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Zehra İşbilir
Department of Mathematics,
Faculty of Arts and Sciences,
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Abstract

The aim of this paper is to concentrate on the domain of L∞, Lp, and L1 norms of inequalities

and their applications for some special weight functions. For different weights some

previous results are recaptured. Applications are also discussed.

1. Introduction

In 1938, Ostrowski [1] established the interesting integral inequality for differentiable mappings with bounded derivative.

Lemma 1.1. Let f : [ă, ĉ] → R be continuous on [ă, ĉ] and differentiable on (ă, ĉ) and assume

∣

∣

∣ f
′
(ŝ)

∣

∣

∣ ≤ M for all ŝ ∈ (ă, ĉ) . Then the

inequality

|S ( f ; ă, ĉ)| ≤
[

(

ă− ĉ

2

)2

+

(

ŝ− ă+ ĉ

2

)2
]

M

ă− ĉ
(1.1)

holds for all ŝ ∈ [ă, ĉ] . The constant 1
4 is the best possible.

Then Cerone [2], Dragomir et al. [3] and Sarıkaya et al. [4] also worked on this inequality. A. Qayyum et al. [5–9] worked on generalization

of Ostrowski’s type inequalities. Different authors worked on the generalization of Ostrowski’s type inequalities that are [10], [11] and [12].

Some latest work done by S. Fahad et al. [13]. Further works done by Iftikhar et al. [14], Mustafa et al. [15] and J. Amjad et al. [16].

Let the functional S ( f ;ω; ă, ĉ) via weighted version represent the deviation of f (ŝ) over [ă, ĉ] defined as:

S ( f ;ω; ă, ĉ) = f (ŝ)−M ( f ;ω; ă, ĉ) , (1.2)

where f (ŝ) is continuous function and M ( f ;ω; ă, ĉ) is weighted integral mean defined as:

M ( f ;ω; ă, ĉ) =
1

ĉ− ă

ĉ
∫

ă

f (ŷ)ω(ŷ)dŷ. (1.3)

We suppose a weight function ω : (ă, ĉ)→ [0,∞) is integrable on [0,∞) such that

ĉ
∫

ă

ω(ŷ)dŷ < ∞. (1.4)

Email addresses and ORCID numbers: arslanarsi866@gmail.com, 0000-0002-2799-0089 (M. Arslan), fahads3445@gmail.com, 0000-0002-8183-

014X (S. Fahad) aamirmustafa5782@gmail.com, 0000-0001-7584-6914 (M. A. Mustafa) irfanwaheed220@gmail.com, 0000-0001-5708-2148 (I.

Waheed) atherqayyum@isp.edu.pk, 0000-0003-4149-5305 (A. Qayyum)

https://orcid.org/0000-0002-2799-0089
 https://orcid.org/0000-0002-8183-014X
 https://orcid.org/0000-0002-8183-014X
 https://orcid.org/0000-0001-7584-6914
 https://orcid.org/0000-0001-5708-2148
 https://orcid.org/0000-0003-4149-5305


Universal Journal of Mathematics and Applications 123

We define m, m1, m2 and notations µ and σ as:

m(ă, ĉ) =

ĉ
∫

ă

ω(ŷ)dŷ, m1 (ă, ĉ) =

ĉ
∫

ă

ŷω(ŷ)dŷ, (1.5)

m2 (ă, ĉ) =

ĉ
∫

ă

ŷ2ω(ŷ)dŷ, µ (ă, ĉ) =
m1 (ă, ĉ)

m(ă, ĉ)
, (1.6)

σ2 (ă, ĉ) =
m2 (ă, ĉ)

m(ă, ĉ)
−µ2 (ă, ĉ) (1.7)

2. Main Result

Lemma 2.1. Let f : [ă, ĉ]→ R be continuous on [ă, ĉ] and twice differentiable mapping on (ă, ĉ), then the following weighted Peano kernel,

define k(., .) : [ă, ĉ]
2 → R as:

k(ŝ, ŷ) =



























Φ

Φ+Ψ

1
ŝ−ă

ŷ
∫

ă

(ŷ− ŭ)ω (ŭ)dŭ, i f ă ≤ ŷ ≤ ŝ

Ψ

Φ+Ψ

1
ĉ−ŝ

ŷ
∫

ĉ

(ŷ− ŭ)ω (ŭ)dŭ, i f ŝ < ŷ ≤ ĉ,

(2.1)

where Φ,Ψ ∈ R are non negative and both are non zero at the same time, ∀ ŷ ∈ [ă, ĉ], ŝ ∈ [ă, ĉ] and ω is weight function as stated in (1.4) .
Before we state and prove our main result, we will prove the following identity by using integration by parts techniques, moments and

notations. Then the following weighted integral identity

τ (ω; ŝ;Φ,Ψ) =

ĉ
∫

ă

k(ŝ, ŷ) f
′′
(ŷ)dŷ (2.2)

= ă1 f (ŝ)+
1

Φ+Ψ
×
[(

Φm(ă, ŝ)

ŝ− ă
[ŝ−µ(ă, ŝ)]+

Ψm(ŝ, ĉ)

ĉ− ŝ
[ŝ−µ(ŝ, ĉ)]

)

f
′
(ŝ) +({ΦM ( f ;ω, ă, ŝ)+ΨM ( f ;ω, ŝ, ĉ)})]

(2.3)

holds, here

ă1 =
−1

Φ+Ψ

(

Φm(ă, ŝ)

(ŝ− ă)
+

Ψm(ĉ, ŝ)

(ĉ− ŝ)

)

,

and M ( f ;ω, ă, ĉ) is weighted integral mean as defined in (1.3) .

Proof. From (2.1) , we have

ĉ
∫

ă

k(ŝ, ŷ) f
′′
(ŷ)dŷ =

Φ

(Φ+Ψ)(ŝ− ă)

ŝ
∫

ă

ŷ
∫

ă

(ŷ− ŭ)ω(ŭ)dŭ f
′′
(ŷ)dŷ+

Ψ

(Φ+Ψ)(ĉ− ŝ)

ĉ
∫

ŝ

ŷ
∫

ĉ

(ŷ− ŭ)ω(ŭ)dŭ f
′′
(ŷ)dŷ.

After some calculations, we get

ĉ
∫

ă

k(ŝ, ŷ) f
′′
(ŷ)dŷ =

1

Φ+Ψ

[

−
(

Φm(ă, ŝ)

(ŝ− ă)
+

Ψm(ŝ, ĉ)

(ĉ− ŝ)

)

f (ŝ) +

(

Φm(ă, ŝ)

ŝ− ă
[ŝ−µ(ă, ŝ)]+

Ψm(ŝ, ĉ)

ĉ− ŝ
[ŝ−µ(ŝ, ĉ)]

)

f
′
(ŝ)

+
Φ

ŝ− ă

ŝ
∫

ă

ω(ŷ) f (ŷ)dŷ+
Ψ

(ĉ− ŝ)

ĉ
∫

ŝ

ω(ŷ) f (ŷ)dŷ



 ,

here the integration by parts formula has been utilised on the separate interval [ă, ŝ] and (ŝ, ĉ] .
Simlification of the expressions readily produces the identity as stated in (2.2), ∀ ŝ ∈ [ă, ĉ] .

Theorem 2.2. Let f : [ă, ĉ]→ R be continuous on [ă, ĉ] and twice differentiable mapping on (ă, ĉ) , whose second derivative f
′′

: [ă, ĉ]2 →
R is bounded on (ă, ĉ), then following weighted integral inequalities

|τ (ω; ŝ;Φ,Ψ)| ≤















































∥

∥

∥
f
′′∥
∥

∥

∞

2(Φ+Ψ)

[

Φm(ă,ŝ)
ŝ−ă

(

[ŝ−µ(ă, ŝ)]2 +σ2 (ă, ŝ)
)

+
Ψm(ŝ,ĉ)

ĉ−ŝ

(

[ŝ−µ(ŝ, ĉ)]2 +σ2 (ŝ, ĉ)
)]

for f
′′ ∈ L∞ [ă, ĉ]

ω(ŝ)
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p

2(2q̂+1)
1
q̂ (Φ+Ψ)

[

Φ
q̂ (ŝ− ă)q̂+1 +Ψ

q̂ (ĉ− ŝ)q̂+1
] 1

q̂
for f

′′ ∈ Lp [ă, ĉ]

γ
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

1

2(Φ+Ψ)

[

1+
|ϖ |
γ

]

for f
′′ ∈ L1 [ă, ĉ] ,
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hold for ∀ ŷ ∈ [ă, ĉ], ŝ ∈ [ă, ĉ] and ω is weight function as stated in (1.4), and Φ,Ψ ∈ R are non negative and both are non zero at the same

time. Here 1
p +

1
q̂ = 1, (p > 1) ,

γ =
1

(ŝ− ă)(ĉ− ŝ)
[Φm(ă, ŝ)(ĉ− ŝ) [ŝ−µ(ă, ŝ)] +Ψm(ŝ, ĉ)(ŝ− ă) [ŝ−µ(ŝ, ĉ)]]

and

ϖ =
1

(ŝ− ă)(ĉ− ŝ)
[Φm(ă, ŝ)(ĉ− ŝ) [ŝ−µ(ă, ŝ)] − Ψm(ŝ, ĉ)(ŝ− ă) [ŝ−µ(ŝ, ĉ)]] .

Proof. Take the modulus of (2.2)

|τ (ω; ŝ;Φ,Ψ)|=

∣

∣

∣

∣

∣

∣

ĉ
∫

ă

k(ŝ, ŷ) f
′′
(ŷ)dŷ

∣

∣

∣

∣

∣

∣

≤
ĉ

∫

ă

|k(ŝ, ŷ)|
∣

∣

∣ f
′′
(ŷ)

∣

∣

∣dŷ, (2.4)

here we use properties of the integral and modulus

|τ (ϖ ; z̈;ε,δ )| ≤
∥

∥

∥ f
′′
∥

∥

∥

∞

ĉ
∫

ă

|k(ŝ, ŷ)|dŷ.

By using (2.1) we prove

ĉ
∫

ă

|k(ŝ, ŷ)|dŷ =

ŝ
∫

ă

ŷ
∫

ă

(ŷ− ŭ)ω(ŭ)dŭdŷ+

ĉ
∫

ŝ

ŷ
∫

ĉ

(ŷ− ŭ)ω(ŭ)dŭdŷ

by using the techniques of J. Roummeliotis et al. [17],

ŝ
∫

ă

ŷ
∫

ă

(ŷ− ŭ)ω(ŭ)dŭdŷ+

ĉ
∫

ŝ

ŷ
∫

ĉ

(ŷ− ŭ)ω(ŭ)dŭdŷ =
1

2

ĉ
∫

ă

(ŝ− ŷ)2 ω (ŷ)dŷ

after some calculation we get

ĉ
∫

ă

|k(ŝ, ŷ)|dŷ =
Φm(ă, ŝ)

2(Φ+Ψ)(ŝ− ă)

[

[ŝ+µ (ă, ŝ)]2 +σ2 (ă, ŝ)
]

+
Ψm(ŝ, ĉ)

2(Φ+Ψ)(ĉ− ŝ)

[

[ŝ+µ (ŝ, ĉ)]2 +σ2 (ŝ, ĉ)
]

.

From above, first inequality is obtained.

Further, using Holder’s Inequality, we have for f
′′ ∈ L

p
[ă, ĉ], from (2.4)

|τ (ω; ŝ;Φ,Ψ)| ≤
∣

∣

∣

∣

∣

∣
f
′′
∣

∣

∣

∣

∣

∣

p





ĉ
∫

ă

|k(ŝ, ŷ)|q̂ dŷ





1
q̂

,

here 1
p +

1
q̂ = 1, (p > 1) ,

by using Mean Value Theorem, we get





ĉ
∫

ă

|k(ŝ, ŷ)|q̂ dŷ





1
q̂

=
1

2(Φ+Ψ)(2q̂+1)
1
q̂

(

Φ
q̂ (ŝ− ŷ)q̂+1 ω (ŝ)

) 1
q̂
+

1

2(Φ+Ψ)(2q̂+1)
1
q̂

(

Ψ
q̂ (ŝ− ŷ)q̂+1 ω (ŝ)

) 1
q̂
,

so the second inequality is obtained.

Finally, for f
′′ ∈ L

1
[ă, ĉ] we have from (2.4)

|τ (ω; ŝ;Φ,Ψ)| ≤ sup
ŷ∈[ă,ĉ]

|k(ŝ, ŷ)|
∣

∣

∣

∣

∣

∣ f
′′
∣

∣

∣

∣

∣

∣

1
.

By using (2.1) , we prove

sup
ŷ∈[ă,ĉ]

|k(ŝ, ŷ)|= 1

(Φ+Ψ)
max

{

Φm(ă, ŝ)

ŝ− ă
[ŝ−µ(ă, ŝ)] ,

Ψm(ŝ, ĉ)

ĉ− ŝ
[ŝ−µ(ŝ, ĉ)]

}

=
1

2(Φ+Ψ)(ŝ− ă)(ĉ− ŝ)
(Φm(ă, ŝ)(ĉ− ŝ) [ŝ−µ(ă, ŝ)]

+Ψm(ŝ, ĉ)(ŝ− ă) [ŝ−µ(ŝ, ĉ)]) [1+

∣

∣

∣

1
(ŝ−ă)(ĉ−ŝ)

[Φm(ă, ŝ)(ĉ− ŝ) [ŝ−µ(ă, ŝ)]−Ψm(ŝ, ĉ)(ŝ− ă) [ŝ−µ(ŝ, ĉ)]]
∣

∣

∣

1
(ŝ−ă)(ĉ−ŝ)

[Φm(ă, ŝ)(ĉ− ŝ) [ŝ−µ(ă, ŝ)]+Ψm(ŝ, ĉ)(ŝ− ă) [ŝ−µ(ŝ, ĉ)]]



 .

Hence (2.2) is proved.
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Remark 2.3. From (2.2) and (1.2)

(Φ+Ψ)τ (ω; ŝ;Φ,Ψ) = ΦS ( f ;ϖ ; ă, ŝ)+ΨS ( f ;ϖ ; ŝ, ĉ)

and using triangular inequality in (2.2) , we get

|(ε +δ )τ (ϖ ; z̈;ε,δ )| ≤







































































Φm(ă,ŝ)‖ f ′′‖
∞,[ă,ŝ]

2(ŝ−ă)

(

[ŝ−µ(ă, ŝ)]2 +σ2 (ă, ŝ)
)

+
Ψm(ŝ,ĉ)‖ f ′′‖

∞,[ŝ,ĉ]

2(ĉ−ŝ)

(

[ŝ−µ(ŝ, ĉ)]2 +σ2 (ŝ, ĉ)
) for f

′′ ∈ L∞ [ă, ĉ]

ω(ŝ)
∣

∣

∣

∣

∣

∣ f
′′ ∣
∣

∣

∣

∣

∣

p,[ă,ŝ]

2

(

Φ
q̂(ŝ−ă)q̂+1

2q̂+1

)

1
q̂

+
ω(ŝ)

∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p,[ŝ,ĉ]

2

(

Ψ
q̂(ĉ−ŝ)q̂+1

2q̂+1

)

1
q̂

for f
′′ ∈ Lp [ă, ĉ]

γ
2

∣

∣

∣

∣

∣

∣ f
′′
∣

∣

∣

∣

∣

∣

1,[ă,ŝ]
+

|ϖ |
2

∣

∣

∣

∣

∣

∣ f
′′
∣

∣

∣

∣

∣

∣

1,[ŝ,ĉ]
for f

′′ ∈ L1 [ă, ĉ] .

(2.5)

Remark 2.4. Since we may write (2.2) as

ΦM ( f ;ω; ă, ŝ)+ΨM ( f ;ω; ŝ, ĉ) = ΦM ( f ;ω; ă, ŝ)+
Ψ

ĉ− ŝ





ĉ
∫

ă

ω (ŭ) f (ŭ)dŭ−
ŝ

∫

ă

ω (ŭ) f (ŭ)dŭ





=

[

Φ+Ψ

(

ŝ− ă

ĉ− ŝ

)]

M ( f ;ω; ă, ŝ)+Ψ

(

ĉ− ă

ĉ− ŝ

)

M ( f ;ω; ă, ĉ) .

Thus, the identity

τ (ω; ŝ;Φ,Ψ) =

ă1 f (ŝ)+
1

Φ+Ψ

[(

Φm(ă, ŝ)

ŝ− ă
[ŝ−µ(ă, ŝ)]2 +

Ψm(ŝ, ĉ)

ĉ− ŝ
[ŝ−µ(ŝ, ĉ)]2

)

f
′
(ŝ) +

(

1− Ψλ

Φ+Ψ

)

M ( f ;ω; ă, ŝ)+
Ψλ

Φ+Ψ
M ( f ;ω; ă, ĉ)

]

,

same as [ă, ĉ] and M ( f ;ω; ă, ĉ) is also fixed.

Corollary 2.5. Let the conditions of Theorem 2 hold. Then the results for Φ = Ψ

|τ (ω; ŝ;Φ,Ψ)| ≤



























































∥

∥

∥ f
′′∥
∥

∥

∞

4

[

m(ă,ŝ)
ŝ−ă

(

[ŝ−µ(ă, ŝ)]2 f ′(ŝ) − f (ŝ)+σ2 (ă, ŝ)
)

+
m(ŝ,ĉ)
ĉ−ŝ

(

[ŝ−µ(ŝ, ĉ)]2 f
′
(ŝ) − f (ŝ)+σ2 (ŝ, ĉ)

)]

for f
′′ ∈ L∞ [ă, ĉ]

ω(ŝ)
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p

4(2q̂+1)
1
q̂

[

(ŝ− ă)q̂+1 +(ĉ− ŝ)q̂+1
] 1

q̂
for f

′′ ∈ Lp [ă, ĉ]

ζ
∥

∥

∥
f
′∥
∥

∥

1

4

[

1+
|η |
ζ

]

for f
′′ ∈ L1 [ă, ĉ] ,

(2.6)

here

τ (ω; ŝ;Φ,Φ) =
−1

2

(

m(ă, ŝ)

(ŝ− ă)
+

m(ĉ, ŝ)

(ĉ− ŝ)

)

f (ŝ)+
1

2

[(

m(ă, ŝ)

ŝ− ă
[ŝ−µ(ă, ŝ)]2 +

m(ŝ, ĉ)

ĉ− ŝ
[ŝ−µ(ŝ, ĉ)]2

)

f
′
(ŝ)

+({M ( f ;ω, ă, ŝ)+M ( f ;ω, ŝ, ĉ)})] ,

ζ =
1

(ŝ− ă)(ĉ− ŝ)
[m(ă, ŝ)(ĉ− ŝ) [ŝ−µ(ă, ŝ)] +m(ŝ, ĉ)(ŝ− ă) [ŝ−µ(ŝ, ĉ)]]

and

η =
1

(ŝ− ă)(ĉ− ŝ)
[m(ă, ŝ)(ĉ− ŝ) [ŝ−µ(ă, ŝ)] − m(ŝ, ĉ)(ŝ− ă) [ŝ−µ(ŝ, ĉ)]] .

Proof. The result is readily obtained on allowing Φ = Ψ in (2.2) so that the left hand side is τ (ω; ŝ;Φ,Φ) from (2.2) .

Corollary 2.6. According to Theorem 2, then mid point
(

ŝ = Ă = ă+ĉ
2

)

, inequality from (2.2)

∣

∣τ
(

ω; Ă;Φ,Ψ
)∣

∣≤



































































∥

∥

∥
f
′′∥
∥

∥

∞

2(Φ+Ψ)

[

Φm(ă,Ă)
Ă−ă

(

[

Ă−µ(ă, Ă)
]2
+σ2

(

ă, Ă
)

)

+
Ψm(Ă,ĉ)

ĉ−Ă

(

[

Ă−µ(Ă, ĉ)
]2
+σ2

(

Ă, ĉ
)

)

] for f
′′ ∈ L∞ [ă, ĉ]

ω(Ă)
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p

2(2q̂+1)
1
q̂ (Φ+Ψ)

[

Φ
q̂
(

Ă− ă
)q̂+1

+Ψ
q̂
(

ĉ− Ă
)q̂+1

] 1
q̂

for f
′′ ∈ Lp [ă, ĉ]

ψ
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

1

2(Φ+Ψ)

[

1+
|κ|
ψ

]

for f
′′ ∈ L1 [ă, ĉ] ,

(2.7)
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here

ψ =
1

2(Φ+Ψ)
(

Ă− ă
)

(ĉ− ă)

[

Φm
(

ă, Ă
)

(ĉ− ă)
[

Ă−µ(ă, Ă)
]

+Ψm
(

Ă, ĉ
)

(ĉ− ă)
[

Ă−µ(Ă, ĉ)
]]

and

κ =
1

(

Ă− ă
)

(ĉ− ă)

[∣

∣Φm
(

ă, Ă
)

(ĉ− ă)
[

Ă−µ(ă, Ă)
]

−Ψm
(

Ă, ĉ
)

(ĉ− ă)
[

Ă−µ(Ă, ĉ)
]∣

∣ .

Proof. Placing
(

ŝ = Ă = ă+ĉ
2

)

in (2.2) and (2.2) produces the results as stated in (2.7) .

Corollary 2.7. When the conditions of Theorem 2 hold and (2.7) is evaluated at Φ = Ψ, then we get

∣

∣τ
(

ω; Ă;Φ,Φ
)∣

∣≤



















































∥

∥

∥
f
′′∥
∥

∥

∞

4

[

m(ă,Ă)
Ă−ă

(

[

Ă−µ(ă, Ă)
]2
+σ2

(

ă, Ă
)

)

+
m(Ă,ĉ)

ĉ−Ă

(

[

Ă−µ(Ă, ĉ)
]2
+σ2

(

Ă, ĉ
)

)

]

for f
′′ ∈ L∞ [ă, ĉ]

ω(Ă)
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p

4(2q̂+1)
1
q̂

[

(

Ă− ă
)q̂+1

+
(

ĉ− Ă
)q̂+1

] 1
q̂

for f
′′ ∈ Lp [ă, ĉ]

ψ
∣

∣

∣

∣

∣

∣ f
′′ ∣
∣

∣

∣

∣

∣

1

4

[

1+
|κ|
ψ

]

for f
′′ ∈ L1 [ă, ĉ] ,

(2.8)

here

ψ =
1

(

Ă− ă
)

(ĉ− ă)

[

m
(

ă, Ă
)

(ĉ− ă)
[

Ă−µ(ă, Ă)
]

+m
(

Ă, ĉ
)

(ĉ− ă)
[

Ă−µ(Ă, ĉ)
]]

and

κ =
1

(

Ă− ă
)

(ĉ− ă)

[

m
(

ă, Ă
)

(ĉ− ă)
[

Ă−µ(ă, Ă)
]

−m
(

Ă, ĉ
)

(ĉ− ă)
[

Ă−µ(Ă, ĉ)
]]

.

Proof. Putting Φ = Ψ; in (2.7) we get (2.8) .

Remark 2.8. For ϖ (ŝ) = 1 in (2.2), (2.5), (2.6), (2.7), and in (2.8) we get A. Qayyum et al.’s result [7].

2.1. Applications for some special means:

Now we discuss applications for some special means by taking different weight.

Remark 2.9. For Uniform (legendre) mean:

Let ϖ (ŝ) = 1 put in (2.2) and in (2.2), we get A. Qayyum et al.’s results [7].

Remark 2.10. For Logarithm mean:

Let

ω (ŷ) = ln(1/ŷ) ; ă = 0, ĉ = 1,

put in (1.7), we get

µ (0,1) =

1
∫

0

ŷ ln(1/ŷ)dŷ

1
∫

0

ln(1/ŷ)dŷ

=
1

4

and

σ2 (0,1) =

1
∫

0

ŷ2 ln(1/ŷ)dŷ

1
∫

0

ln(1/ŷ)dŷ

− (µ (0,1))2 =
7

144
,
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put in (2.2), then the inequalities are

∣

∣

∣

∣

∣

∣

1

Φ+Ψ

(

Φ

ŝ− ă
+

Ψ

ĉ− ŝ

)





1
∫

0

ln(1/ŷ) f (ŷ)dŷ− f (ŝ)+

(

ŝ− 1

4

)

f
′
(ŝ)





∣

∣

∣

∣

∣

∣

≤















































ln(1/ŷ)
∥

∥

∥ f
′′∥
∥

∥

∞

2(Φ+Ψ)

(

Φ

ŝ−ă +
Ψ

ĉ−ŝ

)[

(

ŝ− 1
4

)2
+ 7

144

]

for f
′′ ∈ L∞ [ă, ĉ]

ln(1/ŷ)
∣

∣

∣

∣

∣

∣ f
′′ ∣
∣

∣

∣

∣

∣

p

2(2q̂+1)
1
q̂ (Φ+Ψ)

[

Φ
q̂ (ŝ− ă)q̂+1 +Ψ

q̂ (ĉ− ŝ)q̂+1
] 1

q̂
for f

′′ ∈ Lp [ă, ĉ]

∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

1

2(Φ+Ψ)

[

Φ ln(1/ŷ)
(

ŝ− 1
4

)

+Ψ ln(1/ŷ)
(

ŝ− 1
4

) ∣

∣Φ ln(1/ŷ)
(

ŝ− 1
4

)

−Ψ ln(1/ŷ)
(

ŝ− 1
4

)∣

∣

]

for f
′′ ∈ L1 [ă, ĉ] .

The mid point reflecting if the optimum point ŝ = µ (0,1) = 1
4 is near to the origin.

Remark 2.11. For Jacobi mean:

Let

ω (ŷ) = 1/
√

ŷ; ă = 0, ĉ = 1,

we have

µ (0,1) =

1
∫

0

√
ŷdŷ

1
∫

0

1/
√

ŷdŷ

=
1

3

and

σ2 (0,1) =

1
∫

0

ŷ
√

ŷdŷ

1
∫

0

1/
√

ŷdŷ

−
(

1

3

)2

=
4

45
.

Then

∣

∣

∣

∣

∣

∣

1

Φ+Ψ

(

Φ

ŝ− ă
+

Ψ

ĉ− ŝ

)





1
∫

0

f (ŷ)√
ŷ

dŷ− f (ŝ)+(ŝ−1) f ′ (ŝ)





∣

∣

∣

∣

∣

∣

≤















































1/
√

ŷ

∥

∥

∥
f
′′∥
∥

∥

∞

2(Φ+Ψ)

(

Φ

ŝ−ă +
Ψ

ĉ−ŝ

)[

1+(ŝ−1)2
]

for f
′′ ∈ L∞ [ă, ĉ]

1/
√

ŷ

∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p

2(2q̂+1)
1
q̂ (Φ+Ψ)

[

Φ
q̂ (ŝ− ă)q̂+1 +Ψ

q̂ (ĉ− ŝ)q̂+1
] 1

q̂
for f

′′ ∈ Lp [ă, ĉ]

∣

∣

∣

∣

∣

∣ f
′′ ∣
∣

∣

∣

∣

∣

1

2(Φ+Ψ)

[

Φ/
√

ŷ
(

ŝ− 1
3

)

+Ψ/
√

ŷ
(

ŝ− 1
3

) ∣

∣Φ/
√

ŷ
(

ŝ− 1
4

)

−Ψ/
√

ŷ
(

ŝ− 1
4

)∣

∣

]

for f
′′ ∈ L1 [ă, ĉ] .

The optimum point ŝ = µ (0,1) = 1
3 is moved to the left of midpoint.

Remark 2.12. For Chebyshev mean:

Let

ω (ŷ) = 1/

√

1− ŷ2; ă =−1, ĉ = 1,

mean

µ (−1,1) = 0

and

σ2 (−1,1) =
1

2
.
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Hence, Chebyshev weighted inequalities are
∣

∣

∣

∣

∣

∣

1

Φ+Ψ

(

Φ

ŝ− ă
+

Ψ

ĉ− ŝ

)





1

π

1
∫

−1

f (ŷ)√
1− ŷ

dŷ− f (ŝ)+ ŝ f
′
(ŝ)





∣

∣

∣

∣

∣

∣

≤















































1/
√

1−ŷ2

∥

∥

∥ f
′′∥
∥

∥

∞

2(Φ+Ψ)

(

Φ

ŝ−ă +
Ψ

ĉ−ŝ

)

[

ŝ2 + 1
2

]

for f
′′ ∈ L∞ [ă, ĉ]

1/
√

1−ŷ2

∣

∣

∣

∣

∣

∣ f
′′ ∣
∣

∣

∣

∣

∣

p

2(2q̂+1)
1
q̂ (Φ+Ψ)

[

Φ
q̂ (ŝ− ă)q̂+1 +Ψ

q̂ (ĉ− ŝ)q̂+1
] 1

q̂
for f

′′ ∈ Lp [ă, ĉ]

∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

1

2(Φ+Ψ)

[

ŝΦ/
√

1− ŷ2 + ŝΨ/
√

1− ŷ2
∣

∣

∣
Φŝ/

√

1− ŷ2 −Ψŝ/
√

1− ŷ2
∣

∣

∣

]

for f
′′ ∈ L1 [ă, ĉ] .

The optimum point ŝ = µ (−1,1) = 0 is at the midpoint of the interval.

Remark 2.13. For Laguerre mean:

Let

ω (ŷ) = e−ŷ; ă = 0, ĉ = ∞,

such that

µ (0,∞) = 1

and

σ2 (0,∞) = 1

then inequalities are
∣

∣

∣

∣

∣

∣

1

Φ+Ψ

(

Φ

ŝ− ă
+

Ψ

ĉ− ŝ

)





∞
∫

0

e−ŷ f (ŷ)dŷ− f (ŝ)+(ŝ−1) f
′
(ŝ)





∣

∣

∣

∣

∣

∣

≤















































e−ŷ
∥

∥

∥
f
′′∥
∥

∥

∞

2(Φ+Ψ)

(

Φ

ŝ−ă +
Ψ

ĉ−ŝ

)[

1+(ŝ−1)2
]

for f
′′ ∈ L∞ [ă, ĉ]

e−ŷ
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p

2(2q̂+1)
1
q̂ (Φ+Ψ)

[

Φ
q̂ (ŝ− ă)q̂+1 +Ψ

q̂ (ĉ− ŝ)q̂+1
] 1

q̂
for f

′′ ∈ Lp [ă, ĉ]

∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

1

2(Φ+Ψ)

[

Φe−ŷ (ŝ−1)+Ψe−ŷ (ŝ−1)
∣

∣Φe−ŷ (ŝ−1)−Ψe−ŷ (ŝ−1)
∣

∣

]

for f
′′ ∈ L1 [ă, ĉ] .

The optimum sample point is deduced ŝ = 1.

Remark 2.14. For Hermite mean:

Let

ω (ŷ) = e−ŷ2

; ă =−∞, ĉ = ∞,

then

µ (−∞,∞) = 0

and

σ2 (−∞,∞) =
1

2
.

Then inequalities are
∣

∣

∣

∣

∣

∣

1

Φ+Ψ

(

Φ

ŝ− ă
+

Ψ

ĉ− ŝ

)





1

π

∞
∫

−∞

e−ŷ2

f (ŷ)dŷ− f (ŝ)+ ŝ f
′
(ŝ)





∣

∣

∣

∣

∣

∣

≤











































e−ŷ2
∥

∥

∥
f
′′∥
∥

∥

∞

2(Φ+Ψ)

(

Φ

ŝ−ă +
Ψ

ĉ−ŝ

)

[

1
2 + ŝ2

]

for f
′′ ∈ L∞ [ă, ĉ]

e−ŷ2
∣

∣

∣

∣

∣

∣
f
′′ ∣
∣

∣

∣

∣

∣

p

2(2q̂+1)
1
q̂ (Φ+Ψ)

[

Φ
q̂ (ŝ− ă)q̂+1 +Ψ

q̂ (ĉ− ŝ)q̂+1
] 1

q̂
for f

′′ ∈ Lp [ă, ĉ]

|| f ′′||1
2(Φ+Ψ)

[

Φŝe−ŷ2

+Ψŝe−ŷ2
∣

∣

∣Φŝe−ŷ2 −Ψŝe−ŷ2
∣

∣

∣

]

for f
′′ ∈ L1 [ă, ĉ] .

An optimum sampling point is ŝ = 0.
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Abstract

We will give a complete description of the dynamics of the rational map NFMc
(z) = 3z4−2z3+c

4z3−3z2+c
where c is a complex parameter. These are rational maps NFMc

arising from Newton’s method.

The polynomial of Newton iteration function is obtained from singularly perturbed of the

Multibrot set polynomial.

1. Introduction

Singular perturbations arise in all areas of dynamical systems from ODSs to discrete dynamical systems. There is a wide range of examples

of singular perturbations in these areas [1–3]. For a simple example, suppose that we are applying Newton’s method to find the roots

of a complex polynomial equation P(z) = z2 − c. The Newton iteration function is given by NP(z) = z− P(z)

P
′ (z)

= z
2 +

c
2z when c = 0, the

polynomial P has multiple roots at 0 and Newton iteration function is NP(z) =
z
2 . In this case, of course, all orbits of NP(z) =

z
2 tend to be

the unique root at 0. However, when c 6= 0, the degree of NP jumps from 1 to 2, and dynamical behavior of NP become excited. Moreover,

instead of a fixed point at the origin, after perturbation, there is a pole at the origin, most orbits of NP still do convergence to one of the

two roots of P, that is ±√
c but points on the straight line passing through the origin perpendicular to the line segment connecting ±√

c

have orbits that do not convergence to these roots. Rather all orbits on these lines behave chaotically, so the dynamical behavior is more

complicated in this case.

In recent years, much attention has been paid to families of rational maps that arise as singular perturbation of polynomials. These are

families of rational maps that depend on a parameter λ and have the property that, when λ = 0, the map involved is a polynomial of degree

n, but for all other parameters, the maps are rational with a higher degree. When the parameter λ becomes non-zero, the dynamics of these

maps are explored. Most of the studies of these singular perturbed rational maps have centered on families of the form Fλ (z) = zn + λ
zd

where λ ∈ C, n, and d are positive integers [4]. A singular perturbation means that we have a complex analytic map which is the new map

FMc
obtained by multiplying Multibrot set polynomial Mc(z) = zn + c and a simple polynomial P(z) = z−1 so that FMc

(z) = (zn + c)(z−1)
where c is a complex parameter and n > 2. In this study, specifically we consider the case when Newton’s method is applied to the polynomial

family FMc(z) = (z3 + c)(z−1). The dynamics of such a perturbation are very exciting for the following reasons:

1. they are non-polynomial examples,

2. their dynamical behavior is changed dramatically when the parameter c is non-zero quite small.

†This article has been prepared by expanding the results of the presentation at the “The First International Karatekin Science and Technology Conference”.

Email address and ORCID number: cilingirfigen@gmail.com, https://orcid.org/0000-0001-5526-9937 (F. Çilingir)
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(a) λ = 0. (b) λ 6= 0.

Figure 1.1: How the dynamics is explodes when the degree is changed. For more detail [4].

In complex dynamics, the most important object in the dynamical plane is the Julia set of F, which we denote by J(F). From an analytic

viewpoint, the Julia set is the set of points at which the family of iterates on the map fails to be a normal family in the sense of Montel.

There are many other equivalent definitions of the Julia set such as the Julia set is the closure of the set of repelling periodic points of F .

Equivalently, the Julia set is also the boundary of the set of points whose orbits escape to ∞. From a dynamic point of view, the Julia set is

the set of points on which the map is chaotic. The complement of the Julia set is called the Fatou set. This is where the dynamical behavior

is relatively tame [2, 3, 5, 6].

The aim of this paper is to investigate the dynamics and the Julia sets of Newton iteration function, NFMc
(z), applied to the polynomial

FMc
(z) = (zn + c)(z−1). We shall pay attention to one special critical point and see how the orbit of this point affects the dynamics of the

Newton iteration map.

Newton’s method is the best known iterative method for finding roots(real or complex) of a function f . It is the iterating function

N f (z) = z− f (z)

f
′ (z)

by starting with some initial approximation z0 and defining the n+ 1 approximation by zn+1 = N f (zn). Whether the

function f (z) is a polynomial or a rational function, then the iteration function N f will be a rational map of the form N(z) = N f (z) =
p(z)
q(z)

where p and q are polynomials. So the dynamics of Newton’s method become more difficult even when applied to polynomials in one

variable. Iteration of Newton’s method function often allows one to find the roots of the corresponding polynomial, but this is not always the

case. The orbit of a point z0 is the set of iterates of the function f which gives the sequence {z0,N f (z0),N
2
f (z0),N

3
f (z0), . . .}. This sequence

hopefully converges to a root, ζ , of f . That certainly happens most of the time but other things might happen. For instance, if a function is

not differentiable at the root such as considering the function f (x) = x1/3, this function is not differentiable at the root x=0 and |N ′
f (0)|> 1,

then all sequences tend to ∞. Thus we may have no convergence if there is no differentiability. In some cases, the convergence of Newton’s

method is guaranteed by Kantorovitch theorem [7].

We shall think of Newton’s iterating function as being defined on the whole the Riemann sphere, i.e. the complex numbers with the point at

infinity adjoined, C∞ =C∪{∞}. The orbit of a point ζ could converge to a cycle, or it could wander chaotically about Riemann sphere, or it

could behave in other ways. A point ζ ∈ C is called a periodic point of period n if Nn
f (ζ ) = ζ and Nk

f (ζ ) 6= ζ for all k < n, where k,n ∈ N.

The least such integer n is called the period and the orbit of ζ is then an n-cycle. If n = 1, we say that ζ is a fixed point of N f and, as is well

known, such points correspond to the roots of f . A point ζ is eventually periodic if Nn(ζ ) = Nn+k(ζ ) for positive integers n and k. If ζ

is a periodic point of period n, then the derivative λ = (Nn
f )

′
(ζ ) is called the eigenvalue of the periodic point ζ . It follows from the chain

rule that λ is the product of the derivatives of N f at each point on the orbit of ζ . Hence λ is an invariant of the orbit. A periodic orbit is

called attracting if |λ |< 1, super-attracting if |λ |= 0, repelling if |λ |> 1, and neutral if |λ |= 1. Using Taylor’s series for N f (ζ ), it can be

shown that N f (ζ ) will be linearly convergent at an attracting fixed point and at least quadratically convergent at a super-attracting fixed point.

Recall that the sequence {ζn} convergence linearly to w if, for sufficiently large n, |ζn+1 −w|< t|ζn −w|, where 0 < c < 1, where 0 < t < 1,

and convergence quadratically if, for sufficiently large n, |ζn+1 −w|< t|ζn −w|2, for some constant t. The point at ∞ is always a repelling

fixed point with derivative d/(d−1), where d is the degree of f , so large values of ζ will tend to move away from infinity under iteration [3].

A point is a critical point if the derivative of the map vanishes at this point. Critical points of N f are solutions of N
′
f (ζ ) = 0, i.e., zeroes

and inflection points of f . The critical point is non-degenerate if N
′′
f (ζ ) 6= 0 and it is degenerate if N

′′
f (ζ ) = 0. For example, f (x) = xn has

a degenerate critical point at 0 when n > 2, but has a non-degenerate when n = 2. Note that degenerate critical points may be maxima,

minima, or saddle points as in the case of f (x) = x3 [4, 6].

Theorem 1.1 (Julia). For any holomorphic map of the extended complex plane to itself, an attracting periodic cycle must attract at least one

critical point [8].

Theorem 1.2 (P. Fatou). Every attracting cycle for a polynomial or a rational function attracts at least one critical point [4].

Theorem 1.3 (By The Riemann Hurtwitz Relation). A non-constant rational map with degree d has exactly 2d −2 critical points in C∞,

counted with multiplicity [8].
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The critical points play a dominant role in determining the structure of the Julia set of rational iteration. In this paper, we will point out the

case where the value of parameter c becomes non-zero, and when it happens, how the dynamical behavior changes strikingly.

We are interested in the dynamics of Newton’s iteration map, N f on the Riemann sphere. We can always conjugate N f by an invertible

linear(Möbius) transformation T , so the orbits of N f will be essentially the same as the orbits of T ◦N f ◦T−1. On the Riemann sphere, the

point at infinity is like any other point. In order to determine whether infinity is a fixed point of N f and to find its eigenvalue there, we can

conjugate N f by the transformation z → 1
z that interchanges 0 and ∞. Therefore the behavior of N f (z) at ∞ is the same as the behavior of

1
N f (1/z)

at 0.

The basin of attraction of a fixed point υ of the map N f is the set
{

z| limn→∞ Nn
f (z) = υ

}

, i.e., the set of all points whose orbits converge

to υ under the iteration of N f . This basin may have infinitely many components, and the immediate basin of attraction is the connected

component containing the fixed point υ . The rational map N f divides the Riemann sphere into two invariant sets, the Julia set, J(N f ), and its

complement. As mentioned earlier, the Julia set consists of points for which the dynamical behavior under iteration of N f is complicated.

Points in the complement of the Julia set will normally converge to a fixed point or an attracting cycle. This complement could also contain a

Siegel disk or Herman ring in which the iterations are locally like an irrational rotation of a disk or an annulus.

A few basic facts about the Newton basin:

• The rational map N f divides the Riemann sphere into two invariant sets, the Julia set, J(N f ), and its complement.

• The points in the complement of the Julia set will normally converge to a fixed point, that could be infinity, or to an attractive cycle.

• J(N f ) is the closure of the repelling periodic points.

• J(N f ) is non-empty.

• J(N f ) is completely invariant under N f ; i.e. N f (J(N f )) = J(N f ) = N−1
f (J(N f )).

• J(N f ) is the boundary of the basin of attraction of each fixed point or attractive cycle: this guarantees that if there are more than two

roots, J(N f ) will be a fractal set.

• If v ∈ J(N f ), then the closure of
{

z|Nn
f (z) = v for some non-negative integern

}

, the backward iterates of v, is the whole of J(N f ).

It is well known that the Julia set is an unstable set. Iterates of points close to the Julia set will move away from that set. Hence Newton’s

method is very sensitive to initial conditions when the initial point is near the Julia set. Nearby points could converge to different roots or

might not converge at all. If you start with a point actually on the Julia set, the iterates will also be on the Julia set because Julia set is a

completely invariant set. As it is mentioned above, unfortunately, Newton’s map does not converge to a root for every initial point. But the

orbit could converge to an attractive cycle, rather than to a root.

2. The Dynamics of the Rational Map

In this section we consider the dynamics of the perturbed map which is a special class of rational functions, namely those obtained from

Newton’s method as applied to a polynomial of the form FMc(z) = (z3 + c)(z−1). We are interested in the collection of Newton iteration

maps given by NFMc
as their dynamical properties are related to the non-degenerate free critical point.

Proposition 2.1. Infinity is a repelling fixed point for Newton’s method applied to FMc
(z) = (z3 + c)P(z) where P(z) = z−1 and c is any

constant.

Proof. Newton’s method function is the rational map:

NFMc
(z) =z− Mc(z)P(z)

M
′
c(z)P(z)+Mc(z)P

′
(z)

=
3z4 −2z3 + c

4z3 −3z2 + c
,

∞ is a fixed point, since limz→∞ NFMc
(z) = ∞. To determine its nature, we map ∞ to 0 via g(z) = 1

z (= v): the conjugate function G is given

by g◦NFMc
= G◦g thus we obtain

G(v) = g

(

NFMc
(

1

v
)

)

=
1

NFMc
( 1

v )
=

4v−3v2 +4v4

3−2v+ cv4
.

∞ is a repelling fixed point, since G(0) = 0 and |G′
(0)|> 1.

Before examining the dynamics of FMc
when c is small, we will consider the dynamics of the case c = 0.

2.1. The dynamics of FM0
= z3(z−1)

The Newton iterating function of FM0
is a rational map of the form NFM0

(z) = 3z4−2z3

4z3−3z2 . The finite fixed points of NFM0
(z) are 0 and 1 which

are an attracting fixed point and a super-attracting fixed point, respectively. In addition, ∞ is a repelling fixed point. In Figures 2.1a and 2.1b,

the computer graphics pictures illustrate NFM0
(z) on the dynamical plane. Each color in the picture belongs to a finite root of NFM0

(z). In

Figure 2.1a, the area from blue to turquoise is the basin of attraction for the attracting fixed point 0 and the white area is the attracting basin

for the super-attracting fixed point 1 of NFM0
(z). In Figure 2.1b, the same basins are shown when viewed from infinity. It is the simple case

c = 0 for Newton iteration that has decorations on the Julia set on the boundary of the basin; rather this boundary is a simple closed curve

passing through ∞.
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(a)

∞

(b)

Figure 2.1

One of the most important goals of Newton’s method is to approximate the roots of a function - for which the convergence of the initial

values is an important matter in dynamical systems. In Figure 2.1a and 2.1b, the speed of convergence for Newton’s map of the function

z3(z−1) is clearly observed. The critical orbits play a dominant role in determining the structure of the Julia sets in dynamical systems.

Points 0,1 and 1/2 are critical points of NFM0
.

The aim of this paper is to draw attention to the case where the value of the parameter c becomes non-zero but quite small. When this

happens, the dynamical behavior changes dramatically. We will now describe those changes.

2.2. The dynamics of FMc(z) = (z3 + c)(z−1) for c 6= 0

We will deal with the value of c being different from zero but rather small. When we applied Newton’s method to the polynomial

FMc
(z) = (z3 +0.001)(z−1) obtained the rational map,

N(z) = NFM0.001
(z) =

3z4 −2z3 +0.001

4z3 −3z2 +0.001
.

∞ is a repelling fixed point and the real roots −0.1 and 1 are super-attracting fixed points of N. In addition to this, the complex roots are

0.05±0.0866025i for the rational maps N with the parameter c = 0.001. The points 0.05±0.0866025i,−0.1,0,1 and 1/2 are critical points

for N. Critical points 0,1/2 and 1 are common critical points for the maps NFM0.001
and NFM0

with different critical values and also they are

non-degenerate critical points. In addition to this, the common critical point 1 is a super-attracting fixed point for the maps NFM0.001
and NFM0

.

•B

•1

•A

1
2

•
�

�✠

0•

Figure 2.2: A = 0.05−0.0866025i and B = 0.05+0.0866025i.

In Figure 2.2, the computer graphics picture illustrates how points behave under iteration of N(z) in a dynamical plane. First of all, we

will make clear the fact that we are considering the complex plane, the x-axis is the real direction and the y-axis is the imaginary direction.
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Newton’s map, N, for the polynomial FM0.001
(z) = z4 − z3 +(0.001)z−0.001 has degree 4. Since the function has four roots, the graph of

the complex plane is divided into four parts, each of which is a basin of attraction for a root. Colors indicate to which of the four roots a

given starting point converges to the finite roots of Newton’s map which are contained in the Fatou set. The turquoise area is the basin of

super-attracting fixed point for the map N, AN(1) = {z ∈ C : Nn(z)→ 1,n → ∞}. The boundary of the Newton basin including decorations

is the Julia set, AN(1) = J (NF ), on which the dynamics of Newton iteration map are chaotic. The free critical point 1/2 lies in the real

axis and in a pre-image of the immediate basin of 1. Every root can be connected ∞ within its basin of attraction. Note importantly that

there are no black regions in the basins, so Newton’s map does not fail anywhere on that basin. The decorations on the boundary of the four

immediate basins correspond to their pre-images. In addition, the immediate basin of attraction is a connected component containing the

fixed points of N. It is no longer just a simple closed curve as in the case c = 0.

(a) (b)

Figure 2.3: The parameter plane pictures for the view from 0 and ∞ for the parameter c = 0.001.

Theorem 2.2 (P. Fatou). The immediate basin of an attracting fixed point or cycle of N contains at least one critical point of N.

In this paper, Newton’s iteration map has free critical points that determine the fate of orbit in the complex dynamical behavior of N.

The vital effect in the formation of this situation is in parameter c. When the parameter c takes a non-zero value, which is quite small, a

dramatical change in the dynamics of the iteration map is observed. The importance of the periodic point in this change is seen in Figure

2.4. The parameter value of c after changing the parameter from 0 to any constant on a circle in a complex plane we see the periodic

channels leading to ∞. In order to explain this situation, we change the parameter c from real to complex. For instance, in Figures 2.4-2.5,

the value of parameter c = 0.001+0.001i. In Figure 2.4, the four roots of the function FM0.001+0.001i
: z → (z3 +0.001+0.001i)(z−1) are

−0.100008−0.00303118i, 0.0471496−0.0845998i, 0.0528568+0.08863i, 1.−0.000998994i. These are finite fixed points of Newton’s

iteration which are contained in the Fatou set. Since the function has four roots, the graph of the complex plane is divided into four parts,

each of which is a basin for a root. The boundary of the basin is the chaotic part of Newton’s fractal which is the Julia set. By the definition

of Julia set, Newton’s method does not converge on the boundary points, but it is chaotic. The Newton iteration functions for the values c

have critical points 1 and 1/2. In Figure 2.4, the green area goes to infinity and contains the free critical point. In Figure 2.5 the same area

view from the point ∞.

1
2

•
❍❍❍❥

Figure 2.4: Dynamical plane view from 0.
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Figure 2.5: Dynamical plane view from ∞.

Corollary 2.3. The non-degenerate free critical point plays a vital role in determining the dynamics of the rational map which arising in

complex Newton’s method is applied to polynomial family FMc
(z) = (z3 + c)(z−1), where c is a complex (or non-complex) parameter.
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Abstract

In this paper, we derive the forbidden set and determine the solutions of the difference

equation that contains a quadratic term

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
, n ∈ N0,

where the parameters a and b are real numbers, p is a positive integer and the initial

conditions x−p, x−p+1, · · · , x−1, x0 are real numbers.

1. Introduction

In [1], the authors determined the forbidden set, introduced an explicit formula for the solutions and discussed the global behavior of the

solutions of the difference equation

xn+1 =
axnxn−k+1

bxn−k+1 + cxn−k

, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k,x−k+1, · · · ,x−1,x0 are real numbers.

In [2], the second author studied the global behavior and introduced an explicit formula for the solutions of the difference equation

xn+1 =
axnxn−k

−bxn + cxn−k−1
, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k−1,x−k, · · · ,x−1,x0 are real numbers.

In [3], the author determined the forbidden set, introduced an explicit formula for the solutions and discussed the global behavior of solutions

of the difference equation

xn+1 =
axnxn−k

bxn − cxn−k−1
, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k−1,x−k, · · · ,x−1,x0 are real numbers.

In [4], Abo-Zeid determined the forbidden set and studied the global behavior of the solutions of the difference equation

xn+1 =
axnxn−k

bxn + cxn−k−1
, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k−1,x−k, · · · ,x−1,x0 are real numbers.

For more on difference equations, one can see [5–28] and the references therein.

In this paper we generalize the solutions of the nonlinear rational difference equations presented in [5] and [10], which were established

through a mere application of the induction principle.

Email addresses and ORCID numbers: mb299@gcloud.ua.es, 0000-0002-4768-8442 (M. Berkal), abuzead73@yahoo.com, 0000-0002-1858-5583

(R. Abo-Zeid)

, https://orcid.org/0000-0002-4768-8442
 https://orcid.org/0000-0002-1858-5583 
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2. Main Results

In this section, we investigate the solutions of the difference equation

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
, n ∈ N0, (2.1)

where the parameters a and b are real numbers, p is a positive integer and the initial conditions x−p, x−p+1, · · · , x−1, x0 are real numbers.

The transformation

un =
xn−1

xn
, with u−i =

x−i−1

x−i
, i = 0,(p−1), (2.2)

reduces equation (2.1) into the difference equation

un+1 =
a

un−p+1
+b, n ∈ N0.

Suppose that

u
( j)
m = upm+ j , j = 1, p and m ≥−1.

Then, we can write

u
( j)
m =

a

u
( j)
m−1

+b, m ∈ N0. (2.3)

Let

u
( j)
m =

zm+1

zm
, m ≥−1. (2.4)

Then, equation (2.3) becomes

zm+1 −bzm −azm−1 = 0, m ∈ N0. (2.5)

with initial condition z−1 = 1, z0 = u
( j)
−1.

Throughout this paper, we denote b2 +4a by ∆.

2.1. Case ∆ > 0

In this subsection, we have that b2 >−4a. Suppose that

φ j =
λ

j
+−λ

j
−

λ+−λ−
, j ∈ N0,

where λ+ and λ− are the roots of the equation λ 2 −bλ −a = 0.

Let

γ−i( j) = ax−iφ j + x−i−1φ j+1, i = 0,(p−1).

Using equalities (2.2) and (2.4), we can write

xpm+p =
1

∏
p
i=1 upm+i

xpm = x0

p

∏
i=1

γ−p+i(0)

γ−p+i(m+1)

=
ν

∏
p
i=1 γ−p+i(m+1)

, m ∈ N0,

where ν = ∏
p
i=0 x−i.

It follows that

xpm+t =
1

∏
t
i=1 upm+i

xpm =
ν

∏
p
i=1 γ−p+i(m)

.
∏

t
i=1 γ−p+i(m)

∏
t
i=1 γ−p+i(m+1)

=
ν

∏
t
i=1 γ−p+i(m+1)∏

p
i=t+1 γ−p+i(m)

, m ∈ N0, and t = 1, p.

Using the above arguments, we obtain the following result:

Theorem 2.1. Let {xn}∞
n=−p be a well defined solution for equation (2.1). Then

xn =











































ν

γ−p+1(
n+p−1

p )∏
p
j=2 γ−p+ j(

n−1
p )

, n = 1, p+1, ...,

ν

∏
2
i=1 γ−p+i(

n+p−2
p )∏

p
j=3 γ−p+ j(

n−2
p )

, n = 2, p+2, ...,

...
...

ν

∏
p−1
i=1 γ−p+i(

n+1
p )γ0(

n−p+1
p )

, n = p−1,2p−1, ...,

ν

∏
p
i=1 γ−p+i(

n
p )
, n = p,2p, ...,

where ν = ∏
p
i=0 x−i, γ− j(m) = ax− jφm + x− j−1φm+1, j = 0,(p−1) and m ≥−1.
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Consider the two sets

D1 =

{

(v0,v1, · · · ,vp) ∈ R
p+1 :

v0

(−1)p(λ+/a)p
=

v1

(−1)p−1(λ+/a)(p−1)
= · · · = vp−1

−λ+/a
= vp

}

,

D2 =

{

(v0,v1, · · · ,vp) ∈ R
p+1 :

v0

(−1)p(λ−/a)p
=

v1

(−1)p−1(λ−/a)(p−1)
= · · ·= vp−1

−λ−/a
= vp

}

.

Theorem 2.2. The two sets D1 and D2 are invariant sets for equation (2.1).

Proof. Let (x0,x−1, · · · ,x−p) ∈ D2. We show that (xn,xn−1, · · · ,xn−p) ∈ D2 for each n ∈ N. The proof is by induction on n. The point

(x0,x−1, · · · ,x−p) ∈ D2 implies

x0

(−1)pλ
p
−/ap

=
x−1

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
x−(p−1)

(−1)λ−/a
= x−p.

Now for n = 1, we have

x1 =
x0x−p

ax−(p−1)+bx−p
=

((−1)p−1λ
p−1
− /ap−1)x−(p−1)(−a/λ−)x−(p−1)

ax−(p−1)+b(−a/λ−)x−(p−1)

=
(−1)p

ap−1

λ
p−2
− x−(p−1)

1− b
λ−

=
(−1)pλ

p
−

ap
x−(p−1).

Then we have

x1

(−1)pλ
p
−/ap

=
x0

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
x−(p−2)

(−1)λ−/a
= x−(p−1).

This implies that (x1,x0, · · · ,x−p+1) ∈ D2. Suppose now that (xn,xn−1, · · · ,xn−p) ∈ D2. That is

xn

(−1)pλ
p
−/ap

=
xn−1

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
xn−(p−1)

(−1)λ−/a
= xn−p.

Then

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
=

((−1)p−1λ
p−1
− /ap−1)xn−(p−1)(−a/λ−)xn−(p−1)

axn−(p−1)+b(−a/λ−)xn−(p−1)

=
(−1)p

ap−1

λ
p−2
− xn−(p−1)

1− b
λ−

=
(−1)pλ

p
−

ap
xn−(p−1).

This implies that

xn+1

(−1)pλ
p
−/ap

=
xn

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
xn−(p−2)

(−1)λ−/a
= xn−(p−1).

That is (xn+1,xn, · · · ,xn−p+1) ∈ D2. Then (xn,xn−1, · · · ,xn−p) ∈ D2 for each n ∈ N. Therefore, D2 is an invariant set for equation (2.1).

By similar way, we can show that D1 is an invariant set for equation (2.1). This completes the proof.

Theorem 2.3. Assume that {xn}∞
n=−p is a well defined solution of equation (2.1). Then the following statements are true:

1. If a+b > 1, then the solution {xn}∞
n=−p converges to zero.

2. If a+b < 1, then the solution {xn}∞
n=−p is unbounded.

Proof. We can write φ j = λ
j
+

(1−(
λ−
λ+

) j)
√

b2+4a
.

1. If a+b > 1, then λ+ > 1. That is φm → ∞ as m → ∞. Then | γ− j(m)|= |ax− jφ j + x− j−1φm+1 |→ ∞ as m → ∞, j = 0,(p−1). This

implies that for each t = 1, p, we have

| xpm+t |=| ν

∏
t
i=1 γ−p+i(m+1)∏

p
i=t+1 γ−p+i(m)

|→ 0 as m → ∞.

Therefore, the solution {xn}∞
n=−p converges to zero. For (2), it is enough to note that λ+ < 1 when a+b < 1.

This completes the proof.

Theorem 2.4. Assume that a+b = 1, then every well defined solution {xn}∞
n=−p of equation (2.1) converges to a finite limit.
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Proof. When a+b = 1, we have λ+ = 1. Then

γ−p+i(m) = ax−p+ jφm + x−p+ j−1φm+1 →
ax−p+ j + x−p+ j−1

1+a
as m → ∞, j = 0,(p−1).

This implies that for each t = 1, p, we have

xpm+t =
ν

∏
t
i=1 γ−p+i(m+1)∏

p
j=t+1 γ−p+ j(m)

→ (1+a)pν

∏
p
j=1(ax−p+ j + x−p+ j−1)

as m → ∞.

Therefore, the solution {xn}∞
n=−p of equation (2.1) converges to

(1+a)pν

∏
p
j=1(ax−p+ j + x−p+ j−1)

as m → ∞.

This completes the proof.

2.2. Case ∆ = 0

During this subsection, we assume that b2 =−4a. When b2 =−4a, the solution of equation (2.5) is

zm =
1

2

(

b

2

)m

(2z0 (1+m)−bm) , m ≥−1.

It follows that

upm+ j =
b

2

(m+1)b−2u−p+ j(2+m)

mb−2u−p+ j(1+m)

=
b

2

(m+1)bx−p+ j −2x−p+ j−1(2+m)

mbx−p+ j −2x−p+ j−1(1+m)
, 1 ≤ j ≤ p.

If we set β−p+ j(m) = mbx−p+ j −2x−p+ j−1(1+m), then we can write

upm+ j =
b

2

β−p+ j(m+1)

β−p+ j(m)
, 1 ≤ j ≤ p. (2.6)

Using equalities (2.2) and (2.6), we obtain the following result:

Theorem 2.5. Let {xn}∞
n=−p be a well defined solution of equation (2.1). If b2 +4a = 0, then

xn =











































(−2)p( 2
b
)n ν

β−p+1(
n+p−1

p )∏
p
j=2 β−p+ j(

n−1
p )

, n = 1, p+1, ...,

(−2)p( 2
b
)n ν

∏
2
i=1 β−p+i(

n+p−2
p )∏

p
j=3 β−p+ j(

n−2
p )

, n = 2, p+2, ...,

...
...

(−2)p( 2
b
)n ν

∏
p−1
i=1 β−p+i(

n+1
p )β0(

n−p+1
p )

, n = p−1,2p−1, ...,

(−2)p( 2
b
)n ν

∏
p
i=1 β−p+i(

n
p )
, n = p,2p, ...,

(2.7)

where ν = ∏
p
i=0 x−i, β− j(m) = mbx− j −2x− j−1(1+m), j = 0,(p−1) and m ≥−1.

Theorem 2.6. Assume that {xn}∞
n=−p is a well defined solution of equation (2.1). The following statements are true:

1. If b ≥ 2 then the solution {xn}∞
n=−p converges to zero.

2. If b < 2 then the solution {xn}∞
n=−p is unbounded.

Proof. The solution formula (2.7) can be written in the form

xpm+t = (−2)p

(

2

b

)pm+t ν

∏
t
i=1 β−p+i(m+1)∏

p
j=t+1 β−p+ j(m)

, t = 1, p. (2.8)

Clear that β−p+i(m) are unbounded, i = 1, p.

1. If b ≥ 2, then 2
b ≤ 1 and the result follows.

2. If b < 2, then ( 2
b )

pm+t → ∞ as m → ∞ for all t = 1, p.

Using formula (2.8), we can write for t = 1

| xpm+1 |=| (−2)p(
2

b
)pm+1 ν

β−p+1(m+1)∏
p
j=2 β−p+ j(m)

|

=| (−2)p | ( 2
b )

pm+1

mp(1+ 1
m )

× | ν

(bx−p+1 −2x−p
2+m
1+m )∏

p
j=2 (bx−p+ j −2x−p+ j−1

1+m
m )

| .
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Using L’Hospital’s rule we can show that

( 2
b )

pm+1

mp(1+ 1
m )

→ ∞ as m → ∞.

This implies that | xpm+1 |→ ∞ as m → ∞. Similarly, | xpm+t |→ ∞ as m → ∞, 2 ≤ t ≤ p. Therefore, the solution {xn}∞
n=−p is

unbounded.

This completes the proof.

2.3. Case ∆ < 0

During this subsection, we assume that b2 <−4a. When b2 <−4a, the solution of equation (2.5) is

zm =
(−a)

m
2

sinθ

(

z0 sin(m+1)θ −
√
−asinmθ

)

, m ≥−1.

It follows that

upm+ j =
√
−a

α−p+ j(m+1)

α−p+ j(m)
, j = 1, p, (2.9)

where θ = arctan
(√

−b2−4a
b

)

, sinθ =
√
−b2−4a
2
√
−a

and α−p+ j(m) = x−p+ j

√
−asinmθ − x−p+ j−1 sin(m+1)θ , j = 1, p, and m ≥−1. Using

equalities (2.2) and (2.9), we obtain the following result:

Theorem 2.7. Let {xn}∞
n=−p be a well defined solution of equation (2.1). If b2 +4a < 0, then

xn =















































(−1)p sinp θ

(
√
−a)n

ν

α−p+1(
n+p−1

p )∏
p
j=2 α−p+ j(

n−1
p )

, n = 1, p+1, ...,

(−1)p sinp θ

(
√
−a)n

ν

∏
2
i=1 α−p+i(

n+p−2
p )∏

p
j=3 α−p+ j(

n−2
p )

, n = 2, p+2, ...,

...
...

(−1)p sinp θ

(
√
−a)n

ν

∏
p−1
i=1 α−p+i(

n+1
p )α0(

n−p+1
p )

, n = p−1,2p−1, ...,

(−1)p sinp θ

(
√
−a)n

ν

∏
p
i=1 α−p+i(

n
p )
, n = p,2p, ...,

(2.10)

where ν = ∏
p
i=0 x−i, α− j(m) = x− j

√
−asinmθ − x− j−1 sin(m+1)θ , j = 0,(p−1) and m ≥−1.

Theorem 2.8. Assume that (xn)
∞
n=−p is a well defined solution of equation (2.1). The following statements are true:

1. Let a =−1 and if θ = l
M π is a rational multiple of π (with 0 < l < M

2 ), then {xn}∞
n=−p is periodic with prime period pM (if l p is

even) or prime period 2pM (if l p is odd).

2. If −1 < a < 0, then the solution {xn}∞
n=−p is unbounded.

3. If a <−1, then the solution {xn}∞
n=−p converges to zero.

Proof. We can write the solution (2.10) as

xpm+t =
(−1)p sinp θ

(
√
−a)pm+t

ν

∏
t
i=1 α−p+i(m+1)∏

p
j=t+1 α−p+ j(m)

, (2.11)

where t = 1, p and m ≥−1.

1. Suppose that a =−1 and let θ = l
M π be a rational multiple of π (with 0 < l < M

2 ). Then for each i = 1, p, we have

α−i(m+M) = x−i sin(m+M)θ − x−i−1 sin(m+M+1)θ ,

= x−i sin(mθ +Mθ)− x−i−1 sin((m+1)θ +Mθ) ,

= x−i sin(mθ + lπ)− x−i−1 sin((m+1)θ + lπ) ,

= (−1)lα−i(m).

Then for each t = 1, p, we have

xpm+pM+t = (−1)p sinp θ
ν

∏
t
i=1 α−p+i(m+M+1)∏

p
j=t+1 α−p+ j(m+M)

= (−1)plxpm+t .

Therefore, if l p is even, then the solution {xn}∞
n=−p is periodic with prime period pM and if l p is odd, then the solution {xn}∞

n=−p is

periodic with prime period 2pM. (2) and (3) are directly obtained using (2.11).

This completes the proof.
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2.4. The forbidden sets

In this subsection, we introduce the forbidden sets of equation (2.1).

Theorem 2.9. The following statements are true:

1. If b2 +4a > 0, then the forbidden set of equation (2.1) can be written as

F1 =
p
⋃

i=0

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−i = 0

}

∪

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−p+1 =−1

a

φm+1

φm
u−p

}

∪

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−p+2 =−1

a

φm+1

φm
u−p+1

}

∪

...

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u0 =−1

a

φm+1

φm
u−1

}

.

2. If b2 +4a = 0, then the forbidden set of equation (2.1) can be written as

F2 =
p
⋃

i=0

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−i = 0

}

∪

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−p+1 =

2(1+m)

mb
u−p

}

∪

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−p+2 =

2(1+m)

mb
u−p+1

}

∪

...

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u0 =

2(1+m)

mb
u−1

}

.

3. If b2 +4a < 0, then the forbidden set of equation (2.1) can be written as

F3 =
p
⋃

i=0

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−i = 0

}

∪

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−p+1 =

sin(m+1)θ√
−asinmθ

u−p

}

∪

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u−p+2 =

sin(m+1)θ√
−asinmθ

u−p+1

}

∪

...

∞
⋃

m=1

{

(u0,u−1, ...,u−p) ∈ R
p+1 : u0 =

sin(m+1)θ√
−asinmθ

u−1

}

.

3. Illustrative Examples

Example 3.1. Figure 3.1 shows that, if p = 7, a = 0.2 and b = 1(∆ > 0and a+b > 1), then a solution {xn}∞
n=−7 of equation (2.1) with

x−7 =−4,x−6 =−5,x−5 =−3, x−4 =−8.2, x−3 = 5, x−2 = 3, x−1 = 6.2 and x0 =−7 converges to zero.

Example 3.2. Figure 3.2 shows that, if p = 4, a = 0.1 and b = 0.7(∆ > 0and a+b < 1), then a solution {xn}∞
n=−4 of equation (2.1) with

x−4 =−1,x−3 =−3,x−2 =−5.9,x−1 =−3 and x0 =−12.2 is unbounded.

Example 3.3. Figure 3.3 shows that, if p = 7, a = −1 and b = 2(∆ = 0), then a solution {xn}∞
n=−7 of equation (2.1) with x−7 = −2,

x−6 =−5, x−5 =−3, x−4 =−12.2, x−3 = 5, x−2 = 3, x−1 = 6.2 and x0 =−5 converges to zero.

Example 3.4. Figure 3.4 shows that, if p = 7, a = −1/4 and b = 1(∆ = 0and b < 2), then a solution {xn}∞
n=−7 of equation (2.1) with

x−7 =−4, x−6 =−5.3, x−5 =−1.3, x−4 =−9.2, x−3 = 6, x−2 = 13, x−1 = 6.2 and x0 =−5 is unbounded.
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Figure 3.1: Equation xn+1 =
xnxn−7

0.2xn−6+xn−7
. Figure 3.2: Equation xn+1 =

xnxn−4
0.1xn−3+0.7xn−4

.

Figure 3.3: Equation xn+1 =
xnxn−7

−xn−6+2xn−7
. Figure 3.4: Equation xn+1 =

xnxn−7
−0.25xn−6+xn−7

.

Example 3.5. Figure 3.5 shows that, if p = 4, a =−1 and b =
√

3(∆ < 0and l p iseven), then a solution {xn}∞
n=−4 of equation (2.1) with

x−4 =−2, x−3 =−5, x−2 = 3, x−1 = 2.2 and x0 = 5 is periodic with prime period 24.

Example 3.6. Figure 3.6 shows that, if p = 7, a = −1 and b = 1(∆ < 0and l p isodd), then a solution {xn}∞
n=−7 of equation (2.1) with

x−7 =−1, x−6 =−7, x−5 =−4, x−4 =−12.2, x−3 = 5, x−2 = 3, x−1 = 6.2 and x0 =−5 is periodic with prime period 42.

Figure 3.5: Equation xn+1 =
xnxn−4

−xn−3+
√

3xn−4
. Figure 3.6: Equation xn+1 =

xnxn−7
−xn−6+xn−7

.

Example 3.7. Figure 3.7 shows that, if p = 3, a = 0.3 and b = 0.7(∆ > 0and a+b = 1), then a solution {xn}∞
n=−3 of equation (2.1) with

initial conditions x−3 = 1, x−2 =−2, x−1 = 1 and x0 = 0.7 converges to

(1.3)3((1)(−2)(1)(0.7))

∏
3
j=1(0.3x−3+ j + x−4+ j)

≃ 3.738.

Example 3.8. Figure 3.8 shows that, if p = 5, a = 0.2 and b = 0.8(∆ > 0and a+b = 1), then a solution {xn}∞
n=−5 of equation (2.1) with

initial conditions x−5 =−2, x−4 =−1, x−3 = 0.5, x−2 = 0.8, x−1 = 0.7 and x0 =−0.8 converges to

(1.2)5((−2)(−1)(0.5)(0.8)(0.7)(−0.8))

∏
5
j=1(0.2x−5+ j + x−6+ j)

≃−1.681.
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Figure 3.7: Equation xn+1 =
xnxn−3

0.3xn−2+0.7xn−3
. Figure 3.8: Equation xn+1 =

xnxn−7
0.2xn−6+0.8xn−7

.

Conclusion

In this study, we mainly obtained the solutions and introduced the forbidden sets of the difference equation that contains a quadratic term

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
, n ∈ N0,

where the parameters a and b are real numbers, p is a positive integer and the initial conditions x−p, x−p+1, · · · , x−1, x0 are real numbers.

Also, we showed that the behavior of the solutions depends on the relation between a and b. That is if {xn}∞
n=−p is a solution of that equation,

it may be converge to finite limit, unbounded or periodic with a certain period that depends on p. The mentioned difference equation may be

generalized to a more complicated one that may has a complicated behavior.
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Abstract

The main object of the study is to consider the binomial transform for quadra Fibona-Pell

sequence and quadra Fibona-Pell quaternion. In the paper, which consists of two parts

in terms of the results found, the first step was taken for the sequence by defining the

binomial transform for the quadra Fibona-Pell sequence in the first part and then finding the

recurrence relation of this new binomial transform. Then, the Binet formula, generating

function and various sum formulas of the sequence were found. In the second part, the

binomial transform is applied for the quadra Fibona-Pell quaternion, which was discussed

in a thesis before. Similar results in the first section are covered in the quaternion binomial

transform.

1. Introduction

Number sequences such as Fibonacci, Pell, quadra Fibona-Pell, and their generalized versions are widely used in the literature. Fibonacci

numbers form a sequence defined by the following recurrence relation: F0 = 0,F1 = 1 and Fn = Fn−1+Fn−2 for all n ≥ 2. The first Fibonacci

numbers are 0,1,1,2,3,5,8,13,21,34,55,89,144,233, · · · . The characteristic equation of Fn is x2 − x−1 = 0 and hence the roots of it are

α = 1+
√

5
2 and β = 1−

√
5

2 .It has become known as Binet’s formula Fn =
αn−β n

α−β
for n ≥ 0. The Pell numbers are defined by the recurrence

relation P0 = 0, P1 = 1 and Pn = 2Pn−1 +Pn−2 for n ≥ 2. The first few terms of the sequence are 0,1,2,5,12,29,70,169,408, 985,2378 · · · .
See [1] for detailed information on Fibonacci and Pell number sequences.

In [2], the author examined sequence with fourth-order recurrence relation and discussed a new sequence of fourth-order formed by the roots

of the characteristic equation of both Fibonacci and Pell number sequences. Later, different authors worked with similar integer sequences

with the same logic, see [3, 4]. In addition, we can come across many studies on integer sequences with fourth-order recurrence relation in

the literature, see [5]. Quadra Fibona-Pell sequence as follows in [2]:

Wn = 3Wn−1 − 3Wn−3 +Wn−4 (1.1)

for n ≥ 4, with initial values W0 =W1 = 0,W2 = 1,W3 = 3 and Wn is n−th quadra Fibona-Pell sequence. Note that here, the roots of the

characteristic equation of Wn are the roots of the characteristic equations of both Fibonacci and Pell sequences, so α = 1+
√

5
2 , β = 1−

√
5

2 ,

γ = 1+
√

2 and δ = 1−
√

2 (α,β are the roots of the characteristic equation of Fibonacci numbers and γ,δ are the roots of the characteristic

equation of Pell numbers). The Binet formula for the quadra Fibona-Pell sequence is given by

Wn =
γn −δ n

γ −δ
− αn −β n

α −β

for n ≥ 0. Besides that generating function for the quadra Fibona-Pell sequence is

W (x) =
x2

x4 +3x3 −3x+1
.

Email addresses and ORCID numbers: arzuozkoc@edu.tr, 0000-0002-2196-3725 (A. Özkoç Öztürk ), eda.gunduz.97@gmail.com, 0000-0003-

1985-6506 (E. Gündüz)
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Normed division algebra, nowadays which is so important topic consists of the real numbers R, complex numbers C, quaternions H.

Quaternions are non-commutative normed division algebra over the real numbers, even it looks like things are going to be done with

quaternions. For a0,a1,a2,a3 ∈ R, a quaternion is defined by

e = a0 +a1i+a2 j+a3k

where i, j and k are unit vectors which verifies the following rules

i2 = j2 = k2 = i jk =−1. (1.2)

From equation (1.2), we get

i j =− ji = k, jk =−k j = i, jk =−k j = i.

You can find detailed information about quaternions from [6–8].

2. Binomial Transform of Quadra Fibona-Pell Sequence

It is possible to find different articles in the literature on binomial transforms of sequences as [9]. Actually, one of these was studied by

Chen [10] and later was studied by Falcon in [11]. In [12], given a sequence A = {a1,a2, · · ·}, its binomial transform B is the sequence

B(A) = {bn} defined as follows:

bn =
n

∑
i=0

(

n

i

)

ai. (2.1)

Also, detailed information about binomial transform can be found in [13, 14]. Some authors considered special binomial sequences which

are based on fourth-order recurrence relations, for example binomial transform of quadrapell sequences in [15].

In this part of the study, with similar logic, we apply the binomial transform of quadra Fibona-Pell sequence. When the binomial transform of

the quadra Fibona-Pell sequence, which has a fourth-order recurrence relation, is made, some additional identities, especially the generating

function, Binet formula and sum formulas, will be found for the new sequence obtained.

Definition 2.1. Let Wn be the n−th Quadra Fibona-Pell sequence. Then the binomial transform of quadra Fibona-Pell sequence is

bn =
n

∑
i=0

(

n

i

)

Wi. (2.2)

Lemma 2.2. Let bn be the binomial transform of quadra Fibona-Pell sequence. Then

bn+1 =
n

∑
i=0

(

n

i

)

(Wi +Wi).

Proof. By the help of (2.2), we get

bn+1 =
n+1

∑
i=0

(

n+1

i

)

Wi =
n+1

∑
i=1

(

n+1

i

)

Wi +W0.

Also
(

n
j−1

)

+
(

n
j

)

=
(

n+1
j

)

and
(

n
n+1

)

= 0, we get

bn+1 =
n+1

∑
i=1

[(

n

i−1

)

+

(

n

i

)]

Wi +W0.

Thus we obtain that

bn+1 =
n

∑
i=0

(

n

i

)

(Wi +Wi+1).

This completes the proof.

From Lemma 2.2, we can give the following result for the binomial transform of quadra Fibona-Pell sequence.

Corollary 2.3. Let bn be the binomial transform of quadra Fibona-Pell sequence. Then

bn+1 = bn +
n

∑
i=0

(

n

i

)

Wi+1.

The recurrence relation of the binomial transforms of quadra Fibona-Pell sequence is obtained below.

Theorem 2.4. Let bn is the binomial transform of quadra Fibona-Pell sequence. bn states the following recurrence relation

bn+3 = 7bn+2 −15bn+1 +10bn −2bn−1 (2.3)

for n ≥ 4, where b0 = b1 = 0,b2 = 1 and b3 = 6 .
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Proof. Using Lemma 2.2 we get,

bn+3 = K1bn+2 +L1bn+1 +M1bn +N1bn−1.

Then, if we solve the system of equations

n = 1 ⇒ b4 = K1b3 +L1b2 +M1b1 +N1b0,

n = 2 ⇒ b5 = K1b4 +L1b3 +M1b2 +N1b1,

n = 3 ⇒ b6 = K1b5 +L1b4 +M1b3 +N1b2,

n = 4 ⇒ b7 = K1b6 +L1b5 +M1b4 +N1b3,

by considering Definition 2.1, we deduce

K1 = 7, L1 =−15, M1 = 10, N1 =−2.

which is completed the proof.

The generating function of the new binomial transform is found below.

Theorem 2.5. Let bn be the binomial transform of quadra Fibona-Pell sequence. The generating function of the related binomial transform

is

b(x) =
x2 − x3

1−7x+15x2 −10x3 +2x4
,

where b0 = b1 = 0,b2 = 1 and b3 = 6.

Proof. Assume that

b(x) =
∞

∑
i=0

bix
i

is the generating function of the binomial transform for Wn. Then

b(x) = b0 +b1x+b2x2 +b3x3 + · · ·
7xb(x) = 7b0x+7b1x2 +7b2x3 +7b3x4 + · · ·

15x2b(x) = 15b0x2 +15b1x3 +15b2x4 +15b3x5 + · · ·
10x3b(x) = 10b0x3 +10b1x4 +10b2x5 +10b3x6 + · · ·

2x4b(x) = 2b0x4 +2b1x5 +2b2x6 +2b3x7 + · · ·.
Since, from equation (2.3), we obtain

(1−7x+15x2 −10x3 +2x4)b(x) = x2 − x3

and hence, the generating function for the binomial transform of the bn is

b(x) =
x2 − x3

1−7x+15x2 −10x3 +2x4
.

Another formula that is essential to find other results of the binomial transform is the Binet formula, which is provided below.

Theorem 2.6. Let bn be the binomial transform of quadra Fibona-Pell sequence. The Binet formula for bn is

bn =
(γ +1)n − (δ +1)n

γ −δ
− α2n −β 2n

α −β
(2.4)

for n > 0.

Proof. Note that the generating function is W (x) = x2−x3

1−7x+15x2−10x3+2x4 . It is easily seen that 1 − 7x + 15x2 − 10x3 + 2x4 =

(2x2 −4x+1)(x2 −3x+1). So we can rewrite W (x) as

x2 − x3

1−7x+15x2 −10x3 +2x4
=

x

2x2 −4x+1
− x

x2 −3x+1

=
∞

∑
n=0

(γ +1)n − (δ +1)n

γ −δ
−

∞

∑
n=0

α2n −β 2n

α −β

=
∞

∑
n=0

(

(γ +1)n − (δ +1)n

γ −δ
− α2n −β 2n

α −β

)

where α = 1+
√

5
2 , β = 1−

√
5

2 , γ = 1+
√

2 and δ = 1−
√

2. Using roots in quadra Fibona-Pell sequence, we get

bn =
(γ +1)n − (δ +1)n

γ −δ
− α2n −β 2n

α −β

the result.
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In the most general case, the following result was found for the series expansions.

Theorem 2.7. Let bn be the binomial transform of quadra Fibona-Pell sequence. Then

∞

∑
n=0

bmn+sx
n = bs

(

1

A1
+

1

B1

)

−bs−m

(

2m

A1
+

1

B1

)

x+C1

for all n ∈ N and m,s ∈ N, s > m,

A1 =(1− (γ +1)mx)(1− (δ +1)mx),

B1 =(1−α2mx)(1−β 2mx),

C1 =
1

A1

(

γ2s −δ 2s

γ −δ

)

− 1

B1

(

(γ +1)s − (δ +1)s

γ −δ

)

− 2m

A1

(

α2(s−m)−β 2(s−m)

α −β

)

x+
1

B1

(

(γ +1)s−m − (δ +1)s−m

γ −δ

)

x.

Proof. Again from equation (2.4), we get

∞

∑
n=0

bmn+sx
n =

∞

∑
n=0

(

(γ +1)mn+s − (δ +1)mn+s

γ −δ
− α2(mn+s)−β 2(mn+s)

α −β

)

xn

=
(γ +1)s

γ −δ

∞

∑
n=0

((γ +1)mx)n − (δ +1)s

γ −δ

∞

∑
n=0

((δ +1)mx)n − α2s

α −β

∞

∑
n=0

(α2mx)n +
β 2s

α −β

∞

∑
n=0

(β 2mx)n

with the help of sum formula, we get

∞

∑
n=0

bmn+sx
n =

(γ +1)s

γ −δ

(

1

1− (γ +1)mx

)

− (δ +1)s

γ −δ

(

1

1− (δ +1)mx

)

− α2s

α −β

(

1

1−α2mx

)

+
β 2s

α −β

(

1

1−β 2mx

)

=

(γ+1)s−(δ+1)s

γ−δ
− ((γ +1)(δ +1))m

(

(γ+1)s−m−(δ+1)s−m

γ−δ

)

x

1− ((γ +1)m +(δ +1)m)x+((γ +1)(δ +1))mx2
−

α2s−β 2s

α−β
− (αβ )2m

(

α2(s−m)−β 2(s−m)

α−β

)

x

1− (α2m +β 2m)x+(αβ )2mx2

=
1

A1

(

(γ +1)s − (δ +1)s

γ −δ

)

− ((γ +1)(δ +1))m

A1

(

(γ +1)s−m − (δ +1)s−m

γ −δ

)

x

− 1

B1

(

α2s −β 2s

α −β

)

+
(αβ )2m

B1

(

α2(s−m)−β 2(s−m)

α −β

)

x,

if necessary arrangements are made, then we get

∞

∑
n=0

bmn+sx
n =

(α −β )

A1

(

(γ +1)s − (δ +1)s

(γ −δ )(α −β )

)

− (γ −δ )

B1

(

α2s −β 2s

(α −β )(γ −δ )

)

− ((γ +1)(δ +1))m (α −β )

A1

(

(γ +1)s−m − (δ +1)s−m

(γ −δ )(α −β )

)

x+
(αβ )2m (γ −δ )

B1

(

α2(s−m)−β 2(s−m)

(α −β )(γ −δ )

)

x

=
1

A1

(

bs((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(α2s −β 2s)

(α −β )(γ −δ )

)

− 1

B1

(

(α −β )((γ +1)s − (δ +1)s)−bs((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

− ((γ +1)(δ +1))m

A1

(

bs−m((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(α2(s−m)−β 2(s−m))

(α −β )(γ −δ )

)

x

+
(αβ )2m

B1

(

(α −β )
(

(γ +1)s−m − (δ +1)s−m
)

−bs−m((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

x

=bs

(

1

A1
+

1

B1

)

−bs−m

(

2m

A1
+

1

B1

)

x+C1.

Hence the result is obvious.

Now let’s get a grand total formula that includes all the sum results that deal with the sum formulas of mk+ s terms.

Theorem 2.8. Let bn be the binomial transform of quadra Fibona-Pell sequence. Then

n

∑
k=0

bmk+s =
2m

A2
(bmn+s −bs−m)+

1

B2
(bmn+s +bs−m +bmn+m+s −bs)+

1

A2
(bs −bmn+m+s)+C2
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for all n ∈ N and m,s ∈ Z,s > m, where

A2 =(γ +1)m(δ +1)m − ((γ +1)m +(δ +1)m)+1

B2 =α2mβ 2m −
(

α2m +β 2m
)

+1

C2 =
2m

A2

(

α2(mn+s)−β 2(mn+s)

α −β

)

− 1

B2

(

(γ +1)mn+s − (δ +1)mn+s

γ −δ

)

− 2m

A2

(

α2(s−m)−β 2(s−m)

α −β

)

+
1

B2

(

(γ +1)s−m − (δ +1)s−m

γ −δ

)

− 1

A2

(

α2(mn+m+s)−β 2(mn+m+s)

α −β

)

+
1

B2

(

(γ +1)mn+m+s − (δ +1)mn+m+s

γ −δ

)

+
1

A2

(

α2s −β 2s

α −β

)

− 1

B2

(

(γ +1)s − (δ +1)s

γ −δ

)

.

Proof. From (2.4), we get

n

∑
k=0

bmk+s =
n

∑
k=0

(

(γ +1)mk+s − (δ +1)mk+s

γ −δ
− α2(mk+s)−β 2(mk+s)

α −β

)

=
(γ +1)s

γ −δ





(

((γ +1)m)n+1 −1
)

((δ +1)m −1)

((γ +1)m −1)((δ +1)m −1)



− (δ +1)s

γ −δ





(

((δ +1)m)n+1 −1
)

((γ +1)m −1)

((δ +1)m −1)((γ +1)m −1)





− α2s

α −β





(

(

α2m
)n+1 −1

)

(

β 2m −1
)

(α2m −1)(β 2m −1)



+
β 2s

α −β





(

(

β 2m
)n+1 −1

)

(

α2m −1
)

(β 2m −1)(α2m −1)





=























(γ +1)m(δ +1)m

(

(γ +1)mn+s − (δ +1)mn+s

γ −δ

)

− (γ +1)m(δ +1)m

(

(γ +1)s−m − (δ +1)s−m

γ −δ

)

−
(

(γ +1)mn+m+s − (δ +1)mn+m+s

γ −δ

)

+

(

(γ +1)s − (δ +1)s

γ −δ

)























(γ +1)m(δ +1)m − ((γ +1)m +(δ +1)m)+1

−























(αβ )2m

(

α2(mn+s)−β 2(mn+s)

α −β

)

+(αβ )2m

(

α2(s−m)−β 2(s−m)

α −β

)

+

(

α2(mn+m+s)−β 2(mn+m+s)

α −β

)

−
(

α2s −β 2s

α −β

)























α2mβ 2m − (α2m +β 2m)+1
.

As a result of calculations, we obtained

n

∑
k=0

bmk+s =
(γ +1)m(δ +1)m

A2

(

bmn+s((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(α2(mn+s)−β 2(mn+s))

(α −β )(γ −δ )

)

− (αβ )2m

B2

(

(α −β )((γ +1)mn+s − (δ +1)mn+s)−bmn+s((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

− (γ +1)m(δ +1)m

A2

(

bs−m((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(α2(s−m)−β 2(s−m))

(α −β )(γ −δ )

)

+
(αβ )2m

B2

(

(α −β )((γ +1)s−m − (δ +1)s−m)−bs−m((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

− 1

A2

(

bmn+m+s((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(α2(mn+m+s)−β 2(mn+m+s))

(α −β )(γ −δ )

)

+
1

B2

(

(α −β )((γ +1)mn+m+s − (δ +1)mn+m+s)−bmn+m+s((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

+
1

A2

(

bs((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(α2s −β 2s)

(α −β )(γ −δ )

)

.
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Note that if we substitute the roots of the characteristic equation,

n

∑
k=0

bmk+s =
2m

A2
bmn+s +

1

B2
bmn+s +

2m

A2

(

α2(mn+s)−β 2(mn+s)

α −β

)

− 1

B2

(

(γ +1)mn+s − (δ +1)mn+s

γ −δ

)

− 2m

A2
bs−m +

1

B2
bs−m

+
2m

A2

(

α2(s−m)−β 2(s−m)

α −β

)

+
1

B2

(

(γ +1)s−m − (δ +1)s−m

γ −δ

)

− 1

A2
bmn+m+s +

1

B2
bmn+m+s

− 1

A2

(

α2(mn+m+s)−β 2(mn+m+s)

α −β

)

+
1

B2

(

(γ +1)mn+m+s − (δ +1)mn+m+s

γ −δ

)

+
1

A2
bs −

1

B2
bs

+
1

A2

(

α2s −β 2s

α −β

)

− 1

B2

(

(γ +1)s − (δ +1)s

γ −δ

)

=
2m

A2
(bmn+s −bs−m)+

1

B2
(bmn+s +bs−m +bmn+m+s −bs)+

1

A2
(bs −bmn+m+s)+C2.

We get the result.

3. Binomial Transform of Quadra Fibona-Pell Quaternions

In this section, we give the binomial transform of quadra Fibona-Pell quaternion sequence and obtain some certain identities related to this

binomial transform. In [16], quaternion state of the Fibonacci-Pell sequence was investigated and here, Binet Formula, generating function,

sum formulas are obtained. In [17], the results for the new sequence obtained by applying binomial transform to the quaternion sequence of

the Horadam sequence, which is an integer sequence with a quadratic recurrence relation, are found. In [18], both quaternion and binomial

transform are examined simultaneously for the first time.

In [16], let Wn be the quadra Fibona-Pell sequence, then

QWn =Wn +Wn+1i+Wn+2 j+Wn+3k

is called a quadra Fibona-Pell quaternion, containing the initial values of

QW0 = j+3k,

QW1 =i+3 j+9k,

QW2 =1+3i+9 j+24k,

QW3 =3+9i+24 j+62k.

Let QWn be the n− th quadra Fibona-Pell quaternion. Then the binomial transform of quadra Fibona-Pell sequence is

bqn =
n

∑
i=0

(

n

i

)

QWi. (3.1)

Let us give a Lemma as a first step to find the recurrence relation of the binomial transform.

Lemma 3.1. Let bn be the binomial transform of quadra Fibona-Pell quaternion. Then

bqn+1 =
n

∑
i=0

(

n

i

)

(QWi +QWi+1).

Proof. Notice that the equation (2.1)

bqn =
n

∑
i=0

(

n

i

)

QWi,

bqn+1 =
n+1

∑
i=0

(

n+1

i

)

QWi,

bqn+1 =
n+1

∑
i=1

(

n+1

i

)

QWi +QW0.

Since
(

n
i

)

+
(

n
i−1

)

=
(

n+1
i

)

and
(

n
n+1

)

= 0, we get

bqn+1 =
n+1

∑
i=1

[(

n

i

)

+

(

n

i−1

)]

QWi +QW0

=
n+1

∑
i=1

(

n

i

)

QWi +
n+1

∑
i=1

(

n

i−1

)

QWi +QW0

=
n

∑
i=0

(

n

i

)

QWi +
n

∑
i=0

(

n

i

)

QWi+1

=
n

∑
i=0

(

n

i

)

(QWi +QWi+1) .
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Theorem 3.2. The binomial transform of quadra Fibona-Pell quaternion states following recurrence relation

bqn+3 = 7bqn+2 −15bqn+1 +10bqn −2bqn−1 (3.2)

for n ≥ 4, where

bq0 = j+3k,

bq1 =i+4 j+12,

bq2 =1+5i+16 j+45k,

and

bq3 = 6+21i+61 j+164k.

Proof. Using Lemma 3.1 we get,

bqn+3 = K2bqn+2 +L2bqn+1 +M2bqn +N2bqn−1.

If we take n = 1,2,3,4 we take the system,

n = 1 ⇒ bq4 = K2bq3 +L2bq2 +M2bq1 +N2bq0,

n = 2 ⇒ bq5 = K2bq4 +L2bq3 +M2bq2 +N2bq1,

n = 3 ⇒ bq6 = K2bq5 +L2bq4 +M2bq3 +N2bq2,

n = 4 ⇒ bq7 = K2bq6 +L2bq5 +M2bq4 +N2bq3.

By considering Cramer’s rule for the system, we obtain

K2 = 7, L2 =−15, M2 = 10, N2 =−2

which is completed the proof.

Theorem 3.3. Let bqn be the binomial transform of quadra Fibona-Pell quaternion sequences. The generating function of the related

binomial transform is

bq(x) =
bq0 +(bq1 −7bq0)x+(bq2 −7bq1 +15bq0)x2 +(bq3 −7bq2 +15bq1 −10bq0)x3

1−7x+15x2 −10x3 +2x4

where bq0 = j+3k, bq1 = i+4 j+12, bq2 = 1+5i+16 j+45k and bq3 = 6+21i+61 j+164k .

Proof. Assume that

bq(x) =
∞

∑
i=0

bqix
i

is the generating function of the binomial transform for QWn.Then

bq(x) = bq0 +bq1x+bq2x2 +bq3x3 + · · ·
7xbq(x) = 7bq0x+7bq1x2 +7bq2x3 +7bq3x4 + · · ·

15x2bq(x) = 15bq0x2 +15bq1x3 +15bq2x4 +15bq3x5 + · · ·
10x3bq(x) = 10bq0x3 +10bq1x4 +10bq2x5 +10bq3x6 + · · ·
2x4bq(x) = 2bq0x4 +2bq1x5 +2bq2x6 +2bq3x7 + · · ·

Since from equation (3.2), we obtain

(1−7x+15x2 −10x3 +2x4)bq(x) = j+3k+(i−3 j−9k)x+(1−2i+3 j+6k)x2 +(−1+ ı̂− j− k)x3

and hence the generating function for the binomial transform of the bqn is

bq(x) =
bq0 +(bq1 −7bq0)x+(bq2 −7bq1 +15bq0)x2 +(bq3 −7bq2 +15bq1 −10bq0)x3

1−7x+15x2 −10x3 +2x4
.

Finally, we can give the following result.

Now let’s find the Binet formula, which we will use for the identities. For this, let the following equations be given

A =−10bq0 +15bq1 −7bq2 +bq3, (3.3)

B =−3bq0 +10bq1 −6bq2 +bq3,

C =−10bq0 +24bq1 −13bq2 +2bq3,

D =4bq0 −10bq1 +6bq2 −bq3.
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Theorem 3.4. Let bqn be the binomial transform of quadra Fibona-Pell quaternion sequences. Binet formula for the related binomial

transform is

bqn =
P(γ +1)n −R(δ +1)n

γ −δ
+

Sα2n −T β 2n

α −β
(3.4)

for n > 0, where

A+B(γ +1) =P,

A+B(δ +1) =R,

C+D
(

α2
)

=S,

C+D
(

β 2
)

=T.

Proof. Assume that, from the previous theorem

bq(x) =
Ax+B

2x2 −4x+1
+

Cx+D

x2 −3x+1
.

When the denominator is equal

B+D =bq0,

A+2C =bq3 −7bq2 +15bq1 −10bq0,

B−3A−4C+2D =bq2 −7bq1 +15bq0,

A−3B+C−4D =bq1 −7bq0.

the equation is obtained (3.3). When the values are replaced, we get

A =−10( j+3k)+15(i+4 j+12k)−7(1+5i+16 j+45k)+6+21i+61 j+164k

=i− j− k−1,

B =−3( j+3k)+10(i+4 j+12k)−6(1+5i+16 j+45k)+6+21i+61 j+164k

=i+2 j+5k,

C =−10( j+3k)+24(i+4 j+12k)−13(1+5i+16 j+45k)+2(6+21i+61 j+164k)

=−1+ i+ k,

D =4( j+3k)−10(i+4 j+12k)+6(1+5i+16 j+45k)− (6+21i+61 j+164k)

=− i− j−2k.

Finally, when necessary calculations are taken

bq(x) =
Ax+B

2x2 −4x+1
+

Cx+D

x2 −3x+1

=
Ax

2x2 −4x+1
+

B

2x2 −4x+1
+

Cx

x2 −3x+1
+

D

x2 −3x+1

=
A(γ +1)n −A(δ +1)n +B(γ +1)n+1 −B(δ +1)n+1

γ −δ
+

Cα2n −Cβ 2n +Dα2n+2 −Dβ 2n+2

α −β

=
(γ +1)n (A+B(γ +1))− (δ +1)n (A+B(δ +1))

γ −δ
+

α2n
(

C+Dα2
)

−β 2n
(

C+Dβ 2
)

α −β

we find the result

bqn =
P(γ +1)n −R(δ +1)n

γ −δ
+

Sα2n −T β 2n

α −β

where

A+B(γ +1) =P,

A+B(δ +1) =R,

C+Dα2 =S,

C+Dβ 2 =T.

Now, we can give the following result.
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Theorem 3.5. Let bqn be the binomial transform of quadra Fibona-Pell quaternion sequences. Then

∞

∑
n=0

bqmn+sx
n = bs

(

1

E1
− 1

F1

)

−bs−m

(

2m

E1
− 1

G1

)

x+H1

for all n ∈ N and m,s ∈ N,s > m,

E1 =(1− (γ +1)mx)(1− (δ +1)mx),

G1 =(1−α2mx)(1−β 2mx),

H1 =
1

E1

(

Sγ2s −T δ 2s

γ −δ

)

+
1

G1

(

P(γ +1)s −R(δ +1)s

γ −δ

)

− 2m

E1

(

Sα2(s−m)−T β 2(s−m)

α −β

)

x− 4m

G1

(

P(γ +1)s−m −R(δ +1)s−m

γ −δ

)

x.

Proof. Again from equation (3.4), we get

∞

∑
n=0

bqmn+sx
n =

∞

∑
n=0

(

P(γ +1)mn+s −R(δ +1)mn+s

γ −δ
+

Sα2(mn+s)−T β 2(mn+s)

α −β

)

xn

=
P(γ +1)s

γ −δ

∞

∑
n=0

((γ +1)mx)n − R(δ +1)s

γ −δ

∞

∑
n=0

((δ +1)mx)n +
Sα2s

α −β

∞

∑
n=0

(α2mx)n − T β 2s

α −β

∞

∑
n=0

(β 2mx)n

=
P(γ +1)s

γ −δ

(

1

1− (γ +1)mx

)

− R(δ +1)s

γ −δ

(

1

1− (δ +1)mx

)

+
Sα2s

α −β

(

1

1−α2mx

)

− T β 2s

α −β

(

1

1−β 2mx

)

=
1

γ −δ

(P(γ +1)s −R(δ +1)s)− (P(γ +1)s(δ +1)m −R(δ +1)s(γ +1)m)x

1− ((γ +1)m +(δ +1)m)x+((γ +1)(δ +1))mx2

+
1

α −β

(Sα2s −T β 2s)− (Sα2sβ 2m −T β 2sα2m)x

1− (α2m +β 2m)x+(αβ )2mx2

=
1(α −β )

E1

(

P(γ +1)s −R(δ +1)s

(γ −δ )(α −β )

)

+
1(γ −δ )

G1

(

Sα2s −T β 2s

(α −β )(γ −δ )

)

− ((γ +1)(δ +1))m (α −β )

E1

(

P(γ +1)s−m −R(δ +1)s−m

(γ −δ )(α −β )

)

x− (αβ )2m (γ −δ )

G1

(

Sα2(s−m)−T β 2(s−m)

(α −β )(γ −δ )

)

x.

If necessary arrangements are made, then we get

∞

∑
n=0

bqmn+sx
n =

1

E1

(

bs((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(Sα2s −T β 2s)

(α −β )(γ −δ )

)

+
1

G1

(

(α −β )(P(γ +1)s −R(δ +1)s)−bs((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

− ((γ +1)(δ +1))m

E1

(

bs−m((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(Sα2(s−m)−T β 2(s−m))

(α −β )(γ −δ )

)

x

− (αβ )2m

G1

(

(α −β )
(

P(γ +1)s−m −R(δ +1)s−m
)

−bs−m((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

x

=bs

(

1

E1
− 1

G1

)

−bs−m

(

2m

E1
− 1

G1

)

x+H1.

Hence the result is obvious.

Theorem 3.6. Let bqn be the binomial transform of quadra Fibona-Pell quaternion sequences. Then

n

∑
k=0

bqmk+s =
2m

E2
(bmn+s −bs−m)−

1

G2
(bmn+s −bs−m −bmn+m+s +bs)−

1

E2
(bmn+m+s +bs)+H2

for all n ∈ N and m,s ∈ Z, s > m,

E2 =(γ +1)m(δ +1)m − ((γ +1)m +(δ +1)m)+1,

G2 =α2mβ 2m −
(

α2m +β 2m
)

+1,

H2 =
2m

E2

(

Sα2(mn+s)−T β 2(mn+s)

α −β

)

+
1

G2

(

P(γ +1)mn+s −R(δ +1)mn+s

γ −δ

)

− 2m

E2

(

Sα2(s−m)−T β 2(s−m)

α −β

)

− 1

G2

(

P(γ +1)s−m −R(δ +1)s−m

γ −δ

)

− 1

E2

(

Sα2(mn+m+s)−T β 2(mn+m+s)

α −β

)

− 1

G2

(

P(γ +1)mn+m+s −T (δ +1)mn+m+s

γ −δ

)

+
1

E2

(

Sα2s −T β 2s

α −β

)

+
1

G2

(

P(γ +1)s −R(δ +1)s

γ −δ

)

.
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Proof. From (3.4), we get

n

∑
k=0

bqmk+s =
n

∑
k=0

(

P(γ +1)mk+s −R(δ +1)mk+s

γ −δ
+

Sα2(mk+s)−T β 2(mk+s)

α −β

)

=
P(γ +1)mn+m+s(δ +1)m −P(γ +1)mn+m+s −P(γ +1)s(δ +1)m +P(γ +1)s

(γ −δ )((γ +1)m(δ +1)m − ((γ +1)m +(δ +1)m)+1)

− R(δ +1)mn+m+s(γ +1)m −R(δ +1)mn+m+s −R(δ +1)s(γ +1)m +R(δ +1)s

(γ −δ )((γ +1)m(δ +1)m − ((γ +1)m +(δ +1)m)+1)

+
Sα2(mn+m+s)β 2m −Sα2(mn+m+s)−Sα2sβ 2m +Sα2s

(α −β )(α2mβ 2m − (α2m +β 2m)+1)

− T β 2(mn+m+s)α2m −T β 2(mn+m+s)−T β 2sα2m +T β 2s

(α −β )(α2mβ 2m − (α2m +β 2m)+1)
.

As a result of calculations, we obtained

n

∑
k=0

bqmk+s =
(γ +1)m(δ +1)m

E2

(

bmn+s((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(Sα2(mn+s)−T β 2(mn+s))

(α −β )(γ −δ )

)

+
(αβ )2m

G2

(

(α −β )(P(γ +1)mn+s −R(δ +1)mn+s)−bmn+s((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

− (γ +1)m(δ +1)m

E2

(

bs−m((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(Sα2(s−m)−T β 2(s−m))

(α −β )(γ −δ )

)

− (αβ )2m

G2

(

(α −β )(P(γ +1)s−m −R(δ +1)s−m)−bs−m((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

− 1

E2

(

bmn+m+s((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(Sα2(mn+m+s)−T β 2(mn+m+s))

(α −β )(γ −δ )

)

− 1

G2

(

(α −β )(P(γ +1)mn+m+s −R(δ +1)mn+m+s)−bmn+m+s((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

+
1

E2

(

bs((γ +1)− (δ +1))(α −β )+((γ +1)− (δ +1))(Sα2s −T β 2s

(α −β )(γ −δ )

)

+
1

G2

(

(α −β )(P(γ +1)s −R(δ +1)s)−bs((γ +1)− (δ +1))(α −β )

(α −β )(γ −δ )

)

=
2m

E2
(bmn+s −bs−m)−

1

G2
(bmn+s −bs−m −bmn+m+s +bs)−

1

E2
(bmn+m+s +bs)+H2.

4. Conclusion

Our aim in this study is to study the binomial transform for quadra Fibona-Pell sequence and its binomial transform of quaternion sequence.

In the article, the binomial transform of the sequence is found in the first part, and then the results related to this transform are mentioned. In

the second part, similar results were obtained by binomial transform of quadra Fibona-Pell quaternion sequence, which was found before.
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[17] F. Kaplan, A. Özkoç Öztürk, On the binomial transforms of the Horadam quaternion sequences, Math. Meth. Appl. Sci., 45 (2022), 12009-12022.
[18] E. Polatlı, On certain properties of quadrapell sequences, Karaelmas Sci. Eng. J., 8(1) (2018), 305-308.



Universal Journal of Mathematics and Applications, 5 (4) (2022) 156-162

Research paper

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653

DOI: https://doi.org/10.32323/ujma.1205420

Periodic Korovkin Theorem via P2
p-Statistical A -Summation

Process

Sevda Yıldız1, Fadime Dirik1* and Kamil Demirci1

1Department of Mathematics, Faculty of Arts and Sciences, Sinop University, 57000, Sinop, Türkiye
*Corresponding author

Article Info

Keywords: Korovkin theorem, periodic

functions, power series method, rates of

convergence, statistical convergence.

2010 AMS: 40C05, 40G10, 41A25,

41A36.

Received: 15 November 2022

Accepted: 27 December 2022

Available online: 29 December 2022

Abstract

In the current research, we investigate and establish Korovkin-type approximation theorems

for linear operators defined on the space of all 2π-periodic and real valued continuous

functions on R
2 by means of A -summation process via statistical convergence with respect

to power series method. We demonstrate with an example how our theory is more strong

than previously studied. Additionally, we research the rate of convergence of positive linear

operators defined on this space.

1. Introduction and Preliminaries Notations

Before starting with the presentation of the definitions which will be used to prove approximation theorems, we recall the well-known

notions.

A double sequence x =
(

xi j

)

is convergent to L in Pringsheim’s sense if, for every ε > 0, there exists N = N(ε) ∈ N such that
∣

∣xi j −L
∣

∣< ε

whenever i, j > N and denoted by P− lim
i, j

xi j = L (see [1]). A double sequence is bounded if there exists a positive number M such that
∣

∣xi j

∣

∣≤ M for all (i, j)∈N
2 =N×N. As it is known that every single convergent sequence (in the usual sense) is bounded, while a convergent

double sequence need not to be bounded.

Let us turn our attention to statistical convergence and power series method for double sequences.

Moricz [2] proposed and investigated the idea of statistical convergence for double sequences, which may be restated in terms of natural

density. Let E ⊂ N
2 be a two-dimensional subset of positive integers and let Em,n = {(i, j) ∈ E : i ≤ m, j ≤ n} . Then the two-dimensional

analogue of natural density can be defined as follows:

δ2(E) := P− lim
m,n

1

mn
|Emn|

if it exists. The number sequence x =
(

xi j

)

is statistically convergent to L provided that for every ε > 0, the set E := Emn(ε) :=
{

i ≤ m, j ≤ n :
∣

∣xi j −L
∣

∣≥ ε
}

has natural density zero; in that case we write st2 − lim
i, j

xi j = L. For all that a statistically convergent sequence

need not be convergent in light of the above.

It is obvious that a double sequence that is P-convergent statistically converges to the same value, but the opposite is not always true.

Additionally, Moricz [2] characterized the statistical convergence for double sequences as follows:

A double sequence x =
(

xi j

)

is statistically convergent to L if and only if there exists a set E ⊂ N
2 such that the natural density of E is 1 and

P− lim
i, j→∞

and (i, j)∈E

xi j = L.

Let
(

pi j

)

be a double sequence of nonnegative numbers with p00 > 0 and such that the following power series

p(t,s) :=
∞

∑
i, j=0

pi jt
is j
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has radius of convergence R with R ∈ (0,∞] and t,s ∈ (0,R) . If for all t,s ∈ (0,R) ,

lim
t,s→R−

1

p(t,s)

∞

∑
i, j=0

pi jt
is jxi j = L

then we say that the double sequence x =
(

xi j

)

is convergent to L in the sense of power series method and denoted by P2
p − limxi j = L ( [3]).

Keep in mind that the method is regular if and only if

lim
t,s→R−

∞

∑
i=0

piν t i

p(t,s)
= 0 and lim

t,s→R−

∞

∑
j=0

pµ js
j

p(t,s)
= 0, for any µ,υ , (1.1)

hold [3].

Remark 1.1. In case of R = 1, if pi j = 1 and pi j =
1

(i+1)( j+1)
, the power series methods coincide with Abel summability method and

logarithmic summability method, respectively. In the case of R = ∞ and pi j =
1

i! j! , the power series method coincides with Borel summability

method.

Here and throughout the paper power series method is always assumed to be regular.

Ünver and Orhan [4] have recently introduced Pp-density of E ⊂ N0 and the definition of Pp-statistical convergence for single sequences.

A natural question is what about statistical convergence or Pp-statistical convergence of the sequence. Hence, they showed that statistical

convergence and Pp-statistical convergence are incompatible. In view of their work, Yıldız, Demirci and Dirik [5] have introduced the

definitions of P2
p -density of F ⊂ N

2
0 = N0 ×N0 and P2

p -statistical convergence for double sequences:

Definition 1.2 ( [5]). Let F ⊂ N
2
0. If the limit

δ 2
Pp
(F) := lim

t,s→R−

1

p(t,s) ∑
(i, j)∈F

pi jt
is j

exists, then δ 2
Pp
(F) is called the P2

p -density of F. Note that, from the definition of a power series method and P2
p -density it can be established

that 0 ≤ δ 2
Pp
(F)≤ 1 whenever it exists.

Definition 1.3 ( [5]). Let x =
(

xi j

)

be a double sequence. Then x is said to be statistically convergent with respect to power series method

(P2
p -statistically convergent) to L if for any ε > 0

lim
t,s→R−

1

p(t,s) ∑
(i, j)∈Fε

pi jt
is j = 0

where Fε =
{

(i, j) ∈ N
2
0 :
∣

∣xi j −L
∣

∣≥ ε
}

, that is δ 2
Pp
(Fε ) = 0 for any ε > 0. In this case we write st2

Pp
− limxi j = L.

Let A = [aklmn], k, l,m,n ∈ N, be a four-dimensional infinite matrix. The A-transform of a given double sequence x = (xmn) is given by

(Ax)kl = ∑
(m,n)∈N2

aklmnxmn, k, l ∈ N,

provided the double series converges in Pringsheim’s sense for every (k, l) ∈ N
2 and denoted by Ax := ((Ax)kl) . If the A-transform of x

exists for all k, l ∈ N and convergent in the Pringsheim’s sense i.e.,

P− lim
p,q

p

∑
m=1

q

∑
n=1

aklmnxmn = ykl and P− lim
k,l

ykl = L

then we say that a sequence x is A-summable to L. A two-dimensional matrix transformation is referred to as regular in summability theory if

it converts each convergent sequence into one with the same limit.

Now consider a sequence of four-dimensional infinite matrices with non-negative real elements A :=
(

A(i, j)
)

=
(

a
(i, j)
klmn

)

. For a given

double sequence of real numbers, x = (xmn) is said to be A -summable to L if

P− lim
k,l

∑
(m,n)∈N2

a
(i, j)
klmn

xmn = L

uniformly in i and j.

A -summability is the A-summability for four-dimensional infinite matrix if A(i, j) = A, four-dimensional infinite matrix. Some results

regarding matrix summability method for double sequences may be found in the papers [6, 7]. C∗
(

R
2
)

stands for the space of all continuous

functions on R
2 that are real valued and have a period of 2π. If a function h ∈C∗

(

R
2
)

, then

h(x,y) = h(x+2kπ,y) = h(x,y+2kπ) , for all (x,y) ∈ R
2
,

holds for k = 0,±1,±2, .... In what follows, this space is equipped with the supremum norm

‖ f‖∗ = sup
(x,y)∈R2

|h(x,y)| ,
(

h ∈C∗
(

R
2
))

.
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A sequence L := (Lmn) of positive linear operators from C∗
(

R
2
)

into itself is referred to as an A -summation process on C∗
(

R
2
)

if (Lmnh)

is A -summable to h for every h ∈C∗
(

R
2
)

, i.e.,

P− lim
k,l

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
= 0, uniformly in i, j

where for all k, l, i, j ∈ N, h ∈C∗
(

R
2
)

the series

SLkli jh := ∑
(m,n)∈N2

a
(i, j)
klmn

Lmnh (1.2)

and it is assumed that the series in (1.2) absolutely convergent for each i, j,k, l ∈ N and h.

For the rate of convergence, we need to recall the following modulus of continuity of h. Let h ∈C∗
(

R
2
)

, then

w(h;γ) = sup

{

|h(u,v)−h(x,y)| : (u,v) ,(x,y) ∈ R
2 and

√

(u− x)2 +(v− y)2 ≤ γ

}

for γ > 0. This definition yields the following basic property for h ∈C∗
(

R
2
)

.

For any a > 0,

w(h;aγ)≤ (1+[a])w(h;γ)

where [a] is defined to be the greatest integer less than or equal to a.

The paper of Korovkin [8] is an important issue. It can help us to understand the nature of approximation of sequences. This approximation

problem has a rich history associated with the names of the different convergence methods on some spaces in the theory. For some recent

research works in this direction, see [9–21]. In this paper, we investigate and establish Korovkin-type approximation theorems for linear

operators defined on the space of all 2π-periodic and real valued continuous functions on R
2 by means of A -summation process via

statistical convergence with respect to power series method. We demonstrate with an example how our theory is more strong than previously

studied. Additionally, we research the rate of convergence of positive linear operators defined on this space.

2. The Second Theorem of Korovkin Type

The aim of this section is to deal with approximation of all 2π-periodic and real valued continuous functions on R
2 by means of A -summation

process via statistical convergence with respect to power series method.

Our main result is the following.

Theorem 2.1. Let A =
(

A(i, j)
)

be a sequence of four-dimensional infinite matrices. Let L = (Lmn) be a sequence of positive linear

operators acting from C∗
(

R
2
)

into itself. Assume that (1.2) holds. Then, for all h ∈C∗
(

R
2
)

st2
Pp
− lim

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
= 0 uniformly in i and j (2.1)

if and only if

st2
Pp
− lim

∥

∥

∥
SLkli jhr −hr

∥

∥

∥

∗
= 0 uniformly in i and j (r = 0,1,2,3,4) (2.2)

where h0(x,y) = 1, h1(x,y) = sinx, h2(x,y) = siny, h3(x,y) = cosx and h4(x,y) = cosy.

Proof. Since 1, sinx, siny, cosx and cosy belong to C∗
(

R
2
)

, the necessity is clear. Suppose now that (2.2) holds. Let h ∈C∗
(

R
2
)

and I, J

be closed subinterval of length 2π of R. Fix (x,y) ∈ I × J. As in the proof of Theorem 2.1 in [22], it follows from the continuity of h that

|h(u,v)−h(x,y)|< ε +
2Mh

sin2 δ
2

ϕ (u,v)
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which gives,

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h;x,y)−h(x,y)

∣

∣

∣

∣

∣

≤ ∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (|h(u,v)−h(x,y)| ;x,y)+ |h(x,y)|

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h0;x)−h0(x,y)

∣

∣

∣

∣

∣

≤ ∑
(m,n)∈N2

a
(i, j)
klmn

Lmn

(

ε + 2Mh

sin2 δ
2

ϕ (u,v) ;x,y

)

+Mh

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h0;x)−h0(x,y)

∣

∣

∣

∣

∣

≤ ε +(ε +Mh)

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h0;x)−h0(x,y)

∣

∣

∣

∣

∣

+ Mh

sin2 δ
2























































































2

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h0;x)−h0(x,y)

∣

∣

∣

∣

∣

+ |sinx|

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h1;x,y)−h1(x,y)

∣

∣

∣

∣

∣

+ |siny|

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h2;x,y)−h2(x,y)

∣

∣

∣

∣

∣

+ |cosx|

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h3;x,y)−h3(x,y)

∣

∣

∣

∣

∣

+ |cosy|

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h4;x,y)−h4(x,y)

∣

∣

∣

∣

∣























































































≤ ε +N ∑
4
r=0

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (hr;x)−hr(x,y)

∣

∣

∣

∣

∣

where Mh = ‖ f‖∗ , ϕ (u,v) = sin2 u−x
2 + sin2 v−y

2 and N := ε +Mh +
2Mh

sin2 δ
2

. Then, taking supremum over (x,y) ∈ R
2, we obtain

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
≤ ε +N

4

∑
r=0

∥

∥

∥
SLkli jhr −hr

∥

∥

∥

∗
. (2.3)

Now given r > 0, choose ε > 0 such that ε < r, and define

D : =
{

(k, l) :

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
≥ r
}

,

Dr : =

{

(k, l) :

∥

∥

∥
SLkli jhr −hr

∥

∥

∥

∗
≥

r− ε

5N

}

, r = 0,1,2,3,4.

It is easy see that from (2.3)

D ⊆
4
⋃

r=0

Dr.

Hence, we may write

δ 2
Pp
(D)≤

4

∑
r=0

δ 2
Pp
(Dr) .

Then, according to (2.2), we have

δ 2
Pp
(D) = 0,

and hence

st2
Pp
− lim

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
= 0 uniformly in i and j

which is the desired result.

3. An example

Now, we give an example that our theorem (Theorem 2.1) is stronger than Theorem 9 in [23].

Example 3.1. Now assume that A =
(

A(i, j)
)

is a sequence of four-dimensional infinite matrices defined by a
(i, j)
klmn

= 1
kl if i ≤ m ≤ k+ i−1,

j ≤ n ≤ l + j−1 and a
(i, j)
klmn

= 0 otherwise. Let us consider the double sequence of Fejer operators on C∗
(

R
2
)

where

Lmn (h;x,y) =
1

(mπ)(nπ)

π
∫

−π

π
∫

−π

h(u,v)Fm (u)Fn (v)dudv (3.1)
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where Fm (u) =
sin2 m(u−x)

2

2sin2 u−x
2

and 1
π

π
∫

−π
Fm (u)du = 1. Let

(

pi j

)

be defined as follows

pi j =

{

0, i and j even

1, i or j odd
,

and take the sequence
(

xi j

)

defined by

xi j =

{

i j, i and j even

0, i or j odd
. (3.2)

It is easy to see that

st2
Pp
− limxi j = 0. (3.3)

However, the sequence
(

xi j

)

neither statistically convergent to 0 nor Pringsheim convergent. Now using (3.1) and (3.2), we define the

following double positive linear operators T= (Tmn) on C∗
(

R
2
)

as follows:

Tmn ( f ;x,y) = (1+ xmn)Lmn ( f ;x,y) . (3.4)

We now claim that

st2
Pp
− lim

∥

∥

∥
STkli jhr −hr

∥

∥

∥

∗
= 0 uniformly in i and j, (r = 0,1,2,3,4) . (3.5)

Observe that Lmn (h0;x,y) = h0(x,y), Lmn (h1;x,y) = m−1
m h1(x,y), Lmn (h2;x,y) = n−1

n h2(x,y), Lmn (h3;x,y) = m−1
m h3(x,y),

Lmn (h4;x,y) = n−1
n h4(x,y). So, we can see,

∥

∥

∥
STkli jh0 −h0

∥

∥

∥

∗
=

∥

∥

∥

∥

∥

i+k−1

∑
m=i

j+l−1

∑
n= j

1

kl
(1+ xmn)−1

∥

∥

∥

∥

∥

∗

≤
1

kl

i+k−1

∑
m=i

j+l−1

∑
n= j

xmn.

It is well known that if a sequence is convergent, its arithmetic mean will also converge to the same value. Thus, by virtue of P2
p -statistical

convergence and thanks to (3.3) it is clear that

st2
Pp
− lim

(

sup
i, j

1

kl

i+k−1

∑
m=i

j+l−1

∑
n= j

xmn

)

= 0, (3.6)

and hence

st2
Pp
− lim

∥

∥

∥
STkli jh0 −h0

∥

∥

∥

∗
= 0, uniformly in i and j,

which guarantees that (3.5) holds true for r = 0. Also, we compute

∥

∥

∥
STkli jh1 −h1

∥

∥

∥

∗
=

∥

∥

∥

∥

∥

i+k−1

∑
m=i

j+l−1

∑
n= j

1

kl
(1+ xmn)

m−1

m
h1 −h1

∥

∥

∥

∥

∥

∗

≤

∣

∣

∣

∣

∣

1

kl

i+k−1

∑
m=i

j+l−1

∑
n= j

m−1

m
−1

∣

∣

∣

∣

∣

+
1

kl

i+k−1

∑
m=i

j+l−1

∑
n= j

xmn (m−1)

m
.

Since st2
Pp
− lim

(

sup
i, j

(

1
kl

i+k−1

∑
m=i

j+l−1

∑
n= j

m−1
m −1

))

= 0 and from (3.6) we have,

st2
Pp
− lim

∥

∥

∥
STkli jh1 −h1

∥

∥

∥

∗
= 0, uniformly in i and j.

So (3.5) valid for r = 1. Likewise, we have

st2
Pp
− lim

∥

∥

∥
STkli jh2 −h2

∥

∥

∥

∗
=0, uniformly in i and j,

st2
Pp
− lim

∥

∥

∥
STkli jh3 −h3

∥

∥

∥

∗
=0, uniformly in i and j,

st2
Pp
− lim

∥

∥

∥
STkli jh4 −h4

∥

∥

∥

∗
=0, uniformly in i and j.

So, our claim (3.5) is valid for each r = 0,1,2,3,4. Then, observe that the double sequence T= (Tmn) defined by (3.4) satisfy all hypotheses

of Theorem 2.1. Hence, we have, for all f ∈C∗
(

R
2
)

,

st2
Pp
− lim

∥

∥

∥
STkli jh−h

∥

∥

∥

∗
= 0.

Also, since
(

xi j

)

is not statistically convergent to 0, (Tmn) does not satisfy Theorem 9 in [23].
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4. Rates of Convergence

In this section, via A -summation process via statistical convergence with respect to power series method, we study the rates of convergence

of a double sequence of positive linear operators mapping acting from C∗
(

R
2
)

into C∗
(

R
2
)

by means of the modulus of continuity.

We have the following result.

Theorem 4.1. Let A =
(

A(i, j)
)

be a sequence of four-dimensional infinite matrices. Let L= (Lmn) be a double sequence of positive linear

operators moving from C∗
(

R
2
)

into C∗
(

R
2
)

. Suppose that (1.2) and the following conditions provided:

(i) st2
Pp
− lim

∥

∥

∥
SLkli jh0 −h0

∥

∥

∥

∗
= 0, uniformly in i and j,

(ii) st2
Pp
− limw(h;γ) = 0, uniformly in i and j,

where γ := γ
(i,l)
( j,k)

:=

√

∥

∥

∥
SL

kli j
ϕ
∥

∥

∥

∗
with ϕ (u,v) = sin2 u−x

2 + sin2 v−y
2 . Then we have, for all h ∈C∗

(

R
2
)

,

st2
Pp
− lim

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
= 0, uniformly in i and j.

Proof. To prove this, we firstly suppose that (x,y) ∈ [−π,π]× [−π,π] and h ∈C∗
(

R
2
)

be fixed, and that Let (i) and (ii) be provided.. Let γ

be a positive number. As in the proof of Theorem 9 in [23], since the function h is continious, the following inequality is obtained:

|h(u,v)−h(x,y)| ≤

(

1+π2 sin2 u−x
2 + sin2 v−y

2

γ2

)

w(h;γ) .

Using the definition of modulus of continuity and since the operators Lmn is linear and the positive, we have

∣

∣

∣
SLkli j(h;x,y)−h(x,y)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn(h;x,y)−h(x,y)

∣

∣

∣

∣

∣

∣

≤ ∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (|h(u,v)−h(x,y)| ;x,y)+ |h(x,y)|

∣

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h0;x,y)−h0(x,y)

∣

∣

∣

∣

∣

∣

≤w(h;γ) ∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h0;x,y)+π2 w(h;γ)

γ2 ∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (ϕ;x,y)

+ |h(x,y)|

∣

∣

∣

∣

∣

∣

∑
(m,n)∈N2

a
(i, j)
klmn

Lmn (h0;x,y)−h0(x,y)

∣

∣

∣

∣

∣

∣

where ϕ (u,v) = sin2 u−x
2 + sin2 v−y

2 . If supremum over (x,y) is taken on both sides of the above inequality and is chosen

γ := γ
(i,l)
( j,k)

:=

√

∥

∥

∥
SL

kli j
ϕ
∥

∥

∥

∗
, then we obtain

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
≤w
(

h;γ
(i,l)
( j,k)

)∥

∥

∥
SLkli jh0 −h0

∥

∥

∥

∗
+
(

1+π2
)

w
(

h;γ
(i,l)
( j,k)

)

+Mh

∥

∥

∥
SLkli jh0 −h0

∥

∥

∥

∗
(4.1)

where Mh := ‖h‖∗ . Now, given ε > 0, define the following sets:

D : =
{

(k, l) :

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
≥ ε
}

,

D1 : =
{

(k, l) : w
(

h;γ
(i,l)
( j,k)

)∥

∥

∥
SLkli jh0 −h0

∥

∥

∥

∗
≥

ε

3

}

,

D2 : =

{

(k, l) : w
(

h;γ
(i,l)
( j,k)

)

≥
ε

3
(

1+π2
)

}

,

D3 : =

{

(k, l) :

∥

∥

∥
SLkli jh0 −h0

∥

∥

∥

∗
≥

ε

3Mh

}

.

Then, it follows from (4.1) that D ⊂ D1 ∪D2 ∪D3. Also, defining

D4 : =

{

(k, l) : w
(

h;γ
(i,l)
( j,k)

)

≥

√

ε

3

}

,

D5 : =

{

(k, l) :

∥

∥

∥
SLkli jh0 −h0

∥

∥

∥

∗
≥

√

ε

3

}

,

we have D1 ⊂ D4 ∪D5, which yields

D ⊆
5
⋃

i=2

Di.
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Hence, we may write

δ 2
Pp
(D)≤

5

∑
r=0

δ 2
Pp
(Dr) .

Using the hypothesis (i) and (ii) , we get

δ 2
Pp
(D) = 0,

and hence

st2
Pp
− lim

∥

∥

∥
SLkli jh−h

∥

∥

∥

∗
= 0, uniformly in i and j.

Therefore, the proof is completed.

5. Conclusion

The paper contains Korovkin-type approximation theorem and the rate of convergence for linear operators defined on the space of all

2π-periodic and real valued continuous functions on R
2 by means of A -summation process via statistical convergence with respect to power

series method. Also, it is demonstrated with an example how the new theory is more stronger than previously studied.
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