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Müjgan Tez, (Marmara University, Istanbul, Turkey), Statistics

Mohammad Kazim KHAN, Kent State University, Kent, Ohio, USA Applied Statistics, Communication
and Networking, Mathematical Finance, Optimal designs of experiments, Stochastic Methods in Approxi-
mation Theory, Analysis and Summability Theory
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Abstract. We introduce Suzuki type P -contractive mappings by taking into

account the concepts of contractive, P -contractive, and Suzuki type contractive
mappings. Then, for such mappings on compact metric spaces, we present a

fixed point theorem that is more general than the well-known Edelstein fixed

point theorem.

1. Introduction

Metric fixed point theory, as it is known, investigates the conditions that guar-
antee the existence and even uniqueness of fixed point of a self mapping on a metric
space. These conditions are typically comprised of completeness of space and some
type of contraction inequality. It is difficult to obtain a new result when the com-
pleteness of space is ignored. As a result, studies are conducted to ensure the
existence of the fixed point by weakening the contraction inequalities. However,
in complete metric space generalizations, the sum of the coefficients of the terms
on the right side of the linear contraction inequalities is less than 1. Nonlinear
contraction inequalities are subject to a similar constraint. Edelstein [4] introduced
the concept of contractivity to overcome the coefficient problem and obtained a
fixed point theorem. Although Edelstein extended the relevant class of mappings,
he had to consider compactness of the space, which is a more strong condition
than completeness. Many studies, covering Edelstein’s fixed theorem, have been
obtained by generalizing the concept of contractivity in the literature (for example
see [2, 3, 5]). For the sake of completeness we recall the following:

Let (X, d) be a metric space and T : X → X be a mapping. Then, T is said to
be contractive if

d(Tx, Ty) < d(x, y) (C)

for all x, y ∈ X with x ̸= y. Hence, Edelstein presented the following theorem:

Theorem 1.1 ([4]). Let (X, d) be a compact metric space and T : X → X be a
contractive mapping. Then, T has a unique fixed point.
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2 ISHAK ALTUN

Suzuki obtained a new fixed point theorem by weakening the concept of contrac-
tivity in 2009.

Theorem 1.2 ([5]). Let (X, d) be a compact metric space and T : X → X be a
mapping such that

1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y) (SC)

for all x, y ∈ X. Then, T has a unique fixed point.

For the sake of simplicity, we will refer to the mappings that provide the (SC)
inequality as Suzuki type contractive mappings. In 2018, Altun et al. [2] defined
the concept of P -contractivity. A self mapping T on X is said to be P -contractive
if

d(Tx, Ty) < d(x, y) + |d(x, Tx)− d(y, Ty)| (PC)

for all x, y ∈ X with x ̸= y. Then, the following theorem has been presented.

Theorem 1.3 ([2]). Let (X, d) be a compact metric space and T : X → X be a
continuous P -contractive mapping. Then, T has a unique fixed point.

It is clear that every contractive (C) mapping is Suzuki type contractive (SC),
also every contractive (C) mapping is P -contractive (PC). The following examples
demonstrate that the converse of both propositions are not true.

Example 1.1 ([5]). Let X = [−11,−10] ∪ {0} ∪ [10, 11] with the usual metric d
and T : X → X, defined by

Tx =


11x+100

x+9 , x ∈ [−11,−10)

0 x ∈ {−10, 0, 10}
− 11x−100

x−9 , x ∈ (10, 11]
.

Then, T is Suzuki type contractive, but it is not contractive.

Example 1.2 ([3]). Let X = [0, 1] with the usual metric d and T : X → X, defined
by

Tx =


1
2 , x = 0

x
2 , x ̸= 0

.

Then, T is P -contractive, but it is not contractive.

The classes of Suzuki type contractive (SC) mappings and P -contractive (PC)
mappings, on the other hand, are distinct. The following examples demonstrate
this fact.

Example 1.3 ([2]). Let X = [0, 2] with the usual metric d and T : X → X, defined
by

Tx =

 1 , x ≤ 1

0 , x > 1
.

Then, T is P -contractive, but it is not Suzuki type contractive.

Example 1.4 ([2]). Let X = {(0, 0), (4, 0), (0, 4), (4, 5), (5, 4)} ⊂ R2 with the metric

d(x, y) = d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|
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for x = (x1, x2), y = (y1, y2) ∈ X. Define a mapping T : X → X by

T =

 (0, 0) (4, 0) (0, 4) (4, 5) (5, 4)

(0, 0) (0, 0) (0, 0) (4, 0) (0, 4)

 .

Then, T is Suzuki type contractive, but it is not P -contractive.

Remark. Although contractive mappings are continuous, neither Suzuki type con-
tractive nor P -contractive mappings are continuous. Note that Suzuki did not need
the continuity in Theorem 1.2. However, in Theorem 1.3 the continuity of the map-
ping has been assumed. Example 1.2 above shows that the condition of continuity
can not be removed in Theorem 1.3.

In this paper, we introduce Suzuki type P -contractive mappings, which are in-
spired by the concepts of contractive, P -contractive, and Suzuki type contractive
mappings. Then, we present a fixed point theorem that is more general than The-
orem 1.1 and Theorem 1.3.

The following lemma will be used in our second theorem.

Lemma 1.4 ([1]). Let X be a compact topological space and f : X → R be a
lower semicontinuous function. Then, there exists an element x0 ∈ X such that
f(x0) = inf{f(x) : x ∈ X}.

2. Main Result

First, we introduce a new concept for self mapping T on a metric space (X, d).

Definition 2.1. Let (X, d) be a metric space and T : X → X be a mapping. Then
T is said to be Suzuki type P -contractive if

1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y) + |d(x, Tx)− d(y, Ty)| (SPC)

for all x, y ∈ X.

Remark. For the aforementioned contractivity concepts, we can draw the diagram
below:

C =⇒ PC
⇓ ⇓
SC =⇒ SPC

.

Examples 1.1, 1.2, 1.3, 1.4 show that the converse of all implications are not true.

Now, we are ready to state our main result.

Theorem 2.1. Let (X, d) be a compact metric space and T : X → X be a con-
tinuous Suzuki type P -contractive mapping. Then, T has a unique fixed point in
X.

Proof. Since X is compact and T is continuous, then there exists u ∈ X such that

d(u, Tu) = inf{d(x, Tx) : x ∈ X}.
We claim that d(u, Tu) = 0. Assume the contrary. In this case, since 0 <
1
2d(u, Tu) < d(u, Tu), we have

d(Tu, T 2u) < d(u, Tu) +
∣∣d(u, Tu)− d(Tu, T 2u)

∣∣
= d(u, Tu) + d(Tu, T 2u)− d(u, Tu)

= d(Tu, T 2u),
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which is a contradiction. Therefore, d(u, Tu) = 0 and so u is a fixed point of T .
Now, assume v is another fixed point of T . In this case, since 0 = 1

2d(u, Tu) <
d(u, v), we have

d(u, v) = d(Tu, Tv)

< d(u, v) + |d(u, Tu)− d(v, Tv)|
= d(u, v),

which is a contradiction. Hence, the fixed point of T is unique. □

To see that the continuity condition in this theorem cannot be removed, one can
refer to Example 1.2 again. However, a result can be obtained by assuming the
lower semicontinuity of the function f defined by f(x) = d(x, Tx) instead of the
continuity of T . It is well known that if T is continuous, then f is also continuous
(and so it is lower semicontinuous). However, if f is lower semicontinuous, then T
may not be continuous (see Remark 2.8 in [2]).

Hence, by Lemma 1.4, we can state the following result:

Theorem 2.2. Let (X, d) be a compact metric space and T : X → X be a Suzuki
type P -contractive mapping. Then T has a unique fixed point in X provided that
the function f defined by f(x) = d(x, Tx) is lower semicontinuous.

Proof. Since X is compact and f : X → R is lower semicontinuous, then by Lemma
1.4, there exists u ∈ X such that f(u) = inf f(X), that is, we have

d(u, Tu) = inf{d(x, Tx) : x ∈ X}.
Therefore, the proof can be completed as in the proof of Theorem 2.1. □
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Abstract. We define enriched Jaggi contraction map, enriched Dass and
Gupta contraction map and almost (k, a, b, λ)−enriched CRR contraction map

with λ = 1
k+1

in Banach spaces and prove the existence and uniqueness of fixed

points of these maps. Further, we show that the sequence of fixed points of
the corresponding enriched contraction maps converges to the fixed point of

the uniform limit operator of these enriched contraction maps.

1. Introduction

Generalization of contraction conditions and finding the existence of fixed points
play an important role in the development of fixed point theory. There are many
works where the notion of fixed point play some role, apparently, in different
context. For instance, we refer Mustafa, Hakan and Turkoglu [5], Mustafa, Hakan
and Sadullah [6] and the references cited in these papers. Further, there are several
generalizations of Banach contraction maps, one among them is contraction
conditions involving rational expressions. Dass and Gupta [3] initiated and
introduced contraction condition with rational expression as follows:

Let (X, d) be a metric space and T : X → X. There exist α, β ∈ [0, 1) with
α+ β < 1 and T satifies

d(Tx, Ty) ≤ α
d(y, Ty)(1 + d(x, Tx))

1 + d(x, y)
+ βd(x, y) (1.1)

for all x, y ∈ X. Dass and Gupta [3] proved that if T : X → X, X complete metric
space, satisfies the inequality (1.1) and if T is continuous then T has a unique fixed
point in X.

2020 Mathematics Subject Classification. Primary: 47H10, 54H25.
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In 1977, Jaggi [4] introduced a different rational type contraction condition
independent that of contraction condition (1.1), i.e., there exist α, β ∈ [0, 1) with
α+ β < 1 and

d(Tx, Ty) ≤ α
d(x, Tx)d(y, Ty)

d(x, y)
+ βd(x, y) (1.2)

for all x, y ∈ X,x ̸= y, and proved that every map T : X → X,X complete metric
space, that satifies (1.2) has a unique fixed point in X, provided T is continuous.

A map T that satisfies (1.2) is said to be a Jaggi contraction map.
On the other hand, Berinde and Păcurar [1], introduced a larger class of

mappings, namely, enriched contraction mappings in normed linear spaces which
are more general than contraction maps.

Definition 1.1. (Berinde and Păcurar [2]) Let (X, ∥·∥) be a normed linear space.
Let T : X → X. If there exist k ∈ [0,+∞) and a ∈ [0, k + 1) such that

∥k(x− y) + Tx− Ty∥ ≤ a∥x− y∥, (1.3)

for all x, y ∈ X, then we say that T is a (k, a)−enriched contraction.

Theorem 1.1. (Berinde and Păcurar [2]) Let (X, ∥·∥) be a Banach space and
T : X → X be a (k, a)−enriched contraction. Let x0 ∈ X and λ ∈ (0, 1]. Then the
sequence {xn}∞n=0 defined by

xn+1 = (1− λ)xn + λTxn, n ≥ 0, (1.4)

converges to p (say) in X and p is the unique fixed point of T .

On further extensions of (k, a)−enriched contractions, we refer (Berinde and
Păcurar [2]).

Definition 1.2. (Berinde and Păcurar [2]) Let (X, ∥·∥) be a normed linear space.
Let T : X → X. If there exist k ∈ [0,+∞) and a, b ≥ 0, satisfying a+ 2b < 1 such
that

∥k(x− y) + Tx− Ty∥ ≤ a∥x− y∥+ b(∥x− Tx∥+ ∥y − Ty∥), (1.5)

for all x, y ∈ X, then we say that T is a (k, a, b)−enriched Ciric-Reich-Rus
contraction map .

Here onwards, we call these maps by (k, a, b)−enriched CRR contraction maps.
If a = 0 in (1.5) then T is said to a (k, b)−enriched Kannan mapping [2].

Theorem 1.2. (Berinde and Păcurar [2]) Let (X, ∥·∥) be a Banach space and
T : X → X be a (k, a, b)−enriched CRR contraction map. Let x0 ∈ X and
λ ∈ (0, 1]. Then the sequence {xn}∞n=0 defined by

xn+1 = (1− λ)xn + λTxn, n ≥ 0, (1.6)

converges to u (say) in X and u is the unique fixed point of T .

In Section 2 of this paper, we define enriched Jaggi contraction map, enriched
Dass and Gupta contraction map in Banach spaces and prove the existence and
uniqueness of fixed points.

In Section 3, we define almost (k, a, b, λ)−enriched CRR contraction maps with
λ = 1

k+1 in Banach spaces and prove the existence and uniqueness of fixed points.
In Section 4, we prove that, if the sequence of enriched contraction maps

converges uniformly to an operator with a unique fixed point then the corresponding
sequence of fixed points of sequence of enriched contraction maps also converges to
the fixed point of the limit operator in Banach spaces.
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2. Fixed point results on enriched contraction maps with rational
expressions

Let (X, ∥ · ∥) be a normed linear space and T : X → X. For any λ ∈ [0, 1), we
denote

Tλ(x) = (1− λ)x+ λTx, x ∈ X. (2.1)

Definition 2.1. Let (X, ∥ · ∥) be a normed linear space. Let T : X → X. If there
exist α, β ∈ [0, 1) with α+β < 1 and k ∈ [0,+∞) such that for λ = 1

k+1 , T satisfies
the inequality

∥k(x− y) + Tx− Ty∥ ≤ α∥x− y∥+ β
∥x− Tx∥∥y − Tλy∥

∥x− y∥
(2.2)

for all x, y ∈ X and x ̸= y, then we say that T is an enriched Jaggi contraction
map.

Here we note that every Jaggi contraction is a special case of enriched Jaggi
contraction when k = 0. But, every enriched Jaggi contraction need not be a Jaggi
contraction. The following example illustrates this fact.

Example 2.1. Let X = R with the usual norm. We define T : X → X by
Tx = 1− 3

2x, x ∈ R. We choose k = 2, α = 1
2 and β = 1

4 . We now consider

|k(x− y) + Tx− Ty| = |2(x− y) + 1− 3
2x− 1 + 3

2y|
= 1

2 |x− y|
≤ 1

2 |x− y|+ 1
4

| 52x−1|| 56y−
1
3 |

|x−y|

= 1
2 |x− y|+ 1

4

|x+ 3
2x−1||y− 1

6y−
1
3 |

|x−y|

= α|x− y|+ β |x−Tx||y−Tλy|
|x−y| ,

so that T satisfies the inequality (2.2) with α+ β < 1 .
Hence T is an enriched Jaggi contraction map.
Now, by choosing x = 0, y = 2

5 , we have

|Tx− Ty| = |T0− T ( 25 )| =
3
5 ≰ α · 2

5 + β · 0 = α|0− 2
5 |+ β

|0−T0|·| 25−T ( 2
5 )|

|0− 2
5 |

= α|x− y|+ β |x−Tx||y−Ty|
|x−y| ,

for any α ≥ 0, β ≥ 0 with α+ β < 1.
Hence T is not a Jaggi contraction map.

Theorem 2.1. Let (X, ∥·∥) be a Banach space. Let T : X → X be continuous.
Assume that T is an enriched Jaggi contraction map. Let x0 ∈ X. Then the
sequence {xn}∞n=0 defined by xn+1 = Tλxn, n = 0, 1, 2, ..., converges to s (say) in
X, and s is the unique fixed point of Tλ. Further, s is the unique fixed point of T .

Proof. Let x0 ∈ X. We consider the sequence {xn}∞n=0 defined by xn+1 = Tλxn,
n = 0, 1, 2, ... .
For λ = 1

k+1 < 1, we have k = 1
λ − 1 and thus the condition (2.2) becomes

∥( 1λ −1)(x−y)+Tx−Ty∥ ≤ α∥x−y∥+β ∥x−Tx∥∥y−Tλy∥
∥x−y∥ for all x, y ∈ X for x ̸= y.

i.e.,

∥(1− λ)(x− y) + λTx− λTy∥ ≤ αλ∥x− y∥+ β ∥λx−λTx∥∥y−Tλy∥
∥x−y∥ , x ̸= y and hence

∥Tλx−Tλy∥ ≤ αλ∥x−y∥+β
∥x− Tλx∥∥y − Tλy∥

∥x− y∥
for all x, y ∈ X and x ̸= y. (2.3)
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By taking x = xn−1 and y = xn in (2.3), we get

∥Tλxn−1 − Tλxn∥ ≤ αλ∥xn−1 − xn∥+ β ∥xn−1−Tλxn−1∥∥xn−Tλxn∥
∥xn−1−xn∥ , i.e.,

∥xn − xn+1∥ ≤ αλ∥xn−1 − xn∥+ β ∥xn−1−xn∥∥xn−xn+1∥
∥xn−1−xn∥ . This implies that

∥xn − xn+1∥ ≤ αλ∥xn−1 − xn∥+ β∥xn − xn+1∥, so that
∥xn − xn+1∥ ≤ η∥xn−1 − xn∥ for n = 1, 2, ..., where η = αλ

1−β < 1.

Hence, inductively, it follows that
∥xn − xn+1∥ ≤ ηn∥x0 − x1∥ for n = 1, 2, ... .
Therefore it is easy to see that the sequence {xn} is Cauchy.
Since X is complete, we have lim

n→∞
xn = s (say), s ∈ X.

Since T is continuous on X, we have Tλ is so and hence
s = lim

n→∞
xn+1 = lim

n→∞
Tλxn = Tλ lim

n→∞
xn = Tλs.

Therefore s is a fixed point of Tλ.
Let t be another fixed point of Tλ and s ̸= t. Now, from the inequality (2.3), we
have
0 < ∥s− t∥ = ∥Tλs− Tλt∥

≤ αλ∥s− t∥+ β ∥s−Tλs∥∥t−Tλt∥
∥s−t∥ ,

which implies that
0 < ∥s− t∥ ≤ αλ∥s− t∥,
a contradiction.
Therefore t = s, and Tλ has a unique fixed point s.
Thus, it follows that T has a unique fixed point s in X. □

Remark. If k = 0 and β = 0 in the inequality (2.2), then T is a contraction and
in this case, contraction principle follows as a corollary to Theorem 2.1.

Example 2.2. Let X = R with the usual norm and we define T : X → X by
Tx = −2x− 3, x ∈ R. We choose k = 3

2 , α = 1
2 and β = 1

3 . We now consider

|k(x− y) + Tx− Ty| = | 32 (x− y)− 2x− 3− (−2y − 3)|
= 1

2 |x− y|
≤ 1

2 |x− y|+ 1
3

|x−(−2x−3)||y−(− 1
5y−

6
5 )|

|x−y|

= α|x− y|+ β |x−Tx||y−Tλy|
|x−y| .

Therefore T satisfies the inequality (2.2) of Theorem 2.1 with α+ β < 1 and ‘− 1
3 ’

is the unique fixed point of T .
Here we observe that T is not a contraction. So contraction mapping principle

is not applicable.

For any positive integer p, we denote T p, the composition of p number of selfmaps
T . Here we note that T 1 = T . Also we denote T 0 = I, I the identity map of X. In
this case, T 0

λ = I for every λ ∈ [0, 1].

Theorem 2.2. Let (X, ∥·∥) be a Banach space. Let T : X → X. Assume that T
is an enriched Jaggi contraction map. Let x0 ∈ X. If T p is continuous for some
positive integer p, then T has a unique fixed point in X.

Proof. Let x0 ∈ X. We define the sequence {xn} by xn+1 = T p
λxn, n = 0, 1, 2, ... .

Then by applying Theorem 2.1 to T p
λ , we get that the sequence {xn} converges to

s, and T p
λ (s) = s, and this s is unique.

We now show that Tλ(s) = s.
Let {xnk

} be a subsequence of {xn}. Then {xnk
} also converges to s. Now
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T p
λ (s) = T p

λ ( lim
k→∞

xnk
) = lim

k→∞
T p
λxnk

= lim
k→∞

xnk+1 = s.

Let r be the smallest positive integer such that T r
λ(s) = s. Then T i

λ(s) ̸= s for all
i = 1, 2, ..., r − 1.
For i ∈ {1, 2, ..., r − 1, r}, we have
∥T i

λ(s)− T i−1
λ (s)∥ = ∥Tλ(T

i−1
λ (s))− Tλ(T

i−2
λ (s))∥

≤ αλ∥T i−1
λ (s)− T i−2

λ (s)∥+ β
∥T i−1

λ (s)−T i
λ(s)∥∥T

i−2
λ (s)−T i−1

λ (s)∥
∥T i−1

λ (s)−T i−2
λ (s)∥

= αλ∥T i−1
λ (s)− T i−2

λ (s)∥+ β∥T i−1
λ (s)− T i

λ(s)∥

∥T i
λ(s)− T i−1

λ (s)∥ ≤ (
αλ

1− β
)∥T i−1

λ (s)− T i−2
λ (s)∥. (2.4)

If r > 1, then
∥Tλ(s)− s∥ = ∥Tλs− T r

λ(s)∥
= ∥Tλs− Tλ(T

r−1
λ (s))∥

≤ αλ∥s− T r−1
λ (s)∥+ β

∥s−Tλ(s)∥∥T r−1
λ (s)−T r

λ(s)∥
∥s−T r−1

λ (s)∥

= αλ∥s− T r−1
λ (s)∥+ β

∥s−Tλ(s)∥∥T r−1
λ (s)−s∥

∥s−T r−1
λ (s)∥

= αλ∥s− T r−1
λ (s)∥+ β∥s− Tλ(s)∥ which implies that

(1− β)∥s− Tλ(s)∥ ≤ αλ∥s− T r−1
λ (s)∥. Therefore

∥s− Tλ(s)∥ ≤ (
αλ

1− β
)∥s− T r−1

λ (s)∥. (2.5)

Also, by (2.4) with i = r, we have
∥s− T r−1

λ (s)∥ = ∥T r
λ(s)− T r−1

λ (s)∥
≤ ( αλ

1−β )∥T
r−1
λ (s)− T r−2

λ (s)∥.
On repeated application of the inequality (2.4), we get
∥s− T r−1

λ (s)∥ = ∥T r
λ(s)− T r−1

λ (s)∥ ≤ ( αλ
1−β )∥T

r−1
λ (s)− T r−2

λ (s)∥
...
≤ ( αλ

1−β )
r−1∥Tλ(s)− T 0

λ(s)∥, and hence

∥s− T r−1
λ (s)∥ ≤ (

αλ

1− β
)r−1∥Tλ(s)− s∥, since T 0

λ is the identity map. (2.6)

From (2.5) and (2.6), we have
∥s− Tλ(s)∥ ≤ ( αλ

1−β )
r∥s− Tλ(s)∥,

a contradiction, since αλ
1−β < 1.

Therefore Tλs = s.
Uniqueness of fixed point of Tλ follows as in the proof of Theorem 2.1.
Thus s is the unique fixed point of T . □

Theorem 2.3. Let (X, ∥·∥) be a Banach space. Let T : X → X. Assume that
there exist α, β ∈ [0, 1) with α + β < 1 and k ∈ [0,∞) such that for λ = 1

k+1 , and
for some positive integer q, T satisfies

∥k(x− y) + T qx− T qy∥ ≤ α∥x− y∥+ β
∥x− T qx∥∥y − T q

λy∥
∥x− y∥

(2.7)

for all x, y ∈ X and x ̸= y; where T q
λ(x) = (1− λ)x+ λT qx.

If T q is continuous then T has a unique fixed point in X.
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Proof. By Theorem 2.1, T q
λ has a unique fixed point s (say) in X. Then

Tλ(s) = Tλ(T
q
λ(s)) = T q

λ(Tλ(s)). Hence Tλ(s) is also a fixed point of T q
λ .

Now, by the uniqueness of fixed point of T q
λ , we have Tλ(s) = s.

Since T q
λ has a unique fixed point s, it follows that s is a unique fixed point of Tλ.

Hence it follows that s is the unique fixed point of T . □

The following example shows that Theorem 2.3 is more general than Theorem
2.1.

Example 2.3. Let X = R with the usual norm. We define T : X → X by

Tx =

{
1
3 if x ∈ [0,∞)

−x if x ∈ (−∞, 0)
.

Then T 2x = 1
3 for all x ∈ R so that T 2 is continuous on X. Indeed, inequality

(2.7) of Theorem 2.3 holds with q = 2, k = 1
2 , α = 1

2 and β = 1
4 . For, for any

x ∈ [0,∞), y ∈ (−∞, 0), we have
|k(x− y) + T 2x− T 2y| = | 12 (x− y) + 1

3 − 1
3 |

= 1
2 |x− y|

≤ 1
2 |x− y|+ 1

4

|x− 1
3 ||y−

1
3 |

|x−y|

= 1
2 |x− y|+ 1

4
|x−T 2x||y−T 2

λy|
|x−y|

= α|x− y|+ β
|x−T 2x||y−T 2

λy|
|x−y| .

Thus T 2 satisfies the hypotheses of Theorem 2.3 and ‘ 13 ’ is the unique fixed point of
T . Here we observe that T is not continuous and so Theorem 2.1 is not applicable.

Definition 2.2. Let (X, ∥·∥) be a normed linear space. Let T : X → X. If there
exist α, β ∈ [0, 1) with α+ β < 1 and k ∈ [0,+∞) such that for λ = 1

k+1 , T satisfy
the inequality

∥k(x− y) + Tx− Ty∥ ≤ α∥x− y∥+ β
∥y − Ty∥(1 + ∥x− Tλx∥)

1 + ∥x− y∥
(2.8)

for all x, y ∈ X, then we say that T is an enriched Dass and Gupta contraction
map.

Theorem 2.4. Let (X, ∥·∥) be a Banach space. Let T : X → X be continuous.
Assume that T is an enriched Dass and Gupta contraction map. Let x0 ∈ X. Then
the sequence {xn}∞n=0 defined by xn+1 = Tλxn, n = 0, 1, 2, ... converges to q (say)
in X, and q is the unique fixed point of T .

Proof. The proof of this theorem is similar to that of Theorem 2.1.
□

Definition 2.3. Let (X, ∥·∥) be a Banach space. Let S, T : X → X. If there exist
α, β ∈ [0, 1) with α+β < 1 and k ∈ [0,+∞) such that for λ = 1

k+1 , S and T satisfy
the inequality

∥k(x− y) + Sx− Ty∥ ≤ α∥x− y∥+ β
∥x− Sx∥∥y − Tλy∥

∥x− y∥
(2.9)

for all x, y ∈ X and x ̸= y then we say that the pair (S, T ) is an enriched Jaggi
contraction pair of maps. Here we note that if S = T in the inequality (2.9), then
T is an enriched Jaggi contraction map.

In the following, we extend Theorem 2.1 to a pair of selfmaps.
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Theorem 2.5. Let (X, ∥·∥) be a Banach space. Let S, T : X → X. Suppose that
the pair (S, T ) is an enriched Jaggi contraction pair of maps. Let x0 ∈ X. We
define the sequence {xn}∞n=0 by

xn =

{
Sλx2m−1, if n = 2m, m = 1, 2, ...

Tλx2m, if n = 2m+ 1, m = 0, 1, 2... .

Then {xn} converges to u (say) in X, and u is the unique common fixed point of
S and T , provided S and T are continuous.

Proof. Let λ = 1
k+1 < 1. In this case, we have k = 1

λ − 1 and thus the condition

(2.9) becomes

∥( 1λ −1)(x−y)+Sx−Ty∥ ≤ α∥x−y∥+β ∥x−Sx∥∥y−Tλy∥
∥x−y∥ for all x, y ∈ X,x ̸= y. i.e.,

∥(1− λ)(x− y) + Sx− Ty∥ ≤ αλ∥x− y∥+ β ∥λx−λSx∥∥y−Tλy∥
∥x−y∥ . i.e.,

∥Sλx− Tλy∥ ≤ αλ∥x− y∥+ β ∥x−Sλx∥∥y−Tλy∥
∥x−y∥ for any x, y ∈ X and x ̸= y.

Case (i) n = 2m. In this case, we consider
∥xn+1 − xn∥ = ∥x2m+1 − x2m∥

= ∥Tλx2m − Sλx2m−1∥
= ∥Sλx2m−1 − Tλx2m∥
≤ αλ∥x2m−1 − x2m∥+ β ∥x2m−1−Sλx2m−1∥∥x2m−Tλx2m∥

∥x2m−1−x2m∥

= αλ∥x2m−1 − x2m∥+ β ∥x2m−1−x2m∥∥x2m−x2m+1∥
∥x2m−1−x2m∥

(1− β)∥x2m − x2m+1∥ ≤ αλ∥x2m−1 − x2m∥. Thus, we have
∥x2m+1 − x2m∥ ≤ η∥x2m − x2m−1∥ where η = αλ

1−β < 1.

Case (ii) n = 2m+ 1. In this case, we consider
∥xn+1 − xn∥ = ∥x2m+2 − x2m+1∥

= ∥Sλx2m+1 − Tλx2m∥
≤ αλ∥x2m+1 − x2m∥+ β ∥x2m+1−Sλx2m+1∥∥x2m−Tλx2m∥

∥x2m+1−x2m∥

= αλ∥x2m+1 − x2m∥+ β ∥x2m+1−x2m+2∥∥x2m−x2m+1∥
∥x2m+1−x2m∥

(1− β)∥x2m+2 − x2m+1∥ ≤ αλ∥x2m+1 − x2m∥
That is
∥x2m+2 − x2m+1∥ ≤ η∥x2m+1 − x2m∥ where η = αλ

1−β < 1.

Thus from Case (i) and Case (ii), it follows that
∥xn+1 − xn∥ ≤ η∥xn − xn−1∥ for all n = 1, 2, 3, ... .
Now, inductively, it follows that
∥xn+1 − xn∥ ≤ ηn∥x1 − x0∥ for all n = 1, 2, ... .
Thus the sequence {xn} is Cauchy.
Since X is complete, we have lim

n→∞
xn = u (say), u ∈ X.

Suppose that S is continuous. So Sλ is continuous on X.
u = lim

m→∞
x2m = lim

m→∞
Sλx2m−1 = Sλ lim

m→∞
x2m−1 = Sλu.

Therefore u is a fixed point of Sλ.
Suppose that T is continuous. So Tλ is continuous on X.
u = lim

m→∞
x2m+1 = lim

m→∞
Tλx2m = Tλ lim

m→∞
x2m = Tλu.

Therefore u is a common fixed point of Tλ and Sλ, and hence u is a common fixed
point of S and T .

Uniqueness of this common fixed point follows trivially from the inequality (2.9).
□
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Remark. Theorem 2.1 follows by choosing S = T in Theorem 2.5.

3. Fixed points of almost (k, a, b, λ)−enriched CRR contraction maps

Definition 3.1. Let (X, ∥ · ∥) be a normed linear space. Let T : X → X. If there
exist k ∈ (0,+∞), L ≥ 0 and a, b ≥ 0 satisfying a+ 2b < 1 such that

∥k(x− y) + Tx− Ty∥≤ a∥x− y∥+b(∥x− Tx∥+∥y − Ty∥)+ (3.1)

Lmin{∥y−Tλx∥, ∥x−Tλx∥[1+∥x−Tλy∥]
1+∥x−y∥ }

for all x, y ∈ X with λ = 1
k+1 , then we say that T is an almost (k, a, b, λ)−enriched

CRR contraction map with λ = 1
k+1 .

Theorem 3.1. Let (X, ∥ · ∥) be a Banach space. Let T : X → X be an almost
(k, a, b, λ)−enriched CRR contraction map with λ = 1

k+1 . Let x0 ∈ X. Then the

sequence {xn}∞n=0 defined by xn+1 = Tλxn, n = 0, 1, 2, ... converges to p (say) in X,
and p is the unique fixed point of T .

Proof. Let x0 ∈ X. We consider the sequence {xn}∞n=0 defined by xn+1 = Tλxn,
n = 0, 1, 2, ... .
For λ = 1

k+1 < 1, we have k = 1
λ − 1 and thus the condition (3.1) becomes

∥( 1λ − 1)(x− y) + Tx− Ty∥≤ a∥x− y∥+b(∥x− Tx∥+∥y − Ty∥)
+Lmin{∥y−Tλx∥, ∥x−Tλx∥[1+∥x−Tλy∥]

1+∥x−y∥ }
for all x, y ∈ X. Therefore
∥(1− λ)(x− y) + λTx− λTy∥≤ λa∥x− y∥+b(∥λx− λTx∥+∥λy − λTy∥)+

λLmin{∥y−Tλx∥, ∥x−Tλx∥[1+∥x−Tλy∥]
1+∥x−y∥ }.

That is

∥Tλx−Tλy∥≤ λa∥x−y∥+b(∥x−Tλx∥+∥y−Tλy∥)+λLmin{∥y−Tλx∥,
∥x− Tλx∥[1+∥x− Tλy∥]

1+∥x− y∥
}.

(3.2)
By taking x = xn−1 and y = xn in (3.2), we get
∥Tλxn−1 − Tλxn∥≤ λa∥xn−1 − xn∥+b(∥xn−1 − Tλxn−1∥+∥xn − Tλxn∥)

+λLmin{∥xn−Tλxn−1∥, ∥xn−1−Tλxn−1∥[1+∥xn−1−Tλxn∥]
1+∥xn−1−xn∥ }

which implies that
∥xn − xn+1∥≤ λa∥xn−1 − xn∥+b(∥xn−1 − xn∥+∥xn − xn+1∥) + λLmin{∥xn − xn∥,

∥xn−xn+1∥[1+∥xn−1−xn+1∥]
1+∥xn−1−xn∥ }

≤ a∥xn−1−xn∥+b(∥xn−1−xn∥+∥xn−xn+1∥)+λLmin{0, ∥xn−xn+1∥[1+∥xn−1−xn+1∥]
1+∥xn−1−xn∥ }

so that
(1− b)∥xn − xn+1∥≤ (a+ b)∥xn−1 − xn∥
∥xn − xn+1∥≤ δ∥xn−1 − xn∥ where δ = a+b

1−b < 1.
Inductively, it follows that
∥xn − xn+1∥≤ δn∥x0 − x1∥ for n = 1, 2, ... .
Therefore {xn} is Cauchy. Since X is complete, we have lim

n→∞
xn = p (say), p ∈ X.

Now we show that p is the fixed point of Tλ.
We consider
∥p− Tλp∥≤∥p− xn+1∥+∥xn+1 − Tλp∥

=∥p− Tλxn∥+∥Tλxn − Tλp∥
≤∥p−Tλxn∥+λa∥xn−p∥+b(∥xn−Tλxn∥+∥p−Tλp∥)+λLmin{∥p−Tλxn∥,

∥xn−Tλxn∥[1+∥xn−Tλp∥]
1+∥xn−p∥ }.
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On letting n → ∞, we get

∥p−Tλp∥≤∥p−p∥+a∥p−p∥+b(∥p−p∥+∥p−Tλp∥)+Lmin{∥p−p∥, ∥p−p∥[1+∥p−Tλp∥]
1+∥p−p∥ }

≤ b∥p− Tλp∥ so that
(1− b)∥p− Tλp∥≤ 0. Since (1− b) > 0, it follows that
∥p− Tλp∥= 0 and hence Tλp = p.
Therefore p is a fixed point of Tλ.
Let q be another fixed point of Tλ and q ̸= p. Then
0 <∥p− q∥=∥Tλp− Tλq∥≤ a∥p− q∥+b(∥p− Tλp∥+∥q− Tλq∥) + λLmin{∥q− Tλp∥,

∥p−Tλp∥[1+∥p−Tλq∥]
1+∥p−q∥ }

so that
∥p− q∥≤ a∥p− q∥,
a contradiction.
Therefore p = q.
Therefore Tλ has a unique fixed point. Thus, it follows that T has a unique fixed
point in X. □

Remark. Theorem 3.1 extends Theorem 1.2 to the case of almost (k, a, b, λ)−enriched
CRR contraction map with λ = 1

k+1 .

Example 3.1. Let X = R with the usual norm. We define T : X → X by

Tx =

{
x
8 , 0 ≤ x < 2

0, (−∞, 0) ∪ [2,∞)
.

We choose k = 1
2 , a = 1

2 and b = 1
5 with a+ 2b < 1.

Let x ∈ [0, 2), y ∈ [2,∞) We now consider
|k(x− y) + Tx− Ty| = | 12 (x− y) + x

8 − 0|
= | 12 (x− y) + x

8 |
≤ 1

2 |x− y|+ 7
40x

≤ 1
2 |x− y|+ 7

40x+ 1
5 |y|+ Lmin{|y − 5

12x|,
|x− 1

3y|
1+|x−y|}

= 1
2 |x− y|+ 1

5 (|x− x
8 |+ |y − 0|) + Lmin{|y − 5

12x|,
|x− 1

3y|
1+|x−y|}

= a|x−y|+b(|x−Tx|+ |y−Ty|)+Lmin{|y−Tλx|, |x−Tλy|
1+|x−y|}.

Therefore inequality (3.1) holds for any L ≥ 0. Hence T is an almost ( 12 ,
1
2 ,

1
5 ,

2
3 )−enriched

CRR contraction map on R. So T satisfies the hypotheses of Theorem 3.1 and ‘0’
is the unique fixed point of T .

4. Convergence of sequence of fixed points of enriched contraction
maps

In the following, Z+ denotes the set of all natural numbers.

Theorem 4.1. Let {Tn} be a sequence of (k, a)−enriched contraction maps defined
on a Banach space (X, ∥·∥) and un, the fixed point of Tn for each n = 1, 2, 3, ...,
which exists by Theorem 1.1. If {Tn} converges uniformly to T , then un → u
implies that u is a fixed point of T . Conversely if u is a fixed point of T , then un

converges to u provided k < 1− a.

Proof. First suppose that un → u as n → ∞. Assume that Tu ̸= u.
Let ϵ = ∥Tu− u∥ > 0. Then there exists N1 ∈ Z+ such that ∥un − u∥ < ϵ

2(1+a+k)

for all n ≥ N1.
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Since Tn → T uniformly, we have, there exists N2 ∈ Z+ such that ∥Tnu− Tu∥ < ϵ
2

for all n ≥ N2 and for all u ∈ X.
Let N = max{N1, N2}. Then for n ≥ N , we have
0 < ϵ = ∥u− Tu∥ ≤ ∥u− un∥+ ∥un − Tnu∥+ ∥Tnu− Tu∥

= ∥un − u∥+ ∥Tnun − Tnu∥+ ∥Tnu− Tu∥
= ∥un−u∥+∥k(un−u)+Tnun−Tnu−k(un−u)∥+∥Tnu−Tu∥
≤ ∥un−u∥+∥k(un−u)+Tnun−Tnu∥+k∥un−u∥+∥Tnu−Tu∥
≤ ∥un − u∥+ a∥un − u∥+ k∥un − u∥+ ∥Tnu− Tu∥
= (1 + a+ k)∥un − u∥+ ∥Tnu− Tu∥
< (1 + a+ k) ϵ

2(1+a+k) +
ϵ
2

= ϵ
2 + ϵ

2 = ϵ,
a contradiction.
Therefore Tu = u.
Conversely, assume that Tu = u. Let ϵ > 0 be given. Then there exists N ∈ Z+

such that ∥Tnu− Tu∥ < ϵ
c for all n ≥ N and for all u ∈ X, where c = 1

1−a−k > 0.
Let n ≥ N. Then
∥un − u∥ = ∥Tnun − Tu∥

≤ ∥Tnun − Tnu∥+ ∥Tnu− Tu∥
= ∥k(un − u) + Tnun − Tnu− k(un − u)∥+∥Tnu− Tu∥
≤ a∥un − u∥+ k∥un − u∥+ ∥Tnu− Tu∥
= (a+ k)∥un − u∥+ ∥Tnu− Tu∥

(1− a− k)∥un − u∥ ≤ ∥Tnu− Tu∥
∥un − u∥ ≤ c∥Tnu− Tu∥ < c. ϵc = ϵ.
Therefore un → u as n → ∞.

Hence the theorem follows. □

Theorem 4.2. Let {Tn} be a sequence of enriched Jaggi contraction maps defined
on a Banach space (X, ∥·∥) and un, the fixed point of Tn for each n = 1, 2, 3, ...,
which exists by Theorem 2.1. If {Tn} converges uniformly to T , then un → u
implies that u is a fixed point of T . Conversely if u is a fixed point of T , then un

converges to u provided k < 1− α.

Proof. Follows as that of Theorem 4.1.
□

Theorem 4.3. Let {Tn} be a sequence of enriched Dass and Gupta contraction
maps defined on a Banach space (X, ∥·∥) and un, the fixed point of Tn for each
n = 1, 2, 3, ..., which exists by Theorem 2.4. If {Tn} converges uniformly to T , then
un → u implies that u is a fixed point of T . Conversely if u is a fixed point of T ,
then un converges to u provided k < 1− α.

Proof. Suppose that un → u as n → ∞.
Now, we consider
∥u− Tu∥ ≤ ∥u− un∥+ ∥un − Tnu∥+ ∥Tnu− Tu∥

= ∥un − u∥+ ∥Tnun − Tnu∥+ ∥Tnu− Tu∥
= ∥un − u∥+ ∥k(un − u) + Tnun − Tnu− k(un − u)∥+ ∥Tnu− Tu∥
≤ ∥un − u∥+ ∥k(un − u) + Tnun − Tnu∥+ k∥un − u∥+ ∥Tnu− Tu∥
≤ ∥un − u∥+ α∥un − u∥+ β ∥u−Tnu∥(1+∥un−(Tn)λun∥)

1+∥u−un∥ + k∥un − u∥
+∥Tnu− Tu∥

= ∥un − u∥+ α∥un − u∥+ β ∥u−Tnu∥
1+∥un−u∥ + k∥un − u∥+ ∥Tnu− Tu∥, since
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∥un − (Tn)λun∥ = 0
≤ (1 + α+ k)∥un − u∥+ β∥u− Tnu∥+ ∥Tnu− Tu∥
≤ (1 + α+ k)∥un − u∥+ β[∥u− Tu∥+ ∥Tu− Tnu∥] + ∥Tnu− Tu∥.

Therefore
(1− β)∥u− Tu∥ ≤ (1 + α+ k)∥un − u∥+ (1 + β)∥Tnu− Tu∥, and hence

∥u−Tu∥ ≤ 1+α+k
1−β ∥un−u∥+ 1+β

1−β ∥Tnu−Tu∥ → 0 as n → ∞, since {Tn} converges

to T uniformly.
Therefore Tu = u.
Conversely, we assume that Tu = u. We consider
∥un − u∥ = ∥Tnun − Tu∥

≤ ∥Tnun − Tnu∥+ ∥Tnu− Tu∥
= ∥k(un − u) + Tnun − Tnu− k(un − u)∥+∥Tnu− Tu∥
≤ α∥un − u∥+ β ∥u−Tnu∥(1+∥un−(Tn)λun∥)

1+∥u−un∥ + k∥un − u∥+ ∥Tnu− Tu∥
≤ α∥un − u∥+ β∥u− Tnu∥+ k∥un − u∥+ ∥Tnu− Tu∥
≤ α∥un − u∥+ β[∥u− Tu∥+ ∥Tu− Tnu∥] + k∥un − u∥+ ∥Tnu− Tu∥
= (α+ k)∥un − u∥+ (1 + β)∥Tnu− Tu∥, and hence

(1− α− k)∥un − u∥ ≤ (1 + β)∥Tnu− Tu∥. Therefore
∥un − u∥ ≤ c∥Tnu− Tu∥ → 0 as n → ∞, where c = 1+β

1−α−k is a positive constant.
Therefore un → u as n → ∞.

Hence the theorem follows. □

5. Conclusion

In this paper, we defined enriched Jaggi contraction map, enriched Dass and
Gupta contraction map and almost (k, a, b, λ)−enriched CRR contraction map with
λ = 1

k+1 in Banach spaces. It is noted that every Jaggi contraction is an enriched

Jaggi contraction but its converse is not true (Example 2.1) so that enriched Jaggi
contraction maps are more general than Jaggi contraction maps. We proved the
existence and uniqueness of fixed points of enriched Jaggi contraction map
(Theorem 2.1). We provided an example in support of Theorem 2.1 and we
observed that T is not a contraction and contraction mapping principle is not
applicable. Hence Theorem 2.1 generalizes contraction mapping principle. Further,
we extended Theorem 2.1 in which T p is continuous for some positive integer p
(Theorem 2.2). Also, we extended Theorem 2.1 for the map T q for some positive
integer q (Thereoem 2.3). An example (Example 2.3) is provided where T q is
satisfies the inequality (2.7), but T is not continuous. Since T is not continuous,
Theorem 2.1 is not applicable. Also, it is easy to see that we can extend Theorem 2.1
to enriched Dass and Gupta contraction map. Further, enriched Jaggi contraction is
extended to a pair of selfmaps and proved the existence and uniqueness of common
fixed points. Also, we proved the existence and uniqueness of fixed points of almost
(k, a, b, λ)−enriched CRR contraction map with λ = 1

k+1 .

Also, we proved that the sequence of fixed points {un} of the corresponding
enriched contraction maps {Tn} converges to the fixed point u of the uniform limit
operator T of these enriched contraction maps {Tn}. Conversely, if u is a fixed point
of T then {un} converges to u under certain assumption. Further, we extended this
technique to a sequence of enriched Jaggi contraction maps and enriched Dass and
Gupta contraction maps.

In the direction of future research, we would like to suggest the following:
1) Some new fixed point results can be investigated by introducing more general
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enriched contraction conditions.
2) Some new fixed point results for multi-valued contractions can be investigated.

Acknowledgments. The authors sincerely thank the referees for their careful
reading of the manuscript and valuable suggestions, which improved the quality
and presentation of the paper.
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Abstract. In a generalized topological space Tg = (Ω,Tg) (Tg-space), var-

ious ordinary topological operators (Tg-operators), namely, intg, clg, extg,
frg, derg, codg : P (Ω) −→ P (Ω) (Tg-interior, Tg-closure, Tg-exterior, Tg-

frontier, Tg-derived, Tg-coderived operators), are defined in terms of ordi-

nary sets (Tg-sets). Accordingly, generalized Tg-operators (g-Tg-operators),
namely, g-Intg, g-Clg, g-Extg, g-Frg, g-Derg, g-Codg : P (Ω) −→ P (Ω)

(g-Tg-interior, g-Tg-closure, g-Tg-exterior, g-Tg-frontier, g-Tg-derived, g-Tg-

coderived operators) may be defined in terms of generalized Tg-sets (g-Tg-
sets), thereby making g-Tg-operators theory in Tg-spaces an interesting sub-

ject of inquiry. In this paper, we introduce the definitions and study the essen-

tial properties of the g-Tg-interior and g-Tg-closure operators g-Intg, g-Clg :

P (Ω) −→ P (Ω), respectively, in terms of a new class of g-Tg-sets which we

studied earlier. The major findings to which the study has led to are: Firstly,(
g-Intg, g-Clg

)
: P (Ω)×P (Ω) −→ P (Ω)×P (Ω) is (Ω, ∅)-grounded, (expan-

sive, non-expansive), (idempotent, idempotent) and (∩,∪)-additive. Secondly,
g-Intg : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than intg : P (Ω) −→
P (Ω) and g-Clg : P (Ω) −→ P (Ω) is coarser (or, smaller, weaker) than

clg : P (Ω) −→ P (Ω). The elements supporting these facts are reported
therein as sources of inspiration for more generalized operations.

1. Introduction

Just as the concepts of T, g-T-interior operators in T -spaces (ordinary and gen-
eralized interior operators in ordinary topological spaces) and T, g-T-closure opera-
tors in T -spaces (ordinary and generalized closure operators in ordinary topological
spaces) are essential operators in the study of T-sets in T -spaces (arbitrary sets in
ordinary topological spaces) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], so are the concepts
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operator; generalized closure operator.
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of Tg, g-Tg-interior operators in Tg-spaces (ordinary and generalized interior oper-
ators in generalized topological spaces) and Tg, g-Tg-closure operators in Tg-spaces
(ordinary and generalized closure operators in generalized topological spaces) es-
sential operators in the study of Tg-sets in Tg-spaces (arbitrary sets in generalized
topological spaces) [13, 14, 15, 16, 17, 18, 19].

Intuitively, T, g-T-interior operators, respectively, in a T -space can be charac-
terized as one-valued maps int, g-Int : P (Ω) −→P (Ω) from the power set P (Ω)
of Ω into itself, assigning to each T-set in the T -space the ∪-operation (union op-
eration) of all T, g-T-open subsets of the T-set [20, 21, 22, 23]. When the role of
∪-operation and T, g-T-open subsets, respectively, are given to ∩-operation (in-
tersection operation) and T, g-T-closed supersets of the T-set, the dual notions,
called T, g-T-closure operators in the T -space follow [21, 23, 24, 25, 26], which
can likewise be characterized as one-valued maps cl, g-Cl : P (Ω) −→ P (Ω). Fi-
nally, when (T ,T, g-T) 7−→

(
Tg,Tg, g-Tg

)
, the notions of Tg, g-Tg-interior and

Tg, g-Tg-closure operators in a Tg-space follow [15, 16, 27, 28, 29, 30, 31], which
can in a similar manner be characterized as one-valued maps of the types intg,
g-Intg : P (Ω) −→P (Ω) and clg, g-Clg : P (Ω) −→P (Ω), respectively.

Thus, in a T -space, int, g-Int : S 7−→ int (S ), g-Int (S ) describe two types of
collections of points interior in S and, cl, g-Cl : S 7−→ cl (S ), g-Cl (S ) describe
another two types of collections of points but close to S . Similarly, in a Tg-space,
intg, g-Intg : Sg 7−→ intg (Sg), g-Intg (Sg) describe two types of collections of
points interior in Sg and, clg, g-Clg : Sg 7−→ clg (Sg), g-Clg (Sg) describe another
two types of collections of points but close to Sg. Of all such operators int, cl, g-Int,
g-Cl : P (Ω) −→P (Ω) in T -spaces and intg, clg, g-Intg, g-Clg : P (Ω) −→P (Ω)
in Tg-spaces, int, cl : P (Ω) −→P (Ω) are the oldest and g-Intg, g-Clg : P (Ω) −→
P (Ω) are the newest. Hence, the studies of operators of these kinds have evolved
from the studies of ordinary operators in ordinary topological spaces to the studies
of generalized operators in generalized topological spaces.

In the literature of Tg-spaces on g-Tg-interior and g-Tg-closure operators, some
new types of one-valued maps g-Intg, g-Clg : P (Ω) −→ P (Ω) have been defined
and investigated by Mathematicians.

Based on θ-sets in Tg-spaces, Min, W. K. [32, 33, 28] has introduced the g-Tg-
interior and g-Tg-closure operators iθ, cθ : P (Ω) −→ P (Ω), respectively, and
used them to study some properties of θ (g, g′)-continuity in Tg-spaces. Cao,
Yan, Wang and Wang [34] have introduced and then used the g-Tg-interior and
g-Tg-closure operators iλ, cλ : P (Ω) −→ P (Ω) (λ-interior and λ-closure opera-
tors), respectively, where λ ∈ {α, β, σ, π} in T -spaces. Saravanakumar, Kalaivani
and Krishnan [30] have studied the g-Tg-interior and g-Tg-closure operators iµ̃,
cµ̃ : P (Ω) −→ P (Ω) (µ̃-interior and µ̃-closure operators), respectively, in terms
of g-Tg-sets (µ̃-open sets) in Tg-spaces. Srija and Jayanthi [35] have introduced
the g-Tg-interior and g-Tg-closure operators sig, scg : P (Ω) −→ P (Ω) (g-semi
interior and g-semi closure operators), respectively. Boonpok, C. [36] has intro-
duced the g-Tg-interior and g-Tg-closure operators iδ(µ), cδ(µ) : P (Ω) −→ P (Ω)
(δ (µ)-interior and δ (µ)-closure operators), respectively, and utilized them to study
the properties of ζδ(µ), (ζ, δ (µ))-closed sets in strong Tg-spaces. Later on, in ex-

tending the notion of µ-β̂g-closed set introduced by Kannan and Nagaveni [37]
in T -spaces to Tg-spaces and then studying their properties, Camargo, J. F. Z.

[27] has also investigated the related g-Tg-interior and g-Tg-closure operators β̂giµ,
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β̂gcµ : P (Ω) −→ P (Ω) (µ-β̂g-interior and µ-β̂g-closure operators), respectively.
Relative to the g-Tg-interior and g-Tg-closure operators introduced by Császár, A.

[3, 38], the author found that the image of a Tg-set under β̂giµ : P (Ω) −→P (Ω)
is a superset of that under iµ : P (Ω) −→P (Ω) and, the image of the Tg-set under

β̂gcµ : P (Ω) −→P (Ω) is a subset of its image under cµ : P (Ω) −→P (Ω).
In this paper, the essential properties of a new class of g-Tg-interior and g-Tg-

closure operators in Tg-spaces are presented.
The rest of the paper is structured as: In Section 2, necessary and sufficient

preliminary notions are described and the main results are reported in Section
3. In Section 4, various relationships between these g-Tg-operators are discussed
and an application of the g-Tg-interior and g-Tg-closure operators in a Tg-space is
presented. Finally, the work is concluded in Section 5.

2. Theory

2.1. Necessary Preliminaries. The standard reference for notations and con-
cepts is the Ph.D. Thesis of Khodabocus M. I. [16].

Throughout, U is the universe of discourse, fixed within the framework of g-Tg-
operator theory in Tg-spaces; I0n, I∗n ⊂ Z0

+ and I0∞, I∗∞ ⊂ Z0
+ are index sets

including and excluding 0 [15, 16]. To abstract definitions of concepts, let a ∈ {o, g}.

Definition 2.1 (Ta-Space [15, 16]). A topological structure Ta
def
= (Ω,Ta), consist-

ing of an underlying set Ω ⊂ U and an a-topology
Ta : P (Ω) −→ P (Ω)

Oa 7−→ Ta (Oa)
satisfying the compound Ta-axiom:

Ax (Ta)
def←→



(
To (∅) = ∅

)
∧
(
To (Oo,ν) ⊆ Oo,ν

)
∧
(
To

(⋂
ν∈I∗

n
Oo,ν

)
=

⋂
ν∈I∗

n
To (Oo,ν)

)
∧
(
To

(⋃
ν∈I∗

∞
Oo,ν

)
=

⋃
ν∈I∗

∞
To (Oo,ν)

)
(a = o) ,(

Tg (∅) = ∅
)
∧
(
Tg (Og,ν) ⊆ Og,ν

)
∧
(
Tg

(⋃
ν∈I∗

∞
Og,ν

)
=

⋃
ν∈I∗

∞
Tg (Og,ν)

)
(a = g) ,

is called a Ta-space.

On Ta-spaces, neither ordinary nor generalized separation axioms are assumed
unless otherwise stated. If a = o (ordinary), then Ax (To) stands for an ordinary
topology and if a = g (generalized), then Ax (Tg) stands for a generalized topology.
Accordingly, T = (Ω,T ) = (Ω,To) = To ̸= Tg = (Ω,Tg). If Ω ∈ Tg, then Tg is a
strong Tg-space [3, 39] and if Tg

(⋂
ν∈I∗

n
Og,ν

)
=

⋂
ν∈I∗

n
Tg (Og,ν) for any I∗n ⊂ I∗∞,

then Tg is a quasi Tg-space [40].
Typically,

(
Γ, {Oa} ,Sa

)
⊂ Ω × Ta × Ta denotes a triple of a Ω-subset, a

unit set containing a Ta-open set and a Ta-set. By ∁Ω (Oa) = Ka ∈ ¬Ta
def
={

Ka : ∁ (Ka) ∈ Ta

}
is meant a Ta-closed set. On the other hand, the operators

inta, cla : P (Ω) −→P (Ω)
Sa 7−→ inta (Sa) , cla (Sa)

are called Ta-interior and Ta-closure

operators, respectively. Accordingly,

inta (Sa)
def
=

⋃
Oa∈Csub

Ta
[Sa]

Oa, cla (Sa)
def
=

⋂
Ka∈Csup

¬Ta
[Sa]

Ka, (2.1)
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where Csub
Ta

[Sa]
def
=

{
Oa ∈ Ta : Oa ⊆ Sa

}
and Csup

¬Ta
[Sa]

def
=

{
Ka ∈ ¬Ta :

Ka ⊇ Sa

}
. In general, (intg, clg) ̸= (into, clo) [41]. Set P∗ (Ω) = P (Ω) \

{
∅
}
,

T ∗
a = Ta \

{
∅
}
, and ¬T ∗

a = ¬Ta \
{
∅
}
.

Definition 2.2 (g-Operation [15, 16]). A mapping
opa : P (Ω) −→P (Ω)

Sa 7−→ opa (Sa)
is called a generalized operation (g-operation) if and only if the following statements
hold: (

∀Sa ∈P∗ (Ω)
)(
∃ (Oa,Ka) ∈ T ∗

a × ¬T ∗
a

)[(
opa (∅) = ∅

)
∨
(
¬ opa (∅) = ∅

)
∨
(
Sa ⊆ opa (Oa)

)
∨
(
Sa ⊇ ¬ opa (Ka)

)]
, (2.2)

where
¬ opa : P (Ω) −→P (Ω)

Sa 7−→ ¬ opa (Sa)
is called its complementary g-operation,

and for all Ta-sets Sa, Sa,ν , Sa,µ ∈P∗ (Ω), the following axioms are satisfied:

– Ax. i.
(
Sa ⊆ opa (Oa)

)
∨
(
Sa ⊇ ¬ opa (Ka)

)
,

– Ax. ii.
(
opa (Sa) ⊆ opa ◦ opa (Oa)

)
∨
(
¬ opa (Sa) ⊇ ¬ opa ◦¬ opa (Ka)

)
,

– Ax. iii.
(
Sa,ν ⊆ Sa,µ −→ opa (Oa,ν) ⊆ opa (Oa,µ)

)
∨
(
Sa,µ ⊆ Sa,ν ←− ¬ opa (Ka,µ) ⊇ ¬ opa (Ka,ν)

)
,

– Ax. iv.
(
opa

(⋃
σ=ν,µ Sa,σ

)
⊆

⋃
σ=ν,µ opa (Oa,σ)

)
∨
(
¬ opa

(⋃
σ=ν,µ Sa,σ

)
⊇

⋃
σ=ν,µ ¬ opa (Ka,σ)

)
,

for some Ta-sets Oa, Oa,ν , Oa,µ ∈ T ∗
a and Ka, Ka,ν , Ka,µ ∈ ¬T ∗

a .

The formulation of Def. 2.2 is based on the Čech closure operator axioms [42]
and the axioms used by other mathematicians to define closure operators [43]. The

class La [Ω]
def
=

{
opa,ν =

(
opa,ν ,¬ opa,ν

)
: ν ∈ I03

}
⊆ L ω

a [Ω]×L κ
a [Ω], where

opa ∈ L ω
a [Ω]

def
=

{
opa,0, opa,1, opa,2, opa,3

}
(2.3)

=
{
inta, cla ◦ inta, inta ◦ cla, cla ◦ inta ◦ cla

}
,

¬ opa ∈ L κ
a [Ω]

def
=

{
¬ opa,0, ¬ opa,1, ¬ opa,2, ¬ opa,3

}
(2.4)

=
{
cla, inta ◦ cla, cla ◦ inta, inta ◦ cla ◦ inta

}
,

stands for the class of all possible pairs of g-operators and its complementary
g-operators in the Ta-space Ta. In general, Lg [Ω] ∋ opg =

(
opg,¬ opg

)
̸=(

opo,¬ opo
)
= opo ∈ Lo [Ω].

Definition 2.3 (g-Ta-Sets [15, 16]). Let
(
Sa, {Oa} , {Ka}

)
⊂ Ta×Ta×¬Ta and let

opa,ν ∈ La [Ω] be a g-operator in a Ta-space Ta = (Ω,Ta). Suppose the predicates

Pa

(
Sa,Oa,Ka;opa,ν ;⊆,⊇

) def
= Pa

(
Sa,Oa;opa,ν ;⊆

)
∨ Pa

(
Sa,Ka;opa,ν ;⊇

)
,

Pa

(
Sa,Oa;opa,ν ;⊆

) def
=

(
∃
(
Oa, opa,ν

)
∈ Ta ×L ω

a [Ω]
)[

Sa ⊆ opa,ν (Oa)
]
,

Pa

(
Sa,Ka;opa,ν ;⊇

) def
=

(
∃
(
Ka,¬ opa,ν

)
∈ ¬Ta ×L κ

a [Ω]
)

(2.5)[
Sa ⊇ ¬ opa,ν (Ka)

]
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be Boolean-valued on Ta × (Ta ∪ ¬Ta)×La [Ω]×
{
⊆,⊇

}
, then

g-ν-S [Ta]
def
=

{
Sa ⊂ Ta : Pa

(
Sa,Oa,Ka;opa,ν ;⊆,⊇

)}
,

g-ν-O [Ta]
def
=

{
Sa ⊂ Ta : Pa

(
Sa,Oa;opa,ν ;⊆

)}
, (2.6)

g-ν-K [Ta]
def
=

{
Sa ⊂ Ta : Pa

(
Sa,Ka;opa,ν ;⊇

)}
,

respectively, are called the classes of all g-Ta-sets, g-Ta-open sets and g-Ta-closed
sets of category ν in Ta.

In particular, O [Ta]
def
=

{
Sa ⊂ Ta : Pa

(
Sa,Sa;opa,0;⊆

)}
and K [Ta]

def
=

{
Sa ⊂

Ta : Pa

(
Sa,Sa;opa,0;⊇

)}
denote the classes of all Ta-open and Ta-closed sets,

respectively, in Ta, with S [Ta] =
⋃

E∈{O,K} E [Ta] [15, 16]. Clearly,

g-S [Ta]
def
=

⋃
ν∈I0

3

g-ν-S [Ta]

=
⋃

(ν,E)∈I0
3×{O,K}

g-ν-E [Ta] =
⋃

E∈{O,K}

g-E [Ta] .

By virtue of the foregoing descriptions, Sg is g-Ta-open or g-Ta-closed of category
ν (g-ν-Tg-open or g-ν-Tg-closed) if and only if there exist (Og,Kg) ∈ Tg × ¬Tg

such that (
Sg ⊆ opg,ν (Og)

)
∨
(
Sg ⊇ ¬ opg,ν (Kg)

)
, (2.7)

where

opg,ν =
(
opg,ν ,¬ opg,ν

) def
=



(
intg, clg

)
(ν = 0) ,(

clg ◦ intg, intg ◦ clg
)

(ν = 1) ,(
intg ◦ clg, clg ◦ intg

)
(ν = 2) ,(

clg ◦ intg ◦ clg, intg ◦ clg ◦ intg
)

(ν = 3) .

Thus, Rg, Sg, Ug, Vg ⊂ Tg are of categories 0, 1, 2, 3, respectively, if and only if(
Rg ⊆ intg (Og)

)
∨
(
Rg ⊇ clg (Kg)

)
,(

Sg ⊆ clg ◦ intg (Og)
)
∨
(
Sg ⊇ intg ◦ clg (Kg)

)
,(

Ug ⊆ intg ◦ clg (Og)
)
∨
(
Ug ⊇ clg ◦ intg (Kg)

)
,(

Vg ⊆ clg ◦ intg ◦ clg (Og)
)
∨
(
Vg ⊇ intg ◦ clg ◦ intg (Kg)

)
, (2.8)

for some (Og,Kg) ∈ Tg × ¬Tg. The notions of g-Ta-separateness and g-Ta-
connectedness of category ν ∈ I03 are based on g-Ta-sets of the same category
ν.

Definition 2.4 (g-Ta-Separation, g-Ta-Connected [16]). A g-Ta-separation of cat-
egory ν of two nonempty Ta-sets Ra, Sa ⊆ Ta of a Ta-space Ta = (Ω,Ta)
is realised if and only if there exists either (Oa,ξ,Oa,ζ) ∈ ×α∈I∗

2
g-ν-O

[
Ta

]
or

(Ka,ξ,Ka,ζ) ∈×α∈I∗
2
g-ν-K

[
Ta

]
such that:( ⊔

λ=ξ,ζ

Oa,λ = Ra ⊔Sa

)∨( ⊔
λ=ξ,ζ

Ka,λ = Ra ⊔Sa

)
. (2.9)

Otherwise, they are said to be g-Ta-connected of category ν.
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Thus, Sa ⊂ Ta is g-Ta-connected if and only if Sa ∈ g-Q [Ta] =
⋃

ν∈I0
3
g-ν-Q [Ta]

and g-Ta-separated if and only if Sa ∈ g-D [Ta] =
⋃

ν∈I0
3
g-ν-D [Ta] where,

g-ν-Q [Ta]
def
=

{
Sa ⊂ Ta :

(
∀
(
Oa,λ,Ka,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Ta

]
× g-ν-K

[
Ta

])
[
¬
( ⊔

λ=ξ,ζ

Oa,λ = Sa

)∧
¬
( ⊔

λ=ξ,ζ

Oa,λ = Sa

)]}
; (2.10)

g-ν-D [Ta]
def
=

{
Sa ⊂ Ta :

(
∃
(
Oa,λ,Ka,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Ta

]
× g-ν-K

[
Ta

])
[( ⊔

λ=ξ,ζ

Oa,λ = Sa

)∨( ⊔
λ=ξ,ζ

Ka,λ = Sa

)]}
. (2.11)

Evidently, by Ω ∈ g-ν-Q [Ta] or Ω ∈ g-ν-D [Ta] is meant a g-Ta-connection of
category ν or a g-Ta-separation of category ν of the Ta-space Ta = (Ω,Ta) is
realised.

2.2. Sufficient Preliminaries. The dual concepts called g-Ta-interior and g-Ta-
closure operators of category ν in Ta-spaces are presented from set-theoretic and
vectorial viewpoints herein.

Definition 2.5 (g-ν-Ta-Interior, g-ν-Ta-Closure Operators). Let Ta = (Ω,Ta) be

a Ta-space, let C
sub
g-ν-O[Ta] [Sa]

def
=

{
Oa ∈ g-ν-O

[
Ta

]
: Oa ⊆ Sa

}
be the family of

all g-ν-Ta-open subsets of Sa ∈ P (Ω) relative to the class g-ν-O [Ta] of g-ν-Ta-

open sets, and let Csup
g-ν-K[Ta]

[Sa]
def
=

{
Ka ∈ g-ν-K

[
Ta

]
: Ka ⊇ Sa

}
be the family

of all g-ν-Ta-closed supersets of Sa ∈ P (Ω) relative to the class g-ν-K [Ta] of
g-ν-Ta-closed sets. Then, the one-valued maps of the types

g-Inta,ν : P (Ω) −→ P (Ω) (2.12)

Sa 7−→
⋃

Oa∈Csub
g-ν-O[Ta]

[Sa]

Oa,

g-Cla,ν : P (Ω) −→ P (Ω) (2.13)

Sa 7−→
⋂

Ka∈Csup
g-ν-K[Ta]

[Sa]

Ka

on P (Ω) ranging in P (Ω) are called, respectively, g-Ta-interior and g-Ta-closure

operators of category ν. The classes g-I [Ta]
def
=

{
g-Inta,ν : ν ∈ I03

}
and g-C [Ta]

def
={

g-Cla,ν : ν ∈ I03
}
, respectively, are called the classes of all g-Ta-interior and

g-Ta-closure operators.

Remark. Note that
g-Inta, g-Cla : P (Ω) −→P (Ω)

Sa 7−→ g-Inta (Sa) , g-Cla (Sa)
are dual

g-Ta-operators because, the first is based on ∪, ⊆, Oa,1, Oa,2, . . . while the second
on ∩, ⊇, Ka,1, Ka,2, . . ..
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Definition 2.6 (g-Ta-Vector Operator). Let Ta = (Ω,Ta) be a Ta-space. Then,
an operator of the type

g-Ica,ν : P (Ω)×P (Ω) −→ P (Ω)×P (Ω) (2.14)

(Ra,Sa) 7−→
(
g-Inta,ν (Ra) , g-Cla,ν (Sa)

)
on P (Ω) ×P (Ω) ranging in P (Ω) ×P (Ω) is called a g-Ta-vector operator of

category ν. Then, g-IC [Ta]
def
=

{
g-Ica,ν =

(
g-Inta,ν , g-Cla,ν

)
: ν ∈ I03

}
is called the

class of all g-Ta-vector operators.

Remark. Observing that, for every ν ∈ I∗3 , the first and second components of
the g-Ta-vector operator g-Ica,ν =

(
g-Inta,ν , g-Cla,ν

)
are based on g-ν-O [Ta] and

g-ν-K [Ta], respectively, it follows that g-Ica,ν = ica
def
=

(
inta, cla

)
if based on

O [Ta] and K [Ta]. In this way,
ica : P (Ω)×P (Ω) −→P (Ω)×P (Ω)

(Ra,Sa) 7−→
(
inta (Ra) , cla (Sa)

)
is called a Tg-vector operator in a Ta-space Ta = (Ω,Ta).

3. Main Results

The essential properties of the g-Tg-interior and g-Tg-closure operators in Tg-
spaces are presented below.

Lemma 3.1. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-space
Tg = (Ω,Tg), then:

– i. Csub
O[Tg]

[⋂
ν∈I∗

σ
Sg,ν

]
=

⋂
ν∈I∗

σ

Csub
O[Tg] [Sg,ν ],

– ii. Csup
K[Tg]

[⋃
ν∈I∗

σ
Sg,ν

]
=

⋃
ν∈I∗

σ

Csup
K[Tg]

[Sg,ν ].

Proof. Let {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-space
Tg = (Ω,Tg), then by virtue of Tg-set-theoretic (∩,∪)-operation, it results that

Csub
O[Tg]

[⋂
ν∈I∗

σ
Sg,ν

]
=

{
Og ∈ O [Tg] : Og ⊆

⋂
ν∈I∗

σ
Sg,ν

}
=

{
Og ∈ O [Tg] :

∧
ν∈I∗

σ

(
Og ⊆ Sg,ν

)}
=

⋂
ν∈I∗

σ

{
Og ∈ O [Tg] : Og ⊆ Sg,ν

}
=

⋂
ν∈I∗

σ

Csub
O[Tg] [Sg,ν ] ;

Csup
K[Tg]

[⋃
ν∈I∗

σ
Sg,ν

]
=

{
Kg ∈ K [Tg] : Kg ⊇

⋃
ν∈I∗

σ
Sg,ν

}
=

{
Kg ∈ K [Tg] :

∨
ν∈I∗

σ

(
Kg ⊇ Sg,ν

)}
=

⋃
ν∈I∗

σ

{
Kg ∈ K [Tg] : Kg ⊇ Sg,ν

}
=

⋃
ν∈I∗

σ

Csup
K[Tg]

[Sg,ν ] .

The proof of the lemma is complete. □

For any (Og,Kg) ∈ O [Tg] × K [Tg], Og ⊆ opg (Og) and Kg ⊇ ¬ opg (Kg) hold,
or alternatively, O [Tg] ⊆ g-O [Tg] and K [Tg] ⊆ g-K [Tg]. Consequently,(

Og ∈ O [Tg] −→ Og ∈ g-O [Tg]
)
∧
(
Kg ∈ K [Tg] −→ Kg ∈ g-K [Tg]

)
.

As a consequence of the above lemma, the corollary follows.
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Corollary 3.2. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-
space Tg = (Ω,Tg), then:

– i. Csub
g-O[Tg]

[⋂
ν∈I∗

σ
Sg,ν

]
=

⋂
ν∈I∗

σ

Csub
g-O[Tg] [Sg,ν ],

– ii. Csup
g-K[Tg]

[⋃
ν∈I∗

σ
Sg,ν

]
=

⋃
ν∈I∗

σ

Csup
g-K[Tg]

[Sg,ν ].

Remark. Clearly, Csub
g-O[Tg]

[⋂
ν∈I∗

σ
Sg,ν = ∅

]
= {∅} and Csup

g-K[Tg]

[⋃
ν∈I∗

σ
Sg,ν

]
=

{Ω} hold. Moreover, Csub
g-O[Tg]

[
Sg = Ω

]
= g-O [Tg] and Csup

g-K[Tg]

[
Sg = ∅

]
=

g-K [Tg].

Proposition 3.3. Let Sg ⊂ Tg be a Tg-set and, let g-Intg, g-Clg : P (Ω) −→
P (Ω), respectively, be a g-Tg-interior and a g-Tg-closure operators in a Tg-space
Tg = (Ω,Tg). Then, the necessary and sufficient conditions for (ξ, ζ) ∈ g-Intg (Sg)×
g-Clg (Sg) ⊂ Tg × Tg to hold in Tg are:

– i. ξ ∈ g-Intg (Sg) ←→
(
∃Og,ξ ∈ g-O [Tg]

)[
Og,ξ ⊆ Sg

]
,

– ii. ζ ∈ g-Clg (Sg) ←→
(
∀Og,ζ ∈ g-O [Tg]

)[
Og,ζ ∩Sg ̸= ∅

]
.

Proof. Let Sg ⊂ Tg be a Tg-set and, let g-Intg, g-Clg : P (Ω) −→ P (Ω), respec-
tively, be a g-Tg-interior and a g-Tg-closure operators in a Tg-space Tg = (Ω,Tg).
Suppose

(ξ, ζ) ∈ g-Intg (Sg)× g-Clg (Sg) =

( ⋃
Og∈Csub

g-O[Tg]
[Sg]

Og

)
×

( ⋂
Kg∈Csup

g-K[Tg]
[Sg]

Kg

)
.

Then, since the relations⋃
Og∈Csub

g-O[Tg]
[Sg]

Og ←→
{
ξ :

(
∃Og ∈ Csub

g-O[Tg] [Sg]
)[
ξ ∈ Og

]}
,

⋂
Kg∈Csup

g-K[Tg]
[Sg]

Kg ←→
{
ζ :

(
∀Kg ∈ Csup

g-K[Tg]
[Sg]

)[
ζ ∈ Kg

]}
hold and g-O [Tg] × g-K [Tg] ⊇ Csub

g-O[Tg] [Sg] × Csup
g-K[Tg]

[Sg], and, on the other

hand, the relation ξ ∈ Og,ξ ⊆ Sg ⊆ Kg,ξ also holds for any (ξ,Og,ξ,Kg,ξ) ∈
Sg × Csub

g-O[Tg] [Sg]× Csup
g-K[Tg]

[Sg], it follows that

ξ ∈ g-Intg (Sg) ←→
(
∃Og ∈ Csub

g-O[Tg] [Sg]
)[
ξ ∈ Og

]
←→

(
∃Og,ξ ∈ g-O [Tg]

)[
Og,ξ ⊆ Sg

]
;

ζ ∈ g-Clg (Sg) ←→
(
∀Kg ∈ Csup

g-K[Tg]
[Sg]

)[
ζ ∈ Kg

]
←→

(
∀Og,ζ ∈ g-O [Tg]

)[
Og,ζ ∩Sg ̸= ∅

]
.

Hence, ξ ∈ g-Intg (Sg) is equivalent to
(
∃Og,ξ ∈ g-O [Tg]

)[
Og,ξ ⊆ Sg

]
and ζ ∈

g-Clg (Sg) is equivalent to
(
∀Og,ζ ∈ g-O [Tg]

)[
Og,ζ ∩ Sg ̸= ∅

]
. The proof of the

proposition is complete. □

Theorem 3.4. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-
space Tg = (Ω,Tg) then:



GENERALIZED TOPOLOGICAL OPERATOR THEORY 25

– i. g-Intg :
⋂

ν∈I∗
σ

Sg,ν 7−→
⋂

ν∈I∗
σ

g-Intg
(
Sg,ν

)
∀ g-Intg ∈ g-I [Tg],

– ii. g-Clg :
⋃

ν∈I∗
σ

Sg,ν 7−→
⋃

ν∈I∗
σ

g-Clg
(
Sg,ν

)
∀ g-Clg ∈ g-C [Tg].

Proof. Let {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-space
Tg = (Ω,Tg). Then for any

(
g-Intg, g-Clg

)
∈ g-I [Tg]× g-C [Tg], it follows that

g-Intg :
⋂

ν∈I∗
σ

Sg,ν 7−→
⋃

Og∈Csub
g-O[Tg]

[⋂
ν∈I∗σ

Sg,ν

]Og

=
⋃

Og∈
⋂

ν∈I∗σ
Csub

g-O[Tg]
[Sg,ν ]

Og

=
⋂

ν∈I∗
σ

( ⋃
Og∈Csub

g-O[Tg]
[Sg,ν ]

Og

)
=

⋂
ν∈I∗

σ

g-Intg (Sg,ν) ;

g-Clg :
⋃

ν∈I∗
σ

Sg,ν 7−→
⋃

Kg∈Csup

g-K[Tg]

[⋃
ν∈I∗σ

Sg,ν

]Kg

=
⋃

Kg∈
⋃

ν∈I∗σ
Csup

g-K[Tg]
[Sg,ν ]

Kg

=
⋃

ν∈I∗
σ

( ⋃
Kg∈Csup

g-K[Tg]
[Sg,ν ]

Kg

)
=

⋃
ν∈I∗

σ

g-Clg (Sg,ν) .

The proof of the theorem is complete. □

Theorem 3.5. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:(
∀ g-Icg ∈ g-IC [Tg]

)[(
g-Intg (Sg) ⊆ Sg

)
∧
(
g-Clg (Sg) ⊇ Sg

)]
. (3.1)

Proof. Let Sg ⊂ Tg be any Tg-set and g-Icg ∈ g-IC [Tg] be arbitrary in a Tg-
space Tg = (Ω,Tg). Then, by virtue of the definition of the g-Tg-operators g-Intg,
g-Clg : P (Ω) −→P (Ω), it results that,

g-Intg : Sg 7−→
⋃

Og∈Csub
g-O[Tg]

[Sg]

Og

g-Clg : Sg 7−→
⋂

Kg∈Csup

g-K[Tg]
[Sg]

Kg,

respectively. But, for every (Og,Kg) ∈ Csub
g-O[Tg] [Sg] × Csup

g-K[Tg]
[Sg], the relation

(Og,Sg) ⊆ (Sg,Kg) holds. Hence, g-Intg (Sg) ⊆ Sg and g-Clg (Sg) ⊇ Sg. This
completes the proof of the theorem. □

A consequence of the above theorem is the following corollary.

Corollary 3.6. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:(
∀ g-Icg ∈ g-IC [Tg]

)[
g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg)

]
. (3.2)
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Remark. Employing the terminology of Levine, N. [10], any Tg-set Sg ⊂ Tg in
a Tg-space Tg = (Ω,Tg) which satisfies the relation Og = g-Intg (Sg) ⊆ Sg ⊆
g-Clg (Sg) = g-Clg (Og) for some g-Tg-open set Og ∈ g-O [Tg] may well be termed
a g-Tg-semi-open set.

Proposition 3.7. If Tg = (Ω,Tg) be a strong Tg-space, then:(
∀ g-Icg ∈ g-IC [Tg]

)[
g-Icg : (Ω, ∅) 7−→ (Ω, ∅)

]
. (3.3)

Proof. Let g-Icg ∈ g-IC [Tg] in a strong Tg-space Tg = (Ω,Tg). Then, since Tg is a
strong Tg-space, (Ω, ∅) ∈ g-O [Tg]× g-K [Tg] and, therefore, Ω is the biggest g-Tg-
open subset contained in itself and, ∅ is the smallest g-Tg-closed superset containing
itself. Consequently,

g-Icg : (Ω, ∅) 7−→
( ⋃

Og∈Csub
g-O[Tg]

[Ω]

Og,
⋂

Kg∈Csup

g-K[Tg]
[∅]

Kg

)

=

( ⋃
Og∈{Ω}∪Csub

g-O[Tg]
[Ω]

Og,
⋂

Kg∈{∅}∪Csup

g-K[Tg]
[∅]

Kg

)
= (Ω, ∅) .

Hence, g-Icg : (Ω, ∅) 7−→ (Ω, ∅). The proof of the proposition is complete. □

Proposition 3.8. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:

– i. g-Intg ◦ g-Intg : Sg 7−→ g-Intg (Sg) ∀ g-Intg ∈ g-I [Tg],
– ii. g-Clg ◦ g-Clg : Sg 7−→ g-Clg (Sg) ∀ g-Clg ∈ g-C [Tg].

Proof. Let Sg ⊂ Tg be any Tg-set and let
(
g-Intg, g-Clg

)
∈ g-I [Tg] × g-C [Tg] be

arbitrary in a Tg-space Tg = (Ω,Tg). Then,

g-Intg : g-Intg (Sg) 7−→
⋃

Og∈Csub
g-O[Tg]

[g-Intg(Sg)]

Og;

g-Clg : g-Clg (Sg) 7−→
⋂

Kg∈Csup

g-K[Tg]
[g-Clg(Sg)]

Kg.

But, g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg) and consequently,⋃
Og∈Csub

g-O[Tg]
[g-Intg(Sg)]

Og =
⋃

Og∈Csub
g-O[Tg]

[Sg]

Og;

⋂
Kg∈Csup

g-K[Tg]
[g-Clg(Sg)]

Kg =
⋂

Kg∈Csup

g-K[Tg]
[Sg]

Kg.

Hence, g-Intg ◦ g-Intg : Sg 7−→ g-Intg (Sg) and g-Clg ◦ g-Clg : Sg 7−→ g-Clg (Sg).
This completes the proof of the proposition. □

Proposition 3.9. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:

– i. g-Intg ◦ g-Clg : Sg 7−→ g-Intg (Sg) ∀
(
g-Intg, g-Clg

)
∈ g-IC [Tg],

– ii. g-Clg ◦ g-Intg : Sg 7−→ g-Clg (Sg) ∀
(
g-Intg, g-Clg

)
∈ g-IC [Tg].
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Proof. Let Sg ⊂ Tg be any Tg-set and let g-Icg ∈ g-IC [Tg] be a g-Tg-operator in a
Tg = (Ω,Tg). Then, the first and second components of g-Icg : P (Ω)×P (Ω) −→
P (Ω)×P (Ω) operated on g-Clg (Sg), g-Intg (Sg) ⊂ Tg gives

g-Intg : g-Clg (Sg) 7−→
⋃

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

Og

=
⋃

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

(
Og ∩ g-Clg (Sg)

)
=

⋃
Og∈Csub

g-O[Tg]
[Sg]

(
Og ∩Sg

)
=

⋃
Og∈Csub

g-O[Tg]
[Sg]

Og,

g-Clg : g-Intg (Sg) 7−→
⋂

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

Kg

=
⋂

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

(
Kg ∪ g-Intg (Sg)

)
=

⋂
Kg∈Csup

g-K[Tg]
[Sg]

(
Kg ∪Sg

)
=

⋂
Kg∈Csup

g-K[Tg]
[Sg]

Kg,

respectively. Hence, g-Intg ◦ g-Clg : Sg 7−→ g-Intg (Sg) and g-Clg ◦ g-Intg : Sg 7−→
g-Clg (Sg). The proof of the proposition is complete. □

Theorem 3.10. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→ P (Ω) in a Tg-space Tg = (Ω,Tg) then, for every (Rg,Sg) ⊂
Tg × Tg such that Rg ⊆ Sg:

g-Icg (Rg,Rg) ⊆ g-Icg (Sg,Sg) . (3.4)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] be given
and (Rg,Sg) ⊂ Tg × Tg such that Rg ⊆ Sg be an arbitrary pair of Tg-sets.
Then, since for any Sg ∈ Pg (Ω), (Og,Sg) ⊆ (Sg,Kg) for every (Og,Kg) ∈
Csub

g-O[Tg] [Sg] × Csup
g-K[Tg]

[Sg], it follows by virtue of the relation Rg ⊆ Sg that

(Og,Rg) ⊆ (Rg,Sg) ⊆ (Sg,Kg) for any (Og,Kg) ∈ Csub
g-O[Tg] [Rg] × Csup

g-K[Tg]
[Sg].

Consequently, it results on the one hand that

g-Intg : Rg 7−→
⋃

Og∈Csub
g-O[Tg]

[Rg]

Og =
⋃

Og∈Csub
g-O[Tg]

[Rg]

(Og ∩Sg)

⊆
⋃

Og∈Csub
g-O[Tg]

[Sg]

(Og ∩Sg) =
⋃

Og∈Csub
g-O[Tg]

[Sg]

Og = g-Intg (Sg) ,
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and on the other hand,

g-Clg : Rg 7−→
⋂

Kg∈Csup

g-K[Tg]
[Rg]

Kg =
⋂

Kg∈Csup

g-K[Tg]
[Rg]

(Kg ∩Rg)

⊆
⋂

Kg∈Csup

g-K[Tg]
[Sg]

(Kg ∩Sg) =
⋂

Kg∈Csup

g-K[Tg]
[Sg]

Kg = g-Clg (Sg) .

These show that the images of Rg under g-Intg, g-Clg : P (Ω) −→ P (Ω), re-
spectively, are subsets of g-Intg (Sg) and g-Clg (Sg). Hence, g-Icg (Rg,Rg) ⊆
g-Icg (Sg,Sg). The proof of the theorem is complete. □

Theorem 3.11. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→ P (Ω) and icg ∈ IC [Tg] be a given pair of Tg-operators intg,
clg : P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ⊂ Tg

)[(
intg (Sg) , g-Clg (Sg)

)
⊆

(
g-Intg (Sg) , clg (Sg)

)]
. (3.5)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] and icg ∈ IC [Tg]
be given and Sg ⊂ Tg be an arbitrary Tg-set. Then,

intg : Sg 7−→
⋃

Og∈Csub
O[Tg]

[Sg]

Og ⊆
⋃

Og∈Csub
g-O[Tg]

[Sg]

Og = g-Intg (Sg) ;

clg : Sg 7−→
⋂

Kg∈Csup

K[Tg]
[Sg]

Kg ⊇
⋂

Kg∈Csup

g-K[Tg]
[Sg]

Kg = g-Clg (Sg) .

Therefore, it follows that the images of Sg under intg, g-Clg : P (Ω) −→P (Ω), re-

spectively, are subsets of g-Intg (Sg) and clg (Sg). Hence,
(
intg (Sg) , g-Clg (Sg)

)
⊆(

g-Intg (Sg) , clg (Sg)
)
. The proof of the theorem is complete. □

Proposition 3.12. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→ P (Ω) and icg ∈ IC [Tg] be a given pair of Tg-operators intg,
clg : P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg) then, for any Tg-set Sg ⊂ Tg,(

g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg)
)
−→

(
intg (Sg) ⊆ Sg ⊆ clg (Sg)

)
. (3.6)

Proof. If g-Icg ∈ g-IC [Tg] and icg ∈ IC [Tg] be given and, let Sg ⊂ Tg be an
arbitrary Tg-set in a Tg-space Tg = (Ω,Tg). Then, g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg).

But since
(
intg (Sg) , g-Clg (Sg)

)
⊆

(
g-Intg (Sg) , clg (Sg)

)
it follows that

intg (Sg) ⊆ g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg) ⊆ clg (Sg) .

Hence, g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg) implies intg (Sg) ⊆ Sg ⊆ clg (Sg). The
proof of the proposition is complete. □

Remark. If g-Intg ≿ intg stands for g-Intg (Sg) ⊇ intg (Sg) and g-Clg ≾ clg, for
g-Clg (Sg) ⊆ clg (Sg), then the outstanding facts are: g-Intg : P (Ω) −→ P (Ω)
is finer (or, larger, stronger) than intg : P (Ω) −→ P (Ω) or, intg : P (Ω) −→
P (Ω) is coarser (or, smaller, weaker) than g-Intg : P (Ω) −→ P (Ω); g-Clg :
P (Ω) −→P (Ω) is coarser (or, smaller, weaker) than clg : P (Ω) −→P (Ω) or,
clg : P (Ω) −→P (Ω) is finer (or, larger, stronger) than g-Clg : P (Ω) −→P (Ω).
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Proposition 3.13. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→ P (Ω) and icg ∈ IC [Tg] be a given pair of Tg-operators intg,
clg : P (Ω) −→P (Ω), and (Rg,Sg) ⊂ Tg×Tg be any pair of Tg-sets in a Tg-space
Tg = (Ω,Tg), then:

(Rg,Sg) ∈ O [Tg]×K [Tg] −→ g-Icg (Rg,Sg) = icg (Rg,Sg) . (3.7)

Proof. Let g-Icg ∈ g-IC [Tg] and icg ∈ IC [Tg] be given and, let (Rg,Sg) ⊂ Tg×Tg

be arbitrary in a Tg-space Tg = (Ω,Tg). Then, since S [Tg] = O [Tg] ∪K [Tg] and,
O [Tg] ⊆ g-O [Tg] and g-K [Tg] ⊇ K [Tg], it follows that

g-icg : (Rg,Sg) 7−→
( ⋃

Og∈Csub
O[Tg]

[Rg]

Og,
⋂

Kg∈Csup

K[Tg]
[Sg]

Kg

)

=

( ⋃
Og∈Csub

O[Tg]∩g-O[Tg]
[Rg]

Og,
⋂

Kg∈Csup

K[Tg]∩g-K[Tg]
[Sg]

Kg

)

=

( ⋃
Og∈Csub

g-O[Tg]
[Rg]

Og,
⋂

Kg∈Csup

g-K[Tg]
[Sg]

Kg

)

= g-Icg (Rg,Sg) .

Hence, g-Icg (Rg,Sg) = icg (Rg,Sg). The proof of the proposition is complete. □

Proposition 3.14. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ∈P (Ω)
)[(

g-Intg (Sg) ⊆ g-Intg ◦ g-Clg (Sg)
)

∧
(
g-Clg (Sg) ⊇ g-Clg ◦ g-Intg (Sg)

)]
. (3.8)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] be given and
Sg ∈P (Ω) be an arbitrary Tg-set. Then,

g-Intg : g-Clg (Sg) 7−→
⋃

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

Og

⊇
⋃

Og∈Csub
g-O[Tg]

[Sg]

Og = g-Intg (Sg) ;

g-Clg : g-Intg (Sg) 7−→
⋂

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

Kg

⊆
⋂

Kg∈Csub
g-K[Tg]

[Sg]

Kg = g-Clg (Sg) .

Hence, the image of g-Clg (Sg) under g-Intg : P (Ω) −→ P (Ω) is a superset of
g-Intg (Sg) and that of g-Intg (Sg) under g-Clg : P (Ω) −→ P (Ω) is a subset of
g-Clg (Sg). The proof of the proposition is complete. □
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Theorem 3.15. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ∈P (Ω)
)[
g-Icg (Sg) ∈ g-O [Tg]× g-K [Tg]

]
. (3.9)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] be given and
Sg ∈ P (Ω) be an arbitrary Tg-set. Then, by virtue of the definition of g-Icg, it
results that,

g-Intg : Sg 7−→
⋃

Og∈Csub
g-O[Tg]

[Sg]

Og

⊆
⋃

Og∈Csub
Tg

[Sg]

opg (Og) = opg

( ⋃
Og∈Csub

Tg
[Sg]

Og

)
;

g-Clg : Sg 7−→
⋂

Kg∈Csup

g-K[Tg]
[Sg]

Kg

⊇
⋂

Kg∈Csup
¬Tg

[Sg]

opg (Kg) = opg

( ⋂
Kg∈Csup

¬Tg
[Sg]

Kg

)
.

But since ( ⋃
Og∈Csub

Tg
[Sg]

Og,
⋂

Kg∈Csup
¬Tg

[Sg]

Kg,

)
∈ Tg × ¬Tg,

it follows, consequently, that g-Intg (Sg) ∈ g-O [Tg] and g-Intg (Sg) ∈ g-K [Tg].
Hence, g-Icg (Sg) ∈ g-O [Tg]× g-K [Tg]. This proves the theorem. □

Corollary 3.16. If g-Icg ∈ g-IC
[
Ω
]
be a given pair of g-Tg-operators g-Intg, g-Clg :

P (Ω) −→ P (Ω) and Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then
there exists (Og,Kg) ∈ Tg × ¬Tg such that:[

g-Intg (Sg) ⊆ opg (Og)
]
∧
[
g-Clg (Sg) ⊇ ¬ opg (Kg)

]
. (3.10)

In view of Thms 3.2, 3.4 and Props 3.7, 3.8, it follows immediately that the
g-Tg-interior and g-Tg-closure operators g-Intg, g-Clg: P (Ω) −→ P (Ω), respec-
tively possess similar properties analogous to the Kuratowski closure Axioms which
can be grouped and stated in the form of a corollary.

Corollary 3.17. Let g-Intg, g-Clg : P (Ω) −→ P (Ω) be a g-Tg-interior and a
g-Tg-closure operators in a strong Tg-space Tg = (Ω,Tg). Then:

– For every (Rg,Sg) ∈P (Ω)×P (Ω),
– i. g-Intg (Ω) = Ω,
– ii. g-Intg (Rg) ⊆ Rg,
– iii. g-Intg ◦ g-Intg (Rg) = g-Intg (Rg),
– iv. g-Intg (Rg ∩Sg) = g-Intg (Rg) ∩ g-Intg (Sg).

– For every (Rg,Sg) ∈P (Ω)×P (Ω),
– v. g-Clg (∅) = ∅,
– vi. g-Clg (Rg) ⊇ Rg,
– vii. g-Clg ◦ g-Clg (Rg) = g-Clg (Rg),
– viii. g-Clg (Rg ∪Sg) = g-Clg (Rg) ∪ g-Clg (Sg).
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Some nice Mathematical vocabulary follow. In Cor. 3.17, Items i., ii., iii. and
iv. state that the g-Tg-interior operator g-Intg : P (Ω) −→ P (Ω) is Ω-grounded,
non-expansive, idempotent and ∩-additive, respectively. Items v., vi., vii. and
viii. state that the g-Tg-closure operator g-Clg : P (Ω) −→ P (Ω) is ∅-grounded,
expansive, idempotent and ∪-additive, respectively.

The axiomatic definitions of the concepts of g-Tg-interior and g-ν-Tg-closure
operators in Tg-spaces follow.

Definition 3.1 (Axiomatic Definition: g-Tg-Interior Operator). A one-valued map
of the type g-Intg : P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg) is called a ”g-Tg-
interior operator” on P (Ω) ranging in P (Ω) if and only if, for any (Rg,Sg) ∈
P (Ω)×P (Ω), it satisfies the following axioms:

– Ax. i. g-Intg (Rg) ⊆ Rg,
– Ax. ii. Rg ⊆ Sg −→ g-Intg (Rg) ⊆ g-Intg (Sg).

Thus, a g-Tg-interior operator g-Intg : P (Ω) −→ P (Ω) in a Tg-space Tg =
(Ω,Tg) is a non-expansive g-Tg-set-valued set map forming a generalization of the
Tg-set-valued set map intg : P (Ω) −→P (Ω) in the Tg-space Tg, provided[

g-Intg (Rg) ⊆ Rg

]
∧
[
g-Intg (Rg ∩Sg) ⊆ g-Intg (Rg) ∩ g-Intg (Sg)

]
(3.11)

holds for any (Rg,Sg) ∈P (Ω)×P (Ω).

Definition 3.2 (Axiomatic Definition: g-Tg-Closure Operator). A one-valued map
of the type g-Clg : P (Ω) −→ P (Ω) in a strong Tg-space Tg = (Ω,Tg) is called
a ”g-Tg-closure operator” on P (Ω) ranging in P (Ω) if and only if, for any
(Rg,Sg) ∈P (Ω)×P (Ω), it satisfies the following axioms:

– Ax. i. g-Clg (Rg) ⊇ Rg,
– Ax. ii. Rg ⊆ Sg −→ g-Clg (Rg) ⊆ g-Clg (Sg).

Hence, a g-Tg-closure operator g-Clg : P (Ω) −→ P (Ω) in a Tg-space Tg =
(Ω,Tg) is an expansive g-Tg-set-valued set map forming a generalization of the
Tg-set-valued set map clg : P (Ω) −→P (Ω) in the Tg-space Tg, provided[

g-Clg (Rg) ⊇ Rg

]
∧
[
g-Clg (Rg ∪Sg) ⊇ g-Clg (Rg) ∪ g-Clg (Sg)

]
(3.12)

holds for any (Rg,Sg) ∈P (Ω)×P (Ω).

4. Discussion

4.1. Categorical Classifications. The notions of g-Ta-interior and g-Ta-closure
operators of category ν have been defined in terms of g-Ta-sets of the same category
ν. Having adopted such a categorical approach in the classifications of g-Ta-interior
and g-Ta-closure operators, the twofold purposes here are, firstly, to establish the
various relationships amongst the classes of g-Ta-interior and g-Ta-closure oper-
ators, a ∈ {o, g}, in the Tg-space Tg, and secondly, to illustrate them through
diagrams.

In a Ta-space Ta, opa,0 (Oa) ⊆ opa,1 (Oa) ⊆ opa,3 (Oa) ⊇ opa,2 (Oa) for ev-

ery Oa ∈ O
[
Ta

]
. Consequently, g-Inta,0 (Sa) ⊆ g-Inta,1 (Sa) ⊆ g-Inta,3 (Sa) ⊇

g-Inta,2 (Sa) for any Sa ∈ Ta. But, Oa ⊆ opo,ν (Oa) ⊆ opg,ν (Oa) for every ν ∈ I03 ,
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implying g-Into,ν (Sa) ⊆ g-Intg,ν (Sa) for any (ν,Sa) ∈ I03 × Tg. Thus, this dia-
gram, which is to be read horizontally, from left to right and vertically, from top to
bottom, follows:

Oa = Oa = Oa = Oa

⊆ ⊆ ⊆ ⊆
opo,0 (Oa) ⊆ opo,1 (Oa) ⊆ opo,3 (Oa) ⊇ opo,2 (Oa)

⊆ ⊆ ⊆ ⊆
opg,0 (Oa) ⊆ opg,1 (Oa) ⊆ opg,3 (Oa) ⊇ opg,2 (Oa) .

(4.1)

In Fig. 1, we present the relationships between the elements of the collections{
g-Into,ν (Sa) : ν ∈ I03

}
in the To-space To and

{
g-Intg,ν (Sa) : ν ∈ I03

}
in the

Tg-space Tg; Fig. 1 may well be called a
(
g-Into, g-Intg

)
-valued diagram.

Figure 1. Relationships: g-To-interior operators in To-spaces and
g-Tg-interior operators in Tg-spaces.

In a Ta-space Ta, ¬ opa,0 (Ka) ⊇ ¬ opa,1 (Ka) ⊇ ¬ opa,3 (Ka) ⊆ ¬ opa,2 (Ka) for

every Ka ∈ K
[
Ta

]
. Consequently, g-Cla,0 (Sa) ⊇ g-Cla,1 (Sa) ⊇ g-Cla,3 (Sa) ⊆

g-Cla,2 (Sa) for any Sa ∈ Ta. But, Ka ⊇ ¬ opo,ν (Ka) ⊇ ¬ opg,ν (Ka) for every

ν ∈ I03 , implying, g-Clo,ν (Sa) ⊇ g-Clg,ν (Sa) for any (ν,Sa) ∈ I03 × Tg. Hence,
this diagram, which is to be read horizontally, from left to right and vertically, from
top to bottom, follows:

Ka = Ka = Ka = Ka

⊇ ⊇ ⊇ ⊇

¬ opo,0 (Ka) ⊇ ¬ opo,1 (Ka) ⊇ ¬ opo,3 (Ka) ⊆ ¬ opo,2 (Ka)

⊇ ⊇ ⊇ ⊇

¬ opg,0 (Ka) ⊇ ¬ opg,1 (Ka) ⊇ ¬ opg,3 (Ka) ⊆ ¬ opg,2 (Ka) .

(4.2)

In Fig. 2, we present the relationships between the elements of the collections{
g-Clo,ν (Sa) : ν ∈ I03

}
in the To-space To and

{
g-Clg,ν (Sa) : ν ∈ I03

}
in the

Tg-space Tg; Fig. 2 may well be called a
(
g-Clo, g-Clg

)
-valued diagram.

As in the works of other authors [44, 45, 46, 47], the manner we have positioned
the arrows in the

(
g-Into, g-Intg

)
,
(
g-Cl, g-Clg

)
-valued diagrams (Figs 1, 2) is solely

to stress that, in general, the implications in Figs 1, 2 are irreversible.
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Figure 2. Relationships: g-To-closure operators in To-spaces and
g-Tg-closure operators in Tg-spaces.

4.2. A Nice Application. The focus is on essential concepts from the standpoint
of the theory of g-Tg-interior and g-Tg-closure operators in an attempt to shed lights
on the essential properties established in the earlier sections. Let Ω =

{
ξν : ν ∈ I∗5

}
denotes the underlying set and consider the Tg-space Tg = (Ω,Tg), where Ω is
topologized by the choice:

Tg (Ω) =
{
∅,

{
ξ1
}
,
{
ξ1, ξ3, ξ5

}
, Ω

}
(4.3)

=
{
Og,1, Og,2, Og,3, Og,4

}
;

¬Tg (Ω) =
{
Ω,

{
ξ2, ξ3, ξ4, ξ5

}
,
{
ξ2, ξ4

}
, ∅
}

(4.4)

=
{
Kg,1, Kg,2, Kg,3, Kg,4

}
.

Evidently, Tg, ¬Tg : P (Ω) −→P
({

ξν : ν ∈ I∗5
})

establish the classes of Tg-open
and Tg-closed sets, respectively. Since conditions Tg (∅) = ∅, Tg (Og,ν) ⊆ Og,ν for
every ν ∈ I∗4 , Tg (Ω) = Ω, and Tg

(⋃
ν∈I∗

4
Og,ν

)
=

⋃
ν∈I∗

4
Tg (Og,ν) are satisfied,

Tg : P (Ω) −→P
({

ξν : ν ∈ I∗5
})

is a strong g-topology and hence, Tg = (Ω,Tg)

is a strong Tg-space. Because Tg

(⋂
ν∈I∗

4
Og,ν

)
=

⋂
ν∈I∗

4
Tg (Og,ν) is satisfied, Tg :

P (Ω) −→P
({

ξν : ν ∈ I∗5
})

is also an o-topology and thus, Tg = (Ω,Tg) is a To-

space To = (Ω,To). Moreover, Og,µ ∈ g-ν-O
[
To

]
for every (ν, µ) ∈ I03 × I∗4 . Thus,

the Tg-open sets forming the g-topology Tg : P (Ω) −→P
({

ξν : ν ∈ I∗5
})

of the
Tg-space Tg = (Ω,Tg) are g-To-open sets relative to the To-space To = (Ω,To).

For convenience of notation, express P (Ω) in set-builder notation as a collection
indexed by the Cartesian product I∗card(P(Ω)) × I0card(Ω):

P (Ω) =
{
Sg,(ν,µ) ∈P (Ω) : (ν, µ) ∈ I∗card(P(Ω)) × I0card(Ω)

}
, (4.5)

where Sg,(ν,µ) ∈ P (Ω) denotes a Tg-set labeled ν ∈ I∗card(P(Ω)) and containing

µ ∈ I0card(Ω) elements. Below is established the indexing by the Cartesian product

I∗card(P(Ω)) × I0card(Ω) by the choice: Sg,(1,0) = ∅, . . ., Sg,(ν,µ) =
{
ξ1, ξ2, . . . , ξµ

}
,

. . ., Sg,(32,5) = Ω.
For Sg ∈P (Ω) such that card (Sg) ∈ {0, 5}, let Sg,(1,0) = ∅ and Sg,(32,5) = Ω.

For Sg ∈ P (Ω) such that card (Sg) ∈ {1, 4}, let Sg,(2,1) = {ξ1}, Sg,(3,1) = {ξ2},



34 MOHAMMAD IRSHAD KHODABOCUS AND NOOR-UL-HACQ SOOKIA

Sg,(4,1) = {ξ3}, Sg,(5,1) = {ξ4}, and Sg,(6,1) = {ξ5}; Sg,(27,4) = {ξ1, ξ2, ξ3, ξ4},
Sg,(28,4) = {ξ2, ξ3, ξ4, ξ5}, Sg,(29,4) = {ξ1, ξ3, ξ4, ξ5}, Sg,(30,4) = {ξ1, ξ2, ξ3, ξ5},
and Sg,(31,4) = {ξ1, ξ2, ξ4, ξ5}. For Sg ∈ P (Ω) such that card (Sg) ∈ {2, 3}, let
Sg,(7,2) = {ξ1, ξ2}, Sg,(8,2) = {ξ1, ξ3}, Sg,(9,2) = {ξ1, ξ4}, Sg,(10,2) = {ξ1, ξ5},
Sg,(11,2) = {ξ2, ξ3}, Sg,(12,2) = {ξ2, ξ4}, Sg,(13,2) = {ξ2, ξ5}, Sg,(14,2) = {ξ3, ξ4},
Sg,(15,2) = {ξ3, ξ5}, and Sg,(16,2) = {ξ4, ξ5}; Sg,(17,3) = {ξ1, ξ2, ξ3}, Sg,(18,3) =
{ξ1, ξ3, ξ4}, Sg,(19,3) = {ξ1, ξ4, ξ5}, Sg,(20,3) = {ξ1, ξ2, ξ4}, Sg,(21,3) = {ξ1, ξ2, ξ5},
Sg,(22,3) = {ξ1, ξ3, ξ5}, Sg,(23,3) = {ξ2, ξ3, ξ4}, Sg,(24,3) = {ξ2, ξ3, ξ5}, Sg,(25,3) =
{ξ3, ξ4, ξ5}, and Sg,(26,3) = {ξ2, ξ4, ξ5}.

Then, from a series of calculations it results that

intg
(
Sg,(ν,µ)

)
⊆ g-Intg

(
Sg,(ν,µ)

)
= Sg,(ν,µ) (4.6)

= g-Clg
(
Sg,(ν,µ)

)
⊆ clg

(
Sg,(ν,µ)

)
for every (ν, µ) ∈ I∗card(P(Ω)) × I0card(Ω). On inspecting Eq. (4.6), some interesting

features can be remarked and thus, some interesting conclusions can be drawn.
Having ordered the Tg, g-Tg-interior operators intg, g-Intg : P (Ω) −→ P (Ω),

respectively, by setting g-Intg ≿ intg if and only if g-Intg (Sg) ⊇ intg (Sg) and
the Tg, g-Tg-closure operators clg, g-Clg : P (Ω) −→ P (Ω), respectively, by
setting g-Clg ≾ clg if and only if g-Clg (Sg) ⊆ clg (Sg), where Sg ∈ P (Ω)
is arbitrary, Eq. (4.6), then, is but a result validating the following outstand-
ing facts: g-Intg : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than intg :
P (Ω) −→ P (Ω) or, intg : P (Ω) −→ P (Ω) is coarser (or, smaller, weaker)
than g-Intg : P (Ω) −→ P (Ω); g-Clg : P (Ω) −→ P (Ω) is coarser (or, smaller,
weaker) than clg : P (Ω) −→P (Ω) or, clg : P (Ω) −→P (Ω) is finer (or, larger,
stronger) than g-Clg : P (Ω) −→P (Ω).

If the discussions of this nice application be explored a step further, other inter-
esting conclusions can be drawn.

5. Conclusion

In this paper, the notions of g-Tg-interior and g-Tg-closure operators in Tg-
spaces were presented in as general and unified a manner as possible and, their
essential properties were discussed in such a way as to show that much of the
fundamental structure of Tg-spaces is better considered for g-Tg-interior and g-Tg-
closure operators g-Intg, g-Clg : P (Ω) −→ P (Ω) than for the Tg-interior and
Tg-closure operators intg, clg : P (Ω) −→ P (Ω), respectively. If g-Intg ≿ intg
stands for g-Intg (Sg) ⊇ intg (Sg) and g-Clg ≾ clg, for g-Clg (Sg) ⊆ clg (Sg), then
the outstanding facts are: g-Intg : P (Ω) −→ P (Ω) is finer (or, larger, stronger)
than intg : P (Ω) −→ P (Ω) or, intg : P (Ω) −→ P (Ω) is coarser (or, smaller,
weaker) than g-Intg : P (Ω) −→ P (Ω); g-Clg : P (Ω) −→ P (Ω) is coarser (or,
smaller, weaker) than clg : P (Ω) −→ P (Ω) or, clg : P (Ω) −→ P (Ω) is finer
(or, larger, stronger) than g-Clg : P (Ω) −→P (Ω).

Moreover, the paper offers very nice features for the passage from g-Tg-(interior,
closure) to Tg-(interior, closure) operators, respectively. Hence, several concepts
and proven results it contained hold equally well when (Ω,Tg) = (Ω,To), while
adapting other set-theoretic and topological features accordingly. For instance, the
theoretical framework categorises

(
g-Inta,ν (Sa) , g-Cla,ν (Sa)

)
as a pair of g-Ta-

open and g-Ta-closed sets of categories ν, where Sa ⊂ Ta and (ν, a) ∈ I03 × {o, g},
and theorises the concepts in a unified way.
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The study of the commutativity of the g-Tg-interior and g-Tg-closure operators
in Tg-spaces will be presented in a subsequent paper, and the discussion of this
paper ends here.
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[17] W. K. Min and Y. K. Kim, Quasi Generalized Open Sets and Quasi Generalized Continuity
on Bigeneralized Topological Spaces, Honam Mathematical J. 32(4) (2010) 619-624.

[18] W. K. Min, Some Results on Generalized Topological Spaces and Generalized Systems, Acta.
Math. Hungar. 108(1-2) (2005) 171-181.

[19] J. M. Mustafa, On Binary Generalized Topological Spaces, General Letters in Mathematics
2(3) (2017) 111-116.
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Abstract. In a recent paper (Cf. [19]), we have presented the definitions

and the essential properties of the generalized topological operators g-Intg,

g-Clg : P (Ω) −→ P (Ω) (g-Tg-interior and g-Tg-closure operators) in a

generalized topological space Tg = (Ω,Tg) (Tg-space). Principally, we have
shown that

(
g-Intg, g-Clg

)
: P (Ω) × P (Ω) −→ P (Ω) × P (Ω) is (Ω, ∅)-

grounded, (expansive, non-expansive), (idempotent, idempotent) and (∩,∪)-
additive. We have also shown that g-Intg : P (Ω) −→ P (Ω) is finer (or,

larger, stronger) than intg : P (Ω) −→ P (Ω) and g-Clg : P (Ω) −→ P (Ω)

is coarser (or, smaller, weaker) than clg : P (Ω) −→ P (Ω). In this pa-

per, we study the commutativity of g-Intg, g-Clg : P (Ω) −→ P (Ω) and

Tg-sets having some
(
g-Intg, g-Clg

)
-based properties (g-Pg, g-Qg-properties)

in Tg-spaces. The main results of the study are: The g-Tg-operators g-Intg,

g-Clg : P (Ω) −→ P (Ω) are duals and g-Pg-property is preserved under their

g-Tg-operations. A Tg-set having g-Pg-property is equivalent to the Tg-set or

its complement having g-Qg-property. The g-Qg-property is preserved under
the set-theoretic ∪-operation and g-Pg-property is preserved under the set-

theoretic
{
∪,∩, ∁

}
-operations. Finally, a Tg-set having

{
g-Pg, g-Qg

}
-property

also has {Pg,Qg}-property.

1. Introduction

Many mathematicians have studied several kinds of ordinary and generalized
topological operators (Ta, g-Ta-operators) in ordinary (a = o) and generalized
(a = g) topological spaces (Ta-spaces) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18].

Jung and Nam [3] have used the To-interior and To-closure operators (·)◦, (̄·) :
P (Ω) −→ P (Ω) to establish several necessary and sufficient conditions related

2020 Mathematics Subject Classification. Primary: 54A05; Secondaries: 54A99.
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operator; generalized closure operator.
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to openness and closeness properties of sets in a To-space. Lei and Zhang [4]
have considered the To-interior and To-closure operators Int, Cl : P (Ω) −→
P (Ω) in studying some topological characterizations axiomatically in To-spaces.
Gupta and Sarma [5] have established a variety of generalized sets (g-Tg-sets)
under the possible compositions of the g-Tg-interior and g-Tg-closure operators iγ ,
cγ : P (Ω) −→ P (Ω) (γ-interior and γ-closure operators), respectively, where
γ ∈ {α, β, π, σ}, in Tg-spaces. Rajendiran and Thamilselvan [6] have studied the

g-To-interior and g-To-closure operators g*s*Int, g*s*Cl : P (Ω) −→P (Ω) (g∗s∗-
interior and g∗s∗-closure operators), respectively, in To-spaces. In Tg-spaces, Tyagi
and Choudhary [7] have study stronger forms of g-Tg-interior and g-Tg-closure
operators I(·), C(·) : P (Ω) −→ P (Ω) while Pankajam, V. [9] has presented some
properties of the g-Tg-interior and g-Tg-closure operators iδ, cδ : P (Ω) −→P (Ω)
(δ-interior and δ-closure operators), respectively, to mention but a few references.

Despite these references, in regard to the study of the commutativity of Ta, g-Ta-
operators in Ta-spaces (a ∈ {o, g}), the literature is, to our knowledge, almost void
of studies in this direction [17, 16]. Levine, N. [17] has studied the commutativity of
the To-interior and To-closure operators into, clo : P (Ω) −→P (Ω) in a Ta-space.
Staley, D. H. [16] has presented some characterizations of ordinary sets (To-sets)
for which the To-interior operator into : P (Ω) −→P (Ω) commutes with the To-
boundary operator bdo : P (Ω) −→ P (Ω) in a To-space. In general, since To =
(Ω,To) ̸= (Ω,Tg) = Tg by virtue of To ̸= Tg and,

(
inta, cla

)
̸=

(
g-Inta, g-Cla

)
for

each a ∈ {o, g}, so it seems reasonable to expect the existence of nice and interesting
results in a Tg-space with respect to those established by Levine, N. [17] and Staley,
D. H. [16] in a To-space.

Having made the study of the essential properties of the g-Tg-interior and g-Tg-
closure operators g-Intg, g-Clg : P (Ω) −→ P (Ω), respectively, in Tg-spaces one
subject of inquiry (Cf. [19]), the study of the commutativity properties of these
g-Tg-operators in Tg-spaces may be made another subject of inquiry. In this paper,
we endeavor to undertake such inquiry.

The rest of the paper is structured as thus: In Sect. 2, necessary and sufficient
preliminary notions are described in Subsects 2.1, 2.2 and the main results are
reported in Sect. 3. In Sect. 4, the establishment of the various relationships
between these g-Tg-operators are discussed in Sects 4.1. To support the work,
a nice application of the g-Tg-interior and g-Tg-closure operators in a Tg-space is
presented in Sect. 4.2. Finally, the work is concluded in Sect. 5.

2. Theory

2.1. Necessary Preliminaries. As in Part I. (Cf. [19]), the standard reference
for notations and concepts is the Ph.D. Thesis of Khodabocus, M. I. [2].

Herein, U symbolizes the universe of discourse, fixed within the framework of
Ta, g-Ta-operator theory in Ta-spaces, a ∈ {o, g}, and containing underlying sets,
underlying subsets, and so forth. By convention, the relation (α1, α2, . . .)RA1 ×
A2 × · · · means α1 RA1, α2 RA2, . . . where R =∈, ⊂, ⊃, . . .. The pairs

(
I0n, I

∗
n

)
⊂

Z0
+ × Z∗

+ and
(
I0∞, I∗∞

)
∼ Z0

+ × Z∗
+ are pairs of finite and infinite index sets [1, 2].

Definition 2.1 (Ta-Space [1, 2]). A Ta-space is a topological structure Ta
def
=

(Ω,Ta) in which Ω ⊂ U is an underlying set and
Ta : P (Ω) −→ P (Ω)

Oa 7−→ Ta (Oa)
is
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an a-topology satisfying the compound Ta-axiom:

Ax (Ta)
def←→



(
To (∅) = ∅

)
∧
(
To (Oo,ν) ⊆ Oo,ν

)
∧
(
To

(⋂
ν∈I∗

n
Oo,ν

)
=

⋂
ν∈I∗

n
To (Oo,ν)

)
∧
(
To

(⋃
ν∈I∗

∞
Oo,ν

)
=

⋃
ν∈I∗

∞
To (Oo,ν)

)
(a = o) ,(

Tg (∅) = ∅
)
∧
(
Tg (Og,ν) ⊆ Og,ν

)
∧
(
Tg

(⋃
ν∈I∗

∞
Og,ν

)
=

⋃
ν∈I∗

∞
Tg (Og,ν)

)
(a = g) .

By assumption, the Ta-space is void of any Ta, g-Ta-separation axioms (ordinary
and generalized separation axioms) unless otherwise stated [1, 2, 20]. If a = o
(ordinary), then Ax (To) stands for an o-topology (ordinary topology) and To =
(Ω,To) = (Ω,T ) = T is called a To-space (ordinary topological space) and if
a = g (generalized), then Ax (Tg) stands for a g-topology (generalized topology)
and Tg = (Ω,Tg) is called a Tg-space (generalized topological space). If Ω ∈ Tg,
then Ta is a strong Ta-space [2, 21, 22] and if Tg

(⋂
ν∈I∗

n
Og,ν

)
=

⋂
ν∈I∗

n
Tg (Og,ν)

for any I∗n ⊂ I∗∞, then Tg is a quasi Tg-space [2, 23]. The notations Γ ⊂ Ω,

Oa ∈ Ta, Ka ∈ ¬Ta
def
=

{
Ka : ∁Ω (Ka) ∈ Ta

}
and Sa ⊂ Ta state that Γ, Oa,

Ka and Sa are a Ω-subset, Ta-open set, Ta-closed set and Ta-set, respectively

[1, 2]. The operators
inta, cla : P (Ω) −→P (Ω)

Sa 7−→ inta (Sa) , cla (Sa)
are the Ta-

interior and Ta-closure operators, respectively [1, 2]. For convenience of notation,
let

(
P∗,T ∗

a ,¬T ∗
a

)
(Ω) =

(
P \

{
∅
}
,Ta \

{
∅
}
,¬Ta \

{
∅
})

(Ω).

Definition 2.2 (g-Operation [1, 2]). A mapping
opa : P (Ω) −→P (Ω)

Sa 7−→ opa (Sa)
is

called a g-operation if and only if the following statements hold:(
∀Sa ∈P∗ (Ω)

)(
∃ (Oa,Ka) ∈ T ∗

a × ¬T ∗
a

)[(
opa (∅) = ∅

)
∨
(
¬ opa (∅) = ∅

)
∨
(
Sa ⊆ opa (Oa)

)
∨
(
Sa ⊇ ¬ opa (Ka)

)]
, (2.1)

where
¬ opa : P (Ω) −→P (Ω)

Sa 7−→ ¬ opa (Sa)
is called its complementary g-operation,

and for all Ta-sets Sa, Sa,ν , Sa,µ ∈P∗ (Ω), the following axioms are satisfied:

– Ax. i.
(
Sa ⊆ opa (Oa)

)
∨
(
Sa ⊇ ¬ opa (Ka)

)
,

– Ax. ii.
(
opa (Sa) ⊆ opa ◦ opa (Oa)

)
∨
(
¬ opa (Sa) ⊇ ¬ opa ◦¬ opa (Ka)

)
,

– Ax. iii.
(
Sa,ν ⊆ Sa,µ −→ opa (Oa,ν) ⊆ opa (Oa,µ)

)
∨
(
Sa,µ ⊆ Sa,ν ←− ¬ opa (Ka,µ) ⊇ ¬ opa (Ka,ν)

)
,

– Ax. iv.
(
opa

(⋃
σ=ν,µ Sa,σ

)
⊆

⋃
σ=ν,µ opa (Oa,σ)

)
∨
(
¬ opa

(⋃
σ=ν,µ Sa,σ

)
⊇

⋃
σ=ν,µ ¬ opa (Ka,σ)

)
,

for some Ta-sets Oa, Oa,ν , Oa,µ ∈ T ∗
a and Ka, Ka,ν , Ka,µ ∈ ¬T ∗

a .

The class La [Ω]
def
=

{
opa,ν =

(
opa,ν ,¬ opa,ν

)
: ν ∈ I03

}
⊆ L ω

a [Ω] ×L κ
a [Ω] ={

opa,ν : ν ∈ I03
}
×
{
¬ opa,ν : ν ∈ I03

}
, where〈

opa,ν : ν ∈ I03
〉

=
〈
inta, cla ◦ inta, inta ◦ cla, cla ◦ inta ◦ cla

〉
,〈

¬ opa,ν : ν ∈ I03
〉

=
〈
cla, inta ◦ cla, cla ◦ inta, inta ◦ cla ◦ inta

〉
,
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is the class of all possible pairs of g-operators and its complementary g-operators
in the Ta-space Ta.

Definition 2.3 (g-Ta-Sets [1, 2]). Let
(
Sa,Oa,Ka,opa,ν

)
∈P (Ω)×Ta ×¬Ta ×

La [Ω] and let the predicates

Pa

(
Sa,Oa; opa,ν ;⊆

) def
=

(
∃
(
Oa, opa,ν

)
∈ Ta ×L ω

a [Ω]
)[

Sa ⊆ opa,ν (Oa)
]
,

Qa

(
Sa,Ka;¬ opa,ν ;⊇

) def
=

(
∃
(
Ka,¬ opa,ν

)
∈ ¬Ta ×L κ

a [Ω]
)

(2.2)[
Sa ⊇ ¬ opa,ν (Ka)

]
be Boolean-valued functions on P (Ω) × (Ta ∪ ¬Ta) ×

(
L ω

a ∪ L κ
a

)
[Ω] ×

{
⊆,⊇

}
,

then g-ν-S [Ta] &
def
= & g-ν-O [Ta] ∪ g-ν-K [Ta] is the class of all g-ν-Ta-sets and,

g-ν-O [Ta]
def
=

{
Sa : Pa

(
Sa,Oa; opa,ν ;⊆

)}
, (2.3)

g-ν-K [Ta]
def
=

{
Sa : Qa

(
Sa,Ka;¬ opa,ν ;⊇

)}
,

respectively, are called the classes of all g-Ta-open and g-Ta-closed sets of category
ν in Ta.

Then, S [Ta] =
{
Sa : Pa

(
Sa,Sa; opa,0;⊆

)}
∪
{
Sa : Qa

(
Sa,Sa;¬ opa,0;⊇

)}
=⋃

E∈{O,K} E [Ta] is the class of all Ta-open and Ta-closed sets in Ta [1, 2]. Further,

g-S [Ta]
def
=

⋃
ν∈I0

3

g-ν-S [Ta] =
⋃

(ν,E)∈I0
3×{O,K}

g-ν-E [Ta] =
⋃

E∈{O,K}

g-E [Ta]

Definition 2.4 (g-Ta-Separation, g-Ta-Connected [2]). A g-ν-Ta-separation of two
Ta-sets ∅ ≠ Ra, Sa ⊆ Ta of a Ta-space Ta = (Ω,Ta) is realised if and only if there
exists either (Oa,ξ,Oa,ζ) ∈ ×α∈I∗

2
g-ν-O

[
Ta

]
or (Ka,ξ,Ka,ζ) ∈ ×α∈I∗

2
g-ν-K

[
Ta

]
such that: ( ⊔

λ=ξ,ζ

Oa,λ = Ra ⊔Sa

)∨( ⊔
λ=ξ,ζ

Ka,λ = Ra ⊔Sa

)
. (2.4)

Otherwise, Ra, Sa are said to be g-ν-Ta-connected.

Thus, Sa ⊂ Ta is g-Ta-connected if and only if Sa ∈ g-Q [Ta] =
⋃

ν∈I0
3
g-ν-Q [Ta]

and g-Ta-separated if and only if Sa ∈ g-D [Ta] =
⋃

ν∈I0
3
g-ν-D [Ta] where,

g-ν-Q [Ta]
def
=

{
Sa ⊂ Ta :

(
∀
(
Oa,λ,Ka,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Ta

]
× g-ν-K

[
Ta

])
[
¬
( ⊔

λ=ξ,ζ

Oa,λ = Sa

)∧
¬
( ⊔

λ=ξ,ζ

Oa,λ = Sa

)]}
; (2.5)

g-ν-D [Ta]
def
=

{
Sa ⊂ Ta :

(
∃
(
Oa,λ,Ka,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Ta

]
× g-ν-K

[
Ta

])
[( ⊔

λ=ξ,ζ

Oa,λ = Sa

)∨( ⊔
λ=ξ,ζ

Ka,λ = Sa

)]}
. (2.6)
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Definition 2.5 (g-ν-Ta-Interior, g-ν-Ta-Closure Operators [19]). In a Ta-space
Ta = (Ω,Ta), the one-valued maps

g-Inta,ν : P (Ω) −→ P (Ω) (2.7)

Sa 7−→
⋃

Oa∈Csub
g-ν-O[Ta]

[Sa]

Oa,

g-Cla,ν : P (Ω) −→ P (Ω) (2.8)

Sa 7−→
⋂

Ka∈Csup
g-ν-K[Ta]

[Sa]

Ka

where Csub
g-ν-O[Ta] [Sa]

def
=

{
Oa ∈ g-ν-O

[
Ta

]
: Oa ⊆ Sa

}
and Csup

g-ν-K[Ta]
[Sa]

def
={

Ka ∈ g-ν-K
[
Ta

]
: Ka ⊇ Sa

}
are called g-ν-Ta-interior and g-ν-Ta-closure oper-

ators, respectively. Then, g-I [Ta]
def
=

{
g-Inta,ν : ν ∈ I03

}
and g-C [Ta]

def
=

{
g-Cla,ν :

ν ∈ I03
}
are the classes of all g-Ta-interior and g-Ta-closure operators, respectively.

Definition 2.6 (g-ν-Ta-Vector Operator [19]). In a Ta-space Ta = (Ω,Ta), the
two-valued map

g-Ica,ν : P (Ω)×P (Ω) −→ P (Ω)×P (Ω) (2.9)

(Ra,Sa) 7−→
(
g-Inta,ν (Ra) , g-Cla,ν (Sa)

)
is called a g-ν-Ta-vector operator. Then, g-IC [Ta]

def
=

{
g-Ica,ν =

(
g-Inta,ν , g-Cla,ν

)
:

ν ∈ I03
}
is the class of all g-Ta-vector operators.

Remark. For every ν ∈ I03 , g-Ica,ν = ica
def
=

(
inta, cla

)
if based on O [Ta]×K [Ta].

Then,
ica : P (Ω)×P (Ω) −→P (Ω)×P (Ω)

(Ra,Sa) 7−→
(
inta (Ra) , cla (Sa)

) is a Ta-vector operator

in a Ta-space Ta = (Ω,Ta).

2.2. Sufficient Preliminaries. The notions of Ta-sets havingPa, g-Pa-properties
and Qa, g-Qa-properties in Ta-spaces are now presented.

Definition 2.7 (Complement g-Ta-Operator). Let Ta = (Ω,Ta) be a Ta-space.
Then, the one-valued map

g-Opa,Ra
: P (Ω) −→ P (Ω) (2.10)

Sa 7−→ ∁Ra
(Sa) ,

where ∁Ra
: P (Ω) −→P (Ω) denotes the relative complement of its operand with

respect to Ra ∈ g-S [Ta], is called a natural complement g-Ta-operator on P (Ω).

For clarity, g-Opa,Ra
= g-Opa whenever Ra = Ω and g-Opg,Rg

= Opg,Rg
(nat-

ural complement Ta-operator) whenever Ra ∈ S [Ta].

Definition 2.8 (Symmetric Difference g-Ta-Operator). Let Tg = (Ω,Ta) be a Ta-
space. Then, the one-valued map

g-Sda : P (Ω)×P (Ω) −→ P (Ω) (2.11)

(Ra,Sa)& 7−→ & g-Opa,Ra
(Sa) ∪ g-Opa,Sa

(Ra)

is called the symmetric difference g-Ta-operator on P (Ω).
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If g-Sda : P (Ω) ×P (Ω) −→ P (Ω) is based on Opa,Rg
: P (Ω) −→ P (Ω),

the concept of symmetric difference Ta-operator Sda : P (Ω) ×P (Ω) −→ P (Ω)
presents itself.

Definition 2.9 (g-ν-Pa-Property). A Ta-set Sa ⊂ Ta in a Ta-space Ta = (Ω,Ta)
is said to have g-ν-Pa-property in Ta if and only if it belongs to:

g-ν-P [Ta]
def
=

{
Sa : g-Inta,ν ◦ g-Cla,ν (Sa)←→ g-Cla,ν ◦ g-Inta,ν (Sa)

}
, (2.12)

called the class of all Ta-sets having g-ν-Pa-property in Ta.

Then, P [Ta] &
def
= &

{
Sa : inta ◦ cla (Sa) ←→ cla ◦ inta (Sa)

}
is the class of all

Ta-sets having Pa-property in Ta. By Sa ∈ g-P [Ta]
def
=

⋃
ν∈I0

3
g-ν-P [Ta] is meant

a Ta-set having g-Pa-property in Ta.

Definition 2.10 (g-ν-Qa-Property). A Ta-set Sa ⊂ Ta in a Ta-space Ta = (Ω,Ta)
is said to have g-ν-Qa-property in Ta if and only if it belongs to:

g-ν-Nd [Ta]
def
=

{
Sa : g-Inta,ν ◦ g-Cla,ν : Sa 7−→ ∅

}
, (2.13)

called the class of all Ta-set having g-Qa-property in Ta.

Then, Nd [Ta] &
def
= &

{
Sa : inta ◦ cla : Sa 7−→ ∅

}
is the class of all Ta-sets

having Qa-property in Ta. By Sa ∈ g-Nd [Ta]
def
=

⋃
ν∈I0

3
g-ν-Nd [Ta] is meant a

Ta-set having g-Qa-property in Ta.

3. Main Results

The main results relative to the commutativity of the g-Tg-closure and g-Tg-
interior operators, and Tg-sets having g-Pg, g-Qg-properties in Tg-spaces are pre-
sented.

Lemma 3.1. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg, g-Clg :
P (Ω) −→ P (Ω) and g-Opg : P (Ω) −→ P (Ω) be the natural complement g-Tg-
operator of its components in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ∈P (Ω)
)[(

g-Intg (Sg)←→ g-Opg ◦ g-Clg ◦ g-Opg (Sg)
)

∧
(
g-Clg (Sg)←→ g-Opg ◦ g-Intg ◦ g-Opg (Sg)

)]
. (3.1)

Proof. Let g-Icg ∈ g-IC [Tg] be a given and, let g-Opg : P (Ω) −→ P (Ω) be the
natural complement g-Tg-operator of its components in a Tg-space Tg = (Ω,Tg).
Then, for a Sg ∈P (Ω) taken arbitrarily, it follows that

g-Opg ◦ g-Intg : g-Opg (Sg) 7−→ g-Opg

( ⋃
Og∈Csub

g-O[Tg]
[g-Opg(Sg)]

Og

)
;

g-Opg ◦ g-Clg : g-Opg (Sg) 7−→ g-Opg

( ⋂
Kg∈Csup

g-K[Tg]
[g-Opg(Sg)]

Kg

)
.
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Let
{
Og,ν : (∀ν ∈ I∗∞) [Og,ν ⊆ Sg]

}
and

{
Kg,ν : (∀ν ∈ I∗∞) [Kg,ν ⊇ Sg]

}
stand

for Csub
g-O[Tg] [Sg] ⊆ g-O [Tg] and Csup

g-K[Tg]
[Sg] ⊆ g-K [Tg], respectively. Then,

g-Opg

( ⋃
Og∈Csub

g-O[Tg]
[g-Opg(Sg)]

Og

)
= g-Opg

( ⋃
ν∈I∗

∞

(
Og,ν ⊆ g-Opg (Sg)

))

= ∁Ω

( ⋃
ν∈I∗

∞

(
Og,ν ⊆ g-Opg (Sg)

))
=

⋂
ν∈I∗

∞

(
∁Ω (Og,ν) ⊇ ∁Ω

(
∁Ω (Sg)

))
=

⋂
Kg∈Csup

g-K[Tg]
[g-Opg(Sg)]

Kg;

g-Opg

( ⋂
Kg∈Csup

g-K[Tg]
[g-Opg(Sg)]

Kg

)
= g-Opg

( ⋃
ν∈I∗

∞

(
Og,ν ⊆ g-Opg (Sg)

))

= ∁Ω

( ⋂
ν∈I∗

∞

(
Kg,ν ⊇ g-Opg (Sg)

))
=

⋃
ν∈I∗

∞

(
∁Ω (Kg,ν) ⊆ ∁Ω

(
∁Ω (Sg)

))
=

⋃
Og∈Csub

g-O[Tg]
[g-Opg(Sg)]

Og.

Since Sg ∈P (Ω) is arbitrary, it follows that, for every Sg ∈P (Ω), the relations

g-Intg (Sg) ←→ g-Opg ◦ g-Clg ◦ g-Opg (Sg) ,

g-Clg (Sg) ←→ g-Opg ◦ g-Intg ◦ g-Opg (Sg)

hold. The proof of the lemma is complete. □

Theorem 3.2. A Tg-sets Sg ⊂ Tg in a Tg-space Tg = (Ω,Tg) is said to have
g-Pg-property in Tg if and only if:

Sg ∈ g-P [Tg]←→ g-Opg (Sg) ∈ g-P [Tg] . (3.2)
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Proof. Necessity. Let Sg ∈ g-P [Tg] be a Tg-set having g-Pg-property in a Tg-space
Tg = (Ω,Tg). Then,

g-Intg : g-Clg ◦ g-Opg (Sg) 7−→ g-Intg ◦ g-Clg ◦ g-Opg (Sg)

= g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

= g-Opg ◦ g-Clg ◦ g-Intg (Sg)

= g-Opg ◦ g-Intg ◦ g-Clg (Sg)

= g-Opg ◦ g-Intg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

= g-Opg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

= g-Clg ◦ g-Intg ◦ g-Opg (Sg)

Thus, it follows that

g-Intg ◦ g-Clg
(
g-Opg (Sg)

)
←→ g-Clg ◦ g-Intg

(
g-Opg (Sg)

)
,

and hence, g-Opg (Sg) ∈ g-P [Tg]. The condition of the theorem is, therefore,
necessary.

Sufficiency. Conversely, suppose g-Opg (Sg) ∈ g-P [Tg] be a Tg-set having g-Pg-
property in a Tg-space Tg. Set Rg = g-Opg (Sg). Then,

Sg ←→ g-Opg ◦ g-Opg (Sg) ←→ g-Opg (Rg) .

But Rg ∈ g-P [Tg] and it in turn implies g-Opg (Rg) ∈ g-P [Tg]. Hence, it follows
that g-Opg (Sg) ∈ g-P [Tg] implies Sg ∈ g-P [Tg]. The condition of the theorem is,
therefore, sufficient. □

Proposition 3.3. If Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg), then:

– i. Sg ∈ g-P [Tg] −→ g-Intg (Sg) ∈ g-P [Tg],
– ii. Sg ∈ g-P [Tg] −→ g-Clg (Sg) ∈ g-P [Tg].

Proof. i. Let Sg ∈ g-P [Tg] be a Tg-set having g-Pg-property in a Tg-space Tg =
(Ω,Tg). Then,

g-Intg ◦ g-Clg
(
g-Intg (Sg)

)
= g-Intg ◦ g-Clg ◦ g-Intg (Sg)

←→ g-Intg ◦ g-Clg ◦ g-Intg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Clg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Opg ◦ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Clg (Sg)

←→ g-Clg ◦ g-Intg (Sg)←→ g-Clg ◦ g-Intg
(
g-Intg (Sg)

)
Hence, Sg ∈ g-P [Tg] implies g-Intg (Sg) ∈ g-P [Tg]. The proof of Item i. of the
proposition is complete.
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ii. Suppose Sg ∈ g-P [Tg] in Tg. Then,

g-Clg ◦ g-Intg
(
g-Clg (Sg)

)
= g-Clg ◦ g-Intg ◦ g-Clg (Sg)

←→ g-Clg ◦ g-Intg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Intg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Intg (Sg)

←→ g-Intg ◦ g-Clg (Sg)←→ g-Intg ◦ g-Clg
(
g-Clg (Sg)

)
Hence, Sg ∈ g-P [Tg] implies g-Clg (Sg) ∈ g-P [Tg]. The proof of Item ii. of the
proposition is complete. □

Theorem 3.4. If Sg ⊂ Tg be a Tg-set of a strong Tg-space Tg = (Ω,Tg) such
that Sg ∈ g-Nd [Tg] or g-Opg (Sg) ∈ g-Nd [Tg] in Tg, then Sg ∈ g-P [Tg].

Proof. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg) such that
Sg ∈ g-Nd [Tg] or g-Opg (Sg) ∈ g-Nd [Tg] in Tg. Then:

Case i. Suppose Sg ∈ g-Nd [Tg] in Tg. Then, for every g-Icg ∈ g-IC [Tg],
it follows that g-Intg ◦ g-Clg : Sg 7−→ ∅. But g-Intg ◦ g-Clg (Sg) ⊇ g-Intg (Sg)
and consequently, g-Intg : Sg 7−→ ∅. Since Tg is a strong Tg-space, it follows,
furthermore, that g-Clg ◦ g-Intg : Sg 7−→ ∅. Therefore, g-Intg ◦ g-Clg (Sg) = ∅ =
g-Clg ◦ g-Intg (Sg) and, hence, Sg ∈ g-P [Tg].

Case ii. Suppose g-Opg (Sg) ∈ g-Nd [Tg] in Tg. Then, by virtue of the above
case, g-Opg (Sg) ∈ g-P [Tg] and by virtue of the fact that g-Opg (Sg) ∈ g-P [Tg] is
equivalent to Sg ∈ g-P [Tg], it results that g-Opg (Sg) ∈ g-Nd [Tg] implies Sg ∈
g-P [Tg]. The proof of the theorem is complete. □

Theorem 3.5. Let Sg ⊆ Tg,Γ be a Tg-set in a Tg-subspace Tg,Γ = (Γ,Tg,Γ) of a
Tg-space Tg,Ω = (Ω,Tg,Ω), where Tg,Γ : P (Γ) 7−→ Tg,Γ =

{
Og ∩ Γ : Og ∈ Tg,Ω

}
.

Then:

– i. Γ ∈ g-O [Tg,Ω] implies g-Intg,Γ (Sg) = g-Intg,Ω (Sg),
– ii. Γ ∈ g-K [Tg,Ω] implies g-Clg,Γ (Sg) = g-Clg,Ω (Sg).

Proof. Let Sg ⊆ Tg,Γ be a Tg-set in a Tg-subspace Tg,Γ = (Γ,Tg,Γ) of a Tg-
space Tg,Ω = (Ω,Tg,Ω) and let

(
g-Intg,Λ, g-Clg,Λ

)
∈ g-I [Tg,Λ]× g-C [Tg,Λ] be a pair

of g-Tg-interior and g-Tg-closure operators g-Intg,Λ, g-Clg,Λ : P (Λ) −→ P (Λ),
respectively, where Λ ∈ {Ω,Γ}. Then:
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i. Suppose Γ ∈ g-O [Tg,Ω] in Tg,Ω. Then,

g-Intg,Ω : Sg 7−→
⋃

Og∈Csub

g-O[Tg,Ω]
[Sg]

Og

=
⋃

Og∈Csub

g-O[Tg,Ω]
[Γ∩Sg]

Og

⊆
⋃

Og∈Csub

g-O[Tg,Ω]
[Γ]

Og = g-Intg,Ω (Γ) = Γ.

Thus, Γ ∩ g-Intg,Ω (Sg) = g-Intg,Ω (Sg). On the other hand,

g-Intg,Γ : Sg 7−→
⋃

Og∈Csub

g-O[Tg,Γ]
[Sg]

Og

←→
⋃

Og∈Csub

g-O[Tg,Γ]
[Sg]

(Og ∩ Γ)

←→
⋃

Og∈Csub

g-O[Tg,Ω]
[Sg]

(Og ∩ Γ)

←→ Γ ∩
( ⋃

Og∈Csub

g-O[Tg,Ω]
[Sg]

Og

)
= Γ ∩ g-Intg,Ω (Sg) .

But Γ ∩ g-Intg,Ω (Sg) = g-Intg,Ω (Sg) and hence, g-Intg,Γ (Sg) = g-Intg,Ω (Sg).
ii. Suppose Γ ∈ g-K [Tg,Ω] in Tg,Ω. Then,

g-Clg,Ω : Sg 7−→
⋂

Kg∈Csup

g-K[Tg,Ω]
[Sg]

Kg

⊆
⋂

Kg∈Csup

g-K[Tg,Ω]
[Γ]

Kg = g-Clg,Ω (Γ) = Γ.
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Consequently, Γ ∩ g-Clg,Ω (Sg) = g-Clg,Ω (Sg). On the other hand,

g-Clg,Γ : Sg 7−→
⋂

Kg∈Csup

g-K[Tg,Γ]
[Sg]

Kg

←→
⋂

Kg∈Csup

g-K[Tg,Γ]
[Sg]

(Kg ∩ Γ)

←→
⋂

Kg∈Csup

g-K[Tg,Ω]
[Sg]

(Kg ∩ Γ)

←→ Γ ∩
( ⋂

Kg∈Csup

g-K[Tg,Ω]
[Sg]

Kg

)
= Γ ∩ g-Clg,Ω (Sg) .

But Γ ∩ g-Clg,Ω (Sg) = g-Clg,Ω (Sg) and hence, g-Clg,Γ (Sg) = g-Clg,Ω (Sg). The
proof of the theorem is complete. □

Theorem 3.6. Let Qg ∈ g-O [Tg] ∩ g-K [Tg] be a g-Tg-open-closed set and let
(Sg,α,Sg,β) ⊆ Tg × Tg be a pair of Tg-sets in a Tg-space Tg = (Ω,Tg). If
(Sg,α,Sg,β) ⊆

(
Qg, g-Opg (Qg)

)
, then:

(
∀ g-Intg ∈ g-I [Tg]

)[
g-Intg

(⋃
σ=α,βSg,σ

)
=

⋃
σ=α,β

g-Intg (Sg,σ)

]
. (3.3)

Proof. Let Qg ∈ g-O [Tg] ∩ g-K [Tg] be a g-Tg-open-closed set, let (Sg,α,Sg,β) ⊆
Tg×Tg be a pair of Tg-sets in a Tg-space Tg = (Ω,Tg) and, suppose (Sg,α,Sg,β) ⊆(
Qg, g-Opg (Qg)

)
. Then, for every Sg ∈ {Sg,α,Sg,β},

g-Intg : Sg 7−→
⋃

Og∈Csub
g-O[Tg]

[Sg]

Og

⊆
⋃

Og∈Csub
g-O[Tg]

[Sg,α∪Sg,β ]

Og = g-Intg
(⋃

σ=α,βSg,σ

)
.

Consequently, g-Intg
(⋃

σ=α,βSg,σ

)
⊇

⋃
σ=α,β g-Intg (Sg,σ). Set Ŝg,α = Sg,α ∩Qg

and Ŝg,β = Sg,β ∩ g-Opg (Qg). Then, since (Sg,α,Sg,β) ⊆
(
Qg, g-Opg (Qg)

)
, it
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follows that

Csub
g-O[Tg]

[⋃
σ=α,βSg,σ

]
= Csub

g-O[Tg]

[⋃
σ=α,βŜg,σ

]
=

{
Og ∈ g-O [Tg] : Og ⊆

⋃
σ=α,β

Ŝg,σ

}

=

{
Og ∈ g-O [Tg] :

∨
σ=α,β

(
Og ⊆ Ŝg,σ

)}
=

⋃
σ=α,β

{
Og ∈ g-O [Tg] : Og ⊆ Ŝg,σ

}
=

⋃
σ=α,β

Csub
g-O[Tg]

[
Ŝg,σ

]
=

⋃
σ=α,β

Csub
g-O[Tg]

[
Sg,σ

]
.

Therefore, Csub
g-O[Tg]

[⋃
σ=α,βSg,σ

]
=

⋃
σ=α,β C

sub
g-O[Tg]

[
Sg,σ

]
, as a consequence of

the condition (Sg,α,Sg,β) ⊆
(
Qg, g-Opg (Qg)

)
. Taking this fact into account, it

follows, moreover, that

g-Intg :
⋃

σ=α,βSg,σ 7−→
⋃

Og∈Csub
g-O[Tg]

[Sg,α∪Sg,β ]

Og

⊆
⋃

Og∈
⋃

σ=α,β Csub
g-O[Tg]

[Sg,σ ]

Og

⊆
⋃

σ=α,β

( ⋃
Og∈Csub

g-O[Tg]
[Sg,σ]

Og

)
=

⋃
σ=α,β

g-Intg (Sg,σ) .

Hence, g-Intg
(⋃

σ=α,βSg,σ

)
⊆

⋃
σ=α,β g-Intg (Sg,σ). The proof of the theorem is

complete. □

Theorem 3.7. Let Tg,Γ = (Γ,Tg,Γ) be a Tg-subspace of a Tg-space Tg,Ω =
(Ω,Tg,Ω), where Tg,Γ : P (Γ) 7−→ Tg,Γ =

{
Og ∩ Γ : Og ∈ Tg,Ω

}
. If Γ ∈

g-O [Tg,Ω] ∩ g-K [Tg,Ω] and Sg ∈ g-Nd [Tg,Ω], then Sg ∩ Γ ∈ g-Nd [Tg,Γ].

Proof. Let Tg,Γ = (Γ,Tg,Γ) be a Tg-subspace of a Tg-space Tg,Ω = (Ω,Tg,Ω)
and, suppose Γ ∈ g-O [Tg,Ω] ∩ g-K [Tg,Ω] and Sg ∈ g-Nd [Tg,Ω]. Then, since Γ ∈
g-O [Tg,Ω] ∩ g-K [Tg,Ω] implies g-Intg,Γ (Sg) = g-Intg,Ω (Sg) and g-Clg,Γ (Sg) =
g-Clg,Ω (Sg), it follows that

g-Intg,Γ ◦ g-Clg,Γ : Sg ∩ Γ 7−→ g-Intg,Ω ◦ g-Clg,Ω (Sg ∩ Γ)

⊆ g-Intg,Ω ◦ g-Clg,Ω (Sg) .

Since Sg ∈ g-Nd [Tg,Ω], it follows, moreover, that g-Intg,Ω ◦ g-Clg,Ω : Sg 7−→ ∅.
Consequently, g-Intg,Γ ◦ g-Clg,Γ : Sg ∩ Γ 7−→ ∅ and hence, Sg ∩ Γ ∈ g-Nd [Tg,Γ].
The proof of the theorem is complete. □

Theorem 3.8. In order that a Tg-set Sg ⊂ Tg in a strong Tg-space Tg = (Ω,Tg)
satisfies the condition Sg ∈ g-P [Tg], it is necessary and sufficient that there exist a
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g-Tg-open-closed set Qg ∈ g-O [Tg] ∩ g-K [Tg] and a Tg-set Rg ∈ g-Nd [Tg] having
g-Qg-property such that it be expressible as:

Sg = (Qg −Rg) ∪ (Rg −Qg) . (3.4)

Proof. Sufficiency. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg)
and let there exist Qg ∈ g-O [Tg] ∩ g-K [Tg] and Rg ∈ g-Nd [Tg] such that the
relation Sg = (Qg −Rg) ∪ (Rg −Qg) holds. Clearly, (Qg −Rg,Rg −Qg) ⊆(
Qg, g-Opg (Qg)

)
, implying

Csub
g-O[Tg]

[
(Qg −Rg) ∪ (Rg −Qg)

]
= Csub

g-O[Tg]

[
Qg −Rg

]
∪ Csub

g-O[Tg]

[
Rg −Qg

]
.

Set Sg,(q,r) = Qg−Rg and Sg,(r,q) = Rg−Qg. Then, g-Intg
(
Sg,(q,r) ∪Sg,(r,q)

)
=

g-Intg
(
Sg,(q,r)

)
∪ g-Intg

(
Sg,(r,q)

)
. Since

(
Sg,(q,r),Sg,(r,q)

)
⊆

(
Qg, g-Opg (Qg)

)
and Qg ∈ g-O [Tg] ∩ g-K [Tg], it follows that

g-Intg
(
Sg,(q,r)

)
= g-Intg,Qg

(
Sg,(q,r)

)
,

g-Clg
(
Sg,(q,r)

)
= g-Clg,Qg

(
Sg,(q,r)

)
,

g-Intg
(
Sg,(r,q)

)
= g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
,

g-Clg
(
Sg,(r,q)

)
= g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.

Consequently,

g-Intg : g-Clg (Sg) 7−→
⋃

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

Og

=
⋃

Og∈Csub
g-O[Tg]

[
g-Clg,Qg(Sg,(q,r))∪g-Clg,g-Opg(Qg)(Sg,(r,q))

]Og

=

( ⋃
Og∈Csub

g-O[Tg]
[g-Clg,Qg(Sg,(q,r))]

Og

)

∪
( ⋃

Og∈Csub
g-O[Tg]

[
g-Clg,g-Opg(Qg)(Sg,(r,q))

]Og

)

= g-Intg
(
g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

))
= g-Intg ◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Intg,Qg

◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.

Thus, it follows that

g-Intg ◦ g-Clg (Sg) = g-Intg,Qg
◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.
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Similarly,

g-Clg : g-Intg (Sg) 7−→
⋂

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

Kg

=
⋂

Kg∈Csup

g-K[Tg]

[
g-Intg,Qg(Sg,(q,r))∪g-Intg,g-Opg(Qg)(Sg,(r,q))

]Kg

=

( ⋂
Kg∈Csup

g-K[Tg]
[g-Intg,Qg(Sg,(q,r))]

Kg

)

∪
( ⋂

Kg∈Csup

g-K[Tg]

[
g-Intg,g-Opg(Qg)(Sg,(r,q))

]Kg

)

= g-Clg
(
g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

))
= g-Clg ◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Clg,Qg

◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
.

Hence, it results that

g-Clg ◦ g-Intg (Sg) = g-Clg,Qg
◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
.

By virtue of the relation
(
Sg,(q,r),Sg,(r,q)

)
⊆

(
Qg, g-Opg (Qg)

)
, it is plain that

Sg,(q,r) = Qg −Qg ∩Rg and Sg,(r,q) = g-Opg (Qg) ∩Rg. Since Qg ∈ g-O [Tg] ∩
g-K [Tg] and Rg ∈ g-Nd [Tg], it follows that Qg ∩ Rg is a Tg-set having g-Qg-
property in Qg and g-Opg (Qg)∩Rg is a Tg-set having g-Qg-property in g-Opg (Qg).

But Sg,(q,r) = ∁Qg
(Rg) and Rg ∈ g-Nd [Tg]. Consequently, Rg has g-Pg-property

in Qg and hence,

g-Clg,Qg
◦ g-Intg,Qg

(
Sg,(q,r)

)
= g-Intg,Qg

◦ g-Clg,Qg

(
Sg,(q,r)

)
.

On the other hand, the statement that g-Opg (Qg) ∩Rg is a Tg-set having g-Qg-
property in g-Opg (Qg) implies that Sg,(r,q) has g-Pg-property in g-Opg (Qg) and
therefore,

g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.
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When all the foregoing set-theoretic expressions are taken into account, it results
that

g-Intg ◦ g-Clg (Sg) = g-Intg,Qg
◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Clg,Qg

◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Clg ◦ g-Intg (Sg) .

Hence, g-Intg ◦ g-Clg (Sg) = g-Clg ◦ g-Intg (Sg). The condition of the theorem is,
therefore, sufficient.

Necessity. Conversely, suppose that Sg ∈ g-P [Tg]. Then, g-Intg ◦ g-Clg (Sg) =
g-Clg ◦ g-Intg (Sg). Set g-Intg ◦ g-Clg (Sg) = Qg = g-Clg ◦ g-Intg (Sg). Then,
Qg ∈ g-O [Tg] ∩ g-K [Tg], meaning that Qg is a g-Tg-open-closed set in Tg. Set
Sg,(s,q) = Sg −Qg and Sg,(q,s) = Qg −Sg. Then,

g-Intg ◦ g-Clg
(
Sg,(s,q)

)
⊆ g-Intg ◦ g-Clg (Sg) = Qg;

g-Intg ◦ g-Clg
(
Sg,(s,q)

)
⊆ g-Intg ◦ g-Clg

(
g-Opg (Qg)

)
= g-Opg (Qg) .

But Qg∩g-Opg (Qg) = ∅ and consequently, g-Intg ◦ g-Clg : Sg,(s,q) 7−→ ∅, meaning
that Qg is a Tg-set having g-Qg-property in Sg. On the other hand,

g-Intg ◦ g-Clg
(
Sg,(q,s)

)
⊆ g-Intg ◦ g-Clg (Qg) = Qg;

g-Intg ◦ g-Clg
(
Sg,(q,s)

)
⊆ g-Intg ◦ g-Clg

(
g-Opg (Sg)

)
= g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

= g-Opg ◦ g-Clg ◦ g-Intg (Sg) = g-Opg (Qg) .

Since Qg∩g-Opg (Qg) = ∅ it follows, consequently, that g-Intg ◦ g-Clg : Sg,(q,s) 7−→
∅, meaning that Sg is a Tg-set having g-Qg-property in Qg. Set Rg = Sg,(q,s) ∪
Sg,(s,q). Then,

g-Intg ◦ g-Clg : Rg 7−→ g-Intg ◦ g-Clg
(
Sg,(q,s) ∪Sg,(s,q)

)
= g-Intg ◦ g-Clg

(
Sg,(q,s)

)
∪ g-Intg ◦ g-Clg

(
Sg,(s,q)

)
= ∅ ∪ ∅ = ∅,

implying that Rg ∈ g-Nd [Tg]. Having evidenced the existence of a g-Tg-open-closed
set Qg ∈ g-O [Tg] ∩ g-K [Tg] and a Tg-set Rg ∈ g-Nd [Tg] having g-Qg-property, it
only remains to show that Sg ⊂ Tg is expressible as Sg = (Qg −Rg)∪ (Rg −Qg).
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Observe that

Sg,(q,r) ∪Sg,(r,q)

=
{
Qg ∩ g-Opg (Rg)

}
∪
{
Rg ∩ g-Opg (Qg)

}
=

{
Qg ∩ g-Opg

[(
Qg ∩ g-Opg (Sg)

)
∪
(
Sg ∩ g-Opg (Qg)

)]}
∪
{[(

Qg ∩ g-Opg (Sg)
)
∪
(
Sg ∩ g-Opg (Qg)

)]
∩ g-Opg (Qg)

}
=

{
Qg ∩ g-Opg

(
Qg ∩ g-Opg (Sg)

)
∩ g-Opg

(
Sg ∩ g-Opg (Qg)

)}
∪
{
Sg ∩ g-Opg (Qg)

}
=

{
Qg ∩

(
g-Opg (Qg) ∪Sg

)
∩
(
g-Opg (Sg) ∪Qg

)}
∪
{
Sg ∩ g-Opg (Qg)

}
=

{(
Qg ∩Sg

)
∩
(
g-Opg (Sg) ∪Qg

)}
∪
{
Sg ∩ g-Opg (Qg)

}
=

(
Qg ∩Sg

)
∪
(
Sg ∩ g-Opg (Qg)

)
.

But since g-Intg ◦ g-Clg (Sg) = Qg = g-Clg ◦ g-Intg (Sg) and the latter in turn

implies g-Clg ◦ g-Intg
(
g-Opg (Sg)

)
= g-Opg (Qg) = g-Intg ◦ g-Clg

(
g-Opg (Sg)

)
, it

follows that Qg ∩ Sg = Sg and Sg ∩ g-Opg (Qg) = ∅. Consequently, Sg,(q,r) ∪
Sg,(r,q) = Sg. But, Sg,(q,r) ∪Sg,(r,q) = (Qg −Rg) ∪ (Rg −Qg) and hence, Sg =
(Qg −Rg)∪ (Rg −Qg). The condition of the theorem is, therefore, necessary. □

Observe that Sg = (Qg −Rg)∪ (Rg −Qg) = g-Opg,Qg
(Rg)∪g-Opg,Rg

(Qg) =

g-Sdg
(
Qg,Rg

)
. Thus, an immediate consequence of the above theorem is the fol-

lowing corollary.

Corollary 3.9. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg). Then,
Sg ∈ g-P [Tg] if and only if:(

∃Qg ∈ g-O [Tg] ∩ g-K [Tg]
)(
∃Rg ∈ g-Nd [Tg]

)[
Sg = g-Sdg

(
Qg,Rg

)]
.

(3.5)

Proposition 3.10. If Sg ∈ g-Nd [Tg] be a Tg-set having g-Qg-property, then
g-Clg (Sg) ̸= Ω:

Sg ∈ g-P [Tg] −→ g-Clg (Sg) ̸= Ω. (3.6)

Proof. Let Sg ∈ g-Nd [Tg] be a Tg-set having g-Qg-property in a strong Tg-
space Tg = (Ω,Tg). Then, since Tg is a strong Tg-space, it follows that Ω ∈
g-O [Tg] × g-K [Tg]. Consequently, g-Intg ◦ g-Clg (Ω) = Ω. But, Sg ∈ g-Nd [Tg]
implies g-Intg ◦ g-Clg (Sg) = ∅. Thus, g-Intg ◦ g-Clg (Sg) = ∅ ̸= Ω = g-Intg (Ω),
implying g-Clg (Sg) ̸= Ω. The proof of the proposition is complete. □

Proposition 3.11. If Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg) and
Tg be g-Tg-connected, then:

Sg ∈ g-P [Tg]←→
(
Sg ∈ g-Nd [Tg]

)
∨
(
g-Opg (Sg) ∈ g-Nd [Tg]

)
. (3.7)

Proof. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg) and Tg be
g-Tg-connected. Suppose Sg ∈ g-P [Tg]. Then, there exist a g-Tg-open-closed set
Qg ∈ g-O [Tg] ∩ g-K [Tg] and a Tg-set Rg ∈ g-Nd [Tg] having g-Qg-property such
that Sg be expressible as Sg = (Qg −Rg)∪ (Rg −Qg). Since the strong Tg-space
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Tg is g-Tg-connected, the only g-Tg-open-closed set are the improper Tg-sets ∅,
Ω ⊂ Tg. Consequently,

Sg ∈ g-P [Tg]←→
(
Qg ∈ {∅,Ω}

)[
Sg = (Qg −Rg) ∪ (Rg −Qg)

]
.

Case i. Suppose Qg = ∅. Then Sg = (∅ −Rg)∪ (Rg − ∅). But ∅−Rg = ∅ and
Rg − ∅ = Rg. Therefore, Sg = ∅ ∪Rg = Rg. Thus, Sg ∈ g-Nd [Tg].

Case ii. Suppose Qg = Ω. Then Sg = (Ω−Rg) ∪ (Rg − Ω). But Ω −Rg =
g-Opg (Rg) and Rg−Ω = ∅. Consequently, Sg = g-Opg (Rg)∪∅ = g-Opg (Rg) and
therefore, g-Opg (Sg) = g-Opg ◦ g-Opg (Rg) = Rg. Hence, g-Opg (Sg) ∈ g-Nd [Tg].
The proof of the proposition is complete. □

Lemma 3.12. If (Qg,Rg,Sg) ∈ g-S
[
Tg

]
×g-S

[
Tg

]
×g-S

[
Tg

]
be a triple of g-Tg-sets

and g-Sdg : P (Ω) ×P (Ω) −→ P (Ω) be the symmetric difference g-Tg-operator
in a Tg-space Tg = (Ω,Tg), then:

– i. g-Sdg
(
Qg,Rg

)
= g-Sdg

(
RgQg

)
∈ g-S

[
Tg

]
,

– ii. g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
= g-Sdg

(
Qg, g-Sdg

(
Rg,Sg

))
∈ g-S

[
Tg

]
,

– iii. Qg ∩ g-Sdg
(
Rg,Sg

)
= g-Sdg

(
Qg ∩Rg,Qg ∩Sg

)
.

Proof. Let (Qg,Rg,Sg) ∈ g-S
[
Tg

]
× g-S

[
Tg

]
× g-S

[
Tg

]
and, let g-Sdg : P (Ω) ×

P (Ω) −→ P (Ω) be the symmetric difference g-Tg-operator in a Tg-space Tg =
(Ω,Tg). The proof that g-Sdg

(
RgQg

)
∈ g-S

[
Tg

]
holds for any (Qg,Rg) ∈ g-S

[
Tg

]
×

g-S
[
Tg

]
is first supplied. It is evident that

g-Sdg
(
Qg,Rg

)
= g-Opg,Qg

(Rg) ∪ g-Opg,Rg
(Qg)

=
(
Qg ∩ g-Opg (Rg)

)
∪
(
Rg ∩ g-Opg (Qg)

)
⊆ Qg ∪Rg,

implying g-Sdg
(
Qg,Rg

)
⊆ Qg ∪ Rg. Since Qg ∪ Rg ∈ g-S

[
Tg

]
, it follows that

g-Sdg
(
Qg,Rg

)
∈ g-S

[
Tg

]
. Items i., ii. and iii. are now proved.

i. Since the order of the operands under the ∪-operation does not change, it
follows that

g-Sdg
(
Qg,Rg

)
= g-Opg,Qg

(Rg) ∪ g-Opg,Rg
(Qg)

= g-Opg,Rg
(Qg) ∪ g-Opg,Qg

(Rg) = g-Sdg
(
Rg,Qg

)
.

Hence, g-Sdg
(
Qg,Rg

)
= g-Sdg

(
Rg,Qg

)
∈ g-S

[
Tg

]
.

ii. For any (Sg,Sg) ∈ g-S
[
Tg

]
× g-S

[
Tg

]
, it is plain that g-Opg,Rg

(Sg) =

Rg ∩ g-Opg (Sg). Therefore,

g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
=

{
g-Sdg (Qg,Rg) ∩ g-Opg (Sg)

}
∪

{
Sg ∩ g-Opg

(
g-Sdg

(
Qg,Rg

))}
=

{
Qg ∩ g-Opg (Rg) ∩ g-Opg (Sg)

}
∪

{
Rg ∩ g-Opg (Qg) ∩ g-Opg (Sg)

}
∪

{
Sg ∩ g-Opg (Qg) ∩ g-Opg (Rg)

}
∪ {Sg ∩Qg ∩Rg} .

If P (Qg,Rg,Sg)
def
= Qg ∩ g-Opg (Rg) ∩ g-Opg (Sg), then

g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
= P(Qg,Rg,Sg) ∪ P (Rg,Qg,Sg)

∪ P (Sg,Qg,Rg) ∪
(
Sg ∩Qg ∩Rg

)
.
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Since g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
= g-Sdg

(
Sg, g-Sdg

(
Qg,Rg

))
, it follows that

g-Sdg
(
Qg, g-Sdg

(
Rg,Sg

))
= g-Sdg

(
Sg = Qg, g-Sdg

(
Qg = Rg,Rg = Sg

))
= P(Rg,Sg,Qg) ∪ P (Sg,Rg,Qg)

∪ P (Qg,Rg,Sg) ∪
(
Qg ∩Rg ∩Sg

)
.

But by virtue of the associativity and distributive properties of the ∩, ∪-operations,
the relations P (Qg,Rg,Sg) = P (Qg,Sg,Rg), P (Rg,Qg,Sg) = P (Rg,Sg,Qg),
P (Sg,Qg,Rg) = P (Sg,Rg,Qg), and Sg ∩Qg ∩Rg = Qg ∩Rg ∩Sg hold. Thus,
g-Sdg

(
g-Sdg

(
Qg,Rg

)
,Sg

)
= g-Sdg

(
Qg, g-Sdg

(
Rg,Sg

))
∈ g-S

[
Tg

]
.

iii. Since the relation g-Opg,Rg
(Sg) = Rg∩g-Opg (Sg) holds for any (Sg,Sg) ∈

g-S
[
Tg

]
× g-S

[
Tg

]
, it results that

Qg ∩ g-Sdg
(
Rg,Sg

)
= Qg ∩

(
g-Opg,Rg

(Sg) ∪ g-Opg,Sg
(Rg)

)
=

(
Qg ∩ g-Opg,Rg

(Sg)
)
∪
(
Qg ∩ g-Opg,Sg

(Rg)
)

=
(
Qg ∩

(
Rg ∩ g-Opg (Sg)

))
∪
(
Qg ∩

(
Sg ∩ g-Opg (Rg)

))
=

((
Qg ∩Rg

)
∩ g-Opg (Sg)

)
∪
((

Qg ∩Sg

)
∩ g-Opg (Rg)

)
= g-Opg,Qg∩Rg

(Sg) ∪ g-Opg,Qg∩Sg
(Rg)

= g-Sdg
(
Qg ∩Rg,Qg ∩Sg

)
.

Hence, Qg ∩ g-Sdg
(
Rg,Sg

)
= g-Sdg

(
Qg ∩Rg,Qg ∩Sg

)
∈ g-S

[
Tg

]
. The proof of

the lemma is complete. □

Theorem 3.13. If Sg,1, Sg,2, . . ., Sg,σ ∈ g-P
[
Tg

]
are σ ≥ 1 Tg-sets having

g-Pg-property in a strong Tg-space Tg = (Ω,Tg), then
⋂

ν∈I∗
σ

Sg,ν ∈ g-P
[
Tg

]
.

Proof. Let Sg,1, Sg,2, . . ., Sg,σ ∈ g-P
[
Tg

]
be σ ≥ 1 Tg-sets having g-Pg-property

in a strong Tg-space Tg = (Ω,Tg). Then, since Sg,1, Sg,2, . . ., Sg,σ ∈ g-P
[
Tg

]
,

there exist σ ≥ 1 g-Tg-open-closed sets Qg,1, Qg,2, . . ., Qg,σ ∈ g-O [Tg] ∩ g-K [Tg]
and σ ≥ 1 Tg-sets Rg,1, Rg,2, . . ., Rg,σ ∈ g-Nd [Tg] having g-Qg-property such that

Sg,1 = g-Sdg
(
Qg,1,Rg,1

)
,

Sg,2 = g-Sdg
(
Qg,2,Rg,2

)
, . . . , Sg,σ = g-Sdg

(
Qg,σ,Rg,σ

)
.

For an arbitrary pair (ν, µ) ∈ I∗σ × I∗σ, set Qg,(ν,µ) = Qg,ν ∩ Qg,µ, Wg,(ν,µ) =
Qg,ν ∩Rg,µ, and Rg,(ν,µ) = Rg,ν ∩Rg,µ. Then,

Sg,ν ∩Sg,µ = Sg,ν ∩ g-Sdg
(
Qg,µ,Rg,µ

)
= g-Sdg

(
Sg,ν ∩Qg,µ,Sg,ν ∩Rg,µ

)
= g-Sdg

[
g-Sdg

(
Qg,ν ,Rg,ν

)
∩Qg,µ, g-Sdg

(
Qg,ν ,Rg,ν

)
∩Rg,µ

]
= g-Sdg

[
g-Sdg

(
Qg,(ν,µ),Wg,(µ,ν)

)
, g-Sdg

(
Wg,(ν,µ),Rg,(ν,µ)

)]
= g-Sdg

{
Qg,(ν,µ), g-Sdg

[
Wg,(µ,ν), g-Sdg

(
Wg,(ν,µ),Rg,(ν,µ)

)]}
.

But, Rg,ν , Rg,µ ∈ g-Nd [Tg] implies Rg,(ν,µ) ∈ g-Nd [Tg], (Qg,ν ,Rg,µ) ∈
(
g-O [Tg]∩

g-K [Tg]
)
× g-Nd [Tg] implies Wg,(ν,µ) ∈ g-Nd [Tg] and, Qg,ν , Qg,µ ∈ g-O [Tg] ∩

g-K [Tg] implies Qg,(ν,µ) ∈ g-O [Tg] ∩ g-K [Tg]. Thus, g-Sdg
(
Wg,(ν,µ),Rg,(ν,µ)

)
∈

g-Nd [Tg], implying g-Sdg
[
Wg,(µ,ν), g-Sdg

(
Wg,(ν,µ),Rg,(ν,µ)

)]
= R̂g,(ν,µ) ∈ g-Nd [Tg].

Therefore, Sg,ν ∩ Sg,µ = g-Sdg
(
Qg,(ν,µ), R̂g,(ν,µ)

)
, where Qg,(ν,µ) ∈ g-O [Tg] ∩
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g-K [Tg] and R̂g,(ν,µ) ∈ g-Nd [Tg], and consequently, Sg,ν ∩ Sg,µ ∈ g-P [Tg] for

any (ν, µ) ∈ I∗σ × I∗σ. Hence,
⋂

ν∈I∗
σ

Sg,ν ∈ g-P
[
Tg

]
. The proof of the theorem is

complete. □

Proposition 3.14. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets each
of which having g-Pg-property in a strong Tg-space Tg = (Ω,Tg), then

⋃
ν∈I∗

σ
Sg,ν

has also g-Pg-property in Tg:∧
ν∈I∗

σ

(
Sg,ν ∈ g-P [Tg]

)
−→

⋃
ν∈I∗

σ

Sg,ν ∈ g-P [Tg] . (3.8)

Proof. Let Sg,1, Sg,2, . . ., Sg,σ ∈ g-P [Tg] be σ ≥ 1 Tg-sets having g-Pg-property
in a strong Tg-space Tg = (Ω,Tg). Then, since Sg = g-Opg ◦ g-Opg (Sg) for
any Tg-set Sg ⊂ Tg, it follows that Sg,ν ∪Sg,µ = g-Opg ◦ g-Opg (Sg,ν ∪Sg,µ) =

g-Opg
(
g-Opg (Sg,ν) ∩ g-Opg (Sg,µ)

)
for any arbitrary pair (ν, µ) ∈ I∗σ × I∗σ. But,

g-Opg (Sg,ν), g-Opg (Sg,µ) ∈ g-P [Tg] and therefore, g-Opg (Sg,ν)∩g-Opg (Sg,µ) ∈
g-P [Tg]. Set g-Opg

(
Ŝg

)
= g-Opg (Sg,ν)∩g-Opg (Sg,µ). Then, since g-Opg

(
Ŝg

)
∈

g-P [Tg] is equivalent to g-Opg ◦ g-Opg
(
Ŝg

)
∈ g-P [Tg] and, the relation Sg,ν ∪

Sg,µ = g-Opg ◦ g-Opg
(
Ŝg

)
holds, it follows that Sg,ν ∪Sg,µ ∈ g-P [Tg]. The proof

of the proposition is complete. □

Theorem 3.15. Let Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg). If Sg has
g-Pg-property in Tg, then it has also Pg-property in Tg:(

Sg ⊂ Tg

)[
Sg ∈ g-P [Tg] −→ Sg ∈ P [Tg]

]
. (3.9)

Proof. Let Sg ∈ g-P [Tg] be a Tg-set having g-Pg-property in a Tg-space Tg =
(Ω,Tg). Then, it satisfies the relation g-Intg ◦ g-Clg (Sg) ←→ g-Clg ◦ g-Intg (Sg).

Since
(
intg (Sg) , g-Clg (Sg)

)
⊆

(
g-Intg (Sg) , clg (Sg)

)
, it follows that

intg ◦ clg (Sg) ⊇ intg ◦ g-Clg (Sg) ⊆ g-Intg ◦ g-Clg (Sg) ,

clg ◦ intg (Sg) ⊆ clg ◦ g-Intg (Sg) ⊇ g-Clg ◦ g-Intg (Sg) .

Consequently,

intg ◦ g-Clg (Sg) ∩ g-Intg ◦ g-Clg (Sg) = intg ◦ g-Clg (Sg)

= intg ◦ g-Clg (Sg) ∩ clg ◦ g-Intg (Sg) ,

implying clg ◦ g-Intg (Sg) = intg ◦ clg (Sg). But, clg ◦ g-Intg (Sg)∩clg ◦ intg (Sg) =
clg ◦ intg (Sg) and intg ◦ g-Clg (Sg) ∩ intg ◦ clg (Sg) = intg ◦ g-Clg (Sg). Conse-
quently, it results that intg ◦ g-Clg (Sg) = clg ◦ intg (Sg) which, in turn, implies
clg ◦ g-Intg (Sg) = clg ◦ intg (Sg). Therefore, intg ◦ clg (Sg) = clg ◦ intg (Sg), mean-
ing that Sg has also Pg-property in Tg. Hence, Sg ∈ P [Tg]. The proof of the
theorem is complete. □

Proposition 3.16. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets having
g-Qg-property in a strong Tg-space Tg = (Ω,Tg), then

⋃
ν∈I∗

σ
Sg,ν has also g-Qg-

property in Tg:∧
ν∈I∗

σ

(
Sg,ν ∈ g-Nd [Tg]

)
−→

⋃
ν∈I∗

σ

Sg,ν ∈ g-Nd [Tg] . (3.10)
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Proof. Let
{
Sg,ν ∈ g-Nd [Tg] : ν ∈ I∗σ

}
be a collection of σ ≥ 1 Tg-sets having

g-Qg-property in a Tg-space Tg = (Ω,Tg). Suppose
∧

ν∈I∗
σ

(
Sg,ν ∈ g-Nd [Tg]

)
implies

⋃
ν∈I∗

σ
Sg,ν ∈ g-Nd [Tg] is an untrue logical statement. Then,

∧
ν∈I∗

σ

(
Sg,ν ∈

g-Nd [Tg]
)
is true and g-Intg ◦ g-Clg :

⋃
ν∈I∗

σ
Sg,ν 7−→ ∅ is untrue. Thus, to prove

the proposition, it suffices to prove that
⋃

ν∈I∗
σ

Sg,ν /∈ g-Nd [Tg] is a contradiction.

For arbitrary (ν, µ (ν)) ∈ I∗σ×I∗σ(ν) such that I∗σ(ν) = I∗σ\{ν}, set Sg,(ν,µ(ν)) = Sg,ν∪
Sg,µ(ν), where

{
Sg,ν ,Sg,µ(ν)

}
⊂ g-Nd [Tg]. Since g-Intg ◦ g-Clg

(
Sg,(ν,µ(ν))

)
⊆

g-Clg
(
Sg,(ν,µ(ν))

)
= g-Clg

(
Sg,ν

)
∪ g-Clg

(
Sg,µ(ν)

)
, it follows that

g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
⊆ g-Clg

(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
= g-Clg (Sg,ν) ∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
⊆ g-Clg (Sg,ν) .

Thus, for arbitrary (ν, µ (ν)) ∈ I∗σ × I∗σ(ν) such that I∗σ(ν) = I∗σ \ {ν}, it follows that

g-Intg
[
g-Intg ◦ g-Clg

(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)]
⊆ g-Intg ◦ g-Clg (Sg,ν) = ∅.

Since Tg is a strong Tg-space, it results that

g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
= ∅,

and therefore, g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
⊆ g-Clg

(
Sg,µ(ν)

)
. On the other hand,

since g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
∈ g-O [Tg], it follows that

g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
⊆ g-Intg ◦ g-Clg

(
Sg,µ(ν)

)
= ∅,

Thus, Sg,(ν,µ(ν)) ∈ g-Nd [Tg] holds for arbitrary (ν, µ (ν)) ∈ I∗σ × I∗σ(ν) such that

I∗σ(ν) = I∗σ \ {ν} and hence,
⋃

ν∈I∗
σ

Sg,ν ∈ g-Nd [Tg]. The relation
⋃

ν∈I∗
σ

Sg,ν /∈
g-Nd [Tg] is therefore a contradiction. The proof of the proposition is complete. □

Theorem 3.17. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg). If
Sg is a Tg-set having g-Qg-property in Tg, then it has also Qg-property in Tg:(

Sg ⊂ Tg

)[
Sg ∈ g-Nd [Tg] ←− Sg ∈ Nd [Tg]

]
. (3.11)

Proof. Let Sg ∈ g-Nd [Tg] be a Tg-set having g-Qg-property in a strong Tg-space
Tg = (Ω,Tg). Suppose Sg ∈ Nd [Tg] implies Sg ∈ g-Nd [Tg] is an untrue log-
ical statement. Then, Sg ∈ Nd [Tg] is true and g-Intg ◦ g-Clg : Sg 7−→ ∅ is
untrue. Thus, to prove the theorem, it suffices to prove that Sg /∈ g-Nd [Tg]
is a contradiction. Since g-Intg ◦ g-Clg (Sg) ⊆ g-Intg ◦ clg (Sg), it follows that
g-Intg ◦ g-Clg (Sg) ∩ g-Intg ◦ clg (Sg) ⊆ clg (Sg). Consequently,

intg
[
g-Intg ◦ g-Clg (Sg) ∩ g-Intg ◦ clg (Sg)

]
⊆ intg ◦ clg (Sg) .

Since Sg ∈ Nd [Tg] and Tg is a strong Tg-space, it follows that intg ◦ clg : Sg 7−→ ∅
and therefore, g-Intg ◦ g-Clg (Sg)∩g-Intg ◦ clg (Sg) = ∅. Since g-Intg ◦ g-Clg (Sg) ⊆
g-Intg ◦ clg (Sg), it results that

g-Intg ◦ g-Clg (Sg) = g-Intg ◦ g-Clg (Sg) ∩ g-Intg ◦ clg (Sg) = ∅,
implying g-Intg ◦ g-Clg : Sg 7−→ ∅. Hence, Sg ∈ g-Nd [Tg]. The relation Sg /∈
g-Nd [Tg] is therefore a contradiction. The proof of the theorem is complete. □

The important remark given below ends the present section.
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Remark. In a Tg-space Tg = (Ω,Tg), the converse of the following statements
with respect to some Tg-set Sg ⊂ Tg are in general untrue:

– i. Sg ∈ g-P [Tg] −→ g-Intg (Sg) ∈ g-P [Tg],
– ii. Sg ∈ g-P [Tg] −→ g-Clg (Sg) ∈ g-P [Tg],

– iii.
(
Sg ∈ g-Nd [Tg]

)
∨
(
g-Opg (Sg) ∈ g-Nd [Tg]

)
−→ Sg ∈ g-P [Tg].

Because, in the event that Tg = (Ω,Tg) =
(
R,Tg,R

)
= Tg,R and Sg = Q (Q and

R, respectively, denote the sets of rational and real numbers, where R ⊃ Q), the
converse of Items i.,ii. and iii., reading

– iv. Q ∈ g-P
[
Tg,R

]
←− g-Intg (Q) ∈ g-P

[
Tg,R

]
,

– v. Q ∈ g-P
[
Tg,R

]
←− g-Clg (Q) ∈ g-P

[
Tg,R

]
,

– vi.
(
Q ∈ g-Nd

[
Tg,R

])
∨
(
g-Opg (Q) ∈ g-Nd

[
Tg,R

])
←− Q ∈ g-P

[
Tg,R

]
,

respectively, are all untrue. In fact, every Tg-open set Og ∈ Tg,R contains both
points ξ ∈ Q and ζ ∈ R \ Q. Consequently, there are no g-Tg-interior points
of Q. Therefore, g-Intg (Q) = ∅ and g-Clg (Q) = R and thus, g-P

[
Tg,R

]
∋ R =

g-Clg (R) = g-Intg ◦ g-Clg (Q) ̸= g-Clg ◦ g-Intg (Q) = g-Clg (∅) = ∅ ∈ g-P
[
Tg,R

]
;(

Q, g-Opg (Q)
)
/∈ g-Nd

[
Tg,R

]
× g-Nd

[
Tg,R

]
. In Items iv., v. and vi., the con-

sequents Q ∈ g-P
[
Tg,R

]
, Q ∈ g-P

[
Tg,R

]
and

(
Q ∈ g-Nd

[
Tg,R

])
∨
(
g-Opg (Q) ∈

g-Nd
[
Tg,R

])
are all untrue and on the other hand, their antecedents g-Intg (Q) ∈

g-P
[
Tg,R

]
, g-Clg (Q) ∈ g-P

[
Tg,R

]
and Q ∈ g-P

[
Tg,R

]
are all true. Consequently,

Items iv., v. and vi. are all untrue statements and hence, the converse of
Items i., ii. and iii. are untrue statements. In addition, since

(
Q, g-Opg (Q)

)
/∈

g-Nd
[
Tg,R

]
× g-Nd

[
Tg,R

]
it follows that, for some Tg-set Sg ⊂ Tg, the condition

g-Opg (Sg) ∈ g-Nd [Tg] can be satisfied without the condition Sg ∈ g-Nd [Tg] being
satisfied, though Og ∩ g-Opg ◦ g-Clg (Sg) ̸= ∅ for every Og ∈ g-O [Tg] is a conse-
quence of Sg ∈ g-Nd [Tg].

4. Discussion

4.1. Categorical Classifications. Having adopted a categorical approach in the
classifications of Ta-sets with {g-Pa, g-Pa}-property, the twofold purposes here
are, firstly, to establish the various relationships amongst the classes of Ta-sets
with g-Pa, g-Qa-properties, a ∈ {o, g}, in a Tg-space Tg, and secondly, to illustrate
them through diagrams.

In a Ta-space Tg, since Sa ∈ g-P [Ta] implies
∨

ν∈I0
3

(
Sa ∈ g-ν-P [Ta]

)
, it fol-

lows that, g-Pa ←− g-ν-Pa for each ν ∈ I03 . Therefore, g-0-Pa −→ g-1-Pa −→
g-3-Pa ←− g-2-Pa. But, g-ν-Pg ←− g-ν-Po for each ν ∈ I03 . Hence, Eq. (4.1)
present itself which may well be called g-Pa-property diagram.

g-Po ←→ g-Po ←→ g-Po ←→ g-Po←
−

←
−

←
−

←
−

g-0-Po −→ g-1-Po −→ g-3-Po ←− g-2-Po−→ −→ −→ −→

g-0-Pg −→ g-1-Pg −→ g-3-Pg ←− g-2-Pg−→ −→ −→ −→

g-Pg ←→ g-Pg ←→ g-Pg ←→ g-Pg

(4.1)
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In terms of the class
{
g-ν-P [Ta] : ν ∈ I∗3

}
, Fig. 1 present itself which may well

be called g-Pa-class diagram.

Figure 1. Relationships: g-Pa-class diagram in the Tg-space Tg.

In Ta, since Sa ∈ g-Q [Ta] implies
∨

ν∈I0
3

(
Sa ∈ g-ν-Q [Ta]

)
, it follows that,

g-Qa ←− g-ν-Qa for every ν ∈ I03 . Therefore, g-0-Qa −→ g-1-Qa −→ g-3-Qa ←−
g-2-Qa. But, g-ν-Qo −→ g-ν-Qg for each ν ∈ I03 . Thus, Eq. (4.2) present itself
which may well be called g-Qa-property diagram.

g-Qo ←→ g-Qo ←→ g-Qo ←→ g-Qo←
−

←
−

←
−

←
−

g-0-Qo −→ g-1-Qo −→ g-3-Qo ←− g-2-Qo−→ −→ −→ −→

g-0-Qg −→ g-1-Qg −→ g-3-Qg ←− g-2-Qg−→ −→ −→ −→

g-Qg ←→ g-Qg ←→ g-Qg ←→ g-Qg

(4.2)

In terms of the class
{
g-ν-Nd [Ta] : ν ∈ I∗3

}
, Fig. 2 present itself which may well

be called g-Qa-class diagram.
In Ta, since Sa ∈ g-Nd [Ta], Sa ∈ g-P [Ta] and Sa ∈ Nd [Ta] imply Sa ∈

g-P [Ta], Sa ∈ P [Ta] and Sa ∈ g-Nd [Ta], respectively, it follows that Qa −→
g-Qa −→ g-Pa −→ Pg in Tg. Finally, Sa ∈ Nd [To] and Sa ∈ g-Nd [To] imply
Sa ∈ Nd [Tg] and Sa ∈ g-Nd [Tg], respectively, and, Sa ∈ P [Tg] and Sa ∈ g-P [Tg]
imply Sa ∈ P [To] and Sa ∈ g-P [To], respectively. Altogether, Eq. (4.3) present
itself which may well be called

(
Pa, g-Pa;Qa, g-Qa

)
-properties diagram.

Qo −→ g-Qo −→ g-Po −→ Po−→ −→ ←
−

←
−

Qg −→ g-Qg −→ g-Pg −→ Pg

(4.3)

In terms of the class
{
Nd [Ta] ,P [Ta] , g-Nd [Ta] , g-P [Ta]

}
, Fig. 3 present itself

which may well be called
(
Pa, g-Pa;Qa, g-Qa

)
-classes diagram.

As in our previous works [1, 2, 19, 20], the manner we have positioned the
arrows in the g-Pa, g-Qa,

(
Pa, g-Pa;Qa, g-Qa

)
-properties diagrams (Eqs (4.1),
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Figure 2. Relationships: g-Qa-property diagram in the Tg-space Tg.

Figure 3. Relationships:
(
Pa, g-Pa;Qa, g-Qa

)
-classes diagram

in the Tg-space Tg.

(4.2), (4.3)) and the g-Pa, g-Qa,
(
Pa, g-Pa;Qa, g-Qa

)
-classes diagrams (Figs 1, 2,

3) is solely to stress that, in general, the implications in Eqs (4.1)–(4.3) and Figs
1–3 are irreversible.

4.2. A Nice Application. It is the purpose of this section to reveal through a
nice application some characterizations on the commutativity of the g-Tg-interior
and g-Tg-closure operators, and to give some other characterizations associated
with Tg-sets having g-Pg, g-Qg-properties in a Tg-space. Consider the Tg-space

Tg = (Ω,Tg), where Ω =
{
ζν : ν ∈ I∗5

}
and is topologized by the choice:

Tg (Ω) =
{
∅,
{
ζ1
}
,
{
ζ1, ζ3, ζ5

}
,Ω

}
=

{
Og,1,Og,2,Og,3,Og,4

}
; (4.4)

¬Tg (Ω) =
{
Ω,

{
ζ2, ζ3, ζ4, ζ5

}
,
{
ζ2, ζ4

}
, ∅
}
=

{
Kg,1,Kg,2,Kg,3,Kg,4

}
.(4.5)

For convenience of notation, let

P (Ω) =
{
Rg,(ν,µ) ∈P (Ω) : (ν, µ) ∈ I∗card(P(Ω)) × I0card(Ω)

}
, (4.6)

where Rg,(ν,µ) ∈ P (Ω) denotes a Tg-set labeled ν ∈ I∗card(P(Ω)) and containing

µ ∈ I0card(Ω) elements. Then, Rg,(1,0) = ∅, . . ., Rg,(ν,µ) =
{
ζ1, ζ2, . . . , ζµ

}
, . . .,

Rg,(32,5) = Ω.
For Rg ∈P (Ω) such that card (Rg) ∈ {0, 5}, let Rg,(1,0) = ∅ and Rg,(32,5) = Ω.

For Rg ∈ P (Ω) such that card (Rg) ∈ {1, 4}, let Rg,(2,1) = {ζ1}, Rg,(3,1) = {ζ2},
Rg,(4,1) = {ζ3}, Rg,(5,1) = {ζ4}, and Rg,(6,1) = {ζ5}; Rg,(27,4) = {ζ1, ζ2, ζ3, ζ4},
Rg,(28,4) = {ζ2, ζ3, ζ4, ζ5}, Rg,(29,4) = {ζ1, ζ3, ζ4, ζ5}, Rg,(30,4) = {ζ1, ζ2, ζ3, ζ5},
and Rg,(31,4) = {ζ1, ζ2, ζ4, ζ5}. For Rg ∈ P (Ω) such that card (Rg) ∈ {2, 3}, let
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Rg,(7,2) = {ζ1, ζ2}, Rg,(8,2) = {ζ1, ζ3}, Rg,(9,2) = {ζ1, ζ4}, Rg,(10,2) = {ζ1, ζ5},
Rg,(11,2) = {ζ2, ζ3}, Rg,(12,2) = {ζ2, ζ4}, Rg,(13,2) = {ζ2, ζ5}, Rg,(14,2) = {ζ3, ζ4},
Rg,(15,2) = {ζ3, ζ5}, and Rg,(16,2) = {ζ4, ζ5}; Rg,(17,3) = {ζ1, ζ2, ζ3}, Rg,(18,3) =
{ζ1, ζ3, ζ4}, Rg,(19,3) = {ζ1, ζ4, ζ5}, Rg,(20,3) = {ζ1, ζ2, ζ4}, Rg,(21,3) = {ζ1, ζ2, ζ5},
Rg,(22,3) = {ζ1, ζ3, ζ5}, Rg,(23,3) = {ζ2, ζ3, ζ4}, Rg,(24,3) = {ζ2, ζ3, ζ5}, Rg,(25,3) =
{ζ3, ζ4, ζ5}, and Rg,(26,3) = {ζ2, ζ4, ζ5}. Then,

intg
(
Rg,(ν,µ)

)
⊆ g-Intg

(
Rg,(ν,µ)

)
= Rg,(ν,µ) (4.7)

= g-Clg
(
Rg,(ν,µ)

)
⊆ clg

(
Rg,(ν,µ)

)
for every (ν, µ) ∈ I∗card(P(Ω)) × I0card(Ω). Consequently,

g-Clg ◦ g-Intg
(
Rg,(ν,µ)

)
= Rg,(ν,µ) = g-Intg ◦ g-Clg

(
Rg,(ν,µ)

)
(4.8)

for every (ν, µ) ∈ I∗card(P(Ω))×I0card(Ω). Introduce J
∗
28 = I∗1 ∪ (I∗7 \ I∗2 )∪ (I∗16 \ I∗10)∪

(I∗26 \ I∗22) ∪ (I∗28 \ I∗27). Then,

clg ◦ intg
(
Rg,(ν,µ)

)
= ∅ = intg ◦ clg

(
Rg,(ν,µ)

)
, (4.9)

clg ◦ intg
(
Rg,(δ,η)

)
= Ω = intg ◦ clg

(
Rg,(δ,η)

)
From Eq. (4.8), it follows that g-Intg, g-Clg : P (Ω) −→ P (Ω), respectively, do
commute. Thus, g-Clg ◦ g-Intg : P (Ω) −→ P (Ω) is both coarser and finer (or,
smaller and larger, weaker and stronger) than g-Intg ◦ g-Clg : P (Ω) −→ P (Ω).
Consequently, Rg ∈ g-P [Tg] for any Rg ∈P (Ω). Furthermore, it is easily checked
from Eq. (4.8) that, Rg ∈ g-Nd [Tg] −→ Rg ∈ g-P [Tg] is untrue if and only if
Rg ∈ g-Nd [Tg] is true and Rg ∈ g-P [Tg] is untrue.

From Eq. (4.9), both Rg,(ν,µ) ∈ Nd [Tg] for every (ν, µ) ∈ J∗
28×I04 and Rg,(δ,η) ∈

Nd [Tg] for every (δ, η) ∈
(
I∗card(P(Ω))\J

∗
28

)
×I0card(Ω) are easily checked. Moreover, it

results from Eqs (4.8), (4.9) that, Rg,(ν,µ) ∈ Nd [Tg] is true and Rg,(ν,µ) ∈ g-Nd [Tg]

is untrue for every (ν, µ) ∈
(
J∗
28 \ I∗1

)
× I04 . This confirms the statement that,

Rg ∈ g-Nd [Tg] ←− Rg ∈ Nd [Tg] is untrue if and only if Rg ∈ Nd [Tg] is true
and Rg ∈ g-Nd [Tg] is untrue. Observing that, for every (ν, µ) ∈ J∗

28× I04 and every
(δ, η) ∈

(
I∗card(P(Ω)) \ J

∗
28

)
× I0card(Ω), the relations

∅ = clg ◦ intg
(
Rg,(ν,µ)

)
⊆ g-Clg ◦ g-Intg

(
Rg,(ν,µ)

)
= g-Intg ◦ g-Clg

(
Rg,(ν,µ)

)
⊇ intg ◦ clg

(
Rg,(ν,µ)

)
= ∅,

intg ◦ clg
(
Rg,(δ,η)

)
= Ω ⊇ g-Intg ◦ g-Clg

(
Rg,(δ,η)

)
= g-Clg ◦ g-Intg

(
Rg,(δ,η)

)
⊆ Ω = clg ◦ intg

(
Rg,(δ,η)

)
,

respectively, hold, of which the first relation is the dual of the second, and con-
versely, it follows that the logical statement Rg ∈ g-P [Tg] −→ Rg ∈ P [Tg] is
satisfied for any Rg ∈P (Ω).

5. Conclusion

In a recent paper (Cf. [19]), we defined and studied the essential properties
of g-Tg-interior and g-Tg-closure operators in Tg-spaces. We showed in a Tg-
space that

(
g-Intg, g-Clg

)
: P (Ω)×P (Ω) −→P (Ω)×P (Ω) is (Ω, ∅)-grounded,

(expansive, non-expansive), (idempotent, idempotent) and (∩,∪)-additive. We also
showed in a Tg-space that g-Intg : P (Ω) −→P (Ω) is finer (or, larger, stronger)
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than intg : P (Ω) −→P (Ω) and g-Clg : P (Ω) −→P (Ω) is coarser (or, smaller,
weaker) than clg : P (Ω) −→P (Ω).

In this paper, we have studied in Tg-spaces the commutativity of g-Intg, g-Clg :

P (Ω) −→ P (Ω) and Tg-sets having some
(
g-Intg, g-Clg

)
-based properties called

g-Pg, g-Qg-properties. We have shown that the g-Tg-operators g-Intg, g-Clg :
P (Ω) −→ P (Ω) are duals and g-Pg-property is preserved under their g-Tg-
operations. We have also shown that a Tg-set having g-Pg-property is equivalent to
the Tg-set or its complement having g-Qg-property. The g-Qg-property is preserved
under the set-theoretic ∪-operation and g-Pg-property is preserved under the set-

theoretic
{
∪,∩, ∁

}
-operations. Finally, a Tg-set having

{
g-Pg, g-Qg

}
-property also

has {Pg,Qg}-property.
An interestingly promising avenue for future research arises if the theorization

of g-Tg-interior and g-Tg-closure operators of mixed categories in Tg-spaces be
made a new subject of inquiry. For instance, for some pair (ν, µ) ∈ I03 × I03
such that ν ̸= µ, to study the g- (ν, µ) -Tg-interior and g- (ν, µ) -Tg-closure op-
erators g-Intg,νµ, g-Clg,νµ : P (Ω) −→ P (Ω) respectively, in Tg-spaces, where
g-Intg,νµ : Sg 7−→ g-Intg,νµ (Sg) describes a type of collection of points inte-
rior in Sg and interiorness are characterized by g- (ν, µ) -Tg-open sets belong-
ing to the class

{
Og = Og,ν ∪ Og,µ : (Og,ν ,Og,µ) ∈ g-ν-O

[
Tg

]
× g-µ-O

[
Tg

]}
;

g-Clg,νµ : Sg 7−→ g-Clg,νµ (Sg) describes a type of collection of points close to Sg

and closeness are characterized by g- (ν, µ) -Tg-closed sets belonging to the class{
Kg = Kg,ν ∩Kg,µ : (Kg,ν ,Kg,µ) ∈ g-ν-K

[
Tg

]
× g-µ-K

[
Tg

]}
. Such a study is

what we thought would be worth considering, and the discussion of this paper ends
here.
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