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Bahar Doğan Yazıcı
Department of Mathematics,
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4 On Generalizations of Hölder’s and Minkowski’s Inequalities
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Generalized Turán-type Inequalities for Polar
Derivative of a Polynomial

Kshetrimayum Krishnadas*, Thangjam Birkramjit Singh and Barchand Chanam

Abstract
Let P (z) = a0 +

n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1. We

obtain an improvement and a generalization of an inequality in polar derivative proved by Somsuwan
and Nakprasit [1]. Further, we also extend a result proved by Chanam and Dewan [2] to its polar version.
Besides, our results are also found to generalize and improve some known inequalities.

Keywords: Turán-type inequality; polynomial; polar derivative; maximum modulus

AMS Subject Classification (2020): Primary: 30C15: 30C10 ; Secondary: 30A10.

*Corresponding author

1. Introduction and statement of results
The study of geometric relationship between the maximum moduli of a complex polynomial and its derivative

on the same circle or different circles by taking into account the position of zeros of the polynomial inside or outside
the same or a different circle has been drawing great interest among researchers for many decades. One of the
pioneering works in this area is due to S. Bernstein.

If P (z) is a polynomial of degree n, Bernstein [3] proved

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

The above inequality is the famous Bernstein’s Inequality. Equality holds in (1.1) if all zeros of P (z) are found at the
origin.
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If we restrict ourselves to the class of polynomials P (z) of degree n having no zero in |z| < 1, then inequality
(1.1) can be refined and substituted by

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (1.2)

Inequality (1.2) was conjectured by Erdös and later proved by Lax [4]. The result is sharp and equality holds for the
polynomial P (z) = λ+ µzn, where |λ| = |µ|.

On the other hand, if P (z) is a polynomial of degree n having all its zeros in |z| ≤ 1, Turán [5] proved

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1.3)

Inequality (1.3), which is often referred to as Turán’s Inequality, is best possible and equality occurs if P (z) has all
its zeros on |z| = 1.

It was asked by Professor R.P. Boas that if P (z) is a polynomial of degree n not vanishing in |z| < k, k > 0, then

how large can
{
max
|z|=1

|P ′(z)|/max
|z|=1

|P (z)|
}

be. A partial answer to this problem was given by Malik [6], who proved

that if P (z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + k
max
|z|=1

|P (z)|. (1.4)

The result is sharp and equality is attained for P (z) = (z + k)n. Whereas, for the polynomial P (z) having all its

zeros in |z| ≤ k, k ≤ 1, by applying the above inequality (1.4) to the polynomial q(z), where q(z) = znP

(
1

z

)
, Malik

[6] further obtained a generalization of (1.3) as

max
|z|=1

|P ′(z)| ≥ n

1 + k
max
|z|=1

|P (z)|. (1.5)

Inequality (1.5) is sharp and equality holds for P (z) = (z + k)n.

In inequalities (1.2) and (1.3) the boundaries of zero-free regions and the circle on which the estimates of P (z)
and its derivative are compared is the unit circle, which is not the case in inequalities (1.4) and (1.5) where the two
circles are not same. It is of interest to obtain generalization of the above inequalities by considering the maximum
moduli of the polynomial and its derivative on different circles other than the unit circle. In this direction the
following result was proved by Aziz and Zargar [7].

Theorem 1.1. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for real numbers r and R such
that rR ≥ k2 and r ≤ R,

max
|z|=R

|P ′(z)| ≥ n (R+ k)
n−1

(r + k)
n

{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}
. (1.6)

Equality in (1.6) holds for the polynomial P (z) = (z + k)n.

Chanam and Dewan [2] generalized and improved Theorem 1.1 by involving certain coefficients of P (z). They
proved

Theorem 1.2. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , a0 6= 0 and 1 ≤ µ < n, be a polynomial of degree n ≥ 2 having all its

zeros in |z| ≤ k, where k > 0, then for rR ≥ k2 and r ≤ R,

max
|z|=R

|P ′(z)| ≥ n
{

n|an|Rµkµ−1 + µ|an−µ|Rµ−1

n|an|Rµ+1kµ−1 + n|an|k2µ + µ|an−µ| (Rkµ−1 +Rµ)

}
(1.7)

×
(
R+ k

r + k

)n{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}
.
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Let P (z) be a polynomial of degree n and let α be any complex number. Then, the polar derivative of P (z) with
respect to α, denoted by DαP (z), is defined as

DαP (z) = nP (z) + (α− z)P ′(z). (1.8)

The polynomial DαP (z) is of degree at most (n− 1) and it generalizes the ordinary derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

The following result, proved by Aziz and Rather [8], generalizes and extends Turán’s inequality (1.3) to its polar
version.

Theorem 1.3. Let P (z) be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for every real or complex
number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥
n(|α| − k)
1 + kn

max
|z|=1

|P (z)|. (1.9)

Further, Dewan and Upadhye [9] improved Theorem 1.3 by involving min
|z|=k

|P (z)|. They proved

Theorem 1.4. Let P (z) be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for every real or complex
number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n(|α| − k)
{

1

1 + kn
max
|z|=1

|P (z)|+ 1

2kn

(
kn − 1

kn + 1

)
min
|z|=k

|P (z)|
}
. (1.10)

Nakprasit and Somsuwan [1] generalized Theorem 1.4 by proving the following result.

Theorem 1.5. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

for every real or complex number α with |α| ≥ k and 1 ≤ R ≤ k,

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)

[
Rn

Rn + kn

(
kµ + 1

kµ +Rµ

)n
µ

max
|z|=1

|P (z)|

+

{
kn

Rn + kn

(
1−

(
kµ + 1

kµ +Rµ

)n
µ

)
+

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|

]
. (1.11)

In this paper, we first obtain an improvement and a generalization of Theorem 1.5. Theorem 1.5 is generalized in
the sense that inequality (1.11) is extended to circles with smaller radii, viz., for 0 < r ≤ 1 when the estimate of
max |DαP (z)| is considered. More precisely, we prove

Theorem 1.6. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

for every real or complex number α with |α| ≥ k and 0 < r ≤ 1 ≤ R ≤ k,

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)
[

Rn

kn +Rn
Bmax
|z|=r

|P (z)|

+

{
kn

kn +Rn
(1−B) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]
, (1.12)

where

B = exp


−n

R∫
r

µ

n

|an−µ|
k2µ

|an| − m
kn
kµ+1tµ−1 + tµ

tµ+1 + kµ+1 +
µ

n

|an−µ|
k2µ

|an| − m
kn

(kµ+1tµ + k2µt)

dt


(1.13)

and m = min
|z|=k

|P (z)|.
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The following result is obtained by taking r = 1 in Theorem 1.6.

Corollary 1.1. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

then for every real or complex number α with |α| ≥ k and 1 ≤ R ≤ k,

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)
[

Rn

kn +Rn
B1 max
|z|=1

|P (z)|

+

{
kn

kn +Rn
(1−B1) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]
, (1.14)

where

B1 =


−n

R∫
1

µ

n

|an−µ|
k2µ

|an| − m
kn
kµ+1tµ−1 + tµ

tµ+1 + kµ+1 +
µ

n

|an−µ|
k2µ

|an| − m
kn

(kµ+1tµ + k2µt)

dt


(1.15)

and m = min
|z|=k

|P (z)|.

Remark 1.1. Corollary 1.1 is an improvement of Theorem 1.5. It is sufficient to show that the bound given by
inequality (1.14) is bigger than the bound given by inequality (1.11) concerning the estimate of max |DαP (z)|, i.e.,[

Rn

kn +Rn
B1 max
|z|=1

|P (z)|+
{

kn

kn +Rn
(1−B1) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]

≥

[
Rn

Rn + kn

(
kµ + 1

kµ +Rµ

)n
µ

max
|z|=1

|P (z)|+

{
kn

Rn + kn

(
1−

(
kµ + 1

kµ +Rµ

)n
µ

)
+

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|

]
.

From (2.1) of Lemma 2.2, we have
max
|z|=1

|P (z)| ≥ kn min
|z|=k

|P (z)|.

Since R ≥ 1, it follows that

Rnmax
|z|=1

|P (z)| − kn min
|z|=k

|P (z)| ≥ 0. (1.16)

Putting r = 1 in (2.9) of Lemma 2.5, we get

B1 ≥
(
kµ + 1

kµ +Rµ

)n
µ

, (1.17)

where B1 is given by (1.15).
In view of inequality (1.17), it is sufficient to show that the function f such that

f(x) = Rnmax
|z|=1

|P (z)|x+ kn(1− x) min
|z|=k

|P (z)|

is a non-decreasing function of x. Now as

f ′(x) = Rnmax
|z|=1

|P (z)| − kn min
|z|=k

|P (z)|

≥ 0 (by (1.16)),

f is a non-decreasing function of x, which proves our claim.

Further, for r = R = 1 in Theorem 1.6, we have the following result.
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Corollary 1.2. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

then for every real or complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n(|α| − k)
{

1

kn + 1
max
|z|=1

|P (z)|+ 1

2kn

(
kn − 1

kn + 1

)
min
|z|=k

|P (z)|
}
. (1.18)

Remark 1.2. It is clear from Corollary 1.1 that Theorem 1.6 is a generalization of Theorem 1.4, as taking µ = 1 along
with r = R = 1, inequality (1.12) of Theorem 1.6 reduces to (1.10) of Theorem 1.4.

Dividing both sides of (1.12) by |α| and letting |α| → ∞ and putting R = k, we have the next result.

Corollary 1.3. If P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

for 0 < r ≤ k,

max
|z|=k

|P ′(z)| ≥ nkn−1

2

{
Bmax
|z|=r

|P (z)|+ (1−B) min
|z|=k

|P (z)|
}
, (1.19)

where B is given by (1.13).

Remark 1.3. In particular, if we let r = k = 1 and µ = 1, (1.19) reduces to Turán’s inequality (1.3).
Next, we extend Theorem 1.2 due to Chanam and Dewan [2] to its polar version in which the assumption a0 6= 0

in the constant term of the polynomial P (z) is also dropped. The result also improves as well as generalizes other
well known inequalities.

Theorem 1.7. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k,

k > 0, then for every real or complex number α with
|α|
R
≥ Aµ,n and for rR ≥ k2 and r ≤ R,

max
|z|=R

|DαP (z)|+mn ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n [
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
]
, (1.20)

where m = min
|z|=k

|P (z)| and

Aµ,n =
n|an|k2µ + µ|an−µ|Rkµ−1

µ|an−µ|Rµ + n|an|Rµ+1kµ−1
. (1.21)

Dividing on both sides of (1.20) by |α| and letting |α| → ∞, we have the following result.

Corollary 1.4. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ k,

k > 0, then for rR ≥ k2 and r ≤ R,

max
|z|=R

|P ′(z)| ≥ n

R (1 +Aµ,n)

(
R+ k

r + k

)n [
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
]
, (1.22)

where Aµ,n is given by (1.21).

Remark 1.4. In view of Corollary 1.4, Theorem 1.7 is the polar derivative version of Theorem 1.2 in a richer form for
restrictions concerning the polynomial P (z), namely a0 6= 0, µ 6= n and n 6= 1 in the hypotheses of Theorem 1.2
have all been dropped in Theorem 1.7 and hence consequently in Corollary 1.4. In other words, Corollary 1.4 is a
better version of Theorem 1.2.

Further, taking k = R = r = 1 in Corollary 1.4, we have the following result.

Corollary 1.5. Let P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, be a polynomial of degree n having all its zeros in |z| ≤ 1,

then

max
|z|=R

|P ′(z)| ≥ n

2

{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}
. (1.23)
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Inequality (1.23) verifies that Corollary 1.4 is a generalization as well as an improvement of inequality (1.3) due
to Turán [5].
Remark 1.5. Corollary 1.4 is also an improvement and a generalization of Theorem 1.1 as explained by Chanam and
Dewan [2, Remark 2].

2. Lemmas
We need the following lemmas to prove our theorems.

The following lemma was proved by Gardner et al.[10].

Lemma 2.1. If P (z) =
n∑
ν=0

aνz
ν is a polynomial of degree n, P (z) 6= 0 in |z| < k, k > 0, then |P (z)| ≥ m for |z| ≤ k,

where m = min
|z|=k

|P (z)|.

Lemma 2.2. If P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,

then

max
|z|=1

|P (z)| ≥ kn min
|z|=k

|P (z)|. (2.1)

Proof. Let q(z) = znP

(
1

z

)
= a0z

n +
n∑
ν=µ

aνz
n−ν , 1 ≤ µ ≤ n. Since P (z) has all its zeros in |z| ≤ k, k ≥ 1, therefore

q(z) has no zero in |z| < 1

k
,
1

k
≤ 1. Let Q(z) = q

( z
k2

)
=

a0
k2n

zn +
n∑
ν=µ

aν
k2(n−ν)

zn−ν = an +
n∑
ν=µ

an−ν
k2ν

zν , then

Q(z) 6= 0 in |z| < k, k ≥ 1.
Therefore, by applying Lemma 2.1 to Q(z), we get for |z| = k

|Q(z)| ≥ min
|z|=k

|Q(z)|

= min
|z|=k

∣∣∣q ( z
k2

)∣∣∣
= min
|z|=k

∣∣∣∣∣( zk2)n P
(

1

z/k2

)∣∣∣∣∣
=

1

kn
min
|z|=k

∣∣∣∣P (k2z
)∣∣∣∣

=
1

kn
min
|z|=k

|P (z)|. (2.2)

Now as 1 ≤ k and hence in particular inequality (2.2) gives for |z| = 1

|Q(z)| ≥ 1

kn
min
|z|=k

|P (z)|, from which it is implied that

max
|z|=1

|Q(z)| ≥ 1

kn
min
|z|=k

|P (z)|, which is equivalent to

max
|z|=1

∣∣∣q ( z
k2

)∣∣∣ ≥ 1

kn
min
|z|=k

|P (z)|,

which implies

max
|z|=1

∣∣∣∣∣( zk2)n P
(

1

z/k2

)∣∣∣∣∣ ≥ 1

kn
min
|z|=k

|P (z)|,

which is equivalent to

1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ ≥ 1

kn
min
|z|=k

|P (z)|. (2.3)
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Since k ≥ 1, it is obvious that k2 ≥ k ≥ 1 and hence by Maximum Modulus Principle [11]

max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ max

|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ , which is equivalent to

1

(k2)n
max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ 1

(k2)n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ , which simplifies to

1

(kn)2
max
|z|=1

|P (z)| ≥ 1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ . (2.4)

Combining (2.3) and (2.4) we get

1

(kn)2
max
|z|=1

|P (z)| ≥ 1

kn
min
|z|=k

|P (z)|. (2.5)

Hence,

max
|z|=1

|P (z)| ≥ kn min
|z|=k

|P (z)|.

Lemma 2.3. If P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n such that P (z) 6= 0 in |z| < k, k > 0, then

for 0 < r ≤ R ≤ k,

max
|z|=r

|P (z)| ≥ B′ max
|z|=R

|P (z)|+ (1−B′) min
|z|=k

|P (z)|, (2.6)

where

B′ = exp

−n
R∫
r

µ

n

|aµ|
|a0| −m

kµ+1tµ−1 + tµ

tµ+1 + kµ+1 +
µ

n

|aµ|
|a0| −m

(kµ+1tµ + k2µt)

dt

 (2.7)

and m = min
|z|=k

|P (z)|. Equality holds in (2.6) for P (z) = (zµ + kµ)
n
µ , where n is a multiple of µ.

Lemma 2.4. If P (z) = a0 +
n∑
ν=µ

aνz
µ, 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, where k > 0, then

for 0 < r ≤ R ≤ k,

B′ ≥
(
kµ + rµ

kµ +Rµ

)n
µ

, (2.8)

where B′ is given by (2.7).

Lemma 2.3 and Lemma 2.4 are due to Chanam and Dewan [12].

Lemma 2.5. Let P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k > 0, then for

0 < r ≤ R ≤ k,

B ≥
(
kµ + rµ

kµ +Rµ

)n
µ

, (2.9)

where B is given by (1.13).
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Proof. Let q(z) = znP

(
1

z

)
and Q(z) = q

( z
k2

)
. Then, Q(z) =

a0
k2n

zn+
n∑
ν=µ

aν
k2(n−ν)

zn−ν = an+
n∑
ν=µ

an−ν
k2ν

zν , where

1 ≤ µ ≤ n. Since P (z) 6= 0 in |z| < k, k > 0, we have Q(z) 6= 0 in |z| < k, k > 0. Hence, applying Lemma 2.4 to Q(z),
we get

B ≥
(
kµ + rµ

kµ +Rµ

)n
µ

,

where B is given by (1.13).

The next lemma is due to Qazi [13, Proof and Remark of Lemma 1].

Lemma 2.6. If P (z) = a0 +
n∑
ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then

|q′(z)| ≥ kµ+1

µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ−1 + 1

1 +
µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ+1

|P ′(z)| on |z| = 1 (2.10)

and

µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ ≤ 1, (2.11)

where q(z) = znP

(
1

z

)
.

Lemma 2.7. If P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1,

then for every real or complex number β with |β| ≥ A,

max
|z|=1

|DβP (z)| ≥
n

1 +A
(|β| −A) max

|z|=1
|P (z)|, (2.12)

where

A =
n|an|k2µ + µ|an−µ|kµ−1

µ|an−µ|+ n|an|kµ−1
.

Inequality (2.12) is best possible for µ = 1 and equality occurs for P (z) = (z − k)n with
|β| ≥ A = k.

Proof. Let q(z) = znP

(
1

z

)
. Then it can be easily verified that

|q′(z)| = |nP (z)− zP ′(z)|, for |z| = 1. (2.13)

Since the polynomial P (z) = anz
n +

n∑
ν=µ

an−νz
n−ν , 1 ≤ µ ≤ n, has all its zeros in |z| ≤ k, k ≤ 1, q(z) =

an +
n∑
ν=µ

an−νz
ν has no zero in |z| < 1

k
,
1

k
≥ 1, therefore, by applying Lemma 2.6 to q(z), we have from (2.10)

|P ′(z)| ≥ 1

kµ+1


µ

n

|an−µ|
|an|

1

kµ−1
+ 1

1 +
µ

n

|an−µ|
|an|

1

kµ+1

 |q′(z)|
=

µ|an−µ|+ n|an|kµ−1

n|an|k2µ + µ|an−µ|kµ−1
|q′(z)|.
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Therefore,

|q′(z)| ≤ n|an|k2µ + µ|an−µ|kµ−1

µ|an−µ|+ n|an|kµ−1
|P ′(z)|

= A|P ′(z)|. (2.14)

From (2.14), we have

|P ′(z)|+ |q′(z)| ≤ (1 +A)|q′(z)|. (2.15)

Also, for |z| = 1, with the help of (2.13), we have

n|P (z)| = |nP (z)− zP ′(z) + zP ′(z)|
≤ |nP (z)− zP ′(z)|+ |P ′(z)|
= |q′(z)|+ |P ′(z)|. (2.16)

Combining (2.15) and (2.16), we get

n|P (z)| ≤ (1 +A)|P ′(z)|

i.e.,

|P ′(z)| ≥ n

1 +A
|P (z)|, for |z| = 1. (2.17)

For every real or complex number β, by definition, we have

DβP (z) = nP (z) + (β − z)P ′(z),

from which for |z| = 1, we have

|DβP (z)| ≥ ||β||P ′(z)| − |nP (z)− zP ′(z)||
= ||β||P ′(z)| − |q′(z)|| (by (2.13)). (2.18)

Further, by (2.14)

|β||P ′(z)| − |q′(z)| ≥ |β||P ′(z)| −A|P ′(z)|
= (|β| −A)|P ′(z)|, (2.19)

which is non-negative, since |β| ≥ A.
Combining (2.18) and (2.19), we get

|DβP (z)| ≥ (|β| −A) |P ′(z)|,

which on using (2.17), gives

|DβP (z)| ≥ (|β| −A) n

1 +A
|P (z)|.

The following lemma is due to Aziz and Zargar [7].

Lemma 2.8. If P (z) =
n∑
ν=0

aνz
ν is a polynomial of degree n having all its zeros in |z| ≤ k, k > 0, then for rR ≥ k2 and

r ≤ R, we have for |z| = 1,

|P (Rz)| ≥
(
R+ k

r + k

)n
|P (rz)|. (2.20)

Equality holds in (2.20) for P (z) = (z + k)n.
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3. Proof of the theorems

Proof of Theorem 1.6. Let F (z) = P (Rz). Then F (z) has all its zeros in the closed disk |z| ≤ k

R
,
k

R
≥ 1. Applying

Theorem 1.5 to F (z), we have

max
|z|=1

|Dα/RF (z)| ≥ n
(
|α| − k
R

) 1

1 +
kn

Rn

max
|z|=1

|F (z)|+ 1

2
kn

Rn

 kn

Rn
− 1

kn

Rn
+ 1

 min
|z|= k

R

|F (z)|


= n (|α| − k)Rn−1

[
1

kn +Rn
max
|z|=1

|F (z)|+ 1

2kn

(
kn −Rn

kn +Rn

)
min
|z|= k

R

|F (z)|

]
. (3.1)

Using the relations,

max
|z|=1

|Dα/RF (z)| = max
|z|=R

|DαP (z)|,

max
|z|=1

|F (z)| = max
|z|=R

|P (z)|

and min
|z|= k

R

|F (z)| = min
|z|=k

|P (z)|

in inequality (3.1), we get

max
|z|=R

|DαP (z)| ≥ nRn−1 (|α| − k)
[

1

kn +Rn
max
|z|=R

|P (z)|+ 1

2kn

(
kn −Rn

kn +Rn

)
min
|z|=k

|P (z)|
]
. (3.2)

Let q(z) = znP

(
1

z

)
and Q(z) = q

( z
k2

)
, then

Q(z) =
zn

k2n
P

(
k2

z

)
. (3.3)

Therefore, q(z) has no zero in |z| < 1

k
and Q(z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1. Thus,

applying Lemma 2.3 to Q(z), we have

max
|z|=r

|Q(z)| ≥ B max
|z|=R

|Q(z)|+ (1−B) min
|z|=k

|Q(z)|, (3.4)

where B is given by (1.13).
From (3.3) we have for r > 0

max
|z|=r

|Q(z)| = rn

k2n
max
|z|=r

∣∣∣∣P (k2z
)∣∣∣∣ . (3.5)

Since 0 < r ≤ 1 ≤ R ≤ k, we have by Maximum Modulus Principle [11],

max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ max

|z|=1

∣∣∣∣P (k2z
)∣∣∣∣ (∵ k2 ≥ 1)

i.e.
1

k2n
max
|z|=k2

∣∣∣∣P (k2z
)∣∣∣∣ ≥ 1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣

i.e.
1

k2n
max
|z|=1

|P (z)| ≥ 1

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣

≥ rn

k2n
max
|z|=1

∣∣∣∣P (k2z
)∣∣∣∣

≥ rn

k2n
max
|z|=r

∣∣∣∣P (k2z
)∣∣∣∣

= max
|z|=r

|Q(z)| (by (3.5)).
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Hence

max
|z|=r

|Q(z)| ≤ 1

k2n
max
|z|=1

|P (z)|

≤ 1

k2n
max
|z|=R

|P (z)| (∵ R ≥ 1). (3.6)

Again from (3.3) we have

max
|z|=R

|Q(z)| = max
|z|=R

∣∣∣∣∣ znk2nP
(
k2

z

)∣∣∣∣∣
=
Rn

k2n
max
|z|=R

∣∣∣∣∣P
(
k2

z

)∣∣∣∣∣
=
Rn

k2n
max
|z|=k2/R

|P (z)|

≥ Rn

k2n
max
|z|=r

|P (z)|
(
∵
k2

R
≥ r
)
. (3.7)

Also, we know that

min
|z|=k

|Q(z)| = 1

kn
min
|z|=k

|P (z)|. (3.8)

Using (3.6), (3.7) and (3.8) in inequality (3.4), we get

1

k2n
max
|z|=R

|P (z)| ≥ Rn

k2n
Bmax
|z|=r

|P (z)|+ (1−B)
1

kn
min
|z|=k

|P (z)|

i.e.,

max
|z|=R

|P (z)| ≥ RnBmax
|z|=r

|P (z)|+ kn(1−B) min
|z|=k

|P (z)|. (3.9)

Combining inequalities (3.2) and (3.9), we obtain

max
|z|=R

|DαP (z)| ≥ nRn−1(|α| − k)
[

1

kn +Rn

(
RnBmax

|z|=r
|P (z)|+ kn(1−B) min

|z|=k
|P (z)|

)
+

1

2kn

(
kn −Rn

kn +Rn

)
min
|z|=k

|P (z)|
]
,

which is equivalent to

max
|z|=R

|DαP (z)| ≥ nRn−1(|α| − k)
[

Rn

kn +Rn
Bmax
|z|=r

|P (z)|

+

{
kn

kn +Rn
(1−B) +

1

2kn

(
kn −Rn

kn +Rn

)}
min
|z|=k

|P (z)|
]
.

This completes the proof of Theorem 1.6.

Proof of Theorem 1.7. Let m = min
|z|=k

|P (z)|, then m ≤ |P (z)| for |z| = k. Since all the zeros of P (z) lie in |z| ≤ k,

k > 0, therefore, for every complex number λ with |λ| < 1, it follows from Rouche’s Theorem that for m > 0, the
polynomial G(z) = P (z) + λm has all its zeros in |z| ≤ k, k > 0.
Let

H(z) = G(Rz)

= P (Rz) + λm

= anR
nzn + an−µR

n−µzn−µ + an−µ−1R
n−µ−1zn−µ−1 + . . .+ a1Rz + a0 + λm.
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Therefore, H(z) has all its zeros in |z| ≤ k

R
,
k

R
≤ 1. Hence applying Lemma 2.7 to H(z), we get from (2.12)

max
|z|=1

∣∣Dα/RH(z)
∣∣ ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)
max
|z|=1

|H(z)|, (3.10)

where Aµ,n is given by (1.21). Therefore,

max
|z|=1

∣∣Dα/RG(Rz)
∣∣ ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)
max
|z|=1

|G(Rz)|,

which is equivalent to

max
|z|=R

|DαG(z)| ≥
n

1 +Aµ,n

(
|α|
R
−Aµ,n

)
max
|z|=R

|G(z)|. (3.11)

Applying (2.20) of Lemma 2.8 to G(z), we have

max
|z|=R

|G(z)| ≥
(
R+ k

r + k

)n
max
|z|=r

|G(z)| for r ≤ R and rR ≥ k2. (3.12)

Combining (3.11) and (3.12), we get

max
|z|=R

|DαG(z)| ≥
n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n
max
|z|=r

|G(z)|

i.e. max
|z|=R

|DαP (z) + λmn| ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n
max
|z|=r

|P (z) + λm| (3.13)

for r ≤ R and rR ≥ k2.

Let z0 on the circle |z| = r be such that max
|z|=r

|P (z)| = |P (z0)|. Then, in particular,

max
|z|=r

|P (z) + λm| ≥ |P (z0) + λm|. (3.14)

Combining (3.13) and (3.14), we get

max
|z|=R

|DαP (z) + λmn| ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n
|P (z0) + λm| for r ≤ R and rR ≥ k2.

Choosing the argument of λ on the right hand side of (3.14) such that |P (z0) + λm| = |P (z0)|+ |λ|m, we get

max
|z|=R

|DαP (z) + λmn| ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n{
max
|z|=r

|P (z)|+ |λ| min
|z|=k

|P (z)|
}

(3.15)

for r ≤ R and rR ≥ k2.

Using the simple fact that

|DαP (z) + λmn| ≤ |DαP (z)|+ |λ|mn

in (3.15) and letting |λ| → 1, we get

max
|z|=R

|DαP (z)|+mn ≥ n

1 +Aµ,n

(
|α|
R
−Aµ,n

)(
R+ k

r + k

)n{
max
|z|=r

|P (z)|+ min
|z|=k

|P (z)|
}

for r ≤ R and rR ≥ k2.

This completes the proof of Theorem 1.7.
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Abstract
In this paper, we define a new type of Abel convergence by using the rough convergence of a sequence.
We also obtained some results for this convergence.
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1. Introduction and Background

The idea of rough convergence of a sequence was first given by Phu [1] in normed linear spaces as follows:
Let (an) be a sequence in the normed linear space X , and r be a nonnegative real number. The sequence (an) is

said to be rough convergent to a with the roughness degree r, denoted by an
r→ a, if for every ε > 0 there exists an

N (ε) ∈ N such that ‖an − a‖ < r + ε for all n ≥ N (ε) [1].
The r-limit set of the sequence (an) is denoted by

LIMran =
{
a ∈ X : an

r→ a
}

[1].

The sequence (an) is said to be rough convergent if LIMran 6= ∅.
If a sequence is convergent, then it is rough convergent to the same value for each r. The converse of this claim

is false, as shown in Example 1.1.

Example 1.1. Let X = R2 and define a sequence (an) as follows:

an :=

(
(−1)

n

2
, 0

)
This sequence is rough convergent to a = {(0, 0)} for r ≥ 1

2 . But it is not convergent to a = {(0, 0)}.
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A sequence (an) is said to be rough Cauchy sequence (or ρ-Cauchy sequence) with roughness degree ρ if for
every ε > 0 there exists an N (ε) ∈ N such that

‖am − an‖ < ρ+ ε for m,n ≥ N (ε) [1].

ρ is also called a Cauchy degree of (an).

Proposition 1.1. ([2]) Let (an) be rough convergent, i.e., LIMran 6= ∅. Then (an) is a ρ-Cauchy sequence for every ρ ≥ 2r.
This bound for the Cauchy degree cannot be generally decreased.

We note that a convergent (or non-convergent) sequence can have different rough limits with a certain degree of
roughness. This theory has been generalized by many authors with different theories. Aytar [3] gave the definition
of rough statistical convergence of a sequence. The rough ideal convergence of a sequence is given in [4] and [5].
Malik and Maity [6] introduced the rough statistical convergence for double sequences. Laterly, Kişi and Dündar
[7] defined the rough I2-lacunary statistical convergence of double sequences. The concept of rough convergence is
expressed in general metric spaces by Debnath and Rakshit [8]. Moreover, Arslan and Dündar [9] extended this
concept to 2-normed spaces. On the other hand, Dündar and Ulusu [10] studied on the rough convergence of a
sequence of functions defined on amenable semigroups. Kişi and Dündar [11] investigated the rough ∆I-statistical
convergence for difference sequences. Recently, the rough convergence of a sequence of sets has also been studied
(see [12], [13]).

Our aim is to show that the rough convergence theory can be applied on many types of convergence in the
summability theory, such as the Abel convergence. In this way, we think that new research topics can be obtained.

Throughout this paper, we suppose that (an) be a sequence of complex numbers. Now let’s remind the definition
of Abel convergence.

We say that a sequence (an) is Abel convergent to ` if the limit

lim
t→1−

(1− t)
∞∑
n=0

ant
n = ` for each t ∈ (0, 1) [14].

Note that any convergent sequence is Abel convergent to the same value but not conversely ([14]).
Finally, let’s give the series formulas that we will use throughout this paper:

(1− t)
∞∑
n=0

tn = 1 and (1− t)
∞∑
n=0

`tn = ` for each t ∈ (0, 1) .

Hence, we have

(1− t)
∞∑
n=0

ant
n − ` = (1− t)

∞∑
n=0

(an − `) tn.

In this paper, we first give the definition of the rough Abel convergence. We have proved that they are equivalent
by giving an alternative representation of this convergence (see Proposition 2.1). We also show that every rough
convergent sequence is rough Abel convergent (see Theorem 2.1). Lastly, we expressed the relationship between
rough Abel convergence and Abel convergence (see Theorem 2.2).

2. Main Results
Definition 2.1. A sequence (an) is said to be rough Abel convergent to ` if for every ε > 0 and each t ∈ (0, 1) there is
an N(ε) ∈ N such that ∥∥∥∥(1− t)

∞∑
n=0

ant
n − `

∥∥∥∥ < r + ε for all n ≥ N(ε).

In this case, we write an
r−A→ ` as n→∞.

The r-Abel limit set of the sequence (an) is denoted by

A− LIMran =
{
` ∈ X : an

r−A→ `
}

.

Let us now give an alternative representation of the rough Abel convergence of a sequence.
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Proposition 2.1. For every ε > 0 and each t ∈ (0, 1) there exists an N(ε) ∈ N such that∥∥∥∥(1− t)
∞∑
n=0

ant
n − `

∥∥∥∥ < r + ε for all n ≥ N(ε)

if and only if the following condition holds:

lim sup
n→∞

∥∥∥∥(1− t)
∞∑
n=0

ant
n − `

∥∥∥∥ ≤ r.

Its proof can be given in a similar way by taking

fn (t) =

∥∥∥∥(1− t)
∞∑
n=0

ant
n − `

∥∥∥∥
instead of the f function in the proof of [12, Proposition 2.2].

Theorem 2.1. If an
r→ `, then an

r−A→ `.

Proof. Given 0 < ε < 1. Since an
r→ `, for every ε > 0 and each t ∈ (0, 1) there exists an N = N(ε) ∈ N such that

‖an − `‖ < r +
ε

2

for all n ≥ N . Let M = max {‖a0 − `‖ , ‖a1 − `‖ , . . . ‖aN − `‖}. Take δ = δ (ε) = ε
2(N+1)(M+1) . If t ∈ (1− δ, 1) then∥∥∥∥(1− t)

∞∑
n=0

ant
n − `

∥∥∥∥ =

∥∥∥∥(1− t)
∞∑
n=0

(an − `) tn
∥∥∥∥

≤
∥∥∥∥(1− t)

N∑
n=0

(an − `) tn
∥∥∥∥+

∥∥∥∥(1− t)
∞∑

n=N+1

(an − `) tn
∥∥∥∥

< (1− t) (N + 1)M + r +
ε

2

<
ε

2 (N + 1) (M + 1)
(N + 1)M + r +

ε

2

<
ε

2
+ r +

ε

2
= r + ε.

Consequently, we have an
r−A→ `.

The next theorem shows the relationship between rough Abel convergence and Abel convergence.

Theorem 2.2. The sequence (an) is rough Abel convergent to ` if and only if there exists a sequence (bn) in C such that
bn

A→ ` and ‖an − bn‖ ≤ r for every n ∈ N.

Proof. (⇐) Since bn
A→ `, for every ε > 0 and each t ∈ (0, 1) there exists an N(ε) ∈ N such that∥∥∥∥(1− t)

∞∑
n=0

bnt
n − `

∥∥∥∥ < ε for all n ≥ N(ε). (2.1)

By assumption ‖an − bn‖ ≤ r, we can write for each t ∈ (0, 1)∥∥∥∥(1− t)
∞∑
n=0

(an − bn) tn
∥∥∥∥ = |1− t|

∥∥∥∥ ∞∑
n=0

(an − bn) tn
∥∥∥∥

≤ |1− t|
∞∑
n=0
‖an − bn‖ |tn|

≤ (1− t)r
∞∑
n=0

tn = r.
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Thus we have ∥∥∥∥(1− t)
∞∑
n=0

(an − bn) tn
∥∥∥∥ ≤ r. (2.2)

On the other hand, ∥∥∥∥(1− t)
∞∑
n=0

ant
n − `

∥∥∥∥ =

∥∥∥∥(1− t)
∞∑
n=0

(an − bn + bn) tn − `
∥∥∥∥

=

∥∥∥∥(1− t)
∞∑
n=0

(an − bn) tn + (1− t)
∞∑
n=0

bnt
n − `

∥∥∥∥
≤
∥∥∥∥(1− t)

∞∑
n=0

(an − bn) tn
∥∥∥∥+

∥∥∥∥(1− t)
∞∑
n=0

bnt
n − `

∥∥∥∥ .

From (2.1) and (2.2), we see immediately that∥∥∥∥(1− t)
∞∑
n=0

ant
n − `

∥∥∥∥ < r + ε.

This shows that the sequence (an) rough Abel converges to `.
(⇒) Let an

r−A→ ` and define the sequence (bn) by

bn :=

{
` , ‖an − `‖ ≤ r
an + r `−an

‖`−an‖ , ‖an − `‖ > r
.

It follows that the inequality ‖an − bn‖ ≤ r holds for every n ∈ N. We also obtain

‖bn − `‖ ≤
{

0 , ‖an − `‖ ≤ r
‖an − `‖ − r , ‖an − `‖ > r

.

Let us show that bn
A→ `. ∥∥∥∥(1− t)

∞∑
n=0

bnt
n − `

∥∥∥∥ =

∥∥∥∥(1− t)
∞∑
n=0

(bn − `) tn
∥∥∥∥

≤ (1− t)
∞∑
n=0
‖bn − `‖ tn

≤ (1− t)
∞∑
n=0

(‖an − `‖ − r) tn

= (1− t)
∞∑
n=0
‖an − `‖ tn − (1− t)r

∞∑
n=0

tn

and thus we have ∥∥∥∥(1− t)
∞∑
n=0

bnt
n − `

∥∥∥∥ ≤ (1− t)
∞∑
n=0
‖an − `‖ tn − r. (2.3)

Since an
r−A→ `, we can write

lim sup
n→∞

∥∥∥∥(1− t)
∞∑
n=0

ant
n − `

∥∥∥∥ = lim sup
n→∞

∥∥∥∥(1− t)
∞∑
n=0

(an − `) tn
∥∥∥∥ ≤ r.

Taking the limit superior both sides in (2.3), we obtain

lim sup
n→∞

∥∥∥∥(1− t)
∞∑
n=0

bnt
n − `

∥∥∥∥ ≤ lim sup
n→∞

[
(1− t)

∞∑
n=0
‖an − `‖ tn

]
− r.

This implies that bn
A→ `.

Proposition 2.2. (i) If an
r−A→ `1 and bn

r−A→ `2, then an + bn
2r−A→ `1 + `2.

(ii) If an
r−A→ `, then λan

|λ|r−A→ λ` for each λ ∈ R.
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Proof. (i) Suppose that an
r−A→ `1 and bn

r−A→ `2. Let ε > 0 and t ∈ (0, 1). Then there exist N1 (ε) , N2 (ε) ∈ N such
that ∥∥∥∥(1− t)

∞∑
n=0

ant
n − `1

∥∥∥∥ < r +
ε

2
for all n ≥ N1 (ε)

and ∥∥∥∥(1− t)
∞∑
n=0

bnt
n − `2

∥∥∥∥ < r +
ε

2
for all n ≥ N2 (ε) .

Let N (ε) = max {N1 (ε) , N2 (ε)}. Hence, we have∥∥∥∥(1− t)
∞∑
n=0

(an + bn) tn − (`1 + `2)

∥∥∥∥ ≤ ∥∥∥∥(1− t)
∞∑
n=0

ant
n + (1− t)

∞∑
n=0

bnt
n − `1 − `2

∥∥∥∥
≤
∥∥∥∥(1− t)

∞∑
n=0

ant
n − `1

∥∥∥∥+

∥∥∥∥(1− t)
∞∑
n=0

bnt
n − `2

∥∥∥∥
< r + ε/2 + r + ε/2 = 2r + ε

for all n ≥ N (ε), which completes the proof.
(ii) For λ = 0 the statement is trivial. Let λ 6= 0. Since an

r−A→ `, for every ε > 0 and each t ∈ (0, 1) there exists an
N(ε) ∈ N such that ∥∥∥∥(1− t)

∞∑
n=0

ant
n − `

∥∥∥∥ < r +
ε

|λ|
for all n ≥ N (ε) .

Then we have ∥∥∥∥(1− t)
∞∑
n=0

λant
n − λ`

∥∥∥∥ = |λ|
∥∥∥∥(1− t)

∞∑
n=0

ant
n − `

∥∥∥∥
≤ |λ|

(
r +

ε

|λ|

)
= |λ| r + ε

for all n ≥ N (ε). Thus, we obtain λan
|λ|r−A→ λ` for each λ ∈ R.

3. Conclusion
The converse of Theorem 2.1 is not true. That is, if a sequence is rough Abel convergent, it may not rough

convergent to the same point. The Proposition 2.2 shows that the sum of rough Abel convergent sequences with the
same degree of roughness converges with a different degree of roughness. In other words, the roughness degree 2r
cannot be decreased. It also states that the scalar product of a rough Abel convergent sequence converges with a
different degree of roughness. After that, we can examine some properties of the set of rough Abel limit points of a
sequence.
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Abstract
The purpose of the present manuscript is to present a new sequence of Bernstein-Durrmeyer operators.
First, we investigate approximation behaviour for these sequences of operators in Lebesgue Measurable
space. Further, we discuss rate of convergence and order of approximation with the aid of Korovkin
theorem, modulus of continuity and Peetre K-functional in lp space. Moreover, Voronovskaja type theorem
is introduced to approximate a class of functions which has first and second order continuous derivatives.
In the last section, numerical and graphical analysis are investigated to show better approximation
behaviour for these sequences of operators.
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1. Introduction
Operators theory is a fascinating field of research for the last two decades due to the advent of computer. It

contributes important role in applied and pure mathematics, viz, fixed point theory, numerical analysis etc. In
computational aspects of mathematics and shape of geometric objects, CAGD (Computer-aided Geometric design)
plays an interesting role with the mathematical description. It focuses on mathematics which is compatible with
computers in shape designing. To investigate the behavior of parametric surfaces and curves, control nets and
control points has a significant role respectively. CAGD is widely used as an application in applied mathematics and
industries. It has several applications in other branches of sciences, e.g., approximation theory, computer graphics,
data structures, numerical analysis, computer algebra etc. In 1912, Bernstein [1] was the first who introduced
a sequence of polynomials to present a smallest and easiest proof of celebrated theorem named as Weierstrass
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approximation theorem with the aid of binomial distribution as follows:

Bl(g;x) =

l∑
ν=0

g
(ν
l

)( l
ν

)
µν(1− µ)l−ν , µ ∈ [0, 1], (1.1)

where g is a bounded function defined on [0, 1]. The basis
(
l
ν

)
µν(1 − µ)l−ν of Bernstein polynomials (1.1) has

significant role in preserving the shape of the surfaces or curves (see [2]-[4]). Graphic design programs, viz,
photoshop inkspaces and Adobe’s illustrator deals with Bernstein polynomials in the form of Bèzier curves. To
preserve the shape of the parametric surface or curve, it depends on basis

(
l
ν

)
µν(1− µ)l−ν which is used to design

the curves.
In 1962, Schurer [5] presented the following modification of Bernstein operators (1.1) is denoted as Bm,l :

C[0, 1 + l] → C[0, 1] and given by:

Bm,l(g;µ) =

m+l∑
i=0

g

(
j

m

)(
m+ l
j

)
µk(1− µ)m+l−j , µ ∈ [0, 1],

for l ∈ N∪{0} and g ∈ C[0, 1+ l]. In the recent past, Several modifications have studied in various functional spaces
to achieve better approximation results (see Acar et al. [6], Acu et al. [7], Braha et al. ([8], [9]), Cai et al. [10], Cetin et
al. [11], Kajla et al. [12], Mohiuddine et al. [13]). Izgi [14] introduced a new sequence of Bernstein polynomials as:

An(h;u) =

n∑
k=0

qn,k,a,b(u)h

(
k

n

n+ a

n+ b

)
,

where qn,k,a,b(u) =
(

n+b
n+a

)n (
n
k

)
uk
(

n+a
n+b − u

)n−k

, 0 ≤ a ≤ b, u ∈
[
0, n+a

n+b

]
and h ∈ C [0, 1] . Further, he constructed

two dimentional sequences of operators to approximate a class of bivariate continuous functions on square
and triangular domain. Moreover, he investigated rate of convergence and order of approximation in different
functional spaces with the aid of modulus of continuity, In the last, he presented another variant of these sequences
to approximate a wider class, i.e., Lebesgue measurable class as:

Tn (h;u) =
(n+ b)(n+ 1)

n+ a

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)h(t)dt, (1.2)

where q∼n,k(u) =: qn,k,a,b(u) and In =
[
0, n+a

n+b

]
.

and

T ∗
n (h;u) =

{
Tn (h;u) u ∈ In
h(u) u ∈ [0, 1] / In

(1.3)

Remark 1.1. Bernstein-Durrmeyer type operators defined by (1.2) are linear and positive.

2. Preliminaries
In this section, let’s calculate the values of our operator 1, t, t2, t3 and t4 to examine the convergence states and

show that our operator satisfies the Korovkin conditions. After that, with the help of these values, let’s calculate
their central moments.

Lemma 2.1. Let fp(t) = tp, p ∈ N
⋃
{0} be the test functions. Then, we have

Tn (t
p;u) =

(n+ 1)!

(n+ p+ 1)!

p∑
s=0

(
p

s

)
p!n!

s! (n− s)!

(
n+ a

n+ b

)p−s

us.
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Proof. We know

n+a
n+b∫
0

q∼n,k(t)t
pdt =

(
n+ b

n+ a

)n(
n

k

) n+a
n+b∫
0

tk
(
n+ a

n+ b
− t

)n−k

tpdt

=

(
n+ b

n+ a

)n(
n

k

) 1∫
0

(
n+ a

n+ b

)n+p+1

xk+p(1− x)n−kdx

=

(
n+ a

n+ b

)p+1
n!

k!(n− k)!

(k + p)!

(n+ p+ 1)!
.

In view of (1.2), we have

Tn (t
p;u) =

n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)t
pdt

=
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

(
n+ a

n+ b

)p+1
n!

k!(n− k)!

(k + p)!

(n+ p+ 1)!

=

(
n+ a

n+ b

)p+1
(n+ 1)!

(n+ p+ 1)!

n∑
k=0

q∼n,k(u)
k!

(k + p)!
.

Now, the pth order derivative of the xp(x+ y)n expression is as:

∂p

∂up
[up(u+ v)n] =

∂p

∂up

n∑
k=0

(
n

k

)
uk+pvn−k

=

n∑
k=0

(
n

k

)
(k + p)!

k!
ukvn−k, (2.1)

or

∂p

∂up
[up(u+ v)n] =

p∑
s=0

(
p

s

)
p!n!

s!(n− s)!
us(u+ v)n−s. (2.2)

Combining equation (2.1) and equation (2.2), we obtain

n∑
k=0

(
n

k

)
(k + p)!

k!
ukvn−k =

p∑
s=0

(
p

s

)
p!n!

s!(n− s)!
us(u+ v)n−s.

Choosing u+ v = n+a
n+b and multiply both the sides in the above equation with

(
n+b
n+a

)n
, we have

(
n+ b

n+ a

)n n∑
k=0

(
n

k

)
(k + p)!

k!
uk

(
n+ a

n+ b
− u

)n−k

=

(
n+ b

n+ a

)n p∑
s=0

(
p

s

)
p!n!

s!(n− s)!
us

(
n+ a

n+ b

)n−s

. (2.3)

In the light of equation (2.1) and (2.3), we arrive at the required result.
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Lemma 2.2. Let fp(t) = tp, p ∈ {0, 1, 2, 3, 4} be the test function. Then

Tn (1;u) = 1,

Tn (t;u) = u− 2

n+ 2
u+

n+ a

(n+ 2) (n+ b)
,

Tn

(
t2;u

)
= u2 − 6 (n+ 1)

(n+ 2) (n+ 3)
u2 +

4n (n+ a)

(n+ 2) (n+ 3) (n+ b)
u+

2

(n+ 2) (n+ 3)

(
n+ a

n+ b

)2

,

Tn

(
t3;u

)
= u3 − 12

(
n2 + 2n+ 2

)
(n+ 2) (n+ 3) (n+ 4)

u3 +
9n (n− 1) (n+ a)

(n+ 2) (n+ 3) (n+ 4) (n+ b)
u2

+
18n

(n+ 2) (n+ 3) (n+ 4)

(
n+ a

n+ b

)2

u+
6

(n+ 2) (n+ 3) (n+ 4)

(
n+ a

n+ b

)3

,

Tn

(
t4;u

)
= u4 − 20

(
n3 + 3n2 + 8n+ 6

)
(n+ 2) (n+ 3) (n+ 4) (n+ 5)

u4 +
16n (n− 1) (n− 2) (n+ a)

(n+ 2) (n+ 3) (n+ 4) (n+ 5) (n+ b)
u3

+
72n (n− 1)

(n+ 2) (n+ 3) (n+ 4) (n+ 5)

(
n+ a

n+ b

)2

u2 +
96

(n+ 2) (n+ 3) (n+ 4) (n+ 5)

(
n+ a

n+ b

)3

u

+
24

(n+ 2) (n+ 3) (n+ 4) (n+ 5)

(
n+ a

n+ b

)4

.

Proof. In the direction of Lemma 2.1, one can easily arrive at the proof of Lemma 2.2.

Consider δn,p (u) = Tn ((t− u)
p
;u) , p ∈ {0, 1, 2...}. Then, we obtain the central moments in the following

Lemma 2.3:

Lemma 2.3. For the operators given by δn,p (u), we have

δn,0 (u) = 1,

δn,1 (u) = − 2

n+ 2
u+

2

n+ 2

n+ a

n+ b
,

δn,2 (u) =
2(n− 3)

(n+ 2)(n+ 3)
u

(
n+ a

n+ b
− u

)
+

2

(n+ 2)(n+ 3)

(
n+ a

n+ b

)2

,

δn,3 (u) =
24(n− 1)

(n+ 2)(n+ 3)(n+ 4)
u3 − 36(n− 1)

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)
u2

+
12(n− 2)

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)2

u+
6

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)3

,

δn,4 (u) =
12(n2 − 21n+ 10)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)
u4 − 2(5n3 − 3n2 − 242n+ 120)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)
u3

+
12(n2 − 27n+ 20)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)2

u2 − 24(n+ 1)

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)3

u

+
24

(n+ 2)(n+ 3)(n+ 4)(n+ 5)

(
n+ a

n+ b

)4

.

Proof. In view of Lemma 2.2, we can easily proof Lemma 2.3.

Now, we consider

δ = max
0≤u≤n+a

n+b

δn,2 (u) =
(n+ 1)

2 (n+ 2) (n+ 3)

(
n+ a

n+ b

)2

≤ 1

2 (n+ 2)
<

1

n
(2.4)

and

µ = max
0≤u≤n+a

n+b

δn,4 (u) ≤
24

(n+ 2) (n+ 3)
and µ <

1

n
for n > 20.
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Let CMu
[0, 1] =

{
h ∈ C [0, 1] : |h(u)| ≤ M

(
1 + u2

)
for all u ∈ R, M > 0

}
and for 1 ≤ p < ∞,

Lp [0, 1] =

h is measurable :

1∫
0

|h(u)|p du < ∞

 .

Lemma 2.4. For h ∈ CMu
[0, 1] endowed with the norm ∥h(u)∥∞ = supu∈[0,1] |h(u)|, we have

∥Tn (h)∥∞ ≤ ∥h∥∞ ,

i.e., the operator given by (1.2) is bounded.

Proof. In terms of the definition (1.2) and Lemma 2.2, we get

∥Tn (h)∥∞ ≤ n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |h(t)| dt

≤ ∥h∥∞ Tn (1;u)

= ∥h∥∞ .

Since the operators introduced by (1.2) is linear and bounded. Therefore, it is continuous.
Let

Wn(u, t) =
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)q
∼
n,k(t),

then we can write (1.2) as:

Tn(h;u) =

∫
In

Wn(u, t)h(t)dt.

It is easy to see that ∫
In

Wn(u, t)dt = 1 < ∞,

∫
In

Wn(u, t)du = 1 < ∞,

for all n = 0, 1, 2... (see [15], page 31-32), for h ∈ Lp (In), Tn(h;u) exist for almost all u and belongs to Lp (In). Due
to Orlicz theorem, there exist a K > 0 such that∫

In

|Tn(h;u)|p du ≤ K ∥h∥∞ . (2.5)

3. Direct approximation results

Theorem 3.1. Let h ∈ CMu
[0, 1]. Then, one has

lim
n→∞

Tn(h;u) = h(u),

uniformly on [0, 1].

Proof. In view of Lemma 2.2, it is easy to check

lim
n→∞

Tn(fp(t);u) = fp(u),

for p = 0, 1, 2 uniformly on [0, 1]. Applying Bohman-Korovkin Theorem, the result follows.



A new sequence of Bernstein-Durrmeyer operators 203

The first modulus of continuity is given by

ω1 (h, δ) = sup
|t−u|<δ
t,u∈[0,1]

|h(t)− h(u)| .

Theorem 3.2. Let h ∈ CMu [0, 1] . Then, we have

|Tn(h;u)− h(u)| ≤ 2ω1

(
h,

1√
n

)
.

Proof. In view of Lemma 2.3, (2.4) and Cauchy-Schwartz inequality, we get

|Tn(h;u)− h(u)| ≤ Tn(|h(t)− h(u)| ;u)

≤ Tn(

(
1 +

|t− u|
δ

)
ω1 (h, δ) ;u)

= ω1 (h, δ)

[
1 +

1

δ
Tn(|t− u| ;u)

]
≤ ω1 (h, δ)

[
1 +

1

δ

√
Tn((t− u)

2
;u)

]
≤ ω1 (h, δ)

[
1 +

1

δ

√
1

n

]
.

Choosing δ = 1√
n

, we arrive at the desired result.

For each 0 ≤ α ≤ 1 and M > 0, let Lipmα denote the set of all functions h on [0, 1] such that

|h(u)− h(v)| ≤ M |u− v|α . (3.1)

Theorem 3.3. If h satisfy condition (3.1), then we have

|Tn(h;u)− h(u)| ≤ M

(
1

n

)α
2

.

Proof. Use Cauchy-Schwartz inequality, (2.4) and (3.1), we have

|Tn(h;u)− h(u)| =

∣∣∣∣∣∣∣
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)h(t)dt− h(u)

∣∣∣∣∣∣∣
≤ n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |h(t)− h(u)| dt

≤ n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)M |u− v|α dt

≤ M

n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) (u− v)
2
dt


α
2

≤ M

(
1

n

)α
2

the proof is completed.
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Theorem 3.4. If h ∈ L1 [0, 1] , u ∈ (0, 1) and h endowed with a continuous derivative on the interval [0, 1], then

|Tn(h;u)− h(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣+ 2
√
δn,2(u)ω1

(
h

′
,
√

δn,2(u)

)
.

Proof. Since h is differentiable on [0, 1] therefore by mean value theorem of differential calculus we have

h(t)− h(u) = (t− u)h
′
(θ) = (t− u)h

′
(u) + (t− u)

(
h

′
(θ)− h

′
(u)
)
, (3.2)

where θ := θ(u, t) belongs to the interval obtained by u and t. Then, on combining (1.3) to (3.2), we have

Tn(h;u)− h(u) =
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)(t− u)h
′
(u)dt

+
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)(t− u)
(
h

′
(θ)− h

′
(u)
)
dt

= h
′
(u)Tn((t− u);u)

+
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t)(t− u)
(
h

′
(θ)− h

′
(u)
)
dt,

|Tn(h;u)− h(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣
+
n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |t− u|
∣∣∣h′

(θ)− h
′
(u)
∣∣∣ dt.

Now, we use properties of modulus of continuity∣∣∣h′
(θ)− h

′
(u)
∣∣∣ ≤ ω1

(
h

′
, |θ − u|

)
≤
(
1 +

|θ − u|
β

)
ω
(
h

′
, β
)

≤
(
1 +

|t− u|
β

)
ω
(
h

′
, β
)
.

Since u ≤ θ ≤ t. Therefore, we have

|Tn(h;u)− h(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣
+ω

(
h

′
, β
) n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |t− u|
(
1 +

|t− u|
β

)
dt.

Let’s examine the last term of last inequality;

ω
(
h

′
, β
) n+ b

n+ a
(n+ 1)

n∑
k=0

q∼n,k(u)

n+a
n+b∫
0

q∼n,k(t) |t− u|
(
1 +

|t− u|
β

)
dt

= ω
(
h

′
, β
)(

Tn(|t− u| ;u) + 1

β
Tn((t− u)

2
;u)

)
= ω

(
h

′
, β
)(√

Tn((t− u)
2
;u) +

1

β
Tn((t− u)

2
;u)

)
= ω

(
h

′
, β
)(√

δn,2(u)

[
1 +

1

β
δn,2(u)

])
.
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Then, on choosing β =
√
δn,2(u), we prove the desired result.

4. Voronovskaya-type theorem

In this section, we prove Voronvoskaya-type asymptotic theorem for the operators Tn(h;u) to approximate a
class of functions which has first and second order continuous derivatives.

Theorem 4.1. Let h ∈ CMu [0, 1] . If h
′
, h

′′
exists at a fixed point u ∈ [0, 1] then we have

lim
n→∞

n {Tn(h;u)− h(u)} = (−2u+ 1)h
′
(u) + u(1− u)h

′′
(u).

Proof. Let u ∈ [0, 1] be fixed. By Taylor’s expansion of h, we can write

h(t) = h(u) + (t− u)h
′
(u) +

1

2
(t− u)2h

′′
(u) + φ(t, u)(t− u)2. (4.1)

Where the function φ(t, u) is the Peano form of remainder, φ(t, u) ∈ CMu
[0, 1] and

lim
n→∞

φ(t, u) = 0.

Applying Tn(h;u) both the sides of (4.1) and Lemma 2.3, we have

n {Tn(h;u)− h(u)} = n

{(
− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

)
h

′
(u)

+
1

2

(
2(n− 3)

(n+ 2)(n+ 3)
u

(
n+ a

n+ b
− u

)
+

2

(n+ 2)(n+ 3)

(
n+ a

n+ b

)2
)
h

′′
(u)

}
+nTn(φ(t, u)(t− u)2;u).

Using Cauchy-Schwarz inequality, we have

nTn(φ(t, u)(t− u)2;u) ≤
(
Tn(φ

2(t, u);u)
) 1

2
(
Tn((t− u)4;u)

) 1
2 . (4.2)

One can observe that φ2(u, u) = 0 and φ2(., u) ∈ CMu
[0, 1] . Then, it follows that

lim
n→∞

Tn(φ
2(t, u);u) = φ2(u, u) = 0. (4.3)

Now, from (4.2) and (4.3), we obtain

lim
n→∞

nTn(φ(t, u)(t− u)2;u) = 0. (4.4)

From (4.4), we get the required result.

5. Local approximation

The K-functional is given by :

K2 (h, δ) = inf
g∈W 2

{
∥h− g∥∞ + δ

∥∥∥g′′
∥∥∥} ,

where δ > 0, W 2 =
{
g : g

′
, g

′′ ∈ C [0, 1]
}

and by [13] there exists a positive constant M > 0 such that

K2 (h, δ) ≤ M ω2 (h, δ) .

Where the second order modulus of continuity for h ∈ CMu
[0, 1] is defined as:

ω2 (h, δ) = sup
|t−u|<δ
t,u∈[0,1]

|h(t+ 2x)− 2h(u+ x) + h(u)| .



206 H. Çiçek, A. İzgi & N. Rao

Theorem 5.1. For the operators introduced by Tn(.; .) and h ∈ CMu
[0, 1], we have

∥Tn (h;u)− h(u)∥∞ ≤ 2K2

(
h,

δ1n
2

)
+ δ2n

∥∥∥g′
∥∥∥
∞

,

here δ1n = maxu∈[0,1]

{
8u3+u+1

(n+3)(n+4)

}
= 10

(n+3)(n+4) and δ2n = max
{
infu∈[0,1]

{
|1−2u|
n+2

}}
= 1

(n+2) .

Proof. Let g ∈ W 2 and t ∈ [0, 1] . By Taylor’s expansion, we have

g(t) = g(u) + (t− u)g
′
(u) +

t∫
u

(t− v)g
′′
(v)dv.

Applying (1.2) on both the sides of above relation and using Lemma 2.3, we have

Tn (g;u) = g(u) +

(
− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

)
g

′
(u) + Tn

 t∫
u

(t− v)g
′′
(v)dv;u

 .

Further

|Tn (g;u)− g(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣ ∣∣∣g′
(u)
∣∣∣+ Tn

 t∫
u

|t− v|
∣∣∣g′′

(v)
∣∣∣ dv;u


≤

∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣ ∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

Tn

 t∫
u

(t− v)
2
dv;u


1
2

. (5.1)

In the light of Lemma 2.2

Tn

 t∫
u

(t− v)
2
dv;u

 = Tn

(
1

3
(t− u)

3
;u

)

= 8
n− 1

(n+ 2)(n+ 3)(n+ 4)
u3 − 12

n− 1

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)
u2

+4
n− 2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)2

u

+
2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)3

. (5.2)

Combining equation (5.2) and (5.1), we obtain

|Tn (g;u)− g(u)| ≤
∣∣∣∣− 2

n+ 2
u+

1

n+ 2

n+ a

n+ b

∣∣∣∣ ∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

{
8

n− 1

(n+ 2)(n+ 3)(n+ 4)
u3 − 12

n− 1

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)
u2

∣∣∣∣∣∣∣∣∣+4
n− 2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)2

u+
2

(n+ 2)(n+ 3)(n+ 4)

(
n+ a

n+ b

)3
} 1

2

≤ |1− 2u|
n+ 2

∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

[
8u3 + u+ 1

(n+ 3)(n+ 4)

] 1
2

.
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With the aid of Lemma 2.4

|Tn (h;u)− h(u)| = |Tn (h;u)− Tn (g;u) + Tn (g;u)− g(u) + g(u)− h(u)|
≤ |Tn (h− g;u)|+ |Tn (g;u)− g(u)|+ |g(u)− h(u)|

≤ 2 ∥h− g∥∞ +
|1− 2u|
n+ 2

∥∥∥g′
∥∥∥
∞

+
∥∥∥g′′

∥∥∥
∞

[
8u3 + u+ 1

(n+ 3)(n+ 4)

] 1
2

,

for u ∈ [0, 1] . If the right side of the last inequality is taken as the maximum. The proof is completed.

Here. We introduce the direct estimate of the operators (1.2) with the aid of Lipschitz-type maximal function of
order β ∈ (0, 1] defined by Lenze [16] as follows:

ω∗
β (h, u) = sup

t ̸=u
u,t∈[0,1]

|h(t)− h(u)|
|t− u|β

. (5.3)

Using (5.3), the following inequality is achieved.

|h(t)− h(u)| ≤ ω∗
β (h, u) |t− u|β ω∗

β (h, u) δ
β
2 . (5.4)

Theorem 5.2. Let h ∈ CMu
[0, 1] and β ∈ (0, 1]. Then, we have

|Tn (h;u)− h(u)| ≤ ω∗
β (h, u) δ

β
2 .

Proof. If we use (5.4), (2.4)
(
δ = max0≤u≤n+a

n+b
δ (t− u)

2
)

and use Cauchy-Schwartz-Bunyakowsky inequlity, then
by using the operators (1.2) we have

|Tn (h;u)− h(u)| ≤ Tn (|h(t)− h(u)| ;u)

≤ ω∗
β (h, u)Tn

(
|t− u|β ;u

)
≤ ω∗

β (h, u)Tn

(
(t− u)

2
;u
) β

2

≤ ω∗
β (h, u) δ

β
2 .

6. Lp approximation

Theorem 6.1. Let h ∈ Lp [0, 1] for 0 ≤ p < ∞ . Then

lim
n→∞

∥Tn (h)− h∥Lp(In)
= 0,

is available.

Proof. First, we need to show that there exist a K > 0 such that ∥Tn∥Lp(In)
≤ K for any n ∈ N. For this purpose, if

we use (2.5) we have ∥Tn∥Lp(In)
≤ K. We consider the operator (1.3).

Let’s remember the Luzin theorem for a given ε > 0, there exists f ∈ C[0, 1] such that

∥h− f∥Lp[0,1]
<

ε

2(K + 1)
.

By using Theorem 3.1 for the same ε there exist n0 such that for all n > n0

∥Tn (f ;u)− f(u)∥Lp(In)
≤ ε

2
.

Based on this information, the following result is obtained

∥Tn (h)− h∥Lp(In)
≤ ∥Tn (h)− Tn (f)∥

Lp(In)
+ ∥Tn (f)− f∥C(In)

+ ∥h− f∥Lp(In)

= (K + 1) ∥h− f∥Lp(In)
+ ∥Tn (f)− f∥C(In)

< ε.

Then, the prof is completed.



208 H. Çiçek, A. İzgi & N. Rao

7. Some plots

In this section, we discuss the approximation behaviour of the sequence of operator defined by (1.2) for different
functions with the help of graphs. In addition, margins of error is shown with tables of numerical values.

Example 7.1. Let a = 0.4, b = 0.5 and h(u) = sin(4πu) + 4 sin( 14πu). Fig. 1 shows the Tn (h;u) operator’s
approximation to the h(u) (black) function for the values n = 50 (red), n = 100 (blue) and n = 300 (green).

Figure 1. Tn (h;u) Operator’s approximation to the function h(u) = sin(4πu) + 4 sin( 14πu) for different n values.

Example 7.2. Let be a = 0.9, b = 0.8 and h(u) = u
−1
8 sin(10u). Fig. 2 shows the Tn (h;u) operator’s approximation

to the h(u) (black) function for the values n = 50 (red), n = 100 (blue) and n = 300 (green).
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Figure 2. Tn (h;u) Operator’s approximation to the function h(u) = u
−1
8 sin(10u) for different n values.

Now let’s compare the classical Bernstein -Durrmeyer operator defined below with our operator defined in (1.2)
with a graph;

Sn(h;u) = (n+ 1)

n∑
k=0

φn,k(u)

1∫
0

φn,k(t)h(t)dt

here φn,k(u) =
(
n
k

)
uk (1− u)

n−k, h ∈ C [0, 1] , u ∈ [0, 1] .

Example 7.3. Let be a = 10, b = 50 and h(u) = u
−1
8 sin(10u). Fig. 3 shows the Tn (h;u) (blue) and Sn(h;u) (red)

operators are approximation to the h(u) (black) function for the value n = 100.

Table 1 shows the numerical values obtained with the maximum value of the statement |Tn (h;u)− h(u)|, in
order to examine how the Tn (h;u) operator approximation the function h(u) = sin(4πu) + 4 sin( 14πu) for a = 0.4,
b = 0.5 and different n, u values.

Table 1. Error margins between the Tn (h;u) operator and h(u) = sin(4πu) + 4 sin( 14πu)
n u = 0.2 u = 0.4 u = 0.6 u = 0.8
150 0.1065373586 0.213548394 0.216177741 0.106684568
250 0.0686472096 0.135810327 0.137416949 0.068763059
500 0.0362438876 0.071056815 0.071872379 0.036314182
1000 0.0186274446 0.036364660 0.036775374 0.018666478

The definition Izgi[14] provided to compare the approaches of different operators can be given as it comprises
statements that can be simplified as the numerator and the denominator. Ln and Tn are operators defined in the
same range:

lim
n→∞

sup0≤u≤n+a
n+b

|Ln(h;u)− h(u)|
sup0≤u≤n+a

n+b
|Tn(h;u)− h(u)|

=


0, Tn, faster

∞, Ln, faster

c(constant), equally fast
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Figure 3. Tn (h;u) and Sn(h;u) Operators are approximation to the function h(u) = u
−1
8 sin(10u) for n = 100.

Based on this definition, it is possible to examine the rate of approximation of the operators defined by

En(h;u) =
sup0≤u≤n+a

n+b
|Tn(h;u)− h(u)|

sup0≤u≤n+a
n+b

|Sn(h;u)− h(u)|
.

The En operator was defined by Aydın Izgi [17] in 2013 and this ratio is used as a measurement in many articles.
As shown in Fig 3, the operators will be compared in Table 2 for a = 0.1, b = 0.8 and different n values in order

to use the u points where the difference is seen more clearly.

Table 2. Error margins between the En (h;u) operator and h(u) = u
−1
8 sin(10u)

n u = 0.15 u = 0.45 u = 0.6 u = 0.75
150 0.9946389397 0.9924182950 0.9755127166 0.9850499535
250 0.9967498131 0.9953122198 0.9842312426 0.9907327967
500 0.9983634502 0.9976010256 0.9916588067 0.9952461550
1000 0.9991709201 0.9987821715 0.9956978930 0.9975866425

Table 2, shows that Tn (h;u) operators approximation the h(u) = u
−1
8 sin(10u) function better than the operators of

Sn (h;u).

8. Conclusion
In general, a new sequence of Bernstein-Durrmeyer operators was defined in our study. First, the approximation

behaviors for the defined operator sequences in the Lebesgue Measurable space were investigated in the article.
Then, with the help of Korovkin’s theorem, the modulus of continuity and the Peetre K-function on the space lp, the
convergence rate and the order of approximation are discussed. Also, the Voronovskaja type theorem was proved
to approximate a class of functions with continuous derivatives of the first and second order. Finally, numerical and
graphical analyses were examined to show better approximation behavior for these operator sequences, and it was
seen that the operator we have just defined works more efficiently than the Bernstein-Durrmeyer operator defined
earlier.
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[14] Izgı, A.: Approximation by a class of new type Bernstein polynomials of one and two variables.Global Journal of Pure
and Applied Mathematics. 8(5), 55-71 (2012).

[15] Lorentz, G. G.: Bernstein polynomials. American Mathematical Soc. (2013).

[16] Lenze, B.:On Lipschitz-type maximal functions and their smoothness spaces.Indagationes Mathematicae. 91(1), 53-63
(1988).

[17] Izgı, A.: Approximation by a composition of Chlodowsky operators and Százs–Durrmeyer operators on weighted spaces.
LMS Journal of Computation and Mathematics. 16, 388-397 (2013).

Affiliations

HARUN Ç İÇEK
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Abstract
We present the generalizations of Hölder’s inequality and Minkowski’s inequality along with the general-
izations of Aczél’s, Popoviciu’s, Lyapunov’s and Bellman’s inequalities. Some applications for the metric
spaces, normed spaces, Banach spaces, sequence spaces and integral inequalities are further specified.
It is shown that (Rn, d) and (lp, dm,p) are complete metric spaces and (Rn, ‖x‖m) and

(
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)
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m−Banach spaces. Also, it is deduced that

(
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)
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1. Introduction
We shall use N to denote the set of positive integers, C for the set of complex numbers, R for the set of real

numbers and Rn for the set of all ordered n-tuples x = (x1, x2, . . . , xn) of real numbers xi.
In [1], the following extensions of the inequalities of Hölder and Minkowski are given respectively:

If xi,j > 0 for i = 1, 2, . . . , n and j = 1, 2, . . . ,m, and if pj > 0 with
∑m
j=1

1
pj

= 1, then

n∑
i=1

m∏
j=1

xij ≤
m∏
j=1

(
n∑
i=1

x
pj
ij

)1/pj

, (1.1)

the sign of equality holding if and only if the m sets (xp1i1 ) , (xp2i2 ) , . . . , (xpmim ) are proportional, that is, if and only if
there are numbers λi, not all 0, such that

∑m
j=i λjx

pj
ij = 0 for i = 1, 2, . . . , n.
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If xi,j ≥ 0 for i = 1, 2, . . . , n and j = 1, 2, . . . , k, and if p > 1, then n∑
i=1

 k∑
j=1

xij

p1/p

≤
k∑
j=1

(
n∑
i=1

xpij

)1/p

. (1.2)

The inequality is reversed for p < 1 (p 6= 0) . (For p < 0, we assume that xi,j > 0). In each case, the sign of equality
holds if and only if the k sets (xi1) , (xi2) , . . . , (xik) are proportional.

Similarly, the integral form of the Hölder inequality is

∫ b

a

 m∏
j=1

fj(x)

 dx ≤
m∏
j=1

(∫ b

a

f
pj
j (x) dx

)1/pj

, (1.3)

where fj (x) > 0 (j = 1, 2, . . . ,m) , x ∈ [a, b] , −∞ < a < b < +∞, pj > 0,
∑m
j=1

1
pj

= 1 and fj ∈ Lpj [a, b] .

Furthermore, the integral form of the Minkowski inequality is∫ b

a

 k∑
j=1

fj(x)

p

dx

1/p

≤
k∑
j=1

(∫ b

a

fpj (x)dx

)1/p

,

where fj (x) > 0 (j = 1, 2, . . . , k) , x ∈ [a, b] , −∞ < a < b < +∞, p > 0 and fj ∈ Lp [a, b] .
A normed linear space is called complete if every Cauchy sequence in the space converges, that is, if for each

Cauchy sequence (fn) in the space there is an element f in the space such that fn → f . A complete normed linear
space is called a Banach space. [2](p. 115).

For 1 ≤ p <∞, we denote by lp the space of all sequences x = (xn)
∞
n=1 such that

∑∞
n=1 |xn|

p
<∞. The space lp

is a Banach space by the norm

‖x‖ = (

∞∑
n=1

|xn|p)
1/p

,

which is given by Yosida in [3] (p. 55).
In [4, 5], the sequence space br,sp is given by

br,sp =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣ 1

(s+ r)
n

n∑
k=0

(
n
k

)
sn−krkxk

∣∣∣∣∣
p

<∞

}
.

Where 1 ≤ p <∞, r and s are nonzero real numbers with r + s 6= 0. The binomial matrix Br,s = (br,snk) is defined as
follows:

br,snk =

 1
(s+r)n

(
n
k

)
sn−krk , 0 ≤ k ≤ n

0 , k > n
,

for all k, n ∈ N. For sr > 0, one can easily check that the following properties hold for the binomial matrix
Br,s = (br,snk):

(i) ‖Br,s‖ <∞, (ii) limn→∞ br,snk = 0 (each k ∈ N) , (iii)limn→∞
∑
k b

r,s
nk = 1 .

Thus, the binomial matrix is regular whenever sr > 0.
Young’s inequality asserts that,

ap

p
+
bq

q
≥ ab, for all a, b ≥ 0,

whenever p, q ∈ (1,∞) and 1
p + 1

q = 1; the equality holds if and only if ap = bq .
W.H. Young actually proved a much more general inequality which yields the aforementioned one for f (x) =

xp−1:
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Theorem 1.1 (Young’s inequality). Suppose that f : [0,∞) → [0,∞) is an increasing continuous function such that
f (0) = 0 and limx→∞ f (x) =∞ . Then

ab ≤
∫ a

0

f (x)dx+

∫ b

0

f−1 (x) dx,

for all a, b ≥ 0, and equality occurs if and only if b = f (a) . [6] (p. 15).

In the next section, we consider the following form of Young’s inequality, for s ≥ 1

asp

sp
+
bsq

sq
≥ ab,

where a, b ≥ 0, sp, sq ∈ (1,∞) and 1
sp + 1

sq = 1.

In [7], H. Agahi et al. gave some generalizations of Hölder’s and Minkowski’s inequalities for the pseudo-
integral. In [8], C.J. Zhao and W.S. Cheung gave an improvement of Minkowski’s inequality. In [9], X. Zhou
established some functional generalizations and refinements of Aczél’s inequality and of Bellman’s inequality. In
[10], S.I. Butt et al. gave refinements of the discrete Hölder’s and Minkowski’s inequalities for finite and infinite
sequences by using cyclic refinements of the discrete Jensen’s inequality. In [11], S. Rashid et al. established
Minkowski and reverse Hölder inequalities by employing weighted ABA B−fractional integral. In [12], S. Rashid
et al. gave new fractional behavior of Minkowski inequality and several other related generalizations in the frame
of the newly proposed fractional operators. In [13], S. Rashid et al. presented the major consequences of the certain
novel versions of reverse Minkowski and related Hölder-type inequalities via discrete }}-proportional fractional
sums. In [14], S. Rashid et al. gave the certain novel versions of reverse Minkowski and related Hölder-type
inequalities via discrete-fractional operators having }}-discrete generalized Mittag-Leffler kernels. In [15], S. Rafeeq
et al. presented the explicit bounds for three generalized delay dynamic Gronwall–Bellman type integral inequalities
on time scales, which are the unification of continuous and discrete results. In [16], Z. Zong et al. investigated
the n-dimensional (n ≥ 1) Jensen inequality, Hölder inequality, and Minkowski inequality for dynamically
consistent nonlinear evaluations in L1

(
Ω, F, (Ft)t≥0, P

)
. Furthermore, they gave four equivalent conditions on

the n-dimensional Jensen inequality for g-evaluations induced by backward stochastic differential equations with
non-uniform Lipschitz coefficients in Lp

(
Ω, F, (Ft)0≤t≤T , P

)
(1 < p ≤ 2). Finally, they gave a sufficient condition

on g that satisfies the non-uniform Lipschitz condition under which Hölder’s inequality and Minkowski’s inequality
for the corresponding g-evaluation hold true.

Hölder’s inequality, power-mean inequality and Jensen’s inequality are used to obtain Hermite-Hadamard
type inequalities and Ostrowski’s type inequalities for different kinds of convexity which are used in the fields
of integral inequalities, approximation theory, special means theory, optimization theory, information theory and
numerical analysis. Furthermore, both the Hölder inequality and the Minkowski inequality play an important role
in many areas of pure and applied mathematics. These inequalities have been used in several areas of mathematics,
especially in functional analysis and generalized in various directions.

The main aim of this paper is to give generalizations of Hölder’s, Minkowski’s, Aczél’s, Popoviciu’s, Lyapunov’s
and Bellman’s inequalities.

For several recent results concerning Hölder’s inequality, Minkowski’s inequality, Hermite-Hadamard type
inequalities and Banach spaces, we refer to [1, 6, 7, 10, 16–40]. For Aczél’s, Popoviciu’s, Bellman’s inequalities and
the related results, we refer to [3, 9, 36].

2. Main results
First, we give a generalization of Hölder’s inequality.

Theorem 2.1. If ak, bk ≥ 0 for k = 1, 2, . . . , n and 1
sp + 1

sq = 1 with p > 1, s ≥ 1, then

n∑
k=1

(akbk)
1/s ≤

(
n∑
k=1

apk

)1/sp( n∑
k=1

bqk

)1/sq

, (2.1)

with equality holding if and only if αapk = βbqk for k = 1, 2, . . . n, where α and β are real nonnegative constants such that
α2 + β2 > 0.
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Proof. If
∑n
k=1 a

p
k = 0 or

∑n
k=1 b

q
k = 0, then equality holds in (2.1). Let

∑n
k=1 a

p
k > 0 and

∑n
k=1 b

q
k > 0. Substituting

a = a1/sν

(
n∑
k=1

apk

)−1/sp
, b = b1/sν

(
n∑
k=1

bqk

)−1/sq
, (2.2)

into the inequality
asp

sp
+
bsq

sq
≥ ab, (2.3)

we get

apν
sp

(
n∑
k=1

apk

)−1
+
bqν
sq

(
n∑
k=1

bqk

)−1
≥ a

1/s
ν b

1/s
ν

(
∑n
k=1 a

p
k)

1/sp
(
∑n
k=1 b

q
k)

1/sq

and
1

sp

apν∑n
k=1 a

p
k

+
1

sq

bqν∑n
k=1 b

q
k

≥ a
1/s
ν b

1/s
ν

(
∑n
k=1 a

p
k)

1/sp
(
∑n
k=1 b

q
k)

1/sq
.

Adding together these inequalities for ν = 1, 2, . . . , n, we have

1

sp
+

1

sq
≥

∑n
k=1 a

1/s
k b

1/s
k

(
∑n
k=1 a

p
k)

1/sp
(
∑n
k=1 b

q
k)

1/sq
.

For 1
sp + 1

sq = 1, we obtain the inequality (2.1).
Since equality holds in (2.3) if and only if asp = bsq, we conclude, in virtue of (2.2), that there is equality in (2.1) if
and only if apk(

∑n
k=1 a

p
k)
−1

= bqk(
∑n
k=1 b

q
k)
−1

for k = 1, 2, . . . , n, i.e., if and only if αapk = βbqk for k = 1, 2, . . . , n.
This completes the proof.

Remark 2.1. a) If we put s = 1 in (2.1), we get Hölder’s inequality.
b) If we put s = 1 and p = q = 2 in (2.1), we get Cauchy-Schwarz inequality.
c) From (1.1), the extension of (2.1) becomes, for

∑m
j=1

1
spj

= 1

n∑
i=1

 m∏
j=1

xij

1/s

≤
m∏
j=1

(
n∑
i=1

x
pj
ij

)1/spj

.

d) By (1.3), the integral form of inequality (2.1) becomes

∫ b

a

 m∏
j=1

fj(x)

1/s

dx ≤
m∏
j=1

(∫ b

a

f
pj
j (x) dx

)1/spj

. (2.4)

e) By the inequality (2.3) in [28], we have for s > 1 and xi, yi > 0,

i = 1, 2, . . . , n,(
n∑
i=1

xsi

)1/s

≤
n∑
i=1

xi.

Using the inequality above, from the Hölder’s inequality and taking xi = akbk, we get, for s > 1(
n∑
k=1

(akbk)
s

)1/s

≤
n∑
k=1

akbk ≤

(
n∑
k=1

apk

)1/p( n∑
k=1

bqk

)1/q

,

and from this inequality we obtain

n∑
k=1

(akbk)
s ≤ (

n∑
k=1

akbk)

s

≤

(
n∑
k=1

apk

)s/p( n∑
k=1

bqk

)s/q
,
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which is another generalization of Hölder’s inequality.
f) Let

∑∞
k=1 a

p
k and

∑∞
k=1 b

q
k be convergent series. Then, from the last inequalities in e), we have

∞∑
k=1

(akbk)
s ≤

( ∞∑
k=1

akbk

)s
≤

( ∞∑
k=1

apk

) s
p
( ∞∑
k=1

bqk

) s
q

.

Now, we give a generalization of Minkowski’s inequality.

Theorem 2.2. If ak, bk ≥ 0, for k = 1, 2, . . . , n and p > 1, then

(

n∑
k=1

(ak + bk)
p
)

1/mp

≤

(
n∑
k=1

apk

)1/mp

+

(
n∑
k=1

bpk

)1/mp

, (2.5)

with equality holding if and only if the n-tuples a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are proportional, where m ∈ N.

Proof. We consider the identity

(ak + bk)
p

= (ak + bk)
1/m

(ak + bk)
p−1/m

.

Using the inequality, for a > 0, b > 0 and m ∈ N,

m
√
a+ b ≤ m

√
a+

m
√
b,

we obtain
(ak + bk)

p ≤ ( m
√
ak + m

√
bk)(ak + bk)

p−1/m

≤ m
√
ak(ak + bk)

p− 1
m + m

√
bk(ak + bk)

p−1/m
.

Summing over k = 1, 2, . . . , n, we get

n∑
k=1

(ak + bk)
p ≤

n∑
k=1

m
√
ak(ak + bk)

p− 1
m +

n∑
k=1

m
√
bk(ak + bk)

p−1/m
.

By the inequality (2.1), for 1
mp + 1

mq = 1 and p > 1, we have

n∑
k=1

m
√
ak(ak + bk)

p− 1
m ≤

(
n∑
k=1

apk

)1/mp( n∑
k=1

(ak + bk)
q(mp−1)

)1/mq

and
n∑
k=1

m
√
bk(ak + bk)

p− 1
m ≤

(
n∑
k=1

bpk

)1/mp( n∑
k=1

(ak + bk)
q(mp−1)

)1/mq

.

Adding the last two relations, we obtain,

n∑
k=1

(ak + bk)
p ≤

( n∑
k=1

apk

) 1
mp

+

(
n∑
k=1

bpk

)1/mp
( n∑

k=1

(ak + bk)
q(mp−1)

)1/mq

.

Since 1
mp+ 1

mq = 1, we get p = q(mp−1). Also, by dividing both sides of the inequality above by (
∑n
k=1 (ak + bk)

p
)
1/mq ,

we obtain

(

n∑
k=1

(ak + bk)
p
)

1/mp

≤

(
n∑
k=1

apk

)1/mp

+

(
n∑
k=1

bpk

)1/mp

,

which is required.
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Remark 2.2. a) If m = 1 is substituted into (2.5), we get Minkowski’s inequality.
b) If p = 2 is substituted into (2.5), we get(

n∑
k=1

(ak + bk)
2

)1/2m

≤

(
n∑
k=1

a2k

)1/2m

+

(
n∑
k=1

b2k

)1/2m

. (2.6)

c) From (1.2), the extension of (2.5) becomes n∑
i=1

 k∑
j=1

xij

p1/mp

≤
k∑
j=1

(
n∑
i=1

xpij

)1/mp

.

In the following theorems, we give the generalizations of the reverse Hölder inequality, Popoviciu’s inequality,
Lyapunov’s inequality and Bellman’s inequality respectively.

Theorem 2.3. If ak, bk > 0 for k = 1, 2, . . . , n and 1
sp + 1

sq = 1 with sp < 0 or sq < 0, for
s ≥ 1, then

n∑
k=1

(akbk)
1/s ≥

(
n∑
k=1

apk

)1/sp( n∑
k=1

bqk

)1/sq

, (2.7)

with equality holding if and only if αapk = βbqk for k = 1, 2, . . . n, where α and β are real nonnegative constants such that
α2 + β2 > 0.

Proof. Let sp < 0 and put P = − p
sq , Q = 1

s2q . Then
1
sP + 1

sQ = 1 with sP > 0 and sQ > 0. Therefore, according to
(2.1), we obtain (

n∑
k=1

APk

)1/sP( n∑
k=1

BQk

)1/sQ

≥
n∑
k=1

(AkBk)
1/s
,

where Ak > 0 and Bk > 0 for k = 1, 2, . . . , n. The last inequality for Ak = a−sqk and Bk = asqk b
sq
k becomes(

n∑
k=1

apk

)− sq
sp

(

n∑
k=1

(akbk)
1/s

)

sq

≥
n∑
k=1

(bsqk )
1/s
.

Hence, we have
n∑
k=1

(akbk)
1/s ≥

(
n∑
k=1

apk

)1/sp( n∑
k=1

bqk

)1/sq

,

which is (2.7).

Theorem 2.4. Let a and b be two nonnegative n-tuples, p and q are real numbers such that
p, q 6= 0, s ≥ 1 and 1

sp + 1
sq = 1 and let ap1 − a

p
2 − · · · − apn > 0 and bq1 − b

q
2 − · · · − bqn > 0. Then, we have for p > 1,

(ap1 − a
p
2 − · · · − apn)

1/s
(bq1 − b

q
2 − · · · − bqn)

1/s ≤ a
1
s
1 b

1
s
1 − a

1
s
2 b

1
s
2 − ..− a

1
s
n b

1
s
n . (2.8)

If p < 1 (p 6= 0), we have the reverse inequality.

Proof. Replacing ap1 and bq1 by ap1 − a
p
2 − · · · − apn and bq1 − b

q
2 − · · · − bqn, respectively, in (2.1), we have

(a1b1)
1/s ≤ (a1b1)

1
s − (a2b2)

1
s − · · · − (anbn)

1
s .

Resubstituting, the last inequality becomes

(ap1 − a
p
2 − · · · − apn)

1/s
(bq1 − b

q
2 − · · · − bqn)

1/s ≤ a
1
s
1 b

1
s
1 − a

1
s
2 b

1
s
2 − ..− a

1
s
n b

1
s
n .

which is (2.8).
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Remark 2.3. a) If we put s = 1 in (2.8), we get Popoviciu’s inequality.
b) If we put s = 1 and p = q = 2 in (2.8), we get Aczél’s inequality.

Remark 2.4. From (2.1) for u ≥ 1, we get

n∑
k=1

(akbk)
1/u ≤

(
n∑
k=1

apk

)1/up( n∑
k=1

bqk

)1/uq

,

where 1
up + 1

uq = 1. Substituting p = r−t
r−s , q = r−t

s−t (r > s > t > 0) , apk = pkx
t
k and bqk = pkx

r
k, (pk ≥ 0, xk ≥

0 for k = 1, 2, . . . , n ) into the inequality above, we have

n∑
k=1

(pkx
t
k)

r−s
u(r−t) (pkx

r
k)

s−t
u(r−t) ≤ (

n∑
k=1

pkx
t
k)

r−s
u(r−t)

(

n∑
k=1

pkx
r
k)

s−t
u(r−t)

.

From the last inequality, we get

n∑
k=1

(
pkx

s
u

k

)u(r−t)
≤ (

n∑
k=1

pkx
t
k)

r−s

(

n∑
k=1

pkx
r
k)

s−t

, (2.9)

which is the generalization of Lyapunov’s inequality. Letting u = 1 in (2.9), we obtain Lyapunov’s inequality.

Theorem 2.5. Let a and b be n-tuples of nonnegative numbers such that
amp1 − ap2 − · · · − apn > 0 and bmp1 − bp2 − · · · − bpn > 0. If p ≥ 1 (or p < 0) , then[

(amp1 − ap2 − · · · − apn)
1
p + (bmp1 − bp2 − · · · − bpn)

1
p

]p
≤ (a1 + b1)

mp − (a2 + b2)
p − ..− (an + bn)

p
. (2.10)

If 0 < p < 1, then the reverse inequality in (2.10) holds, where m ∈ N.

Proof. Replacing ap1 and bp1 by amp1 − ap2 − · · · − apn and bmp1 − bp2 − · · · − bpn, respectively, in (2.5), we have

(a1 + b1)
p ≤ (a1 + b1)

mp − (a2 + b2)
p − · · · − (an + bn)

p
.

Resubstituting, the last inequality becomes[
(amp1 − ap2 − · · · − apn)

1
p + (bmp1 − bp2 − · · · − bpn)

1
p

]p
≤ (a1 + b1)

mp − (a2 + b2)
p − · · · − (an + bn)

p
,

which is (2.10).

Remark 2.5. If m = 1 is substituted into (2.10), we get Bellman’s inequality.

3. Applications

Now, using inequalities (2.5) and (2.6), we give some applications for the metric spaces, normed spaces, Banach
spaces and sequence spaces. Furthermore, using inequality (2.4), we give an integral inequality.

Corollary 3.1. Let d : RnxRn → R be the function such that

d (x, y) =
[
(x1 − y1)

2
+ (x2 − y2)

2
+ · · ·+ (xn − yn)

2
]1/2m

. (3.1)

Then (Rn, d) is a metric space for m ∈ N.
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Proof. The properties (M1) and (M2) of the metric are obvious. Applying the inequality (2.6), we obtain for
x, y, z ∈ Rn

d (x, y) = (

n∑
k=1

|xk − yk|2)

1/2m

= (

n∑
k=1

|xk − zk + zk − yk|2)

1/2m

≤

(
n∑
k=1

|xk − zk|2
) 1

2m

+ (

n∑
k=1

|zk − yk|2)

1/2m

≤ d (x, z) + d(z, y),

which is (M3).

Corollary 3.2. The space Rn with the norm defined for x = (x1, x2, . . . , xn) and m ∈ N by

‖x‖m = (

n∑
i=1

|xi|2)

1/2m

,

is a 1
m−normed vector space.

Proof. The space Rn is an n-dimensional vector space, so we need to verify the properties of the norm. We have
(N1). ‖x‖m = 0⇔ x = θ.
(N2). For αεR,

‖αx‖m = (

n∑
i=1

|αxi|2)

1/2m

= α1/m(

n∑
i=1

|xi|2)

1/2m

= α1/m‖x‖m.

(N3). Applying the inequality (2.6), we get

‖x+ y‖m = (

n∑
i=1

|xi + yi|2)

1/2m

≤

(
n∑
i=1

|xi|2
) 1

2m

+

(
n∑
i=1

|yi|2
) 1

2m

= ‖x‖m + ‖y‖m.

Thus, (Rn, ‖x‖m) is a 1
m−normed vector space.

Corollary 3.3. The metric space (Rn, d) is complete.

Proof. Suppose that (xm) is a Cauchy sequence in Rn. Then, we have

d (xm, xk)→ 0 (m, k →∞).

Note that each member of the sequence (x
(m)

) is itself a sequence

xm =
(
x
(m)
i

)
=
(
x
(m)
1 , x

(m)
2 , . . . , x

(m)
n

)
, for m = 1, 2, 3 . . .

Now, for each ε > 0 there exists no ∈ N such that d (xm, xk) < ε, ∀m, k ≥ no. By (3.1), we have

d (xm, xk) =

(
n∑
i=1

(
x
(m)
i − x(k)i

)2)1/2t

< ε , for ∀m, k ≥ no and t ∈ N.

Since each term in the above inequality is positive,∣∣∣x(m)
i − x(k)i

∣∣∣ < εt for i = 1, 2, . . . , n and ∀m, k ≥ no.

Hence
(
x
(m)
i

)
=
(
x
(m)
1 , x

(m)
2 , . . . , x

(m)
n

)
is a Cauchy sequence in R, for i = 1, 2, . . . , n. Since R is complete,

(
x
(m)
i

)
converges to xi in R for i = 1, 2, . . . , n. So,

lim
m→∞

x
(m)
i = xi for i = 1, 2, . . . , n.
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Let x = (x1, x2, . . . , xn) , then x ∈ Rn. We now prove that (xm) converges to x.

d (xm, x) =

(
n∑
i=1

(
x
(m)
i − xi

)2)1/2t

= lim
k→∞

(
n∑
i=1

(
x
(m)
i − x(k)i

)2)1/2t

< ε, ∀m ≥ n0 .

Hence the Cauchy sequence (xm) converges to x ∈ Rn. Thus, (Rn, d) is a complete metric space.

Corollary 3.4. The vector space Rn with the norm defined for x = (x1, x2, . . . , xn) and m ∈ N by

‖x‖m = (

n∑
i=1

|xi|2)

1/2m

,

is a 1
m−Banach space.

Proof. Note that a Banach space is a normed linear space that is a complete metric space with respect to the metric
derived from its norm. For this reason, the claim follows from Corollaries 3.2 and 3.3.

Corollary 3.5. Let dm,p : lpxlp → R be the function such that

dm,p = (

∞∑
i=1

|xi − yi|p)
1/mp

,

for 1 ≤ p <∞, m ∈ N and x = (x1, x2, . . . ). Then (lp, dm,p) is a metric space.

Proof. The properties (M1) and (M2) of the metric are obvious. The property (M3) follows from the inequality
(2.5).

Corollary 3.6. The space lp with the norm defined for 1 ≤ p <∞, m ∈ N and x = (x1, x2, . . . ) by

‖x‖m,p = (

∞∑
i=1

|xi|p)
1/mp

,

is a 1
m−normed vector space.

Proof. The properties (N1) and (N2) of the norm are obvious. The property (N3) follows from the inequality
(2.5).

Corollary 3.7. The metric space (lp, dm,p) is complete.

Proof. Let (xn) be a Cauchy sequence in the space lp, where xn =
(
x
(n)
i

)
=
(
x
(n)
1 , x

(n)
2 , . . .

)
. Let ε > 0 be a real

number. Then, there exists a positive integer no such that

dm,p (xn, xt) =

(
n∑
i=1

(
x
(n)
i − x(t)i

)p)1/mp

< ε , (3.2)

for all n, t ≥ no and m ∈ N. This shows that
∣∣∣x(n)i − x(t)i

∣∣∣ < εm , for all n, t ≥ no and consequently
(
x
(n)
i

)
=(

x
(n)
1 , x

(n)
2 , . . .

)
is a Cauchy sequence in K (R or C). Since these spaces are complete,

(
x
(n)
i

)
converges to a point

xi ∈ K. Also, for each k ∈ N, the statement (3.2) gives

k∑
i=1

∣∣∣x(n)i − x(t)i
∣∣∣p < εmp for all n, t ≥ no. (3.3)

From (3.3) with t→∞, we get
k∑
i=1

∣∣∣x(n)i − xi
∣∣∣p < εmp. (3.4)
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We need to prove that x = (x1, x2, . . . ) is in lp. The inequalities (3.4) and (2.5) show that

(

k∑
i=1

|xi|p)
1/mp

= (

k∑
i=1

∣∣∣xi − x(n)i + x
(n)
i

∣∣∣p)1/mp

≤

(
k∑
i=1

∣∣∣xi − x(n)i

∣∣∣p)
1

mp

+

(
k∑
i=1

∣∣∣x(n)i

∣∣∣p)1/mp

< ε+

(
k∑
i=1

∣∣∣x(n)i

∣∣∣p)1/mp

.

Since
(
x
(n)
i

)
is in lp, the above inequality shows that (

∑k
i=1 |xi|

p
)
1/mp

is bounded and monotonically increasing,

therefore the series
∑k
i=1 |xi|

p is convergent. Thus, x is in lp. Also, it is obvious from (3.4) that (xn) converges to x.
Therefore, (lp, dm,p) is a complete metric space.

Corollary 3.8. The space lp , with the norm defined for 1 ≤ p <∞, m ∈ N and x = (x1, x2, . . . ) by

‖x‖m,p = (

∞∑
i=1

|xi|p)
1/mp

,

is a 1
m−Banach space.

Proof. Note that a Banach space is a normed linear space that is a complete metric space with respect to the metric
derived from its norm. For this reason, the claim follows from Corollaries 3.6 and 3.7.

Let br,sp,1 be the binomial sequence space such that

br,sp,1 =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣ 1

(s+ r)
n

n∑
i=0

i∑
k=0

(
i
k

)
si−krkxk

∣∣∣∣∣
p

<∞

}
, 1 ≤ p <∞.

The space br,sp,1 includes the spaces lp and br,sp . Hence we may give the following corollary.

Corollary 3.9. The space br,sp,1 with the norm defined for m ∈ N by

‖x‖r,s,m =

( ∞∑
n=0

∣∣∣∣∣ 1

(s+ r)
n

n∑
i=0

i∑
k=0

(
i
k

)
si−krkxk

∣∣∣∣∣
p)1/mp

,

is a 1
m−normed space.

Proof. So, we need to verify the conditions (N1)-(N3) of the norm. We have
(N1). ‖x‖r,s,m = 0⇔ x = θ.
(N2). For αεR,

‖αx‖r,s,m =

( ∞∑
n=0

∣∣∣∣∣ 1

(s+ r)
n

n∑
i=0

i∑
k=0

(
i
k

)
si−krk(αxk)

∣∣∣∣∣
p)1/mp

= α1/m‖x‖r,s,m.

(N3). Applying the inequality (2.5), we get

‖x+ y‖r,s,m =

( ∞∑
n=0

∣∣∣∣∣ 1

(s+ r)
n

n∑
i=0

i∑
k=0

(
i
k

)
si−krk(xk + yk

∣∣∣∣∣
p)1/mp

≤

( ∞∑
n=0

∣∣∣∣∣ 1

(s+ r)
n

n∑
i=0

i∑
k=0

(
i
k

)
si−krkxk

∣∣∣∣∣
p) 1

mp

+
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+

( ∞∑
n=0

∣∣∣∣∣ 1

(s+ r)
n

n∑
i=0

i∑
k=0

(
i
k

)
si−krkyk

∣∣∣∣∣
p)1/mp

≤ ‖x‖r,s,m + ‖y‖r,s,m.

Thus,
(
br,sp,1, ‖x‖r,s,m

)
is a 1

m−normed space.

Finally, we give an integral inequality:

Corollary 3.10. Let f be a real valued function defined on [a, b] ⊂ R+ such that the functions |f |p and |f |q are integrable on
[a, b] and let

In/s =

∫ b

a

f(x)
n/s

dx,

then we have for n > 1 and s ∈ N

Is2(n−1)/s = ≤ I
1
p
npI

1
q

(n−2)q.

Proof. Applying the inequality (2.4) for j = 1, 2, we obtain

Is2(n−1)/s =

(∫ b

a

f(x)
2(n−1)/s

dx

)s
=

(∫ b

a

f(x)
n/s

f(x)
(n−2)/s

dx

)s

≤

(∫ b

a

f(x)
np
dx

)1/p(∫ b

a

f(x)
(n−2)q

dx

)1/q

≤ I
1
p
npI

1
q

(n−2)q,

which is required.

4. Conclusion
In this paper, the generalizations of Hölder’s inequality and Minkowski’s inequality have been presented.

Furthermore, the generalizations of Aczél’s, Popoviciu’s, Lyapunov’s and Bellman’s inequalities have been given.
Finally, some applications for the metric spaces, normed spaces, Banach spaces, sequence spaces and integral
inequalities have been provided.
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Abstract
The aim of the present paper is to obtain and analyze new exact travelling wave solutions and bifurcation
behavior of modified Zakharov-Kuznetsov (mZK) equation with higher-order dispersion term. For this
purpose, the first and second simplest methods are used to build soliton solutions of travelling wave
solutions. Furthermore, the bifurcation behavior of traveling waves including new types of quasiperiodic
and multi-periodic traveling wave motions have been examined depending on the physical parameters.
Multistability for the nonlinear mZK equation has been investigated depending on fixed values of
physical parameters with various initial conditions. The suggested methods for the analytical solutions
are powerful and beneficial tools to obtain the exact travelling wave solutions of nonlinear evolution
equations (NLEEs). Two and three-dimensional plots are also provided to illustrate the new solutions.
Bifurcation and multistability behaviors of traveling wave solution of the nonlinear mZK equation with
higher-order dispersion will add some value to the literature of mathematical and plasma physics.

Keywords: Bifurcation; First simplest method; Modified Zakharov-Kuznetsov equation; Second simplest method; Quasiperiodic
motion.

AMS Subject Classification (2020): 35C08 ; 65P30; 35E05; 35C07

*Corresponding author

1. Introduction
NLEEs involve nonlinear complex physical phenomena and play an outstanding role while characterizing

complicated phenomena rooting in different branches of science for example fluid flow, wave propagations, fluid
mechanics, nonlinear optics, optical fibres, chemical kinematics, chemical physics, plasma physics, solid-state
physics, hydrodynamic, nonlinear transmission lines, plasma physics, geochemistry, biology and soil consolidations.
Therefore, obtaining exact solutions of such nonlinear equations are a rich area of research for the scientists because
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the resulting solutions can describe physical behaviour of concerned problems in the best way [1–3]. These
solutions define various phenomena in nature, such as vibrations, solitons and propagation with a finite speed
[4]. In the recent past, many researcher developed a wide range of methods and still trying to construct new
methods to establish analytical and solitary traveling wave solutions of the NLEEs. Some of these methods are:
inverse scattering method [5, 6], Backlund transformation method [7], modified simplest equation method [8],
homogeneous balance method [9], direct algebraic method [10, 11], Hirota bilinear transformation method [12],
tanh–sech method [13, 14], extended tanh method [15–17], Jacobi elliptic function expansion method [18–20] ,
generalized Riccati equation method [21], sine–cosine method [22], F-expansion method [23–25], homogeneous
balance method [26], Exp function method [27–30], Cole-Hopf transformation method [31], Adomian decomposition
method [32], homotopy analysis method [33, 34], homotopy perturbation method [35], first and second simplest
method [36, 37], bifurcation method [38, 39] and first integral method [40].

The nonlinear Zakharov-Kuznetsov (NZK) equation is an another alternative version of nonlinear model
describing (2+1)-dimensional modulation of a KdV soliton equation in fluid mechanics [41–43]. In two-and
three-dimensional spaces, the NZK equation is given by

ut + auux + buxxx + cuxyy = 0, (1.1)

and

ut + auux + buxxx + c(uxyy + uxzz) = 0, (1.2)

respectively, where a is known as the coefficient of nonlinear term and b, c are called the coefficients of dispersion
terms. Here x, y, z are space variables, t is time and u is acoustic wave potential. This equation was first derived
to model the propagation of weakly nonlinear ion-acoustic waves in plasma, which involves cold ions and hot-
isothermal electrons in a medium with a uniform magnetic field. The equation is also used to define different types
of acoustic waves in magnetized plasmas [44]. It has been shown the equation is not integrable by means of the
inverse scattering transform method. It was found that the solitary-wave solutions of the ZK equation are inelastic.
Hesam et al. [45] developed differential transform method for Zakharov equation. The nonlinear ZK equation with
higher order dispersion term is given by

ut + auux + buxxx + c(uxyy + uxzz) + duxxxxx = 0, (1.3)

where a, b, c are same as equation (1.2) and d is the coefficient of fifth order dispersion. With an appropriately
modified form of the electron number density given in [46], Munro and Parkes [41] demonstrated that reductive
perturbation can induce following modified Zakharov–Kuznetsov (mZK) equation

16(ut − kux) + 30u1/2ux + uxxx + uxyy + uxzz = 0, (1.4)

where k is a positive constant. The mZK equation have solutions that symbolize plane-periodic and solitary
traveling waves propagating. It is noted that the mZK equation is a high dimensional nonlinear evolution equation
and, thus, the study of its reduction problem is of theoretical interest [47]. Park et al. [48] applied modified Khater
method to equation. The extended mapping method is developed to study the traveling wave solution for a mZK
equation by Peng [49]. In our manuscript, we study the following nonlinear modified ZK equation with higher
order dispersion term as

ut + au2ux + buxxx + c(uxyy + uxzz) + duxxxxx = 0. (1.5)

Multistability alludes to an interesting phenomenon where a dynamical system provides more than one numeri-
cal solution for a fixed values of the parameters at various initial conditions [50, 51]. Arecchi et al. [52] performed
experimental observation of multistability behavior in a Q-switch laser system. Natiq et al. [53] experienced coexist-
ing features involving chaotic and quasi-periodic phenomena and the coexistence of symmetric Hopf bifurcations.
Morfu et al. [54] reported multistability in Cellular Nonlinear Network in image processing. Rahim et al. [55]
investigated multistability behavior in a hyperchaotic system. Li and Sprott [56] studied multistability phenomenon
in the famous Lorenz system in a special parametric range space. In various fields of plasmas, multistability
behavior also known as coexisting features were extensively investigated in discharge plasmas [57], plasma diodes
[58], solar wind plasma [59], electron-ion plasma [60], and in various quantum plasmas [61, 62].

The aims of this study are twofold and will take place for the first time in the literature. Firstly, we introduce the
soliton solutions of the mZK equation with higher order dispersion term using different typies of two simplest
methods:
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· First simplest method was suggested by Nikolay A. Kudryashov [63], its applications have also been shown in
[36, 64] and
· Second simplest method was suggested by Khalid K. Ali [37].
Secondly, we examined the bifurcation behavior of traveling waves including quasiperiodic, multi-periodic, and

multistability motion for the mZK equation with higher-order dispersion depending on the physical parameters.
Thus, we construct new exact and travelling wave solutions in soliton.

The remnant rest of this paper is systematized as follows: An introduction is given in Section 1. The main steps
of the first and second simplest methods are specified in Section 2. In the next section, in Section 3, we apply these
methods in detail with finding the exact travelling wave solutions of the mZK equation. In Section 4, some figures
are presented in two and three-dimensional to display the solutions given in Section 3. Bifurcation behavior of
travelling wave solution containing: the Quasiperiodic, multi-periodic, and multistability wave motion of the mZK
equation is investigated in Section 5. A discussion about the equation is given in Section 6. Finally, the paper ends
with a conclusion in Section 7.

2. Overview of the methods

2.1 First simplest method [63]
Let’s consider the

F (u, ut, ux, uy, uz, utt, uxx, uyy, uzz, ...) = 0, (2.1)

nonlinear partial differential equation where u = u(x, y, z, t) is the unknown function.

Step 1: Use the following wave transformation:

u(x, y, z, t) = u(ξ), ξ = lx+my + nz − vt, (2.2)

where l,m, n are constants and v is velocity of the traveling wave.

P (u′, u′′, u′′′, ...) = 0, u′ =
du

dξ
. (2.3)

By using above terms, equation (2.1) is reduced to a non-linear ordinary differential equation.

Step 2: Assume solution of (2.3) takes form of a finite series

u(ξ) =

N∑
i=0

(Ai(Q(ξ))i, (2.4)

Ai(i = 0, 1, 2, ..., N), AN 6= 0, are unknowns with (Ai 6= 0) to be calculated. N is a positive integer and will be
computed by homogeneous balance algorithm.

Step 3: The function Q(ξ) satisfies auxiliary differential equation:

(Q′(ξ))2 = α2Q(ξ)2(1− ΩQ(ξ)2), (2.5)

(2.5) gives the following solution:

Q(ξ) =
4σ exp(−αξ)

4σ2 + Ω exp(−2αξ)
. (2.6)

Step 4: By substituting (2.4) and (2.5) into (2.3) and collecting all terms with the same power of Q(ξ) together, (2.3)
turn into a polynomial, taking each coefficient equal to zero, a system of algebraic equations are obtained.

Step 5: By using the Mathematica 11 program, we can obtain the exact solution of (2.3).
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2.2 Second simplest method [37]
We illustrate modified Kudryashov method in this section as follows:

Step 1: Assume a solution of (2.3) given in a series form:

u(ξ) =

N∑
i=0

(Ai(Q(ξ))i, (2.7)

where Ai is the same as in First simple method.

Step 2: Function Q(ξ) fulfills the differential equation:

(Q′(ξ))2 = α2(log(C))2Q(ξ)2(1− ΩQ(ξ)2), (2.8)

the solution of (2.8) is introduced by:

Q(ξ) =
4σC(−αξ)

4σ2 + ΩC(−2αξ) . (2.9)

Step 3: Putting (2.7) and (2.8) into (2.3), we procure a polynomial of Q(ξ). Setting all the coefficients of the like powers
of Q(ξ) to zero, a system of algebraic equations are obtained.

Step 4: System of equations are solved by Mathematica 11 program. Consequently, we can obtain exact solution of
(2.3).

3. Implementations of the methods

We employ the transformation (2.2) with l2 +m2 + n2 = 1. Then, the equation (1.5) becomes

− (v − alu2)uξ + (bl3 + clm2 + cln2)uξξξ + dl5uξξξξξ = 0. (3.1)

Integrating equation (3.1) according to ξ,

− (v − alu2

3
)u+ (bl3 + clm2 + cln2)uξξ + dl5uξξξξ = c1, (3.2)

is obtained and here c1 is an integrating constant. Applying the boundary conditions u → 0, uξ → 0, uξξ → 0,
uξξξ → 0, uξξξξ → 0 as ξ → ±∞ in equation (3.2), one can obtain c1 = 0. Then equation (3.2) becomes

− (v − alu2

3
)u+ (bl3 + cl(1− l2))uξξ + dl5uξξξξ = 0. (3.3)

Balancing u3 with uξξξξ in (3.3), following relation is obtained:

3N = N + 4⇒ N = 2. (3.4)

3.1 First simplest method
From (2.4) and (3.4), the solution of (3.3) is written in the form:

u(ξ) = A0 +A1Q(ξ) +A2Q
2(ξ). (3.5)

By setting above solution in equation (3.3) and equating factors of each power of Q(ξ) in resulting equation to zero,
we reach following nonlinear algebraic system:

1

3
aA3

0l −A0v = 0,

aA2
0A1l + α2A1l

(
bl2 − cl2 + c+ α2dl4

)
−A1v = 0,

aA0A
2
1l + aA2

0A2l + 4α2A2l
(
bl2 − cl2 + c+ 4α2dl4

)
−A2v = 0,
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1

3
A1l

(
aA2

1 − 6α2Ω
(
bl2 − cl2 + c+ 10α2dl4

))
+ 2aA0A1A2l = 0,

aA0A
2
2l + aA2

1A2l − 6α2A2bl
3Ω + 6α2A2cl

3Ω− 6α2A2clΩ− 120α4A2dl
5Ω = 0,

aA1A
2
2l + 24α4A1dl

5Ω2 = 0,

1

3
aA3

2l + 120α4A2dl
5Ω2 = 0.

Solving the previous system, we obtain the following solutions:

A0 = 0, A1 = 0, A2 = ∓
3
√

5
2

√
vΩ

2
√
a
√
l
,

d = − v

64α4l5
, b = − c

l2
+ c+

5v

16α2l3
.

(3.6)

Substituting (3.6) in (3.5) with (2.6) and (2.2), we get the following solutions of (1.5):

u1,2(x, y, z, t) = ∓
3
√

5
2

√
vΩ

2
√
a
√
l

(
4σ exp(−α(lx+my + nz − vt))

4σ2 + Ω exp(−2α(lx+my + nz − vt))

)2

. (3.7)

3.2 Second simplest method
From (2.7) and (3.4), the solution of (3.3) is written in the form:

u(ξ) = A0 +A1Q(ξ) +A2Q
2(ξ). (3.8)

By setting above solution (3.8) in (3.3) and equating coefficients of like powers of Q(ξ), we obtain following set of
non-linear algebraic equations:

1

3
aA3

0l −A0v = 0,

aA2
0A1l + α2A1l log2(C)

(
bl2 − cl2 + c+ α2dl4 log2(C)

)
−A1v = 0,

aA0A
2
1l + aA2

0A2l + 4α2A2l log2(C)
(
bl2 − cl2 + c+ 4α2dl4 log2(C)

)
−A2v = 0,

1

3
aA3

1l + 2aA0A1A2l + 2α2A1l
3Ω(c− b) log2(C)

−2α2A1clΩ log2(C)− 20α4A1dl
5Ω log4(C) = 0,

aA0A
2
2l + aA2

1A2l − 6α2A2bl
3Ω log2(C) + 6α2A2cl

3Ω log2(C)

−6α2A2clΩ log2(C)− 120α4A2dl
5Ω log4(C) = 0,

aA1A
2
2l + 24α4A1dl

5Ω2 log4(C) = 0,

1

3
aA3

2l + 120α4A2dl
5Ω2 log4(C) = 0.

Now, the following new exact solutions for (1.5) will be produced:

A0 = 0, A1 = 0, A2 = −
3
√

5
2

√
vΩ

2
√
a
√
l
,

d = − v

64α4l5 log4(C)
, b =

16α2cl3 log2(C)− 16α2cl log2(C) + 5v

16α2l3 log2(C)
.

(3.9)

Substituting (3.9) in (3.8) with (2.9) and (2.2), we get the following solutions of (1.5):

u1,2(x, y, z, t) = −
3
√

5
2

√
vΩ

2
√
a
√
l

(
4σC(−α(lx+my+nz−vt))

4σ2 + ΩC(−2α(lx+my+nz−vt))

)2

. (3.10)



Modified Zakharov-Kuznetsov equation with higher order dispersion 231

4. Graphical illustrations

Now, some figures in two and three dimensional have been drawn to exemplify solutions given above. The
graph of (3.7) using the first simplest method at c = 0.2, σ = 5, a = 4,Ω = 6, v = 0.5, l = 0.55,m = 0.35, n =
0.1, y = z = 2 is introduced in Fig. (1). Finally, we shown the graph of (3.10) using the second simplest method at
c = 0.2, a = 4, σ = 5, k = 0.001,Ω = 6, v = 0.5, l = 0.55,m = 0.35, n = 0.1, C = 0.4, y = z = 2 in Fig. (2).

Figure 1. Profile of (3.7) using the first simplest method at c=0.2, σ = 5, a=4,Ω = 6, v=0.5, l=0.55, m=0.35, n=0.1.
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Figure 2. Profile of (3.10) using the second simplest method at c=0.2, a=4, σ = 5, k=0.001, Ω = 6, v=0.5, l=0.55, m=0.35, n=0.1, C=0.4.

5. Bifurcation analysis

We investigate bifurcation behavior of traveling wave solution of the nonlinear modified ZK equation with
higher order dispersion (1.5) for the first time in the literature. To discover all possible traveling wave solutions of
nonlinear modified ZK equation (1.5), we form the following dynamical system [65–70] (with parameters a, b, c, d, l
and v) from equation (3.3): 

uξ = X,

Xξ = Y,

Yξ = Z,

Zξ = (v − al
3 u

2) u
dl5 −

(bl2+c(1−l2))Y
dl4 .

(5.1)

Let
−→
F =

(
X, Y, Z, (v − al

3 u
2) u
dl5 −

(bl2+c(1−l2))Y
dl4

)
. Then divergence of

−→
F is:

−→
∇ ·
−→
F =

∂uξ
∂u

+
∂Xξ

∂X
+
∂Yξ
∂Y

+
∂Zξ
∂Z

= 0. (5.2)

Thus one can make a conclusion on the conservativeness of the dynamical system (5.1). The singular points of the
system (5.1) are given by solutions of the following set of equations:

X = 0,

Y = 0,

Z = 0,

(v − al
3 u

2) u
dl5 −

(bl2+c(1−l2))Y
dl4 = 0.

(5.3)
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The dynamical system (5.1) has three equilibrium points at P1(u1, 0, 0, 0), P2(u2, 0, 0, 0) and P3(u3, 0, 0, 0), where

u1 = 0, u2 =
√

3v
al , and u3 = −

√
3v
al .

The stability of the singular point based on the character of eigenvalues of the Jacobian matrix JP . After making
linearisation of the dynamical system (5.1) at the singular point P (u, X, Y, Z), the Jacobian matrix JP can be
written as:

JP =


0 1 0 0
0 0 1 0
0 0 0 1

1
dl5 (v − alu2) 0 − 1

dl4 (bl2 + c(1− l2)) 0

 . (5.4)

One can acquire eigenvalues of the system (5.1) at P (u, X, Y, Z) by making solution of the following equation:

|λI − JP | = 0. (5.5)

Then one can obtain the following characteristic equation as:

λ4 +M1λ
3 +M2λ

2 +M3λ+M4 = 0, (5.6)

where 
M1 = 0,
M2 = − 1

dl4 (bl2 + c(1− l2)),
M3 = 0,
M4 = 1

dl5 (alu2 − v).

The singular point P (u, X, Y, Z) is considered as stable if all possible solutions of equation (5.6) having real parts
less than zero for the singular point or it will be considered as unstable.

5.1 Quasiperiodic and multi-periodic traveling wave motions

Some new types of quasiperiodic and multi-periodic motions for the travelling wave solutions of the modified
ZK equation (1.5) are investigated through the conservative dynamical system (5.1) based on suitable values of the
parameters a, b, c, d, l, and v in Figures (3-7).

In Figure (3), we present phase space and variation of wave profile u for a quasiperiodic motion of the modified
ZK equation (1.5) for a = 0.01, b = 1, c = 1, d = 1, l = 0.3 and v = 6 with initial condition (3.1, 1.1,−0.1,−0.2).
In this case, the phase space forms a torus connected with two leafs faced to each other. In Figure (4), we present
phase space and variation of wave profile u for a quasiperiodic motion of the modified ZK equation (1.5) for
a = 0.01, b = 1, c = 1, d = 1, l = 0.4 and v = 6 with initial condition (3.1, 1.1,−0.1,−0.2). In this case, the
phase space looks like a heart-shape. In Figure (5), we present phase space and variation of wave profile u for
a quasiperiodic motion of the modified ZK equation (1.5) for a = 0.01, b = 1, c = 1, d = 1, l = 0.48 and v = 6
with initial condition (3.1, 1.1,−0.1,−0.2). In this case, the phase space forms a torus connected with two leafs
faced to each other with multi-bends. In Figure (6), we present phase space and variation of wave profile u for a
quasiperiodic motion of the modified ZK equation (1.5) for a = 0.01, b = 1, c = 1, d = 1, l = 0.494 and v = 6.
with initial condition (3.1, 1.1,−0.1,−0.2). In this case, the phase space forms a torus connected with two sets of
multi-torus structures faced to each other.
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Figure 3. Phase space of the system (5.1) for a = 0.01, b = 1, c = 1, d = 1, l = 0.3 and v = 6.
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Figure 4. Phase space of the system (5.1) for a = 0.01, b = 1, c = 1, d = 1, l = 0.4 and v = 6.
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Figure 5. Phase space of the system (5.1) for a = 0.01, b = 1, c = 1, d = 1, l = 0.48 and v = 6.
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Figure 6. Phase space of the system (5.1) for a = 0.01, b = 1, c = 1, d = 1, l = 0.494 and v = 6.

There exists a period-9 motion of the dynamical system (5.1) and corresponding phase portrait is shown in
Figure (7) for a = 0.01, b = 1, c = 1, d = 1, l = 0.5 and v = 6. with initial condition (3.1, 1.1,−0.1,−0.2). It is
important to note that all phase spaces, presented in Figures (3-7), are symmetric with respect to Y -axis. Such phase
spaces, presented in Figures (3-7), are observed for the first time in the literature of nonlinear modified ZK equation
(1.5) with higher order dispersion term.
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Figure 7. Phase space of the system (5.1) for a = 0.01, b = 1, c = 1, d = 1, l = 0.5 and v = 6.

5.2 Multistability of traveling wave motion
Multistability behaviors for the travelling wave solutions of modified ZK equation (1.5) are examined through

conservative dynamical system (5.1) based on fixed values of the parameters a, b, c, d, l, and v in Figure (8)
with different initial conditions: (a) (0.1, 1.1,−0.1,−0.2), (b) (0.5, 1.1,−0.1,−0.2), (c) (0.1, 0.1,−0.1,−0.2), (d)
(0.1, 0.1, 0.1,−0.2), (e) (0.1, 0.1, 0.1, 0.2), and (f) (0.1, 1.1, 0.9, 0.2). All these phase spaces are qualitatively different
from each other. It is important to note that all phase spaces of Figure (8) are symmetric in nature with respect to
Y -axis. This kind of multistability behaviors for the travelling wave solutions of the modified ZK equation (1.5)
with higher order dispersion term are reported for the first time in the literature.
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Figure 8. Phase spaces of the system (5.1) for a = 0.01, b = 1, c = 1, d = 1, l = 0.494 and v = 6. with different initial conditions: (a)
(0.1, 1.1,−0.1,−0.2), (b) (0.5, 1.1,−0.1,−0.2), (c) (0.1, 0.1,−0.1,−0.2), (d) (0.1, 0.1, 0.1,−0.2), (e) (0.1, 0.1, 0.1, 0.2), and (f)
(0.1, 1.1, 0.9, 0.2).

6. Discussion
The (3+1)-dimensional modified Zakharov-Kuznetsov equation is a mathematical model that describes the

propagation of nonlinear waves in a medium. It is an extension of the Zakharov-Kuznetsov equation, which is
a well-known model for the propagation of ion-acoustic waves in plasma. The modified Zakharov-Kuznetsov
equation takes into account the effects of both dispersion and nonlinearity, which can lead to the formation of
solitary waves. The physical meaning of the equation is that it describes the evolution of these solitary waves as
they propagate through the medium. Overall, the (3+1)-dimensional modified Zakharov-Kuznetsov equation is
a useful tool for studying the behavior of waves in a variety of physical systems, including plasmas, fluids, and
optical fibers. Its solutions can help researchers better understand the dynamics of these systems and predict how
they will behave under different conditions.

7. Conclusions
In this paper, by successfully implementing the two simplest methods, traveling wave solutions for the nonlinear

(3+1) dimensional mZK equation have been obtained. New soliton solutions are derived. For a clear understanding,
solutions are illustrated with details in 2D and 3D. These solutions have many applications and can supply a
beneficial contribution for researchers to examine and discover wave features in several areas of physics and applied
sciences. The bifurcation behavior of travelling wave solutions of the mZK equation was also analyzed. A collection
of new types of quasiperiodic motions was reported for the first time in the literature on the mZK equation with
higher-order dispersion terms. Considering fixed values of the parameters, the multistability behavior of the mZK
equation was shown at different initial conditions. In a conclusion, it can be easily seen that the methods used
in this paper may further be improved to solve and analyze the qualitative behavior of nonlinear traveling wave
solutions for other NLEEs in mathematical and plasma physics.
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