent space and

every element of this module is entitled by dual tangent vector.

Corollary 4. When above defined operations ⊕ and ⊙ is taken into consideration,

every element
−→
x p =

(
p,
−→
x
)
of TpD

n can be expressed by

−→
x p =

(
p,−→x + ε

−→
0
)
⊕ ε⊙

(
p,−→x ∗ + ε

−→
0
)
,

where
−→
x = −→x + ε−→x ∗ ∈ Dn.

Corollary 5. Let us define the sets

Φ =
{(

p,−→x + ε
−→
0
)
| p ∈ Dn,−→x ∈ Rn

}
and

Ψ =
{
(p̃, (x1, ..., xn, 0, ..., 0)) | p̃ ∈ R2n, xi ∈ R

}
.

The inner operation on the set Φ (resp. Ψ) is(
p,−→x + ε

−→
0
)
+Φ

(
p,−→y + ε

−→
0
)

=
(
p,−→x +−→y + ε

−→
0
)
,

(p̃, (x1, ..., xn, 0, ..., 0)) +Ψ (p̃, (y1, ..., yn, 0, ..., 0)) = (p̃, (x1 + y1, ..., xn + yn, 0, ..., 0))

and for λ ∈ R, the external operation on the set Φ (resp. Ψ) is

λ ·Φ
(
p,−→x + ε

−→
0
)

=
(
p, λ−→x + ε

−→
0
)
,

λ ·Ψ (p̃, (x1, ..., xn, 0, ..., 0)) = (p̃, (λx1, ..., λxn, 0, ..., 0))

such that the sets (Φ,+Φ, ·Φ) and (Ψ,+Ψ, ·Ψ) are n-dimensional vector spaces over
the field (R,+, ·).

With these conventions, the following theorem can be given:
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Theorem 7. Consider that

Φ =
{(

p,−→x + ε
−→
0
)
| p ∈ Dn,−→x ∈ Rn

}
and

Ψ =
{
(p̃, (x1, ..., xn, 0, ..., 0)) | p̃ ∈ R2n, xi ∈ R

}
.

Then the function g : (Φ,+Φ, ·Φ) → (Ψ,+Ψ, ·Ψ) , g
(
p,−→x + ε

−→
0
)
= (p̃, (x1, ..., xn, 0, ..., 0))

is a isomorphism.

Corollary 6. From Theorem 7 and −→x = (x1, ..., xn) =̃ (x1, ..., xn, 0, ..., 0), every

dual vector
−→
x p =

(
p,
−→
x
)
∈ TpD

n can be written as

−→
x p =

(
p,
−→
x
)

=
(
p,−→x + ε

−→
0
)
⊕ ε⊙

(
p,−→x ∗ + ε

−→
0
)

= (p̃,−→x )⊕ ε⊙ (p̃,−→x ∗)

= −→x p̃ ⊕ ε⊙−→x ∗
p̃.

For simplicity, throughout this paper, the operations + and · is used instead of the
operations ⊕ and ⊙, respectively. Thus, this means that

−→
x p = −→x p̃ + ε−→x ∗

p̃.

Also, it is possible to write the following equality:

−→
x p =

(
p,
−→
x
)
=
(
p, x1

−→
e 1 + ...+ xn

−→
e n

)
= x1

−→
e 1p + ...+ xn

−→
e np,

where
−→
e ip =

(
p,−→e i + ε

−→
0
)
. Moreover, the equation λ1

−→
e 1p + ... + λn

−→
e np =

−→
0 p

can only be satisfied by λi = 0 for 1 ≤ i ≤ n. Thus, the set
{−→
e 1p, ...,

−→
e np

}
forms

a basis of dual tangent space TpD
n.

Theorem 8. Assume that ξ ∈ C
(
U ⊆ Dn,D

)
and

−→
x p ∈ TpD

n. The derivative of

dual analytic function ξ in the direction of dual tangent vector
−→
x p is

−→
x p

[
ξ
]
=

d

dt
ξ
(
p+ t

−→
x
)
|t=0

= −→x p̃ [ξ] + ε

(
n∑

i=1

p∗i
−→x p̃ [ξxi ] +

−→x p̃

[
ξ̃
]
+−→x ∗

p̃ [ξ]

)
,

where −→x p̃ [ξ] =
n∑

i=1

∂ξ

∂xi
(x (p̃))xi.

Proof. The proof can be easily made using definitions of dual tangent vector and
composition of dual analytic functions. □
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Theorem 9. For ξ, µ ∈ C
(
U ⊆ Dn,D

)
,
−→
x p,

−→
y p ∈ TpD

n and λ ∈ D, the following
equalities exist:

(i)
−→
x p

[
ξ + µ

]
=

−→
x p

[
ξ
]
+

−→
x p [ µ ]

(ii)
−→
x p

[
λ · ξ

]
= λ

−→
x p

[
ξ
]

(iii)
−→
x p

[
ξ · µ

]
=

−→
x p

[
ξ
]
µ (p) + ξ (p)

−→
x p [ µ ]

(iv)
(−→
x p +

−→
y p

) [
ξ
]
=

−→
x p

[
ξ
]
+
−→
y p

[
ξ
]
.

Definition 5. A dual vector field X on Dn is a function that assigns to each dual

point p of Dn a dual tangent vector
−→
X p to Dn at p, i.e., X : Dn → TDn,

X (p) =
−→
X p =

−→
X p̃ + ε

−→
X ∗

p̃,

where
−→
X =

−→
X + ε

−→
X ∗. Suppose that ai : U ⊆ Dn → D, ai = ai + εa0i (1 ≤ i ≤ n)

are dual analytic functions. When the dual vector field can be written in the form
X (x) = (a1 (x) , ..., an (x)), the equality can be rearranged as follows:

X (x) = X (x) + ε

 n∑
j=1

x∗
jXxj

+ X̃ (x)

 ,

where X (x) = (a1 (x) , ..., an (x)) , X̃ (x) = (ã1 (x) , ..., ãn (x)) and the functions ai
and ãi belong to C∞−class for 1 ≤ i ≤ n. The set of dual analytic vector fields is
symbolized as χ (Dn). Hence, it is possible to write below expression:

χ (Dn) =

{
X | X : Dn → TDn,

−→
X p =

−→
X p̃ + ε

−→
X ∗

p̃

}
.

We are now ready to introduce that the inner and external operations on χ (Dn) is
described as below:

(i) + : χ (Dn)× χ (Dn) → χ (Dn), for
−→
X,

−→
Y ∈ χ (Dn) and p ∈ Dn, we have(

X + Y
)
(p) =

−→
X p +

−→
Y p.

(ii) · : D× χ (Dn) → χ (Dn), for
−→
X ∈ χ (Dn), λ ∈ D and p ∈ Dn, we have(

λ ·X
)
(p) = λ ·X (p) = λ ·

−→
X p.

In view of above mentioned operations, the set (χ (Dn) ,+, ·) forms a module over
the set (D,+, ·).

Now, suppose that ξ ∈ C
(
U ⊆ Dn,D

)
. The derivative of dual analytic function

ξ in the direction of dual analytic vector field X is

X
[
ξ
]
= X [ξ] + ε

 n∑
j=1

x∗
j (X [ξ])xj

+X
[
ξ̃
]
+ X̃ [ξ]

 ,
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where X [ξ] =
n∑

i=1

∂ξ

∂xi
ai, such that X

[
ξ
]
∈ C

(
U ⊆ Dn,D

)
. We can infer that for

p ∈ Dn,

Xp

[
ξ
]
= Xp̃ [ξ] + ε

 n∑
j=1

x∗
j (p̃) (X [ξ])xj

(p̃) +Xp̃

[
ξ̃
]
+ X̃p̃ [ξ]

 .

Definition 6. Suppose that ξ : U ⊆ Dn → Dm, ξ =
(
ξ1, ..., ξm

)
is a dual analytic

function. The function ξ∗p : TpU → Tξ(p)D
m is called a dual tangent map of the

function ξ at the dual point p, where

ξ∗p

(−→
x p

)
=

(−→
x p

[
ξ1
]
, ...,

−→
x p

[
ξm
])

|q=ξ(p)

= ξ∗p̃ (
−→x p̃) + ε

 n∑
j=1

p∗jξxj∗p̃ (
−→x p̃) + ξ̃∗p̃ (

−→x p̃) + ξ∗p̃
(−→x ∗

p̃

)
and

ξ∗p̃ (
−→x p̃) = (−→x p̃ [ξ1] , ...,

−→x p̃ [ξm]) .

In that case, it turns out that ξ∗ : χ ( Dn) → χ (Dm),

ξ∗
(
X
)
= ξ∗ (X) + ε

 n∑
j=1

x∗
j (ξ∗ (X))xj

+ ξ̃∗ (X) + ξ∗

(
X̃
) ,

where ξ∗ (X) = (X [ξ1] , ..., X [ξm]).

Theorem 10. ξ∗p : TpD
n → Tξ(p)D

m is a (module) linear map and the matrix

(dual Jacobian matrix) corresponding to this linear map with respect to the bases{−→
e 1p, ...,

−→
e np

}
and

{−→
e 1q, ...,

−→
e mq

}
is

J
(
ξ, p
)

=


∂ξ1
∂x1

(p̃) · · · ∂ξ1
∂xn

(p̃)
∂ξ2
∂x1

(p̃) · · · ∂ξ2
∂xn

(p̃)
...

. . .
...

∂ξm
∂x1

(p̃) · · · ∂ξm
∂xn

(p̃)

+ ε


∂ξ01
∂x1

(p̃) · · · ∂ξ01
∂xn

(p̃)
∂ξ02
∂x1

(p̃) · · · ∂ξ02
∂xn

(p̃)
...

. . .
...

∂ξ0m
∂x1

(p̃) · · · ∂ξ0m
∂xn

(p̃)


= J (ξ, p̃) + εJ

(
ξ0, p̃

)
= J (ξ, p̃) + ε

 n∑
j=1

p∗jJ
(
ξxj , p̃

)
+ J

(
ξ̃, p̃
) ,

where
∂ξ0j
∂xi

=
n∑

k=1

x∗
k

∂2ξj
∂xi∂xk

+
∂ξ̃j
∂xi

.
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Remark 2. Assume that ξ : U ⊆ Dn → D is dual analytic function, where U =
U × Rn. Then we know that

ξ (x) = ξ (x1, ..., xn) + ε

(
n∑

i=1

x∗
i

∂ξ

∂xi
(x1, ..., xn) + ξ̃ (x1, ..., xn)

)
.

The value of this function at the dual point x = p is

ξ (p) = ξ (x1 (p̃) , ..., xn (p̃)) + ε

 n∑
i=1

x∗
i (p̃)

∂ξ

∂xi
(x1 (p̃) , ..., xn (p̃))

+ξ̃ (x1 (p̃) , ..., xn (p̃))


= ξ (p1, ..., pn) + ε

(
n∑

i=1

p∗i
∂ξ

∂xi
(p1, ..., pn) + ξ̃ (p1, ..., pn)

)
.

As a result, the functions ξ and ξ̃ can be reduced to the functions defined from
U ⊆ Rn to R such that these functions belong to C∞−class.

Definition 7. Assume that ξ : U ⊆ D → D, ξ (x) = ξ (x) + ε
(
x∗ξ′ (x) + ξ̃ (x)

)
is

a dual analytic function and ξ′ (x) is not zero for all x ∈ U ⊆ R. If the equality
ξ (x1) = ξ (x2) requires the equality x1 = x2 for all x1, x2 ∈ U ⊆ D, then the
function ξ is called injective function.

Theorem 11. Assume that ξ : U ⊆ D → D, ξ (x) = ξ (x)+ε
(
x∗ξ′ (x) + ξ̃ (x)

)
is a

dual analytic function and ξ′ (x) is not zero for all x ∈ U ⊆ R. Then ξ is injective
function if and only if the dual analytic function ξ is injective function.

Proof. Suppose that ξ : U ⊆ D → D, ξ (x) = ξ (x) + ε
(
x∗ξ′ (x) + ξ̃ (x)

)
is a dual

analytic function, ξ′ (x) is not zero for all x ∈ U ⊆ R and ξ is injective function.
Assume that there exists the equality ξ (x1) = ξ (x2) for all x1, x2 ∈ U ⊆ D. From
the definition of dual analytic functions, the following equality can be written:

ξ (x1) = ξ (x1) + ε
(
x∗
1ξ

′ (x1) + ξ̃ (x1)
)
= ξ (x2) + ε

(
x∗
2ξ

′ (x2) + ξ̃ (x2)
)
= ξ (x2)

which implies
ξ (x1) = ξ (x2)

and
x∗
1ξ

′ (x1) + ξ̃ (x1) = x∗
2ξ

′ (x2) + ξ̃ (x2) .

From the hypothesis, since ξ is an injective function, it is clear that x1 = x2. On

the other hand, we have ξ̃ (x1) = ξ̃ (x2), since ξ̃ is a well-defined function. Hence,

since ξ′ (x) is not zero for all x ∈ U ⊆ R and ξ̃ (x1) = ξ̃ (x2), it is easily seen that
x∗
1 = x∗

2. That is to say, x1 = x2. Therefore, ξ is an injective function.
Conversely, we shall prove this part of theorem by means of contrapositive

method. Assume that ξ is not an injective function. That is to say, the equal-
ity ξ (x1) = ξ (x2) requires the inequality x1 ̸= x2 for at least x1, x2 ∈ U ⊆ R.
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We must show that dual analytic function ξ is not an injective function. It is
enough to remark that the equality ξ (x1) = ξ (x2) requires x1 ̸= x2 for at least
x1, x2 ∈ U ⊆ D. Suppose that there exists the equality ξ (x1) = ξ (x2) for at least
x1, x2 ∈ U ⊆ D. Thus, this gives rise to the relation

ξ (x1) = ξ (x1) + ε
(
x∗
1ξ

′ (x1) + ξ̃ (x1)
)
= ξ (x2) + ε

(
x∗
2ξ

′ (x2) + ξ̃ (x2)
)
= ξ (x2) ,

i.e.,

ξ (x1) = ξ (x2)

and

x∗
1ξ

′ (x1) + ξ̃ (x1) = x∗
2ξ

′ (x2) + ξ̃ (x2) .

As already known, since ξ is not an injective function, the equality ξ (x1) = ξ (x2)
requires the expression x1 ̸= x2 for at least x1, x2 ∈ U ⊆ D, that is, dual analytic
function ξ is not an injective function. Therefore, the proof is completed. □

Definition 8. Assume that ξ : U ⊆ D → V ⊆ D, ξ (x) = ξ (x)+ε
(
x∗ξ′ (x) + ξ̃ (x)

)
is a dual analytic function and ξ′ (x) is not zero for all x ∈ U ⊆ R. If there
exists at least one x = x + εx∗ ∈ U ⊆ D satisfying the equality y = ξ (x) for all
y = y+εy∗ ∈ V ⊆ D, then the dual analytic function ξ is called surjective function.
That is to say, if ξ is surjective function and there exists x∗ ∈ R satisfying the

equality x∗ =
y∗ − ξ̃ (x)

ξ′ (x)
for all y∗ ∈ R, then dual analytic function ξ is called

surjective function.

Definition 9. Assume that ξ : U ⊆ D → V ⊆ D, ξ (x) = ξ (x)+ε
(
x∗ξ′ (x) + ξ̃ (x)

)
is a dual analytic function and ξ′ (x) is not zero for all x ∈ U ⊆ R. If dual analytic
function ξ is bijective function, there is only one function µ : V ⊆ D → U ⊆ D
satisfying the equalities

(
µ ◦ ξ

)
(x) = I (x) and

(
ξ ◦ µ

)
(y) = I (y), where I is dual

unit function. The function µ is called inverse function of dual function ξ and the

inverse function is symbolized as µ = ξ
−1

.

Theorem 12. Assume that ξ : U ⊆ D → ξ
(
U
)
⊆ D, ξ (x) = ξ (x)+ε

(
x∗ξ′ (x) + ξ̃ (x)

)
is a dual analytic function and ξ′ (x) is not zero for all x ∈ U ⊆ R. If there exists
inverse of dual function ξ, it is expressed as

ξ
−1

(y) = ξ−1 (y) + ε
(
y∗
(
ξ−1
)′
(y)−

(
ξ̃ ◦ ξ−1

)
(y) .

(
ξ−1
)′
(y)
)
,

where ξ−1 is inverse of real function ξ.

Proof. Suppose that ξ : U ⊆ D → ξ
(
U
)
⊆ D, ξ (x) = ξ (x) + ε

(
x∗ξ′ (x) + ξ̃ (x)

)
is a dual analytic function, ξ′ (x) is not zero for all x ∈ U ⊆ R and there exists
inverse of dual analytic function ξ. Since the function ξ is bijective function, there
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is inverse of function ξ, i.e., ξ−1 such that
(
ξ−1
)′
(y) =

1

ξ′ (x)
for all x ∈ U ⊆ R.

Thus, from the hypothesis, we have(
ξ
−1 ◦ ξ

)
(x) =

(
ξ−1 ◦ ξ

)
(x) + ε

(
x∗
((

ξ−1 ◦ ξ
)′
(x)
)
+ ξ̃ (x)

(
ξ−1
)′
(ξ (x))

−ξ̃
(
ξ−1 (ξ (x))

) (
ξ−1
)′
(ξ (x))

)
= x+ εx∗

= I (x) ,

where I : D → D, I (x) = x + εx∗. Similarly, we get
(
ξ ◦ ξ−1

)
(y) = I (y). From

the definition of equality in functions, we can write

ξ
−1 ◦ ξ = ξ ◦ ξ−1

= I.

Hence, this achieves the proof. □

Corollary 7. If there exists the inverse of dual analytic function ξ : U ⊆ D →
ξ
(
U
)
⊆ D, ξ (x) = ξ (x)+ε

(
x∗ξ′ (x) + ξ̃ (x)

)
, the inverse function is a dual analytic

function expressed as follows:

ξ
−1

(x) = ξ−1 (x) + ε
(
x∗ (ξ−1

)′
(x)−

(
ξ̃ ◦ ξ−1

)
(x)
(
ξ−1
)′
(x)
)
.

The derivative of this dual analytic function with respect to dual variable x is

dξ
−1

dx
=
(
ξ−1
)′
(x) + ε

 x∗ (ξ−1
)′′

(x)−
(
ξ̃ ◦ ξ−1

)
(x)
(
ξ−1
)′′

(x)

−ξ̃′
(
ξ−1 (x)

) ((
ξ−1
)′
(x)
)2

 .

Definition 10. Let ξ : U ⊆ Dn → V ⊆ Dn be a dual analytic function, where

ξ (x) =
(
ξ1 (x) , ..., ξn (x)

)
= (ξ1 (x) , ..., ξn (x)) + ε

((
n∑

i=1

x∗
i

∂ξ1
∂xi

, ...,

n∑
i=1

x∗
i

∂ξn
∂xi

)
+
(
ξ̃1 (x) , ..., ξ̃n (x)

))
.

If there exists the inverse function ξ
−1

being dual analytic function, then the dual
analytic function ξ is called dual diffeomorphism.

Theorem 13. Assume that ξ : Dn → Dn, ξ (x) =
(
ξ1 (x) , ..., ξn (x)

)
= ξ + εξ0 is

a dual analytic function. If rankJ (ξ, q) = n for all q ∈ U , where q = q + εq∗ ∈ Dn

and U is open set in terms of standard topology of Rn, then there is at least one
dual open set U ∈ τ in Dn covering point q ∈ Dn such that ξ |U : U → ξ

(
U
)
is dual

diffeomorphism.

Proof. Assume that ξ : Dn → Dn, ξ (x) =
(
ξ1 (x) , ..., ξn (x)

)
= ξ + εξ0 is a dual

analytic function and rankJ (ξ, q) = n for all q ∈ U . We know that the functions

ξ and ξ̃ can be reduced to the functions defined from U ⊆ Rn to R such that these
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functions belong to C∞−class. Hence, the function ξ : Dn → Dn can be expressed
as

ξ (x) = ξ (x) + ε

 n∑
j=1

x∗
j

∂ξ

∂xj
(x) + ξ̃ (x)

 .

Since the function ξ : Rn → Rn belongs to C∞−class and rankJ (ξ, q) = n for all
q ∈ U , ξ |U : U → ξ (U) is a diffeomorphism.
Suppose that there is the equality ξ (p) = ξ (q) for all p, q ∈ U ⊆ Dn (p, q ∈ U ⊆ Rn).
Hence, we can write

ξ (p) + ε

 n∑
j=1

p∗j
∂ξ

∂xj
(p) + ξ̃ (p)

 = ξ (q) + ε

 n∑
j=1

q∗j
∂ξ

∂xj
(q) + ξ̃ (q)

 ,

which implies

ξ (p) = ξ (q)

and
n∑

j=1

p∗j
∂ξ

∂xj
(p) + ξ̃ (p) =

n∑
j=1

q∗j
∂ξ

∂xj
(q) + ξ̃ (q) . (10)

Since ξ |U is injective function, we have p = q. From the equation (10), we get the
following equality:

(p∗1 − q∗1)
∂ξ

∂x1
+ ...+ (p∗n − q∗n)

∂ξ

∂xn
= (0, ..., 0) .

Since the set

{
∂ξ

∂x1
, ...,

∂ξ

∂xn

}
is linearly independent, we have p∗i = q∗i for 1 ≤ i ≤ n,

i.e., p∗ = q∗. That is to say, we can write p = p+ εp∗ = q + εq∗ = q such that the
dual analytic function ξ |U is injective.

Now, let us show that there exists at least one q ∈ U ⊆ Dn satisfying the equality
p = ξ (q) for all p ∈ ξ

(
U
)
⊆ Dn. The equality

p = p+ εp∗ = ξ (q) + ε

 n∑
j=1

q∗j
∂ξ

∂xj
(q) + ξ̃ (q)

 = ξ (q)

allows us to write

p = ξ (q)

and

p∗ =

n∑
j=1

q∗j
∂ξ

∂xj
(q) + ξ̃ (q) . (11)

Since ξ |U is bijective function, there exists q = ξ−1 (p) ∈ U ⊆ Rn. Expanding the
equation (11), it is seen that the following linear equation system is obtained:
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q∗1
∂ξ1
∂x1

(q) + ...+ q∗n
∂ξ1
∂xn

(q) = p∗1 − ξ̃1 (q)

q∗1
∂ξ2
∂x1

(q) + ...+ q∗n
∂ξ2
∂xn

(q) = p∗2 − ξ̃2 (q)

...

q∗1
∂ξn
∂x1

(q) + ...+ q∗n
∂ξn
∂xn

(q) = p∗n − ξ̃n (q) .

The matrix form of this linear equation system is

∂ξ1
∂x1

(q)
∂ξ1
∂x2

(q) · · · ∂ξ1
∂xn

(q)

∂ξ2
∂x1

(q)
∂ξ2
∂x2

(q) · · · ∂ξ2
∂xn

(q)

...
...

. . .
...

∂ξn
∂x1

(q)
∂ξn
∂x2

(q) · · · ∂ξn
∂xn

(q)




q∗1
q∗2
...
q∗n

 =


p∗1 − ξ̃1 (q)

p∗2 − ξ̃2 (q)
...

p∗n − ξ̃n (q)

 .

If we denote [A]n×n =

[
∂ξi
∂xj

(q)

]
1≤i,j≤n

and [B]n×1 =
[
p∗i − ξ̃i (q)

]
1≤i≤n

, the above

matrix form can be rewritten as

[A]n×n [q
∗]n×1 = [B]n×1 . (12)

Since rankJ (ξ, q) = n for all q ∈ U ⊆ Rn, there exists an inverse of the matrix
[A]n×n such that [q∗]n×1 =

[
A−1

]
n×n

[B]n×1. Therefore, there exists dual point

q = q + εq∗ ∈ U ⊆ Dn, that is, dual analytic function ξ |U is surjective.

With these conventions, there exists the inverse of dual analytic function ξ |U and

this inverse function is µ : ξ
(
U
)
⊆ Dn → U ⊆ Dn,

µ (y) = µ (y) + ε

 n∑
j=1

y∗j
∂µ

∂yj
+ µ̃ (y)

 = µ+ εµ0,

where µ = (ξ |U )−1
and µ̃i (y) =

〈
−ξ̃ (µ (y)) ,∇µi (y)

〉
for 1 ≤ i ≤ n. This fact can

be verified as follows:

(
ξ |U ◦µ

)
(y) = (ξ |U ◦µ) (y) + ε



y∗1

(
∂µ1

∂y1

∂ξ

∂x1
(µ (y)) + ...+

∂µn

∂y1

∂ξ

∂xn
(µ (y))

)
+...+

y∗n

(
∂µ1

∂yn

∂ξ

∂x1
(µ (y)) + ...+

∂µn

∂yn

∂ξ

∂xn
(µ (y))

)
+µ̃1 (y)

∂ξ

∂x1
(µ (y)) + ...+ µ̃n (y)

∂ξ

∂xn
(µ (y))

+ξ̃ |U (µ (y))





1118 O. DURMAZ, B. AKTAŞ, O. KEÇİLİOĞLU

= (ξ |U ◦µ) (y) + ε


y∗1

∂ (ξ ◦ µ)
∂y1

+ ...+ y∗n
∂ (ξ ◦ µ)
∂yn

−ξ̃1 (µ (y))
∂ (ξ ◦ µ)

∂y1
− ...− ξ̃n (µ (y))

∂ (ξ ◦ µ)
∂yn

+ξ̃ |U (µ (y))


= y + εy∗

= I (y) .

In analogous to
(
ξ |U ◦µ

)
(y) = I (y), it is easy to check that

(
µ ◦ ξ |U

)
(x) = I (x).

On the other hand, the dual function µ =
(
ξ |U

)−1
is a dual analytic function,

since
∂µ

∂y∗i
= 0 and

∂µ0

∂y∗i
=

∂µ

∂yi
for 1 ≤ i ≤ n and the functions µ and µ̃ belong to

C∞−class. That is to say, ξ |U is dual diffeomorphism. □

3. Conclusion

The relation between some sets of the topology constituted in dual space and
regions where dual analytic functions are analytic is explained in this paper. Be-
sides, we can assert that it is possible to construct the concept of dual surface via
the expression of the inverse function theorem in dual space.
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Abstract. In geometric function theory, Lucas polynomials and other special
polynomials have recently gained importance. In this study, we develop a new

family of bi-univalent functions. Also we examined coefficient inequalities and

Fekete-Szegö problem for this new family via these polynomials.

1. Introduction

Let A denote the family of all functions θ(ξ) that are analytic in the unit disc
U = {ξ : ξ ∈ C, |ξ| < 1} normalized by the conditions θ(0) = θ′(0)− 1 = 0. Such a
function θ(ξ) takes the form

θ(ξ) = ξ +

∞∑
r=2

nrξ
r (ξ ∈ U). (1)

Assume that S be the subclass of A compose of univalent functions.
As a subclass of A, the class of bi-univalent functions was first presented by Lewin

[18]. He indicated that |n2| ≤ 1.15. After that, a lot of studies have been made
about coefficient estimates. See for example [4, 10, 11, 14, 15, 27, 30–41]. According
to the Koebe 1/4 theorem (see [12]), the range of every function θ ∈ S contains
the disc dω = {ω : |ω| < 0.25}, thus, for all θ ∈ S with its inverse θ−1, such that
θ−1(θ(ξ)) = ξ (ξ ∈ U) and θ(θ−1(ω)) = ω, (ω : |ω| < r0(θ); r0(θ) ≥ 0.25) where
θ−1(ω) is expressed as

ϑ(ω) = ω − n2ω
2 + (2n2

2 − n3)ω
3 − (5n3

2 − 5n2n3 + n4)ω
4 + · · · . (2)
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Thus, a function θ ∈ A is said that bi-univalent in U, if both θ(ξ) and θ−1(ω) are
univalent in U. Let we show the class of holomorphic and bi-univalent functions in
U by B.

It is known that some similar functions θ ∈ S for instance the Koebe function
κ(ξ) = ξ/(1− ξ)2, its rotation function κς(ξ) = ξ/(1− eiςξ)2, θ(ξ) = ξ − ξ2/2 and
θ(ξ) = ξ/(1 − ξ2) are in B. Also some functions θ ∈ (S ∩ B) contains θ(ξ) = ξ,
θ(ξ) = 1/2 log[(1− ξ)/(1− ξ)], ξ/(1− ξ).

For the functions h,H ∈ A, The function h is said to be subordinate to H
or H is said to be superordinate to h, if there exists a function η, analytic in U,
with η(0) = 0 and |η(z)| < 1 and such that h(ξ) = H(η(ξ)). In such a case we
write h ≺ H or h(ξ) ≺ H(ξ). If h is one-to-one, this h ≺ H iff h(0) = H(0) and
h(U) ⊂ H(U). Babalola [9] studied the class Lσ(φ) of σ-pseudo- starlike functions
of order φ(0 ≤ φ < 1) which is own geometric conditions fulfill

ℜ
(
ξ(θ′(ξ))σ

θ(ξ)

)
> φ.

He discover that every pseudo-starlike functions are Bazilevič of type
(
1− 1

σ

)
order

φ
1
σ and univalent in U.
In recent years, theory and applications of Dickson, Fibonacci, Lucas, Cheby-

shev, Lucas-Lehmer polynomials in modern science have emerged as a very current
subject. These polynomials are important in mathematics due to the fact that
they can applicable to number theory, numerical analysis, combinatorics, and other
fields. Nowadays, these polyinomials have been studied and different generalizations
have been made by many authors: see [1–3,5–8].Also see [13,17,19–26,28,29,43–46].

We recall some important properties interested in which we use to construct our
new class. Assume that polynomials with real coefficients are written by U(x) and
V (x). By using the recurrence relation, the (U, V )-Lucas polynomials LU,V,t(x) are
explained [17] as

LU,V,t(x) = U(x)LU,V,t−1(x) + V (x)LU,V,t−2(x) (t ≥ 2). (3)

Also

LU,V,0(x) = 2,

LU,V,1(x) = U(x),

LU,V,2(x) = U2(x) + 2V (x),

LU,V,3(x) = U3(x) + 3U(x)V (x). (4)

The generating function of the (U, V )-Lucas polynomial sequence LU,V,t(x) is ex-
pressed by [17]

K{Lt(x)}(ξ) =

∞∑
t=0

LU,V,t(x)ξ
t =

2− U(x)ξ

1− U(x)ξ − V (x)ξ2
. (5)
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In the next section, using this polynomials as a tool, we define the family
HB,β(γ, σ;x) as follow:

Definition 1. For β ≥ 0, σ ≥ 1, |γ| ≤ 1 but γ ̸= 1, a function θ ∈ B is called in
the family HB,β(γ, σ;x) if the following subordinations are satisfied:

((1− γ)ξ)1−β(θ′(ξ))σ

(θ(ξ)− θ(γξ))1−β
≺ K{LU,V,t(x)}(ξ)− 1 (6)

and
((1− γ)ω)1−β(ϑ′(w))σ

(ϑ(ω)− ϑ(γω))1−β
≺ K{LU,V,t(x)}(ω)− 1. (7)

Taking special values for β, γ and σ, the class HB,β(γ, σ;x) reduces some exciting
new families:

Remark 1. For σ = 1, we get the new family HB,β(γ, 1;x). If θ ∈ B, is in
HB,β(γ, 1;x) then following condition fulfilles

((1− γ)ξ)1−βθ′(ξ)

(θ(ξ)− θ(γξ))1−β
≺ K{LU,V,t(x)}(ξ)− 1 (8)

and
((1− γ)ω)1−βϑ′(w)

(ϑ(ω)− ϑ(γω))1−β
≺ K{LU,V,t(x)}(ω)− 1. (9)

Remark 2. For β = 0, we obtain the new class

HB,0(γ, σ;x) = HB(γ, σ;x).

If θ ∈ B is in HB(γ, σ;x), then following condition fulfilles

ξ(1− γ)(θ′(ξ))σ

θ(ξ)− f(γξ)
≺ K{LU,V,t(x)}(ξ)− 1 (10)

and
ω(1− γ)(ϑ′(w))σ

ϑ(ω)− ϑ(γω)
≺ K{LU,V,t(x)}(ω)− 1. (11)

Also,

(1) Choosing σ = 1 in the class HB(γ, σ;x) we have new family HB(γ, 1;x) =
HB(γ;x). The class HB(γ;x) consists of the function f ∈ B fulfilling

ξ(1− γ)θ′(ξ)

θ(ξ)− θ(γξ)
≺ K{LU,V,t(x)}(ξ)− 1 (12)

and
ω(1− γ)ϑ′(w)

ϑ(ω)− ϑ(γω)
≺ K{LU,V,t(x)}(ω)− 1. (13)
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(2) Choosing γ = 0 in the class HB(γ, σ;x) we have the class HB(0, σ;x) =
HB(σ;x) = LΣ(U;x). The class LΣ(U;x) was studied by Murugusundaramoor-
thy and Yalçin [20]. This class consists of the function θ ∈ B satisfying

ξ(θ′(ξ))σ

θ(ξ)
≺ K{LU,V,t(x)}(ξ)− 1 (14)

and

ω(ϑ′(w))σ

ϑ(ω)
≺ K{LU,V,t(x)}(ω)− 1. (15)

(3) Choosing σ = 2 in the class HB(σ;x) we have the class

HB(2;x) = HB(x).

The class consists of the function f ∈ B satisfying

θ′(ξ)
ξθ′(ξ)

θ(ξ)
≺ K{LU,V,t(x)}(ξ)− 1 (16)

and

ϑ′(ω)
ωϑ′(w)

ϑ(ω)
≺ K{LU,V,t(x)}(ω)− 1. (17)

Remark 3. For β = 1, we have the new class HB,1(σ;x). If θ ∈ B, is in
HB,1(σ;x), then following condition fulfilles

(θ′(ξ))σ ≺ K{LU,V,t(x)}(ξ)− 1 (18)

and

(ϑ′(ω))σ ≺ K{LU,V,t(x)}(ω)− 1. (19)

Also,

(1) Choosing σ = 1 in the class HB,1(σ;x) we have the class

HB,1(1;x).

This class consists of the function θ ∈ B satisfying

θ′(ξ) ≺ K{LU,V,t(x)}(ξ)− 1 (20)

and

ϑ′(ω) ≺ K{LU,V,t(x)}(ω)− 1. (21)
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2. Main Theorems for the class HB,β(γ, σ;x)

Theorem 1. Let θ(ξ) ∈ HB,β(γ, σ;x). Then

|n2| ≤
|U(x)|

√
|U(x)|√√√√√

∣∣∣∣∣∣ U2(x)
[
(β − 1)

[
(β−2)(1+γ)2

2 + 2σ(1 + γ) + (1 + γ + γ2)
]
+ σ(2σ + 1)

−[2σ + (β − 1)(1 + γ)]2
]
− 2V (x)[2σ + (β − 1)(1 + γ)]2

∣∣∣∣∣∣
(22)

|n3| ≤
U2(x)

[2σ + (β − 1)(1 + γ)]2
+

|U(x)|
|3σ + (β − 1)(1 + γ + γ2)|

, (23)

where β ≥ 0, σ ≥ 1 and |γ| ≤ 1 but γ ̸= 1.

Proof. Let θ(ξ) ∈ HB,β(γ, σ;x). Then, according to the Definition 1, for some
holomorphic functions Φ, Υ such that Υ(0) = Φ(0) = 0, |Υ(ω)| < 1, |Φ(ξ)| < 1,
(ξ, ω ∈ U), we can write

((1− γ)ξ)1−β(θ′(ξ))σ

(θ(ξ)− θ(γξ))1−β
= K{LU,V,t(x)}(Φ(ξ))− 1

and

((1− γ)ω)1−β(ϑ′(w))σ

(ϑ(ω)− ϑ(γω))1−β
= K{LU,V,t(x)}(Υ(ω))− 1,

by equivalence

((1− γ)ξ)1−β(θ′(ξ))σ

(θ(ξ)− θ(γξ))1−β
= −1+LU,V,0(x)+LU,V,1(x)Φ(ξ)+LU,V,2(x)Φ

2(ξ)+· · · (24)

and

((1− γ)ω)1−β(ϑ′(w))σ

(ϑ(ω)− ϑ(γω))1−β
= −1 + LU,V,0(x) + LU,V,1(x)Υ(ω) + LU,V,2(x)Υ

2(ω) + · · ·

(25)
From (24) and (25), yields

((1− γ)ξ)1−β(θ′(ξ))σ

(θ(ξ)− θ(γξ))1−β
= 1+LU,V,1(x)y1ξ+

[
LU,V,1(x)y2+LU,V,2(x)y

2
1

]
ξ2+· · · (26)

and

((1− γ)ω)1−β(ϑ′(w))σ

(ϑ(ω)− ϑ(γω))1−β
= 1 + LU,V,1(x)µ1ω +

[
LU,V,1(x)µ2 + LU,V,2(x)µ

2
1

]
ω2 + · · ·

(27)
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for ξ, ω ∈ U, it known before that if

|Φ(ξ)| =

∣∣∣∣∣∣
∞∑
j=1

yjξ
j

∣∣∣∣∣∣ < 1

and

|Υ(ω)| =

∣∣∣∣∣∣
∞∑
j=1

µjω
j

∣∣∣∣∣∣ < 1,

thus

|yj | < 1 (28)

also

|µj | < 1 (29)

where j ∈ N = {1, 2, 3, · · · }. If we compare corresponding coefficients in (26) and
(27), then we have

[2σ + (β − 1)(1 + γ)]n2 = LU,V,1(x)y1, (30)

[3σ+(β−1)(1+γ+γ2)]n3+

[
(β − 1)(β − 2)

2
(1+γ)2+2σ(σ−1+(β−1)(1+γ))

]
n2
2

= LU,V,1(x)y2 + LU,V,2(x)y
2
1 , (31)

−[2σ + (β − 1)(1 + γ)]n2 = LU,V,1(x)µ1, (32)[
2(β − 1)(1 + γ + γ2) +

(β − 1)(β − 2)

2
(1 + γ)2 + 2σ(σ + 2+ (β − 1)(1 + γ))

]
n2
2

− [3σ + (β − 1)(1 + γ + γ2)]n3 = LU,V,1(x)µ2 + LU,V,2(x)µ
2
1. (33)

From (30) and (32)

y1 = −µ1, (34)

2[2σ + (β − 1)(1 + γ)]2n2
2 = L2

U,V,1(x)(y
2
1 + µ2

1). (35)

Summation of (31) and (33) gives[
2(β − 1)

[
(β − 2)(1 + γ)2

2
+ 2σ(1 + γ) + (1 + γ + γ2)

]
+ 2σ(2σ + 1)

]
n2
2

= LU,V,1(x)(y2 + µ2) + LU,V,2(x)(y
2
1 + µ2

1). (36)

Applying (35) in (36), yields{
L2
U,V,1(x)

[
2(β − 1)

[
(β − 2)(1 + γ)2

2
+ 2σ(1 + γ) + (1 + γ + γ2)

]
+ 2σ(2σ + 1)

]
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− 2LU,V,2(x)[2σ + (β − 1)(1 + γ)]2

}
n2
2 = L3

U,V,1(x)(y2 + µ2), (37)

[
U2(x)

[
2(β − 1)

[
(β − 2)(1 + γ)2

2
+ 2σ(1 + γ) + (1 + γ + γ2)

]
+ 2σ(2σ + 1)

− 2[2σ+(β− 1)(1+ γ)]2

]
− 4[2σ+(β− 1)(1+γ)]2V (x)

]
n2
2 = L3

U,V,1(x)(y2+µ2)

which gives desired result given by (1).
Hence, (31) minus (33) gives us

2[3σ+(β−1)(1+γ+γ2)]n3+2[3σ+(β−1)(1+γ+γ2)]n2
2 = LU,V,1(x)(y2−µ2). (38)

Then, by using (34) and (35) in (38), we get

n3 = n2
2 +

LU,V,1(x)(y2 − µ2)

2[3σ + (β − 1)(1 + γ + γ2)]
(39)

n3 =
L2
U,V,1(x)(y

2
1 + µ2

1)

2[2σ + (β − 1)(1 + γ)]2
+

LU,V,1(x)(y2 − µ2)

2[3σ + (β − 1)(1 + γ + γ2)]
. (40)

Applying (4), we have

|n3| ≤
U2(x)

[2σ + (β − 1)(1 + γ)]2
+

|U(x)|
|3σ + (β − 1)(1 + γ + γ2)|

.

Thus, the proof of our main theorem is completed. □

3. Corollaries

By specializing the parameters γ, β, σ, in Theorem 1, we get the following con-
sequences.

Corollary 1. Let θ(ξ) ∈ HB,β(γ, 1;x). Then

|n2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣ U2(x)

[
(β − 1)

[
(β−2)(1+γ)2

2 + 3(1 + γ) + γ2
]
+ 3− [2 + (β − 1)(1 + γ)]2

]
−2V (x)[2 + (β − 1)(1 + γ)]2

∣∣∣∣∣
(41)

|n3| ≤
U2(x)

[2 + (β − 1)(1 + γ)]2
+

|U(x)|
|3 + (β − 1)(1 + γ + γ2)|

. (42)
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Corollary 2. Let θ(ξ) ∈ HB,0(γ, σ;x) = HB(γ, σ;x). Then

|n2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣U2(x)

[
(2σ − 1)(σ − γ)− [2σ − (1 + γ)]2

]
− 2V (x)[2σ − (1 + γ)]2

∣∣∣∣∣
,

(43)

|n3| ≤
U2(x)

[2σ − (1 + γ)]2
+

|U(x)|
|3σ − (1 + γ + γ2)|

. (44)

Corollary 3. Let θ(ξ) ∈ HB,0(γ, 1;x) = HB(γ, 1;x). Then

|n2| ≤
|U(x)|

√
|U(x)|√√√√∣∣∣∣∣U2(x)(γ − γ2)− 2V (x)(γ2 − 2γ + 1)

∣∣∣∣∣
, (45)

|n3| ≤
U2(x)

(1− γ)2
+

|U(x)|
|2− γ(γ + 1)|

. (46)

Corollary 4. Choosing β = 0 and γ = 0 in Theorem 1, that is if θ(ξ) ∈ HB(σ;x),
the results which we obtain reduce to Theorem 2.1 in [20].

|n2| ≤
|U(x)|

√
|U(x)|√

|U2(x)(−2σ2 − 1 + 3σ)− 2V (x)(2σ − 1)2|
, (47)

|n3| ≤
U2(x)

[2σ − 1]2
+

|U(x)|
|3σ − 1|

. (48)

Corollary 5. Choosing β = 0, γ = 0 and σ = 2 in Theorem 1, θ(ξ) ∈ HB(2;x),
our corollary coincides with the corollary 2.3 of Theorem 2.1 in [20].

|n2| ≤
|U(x)|

√
|U(x)|√

3|U2(x) + 6V (x)|
, (49)

|n3| ≤
U2(x)

9
+

|U(x)|
5

. (50)

Corollary 6. Choosing β = 0, γ = 0 and σ = 1 in Theorem 1, θ(ξ) ∈ HB(1;x),
our corollary coincides with the corollary 2.2 of Theorem 2.1 in [44].

|n2| ≤
|U(x)|

√
|U(x)|√

|U2(x)|
=
√

|U(x)|, (51)

|n3| ≤ U2(x) +
|U(x)|

2
. (52)
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Corollary 7. Let θ(ξ) ∈ HB,1(σ;x). Then

|n2| ≤
|U(x)|

√
|U(x)|√

σ|U2(x)(1− 2σ)− 8σV (x)|
, (53)

|n3| ≤
U2(x)

4σ2
+

|U(x)|
3σ

. (54)

Corollary 8. Let θ(ξ) ∈ HB,1(1;x). Then

|n2| ≤
|U(x)|

√
|U(x)|√

|U2(x) + 8V (x)|
, (55)

|n3| ≤
U2(x)

4
+

|U(x)|
3

. (56)

Theorem 2. For β ≥ 0, σ ≥ 1, |γ| ≤ 1 but γ ̸= 1, let θ ∈ A be in the class
HB,β(γ, σ;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
3σ+(β−1)(1+γ+γ2) , |χ− 1| ≦ K

|1−χ|·|U3(x)|
|U2(x)∆−2V (x)[2σ+(β−1)(1+γ)]2| , |χ− 1| ≧ K.

Where

K =
1

|3σ + (β − 1)(1 + γ + γ2)|

∣∣∣∣∣∆− 2[2σ + (β − 1)(1 + γ)]2
V (x)

U2(x)

∣∣∣∣∣
∆ = (β−1)

[
(β − 2)(1 + γ)2

2
+ 2σ(1 + γ) + 1 + γ + γ2

]
+σ(2σ+1)−[2σ+(β−1)(1+γ)]2.

Proof. From (37) and (38), we get

n3 − χn2
2 = LU,V,1(x)

[(
ζ(χ;x) +

1

2[3σ + (β − 1)(1 + γ + γ2)]

)
y2

+

(
ζ(χ;x)− 1

2[3σ + (β − 1)(1 + γ + γ2)]

)
µ2

]
where

ζ(χ;x) =
L2
U,V,1(x)(1− χ)

L2
U,V,1(x)

[
2(β − 1)

[
(β−2)(1+γ)2

2 + 2σ

(1+γ) + (1 + γ + γ2) + 2σ(2σ + 1)−2LU,V,2(x)[2σ + (β − 1)(1 + γ)]2. Thus, ac-
cording to (4), we have



1130 A. AKGÜL, T. G. SHABA

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
3σ+(β−1)(1+γ+γ2) , 0 ≦ |ζ(χ;x)| ≦ 1

2[3σ+(β−1)(1+γ+γ2)]

2|ζ(χ;x)| · |U(x)|, |ζ(χ;x)| ≧ 1
2[3σ+(β−1)(1+γ+γ2)]

hence, after some calculations, gives

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
3σ+(β−1)(1+γ+γ2) , |χ− 1| ≦ K

|1−χ|·|U3(x)|
|U2(x)∆−2V (x)[2σ+(β−1)(1+γ)]2| , |χ− 1| ≧ K.

□

By choosing special values for the parameters γ, β, σ, in Theorem 2, we get the
following corollaries:

Corollary 9. For σ = 1, let θ ∈ HB,β(γ, 1;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
3+(β−1)(1+γ+γ2) , |χ− 1| ≦ K1

|1−χ|·|U3(x)|
|U2(x)∆1−2V (x)[2+(β−1)(1+γ)]2| , |χ− 1| ≧ K1.

Where

K1 =
1

|3 + (β − 1)(1 + γ + γ2)|

∣∣∣∣∣∆1 − 2[2 + (β − 1)(1 + γ)]2
V (x)

U2(x)

∣∣∣∣∣
∆1 = (β − 1)

[
(β − 2)(1 + γ)2

2
+ γ2 + 3γ + 3

]
+ 3− [2 + (β − 1)(1 + γ)]2.

Corollary 10. For β = 0, let θ ∈ HB,0(γ, σ;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
3σ−(1+γ+γ2) , |χ− 1| ≦ K2

|1−χ|·|U3(x)|
|U2(x)∆2−2V (x)[2σ−(1+γ)]2| , |χ− 1| ≧ K2.

Where

K2 =
1

|3σ − (1 + γ + γ2)|

∣∣∣∣∣∆2 − 2[2σ − (1 + γ)]2
V (x)

U2(x)

∣∣∣∣∣
∆2 = (2σ − 1)(σ − γ)− [2σ − (1 + γ)]2.
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Corollary 11. For σ = 1, β = 0, let θ ∈ HB,0(γ, 1;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
|2−γ(γ+1)| , |χ− 1| ≦ K3

|1−χ|·|U3(x)|
|U2(x)∆3−2V (x)[1−γ]2| , |χ− 1| ≧ K3.

Where

K3 =
1

|2− γ(γ + 1)|

∣∣∣∣∣∆3 − 2[1− γ]2
V (x)

U2(x)

∣∣∣∣∣
∆3 = γ(1− γ).

Corollary 12. For β = 0, γ = 0, let θ ∈ HB,0(0, σ;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
|3σ−1| , |χ− 1| ≦ K4

|1−χ|·|U3(x)|
|U2(x)∆4−2V (x)(2σ−1)2| , |χ− 1| ≧ K4.

Where

K4 =
1

|3σ − 1|

∣∣∣∣∣∆4 − 2[2σ − 1]2
V (x)

U2(x)

∣∣∣∣∣.
∆4 = (2σ − 1)(1− σ)

Corollary 13. For σ = 2, let θ ∈ HB,0(0, 2;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
5 ,

(
|χ− 1| ≦ 3

5

∣∣∣∣∣1 + 6 V (x)
U2(x)

∣∣∣∣∣
)

|1−χ|·|U3(x)|
3|U2(x)+6V (x)| ,

(
|χ− 1| ≧ 3

5

∣∣∣∣∣1 + 6 V (x)
U2(x)

∣∣∣∣∣
)
.

Corollary 14. [44] For σ ≥ 1, let θ ∈ A be in the class HB,0(0, 1;x) = HB(x).
Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
2 ,

(
|χ− 1| ≦ |V (x)|

|U2x|

)

|1−χ|·|U3(x)|
2|V (x)| ,

(
|χ− 1| ≧ |V (x)|

|U2x|

)
.
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Corollary 15. For β = 1, let θ ∈ HB,1(σ;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
3σ ,

(
|χ− 1| ≦ K5

)

|1−χ|·|U3(x)|
|U2(x)∆5−8σ2V (x)| ,

(
|χ− 1| ≧ K5

)
.

Where

K5 =
1

|3σ|

∣∣∣∣∣∆5 − 8σ2 V (x)

U2(x)

∣∣∣∣∣
∆5 = σ(1− 2σ)

Corollary 16. [8] For σ = 1, β = 1, let θ ∈ HB,1(1;x). Then

∣∣n3 − χn2
2

∣∣ ≤


|U(x)|
3 ,

(
|χ− 1| ≦ 1

3

∣∣∣∣∣1 + 8 V (x)
U2(x)

∣∣∣∣∣
)

|1−χ|·|U3(x)|
|U2(x)+8V (x)| ,

(
|χ− 1| ≧ 1

3

∣∣∣∣∣1 + 8 V (x)
U2(x)

∣∣∣∣∣
)
.
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APPROXIMATION PROPERTIES OF THE FRACTIONAL

q-INTEGRAL OF RIEMANN-LIOUVILLE INTEGRAL TYPE

SZÁSZ-MIRAKYAN-KANTOROVICH OPERATORS

Mustafa KARA

Department of Mathematics, Eastern Mediterranean University, Gazimagusa

99628 Mersin 10, NORTHERN CYPRUS

Abstract. In the present paper, we introduce the fractional q-integral of

Riemann-Liouville integral type Szász-Mirakyan-Kantorovich operators. Ko-
rovkin-type approximation theorem is given and the order of convergence of

these operators are obtained by using Lipschitz-type maximal functions, second
order modulus of smoothness and Peetre’s K-functional. Weighted approxima-

tion properties of these operators in terms of modulus of continuity have been

investigated. Then, for these operators, we give a Voronovskaya-type theorem.
Moreover, bivariate fractional q- integral Riemann-Liouville fractional integral

type Szász-Mirakyan-Kantorovich operators are constructed.The last section

is devoted to detailed graphical representation and error estimation results for
these operators.

1. Introduction

Approximation theory is a subject that serves as an important bridge between
applied and pure mathematics. The approximation of functions by positive linear
operators is an important research area in general mathematics. Especially, it
plays an important role in mathematical analysis problems and in many fields of
science. One of its most important advantages is that it provides powerful tools for
application areas such as computer aided geometric design and numerical analysis.
One of the best known of these operators is the Szász - Mirakyan operator (see [9]
and [10]), which is generalizations of Bernstein polynomials to the infinite interval
and defined as
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Sn(f ;x) =

n∑
k=0

sn,k(x) f

(
k

n

)
,

where n ∈ N, x ∈ [0,∞) and sn,k(x) = e−nx (nx)k

k! . In literature, there are a lot of
studies that involve Szàsz operators, Szàsz-Kantorovich operators and their gener-
alizations. For instance, see [1]- [8] and [14]- [22]. Due to the rapid development

of the q-calculus, various generalizations of Szàsz Mirakyan operators involving q-
integers have been introduced and approximation properties have been studied.
Several researchers introduced and studied different generalizations of the q-Szász-
Mirakjan operators in recent years ( [28], [29], [19], [30], [41]). In [28], Mahmudov
introduced and studied the following q-Szász-Mirakjan operators.

Sn,q(f ;x) =

n∑
k=0

sn,k(q;x) f

(
[k]q

qk−2 [n]q

)
,

where sn,k(q;x) =
1

Eq([n]qx)
q

k(k−1)
2

[n]kqx
k

[k]q !.

About contributions on Kantorovich type modication modified many times q-Szász-
Mirakjan operators, so we refer to the papers [31]- [34]. Recently, Fractional calculus
and its applications have been paid more and more attention. fractional calculus
deals with the study of fractional degree derivative and integral operators on com-
plex or real fields and their applications (see [23]- [27]). Mahmudov and Kara,
introduced and discussed the fractional integral of Riemann-Liouville integral type
Szász Mirakyan-Kantorovich operators as follows:

K(α)
n (f ;x) =

∞∑
k=0

αsn,k(x)

1∫
0

f
(
k+t
n

)
(1− t)

1−α dt, (1)

where sn,k(x) = e−nx (nx)k

k! .The aim of the present paper is to construct the frac-

tional q-integral of Riemann-Liouville type Szász-Mirakyan-Kantorovich operators
and discuss their approximation properties. The fractional q-integral of Riemann-
Liouville type ( [35]) is given by

(
I0q f
)
(t) = f(t) and

(Iαq f)(x) =
1

Γq(α)

x∫
0

f (t)

(x− qt)
(1−α)

dqt ( α > 0) .

We start by reminding the basic concepts and notations about fractional q-calculus.



1138 M. KARA

2. Preliminaries

For q ∈ (0, 1),

[m]q =
1− qm

1− q
, m ∈ R

The q-analog of the power function (n−m)
(k)

with k ∈ N0 := {0, 1, 2, ...} is

(n−m)
(0)

= 1, (n−m)
(k)

=

k−1∏
i=0

(
n−mqi

)
, k ∈ N, n,m ∈ R.

More generally, if γ ∈ R, then

(n−m)
(γ)

=

∞∏
i=0

n−mqi

n−mqγ+i
, n ̸= 0.

Note if m = 0, then (n)
(γ)

= nγ . We also use the natation 0(γ) = 0 for γ > 0. The
q-gamma function is defined by

Γq(t) =
(1− q)

(t−1)

(1− q)
t−1 , t ∈ R\ {0,−1,−2, ...} .

Obviously, Γq(t+ 1) = [t]q Γq(t).
For any s, t > 0, the q-beta function is defined by

Bq(s, t) =

1∫
0

u(s−1) (1− qu)
(t−1)

dqu.

The q-beta function can be expressed by using the q-gamma function as follows:

Bq(s, t) =
Γq(s)Γq(t)

Γq(s+ t)
.

The q-integral definition of the function h on the interval [0, b] is given as:

(Iqh)(t) =

t∫
0

h(s)dqs = t(1− q)

∞∑
i=0

h(tqi)qi, t ∈ [0, b] .

In q-calculus (see [36]) the following functions are well known as analogues of the
exponential function:

eq(x) =

∞∑
k=0

xk

[k]q!
, |x| < 1

1− q
, |q| < 1,

and

Eq(x) =

∞∑
k=0

xk

[k]q!
q

k(k−1)
2 , |q| < 1.
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3. Riemann-Liouville Type Szász-Mirakyan-Kantorovich Operators

Lemma 1. ( [28]) Let 0 < q < 1. we have

Sn,q(t
4;x) = x4

q2 +
(
3q + 2 + 1

q

)
x3

[n]q
+
(
3q3 + 3q2 + q

)
x2

[n]2q
+ q4x

[n]3q
.

Definition 1. Let q ∈ (0, 1) and α > 0. For f ∈ C[0,∞), Fractional q-integral of
Riemann-Liouville type Szász-Mirakyan-Kantorovich operators can be defined by

K(α)
n,q (f ;x) =

∞∑
k=0

[α]q sn,k(q;x)

1∫
0

f

(
q1−k [k]q + t

[n]q

)
(1− qt)

(α−1)
dqt, (2)

where sn,k(q;x) =
1

Eq([n]qx)
q

k(k−1)
2

[n]kqx
k

[k]q !
and n ∈ N

if α = 1 and q = 1, then the operator (2) reduces to classical Szász-Mirakyan -
Kantorovich operators.

Due to the moments of the K
(α)
n,q operators plays significant role in our main

results, we derive the following formula to obtain them.

Lemma 2. Let q ∈ (0, 1) and α > 0. Then for x ∈ [0,∞), we have

K(α)
n,q (t

m;x) =

m∑
j=0

(
m

j

)
[α]q [n]

j
q Bq(m− j + 1, α)

qj [n]
m
q

Sn,q(t
j ;x), (3)

where

Sn,q(f ;x) =

n∑
k=0

sn,k(q;x) f

(
[k]q

q(k−2) [n]q

)
and

Bq (a, b) =

1∫
0

xa−1 (1− qx)
b−1

dqx, a, b > 0.

Proof. From (2), we can write

K(α)
n,q (t

m;x) =

∞∑
k=0

[α]q sn,k(q;x)

1∫
0

(
q1−k [k]q + t

[n]q

)m

(1− qt)
(α−1)

dqt

=

∞∑
k=0

[α]q sn,k(q;x)

m∑
j=0

(
m

j

)
q(1−k)j [k]

j
q

[n]
m
q

1∫
0

t(m−j) (1− qt)
(α−1)

dqt
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=

m∑
j=0

(
m

j

)
[α]q [n]

j
q Bq(m− j + 1, α)

qj [n]
m
q

∞∑
k=0

sn,k(q;x)
[k]

j
q

q(k−2)j [n]
j
q

=

m∑
j=0

(
m

j

)
[α]q [n]

j
q Bq(m− j + 1, α)

qj [n]
m
q

Sn,q(t
j ;x).

□

For j = 0, 1, 2, 3, 4 (Kα
n,q(t

j ;x)),the following can be written immediately.

Lemma 3. Let q ∈ (0, 1),α > 0 and n ∈ N. Then for x ∈ [0,∞), we have

(i) K(α)
n,q (1;x) = 1,

(ii) K(α)
n,q (t;x) = x+

1

[n]q [α+ 1]q

(iii) K(α)
n,q (t

2;x) =
[2]q

[α+ 1]q [α+ 2]q [n]
2
q

+

(
2 + [α+ 1]q

)
[α+ 1]q [n]q

x+
x

q

2
,

(iv)K(α)
n,q (t

3;x) =
[3]q [2]q

[α+ 1]q [α+ 2]q [α+ 3]q [n]
3
q

+

(
3. [2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
3

[α+ 1]q [n]
2
q

+ 1

)
x

+

(
3

q [n]q [α+ 1]q
+

2q2 + q

q3 [n]q

)
x2 +

x3

q3
,

(v)K(α)
n,q (t

4;x) =
[4]q!

[α+ 1]q [α+ 2]q [α+ 3]q [α+ 4]q [n]
4
q

+

4 [3]q! + 6 [α+ 3]q [2]q! + [α+ 2]q [α+ 3]q

{
4 + [α+ 1]q

}
[α+ 1]q [α+ 2]q [α+ 3]q [n]

3
q

x

+

(
6 [2]q!

q [α+ 1]q [α+ 2]q [n]
2
q

+
4
(
2q2 + q

)
q3 [α+ 1]q [n]

2
q

+

(
3q3 + 3q2 + q

)
q4 [n]

2
q

)
x2

+

(
4

q3 [n]q [α+ 1]q
+

3q + 2 + 1
q

q4 [n]q

)
x3 +

x4

q6
.

Proof. Since they have the same proof technique, we only give forK
(α)
n,q (t2;x). Using

recurrence formula(3) and Lemma 1, we get

K(α)
n,q (t

2;x) =
[α]q Bq(3, α)

[n]
2
q

Sn,q(1;x) +
2 [n]q [α]q Bq(2, α)

q [n]
2
q

Sn,q(t;x)
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+
[n]

2
q [α]q Bq(1, α)

q2 [n]
2
q

Sn,q(t
2;x)

=
[2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
2

[α+ 1]q [n]q
x+

(
x2

q
+

x

[n]q

)

=
[2]q

[α+ 1]q [α+ 2]q [n]
2
q

+

(
2 + [α+ 1]q

)
[α+ 1]q [n]q

x+
x

q

2
.

□

We are now ready to present the central moments of the operators K
(α)
n,q .

Lemma 4. Let q ∈ (0, 1) and α > 0. For every x ∈ [0,∞) , there holds

K(α)
n,q (t− x;x) =

1

[n]q [α+ 1]q
,

K(α)
n,q ((t− x)2;x) =

[2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
x

[n]q
+ x2

(
1

q
− 1

)
,

K(α)
n,q ((t− x)4;x)

=
[4]q!

[α+ 1]q [α+ 2]q [α+ 3]q [α+ 4]q [n]
4
q

+

(
6 [2]q

[α+ 1]q [α+ 2]q [n]
3
q

+
4

[α+ 1]q [n]
3
q

+
1

[n]
3
q

)
x

+

 6[2]q
q[α+1]q [α+2]q [n]

2
q

+
4(2q2+q)

[α+1]qq
3[n]2q

+ 3q3+3q2+q
q4[n]2q

− 6[2]q−12[α+2]q
[α+1]q [α+2]q [n]

2
q

− 4

x2

+

 4
q3[α+1]q [n]q

+
3q+2+ 1

q

q4[n]q
− 12

q[α+1]q [n]q

− 4(2q2+q)
q3[n]q

+
6(2+[α+1]q)−4

[α+1]q [n]q

x3

+

(
1

q6
− 4

q3
+

6

q
− 3

)
x4.

Proof. Since they have the same proof technique, we only give for K
(α)
n,q ((t−x)2;x).

From the linearity property of K
(α)
n,q (t;x)and Lemma 3, we get

K(α)
n,q ((t− x)2;x)

=
[2]q

[α+ 1]q [α+ 2]q [n]
2
q

+

(
2 + [α+ 1]q

)
[α+ 1]q [n]q

x+
x

q

2
− 2x

(
x+

1

[n]q [α+ 1]q

)
+ x2.
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□

Lemma 5. Assume that the seguence (qn) satisfy 0 < qn ≤ 1 such that qn → 1
and qnn → b ∈ [0, 1] as n → ∞. For every α > 0 and x ∈ [0,∞), there holds

lim
n→∞

[n]qn K
(α)
n,k((t− x);x) =

1

α+ 1
, (4)

lim
n→∞

[n]qn K
(α)
n,k((t− x)2;x) = x+ x2 (1− b) , (5)

and

lim
n→∞

[n]qn K
(α)
n,k((t− x)4;x) = 0. (6)

Proof. Using explicit formula for moments (Lemma 4), we obtain as

lim
n→∞

[n]qn K
(α)
n,k((t− x);x) =

1

(α+ 1)
,

lim
n→∞

[n]qn K
(α)
n,k((t− x)2;x)

= lim
n→∞

[n]qn

(
[2]qn

[α+ 1]qn [α+ 2]qn [n]
2
qn

+
x

[n]qn
+ x2

(
1

qn
− 1

))
= x+ x2 (1− b)

and

lim
n→∞

[n]qn K
(α)
n,k((t− x)4;x) = 0.

□

In [28], Mahmudov gave the following formula for the moments of Sn,q(t
m;x),

which is a q-analogue of result of Beker [37].

Lemma 6. [29]For 0 < q < 1 and m ∈ N, there holds

Sn,q(t
m;x) =

m∑
j=1

am,j(q)
xj

[n]
m−j
q

(7)

where

am+1,j(q) =
[j]q am,j(q) + am,j−1(q)

qj−2
, m ≥ 0, j ≥ 1,

a0,0(q) = 1, am,0(q) = 0, m > 0, am,j(q) = 0, m < j.

In particular Sn,q(t
m;x) is a polynomial of degree m without a constant term.

Now we additionally need to give the following definitions for our main results:

1. Bm [0,∞) = {f : [0,∞) → R; |f(x)| ≤ Mf (1 + xm)} ,where Mf is constant
depending on the function f .

2. Cm [0,∞) = Bm [0,∞) ∩ C [0,∞).
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3. C⋆
m [0,∞) =

{
f : Cm [0,∞) : lim

|x|→∞
|f(x)|
1+xm < ∞

}
The norm on the space C⋆

m [0,∞) is showed as ∥f(x)∥m = sup
x∈[0,∞)

|f(x)|
1+xm .

Lemma 7. Let m ∈ N ∪ {0}, 0 < q < 1 and α > 0 be fixed. Then, we have∥∥∥K(α)
n,q (1 + xm;x)

∥∥∥
m

≤ Cm,j(q, α), n ∈ N, (8)

where Cm,j(q, α) is a positive constant. Morever, we have∥∥∥K(α)
n,q (f ;x)

∥∥∥
m

≤ Cm,j(q, α) ∥f∥m , n ∈ N, (9)

where f ∈ C∗
m [0,∞) .Thus, for any m ∈ N ∪ {0}, K(α)

n,q : C∗
m [0,∞) → C∗

m [0,∞) is
a linear positive operator.

Proof. For m = 0, inequality (8) is obvious.
For m ≥ 1, combining Lemma (3) and inequality (7), we obtain as

1

xm + 1
K(α)

n,q (1 + tm;x)

=
1

xm + 1
+

1

xm + 1
K(α)

n,q (t
m;x)

1

xm + 1
+

1

xm + 1

m∑
j=0

[α]q [n]
j
q Bq(m− j + 1, α)

qj [n]
m
q

j∑
j0=1

aj,j0(q)
xj0

nj−j0

≤ 1 + km,j(q, α) = Cm,j(q, α).

Cm,j(q, α) is a positive constant with depend on q,m, j and α. Moreover,∥∥∥K(α)
n,q (f ;x)

∥∥∥
m

≤ ∥f∥m
∥∥∥K(α)

n,q (1 + tm;x)
∥∥∥
m

(10)

for every f ∈ C∗
m [0,∞) . Therefore, from (8), we get∥∥∥K(α)

n,q (f ;x)
∥∥∥
m

≤ Cm,j(q, α) ∥f∥m .

□

4. Direct Results

Let CB [0,∞) denote the space of all real-valued continuous and bounded func-
tions f on [0,∞). The norm on the space CB [0,∞) is showed as

∥f∥CB [0,∞) = sup
x∈[0,∞)

|f(x)| .

Then, the modulus of continuity of f ∈ CB [0,∞) is given by

w(f, δ) = sup
0<h≤δ

sup
x∈[0,∞)

|f(x+ h)− f(x)| .
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Further, Peetre’s K-functional is defined by

K2(f ; δ) = inf
g∈w2

{
∥f − g∥+ δ

∥∥∥g′′
∥∥∥} δ > 0,

where w2 :=
{
g ∈ CB [0,∞) : g

′
, g

′′ ∈ CB [0,∞)
}
. By Theorem 2.4 in [11], there

exists an absolute constant L > 0 such that

K2(f ; δ) ≤ Lω2

(
f ;

√
δ
)
. (11)

where δ > 0 are absolute constant.
Here, ω2 (f ; δ) is the second order modulus of smoothness of f ∈ CB [0,∞) and

defined as

ω2 (f ; δ) = sup
0<h≤δ

sup
x∈[0,∞)

|f(x+ 2h)− 2f(x+ h) + f(x)|

Lemma 8. Let f ∈ CB [0,∞), 0 < q < 1 and α > 0. Consider the operators

∗K(α)
n,q (f ;x) = K(α)

n,q (f ;x) + f(x)− f

(
x+

1

[n]q [α+ 1]q

)
. (12)

Then, for all g ∈ w2, we have∣∣∣∗K(α)
n,q (g;x)− g(x)

∣∣∣ (13)

≤

 [2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
x

[n]
+ x2

(
1

q
− 1

)
+

(
1

[n]q [α+ 1]q

)2
∥∥∥g′′

∥∥∥ .
Proof. From (12) we have

∗K(α)
n,q ((t− x) ;x) = K(α)

n,q ((t− x) ;x)−

(
x+

1

[n]q [α+ 1]q
− x

)

= K(α)
n,q (t;x)− xK(α)

n,q (1;x)−

(
x+

1

[n]q [α+ 1]q

)
+ x = 0. (14)

Let x ∈ [0,∞) and g ∈ w2. Using the Taylor’s formula,

g(t)− g(x) = (t− x)g
′
(x) +

t∫
x

(t− u)g
′′
(u)du, (15)

Applying ∗K
(α)
n,q and using (14), we can get

∗K(α)
n,q (g;x)− g(x) =∗ K(α)

n,q

(
(t− x)g

′
(x);x

)
+∗ K(α)

n,q

 t∫
x

(t− u)g
′′
(u)du;x


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= g
′
(x)∗K(α)

n,q ((t− x);x) +K(α)
n,q

 t∫
x

(t− u)g
′′
(u)du;x



−

x+ 1
[n]q [α+1]q∫

x

(
x+

1

[n]q [α+ 1]q
− u

)
g

′′
(u)du

= K(α)
n,q

 t∫
x

(t− u)g
′′
(u)du;x



−

x+ 1
[n]q [α+1]q∫

x

(
x+

1

[n]q [α+ 1]q
− u

)
g

′′
(u)du.

On the other hand, since

t∫
x

|t− u|
∣∣∣g′′

(u)
∣∣∣ du ≤

∥∥∥g′′
∥∥∥ t∫

x

|t− u| du ≤ (t− x)
2
∥∥∥g′′

∥∥∥
and ∣∣∣∣∣∣∣∣

x+ 1
[n]q [α+1]q∫

x

(
x+

1

[n]q [α+ 1]q
− u

)
g

′′
(u)du

∣∣∣∣∣∣∣∣
≤

(
1

[n]q [α+ 1]q

)2 ∥∥∥g′′
∥∥∥ ,

we conclude that∣∣∣∗K(α)
n,q (g;x)− g(x)

∣∣∣
=

∣∣∣∣∣∣∣∣K
(α)
n,q

 t∫
x

(t− u)g
′′
(u)du;x

−

x+ 1
[n]q [α+1]q∫

x

(
x+

1

[n]q [α+ 1]q
− u

)
g

′′
(u)du

∣∣∣∣∣∣∣∣
≤
∥∥∥g′′

∥∥∥K(α)
n,q

(
(t− x)

2
;x
)
+

(
1

[n]q [α+ 1]q

)2 ∥∥∥g′′
∥∥∥ .

Finally, from Lemma 4, we can write∣∣∣∗K(α)
n,q (g;x)− g(x)

∣∣∣
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≤

 [2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
x

[n]q
+ x2

(
1

q
− 1

)
+

(
1

[n]q [α+ 1]q

)2
∥∥∥g′′

∥∥∥ .
□

Theorem 1. Let f ∈ CB [0,∞), 0 < q < 1 and α > 0. Then, for every x ∈ [0,∞),
there exists a constant M > 0 such that∣∣∣K(α)

n,q (f ;x)− f(x)
∣∣∣ ≤ Mω2

(
f ;

√
δ(α)n (x)

)
+ ω

(
f ;β(α)

n (x)
)

where

δ(α)n (x) =

 [2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
x

[n]q
+ x2

(
1

q
− 1

)
+

(
1

[n]q [α+ 1]q

)2
∥∥∥g′′

∥∥∥
and

β(α)
n (x) =

∣∣∣∣∣ 1

[n]q [α+ 1]q

∣∣∣∣∣ .
Proof. It follows from Lemma (8), that∣∣∣K(α)

n,q (f ;x)− f(x)
∣∣∣

≤
∣∣∣∗K(α)

n,q (f ;x)− f(x)
∣∣∣+ ∣∣∣∣∣f(x)− f

(
x+

1

[n]q [α+ 1]q

)∣∣∣∣∣
≤
∣∣∣∗K(α)

n,q (f − g;x)− (f − g)(x)
∣∣∣

+

∣∣∣∣∣f(x)− f

(
x+

1

[n]q [α+ 1]q

)∣∣∣∣∣+ ∣∣∣∗K(α)
n,q (g;x)− g(x)

∣∣∣
≤
∣∣∣∗K(α)

n,q (f − g;x)
∣∣∣+ |(f − g)(x)|

+

∣∣∣∣∣f(x)− f

(
x+

1

[n]q [α+ 1]q

)∣∣∣∣∣+ ∣∣∣∗K(α)
n,q (g;x)− g(x)

∣∣∣ .
Since boundedness of the ∗K

(α)
n,q and using inequality (13), we get∣∣∣K(α)

n,q (f ;x)− f(x)
∣∣∣

≤ 4 ∥f − g∥+

∣∣∣∣∣f(x)− f

(
x+

1

[n]q [α+ 1]q

)∣∣∣∣∣
+

 [2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
x

[n]q
+ x2

(
1

q
− 1

)
+

(
1

[n]q [α+ 1]q

)2
∥∥∥g′′

∥∥∥
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≤ 4 ∥f − g∥+ ω

(
f ;

∣∣∣∣∣ 1

[n]q [α+ 1]q

∣∣∣∣∣
)

+ δ(α)n (x)
∥∥∥g′′

∥∥∥ .
Now, taking infimum on the right hand side over all g ∈ w2 and using the property
of Peetre’s K-functional(11), we can get∣∣∣K(α)

n,q (f ;x)− f(x)
∣∣∣ ≤ 4K2

(
f ; δ(α)n (x)

)
+ ω

(
f ;β(α)

n (x)
)

≤ Mω2

(
f ;

√
δ(α)n (x)

)
+ ω

(
f ;β(α)

n (x)
)
.

□

Corollary 1. Let 0 < qn < 1, α > 0. For any A > 0 and f ∈ CB [0,∞), then

K
(α)
n,qn(f ;x) converges to uniformly f on [0, A] if and only if qn → 1 as n → ∞.

Theorem 2. Let K
(α)
n,q be the operators defined by (2), 0 < q < 1, α > 0, ρ ∈ (0, 1]

and D be any subset of the interval [0,∞). if f ∈ CB [0,∞) is locally Lip(ρ) on D,
i.e., if f satisfies the following inequality:

|f(t)− f(x)| ≤ Cf,ρ |t− x|ρ , t ∈ D and x ∈ [0,∞) , (16)

then for each x ∈ [0,∞), we have∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣ ≤ Cf,ρ

{(
K(α)

n,q

(
(t− x)

2
;x
)) ρ

2

+ 2dρ(x,D)

}
,

where Cf,ρ is constant depending on f and ρ and d(x,D) is the distance between x
and D defined by

d(x,D) = inf {|t− x| : t ∈ D} .

Proof. Let D denote the closure of D. Due to the features of infimum, there is at
least a point t0 ∈ D such that d(x,D) = |x− t0|. By the triangle inequality

|f(t)− f(x)| ≤ |f(t)− f(t0)|+ |f(x)− f(t0)| .

Applying K
(α)
n,q to the above inequality and using (16), we can get∣∣∣K(α)

n,q (f ;x)− f(x)
∣∣∣

≤ K(α)
n,q (|f(t)− f(t0)| ;x) +K(α)

n,q (|f(x)− f(t0)| ;x)

≤ Cf,ρ

{
K(α)

n,q (|t− t0|ρ ;x) + |x− t0|ρ
}

≤ Cf,ρ

{
K(α)

n,q (|t− x|ρ + |x− t0|ρ ;x) + |x− t0|ρ
}

= Cf,ρ

{
K(α)

n,q (|t− x|ρ ;x) + 2 |x− t0|ρ
}
.

Choosing a1 = 2
ρ and a2 = 2

2−ρ and applying Hölder inequality, we have:∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣
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≤ Cf,ρ

{(
K(α)

n,q (|t− x|a1ρ ;x)
) 1

a1
(
K(α)

n (1a2 ;x)
) 1

a2
+ 2dρ(x,D)

}
≤ Cf,ρ

{(
K(α)

n,q

(
(t− x)

2
;x
)) ρ

2

+ 2dρ(x,D)

}
.

□

In [38], Lipcshitz type maximal function of the order ρ defined as

ϕρ (f ;x) = sup
x,t∈[0,∞),x ̸=t

|f(t)− f(x)|
|t− x|ρ

(17)

where x ∈ [0,∞) and ρ ∈ (0, 1]. In the next theorem we obtain local direct estimate

of the operators K
(α)
n,q by using (17).

Theorem 3. Let f ∈ CB [0,∞), 0 < q < 1, α > 0 and ρ ∈ (0, 1]. Then, for all
x ∈ [0,∞), we have∣∣∣K(α)

n,q (f ;x)− f(x)
∣∣∣ ≤ ϕρ (f ;x)

(
K(α)

n,q

(
(t− x)

2
;x
)) ρ

2

.

Proof. From the equation (17), we have∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣ ≤ ϕρ (f ;x)K
(α)
n,q (|t− x|ρ ;x)

Applying the Hölder inequality with a1 = 2
ρ and a2 = 2

2−ρ , we get∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣ ≤ ϕρ (f ;x)
(
K(α)

n,q

(
(t− x)

2
;x
)) ρ

2

.

□

Theorem 4. For 0 < q < 1, α > 0, f ∈ C2 [0,∞), wa+1 (f ; δ) is the modulus of
continuity of f on the interval [0, a+ 1] ⊂ [0,∞), a > 0. Then, we have∥∥∥K(α)

n,q (f ;x)− f(x)
∥∥∥
C[0,a]

≤ 4Nf

(
1 + a2

)
δn(x) + 2wa+1

(
f ;
√
δn(x)

)
.

where

√
K

(α)
n,q ((t− x)2;x) given by Lemma 4 and ∥f∥C[0,a] = sup

x∈[0,a]

|f(x)|.

Proof. For 0 ≤ x ≤ a and a+ 1 < t, since 1 < t− x, we have

|f(t)− f(x)| ≤ Mf

(
x2 + t2 + 2

)
≤ Mf

(
2 (t− x)

2
+ 2 + 3x2

)
≤ Mf (t− x)

2 (
4 + 3x2

)
≤ 4Mf (t− x)

2 (
1 + a2

)
. (18)

Also, for 0 ≤ x ≤ a and a+ 1 ≥ t, we have

|f(t)− f(x)| ≤ wa+1 (f ; |t− x|)
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≤
(
1 +

|t− x|
δ

)
wa+1 (f ; δ) , (19)

with δ > 0.
For 0 ≤ x ≤ a and t ≥ 0, combining (18) and (19) gives

|f(t)− f(x)| (20)

≤ 4Mf (t− x)2
(
1 + a2

)
+

(
1 +

|t− x|
δ

)
wa+1 (f ; δ) ,

Applying Cauchy-Schwarz’s inequality to the above inequality(20), we get∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣
≤ K(α)

n,q (f ;x) (|f(t)− f(x)| ;x)

≤ 4Mf

(
1 + a2

)
K(α)

n,q

(
(t− x)2;x

)
+

1 +

√
K

(α)
n,q ((t− x)2;x)

δ

wa+1 (f ; δ)

≤ 4Mf

(
1 + a2

)
K(α)

n,q

(
(t− x)2;x

)
+ 2wa+1 (f ; δn(x))

on choosing δ := δn(x) =

√
K

(α)
n,q ((t− x)2;x). □

5. Weighted Approximation

Theorem 5. Let q = qn ∈ (0, 1] such that qn → 1 as n → ∞ and α > 0. Then for
each f ∈ C∗

2 [0,∞) , we have:

lim
n→∞

∥∥∥K(α)
n,qn(f ;x)− f(x)

∥∥∥
2
= 0.

Proof. • Since the Korovkin type theorem on the weighted approximation(
[12]), we need to verify

lim
n→∞

∥∥∥K(α)
n,qn(t

m;x)− xm
∥∥∥
2
= 0, m = 0, 1, 2. (21)

• For m = 0, obvious.
• For m = 1 and m = 2, using Lemma 3, we can write:

lim
n→∞

∥∥∥K(α)
n,qn(t;x)− x

∥∥∥
2
= sup

x≥0

∣∣∣K(α)
n,qn(t;x)− x

∣∣∣
1 + x2

= sup
x≥0

1

1 + x2

∣∣∣∣∣ 1

[n]qn [α+ 1]qn

∣∣∣∣∣
=

1

[n]qn [α+ 1]qn
sup
x≥0

1

1 + x2

≤ 1

[n]qn [α+ 1]qn
→ 0, n → ∞
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and

lim
n→∞

∥∥∥K(α)
n,qn(t

2;x)− x2
∥∥∥
2

= sup
x≥0

∣∣∣K(α)
n,qn(t

2;x)− x2
∣∣∣

1 + x2

= sup
x≥0

1

1 + x2

∣∣∣∣∣∣ [2]q

[α+ 1]qn [α+ 2]qn [n]
2
qn

+

(
2 + [α+ 1]q

)
[α+ 1]qn [n]qn

x+
x

qn

2
− x2

∣∣∣∣∣∣
≤
(

1

qn
− 1

)
sup
x≥0

x2

1 + x2
+

(
2 + [α+ 1]qn

)
[α+ 1]qn [n]qn

sup
x≥0

x

1 + x2

+
[2]q

[α+ 1]qn [α+ 2]qn [n]
2
qn

sup
x≥0

1

1 + x2

≤
(

1

qn
− 1

)
+

(
2 + [α+ 1]qn

)
[α+ 1]qn [n]qn

+
[2]q

[α+ 1]qn [α+ 2]qn [n]
2
qn

→ 0, n → ∞,

which implies that

lim
n→∞

∥∥∥K(α)
n,q (t

m;x)− xm
∥∥∥
2
= 0, m = 0, 1, 2.

□

In the next theorem, we present a weighted approximation theorem for f ∈
C∗

2 [0,∞), where Doğru studied for classical Szász operators in [13].

Theorem 6. Let q = qn ∈ (0, 1] such that qn → 1 as n → ∞ and α > 0. For each
f ∈ C∗

2 [0,∞) and β > 0, we have

lim
n→∞

sup
x≥0

∣∣∣K(α)
n,qn(f ;x)− f(x)

∣∣∣
(1 + x2)1+β

= 0.

Proof. Let x0 ∈ [0,∞) be arbitrary but fixed. Then

sup
x∈[0,∞)

∣∣∣K(α)
n,qn(f ;x)− f(x)

∣∣∣
(1 + x2)1+β

= sup
x∈[0,x0]

∣∣∣K(α)
n,qn(f ;x)− f(x)

∣∣∣
(1 + x2)1+β

+ sup
x∈(x0,∞)

∣∣∣K(α)
n,qn(f ;x)− f(x)

∣∣∣
(1 + x2)1+β

≤
∥∥∥K(α)

n,qn(f)− f
∥∥∥
C[0,x0]

+ ∥f∥2 sup
x∈(x0,∞)

∣∣∣K(α)
n,qn

(
1 + t2;x

)∣∣∣
(1 + x2)1+β
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+ sup
x∈(x0,∞)

|f(x)|
(1 + x2)1+β

= H1 +H2 +H3.

Since |f(x)| ≤ Nf (1 + x2), we have

H3 = sup
x∈(x0,∞)

|f(x)|
(1 + x2)

1+β
≤ sup

x∈(x0,∞)

Nf

(1 + x2)
β
≤ Nf

(1 + x2
0)

β
.

Firstly, From Theorem (4), we have

H1 goes to zero as n → ∞.

Secondly, by Theorem 5,

H2 = ∥f∥2 lim
n→∞

sup
x∈(x0,∞)

∣∣∣K(α)
n,q

(
1 + t2;x

)∣∣∣
(1 + x2)

1+β

= sup
x∈(x0,∞)

(
1 + x2

)
(1 + x2)

1+β
∥f∥2

= sup
x∈(x0,∞)

∥f∥2
(1 + x2)

β
≤

∥f∥2
(1 + x2

0)
β
.

Moreover, if we choose x0 > 0 large enough, we can see that

H2 → 0 and H3 → 0 as n → ∞,

Combining, H1, H2 and H3, we get desired result. □

In the next theorem we obtain direct estimation in terms of weighted modulus
of continuity. For every f ∈ C∗

m [0,∞) the weighted modulus of continuity defined
as

Ωm(f, δ) = sup
x≥0, 0<h≤δ

|f(x+ h)− f(x)|
1 + (x+ h)m

, (22)

Lemma 9. [39]If f ∈ C∗
m [0,∞) ,m ∈ N, then

(i) Ωm(f, δ) is a monotone increasing function of δ,
(ii) lim

δ→0+
Ωm(f, δ) = 0,

(iii) for any ρ ∈ [0,∞) ,Ωm(f, ρδ) ≤ (1 + ρ)Ωm(f, δ).

In the next theorem, we express the approximation error of K
(α)
n,q by using Ωm.

Theorem 7. For f ∈ C∗
m [0,∞) ,we have∥∥∥K(α)
n,q (f)− f

∥∥∥
m+1

≤ NΩm(f, (1/
√
qn)),

where N is a constant independent of f and n.
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Proof. From (22) and Lemma 9, we can write

|f(t)− f(x)| ≤ (1 + (x+ |t− x|)m)

(
|t− x|

δ
+ 1

)
Ωm(f, δ)

≤ (1 + (2x+ t)
m
)

(
|t− x|

δ
+ 1

)
Ωm(φ, δ).

Then, we have∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣
≤ K(α)

n,q |(f(t)− f(x)| ;x)

≤ Ωm(f, δ)

(
K(α)

n,q ((1 + (2x+ t)m);x) +K(α)
n,q

(
(1 + (2x+ t)m)

|t− x|
δ

;x

))
.

= Ωm(f, δ)
(
K(α)

n,q (1 + (2x+ t)m;x) + I1

)
.

Applying Cauchy-Schwartz inequality to the I1, we get

I1 ≤ (K(α)
n,q ((1 + (2x+ t)m)

2
;x))1/2

(
K(α)

n,q

(
|t− x|2

δ2
;x

))1/2

.

Therefore,∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣ (23)

≤ Ωm(f, δ)K(α)
n,q ((1 + (2x+ t)m);x)

+Ωm(f, δ)(K(α)
n,q ((1 + (2x+ t)m)

2
;x))1/2

(
K(α)

n,q

(
|t− τ |2

δ2
;x

))1/2

.(24)

By Lemma 7 and Lemma 4,

K(α)
n,q (1 + (2x+ t)m;x) ≤ Cm,j(q, α) (1 + xm) ,

(K(α)
n,q ((1 + (2x+ t)m)

2
;x))1/2 ≤ C1

m,j(q, α) (1 + xm) . (25)

and (
K(α)

n,q

(
|t− x|2

δ2
;x

))1/2

≤ 1

δ

√√√√ [2]q

[α+ 1]q [α+ 2]q [n]
2
q

+
x

[n]
+ x2

(
1

q
− 1

)

≤ (2 + x)

δ
√
qn

. (26)

Combining 23, 25 and 26, we have∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣
≤ Ωm(f, δ)

(
Cm,j(q, α) (1 + xm) + C1

m,j(q, α)
(1 + xm) (2 + x)

δ
√
qn

)
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= Ωm(f, δ)

(
Cm,j(q, α) (1 + xm) + C1

m,j(q, α)C1

(
1 + xm+1

)
δ
√
qn

)
,

where

C1 = sup
x≥0

(
2 + 2xm + x+ 2xm+1

)
1 + xm+1

.

if we take δ =
(
1/
√
q [n]q

)
in the above inequality, we obtain the desired result. □

Next result is a Voronovskaja type formula for the operators K
(α)
n,q (f ;x).

6. Voronovskaja Type

Theorem 8. Let q = qn ∈ (0, 1] such that qn → 1, qnn → b as n → ∞ and α > 0.

For any f ∈ C∗
2 [0,∞) such that f ′, f

′′ ∈ C∗
2 [0,∞) the following equality holds

lim
n→∞

[n]qn

[
K(α)

n,qn(f ;x)− f(x)
]

=
1

(α+ 1)
f

′
(x) +

1

2

(
x+ x2 (1− b)

)
f

′′
(x).

Proof. By the Taylor’s formula, we can write

f(t) = f(x) + f ′(x)(t− x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t− x)2 (27)

where r(t, x) is Peano form of remainder, r(., x) ∈ C∗
2 [0,∞) and lim

t→x
r(t, x) = 0.

Applying K
(α)
n,q to the both sides of (27), we get

[n]qn

[
K(α)

n,qn(f ;x)− f(x)
]

= f
′
(x) [n]qn K(α)

n,qn((t− x) ;x) +
1

2
f

′′
(x) [n]qn K(α)

n,qn

(
(t− x)2;x

)
+ [n]qn K(α)

n,qn

(
r(t, x)(t− x)2;x

)
.

By Cauchy-Schwarz inequality, we have

K(α)
n,qn

(
r(t, x)(t− x)2;x

)
≤
√
K

(α)
n,qn (r2(t, x);x)

√
K

(α)
n,qn ((t− x)4;x). (28)

Observe that r2(t, x) = 0 and r2(., x) ∈ C∗
2 [0,∞) .

Then, it follows from that Corollary (1),

lim [n]qn
n→∞

K(α)
n,qn

(
r2(t, x);x

)
= r2(x, x) = 0. (29)

Moreover, from (6), (28) and (29), we can obtain

lim
n→∞

K(α)
n,qn

(
r(t, x)(t− x)2;x

)
= 0 (30)
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Hence, combining (4), (5) and (30), we get

lim
n→∞

[n]qn

[
K(α)

n,qn(f ;x)− f(x)
]

=
1

(α+ 1)
f

′
(x) +

1

2

(
x+ x2 (1− b)

)
f

′′
(x).

□

7. Bivariate Fractional q-Integral

In this section, we introduce the bivariate fractional q-integral of Riemann-

Liouville integral type K
(α)
n,q (f ;x) (2)as follows:

K(α1,α2)
n1,n2,q1,q2(f ;x, y)

=

∞∑
k1=0

∞∑
k2=0

[α1]q1 [α2]q2 sn1,k1(q1;x)sn2,k2(q2; y)

1∫
0

1∫
0

f

(
q1−k1
1 [k1]q1 + t1

[n1]q1
,
q1−k2
2 [k2]q2 + t2

[n2]q2

)
(1− t1)

α1−1
(1− t2)

α2−1
dq1t1dq2t2

where (x, y) ∈ I2 = [0,∞)× [0,∞) and α1, α2 > 0.

Fractional q-integral of Riemann-Liouville integral type K
(α1,α2)
n1,n2,q1,q2(·;x, y) can

be rewritten as

K(α1,α2)
n1,n2,q1,q2(·;x, y) = K(α1)

n1,q1(·;x)×K(α2)
n2,q2(·; y).

Lemma 10. Let eij (x, y) = xiyj, 0 < q1, q2 < 1, 0 ≤ i + j ≤ 2 and α1, α2 > 0.
For (x, y) ∈ I2 = [0,∞)× [0,∞), we have

K(α1,α2)
n1,n2,q1,q2(e00;x, y) = 1,

K(α1,α2)
n1,n2,q1,q2(e10;x, y) = x+

1

[n1]q1 [α1 + 1]q1
,

K(α1,α2)
n1,n2,q1,q2(e01;x, y) = y +

1

[n2]q2 [α2 + 1]q2
,

K(α1,α2)
n1,n2,q1,q2(e20;x, y) =

[2]q1

[α1 + 1]q1 [α1 + 2]q1 [n1]
2
q1

+

(
2 + [α1 + 1]q1

)
[α1 + 1]q1 [n1]q1

x+
x

q1

2
,

K(α1,α2)
n1,n2,q1,q2(e02;x, y) =

[2]q2

[α2 + 1]q1 [α2 + 2]q2 [n2]
2
q2

+

(
2 + [α2 + 1]q2

)
[α2 + 1]q2 [n2]q2

y +
y

q2

2
.

Remark 1. According to above Lemma (10), we get

K(α1,α2)
n1,n2,q1,q2(e10 − x;x, y) =

1

[n1]q1 [α1 + 1]q1
,
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K(α1,α2)
n1,n2,q1,q2(e01 − y;x, y) =

1

[n2]q2 [α2 + 1]q2
,

K(α1,α2)
n1,n2,q1,q2((e10 − x)

2
;x, y) =

[2]q1

[α1 + 1]q1 [α1 + 2]q1 [n1]
2
q1

+
x

[n1]q1
+ x2

(
1

q1
− 1

)
= δ(α1)

n1
(q1;x),

K(α1,α2)
n1,n2,q1,q2((e01 − y)

2
;x, y) =

[2]q2

[α2 + 1]q2 [α2 + 2]q2 [n2]
2
q2

+
y

[n2]q2
+ y2

(
1

q2
− 1

)
= δ(α2)

n2
(q2; y).

In the next theorem, we obtain the uniform convergence of the bivariate q-
Riemann-Liouville fractional integral type of q-Szász-Mirakyan-Kantorovich oper-
ators to the bivariate functions defined on I2 = [0,∞)× [0,∞).

Theorem 9. Let C(I2) be the space of continuous bivariate function on I2 =
[0,∞)× [0,∞) and α1, α2 > 0. Then for any f ∈ C(I2), we have

lim
n1,n2→∞

∥∥∥K(α1,α2)
n1,n2,q1,q2f − f

∥∥∥ = 0.

Proof. Using lemma 1, we get∥∥∥K(α1,α2)
n1,n2,q1,q2e00 − e00

∥∥∥ = 0,
∥∥∥K(α1,α2)

n1,n2,q1,q2e10 − e10

∥∥∥→ 0∥∥∥K(α1,α2)
n1,n2,q1,q2e01 − e01

∥∥∥→ 0,
∥∥∥K(α1,α2)

n1,n2,q1,q2 (e20 + e02)− (e20 + e02)
∥∥∥→ 0

as n1, n2 → ∞

As a result, by Volkov’s theorem [40], we get

lim
n1,n2→∞

∥∥∥K(α1,α2)
n1,n2,q1,q2f − f

∥∥∥ = 0.

□

For bivariate real functions, modulus of continuity defined as

w (f ; δn, δm) = sup
{
|f(t, s)− f(x, y)| : (t, s) , x, y ∈ I2, |t− x| ≤ δn, |s− y| ≤ δm

}
.

Theorem 10. Let f ∈ C(I2), 0 < q1, q2 < 1and α1, α2 > 0. Then for all (x, y) ∈
I2, the inequality∣∣∣K(α1,α2)

n1,n2,q1,q2 (f ;x, y)− f (x, y)
∣∣∣ ≤ 4w

(
f ; δ(α1)

n1
(q1;x), δ

(α2)
n2

(q2; y)
)

holds, where δ(α1)
n1

(q1;x), δ
(α2)
n2

(q2; y) are as in Remark 1.

Proof. By the positivity and linearity properties of the K
(α1,α2)
n1,n2,q1,q2 , we can write∣∣∣K(α1,α2)

n1,n2,q1,q2 (f ;x, y)− f (x, y)
∣∣∣ ≤ K(α1,α2)

n1,n2,q1,q2 (|f(t, s)− f (x, y)| ;x, y)
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≤ w (f ; δ1, δ2)

(
K(α1)

n1,q1 (1;x) +
1

δ1
K(α2)

n1,q1 (|t− x| ;x)
)

×
(
K(α2)

n2,q2 (1; y) +
1

δ2
K(α2)

n2,q2 (|s− y| ; y)
)

Applying Cauchy-Schwarz inequality, we obtain

K(α1)
n1,q1 (|t− x| ;x) ≤ K(α1)

n1,q1

(
(t− x)

2
;x
) 1

2

K(α2)
n2,q2 (|s− y| ; y) ≤ K(α2)

n2,q2

(
(s− y)

2
; y
) 1

2

Choosing δ1 = δ(α1)
n1

(q1;x) and δ2 = δ(α2)
n2

(q2; y), we have desired result. □

Now, we are present some graphs and numerical results for K
(α)
n,q and K

(α1,α2)
n1,n2,q1,q2

obtained by using Matlab.

8. Graphical Simulations

Example 1. Consider f(x) = x3 − 9x2 − 15x+9 with x ∈ [0, 6]. Here we take the

value of q ∈ {0.75, 0.85, 0.95},for K(2)
100,q. The Figure 1 demonstrate the convergence

of operators K
(2)
100,q to f(x) for increasing values of q and fixed α, n. Moreover,

absolute error function E
(2)
100,q (f ;x) =

∣∣∣K(2)
100,q(f ;x)− f(x)

∣∣∣ is illustrated in Figure

2. Then, numerical values of E
(2)
100,q (f ;x) at some points on the interval [0, 6] for

{q ∈ 0.75, 0.85, 0.95} are given in Table 1.

Table 1. Estimation of the absolute error function E
(2)
100,q with

f(x) = x3 − 9x2 − 15x + 9 for some values of x in [0, 6] and q ∈
{0.75, 0.85, 0.95}.

x E
(2)
100,0.75 E

(2)
100,0.85 E

(2)
100,0.95

0 0.479 0.170 0.056
1 1.830 0.761 0.178
2 1.013 0.283 0.692
3 16.273 6.732 3.551
4 52.172 22.357 9.397
5 116.932 50.926 19.228
6 218.776 96.211 34.043

As we increase the value of q and fixed α and n, the approximation is good, i.e
for the largest value of q, the error is minumum.
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Figure 1. Approximation to f(x) = x3 − 9x2 − 15x + 9 by

K
(2)
100,q(f ;x) for q ∈ {0.75, 0.85, 0.95}.

Figure 2. E
(2)
100,q (f ;x) for f(x) = x3 − 9x2 − 15x+ 9 and q = {0.75, 0.85, 0.95}.

Example 2. Let f(x) = x6 with x ∈ [0, 6]. Here we take the value of n ∈ {10, 100},
α = 5 and q = 0.95. The Figure 3 demonstrate the convergence of operators
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K
(5)
n,0.95to f(x) for increasing values of n. Secondly, The absolute error function

E
(5)
n,0.95 (f ;x) =

∣∣∣K(5)
n,0.95(f ;x)− f(x)

∣∣∣ is illustrated in Figure 4. Finally, numerical

values of E
(5)
n,0.95 (f ;x) at some points on the interval [0, 6] for n ∈ {10, 100} are

given in Table 2.

Figure 3. Approximation to f(x) = x6 by K
(5)
n,0.95(f ;x) for n ∈ {10, 100}.

Table 2. Estimation of the absolute error function E
(5)
n,0.95 with

f(x) = x6 for some values of x in [0, 6] and n ∈ {10, 100}

x E
(5)
10,0.95 E

(5)
100,0.95

1 8.57 3.06
2 401.68 164.39
3 4067.76 1758.63
4 21481.26 9566.43
5 78862.08 35778.98
6 229422.04 105421.79

As we increase the value of n and fixed α and q, the approximation is good, i.e
for the largest value of n, the error is minumum.
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Figure 4. E
(5)
n,0.95 (f ;x) for n = {10, 100}, f(x) = x6.

Example 3. Let f(x) = x3 − 4x2 + 2 with x ∈ [0, 5]. Here we take the value of
α ∈ {0.1, 10}, n = 150 and q = 0.95. The Figure 5 demonstrate the convergence of

operators K
(α)
150,0.95 to f(x) for increasing values of α. Secondly, The absolute error

function E
(α)
150,0.95 (f ;x) =

∣∣∣K(α)
n,q (f ;x)− f(x)

∣∣∣ is illustrated in Figure 6. Finally,

numerical values of E
(α)
150,0.95 at some points on the interval [3, 5] for α ∈ {0.1, 10}

are given in Table 3.

Table 3. Estimation of the absolute error function E
(α)
150,0.95 with

f(x) = x3 − 4x2 +2 for some values of x in [3, 5] and α ∈ {0.1, 10}

x E
(0.1)
150,0.95 E

(10)
150,0.95

3 6.682 6.472
3.5 9.853 9.388
4 13.944 13.161
4.5 19.081 17.917
5 25.388 23.780



1160 M. KARA

Figure 5. Approximation to f(x) = x3 − 4x2 + 2 by

K
(α)
150,0.95(f ;x) for α ∈ {0.1, 10}.

Figure 6. E
(α)
150,0.95 (f ;x) for f(x) = x3 − 4x2 + 2 and α ∈ {0.1, 10} .

Now, we are present some graphs and numerical results for the convergence
of bivariate fractional q-integral Riemann-Liouville integral type Szász-Mirakyan-

Kantorovich operators K
(α1,α2)
n1,n2,q1,q2 by considering the function f(x, y) = x+ y.
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Example 4. Consider, f(x, y) = x + y with (x, y) ∈ [0, 4]× [0, 4]. Here we take
the value of n1, n2 ∈ {5, 150} , q1 = q2 = 0.75 and α1 = α2 = 0.1 . The Fig-

ure 7 explains the convergence of the operators K
(0.1,0.1)
n1,n2,0.75,0.75

towards the func-

tion f(x, y) for increasing values of n1, n2. Secondly, The absolute error function

E
(0.1,0.1)
n1,n2,0.75,0.75

(f ;x, y) =
∣∣∣K(0.1,0.1)

n1,n2,0.75,0.75
(f ;x, y)− f(x, y)

∣∣∣ is illustrated Figure 8.

Finally numerical values of E
(0.1,0.1)
n1,n2,0.75,0.75

at some points on the interval [0, 4]×
[0, 4] for n1, n2 ∈ {5, 150} are given in Table 4.

Figure 7. Convergence of the operators K
(0.1,0.1)
n1,n2,0.75,0.75

to the

function f(x, y) = x+ y.

As we increase the value of n1 and n2 and fixed α1, α2, q1 and q2, the approxi-
mation is good, i.e for the largest value of n1 and n2 and fixed α1, α2, q1 and q2,
the error is minumum.

Example 5. Consider f(x, y) = x + y with (x, y) ∈ [0, 4]× [0, 4] . Here we take
the value of α1, α1 ∈ {0.1, 10}, q1 = q2 = 0.75 and n1 = n2 = 5. The Fig-

ure 9 explains the convergence of the operators K
(α1,α2)
5,5,0.75,0.75 towards the function

f(x, y) for increasing values of α1, α2 ∈ {0.1, 10} . Secondly, absolute error function
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Figure 8. E
(0.1,0.1)
n1,n2,0.75,0.75

with f(x, y) = x+xy+12y2 for n1, n2 ∈
{5, 150} on the interval [0, 4]× [0, 4].

Table 4. Estimation of the absolute error function E
(0.1,0.1)
n1,n2,0.75,0.75

with f(x, y) = x + y for some values of (x, y) in [0, 4] × [0, 4] and
n1, n2 ∈ {5, 150} .

x y E
(0.1,0.1)
5,5,0.75,0.75 E

(0.1,0.1)
150,150,0.75,0.75

0 0 0.604 0.461
0 0.5 0.604 0.461
0 1 0.604 0.461
0 1.5 0.604 0.461
0 2 0.604 0.461
0 2.5 0.604 0.461
0 3 0.604 0.461
0 3.5 0.604 0.461
0 4 0.604 0.461

E
(α1,α2)
5,5,0.75,0.75 (f ;x, y) =

∣∣∣K(α1,α2)
n1,n2,,q1,q2(f ;x, y)− f(x, y)

∣∣∣ is illustrated Figure 10. Fi-

nally, numerical values of E
(α1,α2)
5,5,0.75,0.75 at some points on the interval [0, 4]× [0, 4]

for α1, α2 ∈ {0.1, 10} are given in Table 5.
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Figure 9. Convergence of the operators K
(α1,α2)
5,5,0.75,0.75(f ;x, y) to

the function f(x, y) = x+ y.

Table 5. Estimation of the absolute error function E
(α1,α2)
50,50,0.75,0.75

with f(x, y) = x + y for some values of (x, y) in [0, 4] × [0, 4] and
α1, α2 ∈ {0.1, 10} .

x y E
(0.1,0.1)
50,50,0.75,0.75 E

(10,10)
50,50,0.75,0.75

0.1 0.1 0.461 0.131
0.1 0.5 0.461 0.131
0.1 1 0.461 0.131
0.1 1.5 0.461 0.131
0.1 2 0.461 0.131
0.1 2.5 0.461 0.131
0.1 3 0.461 0.131
0.1 3.5 0.461 0.131
0.1 4 0.461 0.131

As we increase the value of α1 and α2 and fixed q1, q2, n1 and n2, the approx-
imation is good, i.e for the largest value of α1 and α2 and fixed q1, q2, n1 and n2,
the error is minumum.
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Figure 10. For some (x, y) points, error function E
(α1,α2)
50,50,0.75,0.75

with f(x, y) = x+ y.

Example 6. Consider f(x) = x + y with (x, y) ∈ [0, 4] × [0, 4]. Here we take the

value of q ∈ {0.35, 0.75}, n1 = n2 = 10 and α1 = α1 = 5 for K
(α1,α2)
n1,n2,,q1,q2 . The Fig-

ure 11 demonstrate the convergence of operators K
(5,5)
10,10,q1,q2

to f(x, y) for increas-

ing values of q1 and q2. Moreover, function of absolute error E
(5,5)
10,10,q1,q2

(f ;x, y) =∣∣∣K(α1,α2)
n1,n2,,q1,q2(f ;x, y)− f(x, y)

∣∣∣) in is illustrated Figure 12. Then, numerical values

of E
(5,5)
10,10,q1,q2

at some points on the interval [0, 4]× [0, 4] for q1, q2 ∈ {0.35, 0.75}are
given in Table 6.

As we increase the value of q1 and q2 and fixed α1, α2, n1 and n2, the approx-
imation is good, i.e for the largest value of q1 and q2 and fixed α1, α2, n1 and n2,
the error is minumum.
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Figure 11. Approximation to f(x, y) = x + y by K
(5,5)
10,10,q1,q2

q1, q2 ∈ {0.35, 0.75} .

Figure 12. E
(2,2)
10,10,q1,q2

(f ;x) for f(x, y) = x+ y and q1, q2 = {0.35, 0.75}.

Declaration of Competing Interests The authors declare that they have no
known competing financial interest or personal relationships that could have ap-
peared to influence the work reported in this paper.
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Table 6. Estimation of the absolute error functionE
(5,5)
10,10,q1,q2

with

f(x, y) = x + y for some values of x in [0, 4] × [0, 4] and q1, q2 ∈
{0.35, 0.75}.

x y E
(5,5)
10,10,0.35,0.35 E

(5,5)
10,10,0.75,0.75

0 0 0.847 0.161
0 0.5 0.847 0.161
0 1 0.847 0.161
0 1.5 0.847 0.161
0 2 0.847 0.161
0 2.5 0.847 0.161
0 3 0.847 0.161
0 3.5 0.847 0.161
0 4 0.847 0.161
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Abstract. Cancer formation is one of the pathologies whose frequency has

increased in the recent years. In the literature, the compartment models,
which are non-linear, are used for such problems. In nonlinear compartment

models, nonlinear state space models and the extended Kalman filter (EKF)

are used to estimate the parameter and the state vector. This paper presents
a discrete-time Gompertz model (DTGM) for the transfer of optical contrast

agent, namely indocyanine green (ICG), in the presence of tumors between
the plasma and extracellular extravascular space (EES) compartments. The

DTGM, which is proposed for ICG and the estimation of ICG densities used

in the vascular invasion of tumor cells of the compartments and in the mea-
surement of migration from the intravascular area to the tissues, is obtained

from the experimental data of the study. The ICG values are estimated on-

line (recursive) using the DTGM and the adaptive Kalman filter (AKF) based
on the experimental data. By employing the data, the results show that the

DTGM in conjunction with the AKF provides a good analysis tool for model-

ing the ICG in terms of mean square error (MSE), mean absolute percentage
error (MAPE) and R2. When the results obtained from the compartment

model used in the reference [9] are compared with the results obtained with

the DTGM, the DTGM gives better results in terms of MSE, MAPE and R2

criteria. The DTGM and the AKF compartment model require less numerical

processing when compared to the EKF, which indicates that DTGM is a less
complicated model. In the literature, EKF is used for such problems.

1. Introduction

In recent years the use of optical contrast agents and advanced medical imag-
ing techniques to analyze and diagnose tissue abnormalities has become almost a
standard procedure [1]. The existence of tumors is one of the main causes of tissue
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abnormalities, and in [2] it is shown that tumor vessel permeability to macromolec-
ular blood solutes correlates with tumor growth as well as vascular growth. ICG
is a blood pool agent that binds to globulin proteins (predominantly albumin) in
blood [3], and because of its ability to bind to plasma proteins, it behaves as a
macromolecular contrast agent with a low or no vascular permeability. Once in-
jected, ICG rapidly and completely binds to albümin. Its macromolecular behavior
results in a slow leakage which permits application of a pharmacokinetic model that
in return allows for the determination of individual vascular parameters, such as
capillary permeability. Compartmental analysis is a method of bio-mathematical
modeling which assumes that a biological system can be divided into a series of
homogeneous compartments which interact by exchanging material. For compart-
mental models used in pharmacokinetics, the material concentration varies with
time depending on individual pharmacokinetics parameters [4]. If the appropri-
ate parameters are known, the concentration level in a particular compartment
can be predicted by applying suitable pharmacokinetic equations. Thus, a robust
method of identifying and estimating individual parameters is required. The pa-
rameter identification is a common nonlinear estimation problem. In essence, it
is the problem of estimating a model parameter that occurs as a coefficient of a
dynamic system state variable - either as a dynamic coefficient or as measurement
sensitivity. When this estimation problem is solved simultaneously with the state
estimation problem (via state vector augmentation), the linear model becomes non-
linear. The extended Kalman filter (EKF) is one of the most popular and intensively
investigated estimation technique for the nonlinear state estimation. It consists of
applying the standard Kalman filter equations to the first-order approximation of
the nonlinear model of the last estimate [5]. This study addresses the most com-
monly used growth models, the DTGM to estimate the ICG level without resorting
to nonlinear models. The growth curves are used for modelling the increase in the
number of plants, bacteria or viruses in an environment. The rest of this article
is organized as follows. In Section 2, information about The ICG Compartment
Model is presented. In Section 3, the mathematical and computational method-
ologies of DTGM are specified and the mathematical equations, that are aimed to
be used further in the study are given, and the modeling analysis and estimation
results are also presented. Finally, Section 4 concludes the study.

2. The Icg Compartment Model

If there is a tumor in any tissue, the given ICG passes through the vessel into
the tumor tissue area. There is also a return to the vein from the tumor tissue.
In accordance with this physiological structure, a two-compartment model can be
considered. In this compartment model, Cp indicates ICG concentration in the
vessel, Ce indicates ICG concentration in tumor tissue. k1 ratio is the ratio of
ICG passing from the vessel to the tumor tissue, k2 is the ratio of ICG passing
from the tumor area into the vessel, and k3 is the ratio of ICG passing from the
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plasma to the liver and kidney. Since the mentioned ratio is quite small, this ratio
is ignored while creating the mathematical model. The ICG density in the tumor
tissue tend to increase as the k1 ratio increase of the ICG density in the vessel
(since there are transitions from here) and tend to decrease as the k2 ratio of its
own density. Accordingly, the change in ICG density in the tumor tissue per unit
time is expressed as in Equation 1,

dCe(t)

dt
= k1Cp(t)− k2Cθ(t) (1)

As mentioned above, its rate can be ignored, and the change in ICG density in
the tumor tissue per unit time is defined as in Equation 2,

dCp(t)

dt
= −k1Cp(t) + k2Ce(t) (2)

Because the ratio of ICG concentration, which is only in the vessel, is expected to
be transferred to the tumor tissue per unit time. k1 and k2 show the permeability
parameters mentioned before. According to the model, there is no information
about the permeability parameters and there is no need for their estimates. When
the differential equation system given by equations 1-2 are made discrete, nonlinear
discrete time-state space model is obtained. In this model, both the parameter and
the state vector are required to be estimated simultaneously. In the literature, the
EKF is used for such problems [6]- [11].

3. Discrete-Time Gompertz Model

In this study, DTGM, one of the growth models, is used to estimate the ICG
level without considering the nonlinear models.

The growth curves are used for modelling the increase in the number of plants,
bacteria or viruses in an environment. Expressing the growth of an organism or
an increase in the number of viruses temporally is called ”growth”. The identifica-
tion of the complex growth process is aimed at using the growth curves [12]- [14].
DTGM is well known and widely used model in many sub-fields of biology [15]-
[18]. Numerous parametrizations and re-parametrizations of the DTGM can be
found in the literature [17]. DTGM was originally recommended to explain human
mortality curves Gompertz [12], and it has been further used in the description of
growth processes, for example, growing of bacterial colonies [15] and tumors [16].
The model, a stochastic version of the DTGM, can be transformed into a linear
Gaussian state-space model for the convenient fitting to time-series data. In this
study, ICG values are estimated online using the DTGM and the AKF based on
the experimental data. By employing the data, the results show that the DTGM
in conjunction with AKF provides a good analysis tool for modeling the ICG in
terms of mean square error (MSE), mean absolute percentage error (MAPE), and
R2 . When the results obtained from the compartment model used in the refer-
ence [9] are compared with the results obtained with the DTGM, the DTGM gives
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better results in terms of MSE, MAPE and R2 criteria. The DTGM and the AKF
compartment model require less numerical processing when compared to the EKF,
which indicates that DTGM is a less complicated model.

Let nt denote ICG level at time t. The process model is as:

nt = nt−1exp(a+ blnnt−1 + et) (3)

where a and b are constants, and et is a random variable distributed as et N(0, σ2
1).

The random variables e1, . . . , en are assumed to be uncorrelated. On the logarith-
mic scale, the DTGM is a linear autoregressive time-series model of order 1 [AR(1)
process] defined as equation 4.

yt = yt−1 + a+ byt−1 + et = a+ cyt−1 + et (4)

where, yt = lnnt and c = b+ 1. For statistical properties of DTGM, see [18].
The model has a long history in density-dependence modeling see [19]- [21]. A

freguently seen alternative is a stochastic version of the Moran-Ricker model [21],
which uses nt−1 instead of lnnt−1 in the exponential function; in comparative
data analysis studies, the Gompertz model has performed as well as the Moran-
Ricker [22]. The probability distribution of nt−1 is a normal distribution with mean
and variance that change as functions of time. If −1 < c < 1, the probability distri-
bution of nt eventually approaches a time-independent stationary distribution that
is a normal distribution with a mean of a/(1 − c) and a variance of σ2

1/
(
1− c2

)
.

The stationary distribution is the stochastic version of an equilibrium in the deter-
ministic model, and is an important statistical manifestation of density dependence
in the population growth model Dennis [18]. In equation 4, a is the intrinsic growth
rate, b is the density-dependent influence [18].

3.1. Mathematical and Computational Methodologies. The optimum linear
filtering and estimation methods introduced by Kalman [31] have been considered
as one of the greatest achievements in estimation theory. Discrete-time linear state-
space models and Kalman filtering (KF) have been employed since the 1960s, mostly
in the control and signal processing areas. The KF has been extensively employed
in many areas of estimation. The extensions and applications of discrete-time linear
state-space models can be found in almost all disciplines [20]- [28]. In this study,
KF has been used to estimate the time-varying parameter of the DTGM. KF is a
recursive estimator to estimate the time-varying parameters. If a = 0 in Eq.(4), nt

takes the case counts observed until t and yt = lnnt. Then the equation

yt = cyt−1 + et (5)

is acquired. In the case that the parameter c in Eq.(5) is time-varying and
presumed as random walk process, that is . Then state-space model,

yt = ctyt−1 + et (6)
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ct = ct−1 + wt (7)

is obtained and wt is distributed as wt N(0, σ2
2). The random variables w1, w2, . . . , wn

are assumed to be uncorrelated. Here, the state variable is unobservable, time-
varying, and can be estimated through AKF (explanation regarding AKF is given
in the Appendix section). If this time-varying parameter is estimated using on-line
AKF, the ICG level in times t+1,t+2, ... can be estimated via this online-estimated
parameter. When the models given in equations (6) and (7) are compared with the
state space model given in the Appendix, the following equations are obtained.

xt = ct, Ft = 1, Gt = 1, Ht = yt−1, Rt = σ1, Qt = σ2 (8)

3.2. Application of DTGM. Details of the experimental setup, and how the
data were collected can be found in [23]. Data is given in Table 1. Since this
study deals with the collected data, here only a very brief discussion regarding the
experiments is given in order to put more emphasis on the mathematical represen-
tation, along with parameter estimation. In the experiments, bolus injections of
the optical contrast agent ICG were administered to the rat through the tail vein.
The measurements were collected by placing the probe normal to the tumor surface
and probing the whole tissue including plasma. After injection, ICG rapidly and
completely binds to albumin, after which the kinetics of ICG are governed by the
temporal dynamics of albumin in and between the vascular compartment and the
EES.

3.3. Estimation (AKF) Algorithm. The steps of the AKF algorithm using to
estimate the parameter in DTGM are as follows. The code is written in Matlab
program for the estimation algorithm.

Step 1. Initial values ĉ0 = 0.9, P0 = 1, Rt = σ1 = std (yt) , t = 1, 2, . . . , n,Qt =
σ2 = 0.01, t = 1, 2, . . . , n, α = 1.0001

Step 2. ĉt|t−1 = ĉt−1 Predicted (a priori) state estimate
Step 3. Pt|−1 = α (Pt−1t−1 + σ2) Predicted (a priori) estimate covariance

Step 4. Kt = Pt|t−1yt−1

(
yt−1Pt|t−1yt−1 + σ1

)−1
Optimal Kalman gain

Step 5. Pt= = [I −Ktyt−1]Ptt-1 Updated (a posteriori) estimate covariance
Step 6. ĉt = ĉt|t−1 +Kt

(
yt − yt−1ĉt|t−1

)
Updated (a posteriori) state estimate

In the experiment, the ICG concentration in the lump space, i.e. EES and
plasma, was monitored for 500 seconds. According to the estimation results ob-
tained by using the ICG level in DTGM, the MSE, MAPE, R2 and values are
calculated (see Table 2). These calculated values indicate that the compatibility of
the model with real data is quite high. This tells us estimating the ICG level via
DTGM is a reliable method. Since estimation using the AR(1) stochastic process
does not require any other model assumption. As for AKF, utilizing only the ob-
servation in time and the preceding estimation is the most advantageous aspect of
this method.
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Table 1. Collected data.

Time Observed value Time Observed value Time Observed value Time Observed value Time Observed value Time Observed value
0 -0.0237 45 0.623 90 0.749 135 0.682 180 0.603 225 0.532
1 -0.0269 46 0.632 91 0.752 136 0.677 181 0.596 226 0.533
2 -0.0282 47 0.645 92 0.753 137 0.678 182 0.594 227 0.534
3 -0.0251 48 0.65 93 0.751 138 0.683 183 0.594 228 0.533
4 -0.0249 49 0.66 94 0.747 139 0.684 184 0.591 229 0.527
5 -0.0224 50 0.665 95 0.739 140 0.685 185 0.592 230 0.531
6 -0.0236 51 0.671 96 0.741 141 0.688 186 0.586 231 0.528
7 -0.0243 52 0.682 97 0.743 142 0.686 187 0.587 232 0.527
8 -0.0232 53 0.685 98 0.748 143 0.688 188 0.591 233 0.525
9 0.0265 54 0.688 99 0.747 144 0.685 189 0.594 234 0.521
10 0.139 55 0.688 100 0.742 145 0.671 190 0.587 235 0.523
11 0.216 56 0.691 101 0.739 146 0.661 191 0.579 236 0.523
12 0.255 57 0.696 102 0.741 147 0.657 192 0.576 237 0.522
13 0.275 58 0.704 103 0.738 148 0.66 193 0.579 238 0.514
14 0.282 59 0.711 104 0.738 149 0.662 194 0.576 239 0.513
15 0.286 60 0.716 105 0.738 150 0.658 195 0.575 240 0.516
16 0.295 61 0.717 106 0.735 151 0.653 196 0.574 241 0.513
17 0.305 62 0.729 107 0.739 152 0.652 197 0.574 242 0.508
18 0.316 63 0.737 108 0.739 153 0.654 198 0.573 243 0.503
19 0.324 64 0.739 109 0.731 154 0.653 199 0.572 244 0.504
20 0.337 65 0.729 110 0.734 155 0.653 200 0.57 245 0.502
21 0.352 66 0.725 111 0.734 156 0.646 201 0.568 246 0.504
22 0.365 67 0.726 112 0.737 157 0.648 202 0.567 247 0.503
23 0.381 68 0.732 113 0.733 158 0.654 203 0.569 248 0.503
24 0.399 69 0.728 114 0.734 159 0.652 204 0.566 249 0.497
25 0.413 70 0.722 115 0.736 160 0.645 205 0.566 250 0.5
26 0.426 71 0.725 116 0.727 161 0.639 206 0.566 251 0.5
27 0.439 72 0.732 117 0.724 162 0.635 207 0.565 252 0.501
28 0.45 73 0.731 118 0.723 163 0.631 208 0.568 253 0.5
29 0.466 74 0.731 119 0.719 164 0.629 209 0.564 254 0.504
30 0.477 75 0.732 120 0.718 165 0.623 210 0.557 255 0.501
31 0.49 76 0.736 121 0.711 166 0.62 211 0.553 256 0.499
32 0.503 77 0.74 122 0.699 167 0.62 212 0.551 257 0.491
33 0.513 78 0.738 123 0.702 168 0.623 213 0.554 258 0.489
34 0.524 79 0.743 124 0.699 169 0.623 214 0.546 259 0.486
35 0.537 80 0.743 125 0.7 170 0.622 215 0.543 260 0.49
36 0.553 81 0.751 126 0.699 171 0.621 216 0.54 261 0.486
37 0.569 82 0.755 127 0.697 172 0.62 217 0.541 262 0.482
38 0.579 83 0.756 128 0.696 173 0.623 218 0.538 263 0.478
39 0.579 84 0.754 129 0.702 174 0.626 219 0.538 264 0.477
40 0.58 85 0.747 130 0.697 175 0.624 220 0.537 265 0.477
41 0.589 86 0.747 131 0.691 176 0.617 221 0.535 266 0.476
42 0.597 87 0.749 132 0.684 177 0.608 222 0.537 267 0.477
43 0.605 88 0.749 133 0.681 178 0.609 223 0.532 268 0.479
44 0.613 89 0.745 134 0.679 179 0.607 224 0.531 269 0.476
270 0.48 315 0.441 360 0.419 405 0.396 450 0.382 495 0.374
271 0.478 316 0.438 361 0.417 406 0.395 451 0.378 496 0.377
272 0.477 317 0.437 362 0.414 407 0.397 452 0.381 497 0.375
273 0.474 318 0.437 363 0.409 408 0.396 453 0.383 498 0.374
274 0.471 319 0.438 364 0.409 409 0.395 454 0.381 499 0.376
275 0.474 320 0.441 365 0.409 410 0.396 455 0.381 500 0.372
276 0.473 321 0.437 366 0.409 411 0.397 456 0.383 501 0.371
277 0.471 322 0.434 367 0.407 412 0.396 457 0.382 502 0.369
278 0.467 323 0.433 368 0.405 413 0.391 458 0.383 503 0.368
279 0.468 324 0.434 369 0.408 414 0.391 459 0.38 504 0.37
280 0.467 325 0.432 370 0.407 415 0.389 460 0.382
281 0.464 326 0.433 371 0.406 416 0.391 461 0.378
282 0.468 327 0.43 372 0.408 417 0.391 462 0.376
283 0.462 328 0.43 373 0.409 418 0.391 463 0.38
284 0.465 329 0.429 374 0.411 419 0.393 464 0.379
285 0.465 330 0.432 375 0.405 420 0.394 465 0.379
286 0.463 331 0.433 376 0.407 421 0.392 466 0.377
287 0.462 332 0.434 377 0.409 422 0.393 467 0.376
288 0.46 333 0.429 378 0.406 423 0.396 468 0.376
289 0.462 334 0.427 379 0.407 424 0.393 469 0.378
290 0.465 335 0.423 380 0.408 425 0.395 470 0.377
291 0.461 336 0.423 381 0.407 426 0.391 471 0.379
292 0.454 337 0.422 382 0.41 427 0.392 472 0.383
293 0.452 338 0.424 383 0.406 428 0.389 473 0.38
294 0.45 339 0.421 384 0.4 429 0.391 474 0.38
295 0.452 340 0.423 385 0.396 430 0.387 475 0.378
296 0.448 341 0.421 386 0.398 431 0.39 476 0.378
297 0.45 342 0.418 387 0.399 432 0.391 477 0.38
298 0.447 343 0.418 388 0.395 433 0.388 478 0.378
299 0.446 344 0.419 389 0.393 434 0.384 479 0.377
300 0.448 345 0.417 390 0.394 435 0.387 480 0.372
301 0.442 346 0.419 391 0.393 436 0.385 481 0.373
302 0.448 347 0.415 392 0.392 437 0.385 482 0.373
303 0.447 348 0.419 393 0.397 438 0.386 483 0.372
304 0.447 349 0.42 394 0.395 439 0.387 484 0.375
305 0.446 350 0.419 395 0.398 440 0.388 485 0.374
306 0.449 351 0.417 396 0.397 441 0.39 486 0.375
307 0.447 352 0.416 397 0.395 442 0.389 487 0.373
308 0.443 353 0.418 398 0.395 443 0.388 488 0.374
309 0.441 354 0.416 399 0.397 444 0.387 489 0.375
310 0.441 355 0.415 400 0.395 445 0.386 490 0.373
311 0.437 356 0.417 401 0.397 446 0.384 491 0.374
312 0.44 357 0.418 402 0.395 447 0.382 492 0.374
313 0.439 358 0.417 403 0.394 448 0.382 493 0.375
314 0.438 359 0.418 404 0.395 449 0.384 494 0.376
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Table 2. Calculated R2, MSE, MAPE.

Model MSE R2 MAPE
DTGM 0.0001 0.9973 5.7385
Compartment Models 0.0004 0.9826 19.2059

Figure 1 depicts the observed ICG concentration and the model fit obtained
through the use of DTGM. Figure 2 depicts the observed ICG concentration and
the model fit obtained through the use of compartment models [9]. Figure 3 depicts
the observed ICG concentration and the model fit obtained through the use of
compartment models and DTGM. It is clearly seen that the DTGM mathematical
model provides a rather good fit to the observations, which indicates the correctness
of the model.

Figure 1. DTGM: Observed ICG concentration and the model fit.

4. Conclusion

In this study, we introduced a DTGM representing the metabolic elimination
and transfer of ICG between compartments in rat tumors, and presented a method
for the quantitative analysis of experimentally obtained ICG concentration data.
This will be useful in the analysis of tumor cell behavior patterns in cancerous
tissues. In this study, ICG concentration data have been estimated online using
DTGM and AKF. The ICG concentration data is modeled with DTGM, and the
time-varying parameters of the obtained AR(1) stochastic time series are estimated
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Figure 2. Compartment Models: Observed ICG concentration
and the model fit.

Figure 3. Compartment Models and DTGM: Observed ICG con-
centration and the model fit.

by the on-line AKF. The estimation by the acquired data shows that employing
the DTGM model and the AKF in terms of MSE, MAPE, and R2 provide efficient
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analysis for modeling the ICG concentration data. It is proposed that using the
DTGM and the AKF will be appropriate. It is quite a simple method to model the
ICG concentration time series data with the time-varying parameter AR(1) sto-
chastic process and to estimate the time-varying parameter with the online AKF.
When the results obtained from the compartment model used in the reference [9]
are compared with the results obtained with the DTGM, the DTGM offers bet-
ter results according to MSE, MAPE and R2 criteria. The DTGM and the AKF
compartment model require less numerical processing compared to the EKF, and
DTGM is a simpler model. In the literature, the EKF is used for such problems.
As far as we know no other method has been used before.

Appendix

State-Space Model and Adaptive Kalman Filter (AKF)
Let us consider a general discrete-time stochastic system represented by the state

and measurement models given as:

xt+1 = Ftxt +Gtwt

yt = Htxt + vt

where xt is an n×1 system vector, yt is an m×1 observation vector, Ft is an n×n
system matrix, Ht is an m×n matrix, wt an n× 1 vector of zero mean white noise
sequence and vt is an m× 1 measurement error vector assumed to be a zero mean
white sequence uncorrelated with the wt sequence. The covariance matrices wt

and wt are defined by wt ∼ N (0, Qt) , vt ∼ N (0, Rt). The filtering problem is the
problem of determining the best estimate of its xt condition, given its observations
Yt = (y0, y1, . . . , yt) [14−20]. When Yt = (y0, y1, . . . , yt) observations are given, the
estimation of state xt with

x̂t = E (xt | y0, y1, . . . , yt) = E (xt | Yt)

and the covariance matrix of the error with

Pt|t = E
[(
xt − x̂t|

)
(xt − x̂tt )

′ | Yt

]
when Yt−1 = (y0, y1, . . . , yt−1) observations are given, the estimation of state xt

with x̂t|t−1 = E (xt | y0, y1, . . . , yt−1) = E (xt | Yt−1)
and the covariance matrix of the error are shown with

Pt|t−1 = E
[(
xt − x̂t|−1

) (
xt − x̂t|t−1

)′ | Yt−1

]
.

Let the initial state be assumed to have a normal distribution in the form of
x0 ∼ N(x̄0,P0).

The optimum update equations for KF are,

x̂t|−1 = Ft−1x̂t−1

Pt|t−1 = Ft−1Pt−4t−1F
′
t−1 +Gt−1Qt−1G

′
t−1
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Kt = Pt|t−1H
′
t(HtPt|t−1H

′
t +Rt)

−1

Pt|t = [I −KtHt]Pt|t−1

x̂t = x̂t|t−1 +Kt

(
yt −Htx̂t|t−1

)
In the above equations, X̂t|t−1 is the a priori estimation and X̂t is the a posteriori

estimation of xt. Also, Pt|t−1 and Pt|t are the covariance of a priori and a posteriori
estimations respectively [24]- [33]. In some cases, divergence problems may ocur
in the KF due to the incorrect installation of the model. In order to eliminate
divergence in the KF, adaptive methods are used [5], [32], [33]. One of these is the
use of the forgetting factor. A forgetting factor is proposed by [32].

Pt|t−1 = α
(
Ft−1Pt−1|−1F

′
t−1 +Gt−1Qt−1G

′
t−1

)
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[27] Ljung, L., Söderström T., Theory and Practice of Recursive Identification, The MIT Press,

1993.
[28] Chen, G., Approximate Kalman Filtering, World Scientific, 1993.

[29] Grewal, S.M., Andrews, A.P., Kalman Filtering: Theory and Practice, Prentice Hall, 1993.
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Dakar, SÉNÉGAL

Abstract. One of the objectives of this paper is to establish the exact con-

trollability for wave-type evolution equations on non-convex and/or cracked
domains with non-concurrent support crack lines. Admittedly, we know that

according to the work of Grisvard P., in domains with corners or cracks, the

formulas of integrations by parts are subject to geometric conditions: the lines
of cracks or their supports must be concurrent. In this paper, we have estab-

lished the exact controllability for the wave equation in a domain with cracks

without these additional geometric conditions.

1. Introduction

The presence of a crack in equipment (especially under pressure) requires, for
obvious safety reasons, to know precisely its degree of harmfulness. When this crack
propagates, under cyclic loading, it is important to evaluate and to quickly control
the evolution of this degree of harmfulness and more concretely the residual life of
the cracked structure.
In the works of the pioneers and precursors, not least Kondratiev [1], Grisvard [2],
Moussaoui [3] and Niane [4], the control and removal of singularities were estab-
lished in domains with corners or cracks.
Indeed, when these cracks propagate, under cyclic loading, it is important to eval-
uate and to quickly control the evolution of this degree of harmfulness and more
concretely the residual life of the cracked structure. Thin plates and shells are
widely used in aeronautics. Due to the significant stresses to which the structure
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of an aircraft is subjected in flight, for example, the appearance of small cracks is
inevitable. Depending on the situation, these cracks are more or less dangerous;
thus, certain cracks do not propagate, on the other hand, others present a certain
risk.The risks alluded to earlier must, consequently, be curbed. So, once a crack
has been detected, it is important to know if it can be dangerous or not? The
safety of persons and that of the goods involved means repairing the work first and
foremost. Notwithstanding, repairing all the cracks won’t be necessary as, if the
crack is not dangerous, it is no good repairing as it will be costly.
Accordingly, it is important to figure out whether or not the crack is dangerous,
and whether it can be spread. Apart from extreme cases (very small or very large
cracks), this diagnosis is not easy to make because even a small crack can spread
brutally. It is very clear that the accuracy of this diagnosis is very important.
More recently, Seck [5], Bayili [6], taking inspiration from the exact controllability
in Lipschitzian domains by Costabel [7], Niane [8] and Lions [9, 10], established
results of exact controllability of the wave equation in non-regular Sobolev spaces.
But, in all these works, the domains admit a crack or a corner or even cracks with
condition of control: the lines of cracks are concurrent (or the supports of the lines
of cracks are concurrent).
In this paper, without making additional assumptions and conditions on the crack
lines and their supports, an exact controllability result was established for wave
equation.

2. Reminders of Fundamental Results

2.1. Problem position. We denote by Ω an open polygonal uncracked, non con-
vex and bounded of R2 and for T > 0, we denote by QT = Ω×]0, T [ .
Let Γ the boundary of Ω, ν(x) the external unit normal at all points x (apart from
the vertices) of Γ and ΣT the lateral border of the cylinder QT .
Γ is the union of a finite number of closed line segments; the corresponding open
segments are denoted Γj , 0 ≤ j ≤ N and Sij the end common to Γj and Γi if it
exists. We denote by ωij the measure of the angle made by Γj and Γi in Sij towards
the interior of Ω.
We denote by νj the unit normal vector outside Γj and τ j the unit vector tangent

to Γj and directed towards the vertex Si. For x0 any point of R2, we consider the
function m(x) = x− x0 and a partition of the border as follows:

Γ0 = {x ∈ Γ;m(x) · ν ≥ 0}, Γ∗
0 = {x ∈ Γ;m(x) · ν < 0},

and

Σ∗
0 = Γ∗

0×]0, T [.

Let ||.|| be the Euclidean norm in R2 and introduce the following constants

R0 = R(x0) = max
x∈Ω

||x− x0||, and T0 = 2R(x0).
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Let also f ∈ L2(Ω) and y ∈ H1
0 (Ω) be the unique solution of the homogeneous

Dirichlet problem

(P1)

{
−△y = f,
y|Γ = 0.

(1)

In the space H = L2(Ω), we consider A the operator defined by:

D(A) =
{
y ∈ H1

0 (Ω);−△y ∈ L2(Ω)
}
,

∀A ∈ D(A), Ay = −△y.

A: is a compact positive inverse self-adjoint operator see Brezis [11] and Hormander
[12].
y is solution of (1)(P1) =⇒ y ∈ D(A).
Let m+ 1 be the number of non-convex angles of the ∂Ω boundary of the domain
Ω having m+ 1 vertices (Si)0≤i≤m.
It has been proved in Niane [4] that if ω̄ is an arbitrarily small part of Ω not meeting
any vertex of cracks, there exist regular functions (gi)1≤i≤m with compact support
in ω̄ such that for all f ∈ L2(Ω), if (λi)1≤i≤m are the coefficients of singularities of
the problem (P1) then the problem

(P2)

{
−△ỹ = f + u,

ỹ|Γ = 0.
(2)

admits a solution ỹ ∈ H2(Ω), with u = −
∑m

i=0 λihi, λi =
∫
Ω
fwidx where wi the

singular functions Cf. Grisvard [2] and < gi, wj >= δij Moussaoui [3] and Niane
[4].
Let for i ∈ {0, ...,m}, (ri, θi) represent the polar coordinates of a point M of Ω

relatively to the vertex Si with ri = ||
−→
SiM || Gilbert [6].

Remark 1. The singular functions wi are harmonic{
−△wi = 0 sur Ω,

ωi = 0 ∂Ω \ {xi}.

2.2. Internal control of the homogeneous waves equation on a non-convex
domain. Let y: solution of the following homogeneous wave equation

(EOH) :


y′′ −∆y = 0 in QT ,

y = 0, in ΣT ,

y(0) = y0 y′(0) = y1 in Ω.

(3)
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Figure 1. Non-convex cracked domain

(EOH) ⇐⇒ (EOH)′


−∆y = −y′′ in QT ,

y = 0, in ΣT ,

y(0) = y0 y′(0) = y1 in Ω.

(4)

Let (yo, y1) ∈ D(A)×H1
0 (Ω) =⇒ the solution y of the equation (EOH) (3) verified

y ∈ C(O, T ;D(A)) ∩ C1(0, T ;H1
0 (Ω)) ∩ C2(0, T ;L2(Ω)).

In addition, in Grisvard [2], the solution can be decomposed as folloow:
y = yR +

∑m
i=1 λi(t)Si(t) with:

λi(t) =
∫
Ω
(−y′′)wi(t)dt and Si(t) = rαisin(αiθi) with αi : the singularity exponent

defined by αi =
π
wi

, wi : the aperture angle at the vertex Si.

As in the first part, we can, for any t > 0, add an internal check u(t) = −
∑m

i=1 λi(t)gi(t)
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of such that if ŷ is the regularized solution of the equation
−∆ỹ = −ỹ′′ + u(t) in QT ,

ỹ = 0 in ΣT ,

ỹ(0) = ỹ0, ỹ′(0) = ỹ1 in Ω.

(5)

then ŷ ∈ H2(Ω).
In fact, ŷ = 0 on the edge ΣT , the solution ŷ ∈ C(0, T ;H2(Ω) ∩H1

0 (Ω)).

Let Ṽ be a subspace of H1(Ω) of admissible solutions for the problem (EOH)′

defined by

Ṽ = {ŷ ∈ H1(Ω)/ ŷ|ΣT
= 0}. (6)

For continuity, let us state the following proposition:

Proposition 1. The problem (EOH)′ (4) admits an unique solution ŷ in the space

Ṽ and there exist a constant CT > 0 such that

||ŷ||C(0,T ;H1
0 (Ω)) ≤ CT

[
||ỹ0||H1

0 (Ω) + ||ỹ1||L2(Ω)

] 1
2

. (7)

Proof. Let A be the unbounded operator of L2(Ω) previously defined. According
to Spectral Theory and by Fourier transform, A is diagonalizable and there exists a
countable Hilbertian basis of L2(Ω) made up of eigenvectors (zk)k∈N∗ ⊂ D(A)
such that the sequence of eigenvalues (λk)k≥1 of associated eigenvalues verify:
(λk) ↗ +∞ and λ1 > 0.

zk ∈ H1
0 (Ω),−∆zk = λkzk (8)

The family Z = (zk)k≥1 Hilbert base of L2(Ω) ie ŷ ∈ L2(Ω) =⇒ ŷ =
∑

k≥1 ŷkzk with

ŷk =< ŷ, zk >L2(Ω) and
∑

k≥1 z
2
k < +∞. What’s more ∥ŷ∥L2(Ω) =

(∑+∞
k=1 ŷ

2
k

) 1
2

.

ŷ ∈ H1
0 (Ω) ⇐⇒ ŷ =

∑
k≥1

ŷkzk,
∑
k≥1

λkŷ
2
k < +∞ and ||ŷ||H1

0 (Ω) =

∑
k≥1

λkŷ
2
k

 1
2

. (9)

So, if ŷ is solution of (EOH)′ (4) then

ŷ(t, x) =
∑

k≥1 ŷk(t)zk(x),

ŷ0k(x) =
∑

k≥1 ŷ0kzk(x),

ŷ1k(x) =
∑

k≥1 ŷ1kzk(x),∑
k≥1

(
ŷ

′′

k (t)− λkŷk(t)
)
zk(x) = 0.

(10)
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We multiply the relation (10) by the eigenfunctions zk and integrate on the cylinder
QT 

ŷ
′′

k (t)− λkŷk(t) = 0,

ŷk(0) = ŷ0k,

ŷk(1) = ŷ1k.

(11)

And, for all k ≥ 1, the solution of (11) (see Lions [9, 10])is under the form

ŷk(t) = ŷ0kcos(
√
λkt) + ŷ1k

sin(
√
λkt)√

λk

, (12)

So

ŷk(t, x) =
∑
k≥1

(
ŷ0kcos(

√
λkt) + ŷ1k

sin(
√
λkt)√

λk

)
zk(x). (13)

Assume

||ŷ||2C(0,T ;H1
0 (Ω)) = supt∈[0,T ]||ŷ(t, .)||2H1

0 (Ω)

= supt∈[0,T ]

∑
k≥1

|λk||ŷk(t)|2

=⇒

||ŷ||2C(0,T ;H1
0 (Ω)) ≤

∑
k≥1

|λk|supt∈[0,T ]|ŷk(t)|2 (14)

Based on the relationship (13)

||ŷ||2C(0,T ;H1
0 (Ω)) ≤ 2.

∑
k>1

λk

[
ŷ20k +

ŷ21k
λk

]
≤ 2.

∑
k>1

λk

[
ŷ20k + ŷ21k

]
let’s remember that

ŷ0 ∈ H1
0 (Ω) ⇐⇒


ŷ0(x) =

∑
k>1 ŷ0kzk(x),∑

k>1 λkỹ
2
0k < +∞ and

||ŷ0||2H1
0 (Ω)

=
∑

k>1 λkŷ
2
0k.

(15)
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and

ŷ1 ∈ L2(Ω) ⇐⇒


ŷ1(x) =

∑
k>1 ŷ1kzk(x),∑

k>1 λkŷ
2
1k < +∞ and

||ŷ1||2H1
0 (Ω)

=
∑

k>1 λkŷ
2
1k.

(16)

Therefore, we get that ŷ ∈ C(0, T ;H1
0 (Ω)) (1) with

||ŷ||C(0,T ;H1
0 (Ω)) ≤ CT

(
||ŷ0||H1

0 (Ω) + ||ŷ1||L2(Ω)

)
(17)

□

2.3. Application to the removal of singularities. Let ỹ regularized solution
of the equation

(EOS) :


ỹ′′ −∆ỹ +

∑m
i=1 gi

∫
Ω
(ỹ′′)widx = 0 in QT ,

ỹ = 0, in ΣT ,

ỹ(0) = ỹ0, ỹ′(0) = ỹ1 in Ω.

(18)

It will then be a matter of showing that the solution ỹ of the equation (EOH) (3)
is in C(0, T ;H2(Ω) ∩H1

0 (Ω)) ?
In general, it was proved in Grisvard [2] that the following wave equation

(EOS)2 :



φ′′ −∆φ = f ∈ L1(0, T ;H1
0 (Ω)),

φ = 0 in ΣT ,

φ(0) = φ0, φ′(0) = φ1 in Ω,

(φ0, φ1) ∈ D(A)×D(A
1
2 ).

(19)

admit a solution φ ∈ C(0, T ;D(A)) ∩ C1(0, T ;H1(Ω)) ∩ C(0, T ;L2(Ω)) and that
this solution verifies the inequality:

||φ||C(0,T ;D(A)) ≤ K
(
||φ0||D(A) + ||φ1||D(A

1
2 )

+ ||f ||H1
0 (Ω)

)
, (20)

called continuous dependence of the solution compared to the initial conditions and
to the second member.
Let us apply this Grisvard result to the equation (EOS) (18); For this consider for



STUDY ON NON-CONVEX DOMAINS WITH CRACKS 1187

ζ ∈ C2(0, T ;L2(Ω)), ỹ = y(ζ) is solution of the equation

(EOS)3 :


ỹ′′(ζ)−∆ỹ(ζ) = −

∑m
i=1 gi

∫
Ω
ζ ′′widx in QT ,

ỹ(ζ) = 0 in ΣT ,

ỹ(ζ)(0) = ỹ(ζ0), ỹ(ζ)′(0) = ỹ(ζ1) in Ω.

(EOS)3 and the inequality (20) implies a priori that y(ζ) ∈ C(0, T ;D(A)) and that

||y(ζ)||C(0,T ;D(A)) ≤ K1

(
||

m∑
i=1

gi

∫
Ω

ζ ′′||L1(Ω)

)
. (21)

Consider the application Λ : ζ 7−→ y(ζ); Let us show that Λ is contracting ?

Let ζ1 7−→ y(ζ1), ζ2 7−→ y(ζ2) and ζ = ζ1 − ζ2 7−→ y(ζ).
Applying it to the equation (EOS)3 we get

(EOS)4 :

 ỹ′′(ζ)−∆ỹ(ζ) = −
∑m

i=1 gi
(∫

Ω
ζ ′′widx

)
in QT ,

ỹ(ζ) = 0 in ΣT .

More y(ζ1)(0) = y(ζ2)(0) = 0 (y(ζ1) and y(ζ2) have the same initial conditions as
y0 and y1).
From inequality (21) we deduce

||y(ζ)||C(0,T ;D(A)) ≤ K1

(
||

m∑
i=1

gi

∫
Ω

ζ ′′wi||L1(Ω)dx

)
, (22)

≤ K2

(
m∑
i=1

||gi||.||wi||.||
∫
Ω

ζ ′′dx||

)
, (23)

≤ K3

(
m∑
i=1

||gi||.||wi||||ζ ′||L1(Ω).mes(Ω)

)
, (24)

≤ K4

(
m∑
i=1

||gi||H1
0 (Ω)||wi||L1(Ω)||ζ||L1(Ω)

)
, (25)

≤ K5||ζ||L1(Ω). (26)

With the constant K5 =
∑m

i=1 ||gi||H1
0 (Ω)||wi||L1(Ω).

Let us show that 0 < K5 < 1 ie Λ is contracting ?

We know that the dual singular functions are such that:

wi = r−αisin(αiθi)ηi + ζi with αi = π
ωi

and ωi > π, ηia truncation function

in the neighborhood of the vertices of xi and ζi ∈ H1
0 (Ω) for all i ∈ {0, ...,m}.
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The application Λ is Lipschitzian, let us show that it is contracting ie 0 < K5 < 1
?

||wi|| = ||r−αisin(αiθi)ηi + ζi||, (27)

≤ 1

rαi
||sin(αiθi)ηi||+ ||ζi||, (28)

≤ 1

rα0
+ ||ζ||. (29)

where α0 = mini∈{1,...,m}αi thus
1

rαi
< 1

rα0
.

The functions (gi)1≤i≤m are compact support on ω̄ which is compact, so there is
g0 = max1≤i≤mgi on ω̄ such that ||gi|| ≤ ||g0|| for all i. Therefore

m∑
i=1

||gi||||wi|| ≤ m2||g0||
1

rα0
+ C1 with C1 > 1 a constant.

As a result,

0 < K5 < m2||g0||
1

rα0
+ C1.

A sufficient condition for Λ to be contracting is that

m2||g0||
1

rα0
+ C1 < 1 ⇐⇒ r ≥ e

1
α0

log

(
m2||g0||
1−C1

)
. (30)

Remember that

r = ⃗||SiM || = ||x− xi||
ie M ̸= Si, ∀i ∈ {1, ...,m} on ω̄.
Hence ifM is far from the top of the crack ie r >> 1 the application Λ is contracting.
Thereby,

||y(ζ)||C(0,T ;D(A)) ≤ K5||ζ||C2(0,T ;L2(Ω)) (31)

Therefore, if (30) holds then the application Λ is contracting and according to the
Fixed Point Theorem y(ζ) = y(ζ1) − y(ζ2) = 0 and y being continuous so ζ is
unique.
Hence the equation

(EOS)3 :



ỹ′′(ζ)−∆ỹ(ζ) = −
m∑
i=1

gi

∫
Ω

(ỹ′′(ζ))widx︸ ︷︷ ︸
u(t)

in QT ,

ỹ(ζ) = 0 in ΣT ,

ỹ(ζ)(0) = ỹ(ζ)0, ỹ(ζ)′(0) = ỹ(ζ)1 in Ω.

(32)
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admits a unique solution ỹ ∈ C(0, T ;H2(Ω) ∩H1
0 (Ω)) .

Proposition 2. The solution ỹ is the regularized solution, therefore the singularity
coefficient λ̃ associated with it is null.

Proof. Let λ̃ the singularity coefficient associated with ỹ. By definition,

λ̃ =

∫
Ω

u(t)widx, (33)

=

∫
Ω

(
−

m∑
i=1

gi

∫
Ω

ỹ′′widx

)
.widx, (34)

= −
∫
Ω

∫
Ω

m∑
i=1

giỹ
′′wi.widxdx, (35)

= −
∫
Ω

∫
Ω

m∑
i=1

< gi, wi > ∆ỹwidxdx. (36)

so < gi, wi >= 1 =⇒

λ̃ = −
∫
Ω

∫
Ω

m∑
i=1

∆ỹwidxdx, (37)

= −
∫
Ω

∫
Ω

m∑
i=1

ỹ∆widxdx (38)

because ỹ|ΣT
= 0.

We also know that the dual singular functions are harmonic ie ∆wi = 0 hence
λ̃ = 0 □

Remark 2. The corrective term or internal control u(t) depends on ỹ′′, therefore
ỹ.

3. Use in the Implementation of the Hum Method

3.1. Preliminaries. Let y solution of wave equation

(EOH) :


y′′ −∆y = 0 in QT ,

y = 0 in ΣT ,

y(0) = y0, y′(0) = y1 in Ω.

For initial data y0 and y1 belonging respectively to H1
0 (Ω and L2(Ω). Let also be

the energy of (EOH) defined by

E0 =
1

2

(
||y0||H1

0 (Ω) + ||y1||H1
0 (Ω)

)
. (39)
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We know that in a polygonal domain with corner, (x − x0).ν
∂φ
∂ν is not always a

square integrable on the edge near of corner. Grisvard [2] got around this difficulty
by imposing drastic geometric conditions. And, in Seck [5] this result has been
generalized with less constraints in non-regular Sobolev spaces. Also Niane [4] have
shown, without geometric conditions, the exact controllability of the wave equation
by combining a boundary control and an internal control on a small part whose
support is in the vicinity of a vertex crack.

3.2. Implementation of the HUM method. Let us return to the equation of
the following waves

(EOS)5 :


φ̃′′ −∆φ̃ = u(φ̃) in QT ,

φ̃ = 0 in ΣT ,

φ̃(0) = φ̃0, φ̃′(0) = φ̃1 in Ω.

(40)

From the above, with u(φ̃) =
∑m

i=1 gi
(∫

Ω
φ′′widx

)
, the solution φ̃ ∈ H2(Ω).

Indeed, we multiply the equation (EOS)5 (40) by m∇ỹ and integrate by parts:∫
QT

(φ̃′′ −∆φ̃)m∇ỹdxdt =

∫
QT

m∇ỹu(φ̃)dxdt, (41)

= −m∇ỹ

m∑
i=1

gi

(∫
QT

φ′′widxdt

)
. (42)

Assume

I =

∫
QT

(φ̃′′ −∆φ̃)m∇ỹdxdt (43)

=

∫
QT

φ̃′′m∇ỹdxdt︸ ︷︷ ︸
I1

−
∫
QT

∆φ̃m∇ỹdxdt︸ ︷︷ ︸
I2

(44)

3.3. Some integrations by parts.

3.3.1. First Term I1.

I1 =

∫
QT

φ̃′′m∇ỹdxdt,

=

∫ T

0

∫
Ω

φ̃′′m(x)∇ỹdxdt,

=

∫
Ω

φ̃′m(x)∇ỹdx|T0 −
∫ T

0

∫
Ω

∂φ̃

∂t
mk

∂2ỹ

∂t∂xk
dtdx,
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=

∫
Ω

φ̃′m(x)∇ỹdx|T0 −
∫ T

0

(∫
Ω

(
∂φ̃

∂t
mk

∂

∂t
(
∂ỹ

∂xk
)

)
dx

)
dt,

=

∫
Ω

φ̃′m(x)
∂ỹ

∂xk
dx|T0 −

∫ T

0

∫
Ω

(
∂φ̃

∂t
mk

∂2ỹ

∂t∂xk

)
dxdt,

=

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 −

∫ T

0

∫
Ω

mk
∂2φ̃

∂t∂xk

∂ỹ

∂t
dxdt.

Noting that: N = 2, divm =
∑2

k=1
∂mk

∂xk
= 2 and applying Green again we have:

I1 =

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 −

∫ T

0

−∫
Ω

∂mk

∂xk

∂φ̃

∂t

∂ỹ

∂t
dx+

∫
∂Ω

mkφ̃k

∂ỹ

∂t
dσ︸ ︷︷ ︸

=0

 dt,

=

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt.

3.3.2. Second Term I2.

I2 =

∫
QT

∆φ̃m∇ỹdxdt,

=

∫ T

0

∫
Ω

∆φ̃m∇ỹdxdt,

=

∫ T

0

[∫
Ω

∇φ̃.∇(mk
∂φ̃

∂xk
)dx−

∫
∂Ω

∂φ̃

∂n
mk

∂ỹ

∂xk
dσ

]
dt,

=

∫ T

0

[∫
Ω

∂φ̃

∂xi
(mk

∂ỹ

∂xk
)dx−

∫
∂Ω

∂φ̃

∂n
mk

∂ỹ

∂xk
dσ

]
dt,

=

∫ T

0

∫
Ω

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dx+

∫
Ω

∂φ̃

∂xi
mk

∂2ỹ

∂xi∂xk
dx︸ ︷︷ ︸

J

−
∫
∂Ω

∂φ̃

∂n
mk

∂ỹ

∂xk
dσ

 dt.

Let’s study the integral J :

J =

∫
Ω

∂φ̃

∂xi
mk

∂2ỹ

∂xi∂xk
dx,

=

∫
Ω

mk
∂φ̃

∂xi

∂2ỹ

∂xi∂xk
dx,

=

∫
Ω

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dx−

∫
∂Ω

mknk
∂φ̃

∂xi

∂ỹ

∂xi
dσ.
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By grouping together we get:

I2 =

∫ T

0

[∫
Ω

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dx+

∫
Ω

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dx

−
∫
∂Ω

mknk
∂φ̃

∂xi

∂ỹ

∂xi
dσ −

∫
∂Ω

∂φ̃

∂n
mk

∂ỹ

∂xk
dσ

]
dt,

=

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dxdt+

∫
QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt

−
∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt−

∫
ΣT

∂φ̃

∂n
mk

∂ỹ

∂xk
dσdt.

Back to I = I1 + I2 (43) and (45):

I =

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt+

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dxdt

+

∫
QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt−

∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt−

∫
ΣT

∂φ̃

∂n
mk.nk

∂ỹ

∂xk
dσdt︸ ︷︷ ︸

L

.

Also

L =
1

2

∫
ΣT

∂φ̃

∂n
m.n∇ỹdσdt,

=
1

2

∫
ΣT

(
∂φ̃

∂n

)
m.ndσdt.

The two equations have the same initial and boundary conditions.
Let’s study L ?

∂φ̃

∂xi
=

∂φ̃

∂n
.ni +

∂φ̃

∂τ i
,

Decomposition according to the normal and the tangential. However

∂φ̃

∂ni
=

∂φ̃

∂n
.ni ⇒

∑
i

∂φ̃

∂ni
=
∑
i

∂φ̃

∂n
.ni ⇒ ∇φ̃ =

∂φ̃

∂n
.n.

So we deduce that:

I =

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt+

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dxdt+∫

QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt−

∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt− 1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt. (45)
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3.3.3. Third Term I3.

I3 =

∫
QT

{
−m∇ỹ

m∑
i=1

gi

(∫
Ω

φ′′widx

)
dxdt

}
,

=

∫ T

0

∫
Ω

{
−m∇ỹ

m∑
i=1

gi

(∫
Ω

φ′′widx

)
dxdt

}
,

= −
∫ T

0

∫
Ω

∫
Ω

m∇ỹ

m∑
i=1

< gi, wi >︸ ︷︷ ︸
δii=1

φ̃′′dxdxdt,

= −
∫ T

0

∫
Ω

∫
Ω

m∇ỹφ̃′′dxdxdt,

= −
∫ T

0

∫
Ω

∫
Ω

m∇ỹ∇φ̃dxdxdt−
∫
ΣT

∫
∂Ω

mỹφ̃(σ)dσdt︸ ︷︷ ︸
=0

,

= −
∫ T

0

∫
Ω

∫
Ω

m∇ỹ∇φ̃dxdxdt.

Let’s recap I = I3(46)⇐⇒∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt+

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dxdt

+

∫
QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt−

∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt− 1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt

= −
∫ T

0

∫
Ω

∫
Ω

m∇ỹ∇φ̃dxdxdt (46)

⇐⇒
1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt =

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt

+

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dxdt+

∫
QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt

−
∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt+

∫ T

0

∫
Ω

∫
Ω

m∇ỹ∇φ̃dxdxdt. (47)

3.4. Getting started with the HUM method. For x0 ∈ R2, assume

Σ0∗
T = Γ∗

0×]0, T [ , Σ1∗
T = Γ0×]0, T [.

Let ||.|| the Euclidean in R2 and introduce the following constants.

R0 = R(x0) = max
x∈Ω

||x− x0||, T0 = 2R(x0).
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Let us define in the same way the energies (see Lions [9, 10]) associated respectively
with the systems (EOS)5, (40) and (EOH) :

E(t, φ̃0, φ̃1) =
1

2

[∫
Ω

||∇φ̃(t)||2R2dx+

∫
Ω

(
∂φ̃

∂t
(t))2dx

]
,

E(t, ỹ0, ỹ1) =
1

2

[∫
Ω

||∇ỹ(t)||2R2dx+

∫
Ω

(
∂ỹ

∂t
(t))2dx

]
.

3.4.1. Direct Inequality. Back to the relationship (46)

1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt =

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt+

+

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dxdt

∫
QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt+

−
∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt+

∫ T

0

∫
Ω

∫
Ω

m∇ỹ∇φ̃dxdxdt (48)

⇐⇒ 1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt−

∫ T

0

∫
Ω

∫
Ω

m∇ỹ∇φ̃dxdxdt =

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0

+

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt+

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

ỹ

∂xk
dxdt

+

∫
QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt−

∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt. (49)

We know that: ∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 ≤ R0.

∫
Ω

∂φ̃

∂t

∂ỹ

∂xk
dx|T0 (50)

and noticing that: |ab| ≤ 1
2 (a

2 + b2) we have:∫
Ω

∂φ̃

∂t

∂ỹ

∂xk
dx ≤ 1

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dx. (51)

Therefore: ∫
Ω

∂φ̃

∂t

∂ỹ

∂xk
dx|T0 ≤ T

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt. (52)

Assume

ΣT = Σ0∗
T ∪ Σ1∗

T , M1 = max1≤i,k≤2maxx∈B̄i
|∂xk

∂xi
(x)|.

Consider an open ball Bi which does not meet any crack vertex ie h ≡ ηh (In the
general case we can recover the domain Ω by a finite union of Bi ie Ω = ∪Ns

i=1Bi).∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

∂ỹ

∂xk
dxdt =

∫
Bi×]0,T [

∂mk

∂xi
.
∂φ̃

∂xi

∂ỹ

∂xk
dxdt,
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≤ M1

2

∫
Bi×]0,T [

[
(
∂φ̃

∂xi
)2 + (

∂ỹ

∂xk
)2
]
dxdt,

≤ M1

2

∫
Bi×]0,T [

[
||∇φ̃||2L2(R2) + ||∇ỹ||L2(R)2

]
dxdt.(53)

Relationships (50), (51), and (53), we deduce:

1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt−

Ns∑
i=1

∫ T

0

∫
Bi

∫
Bi

m∇ỹ∇φ̃dxdxdt ≤ R0.

Ns∑
i=1

∫
Bi

∂φ̃

∂t

∂ỹ

∂xk
dx|T0 +

T

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt+

Ns∑
i=1

M1

2

∫
Bi×]0,T [

[
||∇φ̃||2L2(R2) + ||∇ỹ||L2(R)2

]
dxdt (54)

=⇒ 1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt ≤ R0.

Ns∑
i=1

∫
Bi

∂φ̃

∂t

∂ỹ

∂xk
dx|T0

+
T

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt

+

Ns∑
i=1

M1

2

∫
Bi×]0,T [

[
||∇φ̃||2L2(R2) + ||∇ỹ||L2(R)2

]
dxdt

+

Ns∑
i=1

∫ T

0

∫
Bi

∫
Bi

m∇ỹ∇φ̃dxdxdt. (55)

Therefore

Ns∑
i=1

∫ T

0

∫
Bi

∫
Bi

m∇ỹ∇φ̃dxdxdt ≤ R0

Ns∑
i=1

∫ T

0

∫
Bi

∫
Bi

∇ỹ∇φ̃dxdxdt

≤ R0

Ns∑
i=1

∫ T

0

∫
Bi

∫
Bi

[
(
∂φ̃

∂xk
)2 + (

∂ỹ

∂t
)2
]
,

≤ R0

Ns∑
i=1

∫
Bi

∫ T

0

∫
Bi

[
(
∂φ̃

∂xk
)2 + (

∂ỹ

∂t
)2
]
,

≤ R0

Ns∑
i=1

mes(Bi) [E(t, φ̃0, φ̃1) + E(t, ỹ0, ỹ1)] . (56)

Starting from the fact that the energy associated with the wave equation is constant,
we obtain:

Ns∑
i=1

∫ T

0

∫
Bi

∫
Bi

m∇ỹ∇φ̃dxdxdt ≤ 2R0

Ns∑
i=1

mes(Bi)E(t, φ̃0, φ̃1). (57)
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So the relation (53) implies

1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt ≤ R0.

Ns∑
i=1

∫
Bi

∂φ̃

∂t

∂ỹ

∂xk
dx|T0

+
T

2

Ns∑
i=1

∫
Bi

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt

+

Ns∑
i=1

M1

2

∫
Bi×]0,T [

[
||∇φ̃||2L2(R2) + ||∇ỹ||L2(R)2

]
dxdt

+ 2R0

Ns∑
i=1

mes(Bi)E(t, φ̃0, φ̃1), (58)

1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt ≤ T.R0

2
.

Ns∑
i=1

∫
Bi

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt

+
T

2

Ns∑
i=1

∫
Bi

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt

+

Ns∑
i=1

M1

2

∫
Bi×]0,T [

[
||∇φ̃||2L2(R2) + ||∇ỹ||L2(R)2

]
dxdt

+ 2R0

Ns∑
i=1

mes(Bi)E(t, φ̃0, φ̃1), (59)

1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt ≤ T.R0 + 1

2
.

Ns∑
i=1

∫
Bi

[
(
∂φ̃

∂t
)2 + (||∇φ̃||L2(R2))

2

]
dxdt+

Ns∑
i=1

M1

2

∫
Bi×]0,T [

[
(
∂ỹ

∂t
)2 + (||∇ỹ||L2(R2))

2

]
dxdt+ 2R0

Ns∑
i=1

mes(Bi)E(t, φ̃0, φ̃1), (60)

1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt ≤

(
T.R0 + 1

2
+

M1

2
+ 2R0

Ns∑
i=1

mes(Bi)

)
E(t, φ̃0, φ̃1)

≤ C0
T (Ω)E(t, φ̃0, φ̃1.) (61)

From

1

2
||∂φ̃
∂n

||2L2(Ω) ≤ C0
T (Ω)E(t, φ̃0, φ̃1), (62)

where C0
T (Ω) =

(
T.R0 + 1

2
+

M1

2
+ 2R0

Ns∑
i=1

mes(Bi)

)
. (63)
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3.4.2. Inverse Inequality. Feedback on the relationship (47)

1

2

∫
ΣT

(
∂φ̃

∂n
)2m.ndσdt =

∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt

+

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

∂ỹ

∂xk
dxdt+

∫
QT

∂

∂xk
(mk

φ̃

∂xi
)
∂ỹ

∂xi
dxdt

−
∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt+

∫ T

0

∫
Ω

∫
Ω

m∇ỹ∇φ̃dxdxdt. (64)

∫
QT

∂mk

∂xi
.
∂φ̃

∂xi

∂ỹ

∂xk
dxdt =

Ns∑
i=1

∫
Bi

∫ T

0

∂mk

∂xi
.
∂φ̃

∂xi

∂ỹ

∂xk
dxdt,

≤ 1

2

Ns∑
i=1

∫
Bi

∫ T

0

∂mk

∂xi

[
(
∂φ̃

∂xi
)2 + (

∂ỹ

∂xk
)2
]
dxdt,

≤ 1

2

[
||∇φ̃||2R2 + ||∇ỹ||2R2

] Ns∑
i=1

∫
Bi

∫ T

0

∂mk

∂xi
,

≤ 1

2

[
||∇φ̃||2R2 + ||∇ỹ||2R2

]
Ns.

∫ T

0

m(x)dt,

≤ T

2

[
||∇φ̃||2R2 + ||∇ỹ||2R2

]
Ns.m(x),

≤ T.R0Ns

2

[
||∇φ̃||2R2 + ||∇ỹ||2R2

]
.

We deduce that:

−
Ns∑
i=1

∫
Bi

∫ T

0

∂mk

∂xi
.
∂φ̃

∂xi

∂ỹ

∂xk
dxdt ≥ −T.R0Ns

2

[
||∇φ̃||2R2 + ||∇ỹ||2R2

]
. (65)

In addition, let us pose M2 = minx∈Ω̄||m(x)||2R2 :∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 ≥ M2

∫
Ω

∂φ̃

∂t

∂ỹ

∂xk
dx|T0 ,

therefore ∫
Ω

∂φ̃

∂t

∂ỹ

∂xk
dx|T0 dx ≤ 1

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt ⇒

−1

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt ≤ −

∫
Ω

∂φ̃

∂t

∂ỹ

∂xk
dx|T0 dx,

So ∫
Ω

∂φ̃

∂t
mk

∂ỹ

∂xk
dx|T0 ≥ −M2.T

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt. (66)
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Also, from the relation (65) we deduce

−
Ns∑
i=1

∫ T

0

∫
Bi

∫
Bi

m∇ỹ∇φ̃dxdxdt ≥ −2R0

Ns∑
i=1

mes(Bi)E(t, φ̃0, φ̃1). (67)

We also know that,∫
QT

∂

∂xk
(mk

∂φ̃

∂xi
)
∂ỹ

∂xi
dxdt =

∫
QT

∂mk

∂xk

∂φ̃

∂xi

∂ỹ

∂xi
dxdt+

∫
QT

mk
∂2φ̃

∂x2
i

∂ỹ

∂xi
dxdt

∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt =

∫
Σ0∗

T

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt︸ ︷︷ ︸

m.n<0

+

∫
Σ1∗

T

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt︸ ︷︷ ︸

m.n>0

By grouping and reducing simultaneously we have:

1

2
||∂φ̃
∂n

||L2(ΣT ) ≥ −M2.T

2

∫
QT

[
(
∂φ̃

∂t
)2 + (

∂ỹ

∂xk
)2
]
dxdt

− T.R0Ns

2

[
||∇φ̃||2R2 + ||∇ỹ||2R2

]
− 2R0

Ns∑
i=1

mes(Bi)E(t, φ̃0, φ̃1) +

∫
QT

divm
∂φ̃

∂t

∂ỹ

∂t
dxdt

+

∫
QT

∂

∂xk
(mk

∂φ̃

∂xi
)
∂ỹ

∂xi
dxdt−

∫
ΣT

m.n
∂φ̃

∂xi

∂ỹ

∂xi
dσdt =⇒

1

2
||∂φ̃
∂n

||L2(ΣT ) ≥

(
−M2.T

2
− T.R0Ns

2
− 2R0

Ns∑
i=1

mes(Bi) + 2.
M2.T

2

)
E(t, φ̃0, φ̃1), (68)

≥

(
M2.T

2
− T.R0Ns

2
− 2R0

Ns∑
i=1

mes(Bi)

)
E(t, φ̃0, φ̃1). (69)

By posing

C1
T (Ω) =

(
M2.T

2
− T.R0Ns

2
− 2R0

Ns∑
i=1

mes(Bi)

)
, (70)

1

2
||∂φ̃
∂n

||L2(ΣT ) ≥ C1
T (Ω)E(t, φ̃0, φ̃1). (71)

3.5. Exact Controllability Result. Either the operator Λ : H1
0 (Ω)×L2(Ω) Lions

[9] defined by:

Λ(φ̃0, φ̃1) = (ỹ′(0),−ỹ(0)). (72)

Indeed, we know that Grisvard [2]:

Λ ∈ L
[
H1

0 (Ω)× L2(Ω), H−1(Ω)× L2(Ω)
]

and (73)
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||Λ(φ̃0, φ̃1)||2H−1(Ω) = ||ỹ(0)||2L2(Ω) + ||ỹ′(0)||2H−1(Ω). (74)

Considering φ̃n ∈ C(0, T ;D(A)) ∩ C1(0, T ;D(A
1
2 )) ∩ C2(0, T ;L2(Ω)), and also

φ̃0n ∈ D(A), φ̃1n ∈ D(A
1
2 ).

Assume ζn =
[
u(φ̃)

]
χŌ =

[∑m
i=1 gi

(∫
Ω
φ′′widx

)]
χŌ where O is an arbitrarily

small part of the domain Ω not meeting any vertex of cracks.

Let zn ∈ C(0, T ;H2
0 (Ω)) ∩ C1(0, T ;L2(Ω)) solution of the following equation

(EOS)6 :


z′′n −∆zn = ζn in QT ,

(zn).χŌ = 0 on ΣT ,

zn(T ) = z′n(T ) = 0 in Ω.

So we have (3.5):

⟨Λ(φ̃0n, φ̃1n), (z0n, z1n)⟩ = ⟨z′n(0), φ̃0n⟩ − ⟨zn(0), φ̃1n⟩ . (75)

By multiplying the equation (EOS)6 by φ̃n and the equation (EOS) (18) by zn we
get:

−
∫
QT

(z′′n −∆zn)φ̃ndxdt+

∫
QT

(φ̃′′
n −∆φ̃n)zndxdt =

∫
QT

m∑
i=1

||gi||
(∫

Ω

||φ̃′′||.||wi||dx
)
dt.

In particular on the open O:

−
∫
O×]0,T [

(z′′n −∆zn)φ̃ndxdt+

∫
O×]0,T [

(φ̃′′
n −∆φ̃n)zndxdt

=

∫
O×]0,T [

m∑
i=1

||gi||
(∫

O

||φ̃′′||.||wi||dx
)
dt,

which is also written∫
O×]0,T [

m∑
i=1

||gi||
(∫

O

||φ̃′′||.||wi||dx
)
dt = −⟨φ̃n, z

′
n⟩ |T0 +

〈
φ̃′
n, zn

〉
|T0

−
∫
∂O×]0,T [

(
∂φ̃n

∂ν

)2

φ̃n(σ)dσdt︸ ︷︷ ︸
=0

−
∫
∂O×]0,T [

(
∂zn
∂ν

)2

zn(σ)dσdt︸ ︷︷ ︸
=0

.
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Therefore∫
O×]0,T [

m∑
i=1

||gi||
(∫

O

||φ̃′′||.||wi||dx
)
dt = −⟨φ̃n, z

′
n⟩ |T0 +

〈
φ̃′
n, zn

〉
|T0 ,

= ⟨Λ(φ̃0n, φ̃1n), (φ̃0n, φ̃1n)⟩ .

Passing to the limit,

⟨Λ(φ̃0, φ̃1), (φ̃0, φ̃1)⟩ =
∫
O×]0,T [

m∑
i=1

||gi||
(∫

O

||φ̃′′||.||wi||dx
)
dt.

But we also know that∫
O×]0,T [

m∑
i=1

||gi||
(∫

O

||φ̃′′||.||wi||dx
)
dt =

∫
O×]0,T [

m∑
i=1

∫
O

||φ̃′′||.||gi||.||wi||dxdt,

≥
∫
O×]0,T [

.||
m∑
i=1

∫
O

φ̃′′dx||.| < gi, wi > |dxdt,

≥ 2m

[
1

2

∫
O

||φ̃′|||T0 dx
]
.

By covering the domain Ω by a disjoint finite union of openings Oi ie Ω =
⋃m

i=1 Oi

and Oi ∩Oj = ∅ if i ̸= j.
Consequently, we deduce that:

⟨Λ(φ0, φ1), (φ0, φ1)⟩ ≥ K1(T − T0)E0. (76)

Λ being linear, continuous and coercive on H1
0 (Ω)×L2(Ω) for T > T0, then accord-

ing to a Classical Controllability Theorem, Λ is an isomorphism of H1
0 (Ω)×L2(Ω)

in L2(Ω)×H−1(Ω).
Let (z0, z1) ∈ L2(Ω)×H−1(Ω), the following equation

Λ(φ̃0, φ̃1) = (z1,−z0),

admit a unique solution (φ̃0, φ̃1) ∈ H1
0 (Ω)× L2(Ω) for all T > T0.

Let us now consider φ̃ and z respective solutions of the equations (EOS)5 and
(EOS)6 with as initial conditions:

z0 = φ̃0,

z1 = φ̃1,

ζn =

(
m∑
i=1

gi

(∫
Ω

φ̃′′widx

))
χO,

and

φ =

 φ̃.χO on Σ∗0
T ,

0 on Σ∗1
T .
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By a uniqueness of solutions theorem, we deduce that: φ̃ = z so therefore z(T ) =
z′(T ) = 0.

Hence the result of exact controllability.

Remark 3. This result does not depend on any geometrical condition: consequently
the crack lines may not be concurrent; and, the exact controllability result has been
proven.

Figure 2. Non-convex domain with non-concurrent cracks

4. Conclusion and Perspectives

The presence of cracks, corners or angles in a mechanical device or materials
always leads to the appearance of singularities. And, once the diagnosis of these
cracks (desired or not) has been made, it is necessary to try to control them without



1202 C. SECK

major geomeric constraints.
One of the objectives that we set ourselves, within the framework of this research
paper, was assess the exact controllability of the wave equation in the cracked do-
mains without constraints on the cracks. If anything, the formulas of integrations
by parts (formulas of Green in the fields with corners and/or cracks) could be done
(to our knowledge) only if the lines of cracks or their support were concurrent.
Based on recent work by Dauge [13, 14], Dauge [15] and Costabel [16], we were able
to establish, without additional assumptions on the nature of the cracks or their sup-
port, the exact controllability of the wave equation with more cracks. Consequently
its results were obtained on a non-convex polygonal domain with non-concurrent
crack lines. From the results obtained in this paper, certain questions naturally
emerge. Our goal is to no longer have constraining geometric conditions (”Closer”
to reality).
When it comes to the perspectives, we have a double goal that we plan on achieving
in the near future. Firstly, generalize in higher dimension the results obtained in
this paper. And,secondly, make numerical simulations to support its theoretical
results.

Declaration of Competing Interests The author declare that they have no
conflicts of interest.

Acknowledgements The author thanks:

- Prof. Mary Teuw Niane, Glbert Bayili and Abdoulaye Sène for the numer-
ous discussions, exchanges and suggestions before the finalization of this
work.

- Colleagues and researchers who have reviewed this work.
- The members of the LANI laboratory where his work has been presented
on several occasions.

- My colleagues from the Department of Mathematics of FASTEF ex ENS
of Cheikh Anta Diop University of Dakar, Senegal.

References

[1] Kondratiev, V.A., Boundary value problems for elliptic equation in domain with conical or

angular points, Transactions Moscow Mat. Soc., (1967), 227-313.
[2] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathe-

matics, Vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[3] Moussaoui, M., Singularités des solutions du problème mêlé, contrôlabilité exacte et stabili-
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tribuÉS,Tome 2, Recherches en Mathématiques Appliquées, Research in Applied Mathemat-

ics, Volume 9, Perturbations, Masson, Paris, 1988.
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