C OMMUNICATIONS

Series A1: Mathematics and Statistics

C O M M U N I C A T I O N

FACULTY OF SCIENCES
DE LA FACULTE DES SCIENCES
UNIVERSITY OF ANKARA
DE L'UNIVERSITE D'ANKARA

Series A1: Mathematics and Statistics
Volume: 72
Number: 1
Year: 2023
Owner (Sahibi)
Sait HALICIOĞLU, Dean of Faculty of Sciences
Editor in Chief (Yazı İşleri Müdürü̈)
Fatma KARAKOÇ (Ankara University)

Associate Editor	Managing Editor
Arzu ÜNAL (Ankara University)	Elif DEMiRCI (Ankara University)

Area Editors

Nuri OZALP (Applied Mathematics)	Murat OLGUN (Functional Analysis, Fuzzy Set Theory, Decision Making)	Burcu UNGOR (Module Theory)	Halil AYDOGDU (Stochastic Process- Probability)
Arzu ÜNAL (Partial Differential Equations)	Gülen TUNCA (Analysis-Operator Theory)	Elif TAN (Number Theory, Combinatorics)	Olcay ARSLAN (Robust Statistics- Regression-Distribution Theory)
Elif DEMIRCI (Mathematical Modelling- Comput. Mathematics)	Mehmet UNVER (Analysis, Fuzzy Set Theory, Decision Making)	Ahmet ARIKAN (GroupTheory)	Birdal SENOGLU (Theory of Statistics \& Applied Statistics)
Gizem SEYHAN OZTEPE (Differential Equations)	Oktay DUMAN (Summability and Abproximation Theorv)	Tuğce ÇALCI (Ring Theory)	Yılmaz AKDí (Econometrics- Mathematical Statistics)
Abdullah ÖZBEKLER (Differential Equations and Inequalities)	İshak ALTUN (Topology)	İsmail GÖK (Geometry)	Mehmet YILMAZ (Computational Statistics)
Hijaz AHMAD (Numerical Analysis- Mathematical Techniques)	Sevda SAĞIROĞLU PEKER (Topology)		

Shengda ZENG (Mathematical modeling of
physical systems, Applications of PDEs)
Editors

P. AGARWAL	R. P. AGARWAL	M. AKHMET	A. ATANGANA
Anand Int. College of Eng., INDIA	Texas A\&M University, USA	METU, TURKEY	University of the Free State, SOUTH AFRICA
A. AYtuna	E. BAIRAMOV	H. BEREKETOĞLU	H. BOZDOĞAN
METU, retired, TURKEY	Ankara University, TURKEY	Ankara University, TURKEY	University of Tennessee, USA
C. Y. CHAN	A. EDEN	A. B. EKİN	D. GEORGIOU
University of Louisiana, USA	Boğaziçi University, retired, TURKEY	Ankara University, TURKEY	University of Patras, GREECE
V. GREGORI	V. S. GULIYEV	A. HARMANCI	F. HATHOUT
Universitat Politècnica de València, SPAIN	Nat. Acad. of Sciences, AZERBAIJAN	Hacettepe University, TURKEY	Université de Saïda, ALGERIA
K. ILARSLAN	A. KABASINSKAS	V. KALANTAROV	Sandi KLAVŽAR
Kırıkkkale University, TURKEY	Kaunas Univ. of Tech. LITHUANIA	Koç University, TURKEY	University of Ljubljana, SLOVENIA
A. M. KRALL	H. T. LIU	V. N. MISHRA	C. ORHAN
The Pennsylvania State University, USA	Tatung University, TAIWAN	Indira Gandhi National Tribal University, INDIA	Ankara University, retired, TURKEY
M. PITUK	S. ROMAGUERA	H. M. SRIVASTAVA	I. P. STAVROULAKIS
University of Pannonia, HUNGARY	Universitat Politècnica de València, SPAIN	University of Victoria, CANADA	Univ. of Ioannina, GREECE
S. YARDIMCI Ankara University, TURKEY			

This Journal is published four issues in a year by the Faculty of Sciences, University of Ankara. Articles and any other material published in this journal represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s) and the Publisher(s).

Correspondence Address:	Print:
COMMUNICATIONS EDITORIAL OFFICE	Ankara University Press
Ankara University, Faculty of Sciences,	İncitaş Sokak No:10 06510 Beşevler
06100 Tandoğan, ANKARA - TURKEY	ANKARA - TURKEY
Tel: $\mathbf{(9 0)} \mathbf{3 1 2 - 2 1 2 6 7 2 0}$ Fax: (90) 312-2235000	Tel: (90) 312-2136655
e-mail: commun@ science.ankara.edu.tr	
http://communications.science.ankara.edu.tr/index.php?series=A1	

C O M M U N I C A T I O N

FACULTY OF SCIENCES UNIVERSITY OF ANKARA

DE LA FACULTE DES SCIENCES DE
L'UNIVERSITE D'ANKARA

Series A1: Mathematics and Statistics

Research Articles

Cansu ERGENÇ, Birdal ŞENOĞLU, Comparison of estimation methods for the Kumaraswamy Weibull distribution 1
Semih PİRİ, Oktay OLMEZ, Murat ŞAHİN, Constructing directed strongly regular graphs by using semidirect productsand semidihedral groups.22
Suna SALTAN, Nazlı BASKAN, Some refinements of Berezin number inequalities via convex functions. 32
Gülsüm Yeliz ŞENTÜRK, Nurten GÜRSES, Salim YÜCE, New insight into quaternions and their matrices.. 43
spectral parameter dependent Klein-Gordon s-wave equation 59
Meryem SENOCAK, Erdal GÜNER, Fixed-point theorems in extended fuzzy metric spaces
ia $\alpha-$ M 71
Coşkun YAKAR, Hazm TALAB, Lagrange stability in terms of two measures with initial time difference for set differential equations involving causal operators.. 84
Syed Zakar HUSSAİN BUKHARİ, Aamir SHAHZAD, Hadamard product of holomorphic mappings associated with the conic shaped domain. 105
Roohi BHAT, Mukhtar Ahmad KHANDAY, A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin. 118
Nil ŞAHİN, Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves 129
Djavvat KHADJIEV, Gayrat BESHIMOV, İdris ÖREN, Invariants of a mapping of a set to the two-dimensional Euclidean space.. 137
Anıl ALTINKAYA, Mustafa ÇALIŞKAN, B-Lift curves and its ruled surfaces 159
Gonca KIZILASLAN, The linear algebra of a generalized Tribonacci matrix. 169
Verda GÜRDAL, Mualla Birgül HUBAN, A-Davis-Wielandt-Berezin radius inequalities. 182Hani KHASHAN, Ece YETKİN CELIKEL, S-n-ideals of commutative rings.
CELIKEL, S-n-ideal of commutative ring 199
Zehra İŞBİLİR, Kahraman Esen ÖZEN, Murat TOSUN, Bertrand partner P-trajectories in the Euclidean 3-space E ${ }^{3}$. 216
Nisa ASLAN, Mustafa SALTAN, Bünyamin DEMİR, Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron.. 229
Efruz Özlem MERSİN, Mustafa BAHȘI, Hybrinomials related to hyper-Leonardo numbers. 240
Meltem SERTBAŞ, Coşkun SARAL, q-Difference Operator on $L_{q}^{2}(0,+\infty)$. 247
Ferit YALAZ, Aynur KESKİN KAYMAKCI, New types of connectedness and intermediate value theorem in ideal 259topological spaces.
http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 72 , Number 1, Pages 1-21 (2023)
DOI:10.31801/cfsuasmas. 086966
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: March 23, 2022; Accepted:June 9, 2022

COMPARISON OF ESTIMATION METHODS FOR THE KUMARASWAMY WEIBULL DISTRIBUTION

Cansu ERGENÇ ${ }^{1}$ and Birdal ŞENOGLU ${ }^{2}$
${ }^{1}$ Department of Finance and Banking, Ankara Yıldırım Beyazıt University, 06760 Ankara, TÜRKİYE
${ }^{2}$ Department of Statistics, Ankara University, 06100 Ankara, TÜRKİYE

Abstract

In this study, the performances of the different parameter estimation methods are compared for the Kumaraswamy Weibull distribution via Monte Carlo simulation study. Maximum Likelihood (ML), Least Squares (LS), Weighted Least Squares (WLS), Cramer-von Mises (CM) and Anderson Darling (AD) methods are used in the comparisons. The results of the Monte Carlo simulation study demonstrate that ML estimators for the parameters of the Kumaraswamy Weibull distribution are more efficient than the other estimators. It is followed by AD estimator. At the end of the study, a real data set taken from the literature is used to illustrate the applicability of the Kumaraswamy Weibull distribution.

1. Introduction

The Weibull is one of the most popular and widely used distribution in many fields of science such as engineering, reliability, biology, ecology and hydrology (see for example, Calabria and Pulcini [4], Keats et al. [16], Saeed et al. [20], Serban et al. [22]). However, the Weibull distribution does not provide a good fit to data sets with bathtub shaped or upside down bathtub shaped failure rates frequently encountered in engineering and reliability studies (see Cordeiro et al. [6], Akgül et al. [2], Maurya et al.[17]). Therefore, many generalized distributions have been developed for modeling these data sets (see, for example, Mudholkar and Srivastava [18], Sarhan and Zaindin [21], Elbatal et al. [8]). A new family of generalized Kumaraswamy (KwG) distributions obtained by combining the work of Eugene

[^0]et al. [11] and Jones [14] is one of these generalized distributions, (see Cordeiro and Castro [5]). Probability density function (pdf) and the cumulative distribution function (cdf) of the KwG distribution for an arbitrary baseline pdf $g(x)$ and cdf $G(x)$ are given by
\[

$$
\begin{equation*}
f(x)=\operatorname{abg}(x) G(x)^{(a-1)}\left\{1-G(x)^{a}\right\}^{(b-1)} \tag{1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
F(x)=1-\left[1-G(x)^{a}\right]^{b}, \quad a, b>0, x \in R \tag{2}
\end{equation*}
$$

respectively. Here, a and b are the shape parameters. KwG is a flexible distribution for modeling many different data sets including censored data therefore it is widely used in engineering and biology (see Gomes et al. [12], Elbatal and Elgarhy [9], Rocha et al.[19]).

The Kumaraswamy Weibull (KwWeibull) distribution is a special case of the KwG distribution obtained by inserting the pdf $g(x)=\frac{p}{\sigma^{p}}(x-\mu)^{p-1} \exp \left\{-\left(\frac{x-\mu}{\sigma}\right)^{p}\right\}$ and the cdf $G(x)=1-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)^{p}\right\}$ of the well known Weibull distribution into (1). KwWeibull is a better alternative to Weibull distribution since it contains some well known distributions discussed in the literature as special cases such as the Weibull (see Cordeiro et al. [6]).

In this study, the estimators of the location and scale parameters of the KwWeibull distribution are obtained by using Maximum Likelihood (ML), Least Squares (LS), Weighted Least Squares (WLS), Cramer-von Mises (CM) and Anderson Darling (AD) estimation methods. Shape parameters are assumed to be known throughout the study. The most efficient estimators are identified by using an extensive MonteCarlo simulation study for the different sample sizes and the parameter settings.

The remainder of this paper is organized as follows: In Section 2, a brief description of the KwWeibull distribution is given. In Section 3, the parameter estimation methods are presented. Results of the Monte-Carlo simulation study are given in Section 4. In Section 5, the KwWeibull distribution is used to model a real data set taken from the literature. Finally, the concluding remarks are given in Section 6.

2. Kumaraswamy Weibull Distribution

The pdf and cdf of KwWeibull distribution are given below:

$$
\begin{align*}
f(x)= & a b \frac{p}{\sigma^{p}}(x-\mu)^{p-1} \exp \left\{-\left(\frac{x-\mu}{\sigma}\right)^{p}\right\}\left[1-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)^{p}\right\}\right]^{a-1} \\
& \times\left\{1-\left[1-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right\}^{b-1} \mu<x<\infty, \quad \mu, \sigma>0 \quad a, b, p>0 \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
F(x)=1-\left\{1-\left[1-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right\}^{b} \tag{4}
\end{equation*}
$$

respectively. Here, μ and σ represent the location (or threshold) and the scale parameters, respectively and a, b and p are the shape parameters. For different values of the shape parameters a, b and p, the plots of the pdf of KwWeibull distribution are shown in Figure 1.

Figure 1. The pdf plots of the KwWeibull distribution

For better understanding the shape of the KwWeibull distribution, simulated skewness and kurtosis values of the KwWeibull distribution are given for different values of the shape parameters, see Table 1. It is clear from Table 1 that KwWeibull can be positively or negatively skewed depending on the values of the shape parameters. It can also be seen that kurtosis values can be less than or greater than that of Normal distribution subject to the values of shape parameters.

TABLE 1. Simulated skewness and kurtosis values for the KwWeibull distribution.

$a=b=1$						
$p=$	1.5	2	2.5	3	4	6
Skewness	1.062	0.630	0.354	0.168	-0.088	-0.367
Kurtosis	4.368	3.219	2.843	2.722	2.734	2.998
$a=b=2$						
$p=$	1.5	2	2.5	3	4	6
Skewness	0.709	0.381	0.178	0.041	-0.141	-0.336
Kurtosis	3.617	3.071	2.916	2.889	2.964	3.175
$a=10$ and $b=2$						
$p=$	1.5	2	2.5	3	4	6
Skewness	0.485	0.308	0.202	0.132	0.042	-0.046
Kurtosis	3.431	3.203	3.111	3.076	3.054	3.066
$a=1$ and $b=8$						
$p=$	1.5	2	2.5	3	4	6
Skewness	1.062	0.624	0.357	0.167	-0.087	-0.370
Kurtosis	4.348	3.226	2.843	2.720	2.739	3.022

3. Parameter Estimation Methods

Parameter estimation methods for estimating the location parameter μ and the scale parameter σ of KwWeibull distribution are described in the following subsections.
3.1. The Maximum Likelihood Method. In this subsection, the ML estimators for the location and scale parameters of the KwWeibull distribution are obtained. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample from $\operatorname{KwWeibull}(a, b, p, \mu, \sigma)$, then the loglikelihood $(\ln L)$ function of the KwWeibull distribution is expressed as follows:

$$
\begin{align*}
\ln L= & n(\ln a+\ln b+\ln p-\ln \sigma)+(p-1) \sum_{i=1}^{n} \ln \left(\frac{x_{i}-\mu}{\sigma}\right)-\sum_{i=1}^{n}\left(\frac{x_{i}-\mu}{\sigma}\right)^{p} \\
& +(a-1) \sum_{i=1}^{n} \ln \left(1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}\right) \tag{5}\\
& +(b-1) \sum_{i=1}^{n} \ln \left(1-\left[1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right) .
\end{align*}
$$

$\ln L$ function is maximized with respect to the parameters of interest, i.e., μ and σ. By taking the derivatives of $\ln L$ with respect to the parameters μ and σ and equating them to zero, the following likelihood equations are obtained

$$
\begin{aligned}
\frac{\partial \ln L}{\partial \mu} & =-\frac{(p-1)}{\sigma} \sum_{i=1}^{n}\left(\frac{x_{i}-\mu}{\sigma}\right)^{-1}+\frac{p}{\sigma} \sum_{i=1}^{n}\left(\frac{x_{i}-\mu}{\sigma}\right)^{p-1} \\
& -\frac{(a-1) p}{\sigma} \sum_{i=1}^{n} \frac{\left(\frac{x_{i}-\mu}{\sigma}\right)^{p-1} \exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}}{1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}} \\
& +\frac{a(b-1) p}{\sigma} \sum_{i=1}^{n} \frac{\left(1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}\right)^{a-1}\left(\frac{x_{i}-\mu}{\sigma}\right)^{p-1} \exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}}{\left(1-\left[1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right)} \\
& =0
\end{aligned}
$$

and

$$
\begin{align*}
\frac{\partial \ln L}{\partial \sigma} & =-\frac{n}{\sigma}-\frac{n(p-1)}{\sigma}+\frac{p}{\sigma} \sum_{i=1}^{n}\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}-\frac{(a-1) p}{\sigma} \sum_{i=1}^{n} \frac{\left(\frac{x_{i}-\mu}{\sigma}\right)^{p} \exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}}{1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}} \\
& +\frac{a(b-1) p}{\sigma} \sum_{i=1}^{n} \frac{\left(\frac{x_{i}-\mu}{\sigma}\right)^{p} \exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}\left(1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}\right)^{a-1}}{\left(1-\left[1-\exp \left\{-\left(\frac{x_{i}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right)} \\
& =0 . \tag{7}
\end{align*}
$$

Solutions of these likelihood equations are called as the ML estimators of the parameters. When the likelihood equations for the location and scale parameters are examined, it is seen that the functions are not linear with respect to the parameters of interest. Therefore, numerical methods are needed for estimating the location and scale parameters.
3.2. The Least Squares Method. The LS estimators of the unknown parameters are obtained by minimizing the following equation

$$
\begin{equation*}
S_{L S}=\sum_{i=1}^{n}\left(F\left(x_{(i)}\right)-\frac{i}{n+1}\right)^{2} \tag{8}
\end{equation*}
$$

with respect to the parameters of interest (see Swain [23]). Here and in the other subsections, $x_{1}, x_{2}, \ldots, x_{n}$ is a random sample from the distribution function $F($.$) ,$ $x_{(1)}<x_{(2)}<\ldots<x_{(n)}$ denotes the corresponding order statistics and $\frac{i}{n+1},(i=$ $1, \ldots, n$) are the expected values of $F\left(x_{(i)}\right)$. From Eq. (8), the LS estimators for the parameters of the KwWeibull distribution are obtained by minimizing the following equation with respect to the parameters μ and σ

$$
\begin{equation*}
S_{L S}(\mu, \sigma)=\sum_{i=1}^{n}\left(1-\left\{1-\left[1-\exp \left\{-\left(\frac{x_{(i)}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right\}^{b}-\frac{i}{n+1}\right)^{2} \tag{9}
\end{equation*}
$$

3.3. The Weighted Least Squares Method. The WLS estimators of the unknown parameters are obtained by minimizing the following equation with respect to the parameters of interest (see Swain [23])

$$
\begin{equation*}
S_{W L S}=\sum_{i=1}^{n} w_{i}\left(F\left(x_{(i)}\right)-\frac{i}{n+1}\right)^{2} \tag{10}
\end{equation*}
$$

where, $w_{i}=1 / \operatorname{Var}\left(F\left(x_{(i)}\right)\right)=(n+1)^{2}(n+2) / i(n-i+1),(i=1,2, \ldots, n)$. From Eq.(10), the WLS estimators for the parameters of the KwWeibull distribution are obtained by minimizing the following equation with respect to the parameters μ and σ
$S_{W L S}(\mu, \sigma)=\sum_{i=1}^{n} \frac{(n+1)^{2}(n+2)}{i(n-i+1)}\left(1-\left\{1-\left[1-\exp \left\{-\left(\frac{x_{(i)}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right\}^{b}-\frac{i}{n+1}\right)^{2}$.
3.4. The Cramér-Von Mises Method. The CM estimators of the unknown parameters are obtained by minimizing the following equation

$$
\begin{equation*}
S_{C M}=\frac{1}{12 n}+\sum_{i=1}^{n}\left(F\left(x_{(i)}\right)-\frac{2 i-1}{2 n}\right)^{2} \tag{12}
\end{equation*}
$$

with respect to the parameters of interest (see Wolfowitz [24]). From Eq. (12), the CM estimators for the parameters of the KwWeibull distribution are obtained by minimizing the following equation with respect to the parameters μ and σ

$$
\begin{equation*}
S_{C M}(\mu, \sigma)=\frac{1}{12 n}+\sum_{i=1}^{n}\left(1-\left\{1-\left[1-\exp \left\{-\left(\frac{x_{(i)}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right\}^{b}-\frac{2 i-1}{2 n}\right)^{2} \tag{13}
\end{equation*}
$$

3.5. The Anderson-Darling Method. The AD estimators of the unknown parameters are obtained by minimizing the following equation

$$
\begin{equation*}
S_{A D}=-n-\frac{1}{n} \sum_{i=1}^{n}(2 i-1) \log \left\{F\left(x_{(i)}\right)\left(1-F\left(x_{(n-i+1)}\right)\right)\right\} \tag{14}
\end{equation*}
$$

with respect to the parameters of interest, (see Wolfowitz [25]). From Eq. (14), the AD estimators for the parameters of the KwWeibull distribution are obtained by minimizing the following equation with respect to the parameters μ and σ

$$
\begin{align*}
S_{A D}(\mu, \sigma)= & -n-\frac{1}{n} \sum_{i=1}^{n}(2 i-1) \log \left\{1-\left\{1-\left[1-\exp \left\{-\left(\frac{x_{(i)}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right\}^{b}\right. \\
& \left.\times\left\{1-\left[1-\exp \left\{-\left(\frac{x_{(n-i+1)}-\mu}{\sigma}\right)^{p}\right\}\right]^{a}\right\}^{b}\right\} . \tag{15}
\end{align*}
$$

Here it should be noted that similar to ML estimates of parameters, LS, WLS, CM and AD estimates are obtained iteratively (see, Ergenç [10]).

4. Simulation Study

In this section, we perform an extensive Monte Carlo simulation study to compare the performances of the ML, LS, WLS, CM and AD estimators of the location parameter μ and scale parameter σ of the KwWeibull distribution. Without loss of generality, μ and σ are taken to be 0 and 1 , respectively. All the simulations were conducted using R programming language for 10,000 Monte-Carlo runs. We use small $(n=20)$, moderate $(n=50,100)$ and large $(n=200,500)$ sample sizes. It is known that the estimation of the shape parameters along with the other parameters yields unreliable results when the sample size is not large enough (see, Bowman and Shenton [3], Kantar and Şenoğlu [15]). Therefore, it is assumed that the shape parameters a, b and p are known throughout the study. The performances of the estimators are compared with respect to the Bias, mean squares error (MSE) and Deficiency (Def) criteria, see the mathematical expressions given below

$$
\begin{align*}
& \text { Bias }=\frac{1}{10,000} \sum_{i=1}^{10,000}\left(\hat{\theta}_{i}-\theta\right) \\
& M S E=\frac{1}{10,000} \sum_{i=1}^{10,000}\left(\hat{\theta}_{i}-\theta\right)^{2} \tag{16}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Def}(\hat{\mu}, \hat{\sigma})=\operatorname{MSE}(\hat{\mu})+\operatorname{MSE}(\hat{\sigma}) . \tag{17}
\end{equation*}
$$

Here, $\hat{\theta}_{i}$ is the i th simulated estimate of the parameter of interest (i.e. μ or σ) and θ is the true value of the parameter. Also, Def criterion is defined as the joint efficiencies of the estimators $\hat{\mu}$ and $\hat{\sigma}$. Simulated Bias, MSE and Def values for the ML, LS, WLS, CM and AD estimators for the location parameter μ and the scale parameter σ of the KwWeibull distribution are given in Table 2.

Table 2. The simulated Bias, MSE and Def values for the ML, LS, WLS, CM and AD estimators of the parameters μ and σ.

	$(a, b, p)=(1,1,1.5)$				$(a, b, p)=(1,1,3)$					
	$\hat{\mu}$		$\hat{\sigma}$			μ		$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,061	0,011	-0,061	0,029	0,040	0,048	0,020	-0,052	0,022	0,043
LS	-0,034	0,017	0,056	0,045	0,062	-0,039	0,035	0,042	0,042	0,077
WLS	-0,019	0,012	0,036	0,037	0,049	-0,024	0,028	0,026	0,033	0,062
CM	0,010	0,013	-0,011	0,037	0,051	0,025	0,031	-0,033	0,037	0,068
AD	-0,005	0,011	0,009	0,033	0,043	-0,007	0,023	0,008	0,026	0,049
$n=50$										
ML	0,030	0,003	-0,030	0,011	0,014	0,021	0,007	-0,022	0,008	0,016
LS	-0,018	0,006	0,026	0,016	0,022	-0,015	0,013	0,016	0,015	0,028
WLS	-0,007	0,004	0,012	0,013	0,016	-0,006	0,010	0,005	0,011	0,021
CM	-0,002	0,005	0,004	0,015	0,019	0,010	0,012	-0,014	0,014	0,027
AD	-0,006	0,003	0,011	0,012	0,016	-0,004	0,009	0,004	0,010	0,019
$n=100$										
ML	0,017	0,001	-0,017	0,005	0,006	0,012	0,003	-0,013	0,004	0,007
LS	-0,012	0,003	0,017	0,008	0,010	-0,007	0,006	0,007	0,007	0,013
WLS	-0,004	0,001	0,006	0,006	0,008	-0,001	0,005	0,000	0,005	0,010
CM	-0,005	0,002	0,007	0,007	0,009	0,006	0,006	-0,008	0,007	0,013
AD	-0,006	0,002	0,008	0,006	0,008	-0,002	0,004	0,002	0,005	0,009
$n=200$										
ML	0,010	0,000	-0,010	0,002	0,003	0,006	0,002	-0,006	0,002	0,004
LS	-0,009	0,001	0,012	0,004	0,005	-0,005	0,003	0,004	0,004	0,007
WLS	-0,003	0,001	0,005	0,003	0,003	-0,001	0,002	0,000	0,003	0,005
CM	-0,005	0,001	0,007	0,004	0,005	0,002	0,003	-0,003	0,004	0,007
AD	-0,004	0,001	0,007	0,003	0,004	-0,002	0,002	0,002	0,002	0,005
$n=500$										
ML	0,005	0,000	-0,005	0,001	0,001	0,003	0,001	-0,003	0,001	0,001
LS	-0,006	0,000	0,007	0,001	0,002	-0,002	0,001	0,002	0,001	0,003
WLS	-0,002	0,000	0,002	0,001	0,001	0,000	0,001	0,000	0,001	0,002
CM	-0,004	0,000	0,005	0,001	0,002	0,000	0,001	-0,001	0,001	0,003
AD	-0,002	0,000	0,004	0,001	0,001	-0,001	0,001	0,001	0,001	0,002

Table 2. (continued)

	$(a, b, p)=(1,1,4)$				$(a, b, p)=(1,1,6)$					
	$\hat{\mu}$		$\hat{\sigma}$		$\hat{\mu}$			$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,043	0,023	-0,045	0,023	0,046	0,041	0,027	-0,044	0,026	0,054
LS	-0,043	0,041	0,046	0,044	0,086	-0,041	0,047	0,042	0,047	0,093
WLS	-0,028	0,034	0,030	0,036	0,070	-0,027	0,039	0,027	0,038	0,077
CM	0,025	0,036	-0,030	0,039	0,075	0,032	0,042	-0,035	0,042	0,083
AD	-0,010	0,027	0,011	0,027	0,054	-0,008	0,032	0,007	0,031	0,062
$n=50$										
ML	0,018	0,009	-0,019	0,009	0,018	0,015	0,010	-0,016	0,010	0,020
LS	-0,015	0,015	0,016	0,016	0,031	-0,019	0,017	0,019	0,017	0,033
WLS	-0,006	0,012	0,006	0,012	0,024	-0,008	0,013	0,008	0,013	0,026
CM	0,012	0,015	-0,014	0,015	0,030	0,010	0,016	-0,011	0,016	0,032
AD	-0,004	0,011	0,004	0,011	0,022	-0,006	0,012	0,006	0,012	0,024
$n=100$										
ML	0,010	0,004	-0,010	0,004	0,009	0,009	0,005	-0,010	0,005	0,010
LS	-0,008	0,007	0,008	0,007	0,015	-0,007	0,008	0,008	0,008	0,016
WLS	-0,002	0,006	0,002	0,006	0,011	-0,001	0,006	0,001	0,006	0,012
CM	0,006	0,007	-0,007	0,007	0,014	0,007	0,008	-0,007	0,008	0,016
AD	-0,002	0,005	0,002	0,005	0,011	-0,001	0,006	0,001	0,006	0,012
$n=200$										
ML	0,004	0,002	-0,004	0,002	0,004	0,004	0,002	-0,005	0,002	0,005
LS	-0,006	0,004	0,006	0,004	0,007	-0,004	0,004	0,004	0,004	0,008
WLS	-0,002	0,003	0,002	0,003	0,006	0,000	0,003	0,000	0,003	0,006
CM	0,001	0,003	-0,001	0,004	0,007	0,003	0,004	-0,003	0,004	0,008
AD	-0,003	0,003	0,003	0,003	0,005	-0,001	0,003	0,001	0,003	0,006
$n=500$										
ML	0,002	0,001	-0,002	0,001	0,002	0,002	0,001	-0,002	0,001	0,003
LS	-0,002	0,001	0,002	0,001	0,003	-0,003	0,002	0,003	0,002	0,004
WLS	0,000	0,001	0,000	0,001	0,002	0,000	0,002	0,000	0,002	0,003
CM	0,001	0,001	-0,001	0,001	0,003	0,001	0,002	-0,001	0,002	0,004
AD	-0,001	0,001	0,001	0,001	0,002	-0,001	0,002	0,001	0,002	0,003

Table 2. (continued)

	$(a, b, p)=(1,2,1.5)$				$(a, b, p)=(1,2,3)$					
	$\hat{\mu}$		$\hat{\sigma}$		$\hat{\mu}$			$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,039	0,004	-0,063	0,029	0,033	0,039	0,013	-0,052	0,022	0,035
LS	-0,021	0,007	0,054	0,046	0,053	-0,029	0,023	0,040	0,042	0,064
WLS	-0,012	0,005	0,034	0,038	0,043	-0,018	0,018	0,026	0,033	0,051
CM	0,006	0,005	-0,006	0,038	0,044	0,022	0,020	-0,034	0,037	0,057
AD	-0,003	0,004	0,015	0,033	0,037	-0,004	0,015	0,007	0,025	0,040
$n=50$										
ML	0,019	0,001	-0,028	0,011	0,012	0,017	0,005	-0,023	0,008	0,013
LS	-0,011	0,002	0,029	0,016	0,018	-0,013	0,008	0,017	0,015	0,023
WLS	-0,004	0,001	0,014	0,013	0,014	-0,004	0,006	0,005	0,012	0,018
CM	-0,001	0,002	0,006	0,014	0,016	0,007	0,008	-0,013	0,015	0,022
AD	-0,004	0,001	0,013	0,012	0,014	-0,003	0,006	0,004	0,010	0,016
$n=100$										
ML	0,011	0,000	-0,017	0,005	0,005	0,008	0,002	-0,011	0,004	0,006
LS	-0,007	0,001	0,017	0,008	0,008	-0,007	0,004	0,009	0,007	0,011
WLS	-0,002	0,001	0,005	0,006	0,006	-0,002	0,003	0,002	0,005	0,008
CM	-0,003	0,001	0,006	0,007	0,008	0,003	0,004	-0,006	0,007	0,011
AD	-0,003	0,001	0,008	0,006	0,006	-0,003	0,003	0,004	0,005	0,008
$n=200$										
ML	0,007	0,000	-0,009	0,002	0,003	0,005	0,001	-0,006	0,002	0,003
LS	-0,005	0,000	0,013	0,004	0,004	-0,004	0,002	0,005	0,003	0,005
WLS	-0,002	0,000	0,005	0,003	0,003	-0,001	0,001	0,001	0,003	0,004
CM	-0,003	0,000	0,007	0,004	0,004	0,001	0,002	-0,002	0,003	0,005
AD	-0,003	0,000	0,007	0,003	0,003	-0,001	0,001	0,002	0,002	0,004
$n=500$										
ML	0,003	0,000	-0,006	0,001	0,001	0,002	0,000	-0,003	0,001	0,001
LS	-0,004	0,000	0,007	0,001	0,002	-0,001	0,001	0,002	0,001	0,002
WLS	-0,001	0,000	0,002	0,001	0,001	0,000	0,001	0,000	0,001	0,002
CM	-0,003	0,000	0,005	0,001	0,002	0,001	0,001	-0,001	0,001	0,002
AD	-0,002	0,000	0,003	0,001	0,001	0,000	0,001	0,001	0,001	0,002

Table 2. (continued)

	$(a, b, p)=(1,2,4)$				$(a, b, p)=(1,2,6)$					
	$\hat{\mu}$		$\hat{\sigma}$		$\hat{\mu}$			$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,036	0,016	-0,045	0,023	0,039	0,034	0,021	-0,041	0,025	0,045
LS	-0,035	0,028	0,045	0,043	0,071	-0,040	0,037	0,046	0,047	0,084
WLS	-0,024	0,023	0,030	0,034	0,057	-0,027	0,031	0,032	0,038	0,069
CM	0,022	0,025	-0,031	0,038	0,063	0,025	0,033	-0,031	0,041	0,074
AD	-0,008	0,019	0,010	0,026	0,045	-0,010	0,024	0,011	0,030	0,054
$n=50$										
ML	0,013	0,006	-0,017	0,009	0,015	0,016	0,008	-0,018	0,010	0,018
LS	-0,015	0,010	0,019	0,015	0,026	-0,015	0,013	0,017	0,017	0,030
WLS	-0,007	0,008	0,009	0,012	0,020	-0,005	0,011	0,006	0,013	0,024
CM	0,008	0,010	-0,011	0,015	0,024	0,011	0,013	-0,013	0,016	0,029
AD	-0,005	0,008	0,006	0,011	0,018	-0,003	0,010	0,003	0,012	0,022
$n=100$										
ML	0,008	0,003	-0,010	0,004	0,007	0,008	0,004	-0,009	0,005	0,009
LS	-0,007	0,005	0,009	0,008	0,013	-0,007	0,006	0,008	0,008	0,014
WLS	-0,002	0,004	0,002	0,006	0,010	-0,001	0,005	0,002	0,006	0,011
CM	0,005	0,005	-0,006	0,007	0,013	0,005	0,006	-0,007	0,008	0,014
AD	-0,002	0,004	0,002	0,005	0,009	-0,001	0,005	0,002	0,006	0,010
$n=200$										
ML	0,004	0,001	-0,005	0,002	0,004	0,005	0,003	-0,006	0,004	0,007
LS	-0,003	0,003	0,004	0,004	0,006	-0,006	0,005	0,007	0,006	0,011
WLS	0,000	0,002	0,000	0,003	0,005	-0,001	0,004	0,001	0,005	0,008
CM	0,002	0,002	-0,003	0,004	0,006	0,003	0,005	-0,004	0,006	0,010
AD	-0,001	0,002	0,001	0,003	0,005	-0,002	0,004	0,002	0,004	0,008
$n=500$										
ML	0,002	0,001	-0,002	0,001	0,001	0,005	0,002	-0,006	0,003	0,005
LS	-0,001	0,001	0,002	0,002	0,003	-0,004	0,004	0,005	0,005	0,009
WLS	0,000	0,001	0,000	0,001	0,002	-0,001	0,003	0,001	0,004	0,007
CM	0,001	0,001	-0,001	0,002	0,003	0,003	0,004	-0,004	0,005	0,008
AD	0,000	0,001	0,000	0,001	0,002	-0,001	0,003	0,001	0,004	0,006

TABLE 2. (continued)

	$(a, b, p)=(6,4.5,1.5)$				$(a, b, p)=(6,4.5,3)$					
	$\hat{\mu}$		$\hat{\sigma}$		$\hat{\mu}$			$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,050	0,038	-0,042	0,027	0,064	0,046	0,033	-0,042	0,027	0,060
LS	-0,055	0,067	0,047	0,047	0,114	-0,046	0,056	0,043	0,046	0,102
WLS	-0,035	0,054	0,030	0,038	0,093	-0,030	0,046	0,027	0,038	0,084
CM	0,035	0,059	-0,030	0,041	0,100	0,037	0,050	-0,034	0,041	0,090
AD	-0,010	0,043	0,009	0,031	0,074	-0,006	0,037	0,005	0,030	0,068
$n=50$										
ML	0,017	0,014	-0,014	0,010	0,025	0,017	0,013	-0,015	0,010	0,023
LS	-0,024	0,024	0,021	0,017	0,041	-0,020	0,020	0,018	0,016	0,036
WLS	-0,011	0,019	0,010	0,013	0,032	-0,009	0,016	0,008	0,013	0,029
CM	0,011	0,023	-0,009	0,016	0,038	0,013	0,019	-0,012	0,015	0,034
AD	-0,007	0,017	0,006	0,012	0,029	-0,004	0,014	0,004	0,012	0,026
$n=100$										
ML	0,009	0,007	-0,008	0,005	0,012	0,007	0,006	-0,007	0,005	0,012
LS	-0,011	0,011	0,010	0,008	0,019	-0,011	0,010	0,010	0,008	0,018
WLS	-0,003	0,009	0,003	0,006	0,015	-0,003	0,008	0,003	0,006	0,014
CM	0,006	0,011	-0,005	0,008	0,019	0,006	0,010	-0,005	0,008	0,018
AD	-0,003	0,008	0,002	0,006	0,014	-0,003	0,008	0,002	0,006	0,014
$n=200$										
ML	0,005	0,004	-0,004	0,002	0,006	0,004	0,003	-0,004	0,003	0,006
LS	-0,005	0,006	0,005	0,004	0,010	-0,006	0,005	0,005	0,004	0,009
WLS	0,000	0,004	0,000	0,003	0,007	-0,001	0,004	0,001	0,003	0,007
CM	0,003	0,006	-0,003	0,004	0,010	0,002	0,005	-0,002	0,004	0,009
AD	-0,001	0,004	0,001	0,003	0,007	-0,002	0,004	0,001	0,003	0,007
$n=500$										
ML	0,002	0,001	-0,002	0,001	0,002	0,001	0,001	-0,001	0,001	0,002
LS	-0,002	0,002	0,001	0,002	0,004	-0,003	0,002	0,002	0,002	0,004
WLS	0,000	0,002	0,000	0,001	0,003	0,000	0,002	0,000	0,001	0,003
CM	0,002	0,002	-0,002	0,002	0,004	0,001	0,002	-0,001	0,002	0,004
AD	0,000	0,002	0,000	0,001	0,003	-0,001	0,002	0,001	0,001	0,003

TABLE 2. (continued)

	$(a, b, p)=(6,4.5,4)$				$(a, b, p)=(6,4.5,6)$					
	$\hat{\mu}$		$\hat{\sigma}$		$\hat{\mu}$			$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,039	0,031	-0,037	0,027	0,058	0,038	0,031	-0,037	0,028	0,059
LS	-0,051	0,055	0,047	0,047	0,102	-0,051	0,054	0,049	0,049	0,103
WLS	-0,034	0,045	0,031	0,039	0,084	-0,035	0,045	0,033	0,040	0,085
CM	0,032	0,048	-0,030	0,041	0,089	0,029	0,047	-0,028	0,042	0,089
AD	-0,010	0,036	0,009	0,031	0,067	-0,011	0,036	0,010	0,032	0,069
$n=50$										
ML	0,017	0,012	-0,016	0,010	0,023	0,016	0,012	-0,015	0,011	0,022
LS	-0,019	0,019	0,018	0,017	0,036	-0,018	0,019	0,018	0,017	0,036
WLS	-0,007	0,015	0,007	0,013	0,029	-0,008	0,015	0,008	0,013	0,028
CM	0,013	0,018	-0,013	0,016	0,034	0,013	0,018	-0,013	0,016	0,034
AD	-0,003	0,014	0,003	0,012	0,026	-0,003	0,014	0,003	0,012	0,026
$n=100$										
ML	0,006	0,006	-0,006	0,005	0,011	0,008	0,006	-0,008	0,005	0,011
LS	-0,012	0,010	0,012	0,008	0,018	-0,009	0,009	0,009	0,008	0,017
WLS	-0,005	0,008	0,005	0,006	0,014	-0,002	0,007	0,002	0,006	0,014
CM	0,004	0,009	-0,004	0,008	0,017	0,007	0,009	-0,006	0,008	0,017
AD	-0,005	0,007	0,004	0,006	0,013	-0,002	0,007	0,001	0,006	0,013
$n=200$										
ML	0,004	0,003	-0,003	0,003	0,006	0,004	0,003	-0,004	0,003	0,006
LS	-0,006	0,005	0,006	0,004	0,009	-0,005	0,004	0,005	0,004	0,008
WLS	-0,001	0,004	0,001	0,003	0,007	-0,001	0,003	0,001	0,003	0,007
CM	0,002	0,005	-0,002	0,004	0,009	0,003	0,004	-0,003	0,004	0,008
AD	-0,002	0,004	0,002	0,003	0,007	-0,001	0,003	0,001	0,003	0,006
$n=500$										
ML	0,001	0,001	-0,001	0,001	0,002	0,002	0,001	-0,002	0,001	0,002
LS	-0,002	0,002	0,002	0,002	0,003	-0,001	0,002	0,001	0,002	0,003
WLS	0,000	0,001	0,000	0,001	0,003	0,001	0,001	-0,001	0,001	0,003
CM	0,001	0,002	-0,001	0,002	0,003	0,002	0,002	-0,002	0,002	0,003
AD	-0,001	0,001	0,001	0,001	0,003	0,000	0,001	0,000	0,001	0,003

Table 2. (continued)

	$(a, b, p)=(15,5,1.5)$				$(a, b, p)=(15,5,3)$					
	$\hat{\mu}$		$\hat{\sigma}$			$\hat{\mu}$		$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,064	0,070	-0,039	0,026	0,097	0,046	0,044	-0,036	0,026	0,070
LS	-0,077	0,123	0,048	0,047	0,170	-0,066	0,078	0,052	0,048	0,126
WLS	-0,051	0,101	0,032	0,038	0,139	-0,045	0,064	0,036	0,039	0,103
CM	0,048	0,108	-0,029	0,041	0,148	0,033	0,067	-0,026	0,041	0,108
AD	-0,014	0,081	0,009	0,031	0,112	-0,015	0,051	0,012	0,031	0,082
$n=50$										
ML	0,024	0,028	-0,015	0,011	0,039	0,018	0,017	-0,014	0,010	0,028
LS	-0,030	0,045	0,018	0,017	0,063	-0,024	0,028	0,019	0,017	0,045
WLS	-0,013	0,036	0,008	0,014	0,050	-0,011	0,022	0,008	0,013	0,035
CM	0,019	0,043	-0,012	0,016	0,059	0,015	0,026	-0,012	0,016	0,042
AD	-0,007	0,033	0,004	0,012	0,045	-0,005	0,020	0,004	0,012	0,032
$n=100$										
ML	0,010	0,014	-0,006	0,005	0,019	0,008	0,008	-0,007	0,005	0,014
LS	-0,018	0,022	0,011	0,008	0,030	-0,013	0,013	0,011	0,008	0,021
WLS	-0,007	0,017	0,004	0,006	0,024	-0,005	0,010	0,004	0,006	0,016
CM	0,006	0,021	-0,004	0,008	0,029	0,006	0,013	-0,005	0,008	0,020
AD	-0,006	0,016	0,004	0,006	0,023	-0,004	0,010	0,003	0,006	0,016
$n=200$										
ML	0,006	0,007	-0,004	0,003	0,009	0,005	0,004	-0,004	0,003	0,007
LS	-0,008	0,010	0,005	0,004	0,014	-0,006	0,006	0,005	0,004	0,010
WLS	-0,001	0,008	0,001	0,003	0,011	-0,001	0,005	0,001	0,003	0,008
CM	0,004	0,010	-0,003	0,004	0,014	0,004	0,006	-0,003	0,004	0,010
AD	-0,002	0,008	0,001	0,003	0,011	-0,001	0,005	0,001	0,003	0,008
$n=500$										
ML	0,003	0,003	-0,002	0,001	0,004	0,001	0,002	-0,001	0,001	0,003
LS	-0,003	0,004	0,002	0,002	0,006	-0,003	0,003	0,002	0,002	0,004
WLS	0,000	0,003	0,000	0,001	0,004	-0,001	0,002	0,000	0,001	0,003
CM	0,002	0,004	-0,001	0,002	0,006	0,001	0,003	-0,001	0,002	0,004
AD	0,000	0,003	0,000	0,001	0,004	-0,001	0,002	0,001	0,001	0,003

Table 2. (continued)

	$(a, b, p)=(15,5,4)$				$(a, b, p)=(15,5,6)$					
	$\hat{\mu}$		$\hat{\sigma}$		$\hat{\mu}$			$\hat{\sigma}$		
Methods	Bias	MSE	Bias	MSE	Def	Bias	MSE	Bias	MSE	Def
$n=20$										
ML	0,046	0,040	-0,038	0,027	0,067	0,044	0,035	-0,039	0,027	0,061
LS	-0,056	0,069	0,047	0,047	0,116	-0,054	0,060	0,048	0,047	0,107
WLS	-0,036	0,057	0,030	0,039	0,096	-0,035	0,050	0,031	0,039	0,089
CM	0,036	0,060	-0,030	0,041	0,101	0,033	0,053	-0,030	0,041	0,093
AD	-0,009	0,046	0,008	0,031	0,077	-0,010	0,040	0,008	0,031	0,070
$n=50$										
ML	0,016	0,015	-0,014	0,011	0,026	0,017	0,014	-0,015	0,011	0,024
LS	-0,024	0,024	0,020	0,017	0,041	-0,022	0,021	0,019	0,017	0,038
WLS	-0,011	0,020	0,009	0,013	0,033	-0,010	0,017	0,009	0,013	0,031
CM	0,013	0,023	-0,011	0,016	0,039	0,013	0,020	-0,011	0,016	0,036
AD	-0,006	0,018	0,005	0,012	0,030	-0,004	0,016	0,004	0,012	0,028
$n=100$										
ML	0,011	0,008	-0,009	0,005	0,013	0,009	0,007	-0,008	0,005	0,012
LS	-0,010	0,012	0,008	0,008	0,020	-0,010	0,011	0,008	0,008	0,019
WLS	-0,001	0,009	0,001	0,006	0,016	-0,002	0,008	0,002	0,007	0,015
CM	0,008	0,012	-0,007	0,008	0,019	0,008	0,010	-0,007	0,008	0,019
AD	-0,001	0,009	0,001	0,006	0,015	-0,001	0,008	0,001	0,006	0,014
$n=200$										
ML	0,005	0,004	-0,004	0,003	0,006	0,004	0,003	-0,004	0,003	0,006
LS	-0,005	0,006	0,004	0,004	0,010	-0,005	0,005	0,004	0,004	0,009
WLS	0,000	0,005	0,000	0,003	0,008	-0,001	0,004	0,000	0,003	0,007
CM	0,004	0,006	-0,003	0,004	0,010	0,004	0,005	-0,003	0,004	0,009
AD	-0,001	0,004	0,001	0,003	0,007	-0,001	0,004	0,001	0,003	0,007
$n=500$										
ML	0,002	0,002	-0,002	0,001	0,003	0,002	0,001	-0,002	0,001	0,002
LS	-0,002	0,002	0,002	0,002	0,004	-0,002	0,002	0,002	0,002	0,004
WLS	0,000	0,002	0,000	0,001	0,003	0,000	0,002	0,000	0,001	0,003
CM	0,001	0,002	-0,001	0,002	0,004	0,001	0,002	-0,001	0,002	0,004
AD	0,000	0,002	0,000	0,001	0,003	-0,001	0,002	0,000	0,001	0,003

4.1. Comparisons for the biases. In this subsection, the biases of the estimators $\hat{\mu}$ and $\hat{\sigma}$ obtained from the ML, LS, WLS, CM and AD methodologies are compared. For the estimators of the location parameter μ and the scale parameter σ, in general, the AD has the smallest bias among the other estimators for all values of the shape parameters and the sample sizes except for the sample size $n=50$ and shape parameters $a=1, b=1, p=1.5$ and $a=1, b=2, p=1.5$ in which case CM provides the smallest bias. When the sample size $\mathrm{n}=100$ and shape parameters $a=1, b=1, p=1.5, a=1, b=1, p=3, a=1, b=2, p=1.5$ and $a=1$,
$b=2, p=3$, WLS provides the smallest biases. AD is followed by the WLS and CM estimators for the small and moderate sample sizes in most of the cases. ML and LS estimators have larger biases than the other estimators for the small and moderate sample sizes. For the large sample sizes, all the estimators have negligible biases.
4.2. Comparisons for the efficiencies. Discussions about the efficiencies of the estimators of μ and σ with respect to the MSE criterion are given as follows. For the estimators of the location parameter μ, ML estimator shows the best performance among the others with respect to the MSE criterion in all cases. It is followed by the AD and WLS estimators for the sample sizes $n=20$ and 50 . It should also be pointed out that the LS estimator has shown the worst performance among the others for the sample sizes $n=20$ and 50 . For the sample sizes $n \geq 100$, ML is the most efficient estimator among the others in general and it is followed by the AD and WLS estimators. For the estimators of the scale parameter σ, the ML is the most efficient among the others for all values of the shape parameters and the sample sizes. It is followed by the AD and WLS estimators for the small and moderate sample sizes. The LS estimator of σ shows the worst performance among the other estimators in almost all cases.
4.3. Comparisons for the joint efficiencies. According to the simulation results, the ML estimator shows the highest performance among the others for all values of the shapes parameters and the sample sizes. It is seen that the ML estimator is followed by AD estimator. On the other hand, the LS estimator has the worst performance among the other estimators in almost all cases.

5. Application

In this section, the KwWeibull distribution is used to model the relative humidity data set taken from Cortez and Morais [7]. Table 3 shows the descriptive statistics for the relative humidity data.

Table 3. Descriptive statistics for the relative humidity data.

n	Min	Max	Mean	Variance	Skewness	Kurtosis
517	15.0	100.0	44.29	266.3	0.85	2.59

Before analyzing the relative humidity data, profile likelihood method is used to identify the plausible values of the shape parameters a, b and p of the KwWeibull distribution (see for example, Islam and Tiku [13] and Acıtaş and Şenoğlu [1]). The steps of the profile likelihood procedure are given as follows:

Step 1. Calculate $\hat{\mu}$ and $\hat{\sigma}$ for the given a, b and p values.
Step 2. Calculate $\ln L$ value by incorporating $\hat{\mu}$ and $\hat{\sigma}$ into $\ln L$.
Step 3. Repeat Steps 1 and 2 for a serious values of a, b and p. Find a, b and p values maximizing the $\ln L$ function among the others and choose them as conceivable values of the shape parameters.

Following the steps of profile likelihood procedure, the values of shape parameters a, b and p are obtained as $5.637,6.133$ and 0.681 , respectively. We also use QQ plot which is a well known and widely used graphical technique to identify the distribution of the relative humidity data set, see Figure 2. It can be seen from Figure 2 that KwWeibull distribution provides a good fit for the relative humidity data.

Figure 2. KwWeibull QQ plot for the relative humidity data

Based on the estimate values of the shape parameters, the ML estimates of location parameter μ and scale parameter σ are obtained as given in the Table 4. Estimates of the parameters μ, σ and p of Weibull distribution are also given for the relative humidity data to make the comparisons complete in Table 4. The Akaike information criterion (AIC), Bayesian information criterion (BIC) and Corrected AIC (AICc) values along with the Kolmogorov-Smirnov (KS) test statistic and associated p-values are also given in Table 4.

The equalities for the AIC, BIC, AICc and KS are given by

$$
\begin{align*}
& A I C=-2 \ln L+2 k \\
& B I C=-2 \ln L+k \ln (n), \tag{18}\\
& A I C c=A I C+\left(2 k^{2}+k\right) /(n-k-1)
\end{align*}
$$

and

$$
\begin{equation*}
K S=\max \left|\hat{F}\left(X_{(i)}\right)-\frac{i}{n+1}\right| \tag{19}
\end{equation*}
$$

respectively. Here, \hat{F} is the estimated cdf, $X_{(i)}$ is the $i-t h$ order statistics, k is the number of the unknown parameters and n is the sample size.

Table 4. The estimates of the parameters of the KwWeibull and Weibull distributions for the relative humidity data

	\hat{a}	\hat{b}	\hat{p}	$\hat{\mu}$	$\hat{\sigma}$	KS	p-value	AIC	BIC	AICc
KwWeibull	5.637	6.133	0.681	25.466	11.763	0.043	0.273	4273.80	4295.05	4273.88
Weibull	-	-	1.924	33.662	14.485	0.097	0.063	4337.76	4346.27	4337.81

The smaller AIC, BIC and AICc values imply the better fitting performance. It is clear from Table 4 that the KwWeibull distribution is more preferable than the Weibull distribution in terms of these criteria. See also Figure 3 in which the histogram and the fitted densities based on the KwWeibull and the Weibull distributions are plotted. Here, it should be noted that the ML estimates of the parameters are used in obtaining the fitted densities.

Figure 3. The histogram and the fitted densities based on the KwWeibull and Weibull distributions for the relative humidity data

It is seen from Figure 3 that KwWeibull distribution shows better fitting performance than the Weibull distribution. Then, we obtain the estimates of location parameter μ and scale parameter σ of the KwWeibull distribution when $\hat{a}=5.637$, $\hat{b}=6.133$ and $\hat{p}=0.681$ by using ML, LS, WLS, CM and AD methods to see the fitting performance of KwWeibull distribution for each estimation methods. Estimates of the location and scale parameters of KwWeibull distribution for each estimation methods are given in Table 5.

Table 5. Estimates of the location and scale parameters of the KwWeibull distribution for relative humidity data

Estimation Methods	$\hat{\mu}$	$\hat{\sigma}$	AIC	BIC	AICc
ML	25.466	11.763	4273.80	4295.05	4273.88
LS	19.712	14.327	4883.75	4904.99	4883.86
WLS	28.322	12.365	4646.50	4649.39	4646.53
CM	24.553	14.680	4675.32	4696.56	4675.43
AD	18.859	13.140	4622.33	4643.57	4622.44

The histogram and fitted densities based on different estimation methods are given in Figure 4 for the KwWeibull distribution.

Figure 4. The histogram and the fitted densities based on ML, LS, WLS, CM and AD estimates for the KwWeibull distribution

It can easily be seen from both Table 5 and the Figure 4 that ML method shows the best performance among the others with respect to the fitting performance for the relative humidity data.

6. Conclusions

In this study, we obtain the estimators of location and scale parameters of KwWeibull distribution using the ML, LS, WLS, CM and AD methods. We perform an extensive Monte Carlo simulation study to compare the efficiencies of these estimators. It is concluded that ML estimator shows the best performance among the others and it is followed by AD estimator. The LS estimator demonstrates the worst performance in almost all cases. At the end of the study, we use relative humidity data taken from the literature. Modelling performances of the KwWeibull distribution and the well known and widely used Weibull distribution are compared for this
data. It is concluded that KwWeibull distribution shows better fitting performance than the Weibull distribution for modeling the relative humidity data.

Author Contribution Statements The authors contributed equally to this work. All authors read and approved the final copy of this paper.

Declaration of Competing Interests The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements We are grateful to the referees for their very helpful comments and suggestions.

References

[1] Acitas, S., Senoglu, B., Robust factorial ANCOVA with LTS error distributions, Hacet. J. Math. Stat., 47(2) (2018), 347-363. https://doi.org/10.15672/HJMS. 201612918797
[2] Akgül, F. G., Şenoğlu, B., Arslan, T., An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution, Energy Convers. Manag., 114 (2016), 234-240. https://doi.org/10.1016/j.enconman.2016.02.026
[3] Bowman, K. O., Shenton, L. R., Weibull distributions when the shape parameter is defined, Comput Stat Data Anal, 36(3) (2001), 299-310. https://doi.org/10.1016/S0167-9473(00)00048-7
[4] Calabria, R., Pulcini, G., An engineering approach to Bayes estimation for the Weibull distribution, Microelectron. Reliab., 34(5) (1994), 789-802. https://doi.org/10.1016/0026-2714(94)90004-3
[5] Cordeiro, G. M., de Castro, M., A new family of generalized distributions, J. Stat. Comput. Simul., 81(7) (2011), 883-898. https://doi.org/10.1080/00949650903530745
[6] Cordeiro, G. M., Ortega, E. M., Nadarajah, S., The Kumaraswamy Weibull distribution with application to failure data, J Franklin Inst, 347(8) (2010), 1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010
[7] Cortez, P., Morais, A. D. J. R., A data mining approach to predict forest fires using meteorological data, New Trends in Artificial Intelligence: Proceedings of the 13th Portuguese Conference on Artificial Intelligence, Guimarães, Portugal, (2007), 512-523.
[8] Elbatal, I., Diab, L. S., Alim, N. A., Transmuted generalized linear exponential distribution, Int. J. Comput. Appl., 83(17) (2013), 29-37. https://doi.org/10.1515/eqc-2013-0020
[9] Elbatal, I., Elgarhy, M., Statistical properties of Kumaraswamy quasi Lindley distribution, IJMTT, 4(10) (2013), 237-246.
[10] Ergenç, C., Statistical Inference for Some Non-Normal Distributions, Master Thesis, Ankara University, 2021.
[11] Eugene, N., Lee, C., Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31(4) (2002), 497-512. https://doi.org/10.1081/STA-120003130
[12] Gomes, A. E., da-Silva, C. Q., Cordeiro, G. M., Ortega, E. M., A new lifetime model: the Kumaraswamy generalized Rayleigh distribution, J. Stat. Comput. Simul., 84(2) (2014), 290309. https://doi.org/10.1080/00949655.2012.706813
[13] Islam, M. Q., Tiku, M. L., Multiple linear regression model under nonnormality, Commun. Stat. Theory Methods, 33(10) (2005), 2443-2467. https://doi.org/10.1081/STA-200031519
[14] Jones, M. C., Kumaraswamy's distribution: A beta-type distribution with some tractability advantages, Stat. Methodol., 6 (2008), 70-81. https://doi.org/10.1016/j.stamet.2008.04.001
[15] Kantar, Y. M., Şenoğlu, B., A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Comput Geosci, 34(12) (2008), 1900-1909. https://doi.org/10.1016/j.cageo.2008.04.004
[16] Keats, J. B., Lawrence, F. R., Wang, F. K., Weibull maximum likelihood parameter estimates with censored data, J. Qual. Technol., 29(1) (1997), 105-110. https://doi.org/10.1080/00224065.1997.11979730
[17] Maurya, S. K., Singh, S. K., Singh, U., A new right-skewed upside down bathtub shaped heavytailed distribution and its applications, J. Mod. Appl. Stat. Methods, 19(1) (2020), eP2888. https://doi.org/10.22237/jmasm/1608552600
[18] Mudholkar, G. S., Srivastava, D. K., Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42(2) (1993), 299-302.
[19] Rocha, R., Nadarajah, S., Tomazella, V., Louzada, F., Eudes, A., New defective models based on the Kumaraswamy family of distributions with application to cancer data sets, Stat Methods Med Res, 26(4) (2017), 1737-1755. https://doi.org/10.1177/0962280215587976
[20] Saeed, M. K., Salam, A., Rehman, A. U., Saeed, M. A., Comparison of six different methods of Weibull distribution for wind power assessment: A case study for a site in the Northern region of Pakistan, Sustain. Energy Technol. Assess., 36 (2019), 100541. https://doi.org/10.1016/j.seta.2019.100541
[21] Sarhan, A. M., Zaindin, M., Modified Weibull distribution, APPS. Applied Sciences, 11 (2009), 123-136.
[22] Serban, A., Paraschiv, L. S., Paraschiv, S., Assessment of wind energy potential based on Weibull and Rayleigh distribution models, Energy Rep., 6 (2020), 250-267. https://doi.org/10.1016/j.egyr.2020.08.048
[23] Swain, J. J., Venkatraman, S., Wilson, J. R., Least-squares estimation of distribution functions in Johnson's translation system, J Stat Comput Simul, 29(4) (1988), 271-297. https://doi.org/10.1080/00949658808811068
[24] Wolfowitz, J., Estimation by the minimum distance method in nonparametric stochastic difference equations, Ann. Math. Stat., 25(2) (1954), 203-217. http://www.jstor.org/stable/2236727
[25] Wolfowitz, J., Estimation by the minimum distance method, Ann Inst Stat Math, 5(1) (1953), 9-23.
http://communications.science.ankara.edu.tr

CONSTRUCTING DIRECTED STRONGLY REGULAR GRAPHS BY USING SEMIDIRECT PRODUCTS AND SEMIDIHEDRAL GROUPS

Semih PİRí ${ }^{1}$, Oktay ÖLMEZ ${ }^{2}$ and Murat ŞAHİN ${ }^{3}$
${ }^{1}$ Mathematics Department, Kastamonu University, Kastamonu, TÜRKİYE
${ }^{2}$ Afiniti, Washington, D.C., USA
${ }^{3}$ Department of Mathematics, Ankara University, 06100 Ankara, TÜRKIYE

Abstract

In this paper, directed strongly regular graphs (DSRGs) are constructed by using semidirect products. The orbit condition in 3 has been weakened and this gives rise to the construction of DSRGs. Moreover, a different construction is given for DSRG by using semidihedral groups.

1. Introduction

Directed strongly regular graphs have attracted the attention of many mathematicians and many studies have been done on them. It was first discussed by Duval as the directed form of strongly regular graphs 2 . Duval also presented several construction methods in his work. The main problem today is to construct unknown ones by their parameters. For this purpose, many mathematical structures have been used. Some of these are designs [5, 11]], coherent algebras [5, 7], 10], finite geometries [4, 5, 6], matrices [2, 4, 6], 8] and dihedral groups 10. Some non-existence results are given by Jorgensen [9. Duval [3] constructed directed strongly regular graphs by using semidirect products with an orbit condition. We change this condition with a weaker condition and give a construction of the directed strongly regular graphs. We also provide give a construction by using semidihedral groups. Our construction methods using semidirect product and semidihedral groups are new, however they do not give new parameters for small

[^1]examples. Also, they are simple to use for finding larger parameters. Uniqueness and enumeration studies can be found in 1.

This paper is designed as follows. In Section 2, necessary background information on the graph is given and the notations we will use are introduced, in Section 3 the semidirect construction of DSRG of Cayley graphs are given, and finally, in Section 4, DSRG is constructed from semidihedral groups which is an example of semidirect products.

2. Preliminaries

A directed graph $\Gamma=(V, E)$ consists of a vertex set V and an edge set E, where an edge is an ordered pair of distinct vertices of Γ. Writing $(x, y) \in E$ means that there is a directed edge from x to y and that is shown by $x \rightarrow y$. Throughout the paper, the edges of the form (y, y) for some $y \in V$, i.e., loops, are not allowed. However, we allow bidirected edge, that is having edges $x \rightarrow y$ and $y \rightarrow x$ for the vertices x and y, simultaneously. The indegree (outdegree) of a vertex y in a directed graph Γ is the number of vertices x such that $x \rightarrow y(y \rightarrow x)$, respectively. A graph Γ is called k-regular if every vertex in Γ has indegree and outdegree k. A path of length l from x to y is a sequence of $l+1$ distinct vertices starting with x and ending with y such that consecutive vertices are adjacent. A directed graph Γ is called directed strongly regular with parameters (n, k, t, λ, μ) if it is k-regular and satisfies the following condition on the number of paths of length 2. The number of directed paths of length 2 between two vertices, say from x to y, of the graph Γ is λ if there is an edge from x to y, μ if there is not and t if $x=y$. Let G be a group and $S \subseteq G$ be a subset of G without the identity element. Directed Cayley graph Cay (G, S) is a directed graph whose vertex set is G and for any two vertices x, y, there is a directed edge from x to y if $x y^{-1} \in S$.
Example 1. Let G be a symmetric group of order six with elements $\left\{e, a, a^{2}, b, a b, a^{2} b\right\}$ and the subset $S \subseteq G$ be the set $\left\{a^{2}, a^{2} b\right\}$. Then the directed graph $C a y(G, S)$ is shown as in Figure 1. The Cayley table of the elements of symmetric group of order 6 is shown as in Table 1.

Figure 1. Cayley graph of symmetric group of order 6

$*$	e	a	a^{2}	b	$a b$	$a^{2} b$
e	e	a	a^{2}	b	$a b$	$a^{2} b$
a	a	a^{2}	e	$a b$	$a^{2} b$	b
a^{2}	a^{2}	e	a	$a^{2} b$	b	$a b$
b	b	$a^{2} b$	$a b$	e	a^{2}	a
$a b$	$a b$	b	$a^{2} b$	a	e	a^{2}
$a^{2} b$	$a^{2} b$	$a b$	b	a^{2}	a	e

Table 1. The Cayley table of the symmetric group of order 6

When studying directed strongly regular graphs adjacency matrix and group ring are advantageous tools. Let G be a finite group then the group ring $\mathbb{Z}[G]$ is a ring with identity element e and defined as the set of all formal sums of elements of G. The addition and multiplication are given by

$$
\sum_{g \in G} a_{g} g+\sum_{g \in G} b_{g} g=\sum_{g \in G}\left(a_{g}+b_{g}\right) g
$$

and

$$
\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{r \in G} b_{r} r\right)=\sum_{g, r \in G} a_{g} b_{r}(g+r)
$$

Let G be a group and $\mathbb{Z}[G]=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in \mathbb{Z}\right\}$. If $S \subset G$, the group ring element \underline{S} will then be defined using the abuse of notation as $\underline{S}=\sum_{s \in S} s$. Furthermore, the group ring elements $\underline{S}^{(-1)}$ and \underline{G} will be defined as $\underline{S}^{(-1)}:=$ $\sum_{s \in S} s^{-1}$ and $\underline{G}:=\sum_{g \in G} g$.

Let S be a subset of a group G. In 2 they showed that $\operatorname{Cay}(G, S)$ corresponds to a DSRG with parameters (n, k, t, λ, μ) if and only if $|S|=k,|G|=n$ and it satisfies the following group ring equation:

$$
\underline{S}^{2}=t e+\lambda \underline{S}+\mu(\underline{G}-e-\underline{S}) .
$$

Let Γ be a directed graph with n vertices, then the adjacency matrix M of Γ is an $n \times n$ matrix with entries $a_{i j}$ where $a_{i j}=1$ if $v_{i} \rightarrow v_{j}$. Otherwise $a_{i j}=0$. Since we disallow loops, the diagonal entries of M are all 0 . Let I and J denote the $n \times n$ identity matrix and the all-one matrix, respectively. Then Γ is a directed strongly regular graph if and only if
i) $M J=J M=k J$
ii) $M^{2}=t I+\lambda M+\mu(J-I-M)$.

3. Semidirect Construction of Cayley DSRG

In this section, we give some definitions and lemmas related to the semidirect product of two groups. We will also proceed in a similar way to that of Duval and

Dmitri 3 by modifying the orbit setup they used. They proved that for a finite group A of order m and the cyclic group B of order q if some $\beta \in A u t(A)$ has the q-orbit condition, that is, each orbit of β contains only q elements, then the graph $\operatorname{Cay}\left(A \ltimes_{\theta} B, A^{\prime} \times B\right)$ is a DSRG with parameters

$$
(m q, m-1,(m-1) / q,((m-1) / q)-1,(m-1) / q))
$$

where $\theta: B \rightarrow \operatorname{Aut}(A)$ by $\theta\left(b^{r}\right)=\beta^{r}$ and A^{\prime} is the set of representatives of the nontrivial orbits of β.

Definition 1. (see 3) Let A and B be two groups and $\theta: B \rightarrow A u t(A)$ be an action of B on A. Then the semidirect product $A \ltimes_{\theta} B$ for the set $\{(a, b): a \in A$ and $b \in B\}$ is defined as follows:

$$
(a, b)\left(a^{\prime} b^{\prime}\right)=\left(a\left[\theta_{b}\left(a^{\prime}\right)\right], b b^{\prime}\right)
$$

For groups A and $B, A \ltimes_{\theta} B$ forms a group of order $|A \| B|$ with the identity element $\left(e_{A}, e_{B}\right)$ and inverse $(a, b)^{-1}=\left(\theta_{b^{-1}}\left(a^{-1}\right), b^{-1}\right)$.

Let A and B be the additive groups of finite fields $\mathbb{F}_{p^{2}}$ and \mathbb{F}_{2} respectively, where p is a prime number. The Frobenius automorphism is defined as follows:

$$
\begin{gathered}
\beta: \mathbb{F}_{p^{2}} \rightarrow \mathbb{F}_{p^{2}} \\
\beta(x)=x^{p}
\end{gathered}
$$

We will use the following notation in the rest of the paper: P is the set of elements of \mathbb{F}_{p}, R is the set of representatives of orbits of β and R^{p} is the set as $\left\{x^{p}: x \in R\right\}$.

The orbits of the action β on $\mathbb{F}_{p^{2}}$ consists of p orbits of size one and $\frac{p^{2}-p}{2}$ orbits of size two.

Let $A \times B$ be the direct product of the sets A and B and define the operation \ltimes as the product of two elements as follows:

$$
\left(a_{1}, b_{1}\right) \ltimes\left(a_{2}, b_{2}\right)= \begin{cases}\left(a_{1}+a_{2}, b_{2}\right), & \text { if } b_{1}=0, \\ \left(a_{1}+a_{2}^{p}, b_{2}+1\right), & \text { if } b_{1}=1 .\end{cases}
$$

Lemma 1. (G, \ltimes) forms a group of order $2 p^{2}$ where $G=A \times B$.
Proof. Let us start the proof by showing that G is closed under the operation \ltimes. For any $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in G$,

$$
\left(a_{1}, b_{1}\right) \ltimes\left(a_{2}, b_{2}\right)= \begin{cases}\left(a_{1}+a_{2}, b_{2}\right) \in G, & \text { if } b_{1}=0 \\ \left(a_{1}+a_{2}^{p}, b_{2}+1\right) \in G, & \text { if } b_{1}=1 .\end{cases}
$$

Hence, G is closed under \ltimes. It is easy to see that $(0,0)$ is the identity element of the group. Indeed for any element (a, b) the following is true,

$$
(a, b) \ltimes(0,0)=(0,0) \ltimes(a, b)=(a, b) .
$$

Next, the inverse of any element $(a, b) \in G$ is given by

$$
(a, b)^{-1}= \begin{cases}(-a,-b), & \text { if } b_{1}=0 \\ \left(-a^{p},-b\right), & \text { if } b_{1}=1\end{cases}
$$

Finally, we will show the associative property. For $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right) \in G$ we have the following:

$$
\begin{gathered}
\left(\left(a_{1}, b_{1}\right) \ltimes\left(a_{2}, b_{2}\right)\right) \ltimes\left(a_{3}, b_{3}\right)= \begin{cases}\left(a_{1}+a_{2}+a_{3}, b_{3}\right), & \text { if } b_{1}=0, b_{2}=0, \\
\left(a_{1}+a_{2}+a_{3}^{p}, b_{3}+1\right), & \text { if } b_{1}=0, b_{2}=1, \\
\left(a_{1}+a_{2}^{p}+a_{3}^{p}, b_{3}+1\right), & \text { if } b_{1}=1, b_{2}=0, \\
\left(a_{1}+a_{2}^{p}+a_{3}, b_{3}\right), & \text { if } b_{1}=1, b_{2}=1 .\end{cases} \\
=\left(a_{1}, b_{1}\right) \ltimes\left(\left(a_{2}, b_{2}\right) \ltimes\left(a_{3}, b_{3}\right)\right)
\end{gathered}
$$

and we are done.
We say that a group automorphism β has the q-orbit condition if each of its orbits contains either q elements or one element (including the trivial orbit that contains only identity element). We change (weakened) the q-orbit condition that is defined in 3. Before giving our main theorem, we need the following lemma.

Lemma 2. The following equations hold in the group ring $\mathbb{Z}[G]$.
(a) $(\underline{P \times\{1\}})^{2}=|P|(\underline{P \times\{0\}})$
(b) $(\underline{R \times B})(P \times\{1\})=|P|(\underline{R} \times B)$
(c) $(\underline{P \times\{1\}})(\underline{R \times B})=|P|\left(\underline{R^{p} \times B}\right)$
(d) $(\underline{R \times B})^{2}=\frac{p^{2}-3 p}{2}(\underline{R \times B})+\frac{p^{2}-p}{2}\left(\underline{R^{p} \times B}\right)+\frac{p^{2}-p}{2}(\underline{P \times B})$

Proof. We will only prove (b). We know that P is the set of elements of the obvious orbits of β which are in \mathbb{F}_{p} and R is the set of representatives of orbits of β. We also know that $B=\mathbb{F}_{2}$. Then we have the following:

$$
\begin{aligned}
(\underline{R \times B})(\underline{P \times\{1\}}) & =(\underline{(R \times\{0\}})+(\underline{(R \times\{1\}}))(\underline{P \times\{1\}}) \\
& =(\underline{R \times\{0\}})(\underline{P \times\{1\}})+(\underline{(R \times\{1\}})(\underline{P \times\{1\}}) \\
& =(\underline{\{(\sigma+\gamma, 1): \sigma \in R \text { and } \gamma \in P\}}) \\
& +\left(\underline{\left.\left(\sigma+\gamma^{p}, 1\right): \sigma \in R \text { and } \gamma \in P\right\}}\right) \\
& =|P|(\underline{R \times\{0\}})+|P|(\underline{R \times\{1\}}) \\
& =|P|(\underline{R \times B}) .
\end{aligned}
$$

The proof of (a), (c) and (d) are similar.
Theorem 1. Let $A=\mathbb{F}_{p^{2}}$ and $B=\mathbb{F}_{2}$ be two additive finite fields where p is an odd prime. If some $\beta \in A u t(A)$ has the q-orbit condition (for instance, Frobenius automorphism), then we may construct a directed strongly regular graph with
parameters

$$
\left(n=2 p^{2}, k=p^{2}, t=\left(p^{2}+p\right) / 2, \lambda=\left(p^{2}-p\right) / 2, \mu=\left(p^{2}+p\right) / 2\right)
$$

as follows: Let us define $\theta: B \rightarrow A u t(A)$ with $\theta_{0}=I d$ and $\theta_{1}=\beta(x)=x^{p}$ for the additive group $B=\mathbb{F}_{2}$. Let R be the set representatives of orbits with two elements and P be the set of orbits with one element (only base field elements). Note that $R \cap-R=\emptyset$ where $-R=\{-r: r \in R\}$. Then, for the set $S=(R \times B) \cup(P \times\{1\})$ the Cayley graph

$$
\operatorname{Cay}\left(A \times_{\theta} B, S\right)
$$

is a DSRG with parameters above.
Proof. Let the set S be $(R \times B) \cup(P \times\{1\})$. Then $|S|=k=2|R|+|P|=$ $2 \cdot\left[\left(p^{2}-p\right) / 2\right]+p=p^{2}$. Our goal is to show that the graph $C a y(G, S)$ is a DSRG with parameters (n, k, t, λ, μ). So, we need to show that the summation $\underline{S}=\sum_{s \in S} s$ is valid in the following equation in $\mathbb{Z}[G]$,

$$
\underline{S}^{2}=t e+\lambda \underline{S}+\mu(\underline{G}-e-\underline{S}) .
$$

To do that it will be enough to show that \underline{S} satisfies the equation

$$
\underline{S}^{2}+|P| \underline{S}=\mu \underline{G}
$$

By Lemma 1 and Lemma 2 we get,

$$
\begin{aligned}
\underline{S}^{2}+|P| \underline{S} & =\underline{((R \times B) \cup(P \times\{1\})})^{2}+|P|(\underline{(R \times B) \cup(P \times\{1\}))} \\
& =\underline{(R \times B) \times_{\theta}(R \times B)}+\underline{(P \times\{1\}) \times \theta(P \times\{1\})}+\underline{(R \times B) \times \theta(P \times\{1\})}+ \\
& \underline{(P \times\{1\}) \times_{\theta}(R \times B)}+|P| \underline{(R \times B)+|P| \underline{(P \times\{1\})}} \\
& =\left(\left(p^{2}-3 p\right) / 2\right) \underline{(R \times B)}+\left(\left(p^{2}-p\right) / 2\right) \underline{\left(R^{p} \times B\right)}+\left(\left(p^{2}-p\right) / 2\right) \underline{(P \times B)}+ \\
& p \underline{(P \times\{0\})+p \underline{(R \times B)}+p \underline{\left(R^{p} \times B\right)}+p \underline{(R \times B)}+p \underline{(P \times\{1\})}} \\
& =p \underline{G}+\left(\left(p^{2}-p\right) / 2\right) \underline{G} \\
& =\left(\left(p^{2}+p\right) / 2\right) \underline{G}=\mu \underline{G}
\end{aligned}
$$

as required.
Example 2. Let $p=3, A=\mathbb{F}_{p^{2}}, B=\mathbb{F}_{2}$. Consider the Frobenius automorphism

$$
\begin{gathered}
\beta: \mathbb{F}_{p^{2}} \rightarrow \mathbb{F}_{p^{2}} \\
\beta(x)=x^{p} .
\end{gathered}
$$

For $G=A \times B,(G, \ltimes)$ forms a group of order $2 p^{2}$. The product of $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is given by

$$
\left(a_{1}, b_{1}\right) \ltimes\left(a_{2}, b_{2}\right)= \begin{cases}\left(a_{1}+a_{2}, b_{2}\right), & \text { if } b_{1}=0, \\ \left(a_{1}+a_{2}^{p}, b_{2}+1\right), & \text { if } b_{1}=1 .\end{cases}
$$

Similarly, the inverse of (a, b) is given by

$$
(a, b)^{-1}= \begin{cases}(-a,-b), & \text { if } b=0 \\ \left((-a)^{p},-b\right), & \text { if } b=1\end{cases}
$$

Thus the orbits of β are $\{0\},\{a, 2 a+1\},\{a+1,2 a+2\},\{2\},\{a+2,2 a\},\{1\}$.
From Theorem 1, multiplying one-element orbits by $\{1\}$ and two-element orbits by the set B, we construct the set $S=\{(a, 0),(a, 1),(a+1,0),(a+1,1),(a+$ $2,0),(a+2,1),(0,1),(1,1),(2,1)\}$. Then the Cayley graph $C a y(A \times B, S)$ is a directed strongly regular graph with parameters $(18,9,6,3,6)$.

4. Semidihedral Construction of Cayley DSRG

In this section, we will construct directed strongly regular graphs from semidihedral groups by using Cayley graphs. The method of producing DSRG's using semidihedral groups in this section is different from the semidirect method given in Section 3. The choice of our generator set S here is independent of the q-orbit condition. A semidihedral group $S D(m)$ is also an example of the semidirect product of cyclic group C_{2} with the dihedral group. But in this construction C_{2} acts on $C_{2^{m-1}}$ by $x \mapsto x^{2^{m-2}-1}$ instead of $x \mapsto x^{-1}$. Before we give the main theorem, we need the following lemma.

Lemma 3. Let $G=S D(m)=\left\langle a, x \mid a^{2^{m-1}}=x^{2}=e, x a x=a^{2^{m-2}-1}\right\rangle$ be the semidihedral group of order $m \geq 4$. Let $P=P_{1} \cup P_{2}$ where $P_{i}=\left\{a^{i+4 k}: k=\right.$ $\left.0,1, \ldots, 2^{m-3}-1\right\}$. Then

$$
x P=P^{\prime} x \text { where } P^{\prime}=P_{2} \cup P_{3} .
$$

Proof. Let $P=P_{1} \cup P_{2}$. By multiplying both sides of this equality by x, we get

$$
\begin{align*}
x P & =x P_{1} \cup x P_{2} \\
& =\left\{x a^{1+4 k}: k=0,1, \ldots, 2^{m-3}-1\right\} \cup\left\{x a^{2+4 k}: k=0,1, \ldots, 2^{m-3}-1\right\} \\
& =\left\{a^{(1+4 k) \cdot\left(2^{m-2}-1\right)} x: k=0,1, \ldots, 2^{m-3}-1\right\} \tag{1}\\
& \cup\left\{a^{(2+4 k) \cdot\left(2^{m-2}-1\right)} x: k=0,1, \ldots, 2^{m-3}-1\right\} .
\end{align*}
$$

Since the power of a in P_{1} and P_{2} is $1 \bmod 4,2 \bmod 4$ respectively and $m \geq 4$, if we multiply the powers of a by $2^{m-2}-1$ we will have

$$
\begin{align*}
1+4 k & \equiv 1(\bmod 4) \\
(1+4 k) \cdot\left(2^{m-2}-1\right) & \equiv 2^{m-2}-1(\bmod 4) \tag{2}\\
& \equiv-1(\bmod 4) \\
& \equiv 3(\bmod 4)
\end{align*}
$$

and

$$
\begin{align*}
2+4 k & \equiv 2(\bmod 4) \\
(2+4 k) \cdot\left(2^{m-2}-1\right) & \equiv 2^{m-1}-2(\bmod 4) \tag{3}\\
& \equiv-2(\bmod 4) \\
& \equiv 2(\bmod 4)
\end{align*}
$$

Therefore, using Equations (2) and (3) in Equation (1), we will have the following

$$
\begin{aligned}
& \left\{a^{(1+4 k) \cdot\left(2^{m-2}-1\right)} x: k=0,1, \ldots, 2^{m-3}-1\right\} \cup\left\{a^{(2+4 k) \cdot\left(2^{m-2}-1\right)} x: k=0,1, \ldots, 2^{m-3}-1\right\} \\
& =\left\{a^{3+4 k} x: k=0,1, \ldots, 2^{m-3}-1\right\} \cup\left\{a^{2+4 k} x: k=0,1, \ldots, 2^{m-3}-1\right\} \\
& =P_{3} x \cup P_{2} x=\left(P_{2} \cup P_{3}\right) x=P^{\prime} x
\end{aligned}
$$

This completes the proof.
Note that we also have the equations $x P_{1}=P_{3} x\left(P_{1} x=x P_{3}\right)$ and $x P_{2}=P_{2} x$.
Theorem 2. Let $G=S D(m)=\left\langle a, x \mid a^{2^{m-1}}=x^{2}=e, x a x=a^{2^{m-2}-1}\right\rangle$ be the semidihedral group of order $m \geq 4$. Let $P=P_{1} \cup P_{2}$ where $P_{i}=\left\{a^{i+4 k}: k=\right.$ $\left.0,1, \ldots, 2^{m-3}-1\right\}$. Then $\operatorname{Cay}(G, P \cup x P)$ is a $D S R G$ with parameters

$$
\left(n=2^{m}, k=2^{m-1}, t=3.2^{m-3}, \lambda=2^{m-3}, \mu=3.2^{m-3}\right)
$$

Proof. Let $S=P \cup x P$. Then the parameter $k=|S|=2|P|=2 \cdot 2^{m-2}=2^{m-1}$. Our goal is to show that $\operatorname{Cay}(G, S)$ is a DSRG with parameters (n, k, t, λ, μ). Thus the formal sum $\underline{S}=\sum_{s \in S} s$ should satisfy the equation

$$
\underline{S}^{2}=t e+\lambda \underline{S}+\mu(\underline{G}-e-\underline{S})
$$

in the group ring $\mathbb{Z}[G]$. Therefore, we need to show that the equation

$$
\underline{S}^{2}+2^{m-2} \underline{S}=3 \cdot 2^{m-3} \underline{G}
$$

holds. So,

$$
\begin{align*}
\underline{S}^{2}+2^{m-2} \underline{S} & =(\underline{P}+\underline{x P})^{2}+2^{m-2}(\underline{P}+\underline{x P}) \\
& =\underline{P}^{2}+\underline{P} \cdot \underline{x P}+\underline{x P} \cdot \underline{P}+\underline{x P} \cdot \underline{x P}+2^{m-2}(\underline{P}+\underline{x P}) \tag{4}\\
& =\underline{P}^{2}+\underline{x P^{\prime}} \cdot \underline{P}+\underline{x P} \cdot \underline{P}+\underline{P^{\prime}} \cdot \underline{P}+2^{m-2}(\underline{P}+\underline{x P})
\end{align*}
$$

where $P^{\prime}=P_{2} \cup P_{3}$ by Lemma 3 .
In order to complete the proof let us compute $P_{i} P_{i}$ and $P_{j} P_{j}$. Since P_{0} is a subgroup of order 2^{m-3} and $P_{1}=a P_{0}, P_{2}=a^{2} P_{0}$ and $P_{3}=a^{3} P_{0}$ are its cosets, we have

$$
\begin{aligned}
& \underline{P_{i} P_{i}}=\underline{a^{2 i} P_{0} P_{0}}=\left|P_{0}\right| \underline{P_{2 i}} \\
& \underline{P_{i}} \underline{P_{j}}=\underline{a^{i+j} P_{0} P_{0}}=\left|P_{0}\right| \underline{P_{i+j}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\underline{P}^{2} & =\underline{P_{1} P_{1}}+\underline{P_{1} P_{2}}+\underline{P_{2} P_{1}}+\underline{P_{2} P_{2}} \\
& =\left|P_{0}\right| \underline{P_{2}}+\left|P_{0}\right| \underline{P_{3}}+\left|P_{0}\right| \underline{P_{3}}+\left|P_{0}\right| \underline{P_{4}} \\
& =\left|P_{0}\right| \underline{P_{2}}+2 \cdot\left|P_{0}\right| \underline{P_{3}}+\left|P_{0}\right| \underline{P_{0}},
\end{aligned}
$$

and

$$
\begin{aligned}
\underline{P^{\prime} P} & =\underline{P_{2} P_{1}}+\underline{P_{2} P_{2}}+\underline{P_{3} P_{1}}+\underline{P_{3} P_{2}} \\
& =\left|P_{0}\right| \underline{P_{3}}+\left|P_{0}\right| \underline{P_{0}}+\left|P_{0}\right| \underline{P_{0}}+\left|P_{0}\right| \underline{P_{1}} \\
& =\left|P_{0}\right| \underline{P_{3}}+2 \cdot\left|P_{0}\right| \underline{P_{0}}+\left|P_{0}\right| \underline{P_{1}} .
\end{aligned}
$$

Now it only remains to write them in Equation (4) :

$$
\begin{aligned}
\underline{S}^{2}+2^{m-2} \underline{S} & =(\underline{P}+\underline{x P})^{2}+2^{m-2}(\underline{P}+\underline{x P}) \\
& =\underline{P}^{2}+\underline{P x} \underline{x}+\underline{x P P}+\underline{x P x}+2^{m-2}(\underline{P}+\underline{x P}) \\
& =\underline{P^{2}}+\underline{x P^{\prime} P}+\underline{x P P}+\underline{P^{\prime} P}+2^{m-2}(\underline{P}+\underline{x P}) \\
& =\underline{P}^{2}+\underline{P^{\prime} P}+\left(2 \cdot\left|P_{0}\right|\right) \underline{P}+x\left(\underline{P^{2}}+\underline{P^{\prime} P}+\left(2 \cdot\left|P_{0}\right|\right) \underline{P}\right) \\
& =\left|P_{0}\right| \underline{P_{2}}+2 \cdot\left|P_{0}\right| \underline{P_{3}}+\left|P_{0}\right| \underline{P_{0}}+\left|P_{0}\right| \underline{P_{3}}+2 \cdot\left|P_{0}\right| \underline{P_{0}}+\left|P_{0}\right| \underline{P_{1}} \\
& +2 \cdot\left|P_{0}\right| \underline{P_{1}}+2 \cdot\left|P_{0}\right| \underline{P_{2}}+x\left(\left|P_{0}\right| \underline{P_{2}}+2 \cdot\left|P_{0}\right| \underline{P_{3}}+\left|P_{0}\right| \underline{P_{0}}+\left|P_{0}\right| \underline{P_{3}}\right. \\
& \left.+2 \cdot\left|P_{0}\right| \underline{P_{0}}+\left|P_{0}\right| \underline{P_{1}}+2 \cdot\left|P_{0}\right| \underline{P_{1}}+2 \cdot\left|P_{0}\right| \underline{P_{2}}\right) \\
& \left.=3 \cdot\left|P_{0}\right| \underline{\left(P_{0}\right.}+\underline{P_{1}}+\underline{P_{2}}+\underline{P_{3}}+x \underline{P_{0}}+x \underline{P_{1}}+x \underline{P_{2}}+x \underline{P_{3}}\right) \\
& =3 \cdot\left(2^{m-3}\right) \cdot \underline{G} .
\end{aligned}
$$

This completes the proof.
Example 3. Let $G=S D(4)$ be the semidihedral group of order 4 for $m=4$ with elements $\left\{e, a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}, x, x a, x a^{2}, x a^{3}, x a^{4}, x a^{5}, x a^{6}, x a^{7}\right\}$. Construct the subset S according to Theorem 2 as $\{P \cup x P\}$ where $P=\left\{a, a^{2}, a^{5}, a^{6}\right\}$. Then $\operatorname{Cay}(G, S)$ is a DSRG with parameters $(16,8,6,2,6)$.

Remark 1. The directed strongly regular graph constructed in the Example 3 has already been presented in [2] by Duval. The author constructed the DSRG with parameters $(16,8,2,6,2)$ from a $D S R G$ with parameters $(8,4,1,3,1)$ known to exist. This construction is specified as $T 10$ in [1].

Author Contribution Statements The authors jointly worked on the results and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest.

References

[1] Brouwer, A. E., Hobart, S., Parameters of directed strongly regular graphs. http://homepages.cwi.nl/ aeb/math/dsrg/dsrg.html
[2] Duval, A., A directed graph version of strongly regular graphs, Journal of Combinatorial Theory Series A, 47 (1988), 71-100. https://doi.org/10.1016/0097-3165(88)90043-X
[3] Duval, A., Iourinski, D., Semidirect product constructions of directed strongly regular graphs, Journal of Combinatorial Theory (A), 104 (2003), 157-167. https://doi.org/10.1016/S0097-3165(03)00141-9
[4] Fiedler, F., Klin, M., Muzychuk, M., Small vertex-transitive directed strongly regular graphs, Discrete Mathematics, 255 (2002), 87-115. https://doi.org/10.1016/S0012-365X(01)00391-0
[5] Fiedler, F., Klin, M., Pech, Ch., Directed Strongly Regular Graphs as Elements of Coherent Algebras, in: Denecke, K., Vogel, H.-J., (Eds.), General Algebra and Discrete Mathematics, Shaker Verlag, Aachen, 1999, 69-87.
[6] Godsil, C. D., Hobart, S. A., Martin, W. J., Representations of directed strongly regular graphs, European J. Combin., 28(7) (2007), 1980-1993. https://doi.org/10.1016/j.ejc.2006.08.008
[7] Hobart, S., Shaw, T., A note on a family of directed strongly regular graphs, European Journal of Combinatorics, 20 (1999), 819-820.
[8] Jorgensen, L., Directed strongly regular graphs with $\mu=\lambda$, Discrete Mathematics, 231(1-3) (2001), 289-293.
[9] Jorgensen, L., Non-existence of directed strongly regular graphs, Discrete Mathematics, 264 (2003), 111-126.
[10] Klin, M., Munemasa, A., Muzychuk, M., Zieschang, P. H., Directed strongly regular graphs obtained from coherent algebras, Linear Algebra Appl., 377 (2004), 83-109.
[11] Cameron, P. J., van Lint, J. H., Designs, Graphs, Codes and Their Links, Cambridge University Press, Cambridge, 1991.
http://communications.science.ankara.edu.tr

SOME REFINEMENTS OF BEREZIN NUMBER INEQUALITIES VIA CONVEX FUNCTIONS

Suna SALTAN ${ }^{1}$ and Nazlı BASKAN ${ }^{2}$
1,2 Department of Mathematics, Suleyman Demirel University, Isparta, TÜRKİYE

Abstract

The Berezin transform \widetilde{A} and the Berezin number of an operator A on the reproducing kernel Hilbert space over some set Ω with normalized reproducing kernel \widehat{k}_{λ} are defined, respectively, by $\widetilde{A}(\lambda)=\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle, \lambda \in \Omega$ and $\operatorname{ber}(A):=\sup _{\lambda \in \Omega}|\widetilde{A}(\lambda)|$. A straightforward comparison between these characteristics yields the inequalities ber $(A) \leq \frac{1}{2}\left(\|A\|_{\text {ber }}+\left\|A^{2}\right\|_{\text {ber }}^{1 / 2}\right)$. In this paper, we study further inequalities relating them. Namely, we obtained some refinements of Berezin number inequalities involving convex functions. In particular, for $A \in \mathcal{B}(\mathcal{H})$ and $r \geq 1$ we show that $$
\operatorname{ber}^{2 r}(A) \leq \frac{1}{4}\left(\left\|A^{*} A+A A^{*}\right\|_{\text {ber }}^{r}+\left\|A^{*} A-A A^{*}\right\|_{\text {ber }}^{r}\right)+\frac{1}{2} \operatorname{ber}^{r}\left(A^{2}\right) .
$$

1. Introduction and Preliminaries

Recall that the reproducing kernel Hilbert space $\mathcal{H}=\mathcal{H}(\Omega)$ (shortly, RKHS) is the Hilbert space of complex-valued functions on some set Ω such that the evaluation functional $f \rightarrow f(\lambda)$ is bounded on \mathcal{H} for every $\lambda \in \Omega$. Then, by Riesz representation theorem for each $\lambda \in \Omega$ there exists a unique vector k_{λ} in \mathcal{H} such that $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$ for all $f \in \mathcal{H}$. The function k_{λ} is called the reproducing kernel of the space \mathcal{H}. It is well known that (see Aronzajn $|2|$)

$$
k_{\lambda}(z)=\sum_{n=0}^{\infty} \overline{e_{n}(\lambda)} e_{n}(z)
$$

[^2]for any orthonormal basis $\left\{e_{n}(z)\right\}_{n \geq 0}$ of the space $\mathcal{H}(\Omega)$. The normalized reproducing kernel is defined by $\widehat{k}_{\lambda}:=\frac{\bar{k}_{\lambda}}{\left\|k_{\lambda}\right\|_{\mathcal{H}}}$. For a bounded linear operator A acting in the RKHS \mathcal{H}, its Berezin symbol \widetilde{A} (see Berezin 7) is defined by the formula
$$
\widetilde{A}(\lambda):=\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle(\lambda \in \Omega) .
$$

The Berezin symbol is a function that is bounded by norm of the operator. Karaev 19] defined the Berezin set and the Berezin number of operator A, respectively by

$$
\operatorname{Ber}(A):=\operatorname{Range}(\widetilde{A})=\{\widetilde{A}(\lambda): \lambda \in \Omega\}
$$

and

$$
\operatorname{ber}(A):=\sup _{\lambda \in \Omega}|\widetilde{A}(\lambda)| .
$$

It is clear from definitions that \widetilde{A} is a bounded function, $\operatorname{Ber}(A)$ lies in the numerical range $W(A)$, and so ber (A) does not exceed the numerical radius $w(A)$ of operator A. Recall that the numerical range and the numerical radius of operator A are defined, respectively, by

$$
W(A):=\{\langle A x, x\rangle: x \in \mathcal{H} \text { and }\|x\|=1\}
$$

and

$$
w(A):=\sup _{\|x\|=1}|\langle A x, x\rangle|
$$

(for more information, see $1,9,10,15,21,22,25,28,31$). Berezin set and Berezin number of operators are new numerical characteristics of operators on the RKHS which are introduced by Karaev in 19 .

Suppose that $B(\mathcal{H})$ denotes the C^{*}-algebra of all bounded linear operators on \mathcal{H}. It is well-known that

$$
\begin{equation*}
\operatorname{ber}(A) \leq w(A) \leq\|A\| \tag{1}
\end{equation*}
$$

and

$$
\frac{\|A\|}{2} \leq w(A)
$$

for any $A \in B(\mathcal{H})$. But, Karaev 20 showed that

$$
\frac{\|A\|}{2} \leq \operatorname{ber}(A)
$$

is not hold for every $A \in B(\mathcal{H})$. Also, Berezin number inequalities were given by using the other inequalities in $11,13,17,20,32$.

Huban et al. 18. Theorem 2.14] improved the inequality (1) by proving that

$$
\begin{equation*}
\operatorname{ber}(A) \leq \frac{1}{2}\left(\|A\|_{\text {ber }}+\left\|A^{2}\right\|_{\text {ber }}^{1 / 2}\right) \tag{2}
\end{equation*}
$$

for any $A \in \mathcal{B}(\mathcal{H})$.

It has been shown in 17 that if $A \in \mathcal{B}(\mathcal{H})$, then

$$
\begin{equation*}
\frac{1}{4}\left\|A^{*} A+A A^{*}\right\| \leq \operatorname{ber}^{2}(A) \leq \frac{1}{2}\left\|A^{*} A+A A^{*}\right\| \tag{3}
\end{equation*}
$$

The following estimate of the Berezin numbers has been given in 16 ,

$$
\begin{equation*}
\operatorname{ber}(A) \leq \frac{1}{2} \sqrt{\left\|A A^{*}+A^{*} A\right\|_{\mathrm{ber}}+2 \operatorname{ber}\left(A^{2}\right)} \leq\|A\|_{\mathrm{ber}} \tag{4}
\end{equation*}
$$

The inequality (4) also refines the inequality (2). This can be seen by using the fact that

$$
\begin{equation*}
\left\|A A^{*}+A^{*} A\right\|_{\mathrm{ber}} \leq\|A\|_{\mathrm{ber}}^{2}+\left\|A^{2}\right\|_{\mathrm{ber}} \tag{5}
\end{equation*}
$$

In this work, inspired by the numerical radius inequalities in 29, an extension of the inequality (3) is proved. In particular, for $A \in \mathcal{B}(\mathcal{H})$ and $r \geq 1$ we prove that

$$
\operatorname{ber}^{2 r}(A) \leq \frac{1}{4}\left(\left\|A^{*} A+A A^{*}\right\|_{\mathrm{ber}}^{r}+\left\|A^{*} A-A A^{*}\right\|_{\mathrm{ber}}^{r}\right)+\frac{1}{2} \operatorname{ber}^{r}\left(A^{2}\right)
$$

Other general related results are also established.

2. Main Results

In order to achieve our goal, we need the following series of corollaries.
Lemma 1. ([23]) Let A be an operator in $\mathcal{B}(\mathcal{H})$ and $x, y \in \mathcal{H}$ be any vectors.
(i) If $0 \leq \alpha \leq 1$, then $\left.\left.|\langle A x, y\rangle|^{2} \leq\left.\langle | A\right|^{2 \alpha} x, x\right\rangle\left.\langle | A^{*}\right|^{2(1-\alpha)} y, y\right\rangle$.
(ii) If f and g are non-negative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)$ $=t,(t \geq 0)$, then $|\langle A x, y\rangle| \leq\|f(|A|) x\|\left\|g\left(\left|A^{*}\right|\right) y\right\|$.

Lemma 2. (24) Let A be a self-adjoint operator in $\mathcal{B}(\mathcal{H})$ with the spectrum contained in the interval J, and let h be convex function on J. Then for any unit vector $x \in \mathcal{H}$,

$$
h(\langle A x, x\rangle) \leq\langle h(A) x, x\rangle
$$

In 31, Lemma 2.4], the authors present an improvement of the Young inequality as follows:

Lemma 3. Let $a, b>0$ and $\min \{a, b\} \leq m \leq M \leq \max \{a, b\}$. Then

$$
\begin{equation*}
\sqrt{a b} \leq \frac{2 \sqrt{M m}}{M+m} \frac{a+b}{2} \tag{6}
\end{equation*}
$$

In 1941, R.P. Boas 8 and in 1944, independently, R. Bellman 6 proved the following generalization of Bessel's inequality.

Lemma 4. If a, b_{1}, \ldots, b_{n} are elements of an inner product space $(\mathcal{H},\langle.,\rangle$.$) , then$ the following inequality holds:

$$
\sum_{i=1}^{n}\left|\left\langle a, b_{i}\right\rangle\right|^{2} \leq\|a\|^{2}\left(\max _{1 \leq i \leq n}\left\|b_{i}\right\|^{2}+\left(\sum_{1 \leq i \neq j \leq n}^{n}\left|\left\langle b_{i}, b_{j}\right\rangle\right|^{2}\right)^{\frac{1}{2}}\right)
$$

In particulary, the case $n=2$ in the above reduces to

$$
\begin{equation*}
\left|\left\langle a, b_{1}\right\rangle\right|^{2}+\left|\left\langle a, b_{2}\right\rangle\right|^{2} \leq\|a\|^{2}\left(\max \left(\left\|b_{1}\right\|^{2},\left\|b_{2}\right\|^{2}\right)+\left|\left\langle b_{1}, b_{2}\right\rangle\right|\right) \tag{7}
\end{equation*}
$$

We recall the following refinement of the Cauchy-Schwarz inequality obtained by Dragomir in 9. If a, b, e are vectors in \mathcal{H} and $\|e\|=1$, then we have

$$
\begin{equation*}
|\langle a, b\rangle| \leq|\langle a, e\rangle\langle e, b\rangle|+|\langle a, b\rangle-\langle a, e\rangle\langle e, b\rangle| \leq\|a\|\|b\| . \tag{8}
\end{equation*}
$$

From the inequality (8) we deduce that

$$
\begin{equation*}
|\langle a, e\rangle\langle e, b\rangle| \leq \frac{1}{2}(\|a\|\|b\|+|\langle a, b\rangle|) . \tag{9}
\end{equation*}
$$

Let \widehat{k}_{λ} be a normalized reproducing kernel. Then, by taking $e=\widehat{k}_{\lambda}, a=A \widehat{k}_{\lambda}$ and $b=A^{*} \widehat{k}_{\lambda}$ in the inequality (9), we get

$$
\begin{equation*}
\left|\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|^{2} \leq \frac{1}{2}\left(\left\|A \widehat{k}_{\lambda}\right\|\left\|A^{*} \widehat{k}_{\lambda}\right\|+\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right) \tag{10}
\end{equation*}
$$

and

$$
\sup _{\lambda \in \Omega}|\widetilde{A}(\lambda)|^{2} \leq \sup _{\lambda \in \Omega} \frac{1}{2}\left(\left\|A \widehat{k}_{\lambda}\right\|^{2}+\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)
$$

which is equivalent to

$$
\begin{equation*}
\operatorname{ber}^{2}(A) \leq \frac{1}{2}\left(\|A\|_{\mathrm{Ber}}^{2}+\operatorname{ber}\left(A^{2}\right)\right) \tag{11}
\end{equation*}
$$

In addition to this, we have the following related inequality:
Theorem 1. Let $A \in \mathcal{B}(\mathcal{H}), f, g$ be non-negative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)=t,(t \geq 0)$, and h be a non-negative increasing convex function on $[0, \infty)$. If

$$
0<f^{2}\left(\left|A^{2}\right|\right) \leq m<M \leq g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)
$$

or

$$
0<g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right) \leq m<M \leq f^{2}\left(\left|A^{2}\right|\right)
$$

then

$$
\begin{equation*}
h\left(\operatorname{ber}\left(A^{2}\right)\right) \leq \frac{2 \sqrt{M m}}{M+m}\left\|\frac{h\left(f^{2}\left(\left|A^{2}\right|\right)\right)+h\left(g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)\right)}{2}\right\|_{\text {ber }} \tag{12}
\end{equation*}
$$

Proof. Let \widehat{k}_{λ} be a normalized reproducing kernel. Then, we have

$$
\begin{aligned}
& h\left(\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right) \\
& \leq h\left(\sqrt{\left\langle f^{2}\left(\left|A^{2}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\langle g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}\right)
\end{aligned}
$$

(by Lemma 1 (ii))

$$
\leq h\left(\frac{2 \sqrt{M m}}{M+m}\left(\frac{\left\langle f^{2}\left(\left|A^{2}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}{2}\right)\right)
$$

(by the inequality (6))

$$
\begin{aligned}
& \leq \frac{2 \sqrt{M m}}{M+m} h\left(\frac{\left\langle f^{2}\left(\left|A^{2}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}{2}\right) \\
& \leq \frac{2 \sqrt{M m}}{M+m}\left(\frac{h\left(\left\langle f^{2}\left(\left|A^{2}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right)+h\left(\left\langle g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right)}{2}\right) \\
& \leq \frac{2 \sqrt{M m}}{M+m}\left(\frac{\left\langle h\left(f^{2}\left(\left|A^{2}\right|\right)\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle h\left(g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}{2}\right)
\end{aligned}
$$

(by Lemma 2)

$$
=\frac{2 \sqrt{M m}}{M+m}\left\langle\frac{h\left(f^{2}\left(\left|A^{2}\right|\right)\right)+h\left(g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)\right)}{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle
$$

Therefore,

$$
h\left(\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right) \leq \frac{2 \sqrt{M m}}{M+m}\left\langle\frac{h\left(f^{2}\left(\left|A^{2}\right|\right)\right)+h\left(g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)\right)}{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle
$$

By taking the supremum over $\lambda \in \Omega$ above inequality, we deduce the desired result

$$
h\left(\operatorname{ber}\left(A^{2}\right)\right) \leq \frac{2 \sqrt{M m}}{M+m}\left\|\frac{h\left(f^{2}\left(\left|A^{2}\right|\right)\right)+h\left(g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)\right)}{2}\right\|_{\mathrm{ber}} .
$$

This finalizes the proof.
The following result may be stated as well.
Corollary 1. Let $A \in \mathcal{B}(\mathcal{H}), f, g$ be non-negative continuous functions on $[0, \infty)$ satisfying $f(t) g(t)=t,(t \geq 0)$, and $r \geq 1$. If

$$
0<f^{2}\left(\left|A^{2}\right|\right) \leq m<M \leq g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)
$$

or

$$
0<g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right) \leq m<M \leq f^{2}\left(\left|A^{2}\right|\right)
$$

then

$$
\operatorname{ber}^{r}\left(A^{2}\right) \leq \frac{2 \sqrt{M m}}{M+m}\left\|\frac{f^{2 r}\left(\left|A^{2}\right|\right)+g^{2 r}\left(\left|\left(A^{2}\right)^{*}\right|\right)}{2}\right\|_{\text {ber }} .
$$

Remark 1. By taking $r=1$ in Corollary 1, then it follows from the inequality (11) that

$$
\operatorname{ber}^{2}(A) \leq \frac{1}{2}\left(\left\|A^{2}\right\|_{\mathrm{Ber}}+\frac{2 \sqrt{M m}}{M+m}\left\|\frac{f^{2}\left(\left|A^{2}\right|\right)+g^{2}\left(\left|\left(A^{2}\right)^{*}\right|\right)}{2}\right\|_{\mathrm{ber}}\right)
$$

For various operators, the following conclusion is true.
Theorem 2. Let $A, B, C \in \mathcal{B}(\mathcal{H}), A, B \geq 0,0 \leq \alpha \leq 1$, and h be a non-negative increasing sub-multiplicative convex function on $[0, \infty)$. If

$$
0<B^{2(1-\alpha)} \leq m<M \leq A^{2 \alpha}
$$

or

$$
0<A^{2 \alpha} \leq m<M \leq B^{2(1-\alpha)}
$$

then

$$
\begin{equation*}
h\left(\operatorname{ber}\left(A^{\alpha} C B^{1-\alpha}\right)\right) \leq \frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right)\left\|\frac{h\left(B^{2(1-\alpha)}\right)+h\left(A^{2 \alpha}\right)}{2}\right\|_{\text {ber }} \tag{13}
\end{equation*}
$$

Proof. Let \widehat{k}_{λ} be a normalized reproducing kernel. Then, by the Cauchy-Schwarz, we have

$$
\begin{aligned}
& h\left(\left|\left\langle A^{\alpha} C B^{1-\alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right) \\
& =h\left(\left|\left\langle C B^{1-\alpha} \widehat{k}_{\lambda}, A^{\alpha} \widehat{k}_{\lambda}\right\rangle\right|\right) \\
& \leq h\left(\|C\|_{\text {ber }}\left\|B^{1-\alpha} \widehat{k}_{\lambda}\right\|\left\|A^{\alpha} \widehat{k}_{\lambda}\right\|\right)
\end{aligned}
$$

(by h sub-multiplicativity)

$$
=h\left(\|C\|_{\text {ber }} \sqrt{\left\langle B^{1-\alpha} \widehat{k}_{\lambda}, B^{1-\alpha} \widehat{k}_{\lambda}\right\rangle\left\langle A^{\alpha} \widehat{k}_{\lambda}, A^{\alpha} \widehat{k}_{\lambda}\right\rangle}\right)
$$

(by the inequality (6))

$$
\begin{aligned}
& =h\left(\|C\|_{\text {ber }} \sqrt{\left\langle B^{2(1-\alpha)} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\langle A^{2 \alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}\right) \\
& \leq h\left(\|C\|_{\text {ber }}\right) h\left(\sqrt{\left\langle B^{2(1-\alpha)} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\langle A^{2 \alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq h\left(\|C\|_{\text {ber }}\right) h\left(\frac{2 \sqrt{M m}}{M+m}\left(\frac{\left\langle B^{2(1-\alpha)} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle A^{2 \alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}{2}\right)\right) \\
& \leq \frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right) h\left(\frac{\left\langle B^{2(1-\alpha)} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\left\langle A^{2 \alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}{2}\right)
\end{aligned}
$$

(by Lemma 2)

$$
\begin{aligned}
& \leq \frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right) \frac{h\left(\left\langle B^{2(1-\alpha)} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right)+h\left(\left\langle A^{2 \alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right)}{2} \\
& \leq \frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right) \frac{\left\langle h\left(B^{2(1-\alpha)}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle+\left\langle h\left(A^{2 \alpha}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle}{2} \\
& =\frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right)\left\langle\left(\frac{h\left(B^{2(1-\alpha)}\right)+h\left(A^{2 \alpha}\right)}{2}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle
\end{aligned}
$$

So,

$$
h\left(\left|\left\langle A^{\alpha} C B^{1-\alpha} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right) \leq \frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right)\left\langle\left(\frac{h\left(B^{2(1-\alpha)}\right)+h\left(A^{2 \alpha}\right)}{2}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle
$$

and

$$
\sup _{\lambda \in \Omega} h\left(\left|\left(A^{\alpha} \widetilde{C B^{1}-\alpha}\right)(\lambda)\right|\right) \leq \frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right) \sup _{\lambda \in \Omega}\left\langle\left(\frac{h\left(B^{2(1-\alpha)}\right)+h\left(A^{2 \alpha}\right)}{2}\right) \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle
$$

which is equivalent to

$$
h\left(\operatorname{ber}\left(A^{\alpha} C B^{1-\alpha}\right)\right) \leq \frac{2 \sqrt{M m}}{M+m} h\left(\|C\|_{\text {ber }}\right)\left\|\frac{h\left(B^{2(1-\alpha)}\right)+h\left(A^{2 \alpha}\right)}{2}\right\|_{\text {ber }}
$$

which proves the desired inequalities.
Corollary 2. Let $A, B, C \in \mathcal{B}(\mathcal{H}), A, B \geq 0$, and $0 \leq \alpha \leq 1$, and let $r \geq 1$. If

$$
0<B^{2(1-\alpha)} \leq m<M \leq A^{2 \alpha}
$$

or

$$
0<A^{2 \alpha} \leq m<M \leq B^{2(1-\alpha)}
$$

then

$$
\operatorname{ber}^{r}\left(A^{\alpha} C B^{1-\alpha}\right) \leq \frac{2 \sqrt{M m}}{M+m}\|C\|_{\text {ber }}^{r}\left\|\frac{\left(A^{2 r \alpha}\right)+\left(B^{2 r(1-\alpha)}\right)}{2}\right\|_{\text {ber }}
$$

As a consequence of the above, we can present the following inequality.

Corollary 3. Suppose that the assumptions of Corollary 2 are satisfied. Then

$$
\begin{equation*}
\operatorname{ber}^{r}\left(A^{1 / 2} C B^{1 / 2}\right) \leq \frac{2 \sqrt{M m}}{M+m}\|C\|_{\text {ber }}^{r}\left\|\frac{A^{r}+B^{r}}{2}\right\|_{\text {ber }} \tag{14}
\end{equation*}
$$

We can give the following corollary whose proof can be reached by using similar techniques from Theorem 3.4 and Lemma 3.5 in 30.

Corollary 4. Let $A, B \in \mathcal{B}(\mathcal{H})$ be invertible self-adjoint operators and $C \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{equation*}
\operatorname{ber}^{r}\left(A^{1 / 2} C B^{1 / 2}\right) \leq\|C\|_{\text {ber }}^{r}\left\|\frac{A^{r}+B^{r}}{2}\right\|_{\text {ber }} \tag{15}
\end{equation*}
$$

Remark 2. Therefore, inequality (14) essentially gives a refinement of the inequality of 15) since $\frac{2 \sqrt{M m}}{M+m} \leq 1$.

The following result is of interest in itself.
Theorem 3. Let $A \in \mathcal{B}(\mathcal{H})$, and let h be a non-negative increasing convex function on $[0, \infty)$.

$$
h\left(\operatorname{ber}^{2}(A)\right) \leq \frac{1}{4}\left(h\left(\left\|A^{*} A+A A^{*}\right\|_{\text {ber }}\right)+h\left(\left\|A^{*} A-A A^{*}\right\|_{\text {ber }}\right)\right)+\frac{1}{2} h\left(\operatorname{ber}\left(A^{2}\right)\right)
$$

In particular, for any $r \geq 1$,

$$
\operatorname{ber}^{2 r}(A) \leq \frac{1}{4}\left(\left\|A^{*} A+A A^{*}\right\|_{\text {ber }}^{r}+\left\|A^{*} A-A A^{*}\right\|_{\text {ber }}^{r}\right)+\frac{1}{2} \operatorname{ber}^{r}\left(A^{2}\right)
$$

Proof. Let $\lambda \in \Omega$ be an arbitrary. Put $b_{1}=A \widehat{k}_{\lambda}, b_{2}=A^{*} \widehat{k}_{\lambda}$, and $a=\widehat{k}_{\lambda}$ in the inequality (7). Since $\max (a, b)=\frac{|a+b|+|a-b|}{2}$, we get

$$
\begin{align*}
& \left|\left\langle\widehat{k}_{\lambda}, A \widehat{k}_{\lambda}\right\rangle\right|^{2}+\left|\left\langle\widehat{k}_{\lambda}, A^{*} \widehat{k}_{\lambda}\right\rangle\right|^{2} \\
& \leq \max \left(\left\|A \widehat{k}_{\lambda}\right\|^{2},\left\|A^{*} \widehat{k}_{\lambda}\right\|^{2}\right)+\left|\left\langle A \widehat{k}_{\lambda}, A^{*} \widehat{k}_{\lambda}\right\rangle\right| \tag{16}\\
& =\frac{1}{2}\left(\left|\left\langle A^{*} A+A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle A^{*} A-A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)+\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right| .
\end{align*}
$$

Applying the AM-GM inequality for the left hand side of the above inequality, we get

$$
\begin{aligned}
& \left|\left\langle A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\left|\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right| \\
& \leq \frac{1}{4}\left(\left|\left\langle A^{*} A+A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle A^{*} A-A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)+\frac{1}{2}\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|
\end{aligned}
$$

Whence,

$$
\begin{aligned}
& h\left(\left|\left\langle A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\left|\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right) \\
& \leq h\left(\frac{1}{4}\left(\left|\left\langle A^{*} A+A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle A^{*} A-A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)+\frac{1}{2}\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& =h\left(\frac{\frac{1}{2}\left|\left\langle A^{*} A+A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle A^{*} A-A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|}{2}\right) \\
& \leq \frac{1}{2}\left(h\left(\frac{\left|\left\langle A^{*} A+A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|+\left|\left\langle A^{*} A-A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|}{2}\right)+h\left(\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)\right) \\
& \leq \frac{1}{4}\left(h\left(\left|\left\langle A^{*} A+A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)+h\left(\left|\left\langle A^{*} A-A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)\right)+\frac{1}{2} h\left(\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& h\left(\left|\left\langle A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\left|\left\langle A \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right) \\
& \leq \frac{1}{4}\left(h\left(\left|\left\langle A^{*} A+A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)+h\left(\left|\left\langle A^{*} A-A A^{*} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)\right)+\frac{1}{2} h\left(\left|\left\langle A^{2} \widehat{k}_{\lambda}, \widehat{k}_{\lambda}\right\rangle\right|\right)
\end{aligned}
$$

By taking the supremum over $\lambda \in \Omega$ above inequality, we have

$$
h\left(\operatorname{ber}^{2}(A)\right) \leq \frac{1}{4}\left(h\left(\left\|A^{*} A+A A^{*}\right\|_{\text {ber }}\right)+h\left(\left\|A^{*} A-A A^{*}\right\|_{\text {ber }}\right)\right)+\frac{1}{2} h\left(\operatorname{ber}\left(A^{2}\right)\right) .
$$

This completes the proof.
Corollary 5. Let $A \in \mathcal{B}(\mathcal{H})$ be an invertible operator. Then

$$
\operatorname{ber}(A) \leq \sqrt{\frac{1}{2}\|A\|_{\text {ber }}^{2}+\frac{3}{4}\left\|A^{2}\right\|_{v}-\frac{1}{4}\left\|A^{-1}\right\|_{\text {ber }}^{-2}}
$$

Proof. By using similar techniques from 22, we get

$$
\begin{equation*}
\left\|A^{*} A-A A^{*}\right\|_{\mathrm{ber}} \leq\|A\|_{\mathrm{ber}}^{2}-\left\|A^{-1}\right\|_{\mathrm{ber}}^{-2} \tag{17}
\end{equation*}
$$

On the other hand, from Theorem [3, we have

$$
\operatorname{ber}^{2}(A) \leq \frac{1}{4}\left(\left\|A^{*} A+A A^{*}\right\|_{\text {ber }}+\left\|A^{*} A-A A^{*}\right\|_{\text {ber }}\right)+\frac{1}{2} \operatorname{ber}\left(A^{2}\right)
$$

Hence

$$
\begin{aligned}
\operatorname{ber}^{2}(A) & \leq \frac{1}{4}\left(\left\|A^{*} A+A A^{*}\right\|_{\mathrm{ber}}+\left\|A^{*} A-A A^{*}\right\|_{\mathrm{ber}}\right)+\frac{1}{2} \operatorname{ber}\left(A^{2}\right) \\
& \leq \frac{1}{4}\left(\left\|A^{*} A+A A^{*}\right\|_{\mathrm{ber}}+\|A\|^{2}-\left\|A^{-1}\right\|_{\mathrm{ber}}^{-2}\right)+\frac{1}{2} \operatorname{ber}\left(A^{2}\right)
\end{aligned}
$$

(by the inequality 17)

$$
\leq \frac{1}{4}\left(2\|A\|_{\mathrm{ber}}^{2}+\left\|A^{2}\right\|_{\mathrm{ber}}-\left\|A^{-1}\right\|_{\mathrm{ber}}^{-2}\right)+\frac{1}{2} \operatorname{ber}\left(A^{2}\right)
$$

(by the inequality (5))
$\leq \frac{1}{2}\|A\|_{\text {ber }}^{2}+\frac{3}{4}\left\|A^{2}\right\|_{\text {ber }}-\frac{1}{4}\left\|A^{-1}\right\|_{\text {ber }}^{-2}$
(by the inequality (1))
as required.

The following upper bound for the nonnegative difference $\operatorname{ber}^{2}(A)-\operatorname{ber}\left(A^{2}\right)$ can be obtained:

Corollary 6. Let $A \in \mathcal{B}(\mathcal{H})$. Then

$$
\operatorname{ber}^{2}(A)-\operatorname{ber}\left(A^{2}\right) \leq \frac{1}{4}\left(\left\||A|^{2}+\left|A^{*}\right|^{2}\right\|_{\mathrm{ber}}+\left\||A|^{2}-\left|A^{*}\right|^{2}\right\|_{\mathrm{ber}}\right)
$$

For more recent results concerning Berezin radius inequalities for operators and other related results, we suggest $3,5,12,14,16,33$.

Author Contribution Statements The authors contributed equally to this work. All authors read and approved the final copy of this paper.

Declaration of Competing Interests The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Abu-Omar, A., Kittaneh, F., Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math., 45 (2015), 1055-1065. https://doi.org/10.1216/RMJ-2015-45-4-1055
[2] Aronzajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
[3] Bakherad, M., Some Berezin number inequalities for operator matrices, Czechoslovak Mathematical Journal, 68(4) (2018), 997-1009. http://doi.org/10.21136/CMJ.2018.0048-17
[4] Bakherad, M., Garayev, M. T., Berezin number inequalities for operators, Concrete Operators, 6(1) (2019), 33-43. http://doi.org/10.1515/conop-2019-0003
[5] Başaran, H., Gürdal, M., Güncan, A. N., Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532. http://doi.org/10.3906/mat-1811-10
[6] Bellman, R., Almost orthogonal series, Bull. Amer. Math. Soc., 50 (1944), 517-519.
[7] Berezin, F. A., Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6 (1972), 1117-1151. http://dx.doi.org/10.1070/IM1972v006n05ABEH001913
[8] Boas, R. P., A general moment problem, Amer. J. Math., 63 (1941), 361-370. https://doi.org/10.2307/2371530
[9] Dragomir, S. S., Some refinements of Schwarz inequality, Suppozionul de Matematica si Aplicatii, Poly Technical Institute Timisoara, Romania, (1985), 13-16.
[10] Dragomir, S. S., Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces, Tamkang J. Math., 39 (2008), 1-7. https://doi.org/10.5556/j.tkjm.39.2008.40
[11] Garayev, M. T., Berezin symbols, Hölder-McCarthy and Young inequalities and their applications, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43(2) (2017), 287-295.
[12] Garayev, M., Bouzeffour, F., Gürdal, M., Yangöz, C. M., Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math., 35 (2020), 1-20. https://doi.org/10.17398/2605-5686.35.1.1
[13] Garayev, M. T., Gürdal, M., Okudan, A., Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl., 19 (2016), 883-891. https://doi.org/10.7153/mia-19-64
[14] Garayev, M. T., Guedri, H., Gürdal, M., Alsahli, G. M., On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra, 69(11) (2021), 2059-2077. https://doi.10.1080/03081087.2019.1659220
[15] Gustafson, K. E., Rao, D. K. M., Numerical Range, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4613-8498-4_1
[16] Huban, M. B., Upper and lower bounds of the A-Berezin number of operators, Turkish J. Math., 46(1) (2022), 189-206. https://doi.org/10.3906/mat-2108-90
[17] Huban, M. B., Başaran, H., Gürdal, M., New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021), 1-12.
[18] Huban, M. B., Başaran, H., Gürdal, M., Berezin number inequalities via convex functions, Filomat, 36(7) (2022), 2333-2344. https://doi.org/10.2298/FIL2207333H
[19] Karaev, M. T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192. https://doi.org/doi:10.1016/j.jfa.2006.04.030
[20] Karaev, M. T., Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018.
[21] Kittaneh, F., A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11-17. https://doi.org/10.4064/sm158-1-2
[22] Kittaneh, F., Norm inequalities for sums and diferences of positive operators, Linear Algebra Appl., 383 (2004), 85-91. https://doi.org/10.1016/j.laa.2003.11.023
[23] Kittaneh, F., Notes on some inequalities for Hilbert Space operators, Publ. Res. Inst. Math. Sci., 24 (1988), 283-293. https://doi.org/10.2977/prims/1195175202
[24] Mond, B., Pecaric, J., On Jensen's inequality for operator convex functions, Houston J. Math., 21 (1995), 739-753.
[25] Moradi, H. R., Sababheh, M., More accurate numerical radius inequalities (II), Linear Multilinear Algebra, 69(5) (2021), 921-933. https://doi.org/10.1080/03081087.2019.1703886
[26] Moradi, H. R. Omidvar, M. E., Dragomir, S. S., Khan, M. S., Sesquilinear version of numerical range and numerical radius, Acta Univ. Sapientiae Math., 9(2) (2017), 324-335. https://doi.org/10.1515/ausm-2017-0024
[27] Omidvar, M. E., Moradi, H. R., Shebrawi, K., Sharpening some classical numerical radius inequalities, Oper. Matrices, 12(2) (2018), 407-416. https://doi.org/10.7153/oam-2018-12-26
[28] Sababheh, M., Moradi, H. R., More accurate numerical radius inequalities (I), Linear Multilinear Algebra, 69(10) (2021). https://doi.org/10.1080/03081087.2019.1651815
[29] Safshekan, R., Farokhinia, A., Some refinements of numerical radius inequalities via convex functions, Applied Mathematics E-Notes, 21 (2021), 542-549.
[30] Sattari, M., Moslehian, M. S., Yamazaki, T., Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 470 (2015), 216-227. https://doi.org/10.1016/j.laa.2014.08.003
[31] Tafazoli, S., Moradi, H. R., Furuichi, S., Harikrishnan, P., Further inequalities for the numerical radius of Hilbert space operators, J. Math. Inequal., 13 (2019), 955-967. https://doi.org/10.48550/arXiv.1907.06003
[32] Tapdigoglu, R., New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices, 15(3) (2021), 1445-1460. https://doi.org/10.7153/oam-2021-15-64
[33] Tapdigoglu, T., Gürdal, M., Altwaijry, N., Sarı, N., Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities, Oper. Matrices, 15(4) (2021), 1445-1460. https://doi.org/10.7153/oam-2021-15-90
http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 72, Number 1, Pages 43-58 (2023)
DOI:10.31801/cfsuasmas. 1074557
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: February 16, 2022; Accepted: July 3, 2022

NEW INSIGHT INTO QUATERNIONS AND THEIR MATRICES

Gülsüm Yeliz ŞENTÜRK ${ }^{1}$, Nurten GÜRSES ${ }^{2}$ and Salim YÜCE ${ }^{3}$
${ }^{1}$ Department of Computer Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim University, 34310 Istanbul, TÜRKİYE
${ }^{2,3}$ Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, 34220 Istanbul, TÜRKİYE

Abstract

This paper aims to bring together quaternions and generalized complex numbers. Generalized quaternions with generalized complex number components are expressed and their algebraic structures are examined. Several matrix representations and computational results are introduced. An alternative approach for a generalized quaternion matrix with elliptic number entries has been developed as a crucial part.

1. Introduction

Hamilton introduced the Hamiltonian quaternions for representing vectors in the space, [1,2. The real quaternion is written as $q=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$, where $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$ are components and $\mathbf{i}, \mathbf{j}, \mathbf{k} \notin \mathbb{R}$ are versors, 3. The set of real quaternions, as an extension of complex numbers, is an associative but noncommutative Clifford algebra used in many fields of applied mathematics. The associative quaternions will be divided into two classes: in the first class, there are the non-commutative quaternions (Hamiltonian, hyperbolic, split, generalized quaternions $4-11$ etc.), and in the second class, there are the commutative quaternions (generalized Segré quaternions 12, 13, dual quaternions, 14 etc.).

The algebra of generalized quaternions as a non-commutative system, denoted by $\mathcal{Q}_{\alpha, \beta}$, includes a variety of well-known four-dimensional algebras as special cases.

[^3]The conditions of the versors for them are given by:

$$
\begin{array}{ccc}
\mathbf{i}^{2}=-\alpha, & \mathbf{j}^{2}=-\beta, & \mathbf{k}^{2}=-\alpha \beta \\
\mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, & \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\beta \mathbf{i}, & \mathbf{k} \mathbf{i}=-\mathbf{i} \mathbf{k}=\alpha \mathbf{j} \tag{1}
\end{array}
$$

where $\alpha, \beta \in \mathbb{R}$. For $\alpha=\beta=1$ Hamiltonian quaternions, $\alpha=1, \beta=-1$ split quaternions, $\alpha=1, \beta=0$ semi-quaternions, $\alpha=-1, \beta=0$ split semi-quaternions, and $\alpha=\beta=0$ quasi-quaternions are obtained.

Additionally, the general bidimensional hypercomplex systems (namely generalized complex numbers $(\mathcal{G C N})$) over the field of real numbers \mathbb{R} are given by the ring ($19-24$):

$$
\frac{\mathbb{R}[X]}{\langle h(X)\rangle} \cong\left\{z=x_{1}+x_{2} I: I^{2}=I \mathfrak{q}+\mathfrak{p}, \quad \mathfrak{p}, \mathfrak{q}, x_{1}, x_{2} \in \mathbb{R}, I \notin \mathbb{R}\right\}
$$

where $h(X)=X^{2}-\mathfrak{q} X-\mathfrak{p}$ is monic quadratic. By denoting this set with $\mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$, it is well known that the sign of $\Delta=\mathfrak{q}^{2}+4 \mathfrak{p}$ determines the properties of the general bidimensional systems. These systems are ring isomorphic with one of the following three types:

- for $\Delta>0$ the hyperbolic system; the canonical system is the system of hyperbolic (double, split complex, perplex) numbers $\mathbb{H} \cong \mathbb{C}_{0,1}$ with $\mathfrak{p}=1$, $\mathfrak{q}=0,25-28$,
- for $\Delta<0$ the elliptic system; the canonical system is the system of complex (ordinary) numbers $\mathbb{C} \cong \mathbb{C}_{0,-1}$ with $\mathfrak{p}=-1, \mathfrak{q}=0,28,29$,
- for $\Delta=0$ the parabolic system; the canonical system is the system of dual numbers $\mathbb{D} \cong \mathbb{C}_{0,0}$ with $\mathfrak{p}=0, \mathfrak{q}=0,28,30,31$.
Regarding the value $\mathcal{D}_{z}=z \bar{z}=\left(x_{1}+x_{2} I\right)\left(x_{1}-x_{2} I\right)=x_{1}{ }^{2}-\mathfrak{p} x_{2}{ }^{2}+\mathfrak{q} x_{1} x_{2}$, which is called the characteristic determinant, $z \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$ can be classified into three types, 20 . Hence $z \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$ is called timelike, spacelike or null where $\mathcal{D}_{z}<0, \mathcal{D}_{z}>0$ and $\mathcal{D}_{z}=0$, respectively. Then all of the elements of the set $\mathbb{C}_{0,-1}$ are spacelike. For $\mathfrak{q}=0, I^{2}=\mathfrak{p} \in \mathbb{R}$, the generalized complex number system is denoted by $\mathbb{C}_{\mathfrak{p}}$ and called \mathfrak{p}-complex plane, 23 .

In this paper, we aim to design generalized quaternions by taking the components as elements of $\mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$. Moreover, the algebraic structures and properties of these quaternions are investigated, and several types of matrix representations are introduced. Also, an alternative approach for the generalized quaternion matrix with elliptic number entries is considered as a further result.

2. Generalized Quaternions with Gcn Components

In this section, we present mathematical formulations of improved quaternions: generalized quaternions with $\mathcal{G C N}$ and examine special matrix correspondences.

Definition 1. For $\alpha, \beta \in \mathbb{R}$, the set of generalized quaternions with $\mathcal{G C N}$ components are denoted by $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ and the element of this set is defined as in the form:

$$
\widetilde{q}=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

where $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$ and $\mathbf{i}, \mathbf{j}, \mathbf{k} \notin \mathbb{R}$ are generalized quaternion versors that satisfy the properties in equations (1).

Axiomatically, the generalized complex unit I commutes with the three quaternion versors \mathbf{i}, \mathbf{j} and \mathbf{k}, that is $\mathbf{i} I=I \mathbf{i}, \mathbf{j} I=I \mathbf{j}$ and $\mathbf{k} I=I \mathbf{k}$. It is obvious that for $\mathfrak{q}=0, \mathfrak{p}=-1, \alpha=1$, the usual complex operator is distinct from quaternion versor i. Moreover \mathbf{i} distinct from the usual hyperbolic unit for $\mathfrak{q}=0, \mathfrak{p}=1, \alpha=-1$ and distinct from the usual dual unit for $\mathfrak{q}=0, \mathfrak{p}=0, \alpha=0$. This conditions can also be extended for the other versors.

Throughout this section, $\widetilde{q}=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\widetilde{p}=b_{0}+b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ are considered. Due to the generalized quaternions with $\mathcal{G C N}$ components are an extension of generalized quaternions, many properties of them are familiar. For any $\widetilde{q} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}, S_{\widetilde{q}}=a_{0}$ is the scalar part and $V_{\widetilde{q}}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ is the vector part. Equality of two improved quaternions is as follows: $\widetilde{p}=\widetilde{q} \Leftrightarrow S_{\widetilde{p}}=S_{\widetilde{q}}, V_{\widetilde{p}}=V_{\widetilde{q}}$. Addition (and hence subtraction) of \widetilde{q} to another quaternion \widetilde{p} acts in a componentwise way:

$$
\begin{align*}
\widetilde{q}+\widetilde{p} & =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) \mathbf{i}+\left(a_{2}+b_{2}\right) \mathbf{j}+\left(a_{3}+b_{3}\right) \mathbf{k} \\
& =S_{\widetilde{p}}+S_{\widetilde{q}}+V_{\widetilde{p}}+V_{\widetilde{q}} \tag{2}
\end{align*}
$$

The conjugate of \widetilde{q} is the following quaternion:

$$
\begin{equation*}
\overline{\widetilde{q}}=a_{0}-a_{1} \mathbf{i}-a_{2} \mathbf{j}-a_{3} \mathbf{k}=S_{\widetilde{q}}-V_{\widetilde{q}} \tag{3}
\end{equation*}
$$

The scalar multiplication of \widetilde{q} with a scalar $c \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$ gives another improved quaternion as:

$$
\begin{equation*}
c \widetilde{q}=c a_{0}+c a_{1} \mathbf{i}+c a_{2} \mathbf{j}+c a_{3} \mathbf{k}=c S_{\widetilde{q}}+c V_{\widetilde{q}} . \tag{4}
\end{equation*}
$$

Multiplication of the two quaternions is carried out as follows:

$$
\begin{align*}
\tilde{q} \widetilde{p}= & \left(a_{0} b_{0}-\alpha a_{1} b_{1}-\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3}\right) \\
& +\left(a_{0} b_{1}+a_{1} b_{0}+\beta a_{2} b_{3}-\beta a_{3} b_{2}\right) \mathbf{i} \tag{5}\\
& +\left(a_{0} b_{2}-\alpha a_{1} b_{3}+a_{2} b_{0}+\alpha a_{3} b_{1}\right) \mathbf{j} \\
& +\left(a_{0} b_{3}+a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{0}\right) \mathbf{k} .
\end{align*}
$$

Proposition 1. $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ is a 4-dimensional module over $\mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$ with base $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ and is an 8-dimensional vector space over \mathbb{R} with base $\{1, I, \mathbf{i}, I \mathbf{i}, \mathbf{j}, I \mathbf{j}, \mathbf{k}, I \mathbf{k}\}$.

Definition 2. For any $\widetilde{q}, \widetilde{p} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$, the scalar and vector products on $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ are, respectively, defined by:

$$
\begin{aligned}
\langle\widetilde{q}, \widetilde{p}\rangle_{g} & =S_{\widetilde{q}} S_{\widetilde{p}}+\left\langle V_{\widetilde{q}}, V_{\widetilde{p}}\right\rangle_{g}=a_{0} b_{0}+\alpha a_{1} b_{1}+\beta a_{2} b_{2}+\alpha \beta a_{3} b_{3}=S_{\widetilde{q} \overline{\tilde{p}}}, \\
\widetilde{q} \times_{g} \widetilde{p} & =S_{\widetilde{q}} V_{\widetilde{\widetilde{p}}}+S_{\widetilde{\widetilde{p}}} V_{\widetilde{q}}-V_{\widetilde{q}} \times_{g} V_{\widetilde{p}}=V_{\widetilde{q} \widetilde{p}},
\end{aligned}
$$

where \langle,\rangle_{g} and \times_{g} represent generalized scalar product and generalized vector product \rrbracket for $\alpha, \beta \in \mathbb{R}^{+}$, respectively.

[^4]Definition 3. The norm of \widetilde{q} is defined as:

$$
\begin{equation*}
N_{\widetilde{q}}=\widetilde{q} \overline{\widetilde{q}}=\overline{\widetilde{q}} \widetilde{q}=a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2} \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}} \tag{6}
\end{equation*}
$$

Definition 4. The inverse of \widetilde{q} is calculated by:

$$
(\widetilde{q})^{-1}=\frac{\overline{\widetilde{q}}}{N_{\widetilde{q}}}
$$

for non-null $N_{\widetilde{q}}$ that is $\mathcal{D}_{N_{\widetilde{q}}} \neq 0$.
Proposition 2. For any $\widetilde{q}, \widetilde{p} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ and $c_{1}, c_{2} \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$, the conjugate and norm hold the following properties:
i. $\overline{\overline{\widetilde{q}}}=\widetilde{q}$,
iii. $\overline{\widetilde{q} \widetilde{p}}=\overline{\widetilde{p}} \overline{\widetilde{q}}$,
ii. $c_{1} \widetilde{p}+c_{2} \widetilde{q}=c_{1} \overline{\widetilde{p}}+c_{2} \overline{\widetilde{q}}$,
iv. $N_{c_{1} \widetilde{q}}=c_{1}^{2} N_{\widetilde{q}}$,
v. $N_{\widetilde{q} \widetilde{p}}=N_{\widetilde{q}} N_{\widetilde{p}}$.

Proof. Taking into account equations (2), (3) and (4), items i and ii are obvious.
iii. Considering the conjugate of equation (5), we have:

$$
\begin{aligned}
\overline{\widetilde{q} \widetilde{p}}= & \left(a_{0} b_{0}-\alpha a_{1} b_{1}-\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3}\right) \\
& -\left(a_{0} b_{1}+a_{1} b_{0}+\beta a_{2} b_{3}-\beta a_{3} b_{2}\right) \mathbf{i} \\
& -\left(a_{0} b_{2}-\alpha a_{1} b_{3}+a_{2} b_{0}+\alpha a_{3} b_{1}\right) \mathbf{j} \\
& -\left(a_{0} b_{3}+a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{0}\right) \mathbf{k}
\end{aligned}
$$

Using equations (1), it is easy to check that

$$
\overline{\widetilde{p}} \overline{\widetilde{q}}=\left(b_{0}-b_{1} \mathbf{i}-b_{2} \mathbf{j}-b_{3} \mathbf{k}\right)\left(a_{0}-a_{1} \mathbf{i}-a_{2} \mathbf{j}-a_{3} \mathbf{k}\right)=\overline{\widetilde{q} \widetilde{p}}
$$

iv. Having item ii and equation (6), we get: $N_{c_{1} \widetilde{q}}=\left(c_{1} \widetilde{q}\right) \overline{\left(c_{1} \widetilde{q}\right)}=c_{1}^{2} N_{\widetilde{q}}$.
v. Using item iii and equation (6), we obtain:

$$
N_{\widetilde{q} \widetilde{p}}=(\widetilde{q} \widetilde{p}) \overline{(\widetilde{q} \widetilde{p})}=\widetilde{q} \widetilde{p} \bar{p} \overline{\widetilde{q}} \overline{\widetilde{q}}=N_{\widetilde{q}} N_{\widetilde{p}} .
$$

Remark 1. As an another perspective to $\widetilde{q} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$, the following can be calculated:

$$
\begin{align*}
\widetilde{q} & =a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \\
& =\left(x_{01}+x_{02} I\right)+\left(x_{11}+x_{12} I\right) \mathbf{i}+\left(x_{21}+x_{22} I\right) \mathbf{j}+\left(x_{31}+x_{32} I\right) \mathbf{k} \tag{7}\\
& =q_{0}+q_{1} I,
\end{align*}
$$

where $a_{i}=x_{i 1}+x_{i 2} I \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}, q_{j-1}=x_{0 j}+x_{1 j} \mathbf{i}+x_{2 j} \mathbf{j}+x_{3 j} \mathbf{k} \in \mathcal{Q}_{\alpha, \beta}$ for $0 \leq$ $i \leq 3,1 \leq j \leq 2$. For $\widetilde{q}=q_{0}+q_{1} I$ and $\widetilde{p}=p_{0}+p_{1} I \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$, if $\widetilde{p}=\widetilde{q}$, then $p_{0}=q_{0}, p_{1}=q_{1}$. The addition is $\widetilde{p}+\widetilde{q}=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) I$. The conjugate and anti conjugate are $\widetilde{q}^{\dagger_{1}}=q_{0}+\mathfrak{q} q_{1}-q_{1} I$ and $\widetilde{q}^{\dagger_{2}}=q_{1}-q_{0} I$, respectively. Additionally, $c \widetilde{q}=c q_{0}+c q_{1} I, c \in \mathbb{R}$ and

$$
\widetilde{q} \widetilde{p}=\left(q_{0} p_{0}+\mathfrak{p} q_{1} p_{1}\right)+\left(q_{0} p_{1}+q_{1} p_{0}+\mathfrak{q} q_{1} p_{1}\right) I .
$$

It is worthy to note that $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ is a 2-dimensional module over $\mathcal{Q}_{\alpha, \beta}$ (skew-field) with base $\{1, I\}$. The moduli is

$$
\begin{equation*}
N_{\widetilde{q}}^{\dagger_{1}}=\widetilde{q} \widetilde{q}^{\dagger_{1}} \tag{8}
\end{equation*}
$$

and the inverse is $(\widetilde{q})^{-1}=\frac{\widetilde{q}^{1_{1}}}{N_{\widetilde{q}_{1}^{1}}}$ for non-null $N_{\widetilde{q}}^{\dagger_{1}}$. The analogue of the scalar product on $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ can also defined by as follows:

$$
\langle\widetilde{q}, \widetilde{p}\rangle_{g}=S_{q_{0} \bar{p}_{0}}+\mathfrak{p} S_{q_{1} \bar{p}_{1}}+\left(S_{q_{0} \bar{p}_{1}}+S_{q_{1} \bar{p}_{0}}+\mathfrak{q} S_{q_{1} \bar{p}_{1}}\right) I
$$

Proposition 3. The followings hold for $\widetilde{q}, \widetilde{p} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ and $c_{1}, c_{2} \in \mathbb{R}$:
i. $\left(\widetilde{q}^{\dagger_{1}}\right)^{\dagger_{1}}=\widetilde{q}$,
v. $\widetilde{q}+\widetilde{q}^{\dagger_{1}}=2 q_{0}+\mathfrak{q} q_{1}$,
ii. $\left(\widetilde{q}^{\dagger_{2}}\right)^{\dagger_{2}}=-\widetilde{q}$,
vi. $(\widetilde{q} \widetilde{p})^{\dagger_{1}} \neq \widetilde{p}^{\dagger_{1}} \widetilde{q}^{\dagger_{1}}$,
iii. $\left(c_{1} \widetilde{q} \pm c_{2} \widetilde{p}\right)^{\dagger_{1}}=c_{1} \widetilde{q}^{\dagger_{1}} \pm c_{2} \widetilde{p}^{\dagger_{1}}$,
vii. $N_{c_{1} \widetilde{q}}^{\dagger_{1}}=c_{1}{ }^{2} N_{\widetilde{q}}^{\dagger_{1}}$,
iv. $\left(c_{1} \widetilde{q} \pm c_{2} \widetilde{p}\right)^{\dagger_{2}}=c_{1} \widetilde{q}^{\dagger_{2}} \pm c_{2} \widetilde{p}^{\dagger_{2}}$,
viii. $N_{\widetilde{q} \widetilde{p}}^{\dagger_{1}} \neq N_{\widetilde{q}}^{\dagger_{1}} N_{\widetilde{p}}^{\dagger_{1}}$.

Proof. vi. Let us consider $\widetilde{q}=(1+\mathbf{i}) I$ and $\widetilde{p}=\mathbf{j}+I$. As it is seen the followings:

$$
\begin{gathered}
\widetilde{q} \widetilde{p}=\mathfrak{p}(1+\mathbf{i})+(\mathfrak{q}+\mathfrak{q} \mathbf{i}+\mathbf{j}+\mathbf{k}) I, \\
(\widetilde{q} \widetilde{p})^{\dagger_{1}}=\mathfrak{p}(1+\mathbf{i})+\mathfrak{q}(\mathfrak{q}+\mathfrak{q} \mathbf{i}+\mathbf{j}+\mathbf{k})-(\mathfrak{q}+\mathfrak{q} \mathbf{i}+\mathbf{j}+\mathbf{k}) I,
\end{gathered}
$$

and

$$
\begin{aligned}
\tilde{p}^{\dagger_{1}} \widetilde{q}^{\dagger_{1}} & =(\mathbf{j}+\mathfrak{q}-I)(\mathfrak{q}(1+\mathbf{i})-(1+\mathbf{i}) I) \\
& =\left(\mathfrak{p}+\mathfrak{q}^{2}\right)+\left(\mathfrak{p}+\mathfrak{q}^{2}\right) \mathbf{i}+\mathfrak{q} \mathbf{j}-\mathfrak{q} \mathbf{k}-(\mathfrak{q}+\mathfrak{q} \mathbf{i}+\mathbf{j}-\mathbf{k}) I
\end{aligned}
$$

It follows that $(\widetilde{q} \widetilde{p})^{\dagger_{1}} \neq \widetilde{p}^{\dagger_{1}} \widetilde{q}^{\dagger_{1}}$.
viii. From equation (8), we have the following equations:

$$
N_{\widetilde{q} \widetilde{p}}^{\dagger_{1}}=(\widetilde{q} \widetilde{p})(\widetilde{q} \widetilde{p})^{\dagger_{1}}
$$

and

$$
N_{\widetilde{q}}^{\dagger_{1}} N_{\widetilde{p}}^{\dagger_{1}}=\left(\widetilde{q} \widetilde{q}^{\dagger_{1}}\right)\left(\widetilde{p} \widetilde{p}^{\dagger_{1}}\right) .
$$

On account of the generalized quaternions are non-commutative and item vi, we find $N_{\widetilde{q} \widetilde{p}}^{\dagger_{1}} \neq N_{\widetilde{q}}^{\dagger_{1}} N_{\widetilde{p}}^{\dagger_{1}}$. One can also see this inequality considering $\widetilde{q}=\mathbf{i} I$ and $\widetilde{p}=\mathbf{j}$ as $N_{\widetilde{q} \widetilde{p}}^{\dagger_{1}}=\mathfrak{p} \alpha \beta=-N_{\widetilde{q}}^{\dagger_{1}} N_{\widetilde{p}}^{\dagger_{1}}$.
The proof of the other items is a simple calculation considering Remark 1
2.1. Matrix Correspondences. In this subsection, we formulate $2 \times 2,4 \times 4$ and 8×8 matrix correspondences which provide an alternative formulation of multiplication.

Theorem 1. Every generalized quaternion with $\mathcal{G C N}$ components can be represented by a 2×2 quaternionic matrix. $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ is the subset of $\mathbb{M}_{2}\left(\widetilde{\mathcal{Q}}_{\alpha, \beta}\right)$.

Proof. For $\widetilde{q}=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}, \mathcal{L}: \widetilde{\mathcal{Q}}_{\alpha, \beta} \rightarrow \mathcal{R}, \widetilde{q} \mapsto \mathcal{A}_{\widetilde{q}}$ is linear map, where

$$
\mathcal{R}:=\left\{\mathcal{A}_{\widetilde{q}} \in \mathbb{M}_{2}\left(\widetilde{\mathcal{Q}}_{\alpha, \beta}\right): \mathcal{A}_{\widetilde{q}}=\left[\begin{array}{ll}
a_{0}+a_{3} \mathbf{k} & a_{1} \mathbf{i}+a_{2} \mathbf{j} \tag{9}\\
a_{1} \mathbf{i}+a_{2} \mathbf{j} & a_{0}+a_{3} \mathbf{k}
\end{array}\right]\right\}
$$

is a subset of $\mathbb{M}_{2}\left(\widetilde{\mathcal{Q}}_{\alpha, \beta}\right)$. So there exists a correspondence between $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ and \mathcal{R} via the map \mathcal{L}. Hence, 2×2 quaternionic matrix representation of \widetilde{q} is $\mathcal{A}_{\widetilde{q}}$.

Corollary 1. \mathcal{L} can be determined as the following representation:

$$
\begin{equation*}
\mathcal{L}\left(a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right)=a_{0} I_{2}+a_{1} \mathbf{I}+a_{2} J+a_{3} \mathrm{~K}, \tag{10}
\end{equation*}
$$

where

$$
\mathrm{I}=\left[\begin{array}{ll}
0 & \mathbf{i} \\
\mathbf{i} & 0
\end{array}\right], \mathrm{J}=\left[\begin{array}{ll}
0 & \mathbf{j} \\
\mathbf{j} & 0
\end{array}\right], \mathrm{K}=\left[\begin{array}{cc}
\mathbf{k} & 0 \\
0 & \mathbf{k}
\end{array}\right]
$$

Thus

$$
\begin{aligned}
& \mathrm{I}^{2}=-\alpha I_{2}, \quad \mathrm{~J}^{2}=-\beta I_{2}, \quad \mathrm{~K}^{2}=-\alpha \beta I_{2}, \\
& \mathrm{IJ}=-\mathrm{J}=\mathrm{K}, \quad \mathrm{JK}=-\mathrm{KJ}=-\beta \mathrm{I}, \quad \mathrm{KI}=-\mathrm{IK}=\alpha \mathrm{J} .
\end{aligned}
$$

Theorem 2. For $\widetilde{q}, \widetilde{p} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ and $\lambda \in \mathbb{R}$, then the following identities hold:
i. $\widetilde{q}=\widetilde{p} \Leftrightarrow \mathcal{A}_{\widetilde{q}}=\mathcal{A}_{\widetilde{p}}$,
iii. $\mathcal{A}_{\lambda \widetilde{q}}=\lambda\left(\mathcal{A}_{\widetilde{q}}\right)$,
ii. $\mathcal{A}_{\widetilde{q}+\widetilde{p}}=\mathcal{A}_{\widetilde{q}}+\mathcal{A}_{\widetilde{p}}$,
iv. $\mathcal{A}_{\widetilde{q} \widetilde{p}}=\mathcal{A}_{\widetilde{q}} \mathcal{A}_{\widetilde{p}}$.

Proof. The proof is obvious considering the matrix form given in equation (9). However let us discuss the proof of the item iv for better understanding:
iv. Considering equation (5), we can write:

$$
\mathcal{A}_{\widetilde{q} \widetilde{p}}=\left[\begin{array}{cc}
a_{0} b_{0}-\alpha a_{1} b_{1}-\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3} & \left(a_{0} b_{1}+a_{1} b_{0}+\beta a_{2} b_{3}-\beta a_{3} b_{2}\right) \mathbf{i} \\
\left(a_{0} b_{3}+a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{0}\right) \mathbf{k} & +\left(a_{0} b_{2}-\alpha a_{1} b_{3}+a_{2} b_{0}+\alpha a_{3} b_{1}\right) \mathbf{j} \\
\left(a_{0} b_{1}+a_{1} b_{0}+\beta a_{2} b_{3}-\beta a_{3} b_{2}\right) \mathbf{i} & a_{0} b_{0}-\alpha a_{1} b_{1}-\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3} \\
+\left(a_{0} b_{2}-\alpha a_{1} b_{3}+a_{2} b_{0}+\alpha a_{3} b_{1}\right) \mathbf{j} & +\left(a_{0} b_{3}+a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{0}\right) \mathbf{k}
\end{array}\right] .
$$

Computing $\mathcal{A}_{\widetilde{q}} \mathcal{A}_{\widetilde{p}}$ as

$$
\mathcal{A}_{\widetilde{q}} \mathcal{A}_{\widetilde{p}}=\left[\begin{array}{cc}
a_{0}+a_{3} \mathbf{k} & a_{1} \mathbf{i}+a_{2} \mathbf{j} \\
a_{1} \mathbf{i}+a_{2} \mathbf{j} & a_{0}+a_{3} \mathbf{k}
\end{array}\right]\left[\begin{array}{cc}
b_{0}+b_{3} \mathbf{k} & b_{1} \mathbf{i}+b_{2} \mathbf{j} \\
b_{1} \mathbf{i}+b_{2} \mathbf{j} & b_{0}+b_{3} \mathbf{k}
\end{array}\right]
$$

gives equation (11) quickly. We thus get $\mathcal{A}_{\widetilde{q} \widetilde{p}}=\mathcal{A}_{\widetilde{q}} \mathcal{A}_{\widetilde{p}}$.

Theorem 3. Every generalized quaternion with $\mathcal{G C N}$ components can be represented by a 4×4 generalized complex matrix. $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ is the subset of $\mathbb{M}_{4}\left(\mathbb{C}_{\mathfrak{q}, \mathfrak{p}}\right)$.

Proof. For $\widetilde{q} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$, denote \mathcal{K} as a subset of $\mathbb{M}\left(\mathbb{C}_{\mathfrak{q}, \mathfrak{p}}\right)$ given by:

$$
\mathcal{K}:=\left\{\mathcal{B}_{\widetilde{q}}^{l} \in \mathbb{M}_{4}\left(\mathbb{C}_{\mathfrak{q}, \mathfrak{p}}\right): \mathcal{B}_{\widetilde{q}}^{l}=\left[\begin{array}{cccc}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \tag{12}\\
a_{1} & a_{0} & -\beta a_{3} & \beta a_{2} \\
a_{2} & \alpha a_{3} & a_{0} & -\alpha a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]\right\}
$$

and define linear the $\operatorname{map} \mathcal{N}: \widetilde{\mathcal{Q}}_{\alpha, \beta} \rightarrow \mathcal{K}, \widetilde{q} \mapsto \mathcal{B}_{\widetilde{q}}^{l}$. There exists a correspondence between $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ and \mathcal{K} via the map $\mathcal{N} . \mathcal{B}_{\widetilde{q}}^{l}$ is the 4×4 left generalized complex matrix representation of \widetilde{q} according to the standard base $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$.
4×4 right generalized complex matrix representation of \widetilde{q} can be calculated similarly ${ }^{2}$. Throughout this paper $\mathcal{B}_{\widetilde{q}}^{l}$ will be considered.

Corollary 2. Considering the base $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$, the column matrix representation of $\widetilde{p} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ is given by $\widetilde{p}=\left[\begin{array}{llll}b_{0} & b_{1} & b_{2} & b_{3}\end{array}\right]^{T}$. Using $\mathcal{B}_{\widetilde{q}}^{l}$, the multiplication of $\widetilde{q}, \widetilde{p} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ can also be written by: $\widetilde{q} \widetilde{p}=\mathcal{B}_{\widetilde{q}}^{l} \widetilde{p}$.

Theorem 4. Let $\widetilde{q} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$. $\mathcal{B}_{\widetilde{q}}^{l}$ can be determined as:

$$
\mathcal{B}_{\widetilde{q}}^{l}=a_{0} I_{4}+a_{1} \mathbf{I}+a_{2} \mathbf{J}+a_{3} \mathbf{K}
$$

where
$\mathbf{I}=\left[\begin{array}{cccc}0 & -\alpha & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\alpha \\ 0 & 0 & 1 & 0\end{array}\right], \mathbf{J}=\left[\begin{array}{cccc}0 & 0 & -\beta & 0 \\ 0 & 0 & 0 & \beta \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right], \mathbf{K}=\left[\begin{array}{cccc}0 & 0 & 0 & -\alpha \beta \\ 0 & 0 & -\beta & 0 \\ 0 & \alpha & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$.
Undoubtedly, $\mathbf{I}, \mathbf{J}, \mathbf{K}$ satisfy the generalized quaternion versors conditions in equations (1).

Using $\widetilde{q} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ as $\widetilde{q}=\left(a_{0}+a_{1} \mathbf{i}\right)+\left(a_{2}+a_{3} \mathbf{i}\right) \mathbf{j}$ and considering a different conjugate related to this form, we can write the following theorem:

Theorem 5. Let $\widetilde{q} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$. Then, we have $\sigma \mathcal{B}_{\widetilde{q}}^{l} \sigma=\mathcal{B}_{\widetilde{q}^{*}}^{l}$, where $\sigma=\operatorname{diag}(1,1,-1,-1)$ and $\widetilde{q}^{*}=\left(a_{0}+a_{1} \mathbf{i}\right)-\left(a_{2}+a_{3} \mathbf{i}\right) \mathbf{j} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$.

[^5]Proof. An easy computation shows that

$$
\begin{aligned}
\sigma \mathcal{B}_{\widetilde{q}}^{l} \sigma & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \\
a_{1} & a_{0} & -\beta a_{3} & \beta a_{2} \\
a_{2} & \alpha a_{3} & a_{0} & -\alpha a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{0} & -\alpha a_{1} & \beta a_{2} & \alpha \beta a_{3} \\
a_{1} & a_{0} & \beta a_{3} & -\beta a_{2} \\
-a_{2} & -\alpha a_{3} & a_{0} & -\alpha a_{1} \\
-a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right] .
\end{aligned}
$$

Hence, one can see that the last matrix is $\mathcal{B}_{\widetilde{q}^{*}}^{l}$.
Theorem 6. Let $\widetilde{q}, \widetilde{p} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ and $\lambda \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$, the following properties are satisfied:
i. $\widetilde{q}=\widetilde{p} \Leftrightarrow \mathcal{B}_{\widetilde{q}}^{l}=\mathcal{B}_{\widetilde{p}}^{l}$,
iv. $\mathcal{B}_{\widetilde{q} \widetilde{p}}^{l}=\mathcal{B}_{\widetilde{q}}^{l} \mathcal{B}_{\widetilde{p}}^{l}$,
ii. $\mathcal{B}_{\widetilde{q}+\widetilde{p}}^{l}=\mathcal{B}_{\widetilde{q}}^{l}+\mathcal{B}_{\widetilde{p}}^{l}$,
v. $\operatorname{det}\left(\mathcal{B}_{\tilde{q}}^{l}\right)=N_{\tilde{q}}^{2}$,
iii. $\mathcal{B}_{\lambda \widetilde{q}}^{l}=\lambda\left(\mathcal{B}_{\widetilde{q}}^{l}\right)$,
vi. $\operatorname{tr}\left(\mathcal{B}_{\widetilde{q}}^{l}\right)=4 S_{\widetilde{q}}$.

Proof. By considering the matrix form given in equation $\sqrt{12}$, the proof is clear. As well let us discuss the proof of the item iv for better understanding:
iv. Using equation (5), we obtain the following matrix for $\mathcal{B}_{\widetilde{q} \widetilde{p}}^{l}$:

$$
\left[\begin{array}{cccc}
a_{0} b_{0}-\alpha a_{1} b_{1} & -\alpha\left(a_{0} b_{1}+a_{1} b_{0}\right. & -\beta\left(a_{0} b_{2}-\alpha a_{1} b_{3}\right. & -\alpha \beta\left(a_{0} b_{3}+a_{1} b_{2}\right. \tag{13}\\
-\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3} & \left.+\beta a_{2} b_{3}-\beta a_{3} b_{2}\right) & \left.+a_{2} b_{0}+\alpha a_{3} b_{1}\right) & \left.-a_{2} b_{1}+a_{3} b_{0}\right) \\
a_{0} b_{1}+a_{1} b_{0} & a_{0} b_{0}-\alpha a_{1} b_{1} & -\beta\left(a_{0} b_{3}+a_{1} b_{2}\right. & \beta\left(a_{0} b_{2}-\alpha a_{1} b_{3}\right. \\
+\beta a_{2} b_{3}-\beta a_{3} b_{2} & -\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3} & \left.-a_{2} b_{1}+a_{3} b_{0}\right) & \left.+a_{2} b_{0}+\alpha a_{3} b_{1}\right) \\
\left(a_{0} b_{2}-\alpha a_{1} b_{3}\right. & \alpha\left(a_{0} b_{3}+a_{1} b_{2}\right. & a_{0} b_{0}-\alpha a_{1} b_{1} & -\alpha\left(a_{0} b_{1}+a_{1} b_{0}\right. \\
\left.+a_{2} b_{0}+\alpha a_{3} b_{1}\right) & \left.-a_{2} b_{1}+a_{3} b_{0}\right) & -\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3} & \left.+\beta a_{2} b_{3}-\beta a_{3} b_{2}\right) \\
\left(a_{0} b_{3}+a_{1} b_{2}\right. & -\left(a_{0} b_{2}-\alpha a_{1} b_{3}\right. & a_{0} b_{1}+a_{1} b_{0} & a_{0} b_{0}-\alpha a_{1} b_{1} \\
\left.-a_{2} b_{1}+a_{3} b_{0}\right) & \left.+a_{2} b_{0}+\alpha a_{3} b_{1}\right) & +\beta a_{2} b_{3}-\beta a_{3} b_{2} & -\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3}
\end{array}\right]
$$

Multiplying $\mathcal{B}_{\widetilde{q}}^{l}$ and $\mathcal{B}_{\widetilde{p}}^{l}$ as:

$$
\mathcal{B}_{\tilde{q}}^{l} \mathcal{B}_{\widetilde{p}}^{l}=\left[\begin{array}{cccc}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \\
a_{1} & a_{0} & -\beta a_{3} & \beta a_{2} \\
a_{2} & \alpha a_{3} & a_{0} & -\alpha a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{cccc}
b_{0} & -\alpha b_{1} & -\beta b_{2} & -\alpha \beta b_{3} \\
b_{1} & b_{0} & -\beta b_{3} & \beta b_{2} \\
b_{2} & \alpha b_{3} & b_{0} & -\alpha b_{1} \\
b_{3} & -b_{2} & b_{1} & b_{0}
\end{array}\right]
$$

gives equation (13) quickly. Hence we get $\mathcal{B}_{\widetilde{q} \widetilde{p}}^{l}=\mathcal{B}_{\widetilde{q}}^{l} \mathcal{B}_{\widetilde{p}}^{l}$.

Theorem 7. Let $\widetilde{q} \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ and \widetilde{q}^{-1} be the inverse of \widetilde{q}. Then,

$$
\mathcal{B}_{\widetilde{q}^{-1}}^{l}=\frac{1}{\sqrt{\operatorname{det}\left(\mathcal{B}_{\widetilde{q}}^{l}\right)}} \mathcal{B}_{\tilde{\widetilde{q}}^{l}}^{l}
$$

Proof. Taking into account Definition 4 and Theorem 6 items iii and v, the proof is obvious.

Theorem 8. Every $\mathcal{G C N}$ with generalized quaternion components can be represented by a 2×2 generalized quaternion matrix. $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ is the subset of $\mathbb{M}_{2}\left(\mathcal{Q}_{\alpha, \beta}\right)$.
Proof. For $\widetilde{q}=q_{0}+q_{1} I \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$, denote \mathcal{T} as a subset of $\mathbb{M}_{2}\left(\mathcal{Q}_{\alpha, \beta}\right)$ given by:

$$
\mathcal{T}:=\left\{\mathcal{D}_{\widetilde{q}} \in \mathbb{M}_{2}\left(\mathcal{Q}_{\alpha, \beta}\right): \mathcal{D}_{\widetilde{q}}=\left[\begin{array}{cc}
q_{0} & \mathfrak{p} q_{1} \tag{14}\\
q_{1} & q_{0}+\mathfrak{q} q_{1}
\end{array}\right]\right\}
$$

and define the linear map $\mathcal{M}: \widetilde{\mathcal{Q}}_{\alpha, \beta} \rightarrow \mathcal{T}, \widetilde{q} \mapsto \mathcal{D}_{\widetilde{q}}$. It can be concluded that there exists a correspondence between $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ and \mathcal{T} via the map \mathcal{M}. Hence, 2×2 generalized complex matrix representation of \widetilde{q} with respect to the standard base $\{1, I\}$ is the matrix $\mathcal{D}_{\widetilde{q}}$.

By using $\mathcal{D}_{\widetilde{q}}$ and $\widetilde{p}=\left[\begin{array}{ll}p_{0} & p_{1}\end{array}\right]^{T}$, we have: $\widetilde{q} \widetilde{p}=\mathcal{D}_{\widetilde{q}} \widetilde{p}$. Moreover, $\mathcal{D}_{\widetilde{q}}$ is also in the form $\mathcal{D}_{\widetilde{q}}=q_{0} I_{2}+q_{1} \mathrm{I}$, where $\mathbf{I}=\left[\begin{array}{ll}0 & \mathfrak{p} \\ 1 & \mathfrak{q}\end{array}\right]$ is the representation of I. It should be noted that there are many ways to choose \mathbf{I}, for instance: $\mathbf{I}=\left[\begin{array}{ll}\mathfrak{q} & 1 \\ \mathfrak{p} & 0\end{array}\right]$ (see in (32).

Theorem 9. For any $\widetilde{q}=q_{0}+q_{1} I$ and $\widetilde{p}=p_{0}+p_{1} I \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$ and $\lambda \in \mathbb{R}$, the following properties are satisfied:
i. $\widetilde{q}=\widetilde{p} \Leftrightarrow \mathcal{D}_{\widetilde{q}}=\mathcal{D}_{\widetilde{p}}$,
ii. $\mathcal{D}_{\widetilde{q}+\widetilde{p}}=\mathcal{D}_{\widetilde{q}}+\mathcal{D}_{\widetilde{p}}$,
iii. $\mathcal{D}_{\lambda \tilde{q}}=\lambda\left(\mathcal{D}_{\tilde{q}}\right)$,
iv. $\mathcal{D}_{\widetilde{q} \widetilde{p}}=\mathcal{D}_{\widetilde{q}} \mathcal{D}_{\widetilde{p}}$,
v. $\operatorname{det}\left(\mathcal{D}_{\widetilde{q}}\right)=q_{0}^{2}+\mathfrak{q} q_{1} q_{0}-\mathfrak{p} q_{1}^{2}$, where the notation det represents the determinant of the quaternion matrix ${ }^{3}$.
Proof. The proof is obvious considering the matrix form given in equation (14).
iv. Using equation (1), we obtain:

$$
\mathcal{D}_{\widetilde{q} \widetilde{p}}=\left[\begin{array}{cc}
q_{0} p_{0}+\mathfrak{p} q_{1} p_{1} & \mathfrak{p}\left(q_{0} p_{1}+q_{1} p_{0}+\mathfrak{q} q_{1} p_{1}\right) \tag{15}\\
q_{0} p_{1}+q_{1} p_{0}+\mathfrak{q} q_{1} p_{1} & q_{0} p_{0}+\mathfrak{p} q_{1} p_{1}+\mathfrak{q}\left(q_{0} p_{1}+q_{1} p_{0}+\mathfrak{q} q_{1} p_{1}\right)
\end{array}\right]
$$

Also, the computation of the following multiplication

$$
\mathcal{D}_{\widetilde{q}} \mathcal{D}_{\widetilde{p}}=\left[\begin{array}{cc}
q_{0} & \mathfrak{p} q_{1} \\
q_{1} & q_{0}+\mathfrak{q} q_{1}
\end{array}\right]\left[\begin{array}{cc}
p_{0} & \mathfrak{p} p_{1} \\
p_{1} & p_{0}+\mathfrak{q} p_{1}
\end{array}\right]
$$

gives equation (15). Hence we have $\mathcal{D}_{\widetilde{q} \widetilde{p}}=\mathcal{D}_{\widetilde{q}} \mathcal{D}_{\widetilde{p}}$.

[^6]Definition 5. Let $\widetilde{q}=q_{0}+q_{1} I \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$. The vector representation of \widetilde{q} is defined as

$$
\overrightarrow{\widetilde{q}}=\left[\begin{array}{ll}
{\overrightarrow{q_{0}}}^{T} & {\overrightarrow{q_{1}}}^{T}
\end{array}\right]^{T}=\left[\begin{array}{c}
\overrightarrow{q_{0}} \\
\overrightarrow{q_{1}}
\end{array}\right] \in \mathbb{M}_{8 \times 1}(\mathbb{R})
$$

where $q_{j-1}=x_{0 j}+x_{1 j} \mathbf{i}+x_{2 j} \mathbf{j}+x_{3 j} \mathbf{k} \in \mathcal{Q}_{\alpha, \beta}$ and

$$
\overrightarrow{q_{j-1}}=\left(x_{0 j}, x_{1 j}, x_{2 j}, x_{3 j}\right)^{T}=\left[\begin{array}{llll}
x_{0 j} & x_{1 j} & x_{2 j} & x_{3 j}
\end{array}\right]^{T}
$$

are vectors (matrices) for $1 \leq j \leq 2$.
Theorem 10. Let $\widetilde{q}=q_{0}+q_{1} I \in \widetilde{\mathcal{Q}}_{\alpha, \beta}$. Then
i. $\overrightarrow{\widetilde{q}^{\dagger_{1}}}=\mathcal{X} \overrightarrow{\widetilde{q}}$, where $\mathcal{X}=\left[\begin{array}{cc}I_{4} & \mathfrak{q} I_{4} \\ 0 & -I_{4}\end{array}\right] \in \mathbb{M}_{8}(\mathbb{R})$.
ii. $\overrightarrow{\widetilde{q}^{\dagger}}=\mathcal{Y} \overrightarrow{\widetilde{q}}$, where $\mathcal{Y}=\left[\begin{array}{cc}0 & I_{4} \\ -I_{4} & 0\end{array}\right] \in \mathbb{M}_{8}(\mathbb{R})$.

Proof.
i. Computing $\overrightarrow{\vec{q}^{\dagger_{1}}}$ and $\mathcal{X} \overrightarrow{\widetilde{q}}$ gives the equality as: $\overrightarrow{\vec{q}^{\dagger}}=\left[\begin{array}{c}\overrightarrow{q_{0}}+\mathfrak{q} \overrightarrow{q_{1}} \\ -\overrightarrow{q_{1}}\end{array}\right]$ and

$$
\mathcal{X} \overrightarrow{\widetilde{q}}=\left[\begin{array}{cc}
I_{4} & \mathfrak{q} I_{4} \\
0 & -I_{4}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{q_{0}} \\
\overrightarrow{q_{1}}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{q_{0}}+\mathfrak{q} \overrightarrow{q_{1}} \\
-\overrightarrow{q_{1}}
\end{array}\right]
$$

With the same manner the other item can be proved.
By applying the map $\Gamma\left(x_{i 1}+x_{i 2} I\right)=\left[\begin{array}{cc}x_{i 1} & \mathfrak{p} x_{i 2} \\ x_{i 2} & x_{i 1}+\mathfrak{q} x_{i 2}\end{array}\right]$ to $\mathcal{B}_{\widetilde{q}}^{l}$, where $a_{i}=x_{i 1}+x_{i 2} I \in \mathbb{C}_{\mathfrak{q}, \mathfrak{p}}$, for $0 \leq i \leq 3$, the left real matrix representation $\mathcal{C}_{\widetilde{q}}^{l}$ of \widetilde{q} (see in equation (7) with respect to the base $\{1, I, \mathbf{i}, I \mathbf{i}, \mathbf{j}, I \mathbf{j}, \mathbf{k}, I \mathbf{k}\}$ can be easily found. So, $\widetilde{\mathcal{Q}}_{\alpha, \beta}$ is the subset of $\mathbb{M}_{8}(\mathbb{R})$.
Example 1. Take $\widetilde{q} \in \widetilde{\mathcal{Q}}_{2,1}$ with $\mathcal{G C N}$ components for $\mathfrak{p}=-1$ and $\mathfrak{q}=1$:

$$
\widetilde{q}=1+(-1+I) \mathbf{i}+I \mathbf{j}+(1+2 I) \mathbf{k}
$$

Then,

$$
\begin{gathered}
\mathcal{A}_{\widetilde{q}}=\left[\begin{array}{ccc}
1+(1+2 I) \mathbf{k} & (-1+I) \mathbf{i}+I \mathbf{j} \\
(-1+I) \mathbf{i}+I \mathbf{j} & 1+(1+2 I) \mathbf{k}
\end{array}\right] \\
\mathcal{B}_{\widetilde{q}}^{l}=\left[\begin{array}{cccc}
1 & -2(-1+I) & -I & -2(1+2 I) \\
-1+I & 1 & -1-2 I & I \\
I & 2(1+2 I) & 1 & -2(-1+I) \\
1+2 I & -I & -1+I & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{C}_{\widetilde{q}}^{l}=\left[\begin{array}{cccccccc}
1 & 0 & 2 & 2 & 0 & 1 & -2 & 4 \\
0 & 1 & -2 & 0 & -1 & -1 & -4 & -6 \\
-1 & -1 & 1 & 0 & -1 & 2 & 0 & -1 \\
1 & 0 & 0 & 1 & -2 & -3 & 1 & 1 \\
0 & -1 & 2 & -4 & 1 & 0 & 2 & 2 \\
1 & 1 & 4 & 6 & 0 & 1 & -2 & 0 \\
1 & -2 & 0 & 1 & -1 & -1 & 1 & 0 \\
2 & 3 & -1 & -1 & 1 & 0 & 0 & 1
\end{array}\right], \\
\mathcal{D}_{\widetilde{q}}=\left[\begin{array}{cccc}
1-\mathbf{i}+\mathbf{k} & -\mathbf{i}-\mathbf{j}-2 \mathbf{k} \\
\mathbf{i}+\mathbf{j}+2 \mathbf{k} & 1+\mathbf{j}+3 \mathbf{k}
\end{array}\right], \\
\mathcal{B}_{\widetilde{q}^{-1}}^{l}=\frac{\left[\begin{array}{ccc}
1 & 2(-1+I) & I
\end{array}\right.}{\sqrt{-189+45 I}}\left[\begin{array}{cccc}
1-I & 1 & 1+2 I & -I \\
-I & -2(1+2 I) & 1 & 2(-1+I) \\
-1-2 I & I & 1-I & 1
\end{array}\right] .
\end{gathered}
$$

Also, the vector representation of \widetilde{q}^{\dagger} is computed by:

$$
\left.\begin{array}{rl}
\overrightarrow{\widehat{q}^{\dagger}}=\mathcal{X} \overrightarrow{\widetilde{q}} & =\left[\begin{array}{cc}
I_{4} & I_{4} \\
0 & -I_{4}
\end{array}\right]\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
1 & -1 & 0 & 1
\end{array}\right]^{T}} \\
{\left[\begin{array}{llll}
0 & 1 & 1 & 2
\end{array}\right]^{T}}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
1 & 0 & 1 & 3 & -1 & -1
\end{array}-2\right.
\end{array}\right]^{T} .
$$

3. Further Result: An Alternative Matrix Approach

The questions about numbers, hypercomplex numbers and quaternions included questions about their matrices. Inspired by matrix forms in the study 34, we give an answer for the question of the alternative representation of generalized quaternion matrix with elliptic number entries (see elliptic biquaternions in 35). So this matrix is in the form:

$$
\widetilde{Q}=A_{0} I_{2}+A_{1} \mathcal{I}+A_{2} \mathcal{J}+A_{3} \mathcal{K}
$$

where $A_{0}, A_{1}, A_{2}, A_{3} \in \mathbb{C}_{\mathfrak{p}}$ are elliptic numbers for $\mathfrak{p}<0$. The base elements can be defined as follows:
Case 1: For $\alpha, \beta \in \mathbb{R}^{+}$

$$
\mathcal{I}=\left[\begin{array}{cc}
\sqrt{\frac{\alpha}{|\mathfrak{p}|}} I & 0 \\
0 & -\sqrt{\frac{\alpha}{|\mathfrak{p}|}}
\end{array}\right], \mathcal{J}=\left[\begin{array}{cc}
0 & \sqrt{\beta} \\
-\sqrt{\beta} & 0
\end{array}\right], \mathcal{K}=\left[\begin{array}{cc}
0 & \sqrt{\frac{\alpha \beta}{|\mathfrak{p}|}} I \\
\sqrt{\frac{\alpha \beta}{|\mathfrak{p}|}} I & 0
\end{array}\right]
$$

Case 2: For $\alpha \in \mathbb{R}^{+}, \beta \in \mathbb{R}^{-}$
$\mathcal{I}=\left[\begin{array}{cc}\sqrt{\frac{\alpha}{|\mathfrak{p}|}} I & 0 \\ 0 & -\sqrt{\frac{\alpha}{|\mathfrak{p}|}} I\end{array}\right], \mathcal{J}=\left[\begin{array}{cc}0 & \sqrt{-\beta} \\ \sqrt{-\beta} & 0\end{array}\right], \mathcal{K}=\left[\begin{array}{cc}0 & \sqrt{\frac{-\alpha \beta}{|\mathfrak{p}|}} I \\ -\sqrt{\frac{-\alpha \beta}{|\mathfrak{p}|}} I & 0\end{array}\right]$,

Case 3: For $\alpha \in \mathbb{R}^{-}, \beta \in \mathbb{R}^{+}$
$\mathcal{I}=\left[\begin{array}{cc}0 & \sqrt{-\alpha} \\ \sqrt{-\alpha} & 0\end{array}\right], \mathcal{J}=\left[\begin{array}{cc}-\sqrt{\frac{\beta}{|\mathfrak{p}|}} I & 0 \\ 0 & \sqrt{\frac{\beta}{|\mathfrak{p}|}} I\end{array}\right], \mathcal{K}=\left[\begin{array}{cc}0 & \sqrt{\frac{-\alpha \beta}{|\mathfrak{p}|}} I \\ -\sqrt{\frac{-\alpha \beta}{|\mathfrak{p}|}} I & 0\end{array}\right]$,
Case 4: For $\alpha, \beta \in \mathbb{R}^{-}$

$$
\mathcal{I}=\left[\begin{array}{cc}
0 & \sqrt{\frac{-\alpha}{|\mathfrak{p}|}} I \\
-\sqrt{\frac{-\alpha}{|\mathfrak{p}|}} I & 0
\end{array}\right], \mathcal{J}=\left[\begin{array}{cc}
0 & \sqrt{-\beta} \\
\sqrt{-\beta} & 0
\end{array}\right], \mathcal{K}=\left[\begin{array}{cc}
\sqrt{\frac{\alpha \beta}{|\mathfrak{p}|}} I & 0 \\
0 & -\sqrt{\frac{\alpha \beta}{|\mathfrak{p}|}} I
\end{array}\right]
$$

These elements satisfy the following conditions:

$$
\begin{array}{ll}
\mathcal{I}^{2}=-\alpha I_{2}, & \mathcal{I} \mathcal{J}=-\mathcal{J I}=\mathcal{K} \\
\mathcal{J}^{2}=-\beta I_{2}, & \mathcal{J K}=-\mathcal{K} \mathcal{J}=\beta \mathcal{I} \\
\mathcal{K}^{2}=-\alpha \beta I_{2}, & \mathcal{K} \mathcal{I}=-\mathcal{I} \mathcal{K}=\alpha \mathcal{J}
\end{array}
$$

Taking into account Case $1, \widetilde{Q}$ is rewritten as

$$
\widetilde{Q}=\left[\begin{array}{cc}
A_{0}+\sqrt{\frac{\alpha}{|\mathfrak{p}|}} I A_{1} & \sqrt{\beta} A_{2}+\sqrt{\frac{\alpha \beta}{|\mathfrak{p}|}} I A_{3} \\
-\sqrt{\beta} A_{2}+\sqrt{\frac{\alpha \beta}{|\mathfrak{p}|}} I A_{3} & A_{0}-\sqrt{\frac{\alpha}{|\mathfrak{p}|}} I A_{1}
\end{array}\right]
$$

One can see this matrix in Tian's paper 36 related to biquaternions (complexified quaternion) for $\alpha=\beta=1$ and $\mathfrak{p}=-1$.

The conjugate (same as the adjoint), transpose, the elliptic conjugate, the total conjugate and determinant \widetilde{Q} can be given as follows:

$$
\begin{aligned}
\overline{\widetilde{Q}} & =A_{0} I_{2}-A_{1} \mathcal{I}-A_{2} \mathcal{J}-A_{3} \mathcal{K}=\operatorname{Adj} \widetilde{Q} \\
\widetilde{Q}^{T} & =A_{0} I_{2}+A_{1} \mathcal{I}-A_{2} \mathcal{J}+A_{3} \mathcal{K}, \\
\widetilde{Q}^{\mathbb{C}_{\mathfrak{p}}} & =A_{0} I_{2}-A_{1} \mathcal{I}+A_{2} \mathcal{J}-A_{3} \mathcal{K}=\overline{\widetilde{Q}}^{T} \\
\widetilde{\widetilde{Q}}^{\mathbb{C}_{\mathfrak{p}}} & =A_{0} I_{2}+A_{1} \mathcal{I}-A_{2} \mathcal{J}+A_{3} \mathcal{K}=\overline{\left(\widetilde{Q}^{\mathbb{C}_{\mathfrak{p}}}\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{det} \widetilde{Q} & =A_{0}^{2}+\alpha A_{1}^{2}+\beta A_{2}^{2}+\alpha \beta A_{3}^{2} \\
& =A_{0}^{2}+A_{1}^{2} \operatorname{det} \mathcal{I}+A_{2}^{2} \operatorname{det} \mathcal{J}+A_{3}^{2} \operatorname{det} \mathcal{K}
\end{aligned}
$$

For $\operatorname{det} \widetilde{Q} \neq 0$, the inverse of \widetilde{Q} is defined by:

$$
\widetilde{Q}^{-1}=\frac{1}{\operatorname{det} \widetilde{Q}} \overline{\widetilde{Q}}=\frac{1}{A_{0}^{2}+\alpha A_{1}^{2}+\beta A_{2}^{2}+\alpha \beta A_{3}^{2}}\left(A_{0} I_{2}-A_{1} \mathcal{I}-A_{2} \mathcal{J}-A_{3} \mathcal{K}\right)
$$

Similar calculations can be given for the other cases. Additionally, the relationships between the above operations and some properties of generalized quaternion matrices with elliptic number entries can be easily proved. We omit them for the sake of brevity. For $A_{0}, A_{1}, A_{2}, A_{3} \in \mathbb{C}_{-1}$, we refer to 37 under the condition that $\alpha=\beta=1$ and $\alpha=1, \beta=-1$.

4. Concluding Remarks

Our paper is motivated by the question: What happens if the components of quaternions become $\mathcal{G C N}$? Based on this question, we develop the theory of generalized quaternions (non-commutative system) with $\mathcal{G C N}$ components $\mathfrak{p}, \mathfrak{q} \in \mathbb{R}$. Also, we investigate the algebraic structures and properties by considering them as a $\mathcal{G C N}$ and a quaternion. With specific values of α and β, we obtained different types of quaternions with $\mathcal{G C N}$ components in Section 2. Additionally, we establish matrix representations and give a numerical example. In Section 3, we also come up with a different way to deal with a generalized quaternion matrix with elliptic number entries.

The crucial part of this paper is that one can reduce the calculations to mentioned types of quaternions by considering hyperbolic, elliptic and parabolic number components for $\Delta=\mathfrak{q}^{2}+4 \mathfrak{p}$ (see Table 1). As a natural consequence of this situation, taking into account special conditions, the definition of special quaternions mentioned in the papers $38-47$ are generalized via Definition 1 , the papers $48-53$ are generalized from the viewpoint of definition, algebraic properties, relations and matrix representations of quaternions and finally, different matrix forms in the papers $35-37$ are generalized in Section 3. All of these situations can be examined in Table 22 For instance, all of the obtained calculations agree with complex quaternions for $\alpha=\beta=1, \mathfrak{q}=0, \mathfrak{p}=-1$.

With this unified method, we believe that these results give rise to ease of calculation via mathematical concordance, and in future studies, we intend to investigate other commutative and non-commutative quaternions created with $\mathcal{G C N}$ components in this manner. Now, the necessary and sufficient condition for similarity, co-similarity and semi-similarity for elements of the generalized quaternions with $\mathcal{G C N}$ components for $\mathfrak{p}, \mathfrak{q} \in \mathbb{R}$ is an open problem for researchers.

Table 1. Basic classification regarding components

$\Delta=\mathfrak{q}^{2}+4 \mathfrak{p}$	Type of components	References
$\Delta<0$	elliptic	biquaternion 35 (for $\mathfrak{q}=0$)
$\Delta=0$	parabolic	41
$\Delta>0$	hyperbolic	for $\mathfrak{q}=0)$

Table 2. Classification considering components with regard to the value of $\mathfrak{p}, \mathfrak{q}, \alpha$ and β

Condition	α	β	Component	Quaternion	Ref.
$\begin{aligned} \mathfrak{q} & =0 \\ \mathfrak{p} & =-1 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ -1 \\ 0 \end{gathered}$	$\begin{gathered} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{gathered}$	complex complex complex complex complex	Hamiltonian split semi split semi quasi	14 36 44 49 53 38 39
$\begin{array}{ll} \mathfrak{q} & =0 \\ \mathfrak{p} & =0 \end{array}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ -1 \\ 0 \end{gathered}$	$\begin{gathered} \hline 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{gathered}$	dual dual dual dual dual	Hamiltonian split semi split semi quasi	$\begin{array}{\|l\|l\|l\|} \hline 45 & 47 & 54 \\ \hline 46 & \\ 42 & 52 \\ \hline \end{array}$
$\begin{array}{ll} \mathfrak{q} & =0 \\ \mathfrak{p} & =1 \end{array}$	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ -1 \\ 0 \end{gathered}$	$\begin{gathered} \hline 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{gathered}$	hyperbolic hyperbolic hyperbolic hyperbolic hyperbolic	Hamiltonian split semi split semi quasi	$\begin{aligned} & 40 \\ & 43 \\ & 48 \end{aligned}$

Author Contribution Statements The authors jointly worked on the results and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest.

References

[1] Hamilton, W.R., Elements of Quaternions, Chelsea Pub. Com., New York, 1969.
[2] Hamilton, W.R., Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
[3] Hamilton, W.R., On quaternions; or on a new system of imaginaries in algebra, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science (3rd Series), xxvxxxvi, 1844-1850.
[4] Dickson, L.E., On the theory of numbers and generalized quaternions, Amer. J. Math., 46(1) (1924), 1-16. https://doi.org/10.2307/2370658
[5] Cockle, J., On a new imaginary in algebra, Philosophical Magazine, London-DublinEdinburgh, 34(3) (1849), 37-47. https://doi.org/10.1080/14786444908646169
[6] Griffiths, L.W., Generalized quaternion algebras and the theory of numbers, Amer. J. Math. 50(2) (1928), 303-314. https://doi.org/10.2307/2371761
[7] Jafari, M., Yayl, Y., Generalized quaternions and their algebratic properties, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 64(1) (2015), 15-27. https://doi.org/10.1501/Commua1_ 0000000724
[8] Alagöz, Y., Oral, K.H., Yüce, S., Split quaternion matrices, Miskolc Math. Notes, 13(2) (2012), 223-232. https://doi.org/10.18514/MMN. 2012.364
[9] Pottmann, H., Wallner, J., Computational Line Geometry, Springer, Berlin, 2000. https://doi.org/10.1007/978-3-642-04018-4
[10] Rosenfeld, B., Geometry of Lie Groups, Springer, New York, 1997. https://doi.org/10.1007/978-1-4757-5325-7
[11] Savin, D., Flaut, C., Ciobanu, C., Some properties of the symbol algebras, Carpathian J. Math., 25(2) (2009), 239-245.
[12] Catoni, F., Cannata, R., Catoni, V., Zampetti, P., An introduction to commutative quaternions, Adv. Appl. Clifford Algebr., 16(1) (2006), 1-28. https://doi.org/10.1007/s00006-006-0002-y
[13] Catoni, F., Cannata, R., Zampetti, P., An introduction to constant curvature spaces in the commutative (Segré) quaternion geometry, Adv. Appl. Clifford Algebr., 16(1) (2006), 85-101. https://doi.org/10.1007/s00006-006-0010-y
[14] Clifford, W.K., Preliminary sketch of bi-quaternions, Proc. Lond. Math. Soc., s1-4(1) (1873), 381-395. https://doi.org/10.1112/plms/s1-4.1.381
[15] Edmonds, J.D., Jr., Relativistic Reality: A Modern View, World Scientific, Singapore, 1997. https://doi.org/10.1142/3272
[16] Ercan, Z., Yüce, S., On properties of the dual quaternions, Eur. J. Pure Appl. Math., 4(2) (2011), 142-146.
[17] Majernik, V., Quaternion formulation of the Galilean space-time transformation, Acta Phy. Slovaca, 56 (2006), 9-14.
[18] Majernik, V., Nagy, M., Quaternionic form of Maxwell's equations with sources, Lett. Nuovo Cimento, 16 (1976), 165-169. https://doi.org/10.1007/BF02747070
[19] Kantor, I., Solodovnikov, A., Hypercomplex Numbers, Springer-Verlag, New York, 1989.
[20] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., The Mathematics of Minkowski Space-Time and an Introduction to Commutative Hypercomplex Numbers, Birkhauser Verlag, Basel, 2008. https://doi.org/10.1007/978-3-7643-8614-6
[21] Catoni, F., Cannata, R., Catoni, V., Zampetti, P., Two-dimensional hypercomplex numbers and related trigonometries and geometries, Adv. Appl. Clifford Algebr., 14 (2004), 47-68. https://doi.org/10.1007/s00006-004-0008-2
[22] Catoni, F., Cannata, R., Catoni, V., Zampetti, P., N-dimensional geometries generated by hypercomplex numbers, Adv. Appl. Clifford Algebr. 15(1) (2005), 1-25. https://doi.org/10.1007/s00006-005-0001-4
[23] Harkin, A.A., Harkin, J.B., Geometry of generalized complex numbers, Math. Mag., 77(2) (2004), 118-129. https://doi.org/10.1080/0025570X.2004.11953236
[24] Veldsman, S., Generalized complex numbers over near-fields, Quaest. Math., 42(2) (2019), 181-200. https://doi.org/10.2989/16073606.2018.1442884
[25] Clifford, W.K., Mathematical papers (ed. R. Tucker), Chelsea Pub. Co., Bronx, NY, 1968.
[26] Fjelstad, P., Extending special relativity via the perplex numbers, Amer. J. Phys., 54(5) (1986), 416-422. https://doi.org/10.1119/1.14605
[27] Sobczyk, G., The hyperbolic number plane, College Math. J., 26(4) (1995), 268-280. https://doi.org/10.2307/2687027
[28] Yaglom, I. M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
[29] Yaglom, I. M., Complex Numbers in Geometry, Academic Press, New York, 1968.
[30] Pennestrì, E., Stefanelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(3) (2007), 323-344. https://doi.org/10.1007/s11044-007-9088-9
[31] Study, E., Geometrie Der Dynamen, Mathematiker Deutschland Publisher, Leibzig, 1903.
[32] Messelmi, F., Generalized numbers and their holomorphic functions, Int. J. Open Problems Complex Analysis, 7(1) (2015), 35-47.
[33] Zhang, F., Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21-57. https://doi.org/10.1016/0024-3795(95)00543-9
[34] Flaut, C., Shpakivskyi, V., An efficient method for solving equations in generalized quaternion and octonion algebras, Adv. Appl. Clifford Algebr., 25(2) (2015), 337-350. https://doi.org/10.1007/s00006-014-0493-x
[35] Özen, K. E., Tosun, M., On the matrix algebra of elliptic biquaternions, Math. Methods Appl. Sci., 43(6) (2020), 2984-2998. https://doi.org/10.1002/mma. 6096
[36] Tian, Y., Biquaternions and their complex matrix representations, Beitr. Algebra Geom. instead of Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 54(2) (2013), 575-592. https://doi.org/10.1007/s13366-012-0113-7
[37] Alagöz, Y., Özyurt, G., Some properties of complex quaternion and complex split quaternion matrices, Miskolc Math. Notes, 20(1) (2019), 45-58. https://doi.org/10.18514/MMN.2019.2550
[38] Alagöz, Y., Özyurt, G., Linear equations systems of real and complex semi-quaternions, Iran. J. Sci. Technol. Trans. A Sci., 44(5) (2020), 1483-1493. https://doi.org/10.1007/s40995-020-00956-7
[39] Bekar, M., Yaylı, Y., A study on complexified semi-quaternions, International Conference on Operators in Morrey-type Spaces and Applications (OMTSA), 115 (2017).
[40] Arizmendi, G., Pérez-de la Rosa, Y.M.A., Some extensions of quaternions and symmetries of simply connected space forms, arXiv preprint, arXiv:1906.11370 (2019). https://doi.org/10.48550/arXiv.1906.11370
[41] Ata, E., Yıldırım, Y., A different polar representation for generalized and generalized dual quaternions, Adv. Appl. Clifford Algebr., 28(4) (2018), 1-20. https://doi.org/10.1007/s00006-018-0895-2
[42] Bekar, M., Dual-quasi elliptic planar motion, Mathematical Sciences and Applications ENotes, 4(1) (2016), 136-143. https://doi.org/10.36753/mathenot. 421422
[43] Erdoğdu, M., Özdemir, M., Matrices over hyperbolic split quaternions, Filomat, 30(4) (2016), 913-920. https://doi.org/10.2298/FIL1604913E
[44] Hamilton, W.R., On the geometrical interpretation of some results obtained by calculation with biquaternions, In Halberstam and Ingram and first published in Proceedings of the Royal Irish Academy, 1853.
[45] Kotelnikov, A. P., Screw calculus and some applications to geometry and mechanics, Annal. Imp. Univ. Kazan, (1895).
[46] Kula, L., Yaylı, Y., Dual split quaternions and screw motion in Minkowski 3-space, Iran. J. Sci. Technol. Trans. A Sci., 30(3) (2006), 245-258. https://doi.org/10.22099/IJSTS.2006.2758
[47] McAulay, A., Octonions: a Development of Clifford's Biquaternions, 1898.
[48] Alagöz, Y., Özyurt, G., Real and hyperbolic matrices of split semi quaternions, Adv. Apl. Clifford Algebr., 29 (2019), 29-53. https://doi.org/10.1007/s00006-019-0973-0
[49] Erdoğdu, M., Özdemir, M., On complex split quaternion matrices, Adv. Appl. Clifford Algebr., 23(3)(2013), 625-638. https://doi.org/10.1007/s00006-013-0399-z
[50] Özen, K. E., Tosun, M., Elliptic matrix representations of elliptic biquaternions and their applications, Int. Electron. J. Geom., 11(2) (2018), 96-103. https://doi.org/10.36890/iejg. 545136
[51] Jafari, M., Matrices of generalized dual quaternions, Konuralp J. Math., 3(2) (2015), 110-121.
[52] Jafari, M., The algebraic structure of dual semi-quaternions, J. Selçuk Univ. Natur. Appl. Sci., 5(3) (2016), 15-24.
[53] Erdoğdu, M., Özdemir, M., Real matrix representations of complex split quaternions with applications, Math. Methods Appl. Sci. 43(12) (2020), 7227-7238. https://doi.org/10.1002/mma. 6461
[54] Qi L., Ling C., Yan, H., Dual quaternions and dual quaternion vectors, Commun. Appl. Math. Comput., (2022), 1-15. https://doi.org/10.1007/s42967-022-00189-y
http://communications.science.ankara.edu.tr

UNIQUENESS OF THE SOLUTION TO THE INVERSE PROBLEM OF SCATTERING THEORY FOR SPECTRAL PARAMETER DEPENDENT KLEIN-GORDON S-WAVE EQUATION

Esra KIR ARPAT ${ }^{1}$ and Turhan KOPRUBASI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Gazi University, 06500 Ankara, TÜRKİYE
${ }^{2}$ Department of Mathematics, Kastamonu University, 37100 Kastamonu, TÜRKİYE

Abstract

In the present work, the inverse problem of the scattering theory for Klein-Gordon s-wave equation with a spectral parameter in the boundary condition is investigated. We define the scattering data set, and obtain the main equation of operator. Furthermore, the uniqueness of the solution of the inverse problem is proved.

1. Introduction

Scattering problems, which play a role in the structure of matter in Newtonian mechanics, are an important research topic of mathematical physics. Obtaining the scattering data by giving the potential function and investigating the properties of these scattering data is called the direct problem in scattering theory, while obtaining the potential function according to the scattering data is called the inverse problem. Therefore, the importance of inverse scattering problems in terms of natural sciences is an undeniable reality.

The inverse problem of scattering theory for the boundary value problem

$$
\begin{align*}
-y^{\prime \prime}+q(x) y & =\lambda^{2} y \tag{1}\\
y(0) & =0 \tag{2}
\end{align*}
$$

[^7]was studied in [13] and the author obtained that the Jost function of (1)-(2) defined by
$$
e(\lambda)=1+\int_{0}^{\infty} K(0, t) e^{i \lambda t} d t, \quad \lambda \in \overline{\mathbb{C}}_{+}:=\{\lambda: \lambda \in \mathbb{C}, \quad \operatorname{Im} \lambda \geq 0\}
$$
has a finite number of simple zeros in \mathbb{C}_{+}. The scattering data of (1)-(2) is
$$
\left\{S(\lambda), \lambda_{k}, m_{k}: k=1,2, \ldots, n\right\}
$$
where λ_{k} are the zeros of Jost function, m_{k}^{-1} are the norm of the zeros of Jost function for $\lambda=\lambda_{k}$ in $L_{2}(0, \infty)$ and $S(\lambda)$ is scattering function of (1)-(2) given by
$$
S(\lambda):=\frac{\overline{e(\lambda)}}{e(\lambda)}, \quad \lambda \in(-\infty, \infty)
$$

As the potential function q is given, the problem of getting scattering data and investigating the properties of scattering data is called the direct problem for scattering theory. Oppositely, finding the potential function q according to the scattering data is known inverse problem of scattering theory. The direct and inverse scattering problems for a selfadjoint infinite system second-order difference equations with operator valued coefficients were considered in [11]. The uniqueness of the solution to the inverse problem of scattering theory for equation (1) with a spectral parameter in the boundary condition

$$
y^{\prime}(0)+\left(\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) y(0)=0
$$

was studied bh Kh. R. Mamedov ([12]). Also, the solution to the inverse problem of scattering theory for spectral parameter dependent Sturm-Liouville operator system was founded uniquely by G. Bascanbaz Tunca and E. Kir Arpat in [15], and the scattering analysis of a transmission boundary value problem which consists of a discrete Schrodinger equation and transmission conditions was investigated in [5]. Furthermore, the scattering theory of impulsive Sturm-Liouville equations, impulsive discrete Dirac systems, impulsive Sturm-Liouville equation in QuantumCalculus and Dirac operator with impulsive condition on whole axis were investigated in $[1,4,8,9]$. The scattering function of impulsive matrix difference operators and scattering properties of eigenparameter dependent discrete impulsive SturmLiouville equations were studied in $[2,3,6]$. But scattering theory of Klein-Gordon s-wave equation with boundary condition depends on spectral parameter has not been investigated yet.

Let L_{μ} denotes the Klein-Gordon s-wave operator of second order with boundary condition generated by

$$
\begin{equation*}
y^{\prime \prime}+[\lambda-q(x)]^{2} y=0, \quad 0 \leq x<\infty \tag{3}
\end{equation*}
$$

and

$$
y^{\prime}(0, \lambda)+\left(\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) y(0, \lambda)=0
$$

where $\lambda=\mu^{2}$ is a complex spectral parameter, α_{i} are real numbers for $i=0,1,2$, $\alpha_{1} \leq 0, \alpha_{2}>0,\left(\alpha_{0}+\alpha_{1} \lambda+\alpha_{2} \lambda^{2}\right) \neq 0$ and q is a non-negative real valued function satisfying the following condition

$$
\begin{equation*}
\int_{0}^{\infty} x\left[|q(x)|+\left|q^{\prime}(x)\right|\right] d x<\infty . \tag{4}
\end{equation*}
$$

In this paper, we examine the inverse problem of scattering theory of L_{μ} under the condition (4).

2. Preliminaries

To be able to well defined mapping between λ and μ, we will study on the region $\operatorname{Re} \mu \geq 0$. If the condition (4) is satisfied, equation (3) has the following solutions

$$
\begin{gather*}
f^{(1)}(x, \mu)=f\left(x, \mu^{2}\right)=e^{i\left[\alpha(x)+\mu^{2} x\right]}+\int_{x}^{\infty} K(x, t) e^{i \mu^{2} t} d t \tag{5}\\
\overline{f^{(1)}(x, \mu)}=\overline{f\left(x, \mu^{2}\right)}=e^{-i\left[\alpha(x)+\mu^{2} x\right]}+\int_{x}^{\infty} K(x, t) e^{-i \mu^{2} t} d t
\end{gather*}
$$

for $\mu \in \mathbb{R}_{1}:=\{\mu: \operatorname{Re} \mu \geq 0, \operatorname{Im} \mu=0\}$ and they have analytic continuation to $\overline{\mathbb{C}_{1}^{+}}:=\{\mu \in \mathbb{C}: \operatorname{Re} \mu \geq 0, \operatorname{Im} \mu \geq 0\}$ and $\overline{\mathbb{C}_{1}^{-}}:=\{\mu \in \mathbb{C}: \operatorname{Re} \mu \geq 0, \operatorname{Im} \mu \leq 0\}$, respectively where $\alpha(x)=\int_{x}^{\infty} q(t) d t$ and $K(x, t)$ is solution of integral equations of Volterra type which has continuous derivatives with respect to their arguments ([7]). Moreover, $K(x, t), K_{x}(x, t), K_{t}(x, t)$ satisfy the following inequalities

$$
\begin{gathered}
|K(x, t)| \leq c \omega\left(\frac{x+t}{2}\right) \exp (\gamma(x)) \\
\left|K_{x}(x, t)\right|,\left|K_{t}(x, t)\right| \leq c\left[\omega^{2}\left(\frac{x+t}{2}\right)+\theta\left(\frac{x+t}{2}\right)\right]
\end{gathered}
$$

where

$$
\begin{gathered}
\omega(x)=\int_{x}^{\infty}\left[|q(t)|^{2}+\left|q^{\prime}(t)\right|\right] d t \\
\gamma(x)=\int_{x}^{\infty}\left[t|q(t)|^{2}+2|q(t)|\right] d t \\
\theta(x)=\frac{1}{4}\left[2|q(x)|^{2}+\left|q^{\prime}(x)\right|\right]
\end{gathered}
$$

and $c>0$ is a constant. In addition, the function $K(x, t)$ and potential are related to

$$
K(x, x)=2 \int_{x}^{\infty} q(t) d t
$$

([14]). Furthermore, $f^{(1)}(x, \mu)$ and $\overline{f^{(1)}(x, \mu)}$ are respectively analytic in $\mathbb{C}_{1}^{+}:=$ $\{\mu \in \mathbb{C}: \operatorname{Re} \mu>0, \operatorname{Im} \mu>0\}$ and $\mathbb{C}_{1}^{-}:=\{\mu \in \mathbb{C}: \operatorname{Re} \mu>0, \operatorname{Im} \mu<0\}$ and they are continuous on real and imaginary axes with respect to μ. The solutions $f^{(1)}(x, \mu)$ and $\overline{f^{(1)}(x, \mu)}$ are called Jost solutions of L_{μ} ([10]). From (5), $f^{(1)}(x, \mu)$ satisfies the asymptotic equalities

$$
\begin{gather*}
f^{(1)}(x, \mu)=e^{i \mu^{2} x}[1+o(1)], x \rightarrow \infty \\
f_{x}^{(1)}(x, \mu)=e^{i \mu^{2} x}\left[i \mu^{2}+o(1)\right], x \rightarrow \infty \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
f^{(1)}(x, \mu)=e^{i\left[\alpha(x)+\mu^{2} x\right]}+o(1),|\mu| \rightarrow \infty \tag{7}
\end{equation*}
$$

([14]). From (6), the Wronskian of the solutions of $f^{(1)}(x, \mu)$ and $\overline{f^{(1)}(x, \mu)}$ is

$$
\begin{equation*}
W\left[f^{(1)}(x, \mu), \overline{f^{(1)}(x, \mu)}\right]=\lim _{x \rightarrow \infty} W\left[f^{(1)}(x, \mu), \overline{f^{(1)}(x, \mu)}\right]=-2 i \mu^{2} \tag{8}
\end{equation*}
$$

for $\mu \in \mathbb{R}_{1}$. Hence $f^{(1)}(x, \mu)$ and $\overline{f^{(1)}(x, \mu)}$ are the fundamental solutions of (3) for $\mu \in \mathbb{R}_{1}^{*}=\mathbb{R}_{1} \backslash\{0\}$.

Let $\varphi^{(1)}(x, \mu)=\varphi\left(x, \mu^{2}\right)$ denotes the solution of (3) satisfying the initial conditions

$$
\begin{aligned}
\varphi^{(1)}(0, \mu) & =\varphi\left(0, \mu^{2}\right)=1 \\
\varphi_{x}^{(1)}(0, \mu) & =\varphi_{x}\left(0, \mu^{2}\right)-\left(\alpha_{0}+\alpha_{1} \mu^{2}+\alpha_{2} \mu^{4}\right)
\end{aligned}
$$

Definition 1.

$$
\begin{align*}
W\left[\varphi^{(1)}(x, \mu), f^{(1)}(x, \mu)\right] & =\varphi^{(1)}(0, \mu) f_{x}^{(1)}(0, \mu)-\varphi_{x}^{(1)}(0, \mu) f^{(1)}(0, \mu) \\
& =f_{x}^{(1)}(0, \mu)+\left(\alpha_{0}+\alpha_{1} \mu^{2}+\alpha_{2} \mu^{4}\right) f^{(1)}(0, \mu) \\
& =F\left(\mu^{2}\right)=F_{1}(\mu) \tag{9}
\end{align*}
$$

is called Jost function of L_{μ} ([10]).
Theorem 1. Under the condition (4), Jost function has following asymptotic equality

$$
F_{1}(\mu) \approx\left\{\begin{array}{cc}
i \mu^{2}\left(1-i \alpha_{1}\right) e^{i \alpha(0)} & , \quad \alpha_{1} \neq 0, \tag{10}\\
\alpha_{2} \mu^{4} & , \quad|\mu| \rightarrow \infty \\
\alpha_{1}=0, & |\mu| \rightarrow \infty
\end{array}\right.
$$

where $\alpha_{1} \leq 0$ and $\alpha_{2}>0$.
Proof. This aymptotic equality can be seen smoothly from (7) and Definition 1.

3. Main Equation of L_{μ}

Definition 2. We can define scattering function using Jost function as follows for $\mu \in \mathbb{R}_{1}$:

$$
\begin{equation*}
S_{1}(\mu)=S\left(\mu^{2}\right)=\frac{\overline{F\left(\mu^{2}\right)}}{F\left(\mu^{2}\right)}=\frac{\overline{F_{1}(\mu)}}{F_{1}(\mu)} . \tag{11}
\end{equation*}
$$

Theorem 2. Under the condition (4), the scattering function satisfies following asymptotic equality

$$
\begin{equation*}
S_{1}(\mu)=1+O\left(\frac{1}{\mu^{2}}\right), \quad|\mu| \rightarrow \infty \tag{12}
\end{equation*}
$$

Proof. The proof can be easily attained using definition of scattering function and (7).

Lemma 1. Under the condition (4),

$$
F_{1}(\mu)=f_{x}^{(1)}(0, \mu)+\left(\alpha_{0}+\alpha_{1} \mu^{2}+\alpha_{2} \mu^{4}\right) f^{(1)}(0, \mu) \neq 0
$$

for all $\mu \in \mathbb{R}_{1}^{*}$.
Proof. Let $F_{1}\left(\mu_{0}\right)=0$ for any $\mu_{0} \in \mathbb{R}_{1}^{*}$. Then, we obtain

$$
f_{x}^{(1)}\left(0, \mu_{0}\right)=-\left(\alpha_{0}+\alpha_{1} \mu_{0}+\alpha_{2} \mu_{0}^{4}\right) f^{(1)}\left(0, \mu_{0}\right)
$$

Also,

$$
W\left[\overline{f^{(1)}(x, \mu)}, f^{(1)}(x, \mu)\right]=2 i \mu^{2}
$$

for all $\mu \in \mathbb{R}_{1}$. So,

$$
f_{x}^{(1)}\left(0, \mu_{0}\right) \overline{f^{(1)}\left(0, \mu_{0}\right)}-f^{(1)}\left(0, \mu_{0}\right) \overline{f_{x}^{(1)}\left(0, \mu_{0}\right)}=2 i \mu_{0}^{2}
$$

and, we get

$$
-\left(\alpha_{0}+\alpha_{1} \mu_{0}^{2}+\alpha_{2} \mu_{0}^{4}\right) f^{(1)}\left(0, \mu_{0}\right) \overline{f^{(1)}\left(0, \mu_{0}\right)}+\left(\alpha_{0}+\alpha_{1} \mu_{0}^{2}+\alpha_{2} \mu_{0}^{4}\right) \overline{f^{(1)}\left(0, \mu_{0}\right)} f^{(1)}\left(0, \mu_{0}\right)=2 i \mu_{0}^{2}
$$

From last equation, we can write

$$
2 i \mu_{0}^{2}=0
$$

But this is a contradiction because of $\mu_{0} \in \mathbb{R}_{1}^{*}$.
Lemma 2. The following equation

$$
\begin{equation*}
\frac{2 i \mu^{2} \varphi^{(1)}(x, \mu)}{f_{x}^{(1)}(0, \mu)+\left(\alpha_{0}+\alpha_{1} \mu^{2}+\alpha_{2} \mu^{4}\right) f^{(1)}(0, \mu)}=\overline{f^{(1)}(x, \mu)}-S_{1}(\mu) f^{(1)}(x, \mu) \tag{13}
\end{equation*}
$$

holds. Furthermore, $\overline{S_{1}(\mu)}=\left[S_{1}(\mu)\right]^{-1}$.

Proof. Since $f^{(1)}(x, \mu)$ and $\overline{f^{(1)}(x, \mu)}$ are basic solutions of L_{μ},

$$
\begin{equation*}
\varphi^{(1)}(x, \mu)=c_{1} f^{(1)}(x, \mu)+c_{2} \overline{f^{(1)}(x, \mu)} \tag{14}
\end{equation*}
$$

From (14),

$$
c_{1}(\mu) f^{(1)}(0, \mu)+c_{2}(\mu) \overline{f^{(1)}(0, \mu)}=1
$$

and

$$
c_{1} f_{x}^{(1)}(x, \mu)+c_{2} \overline{f_{x}^{(1)}(x, \mu)}=-\left(\alpha_{0}+\alpha_{1} \mu^{2}+\alpha_{2} \mu^{4}\right)
$$

By finding $c_{1}(\mu)$ and $c_{2}(\mu)$ from last two equations and using (8), we can obtain (13). In addition, we hold easily

$$
\overline{S_{1}(\mu)}=\frac{F_{1}(\mu)}{\overline{F_{1}(\mu)}}=\left[S_{1}(\mu)\right]^{-1}
$$

from (11).
Lemma 3. The all zeros of Jost function $F_{1}(\mu)$ are finite and on the imaginary axis. Also, they are simply on the upper imaginary axis.

Proof. Using asymptotic equality (10), Lemma 1, uniqueness theorems for analytic functions and Bolzano-Weierstrass Theorem we can easily reach finiteness of the zeros of Jost function. Now, we will show that the zeros of $F_{1}(\mu)$ are on the imaginary axis. Let μ_{0} be an arbitrary zero of $F_{1}(\mu)$. We can write

$$
0=F_{1}\left(\mu_{0}\right)=f_{x}^{(1)}\left(0, \mu_{0}\right)+\left(\alpha_{0}+\alpha_{1} \mu_{0}^{2}+\alpha_{2} \mu_{0}^{4}\right) f^{(1)}\left(0, \mu_{0}\right)
$$

and

$$
\left\{\begin{array}{l}
\frac{f_{x x}^{(1)}\left(x, \mu_{0}\right)+\left[\mu_{0}^{4}-2 \mu_{0}^{2} q(x)+q^{2}(x)\right] f_{x}^{(1)}\left(x, \mu_{0}\right)=0}{f_{x x}^{(1)}\left(x, \mu_{0}\right)+\left[\overline{\mu_{0}^{4}}-2 \overline{\mu_{0}^{2}} q(x)+q^{2}(x)\right] \overline{f_{x}^{(1)}\left(x, \mu_{0}\right)}=0}
\end{array}\right.
$$

from (3) and (9). By using the last equalities together the definition of Wronskian and the partial integration method, we find that

$$
\begin{aligned}
0= & \left(\mu_{0}^{2}-\overline{\mu_{0}^{2}}\right)\left\{\alpha_{1}\left|f^{(1)}\left(0, \mu_{0}\right)\right|^{2}+\left(\mu_{0}^{2}+\overline{\mu_{0}^{2}}\right)\left[\alpha_{2}+\int_{0}^{\infty}\left|f^{(1)}\left(x, \mu_{0}\right)\right|^{2} d x\right]\right. \\
& \left.-2 \int_{0}^{\infty} q(x)\left|f^{(1)}\left(x, \mu_{0}\right)\right|^{2} d x\right\}
\end{aligned}
$$

and then

$$
\begin{aligned}
0= & \left(\mu_{0}^{2}-\overline{\mu_{0}^{2}}\right)\left\{\alpha_{1}\left|f^{(1)}\left(0, \mu_{0}\right)\right|^{2}+\left[\left(\operatorname{Re} \mu_{0}\right)^{2}-\left(\operatorname{Im} \mu_{0}\right)^{2}\right]\left[\alpha_{2}+\int_{0}^{\infty}\left|f^{(1)}\left(x, \mu_{0}\right)\right|^{2} d x\right]\right. \\
& \left.-2 \int_{0}^{\infty} q(x)\left|f^{(1)}\left(x, \mu_{0}\right)\right|^{2} d x\right\} .
\end{aligned}
$$

The last equality is satisfied if $\mu_{0}^{2}-\overline{\mu_{0}^{2}}=0$ and $\left(\operatorname{Re} \mu_{0}\right)^{2}=0$, i.e. $\operatorname{Re} \mu_{0}=0$. So, all zeros of $F_{1}(\mu)$ are on the imaginary axis. Finally, to get the simplicity of any zero $\mu_{0}=i \omega_{0}, \omega_{0}>0$, we need to prove that

$$
\frac{\partial F_{1}\left(\mu_{0}\right)}{\partial \mu} \neq 0
$$

From equation (3), we have

$$
\begin{aligned}
\overline{f_{x x}^{(1)}(x, \mu)}+q^{2}(x) \overline{f^{(1)}(x, \mu)}= & 2 \mu^{2} q(x) \overline{f^{(1)}(x, \mu)}-\mu^{4} \overline{f^{(1)}(x, \mu)} \\
(\stackrel{\bullet}{(1)})(x, \mu)+q^{2}(x)\left(f^{(1)}\right)(x, \mu)= & 4 \mu q(x) f^{(1)}(x, \mu)+2 \mu^{2} q(x)\left(f^{(1)}\right)(x, \mu) \\
& -4 \mu^{3} f^{(1)}(x, \mu)-\mu^{4}\left(\dot{f^{(1)}}\right)(x, \mu)
\end{aligned}
$$

and then

$$
4 \mu \int_{0}^{\infty}\left[q(x)-\mu^{2}\right]\left|f^{(1)}(x, \mu)\right|^{2} d x=\left(f^{\bullet}(1)\right)(0, \mu) \overline{f_{x}^{(1)}(0, \mu)}-\left(f_{x}^{(1)}\right)(0, \mu) \overline{f^{(1)}(0, \mu)}
$$

where $\left.\frac{\partial f^{(1)}(x, \mu)}{\partial \mu}\right|_{x=0}:=\left(f^{\bullet(1)}\right)(0, \mu)$ and $\mu=i \omega, \omega \geq 0$. Also, we find the following equation

$$
\begin{align*}
4 i \omega \int_{0}^{\infty}\left[q(x)+\omega^{2}\right]\left|f^{(1)}(x, i \omega)\right|^{2} d x= & \left(f^{\bullet}(1)\right. \\
\bullet & (0, i \omega) \overline{f_{x}^{(1)}(0, i \omega)} \tag{15}\\
& -\left(f_{x}^{(1)}\right)(0, i \omega) \overline{f^{(1)}(0, i \omega)}
\end{align*}
$$

By the definition of $F_{1}(\mu)$, we hold

$$
\begin{aligned}
f_{x}^{(1)}(0, \mu) & =F_{1}(\mu)-\left(\alpha_{0}+\alpha_{1} \mu^{2}+\alpha_{2} \mu^{4}\right) f^{(1)}(0, \mu) \\
\left(f_{x}^{(1)}\right)(0, \mu) & =\left(\dot{F}_{1}\right)(\mu)-\left(2 \alpha_{1} \mu+4 \alpha_{2} \mu^{3}\right) f^{(1)}(0, \mu)-\left(\alpha_{0}+\alpha_{1} \mu^{2}+\alpha_{2} \mu^{4}\right)\left(f^{(1)}\right)(0, \mu)
\end{aligned}
$$

These derivatives are taken into account in the equation (15) with $\mu_{0}=i \omega_{0}, \omega_{0}>0$,

$$
\begin{aligned}
4 i \omega_{0} \int_{0}^{\infty}\left[q(x)+\omega_{0}^{2}\right]\left|f^{(1)}\left(x, i \omega_{0}\right)\right|^{2} d x= & -\left(\dot{F}_{1}\right)\left(i \omega_{0}\right) \overline{f^{(1)}\left(0, i \omega_{0}\right)} \\
& +i\left(2 \alpha_{1} \omega_{0}-4 \alpha_{2} \omega_{0}^{3}\right)\left|f^{(1)}\left(0, i \omega_{0}\right)\right|^{2}(16)
\end{aligned}
$$

and from (3.6)

$$
-\left(\dot{F}_{1}\right)\left(i \omega_{0}\right) \overline{f^{(1)}\left(0, i \omega_{0}\right)}=i\left[\left(-2 \alpha_{1} \omega_{0}+4 \alpha_{2} \omega_{0}^{3}\right)\left|f^{(1)}\left(0, i \omega_{0}\right)\right|^{2}\right.
$$

$$
\begin{equation*}
\left.+4 \omega_{0} \int_{0}^{\infty}\left[q(x)+\omega_{0}^{2}\right]\left|f^{(1)}\left(x, i \omega_{0}\right)\right|^{2} d x\right] \tag{17}
\end{equation*}
$$

If $f^{(1)}\left(0, i \omega_{0}\right)=0$ in (17), then it is occured that $f^{(1)}\left(x, i \omega_{0}\right) \equiv 0$ but this can not be. So, it is clear that the left side of (17) is nonzero. Therefore, it is attained that $\left(\dot{F}_{1}\right)\left(\mu_{0}\right) \neq 0$ with $F_{1}\left(\mu_{0}\right)=0$. So, the zeros of Jost function are simply on the upper imaginary axis.

Lemma 4. If the function

$$
\begin{equation*}
F_{S_{1}}(x)=\frac{1}{\pi} \int_{0}^{\infty} \mu\left[1-S_{1}(\mu)\right] e^{i \mu^{2} x} d \mu \tag{18}
\end{equation*}
$$

is Fourier transformation of $\mu\left[1-S_{1}(\mu)\right]$ for all $x \geq 0$, it belongs to the $L_{2}(0, \infty)$ space.

Proof. From (12), we can easily verify that

$$
\mu\left[1-S_{1}(\mu)\right] \approx O\left(\frac{1}{\mu}\right), \quad|\mu| \rightarrow \infty
$$

It follows that $\mu\left[1-S_{1}(\mu)\right] \in L_{2}(0, \infty)$ and hence the function $F_{S_{1}}(x)$ also belongs to the space $L_{2}(0, \infty)$.

Definition 3. For $k=1,2, \ldots, n$,
$m_{k}^{-1}=\frac{\left[f^{(1)}\left(0, \mu_{k}\right)\right]^{2}}{\mu_{k}^{2}}\left\{\frac{1}{\left|f^{(1)}\left(0, \mu_{k}\right)\right|^{2}} \int_{0}^{\infty}\left[q(x)-\mu_{k}^{2}\right]\left|f^{(1)}\left(x, \mu_{k}\right)\right|^{2} d x-\frac{\alpha_{1}+2 \alpha_{2} \mu_{k}^{2}}{2}\right\}$,
where μ_{k} are zeros of Jost function on the upper imaginary axis.
Lemma 5. The kernel function $K(x, t)$ satisfies the main equation of L_{μ}

$$
\begin{equation*}
e^{i \alpha(x)} G(x+y)+K(x, y)+\int_{x}^{\infty} K(x, t) G(t+y) d t=0, \quad(x<y) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
G(x)=\sum_{k=1}^{n} m_{k} e^{i \mu_{k}^{2} x}+F_{S_{1}}(x) \tag{20}
\end{equation*}
$$

Proof. Lets rewrite (13) as follows

$$
\frac{2 i \mu^{2} \varphi^{(1)}(x, \mu)}{F_{1}(\mu)}=\overline{f^{(1)}(x, \mu)}-S_{1}(\mu) f^{(1)}(x, \mu)
$$

and substitute $f^{(1)}(x, \mu)$ in this by its expression (13), we get that

$$
\begin{aligned}
\frac{2 i \mu^{2} \varphi^{(1)}(x, \mu)}{F_{1}(\mu)} & =e^{-i\left[\alpha(x)+\mu^{2} x\right]}+\int_{x}^{\infty} K(x, t) e^{-i \mu^{2} t} d t \\
& -S_{1}(\mu)\left[e^{i\left[\alpha(x)+\mu^{2} x\right]}+\int_{x}^{\infty} K(x, t) e^{i \mu^{2} t} d t\right]
\end{aligned}
$$

Also, by making the necessary arrangements and using (18), we reach

$$
\begin{equation*}
\frac{2 i}{\pi} \int_{0}^{\infty} \frac{\mu^{3} \varphi^{(1)}(x, \mu) e^{i \mu^{2} y}}{F_{1}(\mu)} d \mu=e^{i \alpha(x)} F_{S_{1}}(x+y)+K(x, y)+\int_{x}^{\infty} K(x, t) F_{S_{1}}(t+y) d t \tag{21}
\end{equation*}
$$

By using Jordan Lemma and Residue Theorem,

$$
\begin{aligned}
\frac{2 i}{\pi} \int_{0}^{\infty} \frac{\mu^{3} \varphi^{(1)}(x, \mu) e^{i \mu^{2} y}}{F_{1}(\mu)} d \mu & =2 \pi i \frac{2 i}{\pi} \sum_{k=1}^{n} \operatorname{Res}\left(F_{1}, \mu_{k}\right) \\
& =-\sum_{k=1}^{n} \frac{4 \mu_{k}^{3} \varphi^{(1)}\left(x, \mu_{k}\right) e^{i \mu_{k}^{2} y}}{\left(\dot{F}_{1}\right)\left(\mu_{k}\right)}
\end{aligned}
$$

and then

$$
\frac{2 i}{\pi} \int_{0}^{\infty} \frac{\mu^{3} \varphi^{(1)}(x, \mu)}{F_{1}(\mu)} e^{i \mu^{2} y} d \mu=\sum_{k=1}^{n} m_{k} f^{(1)}\left(x, \mu_{k}\right) e^{i \mu_{k}^{2} y}
$$

because of the fact that $\varphi^{(1)}\left(x, \mu_{k}\right)$ and $f^{(1)}\left(x, \mu_{k}\right)$ are linearly dependent with $\varphi^{(1)}\left(x, \mu_{k}\right)=\frac{f^{(1)}\left(x, \mu_{k}\right)}{f^{(1)}\left(0, \mu_{k}\right)}$ since $F_{1}\left(\mu_{k}\right)=0$. If we consider the last equation and (21) together, we get

$$
\sum_{k=1}^{n} m_{k}\left[f^{(1)}\left(x, \mu_{k}\right) e^{i \mu_{k}^{2} y}\right]=e^{i \alpha(x)} F_{S_{1}}(x+y)+K(x, y)+\int_{x}^{\infty} K(x, t) F_{S_{1}}(t+y) d t
$$

and from (20), we obtain the main equation (19).
Clearly, to form the main equation, it suffices to know the function $G(x)$. On the other hand, to find the function $G(x)$, it suffices to know only the set of values

$$
\left\{S_{1}(\mu),(0<\mu<\infty) ; \mu_{k} ; m_{k},(k=1,2, \ldots, n)\right\} .
$$

which is called the scattering data for L_{μ}. Given the scattering data, we can use formula (20) to construct the function $G(x)$ and write out the main equation (19) for the unknown function $K(x, y)$. Solving this equation, we find the Kernel $K(x, y)$ of the transformation operator, and hence the potential

$$
q(x)=-\frac{1}{2} \frac{d}{d x} K(x, x)
$$

Theorem 3. The equation (19) has a unique solution $K(x, y) \in L_{1}[x, \infty)$.
Proof. We need to show that the homogeneous equation

$$
\begin{equation*}
\psi(y)+\int_{x}^{\infty} \psi(t) G(t+y) d t=0 \tag{22}
\end{equation*}
$$

has only the zero solution in $L_{2}(0, \infty)$.
We assume that (22) has a nonzero solution. Multiplying $\psi(y)$ both sides of (22) and integrating,

$$
\int_{x}^{\infty} \psi^{2}(y) d y+\int_{x}^{\infty} \psi(y) \int_{x}^{\infty} \psi(t) G(t+y) d t d y=0
$$

After that,

$$
\begin{aligned}
0= & \int_{x}^{\infty} \psi^{2}(y) d y+\int_{x}^{\infty} \psi(y) \int_{x}^{\infty} \psi(t) F_{S}(t+y) d t d y \\
& +\int_{x}^{\infty} \psi(y) \int_{x}^{\infty} \psi(t) \sum_{k=1}^{n} m_{k} e^{i \mu_{k}^{2}(t+y)} d t d y
\end{aligned}
$$

from (20). Using (18) in last equation,

$$
\begin{align*}
0= & \int_{x}^{\infty} \psi^{2}(y) d y+\int_{x}^{\infty} \psi(y) \int_{x}^{\infty} \psi(t) \sum_{k=1}^{n} m_{k} e^{i \mu_{k}^{2}(t+y)} d t d y \\
& +\int_{x}^{\infty} \psi(y) \int_{x}^{\infty} \psi(t)\left[\frac{1}{\pi} \int_{0}^{\infty} \mu\left[1-S_{1}(\mu)\right] e^{i \mu^{2}(t+y)} d \mu\right] d t d y \tag{23}
\end{align*}
$$

In (23) interchanging integrals and using the uniform convergence of

$$
\sum_{k=1}^{n} m_{k} e^{i \mu_{k}^{2}(t+y)} \psi(t)
$$

(23) can be integrated by terms. So we obtain following equation

$$
\begin{align*}
0= & \int_{x}^{\infty} \psi^{2}(y) d y+\sum_{k=1}^{n} m_{k}\left[\int_{x}^{\infty} \psi(t) e^{i \mu_{k}^{2} t} d t\right]^{2} \\
& +\frac{1}{\pi} \int_{0}^{\infty} \mu\left[1-S_{1}(\mu)\right]\left[\int_{x}^{\infty} \psi(t) e^{i \mu^{2} t} d t\right]^{2} d \mu . \tag{24}
\end{align*}
$$

On the other hand, by using Parseval equation of Fourier transformation in (24),

$$
\begin{align*}
0= & \frac{1}{\pi} \int_{0}^{\infty} \mu|\Phi(\mu)|^{2} d \mu+\sum_{k=1}^{n} m_{k}\left[\Phi\left(\mu_{k}\right)\right]^{2} \\
& +\frac{1}{\pi} \int_{0}^{\infty} \mu\left[1-S_{1}(\mu)\right][\Phi(\mu)]^{2} d \mu, \tag{25}
\end{align*}
$$

where Parseval equation of

$$
\Phi(\mu)=\int_{x}^{\infty} \psi(t) e^{i \mu^{2} t} d t
$$

is

$$
\int_{x}^{\infty} \psi^{2}(y) d y=\frac{1}{\pi} \int_{0}^{\infty} \mu|\Phi(\mu)|^{2} d \mu
$$

Since

$$
\arg \mu=0, \arg \left(m_{k}\right)=\eta_{1}(\mu), \arg [\Phi(\mu)]=\eta_{2}(\mu) \text { and } \arg \left[1-S_{1}(\mu)\right]=\eta_{3}(\mu)
$$

(25) rewrite as polar form

$$
\begin{align*}
0= & \sum_{k=1}^{n}\left|m_{k}\right|\left|\Phi\left(\mu_{k}\right)\right|^{2} e^{i\left[\eta_{1}\left(\mu_{k}\right)+2 \eta_{2}\left(\mu_{k}\right)\right]} \\
& +\frac{1}{\pi} \int_{-\infty}^{\infty}|\mu||\Phi(\mu)|^{2}\left\{1+\left|1-S_{1}(\mu)\right| e^{i\left[2 \eta_{2}(\mu)+\eta_{3}(\mu)\right]}\right\} d \mu \tag{26}
\end{align*}
$$

Real part of (26) is

$$
\begin{aligned}
0 & \sum_{k=1}^{n}\left|m_{k}\right|\left|\Phi\left(\lambda_{k}\right)\right|^{2} \cos \left(\eta_{1}\left(\mu_{k}\right)+2 \eta_{2}\left(\mu_{k}\right)\right) \\
& +\frac{1}{\pi} \int_{-\infty}^{\infty}|\mu||\Phi(\mu)|^{2}\left\{1+\left|1-S_{1}(\mu)\right| \cos \left[2 \eta_{2}(\mu)+\eta_{3}(\mu)\right]\right\} d \mu .
\end{aligned}
$$

Therefore, the last equation is equal to zero only situation is

$$
\Phi(\mu)=0 \text { and so } \psi(t)=0
$$

But this is a contradiction. So, the equation (19) has a unique solution for finite x.

Author Contribution Statements The authors contributed equally to the design and implementation of the research, the analysis of the results, and the writing of the article.

Declaration of Competing Interests The authors declare that there is no conflict of interest in this article.

Acknowledgements The authors would like to thank to the referees for useful suggestions.

References

[1] Aygar, Y., Bairamov, E., Scattering theory of impulsive Sturm-Liouville equation in quantum calculus, Bull. Malays. Math. Sci. Soc., 42(6) (2019), 3247-3259. https://doi.org/10.1007/s40840-018-0657-2
[2] Aygar, Y., Bairamov, E., Ozbey, G. G., On the spectral and scattering properties of eigenparameter dependent discrete impulsive Sturm-Liouville equations, Turkish J. Math., 45(2) (2021), 988-1000. https://doi.org/10.3906/mat-2101-45
[3] Bairamov, E., Aygar, Y., Cebesoy, S., Investigation of spectrum and scattering function of impulsive matrix difference operators, Filomat, 33(5) (2019), 1301-1312. https://doi.org/10.2298/FIL1905301B
[4] Bairamov, E., Aygar, Y., Eren, B., Scattering theory of impulsive Sturm-Liouville equations, Filomat, 31(17) (2017), 5401-5409. https://doi.org/10.2298/FIL1717401B
[5] Bairamov, E., Aygar, Y., Karsloglu, D., Scattering analysis and spectrum of discrete Schrödinger equations with transmission conditions, Filomat, 31(17) (2017), 5391-5399. https://doi.org/10.2298/FIL1717391B
[6] Bairamov, E., Aygar, Y., Oznur, G. B., Scattering properties of eigenparameter-dependent impulsive Sturm-Liouville equations, Bull. Malays. Math. Sci. Soc., 43(3) (2020), 2769-2781. https://doi.org/10.1007/s40840-019-00834-5
[7] Bairamov, E., Celebi, A. O., Spectral properties of the Klein-Gordon s-wave equation with complex potential, Indian J. Pure Appl. Math., 28(6) (1997), 813-824.
[8] Bairamov, E., Solmaz, S., Spectrum and scattering function of the impulsive discrete Dirac systems, Turkish J. Math., 42(6) (2018), 3182-3194. https://doi.org/10.3906/mat-1806-5
[9] Bairamov, E., Solmaz, S., Scattering theory of Dirac operator with the impulsive condition on whole axis, Math. Methods Appl. Sci., 44(9) (2021), 7732-7746. https://doi.org/10.1002/mma. 6645
[10] Jaulent, M., Jean, C., The inverse s-wave scattering problem for a class of potentials depending on energy, Comm. Math. Phys., 28 (1972), 177-220. https://doi.org/10.1007/BF01645775
[11] Maksudov, F. G., Bairamov, E., Orujeva, R. U., An inverse scattering problem for an infinite Jacobi matrix with operator elements (Russian), Dokl. Akad. Nauk., 323 (3) (1992), 415-419.
[12] Mamedov, Kh. R., Uniqueness of the solution to the inverse problem of scattering theory for the Sturm-Liouville operator with a spectral parameter in the boundary condition, Mathematical Notes, 74(1) (2003), 136-140. https://doi.org/10.4213/mzm587
[13] Marchenko, V. A., Sturm-Liouville Operators and Applications, Birkhauser Verlag, Basel, 1986. https://doi.org/10.1007/978-3-0348-5485-6
[14] Tunca, G. B., Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition, Int. J. Math. Math. Sci., 27 (2004), 1437-1445. https://doi.org/10.1155/S0161171204203088
[15] Tunca, G. B., Arpat, E. K., Uniqueness of the solution to the inverse problem of scattering theory for the Sturm-Liouville operator system with a spectral parameter in the boundary condition, Gazi Univ. J. Sci., 29(1) (2016), 135-142. https://doi.org/10.1155/S0161171204203088
http://communications.science.ankara.edu.tr

FIXED-POINT THEOREMS IN EXTENDED FUZZY METRIC SPACES VIA $\alpha-\phi-\mathcal{M}^{0}$ AND $\beta-\psi-\mathcal{M}^{0}$ FUZZY CONTRACTIVE MAPPINGS

Meryem ŞENOCAK ${ }^{1}$ and Erdal GÜNER ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Faculty of Sciences, Ankara University, 06100 Ankara, TÜRKİYE

Abstract

In this article we would like to present a new type of fuzzy contractive mappings which are called $\alpha-\phi-\mathcal{M}^{0}$ fuzzy contractive and $\beta-\psi-\mathcal{M}^{0}$ fuzzy contractive, and then we demonstrate two theorems which ensure the existence of a fixed point for these two types of mappings. And so we combine and generalize some existing notions in the literature ([5], [7]). Proved these theorems in the extended fuzzy metric spaces are in the more general version than the existing in the literature ones.

1. Introduction

The attention of fuzzy concept has been growing from the presented by Zadeh 20 in 1965. The concept of fuzzy was used a lot of fields such as mathematical analysis and general topology with many applications in economy and engineering. Recently, it is a paramount development that defining the concept of contractive mapping in fuzzy metric spaces. After the remarkable Banach 11 contraction principle, a large amount of mathematicians studied some contractive mappings to proof a fixed point exists. Afterwards, studies gained popularity with the notion of fuzzy metric space defined by Kramosil and Michalek 13, and then George and Veeramani 4 modified the concept of fuzzy metric space.

Contractivity's role in the fixed point theory is very important. There are a lot of studies in the literature regarding different versions contractive mappings in the different spaces ($2, ~ 3, ~ 5, ~ 6, ~ 8-~ 17, ~ 19) . ~ S a m e t ~ e t ~ a l . ~ 17 ~ p u t ~ f o r w a r d ~$ new notions of contractive mapping and used these mappings to verify some fixed point theorems in metric spaces. Based on the same perspective, D. Gopal and C.

[^8]Vetro 5 give some contractive mappings, which can be accepted generalizations of Samet et al. 17.

In this paper, we define new notions which are generalized versions of fuzzy contractive mappings introduced by D. Gopal and C.Vetro 5. We study these contractions in extended fuzzy metric spaces introduced by V. Gregori et al. 7.

The new contractions are called $\alpha-\phi-\mathcal{M}^{0}$ fuzzy contractive mapping and $\beta-\psi-\mathcal{M}^{0}$ fuzzy contractive mapping. Moreover, we have proved some fixed point theorems with these mappings in this new space and so we got a generalized versions.

2. Preliminaries

Now in this section, we recall some definitions and results that will be used in the sequel.

Definition 1. 18 A binary operation $*:[0,1] \times[0,1] \longrightarrow[0,1]$ is called a continuous triangular norm (t -norm) if the following conditions hold:

```
\(\mathrm{T}_{1}\) * is associative and commutative;
\(\mathrm{T}_{2} *\) is continuous;
T3 \(a * 1=a\), for all \(a \in[0,1]\);
T4 \(\quad a * b<c * d\), whenever \(a<c\) and \(b<d\), for all \(a, b, c, d \in[0,1]\).
```

Kramosil and Michalek 13 generalized probabilistic metric space via concept of fuzzy metric. After then George and Veeramani 4 made slight modification in this fuzzy metric concept.

Definition 2. [4], A fuzzy metric space is a triple $(\mathcal{X}, \mathcal{M}, *)$, where \mathcal{X} is a nonempty set, * is a continuous t-norm and \mathcal{M} is a fuzzy set on $\mathcal{X}^{2} \times(0, \infty)$, satisfying for all $\mathfrak{x}, \mathfrak{y}, \mathfrak{z} \in \mathcal{X}$ and for all $\mathfrak{t}, \mathfrak{s}>0$, the following properties:
$\left(G V_{1}\right) \quad \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0 ;$
(GVV) $\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=1$ if and only if $\mathfrak{x}=\mathfrak{y}$;
$\left(G V_{3}\right) \quad \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=\mathcal{M}(\mathfrak{y}, \mathfrak{x}, \mathfrak{t}) ;$
$\left(G V_{4}\right) \quad \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) * \mathcal{M}(\mathfrak{y}, \mathfrak{z}, \mathfrak{s}) \leq \mathcal{M}(\mathfrak{x}, \mathfrak{z}, \mathfrak{t}+\mathfrak{s}) ;$
$\left(G V_{5}\right) \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \cdot):(0, \infty) \rightarrow[0,1]$ is continuous,
$\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})$ could be considered as the degree of closeness between x and y with regard to t. In the above definition, if we replace $\left(G V_{4}\right)$ by $\left(G V_{4}^{*}\right), \forall \mathfrak{x}, \mathfrak{y}, \mathfrak{z} \in \mathcal{X}$ and $\mathfrak{t}, \mathfrak{s}>0$;

$$
\left(G V_{4}^{*}\right): \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) * \mathcal{M}(\mathfrak{y}, \mathfrak{z}, \mathfrak{s}) \leq \mathcal{M}(\mathfrak{x}, \mathfrak{z}, \max \{\mathfrak{t}, \mathfrak{s}\})
$$

then the triple $(\mathcal{X}, \mathcal{M}, *)$ is said to be non-Archimedean fuzzy metric space 14 .
Definition 3. [8] A stationary fuzzy metric space is a triple $(\mathcal{X}, \mathcal{M}, *)$ such that \mathcal{X} is a non-empty set, * is a continuous t-norm and \mathcal{M} is a fuzzy set on \mathcal{X}^{2} satisfying the following conditions, for all $\mathfrak{x}, \mathfrak{y}, \mathfrak{z} \in \mathcal{X}$;
$\left(S_{1}\right) \quad \mathcal{M}(\mathfrak{x}, \mathfrak{y})>0 ;$
$\left(S_{2}\right) \quad \mathcal{M}(\mathfrak{x}, \mathfrak{y})=1$ if and only if $\mathfrak{x}=\mathfrak{y}$;
$\left(S_{3}\right) \quad \mathcal{M}(\mathfrak{x}, \mathfrak{y})=\mathcal{M}(\mathfrak{y}, \mathfrak{x}) ;$
$\left(S_{4}\right) \quad \mathcal{M}(\mathfrak{x}, \mathfrak{y}) * \mathcal{M}(\mathfrak{y}, \mathfrak{z}) \leq \mathcal{M}(\mathfrak{x}, \mathfrak{z})$.
In other words, a fuzzy metric space $(\mathcal{X}, \mathcal{M}, *)$ is said to be stationary if \mathcal{M} does not depend on \mathfrak{t}.

A sequence $\left(\mathfrak{x}_{i}\right)_{i \in \mathbb{N}}$ in a stationary fuzzy metric space $(\mathcal{X}, \mathcal{M})$ is said to be Cauchy if $\lim _{i, j \rightarrow \infty} \mathcal{M}\left(\mathfrak{x}_{i}, \mathfrak{x}_{j}\right)=1 ;$ a sequence $\left(\mathfrak{x}_{i}\right)_{i \in \mathbb{N}}$ in \mathcal{X} converges to \mathfrak{x} if $\lim _{i \rightarrow \infty} \mathcal{M}\left(\mathfrak{x}_{i}, \mathfrak{x}\right)=1$ [8].

Now we recall a kind of generalized fuzzy metric space introduced by V. Gregori, J-J Minana and D. Miravet 7. They study those fuzzy metrics \mathcal{M} on \mathcal{X}, in the George and Veeramani's sense, such that $\wedge_{\mathfrak{t}>0} \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0$.

Definition 4. [7] The term $\left(\mathcal{X}, \mathcal{M}^{0}, *\right)$ is called an extended fuzzy metric space if \mathcal{X} is a (non-empty) set, $*$ is a continuous t-norm and \mathcal{M}^{0} is a fuzzy set on $\mathcal{X}^{2} \times$ $[0, \infty)$ satisfying the following conditions, for each $\mathfrak{x}, \mathfrak{y}, \mathfrak{z} \in \mathcal{X}$ and $\mathfrak{t}, \mathfrak{s} \geq 0$;
$\left(E \not \Psi_{1}\right) \quad \mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0 ;$
$\left(E \not M_{2}\right) \quad \mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=1$ if and only if $\mathfrak{x}=\mathfrak{y}$;
$\left(E \not \Psi_{3}\right) \quad \mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=\mathcal{M}^{0}(\mathfrak{y}, \mathfrak{x}, \mathfrak{t}) ;$
$\left(E T M_{4}\right) \quad \mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) * \mathcal{M}^{0}(\mathfrak{y}, \mathfrak{z}, s) \leq \mathcal{M}^{0}(\mathfrak{x}, \mathfrak{z}, \mathfrak{t}+\mathfrak{s})$;
$\left(E \nsubseteq M_{5}\right) \quad \mathcal{M}_{\mathfrak{r}, \mathfrak{y}}^{0}:[0, \infty) \rightarrow(0,1]$ is continuous, where $\mathcal{M}_{\mathfrak{x}, \mathfrak{y}}^{0}(\mathfrak{t})=\mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})$.
Theorem 1. [$\boldsymbol{\gamma}$ Let M be a fuzzy set on $\mathcal{X}^{2} \times(0, \infty)$, and denote by \mathcal{M}^{0} its extension to , $\mathcal{X}^{2} \times[0, \infty)$ given by

$$
\begin{gathered}
\mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \text { for all } \mathfrak{x}, \mathfrak{y}, \in \mathcal{X}, \mathfrak{t}>0 \text { and } \\
\mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, 0)=\wedge_{\mathfrak{t}>0} \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) .
\end{gathered}
$$

Then, $\left(\mathcal{X}, \mathcal{M}^{0}, *\right)$ is an extended fuzzy metric space if and only if $(\mathcal{X} . \mathcal{M}, *)$ is a fuzzy metric space satisfying for each $\mathfrak{x}, \mathfrak{y} \in \mathcal{X}$ the condition $\wedge_{\mathfrak{t}>0} \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0$.
Proposition 1. [7] Let $(\mathcal{X}, \mathcal{M}, *)$ be a fuzzy metric space. Define

$$
N_{\mathcal{M}}(\mathfrak{x}, \mathfrak{y})=\wedge_{t>0} \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) .
$$

Then, $\left(N_{\mathcal{M}}, *\right)$ is a stationary fuzzy metric on \mathcal{X} if and only if $\wedge_{t>0} \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0$ for all $\mathfrak{x}, \mathfrak{y} \in \mathcal{X}$.

It is clear that

$$
\begin{equation*}
\mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, 0)=\wedge_{\mathfrak{t}>0} \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=N_{\mathcal{M}}(\mathfrak{x}, \mathfrak{y}) \tag{1}
\end{equation*}
$$

Definition 5. [7] Let $(\mathcal{X}, \mathcal{M}, *)$ be a fuzzy metric space. \mathcal{M} is called extendable if for each $\mathfrak{x}, \mathfrak{y} \in \mathcal{X}$ the condition $\wedge_{\mathfrak{t}>0} \mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0$ is satisfied. In such a case, we will say that \mathcal{M}^{0} is the (fuzzy metric) extension of \mathcal{M}, and that \mathcal{M} is the restriction of \mathcal{M}^{0}.

Proposition 2. [7] Let $\left(\mathcal{X}, \mathcal{M}^{0}, *\right)$ is complete if and only if $\left(\mathcal{X}, N_{\mathcal{M}}, *\right)$ is complete.

Samet et al. 17 introduced a new concept of $\alpha-\psi-$ contractive and $\alpha-$ admissible mappings in metric spaces. D. Gopal and C. Vetro 5 inspired from them 17 and introduced the notions of $\alpha-\phi-f u z z y$ contractive mapping and $\beta-\psi-$ fuzzy contractive mapping. We recall the notions as follows.
Remark 1. [5] Denote by Φ the family of all right continuous functions ϕ : $[0, \infty) \longrightarrow[0, \infty)$, with $\phi(r)<r$ for all $r>0$. Note that for every function $\phi \in \Phi$, $\lim _{n \rightarrow \infty} \phi^{n}(r)=0$ for each $r>0$, where $\phi^{n}(r)$ denotes the $n-t h$ iterate of ϕ.
Definition 6. 5] Let $(\mathcal{X}, \mathcal{M}, *)$ be a fuzzy metric space. It is said that $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is an $\alpha-\phi-f u z z y$ contractive mapping if there exist two functions $\alpha: \mathcal{X}^{2} \times$ $(0, \infty) \longrightarrow[0, \infty)$ and $\phi \in \Phi$ such that

$$
\alpha(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})\left(\frac{1}{\mathcal{M}(\mathfrak{\Im x}, \mathfrak{\Im y}, \mathfrak{t})}-1\right) \leq \phi\left(\frac{1}{\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})}-1\right)
$$

for all $\mathfrak{x}, \mathfrak{y} \in \mathcal{X}$ and $\mathfrak{t}>0$.
Definition 7. [5] Let $(\mathcal{X}, \mathcal{M}, *)$ be a fuzzy metric space. It is said that $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is α-admissible if there exist a function $\alpha: \mathcal{X}^{2} \times(0, \infty) \longrightarrow[0, \infty)$ such that,

$$
\alpha(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \geq 1 \Longrightarrow \alpha(\Im \mathfrak{x}, \Im \mathfrak{y}, \mathfrak{t}) \geq 1
$$

for all $\mathfrak{x}, \mathfrak{y} \in \mathcal{X}$ and $\mathfrak{t}>0$.
Remark 2. [5] Let Ψ be the class of all functions $\psi:[0,1] \longrightarrow[0,1]$ such that ψ is non-decreasing and left continuous and $\psi(r)>r$ for all $r \in(0,1)$. If $\psi \in \Psi$, then $\psi(1)=1$ and $\lim _{n \rightarrow \infty} \psi^{n}(r)=1$ for all $r \in(0,1]$.

Definition 8. [5] Let $(\mathcal{X}, \mathcal{M}, *)$ be a fuzzy metric space. It is said that $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is an $\beta-\psi-$ fuzzy contractive mapping if there exist two functions $\beta: \mathcal{X}^{2} \times$ $(0, \infty) \longrightarrow(0, \infty)$ and $\psi \in \Psi$ such that,

$$
\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0 \Rightarrow \beta(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \mathcal{M}(\Im \mathfrak{r}, \Im \mathfrak{y}, \mathfrak{t}) \geq \psi(\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}))
$$

for all $\mathfrak{x}, \mathfrak{y} \in \mathcal{X}$ with $\mathfrak{x} \neq \mathfrak{y}$ and for all $\mathfrak{t}>0$.
Definition 9. [5] Let $(\mathcal{X}, \mathcal{M}, *)$ be a fuzzy metric space. It is said that $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is a β-admissible if there exist a function $\beta: \mathcal{X}^{2} \times(0, \infty) \longrightarrow(0, \infty)$ such that,

$$
\beta(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \leq 1 \Longrightarrow \beta(\Im \mathfrak{x}, \Im \mathfrak{y}, \mathfrak{t}) \leq 1 \text { for all } \mathfrak{x}, \mathfrak{y}, \in \mathcal{X} \text { and } \mathfrak{t}>0
$$

3. Main Result

3.1. $\boldsymbol{\alpha}-\boldsymbol{\phi}-\mathcal{M}^{\mathbf{0}}$ - fuzzy contractive mappings. We are ready to introduce new definitions of $\alpha-\phi-\mathcal{M}^{0}-$ fuzzy contractive and $\alpha-\mathcal{M}^{0}-a d m i s s i b l e$. We would like to inform you that use these mappings in the new fuzzy metric space (introduced in $7 \mid$). Then, we prove the theorem (proved in 5) but in the new fuzzy metric spaces. And so, we obtain new results that are generalizations of those in fuzzy metric spaces.

Definition 10. Let $(\mathcal{X}, \mathcal{M}, *)$ be an extendable fuzzy metric space. $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is called $\alpha-\phi-\mathcal{M}^{0}-f u z z y$ contractive mapping if

$$
\begin{equation*}
\alpha(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})\left(\frac{1}{\mathcal{M}(\Im \mathfrak{x}, \mathfrak{\Im y}, \mathfrak{t})}-1\right) \leq \phi\left(\frac{1}{\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})}-1\right) \tag{2}
\end{equation*}
$$

is ensured $\forall \mathfrak{x}, \mathfrak{y}, \in \mathcal{X}$ and $\mathfrak{t} \geq 0$. Especially, \Im is called $\alpha-\phi-0-$ fuzzy contractive if Equation (2) is ensured for $\mathfrak{t}=0$.

Definition 11. Let $(\mathcal{X}, \mathcal{M}, *)$ be an extendable fuzzy metric space. $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is called $\alpha-\mathcal{M}^{0}$ - admissible mapping if

$$
\begin{equation*}
\alpha(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \geq 1 \Longrightarrow \alpha(\Im \mathfrak{x}, \Im \mathfrak{y}, \mathfrak{t}) \geq 1 \tag{3}
\end{equation*}
$$

is ensured $\forall \mathfrak{x}, \mathfrak{y}, \in \mathcal{X}$ and $\mathfrak{t} \geq 0$. Especially, \Im is called $\alpha-0$-admissible if Equation (3) is ensured for $\mathfrak{t}=0$.

Theorem 2. Let $(\mathcal{X}, \mathcal{M}, *)$ be a complete extendable fuzzy metric space and a mapping $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ be an $\alpha-\phi-\mathcal{M}^{0}-f u z z y$ contractive ensuring the provisions given below:
(i) \Im is $\alpha-\mathcal{M}^{0}$ - admissible;
(ii) $\exists \mathfrak{x}_{0} \in \mathcal{X}$ such that $\alpha\left(\mathfrak{x}_{0}, \Im \mathfrak{\Im x}_{0}, \mathfrak{t}\right) \geq 1, \forall \mathfrak{t} \geq 0$;
(iii) \Im is continuous;

Then, $\Im ~ h a s ~ a ~ f i x e d ~ p o i n t . ~$
Proof. We will examine the proof in two cases.
Case 1. $\mathfrak{t}>0$;
In this case, since $\mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \forall \mathfrak{x}, \mathfrak{y} \in \mathcal{X}$, it is same situation in fuzzy metric spaces and introduced in the proof of the Theorem 3.5. [5].

Case 2. $\mathfrak{t}=0$;
Let $\mathfrak{x}_{0} \in \mathcal{X}$ such that $\alpha\left(\mathfrak{x}_{0}, \Im \mathfrak{x}_{0}, 0\right) \geq 1$.
Define the squence $\left\{\mathfrak{x}_{n}\right\}$ in \mathcal{X} with $\mathfrak{x}_{n+1}=\Im \mathfrak{x}_{n}, \forall n \in \mathbb{N}$.
Provided that $\mathfrak{x}_{n+1}=\mathfrak{x}_{n}$ for some $n \in \mathbb{N}$, then $\mathfrak{x}^{*}=\mathfrak{x}_{n}$ is a fixed point of \Im.
Presume that $\mathfrak{x}_{n} \neq \mathfrak{x}_{n+1}, \forall n \in \mathbb{N}$.
From (ii),

$$
\alpha\left(\mathfrak{x}_{0}, \mathfrak{x}_{1}, 0\right)=\alpha\left(\mathfrak{x}_{0}, \mathfrak{s x}_{0}, 0\right) \geq 1
$$

and using (i), we have

$$
\alpha\left(\mathfrak{x}_{0}, \Im \mathfrak{x}_{0}, 0\right) \geq 1 \Longrightarrow \alpha\left(\Im \mathfrak{x}_{0}, \Im \mathfrak{x}_{1}, 0\right) \geq 1
$$

By induction,

$$
\begin{aligned}
& \alpha\left(\Im \mathfrak{x}_{0}, \Im \mathfrak{x}_{1}, 0\right) \geq 1 \Longrightarrow \alpha\left(\Im \mathfrak{x}_{1}, \Im \mathfrak{x}_{2}, 0\right) \geq 1 \\
& \alpha\left(\Im \mathfrak{x}_{1}, \Im \mathfrak{x}_{2}, 0\right) \geq \geq 1 \Longrightarrow \alpha\left(\Im \mathfrak{x}_{2}, \Im \mathfrak{x}_{3}, 0\right) \geq 1 \\
& \ldots \\
& \alpha\left(\Im \mathfrak{x}_{n-3}, \Im \mathfrak{x}_{n-2}, 0\right) \geq \geq \alpha\left(\Im \mathfrak{x}_{n-2}, \Im \mathfrak{x}_{n-1}, 0\right) \geq 1
\end{aligned}
$$

and so we get,

$$
\begin{equation*}
\alpha\left(\Im \mathfrak{x}_{n-2}, \Im \mathfrak{x}_{n-1}, 0\right)=\alpha\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}, 0\right) \geq 1, \forall n \in \mathbb{N} \tag{4}
\end{equation*}
$$

Using (1), implementing (2) with $\mathfrak{x}=\mathfrak{x}_{n-1}, \mathfrak{y}=\mathfrak{x}_{n}, \mathfrak{t}=0$ and using (4) respectively we obtain;

$$
\begin{aligned}
\frac{1}{\mathcal{M}^{0}\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}, 0\right)}-1 & =\frac{1}{N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}\right)}-1 \\
& \leq \alpha\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}, 0\right)\left(\frac{1}{N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}\right)}-1\right) \\
& \leq \phi\left(\frac{1}{N_{\mathcal{M}}\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}\right)}-1\right) \\
& =\phi\left(\frac{1}{N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-2}, \Im \mathfrak{x}_{n-1}\right)}-1\right)
\end{aligned}
$$

This implies that,

$$
\frac{1}{N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}\right)}-1 \leq \phi^{n}\left(\frac{1}{N_{\mathcal{M}}\left(\mathfrak{x}_{0}, \mathfrak{x}_{1}\right)}-1\right)
$$

as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}\right)}-1\right) \leq \lim _{n \rightarrow \infty} \phi^{n}\left(\frac{1}{N_{\mathcal{M}}\left(\mathfrak{x}_{0}, \mathfrak{x}_{1}\right)}-1\right)
$$

Since, as $n \rightarrow \infty$ and $\phi^{n}(r) \rightarrow 0$,

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}\right)}-1\right)=0
$$

and so, we obtain that

$$
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}\right)=1
$$

which implies that for $n<m$ and using (1) with $\mathfrak{x}=\mathfrak{x}_{n}, \mathfrak{y}=\mathfrak{x}_{m}, \mathfrak{t}=0$;

$$
\mathcal{M}^{0}\left(\mathfrak{x}_{n}, \mathfrak{x}_{m}, 0\right)=\wedge_{t>0} \mathcal{M}\left(\mathfrak{x}_{n}, \mathfrak{x}_{m}, t\right)=N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{m}\right)
$$

Using Definition 3,

$$
N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{m}\right) \geq N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{n+1}, \mathfrak{x}_{n+2}\right) * \ldots * N_{\mathcal{M}}\left(\mathfrak{x}_{m-1}, \mathfrak{x}_{m}\right)
$$

and as $n \rightarrow \infty$,

```
\(\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{m}\right) \geq \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}\right) * \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{n+1}, \mathfrak{x}_{n+2}\right) * \ldots * \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{m-1}, \mathfrak{x}_{m}\right)\)
    \(\geq 1 * 1 * \ldots * 1\)
    \(\geq 1\)
```

We obtain,

$$
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{m}\right)=1
$$

And so, we solve an important point of the proof that $\left\{\mathfrak{x}_{n}\right\}$ is a Cauchy squence. Since \mathcal{X} is complete,

$$
\exists \mathfrak{x}^{*} \in \mathcal{X} \quad: \text { as } n \rightarrow \infty \text { and } \mathfrak{x}_{n} \rightarrow \mathfrak{x}^{*}
$$

Since \Im is continuous, as $\mathfrak{x}_{n} \rightarrow \mathfrak{x}^{*}$ we have $\Im \mathfrak{x}_{n} \rightarrow \Im \mathfrak{x}^{*}$ and using (1),

$$
\mathcal{M}^{0}\left(\Im \mathfrak{x}_{n}, \Im \mathfrak{x}^{*}, 0\right)=\wedge_{t>0} \mathcal{M}\left(\Im \mathfrak{S x}_{n}, \Im \mathfrak{x}^{*}, t\right)=N_{\mathcal{M}}\left(\mathfrak{S x}_{n}, \Im \mathfrak{x}^{*}\right), \forall \mathfrak{x}_{n} \in \mathcal{X}
$$

And so we obtain,

$$
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n}, \Im \mathfrak{x}^{*}\right)=1
$$

By the uniqueness of the limit, we get $\mathfrak{x}^{*}=\Im \mathfrak{x}^{*}$, that is, \mathfrak{x}^{*} is a fixed point of \Im.
3.2. $\boldsymbol{\beta}-\boldsymbol{\psi}-\boldsymbol{\mathcal { M }}^{\mathbf{0}}-$ fuzzy contractive mappings. We are ready to introduce new definitions of $\beta-\psi-\mathcal{M}^{0}-$ fuzzy contractive and $\beta-\mathcal{M}^{0}-$ admissible. We would like to inform you that we use these mappings in the new fuzzy metric space (introduced in $\mid 7$). Then, we prove the theorem (proved in 5) but in the new fuzzy metric spaces. And so, we obtain new results that are generalizations of those in fuzzy metric spaces.

Definition 12. Let $(\mathcal{X}, \mathcal{M}, *)$ be an extendable fuzzy metric space. $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is called $\beta-\psi-\mathcal{M}^{0}-f u z z y$ contractive mapping if

$$
\begin{equation*}
\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})>0 \Rightarrow \beta(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \mathcal{M}(\Im \mathfrak{x}, \Im \mathfrak{y}, \mathfrak{t}) \geq \psi(\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})) \tag{5}
\end{equation*}
$$

is ensured $\forall \mathfrak{x}, \mathfrak{y}, \in \mathcal{X}$ and $\mathfrak{t} \geq 0$. Especially, \Im is called $\beta-\psi-0-$ fuzzy contractive if Equation (5) is ensured for $\mathfrak{t}=0$.

Definition 13. Let $(\mathcal{X}, \mathcal{M}, *)$ be an extendable fuzzy metric space. $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ is called $\beta-\mathcal{M}^{0}-$ admissible mapping if

$$
\begin{equation*}
\beta(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}) \leq 1 \Longrightarrow \beta(\Im \mathfrak{x}, \Im \mathfrak{y}, \mathfrak{t}) \leq 1 \tag{6}
\end{equation*}
$$

is ensured $\forall \mathfrak{x}, \mathfrak{y}, \in \mathcal{X}$ and $\mathfrak{t} \geq 0$. Especially, \Im is called $\beta-0$-admissible if Equation (6) is ensured for $\mathfrak{t}=0$

By adding an additional condition, we prove a fixed point theorem introduced in 5 in extendable fuzzy metric space using these new mappings. This is a new context that using the new mappings in the extendable fuzzy metric space.
Theorem 3. Let $(\mathcal{X}, \mathcal{M}, *)$ be an extendable complete non-Archimedean fuzzy metric space and a mapping $\Im: \mathcal{X} \longrightarrow \mathcal{X}$ be a $\beta-\psi-\mathcal{M}^{0}-$ fuzzy contractive ensuring the provisions given below:
(i) \Im is $\beta-\mathcal{M}^{0}-$ admissible;
(ii) $\exists \mathfrak{x}_{0} \in \mathcal{X}$ such that $\beta\left(\mathfrak{x}_{0}, \Im \mathfrak{x}_{0}, \mathfrak{t}\right) \leq 1 \forall \mathfrak{t} \geq 0$;
(iii) for each sequence $\left\{\mathfrak{x}_{n}\right\}$ in \mathcal{X} such that $\beta\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}, \mathfrak{t}\right) \leq 1 \forall n \in \mathbb{N}$ and $\mathfrak{t} \geq 0$, $\exists k_{0} \in N$ such that $\beta\left(\mathfrak{x}_{m+1}, \mathfrak{x}_{n+1}, \mathfrak{t}\right) \leq 1 \forall m, n \in \mathbb{N}$ with $m>n \geq k_{0}$ and $\forall \mathfrak{t} \geq 0$;
(iv) if $\left\{\mathfrak{x}_{n}\right\}$ is a sequence in \mathcal{X} such that $\beta\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}, \mathfrak{t}\right) \leq 1 \forall n \in \mathbb{N}$ and $\mathfrak{t} \geq 0$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $\beta\left(\mathfrak{x}_{n}, \mathfrak{x}, \mathfrak{t}\right) \leq 1 \forall n \in \mathbb{N}$ and $\forall \mathfrak{t} \geq 0$;
(v) $\forall \mathfrak{x}, \mathfrak{y} \in \mathcal{X}$ and $\forall \mathfrak{t} \geq 0, \exists \mathfrak{z} \in \mathcal{X}$ such that $\beta(\mathfrak{x}, \mathfrak{z}, \mathfrak{t}) \leq 1$ and $\beta(\mathfrak{y}, \mathfrak{z}, \mathfrak{t}) \leq 1$;

Then, \Im has a unique fixed point.
Proof. We will examine the proof in two cases.
Case 1. $\mathfrak{t}>0$;
In this case, since $\mathcal{M}^{0}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t})=\mathcal{M}(\mathfrak{x}, \mathfrak{y}, \mathfrak{t}), \forall \mathfrak{x}, \mathfrak{y} \in \mathcal{X}$; it is same situation in fuzzy metric spaces and introduced in the proof of the Theorem 4.4 5. It is obtained that $\Im \mathfrak{x}^{*}=\mathfrak{x}^{*}$ in the [5].

Now we will show that uniqueness of the fixed point.
Presume that \Im have two different fixed points; \mathfrak{x}^{*} and \mathfrak{y}^{*}.
Provided that $\beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right) \leq 1$, then

$$
\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right) \geq \beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right) \mathcal{M}\left(\Im \mathfrak{x}^{*}, \Im \mathfrak{y}^{*}, \mathfrak{t}\right)
$$

Since \Im is $\beta-\psi-\mathcal{M}^{0}-$ fuzzy contractive, we have

$$
\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right) \geq \beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right) \mathcal{M}\left(\Im \mathfrak{x}^{*}, \Im \mathfrak{y}^{*}, \mathfrak{t}\right) \geq \psi\left(\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right)\right) .
$$

Also, since $\psi(r)>r$, we obtain that

$$
\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right) \geq \beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right) \mathcal{M}\left(\Im \mathfrak{x}^{*}, \Im \mathfrak{y}^{*}, \mathfrak{t}\right) \geq \psi\left(\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right)\right)>\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right)
$$

And so, we get

$$
\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right)>\mathcal{M}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right)
$$

It is a contradiction.
That is, \mathfrak{x}^{*} and \mathfrak{y}^{*} are not different points; $\mathfrak{x}^{*}=\mathfrak{y}^{*}$.
Presume that $\beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, \mathfrak{t}\right)>1$, then from (v),

$$
\exists \mathfrak{z} \in X: \beta\left(\mathfrak{x}^{*}, \mathfrak{z}, \mathfrak{t}\right) \leq 1 \text { and } \beta\left(\mathfrak{y}^{*}, \mathfrak{z}, \mathfrak{t}\right) \leq 1
$$

From (i), we obtain,

$$
\begin{aligned}
\beta\left(\mathfrak{x}^{*}, \mathfrak{z}, \mathfrak{t}\right) \leq & 1 \Rightarrow \beta\left(\Im \mathfrak{x}^{*}, \Im \mathfrak{z}, \mathfrak{t}\right)=\beta\left(\mathfrak{x}^{*}, \Im \mathfrak{z}, \mathfrak{t}\right) \leq 1 \\
\beta\left(\mathfrak{x}^{*}, \Im \mathfrak{z}, \mathfrak{t}\right) \leq & 1 \Rightarrow \beta\left(\Im \mathfrak{x}^{*}, \Im^{2} \mathfrak{z}, \mathfrak{t}\right)=\beta\left(\mathfrak{x}^{*}, \Im^{2} \mathfrak{z}, \mathfrak{t}\right) \leq 1 \\
& \ldots \\
\beta\left(\mathfrak{x}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right) \leq & 1 \Rightarrow \beta\left(\Im \mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right)=\beta\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) \leq 1
\end{aligned}
$$

and so we get,

$$
\begin{equation*}
\beta\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) \leq 1, \forall n \in \mathbb{N} \text { and } \forall \mathfrak{t}>0 \tag{7}
\end{equation*}
$$

Since \Im is $\beta-\psi-\mathcal{M}^{0}-$ fuzzy contractive, using (7), we get,

$$
\begin{aligned}
\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) & =\mathcal{M}\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right)=\mathcal{M}\left(\Im \mathfrak{x}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right), \mathfrak{t}\right) \\
& \geq \beta\left(\mathfrak{x}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right) \mathcal{M}\left(\Im \mathfrak{x}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right), \mathfrak{t}\right) \\
& \geq \psi\left(\mathcal{M}\left(\mathfrak{x}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right)\right) \\
& =\psi\left(\mathcal{M}\left(\Im \mathfrak{x}^{*}, \Im\left(\Im^{n-2} \mathfrak{z}\right), \mathfrak{t}\right)\right)
\end{aligned}
$$

And by induction we have,

$$
\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) \geq \psi^{n}\left(\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \mathfrak{z}, \mathfrak{t}\right)\right), \forall n \in \mathbb{N}
$$

as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \mathcal{M}^{0}\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) \geq \lim _{n \rightarrow \infty} \psi^{n}\left(\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \mathfrak{z}, \mathfrak{t}\right)\right)
$$

Since $\psi^{n}(r) \rightarrow 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{M}^{0}\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right)=1 \Rightarrow \Im^{n} \mathfrak{z} \rightarrow \mathfrak{x}^{*} \tag{8}
\end{equation*}
$$

and by similar way, we get

$$
\begin{align*}
& \beta\left(\mathfrak{y}^{*}, \mathfrak{z}, \mathfrak{t}\right) \leq 1 \Rightarrow \beta\left(\Im \mathfrak{y}^{*}, \Im \mathfrak{z}, \mathfrak{t}\right)=\beta\left(\mathfrak{y}^{*}, \Im \mathfrak{\Im}, \mathfrak{t}\right) \leq 1 \\
& \beta\left(\mathfrak{y}^{*}, \Im \mathfrak{z}, \mathfrak{t}\right) \leq \leq 1 \Rightarrow \beta\left(\Im \mathfrak{y}^{*}, \Im^{2} \mathfrak{z}, \mathfrak{t}\right)=\beta\left(\mathfrak{y}^{*}, \Im^{2} \mathfrak{z}, \mathfrak{t}\right) \leq 1 \\
& \ldots \\
& \beta\left(\mathfrak{y}^{*}, \Im^{n-2} \mathfrak{z}, \mathfrak{t}\right) \leq 1 \Rightarrow \beta\left(\Im \mathfrak{y}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right)=\beta\left(\mathfrak{y}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right) \leq 1 \tag{9}\\
& \beta\left(\mathfrak{y}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right) \leq 1, \forall n \in \mathbb{N} \text { and } \forall \mathfrak{t}>0 .
\end{align*}
$$

Since \Im is $\beta-\psi-\mathcal{M}^{0}-$ fuzzy contractive, using (9), we get,

$$
\begin{aligned}
\mathcal{M}^{0}\left(\mathfrak{y}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) & =\mathcal{M}\left(\mathfrak{y}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right)=\mathcal{M}\left(\Im \mathfrak{y}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right), \mathfrak{t}\right) \\
& \geq \beta\left(\mathfrak{y}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right) \mathcal{M}\left(\Im \mathfrak{y}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right), \mathfrak{t}\right) \\
& \geq \psi\left(\mathcal{M}\left(\mathfrak{y}^{*}, \Im^{n-1} \mathfrak{z}, \mathfrak{t}\right)\right)
\end{aligned}
$$

And so, by induction we have,

$$
\mathcal{M}^{0}\left(\mathfrak{y}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) \geq \psi^{n}\left(\mathcal{M}^{0}\left(\mathfrak{y}^{*}, \mathfrak{z}, \mathfrak{t}\right)\right), \forall n \in \mathbb{N}
$$

as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \mathcal{M}^{0}\left(\mathfrak{y}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right) \geq \lim _{n \rightarrow \infty} \psi^{n}\left(\mathcal{M}^{0}\left(\mathfrak{y}^{*}, \mathfrak{z}, \mathfrak{t}\right)\right)
$$

Since $\psi^{n}(r) \rightarrow 1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{M}^{0}\left(\mathfrak{y}^{*}, \Im^{n} \mathfrak{z}, \mathfrak{t}\right)=1 \Rightarrow \Im^{n} \mathfrak{z} \rightarrow \mathfrak{y}^{*} \tag{10}
\end{equation*}
$$

From (8), (10) and the uniqueness of the limit $\mathfrak{x}^{*}=\mathfrak{y}^{*}$.

Case 2. $\mathfrak{t}=0$;
Let $\mathfrak{x}_{0} \in \mathcal{X}$ such that $\beta\left(\mathfrak{x}_{0}, \Im \mathfrak{x}_{0}, 0\right) \leq 1$.
Define the sequence $\mathfrak{x}_{n+1}=\Im \mathfrak{x}_{n}, \forall n \in \mathbb{N}$. If $\mathfrak{x}_{n+1}=\mathfrak{x}_{n}$ for some $n \in \mathbb{N}$, then $\mathfrak{x}^{*}=\mathfrak{x}_{n}$ is a fixed point of \Im.

Suppose $\mathfrak{x}_{n+1} \neq \mathfrak{x}_{n}, \forall n \in \mathbb{N}$.
From (ii),

$$
\beta\left(\mathfrak{x}_{0}, \mathfrak{x}_{1}, 0\right)=\beta\left(\mathfrak{x}_{0}, \Im \mathfrak{x}_{0}, 0\right) \leq 1
$$

and using (i), we obtain

$$
\beta\left(\mathfrak{x}_{0}, \Im \mathfrak{x}_{0}, 0\right) \leq 1 \Rightarrow \beta\left(\Im \mathfrak{x}_{0}, \Im \mathfrak{x}_{1}, 0\right) \leq 1
$$

By induction,

$$
\begin{aligned}
\beta\left(\Im \mathfrak{x}_{0}, \Im \mathfrak{x}_{1}, 0\right) \leq & \leq 1 \Rightarrow \beta\left(\Im \mathfrak{x}_{1}, \Im \mathfrak{x}_{2}, 0\right) \leq 1 \\
\beta\left(\Im \mathfrak{x}_{1}, \Im \mathfrak{x}_{2}, 0\right) \leq & \leq 1 \Rightarrow \beta\left(\Im \mathfrak{x}_{2}, \Im \mathfrak{x}_{3}, 0\right) \leq 1 \\
& \ldots \\
\beta\left(\Im \mathfrak{x}_{n-3}, \Im \mathfrak{x}_{n-2}, 0\right) \leq & 1 \Rightarrow \beta\left(\Im \mathfrak{x}_{n-2}, \Im \mathfrak{x}_{n-1}, 0\right) \leq 1
\end{aligned}
$$

and so we get,

$$
\begin{equation*}
\beta\left(\Im \mathfrak{x}_{n-2}, \Im \mathfrak{x}_{n-1}, 0\right)=\beta\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}, 0\right) \leq 1, \forall n \in \mathbb{N} \tag{11}
\end{equation*}
$$

Implementing (5) with $\mathfrak{x}=\mathfrak{x}_{n-1}, \mathfrak{y}=\mathfrak{x}_{n}, \mathfrak{t}=0$ and using (11) respectively, we obtain;

$$
\mathcal{M}^{0}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}, 0\right) \geq \beta\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}, 0\right) \mathcal{M}^{0}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}, 0\right) \geq \psi\left(\mathcal{M}^{0}\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}, 0\right)\right)
$$

Using (1), we get,

$$
\begin{aligned}
N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}\right) & \geq \beta\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}, 0\right)\left(N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}\right)\right) \\
& \geq \psi\left(N_{\mathcal{M}}\left(\mathfrak{x}_{n-1}, \mathfrak{x}_{n}\right)\right)
\end{aligned}
$$

And this implies that,

$$
N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n-1}, \Im \mathfrak{x}_{n}\right) \geq \psi^{n}\left(N_{\mathcal{M}}\left(\mathfrak{x}_{0}, \mathfrak{x}_{1}\right)\right), \forall n \in \mathbb{N} .
$$

as $n \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{S x}_{n-1}, \Im_{\mathfrak{x}}\right) \geq \lim _{n \rightarrow \infty} \psi^{n}\left(N_{\mathcal{M}}\left(\mathfrak{x}_{0}, \mathfrak{x}_{1}\right)\right)
$$

Since $\psi^{n}(r) \rightarrow 1$,

$$
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}_{n+1}\right)=1
$$

The important point of the proof is setting that the sequence $\left\{\mathfrak{x}_{n}\right\}$ Cauchy in \mathcal{X}.
Suppose that it is false; there exists $0<\varepsilon<1$ and two subsequences $\left\{\mathfrak{x}_{p_{n}}\right\}$ and $\left\{\mathfrak{x}_{q_{n}}\right\}$ of $\left\{\mathfrak{x}_{n}\right\}$ such that q_{n} is the smallest index for which $p_{n}>q_{n} \geq n_{0}$, using (1)

$$
\begin{gathered}
\mathcal{M}^{0}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}, 0\right)=\wedge_{t>0} \mathcal{M}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}, t\right)=N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, x_{\mathfrak{x} q_{n}}\right) \leq 1-\varepsilon \\
\mathcal{M}^{0}\left(\mathfrak{x}_{p_{n-1}}, \mathfrak{x}_{q_{n}}, 0\right)=\wedge_{t>0} \mathcal{M}\left(\mathfrak{x}_{p_{n}-1}, \mathfrak{x}_{q_{n}}, t\right)=N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}-1}, \mathfrak{x}_{q_{n}}\right)>1-\varepsilon
\end{gathered}
$$

and by (iii); $n_{0} \in \mathbb{N}$ such that, for each $n \in \mathbb{N}$ with $n \geq n_{0}$, there exist $p_{n}, q_{n} \in \mathbb{N}$ $\beta\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}, 0\right) \leq 1$.

And we get

$$
1-\varepsilon \geq N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right) \geq N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}-1}, \mathfrak{x}_{q_{n}}\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}-1}, \mathfrak{x}_{p_{n}}\right)
$$

as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty}(1-\varepsilon) \geq \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right) \geq \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}-1}, \mathfrak{x}_{q_{n}}\right) * \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}-1}, \mathfrak{x}_{p_{n}}\right)
$$

Since $\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}-1}, \mathfrak{x}_{p_{n}}\right)=1$,

$$
(1-\varepsilon) \geq \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right) \geq(1-\varepsilon)
$$

we obtain that

$$
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right)=(1-\varepsilon) .
$$

and similarly

$$
\begin{aligned}
(1-\varepsilon) & \geq N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right) \\
& \geq N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{p_{n}+1}\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}+1}, \mathfrak{x}_{q_{n}+1}\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{q_{n}+1}, \mathfrak{x}_{q_{n}}\right) \\
& \geq N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{p_{n}+1}\right) * \beta\left(\Im \mathfrak{x}_{p_{n}}, \Im \mathfrak{x}_{q_{n}}, 0\right) N_{\mathcal{M}}\left(\Im_{\mathfrak{x}} \mathfrak{x}_{p_{n}}, \Im \mathfrak{x}_{q_{n}}\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{q_{n}+1}, \mathfrak{x}_{q_{n}}\right) \\
& \geq N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{p_{n}+1}\right) * \psi\left(N_{M}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right)\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{q_{n}}, \mathfrak{x}_{q_{n}+1}\right) .
\end{aligned}
$$

as $n \rightarrow \infty$, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(1-\varepsilon) & \geq \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{p_{n}+1}\right) * \lim _{n \rightarrow \infty} \psi\left(N_{M}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right)\right) * \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{q_{n}}, \mathfrak{x}_{q_{n}+1}\right) \\
(1-\varepsilon) & \geq \lim _{n \rightarrow \infty} \psi\left(N_{M}\left(\mathfrak{x}_{p_{n}}, \mathfrak{x}_{q_{n}}\right)\right) \\
(1-\varepsilon) & \geq \psi(1-\varepsilon)
\end{aligned}
$$

It is a contradiction, because of $\psi(r)>r$.
So we have obtained that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since \mathcal{X} is complete,

$$
\exists \mathfrak{x}^{*} \in \mathcal{X} \quad: \text { as } n \rightarrow \infty \text { and } \mathfrak{x}_{n} \rightarrow \mathfrak{x}^{*}
$$

Using (11) and (iv);

$$
\beta\left(\mathfrak{x}_{n}, \mathfrak{x}^{*}, 0\right) \leq 1, \forall n \in \mathbb{N}
$$

from (5) with using (1) and S_{4},

$$
\begin{aligned}
N_{\mathcal{M}}\left(\Im \mathfrak{x}^{*}, \mathfrak{x}^{*}\right) & \geq N_{\mathcal{M}}\left(\Im \mathfrak{x}^{*}, \Im \mathfrak{x}_{n}\right) * N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n}, \mathfrak{x}^{*}\right) \\
& \geq \beta\left(\mathfrak{x}_{n}, \mathfrak{x}^{*}, 0\right) N_{\mathcal{M}}\left(\Im \mathfrak{x}_{n}, \Im \mathfrak{x}^{*}\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{n+1}, \mathfrak{x}^{*}\right) \\
& \geq \psi\left(N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}^{*}\right)\right) * N_{\mathcal{M}}\left(\mathfrak{x}_{n+1}, \mathfrak{x}^{*}\right)
\end{aligned}
$$

as $n \rightarrow \infty, \psi(1)=1$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\Im \mathfrak{x}^{*}, \mathfrak{x}^{*}\right) & \geq \lim _{n \rightarrow \infty} \psi\left(N_{\mathcal{M}}\left(\mathfrak{x}_{n}, \mathfrak{x}^{*}\right)\right) * \lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\mathfrak{x}_{n+1}, \mathfrak{x}^{*}\right) \\
& \geq \psi(1) * 1=1
\end{aligned}
$$

and we obtain,

$$
\lim _{n \rightarrow \infty} N_{\mathcal{M}}\left(\Im \mathfrak{x}^{*}, \mathfrak{x}^{*}\right)=1
$$

And so, $\mathfrak{x}^{*}=\Im \mathfrak{x}^{*}$. That is, \mathfrak{x}^{*} is a fixed point of \Im.

Now we will show that uniqueness of the fixed point.
Presume that \Im have two different fixed points; \mathfrak{x}^{*} and \mathfrak{y}^{*}.
Provided that $\beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, 0\right) \leq 1$, then since \Im is $\beta-\psi-0-$ fuzzy contractive, using (1) and $\psi(r)>r$, we have

$$
\begin{gathered}
\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, 0\right) \geq \beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, 0\right) \mathcal{M}^{0}\left(\Im \mathfrak{x}^{*}, \Im \mathfrak{y}^{*}, 0\right) \geq \psi\left(\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, 0\right)\right)>\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, 0\right) \\
N_{\mathcal{M}}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}\right)>N_{\mathcal{M}}\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}\right)
\end{gathered}
$$

it is a contradiction. That is, $\mathfrak{x}^{*}=\mathfrak{y}^{*}$.
Assume that $\beta\left(\mathfrak{x}^{*}, \mathfrak{y}^{*}, 0\right)>1$, then from (v)

$$
\exists \mathfrak{z} \in X: \beta\left(\mathfrak{x}^{*}, \mathfrak{z}, 0\right) \leq 1 \text { and } \beta\left(\mathfrak{y}^{*}, \mathfrak{z}, 0\right) \leq 1
$$

From (i), we obtain,

$$
\begin{equation*}
\beta\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, 0\right) \leq 1 \text { and } \beta\left(\mathfrak{y}^{*}, \Im^{n} \mathfrak{z}, 0\right) \leq 1, \forall n \in \mathbb{N} . \tag{12}
\end{equation*}
$$

Since \Im is $\beta-\psi-0-$ fuzzy contractive and using (10), we obtain

$$
\begin{aligned}
\mathcal{M}^{0}\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, 0\right) & =\mathcal{M}\left(\mathfrak{x}^{*}, \Im^{n} \mathfrak{z}, 0\right)=\mathcal{M}\left(\Im \mathfrak{x}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right), 0\right)=N_{\mathcal{M}}\left(\Im \mathfrak{x}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right)\right) \\
& \geq \beta\left(\mathfrak{x}^{*}, \Im^{n-1} \mathfrak{z}, 0\right) N_{\mathcal{M}}\left(\Im \mathfrak{x}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right)\right) \\
& \geq \psi\left(N_{\mathcal{M}}\left(\mathfrak{x}^{*}, \Im^{n-1} \mathfrak{z}\right)\right)
\end{aligned}
$$

And by induction we obtain,

$$
N_{\mathcal{M}}\left(\Im \mathfrak{x}^{*}, \Im\left(\Im^{n-1} \mathfrak{z}\right)\right) \geq \psi^{n}\left(N_{\mathcal{M}}\left(\mathfrak{x}^{*}, \mathfrak{z}\right)\right), \forall n \in \mathbb{N} .
$$

As $n \rightarrow \infty$, we get $\Im^{n} \mathfrak{z} \rightarrow \mathfrak{x}^{*}$.
And by the similary way we obtain $\Im^{n} \mathfrak{z} \rightarrow \mathfrak{y}^{*}$. So the uniqueness of the limit $\mathfrak{x}^{*}=\mathfrak{y}^{*}$

Author Contribution Statements All authors contributed equally to the writing of this paper and they read and approved the final of it.

Declaration of Competing Interests The authors declare that they have no competing interests.

Acknowledgment The authors thank the reviewers and editor for their precious proposals which made this paper much advanced.

References

[1] Banach, S., Sur les oprations dans les ensembles abstrails et leur application aux quations intgrales, Fund Math., 3 (1922), 133-181.
[2] Chang, C., L., Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
[3] Di Bari, C., Vetro, C., Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math., 13(4) (2005), 973-982.
[4] George, A., Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399. http://dx.doi.org/10.1016/0165-0114(94)90162-7
[5] Gopal, D., Vetro, C., Some new fixed point theorems in fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 11(3) (2014), 95-107.
[6] Grabiec, M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
[7] Gregori, V., Minana, J. J., Miravet, D., Extended fuzzy metrics and fixed point theorems, Mathematics Journal, 7 (2019), 303. https://doi.org/10.3390/math7030303
[8] Gregori, V., Romaguera, S., Characterizing completable fuzzy metric spaces, Fuzzy Sets and Systems, 144 (2014), 411-420. DOI:10.1016/S0165-0114(03)00161-1
[9] Gregori, V., Sapena, A., On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9
[10] Gregori, V., Minana, J. J. Morillas, S., A note on convergence in fuzzy metric spaces, Iranian Journal of Fuzzy Systems, 11 (2014), 75-85. DOI:10.22111/IJFS.2014.1625
[11] Huang, H., Caric, B., Dosenovic, T., Rakic, D., Brdar, M., Fixed point theorems in fuzzy metric spaces via fuzzy F-contraction, Mathematics Journal, 9 (2021), 641. https://doi.org/10.3390/math9060641
[12] Khan, M. S., Swaleh, M., Sessa, S., Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1-9. DOI: https://doi.org/10.1017/S0004972700001659
[13] Kramosil, I., Michalek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336-344.
[14] Mihet, D., Fuzzy ψ - contractive mappings in non-Archimedean fuzzy metric space, Fuzzy Sets and Systems, 159 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006
[15] Mihet, D., A note on fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Set. Syst., 251 (2014), 83-91.16
[16] Park, J. S., Kim, S. Y., A fixed point theorem in a fuzzy metric space, F. J. M. S., 1(6) (1999), 927-934.
[17] Samet, B. Vetro, C. Vetro, P., Fixed point theorems for $\alpha-\psi$ contractive type mappings, Nonlinear Analysis Theory Methods and Applications, 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
[18] Schwizer, B., Sklar, A., Statistical metric spaces, Pacific Journal of Mathematics 10 (1960), 315-367.
[19] Shen, Y., Qiu, D., Chen, W., Fixed point theorems in fuzzy metric spaces, App. Mathematics Letters, 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002
[20] Zadeh, L.A., Fuzzy sets, Inform. Control, 8 (1965), 338-353.
http://communications.science.ankara.edu.tr

LAGRANGE STABILITY IN TERMS OF TWO MEASURES WITH INITIAL TIME DIFFERENCE FOR SET DIFFERENTIAL EQUATIONS INVOLVING CAUSAL OPERATORS

Coşkun YAKAR ${ }^{1}$ and Hazm TALAB ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Faculty of Science, Gebze Technical University, Gebze, 141-41400 Kocaeli, TÜRKİYE

Abstract

In this paper, we investigate generalized variational comparison results aimed to study the stability properties in terms of two measures for solutions of Set Differential Equations (SDEs) involving causal operators, taking into consideration the difference in initial conditions. Next, we employ these comparison results in proving the theorems that give sufficient conditions for equi-boundedness, equi-attractiveness in the large, and Lagrange stability in terms of two measures with initial time difference for the solutions of perturbed SDEs involving causal operators in regard to their unperturbed ones.

1. Introduction

Many researchers were interested in studying set differential equations (SDEs) in the recent decades $2358-1013141820233647$ due to their unifying properties. Lakshmikantham et al. highlighted these properties in one of the most important resources on this topic 23. The comprehensiveness of the SDEs is driven from the fact that they encompass the conventional differential and integral equations when the Hukuhara difference and integrals defined on the SDEs are restricted to \mathbb{R}; whereas they give us vector differential equations when the restriction is done to $\mathbb{R}^{n} 4,19,26$.

On the other hand, many well-known differential equations such as integro differential equations 28, impulsive differential equations [22, and differential equations with delay 35 , are examples of differential equations involving causal operators. Many research papers dealt with those types of equations. $1,7,10,21,43$

[^9]SDEs with causal operators unifies the fundamental theory of SDEs, including various corresponding dynamical systems. Some relevant works can be found in 5. 8 - 14,47

Although it is never feasible to know the exact solutions of all dynamical systems in practice, their attributes may be determined through a variety of qualitative studies such as stability analysis $2,5,15,19,20,24,36$, initial time difference (ITD) stability analysis $6,29,30,33,34,37,38,41,47$, practical stability analysis 17, 31, 40,46 , boundedness $2,6,11,16,32,37,38,40-42$, etc.

Many techniques have been used in this process, including the Lyapunov second method $19,24,33,43,44$, variation of parameters 25, 32, 33, "in terms of two measures" methodology $[5,18,27,32,38,42,45,46$, and so on.

In this manuscript, we develop generalized variational comparison results aimed to assess a combination of two concepts of stability and other qualitative aspects for SDEs with causal operators that unifies the conceptual framework behind SDEs. Furthermore, we give adequate criteria for equi-boundedness, equi-attractiveness in the large, and Lagrange stability in terms of two measures with ITD for the solutions of the perturbed forms of these types equations in comparison to their un-perturbed counterparts.

2. Preliminaries

In what follows, we denote the set of all compact non-empty subsets of \mathbb{R}^{n} by $K\left(\mathbb{R}^{n}\right)$, and the set of all compact and convex non-empty subsets of \mathbb{R}^{n} by $K_{c}\left(\mathbb{R}^{n}\right)$.

The Hausdorff metric between any bounded sets A and B in \mathbb{R}^{n} is defined as

$$
\begin{equation*}
D(A, B)=\max \left[\sup _{x \in B} d(x, A), \sup _{y \in A} d(y, B)\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
d(x, A)=\inf \{d(x, y): y \in A\} \tag{2}
\end{equation*}
$$

Each of $\left(K\left(\mathbb{R}^{n}\right), D\right)$ and $\left(K_{c}\left(\mathbb{R}^{n}\right), D\right)$ forms a complete metric space. The space $K_{c}\left(\mathbb{R}^{n}\right)$ equipped with the natural addition and non-negative scalar multiplication becomes a semi-linear metric space which can be embedded as a cone into a corresponding Banach space.

The Hausdorff metric satisfies the following properties:

$$
\begin{align*}
& \text { (1) } D(A, B)=D(B, A) \\
& \text { (2) } D(A+C, B+C)=D(A, B) \\
& \text { (3) } D(k A, k B)=k D(A, B) \tag{3}\\
& \text { (4) } D(A, B) \leq D(A, C)+D(C, B)
\end{align*}
$$

for any $A, B, C \in K_{c}\left(\mathbb{R}^{n}\right)$ and $k \in \mathbb{R}_{+}$, where Minkowski addition of any two nonempty subsets A and B of \mathbb{R}^{n} is defined by $A+B=\{a+b: a \in A, b \in B\}$ and where scalar multiplication of a value $k \in \mathbb{R}$ and a non-empty subset A of \mathbb{R}^{n} is defined by $k A=\{k a: a \in A\}$. If $k=-1$, we get $-A=(-1) A=\{-a: a \in A\}$.

In general, $A+(-A) \neq\{0\}$ (unless $A=\{a\}$ is a singleton). To overcome with this implication of Minkowski difference, i.e.

$$
\begin{equation*}
A-B=A+(-1) B=\{a-b: a \in A, \quad b \in B\} \tag{4}
\end{equation*}
$$

Hukuhara difference between two sets $A, B \in K_{c}\left(\mathbb{R}^{n}\right)$ is defined as follows:
If there exists a set $C \in K_{c}\left(\mathbb{R}^{n}\right)$ such that $C+B=A$, then Hukuhara difference exists and we denote it by $A \ominus B$, or simply $A-B$ when there is no confusion with Minkowski difference. i.e. $A \ominus B=C \Leftrightarrow C+B=A$.

An important property of Hukuhara difference is $A-A=\{0\}$ for $A \in K_{c}\left(\mathbb{R}^{n}\right)$.
Let $U: I \rightarrow K_{c}\left(\mathbb{R}^{n}\right)$ be a given multifunction, where I is an interval of real numbers. U is said to be Hukuhara differentiable at a point $t_{0} \in I$, if there exists an element $D_{H} U\left(t_{0}\right) \in K_{c}\left(\mathbb{R}^{n}\right)$ such that the limits

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{U\left(t_{0}+h\right)-U\left(t_{0}\right)}{h} \quad \text { and } \quad \lim _{h \rightarrow 0^{+}} \frac{U\left(t_{0}\right)-U\left(t_{0}-h\right)}{h} \tag{5}
\end{equation*}
$$

both exist in the topology of $K_{c}\left(\mathbb{R}^{n}\right)$ and are equal to $D_{H} U\left(t_{0}\right)$.
It is implicit in the definition of $D_{H} U\left(t_{0}\right)$ the exitance of the two differences $U\left(t_{0}+h\right)-U\left(t_{0}\right)$ and $U\left(t_{0}\right)-U\left(t_{0}-h\right)$, for sufficiently small $h>0$.

By embedding $K_{c}\left(\mathbb{R}^{n}\right)$ as a complete cone in a corresponding Banach space and taking into account the result on differentiation of Bochner integral, we find that if

$$
\begin{equation*}
G(t)=G\left(t_{0}\right)+\int_{t_{0}}^{t} F(s) d s, \quad t \in I \tag{6}
\end{equation*}
$$

where $F: I \rightarrow K_{c}\left(\mathbb{R}^{n}\right)$ is integrable in the sense of Bochner, then G is Hukuhara differentiable, i. e. $D_{H} G(t)$ exits, and the equality $D_{H} G(t)=F(t)$, a. e. on I, holds.

Also, the Hukuhara integral

$$
\begin{equation*}
\int_{I} F(s) d s=\left[\int_{I} f(s) d s: f \text { is a continuous selector of } F\right] \tag{7}
\end{equation*}
$$

for any compact set $I \subset \mathbb{R}_{+}$.
Let $E=C\left[\left[t_{0}, \infty\right), K_{c}\left(\mathbb{R}^{n}\right)\right]$ with norm

$$
\begin{equation*}
\sup _{t \in\left[t_{0}, \infty\right)} \frac{D[U(t), \theta]}{h(t)}<\infty \tag{8}
\end{equation*}
$$

where $U \in E, \theta$ is the zero element of \mathbb{R}^{n}, which is regarded as a point set; and $h:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$is a continuous map. E equipped with such a norm is a Banach
space.
Let $Q \in C[E, E] . Q$ is said to be a causal map if $U(s)=V(s), t_{0} \leq s \leq t<\infty$, and $U, V \in E$ then

$$
\begin{equation*}
(Q U)(s)=(Q V)(s), \quad t_{0} \leq s \leq t<\infty \tag{9}
\end{equation*}
$$

Let us consider the following differential equations

$$
\begin{gather*}
D_{H} U=(Q U)(t), \quad U\left(t_{0}\right)=U_{0} \quad \text { for } \quad U_{0} \in K_{c}\left(\mathbb{R}^{n}\right) \quad \text { and } t \geq t_{0} \geq 0, \tag{10}\\
D_{H} U=(Q U)(t), \quad U\left(\tau_{0}\right)=V_{0} \quad \text { for } \quad V_{0} \in K_{c}\left(\mathbb{R}^{n}\right) \text { and } t \geq \tau_{0} \geq 0 \tag{11}\\
D_{H} V=(P V)(t), \quad V\left(\tau_{0}\right)=V_{0} \quad \text { for } V_{0} \in K_{c}\left(\mathbb{R}^{n}\right) \quad \text { and } t \geq \tau_{0} \tag{12}\\
D_{H} W=(S W)(t), W\left(\tau_{0}\right)=V_{0}-U_{0} \quad \text { for } W\left(\tau_{0}\right)=W_{0} \in K_{c}\left(\mathbb{R}^{n}\right) \quad \text { and } t \geq \tau_{0} \tag{13}
\end{gather*}
$$

where $Q, P, S: E \rightarrow E$ are causal operators, and satisfy a local Lipschitz condition on $\mathbb{R}_{+} \times S_{\rho}$ where $S_{\rho}=\left\{U \in K_{c}\left(\mathbb{R}^{n}\right): D[U, \tilde{0}]<\rho<\infty\right\}$.

It is clear that (10) and (11) are different in the initial time and position. Moreover, if $(P V)(t)$ in 12) is written as $(P V)(t)=(Q V)(t)+(R V)(t)$; Then, we consider (12) as the perturbed form corresponding to the unperturbed equation (11) with the perturbation term $(R V)(t)$.

Assuming that $(Q \tilde{0})(t) \equiv \tilde{0}$ for $t \geq 0$, and assuming the necessary smoothness of P, Q and R to guarantee the existence and uniqueness of the solution $U(t)=U\left(t, t_{0}, U_{0}\right)$ of (10) through $\left(t_{0}, U_{0}\right)$ for all $t \geq t_{0}$, and those of the solution $V(t)=V\left(t, \tau_{0}, V_{0}\right)$ of (12) through $\left(\tau_{0}, V_{0}\right)$ for all $t \geq \tau_{0}$, in addition to their continuous dependence on the initial conditions.

If $U \in C^{1}\left[J_{1}, K_{c}\left(\mathbb{R}^{n}\right)\right]$ on $J_{1}=\left[t_{0}, t_{0}+T_{1}\right]$, then it is said to be a solution of (10) on J_{1} if it satisfies 10 on J_{1}. If U, V and $W \in C^{1}\left[J_{2}, K_{c}\left(\mathbb{R}^{n}\right)\right]$ on $J_{2}=\left[t_{0}, t_{0}+T_{2}\right]$, then these are said to be solutions of (11), (12), (13) on J_{2} provided that they satisfy (11), (12), (13) on J_{2}, respectively.

Now let us define a partial order in the metric space $\left(K_{c}\left(\mathbb{R}^{n}\right), D\right)$. First, we start by defining a cone in $K_{c}\left(\mathbb{R}^{n}\right)$.

Definition 1. The subfamily $K \subset K_{c}\left(\mathbb{R}^{n}\right)$ is said to be a cone in $K_{c}\left(\mathbb{R}^{n}\right)$ if it consists of sets $U \in K_{c}\left(\mathbb{R}^{n}\right)$ such that any $u \in U$ is a non-negative n-component vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ satisfying $u_{i} \geq 0$ for $i=1 \ldots n$. The subfamily $K^{0} \subset$ $K_{c}\left(\mathbb{R}^{n}\right)$, that consists of sets $U \in K_{c}\left(\mathbb{R}^{n}\right)$ such that any $u \in U$ is a positive n-component vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ satisfying $u_{i}>0$ for $i=1 \ldots n$, is the nonempty interior of the cone K.

Definition 2. For any $U, V \in K_{c}\left(\mathbb{R}^{n}\right)$, if there exists $Z \in K_{c}\left(\mathbb{R}^{n}\right)$ such that $Z \in K$ and $U=V+Z$ then we say that $U \geq V$ or $V \leq U$. Similarly, if there exists $Z \in K_{c}\left(\mathbb{R}^{n}\right)$ such that $Z \in K^{0}$ and $U=V+Z$ then we say that $U>V$ or $V<U$.

We present below some needed classes to develop the stability results in terms of two measures.

$$
\begin{gather*}
\mathbb{K}=\left\{a \in C\left[\mathbb{R}_{+}, \mathbb{R}_{+}\right]: a(u) \text { is strictly increasing in } u \text { and } a(0)=0\right\} \tag{14}\\
\mathbb{L}=\left\{\sigma \in C\left[\mathbb{R}_{+}, \mathbb{R}_{+}\right]: \sigma(u) \text { is strictly decreasing in } u \text { and } \lim _{u \rightarrow \infty} \sigma(u)=0\right\} \tag{15}\\
\mathbb{C} \mathbb{K}=\left\{\begin{array}{c}
a \in C\left[\mathbb{R}_{+}^{2}, \mathbb{R}_{+}\right]: a(t, s) \in \mathbb{K} \text { for each } t \\
\text { and } a(t, s) \text { is continuous for each } s
\end{array}\right\} \tag{16}\\
\Gamma=\left\{h \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}\right]: \inf _{(t, U)} h(t, U)=0\right\} \tag{17}\\
\Gamma_{0}=\left\{h \in \Gamma: \inf _{U} h(t, U)=0, \text { for each } t \in \mathbb{R}_{+}\right\} \tag{18}
\end{gather*}
$$

Next, to introduce a Lyapunov-like function, we present some definitions needed in the qualitative analysis in terms of two measures.

Definition 3. Let $L \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}\right]$, then L is said to be (i) h-positive definite if there exists a $\rho>0$ and $a b \in \mathbb{K}$ such that

$$
\begin{equation*}
h(t, U)<\rho \text { implies } b(h(t, U)) \leq L(t, U) \tag{19}
\end{equation*}
$$

(ii) h-decrescent if there exists a $\rho>0$ and a function $a \in \mathbb{K}$ such that

$$
\begin{equation*}
h(t, U)<\rho \text { implies } L(t, U) \leq a(h(t, U)) \tag{20}
\end{equation*}
$$

(iii) h-weakly decrescent if there exists a $\rho>0$ and a function $a \in \mathbb{C} \mathbb{K}$ such that

$$
\begin{equation*}
h(t, U)<\rho \text { implies } L(t, U) \leq a(t, h(t, U)) \tag{21}
\end{equation*}
$$

Definition 4. Let $h_{0}, h \in \Gamma$, then we say that h_{0} is finer than h if there exists a $\rho>0$ and a function $\phi \in \mathbb{C} \mathbb{K}$ such that

$$
\begin{equation*}
h_{0}(t, U) \leq \rho \quad \text { implies } \quad h(t, U) \leq \phi\left(t, h_{0}(t, U)\right) \tag{22}
\end{equation*}
$$

h_{0} is uniformly finer than h if the function ϕ in the above definition is independent of t.

Now, let us introduce the definitions of generalized Dini-like derivatives of L.
Definition 5. We define the generalized derivative (Dini-like derivatives) for a real-valued function $L \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}\right]$as follows:

$$
\begin{align*}
& D_{*}^{+} L(t, s, U) \\
& =\lim _{h \rightarrow 0^{+}} \sup \frac{1}{h}[L(s+h, V(t, s+h, U+h(Q \tilde{U})(s)))-L(s, V(t, s, U))] \tag{23}
\end{align*}
$$

$$
\begin{align*}
& D_{*-} L(t, s, U) \\
& =\lim _{h \rightarrow 0^{-}} \operatorname{in} f \frac{1}{h}[L(s+h, V(t, s+h, U+h(Q \tilde{U})(s)))-L(s, V(t, s, U))] \tag{24}
\end{align*}
$$

for $t, s \in \mathbb{R}_{+}$and $U \in K_{c}\left(\mathbb{R}^{n}\right)$.
Next, let us introduce the definitions of initial time difference (ITD) equi-boundedness, equi-attractiveness in the large, and Lagrange stability in terms of two measures, before proceeding with our main results.
Definition 6. Let $U\left(t, t_{0}, U_{0}\right)$ be any solution of (10) for $t \geq t_{0} \geq 0$, and let $\tilde{U}\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$. The solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$ is said to be
(i) ITD $\left(h_{0}, h\right)$-equi-bounded with respect to the solution \tilde{U}, if and only if given any $\alpha>0$ and $\tau_{0} \in \mathbb{R}_{+}$, there exists $\beta=\beta\left(\alpha, \tau_{0}\right)>0$ such that $h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta$ implies

$$
\begin{equation*}
h\left(t, V\left(t, \tau_{0}, V_{0}\right)-U\left(t-\eta, t_{0}, U_{0}\right)\right)<\alpha, \quad t \geq \tau_{0} \tag{25}
\end{equation*}
$$

(ii) ITD $\left(h_{0}, h\right)$-uniformly equi-bounded with respect to the solution \tilde{U} if the previous implication in (i) holds for every $\tau_{0} \in \mathbb{R}_{+}$, or in otherwords, $\beta=\beta\left(\alpha, \tau_{0}\right)>0$ is independent of τ_{0}.

It is worth pointing out that if β in (ii) satisfy that $\beta\left(\cdot, \tau_{0}\right) \in \mathbb{K}$, then the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12$)$ is $\operatorname{ITD}\left(h_{0}, h\right)$-stable with respect to the solution \tilde{U}. In fact, for $\varepsilon>0$ there exists a continuous function $\delta=\delta\left(\varepsilon, \tau_{0}\right)>0$ in τ_{0}, such that whenever $\alpha<\delta$, we have $\beta=\beta\left(\alpha, \tau_{0}\right)<\varepsilon$.
(iii) ITD $\left(h_{0}, h\right)$-equi-attractive in the large with respect to the solution \tilde{U}, if and only if given any $\varepsilon, \alpha>0$ and $\tau_{0} \in \mathbb{R}_{+}$, there exists a $T=T\left(\tau_{0}, \varepsilon, \alpha\right)>0$ such that $h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha$ implies

$$
\begin{equation*}
h\left(t, V\left(t, \tau_{0}, V_{0}\right)-U\left(t-\eta, t_{0}, U_{0}\right)\right)<\varepsilon, \quad t \geq \tau_{0}+T\left(\tau_{0}, \varepsilon, \alpha\right) \tag{26}
\end{equation*}
$$

(iv) ITD $\left(h_{0}, h\right)$-uniform equi-attractive in the large with respect to the solution \tilde{U}, if the previous implication in (iii) holds for every $\tau_{0} \in \mathbb{R}_{+}$, or in otherwords, $T=T\left(\tau_{0}, \varepsilon, \alpha\right)>0$ is independent of τ_{0}.
(v) ITD $\left(h_{0}, h\right)$-Lagrange stable with respect to the solution \tilde{U}, if and only if it is ITD $\left(h_{0}, h\right)$-equi-bounded and ITD $\left(h_{0}, h\right)$-equi-attractive in the large with respect to the solution \tilde{U}.
(vi) ITD $\left(h_{0}, h\right)$-uniform Lagrange stable with respect to the solution \tilde{U}, if and only if it is ITD $\left(h_{0}, h\right)$-Lagrange stable and both $\beta=\beta\left(\alpha, \tau_{0}\right)>0$ in (i) and $T=T\left(\tau_{0}, \varepsilon, \alpha\right)>0$ in (iii) are independent of τ_{0}.

3. ITD Stability Results in Terms of Two Measures

3.1. ITD Variational Comparison Results. In what follows, let us present generalized variational comparison results aimed to study the stability properties in terms of two measures for solutions of SDEs involving causal operators, taking into consideration the difference in the initial conditions.

Before that, in order to study the stability properties for the SDEs with causal operators, let us assume that the solutions of the SDEs (10), (11), (12), and (13) exist and that they are unique; additionally, that all the Hukuhara differences exist, so the problem is well-posed.

Theorem 1. Assume that (i) Both $L(t, \Omega) \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}^{N}\right]$ and $\|W(t, s, \Omega)\|$ satisfy a local Lipschitz condition in Ω for any t, s; where $W(t)=W\left(t, \tau_{0}, V_{0}-U_{0}\right)$ is the solution of (13) for $t \geq \tau_{0}, \tilde{U}\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$, $U\left(t, t_{0}, U_{0}\right)$ is any solution of (10) for $t \geq t_{0}$, and $V(t)=V\left(t, \tau_{0}, V_{0}\right)$ is the solution of (12) for $t \geq \tau_{0}$; and let $\Omega(t)=V(t)-\tilde{U}(t)$.

$$
\begin{equation*}
D_{*-} L(t, s, \Omega) \leq g(t, s, L(s, W(t, s, \Omega))) \tag{ii}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{*-} L(t, s, \Omega) \\
& =\lim _{\delta \rightarrow 0^{-}} \inf \frac{1}{\delta}(L(s+\delta, W(t, s+\delta, \Omega+\delta((P V)(s)-(Q \tilde{U})(s)))) \tag{28}\\
& -L(s, W(t, s, \Omega)))
\end{align*}
$$

(iii) $g \in C\left[\mathbb{R}_{+} \times \mathbb{R}_{+}^{N}, \mathbb{R}^{N}\right], g(t, s, u)$ is quasi-monotone non-decreasing in u for any $t, s ;\left[\right.$ i.e., if $u \leq v, u_{i}=v_{i}$ for some i such that $1 \leq i \leq N$, then $g_{i}(t, s, u) \leq$ $g_{i}(t, s, v)$, for $t, s \in \mathbb{R}_{+}$(In this context, the inequality symbol used in the vectorial inequalities is understood to denote component-wise inequality [39])];
and $r\left(t, s, \tau_{0}, V_{0}\right)$ is the maximal solution of

$$
\begin{equation*}
\frac{d u(s)}{d s}=g(t, s, u(s)), \quad u\left(\tau_{0}\right)=u_{0} \geq 0 \tag{29}
\end{equation*}
$$

existing for $\tau_{0} \leq s \leq t<\infty$.
Then, $L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)=u_{0}$ implies

$$
\begin{equation*}
L\left(t, \Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)\right) \leq r_{0}\left(t, \tau_{0}, L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \tag{30}
\end{equation*}
$$

where $r_{0}\left(t, \tau_{0}, u_{0}\right)=r\left(t, t, \tau_{0}, u_{0}\right)$.
Proof. Let us set

$$
\begin{equation*}
m(t, s)=L(s, W(t, s, \Omega(s))) \quad \text { for } \quad \tau_{0} \leq s \leq t \tag{31}
\end{equation*}
$$

Then, we have

$$
\begin{align*}
m\left(t, \tau_{0}\right) & =L\left(\tau_{0}, W\left(t, \tau_{0}, \Omega\left(\tau_{0}\right)\right)\right)=L\left(\tau_{0}, W\left(t, \tau_{0}, V\left(\tau_{0}\right)-\tilde{U}\left(\tau_{0}\right)\right)\right) \tag{32}\\
& =L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)=u_{0}
\end{align*}
$$

For a sufficiently small positive value δ, we have

$$
\begin{align*}
& m(t, s+\delta)-m(t, s) \\
& =L(s+\delta, W(t, s+\delta, \Omega(s+\delta)))-L(s, W(t, s, \Omega(s))) \\
& =L(s+\delta, W(t, s, \Omega(s))+\delta(S W(t, s, \Omega(s)))(s)+\varepsilon(\delta))-L(s, W(t, s, \Omega(s))) \tag{33}
\end{align*}
$$

where ε stands for error and $\lim _{\delta \rightarrow 0^{-}} \frac{\varepsilon(\delta)}{\delta}=0$.
Taking into consideration the assumptions in (i) regarding the locally Lipschitz property of $L(t, \Omega)$ and $\|W(t, s, \Omega)\|$ in Ω, it is seen that

$$
\begin{align*}
m(t, s+\delta)-m(t, s) & \leq k\left(\varepsilon_{1}(\delta)-\varepsilon_{2}(\delta)\right) \\
& +L(s+\delta, W(t, s, V(s)-\tilde{U}(s))+\delta((P V)(s)-(Q \tilde{U})(s))) \\
& -L(s, W(t, s, V(s)-\tilde{U}(s))) \tag{34}
\end{align*}
$$

where $\varepsilon_{1}, \varepsilon_{2}$ stand for errors, k stands for Lipschitz constant.
The inequality in the assumption (ii) gives us the following estimation regarding the Dini derivative of $m(t, s)$

$$
\begin{align*}
& D_{*-} m(t, s) \\
& \quad \leq \lim _{\delta \rightarrow 0^{-}} \inf \frac{1}{\delta} K\left(\varepsilon_{1}(\delta)-\varepsilon_{2}(\delta)\right) \\
& +\lim _{\delta \rightarrow 0^{-}} \inf \frac{1}{\delta} L(s+\delta, W(t, s, V(s)-\tilde{U}(s))+\delta((P V)(s)-(Q \tilde{U})(s))) \tag{35}\\
& \quad-\lim _{\delta \rightarrow 0^{-}} \inf \frac{1}{\delta} L(s, W(t, s, V(s)-\tilde{U}(s))) \\
& \quad \leq g(t, s, L(s, W(t, s, V(s)-\tilde{U}(s)))) \\
& \quad=g(t, s, L(s, W(t, s, \Omega(s))))=g(t, s, m(t, s))
\end{align*}
$$

for $\tau_{0} \leq s \leq t<\infty$.
A comparison result [Theorem 1.7.1] from 26 gives us the following inequality

$$
\begin{equation*}
m(t, s) \leq r\left(t, s, \tau_{0}, L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \quad \text { for } \quad \tau_{0} \leq s \leq t \tag{36}
\end{equation*}
$$

Choosing $s=t$ in the right-hand side of the previous inequality, we get

$$
\begin{align*}
m(t, s) & \leq r\left(t, t, \tau_{0}, L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \\
& =r_{0}\left(t, \tau_{0}, L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \tag{37}
\end{align*}
$$

which yields the desired estimation in (30) completing the proof.
Theorem 2. Under the assumptions of Theorem 1 with $N=1$ and $g(t, s, u) \equiv 0$, we have

$$
\begin{equation*}
L\left(t, \Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)\right) \leq L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right), \quad t \geq \tau_{0} \tag{38}
\end{equation*}
$$

Furthermore, we assume

$$
\begin{equation*}
D_{*-} L(t, s, \Omega) \leq-c(h(s, W(t, s, \Omega))), \quad \tau_{0} \leq s \leq t<\infty \tag{39}
\end{equation*}
$$

where $c \in \mathbb{K}$ and $h \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}\right]$.
Then, for $t \geq \tau_{0}$
$L\left(t, \Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)\right) \leq L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)-\int_{\tau_{0}}^{t} c(h(s, W(t, s, \Omega(s)))) d s$.

Proof. Starting from the statement (35) in the proof of Theorem 1 .

$$
\begin{equation*}
D_{*-} m(t, s) \leq g(t, s, m(t, s)) \quad \text { for } \quad \tau_{0} \leq s \leq t<\infty . \tag{41}
\end{equation*}
$$

Then, since $g(t, s, u) \equiv 0$, we get by integrating the two sides of the previous inequality (41), for $s \in\left[\tau_{0}, t\right]$,

$$
\begin{equation*}
\int_{\tau_{0}}^{t} D_{*-} m(t, s) d s=L(t, W(t, t, \Omega(t)))-L\left(\tau_{0}, W\left(t, \tau_{0}, \Omega\left(\tau_{0}\right)\right)\right) \leq 0 \tag{42}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
L\left(t, \Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)\right) \leq L\left(\tau_{0}, W\left(t, \tau_{0}, \mathrm{~V}_{0}-U_{0}\right)\right) \quad \text { for } t \geq \tau_{0} \tag{43}
\end{equation*}
$$

Now, let us set

$$
\begin{equation*}
M(s, W(t, s, \Omega(s))) \equiv L(s, W(t, s, \Omega(s)))+\int_{\tau_{0}}^{s} c(h(\xi, W(t, \xi, \Omega(\xi)))) d \xi \tag{44}
\end{equation*}
$$

Then, by taking Dini derivatives of both sides and by assumption (39), we have

$$
\begin{align*}
D_{*-} M(t, s, \Omega(s)) & =D_{*-} L(t, s, \Omega(s))+c(h(s, W(t, s, \Omega(s)))) \\
& -c\left(h\left(\tau_{0}, W\left(t, \tau_{0}, \Omega\left(\tau_{0}\right)\right)\right)\right) \\
& \leq D_{*-} L(t, s, \Omega(s))+c(h(s, W(t, s, \Omega(s)))) \tag{45}\\
& \leq-c(h(s, W(t, s, \Omega(\mathrm{~s}))))+c(h(s, W(t, s, \Omega(s))))=0
\end{align*}
$$

Thus, $D_{*-} M(t, s, \Omega(s)) \leq 0$, in view of (43), gives us for $t \geq \tau_{0}$,

$$
\begin{equation*}
M\left(t, \Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)\right) \leq M\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right) \tag{46}
\end{equation*}
$$

By the definition of M, this implies, for $t \geq \tau_{0}$,

$$
\begin{gather*}
L\left(t, \Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)+\int_{\tau_{0}}^{t} c(h(\xi, W(t, \xi, \Omega(\xi)))) d \xi \\
\leq L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)+\int_{\tau_{0}}^{\tau_{0}} c(h(\xi, W(t, \xi, \Omega(\xi)))) d \xi \tag{47}\\
L\left(t, \Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)+\int_{\tau_{0}}^{t} c(h(\xi, W(t, \xi, \Omega(\xi)))) d \xi \leq L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right) \tag{48}
\end{gather*}
$$

Moving the integral term to the right-hand side gives us the desired estimation (40) and this completes the proof.
3.2. Main ITD Stability Results in Terms of Two Measures. Now, let us employ the comparison results in section 3.1 to prove the following theorems giving sufficient conditions for equi-boundedness, equi-attractiveness in the large, and Lagrange stability in terms of two measures for the solutions of perturbed SDEs involving causal operators in regard to their unperturbed ones.

The next theorem gives sufficient conditions to the ITD $\left(h_{0}, h\right)$-equi-boundedness of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) through $\left(\tau_{0}, V_{0}\right)$ for $t \geq \tau_{0}$ with respect to the solution $\tilde{U}\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$, where $U(t)=U\left(t, t_{0}, U_{0}\right)$ is the solution of (10) through $\left(t_{0}, U_{0}\right)$ for $t \geq t_{0}$; providing that the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12 is ITD $\left(h_{0}, h_{0}\right)$-equi-bounded with respect to \tilde{U}.

Theorem 3. Assume that
(i) Both $L(t, \Omega) \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}\right]$and $\|W(t, s, \Omega)\|$ satisfy a local Lipschitz condition in Ω for any t, s; where $W(t)=W\left(t, \tau_{0}, V_{0}-U_{0}\right)$ is the solution of (13) for $t \geq \tau_{0}$ and

$$
\begin{equation*}
\Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)=V(t)-\tilde{U}(t) \quad \text { for } t \geq \tau_{0} \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
D_{*-} L(t, s, \Omega) \leq-c(h(s, W(t, s, \Omega(\mathrm{~s})))) \text { in } S(h, M) \tag{ii}
\end{equation*}
$$

where

$$
\begin{equation*}
S(h, M)=\{(t, \Omega): h(t, \Omega)<M \text { for some } h \in \Gamma \text { and } M>0\} \tag{51}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{*-} L(t, s, \Omega) \\
& =\lim _{\delta \rightarrow 0^{-}} \inf \frac{1}{\delta}(L(s+\delta, W(t, s+\delta, \Omega+\delta((P V)(s)-(Q \tilde{U})(s)))) \tag{52}\\
& -L(s, W(t, s, \Omega)))
\end{align*}
$$

(iii) For $b \in \mathbb{K}$ and $a_{1}, a_{0} \in \mathbb{C} \mathbb{K}$,

$$
\begin{align*}
& b(h(t, \Omega))+\int_{\tau_{0}}^{t} c(h(s, W(t, s, \Omega(\mathrm{~s})))) d s \leq L(t, \Omega) \text { in } S(h, M) \quad \text { and } \tag{53}\\
& L(t, \Omega) \leq a_{1}(t, h(t, \Omega))+a_{0}\left(t, h_{0}(t, \Omega)\right) \text { in } S(h, M) \cap S\left(h_{0}, M\right)
\end{align*}
$$

(iv) h_{0} is finer that h, that is, there exists a function $\phi \in \mathbb{K}$ such that

$$
\begin{equation*}
h_{0}(t, \Omega) \leq M_{0} \quad \text { implies } \quad h(t, \Omega) \leq \phi\left(h_{0}(t, \Omega)\right) \tag{54}
\end{equation*}
$$

for some M_{0} with $\phi\left(M_{0}\right) \leq M$;
(v) The solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$ is ITD $\left(h_{0}, h_{0}\right)$-equi-bounded with respect to the solution $\tilde{U}\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$.

Then, this implies the ITD $\left(h_{0}, h\right)$-equi-boundedness of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$, with respect to the solution \tilde{U}

Proof. We shall show that the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12 for $t \geq \tau_{0}$ is ITD $\left(h_{0}, h\right)$ -equi-bounded with respect to the solution \tilde{U}, that is, given any $\alpha>0$ and for some $\tau_{0} \in \mathbb{R}_{+}$, there exists $\beta=\beta\left(\alpha, \tau_{0}\right)>0$ such that $h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta$ implies

$$
\begin{equation*}
h\left(t, V\left(t, \tau_{0}, V_{0}\right)-U\left(t-\eta, t_{0}, U_{0}\right)\right)<\alpha \text { for } t \geq \tau_{0} \tag{55}
\end{equation*}
$$

Assume that (55) is not true, then there exist solutions $\tilde{U}(t)=U\left(t-\eta, t_{0}, U_{0}\right)$, where $U\left(t, t_{0}, U_{0}\right)$ is the solution of (10) for $t \geq t_{0}$; and $V(t)=V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$, and $t_{1}>\tau_{0}$ such that

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta, h\left(t_{1}, \Omega\left(t_{1}\right)\right)=\alpha \text { and } h(t, \Omega(t)) \leq \alpha, \text { for } \tau_{0} \leq t \leq t_{1} \tag{56}
\end{equation*}
$$

where $\Omega(t)=V(t)-\tilde{U}(t)$ for $t \geq \tau_{0}$.
By Theorem 2, we have, for $\tau_{0} \leq t \leq t_{1}$,

$$
\begin{equation*}
L(t, \Omega(t)) \leq L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)-\int_{\tau_{0}}^{t} c(h(s, W(t, s, \Omega(s)))) d s \tag{57}
\end{equation*}
$$

Then, using the assumptions (iii), 56) and (57), we obtain when $t=t_{1}$,

$$
\begin{align*}
b(\alpha) & +\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \\
& =b\left(h\left(t_{1}, \Omega\left(t_{1}\right)\right)\right)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \leq L\left(t_{1}, \Omega\left(t_{1}\right)\right) \\
& \leq L\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)-\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s \\
& \leq L\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s \\
& \leq a_{1}\left(\tau_{0}, h\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)\right)+a_{0}\left(\tau_{0}, h_{0}\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \\
& +\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s \tag{58}
\end{align*}
$$

We aim to reach a contradiction to conclude the proof of the theorem. We will use the assumption (v) for this purpose.

Given $0<\alpha<M$ and that there exists a M_{0} with $\phi\left(M_{0}\right) \leq M$.
Choosing $N_{1}=N_{1}\left(\tau_{0}, \alpha\right)$ such that $0<N_{1}\left(\tau_{0}, \alpha\right)<M_{0}$, and

$$
\begin{equation*}
h_{0}(t, \Omega(t))<N_{1} \quad \text { implies } a_{0}\left(t, h_{0}(t, \Omega(t))\right)<\frac{b(\alpha)}{2} \text { for } t \geq \tau_{0} \tag{59}
\end{equation*}
$$

By assumption (v), corresponding to this N_{1}, there exists a $\beta_{1}=\beta_{1}\left(\tau_{0}, N_{1}\right)>0$ such that

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta_{1} \text { implies } h_{0}(t, \Omega(t))<N_{1} \text { for } t \geq \tau_{0} \tag{60}
\end{equation*}
$$

Thus (59) and 60) give us

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta_{1} \text { implies } a_{0}\left(t, h_{0}(t, \Omega(t))\right)<\frac{b(\alpha)}{2} \text { for } t \geq \tau_{0} \tag{61}
\end{equation*}
$$

Similarly, we choose $N_{2}=N_{2}\left(\tau_{0}, \alpha\right)$ such that $0<N_{2}\left(\tau_{0}, \alpha\right)<M_{0}$ and

$$
\begin{equation*}
h(t, \Omega(t))<N_{2} \text { implies } a_{1}(t, h(t, \Omega(t)))<\frac{b(\alpha)}{2} \text { for } t \geq \tau_{0} \tag{62}
\end{equation*}
$$

By the assumptions (iv) and (v) also, corresponding to $\phi^{-1}\left(N_{2}\right)$, there exists a $\beta_{2}=\beta_{2}\left(\tau_{0}, N_{2}\right)>0$ such that

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta_{2} \text { implies } h_{0}(t, \Omega(t))<\phi^{-1}\left(N_{2}\right) \text { for } t \geq \tau_{0} \tag{63}
\end{equation*}
$$

Since $\phi \in \mathbb{K}$ is strictly monotone increasing; then, we have by taking the composition of ϕ of both sides of the inequality $h_{0}(t, \Omega(t))<\phi^{-1}\left(N_{2}\right)$ in 63), with
considering (54),

$$
\begin{align*}
& h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta_{2} \text { implies } \\
& \qquad h(t, \Omega(\mathrm{t})) \leq \phi\left(h_{0}(t, \Omega(t))\right)<\phi\left(\phi^{-1}\left(N_{2}\right)\right)=N_{2} \text { for } t \geq \tau_{0} \tag{64}
\end{align*}
$$

So, 62) and (64) give us, for $t \geq \tau_{0}$,

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta_{2} \text { implies } a_{1}(t, h(t, \Omega(t)))<\frac{b(\alpha)}{2} \tag{65}
\end{equation*}
$$

Let $\beta=\min \left\{\beta_{1}, \beta_{2}\right\}$, then with this β the following statement holds.

$$
\begin{align*}
& h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\beta \text { implies } \\
& a_{0}\left(t, h_{0}(t, \Omega(t))\right)<\frac{b(\alpha)}{2} \text { and } a_{1}(t, h(t, \Omega(t)))<\frac{b(\alpha)}{2} \text { for } t \geq \tau_{0} \tag{66}
\end{align*}
$$

Hence, when $t=t_{1}$, using (66), the statement (58) can be written as

$$
\begin{align*}
& b(\alpha)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \\
& =b\left(h\left(t_{1}, \Omega\left(t_{1}\right)\right)\right)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \leq L\left(t_{1}, \Omega\left(t_{1}\right)\right) \\
& \leq L\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)-\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s \\
& \leq L\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s \tag{67}\\
& \leq a_{1}\left(\tau_{0}, h\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)\right)+a_{0}\left(\tau_{0}, h_{0}\left(\tau_{0}, W\left(t_{1}, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \\
& +\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s \\
& <\frac{b(\alpha)}{2}+\frac{b(\alpha)}{2}+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s \\
& =b(\alpha)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{1}, s, \Omega(s)\right)\right)\right) d s
\end{align*}
$$

This contradiction proves that the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12 through $\left(\tau_{0}, V_{0}\right)$ for $t \geq \tau_{0}$ is $\operatorname{ITD}\left(h_{0}, h\right)$-equi-bounded with respect to the solution \tilde{U}.

The next theorem gives sufficient conditions to the ITD equi-attractiveness in the large of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of $(\sqrt{12})$ through $\left(\tau_{0}, V_{0}\right)$ for $t \geq \tau_{0}$ with respect to the solution $\tilde{U}\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$, where $U(t)=$ $U\left(t, t_{0}, U_{0}\right)$ is the solution of 10 through $\left(t_{0}, U_{0}\right)$ for $t \geq t_{0}$; providing that the
solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12 is ITD $\left(h_{0}, h_{0}\right)$ - equi-attractive in the large with respect to \tilde{U}.

Theorem 4. Assume that
(i) Both $L(t, \Omega) \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}\right]$and $\|W(t, s, \Omega)\|$ satisfy a local Lipschitz condition in Ω for any t, s; where $W(t)=W\left(t, \tau_{0}, V_{0}-U_{0}\right)$ is the solution of (13) for $t \geq \tau_{0}$ and

$$
\begin{equation*}
\Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)=V(t)-\tilde{U}(t) \text { for } t \geq \tau_{0} \tag{68}
\end{equation*}
$$

$$
\begin{equation*}
D_{*-} L(t, s, \Omega) \leq-c(h(s, W(t, s, \Omega(\mathrm{~s})))) \text { in } S(h, M) \tag{ii}
\end{equation*}
$$

where

$$
\begin{equation*}
S(h, M)=\{(t, \Omega): h(t, \Omega)<M \text { for some } h \in \Gamma \text { and } M>0\} \tag{70}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{*-} L(t, s, \Omega) \\
& =\lim _{\delta \rightarrow 0^{-}} \inf \frac{1}{\delta}(L(s+\delta, W(t, s+\delta, \Omega+\delta((P V)(s)-(Q \tilde{U})(s)))) \tag{71}\\
& -L(s, W(t, s, \Omega)))
\end{align*}
$$

(iii) For $b \in \mathbb{K}$ and $a_{1}, a_{0} \in \mathbb{C} \mathbb{K}$,

$$
\begin{gather*}
b(h(t, \Omega))+\int_{\tau_{0}}^{t} c(h(s, W(t, s, \Omega(\mathrm{~s})))) d s \leq L(t, \Omega) \text { in } S(h, M) \text { and } \tag{72}\\
L(t, \Omega) \leq a_{1}(t, h(t, \Omega))+a_{0}\left(t, h_{0}(t, \Omega)\right) \text { in } S(h, M) \cap S\left(h_{0}, M\right)
\end{gather*}
$$

(iv) h_{0} is finer that h, that is, there exists a function $\phi \in \mathbb{K}$ such that

$$
\begin{equation*}
h_{0}(t, \Omega) \leq M_{0} \quad \text { implies } \quad h(t, \Omega) \leq \phi\left(h_{0}(t, \Omega)\right) \tag{73}
\end{equation*}
$$

for some M_{0} with $\phi\left(M_{0}\right) \leq M$;
(v) The solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$ is ITD $\left(h_{0}, h_{0}\right)$-equi-attractive in the large with respect to the solution $U\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$.

Then, this implies the $\operatorname{ITD}\left(h_{0}, h\right)$-equi-attractiveness in the large of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) with respect to the solution \tilde{U}.

Proof. We shall show that the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12 for $t \geq \tau_{0}$ is ITD $\left(h_{0}, h\right)$ -equi-attractive in the large with respect to the solution \vec{U}, that is, given any $\varepsilon, \alpha>0$ and $\tau_{0} \in \mathbb{R}_{+}$, there exists a $T=T\left(\tau_{0}, \varepsilon, \alpha\right)>0$ such that $h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha$ implies

$$
\begin{equation*}
h\left(t, V\left(t, \tau_{0}, V_{0}\right)-U\left(t-\eta, t_{0}, U_{0}\right)\right)<\varepsilon, \quad t \geq \tau_{0}+T\left(\tau_{0}, \varepsilon, \alpha\right) \tag{74}
\end{equation*}
$$

Assume that 74 is not true, then there exist solutions $\tilde{U}(t)=U\left(t-\eta, t_{0}, U_{0}\right)$, where $U\left(t, t_{0}, U_{0}\right)$ is the solution of (10) for $t \geq t_{0}$; and $V(t)=V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$, and a sequence $\left\{t_{k}\right\}, t_{k} \geq \tau_{0}+T$ and $\lim _{k \rightarrow \infty} t_{k}=\infty$ such that

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha, \quad h\left(t_{k}, \Omega\left(t_{k}\right)\right) \geq \varepsilon \text { for } t_{k} \geq \tau_{0}+T \tag{75}
\end{equation*}
$$

where $\Omega(t)=V(t)-\tilde{U}(t)$ for $t \geq \tau_{0}$.
By Theorem 2, we have, for $t \geq \tau_{0}$,

$$
\begin{equation*}
L(t, \Omega(t)) \leq L\left(\tau_{0}, W\left(t, \tau_{0}, V_{0}-U_{0}\right)\right)-\int_{\tau_{0}}^{t} c(h(s, W(t, s, \Omega(s)))) d s \tag{76}
\end{equation*}
$$

Then, using the assumptions (iii), 75 and 76, we obtain

$$
\begin{align*}
b(\varepsilon) & +\int_{\tau_{0}}^{t} c\left(h\left(s, W\left(t_{k}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \\
& \leq b\left(h\left(t_{k}, \Omega\left(t_{k}\right)\right)\right)+\int_{\tau_{0}}^{t} c\left(h\left(s, W\left(t_{k}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \leq L\left(t_{k}, \Omega\left(t_{k}\right)\right) \\
& \leq L\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)-\int_{\tau_{0}}^{t} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s \\
& \leq L\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)+\int_{\tau_{0}}^{t} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s \\
& \leq a_{1}\left(\tau_{0}, h\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)\right)+a_{0}\left(\tau_{0}, h_{0}\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \\
& +\int_{\tau_{0}}^{t} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s \tag{77}
\end{align*}
$$

We aim to reach a contradiction to conclude the proof of the theorem. We will use the assumption (v) for this purpose.

Given $0<\varepsilon<M$ and that there exists a M_{0} with $\phi\left(M_{0}\right) \leq M$.
Choosing $N_{1}=N_{1}\left(\tau_{0}, \varepsilon\right)$ such that $0<N_{1}\left(\tau_{0}, \varepsilon\right)<M_{0}$, and

$$
\begin{equation*}
h_{0}(t, \Omega(t))<N_{1} \text { implies } a_{0}\left(t, h_{0}(t, \Omega(t))\right)<\frac{b(\varepsilon)}{2} \text { for } t \geq \tau_{0} \tag{78}
\end{equation*}
$$

By assumption (v), corresponding to this N_{1}, there exists a α_{1} and a $T_{1}=T_{1}\left(\tau_{0}, N_{1}, \alpha_{1}\right)>0$ such that

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha_{1} \text { implies } h_{0}(t, \Omega(t))<N_{1} \text { for } t \geq \tau_{0}+T_{1} \tag{79}
\end{equation*}
$$

Thus (78) and (79) give us

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha_{1} \text { implies } a_{0}\left(t, h_{0}(t, \Omega(t))\right)<\frac{b(\varepsilon)}{2} \text { for } t \geq \tau_{0}+T_{1} \tag{80}
\end{equation*}
$$

Similarly, we choose $N_{2}=N_{2}\left(\tau_{0}, \varepsilon\right)$ such that $0<N_{2}\left(\tau_{0}, \varepsilon\right)<M_{0}$ and

$$
\begin{equation*}
h(t, \Omega(t))<N_{2} \text { implies } a_{1}(t, h(t, \Omega(t)))<\frac{b(\varepsilon)}{2} \text { for } t \geq \tau_{0} \tag{81}
\end{equation*}
$$

By the assumptions (iv) and (v) also, corresponding to $\phi^{-1}\left(N_{2}\right)$, there exists a α_{2} and a $T_{2}=T_{2}\left(\tau_{0}, N_{2}, \alpha_{2}\right)>0$ such that

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha_{2} \text { implies } h_{0}(t, \Omega(t))<\phi^{-1}\left(N_{2}\right) \text { for } t \geq \tau_{0}+T_{2} \tag{82}
\end{equation*}
$$

Since $\phi \in \mathbb{K}$ is strictly monotone increasing; then, we have by taking the composition of ϕ of both sides of the inequality $h_{0}(t, \Omega(t))<\phi^{-1}\left(N_{2}\right)$ in 82), with considering (73),

$$
\begin{align*}
& h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha_{2} \text { implies } \\
& h(t, \Omega(\mathrm{t})) \leq \phi\left(h_{0}(t, \Omega(t))\right)<\phi\left(\phi^{-1}\left(N_{2}\right)\right)=N_{2} \text { for } t \geq \tau_{0}+T_{2} \tag{83}
\end{align*}
$$

So, (81) and (83) give us, for $t \geq \tau_{0}+T_{2}$,

$$
\begin{equation*}
h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha_{2} \text { implies } a_{1}(t, h(t, \Omega(t)))<\frac{b(\varepsilon)}{2} \tag{84}
\end{equation*}
$$

Let $\alpha=\min \left\{\alpha_{1}, \alpha_{2}\right\}$, and $T=\max \left\{T_{1}, T_{2}\right\}$, then,

$$
\begin{equation*}
T=T\left(T_{1}, T_{2}\right)=T\left(\tau_{0}, N_{1}, \alpha_{1}, N_{2}, \alpha_{2}\right)=T\left(\tau_{0}, \varepsilon, \alpha\right) \tag{85}
\end{equation*}
$$

Therefore, with these α, T the following statement holds.

$$
\begin{align*}
& h_{0}\left(\tau_{0}, V_{0}-U_{0}\right)<\alpha \text { implies } \\
& a_{0}\left(t, h_{0}(t, \Omega(t))\right)<\frac{b(\varepsilon)}{2} \text { and } a_{1}(t, h(t, \Omega(t)))<\frac{b(\varepsilon)}{2} \text { for } t \geq \tau_{0}+T \tag{86}
\end{align*}
$$

Hence, when $t=t_{1}$, using (86), the statement (77) can be written as

$$
\begin{align*}
& b(\varepsilon)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{k}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \\
& \leq b\left(h\left(t_{k}, \Omega\left(t_{k}\right)\right)\right)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{k}, s, \Omega(\mathrm{~s})\right)\right)\right) d s \leq L\left(t_{k}, \Omega\left(t_{k}\right)\right) \\
& \leq L\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)-\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s \\
& \leq L\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s \tag{87}\\
& \leq a_{1}\left(\tau_{0}, h\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)\right)+a_{0}\left(\tau_{0}, h_{0}\left(\tau_{0}, W\left(t_{k}, \tau_{0}, V_{0}-U_{0}\right)\right)\right) \\
& +\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s \\
& <\frac{b(\varepsilon)}{2}+\frac{b(\varepsilon)}{2}+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s \\
& =b(\varepsilon)+\int_{\tau_{0}}^{t_{1}} c\left(h\left(s, W\left(t_{k}, s, \Omega(s)\right)\right)\right) d s
\end{align*}
$$

This contradiction proves the ITD $\left(h_{0}, h\right)$-equi-attractiveness in the large of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12$)$ for $t \geq \tau_{0}+T\left(\tau_{0}, \varepsilon, \alpha\right)$ with respect to the solution \tilde{U}.

The next theorem gives sufficient conditions to the ITD $\left(h_{0}, h\right)$-Lagrange stability of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) through $\left(\tau_{0}, V_{0}\right)$ for $t \geq \tau_{0}$ with respect to the solution $\tilde{U}\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$, where $U(t)=U\left(t, t_{0}, U_{0}\right)$ is the solution of (10) through $\left(t_{0}, U_{0}\right)$ for $t \geq t_{0}$; providing that the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12 is ITD $\left(h_{0}, h_{0}\right)$ - Lagrange stable with respect to \tilde{U}.

Theorem 5. Assume that
(i) Both $L(t, \Omega) \in C\left[\mathbb{R}_{+} \times K_{c}\left(\mathbb{R}^{n}\right), \mathbb{R}_{+}\right]$and $\|W(t, s, \Omega)\|$ satisfy a local Lipschitz condition in Ω for any t, s; where $W(t)=W\left(t, \tau_{0}, V_{0}-U_{0}\right)$ is the solution of (13) for $t \geq \tau_{0}$ and

$$
\begin{equation*}
\Omega\left(t, \tau_{0}, V_{0}-U_{0}\right)=V(t)-\tilde{U}(t) \text { for } t \geq \tau_{0} \tag{88}
\end{equation*}
$$

$$
\begin{equation*}
D_{*-} L(t, s, \Omega) \leq-c(h(s, W(t, s, \Omega(\mathrm{~s})))) \text { in } S(h, M) \tag{ii}
\end{equation*}
$$

where

$$
\begin{equation*}
S(h, M)=\{(t, \Omega): h(t, \Omega)<M \text { for some } h \in \Gamma \text { and } M>0\} \tag{90}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{*-} L(t, s, \Omega) \\
& =\lim _{\delta \rightarrow 0^{-}} \inf \frac{1}{\delta}(L(s+\delta, W(t, s+\delta, \Omega+\delta((P V)(s)-(Q \tilde{U})(s)))) \tag{91}\\
& -L(s, W(t, s, \Omega)))
\end{align*}
$$

(iii) For $b \in \mathbb{K}$ and $a_{1}, a_{0} \in \mathbb{C} \mathbb{K}$,

$$
\begin{align*}
& b(h(t, \Omega))+\int_{\tau_{0}}^{t} c(h(s, W(t, s, \Omega(\mathrm{~s})))) d s \leq L(t, \Omega) \text { in } S(h, M) \text { and } \tag{92}\\
& L(t, \Omega) \leq a_{1}(t, h(t, \Omega))+a_{0}\left(t, h_{0}(t, \Omega)\right) \text { in } S(h, M) \cap S\left(h_{0}, M\right)
\end{align*}
$$

(iv) h_{0} is finer that h, that is, there exists a function $\phi \in \mathbb{K}$ such that

$$
\begin{equation*}
h_{0}(t, \Omega) \leq M_{0} \quad \text { implies } \quad h(t, \Omega) \leq \phi\left(h_{0}(t, \Omega)\right) \tag{93}
\end{equation*}
$$

for some M_{0} with $\phi\left(M_{0}\right) \leq M$;
(v) The solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$ is ITD $\left(h_{0}, h_{0}\right)$-Lagrange stable with respect to the solution $\tilde{U}\left(t, \tau_{0}, U_{0}\right)=U\left(t-\eta, t_{0}, U_{0}\right)$, for $\eta=\tau_{0}-t_{0}$.

Then, this implies the ITD $\left(h_{0}, h\right)$-Lagrange stability of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$ with respect to the solution \tilde{U}.

Proof. The ITD $\left(h_{0}, h_{0}\right)$-Lagrange stability of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) for $t \geq \tau_{0}$ with respect to the solution \tilde{U} gives us by definition the ITD $\left(h_{0}, h_{0}\right)$-equiboundedness and the ITD $\left(h_{0}, h_{0}\right)$-equi-attractiveness in the large of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of 12 for $t \geq \tau_{0}$ with respect to the solution \tilde{U}. Hence, by applying Theorem 3 and Theorem 4 respectively, we obtain the ITD $\left(h_{0}, h\right)$-equi-boundedness and the ITD $\left(h_{0}, h\right)$-equi-attractiveness in the large of the solution $V\left(t, \tau_{0}, V_{0}\right)$ of (12) with respect to the solution \tilde{U}. That is to say it is ITD $\left(h_{0}, h\right)$-Lagrange stable with respect to the solution \tilde{U}, by definition.

4. Conclusions

In this manuscript, we have presented sufficient conditions for ITD equiboundedness, equi-attractiveness in the large, and Lagrange stability in terms of two measures for the solutions of perturbed SDEs involving causal operators in regard to their unperturbed ones, and proved the sufficiency of these conditions using ITD variational comparison results.

Author Contribution Statements The authors jointly worked on the results and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest regarding the publication of this article.

Acknowledgements The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

References

[1] Arslan, M., Yakar, C., Terminal value problems with causal operators, $H J M S$, 48(5) (2018), 897-907. https://doi.org/10.15672/HJMS.2018.566
[2] Bhaskar, T. G., Devi, J. V., Nonuniform stability and boundedness criteria for set differential equations, Applicable Analysis, 84(2) (2005), 131-143. https://doi.org/10.1080/00036810410001724346
[3] Bhaskar, T. G., Devi, J. V., Stability criteria for set differential equations, Mathematical and Computer Modelling, 41(11-12) (2005), 1371-1378.
[4] Brauer, F., Nohel, J. A., The Qualitative Theory of Ordinary Differential Equations: An Introduction, Dover, NY, USA, 1989.
[5] Chadaram, A. N., Dhaigude, D. B., Devi, J .V., Stability results in terms of two measures for set differential equations involving causal operators, European Journal of Pure and Applied Mathematics, 10(4) (2017), 645-654.
[6] Çiçek, M., Yakar, C., Oğur, B., Stability, boundedness, and Lagrange stability of fractional differential equations with initial time difference, The Scientific World Journal, 2014, Article ID 939027 (2014), 1-7. https://doi.org/10.1155/2014/939027
[7] Corduneanu, C., Functional Equations with Causal Operators, CRC Press, 2002. https://doi.org/10.1201/9780203166376
[8] Devi, J. V., Existence, uniqueness of solutions for set differential equations involving causal operators with memory, EJPAM, 3(4) (2010), 737-747.
[9] Devi, J. V., Comparison theorems and existence results for set differential equations involving causal operators with memory, Nonlinear Studies, 18(4) (2011), 603-610.
[10] Devi, J. V., Generalized monotone iterative technique for set differential equations involving causal operators with memory, International Journal of Advances in Engineering Sciences and Applied Mathematics, 3(1-4) (2011), 74-83. https://doi.org/10.1007/s12572-011-0031-1
[11] Devi, J. V., Chadaram A. N., Boundedness results for impulsive set differential equations involving causal operators with memory, Communications in Applied Analysis, 17(1) (2013), 9-19.
[12] Devi, J. V., Chadaram A. N., Stability results for impulsive set differential equations involving causal operators with memory, Global Journal of Mathematical Sciences: Theory $\&$ Practical, 2(2) (2014), 49-53.
[13] Devi, J. V., Chadaram A. N., Stability results for set differential equations involving causal operators with memory, European Journal of Pure and Applied Mathematics, 5(2) (2012), 187-196.
[14] Drici, Z., Mcrae, F. A., Devi, J. V., Stability results for set differential equations with causal maps, Dynamic Systems and Applications, 15(3) (2006), 451-464.
[15] Gücen, M. B., Yakar, C., Strict stability of fuzzy differential equations by Lyapunov functions, International Scholarly and Scientific Research \& Innovation, 12(5) (2018), 315-319. https://doi.org/10.5281/ZENODO. 1316718
[16] Lakshmikantham, V., On the stability and boundedness of differential systems, Math. Proc. Camb. Phil. Soc., 58(3) (1962), 492-496. https://doi.org/10.1017/S030500410003677X
[17] Lakshmikantham, V., Leela, S., Martynyuk, A. A., Practical Stability of Nonlinear Systems, World Scientific, Singapore, 1991.
[18] Lakshmikantham, V., Leela, S., Vatsala, A. S., Setvalued hybrid differential equations and stability in terms of two measures, International Journal of Hybrid Systems, 2(2) (2002), 169-188.
[19] Lakshmikantham, V., Leela, S., Martynyuk, A. A., Stability Analysis of Nonlinear Systems, NY, USA: M. Dekker, 1989.
[20] Lakshmikantham, V., Leela, S., Devi, J. V., Stability theory for set differential equations, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 11(2-3) (2004), 181-190.
[21] Lakshmikantham, V., Leela, S., Drici, Z., McRae, F. A., Theory of Causal Differential Equations, Atlantis Studies in Mathematics for Engineering and Science, 2010. https://doi.org/10.2991/978-94-91216-25-1
[22] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. https://doi.org/10.1142/0906
[23] Lakshmikantham, V., Bhaskar, T. G., Devi, J. V., Theory of Set Differential Equations in Metric Spaces, Cottenham, Cambridge, Cambridge Scientific Publishers, 2006.
[24] Lakshmikantham, V., Matrosov, V. M., Sivasundaram, S., Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Dordrecht, Boston, USA, Kluwer Academic Publishers, 1991.
[25] Lakshmikantham, V., Deo, S. G., Method of Variation of Parameters for Dynamic Systems, Amsterdam, Netherlands, Gordon and Breach Science Publishers, 1998.
[26] Lakshmikantham, V., Leela, S., Differential and Integral Inequalities: Theory and Applications, New York, USA, Academic Press, 1969.
[27] Lakshmikantham, V., Liu, X. Z., Stability Analysis in Terms of Two Measures, World Scientific, Singapore, 1993. https://doi.org/10.1142/2018
[28] Lakshmikantham, V., Rama Mohana Rao, M., Theory of Integro-Differential Equations, Lausanne, Switzerland, Gordon and Breach Science Publishers, 1995.
[29] Lakshmikantham, V., Vatsala, A. S., Differential inequalities with initial time difference and applications, Journal of Inequalities and Applications, 3(3) (1999), 233-244. https://doi.org/10.1155/S1025583499000156
[30] Lakshmikantham, V., Vatsala, A. S., Theory of Differential and Integral Inequalities with Initial Time Difference and Applications, In: Rassias, T.M. and Srivastava, H.M. (eds.) Analytic and Geometric Inequalities and Applications, Vol 478, Dordrecht, Netherlands, Springer, 1999. https://doi.org/10.1007/978-94-011-4577-0_12
[31] LaSalle, J., Lefschetz, S., Stability by Liapunov's Direct Methods with Applications, Mathematics in Science and Engineering, New York, Academic Press, 1961.
[32] Liu, X., Shaw, M. D., Boundedness in terms of two measures for perturbed systems by generalized variation of parameters, Communications in Applied Analysis, 5(4) (2001), 435444.
[33] Shaw, M. D., Yakar, C., Generalized variation of parameters with initial time difference and a comparison result in terms of Lyapunov-like functions, International Journal of Nonlinear Differential Equations Theory-Methods and Applications, 5(1-2) (1999), 86-108.
[34] Shaw, M. D., Yakar, C., Stability criteria and slowly growing motions with initial time difference, Problems of Nonlinear Analysis in Engineering Systems, 6 (2000), 50-66.
[35] Smith, H., An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7646-8
[36] Tu, N. N., Tung, T. T., Stability of set differential equations and applications, Nonlinear Analysis: Theory, Methods छ Applications, 71(5-6) (2009), 1526-1533. https://doi.org/10.1016/j.na.2008.12.045
[37] Yakar, C., Çiçek, M., Gücen, M. B., Boundedness and Lagrange stability of fractional order perturbed system related to unperturbed systems with initial time difference in Caputo's sense, Advances in Difference Equations, 54 (2011), 1-14. https://doi.org/10.1186/1687-1847-2011-54
[38] Yakar, C., Boundedness Criteria in Terms of Two Measures with Initial Time Difference, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, Watam Press, Waterloo, 2007, 270-275.
[39] Yakar, C., Bal., B., Yakar, A., Monotone technique in terms of two monotone functions in finite system, Journal of Concrete and Applicable Mathematics, 9(3) (2011), 233-239.
[40] Yakar, C., Çiçek, M., Gücen, M. B., Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems, Computers \mathcal{G} Mathematics with Applications, 64(6) (2012), 2118-2127. https://doi.org/10.1016/j.camwa.2012.04.008
[41] Yakar, C., Çiçek, M., Initial time difference boundedness criteria and Lagrange stability, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 18(6) (2011), 797-811.
[42] Yakar, C., Çiçek, M., Theory, methods and applications of initial time difference, boundedness and Lagrange stability in terms of two measures for nonlinear systems, Hacettepe Journal of Mathematics and Statistics, 40(2) (2011), 305-330.
[43] Yakar, C., Gücen, M. B., Initial time difference stability of causal differential systems in terms of Lyapunov functions and Lyapunov functionals, Journal of Applied Mathematics, 2014, Article ID 832015, (2014), 1-7. https://doi.org/10.1155/2014/832015
[44] Yakar, C., Shaw, M. D., A comparison result and Lyapunov stability criteria with initial time difference, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 12(6) (2005), 731-737.
[45] Yakar, C., Shaw, M. D., Initial time difference stability in terms of two measures and variational comparison result, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 15(3) (2008), 417-425.
[46] Yakar, C., Shaw, M. D., Practical stability in terms of two measures with initial time difference, Nonlinear Analysis: Theory, Methods \& Applications, 71(12) (2009), e781-e785. https://doi.org/10.1016/j.na.2008.11.039
[47] Yakar, C., Talab, H., Stability of perturbed set differential equations involving causal operators in regard to their unperturbed ones considering difference in initial conditions, Advances in Mathematical Physics, 2021, Article ID 9794959, (2021), 1-12. https://doi.org/10.1155/2021/9794959
\square

\square
■

\square

\square

$\square \quad \square$

\qquad
\qquad
$\underline{\square}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $-\longrightarrow$
\square
미
\qquad
\square
\square
(D)
©

$$
Y \quad \frac{O^{n}}{O{ }^{n} K_{d}}
$$

A ligand is a substance that binds to a target molecule to serve a given purpose.

Allosteric enzymes are the enzymes that change their conformational ensemble upon binding of an effector which results in an apparent change in binding affinity at a different ligand binding site.

An oligomer is a protein consisting of many sub-units. It may be dimer, trimer, tetramer and so on, according to the number of subunits.

The fractional saturation of O is defined as $Y O=$ number of occupied binding sites/total number of binding sites.
o

$$
c_{j} \underset{k_{-1}}{\stackrel{k_{+1}}{\rightleftharpoons}} c_{j} \quad j \quad, \quad,
$$

$$
N a
$$

- μ
c_{j}
c_{j}

c
k_{-}
c
$c \quad c \quad k$
k
$\begin{array}{ccc} & c & c \\ c & c & k\end{array}$
c
$o \quad c \underset{k_{-1}}{\stackrel{k_{+1}}{\rightleftharpoons}} c$,
$o \quad c \underset{k_{-2}}{\stackrel{k_{+2}}{\rightleftharpoons}} c$,
$o \quad c \underset{k_{-3}}{\stackrel{k_{+3}}{\rightleftharpoons}} c$,
$o \quad c \underset{k_{-4}}{\stackrel{k_{+4}}{\rightleftharpoons}} c$.

$$
\begin{aligned}
& \frac{d c}{d t} \quad-k \quad o c \quad k_{-} c, \\
& \frac{d c}{d t} \quad k \quad o c-k_{-} c-k \quad o c \quad k_{-} c, \\
& \frac{d c}{d t} \quad k \quad o c-k_{-} c-k \quad o c \quad k_{-} c, \\
& \frac{d c}{d t} \quad k \quad \text { o } c-k_{-} c-k \quad o c \quad k_{-} c, \\
& \frac{d c}{d t} \quad k \quad o \quad c-k_{-} c .
\end{aligned}
$$

O

$$
\frac{d c}{d t}
$$

$$
\begin{aligned}
& k_{d i} \quad \frac{k_{-i}}{k_{+i}} \\
& k \quad o c \quad k_{-} c \text {, } \\
& \Rightarrow c \quad \frac{k}{k_{-}} o c c \text {. } \\
& k_{d i} \\
& \frac{d c_{3}}{d t} \\
& c \quad \frac{k}{k_{-}} o c c \text {. } \\
& c \quad \frac{k}{k_{-}} o c, \\
& c \quad \frac{k}{k_{-}} o c \text {. } \\
& c_{j} j \geq \\
& c \quad \overline{k_{d}} o \quad c, \\
& c \quad \bar{k}_{d} k_{d} o \quad c \text {, } \\
& c \quad \overline{k_{d} k_{d} k_{d}} o c \text {, } \\
& c \quad \overline{k_{d} k_{d} k_{d} k_{d}} o \quad c \text {. } \\
& c, c, c \\
& \text { c } \\
& \text { Yo } \\
& \text { Yo } \begin{array}{llllll}
c & c & c & c \\
\hline c & c & c & c & c
\end{array}
\end{aligned}
$$

$c \quad c \quad c$
$k \ll k, k, k$
$Y o \quad \frac{\frac{o_{2}{ }^{4}}{k_{d 1} k_{d 2} k_{d 3} k_{d 4}}}{\frac{o_{2}{ }^{4}}{k_{d 1} k_{d 2} k_{d 3} k_{d 4}}}$
$\frac{O}{\alpha \quad o}$
$\alpha \quad k_{d} k_{d} k_{d} k_{d}$

$$
Y \quad \frac{o^{n}}{\alpha^{n} \quad o^{n}}
$$

α

			$p O$	p	

$\frac{Y o}{-Y o} \quad$ po $-\quad p$. $\frac{Y}{-Y} \quad$ po
n

\square

ㅁ

http://communications.science.ankara.edu.tr

FREE RESOLUTIONS FOR THE TANGENT CONES OF SOME HOMOGENEOUS PSEUDO SYMMETRIC MONOMIAL CURVES

Nil ŞAHİN

Bilkent University, Department of Industrial Engineering, Ankara, TÜRKİYE

Abstract

In this article, we study minimal graded free resolutions of Cohen -Macaulay tangent cones of some monomial curves associated to 4-generated pseudo symmetric numerical semigroups. We explicitly give the matrices in these minimal free resolutions.

1. Introduction

Minimal graded free resolutions are very nice objects to study the modules over finitely generated graded algebras. It carries out the information about the Hilbert series, the Castelnuovo-Mumford regularity and many other geometrical invariants of the module, which makes these resolutions very important for algebrebraic geometry and commutative algebra. Construction of an explicit minimal free resolution of a finitely generated algebra is a difficult problem in general. This problem has been studied by many mathematicans, in particular for the homogeneous coordinate ring of an affine monomial curve in $1,5,6,11,13,15$.
"Describing the Betti numbers and the minimal resolution of the tangent cone of S when S is a 4 -generated semigroup which is (almost) symmetric or nearly Gorenstein "was an open problem (See [16], Problem 9.9). Symmetric numerical semigroup case is studied by Mete and Zengin in 11 and in 12 . They computed the Betti numbers by explicitly computing the minimal graded free resolution. Pseudo symmetric semigroup case is studied in 15 by showing that being homogeneous and being homogeneous type are equivalent for 4 generated pseudo symmetric monomial curves with Cohen-Macaulay tangent cones by computing the Betti sequences for nonhomogeneous case. Though in the homogeneous case the Betti sequence is

[^10]already known as $(1,5,6,2)$, an explicit computation of minimal graded free resolutions were not given. In this paper, we focus on 4 generated pseudo symmetric semigroups with Cohen-Macaulay tangent cones that are homogeneous (and hence homogeneous type) and calculate the explicit minimal graded free resolutions when n_{1} is the smallest among $n_{1}, n_{2}, n_{3}, n_{4}$.

2. Preliminaries

Let $n_{1}, n_{2}, n_{3}, n_{4}$ be positive integers with $\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)=1$. Consider the numerical semigroup $S=<n_{1}, n_{2}, \ldots, n_{k}>=\left\{\sum_{i=1}^{k} u_{i} n_{i} \mid u_{i} \in \mathbb{N}\right\}$. Let $A=K\left[X_{1}, X_{2}, \ldots, X_{k}\right]$ be the coordinate ring over the field K and $K[S]$ be the semigroup ring $K\left[t^{n_{1}}, t^{n_{2}}, \ldots, t^{n_{k}}\right]$ of S. If we denote the kernel of the surjection

$$
\begin{aligned}
\phi_{0}: A & \rightarrow K[S] \\
X_{i} & \mapsto t^{n_{i}}
\end{aligned}
$$

by I_{S}, then $K[S] \simeq A / I_{S}$. If we denote the affine curve with parametrization

$$
X_{1}=t^{n_{1}}, \quad X_{2}=t^{n_{2}}, \ldots ., X_{k}=t^{n_{k}}
$$

corresponding to S by C_{S}, then the local ring corresponding to S is $R_{S}=K\left[\left[t^{n_{1}}, \ldots, t^{n_{k}}\right]\right]$. The Hilbert function of the local ring R_{S} is the Hilbert function of the associated graded ring $g r_{\mathfrak{m}}\left(R_{S}\right)=\bigoplus_{i=0}^{\infty} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$. It is known that

$$
g r_{\mathfrak{m}}\left(R_{S}\right) \cong K[S] / I_{S *}
$$

where $I_{S_{*}}=<f_{*} \mid f \in I_{S}>$ is the defining ideal of the tangent cone with f_{*} denoting the initial form of f.
s being an element of the semi-group S, the apery set of S with respect to s is defined to be $A P(S, s)=\{x \in S \mid x-s \notin S\}$ and the set of lengths of s in S is $L(s)=\left\{\sum_{i=1}^{k} u_{i} \mid s=\sum_{i=1}^{k} u_{i} n_{i}, u_{i} \geq 0\right\}$. A subset $T \subset S$ is said to be homogeneous if either it is empty or $L(s)$ is a singleton for all $0 \neq s \in T . n_{i}$ being the smallest among $n_{1}, n_{2}, \ldots, n_{k}$, the numerical semigroup S is said to be homogeneous if the apery set $A P\left(S, n_{i}\right)$ is homogeneous. It has been shown in 9 that $A P\left(S, n_{i}\right)$ is homogeneous if and only if there is a minimal set of generators G of I_{S} such that X_{i} belongs to the support of all nonhomogeneous elements of E.

A semigroup S is said to be of homogeneous type if the Betti numbers of the semigroup ring $K[S]$ and the Betti numbers of the associated graded ring (tangent cone) coincide, 8. It is known that if a semigroup is of homogeneous type then the corresponding tangent cone is Cohen-Macaulay. Furthermore, if the semigroup S is homogeneous and the tangent cone is Cohen-Macaulay then S is also of homogeneous type. Converse is not true in general: there are numerical semigroups which are of homogeneous type but not homogeneous. Some counter examples are given in embedding dimension 4 , see 9 .

In 10 the generators of I_{S} corresponding to a 4-generated pseudo symmetric numerical semigroup are given as $<f_{1}, f_{2}, f_{3}, f_{4}, f_{5}>$ where

$$
\begin{aligned}
& f_{1}=X_{1}^{\alpha_{1}}-X_{3} X_{4}^{\alpha_{4}-1}, \quad f_{2}=X_{2}^{\alpha_{2}}-X_{1}^{\alpha_{21}} X_{4}, \quad f_{3}=X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2} \\
& f_{4}=X_{4}^{\alpha_{4}}-X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1}, \quad f_{5}=X_{1}^{\alpha_{21}+1} X_{3}^{\alpha_{3}-1}-X_{2} X_{4}^{\alpha_{4}-1}
\end{aligned}
$$

where here $\alpha_{i}>1,1 \leq i \leq 4$, and $0<\alpha_{21}<\alpha_{1}$, such that $n_{1}=\alpha_{2} \alpha_{3}\left(\alpha_{4}-1\right)+1$, $n_{2}=\alpha_{21} \alpha_{3} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{3}-1\right)+\alpha_{3}, n_{3}=\alpha_{1} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{2}-\right.$ 1) $\left(\alpha_{4}-1\right)-\alpha_{4}+1, n_{4}=\alpha_{1} \alpha_{2}\left(\alpha_{3}-1\right)+\alpha_{21}\left(\alpha_{2}-1\right)+\alpha_{2}$.

Barucci, Fröberg and Şahin in 1 showed that the Betti sequence of $K[S]$ is $(1,5,6,2)$ for 4 generated pseudo symmetric monomial curves but $I_{S_{*}}$ or the Betti numbers of the tangent cone were not known. In 14 , we described the Co-hen-Macaulay property of the tangent cone in terms of Komeda's parametrization for 4 -generated pseudo symmetric monomial curves.

3. Free Resolutions

When n_{1} is the smallest among $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$, since the semigroup is always homogeneous, it is known that the Betti sequence is $(1,5,6,2)$. It is also known from 14 that the tangent cone is Cohen-Macaulay iff $\alpha_{4} \leq \alpha_{2}+\alpha_{3} \leq \alpha_{21}+\alpha_{3}-1 \leq \alpha_{1}$. To compute these homogeneous summands, we will use:

Lemma 1 ($\sqrt[14]{ }$, page 16). When n_{1} is the smallest and the tangent cone is CohenMacaulay, $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ forms a standard basis for I_{S}.

Since the homogeneous summands change when there are equalities, there are 8 different possibilities for the tangent cone that should be considered:
(1) $\alpha_{4}<\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}<\alpha_{1}$
(2) $\alpha_{4}=\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}<\alpha_{1}$
(3) $\alpha_{4}<\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}<\alpha_{1}$
(4) $\alpha_{4}=\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}<\alpha_{1}$
(5) $\alpha_{4}<\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}=\alpha_{1}$
(6) $\alpha_{4}=\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}=\alpha_{1}$
(7) $\alpha_{4}<\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}=\alpha_{1}$
(8) $\alpha_{4}=\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}=\alpha_{1}$

However, case 8 is irredundant as can be seen from the next proposition.
Proposition 1. If $\alpha_{4}=\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}=\alpha_{1}$ then $n_{1}=n_{2}$
Proof. $n_{1}=\alpha_{2} \alpha_{3}\left(\alpha_{4}-1\right)+1=\left(\alpha_{21}+1\right) \alpha_{3}\left(\alpha_{21}+\alpha_{3}-1\right)+1=\alpha_{21} \alpha_{3}\left(\alpha_{21}+\alpha_{3}-\right.$ 1) $+\alpha_{3}\left(\alpha_{21}+\alpha_{3}-1\right)+1$.

On the other hand,
$n_{2}=\alpha_{21} \alpha_{3} \alpha_{4}+\left(\alpha_{1}-\alpha_{21}-1\right)\left(\alpha_{3}-1\right)+\alpha_{3}=\alpha_{21} \alpha_{3}\left(\alpha_{21}+\alpha_{3}\right)+\left(\alpha_{3}-1\right)\left(\alpha_{3}-\right.$ 1) $+\alpha_{3}=\alpha_{21} \alpha_{3}\left(\alpha_{21}+\alpha_{3}-1\right)+\alpha_{21} \alpha_{3}+\left(\alpha_{3}-1\right)^{2}+\alpha_{3}=\alpha_{21} \alpha_{3}\left(\alpha_{21}+\alpha_{3}-1\right)+$ $\alpha_{3}\left(\alpha_{21}+\alpha_{3}-1\right)+1=n_{1}$

There is a general form of the minimal graded free resolution of the tangent cone in possibilities (1) and (3), (2) and (4), (5) and (7). We will list these and the minimal graded free resolution in case (6) respectively.

The content of the rest of the paper will be as follows: for each of these four possibilities, we will give the generators of $I_{S *}$ as a corollary of lemma 3.4 of 14 and give our main theorems to compute the minimal graded free resolutions. To find the generators of $I_{S *}$, since we only take the homogeneous summands of the elements in G in Lemma 1 in respective cases, we will not write the proofs of corollaries. To prove the given complexes in our theorems are exact, we will use Buchsbaum-Eisenbud criterion, see $[2$ for the details. θ being a matrix, we will denote the minor obtained from θ by erasing its i th row, j th column with $[\theta]_{r_{i}, c_{j}}$.
3.1. If $\alpha_{4}<\alpha_{2}+\alpha_{3}-1 \leq \alpha_{21}+\alpha_{3}<\alpha_{1}$.

Corollary 1. $I_{S_{*}}$ is generated by $G_{*}=\left\{X_{3} X_{4}^{\alpha_{4}-1}, X, X_{3}^{\alpha_{3}}, X_{4}^{\alpha_{4}}, X_{2} X_{4}^{\alpha_{4}-1}\right\}$ where $X=X_{2}^{\alpha_{2}}$ if $\alpha_{4}<\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}<\alpha_{1}$ and $X=f_{2}$ if $\alpha_{4}<\alpha_{2}+\alpha_{3}-1=$ $\alpha_{21}+\alpha_{3}<\alpha_{1}$.

Theorem 1. If S is a 4-generated pseudo symmetric semigroup, then minimal graded free resolution of the tangent cone is

$$
0 \longrightarrow A^{2} \xrightarrow{\phi_{3}} A^{6} \xrightarrow{\phi_{2}} A^{5} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

where

$$
\begin{aligned}
& \phi_{1}=\left[\begin{array}{llllll}
X_{3} X_{4}^{\alpha_{4}-1} & X & X_{3}^{\alpha_{3}} & X_{4}^{\alpha_{4}} & X_{2} X_{4}^{\alpha_{4}-1}
\end{array}\right] \\
& \phi_{2}=\left[\begin{array}{ccccc}
-X_{2} & 0 & -X_{3}^{\alpha_{3}-1} & 0 & X_{4} \\
0 & -X_{3}^{\alpha_{3}} & 0 & 0 & 0 \\
0 & X & X_{4}^{\alpha_{4}-1} & 0 & 0 \\
0 & 0 & 0 & -X_{4}^{\alpha_{4}-1} \\
X_{3} & 0 & 0 & X_{2} & -X_{3} \\
x_{4} & 0 & X_{2}^{\alpha_{2}-1}
\end{array}\right] \\
& \phi_{3}=\left[\begin{array}{ccc}
X_{4} & X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1} \\
0 & X_{4}^{\alpha_{4}-1} \\
0 & -X \\
-X_{3} & 0 \\
X_{2} & Z \\
0 & -X_{3}^{\alpha_{3}}
\end{array}\right] \\
& \text { with }(X, Y, Z)=\left(X_{2}^{\alpha_{2}}, 0,0\right) \text { if } \alpha_{2} \neq \alpha_{21}+1 \text { and }(X, Y, Z)=\left(f_{2},-X_{1}^{\alpha_{21}}, X_{1}^{\alpha_{21}} X_{3}^{\alpha_{3}-1}\right) \\
& \text { if } \alpha_{2}=\alpha_{21}+1 .
\end{aligned}
$$

Proof. It is easy to see that $\phi_{1} \phi_{2}=\phi_{2} \phi_{3}$ so that we have a complex. To show the complex is exact, $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=4$ and $\operatorname{rank} \phi_{3}=2$ and hence $\operatorname{rank} \phi_{1}+$ $\operatorname{rank} \phi_{2}=\operatorname{rank} A^{5}, \operatorname{rank} \phi_{2}+\operatorname{rank} \phi_{3}=\operatorname{rank} A^{6}$. Then by Buchsbaum- Eisenbud criterion, it is enough to check that $I\left(\phi_{i}\right)$ has a regular sequence of length i for $i=1,2,3$. There is nothing to show for $i=1$. A regular sequence of length 2 can be obtained as $-X_{3}^{2 \alpha_{3}+1}$ from the minor $\left[\phi_{2}\right]_{r_{3}, c_{4}, c_{6}}$ and $X_{2} X^{2}$ from the minor
$\left[\phi_{2}\right]_{r_{2}, c_{3}, c_{5}}$ for $I\left(\phi_{2}\right)$. A regular sequence of length 3 can be obtained for ϕ_{3} as $X_{4}^{\alpha_{4}}$ from the minor $\left[\phi_{3}\right]_{r_{3}, r_{4}, r_{5}, r_{6}}, X_{3}^{\alpha_{3}+1}$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{2}, r_{3}, r_{5}}$ and $-X_{2} X$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{2}, r_{4}, r_{6}}$.
3.2. If $\alpha_{4}=\alpha_{2}+\alpha_{3}-1 \leq \alpha_{21}+\alpha_{3}<\alpha_{1}$.

Corollary 2. $I_{S *}$ is generated by

$$
G_{*}=\left\{X_{3} X_{4}^{\alpha_{4}-1}, X, X_{3}^{\alpha_{3}}, X_{4}^{\alpha_{4}}-X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1}, Y\right\}
$$

where $(X, Y)=\left(f_{2}, f_{5}\right)$ if $\alpha_{4}=\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}<\alpha_{1}$, $(X, Y)=\left(X_{2}^{\alpha_{2}},-X_{2} X_{4}^{\alpha_{4}-1}\right)$ if $\alpha_{4}=\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}<\alpha_{1}$

Theorem 2. In this case, minimal graded free resolution of the tangent cone is

$$
0 \longrightarrow A^{2} \xrightarrow{\phi_{3}} A^{6} \xrightarrow{\phi_{2}} A^{5} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

where

$$
\left.\begin{array}{rl}
\phi_{1} & =\left[\begin{array}{lllll}
X_{3} X_{4}^{\alpha_{4}-1} & X & X_{3}^{\alpha_{3}} & X_{4}^{\alpha_{4}}-X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1} & Y
\end{array}\right] \\
\phi_{2} & =\left[\begin{array}{ccccc}
X_{2} & 0 & X_{4} & X_{3}^{\alpha_{3}-1} & 0 \\
0 & -X_{1} X_{3}^{\alpha_{3}-1} & 0 & 0 & -X_{4}^{\alpha_{4}-1} \\
-X_{1} Z & 0 & -X_{1} X_{2}^{\alpha_{2}-1} \\
0 & -X_{2} & -X_{3}^{\alpha_{4}-1} & 0 & -X \\
X_{3} & -X_{4} & 0 & 0 & -Z
\end{array} 0\right. \\
\phi_{3} & =\left[\begin{array}{ccc}
X_{4} & X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1} \\
X_{3} & 0 & 0 \\
-X_{2} & \left(-X_{2} X_{4}^{\alpha_{4}-1}-Y\right) / X_{1} \\
0 & -X \\
0 & X_{3}^{\alpha_{3}-1} & 0
\end{array}\right] \\
X_{1} & X_{4}^{\alpha_{4}-1}
\end{array}\right] \quad\left[\begin{array}{l}
\end{array}\right.
$$

where
$(X, Y, Z)=\left(f_{2}, f_{5}, X_{1}^{\alpha_{21}}\right)$ if $\alpha_{4}=\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}<\alpha_{1}$
$(X, Y, Z)=\left(X_{2}^{\alpha_{2}},-X_{2} X_{4}^{\alpha_{4}-1}, 0\right)$ if $\alpha_{4}=\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}<\alpha_{1}$
Proof. $\phi_{1} \phi_{2}=\phi_{2} \phi_{3}$ so that we have a complex. Similarly to the previous case, it is easy to see that $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=4$ and $\operatorname{rank} \phi_{3}=2$ and hence $\operatorname{rank} \phi_{1}+$ $\operatorname{rank} \phi_{2}=\operatorname{rank} A^{5}, \operatorname{rank} \phi_{2}+\operatorname{rank} \phi_{3}=\operatorname{rank} A^{6}$. A regular sequence of length 2 is $X_{3}^{2 \alpha_{3}+1}$ from the minor $\left[\phi_{2}\right]_{r_{3}, c_{2}, c_{5}}, X_{2}^{2 \alpha_{2}+1}$ if $\alpha_{2}-1<\alpha_{21}+\alpha_{3}$ and $-X_{2} f_{2}^{2}$ if $\alpha_{2}-1=\alpha_{21}+\alpha_{3}$ from the minor $\left[\phi_{2}\right]_{r_{3}, c_{3}, c_{4}}$ for $I\left(\phi_{2}\right)$. A regular sequence of length 3 can be obtained as f_{4} from the minor $\left[\phi_{3}\right]_{r_{2}, r_{3}, r_{4}, r_{5}}, X_{3}^{\alpha_{3}+1}$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{3}, r_{4}, r_{6}}, X_{2}^{\alpha_{2}+1}$ if $\alpha_{2}-1<\alpha_{21}+\alpha_{3}$ and $X_{2} f_{2}$ if $\alpha_{2}-1=\alpha_{21}+\alpha_{3}$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{2}, r_{5}, r_{6}}$ for $I\left(\phi_{3}\right)$.
3.3. If $\alpha_{4}<\alpha_{2}+\alpha_{3}-1 \leq \alpha_{21}+\alpha_{3}=\alpha_{1}$.

Corollary 3. $I_{S *}$ is generated by

$$
G_{*}=\left\{X_{3} X_{4}^{\alpha_{4}-1}, X, X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2}, X_{4}^{\alpha_{4}}, X_{2} X_{4}^{\alpha_{4}-1}\right\}
$$

where $X=f_{2}$ if $\alpha_{4}<\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}=\alpha_{1}$ and $X_{2}^{\alpha_{2}}$ if $\alpha_{4}<\alpha_{2}+\alpha_{3}-1<$ $\alpha_{21}+\alpha_{3}=\alpha_{1}$.

Theorem 3. In this case, minimal graded free resolution of the tangent cone is

$$
0 \longrightarrow A^{2} \xrightarrow{\phi_{3}} A^{6} \xrightarrow{\phi_{2}} A^{5} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

where

$$
\begin{aligned}
& \phi_{1}=\left[\begin{array}{lllll}
X_{3} X_{4}^{\alpha_{4}-1} & X & X_{3}^{\alpha_{3}}-X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2} & X_{4}^{\alpha_{4}} & X_{2} X_{4}^{\alpha_{4}-1}
\end{array}\right] \\
& \phi_{2}=\left[\begin{array}{cccccc}
-X_{3}^{\alpha_{3}-1} & 0 & X_{2} & -X_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & -f_{3} & X_{4}^{\alpha_{4}-1} \\
X_{4}^{\alpha_{4}-1} & 0 & 0 & 0 & X & 0 \\
0 & X_{2} & 0 & X_{3} & 0 & Y \\
X_{1}^{\alpha_{1}-\alpha_{21}-1} & -X_{4} & -X_{3} & 0 & 0 & -X_{2}^{\alpha_{2}-1}
\end{array}\right] \\
& \phi_{3}=\left[\begin{array}{cc}
0 & X \\
-X_{3} & Z \\
X_{4} & X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1} \\
X_{2} & Y X_{3}^{\alpha_{3}-1} \\
0 & -X_{4}^{\alpha_{4}-1} \\
0 & -f_{3}
\end{array}\right]
\end{aligned}
$$

where (X, Y, Z) equals to $\left(f_{2}, X_{1}^{\alpha_{21}},-X_{1}^{\alpha_{1}-1}\right)$ if $\alpha_{4}<\alpha_{2}+\alpha_{3}-1=\alpha_{21}+\alpha_{3}=\alpha_{1}$ and $\left(X_{2}^{\alpha_{2}}, 0,0\right)$ if $\alpha_{4}<\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}=\alpha_{1}$

Proof. $\phi_{1} \phi_{2}=\phi_{2} \phi_{3}$ is obvious and $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=4$ and $\operatorname{rank} \phi_{3}=2$ and hence $\operatorname{rank} \phi_{1}+\operatorname{rank} \phi_{2}=\operatorname{rank} A^{5}, \operatorname{rank} \phi_{2}+\operatorname{rank} \phi_{3}=\operatorname{rank} A^{6} . I\left(\phi_{2}\right)$ has a regular sequence of length 2 as $X_{4}^{2 \alpha_{4}}$ from the minor $\left[\phi_{2}\right]_{r_{4}, r_{3}, c_{5}}, X_{2} X^{2}$ from the minor $\left[\phi_{2}\right]_{r_{2}, c_{1}, c_{4}}$. A regular sequence of length 3 can be obtained as $X_{3} f_{3}$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{3}, r_{4}, r_{5}},-X_{4}^{\alpha_{4}}$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{2}, r_{4}, r_{6}},-X_{2} X$ from the minor $\left[\phi_{3}\right]_{r_{2}, r_{3}, r_{5}, r_{6}}$ for $I\left(\phi_{3}\right)$.

Finally, minimal graded free resolution of the tangent cone in (6) is:
3.4. If $\alpha_{4}=\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}=\alpha_{1}$.

Corollary 4. In this case $I_{S_{*}}$ is generated by

$$
G_{*}=\left\{X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2}-X_{3}^{\alpha_{3}}, X_{2}^{\alpha_{2}}, X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1}-X_{4}^{\alpha_{4}}, X_{2} X_{4}^{\alpha_{4}-1}, X_{3} X_{4}^{\alpha_{4}-1}\right\}
$$

Theorem 4. If $\alpha_{4}=\alpha_{2}+\alpha_{3}-1<\alpha_{21}+\alpha_{3}=\alpha_{1}$, then minimal graded free resolution of the tangent cone is

$$
0 \longrightarrow A^{2} \xrightarrow{\phi_{3}} A^{6} \xrightarrow{\phi_{2}} A^{5} \xrightarrow{\phi_{1}} A \longrightarrow 0
$$

where

$$
\begin{aligned}
\phi_{1} & =\left[\begin{array}{lccccc}
X_{1}^{\alpha_{1}-\alpha_{21}-1} X_{2}-X_{3}^{\alpha_{3}} & X_{2}^{\alpha_{2}} & X_{1} X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1}-X_{4}^{\alpha_{4}} & X_{2} X_{4}^{\alpha_{4}-1} & X_{3} X_{4}^{\alpha_{4}-1}
\end{array}\right] \\
\phi_{2} & =\left[\begin{array}{cccccc}
0 & 0 & X_{1} X_{2}^{\alpha_{2}-1} & -X_{4}^{\alpha_{4}-1} & -X_{2}^{\alpha_{2}} & 0 \\
0 & -X_{1} X_{3}^{\alpha_{3}-1} & -X_{1}^{\alpha_{1}-\alpha_{21}} & 0 & -f_{3} & -X_{4}^{\alpha_{4}-1} \\
0 & X_{2} & X_{3} & 0 & 0 & 0 \\
-X_{3} & X_{4} & 0 & X_{1}^{\alpha_{1}-\alpha_{21}-1} & 0 & X_{2}^{\alpha_{2}-1} \\
X_{2} & 0 & X_{4} & -X_{3}^{\alpha_{3}-1} & 0 & 0
\end{array}\right] \\
\phi_{3} & =\left[\begin{array}{ccc}
-X_{4} & -X_{2}^{\alpha_{2}-1} X_{3}^{\alpha_{3}-1} \\
-X_{3} & 0 & \\
X_{2} & 0 \\
0 & -X_{2}^{\alpha_{2}} \\
X_{1} & X_{4}^{\alpha_{4}-1} \\
0 & -f_{3}
\end{array}\right]
\end{aligned}
$$

Proof. $\phi_{1} \phi_{2}=\phi_{2} \phi_{3}$ and $\operatorname{rank} \phi_{1}=1, \operatorname{rank} \phi_{2}=4, \operatorname{rank} \phi_{3}=2$. Thus, $\operatorname{rank} \phi_{1}+$ $\operatorname{rank} \phi_{2}=\operatorname{rank} A^{5}, \operatorname{rank} \phi_{2}+\operatorname{rank} \phi_{3}=\operatorname{rank} A^{6}$. I ϕ_{2}) has a regular sequence of length 2 as $X_{3}^{2} X_{4}^{\alpha_{4}-1} f_{3}$ from the minor $\left[\phi_{2}\right]_{r_{5}, c_{2}, c_{6}},-X_{2}^{2 \alpha_{2}+1}$ from the minor [$\left.\phi_{2}\right]_{r_{2}, c_{3}, c_{4}}$ for $I\left(\phi_{2}\right)$. A regular sequence of length 3 can be obtained as f_{4} from the minor $\left[\phi_{3}\right]_{r_{2}, r_{3}, r_{4}, r_{6}}, X_{3} f_{3}$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{3}, r_{4}, r_{5}}, X_{2}^{\alpha_{2}+1}$ from the minor $\left[\phi_{3}\right]_{r_{1}, r_{2}, r_{5}, r_{6}}$ for $I\left(\phi_{3}\right)$.

4. Conclusion

Since we investigated 4-generated pseudo symmetric semigroups that are homogeneous with Cohen-Macaulay tangent cones when n_{1} is the smallest, and since these semigroups are of homogeneous type automatically, in addition to the known Betti sequence ($1,5,6,2$) of the tangent cone, which Barucci, Fröberg and Şahin obtained in [1], using the standard basis found in 14, we computed the generators of $I_{S_{*}}$ and we have given a complete characterization to the minimal graded-free resolution of the tangent cone in all possible situations.

Declaration of Competing Interests The author declares that there is no competing interest regarding the publication of this paper.

Acknowledgements The author would like to thank anonymous referees for their helpful suggestions to improve this paper. The results in this paper are checked by using the computer algebra system Singular, see 4.

References

[1] Barucci, V., Fröberg, R. and Şahin, M., On free resolutions of some semigroup rings, J. Pure Appl. Algebra, 218(6) (2014),1107-1116. https://doi.org/10.1016/j.jpaa.2013.11.007
[2] Buchsbaum, D., Eisenbud, D., What makes a complex exact?, J. Algebra, 25 (1973), 259-268.
[3] Eto, K., Almost Gorenstein monomial curves in affine four space, Journal of Algebra, 488 (2017), 362-387. https://doi.org/10.1016/j.jalgebra.2017.05.044
[4] Greuel, G.-M., Pfister, G., and Schönemann, H., Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de.
[5] Gimenez, P., Sengupta, I. and Srinivasan, H., Minimal free resolution for certain affine monomial curves, Commutative Algebra and its Connections to Geometry (PASI 2009), A. Corso and C. Polini Eds, Contemp. Math., 555 (Amer. Math. Soc., 2011) 87-95. https://doi.org/10.1081/AGB-120021893
[6] Gimenez, P., Sengupta, I. and Srinivasan H., Minimal graded free resolution for monomial curves defined by arithmetic sequences, Journal of Algebra, 388 (2013) 294-310. https://doi.org/10.1016/j.jalgebra.2013.04.026
[7] Greuel, G.-M., Pfister, G., A Singular Introduction to Commutative Algebra, Springer-Verlag, (2002).
[8] Herzog, J., Rossi, M.E., Valla, G., On the depth of the symmetric algebra, Trans. Amer. Math. Soc., 296 (2) (1986), 577-606.
[9] Jafari, R., Zarzuela Armengou, S., Homogeneous numerical semigroups, Semigroup Forum, 97 (2018), 278-306. https://doi.org/10.1007/s00233-018-9941-6
[10] Komeda, J., On the existence of Weierstrass points with a certain semigroup, Tsukuba J. Math., 6(2) (1982), 237-270.
[11] Mete, P., Zengin, E.E., Minimal free resolutions of the tangent cones of Gorenstein monomial curves, Turkish Journal of Mathematics, 43 (2019), 2782-2793. https://doi.org/ 10.3906/mat-1903-15
[12] Mete, P., Zengin, E.E., On minimal free resolution of the associated graded rings of certain monomial curves: new proofs in A4., Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68(1) (2019), 1019-1029. https://doi.org/10.31801/cfsuasmas. 501449
[13] Sengupta, I., A minimal free resolution for certain monomial curves in \mathbb{A}^{4}, Comm. Algebra, 31(6) (2003), 2791-2809. https://doi.org/10.1081/AGB-120021893
[14] Şahin, M., Şahin, N., On pseudo symmetric monomial curves, Communications in Algebra, 46(6) (2018), 2561-2573. https://doi.org/10.1080/00927872.2017.1392532
[15] Şahin, M., Şahin, N., Betti numbers for certain Cohen-Macaulay tangent cones, Bull. Aust. Math. Soc., 99(1) (2019), 68-77. doi:10.1017/S0004972718000898
[16] Stamate, D., Betti numbers for numerical semigroup rings, Multigraded Algebra and Applications-NSA 24,2016, Springer Proceedings in Mathematics and Statistics, 238 (eds. V. Ene and E. Miller) (2018)
http://communications.science.ankara.edu.tr

INVARIANTS OF A MAPPING OF A SET TO THE TWO-DIMENSIONAL EUCLIDEAN SPACE

Djavvat KHADJIEV ${ }^{1}$, Gayrat BESHIMOV ${ }^{2}$ and İdris ÖREN ${ }^{3}$
${ }^{1}$ National University of Uzbekistan named after Mirzo Ulugbek, V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, UZBEKISTAN
${ }^{2}$ National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, UZBEKISTAN
${ }^{3}$ Department of Mathematics, Karadeniz Technical University, Faculty of Science, 61080, Trabzon, TÜRKİYE

Abstract

Let E_{2} be the 2-dimensional Euclidean space and T be a set such that it has at least two elements. A mapping $\alpha: T \rightarrow E_{2}$ will be called a T-figure in E_{2}. Let \mathbb{R} be the field of real numbers and $O(2, \mathbb{R})$ be the group of all orthogonal transformations of E_{2}. Put $S O(2, \mathbb{R})=\{g \in O(2, \mathbb{R}) \mid \operatorname{detg}=1\}$, $M O(2, \mathbb{R})=\left\{F: E_{2} \rightarrow E_{2} \mid F x=g x+b, g \in O(2, \mathbb{R}), b \in E_{2}\right\}$, $M S O(2, \mathbb{R})=\{F \in M O(2, \mathbb{R}) \mid \operatorname{detg}=1\}$. The present paper is devoted to solutions of problems of G-equivalence of T-figures in E_{2} for groups $G=$ $O(2, \mathbb{R}), S O(2, \mathbb{R}), M O(2, \mathbb{R}), M S O(2, \mathbb{R})$. Complete systems of G-invariants of T-figures in E_{2} for these groups are obtained. Complete systems of relations between elements of the obtained complete systems of G-invariants are given for these groups.

1. Introduction

Let \mathbb{R} be the field of real numbers, and let E_{2} be the 2-dimensional Euclidean space.

The present paper is devoted to solution of problems of G-equivalence of T figures in E_{2} for groups $G=O(2, \mathbb{R}), S O(2, \mathbb{R}), M O(2, \mathbb{R}), M S O(2, \mathbb{R})$ in terms of G-invariants of a T-figure. We have obtain complete systems of G-invariants of T-figures for these groups and describe complete systems of relations between elements of the obtained complete systems of G-invariants.

[^11]Let V be a finite dimensional vector space over a field K and β be a nondegenerate bilinear form on V. Denote by $O(\beta, K)$ the group of all β-orthogonal (that is the form β preserving) transformations of V. Let $M O(\beta, K)$ be the group generated by the group $O(\beta, K)$ and all translations of V. In the paper [6, for the orthogonal group $O(\beta, K)$ in the Euclidean, spherical, hyperbolic and de-Sitter geometries, the orbit of m vectors is characterized by their Gram matrix and an additional subspace. In the book [2, Proposition 9.7.1], for the group $M O(\beta, K)$ in the Euclidean geometry, the orbit of m-vectors is characterized by distances between m-vectors. A complete system of relations between elements of this complete system is also given in [2, Theorem 9.7.3.4]. In the paper 13, a complete system of invariants of m-tuples in the two-dimensional pseudo-Euclidean geometry of index 1 and a complete system relations between the obtained complete system of invariants are given. In the paper 15, a complete system of invariants of m-tuples in the one-dimensional projective space and a complete system relations between the obtained complete system of invariants are given. Invariants of m-points in Lorentzian geometry investigated in the paper 23 . Invariants of m-points appear also in the theory of invariants of Bezier curves (5.22), in Computer vision theory (19,27), in Computational Geometry ($\sqrt[21]{ })$. General theory of m-point invariants considered in the invariant theory (see $3,8,20,30,31$).

Complete systems of global invariants of paths and curves are investigated in papers 1, 7-9, 12, 14, 24-26. Complete systems of global invariants of surfaces and vector fields are investigated in papers 10, 11, 28. Complete systems of global invariants of T-figures in the affine geometry are investigated in the paper 17, 18.

This paper is organized as follows. In Section 1, some known results (Propositions (1.4) on the linear representation of the field of complex numbers in twodimensional real space are given. Definitions of T-figures in the field \mathbb{C} of complex numbers and in the two-dimensional linear space \mathbb{R}^{2} are given. Put $S\left(\mathbb{C}^{*}\right)=$ $\left\{z \in \mathbb{C}||z|=1\}\right.$. A definition of $S\left(\mathbb{C}^{*}\right)$-equivalence of T-figures in \mathbb{C} with respect to the group $S\left(\mathbb{C}^{*}\right)$ is given. A definition of $\Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$-equivalence of T-figures in \mathbb{R}^{2} with respect to the group $\Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$ of linear transformation of \mathbb{R}^{2} is given. It is proved Theorem 1 on a relation between the $S\left(\mathbb{C}^{*}\right)$-equivalence of T-figures in \mathbb{C} and $\Lambda\left(S\left(\mathbb{C}^{*}\right)\right.$)-equivalence of T-figures in \mathbb{R}^{2}. In Section 2, evident forms of elements of groups $S O(2, \mathbb{R})$ and $O(2, \mathbb{R})$ are given. In Section 3, a complete system of G-invariants of a T-figure in the two-dimensional linear space \mathbb{R}^{2} over the field \mathbb{R} of real numbers for the group $G=S O(2, \mathbb{R})$ is given. A complete system of relations between elements of the obtained complete system of invariants are given. In Section 4, a complete system of G-invariants of a T-figure in \mathbb{R}^{2} for the group $G=O(2, \mathbb{R})$ is given. A complete system of relations between elements of the obtained complete system of G-invariants is given. In Section 5, a complete system of G-invariants of a T-figure in \mathbb{R}^{2} for the group $G=M S O(2, \mathbb{R})$ is given. A complete system of relations between elements of the obtained complete system of G-invariants is given. In Section 6 , a complete system of G-invariants of a T-figure
in \mathbb{R}^{2} for the group $G=M O(2, \mathbb{R})$ is given. A complete system of relations between elements of the obtained complete system of G-invariants is given.

2. Some properties of a linear representation of the field of COMPLEX NUMBERS IN TWO-DIMENSIONAL REAL SPACE

A part of results of this section is known (see 16).
Denote the field of complex numbers by \mathbb{C}. Let $c=c_{1}+i c_{2} \in \mathbb{C}$. Denote by Λ_{c} the matrix of the form $\left(\begin{array}{cc}c_{1} & -c_{2} \\ c_{2} & c_{1}\end{array}\right)$. Denote by $\Lambda(\mathbb{C})$ the set $\left\{\Lambda_{c} \mid c \in \mathbb{C}\right\}$. We consider on the set $\Lambda(\mathbb{C})$ following matrix operations: the component-wise addition and the multiplication of matrices. Then $\Lambda(\mathbb{C})$ is a field with respect to these operations. In it the unit element is the unit matrix.

Proposition 1. The mapping $\Lambda: \mathbb{C} \rightarrow \Lambda(\mathbb{C})$, where $\Lambda: c \rightarrow \Lambda_{c}, \forall c \in \mathbb{C}$, is an isomorphism of the fields \mathbb{C} and $\Lambda(\mathbb{C})$.

Proof. It is obvious.
Let $a=a_{1}+i a_{2} \in \mathbb{C}, b=b_{1}+i b_{2} \in \mathbb{C}$. Put $\langle a, b\rangle=a_{1} b_{1}+a_{2} b_{2}$. Then $\langle a, b\rangle$ is a bilinear form on \mathbb{R}^{2} and $\langle a, a\rangle=a_{1}^{2}+a_{2}^{2}$ is a quadratic form on \mathbb{R}^{2}. For convenience, we denote by $Q(a)$ the quadratic form $\langle a, a\rangle$.

The following propositions 2, 3 and 4 are known.
Proposition 2. The following equalities $Q(x)=\operatorname{det}\left(\Lambda_{x}\right)$ and $Q(x y)=Q(x) Q(y)$ hold for all $x=x_{1}+i x_{2}, y=y_{1}+i y_{2} \in \mathbb{C}$.

For $x=x_{1}+i x_{2} \in \mathbb{C}$, we set $\bar{x}=x_{1}-i x_{2}$.
Proposition 3. The mapping $x \rightarrow \bar{x}$ is an involution of the field \mathbb{C} and the following equalities $x+\bar{x}=2 x_{1},\langle x, x\rangle=x \bar{x}=\bar{x} x=x_{1}^{2}+x_{2}^{2}, Q(x)=Q(\bar{x})$ hold for all $x=x_{1}+i x_{2} \in \mathbb{C}$.

Proposition 4. Let $x \in \mathbb{C}$. Then the element x^{-1} exists if and only if $Q(x) \neq 0$. In the case $Q(x) \neq 0$, the equalities $x^{-1}=\frac{\bar{x}}{Q(x)}$ and $Q\left(x^{-1}\right)=\frac{1}{Q(x)}$ hold.

Put $\mathbb{C}^{*}=\{x \in \mathbb{C} \mid Q(x) \neq 0\} . \mathbb{C}^{*}$ is a group with respect to the multiplication operation in the field \mathbb{C}. Denote by $\Lambda\left(\mathbb{C}^{*}\right)$ the set of all matrices Λ_{a}, where $a \in \mathbb{C}^{*}$. For $a \in \mathbb{C}^{*}$, we have $Q(a)=a_{1}^{2}+a_{2}^{2} \neq 0$ and $Q(a)=\operatorname{det}\left(\Lambda_{a}\right) \neq 0$.

Below everywhere we will consider every element $x \in \mathbb{R}^{2}$ and $x \in E_{2}$ as a column vector $x=\binom{x_{1}}{x_{2}}$. Denote by Γ the following mapping $\Gamma: \mathbb{C} \rightarrow \mathbb{R}^{2}$, where $\Gamma\left(x_{1}+i x_{2}\right)=\binom{x_{1}}{x_{2}}$. It is obvious that the mapping Γ is an isomorphism of linear spaces \mathbb{C} and \mathbb{R}^{2}. Hence there exists the converse isomorphism Γ^{-1} of Γ and $\Gamma^{-1}(x)=x_{1}+i x_{2}, \forall x \in \mathbb{R}^{2}$.

Denote by W the following matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Denote by L_{a} the following linear operator on $\mathbb{C}: L_{a}(x)=a \cdot x, \forall x \in \mathbb{C}, a \in \mathbb{C}^{*}$. Then the following equalities are obvious:
$\Gamma\left(a_{1}+i a_{2}\right)=W \Gamma(a)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \cdot\binom{a_{1}}{a_{2}}=\binom{a_{1}}{-a_{2}}=\Gamma(\bar{a}), \forall a=a_{1}+i a_{2} \in$ \mathbb{C}^{*}.
$\Gamma\left(L_{a}(x)\right)=\Gamma(a \cdot x)=\binom{a_{1} x_{1}-a_{2} x_{2}}{a_{1} x_{2}+a_{2} x_{1}}=\left(\begin{array}{cc}a_{1} & -a_{2} \\ a_{2} & a_{1}\end{array}\right) \cdot\binom{x_{1}}{x_{2}}=\Lambda_{a} \cdot \Gamma(x)$,
$\forall a \in \mathbb{C}^{*}, \forall x \in \mathbb{C}$, where $\Lambda_{a} \cdot \Gamma(x)$ is the multiplication of matrices Λ_{a} and $\Gamma(x)$.
Hence $\Lambda_{a} \in \Lambda\left(\mathbb{C}^{*}\right)$ and the mapping $\Lambda: \mathbb{C}^{*} \rightarrow \Lambda\left(\mathbb{C}^{*}\right)$, where $\Lambda(a)=\Lambda_{a}$, is a linear representation of the groups.

Put $S\left(\mathbb{C}^{*}\right)=\{x \in \mathbb{C} \mid Q(x)=1\}$. It is a subgroup of the group $\mathbb{C}^{*} . \Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$ is a subgroup of the group $\Lambda\left(\mathbb{C}^{*}\right)$ and the mapping $\Lambda: S\left(\mathbb{C}^{*}\right) \rightarrow \Lambda\left(\mathbb{C}^{*}\right)$, where $\Lambda(a)=\Lambda_{a}$, is a linear representation of the group $S\left(\mathbb{C}^{*}\right)$ in $\mathbb{R}^{2} . \Lambda\left(\mathbb{C}^{*}\right)$ is a group with respect to the multiplication of matrices. Let T be a set such that it has at least two elements. Denote by \mathbb{C}^{T} the set of all mappings of the set T to the field \mathbb{C}. An element of $\alpha \in \mathbb{C}^{T}$ will be called a T-figure in the field \mathbb{C}. For the figure α, we also use the notation $\alpha(t)$, considering α as a function on T with values in \mathbb{C}. Denote by E_{2}^{T} the set of all mappings of the set T to E_{2}. An element $\gamma \in E_{2}^{T}$ will be called a T-figure in the space E_{2}. For the figure γ, we also use the notation $\gamma(t)$, considering γ as a function on T with values in E_{2}.

Let G be a subgroup of the group \mathbb{C}^{*}.
Definition 1. Two T-figures $\alpha \in \mathbb{C}^{T}$ and $\beta \in \mathbb{C}^{T}$ is called G-equivalent if there exists $g \in G$ such that $\beta(t)=g \cdot \alpha(t), \forall t \in T$. In this case, we also write as follows: $\alpha \stackrel{G}{\sim} \beta$ or $\alpha(t) \stackrel{G}{\sim} \beta(t), \forall t \in T$.

Let G be a subgroup of the group \mathbb{C}^{*}.
Definition 2. Two T-figures $\gamma \in E_{2}^{T}$ and $\eta \in E_{2}^{T}$ is called $\Lambda(G)$-equivalent if there exists $a \in G$ such that $\eta(t)=\Lambda_{a} \gamma(t), \forall t \in T$. In this case, we also write as follows: $\gamma \stackrel{\Lambda(G)}{\sim} \eta$ or $\gamma(t) \stackrel{\Lambda(G)}{\sim} \eta(t), \forall t \in T$.

Theorem 1. Let $\alpha(t)=\alpha_{1}(t)+i \alpha_{2}(t)$ and $\beta(t)=\beta_{1}(t)+i \beta_{2}(t)$ be two T figures in \mathbb{C}. Then T-figures $\alpha(t)=\alpha_{1}(t)+i \alpha_{2}(t)$ and $\beta(t)=\beta_{1}(t)+i \beta_{2}(t)$ are $S\left(\mathbb{C}^{*}\right)$-equivalent if and only if T-figures $\Gamma(\alpha(t))$ and $\Gamma(\beta(t))$ in E_{2} are $\Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$ equivalent.

Proof. Assume that T-figures $\alpha(t)=\alpha_{1}+i \alpha_{2}(t)$ and $\beta(t)=\alpha_{1}+i \beta_{2}(t)$ are $S\left(\mathbb{C}^{*}\right)$ equivalent. Then there exists $a=a_{1}+i a_{2} \in S\left(\mathbb{C}^{*}\right)$ such that $\beta(t)=a \cdot \alpha(t), \forall t \in T$.

Using this equality and the equality (1), we obtain following equality:

$$
\begin{aligned}
\Gamma(\beta(t))=\Gamma(a \cdot \alpha(t))=\binom{a_{1} \alpha_{1}(t)-a_{2} \alpha_{2}(t)}{a_{1} \alpha_{2}(t)+a_{2} \alpha_{1}(t)}=\left(\begin{array}{cc}
a_{1} & -a_{2} \\
a_{2} & a_{1}
\end{array}\right) \cdot\binom{\alpha_{1}(t)}{\alpha_{2}(t)} \\
=\Lambda_{a} \Gamma(\alpha(t)), \forall t \in T
\end{aligned}
$$

This equality means that T-figures $\Gamma(\alpha(t))$ and $\Gamma(\beta(t))$ are $\Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$-equivalent .
Conversely, assume that T-figures $\Gamma(\alpha(t))$ and $\Gamma(\beta(t))$ are $\Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$-equivalent. Since Γ is an isomorphism, Γ^{-1} exists. Then the above equality implies that $\beta(t)=$ $\Gamma^{-1}(\Gamma(\beta(t)))=\Gamma^{-1}(\Gamma(a \cdot \alpha(t)))=a \cdot \alpha(t), \forall t \in T$. Hence T-figures $\alpha(t)=\alpha_{1}(t)+$ $i \alpha_{2}(t)$ and $\beta(t)=\beta_{1}(t)+i \beta_{2}(t)$ are $S\left(\mathbb{C}^{*}\right)$-equivalent.
3. Fundamental groups of transformations of the 2-dimensional

Euclidean space
Let E_{2} be the 2-dimensional Euclidean space with the scalar product $\langle a, b\rangle=$ $a_{1} b_{1}+a_{2} b_{2}$, where $a=\binom{a_{1}}{a_{2}}, b=\binom{b_{1}}{b_{2}} \in E_{2}$.
Definition 3. A mapping $F: E_{2} \rightarrow E_{2}$ is called orthogonal if $\langle F x, F y\rangle=\langle x, y\rangle$ for all $x, y \in E_{2}$.

Denote the set of all orthogonal transformations of E_{2} by $O(2, \mathbb{R})$.
The following propositions 5/7 are well known.
Proposition 5. ([4], p.221) Every orthogonal transformation of E_{2} is linear.
Proposition 6. $O(2, \mathbb{R})$ is a group with respect to the multiplication operation of matrices.

Let $a=a_{1}+i a_{2}, b=b_{1}+i b_{2} \in \mathbb{C}$. Denote the identity matrix of the bilinear form $\langle a, b\rangle=a_{1} b_{1}+a_{2} b_{2}$ by $I=\left\|\delta_{i j}\right\|_{i, j=1,2}$, where $\delta_{11}=\delta_{22}=1, \delta_{12}=\delta_{21}=0$. By Proposition 5 we can consider every element of $O(2, \mathbb{R})$ as a 2×2-matrix. Let $H \in O(2, \mathbb{R})$, where $H=\left\|h_{i j}\right\|_{i, j=1,2}$. Let H^{T} be the transpose matrix of H. It is known that the equality $\langle H x, H y\rangle=\langle x, y\rangle$ for all $x, y \in E_{2}$ is equivalent to the equality

$$
\begin{equation*}
H^{T} H=I \tag{2}
\end{equation*}
$$

This equality implies the following
Proposition 7. Let $H \in O(2, \mathbb{R})$. Then $\operatorname{det}(H)=1$ or $\operatorname{det}(H)=-1$.
We denote by $S O(2, \mathbb{R})$ the set $\{H \in O(2, \mathbb{R}): \operatorname{det}(H)=1\} . S O(2, \mathbb{R})$ is a subgroup of $O(2, \mathbb{R}) . O(2, \mathbb{R})=S O(2, \mathbb{R}) \cup\{H W \mid H \in S O(2, \mathbb{R})\}$, where $H W$ is the multiplication of matrices H and W, where $W=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

Theorem 2. The equality $S O(2, \mathbb{R})=\Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$ holds.

Proof. \Leftarrow. We assume that $H \in \Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$. Then it has the following form $H=$ $\left\|h_{i j}\right\|_{i, j=1,2}$, where $h_{11}=h_{22}=c, h_{21}=d, h_{12}=-d, c, d \in \mathbb{R}$ and $\operatorname{det}(H)=$ $c^{2}+d^{2}=1$. We prove that $H \in S O(2, \mathbb{R})$. Let $x=\binom{x_{1}}{x_{2}}, y=\binom{y_{1}}{y_{2}} \in E_{2}$.
We have

$$
H(x)=\binom{c x_{1}-d x_{2}}{d x_{1}+c x_{2}}, H(y)=\binom{c y_{1}-d y_{2}}{d y_{1}+c y_{2}} .
$$

Using the equality $c^{2}+d^{2}=1$, we obtain

$$
\begin{array}{r}
\langle H(x), H(y)\rangle=\left(c x_{1}-d x_{2}\right)\left(c y_{1}-d y_{2}\right)+\left(d x_{1}+c x_{2}\right)\left(d y_{1}+c y_{2}\right)= \\
\left(c^{2}+d^{2}\right)\left(x_{1} y_{1}+x_{2} y_{2}\right)=\langle x, y\rangle .
\end{array}
$$

Hence $H \in S O(2, \mathbb{R})$.
\Rightarrow. We assume that $H \in S O(2, \mathbb{R})$, where $H=\left\|h_{i j}\right\|_{i, j=1,2}$. Then $\operatorname{det}(H)=$ $h_{11} h_{22}-h_{12} h_{21}=1$ and the equality (2) holds. These equalities imply the following system of equalities

$$
\begin{align*}
h_{11}^{2}+h_{21}^{2} & =1 \tag{3}\\
h_{11} h_{12}+h_{21} h_{22} & =0 \tag{4}\\
h_{12}^{2}+h_{22}^{2} & =1 \tag{5}\\
h_{11} h_{22}-h_{12} h_{21} & =1 \tag{6}
\end{align*}
$$

We consider two cases $h_{12}=0$ and $h_{12} \neq 0$.
Let $h_{12}=0$. Then (5) implies $h_{22}^{2}=1$. Hence $h_{22}=1$ or $h_{22}=-1$. Let $h_{22}=1$. Then the equalities $h_{22}=1, h_{12}=0$ and (4) imply $h_{21}=0$. Using equalities $h_{21}=0$ and (3), we obtain $h_{11}^{2}=1$. Hence $h_{11}=1$ or $h_{11}=-1$. Thus, in the case $h_{12}=0$ and $h_{22}=1$, we obtain $h_{21}=0$ and $h_{11}=1$ or $h_{11}=-1$. Hence, in this case, we obtain only the following two matrices:
$A_{1}=\left\{h_{11}=h_{22}=1, h_{12}=h_{21}=0\right\}, A_{2}=\left\{h_{11}=-1, h_{12}=h_{21}=0, h_{22}=1\right\}$.
It is obviously that $A_{1} \in \Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$ and $A_{2} \notin S O(2, \mathbb{R})$.
Let $h_{22}=-1$. Then the equalities $h_{22}=-1, h_{12}=0$ and (4) imply $h_{21}=0$. Using equalities $h_{21}=0$ and (3), we obtain $h_{11}^{2}=1$. Hence $h_{11}=1$ or $h_{11}=-1$. Thus, in the case $h_{12}=0$ and $h_{22}=-1$, we obtain $h_{21}=0$ and $h_{11}=1$ or $h_{11}=-1$. Hence, in this case, we obtain only the following two matrices:
$A_{3}=\left\{h_{11}=1, h_{12}=h_{21}=0, h_{22}=-1\right\}, A_{4}=\left\{h_{11}=h_{22}=-1, h_{12}=h_{21}=0\right\}$.
It is obviously that $A_{4} \in \Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$ and $A_{3} \notin S O(2, \mathbb{R})$.
Let $h_{12} \neq 0$. Using (4), we obtain

$$
h_{11}=-\frac{h_{21} h_{22}}{h_{12}} .
$$

Using this equality and equalities (3), (5), we obtain:

$$
\begin{array}{r}
\left(-\frac{h_{21} h_{22}}{h_{12}}\right)^{2}+h_{21}^{2}=1 \Rightarrow h_{21}^{2} h_{22}^{2}+h_{12}^{2} h_{21}^{2}=h_{12}^{2} \Rightarrow h_{21}^{2}\left(h_{22}^{2}+h_{12}^{2}\right)= \\
h_{12}^{2} \Rightarrow h_{21}^{2}=h_{12}^{2} \Rightarrow h_{12}^{2}-h_{21}^{2}=0
\end{array}
$$

Hence we obtain $h_{12}-h_{21}=0$ or $h_{12}+h_{21}=0$. We consider two cases $h_{12}-h_{21}=0$ and $h_{12}+h_{21}=0$.

Let $h_{12}-h_{21}=0$. Then $h_{12}=h_{21}$. Since $h_{12} \neq 0$, we obtain $h_{21} \neq 0$. Using the equality $h_{12}=h_{21}$ and (4), we obtain $h_{11} h_{21}-h_{21} h_{22}=0$. Hence $h_{21}\left(h_{11}+h_{22}\right)=0$. Since $h_{21} \neq 0$, this equality implies $h_{11}=-h_{22}$. Thus we have obtained the following equalities: $h_{12}=h_{21}$ and $h_{11}=-h_{22}$. Using (6), we obtain $-h_{11}^{2}-h_{12}^{2}=1$. Since $h_{12} \neq 0$ and $-\left(h_{11}^{2}+h_{12}^{2}\right)=1$, we have a contradiction. Hence this case is not possible.

Consider the case $h_{12}+h_{21}=0$. This equality implies the equality $h_{12}=$ $-h_{21}$. Using this equality and the equality (4) : $h_{11} h_{12}+h_{21} h_{22}=0$, we obtain $h_{11} h_{12}-h_{12} h_{22}=0$. Hence $h_{12}\left(h_{11}-h_{22}\right)=0$. Since $h_{12} \neq 0$, this equality implies $h_{11}=h_{22}$. Hence the equalities $h_{12}=-h_{21}, h_{11}=h_{22}$ hold. These equalities and (3) imply that the matrix H has the form $\left(\begin{array}{cc}h_{11} & -h_{21} \\ h_{21} & h_{11}\end{array}\right)$, where $\operatorname{det}(H)=1$. Hence $H \in \Lambda\left(S\left(\mathbb{C}^{*}\right)\right)$.

Corollary 1. Let $\alpha(t)=\alpha_{1}(t)+i \alpha_{2}(t)$ and $\beta(t)=\beta_{1}(t)+i \beta_{2}(t)$ be T-figures in \mathbb{C}. Then T-figures $\alpha(t)=\alpha_{1}(t)+i \alpha_{2}(t)$ and $\beta(t)=\beta_{1}(t)+i \beta_{2}(t)$ are $S\left(\mathbb{C}^{*}\right)$-equivalent if and only if T-figures $\Gamma(\alpha(t))$ and $\Gamma(\beta(t))$ in E_{2} are $S O(2, \mathbb{R})$-equivalent.
Proof. It follows from Theorems 1 and 2 ,
Denote by $M O(2, \mathbb{R})$ the group of all transformations of E_{2} generated by the group $O(2, \mathbb{R})$ and all translations of E_{2}. Elements of the group $M O(2, \mathbb{R})$ has the following form $F: E_{2} \rightarrow E_{2}$, where $F(x)=g(x)+a, g \in O(2, \mathbb{R}), a \in \mathbb{R}^{2}$. Denote by $M S O(2, \mathbb{R})$ the group of all transformations of E_{2} generated by the group $S O(2, \mathbb{R})$ and all translations of E_{2}. Elements of the group $\operatorname{MSO}(2, \mathbb{R})$ has the following form $F: E_{2} \rightarrow E_{2}$, where $F(x)=g(x)+a, g \in S O(2, \mathbb{R}), a \in \mathbb{R}^{2}$.
4. Complete systems of G-invariants of a T-figure in E_{2} for the GROUP $G=S O(2, \mathbb{R})$

Let G be a subgroup of the group $M O(2, \mathbb{R})$.
Definition 4. Two T-figures α and β in E_{2} are called G-equivalent if there exists $g \in G$ such that $\alpha=g \beta$. In this case, we also write as follows: $\alpha \stackrel{G}{\sim} \beta$ or $\alpha(t) \stackrel{G}{\sim}$ $\beta(t), \forall t \in T$.

Definition 5. A function $f(\alpha(t), \beta(t), \ldots, \gamma(t))$ of a finite number of T-figures $\alpha(t), \beta(t), \ldots, \gamma(t)$ is called G-invariant function if
$f(F \alpha(t), F \beta(t), \ldots, F \gamma(t))=f(\alpha(t), \beta(t), \ldots, \gamma(t))$ for all $F \in G$, all T-figures $\alpha(t), \beta(t), \ldots, \gamma(t)$ and all $t \in T$.

Example 1. By the definitions of the groups $O(2, \mathbb{R})$ and $S O(2, \mathbb{R})$, we obtain that the quadratic form $Q: E_{2} \rightarrow \mathbb{R}, Q(x)=\langle x, x\rangle$ is $O(2, \mathbb{R})$-invariant function on E_{2} and the bilinear form $f: E_{2} \times E_{2} \rightarrow \mathbb{R}, f(x, y)=\langle x, y\rangle$ are $O(2, \mathbb{R})$-invariant functions on the set $E_{2} \times E_{2}$.

Example 2. Denote by $[x y]$ the determinant $\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right|$ of $x=\binom{x_{1}}{x_{2}}, y=$ $\binom{y_{1}}{y_{2}} \in E_{2}$. Consider the function $h: E_{2} \times E_{2} \rightarrow \mathbb{R}, h(x, y)=[x y]$. Using the equality $\operatorname{det}(g)=1, \forall g \in S O(2, \mathbb{R})$, we obtain $[(g x)(g y)]=\operatorname{det}(g)[x y]=[x y], \forall g \in$ $S O(2, \mathbb{R}), \forall x, y \in E_{2}$. This means that $[x y]$ is an $S O(2, \mathbb{R})$-invariant function on the set $E_{2} \times E_{2}$. Clearly, $h(x, y)$ is not an $O(2, \mathbb{R})$-invariant function on the set $E_{2} \times E_{2}$.

Example 3. By definitions of the groups $G=M O(2, \mathbb{R}), M S O(2, \mathbb{R})$ we obtain that function $f: E_{2} \times E_{2} \rightarrow \mathbb{R}, f(x, y)=\langle x-y, x-y\rangle$ is an G-invariant function on the set $E_{2} \times E_{2}$.

Definition 6. A system $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ of G-invariant functions $f_{1}, f_{2}, \ldots, f_{m}$ of a T-figure α in E_{2}^{T} will be called a complete system of G-invariant functions of T-figure if equalities $f_{j}(\alpha)=f_{j}(\beta), \forall j \in 1,2, \ldots, m$ imply $\alpha \stackrel{G}{\sim} \beta$.

Denote by θ the vector $\theta=\binom{0}{0} \in E_{2}$. Let α be a T-figure in E_{2}. Denote by $Z(\alpha)$ the set $\{t \in T \mid \alpha(t)=\theta\}$. Denote by $\theta_{T}(t)$ the T-figure such that $\theta_{T}(t)=\theta, \forall t \in T$.

Denote by 2^{T} the set of all subsets of the set T.
Proposition 8. (1) Let G be a subgroup of \mathbb{C}^{*}. Assume that $\alpha, \beta \in \mathbb{C}^{T}$ such that $\alpha \stackrel{G}{\sim} \beta$. Then $Z(\alpha)=Z(\beta)$. This means that the function $Z: \mathbb{C}^{T} \rightarrow 2^{T}$ is a G-invariant function on \mathbb{C}^{T}.
(2) Let G be a subgroup of $O(2, \mathbb{R})$. Assume that $\alpha, \beta \in E_{2}^{T}$ such that $\alpha \stackrel{G}{\sim} \beta$. Then $Z(\alpha)=Z(\beta)$ that is the function $Z: E_{2}^{T} \rightarrow 2^{T}$ is a G-invariant function on E_{2}^{T}.

Proof. It is obvious.

Proposition 9. Let \mathbb{C} be the field of complex numbers and $x=x_{1}+i x_{2}, y=$ $y_{1}+i y_{2} \in \mathbb{C}$ such that $x \neq 0$. Then,
(1) the element $y x^{-1}$ exists, the equality $y x^{-1}=\frac{\langle x, y\rangle}{Q(x)}+i \frac{[x y]}{Q(x)}$ and the following equality hold

$$
\Lambda_{y x^{-1}}=\left(\begin{array}{cc}
\frac{\langle x, y\rangle}{Q(x)} & -\frac{[x y]}{Q(x)} \tag{7}\\
\frac{[x y]}{Q(x)} & \frac{\langle x, y\rangle}{Q(x)}
\end{array}\right)
$$

where $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}$ and $[x y]=x_{1} y_{2}-x_{2} y_{1}$.
(2) $\operatorname{det}\left(\Lambda_{y x^{-1}}\right) \neq 0$ if and only if $Q(y) \neq 0$.

Proof. It is given in [16, Proposition 4. 9].
Now we consider the G-equivalence problem of T-figures in the field \mathbb{C} for the group $S\left(\mathbb{C}^{*}\right)$.

Let α and β be T-figures in \mathbb{C} such that $\alpha(t)=\beta(t)=0, \forall t \in T$, that is $Z(\alpha)=Z(\beta)=T$. In this case, it is obvious that $\alpha \stackrel{S\left(\mathbb{C}^{*}\right)}{\sim} \beta$.

Theorem 3. Let α be a T-figure in the field \mathbb{C} such that $Z(\alpha) \neq T$, and $t_{0} \in$ $T \backslash Z(\alpha)$.
(i) Suppose that a T-figure β in \mathbb{C} such that $\alpha \stackrel{S\left(\mathbb{C}^{*}\right)}{\sim} \beta$. Then the following equalities hold:

$$
\left\{\begin{array}{c}
Z(\alpha)=Z(\beta) \tag{8}\\
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \backslash Z(\alpha) \\
{\left[\alpha\left(t_{0}\right) \alpha(t)\right]=\left[\beta\left(t_{0}\right) \beta(t)\right], \forall t \in T \backslash Z(\alpha) .}
\end{array}\right.
$$

(ii) Conversely, assume that a T-figure β in \mathbb{C} such that the equalities (8) hold. Then there exists a single element $g \in S\left(\mathbb{C}^{*}\right)$ such that $\beta=g \cdot \alpha$. In this case, it has the following form $g=\beta\left(t_{0}\right)\left(\alpha\left(t_{0}\right)\right)^{-1}$.

Proof. Assume that $\alpha \stackrel{S\left(\mathbb{C}^{*}\right)}{\sim} \beta$. Then there exists $a \in S\left(\mathbb{C}^{*}\right)$ such that $\beta(t)=$ $a \cdot \alpha(t), \forall t \in T$. By Proposition $8(1)$, we obtain the equality $Z(\alpha)=Z(\beta)$. Hence the equality $Z(\alpha)=Z(\beta)$ in (8) is proved.

The equality $Z(\alpha)=Z(\beta)$ and the inequality $Z(\alpha) \neq T$ imply inequality $Z(\beta) \neq T$. Since $t_{0} \in T \backslash Z(\alpha)=T \backslash Z(\beta)$, we obtain that $\alpha\left(t_{0}\right) \neq 0$ and $\beta\left(t_{0}\right) \neq 0$. The inequality $\alpha\left(t_{0}\right) \neq 0$ implies an existence of $\left(\alpha\left(t_{0}\right)\right)^{-1}$. Consider following functions $\alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}$ and $\beta(t) \cdot\left(\beta\left(t_{0}\right)\right)^{-1}$ on T. The above equality $\beta(t)=a \cdot \alpha(t), \forall t \in T$, implies following equality: $\beta(t) \cdot\left(\beta\left(t_{0}\right)\right)^{-1}=$ $a \cdot \alpha(t) \cdot\left(a \cdot \alpha\left(t_{0}\right)\right)^{-1}=\left(a \cdot a^{-1}\right) \cdot \alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}=\alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}, \forall t \in T$. Hence following equality holds: $\beta(t) \cdot\left(\beta\left(t_{0}\right)\right)^{-1}=\alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}, \forall t \in T$. Using Proposition 9. we obtain following equalities:
$\alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}=\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}+i \frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}, \beta(t) \cdot\left(\beta\left(t_{0}\right)\right)^{-1}=\frac{\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle}{Q\left(\beta\left(t_{0}\right)\right)}+i \frac{\left[\beta\left(t_{0}\right) \beta(t)\right]}{Q\left(\beta\left(t_{0}\right)\right)}$. These equalities and the equality $\beta(t) \cdot\left(\beta\left(t_{0}\right)\right)^{-1}=\alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}, \forall t \in T$, imply following equality: $\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}+i \frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}=\frac{\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle}{Q\left(\beta\left(t_{0}\right)\right)}+i \frac{\left[\beta\left(t_{0}\right) \beta(t)\right]}{Q\left(\beta\left(t_{0}\right)\right)}, \forall t \in T$. This
equality imply following equalities:

$$
\left\{\begin{array}{l}
\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(\alpha t_{0}\right)\right)}=\frac{\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle}{Q\left(\beta\left(t_{0}\right)\right)}, \forall t \in T \tag{9}\\
\frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}=\frac{\left[\beta\left(t_{0}\right) \beta(t)\right]}{Q\left(\beta\left(t_{0}\right)\right)}, \forall t \in T .
\end{array}\right.
$$

The equality $\beta(t)=a \cdot \alpha(t), \forall t \in T$, implies following equality $Q\left(\beta\left(t_{0}\right)\right)=Q(a \cdot$ $\left.\alpha\left(t_{0}\right)\right)$. Using Proposition2, we obtain following equality $Q\left(\beta\left(t_{0}\right)\right)=Q(a) \cdot Q\left(\alpha\left(t_{0}\right)\right)$. Since $a \in S\left(\mathbb{C}^{*}\right)$, we have $Q(a)=1$. This equality and previous equality $Q\left(\beta\left(t_{0}\right)\right)=$ $Q(a) \cdot Q\left(\alpha\left(t_{0}\right)\right)$ imply following equality $Q\left(\beta\left(t_{0}\right)\right)=Q\left(\alpha\left(t_{0}\right)\right)$. This equality and (9) imply following equalities:

$$
\left\{\begin{array}{c}
\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}=\frac{\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}, \forall t \in T \\
\frac{\left.\left[\alpha\left(t_{0}\right) \alpha(t)\right]\right]}{Q\left(\alpha\left(t_{0}\right)\right)}=\frac{\left[\beta\left(t_{0}\right) \beta(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}, \forall t \in T .
\end{array}\right.
$$

These equalities imply following equalities in (8):

$$
\left\{\begin{array}{c}
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \\
{\left[\alpha\left(t_{0}\right) \alpha(t)\right]=\left[\beta\left(t_{0}\right) \beta(t)\right], \forall t \in T .}
\end{array}\right.
$$

Hence equalities (8) is proved.
Conversely, assume that T-figures α and β in \mathbb{C} such that the equalities (8) hold. By the supposition in the present theorem $t_{0} \in T \backslash Z(\alpha(t))$. This implies $\alpha\left(t_{0}\right) \neq 0$. This inequality and the equality $Z(\alpha(t))=Z(\beta(t))$ in imply the inequality $\beta\left(t_{0}\right) \neq 0$. In the equality $\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T$, in (8) we put $t=t_{0}$. Then we obtain following equality $\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle$. This equality and the following equalities $Q\left(\alpha\left(t_{0}\right)\right)=\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle, Q\left(\beta\left(t_{0}\right)\right)=\left\langle\beta\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle$ imply following equality $Q\left(\alpha\left(t_{0}\right)\right)=Q\left(\beta\left(t_{0}\right)\right)$. The inequality $\alpha\left(t_{0}\right) \neq 0$ implies following inequality $Q\left(\alpha\left(t_{0}\right)\right) \neq 0$. This inequality, the equality $Q\left(\alpha\left(t_{0}\right)\right)=Q\left(\beta\left(t_{0}\right)\right)$ and the equalities in (8) imply following equality:

$$
\left\{\begin{array}{l}
\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}=\frac{\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle}{Q\left(\beta\left(t_{0}\right)\right)}, \forall t \in T \\
\frac{\left.\left[\alpha\left(t_{0}\right) \alpha(t)\right]\right]}{Q\left(\alpha\left(t_{0}\right)\right)}=\frac{\left[\beta\left(t_{0}\right) \beta(t)\right]}{Q\left(\beta\left(t_{0}\right)\right)}, \forall t \in T .
\end{array}\right.
$$

These equalities imply following equalities:

$$
\begin{equation*}
\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}+i \frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}=\frac{\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle}{Q\left(\beta\left(t_{0}\right)\right)}+i \frac{\left[\beta\left(t_{0}\right) \beta(t)\right]}{Q\left(\beta\left(t_{0}\right)\right)}, \forall t \in T . \tag{10}
\end{equation*}
$$

By Proposition 9, we obtain following equalities:

$$
\begin{gather*}
\alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}=\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}+i \frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}, \tag{11}\\
\beta(t) \cdot\left(\beta\left(t_{0}\right)\right)^{-1}=\frac{\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle}{Q\left(\beta\left(t_{0}\right)\right)}+i \frac{\left[\beta\left(t_{0}\right) \beta(t)\right]}{Q\left(\beta\left(t_{0}\right)\right)}, \forall t \in T . \tag{12}
\end{gather*}
$$

Equalities (10), (11) and (12) imply following equality:

$$
\begin{equation*}
\beta(t) \cdot\left(\beta\left(t_{0}\right)\right)^{-1}=\alpha(t) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}, \forall t \in T \tag{13}
\end{equation*}
$$

This equality implies following equality:

$$
\begin{equation*}
\beta(t)=\beta\left(t_{0}\right) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1} \cdot \alpha(t), \forall t \in T \tag{14}
\end{equation*}
$$

Since $Q\left(\alpha\left(t_{0}\right)\right)=Q\left(\beta\left(t_{0}\right)\right)$, using this equality and Propositions 2, 4 we obtain following equality: $Q\left(\beta\left(t_{0}\right) \cdot\left(\alpha\left(t_{0}\right)\right)^{-1}\right)=Q\left(\beta\left(t_{0}\right)\right) \cdot\left(Q\left(\alpha\left(t_{0}\right)\right)\right)^{-1}=Q\left(\beta\left(t_{0}\right)\right)$. $\left(Q\left(\beta\left(t_{0}\right)\right)\right)^{-1}=1$. This means that $\beta\left(t_{0}\right)\left(\alpha\left(t_{0}\right)\right)^{-1} \in S\left(\mathbb{C}^{*}\right)$. Hence 14 implies that $\alpha(t) \stackrel{S\left(\mathbb{C}^{*}\right)}{\sim} \beta(t), \forall t \in T$.

Prove the uniqueness of $h \in S\left(\mathbb{C}^{*}\right)$ satisfying the conditions $\beta(t)=h \alpha(t), \forall t \in T$. Assume that $h \in S\left(\mathbb{C}^{*}\right)$ such that $\beta(t)=h \alpha(t), \forall t \in T$. In particularly, for $t=t_{0}$, the equality $\beta(t)=h \alpha(t)$ implies following equality: $\beta\left(t_{0}\right)=h \alpha\left(t_{0}\right)$. This equality and the inequality $\alpha\left(t_{0}\right) \neq 0$ imply following equality $\beta\left(t_{0}\right)\left(\alpha\left(t_{0}\right)\right)^{-1}=h$. Hence the uniqueness of h is proved.

Theorem 4. Let α be a T-figure in E_{2} such that $Z(\alpha) \neq T$, and $t_{0} \in T \backslash Z(\alpha)$.
(i) Suppose that a T-figure β in E_{2} such that $\alpha \stackrel{S O(2, \mathbb{R})}{\sim} \beta$. Then the following equalities hold:

$$
\left\{\begin{array}{c}
Z(\alpha)=Z(\beta) \tag{15}\\
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \backslash Z(\alpha) \\
{\left[\alpha\left(t_{0}\right) \alpha(t)\right]=\left[\beta\left(t_{0}\right) \beta(t)\right], \forall t \in T \backslash Z(\alpha) .}
\end{array}\right.
$$

(ii) Conversely, assume that a T-figure β in E_{2} such that the equalities 15) hold. Then there exists a single matrix $H \in S O(2, \mathbb{R})$ such that $\beta=H \alpha$. In this case, H has the following form

$$
H=\left(\begin{array}{cc}
\frac{\left\langle\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left.\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right)\right\rangle} & -\frac{\left[\alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} \tag{16}\\
\frac{\left[\alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} & \frac{\left\langle\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}
\end{array}\right)
$$

$$
\text { where } \operatorname{det}(H)=\left(\frac{\left\langle\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}+\left(\frac{\left[\alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}=1 .
$$

Proof. We consider T-figures α and β in E_{2} as column vector functions: $\alpha(t)=$ $\binom{\alpha_{1}(t)}{\alpha_{2}(t)}, \beta(t)=\binom{\beta_{1}(t)}{\beta_{2}(t)}$. Assume that $\alpha^{S O(2, \mathbb{R})} \beta$. Then, by Proposition 8-(2), $Z(\alpha)=Z(\beta)$. This equality and the inequality $Z(\alpha) \neq T$ imply inequality $Z(\beta) \neq T$. Since functions $\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle$ and $\left[\alpha\left(t_{0}\right) \alpha(t)\right]$ are $S O(2, \mathbb{R})$-invariant, the $S O(2, \mathbb{R})$-equivalence $\alpha \stackrel{S O(2, \mathbb{R})}{\sim} \beta$, and the equality $Z(\alpha)=Z(\beta)$ imply equalities (15).

Conversely, assume that a T-figures α and β in E_{2} such that the equalities (15) hold. Consider following T-figures in the field \mathbb{C} : $\Gamma^{-1}(\alpha(t))=\alpha_{1}(t)+i \alpha_{2}(t), \forall t \in T$, $\Gamma^{-1}(\beta(t))=\beta_{1}(t)+i \beta_{2}(t), \forall t \in T$. For these T-figures in \mathbb{C} the equalities (15) also hold. Then, by Theorem 3, these T-figures are $S\left(\mathbb{C}^{*}\right)$-equivalent and there exists a single element $g \in S\left(\mathbb{C}^{*}\right)$ such that $\beta_{1}(t)+i \beta_{2}(t)=g \cdot\left(\alpha_{1}(t)+i \alpha_{2}(t)\right), \forall t \in T$. In
this case, by Theorem 3 g has the following form:
$g=\frac{\beta_{1}\left(t_{0}\right)+i \beta_{2}\left(t_{0}\right)}{\alpha_{1}\left(t_{0}\right)+i \alpha_{2}\left(t_{0}\right)}=\frac{\left.\left(\beta_{1}\left(t_{0}\right)\right)+i \beta_{2}\left(t_{0}\right)\right) \cdot\left(\alpha_{1}\left(t_{0}\right)-i \alpha_{2}\left(t_{0}\right)\right)}{\left(\alpha_{1}\left(t_{0}\right)+i \alpha_{2}\left(t_{0}\right)\right) \cdot\left(\alpha_{1}\left(t_{0}\right)-i \alpha_{2}\left(t_{0}\right)\right)}$
$=\frac{\left(\alpha_{1}\left(t_{0}\right) \beta_{1}\left(t_{0}\right)+\alpha_{2}\left(t_{0}\right) \beta_{2}\left(t_{0}\right)\right)+i\left(\alpha_{1}\left(t_{0}\right) \beta_{2}\left(t_{0}\right)-\alpha_{2}\left(t_{0}\right) \beta_{1}\left(t_{0}\right)\right)}{\left(\alpha_{1}\left(t_{0}\right)\right)^{2}+\left(\alpha_{2}\left(t_{0}\right)\right)^{2}}=\frac{\left\langle\alpha\left(t_{0}\right), \beta(t)\right\rangle+i\left[\alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}$.
The $S\left(\mathbb{C}^{*}\right)$-equivalence of the T-figures $\Gamma^{-1}(\alpha)$, and $\Gamma^{-1}(\beta(t))=\beta_{1}(t)+i \beta_{2}(t), \forall t \in$ T in \mathbb{C}, by Theorem 3, implies $S O(2, \mathbb{R})$-equivalence of T-figures α and β in E_{2}. In this case there exists a single element $H \in S O(2, \mathbb{R})$ such that $H=\Lambda_{g}$ and $\beta(t)=$ $H \cdot \alpha(t), \forall t \in T$. By Proposition 9, the above form of $g=\frac{\left\langle\alpha\left(t_{0}\right), \beta(t)\right\rangle+i\left[\alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}$ implies that H has the form (16), where $\operatorname{det}(H)=1$.

Remark 1. Assume that T be a set such that it has at least two elements. By Theorem (4 the system

$$
\begin{equation*}
\left\{Z(\alpha),\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle,\left[\alpha\left(t_{0}\right) \alpha(t)\right]\right\} \tag{17}
\end{equation*}
$$

is a complete system of $S O(2, \mathbb{R})$-invariant functions on the set of all T-figures α in E_{2} such that $Z(\alpha) \neq T$, and $t_{0} \in T \backslash Z(\alpha)$.

Now let us find a complete system of relations between elements of this complete system.

Theorem 5. Let (17) be the complete system of $S O(2, \mathbb{R})$-invariants of a T-figure α in E_{2}. Assume that:
(1.1) U is a subset of T such that $U \neq T$
(1.2) $t_{0} \in T \backslash U$
(1.3) r be a real number such that $r>0$
(1.4) $a(t)=\left(a_{1}(t), a_{2}(t)\right)$ be a mapping $a: T \rightarrow E_{2}$ such that following two properties hold:
(1.4.1) $a_{1}(t)=0, \forall t \in U$, and $a_{1}\left(t_{0}\right)=r$
(1.4.2) $a_{2}(t)=0, \forall t \in U$, and $a_{2}\left(t_{0}\right)=0$.

Then there exists a T-figure α in E_{2} such that following equalities hold:
(2.1) $Z(\alpha)=U$
(2.2) $\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=a_{1}(t), \forall t \in T$
(2.3) $\left[\alpha\left(t_{0}\right) \alpha(t)\right]=a_{2}(t), \forall t \in T$.

Proof. Assume that α is a T-figure in E_{2} such that $Z(\alpha) \neq T$ and $t_{0} \in T \backslash Z(\alpha)$.
(2.1) - (2.3) We choose a T-figure α as follows. Put $\alpha\left(t_{0}\right)=(\sqrt{r}, 0)$. Then we obtain $\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle=r$. This equality implies $Q\left(\alpha\left(t_{0}\right)\right)=\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle=r$. Hence $\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle=a_{1}\left(t_{0}\right)=r$. We choose α on the set U as follows. We put $\alpha(t)=\binom{0}{0} \forall t \in U$. This equality implies $\langle\alpha(t), \alpha(t)\rangle=a(t)=0, \forall t \in U$.

For fixed $t \in T$, we consider $a(t)$ and $\alpha(t)$ as elements of the field \mathbb{C} of complex numbers: $a(t)=a_{1}(t)+i a_{2}(t), \alpha(t)=\alpha_{1}(t)+i \alpha_{2}(t)$. We put $\alpha(t)=\frac{a(t) \alpha\left(t_{0}\right)}{r}, \forall t \in$ $T \backslash\left(U \cup\left\{t_{0}\right\}\right)$. Since $\alpha\left(t_{0}\right)=\sqrt{r} \neq 0,\left(\alpha\left(t_{0}\right)\right)^{-1}$ exists. Then the equalities $\alpha(t)=\frac{a(t) \alpha\left(t_{0}\right)}{r}, \forall t \in T \backslash\left(U \cup\left\{t_{0}\right\}\right)$, imply equalities $\left(\alpha\left(t_{0}\right)\right)^{-1} \alpha(t)=\frac{a(t)}{r}, \forall t \in$
$T \backslash\left(U \cup\left\{t_{0}\right\}\right)$. By Proposition 9, $\left(\alpha\left(t_{0}\right)\right)^{-1} \alpha(t)=\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}+i \frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}, \forall t \in T$. The equality $Q\left(\alpha\left(t_{0}\right)\right)=\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle=r$, the last two equalities $\left(\alpha\left(t_{0}\right)\right)^{-1} \alpha(t)=$ $\frac{a(t)}{r}, \forall t \in T \backslash\left(U \cup\left\{t_{0}\right\}\right),\left(\alpha\left(t_{0}\right)\right)^{-1} \alpha(t)=\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{Q\left(\alpha\left(t_{0}\right)\right)}+i \frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{Q\left(\alpha\left(t_{0}\right)\right)}, \forall t \in T$, and equalities $\langle\alpha(t), \alpha(t)\rangle=a(t)=0, \forall t \in U$, imply equalities $\frac{\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle}{r}+i \frac{\left[\alpha\left(t_{0}\right) \alpha(t)\right]}{r}=$ $\frac{a(t)}{r}, \forall t \in T$. These equalities imply $Z(\alpha)=U,\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=a_{1}(t), \forall t \in T$, and $\left[\alpha\left(t_{0}\right) \alpha(t)\right]=a_{2}(t), \forall t \in T$. The statements (2.1)-(2.3) are proved.

5. Complete systems of G-invariants of a T-figure in E_{2} for the GROUP $G=O(2, \mathbb{R})$

By Proposition 7, the following equality holds:
$O(2, \mathbb{R})=S O(2, \mathbb{R}) \cup\{H W \mid H \in S O(2, \mathbb{R})\}$, where $H W$ is the multiplication of matrices H and W, where $W=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. For shortness, denote the set $\{H W \mid H \in S O(2, \mathbb{R})\}$ by $S O(2, \mathbb{R}) \cdot W$. We note that $S O(2, \mathbb{R}) \cap S O(2, \mathbb{R}) \cdot W=\emptyset$.

Let α and β be T-figures in E_{2}. Assume that $\alpha \stackrel{O(2, \mathbb{R})}{\sim} \beta$. Then there exists $F \in O(2, \mathbb{R})$ such that $\beta(t)=F \alpha(t), \forall t \in T$. Denote by $E q u(\alpha, \beta)$ the set of all $F \in O(2, \mathbb{R})$ such that $\beta(t)=F \alpha(t), \forall t \in T$.

Proposition 10. Let α and β be T-figures in E_{2} such that $\alpha \stackrel{O(2, \mathbb{R})}{\sim} \beta$. Then there exist only following three possibilities for the set $\operatorname{Equ}(\alpha, \beta)$:
$(I) E q u(\alpha, \beta)=\{F\}$, where $F \in S O(2, \mathbb{R})$.
(II) $\operatorname{Equ}(\alpha, \beta)=\{F\}$, where $F \in S O(2, \mathbb{R}) \cdot W$.
(III) Equ $(\alpha, \beta)=\left\{F_{1}, F_{2}\right\}$, where $F_{1} \in S O(2, \mathbb{R}), F_{2} \in S O(2, \mathbb{R}) \cdot W$.

Proof. Assume that $\alpha \stackrel{O(2, \mathbb{R})}{\sim} \beta$. Then there exists $F \in O(2, \mathbb{R})$ such that $F \in$ $E q u(\alpha, \beta)$. Since $F \in O(2, \mathbb{R})$ and $F \in O(2, \mathbb{R})=S O(2, \mathbb{R}) \cup\{H W \mid H \in S O(2, \mathbb{R})\}$, then $F \in S O(2, \mathbb{R})$ or $F \in\{H W \mid H \in S O(2, \mathbb{R})\}$.
(I) Let $F \in \operatorname{Equ}(\alpha, \beta)$, where $F \in S O(2, \mathbb{R})$. By Theorem 4 in this case there exists only one $F \in S O(2, \mathbb{R})$ such that following equalities $\beta(t)=$ $F \alpha(t), \forall t \in T$, hold. Hence, in this case, the set $E q u(\alpha, \beta)$ has a only one element of $S O(2, \mathbb{R})$. Assume that the set $E q u(\alpha, \beta)$ has not elements of $S O(2, \mathbb{R}) \cdot W$. Then, in this case, the set $\operatorname{Equ}(\alpha, \beta)$ has only a single element $F \in O(2, \mathbb{R})$ and it is such that $F \in S O(2, \mathbb{R})$.
(II) Let $F \in E q u(\alpha, \beta)$, where $F \in\{H W \mid H \in S O(2, \mathbb{R})\}$. Then following equality $\beta(t)=F \alpha(t), \forall t \in T$, holds. Since $F \in\{H W \mid H \in S O(2, \mathbb{R})\}$, there exists $H \in S O(2, \mathbb{R})$ such that $F=H W$. Then we have following equality $\beta(t)=H W \alpha(t), \forall t \in T$. By Theorem 4 in this case there exists only one $H \in S O(2, \mathbb{R})$ such that following equalities $\beta(t)=H W \alpha(t), \forall t \in$ T, hold. Hence, in this case, the set $\operatorname{Equ}(\alpha, \beta)$ has only one element of $\{H W \mid H \in S O(2, \mathbb{R})\}$. Assume that the set $E q u(\alpha, \beta)$ has not elements of $S O(2, \mathbb{R})$. Then, in this case, the set $E q u(\alpha, \beta)$ has only one
element of $\{H W \mid H \in S O(2, \mathbb{R})\}$ such that $\operatorname{Equ}(\alpha, \beta)=\{F\}$, where $F \in$ $\{H W \mid H \in S O(2, \mathbb{R})\}$.
(III) Let $\operatorname{Equ}(\alpha, \beta)$ be such that $F_{1} \in E q u(\alpha, \beta)$ and $F_{2} \in E q u(\alpha, \beta)$, where $F_{1} \in S O(2, \mathbb{R})$ and $F_{2} \in\{H W \mid H \in S O(2, \mathbb{R})\}$. Then following equalities hold: $\beta(t)=F_{1} \alpha(t), \forall t \in T$, and $\beta(t)=F_{2} \alpha(t)=H W \alpha(t), \forall t \in T$, where $H \in S O(2, \mathbb{R})$. By Theorem 4, in the case $\beta(t)=F_{1} \alpha(t), \forall t \in$ T, there exists only one $F_{1} \in S O(2, \mathbb{R})$ such that following equalities $\beta(t)=F_{1} \alpha(t), \forall t \in T$, hold. Hence, in this case, the set Equ (α, β) has only one element of $S O(2, \mathbb{R})$. By Theorem 4 in the case $\beta(t)=F_{2} \alpha(t)=$ $H W \alpha(t), \forall t \in T$, where $H \in S O(2, \mathbb{R})$, there exists only one element $F_{2} \in\{H W \mid H \in S O(2, \mathbb{R})\}$ such that following equalities $\beta(t)=F_{2} \alpha(t)=$ $H W \alpha(t), \forall t \in T$ hold, where $H \in S O(2, \mathbb{R})$. Then, in this case, the set $E q u(\alpha, \beta)$ have only two elements: only one element of $S O(2, \mathbb{R})$ and only one element of $S O(2, \mathbb{R}) \cdot W$.

Theorem 6. Let α be a T-figure in E_{2} such that $Z(\alpha) \neq T$ and $t_{0} \in T \backslash Z(\alpha)$.
(i) Suppose that a T-figure β in E_{2} such that the following equalities $\beta(t)=$ $H W \alpha(t), \forall t \in T$, hold for some $H \in S O(2, \mathbb{R})$. Then following equalities hold:

$$
\left\{\begin{array}{c}
Z(\alpha)=Z(\beta) \tag{18}\\
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \backslash Z(\alpha) \\
-\left[\alpha\left(t_{0}\right) \alpha(t)\right]=\left[\beta\left(t_{0}\right) \beta(t)\right], \forall T \backslash Z(\alpha)
\end{array}\right.
$$

(ii) Conversely, assume that a T-figure β in E_{2} such that the equalities (18) hold. Then there exists only one matrix $U \in S O(2, \mathbb{R})$ such that $\beta(t)=$ $U W \alpha(t), \forall t \in T$. In this case, U has the following form

$$
U=\left(\begin{array}{cc}
\frac{\left\langle W \alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} & -\frac{\left[W \alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} \tag{19}\\
\frac{\left[W \alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} & \frac{\left\langle W \alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}
\end{array}\right),
$$

where $\operatorname{det}(U)=\left(\frac{\left\langle W \alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}+\left(\frac{\left[W \alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}=1$.
Proof. Suppose that a T-figure β in E_{2} such that the following equalities $\beta(t)=$ $H W \alpha(t), \forall t \in T$, hold for some $H \in S O(2, \mathbb{R})$. This means T-figures $W \alpha$ and β are $S O(2, \mathbb{R})$-equivalent. Then, by Theorem 4 we obtain following equalities:

$$
\left\{\begin{array}{c}
Z(W \alpha)=Z(\beta) \tag{20}\\
\left\langle W \alpha\left(t_{0}\right), W \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \backslash Z(\alpha) \\
{\left[W \alpha\left(t_{0}\right) W \alpha(t)\right]=\left[\beta\left(t_{0}\right) \beta(t)\right], \forall t \in T \backslash Z(\alpha)}
\end{array}\right.
$$

These equalities and equalities $Z(W \alpha)=Z(\alpha),\left\langle W \alpha\left(t_{0}\right), W \alpha(t)\right\rangle=\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle$, $\left[W \alpha\left(t_{0}\right) W \alpha(t)\right]=-\left[\alpha\left(t_{0}\right) \alpha(t)\right]$ imply equalities (18).

Conversely, assume that a T-figure β in E_{2} such that the equalities (18) hold. Then equalities (18) and equalities $Z(W \alpha)=Z(\alpha),\left\langle W \alpha\left(t_{0}\right), W \alpha(t)\right\rangle=\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle$,
$\left[W \alpha\left(t_{0}\right) W \alpha(t)\right]=-\left[\alpha\left(t_{0}\right) \alpha(t)\right]$ imply equalities 20). By Theorem 4 , equalities 20) and Proposition 10 imply an existence of only one $U \in S O(2, \mathbb{R})$ such that following equalities $\beta(t)=U W \alpha(t), \forall t \in T$, hold. By Theorem 4 the matrix U has the form (19).

Remark 2. Assume that T be a set such that it has at least two elements. By Theorem 6, the system $\left\{Z(\alpha),\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle,\left[W \alpha\left(t_{0}\right) W \alpha(t)\right]\right\}$ is a complete system of $S O(2, \mathbb{R})$-invariant functions on the set of all T-figures $W \alpha$ such that $Z(\alpha) \neq T$, and $t_{0} \in T \backslash Z(\alpha)$. Complete system of relations between elements of this system follows easy from Theorem 5.

Theorem 7. Let α and β be T-figures in E_{2}. Assume that $Z(\alpha) \neq T$ and $t_{0} \in$ $T \backslash Z(\alpha)$.
(i) Suppose that matrices $H_{1}, H_{2} \in S O(2, \mathbb{R})$ exist such that $\beta(t)=H_{1} \alpha(t), \forall t \in$ T, and $\beta(t)=H_{2} W \alpha(t), \forall t \in T$. Then following equalities hold:

$$
\left\{\begin{array}{c}
Z(\alpha)=Z(\beta) \tag{21}\\
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle \\
\operatorname{rank}(\alpha)=\operatorname{rank}(\beta)=1
\end{array}\right.
$$

for all $t \in T \backslash Z(\alpha(t))$.
(ii) Conversely, assume that the equalities (21) hold. Then only two matrices $H_{1} \in S O(2, \mathbb{R})$ and $H_{2} \in S O(2, \mathbb{R})$ exist such that following equalities $\beta(t)=H_{1} \alpha(t), \forall t \in T, \beta(t)=H_{2} W \alpha(t), \forall t \in T$, hold. Here the matrix H_{1} has the following form:

$$
H_{1}=\left(\begin{array}{cc}
\frac{\left\langle\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} & -\frac{\left[\alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} \tag{22}\\
\frac{\left.\mid \alpha\left(t_{0}\right) \beta \beta\left(t_{0}\right)\right]}{\left.\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle\right\rangle} & \frac{\left\langle\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}
\end{array}\right),
$$

where $\operatorname{det}\left(H_{1}\right)=\left(\frac{\left\langle\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}+\left(\frac{\left[\alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}=1$.
Here the matrix $H_{2} \in S O(2, \mathbb{R})$ has the following form

$$
\begin{align*}
& H_{2}=\left(\begin{array}{cc}
\frac{\left\langle W \alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} & -\frac{\left[W \alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} \\
\frac{\left[W \alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle} & \frac{\left\langle W \alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}
\end{array}\right), \tag{23}\\
& \text { where } \operatorname{det}\left(H_{2}\right)=\left(\frac{W\left\langle\alpha\left(t_{0}\right), \beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}+\left(\frac{\left[W \alpha\left(t_{0}\right) \beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{0}\right), \alpha\left(t_{0}\right)\right\rangle}\right)^{2}=1 \text {. }
\end{align*}
$$

Proof. (i) Suppose that there exist $H_{1} \in S O(2, \mathbb{R})$ such that $\beta(t)=H_{1} \alpha(t), \forall t \in T$. Then, by Theorem 4 the following equalities hold:

$$
\left\{\begin{array}{c}
Z(\alpha)=Z(\beta) \tag{24}\\
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \backslash Z(\alpha) \\
{\left[\alpha\left(t_{0}\right) \alpha(t)\right]=\left[\beta\left(t_{0}\right) \beta(t)\right], \forall T \backslash Z(\alpha) .}
\end{array}\right.
$$

Suppose that there exist $H_{2} \in S O(2, \mathbb{R})$ such that $\beta(t)=H_{2} W \alpha(t), \forall t \in T$. Then, by Theorem 6, the following equalities hold:

$$
\left\{\begin{array}{c}
Z(\alpha)=Z(\beta) \tag{25}\\
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \backslash Z(\alpha) \\
{\left[\alpha\left(t_{0}\right) \alpha(t)\right]=-\left[\beta\left(t_{0}\right) \beta(t)\right], \forall T \backslash Z(\alpha)}
\end{array}\right.
$$

Equalities 24) and 25imply the following equalities:

$$
\left\{\begin{array}{c}
Z(\alpha)=Z(\beta) \tag{26}\\
\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle= \\
\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in T \backslash Z(\alpha)
\end{array}\right.
$$

Equalities (24) implies the following equalities:

$$
\begin{equation*}
\left[\alpha\left(t_{0}\right) \alpha(t)\right]=\left[\beta\left(t_{0}\right) \beta(t)\right], \forall T \backslash Z(\alpha) \tag{27}
\end{equation*}
$$

Equalities (25) implies the following equalities:

$$
\begin{equation*}
\left[\alpha\left(t_{0}\right) \alpha(t)\right]=-\left[\beta\left(t_{0}\right) \beta(t)\right], \forall T \backslash Z(\alpha) \tag{28}
\end{equation*}
$$

Equalities (27) and 28) imply following equalities:

$$
\begin{equation*}
\left[\beta\left(t_{0}\right) \beta(t)\right]=-\left[\beta\left(t_{0}\right) \beta(t)\right], \forall T \backslash Z(\alpha) \tag{29}
\end{equation*}
$$

These equalities imply following equalities:

$$
\begin{equation*}
\left[\beta\left(t_{0}\right) \beta(t)\right]=0, \forall T \backslash Z(\alpha) \tag{30}
\end{equation*}
$$

These equalities and the equalities (27) imply following equalities

$$
\begin{equation*}
\left[\alpha\left(t_{0}\right) \alpha(t)\right]=0, \forall T \backslash Z(\alpha) \tag{31}
\end{equation*}
$$

The equalities (31) imply that there exists a real function $a(t)$ on T such that $a(t)=0, \forall t \in Z(\alpha), a(t) \neq 0, \forall T \backslash Z(\alpha)$ and equalities $\alpha(t)=a(t) \alpha\left(t_{0}\right), \forall t \in T$ hold.

Similarly, equalities (30) imply that there exists a real function $b(t)$ on T such that $b(t)=0, \forall t \in Z(\alpha), b(t) \neq 0, \forall T \backslash Z(\alpha)$ and equalities $\beta(t)=b(t) \beta\left(t_{0}\right), \forall t \in T$ hold.

The above equalities $\alpha(t)=a(t) \alpha\left(t_{0}\right), \forall t \in T$ and $\beta(t)=b(t) \beta\left(t_{0}\right), \forall t \in T$ imply the equality $\operatorname{rank}(\alpha)=\operatorname{rank}(\beta)=1$ in the equalities (21). This equality and the equalities 24 imply the equalities (21).

Conversely, assume that the equalities (21) hold. Then the equality $\operatorname{rank}(\alpha)=1$ in (21) implies an existence of a real function $a(t)$ on T such that $a(t)=0, \forall t \in$ $Z(\alpha), a(t) \neq 0, \forall T \backslash Z(\alpha)$ and $\alpha(t)=a(t) \alpha\left(t_{0}\right), \forall t \in T$.

Similarly, the equality $\operatorname{rank}(\beta)=1$ in (21) implies an existence of a real function $b(t)$ on T such that $b(t)=0, \forall t \in Z(\alpha), b(t) \neq 0, \forall T \backslash Z(\alpha)$, and $\beta(t)=$ $b(t) \beta\left(t_{0}\right), \forall t \in T$. The equalities $Z(\alpha)=Z(\beta)$, and $\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle=\left\langle\beta\left(t_{0}\right), \beta(t)\right\rangle, \forall t \in$ $T \backslash Z(\alpha)$, imply following equality $a(t)=b(t), \forall t \in T$. Hence we obtain following equalities $\alpha(t)=a(t) \alpha\left(t_{0}\right), \forall t \in T$, and $\beta(t)=a(t) \beta\left(t_{0}\right), \forall t \in T$.

Since $t_{0} \in T \backslash Z(\alpha)$, we have $a\left(t_{0}\right) \neq 0$. By the equality $Z(\alpha)=Z(\beta)$, we obtain $\beta\left(t_{0}\right) \neq 0$. By 16, Theorem 5.1], only two matrices $H_{1} \in S O(2, \mathbb{R})$ and
$H_{2} \in S O(2, \mathbb{R})$ exist such that $\beta\left(t_{0}\right)=H_{1} \alpha\left(t_{0}\right)$ and $\beta\left(t_{0}\right)=H_{2} W \alpha\left(t_{0}\right)$. By 16 , Theorem 5.1.], H_{1} has the form (23) and H_{2} has the form (24).

The above equalities $\beta(t)=a(t) \beta\left(t_{0}\right), \forall t \in T, \beta\left(t_{0}\right)=H_{1} \alpha\left(t_{0}\right), \beta\left(t_{0}\right)=H_{2} W \alpha\left(t_{0}\right)$ imply following equalities: $\beta(t)=H_{1} \alpha(t), \forall t \in T$, and $\beta(t)=H_{2} W \alpha(t), \forall t \in T$.

Remark 3. Assume that T be a set such that it has at least two elements. By Theorem 7 , the system $\left\{Z(\alpha),\left\langle\alpha\left(t_{0}\right), \alpha(t)\right\rangle, \operatorname{rank}(\alpha)\right\}$ is a complete system of $S O(2, \mathbb{R})$ invariant functions on the set of all T-figures α such that $Z(\alpha) \neq T$, $\operatorname{rank}(\alpha)=1$ and $t_{0} \in T \backslash Z(\alpha)$. Complete system of relations between elements of this system follows easy from Theorem 5.

Corollary 2. Let α and β be a T-figures in E_{2} such that $Z(\alpha) \neq T$ and $Z(\beta) \neq T$. Assume that there exists a single matrix $F \in O(2, \mathbb{R})$ such that $\beta(t)=F \alpha(t), \forall t \in$ T. Then $\operatorname{rank}(\alpha)=\operatorname{rank}(\beta)=2$.

Conversely, assume that $\alpha \stackrel{O(2, \mathbb{R})}{\sim} \beta$, and $\operatorname{rank}(\alpha)=\operatorname{rank}(\beta)=2$. Then there exists a single matrix $F \in O(2, \mathbb{R})$ such that $\beta(t)=F \alpha(t), \forall t \in T$.

Proof. It follows from Theorems 46 and 7
6. Complete systems of invariants of a T-figure in E_{2} for the group $\operatorname{MSO}(2, \mathbb{R})$

Let $G=O(2, \mathbb{R})$ or $G=S O(2, \mathbb{R})$. Denote by $G \ltimes \operatorname{Tr}(2, \mathbb{R})$ the group of all transformations of E_{2} generated by elements of G and all translations of E_{2}. In particularly, $M O(2, \mathbb{R})=O(2, \mathbb{R}) \ltimes \operatorname{Tr}(2, \mathbb{R})$ and $M S O(2, \mathbb{R})=S O(2, \mathbb{R}) \ltimes \operatorname{Tr}(2, \mathbb{R})$.

Assume that the set T has only one element. Let α and β be T-figures. Then they are $\operatorname{Tr}(2, \mathbb{R})$-equivalent. Hence they are $G \ltimes \operatorname{Tr}(2, \mathbb{R})$-equivalent. Below we assume that T has at last two elements.

Proposition 11. Let $G=O(2, \mathbb{R})$ or $G=S O(2, \mathbb{R})$ and T be a set such that it has at last two elements.
(1) Assume that $\alpha \stackrel{G \ltimes T r(2, \mathbb{R})}{\sim} \beta$, and t_{0} is a fixed element of T. Then $(\alpha(t)-$ $\left.\alpha\left(t_{0}\right)\right) \stackrel{G}{\sim}\left(\beta(t)-\beta\left(t_{0}\right)\right), \forall t \in T$.
(2) Assume that $\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \stackrel{G}{\sim}\left(\beta(t)-\beta\left(t_{0}\right)\right), \forall t \in T$, for some element $t_{0} \in T$. Then $\alpha \stackrel{G \ltimes T r(2, \mathbb{R})}{\sim} \beta$.

Proof. \Rightarrow Assume that $\alpha \stackrel{G \ltimes T r(2, \mathbb{R})}{\sim} \beta$. Then there exists $F \in G$ and $a \in E_{2}$ such that $\beta(t)=F \alpha(t)+a, \forall t \in T$. In particularly, for $t=t_{0}$, we have $\beta\left(t_{0}\right)=$ $F \alpha\left(t_{0}\right)+a$. This equality implies $a=\beta\left(t_{0}\right)-F \alpha\left(t_{0}\right)$. This equality and equalities $\beta(t)=F \alpha(t)+a, \forall t \in T$, imply equalities $\beta(t)=F \alpha(t)+\beta\left(t_{0}\right)-F \alpha\left(t_{0}\right), \forall t \in T$. These equalities imply equalities $\beta(t)-\beta\left(t_{0}\right)=F\left(\alpha(t)-\alpha\left(t_{0}\right)\right), \forall t \in T$, that is $\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \stackrel{G}{\sim}\left(\beta(t)-\beta\left(t_{0}\right)\right), \forall t \in T$.
\Leftarrow Assume that $\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \stackrel{G}{\sim}\left(\beta(t)-\beta\left(t_{0}\right)\right), \forall t \in T$. Then there exists $F \in G$ such that $\beta(t)-\beta\left(t_{0}\right)=F\left(\alpha(t)-\alpha\left(t_{0}\right)\right), \forall t \in T$. Put $a=\beta\left(t_{0}\right)-F \alpha\left(t_{0}\right)$.

This equality implies $\beta\left(t_{0}\right)=F \alpha\left(t_{0}\right)+a$. The equality $a=\beta\left(t_{0}\right)-F \alpha\left(t_{0}\right)$ and equalities $\beta(t)-\beta\left(t_{0}\right)=F\left(\alpha(t)-\alpha\left(t_{0}\right)\right), \forall t \in T, \beta\left(t_{0}\right)=F \alpha\left(t_{0}\right)+a$ imply equalities $\beta(t)=F \alpha(t)+a, \forall t \in T$. Hence $\alpha \stackrel{G \ltimes T r(2, \mathbb{R})}{\sim} \beta$.
Proposition 12. Let $G=S O(2, \mathbb{R})$ or $G=O(2, \mathbb{R})$. Assume that α and β are T figures such that $\alpha \stackrel{G \ltimes T r(2, \mathbb{R})}{\sim} \beta$ and $t_{0} \in T$. Then $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)=Z\left(\beta(t)-\beta\left(t_{0}\right)\right)$.
Proof. This statement follows from Propositions 8 and 11 .
This proposition means that the function $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)$ is a $G \ltimes \operatorname{Tr}(2, \mathbb{R})$ invariant function of a T-figure $\alpha(t)$ for any $t_{0} \in T$.
Proposition 13. Let $G=S O(2, \mathbb{R})$ or $G=O(2, \mathbb{R})$. Assume that $t_{0} \in T$ and $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)=Z\left(\beta(t)-\beta\left(t_{0}\right)=T\right.$. Then $\alpha \stackrel{G \ltimes \operatorname{Tr}(2, \mathbb{R})}{\sim} \beta$.

Proof. In this case, we have $\alpha(t)=\alpha\left(t_{0}\right), \forall t \in T$, and $\beta(t)=\beta\left(t_{0}\right), \forall t \in T$. These equalities imply $\beta(t)=\alpha(t)+\left(\beta\left(t_{0}\right)-\alpha\left(t_{0}\right)\right), \forall t \in T$. Hence T-figures α and β are $G \ltimes \operatorname{Tr}(2, \mathbb{R})$-equivalent.

Theorem 8. Let $t_{0} \in T$, α be a T-figure in E_{2} such that $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \neq T$, and $t_{1} \in T \backslash Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)$ be fixed.
(i) Suppose that a T-figure β in E_{2} such that $\alpha{ }^{M S O(2, \mathbb{R})} \beta$. Then following equalities hold:

$$
\left\{\begin{aligned}
Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) & =Z\left(\beta(t)-\beta\left(t_{0}\right)\right. \\
\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha(t)-\alpha\left(t_{0}\right)\right\rangle & =\left\langle\beta\left(t_{1}\right)-\beta\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right\rangle \\
{\left[\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\left(\alpha(t)-\alpha\left(t_{0}\right)\right)\right] } & =\left[\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\left(\beta(t)-\beta\left(t_{0}\right)\right]\right.
\end{aligned}\right.
$$

for all $t \in T \backslash Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)$.
(ii) Conversely, assume that a T-figure β in E_{2} such that the equalities (32) hold. Then there exists only one element $F \in \operatorname{MSO}(2, \mathbb{R})$ such that $\beta=$ $F \alpha$. The evident form of F as follows $: F \alpha(t)=H \alpha(t)+a, \forall t \in T$, where $H \in S O(2, \mathbb{R}), a \in E_{2}$. Here evident form of H as follows

$$
H=\left(\begin{array}{cc}
\frac{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left.\left.\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right) \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle\right\rangle} & -\frac{\left[\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\right]}{\left.\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right\rangle} \tag{33}\\
\frac{\left.\left.\left[\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right)\left(t_{1}\right)-\beta\left(t_{1}\right)-\beta\left(t_{1}\right)\right)\right]}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle} & \frac{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}
\end{array}\right),
$$

where $\operatorname{det}(H)=\left(\frac{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\right)^{2}+\left(\frac{\left[\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\right]}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\right)^{2}=$ 1. The element a has the following form: $a=\beta\left(t_{0}\right)-H \alpha\left(t_{0}\right)$.

Proof. It follows from Proposition 11 and Theorem 4
Corollary 3. Let α and β be T-figures in E_{2}. Assume that α and $t_{0} \in T$ are such that $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \neq T$. Assume that $F_{1} \in S O(2, \mathbb{R}), a_{1} \in E_{2}, F_{2} \in S O(2, \mathbb{R})$, $a_{2} \in E_{2}$ such that:

1) $\beta(t)=F_{1} \alpha(t)+a_{1}, \forall t \in T$,
2) $\beta(t)=F_{2} \alpha(t)+a_{2}, \forall t \in T$.

Then $F_{1}=F_{2}, a_{1}=a_{2}$.
Proof. It follows easy from Proposition 11 and Theorem 8
Remark 4. Let $t_{0} \in T$. By Theorem [8, the system
$\left\{Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right),\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha(t)-\alpha\left(t_{0}\right)\right\rangle,\left[\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\left(\alpha(t)-\alpha\left(t_{0}\right)\right)\right]\right\}$
is a complete system of $\operatorname{MSO}(2, \mathbb{R})$-invariant functions on the set of all T-figures α in E_{2} such that $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \neq T$, where $t_{1} \in T \backslash Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)$ be fixed. A complete system of relations between elements of this complete system is obtained as in Theorem 5 .

7. Complete systems of invariants of a T-figure in E_{2} for the group $M O(2, \mathbb{R})$

Let α and β be T-figures in E_{2}. Assume that α and $t_{0} \in T$ such that $Z(\alpha(t)-$ $\left.\alpha\left(t_{0}\right)\right) \neq T$. Then, by Proposition $11 \alpha \stackrel{M O(2, \mathbb{R})}{\sim} \beta$ if and only if $\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \stackrel{O(2, \mathbb{R})}{\sim}$ $\left(\beta(t)-\beta\left(t_{0}\right), \forall t \in T\right.$. In this case, by Proposition 10, there exist only three following possibilities for the set $\operatorname{Equ}\left(\alpha(t)-\alpha\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right)$:
(I) $E q u\left(\alpha(t)-\alpha\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right)$ has only one element F, where $F \in S O(2, \mathbb{R})$.
(II) $\operatorname{Equ}\left(\alpha(t)-\alpha\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right)$ has only one element F, where $F \in S O(2, \mathbb{R}) \cdot W$. (III) Equ($\left.\alpha(t)-\alpha\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right)$ has only two elements F_{1} and F_{2}, where $F_{1} \in S O(2, \mathbb{R})$ and $F_{2} \in S O(2, \mathbb{R}) \cdot W$.

A description of the set $\operatorname{Equ}\left(\alpha(t)-\alpha\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right)$ and a complete system of invariants of a T-figure in E_{2} in the case (I) are given in Section 5.

Consider the case (II).
Theorem 9. Let α be a T-figure in E_{2} such that $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \neq T$ for some $t_{0} \in T$ and $t_{1} \in T \backslash Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)$ be fixed.
(i) Suppose that a T-figure β such that the following equalities $\beta(t)=H W \alpha(t)+$ $d, \forall t \in T$, hold for some $H \in S O(2, \mathbb{R})$ and some $d \in E_{2}$. Then following equalities hold:

$$
\begin{align*}
& \left\{\begin{array}{r}
Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)=Z\left(\beta(t)-\beta\left(t_{0}\right)\right) \\
\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha(t)-\alpha\left(t_{0}\right)\right\rangle \\
=\left\langle\beta\left(t_{1}\right)-\beta\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right\rangle \\
-\left[\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right) \alpha(t)-\alpha\left(t_{0}\right)\right]=\left[\beta\left(t_{1}\right)-\beta\left(t_{0}\right) \beta(t)-\beta\left(t_{0}\right)\right] .
\end{array}\right. \tag{34}\\
& \text { for all } t \in T \backslash Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) .
\end{align*}
$$

(ii) Conversely, assume that a T-figure β in E_{2} such that the equalities (34) hold. Then a single matrix $U \in S O(2, \mathbb{R})$ and a single $d \in E_{2}$ exist such that $\beta(t)=U W \alpha(t)+d, \forall t \in T$. In this case, U has following form

$$
U=\left(\begin{array}{cc}
\frac{\left\langle W\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right),\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\right\rangle}{\left\langle\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right),\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right\rangle} & -\frac{\left[W\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\right]}{\left.\left.\left\langle\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right),\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right]\right\rangle} \tag{35}\\
\frac{\left[W\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\right]}{\left.\left\langle\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right),\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right\rangle\right\rangle} & \frac{\left\langle W\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right),\left(\beta\left(t_{1}\right)-\alpha \beta\left(t_{0}\right)\right)\right\rangle}{\left.\left.\left\langle\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right),\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right\rangle\right\rangle}
\end{array}\right),
$$

where
$\operatorname{det}(U)=\left(\frac{\left\langle W\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right),\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\right\rangle}{\left\langle\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right),\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right\rangle}\right)^{2}+\left(\frac{\left[W\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\left(\beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right)\right]}{\left.\left\langle\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right),\left(\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right)\right\rangle\right\rangle}\right)^{2}=$ 1. The element d has following form: $d=\beta\left(t_{0}\right)-U W \alpha\left(t_{0}\right)$.

Proof. It follows easy from Proposition 11 and Theorem 6
Consider the case (III).
Theorem 10. Let α be a T-figure in E_{2} such that $Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) \neq T$ for some $t_{0} \in T$ and $t_{1} \in T \backslash Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)$ be fixed.
(i) Suppose that matrices $F_{1} \in S O(2, \mathbb{R}), F_{2} \in S O(2, \mathbb{R})$ and vectors $d_{1} \in$ $E_{2}, d_{2} \in E_{2}$ exist such that $\beta(t)=F_{1} \alpha(t)+d_{1}, \forall t \in T$, and $\beta(t)=$ $F_{2} W \alpha(t)+d_{2}, \forall t \in T$. Then following equalities hold:

$$
\left\{\begin{align*}
Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right) & =Z\left(\beta(t)-\beta\left(t_{0}\right)\right) \tag{36}\\
\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha(t)-\alpha\left(t_{0}\right)\right\rangle & =\left\langle\beta\left(t_{1}\right)-\beta\left(t_{0}\right), \beta(t)-\beta\left(t_{0}\right)\right\rangle \\
\operatorname{rank}\left(\alpha(t)-\alpha\left(t_{0}\right)\right)= & \operatorname{rank}\left(\beta(t)-\beta\left(t_{0}\right)\right)=1,
\end{align*}\right.
$$

for all $t \in T \backslash Z\left(\alpha(t)-\alpha\left(t_{0}\right)\right)$.
(ii) Conversely, assume that the equalities (36) hold. Then only two matrices $H_{1} \in S O(2, \mathbb{R}), H_{2} \in S O(2, \mathbb{R})$ and only two vectors $d_{1} \in E_{2}, d_{2} \in E_{2}$ exist such that following equalities $\beta(t)=H_{1} \alpha(t)+d_{1}, \forall t \in T, \beta(t)=$ $H_{2} W \alpha(t)+d_{2}, \forall t \in T$, hold. Here the matrix H_{1} has following form:
$H_{1}=\left(\begin{array}{cc}\frac{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left.\left\langle\alpha t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle} & -\frac{\left[\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right) \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right]}{\left.\left\langle\alpha t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle} \\ \frac{\left.\left[\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right) \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle} & \frac{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\end{array}\right)$,
where $\operatorname{det}\left(H_{1}\right)=\left(\frac{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\right)^{2}+\left(\frac{\left[\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right) \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\right)^{2}=$ 1. Vector d_{1} has following form $d_{1}=\beta\left(t_{0}\right)-H_{1} \alpha\left(t_{0}\right)$.

Here the matrix $H_{2} \in S O(2, \mathbb{R})$ has following form
$H_{2}=\left(\begin{array}{cc}\left.\frac{\left\langle W \alpha\left(t_{1}\right)-W \alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\right\rangle & -\frac{\left[W \alpha\left(t_{1}\right)-W \alpha\left(t_{0}\right) \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right]}{\left\langle\alpha t_{1}-\alpha\left(t_{0}\right),,\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle} \\ \frac{\left.\left[W \alpha\left(t_{1}\right)-W\left(t_{0}\right)\right\rangle\left(t_{1}\right)-\beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle} & \frac{\left\langle W \alpha\left(t_{1}\right)-W \alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\end{array}\right)$,
where
$\operatorname{det}\left(H_{2}\right)=\left(\frac{W \alpha\left(t_{1}\right)-W\left\langle\alpha\left(t_{0}\right), \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right\rangle}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\right)^{2}+\left(\frac{\left[W \alpha\left(t_{1}\right)-W \alpha\left(t_{0}\right) \beta\left(t_{1}\right)-\beta\left(t_{0}\right)\right]}{\left\langle\alpha\left(t_{1}\right)-\alpha\left(t_{0}\right), \alpha\left(t_{1}\right)-\alpha\left(t_{0}\right)\right\rangle}\right)^{2}=$ 1. Vector d_{2} has following form $d_{2}=\beta\left(t_{0}\right)-H_{2} W \alpha\left(t_{0}\right)$.

Proof. It follows easy from Proposition 11 and Theorem 7

8. Conclusion

Results and methods of the present paper are useful in the theory of G-invariants of systems of points, curves, vector fields, topological figures and polynomial figures in the two-dimensional Euclidean space E_{2} for groups $G=S O(2, \mathbb{R}), O(2, \mathbb{R})$, $M S O(2, \mathbb{R})$ and $M O(2, \mathbb{R})$. Results and methods of the present paper are also useful in the theory of G-invariants of mechanical figures in the two-dimensional Euclidean space E_{2} for Galilei groups.

Acknowledgement This work is supported by The Ministry of Innovative Development of the Republic of Uzbekistan (MID Uzbekistan) under Grant Number

UT-OT-2020-2 and The Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant Number 119N643.
The authors are very grateful to the reviewers for helpful comments and valuable suggestions.

Author Contribution Statements All authors jointly worked on the results and findings. They both read and approved the final manuscript.

Declaration of Competing Interests The authors declares that they have no competing interests.

References

[1] Aripov, R., Khadjiev, D., The complete system of global differential and integral invariants of a curve in Euclidean geometry, Izvestiya Vuzov, Ser. Mathematics, 542 (2007), 1-14, http://dx.doi.org/10.3103/S1066369X07070018.
[2] Berger, M., Geometry I, Springer-Verlag, Berlin, Heidelberg, 1987.
[3] Dieudonné, J. A., Carrell, J. B., Invariant Theory, Academic Press, New-York, London, 1971.
[4] Greub, W. H., Linear Algebra, Springer-Verlag, New York Inc., 1967.
[5] İncesu, M., Gürsoy, O., LS(2)-equivalence conditions of control points and application to planar Bezier curves, New Trends in Mathematical Sciences, 5(3) (2017), 70 -84., http://dx.doi.org/10.20852/ntmsci.2017.186.
[6] Hőfer, R., m-Point invariants of real geometries, Beitrage Algebra Geom., 40 (1999), 261-266.
[7] Ören, İ., Khadjiev, D., Pekşen, Ö., Identifications of paths and curves under the plane similarity transformations and their applications to mechanics, Journal of Geometry and Physics, 151(2020), 1-17, 103619,https://doi.org/10.1016/j.geomphys.2020.103619.
[8] Khadjiev, D., Application of the Invariant Theory to the Differential Geometry of Curves, Fan Publisher, Tashkent, 1988, [in Russian].
[9] Khadjiev, D., Pekşen, Ö., The complete system of global integral and differential invariants for equi-affine curves, Differential Geometry and its Applications, 20(2004), 167-175, https://doi.org/10.1016/j.difgeo.2003.10.005.
[10] Khadjiev, D., Complete systems of differential invariants of vector fields in a Euclidean space, Turkish Journal of Mathematics, 34(2010), 543-559, https://doi.org/10.3906/mat-0809-10
[11] Khadjiev, D., On invariants of immersions of an n-dimensional manifold in an n-dimensional pseudo-euclidean space, Journal of Nonlinear Mathematical Physics, 17(1) (2010), 49-70, https://doi.org/10.1142/S1402925110000799.
[12] Khadjiev, D., Ören, İ., Pekşen, Ö., Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry, Turkish Journal of Mathematics, 37 (2013), 80-94, https://doi.org/10.3906/mat-1104-41.
[13] Khadjiev, D., Göksal, Y., Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space, Adv. Appl. Clifford Algebras, 26 (2016) 645-668, https://doi.org/10.1007/s00006-015-0627-9
[14] Khadjiev, D., Ören, İ., Pekşen, Ö., Global invariants of paths and curves for the group of all linear similarities in the two-dimensional Euclidean space, International Journal of Geometric Methods in Modern Physics, 15(6) (2018), 1850092, https://doi.org/10.1142/S0219887818500925
[15] Khadjiev, D., Projective invariants of m-tuples in the one-dimensional projective space, Uzbek Mathematical Journal, 1 (2019) 61-73.
[16] Khadjiev, D., Ayupov, Sh., Beshimov, G., Complete systems of invariant of m-tuples for fundamental groups of the two-dimensional Euclidian space, Uzbek Mathematical Journal, 1(2020), 57-84.
[17] Khadjiev, D., Bekbaev, U., Aripov, R., On equivalence of vector-valued maps, arXiv:2005.08707v1 [math GM] 13 May 2020.
[18] Khadjiev, D., Ayupov, Sh., Beshimov, G., Affine invariants of a parametric figure for fundamental groups of n-dimensional affine space, Uzbek Mathematical Journal, 65(4)(2021), 27-47.
[19] Mundy, J. L., Zisserman, A., Forsyth, D. (Eds.), Applications of Invariance in Computer vision, Springer-Verlag, Berlin, Heidelberg, New York, 1994.
[20] Mumford, D., Fogarty, J., Geometric Invariant Theory, Springer-Verlag, Berlin, Heidelberg, 1994.
[21] O'Rourke, J., Computational Geometry in C, Cambridge University Press, 1997.
[22] Ören, İ., Equivalence conditions of two Bézier curves in the Euclidean geometry, Iranian Journal of Science and Technology, Transactions A: Science, 42(3) (2018), 1563-1577., http://dx.doi.org/10.1007/s40995-016-0129-1.
[23] Ören, İ., Invariants of m-vectors in Lorentzian geometry, International Electronic Journal of Geometry, 9(1)(2016), 38-44.
[24] Pekşen, Ö., Khadjiev, D., Invariants of curves in centro-affine geometry, J. Math. Kyoto Univ., 44(3)(2004), 603-613.
[25] Pekşen, Ö., Khadjiev, D., On invariants of null curves in the pseudo-Euclidean geometry, Differential Geometry and its Applications 29 (2011), 183-187, https://doi.org/10.1016/j.difgeo.2011.04.024.
[26] Pekşen, Ö., Khadjiev, D., Ören, İ., Invariant parametrizations and complete systems of global invariants of curves in the pseudo-euclidean geometry, Turkish Journal of Mathematics, 36 (2012), 147-160, http://dx.doi.org/10.3906/mat-0911-145.
[27] Reiss, T. H., Recognizing Planar Objects Using Invariant Image Features, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[28] Sağıroğlu, Y., Khadjiev, D., Gőzűtok, U., Differential invariants of non-degenerate surfaces, Applications and Applied Mathematics, Special issue, 3 (2019), 35-57.
[29] Sibirskii, K. S., Introduction to the Algebraic Invariants of Differential Equations, Manchester University Press, New York, 1988.
[30] Springer, T. A., Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
[31] Weyl, H., The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey, 1946.
http://communications.science.ankara.edu.tr

B-LIFT CURVES AND ITS RULED SURFACES

Anıl ALTINKAYA, ${ }^{1}$ Mustafa ÇALIŞKAN ${ }^{2}$
${ }^{1,2}$ Faculty of Science, Department of Mathematics, Gazi University, Ankara, TÜRKİYE

Abstract

In this paper, we have described the B-Lift curve in Euclidean space as a curve obtained by combining the endpoints of the binormal vector of a unit speed curve. Subsequently, we have explored the Frenet frames of the B-Lift curves. Moreover, we have introduced the tangent, normal and binormal surfaces of the B-Lift curve and examined the geometric invariants of these surfaces. Finally, we have investigated the singularities of these surface and visualized the surfaces with MATLAB program.

1. Introduction

Ruled surfaces have important applications in kinematics, computer science, physics, etc. A ruled surface is defined by a straight line that is moving along a curve [1]. Many mathematicians have studied the ruled surfaces 2-8. E. Ergün and M. Çalışkan 22 created ruled surfaces by accepting the natural lift of a curve as the base curve and they characterized these surfaces. The natural lift curve is described in an example in Thorpe's book. Generally, the natural lift curve is defined as the curve formed by combining the end points of the tangent vectors of the curve 9 .

One of the main purposes of classical differential geometry is to investigate some classes of surfaces such as developable surfaces and minimal surfaces. Ruled surfaces are developable surfaces with zero Gaussian curvature suach that these surfaces are called minimal surfaces 10 . S. Izumiya and N. Takeuchi presented new results for the Gaussian curvature and the main curvature of the ruled surface 3 .

A point is called the singular point of the surface if the tangent vector at any point does not lie in a plane. At the singular point, the surface intersects itself. If

[^12]all points of a curve on a surface are singular, this curve is called a singular curve 1 . Recently, many studies have been done on the singularity of curves 11-16.

In this study, we define a new curve which is called B-Lift curve and we calculate its Frenet vectors. Furthermore, we examine the integral invariants of the tangent, principal normal and binormal surfaces of the B-Lift curve. Also, we study the singular points of the ruled surfaces of the B-Lift curve. Finally, we give examples of these situations and drawn our surfaces.

2. Preliminaries

Let a vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ be given in \mathbb{R}^{3}. The norm of $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is defined by

$$
\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
$$

A vector which its norm is 1 is called a unit vector. For the vectors $\vec{x}=$ $\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ in \mathbb{R}^{3}, the inner product $<,>: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined as

$$
<\vec{x}, \vec{y}>=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

which is called Euclidean inner product. If $\gamma^{\prime}(s) \neq 0, \gamma: \mathrm{I} \rightarrow \mathbb{R}^{3}$ is called regular curve, for all $\mathrm{s} \in \mathrm{I}$. Let $\gamma: \mathrm{I} \rightarrow \mathbb{R}^{3}$ be a curve, if $\left\|\gamma^{\prime}(s)\right\|=1$ then the curve is called unit speed curve 1 .

A curve α is called general helix in \mathbb{R}^{3} if tangent vector of the curve makes a constant angle with a fixed straight line. M. A. Lancret discovered that the ratio of curvatures of the general helix is constant in 180217 .

Let γ be a regular curve in \mathbb{R}^{3}. The set $\{T(s), N(s), B(s)\}$ is called Frenet frame given by tangent, principal normal and binormal vectors, respectively.

$$
\begin{gathered}
T(s)=\gamma^{\prime}(s), \\
N(s)=\frac{\gamma^{\prime \prime}(s)}{\left\|\gamma^{\prime \prime}(s)\right\|}, \\
B(s)=T(s) \times N(s),
\end{gathered}
$$

Here $T(s), N(s)$ and $B(s)$ are the unit tangent, principal normal and binormal vectors of $\gamma(s)$, respectively. Frenet-Serret formulas are following as 10:

$$
\begin{gathered}
T^{\prime}(s)=\kappa(s) N(s) \\
N^{\prime}(s)=-\kappa(s) T(s)+\tau(s) B(s) \\
B^{\prime}(s)=-\tau(s) N(s)
\end{gathered}
$$

When a point moves along a curve with unit speed, the rotation is determined by an angular velocity vector W that is called Darboux vector. The Darboux vector W is presented as $W=\tau T+\kappa B$. Moreover, $\kappa=\|W\| \cos \varphi$ and $\tau=\|W\| \sin \varphi$ are written. Here φ is the angle between Darboux vector and binormal vector of $\gamma(s) 10$.

Let γ be a regular curve and ω be unit direction of a straight line in \mathbb{R}^{3}, then the ruled surface ϕ is the surface formed by the continuous moving of ω based
on the curve γ. The parametric representation of the ruled surface ϕ is given as follows 10:

$$
\phi(s, v)=\gamma(s)+v \omega(s)
$$

For the ruled surface $\phi(\mathrm{s}, \mathrm{v})$, we can write

$$
\phi_{s} \times \phi_{v}=\gamma^{\prime}(s) \times \omega(s)+v \omega^{\prime}(s) \times \omega(s) .
$$

Hence $\left(s_{0}, v_{0}\right)$ is a singular point of $\phi(\mathrm{s}, \mathrm{v})$ if and only if $\gamma^{\prime}\left(s_{0}\right) \times \omega\left(s_{0}\right)+v_{0} \omega^{\prime}\left(s_{0}\right) \times$ $\omega\left(s_{0}\right)=0$. If $\omega^{\prime}(s) \times \omega(s)=0$, the ruled surface $\phi(\mathrm{s}, \mathrm{v})$ is called a cylindrical surface. Therefore, if $\omega^{\prime}(s) \times \omega(s) \neq 0$ the ruled surface $\phi(\mathrm{s}, \mathrm{v})$ is called non-cylindrical surface 10 .

The foot of the common normal between two consecutive generators is called the striction point on a ruled surface. The striction curve formed by the set of striction points is as follows 10:

$$
b(s)=\gamma(s)-\frac{<\gamma^{\prime}(s), \omega^{\prime}(s)>}{<\omega^{\prime}(s), \omega^{\prime}(s)>} \omega(s)
$$

The distribution parameter for a ruled surface is described as follows 10 :

$$
P_{w}=\frac{\operatorname{det}\left(\gamma^{\prime}, \omega, \omega^{\prime}\right)}{\left\|\omega^{\prime}\right\|^{2}}
$$

A ruled surface ϕ is developable if and only if $P_{w}=010$.
Let $\phi(\mathrm{s}, \mathrm{v})$ be a ruled surface. Then the Gaussian curvature of $\phi(\mathrm{s}, \mathrm{v})$ is given by

$$
K(s, v)=-\frac{\left(\operatorname{det}\left(\gamma^{\prime}(s), \omega(s), \omega^{\prime}(s)\right)\right)^{2}}{\left(E G-F^{2}\right)^{2}}
$$

and mean curvature of $\phi(\mathrm{s}, \mathrm{v})$ given by

$$
H(s, v)=\frac{-2<\gamma^{\prime}(s), \omega(s)>\operatorname{det}\left(\gamma^{\prime}(s), \omega(s), \omega^{\prime}(s)\right)+\operatorname{det}\left(\gamma^{\prime \prime}(s)+v \omega^{\prime \prime}(s), \gamma^{\prime}(s)+v \omega^{\prime}(s), \omega(s)\right)}{2\left(E G-F^{2}\right)^{3 / 2}}
$$

where $E=E(s, v)=\left\|\gamma^{\prime}(s)+v \omega^{\prime}(s)\right\|^{2}, F=F(s, v)=<\gamma^{\prime}(s), \omega(s)>$, $G=G(s, v)=13$.

Let γ be a regular curve in \mathbb{R}^{3} and the set $\{T(s), N(s), B(s)\}$ be the Frenet vectors of the curve γ. Then the tangent, principal normal and binormal surfaces of the curve γ are given in the following equalities 3 :

$$
\begin{aligned}
\phi_{T}(s, v) & =\gamma(s)+v T(s) \\
\phi_{N}(s, v) & =\gamma(s)+v N(s) \\
\phi_{B}(s, v) & =\gamma(s)+v B(s) .
\end{aligned}
$$

3. B-Lift Curves and its Ruled Surfaces

Definition 1. Let $\gamma: I \rightarrow M \subset \mathbb{R}^{3}$ be a unit speed curve, then $\gamma_{B}: I \rightarrow T M$ is called the B-Lift curve and ensures the following equation:

$$
\begin{equation*}
\gamma_{B}(s)=(\gamma(s), B(s))=\left.B(s)\right|_{\gamma(s)} . \tag{1}
\end{equation*}
$$

Proposition 1. Assume that γ_{B} is the B-Lift curve of a unit speed curve γ. Thus, the following equations are provided:

$$
\begin{aligned}
T_{B}(s) & =-N(s) \\
N_{B}(s) & =\frac{\kappa(s)}{\|W(s)\|} T(s)-\frac{\tau(s)}{\|W(s)\|} B(s) \\
B_{B}(s) & =\frac{\tau(s)}{\|W(s)\|} T(s)+\frac{\kappa(s)}{\|W(s)\|} B(s)
\end{aligned}
$$

where $\{T(s), N(s), B(s)\}$ and $\left\{T_{B}(s), N_{B}(s), B_{B}(s)\right\}$ are the Frenet vectors of the curve γ and γ_{B}, respectively. (In particular, the torsion will be considered greater than zero.)
(i) Let γ_{B} be B-Lift curve of the regular curve γ. Then the tangent surface of B-Lift curve is given as follows:

$$
\begin{equation*}
\phi_{T_{B}}(s, v)=\gamma_{B}(s)+v T_{B}(s) \tag{2}
\end{equation*}
$$

From (1) and Proposition 1, we have

$$
\begin{equation*}
\phi_{T_{B}}(s, v)=B(s)+v(-N(s)) \tag{3}
\end{equation*}
$$

Now, we investigate the singular point of the ruled surface $\phi_{T_{B}}$

$$
\begin{aligned}
\left(\phi_{T_{B}}\right)_{s} \times\left(\phi_{T_{B}}\right)_{v} & =\left(B^{\prime}(s) \times(-N(s))+v(\kappa(s) T(s)-\tau(s) N(s)) \times-N(s)\right. \\
& =-v \kappa(s) B(s)
\end{aligned}
$$

Since for every $\left(s_{0}, v_{0}\right) \in I \times(\mathbb{R}-\{0\}),\left(\phi_{T_{B}}\right)_{s_{0}} \times\left(\phi_{T_{B}}\right)_{v_{0}}=-v_{0} \kappa\left(s_{0}\right) B\left(s_{0}\right) \neq 0$, the ruled surface $\phi_{T_{B}}$ has no singular point. Since for every $\left(s_{0}, v_{0}\right) \in I \times(\mathbb{R}-\{0\})$, $\omega^{\prime}\left(s_{0}\right) \times \omega\left(s_{0}\right)=\kappa\left(s_{0}\right) B\left(s_{0}\right) \neq 0$, the ruled surface $\phi_{T_{B}}$ is non-cylindrical surface. The distribution parameter of the tangent surface $\phi_{T_{B}}$ is

$$
P_{T_{B}}=\frac{\operatorname{det}\left(B^{\prime},-N,-N^{\prime}\right)}{\left\|-N^{\prime}\right\|^{2}}=0
$$

The striction curve of the ruled surface $\phi_{T_{B}}$ is

$$
\begin{aligned}
b_{T_{B}}(s) & =\gamma_{B}(s)-\frac{<\gamma_{B}^{\prime}(s), T_{B}^{\prime}(s)>}{<T_{B}^{\prime}(s), T_{B}^{\prime}(s)>} T_{B}(s) \\
& =B(s)-\frac{<-\tau N, \kappa T-\tau B>}{<\kappa T-\tau B, \kappa T-\tau B>}(\kappa T-\tau B) \\
& =B(s)
\end{aligned}
$$

The Gaussian curvature of the ruled surface $\phi_{T_{B}}$ is

$$
K_{T_{B}}(s, v)=-\frac{(\operatorname{det}(-\tau N,-N, \kappa T-\tau B))^{2}}{\left(E G-F^{2}\right)^{2}}=0
$$

The mean curvature of the ruled surface $\phi_{T_{B}}$ is

$$
\begin{aligned}
H_{T_{B}}(s, v) & =\frac{\operatorname{det}\left(\kappa \tau T-\tau^{\prime} N-\tau^{2} B+v\left(\kappa^{\prime} T+\left(\kappa^{2}+\tau^{2}\right) N-\tau^{\prime} B,-\tau N+v(\kappa T-\tau B),-N\right)\right.}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& =\frac{v^{2}\left(\frac{\tau}{\kappa}\right)^{\prime} \kappa^{2}}{2\left(E G-F^{2}\right)^{3 / 2}} .
\end{aligned}
$$

Corollary 1. The ruled surface $\phi_{T_{B}}$ is developable.
Corollary 2. Let the curve $\gamma: I \rightarrow \mathbb{R}^{3}$ be a general helix curve. Then the ruled surface $\phi_{T_{B}}$ is a minimal surface.
(ii) Let γ_{B} be B-Lift curve of the regular curve γ. Then the principal normal surface of B-Lift curve is given as

$$
\begin{equation*}
\phi_{N_{B}}(s, v)=\gamma_{B}(s)+v N_{B}(s) . \tag{4}
\end{equation*}
$$

From (1) and Proposition 1, we get

$$
\begin{align*}
\phi_{N_{B}}(s, v) & =B(s)+v\left(\frac{\kappa(s)}{\|W(s)\|} T(s)-\frac{\tau(s)}{\|W(s)\|} B(s)\right) . \tag{5}\\
\left(\phi_{N_{B}}\right)_{s} \times\left(\phi_{N_{B}}\right)_{v} & =\left(-\tau+\frac{\tau^{2}}{\|W\|}, v\left(\frac{\kappa^{\prime} \tau-\kappa \tau^{\prime}}{\|W\|^{2}}\right),-\kappa+\frac{\kappa \tau}{\|W\|}\right) . \tag{6}
\end{align*}
$$

The distribution parameter of the principal normal surface of the curve γ_{B} is

$$
\begin{aligned}
P_{N_{B}} & =\frac{\operatorname{det}\left(B^{\prime}, N_{B}, N_{B}^{\prime}\right)}{\left\|N_{B}^{\prime}\right\|^{2}} \\
& =\frac{\tau\left(-\frac{\kappa \tau^{\prime}}{\|W\|^{2}}+\frac{\kappa^{\prime} \tau}{\|W\|^{2}}\right)}{\left(\frac{\kappa^{\prime}}{\|W\|}\right)^{2}+\left(\frac{\kappa^{2}+\tau^{2}}{\|W\|}\right)^{2}+\left(\frac{\tau^{\prime}}{\|W\|}\right)^{2}}
\end{aligned}
$$

The striction curve of the ruled surface $\phi_{N_{B}}$ is

$$
\begin{aligned}
b_{N_{B}}(s) & =\gamma_{B}(s)-\frac{<\gamma_{B}^{\prime}(s), N_{B}^{\prime}(s)>}{<N_{B}^{\prime}(s), N_{B}^{\prime}(s)>} N_{B}(s) \\
& =B(s)-\frac{<-\tau N, \frac{\kappa^{\prime}}{\|W\|} T+\frac{\kappa^{2}+\tau^{2}}{\|W\|} N-\frac{\tau^{\prime}}{\|W\|} B>}{<\frac{\kappa^{\prime}}{\|W\|} T+\frac{\kappa^{2}+\tau^{2}}{\|W\|} N-\frac{\tau^{\prime}}{\|W\|} B, \frac{\kappa^{\prime}}{\|W\|} T+\frac{\kappa^{2}+\tau^{2}}{\|W\|} N-\frac{\tau^{\prime}}{\|W\|} B>}\left(\frac{\kappa}{\|W\|} T-\frac{\tau}{\|W\|} B\right)
\end{aligned}
$$

The Gaussian curvature of the ruled surface $\phi_{N_{B}}$ is

$$
K_{N_{B}}(s, v)=-\frac{\left(\operatorname{det}\left(\gamma_{B}^{\prime}, N_{B}, N_{B}^{\prime}\right)\right)^{2}}{\left(E G-F^{2}\right)^{2}}
$$

$$
=\frac{\tau\left(-\frac{\kappa \tau^{\prime}}{\|W\|^{2}}+\frac{\kappa^{\prime} \tau}{\|W\|^{2}}\right)}{\left(E G-F^{2}\right)^{2}}
$$

The mean curvature of the ruled surface $\phi_{N_{B}}$ is

$$
\begin{aligned}
H_{N_{B}}(s, v) & =\frac{\operatorname{det}\left(\gamma_{B}^{\prime \prime}+v N_{B}^{\prime \prime}, \gamma_{B}^{\prime}+v N_{B}^{\prime}, N_{B}\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& =\frac{v^{2}\left(\frac{3 \kappa \kappa^{\prime}+3 \tau \tau^{\prime}}{\|W\|^{3}}\right)\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right)+v^{2}\left(\frac{\kappa^{2}+\tau^{2}}{\|W\|^{3}}\right)\left(\kappa \tau^{\prime \prime}-\kappa^{\prime \prime} \tau\right)+v \tau^{\prime}\left(\frac{\kappa \tau^{\prime}-\tau \kappa^{\prime}}{\|W\|^{2}}\right)+v \tau\left(\frac{\kappa^{\prime \prime} \tau-\tau^{\prime \prime} \kappa}{\|W\|^{2}}\right)}{2\left(E G-F^{2}\right)^{3 / 2}}
\end{aligned}
$$

Corollary 3. Assume that $\gamma: I \rightarrow \mathbb{R}^{3}$ is a general helix curve. Hence the ruled surface $\phi_{N_{B}}$ is a developable surface.
Corollary 4. Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a general helix curve. Then the ruled surface $\phi_{N_{B}}$ is a minimal surface.
(iii) Let γ_{B} be B-Lift curve of the regular curve γ. Then the binormal surface of B-Lift curve is given by

$$
\begin{equation*}
\phi_{B_{B}}(s, v)=\gamma_{B}(s)+v B_{B}(s) . \tag{7}
\end{equation*}
$$

From (1) and Proposition 1, we know

$$
\begin{align*}
\phi_{B_{B}}(s, v) & =B(s)+v\left(\frac{\tau(s)}{\|W(s)\|} T(s)+\frac{\kappa(s)}{\|W(s)\|} B(s)\right) . \tag{8}\\
\left(\phi_{B_{B}}\right)_{s} \times\left(\phi_{B_{B}}\right)_{v} & =\left(-\frac{\kappa \tau}{\|W\|}, v\left(\frac{\kappa^{\prime} \tau-\kappa \tau^{\prime}}{\|W\|^{2}}\right), \frac{\tau^{2}}{\|W\|}\right) . \tag{9}
\end{align*}
$$

From (9), the ruled surface $\phi_{B_{B}}$ has no singular point and since $B_{B} \times B_{B}^{\prime} \neq 0, \phi_{B_{B}}$ is non-cylindrical surface.
The distribution parameter of the ruled surface $\phi_{B_{B}}$ is

$$
\begin{aligned}
P_{B_{B}} & =\frac{\operatorname{det}\left(B^{\prime}, B_{B}, B_{B}^{\prime}\right)}{\left\|B_{B}^{\prime}\right\|^{2}} \\
& =\frac{\tau\left(-\frac{\kappa \tau^{\prime}}{\|W\|^{2}}+\frac{\kappa^{\prime} \tau}{\|W\|^{2}}\right)}{\left(\tau^{\prime}\right)^{2}+\left(\kappa^{\prime}\right)^{2}} .
\end{aligned}
$$

The striction curve of the ruled surface $\phi_{B_{B}}$ is

$$
\begin{aligned}
b_{B_{B}}(s) & =\gamma_{B}(s)-\frac{<\gamma_{B}^{\prime}(s), B_{B}^{\prime}(s)>}{<B_{B}^{\prime}(s), B_{B}^{\prime}(s)>} B_{B}(s) \\
& =B(s)
\end{aligned}
$$

The Gaussian curvature of the ruled surface $\phi_{B_{B}}$ is

$$
K_{B_{B}}(s, v)=-\frac{\left(\operatorname{det}\left(\gamma_{B}^{\prime}, B_{B}, B_{B}^{\prime}\right)\right)^{2}}{\left(E G-F^{2}\right)^{2}}
$$

$$
=\frac{\tau\left(-\frac{\kappa \tau^{\prime}}{\|W\|^{2}}+\frac{\kappa^{\prime} \tau}{\|W\|^{2}}\right)}{\left(E G-F^{2}\right)^{2}}
$$

The mean curvature of the ruled surface $\phi_{B_{B}}$ is

$$
\begin{aligned}
H_{B_{B}}(s, v) & =\frac{\operatorname{det}\left(\gamma_{B}^{\prime \prime}+v B_{B}^{\prime \prime}, \gamma_{B}^{\prime}+v B_{B}^{\prime}, B_{B}\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& =\frac{\frac{\tau v}{\|W\|^{2}}\left(-\kappa^{\prime} \tau+\tau^{\prime} \kappa+\kappa^{\prime \prime} \tau-\kappa \tau^{\prime \prime}\right)-\frac{\tau^{2}}{\|W\|^{\prime}}\left(\kappa^{2}+\tau^{2}\right)-\frac{v^{2}}{\|W\|^{3}}\left(\tau^{\prime} \kappa-\kappa^{\prime} \tau\right)^{2}}{2\left(E G-F^{2}\right)^{3 / 2}} .
\end{aligned}
$$

Corollary 5. Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a general helix curve. Then the ruled surface $\phi_{B_{B}}$ is a developable surface.

Example 1. Let us consider the unit speed general helix curve that is given as following equality:

$$
\gamma(s)=\left(\frac{\sqrt{3}}{3} s^{3 / 2}, \frac{\sqrt{3}}{3}(1-s)^{3 / 2}, \frac{s}{2}\right) .
$$

Then the curve γ_{B} is given as follows:

$$
\gamma_{B}(s)=\left(-\frac{1}{2} s^{1 / 2}, \frac{1}{2}(1-s)^{1 / 2}, \frac{\sqrt{3}}{2}\right)
$$

The Frenet vectors of the curve γ_{B} can be calculated by

$$
\begin{aligned}
T_{B}(s) & =\left(-(1-s)^{1 / 2},-s^{1 / 2}, 0\right) \\
N_{B}(s) & =\left(s^{1 / 2},-(1-s)^{1 / 2}, 0\right) \\
B_{B}(s) & =(0,0,1)
\end{aligned}
$$

From (3), (5) and (8), the tangent, normal and binormal surfaces are calculated as follows:

$$
\begin{aligned}
\phi_{T_{B}}(s, v) & =\gamma_{B}(s)+v T_{B}(s) \\
& =\left(-\frac{1}{2} s^{1 / 2}, \frac{1}{2}(1-s)^{1 / 2}, \frac{\sqrt{3}}{2}\right)+v\left(-(1-s)^{1 / 2},-s^{1 / 2}, 0\right) \\
\phi_{N_{B}}(s, v) & =\gamma_{B}(s)+v N_{B}(s) \\
& =\left(-\frac{1}{2} s^{1 / 2}, \frac{1}{2}(1-s)^{1 / 2}, \frac{\sqrt{3}}{2}\right)+v\left(s^{1 / 2},-(1-s)^{1 / 2}, 0\right) \\
\phi_{B_{B}}(s, v) & =\gamma_{B}(s)+v B_{B}(s) \\
& =\left(-\frac{1}{2} s^{1 / 2}, \frac{1}{2}(1-s)^{1 / 2}, \frac{\sqrt{3}}{2}\right)+v(0,0,1) .
\end{aligned}
$$

The distrubition parameters of the ruled surfaces $\phi_{T_{B}}, \phi_{N_{B}}$ and $\phi_{B_{B}}$ are

$$
P_{T_{B}}=\frac{\operatorname{det}\left(B^{\prime}, T_{B}, T_{B}^{\prime}\right)}{\left\|T_{B}^{\prime}\right\|^{2}}=0
$$

FIGURE 1. Illustration of the ruled surfaces $\phi_{T_{B}}, \phi_{N_{B}}$ and $\phi_{B_{B}}$, respectively.

$$
\begin{aligned}
P_{N_{B}} & =\frac{\operatorname{det}\left(B^{\prime}, N_{B}, N_{B}^{\prime}\right)}{\left\|N_{B}^{\prime}\right\|^{2}}=0 \\
P_{B_{B}} & =\frac{\operatorname{det}\left(B^{\prime}, B_{B}, B_{B}^{\prime}\right)}{\left\|B_{B}^{\prime}\right\|^{2}}=0
\end{aligned}
$$

Since $P_{T_{B}}=P_{N_{B}}=P_{B_{B}}=0$, the ruled surfaces $\phi_{T_{B}}, \phi_{N_{B}}$ and $\phi_{B_{B}}$ are developable.
The striction lines of the ruled surfaces $\phi_{T_{B}}, \phi_{N_{B}}$ and $\phi_{B_{B}}$ are given by

$$
\begin{aligned}
b_{T_{B}}(s) & =\gamma_{B}(s)-\frac{<\gamma_{B}^{\prime}(s), T_{B}^{\prime}(s)>}{<T_{B}^{\prime}(s), T_{B}^{\prime}(s)>} T_{B}(s) \\
& =B(s) \\
& =\left(-\frac{1}{2} s^{1 / 2}, \frac{1}{2}(1-s)^{1 / 2}, \frac{\sqrt{3}}{2}\right) \\
b_{N_{B}}(s) & =\gamma_{B}(s)-\frac{<\gamma_{B}^{\prime}(s), N_{B}^{\prime}(s)>}{<N_{B}^{\prime}(s), N_{B}^{\prime}(s)>} N_{B}(s) \\
& =\left(-\frac{1}{2} s^{1 / 2}, \frac{1}{2}(1-s)^{1 / 2}, \frac{\sqrt{3}}{2}\right)+\frac{1}{2}\left(s^{1 / 2},-(1-s)^{1 / 2}, 0\right) \\
& =\left(0,0, \frac{\sqrt{3}}{2}\right) \\
b_{B_{B}}(s) & =\gamma_{B}(s)-\frac{<\gamma_{B}^{\prime}(s), B_{B}^{\prime}(s)>}{<B_{B}^{\prime}(s), B_{B}^{\prime}(s)>} B_{B}(s) \\
& =B(s) \\
& =\left(-\frac{1}{2} s^{1 / 2}, \frac{1}{2}(1-s)^{1 / 2}, \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Gaussian curvatures of the ruled surfaces $\phi_{T_{B}}, \phi_{N_{B}}$ and $\phi_{B_{B}}$ are given as follows:

$$
K_{T_{B}}(s, v)=-\frac{\left(\operatorname{det}\left(\gamma_{B}^{\prime}, T_{B}, T_{B}^{\prime}\right)\right)^{2}}{\left(E G-F^{2}\right)^{2}}
$$

$$
\begin{aligned}
& =0 \\
K_{N_{B}}(s, v) & =-\frac{\left(\operatorname{det}\left(\gamma_{B}^{\prime}, N_{B}, N_{B}^{\prime}\right)\right)^{2}}{\left(E G-F^{2}\right)^{2}} \\
& =0 \\
K_{B_{B}}(s, v) & =-\frac{\left(\operatorname{det}\left(\gamma_{B}^{\prime}, B_{B}, B_{B}^{\prime}\right)\right)^{2}}{\left(E G-F^{2}\right)^{2}} \\
& =0 .
\end{aligned}
$$

Mean curvatures of the ruled surfaces $\phi_{T_{B}}, \phi_{N_{B}}$ and $\phi_{B_{B}}$ are calculated as

$$
\begin{aligned}
H_{T_{B}}(s, v) & =\frac{-2<\gamma^{\prime}(s), T_{B}(s)>\operatorname{det}\left(\gamma^{\prime}(s), T_{B}(s), T_{B}^{\prime}(s)\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& +\frac{\operatorname{det}\left(\gamma^{\prime \prime}(s)+v T_{B}^{\prime \prime}(s), \gamma^{\prime}(s)+v T_{B}^{\prime}(s), T_{B}(s)\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& =0 \\
H_{N_{B}}(s, v) & =\frac{-2<\gamma^{\prime}(s), N_{B}(s)>\operatorname{det}\left(\gamma^{\prime}(s), N_{B}(s), N_{B}^{\prime}(s)\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& +\frac{\operatorname{det}\left(\gamma^{\prime \prime}(s)+v N_{B}^{\prime \prime}(s), \gamma^{\prime}(s)+v N_{B}^{\prime}(s), N_{B}(s)\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& =0 \\
H_{B_{B}}(s, v) & =\frac{-2<\gamma^{\prime}(s), B_{B}(s)>\operatorname{det}\left(\gamma^{\prime}(s), B_{B}(s), B_{B}^{\prime}(s)\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& +\frac{\operatorname{det}\left(\gamma^{\prime \prime}(s)+v B_{B}^{\prime \prime}(s), \gamma^{\prime}(s)+v B_{B}^{\prime}(s), B_{B}(s)\right)}{2\left(E G-F^{2}\right)^{3 / 2}} \\
& =0 .
\end{aligned}
$$

Since $H_{T_{B}}(s, v)=H_{N_{B}}(s, v)=H_{B_{B}}(s, v)=0$, the ruled surfaces $\phi_{T_{B}}, \phi_{N_{B}}$ and $\phi_{B_{B}}$ are minimal surfaces.

4. Conclusion

In this study, based on Thorpe's definition 9, we have introduced the B-lift curve and calculated the Frenet vectors of the B-Lift curves. Furthermore, we have given the tangent, normal, and binormal surfaces of the B-Lift curves and calculated the integral invariants of these surfaces.

Author Contribution Statements The authors jointly worked on the results and they read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest.

Acknowledgements The authors are thankful to the referees for their valuable comments and suggestions.

References

[1] Neill, B. O., Elementary Differential Geometry, Academic Press New York and London, 1966.
[2] Ergün, E., Çalışkan, M., Ruled surface pair generated by a curve and its natural lift in \mathbb{R}^{3}, Pure Mathematical Sciences, 1 (2012), 75-80.
[3] Izumiya, S., Takeuchi, N., Special curves and ruled surfaces, Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry, 44 (1) (2003), 203-212.
[4] Karaca, E., Çalışkan, M., Ruled surfaces and tangent bundle of pseudo-sphere of natural lift curves, Journal of Science and Arts, 52 (3) (2020), 573-586. https://doi.org/10.35378/gujs. 588496
[5] Kim, Y. H., Yoon, D. W., Classification of ruled surfaces in Minkowski 3-Spaces, Journal of Geometry and Physics, 49 (1) (2004), 89-100. https://doi.org/10.1016/S0393-0440(03)000846
[6] Yıldız, Ö. G., Akyiğit, M., Tosun, M., On the trajectory ruled surfaces of framed base curves in the Euclidean Space, Mathematical Methods in the Applied Sciences, 44 (9) (2021), 74637470. https://doi.org/10.1002/mma. 6267
[7] Hathout, F., Bekar, M., Yayl, Y., Ruled surfaces and tangent bundle of unit 2-sphere, International Journal of Geometric Methods in Modern Physics, 14 (10) (2017), 1750145. https://doi.org/10.1142/S0219887817501456
[8] Şentürk, G. Y., Yüce, S., Bertrand offsets of ruled surfaces with Darboux frame, Results in Mathematics, 72 (2017), 1151-1159. https://doi.org/10.1007/s00025-016-0571-6
[9] Thorpe, J. A., Elementary Topics in Differential Geometry, Springer Verlag, New York, Heidelberg-Berlin, 1979.
[10] Carmo, M. D., Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1976.
[11] Izumiya, S., Takeuchi, N., Singularities of ruled surfaces in \mathbb{R}^{3}, Math. Proc. Camb. Phil. Soc., 130 (1) (2001), 1-11. https://doi.org/10.1017/S0305004100004643
[12] Perez-Diaz, S., Blasco, A., On the computation of singularities of parametrized ruled surfaces, Advances in Applied Mathematics, 110 (2019), 270-298. https://doi.org/10.1016/j.aam.2019.07.005
[13] Martins, R., Nuno-Ballesteros, J. J., Finitely determined singularities of ruled surfaces in \mathbb{R}^{3}, Math. Proc. Camb. Phil. Soc., 147 (2009), 701-733. https://doi.org/10.1017/S0305004109002618
[14] Jia, X., Chen, F., Deng, J., Computing self-intersection curves of rational ruled surfaces, Computer Aided Geometric Design, 26 (3) (2009), 287-299. https://doi.org/10.1016/j.cagd.2008.09.005
[15] Alghanemi, A., On geometry of ruled surfaces generated by the spherical indicatrices of a regular space curve II, International Journal of Algebra, 10 (4) (2016), 193-205. https://doi.org/10.12988/ija.2016.6321
[16] Mond, D., Singularities of the tangent developable surface of a space curve, The Quarterly Journal of Mathematics, 40 (1) (1989), 79-91. https://doi.org/10.1093/qmath/40.1.79
[17] Lancret, M. A., Mémoire sur les courbes à double courbure, Mémoires présentés à l'Institut 1, 1806.
http://communications.science.ankara.edu.tr

THE LINEAR ALGEBRA OF A GENERALIZED TRIBONACCI MATRIX

Gonca KIZILASLAN
Department of Mathematics, Faculty of Science and Arts, Kirikkale University, Kirikkale, TÜRKİYE

Abstract

In this paper, we consider a generalization of a regular Tribonacci matrix for two variables and show that it can be factorized by some special matrices. We produce several new interesting identities and find an explicit formula for the inverse and $k-$ th power. We also give a relation between the matrix and a matrix exponential of a special matrix.

1. Introduction

Integer sequences are widely used in many areas such as physics, engineering, arts and nature. There have been several studies in the literature that concern about the second order integer sequences and their generalizations such as Fibonacci, Lucas, Pell and Jacobsthal, see 8, 9, 11-13,17. Horadam interested in the generalized Fibonacci sequence $\left\{W_{n}(a, b ; p, q)\right\}_{n \geq 0}$, where a, b are nonnegative integers and p, q are arbitrary integers, and studied some properties of the sequence, see 11, 12 . Another generalization of the Fibonacci sequence is called as the Tribonacci sequence. The Tribonacci sequence is the most familiar series of numbers obtained by generalizing Fibonacci sequence as orders.

For $n \geq 0$, we use the following definition of the sequence of Tribonacci numbers which is given by third order recurrence relation

$$
t_{n+3}=t_{n+2}+t_{n+1}+t_{n}
$$

with initial conditions

$$
t_{0}=t_{1}=1, \quad t_{2}=2
$$

The first few terms of the Tribonacci numbers are given in Table 1 .

2020 Mathematics Subject Classification. Primary 15A23; Secondary 11B39, 15A16.
Keywords. Tribonacci sequence, factorization of matrices, matrix exponential, matrix inverse.

- goncakizilaslan@gmail.com; ©0000-0003-1816-6095

n	0	1	2	3	4	5	6	7	8	9	10	11	12
t_{n}	1	1	2	4	7	13	24	44	81	149	274	504	927

Table 1. The first few terms of the Tribonacci sequence

The characteristic polynomial $x^{3}-x^{2}-x-1=0$ of the third order Tribonacci recurrence has a unique real root of maximum modulus and this is

$$
\lim _{n \rightarrow \infty} \frac{t_{n+1}}{t_{n}} \approx 1.83929
$$

the Tribonacci constant, see 21. Many researchers studied some properties of the Tribonacci sequence, see $4,-6,10,15,20,22,23,25$.

A matrix T_{n} of order $n+1$ with entries

$$
t_{i, j}= \begin{cases}\frac{2 t_{j}}{t_{i+2}+t_{i}-1}, & \text { if } 0 \leq j \leq i \tag{1}\\ 0, & \text { otherwise }\end{cases}
$$

is defined in 26 and the Tribonacci space sequences $\ell_{p}(T)$ are introduced. For $n=4$, the matrix T_{4} will look as follows

$$
T_{4}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 & 0 \\
\frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 0 \\
\frac{1}{15} & \frac{1}{15} & \frac{2}{15} & \frac{4}{15} & \frac{7}{15}
\end{array}\right]
$$

Definition 1. A square matrix R is regular if and only if R is a stochastic matrix and some power R^{k}, for $k \geq 1$, has all entries nonzero.

Thus from the definition of the regular matrix, we obtain that the matrix defined in (1) is a regular matrix.

Inspiring by this study, we define a two variable generalization of the matrix given in (1) and obtain several interesting new properties. We are also interested in matrix factorization of the defined matrix which is a method of representing a matrix as a product of some matrices. There are various types of matrix factorizations such as singular value decomposition, $L U$ factorization, Cholesky factorization, etc. This method is used to simplify calculations, especially in solving a problem that is difficult to solve in its original form. Several authors are interested in matrix factorizations of some special matrices, see [1, 2, 7, 18, 19, 27.

2. A Generalization of the Regular Tribonacci Matrix

In this section, we give a generalization of the matrix defined in (1). We define a matrix $T_{n}(x, y)=\left[t_{i, j}(x, y)\right]$ of order $n+1$ with entries

$$
t_{i, j}(x, y)= \begin{cases}\frac{2 t_{j}}{t_{i+2}+t_{i}-1} x^{i-j} y^{j}, & \text { if } 0 \leq j \leq i \\ 0, & \text { otherwise }\end{cases}
$$

Thus for $n=4$, the matrix will look as follows

$$
T_{4}(x, y)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 \\
\frac{1}{4} x^{2} & \frac{1}{4} x y & \frac{1}{2} y^{2} & 0 & 0 \\
\frac{1}{8} x^{3} & \frac{1}{8} x^{2} y & \frac{1}{4} x y^{2} & \frac{1}{2} y^{3} & 0 \\
\frac{1}{15} x^{4} & \frac{1}{15} x^{3} y & \frac{2}{15} x^{2} y^{2} & \frac{4}{15} x y^{3} & \frac{7}{15} y^{4}
\end{array}\right]
$$

We will denote the (i, j) entry of this matrix as $\left(T_{n}(x, y)\right)_{i, j}$. It is easy to see that when x or y is zero, $t_{i, j}(x, y)$ will be trivial. Therefore we generally assume that x and y in $T_{n}(x, y)$ are non-zero real numbers. It is clear that for $x=y=1$ we have

$$
t_{i, j}(1,1)=t_{i, j}
$$

and so in this case we obtain the regular Tribonacci matrix (1).
2.1. Multiplication of two Tribonacci matrices. The Tribonacci matrix $T_{n}(x, y)$ has some interesting properties and applications. Thus we give some of these properties now. For $n, j \in \mathbb{N}$, we define

$$
(x \oplus y)_{j}^{n}=\sum_{k=0}^{n} t_{k+j, k+j} x^{n-k} y^{k} .
$$

Theorem 1. For any positive integer n and any real numbers x, y, z and w, we have

$$
\begin{equation*}
\left(T_{n}(x, y) T_{n}(w, z)\right)_{i, j}=\left(T_{n}\left((x \oplus y w)_{j}, y z\right)\right)_{i, j} \tag{2}
\end{equation*}
$$

Proof. From the definition of the matrix $T_{n}(x, y)$ and the rules of the matrix multiplication, the (i, j) entry of $T_{n}(x, y) T_{n}(w, z)$ is 0 for $j>i$. For $j \leq i$ it can be obtained as

$$
\begin{aligned}
\sum_{k=j}^{i} t_{i, k}(x, y) t_{k, j}(w, z) & =\sum_{k=j}^{i} \frac{2 t_{k}}{t_{i+2}+t_{i}-1} x^{i-k} y^{k} \frac{2 t_{j}}{t_{k+2}+t_{k}-1} w^{k-j} z^{j} \\
& =\frac{2 t_{j}}{t_{i+2}+t_{i}-1} \sum_{k=j}^{i} \frac{2 t_{k}}{t_{k+2}+t_{k}-1} x^{i-k} y^{k} w^{k-j} z^{j} \\
& =t_{i, j} \sum_{k=j}^{i} t_{k, k} x^{i-k} y^{k} w^{k-j} z^{j}
\end{aligned}
$$

$$
\begin{aligned}
& =t_{i, j} \sum_{k=0}^{i-j} t_{k+j, k+j} x^{i-j-k} y^{k+j} w^{k} z^{j} \\
& =t_{i, j}(y z)^{j} \sum_{k=0}^{i-j} t_{k+j, k+j} x^{i-j-k}(y w)^{k} \\
& =t_{i, j}(x \oplus y w)_{j}^{i-j}(y z)^{j}
\end{aligned}
$$

This is also the (i, j) entry of $T_{n}\left((x \oplus y w)_{j}, y z\right)$, so equation (2) holds.
For $w=x$ and $z=y$ in (2), we

$$
\left(T_{n}^{2}(x, y)\right)_{i, j}=T_{n}\left(x(1 \oplus y)_{j}, y^{2}\right)_{i, j}
$$

Using formula (2) again, multiplying $T_{n}^{2}(x, y)$ and $T_{n}(x, y)$, we get

$$
\left(T_{n}^{3}(x, y)\right)_{i, j}=T_{n}\left(x\left(1 \oplus y \oplus y^{2}\right)_{j}, y^{3}\right)_{i, j}
$$

Then using the mathematical induction method, the following results can be obtained.

$$
\left(T_{n}^{k}(x, y)\right)_{i, j}=T_{n}\left(x\left(1 \oplus y \oplus \cdots \oplus y^{k-1}\right)_{j}, y^{k}\right)_{i, j}
$$

2.2. The inverse of the matrix $T_{n}(x, y)$. The inverse of the Tribonacci matrix $T_{n}(x, y)$ is given by the following theorem.

Theorem 2. The (i, j)-entry of the inverse of the matrix $T_{n}(x, y)$ is

$$
\left(T_{n}(x, y)^{-1}\right)_{i, j}= \begin{cases}\frac{t_{i+2}+t_{i}-1}{2 t_{i} y^{i}}, & \text { if } i=j \\ -\frac{\left(t_{i+2}+t_{i}-1-2 t_{i}\right) x}{2 t_{i} y^{i}}, & \text { if } i=j+1 \\ 0, & \text { otherwise }\end{cases}
$$

Proof. By straightforward computation of matrix multiplication, we get the desired result.
2.3. The factorization of the Tribonacci matrix. We define the matrices of order $n+1$ with the following entries

$$
\begin{aligned}
\left(S_{n}(x, y)\right)_{i, j} & = \begin{cases}t_{i, j}(x, y) t_{j-1, j-1}^{-1}(x, y)+t_{i, j+1}(x, y) t_{j, j-1}^{-1}(x, y) & i \geq j, \\
0 & i<j,\end{cases} \\
\bar{T}_{n-1}(x, y) & =\left[\begin{array}{cc}
1 & 0 \\
0 & T_{n-1}(x, y)
\end{array}\right], \quad n \geq 1, \\
G_{n} & =S_{n}, \quad G_{k}(x, y)=\left[\begin{array}{cc}
I_{n-k-1} & 0 \\
0 & S_{k}(x, y)
\end{array}\right], \quad 1 \leq k \leq n-1 .
\end{aligned}
$$

Let us consider the product of the matrices $T_{n}(x, y)$ and $\bar{T}_{n-1}^{-1}(x, y)$. Here we represent the (i, j) entry of the matrices $T_{n}^{-1}(x, y)$ and $\bar{T}_{n-1}^{-1}(x, y)$ as $t_{i, j}^{-1}(x, y)$ and
$\bar{t}_{i, j}^{-1}(x, y)$, respectively. From the definitions of the matrices, the (i, j) entry of $T_{n}(x, y) \bar{T}_{n-1}^{-1}(x, y)$ for $i<j$ equals 0 and for $i \geq j$, we have

$$
\begin{equation*}
\sum_{k=j}^{i} t_{i, k}(x, y) \bar{t}_{k, j}^{-1}(x, y)=\sum_{k=j}^{i} t_{i, k}(x, y) t_{k-1, j-1}^{-1}(x, y) \tag{3}
\end{equation*}
$$

Then it can be seen that the term of the sum (3) is nonzero only for $k-1=j-1$ and $k-1=j$, that is, for $k=j$ and $k=j+1$. Thus

$$
\sum_{k=j}^{i} t_{i, k}(x, y) t_{k-1, j-1}^{-1}(x, y)=t_{i, j}(x, y) t_{j-1, j-1}^{-1}(x, y)+t_{i, j+1}(x, y) t_{j, j-1}^{-1}(x, y)
$$

Therefore we obtained the following result.
Lemma 1. For any positive integer n and any real numbers x and y, we have

$$
T_{n}(x, y)=S_{n}(x, y) \bar{T}_{n-1}(x, y)
$$

Example 1.

$$
\begin{aligned}
& S_{5}(x, y) \bar{T}_{4}(x, y) \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 & 0 \\
\frac{1}{4} x^{2} & -\frac{1}{4} x y & y & 0 & 0 & 0 \\
\frac{1}{x} x^{3} & -\frac{1}{8} x^{2} y & 0 & y & 0 & 0 \\
\frac{1}{15} x^{4}-\frac{1}{15} x^{3} y & 0 & \frac{1}{15} x y & \frac{14}{15} y & 0 \\
\frac{1}{28} x^{5}-\frac{1}{28} x^{4} y & 0 & \frac{1}{28} x^{2} y-\frac{3}{98} x y & \frac{195}{196} y
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 \\
0 & \frac{1}{4} x^{2} & \frac{1}{4} x y & \frac{1}{2} y^{2} & 0 & 0 \\
0 & \frac{1}{8} x^{3} & \frac{1}{8} x^{2} y & \frac{1}{4} x y^{2} & \frac{1}{2} y^{3} & 0 \\
0 & \frac{1}{15} x^{4} & \frac{1}{15} x^{3} y & \frac{2}{15} x^{2} y^{2} & \frac{4}{15} x y^{3} & \frac{7}{15} y^{4}
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 & 0 \\
\frac{1}{4} x^{2} & \frac{1}{4} x y & \frac{1}{2} y^{2} & 0 & 0 & 0 \\
\frac{1}{8} x^{3} & \frac{1}{8} x^{2} y & \frac{1}{4} x y^{2} & \frac{1}{2} y^{3} & 0 & 0 \\
\frac{1}{15} x^{4} & \frac{1}{15} x^{3} y & \frac{2}{15} x^{2} y^{2} & \frac{4}{15} x y^{3} & \frac{7}{15} y^{4} & 0 \\
\frac{1}{28} x^{5} & \frac{1}{28} x^{4} y & \frac{1}{14} x^{3} y^{2} & \frac{1}{7} x^{2} y^{3} & \frac{1}{4} x y^{4} & \frac{13}{28} y^{5}
\end{array}\right] \\
& =T_{5}(x, y) .
\end{aligned}
$$

Using Lemma 1 and the definition of the matrices $G_{k}(x, y)$, we present the decomposition of $T_{n}(x, y)$ in the following.

Theorem 3. The matrix $T_{n}(x, y)$ can be factorized as

$$
T_{n}(x, y)=G_{n}(x, y) G_{n-1}(x, y) \cdots G_{1}(x, y)
$$

In particular,

$$
T_{n}=G_{n} G_{n-1} \cdots G_{1},
$$

where $T_{n}:=T_{n}(1,1), G_{k}:=G_{k}(1,1), k=1,2, \ldots, n$.
For the inverse of the matrix $T_{n}(x, y)$, we get

$$
T_{n}^{-1}(x, y)=G_{1}^{-1}(x, y) G_{2}^{-1}(x, y) \cdots G_{n}^{-1}(x, y)
$$

Example 2. Since

$$
T_{5}(x, y)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 & 0 \\
\frac{1}{4} x^{2} & \frac{1}{4} x y & \frac{1}{2} y^{2} & 0 & 0 & 0 \\
\frac{1}{8} x^{3} & \frac{1}{8} x^{2} y & \frac{1}{4} x y^{2} & \frac{1}{2} y^{3} & 0 & 0 \\
\frac{1}{15} x^{4} & \frac{1}{15} x^{3} y & \frac{2}{15} x^{2} y^{2} & \frac{4}{15} x y^{3} & \frac{7}{15} y^{4} & 0 \\
\frac{1}{28} x^{5} & \frac{1}{28} x^{4} y & \frac{1}{14} x^{3} y^{2} & \frac{1}{7} x^{2} y^{3} & \frac{1}{4} x y^{4} & \frac{13}{28} y^{5}
\end{array}\right]
$$

we can factorize this matrix as

$$
G_{5}(x, y) G_{4}(x, y) G_{3}(x, y) G_{2}(x, y) G_{1}(x, y)=
$$

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 & 0 \\
\frac{1}{4} x^{2} & -\frac{1}{4} x y & y & 0 & 0 & 0 \\
\frac{1}{8} x^{3} & -\frac{1}{8} x^{2} y & 0 & y & 0 & 0 \\
\frac{1}{15} x^{4} & -\frac{1}{15} x^{3} y & 0 & \frac{1}{15} x y & \frac{14}{15} y & 0 \\
\frac{1}{28} x^{5} & -\frac{1}{28} x^{4} y & 0 & \frac{1}{28} x^{2} y & -\frac{3}{98} x y & \frac{195}{196} y
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 \\
0 & \frac{1}{4} x^{2} & -\frac{1}{4} x y & y & 0 & 0 \\
0 & \frac{1}{8} x^{3} & -\frac{1}{8} x^{2} y & 0 & y & 0 \\
0 & \frac{1}{15} x^{4} & -\frac{1}{15} x^{3} y & 0 & \frac{1}{15} x y & \frac{14}{15} y
\end{array}\right] \times
$$

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} x & \frac{1}{2} y & 0 & 0 \\
0 & 0 & \frac{1}{4} x^{2} & -\frac{1}{4} x y & y & 0 \\
0 & 0 & \frac{1}{8} x^{3} & -\frac{1}{8} x^{2} y & 0 & y
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} x & \frac{1}{2} y & 0 \\
0 & 0 & 0 & \frac{1}{4} x^{2} & -\frac{1}{4} x y & y
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} x & \frac{1}{2} y
\end{array}\right] .
$$

3. Some Applications of the Matrix $T_{n}(x, y)$

In this section, we give some applications of the defined matrix $T_{n}(x, y)$. Firstly, we present a relation between the matrices $T_{n}(x, a y)$ and $T_{n}(x,-y)$ for a nonzero real number a.

Theorem 4. For a nonzero real number a, the matrices $T_{n}\left(x\right.$, ay) and $T_{n}(x,-y)$ satisfy the following

$$
T_{n}\left(x, \frac{y}{a}\right)^{-1}=T_{n}(x,-y)^{-1} T_{n}(x, a y) T_{n}(x,-y)^{-1}
$$

Proof. The proof can be done easily by definition of the matrices and matrix multiplication.

We give another factorization of the matrices $T_{n}(x, y)$ and $T_{n}(-x, y)$ where the variables x and y are separated from these matrices.
Theorem 5. Let $D_{n}(x):=\operatorname{diag}\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ be a diagonal matrix. For any positive integer k and any non-zero real numbers x and y, we have

$$
\begin{aligned}
T_{k}(x, y) & =D_{k}(x) T_{k}(1,1) D_{k}^{-1}(x / y) \\
T_{k}(-x, y) & =D_{k}(x) T_{k}(-1,1) D_{k}^{-1}(x / y)
\end{aligned}
$$

Remark 1. The entries of the matrix $T_{n}(x, y)$ can be separated by the indices, that is for $i \geq j$

$$
\left(T_{n}(x, y)\right)_{i, j}=\frac{2 t_{j}}{t_{i+2}+t_{i}-1} x^{i-j} y^{j}=\frac{x^{i}}{t_{i+2}+t_{i}-1} 2 t_{j}\left(\frac{y}{x}\right)^{j}=a_{i} b_{j}
$$

where

$$
a_{i}=\frac{x^{i}}{t_{i+2}+t_{i}-1} \text { and } b_{j}=2 t_{j}\left(\frac{y}{x}\right)^{j} .
$$

In [19], the authors give some properties of such matrices. The related results provide the alternative proofs for Theorem 2 and Theorem 5.

Theorem 6. Let $K_{n}(x, y)=\left[k_{i, j}\right]$ be a matrix with entries $k_{i, j}=t_{j} x^{i-j} y^{j}$ and D_{n}^{\prime} be a diagonal matrix with diagonal entries $\left\{1, \frac{1}{2}, \cdots, \frac{2}{t_{i+2}+t_{i}-1}, \cdots, \frac{2}{t_{n+2}+t_{n}-1}\right\}$. Then we have

$$
T_{n}(x, y)=D_{n}^{\prime} K_{n}(x, y)
$$

Proof. Multiplying $T_{n}(x, y)$ from the left with the diagonal matrix with entries $\left\{1,2, \cdots, \frac{t_{i+2}+t_{i}-1}{2}, \cdots, \frac{t_{n+2}+t_{n}-1}{2}\right\}$, we get clearly the matrix $K_{n}(x, y)$. Hence the result follows.

Example 3. For $n=5$, we have

$$
\begin{aligned}
T_{5}(x, y) & =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{2} y & 0 & 0 & 0 & 0 \\
\frac{1}{4} x^{2} & \frac{1}{4} x y & \frac{1}{2} y^{2} & 0 & 0 & 0 \\
\frac{1}{8} x^{3} & \frac{1}{8} x^{2} y & \frac{1}{4} x y^{2} & \frac{1}{2} y^{3} & 0 & 0 \\
\frac{1}{15} x^{4} & \frac{1}{15} x^{3} y & \frac{2}{15} x^{2} y^{2} & \frac{4}{15} x y^{3} & \frac{7}{15} y^{4} & 0 \\
\frac{1}{28} x^{5} & \frac{1}{28} x^{4} y & \frac{1}{14} x^{3} y^{2} & \frac{1}{7} x^{2} y^{3} & \frac{1}{4} x y^{4} & \frac{13}{28} y^{5}
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{8} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{15} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{28}
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
x & y & 0 & 0 & 0 & 0 \\
x^{2} & x y & 2 y^{2} & 0 & 0 & 0 \\
x^{3} & x^{2} y & 2 x y^{2} & 4 y^{3} & 0 & 0 \\
x^{4} & x^{3} y & 2 x^{2} y^{2} & 4 x y^{3} & 7 y^{4} & 0 \\
x^{5} & x^{4} y & 2 x^{3} y^{2} & 4 x^{2} y^{3} & 7 x y^{4} & 13 y^{5}
\end{array}\right] \\
& =D_{5}^{\prime} K_{5}(x, y) .
\end{aligned}
$$

Now, we present a matrix whose Cholesky factorization includes the matrix $T_{n}(1,1)$. First, we need the following result.

Lemma 2 (16). For $n \geq 0$, the Tribonacci numbers t_{n} satisfy

$$
\begin{equation*}
\sum_{k=1}^{n} t_{k}^{2}=\frac{4 t_{n} t_{n+1}-\left(t_{n+1}-t_{n-1}\right)^{2}+1}{4} \tag{4}
\end{equation*}
$$

Theorem 7. A matrix $Q_{n}=\left[c_{i, j}\right]$ with entries

$$
c_{i, j}=\frac{4 t_{k} t_{k+1}-\left(t_{k+1}-t_{k-1}\right)^{2}+1}{\left(t_{i+2}+t_{i}-1\right)\left(t_{j+2}+t_{j}-1\right)}
$$

where $k=\min \{i, j\}$, is a symmetric matrix and its Cholesky factorization is $T_{n}(1,1) T_{n}(1,1)^{T}$.

Proof. Since

$$
c_{i, j}=\frac{4 t_{k} t_{k+1}-\left(t_{k+1}-t_{k-1}\right)^{2}+1}{\left(t_{i+2}+t_{i}-1\right)\left(t_{j+2}+t_{j}-1\right)}=c_{j, i}
$$

Q_{n} is symmetric. Now, we will show that $Q_{n}=T_{n}(1,1) T_{n}(1,1)^{T}$. By matrix multiplication,

$$
\begin{aligned}
T_{n}(1,1) T_{n}(1,1)^{T}=\sum_{k=0}^{n} t_{i, k} t_{j, k} & =\sum_{k=0}^{n} \frac{2 t_{k}}{t_{i+2}+t_{i}-1} \frac{2 t_{k}}{t_{j+2}+t_{j}-1} \\
& =\frac{4}{\left(t_{i+2}+t_{i}-1\right)\left(t_{j+2}+t_{j}-1\right)} \sum_{k=0}^{n} t_{k}^{2}
\end{aligned}
$$

The proof is completed by substituting (4) in the last equation.
In the last part of this section, we will give a relation between the matrix $T_{n}(x, y)$ and the exponential of a special matrix. Matrix exponentials are defined by simply plugging matrices into the usual Maclaurin series for the exponential function. In other words, for any square matrix M, the exponential of M is defined to be the matrix

$$
e^{M}=I+M+\frac{M^{2}}{2!}+\frac{M^{3}}{3!}+\cdots+\frac{M^{k}}{k!}+\cdots
$$

For any square matrix M, we have the following result:
Theorem 8 (3,24).
(i) For any numbers r and s, we have $e^{(r+s) M}=e^{r M} e^{s M}$.
(ii) $\left(e^{M}\right)^{-1}=e^{-M}$.
(iii) By taking the derivative with respect to x of each entry of $e^{M x}$, we get the matrix $\frac{d}{d x} e^{M x}=M e^{M x}$.
Definition 2. The matrix $M_{n}=\left[m_{i, j}\right]$ is defined by

$$
m_{i, j}=\left\{\begin{array}{cl}
\frac{t_{j}}{t_{i}}, & \text { if } i=j+1 \tag{5}\\
0, & \text { otherwise }
\end{array}\right.
$$

We want to obtain a relation between $T_{n}(x, y)$ and $e^{M_{n} x}$, so we prove the following auxiliary result.

Lemma 3. For every nonnegative integer k, the entries of the matrix M_{n}^{k} are given by

$$
\left(M_{n}^{k}\right)_{i, j}= \begin{cases}\frac{t_{j}}{t_{i}}, & \text { if } i=j+k \\ 0, & \text { otherwise }\end{cases}
$$

Proof. The proof will be done by induction on k. The case $k=0$ follows straightforward. Let us assume the inductive hypothesis on $M_{n}^{k+1}=M_{n} M_{n}^{k}$. It is not hard to see for $i \neq j+k+1,\left(M_{n}^{k+1}\right)_{i, j}=0$. For $i=j+k+1$, we have

$$
\left(M_{n}^{k+1}\right)_{i, j}=\frac{t_{i-1}}{t_{i}} \frac{t_{j}}{t_{j+k}}=\frac{t_{j+k}}{t_{j+k+1}} \frac{t_{j}}{t_{j+k}}=\frac{t_{j}}{t_{j+k+1}}
$$

Theorem 9. For $n \in \mathbb{N}$ and $x \in \mathbb{R}$, we have

$$
\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}=(i-j)!\left(e^{M_{n} x}\right)_{i, j}
$$

Proof. Suppose that there is a matrix L_{n} such that $\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}=(i-$ $j)!\left(e^{L_{n} x}\right)_{i, j}$. Then we have

$$
\frac{d}{d x}\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}=L_{n}(i-j)!\left(e^{L_{n} x}\right)_{i, j}=L_{n}\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}
$$

and so

$$
\left.\frac{d}{d x}\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}\right|_{x=0}=L_{n}
$$

Thus there is at most one matrix L_{n} such that $\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}=(i-$ $j)!\left(e^{L_{n} x}\right)_{i, j}$. It can be easily seen that $L=M_{n}$, where M_{n} is the matrix given in Definition 2, by calculating $\left.\frac{d}{d x}\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}\right|_{x=0}$. We conclude that $M_{n}^{k}=0$ for $k \geq n+1$, thus

$$
e^{M_{n} x}=\sum_{k=0}^{n} M_{n}^{k} \frac{x^{k}}{k!}
$$

For $i<j$, we see that $\left(e^{M_{n} x}\right)_{i, j}=0$ and we also have $\left(e^{M_{n} x}\right)_{i, i}=1$. Now, suppose that $i>j$ and let $i=j+k$.

$$
\left(e^{M_{n} x}\right)_{i, j}=\left(M_{n}^{k}\right)_{i, j} \frac{x^{k}}{k!}=\frac{t_{j}}{t_{j+k}} \frac{x^{k}}{k!}=\frac{1}{k!}\left(T_{n}(0,1)^{-1} T_{n}(x, 1)\right)_{i, j}
$$

Hence the proof is completed.

Example 4. We obtain the matrix $\frac{d}{d x} T_{5}(0,1)^{-1} T_{5}(x, 1)$ by taking the derivative of each entry of the matrix $T_{5}(0,1)^{-1} T_{5}(x, 1)$ with respect to x. Thus

$$
\frac{d}{d x} T_{5}(0,1)^{-1} T_{5}(x, 1)=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} x & \frac{1}{4} & 0 & 0 & 0 & 0 \\
\frac{3}{8} x^{2} & \frac{1}{4} x & \frac{1}{4} & 0 & 0 & 0 \\
\frac{4}{5} x^{3} & \frac{1}{5} x^{2} & \frac{4}{15} x & \frac{4}{15} & 0 & 0 \\
\frac{5}{28} x^{4} & \frac{1}{7} x^{3} & \frac{3}{14} x^{2} & \frac{2}{7} x & \frac{1}{4} & 0
\end{array}\right]
$$

Hence we have

$$
M_{5}=\left.T_{5}(0,1)^{-1} \frac{d}{d x} T_{5}(x, 1)\right|_{x=0}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{4}{7} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{7}{13} & 0
\end{array}\right]
$$

and

$$
\begin{aligned}
& M_{5}^{2}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 \times \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} \times \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} \times \frac{4}{7} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{4}{7} \times \frac{7}{13} & 0 & 0
\end{array}\right], \\
& M_{5}^{3}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 \times \frac{1}{2} \times \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} \times \frac{1}{2} \times \frac{4}{7} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} \times \frac{4}{7} \times \frac{7}{13} & 0 & 0 & 0
\end{array}\right], \\
& M_{5}^{4}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 \times \frac{1}{2} \times \frac{1}{2} \times \frac{4}{7} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} \times \frac{1}{2} \times \frac{4}{7} \times \frac{7}{13} & 0 & 0 & 0 & 0
\end{array}\right], \\
& M_{5}^{5}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 \times \frac{1}{2} \times \frac{1}{2} \times \frac{4}{7} \times \frac{7}{13} & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Let M_{n} be the matrix defined in (5) and $U_{n}(x)=e^{M_{n} x}$. At the end of this section, we will find the explicit inverse of the matrix $R_{n}(x)=\left[I_{n}-\lambda U_{n}(x)\right]^{-1}$ for real number λ such that $|\lambda|<1$. To achieve this, we need the following result.

Lemma 4 (14 , Corollary 5.6.16). A matrix A of order n is nonsingular if there is a matrix norm $\|\cdot\|$ such that $\|I-A\|<1$. If this condition is satisfied,

$$
A^{-1}=\sum_{k=0}^{\infty}(I-A)^{k}
$$

Theorem 10. The matrix $R_{n}(x)$ is defined for real number λ such that $|\lambda|<1$. The entries of the matrix are

$$
\left(R_{n}(x)\right)_{i, i}=\frac{1}{1-\lambda}
$$

and

$$
\left(R_{n}(x)\right)_{i, j}=\left(U_{n}(x)\right)_{i, j} \mathfrak{L} i_{j-i}(\lambda)
$$

for $i>j$, where $\mathfrak{L} i_{n}(z)$ is the polylogarithm function

$$
\mathfrak{L} i_{n}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}}
$$

Proof. The statement in Lemma 4 is equivalent to: If $\|\cdot\|$ is a matrix norm and if $\|A\|<1$ for a square matrix of order n, then $I-A$ is invertible and $(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k}$. Then for $|\lambda|<1$, we can write

$$
\left(R_{n}(x)\right)_{i, j}=\sum_{k=0}^{\infty}\left(U_{n}(x)\right)^{k} \lambda^{k}=\sum_{k=0}^{\infty}\left(U_{n}(x k)\right)_{i, j} \lambda^{k}=\left(U_{n}(x)\right)_{i, j} \sum_{k=0}^{\infty} \lambda^{k} k^{i-j}
$$

We obtain the desired result by writing the sum for $i=j$ and $i>j$.

Example 5.

$$
\begin{aligned}
I_{4}-\lambda U_{4}(x)= & I_{4}-\left[\begin{array}{ccccc}
\lambda & 0 & 0 & 0 & 0 \\
x \lambda & \lambda & 0 & 0 & 0 \\
\frac{1}{4} \lambda x^{2} & \frac{1}{2} \lambda x & \lambda & 0 & 0 \\
\frac{1}{24} \lambda x^{3} & \frac{1}{8} \lambda x^{2} & \frac{1}{2} \lambda x & \lambda & 0 \\
\frac{1}{168} \lambda x^{4} & \frac{1}{42} \lambda x^{3} & \frac{1}{7} \lambda x^{2} & \frac{4}{7} \lambda x & \lambda
\end{array}\right] \\
= & {\left[\begin{array}{ccccc}
1-\lambda & 0 & 0 & 0 & 0 \\
-x \lambda & 1-\lambda & 0 & 0 & 0 \\
-\frac{1}{4} \lambda x^{2} & -\frac{1}{2} \lambda x & 1-\lambda & 0 & 0 \\
-\frac{1}{24} \lambda x^{3} & -\frac{1}{8} \lambda x^{2} & -\frac{1}{2} \lambda x & 1-\lambda & 0 \\
-\frac{1}{168} \lambda x^{4} & -\frac{1}{42} \lambda x^{3} & -\frac{1}{7} \lambda x^{2} & -\frac{4}{7} \lambda x & 1-\lambda
\end{array}\right] . }
\end{aligned}
$$

The inverse of this matrix equals

$$
\left[\begin{array}{ccccc}
\frac{1}{1-\lambda} & 0 & 0 & 0 & 0 \\
\frac{\lambda}{(1-\lambda)^{2}} x & \frac{1}{1-\lambda} & 0 & 0 & 0 \\
\frac{1}{4} \frac{\lambda^{2}+\lambda}{(1-\lambda)^{3}} x^{2} & \frac{1}{2} \frac{\lambda}{(1-\lambda)^{2}} x & \frac{1}{1-\lambda} & 0 & 0 \\
\frac{1}{24} \frac{\lambda^{3}+4 \lambda^{2}+\lambda}{(1-\lambda)^{4}} x^{3} & \frac{1}{8} \frac{\lambda^{2}+\lambda}{(1-\lambda)^{3}} x^{2} & \frac{1}{2} \frac{\lambda}{(1-\lambda)^{2}} x & \frac{1}{1-\lambda} & 0 \\
\frac{1}{168} \frac{\lambda^{4}+11 \lambda^{3}+11 \lambda^{2}+\lambda}{(1-\lambda)^{5}} x^{4} & \frac{1}{42} \frac{\lambda^{3}+4 \lambda^{2}+\lambda}{(1-\lambda)^{4}} x^{3} & \frac{1}{7} \frac{\lambda^{2}+\lambda}{(1-\lambda)^{3}} x^{2} & \frac{4}{7} \frac{\lambda}{(1-\lambda)^{2}} x & \frac{1}{1-\lambda}
\end{array}\right]
$$

Declaration of Competing Interests The author declares no competing interests.

Acknowledgements The author thanks the anonymous referees for their helpful remarks, which have improved the final version of the paper.

References

[1] Bayat, M., Teimoori, H., The linear algebra of the generalized Pascal functional matrix, Linear Algebra Appl., 295 (1999), 81-89. https://dx.doi.org/10.1016/S0024-3795(99)00062-2
[2] Bayat, M., Teimoori, H., Pascal k-eliminated functional matrix and its property, Linear Algebra Appl., 308 (1-3) (2000), 65-75. https://dx.doi.org/10.1016/S0024-3795(99)00266-9
[3] Call, G. S., Velleman, D. J., Pascal matrices, Amer. Math. Monthly, 100 (1993), 372-376. https://doi.org/10.1080/00029890.1993.11990415
[4] Catalani, M., Identities for Tribonacci-related sequences, arXiv:math/0209179 [math.CO]. https://doi.org/10.48550/arXiv.math/0209179
[5] Choi, E., Modular Tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 20 (2013), 207-221. https://dx.doi.org/10.7468/jksmeb.2013.20.3.207
[6] Devbhadra, S. V., Some Tribonacci identities, Math. Today, 27 (2011), 1-9.
[7] Edelman, A., Strang, G., Pascal matrices, Amer. Math. Monthly, 111 (3) (2004), 189-197. https://dx.doi.org/10.1080/00029890.2004.11920065
[8] Falcon, S., Plaza, A., On the Fibonacci k-numbers, Chaos, Solitons \& Fractals, 32 (2007), 1615-1624. https://dx.doi.org/10.1016/j.chaos.2006.09.022
[9] Falcon, S., On the k-Lucas Numbers, International Journal of Contemporary Mathematical Sciences, 6 (21) (2011), 1039-1050.
[10] Feinberg, M., Fibonacci-Tribonacci, Fibonacci Quart., 1 (1963), 71-74.
[11] Horadam, A. F., Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3 (1965), 161-176.
[12] Horadam, A. F., Special properties of the sequence Wn(a, b; p, q), Fibonacci Quart., 5 (5) (1967), 424-434.
[13] Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart., 34 (1) (1996), 40-53.
[14] Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, Second Edition, 2013.
[15] Howard, F. T., A Tribonacci Identity, Fibonacci Quart., 39 (2001), 352-357.
[16] Jakubczyk, Z., Sums of Squares of Tribonacci Numbers, Advanced problems and solutions edited by Florian Luca, The Fibonacci Quarterly, August (2013), 4-5.
[17] Kalman, D., Mena, R., The Fibonacci numbers-exposed, Math. Mag., 76 (3) (2003), 167-181. https://dx.doi.org/10.1080/0025570X.2003.11953176
[18] Kızılateş, C., Terzioğlu, N., On r-min and r-max matrices, Journal of Applied Mathematics and Computing, (2022), 1-30. https://dx.doi.org/10.1007/s12190-022-01717-y
[19] Kilic, E., Arikan, T., Studying new generalizations of Max-Min matrices with a novel approach, Turkish Journal of Mathematics, 43 (4) (2019), 2010-2024.
[20] Pethe, S., Some identities for Tribonacci sequences, Fibonacci Quart., 26 (1988), 144-151.
[21] Piezas, T., A tale of four constants, https://sites.google.com/site/tpiezas/0012.
[22] Scott, A., Delaney, T., Hoggatt J. R., V., The Tribonacci sequence, Fibonacci Quart., 15 (1977), 193-200.
[23] Spickerman, W., Binet's formula for the Tribonacci sequence, Fibonacci Quart., 20 (1982), 118-120.
[24] Williamson, R., Trotter, H., Multivariable Mathematics, second edition, Prentice-Hall, 1979.
[25] Yalavigi, C. C., Properties of Tribonacci numbers, Fibonacci Quart., 10 (3) (1972), 231-246.
[26] Yaying, T., Hazarika, B., On sequence spaces defined by the domain of a regular Tribonacci matrix, Mathematica Slovaca, 70 (3) (2020), 697-706. https://dx.doi.org/10.1515/ms-20170383
[27] Zhang, Z., The linear algebra of the generalized Pascal matrix, Linear Algebra Appl., 250 (1997), 51-60. https://dx.doi.org/10.1016/0024-3795(95)00452-1
http://communications.science.ankara.edu.tr

A-DAVIS-WIELANDT-BEREZIN RADIUS INEQUALITIES

Verda GÜRDAL ${ }^{1}$ and Mualla Birgül HUBAN ${ }^{2}$
${ }^{1}$ Department of Mathematics, Suleyman Demirel University, 32260, Isparta, TÜRKİYE
${ }^{2}$ Isparta University of Applied Sciences, Isparta, TÜRKIYE

Abstract. We consider operator V on the reproducing kernel Hilbert space $\mathcal{H}=\mathcal{H}(\Omega)$ over some set Ω with the reproducing kernel $K_{\mathcal{H}, \lambda}(z)=K(z, \lambda)$ and define A-Davis-Wielandt-Berezin radius $\eta_{A}(V)$ by the formula

$$
\eta_{A}(V):=\sup \left\{\sqrt{\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4}}: \lambda \in \Omega\right\}
$$

and \widetilde{V} is the Berezin symbol of V where any positive operator A-induces a semi-inner product on \mathcal{H} is defined by $\langle x, y\rangle_{A}=\langle A x, y\rangle$ for $x, y \in \mathcal{H}$. We study equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned above. We establish some lower and upper bounds for the A-Davis-WielandtBerezin radius of reproducing kernel Hilbert space operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.

1. Introduction

Many researchers in mathematics and mathematical physics are interested in the Berezin symbol of an operator defined with the aid of a reproducing kernel Hilbert space. In this context, several mathematicians have conducted substantial research on the Berezin radius inequality (see $4,14,16,20,21$). In fact, it is of interest to academics to get refinements and extensions of this disparity. We show various inequalities for the A-Davis-Wielandt-Berezin radius of operators on the reproducing kernel Hilbert space $\mathcal{H}(\Omega)$ over some set Ω in this study. By using A-Berezin transforms, we study some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of some operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.

[^13]We will now outline the preliminary concepts needed to proceed with the findings of this investigation.

Remember that a reproducing kernel Hilbert space (abbreviated RKHS) is the Hilbert space $\mathcal{H}=\mathcal{H}(\Omega)$ of complex-valued functions on some set Ω in which:
(a) the evaluation functionals

$$
\varphi_{\lambda}(f)=f(\lambda), \lambda \in \Omega
$$

are continuous on \mathcal{H};
(b) for every $\lambda \in \Omega$ there exists a function $f_{\lambda} \in \mathcal{H}$ such that $f_{\lambda}(\lambda) \neq 0$.

Then, via the classical Riesz representation theorem, we know if \mathcal{H} is an RKHS on Ω, there is a unique element $K_{\mathcal{H}, \lambda} \in \mathcal{H}$ such that $h(\lambda)=\left\langle h, K_{\mathcal{H}, \lambda}\right\rangle$ for every $\lambda \in \Omega$ and all $h \in \mathcal{H}$. The reproducing kernel at λ is denoted by the element $K_{\mathcal{H}, \lambda}$. Further, we will denote the normalized reproducing kernel at λ as $k_{\mathcal{H}, \lambda}:=\frac{K_{\mathcal{H}, \lambda}}{\left\|K_{\mathcal{H}, \lambda}\right\|}$. Let $\mathcal{L}(\mathcal{H})$ be the Banach algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} including the identity operator $1_{\mathcal{H}}$ in $\mathcal{L}(\mathcal{H})$.

Linear operators induced by functions are frequently encountered in functional analysis; they include Hankel operators, composition operators, and Toeplitz operators. The inducing function is sometimes referred to as the symbol of the resultant operator. In many circumstances, a linear operator on a Hilbert space \mathcal{H} also gives rise to a function on Ω. Hence, we frequently examine operators induced by functions, and we may similarly research functions induced by operators. The Berezin symbol is an outstanding exemplar of an operator-function link. More accurately, for an operator $V \in \mathcal{L}(\mathcal{H})$, the Berezin symbol (transform) of V, denoted by \widetilde{V}, is the complex-valued function on Ω defined by

$$
\tilde{V}(\lambda):=\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle .
$$

For each bounded operator V on \mathcal{H}, the Berezin symbol \widetilde{V} is a bounded realanalytic function on Ω. Features of the operator V, are often seen in the features of the Berezin transform \widetilde{V}. F. Berezin proposed the Berezin transform in 8 and it has proven to be a fundamental tool in operator theory, since many essential features of significant operators are contained in their Berezin transforms.

The Berezin radius (number) of operator V is defined by

$$
\operatorname{ber}(V):=\sup _{\lambda \in \Omega}|\widetilde{V}(\lambda)| .
$$

The Berezin set and the Berezin norm of operator are defined, respectively, by

$$
\operatorname{Ber}(V):=\operatorname{Range}(\widetilde{V}) \text { and }\|V\|_{\text {Ber }}:=\sup _{\lambda \in \Omega}\left\|V k_{\mathcal{H}, \lambda}\right\|
$$

The Berezin transform and Berezin radius have been studied by many mathematicians over the years (see $3,4,14,26$).

Recall that the Berezin range of an operator V is a subset of the numerical range of V,

$$
W(V)=\{\langle V u, u\rangle:\|u\|=1\} .
$$

It is well knowledge that $\operatorname{Ber}(V) \subseteq W(V)$, $\operatorname{ber}(V) \leq w(V)$ (numerical radius) and $\operatorname{ber}(V) \leq\|V\|_{\text {Ber }}$. See $5,9,18,22,24,27$ for further details. Two of these generalizations are the Davis-Wielandt radius $d w(V)$ and Davis-Wielandt shell $D W(V)$ of $V \in \mathcal{L}(\mathcal{H})$ defined by

$$
d w(V):=\sup \left\{\sqrt{|\langle V u, u\rangle|^{2}+\|V u\|^{4}}: u \in \mathcal{H} \text { and }\|u\|=1\right\}
$$

and

$$
D W(V):=\left\{\left(\langle V u, u\rangle,\|V u\|^{2}\right): u \in \mathcal{H} \text { and }\|u\|=1\right\} \subseteq \mathbb{C} \times \mathbb{R}
$$

see $5,10,25,28$.
$\mathcal{N}(V)$, its range by $\mathcal{R}(V)$ and adjoint of V by V^{*} denote the null space of every operator V. If U is a linear subspace of \mathcal{H}, then \bar{U} stands for its closure in the norm topology of \mathcal{H}. An operator $A \in \mathcal{L}(\mathcal{H})$ is called positive, denoted by $A \geq 0$, if $\langle A u, u\rangle \geq 0$ for all $u \in \mathcal{H}$. For $V \in \mathcal{L}(\mathcal{H})$, the absolute value of V, denoted by $|V|$, is defined as $|V|=\left(V^{*} V\right)^{1 / 2}$. Along with the article, A denotes a non-zero positive operator on \mathcal{H}. Notice that any positive operator A induces a semi-inner product on \mathcal{H} defined by

$$
\langle u, v\rangle_{A}:=\langle A u, v\rangle_{\mathcal{H}}, \forall u, v \in \mathcal{H} .
$$

The seminorm induced by $\langle., .\rangle_{A}$ is given by $\|u\|_{A}=\sqrt{\langle u, u\rangle_{A}}=\left\|A^{1 / 2} u\right\|$ for all $u \in \mathcal{H}$.

It can be easily verified that $\|\cdot\|_{A}$ is norm if and only if A is injective and that the seminormed space $\left(\mathcal{H},\|\cdot\|_{A}\right)$ which is complete if and only if $\overline{\mathcal{R}(A)}=\mathcal{R}(A)$.
Definition 1. For $V \in \mathcal{L}(\mathcal{H})$, the A-Berezin set of $\left\langle V k_{\lambda}, k_{\lambda}\right\rangle_{A}$ is defined by

$$
\operatorname{Ber}_{A}(V):=\left\{\left\langle V k_{\lambda}, k_{\lambda}\right\rangle_{A}: \lambda \in \Omega\right\} .
$$

$\operatorname{Ber}_{A}(V)$ is a nonempty subset of \mathbb{C} and it is in general not closed even if \mathcal{H} is finite dimensional are important to be significant.
Definition 2. (i) A-Berezin transform (also called A-Berezin symbol) \tilde{V}^{A} is defined on Ω by

$$
\widetilde{V}^{A}(\lambda):=\left\langle V k_{\lambda}, k_{\lambda}\right\rangle_{A}(\lambda \in \Omega),
$$

(ii) The supremum modulus of $\operatorname{Ber}_{A}(V)$, denoted by $\operatorname{ber}_{A}(V)$, is referred to as the A-Berezin number of V, i.e.,

$$
\operatorname{ber}_{A}(V):=\sup _{\lambda \in \Omega}\left|\left\langle V k_{\lambda}, k_{\lambda}\right\rangle_{A}\right|
$$

(iii) A-Berezin norm of operators $V \in \mathcal{L}(\mathcal{H}(\Omega))$ is defined by

$$
\|V\|_{A-\text { Ber }}:=\sup _{\lambda \in \Omega}\left\|A V k_{\lambda}\right\|_{\mathcal{H}} .
$$

We get the Berezin number if $A=I$. As a result of this new idea, the Berezin number of reproducing kernel Hilbert space operators and the Berezin norm of operators become more generic. See 15,19 for further information on A-Berezin number inequalities.
Definition 3. (12]) Let $V \in \mathcal{L}(\mathcal{H})$. An operator $U \in \mathcal{L}(\mathcal{H})$ is called an A-adjoint of V if for every $\lambda, \mu \in \Omega$, identity $\left\langle V k_{\lambda}, k_{\mu}\right\rangle_{A}=\left\langle k_{\lambda}, U k_{\mu}\right\rangle_{A}$ holds.
Definition 4. Let $V \in \mathcal{L}(\mathcal{H}(\Omega))$. An operator $U \in \mathcal{L}(\mathcal{H}(\Omega))$ is called (A, r) adjoint of V if for every $\lambda, \mu \in \Omega$, the identity $\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}=\left\langle k_{\mathcal{H}, \lambda}, U k_{\mathcal{H}, \lambda}\right\rangle_{A}$ holds.

Following 12, 13, notice that the existence of an A-adjoint of V is identical to the existence of a solution of the equation $A X=V^{*} A$. Thanks to the Douglas theorem, these types of equations can be studied and the readers can consult to Moslehian et al. 23. In summary, Douglas theorem states unequivocally that the operator equation $V X=U$ has a bounded linear solution X if and only if $\mathcal{R}(U) \subseteq \mathcal{R}(V)$. Furthermore, it has just one solution, represented by Q, that satisfies $\mathcal{R}(Q) \subseteq \overline{\mathcal{R}\left(V^{*}\right)}$ among its numerous solutions. This type of Q is known as the reduced solution or Douglas solution of $V X=U . \mathcal{L}_{A}(\mathcal{H})$ denotes the set of all operators in $\mathcal{L}(\mathcal{H})$ that admit A-adjoint. According to the Douglas theorem,

$$
\mathcal{L}_{A}(\mathcal{H})=\left\{V \in \mathcal{L}(\mathcal{H}): \mathcal{R}\left(V^{*} A\right) \subseteq \mathcal{R}(A)\right\}
$$

Moreover, $\mathcal{L}_{A^{1 / 2}}(\mathcal{H})$ denotes the set all operators admitting $A^{1 / 2}$-adjoints. When we use the Douglas theorem, we get

$$
\mathcal{L}_{A^{1 / 2}}(\mathcal{H})=\left\{V \in \mathcal{L}(\mathcal{H}): \exists \lambda>0,\|V u\|_{A} \leq \lambda\|u\|_{A}, \forall u \in \mathcal{H}\right\} .
$$

A-bounded refers to the operator in $\mathcal{L}_{A^{1 / 2}}(\mathcal{H})$.
If $V \in \mathcal{L}_{A}(\mathcal{H})$, then the reduced solution (or Douglas solution) to the equation $A X=V^{*} A$ is a well-known A-adjoint operator of V, which is represented by $V^{*_{A}}$. We observe that

$$
V^{*_{A}}=A^{\dagger} V^{*} A
$$

where A^{\dagger} is the Moore-Penrose inverse of A (see 1,2). It is commonly known that the operator $V^{* A}$ satisfies

$$
A V^{*_{A}}=V^{*} A, \mathcal{R}\left(V^{*_{A}}\right) \subseteq \overline{\mathcal{R}(A)} \text { and } \mathcal{N}\left(V^{*_{A}}\right)=\mathcal{N}\left(V^{*} A\right)
$$

Also, note that if $V \in \mathcal{L}_{A}(\mathcal{H})$, then $V^{*_{A}} \in \mathcal{L}_{A}(\mathcal{H})$ and $\left(V^{*_{A}}\right)^{*_{A}}=P_{A} V P_{A}$, where P_{A} represents the ortogonal projection onto $\overline{\mathcal{R}(A)}$. Furthermore, if $V \in \mathcal{L}_{A}(\mathcal{H})$, then $\left\|V^{*_{A}}\right\|=\|V\|_{A}$. In order to reach more results and proofs related to these classes of operators, the researchers may want to overview [1,2.

If $A V$ is selfadjoint, that is, $A V=V^{*} A$, then an operator $V \in \mathcal{L}(\mathcal{H})$ is called to be A-selfadjoint. Furthermore, an operator V is said to be A-positive if $A V \geq 0$ and we write $V \geq_{A} 0$.

The Hilbert space $\left(\mathcal{R}\left(A^{1 / 2}\right),\langle., .\rangle_{\mathbb{R}\left(A^{1 / 2}\right)}\right)$ shall be designated simply by $\mathbb{R}\left(A^{1 / 2}\right)$ in the sequal.

Feki in $\sqrt{12}$ has found some upper bounds for the A-Davis-Wielandt radius of operators in $\mathcal{L}_{A}(\mathcal{H})$.

Definition 5. For any $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$, we define its A-Davis-Wielandt-Berezin shell and A-Davis-Wielandt-Berezin radius, respectively, by the formulas

$$
\mathbf{H}_{A}(V):=\left\{\left(\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A},\left\|A k_{\mathcal{H}, \lambda}\right\|_{A}^{2}\right), \lambda \in \Omega\right\}
$$

and

$$
\eta_{A}(V):=\sup _{\lambda \in \Omega} \sqrt{\left|\widetilde{V}^{A}(\lambda)\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4}}
$$

It is apparent that $\eta_{A}(V) \leq d w_{A}(V)$. For $V, U \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$ one has
(i) $\eta_{A}(V) \geq 0$ and $\eta_{A}(V)=0$ if and only if $V=0$;
(ii) $\eta_{A}(\alpha V)\left\{\begin{array}{l}\geq|\alpha| \eta_{A}(V) \text { if }|\alpha|>1 \\ =|\alpha| \eta_{A}(V) \text { if }|\alpha|=1 \\ \leq|\alpha| \eta_{A}(V) \text { if }|\alpha|<1 .\end{array}\right.$
(iii) $\eta_{A}(V+U) \leq \sqrt{2\left(\eta_{A}(V)+\eta_{A}(U)+4\left(\eta_{A}(V)+\eta_{A}(U)\right)^{2}\right)}$;
therefore $\eta_{A}(\cdot)$ cannot be a norm on $\mathcal{L}(\mathcal{H}(\Omega))$. The following property of $\eta_{A}(\cdot)$ is immediate:

$$
\begin{equation*}
\max \left\{\operatorname{ber}_{A}(V),\|V\|_{A-\text { ber }}^{2}\right\} \leq \eta_{A}(V) \leq \sqrt{\operatorname{ber}_{A}^{2}(V)+\|V\|_{A-\text { ber }}^{4}}\left(V \in \mathcal{L}_{A, r}(\mathcal{H})\right) \tag{1}
\end{equation*}
$$

Recently, Bhanja et al. in 6 have reached some upper bounds for the A-DavisWielandt radius of operators in $\mathcal{L}_{A}(\mathcal{H}(\Omega))$. The purpose of this article is to find out some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of reproducing kernel Hilbert space operators. For this aim, we employ some well-known inequalities for vectors in inner product spaces (see 6, 7, 11). We also get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.

In particular, for $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$ we prove that

$$
\eta_{A}^{2}(V) \leq \sup _{\theta \in \mathbb{R}} \operatorname{ber}_{A}^{2}\left(e^{i \theta} V+V^{* A} V\right)-2 \widetilde{c}_{A}(V) m_{A-\mathrm{ber}}^{2}(V)
$$

and

$$
\begin{aligned}
\eta_{A}^{2}(V) & \leq \inf _{z \in \mathbb{C}}\left\{\left(2\left\|\operatorname{Re}(z) \operatorname{Re}_{A}(V)+\operatorname{Im}(z) \operatorname{Im}_{A}(V)\right\|_{A-\text { ber }}+\left\|V^{* A} V-2 \operatorname{Re}(\bar{z} V)\right\|_{A-\text { ber }}\right)^{2}\right. \\
& \left.+2\|\operatorname{Re}(\bar{z} V)\|_{A-\text { ber }}-|z|^{2}+\operatorname{ber}_{A}^{2}(V-z I)\right\}
\end{aligned}
$$

2. Prerequisites

In the present section, we need some auxiliary lemmas including Buzano 7 inequality, Dragomir 11 inequality and Bhanja et al. 6 inequality in order to prove our results.

Buzano 7 made an extension of the Cauchy-Schwarz inequality which states that for any $a_{1}, a_{2}, a_{3} \in \mathcal{H}$ with $\left\|a_{3}\right\|=1$

$$
\begin{equation*}
\left|\left\langle a_{1}, a_{3}\right\rangle\left\langle a_{3}, a_{2}\right\rangle\right| \leq \frac{1}{2}\left(\left|\left\langle a_{1}, a_{2}\right\rangle\right|+\left\|a_{1}\right\|\left\|a_{2}\right\|\right) \tag{2}
\end{equation*}
$$

Dragomir 11 proved the following inequalities.
Lemma 1. Let $u_{1}, u_{2} \in \mathcal{H}$ and $z \in \mathbb{C}$. Then the following equality holds:

$$
\left\|u_{1}\right\|^{2}\left\|u_{2}\right\|^{2}-\left|\left\langle u_{1}, u_{2}\right\rangle\right|^{2}=\left\|u_{1}-z u_{2}\right\|^{2}\left\|u_{2}\right\|^{2}-\left|\left\langle u_{1}-z u_{2}, u_{2}\right\rangle\right|^{2}
$$

We need the following lemmas, given in 6.
Lemma 2. Let $u_{1}, u_{2}, e \in \mathcal{H}$ with $\|e\|_{A}=1$. Then

$$
\begin{equation*}
\left|\left\langle u_{1}, e\right\rangle_{A}\left\langle e, u_{2}\right\rangle_{A}\right| \leq \frac{1}{2}\left(\left|\left\langle u_{1}, u_{2}\right\rangle_{A}\right|+\left\|u_{1}\right\|_{A}\left\|u_{2}\right\|_{A}\right) \tag{3}
\end{equation*}
$$

Lemma 3. Let $u_{1}, u_{2}, e \in \mathcal{H}$ with $\|e\|_{A}=1$. Then

$$
\left\|u_{1}\right\|_{A}^{2}\left\|u_{2}\right\|_{A}^{2}-\left|\left\langle u_{1}, u_{2}\right\rangle_{A}\right|^{2} \geq 2\left|\left\langle u_{1}, e\right\rangle_{A}\left\langle e, u_{2}\right\rangle_{A}\right|\left(\left\|u_{1}\right\|_{A}\left\|u_{2}\right\|_{A}-\left|\left\langle u_{1}, u_{2}\right\rangle_{A}\right|\right) .
$$

Lemma 4. Let $u_{1}, u_{2}, e \in \mathcal{H}$ and $z \in \mathbb{C}$. Then we have the following equality:

$$
\left\|u_{1}\right\|_{A}^{2}\left\|u_{2}\right\|_{A}^{2}-\left|\left\langle u_{1}, u_{2}\right\rangle_{A}\right|^{2}=\left\|u_{1}-z u_{2}\right\|_{A}^{2}\left\|u_{2}\right\|_{A}^{2}-\left|\left\langle u_{1}-z u_{2}, u_{2}\right\rangle_{A}\right|^{2}
$$

3. Main Results

We use the lemmas from the preceding section to derive additional inequalities for the A-Davis-Wielandt-Berezin radius of operators on $\mathcal{H}=\mathcal{H}(\Omega)$.

Let $\mathcal{H}=\mathcal{H}(\Omega)$ be a RKHS. The A-Berezin symbol of operator $V \in \mathcal{L}(\mathcal{H}(\Omega))$ is naturally defined the by the formula

$$
\widetilde{V}^{A}(\lambda):=\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}=\left\langle A V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle, \lambda \in \Omega .
$$

Therefore, $\mathcal{L}_{A, r}(\mathcal{H}):=\mathcal{L}_{A, r}(\mathcal{H}(\Omega))$ denotes the set of all operators in $\mathcal{L}(\mathcal{H}(\Omega))$ admitting (A, r)-adjoints.

For $V \in \mathcal{L}_{A, r}(\mathcal{H})$, its Crawford number $c_{A}(V)$ is defined by

$$
c_{A}(V):=\inf \left\{\left|\langle V u, u\rangle_{A}\right|: u \in \mathcal{H},\|u\|_{A}=1\right\}
$$

(see 27). We also introduce the number $\tilde{c}_{A}(V):=\inf _{\lambda \in \Omega}\left|\tilde{V}^{A}(\lambda)\right|$. It is clear that

$$
c_{A}(V) \leq \widetilde{c}_{A}(V) \leq \operatorname{ber}_{A}(V) .
$$

Our first result in this paper reads as follows.

Theorem 1. Let $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$. Then, the following inequalities hold.
(i) $\eta_{A}^{2}(V) \geq \max \left\{\operatorname{ber}_{A}^{2}(V)+\widetilde{c}_{A}^{2}\left(V^{* A} V\right),\|V\|_{A-\text { Ber }}^{4}+\widetilde{c}_{A}^{2}(V)\right\}$,
(ii) $\eta_{A}^{2}(V) \geq 2 \max \left\{\operatorname{ber}_{A}(V) \widetilde{c}_{A}\left(V^{* A} V\right), \widetilde{c}_{A}(V)\|V\|_{A-\text { Ber }}^{2}\right\}$.

Proof. For any $\lambda \in \Omega$, we have

$$
\begin{aligned}
\eta_{A}^{2}(V) & \geq\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
& =\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}^{2} \\
& \geq\left|\widetilde{V}^{A}(\lambda)\right|^{2}+\inf _{\lambda \in \Omega}\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}^{2}
\end{aligned}
$$

hence, taking supremum over $\lambda \in \Omega$ gives

$$
\eta_{A}^{2}(V) \geq \operatorname{ber}_{A}^{2}(V)+\widetilde{c}_{A}^{2}\left(V^{* A} V\right)
$$

Moreover, by taking into consideration $\eta_{A}^{2}(V) \geq\left|\widetilde{V}^{A}(\lambda)\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4}$, we see that

$$
\eta_{A}^{2}(V) \geq \widetilde{c}_{A}^{2}(V)+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4}
$$

Hence, on taking the supremum over $\lambda \in \Omega$, we obtain

$$
\eta_{A}^{2}(V) \geq \tilde{c}_{A}^{2}(V)+\|V\|_{A-\mathrm{Ber}}^{4}
$$

which proves (i).
Let $\lambda \in \Omega$ be arbitrary. It can be observed that

$$
\begin{equation*}
\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \geq 2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{aligned}
\eta_{A}^{2}(V) & \geq 2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& \geq 2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right| \inf _{\lambda \in \Omega}\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& =2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right| \widetilde{c}_{A}\left(V^{* A} V\right) .
\end{aligned}
$$

Taking supremum over all $\lambda \in \Omega$, we thus have

$$
\eta_{A}^{2}(V) \geq 2 \operatorname{ber}_{A}(V) \widetilde{c}_{A}\left(V^{* A} V\right)
$$

From the inequality (4), we get

$$
\eta_{A}^{2}(V) \geq 2 \widetilde{c}_{A}(V)\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}
$$

Taking supremum over all $\lambda \in \Omega$, we thus have

$$
\eta_{A}^{2}(V) \geq 2 \widetilde{c}_{A}(V)\|V\|_{A-\mathrm{Ber}}^{2}
$$

Hence the proof is complete.
Remark 1. It is clear that the lower bound obtained in Theorem 1 (i) is more solid than that in (1). Also, both of inequalities in (17], Th. 1) follow from Theorem 1 by considering $A=I$.

For $A \in \mathcal{L}(\mathcal{H}(\Omega))$, we define

$$
m_{A-\text { ber }}^{2}(V):=\inf _{\lambda \in \Omega}\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}
$$

We get an upper bound for the A-Davis-Wielandt-Berezin radius of bounded linear operators on RKHS in the following result.
Theorem 2. Let $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$. Then

$$
\eta_{A}^{2}(V) \leq \sup _{\theta \in \mathbb{R}} \operatorname{ber}_{A}^{2}\left(e^{i \theta} V+V^{* A} V\right)-2 \widetilde{c}_{A}(V) m_{A-\mathrm{ber}}^{2}(V)
$$

Proof. Let $\lambda \in \Omega$ be arbitrary. Then there exists $\theta \in \mathbb{R}$ such that

$$
\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|=e^{i \theta}\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} .
$$

Now,

$$
\begin{aligned}
&\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
&=\left\langle e^{i \theta} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}^{2}+\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}^{2} \\
&=\left(\left\langle e^{i \theta} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right)^{2} \\
&-2\left\langle e^{i \theta} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& 2\left\langle e^{i \theta} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
& =\left\langle\left(e^{i \theta} V+V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}^{2} \\
& \leq \operatorname{ber}_{A}^{2}\left(e^{i \theta} V+V^{* A} V\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& 2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\left|\left\langle V_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|^{4} \\
& \leq \sup _{\theta \in \mathbb{R}} \operatorname{ber}_{A}^{2}\left(e^{i \theta} V+V^{* A} V\right)
\end{aligned}
$$

and so,

$$
2 \widetilde{c}_{A}(V) m_{A-\text { ber }}^{2}(V)+\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \leq \sup _{\theta \in \mathbb{R}} \operatorname{ber}_{A}^{2}\left(e^{i \theta} V+|V|_{A}^{2}\right) .
$$

Hence, taking supremum over $\lambda \in \Omega$ gives

$$
\eta_{A}^{2}(V) \leq \sup _{\theta \in \mathbb{R}} \operatorname{ber}_{A}^{2}\left(e^{i \theta} V+V^{* A} V\right)-2 \widetilde{c}_{A}(V) m_{A-\text { ber }}^{2}(V)
$$

This completes the proof.
Remark 2. According to the inequality in ([17], Th. 2),

$$
\eta^{2}(V) \leq \sup _{\theta \in \mathbb{R}} \operatorname{ber}^{2}\left(e^{i \theta} V+V^{*} V\right)-2 \widetilde{c}(V) m_{\text {ber }}^{2}(V)
$$

This shows that the inequality in ([17], Th. 2) follows from Theorem 2 by considering $A=I$.

We can now show the following inequality for the A-Davis-Wielandt-Berezin radius of bounded linear operators.
Theorem 3. Let $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$. Then

$$
\begin{aligned}
\frac{1}{2}\left\{\operatorname{ber}_{A}^{2}\left(V+V^{* A} V\right)+\widetilde{c}_{A}^{2}\left(V-V^{* A} V\right)\right\} & \leq \eta_{A}^{2}(V) \\
& \leq \frac{1}{2}\left\{\operatorname{ber}_{A}^{2}\left(V+V^{* A} V\right)+\operatorname{ber}_{A}^{2}\left(V-V^{* A} V\right)\right\}
\end{aligned}
$$

Proof. Let $\lambda \in \Omega$ be arbitrary. Then

$$
\begin{aligned}
& \left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
& =\frac{1}{2}\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\left\langle V k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& +\frac{1}{2}\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-\left\langle V k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& =\frac{1}{2}\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& +\frac{1}{2}\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& =\frac{1}{2}\left|\left\langle\left(V+V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\frac{1}{2}\left|\left\langle\left(V-V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& \geq \frac{1}{2}\left\{\left|\left\langle\left(V+V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\widetilde{c}_{A}^{2}\left(V-V^{* A} V\right)\right\}
\end{aligned}
$$

Therefore, taking supremum over $\lambda \in \Omega$, we get

$$
\eta_{A}^{2}(V) \geq \frac{1}{2}\left\{\operatorname{ber}_{A}^{2}\left(V+V^{* A} V\right)+\widetilde{c}_{A}^{2}\left(V-V^{* A} V\right)\right\}
$$

Similarly,

$$
\begin{aligned}
& \left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
& =\frac{1}{2}\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\left\langle V k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& +\frac{1}{2}\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-\left\langle V k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& =\frac{1}{2}\left|\left\langle\left(V+V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\frac{1}{2}\left|\left\langle\left(V-V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} .
\end{aligned}
$$

Therefore, taking supremum over $\lambda \in \Omega$, we get

$$
\eta_{A}^{2}(V) \leq \frac{1}{2}\left\{\operatorname{ber}_{A}^{2}\left(V+V^{* A} V\right)+\operatorname{ber}_{A}^{2}\left(V-V^{* A} V\right)\right\}
$$

Hence completes the proof.
Now we give upper bounds for the A-Davis-Wielandt-Berezin radius of $V \in$ $\mathcal{L}_{A, r}(\mathcal{H})$.

Theorem 4. Let $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$. Then the inequalities listed below are true.
(i) $\eta_{A}^{2}(V) \leq\left\|V^{* A} V+\left(V^{* A} V\right)^{* A} V^{* A} V\right\|_{A-\mathrm{ber}}$,
(ii) $\eta_{A}^{2}(V) \leq \frac{1}{2}\left(\operatorname{ber}_{A}\left(V^{2}\right)+\|V\|_{A}^{2}\right)+\|V\|_{A-\operatorname{Ber}}^{4}$.

Proof. Let $\lambda \in \Omega$ be arbitrary. Applying (3) for $u_{1}=V k_{\mathcal{H}, \lambda}, e=k_{\mathcal{H}, \lambda}$ and $u_{2}=V k_{\mathcal{H}, \lambda}$, we have that

$$
\begin{aligned}
|\widetilde{V}(\lambda)|_{A}^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} & =\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right| \\
& +\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle k_{\mathcal{H}, \lambda}, V^{* A} V k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& \leq \frac{1}{2}\left(\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}+\left\langle V k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right) \\
& +\frac{1}{2}\left(\left\|V^{* A} V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}+\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, V^{* A} V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right) \\
& =\left\langle\left(V^{* A} V+\left(V^{* A} V\right)^{* A} V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} .
\end{aligned}
$$

taking the supremum over $\lambda \in \Omega$, we have

$$
\sup _{\lambda \in \Omega}\left\{|\widetilde{V}(\lambda)|_{A}^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4}\right\} \leq \sup _{\lambda \in \Omega}\left\langle\left(V^{* A} V+\left(V^{* A} V\right)^{* A} V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}
$$

This proves (i). The proof of (ii) is immediate from

$$
\begin{equation*}
\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}=\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle k_{\mathcal{H}, \lambda}, V^{* A} k_{\mathcal{H}, \lambda}\right\rangle_{A}\right| \tag{5}
\end{equation*}
$$

by applying (3) for $u=V k_{\mathcal{H}, \lambda}, e=k_{\mathcal{H}, \lambda}, v=V^{*} k_{\mathcal{H}, \lambda}$ in (5). The theorem is proved.

It is widely known that if V is A-normaloid then $\left\|V^{2}\right\|_{A}=\|V\|_{A}^{2}$. Hence, both the inequalities in Theorem 4 becomes equality if V is A-normaloid can be observed easily.

We now obtain another upper bounds for the Davis-Wielandt-Berezin radius of bounded linear operators.

Theorem 5. If $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$, then we have

$$
\begin{equation*}
\eta_{A}^{2}(V) \leq 3\left\|\left(V^{* A} V\right)^{* A} V^{* A} V+V^{* A} V\right\|_{A-\mathrm{ber}}-\widetilde{c}_{A}\left(V^{* A} V+V\right) m_{A-\mathrm{ber}}\left(V^{* A} V+V\right) \tag{6}
\end{equation*}
$$

$$
-\widetilde{c}_{A}\left(V^{* A} V-V\right) m_{A-\mathrm{ber}}\left(V^{* A} V-V\right)
$$

Proof. Let $\lambda \in \Omega$ be arbitrary. It follows from Lemmas 2 3 that
$\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}$
$\leq\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}\left\|k_{\mathcal{H}, \lambda}\right\|_{A}^{2}$
$-2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|\left(\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}\left\|k_{\mathcal{H}, \lambda}\right\|_{A}-\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|\right)$

$$
\begin{aligned}
& =\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}+2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|\left|\left\langle k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|-2\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|\left\|V k_{\mathcal{H}, \lambda}\right\|_{A} \\
& \leq\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}+\left\langle V k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}-2 \widetilde{c}_{A}(V)\left\|V k_{\mathcal{H}, \lambda}\right\|_{A} \\
& \leq 3\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-2 \widetilde{c}_{A}(V) m_{A-\operatorname{ber}}(V) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
&\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
&= \frac{1}{2}\left(\left|\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}+\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left|\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}-\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}\right) \\
&= \frac{1}{2}\left(\left|\left\langle\left(V^{* A} V+V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left|\left\langle\left(V^{* A} V-V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}\right) \\
& \leq \frac{1}{2}\left(3\langle | V^{* A} V+\left.V\right|_{A} ^{2} k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-2 \widetilde{c}_{A}\left(V^{* A} V+V\right) m_{A-\text { ber }}\left(V^{* A} V+V\right) \\
&\left.\left.+3\langle | V^{* A} V-\left.V\right|_{A} ^{2} k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-2 \widetilde{c}_{A}\left(V^{* A} V-V\right) m_{A-\text { ber }}\left(V^{* A} V-V\right)\right) \\
&= \frac{3}{2}\left\langle\left(\left|V^{* A} V+V\right|_{A}^{2}+\left|V^{* A} V-V\right|_{A}^{2}\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
&-\widetilde{c}_{A}\left(V^{* A} V+V\right) m_{A-\text { ber }}\left(V^{* A} V+V\right) \\
&-\widetilde{c}_{A}\left(V^{* A} V-V\right) m_{A-\text { ber }}\left(V^{* A} V-V\right) \\
&= 3\left\langle\left(\left(V^{* A} V\right)^{* A} V^{* A} V+V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
&-\widetilde{c}_{A}\left(V^{* A} V+V\right) m_{A-\text { ber }}\left(V^{* A} V+V\right)-\widetilde{c}_{A}\left(V^{* A} V-V\right) m_{A-\text { ber }}\left(V^{* A} V-V\right) .
\end{aligned}
$$

Thus, by taking supremum over $\lambda \in \Omega$, we obtain

$$
\begin{aligned}
\sup _{\lambda \in \Omega}\left(\left|\widetilde{V}^{A}(\lambda)\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4}\right) & \leq 3 \sup _{\lambda \in \Omega}\left\langle\left(\left(V^{* A} V\right)^{* A} V^{* A} V+V^{* A} V\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& -\sup _{\lambda \in \Omega} \widetilde{c}_{A}\left(V^{* A} V+V\right) m_{A-\operatorname{ber}}\left(V^{* A} V+V\right) \\
& -\widetilde{c}_{A}\left(V^{* A} V-V\right) m_{A-\text { ber }}\left(V^{* A} V-V\right)
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
\eta_{A}^{2}(V) \leq & 3\left\|\left(V^{* A} V\right)^{* A} V^{* A} V+V^{* A} V\right\|_{A-\mathrm{ber}} \\
& -\widetilde{c}_{A}\left(V^{* A} V+V\right) m_{A-\mathrm{ber}}\left(V^{* A} V+V\right) \\
& -\widetilde{c}_{A}\left(V^{* A} V-V\right) m_{A-\mathrm{ber}}\left(V^{* A} V-V\right)
\end{aligned}
$$

This immediately proves (6) as required.
We are now able to establish the following theorem.
Theorem 6. Let $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$. Then the inequalities listed below are true.
(i)

$$
\begin{aligned}
\eta_{A}^{2}(V) \leq & \inf _{r \in \mathbb{R}} \sup _{\theta \in \mathbb{R}}\left\{2|r|\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-r I\right\|_{A}\right. \\
& +\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-2 r I\right\|_{A}^{2} \\
& \left.+\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)-V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2}\right\}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\eta_{A}^{2}(V) \leq & \frac{1}{2} \sup _{\theta \in \mathbb{R}}\left\{\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2}\right. \\
& \left.+\left\|\cos \theta \operatorname{Re}_{A}(V)-V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2}\right\}
\end{aligned}
$$

Proof. (i) Let $\lambda \in \Omega$ be arbitrary. Then there exists $\theta \in \mathbb{R}$ such that $\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|=$ $e^{-i \theta}\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}$. By applying the Cartesian decomposition of V, we see that

$$
\begin{aligned}
\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right| & =\left\langle e^{-i \theta} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& =\left\langle\left((\cos \theta-i \sin \theta)\left(\operatorname{Re}_{A}(V)+i \operatorname{Im}_{A}(V)\right)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& =\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& +i\left\langle\left(\cos \theta \operatorname{Im}_{A}(V)-\sin \theta \operatorname{Re}_{A}(V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}
\end{aligned}
$$

So, by $\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right| \in \mathbb{R}$ we get

$$
\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|=\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} .
$$

Thus, by using Lemma 4 we get for any $r \in \mathbb{R}$,

$$
\begin{aligned}
\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} & =\left|\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& =\left\|\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}\right\|_{A}^{2} \\
& -\left\|\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}-r k_{\mathcal{H}, \lambda}\right\|_{A}^{2} \\
& +\left|\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}-r k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|_{A}^{2} \\
& =\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right)^{2} k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& -\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)-r I\right)^{2} k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& +\left|\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)-r I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& =\left\langle\left\{\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right)^{2}\right.\right. \\
& \left.\left.-\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)-r I\right)^{2}\right\} k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& +\left|\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)-r I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\left(2 r\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)\right)-r^{2} I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& +\left|\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+\sin \theta \operatorname{Im}_{A}(V)-r I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}
\end{aligned}
$$

By using Lemma 4 we obtain

$$
\begin{aligned}
\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} & =\left|\left\langle V^{* A} V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& =\left\langle\left(2 r V^{* A} V-r^{2} I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\left|\left\langle\left(V^{* A} V-r I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
&\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
&=\left\langle 2 r\left\{\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\} k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-2 r^{2} \\
&+\frac{1}{2}\left|\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-2 r I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
&+\frac{1}{2}\left|\left\langle\left(\cos \theta \operatorname{Re}_{A}(V)-V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& \leq 2|r|\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-r I\right\|_{A} \\
&+\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-2 r I\right\|_{A}^{2} \\
&+\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)-|V|_{A}^{2}+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2} \\
& \leq \sup \left\{2|r|\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-r I\right\|_{A}\right. \\
&+\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-2 r I\right\|_{A}^{2} \\
&\left.+\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)-V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2}\right\} .
\end{aligned}
$$

Therefore, taking supremum over all $\lambda \in \Omega$, we get

$$
\begin{aligned}
\eta_{A}^{2}(V) \leq & \sup _{\theta \in \mathbb{R}}\left\{2|r|\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-r I\right\|_{A}\right. \\
& +\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)-2 r I\right\|_{A}^{2} \\
& \left.+\frac{1}{2}\left\|\cos \theta \operatorname{Re}_{A}(V)-V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2}\right\} .
\end{aligned}
$$

Because this inequality holds for every $r \in \mathbb{R}$, we have the required inequality.
(ii) If we pick $r=0$, for example,

$$
\begin{aligned}
\eta_{A}^{2}(V) \leq & \frac{1}{2} \sup _{\theta \in \mathbb{R}}\left\{\left\|\cos \theta \operatorname{Re}_{A}(V)+V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2}\right. \\
& \left.+\left\|\cos \theta \operatorname{Re}_{A}(V)-V^{* A} V+\sin \theta \operatorname{Im}_{A}(V)\right\|_{A}^{2}\right\}
\end{aligned}
$$

Following so, we find the inequality shown below.
Theorem 7. Let $V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$. Then the inequalities listed below are true.
(i)

$$
\begin{aligned}
\eta_{A}^{2}(V) \leq & \inf _{z \in \mathbb{C}}\left\{\left(2\left\|\operatorname{Re}(z) \operatorname{Re}_{A}(V)+\operatorname{Im}(z) \operatorname{Im}_{A}(V)\right\|_{A-\text { ber }}+\left\|V^{* A} V-2 \operatorname{Re}(\bar{z} V)\right\|_{A-\text { ber }}\right)^{2}\right. \\
& \left.+2\|\operatorname{Re}(\bar{z} V)\|_{A-\text { ber }}-|z|^{2}+\operatorname{ber}_{A}^{2}(V-z I)\right\}
\end{aligned}
$$

(ii) $\eta_{A}^{2}(V) \leq \operatorname{ber}_{A}^{2}(V)+\|V\|_{A-\text { ber }}^{4}$.

Proof. Let $z \in \mathbb{C}$. Choosing in Lemma 4 $u_{1}=V k_{\mathcal{H}, \lambda}$ and $u_{2}=k_{\mathcal{H}, \lambda}$, we have for all $\lambda \in \Omega$

$$
\begin{aligned}
\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}\left\|k_{\mathcal{H}, \lambda}\right\|_{A}^{2}-\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}= & \left\|V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}\right\|_{A}^{2}\left\|k_{\mathcal{H}, \lambda}\right\|_{A}^{2} \\
& -\left|\left\langle V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} .
\end{aligned}
$$

Then by using the Cartesian decomposition of V we have that

$$
\begin{aligned}
\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}= & \left(\left\langle\operatorname{Re}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right)^{2}-\left(\left\langle\operatorname{Re}_{A}(V-z I) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right)^{2} \\
& +\left(\left\langle\operatorname{Im}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right)^{2}-\left(\left\langle\operatorname{Im}_{A}(V-z I) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right)^{2} \\
& +\left\|V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}\right\|_{A}^{2} \\
= & \left\langle\left(2 \operatorname{Re}_{A}(V)-\operatorname{Re}(z) I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle\operatorname{Re}(z) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& +\left\langle\left(2 \operatorname{Im}_{A}(V)-\operatorname{Im}(z) I\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\left\langle\operatorname{Im}(z) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& +\left\|V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}\right\|_{A}^{2} \\
= & 2 \operatorname{Re}(z)\left\langle\operatorname{Re}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+2 \operatorname{Im}(z)\left\langle\operatorname{Im}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& -(\operatorname{Re}(z))^{2}-(\operatorname{Im}(z))^{2}+\left\|V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}\right\|_{A}^{2} \\
= & 2\left(\operatorname{Re}(z)\left\langle\operatorname{Re}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\operatorname{Im}(z)\left\langle\operatorname{Im}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right) \\
& -|z|^{2}+\left\langle V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
= & 2\left(\operatorname{Re}(z)\left\langle\operatorname{Re}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}+\operatorname{Im}(z)\left\langle\operatorname{Im}_{A}(V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right) \\
& +\left\langle\left(V^{* A} V-2 \operatorname{Re}_{A}(\bar{z} V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}
\end{aligned}
$$

Again by using Lemma 4, we get

$$
\begin{aligned}
\left|\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} & =\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{2}-\left\|V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}\right\|_{A}^{2}+\left|\left\langle V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2} \\
& =2\left\langle\operatorname{Re}(\bar{z} V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-|z|^{2}+\left|\left\langle V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}
\end{aligned}
$$

So, we deduce that

$$
\begin{aligned}
& \left|\widetilde{V}^{A}(z)\right|^{2}+\left\|V k_{\mathcal{H}, \lambda}\right\|_{A}^{4} \\
& \leq 2\left\langle\operatorname{Re}(\bar{z} V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}-|z|^{2}+\left|\left\langle V k_{\mathcal{H}, \lambda}-z k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +2\left\langle\left(\operatorname{Re}(z) \operatorname{Re}_{A}(V)+\operatorname{Im}(z) \operatorname{Im}_{A}(V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A} \\
& \left.+\left\langle\left(V^{* A} V-2 \operatorname{Re}_{A}(\bar{z} V)\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right)^{2}
\end{aligned}
$$

for all $\lambda \in \Omega$. Hence, taking supremum over $\lambda \in \Omega$, and infimum over all $z \in \mathbb{C}$, we have

$$
\begin{aligned}
\eta_{A}^{2}(V) & \leq \inf _{z \in \mathbb{C}}\left\{\left(2\left\|\operatorname{Re}(z) \operatorname{Re}_{A}(V)+\operatorname{Im}(z) \operatorname{Im}_{A}(V)\right\|_{A-\text { ber }}+\left\|V^{* A} V-2 \operatorname{Re}_{A}(\bar{z} V)\right\|_{A-\text { ber }}\right)^{2}\right. \\
& \left.+2\left\|\operatorname{Re}_{A}(\bar{z} V)\right\|_{A-\text { ber }}-|z|^{2}+\operatorname{ber}_{A}^{2}(V-z I)\right\}
\end{aligned}
$$

(ii) Taking $z=0$, we get $\eta_{A}^{2}(V) \leq \operatorname{ber}_{A}^{2}(V)+\|V\|_{A-\text { ber }}^{4}$. This proves the required result.

Then, we have an upper bound on the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.

Theorem 8. Let $U, V \in \mathcal{L}_{A, r}(\mathcal{H}(\Omega))$. Then the inequalities listed below are true.
(i) $\eta_{A}(U+V) \leq \eta_{A}(U)+\eta_{A}(V)+\operatorname{ber}_{A}\left(U^{* A} V+V^{* A} U\right)$;
(ii) If $U^{* A} V+V^{* A} U=0$, then $\eta_{A}(U+V) \leq \eta_{A}(U)+\eta(V)$.

Proof. (i) It follows from Definition 5 that

$$
\begin{aligned}
\mathbf{H}_{A}(U+V)= & \left\{\left(\left\langle(U+V) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A},\left\langle(U+V) k_{\mathcal{H}, \lambda},(U+V) k_{\mathcal{H}, \lambda}\right\rangle_{A}\right), \lambda \in \Omega\right\} \\
= & \left\{\left(\left\langle U k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A},\left\langle U k_{\mathcal{H}, \lambda}, U k_{\mathcal{H}, \lambda}\right\rangle_{A}\right)\right. \\
& +\left(\left\langle V k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A},\left\langle V k_{\mathcal{H}, \lambda}, V k_{\mathcal{H}, \lambda}\right\rangle_{A}\right) \\
& \left.+\left(0,\left\langle\left(U^{* A} V+V^{* A} U\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right): \lambda \in \Omega\right\}
\end{aligned}
$$

So, $\mathbf{H}_{A}(U+V) \subseteq \mathbf{H}_{A}(U)+\mathbf{H}_{A}(V)+X$, where

$$
X=\left\{\left(0,\left\langle\left(U^{* A} V+V^{* A} U\right) k_{\mathcal{H}, \lambda}, k_{\mathcal{H}, \lambda}\right\rangle_{A}\right): \lambda \in \Omega\right\} .
$$

This demonstrates (i). The evidence of (ii) is obvious from (i) and $A\left(U^{* A} V+V^{* A} U\right)=$ O, and the proof of theorem is completed.

Authors Contribution Statement This work was co-authored by the writers. The final version of this manuscript was reviewed and approved by all authors.

Declaration of Competing Interests The authors state that they have no known competing financial interests or personal relationships that may seem to have influenced the work described in this manuscript.

References

[1] Arias, M. L., Corach, G., Gonzales, M. C., Partial isometric in semi-Hilbertian spaces, Linear Algebra Appl., 428(7) (2008), 1460-1475. http://doi:10.1016/j.laa.2007.09.031
[2] Arias, M. L., Corach, G., Gonzales, M. C., Metric properties of projection in semi-Hilbertian spaces, Integral Equ. Oper. Theory, 62 (2008), 11-28. http://doi:10.1007/S00020-008-1613-6
[3] Bakherad, M., Garayev, M. T., Berezin number inequalities for operators, Concr. Oper., 6(1) (2019), 33-43. http://doi:10.1515/conop-2019-0003
[4] Başaran, H., Gürdal, M., Güncan, A. N., Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532. http://doi.org/10.3906/mat-1811-10
[5] Bhunia, P., Bhanja, A., Bag, S., Paul, K., Bounds for the Davis-Wielandt radius of bounded linear operators, Ann. Funct. Anal., 12(18) (2021), 1-23. http://DOI: 10.1007/s43034-020-00102-9
[6] Bhanja, A., Bhunia, P., Paul, K., On generalized Davis-Wielandt radius inequalities of semi-Hilbertian space operators, arXiv:2006.05069v1 [math.FA]. https://doi.org/10.48550/arXiv.2006.05069
[7] Buzano, M. L., Generalizzatione della diseguaglianza di Cauchy-Schwarz, Rendiconti del Semin. Mat. dell Univ. di Padova, 31 (1971/73), 405-409.
[8] Berezin, F. A., Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6 (1972), 1117-1151. http://dx.doi.org/10.1070/IM1972v006n05ABEH001913
[9] Chien, M. T., Nakazato, H., Davis-Wielandt shell and q-numerical range, Linear Algebra Appl., 340 (2002), 15-31. https://doi.org/10.1016/S0024-3795(01)00395-0
[10] Davis, C., The shell of a Hilbert-space operator, Acta Sci. Math., 29(1-2) (1968), 69-86.
[11] Dragomir, S. S., Reverses of Schwarz inequality in inner product spaces and applications, Math. Nachrichten, 288 (2015), 730-742. https://doi.org/10.1002/mana.201300100
[12] Feki, K., A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math., $115(27)$ (2020), 535-544. https:doi.org/10.1007/s00013-020-01482-z
[13] Feki K., Spectral radius of Semi-Hilbertian space operators and its applications, Ann. Funct. Anal., 11 (2020), 926-946. https:doi.org/10.1007/s43034-020-00064-y
[14] Garayev, M. T., Alomari, M.W., Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Theory, 15(30) (2021), 1-30. https://doi.org/10.1007/s11785-021-01078-7
[15] Gürdal, M., Başaran, H., A-Berezin number of operators, Proc. Inst. Math. Mech., 48(1) (2022), 77-87. https://doi.org/10.30546/2409-4994.48.1.2022.77
[16] Gürdal, V., Güncan, A. N., Berezin number inequalities via operator convex functions, Electron. J. Math. Anal. Appl., 10(2) (2022), 83-94.
[17] Gürdal, V., Güncan, A. N., Upper and lower bounds for the Davis-Wielandt-Berezin radius, Preprint, (2021).
[18] Gustafson, K. E., Rao, D. K. M., Numerical Range, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4613-8498-4_1
[19] Huban, M. B., Upper and lower bounds of the A-Berezin number of operators, Turk. J. Math., 46 (2022), 189-206. https://doi.org/10.3906/mat-2108-90
[20] Karaev, M. T., Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192. https://doi.org/10.1016/j.jfa.2006.04.030
[21] Karaev, M. T., Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018. https://doi.org/10.1007/s11785-012-0232-z
[22] Li, C. K., Poon, Y. T., Sze, N. S., Davis-Wielandt shells of operators, Oper. Matrices, 2(3) (2008), 341-355. https://doi.org/10.7153/oam-02-20
[23] Moslehian, M. S., Kian, M., Xu, Q., Positivity of 2×2 block matrices of operators, Banach J. Math. Anal., 13(3) (2019), 726-743. https://doi.org/10.1215/17358787-2019-0019
[24] Sattari, M., Moslehian, M. S., Shebrawi, K., Extension of Euclidean operator radius inequalities, Math. Scand., 120 (2017), 129-144. https://doi.org/10.7146/math.scand.a-25509
[25] Wielandt, H., On eigenvalues of sums of normal matrices, Pac. J. Math., 5(4) (1955), 633-638. https://doi.org/10.2140/PJM.1955.5.633
[26] Tapdigoglu, R., Gürdal, M., Altwaijry, N., Sarı, N., Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities, Oper. Matrices, 15(4) (2021), 1445-1460. https://doi.org/10.7153/oam-2021-15-90
[27] Zamani A., Characterization of numerical radius parallelism in C^{*}-algebras, Positivity, 23(2) (2019), 397-411. https://doi.org/10.1007/s11117-018-0613-2
[28] Zamani, A., Shebrawi, K., Some upper bounds for the Davis-Wielandt radius of Hilbert space operators, Mediterr. J. Math., 17(25) (2020). https://doi.org/10.1007/s00009-019-1458-z
http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 72, Number 1, Pages 199-215 (2023)
DOI:10.31801/cfsuasmas. 1099300
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: April 6, 2022; Accepted: September 5, 2022

$s-n$-IDEALS OF COMMUTATIVE RINGS

Hani A. KHASHAN ${ }^{1}$ and Ece YETKIN CELIKEL ${ }^{2}$

${ }^{1}$ Department of Mathematics, Faculty of Science, Al al-Bayt University, Al Mafraq, JORDAN
${ }^{2}$ Department of Basic Sciences, Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, TÜRKİYE

Abstract

Let R be a commutative ring with identity and S a multiplicatively closed subset of R. This paper aims to introduce the concept of S-n-ideals as a generalization of n-ideals. An ideal I of R disjoint with S is called an S -n-ideal if there exists $s \in S$ such that whenever $a b \in I$ for $a, b \in R$, then $s a \in \sqrt{0}$ or $s b \in I$. The relationships among S - n-ideals, n-ideals, S-prime and S-primary ideals are clarified. Besides several properties, characterizations and examples of this concept, S-n-ideals under various contexts of constructions including direct products, localizations and homomorphic images are given. For some particular S and $m \in \mathbb{N}$, all S - n-ideals of the ring \mathbb{Z}_{m} are completely determined. Furthermore, S - n-ideals of the idealization ring and amalgamated algebra are investigated.

1. Introduction

Throughout this paper, we assume that all rings are commutative with non-zero identity. For a ring R, we will denote by $U(R), \operatorname{reg}(R)$ and $Z(R)$, the set of unit elements, regular elements and zero-divisor elements of R, respectively. For an ideal I of R, the radical of I denoted by \sqrt{I} is the ideal $\left\{a \in R: a^{n} \in I\right.$ for some positive integer $n\}$ of R. In particular, $\sqrt{0}$ denotes the set of all nilpotent elements of R. We recall that a proper ideal I of a ring R is called prime (primary) if for $a, b \in R, a b \in I$ implies $a \in I$ or $b \in I(b \in \sqrt{I})$. Several generalizations of prime and primary ideals were introduced and studied, (see for example $2 \mathbf{2}-4, \sqrt{6}, 17$).

Let S be a multiplicatively closed subset of a ring R and I an ideal of R disjoint with S. Recently, Hamed and Malek 12 used a new approach to generalize prime ideals by defining S-prime ideals. I is called an S-prime ideal of R if there exists

[^14]an $s \in S$ such that for all $a, b \in R$ whenever $a b \in I$, then $s a \in I$ or $s b \in I$. Then analogously, Visweswaran 16 introduced the notion of S-primary ideals. I is called an S-primary ideal of R if there exists an $s \in S$ such that for all $a, b \in R$ if $a b \in I$, then $s a \in I$ or $s b \in \sqrt{I}$. Many other generalizations of S-prime and S-primary ideals have been studied. For example, in 1, the authors defined I to be a weakly S-prime ideal if there exists an $s \in S$ such that for all $a, b \in R$ if $0 \neq a b \in I$, then $s a \in I$ or $s b \in I$. In 2015, Mohamadian 14 defined a new type of ideals called r-ideals. An ideal I of a ring R is said to be r-ideal, if $a b \in I$ and $a \notin Z(R)$ imply that $b \in I$ for each $a, b \in R$. Generalizing this concept, in 2017 the notion of n-ideals was first introduced and studied 15 . The authors called a proper ideal I of R an n-ideal if $a b \in I$ and $a \notin \sqrt{0}$ imply that $b \in I$ for each $a, b \in R$. Many other generalizations of n-ideals have been introduced recently, see for example 13 and 18. Motivated and inspired by these studies, in this article, we study the S-version of the class of n-ideals by determining the structure of S - n-ideals of a ring. We call I an S - n-ideal of a ring R if there exists an (fixed) $s \in S$ such that for all $a, b \in R$ if $a b \in I$ and $s a \notin \sqrt{0}$, then $s b \in I$. We call this fixed element $s \in S$ an S-element of I. Clearly, for any multiplicatively closed subset S of R, every n-ideal is an S - n-ideal and the classes of n-ideals and S - n-ideals coincide if $S \subseteq U(R)$. However, this generalization of n-ideals is proper as we can see in Example 1. In Section 2, we start by giving an example of an S-n-ideal of a ring R that is not an n-ideal. Then we give many properties of S - n-ideals and show that S - n-ideals enjoy analogs of many of the properties of n-ideals. Also we discuss the relationship among S - n-ideals, n-ideals, S-prime and S-primary ideals, (Propositions 1,6 and Examples 1, 2). In Theorems 11 and 2, we present some characterizations for S -n-ideals of a general commutative ring. Moreover, we investigate some conditions under which $\left(I:_{R} s\right)$ is an S-n-ideal of R for an S - n-ideal I of R and an S element s of I, (Propositions 2, 3 and Example 3). For a particular case that $S \subseteq \operatorname{reg}(R)$, we justify some other results. For example, in this case, we prove that a maximal S - n-ideal of R is S-prime, (Proposition 6). In addition, we show in Proposition 4 that every proper ideal of a ring R is an S - n-ideal if and only if R is a UN-ring (a ring for which every nonunit element is a product of a unit and a nilpotent). Let $n \in \mathbb{N}$, say, $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct prime integers and $r_{i} \geq 1$ for all i. Then for all $2 \leq i \leq k-1, S_{p_{1} p_{2} \ldots p_{i-1} p_{i+1} \ldots p_{k}}=$ $\left\{\bar{p}_{1}^{m_{1}} \bar{p}_{2}^{m_{2}} \ldots \bar{p}_{i-1}^{m_{i-1}} \bar{p}_{i+1}^{m_{i+1}} \ldots \bar{p}_{k-1}^{m_{k-1}}: m_{j} \in \mathbb{N} \cup\{0\}\right\}$ is a multiplicatively closed subset of
 particular, we determine all S_{p} - n-ideals of \mathbb{Z}_{n} where $S_{p}=\left\{1, \bar{p}, \bar{p}^{2}, \bar{p}^{3}, \ldots\right\}$ for any prime integer p dividing n, (Theorem 3). Furthermore, we study the stability of S - n ideals with respect to various ring theoretic constructions such as localization, factor rings and direct product of rings, (Propositions 11,12 and 14). Let R be a ring and M be an R-module. For a multiplicatively closed subset S of R, the set $S(+) M=$ $\{(s, m): s \in S, m \in M\}$ is clearly a multiplicatively closed subset of the idealization ring $R(+) M$. In Section 3, first, we clarify the relation between the S - n-ideals of a
ring R and the $S(+) M$ - n-ideals $R(+) M$, (Proposition 17). For rings R and R^{\prime}, an ideal J of R^{\prime} and a ring homomorphism $f: R \rightarrow R^{\prime}$, the amalgamation of R and R^{\prime} along J with respect to f is the subring $R \bowtie^{f} J=\{(r, f(r)+j): r \in R, j \in J\}$ of $R \times R^{\prime}$. Clearly, the set $S \bowtie^{f} J=\{(s, f(s)+j): s \in S, j \in J\}$ is a multiplicatively closed subset of $R \bowtie^{f} J$ whenever S is a multiplicatively closed subset of R. We finally determine when the ideals $I \bowtie^{f} J=\{(i, f(i)+j): i \in I, j \in J\}$ and $\bar{K}^{f}=$ $\{(a, f(a)+j): a \in R, j \in J, f(a)+j \in K\}$ of $R \bowtie^{f} J$ are $\left(S \bowtie^{f} J\right)$-n-ideals, (Theorems 5 and 6).

2. Properties of S - n-Ideals

Definition 1. Let R be a ring, S be a multiplicatively closed subset of R and I be an ideal of R disjoint with S. We call I an S-n-ideal of R if there exists an (fixed) $s \in S$ such that for all $a, b \in R$ if $a b \in I$ and sa $\notin \sqrt{0}$, then $s b \in I$. This fixed element $s \in S$ is called an S-element of I.

Let I be an ideal of a ring R. If I is an n-ideal of R, then clearly I is an S -n-ideal for any multiplicatively closed subset of R disjoint with I. However, it is clear that the classes of n-ideals and S - n-ideals coincide if $S \subseteq U(R)$. Moreover, obviously any S - n-ideal is an S-primary ideal and the two concepts coincide if the ideal is contained in $\sqrt{0}$. However, the converses of these implications are not true in general as we can see in the following examples.

Example 1. Let $R=\mathbb{Z}_{12}, S=\{\overline{1}, \overline{3}, \overline{9}\}$ and consider the ideal $I=<\overline{4}>$. Choose $s=\overline{3} \in S$ and let $a, b \in R$ with $a b \in I$ but $3 b \notin I$. Now, $a b \in<\overline{2}>$ implies $a \in<\overline{2}>$ or $b \in<\overline{2}>$. Assume that $a \notin<\overline{2}>$ and $b \in<\overline{2}>$. Since $a \notin<\overline{2}>$, then $a \in\{\overline{1}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{11}\}$ and since $3 b \notin I$, we have $b \in\{\overline{2}, \overline{6}, \overline{10}\}$. Thus, in each case $a b \notin I$, a contradiction. Hence, we must have $a \in<\overline{2}>$ and so $\overline{3} a \in<\overline{6}>=\sqrt{0}$. On the other hand, I is not an n-ideal as $\overline{2} \cdot \overline{2} \in I$ but neither $\overline{2} \in \sqrt{0}$ nor $\overline{2} \in I$.

A (prime) primary ideal of a ring R that is not an n-ideal is a direct example of an (S-prime) S-primary ideal that is not an S - n-ideal where $S=\{1\}$. For a less trivial example, we have the following.

Example 2. Let $R=\mathbb{Z}[X]$ and let $I=\langle 4 x\rangle$. consider the multiplicatively closed subset $S=\left\{4^{m}: m \in \mathbb{N} \cup\{0\}\right\}$ of R. Then I is an S-prime (and so S-primary) ideal of R, [16, Example 2.3]. However, I is not an S-n-ideal since for all $s=4^{m} \in S$, we have $(2 x)(2) \in I$ but $s(2 x) \notin \sqrt{0_{\mathbb{Z}[x]}}$ and $s(2) \notin I$.
Proposition 1. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S.
(1) If I is an S - n-ideal, then $s I \subseteq \sqrt{0}$ for some $s \in S$. If moreover, $S \subseteq \operatorname{reg}(R)$, then $I \subseteq \sqrt{0}$.
(2) $\sqrt{0}$ is an S-n-ideal of R if and only if $\sqrt{0}$ is an S-prime ideal of R.
(3) Let $S \subseteq \operatorname{reg}(R)$. Then 0 is an S - n-ideal of R if and only if 0 is an n-ideal.

Proof. (1) Let $a \in I$. Since $I \cap S=\emptyset, s \cdot 1 \notin I$ for all $s \in S$. Hence, $a \cdot 1 \in I$ implies that there exists an $s \in S$ such that $s a \in \sqrt{0}$. Thus, $s I \subseteq \sqrt{0}$ as desired. Moreover, if $S \subseteq \operatorname{reg}(R)$, then clearly $I \subseteq \sqrt{0}$.
(2) Clear.
(3) Suppose s is an S-element of 0 and $a b=0$ for some $a, b \in R$. Then $s a \in \sqrt{0}$ or $s b=0$ which implies $s^{n} a^{n}=0$ for some positive integer n or $s b=0$. Since $S \subseteq \operatorname{reg}(R)$, we have $a^{n}=0$ or $b=0$, as needed.

Next, we characterize S - n-ideals of rings by the following.
Theorem 1. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. The following statements are equivalent.
(1) I is an S - n-ideal of R.
(2) There exists an $s \in S$ such that for any two ideals J, K of R, if $J K \subseteq I$, then $s J \subseteq \sqrt{0}$ or $s K \subseteq I$.

Proof. (1) $\Rightarrow(2)$. Suppose I is an S - n-ideal of R. Assume on the contrary that for each $s \in S$, there exist two ideals J^{\prime}, K^{\prime} of R such that $J^{\prime} K^{\prime} \subseteq I$ but $s J^{\prime} \nsubseteq \sqrt{0}$ and $s K^{\prime} \nsubseteq I$. Then, for each $s \in S$, we can find two elements $a \in J^{\prime}$ and $b \in K^{\prime}$ such that $a b \in I$ but neither $s a \in \sqrt{0}$ nor $s b \in I$. By this contradiction, we are done.
$(2) \Rightarrow(1)$. Let $a, b \in R$ with $a b \in I$. Taking $J=<a>$ and $K=$ in (2), we get the result.
Theorem 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If $\sqrt{0}$ is an S-n-ideal of R, then the following are equivalent.
(1) I is an S - n-ideal of R.
(2) There exists $s \in S$ such that for ideals $I_{1}, I_{2}, \ldots, I_{n}$ of R, if $I_{1} I_{2} \cdots I_{n} \subseteq I$, then $s I_{j} \subseteq \sqrt{0}$ or $s I_{k} \subseteq I$ for some $j, k \in\{1, \ldots, n\}$.
(3) There exists $s \in S$ such that for elements $a_{1}, a_{2}, \ldots, a_{n}$ of R, if $a_{1} a_{2} \cdots a_{n} \in$ I, then $s a_{j} \in \sqrt{0}$ or $s a_{k} \in I$ for some $j, k \in\{1, \ldots, n\}$.
Proof. (1) $\Rightarrow(2)$. Let $s_{1} \in S$ be an S-element of I. To prove the claim, we use mathematical induction on n. If $n=2$, then the result is clear by Theorem 1 Suppose $n \geq 3$ and the claim holds for $n-1$. Let $I_{1}, I_{2}, \ldots, I_{n}$ be ideals of R with $I_{1} I_{2} \cdots I_{n} \subseteq I$. Then by Theorem 1 we conclude that either $s_{1} I_{1} \subseteq \sqrt{0}$ or $s_{1} I_{2} \cdots I_{n} \subseteq I$. Assume $\left(s_{1} I_{2}\right) \cdots I_{n} \subseteq I$. By the induction hypothesis, we have either, say, $s_{1}^{2} I_{2} \subseteq \sqrt{0}$ or $s_{1} I_{k} \subseteq I$ for some $k \in\{3, \ldots, n\}$. Assume $s_{1}^{2} I_{2} \subseteq \sqrt{0}$ and choose an S-element $s_{2} \in S$ of $\sqrt{0}$. If $s_{2}\left(s_{1}^{2} R\right) \subseteq \sqrt{0} \cap S$, we get a contradiction. Thus, $s_{2} I_{2} \subseteq \sqrt{0}$. By choosing $s=s_{1} s_{2}$, we get $s I_{j} \subseteq \sqrt{0}$ or $s I_{k} \subseteq I$ for some $j, k \in\{1, \ldots, n\}$, as needed.
$(2) \Rightarrow(3)$. This is a particular case of (2) by taking $I_{j}:=<a_{j}>$ for all $j \in$ $\{1, \ldots, n\}$.
$(3) \Rightarrow(1)$. Clear by choosing $n=2$ in (3).

Proposition 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. Then
(1) If $(I: s)$ is an n-ideal of R for some $s \in S$, then I is an S - n-ideal.
(2) If I is an S-n-ideal and $(\sqrt{0}: s)$ is an n-ideal where $s \in S$ is an S-element of I, then $(I: s)$ is an n-ideal of R.
(3) If I is an S - n-ideal and $S \subseteq \operatorname{reg}(R)$, then $(I: s)$ is an n-ideal of R for any S-element s of I.

Proof. (1) Suppose that $(I: s)$ is an n-ideal of R for some $s \in S$. We show that s is an S-element of I. Let $a, b \in R$ with $a b \in I$ and $s a \notin \sqrt{0}$. Then $a b \in(I: s)$ and $a \notin \sqrt{0}$ imply that $b \in(I: s)$.Thus, $s b \in I$ and I is an S-n-ideal.
(2) Suppose $a, b \in R$ with $a b \in(I: s)$. Then $a(s b) \in I$ which implies $s a \in \sqrt{0}$ or $s^{2} b \in I$. Suppose $s a \in \sqrt{0}$. Since $(\sqrt{0}: s)$ is an n-ideal, $(\sqrt{0}: s)=\sqrt{0}$ by 15. Proposition 2.3] and so $a \in \sqrt{0}$. Now, suppose $s^{2} b \in I$. If $s b \notin I$, then since I is an S-n-ideal, $s^{3} \in \sqrt{0}$ and so $s \in \sqrt{0}$ which contradicts the assumption that $(\sqrt{0}: s)$ is proper. Thus, $s b \in I$ and $b \in(I: s)$ as needed.
(3) Suppose $S \subseteq \operatorname{reg}(R)$ and I is an S - n-ideal. Let $a, b \in R$ with $a b \in(I: s)$ so that $a(s b) \in I$. If $s a \in \sqrt{0}$, then $s^{m} a^{m}=0$ for some integer m. Since $S \subseteq r e g(R)$, we get $a^{m}=0$ and so $a \in \sqrt{0}$. If $s^{2} b \in I$, then similar to the proof of (2) we conclude that $b \in(I: s)$.

Note that the conditions that ($\sqrt{0}: s)$ is an n-ideal in (2) and $S \subseteq \operatorname{reg}(R)$ in (3) of Proposition 2 are crucial. Indeed, consider $R=\mathbb{Z}_{12}, S=\{\overline{1}, \overline{3}, \overline{9}\}$. We showed in Example 1 that $I=<\overline{4}>$ is an S-n-ideal which is not an n-ideal, and so $(I: \overline{3})=I$ is not an n-ideal. Here, observe that $S \nsubseteq \operatorname{reg}(R)$ and $(\sqrt{0}: 3)=<\overline{2}>$ is not an n-ideal of \mathbb{Z}_{12}.

Proposition 3. Let $S \subseteq \operatorname{reg}(R)$ be a multiplicatively closed subset of a ring R and I be an S-prime ideal of R. Then I is an S-n-ideal if and only if $(I: s)=\sqrt{0}$ for some $s \in S$.

Proof. Suppose I is an S - n-ideal of R and s_{1} be an S-element of I. Then $\left(I: s_{1}\right)$ is an n-ideal of R by Proposition 2. Moreover, $\left(I: t s_{1}\right)$ is an n-ideal for all $t \in S$. Indeed, if $a b \in\left(I: t s_{1}\right)$ for $a, b \in R$, then $a b t s_{1} \in I$ and so either $s_{1}^{2} a \in \sqrt{0}$ or $s_{1} t b \in I$. If $s_{1}^{2} a \in \sqrt{0}$, then $a \in \sqrt{0}$ as $S \subseteq \operatorname{reg}(R)$. Otherwise, we have $b \in\left(I: t s_{1}\right)$ as needed. Since I is an S-prime ideal of $R,\left(I: s_{2}\right)$ is a prime ideal of R where $s_{2} \in S$ such that whenever $a b \in I$ for $a, b \in R$, either $s_{2} a \in I$ or $s_{2} b \in I, 12$, Proposition 1]. Similar to the above argument, we can also conclude that $\left(I: t s_{2}\right)$ is a prime ideal for all $t \in S$. Now, choose $s=s_{1} s_{2}$. Then $(I: s)$ is both a prime and an n-ideal of R and so $(I: s)=\sqrt{0}$ by 15, Proposition 2.8]. Conversely, suppose $(I: s)=\sqrt{0}$ for some $s \in S$. Since I is an S-prime ideal, $\left(I: s^{\prime}\right)$ is a prime ideal of R for some $s^{\prime} \in S$. Moreover, if $a \in\left(I: s^{\prime}\right)$, then $a s^{\prime} \in I \subseteq(I: s) \subseteq \sqrt{0}$ and so $a \in \sqrt{0}$ as $S \subseteq \operatorname{reg}(R)$. Thus, $\left(I: s^{\prime}\right)=\sqrt{0}$ is a
prime ideal and so it an n-ideal again by 15, Proposition 2.8]. Therefore, I is an S - n-ideal by Proposition 2 .

In the following example we justify that the condition $S \subseteq \operatorname{reg}(R)$ can not be omitted in Proposition 3
Example 3. The ideal $I=<\overline{2}>$ of \mathbb{Z}_{12} is prime and so S-prime for $S=\{\overline{1}, \overline{3}, \overline{9}\} \nsubseteq$ $\operatorname{reg}\left(\mathbb{Z}_{12}\right)$. Moreover, one can directly see that $s=3$ is an S-element of I and so I is also an S-n-ideal of \mathbb{Z}_{12}. But $(I: s)=I \neq \sqrt{0}$ for all $s \in S$.

A ring R is said to be a UN-ring if every nonunit element is a product of a unit and a nilpotent. Next, we obtain a characterization for rings in which every proper ideal is an S - n-ideal where $S \subseteq \operatorname{reg}(R)$.
Proposition 4. Let $S \subseteq \operatorname{reg}(R)$ be a multiplicatively closed subset of a ring R. The following are equivalent.
(1) Every proper ideal of R is an n-ideal.
(2) Every proper ideal of R is an S - n-ideal.
(3) R is a UN-ring.

Proof. Since $(1) \Rightarrow(2)$ is straightforward and $(3) \Rightarrow(1)$ is clear by 15 , Proposition 2.25], we only need to prove $(2) \Rightarrow(3)$.
$(2) \Rightarrow(3)$. Let I be a prime ideal of R. Then I is an S-prime and from our assumption, it is also an S-n-ideal. Thus $I \subseteq(I: s)=\sqrt{0}$ is a prime ideal of R by Proposition 3. Thus $\sqrt{0}$ is the unique prime ideal of R and so R is a UN-ring by 7, Proposition 2 (3)].

The equivalence of (1) and (2) in Proposition 4 need not be true if $S \nsubseteq r e g(R)$.
Example 4. Consider the ring \mathbb{Z}_{6} and let $S=\{1,3\}$. If $I=\langle\overline{0}\rangle$ or $\langle\overline{2}\rangle$, then a simple computations can show that I is an S-n-ideal of \mathbb{Z}_{6}. However, \mathbb{Z}_{6} has no proper n-ideals, 15, Example 2.2].

A ring R is said to be von Neumann regular if for all $a \in R$, there exists an element $b \in R$ such that $a=a^{2} b$.

Proposition 5. Let $S \subseteq \operatorname{reg}(R)$ be a multiplicatively closed subset of a ring R.
(1) Let R be a reduced ring. Then R is an integral domain if and only if there exists an S-prime ideal of R which is also an S-n-ideal
(2) R is a field if and only if R is von Neumann regular and 0 is an S - n-ideal of R.

Proof. (1) Let R be an integral domain. Since $0=\sqrt{0}$ is prime, it is also an n ideal again by 15, Corollary 2.9]. Thus $\sqrt{0}$ is both S-prime and S - n-ideal of R, as required. Conversely, suppose I is both S-prime and S - n-ideal of R. Hence, from Proposition 3 we conclude $(I: s)=\sqrt{0}$ which is an n-ideal by Proposition
2. $\sqrt{0}=0$ is also a prime ideal by 15, Corollary 2.9], and thus R is an integral domain.
(2) Since $S \subseteq \operatorname{reg}(R)$, from Proposition 1, 0 is an S - n-ideal of R if and only if 0 is an n-ideal. Thus, the claim is clear by [15, Theorem 2.15].

Let $n \in \mathbb{N}$. For any prime p dividing n, we denote the multiplicatively closed subset $\left\{1, \bar{p}, \bar{p}^{2}, \bar{p}^{3}, \ldots\right\}$ of \mathbb{Z}_{n} by S_{p}. Next, for any p dividing n, we clarify all S_{p} - n-ideals of \mathbb{Z}_{n}.

Theorem 3. Let $n \in \mathbb{N}$.
(1) If $n=p^{r}$ for some prime integer p and $r \geq 1$, then \mathbb{Z}_{n} has no S_{p} - n-ideals.
(2) If $n=p_{1}^{r_{1}} p_{2}^{r_{2}}$ where p_{1} and p_{2} are distinct prime integers and $r_{1}, r_{2} \geq 1$, then for all $i=1,2$, every ideal of \mathbb{Z}_{n} disjoint with $S_{p_{i}}$ is an $S_{p_{i}}$-n-ideal.
(3) If $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct prime integers and $k \geq 3$, then for all $i=1,2, \ldots, k, \mathbb{Z}_{n}$ has no $S_{p_{i}}$ - n-ideals.

Proof. (1) Clear since $I \cap S_{p} \neq \phi$ for any ideal I of \mathbb{Z}_{n}.
(2) Let $I=\left\langle\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}}\right\rangle$ be an ideal of \mathbb{Z}_{n} distinct with $S_{p_{1}}$. Then we must have $t_{2} \geq 1$. Choose $s=\bar{p}_{1}^{t_{1}} \in S_{p_{1}}$ and let $a b \in I$ for $a, b \in \mathbb{Z}_{n}$. If $a \in\left\langle\bar{p}_{2}\right\rangle$, then $s a \in\left\langle\bar{p}_{1} \bar{p}_{2}\right\rangle=\sqrt{0}$. If $a \notin\left\langle\bar{p}_{2}\right\rangle$, then clearly $b \in\left\langle\bar{p}_{2}^{t_{2}}\right\rangle$ and so $s b \in I$. Therefore, I is an $S_{p_{1}}-n$-ideal of \mathbb{Z}_{n}. By a similar argument, we can show that every ideal of \mathbb{Z}_{n} distinct with $S_{p_{2}}$ is an $S_{p_{2}}-n$-ideal.
(3) Let $I=\left\langle\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k}^{t_{k}}\right\rangle$ be an ideal of \mathbb{Z}_{n} distinct with $S_{p_{1}}$. Then there exists $j \neq 1$ such that $t_{j} \geq 1$, say, $j=k$. Thus, $\bar{p}_{k}^{t_{k}}\left(\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k-1}^{t_{k-1}}\right) \in I$ but $s \bar{p}_{k}^{t_{k}} \notin \sqrt{0}$ and $s\left(\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k-1}^{t_{k-1}}\right) \notin I$ for all $s \in S_{p_{1}}$. Therefore, I is not an $S_{p_{1}}-n$-ideal of \mathbb{Z}_{n}. Similarly, I is not an $S_{p_{i}}$ - n-ideal of \mathbb{Z}_{n} for all $i=1,2, \ldots, k$.

Corollary 1. Let $n \in \mathbb{N}$. Then for any prime p dividing n, either \mathbb{Z}_{n} has no S_{p}-n-ideals or every ideal of \mathbb{Z}_{n} disjoint with S_{p} is an S_{p} - n-ideal.

In general if $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}$ where $r_{i} \geq 1$ for all i, then

$$
S_{p_{1} p_{2} \ldots p_{i-1} p_{i+1} \ldots p_{k}}=\left\{\bar{p}_{1}^{m_{1}} \bar{p}_{2}^{m_{2}} \ldots \bar{p}_{i-1}^{m_{i-1}} \bar{p}_{i+1}^{m_{i+1} \ldots} \bar{p}_{k}^{m_{k}}: m_{j} \in \mathbb{N} \cup\{0\}\right\}
$$

is also a multiplicatively closed subset of \mathbb{Z}_{n} for all i. Next, we generalize Theorem [3]

Theorem 4. Let $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct prime integers and $r_{i} \geq 1$ for all i.
(1) \mathbb{Z}_{n} has no $S_{p_{1} p_{2} \ldots p_{k}}$-n-ideals.
(2) For $i=1,2, \ldots, k$, every ideal of \mathbb{Z}_{n} disjoint with $S_{p_{1} p_{2} \ldots p_{i-1} p_{i+1} \ldots p_{k}}$ is an $S_{p_{1} p_{2} \ldots p_{i-1} p_{i+1} \ldots p_{k}-n \text {-ideal. }}$
(3) Let $k \geq 3$. If $m \leq k-2$, then \mathbb{Z}_{n} has no $S_{p_{1} p_{2} \ldots p_{m}}$ - n-ideals.

Proof. (1) This is clear since $I \cap S_{p_{1} p_{2} \ldots p_{k}} \neq \phi$ for any ideal I of \mathbb{Z}_{n}.
(2) With no loss of generality, we may choose $i=k$. Let $I=\left\langle\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k}^{t_{k}}\right\rangle$ be an ideal of \mathbb{Z}_{n} disjoint with $S_{p_{1} p_{2} \ldots p_{k-1}}$. Then we must have $t_{k} \geq 1$. Choose $s=\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k-1}^{t_{k-1}} \in S_{p_{1} p_{2} \ldots p_{k-1}}$ and let $a, b \in \mathbb{Z}_{n}$ such that $a b \in I$. If $a \in\left\langle\bar{p}_{k}\right\rangle$, then $s a \in\left\langle\bar{p}_{1} \bar{p}_{2} \ldots \bar{p}_{k}\right\rangle=\sqrt{0}$. If $a \notin\left\langle\bar{p}_{k}\right\rangle$, then we must have $b \in\left\langle\bar{p}_{k}^{t_{k}}\right\rangle$. Thus, $s b \in I$ and

(3) Assume $m=k-2$ and let $I=\left\langle\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k}^{t_{k}}\right\rangle$ be an ideal of \mathbb{Z}_{n} disjoint with $S_{p_{1} p_{2} \ldots p_{k-2}}$. Then at least one of t_{k-1} and t_{k} is nonzero, say, $t_{k} \nexists 0$. Hence, $\bar{p}_{k}^{t_{k}}\left(\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k-1}^{t_{k-1}}\right) \in I$ but clearly $s \bar{p}_{k}^{t_{k}} \notin \sqrt{0}$ and $s\left(\bar{p}_{1}^{t_{1}} \bar{p}_{2}^{t_{2}} \ldots \bar{p}_{k-1}^{t_{k-1}}\right) \notin I$ for all $s \in$ $S_{p_{1} p_{2} \ldots p_{k-2}}$. Therefore, \mathbb{Z}_{n} has no $S_{p_{1} p_{2} \ldots p_{k-2}-n \text {-ideals. A similar proof can be used }}$ if $1 \leq m \nsupseteq k-2$.

An ideal I of a ring R is called a maximal S - n-ideal if there is no S - n-ideal of R that contains I properly. In the following proposition, we observe the relationship between maximal S - n-ideals and S-prime ideals.

Proposition 6. Let $S \subseteq \operatorname{reg}(R)$ be a multiplicatively closed subset of a ring R. If I is a maximal S-n-ideal of R, then I is S-prime (and so $(I: s)=\sqrt{0}$ for some $s \in S)$.

Proof. Suppose I is a maximal S-n-ideal of R and $s \in S$ is an S-element of I. Then $(I: s)$ is an n-ideal of R by Proposition 2, Moreover, $(I: s)$ is a maximal n-ideal of R. Indeed, if $(I: s) \subsetneq J$ for some n-ideal (and so S - n-ideal) J of R, then $I \subseteq(I: s) \subsetneq J$ which is a contradiction. By 15 , Theorem 2.11], $(I: s)=\sqrt{0}$ is a prime ideal of R and so I is an S-prime ideal by [12, Proposition 1].

Proposition 7. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If I is an S-n-ideal, and J is an ideal of R with $J \cap S \neq \emptyset$, then $I J$ and $I \cap J$ are S-n-ideals of R.

Proof. Let $s^{\prime} \in J \cap S$. Let $a, b \in R$ with $a b \in I J$. Since $a b \in I$, we have $s a \in \sqrt{0}$ or $s b \in I$ where s is an S-element of I. Hence, $\left(s^{\prime} s\right) a \in J \sqrt{0} \subseteq \sqrt{0}$ or $\left(s^{\prime} s\right) b \in I J$. Thus, $I J$ is an S-n-ideal of R. The proof that $I \cap J$ is an S - n-ideal is similar.

Proposition 8. Let S be a multiplicatively closed subset of a ring R and I_{1}, I_{2}, \ldots, I_{n} be proper ideals of R.
(1) If I_{i} is an S - n-ideal of R for all $i=1, \ldots, n$, then $\bigcap_{i=1}^{n} I_{i}$ is an S - n-ideal of R.
(2) If $\left(\bigcap_{j \in \Omega} I_{j}\right) \cap S \neq \emptyset$ for $\Omega \subseteq\{1, \ldots, n\}$ and I_{k} is an S - n-ideal of R for all $k \in\{1, \ldots, n\}-\Omega$, then $\bigcap_{i=1}^{n} I_{i}$ is an S-n-ideal of R.

Proof. (1) Suppose that for all $i=1, \ldots, n, I_{i}$ is an S - n-ideal of R and note that $\left(\bigcap_{i=1}^{n} I_{i}\right) \cap S=\emptyset$. For all $i=1, \ldots, n$, choose $s_{i} \in S$ such that whenever $a, b \in R$ such that $a b \in I_{i}$, then $s_{i} a \in \sqrt{0}$ or $s_{i} b \in I_{i}$. Let $a, b \in R$ such that $a b \in \bigcap_{i=1}^{n} I_{i}$. Then $a b \in I_{i}$ for all $i=1, \ldots, n$. If we let $s=\prod_{i=1}^{n} s_{i} \in S$, then clearly $s a \in \sqrt{0}$ or $s b \in \bigcap_{i=1}^{n} I_{i}$ and the result follows.
(2) Choose $s^{\prime} \in\left(\bigcap_{j \in \Omega} I_{j}\right) \cap S$. Let $a, b \in R$ with $a b \in \bigcap_{i=1}^{n} I_{i}$. Then for all $k \in\{1, \ldots, n\}-\Omega, a b \in I_{k}$ and so $s_{k} a \in \sqrt{0}$ or $s_{k} b \in I_{j}$ for some S-element s_{k} of I_{k}. Hence, $\left(s^{\prime} \prod_{k \in\{1, \ldots, n\}-\Omega} s_{k}\right) a \in \sqrt{0}$ or $\left(s^{\prime} \prod_{k \in\{1, \ldots, n\}-\Omega} s_{k}\right) b \in \bigcap_{i=1}^{n} I_{i}$ and so $\bigcap_{i=1}^{n} I_{i}$ is an S - n-ideal of R.

Let S and T be two multiplicatively closed subsets of a ring R with $S \subseteq T$. Let I be an ideal disjoint with T. It is clear that if I is a S-n-ideal, then it is T-n-ideal. The converse is not true since while $I=<\overline{4}>$ is an S - n-ideal of \mathbb{Z}_{12} for $S=\{\overline{1}, \overline{3}, \overline{9}\}$, it is not a T - n-ideal for $T=\{\overline{1}\} \subseteq S$.

Proposition 9. Let S and T be two multiplicatively closed subsets of a ring R with $S \subseteq T$ such that for each $t \in T$, there is an element $t^{\prime} \in T$ such that $t t^{\prime} \in S$. If I is a T-n-ideal of R, then I is an S-n-ideal of R.

Proof. Suppose $a b \in I$. Then there is a T-element $t \in T$ of I satisfying $t a \in \sqrt{0}$ or $t b \in I$. Hence there exists some $t^{\prime} \in T$ with $s=t t^{\prime} \in S$, and thus $s a \in \sqrt{0}$ or $s b \in I$.

Let S be a multiplicatively closed subset of a ring R. The saturation of S is the set $S^{*}=\left\{r \in R: \frac{r}{1}\right.$ is a unit in $\left.S^{-1} R\right\}$. It is clear that S^{*} is a multiplicatively closed subset of R and that $S \subseteq S^{*}$. Moreover, it is well known that $S^{*}=\{x \in R: x y \in S$ for some $y \in R\}$, see 11. The set S is called saturated if $S^{*}=S$.
Proposition 10. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. Then I is an S-n-ideal of R if and only if I is an S^{*}-n-ideal of R.

Proof. Suppose I is an $S^{*}-n$-ideal of R. By Proposition 9, it is enough to prove that for each $t \in S^{*}$, there is an element $t^{\prime} \in S^{*}$ such that $t t^{\prime} \in S$. Let $t \in S^{*}$ and choose $t^{\prime} \in R$ such that $t y \in S$. Then $t^{\prime} \in S^{*}$ and $t t^{\prime} \in S$ as required. The converse is obvious.

Let S and T be multiplicatively closed subsets of a ring R with $S \subseteq T$. Then clearly, $T^{-1} S=\left\{\frac{s}{t}: t \in T, s \in S\right\}$ is a multiplicatively closed subset of $T^{-1} R$.

Proposition 11. Let S, T be multiplicatively closed subsets of a ring R with $S \subseteq T$ and I be an ideal of R disjoint with T. If I is an S-n-ideal of R, then $T^{-1} I$ is an $T^{-1} S$-n-ideal of $T^{-1} R$. Moreover, we have $T^{-1} I \cap R=(I: u)$ for some S-element u of I.

Proof. Suppose I is an S-n-ideal. Suppose $T^{-1} S \cap T^{-1} I \neq \phi$, say, $\frac{a}{t} \in T^{-1} S \cap T^{-1} I$. Then $a \in S$ and $t a \in I$ for some $t \in T$. Since $S \subseteq T$, then $t a \in T \cap I$, a contradiction. Thus, $T^{-1} I$ is proper in $T^{-1} R$ and $T^{-1} S \cap T^{-1} I=\phi$. Let $s \in S$ be an S-element of I and choose $\frac{s}{1} \in T^{-1} S$. Suppose $a, b \in R$ and $t_{1}, t_{2} \in T$ with $\frac{a}{t_{1}} \frac{b}{t_{2}} \in T^{-1} I$ and $\frac{s}{1} \frac{a}{t_{1}} \notin \sqrt{0_{T^{-1} R}}$. Then $t a b \in I$ for some $t \in T$ and $s a \notin \sqrt{0}$. Since I is an S - n-ideal, we must have $s t b \in I$. Thus, $\frac{s}{1} \frac{b}{t_{2}}=\frac{s t b}{t t_{2}} \in T^{-1} I$ as needed. Now, let $r \in T^{-1} I \cap R$ and choose $i \in I, t \in T$ such that $\frac{r}{1}=\frac{i}{t}$. Then $v r \in I$ for some $v \in T$. Since I is an S-n-ideal, then there exists $u \in S \subseteq T$ such that $u v \in \sqrt{0}$ or $u r \in I$. But $u v \notin \sqrt{0}$ as $T \cap \sqrt{0}=\phi$ and so $u r \in I$. It follows that $r \in(I: u)$ for some S-element u of I. Since clearly $(I: u) \subseteq T^{-1} I \cap R$ for all $u \in T$, the proof is completed.

In particular, if $S=T$, then all elements of $T^{-1} S$ are units in $T^{-1} R$. As a special case of of Proposition 11, we have the following.

Corollary 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If I is an S-n-ideal of R, then $S^{-1} I$ is an n-ideal of $S^{-1} R$. Moreover, we have $S^{-1} I \cap R=(I: s)$ for some S-element s of I.

Proof. Suppose I is an S - n-ideal. Then $S^{-1} I$ is an $S^{-1} S$ - n-ideal of $S^{-1} R$ by Proposition 11. Let $a, b \in R, s_{1}, s_{2} \in S$ with $\frac{a}{s_{1}} \frac{b}{s_{2}} \in S^{-1} I$. Then by assumption, $\frac{s}{t} \frac{a}{s_{1}} \in \sqrt{0_{S^{-1} R}}$ or $\frac{s}{t} \frac{b}{s_{2}} \in S^{-1} I$ for some $S^{-1} S$-element $\frac{s}{t}$ of $S^{-1} I$. Since $\frac{s}{t}$ is a unit in $S^{-1} R$, then $S^{-1} I$ is an n-ideal of $S^{-1} R$ as required. The other part follows directly by Proposition 11 .

Corollary 3. Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. Then I is an S-n-ideal of R if and only if $S^{-1} I$ is an n-ideal of $S^{-1} R, S^{-1} I \cap R=(I: s)$ and $S^{-1} \sqrt{0} \cap R=(\sqrt{0}: t)$ for some $s, t \in S$.
Proof. \Rightarrow) Suppose I is an S - n-ideal of R. Then $S^{-1} I$ is an n-ideal of $S^{-1} R$ by Corollary 2. The other part of the implication follows by using a similar approach to that used in the proof of Proposition 11 .
$\Leftarrow)$ Suppose $S^{-1} I$ is an n-ideal of $S^{-1} R, S^{-1} I \cap R=(I: s)$ and $S^{-1} \sqrt{0} \cap R=$ $(\sqrt{0}: t)$ for some $s, t \in S$. Choose $u=s t \in S$ and let $a, b \in R$ such that $a b \in I$. Then $\frac{a}{1} \frac{b}{1} \in S^{-1} I$ and so $\frac{a}{1} \in \sqrt{S^{-1} 0}=S^{-1} \sqrt{0}$ or $\frac{b}{1} \in S^{-1} I$. If $\frac{a}{1} \in \sqrt{S^{-1} 0}$, then there is $w \in S$ such that $w a \in \sqrt{0}$. Thus, $a=\frac{w a}{w} \in S^{-1} \sqrt{0} \cap R=(\sqrt{0}: t)$. Hence, $t a \in \sqrt{0}$ and so $u a=s t a \in \sqrt{0}$. If $\frac{b}{1} \in S^{-1} I$, then there is $v \in S$ such that $v b \in I$ and so $b=\frac{v b}{v} \in S^{-1} I \cap R=(I: s)$. Therefore, $u b=t s b \in I$ and I is an S - n-ideal of R.

Proposition 12. Let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism and S be a multiplicatively closed subset of R_{1}. Then the following statements hold.
(1) If f is an epimorphism and I is an S - n-ideal of R_{1} containing $\operatorname{Ker}(f)$, then $f(I)$ is an $f(S)$ - n-ideal of R_{2}.
(2) If $\operatorname{Ker}(f) \subseteq \sqrt{0_{R_{1}}}$ and J is an $f(S)$-n-ideal of R_{2}, then $f^{-1}(J)$ is an S - n ideal of R_{1}.

Proof. First we show that $f(I) \cap f(S)=\emptyset$. Otherwise, there is $t \in f(I) \cap f(S)$ which implies $t=f(x)=f(s)$ for some $x \in I$ and $s \in S$. Hence, $x-s \in \operatorname{Ker}(f) \subseteq I$ and $s \in I$, a contradiction.
(1) Let $a, b \in R_{2}$ and $a b \in f(I)$. Since f is onto, $a=f(x)$ and $b=f(y)$ for some $x, y \in R_{1}$. Since $f(x) f(y) \in f(I)$ and $\operatorname{Ker}(f) \subseteq I$, we have $x y \in I$ and so there exists an $s \in S$ such that $s x \in \sqrt{0_{R_{1}}}$ or $s y \in I$. Thus, $f(s) a \in \sqrt{0_{R_{2}}}$ or $f(s) b \in f(I)$, as needed.
(2) Let $a, b \in R_{1}$ with $a b \in f^{-1}(J)$. Then $f(a b)=f(a) f(b) \in J$ and since J is an $f(S)$-n-ideal of R_{2}, there exists $f(s) \in f(S)$ such that $f(s) f(a) \in \sqrt{0_{R_{2}}}$ or $f(s) f(b) \in J$. Thus, $s a \in \sqrt{0_{R_{1}}}\left(\right.$ as $\left.\operatorname{Ker}(f) \subseteq \sqrt{0_{R_{1}}}\right)$ or $s b \in f^{-1}(J)$.

Let S be a multiplicatively closed subset of a ring R and I be an ideal of R disjoint with S. If we denote $r+I \in R / I$ by \bar{r}, then clearly the set $\bar{S}=\{\bar{s}: s \in S\}$ is a multiplicatively closed subset of R / I. In view of Proposition 12, we conclude the following result for \bar{S} - n-ideals of R / I.

Corollary 4. Let S be a multiplicatively closed subset of a ring R and I, J are two ideals of R with $I \subseteq J$.
(1) If J is an S-n-ideal of R, then J / I is an \bar{S} - n-ideal of R / I. Moreover, the converse is true if $I \subseteq \sqrt{0}$.
(2) If R is a subring of R^{\prime} and I^{\prime} is an S - n-ideal of R^{\prime}, then $I^{\prime} \cap R$ is an S - n-ideal of R.

Proof. (1) Note that $(J / I) \cap \bar{S}=\phi$ if and only if $I \cap S=\phi$. Now, we apply the canonical epimorphism $\pi: R \rightarrow R / I$ in Proposition 12 .
(2) Apply the natural injection $i: R \rightarrow R^{\prime}$ in Proposition 12 (2).

We recall that a proper ideal I of a ring R is called superfluous if whenever $I+J=R$ for some ideal J of R, then $J=R$.

Proposition 13. Let $S \subseteq \operatorname{reg}(R)$ be a multiplicatively closed subset of a ring R.
(1) If I is an S-n-ideal of R, then it is superfluous.
(2) If I and J are S - n-ideals of R, then $I+J$ is an S - n-ideal.

Proof. (1) Suppose $I+J=R$ for some ideal J of R and let $j \in J$. Then $1-j \in$ $I \subseteq \sqrt{0} \subseteq J(R)$ by (1) of Proposition 1. Thus, $j \in U(R)$ and $J=R$ as needed.
(2) Suppose I and J are S-n-ideals of R. Since $I, J \subseteq \sqrt{0}, I+J \subseteq \sqrt{0}$ and so $(I+J) \cap S=\phi$. Now, $I /(I \cap J)$ is an \bar{S}_{1}-n-ideal of $R /(I \cap J)$ by (1) of Corollary

4 where $\bar{S}_{1}=\{s+(I \cap J): s \in S\}$. If $\bar{S}_{2}=\{s+J: s \in S\}$, then clearly $S_{1} \subseteq \bar{S}_{2}$ and so $I /(I \cap J)$ is also an \bar{S}_{2} - n-ideal of $R /(I \cap J)$. By the isomorphism $(I+J) / J \cong I /(I \cap J)$, we conclude that $(I+J) / J$ is an \bar{S}_{2} - n-ideal of R / J. Now, the result follows again by (1) of Corollary 4.
Proposition 14. Let R and R^{\prime} be two rings, $I \unlhd R$ and $I^{\prime} \unlhd R^{\prime}$. If S and S^{\prime} are multiplicatively closed subsets of R and R^{\prime}, respectively, then
(1) $I \times R^{\prime}$ is an $\left(S \times S^{\prime}\right)$-n-ideal of $R \times R^{\prime}$ if and only if I is an S - n-ideal of R and $S^{\prime} \cap \sqrt{0_{R^{\prime}}} \neq \phi$.
(2) $R \times I^{\prime}$ is an ($S \times S^{\prime}$)-n-ideal of $R \times R^{\prime}$ if and only if I^{\prime} is an S^{\prime}-n-ideal of R^{\prime} and $S \cap \sqrt{0_{R}} \neq \phi$.

Proof. It is clear that $\left(I \times R^{\prime}\right) \cap\left(S \times S^{\prime}\right)=\emptyset$ if and only if $I \cap S=\emptyset$ and $\left(R \times I^{\prime}\right) \cap$ $\left(S \times S^{\prime}\right)=\emptyset$ if and only if $I^{\prime} \cap S^{\prime}=\emptyset$.
(1) Let $a, b \in R$ with $a b \in I$. Choose an $\left(S \times S^{\prime}\right)$-element $\left(s, s^{\prime}\right)$ of $I \times R^{\prime}$. If $s b \notin I$, then $(a, 1)(b, 1) \in I \times R^{\prime}$ with $\left(s, s^{\prime}\right)(b, 1) \notin I \times R^{\prime}$. Since $I \times R^{\prime}$ is an $\left(S \times S^{\prime}\right)$ - n-ideal, then $\left(s, s^{\prime}\right)(a, 1) \in \sqrt{0_{R \times R^{\prime}}}=\sqrt{0_{R}} \times \sqrt{0_{R^{\prime}}}$. Thus, $s a \in \sqrt{0_{R}}$ and $s^{\prime} \in S^{\prime} \cap \sqrt{0_{R^{\prime}}}$ I. If $s b \in I$, then $(b, 1)\left(s, s^{\prime}\right) \in I \times R^{\prime}$ and so $\left(s, s^{\prime}\right)(b, 1) \in \sqrt{0_{R \times R^{\prime}}}=\sqrt{0_{R}} \times \sqrt{0_{R^{\prime}}}$ as $\left(s, s^{\prime}\right)^{2} \notin I \times R^{\prime}$. In both cases, we conclude that I is an S - n-ideal of R and $S^{\prime} \cap \sqrt{0_{R^{\prime}}} \neq \phi$. Conversely, suppose I is an S - n-ideal of R, s is some S-element of I and $s^{\prime} \in S^{\prime} \cap \sqrt{0_{R^{\prime}}}$. Let $\left(a, a^{\prime}\right)\left(b, b^{\prime}\right) \in I \times R^{\prime}$ for $\left(a, a^{\prime}\right),\left(b, b^{\prime}\right) \in R \times R^{\prime}$. Then $a b \in I$ which implies $s a \in \sqrt{0_{R}}$ or $s b \in I$. Hence, we have either $\left(s, s^{\prime}\right)\left(a, a^{\prime}\right) \in \sqrt{0_{R}} \times \sqrt{0_{R^{\prime}}}$ or $\left(s, s^{\prime}\right)\left(b, b^{\prime}\right) \in I \times R^{\prime}$. Therefore, $\left(s, s^{\prime}\right)$ is an $S \times S^{\prime}$-element of $I \times R^{\prime}$ as needed.
(2) Similar to (1).

The assumptions $S^{\prime} \cap \sqrt{0_{R^{\prime}}} \neq \phi$ and $S \cap \sqrt{0_{R}} \neq \phi$ in Proposition 14 are crucial. Indeed, let $R=R^{\prime}=\mathbb{Z}_{12}, S=S^{\prime}=\{\overline{1}, \overline{3}, \overline{9}\}$ and $I=<\overline{4}>$. It is shown in Example 1 that I is an S-n-ideal of R while $I \times R^{\prime}$ is not an $\left(S \times S^{\prime}\right)$-n-ideal of $R \times R^{\prime}$ as $(\overline{2}, \overline{1})(\overline{2}, \overline{1}) \in I \times R^{\prime}$ but for all $\left(s, s^{\prime}\right) \in S \times S$, neither $\left(s, s^{\prime}\right)(\overline{2}, \overline{1}) \in I \times R^{\prime}$ nor $\left(s, s^{\prime}\right)(\overline{2}, \overline{1}) \in \sqrt{0_{R \times R^{\prime}}}$.

Remark 1. Let S and S^{\prime} be multiplicatively closed subsets of the rings R and R^{\prime}, respectively. If I and I^{\prime} are proper ideals of R and R^{\prime} disjoint with S, S^{\prime}, respectively, then $I \times I^{\prime}$ is not an $\left(S \times S^{\prime}\right)$-n-ideal of $R \times R^{\prime}$.
Proof. First, note that $S \cap \sqrt{0_{R}}=S^{\prime} \cap \sqrt{0_{R^{\prime}}}=\emptyset$. Assume on the contrary that $I \times I^{\prime}$ is an $\left(S \times S^{\prime}\right)$-n-ideal of $R \times R^{\prime}$ and $\left(s, s^{\prime}\right)$ is an $\left(S \times S^{\prime}\right)$-element of $I \times I^{\prime}$. Since $(1,0)(0,1) \in I \times I^{\prime}$, we conclude either $\left(s, s^{\prime}\right)(1,0) \in \sqrt{0_{R}} \times \sqrt{0_{R^{\prime}}}$ or $\left(s, s^{\prime}\right)(0,1) \in$ $I \times I^{\prime}$ which implies $s \in \sqrt{0_{R}}$ or $s^{\prime} \in I^{\prime}$, a contradiction.

Proposition 15. Let R and R^{\prime} be two rings, S and S^{\prime} be multiplicatively closed subsets of R and R^{\prime}, respectively. If I and I^{\prime} are proper ideals of R, R^{\prime}, respectively then $I \times I^{\prime}$ is an ($S \times S^{\prime}$)-n-ideal of $R \times R^{\prime}$ if one of the following statements holds.
(1) I is an S-n-ideal of R and $S^{\prime} \cap \sqrt{0_{R^{\prime}}} \neq \phi$.
(2) I^{\prime} is an S^{\prime} - n-ideal of R^{\prime} and $S \cap \sqrt{0_{R}} \neq \phi$.

Proof. Clearly $\left(I \times I^{\prime}\right) \cap\left(S \times S^{\prime}\right)=\emptyset$ if and only if $I \cap S=\emptyset$ or $I^{\prime} \cap S^{\prime}=\emptyset$. Suppose I is an S - n-ideal of R and $S^{\prime} \cap \sqrt{0_{R^{\prime}}} \neq \phi$. Then $I \cap S=\emptyset$ and $0_{R^{\prime}} \in I^{\prime} \cap S^{\prime} \neq \emptyset$. Choose an S-element s of I and let $\left(a, a^{\prime}\right)\left(b, b^{\prime}\right) \in I \times I^{\prime}$ for $\left(a, a^{\prime}\right),\left(b, b^{\prime}\right) \in R \times R^{\prime}$. Then $a b \in I$ which implies $s a \in \sqrt{0_{R}}$ or $s b \in I$. Hence, we have either $(s, 0)\left(a, a^{\prime}\right) \in$ $\sqrt{0_{R}} \times \sqrt{0_{R^{\prime}}}$ or $(s, 0)\left(b, b^{\prime}\right) \in I \times I^{\prime}$. Therefore, $(s, 0)$ is an $S \times S^{\prime}$-element of $I \times I^{\prime}$. Similarly, if I^{\prime} is an S^{\prime} - n-ideal of R^{\prime} and $S \cap \sqrt{0_{R}} \neq \phi$, then also $I \times I^{\prime}$ is an $\left(S \times S^{\prime}\right)$-n-ideal of $R \times R^{\prime}$.

3. S - n-Ideals of Idealizations and Amalgamations

Recall that the idealization of an R-module M denoted by $R(+) M$ is the commutative ring $R \times M$ with coordinate-wise addition and multiplication defined as $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$. For an ideal I of R and a submodule N of $M, I(+) N$ is an ideal of $R(+) M$ if and only if $I M \subseteq N$. It is well known that if $I(+) N$ is an ideal of $R(+) M$, then $\sqrt{I(+) N}=\sqrt{I}(+) M$ and in particular, $\sqrt{0_{R(+) M}}=\sqrt{0}(+) M$. If S is a multiplicatively closed subset of R, then clearly the sets $S(+) M=\{(s, m): s \in S, m \in M\}$ and $S(+) 0=\{(s, 0): s \in S\}$ are multiplicatively closed subsets of the ring $R(+) M$.

Next, we determine the relation between S - n-ideals of R and $S(+) M$ - n-ideals of the $R(+) M$.

Proposition 16. Let N be a submodule of an R-module M, S be a multiplicatively closed subset of R and I be an ideal of R where $I M \subseteq N$. If $I(+) N$ is an $S(+) M$ -n-ideal of $R(+) M$, then I is an S-n-ideal of R.

Proof. Clearly, $S \cap I=\phi$. Choose an $S(+) M$-element (s, m) of $I(+) N$ and let $a, b \in R$ such that $a b \in I$. Then $(a, 0)(b, 0) \in I(+) N$ and so $(s, m)(a, 0) \in \sqrt{0}(+) M$ or $(s, m)(b, 0) \in I(+) N$. Hence, $s a \in \sqrt{0}$ or $s b \in I$ and I is an S-n-ideal of R

Proposition 17. Let S be a multiplicatively closed subset of a ring R, I be an ideal of R disjoint with S and M be an R-module. The following are equivalent.
(1) I is an S - n-ideal of R.
(2) $I(+) M$ is an $S(+) 0-n$-ideal of $R(+) M$.
(3) $I(+) M$ is an $S(+) M$-n-ideal of $R(+) M$.

Proof. (1) $\Rightarrow(2)$. Suppose I is an S - n-ideal of R, s is an S-element of I and note that $S(+) 0 \cap I(+) M=\phi$. Choose $(s, 0) \in S(+) 0$ and let $\left(a, m_{1}\right),\left(b, m_{2}\right) \in R(+) M$ such that $\left(a, m_{1}\right)\left(b, m_{2}\right) \in I(+) M$. Then $a b \in I$ and so either $s a \in \sqrt{0}$ or $s b \in I$. It follows that $(s, 0)\left(a, m_{1}\right) \in \sqrt{0}(+) M=\sqrt{0_{R(+) M}}$ or $(s, 0)\left(b, m_{2}\right) \in I(+) M$. Thus, $I(+) M$ is an $S(+) 0-n$-ideal of $R(+) M$.
$(2) \Rightarrow(3)$. Clear since $S(+) 0 \subseteq S(+) M$.
$(3) \Rightarrow(1)$. Proposition 16 .
Remark 2. The converse of Proposition 16 is not true in general. For example, if $S=\{1,-1\}$, then 0 is an S-n-ideal of \mathbb{Z} but $0(+) \overline{0}$ is not an $\left(S(+) \mathbb{Z}_{6}\right)$-n-ideal
of $\mathbb{Z}(+) \mathbb{Z}_{6}$. For example, $(2, \overline{0})(0, \overline{3}) \in 0(+) \overline{0}$ but clearly $(s, m)(2, \overline{0}) \notin \sqrt{0}(+) \mathbb{Z}_{6}=$ $\sqrt{0_{\mathbb{Z}(+) \mathbb{Z}_{6}}}$ and $(s, m)(0, \overline{3}) \notin 0(+) \overline{0}$ for all $(s, m) \in S(+) \mathbb{Z}_{6}$.

Let R and R^{\prime} be two rings, J be an ideal of R^{\prime} and $f: R \rightarrow R^{\prime}$ be a ring homomorphism. The set $R \bowtie^{f} J=\{(r, f(r)+j): r \in R, j \in J\}$ is a subring of $R \times R^{\prime}$ called the amalgamation of R and R^{\prime} along J with respect to f. In particular, if $I d_{R}: R \rightarrow R$ is the identity homomorphism on R, then $R \bowtie J=R \bowtie^{I d_{R}} J=$ $\{(r, r+j): r \in R, j \in J\}$ is the amalgamated duplication of a ring along an ideal J. Many properties of this ring have been investigated and analyzed over the last two decades, see for example 9,10 .

Let I be an ideal of R and K be an ideal of $f(R)+J$. Then $I \bowtie^{f} J=$ $\{(i, f(i)+j): i \in I, j \in J\}$ and $\bar{K}^{f}=\{(a, f(a)+j): a \in R, j \in J, f(a)+j \in K\}$ are ideals of $R \bowtie^{f} J, 10$. For a multiplicatively closed subset S of R, one can easily verify that $S \bowtie^{f} J=\{(s, f(s)+j): s \in S, j \in J\}$ and $W=\{(s, f(s)): s \in S\}$ are multiplicatively closed subsets of $R \bowtie^{f} J$. If $J \subseteq \sqrt{0_{R^{\prime}}}$, then one can easily see that $\sqrt{0_{R \bowtie f} J}=\sqrt{0_{R}} \bowtie^{f} J$.

Next, we determine when the ideal $I \bowtie^{f} J$ is $\left(S \bowtie^{f} J\right)$-n-ideal in $R \bowtie^{f} J$.
Theorem 5. Consider the amalgamation of rings R and R^{\prime} along the ideals J of R^{\prime} with respect to a homomorphism f. Let S be a multiplicatively closed subset of R and I be an ideal of R disjoint with S. Consider the following statements:
(1) $I \bowtie^{f} J$ is a W-n-ideal of $R \bowtie^{f} J$.
(2) $I \bowtie^{f} J$ is a $\left(S \bowtie^{f} J\right)$-n-ideal of $R \bowtie^{f} J$.
(3) I is a S-n-ideal of R.

Then $(1) \Rightarrow(2) \Rightarrow(3)$. Moreover, if $J \subseteq \sqrt{0_{R^{\prime}}}$, then the statements are equivalent.

Proof. (1) \Rightarrow (2). Clear, as $W \subseteq S \bowtie^{f} J$.
$(2) \Rightarrow(3)$. First note that $\left(S \bowtie^{f} J\right) \cap\left(I \bowtie^{f} J\right)=\emptyset$ if and only if $S \cap I=\emptyset$. Suppose $I \bowtie^{f} J$ is an $\left(S \bowtie^{f} J\right)$-n-ideal of $R \bowtie^{f} J$. Choose an $\left(S \bowtie^{f} J\right)$-element $(s, f(s))$ of $I \bowtie^{f} J$. Let $a, b \in R$ such that $a b \in I$ and $s a \notin \sqrt{0_{R}}$. Then $(a, f(a))(b, f(b)) \in$ $I \bowtie^{f} J$ and clearly $(s, f(s))(a, f(a)) \notin \sqrt{0_{R \bowtie^{f} J}}$. Hence, $(s, f(s))(b, f(b)) \in I \bowtie^{f} J$ and so $s b \in I$. Thus, s is an S-element of I and I is an S - n-ideal of R.

Now, suppose $J \subseteq \sqrt{0_{R^{\prime}}}$. We prove $(3) \Rightarrow(1)$. Suppose s is an S-element of I and let $\left(a, f(a)+j_{1}\right)\left(b, f(b)+j_{2}\right)=\left(a b,\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right)\right) \in I \bowtie^{f} J$ for $\left(a, f(a)+j_{1}\right),\left(b, f(b)+j_{1}\right) \in R \bowtie^{f} J$. If $(s, f(s))\left(a, f(a)+j_{1}\right) \notin \sqrt{0_{R \bowtie^{f} J}}=$ $\sqrt{0_{R}} \bowtie^{f} J$, then $s a \notin \sqrt{0_{R}}$. Since $a b \in I$, we conclude that $s b \in I$ and so $(s, f(s))\left(b, f(b)+j_{2}\right) \in I \bowtie^{f} J$. Thus, $(s, f(s))$ is a W-element of $I \bowtie^{f} J$ and $I \bowtie^{f} J$ is a W - n-ideal of $R \bowtie^{f} J$.

Corollary 5. Consider the amalgamation of rings R and R^{\prime} along the ideal $J \subseteq$ $\sqrt{0_{R^{\prime}}}$ of R^{\prime} with respect to a homomorphism f. Let S be a multiplicatively closed subset of R. The $\left(S \bowtie^{f} J\right)$-n-ideals of $R \bowtie^{f} J$ containing $\{0\} \times J$ are of the form $I \bowtie^{f} J$ where I is a S-n-ideal of R.

Proof. From Theorem 5, $I \bowtie^{f} J$ is a $\left(S \bowtie^{f} J\right)$ - n-ideal of $R \bowtie^{f} J$ for any S - n-ideal I of R. Let K be a $\left(S \bowtie^{f} J\right)$-n-ideal of $R \bowtie^{f} J$ containing $\{0\} \times J$. Consider the surjective homomorphism $\varphi: R \bowtie^{f} J \rightarrow R$ defined by $\varphi(a, f(a)+j)=a$ for all $(a, f(a)+j) \in R \bowtie^{f} J$. Since $\operatorname{Ker}(\varphi)=\{0\} \times J \subseteq K, I:=\varphi(K)$ is a S-n-ideal of R by Proposition 12 Since $\{0\} \times J \subseteq K$, we conclude that $K=I \bowtie^{f} J$.

Let T be a multiplicatively closed subset of R^{\prime}. Then clearly, the set $\bar{T}^{f}=$ $\{(s, f(s)+j): s \in R, j \in J, f(s)+j \in T\}$ is a multiplicatively closed subset of $R \bowtie^{f} J$.

Theorem 6. Consider the amalgamation of rings R and R^{\prime} along the ideals J of R^{\prime} with respect to an epimorphism f. Let K be an ideal of R^{\prime} and T be a multiplicatively closed subset of R^{\prime} disjoint with K. If \bar{K}^{f} is a $\bar{T}^{f}-n$-ideal of $R \bowtie^{f} J$, then K is a T-n-ideal of R^{\prime}. The converse is true if $J \subseteq \sqrt{0_{R^{\prime}}}$ and $\operatorname{Ker}(f) \subseteq \sqrt{0_{R}}$.

Proof. First, note that $T \cap K=\phi$ if and only if $\bar{T}^{f} \cap \bar{K}^{f}=\phi$. Suppose \bar{K}^{f} is a \bar{T}^{f} - n-ideal of $R \bowtie^{f} J$ and $(s, f(s)+j)$ is some \bar{T}^{f}-element of \bar{K}^{f}. Let $a^{\prime}, b^{\prime} \in R^{\prime}$ such that $a^{\prime} b^{\prime} \in K$ and choose $a, b \in R$ where $f(a)=a^{\prime}$ and $b=f\left(b^{\prime}\right)$. Then $(a, f(a)),(b, f(b)) \in R \bowtie^{f} J$ with $(a, f(a))(b, f(b))=(a b, f(a b)) \in \bar{K}^{f}$. By assumption, we have either $(s, f(s)+j)(a, f(a))=(s a,(f(s)+j) f(a)) \in \sqrt{0_{R \bowtie \bowtie_{J}}}$ or $(s, f(s)+j)(b, f(b))=(s b,(f(s)+j) f(b)) \in \bar{K}^{f}$. Thus, $f(s)+j \in T$ and clearly, $(f(s)+j) f(a) \in \sqrt{0_{R^{\prime}}}$ or $(f(s)+j) f(b) \in K$. It follows that K is a T-n-ideal of R^{\prime}. Now, suppose K is a T - n-ideal of $R^{\prime}, t=f(s)$ is a T-element of $K, J \subseteq \sqrt{0_{R^{\prime}}}$ and $\operatorname{Ker}(f) \subseteq \sqrt{0_{R}}$. Let $\left(a, f(a)+j_{1}\right)\left(b, f(b)+j_{2}\right)=\left(a b,\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right)\right) \in \bar{K}^{f}$ for $\left(a, f(a)+j_{1}\right),\left(b, f(b)+j_{2}\right) \in R \bowtie^{f} J$. Then $\left(f(a)+j_{1}\right)\left(f(b)+j_{2}\right) \in K$ and so $f(s)\left(f(a)+j_{1}\right) \in \sqrt{0_{R^{\prime}}}$ or $f(s)\left(f(b)+j_{2}\right) \in K$. Suppose $f(s)\left(f(a)+j_{1}\right) \in \sqrt{0_{R^{\prime}}}$. Since $J \subseteq \sqrt{0_{R^{\prime}}}$, then $f(s a) \in \sqrt{0_{R^{\prime}}}$ and so $(s a)^{m} \in \operatorname{Ker}(f) \subseteq \sqrt{0_{R}}$ for some integer m. Hence, $s a \in \sqrt{0_{R}}$ and $(s, f(s))\left(a, f(a)+j_{1}\right) \in \sqrt{0_{R \bowtie^{f} J}}$. If $f(s)\left(f(b)+j_{2}\right) \in K$, then clearly, $(s, f(s))\left(b, f(b)+j_{2}\right) \in \bar{K}^{f}$. Therefore, \bar{K}^{f} is a $\bar{T}^{f}-n$-ideal of $R \bowtie^{f} J$ as needed.

In particular, $S \times f(S)$ is a multiplicatively closed subset of $R \bowtie^{f} J$ for any multiplicatively closed subset S of R. Hence, we have the following corollary of Theorem 6.

Corollary 6. Let R, R^{\prime}, J, S and f be as in Theorem 5. Let K be an ideal of R^{\prime} and $T=f(S)$. Consider the following statements.
(1) \bar{K}^{f} is a $(S \times T)$-n-ideal of $R \bowtie^{f} J$.
(2) \bar{K}^{f} is a \bar{T}^{f}-n-ideal of $R \bowtie^{f} J$.
(3) K is a T-n-ideal of R.

Then $(1) \Rightarrow(2) \Rightarrow$ (3). Moreover, if $J \subseteq \sqrt{0_{R^{\prime}}}$ and $\operatorname{Ker}(f) \subseteq \sqrt{0_{R}}$, then the statements are equivalent.

We note that if $J \nsubseteq \sqrt{0_{R^{\prime}}}$, then the equivalences in Theorems 5 and 6 are not true in general.

Example 5. Let $R=\mathbb{Z}, I=\langle 0\rangle=K, J=\langle 3\rangle \nsubseteq \sqrt{0_{\mathbb{Z}}}$ and $S=\{1\}=T$. We have $I \bowtie J=\{(0,3 n): n \in \mathbb{Z}\}, \bar{K}=\{(3 n, 0): n \in \mathbb{Z}\}, S \bowtie J=\{(1,3 n+1): n \in \mathbb{Z}\}$, $\bar{T}=\{(1-3 n, 1): n \in \mathbb{Z}\}$ and $\sqrt{0_{R \bowtie J}}=\{(0,0)\}$.
(1) I is a S-n-ideal of R but $I \bowtie J$ is not a $(S \bowtie J)$ - n-ideal of $R \bowtie J$. Indeed, we have $(0,3),(1,4) \in R \bowtie J$ with $(0,3)(1,4)=(0,12) \in I \bowtie J$. But $(1,3 n+1)(0,3) \notin \sqrt{0_{R \bowtie J}}$ and $(1,3 n+1)(1,4) \notin I \bowtie J$ for all $n \in \mathbb{Z}$.
(2) K is a T - n-ideal of R but \bar{K} is not a \bar{T} - n-ideal of $R \bowtie J$. For example, $(-3,0),(-4,-1) \in R \bowtie J$ with $(-3,0)(-4,-1)=(12,0) \in \bar{K}$. However, $(1-3 n, 1)(-3,0) \notin \sqrt{0_{R \bowtie J}}$ and $(1-3 n, 1)(-4,-1) \notin \bar{K}$ for all $n \in \mathbb{Z}$.
By taking $S=\{1\}$ in Theorem 5 and Corollary 6, we get the following particular case.

Corollary 7. Let R, R^{\prime}, J, I, K and f be as in Theorems 5 and 6.
(1) If $I \bowtie^{f} J$ is an n-ideal of $R \bowtie^{f} J$, then I is an n-ideal of R. Moreover, the converse is true if $J \subseteq \sqrt{0_{R^{\prime}}}$.
(2) If \bar{K}^{f} is an n-ideal of $R \bowtie^{f} J$, then K is an n-ideal of R^{\prime}. Moreover, the converse is true if $J \subseteq \sqrt{0_{R^{\prime}}}$ and $\operatorname{Ker}(f) \subseteq \sqrt{0_{R}}$.
Corollary 8. Let $R, R^{\prime}, I, J, K, S$ and T be as in Theorems 5 and 6.
(1) If $I \bowtie J$ is a $(S \bowtie J)$ - n-ideal of $R \bowtie J$, then I is a S - n-ideal of R. Moreover, the converse is true if $J \subseteq \sqrt{0_{R^{\prime}}}$.
(2) If \bar{K} is a \bar{T} - n-ideal of $R \bowtie J$, then K is a T - n-ideal of R^{\prime}. The converse is true if $J \subseteq \sqrt{0_{R^{\prime}}}$ and $\operatorname{Ker}(f) \subseteq \sqrt{0_{R}}$.
As a generalization of S - n-ideals to modules, in the following we define the notion of $S-n$-submodules which may inspire the reader for the other work.

Definition 2. Let S be a multiplicatively closed subset of a ring R, and let M be a unital R-module. A submodule N of M with $\left(N:_{R} M\right) \cap S=\emptyset$ is called an S $-n$-submodule if there is an $s \in S$ such that am $\in N$ implies sa $\in \sqrt{\left(0:_{R} M\right)}$ or sm $\in N$ for all $a \in R$ and $m \in M$.

Author Contribution Statements Both of the authors contributed equally to this manuscript and both reviewed the final manuscript.

Declaration of Competing Interests We declare that the authors have no potential conflict of interest (financial or non-financial).

References

[1] Almahdi, F. A., Bouba, E. M., Tamekkante, M. On weakly S-prime ideals of commutative rings, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat., 29(2) (2021), 173-186. https://doi.org/10.2478/auom-2021-0024
[2] Anderson, D. F., Badawi, A., On n-absorbing ideals of commutative rings, Commun. Algebra, $39(5)(2011), 1646-1672$. https://doi.org/10.1080/00927871003738998
[3] Anderson, D. D., Bataineh, M., Generalizations of prime ideals, Commun. Algebra, 36(2) (2008), 686-696. https://doi.org/10.1080/00927870701724177
[4] Anderson, D., Smith, E., Weakly prime ideals, Houst. J. Math., 29(4) (2003), 831-840.
[5] Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429. https://doi.org/10.1017/S0004972700039344
[6] Darani, A. Y., Generalizations of primary ideals in commutative rings, Novi Sad. J. Math., 42 (2012), 27-35.
[7] Călugăreanu, G., UN-rings. J. Algebra its Appl., 15(10) (2016), 1650182. https://doi.org/10.1142/S0219498816501826
[8] D'Anna, M., Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra its Appl., 6(3) (2007), 443-459. https://doi.org/10.1142/S0219498807002326
[9] D'Anna, M., Fontana, M., The amalgamated duplication of a ring along a multiplicativecanonical ideal, Ark. Mat., 45(2) (2007), 241-252. https://doi.org/10.1007/s11512-006-0038-1
[10] D'Anna, M., Finocchiaro, C. A., Fontana, M., Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra, 214 (2010), 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
[11] Gilmer, R. W., Multiplicative Ideal Theory, M. Dekker, 1972.
[12] Hamed, A., Malek, A., S-prime ideals of a commutative ring, Beitr. Algebra Geom., 61(3) (2020), 533-542. https://doi.org/10.1007/s13366-019-00476-5
[13] Khashan, H. A., Bani-Ata, A. B., J-ideals of commutative rings, Int. Electron. J. Algebra, 29 (2021), 148-164. https://doi.org/10.24330/ieja. 852139
[14] Mohamadian, R., r-ideals in commutative rings, Turkish J. Math., 39(5) (2015), 733-749. https://doi.org/10.3906/mat-1503-35
[15] Tekir, U., Koc, S., Oral, K. H., n-ideals of commutative rings, Filomat, 31(10) (2017), 29332941. https://doi.org/10.2298/FIL1710933T
[16] Visweswaran, S., Some results on S-primary ideals of a commutative ring, Beitr. Algebra Geom., 63(8) (2021), 1-20. https://doi.org/10.1007/s13366-021-00580-5
[17] Yassine, A., Nikmehr, M. J., Nikandish, R., On 1-absorbing prime ideals of commutative rings, J. Algebra its Appl., 20(10) (2021), 2150175. https://doi.org/10.1142/S0219498821501759.
[18] Yetkin Celikel, E., Generalizations of n-ideals of Commutative Rings, J. Sci. Technol., 12(2) (2019), 650-657. https://doi.org/10.18185/erzifbed. 471609
http://communications.science.ankara.edu.tr

BERTRAND PARTNER P-TRAJECTORIES IN THE EUCLIDEAN 3-SPACE E^{3}

Zehra İŞBİLíR ${ }^{1}$, Kahraman Esen ÖZEN ${ }^{2}$ and Murat TOSUN ${ }^{3}$
${ }^{1}$ Department of Mathematics, Düzce University, Düzce, TÜRKIYE
${ }^{2}$ Department of Mathematics, Çankırı Karatekin University, Çankırı, TÜRKİYE
${ }^{3}$ Department of Mathematics, Sakarya University, Sakarya, TÜRKİYE

Abstract

The concept of a pair of curves, called as Bertrand partner curves, was introduced by Bertrand in 1850. Bertrand partner curves have been studied widely in the literature from past to present. In this study, we take into account of the concept of Bertrand partner trajectories according to Positional Adapted Frame (PAF) for the particles moving in 3-dimensional Euclidean space. Some characterizations are given for these trajectories with the aid of the PAF elements. Then, we obtain some special cases of these trajectories. Moreover, we provide a numerical example.

1. Introduction

The theory of curves is one of the extensive fields of study for especially differential geometry, and in the existing literature, a great number of studies have been done because of the fact that this topic is attached to the attention of a great deal of researchers. This theory investigates the geometric property of the plane and space curves by means of calculus methods. The moving frames can be seen most important structures in analyzing the calculus of curves.

Until today, many authors have been used the moving frames to investigate many special curves. For example spherical curves, Mannheim curve couple, Bertrand curve couple, involute-evolute curve couple are discussed by using the moving frames. One of these moving frames called as Positional Adapted Frame (PAF) was introduced by Özen and Tosun in 2021. The authors defined this moving

[^15]frame for the trajectories having non-vanishing angular momentum in Euclidean 3space 15. There can be found some other studies 11,16, 19] which are performed by considering this frame.

Bertrand curve couple is one of the most popular special type curve couples. The principal normal line of one of these partner curves coincides with the principal normal line of the other partner curve at the corresponding points of these curves. This definition was given by French mathematician Joseph Louis François Bertrand in 1850 1. In this study, Bertrand also characterized this curve with respect to its curvature and torsion. By following the steps similar to those of Bertrand, this topic was expanded to different moving frames. For example, the studies 21,14 and 77 expanded this topic to the type-2 Bishop frame, Darboux frame and qframe, respectively. Also, many mathematicians presented various studies about the concept of Bertrand curve couple with different perspectives. Some of them can be found in $3,10,12,17,20$. In this study, we will consider this topic with respect to the Positional Adapted Frame.

This study is organized as follows. In Section 2 we review some required information to understand the ensuing section. In Section 3, we deal with Bertrand partner trajectories according to Positional Adapted Frame in 3-dimensional Euclidean space. We call these trajectories as Bertrand partner P-trajectories. We examine the relationships between the PAF elements of the aforesaid partners. Also, we give the relations between the Serret-Frenet basis vectors of Bertrand partner P-trajectories. Moreover, we get the necessary conditions in terms of the PAF curvatures of other to be an osculating curve for one of these partners. Lastly, we provide a numerical example so that the readers can visualize the Bertrand partner P-trajectories.

2. Basic Concepts

In this section, we have reviewed some required and fundamental concepts to disambiguate the ensuing section of the paper.

In Euclidean 3-space E^{3}, let $\boldsymbol{U}=\left(u_{1}, u_{2}, u_{3}\right), \boldsymbol{V}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ be given. The standard dot product of these vectors and the norm of \boldsymbol{U} are given as $\langle\boldsymbol{U}, \boldsymbol{V}\rangle=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$ and $\|\boldsymbol{U}\|=\sqrt{\langle\boldsymbol{U}, \boldsymbol{U}\rangle}$, respectively. A differentiable curve $\alpha=\alpha(s): I \subset \mathbb{R} \rightarrow E^{3}$ is called as a unit speed curve if $\left\|\frac{d \alpha}{d s}\right\|=1$ holds for each $s \in I$. In that case, s is called as arc-length parameter of the curve α. If the derivative of a differentiable curve never vanishes along this curve, it is said to be a regular curve. Any regular curve always has a parameterization such that it will be a unit speed curve 18 . Note that the symbol prime "" will be used to indicate the differentiation according to the arc-length parameter s in the rest of the paper.

Let us take into consideration a point particle P of a constant mass moves on a unit speed regular curve $\alpha=\alpha(s)$. The base vectors of the Serret-Frenet frame $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ of α are defined by the equations $\mathbf{T}(s)=\alpha^{\prime}(s)$,
$\mathbf{N}(s)=\frac{\alpha^{\prime \prime}(s)}{\left\|\alpha^{\prime \prime}(s)\right\|}, \mathbf{B}(s)=\mathbf{T}(s) \wedge \mathbf{N}(s)$. The base vectors $\mathbf{T}(s), \mathbf{N}(s)$ and $\mathbf{B}(s)$ are called as unit tangent vector, principal normal vector and binormal vector, respectively. The Serret-Frenet derivative formulas are expressed as in the following:

$$
\left(\begin{array}{l}
\mathbf{T}^{\prime}(s) \tag{1}\\
\mathbf{N}^{\prime}(s) \\
\mathbf{B}^{\prime}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)
$$

where $\kappa(s)=\left\|\mathbf{T}^{\prime}(s)\right\|$ is the curvature and $\tau(s)=-\left\langle\mathbf{B}^{\prime}(s), \mathbf{N}(s)\right\rangle$ is the torsion 18. We must emphasize that the curvature κ never vanishes for the curves we will consider in this paper.

On the other hand, it is well known that the vector product of the position vector $\mathbf{x}=\langle\alpha(s), \mathbf{T}(s)\rangle \mathbf{T}(s)+\langle\alpha(s), \mathbf{N}(s)\rangle \mathbf{N}(s)+\langle\alpha(s), \mathbf{B}(s)\rangle \mathbf{B}(s)$ and the linear momentum vector $\mathbf{p}(t)=m\left(\frac{d s}{d t}\right) \mathbf{T}(s)$ of the particle P yields the angular momentum vector of P about the origin as $\mathbf{H}^{O}=m\langle\alpha(s), \mathbf{B}(s)\rangle\left(\frac{d s}{d t}\right) \mathbf{N}(s)-$ $m\langle\alpha(s), \mathbf{N}(s)\rangle\left(\frac{d s}{d t}\right) \mathbf{B}(s)$. Here m and t denote the constant mass of P and the time 4,9 . Let this vector not equal to zero vector during the motion of P. Making this supposition assures that the coefficient functions $\langle\alpha(s), \mathbf{N}(s)\rangle$ and $\langle\alpha(s), \mathbf{B}(s)\rangle$ of the position vector \mathbf{x} do not equal to zero at the same time. Then, one can easily say that the tangent line of $\alpha=\alpha(s)$ does not pass through the origin along the trajectory of P. Take into account of the vector whose initial point is the foot of the perpendicular (from origin to instantaneous rectifying plane $S p\{\mathbf{T}(s), \mathbf{B}(s)\}$) and endpoint is the foot of the perpendicular (from origin to instantaneous osculating plane $S p\{\mathbf{T}(s), \mathbf{N}(s)\})$. The unit vector in direction of the equivalent of the aforementioned vector at the point $\alpha(s)$ determines the PAF basis vector $\mathbf{Y}(s)$. The other PAF basis vector $\mathbf{M}(s)$ is obtained by the vector product $\mathbf{Y}(s) \wedge \mathbf{T}(s)$. Consequently, the vectors

$$
\begin{aligned}
\mathbf{T}(s) & =\mathbf{T}(s), \\
\mathbf{M}(s) & =\frac{\langle\alpha(s), \mathbf{B}(s)\rangle}{\sqrt{\langle\alpha(s), \mathbf{N}(s)\rangle^{2}+\langle\alpha(s), \mathbf{B}(s)\rangle^{2}}} \mathbf{N}(s)+\frac{\langle\alpha(s), \mathbf{N}(s)\rangle}{\sqrt{\langle\alpha(s), \mathbf{N}(s)\rangle^{2}+\langle\alpha(s), \mathbf{B}(s)\rangle^{2}}} \mathbf{B}(s), \\
\mathbf{Y}(s) & =\frac{\langle-\alpha(s), \mathbf{N}(s)\rangle}{\sqrt{\langle\alpha(s), \mathbf{N}(s)\rangle^{2}+\langle\alpha(s), \mathbf{B}(s)\rangle^{2}}} \mathbf{N}(s)+\frac{\langle\alpha(s), \mathbf{B}(s)\rangle}{\sqrt{\langle\alpha(s), \mathbf{N}(s)\rangle^{2}+\langle\alpha(s), \mathbf{B}(s)\rangle^{2}}} \mathbf{B}(s),
\end{aligned}
$$

form the Positional Adapted Frame $\{\mathbf{T}(s), \mathbf{M}(s), \mathbf{Y}(s)\}$ (see 15 for more details on PAF).

The relation between the Serret-Frenet frame and PAF is as in the following:

$$
\left(\begin{array}{c}
\mathbf{T}(s) \tag{2}\\
\mathbf{M}(s) \\
\mathbf{Y}(s)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Omega(s) & -\sin \Omega(s) \\
0 & \sin \Omega(s) & \cos \Omega(s)
\end{array}\right)\left(\begin{array}{l}
\mathbf{T}(s) \\
\mathbf{N}(s) \\
\mathbf{B}(s)
\end{array}\right)
$$

where $\Omega(s)$ is the angle between the vector $\mathbf{B}(s)$ and the vector $\mathbf{Y}(s)$ which is positively oriented from the vector $\mathbf{B}(s)$ to vector $\mathbf{Y}(s)$. On the other hand, the
derivative formulas of PAF are presented as follows 15:

$$
\left(\begin{array}{c}
\mathbf{T}^{\prime}(s) \tag{3}\\
\mathbf{M}^{\prime}(s) \\
\mathbf{Y}^{\prime}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1}(s) & k_{2}(s) \\
-k_{1}(s) & 0 & k_{3}(s) \\
-k_{2}(s) & -k_{3}(s) & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{T}(s) \\
\mathbf{M}(s) \\
\mathbf{Y}(s)
\end{array}\right)
$$

where

$$
\begin{aligned}
k_{1}(s) & =\kappa(s) \cos \Omega(s) \\
k_{2}(s) & =\kappa(s) \sin \Omega(s) \\
k_{3}(s) & =\tau(s)-\Omega^{\prime}(s)
\end{aligned}
$$

Here, the rotation angle $\Omega(s)$ is determined by means of the following equation:

$$
\Omega(s)=\left\{\begin{aligned}
& \arctan \left(-\frac{\langle\alpha(s), \mathbf{N}(s)\rangle}{\langle\alpha(s), \mathbf{B}(s)\rangle}\right) \text { if }\langle\alpha(s), \mathbf{B}(s)\rangle>0, \\
& \arctan \left(-\frac{\langle\alpha(s), \mathbf{N}(s)\rangle}{\langle\alpha(s), \mathbf{B}(s)\rangle}\right)+\pi \text { if }\langle\alpha(s), \mathbf{B}(s)\rangle<0, \\
&-\frac{\pi}{2} \quad \text { if }\langle\alpha(s), \mathbf{B}(s)\rangle=0, \quad\langle\alpha(s), \mathbf{N}(s)\rangle>0, \\
& \frac{\pi}{2} \quad \text { if }\langle\alpha(s), \mathbf{B}(s)\rangle=0, \quad\langle\alpha(s), \mathbf{N}(s)\rangle<0 .
\end{aligned}\right.
$$

The elements of the set $\left\{\mathbf{T}(s), \mathbf{M}(s), \mathbf{Y}(s), k_{1}(s), k_{2}(s), k_{3}(s)\right\}$ are called as PAF apparatuses of $\alpha=\alpha(s) 15$.

Note that PAF is a generic adapted moving frame just like Bishop frame ${ }^{2}$, Darboux frame 6, B-Darboux frame [8] etc. Generic adapted moving frames are obtained from Serret-Frenet frame by a rotation (see 5 for more details on generic adapted moving frame). Since the analytical approach is used to determine the rotation angle in PAF, the rotation angle can be easily determined, while in many other moving frames, the determination of the angle is based on integral calculations. These calculations often cause difficulties for researchers. Also, PAF enables the researchers to study the kinematics of a moving particle and the differential geometry of this particle at the same time. Moreover, PAF contains information about the position vector of the moving particle. When viewed from this aspect, it is a useful tool for the researchers studying on kinematics and inverse kinematics.

Now we give the definition of the osculating curve in 3-dimensional Euclidean space since we will discuss this topic in the next section. A curve $\beta=\beta(s)$ is called as osculating curve if its position vector always lies in its osculating plane. One can find more details on this topic in 13 .

Theorem 1. 15 Let $\alpha=\alpha(s)$ be the unit speed parameterization of the trajectory. Then, α is an osculating curve if and only if $k_{1}=0$.

More details can be found in the studies 11, 15, 16, 19 for Positional Adapted Frame (PAF).

3. Bertrand Partner P-Trajectories

In this section, we introduce the Bertrand partner P-trajectories and give some characterizations of them. Furthermore, we provide an example in order to illustrate this topic.

Definition 1. Let Q and \breve{Q} be the moving point particles of constant masses in the Euclidean 3-space. Show the unit speed parameterization of the trajectories of Q and \breve{Q} with $\alpha=\alpha(s)$ and $\breve{\alpha}=\breve{\alpha}(\breve{s})$, respectively. Let the PAF apparatus of the trajectories α and $\breve{\alpha}$ be represented by $\left\{\mathbf{T}, \mathbf{M}, \mathbf{Y}, k_{1}, k_{2}, k_{3}\right\}$ and $\left\{\breve{\mathbf{T}}, \breve{\mathbf{M}}, \breve{\mathbf{Y}}, \breve{k_{1}}, \breve{k_{2}}, \breve{k_{3}}\right\}$, respectively. If the PAF base vector \mathbf{M} coincides with the PAF base vector $\breve{\mathbf{M}}$ at the corresponding points of the trajectories α and $\breve{\alpha}$, in this case α is said to be a Bertrand partner P-trajectory of $\breve{\alpha}$. Moreover, the pair $\{\alpha, \breve{\alpha}\}$ is called as a Bertrand P-pair.

Figure 1. Bertrand partner P-trajectories
According to the definition of Bertrand P-pair, we get the following matrix equation

$$
\left(\begin{array}{c}
\mathbf{T} \tag{4}\\
\mathbf{M} \\
\mathbf{Y}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & 0 & -\sin \phi \\
0 & 1 & 0 \\
\sin \phi & 0 & \cos \phi
\end{array}\right)\left(\begin{array}{c}
\breve{\mathbf{T}} \\
\breve{\mathbf{M}} \\
\breve{\mathbf{Y}}
\end{array}\right)
$$

where ϕ is the angle between the tangent vectors \mathbf{T} and $\breve{\mathbf{T}}$.
Theorem 2. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be any Bertrand P-pair in E^{3}. In that case, the distance between the corresponding points of α and $\breve{\alpha}$ is constant.

Proof. By the definition of Bertrand P-trajectories, we can write:

$$
\begin{equation*}
\alpha(s)=\breve{\alpha}(\breve{s})+\psi(\breve{s}) \breve{\mathbf{M}}(\breve{s}) \tag{5}
\end{equation*}
$$

where ψ is a real valued smooth function of \breve{s} (see Figure 1). By taking the derivative of the equation (5) with respect to \breve{s} and considering the PAF derivative formulas (3), we get:

$$
\begin{equation*}
\mathbf{T} \frac{d s}{d \breve{s}}=\left(1-\psi \breve{k_{1}}\right) \breve{\mathbf{T}}+\psi^{\prime} \breve{\mathbf{M}}+\psi \breve{k_{3}} \breve{\mathbf{Y}} . \tag{6}
\end{equation*}
$$

Since $\mathbf{T}, \breve{\mathbf{T}}$ and $\breve{\mathbf{Y}}$ are orthogonal to $\breve{\mathbf{M}}$, and also $\breve{\mathbf{M}}$ is a unit vector, we have $\psi^{\prime}=0$ with the help of the inner product. Therefore, ψ is a non-zero constant and the equation (6) becomes:

$$
\begin{equation*}
\mathbf{T} \frac{d s}{d \breve{s}}=\left(1-\psi \breve{k_{1}}\right) \breve{\mathbf{T}}+\psi \breve{k_{3}} \breve{\mathbf{Y}} . \tag{7}
\end{equation*}
$$

In the light of these results, the distance between the corresponding points of the trajectories can be given as:

$$
d(\alpha(s), \breve{\alpha}(\breve{s}))=\|\alpha(s)-\breve{\alpha}(\breve{s})\|=\|\psi \breve{\mathbf{M}}\|=|\psi| .
$$

Therefore, we can say that the distance between each corresponding points of α and $\breve{\alpha}$ is constant.

Theorem 3. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be any Bertrand P-pair in E^{3}. Then, the equation

$$
\frac{d}{d s}(\cos \phi)=k_{2}\langle\mathbf{Y}, \breve{\mathbf{T}}\rangle+\breve{k_{2}} \frac{d \breve{s}}{d s}\langle\mathbf{T}, \breve{\mathbf{Y}}\rangle
$$

is satisfied.
Proof. Since ϕ is the angle between the tangent vectors \mathbf{T} and $\breve{\mathbf{T}}$, one can easily write $\langle\mathbf{T}, \breve{\mathbf{T}}\rangle=\|\mathbf{T}\|\|\breve{\mathbf{T}}\| \cos \phi=\cos \phi$. Let us differentiate this equation with respect to s. Thus, we get:

$$
\begin{aligned}
\frac{d}{d s}(\cos \phi) & =\frac{d}{d s}\langle\mathbf{T}, \breve{\mathbf{T}}\rangle \\
& =\left\langle k_{1} \mathbf{M}+k_{2} \mathbf{Y}, \breve{\mathbf{T}}\right\rangle+\left\langle\mathbf{T},\left(\breve{k_{1}} \breve{\mathbf{M}}+\breve{k_{2}} \breve{\mathbf{Y}}\right) \frac{d \breve{s}}{d s}\right\rangle
\end{aligned}
$$

This equation gives us the desired result.
Corollary 1. The angles between the tangent vectors at the corresponding points of a Bertrand P-pair is generally not constant.

Theorem 4. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in E^{3}. Then, the following relations

$$
\left(\begin{array}{c}
\mathbf{T} \tag{8}\\
\mathbf{M} \\
\mathbf{Y}
\end{array}\right)=\left(\begin{array}{ccc}
\left(1-\psi \breve{k_{1}}\right) \frac{d \breve{s}}{d s} & 0 & \psi \breve{k_{3}} \frac{d \breve{s}}{d s} \\
0 & 1 & 0 \\
-\psi \breve{k_{3}} \frac{d \breve{s}}{d s} & 0 & \left(1-\psi \breve{k_{1}}\right) \frac{d \breve{s}}{d s}
\end{array}\right)\left(\begin{array}{c}
\breve{\mathbf{T}} \\
\breve{\mathbf{M}} \\
\breve{\mathbf{Y}}
\end{array}\right)
$$

are satisfied between the PAF vectors of α and $\breve{\alpha}$.
Proof. Suppose that $\{\alpha, \breve{\alpha}\}$ is a Bertrand P-pair in E^{3}. By using the equations (4) and (7), we get:

$$
\cos \phi \frac{d s}{d \breve{s}} \breve{\mathbf{T}}-\sin \phi \frac{d s}{d \breve{s}} \breve{\mathbf{Y}}=\left(1-\psi \breve{k_{1}}\right) \breve{\mathbf{T}}+\psi \breve{k_{3}} \breve{\mathbf{Y}} .
$$

The last equation gives us the following:

$$
\left\{\begin{array}{l}
\cos \phi=\left(1-\psi \breve{k_{1}}\right) \frac{d \breve{s}}{d s} \tag{9}\\
\sin \phi=-\psi \breve{k_{3}} \frac{d \breve{s}}{d s}
\end{array}\right.
$$

If we substitute the equation (9) in the equation (4), we obtain the desired result.

Corollary 2. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in E^{3}. Then, we have:

$$
\begin{equation*}
\tan \phi=\frac{-\psi \breve{k_{3}}}{1-\psi \breve{k_{1}}} \tag{10}
\end{equation*}
$$

where ϕ is the angle between \mathbf{T} and $\breve{\mathbf{T}}$.
Corollary 3. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in E^{3}. Then,

$$
\int \cos \phi d s+\psi \int \breve{k_{1}} d \breve{s}=\breve{s}+c_{1}
$$

where c_{1} denotes the integration constant.
Corollary 4. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in E^{3}. Then, the equality

$$
\int \sin \phi d s+\psi \int \breve{k_{3}} d \breve{s}=0
$$

holds.
Theorem 5. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in E^{3} and their Serret-Frenet apparatuses be $\{\mathbf{T}, \mathbf{N}, \mathbf{B}, \kappa, \tau\}$ and $\{\breve{\mathbf{T}}, \breve{\mathbf{N}}, \breve{\mathbf{B}}, \breve{\kappa}, \breve{\tau}\}$, respectively.

Then, the relations between the Serret-Frenet vectors of this pair are given as:

$$
\begin{aligned}
\breve{\mathbf{T}}= & \left(1-\psi \breve{k_{1}}\right) \frac{d \breve{s}}{d s} \mathbf{T}-\psi \breve{k_{3}} \sin \Omega \frac{d \breve{s}}{d s} \mathbf{N}-\psi \breve{k_{3}} \cos \Omega \frac{d \breve{s}}{d s} \mathbf{B} \\
\breve{\mathbf{N}}= & \psi \breve{k_{3}} \sin \breve{\Omega} \frac{d \breve{s}}{d s} \mathbf{T}+\left(\cos \breve{\Omega} \cos \Omega+\left(1-\psi \breve{k_{1}}\right) \sin \breve{\Omega} \sin \Omega \frac{d \breve{s}}{d s}\right) \mathbf{N} \\
& +\left(-\cos \breve{\Omega} \sin \Omega+\left(1-\psi \breve{k_{1}}\right) \sin \breve{\Omega} \cos \Omega \frac{d \breve{s}}{d s}\right) \mathbf{B} \\
\breve{\mathbf{B}}= & \psi \breve{k_{3}} \cos \breve{\Omega} \frac{d \breve{s}}{d s} \mathbf{T}+\left(-\sin \breve{\Omega} \cos \Omega+\left(1-\psi \breve{k_{1}}\right) \cos \breve{\Omega} \sin \Omega \frac{d \breve{s}}{d s}\right) \mathbf{N} \\
& +\left(\sin \breve{\Omega} \sin \Omega+\left(1-\psi \breve{k_{1}}\right) \cos \breve{\Omega} \cos \Omega \frac{d \breve{s}}{d s}\right) \mathbf{B}
\end{aligned}
$$

where Ω is the angle between the vectors \mathbf{B} and \mathbf{Y} and also, $\breve{\Omega}$ is the angle between the vectors $\breve{\mathbf{B}}$ and $\breve{\mathbf{Y}}$.

Proof. Using the equation (2), we can write:

$$
\left(\begin{array}{c}
\mathbf{T} \tag{11}\\
\mathbf{M} \\
\mathbf{Y}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Omega & -\sin \Omega \\
0 & \sin \Omega & \cos \Omega
\end{array}\right)\left(\begin{array}{l}
\mathbf{T} \\
\mathbf{N} \\
\mathbf{B}
\end{array}\right)
$$

and also

$$
\left(\begin{array}{c}
\breve{\mathbf{T}} \tag{12}\\
\breve{\mathbf{N}} \\
\breve{\mathbf{B}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \breve{\Omega} & \sin \breve{\Omega} \\
0 & -\sin \breve{\Omega} & \cos \breve{\Omega}
\end{array}\right)\left(\begin{array}{c}
\breve{\mathbf{T}} \\
\breve{\mathbf{M}} \\
\breve{\mathbf{Y}}
\end{array}\right) .
$$

On the other hand, by using the equation (8), we get:

$$
\left(\begin{array}{c}
\breve{\mathbf{T}} \tag{13}\\
\breve{\mathbf{M}} \\
\breve{\mathbf{Y}}
\end{array}\right)=\left(\begin{array}{ccc}
\left(1-\psi \breve{k_{1}}\right) \frac{d \breve{s}}{d s} & 0 & -\psi \breve{k_{3}} \frac{d \breve{s}}{d s} \\
0 & 1 & 0 \\
\psi \breve{k_{3}} \frac{d \breve{s}}{d s} & 0 & \left(1-\psi \breve{k_{1}}\right) \frac{d \breve{s}}{d s}
\end{array}\right)\left(\begin{array}{c}
\mathbf{T} \\
\mathbf{M} \\
\mathbf{Y}
\end{array}\right)
$$

If the equation (13) is substituted into the equation (12), then

$$
\left(\begin{array}{c}
\breve{\mathbf{T}} \tag{14}\\
\breve{\mathbf{N}} \\
\breve{\mathbf{B}}
\end{array}\right)=\left(\begin{array}{ccc}
\left(1-\psi \breve{k_{1}}\right) \frac{d \breve{s}}{d s} & 0 & -\psi \breve{k_{3}} \frac{d \breve{s}}{d s} \\
\psi \breve{k_{3}} \sin \breve{\Omega} \frac{d \breve{s}}{d s} & \cos \breve{\Omega} & \left(1-\psi \breve{k_{1}}\right) \sin \breve{\Omega} \frac{d \breve{s}}{d s} \\
\psi \breve{k_{3}} \cos \breve{\Omega} \frac{d \breve{s}}{d s} & -\sin \breve{\Omega} & \left(1-\psi \breve{k_{1}}\right) \cos \breve{\Omega} \frac{d \breve{s}}{d s}
\end{array}\right)\left(\begin{array}{c}
\mathbf{T} \\
\mathbf{M} \\
\mathbf{Y}
\end{array}\right)
$$

is found. By using the equation (11) in the equation (14), we complete the proof.
Theorem 6. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in E^{3}. Then, the following relations
(1) $k_{1}=\frac{\breve{k_{1}}-\psi{\breve{k_{1}}}^{2}-\psi{\breve{k_{3}}}^{2}}{1-2 \psi \breve{k_{1}}+\psi^{2}\left({\breve{k_{1}}}^{2}+{\breve{k_{3}}}^{2}\right)}$,
(2) $\breve{k_{1}}=\frac{k_{1}-\eta k_{1}^{2}-\eta k_{3}^{2}}{1-2 \eta k_{1}+\eta^{2}\left(k_{1}^{2}+k_{3}^{2}\right)}$,
are satisfied between $k_{1}, k_{3}, \breve{k_{1}}$ and $\breve{k_{3}}$. Here η is a constant satisfying $|\eta|=|\psi|$.
Proof. (1) Assume that $\{\alpha, \breve{\alpha}\}$ is a Bertrand P-pair in E^{3}. Via the equation (9) and the equality $\cos ^{2} \phi+\sin ^{2} \phi=1$, we get:

$$
\left(\frac{d \breve{s}}{d s}\right)^{2}\left(\left(1-\psi \breve{k_{1}}\right)^{2}+\psi^{2}{\breve{k_{3}}}^{2}\right)=1
$$

Hence, we have:

$$
\begin{equation*}
\left(\frac{d s}{d \breve{s}}\right)^{2}=1-2 \psi \breve{k_{1}}+\psi^{2}\left({\breve{k_{1}}}^{2}+{\breve{k_{3}}}^{2}\right) . \tag{15}
\end{equation*}
$$

On the other hand, if we differentiate the equation (7) with respect to \breve{s} and use the PAF derivative formulas, we obtain:

$$
\begin{align*}
\frac{d^{2} s}{d \breve{s}^{2}} \mathbf{T}+k_{1}\left(\frac{d s}{d \breve{s}}\right)^{2} \mathbf{M}+k_{2}\left(\frac{d s}{d \breve{s}}\right)^{2} \mathbf{Y}= & \left(-\psi{\breve{k_{1}}}^{\prime}-\psi \breve{k_{2}} \breve{k_{3}}\right) \breve{\mathbf{T}} \\
& +\left(\breve{k_{1}}\left(1-\psi \breve{k_{1}}\right)-\psi \breve{k_{3}}\right. \tag{16}
\end{align*}
$$

By taking into consideration the equation (16) and utilizing the definition of Bertrand P-pair, we get:

$$
\begin{equation*}
k_{1}\left(\frac{d s}{d \breve{s}}\right)^{2}=\left(1-\psi \breve{k_{1}}\right) \breve{k_{1}}-\psi{\breve{k_{3}}}^{2} \tag{17}
\end{equation*}
$$

From the equations (15) and (17), one can easily see the desired result.
(2) According to the definition of the Bertrand P-pair, we can write:

$$
\breve{\alpha}(\breve{s})=\alpha(s)+\eta \mathbf{M}(s)
$$

where η is a constant satisfying $|\eta|=|\psi|$ (see Figure 1). Let us take the derivative of this equation with respect to s twice. In that case, we obtain:

$$
\begin{equation*}
\breve{\mathbf{T}} \frac{d \breve{s}}{d s}=\left(1-\eta k_{1}\right) \mathbf{T}+\eta k_{3} \mathbf{Y} \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{d^{2} \breve{s}}{d s^{2}} \breve{\mathbf{T}}+\breve{k_{1}}\left(\frac{d \breve{s}}{d s}\right)^{2} \breve{\mathbf{M}}+\breve{k_{2}}\left(\frac{d \breve{s}}{d s}\right)^{2} \breve{\mathbf{Y}}= & \left(-\eta k_{1}^{\prime}-\eta k_{2} k_{3}\right) \mathbf{T} \\
& +\left(k_{1}\left(1-\eta k_{1}\right)-\eta k_{3}^{2}\right) \mathbf{M} \tag{19}\\
& +\left(k_{2}\left(1-\eta k_{1}\right)+\eta k_{3}^{\prime}\right) \mathbf{Y} .
\end{align*}
$$

On the other hand, we can write $\breve{\mathbf{T}}=\cos \phi \mathbf{T}+\sin \phi \mathbf{Y}$ by the equation (4). Then, by using the equation (18), we find:

$$
\cos \phi \frac{d \breve{s}}{d s} \mathbf{T}+\sin \phi \frac{d \breve{s}}{d s} \mathbf{Y}=\left(1-\eta k_{1}\right) \mathbf{T}+\eta k_{3} \mathbf{Y}
$$

Hence, we get the equations $\cos \phi \frac{d \breve{s}}{d s}=1-\eta k_{1}$ and $\sin \phi \frac{d \breve{s}}{d s}=\eta k_{3}$. These equations give us the equation:

$$
\begin{equation*}
\left(\frac{d \breve{s}}{d s}\right)^{2}=1-2 \eta k_{1}+\eta^{2}\left(k_{1}^{2}+k_{3}^{2}\right) \tag{20}
\end{equation*}
$$

Moreover, by taking the inner product of the vectors at the right and left sides of the equation (19) with the vector \mathbf{M}, we have:

$$
\begin{equation*}
\breve{k_{1}}\left(\frac{d \breve{s}}{d s}\right)^{2}=k_{1}-\eta k_{1}^{2}-\eta k_{3}^{2} \tag{21}
\end{equation*}
$$

Therefore, we obtain the desired result by using the equation (20).

Thanks to the Theorem 1 and Theorem 6. we can attain the following corollaries.
Corollary 5. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in Euclidean 3-space E^{3}. If $\breve{k_{1}}=\breve{k_{3}}=0$, then $k_{1}=0$.

Corollary 6. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in Euclidean 3-space E^{3}. If $k_{1}=k_{3}=0$, then $k_{1}=0$.

Corollary 7. Let $\{\alpha=\alpha(s), \breve{\alpha}=\breve{\alpha}(\breve{s})\}$ be a Bertrand P-pair in E^{3}. Then, the following mathematical expressions hold:

(2) $\breve{\alpha}$ is an osculating curve if and only if $\frac{k_{1}-\eta k_{1}^{2}-\eta k_{3}^{2}}{1-2 \eta k_{1}+\eta^{2}\left(k_{1}^{2}+k_{3}^{2}\right)}=0$.

Example 1. In the Euclidean 3-space, suppose that a point particle Q moves on the trajectory

$$
\begin{align*}
\alpha:(0, \pi / 2) & \rightarrow E^{3} \\
s & \mapsto \alpha(s)=\left(\frac{8}{17} \cos 2 s, \frac{12}{17}-\sin 2 s,-\frac{15}{17} \cos 2 s\right) \tag{22}
\end{align*}
$$

By straightforward calculations, we get the following Serret-Frenet apparatus:

$$
\left\{\begin{array}{l}
\mathbf{T}(s)=\left(-\frac{8}{17} \sin 2 s,-\cos s, \frac{15}{17} \sin 2 s\right) \\
\mathbf{N}(s)=\left(-\frac{8}{17} \cos 2 s, \sin 2 s, \frac{15}{17} \cos 2 s\right) \quad \text { and } \quad\left\{\begin{array}{l}
\kappa(s)=1 \\
\tau(s)=0
\end{array}\right. \\
\mathbf{B}(s)=\left(-\frac{15}{17}, 0,-\frac{8}{17}\right)
\end{array}\right.
$$

Since $\langle\alpha(s), \mathbf{B}(s)\rangle=0$ and $\langle\alpha(s), \mathbf{N}(s)\rangle=-1+\frac{12}{17} \sin 2 s<0$, we get $\Omega=\frac{\pi}{2}$. Then, the elements of PAF are found as:

$$
\left\{\begin{array} { l }
{ \mathbf { T } (s) = (- \frac { 8 } { 1 7 } \operatorname { s i n } 2 s , - \operatorname { c o s } 2 s , \frac { 1 5 } { 1 7 } \operatorname { s i n } 2 s) } \\
{ \mathbf { M } (s) = (\frac { 1 5 } { 1 7 } , 0 , \frac { 8 } { 1 7 }) } \\
{ \mathbf { Y } (s) = (- \frac { 8 } { 1 7 } \operatorname { c o s } 2 s , \operatorname { s i n } 2 s , \frac { 1 5 } { 1 7 } \operatorname { c o s } 2 s) }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
k_{1}(s)=0 \\
k_{2}(s)=1 \\
k_{3}(s)=0
\end{array}\right.\right.
$$

Therefore, Bertrand partner P-trajectory of α can be given as:

$$
\begin{equation*}
\breve{\alpha}(s)=\left(\frac{8}{17} \cos 2 s+\eta \frac{15}{17}, \frac{12}{17}-\sin 2 s,-\frac{15}{17} \cos 2 s+\eta \frac{8}{17}\right) \tag{23}
\end{equation*}
$$

by means of the equality $\breve{\alpha}(s)=\alpha(s)+\eta \mathbf{M}(s)$.

Figure 2. The trajectories α and $\breve{\alpha}$ given in (22) and (23)

In the Figure 2, the trajectories $\alpha=\alpha(s)$ (blue) and $\breve{\alpha}=\breve{\alpha}(s)$ (red) can be seen. Here we take $\eta=0.1$.

On the other hand, by using the Theorem $\sqrt{6}$ and Corollary $\sqrt[7]{ }$ we get $\breve{k_{1}}=0$. So, we can conclude that the trajectory $\breve{\alpha}$ is an osculating curve. It should be noted that the Figure 2 is drawn by utilizing the website Wolfram Mathematica (Wolfram Cloud).

Author Contribution Statements All authors contributed equally to the writing of this study. All authors read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interests.

Acknowledgements The authors would like to thank the editors and the anonymous reviewers for their helpful comments and suggestions.

References

[1] Bertrand, J., Mémoire sur la théorie des courbes à double courbure, J. Math. Pures Appl., (1850) 332-350.
[2] Bishop, R. L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(3) (1975) 246-251. https://doi.org/10.2307/2319846
[3] Burke, J. F., Bertrand curves associated with a pair of curves, Math. Mag., 34(1) (1960), 60-62. https://doi.org/10.2307/2687860
[4] Casey, J., Siacci's resolution of the acceleration vector for a space curve, Meccanica, 46 (2011), 471-476. https://doi.org/10.1007/s11012-010-9296-x
[5] da Silva, L. C., Differential Geometry of Rotation Minimizing Frames, Spherical Curves, and Quantum Mechanics of a Constrained Particle, Ph.D Thesis, 2017, (2018), arXiv preprint, arXiv:1806.08830.
[6] Darboux, G., Leçons Sur La Théorie Générale Des Surfaces I-II-III-IV, Gauthier Villars, Paris, 1896.
[7] Dede, M., Ekici, C., Directional Bertrand curves, Gazi Univ. J. Sci., 31(1) (2018), 202-211.
[8] Dede, M., Aslan, M. Ç., Ekici, C., On a variational problem due to the B-Darboux frame in Euclidean 3-space, Math. Methods Appl. Sci., 44(17) (2021), 12630-12639. https://doi.org/10.1002/mma. 7567
[9] Goldstein, H., Poole, C. P., Safko, J. L., Classical Mechanics, Vol. 2, Reading, MA: AddisonWesley, 1950.
[10] Görgülü, A., A generalization of the Bertrand curves as general inclined curves in E^{n}, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 35(01.02) (1986), 54-60. https://doi.org/10.1501/Commua1_0000000254
[11] Gürbüz, N. E., The evolution of an electric field with respect to the type1 PAF and the PAFORS frames in \mathbb{R}_{1}^{3}, Optik, 250(1) (2022), 168285. https://doi.org/10.1016/j.ijleo.2021.168285
[12] Izumiya, S., Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom., 74 (2002), 97-109. https://doi.org/10.1007/PL00012543
[13] İlarslan, K., Nesovic, E., Some characterizations of osculating curves in the Euclidean spaces, Demonstr. Math., 41(4) (2008), 931-939. https://doi.org/10.1515/dema-2008-0421
[14] Kazaz, M., Uğurlu, M. M., Önder, M., Oral, S., Bertrand partner D-curves in the Euclidean 3-space E^{3}, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(1) (2016), 76-83. https://doi.org/10.5578/fmbd. 25270
[15] Özen, K. E., Tosun, M., A new moving frame for trajectories with non-vanishing angular momentum, J. Math. Sci. Model., 4(1) (2021), 7-18. https://doi.org/10.33187/jmsm. 869698
[16] Özen, K. E., Tosun, M., Trajectories generated by special Smarandache curves according to Positional Adapted Frame, Karamanoğlu Mehmetbey University Journal of Engineering and Natural Sciences, 3(1) (2021), 15-23.
[17] Papaioannou, S. G., Kiritsis, D., An application of Bertrand curves and surfaces to CADCAM, Computer-Aided Design, 17(8) (1985), 348-352. https://doi.org/10.1016/0010-4485(85)90025-9
[18] Shifrin T., Differential Geometry: A First Course in Curves and Surfaces, University of Georgia, Preliminary Version, 2008.
[19] Solouma, E. M., Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF, Bulletin of Mathematical Analysis and Applications, 13(4) (2021), 14-30. https://doi.org/10.54671/bmaa-2021-4-2
[20] Whittemore, J. K., Bertrand curves and helices, Duke Math. J., 6(1) (1940), 235-245. https://doi.org/10.1215/S0012-7094-40-00618-4
[21] Yerlikaya, F., Karaahmetoğlu, S., Aydemir, İ., On the Bertrand B-pair curve in 3-dimensional Euclidean space, Journal of Science and Arts, 3(36) (2016), 215-224.
http://communications.science.ankara.edu.tr

COMPARISON OF SOME DYNAMICAL SYSTEMS ON THE QUOTIENT SPACE OF THE SIERPINSKI TETRAHEDRON

Nisa ASLAN, ${ }^{1}$ Mustafa SALTAN ${ }^{2}$ and Bünyamin DEMİR ${ }^{3}$
Department of Mathematics, Eskişehir Technical University, Eskişehir, TÜRKİYE

Abstract

In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{0,1,2,3\}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.

1. Introduction

In the literature, there are many works to analyze the structures on the fractals 1-17. Defining different dynamical systems on the fractals is one of these studies $3,4,8,17$. With the method given in 4 , dynamical systems are naturally constructed on the self-similar sets using their iterated function systems. Moreover, there are different ways to define the dynamical systems on these sets considering their structures. With the help of the folding, expanding, translation and rotation mappings, many dynamical systems can also be obtained on the fractals as given in 17. On the other hand, expressing the dynamical systems using the code representations of the points can provide many advantages. The utility of this situation can be seen while showing whether these systems are chaotic or not [3, 17. For this purpose, we also need to use the intrinsic metrics which are defined by means of the code representations on the related fractals. For instance, the intrinsic metric on the Sierpinski tetrahedron $(S T)$ (see Theorem 1) is required to prove that the dynamical system, defined on the code set of $S T$, is chaotic 3 , and it is also used to show some geometrical properties such as number of the geodesics in 9 .

[^16]In this paper, we first focus on the quotient space of the Sierpinski tetrahedron $\{0,1,2,3\}^{\mathbb{N}} / \sim$. On this space, we define two dynamical systems $\{S T ; G\}$ and $\{S T ; T\}$ in Proposition 3 and Proposition 5 respectively. Then we compare their fixed points and deduce that they are not topologically equivalent in Remark 2. On the other hand, in Proposition 4 and Remark 1. we show that $\{S T ; G\}$ is topologically equivalent to $\{S T ; F\}$ which is given in 3 (see Proposition 1). Hence, we also conclude that $\{S T ; G\}$ is chaotic in the sense of Devaney by the help of the topological conjugacy H.

We now recall some basic notions in the following section:

2. Preliminaries

As a fractal, the Sierpinski tetrahedron with vertices are $P_{0}=(0,0,0), P_{1}=$ $(1,0,0), P_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$ and $P_{3}=\left(\frac{1}{2}, \frac{\sqrt{3}}{6}, \frac{\sqrt{6}}{3}\right)$ is the attractor of the iterated function system (IFS) $\left\{\mathbb{R}^{3} ; f_{0}, f_{1}, f_{2}, f_{3}\right\}$ where

$$
\begin{aligned}
f_{0}(x, y, z) & =\left(\frac{1}{2} x, \frac{1}{2} y, \frac{1}{2} z\right) \\
f_{1}(x, y, z) & =\left(\frac{1}{2} x+\frac{1}{2}, \frac{1}{2} y, \frac{1}{2} z\right) \\
f_{2}(x, y, z) & =\left(\frac{1}{2} x+\frac{1}{4}, \frac{1}{2} y+\frac{\sqrt{3}}{4}, \frac{1}{2} z\right) \\
f_{3}(x, y, z) & =\left(\frac{1}{2} x+\frac{1}{4}, \frac{1}{2} y+\frac{\sqrt{3}}{12}, \frac{1}{2} z+\frac{\sqrt{6}}{6}\right)
\end{aligned}
$$

Let $S T_{i}=f_{i}(S T)$ for $i=0,1,2,3$. It is obvious that $S T_{i} \cap S T_{j} \neq \emptyset$ for $i \neq j$ where $i, j=0,1,2,3$ and $\bigcup_{i=0}^{3} S T_{i}=S T$. Suppose that σ is a word of length $k-1$ on the set $\{0,1,2,3\}$ such as $\sigma=a_{1} a_{2} a_{3} \ldots a_{k-1}$ where $a_{i} \in\{0,1,2,3\}$. Similarly, we get $S T_{\sigma}=f_{a_{k-1}} \circ f_{a_{k-2}} \circ \cdots \circ f_{a_{1}} \circ f_{a_{0}}(S T)$. In the Figure 1, one can see that the sub-tetrahedron $S T_{313}$ of $S T$ for $\sigma=313$. Since $S T_{a_{1}}, S T_{a_{1} a_{2}}, S T_{a_{1} a_{2} a_{3}}, \ldots$ is a sequence of the nested sets such that

$$
S T_{a_{1}} \supset S T_{a_{1} a_{2}} \supset S T_{a_{1} a_{2} a_{3}} \supset \ldots \supset S T_{a_{1} a_{2} \ldots a_{n}} \supset \ldots
$$

$\bigcap_{k=1}^{\infty} S T_{\sigma}$ indicates a singleton, A, from the Cantor intersection theorem. The code representations of A is the sequence $a_{1} a_{2} a_{3} \ldots$ where $a_{i} \in\{0,1,2,3\}$.

On the other hand, the intersection of the sequences $S T_{\sigma}, S T_{\sigma \alpha}, S T_{\sigma \alpha \beta}, S T_{\sigma \alpha \beta \beta}, \ldots$ and $S T_{\sigma}, S T_{\sigma \beta}, S T_{\sigma \beta \alpha}, S T_{\sigma \beta \alpha \alpha}, \ldots$ satisfying

$$
S T_{\sigma} \supset S T_{\sigma \alpha} \supset S T_{\sigma \alpha \beta} \supset S T_{\sigma \alpha \beta \beta} \supset \ldots
$$

Figure 1. The Sierpinski tetrahedron and a small piece $S T_{\sigma}$ of $S T$
and

$$
S T_{\sigma} \supset S T_{\sigma \beta} \supset S T_{\sigma \beta \alpha} \supset S T_{\sigma \beta \alpha \alpha} \supset \ldots
$$

represents the same point on $S T$ and the code representations of these points are $\sigma \alpha \beta \beta \beta \ldots$ and $\sigma \beta \alpha \alpha \alpha \ldots$ Therefore, $S T$ can be defined as the quotient space $\{0,1,2,3\}^{\mathbb{N}} / \sim$ where
$c^{\prime} \sim c^{\prime \prime} \Leftrightarrow c^{\prime}=c^{\prime \prime}$ or there are $c_{i}, \alpha, \beta \in\{0,1,2,3\}$ such that
$c^{\prime}=c_{1} c_{2} \ldots c_{n} \alpha \beta \beta \beta \ldots, c^{\prime \prime}=c_{1} c_{2} \ldots c_{n} \beta \alpha \alpha \alpha \ldots$ for an integer n.
The dynamical system, defined in 3 on this quotient space, is given with the following proposition:

Proposition 1. Let the code representations of points X and Y of the Sierpinski tetrahedron be $x_{1} x_{2} x_{3} \ldots$ and $y_{1} y_{2} y_{3} \ldots$ respectively. The function $F: S T \rightarrow S T$, $F(X)=Y$ such that

$$
\begin{equation*}
y_{i} \equiv x_{i+1}+x_{1}(\bmod 4) \tag{1}
\end{equation*}
$$

where $x_{i}, y_{i} \in\{0,1,2,3\}$ and $i=1,2,3, \ldots$ is a dynamical system on the code sets of the Sierpinski tetrahedon.

We also give two chaotic dynamical systems on the quotient space of the Sierpinski tetrahedron and we investigate these dynamical systems in terms of topological conjugacy.

Definition 1. Let $\left\{X_{1} ; f_{1}\right\}$ and $\left\{X_{2} ; f_{2}\right\}$ be two dynamical systems. If there is a homeomorphism $\theta: X_{1} \rightarrow X_{2}$ such that $f_{2}=\theta \circ f_{1} \circ \theta^{-1} \quad$ (or that means $\forall x \in$
$\left.X_{1}, \theta\left(f_{1}(x)\right)=f_{2}(\theta(x))\right)$, these dynamical systems are equivalent or topologically conjugate. θ is called a topological conjugacy (see [4]).

Proposition 2. If the dynamical systems $\left\{X_{1} ; f_{1}\right\}$ and $\left\{X_{2} ; f_{2}\right\}$ have the different number of n-periodic points for at least $n \in \mathbb{N}$, then they are not topologically conjugate (see 10]).

Definition 2. A dynamical system $\{X ; f\}$ is chaotic in the sense of Devaney if it is sensitivite dependence on the initial condition, topologically transitive and it has density of periodic points (see [6]).

We need a useful metric in order to investigate the dynamical systems are chaotic or not. The intrinsic metric on the quotient space of the Sierpinski tetrahedron is formulated with the following theorem:

Theorem 1. If $a_{1} a_{2} \ldots a_{k-1} a_{k} a_{k+1} \ldots$ and $b_{1} b_{2} \ldots b_{k-1} b_{k} b_{k+1} \ldots$ are two representations of the points A and B respectively on the Sierpinski tetrahedron such that $a_{i}=b_{i}$ for $i=1,2, \ldots, k-1$ and $a_{k} \neq b_{k}$, then the formula

$$
\begin{equation*}
d(A, B)=\min \left\{\sum_{i=k+1}^{\infty} \frac{\alpha_{i}+\beta_{i}}{2^{i}}, \frac{1}{2^{k}}+\sum_{i=k+1}^{\infty} \frac{\gamma_{i}+\delta_{i}}{2^{i}}, \frac{1}{2^{k}}+\sum_{i=k+1}^{\infty} \frac{\phi_{i}+\varphi_{i}}{2^{i}}\right\} \tag{2}
\end{equation*}
$$

such that

$$
\begin{aligned}
& \alpha_{i}=\left\{\begin{array}{ll}
0, & a_{i}=b_{k} \\
1, & a_{i} \neq b_{k}
\end{array}, \quad \beta_{i}=\left\{\begin{array}{ll}
0, & b_{i}=a_{k} \\
1, & b_{i} \neq a_{k}
\end{array},\right.\right. \\
& \gamma_{i}=\left\{\begin{array}{ll}
0, & a_{i}=c_{k} \\
1, & a_{i} \neq c_{k}
\end{array}, \quad \delta_{i}=\left\{\begin{array}{ll}
0, & b_{i}=c_{k} \\
1, & b_{i} \neq c_{k}
\end{array},\right.\right. \\
& \phi_{i}=\left\{\begin{array}{ll}
0, & a_{i}=d_{k} \\
1, & a_{i} \neq d_{k}
\end{array}, \quad \varphi_{i}= \begin{cases}0, & b_{i}=d_{k} \\
1, & b_{i} \neq d_{k}\end{cases} \right.
\end{aligned}
$$

where $a_{k} \neq c_{k} \neq b_{k}$ and $a_{k} \neq d_{k} \neq b_{k}$ and $c_{k} \neq d_{k}\left(a_{i}, b_{i}, c_{k}, d_{k} \in\{0,1,2,3\}, i=\right.$ $1,2,3, \ldots)$ gives the distance $d(A, B)$ between the points A and B.

This metric gives the distance of the shortest path between any points on $S T$.

3. A Chaotic Dynamical System on the Sierpinski Tetrahedron $\{S T ; G\}$

In this section, we construct a dynamical system which is different from (1) on $S T$ and we investigate some periodic points of this dynamical system.

Proposition 3. Let the code representations of $X, Y \in S T$ be $x_{1} x_{2} x_{3} \ldots$ and $y_{1} y_{2} y_{3} \ldots$ respectively where $i=1,2,3, \ldots$ and $x_{i}, y_{i} \in\{0,1,2,3\}$. Suppose that the function $G: S T \rightarrow S T$ is defined according to four different situations of x_{1} :

$$
\begin{aligned}
& G\left(0 x_{2} x_{3} \ldots\right)=y_{1} y_{2} y_{3} \ldots, \quad y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=1 \\
1, & x_{i+1}=2 \\
2, & x_{i+1}=3 \\
3, & x_{i+1}=0
\end{array} \quad(i \geq 1)\right. \\
& G\left(1 x_{2} x_{3} \ldots\right)=y_{1} y_{2} y_{3} \ldots, \quad y_{i}= \begin{cases}0, & x_{i+1}=0 \\
1, & x_{i+1}=1 \\
2, & x_{i+1}=2 \\
3, & x_{i+1}=3\end{cases} \\
& G\left(2 x_{2} x_{3} \ldots\right)=y_{1} y_{2} y_{3} \ldots,
\end{aligned} \quad y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=3 \\
1, & x_{i+1}=0 \\
2, & x_{i+1}=1 \\
3, & x_{i+1}=2
\end{array} \quad(i \geq 1) \text {) } \quad \begin{array}{l}
0, \\
G\left(3 x_{2} x_{3} \ldots\right)=y_{1} y_{2} y_{3} \ldots,
\end{array} y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=2 \\
1, & x_{i+1}=3 \\
2, & x_{i+1}=0 \\
3, & x_{i+1}=1
\end{array} \quad(i \geq 1) .\right.\right.
$$

In this case, $\{S T ; G\}$ states a dynamical system.
Proof. We know from the hypothesis, there are four different rules in regard to the cases of x_{1}. If X has a unique code representation, then it is obvious that $G(X)$ also has a unique code representation. For $\alpha, \beta \in\{0,1,2,3\}$ and $\alpha \neq \beta$, let $x_{1} x_{2} x_{3} \ldots x_{n} \alpha \beta \beta \beta \ldots$ and $x_{1} x_{2} x_{3} \ldots x_{n} \beta \alpha \alpha \alpha \ldots$ be two different code representations of X then we have

$$
\begin{aligned}
& G\left(x_{1} x_{2} x_{3} \ldots x_{n} \alpha \beta \beta \beta \ldots\right)=y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots \\
& G\left(x_{1} x_{2} x_{3} \ldots x_{n} \beta \alpha \alpha \alpha \ldots\right)=z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots
\end{aligned}
$$

where $y_{i}, z_{i} \in\{0,1,2,3\}$. Therefore, we must show that $y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots$ and $z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots$ are different code representations of $G(X)$.
If $x_{1}=0$, then we get

$$
y_{i} \equiv z_{i} \equiv x_{i+1}+3(\bmod 4)
$$

for $i=1,2,3, \ldots, n-1$ because of the definition of G. As well, for $i=1,2,3, \ldots$.

$$
\begin{array}{r}
y_{n} \equiv \alpha+3(\bmod 4) \\
y_{n+i} \equiv \beta+3(\bmod 4) \\
z_{n} \equiv \beta+3(\bmod 4) \\
z_{n+i} \equiv \alpha+3(\bmod 4)
\end{array}
$$

are obtained. Let us define $s_{i} \equiv x_{i+1}+3(\bmod 4)$ and $\alpha+3 \equiv \gamma(\bmod 4), \beta+3 \equiv$ $\delta(\bmod 4)$ for $i=1,2,3, \ldots, n-1$. Thus, we get $\gamma \neq \delta$

$$
y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \gamma \delta \delta \delta \ldots
$$

and

$$
z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \delta \gamma \gamma \gamma \ldots
$$

For the case $x_{1}=1$, we obtain $y_{i}=z_{i}=x_{i+1}$ for $i=1,2,3, \ldots, n-1$. What's more, for $i=1,2,3, \ldots$

$$
\begin{array}{cl}
y_{n} & =\alpha \\
y_{n+i} & =\beta \\
z_{n} & =\beta \\
z_{n+i} & =\alpha
\end{array}
$$

are computed. So, we obtain the following results

$$
y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots=x_{2} x_{3} x_{4} \ldots x_{n-1} \alpha \beta \beta \beta \ldots
$$

and

$$
z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots=x_{2} x_{3} x_{4} \ldots x_{n-1} \beta \alpha \alpha \alpha \ldots
$$

If $x_{1}=2$, then

$$
y_{i} \equiv z_{i} \equiv x_{i+1}+1(\bmod 4)
$$

where $i=1,2,3, \ldots, n-1$. Moreover, for $i=1,2,3, \ldots$, we have

$$
\begin{aligned}
y_{n} & \equiv \alpha+1(\bmod 4) \\
y_{n+i} & \equiv \beta+1(\bmod 4) \\
z_{n} & \equiv \beta+1(\bmod 4) \\
z_{n+i} & \equiv \alpha+1(\bmod 4)
\end{aligned}
$$

Hence, we observe that

$$
y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \gamma \delta \delta \delta \ldots
$$

and

$$
z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \delta \gamma \gamma \gamma \ldots
$$

for $i=1,2,3, \ldots, n-1$ where $s_{i} \equiv x_{i+1}+1(\bmod 4)$ and $\alpha+1 \equiv \gamma(\bmod 4)$, $\beta+1 \equiv \delta(\bmod 4)$.

If $x_{1}=3$, then for $i=1,2,3, \ldots, n-1$, we get

$$
y_{i} \equiv z_{i} \equiv x_{i+1}+2(\bmod 4)
$$

In addition, for $i=1,2,3, \ldots$,

$$
\begin{gathered}
y_{n} \equiv \alpha+2(\bmod 4) \\
y_{n+i} \equiv \beta+2(\bmod 4) \\
z_{n} \equiv \beta+2(\bmod 4) \\
z_{n+i} \equiv \alpha+2(\bmod 4)
\end{gathered}
$$

are satisfied. Here, for $i=1,2,3, \ldots, n-1, s_{i} \equiv x_{i+1}+2(\bmod 4)$ and $\alpha+2 \equiv$ $\gamma(\bmod 4)$ and $\beta+2 \equiv \delta(\bmod 4)$. Since, $\gamma \neq \delta$

$$
y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \gamma \delta \delta \delta \ldots
$$

and

$$
z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \delta \gamma \gamma \gamma \ldots
$$

are the different code representations of the point $G(X)$. This shows that G is well-defined on the quotient space of $S T$. Thus, the proof is completed.

Proposition 4. Suppose that the code representations of the points $X, X^{\prime} \in S T$ are $x_{1} x_{2} x_{3} \ldots$ and $x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} \ldots$ respectively where $x_{i}, x_{i}^{\prime} \in\{0,1,2,3\}$ for all $i \in \mathbb{N}$.

There is a function $H: S T \rightarrow S T$ such that

$$
H(X)=X^{\prime}, x_{i}^{\prime}= \begin{cases}0, & x_{i}=3 \tag{3}\\ 1, & x_{i}=0 \\ 2, & x_{i}=1 \\ 3, & x_{i}=2\end{cases}
$$

which satisfies $H(F(X))=G(H(X))$ is a homoemorphism, where F is defined in Proposition 1.

Proof. It is obvious that H is surjective function and $d(H(X), H(Y))=d(X, Y)$ for all $X, Y \in S T$. So, we conclude that H is a homeomorphism. One can obtain that $H(F(X))=G(H(X))$ for all $X \in S T$ with easy computations.

Remark 1. Since the function $H: S T \rightarrow S T$ defined in (3) is a homeomorphism for $\forall X \in S T$, the dynamical systems $\{S T ; F\}$ and $\{S T ; G\}$ are topologically conjugate. Therefore, $\{S T ; G\}$ is also chaotic since $\{S T ; F\}$ is chaotic and $\{S T, d\}$ is compact.

According to Remark 1 the dynamical systems $\{S T ; F\}$ and $\{S T ; G\}$ are topologically conjugate. In consequence, the number of periodic points of these systems are equal.

While the periodic points of F are known, the periodic points of G can be found with the help of the homeomorphism H in (3). We have the fixed points and 2 -periodic points of F from $\sqrt[3]{ }$. Because of the fixed points of F, which are

$$
\bullet \overline{0}=000 \ldots, \quad \bullet \overline{1032}=10321032 \ldots, \quad \bullet \overline{20}=202020 \ldots, \quad \bullet \overline{3012}=30123012 \ldots
$$

the fixed points of G are obtained as follows

$$
\bullet H(\overline{0})=\overline{1}, \quad \bullet H(\overline{1032})=\overline{2103}, \quad \bullet H(\overline{20})=\overline{31}, \quad \bullet H(\overline{3012})=\overline{0123} .
$$

Similarly, the $2-$ periodic points of G are

$$
\begin{aligned}
& \bullet H(\overline{13023120})=\overline{20130231}, \quad \bullet H(\overline{0220})=\overline{1331}, \quad \bullet H(\overline{01302312})=\overline{12013023} \\
& \bullet H(\overline{03102132})=\overline{10213203}, \bullet H(\overline{12})=\overline{23}, \quad \bullet H(\overline{11223300})=\overline{22330011} \\
& \bullet H(\overline{2200})=\overline{3311}, \bullet H(\overline{21100332})=\overline{32211003}, \quad \bullet H(\overline{23300112})=\overline{30011223} \\
& \bullet H(\overline{31021320})=\overline{02132031}, \quad \bullet H(\overline{32})=\overline{03}, \quad \bullet H(\overline{33221100})=\overline{00332211} .
\end{aligned}
$$

4. A Dynamical System on the Sierpinski Tetrahedron $\{S T ; T\}$

We now define a new dynamical system which is not topologically conjugate with $\{S T ; G\}$ and automatically with $\{S T ; F\}$.
Proposition 5. The code representations of $X, Y \in S T$ are $x_{1} x_{2} x_{3} \ldots$ and $y_{1} y_{2} y_{3} \ldots$ respectively. The function $T: S T \rightarrow S T$ are defined for $i=1,2,3, \ldots$ and $x_{i}, y_{i} \in\{0,1,2,3\}$ as follows

$$
\begin{gathered}
T\left(0 x_{2} x_{3} \ldots\right)=x_{2} x_{3} x_{4} \ldots \\
T\left(1 x_{2} x_{3} \ldots\right)=y_{1} y_{2} y_{3} \ldots, \quad y_{i}= \begin{cases}0, & x_{i+1}=3 \\
1, & x_{i+1}=0 \\
2, & x_{i+1}=2 \\
3, & x_{i+1}=1\end{cases}
\end{gathered} \quad(i \geq 1) .
$$

If $x_{1}=2$, there are four situations:
Case 1:

$$
T\left(222 \ldots 20 x_{k+1} x_{k+2} x_{k+3} \ldots\right)=y_{1} y_{2} y_{3} \ldots, \quad y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=2 \\
1, & x_{i+1}=3 \\
2, & x_{i+1}=0 \\
3, & x_{i+1}=1
\end{array} \quad(i \geq 1)\right.
$$

Case 2:

$$
T\left(222 \ldots 21 x_{k+1} x_{k+2} x_{k+3} \ldots\right)=y_{1} y_{2} y_{3} \ldots, \quad y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=2 \\
1, & x_{i+1}=3 \\
2, & x_{i+1}=1 \\
3, & x_{i+1}=0
\end{array} \quad(i \geq 1)\right.
$$

Case 3:

$$
T\left(22 \ldots 23 x_{s} \ldots 0 x_{k+1} x_{k+2} x_{k+3} \ldots\right)=y_{1} y_{2} y_{3} \ldots
$$

where $x_{s} \in\{2,3\}$ for $s<k$

$$
y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=2 \\
1, & x_{i+1}=0 \\
2, & x_{i+1}=3 \\
3, & x_{i+1}=1
\end{array} \quad(i \geq 1)\right.
$$

Case 4:

$$
T\left(22 \ldots 23 x_{s} \ldots 1 x_{k+1} x_{k+2} x_{k+3} \ldots\right)=y_{1} y_{2} y_{3} \ldots
$$

where $x_{s} \in\{2,3\}$ for $s<k$

$$
y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=2 \\
1, & x_{i+1}=1 \\
2, & x_{i+1}=3 \\
3, & x_{i+1}=0
\end{array} \quad(i \geq 1)\right.
$$

(Note that, due to above rules $T(\overline{2})=\overline{0}, T(2 \overline{3})=\overline{2}$ and $T(23 \overline{2})=2 \overline{0}$ are obtained.) If $x_{1}=3$, then

$$
T\left(3 x_{2} x_{3} \ldots\right)=y_{1} y_{2} y_{3} \ldots, \quad y_{i}=\left\{\begin{array}{ll}
0, & x_{i+1}=1 \\
1, & x_{i+1}=3 \\
2, & x_{i+1}=2 \\
3, & x_{i+1}=0
\end{array} \quad(i \geq 1)\right.
$$

Then, $\{S T ; T\}$ is a dynamical system.
Proof. To state that $\{S T ; T\}$ is a dynamical system, the images of the points expressed by two different code representations must indicate the same point. For example, $0 \overline{1}$ and $1 \overline{0}$ or $23 \overline{0}$ and $20 \overline{3}$ indicates the same point on $S T$. Thus, we investigate the images of following points $0 \overline{1}, 0 \overline{2}, 0 \overline{3}, 1 \overline{0}, 1 \overline{2}, 1 \overline{3}, 2 \overline{0}, 2 \overline{1}, 2 \overline{3}, 3 \overline{0}, 3 \overline{1}, 3 \overline{2}, 00 \overline{1}, 01 \overline{0}$, $00 \overline{2}, 02 \overline{0}, 00 \overline{3}, 03 \overline{0}, 01 \overline{2}, 02 \overline{1}, 01 \overline{3}, 03 \overline{1}, 02 \overline{3}, 03 \overline{2} 11 \overline{0}, 10 \overline{1}, 10 \overline{2}, 12 \overline{0}, 10 \overline{3}, 13 \overline{0}, 12 \overline{1}, 11 \overline{2}, 11 \overline{3}$, $13 \overline{1}, 12 \overline{3}, 13 \overline{2}, 20 \overline{1}, 21 \overline{0}, 20 \overline{2}, 22 \overline{0}, 20 \overline{3}, 23 \overline{0}, 21 \overline{2}, 22 \overline{1}, 21 \overline{3}, 23 \overline{1}, 23 \overline{2}, 22 \overline{3}$ and $30 \overline{1}, 31 \overline{0}, 30 \overline{2}$, $32 \overline{0}, 30 \overline{3}, 33 \overline{0}, 31 \overline{2}, 32 \overline{1}, 31 \overline{3}, 33 \overline{1}, 32 \overline{3}, 33 \overline{2}$. So, we get the following results,

$$
\begin{array}{rll}
T(0 \overline{1})=\overline{1}, & T(0 \overline{2})=\overline{2}, & T(0 \overline{3})=\overline{3}, \\
T(1 \overline{0})=\overline{1}, & T(2 \overline{0})=\overline{2}, & T(3 \overline{0})=\overline{3}, \\
T(1 \overline{2})=\overline{2}, & T(1 \overline{3})=\overline{0}, & T(2 \overline{3})=\overline{2}, \\
T(2 \overline{1})=\overline{2}, & T(3 \overline{1})=\overline{0}, & T(3 \overline{2})=\overline{2}, \\
T(00 \overline{1})=0 \overline{1}, & T(00 \overline{2})=0 \overline{2}, & T(00 \overline{3})=0 \overline{3}, \\
T(01 \overline{0})=1 \overline{0}, & T(02 \overline{0})=2 \overline{0}, & T(03 \overline{0})=3 \overline{0}, \\
T(01 \overline{2})=1 \overline{2}, & T(01 \overline{3})=1 \overline{3}, & T(02 \overline{3})=2 \overline{3}, \\
T(02 \overline{1})=2 \overline{1}, & T(03 \overline{1})=3 \overline{1}, & T(03 \overline{2})=3 \overline{2}, \\
T(10 \overline{1})=1 \overline{3}, & T(10 \overline{2})=1 \overline{2}, & T(10 \overline{3})=1 \overline{0}, \\
T(11 \overline{0})=3 \overline{1}, & T(12 \overline{0})=2 \overline{1}, & T(13 \overline{0})=0 \overline{1}, \\
T(11 \overline{2})=3 \overline{2}, & T(11 \overline{3})=3 \overline{0}, & T(12 \overline{3})=2 \overline{0}, \\
T(12 \overline{1})=2 \overline{3}, & T(13 \overline{1})=0 \overline{3}, & T(13 \overline{2})=0 \overline{2}, \\
T(20 \overline{1})=2 \overline{3}, & T(20 \overline{2})=2 \overline{0}, & T(20 \overline{3})=2 \overline{1}, \\
T(21 \overline{0})=2 \overline{3}, & T(22 \overline{0})=0 \overline{2}, & T(23 \overline{0})=2 \overline{1}, \\
T(21 \overline{2})=2 \overline{0}, & T(21 \overline{3})=2 \overline{1}, & T(22 \overline{3})=0 \overline{2}, \\
T(22 \overline{1})=0 \overline{2}, & T(23 \overline{1})=2 \overline{1}, & T(23 \overline{2})=2 \overline{0}, \\
T(30 \overline{1})=3 \overline{0}, & T(30 \overline{2})=3 \overline{2}, & T(30 \overline{3})=3 \overline{1}, \\
T(31 \overline{0})=0 \overline{3}, & T(32 \overline{0})=2 \overline{3}, & T(33 \overline{0})=1 \overline{3}, \\
T(31 \overline{2})=0 \overline{2}, & T(31 \overline{3})=0 \overline{1}, & T(32 \overline{3})=2 \overline{1}, \\
T(32 \overline{1})=2 \overline{0}, & T(33 \overline{1})=1 \overline{0}, & T(33 \overline{2})=1 \overline{2} .
\end{array}
$$

As seen from above, the image of the different code representations of the same points state the same addresses.

In general, if $\sigma=x_{1} x_{2} x_{3} \ldots x_{n}$ then $\sigma 0 \overline{1}$ and $\sigma 1 \overline{0}, \sigma 1 \overline{2}$ and $\sigma 2 \overline{1}, \sigma 0 \overline{2}$ and $\sigma 2 \overline{0}$, $\sigma 0 \overline{3}$ and $\sigma 3 \overline{0}, \sigma 1 \overline{3}$ and $\sigma 3 \overline{1}, \sigma 3 \overline{2}$ and $\sigma 2 \overline{3}, \sigma 00 \overline{1}$ and $\sigma 01 \overline{0}, \sigma 00 \overline{2}$ and $\sigma 02 \overline{0}, \sigma 00 \overline{3}$ and $\sigma 03 \overline{0}, \sigma 01 \overline{2}$ and $\sigma 02 \overline{1}, \sigma 01 \overline{3}$ and $\sigma 03 \overline{1}, \sigma 02 \overline{3}$ and $\sigma 03 \overline{2}, \sigma 11 \overline{0}$ and $\sigma 10 \overline{1}, \sigma 10 \overline{2}$ and $\sigma 12 \overline{0}, \sigma 10 \overline{3}$ and $\sigma 13 \overline{0}, \sigma 12 \overline{1}$ and $\sigma 11 \overline{2}, \sigma 11 \overline{3}$ and $\sigma 13 \overline{1}, \sigma 12 \overline{3}$ and $\sigma 13 \overline{2}, \sigma 20 \overline{1}$ and $\sigma 21 \overline{0}, \sigma 20 \overline{2}$ and $\sigma 22 \overline{0}, \sigma 20 \overline{3}$ and $\sigma 23 \overline{0}, \sigma 21 \overline{2}$ and $\sigma 22 \overline{1}, \sigma 21 \overline{3}$ and $\sigma 23 \overline{1}, \sigma 22 \overline{3}$ and $\sigma 23 \overline{2}, \sigma 30 \overline{1}$ and $\sigma 31 \overline{0}, \sigma 30 \overline{2}$ and $\sigma 32 \overline{0}, \sigma 30 \overline{3}$ and $\sigma 33 \overline{0}, \sigma 31 \overline{2}$ and $\sigma 32 \overline{1}, \sigma 31 \overline{3}$ and $\sigma 33 \overline{1}, \sigma 32 \overline{3}$ and $\sigma 33 \overline{2}$ are different representations of same points and the image of these sequences represents the same addresses independently of σ. This shows that T is well-defined on $S T$.

We can compute the n - periodic points of T by using the equation

$$
T^{n}\left(x_{1} x_{2} x_{3} \ldots\right)=x_{1} x_{2} x_{3} \ldots
$$

Since $T(\overline{0})=\overline{0}, T(\overline{103})=\overline{103}, T(\overline{301})=\overline{301}, T(\overline{20})=\overline{20}$ and $T(\overline{2130})=\overline{2130}$,

$$
\begin{gathered}
\bullet \overline{0}=00 \ldots, \quad \bullet \overline{103}=103103 \ldots, \quad \bullet \overline{301}=301301 \ldots, \\
\bullet \overline{20}=2020 \ldots, \quad \bullet \overline{2130}=21302130 \ldots
\end{gathered}
$$

are the fixed points of T.
Moreover,

$$
\begin{gathered}
\bullet \overline{013}=013013 \ldots, \quad \bullet \overline{031}=031031 \ldots, \quad \bullet \overline{0220}=02200220 \ldots \\
\bullet \overline{02211330}=0221133002211330 \ldots, \quad \bullet \overline{1}=111 \ldots, \quad \bullet \overline{130}=130130 \ldots \\
\bullet \overline{2010}=20102010 \ldots, \quad \bullet \overline{201030}=201030201030 \ldots \\
\bullet \overline{2200}=22002200 \ldots, \quad \bullet \overline{22113300}=2211330022113300 \ldots, \quad \bullet \overline{2320}=23202320 \ldots \\
\bullet \overline{232120}=232120232120 \ldots, \quad \bullet \overline{2120}=21202120 \ldots, \quad \bullet \overline{2030}=20302030 \ldots \\
\bullet \overline{210}=210210 \ldots, \quad \bullet \overline{230}=230230 \ldots, \quad \bullet 21031230 \\
\bullet \overline{23120130}=2103123021031230 \ldots \\
\bullet 2312013023120130 \ldots, \quad \bullet \overline{310}=310310 \ldots
\end{gathered}
$$

are $2-$ periodic points of T.
Remark 2. Since $\{S T ; G\}$ and $\{S T ; T\}$ have the different number of fixed points, they are not topologically conjugate (see Proposition 2).

5. Conclusion

This paper gives a way to define different dynamical systems on the Sierpinski tetrahedron. This method can be also used for the other fractals which have the intrinsic metrics defined by using the code representations of the points.

Author Contribution Statements All authors contributed equally to all parts of the paper.
Declaration of Competing Interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Alligood, K. T., Sauer, T. D., and Yorke, J. A., CHAOS: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1996.
[2] Aslan, N., Saltan, M., and Demir, B., A different construction of the classical fractals via the escape time algorithm, Journal of Abstract and Computational Mathematics, 3(4) (2018), 1-15.
[3] Aslan, N., Saltan, M., and Demir, B., The intrinsic metric formula and a chaotic dynamical system on the code set of the Sierpinski tetrahedron, Chaos, Solitons and Fractals, 123 (2019), 422-428. Doi: 10.1016/j.chaos.2019.04.018.
[4] Barnsley, M., Fractals Everywhere, 2nd ed. Academic Press, San Diego, 1988.
[5] Cristea, L. L., Steinsky B., Distances in Sierpinski graphs and on the Sierpinski gasket, Aequationes mathematicae, 85 (2013), 201-219. Doi: 10.1007/s00010-013-0197-7.
[6] Devaney, R. L., An introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, 1989.
[7] Devaney, R. L., Look D. M., Symbolic dynamics for a Sierpinski curve Julia set, J. Differ. Equ. Appl., 11(7) (2005), 581-596. Doi: 10.1080/10236190412331334473.
[8] Ercai, C., Chaos for the Sierpinski carpet, J. Stat. Phys., 88 (1997), 979-984.
[9] Gu, J., Ye, Q., and Xi, L., Geodesics of higher dimensional Sierpinski gasket, Fractals, 27(4) (2019), 1950049. Doi: 10.1142/S0218348X1950049X.
[10] Gulick, D., Encounters with Chaos and Fractals, Boston: Academic Press, 1988.
[11] Hirsch, M. W., Smale, S. and Devaney R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier Academic Press, 2013.
[12] Ozdemir, Y., Saltan, M. and Demir, B., The intrinsic metric on the box fractal, Bull. Iranian Math. Soc., 45(5) (2018), 1269-1281. Doi: 10.1007/s41980-018-00197-w.
[13] Peitgen, H. O., Jürgens, H. and Saupe, D., Chaos and Fractals, New Frontiers of Science, 2nd ed. Springer-Verlag, 2004.
[14] Saltan, M., Özdemir, Y., and Demir, B., Geodesic of the Sierpinski gasket, Fractals, 26(3) (2018), 1850024. Doi: 10.1142/S0218348X1850024X.
[15] Saltan, M., Özdemir, Y. and Demir, B., An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation, Turkish J. Math., 42 (2018), 716-725. Doi:10.3906/mat-1702-55.
[16] Saltan, M., Intrinsic metrics on Sierpinski-like triangles and their geometric properties, Symmetry, 10(6) (2018), 204. Doi: 10.3390/sym10060204.
[17] Saltan, M., Aslan, N. and Demir, B., A discrete chaotic dynamical system on the Sierpinski gasket, Turkish J. Math., 43 (2019), 361-372. Doi: 10.3906/mat-1803-77.
http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat
Volume 72, Number 1, Pages 240-246 (2023)
DOI:10.31801/cfsuasmas. 1142926
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: July 10, 2022; Accepted: September 7, 2022

HYBRINOMIALS RELATED TO HYPER-LEONARDO NUMBERS

Efruz Özlem MERSİN ${ }^{1}$ and Mustafa BAHŞi̊ ${ }^{2}$
${ }^{1}$ Department of Mathematics, Aksaray University, Aksaray, TÜRKİYE
${ }^{2}$ Department of Mathematics and Science Education, Aksaray University, Aksaray, TÜRKIYE

Abstract

In this paper, we define hybrinomials related to hyper-Leonardo numbers. We study some of their properties such as the recurrence relation and summation formulas. In addition, we introduce hybrid hyper-Leonardo numbers.

1. Introduction

Integer sequences are the subject of many studies which are shown in recent literature 1-8. The most famous integer sequence is called Fibonacci sequence and is defined by the following recurrence relation $(n \geq 1) 1$:

$$
F_{n+1}=F_{n}+F_{n-1} \quad \text { with } \quad F_{0}=0, \quad F_{1}=1
$$

Leonardo sequence, which has similar properties to the Fibonacci sequence, is defined by Catarino and Borges [5] as follows:

$$
L e_{n}=L e_{n-1}+L e_{n-2}+1 \quad(n \geq 2)
$$

with the initial conditions $L e_{0}=L e_{1}=1$. Although commonly called "Leonardo numbers" in the literature, Kürüz et al. 9 preferred to call them "Leonardo Pisano numbers" and introduced Leonardo Pisano polynomials as

$$
L e_{n}(x)= \begin{cases}1, & n=0,1 \\ x+2, & n=2 \\ 2 x L e_{n-1}(x)-L e_{n-3}(x), & n \geq 3\end{cases}
$$

[^17]Hyper Leonardo numbers $L e_{n}^{(r)}$ are defined as a generalization of the Leonardo numbers by the formula

$$
L e_{n}^{(r)}=\sum_{s=0}^{n} L e_{s}^{(r-1)} \quad \text { with } \quad L e_{n}^{(0)}=L e_{n}, \quad L e_{0}^{(r)}=L e_{0} \quad \text { and } \quad L e_{1}^{(r)}=r+1
$$

where r is a positive integer 10. The hyper-Leonardo numbers have the following recurrence relation for $n \geq 1$ and $r \geq 110$:

$$
L e_{n}^{(r)}=L e_{n-1}^{(r)}+L e_{n}^{(r-1)}
$$

Hyper-Leonardo polynomials are defined as:

$$
L e_{n}^{(r)}(x)=\sum_{s=0}^{n} L e_{s}^{(r-1)}(x)
$$

with the initial conditions $L e_{n}^{(0)}(x)=L e_{n}(x), L e_{0}^{(r)}(x)=1$ and $L e_{1}^{(r)}(x)=r+1$ 11. Note that, for $x=1$, hyper-Leonardo polynomials $L e_{n}^{(r)}(x)$ give the hyperLeonardo numbers $L e_{n}^{(r)}$. Hyper-Leonardo polynomials have the following recurrence relation for $n \geq 1$ and $r \geq 1$ 11:

$$
\begin{equation*}
L e_{n}^{(r)}(x)=L e_{n-1}^{(r)}(x)+L e_{n}^{(r-1)}(x) \tag{1}
\end{equation*}
$$

For $n \geq 3$ and $r \geq 1$, there is also the recurrence relation for hyper-Leonardo polynomials 11:

$$
\begin{align*}
L e_{n}^{(r)}(x)= & 2 x L e_{n-1}^{(r)}(x)-L e_{n-3}^{(r)}(x)+\binom{n+r-1}{r-1} \tag{2}\\
& -\binom{n+r-2}{r-1}(2 x-1)-\binom{n+r-3}{r-1}(x-2)
\end{align*}
$$

If $n \geq 2$ and $r \geq 1$, then there is the summation formula for hyper-Leonardo polynomials 11:

$$
\begin{equation*}
\sum_{s=0}^{r} L e_{n}^{(s)}(x)=L e_{n+1}^{(r)}(x)+(1-2 x) L e_{n}(x)+L e_{n-2}(x) \tag{3}
\end{equation*}
$$

In recent years, hybrid numbers have been the subject of research $12-19$. Özdemir 19 introduced hybrid numbers, as a generalization of complex, hyperbolic and dual numbers, sets by:

$$
\mathbb{K}=\left\{a+b i+c \epsilon+d h: a, b, c, d \in \mathbb{R}, i^{2}=-1, \epsilon^{2}=0, h^{2}=1, i h=h i=\epsilon+i\right\}
$$

Szynal-Liana and Wloch 12 defined the n-th Fibonacci hybrid number as

$$
H F_{n}=F_{n}+i F_{n+1}+\epsilon F_{n+2}+h F_{n+3} .
$$

Alp and Koçer 18 defined hybrid-Leonardo numbers by using the Leonardo numbers as:

$$
H L e_{n}=L e_{n}+L e_{n+1} i+L e_{n+2} \epsilon+L e_{n+3} h
$$

The authors also obtained some identities for the hybrid-Leonardo numbers such as 18:

$$
\begin{gathered}
H L e_{n}=H L e_{n-1}+H L e_{n-2}+(1+i+\epsilon+h), \quad(n \geq 2) \\
H L e_{n}=2 H F_{n+1}-(1+i+\epsilon+h), \quad(n \geq 0) \\
H L e_{n+1}=2 H L e_{n}-H L e_{n-2}, \quad(n \geq 2)
\end{gathered}
$$

Kürüz et al. 9 defined Leonardo Pisano hybrinomials, by using the Leonardo Pisano polynomials, as follows:

$$
L e_{n}^{[H]}(x)=L e_{n}(x)+i L e_{n+1}(x)+\epsilon L e_{n+2}(x)+h L e_{n+3}(x)
$$

The Leonardo Pisano hybrinomials have the following recurrence relation 9 :

$$
L e_{n}^{[H]}(x)=2 x L e_{n-1}^{[H]}(x)-L e_{n-3}^{[H]}(x)
$$

Motivated by the above papers, we define hybrinomials related to hyper-Leonardo numbers. We also define hybrid hyper-Leonardo numbers by using the newly defined hybrinomials. Then, we investigate some of their properties such as the recurrence relations and summation formulas.

2. Main Results

Definition 1. Hybrinomials related to hyper-Leonardo numbers are defined as

$$
L e H_{n}^{(r)}(x)=L e_{n}^{(r)}(x)+L e_{n+1}^{(r)}(x) i+L e_{n+2}^{(r)}(x) \epsilon+L e_{n+3}^{(r)}(x) h
$$

where $L e_{n}^{(r)}(x)$ are the ordinary hyper-Leonardo polynomials.
The first few hybrinomials related to the hyper-Leonardo numbers are

$$
\begin{aligned}
L e H_{0}^{(1)}(x) & =1+2 i+\epsilon(x+4)+h\left(2 x^{2}+5 x+3\right), \\
L e H_{1}^{(1)}(x) & =2+i(x+4)+\epsilon\left(2 x^{2}+5 x+3\right)+h\left(4 x^{3}+10 x^{2}+3 x+2\right), \\
L e H_{2}^{(1)}(x) & =(x+4)+i\left(2 x^{2}+5 x+3\right)+\epsilon\left(4 x^{3}+10 x^{2}+3 x+2\right) \\
& +h\left(8 x^{4}+20 x^{3}+6 x^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{LeH}_{0}^{(2)}(x) & =1+3 i+\epsilon(x+7)+h\left(2 x^{2}+6 x+10\right) \\
L e H_{1}^{(2)}(x) & =3+i(x+7)+\epsilon\left(2 x^{2}+6 x+10\right)+h\left(4 x^{3}+12 x^{2}+9 x+12\right), \\
L e H_{2}^{(2)}(x) & =(x+7)+i\left(2 x^{2}+6 x+10\right)+\epsilon\left(4 x^{3}+12 x^{2}+9 x+12\right) \\
& +h\left(8 x^{4}+24 x^{3}+18 x^{2}+9 x+12\right) .
\end{aligned}
$$

For $x=1$, the hybrinomials defined in Definition 1 give the hybrid numbers in the following definition:
Definition 2. The n-th hybrid hyper-Leonardo number Le $H_{n}^{(r)}$ is defined as

$$
L e H_{n}^{(r)}=L e_{n}^{(r)}+i L e_{n+1}^{(r)}+\epsilon L e_{n+2}^{(r)}+h L e_{n+3}^{(r)},
$$

where $L e_{n}^{(r)}$ is the n-th hyper-Leonardo numbers.

This table contains the values of the hybrid hyper-Leonardo numbers.

	$r=0$	$r=1$	$r=2$	$r=3$
$\mathrm{n}=0$	$1+i+3 \epsilon+5 h$	$1+2 i+5 \epsilon+10 h$	$1+3 i+8 \epsilon+18 h$	$1+4 i+12 \epsilon+30 h$
$\mathrm{n}=1$	$1+3 i+5 \epsilon+9 h$	$2+5 i+10 \epsilon+19 h$	$3+8 i+18 \epsilon+37 h$	$4+12 i+30 \epsilon+67 h$
$\mathrm{n}=2$	$3+5 i+9 \epsilon+15 h$	$5+10 i+19 \epsilon+34 h$	$8+18 i+37 \epsilon+71 h$	$12+30 i+67 \epsilon+138 h$
$\mathrm{n}=3$	$5+9 i+15 \epsilon+25 h$	$10+19 i+34 \epsilon+59 h$	$18+37 i+71 \epsilon+130 h$	$30+67 i+138 \epsilon+268 h$
$\mathrm{n}=4$	$9+15 i+25 \epsilon+41 h$	$19+34 i+59 \epsilon+100 h$	$37+71 i+130 \epsilon+230 h$	$67+1381 i+268 \epsilon+498 h$

Table 1. The first few hybrid hyper-Leonardo numbers $L e H_{n}^{(r)}$.

Theorem 1. $\operatorname{LeH}_{n}^{(r)}(x)$ has the recurrence relation for $n \geq 1$ and $r \geq 1$:

$$
\begin{equation*}
L e H_{n}^{(r)}(x)=L e H_{n-1}^{(r)}(x)+L e H_{n}^{(r-1)}(x) \tag{4}
\end{equation*}
$$

Proof. By using Definition 1 and the recurrence relation in equation (1), we have

$$
\begin{aligned}
& L e H_{n-1}^{(r)}(x)+L e H_{n}^{(r-1)}(x) \\
= & \left(L e_{n-1}^{(r)}(x)+i L e_{n}^{(r)}(x)+\epsilon L e_{n+1}^{(r)}(x)+h L e_{n+2}^{(r)}(x)\right) \\
& +\left(L e_{n}^{(r-1)}(x)+i L e_{n+1}^{(r-1)}(x)+\epsilon L e_{n+2}^{(r-1)}(x)+h L e_{n+3}^{(r-1)}(x)\right) \\
= & L e_{n-1}^{(r)}(x)+L e_{n}^{(r-1)}(x)+i\left(L e_{n}^{(r)}(x)+L e_{n+1}^{(r-1)}(x)\right) \\
& +\epsilon\left(L e_{n+1}^{(r)}(x)+L e_{n+2}^{(r-1)}(x)\right)+h\left(L e_{n+2}^{(r)}(x)+L e_{n+1}^{(r-1)}(x)\right) \\
= & L e_{n}^{(r)}(x)+i L e_{n+1}^{(r)}(x)+\epsilon L e_{n+2}^{(r)}(x)+h L e_{n+3}^{(r)}(x) \\
= & L e H_{n}^{(r)}(x) .
\end{aligned}
$$

Corollary 1. The hybrid hyper-Leonardo numbers have the recurrence relation for $n \geq 1$ and $r \geq 1$:

$$
L e H_{n}^{(r)}=L e H_{n-1}^{(r)}+L e H_{n}^{(r-1)}
$$

Theorem 2. $L e H_{n}^{(r)}(x)$ has the summation formula:

$$
\sum_{s=0}^{n} L e H_{s}^{(r)}(x)=L e H_{n}^{(r+1)}(x)-\left(i L e_{0}^{(r+1)}(x)+\epsilon L e_{1}^{(r+1)}(x)+h L e_{2}^{(r+1)}(x)\right)
$$

Proof. We use the induction method on n. Since,

$$
\begin{aligned}
& L e H_{0}^{(r+1)}(x)-\left(i L e_{0}^{(r+1)}(x)+\epsilon L e_{1}^{(r+1)}(x)+h L e_{2}^{(r+1)}(x)\right) \\
= & L e_{0}^{(r+1)}(x)+i L e_{1}^{(r+1)}(x)+\epsilon L e_{2}^{(r+1)}(x)+h L e_{3}^{(r+1)}(x) \\
& -\left(i L e_{0}^{(r+1)}(x)+\epsilon L e_{1}^{(r+1)}(x)+h L e_{2}^{(r+1)}(x)\right) \\
= & L e_{0}^{(r+1)}(x)+i\left(L e_{1}^{(r+1)}(x)-L e_{0}^{(r+1)}(x)\right)+\epsilon\left(L e_{2}^{(r+1)}(x)-L e_{1}^{(r+1)}(x)\right) \\
& +h\left(L e_{3}^{(r+1)}(x)-L e_{2}^{(r+1)}(x)\right) \\
= & L e_{0}^{(r)}(x)+i L e_{1}^{(r)}(x)+\epsilon L e_{2}^{(r)}(x)+h L e_{3}^{(r)}(x) \\
= & L e H_{0}^{(r)}(x),
\end{aligned}
$$

the result is true for $n=0$. Assume that the result is true for $n=k$. Then,

$$
\sum_{s=0}^{k} L e H_{s}^{(r)}(x)=L e H_{k}^{(r+1)}(x)-\left(i L e_{0}^{(r+1)}(x)+\epsilon L e_{1}^{(r+1)}(x)+h L e_{2}^{(r+1)}(x)\right)
$$

Now, we must show that the result is true for $n=k+1$. Considering the recurrence relation in equation (4), we get

$$
\begin{aligned}
\sum_{s=0}^{k+1} L e H_{s}^{(r)}(x)= & \sum_{s=0}^{k} L e H_{s}^{(r)}(x)+L e H_{k+1}^{(r)}(x) \\
= & L e H_{k}^{(r+1)}(x)-\left(i L e_{0}^{(r+1)}(x)+\epsilon L e_{1}^{(r+1)}(x)+h L e_{2}^{(r+1)}(x)\right) \\
& +L e H_{k+1}^{(r)}(x) \\
= & L e H_{k+1}^{(r+1)}(x)-\left(i L e_{0}^{(r+1)}(x)+\epsilon L e_{1}^{(r+1)}(x)+h L e_{2}^{(r+1)}(x)\right) .
\end{aligned}
$$

Corollary 2. The hybrid hyper-Leonardo numbers have the summation formula:

$$
\sum_{s=0}^{n} L e H_{s}^{(r)}=L e H_{n}^{(r+1)}-\left(i L e_{0}^{(r+1)}+\epsilon L e_{1}^{(r+1)}+h L e_{2}^{(r+1)}\right)
$$

Theorem 3. For $n \geq 3$ and $r \geq 1$, the recurrence relation

$$
\begin{aligned}
L e H_{n}^{(r)}(x)= & 2 x L e H_{n-1}^{(r)}(x)-L e H_{n-3}^{(r)}(x) \\
& +\binom{n+r-1}{r-1}-\binom{n+r-2}{r-1}(2 x-1)-\binom{n+r-3}{r-1}(x-2) \\
& +i\left[\binom{n+r}{r-1}-\binom{n+r-1}{r-1}(2 x-1)-\binom{n+r-2}{r-1}(x-2)\right] \\
& +\epsilon\left[\binom{n+r+1}{r-1}-\binom{n+r}{r-1}(2 x-1)-\binom{n+r-1}{r-1}(x-2)\right] \\
& +h\left[\binom{n+r+2}{r-1}-\binom{n+r+1}{r-1}(2 x-1)-\binom{n+r}{r-1}(x-2)\right]
\end{aligned}
$$

is true.

Proof. Considering Definition 1 and equation (2), the proof is clear.

Corollary 3. For $n \geq 3$ and $r \geq 1$, the hybrid hyper-Leonardo numbers have the recurrence relation:

$$
\begin{aligned}
L e H_{n}^{(r)}= & 2 L e H_{n-1}^{(r)}-L e H_{n-3}^{(r)}+\binom{n+r-1}{r-1}-\binom{n+r-2}{r-1}+\binom{n+r-3}{r-1} \\
& +i\left[\binom{n+r}{r-1}-\binom{n+r-1}{r-1}+\binom{n+r-2}{r-1}\right] \\
& +\epsilon\left[\binom{n+r+1}{r-1}-\binom{n+r}{r-1}+\binom{n+r-1}{r-1}\right] \\
& +h\left[\binom{n+r+2}{r-1}-\binom{n+r+1}{r-1}+\binom{n+r}{r-1}\right] .
\end{aligned}
$$

Theorem 4. If $n \geq 2$ and $r \geq 1$, then the summation formula

$$
\sum_{s=0}^{r} L e H_{n}^{(s)}(x)=L e H_{n+1}^{(r)}(x)+(1-2 x) L e H_{n}(x)+L e H_{n-2}(x)
$$

is true.
Proof. By considering equation (3), we get

$$
\begin{aligned}
\sum_{s=0}^{r} L e H_{n}^{(s)}(x)= & \sum_{s=0}^{r}\left(L e_{n}^{(s)}(x)+i L e_{n+1}^{(s)}(x)+\epsilon L e_{n+2}^{(s)}(x)+h L e_{n+3}^{(s)}(x)\right) \\
= & \sum_{s=0}^{r} L e_{n}^{(s)}(x)+i \sum_{s=0}^{r} L e_{n+1}^{(s)}(x)+\epsilon \sum_{s=0}^{r} L e_{n+2}^{(s)}(x) \\
& +h \sum_{s=0}^{r} L e_{n+3}^{(s)}(x) \\
= & L e_{n+1}^{(r)}(x)+(1-2 x) L e_{n}(x)+L e_{n-2}(x) \\
& +i\left(L e_{n+2}^{(r)}(x)+(1-2 x) L e_{n+1}(x)+L e_{n-1}(x)\right) \\
& +\epsilon\left(L e_{n+3}^{(r)}(x)+(1-2 x) L e_{n+2}(x)+L e_{n}(x)\right) \\
& +h\left(L e_{n+4}^{(r)}(x)+(1-2 x) L e_{n+3}(x)+L e_{n+1}(x)\right) \\
= & L e H_{n+1}^{(r)}(x)+(1-2 x) L e H_{n}(x)+L e H_{n-2}(x)
\end{aligned}
$$

Corollary 4. If $n \geq 1$ and $r \geq 1$, then there is the relation between the hybrid hyper-Leonardo numbers and Fibonacci hybrid numbers:

$$
\sum_{s=0}^{r} L e H_{n}^{(s)}=L e H_{n+1}^{(r)}-2 H F_{n}
$$

Author Contribution Statements The authors confirm sole responsibility for the following concepts involved in this study and design, data collection, analysis and interpretation of results, and manuscript preparation.

Declaration of Competing Interests The authors declare that they have no competing interests.

References

[1] Koshy T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, New York: Wiley 2001.
[2] Yazlik Y., Taskara N., A note on generalized k-Horadam sequence, Computers and Mathematics with Applications, 63(1) (2012), 36-41. https://doi.org/10.1016/j.camwa.2011.10.055
[3] Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32 (2007), 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
[4] Horadam A.F., Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3 (1965), 161-176.
[5] Catarino P., Borges A., On Leonardo numbers, Acta Mathematica Universitatis Comenianae, 89(1) (2020) 75-86.
[6] Edson M., Yayenie O., A new generalization of Fibonacci sequences and extended Binet's formula, Integers, 9 (2009), 639-654. https://doi.org/10.1515/INTEG.2009.051
[7] Yayenie O., A note on generalized Fibonacci sequences, Applied Mathematics and Computation, 217 (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
[8] Kilic E., Tan E., More general identities involving the terms of $W(a, b ; p, q)$, Ars Combinatoria, 93 (2009), 459-461.
[9] Kürüz F., Dağdeviren A. and Catarino P., On Leonardo Pisano hybrinomials, Mathematics, $9(22)$ (2021), 2923. https://doi.org/10.3390/math9222923.
[10] Mersin E. Ö., Bahşi M., Hyper-Leonardo numbers, Conference Proceedings of Science and Technology, 5(1) (2022), 14-20.
[11] Mersin E. Ö., Hyper-Leonardo Polynomials, 9th International Congress on Fundamental and Applied Sciences 2022 (ICFAS2022) Proceeding Book, icfas2022.intsa.org, ISBN 978-605-67052-7-4.
[12] Szynal-Liana A., Wloch I., The Fibonacci hybrid numbers, Utilitas Mathematica, 110, 3-10, (2019).
[13] Szynal-Liana A., The Horadam hybrid numbers, Discussiones Mathematicae General Algebra and Applications, 38 (2018), 91-98. https://doi.org/10.7151/dmgaa. 1287
[14] Szynal-Liana A., Wloch I., On Jacopsthal and Jacopsthal-Lucas hybrid numbers, Annales Mathematicae Silesianae, 33 (2019), 276-283. https://doi.org/10.2478/amsil-2018-0009
[15] Öztürk İ., Özdemir M., Similarity of hybrid numbers, Mathematical Methods in the Applied Science, 43 (2020), 8867-8881 https://doi.org/10.1002/mma. 6580
[16] Yağmur T., A note on generalized hybrid tribonacci numbers, Discussiones Mathematicae General Algebra and Applications, 40(2) (2020), 187-199. https://doi.org/10.7151/dmgaa. 1343
[17] Ferson S., Ginzburg L., Hybrid arithmetic, Proceeding of 3rd International symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society, (1995), 619-623. https://doi.org/10.1109/ISUMA.1995.527766
[18] Alp Y., Koçer G. E., Hybrid Leonardo numbers, Chaos, Solitons and Fractals, 150 (2021). https://doi.org/10.1016/j.chaos.2021.111128
[19] Özdemir M., Introduction to hybrid numbers, Advances in Applied Clifford Algebras, 28(11) (2018). https://doi.org/10.1007/s00006-018-0833-3
http://communications.science.ankara.edu.tr

q-DIFFERENCE OPERATOR ON $L_{q}^{2}(0,+\infty)$

Meltem SERTBAŞ ${ }^{1}$ and Coşkun SARAL ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, TÜRKİYE
${ }^{2}$ Institute of Natural Sciences, Karadeniz Technical University, Trabzon, TÜRKİYE

Abstract

In this research, the minimal and maximal operators defined by q - difference expression are given in the Hilbert space $L_{q}^{2}(0, \infty)$. The existence problem of a q^{-1}-normal extension for the minimal operator is mentioned. In addition, the sets of the minimal operator spectrum and the maximal operator spectrum are examined.

1. Introduction

The q-analysis first appeared in the 1740 s, when Euler launched the division theory, also called the total analytic number theory, Euler wrote and compiled works in the early 1800 s 4 . The advancement of q-calculus continued in 1813 under the study of Gauss, who gave the hypergeometric series and their interrelationships 5 .

The study of quantum calculus, or q-calculus, which has been going on for 300 years since Euler, has often been regarded as one of the most difficult topics to deal with in mathematics. Today, due to its use in a variety of areas, such as mathematics, physics, rapid progress is being made in studies in the field of q calculus. The working history of q - analysis, quantum mechanics, theta functions, hypergeometric functions, analytic number theory, finite difference theory, Mock theta functions, Bernoulli and Euler polynomials, gamma function theory has a wide variety of applications in combinatorics. Moreover, there is the application of the q-difference operator to thermodynamics. It has been demonstrated that the formalization of the q-calculus may be used to realize the thermodynamics of

[^18]the q-deformed algebra. It is found that if it is used a suitable Jackson derivative instead of the ordinary thermodynamic derivative, then the entire structure of thermodynamics is maintained [9]. For some numerous contributions the history of q-calculus, fundamental principles, and fundamentals of q-differential equations, the key books 3,8 and 1 can be cited.

Moreover, a closed linear operator T with dense domain on any Hilbert space is said formally q-normal operator iff $D(T) \subset D\left(T^{*}\right)$ and

$$
T T^{*}=q T^{*} T
$$

When $D(T)=D\left(T^{*}\right)$ is satisfied for a formally q-normal operator, then T said a q-normal operator. Moreover, q-normal operators appear in quantum group theory in the study of the hermitean quantum plane and of quantum groups. For instance, the q-deformed quantum plane C_{q}^{1} is a $*$-algebra with one generator T such that $T T^{*}=q T^{*} T 10$. Definitions of these and other classes which are called q-deformed operators was given and investigated by Ota 10 , for detail analysis see $2,11,14$.

$$
\text { 2. The Minimal and Maximal Operators } L_{q}^{2}(0,+\infty)
$$

Suppose that $L_{q}^{2}(0,+\infty)$ is defined as
$L_{q}^{2}(0,+\infty)=\left\{u:[0,+\infty) \rightarrow \mathbb{C}: \int_{0}^{+\infty}|u(t)|^{2} d_{q} t=(1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left|u\left(q^{k}\right)\right|^{2}<+\infty\right\}$.
$L_{q}^{2}(0,+\infty)$ is a linear vector space with equivalent classes, which are defined for two functions u and v in the same equivalent class iff $u\left(q^{k}\right)=v\left(q^{k}\right), k \in \mathbb{Z}$. Also $L_{q}^{2}(0,+\infty)$ is separable and its the inner product is follows 1

$$
(u, v)_{L_{q}^{2}(0,+\infty)}:=\int_{0}^{+\infty} u(t) \overline{v(t)} d_{q} t, u, v \in L_{q}^{2}(0,+\infty)
$$

In addition, Jackson reintroduced the q-difference operator 7 and he defined as

$$
D_{q} u(t)=\frac{u(t)-u(q t)}{(1-q) t}, \quad t \neq 0
$$

and also the q-derivative for $t=0$ is defined for $|q|<1$ as

$$
D_{q} u(0)=\lim _{n \rightarrow+\infty} \frac{u\left(t q^{n}\right)-u(0)}{t q^{n}}, t=0
$$

if there is the limit and it is independent of t.
Note that we have assume $0<q<1$ for this paper.
Corollary 1. If $u \in L_{q}^{2}(0,+\infty)$, then $\lim _{n \rightarrow+\infty} u\left(\frac{1}{q^{n}}\right)=0$.
Proposition 1. If $D_{q} u(t) \in L_{q}^{2}(0,+\infty)$, then the limit $\lim _{n \rightarrow+\infty} u\left(q^{n}\right)$ exists.

Proof. Let $D_{q} u(t)$ be in $L_{q}^{2}(0,+\infty)$. Because the characteristic function $\chi_{[0,1]} \in$ $L_{q}^{2}(0,+\infty)$ and

$$
\begin{aligned}
\left(D_{q} u, \chi_{[0,1]}\right)_{L_{q}^{2}(0,+\infty)} & =\int_{0}^{+\infty} \chi_{[0,1]}(t) D_{q} u(t) d_{q} t \\
& =(1-q) \sum_{k=0}^{+\infty} q^{k} \frac{u\left(q^{k}\right)-u\left(q^{k+1}\right)}{(1-q) q^{k}} \\
& =\sum_{k=0}^{+\infty} u\left(q^{k}\right)-u\left(q^{k+1}\right) \\
& =\lim _{n \rightarrow+\infty} \sum_{k=0}^{n} u\left(q^{k}\right)-u\left(q^{k+1}\right) \\
& =u(1)-\lim _{n \rightarrow+\infty} u\left(q^{n}\right),
\end{aligned}
$$

are true, the limit $\lim _{n \rightarrow+\infty} u\left(q^{n}\right)$ exists.
First of all, we give the abstract definition of maximal and minimal operators for differential operators 6. Suppose that Ω is an n-dimensional infinitely differentiable manifold and a differential expression

$$
p(.)=\sum_{|\alpha| \leqslant m} a_{\alpha} D^{\alpha}
$$

where the coefficients a_{α} are infinitely differentiable functions of $x=\left(x_{1}, \ldots, x_{n}\right)$. Also, $\alpha \in \mathbb{C}^{n},|\alpha|=\alpha_{1}+\ldots+\alpha_{n}, D^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots D_{n}^{\alpha_{n}}$ and $D_{k}=\frac{1}{i} \frac{\partial}{\partial x_{k}}$ are denoted. The formal adjoint of the expression $p($.$) is the form p^{+}()=.\sum_{|\alpha| \leqslant m}(-1)^{|\alpha|} \overline{a_{\alpha}} D^{\alpha}$ in $L^{2}(\Omega)$. In this case, two operators

$$
\begin{aligned}
& P_{0}^{\prime} u=p(u), \quad P_{0}^{\prime}: C_{0}^{\infty}(\Omega) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega) \\
& P_{0}^{+^{\prime}} u=p^{+}(u), P_{0}^{+^{\prime}}: C_{0}^{\infty}(\Omega) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega)
\end{aligned}
$$

have closures in $L^{2}(\Omega)$ and these closures are denoted by P_{0} and P_{0}^{+}respectively. The operator P_{0} is said as the minimal operator defined by the expression p. Similarly, P_{0}^{+}is called the minimal operator defined by the differential expression p^{+}. The adjoint P of P_{0}^{+}is said the maximal operator generated by p. It is easy seen that $D\left(P_{0}\right)=D\left(P^{+}\right)$and $D(P)=D\left(P_{0}^{+}\right)$.

The q-derivative for multiplication of two functions $u(t)$ and $v(t)$ defined on $[0,+\infty)$ is follows for all $t \in(0,+\infty)$

$$
D_{q}(u v)(t)=v(t) D_{q} u(t)+u(q t) D_{q} v(t)
$$

This relation said q-product rule. It is obtain that

$$
\begin{aligned}
\int_{0}^{+\infty} D_{q}(u v)(t) d_{q} t= & (1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left(\frac{u\left(q^{k}\right) v\left(q^{k}\right)-u\left(q^{k+1}\right) v\left(q^{k+1}\right)}{(1-q) q^{k}}\right) \\
= & \sum_{k=-\infty}^{+\infty} u\left(q^{k}\right) v\left(q^{k}\right)-u\left(q^{k+1}\right) v\left(q^{k+1}\right) \\
= & \lim _{n, m \rightarrow+\infty} \sum_{k=-m}^{n} u\left(q^{k}\right) v\left(q^{k}\right)-u\left(q^{k+1}\right) v\left(q^{k+1}\right) \\
= & \lim _{n, m \rightarrow+\infty} u\left(q^{-m}\right) v\left(q^{-m}\right)-u\left(q^{-m+1}\right) v\left(q^{-m+1}\right) \\
& +u\left(q^{-m+1}\right) v\left(q^{-m+1}\right)-u\left(q^{-m+2}\right) v\left(q^{-m+2}\right) \\
& +u\left(q^{-m+2}\right) v\left(q^{-m+2}\right)-\ldots+u\left(q^{-1}\right) v\left(q^{-1}\right) \\
& -u(1) v(1)+u(q) v(q)+\ldots+u\left(q^{n}\right) v\left(q^{n}\right)-u\left(q^{n+1}\right) v\left(q^{n+1}\right) \\
= & \lim _{n, m \rightarrow+\infty} u\left(q^{-m}\right) v\left(q^{-m}\right)-u\left(q^{n}\right) v\left(q^{n}\right) \\
= & -\lim _{n \rightarrow+\infty} u\left(q^{n}\right) v\left(q^{n}\right)
\end{aligned}
$$

is finite for any $u(t), v(t), D_{q} u(t), D_{q} v(t) \in L_{q}^{2}((0,+\infty))$. Because

$$
\begin{align*}
\left(D_{q} u, v\right)_{L_{q}^{2}(0,+\infty)} & =\int_{0}^{+\infty} D_{q} u(t) \overline{v(t)} d_{q} t \tag{1}\\
& =-\lim _{k \rightarrow+\infty} u\left(q^{k}\right) \overline{v\left(q^{k}\right)}-\int_{0}^{+\infty} u(t) \overline{D_{q} u(t)} d_{q} t \\
& =-\lim _{k \rightarrow+\infty} u\left(q^{k}\right) \overline{v\left(q^{k}\right)}-(1-q) \sum_{k=-\infty}^{+\infty} q^{k} u\left(q^{k+1}\right) \frac{u\left(q^{k}\right)-u\left(q^{k+1}\right)}{(1-q) q^{k}} \\
& =-\lim _{k \rightarrow+\infty} u\left(q^{k}\right) \overline{v\left(q^{k}\right)}+(1-q) \sum_{k=-\infty}^{+\infty} q^{k+1} u\left(q^{k+1}\right) \frac{u\left(q^{k+1}\right)-u\left(q^{k}\right)}{(1-q) q^{k+1}} \\
& =-\lim _{k \rightarrow+\infty} u\left(q^{k}\right) \overline{v\left(q^{k}\right)}-(1-q) \sum_{k=-\infty}^{+\infty} q^{k} u\left(q^{k}\right) \frac{1}{q} D_{q^{-1}} u(t) \\
& =-\lim _{k \rightarrow+\infty} u\left(q^{k}\right) \overline{v\left(q^{k}\right)}+\int_{0}^{+\infty} u(t)-\frac{1}{q} D_{q^{-1}} v(t) d_{q} t \\
& =-\lim _{k \rightarrow+\infty} u\left(q^{k}\right) \overline{v\left(q^{k}\right)}+\left(u,-\frac{1}{q} D_{q^{-1}} v\right) \tag{2}
\end{align*}
$$

the formal adjoint expression of the expression D_{q} is $-\frac{1}{q} D_{q^{-1}}$ on $L_{q}^{2}(0,+\infty)$.

Now, let's define the linear operators $L_{0}: D_{0} \subset L_{q}^{2}(0,+\infty) \rightarrow L_{q}^{2}(0,+\infty)$ of the form $L_{0} u(t)=D_{q} u(t)$ where its domain is

$$
D_{0}=\left\{u \in L_{q}^{2}(0,+\infty): D_{q} u(t) \in L_{q}^{2}(0,+\infty) \text { and } \lim _{k \rightarrow+\infty} u\left(q^{k}\right)=0\right\}
$$

and $L: D \subset L_{q}^{2}(0,+\infty) \rightarrow L_{q}^{2}(0,+\infty)$ of the form $L_{0} u(t)=D_{q} u(t)$ where

$$
D=\left\{u \in L_{q}^{2}(0,+\infty): D_{q} u(t) \in L_{q}^{2}(0,+\infty)\right\}
$$

We say that these operators are the minimal operator and the maximal operator generated by the q-difference expression, respectively. Moreover, $L_{0} \subset L$ is obvious, i.e. the maximal operator L is an extension of the minimal operator L_{0}.

Theorem 1. The operator L_{0} is a formally q^{-1}-normal operator on $L_{q}^{2}(0,+\infty)$.
Proof. The set of functions

$$
\varphi_{m}(t):=\left\{\begin{array}{ll}
\frac{1}{q^{\frac{m}{2}} \sqrt{1-q}}, & t=q^{m} \\
0, & , \text { otherwise }
\end{array}, \quad m \in \mathbb{Z}\right.
$$

is an orthogonal basis of $L_{q}^{2}(0,+\infty)$ and this basis is clearly contained in D_{0}. Therefore, the minimal linear operator L_{0} has dense domain.

Now let's show that the minimal operator is closed. Suppose that any sequence $\left\{u_{n}\right\} \subset D_{0}$ such that $u_{n} \xrightarrow[n \rightarrow \infty]{ } u$ and $L_{0} u_{n} \xrightarrow[n \rightarrow \infty]{ } f$. In this case,

$$
\left\|u_{n}-u\right\|_{L_{q}^{2}(0,+\infty)}^{2}=(1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left|u_{n}\left(q^{k}\right)-u\left(q^{k}\right)\right|^{2} \xrightarrow[n \rightarrow \infty]{ } 0
$$

Because of the last relation, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}\left(q^{k}\right)=u\left(q^{k}\right) \tag{3}
\end{equation*}
$$

From this relation,

$$
\lim _{n \rightarrow+\infty} \frac{u_{n}\left(q^{k}\right)-u_{n}\left(q^{k+1}\right)}{(1-q) q^{k}}=\frac{u\left(q^{k}\right)-u\left(q^{k+1}\right)}{(1-q) q^{k}}=f\left(q^{k}\right), k \in \mathbb{Z}
$$

is attained. Also, from (3) and the boundary condition at $t=0$

$$
\left|u\left(q^{k}\right)\right| \leqslant\left|u_{n}\left(q^{k}\right)-u\left(q^{k}\right)\right|+\left|u_{n}\left(q^{k}\right)\right| \xrightarrow[n, k \rightarrow+\infty]{ } 0
$$

is true. This means that $u \in D\left(L_{0}\right)$ and $L u(t)=f$. Therefore, the minimal linear operator L_{0} is closed. On the other hand, $D\left(L_{0}^{*}\right)=D$ and the following equations can be easily obtained

$$
\left\|L_{0} u(t)\right\|_{L_{q}^{2}(0,+\infty)}^{2}=\int_{0}^{+\infty}\left|D_{q} u(t)\right|^{2} d_{q} t
$$

$$
\begin{aligned}
& =(1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left|D_{q} u\left(q^{k}\right)\right|^{2} \\
& =(1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left|\frac{u\left(q^{k}\right)-u\left(q^{k+1}\right)}{(1-q) q^{k}}\right|^{2}
\end{aligned}
$$

for any $u \in D\left(L_{0}\right)$. Also,

$$
\begin{aligned}
\left\|L_{0}^{*} u(t)\right\|_{L_{q}^{2}(0,+\infty)}^{2} & =\int_{0}^{+\infty}\left|-\frac{1}{q} D_{q^{-1}} u(t)\right|^{2} d_{q} t \\
& =(1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left|-\frac{1}{q} D_{q^{-1}} u\left(q^{k}\right)\right|^{2} \\
& =\frac{1}{q^{2}}(1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left|\frac{u\left(q^{k}\right)-u\left(q^{k-1}\right)}{\left(1-\frac{1}{q}\right) q^{k}}\right|^{2} \\
& =\frac{1}{q}(1-q) \sum_{k=-\infty}^{+\infty} q^{k-1}\left|\frac{u\left(q^{k-1}\right)-u\left(q^{k}\right)}{(1-q) q^{k-1}}\right|^{2} \\
& =\frac{1}{q}(1-q) \sum_{k=-\infty}^{+\infty} q^{k}\left|\frac{u\left(q^{k}\right)-u\left(q^{k+1}\right)}{(1-q) q^{k}}\right|^{2}
\end{aligned}
$$

is hold. As a result of the last equations for all $u \in D\left(L_{0}\right) \subset D\left(L_{0}^{*}\right)$

$$
\left\|L_{0}^{*} u\right\|=\sqrt{q^{-1}}\left\|L_{0} u\right\|
$$

is seen. This is completed the proof.
Corollary 2. The minimal operator L_{0} is a maximal formally q-normal in $L_{q}^{2}(0,+\infty)$.
Proof. Assume that \tilde{L}_{0} is a q-normal extension of L_{0}, i.e. $L_{0} \subset \tilde{L_{0}}$. Therefore, for all $u \in D\left(\tilde{L_{0}}\right)=D\left(\tilde{L}_{0}{ }^{*}\right)$

$$
\begin{aligned}
\left(\tilde{L}_{0} u, u\right)_{L_{q}^{2}(0,+\infty)}-\left(u,{\tilde{L_{0}}}^{*} u\right)_{L_{q}^{2}(0,+\infty)} & =\left(D_{q} u, u\right)_{L_{q}^{2}(0,+\infty)}-\left(u,-\frac{1}{q} D_{q^{-1}} u\right)_{L_{q}^{2}(0,+\infty)} \\
& =-\lim _{k \rightarrow+\infty}\left|u\left(q^{k}\right)\right|^{2}=0
\end{aligned}
$$

is obtained from the equation (11. This means that $D\left(\tilde{L_{0}}\right)=D\left(L_{0}\right)$ and $\tilde{L_{0}}=L_{0}$. However this is a contradiction. According to this result and Theorem 2.1, the minimal operator L_{0} is a maximal formally q-normal operator in $L_{q}^{2}(0,+\infty)$.

3. Spectrum Sets of the operators L_{0} and L

Theorem 2. The point spectrum set of L_{0} is

$$
\sigma_{p}\left(L_{0}\right)=\left\{\frac{q^{m}}{1-q}: m \in \mathbb{Z}\right\}
$$

Proof. Suppose that a complex number λ is an element of the point spectrum of L_{0}. Therefore, there is a non-zero element $u(t)$ corresponding to a complex number λ in $D\left(L_{0}\right)$, which that satisfies the following equation

$$
\frac{u\left(q^{k}\right)-u\left(q^{k+1}\right)}{(1-q) q^{k}}=\lambda u\left(q^{k}\right), \quad k \in \mathbb{Z}
$$

We gain that

$$
\begin{equation*}
u\left(q^{k+1}\right)=\left(1-\lambda(1-q) q^{k}\right) u\left(q^{k}\right) \tag{4}
\end{equation*}
$$

for all $k \in \mathbb{Z}$. If $\lambda=\frac{1}{(1-q) q^{m}}$ for any $m \in \mathbb{Z}$ is true, then the eigenvector $u(t)$ should be defined as

$$
\begin{aligned}
& u\left(q^{k}\right)=0, \quad k \geqslant m+1 \\
& u\left(q^{k}\right)=\left(\prod_{i=k-m}^{-1} \frac{1}{1-q^{i}}\right) u\left(q^{m}\right), \quad k \leqslant m-1
\end{aligned}
$$

Since $0<q<1$ and the limit

$$
\lim _{k \rightarrow-\infty}\left|1-q^{k}\right|=+\infty
$$

is true, a negative integer k_{0} is exist such that

$$
\prod_{n=k_{0}+1-m}^{-1} \frac{1}{\left|1-q^{n}\right|} \leqslant 1
$$

From this result and $0<q<1$ it is get that

$$
\begin{aligned}
\|u\|_{L_{q}^{2}(0,+\infty)}^{2} & =\sum_{k=-\infty}^{+\infty} q^{k}\left|u\left(q^{k}\right)\right|^{2} \\
& =\sum_{k=k_{0}}^{m} q^{k}\left|u\left(q^{k}\right)\right|^{2}+\sum_{k=-\infty}^{k_{0}-1} q^{k}\left|u\left(q^{k}\right)\right|^{2} \\
& =\sum_{k=k_{0}}^{m} q^{k}\left|u\left(q^{k}\right)\right|^{2}+\sum_{k=-\infty}^{k_{0}-1} q^{k}\left(\prod_{i=k-m}^{-1}\left|\frac{1}{1-q^{i}}\right|^{2}\right)\left|u\left(q^{m}\right)\right|^{2} \\
& \leqslant \sum_{k=k_{0}}^{m} q^{k}\left|u\left(q^{k}\right)\right|^{2}+\sum_{k=-\infty}^{k_{0}-1} q^{k}\left|\frac{1}{1-q^{k-m}}\right|^{2}\left|u\left(q^{m}\right)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=k_{0}}^{m} q^{k}\left|u\left(q^{k}\right)\right|^{2}+\sum_{k=-\infty}^{k_{0}-1} q^{k}\left|\frac{q^{-k}}{q^{-k}-q^{-m}}\right|^{2}\left|u\left(q^{m}\right)\right|^{2} \\
& =\sum_{k=k_{0}}^{m} q^{k}\left|u\left(q^{k}\right)\right|^{2}+\sum_{k=-\infty}^{k_{0}-1} q^{-k}\left|\frac{1}{q^{-k}-q^{-m}}\right|^{2}\left|u\left(q^{m}\right)\right|^{2}<+\infty
\end{aligned}
$$

These prove that $u(t)$ is an eigenvector corresponding to $\frac{q^{m}}{1-q}$ for $m \in \mathbb{Z}$.
On the other hand, λ is different from $\frac{1}{(1-q) q^{m}}$ for any $m \in \mathbb{Z}$, then

$$
u\left(q^{k}\right)=\left(\prod_{i=0}^{k-1}\left(1-\lambda(1-q) q^{i}\right)\right) u(1), \quad k \in \mathbb{N}
$$

Hence, $u \in D_{0}, u\left(q^{k}\right) \xrightarrow[k \rightarrow+\infty]{ } 0$ iff there exists $m \in \mathbb{N}$ satisfied the following equality

$$
1-\lambda(1-q) q^{m}=0
$$

must be supplied 15 or $u(1)=0$. In this case, $u(1)=0$ and so $u=0$ is obtained from the equation (4). These results imply that $\sigma_{r}\left(L_{0}\right)=\left\{\frac{q^{m}}{1-q}: m \in \mathbb{Z}\right\}$.

Theorem 3. The set of L_{0} residual spectrum is empty.
Proof. Assume that $\lambda \in \mathbb{C}$ is in $\sigma_{r}\left(L_{0}\right)$. Since $L_{q}^{2}(0,+\infty)=\overline{R\left(L_{0}-\lambda E\right)} \oplus$ $\operatorname{Ker}\left(L_{0}^{*}-\bar{\lambda} E\right)$ is provided, where E is the identity operator in $L_{q}^{2}(0,+\infty)$, it is clear that $\bar{\lambda} \in \sigma_{p}\left(L_{0}^{*}\right)$. Therefore, there exists an element $u \in L_{q}^{2}(0,+\infty), u \neq 0$ and

$$
L_{0}^{*} u(t)=\bar{\lambda} u(t)
$$

Therefore, we have

$$
-\frac{1}{q} \frac{u\left(q^{k}\right)-u\left(q^{k-1}\right)}{\left(1-\frac{1}{q}\right) q^{k}}=\frac{u\left(q^{k}\right)-u\left(q^{k-1}\right)}{(1-q) q^{k}}=\bar{\lambda} u\left(q^{k}\right)
$$

for all $k \in \mathbb{Z}$. The following equation is obtained from this equation

$$
u\left(q^{k-1}\right)=\left(1-\bar{\lambda}(1-q) q^{k}\right) u\left(q^{k}\right)
$$

for all $k \in \mathbb{Z}$. If $\bar{\lambda}$ is equal to $\frac{1}{(1-q) q^{m}}$ for any $m \in \mathbb{Z}$, then

$$
\begin{aligned}
& u\left(q^{k}\right)=0, \quad k \leqslant m-1 \\
& u\left(q^{k}\right)=\left(\prod_{i=m+1}^{k} \frac{1}{1-q^{i-m}}\right) u\left(q^{m}\right), \quad k \geqslant m+1
\end{aligned}
$$

is holds. Because $\sum_{k=m+1}^{+\infty} q^{k}\left(\prod_{i=m+1}^{k} \frac{1}{1-q^{i-m}}\right)^{2}$ converges to a complex number, the function $u(t)$ defined as above is an element of $L_{q}^{2}(0,+\infty)$.

Otherwise, if $\bar{\lambda}$ is not equal to $\frac{1}{(1-q) q^{m}}$ for any $m \in \mathbb{Z}$, then it must be $u(1) \neq 0$ and

$$
u\left(q^{k}\right)=\left(\prod_{i=0}^{-k}\left(1-\bar{\lambda}(1-q) q^{-i}\right)\right) u(1), \quad k \leqslant 0
$$

But the limit $\lim _{k \rightarrow-\infty} u\left(q^{k}\right)$ does not exist when $\bar{\lambda}$ is not equal to $\frac{1}{(1-q) q^{m}}$ for any $m \in \mathbb{Z}$. As a result of these,

$$
\sigma_{r}\left(L_{0}\right)=\emptyset
$$

is obtained.

Corollary 3. It is held that $0 \in \sigma_{c}\left(L_{0}\right)$ for the minimal operator L_{0}.
Corollary 4. The point spectrum and residual spectrum of L_{0}^{*} are as follows

$$
\sigma_{p}\left(L_{0}^{*}\right)=\left\{\frac{q^{m}}{1-q}: m \in \mathbb{Z}\right\} \quad \text { and } \quad \sigma_{r}\left(L_{0}^{*}\right)=\emptyset
$$

Theorem 4. The point and continuous spectrum sets of the maximal operator are in the form

$$
\sigma_{p}(L)=\mathbb{C} \backslash\{0\} \quad \text { and } \quad \sigma_{c}(L)=\{0\}
$$

Proof. Suppose that λ is a nonzero complex number. We deal with the solution of following problem

$$
(L-\lambda E) u\left(q^{k}\right)=0, \quad k \in \mathbb{Z}
$$

It is written for any $k \in \mathbb{Z}$

$$
\begin{equation*}
u\left(q^{k+1}\right)=\left(1-\lambda(1-q) q^{k}\right) u\left(q^{k}\right) \tag{5}
\end{equation*}
$$

If $u\left(q^{k}\right)$ are different from zero for all $k \in \mathbb{Z}$, then we have

$$
u\left(q^{k+1}\right)=\left(\prod_{n=0}^{k}\left(1-\lambda(1-q) q^{n}\right)\right) u(1)
$$

for all positive integer k. Since the infinite product $\prod_{k=0}^{+\infty}\left(1-\lambda(1-q) q^{k}\right)$ converges, the sequence $\left\{u\left(q^{k}\right)\right\}_{k \in \mathbb{N}}$ is bounded. From this result the series $\sum_{k=0}^{+\infty} q^{k}\left|u\left(q^{k}\right)\right|^{2}$ is finite.

In the case of negative integers, we gain

$$
u\left(q^{k}\right)=\left(\prod_{n=k}^{-1}\left(1-\lambda(1-q) q^{k}\right)^{-1}\right) u(1)
$$

for all $k \leqslant-1$. Because the limit

$$
\begin{equation*}
\lim _{k \rightarrow-\infty}\left|1-\lambda(1-q) q^{k}\right|=+\infty \tag{6}
\end{equation*}
$$

is true, it is clear that

$$
\prod_{n=k-1}^{-1} \frac{1}{\left|1-\lambda(1-q) q^{n}\right|} \leqslant 1
$$

for small enough negative integers k. This result give us the following inequality

$$
\begin{aligned}
q^{k}\left|u\left(q^{k}\right)\right|^{2} & =q^{k}\left(\prod_{n=k}^{-1} \frac{1}{\left|1-\lambda(1-q) q^{n}\right|^{2}}\right)|u(1)|^{2} \\
& \leqslant q^{k} \frac{1}{\left|1-\lambda(1-q) q^{k}\right|^{2}}|u(1)|^{2} \\
& =q^{k} \frac{q^{-2 k}}{\left|q^{-k}-\lambda(1-q)\right|^{2}}|u(1)|^{2} \\
& =\frac{q^{-k}}{\left|q^{-k}-\lambda(1-q)\right|^{2}}|u(1)|^{2}
\end{aligned}
$$

for small enough negative integers k. Because of the limit (6) and the fact that the geometric series $\sum_{k=-\infty}^{0} \alpha q^{-k}$ converges for $0<q<1$, these results allow us that the series $\sum_{k=-\infty}^{0} q^{k}\left|u\left(q^{k}\right)\right|^{2}$ converges absolutely. These show us to conclude that $\sum_{k=-\infty}^{+\infty} q^{k}\left|u\left(q^{k}\right)\right|^{2}$ is convergent.

When $u\left(q^{m+1}\right)$ is equal to zero for an integer $m \in \mathbb{Z}$, it is obtained that $u\left(q^{k}\right)=0$ for all $k \geqslant m+1$. We note that this condition includes the case of $\lambda=\frac{q^{-m}}{1-q}, \quad m \in \mathbb{Z}$. Moreover, the equation

$$
u\left(q^{k}\right)=\left(\prod_{n=k}^{m-1}\left(1-\lambda(1-q) q^{n}\right)^{-1}\right) u\left(q^{m}\right)
$$

is easily checked for all $k<m$. We already know that

$$
\sum_{k=-\infty}^{m-1} q^{k}\left(\prod_{n=k}^{m-1}\left|\left(1-\lambda(1-q) q^{n}\right)^{-1}\right|^{2}\right)\left|u\left(q^{m}\right)\right|^{2}
$$

is convergent. Because of all these reasons, we get that $u(t)$ is an eigenvector of the maximal operator L for $\lambda \in \mathbb{C} \backslash\{0\}$.

If $\lambda=0$, then returning to the equation (5) it must be $u(t)=0$. This means that zero is not an eigenvalue. Also, if $0 \in \sigma_{r}(L)$, then it must be $0 \in \sigma_{p}\left(L^{*}\right)$ because of $L_{q}^{2}(0,+\infty)=\overline{R(L)} \oplus \operatorname{Ker}\left(L^{*}\right)$. But, it can be easily proved that $0 \notin \sigma_{p}\left(L^{*}\right)$. Therefore, it must be $\sigma_{c}(L)=\{0\}$ from the fact of the closeness of the spectrum.

Remark 1. It can be defined the two operators P_{0} and P defined by $p()=.\frac{d}{d t}$ in $L^{2}(0,+\infty)$ and these operators are called the minimal and maximal operators, respectively. Also, their domains are as follows

$$
\begin{aligned}
D\left(P_{0}\right) & =\left\{u \in L^{2}(0,+\infty): u^{\prime} \in L^{2}(0,+\infty) \text { and } u(0)=0\right\} \\
D(P) & =\left\{u \in L^{2}(0,+\infty): u^{\prime} \in L^{2}(0,+\infty)\right\}
\end{aligned}
$$

The operator P_{0} is maximal formal normal. It means that there is not any normal extension of L_{0}. Moreover, the point and residual spectrum sets of P_{0} are $\sigma_{p}\left(P_{0}\right)=$ \emptyset and $\sigma_{r}\left(P_{0}\right)=\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)>0\}$ and the spectrum parts of the maximal operator P are $\sigma_{p}(P)=\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)<0\}, \sigma_{r}(P)=\emptyset$ and $\sigma_{c}(P)=\{\lambda \in \mathbb{C}$: $\operatorname{Re}(\lambda)=0\}$.

Authors Contribution Statement The authors contributed equally. All authors read and approved the final copy of the manuscript.

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Annaby, M. H, Mansour, Z. S., q-Fractional Calculus and Equations, Lecture Notes in Mathematics, vol. 2056, Springer, Heidelberg 2012. https://doi.org/10.1007/978-3-642-30898-7
[2] Cimpric, J., Savchuk, Yu., Schmüdgen, K., On q-normal operators and the quantum complex plane, Trans. Amer. Math. Soc., 366(1) (2014), 135-158. https://doi.org/10.1090/S0002-9947-2013-05733-9
[3] Ernst, T., The History of q-Calculus and a New Method, U.U.D.M. Report 2000, 16, Uppsala, Department of Mathematics, Uppsala University 2000.
[4] Euler, L., Introduction in Analysin Infinitorum, vol. 1. Lausanne, Switzerland, Bousquet 1748 (in Latin).
[5] Gauss, C. F., Disquisitiones generales circa seriem infinitam, Werke, (1813), 124-162.
[6] Hörmander, L., On the theory of general partial differential operators, Acta Math. 94 (1955), 161-248. https://doi.org/10.1007/BF02392492
[7] Jackson, F. H., On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb., 46 (1908), 64-72.
[8] Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
[9] Lavagno A., Scarfone, A. M., q-deformed structure and generalized thermodynamics, Rep. Math. Phys. 55(3) (2005), 423-433. https://doi.org/10.1016/S0034-4877(05)80056-4
[10] Ota, S., Some classes of q-deformed operators, J. Operator Theory, 48(1) (2002), 151-186.
[11] Ota, S., Szafraniec, F. H., Notes on q-deformed operators, Studia Math., 165(3) (2004), 295-301. https://doi.org/10.4064/sm165-3-7
[12] Ota, S., Szafraniec F. H., q-positive definiteness and related topics, J. Math. Anal. Appl., 329(2) (2007), 987-997. https://doi.org/10.1016/j.jmaa.2006.07.006
[13] Schmüdgen, K., An Invitation to Unbounded Representations of $*$-Algebras on Hilbert space. Springer Cham, 2020. https://doi.org/10.1007/978-3-030-46366-3
[14] Sertbaş, M., Yilmaz, F., q-quasinormal operators and its extended eigenvalues, MJM, 2(1) (2020), 9-13.
[15] Stein, E. M., Shakarchi, R., Complex Analysis, Princeton, NJ, USA, Princeton Univ. Press 2003.
http://communications.science.ankara.edu.tr

NEW TYPES OF CONNECTEDNESS AND INTERMEDIATE VALUE THEOREM IN IDEAL TOPOLOGICAL SPACES

Ferit YALAZ ${ }^{1}$ and Aynur KESKIN KAYMAKCI ${ }^{2}$
Department of Mathematics, Selcuk University, Konya, TÜRKİYE

Abstract

The definitions of new type separated subsets are given in ideal topological spaces. By using these definitions, we introduce new types of connectedness. It is shown that these new types of connectedness are more general than some previously defined concepts of connectedness in ideal topological spaces. The new types of connectedness are compared with well-known connectedness in point-set topology. Then, the intermediate value theorem for ideal topological spaces is given. Also, for some special cases, it is shown that the intermediate value theorem in ideal topological spaces and the intermediate value theorem in topological spaces coincide.

1. Introduction

The concept of ideal in topological spaces was first studied by Kuratowski 16 and Vaidyanathswamy 33. More properties are given for ideal topological spaces in 10 . In 10,33 , it is shown that the local function of a set is a generalization of the concepts of closure point, ω-accumulation point and condensation point of that set. The concept of ideal was applied not only to topology but also to different areas of mathematics. For example, the Cantor-Bendixson Theorem is generalized in 6. New special spaces such as \mathcal{I}-Rothberger $7, \mathcal{I}$-Baire $17, \mathcal{I}$-Resolvable and \mathcal{I}-Hyperconnected $3, \mathcal{I}$-Extremally Disconnected $12, \mathcal{I}$-Alexandroff and $\mathcal{I}_{g^{-}}$ Alexandroff 4 are defined by using ideal. In addition, the concepts of ideal and local function are studied in fuzzy set theory 28 , soft set theory 11 and ditopological texture spaces 15 .

Connectedness is a topological invariant. So, the concept of connectedness has an important role in general topology. The intermediate value theorem in calculus

[^19]was generalized by means of connectedness in topological spaces 25. Many types of connectedness are defined by using the local function in 20,31 and these connectedness are stronger connectedness. The generalization of connectedness has been defined in 18,26 More features of connectedness types given in 20 were examined in 14. In addition, many operators such as local closure function 1, semi-closure local function 9 , weak semi-local function 35,36 , semi-local function [13, a-local function $\sqrt{2}, 21, \mathcal{M}$-local function $\sqrt[22]{ }, c^{*}$-local function $\sqrt{29}, \Omega$-operator 19 and ψ^{*}-operator 23 are defined in recent years. In this study, we define new types of connectedness by using local functions and local closure functions. In this way, we generalize all connectedness types in 20. After that, new types of connectedness are compared with well-known connectedness. Also, we define new components with the help of new types of connectedness. In the last section, we give the intermediate value theorem in ideal topological spaces. For the minimal ideal $\mathcal{I}=\{\emptyset\}$, we show that the intermediate value theorem in general topological spaces and the intermediate value theorem in ideal topological spaces coincide.

2. Preliminaries

In any topological space (U, τ), we denote the interior and the closure of the subset M as $\operatorname{Int}(M)$ and $C l(M)$, respectively. The power set of U is denoted by $\mathcal{P}(U)$. Both open and closed subsets are called clopen. The collection of all open neighborhoods of the point x is denoted by $\tau(x)$.

Definition 1. 16 Let U be nonempty set and $\mathcal{I} \subseteq \mathcal{P}(U)$. If the following conditions are satisfied:
(1) $\emptyset \in \mathcal{I}$.
(2) If $M \in \mathcal{I}$ and $K \subseteq M$, then $K \in \mathcal{I}$.
(3) If $M, K \in \mathcal{I}$, then $M \cup K \in \mathcal{I}$.
then the collection \mathcal{I} is called an ideal on U.
The ideal $\mathcal{I}=\{\emptyset\}$ is called minimal ideal and the ideal $\mathcal{I}=\mathcal{P}(U)$ is called maximal ideal. Although the topology is not needed to define an ideal, some collections of sets in the topological spaces form ideals. In any topological space (U, τ), a subset M is called nowhere dense, if $\operatorname{Int}(C l(M))=\emptyset$. The subset M is called discrete set if $M \cap M^{d}=\emptyset$ (where M^{d} is derived set of M). A subset of U is called meager (or set of first category) if it can be written as a countable union of nowhere dense subsets of U. A subset of U is called relatively compact if its closure is compact. The collection of all nowhere dense subsets $\mathcal{I}_{n w}=\{M \subseteq U: M$ is nowhere dense $\}$, the collection of all closed-discrete subsets $\mathcal{I}_{c d}=\{M \subseteq U: M$ is closed and discrete $\}$, the collection of all meager subsets $\mathcal{I}_{m g}=\{M \subseteq U: M$ is meager set $\}$, the collection of all relatively compact subsets $\mathcal{I}_{K}=\{M \subseteq U: M$ is relatively compact $\}$ and $\mathcal{I}_{f \circ g}=\{A \subseteq U: f \circ g(A)=\emptyset\}$, where $f \sim^{U} g$ are ideals on U 16, 24, 33 .

If (U, τ) is a topological space with an ideal \mathcal{I} on U, this space is called an ideal topological space or briefly \mathcal{I}-space. Sometimes we denote this case with the triple (U, τ, \mathcal{I}).
Definition 2. [16] In any \mathcal{I}-space (U, τ), a function (. $)^{*}: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ is defined by

$$
M^{*}(\mathcal{I}, \tau)=\{x \in U: O \cap M \notin \mathcal{I} \text { for every } O \in \tau(x)\}
$$

is called the local function of a subset M.
Sometimes we write briefly $M^{*}(\mathcal{I})$ or M^{*} instead of $M^{*}(\mathcal{I}, \tau) . M \cup M^{*}=C l^{*}(M)$ is a Kuratowski closure operator. So this operator generates a topology on U. This topology is denoted by τ^{*} and defined as $\tau^{*}=\left\{M \subseteq U: C l^{*}(U \backslash M)=(U \backslash M)\right\}$. Moreover $\tau \subseteq \tau^{*}$ and so $M \subseteq C l^{*}(M) \subseteq C l(M)$. Elements of τ^{*} are called *-open. The complement of a $*$-open subset is called $*$-closed.

Proposition 1. [10, 16, 33] Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$.
(1) If $M \subseteq K$, then $M^{*} \subseteq K^{*}$.
(2) $M^{*}=C l\left(M^{*}\right) \subseteq C l(M)$. That is, M^{*} is closed set.
(3) $(M \cup K)^{*}=M^{*} \cup K^{*}$.
(4) If $\mathcal{I}=\{\emptyset\}$, then $M^{*}(\{\emptyset\})=C l(M)$.
(5) If $\mathcal{I}=\mathcal{P}(U)$, then $M^{*}(\mathcal{P}(U))=\emptyset$.

Definition 3. [1] In any \mathcal{I}-space (U, τ), a function $\Gamma():. \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ defined by

$$
\Gamma(M)(\mathcal{I}, \tau)=\{x \in U: C l(O) \cap M \notin \mathcal{I} \text { for every } O \in \tau(x)\}
$$

is called the local closure function of the subset M.
Sometimes we write briefly $\Gamma(M)(\mathcal{I})$ or $\Gamma(M)$ instead of $\Gamma(M)(\mathcal{I}, \tau)$.
The θ-closure of any subset M is defined in 34 as $C l_{\theta}(M)=\{x \in U: C l(O) \cap$ $M \neq \emptyset$ for every $O \in \tau(x)\}$.
Proposition 2. [1] Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$.
(1) If $M \subseteq K$, then $\Gamma(M) \subseteq \Gamma(K)$.
(2) $\Gamma(M)=C l(\Gamma(M)) \subseteq C l_{\theta}(M)$. That is $\Gamma(M)$ is closed set.
(3) $\Gamma(M \cup K)=\Gamma(M) \cup \Gamma(K)$
(4) If $\mathcal{I}=\{\emptyset\}$, then $\Gamma(M)(\{\emptyset\})=C l_{\theta}(M)$.
(5) If $\mathcal{I}=\mathcal{P}(U)$, then $\Gamma(M)(\mathcal{P}(U))=\emptyset$.

Lemma 1. 1 In any \mathcal{I}-space $(U, \tau), M^{*}(\mathcal{I}, \tau) \subseteq \Gamma(M)(\mathcal{I}, \tau)$.
Definition 4. [30] Let (U, τ) be an \mathcal{I}-space and $M \subseteq U$. The subset M is called Γ-dense-in-itself if $M \subseteq \Gamma(M)$.
Definition 5. [8] Let (U, τ) be an \mathcal{I}-space and $M \subseteq U$. The subset M is called *-dense-in-itself if $M \subseteq M^{*}$.

Nonempty subsets M, K of a topological space (U, τ) are called separated if $C l(M) \cap K=M \cap C l(K)=\emptyset$. The topological space (U, τ) is called connected
if U is not the union of two separated subsets. The subset M in a topological space is connected if and only if M is not the union of separated subsets in the subspace $\left(M, \tau_{M}\right)$ or equivalently M is not the union of two separated subsets in (U, τ). There are many expressions equivalent to definition of connectedness in the literature $[5,25,32$. We say that the subsets M, K are τ-separated if they are separated subsets in (U, τ). We say that the subset M is τ-connected if it is a connected subset in (U, τ). That an \mathcal{I}-space (U, τ) is τ-connected means that the topological space (U, τ) is τ-connected.

Definition 6. 20 Let (U, τ) be an \mathcal{I}-space and M, K be nonempty subsets in this space. These subsets are called $*_{*}$-separated (resp. *-Cl*-separated, $*-C l$ separated), if $M^{*} \cap K=M \cap K^{*}=M \cap K=\emptyset$ (resp. $M^{*} \cap C l^{*}(K)=C l^{*}(M) \cap K^{*}=$ $\left.M \cap K=\emptyset, \quad M^{*} \cap C l(K)=C l(M) \cap K^{*}=M \cap K=\emptyset\right)$.

Definition 7. 20] Let (U, τ) be an \mathcal{I}-space and $M \subseteq U$. The subset M is called $*_{*}$-connected (resp. *-Cl*-connected, $*-C l$-connected) if it is not the union of two $*_{*}$-separated (resp. *-Cl ${ }^{*}$-separated, $*$-Cl-separated) subsets.

From these definitions, the following diagrams are obtained in 20.

$$
* \text {-Cl-separated } \Longrightarrow *-C l^{*} \text {-separated } \Longrightarrow *_{*} \text {-separated } \Longleftrightarrow \tau^{*} \text {-separated }
$$

Figure 1. Relations among types of separated subsets which are defined via local function

$$
\tau^{*} \text {-connected } \Longleftrightarrow *_{*} \text {-connected } \Longrightarrow *-C l^{*} \text {-connected } \Longrightarrow *-C l \text {-connected }
$$

Figure 2. Relations among types of connectedness which are defined via local function

3. New Types of Separated Subsets via Local Closure

Definition 8. Let (U, τ) be an \mathcal{I}-space and M, K be nonempty subsets of U. These subsets are called
(1) Γ-Cl-separated if $\Gamma(M) \cap C l(K)=C l(M) \cap \Gamma(K)=M \cap K=\emptyset$.
(2) Γ-Cl*-separated if $\Gamma(M) \cap C l^{*}(K)=C l^{*}(M) \cap \Gamma(K)=M \cap K=\emptyset$.
(3) Γ-separated if $\Gamma(M) \cap K=M \cap \Gamma(K)=M \cap K=\emptyset$.
(4) Γ-*-separated if $\Gamma(M) \cap K^{*}=M^{*} \cap \Gamma(K)=M \cap K=\emptyset$.
(5) 2^{*}-separated if $M^{*} \cap K^{*}=M \cap K=\emptyset$.

Theorem 1. Let (U, τ) be an \mathcal{I}-space and M, K be nonempty subsets of U.
(1) If M, K are Γ-Cl-separated, then they are Γ - $C l^{*}$-separated subsets.
(2) If M, K are Γ-Cl-separated, then they are *-Cl-separated subsets.
(3) If M, K are Γ - $C l^{*}$-separated, then they are Γ-separated subsets.
(4) If M, K are Γ - $C l^{*}$-separated, then they are $*-C l^{*}$-separated subsets.
(5) If M, K are Γ-separated, then they are $*_{*}$-separated subsets.
(6) If M, K are Γ-Cl*-separated, then they are Γ-*-separated subsets.
(7) If M, K are Γ-*-separated, then they are 2^{*}-separated subsets.
(8) If M, K are $*-C l^{*}$-separated, then they are 2^{*}-separated subsets.

Proof. Since $M \subseteq C l^{*}(M) \subseteq C l(M), K \subseteq C l^{*}(K) \subseteq C l(K)$ and Definition 8 , (11)-(3)-(6)-(8) are obtained. By using Lemma 1 and Definition 8, (2)-(4)-(5)-(7) are obtained.

In addition to this theorem, since $\tau \subseteq \tau^{*}, \tau$-separated subsets are τ^{*}-separated. From Theorem 1 and Figure 1 we obtain the following diagram:

Figure 3. Relations among new types of separated subsets
For this diagram, counterexamples and independent concepts are shown in Example 1 and Example 2.
Example 1. Let $\tau=\{\emptyset, U,\{x\},\{d\},\{x, y\},\{x, z\},\{a, c\},\{x, d\},\{x, y, z\},\{a, c, d\}$, $\{x, a, c\},\{x, z, d\},\{x, y, d\},\{a, b, c, d\},\{x, a, c, d\},\{x, y, a, c\},\{x, z, a, c\},\{x, y, z, d\}$, $\{x, y, z, a, c\},\{x, a, b, c, d\},\{x, y, a, c, d\},\{x, z, a, c, d\},\{x, z, a, b, c, d\},\{x, y, a, b, c, d\}$, $\{x, y, z, a, c, d\}\}$ be a topology on $U=\{a, b, c, d, x, y, z\}$ and let $\mathcal{I}=\{\emptyset,\{x\},\{a\},\{a, x\}\}$ be an ideal on U. The following table gives information about some subsets of this ideal topological space.

According to Table:
(1) C and E are Γ - $C l^{*}$-separated subsets but not Γ-Cl-separated.
(2) D and G are $*-C l$-separated subsets but not Γ-Cl-separated.
(3) D and G are $*-C l^{*}$-separated but not Γ - $C l^{*}$-separated.
(4) C and H are Γ-separated subsets but not Γ - $C l^{*}$-separated.
(5) D and G are $*_{*}$-separated subsets but not Γ-separated.
(6) E and F are Γ-*-separated subsets but not Γ - $C l^{*}$-separated.

TABLE 1. Information about some subsets according to the given \mathcal{I}-space

$A=\{b\}$	$A^{*}=\{b\}$	$\Gamma(A)=\{a, b, c, d\}$	$C l^{*}(A)=\{b\}$	$C l(A)=\{b\}$
$B=\{c\}$	$B^{*}=\{a, b, c\}$	$\Gamma(B)=\{a, b, c\}$	$C l^{*}(B)=\{a, b, c\}$	$C l(B)=\{a, b, c\}$
$C=\{d\}$	$C^{*}=\{b, d\}$	$\Gamma(C)=\{b, d\}$	$C l^{*}(C)=\{b, d\}$	$C l(C)=\{b, d\}$
$D=\{z\}$	$D^{*}=\{z\}$	$\Gamma(D)=\{x, y, z\}$	$C l^{*}(D)=\{z\}$	$C l(D)=\{z\}$
$E=\{a, y\}$	$E^{*}=\{y\}$	$\Gamma(E)=\{x, y, z\}$	$C l^{*}(E)=\{a, y\}$	$C l(E)=\{a, b, c, y\}$
$F=\{b, c\}$	$F^{*}=\{a, b, c\}$	$\Gamma(F)=\{a, b, c, d\}$	$C l^{*}(F)=\{a, b, c\}$	$C l(F)=\{a, b, c\}$
$G=\{b, y\}$	$G^{*}=\{b, y\}$	$\Gamma(G)=U$	$C l^{*}(G)=\{b, y\}$	$C l(G)=\{b, y\}$
$H=\{c, y\}$	$H^{*}=\{a, b, c, y\}$	$\Gamma(H)=\{a, b, c, x, y, z\}$	$C l^{*}(H)=\{a, b, c, y\}$	$C l(H)=\{a, b, c, y\}$
$K=\{d, x\}$	$K^{*}=\{b, d\}$	$\Gamma(K)=\{b, d\}$	$C l^{*}(K)=\{b, d, x\}$	$C l(K)=\{b, d, x, y, z\}$
$L=\{d, y\}$	$L^{*}=\{b, d, y\}$	$\Gamma(L)=\{b, d, x, y, z\}$	$C l^{*}(L)=\{b, d, y\}$	$C l(L)=\{b, d, y\}$
$M=\{x, z\}$	$M^{*}=\{z\}$	$\Gamma(M)=\{x, y, z\}$	$C l^{*}(M)=\{x, z\}$	$C l(M)=\{x, y, z\}$

(7) G and M are 2^{*}-separated subsets but not Γ-*-separated.
(8) E and F are 2^{*}-separated subsets but not $*-C l^{*}$-separated.
(9) D and G are $*-C l$-separated subsets but not Γ - $C l^{*}$-separated. C and E are Γ-Cl*-separated subsets but not $*-C l$-separated. That is, the concepts of *-Cl-separated and Γ-Cl*-separated are independent of each other.
(10) E and F are Γ-*-separated subsets but not $*-C l$-separated. D and G are *-Cl-separated subsets but not Γ-*-separated That is, the concepts of $*-C l$ separated and Γ-*-separated are independent of each other.
(11) E and F are Γ-*-separated subsets but not $*-C l^{*}$-separated. D and G are *-Cl*-separated subsets but not Γ-*-separated. That is, the concepts of $\Gamma-*-$ separated and $*-C l^{*}$-separated are independent of each other.
(12) A and E are Γ-*-separated subsets but not Γ-separated. C and H are Γ-separated subsets but not Γ-*-separated. That is, the concepts of Γ-*separated and Γ-separated are independent of each other.
(13) E and F are Γ-*-separated subsets but not $*_{*}$-separated. D and G are $*_{*}$-separated subsets but not Γ-*-separated. That is, the concepts of $\Gamma-*-$ separated and $*_{*}$-separated are independent of each other.
(14) E and F are 2^{*}-separated subsets but not Γ-separated. C and H are Γ separated subsets but not 2^{*}-separated. That is, the concepts of 2^{*}-separated and Γ-separated are independent of each other.
(15) H and K are $*_{*}$-separated subsets but not 2^{*}-separated. E and F are 2^{*} separated subsets but not $*_{*}$-separated. That is, the concepts of 2^{*}-separated and $*_{*}$-separated are independent of each other.
(16) D and G are *-Cl-separated subsets but not Γ-separated. C and H are Γ separated subsets but not $*$-Cl-separated. So, the concepts of $*$-Cl-separated and Γ-separated are independent of each other.
(17) D and G are $*-C l^{*}$-separated subsets but not Γ-separated. B and L are Γ-separated subsets but not $*-C l^{*}$-separated. So, the concepts of $*-C l^{*}$ separated and Γ-separated are independent of each other.

Lemma 2. Let (U, τ) be $\mathcal{P}(U)$-space and M, K be nonempty subsets of U such that $M \cap K=\emptyset$. Then, the subsets M and K are $\Gamma-C l\left(*-C l^{*}, *-C l, \Gamma, \Gamma-*\right.$, Γ-Cl $\left.l^{*}, 2^{*}, *_{*}\right)$-separated.

Proof. In this space, since $\Gamma(M)=\Gamma(K)=M^{*}=K^{*}=\emptyset$, these subsets are Γ - $C l$ $\left(\Gamma-C l^{*}, *-C l, *-C l^{*}, \Gamma, \Gamma-*, 2^{*}, *_{*}\right)$-separated.

Example 2. Let $\left(\mathbb{R}, \tau_{L}\right)$ be $\mathcal{P}(\mathbb{R})$-space, where \mathbb{R} is the set of real numbers with left-ray topology τ_{L} i.e. $\tau_{L}=\{(-\infty, r): r \in \mathbb{R}\} \cup\{\emptyset, \mathbb{R}\}$. Consider the subsets $M=(-\infty, 3)$ and $K=(3,5)$. Since $C l(M)=\mathbb{R}$ and $C l(K)=[3,+\infty)$, these subsets are not τ-separated. But M and K are $\Gamma-C l\left(*-C l, *-C l^{*}, \Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}\right)-$ separated subsets from Lemma 2.

In Example 1, D and G are τ-separated subsets but not $\Gamma-C l\left(\Gamma, \Gamma-*, \Gamma-C l^{*}\right)$ separated. Moreover, B and L are τ-separated subsets but not $*-C l\left(*-C l^{*}, 2^{*}\right)$ separated.

Consequently, the concepts of $\Gamma-C l\left(*-C l, *-C l^{*}, \Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}\right)$-separated and τ-separated are independent of each other.

Theorem 2. [27] In any \mathcal{I}-space (U, τ), each of the following conditions implies that $M^{*}=\Gamma(M)$ for any subset M of U :
(1) τ has a clopen base.
(2) τ is a T_{3}-space on U.
(3) $\mathcal{I}=\mathcal{I}_{c d}$.
(4) $\mathcal{I}=\mathcal{I}_{K}$.
(5) $\mathcal{I}_{n w} \subseteq \mathcal{I}$.
(6) $\mathcal{I}=\mathcal{I}_{m g}$.

Corollary 1. Assume that any of the conditions in Theorem 2 is satisfied and M, K are the subsets in any \mathcal{I}-space (U, τ). Then,
(1) The subsets M and K are Γ-Cl-separated if and only if they are $*-C l$ separated.
(2) The subsets M and K are Γ - $C l^{*}$-separated if and only if they are $*-C l^{*}$ separated.
(3) The subsets M and K are Γ-separated if and only if they are $*_{*}$-separated.
(4) The subsets M and K are 2^{*}-separated if and only if they are Γ-*-separated.

Proof. It is obvious from Definition 8 and Theorem 2.

Theorem 3. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. Subsets M and K are both Γ-separated and Γ-*-separated if and only if they are Γ - $C l^{*}$-separated.

Proof. Since M and K are both Γ-separated and Γ-*-separated,

$$
\begin{aligned}
\Gamma(M) \cap C l^{*}(K) & =\Gamma(M) \cap\left(K \cup K^{*}\right) \\
& =(\Gamma(M) \cap K) \cup\left(\Gamma(M) \cap K^{*}\right) \\
& =\emptyset \\
C l^{*}(M) \cap \Gamma(K) & =\left(M \cup M^{*}\right) \cap \Gamma(K) \\
& =(M \cap \Gamma(K)) \cup\left(M^{*} \cap \Gamma(K)\right) \\
& =\emptyset
\end{aligned}
$$

and $M \cap K=\emptyset$. So, M and K are Γ - $C l^{*}$-separated subsets.
Conversely, let M and K be Γ - $C l^{*}$-separated subsets. From Figure 3, these subsets are both Γ-separated and Γ-*-separated.

Theorem 4. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. Subsets M and K are both $*_{*}$-separated and 2^{*}-separated if and only if these subsets are $*_{-C l}{ }^{*}$-separated.

Proof. Since M and K are both $*_{*}$-separated and 2^{*}-separated,

$$
\begin{aligned}
M^{*} \cap C l^{*}(K) & =M^{*} \cap\left(K \cup K^{*}\right) \\
& =\left(M^{*} \cap K\right) \cup\left(M^{*} \cap K^{*}\right) \\
& =\emptyset \\
C l^{*}(M) \cap K^{*} & =\left(M \cup M^{*}\right) \cap K^{*} \\
& =\left(M \cap K^{*}\right) \cup\left(M^{*} \cap K^{*}\right) \\
& =\emptyset
\end{aligned}
$$

and $M \cap K=\emptyset$. So, M and K are $*-C l^{*}$-separated subsets.
Conversely, let M and K be $*-C l^{*}$-separated subsets. From Figure 3, these subsets are both $*_{*}$-separated and 2^{*}-separated.

Theorem 5. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are Γ-separated.
(2) The subsets M, K are Γ-dense-in-itself.
(3) $M \cup K \in \tau$.
then $M \in \tau$ and $K \in \tau$.
Proof. Since the subsets M, K are Γ-separated, $M \cap \Gamma(K)=\emptyset$. So, $M \subseteq(U \backslash \Gamma(K))$. From Proposition 2-(2), $U \backslash \Gamma(K)$ is open set and hence $(M \cup K) \cap(U \backslash \Gamma(K))=M$ is an open subset. Similarly, it can be showed that the subset K is open.

Corollary 2. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are $\Gamma-C l\left(\Gamma-C l^{*}\right)$-separated.
(2) The subsets M, K are Γ-dense-in-itself.
(3) $M \cup K \in \tau$.
then $M \in \tau$ and $K \in \tau$.
Proof. From Figure 3 and Theorem 5, it is obtained.
Theorem 6. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are Γ-separated.
(2) The subsets M, K are Γ-dense-in-itself.
(3) $M \cup K \in \tau^{*}$.
then $M \in \tau^{*}$ and $K \in \tau^{*}$.
Proof. Since the subsets M, K are Γ-separated, $M \cap \Gamma(K)=\emptyset$. So, $M \subseteq(U \backslash \Gamma(K))$. From Proposition 2-(2), $U \backslash \Gamma(K)$ is open set. Since $\tau \subseteq \tau^{*}, U \backslash \Gamma(K) \in \tau^{*}$ and hence $(M \cup K) \cap(U \backslash \Gamma(K))=M$ is in τ^{*}. Similarly, it can be showed that the subset K is in τ^{*}.

Corollary 3. Let (U, τ) be an \mathcal{I}-space space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are $\Gamma-C l\left(\Gamma-C l^{*}\right)$-separated.
(2) The subsets M, K are Γ-dense-in-itself.
(3) $M \cup K \in \tau^{*}$.
then $M \in \tau^{*}$ and $K \in \tau^{*}$.
Proof. It is obtained from Figure 3 and Theorem 6.
Theorem 7. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are Γ-*-separated.
(2) The subsets M, K are $*-$ dense-itself.
(3) $M \cup \Gamma(K) \in \tau$ and $\Gamma(M) \cup K \in \tau$.
then $\Gamma(M)$ and $\Gamma(K)$ are clopen subsets.
Proof. From Proposition 2-(2), $\Gamma(M)$ and $\Gamma(K)$ are closed subsets. We only show that they are open subsets. Since the subsets M, K are Γ-*-separated, $\Gamma(M) \cap K^{*}=$ \emptyset. So, $\Gamma(M) \subseteq\left(U \backslash K^{*}\right)$. From Proposition 1-(2), $U \backslash K^{*}$ is open set and hence $(\Gamma(M) \cup K) \cap\left(U \backslash K^{*}\right)=\Gamma(M)$ is open. Similarly, it can be showed that the subset $\Gamma(K)$ is open.

Corollary 4. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are Γ - $C l\left(\Gamma-C l^{*}\right)$-separated.
(2) The subsets M, K are *-dense-itself.
(3) $M \cup \Gamma(K) \in \tau$ and $\Gamma(M) \cup K \in \tau$.
then $\Gamma(M)$ and $\Gamma(K)$ are clopen subsets.
Proof. It is obtained from Figure 3 and Theorem 7 .
Theorem 8. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are Γ-*-separated.
(2) The subsets M, K are Γ-dense-itself.
(3) $M^{*} \cup K \in \tau$ and $M \cup K^{*} \in \tau$.
then M^{*} and K^{*} are clopen subsets.
Proof. From Proposition 1-(2), M^{*} and K^{*} are closed subsets. We must show that they are open subsets. Since the subsets M, K are Γ-*-separated, $M^{*} \cap \Gamma(K)=\emptyset$. So $M^{*} \subseteq U \backslash \Gamma(K)$. Since $U \backslash \Gamma(K)$ is open subset, $\left(M^{*} \cup K\right) \cap(U \backslash \Gamma(K))=M^{*} \in \tau$. Similarly, it can be showed that the subset K^{*} is open.

Corollary 5. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are Γ - $C l\left(\Gamma-C l^{*}\right)$-separated.
(2) The subsets M, K are Γ-dense-itself.
(3) $M^{*} \cup K \in \tau$ and $M \cup K^{*} \in \tau$.
then M^{*} and K^{*} are clopen subsets.
Proof. It is obtained from Figure 3 and Theorem 8 .
Theorem 9. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are 2^{*}-separated.
(2) The subsets M, K are $*$-dense-itself.
(3) $M^{*} \cup K \in \tau$ and $M \cup K^{*} \in \tau$.
then M^{*} and K^{*} are clopen subsets.
Proof. From Proposition 1-(2), M^{*} and K^{*} are closed subsets. We must show that they are open subsets. Since the subsets M, K are 2^{*}-separated, $M^{*} \cap K^{*}=\emptyset$. So, $M^{*} \subseteq U \backslash K^{*}$. Since $U \backslash K^{*}$ is open, $\left(M^{*} \cup K\right) \cap\left(U \backslash K^{*}\right)=M^{*} \in \tau$. Similarly, it can be showed that the subset K^{*} is open.

Corollary 6. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are $\Gamma-C l\left(\Gamma-C l^{*}, \Gamma-*\right)$-separated.
(2) The subsets M, K are *-dense-itself.
(3) $M^{*} \cup K \in \tau$ and $M \cup K^{*} \in \tau$.
then M^{*} and K^{*} are clopen subsets.
Proof. From Figure 3 and Theorem 9, it is obtained.
Theorem 10. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are $*_{*}$-separated.
(2) The subsets M, K are *-dense-itself.
(3) $M \cup K \in \tau$.
then M and K are open subsets.
Proof. Since the subsets M, K are $*_{*}$-separated, $M \cap K^{*}=\emptyset$. So $M \subseteq U \backslash K^{*}$. Since $U \backslash K^{*}$ is open subset, $(M \cup K) \cap\left(U \backslash K^{*}\right)=M$ is in τ. Similarly, it can show that the subset K is open.

Corollary 7. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If the following conditions are satisfied:
(1) The subsets M, K are $\Gamma-C l\left(\Gamma-C l^{*}, \Gamma, *-C l, *-C l^{*}, \tau\right)$-separated.
(2) The subsets M, K are *-dense-itself.
(3) $M \cup K \in \tau$.
then M and K are open subsets.
Proof. From Figure 3 and Theorem 10, it is obtained.
Theorem 11. Let (U, τ) be $\{\emptyset\}$-space and $M, K \subseteq U$. Then the following statements are equivalent:
(1) The subsets M and K are $*_{*}$-separated.
(2) The subsets M and K are τ-separated.

Proof. Since $M^{*}(\{\emptyset\})=C l(M), K^{*}(\{\emptyset\})=C l(K)$, these expressions are equivalent.

Theorem 12. Let (U, τ) be $\{\emptyset\}$-space and $M, K \subseteq U$. Then the following statements are equivalent:
(1) The subsets M and K are 2^{*}-separated.
(2) The subsets M and K are $*-C l^{*}$-separated.
(3) The subsets M and K are $*$-Cl-separated.

Proof. Since $M^{*}(\{\emptyset\})=C l^{*}(M)=C l(M)$ and $K^{*}(\{\emptyset\})=C l^{*}(K)=C l(K)$, these expressions are equivalent.

Theorem 13. Let (U, τ) be $\{\emptyset\}$-space and $M, K \subseteq U$. Then the following statements are equivalent:
(1) The subsets M and K are Γ-*-separated.
(2) The subsets M and K are Γ - $C l^{*}$-separated.
(3) The subsets M and K are Γ-Cl-separated.

Proof. Since $M^{*}(\{\emptyset\})=C l^{*}(M)=C l(M)$ and $K^{*}(\{\emptyset\})=C l^{*}(K)=C l(K)$, these expressions are equivalent.

4. New Types of Connectedness via Local Closure

Definition 9. Let (U, τ) be an \mathcal{I}-space and $M \subseteq U$. The subset M is called Γ - $C l$ (resp. $\Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}$)-connected if it not the union of two $\Gamma-C l$ (resp. $\Gamma, \Gamma-*$, $\left.\Gamma-C l^{*}, 2^{*}\right)$-separated subsets in \mathcal{I}-space (U, τ). Otherwise, the subset M is called not Γ-Cl (resp. $\left.\Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}\right)$-connected . Particularly, if U is Γ - $C l$ (resp. Γ, $\left.\Gamma-*, \Gamma-C l^{*}, 2^{*}\right)$-connected, the \mathcal{I}-space (U, τ) is called $\Gamma-C l$ (resp. $\Gamma, \Gamma-*, \Gamma-C l^{*}$, $\left.2^{*}\right)$-connected \mathcal{I}-space.

Theorem 14. In any \mathcal{I}-space,
(1) Every Γ-Cl l^{*}-connected subset is Γ-Cl-connected.
(2) Every *-Cl-connected subset is Γ-Cl-connected.
(3) Every Γ-connected subset is Γ - $C l^{*}$-connected.
(4) Every $*-C l^{*}$-connected subset is Γ - $C l^{*}$-connected.
(5) Every $*_{*}$-connected subset is Γ-connected.
(6) Every Γ-*-connected subset is Γ - $C l^{*}$-connected.
(7) Every 2*-connected subset is Γ-*-connected.
(8) Every 2^{*}-connected subset is $*-C l^{*}$-connected.

Proof. (1) Let M be Γ - $C l^{*}$-connected subset. Suppose that it is not Γ - $C l$ connected. So, there are subsets K, S which are Γ - $C l$-separated and $K \cup S=M$. From Theorem(1), the subsets K and S are Γ - $C l^{*}$-separated. Hence, the subset M is not Γ - $C l^{*}$-connected. This is a contradiction. Consequently, the subset M is Γ - $C l$-connected.
By using Theorem 1 (or Figure 3), other proofs are obtained similarly.
The following diagram is obtained by Theorem 14 and Figure 2.

Figure 4. Relations among new types of connectedness

For this diagram, counterexamples and independent concepts are shown in Example 3 and Example 4.

Example 3. Consider the \mathcal{I}-space in Example 1.
(1) The subset $P=\{y, z\}$ is Γ (resp. $\left.\Gamma-C l^{*}, \Gamma-C l, \Gamma-*\right)$-connected but not $*_{*}$ (resp. $*-C l^{*}, *-C l, 2^{*}$)-connected.
(2) The subset $R=\{a, d\}$ is Γ-Cl-connected but not Γ - $C l^{*}$-connected.
(3) The subset $S=\{c, d\}$ is Γ-Cl ${ }^{*}$-connected but not Γ-connected.
(4) The subset $T=\{a, c\}$ is $*-C l^{*}\left(\right.$ resp. Γ-Cl $\left.{ }^{*}\right)$-connected but not 2^{*} (resp. Γ-*)connected.
(5) The subset $P=\{y, z\}$ is Γ-Cl ${ }^{*}$-connected but not $*-C l$-connected. The subset $R=\{a, d\}$ is $*-C l$-connected but not Γ-Cl*-connected. That is, the concepts of $*-C l$-connected and Γ-Cl**-connected are independent of each other.
(6) The subset $P=\{y, z\}$ is Γ-connected but not $*$-Cl-connected. The subset $R=\{a, d\}$ is $*$-Cl-connected but not Γ-connected. That is, the concepts of Γ-connected and $*-C l$-connected are independent of each other.
(7) The subset $P=\{y, z\}$ is Γ-*-connected but not $*-C l$-connected. The subset $R=\{a, d\}$ is $*-C l$-connected but not $\Gamma-*$-connected. That is, the concepts of Γ-*-connected and $*-C l$-connected are independent of each other.
(8) The subset $P=\{y, z\}$ is Γ-*-connected but not $*-C l^{*}$-connected. The subset $T=\{a, c\}$ is $*-C l^{*}$-connected but not $\Gamma-*$-connected. That is, the concepts of Γ-*-connected and $*-C l^{*}$-connected are independent of each other.
(9) The subset $P=\{y, z\}$ is Γ-connected but not 2^{*}-connected. The subset $S=\{c, d\}$ is 2^{*}-connected but not Γ-connected. That is, the concepts of Γ-connected and 2^{*}-connected are independent of each other.
(10) The subset $P=\{y, z\}$ is Γ-connected but not $*-C l^{*}$-connected. The subset $S=\{c, d\}$ is $*-C l^{*}$-connected but not Γ-connected. That is, the concepts of Γ-connected and $*-C l^{*}$-connected are independent of each other.
(11) The subset $S=\{c, d\}$ is Γ-*-connected but not Γ-connected. The subset $T=\{a, c\}$ is Γ-connected but not Γ-*-connected. That is, the concepts of Γ-*-connected and Γ-connected are independent of each other.
(12) The subset $S=\{c, d\}$ is Γ-*-connected but not $*_{*}$-connected. The subset $T=\{a, c\}$ is $*_{*}$-connected but not Γ-*-connected. That is, the concepts of Γ-*-connected and $*_{*}$-connected are independent of each other.
(13) The subset $S=\{c, d\}$ is 2^{*}-connected but not $*_{*}$-connected. The subset $T=\{a, c\}$ is $*_{*}$-connected but not 2^{*}-connected. That is, the concepts of 2^{*}-connected and $*_{*}$-connected are independent of each other.

Lemma 3. Let (U, τ) be $\mathcal{P}(U)$-space and M be a subset of U. If the subset M has more than one element, it is not $\Gamma-C l\left(*-C l^{*}, *-C l, \Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}, *_{*}\right)$ connected.

Proof. Let K, S be nonempty subsets such that $M=K \cup S$ and $K \cap S=\emptyset$. From Lemma 2 the subsets K and S are $\Gamma-C l\left(*-C l^{*}, *-C l, \Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}, *_{*}\right)-$ separated. So, M is not $\Gamma-C l\left(*-C l^{*}, *-C l, \Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}, *_{*}\right)$-connected.

Example 4. Consider the $\mathcal{P}(\mathbb{R})$-space in Example 2 . The subset $M=(-\infty, 3)$ is τ_{L}-connected but not $\Gamma-C l\left(*-C l^{*}, *-C l, \Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}\right)$-connected from Lemma 3.

According to the \mathcal{I}-space given in Example 1, $S=\{c, d\}$ is Γ - $C l\left(*-C l^{*}, *-C l\right.$, $\Gamma-*, \Gamma$ - $\left.C l^{*}, 2^{*}\right)$-connected but not τ-connected. Moreover, the subset $P=\{y, z\}$ is Γ-connected but not τ-connected.

Consequently, the concepts of $\Gamma-C l\left(*-C l^{*}, *-C l, \Gamma, \Gamma-*, \Gamma-C l^{*}, 2^{*}\right)$-connected and τ-connected are independent of each other.

Lemma 4. [1] Let (U, τ) be a topological space and $M \subseteq U$. If the subset M is open, $C l(M)=C l_{\theta}(M)$.

Lemma 5. If the subset M is clopen in any \mathcal{I}-space,

$$
M^{*} \subseteq \Gamma(M) \subseteq M=C l(M)=C l_{\theta}(M)
$$

Proof. It is obtained by Lemma 4. Lemma 1 and Proposition 2(2).
Theorem 15. If any \mathcal{I}-space (U, τ) is Γ-Cl-connected, then it is τ-connected. That is, if the set U is Γ-Cl-connected, then U is τ-connected.

Proof. Suppose that U is Γ - $C l$-connected but not τ-connected. So, there is a clopen proper subset M in this space. From Lemma 5 .

$$
\begin{aligned}
& \Gamma(M) \cap C l(U \backslash M) \subseteq M \cap(U \backslash M)=\emptyset \\
& C l(M) \cap \Gamma(U \backslash M) \subseteq M \cap(U \backslash M)=\emptyset
\end{aligned}
$$

and $M \cap(U \backslash M)=\emptyset$. So, the subsets M and $(U \backslash M)$ are Γ - $C l$-separated. Since $M \cup(U \backslash M)=U, U$ is not Γ - $C l$-connected. This is a contradiction. As a result, U is τ-connected.

Theorem 16. If any \mathcal{I}-space (U, τ) is $\Gamma-C l^{*}\left(\Gamma, \Gamma-*, 2^{*}, *-C l, *-C l^{*}, *_{*}\right)$-connected, then it is τ-connected.

Proof. The proof is obtained by Figure 4 and Theorem 15.
Corollary 8. Suppose that any of the conditions in Theorem 2 is satisfied and let M be subsets in any \mathcal{I}-space (U, τ). Then,
(1) The subset M is Γ-Cl-connected if and only if it is $*$-Cl-connected.
(2) The subset M is Γ-Cl*-connected if and only if it is $*-C l^{*}$-connected.
(3) The subset M is Γ-connected if and only if it is $*_{*}$-connected.
(4) The subset M is 2^{*}-connected if and only if it is Γ-*-connected.

Proof. It is obvious from Definition 9 and Theorem 2.
Corollary 9. Let (U, τ) be an \mathcal{I}-space and M, K be subsets of U.
(1) If the subsets M, K are both Γ-separated, Γ-*-separated subsets and $S=$ $M \cup K$, then S is not $\Gamma-C l^{*}$-connected subset.
(2) If the subset S is not Γ - $C l^{*}$-connected, there are both Γ-separated and Γ-*separated subsets M, K such that $M \cup K=S$.
(3) If the subsets M, K are both 2^{*}-separated, $*_{*}$-separated subsets and $S=$ $M \cup K$, then S is not $*-C l^{*}$-connected subset.
(4) If the subset S is not $*-C l^{*}$-connected, there are both 2^{*}-separated and $*_{*}$ separated subsets M, K such that $M \cup K=S$.
Proof. It is obtained from Theorem 3 and Theorem 4.
The following corollaries are obtained from Theorem 11. Theorem 12 and Theorem 13. respectively.
Corollary 10. Let (U, τ) be $\{\emptyset\}$-space and $M \subseteq U$. Then the following statements are equivalent:
(1) The subset M is $*_{*}$-connected.
(2) The subset M is τ-connected.

Corollary 11. Let (U, τ) be $\{\emptyset\}$-space and $M \subseteq U$. Then the following statements are equivalent:
(1) The subset M is 2^{*}-connected.
(2) The subset M is $*-C l^{*}$-connected.
(3) The subset M is $*-C l$-connected.

Corollary 12. Let (U, τ) be $\{\emptyset\}$-space and $M \subseteq U$. Then the following statements are equivalent:
(1) The subset M is Γ-*-connected.
(2) The subset M is Γ-Cl*-connected.
(3) The subset M is Γ-Cl-connected.

Theorem 17. Let (U, τ) be $\{\emptyset\}$-space and $M \subseteq U$. If the subset M is τ-connected, then it is Γ ($\left.\Gamma-C l^{*}, \Gamma-C l, *-C l, *-C l^{*}, \Gamma-*, 2^{*}\right)$-connected.
Proof. Let the subset M be τ-connected. From Corollary 10, M is $*_{*}$-connected. So, it is $\Gamma\left(\Gamma-C l^{*}, \Gamma-C l, *-C l, *-C l^{*}\right)$-connected by Figure 4 Moreover M is 2^{*} connected and $\Gamma-*$-connected by Corollary 11 and Corollary 12, respectively.

Considering $\{\emptyset\}$-space (U, τ) given in Theorem 17 , it is seen that Γ ($\Gamma-C l^{*}, \Gamma$ - $C l$, $\left.*-C l, *-C l^{*}, \Gamma-*, 2^{*}\right)$-connectedness is more general concept than the well-known τ-connectedness. Moreover, in this space, $*_{*}$-connectedness and τ-connectedness are coincident concepts from Corollary 10 However, in any \mathcal{I}-space (U, τ), when τ-connectedness of only the set U is considered in Theorem 15 and Theorem 16, it
is seen that the concept of τ-connectedness is more general than the concept of Γ $\left(\Gamma-C l^{*}, \Gamma-C l, *-C l, *-C l^{*}, \Gamma-*, 2^{*}\right)$-connectedness. So the following result is easily obtained.

Corollary 13. Let (U, τ) be $\{\emptyset\}$-space. The following statements are equivalent:
(1) The set U is Γ-Cl-connected.
(2) The set U is Γ-Cl l^{*}-connected.
(3) The set U is Γ-*-connected.
(4) The set U is 2^{*}-connected.
(5) The set U is $*-C l$-connected.
(6) The set U is $*-C l^{*}$-connected.
(7) The set U is $*_{*}$-connected.
(8) The set U is τ-connected.
(9) The set U is Γ-connected.

Proof. It is obtained by Theorem 15. Theorem 16 and Theorem 17.

5. Theorems on New Types of Connectedness via Local Closure

Theorem 18. Let (U, τ) be an \mathcal{I}-space. If M is Γ-Cl-connected subset of U and S, T are Γ-Cl-separated subsets such that $M \subseteq S \cup T$, then either $M \subseteq S$ or $M \subseteq T$.

Proof. Since $M=(M \cap S) \cup(M \cap T)$ and the subsets S, T are Γ - $C l$-separated,

$$
\begin{aligned}
& \Gamma(M \cap S) \cap C l(M \cap T) \subseteq \Gamma(S) \cap C l(T)=\emptyset \\
& C l(M \cap S) \cap \Gamma(M \cap T) \subseteq C l(S) \cap \Gamma(T)=\emptyset
\end{aligned}
$$

and $(M \cap S) \cap(M \cap T) \subseteq S \cap T=\emptyset$. If $(M \cap S)$ and $(M \cap T)$ are nonempty subsets, the subset M is not Γ - $C l$-connected. This is a contradiction. So, either $(M \cap S)=\emptyset$ or $(M \cap T)=\emptyset$. Since $M \subseteq S \cup T$, either $M \subseteq S$ or $M \subseteq T$.

Theorem 19. Let (U, τ) be an \mathcal{I}-space. If M is $\Gamma-C l^{*}\left(\right.$ resp. Γ, Γ-*, $\left.2^{*}\right)$-connected subset of U and S, T are $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-separated subsets such that $M \subseteq$ $S \cup T$, then either $M \subseteq S$ or $M \subseteq T$.

Proof. It is obtained similar to the proof of Theorem 18.
Theorem 20. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If M is Γ-Cl-connected subset and $M \subseteq K \subseteq \Gamma(M)$, then K is Γ-Cl-connected subset.
Proof. Suppose that the subset K is not Γ - $C l$-connected. Then, there exist Γ - $C l$ separated nonempty subsets T, S such that $T \cup S=K$. Since the subsets S and T are Γ - $C l$-separated and $M \subseteq K=S \cup T$, by using Theorem 18, we have $M \subseteq S$ or $M \subseteq T$. Suppose that $M \subseteq S$. Then, from Proposition 2-(1), $\Gamma(M) \subseteq \Gamma(S)$. From the hypothesis, $T \subseteq K \subseteq \Gamma(M) \subseteq \Gamma(S)$. Since $\Gamma(M), \Gamma(S)$ are closed subsets by Proposition $2 \cdot(2), C l(T) \subseteq \Gamma(M) \subseteq \Gamma(S)$, and since the subsets S and T are Γ-Cl-separated, $C l(T)=C l(T) \cap \Gamma(M) \subseteq C l(T) \cap \Gamma(S)=\emptyset$. That is, $T=\emptyset$. This
is a contradiction. Similarly, a contradiction is obtained if $M \subseteq T$. Consequently, the subset K is Γ - $C l$-connected.

Theorem 21. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If M is Γ - $C l^{*}($ resp. $\Gamma)$ connected subset of U and $M \subseteq K \subseteq \Gamma(M)$, then K is Γ-Cl* l^{*} resp. $\left.\Gamma\right)$-connected subset.

Proof. It is obtained similar to the proof of Theorem 20.
Corollary 14. Let (U, τ) be an \mathcal{I}-space and $M \subseteq U$.
(1) If M is both $*$-dense-in-itself and Γ-Cl-connected subset, then M^{*} is Γ - Cl connected.
(2) If M is both $*$-dense-in-itself and Γ - $C l^{*}($ resp. $\Gamma)$-connected subset, then M^{*} is Γ - $C l^{*}($ resp. $\Gamma)$-connected.
(3) If M is both Γ-dense-in-itself and Γ-Cl-connected subset, then $\Gamma(M)$ is Γ-Cl-connected.
(4) If M is both Γ-dense-in-itself and Γ - $C l^{*}($ resp. $\Gamma)$-connected subset, then $\Gamma(M)$ is Γ-Cl $l^{*}($ resp. $\Gamma)$-connected.
(5) If M is both Γ-dense-in-itself and Γ-Cl-connected subset, then $C l(M)$ is Γ-Cl-connected.
(6) If M is both Γ-dense-in-itself and Γ - $C l^{*}($ resp. $\Gamma)$-connected subset, then $C l(M)$ is Γ - $C l^{*}($ resp.$\Gamma)$-connected.

Proof. (1) Since M is $*$-dense-in-itself and by Lemma 1. $M \subseteq M^{*} \subseteq \Gamma(M)$. From Theorem 20, M^{*} is Γ - $C l$-connected subset.
(2) By using Theorem 21, it is obtained similar to the proof of (1).
(3) Since M is Γ-dense-in-itself, we have $M \subseteq \Gamma(M) \subseteq \Gamma(M)$. From Theorem 20. $\Gamma(M)$ is Γ - $C l$-connected subset.
(4) By using Theorem 21, it is obtained similar to the proof of (3).
(5) Since M is Γ-dense-in-itself, $M \subseteq \Gamma(M)$ and so $M \subseteq C l(M) \subseteq C l(\Gamma(M))$. Since $\Gamma(M)$ is closed subset from Proposition 2-(2), $M \subseteq C l(M) \subseteq C l(\Gamma(M))=$ $\Gamma(M)$. That is, $M \subseteq C l(M) \subseteq \Gamma(M)$ and M is Γ-Cl-connected from the hypothesis. Using Theorem 20, we obtain that $C l(M)$ is Γ - $C l$-connected subset.
(6) Since M is Γ-dense-in-itself, $M \subseteq C l(M) \subseteq \Gamma(M)$ is obtained as in the proof of (5). M is $\Gamma-C l^{*}($ resp. $\Gamma)$-connected from the hypothesis. By using Theorem 21, we obtain that $C l(M)$ is $\Gamma-C l^{*}($ resp. $\Gamma)$-connected subset.

Theorem 22. Let (U, τ) be an \mathcal{I}-space and $\left\{N_{k}: k \in \Delta\right\}$ be a nonempty collection of Γ-Cl-connected subsets of U (where Δ is arbitrary index set). If $\bigcap_{k \in \Delta} N_{k} \neq \emptyset$, then $\bigcup_{k \in \Delta} N_{k}$ is Γ-Cl-connected.
Proof. Suppose that $\bigcup_{k \in \Delta} N_{k}$ is not Γ - $C l$-connected. Then, there exist Γ - $C l$ separated nonempty subsets T, S such that $T \cup S=\bigcup_{k \in \Delta} N_{k}$. Since $\bigcap_{k \in \Delta} N_{k} \neq \emptyset$,
there exists a point $x \in N_{k}$ for every $k \in \Delta$. Since T, S are Γ - $C l$-separated and $x \in \bigcup_{k \in \Delta} N_{k}$, we have $x \in T$ or $x \in S$. Suppose now that $x \in S$. So, $N_{k} \cap S \neq \emptyset$ for every $k \in \Delta$. Then, by Theorem 18, $N_{k} \subseteq S$ for every $k \in \Delta$. Therefore, we obtain $\bigcup_{k \in \Delta} N_{k} \subseteq S$. That is, $T=\emptyset$. This is a contradiction. Similarly, a contradiction is also obtained if we suppose that $x \in T$. Consequently, $\bigcup_{k \in \Delta} N_{k}$ is Γ-Cl-connected.

Theorem 23. Let (U, τ) be an \mathcal{I}-space and $\left\{N_{k}: k \in \Delta\right\}$ be a nonempty collection of $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subsets of U. If $\bigcap_{k \in \Delta} N_{k} \neq \emptyset$, then $\bigcup_{k \in \Delta} N_{k}$ is Γ-Cl ${ }^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected.

Proof. By using Theorem 19 it is obtained similar to the proof of Theorem 22 .
Theorem 24. Let (U, τ) be an \mathcal{I}-space, $\left\{N_{k}: k \in \Delta\right\}$ be a nonempty collection of Γ-Cl-connected subsets and M be Γ-Cl-connected subset. If $M \cap N_{k} \neq \emptyset$ for every $k \in \Delta$, then $M \cup\left(\bigcup_{k \in \Delta} N_{k}\right)$ is a Γ-Cl-connected subset.

Proof. For every $k \in \Delta$, since N_{k} and M are Γ - $C l$-connected subsets such that $M \cap N_{k} \neq \emptyset$, by using Theorem 22, we obtain that the subset $M \cup N_{k}$ are Γ - $C l$ connected for every $k \in \Delta$. Since $M \subseteq M \cup N_{k}$ for every $k \in \Delta, M \subseteq \bigcap_{k \in \Delta}(M \cup$ $\left.N_{k}\right) \neq \emptyset$. From Theorem 22, $\bigcup_{k \in \Delta}\left(M \cup N_{k}\right)=M \cup\left(\bigcup_{k \in \Delta} N_{k}\right)$ is a Γ-Cl-connected subset.

Theorem 25. Let (U, τ) be an \mathcal{I}-space, $\left\{N_{k}: k \in \Delta\right\}$ be a nonempty collection of $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subsets and M be $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$ connected subset. If $M \cap N_{k} \neq \emptyset$ for every $k \in \Delta$, then $M \cup\left(\bigcup_{k \in \Delta} N_{k}\right)$ is a $\Gamma-C l^{*}\left(\right.$ resp $\left.. \Gamma, \Gamma-*, 2^{*}\right)$-connected subset.

Proof. By using Theorem [23] it is obtained similar to the proof of Theorem 24.
Theorem 26. Let (U, τ) be an \mathcal{I}-space and $\left\{N_{k}: k \in \mathbb{N}\right\}$ be a nonempty collection of Γ-Cl-connected subsets such that $N_{k} \cap N_{k+1} \neq \emptyset$ for every $k \in \mathbb{N}$. Then $\bigcup_{k \in \mathbb{N}} N_{k}$ is a Γ-Cl-connected subset.

Proof. We can use induction method. Firstly, N_{1} is Γ - $C l$-connected. Now assume that the theorem is true for $k-1$. That is, $N_{1} \cup N_{2} \cup \ldots \cup N_{k-1}$ is Γ-Cl-connected. From Theorem 22, $M_{k}=N_{1} \cup N_{2} \cup \ldots \cup N_{k}$ is Γ-Cl-connected and $\bigcap_{k \in \mathbb{N}} M_{k}=N_{1} \neq$ \emptyset. Again from Theorem $22, \bigcup_{k \in \mathbb{N}} M_{k}=\bigcup_{k \in \mathbb{N}} N_{k}$ is a Γ - $C l$-connected subset.
Theorem 27. Let (U, τ) be an \mathcal{I}-space and $\left\{N_{k}: k \in \mathbb{N}\right\}$ be a nonempty collection of $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subsets such that $N_{k} \cap N_{k+1} \neq \emptyset$ for every $k \in \mathbb{N}$. Then $\bigcup_{k \in \mathbb{N}} N_{k}$ is a Γ-Cl* $\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subset.
Proof. By using Theorem 23, it is obtained similar to the proof of Theorem 26.
Theorem 28. Let (U, τ) be an \mathcal{I}-space and $M \subseteq U$. If for each distinct pair of points $a, b \in M$ there is a Γ-Cl-connected subset E such that $a, b \in E \subseteq M$, then M is Γ-Cl-connected subset.

Proof. Suppose that the subset M is not Γ - $C l$-connected. Then there are Γ - $C l$ separated nonempty subsets S, K such that $S \cup K=M$. Let $a \in S$ and $b \in K$. By hypothesis, there is Γ - $C l$-connected subset E such that $a, b \in E \subseteq M$. Since $E \subseteq S \cup K, E \subseteq S$ or $E \subseteq K$ by Theorem 18. Suppose that $E \subseteq S$. So, $b \in S \cap K \neq \emptyset$. This is a contradiction. Similarly, a contradiction is obtained if we suppose that $E \subseteq K$.

Theorem 29. Let (U, τ) be an \mathcal{I}-space and $M \subseteq U$. If for each distinct pair of points $a, b \in M$ there is a $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subset E such that $a, b \in E \subseteq M$, then M is $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subset.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 28,
Theorem 30. Let (U, τ) be Γ-Cl-connected \mathcal{I}-space, M be Γ-Cl-connected subset and K, C be Γ-Cl-separated subsets. If $U \backslash M=K \cup C$, then both $M \cup K$ and $M \cup C$ are Γ-Cl-connected subsets.

Proof. Suppose that $M \cup K$ is not Γ - $C l$-connected. There are Γ - $C l$-separated nonempty subsets S, T such that $S \cup T=M \cup K$. Since $M \subseteq S \cup T=M \cup K$ and M is a Γ - $C l$-connected subset, $M \subseteq S$ or $M \subseteq T$, by Theorem 18 Suppose that $M \subseteq T$. Then, $S \cup T=M \cup K \subseteq T \cup K$, and so $S \subseteq K$. Since K and C are Γ - $C l$-separated subsets, S and C are Γ - $C l$-separated subsets. So,

$$
\begin{aligned}
& \Gamma(S) \cap C l(T \cup C)=[\Gamma(S) \cap C l(T)] \cup[\Gamma(S) \cap C l(C)]=\emptyset \\
& C l(S) \cap \Gamma(T \cup C)=[C l(S) \cap \Gamma(T)] \cup[C l(S) \cap \Gamma(C)]=\emptyset
\end{aligned}
$$

and $S \cap(T \cup C)=(S \cap T) \cup(S \cap C)=\emptyset$. As a result, S and $T \cup C$ are Γ - $C l$-separated subsets. Since $U \backslash M=K \cup C$, we have $U=M \cup(K \cup C)=S \cup(T \cup C)$. This contradicts with the fact that (U, τ) is an Γ - $C l$-connected \mathcal{I}-space. Consequently, the subset $M \cup K$ is Γ - $C l$-connected.

If $M \subseteq S$, a contradiction can be obtained again in this way. Similarly, it can be proved that $M \cup C$ is Γ - $C l$-connected subset.

Theorem 31. Let (U, τ) be Γ-Cl $l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected \mathcal{I}-space, M be a $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subset and K, C be $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-separated subsets. If $U \backslash M=K \cup C$, then $M \cup K$ and $M \cup C$ are $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$ connected subsets.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 30 .
Theorem 32. Let (U, τ) be an \mathcal{I}-space and M, K be Γ-Cl-connected subsets of U. If these subsets are not Γ-Cl-separated, then $M \cup K$ is Γ-Cl-connected subset.

Proof. Suppose that $M \cup K$ is not Γ - $C l$-connected subset. So, there are Γ - $C l$ separated nonempty subsets S, T such that $S \cup T=M \cup K$. Then, we have $M \subseteq S \cup T$ and $K \subseteq S \cup T$. From Theorem 18, there are four cases to be considered:
(1) $M \subseteq S$ and $K \subseteq S$
(2) $M \subseteq S$ and $K \subseteq T$
(3) $M \subseteq T$ and $K \subseteq T$
(4) $M \subseteq T$ and $K \subseteq S$

If case (1) or case (3) is satisfied, then $T=\emptyset$ or $S=\emptyset$, respectively. Both are contradiction.

Suppose that case (2) is satisfied. If $M=S$ and $K=T$, then the subsets M and K are Γ - $C l$-separated. This is a contradiction. If $M \varsubsetneqq S$, then $T \varsubsetneqq K$ due to $S \cup T=M \cup K$. Similarly, if $K \varsubsetneqq T$, then $S \varsubsetneqq M$. These contradict with case (2). Additionally, for case (4), we obtain similar contradictions. Consequently, $M \cup K$ is Γ - $C l$-connected subset.

Theorem 33. Let (U, τ) be an \mathcal{I}-space and $M, K \subseteq U$. If these subsets are not $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-separated, then $M \cup K$ is $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected subset.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 32 .
Lemma 6. Let (U, τ) be an \mathcal{I}-space and M, K be subsets of U. Then

$$
\Gamma(M \cap K) \subseteq \Gamma(M) \cap \Gamma(K)
$$

Proof. Let $x \in \Gamma(M \cap K)$. Then, $[C l(O) \cap(M \cap K)] \notin \mathcal{I}$ for every $O \in \tau(x)$. Because of the definition of ideal, $C l(O) \cap M \notin \mathcal{I}$ and $C l(O) \cap K \notin \mathcal{I}$. So, $x \in \Gamma(M)$ and $x \in \Gamma(K)$. That is, $x \in \Gamma(M) \cap \Gamma(K)$.

In the following example, we show that the inclusion $\Gamma(M \cap K) \subseteq \Gamma(M) \cap \Gamma(K)$ strictly hold.
Example 5. Consider the \mathcal{I}-space in Example 1. In Table 1, $\Gamma(A \cap B)=\emptyset \varsubsetneqq$ $\{a, b, c\}=\Gamma(A) \cap \Gamma(B)$.
Theorem 34. Let (U, τ) be an \mathcal{I}-space. If the following conditions are satisfied for the subsets M and K :
(1) The subset K is both Γ-Cl-connected and closed.
(2) $\Gamma(M) \subseteq C l(M)$ and $\Gamma(U \backslash M) \subseteq C l(U \backslash M)$.
(3) $K \cap M \neq \emptyset$ and $K \cap(U \backslash M) \neq \emptyset$.
then $K \cap B d(M) \neq \emptyset$ where $B d(M)$ is boundary of the subset M.
Proof. Suppose that $K \cap B d(M)=\emptyset$. So, $K \cap(C l(M) \cap C l(U \backslash M))=\emptyset$. The subset K can be expressed as $K=U \cap K=(M \cup(U \backslash M)) \cap K=(M \cap K) \cup((U \backslash M) \cap K)$. Then, by using Lemma 6,

$$
\begin{aligned}
\Gamma(M \cap K) \cap C l((U \backslash M) \cap K) & \subseteq \Gamma(M) \cap \Gamma(K) \cap[C l(U \backslash M) \cap C l(K)] \\
& \subseteq C l(M) \cap \Gamma(K) \cap C l(U \backslash M) \cap K=\emptyset \\
C l(M \cap K) \cap \Gamma((U \backslash M) \cap K) & \subseteq C l(M) \cap C l(K) \cap[\Gamma(U \backslash M) \cap \Gamma(K)] \\
& \subseteq C l(M) \cap K \cap C l(U \backslash M) \cap \Gamma(K)=\emptyset
\end{aligned}
$$

NEW TYPES OF CONNECT. AND INT. VALUE THEOREM IN IDEAL TOP. SPACES 279
and $(M \cap K) \cap((U \backslash M) \cap K)=\emptyset$. Therefore, the subset K is not Γ - $C l$-connected. This is a contradiction. Consequently, $K \cap B d(M) \neq \emptyset$.

Theorem 35. Let (U, τ) be an \mathcal{I}-space. If the following conditions are satisfied for the subsets M and K :
(1) The subset K is Γ-connected.
(2) $\Gamma(M) \subseteq C l(M)$ and $\Gamma(U \backslash M) \subseteq C l(U \backslash M)$.
(3) $K \cap M \neq \emptyset$ and $K \cap(U \backslash M) \neq \emptyset$.
then $K \cap B d(M) \neq \emptyset$.
Proof. Suppose that $K \cap B d(M)=\emptyset$. So, $K \cap(C l(M) \cap C l(U \backslash M))=\emptyset$. The subset K can be expressed as $K=U \cap K=(M \cup(U \backslash M)) \cap K=(M \cap K) \cup((U \backslash M) \cap K)$. Then, by using Lemma 6

$$
\begin{aligned}
\Gamma(M \cap K) \cap((U \backslash M) \cap K) & \subseteq \Gamma(M) \cap \Gamma(K) \cap(U \backslash M) \cap K \\
& \subseteq C l(M) \cap \Gamma(K) \cap C l(U \backslash M) \cap K=\emptyset \\
(M \cap K) \cap \Gamma((U \backslash M) \cap K) & \subseteq M \cap K \cap \Gamma(U \backslash M) \cap \Gamma(K) \\
& \subseteq C l(M) \cap K \cap C l(U \backslash M) \cap \Gamma(K)=\emptyset
\end{aligned}
$$

and $(M \cap K) \cap((U \backslash M) \cap K)=\emptyset$. Therefore, the subset K is not Γ-connected. This is a contradiction. Consequently, $K \cap B d(M) \neq \emptyset$.

Theorem 36. Let (U, τ) be an \mathcal{I}-space. If the following conditions are satisfied for the subsets M and K :
(1) The subset K is both Γ-Cl*-connected and $*$-closed.
(2) $\Gamma(M) \subseteq C l^{*}(M)$ and $\Gamma(U \backslash M) \subseteq C l^{*}(U \backslash M)$.
(3) $K \cap M \neq \emptyset$ and $K \cap(U \backslash M) \neq \emptyset$.
then $K \cap B d^{*}(M) \neq \emptyset$ where $B d^{*}(M)$ is boundary of the subset M with respect to τ^{*}.

Proof. Suppose that $K \cap B d^{*}(M)=\emptyset$. So, $K \cap\left(C l^{*}(M) \cap C l^{*}(U \backslash M)\right)=\emptyset$. The subset K can be expressed as $K=U \cap K=(M \cup(U \backslash M)) \cap K=(M \cap K) \cup((U \backslash$ $M) \cap K)$. Then,

$$
\begin{aligned}
\Gamma(M \cap K) \cap C l^{*}((U \backslash M) \cap K) & \subseteq \Gamma(M) \cap \Gamma(K) \cap\left[C l^{*}(U \backslash M) \cap C l^{*}(K)\right] \\
& \subseteq C l^{*}(M) \cap \Gamma(K) \cap C l^{*}(U \backslash M) \cap K=\emptyset \\
C l^{*}(M \cap K) \cap \Gamma((U \backslash M) \cap K) & \subseteq C l^{*}(M) \cap C l^{*}(K) \cap[\Gamma(U \backslash M) \cap \Gamma(K)] \\
& \subseteq C l^{*}(M) \cap K \cap C l^{*}(U \backslash M) \cap \Gamma(K)=\emptyset
\end{aligned}
$$

and $(M \cap K) \cap(K \cap(U \backslash M))=\emptyset$. Therefore, the subset K is not $\Gamma-C l^{*}$ connected. This is a contradiction. So, $K \cap B d^{*}(M) \neq \emptyset$.

Corollary 15. Let (U, τ) be an \mathcal{I}-space. If the following conditions are satisfied for the subsets M and K :
(1) The subset K is Γ-* ($\left.2^{*}\right)$-connected and $*$-closed.
(2) $\Gamma(M) \subseteq C l^{*}(M)$ and $\Gamma(U \backslash M) \subseteq C l^{*}(U \backslash M)$.
(3) $K \cap M \neq \emptyset$ and $K \cap(U \backslash M) \neq \emptyset$.
then $K \cap B d^{*}(M) \neq \emptyset$.
Proof. It is obvious from Figure 4 and Theorem 36
Theorem 37. Let (U, τ) be an \mathcal{I}-space. If the following conditions are satisfied for the subsets M and K :
(1) The subset K is Γ-connected.
(2) $\Gamma(M) \subseteq C l^{*}(M)$ and $\Gamma(U \backslash M) \subseteq C l^{*}(U \backslash M)$.
(3) $K \cap M \neq \emptyset$ and $K \cap(U \backslash M) \neq \emptyset$.
then $K \cap B d^{*}(M) \neq \emptyset$.
Proof. Suppose that $K \cap B d^{*}(M)=\emptyset$. So, $K \cap\left(C l^{*}(M) \cap C l^{*}(U \backslash M)\right)=\emptyset$. The subset K can be expressed as $K=U \cap K=(M \cup(U \backslash M)) \cap K=(M \cap K) \cup((U \backslash$ $M) \cap K)$. Then

$$
\begin{aligned}
\Gamma(M \cap K) \cap((U \backslash M) \cap K) & \subseteq \Gamma(M) \cap \Gamma(K) \cap(U \backslash M) \cap K \\
& \subseteq C l^{*}(M) \cap \Gamma(K) \cap C l^{*}(U \backslash M) \cap K=\emptyset
\end{aligned}
$$

$$
\begin{aligned}
(M \cap K) \cap \Gamma((U \backslash M) \cap K) & \subseteq M \cap K \cap[\Gamma(U \backslash M) \cap \Gamma(K)] \\
& \subseteq C l^{*}(M) \cap K \cap C l^{*}(U \backslash M) \cap \Gamma(K)=\emptyset
\end{aligned}
$$

and $(M \cap K) \cap(K \cap(U \backslash M))=\emptyset$. Therefore, the subset K is not Γ - $C l^{*}$ connected. This is a contradiction. Finally, $K \cap B d^{*}(M) \neq \emptyset$.

6. New Type Components via Local Closure

Definition 10. Let (U, τ) be an \mathcal{I}-space and x be a point of U. The union of all $\Gamma-C l\left(\right.$ resp. $\left.\Gamma-C l^{*}, \Gamma, \Gamma-*, 2^{*}\right)$-connected subsets that contain the point x is called $\Gamma-C l\left(\right.$ resp. $\left.\Gamma-C l^{*}, \Gamma, \Gamma-*, 2^{*}\right)$-component of U containing x. That is, we define a $\Gamma-C l\left(\right.$ resp. $\left.\Gamma-C l^{*}, \Gamma, \Gamma-*, 2^{*}\right)$-component of the point x as follows:
(1) The subset $\mathcal{C}_{\Gamma-C l}(x)=\bigcup\{M \subseteq U: M$ is Γ-Cl-connected and $x \in M\}$ is called Γ-Cl-component of the point x.
(2) The subset $\mathcal{C}_{\Gamma-C l^{*}}(x)=\bigcup\left\{M \subseteq U: M\right.$ is Γ - $C l^{*}$-connected and $\left.x \in M\right\}$ is called Γ-Cl*-component of the point x.
(3) The subset $\mathcal{C}_{\Gamma}(x)=\bigcup\{M \subseteq U: M$ is Γ-connected and $x \in M\}$ is called Γ-component of the point x.
(4) The subset $\mathcal{C}_{\Gamma-*}(x)=\bigcup\{M \subseteq U: M$ is Γ-*-connected and $x \in M\}$ is called Γ-*-component of the point x.

NEW TYPES OF CONNECT. AND INT. VALUE THEOREM IN IDEAL TOP. SPACES 281
(5) The subset $\mathcal{C}_{2^{*}}(x)=\bigcup\left\{M \subseteq U: M\right.$ is 2^{*}-connected and $\left.x \in M\right\}$ is called 2^{*}-component of the point x.
Theorem 38. Let (U, τ) be an \mathcal{I}-space and x be a point of U.
(1) The subset $\mathcal{C}_{\Gamma-C l}(x)$ is Γ-Cl-connected subset which contains x.
(2) The subset $\mathcal{C}_{\Gamma-C l}(x)$ is maximal Γ-Cl-connected subset which contains x.

Proof. (1) Since $x \in \bigcap\{M \subseteq U: M$ is Γ-Cl-connected and $x \in M\} \neq \emptyset$, $\mathcal{C}_{\Gamma-C l}(x)=\bigcup\{M \subseteq U: M$ is Γ - $C l$-connected and $x \in M\}$ is Γ - $C l$-connected by Theorem 22 .
(2) It is obvious from Definition 10 and (1).

Theorem 39. Let (U, τ) be an \mathcal{I}-space and x be a point of U.
(1) The subset $\mathcal{C}_{\Gamma-C l^{*}}(x)\left(\right.$ resp. $\left.\mathcal{C}_{\Gamma}(x), \mathcal{C}_{\Gamma-*}(x), \mathcal{C}_{2^{*}}(x)\right)$ is $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$ connected subset which contains x.
(2) The subset $\mathcal{C}_{\Gamma-C l^{*}}(x)\left(\right.$ resp $\left.. \mathcal{C}_{\Gamma}(x), \mathcal{C}_{\Gamma-*}(x), \mathcal{C}_{2^{*}}(x)\right)$ is maximal $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)-$ connected subset which contains x.
Proof. By using Theorem 23 and Definition 10, it is obtained similar to the proof of Theorem 38.
Theorem 40. Let (U, τ) be an \mathcal{I}-space and $x, y \in U$. Then
(1) $\mathcal{C}_{\Gamma-C l}(x) \cap \mathcal{C}_{\Gamma-C l}(y)=\emptyset$ or $\mathcal{C}_{\Gamma-C l}(x)=\mathcal{C}_{\Gamma-C l}(y)$.
(2) The set of all distinct Γ-Cl-components forms a partition of U.

Proof. (1) Let $\mathcal{C}_{\Gamma-C l}(x) \cap \mathcal{C}_{\Gamma-C l}(y) \neq \emptyset$. From Theorem 38. 11) and Theorem 22. $\mathcal{C}_{\Gamma-C l}(x) \cup \mathcal{C}_{\Gamma-C l}(y)$ is Γ-Cl-connected. We have $\mathcal{C}_{\Gamma-C l}(x) \subseteq \mathcal{C}_{\Gamma-C l}(x) \cup$ $\mathcal{C}_{\Gamma-C l}(y)$ and $\mathcal{C}_{\Gamma-C l}(y) \subseteq \mathcal{C}_{\Gamma-C l}(x) \cup \mathcal{C}_{\Gamma-C l}(y)$. From Theorem 38-(22), $\mathcal{C}_{\Gamma-C l}(x) \cup$ $\mathcal{C}_{\Gamma-C l}(y) \subseteq \mathcal{C}_{\Gamma-C l}(x)$ and $\mathcal{C}_{\Gamma-C l}(x) \cup \mathcal{C}_{\Gamma-C l}(y) \subseteq \mathcal{C}_{\Gamma-C l}(y) . \quad$ So, $\mathcal{C}_{\Gamma-C l}(x) \cup$ $\mathcal{C}_{\Gamma-C l}(y)=\mathcal{C}_{\Gamma-C l}(x)=\mathcal{C}_{\Gamma-C l}(y)$.
(2) Since $\bigcup_{x \in U} \mathcal{C}_{\Gamma-C l}(x)=U$, it is obvious from (1).

Theorem 41. Let (U, τ) be an \mathcal{I}-space and $x, y \in U$. Then,
(1) $\mathcal{C}_{\Gamma-C l^{*}}(x) \cap \mathcal{C}_{\Gamma-C l^{*}}(y)=\emptyset$ or $\mathcal{C}_{\Gamma-C l^{*}}(x)=\mathcal{C}_{\Gamma-C l^{*}}(y)$.
(2) $\mathcal{C}_{\Gamma}(x) \cap \mathcal{C}_{\Gamma}(y)=\emptyset$ or $\mathcal{C}_{\Gamma}(x)=\mathcal{C}_{\Gamma}(y)$.
(3) $\mathcal{C}_{\Gamma-*}(x) \cap \mathcal{C}_{\Gamma-*}(y)=\emptyset$ or $\mathcal{C}_{\Gamma-*}(x)=\mathcal{C}_{\Gamma-*}(y)$.
(4) $\mathcal{C}_{2^{*}}(x) \cap \mathcal{C}_{2^{*}}(y)=\emptyset$ or $\mathcal{C}_{2^{*}}(x)=\mathcal{C}_{2^{*}}(y)$.
(5) The set of all distinct $\mathcal{C}_{\Gamma-C l^{*}}(x)\left(\right.$ resp. $\left.\mathcal{C}_{\Gamma}(x), \mathcal{C}_{\Gamma-*}(x), \mathcal{C}_{2^{*}}(x)\right)$-components forms a partition of U.
Proof. By using Theorem 39 and Theorem 23, all statements above are obtained similar to the proof of Theorem 40.

Theorem 42. Let (U, τ) be an \mathcal{I}-space. If M is Γ-Cl-connected and nonempty clopen subset of U, then M is Γ-Cl-component.

Proof. Let $\mathcal{C}_{\Gamma-C l}(x)$ be Γ - $C l$-component of the point $x \in M$. From Theorem 38.(2), $M \subseteq \mathcal{C}_{\Gamma-C l}(x)$. Suppose that $M \varsubsetneqq \mathcal{C}_{\Gamma-C l}(x)$. Then, $\left(M \cap \mathcal{C}_{\Gamma-C l}(x)\right) \cap[(U \backslash M) \cap$ $\left.\mathcal{C}_{\Gamma-C l}(x)\right]=\emptyset$ and $\left(M \cap \mathcal{C}_{\Gamma-C l}(x)\right) \cup\left[(U \backslash M) \cap \mathcal{C}_{\Gamma-C l}(x)\right]=\mathcal{C}_{\Gamma-C l}(x)$. From Lemma 5.

$$
\begin{gathered}
\Gamma(M) \cap C l(U \backslash M) \subseteq C l(M) \cap(U \backslash M)=M \cap(U \backslash M)=\emptyset \\
C l(M) \cap \Gamma(U \backslash M) \subseteq M \cap C l(U \backslash M)=M \cap(U \backslash M)=\emptyset
\end{gathered}
$$

These imply that

$$
\begin{aligned}
& \Gamma\left(M \cap \mathcal{C}_{\Gamma-C l}(x)\right) \cap C l\left((U \backslash M) \cap \mathcal{C}_{\Gamma-C l}(x)\right)=\emptyset \\
& C l\left(M \cap \mathcal{C}_{\Gamma-C l}(x)\right) \cap \Gamma\left((U \backslash M) \cap \mathcal{C}_{\Gamma-C l}(x)\right)=\emptyset
\end{aligned}
$$

So, $\mathcal{C}_{\Gamma-C l}(x)$ is not Γ - $C l$-connected. This is a contradiction. Consequently, $M=$ $\mathcal{C}_{\Gamma-C l}(x)$. That is, M is Γ - $C l$-component.

Theorem 43. Let (U, τ) be an \mathcal{I}-space. If M is $\Gamma-C l^{*}\left(\right.$ resp. $\left.\Gamma, \Gamma-*, 2^{*}\right)$-connected and nonempty clopen subset of U, then M is $\Gamma-C l^{*}\left(\right.$ resp $\left.. \Gamma, \Gamma-*, 2^{*}\right)$-component.

Proof. By using Lemma 5, it is obtained similar to the proof of Theorem 42.

7. The Image of New Types of Connectedness Under a Continuous Map in Ideal Topological Spaces

$f:\left(U, \tau_{1}, \mathcal{I}\right) \rightarrow\left(Y, \tau_{2}\right)$ is continuous map means that $f:\left(U, \tau_{1}\right) \rightarrow\left(Y, \tau_{2}\right)$ is continuous.

Theorem 44. Let $\left(U, \tau_{1}\right)$ be Γ-Cl-connected \mathcal{I}-space and $\left(Y, \tau_{2}\right)$ be any topological space. If $f:\left(U, \tau_{1}, \mathcal{I}\right) \rightarrow\left(Y, \tau_{2}\right)$ is a continuous map, then $f(U)$ is τ_{2}-connected.

Proof. From Theorem 15, the set U is τ_{1}-connected. Since the image of a connected space under a continuous map is connected, $f(U)$ is τ_{2}-connected.

Corollary 16. Let $\left(U, \tau_{1}\right)$ be $\Gamma-C l^{*}\left(\Gamma, \Gamma-*, 2^{*}, *-C l, *-C l^{*}, *_{*}\right)$-connected \mathcal{I}-space and $\left(Y, \tau_{2}\right)$ be any topological space. If $f:\left(U, \tau_{1}, I\right) \rightarrow\left(Y, \tau_{2}\right)$ is a continuous map, then $f(U)$ is τ_{2}-connected.

Proof. It is obvious from Theorem 44 and Figure 4
Corollary 17. Let $f:\left(U, \tau_{1}, \mathcal{I}\right) \rightarrow\left(Y, \tau_{2}\right)$ be continuous and surjective function. If U is $\Gamma-C l\left(\Gamma-C l^{*}, \Gamma, \Gamma-*, 2^{*}\right)$-connected, then Y is τ-connected.

Proof. It is obvious from Theorem 44 and Corollary 16.
It is shown in 14 that Corollary 17 is also satisfied for $*-C l\left(*-C l^{*}, *_{*}\right)$ connectedness. This is clear from Theorem 44 and Corollary 16 . Because Γ - Cl connectedness is more general than $*-C l\left(*-C l^{*}, *_{*}\right)$-connectedness.

Theorem 45. 25](Intermediate Value Theorem) Let $f:\left(U, \tau_{1}\right) \rightarrow\left(Y, \tau_{2}\right)$ be continuous map, where $\left(U, \tau_{1}\right)$ is a τ_{1}-connected topological space, Y is an ordered set with " $<$ " and τ_{2} is order topology on Y. If $a, b \in U$ and $f(a)<r<f(b)$, then there exists a point $c \in U$ such that $f(c)=r$.

Now, we give the intermediate value theorem for the ideal topological spaces.
Theorem 46. Let $f:\left(U, \tau_{1}, \mathcal{I}\right) \rightarrow\left(Y, \tau_{2}\right)$ be continuous map, where $\left(U, \tau_{1}\right)$ is a $\Gamma-C l\left(\Gamma-C l^{*}, \Gamma, \Gamma-*, 2^{*}, *-C l, *-C l^{*}, *_{*}\right)$-connected \mathcal{I}-space, Y is an ordered set with " $<"$ and τ_{2} is order topology on Y. If $a, b \in U$ and $f(a)<r<f(b)$, then there exists a point $c \in U$ such that $f(c)=r$.

Proof. From Theorem 15 (and Corollary 16), the set U is τ_{1}-connected. That is, $\left(U, \tau_{1}\right)$ is connected space. Then, the claim is obtained by Theorem 45

Specially, if we choose the minimal ideal $\mathcal{I}=\{\emptyset\}$ in Theorem 46 by using Corollary 13, we obtain the intermediate value theorem. That is, a special case of Theorem 46 gives the intermediate value theorem.

Author Contribution Statements All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

Declaration of Competing Interests The authors declare that they have no competing interest.

Acknowledgements Authors would like to thank the referees and the editor for their constructive comments and suggestions.
The first author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports during his doctorate studies.

References

[1] Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2) (2013), 139-149.
[2] Al-Omeri, W., Noorani, M., Al-Omari, A., a-local function and its properties in ideal topological spaces, Fasc. Math., 53 (2014), 5-15.
[3] Dontchev, J., Ganster, M., Rose D. A., Ideal resolvability, Topology Appl., 93(1) (1999), 1-16. https://doi.org/10.1016/s0166-8641(97)00257-5
[4] Ekici, E., On I-Alexandroff and I_{g}-Alexandroff ideal topological spaces, Filomat, 25(4) (2011), 99-108. https://doi.org/10.2298/fil1104099e
[5] Engelking, R., General Topology, Heldermann Verlag, Berlin, 1989.
[6] Freud, G., Ein beitrag zu dem satze von Cantor und Bendixson, Acta Math. Hungar., 9 (1958), 333-336. https://doi.org/10.1007/bf02020262
[7] Güldürdek, A., Ideal Rothberger spaces, Hacet. J. Math. Stat., 47(1) (2018), 69-75. 1015672/HJMS.2017.445
[8] Hayashi, E., Topologies defined by local properties, Math. Ann., 156 (1964), 205-215. https://doi.org/10.1007/bf01363287
[9] Islam, M. M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Tartu. Math., 22(2) (2018), 245-255. https://doi.org/10.12697/acutm.2018.22.20
[10] Janković, D., Hamlett T. R., New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1992), 295-310. https://doi.org/10.2307/2324512
[11] Kandil, A., Tantawy O. A. E., El-Sheikh, S. A., Abd El-latif, A. M., Soft ideal theory, soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8(4) (2014), 1595-1603. https://doi.org/10.12785/amis/080413
[12] Keskin, A., Yüksel, Ş., Noiri, T., On I-extremally disconnected spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 56(1) (2007), 33-40. https://doi.org/10.1501/commua1_0000000195
[13] Khan, M., Noiri, T., Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(1) (2010), 36-42. 10.5373/jarpm.237.100909
[14] Kilinc, S., More on $*_{*}$-Connected, Matematichki Bilten, 43(2) (2019), 53-60.
[15] Kule, M., Dost, Ş., Texture spaces with ideal, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2) (2019), 1596-1610. https://doi.org/10.31801/cfsuasmas. 416238
[16] Kuratowski, K., Topology Volume I, Academic Press, New York-London, 1966.
[17] Li, Z., Lin, F., On I-Baire spaces, Filomat, 27(2) (2013), 301-310. https://doi.org/10.2298/FIL1302301L
[18] Modak, S., Noiri, T., A weaker form of connectedness, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(1) (2016), 49-52. https://doi.org/10.1501/Commua1_0000000743
[19] Modak, S., Grill-filter space, Journal of the Indian Math. Soc., 80(3-4) (2013), 313-320.
[20] Modak, S., Noiri, T., Connectedness of ideal topological spaces, Filomat, 29(4) (2015), 661665. https://doi.org/10.2298/FIL1504661M
[21] Modak, S., Islam, M. M., More on α-topological spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(2) (2017), 323-331. https://doi.org/10.1501/Commua_10000000822
[22] Modak, S., Minimal spaces with a mathematical structure, J. Assoc. Arab Univ. Basic Appl. Sci., 22(1) (2018), 98-101. https://doi.org/10.1016/j.jaubas.2016.05.005
[23] Modak, S., Islam M. M., On $*$ and ψ operators in topological spaces with ideals, Trans. A. Razmadze Math. Inst., 172 (2018), 491-497. https://doi.org/10.1016/j.trmi.2018.07.002
[24] Modak, S., Selim, S., Set operators and associated functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70(1) (2021), 456-467. https://doi.org/10.31801/cfsuasmas. 644689
[25] Munkres, J. R., Topology A First Course, Prentice-Hall, Englewood Cliffs N. J., 1974.
[26] Pachón Rubiano, N. R., A generalization of connectedness via ideals, Armen.J.Math., 14(7) (2022), 1-18. https://doi.org/10.52737/18291163-2022.14.7-1-18
[27] Pavlović, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14) (2016), 3725-3731. https://doi.org/10.2298/fil1614725p
[28] Sarker, D., Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems, 87(1) (1997), 117-123. https://doi.org/10.1016/S0165-0114(96)00032-2
[29] Selim, S., Islam, M. M., Modak, S., Common properties and approximations of local function and set operator ψ, Cumhuriyet Sci. J., 41(2) (2020), 360-368. https://doi.org/10.17776/csj. 644158
[30] Tunc, A. N., Yıldırım, Ö. S., New sets obtained by local closure functions, Ann. Pure and Appl. Math. Sci., 1(1) (2021), 50-59. http://doi.org/10.26637/aopams11/006
[31] Tyagı, B. K., Bhardwaj, M., Singh, S., $C l^{*}$-connectedness and Cl - $\mathrm{Cl}{ }^{*}$-connectedness in ideal topological space, Matematichki Bilten, 42(2) (2018), 91-100.
[32] Willard, S., General Topology, Addison-Wesley Publishing Company, Reading, 1970.
[33] Vaidyanathswamy, R., The localisation theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61. https://doi.org/10.1007/bf03048958
[34] Veličko, N. V., H-closed topological spaces, Amer. Math. Soc., 78(2) (1968), 103-118. https://doi.org/10.1090/trans2/078/05

NEW TYPES OF CONNECT. AND INT. VALUE THEOREM IN IDEAL TOP. SPACES 285
[35] Yalaz, F., Kaymakcı, A. K., Weak semi-local functions in ideal topological spaces, Turk. J. Math. Comput. Sci., 11 (2019), 137-140.
[36] Yalaz, F., Kaymakcı, A. K., New topologies from obtained operators via weak semi-local function and some comparisons, Filomat, 15(35) (2021), 5073-5081. https://doi.org/10.2298/FIL2115073Y

INSTRUCTIONS TO CONTRIBUTORS

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics (Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.) is a single-blind peer reviewed open access journal which has been published biannually since 1948 by Ankara University, accepts original research articles written in English in the fields of Mathematics and Statistics. It will be published four times a year from 2022. Review articles written by eminent scientists can also be invited by the Editor.

The publication costs for Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics are covered by the journal, so authors do not need to pay an article-processing and submission charges. The PDF copies of accepted papers are free of charges and can be downloaded from the website. Hard copies of the paper, if required, are due to be charged for the amount of which is determined by the administration each year.

All manuscripts should be submitted via our online submission system https://dergipark.org.tr/en/journal/2457/submission/step/manuscript/new. Note that only two submissions per author per year will be considered. Once a paper is submitted to our journal, all co-authors need to wait 6 months from the submission date before submitting another paper to Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Manuscripts should be submitted in the PDF form used in the peer-review process together with the COVER LETTER and the TEX file (Source File). In the cover letter the authors should suggest the most appropriate Area Editor for the manuscript and potential four reviewers with full names, universities and institutional email addresses. Proposed reviewers must be experienced researchers in your area of research and at least two of them should be from different countries. In addition, proposed reviewers must not be co-authors, advisors, students, etc. of the authors. In the cover letter, the author may enter the name of anyone who he/she would prefer not to review the manuscript, with detailed explanation of the reason. Note that the editorial office may not use these nominations, but this may help to speed up the selection of appropriate reviewers.

Manuscripts should be typeset using the LATEX typesetting system. Authors should prepare the article using the Journal's templates (commun.cls and commun.cst). Manuscripts written in AMS LaTeX format are also acceptable. A template of manuscript can be downloaded in tex form from the link https://dergipark.org.tr/en/download/journal-file/22173(or can be reviewed in pdf form). The title page should contain the title of the paper, full names of the authors, affiliations addresses and e-mail addresses of all authors. Authors are also required to submit their Open Researcher and Contributor ID (ORCID)'s which can be obtained from http://orcid.org as their URL address in the format http://orcid.org/xxxx-xxxx-xxxx-xxxx. Please indicate the corresponding author. Each manuscript should be accompanied by classification numbers from the Mathematics Subject Classification 2020 scheme. The abstract should state briefly the purpose of the research. The length of the Abstract should be between 50 to 5000 characters. At least 3 keywords are required. Formulas should be numbered consecutively in the parentheses. All tables must have numbers (TABLE 1) consecutively in accordance with their appearance in the text and a legend above the table. Please submit tables as editable text not as images. All figures must have numbers (FIGURE 1) consecutively in accordance with their appearance in the text and a caption (not on the figure itself) below the figure. Please submit figures as EPS, TIFF or JPEG format. Authors Contribution Statement, Declaration of Competing Interests and Acknowledgements should be given at the end of the article before the references. Authors are urged to use the communication.bst style in BibTeX automated bibliography. If manual entry is preferred for bibliography, then all citations must be listed in the references part and vice versa. Number of the references (numbers in squared brackets) in the list can be in alphabetical order or in the order in which they appear in the text. Use of the DOI is highly encouraged. Formal abbreviations of the journals can be used. The Editor may seek the advice of two, or three referees, depending on the response of the referees, chosen in consultation with appropriate members of the Editorial Board, from among experts in the field of specialization of the paper. The reviewing process is conducted in strict confidence and the identity of a referee is not disclosed to the authors at any point since we use a single-blind peer review process.

Copyright on any open access article in Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics is licensed under a Creative Commons Attribution 4.0 International License (CC BY). Authors grant Faculty of Sciences of Ankara University a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. It is a fundamental condition that articles submitted to COMMUNICATIONS have not been previously published and will not be simultaneously submitted or published elsewhere. After the manuscript has been accepted for publication, the author will not be permitted to make any new additions to the manuscript. Before publication the galley proof is always sent to the author for correction. Thus it is solely the author's responsibility for any typographical mistakes which occur in their article as it appears in the Journal. The contents of the manuscript published in the COMMUNICATIONS are the sole responsibility of the authors.

Declarations/Ethics
With the submission of the manuscript authors declare that:

- All authors of the submitted research paper have directly participated in the planning, execution, or analysis of study;
- All authors of the paper have read and approved the final version submitted;
- The contents of the manuscript have not been submitted, copyrighted or published elsewhere and the visual-graphical materials such as photograph, drawing, picture, and document within the article do not have any copyright issue;
- The contents of the manuscript will not be copyrighted, submitted, or published elsewhere, while acceptance by the Journal is under consideration.
- The article is clean in terms of plagiarism, and the legal and ethical responsibility of the article belongs to the author(s). Author(s) also accept that the manuscript may go through plagiarism check using iThenticate software;
- The objectivity and transparency in research, and the principles of ethical and professional conduct have been followed. Authors have also declared that they have no potential conflict of interest (financial or non-financial), and their research does not involve any human participants and/or animals.

Research papers published in Communications Faculty of Sciences University of Ankara are archived in the Library of Ankara University and in Dergipark immediately following publication with no embargo.

Editor in Chief
http://communications.science.ankara.edu.tr
Ankara University, Faculty of Sciences
06100, Besevler - ANKARA TURKEY

COMMUNICATIONS

FACULTY OF SCIENCES
 DE LA FACULTE DES SCIENCES UNIVERSITY OF ANKARA DE L'UNIVERSITE D'ANKARA

Series A1: Mathematics and Statistics

Research Articles

Cansu ERGENÇ, Birdal ŞENOĞLU, Comparison of estimation methods for the Kumaraswamy Weibull distribution. 1
Semih PİRİ, Oktay OLMEZ, Murat ŞAHİN, Constructing directed strongly regular graphs by using semidirect productsand semidihedral groups.22
Suna SALTAN, Nazlı BASKAN, Some refinements of Berezin number inequalities via convex functions. 32
Gülsüm Yeliz ŞNTÜRK, Nurten GÜRSES, Salim YÜCE, New insight into quaternions and their matrices.. 43
Esra KIR ARPAT, Turhan KÖPRÜBAŞI, Uniqueness of the solution to the inverse problem of scattering theory for spectral parameter dependent Klein-Gordon s-wave equation.. 59
Meryem SENOCAK, Erdal GÜNER, Fixed-point theorems in extended fuzzy metric spaces via $\alpha-\phi-M^{0}$ and $\beta-\psi-M^{0}$ fuzzy contractive mappings 71
Coşkun YAKAR, Hazm TALAB, Lagrange stability in terms of two measures with initial time difference for set differential equations involving causal operators. 84
Syed Zakar HUSSAİN BUKHARİ, Aamir SHAHZAD, Hadamard product of holomorphic mappings associated with the conic shaped domain. 105
Roohi BHAT, Mukhtar Ahmad KHANDAY, A mathematical analysis of cooperativity and fractional saturation of oxygen in hemoglobin. 118
Nil ŞAHİN, Free resolutions for the tangent cones of some homogeneous pseudo symmetric monomial curves. 129
Djavvat KHADJIEV, Gayrat BESHIMOV, İdris ÖREN, Invariants of a mapping of a set to the two-dimensional Euclidean space 137
Anıl ALTINKAYA, Mustafa ÇALIŞKAN, B-Lift curves and its ruled surfaces 159
Gonca KIZILASLAN, The linear algebra of a generalized Tribonacci matrix 169
Verda GÜRDAL, Mualla Birgül HUBAN, A-Davis-Wielandt-Berezin radius inequalities. 182
Hani KHASHAN, Ece YETKIN ÇELİKEL, S-n-ideals of commutative rings.. 199
Zehra İŞBILLiR, Kahraman Esen ÖZEN, Murat TOSUN, Bertrand partner P-trajectories in the Euclidean 3-space E^{3}.. 216
Nisa ASLAN, Mustafa SALTAN, Bünyamin DEMIR, Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron. 229
Efruz Özlem MERSIN, Mustafa BAHȘİ, Hybrinomial... 240
Meltem SERTBAŞ, Coşkun SARAL, q-Difference Operator on $L^{2}{ }_{q}(0,+\infty)$ 247
Ferit YALAZ, Aynur KESKIN KAYMAKCI, New types of connectedness and intermediate value theorem in ideal topological spaces. 259

[^0]: 2020 Mathematics Subject Classification. 62F10, 62P12.
 Keywords. KwWeibull distribution, Weibull distribution, estimation methods, Monte Carlo simulation, efficiency.
 ${ }^{1}$ cansuergenc $7 @$ gmail.com-Corresponding author; (D0000-0002-4722-0911
 ${ }^{2} \square_{\text {senoglu }}$ @science.ankara.edu.tr; (D)0000-0003-3707-2393.

[^1]: 2020 Mathematics Subject Classification. 05C25, 05C20.
 Keywords. Directed strongly regular graphs, semidirect products, semidihedral groups, Cayley graphs.
 ${ }^{1} \square_{\text {spiri }}$ @kastamonu.edu.tr-Corresponding author; © $0000-0002-3978-0679$
 ${ }^{2} \square_{\text {oktayolmez }}$ @gmail.com.tr; ©0000-0002-9130-0038
 $3{ }^{\text {murat.sahin@ankara.edu.tr; (D0000-0002-9480-0433. }}$

[^2]: 2020 Mathematics Subject Classification. 47A30, 47A63.
 Keywords. Berezin number, Berezin transform, Cauchy-Schwarz inequality, Young inequality, reproducing kernel Hilbert space.
 ${ }^{1}{ }_{\text {sunasaltan }}$ sdu.edu.tr-Corresponding author; © 0000-0001-8175-0425
 $2 \square_{\text {bsknzl1912@gmail.com; ©0000-0001-7742-0837. }}$

[^3]: 2020 Mathematics Subject Classification. 11R52, 15B33.
 Keywords. Generalized quaternion, generalized complex number, matrix representation, elliptic number.
 1 gysenturk@gelisim.edu.tr; ©0000-0002-8647-1801
 $2 \square_{\text {nbayrak@yildiz.edu.tr; ©0000-0001-8407-854X }}$
 $3 \square_{\text {sayuce@yildiz.edu.tr-Corresponding author; ©0000-0002-8296-6495. }}$.

[^4]: ${ }^{1}$ For a more general description of the generalized inner and cross product, see 7 .

[^5]: ${ }^{2} 4 \times 4$ right generalized complex matrix representation of \widetilde{q} is:

 $$
 \mathcal{B}_{\widetilde{q}}^{r}=\left[\begin{array}{cccc}
 a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \\
 a_{1} & a_{0} & \beta a_{3} & -\beta a_{2} \\
 a_{2} & -\alpha a_{3} & a_{0} & \alpha a_{1} \\
 a_{3} & a_{2} & -a_{1} & a_{0}
 \end{array}\right]
 $$

[^6]: ${ }^{3}$ The determinant of an arbitrary 2×2 quaternion matrix is defined by $\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\mathrm{da}-\mathrm{cb}, 33$.

[^7]: 2020 Mathematics Subject Classification. 34B07, 34L25, 47A10.
 Keywords. Scattering theory, inverse problem, scattering data, Levinson formula.
 ${ }^{1}$ esrakir@gazi.edu.tr; ©0000-0002-6322-5130
 2 tkoprubasi@kastamonu.edu.tr-Corresponding author; ©0000-0003-1551-1527.

[^8]: 2020 Mathematics Subject Classification. 47H10, 03E72, 54E50, 54H25.
 Keywords. Fixed-point, extended fuzzy metric space, fuzzy contractive mapping.
 $1 \square_{\text {meryemsnck@gmail.com-Corresponding author; © 0000-0002-2988-9419 }}$
 2 guner@science.ankara.edu.tr; ©0000-0003-4749-1321.

[^9]: 2020 Mathematics Subject Classification. 34D10, 34D20, 34D99.
 Keywords. Boundedness, causal operators, initial time difference, Lagrange stability, Lyapunov function, set differential equations, stability, two measures.
 ${ }^{1}{ }^{\text {cyakar@gtu.edu.tr-Corresponding author; © 0000-0002-7759-7939 }}$
 ${ }^{2}{ }^{\text {h.talab@gtu.edu.tr; ©0000-0003-1753-2823. }}$

[^10]: 2020 Mathematics Subject Classification. Primary 13H10, 14H20 ; Secondary 13P10.
 Keywords. Minimal graded free resolution, pseudo symmetric monomial curves, homogeneous semigroup, Betti numbers.

 ■nilsahin@bilkent.edu.tr; (D)0000-0001-6367-6225

[^11]: 2020 Mathematics Subject Classification. Primary 14L24; Secondary 15A63,15A72.
 Keywords. Euclidean geometry, invariant, figure.
 1 khdjavvat@gmail.com; ©0000-0001-7056-5662
 ${ }^{2}$ gayratbeshimov@gmail.com; (D)0000-0002-5394-2179
 $3 \square_{\text {oren }} @ k t u . e d u . t r-C o r r e s p o n d i n g ~ a u t h o r ; ~ © 0000-0003-2716-3945 . ~$

[^12]: 2020 Mathematics Subject Classification. 53A04, 53A05, 53A10.
 Keywords. B-Lift, ruled surface, minimal surface, developable surface, singular point.
 1 anilaltinkaya@gazi.edu.tr-Corresponding author; (D) 0000-0003-2382-6596
 ${ }^{2}{ }^{\text {■ }}$ mustafacaliskan@gazi.edu.tr; (D) 0000-0003-1354-4763

[^13]: 2020 Mathematics Subject Classification. Primary 47A12; Secondary 47A20.
 Keywords. Berezin symbol, A-Davis-Wielandt-Berezin radius, A-Berezin number, A-Berezin norm, semi inner product, reproducing kernel Hilbert spaces.
 ${ }^{1}$ verdagurdal@icloud.com-Corresponding author; ©0000-0001-5130-7844
 2 muallahuban@isparta.edu.tr; ©0000-0003-2710-8487

[^14]: 2020 Mathematics Subject Classification. Primary 13A15.
 Keywords. S - n-ideal, n-ideal, S-prime ideal, S-primary ideal.
 1 hakhashan@aabu.edu.jo; © 0000-0003-2167-5245
 ${ }^{2}$ - ece.celikel@hku.edu.tr-Corresponding author; ©0000-0001-6194-656X

[^15]: 2020 Mathematics Subject Classification. 53A04; 57R25; 70B05.
 Keywords. Kinematics of a particle, Bertrand curves, positional adapted frame.
 ${ }^{1}{ }_{\text {zehraisbilir@duzce.edu.tr-Corresponding author; © }}$ (D0000-0001-5414-5887
 2 kahramanesenozen@karatekin.edu.tr; (D)0000-0002-3299-6709
 3 tosun@sakarya.edu.tr; ©0000-0002-4888-1412.

[^16]: 2020 Mathematics Subject Classification. 28A80, 37D45, 37B10.
 Keywords. Sierpinski tetrahedron, quotient space, code representation, dynamical systems, topological conjugacy.
 ${ }^{1} \square_{\text {nisakucuk@eskisehir.edu.tr-Corresponding author; ©0000-0002-2103-0511 }}$
 2 mustafasaltan@eskisehir.edu.tr; ©0000-0002-3252-3012
 ${ }^{3}$ bdemir@eskisehir.edu.tr; ©0000-0002-2560-8392.

[^17]: 2020 Mathematics Subject Classification. 11B37, 11B39.
 Keywords. Hyper-Leonardo numbers, polynomials, hybrinomials.
 ${ }^{1}$ ■efruzmersin@aksaray.edu.tr-Corresponding author; ©0000-0001-6260-9063
 ${ }^{2} \square_{\text {mhvbahsi@ }}$ yahoo.com; ©0000-0002-6356-6592

[^18]: 2020 Mathematics Subject Classification. 39A13, 47A05, 47A10.
 Keywords. q-difference operator, minimal operator, maximal operator, q-formally normal operator, q-normal operator, spectrum.
 ${ }^{1}$ m.erolsertbas@gmail.com-Corresponding author; © 0000-0001-9606-951X
 ${ }^{2} \square_{\text {csaral }}$ 5361@gmail.com; ©0000-0002-4274-189X

[^19]: 2020 Mathematics Subject Classification. 54A05, 54A10, 54C05, 54D05.
 Keywords. Ideal topological space, local function, local closure function, connected space, separated subset.
 ${ }^{1}$ ferit.yalaz@selcuk.edu.tr-Corresponding author; ©0000-0001-6805-9357
 2 akeskin@selcuk.edu.tr; ©0000-0001-5909-8477.

