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COMPARISON OF ESTIMATION METHODS FOR THE

KUMARASWAMY WEIBULL DISTRIBUTION

Cansu ERGENÇ1 and Birdal ŞENOĞLU2

1Department of Finance and Banking, Ankara Yıldırım Beyazıt University,

06760 Ankara, TÜRKİYE
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Abstract. In this study, the performances of the different parameter esti-
mation methods are compared for the Kumaraswamy Weibull distribution via

Monte Carlo simulation study. Maximum Likelihood (ML), Least Squares

(LS), Weighted Least Squares (WLS), Cramer-von Mises (CM) and Anderson
Darling (AD) methods are used in the comparisons. The results of the Monte

Carlo simulation study demonstrate that ML estimators for the parameters

of the Kumaraswamy Weibull distribution are more efficient than the other
estimators. It is followed by AD estimator. At the end of the study, a real

data set taken from the literature is used to illustrate the applicability of the

Kumaraswamy Weibull distribution.

1. Introduction

The Weibull is one of the most popular and widely used distribution in many fields
of science such as engineering, reliability, biology, ecology and hydrology (see for
example, Calabria and Pulcini [4], Keats et al. [16], Saeed et al. [20], Serban et
al. [22]). However, the Weibull distribution does not provide a good fit to data
sets with bathtub shaped or upside down bathtub shaped failure rates frequently
encountered in engineering and reliability studies (see Cordeiro et al. [6], Akgül
et al. [2], Maurya et al.[17]). Therefore, many generalized distributions have been
developed for modeling these data sets (see, for example, Mudholkar and Srivastava
[18], Sarhan and Zaindin [21], Elbatal et al. [8]). A new family of generalized
Kumaraswamy (KwG) distributions obtained by combining the work of Eugene

2020 Mathematics Subject Classification. 62F10, 62P12.
Keywords. KwWeibull distribution, Weibull distribution, estimation methods, Monte Carlo
simulation, efficiency.
1 cansuergenc7@gmail.com-Corresponding author; 0000-0002-4722-0911
2 senoglu@science.ankara.edu.tr; 0000-0003-3707-2393.
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2 C. ERGENÇ, B. ŞENOĞLU

et al. [11] and Jones [14] is one of these generalized distributions, (see Cordeiro
and Castro [5]). Probability density function (pdf) and the cumulative distribution
function (cdf) of the KwG distribution for an arbitrary baseline pdf g(x) and cdf
G(x) are given by

f(x) = abg(x)G(x)(a−1){1−G(x)
a}(b−1) (1)

and

F (x) = 1− [1−G(x)a]b, a, b > 0, x ∈ R, (2)

respectively. Here, a and b are the shape parameters. KwG is a flexible distribution
for modeling many different data sets including censored data therefore it is widely
used in engineering and biology (see Gomes et al. [12], Elbatal and Elgarhy [9],
Rocha et al.[19]).

The Kumaraswamy Weibull (KwWeibull) distribution is a special case of the KwG

distribution obtained by inserting the pdf g(x) = p
σp (x− µ)

p−1
exp

{
−
(
x−µ
σ

)p}
and the cdf G(x) = 1 − exp

{
−
(
x−µ
σ

)p}
of the well known Weibull distribution

into (1). KwWeibull is a better alternative to Weibull distribution since it contains
some well known distributions discussed in the literature as special cases such as
the Weibull (see Cordeiro et al. [6]).

In this study, the estimators of the location and scale parameters of the KwWeibull
distribution are obtained by using Maximum Likelihood (ML), Least Squares (LS),
Weighted Least Squares (WLS), Cramer-von Mises (CM) and Anderson Darling
(AD) estimation methods. Shape parameters are assumed to be known throughout
the study. The most efficient estimators are identified by using an extensive Monte-
Carlo simulation study for the different sample sizes and the parameter settings.

The remainder of this paper is organized as follows: In Section 2, a brief description
of the KwWeibull distribution is given. In Section 3, the parameter estimation
methods are presented. Results of the Monte-Carlo simulation study are given in
Section 4. In Section 5, the KwWeibull distribution is used to model a real data
set taken from the literature. Finally, the concluding remarks are given in Section
6.

2. Kumaraswamy Weibull Distribution

The pdf and cdf of KwWeibull distribution are given below:
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f(x) = ab p
σp (x− µ)

p−1
exp

{
−
(
x−µ
σ

)p}[
1− exp

{
−
(
x−µ
σ

)p}]a−1

×
{
1−

[
1− exp

{
−
(
x−µ
σ

)p}]a}b−1

µ < x < ∞, µ, σ > 0 a, b, p > 0

(3)
and

F (x) = 1−
{
1−

[
1− exp

{
−
(
x− µ

σ

)p}]a}b

, (4)

respectively. Here, µ and σ represent the location (or threshold) and the scale pa-
rameters, respectively and a, b and p are the shape parameters. For different values
of the shape parameters a, b and p, the plots of the pdf of KwWeibull distribution
are shown in Figure 1.

Figure 1. The pdf plots of the KwWeibull distribution

For better understanding the shape of the KwWeibull distribution, simulated skew-
ness and kurtosis values of the KwWeibull distribution are given for different values
of the shape parameters, see Table 1. It is clear from Table 1 that KwWeibull can
be positively or negatively skewed depending on the values of the shape parame-
ters. It can also be seen that kurtosis values can be less than or greater than that
of Normal distribution subject to the values of shape parameters.
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Table 1. Simulated skewness and kurtosis values for the
KwWeibull distribution.

a = b = 1
p= 1.5 2 2.5 3 4 6

Skewness 1.062 0.630 0.354 0.168 -0.088 -0.367
Kurtosis 4.368 3.219 2.843 2.722 2.734 2.998

a = b = 2
p= 1.5 2 2.5 3 4 6

Skewness 0.709 0.381 0.178 0.041 -0.141 -0.336
Kurtosis 3.617 3.071 2.916 2.889 2.964 3.175

a = 10 and b = 2
p= 1.5 2 2.5 3 4 6

Skewness 0.485 0.308 0.202 0.132 0.042 -0.046
Kurtosis 3.431 3.203 3.111 3.076 3.054 3.066

a = 1 and b = 8
p= 1.5 2 2.5 3 4 6

Skewness 1.062 0.624 0.357 0.167 -0.087 -0.370
Kurtosis 4.348 3.226 2.843 2.720 2.739 3.022

3. Parameter Estimation Methods

Parameter estimation methods for estimating the location parameter µ and the scale
parameter σ of KwWeibull distribution are described in the following subsections.

3.1. The Maximum Likelihood Method. In this subsection, the ML estimators
for the location and scale parameters of the KwWeibull distribution are obtained.
Let x1, x2, . . . , xn be a random sample from KwWeibull(a, b, p, µ, σ), then the log-
likelihood (lnL) function of the KwWeibull distribution is expressed as follows:

lnL = n(ln a+ ln b+ ln p− lnσ) + (p− 1)
n∑

i=1

ln
(
xi−µ
σ

)
−

n∑
i=1

(
xi−µ
σ

)p
+(a− 1)

n∑
i=1

ln
(
1− exp

{
−
(
xi−µ
σ

)p})
+(b− 1)

n∑
i=1

ln
(
1−

[
1− exp

{
−
(
xi−µ
σ

)p}]a)
.

(5)

lnL function is maximized with respect to the parameters of interest, i.e., µ and
σ. By taking the derivatives of lnL with respect to the parameters µ and σ and
equating them to zero, the following likelihood equations are obtained
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∂lnL

∂µ
=− (p− 1)

σ

n∑
i=1

(
xi − µ

σ

)−1

+
p

σ

n∑
i=1

(
xi − µ

σ

)p−1

(6)

− (a− 1)p

σ

n∑
i=1

(
xi−µ
σ

)p−1
exp

{
−
(
xi−µ
σ

)p}
1− exp

{
−
(
xi−µ
σ

)p}
+
a(b− 1)p

σ

n∑
i=1

(
1− exp

{
−
(
xi−µ
σ

)p})a−1(
xi−µ
σ

)p−1
exp

{
−
(
xi−µ
σ

)p}(
1−

[
1− exp

{
−
(
xi−µ
σ

)p}]a)
=0

and

∂ lnL

∂σ
=− n

σ
− n (p− 1)

σ
+

p

σ

n∑
i=1

(
xi − µ

σ

)p

− (a− 1) p

σ

n∑
i=1

(
xi−µ
σ

)p
exp

{
−
(
xi−µ
σ

)p}
1− exp

{
−
(
xi−µ
σ

)p}
+
a (b− 1) p

σ

n∑
i=1

(
xi−µ
σ

)p
exp

{
−
(
xi−µ
σ

)p}(
1− exp

{
−
(
xi−µ
σ

)p})a−1

(
1−

[
1− exp

{
−
(
xi−µ
σ

)p}]a)
=0. (7)

Solutions of these likelihood equations are called as the ML estimators of the pa-
rameters. When the likelihood equations for the location and scale parameters are
examined, it is seen that the functions are not linear with respect to the parameters
of interest. Therefore, numerical methods are needed for estimating the location
and scale parameters.

3.2. The Least Squares Method. The LS estimators of the unknown parameters
are obtained by minimizing the following equation

SLS =

n∑
i=1

(
F
(
x(i)

)
− i

n+ 1

)2

(8)

with respect to the parameters of interest (see Swain [23]). Here and in the other
subsections, x1, x2, . . . , xn is a random sample from the distribution function F (.),
x(1) < x(2) < . . . < x(n) denotes the corresponding order statistics and i

n+1 , (i =

1, . . . , n) are the expected values of F
(
x(i)

)
. From Eq. (8), the LS estimators

for the parameters of the KwWeibull distribution are obtained by minimizing the
following equation with respect to the parameters µ and σ
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SLS (µ, σ) =

n∑
i=1

(
1−

{
1−

[
1− exp

{
−
(
x(i) − µ

σ

)p}]a}b

− i

n+ 1

)2

. (9)

3.3. The Weighted Least Squares Method. The WLS estimators of the un-
known parameters are obtained by minimizing the following equation with respect
to the parameters of interest (see Swain [23])

SWLS =

n∑
i=1

wi

(
F
(
x(i)

)
− i

n+ 1

)2

(10)

where, wi = 1/V ar
(
F
(
x(i)

))
= (n+ 1)2 (n+ 2) /i(n− i+1), (i = 1, 2, ..., n). From

Eq.(10), the WLS estimators for the parameters of the KwWeibull distribution are
obtained by minimizing the following equation with respect to the parameters µ
and σ

SWLS (µ, σ) =

n∑
i=1

(n+ 1)
2
(n+ 2)

i(n− i+ 1)

(
1−

{
1−

[
1− exp

{
−
(
x(i) − µ

σ

)p}]a}b

− i

n+ 1

)2

.

(11)

3.4. The Cramér–Von Mises Method. The CM estimators of the unknown
parameters are obtained by minimizing the following equation

SCM =
1

12n
+

n∑
i=1

(
F (x(i))−

2i− 1

2n

)2

(12)

with respect to the parameters of interest (see Wolfowitz [24]). From Eq. (12), the
CM estimators for the parameters of the KwWeibull distribution are obtained by
minimizing the following equation with respect to the parameters µ and σ

SCM (µ, σ) =
1

12n
+

n∑
i=1

(
1−

{
1−

[
1− exp

{
−
(
x(i) − µ

σ

)p}]a}b

− 2i− 1

2n

)2

.

(13)
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3.5. The Anderson-Darling Method. The AD estimators of the unknown pa-
rameters are obtained by minimizing the following equation

SAD = −n− 1

n

n∑
i=1

(2i− 1) log
{
F
(
x(i)

) (
1− F

(
x(n−i+1)

))}
(14)

with respect to the parameters of interest, (see Wolfowitz [25]). From Eq. (14), the
AD estimators for the parameters of the KwWeibull distribution are obtained by
minimizing the following equation with respect to the parameters µ and σ

SAD (µ, σ) = −n− 1
n

n∑
i=1

(2i− 1)log

{
1−

{
1−

[
1− exp

{
−
(

x(i)−µ

σ

)p}]a}b

×
{
1−

[
1− exp

{
−
(

x(n−i+1)−µ

σ

)p}]a}b
}
.

(15)

Here it should be noted that similar to ML estimates of parameters, LS, WLS, CM
and AD estimates are obtained iteratively (see, Ergenç [10]).

4. Simulation Study

In this section, we perform an extensive Monte Carlo simulation study to compare
the performances of the ML, LS, WLS, CM and AD estimators of the location
parameter µ and scale parameter σ of the KwWeibull distribution. Without loss of
generality, µ and σ are taken to be 0 and 1, respectively. All the simulations were
conducted using R programming language for 10,000 Monte-Carlo runs. We use
small (n = 20), moderate (n = 50, 100) and large (n = 200, 500) sample sizes. It is
known that the estimation of the shape parameters along with the other parameters
yields unreliable results when the sample size is not large enough (see, Bowman
and Shenton [3], Kantar and Şenoğlu [15]). Therefore, it is assumed that the shape
parameters a, b and p are known throughout the study. The performances of the
estimators are compared with respect to the Bias, mean squares error (MSE) and
Deficiency (Def) criteria, see the mathematical expressions given below

Bias =
1

10, 000

10,000∑
i=1

(
θ̂i − θ

)
,

MSE =
1

10, 000

10,000∑
i=1

(
θ̂i − θ

)2 (16)

and
Def(µ̂, σ̂) = MSE(µ̂) +MSE(σ̂). (17)
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Here, θ̂i is the ith simulated estimate of the parameter of interest (i.e. µ or σ)
and θ is the true value of the parameter. Also, Def criterion is defined as the joint
efficiencies of the estimators µ̂ and σ̂. Simulated Bias, MSE and Def values for the
ML, LS, WLS, CM and AD estimators for the location parameter µ and the scale
parameter σ of the KwWeibull distribution are given in Table 2.

Table 2. The simulated Bias, MSE and Def values for the ML,
LS, WLS, CM and AD estimators of the parameters µ and σ.

(a, b, p) = (1, 1, 1.5) (a, b, p) = (1, 1, 3)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,061 0,011 -0,061 0,029 0,040 0,048 0,020 -0,052 0,022 0,043
LS -0,034 0,017 0,056 0,045 0,062 -0,039 0,035 0,042 0,042 0,077

WLS -0,019 0,012 0,036 0,037 0,049 -0,024 0,028 0,026 0,033 0,062
CM 0,010 0,013 -0,011 0,037 0,051 0,025 0,031 -0,033 0,037 0,068
AD -0,005 0,011 0,009 0,033 0,043 -0,007 0,023 0,008 0,026 0,049

n = 50
ML 0,030 0,003 -0,030 0,011 0,014 0,021 0,007 -0,022 0,008 0,016
LS -0,018 0,006 0,026 0,016 0,022 -0,015 0,013 0,016 0,015 0,028

WLS -0,007 0,004 0,012 0,013 0,016 -0,006 0,010 0,005 0,011 0,021
CM -0,002 0,005 0,004 0,015 0,019 0,010 0,012 -0,014 0,014 0,027
AD -0,006 0,003 0,011 0,012 0,016 -0,004 0,009 0,004 0,010 0,019

n = 100
ML 0,017 0,001 -0,017 0,005 0,006 0,012 0,003 -0,013 0,004 0,007
LS -0,012 0,003 0,017 0,008 0,010 -0,007 0,006 0,007 0,007 0,013

WLS -0,004 0,001 0,006 0,006 0,008 -0,001 0,005 0,000 0,005 0,010
CM -0,005 0,002 0,007 0,007 0,009 0,006 0,006 -0,008 0,007 0,013
AD -0,006 0,002 0,008 0,006 0,008 -0,002 0,004 0,002 0,005 0,009

n = 200
ML 0,010 0,000 -0,010 0,002 0,003 0,006 0,002 -0,006 0,002 0,004
LS -0,009 0,001 0,012 0,004 0,005 -0,005 0,003 0,004 0,004 0,007

WLS -0,003 0,001 0,005 0,003 0,003 -0,001 0,002 0,000 0,003 0,005
CM -0,005 0,001 0,007 0,004 0,005 0,002 0,003 -0,003 0,004 0,007
AD -0,004 0,001 0,007 0,003 0,004 -0,002 0,002 0,002 0,002 0,005

n = 500
ML 0,005 0,000 -0,005 0,001 0,001 0,003 0,001 -0,003 0,001 0,001
LS -0,006 0,000 0,007 0,001 0,002 -0,002 0,001 0,002 0,001 0,003

WLS -0,002 0,000 0,002 0,001 0,001 0,000 0,001 0,000 0,001 0,002
CM -0,004 0,000 0,005 0,001 0,002 0,000 0,001 -0,001 0,001 0,003
AD -0,002 0,000 0,004 0,001 0,001 -0,001 0,001 0,001 0,001 0,002
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Table 2. (continued)

(a, b, p) = (1, 1, 4) (a, b, p) = (1, 1, 6)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,043 0,023 -0,045 0,023 0,046 0,041 0,027 -0,044 0,026 0,054
LS -0,043 0,041 0,046 0,044 0,086 -0,041 0,047 0,042 0,047 0,093

WLS -0,028 0,034 0,030 0,036 0,070 -0,027 0,039 0,027 0,038 0,077
CM 0,025 0,036 -0,030 0,039 0,075 0,032 0,042 -0,035 0,042 0,083
AD -0,010 0,027 0,011 0,027 0,054 -0,008 0,032 0,007 0,031 0,062

n = 50
ML 0,018 0,009 -0,019 0,009 0,018 0,015 0,010 -0,016 0,010 0,020
LS -0,015 0,015 0,016 0,016 0,031 -0,019 0,017 0,019 0,017 0,033

WLS -0,006 0,012 0,006 0,012 0,024 -0,008 0,013 0,008 0,013 0,026
CM 0,012 0,015 -0,014 0,015 0,030 0,010 0,016 -0,011 0,016 0,032
AD -0,004 0,011 0,004 0,011 0,022 -0,006 0,012 0,006 0,012 0,024

n = 100
ML 0,010 0,004 -0,010 0,004 0,009 0,009 0,005 -0,010 0,005 0,010
LS -0,008 0,007 0,008 0,007 0,015 -0,007 0,008 0,008 0,008 0,016

WLS -0,002 0,006 0,002 0,006 0,011 -0,001 0,006 0,001 0,006 0,012
CM 0,006 0,007 -0,007 0,007 0,014 0,007 0,008 -0,007 0,008 0,016
AD -0,002 0,005 0,002 0,005 0,011 -0,001 0,006 0,001 0,006 0,012

n = 200
ML 0,004 0,002 -0,004 0,002 0,004 0,004 0,002 -0,005 0,002 0,005
LS -0,006 0,004 0,006 0,004 0,007 -0,004 0,004 0,004 0,004 0,008

WLS -0,002 0,003 0,002 0,003 0,006 0,000 0,003 0,000 0,003 0,006
CM 0,001 0,003 -0,001 0,004 0,007 0,003 0,004 -0,003 0,004 0,008
AD -0,003 0,003 0,003 0,003 0,005 -0,001 0,003 0,001 0,003 0,006

n = 500
ML 0,002 0,001 -0,002 0,001 0,002 0,002 0,001 -0,002 0,001 0,003
LS -0,002 0,001 0,002 0,001 0,003 -0,003 0,002 0,003 0,002 0,004

WLS 0,000 0,001 0,000 0,001 0,002 0,000 0,002 0,000 0,002 0,003
CM 0,001 0,001 -0,001 0,001 0,003 0,001 0,002 -0,001 0,002 0,004
AD -0,001 0,001 0,001 0,001 0,002 -0,001 0,002 0,001 0,002 0,003
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Table 2. (continued)

(a, b, p) = (1, 2, 1.5) (a, b, p) = (1, 2, 3)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,039 0,004 -0,063 0,029 0,033 0,039 0,013 -0,052 0,022 0,035
LS -0,021 0,007 0,054 0,046 0,053 -0,029 0,023 0,040 0,042 0,064

WLS -0,012 0,005 0,034 0,038 0,043 -0,018 0,018 0,026 0,033 0,051
CM 0,006 0,005 -0,006 0,038 0,044 0,022 0,020 -0,034 0,037 0,057
AD -0,003 0,004 0,015 0,033 0,037 -0,004 0,015 0,007 0,025 0,040

n = 50
ML 0,019 0,001 -0,028 0,011 0,012 0,017 0,005 -0,023 0,008 0,013
LS -0,011 0,002 0,029 0,016 0,018 -0,013 0,008 0,017 0,015 0,023

WLS -0,004 0,001 0,014 0,013 0,014 -0,004 0,006 0,005 0,012 0,018
CM -0,001 0,002 0,006 0,014 0,016 0,007 0,008 -0,013 0,015 0,022
AD -0,004 0,001 0,013 0,012 0,014 -0,003 0,006 0,004 0,010 0,016

n = 100
ML 0,011 0,000 -0,017 0,005 0,005 0,008 0,002 -0,011 0,004 0,006
LS -0,007 0,001 0,017 0,008 0,008 -0,007 0,004 0,009 0,007 0,011

WLS -0,002 0,001 0,005 0,006 0,006 -0,002 0,003 0,002 0,005 0,008
CM -0,003 0,001 0,006 0,007 0,008 0,003 0,004 -0,006 0,007 0,011
AD -0,003 0,001 0,008 0,006 0,006 -0,003 0,003 0,004 0,005 0,008

n = 200
ML 0,007 0,000 -0,009 0,002 0,003 0,005 0,001 -0,006 0,002 0,003
LS -0,005 0,000 0,013 0,004 0,004 -0,004 0,002 0,005 0,003 0,005

WLS -0,002 0,000 0,005 0,003 0,003 -0,001 0,001 0,001 0,003 0,004
CM -0,003 0,000 0,007 0,004 0,004 0,001 0,002 -0,002 0,003 0,005
AD -0,003 0,000 0,007 0,003 0,003 -0,001 0,001 0,002 0,002 0,004

n = 500
ML 0,003 0,000 -0,006 0,001 0,001 0,002 0,000 -0,003 0,001 0,001
LS -0,004 0,000 0,007 0,001 0,002 -0,001 0,001 0,002 0,001 0,002

WLS -0,001 0,000 0,002 0,001 0,001 0,000 0,001 0,000 0,001 0,002
CM -0,003 0,000 0,005 0,001 0,002 0,001 0,001 -0,001 0,001 0,002
AD -0,002 0,000 0,003 0,001 0,001 0,000 0,001 0,001 0,001 0,002
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Table 2. (continued)

(a, b, p) = (1, 2, 4) (a, b, p) = (1, 2, 6)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,036 0,016 -0,045 0,023 0,039 0,034 0,021 -0,041 0,025 0,045
LS -0,035 0,028 0,045 0,043 0,071 -0,040 0,037 0,046 0,047 0,084

WLS -0,024 0,023 0,030 0,034 0,057 -0,027 0,031 0,032 0,038 0,069
CM 0,022 0,025 -0,031 0,038 0,063 0,025 0,033 -0,031 0,041 0,074
AD -0,008 0,019 0,010 0,026 0,045 -0,010 0,024 0,011 0,030 0,054

n = 50
ML 0,013 0,006 -0,017 0,009 0,015 0,016 0,008 -0,018 0,010 0,018
LS -0,015 0,010 0,019 0,015 0,026 -0,015 0,013 0,017 0,017 0,030

WLS -0,007 0,008 0,009 0,012 0,020 -0,005 0,011 0,006 0,013 0,024
CM 0,008 0,010 -0,011 0,015 0,024 0,011 0,013 -0,013 0,016 0,029
AD -0,005 0,008 0,006 0,011 0,018 -0,003 0,010 0,003 0,012 0,022

n = 100
ML 0,008 0,003 -0,010 0,004 0,007 0,008 0,004 -0,009 0,005 0,009
LS -0,007 0,005 0,009 0,008 0,013 -0,007 0,006 0,008 0,008 0,014

WLS -0,002 0,004 0,002 0,006 0,010 -0,001 0,005 0,002 0,006 0,011
CM 0,005 0,005 -0,006 0,007 0,013 0,005 0,006 -0,007 0,008 0,014
AD -0,002 0,004 0,002 0,005 0,009 -0,001 0,005 0,002 0,006 0,010

n = 200
ML 0,004 0,001 -0,005 0,002 0,004 0,005 0,003 -0,006 0,004 0,007
LS -0,003 0,003 0,004 0,004 0,006 -0,006 0,005 0,007 0,006 0,011

WLS 0,000 0,002 0,000 0,003 0,005 -0,001 0,004 0,001 0,005 0,008
CM 0,002 0,002 -0,003 0,004 0,006 0,003 0,005 -0,004 0,006 0,010
AD -0,001 0,002 0,001 0,003 0,005 -0,002 0,004 0,002 0,004 0,008

n = 500
ML 0,002 0,001 -0,002 0,001 0,001 0,005 0,002 -0,006 0,003 0,005
LS -0,001 0,001 0,002 0,002 0,003 -0,004 0,004 0,005 0,005 0,009

WLS 0,000 0,001 0,000 0,001 0,002 -0,001 0,003 0,001 0,004 0,007
CM 0,001 0,001 -0,001 0,002 0,003 0,003 0,004 -0,004 0,005 0,008
AD 0,000 0,001 0,000 0,001 0,002 -0,001 0,003 0,001 0,004 0,006
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Table 2. (continued)

(a, b, p) = (6, 4.5, 1.5) (a, b, p) = (6, 4.5, 3)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,050 0,038 -0,042 0,027 0,064 0,046 0,033 -0,042 0,027 0,060
LS -0,055 0,067 0,047 0,047 0,114 -0,046 0,056 0,043 0,046 0,102

WLS -0,035 0,054 0,030 0,038 0,093 -0,030 0,046 0,027 0,038 0,084
CM 0,035 0,059 -0,030 0,041 0,100 0,037 0,050 -0,034 0,041 0,090
AD -0,010 0,043 0,009 0,031 0,074 -0,006 0,037 0,005 0,030 0,068

n = 50
ML 0,017 0,014 -0,014 0,010 0,025 0,017 0,013 -0,015 0,010 0,023
LS -0,024 0,024 0,021 0,017 0,041 -0,020 0,020 0,018 0,016 0,036

WLS -0,011 0,019 0,010 0,013 0,032 -0,009 0,016 0,008 0,013 0,029
CM 0,011 0,023 -0,009 0,016 0,038 0,013 0,019 -0,012 0,015 0,034
AD -0,007 0,017 0,006 0,012 0,029 -0,004 0,014 0,004 0,012 0,026

n = 100
ML 0,009 0,007 -0,008 0,005 0,012 0,007 0,006 -0,007 0,005 0,012
LS -0,011 0,011 0,010 0,008 0,019 -0,011 0,010 0,010 0,008 0,018

WLS -0,003 0,009 0,003 0,006 0,015 -0,003 0,008 0,003 0,006 0,014
CM 0,006 0,011 -0,005 0,008 0,019 0,006 0,010 -0,005 0,008 0,018
AD -0,003 0,008 0,002 0,006 0,014 -0,003 0,008 0,002 0,006 0,014

n = 200
ML 0,005 0,004 -0,004 0,002 0,006 0,004 0,003 -0,004 0,003 0,006
LS -0,005 0,006 0,005 0,004 0,010 -0,006 0,005 0,005 0,004 0,009

WLS 0,000 0,004 0,000 0,003 0,007 -0,001 0,004 0,001 0,003 0,007
CM 0,003 0,006 -0,003 0,004 0,010 0,002 0,005 -0,002 0,004 0,009
AD -0,001 0,004 0,001 0,003 0,007 -0,002 0,004 0,001 0,003 0,007

n = 500
ML 0,002 0,001 -0,002 0,001 0,002 0,001 0,001 -0,001 0,001 0,002
LS -0,002 0,002 0,001 0,002 0,004 -0,003 0,002 0,002 0,002 0,004

WLS 0,000 0,002 0,000 0,001 0,003 0,000 0,002 0,000 0,001 0,003
CM 0,002 0,002 -0,002 0,002 0,004 0,001 0,002 -0,001 0,002 0,004
AD 0,000 0,002 0,000 0,001 0,003 -0,001 0,002 0,001 0,001 0,003
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Table 2. (continued)

(a, b, p) = (6, 4.5, 4) (a, b, p) = (6, 4.5, 6)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,039 0,031 -0,037 0,027 0,058 0,038 0,031 -0,037 0,028 0,059
LS -0,051 0,055 0,047 0,047 0,102 -0,051 0,054 0,049 0,049 0,103

WLS -0,034 0,045 0,031 0,039 0,084 -0,035 0,045 0,033 0,040 0,085
CM 0,032 0,048 -0,030 0,041 0,089 0,029 0,047 -0,028 0,042 0,089
AD -0,010 0,036 0,009 0,031 0,067 -0,011 0,036 0,010 0,032 0,069

n = 50
ML 0,017 0,012 -0,016 0,010 0,023 0,016 0,012 -0,015 0,011 0,022
LS -0,019 0,019 0,018 0,017 0,036 -0,018 0,019 0,018 0,017 0,036

WLS -0,007 0,015 0,007 0,013 0,029 -0,008 0,015 0,008 0,013 0,028
CM 0,013 0,018 -0,013 0,016 0,034 0,013 0,018 -0,013 0,016 0,034
AD -0,003 0,014 0,003 0,012 0,026 -0,003 0,014 0,003 0,012 0,026

n = 100
ML 0,006 0,006 -0,006 0,005 0,011 0,008 0,006 -0,008 0,005 0,011
LS -0,012 0,010 0,012 0,008 0,018 -0,009 0,009 0,009 0,008 0,017

WLS -0,005 0,008 0,005 0,006 0,014 -0,002 0,007 0,002 0,006 0,014
CM 0,004 0,009 -0,004 0,008 0,017 0,007 0,009 -0,006 0,008 0,017
AD -0,005 0,007 0,004 0,006 0,013 -0,002 0,007 0,001 0,006 0,013

n = 200
ML 0,004 0,003 -0,003 0,003 0,006 0,004 0,003 -0,004 0,003 0,006
LS -0,006 0,005 0,006 0,004 0,009 -0,005 0,004 0,005 0,004 0,008

WLS -0,001 0,004 0,001 0,003 0,007 -0,001 0,003 0,001 0,003 0,007
CM 0,002 0,005 -0,002 0,004 0,009 0,003 0,004 -0,003 0,004 0,008
AD -0,002 0,004 0,002 0,003 0,007 -0,001 0,003 0,001 0,003 0,006

n = 500
ML 0,001 0,001 -0,001 0,001 0,002 0,002 0,001 -0,002 0,001 0,002
LS -0,002 0,002 0,002 0,002 0,003 -0,001 0,002 0,001 0,002 0,003

WLS 0,000 0,001 0,000 0,001 0,003 0,001 0,001 -0,001 0,001 0,003
CM 0,001 0,002 -0,001 0,002 0,003 0,002 0,002 -0,002 0,002 0,003
AD -0,001 0,001 0,001 0,001 0,003 0,000 0,001 0,000 0,001 0,003
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Table 2. (continued)

(a, b, p) = (15, 5, 1.5) (a, b, p) = (15, 5, 3)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,064 0,070 -0,039 0,026 0,097 0,046 0,044 -0,036 0,026 0,070
LS -0,077 0,123 0,048 0,047 0,170 -0,066 0,078 0,052 0,048 0,126

WLS -0,051 0,101 0,032 0,038 0,139 -0,045 0,064 0,036 0,039 0,103
CM 0,048 0,108 -0,029 0,041 0,148 0,033 0,067 -0,026 0,041 0,108
AD -0,014 0,081 0,009 0,031 0,112 -0,015 0,051 0,012 0,031 0,082

n = 50
ML 0,024 0,028 -0,015 0,011 0,039 0,018 0,017 -0,014 0,010 0,028
LS -0,030 0,045 0,018 0,017 0,063 -0,024 0,028 0,019 0,017 0,045

WLS -0,013 0,036 0,008 0,014 0,050 -0,011 0,022 0,008 0,013 0,035
CM 0,019 0,043 -0,012 0,016 0,059 0,015 0,026 -0,012 0,016 0,042
AD -0,007 0,033 0,004 0,012 0,045 -0,005 0,020 0,004 0,012 0,032

n = 100
ML 0,010 0,014 -0,006 0,005 0,019 0,008 0,008 -0,007 0,005 0,014
LS -0,018 0,022 0,011 0,008 0,030 -0,013 0,013 0,011 0,008 0,021

WLS -0,007 0,017 0,004 0,006 0,024 -0,005 0,010 0,004 0,006 0,016
CM 0,006 0,021 -0,004 0,008 0,029 0,006 0,013 -0,005 0,008 0,020
AD -0,006 0,016 0,004 0,006 0,023 -0,004 0,010 0,003 0,006 0,016

n = 200
ML 0,006 0,007 -0,004 0,003 0,009 0,005 0,004 -0,004 0,003 0,007
LS -0,008 0,010 0,005 0,004 0,014 -0,006 0,006 0,005 0,004 0,010

WLS -0,001 0,008 0,001 0,003 0,011 -0,001 0,005 0,001 0,003 0,008
CM 0,004 0,010 -0,003 0,004 0,014 0,004 0,006 -0,003 0,004 0,010
AD -0,002 0,008 0,001 0,003 0,011 -0,001 0,005 0,001 0,003 0,008

n = 500
ML 0,003 0,003 -0,002 0,001 0,004 0,001 0,002 -0,001 0,001 0,003
LS -0,003 0,004 0,002 0,002 0,006 -0,003 0,003 0,002 0,002 0,004

WLS 0,000 0,003 0,000 0,001 0,004 -0,001 0,002 0,000 0,001 0,003
CM 0,002 0,004 -0,001 0,002 0,006 0,001 0,003 -0,001 0,002 0,004
AD 0,000 0,003 0,000 0,001 0,004 -0,001 0,002 0,001 0,001 0,003
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Table 2. (continued)

(a, b, p) = (15, 5, 4) (a, b, p) = (15, 5, 6)
µ̂ σ̂ µ̂ σ̂

Methods Bias MSE Bias MSE Def Bias MSE Bias MSE Def
n = 20

ML 0,046 0,040 -0,038 0,027 0,067 0,044 0,035 -0,039 0,027 0,061
LS -0,056 0,069 0,047 0,047 0,116 -0,054 0,060 0,048 0,047 0,107

WLS -0,036 0,057 0,030 0,039 0,096 -0,035 0,050 0,031 0,039 0,089
CM 0,036 0,060 -0,030 0,041 0,101 0,033 0,053 -0,030 0,041 0,093
AD -0,009 0,046 0,008 0,031 0,077 -0,010 0,040 0,008 0,031 0,070

n = 50
ML 0,016 0,015 -0,014 0,011 0,026 0,017 0,014 -0,015 0,011 0,024
LS -0,024 0,024 0,020 0,017 0,041 -0,022 0,021 0,019 0,017 0,038

WLS -0,011 0,020 0,009 0,013 0,033 -0,010 0,017 0,009 0,013 0,031
CM 0,013 0,023 -0,011 0,016 0,039 0,013 0,020 -0,011 0,016 0,036
AD -0,006 0,018 0,005 0,012 0,030 -0,004 0,016 0,004 0,012 0,028

n = 100
ML 0,011 0,008 -0,009 0,005 0,013 0,009 0,007 -0,008 0,005 0,012
LS -0,010 0,012 0,008 0,008 0,020 -0,010 0,011 0,008 0,008 0,019

WLS -0,001 0,009 0,001 0,006 0,016 -0,002 0,008 0,002 0,007 0,015
CM 0,008 0,012 -0,007 0,008 0,019 0,008 0,010 -0,007 0,008 0,019
AD -0,001 0,009 0,001 0,006 0,015 -0,001 0,008 0,001 0,006 0,014

n = 200
ML 0,005 0,004 -0,004 0,003 0,006 0,004 0,003 -0,004 0,003 0,006
LS -0,005 0,006 0,004 0,004 0,010 -0,005 0,005 0,004 0,004 0,009

WLS 0,000 0,005 0,000 0,003 0,008 -0,001 0,004 0,000 0,003 0,007
CM 0,004 0,006 -0,003 0,004 0,010 0,004 0,005 -0,003 0,004 0,009
AD -0,001 0,004 0,001 0,003 0,007 -0,001 0,004 0,001 0,003 0,007

n = 500
ML 0,002 0,002 -0,002 0,001 0,003 0,002 0,001 -0,002 0,001 0,002
LS -0,002 0,002 0,002 0,002 0,004 -0,002 0,002 0,002 0,002 0,004

WLS 0,000 0,002 0,000 0,001 0,003 0,000 0,002 0,000 0,001 0,003
CM 0,001 0,002 -0,001 0,002 0,004 0,001 0,002 -0,001 0,002 0,004
AD 0,000 0,002 0,000 0,001 0,003 -0,001 0,002 0,000 0,001 0,003

4.1. Comparisons for the biases. In this subsection, the biases of the estimators
µ̂ and σ̂ obtained from the ML, LS, WLS, CM and AD methodologies are compared.
For the estimators of the location parameter µ and the scale parameter σ, in general,
the AD has the smallest bias among the other estimators for all values of the shape
parameters and the sample sizes except for the sample size n = 50 and shape
parameters a = 1, b = 1, p = 1.5 and a = 1, b = 2, p = 1.5 in which case CM
provides the smallest bias. When the sample size n=100 and shape parameters
a = 1, b = 1, p = 1.5 , a = 1, b = 1, p = 3, a = 1, b = 2, p = 1.5 and a = 1,
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b = 2, p = 3, WLS provides the smallest biases. AD is followed by the WLS and
CM estimators for the small and moderate sample sizes in most of the cases. ML
and LS estimators have larger biases than the other estimators for the small and
moderate sample sizes. For the large sample sizes, all the estimators have negligible
biases.

4.2. Comparisons for the efficiencies. Discussions about the efficiencies of the
estimators of µ and σ with respect to the MSE criterion are given as follows. For the
estimators of the location parameter µ, ML estimator shows the best performance
among the others with respect to the MSE criterion in all cases. It is followed by
the AD and WLS estimators for the sample sizes n = 20 and 50. It should also
be pointed out that the LS estimator has shown the worst performance among the
others for the sample sizes n = 20 and 50. For the sample sizes n ≥ 100, ML is
the most efficient estimator among the others in general and it is followed by the
AD and WLS estimators. For the estimators of the scale parameter σ, the ML
is the most efficient among the others for all values of the shape parameters and
the sample sizes. It is followed by the AD and WLS estimators for the small and
moderate sample sizes. The LS estimator of σ shows the worst performance among
the other estimators in almost all cases.

4.3. Comparisons for the joint efficiencies. According to the simulation re-
sults, the ML estimator shows the highest performance among the others for all
values of the shapes parameters and the sample sizes. It is seen that the ML esti-
mator is followed by AD estimator. On the other hand, the LS estimator has the
worst performance among the other estimators in almost all cases.

5. Application

In this section, the KwWeibull distribution is used to model the relative humidity
data set taken from Cortez and Morais [7]. Table 3 shows the descriptive statistics
for the relative humidity data.

Table 3. Descriptive statistics for the relative humidity data.

n Min Max Mean Variance Skewness Kurtosis
517 15.0 100.0 44.29 266.3 0.85 2.59

Before analyzing the relative humidity data, profile likelihood method is used to
identify the plausible values of the shape parameters a, b and p of the KwWeibull
distribution (see for example, Islam and Tiku [13] and Acıtaş and Şenoğlu [1]). The
steps of the profile likelihood procedure are given as follows:
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Step 1. Calculate µ̂ and σ̂ for the given a, b and p values.
Step 2. Calculate lnLvalue by incorporating µ̂ and σ̂ into lnL.
Step 3. Repeat Steps 1 and 2 for a serious values of a, b and p. Find a, b and p values
maximizing the lnL function among the others and choose them as conceivable
values of the shape parameters.

Following the steps of profile likelihood procedure, the values of shape parameters
a, b and p are obtained as 5.637, 6.133 and 0.681, respectively. We also use QQ
plot which is a well known and widely used graphical technique to identify the
distribution of the relative humidity data set, see Figure 2. It can be seen from
Figure 2 that KwWeibull distribution provides a good fit for the relative humidity
data.

Figure 2. KwWeibull QQ plot for the relative humidity data

Based on the estimate values of the shape parameters, the ML estimates of location
parameter µ and scale parameter σ are obtained as given in the Table 4. Estimates
of the parameters µ, σ and p of Weibull distribution are also given for the relative
humidity data to make the comparisons complete in Table 4. The Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC) and Corrected AIC
(AICc) values along with the Kolmogorov-Smirnov (KS) test statistic and associ-
ated p− values are also given in Table 4.

The equalities for the AIC, BIC, AICc and KS are given by

AIC = −2 lnL+ 2k,
BIC = −2 lnL+ kln(n),
AICc = AIC + (2k2 + k)/(n− k − 1)

(18)
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and

KS = max
∣∣∣F̂ (X(i))− i

n+1

∣∣∣ , (19)

respectively. Here, F̂ is the estimated cdf, X(i) is the i − th order statistics, k is
the number of the unknown parameters and n is the sample size.

Table 4. The estimates of the parameters of the KwWeibull and
Weibull distributions for the relative humidity data

â b̂ p̂ µ̂ σ̂ KS p-value AIC BIC AICc
KwWeibull 5.637 6.133 0.681 25.466 11.763 0.043 0.273 4273.80 4295.05 4273.88
Weibull - - 1.924 33.662 14.485 0.097 0.063 4337.76 4346.27 4337.81

The smaller AIC, BIC and AICc values imply the better fitting performance. It
is clear from Table 4 that the KwWeibull distribution is more preferable than
the Weibull distribution in terms of these criteria. See also Figure 3 in which
the histogram and the fitted densities based on the KwWeibull and the Weibull
distributions are plotted. Here, it should be noted that the ML estimates of the
parameters are used in obtaining the fitted densities.

Figure 3. The histogram and the fitted densities based on the
KwWeibull andWeibull distributions for the relative humidity data

It is seen from Figure 3 that KwWeibull distribution shows better fitting perfor-
mance than the Weibull distribution. Then, we obtain the estimates of location
parameter µ and scale parameter σ of the KwWeibull distribution when â =5.637,

b̂ =6.133 and p̂=0.681 by using ML, LS, WLS, CM and AD methods to see the
fitting performance of KwWeibull distribution for each estimation methods. Es-
timates of the location and scale parameters of KwWeibull distribution for each
estimation methods are given in Table 5.
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Table 5. Estimates of the location and scale parameters of the
KwWeibull distribution for relative humidity data

Estimation Methods µ̂ σ̂ AIC BIC AICc
ML 25.466 11.763 4273.80 4295.05 4273.88
LS 19.712 14.327 4883.75 4904.99 4883.86
WLS 28.322 12.365 4646.50 4649.39 4646.53
CM 24.553 14.680 4675.32 4696.56 4675.43
AD 18.859 13.140 4622.33 4643.57 4622.44

The histogram and fitted densities based on different estimation methods are given
in Figure 4 for the KwWeibull distribution.

Figure 4. The histogram and the fitted densities based on ML,
LS, WLS, CM and AD estimates for the KwWeibull distribution

It can easily be seen from both Table 5 and the Figure 4 that ML method shows
the best performance among the others with respect to the fitting performance for
the relative humidity data.

6. Conclusions

In this study, we obtain the estimators of location and scale parameters of KwWeibull
distribution using the ML, LS, WLS, CM and AD methods. We perform an exten-
sive Monte Carlo simulation study to compare the efficiencies of these estimators.
It is concluded that ML estimator shows the best performance among the others
and it is followed by AD estimator. The LS estimator demonstrates the worst per-
formance in almost all cases. At the end of the study, we use relative humidity data
taken from the literature. Modelling performances of the KwWeibull distribution
and the well known and widely used Weibull distribution are compared for this
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data. It is concluded that KwWeibull distribution shows better fitting performance
than the Weibull distribution for modeling the relative humidity data.
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Abstract. In this paper, directed strongly regular graphs (DSRGs) are con-
structed by using semidirect products. The orbit condition in [3] has been

weakened and this gives rise to the construction of DSRGs. Moreover, a dif-

ferent construction is given for DSRG by using semidihedral groups.

1. Introduction

Directed strongly regular graphs have attracted the attention of many mathe-
maticians and many studies have been done on them. It was first discussed by
Duval as the directed form of strongly regular graphs [2]. Duval also presented
several construction methods in his work. The main problem today is to con-
struct unknown ones by their parameters. For this purpose, many mathematical
structures have been used. Some of these are designs [ [5], [11]], coherent algebras
[ [5], [7], [10]], finite geometries [ [4], [5], [6]], matrices [ [2], [4], [6], [8]] and dihedral
groups [10]. Some non-existence results are given by Jorgensen [9]. Duval [3] con-
structed directed strongly regular graphs by using semidirect products with an orbit
condition. We change this condition with a weaker condition and give a construc-
tion of the directed strongly regular graphs. We also provide give a construction by
using semidihedral groups. Our construction methods using semidirect product and
semidihedral groups are new, however they do not give new parameters for small
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examples. Also, they are simple to use for finding larger parameters. Uniqueness
and enumeration studies can be found in [1].

This paper is designed as follows. In Section 2, necessary background information
on the graph is given and the notations we will use are introduced, in Section 3
the semidirect construction of DSRG of Cayley graphs are given, and finally, in
Section 4, DSRG is constructed from semidihedral groups which is an example of
semidirect products.

2. Preliminaries

A directed graph Γ = (V,E) consists of a vertex set V and an edge set E, where
an edge is an ordered pair of distinct vertices of Γ. Writing (x, y) ∈ E means that
there is a directed edge from x to y and that is shown by x → y. Throughout the
paper, the edges of the form (y, y) for some y ∈ V , i.e., loops, are not allowed.
However, we allow bidirected edge, that is having edges x → y and y → x for
the vertices x and y, simultaneously. The indegree (outdegree) of a vertex y in a
directed graph Γ is the number of vertices x such that x → y (y → x), respectively.
A graph Γ is called k-regular if every vertex in Γ has indegree and outdegree k. A
path of length l from x to y is a sequence of l + 1 distinct vertices starting with x
and ending with y such that consecutive vertices are adjacent. A directed graph Γ
is called directed strongly regular with parameters (n, k, t, λ, µ) if it is k-regular and
satisfies the following condition on the number of paths of length 2. The number
of directed paths of length 2 between two vertices, say from x to y, of the graph
Γ is λ if there is an edge from x to y, µ if there is not and t if x = y. Let G be a
group and S ⊆ G be a subset of G without the identity element. Directed Cayley
graph Cay(G,S) is a directed graph whose vertex set is G and for any two vertices
x, y, there is a directed edge from x to y if xy−1 ∈ S.

Example 1. LetG be a symmetric group of order six with elements {e, a, a2, b, ab, a2b}
and the subset S ⊆ G be the set {a2, a2b}. Then the directed graph Cay(G,S)
is shown as in Figure 1. The Cayley table of the elements of symmetric group of
order 6 is shown as in Table 1.

a2b

b ab

e

a2 a

Figure 1. Cayley graph of symmetric group of order 6
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∗ e a a2 b ab a2b
e e a a2 b ab a2b
a a a2 e ab a2b b
a2 a2 e a a2b b ab
b b a2b ab e a2 a
ab ab b a2b a e a2

a2b a2b ab b a2 a e

Table 1. The Cayley table of the symmetric group of order 6

When studying directed strongly regular graphs adjacency matrix and group
ring are advantageous tools. Let G be a finite group then the group ring Z[G] is a
ring with identity element e and defined as the set of all formal sums of elements
of G. The addition and multiplication are given by∑

g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

and ∑
g∈G

agg

(∑
r∈G

brr

)
=
∑

g,r∈G

agbr(g + r)

Let G be a group and Z[G] = {
∑

g∈G agg|ag ∈ Z}. If S ⊂ G, the group

ring element S will then be defined using the abuse of notation as S =
∑

s∈S s.

Furthermore, the group ring elements S(−1) and G will be defined as S(−1) :=∑
s∈S s−1 and G :=

∑
g∈G g.

Let S be a subset of a group G. In [2] they showed that Cay(G,S) corresponds
to a DSRG with parameters (n, k, t, λ, µ) if and only if |S| = k, |G| = n and it
satisfies the following group ring equation:

S2 = te+ λS + µ(G− e− S).

Let Γ be a directed graph with n vertices, then the adjacency matrix M of Γ is
an n×n matrix with entries aij where aij = 1 if vi → vj . Otherwise aij = 0. Since
we disallow loops, the diagonal entries of M are all 0. Let I and J denote the n×n
identity matrix and the all-one matrix, respectively. Then Γ is a directed strongly
regular graph if and only if

i) MJ = JM = kJ
ii) M2 = tI + λM + µ(J − I −M).

3. Semidirect Construction of Cayley DSRG

In this section, we give some definitions and lemmas related to the semidirect
product of two groups. We will also proceed in a similar way to that of Duval and
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Dmitri [3] by modifying the orbit setup they used. They proved that for a finite
group A of order m and the cyclic group B of order q if some β ∈ Aut(A) has the
q-orbit condition, that is, each orbit of β contains only q elements, then the graph
Cay(A⋉θ B,A′ ×B) is a DSRG with parameters

(mq,m− 1, (m− 1)/q, ((m− 1)/q)− 1, (m− 1)/q))

where θ : B → Aut(A) by θ(br) = βr and A′ is the set of representatives of the
nontrivial orbits of β.

Definition 1. (see [3]) Let A and B be two groups and θ : B → Aut(A) be an action
ofB on A. Then the semidirect product A⋉θB for the set {(a, b) : a ∈ A and b ∈ B}
is defined as follows:

(a, b)(a′b′) = (a[θb(a
′)], bb′).

For groups A and B, A ⋉θ B forms a group of order |A||B| with the identity
element (eA, eB) and inverse (a, b)−1 = (θb−1(a−1), b−1).

Let A and B be the additive groups of finite fields Fp2 and F2 respectively, where
p is a prime number. The Frobenius automorphism is defined as follows:

β : Fp2 → Fp2

β(x) = xp

We will use the following notation in the rest of the paper: P is the set of
elements of Fp, R is the set of representatives of orbits of β and Rp is the set as
{xp : x ∈ R}.

The orbits of the action β on Fp2 consists of p orbits of size one and p2−p
2 orbits

of size two.
Let A × B be the direct product of the sets A and B and define the operation

⋉ as the product of two elements as follows:

(a1, b1)⋉ (a2, b2) =

{
(a1 + a2, b2), if b1 = 0,

(a1 + ap2, b2 + 1), if b1 = 1.

Lemma 1. (G,⋉) forms a group of order 2p2 where G = A×B.

Proof. Let us start the proof by showing that G is closed under the operation ⋉.
For any (a1, b1), (a2, b2) ∈ G,

(a1, b1)⋉ (a2, b2) =

{
(a1 + a2, b2) ∈ G, if b1 = 0,

(a1 + ap2, b2 + 1) ∈ G, if b1 = 1.

Hence, G is closed under ⋉. It is easy to see that (0, 0) is the identity element of
the group. Indeed for any element (a, b) the following is true,

(a, b)⋉ (0, 0) = (0, 0)⋉ (a, b) = (a, b).
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Next, the inverse of any element (a, b) ∈ G is given by

(a, b)−1 =

{
(−a,−b), if b1 = 0,

(−ap,−b), if b1 = 1.

Finally, we will show the associative property. For (a1, b1), (a2, b2), (a3, b3) ∈ G we
have the following:

((a1, b1)⋉ (a2, b2))⋉ (a3, b3) =


(a1 + a2 + a3, b3), if b1 = 0, b2 = 0,

(a1 + a2 + ap3, b3 + 1), if b1 = 0, b2 = 1,

(a1 + ap2 + ap3, b3 + 1), if b1 = 1, b2 = 0,

(a1 + ap2 + a3, b3), if b1 = 1, b2 = 1.

= (a1, b1)⋉ ((a2, b2)⋉ (a3, b3))

and we are done. □

We say that a group automorphism β has the q-orbit condition if each of its
orbits contains either q elements or one element (including the trivial orbit that
contains only identity element). We change (weakened) the q-orbit condition that
is defined in [3]. Before giving our main theorem, we need the following lemma.

Lemma 2. The following equations hold in the group ring Z[G].

(a) (P × {1})2 = |P |(P × {0})
(b) (R×B)(P × {1}) = |P |(R×B)

(c) (P × {1})(R×B) = |P |(Rp ×B)

(d) (R×B)2 = p2−3p
2 (R×B) + p2−p

2 (Rp ×B) + p2−p
2 (P ×B)

Proof. We will only prove (b). We know that P is the set of elements of the obvious
orbits of β which are in Fp and R is the set of representatives of orbits of β. We
also know that B = F2. Then we have the following:

(R×B)(P × {1}) = ((R× {0}) + (R× {1}))(P × {1})
= (R× {0})(P × {1}) + (R× {1})(P × {1})
= ({(σ + γ, 1) : σ ∈ R and γ ∈ P})
+ ({(σ + γp, 1) : σ ∈ R and γ ∈ P})
= |P |(R× {0}) + |P |(R× {1})
= |P |(R×B).

The proof of (a), (c) and (d) are similar. □

Theorem 1. Let A = Fp2 and B = F2 be two additive finite fields where p is
an odd prime. If some β ∈ Aut(A) has the q-orbit condition (for instance, Frobe-
nius automorphism), then we may construct a directed strongly regular graph with



CONSTRUCTING DIRECTED STRONGLY REGULAR GRAPHS 27

parameters

(n = 2p2, k = p2, t = (p2 + p)/2, λ = (p2 − p)/2, µ = (p2 + p)/2)

as follows: Let us define θ : B → Aut(A) with θ0 = Id and θ1 = β(x) = xp for the
additive group B = F2. Let R be the set representatives of orbits with two elements
and P be the set of orbits with one element (only base field elements). Note that
R∩−R = ∅ where −R = {−r : r ∈ R}. Then, for the set S = (R×B)∪ (P ×{1})
the Cayley graph

Cay(A×θ B,S)

is a DSRG with parameters above.

Proof. Let the set S be (R × B) ∪ (P × {1}). Then |S| = k = 2|R| + |P | =
2 · [(p2 − p)/2] + p = p2. Our goal is to show that the graph Cay(G,S) is a DSRG

with parameters (n, k, t, λ, µ). So, we need to show that the summation S =
∑
s∈S

s

is valid in the following equation in Z[G],

S2 = te+ λS + µ(G− e− S).

To do that it will be enough to show that S satisfies the equation

S2 + |P |S = µG.

By Lemma 1 and Lemma 2 we get,

S2 + |P |S = ((R×B) ∪ (P × {1}))2 + |P |((R×B) ∪ (P × {1}))
= (R×B)×θ (R×B) + (P × {1})×θ (P × {1}) + (R×B)×θ (P × {1})+
(P × {1})×θ (R×B) + |P |(R×B) + |P |(P × {1})

= ((p2 − 3p)/2)(R×B) + ((p2 − p)/2)(Rp ×B) + ((p2 − p)/2)(P ×B)+

p(P × {0}) + p(R×B) + p(Rp ×B) + p(R×B) + p(P × {1})

= pG+ ((p2 − p)/2)G

= ((p2 + p)/2)G = µG

as required. □

Example 2. Let p = 3, A = Fp2 , B = F2. Consider the Frobenius automorphism

β : Fp2 → Fp2

β(x) = xp.

For G = A×B, (G,⋉) forms a group of order 2p2. The product of (a1, b1) and
(a2, b2) is given by

(a1, b1)⋉ (a2, b2) =

{
(a1 + a2, b2), if b1 = 0,

(a1 + ap2, b2 + 1), if b1 = 1.

Similarly, the inverse of (a, b) is given by
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(a, b)−1 =

{
(−a,−b), if b = 0,

((−a)p,−b), if b = 1.

Thus the orbits of β are {0}, {a, 2a+ 1}, {a+ 1, 2a+ 2}, {2}, {a+ 2, 2a}, {1}.
From Theorem 1, multiplying one-element orbits by {1} and two-element orbits

by the set B, we construct the set S = {(a, 0), (a, 1), (a + 1, 0), (a + 1, 1), (a +
2, 0), (a + 2, 1), (0, 1), (1, 1), (2, 1)}. Then the Cayley graph Cay(A × B,S) is a
directed strongly regular graph with parameters (18, 9, 6, 3, 6).

4. Semidihedral Construction of Cayley DSRG

In this section, we will construct directed strongly regular graphs from semidi-
hedral groups by using Cayley graphs. The method of producing DSRG’s using
semidihedral groups in this section is different from the semidirect method given
in Section 3. The choice of our generator set S here is independent of the q-orbit
condition. A semidihedral group SD(m) is also an example of the semidirect prod-
uct of cyclic group C2 with the dihedral group. But in this construction C2 acts on

C2m−1 by x ↣ x2m−2−1 instead of x ↣ x−1. Before we give the main theorem, we
need the following lemma.

Lemma 3. Let G = SD(m) = ⟨a, x|a2m−1

= x2 = e, xax = a2
m−2−1⟩ be the

semidihedral group of order m ≥ 4. Let P = P1 ∪ P2 where Pi = {ai+4k : k =
0, 1, ..., 2m−3 − 1}. Then

xP = P ′x where P ′ = P2 ∪ P3.

Proof. Let P = P1 ∪ P2. By multiplying both sides of this equality by x, we get

xP = xP1 ∪ xP2

= {xa1+4k : k = 0, 1, ..., 2m−3 − 1} ∪ {xa2+4k : k = 0, 1, ..., 2m−3 − 1}

= {a(1+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1}

∪ {a(2+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1}.

(1)

Since the power of a in P1 and P2 is 1 mod 4, 2 mod 4 respectively and m ≥ 4, if
we multiply the powers of a by 2m−2 − 1 we will have

1 + 4k ≡ 1( mod 4)

(1 + 4k) · (2m−2 − 1) ≡ 2m−2 − 1( mod 4)

≡ −1( mod 4)

≡ 3( mod 4)

(2)

and
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2 + 4k ≡ 2( mod 4)

(2 + 4k) · (2m−2 − 1) ≡ 2m−1 − 2( mod 4)

≡ −2( mod 4)

≡ 2( mod 4).

(3)

Therefore, using Equations (2) and (3) in Equation (1), we will have the following

{a(1+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1} ∪ {a(2+4k)·(2m−2−1)x : k = 0, 1, ..., 2m−3 − 1}

= {a3+4kx : k = 0, 1, ..., 2m−3 − 1} ∪ {a2+4kx : k = 0, 1, ..., 2m−3 − 1}
= P3x ∪ P2x = (P2 ∪ P3)x = P ′x.

This completes the proof. □

Note that we also have the equations xP1 = P3x (P1x = xP3) and xP2 = P2x.

Theorem 2. Let G = SD(m) = ⟨a, x|a2m−1

= x2 = e, xax = a2
m−2−1⟩ be the

semidihedral group of order m ≥ 4. Let P = P1 ∪ P2 where Pi = {ai+4k : k =
0, 1, ..., 2m−3 − 1}. Then Cay(G,P ∪ xP ) is a DSRG with parameters

(n = 2m, k = 2m−1, t = 3.2m−3, λ = 2m−3, µ = 3.2m−3).

Proof. Let S = P ∪ xP . Then the parameter k = |S| = 2|P | = 2 · 2m−2 = 2m−1.
Our goal is to show that Cay(G,S) is a DSRG with parameters (n, k, t, λ, µ). Thus

the formal sum S =
∑
s∈S

s should satisfy the equation

S2 = te+ λS + µ(G− e− S)

in the group ring Z[G]. Therefore, we need to show that the equation

S2 + 2m−2S = 3 · 2m−3G

holds. So,

S2 + 2m−2S = (P + xP )2 + 2m−2(P + xP )

= P 2 + P · xP + xP · P + xP · xP + 2m−2(P + xP )

= P 2 + xP ′ · P + xP · P + P ′ · P + 2m−2(P + xP )

(4)

where P ′ = P2 ∪ P3 by Lemma 3.
In order to complete the proof let us compute PiPi and PjPj . Since P0 is a

subgroup of order 2m−3 and P1 = aP0, P2 = a2P0 and P3 = a3P0 are its cosets, we
have

PiPi = a2iP0P0 = |P0|P2i

PiPj = ai+jP0P0 = |P0|Pi+j .
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It follows that

P 2 = P1P1 + P1P2 + P2P1 + P2P2

= |P0|P2 + |P0|P3 + |P0|P3 + |P0|P4

= |P0|P2 + 2 · |P0|P3 + |P0|P0,

and

P ′P = P2P1 + P2P2 + P3P1 + P3P2

= |P0|P3 + |P0|P0 + |P0|P0 + |P0|P1

= |P0|P3 + 2 · |P0|P0 + |P0|P1.

Now it only remains to write them in Equation (4) :

S2 + 2m−2S = (P + xP )2 + 2m−2(P + xP )

= P 2 + PxP + xPP + xPxP + 2m−2(P + xP )

= P 2 + xP ′P + xPP + P ′P + 2m−2(P + xP )

= P 2 + P ′P + (2 · |P0|)P + x(P 2 + P ′P + (2 · |P0|)P )

= |P0|P2 + 2 · |P0|P3 + |P0|P0 + |P0|P3 + 2 · |P0|P0 + |P0|P1

+ 2 · |P0|P1 + 2 · |P0|P2 + x(|P0|P2 + 2 · |P0|P3 + |P0|P0 + |P0|P3

+ 2 · |P0|P0 + |P0|P1 + 2 · |P0|P1 + 2 · |P0|P2)

= 3 · |P0|(P0 + P1 + P2 + P3 + xP0 + xP1 + xP2 + xP3)

= 3 · (2m−3) ·G.

This completes the proof. □

Example 3. Let G = SD(4) be the semidihedral group of order 4 for m = 4 with el-
ements {e, a, a2, a3, a4, a5, a6, a7, x, xa, xa2, xa3, xa4, xa5, xa6, xa7}. Construct the
subset S according to Theorem 2 as {P ∪ xP} where P = {a, a2, a5, a6}. Then
Cay(G,S) is a DSRG with parameters (16, 8, 6, 2, 6).

Remark 1. The directed strongly regular graph constructed in the Example 3 has
already been presented in [2] by Duval. The author constructed the DSRG with
parameters (16, 8, 2, 6, 2) from a DSRG with parameters (8, 4, 1, 3, 1) known to exist.
This construction is specified as T10 in [1].
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SOME REFINEMENTS OF BEREZIN NUMBER INEQUALITIES

VIA CONVEX FUNCTIONS
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Abstract. The Berezin transform Ã and the Berezin number of an operator
A on the reproducing kernel Hilbert space over some set Ω with normalized

reproducing kernel k̂λ are defined, respectively, by Ã(λ) =
〈
Ak̂λ, k̂λ

〉
, λ ∈ Ω

and ber(A) := supλ∈Ω

∣∣∣Ã(λ)
∣∣∣ . A straightforward comparison between these

characteristics yields the inequalities ber (A) ≤ 1
2

(
∥A∥ber +

∥∥A2
∥∥1/2
ber

)
. In

this paper, we study further inequalities relating them. Namely, we obtained

some refinements of Berezin number inequalities involving convex functions.
In particular, for A ∈ B (H) and r ≥ 1 we show that

ber2r (A) ≤
1

4

(
∥A∗A+AA∗∥rber + ∥A∗A−AA∗∥rber

)
+

1

2
berr

(
A2

)
.

1. Introduction and Preliminaries

Recall that the reproducing kernel Hilbert space H = H (Ω) (shortly, RKHS) is
the Hilbert space of complex-valued functions on some set Ω such that the eval-
uation functional f → f (λ) is bounded on H for every λ ∈ Ω. Then, by Riesz
representation theorem for each λ ∈ Ω there exists a unique vector kλ in H such
that f (λ) = ⟨f, kλ⟩ for all f ∈ H. The function kλ is called the reproducing kernel
of the space H. It is well known that (see Aronzajn [2])

kλ (z) =

∞∑
n=0

en (λ)en (z)
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for any orthonormal basis {en (z)}n≥0 of the space H (Ω) . The normalized repro-

ducing kernel is defined by k̂λ := kλ

∥kλ∥H
. For a bounded linear operator A acting

in the RKHS H, its Berezin symbol Ã (see Berezin [7]) is defined by the formula

Ã (λ) :=
〈
Ak̂λ, k̂λ

〉
(λ ∈ Ω) .

The Berezin symbol is a function that is bounded by norm of the operator. Karaev
[19] defined the Berezin set and the Berezin number of operator A, respectively by

Ber (A) := Range
(
Ã
)
=
{
Ã (λ) : λ ∈ Ω

}
and

ber (A) := sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣ .

It is clear from definitions that Ã is a bounded function, Ber (A) lies in the
numerical range W (A) , and so ber (A) does not exceed the numerical radius w (A)
of operator A. Recall that the numerical range and the numerical radius of operator
A are defined, respectively, by

W (A) := {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1}

and

w (A) := sup
∥x∥=1

|⟨Ax, x⟩|

(for more information, see [1, 9, 10, 15, 21, 22, 25–28, 31]). Berezin set and Berezin
number of operators are new numerical characteristics of operators on the RKHS
which are introduced by Karaev in [19].

Suppose that B (H) denotes the C∗-algebra of all bounded linear operators on
H. It is well-known that

ber (A) ≤ w (A) ≤ ∥A∥ (1)

and
∥A∥
2

≤ w (A)

for any A ∈ B (H) . But, Karaev [20] showed that

∥A∥
2

≤ ber (A)

is not hold for every A ∈ B (H) . Also, Berezin number inequalities were given by
using the other inequalities in [11,13,17,20,32].

Huban et al. [18, Theorem 2.14] improved the inequality (1) by proving that

ber (A) ≤ 1

2

(
∥A∥ber +

∥∥A2
∥∥1/2
ber

)
(2)

for any A ∈ B(H).
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It has been shown in [17] that if A ∈ B (H), then

1

4
∥A∗A+AA∗∥ ≤ ber2 (A) ≤ 1

2
∥A∗A+AA∗∥ . (3)

The following estimate of the Berezin numbers has been given in [16],

ber (A) ≤ 1

2

√
∥AA∗ +A∗A∥ber + 2ber (A2) ≤ ∥A∥ber . (4)

The inequality (4) also refines the inequality (2). This can be seen by using the
fact that

∥AA∗ +A∗A∥ber ≤ ∥A∥2ber +
∥∥A2

∥∥
ber

. (5)

In this work, inspired by the numerical radius inequalities in [29], an extension
of the inequality (3) is proved. In particular, for A ∈ B (H) and r ≥ 1 we prove
that

ber2r (A) ≤ 1

4
(∥A∗A+AA∗∥rber + ∥A∗A−AA∗∥rber) +

1

2
berr

(
A2
)
.

Other general related results are also established.

2. Main Results

In order to achieve our goal, we need the following series of corollaries.

Lemma 1. ( [23]) Let A be an operator in B (H) and x, y ∈ H be any vectors.

(i) If 0 ≤ α ≤ 1, then |⟨Ax, y⟩|2 ≤
〈
|A|2α x, x

〉〈
|A∗|2(1−α)

y, y
〉
.

(ii) If f and g are non-negative continuous functions on [0,∞) satisfying f(t)g(t)
= t, (t ≥ 0),then |⟨Ax, y⟩| ≤ ∥f (|A|)x∥ ∥g (|A∗|) y∥ .

Lemma 2. ( [24]) Let A be a self-adjoint operator in B (H) with the spectrum
contained in the interval J , and let h be convex function on J . Then for any unit
vector x ∈ H,

h (⟨Ax, x⟩) ≤ ⟨h (A)x, x⟩ .

In [31, Lemma 2.4], the authors present an improvement of the Young inequality
as follows:

Lemma 3. Let a, b > 0 and min {a, b} ≤ m ≤ M ≤ max {a, b} . Then

√
ab ≤ 2

√
Mm

M +m

a+ b

2
. (6)

In 1941, R.P. Boas [8] and in 1944, independently, R. Bellman [6] proved the
following generalization of Bessel’s inequality.
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Lemma 4. If a, b1, ..., bn are elements of an inner product space (H, ⟨., .⟩) , then
the following inequality holds:

n∑
i=1

|⟨a, bi⟩|2 ≤ ∥a∥2

 max
1≤i≤n

∥bi∥2 +

 n∑
1≤i ̸=j≤n

|⟨bi, bj⟩|2
 1

2

 .

In particulary, the case n = 2 in the above reduces to

|⟨a, b1⟩|2 + |⟨a, b2⟩|2 ≤ ∥a∥2
(
max

(
∥b1∥2 , ∥b2∥2

)
+ |⟨b1, b2⟩|

)
. (7)

We recall the following refinement of the Cauchy-Schwarz inequality obtained by
Dragomir in [9]. If a, b, e are vectors in H and ∥e∥ = 1, then we have

|⟨a, b⟩| ≤ |⟨a, e⟩ ⟨e, b⟩|+ |⟨a, b⟩ − ⟨a, e⟩ ⟨e, b⟩| ≤ ∥a∥ ∥b∥ . (8)

From the inequality (8) we deduce that

|⟨a, e⟩ ⟨e, b⟩| ≤ 1

2
(∥a∥ ∥b∥+ |⟨a, b⟩|) . (9)

Let k̂λ be a normalized reproducing kernel. Then, by taking e = k̂λ, a = Ak̂λ and

b = A∗k̂λ in the inequality (9), we get∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣2 ≤ 1

2

(∥∥∥Ak̂λ

∥∥∥∥∥∥A∗k̂λ

∥∥∥+ ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) (10)

and

sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣2 ≤ sup

λ∈Ω

1

2

(∥∥∥Ak̂λ

∥∥∥2 + ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)
which is equivalent to

ber2 (A) ≤ 1

2

(
∥A∥2Ber + ber

(
A2
))

. (11)

In addition to this, we have the following related inequality:

Theorem 1. Let A ∈ B (H), f, g be non-negative continuous functions on [0,∞)
satisfying f(t) g(t) = t, (t ≥ 0), and h be a non-negative increasing convex function
on [0,∞). If

0 < f2
(∣∣A2

∣∣) ≤ m < M ≤ g2
(∣∣∣(A2

)∗∣∣∣) ,
or

0 < g2
(∣∣∣(A2

)∗∣∣∣) ≤ m < M ≤ f2
(∣∣A2

∣∣) ,
then

h
(
ber

(
A2
))

≤ 2
√
Mm

M +m

∥∥∥∥∥∥
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

∥∥∥∥∥∥
ber

. (12)
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Proof. Let k̂λ be a normalized reproducing kernel. Then, we have

h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)
≤ h

(√〈
f2 (|A2|) k̂λ, k̂λ

〉〈
g2
(∣∣(A2)

∗∣∣) k̂λ, k̂λ〉)
(by Lemma 1 (ii))

≤ h

2
√
Mm

M +m


〈
f2
(∣∣A2

∣∣) k̂λ, k̂λ〉+
〈
g2
(∣∣∣(A2

)∗∣∣∣) k̂λ, k̂λ〉
2


(by the inequality (6))

≤ 2
√
Mm

M +m
h


〈
f2
(∣∣A2

∣∣) k̂λ, k̂λ〉+
〈
g2
(∣∣∣(A2

)∗∣∣∣) k̂λ, k̂λ〉
2


≤ 2

√
Mm

M +m

h
(〈

f2
(∣∣A2

∣∣) k̂λ, k̂λ〉)+ h
(〈

g2
(∣∣∣(A2

)∗∣∣∣) k̂λ, k̂λ〉)
2


≤ 2

√
Mm

M +m


〈
h
(
f2
(∣∣A2

∣∣)) k̂λ, k̂λ〉+
〈
h
(
g2
(∣∣∣(A2

)∗∣∣∣)) k̂λ, k̂λ〉
2


(by Lemma 2)

=
2
√
Mm

M +m

〈
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

k̂λ, k̂λ

〉
.

Therefore,

h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) ≤ 2
√
Mm

M +m

〈
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

k̂λ, k̂λ

〉
.

By taking the supremum over λ ∈ Ω above inequality, we deduce the desired result

h
(
ber

(
A2
))

≤ 2
√
Mm

M +m

∥∥∥∥∥∥
h
(
f2
(∣∣A2

∣∣))+ h
(
g2
(∣∣∣(A2

)∗∣∣∣))
2

∥∥∥∥∥∥
ber

.

This finalizes the proof. □

The following result may be stated as well.

Corollary 1. Let A ∈ B (H), f, g be non-negative continuous functions on [0,∞)
satisfying f(t)g(t) = t, (t ≥ 0), and r ≥ 1. If

0 < f2
(∣∣A2

∣∣) ≤ m < M ≤ g2
(∣∣∣(A2

)∗∣∣∣) ,
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or

0 < g2
(∣∣∣(A2

)∗∣∣∣) ≤ m < M ≤ f2
(∣∣A2

∣∣) ,
then

berr
(
A2
)
≤ 2

√
Mm

M +m

∥∥∥∥∥∥
f2r

(∣∣A2
∣∣)+ g2r

(∣∣∣(A2
)∗∣∣∣)

2

∥∥∥∥∥∥
ber

.

Remark 1. By taking r = 1 in Corollary 1, then it follows from the inequality (11)
that

ber2 (A) ≤ 1

2

∥∥A2
∥∥
Ber

+
2
√
Mm

M +m

∥∥∥∥∥∥
f2
(∣∣A2

∣∣)+ g2
(∣∣∣(A2

)∗∣∣∣)
2

∥∥∥∥∥∥
ber

 .

For various operators, the following conclusion is true.

Theorem 2. Let A,B,C ∈ B (H) , A,B ≥ 0, 0 ≤ α ≤ 1, and h be a non-negative
increasing sub-multiplicative convex function on [0,∞). If

0 < B2(1−α) ≤ m < M ≤ A2α

or
0 < A2α ≤ m < M ≤ B2(1−α),

then

h
(
ber

(
AαCB1−α

))
≤ 2

√
Mm

M +m
h (∥C∥ber)

∥∥∥∥∥h
(
B2(1−α)

)
+ h

(
A2α

)
2

∥∥∥∥∥
ber

. (13)

Proof. Let k̂λ be a normalized reproducing kernel. Then, by the Cauchy-Schwarz,
we have

h
(∣∣∣〈AαCB1−αk̂λ, k̂λ

〉∣∣∣)
= h

(∣∣∣〈CB1−αk̂λ, A
αk̂λ

〉∣∣∣)
≤ h

(
∥C∥ber

∥∥∥B1−αk̂λ

∥∥∥ ∥∥∥Aαk̂λ

∥∥∥)
(by h sub-multiplicativity)

= h

(
∥C∥ber

√〈
B1−αk̂λ, B1−αk̂λ

〉〈
Aαk̂λ, Aαk̂λ

〉)
(by the inequality (6))

= h

(
∥C∥ber

√〈
B2(1−α) k̂λ, k̂λ

〉〈
A2αk̂λ, k̂λ

〉)

≤ h (∥C∥ber)h

(√〈
B2(1−α) k̂λ, k̂λ

〉〈
A2αk̂λ, k̂λ

〉)
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≤ h (∥C∥ber)h

2
√
Mm

M +m


〈
B

2(1−α)

k̂λ, k̂λ

〉
+
〈
A2αk̂λ, k̂λ

〉
2


≤ 2

√
Mm

M +m
h (∥C∥ber)h


〈
B

2(1−α)

k̂λ, k̂λ

〉〈
A2αk̂λ, k̂λ

〉
2


(by Lemma 2)

≤ 2
√
Mm

M +m
h (∥C∥ber)

h
(〈

B
2(1−α)

k̂λ, k̂λ

〉)
+ h

(〈
A2αk̂λ, k̂λ

〉)
2

≤ 2
√
Mm

M +m
h (∥C∥ber)

〈
h
(
B

2(1−α)
)
k̂λ, k̂λ

〉
+
〈
h
(
A

2α
)
k̂λ, k̂λ

〉
2

=
2
√
Mm

M +m
h (∥C∥ber)

〈h
(
B

2(1−α)
)
+ h

(
A

2α
)

2

 k̂λ, k̂λ

〉
,

So,

h
(∣∣∣〈AαCB1−αk̂λ, k̂λ

〉∣∣∣) ≤ 2
√
Mm

M +m
h (∥C∥ber)

〈h
(
B

2(1−α)
)
+ h

(
A

2α
)

2

 k̂λ, k̂λ

〉
,

and

sup
λ∈Ω

h
(∣∣∣( ˜AαCB1−α

)
(λ)
∣∣∣) ≤ 2

√
Mm

M +m
h (∥C∥ber) sup

λ∈Ω

〈h
(
B

2(1−α)
)
+ h

(
A

2α
)

2

 k̂λ, k̂λ

〉
which is equivalent to

h
(
ber

(
AαCB1−α

))
≤ 2

√
Mm

M +m
h (∥C∥ber)

∥∥∥∥∥h
(
B2(1−α)

)
+ h

(
A2α

)
2

∥∥∥∥∥
ber

,

which proves the desired inequalities. □

Corollary 2. Let A,B,C ∈ B (H), A, B ≥ 0, and 0 ≤ α ≤ 1, and let r ≥ 1. If

0 < B2(1−α) ≤ m < M ≤ A2α,

or

0 < A2α ≤ m < M ≤ B2(1−α),

then

berr
(
AαCB1−α

)
≤ 2

√
Mm

M +m
∥C∥rber

∥∥∥∥∥
(
A2rα

)
+
(
B2r(1−α)

)
2

∥∥∥∥∥
ber

.

As a consequence of the above, we can present the following inequality.
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Corollary 3. Suppose that the assumptions of Corollary 2 are satisfied. Then

berr
(
A1/2CB1/2

)
≤ 2

√
Mm

M +m
∥C∥rber

∥∥∥∥Ar +Br

2

∥∥∥∥
ber

. (14)

We can give the following corollary whose proof can be reached by using similar
techniques from Theorem 3.4 and Lemma 3.5 in [30].

Corollary 4. Let A,B ∈ B (H) be invertible self-adjoint operators and C ∈ B (H).
Then

berr
(
A1/2CB1/2

)
≤ ∥C∥rber

∥∥∥∥Ar +Br

2

∥∥∥∥
ber

. (15)

Remark 2. Therefore, inequality (14) essentially gives a refinement of the inequal-

ity of (15) since 2
√
Mm

M+m ≤ 1.

The following result is of interest in itself.

Theorem 3. Let A ∈ B (H) , and let h be a non-negative increasing convex function
on [0,∞).

h
(
ber2 (A)

)
≤ 1

4
(h (∥A∗A+AA∗∥ber) + h (∥A∗A−AA∗∥ber)) +

1

2
h
(
ber

(
A2
))

.

In particular, for any r ≥ 1,

ber2r (A) ≤ 1

4
(∥A∗A+AA∗∥rber + ∥A∗A−AA∗∥rber) +

1

2
berr

(
A2
)
.

Proof. Let λ ∈ Ω be an arbitrary. Put b1 = Ak̂λ, b2 = A∗k̂λ, and a = k̂λ in the

inequality (7). Since max (a, b) = |a+b|+|a−b|
2 , we get∣∣∣〈k̂λ, Ak̂λ〉∣∣∣2 + ∣∣∣〈k̂λ, A∗k̂λ

〉∣∣∣2
≤ max

(∥∥∥Ak̂λ

∥∥∥2 ,∥∥∥A∗k̂λ

∥∥∥2)+
∣∣∣〈Ak̂λ, A

∗k̂λ

〉∣∣∣ (16)

=
1

2

(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣)+ ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣ .
Applying the AM-GM inequality for the left hand side of the above inequality,

we get∣∣∣〈A∗k̂λ, k̂λ

〉∣∣∣ ∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣
≤ 1

4

(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣)+ 1

2

∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣ .
Whence,

h
(∣∣∣〈A∗k̂λ, k̂λ

〉∣∣∣ ∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣)
≤ h

(
1

4

(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣)+ 1

2

∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)
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= h

 1
2

∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣
2


≤ 1

2

h


∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣+ ∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣
2

+ h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣)


≤ 1

4

(
h
(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣)+ h
(∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣))+ 1

2
h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) .
Therefore,

h
(∣∣∣〈A∗k̂λ, k̂λ

〉∣∣∣ ∣∣∣〈Ak̂λ, k̂λ

〉∣∣∣)
≤ 1

4

(
h
(∣∣∣〈A∗A+AA∗k̂λ, k̂λ

〉∣∣∣)+ h
(∣∣∣〈A∗A−AA∗k̂λ, k̂λ

〉∣∣∣))+ 1

2
h
(∣∣∣〈A2k̂λ, k̂λ

〉∣∣∣) .
By taking the supremum over λ ∈ Ω above inequality, we have

h
(
ber2 (A)

)
≤ 1

4
(h (∥A∗A+AA∗∥ber) + h (∥A∗A−AA∗∥ber)) +

1

2
h
(
ber

(
A2
))

.

This completes the proof. □

Corollary 5. Let A ∈ B (H) be an invertible operator. Then

ber(A) ≤
√

1

2
∥A∥2ber +

3

4
∥A2∥v −

1

4
∥A−1∥−2

ber .

Proof. By using similar techniques from [22], we get

∥A∗A−AA∗∥ber ≤ ∥A∥2ber −
∥∥A−1

∥∥−2

ber
. (17)

On the other hand, from Theorem 3, we have

ber2(A) ≤ 1

4
(∥A∗A+AA∗∥ber + ∥A∗A−AA∗∥ber) +

1

2
ber(A2).

Hence

ber2(A) ≤ 1

4
(∥A∗A+AA∗∥ber + ∥A∗A−AA∗∥ber) +

1

2
ber(A2)

≤ 1

4

(
∥A∗A+AA∗∥ber + ∥A∥2 −

∥∥A−1
∥∥−2

ber

)
+

1

2
ber(A2)

(by the inequality (17))

≤ 1

4

(
2 ∥A∥2ber +

∥∥A2
∥∥
ber

−
∥∥A−1

∥∥−2

ber

)
+

1

2
ber(A2)

(by the inequality (5))

≤ 1

2
∥A∥2ber +

3

4

∥∥A2
∥∥
ber

− 1

4

∥∥A−1
∥∥−2

ber

(by the inequality (1))

as required. □



SOME REFINEMENTS OF BEREZIN NUMBER INEQUALITIES 41

The following upper bound for the nonnegative difference ber2(A)−ber(A2) can
be obtained:

Corollary 6. Let A ∈ B (H). Then

ber2(A)− ber(A2) ≤ 1

4

(∥∥∥|A|2 + |A∗|2
∥∥∥
ber

+
∥∥∥|A|2 − |A∗|2

∥∥∥
ber

)
.

For more recent results concerning Berezin radius inequalities for operators and
other related results, we suggest [3–5,12,14,16,33].
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Abstract. This paper aims to bring together quaternions and generalized
complex numbers. Generalized quaternions with generalized complex number

components are expressed and their algebraic structures are examined. Several

matrix representations and computational results are introduced. An alterna-
tive approach for a generalized quaternion matrix with elliptic number entries

has been developed as a crucial part.

1. Introduction

Hamilton introduced the Hamiltonian quaternions for representing vectors in
the space, [1, 2]. The real quaternion is written as q = a0 + a1i + a2j + a3k,
where a0, a1, a2, a3 ∈ R are components and i, j,k /∈ R are versors, [3]. The set of
real quaternions, as an extension of complex numbers, is an associative but non-
commutative Clifford algebra used in many fields of applied mathematics. The
associative quaternions will be divided into two classes: in the first class, there
are the non-commutative quaternions (Hamiltonian, hyperbolic, split, generalized
quaternions [4–11] etc.), and in the second class, there are the commutative quater-
nions (generalized Segré quaternions [12,13], dual quaternions, [14–18] etc.).

The algebra of generalized quaternions as a non-commutative system, denoted
by Qα,β , includes a variety of well-known four-dimensional algebras as special cases.
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The conditions of the versors for them are given by:

i2 = −α, j2 = −β, k2 = −αβ,
ij = −ji = k, jk = −kj = βi, ki = −ik = αj,

(1)

where α, β ∈ R. For α = β = 1 Hamiltonian quaternions, α = 1, β = −1 split
quaternions, α = 1, β = 0 semi-quaternions, α = −1, β = 0 split semi-quaternions,
and α = β = 0 quasi-quaternions are obtained.

Additionally, the general bidimensional hypercomplex systems (namely general-
ized complex numbers (GCN )) over the field of real numbers R are given by the
ring ( [19–24]):

R[X]

⟨h(X)⟩
∼=

{
z = x1 + x2I : I2 = Iq+ p, p, q, x1, x2 ∈ R, I /∈ R

}
,

where h(X) = X2 − qX − p is monic quadratic. By denoting this set with Cq,p, it
is well known that the sign of ∆ = q2 +4p determines the properties of the general
bidimensional systems. These systems are ring isomorphic with one of the following
three types:

• for ∆ > 0 the hyperbolic system; the canonical system is the system of
hyperbolic (double, split complex, perplex) numbers H ∼= C0,1 with p = 1,
q = 0, [25–28],

• for ∆ < 0 the elliptic system; the canonical system is the system of complex
(ordinary) numbers C ∼= C0,−1 with p = −1, q = 0, [28,29],

• for ∆ = 0 the parabolic system; the canonical system is the system of dual
numbers D ∼= C0,0 with p = 0, q = 0, [28,30,31].

Regarding the value Dz = zz = (x1 + x2I)(x1 − x2I) = x1
2 − px2

2 + qx1x2,
which is called the characteristic determinant, z ∈ Cq,p can be classified into three
types, [20]. Hence z ∈ Cq,p is called timelike, spacelike or null where Dz < 0, Dz > 0
and Dz = 0, respectively. Then all of the elements of the set C0,−1 are spacelike.
For q = 0, I2 = p ∈ R, the generalized complex number system is denoted by Cp

and called p-complex plane, [23].
In this paper, we aim to design generalized quaternions by taking the compo-

nents as elements of Cq,p. Moreover, the algebraic structures and properties of
these quaternions are investigated, and several types of matrix representations are
introduced. Also, an alternative approach for the generalized quaternion matrix
with elliptic number entries is considered as a further result.

2. Generalized Quaternions with Gcn Components

In this section, we present mathematical formulations of improved quaternions:
generalized quaternions with GCN and examine special matrix correspondences.

Definition 1. For α, β ∈ R, the set of generalized quaternions with GCN compo-

nents are denoted by Q̃α,β and the element of this set is defined as in the form:

q̃ = a0 + a1i+ a2j+ a3k,
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where a0, a1, a2, a3 ∈ Cq,p and i, j,k /∈ R are generalized quaternion versors that
satisfy the properties in equations (1).

Axiomatically, the generalized complex unit I commutes with the three quater-
nion versors i, j and k, that is iI = Ii, jI = Ij and kI = Ik. It is obvious that for
q = 0, p = −1, α = 1, the usual complex operator is distinct from quaternion versor
i. Moreover i distinct from the usual hyperbolic unit for q = 0, p = 1, α = −1 and
distinct from the usual dual unit for q = 0, p = 0, α = 0. This conditions can also
be extended for the other versors.

Throughout this section, q̃ = a0+a1i+a2j+a3k and p̃ = b0+b1i+b2j+b3k ∈ Q̃α,β

are considered. Due to the generalized quaternions with GCN components are an
extension of generalized quaternions, many properties of them are familiar. For any

q̃ ∈ Q̃α,β , Sq̃ = a0 is the scalar part and Vq̃ = a1i + a2j + a3k is the vector part.
Equality of two improved quaternions is as follows: p̃ = q̃ ⇔ Sp̃ = Sq̃, Vp̃ = Vq̃.
Addition (and hence subtraction) of q̃ to another quaternion p̃ acts in a componen-
twise way:

q̃ + p̃ = (a0 + b0) + (a1 + b1) i+ (a2 + b2) j+ (a3 + b3)k
= Sp̃ + Sq̃ + Vp̃ + Vq̃.

(2)

The conjugate of q̃ is the following quaternion:

q̃ = a0 − a1i− a2j− a3k = Sq̃ − Vq̃. (3)

The scalar multiplication of q̃ with a scalar c ∈ Cq,p gives another improved quater-
nion as:

cq̃ = ca0 + ca1i+ ca2j+ ca3k = cSq̃ + cVq̃. (4)

Multiplication of the two quaternions is carried out as follows:

q̃ p̃ = (a0b0 − αa1b1 − βa2b2 − αβa3b3)
+ (a0b1 + a1b0 + βa2b3 − βa3b2) i
+(a0b2 − αa1b3 + a2b0 + αa3b1) j
+(a0b3 + a1b2 − a2b1 + a3b0)k.

(5)

Proposition 1. Q̃α,β is a 4-dimensional module over Cq,p with base {1, i, j,k} and
is an 8-dimensional vector space over R with base {1, I, i, Ii, j, Ij,k, Ik}.

Definition 2. For any q̃, p̃ ∈ Q̃α,β, the scalar and vector products on Q̃α,β are,
respectively, defined by:

⟨q̃, p̃⟩g = Sq̃Sp̃ + ⟨Vq̃, Vp̃⟩g= a0b0 + αa1b1 + βa2b2 + αβa3b3 = Sq̃ p̃,

q̃×gp̃ = Sq̃Vp̃ + Sp̃Vq̃ − Vq̃×gVp̃ = Vq̃ p̃,

where ⟨, ⟩g and ×g represent generalized scalar product and generalized vector prod-

ucts1 for α, β ∈ R+, respectively.

1For a more general description of the generalized inner and cross product, see [7].
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Definition 3. The norm of q̃ is defined as:

Nq̃ = q̃ q̃ = q̃ q̃ = a20 + αa21 + βa22 + αβa23 ∈ Cq,p. (6)

Definition 4. The inverse of q̃ is calculated by:

(q̃)−1 =
q̃

Nq̃

for non-null Nq̃ that is DNq̃
̸= 0.

Proposition 2. For any q̃, p̃ ∈ Q̃α,β and c1, c2 ∈ Cq,p, the conjugate and norm
hold the following properties:

i. q̃ = q̃,
ii. c1p̃+ c2q̃ = c1p̃+ c2q̃,

iii. q̃ p̃ = p̃ q̃,
iv. Nc1q̃ = c21Nq̃,
v. Nq̃ p̃ = Nq̃ Np̃.

Proof. Taking into account equations (2), (3) and (4), items i and ii are obvious.

iii. Considering the conjugate of equation (5), we have:

q̃p̃ = (a0b0 − αa1b1 − βa2b2 − αβa3b3)
− (a0b1 + a1b0 + βa2b3 − βa3b2) i
− (a0b2 − αa1b3 + a2b0 + αa3b1) j
− (a0b3 + a1b2 − a2b1 + a3b0)k.

Using equations (1), it is easy to check that

p̃ q̃ = (b0 − b1i− b2j− b3k)(a0 − a1i− a2j− a3k) = q̃ p̃.

iv. Having item ii and equation (6), we get: Nc1q̃ = (c1q̃) (c1q̃) = c21Nq̃.
v. Using item iii and equation (6), we obtain:

Nq̃ p̃ = (q̃ p̃) (q̃ p̃) = q̃ p̃p̃ q̃ = Nq̃Np̃.

□

Remark 1. As an another perspective to q̃ ∈ Q̃α,β, the following can be calculated:

q̃ = a0 + a1i+ a2j+ a3k
= (x01 + x02I) + (x11 + x12I) i+(x21 + x22I) j+ (x31 + x32I)k
= q0 + q1I,

(7)

where ai = xi1 + xi2I ∈ Cq,p, qj−1 = x0j + x1ji + x2jj + x3jk ∈ Qα,β for 0 ≤
i ≤ 3, 1 ≤ j ≤ 2. For q̃ = q0 + q1I and p̃ = p0 + p1I ∈ Q̃α,β, if p̃ = q̃, then
p0 = q0, p1 = q1. The addition is p̃+ q̃ = (p0 + q0)+(p1 + q1) I. The conjugate and
anti conjugate are q̃†1 = q0+qq1−q1I and q̃†2 = q1−q0I, respectively. Additionally,
cq̃ = cq0 + cq1I, c ∈ R and

q̃ p̃ = (q0p0 + pq1p1) + (q0p1 + q1p0 + qq1p1) I.



NEW INSIGHT INTO QUATERNIONS AND THEIR MATRICES 47

It is worthy to note that Q̃α,β is a 2-dimensional module over Qα,β (skew-field)
with base {1, I}. The moduli is

N
†1
q̃ = q̃ q̃†1 (8)

and the inverse is (q̃)
−1

= q̃†1

N
†1
q̃

for non-null N
†1
q̃ . The analogue of the scalar product

on Q̃α,β can also defined by as follows:

⟨q̃, p̃⟩g = Sq0p0
+ pSq1p1

+
(
Sq0p1

+ Sq1p0
+ qSq1p1

)
I.

Proposition 3. The followings hold for q̃, p̃ ∈ Q̃α,β and c1, c2 ∈ R:

i.
(
q̃†1

)†1 = q̃,

ii.
(
q̃†2

)†2 = −q̃,

iii. (c1q̃ ± c2p̃)
†1 = c1q̃

†1 ± c2p̃
†1 ,

iv. (c1q̃ ± c2p̃)
†2 = c1q̃

†2 ± c2p̃
†2 ,

v. q̃ + q̃†1 = 2q0 + qq1,

vi. (q̃ p̃)
†1 ̸= p̃†1 q̃†1 ,

vii. N
†1
c1q̃

= c1
2N

†1
q̃ ,

viii. N
†1
q̃ p̃ ̸= N

†1
q̃ N

†1
p̃ .

Proof. vi. Let us consider q̃ = (1+i)I and p̃ = j+I. As it is seen the followings:

q̃ p̃ = p(1 + i) + (q+ qi+ j+ k)I,

(q̃ p̃)
†1 = p(1 + i) + q(q+ qi+ j+ k)− (q+ qi+ j+ k)I,

and

p̃†1 q̃†1 = (j+ q− I)(q(1 + i)− (1 + i)I)
= (p+ q2) + (p+ q2)i+ qj− qk− (q+ qi+ j− k)I.

It follows that (q̃ p̃)
†1 ̸= p̃†1 q̃†1 .

viii. From equation (8), we have the following equations:

N
†1
q̃ p̃ = (q̃ p̃)(q̃ p̃)

†1

and

N
†1
q̃ N

†1
p̃ =

(
q̃ q̃†1

) (
p̃ p̃†1

)
.

On account of the generalized quaternions are non-commutative and item

vi, we find N
†1
q̃ p̃ ̸= N

†1
q̃ N

†1
p̃ . One can also see this inequality considering

q̃ = iI and p̃ = j as N
†1
q̃ p̃ = pαβ = −N

†1
q̃ N

†1
p̃ .

The proof of the other items is a simple calculation considering Remark 1. □

2.1. Matrix Correspondences. In this subsection, we formulate 2×2, 4×4 and
8× 8 matrix correspondences which provide an alternative formulation of multipli-
cation.

Theorem 1. Every generalized quaternion with GCN components can be repre-

sented by a 2× 2 quaternionic matrix. Q̃α,β is the subset of M2(Q̃α,β).
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Proof. For q̃ = a0 + a1i+ a2j+ a3k ∈ Q̃α,β , L : Q̃α,β → R, q̃ 7→ Aq̃ is linear map,
where

R: =

{
Aq̃ ∈ M2(Q̃α,β) :Aq̃ =

[
a0 + a3k a1i+ a2j
a1i+ a2j a0 + a3k

]}
(9)

is a subset of M2(Q̃α,β). So there exists a correspondence between Q̃α,β and R via
the map L. Hence, 2× 2 quaternionic matrix representation of q̃ is Aq̃.

□

Corollary 1. L can be determined as the following representation:

L(a0 + a1i+ a2j+ a3k) = a0I2 + a1I+ a2J+ a3K, (10)

where

I =

[
0 i
i 0

]
, J =

[
0 j
j 0

]
,K =

[
k 0
0 k

]
.

Thus
I2 = −αI2, J2 = −βI2, K2 = −αβI2,

IJ = −JI = K, JK = −KJ = −βI, KI = −IK = αJ.

Theorem 2. For q̃, p̃ ∈ Q̃α,β and λ ∈ R, then the following identities hold:

i. q̃ = p̃ ⇔ Aq̃ = Ap̃,
ii. Aq̃+p̃ = Aq̃ +Ap̃,

iii. Aλq̃ = λ(Aq̃),
iv. Aq̃p̃ = Aq̃Ap̃.

Proof. The proof is obvious considering the matrix form given in equation (9).
However let us discuss the proof of the item iv for better understanding:

iv. Considering equation (5), we can write:

Aq̃p̃ =


a0b0 − αa1b1 − βa2b2 − αβa3b3 (a0b1 + a1b0 + βa2b3 − βa3b2) i
(a0b3 + a1b2 − a2b1 + a3b0)k +(a0b2 − αa1b3 + a2b0 + αa3b1) j

(a0b1 + a1b0 + βa2b3 − βa3b2) i a0b0 − αa1b1 − βa2b2 − αβa3b3
+(a0b2 − αa1b3 + a2b0 + αa3b1) j +(a0b3 + a1b2 − a2b1 + a3b0)k

 .

(11)

Computing Aq̃Ap̃ as

Aq̃Ap̃ =

[
a0 + a3k a1i+ a2j
a1i+ a2j a0 + a3k

] [
b0 + b3k b1i+ b2j
b1i+ b2j b0 + b3k

]

gives equation (11) quickly. We thus get Aq̃p̃ = Aq̃Ap̃.

□

Theorem 3. Every generalized quaternion with GCN components can be repre-

sented by a 4× 4 generalized complex matrix. Q̃α,β is the subset of M4(Cq,p).
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Proof. For q̃ ∈ Q̃α,β , denote K as a subset of M(Cq,p) given by:

K: =

Bl
q̃ ∈ M4(Cq,p) :Bl

q̃ =


a0 −αa1 −βa2 −αβa3
a1 a0 −βa3 βa2
a2 αa3 a0 −αa1
a3 −a2 a1 a0


 (12)

and define linear the map N : Q̃α,β → K, q̃ 7→ Bl
q̃. There exists a correspondence

between Q̃α,β and K via the map N . Bl
q̃ is the 4×4 left generalized complex matrix

representation of q̃ according to the standard base {1, i, j,k}.
4 × 4 right generalized complex matrix representation of q̃ can be calculated

similarly2. Throughout this paper Bl
q̃ will be considered. □

Corollary 2. Considering the base {1, i, j,k}, the column matrix representation

of p̃ ∈ Q̃α,β is given by p̃ =
[
b0 b1 b2 b3

]T
. Using Bl

q̃, the multiplication of

q̃, p̃ ∈ Q̃α,β can also be written by: q̃p̃ = Bl
q̃ p̃.

Theorem 4. Let q̃ ∈ Q̃α,β. Bl
q̃ can be determined as:

Bl
q̃ = a0I4 + a1I+ a2J+ a3K,

where

I =


0 −α 0 0
1 0 0 0
0 0 0 −α
0 0 1 0

 ,J =


0 0 −β 0
0 0 0 β
1 0 0 0
0 −1 0 0

 ,K =


0 0 0 −αβ
0 0 −β 0
0 α 0 0
1 0 0 0

 .

Undoubtedly, I,J,K satisfy the generalized quaternion versors conditions in equa-
tions (1).

Using q̃ ∈ Q̃α,β as q̃ = (a0 + a1i) + (a2 + a3i) j and considering a different con-
jugate related to this form, we can write the following theorem:

Theorem 5. Let q̃ ∈ Q̃α,β. Then, we have σBl
q̃ σ = Bl

q̃∗ , where σ = diag(1, 1,−1,−1)

and q̃∗ = (a0 + a1i)− (a2 + a3i)j ∈ Q̃α,β.

24× 4 right generalized complex matrix representation of q̃ is:

Br
q̃ =


a0 −αa1 −βa2 −αβa3
a1 a0 βa3 −βa2
a2 −αa3 a0 αa1
a3 a2 −a1 a0

 .
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Proof. An easy computation shows that

σBl
q̃ σ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




a0 −αa1 −βa2 −αβa3
a1 a0 −βa3 βa2
a2 αa3 a0 −αa1
a3 −a2 a1 a0




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



=


a0 −αa1 βa2 αβa3
a1 a0 βa3 −βa2
−a2 −αa3 a0 −αa1
−a3 a2 a1 a0

 .

Hence, one can see that the last matrix is Bl
q̃∗ . □

Theorem 6. Let q̃, p̃ ∈ Q̃α,β and λ ∈ Cq,p, the following properties are satisfied:

i. q̃ = p̃ ⇔ Bl
q̃ = Bl

p̃,

ii. Bl
q̃+p̃ = Bl

q̃ + Bl
p̃,

iii. Bl
λq̃ = λ(Bl

q̃),

iv. Bl
q̃p̃ = Bl

q̃Bl
p̃,

v. det(Bl
q̃) = N2

q̃ ,

vi. tr(Bl
q̃) = 4Sq̃.

Proof. By considering the matrix form given in equation (12), the proof is clear.
As well let us discuss the proof of the item iv for better understanding:

iv. Using equation (5), we obtain the following matrix for Bl
q̃p̃:

a0b0 − αa1b1
−βa2b2 − αβa3b3

−α (a0b1 + a1b0
+βa2b3 − βa3b2)

−β (a0b2 − αa1b3
+a2b0 + αa3b1)

−αβ (a0b3 + a1b2
−a2b1 + a3b0)

a0b1 + a1b0
+βa2b3 − βa3b2

a0b0 − αa1b1
−βa2b2 − αβa3b3

−β (a0b3 + a1b2
−a2b1 + a3b0)

β (a0b2 − αa1b3
+a2b0 + αa3b1)

(a0b2 − αa1b3
+a2b0 + αa3b1)

α (a0b3 + a1b2
−a2b1 + a3b0)

a0b0 − αa1b1
−βa2b2 − αβa3b3

−α (a0b1 + a1b0
+βa2b3 − βa3b2)

(a0b3 + a1b2
−a2b1 + a3b0)

− (a0b2 − αa1b3
+a2b0 + αa3b1)

a0b1 + a1b0
+βa2b3 − βa3b2

a0b0 − αa1b1
−βa2b2 − αβa3b3


.

(13)

Multiplying Bl
q̃ and Bl

p̃ as:

Bl
q̃Bl

p̃ =


a0 −αa1 −βa2 −αβa3
a1 a0 −βa3 βa2
a2 αa3 a0 −αa1
a3 −a2 a1 a0




b0 −αb1 −βb2 −αβb3
b1 b0 −βb3 βb2
b2 αb3 b0 −αb1
b3 −b2 b1 b0


gives equation (13) quickly. Hence we get Bl

q̃p̃ = Bl
q̃Bl

p̃.

□

Theorem 7. Let q̃ ∈ Q̃α,β and q̃−1 be the inverse of q̃. Then,

Bl
q̃−1 =

1√
det(Bl

q̃)
Bl
q̃
.
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Proof. Taking into account Definition 4 and Theorem 6 items iii and v, the proof
is obvious. □

Theorem 8. Every GCN with generalized quaternion components can be repre-

sented by a 2× 2 generalized quaternion matrix. Q̃α,β is the subset of M2(Qα,β).

Proof. For q̃ = q0 + q1I ∈ Q̃α,β , denote T as a subset of M2(Qα,β) given by:

T : =

{
Dq̃ ∈ M2(Qα,β) :Dq̃ =

[
q0 pq1
q1 q0 + qq1

]}
, (14)

and define the linear map M : Q̃α,β → T , q̃ 7→ Dq̃. It can be concluded that

there exists a correspondence between Q̃α,β and T via the map M. Hence, 2 × 2
generalized complex matrix representation of q̃ with respect to the standard base
{1, I} is the matrix Dq̃. □

By using Dq̃ and p̃ =
[
p0 p1

]T
, we have: q̃p̃ = Dq̃p̃. Moreover, Dq̃ is also in

the form Dq̃ = q0I2 + q1I, where I =

[
0 p
1 q

]
is the representation of I. It should

be noted that there are many ways to choose I, for instance: I =

[
q 1
p 0

]
(see

in [32]).

Theorem 9. For any q̃ = q0 + q1I and p̃ = p0 + p1I ∈ Q̃α,β and λ ∈ R, the
following properties are satisfied:

i. q̃ = p̃ ⇔ Dq̃ = Dp̃,
ii. Dq̃+p̃ = Dq̃ +Dp̃,
iii. Dλq̃ = λ(Dq̃),
iv. Dq̃p̃ = Dq̃Dp̃,
v. det(Dq̃) = q20 + qq1q0 − pq21, where the notation det represents the determi-

nant of the quaternion matrix3.

Proof. The proof is obvious considering the matrix form given in equation (14).

iv. Using equation (1), we obtain:

Dq̃p̃ =

[
q0p0 + pq1p1 p(q0p1 + q1p0 + qq1p1)

q0p1 + q1p0 + qq1p1 q0p0 + pq1p1 + q(q0p1 + q1p0 + qq1p1)

]
. (15)

Also, the computation of the following multiplication

Dq̃Dp̃ =

[
q0 pq1
q1 q0 + qq1

] [
p0 pp1
p1 p0 + qp1

]
gives equation (15). Hence we have Dq̃p̃ = Dq̃Dp̃.

3The determinant of an arbitrary 2 × 2 quaternion matrix is defined by

det

([
a b
c d

])
= da− cb, [33].
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□

Definition 5. Let q̃ = q0 + q1I ∈ Q̃α,β. The vector representation of q̃ is defined
as

−→
q̃ =

[ −→q0 T −→q1 T
]T

=

[ −→q0−→q1

]
∈ M8×1(R),

where qj−1 = x0j + x1ji+ x2jj+ x3jk ∈ Qα,β and

−−→qj−1 = (x0j , x1j , x2j , x3j)
T = [x0j x1j x2j x3j ]

T

are vectors (matrices) for 1 ≤ j ≤ 2.

Theorem 10. Let q̃ = q0 + q1I ∈ Q̃α,β. Then

i.
−→
q̃†1 = X

−→
q̃ , where X =

[
I4 qI4
0 −I4

]
∈ M8(R).

ii.
−→
q̃†2 = Y

−→
q̃ , where Y =

[
0 I4

−I4 0

]
∈ M8(R).

Proof.

i. Computing
−→
q̃†1 and X

−→
q̃ gives the equality as:

−→
q̃†1 =

[ −→q0 + q−→q1
−−→q1

]
and

X
−→
q̃ =

[
I4 qI4
0 −I4

] [ −→q0−→q1

]
=

[ −→q0 + q−→q1
−−→q1

]
.

With the same manner the other item can be proved. □

By applying the map Γ(xi1 + xi2I) =

[
xi1 pxi2

xi2 xi1 + qxi2

]
to Bl

q̃, where

ai = xi1 + xi2I ∈ Cq,p, for 0 ≤ i ≤ 3, the left real matrix representation Cl
q̃ of

q̃ (see in equation (7)) with respect to the base {1, I, i, Ii, j, Ij,k, Ik} can be easily

found. So, Q̃α,β is the subset of M8(R).

Example 1. Take q̃ ∈ Q̃2,1 with GCN components for p = −1 and q = 1:

q̃ = 1 + (−1 + I) i+ Ij+ (1 + 2I)k.

Then,

Aq̃ =

[
1 + (1 + 2I)k (−1 + I) i+ Ij
(−1 + I) i+ Ij 1 + (1 + 2I)k

]
,

Bl
q̃ =


1 −2(−1 + I) −I −2(1 + 2I)

−1 + I 1 −1− 2I I
I 2(1 + 2I) 1 −2(−1 + I)

1 + 2I −I −1 + I 1

 ,
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Cl
q̃ =



1 0 2 2 0 1 −2 4
0 1 −2 0 −1 −1 −4 −6
−1 −1 1 0 −1 2 0 −1
1 0 0 1 −2 −3 1 1
0 −1 2 −4 1 0 2 2
1 1 4 6 0 1 −2 0
1 −2 0 1 −1 −1 1 0
2 3 −1 −1 1 0 0 1


,

Dq̃ =

[
1− i+ k −i− j− 2k
i+ j+ 2k 1 + j+ 3k

]
,

Bl
q̃−1 =

1√
−189 + 45I


1 2(−1 + I) I 2(1 + 2I)

1− I 1 1 + 2I −I
−I −2(1 + 2I) 1 2(−1 + I)

−1− 2I I 1− I 1

 .

Also, the vector representation of q̃†1 is computed by:

−→
q̃†1 = X

−→
q̃ =

[
I4 I4
0 −I4

][ [
1 −1 0 1

]T[
0 1 1 2

]T
]

=
[
1 0 1 3 0 −1 −1 −2

]T
.

3. Further Result: An Alternative Matrix Approach

The questions about numbers, hypercomplex numbers and quaternions included
questions about their matrices. Inspired by matrix forms in the study [34], we
give an answer for the question of the alternative representation of generalized
quaternion matrix with elliptic number entries (see elliptic biquaternions in [35]).
So this matrix is in the form:

Q̃ = A0I2 +A1I +A2J +A3K,

where A0, A1, A2, A3 ∈ Cp are elliptic numbers for p < 0. The base elements can
be defined as follows:
Case 1: For α, β ∈ R+

I =

 √
α
|p|I 0

0 −
√

α
|p|I

 ,J =

[
0

√
β

−
√
β 0

]
,K =

 0
√

αβ
|p| I√

αβ
|p| I 0

 ,

Case 2: For α ∈ R+, β ∈ R−

I =

 √
α
|p|I 0

0 −
√

α
|p|I

 ,J =

[
0

√
−β√

−β 0

]
,K =

 0
√

−αβ
|p| I

−
√

−αβ
|p| I 0

 ,
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Case 3: For α ∈ R−, β ∈ R+

I =

[
0

√
−α√

−α 0

]
,J =

 −
√

β
|p|I 0

0
√

β
|p|I

 ,K =

 0
√

−αβ
|p| I

−
√

−αβ
|p| I 0

 ,

Case 4: For α, β ∈ R−

I =

 0
√

−α
|p| I

−
√

−α
|p| I 0

 ,J =

[
0

√
−β√

−β 0

]
,K =

 √
αβ
|p| I 0

0 −
√

αβ
|p| I

 .

These elements satisfy the following conditions:

I2 = −αI2, IJ = −JI = K,
J 2 = −βI2, JK = −KJ = βI,
K2 = −αβI2, KI = −IK = αJ .

Taking into account Case 1, Q̃ is rewritten as

Q̃ =

 A0 +
√

α
|p|IA1

√
βA2 +

√
αβ
|p| IA3

−
√
βA2 +

√
αβ
|p| IA3 A0 −

√
α
|p|IA1

 .

One can see this matrix in Tian’s paper [36] related to biquaternions (complexified
quaternion) for α = β = 1 and p = −1.

The conjugate (same as the adjoint), transpose, the elliptic conjugate, the total

conjugate and determinant Q̃ can be given as follows:

Q̃ = A0I2 −A1I −A2J −A3K = Adj Q̃,

Q̃T = A0I2 +A1I −A2J +A3K,

Q̃Cp = A0I2 −A1I +A2J −A3K = Q̃
T

,

Q̃
Cp

= A0I2 +A1I −A2J +A3K =
(
Q̃Cp

)
,

and
det Q̃ = A2

0 + αA2
1 + βA2

2 + αβA2
3

= A2
0 +A2

1 det I +A2
2 detJ +A2

3 detK.

For det Q̃ ̸= 0, the inverse of Q̃ is defined by:

Q̃−1 =
1

det Q̃
Q̃ =

1

A2
0 + αA2

1 + βA2
2 + αβA2

3

(A0I2 −A1I −A2J −A3K).

Similar calculations can be given for the other cases. Additionally, the relation-
ships between the above operations and some properties of generalized quaternion
matrices with elliptic number entries can be easily proved. We omit them for the
sake of brevity. For A0, A1, A2, A3 ∈ C−1, we refer to [37] under the condition that
α = β = 1 and α = 1, β = −1.



NEW INSIGHT INTO QUATERNIONS AND THEIR MATRICES 55

4. Concluding Remarks

Our paper is motivated by the question: What happens if the components of
quaternions become GCN ? Based on this question, we develop the theory of gen-
eralized quaternions (non-commutative system) with GCN components p, q ∈ R.
Also, we investigate the algebraic structures and properties by considering them as
a GCN and a quaternion. With specific values of α and β, we obtained different
types of quaternions with GCN components in Section 2. Additionally, we establish
matrix representations and give a numerical example. In Section 3, we also come
up with a different way to deal with a generalized quaternion matrix with elliptic
number entries.

The crucial part of this paper is that one can reduce the calculations to men-
tioned types of quaternions by considering hyperbolic, elliptic and parabolic number
components for ∆ = q2 + 4p (see Table 1). As a natural consequence of this situ-
ation, taking into account special conditions, the definition of special quaternions
mentioned in the papers [38–47] are generalized via Definition 1, the papers [48–53]
are generalized from the viewpoint of definition, algebraic properties, relations and
matrix representations of quaternions and finally, different matrix forms in the
papers [35–37] are generalized in Section 3. All of these situations can be exam-
ined in Table 2. For instance, all of the obtained calculations agree with complex
quaternions for α = β = 1, q = 0, p = −1.

With this unified method, we believe that these results give rise to ease of calcu-
lation via mathematical concordance, and in future studies, we intend to investigate
other commutative and non-commutative quaternions created with GCN compo-
nents in this manner. Now, the necessary and sufficient condition for similarity,
co-similarity and semi-similarity for elements of the generalized quaternions with
GCN components for p, q ∈ R is an open problem for researchers.

Table 1. Basic classification regarding components

∆ = q2 + 4p Type of components References
∆ < 0 elliptic biquaternion [35,50] (for q = 0)
∆ = 0 parabolic [41,51] (for q = 0)
∆ > 0 hyperbolic
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Table 2. Classification considering components with regard to
the value of p, q, α and β

Condition α β Component Quaternion Ref.

q = 0
p = −1

1 1 complex Hamiltonian [14,36,44]
1 -1 complex split [49, 53]
1 0 complex semi [38,39]
-1 0 complex split semi
0 0 complex quasi

q = 0
p = 0

1 1 dual Hamiltonian [45,47,54]
1 -1 dual split [46]
1 0 dual semi [42,52]
-1 0 dual split semi
0 0 dual quasi

q = 0
p = 1

1 1 hyperbolic Hamiltonian [40]
1 -1 hyperbolic split [43]
1 0 hyperbolic semi
-1 0 hyperbolic split semi [48]
0 0 hyperbolic quasi
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[38] Alagöz, Y., Özyurt, G., Linear equations systems of real and complex semi-quaternions, Iran.

J. Sci. Technol. Trans. A Sci., 44(5) (2020), 1483–1493. https://doi.org/10.1007/s40995-020-
00956-7

[39] Bekar, M., Yaylı, Y., A study on complexified semi-quaternions, International Conference on

Operators in Morrey-type Spaces and Applications (OMTSA), 115 (2017).
[40] Arizmendi, G., Pérez-de la Rosa, Y.M.A., Some extensions of quaternions and sym-

metries of simply connected space forms, arXiv preprint, arXiv:1906.11370 (2019).

https://doi.org/10.48550/arXiv.1906.11370
[41] Ata, E., Yıldırım, Y., A different polar representation for generalized and generalized dual

quaternions, Adv. Appl. Clifford Algebr., 28(4) (2018), 1–20. https://doi.org/10.1007/s00006-
018-0895-2

[42] Bekar, M., Dual-quasi elliptic planar motion, Mathematical Sciences and Applications E-

Notes, 4(1) (2016), 136–143. https://doi.org/10.36753/mathenot.421422
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[50] Özen, K. E., Tosun, M., Elliptic matrix representations of elliptic biquater-

nions and their applications, Int. Electron. J. Geom., 11(2) (2018), 96–103.

https://doi.org/10.36890/iejg.545136
[51] Jafari, M., Matrices of generalized dual quaternions, Konuralp J. Math., 3(2) (2015), 110–121.

[52] Jafari, M., The algebraic structure of dual semi-quaternions, J. Selçuk Univ. Natur. Appl.
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UNIQUENESS OF THE SOLUTION TO THE INVERSE

PROBLEM OF SCATTERING THEORY FOR SPECTRAL

PARAMETER DEPENDENT KLEIN-GORDON S-WAVE

EQUATION
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Abstract. In the present work, the inverse problem of the scattering theory

for Klein-Gordon s-wave equation with a spectral parameter in the boundary
condition is investigated. We define the scattering data set, and obtain the

main equation of operator. Furthermore, the uniqueness of the solution of the

inverse problem is proved.

1. Introduction

Scattering problems, which play a role in the structure of matter in Newtonian
mechanics, are an important research topic of mathematical physics. Obtaining the
scattering data by giving the potential function and investigating the properties
of these scattering data is called the direct problem in scattering theory, while
obtaining the potential function according to the scattering data is called the inverse
problem. Therefore, the importance of inverse scattering problems in terms of
natural sciences is an undeniable reality.

The inverse problem of scattering theory for the boundary value problem

−y′′ + q(x)y = λ2y, (1)

y(0) = 0 (2)
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was studied in [13] and the author obtained that the Jost function of (1)-(2) defined
by

e(λ) = 1 +

∞∫
0

K(0, t)eiλtdt , λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0} .

has a finite number of simple zeros in C+. The scattering data of (1)-(2) is

{S(λ), λk,mk : k = 1, 2, ..., n} ,

where λk are the zeros of Jost function, m−1
k are the norm of the zeros of Jost

function for λ = λk in L2(0,∞) and S(λ) is scattering function of (1)-(2) given by

S(λ) :=
e(λ)

e(λ)
, λ ∈ (−∞,∞).

As the potential function q is given, the problem of getting scattering data and inves-
tigating the properties of scattering data is called the direct problem for scattering
theory. Oppositely, finding the potential function q according to the scattering data
is known inverse problem of scattering theory. The direct and inverse scattering
problems for a selfadjoint infinite system second-order difference equations with op-
erator valued coefficients were considered in [11]. The uniqueness of the solution to
the inverse problem of scattering theory for equation (1) with a spectral parameter
in the boundary condition

y′(0) + (α0 + α1λ+ α2λ
2)y(0) = 0

was studied bh Kh. R. Mamedov ([12]). Also, the solution to the inverse problem
of scattering theory for spectral parameter dependent Sturm-Liouville operator sys-
tem was founded uniquely by G. Bascanbaz Tunca and E. Kir Arpat in [15], and
the scattering analysis of a transmission boundary value problem which consists
of a discrete Schrodinger equation and transmission conditions was investigated
in [5]. Furthermore, the scattering theory of impulsive Sturm-Liouville equations,
impulsive discrete Dirac systems, impulsive Sturm-Liouville equation in Quantum-
Calculus and Dirac operator with impulsive condition on whole axis were investi-
gated in [1,4,8,9]. The scattering function of impulsive matrix difference operators
and scattering properties of eigenparameter dependent discrete impulsive Sturm-
Liouville equations were studied in [2,3,6]. But scattering theory of Klein-Gordon
s-wave equation with boundary condition depends on spectral parameter has not
been investigated yet.

Let Lµ denotes the Klein-Gordon s-wave operator of second order with boundary
condition generated by

y′′ + [λ− q(x)]
2
y = 0 , 0 ≤ x <∞ (3)

and

y′(0, λ) + (α0 + α1λ+ α2λ
2)y(0, λ) = 0,
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where λ = µ2 is a complex spectral parameter, αi are real numbers for i = 0, 1, 2,
α1 ≤ 0, α2 > 0, (α0 +α1λ+α2λ

2) ̸= 0 and q is a non-negative real valued function
satisfying the following condition

∞∫
0

x [|q(x)|+ |q′(x)|] dx <∞. (4)

In this paper, we examine the inverse problem of scattering theory of Lµ under the
condition (4).

2. Preliminaries

To be able to well defined mapping between λ and µ, we will study on the region
Reµ ≥ 0. If the condition (4) is satisfied, equation (3) has the following solutions

f (1)(x, µ) = f(x, µ2) = ei[α(x)+µ2x] +

∞∫
x

K(x, t)eiµ
2tdt, (5)

f (1)(x, µ) = f(x, µ2) = e−i[α(x)+µ2x] +

∞∫
x

K(x, t)e−iµ2tdt

for µ ∈ R1 := {µ : Reµ ≥ 0, Imµ = 0} and they have analytic continuation to

C+
1 := {µ ∈ C : Reµ ≥ 0, Imµ ≥ 0} and C−

1 := {µ ∈ C : Reµ ≥ 0, Imµ ≤ 0}, re-

spectively where α(x) =

∞∫
x

q(t)dt and K(x, t) is solution of integral equations of

Volterra type which has continuous derivatives with respect to their arguments
([7]). Moreover, K(x, t), Kx(x, t), Kt(x, t) satisfy the following inequalities

|K(x, t)| ≤ cω
(
x+t
2

)
exp (γ(x)) ,

|Kx(x, t)| , |Kt(x, t)| ≤ c
[
ω2

(
x+t
2

)
+ θ

(
x+t
2

)]
,

where

ω (x) =

∞∫
x

[
|q(t)|2 +

∣∣∣q′
(t)

∣∣∣] dt ,
γ(x) =

∞∫
x

[
t |q(t)|2 + 2 |q(t)|

]
dt ,

θ (x) = 1
4

[
2 |q(x)|2 +

∣∣∣q′
(x)

∣∣∣]
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and c > 0 is a constant. In addition, the function K(x, t) and potential are related
to

K(x, x) = 2

∞∫
x

q(t)dt

([14]). Furthermore, f (1)(x, µ) and f (1)(x, µ) are respectively analytic in C+
1 :=

{µ ∈ C : Reµ > 0, Imµ > 0} and C−
1 := {µ ∈ C : Reµ > 0, Imµ < 0} and they

are continuous on real and imaginary axes with respect to µ. The solutions f (1)(x, µ)

and f (1)(x, µ) are called Jost solutions of Lµ ([10]). From (5), f (1)(x, µ) satisfies
the asymptotic equalities

f (1)(x, µ) = eiµ
2x [1 + o(1)] , x→ ∞ ,

f
(1)
x (x, µ) = eiµ

2x
[
iµ2 + o(1)

]
, x→ ∞

(6)

and

f (1)(x, µ) = ei[α(x)+µ2x] + o(1) , |µ| → ∞ (7)

([14]). From (6), the Wronskian of the solutions of f (1)(x, µ) and f (1)(x, µ) is

W
[
f (1)(x, µ), f (1)(x, µ)

]
= lim

x→∞
W

[
f (1)(x, µ), f (1)(x, µ)

]
= −2iµ2 (8)

for µ ∈ R1. Hence f (1)(x, µ) and f (1)(x, µ) are the fundamental solutions of (3) for
µ ∈ R∗

1 = R1\ {0} .

Let φ(1)(x, µ) = φ(x, µ2) denotes the solution of (3) satisfying the initial condi-
tions

φ(1)(0, µ) = φ(0, µ2) = 1,

φ(1)
x (0, µ) = φx(0, µ

2)− (α0 + α1µ
2 + α2µ

4).

Definition 1.

W
[
φ(1)(x, µ), f (1)(x, µ)

]
= φ(1)(0, µ)f (1)x (0, µ)− φ(1)

x (0, µ)f (1)(0, µ)

= f (1)x (0, µ) + (α0 + α1µ
2 + α2µ

4)f (1)(0, µ)

= F (µ2) = F1(µ) (9)

is called Jost function of Lµ ([10]).

Theorem 1. Under the condition (4), Jost function has following asymptotic equal-
ity

F1(µ) ≈
{
iµ2(1− iα1)e

iα(0) , α1 ̸= 0, |µ| → ∞
α2µ

4 , α1 = 0, |µ| → ∞ , (10)

where α1 ≤ 0 and α2 > 0.

Proof. This aymptotic equality can be seen smoothly from (7) and Definition 1. □
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3. Main Equation of Lµ

Definition 2. We can define scattering function using Jost function as follows for
µ ∈ R1:

S1(µ) = S(µ2) =
F (µ2)

F (µ2)
=
F1(µ)

F1(µ)
. (11)

Theorem 2. Under the condition (4), the scattering function satisfies following
asymptotic equality

S1(µ) = 1 +O

(
1

µ2

)
, |µ| → ∞. (12)

Proof. The proof can be easily attained using definition of scattering function and
(7). □

Lemma 1. Under the condition (4),

F1(µ) = f (1)x (0, µ) + (α0 + α1µ
2 + α2µ

4)f (1)(0, µ) ̸= 0

for all µ ∈ R∗
1.

Proof. Let F1(µ0) = 0 for any µ0 ∈ R∗
1. Then, we obtain

f (1)x (0, µ0) = −(α0 + α1µ0 + α2µ
4
0)f

(1)(0, µ0).

Also,

W
[
f (1)(x, µ),f (1)(x, µ)

]
= 2iµ2.

for all µ ∈ R1. So,

f (1)x (0, µ0)f
(1)(0, µ0)− f (1)(0, µ0)f

(1)
x (0, µ0) = 2iµ2

0

and, we get

−(α0+α1µ
2
0+α2µ

4
0)f

(1)(0, µ0)f
(1)(0, µ0)+(α0+α1µ

2
0+α2µ

4
0)f

(1)(0, µ0)f
(1)(0, µ0) = 2iµ2

0.

From last equation, we can write

2iµ2
0 = 0.

But this is a contradiction because of µ0 ∈ R∗
1. □

Lemma 2. The following equation

2iµ2φ(1)(x, µ)

f
(1)
x (0, µ) + (α0 + α1µ2 + α2µ4)f (1)(0, µ)

= f (1)(x, µ)− S1(µ)f
(1)(x, µ) (13)

holds. Furthermore, S1(µ) = [S1(µ)]
−1
.
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Proof. Since f (1)(x, µ) and f (1)(x, µ) are basic solutions of Lµ,

φ(1)(x, µ) = c1f
(1)(x, µ) + c2f (1)(x, µ). (14)

From (14),

c1 (µ) f
(1)(0, µ) + c2 (µ) f (1)(0, µ) = 1

and

c1f
(1)
x (x, µ) + c2f

(1)
x (x, µ) = −(α0 + α1µ

2 + α2µ
4).

By finding c1 (µ) and c2 (µ) from last two equations and using (8), we can obtain
(13). In addition, we hold easily

S1(µ) =
F1(µ)

F1(µ)
= [S1(µ)]

−1

from (11). □

Lemma 3. The all zeros of Jost function F1(µ) are finite and on the imaginary
axis. Also, they are simply on the upper imaginary axis.

Proof. Using asymptotic equality (10), Lemma 1, uniqueness theorems for analytic
functions and Bolzano-Weierstrass Theorem we can easily reach finiteness of the
zeros of Jost function. Now, we will show that the zeros of F1(µ) are on the
imaginary axis. Let µ0 be an arbitrary zero of F1(µ). We can write

0 = F1(µ0) = f (1)x (0, µ0) + (α0 + α1µ
2
0 + α2µ

4
0)f

(1)(0, µ0)

and {
f
(1)
xx (x, µ0) +

[
µ4
0 − 2µ2

0q(x) + q2(x)
]
f
(1)
x (x, µ0) = 0,

f
(1)
xx (x, µ0) +

[
µ4
0 − 2µ2

0q(x) + q2(x)
]
f
(1)
x (x, µ0) = 0

from (3) and (9). By using the last equalities together the definition of Wronskian
and the partial integration method, we find that

0 =
(
µ2
0 − µ2

0

)α1

∣∣∣f (1)(0, µ0)
∣∣∣2 + (

µ2
0 + µ2

0

)α2 +

∞∫
0

∣∣∣f (1)(x, µ0)
∣∣∣2 dx


−2

∞∫
0

q(x)
∣∣∣f (1)(x, µ0)

∣∣∣2 dx


and then

0 =
(
µ2
0 − µ2

0

)α1

∣∣∣f (1)(0, µ0)
∣∣∣2 + [

(Reµ0)
2 − (Imµ0)

2
]α2 +

∞∫
0

∣∣∣f (1)(x, µ0)
∣∣∣2 dx


−2

∞∫
0

q(x)
∣∣∣f (1)(x, µ0)

∣∣∣2 dx
 .
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The last equality is satisfied if µ2
0 −µ2

0 = 0 and (Reµ0)
2
= 0, i.e. Reµ0 = 0. So, all

zeros of F1(µ) are on the imaginary axis. Finally, to get the simplicity of any zero
µ0 = iω0, ω0 > 0, we need to prove that

∂F1(µ0)

∂µ
̸= 0.

From equation (3), we have

f
(1)
xx (x, µ) + q2(x)f (1)(x, µ) = 2µ2q(x)f (1)(x, µ)− µ4f (1)(x, µ) ,

•(
f (1)xx

)
(x, µ) + q2(x)

•(
f (1)

)
(x, µ) = 4µq(x)f (1)(x, µ) + 2µ2q(x)

•(
f (1)

)
(x, µ)

−4µ3f (1)(x, µ)− µ4

•(
f (1)

)
(x, µ)

and then

4µ

∞∫
0

[
q(x)− µ2

] ∣∣∣f (1)(x, µ)∣∣∣2 dx =

•(
f (1)

)
(0, µ)f

(1)
x (0, µ)−

•(
f (1)x

)
(0, µ)f (1)(0, µ) ,

where ∂f(1)(x,µ)
∂µ

∣∣∣
x=0

:=
•(
f (1)

)
(0, µ) and µ = iω, ω ≥ 0. Also, we find the following

equation

4iω

∞∫
0

[
q(x) + ω2

] ∣∣∣f (1)(x, iω)∣∣∣2 dx =

•(
f (1)

)
(0, iω)f

(1)
x (0, iω)

−
•(
f (1)x

)
(0, iω)f (1)(0, iω). (15)

By the definition of F1(µ), we hold

f (1)x (0, µ) = F1(µ)− (α0 + α1µ
2 + α2µ

4)f (1)(0, µ) ,
•(
f (1)x

)
(0, µ) =

•
(F1)(µ)−

(
2α1µ+ 4α2µ

3
)
f (1)(0, µ)− (α0 + α1µ

2 + α2µ
4)

•(
f (1)

)
(0, µ).

These derivatives are taken into account in the equation (15) with µ0 = iω0, ω0 > 0,

4iω0

∞∫
0

[
q(x) + ω2

0

] ∣∣∣f (1)(x, iω0)
∣∣∣2 dx = −

•
(F1)(iω0)f (1)(0, iω0)

+i
(
2α1ω0 − 4α2ω

3
0

) ∣∣∣f (1)(0, iω0)
∣∣∣2(16)

and from (3.6)

−
•

(F1)(iω0)f (1)(0, iω0) = i

[(
−2α1ω0 + 4α2ω

3
0

) ∣∣∣f (1)(0, iω0)
∣∣∣2
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+4ω0

∞∫
0

[
q(x) + ω2

0

] ∣∣∣f (1)(x, iω0)
∣∣∣2 dx

 . (17)

If f (1)(0, iω0) = 0 in (17), then it is occured that f (1)(x, iω0) ≡ 0 but this can not
be. So, it is clear that the left side of (17) is nonzero. Therefore, it is attained that

•
(F1)(µ0) ̸= 0 with F1(µ0) = 0. So, the zeros of Jost function are simply on the
upper imaginary axis. □

Lemma 4. If the function

FS1
(x) =

1

π

∞∫
0

µ [1− S1(µ)] e
iµ2xdµ (18)

is Fourier transformation of µ [1− S1(µ)] for all x ≥ 0, it belongs to the L2 (0,∞)
space.

Proof. From (12), we can easily verify that

µ [1− S1(µ)] ≈ O

(
1

µ

)
, |µ| → ∞.

It follows that µ [1− S1(µ)] ∈ L2 (0,∞) and hence the function FS1
(x) also belongs

to the space L2 (0,∞) . □

Definition 3. For k = 1, 2, ..., n,

m−1
k =

[
f (1) (0, µk)

]2
µ2
k

 1∣∣f (1) (0, µk)
∣∣2

∞∫
0

[
q(x)− µ2

k

] ∣∣∣f (1) (x, µk)
∣∣∣2 dx− α1 + 2α2µ

2
k

2

 ,

where µk are zeros of Jost function on the upper imaginary axis.

Lemma 5. The kernel function K(x, t) satisfies the main equation of Lµ

eiα(x)G(x+ y) +K(x, y) +

∞∫
x

K(x, t)G(t+ y)dt = 0 , (x < y), (19)

where

G(x) =

n∑
k=1

mke
iµ2

kx + FS1
(x). (20)

Proof. Lets rewrite (13) as follows

2iµ2φ(1)(x, µ)

F1(µ)
= f (1)(x, µ)− S1(µ)f

(1)(x, µ),
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and substitute f (1)(x, µ) in this by its expression (13), we get that

2iµ2φ(1)(x, µ)

F1(µ)
= e−i[α(x)+µ2x] +

∞∫
x

K(x, t)e−iµ2tdt

− S1(µ)

ei[α(x)+µ2x] +

∞∫
x

K(x, t)eiµ
2tdt

 .
Also, by making the necessary arrangements and using (18), we reach

2i

π

∞∫
0

µ3φ(1)(x, µ)eiµ
2y

F1(µ)
dµ = eiα(x)FS1

(x+y)+K(x, y)+

∞∫
x

K(x, t)FS1
(t+y)dt. (21)

By using Jordan Lemma and Residue Theorem,

2i

π

∞∫
0

µ3φ(1)(x, µ)eiµ
2y

F1(µ)
dµ = 2πi

2i

π

n∑
k=1

Res(F1, µk)

= −
n∑

k=1

4µ3
kφ

(1)(x, µk)e
iµ2

ky

•
(F1)(µk)

and then

2i

π

∞∫
0

µ3φ(1)(x, µ)

F1(µ)
eiµ

2ydµ =

n∑
k=1

mkf
(1)(x, µk)e

iµ2
ky

because of the fact that φ(1)(x, µk) and f (1)(x, µk) are linearly dependent with

φ(1)(x, µk) =
f(1)(x,µk)

f(1)(0,µk)
since F1(µk) = 0. If we consider the last equation and (21)

together, we get

n∑
k=1

mk

[
f (1)(x, µk)e

iµ2
ky
]
= eiα(x)FS1

(x+ y) +K(x, y) +

∞∫
x

K(x, t)FS1
(t+ y)dt,

and from (20), we obtain the main equation (19). □

Clearly, to form the main equation, it suffices to know the function G(x). On
the other hand, to find the function G(x), it suffices to know only the set of values

{S1(µ), (0 < µ <∞) ;µk;mk, (k = 1, 2, ..., n)} .
which is called the scattering data for Lµ. Given the scattering data, we can use
formula (20) to construct the function G(x) and write out the main equation (19)
for the unknown functionK(x, y). Solving this equation, we find the KernelK(x, y)
of the transformation operator, and hence the potential

q(x) = −1

2

d

dx
K(x, x).
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Theorem 3. The equation (19) has a unique solution K(x, y) ∈ L1 [x,∞) .

Proof. We need to show that the homogeneous equation

ψ(y) +

∞∫
x

ψ(t)G(t+ y)dt = 0 (22)

has only the zero solution in L2 (0,∞) .
We assume that (22) has a nonzero solution. Multiplying ψ(y) both sides of (22)

and integrating,

∞∫
x

ψ2(y)dy +

∞∫
x

ψ(y)

∞∫
x

ψ(t)G(t+ y)dtdy = 0.

After that,

0 =

∞∫
x

ψ2(y)dy +

∞∫
x

ψ(y)

∞∫
x

ψ(t)FS(t+ y)dtdy

+

∞∫
x

ψ(y)

∞∫
x

ψ(t)

n∑
k=1

mke
iµ2

k(t+y)dtdy

from (20). Using (18) in last equation,

0 =

∞∫
x

ψ2(y)dy +

∞∫
x

ψ(y)

∞∫
x

ψ(t)

n∑
k=1

mke
iµ2

k(t+y)dtdy

+

∞∫
x

ψ(y)

∞∫
x

ψ(t)

 1

π

∞∫
0

µ [1− S1(µ)] e
iµ2(t+y)dµ

 dtdy. (23)

In (23) interchanging integrals and using the uniform convergence of

n∑
k=1

mke
iµ2

k(t+y)ψ(t),

(23) can be integrated by terms. So we obtain following equation

0 =

∞∫
x

ψ2(y)dy +

n∑
k=1

mk

 ∞∫
x

ψ(t)eiµ
2
ktdt

2

+
1

π

∞∫
0

µ [1− S1(µ)]

 ∞∫
x

ψ(t)eiµ
2tdt

2

dµ. (24)
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On the other hand, by using Parseval equation of Fourier transformation in (24),

0 =
1

π

∞∫
0

µ |Φ(µ)|2 dµ+

n∑
k=1

mk [Φ(µk)]
2

+
1

π

∞∫
0

µ [1− S1(µ)] [Φ(µ)]
2
dµ, (25)

where Parseval equation of

Φ(µ) =

∞∫
x

ψ(t)eiµ
2tdt

is
∞∫
x

ψ2(y)dy =
1

π

∞∫
0

µ |Φ(µ)|2 dµ.

Since

argµ = 0, arg(mk) = η1(µ), arg [Φ(µ)] = η2(µ) and arg [1− S1(µ)] = η3(µ),

(25) rewrite as polar form

0 =

n∑
k=1

|mk| |Φ(µk)|
2
ei[η1(µk)+2η2(µk)]

+
1

π

∞∫
−∞

|µ| |Φ(µ)|2
{
1 + |1− S1(µ)| ei[2η2(µ)+η3(µ)]

}
dµ. (26)

Real part of (26) is

0 =

n∑
k=1

|mk| |Φ(λk)|2 cos (η1(µk) + 2η2(µk))

+
1

π

∞∫
−∞

|µ| |Φ(µ)|2 {1 + |1− S1(µ)| cos [2η2(µ) + η3(µ)]} dµ.

Therefore, the last equation is equal to zero only situation is

Φ(µ) = 0 and so ψ(t) = 0.

But this is a contradiction. So, the equation (19) has a unique solution for finite
x. □
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FIXED-POINT THEOREMS IN EXTENDED FUZZY METRIC

SPACES VIA α-ϕ-M0 AND β-ψ-M0 FUZZY CONTRACTIVE

MAPPINGS
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Abstract. In this article we would like to present a new type of fuzzy contrac-

tive mappings which are called α−ϕ−M0 fuzzy contractive and β−ψ−M0

fuzzy contractive, and then we demonstrate two theorems which ensure the

existence of a fixed point for these two types of mappings. And so we combine

and generalize some existing notions in the literature ([5], [7]). Proved these
theorems in the extended fuzzy metric spaces are in the more general version

than the existing in the literature ones.

1. Introduction

The attention of fuzzy concept has been growing from the presented by Zadeh [20]
in 1965. The concept of fuzzy was used a lot of fields such as mathematical analysis
and general topology with many applications in economy and engineering. Recently,
it is a paramount development that defining the concept of contractive mapping
in fuzzy metric spaces. After the remarkable Banach [1] contraction principle, a
large amount of mathematicians studied some contractive mappings to proof a fixed
point exists. Afterwards, studies gained popularity with the notion of fuzzy metric
space defined by Kramosil and Michalek [13], and then George and Veeramani [4]
modified the concept of fuzzy metric space.

Contractivity’s role in the fixed point theory is very important. There are a
lot of studies in the literature regarding different versions contractive mappings in
the different spaces ( [2], [3], [5], [6], [8]- [17], [19]). Samet et al. [17] put forward
new notions of contractive mapping and used these mappings to verify some fixed
point theorems in metric spaces. Based on the same perspective, D. Gopal and C.
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Vetro [5] give some contractive mappings, which can be accepted generalizations of
Samet et al. [17].

In this paper, we define new notions which are generalized versions of fuzzy
contractive mappings introduced by D. Gopal and C.Vetro [5]. We study these
contractions in extended fuzzy metric spaces introduced by V. Gregori et al. [7].

The new contractions are called α − ϕ − M0 fuzzy contractive mapping and
β − ψ − M0 fuzzy contractive mapping. Moreover, we have proved some fixed
point theorems with these mappings in this new space and so we got a generalized
versions.

2. Preliminaries

Now in this section, we recall some definitions and results that will be used in
the sequel.

Definition 1. [18] A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is called a contin-
uous triangular norm (t-norm) if the following conditions hold:

⊺1 ∗ is associative and commutative;
⊺2 ∗ is continuous;
⊺3 a ∗ 1 = a, for all a ∈ [0, 1];
⊺4 a ∗ b < c ∗ d,whenever a < c and b < d, for all a, b, c, d ∈ [0, 1].

Kramosil and Michalek [13] generalized probabilistic metric space via concept of
fuzzy metric. After then George and Veeramani [4] made slight modification in this
fuzzy metric concept.

Definition 2. [4], A fuzzy metric space is a triple (X ,M, ∗), where X is a non-
empty set, ∗ is a continuous t-norm and M is a fuzzy set on X 2×(0,∞), satisfying
for all x, y, z ∈ X and for all t, s > 0, the following properties:

(ĢV1) M(x, y, t) > 0;
(ĢV2) M(x, y, t) = 1 if and only if x = y;
(ĢV3) M(x, y, t) = M(y, x, t);
(ĢV4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);
(ĢV5) M(x, y, ·) : (0,∞) → [0, 1] is continuous,
M(x, y, t) could be considered as the degree of closeness between x and y with

regard to t. In the above definition, if we replace (ĢV4) by (ĢV*
4),∀ x, y, z ∈ X and

t, s > 0;

(ĢV
*
4) : M(x, y, t) ∗M(y, z, s) ≤ M(x, z,max {t, s})

then the triple (X ,M, ∗) is said to be non-Archimedean fuzzy metric space [14].

Definition 3. [8] A stationary fuzzy metric space is a triple (X ,M, ∗) such that X
is a non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X 2 satisfying
the following conditions, for all x, y, z ∈ X ;
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(S1) M(x, y) > 0;
(S2) M(x, y) = 1 if and only if x = y;
(S3) M(x, y) = M(y, x);
(S4) M(x, y) ∗M(y, z) ≤ M(x, z).
In other words, a fuzzy metric space (X ,M, ∗) is said to be stationary if M does

not depend on t.
A sequence (xi)i∈N in a stationary fuzzy metric space (X ,M) is said to be Cauchy

if lim
i,j→∞

M(xi, xj) = 1; a sequence (xi)i∈N in X converges to x if lim
i→∞

M(xi, x) = 1 [8].

Now we recall a kind of generalized fuzzy metric space introduced by V. Gregori,
J-J Minana and D. Miravet [7]. They study those fuzzy metrics M on X , in the
George and Veeramani’s sense, such that ∧t>0M(x, y, t) > 0.

Definition 4. [7] The term (X ,M0, ∗) is called an extended fuzzy metric space if
X is a (non-empty) set, ∗ is a continuous t-norm and M0 is a fuzzy set on X 2×
[0,∞) satisfying the following conditions, for each x, y, z ∈ X and t, s ≥ 0;

(ETM1) M0(x, y, t) > 0;
(ETM2) M0(x, y, t) = 1 if and only if x = y;
(ETM3) M0(x, y, t) = M0(y, x, t);
(ETM4) M0(x, y, t) ∗M0(y, z, s) ≤ M0(x, z, t+ s);
(ETM5) M0

x,y : [0,∞) → (0, 1] is continuous,where M0
x,y (t) = M0(x, y, t).

Theorem 1. [7] Let M be a fuzzy set on X 2 × (0,∞), and denote by M0 its
extension to , X 2× [0,∞) given by

M0(x, y, t) = M(x, y, t) for all x, y, ∈ X , t > 0 and

M0(x, y, 0) = ∧t>0M(x, y, t).

Then, (X ,M0, ∗) is an extended fuzzy metric space if and only if (X .M, ∗) is a
fuzzy metric space satisfying for each x, y ∈ X the condition ∧t>0M(x, y, t) > 0.

Proposition 1. [7] Let (X ,M, ∗) be a fuzzy metric space. Define

NM(x, y) = ∧t>0M(x, y, t).

Then, (NM, ∗) is a stationary fuzzy metric on X if and only if ∧t>0M(x, y, t) > 0
for all x, y ∈ X .

It is clear that

M0(x, y, 0) = ∧t>0M(x, y, t) = NM(x, y). (1)

Definition 5. [7] Let (X ,M, ∗) be a fuzzy metric space. M is called extendable
if for each x, y ∈ X the condition ∧t>0M(x, y, t) > 0 is satisfied. In such a case, we
will say that M0 is the (fuzzy metric) extension of M, and that M is the restriction
of M0.

Proposition 2. [7] Let (X ,M0, ∗) is complete if and only if (X , NM, ∗) is com-
plete.
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Samet et al. [17] introduced a new concept of α − ψ− contractive and α −
admissible mappings in metric spaces. D. Gopal and C. Vetro [5] inspired from
them [17] and introduced the notions of α − ϕ− fuzzy contractive mapping and
β − ψ − fuzzy contractive mapping. We recall the notions as follows.

Remark 1. [5] Denote by Φ the family of all right continuous functions ϕ :
[0,∞) −→ [0,∞),with ϕ(r) < r for all r > 0.Note that for every function ϕ ∈ Φ,
lim

n→∞
ϕn(r) = 0 for each r > 0,where ϕn(r) denotes the n− th iterate of ϕ.

Definition 6. [5] Let (X ,M, ∗) be a fuzzy metric space. It is said that ℑ : X −→ X
is an α − ϕ − fuzzy contractive mapping if there exist two functions α : X 2 ×
(0,∞) −→ [0,∞) and ϕ ∈ Φ such that

α(x, y, t)(
1

M(ℑx,ℑy, t)
− 1) ≤ ϕ(

1

M(x, y, t)
− 1)

for all x, y ∈ X and t > 0.

Definition 7. [5] Let (X ,M, ∗) be a fuzzy metric space. It is said that ℑ : X −→ X
is α− admissible if there exist a function α : X 2 × (0,∞) −→ [0,∞) such that,

α(x, y, t) ≥ 1 =⇒ α(ℑx,ℑy, t) ≥ 1

for all x, y ∈ X and t > 0.

Remark 2. [5] Let Ψ be the class of all functions ψ : [0, 1] −→ [0, 1] such that ψ is
non-decreasing and left continuous and ψ(r) > r for all r ∈ (0, 1). If ψ ∈ Ψ, then
ψ(1) = 1 and lim

n→∞
ψn(r) = 1 for all r ∈ (0, 1].

Definition 8. [5] Let (X ,M, ∗) be a fuzzy metric space. It is said that ℑ : X −→ X
is an β − ψ − fuzzy contractive mapping if there exist two functions β : X 2 ×
(0,∞) −→ (0,∞) and ψ ∈ Ψ such that,

M(x, y, t) > 0 ⇒ β(x, y, t)M(ℑx,ℑy, t) ≥ ψ(M(x, y, t))

for all x, y ∈ X with x ̸= y and for all t > 0.

Definition 9. [5] Let (X ,M, ∗) be a fuzzy metric space. It is said that ℑ : X −→ X
is a β − admissible if there exist a function β : X 2 × (0,∞) −→ (0,∞) such that,

β(x, y, t) ≤ 1 =⇒ β(ℑx,ℑy, t) ≤ 1 for all x, y,∈ X and t > 0.

3. Main Result

3.1. α − ϕ − M0− fuzzy contractive mappings. We are ready to introduce
new definitions of α− ϕ−M0 − fuzzy contractive and α−M0 − admissible. We
would like to inform you that use these mappings in the new fuzzy metric space
(introduced in [7]). Then, we prove the theorem (proved in [5]) but in the new fuzzy
metric spaces. And so, we obtain new results that are generalizations of those in
fuzzy metric spaces.
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Definition 10. Let (X ,M, ∗) be an extendable fuzzy metric space. ℑ : X −→ X
is called α− ϕ−M0 − fuzzy contractive mapping if

α(x, y, t)(
1

M(ℑx,ℑy, t)
− 1) ≤ ϕ(

1

M(x, y, t)
− 1) (2)

is ensured ∀ x, y,∈ X and t ≥ 0. Especially,ℑ is called α−ϕ−0−fuzzy contractive
if Equation (2) is ensured for t = 0.

Definition 11. Let (X ,M, ∗) be an extendable fuzzy metric space. ℑ : X −→ X
is called α−M0 − admissible mapping if

α(x, y, t) ≥ 1 =⇒ α(ℑx,ℑy, t) ≥ 1 (3)

is ensured ∀ x, y,∈ X and t ≥ 0. Especially,ℑ is called α−0−admissible if Equation
(3) is ensured for t = 0.

Theorem 2. Let (X ,M, ∗) be a complete extendable fuzzy metric space and a
mapping ℑ : X −→ X be an α−ϕ−M0−fuzzy contractive ensuring the provisions
given below:

(i) ℑ is α−M0 − admissible;
(ii) ∃ x0 ∈ X such that α(x0,ℑx0, t) ≥ 1, ∀ t ≥ 0;
(iii) ℑ is continuous;
Then, ℑ has a fixed point.

Proof. We will examine the proof in two cases.
Case 1. t > 0;
In this case, since M0(x, y, t) = M(x, y, t) ∀ x, y ∈ X , it is same situation in fuzzy

metric spaces and introduced in the proof of the Theorem 3.5. [5].
Case 2. t = 0;
Let x0 ∈ X such that α(x0,ℑx0, 0) ≥ 1.
Define the squence {xn} in X with xn+1 = ℑxn, ∀ n ∈ N.
Provided that xn+1 = xn for some n ∈ N, then x∗ = xn is a fixed point of ℑ.
Presume that xn ̸= xn+1, ∀ n ∈ N.
From (ii),

α(x0, x1, 0) = α(x0,ℑx0, 0) ≥ 1

and using (i), we have

α(x0,ℑx0, 0) ≥ 1 =⇒ α(ℑx0,ℑx1, 0) ≥ 1

By induction,

α(ℑx0,ℑx1, 0) ≥ 1 =⇒ α(ℑx1,ℑx2, 0) ≥ 1

α(ℑx1,ℑx2, 0) ≥ 1 =⇒ α(ℑx2,ℑx3, 0) ≥ 1

...

α(ℑxn−3,ℑxn−2, 0) ≥ 1 =⇒ α(ℑxn−2,ℑxn−1, 0) ≥ 1
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and so we get,

α(ℑxn−2,ℑxn−1, 0) = α(xn−1, xn, 0) ≥ 1, ∀ n ∈ N. (4)

Using (1), implementing (2) with x = xn−1, y = xn, t = 0 and using (4) respectively
we obtain;

1

M0(xn, xn+1, 0)
− 1 =

1

NM(ℑxn−1,ℑxn)
− 1

≤ α(xn−1, xn, 0)(
1

NM(ℑxn−1,ℑxn)
− 1)

≤ ϕ(
1

NM(xn−1, xn)
− 1)

= ϕ(
1

NM(ℑxn−2,ℑxn−1)
− 1)

This implies that,

1

NM(ℑxn−1,ℑxn)
− 1 ≤ ϕn(

1

NM(x0, x1)
− 1)

as n→ ∞

lim
n→∞

(
1

NM(ℑxn−1,ℑxn)
− 1) ≤ lim

n→∞
ϕn(

1

NM(x0, x1)
− 1)

Since, as n→ ∞ and ϕn(r) → 0,

lim
n→∞

(
1

NM(xn, xn+1)
− 1) = 0

and so, we obtain that

lim
n→∞

NM(xn, xn+1) = 1.

which implies that for n < m and using (1) with x = xn, y = xm, t = 0;

M0(xn , xm , 0) = ∧t>0M(xn , xm , t) = NM(xn , xm)

Using Definition 3,

NM(x
n
, x

m
) ≥ NM(x

n
, x

n+1
) ∗NM(x

n+1
, x

n+2
) ∗ ... ∗NM(x

m−1
, x

m
)

and as n→ ∞,

lim
n→∞

NM(x
n
, x

m
) ≥ lim

n→∞
NM(x

n
, x

n+1
) ∗ lim

n→∞
NM(x

n+1
, x

n+2
) ∗ ... ∗ lim

n→∞
NM(x

m−1
, x

m
)

≥ 1 ∗ 1 ∗ ... ∗ 1
≥ 1

We obtain,

lim
n→∞

NM(x
n
, x

m
) = 1
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And so, we solve an important point of the proof that {x
n
} is a Cauchy squence.

Since X is complete,

∃ x∗ ∈ X : as n→ ∞ and x
n
→ x∗

Since ℑ is continuous, as xn → x∗we have ℑxn → ℑx∗ and using (1),

M0(ℑxn ,ℑx∗, 0) = ∧t>0M(ℑxn ,ℑx∗, t) = NM(ℑxn ,ℑx∗), ∀ xn ∈ X .
And so we obtain,

lim
n→∞

NM(ℑx
n
,ℑx∗) = 1.

By the uniqueness of the limit, we get x∗ = ℑx∗, that is, x∗ is a fixed point of ℑ. □

3.2. β − ψ − M0− fuzzy contractive mappings. We are ready to introduce
new definitions of β − ψ − M0 − fuzzy contractive and β − M0− admissible.
We would like to inform you that we use these mappings in the new fuzzy metric
space (introduced in [7]). Then, we prove the theorem (proved in [5]) but in the
new fuzzy metric spaces. And so, we obtain new results that are generalizations of
those in fuzzy metric spaces.

Definition 12. Let (X ,M, ∗) be an extendable fuzzy metric space. ℑ : X −→ X
is called β − ψ −M0 − fuzzy contractive mapping if

M(x, y, t) > 0 ⇒ β(x, y, t)M(ℑx,ℑy, t) ≥ ψ(M(x, y, t)) (5)

is ensured ∀ x, y,∈ X and t ≥ 0. Especially,ℑ is called β−ψ−0−fuzzy contractive
if Equation (5) is ensured for t = 0.

Definition 13. Let (X ,M, ∗) be an extendable fuzzy metric space. ℑ : X −→ X
is called β −M0 − admissible mapping if

β(x, y, t) ≤ 1 =⇒ β(ℑx,ℑy, t) ≤ 1 (6)

is ensured ∀ x, y,∈ X and t ≥ 0. Especially,ℑ is called β−0−admissible if Equation
(6) is ensured for t = 0

By adding an additional condition, we prove a fixed point theorem introduced
in [5] in extendable fuzzy metric space using these new mappings. This is a new
context that using the new mappings in the extendable fuzzy metric space.

Theorem 3. Let (X ,M, ∗) be an extendable complete non-Archimedean fuzzy met-
ric space and a mapping ℑ : X −→ X be a β − ψ − M0 − fuzzy contractive
ensuring the provisions given below:

(i) ℑ is β −M0 − admissible;
(ii) ∃ x0 ∈ X such that β(x0,ℑx0, t) ≤ 1 ∀ t ≥ 0;
(iii) for each sequence {xn} in X such that β(xn, xn+1, t) ≤ 1 ∀ n ∈ N and t ≥ 0,

∃ k0 ∈ N such that β(xm+1, xn+1, t) ≤ 1 ∀ m,n ∈ N with m > n ≥ k0 and ∀ t ≥ 0;
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(iv) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 ∀ n ∈ N and t ≥ 0
and xn → x as n→ ∞, then β(xn, x, t) ≤ 1 ∀ n ∈ N and ∀ t ≥ 0;

(v) ∀ x, y ∈ X and ∀ t ≥ 0,∃ z ∈ X such that β(x,z, t) ≤ 1 and β(y, z, t) ≤ 1;
Then, ℑ has a unique fixed point.

Proof. We will examine the proof in two cases.
Case 1. t > 0;
In this case, sinceM0(x, y, t) = M(x, y, t), ∀ x, y ∈ X ; it is same situation in fuzzy

metric spaces and introduced in the proof of the Theorem 4.4 [5]. It is obtained
that ℑx∗ = x∗ in the [5].

Now we will show that uniqueness of the fixed point.
Presume that ℑ have two different fixed points; x∗and y∗.
Provided that β(x∗, y∗, t) ≤ 1,then

M(x∗, y∗, t) ≥ β(x∗, y∗, t)M(ℑx∗,ℑy∗, t).

Since ℑ is β − ψ −M0− fuzzy contractive, we have

M(x∗, y∗, t) ≥ β(x∗, y∗, t)M(ℑx∗,ℑy∗, t) ≥ ψ(M(x∗, y∗, t)).

Also, since ψ(r) > r, we obtain that

M(x∗, y∗, t) ≥ β(x∗, y∗, t)M(ℑx∗,ℑy∗, t) ≥ ψ(M(x∗, y∗, t)) >M(x∗, y∗, t).

And so, we get

M(x∗, y∗, t) >M(x∗, y∗, t)

It is a contradiction.
That is, x∗and y∗ are not different points; x∗ = y∗.
Presume that β(x∗, y∗, t) > 1,then from (v),

∃ z ∈ X : β(x∗, z, t) ≤ 1and β(y∗, z, t) ≤ 1.

From (i), we obtain,

β(x∗, z, t) ≤ 1 ⇒ β(ℑx∗,ℑz, t) = β(x∗,ℑz, t) ≤ 1

β(x∗,ℑz, t) ≤ 1 ⇒ β(ℑx∗,ℑ2z, t) = β(x∗,ℑ2z, t) ≤ 1

...

β(x∗,ℑn−1z, t) ≤ 1 ⇒ β(ℑx∗,ℑnz, t) = β(x∗,ℑnz, t) ≤ 1

and so we get,

β(x∗,ℑnz, t) ≤ 1,∀ n ∈ N and ∀ t > 0. (7)

Since ℑ is β − ψ −M0− fuzzy contractive, using (7), we get,

M0(x∗,ℑnz, t) = M(x∗,ℑnz, t) = M(ℑx∗,ℑ(ℑn−1z), t)

≥ β(x∗,ℑn−1z, t)M(ℑx∗,ℑ(ℑn−1z), t)

≥ ψ(M(x∗,ℑn−1z, t))

= ψ(M(ℑx∗,ℑ(ℑn−2z), t))
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And by induction we have,

M0(x∗,ℑnz, t) ≥ ψn(M0(x∗, z, t)), ∀ n ∈ N.
as n→ ∞

lim
n→∞

M0(x∗,ℑnz, t) ≥ lim
n→∞

ψn(M0(x∗, z, t))

Since ψn(r) → 1,

lim
n→∞

M0(x∗,ℑnz, t) = 1 ⇒ ℑnz → x∗ (8)

and by similar way, we get

β(y∗, z, t) ≤ 1 ⇒ β(ℑy∗,ℑz, t) = β(y∗,ℑz, t) ≤ 1

β(y∗,ℑz, t) ≤ 1 ⇒ β(ℑy∗,ℑ2z, t) = β(y∗,ℑ2z, t) ≤ 1

...

β(y∗,ℑn−2z, t) ≤ 1 ⇒ β(ℑy∗,ℑn−1z, t) = β(y∗,ℑn−1z, t) ≤ 1

β(y∗,ℑn−1z, t) ≤ 1,∀ n ∈ N and ∀ t > 0. (9)

Since ℑ is β − ψ −M0− fuzzy contractive, using (9), we get,

M0(y∗,ℑnz, t) = M(y∗,ℑnz, t) = M(ℑy∗,ℑ(ℑn−1z), t)

≥ β(y∗,ℑn−1z, t)M(ℑy∗,ℑ(ℑn−1z), t)

≥ ψ(M(y∗,ℑn−1z, t))

And so, by induction we have,

M0(y∗,ℑnz, t) ≥ ψn(M0(y∗, z, t)),∀ n ∈ N.
as n→ ∞

lim
n→∞

M0(y∗,ℑnz, t) ≥ lim
n→∞

ψn(M0(y∗, z, t))

Since ψn(r) → 1,

lim
n→∞

M0(y∗,ℑnz, t) = 1 ⇒ ℑnz → y∗ (10)

From (8), (10) and the uniqueness of the limit x∗ = y∗.

Case 2. t = 0;
Let x0 ∈ X such that β(x0,ℑx0, 0) ≤ 1.
Define the sequence xn+1 = ℑxn,∀ n ∈ N. If xn+1 = xn for some n ∈ N,then

x∗ = xn is a fixed point of ℑ.
Suppose xn+1 ̸= xn, ∀ n ∈ N .
From (ii),

β(x0, x1,0) = β(x0,ℑx0, 0) ≤ 1

and using (i), we obtain

β(x0,ℑx0, 0) ≤ 1 ⇒ β(ℑx0,ℑx1,0) ≤ 1.
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By induction,

β(ℑx0,ℑx1,0) ≤ 1 ⇒ β(ℑx1,ℑx2,0) ≤ 1

β(ℑx1,ℑx2,0) ≤ 1 ⇒ β(ℑx2,ℑx3,0) ≤ 1

...

β(ℑxn−3,ℑxn−2,0) ≤ 1 ⇒ β(ℑxn−2,ℑxn−1,0) ≤ 1

and so we get,

β(ℑxn−2,ℑxn−1,0) = β(xn−1, xn, 0) ≤ 1, ∀ n ∈ N. (11)

Implementing (5) with x = xn−1, y = xn, t = 0 and using (11) respectively, we
obtain;

M0(ℑxn−1,ℑxn, 0) ≥ β(xn−1, xn, 0)M0(ℑxn−1,ℑxn, 0) ≥ ψ(M0(xn−1, xn, 0))

Using (1), we get,

NM(ℑxn−1,ℑxn) ≥ β(xn−1, xn, 0)(NM(ℑxn−1,ℑxn))
≥ ψ(NM(xn−1, xn))

And this implies that,

NM(ℑxn−1,ℑxn) ≥ ψn(NM(x0, x1)), ∀ n ∈ N.

as n→ ∞,

lim
n→∞

NM(ℑxn−1,ℑxn) ≥ lim
n→∞

ψn(NM(x0, x1))

Since ψn(r) → 1,

lim
n→∞

NM(xn, xn+1) = 1.

The important point of the proof is setting that the sequence {xn} Cauchy in X .
Suppose that it is false; there exists 0 < ε < 1 and two subsequences {xpn

} and
{xqn} of {xn} such that qn is the smallest index for which pn > qn ≥ n0, using (1)

M0(xpn
, xqn , 0) = ∧t>0M(xpn

, xqn , t) = NM(xpn
, xxqn) ≤ 1− ε

M0(xpn−1 , xqn , 0) = ∧t>0M(xpn−1, xqn , t) = NM(xpn−1, xqn) > 1− ε

and by (iii); n0 ∈ N such that, for each n ∈ N with n ≥ n0,there exist pn, qn ∈ N
β(xpn

, xqn , 0) ≤ 1.
And we get

1− ε ≥ NM(xpn , xqn) ≥ NM(xpn−1, xqn) ∗NM(xpn−1, xpn)

as n→ ∞
lim
n→∞

(1− ε) ≥ lim
n→∞

NM(xpn , xqn) ≥ lim
n→∞

NM(xpn−1, xqn) ∗ lim
n→∞

NM(xpn−1, xpn)

Since lim
n→∞

NM(xpn−1, xpn
) = 1,

(1− ε) ≥ lim
n→∞

NM(xpn
, xqn) ≥ (1− ε)
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we obtain that

lim
n→∞

NM(xpn
, xqn) = (1− ε).

and similarly

(1− ε) ≥ NM(xpn
, xqn)

≥ NM(xpn
, xpn+1) ∗NM(xpn+1, xqn+1) ∗NM(xqn+1, xqn)

≥ NM(xpn
, xpn+1) ∗ β(ℑxpn

,ℑxqn , 0)NM(ℑxpn
,ℑxqn) ∗NM(xqn+1, xqn)

≥ NM(xpn
, xpn+1) ∗ ψ(NM (xpn

, xqn)) ∗NM(xqn , xqn+1).

as n→ ∞, we get

lim
n→∞

(1− ε) ≥ lim
n→∞

NM(xpn
, xpn+1) ∗ lim

n→∞
ψ(NM (xpn

, xqn)) ∗ lim
n→∞

NM(xqn , xqn+1)

(1− ε) ≥ lim
n→∞

ψ(NM (xpn
, xqn))

(1− ε) ≥ ψ(1− ε)

It is a contradiction, because of ψ(r) > r.
So we have obtained that {xn} is a Cauchy sequence. Since X is complete,

∃ x∗ ∈ X : as n→ ∞ and xn → x∗

Using (11) and (iv);

β(xn, x
∗, 0) ≤ 1,∀n ∈ N

from (5) with using (1) and S4,

NM(ℑx∗, x∗) ≥ NM(ℑx∗,ℑxn) ∗NM(ℑxn, x∗)
≥ β(xn, x

∗, 0)NM(ℑxn,ℑx∗) ∗NM(xn+1, x
∗)

≥ ψ(NM(xn, x
∗)) ∗NM(xn+1, x

∗)

as n→ ∞ , ψ (1) = 1

lim
n→∞

NM(ℑx∗, x∗) ≥ lim
n→∞

ψ(NM(xn, x
∗)) ∗ lim

n→∞
NM(xn+1, x

∗)

≥ ψ (1) ∗ 1 = 1

and we obtain,

lim
n→∞

NM(ℑx∗, x∗) = 1.

And so, x∗ = ℑx∗.That is, x∗ is a fixed point of ℑ.

Now we will show that uniqueness of the fixed point.
Presume that ℑ have two different fixed points; x∗and y∗.
Provided that β(x∗, y∗, 0) ≤ 1, then since ℑ is β−ψ−0− fuzzy contractive, using

(1) and ψ(r) > r, we have

M0(x∗, y∗, 0) ≥ β(x∗, y∗, 0)M0(ℑx∗,ℑy∗, 0) ≥ ψ(M0(x∗, y∗, 0)) >M0(x∗, y∗, 0)

NM(x∗, y∗) > NM(x∗, y∗)
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it is a contradiction. That is, x∗ = y∗.
Assume that β(x∗, y∗, 0) > 1,then from (v)

∃ z ∈ X : β(x∗, z, 0) ≤ 1 and β(y∗, z, 0) ≤ 1.

From (i), we obtain,

β(x∗,ℑnz, 0) ≤ 1 and β(y∗,ℑnz, 0) ≤ 1,∀ n ∈ N. (12)

Since ℑ is β − ψ − 0− fuzzy contractive and using (10), we obtain

M0(x∗,ℑnz, 0) = M(x∗,ℑnz, 0) = M(ℑx∗,ℑ(ℑn−1z), 0) = NM(ℑx∗,ℑ(ℑn−1z))

≥ β(x∗,ℑn−1z, 0)NM(ℑx∗,ℑ(ℑn−1z))

≥ ψ(NM(x∗,ℑn−1z))

And by induction we obtain,

NM(ℑx∗,ℑ(ℑn−1z)) ≥ ψn(NM(x∗, z)),∀n ∈ N.

As n→ ∞, we get ℑnz → x∗.
And by the similary way we obtain ℑnz → y∗.So the uniqueness of the limit

x∗ = y∗ □
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Abstract. In this paper, we investigate generalized variational comparison

results aimed to study the stability properties in terms of two measures for so-
lutions of Set Differential Equations (SDEs) involving causal operators, taking

into consideration the difference in initial conditions. Next, we employ these

comparison results in proving the theorems that give sufficient conditions for
equi-boundedness, equi-attractiveness in the large, and Lagrange stability in

terms of two measures with initial time difference for the solutions of perturbed

SDEs involving causal operators in regard to their unperturbed ones.

1. Introduction

Many researchers were interested in studying set differential equations (SDEs) in
the recent decades [2,3,5,8–10,13,14,18,20,23,36,47] due to their unifying properties.
Lakshmikantham et al. highlighted these properties in one of the most important
resources on this topic [23]. The comprehensiveness of the SDEs is driven from
the fact that they encompass the conventional differential and integral equations
when the Hukuhara difference and integrals defined on the SDEs are restricted to
R; whereas they give us vector differential equations when the restriction is done
to Rn [4, 19,26].

On the other hand, many well-known differential equations such as integro differ-
ential equations [28], impulsive differential equations [22], and differential equations
with delay [35], are examples of differential equations involving causal operators.
Many research papers dealt with those types of equations. [1, 7–10,21,43]
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SDEs with causal operators unifies the fundamental theory of SDEs, including
various corresponding dynamical systems. Some relevant works can be found in
[5, 8–14,47]

Although it is never feasible to know the exact solutions of all dynamical systems
in practice, their attributes may be determined through a variety of qualitative
studies such as stability analysis [2–5,15,19,20,24,36], initial time difference (ITD)
stability analysis [6, 29, 30, 33, 34, 37, 38, 41–47], practical stability analysis [17, 31,
40,46], boundedness [2, 6, 11,16,32,37,38,40–42], etc.

Many techniques have been used in this process, including the Lyapunov second
method [19, 24, 33, 43, 44], variation of parameters [25, 32, 33], ”in terms of two
measures” methodology [5, 18,27,32,38,42,45,46], and so on.

In this manuscript, we develop generalized variational comparison results aimed
to assess a combination of two concepts of stability and other qualitative aspects for
SDEs with causal operators that unifies the conceptual framework behind SDEs.
Furthermore, we give adequate criteria for equi-boundedness, equi-attractiveness
in the large, and Lagrange stability in terms of two measures with ITD for the
solutions of the perturbed forms of these types equations in comparison to their
un-perturbed counterparts.

2. Preliminaries

In what follows, we denote the set of all compact non-empty subsets of Rn by
K (Rn), and the set of all compact and convex non-empty subsets of Rn by Kc (Rn).

The Hausdorff metric between any bounded sets A and B in Rn is defined as

D (A,B)=max

[
sup
x∈B

d (x,A) , sup
y∈A

d (y,B)

]
(1)

where
d (x,A)=inf {d (x, y) : y∈A} (2)

Each of (K (Rn) , D) and (Kc (Rn) , D) forms a complete metric space. The
space Kc (Rn) equipped with the natural addition and non-negative scalar multi-
plication becomes a semi-linear metric space which can be embedded as a cone into
a corresponding Banach space.

The Hausdorff metric satisfies the following properties:

(1) D (A,B) = D (B,A)

(2) D (A+ C,B + C) = D(A,B)

(3) D (kA, kB) = k D (A,B)

(4) D (A,B) ≤ D (A,C) +D (C,B)

(3)

for any A,B,C∈Kc (Rn) and k∈R+, where Minkowski addition of any two non-
empty subsets A and B of Rn is defined by A+B= {a+b : a∈A, b∈B} and where
scalar multiplication of a value k∈R and a non-empty subset A of Rn is defined by
kA= {ka :a∈A}. If k= −1, we get −A=(−1)A= {−a :a∈A}.
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In general, A+(−A) ̸= {0} (unless A= {a} is a singleton). To overcome with this
implication of Minkowski difference, i.e.

A−B = A+ (−1)B = {a− b : a ∈ A, b ∈ B} (4)

Hukuhara difference between two sets A,B∈Kc (Rn) is defined as follows:

If there exists a set C∈Kc (Rn) such that C+B=A, then Hukuhara difference ex-
ists and we denote it by A⊖B, or simply A−B when there is no confusion with
Minkowski difference. i.e. A⊖B=C ⇔C+B=A.

An important property of Hukuhara difference is A−A= {0} for A∈Kc (Rn) .

Let U :I→Kc (Rn) be a given multifunction, where I is an interval of real numbers.
U is said to be Hukuhara differentiable at a point t0∈I, if there exists an element
DHU (t0)∈Kc (Rn) such that the limits

lim
h→0+

U (t0 + h)− U (t0)

h
and lim

h→0+

U (t0)− U (t0 − h)

h
(5)

both exist in the topology of Kc (Rn) and are equal to DHU (t0) .

It is implicit in the definition of DHU (t0) the exitance of the two differences
U (t0+h)−U (t0) and U (t0)−U (t0−h) , for sufficiently small h> 0.

By embedding Kc (Rn) as a complete cone in a corresponding Banach space and
taking into account the result on differentiation of Bochner integral, we find that if

G (t) = G (t0) +

∫ t

t0

F (s) ds, t ∈ I (6)

where F :I→ Kc (Rn) is integrable in the sense of Bochner, then G is Hukuhara
differentiable, i. e. DHG (t) exits, and the equality DHG (t)=F (t), a. e. on I,
holds.

Also, the Hukuhara integral∫
I

F (s)ds =

[∫
I

f (s)ds : f is a continuous selector of F

]
(7)

for any compact set I⊂R+.

Let E=C [[t0,∞) , Kc (Rn)] with norm

sup
t∈[t0,∞)

D [U (t) , θ]

h (t)
< ∞ (8)

where U∈E, θ is the zero element of Rn, which is regarded as a point set; and
h : [t0,∞)→R+ is a continuous map. E equipped with such a norm is a Banach
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space.

Let Q∈C [E,E] . Q is said to be a causal map if U (s)=V (s) , t0≤s≤t<∞, and
U, V ∈E then

(QU) (s) = (QV ) (s) , t0 ≤ s ≤ t < ∞. (9)

Let us consider the following differential equations

DHU = (QU) (t) , U (t0) = U0 for U0 ∈ Kc (Rn) and t ≥ t0 ≥ 0, (10)

DHU = (QU) (t) , U (τ0) = V0 for V0 ∈ Kc (Rn) and t ≥ τ0 ≥ 0 (11)

DHV = (PV ) (t) , V (τ0) = V0 for V0 ∈ Kc (Rn) and t ≥ τ0 (12)

DHW = (SW ) (t) , W (τ0) = V0 − U0 for W (τ0) = W0 ∈ Kc (Rn) and t ≥ τ0
(13)

where Q,P, S :E→E are causal operators, and satisfy a local Lipschitz condition
on R+ × Sρ where Sρ=

{
U∈Kc (Rn) :D

[
U, 0̃

]
<ρ<∞

}
.

It is clear that (10) and (11) are different in the initial time and position. More-
over, if (PV ) (t) in (12) is written as (PV ) (t) = (QV ) (t) + (RV ) (t); Then, we
consider (12) as the perturbed form corresponding to the unperturbed equation
(11) with the perturbation term (RV ) (t).

Assuming that
(
Q0̃

)
(t)≡0̃ for t≥0, and assuming the necessary smoothness of

P,Q andR to guarantee the existence and uniqueness of the solution U (t)=U (t, t0, U0)
of (10) through (t0, U0) for all t≥t0, and those of the solution V (t)=V (t, τ0, V0)
of (12) through (τ0, V0) for all t≥τ0, in addition to their continuous dependence on
the initial conditions.

If U ∈ C1 [ J1,Kc (Rn)] on J1 = [t0, t0 + T1] , then it is said to be a solution
of (10) on J1 if it satisfies (10) on J1. If U, V and W ∈ C1 [ J2,Kc (Rn)] on
J2 = [t0, t0 + T2] , then these are said to be solutions of (11), (12), (13) on J2
provided that they satisfy (11), (12), (13) on J2, respectively.

Now let us define a partial order in the metric space (Kc (Rn) , D). First, we
start by defining a cone in Kc (Rn).

Definition 1. The subfamily K ⊂ Kc (Rn) is said to be a cone in Kc (Rn) if it
consists of sets U ∈ Kc (Rn) such that any u ∈ U is a non-negative n-component
vector u = (u1, u2, . . . , un) satisfying ui ≥ 0 for i = 1 . . . n. The subfamily K0 ⊂
Kc (Rn), that consists of sets U ∈ Kc (Rn) such that any u ∈ U is a positive
n-component vector u = (u1, u2, . . . , un) satisfying ui > 0 for i = 1 . . . n, is the
nonempty interior of the cone K.

Definition 2. For any U, V ∈ Kc (Rn) , if there exists Z ∈ Kc (Rn) such that
Z ∈ K and U = V +Z then we say that U ≥ V or V ≤ U . Similarly, if there exists
Z ∈ Kc (Rn) such that Z ∈ K0 and U = V +Z then we say that U > V or V < U .

We present below some needed classes to develop the stability results in terms
of two measures.
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K = {a ∈ C [R+,R+] : a (u) is strictly increasing in u and a (0) = 0} (14)

L =
{
σ ∈ C [R+,R+] : σ (u) is strictly decreasing in u and lim

u→∞
σ (u) = 0

}
(15)

CK =

{
a ∈ C

[
R2

+,R+

]
: a (t, s) ∈ K for each t

and a (t, s) is continuous for each s

}
(16)

Γ =

{
h ∈ C [R+ ×Kc (Rn) ,R+] : inf

(t,U)
h (t, U) = 0

}
(17)

Γ0 =
{
h ∈ Γ : inf

U
h (t, U) = 0 , for each t ∈ R+

}
(18)

Next, to introduce a Lyapunov-like function, we present some definitions needed
in the qualitative analysis in terms of two measures.

Definition 3. Let L ∈ C [R+ ×Kc (Rn) ,R+] , then L is said to be
(i) h-positive definite if there exists a ρ > 0 and a b ∈ K such that

h (t, U) < ρ implies b (h (t, U)) ≤ L (t, U) (19)

(ii) h-decrescent if there exists a ρ > 0 and a function a ∈ K such that

h (t, U) < ρ implies L (t, U) ≤ a (h (t, U)) (20)

(iii) h-weakly decrescent if there exists a ρ > 0 and a function a ∈ CK such that

h (t, U) < ρ implies L (t, U) ≤ a (t, h (t, U)) (21)

Definition 4. Let h0, h ∈ Γ, then we say that h0 is finer than h if there exists a
ρ > 0 and a function ϕ ∈ CK such that

h0 (t, U) ≤ ρ implies h (t, U) ≤ ϕ (t, h0 (t, U)) (22)

h0 is uniformly finer than h if the function ϕ in the above definition is independent
of t.

Now, let us introduce the definitions of generalized Dini-like derivatives of L.

Definition 5. We define the generalized derivative (Dini-like derivatives) for a
real-valued function L∈C [R+×Kc (Rn) ,R+] as follows:

D+
∗ L (t, s, U)

= lim
h→0+

sup
1

h

[
L
(
s+ h, V

(
t, s+ h, U + h

(
QŨ

)
(s)

))
− L (s, V (t, s, U))

]
(23)
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D∗−L (t, s, U)

= lim
h→0−

inf
1

h

[
L
(
s+ h, V

(
t, s+ h, U + h

(
QŨ

)
(s)

))
− L (s, V (t, s, U))

]
(24)

for t, s∈R+ and U∈Kc (Rn) .

Next, let us introduce the definitions of initial time difference (ITD) equi-boundedness,
equi-attractiveness in the large, and Lagrange stability in terms of two measures,
before proceeding with our main results.

Definition 6. Let U (t, t0, U0) be any solution of (10) for t ≥ t0 ≥ 0, and let

Ũ (t, τ0, U0) = U (t− η, t0, U0), for η = τ0 − t0. The solution V (t, τ0, V0) of (12)
for t ≥ τ0 is said to be

(i) ITD (h0, h)-equi-bounded with respect to the solution Ũ , if and only if given any
α > 0 and τ0 ∈ R+, there exists β = β (α, τ0) > 0 such that h0 (τ0, V0 − U0) < β
implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < α , t ≥ τ0 (25)

(ii) ITD (h0, h)-uniformly equi-bounded with respect to the solution Ũ if the previ-
ous implication in (i) holds for every τ0 ∈ R+, or in otherwords, β = β (α, τ0) > 0
is independent of τ0.

It is worth pointing out that if β in (ii) satisfy that β (·, τ0) ∈ K, then the solution

V (t, τ0, V0) of (12) is ITD (h0, h)-stable with respect to the solution Ũ . In fact, for
ε > 0 there exists a continuous function δ = δ (ε, τ0) > 0 in τ0, such that whenever
α < δ, we have β = β (α, τ0) < ε.

(iii) ITD (h0, h)-equi-attractive in the large with respect to the solution Ũ , if and
only if given any ε, α > 0 and τ0 ∈ R+, there exists a T = T (τ0, ε, α) > 0 such
that h0 (τ0, V0 − U0) < α implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < ε , t ≥ τ0 + T (τ0, ε, α) (26)

(iv) ITD (h0, h)-uniform equi-attractive in the large with respect to the solution

Ũ , if the previous implication in (iii) holds for every τ0 ∈ R+, or in otherwords,
T = T (τ0, ε, α) > 0 is independent of τ0.

(v) ITD (h0, h)-Lagrange stable with respect to the solution Ũ , if and only if it is
ITD (h0, h)-equi-bounded and ITD (h0, h)-equi-attractive in the large with respect

to the solution Ũ .

(vi) ITD (h0, h)-uniform Lagrange stable with respect to the solution Ũ , if and
only if it is ITD (h0, h)-Lagrange stable and both β = β (α, τ0) > 0 in (i) and
T = T (τ0, ε, α) > 0 in (iii) are independent of τ0.



90 C. YAKAR, H. TALAB

3. ITD Stability Results in Terms of Two Measures

3.1. ITD Variational Comparison Results. In what follows, let us present
generalized variational comparison results aimed to study the stability properties
in terms of two measures for solutions of SDEs involving causal operators, taking
into consideration the difference in the initial conditions.

Before that, in order to study the stability properties for the SDEs with causal
operators, let us assume that the solutions of the SDEs (10), (11), (12), and (13)
exist and that they are unique; additionally, that all the Hukuhara differences exist,
so the problem is well-posed.

Theorem 1. Assume that (i) Both L (t,Ω) ∈ C
[
R+ ×Kc (Rn) ,RN

+

]
and ∥W (t, s,Ω)∥

satisfy a local Lipschitz condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0)

is the solution of (13) for t ≥ τ0, Ũ (t, τ0, U0) = U (t− η, t0, U0), for η = τ0 − t0,
U (t, t0, U0) is any solution of (10) for t ≥ t0, and V (t) = V (t, τ0, V0) is the solu-

tion of (12) for t ≥ τ0; and let Ω (t)=V (t)−Ũ (t).

(ii)
D∗−L (t, s,Ω) ≤ g (t, s, L (s,W (t, s,Ω))) (27)

where

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (28)

(iii) g ∈ C
[
R+ × RN

+ ,RN
]
, g (t, s, u) is quasi-monotone non-decreasing in u for

any t, s; [i.e., if u ≤ v, ui = vi for some i such that 1 ≤ i ≤ N, then gi (t, s, u) ≤
gi (t, s, v) , for t, s ∈ R+ (In this context, the inequality symbol used in the vectorial
inequalities is understood to denote component-wise inequality [39])];

and r (t, s, τ0, V0) is the maximal solution of

du (s)

ds
= g (t, s, u (s)) , u (τ0) = u0 ≥ 0 (29)

existing for τ0 ≤ s ≤ t < ∞.

Then, L (τ0,W (t, τ0, V0 − U0)) = u0 implies

L (t,Ω (t, τ0, V0 − U0)) ≤ r0 (t, τ0, L (τ0,W (t, τ0, V0 − U0))) (30)

where r0 (t, τ0, u0) = r (t, t, τ0, u0) .

Proof. Let us set

m (t, s) = L (s,W (t, s,Ω (s))) for τ0 ≤ s ≤ t. (31)



LAGRANGE STABILITY FOR SDES INVOLVING CAUSAL OPERATORS 91

Then, we have

m (t, τ0) = L (τ0,W (t, τ0,Ω (τ0))) = L
(
τ0,W

(
t, τ0, V (τ0)− Ũ (τ0)

))
= L (τ0,W (t, τ0, V0 − U0)) = u0

(32)

For a sufficiently small positive value δ, we have

m (t, s+ δ)−m (t, s)

= L (s+ δ,W (t, s+ δ,Ω (s+ δ)))− L (s,W (t, s,Ω (s)))

= L (s+ δ,W (t, s,Ω (s)) + δ (SW (t, s,Ω (s))) (s) + ε (δ))− L (s,W (t, s,Ω (s)))

(33)

where ε stands for error and limδ→0−
ε(δ)
δ = 0.

Taking into consideration the assumptions in (i) regarding the locally Lipschitz
property of L (t,Ω) and ∥W (t, s,Ω)∥ in Ω, it is seen that

m (t, s+ δ)−m (t, s) ≤ k (ε1 (δ)− ε2 (δ))

+ L
(
s+ δ,W

(
t, s, V (s)− Ũ (s)

)
+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

))
− L

(
s,W

(
t, s, V (s)− Ũ (s)

))
(34)

where ε1, ε2 stand for errors, k stands for Lipschitz constant.

The inequality in the assumption (ii) gives us the following estimation regarding
the Dini derivative of m(t, s)

D∗−m (t, s)

≤ lim
δ→0−

inf
1

δ
K (ε1 (δ)− ε2 (δ))

+ lim
δ→0−

inf
1

δ
L
(
s+ δ,W

(
t, s, V (s)− Ũ (s)

)
+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

))
− lim

δ→0−
inf

1

δ
L
(
s,W

(
t, s, V (s)− Ũ (s)

))
≤ g

(
t, s, L

(
s,W

(
t, s, V (s)− Ũ (s)

)))
= g (t, s, L (s,W (t, s,Ω (s)))) = g (t, s,m (t, s))

(35)

for τ0 ≤ s ≤ t < ∞.

A comparison result [Theorem 1.7.1] from [26] gives us the following inequality

m (t, s) ≤ r (t, s, τ0, L (τ0,W (t, τ0, V0 − U0))) for τ0 ≤ s ≤ t. (36)
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Choosing s = t in the right-hand side of the previous inequality, we get

m (t, s) ≤ r (t, t, τ0, L (τ0,W (t, τ0, V0 − U0)))

= r0 (t, τ0, L (τ0,W (t, τ0, V0 − U0)))
(37)

which yields the desired estimation in (30) completing the proof. □

Theorem 2. Under the assumptions of Theorem 1 with N = 1 and g (t, s, u) ≡ 0,
we have

L (t,Ω (t, τ0, V0 − U0)) ≤ L (τ0,W (t, τ0, V0 − U0)) , t ≥ τ0. (38)

Furthermore, we assume

D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω))) , τ0 ≤ s ≤ t < ∞ (39)

where c ∈ K and h ∈ C [R+ ×Kc (Rn) ,R+] .

Then, for t ≥ τ0

L (t,Ω (t, τ0, V0 − U0)) ≤ L (τ0,W (t, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds.

(40)

Proof. Starting from the statement (35) in the proof of Theorem 1,

D∗−m (t, s) ≤ g (t, s,m (t, s)) for τ0 ≤ s ≤ t < ∞. (41)

Then, since g (t, s, u) ≡ 0, we get by integrating the two sides of the previous
inequality (41), for s ∈ [τ0, t] ,∫ t

τ0

D∗−m (t, s)ds = L (t,W (t, t,Ω (t)))− L (τ0,W (t, τ0,Ω (τ0))) ≤ 0. (42)

Hence, we have

L (t,Ω (t, τ0, V0 − U0)) ≤ L (τ0,W (t, τ0,V0 − U0)) for t ≥ τ0. (43)

Now, let us set

M(s,W (t, s,Ω(s))) ≡ L(s,W (t, s,Ω(s))) +

∫ s

τ0

c(h(ξ,W (t, ξ,Ω(ξ))))dξ. (44)

Then, by taking Dini derivatives of both sides and by assumption (39), we have

D∗−M (t, s,Ω (s)) = D∗−L (t, s,Ω (s)) + c (h (s,W (t, s,Ω (s))))

− c (h (τ0,W (t, τ0,Ω (τ0))))

≤ D∗−L (t, s,Ω (s)) + c (h (s,W (t, s,Ω (s))))

≤ −c (h (s,W (t, s,Ω (s)))) + c (h (s,W (t, s,Ω (s)))) = 0.

(45)

Thus, D∗−M (t, s,Ω (s))≤0, in view of (43), gives us for t ≥ τ0,

M (t,Ω (t, τ0, V0 − U0)) ≤ M (τ0,W (t, τ0, V0 − U0)) . (46)
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By the definition of M , this implies, for t ≥ τ0,

L (t,Ω (t, τ0, V0 − U0)) +

∫ t

τ0

c (h (ξ,W (t, ξ,Ω (ξ)))) dξ

≤ L (τ0,W (t, τ0, V0 − U0)) +

∫ τ0

τ0

c (h (ξ,W (t, ξ,Ω (ξ)))) dξ

(47)

L (t,Ω (t, τ0, V0 − U0)) +

∫ t

τ0

c (h (ξ,W (t, ξ,Ω (ξ)))) dξ ≤ L (τ0,W (t, τ0, V0 − U0)) .

(48)
Moving the integral term to the right-hand side gives us the desired estimation (40)
and this completes the proof. □

3.2. Main ITD Stability Results in Terms of Two Measures. Now, let us
employ the comparison results in section 3.1 to prove the following theorems giv-
ing sufficient conditions for equi-boundedness, equi-attractiveness in the large, and
Lagrange stability in terms of two measures for the solutions of perturbed SDEs
involving causal operators in regard to their unperturbed ones.

The next theorem gives sufficient conditions to the ITD (h0, h)-equi-boundedness
of the solution V (t, τ0, V0) of (12) through (τ0, V0) for t ≥ τ0 with respect to the

solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0−t0, where U (t) = U (t, t0, U0)
is the solution of (10) through (t0, U0) for t ≥ t0; providing that the solution

V (t, τ0, V0) of (12) is ITD (h0, h0)-equi-bounded with respect to Ũ .

Theorem 3. Assume that

(i) Both L (t,Ω) ∈ C [R+ ×Kc (Rn) ,R+] and ∥W (t, s,Ω)∥ satisfy a local Lipschitz
condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0) is the solution of (13)
for t ≥ τ0 and

Ω (t, τ0, V0 − U0) = V (t)− Ũ (t) for t ≥ τ0 (49)

(ii)

D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω (s)))) in S (h,M) (50)

where

S (h,M) = {(t,Ω) : h (t,Ω) < M for some h ∈ Γ and M > 0} (51)

and

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (52)
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(iii) For b ∈ K and a1, a0 ∈ CK,

b (h (t,Ω)) +

∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds ≤ L (t,Ω) in S (h,M) and

L (t,Ω) ≤ a1 (t, h (t,Ω)) + a0 (t, h0 (t,Ω)) in S (h,M) ∩ S (h0,M)

(53)

(iv) h0 is finer that h, that is, there exists a function ϕ ∈ K such that

h0 (t,Ω) ≤ M0 implies h (t,Ω) ≤ ϕ (h0 (t,Ω)) (54)

for some M0 with ϕ (M0) ≤ M ;
(v) The solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h0)-equi-bounded with

respect to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0.

Then, this implies the ITD (h0, h)-equi-boundedness of the solution V (t, τ0, V0) of

(12) for t ≥ τ0, with respect to the solution Ũ

Proof. We shall show that the solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h)-

equi-bounded with respect to the solution Ũ , that is, given any α > 0 and for some
τ0 ∈ R+, there exists β = β (α, τ0) > 0 such that h0 (τ0, V0 − U0) < β implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < α for t ≥ τ0 (55)

Assume that (55) is not true, then there exist solutions Ũ (t) = U (t− η, t0, U0),
where U (t, t0, U0) is the solution of (10) for t ≥ t0; and V (t) = V (t, τ0, V0) of (12)
for t ≥ τ0, and t1 > τ0 such that

h0 (τ0, V0 − U0) < β, h (t1,Ω (t1)) = α and h (t,Ω (t)) ≤ α, for τ0 ≤ t ≤ t1 (56)

where Ω (t) = V (t)− Ũ (t) for t ≥ τ0.

By Theorem 2, we have, for τ0 ≤ t ≤ t1,

L (t,Ω (t)) ≤ L (τ0,W (t, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds (57)
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Then, using the assumptions (iii), (56) and (57), we obtain when t = t1,

b (α) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

= b (h (t1,Ω(t1))) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds ≤ L (t1,Ω (t1))

≤ L (τ0,W (t1, τ0, V0 − U0))−
∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ L (τ0,W (t1, τ0, V0 − U0)) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (t1, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (t1, τ0, V0 − U0)))

+

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

(58)

We aim to reach a contradiction to conclude the proof of the theorem. We will use
the assumption (v) for this purpose.

Given 0 < α < M and that there exists a M0 with ϕ (M0) ≤ M.

Choosing N1 = N1 (τ0, α) such that 0 < N1 (τ0, α) < M0, and

h0 (t,Ω (t)) < N1 implies a0 (t, h0 (t,Ω (t))) <
b (α)

2
for t ≥ τ0 (59)

By assumption (v), corresponding to this N1, there exists a β1 = β1 (τ0, N1) > 0
such that

h0 (τ0, V0 − U0) < β1 implies h0 (t,Ω (t)) < N1 for t ≥ τ0 (60)

Thus (59) and (60) give us

h0 (τ0, V0 − U0) < β1 implies a0 (t, h0 (t,Ω (t))) <
b (α)

2
for t ≥ τ0 (61)

Similarly, we choose N2 = N2 (τ0, α) such that 0 < N2 (τ0, α) < M0 and

h (t,Ω (t)) < N2 implies a1 (t, h (t,Ω (t))) <
b (α)

2
for t ≥ τ0 (62)

By the assumptions (iv) and (v) also, corresponding to ϕ−1 (N2), there exists a
β2 = β2 (τ0, N2) > 0 such that

h0 (τ0, V0 − U0) < β2 implies h0 (t,Ω (t)) < ϕ−1 (N2) for t ≥ τ0 (63)

Since ϕ ∈ K is strictly monotone increasing; then, we have by taking the com-
position of ϕ of both sides of the inequality h0 (t,Ω (t)) < ϕ−1 (N2) in (63), with
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considering (54),

h0 (τ0, V0 − U0) < β2 implies

h (t,Ω (t)) ≤ ϕ (h0 (t,Ω (t))) < ϕ
(
ϕ−1 (N2)

)
= N2 for t ≥ τ0

(64)

So, (62) and (64) give us, for t ≥ τ0,

h0 (τ0, V0 − U0) < β2 implies a1 (t, h (t,Ω (t))) <
b (α)

2
(65)

Let β = min {β1, β2}, then with this β the following statement holds.

h0 (τ0, V0 − U0) < β implies

a0 (t, h0 (t,Ω (t))) <
b (α)

2
and a1 (t, h (t,Ω (t))) <

b (α)

2
for t ≥ τ0

(66)

Hence, when t = t1, using (66), the statement (58) can be written as

b (α) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

= b (h (t1,Ω(t1))) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds ≤ L (t1,Ω (t1))

≤ L (τ0,W (t1, τ0, V0 − U0))−
∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ L (τ0,W (t1, τ0, V0 − U0)) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (t1, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (t1, τ0, V0 − U0)))

+

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

<
b (α)

2
+

b (α)

2
+

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

= b (α) +

∫ t1

τ0

c (h (s,W (t1, s,Ω (s)))) ds

(67)

This contradiction proves that the solution V (t, τ0, V0) of (12) through (τ0, V0) for

t ≥ τ0 is ITD (h0, h)-equi-bounded with respect to the solution Ũ .
□

The next theorem gives sufficient conditions to the ITD equi-attractiveness in
the large of the solution V (t, τ0, V0) of (12) through (τ0, V0) for t ≥ τ0 with respect

to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0, where U (t) =
U (t, t0, U0) is the solution of (10) through (t0, U0) for t ≥ t0; providing that the
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solution V (t, τ0, V0) of (12) is ITD (h0, h0)- equi-attractive in the large with respect

to Ũ .

Theorem 4. Assume that

(i) Both L (t,Ω) ∈ C [R+ ×Kc (Rn) ,R+] and ∥W (t, s,Ω)∥ satisfy a local Lipschitz
condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0) is the solution of (13)
for t ≥ τ0 and

Ω (t, τ0, V0 − U0) = V (t)− Ũ (t) for t ≥ τ0 (68)

(ii)
D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω (s)))) in S (h,M) (69)

where

S (h,M) = {(t,Ω) : h (t,Ω) < M for some h ∈ Γ and M > 0} (70)

and

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (71)

(iii) For b ∈ K and a1, a0 ∈ CK,

b (h (t,Ω)) +

∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds ≤ L (t,Ω) in S (h,M) and

L (t,Ω) ≤ a1 (t, h (t,Ω)) + a0 (t, h0 (t,Ω)) in S (h,M) ∩ S (h0,M)

(72)

(iv) h0 is finer that h, that is, there exists a function ϕ ∈ K such that

h0 (t,Ω) ≤ M0 implies h (t,Ω) ≤ ϕ (h0 (t,Ω)) (73)

for some M0 with ϕ (M0) ≤ M ;

(v) The solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h0)-equi-attractive in the

large with respect to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0.

Then, this implies the ITD (h0, h)-equi-attractiveness in the large of the solution

V (t, τ0, V0) of (12) with respect to the solution Ũ .

Proof. We shall show that the solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h)-

equi-attractive in the large with respect to the solution Ũ , that is, given any ε, α > 0
and τ0 ∈ R+, there exists a T = T (τ0, ε, α) > 0 such that h0 (τ0, V0 − U0) < α
implies

h (t, V (t, τ0, V0)− U (t− η, t0, U0)) < ε , t ≥ τ0 + T (τ0, ε, α) (74)
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Assume that (74) is not true, then there exist solutions Ũ (t) = U (t− η, t0, U0),
where U (t, t0, U0) is the solution of (10) for t ≥ t0; and V (t) = V (t, τ0, V0) of (12)
for t ≥ τ0, and a sequence {tk} , tk ≥ τ0 + T and limk→∞ tk = ∞ such that

h0 (τ0, V0 − U0) < α, h (tk,Ω (tk)) ≥ ε for tk ≥ τ0 + T (75)

where Ω (t) = V (t)− Ũ (t) for t ≥ τ0.

By Theorem 2, we have, for t ≥ τ0,

L (t,Ω (t)) ≤ L (τ0,W (t, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds (76)

Then, using the assumptions (iii), (75) and (76), we obtain

b (ε) +

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ b (h (tk,Ω (tk))) +

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds ≤ L (tk,Ω (tk))

≤ L (τ0,W (tk, τ0, V0 − U0))−
∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ L (τ0,W (tk, τ0, V0 − U0)) +

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (tk, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (tk, τ0, V0 − U0)))

+

∫ t

τ0

c (h (s,W (tk, s,Ω (s)))) ds

(77)

We aim to reach a contradiction to conclude the proof of the theorem. We will use
the assumption (v) for this purpose.

Given 0 < ε < M and that there exists a M0 with ϕ (M0) ≤ M.

Choosing N1 = N1 (τ0, ε) such that 0 < N1 (τ0, ε) < M0, and

h0 (t,Ω (t)) < N1 implies a0 (t, h0 (t,Ω (t))) <
b (ε)

2
for t ≥ τ0 (78)

By assumption (v), corresponding to this N1, there exists a α1 and a
T1 = T1 (τ0, N1, α1) > 0 such that

h0 (τ0, V0 − U0) < α1 implies h0 (t,Ω (t)) < N1 for t ≥ τ0 + T1 (79)

Thus (78) and (79) give us

h0 (τ0, V0 − U0) < α1 implies a0 (t, h0 (t,Ω (t))) <
b (ε)

2
for t ≥ τ0 + T1 (80)
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Similarly, we choose N2 = N2 (τ0, ε) such that 0 < N2 (τ0, ε) < M0 and

h (t,Ω (t)) < N2 implies a1 (t, h (t,Ω (t))) <
b (ε)

2
for t ≥ τ0 (81)

By the assumptions (iv) and (v) also, corresponding to ϕ−1 (N2), there exists a α2

and a T2 = T2 (τ0, N2, α2) > 0 such that

h0 (τ0, V0 − U0) < α2 implies h0 (t,Ω (t)) < ϕ−1 (N2) for t ≥ τ0 + T2 (82)

Since ϕ ∈ K is strictly monotone increasing; then, we have by taking the com-
position of ϕ of both sides of the inequality h0 (t,Ω (t)) < ϕ−1 (N2) in (82), with
considering (73),

h0 (τ0, V0 − U0) < α2 implies

h (t,Ω (t)) ≤ ϕ (h0 (t,Ω (t))) < ϕ
(
ϕ−1 (N2)

)
= N2 for t ≥ τ0 + T2

(83)

So, (81) and (83) give us, for t ≥ τ0 + T2,

h0 (τ0, V0 − U0) < α2 implies a1 (t, h (t,Ω (t))) <
b (ε)

2
(84)

Let α = min {α1, α2} , and T = max {T1, T2} , then,

T=T (T1, T2) = T (τ0, N1, α1, N2, α2) = T (τ0, ε, α) (85)

Therefore, with these α, T the following statement holds.

h0 (τ0, V0 − U0) < α implies

a0 (t, h0 (t,Ω (t))) <
b (ε)

2
and a1 (t, h (t,Ω (t))) <

b (ε)

2
for t ≥ τ0 + T

(86)
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Hence, when t = t1, using (86), the statement (77) can be written as

b (ε) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ b (h (tk,Ω (tk))) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds ≤ L (tk,Ω (tk))

≤ L (τ0,W (tk, τ0, V0 − U0))−
∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ L (τ0,W (tk, τ0, V0 − U0)) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

≤ a1 (τ0, h (τ0,W (tk, τ0, V0 − U0))) + a0 (τ0, h0 (τ0,W (tk, τ0, V0 − U0)))

+

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

<
b (ε)

2
+

b (ε)

2
+

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

= b (ε) +

∫ t1

τ0

c (h (s,W (tk, s,Ω (s)))) ds

(87)

This contradiction proves the ITD (h0, h)-equi-attractiveness in the large of the
solution V (t, τ0, V0) of (12) for t ≥ τ0 + T (τ0, ε, α) with respect to the solution

Ũ . □

The next theorem gives sufficient conditions to the ITD (h0, h)-Lagrange stability
of the solution V (t, τ0, V0) of (12) through (τ0, V0) for t ≥ τ0 with respect to the

solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0−t0, where U (t) = U (t, t0, U0)
is the solution of (10) through (t0, U0) for t ≥ t0; providing that the solution

V (t, τ0, V0) of (12) is ITD (h0, h0)- Lagrange stable with respect to Ũ .

Theorem 5. Assume that

(i) Both L (t,Ω) ∈ C [R+ ×Kc (Rn) ,R+] and ∥W (t, s,Ω)∥ satisfy a local Lipschitz
condition in Ω for any t, s; where W (t) = W (t, τ0, V0 − U0) is the solution of (13)
for t ≥ τ0 and

Ω (t, τ0, V0 − U0) = V (t)− Ũ (t) for t ≥ τ0 (88)

(ii)

D∗−L (t, s,Ω) ≤ −c (h (s,W (t, s,Ω (s)))) in S (h,M) (89)

where

S (h,M) = {(t,Ω) : h (t,Ω) < M for some h ∈ Γ and M > 0} (90)
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and

D∗−L (t, s,Ω)

= lim
δ→0−

inf
1

δ

(
L
(
s+ δ,W

(
t, s+ δ,Ω+ δ

(
(PV ) (s)−

(
QŨ

)
(s)

)))
− L (s,W (t, s,Ω))

) (91)

(iii) For b ∈ K and a1, a0 ∈ CK,

b (h (t,Ω)) +

∫ t

τ0

c (h (s,W (t, s,Ω (s)))) ds ≤ L (t,Ω) in S (h,M) and

L (t,Ω) ≤ a1 (t, h (t,Ω)) + a0 (t, h0 (t,Ω)) in S (h,M) ∩ S (h0,M)

(92)

(iv) h0 is finer that h, that is, there exists a function ϕ ∈ K such that

h0 (t,Ω) ≤ M0 implies h (t,Ω) ≤ ϕ (h0 (t,Ω)) (93)

for some M0 with ϕ (M0) ≤ M ;

(v) The solution V (t, τ0, V0) of (12) for t ≥ τ0 is ITD (h0, h0)-Lagrange stable with

respect to the solution Ũ (t, τ0, U0) = U (t− η, t0, U0) , for η = τ0 − t0.

Then, this implies the ITD (h0, h)-Lagrange stability of the solution V (t, τ0, V0) of

(12) for t ≥ τ0 with respect to the solution Ũ .

Proof. The ITD (h0, h0)-Lagrange stability of the solution V (t, τ0, V0) of (12) for

t ≥ τ0 with respect to the solution Ũ gives us by definition the ITD (h0, h0)-equi-
boundedness and the ITD (h0, h0)-equi-attractiveness in the large of the solution

V (t, τ0, V0) of (12) for t ≥ τ0 with respect to the solution Ũ . Hence, by applying
Theorem 3 and Theorem 4 respectively, we obtain the ITD (h0, h)-equi-boundedness
and the ITD (h0, h)-equi-attractiveness in the large of the solution V (t, τ0, V0) of

(12) with respect to the solution Ũ . That is to say it is ITD (h0, h)-Lagrange stable

with respect to the solution Ũ , by definition. □

4. Conclusions

In this manuscript, we have presented sufficient conditions for ITD equibound-
edness, equi-attractiveness in the large, and Lagrange stability in terms of two
measures for the solutions of perturbed SDEs involving causal operators in regard
to their unperturbed ones, and proved the sufficiency of these conditions using ITD
variational comparison results.
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[40] Yakar, C., Çiçek, M., Gücen, M. B., Practical stability, boundedness criteria and Lagrange

stability of fuzzy differential systems, Computers & Mathematics with Applications, 64(6)

(2012), 2118-2127. https://doi.org/10.1016/j.camwa.2012.04.008
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Abstract. We define certain subclasses δ−UM(ℓ, η1, η2) and δ−UMℑ(ℓ, η1, η2)

of holomorphic mappings involving some differential inequalities. These func-

tions are actually generalizations of some basic families of starlike and convex
mappings. We study sufficient conditions for f ∈ δ − UM(ℓ, η1, η2). We also

discuss the characterization for f ∈ δ − UMℑ(ℓ, η1, η2) along with the coef-

ficient bounds and other problems. Using certain conditions for functions in
the class δ − UM(ℓ, η1, η2), we also define another class δ − UM∗(ℓ, η1, η2)
and study some subordination related result.

1. Introductory Concept

Let H = H(U) denote the family of mappings f holomorphic in the open unit
disc U := {z ∈ C and |z| < 1} . For m ∈ N and α ∈ C, let f ∈ H[α,m] ⊂ H : f(z) =
α+

∑∞
m=1 αmzm and f ∈ A ⊂ H[α,m] :

f(z) = z +

∞∑
m=2

αmzm, z ∈ U. (1)

Let P denote the family of Carathéodory mappings q with ℜ (q(z)) > 0 and

q(z) = 1 +

∞∑
m=1

qmzm, z ∈ U.

The Möbius transformation l0(z) = 1+z
1−z , z ∈ U is an extremal mapping for the

family P. For f, ℓ ∈ H, we say the mapping f is subordinate to ℓ and mathe-
matically write f(z) ≺ ℓ(z), if for w ∈ H(U) : w(0) = 0 and |w(z)| < 1, we have
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f(z) = ℓ
(
w(z)

)
. For reference, see [10]. Applying subordination, Janowski [8] in-

troduced the family P[η1, η2] for −1 ≤ η2 < η1 ≤ 1. A mapping q ∈ P[η1, η2],
if

q(z) ≺ 1 + η1z

1 + η2z
or q(z) =

1 + η1w(z)

1 + η2w(z)
, z ∈ U,

where w is a Schwarz mapping . For detail of some work related to subordination,

we refer, [2–6, 8, 10]. Clearly, P[η1, η2] is contained in P
(

1−η1

1−η2

)
. This family is

related with the class P. A mappings q ∈ P iff

(η1 + 1) q(z)− (η1 − 1)

(η2 + 1) q(z)− (η2 − 1)
∈ P[η1, η2].

The simplest representation of a conic domain ∆δ, δ ≥ 0 is given in the following:

∆δ =

{
w = u+ iv : u > δ

√
(u− 1)

2
+ v2

}
.

A mapping f ∈ δ − US(β) if the following inequality holds:

ℜ
{
zf ′(z)

f(z)
− β

}
> δ

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ U), (2)

where −1 ≤ β < 1 and δ ≥ 0.
A mapping f ∈ δ − UC(β) iff zf ′ ∈ δ − US(β).
The above families are studied by Goodman [7] and Rönning [13]. For mappings

f, ℓ ∈ A, the convolution f ∗ ℓ is defined by

f(z) ∗ ℓ(z) = z +

∞∑
m=2

αmγmzm = ℓ(z) ∗ f(z) (z ∈ U),

where the mapping f is given by (1) and

ℓ(z) = z +
∞∑

m=2
γmzm (z ∈ U). (3)

In 2008, Raina [12] introduced the family δ − US(ℓ, β) which may be defined as
follows:

Definition 1. Let ℓ be given by (3) with γm ≥ 0, we say that f ∈ δ − US(ℓ, β) if
f (z) ∗ ℓ (z) ̸= 0 and

ℜ
{
z (f ∗ ℓ)′ (z)
f (z) ∗ ℓ (z)

− β

}
> δ

∣∣∣∣z (f ∗ ℓ)′ (z)
f (z) ∗ ℓ (z)

− 1

∣∣∣∣ (z ∈ U),

where

(f ∗ ℓ) (z) = z +

∞∑
m=2

αmγmzm (γm ≥ 0, z ∈ U) , (4)

−1 ≤ β < 1 and δ ≥ 0.
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Generally this family consists of uniformly δ-starlike mappings f ∗ ℓ of order β
in U.

In 2011, Noor and Malik [11] introduced the family δ − UM(η1, η2) which is
defined as:

Definition 2. A mapping f ∈ A given by (1), is in the family δ − UM(η1, η2)
provided that f(z) ̸= 0 and

ℜ

 (η2 − 1) zf ′(z)
f(z) − (η1 − 1)

(η2 + 1) zf ′(z)
f(z) + (η1 − 1)

 > δ

∣∣∣∣∣∣ (η2 − 1) zf ′(z)
f(z) − (η1 − 1)

(η2 + 1) zf ′(z)
f(z) + (η1 − 1)

− 1

∣∣∣∣∣∣ (z ∈ U),

where −1 ≤ η2 < η1 < 1 and δ ≥ 0.

This family consists of mappings f which are associated with uniformly δ-starlike
mappings in U. Extending the idea of Noor and Malik [11], we define a new family
δ − UM(ℓ, η1, η2) of holomorphic mappings.

Definition 3. Let f ∈ A. Then f ∈ δ−UM(ℓ, η1, η2), if it satisfies the condition:

ℜ

 (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

 > δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

∣∣∣∣∣∣ , (z ∈ U),

(5)
where f ∗ ℓ is given by (4),−1 ≤ η2 < η1 < 1 and δ ≥ 0.

The mapping f ∗ ℓ converges as a convolution of holomorphic mappings defined
in U. Clearly f ∗ ℓ is associated with uniformly δ-starlike mappings in U.

Let ℑ be the family of holomorphic mappings f of positive coefficients and having
the series representation of the form:

f(z) = z −
∞∑

m=2

αmzm, αm ≥ 0, z ∈ U. (6)

For details of this family, we refer [14].
Let f be given by (1). Then f ∈ δ − UMℑ(ℓ, η1, η2), if and only if

f ∈ δ − UM(ℓ, η1, η2) ∩ ℑ,
where −1 ≤ η2 < η1 < 1, δ ≥ 0 and ℑ is given by (6).

For some special choices, we obtain the following known classes:

i. δ − UM
(

z
1−z , η1, η2

)
= δ − US (η1, η2) and δ − UM

(
z

(1−z)2
, 1, η1, η2

)
=

δ − UC (η1, η2).

ii. δ − UM
(

z
1−z , 1,−1

)
= δ − US and δ − UM

(
z

(1−z)2
, 1,−1

)
= δ − UC..

iii. δ−UM
(

z
1−z , 1− 2β,−1

)
= δ−US (β) and δ−UM

(
z

(1−z)2
, 1− 2β,−1

)
=

δ − UC (β).

iv. 0−UM
(

z
1−z , η1, η2

)
= S∗ (η1, η2) and 0−UM

(
z

(1−z)2
, η1, η2

)
= C (η1, η2).
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The class δ − UM(ℓ, η1, η2) also reduces to the families mentioned in (2), see
[13]. For detail of the above classes and various other cases related to the earlier
contributions, see [1, 3, 8, 9, 11,15] with references therein.

2. Preliminaries

Subsequently, we define the subordinating factor sequence.

Definition 4. A sequence ⟨cm : m = 1, 2, 3, ...⟩ is termed as a subordinating factor
sequence for some mappings in C, if for each f ∈ C, we have

∞∑
m=1

αmcmzm ≺ f(z) (α1 = 1, z ∈ U). (7)

Lemma 1. The sequence ⟨cm : m = 1, 2, 3, ...⟩ is a subordinating factor sequence,
iff

ℜ

{
1− 2

∞∑
m=2

cmzm

}
> 0.

For detail, see [9, 16]. Throughout, we assume δ ≥ 0 and −1 ≤ η2 < η1 ≤ 1.

3. Main Discussion

Theorem 1. For a given mapping ℓ defined by (3) with γm ≥ 0, if a mapping
f ∈ A satisfies the inequality

∞∑
m=2

[{3 + 2δ + η2} (m− 1) + η2 − η1] |αm| γm ≤ η1 − η2, (8)

then f ∈ δ − UM(ℓ, η1, η2), where m ≥ 1+η1

1+η2
for −1 ≤ η2 < η1 ≤ 1 and δ ≥ 0.

Proof. To have the desired proof, we only show that

δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

− 1

∣∣∣∣∣∣−ℜ

 (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

− 1

 ≤ 1

where f ∗ ℓ is given by (4),−1 ≤ η2 < η1 < 1 and δ ≥ 0. For f ∗ ℓ given by (4), we
see that

z (f (z) ∗ ℓ (z))′ = z +

∞∑
m=2

m |αm| γmzm.

Consider that

δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− 1

∣∣∣∣∣∣−ℜ

 (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− 1


≤ (1 + δ)

∣∣∣∣ (η2 − 1) z (f (z) ∗ ℓ (z))′ − (η1 − 1) f (z) ∗ ℓ (z)
(η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z)

− 1

∣∣∣∣
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= 2(1 + δ)

∣∣∣∣ z (f (z) ∗ ℓ (z))′ − f (z) ∗ ℓ (z)
(η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z)

∣∣∣∣
≤

2
∞∑

m=2
(1 + δ) (m− 1) |αm| γm

η1 − η2 −
∞∑

m=2
{mη2 − η1 +m− 1} |αm| γm

(
m ≥ 1 + η1

1 + η2

)
.

The last expression is bounded by 1 if
∞∑

m=2

[(3 + 2δ + η2) (m− 1) + η2 − η1] |αm| γm ≤ η1 − η2.

□

We next prove the characterization of the mapping f as below.

Theorem 2. A mapping f given by (6) belongs to the family δ − UMℑ(ℓ, η1, η2)
if and only if

∞∑
m=2

{(m− 1) (1 + 2δ − η2) + η1 − η2}αmγm ≤ η1 − η2, (9)

where −1 ≤ η2 < η1 ≤ 1, γm > 0 and δ ≥ 0.

Proof. Suppose that f ∈ δ − UMℑ(ℓ, η1, η2). Then, making use of the fact that

ℜw > δ |w − 1| ⇔ ℜ
{
w(1 + δeiθ)− δeiθ

}
> 0

and taking

w (z) =
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

,

where f ∗ ℓ is given by (4) with αm ≥ 0,−1 ≤ η2 < η1 < 1, and δ ≥ 0 in (5), we
obtain

ℜ

(1 + δeiθ)
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− δeiθ

 > 0,

or equivalently

ℜ
{
(1 + δeiθ)

(η2 − 1) z (f (z) ∗ ℓ (z))′ − (η1 − 1) f (z) ∗ ℓ (z)
(η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z)

− δeiθ
}

> 0,

which on simple manipulation yields

ℜ


(η1 − η2) +

∞∑
m=2

{
mη2 −m− 2δmeiθ + 1− η1 + 2δeiθ

}
αmγmzm−1

(η1 − η2) +
∞∑

m=2
{m (η2 + 1)− 1− η1}αmγmzm−1

 > 0.
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This result holds true for all z ∈ U. Taking the limit z → 1− through real values,
we thus obtain that

ℜ


(η1 − η2) +

∞∑
m=2

{
mη2 −m− 2δmeiθ + 1− η1 + 2δeiθ

}
αmγm

(η1 − η2) +
∞∑

m=2
{m (η2 + 1)− 1− η1}αmγm

 > 0,

which further implies that{
η1 − η2 −

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αmγm

}
> 0,

so we have
∞∑

m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αmγm < η1 − η2.

Conversely, we let the inequality (9) hold true. Then, in view of the fact that
ℜ (w (z)) > 0 if and only if |w(z)− 1| < |w(z) + 1| , where

w (z) =
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− δ

∣∣∣∣∣∣ (η2 − 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) − (η1 + 1)

− 1

∣∣∣∣∣∣ .
(10)

we consider

|w(z) + 1|

=

∣∣∣∣∣∣ (η2 − 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 − 1)

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 + 1)

− δ

∣∣∣∣∣∣ (η2 − 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 − 1)

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 + 1)

− 1

∣∣∣∣∣∣+ 1

∣∣∣∣∣∣
=

2 |z|
|G|

∣∣∣∣∣η1 − η2 +

∞∑
m=2

{mη2 − η1 + δm− δ}αmγmzm−1

∣∣∣∣∣
>

2

|G|

[
η1 − η2 −

∞∑
m=2

{mη2 − η1 + δm− δ}αmγm

]
, (11)

where G = (η2 + 1) z (f ∗ ℓ)′ (z)− (η1 + 1) f (z) ∗ ℓ (z) . Also for |w(z)− 1| = W

W =

∣∣∣∣∣∣∣
(η2 − 1) z(f∗ℓ)′(z)

(f∗ℓ)(z) − η1 1

(η2 + 1) z(f∗ℓ)′(z)
z(f∗ℓ)′(z)
(f∗ℓ)(z)

− η1 − 1
− 1− δ

∣∣∣∣∣∣ (η2 − 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − (η1 − 1)

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − η1 − 1

− 1

∣∣∣∣∣∣
∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣ − z(f∗ℓ)′(z)
(f∗ℓ)(z) + 1

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − η1 − 1

− δ

∣∣∣∣∣∣ − z(f∗ℓ)′(z)
(f∗ℓ)(z) + 1

(η2 + 1) z(f∗ℓ)′(z)
(f∗ℓ)(z) − η1 − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
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<
2 |z|
|G|

∞∑
m=2

(m+mδ − 1− δ)αmγm. (12)

where G = (η2 + 1) z (f (z) ∗ ℓ (z))′ − (η1 + 1) f (z) ∗ ℓ (z) . From the condition (9)
and the inequalities (11) and (12), we deduce that

|w(z) + 1| − |w(z)− 1| > 0,

where w is defined by (10). This completes the proof of Theorem 2. □

We next provide coefficient bound for a given mapping f to belong to the family
δ − UMℑ(ℓ, η1, η2).

Corollary 1. A mapping f belongs to the family δ − UMℑ(ℓ, η1, η2) if
∞∑

m=2

αm <
η1 − η2

{1 + 2δ − 2η2 + η1} γ2

, γ2 > 0.

where −1 ≤ η2 < η1 < 1, and δ ≥ 0.

Corollary 2. For a mapping f belonging to the family δ−UMℑ(ℓ, η1, η2), we have

αm <
η1 − η2

{1 + 2δ − 2η2 + η1} γ2

, γ2 > 0.

where −1 ≤ η2 < η1 < 1 and δ ≥ 0.

The subsequent theorem deals with the integral representation for a given map-
ping f ∈ δ − UMℑ(ℓ, η1, η2).

Theorem 3. If a mapping f given by (6) belongs to the family δ−UMℑ(ℓ, η1, η2),
then f has the following representation:

f(z) = ℓ(−1) (z) ∗ exp
(

z∫
0

2δη1 −Q(t)(η1 − 1)

t {2δ +Q(t)(η2 − 1)}
dt

)
,

where −1 ≤ η2 < η1 < 1 and δ ≥ 0.

Proof. For δ = 0, the assertion of the Theorem 3 is obvious. Let δ > 0. Then, for
f ∈ δ − UMℑ(ℓ, η1, η2) and

w (z) =
(η2 − 1) z(f(z)∗ℓ(z))′

f(z)∗ℓ(z) − (η1 − 1)

(η2 + 1) z(f(z)∗ℓ(z))′
f(z)∗ℓ(z) + (η1 − 1)

we have
Re(w) > δ|w − 1|,

which implies that

|w − 1

w
| < 1

δ
.

We suppose that
w − 1

w
=

Q(z)

δ
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and

w (z) =
δ

δ −Q(z)
,

which yields

(η2 − 1) z(f(z)∗ℓ(z))
′

f(z)∗ℓ(z) − (η1 − 1)

(η2 − 1) z(f(z)∗ℓ(z))
′

f(z)∗ℓ(z) − (η1 + 1)
=

δ

δ −Q(z)
.

Thus on simplification, we have

z (f (z) ∗ ℓ (z))′

f (z) ∗ ℓ (z)
=

2δη1 −Q(z)(η1 − 1)

2δ +Q(z)(η2 − 1)
.

which proves that

f (z) ∗ ℓ (z) = exp

(
z∫
0

2δη1 −Q(t)(η1 − 1)

t {2δ +Q(t)(η2 − 1)}
dt

)
or

f(z) = ℓ(−1) (z) ∗ exp
(

z∫
0

2δη1 −Q(t)(η1 − 1)

t {2δ +Q(t)(η2 − 1)}
dt

)
.

This finishes the proof of Theorem 3. □

Theorem 4. If fj is such that

fj(z) = z −
∞∑

m=2

αm,jz
m ∈ δ − UMℑ(ℓ, η1, η2), (j = 1, 2, z ∈ U),

then

f(z) = (1− λ) f1(z) + λf2(z) ∈ δ − UMℑ(ℓ, η1, η2), (0 ≤ λ ≤ 1, z ∈ U).
Proof. For the mappings fj such that fj(z) = z−

∑∞
m=2 αm,jz

m ∈ δ−UMℑ(ℓ, η1, η2),
by using Theorem 2, we write

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,1γm ≤ η1 − η2 (13)

and
∞∑

m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,2γm ≤ η1 − η2. (14)

In view of (13) and (14), we have

(1− λ)

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,1γm

+ λ

∞∑
m=2

{(1 + 2δ − η2) (m− 1) + η1 − η2}αm,2γm

≤ (1− λ) (η1 − η2) + λ (η1 − η2) = η1 − η2.

Again by using Theorem 2, we reach the conclusion. □
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In the following, we define the family δ−UM∗(ℓ, η1, η2) of holomorphic mappings
f satisfying the coefficient conditions (8). Assume that

f(z) = z +

∞∑
m=2

αmzm ∈ A.

Then f ∈ δ − UM∗(ℓ, η1, η2), if it satisfies the condition:

∞∑
m=2

[(3 + 2δ + η2) (m− 1) + η2 − η1] |αm| γm ≤ η1 − η2,

for some γm ≥ 0, δ ≥ 0 and −1 ≤ η2 < η1 ≤ 1.
For special choices of η1, η2, δ and the mapping ℓ, we refer the study of Aouf and

Mostafa [2] and others. Clearly

δ − UM∗(ℓ, η1, η2) ⊂ δ − UM(ℓ, η1, η2).

Adopting the required procedure found in [2, 3, 15], we have:

Theorem 5. If f ∈ δ − UM∗(ℓ, η1, η2) and

ℜ (f(z)) > −η1 − η2 + (3 + 2δ + 2η2 − η1)γ2

(3 + 2δ + 2η2 − η1)γ2

(z ∈ U), (15)

then

(1 + 2δ − 2η2 + η1)γ2

2 [η1 − η2 + (1 + 2δ − 2η2 + η1)] γ2

f (z) ∗ h (z) ≺ h(z) (z ∈ U), (16)

for all h ∈ C. The constant factor (1+2δ−2η2+η1)γ2

2[η1−η2+(1+2δ−2η2+η1)]γ2
in (16) cannot be re-

placed by a larger one.

Proof. Let f ∈ δ − UM∗(ℓ, η1, η2) and let h (z) = z +
∞∑

m=2
cmzm. Then

(3 + 2δ + 2η2 − η1)γ2f (z) ∗ h (z)
2 [η1 − η2 + (3 + 2δ + 2η2 − η1)] γ2

=

(3 + 2δ + 2η2 − η1)γ2

(
z +

∞∑
m=2

αmcmzm
)

2 [η1 − η2 + (3 + 2δ + 2η2 − η1)] γ2

In view of Definition 4 and Lemma 1, (16) will hold true if〈
(3 + 2δ + 2η2 − η1)γ2αm

2 [η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
,m = 1, 2, ...

〉
, α1 = 1 (17)

is a subordinating factor sequence. Using Lemma 1, we observe that (17) is equiv-
alent to

ℜ

{
1 +

∞∑
m=1

(3 + 2δ + 2η2 − η1)γ2αmzm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}
> 0. (18)

The mapping

φ (m) = {(3 + 2δ + η2) (m− 1) + η2 − η1} γm, γm ≥ γ2 > 0.
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is an increasing mapping for m ≥ 2. Considering this fact along with (18), we can
write

ℜ

{
1 +

∞∑
m=1

(3 + 2δ + 2η2 − η1)γ2αmzm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}

= ℜ

{
1 +

(3 + 2δ + 2η2 − η1)γ2z

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
+

∞∑
m=2

(3 + 2δ + 2η2 − η1)γ2αmzm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}

≥ 1− (3 + 2δ + 2η2 − η1)γ2 |z|
[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

−

∞∑
m=2

(3 + 2δ + 2η2 − η1)γ2 |αm| |z|m

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

≥ 1− (3 + 2δ + 2η2 − η1)γ2r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
−

∞∑
m=2

(3 + 2δ + 2η2 − η1)γ2 |αm| rm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

≥ 1− (3 + 2δ + 2η2 − η1)γ2r

[η1 − η2 + (3 + 2δ + 2η2 − η1)η1)γ2]
−

∞∑
m=2

(3 + 2δ + 2η2 − η1)γm |αm| r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

On using (8), we see that

ℜ

{
1 +

∞∑
m=1

(3 + 2δ + 2η2 − η1)γ2 |αm| zm

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]

}

≥ 1− (3 + 2δ + 2η2 − η1)γ2r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
− (η1 − η2) r

[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2] .

= 1− r > 0, r → 1.

This leads to (18). Thus we have (16). Also (15) is obtained from (16) for the
mapping

h (z) =
z

1− z
, (z ∈ U).

For the sharpness of

(3 + 2δ + 2η2 − η1)γ2

2[(η1 − η2) + (3 + 2δ + 2η2 − η1)γ2]
,

we consider the mapping f0 such that

f0(z) = z − (η1 − η2)

(3 + 2δ + 2η2 − η1)
z2. (19)

Combining (16) and (19), we write

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
f0(z) ≺

z

1− z
, z ∈ U.
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Consider

ℜ
{

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
f0(z)

}
=

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
ℜ (f0(z))

≥ − (3 + 2δ + 2η2 − η1)γ2)

2[(η1 − η2) + (3 + 2δ + 2η2 − η1)γ2]

(
[η1 − η2 + (3 + 2δ + 2η2 − η1))γ2]

(3 + 2δ + 2η2 − η1)γ2

)
.

Thus, we have

min
|z|≤r

ℜ
{

(3 + 2δ + 2η2 − η1)γ2

2[η1 − η2 + (3 + 2δ + 2η2 − η1)γ2]
f0(z)

}
= −1

2
.

This proves that the constant (3+2δ+2η2−η1)γ2

2[η1−η2+(3+2δ+2η2−η1)γ2]
is the best possible. □

4. Concluding Remarks

In this research, we have used convolution between holomorphic mappings in
defining some subfamilies δ−UM(ℓ, η1, η2) and δ−UMℑ(ℓ, η1, η2) of holomorphic
mappings involving starlike and convex mappings and associated with the conic
domains. We derived sufficient conditions for the mappings to be in the family
δ−UM(ℓ, η1, η2). We also discussed the characterization of mappings in the family
δ − UMℑ(ℓ, η1, η2) along with the coefficient bounds, integral representation and
convex combination. Using the sufficient conditions for mappings belonging to the
family δ − UM(ℓ, η1, η2), we also defined a family δ − UM∗(ℓ, η1, η2) and then
making use of a particular sequence, we discussed some subordination result. Our
findings can be related with the existing known results.

5. Research Background and Significance

Goodman studied the uniformly convex and starlike functions, whereas, Kanas
and Wisniowska explored k-uniformly convex and k-uniformly starlike functions.
While using the convolution technique, Raina introduced the similar family of an-
alytic functions. In view of Janowski functions, Noor and Malik extended their
results for the petal like domains. Using Hadamard product used by Raina and in
contaxt of Noor and Malik work, we defined new classes of analytic functions and
studied them in various aspects.

Functions with positive real part as well as function with certain assumptions
on the arguments are of funcdamental importance in the study of starlike, con-
vex, close-to-convex and Bazilevic functions which are related with the Kufarev
differential equation. We study the characterization and bounds on the functions
from the differential and integral ineqalities. Same study for the complex valued
function is carried out using the idea of differential subordination. The study of
the geometric properties of various types of image domains is still a prime focus
of the theorists. Techniques of convolutions and other classical methods are still
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in progress in studying these images of compex analytic univalent and multivalent
functions In this research, we have used convolution between holomorphic map-
pings in defining some subfamilies δ − UM(ℓ, η1, η2) and δ − UMℑ(ℓ, η1, η2) of
holomorphic mappings involving starlike and convex mappings and associated with
the conic domains. We derived sufficient conditions for the mappings to be in the
family δ−UM(ℓ, η1, η2). We also discussed the characterization of mappings in the
family δ−UMℑ(ℓ, η1, η2) along with the coefficient bounds, integral representation
and convex combination. Using the sufficient conditions for mappings belonging
to the family δ − UM(ℓ, η1, η2), we also defined a family δ − UM∗(ℓ, η1, η2) and
then making use of a subordinating factor sequence, we discuss some subordination
result. Our findings can be related with the existing literature of subject. Various
problems like radius of convexity, starlikeness and close-to-convexity are still open.
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Abstract. Hemoglobin (Hb) possesses good properties of cooperative system
and it normally executes oxygen and other essential items via erythrocytes in

the body. The chemical action of Hb is to combine with oxygen (O2) in the

lungs to form oxyhemoglobin (HbO2). Binding of oxygen with a hemoglobin is
one of the important cooperative mechanism and is an emerging mathematical

research area with wide range of applications in biomedical engineering and

medical physiology. To this end, a mathematical model is proposed to study
the fractional saturation of oxygen in hemoglobin to understand the binding ef-

fect and its stability at various stages. The mathematical formulation is based

on the system of ordinary differential equations together with rate equations
under different association and dissociation rate constants. The five states of

the cooperative systems Hb,HbO2, Hb(O2)2, Hb(O2)3 and Hb(O2)4 are mod-

elled and the Hill’s function has been used to approximate the binding effect
and saturation of ligand (O2) with respect to various rate constants. Also, the

Adair equation has been employed to interpret the saturation concentrations

of oxygen in hemoglobin.

1. Introduction

In a biological system the interaction and intricate association between macro-
molecules is an established fact. This meticulous interaction between different
ligands with their respective receptor molecules determine the fate of most cellular
processes which decides reaction, adjustment and conduct of basic functions in all
living organisms [12, 13]. The well known example in biological system is interac-
tion between hemoglobin with its four binding sites for oxygen [2,3,17]. The ligand
oxygen binds to the four binding sites of hemoglobin molecule and the interaction
can be seen on the overall binding curve [18]. This is a striking example of allosteric
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binding. The binding curve of hemoglobin when associated with oxygen molecules
gives sharp sigmoidal curve which indicates influence of oxygen molecules over the
functionality of hemoglobin. The inference which could be drawn from the sig-
moid binding curve indicates that the extremal states of full and zero saturation
are more stable than the intermediate states of partial saturation [2, 17, 31]. A
general kinetic model, presages an unanticipated multiplicative boost in affinity as
a function of ligand sites. Modeling of this interaction by a foremost depart time
approach denotes that the probability of ligand rebinding increases exponentially
with the number of sites [30]. A few small single-dentate molecules when bind to
a large polydentate molecule such that affinity of oxygen for binding interactions
increases, it arises the cooperativity [14,23]. In cooperative enzymes, low and high
affinity substrate binding sites are present, and the cooperative binding of substrate
to enzyme can take place. The binding of one substrate molecule induces structural
and/or electronic changes that result in altered substance binding affinities in the
remaining vacant site. As there is no straightforward relationship between macro-
scopic and microscopic binding behavior, a mathematical model has been developed
to create a bridge between them. The model considered the minimal interaction
essential to produce fixed overall binding curve [20]. The whole binding cascade
of human hemoglobin corresponds of a series of partly ligated intermediates. The
discrete intervening constants cannot be differentiated in O2 binding curves. The
characterization of these O2 binding constants has shown the Hb cascade to be
unbalanced in nature, with binding dependent upon the particular distribution of
O2 among the four heme sites. The kinetic constant noticed for the dissociation
of this intervening O2 binding constant confirms the value for its equilibrium [19].
The rationale behind the current study was primarily to understand the fractional
saturation of oxygen in hemoglobin under various rate constants. Moreover, the
cooperative property of hemoglobin has been exhaustively discussed using basic
mathematical tools.

2. Materials and Methods

Cooperativity is a fundamental specificity of various biochemical systems [24]. It
was Archibald Hill [1,16] who first analysed the cooperativity binding of oxygen by
hemoglobin and postulated that several (n) oxygen molecules bind simultaneously
to a hemoglobin molecule:

Hb4 + nO2 −⇀↽− Hb4O2n (1)

The expression for the association constant becomes

Ka =
[Hb4O2n]

[Hb4][O2]n
, (2)

and the binding equilibrium from the stand point of the fraction, Y, of oxygen
binding sites on the hemoglobin that are occupied by ligand:
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Y =
[O2]

n

[O2]n +Kd
. (3)

This Hill equation delineates the sigmoidal binding curves for hemoglobin as shown
in Figure 1. The value of n is known as the Hill coefficient. The value of n is not
always an integer. Among binding sites, for cooperative binding, the Hill coefficients
settled provide a fertile measure of the Gibbs free energy of interaction and their
values are independent of the free energy of association for empty sites [5]. The
values of the Hill equation parameters also depend on hemoglobin concentration
and shows that at high concentration of hemoglobin, the visible Hill coefficient,
n, decreases and the binding affinity, k, increases [27]. The Hill’s equation has
been used to approximate binding effect and saturation of oxygen under various
rate constants. The utility of Adair equation helped us to illustrate the saturation
of oxygen concentration in hemoglobin. Many enzymes are composed of distinct
subunits (oligomers), each bearing an equivalent catalytic site. If the sites are
identical and dependent of each other, the presence of substrate at one site effects
on substrate binding and catalytic properties at other sites, this process is known
as cooperative system. [21]. We considered an oligomeric cooperative system, a
cooperative tetramer (hemoglobin) in which we have discussed fractional saturation
of hemoglobin at various states under variable rate constants.

2.1. Some Basic Definitions.

Definition 1. A ligand is a substance that binds to a target molecule to serve a
given purpose.

Definition 2. Allosteric enzymes are the enzymes that change their conformational
ensemble upon binding of an effector which results in an apparent change in binding
affinity at a different ligand binding site.

Definition 3. An oligomer is a protein consisting of many sub-units. It may be
dimer, trimer, tetramer and so on, according to the number of subunits.

Definition 4. The fractional saturation of O2 is defined as Y (O2) = number of
occupied binding sites/total number of binding sites.

2.2. Mathematical Formulation.

We shall first consider the theory for a hemoglobin molecule consisting of four pro-
tomers, each containing one active centre. Active sites are assumed to be indepen-
dent of each other in their interaction with the molecule of an oxygen (substrate).
The individual reactions of oxygen with hemoglobin are as follows,

o2 + cj
k+1−−⇀↽−−
k−1

cj+1; j = 0, 1, 2, 3. (4)
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Figure 1. Sigmoid- Shaped hemoglobin oxygen- binding curve.
These data were measured at pH 7.4 , 21.50 , 0.1 M NaCl, 0.1
M Tris, 1.0 mM Na2EDTA, and a hemoglobin A concentration
of 382.5µ M (heme). Also shown is the least-squares estimated
hyperbola based on the Hufer model.

where cj are the complex of the hemoglobin combined with oxygen molecules (j
runs from 0 to 4) and the rate constant for binding the oxygen to a particular
site of the hemoglobin are denoted by k+i for association and k−i for dissociation,
i = 1,2,3,4.

Alternative representation of (4) of the reactions [21], we shall introduce Figure
2 below which has a one - one correspondence with the rate equations for the
concentrations of cj .

Figure 2. Schematic graphical representation of hemoglobin states.
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From the Figure 2, it is obvious to see that, there are four unoccupied sites in the
state c0 and the rate constant from c0 to c1 is k+1. Also from c1 to c0 , dissociation
rate constant is k−1. Similarly, the rate constant from c3 to c4 is k+4 and from c4
to c3, the dissociation rate constant is k−4.

By deriving the above process, the rate equations (in lower case letters) are
defined as:

o2 + c0
k+1−−⇀↽−−
k−1

c1, (5)

o2 + c1
k+2−−⇀↽−−
k−2

c2, (6)

o2 + c2
k+3−−⇀↽−−
k−3

c3, (7)

o2 + c3
k+4−−⇀↽−−
k−4

c4. (8)

The differential equations corresponding to the above reactions are as follows:

dc0
dt

= −k+1o2c0 + k−1c1, (9)

dc1
dt

= k+1o2c0 − k−1c1 − k+2o2c1 + k−2c2, (10)

dc2
dt

= k+2o2c1 − k−2c2 − k+3o2c2 + k−3c3, (11)

dc3
dt

= k+3o2c2 − k−3c3 − k+4o2c3 + k−4c4, (12)

dc4
dt

= k+4o2c3 − k−4c4. (13)

2.3. Solution of the Model.

To estimate the concentration of O2 at various states and subsequent changes
of complexes in different states, it is important to compute the values of Eq.(9) -
Eq.(13) at steady state points. Now the steady state values of Eq.(13) are given by

dc4
dt

= 0.

In the equilibrium model, the substrate-binding step is considered to be rapid
comparative to the rate of breakdown of the ES complex. Therefore, the sub-
strate binding reaction is considered to be at equilibrium and depends on rate
constants [22,25]. Similarly, in this case, oxygen binding reaction is assumed to be
at equilibrium.
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Define the equilibrium constant as kdi =
k−i

k+i
, the dissociation constant.

It follows that

k+4o2c3 = k−4c4,

⇒ c4 =
k4
k−4

o2c3. (14)

Note that kdi has dimensions of oxygen concentration, so o2
kdi

is dimensionless.

Going next to (12) and setting dc3
dt = 0, it follows that

c3 =
k3
k−3

o2c2. (15)

Proceeding in this fashion, we find that

c2 =
k2
k−2

o2c1, (16)

and

c1 =
k1
k−1

o2c0. (17)

By combining the equations(14), (15), (16)and (17) we see that all the equilibrium
values of cj ; j ≥ 1 may be expressed in terms of c0 in a regular fashion.
Thus,

c1 =
1

kd1
[o2][c0], (18)

c2 =
1

kd1kd2
[o2]

2[c0], (19)

c3 =
1

kd1kd2kd3
[o2]

3[c0], (20)

c4 =
1

kd1kd2kd3kd4
[o2]

4[c0]. (21)

The complexes c1, c2, c3 and c4 occupy oxygen sites partially with an ascending
behaviour until they fully saturate, therefore the saturation function Y (o2) can be
computed as [21,25]:

Y (o2) =
c1 + 2c2 + 3c3 + 4c4

4(c0 + c1 + c2 + c3 + c4)
(22)
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using the concentration levels obtained in equations (18)-(21) and from Eq.(22), we
have

Y (o2) =

[o2]
kd1

+ 2 [o2]
2

kd1kd2
+ 3 [o2]

3

kd1kd2kd3
+ 4 [o2]

4

kd1kd2kd3kd4

4(1 + [o2]
kd1

+ [o2]2

kd1kd2
+ [o2]3

kd1kd2kd3
+ [o2]4

kd1kd2kd3kd4
)

(23)

Eq.(23) is known as Adair equation for 4 sites.
The graphs of Y with respect to O2 gives a sharp sigmoidal curve (see Fig.3)

which indicates influence of oxygen molecules over the functionality of hemoglobin
i.e; it increases the affinity for oxygen molecules. When the affinities of the later
binding events are fundamentally greater than those of the previous events. This
is called as positive cooperativity. For positive cooperativity (k4 ≪ k3, k2, k1), the
concentration of c1, c2, c3 are small compared to the concentration of c4. Thus, if
these terms are omitted from Eq.(22), so Eq.(23) becomes,

Y (o2) =
4 [o2]

4

kd1kd2kd3kd4

4(1 + [o2]4

kd1kd2kd3kd4
)

(24)

=
[o2]

4

α4 + [o2]4
(25)

where α4 = kd1kd2kd3kd4

The Eq.(25) is formalised in the Hill function as in Eq.(3),

Y =
[o2]

n

αn + [o2]n
(26)

Eq.(26) is utilized to depict measures that include multiple near-simultaneous bind-
ing events. The constant α is the half-saturating concentration of ligand, and thus
can be interpreted as an averaged dissociation constant.

It is trivial that in hemoglobin, the partial pressure of oxygen, pO2 is the con-
centration of free oxygen [O2] . Then α4 = (p50)

4, where p50 is the value of po2
when half of the oxygen-binding sites are occupied. Making these replacements and
taking logarithms, Eq.(25) may be revised to yield,

log
Y (o2)

1− Y (o2)
= 4 log[po2]− 4 log p50. (27)

So, if hemoglobin bound all four oxygen molecules in a single step, then a plot
of log Y

1−Y versus log[po2] would be a straight line with a slope of n = 4 ( called

a Hill plot) and an intercept on the log[po2] axis of log p50 (see Figure 4). We can
also write, if n = 1 in Eq. (26), then it becomes the same result, if the protein
is a monomer and Hill function reduces to hyperbolic function [4]. There are few
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Figure 3. Relationship between the partial pressure of oxygen
(pO2) and percentage saturation of the hemoglobin with oxygen.

Figure 4. Lineweaver Burk plot of Hemoglobin.

examples like Ribonuclease, hexokinase, glucokinase in which a single monomeric
enzyme show sigmoidal behavior, but cooperativity of these enzymes could not have
been generated by the interaction of subunits. This mechanism is known as Kinetic
cooperativity [15]. However, the Hill plot exhibits a sigmoidal shape (as shown in
Fig.3), indicating that binding occurs in stages, such that the oxygen affinity of
hemoglobin depends on the number of subunits in the tetramer that are already
oxygenated.
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3. Discussion and Conclusion

A mathematical model has been established that describes the interaction be-
tween an oxygen molecule and the hemoglobin molecule. Hemoglobin is a tetrameric
protein and shows cooperativity i.e; consisting of four subunits and each subunit
binds with one oxygen molecule. Cooperativity is a fundamental specificity of var-
ious biochemical systems [24]. Different biochemical mechanisms can create ultra
sensitivity, including zero-order kinetics, second- and higher-order dependence on
enzyme concentration, positive feedback and protein translocation [9, 10]. In this
work, we have more focused on the role of mathematics on fractional saturation of
oxygen in hemoglobin. A number of simplifying hypothesis are available to explore
binding processes. In this case, we have introduced steady state hypothesis and
then setting time derivatives (eq.13) equal to zero and solve for the steady state
process. Although, this model provides a basis for understanding the S-shaped or
sigmoidal character binding curve but it also confirms that the nature of individual
binding sites (five binding states discussed above) does not account for sigmoid
behaviour. In Figure 3 plots of the free oxygen concentration (partial pressure of
oxygen) versus saturation (Y) exhibit a sigmoidal character and indicates that the
affinity of hemoglobin for the first oxygen molecule is less than the subsequent ones.
Figure 4 represents the Lineweaver Burk plot of hemoglobin. Furthermore, our the-
oretical results are a step towards understanding the role of differential equations
in cooperativity in relation with empirical models. A simple, straightforward and
a new method of estimating the fractional saturation of oxygen in haemoglobin is
derived in this paper. The role of mathematical tools have made the estimation
of oxygen transition from one state to another more realistic and reasonable. The
proposed model can be further extended by incorporating other parameters like
temperature dependent rate constants, flux of diffusion at various binding sites etc.
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FREE RESOLUTIONS FOR THE TANGENT CONES OF SOME

HOMOGENEOUS PSEUDO SYMMETRIC MONOMIAL CURVES

Nil ŞAHİN
Bilkent University, Department of Industrial Engineering, Ankara, TÜRKİYE

Abstract. In this article, we study minimal graded free resolutions of Cohen

-Macaulay tangent cones of some monomial curves associated to 4-generated

pseudo symmetric numerical semigroups. We explicitly give the matrices in
these minimal free resolutions.

1. Introduction

Minimal graded free resolutions are very nice objects to study the modules over
finitely generated graded algebras . It carries out the information about the Hilbert
series, the Castelnuovo-Mumford regularity and many other geometrical invariants
of the module, which makes these resolutions very important for algebrebraic geom-
etry and commutative algebra. Construction of an explicit minimal free resolution
of a finitely generated algebra is a difficult problem in general. This problem has
been studied by many mathematicans, in particular for the homogeneous coordinate
ring of an affine monomial curve in [1, 5, 6, 11–13,15].

“Describing the Betti numbers and the minimal resolution of the tangent cone
of S when S is a 4-generated semigroup which is (almost) symmetric or nearly
Gorenstein ” was an open problem (See [16], Problem 9.9). Symmetric numerical
semigroup case is studied by Mete and Zengin in [11] and in [12]. They computed the
Betti numbers by explicitly computing the minimal graded free resolution. Pseudo
symmetric semigroup case is studied in [15] by showing that being homogeneous and
being homogeneous type are equivalent for 4 generated pseudo symmetric mono-
mial curves with Cohen-Macaulay tangent cones by computing the Betti sequences
for nonhomogeneous case. Though in the homogeneous case the Betti sequence is
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already known as (1, 5, 6, 2), an explicit computation of minimal graded free reso-
lutions were not given. In this paper, we focus on 4 generated pseudo symmetric
semigroups with Cohen-Macaulay tangent cones that are homogeneous ( and hence
homogeneous type) and calculate the explicit minimal graded free resolutions when
n1 is the smallest among n1, n2, n3, n4.

2. Preliminaries

Let n1, n2, n3, n4 be positive integers with gcd(n1, ..., nk) = 1. Consider the nu-

merical semigroup S =< n1, n2, ..., nk >= {
k∑

i=1

uini|ui ∈ N} . LetA = K[X1, X2, ..., Xk]

be the coordinate ring over the fieldK andK[S] be the semigroup ringK[tn1 , tn2 , ..., tnk ]
of S. If we denote the kernel of the surjection

ϕ0 : A → K[S]

Xi 7→ tni

by IS , then K[S] ≃ A/IS . If we denote the affine curve with parametrization

X1 = tn1 , X2 = tn2 , ...., Xk = tnk

corresponding to S by CS , then the local ring corresponding to S isRS = K[[tn1 , ..., tnk ]].
The Hilbert function of the local ring RS is the Hilbert function of the associated
graded ring grm(RS) =

⊕∞
i=0 m

i/mi+1. It is known that

grm(RS) ∼= K[S]/IS∗

where IS∗ =< f∗|f ∈ IS > is the defining ideal of the tangent cone with f∗ denoting
the initial form of f .

s being an element of the semi-group S, the apery set of S with respect to s is
defined to be AP (S, s) = {x ∈ S | x − s /∈ S} and the set of lengths of s in S is

L(s) = {
k∑

i=1

ui|s =

k∑
i=1

uini, ui ≥ 0}. A subset T ⊂ S is said to be homogeneous

if either it is empty or L(s) is a singleton for all 0 ̸= s ∈ T . ni being the smallest
among n1, n2, ..., nk, the numerical semigroup S is said to be homogeneous if the
apery set AP (S, ni) is homogeneous. It has been shown in [9] that AP (S, ni) is
homogeneous if and only if there is a minimal set of generators G of IS such that
Xi belongs to the support of all nonhomogeneous elements of E.

A semigroup S is said to be of homogeneous type if the Betti numbers of the
semigroup ring K[S] and the Betti numbers of the associated graded ring (tangent
cone) coincide, [8]. It is known that if a semigroup is of homogeneous type then
the corresponding tangent cone is Cohen-Macaulay. Furthermore, if the semigroup
S is homogeneous and the tangent cone is Cohen-Macaulay then S is also of ho-
mogeneous type. Converse is not true in general: there are numerical semigroups
which are of homogeneous type but not homogeneous. Some counter examples are
given in embedding dimension 4 , see [9].
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In [10] the generators of IS corresponding to a 4-generated pseudo symmetric
numerical semigroup are given as < f1, f2, f3, f4, f5 > where

f1 = Xα1
1 −X3X

α4−1
4 , f2 = Xα2

2 −Xα21
1 X4, f3 = Xα3

3 −Xα1−α21−1
1 X2,

f4 = Xα4
4 −X1X

α2−1
2 Xα3−1

3 , f5 = Xα21+1
1 Xα3−1

3 −X2X
α4−1
4

where here αi > 1, 1 ≤ i ≤ 4, and 0 < α21 < α1, such that n1 = α2α3(α4 − 1) + 1,
n2 = α21α3α4 + (α1 − α21 − 1)(α3 − 1) + α3, n3 = α1α4 + (α1 − α21 − 1)(α2 −
1)(α4 − 1)− α4 + 1, n4 = α1α2(α3 − 1) + α21(α2 − 1) + α2.

Barucci, Fröberg and Şahin in [1] showed that the Betti sequence of K[S] is
(1, 5, 6, 2) for 4 generated pseudo symmetric monomial curves but IS∗ or the Betti
numbers of the tangent cone were not known. In [14], we described the Co-
hen–Macaulay property of the tangent cone in terms of Komeda’s parametrization
for 4-generated pseudo symmetric monomial curves.

3. Free Resolutions

When n1 is the smallest among {n1, n2, n3, n4}, since the semigroup is always
homogeneous, it is known that the Betti sequence is (1, 5, 6, 2). It is also known from
[14] that the tangent cone is Cohen-Macaulay iff α4 ≤ α2+α3 ≤ α21+α3−1 ≤ α1.
To compute these homogeneous summands, we will use:

Lemma 1 ( [14], page 16). When n1 is the smallest and the tangent cone is Cohen-
Macaulay, {f1, f2, f3, f4, f5} forms a standard basis for IS.

Since the homogeneous summands change when there are equalities, there are 8
different possibilities for the tangent cone that should be considered:

(1) α4 < α2 + α3 − 1 < α21 + α3 < α1

(2) α4 = α2 + α3 − 1 < α21 + α3 < α1

(3) α4 < α2 + α3 − 1 = α21 + α3 < α1

(4) α4 = α2 + α3 − 1 = α21 + α3 < α1

(5) α4 < α2 + α3 − 1 < α21 + α3 = α1

(6) α4 = α2 + α3 − 1 < α21 + α3 = α1

(7) α4 < α2 + α3 − 1 = α21 + α3 = α1

(8) α4 = α2 + α3 − 1 = α21 + α3 = α1

However, case 8 is irredundant as can be seen from the next proposition.

Proposition 1. If α4 = α2 + α3 − 1 = α21 + α3 = α1 then n1 = n2

Proof. n1 = α2α3(α4 − 1) + 1 = (α21 +1)α3(α21 +α3 − 1) + 1 = α21α3(α21 +α3 −
1) + α3(α21 + α3 − 1) + 1.

On the other hand,
n2 = α21α3α4 + (α1 − α21 − 1)(α3 − 1) + α3 = α21α3(α21 + α3) + (α3 − 1)(α3 −

1) + α3 = α21α3(α21 + α3 − 1) + α21α3 + (α3 − 1)2 + α3 = α21α3(α21 + α3 − 1) +
α3(α21 + α3 − 1) + 1 = n1 □
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There is a general form of the minimal graded free resolution of the tangent cone
in possibilities (1) and (3), (2) and (4), (5) and (7). We will list these and the
minimal graded free resolution in case (6) respectively.

The content of the rest of the paper will be as follows: for each of these four
possibilities, we will give the generators of IS∗ as a corollary of lemma 3.4 of [14]
and give our main theorems to compute the minimal graded free resolutions. To
find the generators of IS∗, since we only take the homogeneous summands of the
elements in G in Lemma 1 in respective cases, we will not write the proofs of
corollaries. To prove the given complexes in our theorems are exact, we will use
Buchsbaum-Eisenbud criterion, see [2] for the details. θ being a matrix, we will
denote the minor obtained from θ by erasing its ith row , jth column with [θ]ri,cj .

3.1. If α4 < α2 + α3 − 1 ≤ α21 + α3 < α1.

Corollary 1. IS∗ is generated by G∗ = {X3X
α4−1
4 , X,Xα3

3 , Xα4
4 , X2X

α4−1
4 } where

X = Xα2
2 if α4 < α2 + α3 − 1 < α21 + α3 < α1 and X = f2 if α4 < α2 + α3 − 1 =

α21 + α3 < α1.

Theorem 1. If S is a 4-generated pseudo symmetric semigroup, then minimal
graded free resolution of the tangent cone is

0 −→ A2 ϕ3−→ A6 ϕ2−→ A5 ϕ1−→ A −→ 0

where
ϕ1 =

[
X3X

α4−1
4 X Xα3

3 Xα4
4 X2X

α4−1
4

]
ϕ2 =


−X2 0 −Xα3−1

3 0 X4 0

0 −Xα3
3 0 0 0 −Xα4−1

4

0 X Xα4−1
4 0 0 0

0 0 0 −X2 −X3 Y

X3 0 0 X4 0 Xα2−1
2



ϕ3 =


X4 Xα2−1

2 Xα3−1
3

0 Xα4−1
4

0 −X
−X3 0
X2 Z
0 −Xα3

3


with (X,Y, Z) = (Xα2

2 , 0, 0) if α2 ̸= α21+1 and (X,Y, Z) = (f2,−Xα21
1 , Xα21

1 Xα3−1
3 )

if α2 = α21 + 1.

Proof. It is easy to see that ϕ1ϕ2 = ϕ2ϕ3 so that we have a complex. To show the
complex is exact, rankϕ1 = 1, rankϕ2 = 4 and rankϕ3 = 2 and hence rankϕ1 +
rankϕ2 = rankA5, rankϕ2 + rankϕ3 = rankA6. Then by Buchsbaum- Eisenbud
criterion, it is enough to check that I(ϕi) has a regular sequence of length i for
i = 1, 2, 3. There is nothing to show for i = 1. A regular sequence of length 2
can be obtained as −X2α3+1

3 from the minor [ϕ2]r3,c4,c6 and X2X
2 from the minor
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[ϕ2]r2,c3,c5 for I(ϕ2). A regular sequence of length 3 can be obtained for ϕ3 as Xα4
4

from the minor [ϕ3]r3,r4,r5,r6 , Xα3+1
3 from the minor [ϕ3]r1,r2,r3,r5 and −X2X from

the minor [ϕ3]r1,r2,r4,r6 . □

3.2. If α4 = α2 + α3 − 1 ≤ α21 + α3 < α1.

Corollary 2. IS∗ is generated by

G∗ = {X3X
α4−1
4 , X,Xα3

3 , Xα4
4 −X1X

α2−1
2 Xα3−1

3 , Y }

where (X,Y ) = (f2, f5) if α4 = α2 + α3 − 1 = α21 + α3 < α1,
(X,Y ) = (Xα2

2 ,−X2X
α4−1
4 ) if α4 = α2 + α3 − 1 < α21 + α3 < α1

Theorem 2. In this case, minimal graded free resolution of the tangent cone is

0 −→ A2 ϕ3−→ A6 ϕ2−→ A5 ϕ1−→ A −→ 0

where
ϕ1 =

[
X3X

α4−1
4 X Xα3

3 Xα4
4 −X1X

α2−1
2 Xα3−1

3 Y
]

ϕ2 =


X2 0 X4 Xα3−1

3 0 0

0 −X1X
α3−1
3 0 0 −Xα4−1

4 Xα3
3

−X1Z 0 −X1X
α2−1
2 −Xα4−1

4 0 −X
0 −X2 −X3 0 −Z 0

X3 −X4 0 0 −Xα2−1
2 0



ϕ3 =


X4 Xα2−1

2 Xα3−1
3

X3 0

−X2 (−X2X
α4−1
4 − Y )/X1

0 −X
0 Xα3

3

X1 Xα4−1
4


where
(X,Y, Z) = (f2, f5, X

α21
1 ) if α4 = α2 + α3 − 1 = α21 + α3 < α1

(X,Y, Z) = (Xα2
2 ,−X2X

α4−1
4 , 0) if α4 = α2 + α3 − 1 < α21 + α3 < α1

Proof. ϕ1ϕ2 = ϕ2ϕ3 so that we have a complex. Similarly to the previous case, it
is easy to see that rankϕ1 = 1, rankϕ2 = 4 and rankϕ3 = 2 and hence rankϕ1 +
rankϕ2 = rankA5, rankϕ2 + rankϕ3 = rankA6. A regular sequence of length 2
is X2α3+1

3 from the minor [ϕ2]r3,c2,c5 , X2α2+1
2 if α2 − 1 < α21 + α3 and −X2f

2
2

if α2 − 1 = α21 + α3 from the minor [ϕ2]r3,c3,c4 for I(ϕ2). A regular sequence of

length 3 can be obtained as f4 from the minor [ϕ3]r2,r3,r4,r5 , Xα3+1
3 from the minor

[ϕ3]r1,r3,r4,r6 , Xα2+1
2 if α2 − 1 < α21 + α3 and X2f2 if α2 − 1 = α21 + α3 from the

minor [ϕ3]r1,r2,r5,r6 for I(ϕ3). □

3.3. If α4 < α2 + α3 − 1 ≤ α21 + α3 = α1.
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Corollary 3. IS∗ is generated by

G∗ = {X3X
α4−1
4 , X,Xα3

3 −Xα1−α21−1
1 X2, X

α4
4 , X2X

α4−1
4 }

where X = f2 if α4 < α2 +α3 − 1 = α21 +α3 = α1 and Xα2
2 if α4 < α2 +α3 − 1 <

α21 + α3 = α1.

Theorem 3. In this case, minimal graded free resolution of the tangent cone is

0 −→ A2 ϕ3−→ A6 ϕ2−→ A5 ϕ1−→ A −→ 0

where
ϕ1 =

[
X3X

α4−1
4 X Xα3

3 −Xα1−α21−1
1 X2 Xα4

4 X2X
α4−1
4

]

ϕ2 =


−Xα3−1

3 0 X2 −X4 0 0

0 0 0 0 −f3 Xα4−1
4

Xα4−1
4 0 0 0 X 0
0 X2 0 X3 0 Y

Xα1−α21−1
1 −X4 −X3 0 0 −Xα2−1

2



ϕ3 =



0 X
−X3 Z

X4 Xα2−1
2 Xα3−1

3

X2 Y Xα3−1
3

0 −Xα4−1
4

0 −f3


where (X,Y, Z) equals to (f2, X

α21
1 ,−Xα1−1

1 ) if α4 < α2 + α3 − 1 = α21 + α3 = α1

and (Xα2
2 , 0, 0) if α4 < α2 + α3 − 1 < α21 + α3 = α1

Proof. ϕ1ϕ2 = ϕ2ϕ3 is obvious and rankϕ1 = 1, rankϕ2 = 4 and rankϕ3 = 2
and hence rankϕ1 + rankϕ2 = rankA5, rankϕ2 + rankϕ3 = rankA6. I(ϕ2) has a
regular sequence of length 2 as X2α4

4 from the minor [ϕ2]r4,r3,c5 , X2X
2 from the

minor [ϕ2]r2,c1,c4 . A regular sequence of length 3 can be obtained as X3f3 from
the minor [ϕ3]r1,r3,r4,r5 , −Xα4

4 from the minor [ϕ3]r1,r2,r4,r6 , −X2X from the minor
[ϕ3]r2,r3,r5,r6 for I(ϕ3). □

Finally, minimal graded free resolution of the tangent cone in (6) is:

3.4. If α4 = α2 + α3 − 1 < α21 + α3 = α1.

Corollary 4. In this case IS∗ is generated by

G∗ = {Xα1−α21−1
1 X2 −Xα3

3 , Xα2
2 , X1X

α2−1
2 Xα3−1

3 −Xα4
4 , X2X

α4−1
4 , X3X

α4−1
4 }

Theorem 4. If α4 = α2 + α3 − 1 < α21 + α3 = α1, then minimal graded free
resolution of the tangent cone is

0 −→ A2 ϕ3−→ A6 ϕ2−→ A5 ϕ1−→ A −→ 0

where
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ϕ1 =
[
Xα1−α21−1

1 X2 −Xα3
3 Xα2

2 X1X
α2−1
2 Xα3−1

3 −Xα4
4 X2X

α4−1
4 X3X

α4−1
4

]
ϕ2 =


0 0 X1X

α2−1
2 −Xα4−1

4 −Xα2
2 0

0 −X1X
α3−1
3 −Xα1−α21

1 0 −f3 −Xα4−1
4

0 X2 X3 0 0 0

−X3 X4 0 Xα1−α21−1
1 0 Xα2−1

2

X2 0 X4 −Xα3−1
3 0 0



ϕ3 =


−X4 −Xα2−1

2 Xα3−1
3

−X3 0
X2 0
0 −Xα2

2

X1 Xα4−1
4

0 −f3


Proof. ϕ1ϕ2 = ϕ2ϕ3 and rankϕ1 = 1, rankϕ2 = 4, rankϕ3 = 2. Thus, rankϕ1 +
rankϕ2 = rankA5, rankϕ2 + rankϕ3 = rankA6. I(ϕ2) has a regular sequence of
length 2 as X2

3X
α4−1
4 f3 from the minor [ϕ2]r5,c2,c6 , −X2α2+1

2 from the minor
[ϕ2]r2,c3,c4 for I(ϕ2). A regular sequence of length 3 can be obtained as f4 from

the minor [ϕ3]r2,r3,r4,r6 , X3f3 from the minor [ϕ3]r1,r3,r4,r5 , X
α2+1
2 from the minor

[ϕ3]r1,r2,r5,r6 for I(ϕ3). □

4. Conclusion

Since we investigated 4-generated pseudo symmetric semigroups that are homo-
geneous with Cohen-Macaulay tangent cones when n1 is the smallest, and since
these semigroups are of homogeneous type automatically, in addition to the known
Betti sequence (1, 5, 6, 2) of the tangent cone, which Barucci, Fröberg and Şahin
obtained in [1], using the standard basis found in [14], we computed the generators
of IS∗ and we have given a complete characterization to the minimal graded-free
resolution of the tangent cone in all possible situations.
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Abstract. Let E2 be the 2-dimensional Euclidean space and T be a set such
that it has at least two elements. A mapping α : T → E2 will be called a

T -figure in E2. Let R be the field of real numbers and O(2,R) be the group of

all orthogonal transformations of E2. Put SO(2,R) = {g ∈ O(2,R)|detg = 1},
MO(2,R) = {F : E2 → E2 | Fx = gx+ b, g ∈ O(2,R), b ∈ E2},
MSO(2,R) = {F ∈ MO(2,R)|detg = 1}. The present paper is devoted to

solutions of problems of G-equivalence of T -figures in E2 for groups G =
O(2,R), SO(2,R), MO(2,R), MSO(2,R). Complete systems of G-invariants

of T -figures in E2 for these groups are obtained. Complete systems of relations

between elements of the obtained complete systems of G-invariants are given
for these groups.

1. Introduction

Let R be the field of real numbers, and let E2 be the 2-dimensional Euclidean
space.

The present paper is devoted to solution of problems of G-equivalence of T -
figures in E2 for groups G = O(2,R), SO(2,R),MO(2,R),MSO(2,R) in terms
of G-invariants of a T -figure. We have obtain complete systems of G-invariants
of T -figures for these groups and describe complete systems of relations between
elements of the obtained complete systems of G-invariants.
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Let V be a finite dimensional vector space over a field K and β be a non-
degenerate bilinear form on V . Denote by O(β,K) the group of all β-orthogonal
(that is the form β preserving) transformations of V . Let MO(β,K) be the group
generated by the group O(β,K) and all translations of V . In the paper [6], for
the orthogonal group O(β,K) in the Euclidean, spherical, hyperbolic and de-Sitter
geometries, the orbit of m vectors is characterized by their Gram matrix and an
additional subspace. In the book [2, Proposition 9.7.1], for the group MO(β,K)
in the Euclidean geometry, the orbit of m-vectors is characterized by distances be-
tween m-vectors. A complete system of relations between elements of this complete
system is also given in [2, Theorem 9.7.3.4]. In the paper [13], a complete system
of invariants of m-tuples in the two-dimensional pseudo-Euclidean geometry of in-
dex 1 and a complete system relations between the obtained complete system of
invariants are given. In the paper [15], a complete system of invariants of m-tuples
in the one-dimensional projective space and a complete system relations between
the obtained complete system of invariants are given. Invariants of m-points in
Lorentzian geometry investigated in the paper [23]. Invariants of m-points appear
also in the theory of invariants of Bezier curves ( [5,22]), in Computer vision theory
( [19,27]), in Computational Geometry ( [21]). General theory of m-point invariants
considered in the invariant theory (see [3, 8, 20,30,31]).

Complete systems of global invariants of paths and curves are investigated in
papers [1, 7–9,12,14,24–26]. Complete systems of global invariants of surfaces and
vector fields are investigated in papers [10, 11, 28]. Complete systems of global
invariants of T -figures in the affine geometry are investigated in the paper [17,18].

This paper is organized as follows. In Section 1, some known results (Propo-
sitions 1-4) on the linear representation of the field of complex numbers in two-
dimensional real space are given. Definitions of T -figures in the field C of com-
plex numbers and in the two-dimensional linear space R2 are given. Put S(C∗) =
{z ∈ C||z| = 1}. A definition of S(C∗)-equivalence of T -figures in C with respect
to the group S(C∗) is given. A definition of Λ(S(C∗))-equivalence of T -figures in
R2 with respect to the group Λ(S(C∗)) of linear transformation of R2 is given.
It is proved Theorem 1 on a relation between the S(C∗)-equivalence of T -figures
in C and Λ(S(C∗))-equivalence of T -figures in R2. In Section 2, evident forms of
elements of groups SO(2,R) and O(2,R) are given. In Section 3, a complete sys-
tem of G-invariants of a T -figure in the two-dimensional linear space R2 over the
field R of real numbers for the group G = SO(2,R) is given. A complete system
of relations between elements of the obtained complete system of invariants are
given. In Section 4, a complete system of G-invariants of a T -figure in R2 for the
group G = O(2,R) is given. A complete system of relations between elements of
the obtained complete system of G-invariants is given. In Section 5, a complete
system of G-invariants of a T -figure in R2 for the group G = MSO(2,R) is given. A
complete system of relations between elements of the obtained complete system of
G-invariants is given. In Section 6, a complete system of G-invariants of a T -figure
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in R2 for the group G = MO(2,R) is given. A complete system of relations between
elements of the obtained complete system of G-invariants is given.

2. Some properties of a linear representation of the field of
complex numbers in two-dimensional real space

A part of results of this section is known (see [16]).
Denote the field of complex numbers by C. Let c = c1 + ic2 ∈ C. Denote by Λc the

matrix of the form

(
c1 −c2
c2 c1

)
. Denote by Λ(C) the set {Λc|c ∈ C}. We consider

on the set Λ(C) following matrix operations: the component-wise addition and the
multiplication of matrices. Then Λ(C) is a field with respect to these operations.
In it the unit element is the unit matrix.

Proposition 1. The mapping Λ : C → Λ(C), where Λ : c → Λc,∀c ∈ C, is an
isomorphism of the fields C and Λ(C).

Proof. It is obvious. □

Let a = a1 + ia2 ∈ C, b = b1 + ib2 ∈ C. Put ⟨a, b⟩ = a1b1 + a2b2. Then ⟨a, b⟩ is a
bilinear form on R2 and ⟨a, a⟩ = a21+a22 is a quadratic form on R2. For convenience,
we denote by Q(a) the quadratic form ⟨a, a⟩.

The following propositions 2, 3 and 4 are known.

Proposition 2. The following equalities Q(x) = det(Λx) and Q(xy) = Q(x)Q(y)
hold for all x = x1 + ix2, y = y1 + iy2 ∈ C.

For x = x1 + ix2 ∈ C, we set x = x1 − ix2.

Proposition 3. The mapping x → x is an involution of the field C and the fol-
lowing equalities x + x = 2x1, ⟨x, x⟩ = xx = xx = x2

1 + x2
2, Q(x) = Q(x) hold for

all x = x1 + ix2 ∈ C.

Proposition 4. Let x ∈ C. Then the element x−1 exists if and only if Q(x) ̸= 0.
In the case Q(x) ̸= 0, the equalities x−1 = x

Q(x) and Q(x−1) = 1
Q(x) hold.

Put C∗ = {x ∈ C | Q(x) ̸= 0}. C∗ is a group with respect to the multiplication
operation in the field C. Denote by Λ(C∗) the set of all matrices Λa, where a ∈ C∗.
For a ∈ C∗, we have Q(a) = a21 + a22 ̸= 0 and Q(a) = det(Λa) ̸= 0.

Below everywhere we will consider every element x ∈ R2 and x ∈ E2 as a

column vector x =

(
x1

x2

)
. Denote by Γ the following mapping Γ : C → R2,

where Γ(x1 + ix2) =

(
x1

x2

)
. It is obvious that the mapping Γ is an isomorphism

of linear spaces C and R2. Hence there exists the converse isomorphism Γ−1of Γ
and Γ−1(x) = x1 + ix2,∀x ∈ R2.
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Denote by W the following matrix

(
1 0
0 −1

)
. Denote by La the following

linear operator on C: La(x) = a · x, ∀x ∈ C, a ∈ C∗. Then the following equalities
are obvious:

Γ(a1 + ia2) = WΓ(a) =

(
1 0
0 −1

)
·
(

a1
a2

)
=

(
a1
−a2

)
= Γ(a),∀a = a1 + ia2 ∈

C∗.

Γ(La(x)) = Γ(a · x) =
(

a1x1 − a2x2

a1x2 + a2x1

)
=

(
a1 −a2
a2 a1

)
·
(

x1

x2

)
= Λa · Γ(x),

(1)

∀a ∈ C∗,∀x ∈ C, where Λa · Γ(x) is the multiplication of matrices Λa and Γ(x).
Hence Λa ∈ Λ(C∗) and the mapping Λ : C∗ → Λ(C∗), where Λ(a) = Λa, is a

linear representation of the groups.
Put S(C∗) = {x ∈ C | Q(x) = 1}. It is a subgroup of the group C∗. Λ(S(C∗))

is a subgroup of the group Λ(C∗) and the mapping Λ : S(C∗) → Λ(C∗), where
Λ(a) = Λa, is a linear representation of the group S(C∗) in R2. Λ(C∗) is a group
with respect to the multiplication of matrices. Let T be a set such that it has at
least two elements. Denote by CT the set of all mappings of the set T to the field
C. An element of α ∈ CT will be called a T -figure in the field C. For the figure
α, we also use the notation α(t), considering α as a function on T with values in
C. Denote by ET

2 the set of all mappings of the set T to E2. An element γ ∈ ET
2

will be called a T -figure in the space E2. For the figure γ, we also use the notation
γ(t), considering γ as a function on T with values in E2.

Let G be a subgroup of the group C∗.

Definition 1. Two T -figures α ∈ CT and β ∈ CT is called G-equivalent if there
exists g ∈ G such that β(t) = g ·α(t),∀t ∈ T . In this case, we also write as follows:

α
G∼ β or α(t)

G∼ β(t),∀t ∈ T .

Let G be a subgroup of the group C∗.

Definition 2. Two T -figures γ ∈ ET
2 and η ∈ ET

2 is called Λ(G)-equivalent if there
exists a ∈ G such that η(t) = Λaγ(t),∀t ∈ T . In this case, we also write as follows:

γ
Λ(G)∼ η or γ(t)

Λ(G)∼ η(t),∀t ∈ T .

Theorem 1. Let α(t) = α1(t) + iα2(t) and β(t) = β1(t) + iβ2(t) be two T -
figures in C. Then T -figures α(t) = α1(t) + iα2(t) and β(t) = β1(t) + iβ2(t) are
S(C∗)-equivalent if and only if T-figures Γ(α(t)) and Γ(β(t)) in E2 are Λ(S(C∗))-
equivalent.

Proof. Assume that T -figures α(t) = α1 + iα2(t) and β(t) = α1 + iβ2(t) are S(C∗)-
equivalent. Then there exists a = a1+ ia2 ∈ S(C∗) such that β(t) = a ·α(t),∀t ∈ T .
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Using this equality and the equality (1), we obtain following equality:

Γ(β(t)) = Γ(a · α(t)) =
(

a1α1(t)− a2α2(t)
a1α2(t) + a2α1(t)

)
=

(
a1 −a2
a2 a1

)
·
(

α1(t)
α2(t)

)
= ΛaΓ(α(t)),∀t ∈ T.

This equality means that T -figures Γ(α(t)) and Γ(β(t)) are Λ(S(C∗))-equivalent .
Conversely, assume that T -figures Γ(α(t)) and Γ(β(t)) are Λ(S(C∗))-equivalent.

Since Γ is an isomorphism, Γ−1 exists. Then the above equality implies that β(t) =
Γ−1(Γ(β(t))) = Γ−1(Γ(a · α(t))) = a · α(t),∀t ∈ T . Hence T -figures α(t) = α1(t) +
iα2(t) and β(t) = β1(t) + iβ2(t) are S(C∗)-equivalent. □

3. Fundamental groups of transformations of the 2-dimensional
Euclidean space

Let E2 be the 2-dimensional Euclidean space with the scalar product ⟨a, b⟩ =

a1b1 + a2b2, where a =

(
a1
a2

)
, b =

(
b1
b2

)
∈ E2.

Definition 3. A mapping F : E2 → E2 is called orthogonal if ⟨Fx, Fy⟩ = ⟨x, y⟩
for all x, y ∈ E2.

Denote the set of all orthogonal transformations of E2 by O(2,R).
The following propositions 5-7 are well known.

Proposition 5. ( [4], p.221) Every orthogonal transformation of E2 is linear.

Proposition 6. O(2,R) is a group with respect to the multiplication operation of
matrices.

Let a = a1 + ia2, b = b1 + ib2 ∈ C. Denote the identity matrix of the bilinear
form ⟨a, b⟩ = a1b1 + a2b2 by I = ∥δij∥i,j=1,2, where δ11 = δ22 = 1, δ12 = δ21 = 0.

By Proposition 5, we can consider every element of O(2,R) as a 2× 2-matrix. Let
H ∈ O(2,R), where H = ∥hij∥i,j=1,2. Let HT be the transpose matrix of H. It

is known that the equality ⟨Hx,Hy⟩ = ⟨x, y⟩ for all x, y ∈ E2 is equivalent to the
equality

HTH = I. (2)

This equality implies the following

Proposition 7. Let H ∈ O(2,R). Then det(H) = 1 or det(H) = −1.

We denote by SO(2,R) the set {H ∈ O(2,R) : det(H) = 1}. SO(2,R) is a sub-
group of O(2,R). O(2,R) = SO(2,R) ∪ {HW | H ∈ SO(2,R)}, where HW is the

multiplication of matrices H and W , where W =

(
1 0
0 −1

)
.

Theorem 2. The equality SO(2,R) = Λ(S(C∗)) holds.
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Proof. ⇐. We assume that H ∈ Λ(S(C∗)). Then it has the following form H =
∥hij∥i,j=1,2, where h11 = h22 = c, h21 = d, h12 = −d, c, d ∈ R and det(H) =

c2 + d2 = 1. We prove that H ∈ SO(2,R). Let x =

(
x1

x2

)
, y =

(
y1
y2

)
∈ E2.

We have

H(x) =

(
cx1 − dx2

dx1 + cx2

)
, H(y) =

(
cy1 − dy2
dy1 + cy2

)
.

Using the equality c2 + d2 = 1, we obtain

⟨H(x), H(y)⟩ = (cx1 − dx2)(cy1 − dy2) + (dx1 + cx2)(dy1 + cy2) =

(c2 + d2)(x1y1 + x2y2) = ⟨x, y⟩ .

Hence H ∈ SO(2,R).
⇒. We assume that H ∈ SO(2,R), where H = ∥hij∥i,j=1,2. Then det(H) =

h11h22−h12h21 = 1 and the equality (2) holds. These equalities imply the following
system of equalities

h2
11 + h2

21 = 1 (3)

h11h12 + h21h22 = 0 (4)

h2
12 + h2

22 = 1 (5)

h11h22 − h12h21 = 1 (6)

We consider two cases h12 = 0 and h12 ̸= 0.

Let h12 = 0. Then (5) implies h2
22 = 1. Hence h22 = 1 or h22 = −1. Let h22 = 1.

Then the equalities h22 = 1, h12 = 0 and (4) imply h21 = 0. Using equalities
h21 = 0 and (3), we obtain h2

11 = 1. Hence h11 = 1 or h11 = −1. Thus, in the case
h12 = 0 and h22 = 1, we obtain h21 = 0 and h11 = 1 or h11 = −1. Hence, in this
case, we obtain only the following two matrices:

A1 = {h11 = h22 = 1, h12 = h21 = 0} , A2 = {h11 = −1, h12 = h21 = 0, h22 = 1} .

It is obviously that A1 ∈ Λ(S(C∗)) and A2 /∈ SO(2,R).
Let h22 = −1. Then the equalities h22 = −1, h12 = 0 and (4) imply h21 = 0.

Using equalities h21 = 0 and (3), we obtain h2
11 = 1. Hence h11 = 1 or h11 = −1.

Thus, in the case h12 = 0 and h22 = −1, we obtain h21 = 0 and h11 = 1 or
h11 = −1. Hence, in this case, we obtain only the following two matrices:

A3 = {h11 = 1, h12 = h21 = 0, h22 = −1} , A4 = {h11 = h22 = −1, h12 = h21 = 0} .

It is obviously that A4 ∈ Λ(S(C∗)) and A3 /∈ SO(2,R).
Let h12 ̸= 0. Using (4), we obtain

h11 = −h21h22

h12
.
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Using this equality and equalities (3), (5), we obtain:

(−h21h22

h12
)2 + h2

21 = 1 ⇒ h2
21h

2
22 + h2

12h
2
21 = h2

12 ⇒ h2
21(h

2
22 + h2

12) =

h2
12 ⇒ h2

21 = h2
12 ⇒ h2

12 − h2
21 = 0.

Hence we obtain h12−h21 = 0 or h12+h21 = 0. We consider two cases h12−h21 = 0
and h12 + h21 = 0.

Let h12 − h21 = 0. Then h12 = h21. Since h12 ̸= 0, we obtain h21 ̸= 0.
Using the equality h12 = h21 and (4), we obtain h11h21 − h21h22 = 0. Hence
h21(h11 + h22) = 0. Since h21 ̸= 0, this equality implies h11 = −h22. Thus we have
obtained the following equalities: h12 = h21 and h11 = −h22. Using (6), we obtain
−h2

11 − h2
12 = 1. Since h12 ̸= 0 and −(h2

11 + h2
12) = 1, we have a contradiction.

Hence this case is not possible.
Consider the case h12 + h21 = 0. This equality implies the equality h12 =

−h21. Using this equality and the equality (4) : h11h12 + h21h22 = 0, we obtain
h11h12−h12h22 = 0. Hence h12(h11−h22) = 0. Since h12 ̸= 0, this equality implies
h11 = h22. Hence the equalities h12 = −h21, h11 = h22 hold. These equalities

and (3) imply that the matrix H has the form

(
h11 −h21

h21 h11

)
, where det(H) = 1.

Hence H ∈ Λ(S(C∗)). □

Corollary 1. Let α(t) = α1(t)+ iα2(t) and β(t) = β1(t)+ iβ2(t) be T -figures in C.
Then T -figures α(t) = α1(t)+ iα2(t) and β(t) = β1(t)+ iβ2(t) are S(C∗)-equivalent
if and only if T-figures Γ(α(t)) and Γ(β(t)) in E2 are SO(2,R)-equivalent.

Proof. It follows from Theorems 1 and 2. □

Denote by MO(2,R) the group of all transformations of E2 generated by the
group O(2,R) and all translations of E2. Elements of the group MO(2,R) has the
following form F : E2 → E2, where F (x) = g(x)+a, g ∈ O(2,R), a ∈ R2. Denote by
MSO(2,R) the group of all transformations of E2 generated by the group SO(2,R)
and all translations of E2. Elements of the group MSO(2,R) has the following form
F : E2 → E2, where F (x) = g(x) + a, g ∈ SO(2,R), a ∈ R2.

4. Complete systems of G-invariants of a T -figure in E2 for the
group G = SO(2,R)

Let G be a subgroup of the group MO(2,R).

Definition 4. Two T -figures α and β in E2 are called G-equivalent if there exists

g ∈ G such that α = gβ. In this case, we also write as follows: α
G∼ β or α(t)

G∼
β(t),∀t ∈ T .

Definition 5. A function f(α(t), β(t), . . . , γ(t)) of a finite number of T -figures
α(t), β(t), . . . , γ(t) is called G-invariant function if
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f(Fα(t), Fβ(t), . . . , Fγ(t)) = f(α(t), β(t), . . . , γ(t)) for all F ∈ G, all T -figures
α(t), β(t), . . . , γ(t) and all t ∈ T .

Example 1. By the definitions of the groups O(2,R) and SO(2,R), we obtain that
the quadratic form Q : E2 → R ,Q(x) = ⟨x, x⟩ is O(2,R)-invariant function on
E2 and the bilinear form f : E2 × E2 → R, f(x, y) = ⟨x, y⟩ are O(2,R)-invariant
functions on the set E2 × E2.

Example 2. Denote by [x y] the determinant

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ of x =

(
x1

x2

)
, y =(

y1
y2

)
∈ E2. Consider the function h : E2 × E2 → R, h(x, y) = [x y]. Using the

equality det(g) = 1,∀g ∈ SO(2,R), we obtain [(gx) (gy)] = det(g)[x y] = [x y],∀g ∈
SO(2,R),∀x, y ∈ E2. This means that [x y] is an SO(2,R)-invariant function on
the set E2 × E2. Clearly, h(x, y) is not an O(2,R)-invariant function on the set
E2 × E2.

Example 3. By definitions of the groups G = MO(2,R),MSO(2,R) we obtain
that function f : E2 × E2 → R, f(x, y) = ⟨x− y, x− y⟩ is an G-invariant function
on the set E2 × E2.

Definition 6. A system {f1, f2, . . . , fm} of G-invariant functions f1, f2, . . . , fm of
a T -figure α in ET

2 will be called a complete system of G-invariant functions of

T -figure if equalities fj(α) = fj(β),∀j ∈ 1, 2, . . . ,m imply α
G∼ β.

Denote by θ the vector θ =

(
0
0

)
∈ E2. Let α be a T -figure in E2. De-

note by Z(α) the set {t ∈ T |α(t) = θ}. Denote by θT (t) the T -figure such that
θT (t) = θ,∀t ∈ T .

Denote by 2T the set of all subsets of the set T .

Proposition 8. (1) Let G be a subgroup of C∗. Assume that α, β ∈ CT such

that α
G∼ β. Then Z(α) = Z(β). This means that the function Z : CT → 2T

is a G-invariant function on CT .

(2) Let G be a subgroup of O(2,R). Assume that α, β ∈ ET
2 such that α

G∼ β.
Then Z(α) = Z(β) that is the function Z : ET

2 → 2T is a G-invariant
function on ET

2 .

Proof. It is obvious. □

Proposition 9. Let C be the field of complex numbers and x = x1 + ix2, y =
y1 + iy2 ∈ C such that x ̸= 0. Then,



145

(1) the element yx−1 exists, the equality yx−1 = ⟨x,y⟩
Q(x) + i [x y]

Q(x) and the following

equality hold

Λyx−1 =

( ⟨x,y⟩
Q(x) − [x y]

Q(x)
[x y]
Q(x)

⟨x,y⟩
Q(x)

)
(7)

where ⟨x, y⟩ = x1y1 + x2y2 and [x y] = x1y2 − x2y1.
(2) det(Λyx−1) ̸= 0 if and only if Q(y) ̸= 0.

Proof. It is given in [16, Proposition 4. 9]. □

Now we consider the G-equivalence problem of T -figures in the field C for the
group S(C∗).

Let α and β be T -figures in C such that α(t) = β(t) = 0,∀t ∈ T , that is

Z(α) = Z(β) = T . In this case, it is obvious that α
S(C∗)∼ β.

Theorem 3. Let α be a T -figure in the field C such that Z(α) ̸= T , and t0 ∈
T \ Z(α).

(i) Suppose that a T -figure β in C such that α
S(C∗)∼ β. Then the following

equalities hold: Z(α) = Z(β)
⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = [β(t0)β(t)] ,∀t ∈ T \ Z(α).

(8)

(ii) Conversely, assume that a T -figure β in C such that the equalities (8) hold.
Then there exists a single element g ∈ S(C∗) such that β = g · α. In this
case, it has the following form g = β(t0)(α(t0))

−1.

Proof. Assume that α
S(C∗)∼ β. Then there exists a ∈ S(C∗) such that β(t) =

a · α(t),∀t ∈ T . By Proposition 8-(1), we obtain the equality Z(α) = Z(β). Hence
the equality Z(α) = Z(β) in (8) is proved.

The equality Z(α) = Z(β) and the inequality Z(α) ̸= T imply inequality
Z(β) ̸= T . Since t0 ∈ T \ Z(α) = T \ Z(β), we obtain that α(t0) ̸= 0 and
β(t0) ̸= 0. The inequality α(t0) ̸= 0 implies an existence of (α(t0))

−1. Con-
sider following functions α(t) · (α(t0))−1 and β(t) · (β(t0))−1 on T . The above
equality β(t) = a · α(t),∀t ∈ T , implies following equality: β(t) · (β(t0))−1 =
a · α(t) · (a · α(t0))−1 = (a · a−1) · α(t) · (α(t0))−1 = α(t) · (α(t0))−1,∀t ∈ T . Hence
following equality holds:β(t)·(β(t0))−1 = α(t)·(α(t0))−1,∀t ∈ T . Using Proposition
9, we obtain following equalities:

α(t) · (α(t0))−1 = ⟨α(t0),α(t)⟩
Q(α(t0))

+ i [α(t0)α(t)]Q(α(t0))
, β(t) · (β(t0))−1 = ⟨β(t0),β(t)⟩

Q(β(t0))
+ i [β(t0) β(t)]Q(β(t0))

.

These equalities and the equality β(t) · (β(t0))−1 = α(t) · (α(t0))−1,∀t ∈ T , imply

following equality: ⟨α(t0),α(t)⟩
Q(α(t0))

+ i [α(t0)α(t)]Q(α(t0))
= ⟨β(t0),β(t)⟩

Q(β(t0))
+ i [β(t0) β(t)]Q(β(t0))

,∀t ∈ T . This
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equality imply following equalities:{ ⟨α(t0),α(t)⟩
Q(α(t0))

= ⟨β(t0),β(t)⟩
Q(β(t0))

,∀t ∈ T
[α(t0)α(t)]
Q(α(t0))

= [β(t0) β(t)]
Q(β(t0))

,∀t ∈ T.
(9)

The equality β(t) = a · α(t),∀t ∈ T , implies following equality Q(β(t0)) = Q(a ·
α(t0)). Using Proposition 2, we obtain following equalityQ(β(t0)) = Q(a)·Q(α(t0)).
Since a ∈ S(C∗), we have Q(a) = 1. This equality and previous equality Q(β(t0)) =
Q(a) · Q(α(t0)) imply following equality Q(β(t0)) = Q(α(t0)). This equality and
(9) imply following equalities:{ ⟨α(t0),α(t)⟩

Q(α(t0))
= ⟨β(t0),β(t)⟩

Q(α(t0))
,∀t ∈ T

[α(t0)α(t)]
Q(α(t0))

= [β(t0) β(t)]
Q(α(t0))

,∀t ∈ T.

These equalities imply following equalities in (8):{
⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T
[α(t0)α(t)] = [β(t0)β(t)] ,∀t ∈ T.

Hence equalities (8) is proved.
Conversely, assume that T -figures α and β in C such that the equalities (8) hold.

By the supposition in the present theorem t0 ∈ T \Z(α(t)). This implies α(t0) ̸= 0.
This inequality and the equality Z(α(t)) = Z(β(t)) in (8) imply the inequality
β(t0) ̸= 0. In the equality ⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T , in (8) we put t = t0.
Then we obtain following equality ⟨α(t0), α(t0)⟩ = ⟨β(t0), β(t0)⟩. This equality and
the following equalities Q(α(t0)) = ⟨α(t0), α(t0)⟩, Q(β(t0)) = ⟨β(t0), β(t0)⟩ imply
following equality Q(α(t0)) = Q(β(t0)). The inequality α(t0) ̸= 0 implies following
inequality Q(α(t0)) ̸= 0. This inequality, the equality Q(α(t0)) = Q(β(t0)) and the
equalities in (8) imply following equality:{ ⟨α(t0),α(t)⟩

Q(α(t0))
= ⟨β(t0),β(t)⟩

Q(β(t0))
,∀t ∈ T

[α(t0)α(t)]
Q(α(t0))

= [β(t0) β(t)]
Q(β(t0))

,∀t ∈ T.

These equalities imply following equalities:

⟨α(t0), α(t)⟩
Q(α(t0))

+ i
[α(t0)α(t)]

Q(α(t0))
=

⟨β(t0), β(t)⟩
Q(β(t0))

+ i
[β(t0)β(t)]

Q(β(t0))
,∀t ∈ T. (10)

By Proposition 9, we obtain following equalities:

α(t) · (α(t0))−1 =
⟨α(t0), α(t)⟩
Q(α(t0))

+ i
[α(t0)α(t)]

Q(α(t0))
, (11)

β(t) · (β(t0))−1 =
⟨β(t0), β(t)⟩
Q(β(t0))

+ i
[β(t0)β(t)]

Q(β(t0))
,∀t ∈ T. (12)
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Equalities (10), (11) and (12) imply following equality:

β(t) · (β(t0))−1 = α(t) · (α(t0))−1,∀t ∈ T. (13)

This equality implies following equality:

β(t) = β(t0) · (α(t0))−1 · α(t),∀t ∈ T. (14)

Since Q(α(t0)) = Q(β(t0)), using this equality and Propositions 2, 4, we obtain
following equality: Q(β(t0) · (α(t0))−1) = Q(β(t0)) · (Q(α(t0)))

−1 = Q(β(t0)) ·
(Q(β(t0)))

−1 = 1. This means that β(t0)(α(t0))
−1 ∈ S(C∗). Hence (14) implies

that α(t)
S(C∗)∼ β(t),∀t ∈ T .

Prove the uniqueness of h ∈ S(C∗) satisfying the conditions β(t) = hα(t),∀t ∈ T .
Assume that h ∈ S(C∗) such that β(t) = hα(t),∀t ∈ T . In particularly, for t = t0,
the equality β(t) = hα(t) implies following equality: β(t0) = hα(t0). This equality
and the inequality α(t0) ̸= 0 imply following equality β(t0)(α(t0))

−1 = h. Hence
the uniqueness of h is proved. □

Theorem 4. Let α be a T -figure in E2 such that Z(α) ̸= T , and t0 ∈ T \ Z(α).

(i) Suppose that a T -figure β in E2 such that α
SO(2,R)∼ β. Then the following

equalities hold: Z(α) = Z(β)
⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = [β(t0)β(t)] ,∀t ∈ T \ Z(α).

(15)

(ii) Conversely, assume that a T -figure β in E2 such that the equalities (15)
hold. Then there exists a single matrix H ∈ SO(2,R) such that β = Hα.
In this case, H has the following form

H =

( ⟨α(t0),β(t0)⟩
⟨α(t0),α(t0),⟩ − [α(t0) β(t0)]

⟨α(t0),α(t0)⟩
[α(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (16)

where det(H) = ( ⟨α(t0),β(t0)⟩⟨α(t0),α(t0)⟩ )
2 + ( [α(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Proof. We consider T -figures α and β in E2 as column vector functions: α(t) =(
α1(t)
α2(t)

)
, β(t) =

(
β1(t)
β2(t)

)
. Assume that α

SO(2,R)∼ β. Then, by Proposition

8-(2), Z(α) = Z(β). This equality and the inequality Z(α) ̸= T imply inequality
Z(β) ̸= T . Since functions ⟨α(t0), α(t)⟩ and [α(t0)α(t)] are SO(2,R)-invariant, the
SO(2,R)-equivalence α

SO(2,R)∼ β, and the equality Z(α) = Z(β) imply equalities
(15).

Conversely, assume that a T -figures α and β in E2 such that the equalities (15)
hold. Consider following T -figures in the field C: Γ−1(α(t)) = α1(t)+iα2(t),∀t ∈ T ,
Γ−1(β(t)) = β1(t)+ iβ2(t),∀t ∈ T . For these T -figures in C the equalities (15) also
hold. Then, by Theorem 3, these T -figures are S(C∗)-equivalent and there exists a
single element g ∈ S(C∗) such that β1(t) + iβ2(t) = g · (α1(t) + iα2(t)),∀t ∈ T . In
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this case, by Theorem 3, g has the following form:

g = β1(t0)+iβ2(t0)
α1(t0)+iα2(t0)

= (β1(t0)+iβ2(t0))·(α1(t0)−iα2(t0))
(α1(t0)+iα2(t0))·(α1(t0)−iα2(t0))

= (α1(t0)β1(t0)+α2(t0)β2(t0))+i(α1(t0)β2(t0)−α2(t0)β1(t0))
(α1(t0))2+(α2(t0))2

= ⟨α(t0),β(t)⟩+i[α(t0) β(t0)]
Q(α(t0))

.

The S(C∗)-equivalence of the T -figures Γ−1(α), and Γ−1(β(t)) = β1(t)+iβ2(t),∀t ∈
T in C, by Theorem 3, implies SO(2,R)-equivalence of T -figures α and β in E2. In
this case there exists a single element H ∈ SO(2,R) such that H = Λg and β(t) =

H · α(t),∀t ∈ T . By Proposition 9, the above form of g = ⟨α(t0),β(t)⟩+i[α(t0) β(t0)]
Q(α(t0))

implies that H has the form (16), where det(H) = 1. □

Remark 1. Assume that T be a set such that it has at least two elements. By
Theorem 4, the system

{Z(α), ⟨α(t0), α(t)⟩ , [α(t0)α(t)]} (17)

is a complete system of SO(2,R)-invariant functions on the set of all T -figures α
in E2 such that Z(α) ̸= T , and t0 ∈ T \ Z(α).

Now let us find a complete system of relations between elements of this complete
system.

Theorem 5. Let (17) be the complete system of SO(2,R)-invariants of a T -figure
α in E2. Assume that:
(1.1) U is a subset of T such that U ̸= T
(1.2) t0 ∈ T \ U
(1.3) r be a real number such that r > 0
(1.4) a(t) = (a1(t), a2(t)) be a mapping a : T → E2 such that following two proper-
ties hold:
(1.4.1) a1(t) = 0,∀t ∈ U , and a1(t0) = r
(1.4.2) a2(t) = 0,∀t ∈ U , and a2(t0) = 0.

Then there exists a T -figure α in E2 such that following equalities hold:
(2.1) Z(α) = U
(2.2) ⟨α(t0), α(t)⟩ = a1(t),∀t ∈ T
(2.3) [α(t0)α(t)] = a2(t),∀t ∈ T .

Proof. Assume that α is a T -figure in E2 such that Z(α) ̸= T and t0 ∈ T \ Z(α).
(2.1) − (2.3) We choose a T -figure α as follows. Put α(t0) = (

√
r, 0). Then

we obtain ⟨α(t0), α(t0)⟩ = r. This equality implies Q(α(t0)) = ⟨α(t0), α(t0)⟩ = r.
Hence ⟨α(t0), α(t0)⟩ = a1(t0) = r. We choose α on the set U as follows. We put

α(t) =

(
0
0

)
∀t ∈ U . This equality implies ⟨α(t), α(t)⟩ = a(t) = 0,∀t ∈ U .

For fixed t ∈ T , we consider a(t) and α(t) as elements of the field C of complex

numbers: a(t) = a1(t) + ia2(t), α(t) = α1(t) + iα2(t). We put α(t) = a(t)α(t0)
r ,∀t ∈

T \ (U ∪ {t0}). Since α(t0) =
√
r ̸= 0, (α(t0))

−1 exists. Then the equalities

α(t) = a(t)α(t0)
r ,∀t ∈ T \ (U ∪ {t0}), imply equalities (α(t0))

−1α(t) = a(t)
r ,∀t ∈
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T \ (U ∪ {t0}). By Proposition 9, (α(t0))
−1α(t) = ⟨α(t0),α(t)⟩

Q(α(t0))
+ i [α(t0)α(t)]Q(α(t0))

,∀t ∈ T .

The equality Q(α(t0)) = ⟨α(t0), α(t0)⟩ = r, the last two equalities (α(t0))
−1α(t) =

a(t)
r ,∀t ∈ T \ (U ∪ {t0}), (α(t0))

−1α(t) = ⟨α(t0),α(t)⟩
Q(α(t0))

+ i [α(t0)α(t)]Q(α(t0))
,∀t ∈ T , and

equalities ⟨α(t), α(t)⟩ = a(t) = 0,∀t ∈ U , imply equalities ⟨α(t0),α(t)⟩
r + i [α(t0)α(t)]r =

a(t)
r ,∀t ∈ T . These equalities imply Z(α) = U , ⟨α(t0), α(t)⟩ = a1(t),∀t ∈ T , and

[α(t0)α(t)] = a2(t), ∀t ∈ T . The statements (2.1)-(2.3) are proved. □

5. Complete systems of G-invariants of a T -figure in E2 for the
group G = O(2,R)

By Proposition 7, the following equality holds:
O(2,R) = SO(2,R) ∪ {HW | H ∈ SO(2,R)}, where HW is the multiplication

of matrices H and W , where W =

(
1 0
0 −1

)
. For shortness, denote the set

{HW | H ∈ SO(2,R)} by SO(2,R) ·W . We note that SO(2,R)∩SO(2,R) ·W = ∅.
Let α and β be T -figures in E2. Assume that α

O(2,R)∼ β. Then there exists
F ∈ O(2,R) such that β(t) = Fα(t),∀t ∈ T . Denote by Equ(α, β) the set of all
F ∈ O(2,R) such that β(t) = Fα(t),∀t ∈ T .

Proposition 10. Let α and β be T -figures in E2 such that α
O(2,R)∼ β. Then there

exist only following three possibilities for the set Equ(α, β):
(I) Equ(α, β) = {F}, where F ∈ SO(2,R).
(II) Equ(α, β) = {F}, where F ∈ SO(2,R) ·W .
(III) Equ(α, β) = {F1, F2}, where F1 ∈ SO(2,R), F2 ∈ SO(2,R) ·W .

Proof. Assume that α
O(2,R)∼ β. Then there exists F ∈ O(2,R) such that F ∈

Equ(α, β). Since F ∈ O(2,R) and F ∈ O(2,R) = SO(2,R)∪{HW | H ∈ SO(2,R)},
then F ∈ SO(2,R) or F ∈ {HW | H ∈ SO(2,R)}.

(I) Let F ∈ Equ(α, β), where F ∈ SO(2,R). By Theorem 4, in this case
there exists only one F ∈ SO(2,R) such that following equalities β(t) =
Fα(t),∀t ∈ T , hold. Hence, in this case, the set Equ(α, β) has a only one
element of SO(2,R). Assume that the set Equ(α, β) has not elements of
SO(2,R)·W . Then, in this case, the set Equ(α, β) has only a single element
F ∈ O(2,R) and it is such that F ∈ SO(2,R).

(II) Let F ∈ Equ(α, β), where F ∈ {HW | H ∈ SO(2,R)}. Then following
equality β(t) = Fα(t),∀t ∈ T , holds. Since F ∈ {HW | H ∈ SO(2,R)},
there exists H ∈ SO(2,R) such that F = HW . Then we have following
equality β(t) = HWα(t),∀t ∈ T . By Theorem 4, in this case there exists
only one H ∈ SO(2,R) such that following equalities β(t) = HWα(t),∀t ∈
T , hold. Hence, in this case, the set Equ(α, β) has only one element
of {HW | H ∈ SO(2,R)}. Assume that the set Equ(α, β) has not ele-
ments of SO(2,R). Then, in this case, the set Equ(α, β) has only one
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element of {HW | H ∈ SO(2,R)} such that Equ(α, β) = {F}, where F ∈
{HW | H ∈ SO(2,R)}.

(III) Let Equ(α, β) be such that F1 ∈ Equ(α, β) and F2 ∈ Equ(α, β), where
F1 ∈ SO(2,R) and F2 ∈ {HW | H ∈ SO(2,R)}. Then following equali-
ties hold: β(t) = F1α(t),∀t ∈ T , and β(t) = F2α(t) = HWα(t),∀t ∈ T ,
where H ∈ SO(2,R). By Theorem 4, in the case β(t) = F1α(t),∀t ∈
T , there exists only one F1 ∈ SO(2,R) such that following equalities
β(t) = F1α(t),∀t ∈ T , hold. Hence, in this case, the set Equ(α, β) has only
one element of SO(2,R). By Theorem 4, in the case β(t) = F2α(t) =
HWα(t),∀t ∈ T , where H ∈ SO(2,R), there exists only one element
F2 ∈ {HW | H ∈ SO(2,R)} such that following equalities β(t) = F2α(t) =
HWα(t),∀t ∈ T hold, where H ∈ SO(2,R). Then, in this case, the set
Equ(α, β) have only two elements: only one element of SO(2,R) and only
one element of SO(2,R) ·W .

□

Theorem 6. Let α be a T -figure in E2 such that Z(α) ̸= T and t0 ∈ T \ Z(α).

(i) Suppose that a T -figure β in E2 such that the following equalities β(t) =
HWα(t),∀t ∈ T , hold for some H ∈ SO(2,R). Then following equalities
hold:  Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
− [α(t0)α(t)] = [β(t0)β(t)] ,∀T \ Z(α).

(18)

(ii) Conversely, assume that a T -figure β in E2 such that the equalities (18)
hold. Then there exists only one matrix U ∈ SO(2,R) such that β(t) =
UWα(t),∀t ∈ T . In this case, U has the following form

U =

( ⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ − [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩
[Wα(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (19)

where det(U) = ( ⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ )2 + ( [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Proof. Suppose that a T -figure β in E2 such that the following equalities β(t) =
HWα(t),∀t ∈ T , hold for some H ∈ SO(2,R). This means T -figures Wα and β
are SO(2,R)-equivalent. Then, by Theorem 4, we obtain following equalities: Z(Wα) = Z(β)

⟨Wα(t0),Wα(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[Wα(t0)Wα(t)] = [β(t0)β(t)] ,∀t ∈ T \ Z(α).

(20)

These equalities and equalities Z(Wα) = Z(α), ⟨Wα(t0),Wα(t)⟩ = ⟨α(t0), α(t)⟩,
[Wα(t0)Wα(t)] = − [α(t0)α(t)] imply equalities (18).

Conversely, assume that a T -figure β in E2 such that the equalities (18) hold.
Then equalities (18) and equalities Z(Wα) = Z(α), ⟨Wα(t0),Wα(t)⟩ = ⟨α(t0), α(t)⟩,
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[Wα(t0)Wα(t)] = − [α(t0)α(t)] imply equalities (20). By Theorem 4, equalities (20)
and Proposition 10 imply an existence of only one U ∈ SO(2,R) such that following
equalities β(t) = UWα(t),∀t ∈ T , hold. By Theorem 4, the matrix U has the form
(19). □

Remark 2. Assume that T be a set such that it has at least two elements. By
Theorem 6, the system {Z(α), ⟨α(t0), α(t)⟩ , [Wα(t0)Wα(t)]} is a complete system
of SO(2,R)-invariant functions on the set of all T -figures Wα such that Z(α) ̸= T ,
and t0 ∈ T \ Z(α). Complete system of relations between elements of this system
follows easy from Theorem 5.

Theorem 7. Let α and β be T -figures in E2. Assume that Z(α) ̸= T and t0 ∈
T \ Z(α).

(i) Suppose that matrices H1, H2 ∈ SO(2,R) exist such that β(t) = H1α(t),∀t ∈
T , and β(t) = H2Wα(t),∀t ∈ T . Then following equalities hold: Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩
rank(α) = rank(β) = 1

(21)

for all t ∈ T \ Z(α(t)).
(ii) Conversely, assume that the equalities (21) hold. Then only two matrices

H1 ∈ SO(2,R) and H2 ∈ SO(2,R) exist such that following equalities
β(t) = H1α(t),∀t ∈ T , β(t) = H2Wα(t),∀t ∈ T , hold. Here the matrix H1

has the following form:

H1 =

( ⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ − [α(t0) β(t0)]

⟨α(t0),α(t0)⟩
[α(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (22)

where det(H1) = ( ⟨α(t0),β(t0)⟩⟨α(t0),α(t0)⟩ )
2 + ( [α(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Here the matrix H2 ∈ SO(2,R) has the following form

H2 =

( ⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ − [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩
[Wα(t0) β(t0)]
⟨α(t0),α(t0)⟩

⟨Wα(t0),β(t0)⟩
⟨α(t0),α(t0)⟩

)
, (23)

where det(H2) = (W ⟨α(t0),β(t0)⟩
⟨α(t0),α(t0)⟩ )2 + ( [Wα(t0) β(t0)]

⟨α(t0),α(t0)⟩ )
2 = 1.

Proof. (i) Suppose that there exist H1 ∈ SO(2,R) such that β(t) = H1α(t),∀t ∈ T .
Then, by Theorem 4 the following equalities hold: Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = [β(t0)β(t)] ,∀T \ Z(α).

(24)
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Suppose that there exist H2 ∈ SO(2,R) such that β(t) = H2Wα(t),∀t ∈ T .
Then, by Theorem 6, the following equalities hold: Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α)
[α(t0)α(t)] = − [β(t0)β(t)] ,∀T \ Z(α).

(25)

Equalities (24) and (25)imply the following equalities:{
Z(α) = Z(β)

⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈ T \ Z(α).
(26)

Equalities (24) implies the following equalities:

[α(t0)α(t)] = [β(t0)β(t)] ,∀T \ Z(α). (27)

Equalities (25) implies the following equalities:

[α(t0)α(t)] = − [β(t0)β(t)] ,∀T \ Z(α). (28)

Equalities (27)and (28) imply following equalities:

[β(t0)β(t)] = − [β(t0)β(t)] ,∀T \ Z(α). (29)

These equalities imply following equalities:

[β(t0)β(t)] = 0,∀T \ Z(α). (30)

These equalities and the equalities (27) imply following equalities

[α(t0)α(t)] = 0,∀T \ Z(α). (31)

The equalities (31) imply that there exists a real function a(t) on T such that
a(t) = 0,∀t ∈ Z(α), a(t) ̸= 0,∀T \ Z(α) and equalities α(t) = a(t)α(t0),∀t ∈ T
hold.

Similarly, equalities (30) imply that there exists a real function b(t) on T such
that b(t) = 0,∀t ∈ Z(α), b(t) ̸= 0,∀T \ Z(α) and equalities β(t) = b(t)β(t0),∀t ∈ T
hold.

The above equalities α(t) = a(t)α(t0),∀t ∈ T and β(t) = b(t)β(t0),∀t ∈ T imply
the equality rank(α) = rank(β) = 1 in the equalities (21). This equality and the
equalities (24)imply the equalities (21).

Conversely, assume that the equalities (21) hold. Then the equality rank(α) = 1
in (21) implies an existence of a real function a(t) on T such that a(t) = 0,∀t ∈
Z(α), a(t) ̸= 0,∀T \ Z(α) and α(t) = a(t)α(t0),∀t ∈ T .

Similarly, the equality rank(β) = 1 in (21) implies an existence of a real func-
tion b(t) on T such that b(t) = 0,∀t ∈ Z(α), b(t) ̸= 0,∀T \ Z(α), and β(t) =
b(t)β(t0),∀t ∈ T . The equalities Z(α) = Z(β), and ⟨α(t0), α(t)⟩ = ⟨β(t0), β(t)⟩,∀t ∈
T \ Z(α), imply following equality a(t) = b(t),∀t ∈ T . Hence we obtain following
equalities α(t) = a(t)α(t0),∀t ∈ T , and β(t) = a(t)β(t0),∀t ∈ T .

Since t0 ∈ T \ Z(α), we have a(t0) ̸= 0. By the equality Z(α) = Z(β), we
obtain β(t0) ̸= 0. By [16, Theorem 5.1], only two matrices H1 ∈ SO(2,R) and
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H2 ∈ SO(2,R) exist such that β(t0) = H1α(t0) and β(t0) = H2Wα(t0). By [16,
Theorem 5.1.], H1 has the form (23) and H2 has the form (24).

The above equalities β(t) = a(t)β(t0),∀t ∈ T , β(t0) = H1α(t0), β(t0) = H2Wα(t0)
imply following equalities: β(t) = H1α(t),∀t ∈ T , and β(t) = H2Wα(t),∀t ∈ T . □

Remark 3. Assume that T be a set such that it has at least two elements. By Theo-
rem 7, the system {Z(α), ⟨α(t0), α(t)⟩ , rank(α)} is a complete system of SO(2,R)-
invariant functions on the set of all T -figures α such that Z(α) ̸= T , rank(α) = 1
and t0 ∈ T \ Z(α). Complete system of relations between elements of this system
follows easy from Theorem 5.

Corollary 2. Let α and β be a T -figures in E2 such that Z(α) ̸= T and Z(β) ̸= T .
Assume that there exists a single matrix F ∈ O(2,R) such that β(t) = Fα(t),∀t ∈
T . Then rank(α) = rank(β) = 2.

Conversely, assume that α
O(2,R)∼ β, and rank(α) = rank(β) = 2. Then there

exists a single matrix F ∈ O(2,R)such that β(t) = Fα(t),∀t ∈ T .

Proof. It follows from Theorems 4,6 and 7. □

6. Complete systems of invariants of a T -figure in E2 for the group
MSO(2,R)

Let G = O(2,R) or G = SO(2,R). Denote by G ⋉ Tr(2,R) the group of all
transformations of E2 generated by elements of G and all translations of E2. In
particularly, MO(2,R) = O(2,R)⋉Tr(2,R) andMSO(2,R) = SO(2,R)⋉Tr(2,R).

Assume that the set T has only one element. Let α and β be T -figures. Then
they are Tr(2,R)-equivalent. Hence they are G ⋉ Tr(2,R)-equivalent. Below we
assume that T has at last two elements.

Proposition 11. Let G = O(2,R) or G = SO(2,R) and T be a set such that it
has at last two elements.

(1) Assume that α
G⋉Tr(2,R)∼ β, and t0 is a fixed element of T . Then (α(t) −

α(t0))
G∼ (β(t)− β(t0)),∀t ∈ T .

(2) Assume that (α(t) − α(t0))
G∼ (β(t) − β(t0)),∀t ∈ T , for some element t0 ∈ T .

Then α
G⋉Tr(2,R)∼ β.

Proof. ⇒ Assume that α
G⋉Tr(2,R)∼ β. Then there exists F ∈ G and a ∈ E2

such that β(t) = Fα(t) + a,∀t ∈ T . In particularly, for t = t0, we have β(t0) =
Fα(t0) + a. This equality implies a = β(t0)− Fα(t0). This equality and equalities
β(t) = Fα(t) + a,∀t ∈ T , imply equalities β(t) = Fα(t) + β(t0) − Fα(t0),∀t ∈ T .
These equalities imply equalities β(t) − β(t0) = F (α(t) − α(t0)),∀t ∈ T , that is

(α(t)− α(t0))
G∼ (β(t)− β(t0)),∀t ∈ T .

⇐ Assume that (α(t) − α(t0))
G∼ (β(t) − β(t0)),∀t ∈ T . Then there exists

F ∈ G such that β(t) − β(t0) = F (α(t) − α(t0)),∀t ∈ T . Put a = β(t0) − Fα(t0).
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This equality implies β(t0) = Fα(t0) + a. The equality a = β(t0) − Fα(t0) and
equalities β(t)−β(t0) = F (α(t)−α(t0)),∀t ∈ T , β(t0) = Fα(t0)+a imply equalities

β(t) = Fα(t) + a,∀t ∈ T . Hence α
G⋉Tr(2,R)∼ β. □

Proposition 12. Let G = SO(2,R) or G = O(2,R). Assume that α and β are T -

figures such that α
G⋉Tr(2,R)∼ β and t0 ∈ T . Then Z(α(t)−α(t0)) = Z(β(t)−β(t0)).

Proof. This statement follows from Propositions 8 and 11. □

This proposition means that the function Z(α(t) − α(t0)) is a G ⋉ Tr(2,R)-
invariant function of a T -figure α(t) for any t

0
∈ T .

Proposition 13. Let G = SO(2,R) or G = O(2,R). Assume that t0 ∈ T and

Z(α(t)− α(t0)) = Z(β(t)− β(t0) = T . Then α
G⋉Tr(2,R)∼ β.

Proof. In this case, we have α(t) = α(t0),∀t ∈ T , and β(t) = β(t0),∀t ∈ T . These
equalities imply β(t) = α(t) + (β(t0)− α(t0)),∀t ∈ T . Hence T -figures α and β are
G⋉ Tr(2,R)-equivalent. □

Theorem 8. Let t0 ∈ T , α be a T -figure in E2 such that Z(α(t)−α(t0)) ̸= T , and
t1 ∈ T \ Z(α(t)− α(t0)) be fixed.

(i) Suppose that a T -figure β in E2 such that α
MSO(2,R)∼ β. Then following

equalities hold: Z(α(t)− α(t0)) = Z(β(t)− β(t0)
⟨α(t1)− α(t0), α(t)− α(t0)⟩ = ⟨β(t1)− β(t0), β(t)− β(t0)⟩

[(α(t1)− α(t0)) (α(t)− α(t0))] = [(β(t1)− β(t0)) (β(t)− β(t0)]
(32)

for all t ∈ T \ Z(α(t)− α(t0)).
(ii) Conversely, assume that a T -figure β in E2 such that the equalities (32)

hold. Then there exists only one element F ∈ MSO(2,R) such that β =
Fα. The evident form of F as follows:Fα(t) = Hα(t) + a,∀t ∈ T , where
H ∈ SO(2,R), a ∈ E2. Here evident form of H as follows

H =

( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩ − [(α(t1)−α(t0)) (β(t1)−β(t0))]

⟨α(t1)−α(t0),α(t1)−α(t0))⟩
[(α(t1)−α(t0)) (β(t1)−β(t0))]
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

)
, (33)

where det(H) = ( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩ )

2 + ( [(α(t1)−α(t0)) (β(t1)−β(t0))]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )2 =

1. The element a has the following form: a = β(t0)−Hα(t0).

Proof. It follows from Proposition 11 and Theorem 4 □

Corollary 3. Let α and β be T -figures in E2. Assume that α and t0 ∈ T are such
that Z(α(t) − α(t0)) ̸= T . Assume that F1 ∈ SO(2,R), a1 ∈ E2, F2 ∈ SO(2,R),
a2 ∈ E2 such that:
1) β(t) = F1α(t) + a1,∀t ∈ T ,
2) β(t) = F2α(t) + a2,∀t ∈ T .
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Then F1 = F2, a1 = a2.

Proof. It follows easy from Proposition 11and Theorem 8. □

Remark 4. Let t0 ∈ T . By Theorem 8, the system
{Z(α(t)− α(t0)), ⟨α(t1)− α(t0), α(t)− α(t0)⟩, [(α(t1)− α(t0)) (α(t)− α(t0))]}
is a complete system of MSO(2,R)-invariant functions on the set of all T -figures
α in E2 such that Z(α(t)− α(t0)) ̸= T , where t1 ∈ T \ Z(α(t)− α(t0)) be fixed. A
complete system of relations between elements of this complete system is obtained
as in Theorem 5.

7. Complete systems of invariants of a T -figure in E2 for the group
MO(2,R)

Let α and β be T -figures in E2. Assume that α and t0 ∈ T such that Z(α(t)−
α(t0)) ̸= T . Then, by Proposition 11 α

MO(2,R)∼ β if and only if (α(t)−α(t0))
O(2,R)∼

(β(t)−β(t0),∀t ∈ T . In this case, by Proposition 10, there exist only three following
possibilities for the set Equ(α(t)− α(t0), β(t)− β(t0)):
(I) Equ(α(t)− α(t0), β(t)− β(t0)) has only one element F , where F ∈ SO(2,R).
(II) Equ(α(t)−α(t0), β(t)−β(t0)) has only one element F , where F ∈ SO(2,R)·W .
(III) Equ(α(t) − α(t0), β(t) − β(t0)) has only two elements F1 and F2, where
F1 ∈ SO(2,R) and F2 ∈ SO(2,R) ·W .

A description of the set Equ(α(t) − α(t0), β(t) − β(t0)) and a complete system
of invariants of a T -figure in E2 in the case (I) are given in Section 5.

Consider the case (II).

Theorem 9. Let α be a T -figure in E2 such that Z(α(t) − α(t0)) ̸= T for some
t0 ∈ T and t1 ∈ T \ Z(α(t)− α(t0)) be fixed.

(i) Suppose that a T -figure β such that the following equalities β(t) = HWα(t)+
d,∀t ∈ T , hold for some H ∈ SO(2,R) and some d ∈ E2. Then following
equalities hold: Z(α(t)− α(t0)) = Z(β(t)− β(t0))

⟨α(t1)− α(t0), α(t)− α(t0)⟩ = ⟨β(t1)− β(t0), β(t)− β(t0)⟩
− [α(t1)− α(t0)α(t)− α(t0)] = [β(t1)− β(t0)β(t)− β(t0)] .

(34)

for all t ∈ T \ Z(α(t)− α(t0)).
(ii) Conversely, assume that a T -figure β in E2 such that the equalities (34)hold.

Then a single matrix U ∈ SO(2,R) and a single d ∈ E2 exist such that
β(t) = UWα(t) + d,∀t ∈ T . In this case, U has following form

U =

( ⟨W (α(t1)−α(t0)),(β(t1)−β(t0))⟩
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩ − [W (α(t1)−α(t0)) (β(t1)−β(t0))]

⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩
[W (α(t1)−α(t0)) (β(t1)−β(t0))]
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩

⟨W (α(t1)−α(t0)),(β(t1)−β(t0))⟩
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩

)
, (35)

where
det(U) = ( ⟨W (α(t1)−α(t0)),(β(t1)−β(t0))⟩

⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩ )2 + ( [W (α(t1)−α(t0)) (β(t1)−β(t0))]
⟨(α(t1)−α(t0)),(α(t1)−α(t0))⟩ )

2 =

1. The element d has following form: d = β(t0)− UWα(t0).
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Proof. It follows easy from Proposition 11 and Theorem 6 □

Consider the case (III).

Theorem 10. Let α be a T -figure in E2 such that Z(α(t) − α(t0)) ̸= T for some
t0 ∈ T and t1 ∈ T \ Z(α(t)− α(t0)) be fixed.

(i) Suppose that matrices F1 ∈ SO(2,R), F2 ∈ SO(2,R) and vectors d1 ∈
E2, d2 ∈ E2 exist such that β(t) = F1α(t) + d1,∀t ∈ T , and β(t) =
F2Wα(t) + d2,∀t ∈ T . Then following equalities hold: Z(α(t)− α(t0)) = Z(β(t)− β(t0))

⟨α(t1)− α(t0), α(t)− α(t0)⟩ = ⟨β(t1)− β(t0), β(t)− β(t0)⟩
rank(α(t)− α(t0)) = rank(β(t)− β(t0)) = 1,

(36)

for all t ∈ T \ Z(α(t)− α(t0)).
(ii) Conversely, assume that the equalities (36) hold. Then only two matrices

H1 ∈ SO(2,R), H2 ∈ SO(2,R) and only two vectors d1 ∈ E2, d2 ∈ E2

exist such that following equalities β(t) = H1α(t) + d1,∀t ∈ T , β(t) =
H2Wα(t) + d2,∀t ∈ T , hold. Here the matrix H1 has following form:

H1 =

( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ − [α(t1)−α(t0) β(t1)−β(t0)]

⟨α(t1)−α(t0), α(t1)−α(t0)⟩
[α(t1)−α(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩

⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0), α(t1)−α(t0)⟩

)
, (37)

where det(H1) = ( ⟨α(t1)−α(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )

2 + ( [α(t1)−α(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )

2 =

1. Vector d1 has following form d1 = β(t0)−H1α(t0).
Here the matrix H2 ∈ SO(2,R) has following form

H2 =

( ⟨Wα(t1)−Wα(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩ − [Wα(t1)−Wα(t0) β(t1)−β(t0)]

⟨α(t1)−α(t0),α(t1)−α(t0)⟩
[Wα(t1)−Wα(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

⟨Wα(t1)−Wα(t0), β(t1)−β(t0)⟩
⟨α(t1)−α(t0),α(t1)−α(t0)⟩

)
, (38)

where
det(H2) = (Wα(t1)−W ⟨α(t0), β(t1)−β(t0)⟩

⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )2 + ( [Wα(t1)−Wα(t0) β(t1)−β(t0)]
⟨α(t1)−α(t0), α(t1)−α(t0)⟩ )2 =

1. Vector d2 has following form d2 = β(t0)−H2Wα(t0).

Proof. It follows easy from Proposition 11and Theorem 7 □

8. Conclusion

Results and methods of the present paper are useful in the theory of G-invariants
of systems of points, curves, vector fields, topological figures and polynomial fig-
ures in the two-dimensional Euclidean space E2 for groups G = SO(2,R), O(2,R),
MSO(2,R) and MO(2,R). Results and methods of the present paper are also
useful in the theory of G-invariants of mechanical figures in the two-dimensional
Euclidean space E2 for Galilei groups.
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[3] Dieudonné, J. A., Carrell, J. B., Invariant Theory, Academic Press, New-York, London, 1971.
[4] Greub, W. H., Linear Algebra, Springer-Verlag, New York Inc., 1967.
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[24] Pekşen, Ö., Khadjiev, D., Invariants of curves in centro-affine geometry, J. Math. Kyoto
Univ., 44(3)(2004), 603-613.
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B-LIFT CURVES AND ITS RULED SURFACES
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Abstract. In this paper, we have described the B-Lift curve in Euclidean

space as a curve obtained by combining the endpoints of the binormal vector
of a unit speed curve. Subsequently, we have explored the Frenet frames of

the B-Lift curves. Moreover, we have introduced the tangent, normal and

binormal surfaces of the B-Lift curve and examined the geometric invariants
of these surfaces. Finally, we have investigated the singularities of these surface

and visualized the surfaces with MATLAB program.

1. Introduction

Ruled surfaces have important applications in kinematics, computer science,
physics, etc. A ruled surface is defined by a straight line that is moving along
a curve [1]. Many mathematicians have studied the ruled surfaces [2–8]. E. Ergün
and M. Çalışkan [2] created ruled surfaces by accepting the natural lift of a curve
as the base curve and they characterized these surfaces. The natural lift curve
is described in an example in Thorpe’s book. Generally, the natural lift curve is
defined as the curve formed by combining the end points of the tangent vectors of
the curve [9].

One of the main purposes of classical differential geometry is to investigate some
classes of surfaces such as developable surfaces and minimal surfaces. Ruled surfaces
are developable surfaces with zero Gaussian curvature suach that these surfaces are
called minimal surfaces [10]. S. Izumiya and N. Takeuchi presented new results for
the Gaussian curvature and the main curvature of the ruled surface [3].

A point is called the singular point of the surface if the tangent vector at any
point does not lie in a plane. At the singular point, the surface intersects itself. If
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all points of a curve on a surface are singular, this curve is called a singular curve [1].
Recently, many studies have been done on the singularity of curves [11–16].

In this study, we define a new curve which is called B-Lift curve and we calculate
its Frenet vectors. Furthermore, we examine the integral invariants of the tangent,
principal normal and binormal surfaces of the B-Lift curve. Also, we study the
singular points of the ruled surfaces of the B-Lift curve. Finally, we give examples
of these situations and drawn our surfaces.

2. Preliminaries

Let a vector x⃗ = (x1, x2, x3) be given in R3. The norm of x⃗ = (x1, x2, x3) is
defined by

∥x⃗∥=
√

x2
1 + x2

2 + x2
3.

A vector which its norm is 1 is called a unit vector. For the vectors x⃗ =
(x1, x2, x3) and y⃗ = (y1, y2, y3) in R3, the inner product <,>: R3×R3 → R defined
as

< x⃗, y⃗ >= x1y1 + x2y2 + x3y3

which is called Euclidean inner product. If γ
′
(s) ̸= 0, γ : I →R3 is called regular

curve , for all s ∈ I. Let γ : I →R3 be a curve, if ∥γ′
(s)∥= 1 then the curve is called

unit speed curve [1].
A curve α is called general helix in R3 if tangent vector of the curve makes a

constant angle with a fixed straight line. M. A. Lancret discovered that the ratio
of curvatures of the general helix is constant in 1802 [17].

Let γ be a regular curve in R3. The set {T (s), N(s), B(s)} is called Frenet frame
given by tangent, principal normal and binormal vectors, respectively.

T (s)=γ
′
(s),

N(s)= γ
′′
(s)

∥γ′′ (s)∥ ,

B(s)=T (s)×N(s),

Here T (s), N(s) and B(s) are the unit tangent, principal normal and binormal
vectors of γ(s), respectively. Frenet-Serret formulas are following as [10]:

T
′
(s)=κ(s)N(s),

N
′
(s)=−κ(s)T (s) + τ(s)B(s),

B
′
(s)=−τ(s)N(s).

When a point moves along a curve with unit speed, the rotation is determined by
an angular velocity vector W that is called Darboux vector. The Darboux vector
W is presented as W = τT + κB. Moreover, κ = ∥W∥ cosφ and τ = ∥W∥ sinφ
are written. Here φ is the angle between Darboux vector and binormal vector of
γ(s) [10].

Let γ be a regular curve and ω be unit direction of a straight line in R3, then
the ruled surface ϕ is the surface formed by the continuous moving of ω based
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on the curve γ. The parametric representation of the ruled surface ϕ is given as
follows [10]:

ϕ(s, v) = γ(s) + vω(s).

For the ruled surface ϕ(s,v), we can write

ϕs × ϕv = γ
′
(s)× ω(s) + vω

′
(s)× ω(s).

Hence (s0, v0) is a singular point of ϕ(s,v) if and only if γ
′
(s0)×ω(s0)+v0ω

′
(s0)×

ω(s0) = 0. If ω
′
(s)×ω(s) = 0, the ruled surface ϕ(s,v) is called a cylindrical surface.

Therefore, if ω
′
(s) × ω(s) ̸= 0 the ruled surface ϕ(s,v) is called non-cylindrical

surface [10].
The foot of the common normal between two consecutive generators is called the

striction point on a ruled surface. The striction curve formed by the set of striction
points is as follows [10]:

b(s) = γ(s)− < γ
′
(s), ω

′
(s) >

< ω′(s), ω′(s) >
ω(s).

The distribution parameter for a ruled surface is described as follows [10]:

Pw =
det(γ

′
, ω, ω

′
)

||ω′ ||2
.

A ruled surface ϕ is developable if and only if Pw = 0 [10].
Let ϕ(s,v) be a ruled surface. Then the Gaussian curvature of ϕ(s,v) is given by

K(s, v) = − (det(γ
′
(s), ω(s), ω

′
(s)))2

(EG− F 2)2

and mean curvature of ϕ(s,v) given by

H(s, v) =
−2 < γ

′
(s), ω(s) > det(γ

′
(s), ω(s), ω

′
(s)) + det(γ

′′
(s) + vω

′′
(s), γ

′
(s) + vω

′
(s), ω(s))

2(EG− F 2)3/2

where E = E(s, v) = ||γ′
(s) + vω

′
(s)||2, F = F (s, v) =< γ

′
(s), ω(s) >,

G = G(s, v) = 1 [3].
Let γ be a regular curve in R3 and the set {T (s), N(s), B(s)} be the Frenet

vectors of the curve γ. Then the tangent, principal normal and binormal surfaces
of the curve γ are given in the following equalities [3]:

ϕT (s, v) = γ(s) + vT (s)

ϕN (s, v) = γ(s) + vN(s)

ϕB(s, v) = γ(s) + vB(s).
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3. B-Lift Curves and its Ruled Surfaces

Definition 1. Let γ : I → M ⊂ R3 be a unit speed curve, then γB : I → TM is
called the B-Lift curve and ensures the following equation:

γB(s) = (γ(s), B(s)) = B(s)|γ(s). (1)

Proposition 1. Assume that γB is the B-Lift curve of a unit speed curve γ. Thus,
the following equations are provided:

TB(s) = −N(s),

NB(s) =
κ(s)

||W (s)||
T (s)− τ(s)

||W (s)||
B(s),

BB(s) =
τ(s)

||W (s)||
T (s) +

κ(s)

||W (s)||
B(s)

where {T (s), N(s), B(s)} and {TB(s), NB(s), BB(s)} are the Frenet vectors of the
curve γ and γB, respectively. (In particular, the torsion will be considered greater
than zero.)

(i) Let γB be B-Lift curve of the regular curve γ. Then the tangent surface of
B-Lift curve is given as follows:

ϕTB
(s, v) = γB(s) + vTB(s). (2)

From (1) and Proposition 1, we have

ϕTB
(s, v) = B(s) + v(−N(s)). (3)

Now, we investigate the singular point of the ruled surface ϕTB

(ϕTB
)s × (ϕTB

)v = (B
′
(s)× (−N(s)) + v(κ(s)T (s)− τ(s)N(s))×−N(s)

= −vκ(s)B(s).

Since for every (s0, v0) ∈ I× (R−{0}), (ϕTB
)s0 ×(ϕTB

)v0 = −v0κ(s0)B(s0) ̸= 0,
the ruled surface ϕTB

has no singular point. Since for every (s0, v0) ∈ I×(R−{0}),
ω

′
(s0) × ω(s0) = κ(s0)B(s0) ̸= 0, the ruled surface ϕTB

is non-cylindrical surface.
The distribution parameter of the tangent surface ϕTB

is

PTB
=

det(B
′
,−N,−N

′
)

|| −N ′ ||2
= 0.

The striction curve of the ruled surface ϕTB
is

bTB
(s) = γB(s)−

< γ
′

B(s), T
′

B(s) >

< T
′
B(s), T

′
B(s) >

TB(s)

= B(s)− < −τN, κT − τB >

< κT − τB, κT − τB >
(κT − τB)

= B(s).



B-LIFT CURVES AND ITS RULED SURFACES 163

The Gaussian curvature of the ruled surface ϕTB
is

KTB
(s, v) = − (det(−τN,−N,κT − τB))2

(EG− F 2)2
= 0.

The mean curvature of the ruled surface ϕTB
is

HTB
(s, v) =

det(κτT − τ
′
N − τ2B + v(κ

′
T + (κ2 + τ2)N − τ

′
B,−τN + v(κT − τB),−N)

2(EG− F 2)3/2

=
v2( τκ )

′
κ2

2(EG− F 2)3/2
.

Corollary 1. The ruled surface ϕTB
is developable.

Corollary 2. Let the curve γ : I →R3 be a general helix curve. Then the ruled
surface ϕTB

is a minimal surface.

(ii) Let γB be B-Lift curve of the regular curve γ. Then the principal normal
surface of B-Lift curve is given as

ϕNB
(s, v) = γB(s) + vNB(s). (4)

From (1) and Proposition 1, we get

ϕNB
(s, v) = B(s) + v(

κ(s)

||W (s)||
T (s)− τ(s)

||W (s)||
B(s)). (5)

(ϕNB
)s × (ϕNB

)v = (−τ +
τ2

||W ||
, v(

κ
′
τ − κτ

′

||W ||2
),−κ+

κτ

||W ||
). (6)

The distribution parameter of the principal normal surface of the curve γB is

PNB
=

det(B
′
, NB , N

′

B)

||N ′
B ||2

=
τ(− κτ

′

||W ||2 + κ
′
τ

||W ||2 )

( κ′

||W || )
2 + (κ

2+τ2

||W || )
2 + ( τ ′

||W || )
2
.

The striction curve of the ruled surface ϕNB
is

bNB
(s) = γB(s)−

< γ
′

B(s), N
′

B(s) >

< N
′
B(s), N

′
B(s) >

NB(s)

= B(s)−
< −τN, κ

′

||W ||T + κ2+τ2

||W || N − τ
′

||W ||B >

< κ′

||W ||T + κ2+τ2

||W || N − τ ′

||W ||B, κ′

||W ||T + κ2+τ2

||W || N − τ ′

||W ||B >
(

κ

||W ||
T − τ

||W ||
B).

The Gaussian curvature of the ruled surface ϕNB
is

KNB
(s, v) = − (det(γ

′

B , NB , N
′

B))
2

(EG− F 2)2
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=
τ(− κτ

′

||W ||2 + κ
′
τ

||W ||2 )

(EG− F 2)2
.

The mean curvature of the ruled surface ϕNB
is

HNB
(s, v) =

det(γ
′′

B + vN
′′

B , γ
′

B + vN
′

B , NB)

2(EG− F 2)3/2

=
v2( 3κκ

′
+3ττ

′

||W ||3 )(κ
′
τ − κτ

′
) + v2(κ

2+τ2

||W ||3 )(κτ
′′ − κ

′′
τ) + vτ

′
(κτ

′
−τκ

′

||W ||2 ) + vτ(κ
′′
τ−τ

′′
κ

||W ||2 )

2(EG− F 2)3/2
.

Corollary 3. Assume that γ : I →R3 is a general helix curve. Hence the ruled
surface ϕNB

is a developable surface.

Corollary 4. Let γ : I →R3 be a general helix curve. Then the ruled surface ϕNB

is a minimal surface.

(iii) Let γB be B-Lift curve of the regular curve γ. Then the binormal surface
of B-Lift curve is given by

ϕBB
(s, v) = γB(s) + vBB(s). (7)

From (1) and Proposition 1, we know

ϕBB
(s, v) = B(s) + v(

τ(s)

||W (s)||
T (s) +

κ(s)

||W (s)||
B(s)). (8)

(ϕBB
)s × (ϕBB

)v = (− κτ

||W ||
, v(

κ
′
τ − κτ

′

||W ||2
),

τ2

||W ||
). (9)

From (9), the ruled surface ϕBB
has no singular point and since BB ×B

′

B ̸= 0, ϕBB

is non-cylindrical surface.
The distribution parameter of the ruled surface ϕBB

is

PBB
=

det(B
′
, BB , B

′

B)

||B′
B ||2

=
τ(− κτ

′

||W ||2 + κ
′
τ

||W ||2 )

(τ ′)2 + (κ′)2
.

The striction curve of the ruled surface ϕBB
is

bBB
(s) = γB(s)−

< γ
′

B(s), B
′

B(s) >

< B
′
B(s), B

′
B(s) >

BB(s)

= B(s).

The Gaussian curvature of the ruled surface ϕBB
is

KBB
(s, v) = − (det(γ

′

B , BB , B
′

B))
2

(EG− F 2)2
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=
τ(− κτ

′

||W ||2 + κ
′
τ

||W ||2 )

(EG− F 2)2
.

The mean curvature of the ruled surface ϕBB
is

HBB
(s, v) =

det(γ
′′

B + vB
′′

B , γ
′

B + vB
′

B , BB)

2(EG− F 2)3/2

=

τv
||W ||2 (−κ

′
τ + τ

′
κ+ κ

′′
τ − κτ

′′
)− τ2

||W || (κ
2 + τ2)− v2

||W ||3 (τ
′
κ− κ

′
τ)2

2(EG− F 2)3/2
.

Corollary 5. Let γ : I →R3 be a general helix curve. Then the ruled surface ϕBB

is a developable surface.

Example 1. Let us consider the unit speed general helix curve that is given as
following equality:

γ(s) = (

√
3

3
s3/2,

√
3

3
(1− s)3/2,

s

2
).

Then the curve γB is given as follows:

γB(s) = (−1

2
s1/2,

1

2
(1− s)1/2,

√
3

2
).

The Frenet vectors of the curve γB can be calculated by

TB(s) = (−(1− s)1/2,−s1/2, 0),

NB(s) = (s1/2,−(1− s)1/2, 0),

BB(s) = (0, 0, 1).

From (3), (5) and (8), the tangent, normal and binormal surfaces are calculated as
follows:

ϕTB
(s, v) = γB(s) + vTB(s)

= (−1

2
s1/2,

1

2
(1− s)1/2,

√
3

2
) + v(−(1− s)1/2,−s1/2, 0)

ϕNB
(s, v) = γB(s) + vNB(s)

= (−1

2
s1/2,

1

2
(1− s)1/2,

√
3

2
) + v(s1/2,−(1− s)1/2, 0)

ϕBB
(s, v) = γB(s) + vBB(s)

= (−1

2
s1/2,

1

2
(1− s)1/2,

√
3

2
) + v(0, 0, 1).

The distrubition parameters of the ruled surfaces ϕTB
, ϕNB

and ϕBB
are

PTB
=

det(B
′
, TB , T

′

B)

||T ′
B ||2

= 0,
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Figure 1. Illustration of the ruled surfaces ϕTB
, ϕNB

and ϕBB
, respectively.

PNB
=

det(B
′
, NB , N

′

B)

||N ′
B ||2

= 0,

PBB
=

det(B
′
, BB , B

′

B)

||B′
B ||2

= 0.

Since PTB
= PNB

= PBB
= 0, the ruled surfaces ϕTB

, ϕNB
and ϕBB

are developable.
The striction lines of the ruled surfaces ϕTB

, ϕNB
and ϕBB

are given by

bTB
(s) = γB(s)−

< γ
′

B(s), T
′

B(s) >

< T
′
B(s), T

′
B(s) >

TB(s)

= B(s)

= (−1

2
s1/2,

1

2
(1− s)1/2,

√
3

2
).

bNB
(s) = γB(s)−

< γ
′

B(s), N
′

B(s) >

< N
′
B(s), N

′
B(s) >

NB(s)

= (−1

2
s1/2,

1

2
(1− s)1/2,

√
3

2
) +

1

2
(s1/2,−(1− s)1/2, 0)

= (0, 0,

√
3

2
).

bBB
(s) = γB(s)−

< γ
′

B(s), B
′

B(s) >

< B
′
B(s), B

′
B(s) >

BB(s)

= B(s)

= (−1

2
s1/2,

1

2
(1− s)1/2,

√
3

2
).

Gaussian curvatures of the ruled surfaces ϕTB
, ϕNB

and ϕBB
are given as follows:

KTB
(s, v) = − (det(γ

′

B , TB , T
′

B))
2

(EG− F 2)2
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= 0

KNB
(s, v) = − (det(γ

′

B , NB , N
′

B))
2

(EG− F 2)2

= 0

KBB
(s, v) = − (det(γ

′

B , BB , B
′

B))
2

(EG− F 2)2

= 0.

Mean curvatures of the ruled surfaces ϕTB
, ϕNB

and ϕBB
are calculated as

HTB
(s, v) =

−2 < γ
′
(s), TB(s) > det(γ

′
(s), TB(s), T

′

B(s))

2(EG− F 2)3/2

+
det(γ

′′
(s) + vT

′′

B(s), γ
′
(s) + vT

′

B(s), TB(s))

2(EG− F 2)3/2

= 0

HNB
(s, v) =

−2 < γ
′
(s), NB(s) > det(γ

′
(s), NB(s), N

′

B(s))

2(EG− F 2)3/2

+
det(γ

′′
(s) + vN

′′

B(s), γ
′
(s) + vN

′

B(s), NB(s))

2(EG− F 2)3/2

= 0

HBB
(s, v) =

−2 < γ
′
(s), BB(s) > det(γ

′
(s), BB(s), B

′

B(s))

2(EG− F 2)3/2

+
det(γ

′′
(s) + vB

′′

B(s), γ
′
(s) + vB

′

B(s), BB(s))

2(EG− F 2)3/2

= 0.

Since HTB
(s, v) = HNB

(s, v) = HBB
(s, v) = 0, the ruled surfaces ϕTB

, ϕNB
and

ϕBB
are minimal surfaces.

4. Conclusion

In this study, based on Thorpe’s definition [9], we have introduced the B-lift
curve and calculated the Frenet vectors of the B-Lift curves. Furthermore, we have
given the tangent, normal, and binormal surfaces of the B-Lift curves and calcu-
lated the integral invariants of these surfaces.
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THE LINEAR ALGEBRA OF A GENERALIZED TRIBONACCI

MATRIX
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Department of Mathematics, Faculty of Science and Arts, Kirikkale University, Kirikkale,

TÜRKİYE

Abstract. In this paper, we consider a generalization of a regular Tribonacci

matrix for two variables and show that it can be factorized by some special

matrices. We produce several new interesting identities and find an explicit
formula for the inverse and k−th power. We also give a relation between the

matrix and a matrix exponential of a special matrix.

1. Introduction

Integer sequences are widely used in many areas such as physics, engineering, arts
and nature. There have been several studies in the literature that concern about
the second order integer sequences and their generalizations such as Fibonacci, Lu-
cas, Pell and Jacobsthal, see [8,9,11–13,17]. Horadam interested in the generalized
Fibonacci sequence {Wn(a, b; p, q)}n≥0, where a, b are nonnegative integers and p, q
are arbitrary integers, and studied some properties of the sequence, see [11, 12].
Another generalization of the Fibonacci sequence is called as the Tribonacci se-
quence. The Tribonacci sequence is the most familiar series of numbers obtained
by generalizing Fibonacci sequence as orders.

For n ≥ 0, we use the following definition of the sequence of Tribonacci numbers
which is given by third order recurrence relation

tn+3 = tn+2 + tn+1 + tn

with initial conditions

t0 = t1 = 1, t2 = 2.

The first few terms of the Tribonacci numbers are given in Table 1.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12
tn 1 1 2 4 7 13 24 44 81 149 274 504 927

Table 1. The first few terms of the Tribonacci sequence

The characteristic polynomial x3 − x2 − x− 1 = 0 of the third order Tribonacci
recurrence has a unique real root of maximum modulus and this is

lim
n→∞

tn+1

tn
≈ 1.83929,

the Tribonacci constant, see [21]. Many researchers studied some properties of the
Tribonacci sequence, see [4–6,10,15,20,22,23,25].

A matrix Tn of order n+ 1 with entries

ti,j =

{
2tj

ti+2+ti−1 , if 0 ≤ j ≤ i,

0, otherwise.
(1)

is defined in [26] and the Tribonacci space sequences ℓp(T ) are introduced. For
n = 4, the matrix T4 will look as follows

T4 =


1 0 0 0 0
1
2

1
2 0 0 0

1
4

1
4

1
2 0 0

1
8

1
8

1
4

1
2 0

1
15

1
15

2
15

4
15

7
15

 .

Definition 1. A square matrix R is regular if and only if R is a stochastic matrix
and some power Rk, for k ≥ 1, has all entries nonzero.

Thus from the definition of the regular matrix, we obtain that the matrix defined
in (1) is a regular matrix.

Inspiring by this study, we define a two variable generalization of the matrix given
in (1) and obtain several interesting new properties. We are also interested in matrix
factorization of the defined matrix which is a method of representing a matrix as a
product of some matrices. There are various types of matrix factorizations such as
singular value decomposition, LU factorization, Cholesky factorization, etc. This
method is used to simplify calculations, especially in solving a problem that is
difficult to solve in its original form. Several authors are interested in matrix
factorizations of some special matrices, see [1, 2, 7, 18,19,27].
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2. A Generalization of the Regular Tribonacci Matrix

In this section, we give a generalization of the matrix defined in (1). We define
a matrix Tn(x, y) = [ti,j(x, y)] of order n+ 1 with entries

ti,j(x, y) =

{
2tj

ti+2+ti−1x
i−jyj , if 0 ≤ j ≤ i,

0, otherwise.

Thus for n = 4, the matrix will look as follows

T4(x, y) =


1 0 0 0 0
1
2x

1
2y 0 0 0

1
4x

2 1
4xy

1
2y

2 0 0
1
8x

3 1
8x

2y 1
4xy

2 1
2y

3 0
1
15x

4 1
15x

3y 2
15x

2y2 4
15xy

3 7
15y

4

 .

We will denote the (i, j) entry of this matrix as (Tn(x, y))i,j . It is easy to see that
when x or y is zero, ti,j(x, y) will be trivial. Therefore we generally assume that x
and y in Tn(x, y) are non-zero real numbers. It is clear that for x = y = 1 we have

ti,j(1, 1) = ti,j

and so in this case we obtain the regular Tribonacci matrix (1).

2.1. Multiplication of two Tribonacci matrices. The Tribonacci matrix Tn(x, y)
has some interesting properties and applications. Thus we give some of these prop-
erties now. For n, j ∈ N, we define

(x⊕ y)nj =

n∑
k=0

tk+j,k+jx
n−kyk.

Theorem 1. For any positive integer n and any real numbers x, y, z and w, we
have (

Tn(x, y)Tn(w, z)
)
i,j

=
(
Tn

(
(x⊕ yw)j , yz

))
i,j
. (2)

Proof. From the definition of the matrix Tn(x, y) and the rules of the matrix mul-
tiplication, the (i, j) entry of Tn(x, y)Tn(w, z) is 0 for j > i. For j ≤ i it can be
obtained as

i∑
k=j

ti,k(x, y)tk,j(w, z) =

i∑
k=j

2tk
ti+2 + ti − 1

xi−kyk
2tj

tk+2 + tk − 1
wk−jzj

=
2tj

ti+2 + ti − 1

i∑
k=j

2tk
tk+2 + tk − 1

xi−kykwk−jzj

= ti,j

i∑
k=j

tk,kx
i−kykwk−jzj
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= ti,j

i−j∑
k=0

tk+j,k+jx
i−j−kyk+jwkzj

= ti,j(yz)
j

i−j∑
k=0

tk+j,k+jx
i−j−k(yw)k

= ti,j(x⊕ yw)i−j
j (yz)j

This is also the (i, j) entry of Tn

(
(x⊕ yw)j , yz

)
, so equation (2) holds. □

For w = x and z = y in (2), we

(T 2
n(x, y))i,j = Tn

(
x(1⊕ y)j , y

2
)
i,j

.

Using formula (2) again, multiplying T 2
n(x, y) and Tn(x, y), we get

(T 3
n(x, y))i,j = Tn

(
x(1⊕ y ⊕ y2)j , y

3
)
i,j

.

Then using the mathematical induction method, the following results can be ob-
tained.

(T k
n (x, y))i,j = Tn

(
x(1⊕ y ⊕ · · · ⊕ yk−1)j , y

k
)
i,j

.

2.2. The inverse of the matrix Tn(x, y). The inverse of the Tribonacci matrix
Tn(x, y) is given by the following theorem.

Theorem 2. The (i, j)−entry of the inverse of the matrix Tn(x, y) is

(Tn(x, y)
−1)i,j =


ti+2+ti−1

2tiyi , if i = j,

− (ti+2+ti−1−2ti)x
2tiyi , if i = j + 1,

0, otherwise.

Proof. By straightforward computation of matrix multiplication, we get the desired
result. □

2.3. The factorization of the Tribonacci matrix. We define the matrices of
order n+ 1 with the following entries

(Sn(x, y))i,j =

{
ti,j(x, y)t

−1
j−1,j−1(x, y) + ti,j+1(x, y)t

−1
j,j−1(x, y) i ≥ j,

0 i < j,

Tn−1(x, y) =

[
1 0
0 Tn−1(x, y)

]
, n ≥ 1,

Gn = Sn, Gk(x, y) =

[
In−k−1 0

0 Sk(x, y)

]
, 1 ≤ k ≤ n− 1.

Let us consider the product of the matrices Tn(x, y) and T
−1

n−1(x, y). Here we

represent the (i, j) entry of the matrices T−1
n (x, y) and T

−1

n−1(x, y) as t
−1
i,j (x, y) and
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t
−1
i,j (x, y), respectively. From the definitions of the matrices, the (i, j) entry of

Tn(x, y)T
−1

n−1(x, y) for i < j equals 0 and for i ≥ j, we have

i∑
k=j

ti,k(x, y)t
−1
k,j(x, y) =

i∑
k=j

ti,k(x, y)t
−1
k−1,j−1(x, y). (3)

Then it can be seen that the term of the sum (3) is nonzero only for k − 1 = j − 1
and k − 1 = j, that is, for k = j and k = j + 1. Thus

i∑
k=j

ti,k(x, y)t
−1
k−1,j−1(x, y) = ti,j(x, y)t

−1
j−1,j−1(x, y) + ti,j+1(x, y)t

−1
j,j−1(x, y).

Therefore we obtained the following result.

Lemma 1. For any positive integer n and any real numbers x and y, we have

Tn(x, y) = Sn(x, y)Tn−1(x, y).

Example 1.

S5(x, y)T 4(x, y)

=


1 0 0 0 0 0
1
2x

1
2y 0 0 0 0

1
4x

2 − 1
4xy y 0 0 0

1
8x

3 − 1
8x

2y 0 y 0 0
1
15x

4 − 1
15x

3y 0 1
15xy

14
15y 0

1
28x

5 − 1
28x

4y 0 1
28x

2y − 3
98xy

195
196y




1 0 0 0 0 0
0 1 0 0 0 0
0 1

2x
1
2y 0 0 0

0 1
4x

2 1
4xy

1
2y

2 0 0

0 1
8x

3 1
8x

2y 1
4xy

2 1
2y

3 0

0 1
15x

4 1
15x

3y 2
15x

2y2 4
15xy

3 7
15y

4



=


1 0 0 0 0 0
1
2x

1
2y 0 0 0 0

1
4x

2 1
4xy

1
2y

2 0 0 0
1
8x

3 1
8x

2y 1
4xy

2 1
2y

3 0 0
1
15x

4 1
15x

3y 2
15x

2y2 4
15xy

3 7
15y

4 0
1
28x

5 1
28x

4y 1
14x

3y2 1
7x

2y3 1
4xy

4 13
28y

5


= T5(x, y).

Using Lemma 1 and the definition of the matrices Gk(x, y), we present the de-
composition of Tn(x, y) in the following.

Theorem 3. The matrix Tn(x, y) can be factorized as

Tn(x, y) = Gn(x, y)Gn−1(x, y) · · ·G1(x, y).

In particular,

Tn = GnGn−1 · · ·G1,

where Tn := Tn(1, 1), Gk := Gk(1, 1), k = 1, 2, . . . , n.

For the inverse of the matrix Tn(x, y), we get

T−1
n (x, y) = G−1

1 (x, y)G−1
2 (x, y) · · ·G−1

n (x, y).
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Example 2. Since

T5(x, y) =


1 0 0 0 0 0
1
2x

1
2y 0 0 0 0

1
4x

2 1
4xy

1
2y

2 0 0 0
1
8x

3 1
8x

2y 1
4xy

2 1
2y

3 0 0
1
15x

4 1
15x

3y 2
15x

2y2 4
15xy

3 7
15y

4 0
1
28x

5 1
28x

4y 1
14x

3y2 1
7x

2y3 1
4xy

4 13
28y

5

 ,

we can factorize this matrix as
G5(x, y)G4(x, y)G3(x, y)G2(x, y)G1(x, y) =
1 0 0 0 0 0
1
2x

1
2y 0 0 0 0

1
4x

2 − 1
4xy y 0 0 0

1
8x

3 − 1
8x

2y 0 y 0 0
1
15x

4 − 1
15x

3y 0 1
15xy

14
15y 0

1
28x

5 − 1
28x

4y 0 1
28x

2y − 3
98xy

195
196y




1 0 0 0 0 0
0 1 0 0 0 0
0 1

2x
1
2y 0 0 0

0 1
4x

2 − 1
4xy y 0 0

0 1
8x

3 − 1
8x

2y 0 y 0
0 1

15x
4 − 1

15x
3y 0 1

15xy
14
15y

×


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1

2x
1
2y 0 0

0 0 1
4x

2 − 1
4xy y 0

0 0 1
8x

3 − 1
8x

2y 0 y




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1

2x
1
2y 0

0 0 0 1
4x

2 − 1
4xy y




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1

2x
1
2y

 .

3. Some Applications of the Matrix Tn(x, y)

In this section, we give some applications of the defined matrix Tn(x, y). Firstly,
we present a relation between the matrices Tn(x, ay) and Tn(x,−y) for a nonzero
real number a.

Theorem 4. For a nonzero real number a, the matrices Tn(x, ay) and Tn(x,−y)
satisfy the following

Tn

(
x,

y

a

)−1

= Tn(x,−y)−1Tn(x, ay)Tn(x,−y)−1.

Proof. The proof can be done easily by definition of the matrices and matrix mul-
tiplication. □

We give another factorization of the matrices Tn(x, y) and Tn(−x, y) where the
variables x and y are separated from these matrices.

Theorem 5. Let Dn(x) := diag{1, x, x2, . . . , xn} be a diagonal matrix. For any
positive integer k and any non-zero real numbers x and y, we have

Tk(x, y) = Dk(x)Tk(1, 1)D
−1
k (x/y),

Tk(−x, y) = Dk(x)Tk(−1, 1)D−1
k (x/y).
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Remark 1. The entries of the matrix Tn(x, y) can be separated by the indices, that
is for i ≥ j(

Tn(x, y)
)
i,j

=
2tj

ti+2 + ti − 1
xi−jyj =

xi

ti+2 + ti − 1
2tj

(y
x

)j

= aibj

where

ai =
xi

ti+2 + ti − 1
and bj = 2tj

(y
x

)j

.

In [19], the authors give some properties of such matrices. The related results
provide the alternative proofs for Theorem 2 and Theorem 5.

Theorem 6. Let Kn(x, y) = [ki,j ] be a matrix with entries ki,j = tjx
i−jyj and D

′

n

be a diagonal matrix with diagonal entries
{1, 1

2 , · · · ,
2

ti+2+ti−1 , · · · ,
2

tn+2+tn−1}. Then we have

Tn(x, y) = D
′

nKn(x, y).

Proof. Multiplying Tn(x, y) from the left with the diagonal matrix with entries

{1, 2, · · · , ti+2+ti−1
2 , · · · , tn+2+tn−1

2 }, we get clearly the matrix Kn(x, y). Hence the
result follows. □

Example 3. For n = 5, we have

T5(x, y) =


1 0 0 0 0 0
1
2x

1
2y 0 0 0 0

1
4x

2 1
4xy

1
2y

2 0 0 0
1
8x

3 1
8x

2y 1
4xy

2 1
2y

3 0 0
1
15x

4 1
15x

3y 2
15x

2y2 4
15xy

3 7
15y

4 0
1
28x

5 1
28x

4y 1
14x

3y2 1
7x

2y3 1
4xy

4 13
28y

5



=


1 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

4 0 0 0
0 0 0 1

8 0 0
0 0 0 0 1

15 0
0 0 0 0 0 1

28




1 0 0 0 0 0
x y 0 0 0 0
x2 xy 2y2 0 0 0
x3 x2y 2xy2 4y3 0 0
x4 x3y 2x2y2 4xy3 7y4 0
x5 x4y 2x3y2 4x2y3 7xy4 13y5


= D

′

5K5(x, y).

Now, we present a matrix whose Cholesky factorization includes the matrix
Tn(1, 1). First, we need the following result.

Lemma 2 ( [16]). For n ≥ 0, the Tribonacci numbers tn satisfy

n∑
k=1

t2k =
4tntn+1 − (tn+1 − tn−1)

2 + 1

4
. (4)
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Theorem 7. A matrix Qn = [ci,j ] with entries

ci,j =
4tktk+1 − (tk+1 − tk−1)

2 + 1

(ti+2 + ti − 1)(tj+2 + tj − 1)

where k = min{i, j}, is a symmetric matrix and its Cholesky factorization is
Tn(1, 1)Tn(1, 1)

T .

Proof. Since

ci,j =
4tktk+1−(tk+1−tk−1)

2+1
(ti+2+ti−1)(tj+2+tj−1) = cj,i,

Qn is symmetric. Now, we will show that Qn = Tn(1, 1)Tn(1, 1)
T . By matrix

multiplication,

Tn(1, 1)Tn(1, 1)
T =

n∑
k=0

ti,ktj,k =

n∑
k=0

2tk
ti+2 + ti − 1

2tk
tj+2 + tj − 1

=
4

(ti+2 + ti − 1)(tj+2 + tj − 1)

n∑
k=0

t2k.

The proof is completed by substituting (4) in the last equation. □

In the last part of this section, we will give a relation between the matrix Tn(x, y)
and the exponential of a special matrix. Matrix exponentials are defined by simply
plugging matrices into the usual Maclaurin series for the exponential function. In
other words, for any square matrix M , the exponential of M is defined to be the
matrix

eM = I +M +
M2

2!
+

M3

3!
+ · · ·+ Mk

k!
+ · · · .

For any square matrix M , we have the following result:

Theorem 8 ( [3, 24]).

(i) For any numbers r and s, we have e(r+s)M = erMesM .
(ii) (eM )−1 = e−M .
(iii) By taking the derivative with respect to x of each entry of eMx, we get the

matrix d
dxe

Mx = MeMx.

Definition 2. The matrix Mn = [mi,j ] is defined by

mi,j =

{
tj
ti
, if i = j + 1,

0, otherwise.
(5)

We want to obtain a relation between Tn(x, y) and eMnx, so we prove the fol-
lowing auxiliary result.
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Lemma 3. For every nonnegative integer k, the entries of the matrix Mk
n are given

by

(Mk
n)i,j =

{
tj
ti
, if i = j + k,

0, otherwise.

Proof. The proof will be done by induction on k. The case k = 0 follows straight-
forward. Let us assume the inductive hypothesis on Mk+1

n = MnM
k
n . It is not hard

to see for i ̸= j + k + 1, (Mk+1
n )i,j = 0. For i = j + k + 1, we have

(Mk+1
n )i,j =

ti−1

ti

tj
tj+k

=
tj+k

tj+k+1

tj
tj+k

=
tj

tj+k+1
.

□

Theorem 9. For n ∈ N and x ∈ R, we have

(Tn(0, 1)
−1Tn(x, 1))i,j = (i− j)!(eMnx)i,j .

Proof. Suppose that there is a matrix Ln such that (Tn(0, 1)
−1Tn(x, 1))i,j = (i −

j)!(eLnx)i,j . Then we have

d

dx
(Tn(0, 1)

−1Tn(x, 1))i,j = Ln(i− j)!(eLnx)i,j = Ln(Tn(0, 1)
−1Tn(x, 1))i,j

and so

d

dx
(Tn(0, 1)

−1Tn(x, 1))i,j |x=0= Ln.

Thus there is at most one matrix Ln such that (Tn(0, 1)
−1Tn(x, 1))i,j = (i −

j)!(eLnx)i,j . It can be easily seen that L = Mn, where Mn is the matrix given

in Definition 2, by calculating d
dx (Tn(0, 1)

−1Tn(x, 1))i,j |x=0. We conclude that

Mk
n = 0 for k ≥ n+ 1, thus

eMnx =

n∑
k=0

Mk
n

xk

k!
.

For i < j, we see that (eMnx)i,j = 0 and we also have (eMnx)i,i = 1. Now, suppose
that i > j and let i = j + k.

(eMnx)i,j = (Mk
n)i,j

xk

k!
=

tj
tj+k

xk

k!
=

1

k!
(Tn(0, 1)

−1Tn(x, 1))i,j .

Hence the proof is completed. □
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Example 4. We obtain the matrix d
dxT5(0, 1)

−1T5(x, 1) by taking the derivative of

each entry of the matrix T5(0, 1)
−1T5(x, 1) with respect to x. Thus

d

dx
T5(0, 1)

−1T5(x, 1) =


0 0 0 0 0 0
1
2 0 0 0 0 0
1
2x

1
4 0 0 0 0

3
8x

2 1
4x

1
4 0 0 0

4
5x

3 1
5x

2 4
15x

4
15 0 0

5
28x

4 1
7x

3 3
14x

2 2
7x

1
4 0

 .

Hence we have

M5 = T5(0, 1)
−1 d

dx
T5(x, 1) |x=0=


0 0 0 0 0 0
1 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 4

7 0 0
0 0 0 0 7

13 0


and

M2
5 =


0 0 0 0 0 0
0 0 0 0 0 0

1× 1
2 0 0 0 0 0

0 1
2 × 1

2 0 0 0 0
0 0 1

2 × 4
7 0 0 0

0 0 0 4
7 × 7

13 0 0

 ,

M3
5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1× 1
2 × 1

2 0 0 0 0 0
0 1

2 × 1
2 × 4

7 0 0 0 0
0 0 1

2 × 4
7 × 7

13 0 0 0

 ,

M4
5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1× 1
2 × 1

2 × 4
7 0 0 0 0 0

0 1
2 × 1

2 × 4
7 × 7

13 0 0 0 0

 ,

M5
5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1× 1
2 × 1

2 × 4
7 × 7

13 0 0 0 0 0

 .
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Let Mn be the matrix defined in (5) and Un(x) = eMnx. At the end of this sec-
tion, we will find the explicit inverse of the matrix
Rn(x) = [In − λUn(x)]

−1 for real number λ such that | λ |< 1. To achieve this, we
need the following result.

Lemma 4 ( [14], Corollary 5.6.16). A matrix A of order n is nonsingular if there
is a matrix norm || · || such that ||I −A|| < 1. If this condition is satisfied,

A−1 =

∞∑
k=0

(I −A)k.

Theorem 10. The matrix Rn(x) is defined for real number λ such that | λ |< 1.
The entries of the matrix are

(Rn(x))i,i =
1

1− λ

and

(Rn(x))i,j = (Un(x))i,jLij−i(λ)

for i > j, where Lin(z) is the polylogarithm function

Lin(z) =

∞∑
k=1

zk

kn
.

Proof. The statement in Lemma 4 is equivalent to: If || · || is a matrix norm
and if ||A|| < 1 for a square matrix of order n, then I − A is invertible and
(I −A)−1 =

∑∞
k=0 A

k. Then for |λ| < 1, we can write

(Rn(x))i,j =

∞∑
k=0

(Un(x))
kλk =

∞∑
k=0

(Un(xk))i,jλ
k = (Un(x))i,j

∞∑
k=0

λkki−j .

We obtain the desired result by writing the sum for i = j and i > j. □

Example 5.

I4 − λU4(x) = I4 −


λ 0 0 0 0
xλ λ 0 0 0

1
4λx

2 1
2λx λ 0 0

1
24λx

3 1
8λx

2 1
2λx λ 0

1
168λx

4 1
42λx

3 1
7λx

2 4
7λx λ



=


1− λ 0 0 0 0
−xλ 1− λ 0 0 0

− 1
4λx

2 − 1
2λx 1− λ 0 0

− 1
24λx

3 − 1
8λx

2 − 1
2λx 1− λ 0

− 1
168λx

4 − 1
42λx

3 − 1
7λx

2 − 4
7λx 1− λ

 .
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The inverse of this matrix equals

1
1−λ 0 0 0 0
λ

(1−λ)2x
1

1−λ 0 0 0
1
4

λ2+λ
(1−λ)3x

2 1
2

λ
(1−λ)2x

1
1−λ 0 0

1
24

λ3+4λ2+λ
(1−λ)4 x3 1

8
λ2+λ
(1−λ)3x

2 1
2

λ
(1−λ)2x

1
1−λ 0

1
168

λ4+11λ3+11λ2+λ
(1−λ)5 x4 1

42
λ3+4λ2+λ
(1−λ)4 x3 1

7
λ2+λ
(1−λ)3x

2 4
7

λ
(1−λ)2x

1
1−λ

 .
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A-DAVIS-WIELANDT-BEREZIN RADIUS INEQUALITIES
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2Isparta University of Applied Sciences, Isparta, TÜRKİYE

Abstract. We consider operator V on the reproducing kernel Hilbert space

H = H (Ω) over some set Ω with the reproducing kernel KH,λ (z) = K (z, λ)

and define A-Davis-Wielandt-Berezin radius ηA (V ) by the formula

ηA (V ) := sup

{√∣∣〈V kH,λ, kH,λ

〉
A

∣∣2 +
∥∥V kH,λ

∥∥4
A

: λ ∈ Ω

}
and Ṽ is the Berezin symbol of V where any positive operator A-induces a

semi-inner product on H is defined by ⟨x, y⟩A = ⟨Ax, y⟩ for x, y ∈ H. We study
equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned

above. We establish some lower and upper bounds for the A-Davis-Wielandt-

Berezin radius of reproducing kernel Hilbert space operators. In addition, we
get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two

bounded linear operators.

1. Introduction

Many researchers in mathematics and mathematical physics are interested in
the Berezin symbol of an operator defined with the aid of a reproducing kernel
Hilbert space. In this context, several mathematicians have conducted substantial
research on the Berezin radius inequality (see [4, 14, 16, 20, 21]). In fact, it is of
interest to academics to get refinements and extensions of this disparity. We show
various inequalities for the A-Davis-Wielandt-Berezin radius of operators on the
reproducing kernel Hilbert space H (Ω) over some set Ω in this study. By using
A-Berezin transforms, we study some lower and upper bounds for the A-Davis-
Wielandt-Berezin radius of some operators. In addition, we get an upper bound
for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.
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norm, semi inner product, reproducing kernel Hilbert spaces.
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We will now outline the preliminary concepts needed to proceed with the findings
of this investigation.

Remember that a reproducing kernel Hilbert space (abbreviated RKHS) is the
Hilbert space H = H (Ω) of complex-valued functions on some set Ω in which:

(a) the evaluation functionals

φλ(f) = f(λ), λ ∈ Ω,

are continuous on H;
(b) for every λ ∈ Ω there exists a function fλ ∈ H such that fλ (λ) ̸= 0.
Then, via the classical Riesz representation theorem, we know if H is an RKHS

on Ω, there is a unique element KH,λ ∈ H such that h(λ) = ⟨h,KH,λ⟩ for every
λ ∈ Ω and all h ∈ H. The reproducing kernel at λ is denoted by the element KH,λ.

Further, we will denote the normalized reproducing kernel at λ as kH,λ :=
KH,λ

∥KH,λ∥ .

Let L (H) be the Banach algebra of all bounded linear operators on a complex
Hilbert space H including the identity operator 1H in L (H).

Linear operators induced by functions are frequently encountered in functional
analysis; they include Hankel operators, composition operators, and Toeplitz oper-
ators. The inducing function is sometimes referred to as the symbol of the resultant
operator. In many circumstances, a linear operator on a Hilbert space H also gives
rise to a function on Ω. Hence, we frequently examine operators induced by func-
tions, and we may similarly research functions induced by operators. The Berezin
symbol is an outstanding exemplar of an operator-function link. More accurately,

for an operator V ∈ L (H), the Berezin symbol (transform) of V, denoted by Ṽ , is
the complex-valued function on Ω defined by

Ṽ (λ) := ⟨V kH,λ, kH,λ⟩ .

For each bounded operator V on H, the Berezin symbol Ṽ is a bounded real-
analytic function on Ω. Features of the operator V, are often seen in the features

of the Berezin transform Ṽ . F. Berezin proposed the Berezin transform in [8] and
it has proven to be a fundamental tool in operator theory, since many essential
features of significant operators are contained in their Berezin transforms.

The Berezin radius (number) of operator V is defined by

ber (V ) := sup
λ∈Ω

∣∣∣Ṽ (λ)
∣∣∣ .

The Berezin set and the Berezin norm of operator are defined, respectively, by

Ber (V ) := Range
(
Ṽ
)

and ∥V ∥Ber := sup
λ∈Ω

∥V kH,λ∥ .

The Berezin transform and Berezin radius have been studied by many mathemati-
cians over the years (see [3, 4, 14,26]).
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Recall that the Berezin range of an operator V is a subset of the numerical range
of V,

W (V ) = {⟨V u, u⟩ : ∥u∥ = 1} .
It is well knowledge that Ber (V ) ⊆ W (V ), ber (V ) ≤ w (V ) (numerical radius)
and ber (V ) ≤ ∥V ∥Ber . See [5, 9, 18, 22, 24, 27] for further details. Two of these
generalizations are the Davis-Wielandt radius dw (V ) and Davis-Wielandt shell
DW (V ) of V ∈ L (H) defined by

dw (V ) := sup

{√
|⟨V u, u⟩|2 + ∥V u∥4 : u ∈ H and ∥u∥ = 1

}
;

and

DW (V ) :=
{(

⟨V u, u⟩ , ∥V u∥2
)
: u ∈ H and ∥u∥ = 1

}
⊆ C× R

see [5, 10,25,28].
N (V ), its range by R (V ) and adjoint of V by V ∗ denote the null space of every

operator V . If U is a linear subspace of H, then U stands for its closure in the
norm topology of H. An operator A ∈ L (H) is called positive, denoted by A ≥ 0,
if ⟨Au, u⟩ ≥ 0 for all u∈ H. For V ∈ L (H), the absolute value of V , denoted by

|V |, is defined as |V | = (V ∗V )
1/2

. Along with the article, A denotes a non-zero
positive operator on H. Notice that any positive operator A induces a semi-inner
product on H defined by

⟨u, v⟩A := ⟨Au, v⟩H , ∀u, v ∈ H.

The seminorm induced by ⟨., .⟩A is given by ∥u∥A =
√

⟨u, u⟩A =
∥∥A1/2u

∥∥ for all
u ∈ H.

It can be easily verified that ∥.∥A is norm if and only if A is injective and that

the seminormed space (H, ∥.∥A) which is complete if and only if R (A) = R (A).

Definition 1. For V ∈ L (H), the A-Berezin set of ⟨V kλ, kλ⟩A is defined by

BerA (V ) := {⟨V kλ, kλ⟩A : λ ∈ Ω} .

BerA (V ) is a nonempty subset of C and it is in general not closed even if H is
finite dimensional are important to be significant.

Definition 2. (i) A-Berezin transform (also called A-Berezin symbol) Ṽ A is defined
on Ω by

Ṽ A (λ) := ⟨V kλ, kλ⟩A (λ ∈ Ω) ,

(ii) The supremum modulus of BerA (V ), denoted by berA (V ), is referred to as
the A-Berezin number of V , i.e.,

berA (V ) := sup
λ∈Ω

|⟨V kλ, kλ⟩A| ,

(iii) A-Berezin norm of operators V ∈ L (H (Ω)) is defined by

∥V ∥A−Ber := sup
λ∈Ω

∥AV kλ∥H .
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We get the Berezin number if A = I. As a result of this new idea, the Berezin
number of reproducing kernel Hilbert space operators and the Berezin norm of
operators become more generic. See [15, 19] for further information on A-Berezin
number inequalities.

Definition 3. ( [12]) Let V ∈ L (H). An operator U ∈ L (H) is called an A-adjoint
of V if for every λ, µ ∈ Ω, identity ⟨V kλ, kµ⟩A = ⟨kλ, Ukµ⟩A holds.

Definition 4. Let V ∈ L (H (Ω)). An operator U ∈ L (H (Ω)) is called (A, r)-
adjoint of V if for every λ, µ ∈ Ω, the identity ⟨V kH,λ, kH,λ⟩A = ⟨kH,λ, UkH,λ⟩A
holds.

Following [12, 13], notice that the existence of an A-adjoint of V is identical to
the existence of a solution of the equation AX = V ∗A. Thanks to the Douglas
theorem, these types of equations can be studied and the readers can consult to
Moslehian et al. [23]. In summary, Douglas theorem states unequivocally that
the operator equation V X = U has a bounded linear solution X if and only if
R (U) ⊆ R (V ). Furthermore, it has just one solution, represented by Q, that

satisfies R (Q) ⊆ R (V ∗) among its numerous solutions. This type of Q is known
as the reduced solution or Douglas solution of V X = U . LA (H) denotes the set of
all operators in L (H) that admit A-adjoint. According to the Douglas theorem,

LA (H) = {V ∈ L (H) : R (V ∗A) ⊆ R (A)} .

Moreover, LA1/2 (H) denotes the set all operators admitting A1/2-adjoints. When
we use the Douglas theorem, we get

LA1/2 (H) = {V ∈ L (H) : ∃λ > 0, ∥V u∥A ≤ λ ∥u∥A , ∀u ∈ H} .

A-bounded refers to the operator in LA1/2 (H).
If V ∈ LA (H) , then the reduced solution (or Douglas solution) to the equation

AX = V ∗A is a well-known A-adjoint operator of V, which is represented by V ∗A .
We observe that

V ∗A = A†V ∗A,

where A† is the Moore-Penrose inverse of A (see [1,2]). It is commonly known that
the operator V ∗A satisfies

AV ∗A = V ∗A, R (V ∗A) ⊆ R (A) and N (V ∗A) = N (V ∗A) .

Also, note that if V ∈ LA (H) , then V ∗A ∈ LA (H) and (V ∗A)
∗A = PAV PA, where

PA represents the ortogonal projection onto R (A). Furthermore, if V ∈ LA (H),
then ∥V ∗A∥ = ∥V ∥A . In order to reach more results and proofs related to these
classes of operators, the researchers may want to overview [1,2].

If AV is selfadjoint, that is, AV = V ∗A, then an operator V ∈ L (H) is called
to be A-selfadjoint. Furthermore, an operator V is said to be A-positive if AV ≥ 0
and we write V ≥A 0.
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The Hilbert space
(
R

(
A1/2

)
, ⟨., .⟩R(A1/2)

)
shall be designated simply by R

(
A1/2

)
in the sequal.

Feki in [12] has found some upper bounds for the A-Davis-Wielandt radius of
operators in LA (H).

Definition 5. For any V ∈ LA,r (H (Ω)), we define its A-Davis-Wielandt-Berezin
shell and A-Davis-Wielandt-Berezin radius, respectively, by the formulas

HA (V ) :=
{(

⟨V kH,λ, kH,λ⟩A , ∥AkH,λ∥2A
)
, λ ∈ Ω

}
and

ηA (V ) := sup
λ∈Ω

√∣∣∣Ṽ A (λ)
∣∣∣2 + ∥V kH,λ∥4A

It is apparent that ηA (V ) ≤ dwA (V ). For V,U ∈ LA,r (H (Ω)) one has
(i) ηA (V ) ≥ 0 and ηA (V ) = 0 if and only if V = 0;

(ii) ηA (αV )

 ≥ |α| ηA (V ) if |α| > 1
= |α| ηA (V ) if |α| = 1
≤ |α| ηA (V ) if |α| < 1.

(iii) ηA (V + U) ≤
√

2
(
ηA (V ) + ηA (U) + 4 (ηA (V ) + ηA (U))

2
)
;

therefore ηA (·) cannot be a norm on L (H (Ω)). The following property of ηA (·) is
immediate:

max
{
berA (V ) , ∥V ∥2A−ber

}
≤ ηA (V ) ≤

√
ber2A (V ) + ∥V ∥4A−ber (V ∈ LA,r (H)).

(1)
Recently, Bhanja et al. in [6] have reached some upper bounds for the A-Davis-

Wielandt radius of operators in LA (H (Ω)) . The purpose of this article is to find
out some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of re-
producing kernel Hilbert space operators. For this aim, we employ some well-known
inequalities for vectors in inner product spaces (see [6, 7, 11]). We also get an up-
per bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear
operators.

In particular, for V ∈ LA,r (H (Ω)) we prove that

η2A (V ) ≤ sup
θ∈R

ber2A
(
eiθV + V ∗AV

)
− 2c̃A (V )m2

A−ber (V )

and

η2A (V ) ≤ inf
z∈C

{(
2 ∥Re (z)ReA (V ) + Im (z) ImA (V )∥A−ber +

∥∥V ∗AV − 2Re (zV )
∥∥
A−ber

)2

+2 ∥Re (zV )∥A−ber − |z|2 + ber2A (V − zI)
}
.
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2. Prerequisites

In the present section, we need some auxiliary lemmas including Buzano [7]
inequality, Dragomir [11] inequality and Bhanja et al. [6] inequality in order to
prove our results.

Buzano [7] made an extension of the Cauchy-Schwarz inequality which states
that for any a1, a2, a3 ∈ H with ∥a3∥ = 1

|⟨a1, a3⟩ ⟨a3, a2⟩| ≤
1

2
(|⟨a1, a2⟩|+ ∥a1∥ ∥a2∥) . (2)

Dragomir [11] proved the following inequalities.

Lemma 1. Let u1, u2 ∈ H and z ∈ C. Then the following equality holds:

∥u1∥2 ∥u2∥2 − |⟨u1, u2⟩|2 = ∥u1 − zu2∥2 ∥u2∥2 − |⟨u1 − zu2, u2⟩|2 .

We need the following lemmas, given in [6].

Lemma 2. Let u1, u2, e ∈ H with ∥e∥A = 1. Then

|⟨u1, e⟩A ⟨e, u2⟩A| ≤
1

2
(|⟨u1, u2⟩A|+ ∥u1∥A ∥u2∥A) . (3)

Lemma 3. Let u1, u2, e ∈ H with ∥e∥A = 1. Then

∥u1∥2A ∥u2∥2A − |⟨u1, u2⟩A|
2 ≥ 2 |⟨u1, e⟩A ⟨e, u2⟩A| (∥u1∥A ∥u2∥A − |⟨u1, u2⟩A|) .

Lemma 4. Let u1, u2, e ∈ H and z ∈ C. Then we have the following equality:

∥u1∥2A ∥u2∥2A − |⟨u1, u2⟩A|
2
= ∥u1 − zu2∥2A ∥u2∥2A − |⟨u1 − zu2, u2⟩A|

2
.

3. Main results

We use the lemmas from the preceding section to derive additional inequalities
for the A-Davis-Wielandt-Berezin radius of operators on H = H (Ω).

Let H = H (Ω) be a RKHS. The A-Berezin symbol of operator V ∈ L (H (Ω)) is
naturally defined the by the formula

Ṽ A (λ) := ⟨V kH,λ, kH,λ⟩A = ⟨AV kH,λ, kH,λ⟩ , λ ∈ Ω.

Therefore, LA,r (H) := LA,r (H (Ω)) denotes the set of all operators in L (H (Ω))
admitting (A, r)-adjoints.

For V ∈ LA,r (H) , its Crawford number cA (V ) is defined by

cA (V ) := inf {|⟨V u, u⟩A| : u ∈ H, ∥u∥A = 1}

(see [27]). We also introduce the number c̃A (V ) := infλ∈Ω

∣∣∣Ṽ A (λ)
∣∣∣ . It is clear that

cA (V ) ≤ c̃A (V ) ≤ berA (V ) .

Our first result in this paper reads as follows.
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Theorem 1. Let V ∈ LA,r (H (Ω)). Then, the following inequalities hold.

(i) η2A (V ) ≥ max
{
ber2A (V ) + c̃2A

(
V ∗AV

)
, ∥V ∥4A-Ber + c̃2A (V )

}
,

(ii) η2A (V ) ≥ 2max
{
berA (V ) c̃A

(
V ∗AV

)
, c̃A (V ) ∥V ∥2A−Ber

}
.

Proof. For any λ ∈ Ω, we have

η2A (V ) ≥
∣∣⟨V kH,λ, kH,λ⟩A

∣∣2 + ∥V kH,λ∥4A
=

∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 + 〈

V ∗AV kH,λ, kH,λ

〉2
A

≥
∣∣∣Ṽ A (λ)

∣∣∣2 + inf
λ∈Ω

〈
V ∗AV kH,λ, kH,λ

〉2
A
,

hence, taking supremum over λ ∈ Ω gives

η2A (V ) ≥ ber2A (V ) + c̃2A
(
V ∗AV

)
.

Moreover, by taking into consideration η2A (V ) ≥
∣∣∣Ṽ A (λ)

∣∣∣2 + ∥V kH,λ∥4A , we see

that
η2A (V ) ≥ c̃2A (V ) + ∥V kH,λ∥4A .

Hence, on taking the supremum over λ ∈ Ω, we obtain

η2A (V ) ≥ c̃2A (V ) + ∥V ∥4A−Ber ,

which proves (i).
Let λ ∈ Ω be arbitrary. It can be observed that∣∣⟨V kH,λ, kH,λ⟩A

∣∣2 + ∥V kH,λ∥4A ≥ 2
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ ∥V kH,λ∥2A (4)

and

η2A (V ) ≥ 2
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ 〈V ∗AV kH,λ, kH,λ

〉
A

≥ 2
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ inf
λ∈Ω

〈
V ∗AV kH,λ, kH,λ

〉
A

= 2
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ c̃A (
V ∗AV

)
.

Taking supremum over all λ ∈ Ω, we thus have

η2A (V ) ≥ 2berA (V ) c̃A
(
V ∗AV

)
.

From the inequality (4), we get

η2A (V ) ≥ 2c̃A (V ) ∥V kH,λ∥2A .

Taking supremum over all λ ∈ Ω, we thus have

η2A (V ) ≥ 2c̃A (V ) ∥V ∥2A-Ber .

Hence the proof is complete. □

Remark 1. It is clear that the lower bound obtained in Theorem 1 (i) is more solid
than that in (1). Also, both of inequalities in ( [17], Th. 1) follow from Theorem 1
by considering A = I.
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For A ∈ L (H (Ω)), we define

m2
A−ber (V ) := inf

λ∈Ω
∥V kH,λ∥2A .

We get an upper bound for the A-Davis-Wielandt-Berezin radius of bounded linear
operators on RKHS in the following result.

Theorem 2. Let V ∈ LA,r (H (Ω)). Then

η2A (V ) ≤ sup
θ∈R

ber2A
(
eiθV + V ∗AV

)
− 2c̃A (V )m2

A−ber (V ) .

Proof. Let λ ∈ Ω be arbitrary. Then there exists θ ∈ R such that∣∣⟨V kH,λ, kH,λ⟩A
∣∣ = eiθ ⟨V kH,λ, kH,λ⟩A .

Now, ∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 + ∥V kH,λ∥4A

=
〈
eiθV kH,λ, kH,λ

〉2
A
+
〈
V ∗AV kH,λ, kH,λ

〉2
A

=
(〈
eiθV kH,λ, kH,λ

〉
A
+
〈
V ∗AV kH,λ, kH,λ

〉
A

)2
− 2

〈
eiθV kH,λ, kH,λ

〉
A

〈
V ∗AV kH,λ, kH,λ

〉
A
.

Hence, we have

2
〈
eiθV kH,λ, kH,λ

〉
A

〈
V ∗AV kH,λ, kH,λ

〉
A
+

∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 + ∥V kH,λ∥4A

=
〈(
eiθV + V ∗AV

)
kH,λ, kH,λ

〉2
A

≤ ber2A
(
eiθV + V ∗AV

)
.

Therefore,

2
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ 〈V ∗AV kH,λ, kH,λ

〉
A
+
∣∣⟨VH,λ, kH,λ⟩A

∣∣2 + ∥V kH,λ∥4

≤ sup
θ∈R

ber2A
(
eiθV + V ∗AV

)
and so,

2c̃A (V )m2
A−ber (V ) +

∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 + ∥V kH,λ∥4A ≤ sup

θ∈R
ber2A

(
eiθV + |V |2A

)
.

Hence, taking supremum over λ ∈ Ω gives

η2A (V ) ≤ sup
θ∈R

ber2A
(
eiθV + V ∗AV

)
− 2c̃A (V )m2

A−ber (V ) .

This completes the proof. □

Remark 2. According to the inequality in ( [17], Th. 2),

η2 (V ) ≤ sup
θ∈R

ber2
(
eiθV + V ∗V

)
− 2c̃ (V )m2

ber (V ) .

This shows that the inequality in ( [17], Th. 2) follows from Theorem 2 by consid-
ering A = I.
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We can now show the following inequality for the A-Davis-Wielandt-Berezin
radius of bounded linear operators.

Theorem 3. Let V ∈ LA,r (H (Ω)) . Then

1

2

{
ber2A

(
V + V ∗AV

)
+ c̃2A

(
V − V ∗AV

)}
≤ η2A (V )

≤ 1

2

{
ber2A

(
V + V ∗AV

)
+ ber2A

(
V − V ∗AV

)}
.

Proof. Let λ ∈ Ω be arbitrary. Then∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 + ∥V kH,λ∥4A

=
1

2

∣∣⟨V kH,λ, kH,λ⟩A + ⟨V kH,λ, V kH,λ⟩A
∣∣2

+
1

2

∣∣⟨V kH,λ, kH,λ⟩A − ⟨V kH,λ, V kH,λ⟩A
∣∣2

=
1

2

∣∣⟨V kH,λ, kH,λ⟩A +
〈
V ∗AV kH,λ, kH,λ

〉
A

∣∣2
+

1

2

∣∣⟨V kH,λ, kH,λ⟩A −
〈
V ∗AV kH,λ, kH,λ

〉
A

∣∣2
=

1

2

∣∣〈(V + V ∗AV
)
kH,λ, kH,λ

〉
A

∣∣2 + 1

2

∣∣〈(V − V ∗AV
)
kH,λ, kH,λ

〉
A

∣∣2
≥ 1

2

{∣∣〈(V + V ∗AV
)
kH,λ, kH,λ

〉
A

∣∣2 + c̃2A
(
V − V ∗AV

)}
Therefore, taking supremum over λ ∈ Ω, we get

η2A (V ) ≥ 1

2

{
ber2A

(
V + V ∗AV

)
+ c̃2A

(
V − V ∗AV

)}
.

Similarly,∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 + ∥V kH,λ∥4A

=
1

2

∣∣⟨V kH,λ, kH,λ⟩A + ⟨V kH,λ, V kH,λ⟩A
∣∣2

+
1

2

∣∣⟨V kH,λ, kH,λ⟩A − ⟨V kH,λ, V kH,λ⟩A
∣∣2

=
1

2

∣∣〈(V + V ∗AV
)
kH,λ, kH,λ

〉
A

∣∣2 + 1

2

∣∣〈(V − V ∗AV
)
kH,λ, kH,λ

〉
A

∣∣2 .
Therefore, taking supremum over λ ∈ Ω, we get

η2A (V ) ≤ 1

2

{
ber2A

(
V + V ∗AV

)
+ ber2A

(
V − V ∗AV

)}
.

Hence completes the proof. □

Now we give upper bounds for the A-Davis-Wielandt-Berezin radius of V ∈
LA,r (H) .
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Theorem 4. Let V ∈ LA,r (H (Ω)) . Then the inequalities listed below are true.

(i) η2A (V ) ≤
∥∥∥V ∗AV +

(
V ∗AV

)∗A
V ∗AV

∥∥∥
A−ber

,

(ii) η2A (V ) ≤ 1
2

(
berA

(
V 2

)
+ ∥V ∥2A

)
+ ∥V ∥4A−Ber .

Proof. Let λ ∈ Ω be arbitrary. Applying (3) for u1 = V kH,λ, e = kH,λ and
u2 = V kH,λ, we have that∣∣∣Ṽ (λ)

∣∣∣2
A
+ ∥V kH,λ∥4A =

∣∣⟨V kH,λ, kH,λ⟩A ⟨kH,λ, V kH,λ⟩A
∣∣

+
〈
V ∗AV kH,λ, kH,λ

〉
A

〈
kH,λ, V

∗AV kH,λ

〉
A

≤ 1

2

(
∥V kH,λ∥2A + ⟨V kH,λ, V kH,λ⟩A

)
+

1

2

(∥∥V ∗AV kH,λ

∥∥2
A
+

〈
V ∗AV kH,λ, V

∗AV kH,λ

〉
A

)
=

〈(
V ∗AV +

(
V ∗AV

)∗A
V ∗AV

)
kH,λ, kH,λ

〉
A
.

taking the supremum over λ ∈ Ω, we have

sup
λ∈Ω

{∣∣∣Ṽ (λ)
∣∣∣2
A
+ ∥V kH,λ∥4A

}
≤ sup

λ∈Ω

〈(
V ∗AV +

(
V ∗AV

)∗A
V ∗AV

)
kH,λ, kH,λ

〉
A
.

This proves (i). The proof of (ii) is immediate from∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 =

∣∣⟨V kH,λ, kH,λ⟩A
〈
kH,λ, V

∗AkH,λ

〉
A

∣∣ (5)

by applying (3) for u = V kH,λ, e = kH,λ, v = V ∗kH,λ in (5). The theorem is
proved. □

It is widely known that if V is A-normaloid then
∥∥V 2

∥∥
A
= ∥V ∥2A. Hence, both

the inequalities in Theorem 4 becomes equality if V is A-normaloid can be observed
easily.

We now obtain another upper bounds for the Davis-Wielandt-Berezin radius of
bounded linear operators.

Theorem 5. If V ∈ LA,r (H (Ω)) , then we have

η2A (V ) ≤ 3
∥∥∥(V ∗AV

)∗A
V ∗AV + V ∗AV

∥∥∥
A−ber

− c̃A
(
V ∗AV + V

)
mA−ber

(
V ∗AV + V

)
(6)

− c̃A
(
V ∗AV − V

)
mA−ber

(
V ∗AV − V

)
.

Proof. Let λ ∈ Ω be arbitrary. It follows from Lemmas 2-3 that∣∣⟨V kH,λ, kH,λ⟩A
∣∣2

≤ ∥V kH,λ∥2A ∥kH,λ∥2A
− 2

∣∣⟨V kH,λ, kH,λ⟩A ⟨kH,λ, kH,λ⟩A
∣∣ (∥V kH,λ∥A ∥kH,λ∥A −

∣∣⟨V kH,λ, kH,λ⟩A
∣∣)
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= ∥V kH,λ∥2A + 2
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ ∣∣⟨kH,λ, V kH,λ⟩A
∣∣− 2

∣∣⟨V kH,λ, kH,λ⟩A
∣∣ ∥V kH,λ∥A

≤ ∥V kH,λ∥2A + ∥V kH,λ∥2A + ⟨V kH,λ, V kH,λ⟩A − 2c̃A (V ) ∥V kH,λ∥A
≤ 3

〈
V ∗AV kH,λ, kH,λ

〉
A
− 2c̃A (V )mA−ber (V ) .

Therefore, we get∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 + ∥V kH,λ∥4A

=
1

2

(∣∣∣∥V kH,λ∥2A + ⟨V kH,λ, kH,λ⟩A
∣∣∣2 + ∣∣∣∥V kH,λ∥2A − ⟨V kH,λ, kH,λ⟩A

∣∣∣2)
=

1

2

(∣∣〈(V ∗AV + V
)
kH,λ, kH,λ

〉
A

∣∣2 + ∣∣〈(V ∗AV − V
)
kH,λ, kH,λ

〉
A

∣∣2)
≤ 1

2

(
3
〈∣∣V ∗AV + V

∣∣2
A
kH,λ, kH,λ

〉
A
− 2c̃A

(
V ∗AV + V

)
mA−ber

(
V ∗AV + V

)
+3

〈∣∣V ∗AV − V
∣∣2
A
kH,λ, kH,λ

〉
A
− 2c̃A

(
V ∗AV − V

)
mA−ber

(
V ∗AV − V

))
=

3

2

〈(∣∣V ∗AV + V
∣∣2
A
+
∣∣V ∗AV − V

∣∣2
A

)
kH,λ, kH,λ

〉
A

− c̃A
(
V ∗AV + V

)
mA−ber

(
V ∗AV + V

)
− c̃A

(
V ∗AV − V

)
mA−ber

(
V ∗AV − V

)
= 3

〈((
V ∗AV

)∗A
V ∗AV + V ∗AV

)
kH,λ, kH,λ

〉
A

− c̃A
(
V ∗AV + V

)
mA−ber

(
V ∗AV + V

)
− c̃A

(
V ∗AV − V

)
mA−ber

(
V ∗AV − V

)
.

Thus, by taking supremum over λ ∈ Ω, we obtain

sup
λ∈Ω

(∣∣∣Ṽ A (λ)
∣∣∣2 + ∥V kH,λ∥4A

)
≤ 3 sup

λ∈Ω

〈((
V ∗AV

)∗A
V ∗AV + V ∗AV

)
kH,λ, kH,λ

〉
A

− sup
λ∈Ω

c̃A
(
V ∗AV + V

)
mA−ber

(
V ∗AV + V

)
− c̃A

(
V ∗AV − V

)
mA−ber

(
V ∗AV − V

)
which is equivalent to

η2A (V ) ≤ 3
∥∥∥(V ∗AV

)∗A
V ∗AV + V ∗AV

∥∥∥
A−ber

− c̃A
(
V ∗AV + V

)
mA−ber

(
V ∗AV + V

)
− c̃A

(
V ∗AV − V

)
mA−ber

(
V ∗AV − V

)
.

This immediately proves (6) as required. □

We are now able to establish the following theorem.

Theorem 6. Let V ∈ LA,r (H (Ω)) . Then the inequalities listed below are true.
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(i)

η2A (V ) ≤ inf
r∈R

sup
θ∈R

{
2 |r|

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− rI
∥∥
A

+
1

2

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− 2rI
∥∥2
A

+
1

2

∥∥cos θReA (V )− V ∗AV + sin θ ImA (V )
∥∥2
A

}
.

(ii)

η2A (V ) ≤ 1

2
sup
θ∈R

{∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )
∥∥2
A

+
∥∥cos θReA (V )− V ∗AV + sin θ ImA (V )

∥∥2
A

}
.

Proof. (i) Let λ ∈ Ω be arbitrary. Then there exists θ ∈ R such that
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ =
e−iθ ⟨V kH,λ, kH,λ⟩A . By applying the Cartesian decomposition of V , we see that∣∣⟨V kH,λ, kH,λ⟩A

∣∣ = 〈
e−iθV kH,λ, kH,λ

〉
A

= ⟨((cos θ − i sin θ) (ReA (V ) + i ImA (V ))) kH,λ, kH,λ⟩A
= ⟨(cos θReA (V ) + sin θ ImA (V )) kH,λ, kH,λ⟩A
+ i ⟨(cos θ ImA (V )− sin θReA (V )) kH,λ, kH,λ⟩A .

So, by
∣∣⟨V kH,λ, kH,λ⟩A

∣∣ ∈ R we get∣∣⟨V kH,λ, kH,λ⟩A
∣∣ = ⟨(cos θReA (V ) + sin θ ImA (V )) kH,λ, kH,λ⟩A .

Thus, by using Lemma 4, we get for any r ∈ R,∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 =

∣∣⟨(cos θReA (V ) + sin θ ImA (V )) kH,λ, kH,λ⟩A
∣∣2

= ∥(cos θReA (V ) + sin θ ImA (V )) kH,λ∥2A
− ∥(cos θReA (V ) + sin θ ImA (V )) kH,λ − rkH,λ∥2A
+
∣∣⟨(cos θReA (V ) + sin θ ImA (V )) kH,λ − rkH,λ, kH,λ⟩A

∣∣2
A

=
〈
(cos θReA (V ) + sin θ ImA (V ))

2
kH,λ, kH,λ

〉
A

−
〈
(cos θReA (V ) + sin θ ImA (V )− rI)

2
kH,λ, kH,λ

〉
A

+
∣∣⟨(cos θReA (V ) + sin θ ImA (V )− rI) kH,λ, kH,λ⟩A

∣∣2
=

〈{
(cos θReA (V ) + sin θ ImA (V ))

2

− (cos θReA (V ) + sin θ ImA (V )− rI)
2
}
kH,λ, kH,λ

〉
A

+
∣∣⟨(cos θReA (V ) + sin θ ImA (V )− rI) kH,λ, kH,λ⟩A

∣∣2
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=
〈(
2r (cos θReA (V ) + sin θ ImA (V ))− r2I

)
kH,λ, kH,λ

〉
A

+
∣∣⟨(cos θReA (V ) + sin θ ImA (V )− rI) kH,λ, kH,λ⟩A

∣∣2 .
By using Lemma 4, we obtain

∥V kH,λ∥4A =
∣∣〈V ∗AV kH,λ, kH,λ

〉
A

∣∣2
=

〈(
2rV ∗AV − r2I

)
kH,λ, kH,λ

〉
A
+

∣∣〈(V ∗AV − rI
)
kH,λ, kH,λ

〉
A

∣∣2 .
Now, ∣∣⟨V kH,λ, kH,λ⟩A

∣∣2 + ∥V kH,λ∥4A
=

〈
2r

{
cos θReA (V ) + V ∗AV + sin θ ImA (V )

}
kH,λ, kH,λ

〉
A
− 2r2

+
1

2

∣∣〈(cos θReA (V ) + V ∗AV + sin θ ImA (V )− 2rI
)
kH,λ, kH,λ

〉
A

∣∣2
+

1

2

∣∣〈(cos θReA (V )− V ∗AV + sin θ ImA (V )
)
kH,λ, kH,λ

〉
A

∣∣2
≤ 2 |r|

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− rI
∥∥
A

+
1

2

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− 2rI
∥∥2
A

+
1

2

∥∥∥cos θReA (V )− |V |2A + sin θ ImA (V )
∥∥∥2
A

≤ sup
θ∈R

{
2 |r|

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− rI
∥∥
A

+
1

2

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− 2rI
∥∥2
A

+
1

2

∥∥cos θReA (V )− V ∗AV + sin θ ImA (V )
∥∥2
A

}
.

Therefore, taking supremum over all λ ∈ Ω, we get

η2A (V ) ≤ sup
θ∈R

{
2 |r|

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− rI
∥∥
A

+
1

2

∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )− 2rI
∥∥2
A

+
1

2

∥∥cos θReA (V )− V ∗AV + sin θ ImA (V )
∥∥2
A

}
.

Because this inequality holds for every r ∈ R, we have the required inequality.
(ii) If we pick r = 0, for example,

η2A (V ) ≤ 1

2
sup
θ∈R

{∥∥cos θReA (V ) + V ∗AV + sin θ ImA (V )
∥∥2
A

+
∥∥cos θReA (V )− V ∗AV + sin θ ImA (V )

∥∥2
A

}
.

□
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Following so, we find the inequality shown below.

Theorem 7. Let V ∈ LA,r (H (Ω)) . Then the inequalities listed below are true.
(i)

η2A (V ) ≤ inf
z∈C

{(
2 ∥Re (z)ReA (V ) + Im (z) ImA (V )∥A−ber +

∥∥V ∗AV − 2Re (zV )
∥∥
A−ber

)2

+2 ∥Re (zV )∥A−ber − |z|2 + ber2A (V − zI)
}
.

(ii) η2A (V ) ≤ ber2A (V ) + ∥V ∥4A−ber .

Proof. Let z ∈ C. Choosing in Lemma 4 u1 = V kH,λ and u2 = kH,λ, we have for
all λ ∈ Ω

∥V kH,λ∥2A ∥kH,λ∥2A −
∣∣⟨V kH,λ, kH,λ⟩A

∣∣2 = ∥V kH,λ − zkH,λ∥2A ∥kH,λ∥2A
−

∣∣⟨V kH,λ − zkH,λ, kH,λ⟩A
∣∣2 .

Then by using the Cartesian decomposition of V we have that

∥V kH,λ∥2A =
(
⟨ReA (V ) kH,λ, kH,λ⟩A

)2 − (
⟨ReA (V − zI) kH,λ, kH,λ⟩A

)2
+
(
⟨ImA (V ) kH,λ, kH,λ⟩A

)2 − (
⟨ImA (V − zI) kH,λ, kH,λ⟩A

)2
+ ∥V kH,λ − zkH,λ∥2A

= ⟨(2ReA (V )− Re (z) I) kH,λ, kH,λ⟩A ⟨Re (z) kH,λ, kH,λ⟩A
+ ⟨(2 ImA (V )− Im (z) I) kH,λ, kH,λ⟩A ⟨Im (z) kH,λ, kH,λ⟩A
+ ∥V kH,λ − zkH,λ∥2A

= 2Re (z) ⟨ReA (V ) kH,λ, kH,λ⟩A + 2 Im (z) ⟨ImA (V ) kH,λ, kH,λ⟩A
− (Re (z))

2 − (Im (z))
2
+ ∥V kH,λ − zkH,λ∥2A

= 2
(
Re (z) ⟨ReA (V ) kH,λ, kH,λ⟩A + Im (z) ⟨ImA (V ) kH,λ, kH,λ⟩A

)
− |z|2 + ⟨V kH,λ − zkH,λ, V kH,λ − zkH,λ⟩A

= 2
(
Re (z) ⟨ReA (V ) kH,λ, kH,λ⟩A + Im (z) ⟨ImA (V ) kH,λ, kH,λ⟩A

)
+
〈(
V ∗AV − 2ReA (zV )

)
kH,λ, kH,λ

〉
A
.

Again by using Lemma 4, we get∣∣⟨V kH,λ, kH,λ⟩A
∣∣2 = ∥V kH,λ∥2A − ∥V kH,λ − zkH,λ∥2A +

∣∣⟨V kH,λ − zkH,λ, kH,λ⟩A
∣∣2

= 2 ⟨Re (zV ) kH,λ, kH,λ⟩A − |z|2 +
∣∣⟨V kH,λ − zkH,λ, kH,λ⟩A

∣∣2 .
So, we deduce that∣∣∣Ṽ A (z)

∣∣∣2 + ∥V kH,λ∥4A

≤ 2 ⟨Re (zV ) kH,λ, kH,λ⟩A − |z|2 +
∣∣⟨V kH,λ − zkH,λ, kH,λ⟩A

∣∣2
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+ 2 ⟨(Re (z)ReA (V ) + Im (z) ImA (V )) kH,λ, kH,λ⟩A
+
〈(
V ∗AV − 2ReA (zV )

)
kH,λ, kH,λ

〉
A
)2.

for all λ ∈ Ω. Hence, taking supremum over λ ∈ Ω, and infimum over all z ∈ C, we
have

η2A (V ) ≤ inf
z∈C

{(
2 ∥Re (z)ReA (V ) + Im (z) ImA (V )∥A−ber +

∥∥V ∗AV − 2ReA (zV )
∥∥
A−ber

)2

+2 ∥ReA (zV )∥A−ber − |z|2 + ber2A (V − zI)
}
.

(ii) Taking z = 0, we get η2A (V ) ≤ ber2A (V ) + ∥V ∥4A−ber . This proves the required
result. □

Then, we have an upper bound on the A-Davis-Wielandt-Berezin radius of sum
of two bounded linear operators.

Theorem 8. Let U, V ∈ LA,r (H (Ω)) . Then the inequalities listed below are true.
(i) ηA (U + V ) ≤ ηA (U) + ηA (V ) + berA

(
U∗AV + V ∗AU

)
;

(ii) If U∗AV + V ∗AU = 0, then ηA (U + V ) ≤ ηA (U) + η (V ).

Proof. (i) It follows from Definition 5 that

HA (U + V ) =
{(

⟨(U + V ) kH,λ, kH,λ⟩A , ⟨(U + V ) kH,λ, (U + V ) kH,λ⟩A
)
, λ ∈ Ω

}
=

{(
⟨UkH,λ, kH,λ⟩A , ⟨UkH,λ, UkH,λ⟩A

)
+
(
⟨V kH,λ, kH,λ⟩A , ⟨V kH,λ, V kH,λ⟩A

)
+
(
0,
〈(
U∗AV + V ∗AU

)
kH,λ, kH,λ

〉
A

)
: λ ∈ Ω

}
.

So, HA (U + V ) ⊆ HA (U) +HA (V ) +X, where

X =
{(

0,
〈(
U∗AV + V ∗AU

)
kH,λ, kH,λ

〉
A

)
: λ ∈ Ω

}
.

This demonstrates (i). The evidence of (ii) is obvious from (i) andA
(
U∗AV + V ∗AU

)
=

O, and the proof of theorem is completed. □
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[16] Gürdal, V., Güncan, A. N., Berezin number inequalities via operator convex functions, Elec-

tron. J. Math. Anal. Appl., 10(2) (2022), 83-94.
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TÜRKİYE

Abstract. Let R be a commutative ring with identity and S a multiplicatively

closed subset of R. This paper aims to introduce the concept of S-n-ideals as

a generalization of n-ideals. An ideal I of R disjoint with S is called an S-
n-ideal if there exists s ∈ S such that whenever ab ∈ I for a, b ∈ R, then

sa ∈
√
0 or sb ∈ I. The relationships among S-n-ideals, n-ideals, S-prime and

S-primary ideals are clarified. Besides several properties, characterizations and
examples of this concept, S-n-ideals under various contexts of constructions

including direct products, localizations and homomorphic images are given.

For some particular S and m ∈ N, all S-n-ideals of the ring Zm are completely
determined. Furthermore, S-n-ideals of the idealization ring and amalgamated

algebra are investigated.

1. Introduction

Throughout this paper, we assume that all rings are commutative with non-zero
identity. For a ring R, we will denote by U(R), reg(R) and Z(R), the set of unit
elements, regular elements and zero-divisor elements of R, respectively. For an
ideal I of R, the radical of I denoted by

√
I is the ideal {a ∈ R : an ∈ I for some

positive integer n} of R. In particular,
√
0 denotes the set of all nilpotent elements

of R. We recall that a proper ideal I of a ring R is called prime (primary) if for

a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I (b ∈
√
I). Several generalizations of prime

and primary ideals were introduced and studied, (see for example [2]- [4], [6], [17]).
Let S be a multiplicatively closed subset of a ring R and I an ideal of R disjoint

with S. Recently, Hamed and Malek [12] used a new approach to generalize prime
ideals by defining S-prime ideals. I is called an S-prime ideal of R if there exists

2020 Mathematics Subject Classification. Primary 13A15.

Keywords. S-n-ideal, n-ideal, S–prime ideal, S-primary ideal.
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an s ∈ S such that for all a, b ∈ R whenever ab ∈ I, then sa ∈ I or sb ∈ I. Then
analogously, Visweswaran [16] introduced the notion of S-primary ideals. I is called
an S-primary ideal of R if there exists an s ∈ S such that for all a, b ∈ R if ab ∈ I,
then sa ∈ I or sb ∈

√
I. Many other generalizations of S-prime and S-primary

ideals have been studied. For example, in [1], the authors defined I to be a weakly
S-prime ideal if there exists an s ∈ S such that for all a, b ∈ R if 0 ̸= ab ∈ I, then
sa ∈ I or sb ∈ I. In 2015, Mohamadian [14] defined a new type of ideals called
r-ideals. An ideal I of a ring R is said to be r -ideal, if ab ∈ I and a /∈ Z(R)
imply that b ∈ I for each a, b ∈ R. Generalizing this concept, in 2017 the notion
of n-ideals was first introduced and studied [15]. The authors called a proper ideal

I of R an n-ideal if ab ∈ I and a /∈
√
0 imply that b ∈ I for each a, b ∈ R. Many

other generalizations of n-ideals have been introduced recently, see for example [13]
and [18]. Motivated and inspired by these studies, in this article, we study the
S-version of the class of n-ideals by determining the structure of S-n-ideals of a
ring. We call I an S-n-ideal of a ring R if there exists an (fixed) s ∈ S such that for

all a, b ∈ R if ab ∈ I and sa /∈
√
0, then sb ∈ I. We call this fixed element s ∈ S an

S-element of I. Clearly, for any multiplicatively closed subset S of R, every n-ideal
is an S-n-ideal and the classes of n-ideals and S-n-ideals coincide if S ⊆ U(R).
However, this generalization of n-ideals is proper as we can see in Example 1. In
Section 2, we start by giving an example of an S-n-ideal of a ring R that is not
an n-ideal. Then we give many properties of S-n-ideals and show that S-n-ideals
enjoy analogs of many of the properties of n-ideals. Also we discuss the relationship
among S-n-ideals, n-ideals, S-prime and S-primary ideals, (Propositions 1, 6 and
Examples 1, 2). In Theorems 1 and 2, we present some characterizations for S-
n-ideals of a general commutative ring. Moreover, we investigate some conditions
under which (I :R s) is an S-n-ideal of R for an S-n-ideal I of R and an S-
element s of I, (Propositions 2, 3 and Example 3). For a particular case that
S ⊆ reg(R), we justify some other results. For example, in this case, we prove
that a maximal S-n-ideal of R is S-prime, (Proposition 6). In addition, we show
in Proposition 4 that every proper ideal of a ring R is an S-n-ideal if and only
if R is a UN-ring (a ring for which every nonunit element is a product of a unit
and a nilpotent). Let n ∈ N, say, n = pr11 pr22 ...prkk where p1, p2, ..., pk are distinct
prime integers and ri ≥ 1 for all i. Then for all 2 ≤ i ≤ k − 1, Sp1p2...pi−1pi+1...pk

={
p̄m1
1 p̄m2

2 ...p̄
mi−1

i−1 p̄
mi+1

i+1 ...p̄
mk−1

k−1 : mj ∈ N ∪ {0}
}
is a multiplicatively closed subset of

Zn. In Theorem 4, we determine all Sp1p2...pi−1pi+1...pk
-n-ideals of Zn for all i. In

particular, we determine all Sp-n-ideals of Zn where Sp =
{
1, p̄, p̄2, p̄3, ...

}
for any

prime integer p dividing n, (Theorem 3). Furthermore, we study the stability of S-n-
ideals with respect to various ring theoretic constructions such as localization, factor
rings and direct product of rings, (Propositions 11, 12 and 14). Let R be a ring and
M be an R-module. For a multiplicatively closed subset S of R, the set S(+)M =
{(s,m) : s ∈ S, m ∈ M} is clearly a multiplicatively closed subset of the idealization
ring R(+)M . In Section 3, first, we clarify the relation between the S-n-ideals of a
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ring R and the S(+)M -n-ideals R(+)M , (Proposition 17). For rings R and R′, an
ideal J of R′ and a ring homomorphism f : R → R′, the amalgamation of R and R′

along J with respect to f is the subring R ⋊⋉f J = {(r, f(r) + j) : r ∈ R, j ∈ J} of
R×R′. Clearly, the set S ⋊⋉f J = {(s, f(s) + j) : s ∈ S, j ∈ J} is a multiplicatively
closed subset of R ⋊⋉f J whenever S is a multiplicatively closed subset of R. We
finally determine when the ideals I ⋊⋉f J = {(i, f(i) + j) : i ∈ I, j ∈ J} and K̄f =
{(a, f(a) + j) : a ∈ R, j ∈ J , f(a) + j ∈ K} of R ⋊⋉f J are (S ⋊⋉f J)-n-ideals,
(Theorems 5 and 6).

2. Properties of S-n-ideals

Definition 1. Let R be a ring, S be a multiplicatively closed subset of R and I be
an ideal of R disjoint with S. We call I an S-n-ideal of R if there exists an (fixed)

s ∈ S such that for all a, b ∈ R if ab ∈ I and sa /∈
√
0, then sb ∈ I. This fixed

element s ∈ S is called an S-element of I.

Let I be an ideal of a ring R. If I is an n-ideal of R, then clearly I is an S-
n-ideal for any multiplicatively closed subset of R disjoint with I. However, it is
clear that the classes of n-ideals and S-n-ideals coincide if S ⊆ U(R). Moreover,
obviously any S-n-ideal is an S-primary ideal and the two concepts coincide if the
ideal is contained in

√
0. However, the converses of these implications are not true

in general as we can see in the following examples.

Example 1. Let R = Z12, S = {1, 3, 9} and consider the ideal I =< 4 >. Choose
s = 3 ∈ S and let a, b ∈ R with ab ∈ I but 3b /∈ I. Now, ab ∈< 2 > implies
a ∈< 2 > or b ∈< 2 >. Assume that a /∈< 2 > and b ∈< 2 >. Since a /∈< 2 >, then
a ∈ {1, 3, 5, 7, 9, 11} and since 3b /∈ I, we have b ∈ {2, 6, 10}. Thus, in each case

ab /∈ I, a contradiction. Hence, we must have a ∈< 2 > and so 3a ∈< 6 >=
√
0.

On the other hand, I is not an n-ideal as 2 · 2 ∈ I but neither 2 ∈
√
0 nor 2 ∈ I.

A (prime) primary ideal of a ring R that is not an n-ideal is a direct example of
an (S-prime) S-primary ideal that is not an S-n-ideal where S = {1}. For a less
trivial example, we have the following.

Example 2. Let R = Z[X] and let I = ⟨4x⟩. consider the multiplicatively closed
subset S = {4m : m ∈ N∪{0}} of R. Then I is an S-prime (and so S-primary) ideal
of R, [16, Example 2.3]. However, I is not an S-n-ideal since for all s = 4m ∈ S,
we have (2x)(2) ∈ I but s(2x) /∈

√
0Z[x] and s(2) /∈ I.

Proposition 1. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S.

(1) If I is an S-n-ideal, then sI ⊆
√
0 for some s ∈ S. If moreover, S ⊆ reg(R),

then I ⊆
√
0.

(2)
√
0 is an S-n-ideal of R if and only if

√
0 is an S-prime ideal of R.

(3) Let S ⊆ reg(R). Then 0 is an S-n-ideal of R if and only if 0 is an n-ideal.



202 H. A. KHASHAN, E. YETKİN CELİKEL

Proof. (1) Let a ∈ I. Since I ∩S = ∅, s · 1 /∈ I for all s ∈ S. Hence, a · 1 ∈ I implies

that there exists an s ∈ S such that sa ∈
√
0. Thus, sI ⊆

√
0 as desired. Moreover,

if S ⊆ reg(R), then clearly I ⊆
√
0.

(2) Clear.

(3) Suppose s is an S-element of 0 and ab = 0 for some a, b ∈ R. Then sa ∈
√
0

or sb = 0 which implies snan = 0 for some positive integer n or sb = 0. Since
S ⊆ reg(R), we have an = 0 or b = 0, as needed. □

Next, we characterize S-n-ideals of rings by the following.

Theorem 1. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. The following statements are equivalent.

(1) I is an S-n-ideal of R.
(2) There exists an s ∈ S such that for any two ideals J,K of R, if JK ⊆ I,

then sJ ⊆
√
0 or sK ⊆ I.

Proof. (1)⇒(2). Suppose I is an S-n-ideal of R. Assume on the contrary that for

each s ∈ S, there exist two ideals J ′,K ′ of R such that J ′K ′ ⊆ I but sJ ′ ⊈
√
0 and

sK ′ ⊈ I. Then, for each s ∈ S, we can find two elements a ∈ J ′ and b ∈ K ′ such

that ab ∈ I but neither sa ∈
√
0 nor sb ∈ I. By this contradiction, we are done.

(2)⇒(1). Let a, b ∈ R with ab ∈ I. Taking J =< a > and K =< b > in (2), we
get the result. □

Theorem 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. If

√
0 is an S-n-ideal of R, then the following are equivalent.

(1) I is an S-n-ideal of R.
(2) There exists s ∈ S such that for ideals I1, I2, ..., In of R, if I1I2 · · · In ⊆ I,

then sIj ⊆
√
0 or sIk ⊆ I for some j, k ∈ {1, ..., n}.

(3) There exists s ∈ S such that for elements a1, a2, ..., an of R, if a1a2 · · · an ∈
I, then saj ∈

√
0 or sak ∈ I for some j, k ∈ {1, ..., n}.

Proof. (1)⇒(2). Let s1 ∈ S be an S-element of I. To prove the claim, we use
mathematical induction on n. If n = 2, then the result is clear by Theorem 1.
Suppose n ≥ 3 and the claim holds for n − 1. Let I1, I2,..., In be ideals of R
with I1I2 · · · In ⊆ I. Then by Theorem 1, we conclude that either s1I1 ⊆

√
0 or

s1I2 · · · In ⊆ I. Assume (s1I2) · · · In ⊆ I. By the induction hypothesis, we have

either, say, s21I2 ⊆
√
0 or s1Ik ⊆ I for some k ∈ {3, ..., n}. Assume s21I2 ⊆

√
0 and

choose an S-element s2 ∈ S of
√
0. If s2(s

2
1R) ⊆

√
0 ∩ S, we get a contradiction.

Thus, s2I2 ⊆
√
0. By choosing s = s1s2, we get sIj ⊆

√
0 or sIk ⊆ I for some

j, k ∈ {1, ..., n}, as needed.
(2)⇒(3). This is a particular case of (2) by taking Ij :=< aj > for all j ∈

{1, ..., n}.
(3)⇒(1). Clear by choosing n = 2 in (3). □
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Proposition 2. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S. Then

(1) If (I : s) is an n-ideal of R for some s ∈ S, then I is an S-n-ideal.

(2) If I is an S-n-ideal and (
√
0 : s) is an n-ideal where s ∈ S is an S-element

of I, then (I : s) is an n-ideal of R.
(3) If I is an S-n-ideal and S ⊆ reg(R), then (I : s) is an n-ideal of R for any

S-element s of I.

Proof. (1) Suppose that (I : s) is an n-ideal of R for some s ∈ S. We show that s

is an S-element of I. Let a, b ∈ R with ab ∈ I and sa /∈
√
0. Then ab ∈ (I : s) and

a /∈
√
0 imply that b ∈ (I : s).Thus, sb ∈ I and I is an S-n-ideal.

(2) Suppose a, b ∈ R with ab ∈ (I : s). Then a(sb) ∈ I which implies sa ∈
√
0

or s2b ∈ I. Suppose sa ∈
√
0. Since (

√
0 : s) is an n-ideal, (

√
0 : s) =

√
0

by [15, Proposition 2.3] and so a ∈
√
0. Now, suppose s2b ∈ I. If sb /∈ I, then since

I is an S-n-ideal, s3 ∈
√
0 and so s ∈

√
0 which contradicts the assumption that

(
√
0 : s) is proper. Thus, sb ∈ I and b ∈ (I : s) as needed.
(3) Suppose S ⊆ reg(R) and I is an S-n-ideal. Let a, b ∈ R with ab ∈ (I : s) so

that a(sb) ∈ I . If sa ∈
√
0, then smam = 0 for some integer m. Since S ⊆ reg(R),

we get am = 0 and so a ∈
√
0. If s2b ∈ I, then similar to the proof of (2) we

conclude that b ∈ (I : s). □

Note that the conditions that (
√
0 : s) is an n-ideal in (2) and S ⊆ reg(R) in (3)

of Proposition 2 are crucial. Indeed, consider R = Z12, S = {1, 3, 9}. We showed in
Example 1 that I =< 4 > is an S-n-ideal which is not an n-ideal, and so (I : 3) = I

is not an n-ideal. Here, observe that S ⊈ reg(R) and (
√
0 : 3) =< 2 > is not an

n-ideal of Z12.

Proposition 3. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R and

I be an S-prime ideal of R. Then I is an S-n-ideal if and only if (I : s) =
√
0 for

some s ∈ S.

Proof. Suppose I is an S-n-ideal of R and s1 be an S-element of I. Then (I : s1)
is an n-ideal of R by Proposition 2. Moreover, (I : ts1) is an n-ideal for all t ∈ S.

Indeed, if ab ∈ (I : ts1) for a, b ∈ R, then abts1 ∈ I and so either s21a ∈
√
0

or s1tb ∈ I. If s21a ∈
√
0, then a ∈

√
0 as S ⊆ reg(R). Otherwise, we have

b ∈ (I : ts1) as needed. Since I is an S-prime ideal of R, (I : s2) is a prime ideal
of R where s2 ∈ S such that whenever ab ∈ I for a, b ∈ R, either s2a ∈ I or
s2b ∈ I, [12, Proposition 1]. Similar to the above argument, we can also conclude
that (I : ts2) is a prime ideal for all t ∈ S. Now, choose s = s1s2. Then (I : s)

is both a prime and an n-ideal of R and so (I : s) =
√
0 by [15, Proposition 2.8].

Conversely, suppose (I : s) =
√
0 for some s ∈ S. Since I is an S-prime ideal,

(I : s′) is a prime ideal of R for some s′ ∈ S. Moreover, if a ∈ (I : s′), then

as′ ∈ I ⊆ (I : s) ⊆
√
0 and so a ∈

√
0 as S ⊆ reg(R). Thus, (I : s′) =

√
0 is a
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prime ideal and so it an n-ideal again by [15, Proposition 2.8]. Therefore, I is an
S-n-ideal by Proposition 2. □

In the following example we justify that the condition S ⊆ reg(R) can not be
omitted in Proposition 3.

Example 3. The ideal I =< 2 > of Z12 is prime and so S-prime for S = {1, 3, 9} ⊈
reg(Z12). Moreover, one can directly see that s = 3 is an S-element of I and so I

is also an S-n-ideal of Z12. But (I : s) = I ̸=
√
0 for all s ∈ S.

A ring R is said to be a UN-ring if every nonunit element is a product of a unit
and a nilpotent. Next, we obtain a characterization for rings in which every proper
ideal is an S-n-ideal where S ⊆ reg(R).

Proposition 4. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R.
The following are equivalent.

(1) Every proper ideal of R is an n-ideal.
(2) Every proper ideal of R is an S-n-ideal.
(3) R is a UN-ring.

Proof. Since (1)⇒(2) is straightforward and (3)⇒(1) is clear by [15, Proposition
2.25], we only need to prove (2)⇒(3).

(2)⇒(3). Let I be a prime ideal of R. Then I is an S-prime and from our

assumption, it is also an S-n-ideal. Thus I ⊆ (I : s) =
√
0 is a prime ideal of R

by Proposition 3. Thus
√
0 is the unique prime ideal of R and so R is a UN-ring

by [7, Proposition 2 (3)]. □

The equivalence of (1) and (2) in Proposition 4 need not be true if S ⊈ reg(R).

Example 4. Consider the ring Z6 and let S = {1, 3}. If I = ⟨0̄⟩ or ⟨2̄⟩, then a
simple computations can show that I is an S-n-ideal of Z6. However, Z6 has no
proper n-ideals, [15, Example 2.2].

A ring R is said to be von Neumann regular if for all a ∈ R, there exists an
element b ∈ R such that a = a2b.

Proposition 5. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R.

(1) Let R be a reduced ring. Then R is an integral domain if and only if there
exists an S-prime ideal of R which is also an S-n-ideal

(2) R is a field if and only if R is von Neumann regular and 0 is an S-n-ideal
of R.

Proof. (1) Let R be an integral domain. Since 0 =
√
0 is prime, it is also an n-

ideal again by [15, Corollary 2.9]. Thus
√
0 is both S-prime and S-n-ideal of R,

as required. Conversely, suppose I is both S-prime and S-n-ideal of R. Hence,
from Proposition 3 we conclude (I : s) =

√
0 which is an n-ideal by Proposition



S-n-IDEALS OF COMMUTATIVE RINGS 205

2.
√
0 = 0 is also a prime ideal by [15, Corollary 2.9], and thus R is an integral

domain.
(2) Since S ⊆ reg(R), from Proposition 1, 0 is an S-n-ideal of R if and only if 0

is an n-ideal. Thus, the claim is clear by [15, Theorem 2.15]. □

Let n ∈ N. For any prime p dividing n, we denote the multiplicatively closed
subset

{
1, p̄, p̄2, p̄3, ...

}
of Zn by Sp. Next, for any p dividing n, we clarify all

Sp-n-ideals of Zn.

Theorem 3. Let n ∈ N.

(1) If n = pr for some prime integer p and r ≥ 1, then Zn has no Sp-n-ideals.
(2) If n = pr11 pr22 where p1 and p2 are distinct prime integers and r1, r2 ≥ 1,

then for all i = 1, 2, every ideal of Zn disjoint with Spi
is an Spi

-n-ideal.
(3) If n = pr11 pr22 ...prkk where p1, p2, ..., pk are distinct prime integers and k ≥ 3,

then for all i = 1, 2, ..., k, Zn has no Spi-n-ideals.

Proof. (1) Clear since I ∩ Sp ̸= ϕ for any ideal I of Zn.

(2) Let I =
〈
p̄t11 p̄t22

〉
be an ideal of Zn distinct with Sp1 . Then we must have

t2 ≥ 1. Choose s = p̄t11 ∈ Sp1
and let ab ∈ I for a, b ∈ Zn. If a ∈ ⟨p̄2⟩, then

sa ∈ ⟨p̄1p̄2⟩ =
√
0. If a /∈ ⟨p̄2⟩, then clearly b ∈

〈
p̄t22
〉
and so sb ∈ I. Therefore, I is

an Sp1
-n-ideal of Zn. By a similar argument, we can show that every ideal of Zn

distinct with Sp2
is an Sp2

-n-ideal.

(3) Let I =
〈
p̄t11 p̄t22 ...p̄tkk

〉
be an ideal of Zn distinct with Sp1

. Then there exists

j ̸= 1 such that tj ≥ 1, say, j = k. Thus, p̄tkk (p̄t11 p̄t22 ...p̄
tk−1

k−1 ) ∈ I but sp̄tkk /∈
√
0

and s(p̄t11 p̄t22 ...p̄
tk−1

k−1 ) /∈ I for all s ∈ Sp1
. Therefore, I is not an Sp1

-n-ideal of Zn.
Similarly, I is not an Spi

-n-ideal of Zn for all i = 1, 2, ..., k. □

Corollary 1. Let n ∈ N. Then for any prime p dividing n, either Zn has no
Sp-n-ideals or every ideal of Zn disjoint with Sp is an Sp-n-ideal.

In general if n = pr11 pr22 ...prkk where ri ≥ 1 for all i, then

Sp1p2...pi−1pi+1...pk
=
{
p̄m1
1 p̄m2

2 ...p̄
mi−1

i−1 p̄
mi+1

i+1 ...p̄mk

k : mj ∈ N ∪ {0}
}

is also a multiplicatively closed subset of Zn for all i. Next, we generalize Theorem
3.

Theorem 4. Let n = pr11 pr22 ...prkk where p1, p2, ..., pk are distinct prime integers
and ri ≥ 1 for all i.

(1) Zn has no Sp1p2...pk
-n-ideals.

(2) For i = 1, 2, ..., k, every ideal of Zn disjoint with Sp1p2...pi−1pi+1...pk
is an

Sp1p2...pi−1pi+1...pk
-n-ideal.

(3) Let k ≥ 3. If m ≤ k − 2, then Zn has no Sp1p2...pm
-n-ideals.
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Proof. (1) This is clear since I ∩ Sp1p2...pk
̸= ϕ for any ideal I of Zn.

(2) With no loss of generality, we may choose i = k. Let I =
〈
p̄t11 p̄t22 ...p̄tkk

〉
be an ideal of Zn disjoint with Sp1p2...pk−1

. Then we must have tk ≥ 1. Choose

s = p̄t11 p̄t22 ...p̄
tk−1

k−1 ∈ Sp1p2...pk−1
and let a, b ∈ Zn such that ab ∈ I. If a ∈ ⟨p̄k⟩, then

sa ∈ ⟨p̄1p̄2...p̄k⟩ =
√
0. If a /∈ ⟨p̄k⟩, then we must have b ∈

〈
p̄tkk
〉
. Thus, sb ∈ I and

I is an Sp1p2...pk−1
-n-ideal of Zn.

(3) Assume m = k − 2 and let I =
〈
p̄t11 p̄t22 ...p̄tkk

〉
be an ideal of Zn disjoint

with Sp1p2...pk−2
. Then at least one of tk−1 and tk is nonzero, say, tk ≩ 0. Hence,

p̄tkk (p̄t11 p̄t22 ...p̄
tk−1

k−1 ) ∈ I but clearly sp̄tkk /∈
√
0 and s(p̄t11 p̄t22 ...p̄

tk−1

k−1 ) /∈ I for all s ∈
Sp1p2...pk−2

. Therefore, Zn has no Sp1p2...pk−2
-n-ideals. A similar proof can be used

if 1 ≤ m ≨ k − 2. □

An ideal I of a ring R is called a maximal S-n-ideal if there is no S-n-ideal of R
that contains I properly. In the following proposition, we observe the relationship
between maximal S-n-ideals and S-prime ideals.

Proposition 6. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R. If

I is a maximal S-n-ideal of R, then I is S-prime (and so (I : s) =
√
0 for some

s ∈ S).

Proof. Suppose I is a maximal S-n-ideal of R and s ∈ S is an S-element of I.
Then (I : s) is an n-ideal of R by Proposition 2. Moreover, (I : s) is a maximal
n-ideal of R. Indeed, if (I : s) ⊊ J for some n-ideal (and so S-n-ideal) J of R, then

I ⊆ (I : s) ⊊ J which is a contradiction. By [15, Theorem 2.11], (I : s) =
√
0 is a

prime ideal of R and so I is an S-prime ideal by [12, Proposition 1]. □

Proposition 7. Let S be a multiplicatively closed subset of a ring R and I be an
ideal of R disjoint with S. If I is an S-n-ideal, and J is an ideal of R with J∩S ̸= ∅,
then IJ and I ∩ J are S-n-ideals of R.

Proof. Let s′ ∈ J ∩ S. Let a, b ∈ R with ab ∈ IJ. Since ab ∈ I, we have sa ∈
√
0

or sb ∈ I where s is an S-element of I. Hence, (s′s)a ∈ J
√
0 ⊆

√
0 or (s′s)b ∈ IJ .

Thus, IJ is an S-n-ideal of R. The proof that I ∩ J is an S-n-ideal is similar. □

Proposition 8. Let S be a multiplicatively closed subset of a ring R and I1, I2,...,
In be proper ideals of R.

(1) If Ii is an S-n-ideal of R for all i = 1, ..., n, then
n⋂

i=1

Ii is an S-n-ideal of R.

(2) If

( ⋂
j∈Ω

Ij

)
∩ S ̸= ∅ for Ω ⊆ {1, ..., n} and Ik is an S-n-ideal of R for all

k ∈ {1, ..., n} − Ω, then
n⋂

i=1

Ii is an S-n-ideal of R.
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Proof. (1) Suppose that for all i = 1, ..., n, Ii is an S-n-ideal of R and note that(
n⋂

i=1

Ii

)
∩ S = ∅. For all i = 1, ..., n, choose si ∈ S such that whenever a, b ∈ R

such that ab ∈ Ii, then sia ∈
√
0 or sib ∈ Ii. Let a, b ∈ R such that ab ∈

n⋂
i=1

Ii.

Then ab ∈ Ii for all i = 1, ..., n. If we let s =
n∏

i=1

si ∈ S, then clearly sa ∈
√
0 or

sb ∈
n⋂

i=1

Ii and the result follows.

(2) Choose s′ ∈

( ⋂
j∈Ω

Ij

)
∩ S. Let a, b ∈ R with ab ∈

n⋂
i=1

Ii. Then for all

k ∈ {1, ..., n} − Ω, ab ∈ Ik and so ska ∈
√
0 or skb ∈ Ij for some S-element sk of

Ik. Hence, (s′
∏

k∈{1,...,n}−Ω

sk)a ∈
√
0 or (s′

∏
k∈{1,...,n}−Ω

sk)b ∈
n⋂

i=1

Ii and so
n⋂

i=1

Ii is

an S-n-ideal of R. □

Let S and T be two multiplicatively closed subsets of a ring R with S ⊆ T .
Let I be an ideal disjoint with T. It is clear that if I is a S-n-ideal, then it is
T -n-ideal. The converse is not true since while I =< 4 > is an S-n-ideal of Z12 for
S = {1, 3, 9}, it is not a T -n-ideal for T = {1} ⊆ S.

Proposition 9. Let S and T be two multiplicatively closed subsets of a ring R with
S ⊆ T such that for each t ∈ T , there is an element t′ ∈ T such that tt′ ∈ S. If I
is a T -n-ideal of R, then I is an S-n-ideal of R.

Proof. Suppose ab ∈ I. Then there is a T -element t ∈ T of I satisfying ta ∈
√
0

or tb ∈ I. Hence there exists some t′ ∈ T with s = tt′ ∈ S, and thus sa ∈
√
0 or

sb ∈ I. □

Let S be a multiplicatively closed subset of a ring R. The saturation of S is the
set S∗ = {r ∈ R : r

1 is a unit in S−1R}. It is clear that S∗ is a multiplicatively closed
subset of R and that S ⊆ S∗. Moreover, it is well known that S∗ = {x ∈ R : xy ∈ S
for some y ∈ R}, see [11]. The set S is called saturated if S∗ = S.

Proposition 10. Let S be a multiplicatively closed subset of a ring R and I be
an ideal of R disjoint with S. Then I is an S-n-ideal of R if and only if I is an
S∗-n-ideal of R.

Proof. Suppose I is an S∗-n-ideal of R. By Proposition 9, it is enough to prove
that for each t ∈ S∗, there is an element t′ ∈ S∗ such that tt′ ∈ S. Let t ∈ S∗ and
choose t′ ∈ R such that ty ∈ S. Then t′ ∈ S∗ and tt′ ∈ S as required. The converse
is obvious. □

Let S and T be multiplicatively closed subsets of a ring R with S ⊆ T . Then
clearly, T−1S =

{
s
t : t ∈ T , s ∈ S

}
is a multiplicatively closed subset of T−1R.
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Proposition 11. Let S, T be multiplicatively closed subsets of a ring R with S ⊆ T
and I be an ideal of R disjoint with T . If I is an S-n-ideal of R, then T−1I is an
T−1S-n-ideal of T−1R. Moreover, we have T−1I ∩R = (I : u) for some S-element
u of I.

Proof. Suppose I is an S-n-ideal. Suppose T−1S∩T−1I ̸= ϕ, say, a
t ∈ T−1S∩T−1I.

Then a ∈ S and ta ∈ I for some t ∈ T . Since S ⊆ T , then ta ∈ T∩I, a contradiction.
Thus, T−1I is proper in T−1R and T−1S ∩ T−1I = ϕ. Let s ∈ S be an S-element
of I and choose s

1 ∈ T−1S. Suppose a, b ∈ R and t1, t2 ∈ T with a
t1

b
t2

∈ T−1I and
s
1

a
t1

/∈
√
0T−1R. Then tab ∈ I for some t ∈ T and sa /∈

√
0. Since I is an S-n-ideal,

we must have stb ∈ I. Thus, s
1

b
t2

= stb
tt2

∈ T−1I as needed. Now, let r ∈ T−1I ∩ R

and choose i ∈ I, t ∈ T such that r
1 = i

t . Then vr ∈ I for some v ∈ T . Since I is an

S-n-ideal, then there exists u ∈ S ⊆ T such that uv ∈
√
0 or ur ∈ I. But uv /∈

√
0

as T ∩
√
0 = ϕ and so ur ∈ I. It follows that r ∈ (I : u) for some S-element u of I.

Since clearly (I : u) ⊆ T−1I ∩R for all u ∈ T , the proof is completed. □

In particular, if S = T , then all elements of T−1S are units in T−1R. As a
special case of of Proposition 11, we have the following.

Corollary 2. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. If I is an S-n-ideal of R, then S−1I is an n-ideal of S−1R.
Moreover, we have S−1I ∩R = (I : s) for some S-element s of I.

Proof. Suppose I is an S-n-ideal. Then S−1I is an S−1S-n-ideal of S−1R by
Proposition 11. Let a, b ∈ R, s1, s2 ∈ S with a

s1
b
s2

∈ S−1I. Then by assumption,
s
t

a
s1

∈
√
0S−1R or s

t
b
s2

∈ S−1I for some S−1S-element s
t of S−1I. Since s

t is a

unit in S−1R, then S−1I is an n-ideal of S−1R as required. The other part follows
directly by Proposition 11. □

Corollary 3. Let S be a multiplicatively closed subset of a ring R and I be an ideal
of R disjoint with S. Then I is an S-n-ideal of R if and only if S−1I is an n-ideal
of S−1R, S−1I ∩R = (I : s) and S−1

√
0 ∩R = (

√
0 : t) for some s, t ∈ S.

Proof. ⇒) Suppose I is an S-n-ideal of R. Then S−1I is an n-ideal of S−1R by
Corollary 2. The other part of the implication follows by using a similar approach
to that used in the proof of Proposition 11.

⇐) Suppose S−1I is an n-ideal of S−1R, S−1I ∩ R = (I : s) and S−1
√
0 ∩ R =

(
√
0 : t) for some s, t ∈ S. Choose u = st ∈ S and let a, b ∈ R such that ab ∈ I.

Then a
1
b
1 ∈ S−1I and so a

1 ∈
√
S−10 = S−1

√
0 or b

1 ∈ S−1I . If a
1 ∈

√
S−10, then

there is w ∈ S such that wa ∈
√
0. Thus, a = wa

w ∈ S−1
√
0 ∩R = (

√
0 : t). Hence,

ta ∈
√
0 and so ua = sta ∈

√
0. If b

1 ∈ S−1I, then there is v ∈ S such that vb ∈ I

and so b = vb
v ∈ S−1I ∩ R = (I : s). Therefore, ub = tsb ∈ I and I is an S-n-ideal

of R. □
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Proposition 12. Let f : R1 → R2 be a ring homomorphism and S be a multiplica-
tively closed subset of R1. Then the following statements hold.

(1) If f is an epimorphism and I is an S-n-ideal of R1 containing Ker(f), then
f(I) is an f(S)-n-ideal of R2.

(2) If Ker(f) ⊆
√
0R1

and J is an f(S)-n-ideal of R2, then f−1(J) is an S-n-
ideal of R1.

Proof. First we show that f(I) ∩ f(S) = ∅. Otherwise, there is t ∈ f(I) ∩ f(S)
which implies t = f(x) = f(s) for some x ∈ I and s ∈ S. Hence, x−s ∈ Ker(f) ⊆ I
and s ∈ I, a contradiction.

(1) Let a, b ∈ R2 and ab ∈ f(I). Since f is onto, a = f(x) and b = f(y) for
some x, y ∈ R1. Since f(x)f(y) ∈ f(I) and Ker(f) ⊆ I, we have xy ∈ I and so
there exists an s ∈ S such that sx ∈

√
0R1

or sy ∈ I. Thus, f(s)a ∈
√
0R2

or
f(s)b ∈ f(I), as needed.

(2) Let a, b ∈ R1 with ab ∈ f−1(J). Then f(ab) = f(a)f(b) ∈ J and since J
is an f(S)-n-ideal of R2, there exists f(s) ∈ f(S) such that f(s)f(a) ∈

√
0R2

or
f(s)f(b) ∈ J . Thus, sa ∈

√
0R1 (as Ker(f) ⊆

√
0R1) or sb ∈ f−1(J). □

Let S be a multiplicatively closed subset of a ring R and I be an ideal of R
disjoint with S. If we denote r+ I ∈ R/I by r̄, then clearly the set S̄ = {s : s ∈ S}
is a multiplicatively closed subset of R/I. In view of Proposition 12, we conclude
the following result for S-n-ideals of R/I.

Corollary 4. Let S be a multiplicatively closed subset of a ring R and I, J are two
ideals of R with I ⊆ J .

(1) If J is an S-n-ideal of R, then J/I is an S-n-ideal of R/I. Moreover, the

converse is true if I ⊆
√
0.

(2) If R is a subring of R′ and I ′ is an S-n-ideal of R′, then I ′∩R is an S-n-ideal
of R.

Proof. (1) Note that (J/I) ∩ S = ϕ if and only if I ∩ S = ϕ. Now, we apply the
canonical epimorphism π : R → R/I in Proposition 12.

(2) Apply the natural injection i : R → R′ in Proposition 12 (2). □

We recall that a proper ideal I of a ring R is called superfluous if whenever
I + J = R for some ideal J of R, then J = R.

Proposition 13. Let S ⊆ reg(R) be a multiplicatively closed subset of a ring R.

(1) If I is an S-n-ideal of R, then it is superfluous.
(2) If I and J are S-n-ideals of R, then I + J is an S-n-ideal.

Proof. (1) Suppose I + J = R for some ideal J of R and let j ∈ J . Then 1 − j ∈
I ⊆

√
0 ⊆ J(R) by (1) of Proposition 1. Thus, j ∈ U(R) and J = R as needed.

(2) Suppose I and J are S-n-ideals of R. Since I, J ⊆
√
0, I + J ⊆

√
0 and so

(I + J) ∩ S = ϕ. Now, I/(I ∩ J) is an S1-n-ideal of R/(I ∩ J) by (1) of Corollary
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4 where S̄1 = {s + (I ∩ J) : s ∈ S}. If S̄2 = {s + J : s ∈ S}, then clearly
S̄1 ⊆ S̄2 and so I/(I ∩ J) is also an S2-n-ideal of R/(I ∩ J). By the isomorphism
(I + J)/J ∼= I/(I ∩ J), we conclude that (I + J)/J is an S2-n-ideal of R/J . Now,
the result follows again by (1) of Corollary 4. □

Proposition 14. Let R and R′ be two rings, I ⊴ R and I ′ ⊴ R′. If S and S′ are
multiplicatively closed subsets of R and R′, respectively, then

(1) I ×R′ is an (S × S′)-n-ideal of R×R′ if and only if I is an S-n-ideal of R
and S′ ∩

√
0R′ ̸= ϕ.

(2) R × I ′ is an (S × S′)-n-ideal of R × R′ if and only if I ′ is an S′-n-ideal of
R′ and S ∩

√
0R ̸= ϕ.

Proof. It is clear that (I ×R′)∩ (S×S′) = ∅ if and only if I ∩S = ∅ and (R× I ′)∩
(S × S′) = ∅ if and only if I ′ ∩ S′ = ∅.

(1) Let a, b ∈ R with ab ∈ I. Choose an (S×S′)-element (s, s′) of I×R′. If sb /∈ I,
then (a, 1)(b, 1) ∈ I×R′ with (s, s′)(b, 1) /∈ I×R′. Since I×R′ is an (S×S′)-n-ideal,
then (s, s′)(a, 1) ∈

√
0R×R′ =

√
0R ×

√
0R′ . Thus, sa ∈

√
0R and s′ ∈ S′ ∩

√
0R′

I. If sb ∈ I, then (b, 1)(s, s′) ∈ I × R′and so (s, s′)(b, 1) ∈
√
0R×R′ =

√
0R ×

√
0R′

as (s, s′)2 /∈ I × R′. In both cases, we conclude that I is an S-n-ideal of R and
S′∩

√
0R′ ̸= ϕ. Conversely, suppose I is an S-n-ideal of R, s is some S-element of I

and s′ ∈ S′∩
√
0R′ . Let (a, a′)(b, b′) ∈ I×R′ for (a, a′), (b, b′) ∈ R×R′. Then ab ∈ I

which implies sa ∈
√
0R or sb ∈ I. Hence, we have either (s, s′)(a, a′) ∈

√
0R×

√
0R′

or (s, s′)(b, b′) ∈ I ×R′. Therefore, (s, s′) is an S × S′-element of I ×R′ as needed.
(2) Similar to (1). □

The assumptions S′ ∩
√
0R′ ̸= ϕ and S ∩

√
0R ̸= ϕ in Proposition 14 are crucial.

Indeed, let R = R′ = Z12, S = S′ = {1, 3, 9} and I =< 4 > . It is shown in Example
1 that I is an S-n-ideal of R while I × R′ is not an (S × S′)-n-ideal of R × R′ as
(2, 1)(2, 1) ∈ I × R′ but for all (s, s′) ∈ S × S, neither (s, s′)(2, 1) ∈ I × R′ nor
(s, s′)(2, 1) ∈

√
0R×R′ .

Remark 1. Let S and S′ be multiplicatively closed subsets of the rings R and
R′, respectively. If I and I ′ are proper ideals of R and R′ disjoint with S, S′,
respectively, then I × I ′ is not an (S × S′)-n-ideal of R×R′.

Proof. First, note that S ∩
√
0R = S′ ∩

√
0R′ = ∅. Assume on the contrary that

I×I ′ is an (S×S′)-n-ideal of R×R′ and (s, s′) is an (S×S′)-element of I×I ′. Since
(1, 0)(0, 1) ∈ I × I ′, we conclude either (s, s′)(1, 0) ∈

√
0R ×

√
0R′ or (s, s′)(0, 1) ∈

I × I ′ which implies s ∈
√
0R or s′ ∈ I ′, a contradiction. □

Proposition 15. Let R and R′ be two rings, S and S′ be multiplicatively closed
subsets of R and R′, respectively. If I and I ′ are proper ideals of R, R′, respectively
then I× I ′ is an (S×S′)-n-ideal of R×R′ if one of the following statements holds.

(1) I is an S-n-ideal of R and S′ ∩
√
0R′ ̸= ϕ.

(2) I ′ is an S′-n-ideal of R′ and S ∩
√
0R ̸= ϕ.
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Proof. Clearly (I×I ′)∩ (S×S′) = ∅ if and only if I ∩S = ∅ or I ′∩S′ = ∅. Suppose
I is an S-n-ideal of R and S′ ∩

√
0R′ ̸= ϕ. Then I ∩ S = ∅ and 0R′ ∈ I ′ ∩ S′ ̸= ∅.

Choose an S-element s of I and let (a, a′)(b, b′) ∈ I × I ′ for (a, a′), (b, b′) ∈ R×R′.
Then ab ∈ I which implies sa ∈

√
0R or sb ∈ I. Hence, we have either (s, 0)(a, a′) ∈√

0R ×
√
0R′ or (s, 0)(b, b′) ∈ I × I ′. Therefore, (s, 0) is an S×S′-element of I × I ′.

Similarly, if I ′ is an S′-n-ideal of R′ and S ∩
√
0R ̸= ϕ, then also I × I ′ is an

(S × S′)-n-ideal of R×R′. □

3. S-n-ideals of Idealizations and Amalgamations

Recall that the idealization of an R-module M denoted by R(+)M is the com-
mutative ring R ×M with coordinate-wise addition and multiplication defined as
(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). For an ideal I of R and a submodule N
of M , I(+)N is an ideal of R(+)M if and only if IM ⊆ N . It is well known

that if I(+)N is an ideal of R(+)M , then
√

I(+)N =
√
I(+)M and in partic-

ular,
√
0R(+)M =

√
0(+)M . If S is a multiplicatively closed subset of R, then

clearly the sets S(+)M = {(s,m) : s ∈ S, m ∈ M} and S(+)0 = {(s, 0) : s ∈ S}
are multiplicatively closed subsets of the ring R(+)M .

Next, we determine the relation between S-n-ideals of R and S(+)M -n-ideals of
the R(+)M .

Proposition 16. Let N be a submodule of an R-module M , S be a multiplicatively
closed subset of R and I be an ideal of R where IM ⊆ N . If I(+)N is an S(+)M -
n-ideal of R(+)M , then I is an S-n-ideal of R.

Proof. Clearly, S ∩ I = ϕ. Choose an S(+)M -element (s,m) of I(+)N and let

a, b ∈ R such that ab ∈ I. Then (a, 0)(b, 0) ∈ I(+)N and so (s,m)(a, 0) ∈
√
0(+)M

or (s,m)(b, 0) ∈ I(+)N . Hence, sa ∈
√
0 or sb ∈ I and I is an S-n-ideal of R □

Proposition 17. Let S be a multiplicatively closed subset of a ring R, I be an ideal
of R disjoint with S and M be an R-module. The following are equivalent.

(1) I is an S-n-ideal of R.
(2) I(+)M is an S(+)0-n-ideal of R(+)M .
(3) I(+)M is an S(+)M -n-ideal of R(+)M .

Proof. (1)⇒(2). Suppose I is an S-n-ideal of R, s is an S-element of I and note
that S(+)0∩ I(+)M = ϕ. Choose (s, 0) ∈ S(+)0 and let (a,m1), (b,m2) ∈ R(+)M

such that (a,m1)(b,m2) ∈ I(+)M . Then ab ∈ I and so either sa ∈
√
0 or sb ∈ I. It

follows that (s, 0)(a,m1) ∈
√
0(+)M =

√
0R(+)M or (s, 0)(b,m2) ∈ I(+)M . Thus,

I(+)M is an S(+)0-n-ideal of R(+)M .
(2)⇒(3). Clear since S(+)0 ⊆ S(+)M .
(3)⇒(1). Proposition 16. □

Remark 2. The converse of Proposition 16 is not true in general. For example,
if S = {1,−1}, then 0 is an S-n-ideal of Z but 0(+)0̄ is not an (S(+)Z6)-n-ideal
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of Z(+)Z6. For example, (2, 0̄)(0, 3̄) ∈ 0(+)0̄ but clearly (s,m)(2, 0̄) /∈
√
0(+)Z6 =√

0Z(+)Z6
and (s,m)(0, 3̄) /∈ 0(+)0̄ for all (s,m) ∈ S(+)Z6.

Let R and R′ be two rings, J be an ideal of R′ and f : R → R′ be a ring
homomorphism. The set R ⋊⋉f J = {(r, f(r) + j) : r ∈ R, j ∈ J} is a subring of
R×R′ called the amalgamation of R and R′ along J with respect to f . In particular,
if IdR : R → R is the identity homomorphism on R, then R ⋊⋉ J = R ⋊⋉IdR J =
{(r, r + j) : r ∈ R, j ∈ J} is the amalgamated duplication of a ring along an ideal
J . Many properties of this ring have been investigated and analyzed over the last
two decades, see for example [9], [10].

Let I be an ideal of R and K be an ideal of f(R) + J . Then I ⋊⋉f J =
{(i, f(i) + j) : i ∈ I, j ∈ J} and K̄f = {(a, f(a) + j) : a ∈ R, j ∈ J , f(a) + j ∈ K}
are ideals of R ⋊⋉f J , [10]. For a multiplicatively closed subset S of R, one can easily
verify that S ⋊⋉f J = {(s, f(s) + j) : s ∈ S, j ∈ J} and W = {(s, f(s)) : s ∈ S} are
multiplicatively closed subsets of R ⋊⋉f J . If J ⊆

√
0R′ , then one can easily see

that
√

0R⋊⋉fJ =
√
0R ⋊⋉f J .

Next, we determine when the ideal I ⋊⋉f J is (S ⋊⋉f J)-n-ideal in R ⋊⋉f J .

Theorem 5. Consider the amalgamation of rings R and R′ along the ideals J of
R′ with respect to a homomorphism f . Let S be a multiplicatively closed subset of
R and I be an ideal of R disjoint with S. Consider the following statements:

(1) I ⋊⋉f J is a W -n-ideal of R ⋊⋉f J .
(2) I ⋊⋉f J is a (S ⋊⋉f J)-n-ideal of R ⋊⋉f J .
(3) I is a S-n-ideal of R.
Then (1) ⇒ (2) ⇒ (3). Moreover, if J ⊆

√
0R′ , then the statements are equiva-

lent.

Proof. (1)⇒(2). Clear, as W ⊆ S ⋊⋉f J .
(2)⇒(3). First note that (S ⋊⋉f J)∩(I ⋊⋉f J) = ∅ if and only if S∩I = ∅. Suppose

I ⋊⋉f J is an (S ⋊⋉f J)-n-ideal of R ⋊⋉f J . Choose an (S ⋊⋉f J)-element (s, f(s))
of I ⋊⋉f J . Let a, b ∈ R such that ab ∈ I and sa /∈

√
0R. Then (a, f(a))(b, f(b)) ∈

I ⋊⋉f J and clearly (s, f(s))(a, f(a)) /∈
√

0R⋊⋉fJ . Hence, (s, f(s))(b, f(b)) ∈ I ⋊⋉f J
and so sb ∈ I. Thus, s is an S-element of I and I is an S-n-ideal of R.

Now, suppose J ⊆
√
0R′ . We prove (3)⇒(1). Suppose s is an S-element of

I and let (a, f(a) + j1)(b, f(b) + j2) = (ab, (f(a) + j1)(f(b) + j2)) ∈ I ⋊⋉f J for
(a, f(a) + j1), (b, f(b) + j1) ∈ R ⋊⋉f J . If (s, f(s))(a, f(a) + j1) /∈

√
0R⋊⋉fJ =√

0R ⋊⋉f J , then sa /∈
√
0R. Since ab ∈ I, we conclude that sb ∈ I and so

(s, f(s))(b, f(b) + j2) ∈ I ⋊⋉f J . Thus, (s, f(s)) is a W -element of I ⋊⋉f J and
I ⋊⋉f J is a W -n-ideal of R ⋊⋉f J . □

Corollary 5. Consider the amalgamation of rings R and R′ along the ideal J ⊆√
0R′ of R′ with respect to a homomorphism f . Let S be a multiplicatively closed

subset of R. The (S ⋊⋉f J)-n-ideals of R ⋊⋉f J containing {0} × J are of the form
I ⋊⋉f J where I is a S–n-ideal of R.
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Proof. From Theorem 5, I ⋊⋉f J is a (S ⋊⋉f J)-n-ideal of R ⋊⋉f J for any S-n-ideal
I of R. Let K be a (S ⋊⋉f J)-n-ideal of R ⋊⋉f J containing {0} × J. Consider the
surjective homomorphism φ : R ⋊⋉f J → R defined by φ(a, f(a) + j) = a for all
(a, f(a) + j) ∈ R ⋊⋉f J . Since Ker(φ) = {0} × J ⊆ K, I := φ(K) is a S-n-ideal of
R by Proposition 12. Since {0} × J ⊆ K, we conclude that K = I ⋊⋉f J . □

Let T be a multiplicatively closed subset of R′. Then clearly, the set T̄ f =
{(s, f(s) + j) : s ∈ R, j ∈ J, f(s) + j ∈ T} is a multiplicatively closed subset of
R ⋊⋉f J .

Theorem 6. Consider the amalgamation of rings R and R′ along the ideals J of R′

with respect to an epimorphism f . Let K be an ideal of R′ and T be a multiplicatively
closed subset of R′ disjoint with K. If K̄f is a T̄ f -n-ideal of R ⋊⋉f J , then K is a
T -n-ideal of R′. The converse is true if J ⊆

√
0R′ and Ker(f) ⊆

√
0R.

Proof. First, note that T ∩ K = ϕ if and only if T̄ f ∩ K̄f = ϕ. Suppose K̄f is a
T̄ f -n-ideal of R ⋊⋉f J and (s, f(s) + j) is some T̄ f -element of K̄f . Let a′,b′ ∈ R′

such that a′b′ ∈ K and choose a, b ∈ R where f(a) = a′ and b = f(b′). Then
(a, f(a)), (b, f(b)) ∈ R ⋊⋉f J with (a, f(a))(b, f(b)) = (ab, f(ab)) ∈ K̄f . By as-
sumption, we have either (s, f(s) + j)(a, f(a)) = (sa, (f(s) + j)f(a)) ∈

√
0R⋊⋉fJ or

(s, f(s) + j)(b, f(b)) = (sb, (f(s) + j)f(b)) ∈ K̄f . Thus, f(s) + j ∈ T and clearly,
(f(s)+ j)f(a) ∈

√
0R′ or (f(s)+ j)f(b) ∈ K. It follows that K is a T -n-ideal of R′.

Now, suppose K is a T -n-ideal of R′, t = f(s) is a T -element of K, J ⊆
√
0R′ and

Ker(f) ⊆
√
0R. Let (a, f(a) + j1)(b, f(b) + j2) = (ab, (f(a) + j1)(f(b) + j2)) ∈ K̄f

for (a, f(a) + j1), (b, f(b) + j2) ∈ R ⋊⋉f J . Then (f(a) + j1)(f(b) + j2) ∈ K and so
f(s)(f(a) + j1) ∈

√
0R′ or f(s)(f(b) + j2) ∈ K. Suppose f(s)(f(a) + j1) ∈

√
0R′ .

Since J ⊆
√
0R′ , then f(sa) ∈

√
0R′ and so (sa)m ∈ Ker(f) ⊆

√
0R for some integer

m. Hence, sa ∈
√
0R and (s, f(s))(a, f(a) + j1) ∈

√
0R⋊⋉fJ . If f(s)(f(b) + j2) ∈ K,

then clearly, (s, f(s))(b, f(b) + j2) ∈ K̄f . Therefore, K̄f is a T̄ f -n-ideal of R ⋊⋉f J
as needed. □

In particular, S × f(S) is a multiplicatively closed subset of R ⋊⋉f J for any
multiplicatively closed subset S of R. Hence, we have the following corollary of
Theorem 6.

Corollary 6. Let R, R′, J , S and f be as in Theorem 5. Let K be an ideal of R′

and T = f(S). Consider the following statements.
(1) K̄f is a (S × T )-n-ideal of R ⋊⋉f J .
(2) K̄f is a T̄ f -n-ideal of R ⋊⋉f J .
(3) K is a T -n-ideal of R.
Then (1) ⇒ (2) ⇒ (3). Moreover, if J ⊆

√
0R′ and Ker(f) ⊆

√
0R, then the

statements are equivalent.

We note that if J ⊈
√
0R′ , then the equivalences in Theorems 5 and 6 are not

true in general.
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Example 5. Let R = Z, I = ⟨0⟩ = K, J = ⟨3⟩ ⊈
√
0Z and S = {1} = T . We have

I ⋊⋉ J = {(0, 3n) : n ∈ Z}, K̄ = {(3n, 0) : n ∈ Z}, S ⋊⋉ J = {(1, 3n+ 1) : n ∈ Z},
T̄ = {(1− 3n, 1) : n ∈ Z} and

√
0R⋊⋉J = {(0, 0)}.

(1) I is a S-n-ideal of R but I ⋊⋉ J is not a (S ⋊⋉ J)-n-ideal of R ⋊⋉ J . Indeed,
we have (0, 3), (1, 4) ∈ R ⋊⋉ J with (0, 3)(1, 4) = (0, 12) ∈ I ⋊⋉ J . But
(1, 3n+ 1)(0, 3) /∈

√
0R⋊⋉J and (1, 3n+ 1)(1, 4) /∈ I ⋊⋉ J for all n ∈ Z.

(2) K is a T -n-ideal of R but K̄ is not a T̄ -n-ideal of R ⋊⋉ J . For example,
(−3, 0), (−4,−1) ∈ R ⋊⋉ J with (−3, 0)(−4,−1) = (12, 0) ∈ K̄. However,
(1− 3n, 1)(−3, 0) /∈

√
0R⋊⋉J and (1− 3n, 1)(−4,−1) /∈ K̄ for all n ∈ Z.

By taking S = {1} in Theorem 5 and Corollary 6, we get the following particular
case.

Corollary 7. Let R, R′, J , I, K and f be as in Theorems 5 and 6.

(1) If I ⋊⋉f J is an n-ideal of R ⋊⋉f J , then I is an n-ideal of R. Moreover, the
converse is true if J ⊆

√
0R′ .

(2) If K̄f is an n-ideal of R ⋊⋉f J , then K is an n-ideal of R′. Moreover, the
converse is true if J ⊆

√
0R′ and Ker(f) ⊆

√
0R.

Corollary 8. Let R, R′,I, J , K, S and T be as in Theorems 5 and 6.

(1) If I ⋊⋉ J is a (S ⋊⋉ J)-n-ideal of R ⋊⋉ J , then I is a S–n-ideal of R. Moreover,
the converse is true if J ⊆

√
0R′ .

(2) If K̄ is a T̄ -n-ideal of R ⋊⋉ J , then K is a T -n-ideal of R′. The converse is
true if J ⊆

√
0R′ and Ker(f) ⊆

√
0R.

As a generalization of S-n-ideals to modules, in the following we define the notion
of S -n-submodules which may inspire the reader for the other work.

Definition 2. Let S be a multiplicatively closed subset of a ring R, and let M be
a unital R-module. A submodule N of M with (N :R M) ∩ S = ∅ is called an S

-n-submodule if there is an s ∈ S such that am ∈ N implies sa ∈
√
(0 :R M) or

sm ∈ N for all a ∈ R and m ∈ M.
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Abstract. The concept of a pair of curves, called as Bertrand partner curves,

was introduced by Bertrand in 1850. Bertrand partner curves have been stud-

ied widely in the literature from past to present. In this study, we take into
account of the concept of Bertrand partner trajectories according to Positional

Adapted Frame (PAF) for the particles moving in 3-dimensional Euclidean

space. Some characterizations are given for these trajectories with the aid of
the PAF elements. Then, we obtain some special cases of these trajectories.

Moreover, we provide a numerical example.

1. Introduction

The theory of curves is one of the extensive fields of study for especially differ-
ential geometry, and in the existing literature, a great number of studies have been
done because of the fact that this topic is attached to the attention of a great deal
of researchers. This theory investigates the geometric property of the plane and
space curves by means of calculus methods. The moving frames can be seen most
important structures in analyzing the calculus of curves.

Until today, many authors have been used the moving frames to investigate many
special curves. For example spherical curves, Mannheim curve couple, Bertrand
curve couple, involute-evolute curve couple are discussed by using the moving
frames. One of these moving frames called as Positional Adapted Frame (PAF)

was introduced by Özen and Tosun in 2021. The authors defined this moving
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frame for the trajectories having non-vanishing angular momentum in Euclidean 3-
space [15]. There can be found some other studies [11,16,19] which are performed
by considering this frame.

Bertrand curve couple is one of the most popular special type curve couples.
The principal normal line of one of these partner curves coincides with the principal
normal line of the other partner curve at the corresponding points of these curves.
This definition was given by French mathematician Joseph Louis François Bertrand
in 1850 [1]. In this study, Bertrand also characterized this curve with respect to
its curvature and torsion. By following the steps similar to those of Bertrand, this
topic was expanded to different moving frames. For example, the studies [21], [14]
and [7] expanded this topic to the type-2 Bishop frame, Darboux frame and q-
frame, respectively. Also, many mathematicians presented various studies about
the concept of Bertrand curve couple with different perspectives. Some of them
can be found in [3, 10, 12, 17, 20]. In this study, we will consider this topic with
respect to the Positional Adapted Frame.

This study is organized as follows. In Section 2, we review some required in-
formation to understand the ensuing section. In Section 3, we deal with Bertrand
partner trajectories according to Positional Adapted Frame in 3-dimensional Eu-
clidean space. We call these trajectories as Bertrand partner P-trajectories. We
examine the relationships between the PAF elements of the aforesaid partners. Also,
we give the relations between the Serret-Frenet basis vectors of Bertrand partner
P-trajectories. Moreover, we get the necessary conditions in terms of the PAF cur-
vatures of other to be an osculating curve for one of these partners. Lastly, we
provide a numerical example so that the readers can visualize the Bertrand partner
P-trajectories.

2. Basic Concepts

In this section, we have reviewed some required and fundamental concepts to
disambiguate the ensuing section of the paper.

In Euclidean 3-space E3, let U = (u1, u2, u3),V = (v1, v2, v3) ∈ R3 be given.
The standard dot product of these vectors and the norm of U are given as
⟨U ,V ⟩ = u1v1 + u2v2 + u3v3 and ∥U∥ =

√
⟨U ,U⟩, respectively. A differen-

tiable curve α = α (s) : I ⊂ R → E3 is called as a unit speed curve if
∥∥dα
ds

∥∥ = 1
holds for each s ∈ I. In that case, s is called as arc-length parameter of the curve
α. If the derivative of a differentiable curve never vanishes along this curve, it is
said to be a regular curve. Any regular curve always has a parameterization such
that it will be a unit speed curve [18]. Note that the symbol prime “′” will be used
to indicate the differentiation according to the arc-length parameter s in the rest
of the paper.

Let us take into consideration a point particle P of a constant mass moves on
a unit speed regular curve α = α(s). The base vectors of the Serret-Frenet frame
{T (s) ,N (s) ,B (s)} of α are defined by the equations T (s) = α′(s),
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N (s) = α′′(s)
∥α′′(s)∥ , B (s) = T(s) ∧ N(s). The base vectors T (s) , N (s) and B (s)

are called as unit tangent vector, principal normal vector and binormal vector, re-
spectively. The Serret-Frenet derivative formulas are expressed as in the following:T′(s)

N′(s)
B′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T(s)
N(s)
B(s)

 (1)

where κ (s) = ∥T ′ (s)∥ is the curvature and τ (s) = −⟨B ′ (s) ,N (s)⟩ is the torsion
[18]. We must emphasize that the curvature κ never vanishes for the curves we will
consider in this paper.

On the other hand, it is well known that the vector product of the position
vector x = ⟨α (s) , T (s)⟩T (s) + ⟨α (s) , N (s)⟩N (s) + ⟨α (s) , B (s)⟩B (s) and the
linear momentum vector p (t) = m

(
ds
dt

)
T (s) of the particle P yields the angular

momentum vector of P about the origin as HO = m ⟨α (s) , B (s)⟩
(
ds
dt

)
N (s) −

m ⟨α (s) , N (s)⟩
(
ds
dt

)
B (s). Here m and t denote the constant mass of P and the

time [4,9]. Let this vector not equal to zero vector during the motion of P . Making
this supposition assures that the coefficient functions ⟨α(s),N(s)⟩ and ⟨α(s),B(s)⟩
of the position vector x do not equal to zero at the same time. Then, one can easily
say that the tangent line of α = α(s) does not pass through the origin along the
trajectory of P . Take into account of the vector whose initial point is the foot of
the perpendicular (from origin to instantaneous rectifying plane Sp {T(s),B(s)})
and endpoint is the foot of the perpendicular (from origin to instantaneous oscu-
lating plane Sp {T(s),N(s)}). The unit vector in direction of the equivalent of the
aforementioned vector at the point α (s) determines the PAF basis vector Y(s).
The other PAF basis vector M(s) is obtained by the vector product Y(s) ∧T (s).
Consequently, the vectors

T(s) = T(s),

M(s) =
⟨α(s),B(s)⟩√

⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2
N(s) +

⟨α(s),N(s)⟩√
⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2

B(s),

Y(s) =
⟨−α(s),N(s)⟩√

⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2
N(s) +

⟨α(s),B(s)⟩√
⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2

B(s),

form the Positional Adapted Frame {T(s),M(s),Y(s)} (see [15] for more details
on PAF).

The relation between the Serret-Frenet frame and PAF is as in the following:T (s)
M(s)
Y(s)

 =

1 0 0
0 cosΩ(s) − sinΩ(s)
0 sinΩ(s) cosΩ(s)

T(s)
N(s)
B(s)

 (2)

where Ω(s) is the angle between the vector B(s) and the vector Y(s) which is
positively oriented from the vector B(s) to vector Y(s). On the other hand, the
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derivative formulas of PAF are presented as follows [15]:T′(s)
M′(s)
Y′(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0

 T(s)
M(s)
Y(s)

 (3)

where

k1(s) = κ(s) cosΩ(s),

k2(s) = κ(s) sinΩ(s),

k3(s) = τ(s)− Ω′(s).

Here, the rotation angle Ω(s) is determined by means of the following equation:

Ω(s) =



arctan
(
− ⟨α(s),N(s)⟩

⟨α(s),B(s)⟩

)
if ⟨α(s), B(s)⟩ > 0,

arctan
(
− ⟨α(s),N(s)⟩

⟨α(s),B(s)⟩

)
+ π if ⟨α(s), B(s)⟩ < 0,

−π
2 if ⟨α(s), B(s)⟩ = 0 , ⟨α(s), N(s)⟩ > 0,

π
2 if ⟨α(s), B(s)⟩ = 0 , ⟨α(s), N(s)⟩ < 0.

The elements of the set {T(s),M(s),Y(s), k1(s), k2(s), k3(s)} are called as PAF
apparatuses of α = α (s) [15].

Note that PAF is a generic adapted moving frame just like Bishop frame [2],
Darboux frame [6], B-Darboux frame [8] etc. Generic adapted moving frames are
obtained from Serret-Frenet frame by a rotation (see [5] for more details on generic
adapted moving frame). Since the analytical approach is used to determine the
rotation angle in PAF, the rotation angle can be easily determined, while in many
other moving frames, the determination of the angle is based on integral calcula-
tions. These calculations often cause difficulties for researchers. Also, PAF enables
the researchers to study the kinematics of a moving particle and the differential
geometry of this particle at the same time. Moreover, PAF contains information
about the position vector of the moving particle. When viewed from this aspect, it
is a useful tool for the researchers studying on kinematics and inverse kinematics.

Now we give the definition of the osculating curve in 3-dimensional Euclidean
space since we will discuss this topic in the next section. A curve β = β(s) is called
as osculating curve if its position vector always lies in its osculating plane. One can
find more details on this topic in [13].

Theorem 1. [15] Let α = α(s) be the unit speed parameterization of the trajectory.
Then, α is an osculating curve if and only if k1 = 0.

More details can be found in the studies [11, 15, 16, 19] for Positional Adapted
Frame (PAF).
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3. Bertrand Partner P-Trajectories

In this section, we introduce the Bertrand partner P-trajectories and give some
characterizations of them. Furthermore, we provide an example in order to illustrate
this topic.

Definition 1. Let Q and Q̆ be the moving point particles of constant masses in the
Euclidean 3-space. Show the unit speed parameterization of the trajectories of Q and
Q̆ with α = α (s) and ᾰ = ᾰ (s̆), respectively. Let the PAF apparatus of the trajecto-

ries α and ᾰ be represented by {T, M, Y, k1, k2, k3} and
{
T̆, M̆, Y̆, k̆1, k̆2, k̆3

}
,

respectively. If the PAF base vector M coincides with the PAF base vector M̆ at
the corresponding points of the trajectories α and ᾰ, in this case α is said to be
a Bertrand partner P-trajectory of ᾰ. Moreover, the pair {α, ᾰ} is called as a
Bertrand P-pair.

Figure 1. Bertrand partner P-trajectories

According to the definition of Bertrand P-pair, we get the following matrix equa-
tion T

M
Y

 =

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 T̆

M̆

Y̆

 (4)

where ϕ is the angle between the tangent vectors T and T̆.

Theorem 2. Let {α = α (s) , ᾰ = ᾰ (s̆)} be any Bertrand P-pair in E3. In that
case, the distance between the corresponding points of α and ᾰ is constant.
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Proof. By the definition of Bertrand P-trajectories, we can write:

α (s) = ᾰ (s̆) + ψ (s̆) M̆ (s̆) (5)

where ψ is a real valued smooth function of s̆ (see Figure 1). By taking the derivative
of the equation (5) with respect to s̆ and considering the PAF derivative formulas
(3), we get:

T
ds

ds̆
=
(
1− ψk̆1

)
T̆+ ψ′M̆+ ψk̆3Y̆. (6)

Since T, T̆ and Y̆ are orthogonal to M̆, and also M̆ is a unit vector, we have ψ′ = 0
with the help of the inner product. Therefore, ψ is a non-zero constant and the
equation (6) becomes:

T
ds

ds̆
=
(
1− ψk̆1

)
T̆+ ψk̆3Y̆. (7)

In the light of these results, the distance between the corresponding points of the
trajectories can be given as:

d (α (s) , ᾰ (s̆)) = ∥α (s)− ᾰ (s̆)∥ =
∥∥∥ψM̆∥∥∥ =| ψ | .

Therefore, we can say that the distance between each corresponding points of α
and ᾰ is constant. □

Theorem 3. Let {α = α (s) , ᾰ = ᾰ (s̆)} be any Bertrand P-pair in E3. Then, the
equation

d

ds
(cosϕ) = k2

〈
Y, T̆

〉
+ k̆2

ds̆

ds

〈
T, Y̆

〉
is satisfied.

Proof. Since ϕ is the angle between the tangent vectors T and T̆, one can easily

write
〈
T, T̆

〉
= ∥T∥

∥∥∥T̆∥∥∥ cosϕ = cosϕ. Let us differentiate this equation with

respect to s. Thus, we get:

d

ds
(cosϕ) =

d

ds

〈
T, T̆

〉
=

〈
k1M+ k2Y, T̆

〉
+

〈
T, (k̆1M̆+ k̆2Y̆)

ds̆

ds

〉
.

This equation gives us the desired result. □

Corollary 1. The angles between the tangent vectors at the corresponding points
of a Bertrand P-pair is generally not constant.
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Theorem 4. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in E3. Then, the
following relationsT

M
Y

 =


(
1− ψk̆1

)
ds̆
ds 0 ψk̆3

ds̆
ds

0 1 0

−ψk̆3 ds̆ds 0
(
1− ψk̆1

)
ds̆
ds


 T̆

M̆

Y̆

 (8)

are satisfied between the PAF vectors of α and ᾰ.

Proof. Suppose that {α, ᾰ} is a Bertrand P-pair in E3. By using the equations (4)
and (7), we get:

cosϕ
ds

ds̆
T̆− sinϕ

ds

ds̆
Y̆ =

(
1− ψk̆1

)
T̆+ ψk̆3Y̆.

The last equation gives us the following:
cosϕ =

(
1− ψk̆1

) ds̆
ds
,

sinϕ = −ψk̆3
ds̆

ds
.

(9)

If we substitute the equation (9) in the equation (4), we obtain the desired result.
□

Corollary 2. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in E3. Then, we
have:

tanϕ =
−ψk̆3
1− ψk̆1

(10)

where ϕ is the angle between T and T̆.

Corollary 3. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in E3. Then,∫
cosϕds+ ψ

∫
k̆1ds̆ = s̆+ c1

where c1 denotes the integration constant.

Corollary 4. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in E3. Then, the
equality ∫

sinϕds+ ψ

∫
k̆3ds̆ = 0

holds.

Theorem 5. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in E3 and their

Serret-Frenet apparatuses be {T, N, B, κ, τ} and
{
T̆, N̆, B̆, κ̆, τ̆

}
, respectively.
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Then, the relations between the Serret-Frenet vectors of this pair are given as:

T̆ =
(
1− ψk̆1

) ds̆
ds

T− ψk̆3 sinΩ
ds̆

ds
N− ψk̆3 cosΩ

ds̆

ds
B,

N̆ =ψk̆3 sin Ω̆
ds̆

ds
T+

(
cos Ω̆ cosΩ +

(
1− ψk̆1

)
sin Ω̆ sinΩ

ds̆

ds

)
N

+

(
− cos Ω̆ sinΩ +

(
1− ψk̆1

)
sin Ω̆ cosΩ

ds̆

ds

)
B,

B̆ =ψk̆3 cos Ω̆
ds̆

ds
T+

(
− sin Ω̆ cosΩ +

(
1− ψk̆1

)
cos Ω̆ sinΩ

ds̆

ds

)
N

+

(
sin Ω̆ sinΩ +

(
1− ψk̆1

)
cos Ω̆ cosΩ

ds̆

ds

)
B,

where Ω is the angle between the vectors B and Y and also, Ω̆ is the angle between
the vectors B̆ and Y̆.

Proof. Using the equation (2), we can write:T
M
Y

 =

1 0 0
0 cosΩ − sinΩ
0 sinΩ cosΩ

T
N
B

 (11)

and also T̆

N̆

B̆

 =

1 0 0

0 cos Ω̆ sin Ω̆

0 − sin Ω̆ cos Ω̆

 T̆

M̆

Y̆

 . (12)

On the other hand, by using the equation (8), we get: T̆

M̆

Y̆

 =


(
1− ψk̆1

)
ds̆
ds 0 −ψk̆3 ds̆ds

0 1 0

ψk̆3
ds̆
ds 0

(
1− ψk̆1

)
ds̆
ds


T
M
Y

 . (13)

If the equation (13) is substituted into the equation (12), then

T̆

N̆

B̆

 =


(
1− ψk̆1

)
ds̆
ds 0 −ψk̆3 ds̆ds

ψk̆3 sin Ω̆
ds̆
ds cos Ω̆

(
1− ψk̆1

)
sin Ω̆ds̆

ds

ψk̆3 cos Ω̆
ds̆
ds − sin Ω̆

(
1− ψk̆1

)
cos Ω̆ds̆

ds


T
M
Y

 (14)

is found. By using the equation (11) in the equation (14), we complete the proof. □

Theorem 6. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in E3. Then, the
following relations
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(1) k1 =
k̆1 − ψk̆1

2
− ψk̆3

2

1− 2ψk̆1 + ψ2
(
k̆1

2
+ k̆3

2
),

(2) k̆1 =
k1 − ηk21 − ηk23

1− 2ηk1 + η2 (k21 + k23)
,

are satisfied between k1, k3, k̆1 and k̆3. Here η is a constant satisfying | η |=| ψ |.

Proof. (1) Assume that {α, ᾰ} is a Bertrand P-pair in E3. Via the equation
(9) and the equality cos2ϕ+ sin2ϕ = 1, we get:(

ds̆

ds

)2((
1− ψk̆1

)2
+ ψ2k̆3

2
)

= 1.

Hence, we have:(
ds

ds̆

)2

= 1− 2ψk̆1 + ψ2
(
k̆1

2
+ k̆3

2
)
. (15)

On the other hand, if we differentiate the equation (7) with respect to s̆
and use the PAF derivative formulas, we obtain:

d2s

ds̆2
T+ k1

(
ds

ds̆

)2

M+ k2

(
ds

ds̆

)2

Y =
(
−ψk̆1

′
− ψk̆2k̆3

)
T̆

+
(
k̆1

(
1− ψk̆1

)
− ψk̆3

2
)
M̆

+
(
k̆2

(
1− ψk̆1

)
+ ψk̆3

′)
Y̆.

(16)

By taking into consideration the equation (16) and utilizing the definition
of Bertrand P-pair, we get:

k1

(
ds

ds̆

)2

=
(
1− ψk̆1

)
k̆1 − ψk̆3

2
. (17)

From the equations (15) and (17), one can easily see the desired result.
(2) According to the definition of the Bertrand P-pair, we can write:

ᾰ (s̆) = α (s) + ηM (s)

where η is a constant satisfying | η |=| ψ | (see Figure 1). Let us take the
derivative of this equation with respect to s twice. In that case, we obtain:

T̆
ds̆

ds
= (1− ηk1)T+ ηk3Y (18)

and

d2s̆

ds2
T̆+ k̆1

(
ds̆

ds

)2

M̆+ k̆2

(
ds̆

ds

)2

Y̆ =
(
−ηk′1 − ηk2k3

)
T

+
(
k1 (1− ηk1)− ηk23

)
M

+
(
k2 (1− ηk1) + ηk′3

)
Y.

(19)
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On the other hand, we can write T̆ = cosϕT+sinϕY by the equation (4).
Then, by using the equation (18), we find:

cosϕ
ds̆

ds
T+ sinϕ

ds̆

ds
Y = (1− ηk1)T+ ηk3Y.

Hence, we get the equations cosϕ
ds̆

ds
= 1 − ηk1 and sinϕ

ds̆

ds
= ηk3. These

equations give us the equation:(
ds̆

ds

)2

= 1− 2ηk1 + η2
(
k21 + k23

)
. (20)

Moreover, by taking the inner product of the vectors at the right and left
sides of the equation (19) with the vector M, we have:

k̆1

(
ds̆

ds

)2

= k1 − ηk21 − ηk23. (21)

Therefore, we obtain the desired result by using the equation (20).
□

Thanks to the Theorem 1 and Theorem 6, we can attain the following corollaries.

Corollary 5. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in Euclidean 3-space

E3. If k̆1 = k̆3 = 0, then k1 = 0.

Corollary 6. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in Euclidean 3-space

E3. If k1 = k3 = 0, then k̆1 = 0.

Corollary 7. Let {α = α (s) , ᾰ = ᾰ (s̆)} be a Bertrand P-pair in E3. Then, the
following mathematical expressions hold:

(1) α is an osculating curve if and only if k̆1−ψk̆1
2−ψk̆3

2

1−2ψk̆1+ψ2
(
k̆1

2
+k̆3

2
) = 0,

(2) ᾰ is an osculating curve if and only if
k1−ηk21−ηk

2
3

1−2ηk1+η2(k21+k23)
= 0.

Example 1. In the Euclidean 3-space, suppose that a point particle Q moves on
the trajectory

α : (0, π/2) → E3

s 7→ α(s) =

(
8

17
cos 2s,

12

17
− sin 2s,−

15

17
cos 2s

)
.

(22)

By straightforward calculations, we get the following Serret-Frenet apparatus:
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

T(s) =

(
− 8

17
sin 2s,− cos s,

15

17
sin 2s

)
N(s) =

(
− 8

17
cos 2s, sin 2s,

15

17
cos 2s

)
B(s) =

(
−15

17
, 0,− 8

17

) and

{
κ(s) = 1

τ(s) = 0.

Since ⟨α(s),B(s)⟩ = 0 and ⟨α(s),N(s)⟩ = −1+
12

17
sin 2s < 0, we get Ω =

π

2
. Then,

the elements of PAF are found as:

T(s) =

(
− 8

17
sin 2s,− cos 2s,

15

17
sin 2s

)
M(s) =

(
15

17
, 0,

8

17

)
Y(s) =

(
− 8

17
cos 2s, sin 2s,

15

17
cos 2s

) and


k1(s) = 0

k2(s) = 1

k3(s) = 0.

Therefore, Bertrand partner P-trajectory of α can be given as:

ᾰ(s) =

(
8

17
cos 2s+ η

15

17
,
12

17
− sin 2s,−

15

17
cos 2s+ η

8

17

)
(23)

by means of the equality ᾰ(s) = α(s) + ηM(s).

Figure 2. The trajectories α and ᾰ given in (22) and (23)
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In the Figure 2, the trajectories α = α(s) (blue) and ᾰ = ᾰ(s) (red) can be seen.
Here we take η = 0.1.

On the other hand, by using the Theorem 6 and Corollary 7, we get k̆1 = 0. So,
we can conclude that the trajectory ᾰ is an osculating curve. It should be noted
that the Figure 2 is drawn by utilizing the website Wolfram Mathematica (Wolfram
Cloud).
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Abstract. In this paper, it is aimed to construct two different dynamical
systems on the Sierpinski tetrahedron. To this end, we consider the dynamical

systems on a quotient space of {0, 1, 2, 3}N by using the code representations
of the points on the Sierpinski tetrahedron. Finally, we compare the periodic

points to investigate topological conjugacy of these dynamical systems and we

conclude that they are not topologically equivalent.

1. Introduction

In the literature, there are many works to analyze the structures on the frac-
tals [1–17]. Defining different dynamical systems on the fractals is one of these
studies [3, 4, 8, 17]. With the method given in [4], dynamical systems are naturally
constructed on the self-similar sets using their iterated function systems. Moreover,
there are different ways to define the dynamical systems on these sets considering
their structures. With the help of the folding, expanding, translation and rotation
mappings, many dynamical systems can also be obtained on the fractals as given
in [17]. On the other hand, expressing the dynamical systems using the code repre-
sentations of the points can provide many advantages. The utility of this situation
can be seen while showing whether these systems are chaotic or not [3,17]. For this
purpose, we also need to use the intrinsic metrics which are defined by means of
the code representations on the related fractals. For instance, the intrinsic metric
on the Sierpinski tetrahedron (ST ) (see Theorem 1) is required to prove that the
dynamical system, defined on the code set of ST , is chaotic [3], and it is also used
to show some geometrical properties such as number of the geodesics in [9].
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In this paper, we first focus on the quotient space of the Sierpinski tetrahe-
dron {0, 1, 2, 3}N/∼. On this space, we define two dynamical systems {ST ;G} and
{ST ;T} in Proposition 3 and Proposition 5 respectively. Then we compare their
fixed points and deduce that they are not topologically equivalent in Remark 2. On
the other hand, in Proposition 4 and Remark 1, we show that {ST ;G} is topolog-
ically equivalent to {ST ;F} which is given in [3] (see Proposition 1). Hence, we
also conclude that {ST ;G} is chaotic in the sense of Devaney by the help of the
topological conjugacy H.

We now recall some basic notions in the following section:

2. Preliminaries

As a fractal, the Sierpinski tetrahedron with vertices are P0 = (0, 0, 0), P1 =

(1, 0, 0), P2 = (12 ,
√
3
2 , 0) and P3 = (12 ,

√
3
6 ,

√
6
3 ) is the attractor of the iterated

function system (IFS) {R3; f0, f1, f2, f3} where

f0(x, y, z) =

(
1

2
x,

1

2
y,

1

2
z

)
,

f1(x, y, z) =

(
1

2
x+

1

2
,
1

2
y,

1

2
z

)
,

f2(x, y, z) =

(
1

2
x+

1

4
,
1

2
y +

√
3

4
,
1

2
z

)
,

f3(x, y, z) =

(
1

2
x+

1

4
,
1

2
y +

√
3

12
,
1

2
z +

√
6

6

)
.

Let STi = fi(ST ) for i = 0, 1, 2, 3. It is obvious that STi ∩ STj ̸= ∅ for i ̸= j

where i, j = 0, 1, 2, 3 and
3⋃

i=0

STi = ST. Suppose that σ is a word of length k − 1

on the set {0, 1, 2, 3} such as σ = a1a2a3 . . . ak−1 where ai ∈ {0, 1, 2, 3}. Similarly,
we get STσ = fak−1

◦ fak−2
◦ · · · ◦ fa1 ◦ fa0(ST ). In the Figure 1, one can see that

the sub-tetrahedron ST313 of ST for σ = 313. Since STa1
, STa1a2

, STa1a2a3
, . . . is a

sequence of the nested sets such that

STa1
⊃ STa1a2

⊃ STa1a2a3
⊃ . . . ⊃ STa1a2...an

⊃ . . . ,

∞⋂
k=1

STσ indicates a singleton, A, from the Cantor intersection theorem. The code

representations of A is the sequence a1a2a3 . . . where ai ∈ {0, 1, 2, 3}.
On the other hand, the intersection of the sequences STσ, STσα, STσαβ , STσαββ , . . .

and STσ, STσβ , STσβα, STσβαα, . . . satisfying

STσ ⊃ STσα ⊃ STσαβ ⊃ STσαββ ⊃ . . .
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ST

ST
s

0ST
s

1ST
s

2ST
s

3ST
s

0P

1P

2P

3P

0 0(ST) STf =

1 1(ST) STf =

2 2(ST) STf =

3 3(ST) STf =

Figure 1. The Sierpinski tetrahedron and a small piece STσ of ST

and

STσ ⊃ STσβ ⊃ STσβα ⊃ STσβαα ⊃ . . .

represents the same point on ST and the code representations of these points are
σαβββ . . . and σβααα . . . . Therefore, ST can be defined as the quotient space
{0, 1, 2, 3}N/∼ where

c′ ∼ c′′ ⇔ c′ = c′′ or there are ci, α, β ∈ {0, 1, 2, 3} such that
c′ = c1c2 . . . cnαβββ . . . , c′′ = c1c2 . . . cnβααα . . . for an integer n.
The dynamical system, defined in [3] on this quotient space, is given with the

following proposition:

Proposition 1. Let the code representations of points X and Y of the Sierpinski
tetrahedron be x1x2x3 . . . and y1y2y3 . . . respectively. The function F : ST → ST ,
F (X) = Y such that

yi ≡ xi+1 + x1 (mod4) (1)

where xi, yi ∈ {0, 1, 2, 3} and i = 1, 2, 3, . . . is a dynamical system on the code sets
of the Sierpinski tetrahedon.

We also give two chaotic dynamical systems on the quotient space of the Sierpin-
ski tetrahedron and we investigate these dynamical systems in terms of topological
conjugacy.

Definition 1. Let {X1; f1} and {X2; f2} be two dynamical systems. If there is a
homeomorphism θ : X1 → X2 such that f2 = θ ◦ f1 ◦ θ−1 (or that means ∀x ∈
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X1, θ(f1(x)) = f2(θ(x))), these dynamical systems are equivalent or topologically
conjugate. θ is called a topological conjugacy (see [4]).

Proposition 2. If the dynamical systems {X1; f1} and {X2; f2} have the different
number of n−periodic points for at least n ∈ N, then they are not topologically
conjugate (see [10]).

Definition 2. A dynamical system {X; f} is chaotic in the sense of Devaney if it
is sensitivite dependence on the initial condition, topologically transitive and it has
density of periodic points (see [6]).

We need a useful metric in order to investigate the dynamical systems are chaotic
or not. The intrinsic metric on the quotient space of the Sierpinski tetrahedron is
formulated with the following theorem:

Theorem 1. If a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . are two repre-
sentations of the points A and B respectively on the Sierpinski tetrahedron such
that ai = bi for i = 1, 2, . . . , k − 1 and ak ̸= bk, then the formula

d(A,B) = min

{ ∞∑
i=k+1

αi + βi

2i
,
1

2k
+

∞∑
i=k+1

γi + δi
2i

,
1

2k
+

∞∑
i=k+1

ϕi + φi

2i

}
(2)

such that

αi =

{
0, ai = bk
1, ai ̸= bk

, βi =

{
0, bi = ak
1, bi ̸= ak

,

γi =

{
0, ai = ck
1, ai ̸= ck

, δi =

{
0, bi = ck
1, bi ̸= ck

,

ϕi =

{
0, ai = dk
1, ai ̸= dk

, φi =

{
0, bi = dk
1, bi ̸= dk

where ak ̸= ck ̸= bk and ak ̸= dk ̸= bk and ck ̸= dk (ai, bi, ck, dk ∈ {0, 1, 2, 3}, i =
1, 2, 3, . . .) gives the distance d(A,B) between the points A and B.

This metric gives the distance of the shortest path between any points on ST .

3. A Chaotic Dynamical System on the Sierpinski Tetrahedron
{ST ;G}

In this section, we construct a dynamical system which is different from (1) on
ST and we investigate some periodic points of this dynamical system.

Proposition 3. Let the code representations of X,Y ∈ ST be x1x2x3 . . . and
y1y2y3 . . . respectively where i = 1, 2, 3, . . . and xi, yi ∈ {0, 1, 2, 3}. Suppose that the
function G : ST → ST is defined according to four different situations of x1 :
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G(0x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 1
1, xi+1 = 2
2, xi+1 = 3
3, xi+1 = 0

(i ≥ 1)

G(1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 0
1, xi+1 = 1
2, xi+1 = 2
3, xi+1 = 3

(i ≥ 1)

G(2x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 3
1, xi+1 = 0
2, xi+1 = 1
3, xi+1 = 2

(i ≥ 1)

G(3x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 2
1, xi+1 = 3
2, xi+1 = 0
3, xi+1 = 1

(i ≥ 1).

In this case, {ST ;G} states a dynamical system.

Proof. We know from the hypothesis, there are four different rules in regard to
the cases of x1. If X has a unique code representation, then it is obvious that
G(X) also has a unique code representation. For α, β ∈ {0, 1, 2, 3} and α ̸= β, let
x1x2x3 . . . xnαβββ . . . and x1x2x3 . . . xnβααα . . . be two different code representa-
tions of X then we have

G(x1x2x3 . . . xnαβββ . . .) = y1y2y3 . . . ynyn+1yn+2 . . .

G(x1x2x3 . . . xnβααα . . .) = z1z2z3 . . . znzn+1zn+2 . . .

where yi, zi ∈ {0, 1, 2, 3}. Therefore, we must show that y1y2y3 . . . ynyn+1yn+2 . . .
and z1z2z3 . . . znzn+1zn+2 . . . are different code representations of G(X).
If x1 = 0, then we get

yi ≡ zi ≡ xi+1 + 3 (mod4)

for i = 1, 2, 3, . . . , n− 1 because of the definition of G. As well, for i = 1, 2, 3, . . .

yn ≡ α+ 3 (mod4),

yn+i ≡ β + 3 (mod4),

zn ≡ β + 3 (mod4),

zn+i ≡ α+ 3 (mod4)

are obtained. Let us define si ≡ xi+1 + 3 (mod4) and α + 3 ≡ γ (mod4), β + 3 ≡
δ (mod4) for i = 1, 2, 3, . . . , n− 1. Thus, we get γ ̸= δ

y1y2y3 . . . ynyn+1yn+2 . . . = s1s2s3 . . . sn−1γδδδ . . .
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and

z1z2z3 . . . znzn+1zn+2 . . . = s1s2s3 . . . sn−1δγγγ . . . .

For the case x1 = 1, we obtain yi = zi = xi+1 for i = 1, 2, 3, . . . , n − 1. What’s
more, for i = 1, 2, 3, . . .

yn = α,
yn+i = β,
zn = β,
zn+i = α

are computed. So, we obtain the following results

y1y2y3 . . . ynyn+1yn+2 . . . = x2x3x4 . . . xn−1αβββ . . .

and

z1z2z3 . . . znzn+1zn+2 . . . = x2x3x4 . . . xn−1βααα . . . .

If x1 = 2, then

yi ≡ zi ≡ xi+1 + 1 (mod4)

where i = 1, 2, 3, . . . , n− 1. Moreover, for i = 1, 2, 3, . . ., we have

yn ≡ α+ 1 (mod4),

yn+i ≡ β + 1 (mod4),

zn ≡ β + 1 (mod4),

zn+i ≡ α+ 1 (mod4).

Hence, we observe that

y1y2y3 . . . ynyn+1yn+2 . . . = s1s2s3 . . . sn−1γδδδ . . .

and

z1z2z3 . . . znzn+1zn+2 . . . = s1s2s3 . . . sn−1δγγγ . . .

for i = 1, 2, 3, . . . , n − 1 where si ≡ xi+1 + 1 (mod4) and α + 1 ≡ γ (mod4),
β + 1 ≡ δ (mod4).

If x1 = 3, then for i = 1, 2, 3, . . . , n− 1, we get

yi ≡ zi ≡ xi+1 + 2 (mod4).

In addition, for i = 1, 2, 3, . . .,

yn ≡ α+ 2 (mod4),

yn+i ≡ β + 2 (mod4),

zn ≡ β + 2 (mod4),

zn+i ≡ α+ 2 (mod4)

are satisfied. Here, for i = 1, 2, 3, . . . , n − 1, si ≡ xi+1 + 2 (mod4) and α + 2 ≡
γ (mod4) and β + 2 ≡ δ (mod4). Since, γ ̸= δ

y1y2y3 . . . ynyn+1yn+2 . . . = s1s2s3 . . . sn−1γδδδ . . .
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and

z1z2z3 . . . znzn+1zn+2 . . . = s1s2s3 . . . sn−1δγγγ . . .

are the different code representations of the point G(X). This shows that G is
well-defined on the quotient space of ST. Thus, the proof is completed. □

Proposition 4. Suppose that the code representations of the points X, X ′ ∈ ST
are x1x2x3 . . . and x′

1x
′
2x

′
3 . . . respectively where xi, x′

i ∈ {0, 1, 2, 3} for all i ∈ N.
There is a function H : ST → ST such that

H(X) = X ′, x′
i =


0, xi = 3
1, xi = 0
2, xi = 1
3, xi = 2

(3)

which satisfies H(F (X)) = G(H(X)) is a homoemorphism, where F is defined in
Proposition 1.

Proof. It is obvious that H is surjective function and d(H(X), H(Y )) = d(X,Y )
for all X,Y ∈ ST . So, we conclude that H is a homeomorphism. One can obtain
that H(F (X)) = G(H(X)) for all X ∈ ST with easy computations. □

Remark 1. Since the function H : ST → ST defined in (3) is a homeomorphism
for ∀X ∈ ST , the dynamical systems {ST ;F} and {ST ;G} are topologically con-
jugate. Therefore, {ST ;G} is also chaotic since {ST ;F} is chaotic and {ST, d} is
compact.

According to Remark 1, the dynamical systems {ST ;F} and {ST ;G} are topo-
logically conjugate. In consequence, the number of periodic points of these systems
are equal.

While the periodic points of F are known, the periodic points of G can be found
with the help of the homeomorphism H in (3). We have the fixed points and
2−periodic points of F from [3]. Because of the fixed points of F , which are

•0 = 000 . . . , •1032 = 10321032 . . . , •20 = 202020 . . . , •3012 = 30123012 . . .

the fixed points of G are obtained as follows

•H(0) = 1, •H(1032) = 2103, •H(20) = 31, •H(3012) = 0123.

Similarly, the 2− periodic points of G are

•H(13023120) = 20130231, •H(0220) = 1331, •H(01302312) = 12013023

•H(03102132) = 10213203, •H(12) = 23, •H(11223300) = 22330011

•H(2200) = 3311, •H(21100332) = 32211003, •H(23300112) = 30011223

•H(31021320) = 02132031, •H(32) = 03, •H(33221100) = 00332211.
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4. A Dynamical System on the Sierpinski Tetrahedron {ST ;T}

We now define a new dynamical system which is not topologically conjugate with
{ST ;G} and automatically with {ST ;F}.

Proposition 5. The code representations of X,Y ∈ ST are x1x2x3 . . . and y1y2y3 . . .
respectively. The function T : ST → ST are defined for i = 1, 2, 3, . . . and
xi, yi ∈ {0, 1, 2, 3} as follows

T (0x2x3 . . .) = x2x3x4 . . .

T (1x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 3
1, xi+1 = 0
2, xi+1 = 2
3, xi+1 = 1

(i ≥ 1).

If x1 = 2, there are four situations:
Case 1:

T (222 . . . 20xk+1xk+2xk+3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 2
1, xi+1 = 3
2, xi+1 = 0
3, xi+1 = 1

(i ≥ 1)

Case 2:

T (222 . . . 21xk+1xk+2xk+3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 2
1, xi+1 = 3
2, xi+1 = 1
3, xi+1 = 0

(i ≥ 1)

Case 3:

T (22 . . . 23xs . . . 0xk+1xk+2xk+3 . . .) = y1y2y3 . . . ,

where xs ∈ {2, 3} for s < k

yi =


0, xi+1 = 2
1, xi+1 = 0
2, xi+1 = 3
3, xi+1 = 1

(i ≥ 1)

Case 4:

T (22 . . . 23xs . . . 1xk+1xk+2xk+3 . . .) = y1y2y3 . . . ,

where xs ∈ {2, 3} for s < k

yi =


0, xi+1 = 2
1, xi+1 = 1
2, xi+1 = 3
3, xi+1 = 0

(i ≥ 1).
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(Note that, due to above rules T (2) = 0, T (23) = 2 and T (232) = 20 are obtained.)
If x1 = 3, then

T (3x2x3 . . .) = y1y2y3 . . . , yi =


0, xi+1 = 1
1, xi+1 = 3
2, xi+1 = 2
3, xi+1 = 0

(i ≥ 1).

Then, {ST ;T} is a dynamical system.

Proof. To state that {ST ;T} is a dynamical system, the images of the points ex-
pressed by two different code representations must indicate the same point. For
example, 01 and 10 or 230 and 203 indicates the same point on ST. Thus, we investi-
gate the images of following points 01, 02, 03, 10, 12, 13, 20, 21, 23, 30, 31, 32, 001, 010,
002, 020, 003, 030, 012, 021, 013, 031, 023, 032 110, 101, 102, 120, 103, 130, 121, 112, 113,
131, 123, 132, 201, 210, 202, 220, 203, 230, 212, 221, 213, 231, 232, 223 and 301, 310, 302,
320, 303, 330, 312, 321, 313, 331, 323, 332. So, we get the following results,

T (01) = 1,
T (10) = 1,

T (02) = 2,
T (20) = 2,

T (03) = 3,
T (30) = 3,

T (12) = 2,
T (21) = 2,

T (13) = 0,
T (31) = 0,

T (23) = 2,
T (32) = 2,

T (001) = 01,
T (010) = 10,

T (002) = 02,
T (020) = 20,

T (003) = 03,
T (030) = 30,

T (012) = 12,
T (021) = 21,

T (013) = 13,
T (031) = 31,

T (023) = 23,
T (032) = 32,

T (101) = 13,
T (110) = 31,

T (102) = 12,
T (120) = 21,

T (103) = 10,
T (130) = 01,

T (112) = 32,
T (121) = 23,

T (113) = 30,
T (131) = 03,

T (123) = 20,
T (132) = 02,

T (201) = 23,
T (210) = 23,

T (202) = 20,
T (220) = 02,

T (203) = 21,
T (230) = 21,

T (212) = 20,
T (221) = 02,

T (213) = 21,
T (231) = 21,

T (223) = 02,
T (232) = 20,

T (301) = 30,
T (310) = 03,

T (302) = 32,
T (320) = 23,

T (303) = 31,
T (330) = 13,

T (312) = 02,
T (321) = 20,

T (313) = 01,
T (331) = 10,

T (323) = 21
T (332) = 12

.

As seen from above, the image of the different code representations of the same
points state the same addresses.
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In general, if σ = x1x2x3 . . . xn then σ01 and σ10, σ12 and σ21, σ02 and σ20,
σ03 and σ30, σ13 and σ31, σ32 and σ23, σ001 and σ010, σ002 and σ020, σ003 and
σ030, σ012 and σ021, σ013 and σ031, σ023 and σ032, σ110 and σ101, σ102 and
σ120, σ103 and σ130, σ121 and σ112, σ113 and σ131, σ123 and σ132, σ201 and
σ210, σ202 and σ220, σ203 and σ230, σ212 and σ221, σ213 and σ231, σ223 and
σ232, σ301 and σ310, σ302 and σ320, σ303 and σ330, σ312 and σ321, σ313 and
σ331, σ323 and σ332 are different representations of same points and the image of
these sequences represents the same addresses independently of σ. This shows that
T is well-defined on ST. □

We can compute the n− periodic points of T by using the equation

Tn(x1x2x3 . . .) = x1x2x3 . . . .

Since T (0) = 0, T (103) = 103, T (301) = 301, T (20) = 20 and T (2130) = 2130,

•0 = 00 . . . , •103 = 103103 . . . , •301 = 301301 . . . ,

•20 = 2020 . . . , •2130 = 21302130 . . .

are the fixed points of T .
Moreover,

•013 = 013013 . . . , •031 = 031031 . . . , •0220 = 02200220 . . .

•02211330 = 0221133002211330 . . . , •1 = 111 . . . , •130 = 130130 . . .

•2010 = 20102010 . . . , •201030 = 201030201030 . . .

•2200 = 22002200 . . . , •22113300 = 2211330022113300 . . . , •2320 = 23202320 . . .

•232120 = 232120232120 . . . , •2120 = 21202120 . . . , •2030 = 20302030 . . .

•210 = 210210 . . . , •230 = 230230 . . . , •21031230 = 2103123021031230 . . .

•23120130 = 2312013023120130 . . . , •310 = 310310 . . .

are 2− periodic points of T.

Remark 2. Since {ST ;G} and {ST ;T} have the different number of fixed points,
they are not topologically conjugate (see Proposition 2).

5. Conclusion

This paper gives a way to define different dynamical systems on the Sierpinski
tetrahedron. This method can be also used for the other fractals which have the
intrinsic metrics defined by using the code representations of the points.
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HYBRINOMIALS RELATED TO HYPER-LEONARDO NUMBERS
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Abstract. In this paper, we define hybrinomials related to hyper-Leonardo

numbers. We study some of their properties such as the recurrence relation
and summation formulas. In addition, we introduce hybrid hyper-Leonardo

numbers.

1. Introduction

Integer sequences are the subject of many studies which are shown in recent
literature [1–8]. The most famous integer sequence is called Fibonacci sequence
and is defined by the following recurrence relation (n ≥ 1) [1]:

Fn+1 = Fn + Fn−1 with F0 = 0, F1 = 1.

Leonardo sequence, which has similar properties to the Fibonacci sequence, is de-
fined by Catarino and Borges [5], as follows:

Len = Len−1 + Len−2 + 1 (n ≥ 2) ,

with the initial conditions Le0 = Le1 = 1. Although commonly called “Leonardo
numbers” in the literature, Kürüz et al. [9] preferred to call them “Leonardo Pisano
numbers” and introduced Leonardo Pisano polynomials as

Len (x) =


1, n = 0, 1

x+ 2, n = 2

2xLen−1 (x)− Len−3 (x) , n ≥ 3.
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Hyper Leonardo numbers Le
(r)
n are defined as a generalization of the Leonardo

numbers by the formula

Le(r)n =

n∑
s=0

Le(r−1)
s with Le(0)n = Len, Le

(r)
0 = Le0 and Le

(r)
1 = r + 1,

where r is a positive integer [10]. The hyper-Leonardo numbers have the following
recurrence relation for n ≥ 1 and r ≥ 1 [10]:

Le(r)n = Le
(r)
n−1 + Le(r−1)

n .

Hyper-Leonardo polynomials are defined as:

Le(r)n (x) =

n∑
s=0

Le(r−1)
s (x)

with the initial conditions Le
(0)
n (x) = Len (x), Le

(r)
0 (x) = 1 and Le

(r)
1 (x) = r + 1

[11]. Note that, for x = 1, hyper-Leonardo polynomials Le
(r)
n (x) give the hyper-

Leonardo numbers Le
(r)
n . Hyper-Leonardo polynomials have the following recur-

rence relation for n ≥ 1 and r ≥ 1 [11]:

Le(r)n (x) = Le
(r)
n−1 (x) + Le(r−1)

n (x) . (1)

For n ≥ 3 and r ≥ 1, there is also the recurrence relation for hyper-Leonardo
polynomials [11]:

Le(r)n (x) =2xLe
(r)
n−1 (x)− Le

(r)
n−3 (x) +

(
n+ r − 1

r − 1

)
−
(
n+ r − 2

r − 1

)
(2x− 1)−

(
n+ r − 3

r − 1

)
(x− 2) .

(2)

If n ≥ 2 and r ≥ 1, then there is the summation formula for hyper-Leonardo
polynomials [11]:

r∑
s=0

Le(s)n (x) = Le
(r)
n+1 (x) + (1− 2x)Len (x) + Len−2 (x) . (3)

In recent years, hybrid numbers have been the subject of research [12–19].

Özdemir [19] introduced hybrid numbers, as a generalization of complex, hyper-
bolic and dual numbers, sets by:

K = {a+ bi+ cϵ+ dh : a, b, c, d ∈ R, i2 = −1, ϵ2 = 0, h2 = 1, ih = hi = ϵ+ i}.
Szynal-Liana and Wloch [12] defined the n-th Fibonacci hybrid number as

HFn = Fn + iFn+1 + ϵFn+2 + hFn+3.

Alp and Koçer [18] defined hybrid-Leonardo numbers by using the Leonardo
numbers as:

HLen = Len + Len+1i+ Len+2ϵ+ Len+3h.
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The authors also obtained some identities for the hybrid-Leonardo numbers such
as [18]:

HLen = HLen−1 +HLen−2 + (1 + i+ ϵ+ h) , (n ≥ 2) ,

HLen = 2HFn+1 − (1 + i+ ϵ+ h) , (n ≥ 0) ,

HLen+1 = 2HLen −HLen−2, (n ≥ 2) .

Kürüz et al. [9] defined Leonardo Pisano hybrinomials, by using the Leonardo
Pisano polynomials, as follows:

Le[H]
n (x) = Len (x) + iLen+1 (x) + ϵLen+2 (x) + hLen+3 (x) .

The Leonardo Pisano hybrinomials have the following recurrence relation [9]:

Le[H]
n (x) = 2xLe

[H]
n−1 (x)− Le

[H]
n−3 (x) .

Motivated by the above papers, we define hybrinomials related to hyper-Leonardo
numbers. We also define hybrid hyper-Leonardo numbers by using the newly de-
fined hybrinomials. Then, we investigate some of their properties such as the re-
currence relations and summation formulas.

2. Main Results

Definition 1. Hybrinomials related to hyper-Leonardo numbers are defined as

LeH(r)
n (x) = Le(r)n (x) + Le

(r)
n+1 (x) i+ Le

(r)
n+2 (x) ϵ+ Le

(r)
n+3 (x)h,

where Le
(r)
n (x) are the ordinary hyper-Leonardo polynomials.

The first few hybrinomials related to the hyper-Leonardo numbers are

LeH
(1)
0 (x) = 1 + 2i+ ϵ (x+ 4) + h

(
2x2 + 5x+ 3

)
,

LeH
(1)
1 (x) = 2 + i (x+ 4) + ϵ

(
2x2 + 5x+ 3

)
+ h

(
4x3 + 10x2 + 3x+ 2

)
,

LeH
(1)
2 (x) = (x+ 4) + i

(
2x2 + 5x+ 3

)
+ ϵ

(
4x3 + 10x2 + 3x+ 2

)
+h

(
8x4 + 20x3 + 6x2

)
and

LeH
(2)
0 (x) = 1 + 3i+ ϵ (x+ 7) + h

(
2x2 + 6x+ 10

)
,

LeH
(2)
1 (x) = 3 + i (x+ 7) + ϵ

(
2x2 + 6x+ 10

)
+ h

(
4x3 + 12x2 + 9x+ 12

)
,

LeH
(2)
2 (x) = (x+ 7) + i

(
2x2 + 6x+ 10

)
+ ϵ

(
4x3 + 12x2 + 9x+ 12

)
+h

(
8x4 + 24x3 + 18x2 + 9x+ 12

)
.

For x = 1, the hybrinomials defined in Definition 1 give the hybrid numbers in
the following definition:

Definition 2. The n-th hybrid hyper-Leonardo number LeH
(r)
n is defined as

LeH(r)
n = Le(r)n + iLe

(r)
n+1 + ϵLe

(r)
n+2 + hLe

(r)
n+3,

where Le
(r)
n is the n-th hyper-Leonardo numbers.
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This table contains the values of the hybrid hyper-Leonardo numbers.

r = 0 r = 1 r = 2 r = 3

n=0 1 + i + 3ϵ + 5h 1 + 2i + 5ϵ + 10h 1 + 3i + 8ϵ + 18h 1 + 4i + 12ϵ + 30h

n=1 1 + 3i + 5ϵ + 9h 2 + 5i + 10ϵ + 19h 3 + 8i + 18ϵ + 37h 4 + 12i + 30ϵ + 67h

n=2 3 + 5i + 9ϵ + 15h 5 + 10i + 19ϵ + 34h 8 + 18i + 37ϵ + 71h 12 + 30i + 67ϵ + 138h

n=3 5 + 9i + 15ϵ + 25h 10 + 19i + 34ϵ + 59h 18 + 37i + 71ϵ + 130h 30 + 67i + 138ϵ + 268h

n=4 9 + 15i + 25ϵ + 41h 19 + 34i + 59ϵ + 100h 37 + 71i + 130ϵ + 230h 67 + 1381i + 268ϵ + 498h

Table 1. The first few hybrid hyper-Leonardo numbers LeH
(r)
n .

Theorem 1. LeH
(r)
n (x) has the recurrence relation for n ≥ 1 and r ≥ 1:

LeH(r)
n (x) = LeH

(r)
n−1 (x) + LeH(r−1)

n (x) . (4)

Proof. By using Definition 1 and the recurrence relation in equation (1), we have

LeH
(r)
n−1 (x) + LeH

(r−1)
n (x)

=
(
Le

(r)
n−1 (x) + iLe

(r)
n (x) + ϵLe

(r)
n+1 (x) + hLe

(r)
n+2 (x)

)
+
(
Le

(r−1)
n (x) + iLe

(r−1)
n+1 (x) + ϵLe

(r−1)
n+2 (x) + hLe

(r−1)
n+3 (x)

)
= Le

(r)
n−1 (x) + Le

(r−1)
n (x) + i

(
Le

(r)
n (x) + Le

(r−1)
n+1 (x)

)
+ϵ

(
Le

(r)
n+1 (x) + Le

(r−1)
n+2 (x)

)
+ h

(
Le

(r)
n+2 (x) + Le

(r−1)
n+1 (x)

)
= Le

(r)
n (x) + iLe

(r)
n+1 (x) + ϵLe

(r)
n+2 (x) + hLe

(r)
n+3 (x)

= LeH
(r)
n (x) .

□

Corollary 1. The hybrid hyper-Leonardo numbers have the recurrence relation for
n ≥ 1 and r ≥ 1:

LeH(r)
n = LeH

(r)
n−1 + LeH(r−1)

n .

Theorem 2. LeH
(r)
n (x) has the summation formula:

n∑
s=0

LeH(r)
s (x) = LeH(r+1)

n (x)−
(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
.
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Proof. We use the induction method on n. Since,

LeH
(r+1)
0 (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
= Le

(r+1)
0 (x) + iLe

(r+1)
1 (x) + ϵLe

(r+1)
2 (x) + hLe

(r+1)
3 (x)

−
(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
= Le

(r+1)
0 (x) + i

(
Le

(r+1)
1 (x)− Le

(r+1)
0 (x)

)
+ ϵ

(
Le

(r+1)
2 (x)− Le

(r+1)
1 (x)

)
+h

(
Le

(r+1)
3 (x)− Le

(r+1)
2 (x)

)
= Le

(r)
0 (x) + iLe

(r)
1 (x) + ϵLe

(r)
2 (x) + hLe

(r)
3 (x)

= LeH
(r)
0 (x) ,

the result is true for n = 0. Assume that the result is true for n = k. Then,

k∑
s=0

LeH(r)
s (x) = LeH

(r+1)
k (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
.

Now, we must show that the result is true for n = k+1. Considering the recurrence
relation in equation (4), we get

k+1∑
s=0

LeH(r)
s (x) =

k∑
s=0

LeH(r)
s (x) + LeH

(r)
k+1 (x)

= LeH
(r+1)
k (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
+LeH

(r)
k+1 (x)

= LeH
(r+1)
k+1 (x)−

(
iLe

(r+1)
0 (x) + ϵLe

(r+1)
1 (x) + hLe

(r+1)
2 (x)

)
.

□

Corollary 2. The hybrid hyper-Leonardo numbers have the summation formula:
n∑

s=0

LeH(r)
s = LeH(r+1)

n −
(
iLe

(r+1)
0 + ϵLe

(r+1)
1 + hLe

(r+1)
2

)
.

Theorem 3. For n ≥ 3 and r ≥ 1, the recurrence relation

LeH
(r)
n (x) = 2xLeH

(r)
n−1 (x)− LeH

(r)
n−3 (x)

+

(
n+ r − 1

r − 1

)
−

(
n+ r − 2

r − 1

)
(2x− 1)−

(
n+ r − 3

r − 1

)
(x− 2)

+i

[(
n+ r

r − 1

)
−

(
n+ r − 1

r − 1

)
(2x− 1)−

(
n+ r − 2

r − 1

)
(x− 2)

]
+ϵ

[(
n+ r + 1

r − 1

)
−
(
n+ r

r − 1

)
(2x− 1)−

(
n+ r − 1

r − 1

)
(x− 2)

]
+h

[(
n+ r + 2

r − 1

)
−

(
n+ r + 1

r − 1

)
(2x− 1)−

(
n+ r

r − 1

)
(x− 2)

]
is true.
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Proof. Considering Definition 1 and equation (2), the proof is clear.
□

Corollary 3. For n ≥ 3 and r ≥ 1, the hybrid hyper-Leonardo numbers have the
recurrence relation:

LeH
(r)
n = 2LeH

(r)
n−1 − LeH

(r)
n−3 +

(
n+ r − 1

r − 1

)
−

(
n+ r − 2

r − 1

)
+

(
n+ r − 3

r − 1

)
+i

[(
n+ r

r − 1

)
−
(
n+ r − 1

r − 1

)
+

(
n+ r − 2

r − 1

)]
+ϵ

[(
n+ r + 1

r − 1

)
−

(
n+ r

r − 1

)
+

(
n+ r − 1

r − 1

)]
+h

[(
n+ r + 2

r − 1

)
−

(
n+ r + 1

r − 1

)
+

(
n+ r

r − 1

)]
.

Theorem 4. If n ≥ 2 and r ≥ 1, then the summation formula

r∑
s=0

LeH(s)
n (x) = LeH

(r)
n+1 (x) + (1− 2x)LeHn (x) + LeHn−2 (x)

is true.

Proof. By considering equation (3), we get

r∑
s=0

LeH(s)
n (x) =

r∑
s=0

(
Le(s)n (x) + iLe

(s)
n+1 (x) + ϵLe

(s)
n+2 (x) + hLe

(s)
n+3 (x)

)
=

r∑
s=0

Le(s)n (x) + i

r∑
s=0

Le
(s)
n+1 (x) + ϵ

r∑
s=0

Le
(s)
n+2 (x)

+h

r∑
s=0

Le
(s)
n+3 (x)

= Le
(r)
n+1 (x) + (1− 2x)Len (x) + Len−2 (x)

+i
(
Le

(r)
n+2 (x) + (1− 2x)Len+1 (x) + Len−1 (x)

)
+ϵ

(
Le

(r)
n+3 (x) + (1− 2x)Len+2 (x) + Len (x)

)
+h

(
Le

(r)
n+4 (x) + (1− 2x)Len+3 (x) + Len+1 (x)

)
= LeH

(r)
n+1 (x) + (1− 2x)LeHn (x) + LeHn−2 (x) .

□

Corollary 4. If n ≥ 1 and r ≥ 1, then there is the relation between the hybrid
hyper-Leonardo numbers and Fibonacci hybrid numbers:

r∑
s=0

LeH(s)
n = LeH

(r)
n+1 − 2HFn.
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Author Contribution Statements The authors confirm sole responsibility for
the following concepts involved in this study and design, data collection, analysis
and interpretation of results, and manuscript preparation.

Declaration of Competing Interests The authors declare that they have no
competing interests.

References

[1] Koshy T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics,

A Wiley-Interscience Series of Texts, Monographs and Tracts, New York: Wiley 2001.

[2] Yazlik Y., Taskara N., A note on generalized k-Horadam sequence, Computers and Mathe-
matics with Applications, 63(1) (2012), 36-41. https://doi.org/10.1016/j.camwa.2011.10.055

[3] Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons and Fractals, 32 (2007),
1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022

[4] Horadam A.F., Basic properties of a certain generalized sequence of numbers, The Fibonacci

Quarterly, 3 (1965), 161-176.
[5] Catarino P., Borges A., On Leonardo numbers, Acta Mathematica Universitatis Comenianae,

89(1) (2020) 75-86.

[6] Edson M., Yayenie O., A new generalization of Fibonacci sequences and extended Binet’s
formula, Integers, 9 (2009), 639–654. https://doi.org/10.1515/INTEG.2009.051

[7] Yayenie O., A note on generalized Fibonacci sequences, Applied Mathematics and Computa-

tion, 217 (2011), 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
[8] Kilic E., Tan E., More general identities involving the terms of W (a, b; p, q), Ars Combina-

toria, 93 (2009), 459-461.
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2Institute of Natural Sciences, Karadeniz Technical University, Trabzon, TÜRKİYE

Abstract. In this research, the minimal and maximal operators defined by

q- difference expression are given in the Hilbert space L2
q(0,∞). The existence

problem of a q−1-normal extension for the minimal operator is mentioned. In

addition, the sets of the minimal operator spectrum and the maximal operator
spectrum are examined.

1. Introduction

The q-analysis first appeared in the 1740s, when Euler launched the division the-
ory, also called the total analytic number theory, Euler wrote and compiled works
in the early 1800s [4]. The advancement of q-calculus continued in 1813 under the
study of Gauss, who gave the hypergeometric series and their interrelationships [5].

The study of quantum calculus, or q-calculus, which has been going on for 300
years since Euler, has often been regarded as one of the most difficult topics to
deal with in mathematics. Today, due to its use in a variety of areas, such as
mathematics, physics, rapid progress is being made in studies in the field of q-
calculus. The working history of q- analysis, quantum mechanics, theta functions,
hypergeometric functions, analytic number theory, finite difference theory, Mock
theta functions, Bernoulli and Euler polynomials, gamma function theory has a
wide variety of applications in combinatorics. Moreover, there is the application
of the q-difference operator to thermodynamics. It has been demonstrated that
the formalization of the q-calculus may be used to realize the thermodynamics of
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the q-deformed algebra. It is found that if it is used a suitable Jackson deriva-
tive instead of the ordinary thermodynamic derivative, then the entire structure of
thermodynamics is maintained [9]. For some numerous contributions the history
of q-calculus, fundamental principles, and fundamentals of q-differential equations,
the key books [3], [8] and [1] can be cited.

Moreover, a closed linear operator T with dense domain on any Hilbert space is
said formally q-normal operator iff D(T ) ⊂ D(T ∗) and

TT ∗ = qT ∗T.

When D(T ) = D(T ∗) is satisfied for a formally q-normal operator, then T said a
q-normal operator. Moreover, q-normal operators appear in quantum group theory
in the study of the hermitean quantum plane and of quantum groups. For instance,
the q-deformed quantum plane C1

q is a ∗-algebra with one generator T such that
TT ∗ = qT ∗T [10]. Definitions of these and other classes which are called q-deformed
operators was given and investigated by Ota [10], for detail analysis see [2, 11–14].

2. The Minimal and Maximal Operators L2
q (0,+∞)

Suppose that L2
q(0,+∞) is defined as

L2
q (0,+∞) =

{
u : [0,+∞) → C :

+∞
∫
0

|u (t)|2dqt = (1− q)

+∞∑
k=−∞

qk
∣∣u (qk)∣∣2 < +∞

}
.

L2
q(0,+∞) is a linear vector space with equivalent classes, which are defined for

two functions u and v in the same equivalent class iff u
(
qk
)
= v

(
qk
)
, k ∈ Z. Also

L2
q(0,+∞) is separable and its the inner product is follows [1]

(u, v)L2
q(0,+∞) :=

+∞
∫
0

u (t) v (t)dqt , u, v ∈ L2
q (0,+∞) .

In addition, Jackson reintroduced the q-difference operator [7] and he defined as

Dqu (t) =
u (t)− u (qt)

(1− q)t
, t ̸= 0

and also the q-derivative for t = 0 is defined for |q| < 1 as

Dqu (0) = lim
n→+∞

u (tqn)− u (0)

tqn
, t = 0,

if there is the limit and it is independent of t.
Note that we have assume 0 < q < 1 for this paper.

Corollary 1. If u ∈ L2
q (0,+∞), then lim

n→+∞
u
(

1
qn

)
= 0.

Proposition 1. If Dqu (t) ∈ L2
q (0,+∞), then the limit lim

n→+∞
u (qn) exists.
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Proof. Let Dqu (t) be in L2
q (0,+∞). Because the characteristic function χ[0,1] ∈

L2
q (0,+∞) and(

Dqu, χ[0,1]

)
L2

q(0,+∞)
=

+∞
∫
0

χ[0,1] (t)Dqu (t) dqt

= (1− q)

+∞∑
k=0

qk
u
(
qk
)
− u

(
qk+1

)
(1− q) qk

=

+∞∑
k=0

u
(
qk
)
− u

(
qk+1

)
= lim

n→+∞

n∑
k=0

u
(
qk
)
− u

(
qk+1

)
= u(1)− lim

n→+∞
u (qn) ,

are true, the limit lim
n→+∞

u (qn) exists. □

First of all, we give the abstract definition of maximal and minimal operators
for differential operators [6]. Suppose that Ω is an n-dimensional infinitely differ-
entiable manifold and a differential expression

p (.) =
∑

|α|⩽m

aαD
α,

where the coefficients aα are infinitely differentiable functions of x = (x1, . . . , xn).
Also, α ∈ Cn, |α| = α1 + . . .+ αn, D

α = Dα1
1 Dα2

2 . . . Dαn
n and Dk = 1

i
∂

∂xk
are de-

noted. The formal adjoint of the expression p(.) is the form p+ (.) =
∑

|α|⩽m

(−1)
|α|

aαD
α

in L2 (Ω). In this case, two operators

P0
′u = p(u), P0

′ : C∞
0 (Ω) ⊂ L2 (Ω) → L2 (Ω) ,

P+
0

′
u = p+(u), P+

0

′
: C∞

0 (Ω) ⊂ L2 (Ω) → L2 (Ω)

have closures in L2 (Ω) and these closures are denoted by P0 and P+
0 respectively.

The operator P0 is said as the minimal operator defined by the expression p. Sim-
ilarly, P+

0 is called the minimal operator defined by the differential expression p+.
The adjoint P of P+

0 is said the maximal operator generated by p. It is easy seen
that D(P0) = D(P+) and D(P ) = D(P+

0 ).

The q-derivative for multiplication of two functions u(t) and v(t) defined on
[0,+∞) is follows for all t ∈ (0,+∞)

Dq (uv) (t) = v (t)Dqu (t) + u (qt)Dqv (t) .
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This relation said q-product rule. It is obtain that

+∞
∫
0

Dq (uv) (t) dqt = (1− q)

+∞∑
k=−∞

qk

(
u
(
qk
)
v
(
qk
)
− u

(
qk+1

)
v
(
qk+1

)
(1− q) qk

)

=

+∞∑
k=−∞

u
(
qk
)
v
(
qk
)
− u

(
qk+1

)
v
(
qk+1

)
= lim

n,m→+∞

n∑
k=−m

u
(
qk
)
v
(
qk
)
− u

(
qk+1

)
v
(
qk+1

)
= lim

n,m→+∞
u
(
q−m

)
v
(
q−m

)
− u

(
q−m+1

)
v
(
q−m+1

)
+u
(
q−m+1

)
v
(
q−m+1

)
− u

(
q−m+2

)
v
(
q−m+2

)
+u
(
q−m+2

)
v
(
q−m+2

)
− . . .+ u

(
q−1
)
v
(
q−1
)

−u (1) v (1) + u (q) v (q) + . . .+ u (qn) v (qn)− u
(
qn+1

)
v
(
qn+1

)
= lim

n,m→+∞
u
(
q−m

)
v
(
q−m

)
− u (qn) v (qn)

= − lim
n→+∞

u (qn) v (qn)

is finite for any u (t) , v (t) , Dqu (t) , Dqv (t) ∈ L2
q ((0,+∞)). Because

(Dqu, v)L2
q(0,+∞) =

+∞
∫
0

Dqu (t) v (t)dqt (1)

= − lim
k→+∞

u
(
qk
)
v (qk)−

+∞
∫
0

u (t)Dqu (t)dqt

= − lim
k→+∞

u
(
qk
)
v (qk)− (1− q)

+∞∑
k=−∞

qku
(
qk+1

) u (qk)− u
(
qk+1

)
(1− q) qk

= − lim
k→+∞

u
(
qk
)
v (qk) + (1− q)

+∞∑
k=−∞

qk+1u
(
qk+1

) u (qk+1
)
− u

(
qk
)

(1− q) qk+1

= − lim
k→+∞

u
(
qk
)
v (qk)− (1− q)

+∞∑
k=−∞

qku
(
qk
) 1
q
Dq−1u (t)

= − lim
k→+∞

u
(
qk
)
v (qk) +

+∞
∫
0

u (t)−1

q
Dq−1v (t)dqt

= − lim
k→+∞

u
(
qk
)
v (qk) +

(
u,−1

q
Dq−1v

)
L2

q(0,+∞)

, (2)

the formal adjoint expression of the expression Dq is − 1
qDq−1 on L2

q (0,+∞).
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Now, let’s define the linear operators L0 : D0 ⊂ L2
q (0,+∞) → L2

q (0,+∞) of the
form L0u (t) = Dqu (t) where its domain is

D0 =

{
u ∈ L2

q (0,+∞) : Dqu (t) ∈ L2
q (0,+∞) and lim

k→+∞
u
(
qk
)
= 0

}
and L : D ⊂ L2

q (0,+∞) → L2
q (0,+∞) of the form L0u (t) = Dqu (t) where

D =
{
u ∈ L2

q (0,+∞) : Dqu (t) ∈ L2
q (0,+∞)

}
.

We say that these operators are the minimal operator and the maximal operator
generated by the q-difference expression, respectively. Moreover, L0 ⊂ L is obvious,
i.e. the maximal operator L is an extension of the minimal operator L0.

Theorem 1. The operator L0 is a formally q−1-normal operator on L2
q (0,+∞).

Proof. The set of functions

φm (t) :=


1

q
m
2
√
1− q

, t = qm

0, , otherwise
, m ∈ Z

is an orthogonal basis of L2
q (0,+∞) and this basis is clearly contained in D0.

Therefore, the minimal linear operator L0 has dense domain.
Now let’s show that the minimal operator is closed. Suppose that any sequence

{un} ⊂ D0 such that un −−−−→
n→∞

u and L0un −−−−→
n→∞

f . In this case,

∥un − u∥2L2
q(0,+∞) = (1− q)

+∞∑
k=−∞

qk
∣∣un

(
qk
)
− u

(
qk
)∣∣2 −−−−→

n→∞
0.

Because of the last relation, we have

lim
n→∞

un

(
qk
)
= u

(
qk
)

(3)

From this relation,

lim
n→+∞

un

(
qk
)
− un

(
qk+1

)
(1− q) qk

=
u
(
qk
)
− u

(
qk+1

)
(1− q) qk

= f
(
qk
)
, k ∈ Z.

is attained. Also, from (3) and the boundary condition at t = 0∣∣u (qk)∣∣ ⩽ ∣∣un

(
qk
)
− u

(
qk
)∣∣+ ∣∣un

(
qk
)∣∣ −−−−−−→

n,k→+∞
0

is true. This means that u ∈ D(L0) and Lu (t) = f . Therefore, the minimal linear
operator L0 is closed. On the other hand, D(L∗

0) = D and the following equations
can be easily obtained

∥L0u (t)∥2L2
q(0,+∞) =

+∞
∫
0

|Dqu (t)|2dqt
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= (1− q)

+∞∑
k=−∞

qk
∣∣Dqu

(
qk
)∣∣2

= (1− q)

+∞∑
k=−∞

qk

∣∣∣∣∣u
(
qk
)
− u

(
qk+1

)
(1− q) qk

∣∣∣∣∣
2

for any u ∈ D(L0). Also,

∥L∗
0u (t)∥

2
L2

q(0,+∞) =
+∞
∫
0

∣∣∣∣−1

q
Dq−1u (t)

∣∣∣∣2dqt
= (1− q)

+∞∑
k=−∞

qk
∣∣∣∣−1

q
Dq−1u

(
qk
)∣∣∣∣2

=
1

q2
(1− q)

+∞∑
k=−∞

qk

∣∣∣∣∣∣u
(
qk
)
− u

(
qk−1

)(
1− 1

q

)
qk

∣∣∣∣∣∣
2

=
1

q
(1− q)

+∞∑
k=−∞

qk−1

∣∣∣∣∣u
(
qk−1

)
− u

(
qk
)

(1− q) qk−1

∣∣∣∣∣
2

=
1

q
(1− q)

+∞∑
k=−∞

qk

∣∣∣∣∣u
(
qk
)
− u

(
qk+1

)
(1− q) qk

∣∣∣∣∣
2

.

is hold. As a result of the last equations for all u ∈ D(L0) ⊂ D(L∗
0)

∥L∗
0u∥ =

√
q−1 ∥L0u∥

is seen. This is completed the proof. □

Corollary 2. The minimal operator L0 is a maximal formally q-normal in L2
q (0,+∞).

Proof. Assume that L̃0 is a q-normal extension of L0, i.e. L0 ⊂ L̃0. Therefore, for

all u ∈ D(L̃0) = D(L̃0
∗
)(

L̃0u, u
)
L2

q(0,+∞)
−
(
u, L̃0

∗
u
)
L2

q(0,+∞)
= (Dqu, u)L2

q(0,+∞) −
(
u,−1

q
Dq−1u

)
L2

q(0,+∞)

= − lim
k→+∞

|u
(
qk
)
|2 = 0

is obtained from the equation (1). This means that D(L̃0) = D(L0) and L̃0 = L0.
However this is a contradiction. According to this result and Theorem 2.1, the
minimal operator L0 is a maximal formally q-normal operator in L2

q (0,+∞). □
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3. Spectrum Sets of the operators L0 and L

Theorem 2. The point spectrum set of L0 is

σp(L0) =

{
qm

1− q
: m ∈ Z

}
.

Proof. Suppose that a complex number λ is an element of the point spectrum of
L0. Therefore, there is a non-zero element u(t) corresponding to a complex number
λ in D(L0), which that satisfies the following equation

u
(
qk
)
− u

(
qk+1

)
(1− q) qk

= λu
(
qk
)
, k ∈ Z.

We gain that

u
(
qk+1

)
=
(
1− λ (1− q) qk

)
u
(
qk
)

(4)

for all k ∈ Z. If λ = 1
(1−q)qm for any m ∈ Z is true, then the eigenvector u(t) should

be defined as
u
(
qk
)
= 0, k ⩾ m+ 1

u
(
qk
)
=

( −1∏
i=k−m

1

1− qi

)
u (qm) , k ⩽ m− 1.

Since 0 < q < 1 and the limit

lim
k→−∞

∣∣1− qk
∣∣ = +∞

is true, a negative integer k0 is exist such that

−1∏
n=k0+1−m

1

|1− qn|
⩽ 1.

From this result and 0 < q < 1 it is get that

∥u∥2L2
q(0,+∞) =

+∞∑
k=−∞

qk
∣∣u (qk)∣∣2

=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk
∣∣u (qk)∣∣2

=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk

( −1∏
i=k−m

∣∣∣∣ 1

1− qi

∣∣∣∣2
)
|u (qm)|2

⩽
m∑

k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk
∣∣∣∣ 1

1− qk−m

∣∣∣∣2|u (qm)|2
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=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

qk
∣∣∣∣ q−k

q−k − q−m

∣∣∣∣2|u (qm)|2

=

m∑
k=k0

qk
∣∣u (qk)∣∣2 + k0−1∑

k=−∞

q−k

∣∣∣∣ 1

q−k − q−m

∣∣∣∣2|u (qm)|2 < +∞.

These prove that u(t) is an eigenvector corresponding to qm

1−q for m ∈ Z.

On the other hand, λ is different from 1
(1−q)qm for any m ∈ Z, then

u
(
qk
)
=

(
k−1∏
i=0

(
1− λ (1− q) qi

))
u (1) , k ∈ N.

Hence, u ∈ D0, u
(
qk
)
−−−−−→
k→+∞

0 iff there exists m ∈ N satisfied the following

equality

1− λ (1− q) qm = 0

must be supplied [15] or u(1) = 0. In this case, u(1) = 0 and so u = 0 is obtained

from the equation (4). These results imply that σr(L0) =
{

qm

1−q : m ∈ Z
}
. □

Theorem 3. The set of L0 residual spectrum is empty.

Proof. Assume that λ ∈ C is in σr (L0). Since L2
q (0,+∞) = R(L0 − λE) ⊕

Ker
(
L∗
0 − λ̄E

)
is provided, where E is the identity operator in L2

q (0,+∞), it

is clear that λ̄ ∈ σp (L
∗
0). Therefore, there exists an element u ∈ L2

q (0,+∞) , u ̸= 0
and

L∗
0u (t) = λ̄u (t) .

Therefore, we have

−1

q

u
(
qk
)
− u

(
qk−1

)(
1− 1

q

)
qk

=
u
(
qk
)
− u

(
qk−1

)
(1− q) qk

= λ̄u
(
qk
)

for all k ∈ Z. The following equation is obtained from this equation

u
(
qk−1

)
=
(
1− λ̄ (1− q) qk

)
u
(
qk
)

for all k ∈ Z. If λ̄ is equal to 1
(1−q)qm for any m ∈ Z, then

u
(
qk
)
= 0, k ⩽ m− 1

u
(
qk
)
=

(
k∏

i=m+1

1

1− qi−m

)
u (qm) , k ⩾ m+ 1
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is holds. Because
+∞∑

k=m+1

qk
(

k∏
i=m+1

1
1−qi−m

)2

converges to a complex number, the

function u(t) defined as above is an element of L2
q (0,+∞).

Otherwise, if λ̄ is not equal to 1
(1−q)qm for any m ∈ Z, then it must be u(1) ̸= 0

and

u
(
qk
)
=

(−k∏
i=0

(
1− λ̄ (1− q) q−i

))
u(1), k ⩽ 0.

But the limit lim
k→−∞

u
(
qk
)
does not exist when λ̄ is not equal to 1

(1−q)qm for any

m ∈ Z. As a result of these,

σr (L0) = ∅
is obtained.

□

Corollary 3. It is held that 0 ∈ σc(L0) for the minimal operator L0.

Corollary 4. The point spectrum and residual spectrum of L∗
0 are as follows

σp(L
∗
0) =

{
qm

1− q
: m ∈ Z

}
and σr(L

∗
0) = ∅.

Theorem 4. The point and continuous spectrum sets of the maximal operator are
in the form

σp (L) = C\ {0} and σc (L) = {0} .

Proof. Suppose that λ is a nonzero complex number. We deal with the solution of
following problem

(L− λE)u
(
qk
)
= 0, k ∈ Z.

It is written for any k ∈ Z

u
(
qk+1

)
=
(
1− λ (1− q) qk

)
u
(
qk
)
. (5)

If u
(
qk
)
are different from zero for all k ∈ Z, then we have

u
(
qk+1

)
=

(
k∏

n=0

(1− λ (1− q) qn)

)
u (1)

for all positive integer k. Since the infinite product
+∞∏
k=0

(
1− λ (1− q) qk

)
converges,

the sequence
{
u
(
qk
)}

k∈N is bounded. From this result the series
+∞∑
k=0

qk
∣∣u (qk)∣∣2 is

finite.
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In the case of negative integers, we gain

u
(
qk
)
=

( −1∏
n=k

(
1− λ (1− q) qk

)−1

)
u (1)

for all k ⩽ −1. Because the limit

lim
k→−∞

∣∣1− λ (1− q) qk
∣∣ = +∞ (6)

is true, it is clear that
−1∏

n=k−1

1

|1− λ (1− q) qn|
⩽ 1

for small enough negative integers k. This result give us the following inequality

qk
∣∣u (qk)∣∣2 = qk

( −1∏
n=k

1

|1− λ (1− q) qn|2

)
|u (1)|2

⩽ qk
1

|1− λ (1− q) qk|2
|u (1)|2

= qk
q−2k

|q−k − λ (1− q)|2
|u (1)|2

=
q−k

|q−k − λ (1− q)|2
|u (1)|2

for small enough negative integers k. Because of the limit (6) and the fact that the

geometric series
0∑

k=−∞
αq−k converges for 0 < q < 1, these results allow us that

the series
0∑

k=−∞
qk
∣∣u (qk)∣∣2 converges absolutely. These show us to conclude that

+∞∑
k=−∞

qk
∣∣u (qk)∣∣2 is convergent.

When u(qm+1) is equal to zero for an integer m ∈ Z, it is obtained that u(qk) = 0

for all k ⩾ m+1. We note that this condition includes the case of λ = q−m

1−q , m ∈ Z.
Moreover, the equation

u
(
qk
)
=

(
m−1∏
n=k

(1− λ (1− q) qn)
−1

)
u (qm)

is easily checked for all k < m. We already know that

m−1∑
k=−∞

qk

(
m−1∏
n=k

∣∣∣(1− λ (1− q) qn)
−1
∣∣∣2) |u (qm)|2
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is convergent. Because of all these reasons, we get that u(t) is an eigenvector of the
maximal operator L for λ ∈ C\ {0}.

If λ = 0, then returning to the equation (5) it must be u(t) = 0. This means
that zero is not an eigenvalue. Also, if 0 ∈ σr(L), then it must be 0 ∈ σp(L

∗)

because of L2
q (0,+∞) = R(L) ⊕ Ker (L∗). But, it can be easily proved that

0 /∈ σp(L
∗). Therefore, it must be σc (L) = {0} from the fact of the closeness of

the spectrum. □

Remark 1. It can be defined the two operators P0 and P defined by p(.) = d
dt

in L2(0,+∞) and these operators are called the minimal and maximal operators,
respectively. Also, their domains are as follows

D(P0) =
{
u ∈ L2 (0,+∞) : u′ ∈ L2 (0,+∞) and u (0) = 0

}
,

D(P ) =
{
u ∈ L2 (0,+∞) : u′ ∈ L2 (0,+∞)

}
.

The operator P0 is maximal formal normal. It means that there is not any normal
extension of L0. Moreover, the point and residual spectrum sets of P0 are σp(P0) =
∅ and σr(P0) = {λ ∈ C : Re(λ) > 0} and the spectrum parts of the maximal
operator P are σp(P ) = {λ ∈ C : Re(λ) < 0}, σr(P ) = ∅ and σc(P ) = {λ ∈ C :
Re(λ) = 0}.
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[2] Cimpric, J., Savchuk, Yu., Schmüdgen, K., On q-normal operators and the quantum complex
plane,Trans. Amer. Math. Soc., 366(1) (2014), 135–158. https://doi.org/10.1090/S0002-9947-

2013-05733-9

[3] Ernst, T., The History of q-Calculus and a New Method, U.U.D.M. Report 2000, 16, Uppsala,
Department of Mathematics, Uppsala University 2000.

[4] Euler, L., Introduction in Analysin Infinitorum, vol. 1. Lausanne, Switzerland, Bousquet 1748

(in Latin).
[5] Gauss, C. F., Disquisitiones generales circa seriem infinitam, Werke, (1813), 124-162.
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Abstract. The definitions of new type separated subsets are given in ideal

topological spaces. By using these definitions, we introduce new types of con-
nectedness. It is shown that these new types of connectedness are more general

than some previously defined concepts of connectedness in ideal topological

spaces. The new types of connectedness are compared with well-known con-
nectedness in point-set topology. Then, the intermediate value theorem for

ideal topological spaces is given. Also, for some special cases, it is shown that
the intermediate value theorem in ideal topological spaces and the intermediate

value theorem in topological spaces coincide.

1. Introduction

The concept of ideal in topological spaces was first studied by Kuratowski [16]
and Vaidyanathswamy [33]. More properties are given for ideal topological spaces
in [10]. In [10, 33], it is shown that the local function of a set is a generalization
of the concepts of closure point, ω-accumulation point and condensation point of
that set. The concept of ideal was applied not only to topology but also to different
areas of mathematics. For example, the Cantor-Bendixson Theorem is generalized
in [6]. New special spaces such as I-Rothberger [7], I-Baire [17], I-Resolvable
and I-Hyperconnected [3],I-Extremally Disconnected [12], I-Alexandroff and Ig-
Alexandroff [4] are defined by using ideal. In addition, the concepts of ideal and
local function are studied in fuzzy set theory [28], soft set theory [11] and ditopo-
logical texture spaces [15].

Connectedness is a topological invariant. So, the concept of connectedness has
an important role in general topology. The intermediate value theorem in calculus
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was generalized by means of connectedness in topological spaces [25]. Many types of
connectedness are defined by using the local function in [20,31] and these connect-
edness are stronger connectedness. The generalization of connectedness has been
defined in [18,26] More features of connectedness types given in [20] were examined
in [14]. In addition, many operators such as local closure function [1], semi-closure
local function [9] , weak semi-local function [35,36], semi-local function [13], a-local
function [2, 21], M-local function [22], c∗-local function [29], Ω-operator [19] and
ψ∗-operator [23] are defined in recent years. In this study, we define new types of
connectedness by using local functions and local closure functions. In this way, we
generalize all connectedness types in [20]. After that, new types of connectedness
are compared with well-known connectedness. Also, we define new components
with the help of new types of connectedness. In the last section, we give the inter-
mediate value theorem in ideal topological spaces. For the minimal ideal I = {∅},
we show that the intermediate value theorem in general topological spaces and the
intermediate value theorem in ideal topological spaces coincide.

2. Preliminaries

In any topological space (U, τ), we denote the interior and the closure of the
subset M as Int(M) and Cl(M), respectively. The power set of U is denoted by
P(U). Both open and closed subsets are called clopen. The collection of all open
neighborhoods of the point x is denoted by τ(x).

Definition 1. [16] Let U be nonempty set and I ⊆ P(U). If the following condi-
tions are satisfied:

(1) ∅ ∈ I.
(2) If M ∈ I and K ⊆M , then K ∈ I.
(3) If M,K ∈ I, then M ∪K ∈ I.

then the collection I is called an ideal on U .

The ideal I = {∅} is called minimal ideal and the ideal I = P(U) is called maxi-
mal ideal. Although the topology is not needed to define an ideal, some collections
of sets in the topological spaces form ideals. In any topological space (U, τ), a subset
M is called nowhere dense, if Int(Cl(M)) = ∅. The subset M is called discrete set
if M ∩Md = ∅ (where Md is derived set of M). A subset of U is called meager (or
set of first category) if it can be written as a countable union of nowhere dense sub-
sets of U . A subset of U is called relatively compact if its closure is compact. The
collection of all nowhere dense subsets Inw = {M ⊆ U : M is nowhere dense}, the
collection of all closed-discrete subsets Icd = {M ⊆ U : M is closed and discrete},
the collection of all meager subsets Img = {M ⊆ U : M is meager set}, the col-
lection of all relatively compact subsets IK = {M ⊆ U : M is relatively compact}
and If◦g = {A ⊆ U : f ◦ g(A) = ∅}, where f∼Ug are ideals on U [16, 24,33].
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If (U, τ) is a topological space with an ideal I on U , this space is called an ideal
topological space or briefly I-space. Sometimes we denote this case with the triple
(U, τ , I).

Definition 2. [16] In any I-space (U, τ), a function (.)∗ : P(U) → P(U) is defined
by

M∗(I, τ) = {x ∈ U : O ∩M /∈ I for every O ∈ τ(x)}
is called the local function of a subset M .

Sometimes we write brieflyM∗(I) orM∗ instead ofM∗(I, τ). M∪M∗ = Cl∗(M)
is a Kuratowski closure operator. So this operator generates a topology on U . This
topology is denoted by τ∗ and defined as τ∗ = {M ⊆ U : Cl∗(U \M) = (U \M)}.
Moreover τ ⊆ τ∗ and so M ⊆ Cl∗(M) ⊆ Cl(M). Elements of τ∗ are called ∗-open.
The complement of a ∗-open subset is called ∗-closed.

Proposition 1. [10,16,33] Let (U, τ) be an I-space and M,K ⊆ U .

(1) If M ⊆ K, then M∗ ⊆ K∗.
(2) M∗ = Cl(M∗) ⊆ Cl(M). That is, M∗ is closed set.
(3) (M ∪K)∗ =M∗ ∪K∗.
(4) If I = {∅}, then M∗({∅}) = Cl(M).
(5) If I = P(U), then M∗(P(U)) = ∅.

Definition 3. [1] In any I-space (U, τ), a function Γ(.) : P(U) → P(U) defined by

Γ(M)(I, τ) = {x ∈ U : Cl(O) ∩M /∈ I for every O ∈ τ(x)}
is called the local closure function of the subset M .

Sometimes we write briefly Γ(M)(I) or Γ(M) instead of Γ(M)(I, τ).
The θ-closure of any subset M is defined in [34] as Clθ(M) = {x ∈ U : Cl(O) ∩

M ̸= ∅ for every O ∈ τ(x)}.

Proposition 2. [1] Let (U, τ) be an I-space and M,K ⊆ U .

(1) If M ⊆ K , then Γ(M) ⊆ Γ(K).
(2) Γ(M) = Cl(Γ(M)) ⊆ Clθ(M). That is Γ(M) is closed set.
(3) Γ(M ∪K) = Γ(M) ∪ Γ(K)
(4) If I = {∅}, then Γ(M)({∅}) = Clθ(M).
(5) If I = P(U), then Γ(M)(P(U)) = ∅.

Lemma 1. [1] In any I-space (U, τ), M∗(I, τ) ⊆ Γ(M)(I, τ).

Definition 4. [30] Let (U, τ) be an I-space and M ⊆ U . The subset M is called
Γ-dense-in-itself if M ⊆ Γ(M).

Definition 5. [8] Let (U, τ) be an I-space and M ⊆ U . The subset M is called
∗-dense-in-itself if M ⊆M∗.

Nonempty subsets M,K of a topological space (U, τ) are called separated if
Cl(M) ∩ K = M ∩ Cl(K) = ∅. The topological space (U, τ) is called connected
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if U is not the union of two separated subsets. The subset M in a topological
space is connected if and only if M is not the union of separated subsets in the
subspace (M, τM ) or equivalently M is not the union of two separated subsets in
(U, τ). There are many expressions equivalent to definition of connectedness in
the literature [5, 25, 32]. We say that the subsets M,K are τ -separated if they are
separated subsets in (U, τ). We say that the subset M is τ -connected if it is a
connected subset in (U, τ). That an I-space (U, τ) is τ -connected means that the
topological space (U, τ) is τ -connected.

Definition 6. [20] Let (U, τ) be an I-space and M,K be nonempty subsets in
this space. These subsets are called ∗∗-separated (resp. ∗-Cl∗-separated, ∗-Cl-
separated), ifM∗∩K =M∩K∗ =M∩K = ∅ (resp. M∗∩Cl∗(K) = Cl∗(M)∩K∗ =
M ∩K = ∅, M∗ ∩ Cl(K) = Cl(M) ∩K∗ =M ∩K = ∅).

Definition 7. [20] Let (U, τ) be an I-space and M ⊆ U . The subset M is called
∗∗-connected (resp. ∗-Cl∗-connected, ∗-Cl-connected) if it is not the union of two
∗∗-separated (resp. ∗-Cl∗-separated, ∗-Cl-separated) subsets.

From these definitions, the following diagrams are obtained in [20].

Figure 1. Relations among types of separated subsets which are
defined via local function

Figure 2. Relations among types of connectedness which are de-
fined via local function

3. New Types of Separated Subsets via Local Closure

Definition 8. Let (U, τ) be an I-space and M ,K be nonempty subsets of U . These
subsets are called

(1) Γ-Cl-separated if Γ(M) ∩ Cl(K) = Cl(M) ∩ Γ(K) =M ∩K = ∅.
(2) Γ-Cl∗-separated if Γ(M) ∩ Cl∗(K) = Cl∗(M) ∩ Γ(K) =M ∩K = ∅.
(3) Γ-separated if Γ(M) ∩K =M ∩ Γ(K) =M ∩K = ∅.
(4) Γ-∗-separated if Γ(M) ∩K∗ =M∗ ∩ Γ(K) =M ∩K = ∅.
(5) 2∗-separated if M∗ ∩K∗ =M ∩K = ∅.

Theorem 1. Let (U, τ) be an I-space and M ,K be nonempty subsets of U .

(1) If M ,K are Γ-Cl-separated, then they are Γ-Cl∗-separated subsets.
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(2) If M ,K are Γ-Cl-separated, then they are ∗-Cl-separated subsets.
(3) If M ,K are Γ-Cl∗-separated, then they are Γ-separated subsets.
(4) If M ,K are Γ-Cl∗-separated, then they are ∗-Cl∗-separated subsets.
(5) If M ,K are Γ-separated, then they are ∗∗-separated subsets.
(6) If M ,K are Γ-Cl∗-separated, then they are Γ-∗-separated subsets.
(7) If M ,K are Γ-∗-separated, then they are 2∗-separated subsets.
(8) If M ,K are ∗-Cl∗-separated, then they are 2∗-separated subsets.

Proof. Since M ⊆ Cl∗(M) ⊆ Cl(M) , K ⊆ Cl∗(K) ⊆ Cl(K) and Definition 8 ,
(1)-(3)-(6)-(8) are obtained. By using Lemma 1 and Definition 8, (2)-(4)-(5)-(7)
are obtained. □

In addition to this theorem, since τ ⊆ τ∗, τ -separated subsets are τ∗-separated.
From Theorem 1 and Figure 1, we obtain the following diagram:

Figure 3. Relations among new types of separated subsets

For this diagram, counterexamples and independent concepts are shown in Ex-
ample 1 and Example 2.

Example 1. Let τ = {∅, U, {x}, {d}, {x, y}, {x, z}, {a, c}, {x, d}, {x, y, z}, {a, c, d},
{x, a, c}, {x, z, d}, {x, y, d}, {a, b, c, d}, {x, a, c, d}, {x, y, a, c}, {x, z, a, c}, {x, y, z, d},
{x, y, z, a, c}, {x, a, b, c, d}, {x, y, a, c, d}, {x, z, a, c, d}, {x, z, a, b, c, d}, {x, y, a, b, c, d},
{x, y, z, a, c, d}} be a topology on U = {a, b, c, d, x, y, z} and let I = {∅, {x}, {a}, {a, x}}
be an ideal on U . The following table gives information about some subsets of this
ideal topological space.

According to Table:

(1) C and E are Γ-Cl∗-separated subsets but not Γ-Cl-separated.
(2) D and G are ∗-Cl-separated subsets but not Γ-Cl-separated.
(3) D and G are ∗-Cl∗-separated but not Γ-Cl∗-separated.
(4) C and H are Γ-separated subsets but not Γ-Cl∗-separated.
(5) D and G are ∗∗-separated subsets but not Γ-separated.
(6) E and F are Γ-∗-separated subsets but not Γ-Cl∗-separated.
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Table 1. Information about some subsets according to the given
I-space

A = {b} A∗ = {b} Γ(A) = {a, b, c, d} Cl∗(A) = {b} Cl(A) = {b}

B = {c} B∗ = {a, b, c} Γ(B) = {a, b, c} Cl∗(B) = {a, b, c} Cl(B) = {a, b, c}

C = {d} C∗ = {b, d} Γ(C) = {b, d} Cl∗(C) = {b, d} Cl(C) = {b, d}

D = {z} D∗ = {z} Γ(D) = {x, y, z} Cl∗(D) = {z} Cl(D) = {z}

E = {a, y} E∗ = {y} Γ(E) = {x, y, z} Cl∗(E) = {a, y} Cl(E) = {a, b, c, y}

F = {b, c} F∗ = {a, b, c} Γ(F ) = {a, b, c, d} Cl∗(F ) = {a, b, c} Cl(F ) = {a, b, c}

G = {b, y} G∗ = {b, y} Γ(G) = U Cl∗(G) = {b, y} Cl(G) = {b, y}

H = {c, y} H∗ = {a, b, c, y} Γ(H) = {a, b, c, x, y, z} Cl∗(H) = {a, b, c, y} Cl(H) = {a, b, c, y}

K = {d, x} K∗ = {b, d} Γ(K) = {b, d} Cl∗(K) = {b, d, x} Cl(K) = {b, d, x, y, z}

L = {d, y} L∗ = {b, d, y} Γ(L) = {b, d, x, y, z} Cl∗(L) = {b, d, y} Cl(L) = {b, d, y}

M = {x, z} M∗ = {z} Γ(M) = {x, y, z} Cl∗(M) = {x, z} Cl(M) = {x, y, z}

(7) G and M are 2∗-separated subsets but not Γ-∗-separated.
(8) E and F are 2∗-separated subsets but not ∗-Cl∗-separated.
(9) D and G are ∗-Cl-separated subsets but not Γ-Cl∗-separated. C and E are

Γ-Cl∗-separated subsets but not ∗-Cl-separated. That is, the concepts of
∗-Cl-separated and Γ-Cl∗-separated are independent of each other.

(10) E and F are Γ-∗-separated subsets but not ∗-Cl-separated. D and G are
∗-Cl-separated subsets but not Γ-∗-separated That is, the concepts of ∗-Cl-
separated and Γ-∗-separated are independent of each other.

(11) E and F are Γ-∗-separated subsets but not ∗-Cl∗-separated. D and G are
∗-Cl∗-separated subsets but not Γ-∗-separated. That is, the concepts of Γ-∗-
separated and ∗-Cl∗-separated are independent of each other.

(12) A and E are Γ-∗-separated subsets but not Γ-separated. C and H are
Γ-separated subsets but not Γ-∗-separated. That is, the concepts of Γ-∗-
separated and Γ-separated are independent of each other.

(13) E and F are Γ-∗-separated subsets but not ∗∗-separated. D and G are
∗∗-separated subsets but not Γ-∗-separated. That is, the concepts of Γ-∗-
separated and ∗∗-separated are independent of each other.

(14) E and F are 2∗-separated subsets but not Γ-separated. C and H are Γ-
separated subsets but not 2∗-separated. That is, the concepts of 2∗-separated
and Γ-separated are independent of each other.

(15) H and K are ∗∗-separated subsets but not 2∗-separated. E and F are 2∗-
separated subsets but not ∗∗-separated. That is, the concepts of 2∗-separated
and ∗∗-separated are independent of each other.
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(16) D and G are ∗-Cl-separated subsets but not Γ-separated. C and H are Γ-
separated subsets but not ∗-Cl-separated. So, the concepts of ∗-Cl-separated
and Γ-separated are independent of each other.

(17) D and G are ∗-Cl∗-separated subsets but not Γ-separated. B and L are
Γ-separated subsets but not ∗-Cl∗-separated. So, the concepts of ∗-Cl∗-
separated and Γ-separated are independent of each other.

Lemma 2. Let (U, τ) be P(U)-space and M,K be nonempty subsets of U such
that M ∩ K = ∅. Then, the subsets M and K are Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗,
Γ-Cl∗,2∗, ∗∗)-separated.

Proof. In this space, since Γ(M) = Γ(K) = M∗ = K∗ = ∅, these subsets are Γ-Cl
(Γ-Cl∗,∗-Cl, ∗-Cl∗, Γ, Γ-∗,2∗, ∗∗)-separated. □

Example 2. Let (R, τL) be P(R)-space, where R is the set of real numbers with
left-ray topology τL i.e. τL = {(−∞, r) : r ∈ R} ∪ {∅,R}. Consider the subsets
M = (−∞, 3) and K = (3, 5) . Since Cl(M) = R and Cl(K) = [3,+∞), these
subsets are not τ -separated. ButM andK are Γ-Cl (∗-Cl, ∗-Cl∗, Γ, Γ-∗, Γ-Cl∗,2∗)-
separated subsets from Lemma 2.

In Example 1, D and G are τ -separated subsets but not Γ-Cl(Γ, Γ-∗, Γ-Cl∗)-
separated. Moreover, B and L are τ -separated subsets but not ∗-Cl (∗-Cl∗, 2∗)
separated.

Consequently, the concepts of Γ-Cl (∗-Cl, ∗-Cl∗,Γ, Γ-∗, Γ-Cl∗,2∗)-separated and
τ -separated are independent of each other.

Theorem 2. [27] In any I-space (U, τ), each of the following conditions implies
that M∗ = Γ(M) for any subset M of U :

(1) τ has a clopen base.
(2) τ is a T3-space on U .
(3) I = Icd.
(4) I = IK .
(5) Inw ⊆ I.
(6) I = Img.

Corollary 1. Assume that any of the conditions in Theorem 2 is satisfied and
M,K are the subsets in any I-space (U, τ). Then,

(1) The subsets M and K are Γ-Cl-separated if and only if they are ∗-Cl-
separated.

(2) The subsets M and K are Γ-Cl∗-separated if and only if they are ∗-Cl∗-
separated.

(3) The subsets M and K are Γ-separated if and only if they are ∗∗-separated.
(4) The subsetsM and K are 2∗-separated if and only if they are Γ-∗-separated.

Proof. It is obvious from Definition 8 and Theorem 2. □
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Theorem 3. Let (U, τ) be an I-space and M,K ⊆ U . Subsets M and K are both
Γ-separated and Γ-∗-separated if and only if they are Γ-Cl∗-separated.

Proof. Since M and K are both Γ-separated and Γ-∗-separated,

Γ(M) ∩ Cl∗(K) = Γ(M) ∩ (K ∪K∗)

= (Γ(M) ∩K) ∪ (Γ(M) ∩K∗)

= ∅

Cl∗(M) ∩ Γ(K) = (M ∪M∗) ∩ Γ(K)

= (M ∩ Γ(K)) ∪ (M∗ ∩ Γ(K))

= ∅

and M ∩K = ∅. So, M and K are Γ-Cl∗-separated subsets.
Conversely, let M and K be Γ-Cl∗-separated subsets. From Figure 3, these

subsets are both Γ-separated and Γ-∗-separated. □

Theorem 4. Let (U, τ) be an I-space and M,K ⊆ U . Subsets M and K are both
∗∗-separated and 2∗-separated if and only if these subsets are ∗-Cl∗-separated.

Proof. Since M and K are both ∗∗-separated and 2∗-separated,

M∗ ∩ Cl∗(K) =M∗ ∩ (K ∪K∗)

= (M∗ ∩K) ∪ (M∗ ∩K∗)

= ∅

Cl∗(M) ∩K∗ = (M ∪M∗) ∩K∗

= (M ∩K∗) ∪ (M∗ ∩K∗)

= ∅

and M ∩K = ∅. So, M and K are ∗-Cl∗-separated subsets.
Conversely, let M and K be ∗-Cl∗-separated subsets. From Figure 3, these

subsets are both ∗∗-separated and 2∗-separated. □

Theorem 5. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ .

then M ∈ τ and K ∈ τ .

Proof. Since the subsetsM,K are Γ-separated,M∩Γ(K) = ∅. So,M ⊆ (U \Γ(K)).
From Proposition 2-(2), U \Γ(K) is open set and hence (M ∪K)∩ (U \Γ(K)) =M
is an open subset. Similarly, it can be showed that the subset K is open. □
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Corollary 2. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ .

then M ∈ τ and K ∈ τ .

Proof. From Figure 3 and Theorem 5 , it is obtained. □

Theorem 6. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ∗.

then M ∈ τ∗ and K ∈ τ∗.

Proof. Since the subsetsM,K are Γ-separated,M∩Γ(K) = ∅. So,M ⊆ (U \Γ(K)).
From Proposition 2-(2), U \ Γ(K) is open set. Since τ ⊆ τ∗, U \ Γ(K) ∈ τ∗ and
hence (M ∪ K) ∩ (U \ Γ(K)) = M is in τ∗. Similarly, it can be showed that the
subset K is in τ∗. □

Corollary 3. Let (U, τ) be an I-space space and M,K ⊆ U . If the following
conditions are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ∗.

then M ∈ τ∗ and K ∈ τ∗.

Proof. It is obtained from Figure 3 and Theorem 6. □

Theorem 7. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-∗-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪ Γ(K) ∈ τ and Γ(M) ∪K ∈ τ .

then Γ(M) and Γ(K) are clopen subsets.

Proof. From Proposition 2-(2), Γ(M) and Γ(K) are closed subsets. We only show
that they are open subsets. Since the subsetsM,K are Γ-∗-separated, Γ(M)∩K∗ =
∅. So, Γ(M) ⊆ (U \ K∗). From Proposition 1-(2), U \ K∗ is open set and hence
(Γ(M)∪K)∩ (U \K∗) = Γ(M) is open. Similarly, it can be showed that the subset
Γ(K) is open. □

Corollary 4. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:
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(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪ Γ(K) ∈ τ and Γ(M) ∪K ∈ τ .

then Γ(M) and Γ(K) are clopen subsets.

Proof. It is obtained from Figure 3 and Theorem 7. □

Theorem 8. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-∗-separated.
(2) The subsets M,K are Γ-dense-itself.
(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. From Proposition 1-(2), M∗ and K∗ are closed subsets. We must show that
they are open subsets. Since the subsets M,K are Γ-∗-separated, M∗ ∩ Γ(K) = ∅.
SoM∗ ⊆ U \Γ(K). Since U \Γ(K) is open subset, (M∗∪K)∩(U \Γ(K)) =M∗ ∈ τ .
Similarly, it can be showed that the subset K∗ is open.

□

Corollary 5. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are Γ-dense-itself.
(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. It is obtained from Figure 3 and Theorem 8. □

Theorem 9. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are 2∗-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. From Proposition 1-(2), M∗ and K∗ are closed subsets. We must show that
they are open subsets. Since the subsets M,K are 2∗-separated, M∗ ∩K∗ = ∅. So,
M∗ ⊆ U \K∗. Since U \K∗ is open, (M∗ ∪K)∩ (U \K∗) =M∗ ∈ τ . Similarly, it
can be showed that the subset K∗ is open. □

Corollary 6. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗, Γ-∗)-separated.
(2) The subsets M,K are ∗-dense-itself.
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(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. From Figure 3 and Theorem 9, it is obtained. □

Theorem 10. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are ∗∗-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪K ∈ τ .

then M and K are open subsets.

Proof. Since the subsets M,K are ∗∗-separated, M ∩ K∗ = ∅. So M ⊆ U \ K∗.
Since U \ K∗ is open subset, (M ∪ K) ∩ (U \ K∗) = M is in τ . Similarly, it can
show that the subset K is open. □

Corollary 7. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗, Γ, ∗-Cl, ∗-Cl∗, τ)-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪K ∈ τ .

then M and K are open subsets.

Proof. From Figure 3 and Theorem 10, it is obtained. □

Theorem 11. Let (U, τ) be {∅}-space and M,K ⊆ U . Then the following state-
ments are equivalent:

(1) The subsets M and K are ∗∗-separated.
(2) The subsets M and K are τ -separated.

Proof. Since M∗({∅}) = Cl(M), K∗({∅}) = Cl(K), these expressions are equiva-
lent. □

Theorem 12. Let (U, τ) be {∅}-space and M,K ⊆ U . Then the following state-
ments are equivalent:

(1) The subsets M and K are 2∗-separated.
(2) The subsets M and K are ∗-Cl∗-separated.
(3) The subsets M and K are ∗-Cl-separated.

Proof. Since M∗({∅}) = Cl∗(M) = Cl(M) and K∗({∅}) = Cl∗(K) = Cl(K), these
expressions are equivalent. □

Theorem 13. Let (U, τ) be {∅}-space and M,K ⊆ U . Then the following state-
ments are equivalent:

(1) The subsets M and K are Γ-∗-separated.
(2) The subsets M and K are Γ-Cl∗-separated.
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(3) The subsets M and K are Γ-Cl-separated.

Proof. Since M∗({∅}) = Cl∗(M) = Cl(M) and K∗({∅}) = Cl∗(K) = Cl(K), these
expressions are equivalent. □

4. New Types of Connectedness via Local Closure

Definition 9. Let (U, τ) be an I-space and M ⊆ U . The subset M is called Γ-Cl
(resp. Γ, Γ-∗, Γ-Cl∗, 2∗)-connected if it is not the union of two Γ-Cl (resp. Γ, Γ-∗,
Γ-Cl∗, 2∗)-separated subsets in I-space (U, τ). Otherwise, the subset M is called
not Γ-Cl (resp. Γ, Γ-∗, Γ-Cl∗, 2∗)-connected . Particularly, if U is Γ-Cl (resp. Γ,
Γ-∗, Γ-Cl∗, 2∗)-connected, the I-space (U, τ) is called Γ-Cl (resp. Γ, Γ-∗, Γ-Cl∗,
2∗)-connected I-space.

Theorem 14. In any I-space,
(1) Every Γ-Cl∗-connected subset is Γ-Cl-connected.
(2) Every ∗-Cl-connected subset is Γ-Cl-connected.
(3) Every Γ-connected subset is Γ-Cl∗-connected.
(4) Every ∗-Cl∗-connected subset is Γ-Cl∗-connected.
(5) Every ∗∗-connected subset is Γ-connected.
(6) Every Γ-∗-connected subset is Γ-Cl∗-connected.
(7) Every 2∗-connected subset is Γ-∗-connected.
(8) Every 2∗-connected subset is ∗-Cl∗-connected.

Proof. (1) Let M be Γ-Cl∗-connected subset. Suppose that it is not Γ-Cl-
connected. So, there are subsets K, S which are Γ-Cl-separated and
K∪S =M . From Theorem 1-(1), the subsetsK and S are Γ-Cl∗-separated.
Hence, the subset M is not Γ-Cl∗-connected. This is a contradiction. Con-
sequently, the subset M is Γ-Cl-connected.

By using Theorem 1 (or Figure 3), other proofs are obtained similarly. □

The following diagram is obtained by Theorem 14 and Figure 2.

Figure 4. Relations among new types of connectedness
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For this diagram, counterexamples and independent concepts are shown in Ex-
ample 3 and Example 4.

Example 3. Consider the I-space in Example 1.

(1) The subset P = {y, z} is Γ (resp. Γ-Cl∗, Γ-Cl, Γ-∗)-connected but not ∗∗
(resp. ∗-Cl∗, ∗-Cl, 2∗)-connected.

(2) The subset R = {a, d} is Γ-Cl-connected but not Γ-Cl∗-connected.
(3) The subset S = {c, d} is Γ-Cl∗-connected but not Γ-connected.
(4) The subset T = {a, c} is ∗-Cl∗ (resp. Γ-Cl∗)-connected but not 2∗ (resp. Γ-∗)-

connected.
(5) The subset P = {y, z} is Γ-Cl∗-connected but not ∗-Cl-connected. The

subset R = {a, d} is ∗-Cl-connected but not Γ-Cl∗-connected. That is, the
concepts of ∗-Cl-connected and Γ-Cl∗-connected are independent of each
other.

(6) The subset P = {y, z} is Γ-connected but not ∗-Cl-connected. The subset
R = {a, d} is ∗-Cl-connected but not Γ-connected. That is, the concepts of
Γ-connected and ∗-Cl-connected are independent of each other.

(7) The subset P = {y, z} is Γ-∗-connected but not ∗-Cl-connected. The subset
R = {a, d} is ∗-Cl-connected but not Γ-∗-connected. That is, the concepts
of Γ-∗-connected and ∗-Cl-connected are independent of each other.

(8) The subset P = {y, z} is Γ-∗-connected but not ∗-Cl∗-connected. The subset
T = {a, c} is ∗-Cl∗-connected but not Γ-∗-connected. That is, the concepts
of Γ-∗-connected and ∗-Cl∗-connected are independent of each other.

(9) The subset P = {y, z} is Γ-connected but not 2∗-connected. The subset
S = {c, d} is 2∗-connected but not Γ-connected. That is, the concepts of
Γ-connected and 2∗-connected are independent of each other.

(10) The subset P = {y, z} is Γ-connected but not ∗-Cl∗-connected. The subset
S = {c, d} is ∗-Cl∗-connected but not Γ-connected. That is, the concepts of
Γ-connected and ∗-Cl∗-connected are independent of each other.

(11) The subset S = {c, d} is Γ-∗-connected but not Γ-connected. The subset
T = {a, c} is Γ-connected but not Γ-∗-connected. That is, the concepts of
Γ-∗-connected and Γ-connected are independent of each other.

(12) The subset S = {c, d} is Γ-∗-connected but not ∗∗-connected. The subset
T = {a, c} is ∗∗-connected but not Γ-∗-connected. That is, the concepts of
Γ-∗-connected and ∗∗-connected are independent of each other.

(13) The subset S = {c, d} is 2∗-connected but not ∗∗-connected. The subset
T = {a, c} is ∗∗-connected but not 2∗-connected. That is, the concepts of
2∗-connected and ∗∗-connected are independent of each other.

Lemma 3. Let (U, τ) be P(U)-space and M be a subset of U . If the subset M
has more than one element, it is not Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗,2∗, ∗∗ )-
connected.
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Proof. Let K,S be nonempty subsets such that M = K ∪ S and K ∩ S = ∅.
From Lemma 2, the subsets K and S are Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗,2∗, ∗∗)-
separated. So, M is not Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗,2∗, ∗∗ )-connected.

□

Example 4. Consider the P(R)-space in Example 2. The subset M = (−∞, 3) is
τL-connected but not Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗, 2∗)-connected from Lemma
3.

According to the I-space given in Example 1, S = {c, d} is Γ-Cl (∗-Cl∗, ∗-Cl,
Γ-∗, Γ-Cl∗, 2∗)-connected but not τ -connected. Moreover, the subset P = {y, z} is
Γ-connected but not τ -connected.

Consequently, the concepts of Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗, 2∗)-connected
and τ -connected are independent of each other.

Lemma 4. [1] Let (U, τ) be a topological space and M ⊆ U . If the subset M is
open, Cl(M) = Clθ(M).

Lemma 5. If the subset M is clopen in any I-space,
M∗ ⊆ Γ(M) ⊆M = Cl(M) = Clθ(M).

Proof. It is obtained by Lemma 4, Lemma 1 and Proposition 2-(2). □

Theorem 15. If any I-space (U, τ) is Γ-Cl-connected, then it is τ -connected. That
is, if the set U is Γ-Cl-connected, then U is τ -connected.

Proof. Suppose that U is Γ-Cl-connected but not τ -connected. So, there is a clopen
proper subset M in this space. From Lemma 5,

Γ(M) ∩ Cl(U \M) ⊆M ∩ (U \M) = ∅
Cl(M) ∩ Γ(U \M) ⊆M ∩ (U \M) = ∅

and M ∩ (U \M) = ∅. So, the subsets M and (U \M) are Γ-Cl-separated. Since
M ∪ (U \M) = U , U is not Γ-Cl-connected. This is a contradiction. As a result,
U is τ -connected. □

Theorem 16. If any I-space (U, τ) is Γ-Cl∗(Γ, Γ-∗, 2∗, ∗-Cl, ∗-Cl∗, ∗∗)-connected,
then it is τ -connected.

Proof. The proof is obtained by Figure 4 and Theorem 15. □

Corollary 8. Suppose that any of the conditions in Theorem 2 is satisfied and let
M be subsets in any I-space (U, τ). Then,

(1) The subset M is Γ-Cl-connected if and only if it is ∗-Cl-connected.
(2) The subset M is Γ-Cl∗-connected if and only if it is ∗-Cl∗-connected.
(3) The subset M is Γ-connected if and only if it is ∗∗-connected.
(4) The subset M is 2∗-connected if and only if it is Γ-∗-connected.
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Proof. It is obvious from Definition 9 and Theorem 2. □

Corollary 9. Let (U, τ) be an I-space and M,K be subsets of U .

(1) If the subsets M ,K are both Γ-separated, Γ-∗-separated subsets and S =
M ∪K, then S is not Γ-Cl∗-connected subset.

(2) If the subset S is not Γ-Cl∗-connected, there are both Γ-separated and Γ-∗-
separated subsets M ,K such that M ∪K = S.

(3) If the subsets M ,K are both 2∗-separated, ∗∗-separated subsets and S =
M ∪K, then S is not ∗-Cl∗-connected subset.

(4) If the subset S is not ∗-Cl∗-connected, there are both 2∗-separated and ∗∗-
separated subsets M ,K such that M ∪K = S.

Proof. It is obtained from Theorem 3 and Theorem 4. □

The following corollaries are obtained from Theorem 11, Theorem 12 and The-
orem 13, respectively.

Corollary 10. Let (U, τ) be {∅}-space and M ⊆ U . Then the following statements
are equivalent:

(1) The subset M is ∗∗-connected.
(2) The subset M is τ -connected.

Corollary 11. Let (U, τ) be {∅}-space and M ⊆ U . Then the following statements
are equivalent:

(1) The subset M is 2∗-connected.
(2) The subset M is ∗-Cl∗-connected.
(3) The subset M is ∗-Cl-connected.

Corollary 12. Let (U, τ) be {∅}-space and M ⊆ U . Then the following statements
are equivalent:

(1) The subset M is Γ-∗-connected.
(2) The subset M is Γ-Cl∗-connected.
(3) The subset M is Γ-Cl-connected.

Theorem 17. Let (U, τ) be {∅}-space and M ⊆ U . If the subset M is τ -connected,
then it is Γ ( Γ-Cl∗, Γ-Cl, ∗-Cl, ∗-Cl∗, Γ-∗, 2∗)-connected.

Proof. Let the subset M be τ -connected. From Corollary 10, M is ∗∗-connected.
So, it is Γ ( Γ-Cl∗, Γ-Cl, ∗-Cl, ∗-Cl∗)-connected by Figure 4. Moreover M is 2∗-
connected and Γ-∗-connected by Corollary 11 and Corollary 12, respectively. □

Considering {∅}-space (U, τ) given in Theorem 17, it is seen that Γ ( Γ-Cl∗, Γ-Cl,
∗-Cl, ∗-Cl∗, Γ-∗, 2∗)-connectedness is more general concept than the well-known
τ -connectedness. Moreover, in this space, ∗∗-connectedness and τ -connectedness
are coincident concepts from Corollary 10. However, in any I-space (U, τ), when
τ -connectedness of only the set U is considered in Theorem 15 and Theorem 16, it
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is seen that the concept of τ -connectedness is more general than the concept of Γ
( Γ-Cl∗, Γ-Cl, ∗-Cl, ∗-Cl∗, Γ-∗, 2∗)-connectedness. So the following result is easily
obtained.

Corollary 13. Let (U, τ) be {∅}-space. The following statements are equivalent:

(1) The set U is Γ-Cl-connected.
(2) The set U is Γ-Cl∗-connected.
(3) The set U is Γ-∗-connected.
(4) The set U is 2∗-connected.
(5) The set U is ∗-Cl-connected.
(6) The set U is ∗-Cl∗-connected.
(7) The set U is ∗∗-connected.
(8) The set U is τ -connected.
(9) The set U is Γ-connected.

Proof. It is obtained by Theorem 15, Theorem 16 and Theorem 17. □

5. Theorems on New Types of Connectedness via Local Closure

Theorem 18. Let (U, τ) be an I-space. If M is Γ-Cl-connected subset of U and
S, T are Γ-Cl-separated subsets such thatM ⊆ S∪T , then eitherM ⊆ S orM ⊆ T .

Proof. Since M = (M ∩ S) ∪ (M ∩ T ) and the subsets S, T are Γ-Cl-separated,

Γ(M ∩ S) ∩ Cl(M ∩ T ) ⊆ Γ(S) ∩ Cl(T ) = ∅
Cl(M ∩ S) ∩ Γ(M ∩ T ) ⊆ Cl(S) ∩ Γ(T ) = ∅

and (M ∩ S) ∩ (M ∩ T ) ⊆ S ∩ T = ∅. If (M ∩ S) and (M ∩ T ) are nonempty
subsets, the subset M is not Γ-Cl-connected. This is a contradiction. So, either
(M ∩ S) = ∅ or (M ∩ T ) = ∅. Since M ⊆ S ∪ T , either M ⊆ S or M ⊆ T . □

Theorem 19. Let (U, τ) be an I-space. If M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected
subset of U and S, T are Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-separated subsets such that M ⊆
S ∪ T , then either M ⊆ S or M ⊆ T .

Proof. It is obtained similar to the proof of Theorem 18. □

Theorem 20. Let (U, τ) be an I-space and M,K ⊆ U . If M is Γ-Cl-connected
subset and M ⊆ K ⊆ Γ(M), then K is Γ-Cl-connected subset.

Proof. Suppose that the subset K is not Γ-Cl-connected. Then, there exist Γ-Cl-
separated nonempty subsets T, S such that T ∪ S = K. Since the subsets S and T
are Γ-Cl-separated and M ⊆ K = S ∪ T , by using Theorem 18, we have M ⊆ S
or M ⊆ T . Suppose that M ⊆ S. Then, from Proposition 2-(1), Γ(M) ⊆ Γ(S).
From the hypothesis, T ⊆ K ⊆ Γ(M) ⊆ Γ(S). Since Γ(M), Γ(S) are closed subsets
by Proposition 2-(2), Cl(T ) ⊆ Γ(M) ⊆ Γ(S), and since the subsets S and T are
Γ-Cl-separated, Cl(T ) = Cl(T ) ∩ Γ(M) ⊆ Cl(T ) ∩ Γ(S) = ∅. That is, T = ∅. This
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is a contradiction. Similarly, a contradiction is obtained if M ⊆ T . Consequently,
the subset K is Γ-Cl-connected. □

Theorem 21. Let (U, τ) be an I-space and M,K ⊆ U . If M is Γ-Cl∗(resp. Γ)-
connected subset of U and M ⊆ K ⊆ Γ(M), then K is Γ-Cl∗(resp. Γ)-connected
subset.

Proof. It is obtained similar to the proof of Theorem 20. □

Corollary 14. Let (U, τ) be an I-space and M ⊆ U .

(1) If M is both ∗-dense-in-itself and Γ-Cl-connected subset, then M∗ is Γ-Cl-
connected.

(2) IfM is both ∗-dense-in-itself and Γ-Cl∗(resp. Γ)-connected subset, thenM∗

is Γ-Cl∗(resp. Γ)-connected.
(3) If M is both Γ-dense-in-itself and Γ-Cl-connected subset, then Γ(M) is

Γ-Cl-connected.
(4) If M is both Γ-dense-in-itself and Γ-Cl∗(resp. Γ)-connected subset, then

Γ(M) is Γ-Cl∗(resp. Γ)-connected.
(5) If M is both Γ-dense-in-itself and Γ-Cl-connected subset, then Cl(M) is

Γ-Cl-connected.
(6) If M is both Γ-dense-in-itself and Γ-Cl∗(resp. Γ)-connected subset, then

Cl(M) is Γ-Cl∗(resp. Γ)-connected.

Proof. (1) Since M is ∗-dense-in-itself and by Lemma 1, M ⊆ M∗ ⊆ Γ(M).
From Theorem 20 , M∗ is Γ-Cl-connected subset.

(2) By using Theorem 21, it is obtained similar to the proof of (1).
(3) Since M is Γ-dense-in-itself, we have M ⊆ Γ(M) ⊆ Γ(M). From Theorem

20, Γ(M) is Γ-Cl-connected subset.
(4) By using Theorem 21, it is obtained similar to the proof of (3).
(5) Since M is Γ-dense-in-itself, M ⊆ Γ(M) and so M ⊆ Cl(M) ⊆ Cl(Γ(M)).

Since Γ(M) is closed subset from Proposition 2-(2),M ⊆ Cl(M) ⊆ Cl(Γ(M)) =
Γ(M). That is, M ⊆ Cl(M) ⊆ Γ(M) and M is Γ-Cl-connected from the
hypothesis. Using Theorem 20, we obtain that Cl(M) is Γ-Cl-connected
subset.

(6) Since M is Γ-dense-in-itself, M ⊆ Cl(M) ⊆ Γ(M) is obtained as in the
proof of (5). M is Γ-Cl∗(resp. Γ)-connected from the hypothesis. By using
Theorem 21, we obtain that Cl(M) is Γ-Cl∗(resp. Γ)-connected subset.

□

Theorem 22. Let (U, τ) be an I-space and {Nk : k ∈ ∆} be a nonempty collection
of Γ-Cl-connected subsets of U (where ∆ is arbitrary index set). If

⋂
k∈∆Nk ̸= ∅,

then
⋃

k∈∆Nk is Γ-Cl-connected.

Proof. Suppose that
⋃

k∈∆Nk is not Γ-Cl-connected. Then, there exist Γ-Cl-
separated nonempty subsets T, S such that T ∪S =

⋃
k∈∆Nk. Since

⋂
k∈∆Nk ̸= ∅,
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there exists a point x ∈ Nk for every k ∈ ∆. Since T, S are Γ-Cl-separated and
x ∈

⋃
k∈∆Nk, we have x ∈ T or x ∈ S. Suppose now that x ∈ S. So, Nk ∩ S ̸= ∅

for every k ∈ ∆. Then, by Theorem 18, Nk ⊆ S for every k ∈ ∆. Therefore,
we obtain

⋃
k∈∆Nk ⊆ S. That is, T = ∅. This is a contradiction. Similarly, a

contradiction is also obtained if we suppose that x ∈ T . Consequently,
⋃

k∈∆Nk is
Γ-Cl-connected. □

Theorem 23. Let (U, τ) be an I-space and {Nk : k ∈ ∆} be a nonempty collection
of Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subsets of U . If

⋂
k∈∆Nk ̸= ∅, then

⋃
k∈∆Nk

is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 22. □

Theorem 24. Let (U, τ) be an I-space, {Nk : k ∈ ∆} be a nonempty collection of
Γ-Cl-connected subsets and M be Γ-Cl-connected subset. If M ∩Nk ̸= ∅ for every
k ∈ ∆, then M ∪ (

⋃
k∈∆Nk) is a Γ-Cl-connected subset.

Proof. For every k ∈ ∆, since Nk and M are Γ-Cl-connected subsets such that
M ∩Nk ̸= ∅ , by using Theorem 22, we obtain that the subset M ∪Nk are Γ-Cl-
connected for every k ∈ ∆. Since M ⊆M ∪Nk for every k ∈ ∆ , M ⊆

⋂
k∈∆(M ∪

Nk) ̸= ∅. From Theorem 22,
⋃

k∈∆(M ∪Nk) =M ∪ (
⋃

k∈∆Nk) is a Γ-Cl-connected
subset. □

Theorem 25. Let (U, τ) be an I-space, {Nk : k ∈ ∆} be a nonempty collection
of Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subsets and M be Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subset. If M ∩ Nk ̸= ∅ for every k ∈ ∆, then M ∪ (

⋃
k∈∆Nk) is a

Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset.

Proof. By using Theorem 23, it is obtained similar to the proof of Theorem 24. □

Theorem 26. Let (U, τ) be an I-space and {Nk : k ∈ N} be a nonempty collection
of Γ-Cl-connected subsets such that Nk∩Nk+1 ̸= ∅ for every k ∈ N. Then

⋃
k∈NNk

is a Γ-Cl-connected subset.

Proof. We can use induction method. Firstly, N1 is Γ-Cl-connected. Now assume
that the theorem is true for k− 1. That is, N1 ∪N2 ∪ ...∪Nk−1 is Γ-Cl-connected.
From Theorem 22,Mk = N1∪N2∪ ...∪Nk is Γ-Cl-connected and

⋂
k∈NMk = N1 ̸=

∅. Again from Theorem 22,
⋃

k∈NMk =
⋃

k∈NNk is a Γ-Cl-connected subset. □

Theorem 27. Let (U, τ) be an I-space and {Nk : k ∈ N} be a nonempty collection
of Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subsets such that Nk ∩ Nk+1 ̸= ∅ for every
k ∈ N. Then

⋃
k∈NNk is a Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset.

Proof. By using Theorem 23, it is obtained similar to the proof of Theorem 26. □

Theorem 28. Let (U, τ) be an I-space and M ⊆ U . If for each distinct pair of
points a, b ∈ M there is a Γ-Cl-connected subset E such that a, b ∈ E ⊆ M , then
M is Γ-Cl-connected subset.
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Proof. Suppose that the subset M is not Γ-Cl-connected. Then there are Γ-Cl-
separated nonempty subsets S,K such that S ∪ K = M . Let a ∈ S and b ∈ K.
By hypothesis, there is Γ-Cl-connected subset E such that a, b ∈ E ⊆ M . Since
E ⊆ S ∪ K, E ⊆ S or E ⊆ K by Theorem 18. Suppose that E ⊆ S. So,
b ∈ S ∩K ̸= ∅. This is a contradiction. Similarly, a contradiction is obtained if we
suppose that E ⊆ K. □

Theorem 29. Let (U, τ) be an I-space and M ⊆ U . If for each distinct pair of
points a, b ∈ M there is a Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset E such that
a, b ∈ E ⊆M , then M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 28. □

Theorem 30. Let (U, τ) be Γ-Cl-connected I-space, M be Γ-Cl-connected subset
and K,C be Γ-Cl-separated subsets. If U \M = K ∪ C, then both M ∪ K and
M ∪ C are Γ-Cl-connected subsets.

Proof. Suppose that M ∪ K is not Γ-Cl-connected. There are Γ-Cl-separated
nonempty subsets S, T such that S ∪ T = M ∪ K. Since M ⊆ S ∪ T = M ∪ K
and M is a Γ-Cl-connected subset, M ⊆ S or M ⊆ T , by Theorem 18. Suppose
that M ⊆ T . Then, S ∪ T = M ∪K ⊆ T ∪K, and so S ⊆ K. Since K and C are
Γ-Cl-separated subsets, S and C are Γ-Cl-separated subsets. So,

Γ(S) ∩ Cl(T ∪ C) = [Γ(S) ∩ Cl(T )] ∪ [Γ(S) ∩ Cl(C)] = ∅
Cl(S) ∩ Γ(T ∪ C) = [Cl(S) ∩ Γ(T )] ∪ [Cl(S) ∩ Γ(C)] = ∅

and S∩(T ∪C) = (S∩T )∪(S∩C) = ∅. As a result, S and T ∪C are Γ-Cl-separated
subsets. Since U \M = K ∪ C, we have U = M ∪ (K ∪ C) = S ∪ (T ∪ C). This
contradicts with the fact that (U, τ) is an Γ-Cl-connected I-space. Consequently,
the subset M ∪K is Γ-Cl-connected.

If M ⊆ S, a contradiction can be obtained again in this way. Similarly, it can
be proved that M ∪ C is Γ-Cl-connected subset. □

Theorem 31. Let (U, τ) be Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected I-space, M be a
Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset and K,C be Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-separated
subsets. If U \M = K ∪ C, then M ∪K and M ∪ C are Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subsets.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 30. □

Theorem 32. Let (U, τ) be an I-space and M,K be Γ-Cl-connected subsets of U .
If these subsets are not Γ-Cl-separated, then M ∪K is Γ-Cl-connected subset.

Proof. Suppose that M ∪ K is not Γ-Cl-connected subset. So, there are Γ-Cl-
separated nonempty subsets S, T such that S ∪ T = M ∪ K. Then, we have
M ⊆ S∪T and K ⊆ S∪T . From Theorem 18, there are four cases to be considered:

(1) M ⊆ S and K ⊆ S
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(2) M ⊆ S and K ⊆ T
(3) M ⊆ T and K ⊆ T
(4) M ⊆ T and K ⊆ S

If case (1) or case (3) is satisfied, then T = ∅ or S = ∅, respectively. Both are
contradiction.

Suppose that case (2) is satisfied. If M = S and K = T , then the subsets M
and K are Γ-Cl-separated. This is a contradiction. If M ⫋ S, then T ⫋ K due to
S ∪ T =M ∪K. Similarly, if K ⫋ T , then S ⫋M . These contradict with case (2).
Additionally, for case (4), we obtain similar contradictions. Consequently, M ∪K
is Γ-Cl-connected subset. □

Theorem 33. Let (U, τ) be an I-space and M,K ⊆ U . If these subsets are not
Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-separated, thenM∪K is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected
subset.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 32. □

Lemma 6. Let (U, τ) be an I-space and M,K be subsets of U . Then

Γ(M ∩K) ⊆ Γ(M) ∩ Γ(K).

Proof. Let x ∈ Γ(M∩K). Then, [Cl(O)∩(M∩K)] /∈ I for every O ∈ τ(x). Because
of the definition of ideal, Cl(O) ∩M /∈ I and Cl(O) ∩K /∈ I. So, x ∈ Γ(M) and
x ∈ Γ(K). That is, x ∈ Γ(M) ∩ Γ(K). □

In the following example, we show that the inclusion Γ(M ∩K) ⊆ Γ(M)∩Γ(K)
strictly hold.

Example 5. Consider the I-space in Example 1. In Table 1, Γ(A ∩ B) = ∅ ⫋
{a, b, c} = Γ(A) ∩ Γ(B).

Theorem 34. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is both Γ-Cl-connected and closed.
(2) Γ(M) ⊆ Cl(M) and Γ(U \M) ⊆ Cl(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd(M) ̸= ∅ where Bd(M) is boundary of the subset M .

Proof. Suppose that K∩Bd(M) = ∅. So, K∩(Cl(M)∩Cl(U \M)) = ∅. The subset
K can be expressed as K = U ∩K = (M ∪(U \M))∩K = (M ∩K)∪((U \M)∩K).
Then, by using Lemma 6,

Γ(M ∩K) ∩ Cl((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ [Cl(U \M) ∩ Cl(K)]

⊆ Cl(M) ∩ Γ(K) ∩ Cl(U \M) ∩K = ∅

Cl(M ∩K) ∩ Γ((U \M) ∩K) ⊆ Cl(M) ∩ Cl(K) ∩ [Γ(U \M) ∩ Γ(K)]

⊆ Cl(M) ∩K ∩ Cl(U \M) ∩ Γ(K) = ∅
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and (M ∩K)∩ ((U \M)∩K) = ∅ . Therefore, the subset K is not Γ-Cl-connected.
This is a contradiction. Consequently, K ∩Bd(M) ̸= ∅. □

Theorem 35. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is Γ-connected.
(2) Γ(M) ⊆ Cl(M) and Γ(U \M) ⊆ Cl(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd(M) ̸= ∅.

Proof. Suppose that K∩Bd(M) = ∅. So, K∩(Cl(M)∩Cl(U \M)) = ∅. The subset
K can be expressed as K = U ∩K = (M ∪(U \M))∩K = (M ∩K)∪((U \M)∩K).
Then, by using Lemma 6,

Γ(M ∩K) ∩ ((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ (U \M) ∩K
⊆ Cl(M) ∩ Γ(K) ∩ Cl(U \M) ∩K = ∅

(M ∩K) ∩ Γ((U \M) ∩K) ⊆M ∩K ∩ Γ(U \M) ∩ Γ(K)

⊆ Cl(M) ∩K ∩ Cl(U \M) ∩ Γ(K) = ∅

and (M ∩K) ∩ ((U \M) ∩K) = ∅ . Therefore, the subset K is not Γ-connected.
This is a contradiction. Consequently, K ∩Bd(M) ̸= ∅. □

Theorem 36. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is both Γ-Cl∗-connected and ∗-closed.
(2) Γ(M) ⊆ Cl∗(M) and Γ(U \M) ⊆ Cl∗(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩ Bd∗(M) ̸= ∅ where Bd∗(M) is boundary of the subset M with respect to
τ∗.

Proof. Suppose that K ∩Bd∗(M) = ∅. So, K ∩ (Cl∗(M) ∩ Cl∗(U \M)) = ∅. The
subset K can be expressed as K = U ∩K = (M ∪ (U \M))∩K = (M ∩K)∪ ((U \
M) ∩K). Then,

Γ(M ∩K) ∩ Cl∗((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ [Cl∗(U \M) ∩ Cl∗(K)]

⊆ Cl∗(M) ∩ Γ(K) ∩ Cl∗(U \M) ∩K = ∅

Cl∗(M ∩K) ∩ Γ((U \M) ∩K) ⊆ Cl∗(M) ∩ Cl∗(K) ∩ [Γ(U \M) ∩ Γ(K)]

⊆ Cl∗(M) ∩K ∩ Cl∗(U \M) ∩ Γ(K) = ∅

and (M ∩ K) ∩ (K ∩ (U \ M)) = ∅ . Therefore, the subset K is not Γ-Cl∗-
connected. This is a contradiction. So, K ∩Bd∗(M) ̸= ∅.

□



280 F. YALAZ, A. KESKIN KAYMAKCI

Corollary 15. Let (U, τ) be an I-space. If the following conditions are satisfied
for the subsets M and K:

(1) The subset K is Γ-∗ ( 2∗)-connected and ∗-closed.
(2) Γ(M) ⊆ Cl∗(M) and Γ(U \M) ⊆ Cl∗(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd∗(M) ̸= ∅.

Proof. It is obvious from Figure 4 and Theorem 36. □

Theorem 37. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is Γ-connected.
(2) Γ(M) ⊆ Cl∗(M) and Γ(U \M) ⊆ Cl∗(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd∗(M) ̸= ∅.

Proof. Suppose that K ∩Bd∗(M) = ∅. So, K ∩ (Cl∗(M) ∩ Cl∗(U \M)) = ∅. The
subset K can be expressed as K = U ∩K = (M ∪ (U \M))∩K = (M ∩K)∪ ((U \
M) ∩K). Then

Γ(M ∩K) ∩ ((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ (U \M) ∩K
⊆ Cl∗(M) ∩ Γ(K) ∩ Cl∗(U \M) ∩K = ∅

(M ∩K) ∩ Γ((U \M) ∩K) ⊆M ∩K ∩ [Γ(U \M) ∩ Γ(K)]

⊆ Cl∗(M) ∩K ∩ Cl∗(U \M) ∩ Γ(K) = ∅
and (M ∩ K) ∩ (K ∩ (U \ M)) = ∅ . Therefore, the subset K is not Γ-Cl∗-

connected. This is a contradiction. Finally, K ∩Bd∗(M) ̸= ∅.
□

6. New Type Components via Local Closure

Definition 10. Let (U, τ) be an I-space and x be a point of U . The union of all
Γ-Cl(resp. Γ-Cl∗, Γ, Γ-∗, 2∗)-connected subsets that contain the point x is called
Γ-Cl(resp. Γ-Cl∗, Γ, Γ-∗, 2∗)-component of U containing x. That is, we define a
Γ-Cl(resp. Γ-Cl∗, Γ, Γ-∗, 2∗)-component of the point x as follows:

(1) The subset CΓ-Cl(x) =
⋃
{M ⊆ U : M is Γ-Cl-connected and x ∈ M} is

called Γ-Cl-component of the point x.
(2) The subset CΓ-Cl∗(x) =

⋃
{M ⊆ U : M is Γ-Cl∗-connected and x ∈ M} is

called Γ-Cl∗-component of the point x.
(3) The subset CΓ(x) =

⋃
{M ⊆ U : M is Γ-connected and x ∈ M} is called

Γ-component of the point x.
(4) The subset CΓ-∗(x) =

⋃
{M ⊆ U :M is Γ-∗-connected and x ∈M} is called

Γ-∗-component of the point x.
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(5) The subset C2∗(x) =
⋃
{M ⊆ U : M is 2∗-connected and x ∈ M} is called

2∗-component of the point x.

Theorem 38. Let (U, τ) be an I-space and x be a point of U .

(1) The subset CΓ-Cl(x) is Γ-Cl-connected subset which contains x.
(2) The subset CΓ-Cl(x) is maximal Γ-Cl-connected subset which contains x .

Proof. (1) Since x ∈
⋂
{M ⊆ U : M is Γ-Cl-connected and x ∈ M} ≠ ∅,

CΓ-Cl(x) =
⋃
{M ⊆ U :M is Γ-Cl-connected and x ∈M} is Γ-Cl-connected

by Theorem 22.
(2) It is obvious from Definition 10 and (1).

□

Theorem 39. Let (U, τ) be an I-space and x be a point of U .

(1) The subset CΓ-Cl∗(x)(resp. CΓ(x), CΓ-∗(x), C2∗(x)) is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subset which contains x.

(2) The subset CΓ-Cl∗(x)(resp. CΓ(x), CΓ-∗(x), C2∗(x)) is maximal Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subset which contains x .

Proof. By using Theorem 23 and Definition 10 , it is obtained similar to the proof
of Theorem 38 . □

Theorem 40. Let (U, τ) be an I-space and x, y ∈ U . Then

(1) CΓ-Cl(x) ∩ CΓ-Cl(y) = ∅ or CΓ-Cl(x) = CΓ-Cl(y).
(2) The set of all distinct Γ-Cl-components forms a partition of U .

Proof. (1) Let CΓ-Cl(x) ∩ CΓ-Cl(y) ̸= ∅. From Theorem 38-(1) and Theorem
22, CΓ-Cl(x) ∪ CΓ-Cl(y) is Γ-Cl-connected. We have CΓ-Cl(x) ⊆ CΓ-Cl(x) ∪
CΓ-Cl(y) and CΓ-Cl(y) ⊆ CΓ-Cl(x)∪CΓ-Cl(y). From Theorem 38 -(2), CΓ-Cl(x)∪
CΓ-Cl(y) ⊆ CΓ-Cl(x) and CΓ-Cl(x) ∪ CΓ-Cl(y) ⊆ CΓ-Cl(y). So, CΓ-Cl(x) ∪
CΓ-Cl(y) = CΓ-Cl(x) = CΓ-Cl(y).

(2) Since
⋃

x∈U CΓ-Cl(x) = U , it is obvious from (1).
□

Theorem 41. Let (U, τ) be an I-space and x, y ∈ U . Then,

(1) CΓ-Cl∗(x) ∩ CΓ-Cl∗(y) = ∅ or CΓ-Cl∗(x) = CΓ-Cl∗(y).
(2) CΓ(x) ∩ CΓ(y) = ∅ or CΓ(x) = CΓ(y).
(3) CΓ-∗(x) ∩ CΓ-∗(y) = ∅ or CΓ-∗(x) = CΓ-∗(y).
(4) C2∗(x) ∩ C2∗(y) = ∅ or C2∗(x) = C2∗(y).
(5) The set of all distinct CΓ-Cl∗(x)(resp. CΓ(x), CΓ-∗(x), C2∗(x))-components

forms a partition of U .

Proof. By using Theorem 39 and Theorem 23, all statements above are obtained
similar to the proof of Theorem 40. □

Theorem 42. Let (U, τ) be an I-space. If M is Γ-Cl-connected and nonempty
clopen subset of U , then M is Γ-Cl-component.
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Proof. Let CΓ-Cl(x) be Γ-Cl-component of the point x ∈M . From Theorem 38-(2),
M ⊆ CΓ-Cl(x). Suppose that M ⫋ CΓ-Cl(x). Then, (M ∩ CΓ-Cl(x)) ∩ [(U \M) ∩
CΓ-Cl(x)] = ∅ and (M ∩ CΓ-Cl(x)) ∪ [(U \M) ∩ CΓ-Cl(x)] = CΓ-Cl(x). From Lemma
5,

Γ(M) ∩ Cl(U \M) ⊆ Cl(M) ∩ (U \M) =M ∩ (U \M) = ∅
Cl(M) ∩ Γ(U \M) ⊆M ∩ Cl(U \M) =M ∩ (U \M) = ∅

These imply that

Γ(M ∩ CΓ-Cl(x)) ∩ Cl((U \M) ∩ CΓ-Cl(x)) = ∅
Cl(M ∩ CΓ-Cl(x)) ∩ Γ((U \M) ∩ CΓ-Cl(x)) = ∅

So, CΓ-Cl(x) is not Γ-Cl-connected. This is a contradiction. Consequently, M =
CΓ-Cl(x). That is, M is Γ-Cl-component. □

Theorem 43. Let (U, τ) be an I-space. If M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected
and nonempty clopen subset of U , then M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-component.

Proof. By using Lemma 5, it is obtained similar to the proof of Theorem 42. □

7. The Image of New Types of Connectedness Under a Continuous
Map in Ideal Topological Spaces

f : (U, τ1, I) → (Y, τ2) is continuous map means that f : (U, τ1) → (Y, τ2) is
continuous.

Theorem 44. Let (U, τ1) be Γ-Cl-connected I-space and (Y, τ2) be any topological
space. If f : (U, τ1, I) → (Y, τ2) is a continuous map, then f(U) is τ2-connected.

Proof. From Theorem 15 , the set U is τ1-connected. Since the image of a connected
space under a continuous map is connected, f(U) is τ2-connected. □

Corollary 16. Let (U, τ1) be Γ-Cl
∗ (Γ, Γ-∗, 2∗, ∗-Cl, ∗-Cl∗, ∗∗)-connected I-space

and (Y, τ2) be any topological space. If f : (U, τ1, I) → (Y, τ2) is a continuous map,
then f(U) is τ2-connected.

Proof. It is obvious from Theorem 44 and Figure 4. □

Corollary 17. Let f : (U, τ1, I) → (Y, τ2) be continuous and surjective function.
If U is Γ-Cl (Γ-Cl∗, Γ, Γ-∗, 2∗)-connected, then Y is τ -connected.

Proof. It is obvious from Theorem 44 and Corollary 16. □

It is shown in [14] that Corollary 17 is also satisfied for ∗-Cl (∗-Cl∗, ∗∗)-
connectedness. This is clear from Theorem 44 and Corollary 16. Because Γ-Cl-
connectedness is more general than ∗-Cl (∗-Cl∗, ∗∗)-connectedness.
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Theorem 45. [25](Intermediate Value Theorem) Let f : (U, τ1) → (Y, τ2) be con-
tinuous map, where (U, τ1) is a τ1-connected topological space, Y is an ordered set
with ” < ” and τ2 is order topology on Y . If a, b ∈ U and f(a) < r < f(b), then
there exists a point c ∈ U such that f(c) = r.

Now, we give the intermediate value theorem for the ideal topological spaces.

Theorem 46. Let f : (U, τ1, I) → (Y, τ2) be continuous map, where (U, τ1) is a
Γ-Cl (Γ-Cl∗, Γ, Γ-∗, 2∗, ∗-Cl, ∗-Cl∗, ∗∗)-connected I-space, Y is an ordered set
with ” < ” and τ2 is order topology on Y . If a, b ∈ U and f(a) < r < f(b), then
there exists a point c ∈ U such that f(c) = r.

Proof. From Theorem 15 (and Corollary 16), the set U is τ1-connected. That is,
(U, τ1) is connected space. Then, the claim is obtained by Theorem 45. □

Specially, if we choose the minimal ideal I = {∅} in Theorem 46, by using
Corollary 13, we obtain the intermediate value theorem. That is, a special case of
Theorem 46 gives the intermediate value theorem.
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