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Rough Convergence of Double Sequences in
n—Normed Spaces

Mukaddes Arslan* and Ramazan Sunar

Abstract

In this study, we introduced the concepts of rough convergence, rough Cauchy double sequence, and
the set of rough limit points of a double sequence, as well as the rough convergence criteria associated
with this set in n-normed spaces. Later, we proved that this set is both closed and convex. Finally, we
presented the relationships between rough convergence and rough Cauchy double sequence in n-normed
spaces.

Keywords: Cauchy sequence, Double sequence, n—normed space, Rough convergence
AMS Subject Classification (2020): 40A05; 40A35

*Corresponding author

1. Introduction

The concept of 2-normed spaces was initially introduced by Gahler [1, 2] in 1960. Since then, this concept has
been studied by many authors. Giirdal and Pehlivan [3] studied statistical convergence, statistical Cauchy sequence
and investigated some properties of statistical convergence in 2-normed spaces. Sahiner et al. [4] and Giirdal [5]
studied Z-convergence in 2-normed spaces. Giirdal and Acik [6] investigated Z-Cauchy and Z*-Cauchy sequences
in 2-normed spaces. Also Cakalli and Ersan [7] studied new types of continuity in 2-normed spaces. Misiak [8]
extended 2-normed spaces to n—normalized spaces. Since then, many researchers have studied this concept and
obtained various results [9, 10]. Later, some studies on 2-normed spaces were transferred to n—normed spaces.
For example, Reddy [11] investigated statistical convergence, the statistical Cauchy sequence and some properties
of statistical convergence in n—normed spaces. Hazarika and Savas [12] introduced the concept of A-statistical
convergence in n—normed spaces. They established some inclusion relations between the sets of statistically
convergent and A—statistically convergent sequences in [12]. Giirdal and Sahiner [13] studied ideal convergence in
n—normed spaces and presented the main results.

In finite-dimensional normed spaces, Phu [14] was the first to present the concept of rough convergence.

Let (x;);en be a sequence in some normed linear space (X, ||.||) and r be a nonnegative real number, then (z;)cy is

Received : 01-06-2023, Accepted : 13-07-2023, Available online : 02-11-2023
(Cite as "M. Arslan, R. Sunar, Rough Convergence of Double Sequences in n—Normed Spaces, Math. Sci. Appl. E-Notes, 12(1) (2024), 1-11")
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2 M. Arslan & R. Sunar

said to be r—convergent to ., denoted by x; — z., provided that
Ve>0, Jic e N: i >0, = ||la; —z|| <7 +e.
Also, the sequence (z},) is said to be a rough Cauchy sequence satisfying
Ve>0,3K. e N:k,m > K. = ||y —an|| <p+e

for p > 0. p is roughness degree of (z},). Shortly (z}) is called a rough Cauchy sequence. p is also a Cauchy degree
of (xx). In [14], he showed that the set LIM"z is bounded, closed, and convex, and he introduced the notion of
rough Cauchy sequence. He also investigated the relationships between rough convergence and other types of
convergence, as well as the dependence of LIM"z on the roughness degree r. In another paper [15] related to this
subject, he defined the rough continuity of linear operators and showed that every linear operator f : X — Y
is r—continuous at every point € X under the assumption dimY < oo and r > 0, where X and Y are normed
spaces. In [16], he extended the results given in [14] to infinite-dimensional normed spaces. Aytar [17] studied
rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained two
statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar
[18] studied that the r—limit set of the sequence is equal to the intersection of these sets and that r—core of the
sequence is equal to the union of these sets. In later times, Arslan and Diindar [19, 20] introduced the notions
of rough convergence, rough Cauchy sequence, and the set of rough limit points of a sequence and obtained the
rough convergence criteria associated with this set in 2-normed space first, then presented their work "On rough
convergence in 2-normed spaces and some properties.” They [21, 22] also examined rough statistical convergence
and rough statistical cluster points in 2-normed spaces. Sunar and Arslan [23] introduced the concept of rough
convergence in n—normed spaces by combining the concepts of rough convergence and n—normed spaces.

Pringsheim [24, 25] developed the idea of convergence for double sequences. He gave some examples of the
convergence of double sequences with and without the usual convergence of rows and columns and defined the
P—limit. N and R are used throughout the paper to denote the sets of all positive integers and all real numbers,
respectively.

A double sequence (xx )¢ ken in some linear space (X, ||.||) is said to converge to a point L € X in Pringsheim’s
sense, denoted by (zx) — L, if for any € > 0, there exists a K. € N such that

lwtr — L|| < e forall ¢,k > K.

Further, a double sequence (%) ken is said to be a Cauchy double sequence if for any ¢ > 0, there exists a K. € N
such that

|zex — Timol| < e forall ¢, k,m,v > K..

Contrary to the property of convergence in ordinary sequences, it is an important problem that convergent double
sequences do not have to be bounded. Hardy [26] introduced the concept of regular convergence, which also
needed the convergence of the rows and columns of a pair in addition to the Pringsheim convergence. Hence, this
problem was eliminated. Later, many researchers used double sequences in their works in the area of summability
theory. This work can be found in [27-32]. Malik and Maity [33] defined and exaimed rough convergence of double
sequences, the set of r—limit points of double sequences and rough Cauchy double sequences. These concepts,
given by Malik and Maity [33], are as follows:

Let (z4) be a double sequence in a normed space (X, |.|) and r be a non-negative real number. (x) is

r—convergent to L in X, denoted by z M, Lif

Ve>0,3K. e N:t, k> K, = ||lag, — L|| <7 +e.

A double sequence (z4) is called a rough Cauchy sequence with roughness degree p if for any € > 0, there exists
a K. € N such that

|zt — Tmwl| < p+e, forallt, k,m,v > K..

Diindar and Cakan [34, 35] introduced the notions of rough Z-convergence and the set of rough Z-limit points of
a sequence and studied the notions of rough convergence and the set of rough limit points of a double sequence.
Also, Kisi and Diindar [36] presented the notion of rough Z,—lacunary statistical limit set of a double sequence.
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By combining the concepts of rough convergence, double sequences and n—normed spaces, we introduce the
concept of rough convergence of double sequences in n—normed spaces. We obtain two convergence criteria
associated with the set of rough limit points of a double sequence in n—normed spaces. Later, we prove that
this set is both closed and convex. Finally, we investigate the relationships between a double sequence’s cluster
points and its rough limit points. The results and proof techniques presented in this paper are analogous to those
presented in Phu’s [14] paper. The concept of convergent double sequences given in our paper is used in the sense
of Pringsheim. So a convergent double sequence may not be bounded. Namely, the actual origin of most of these
results and proof techniques are the papers. The following theorems and results are extensions of the theorems and
results in [14]. Currently, we recall the idea of n—normed spaces, some fundamental definitions, and notations.(See
[8, 10, 11, 30, 33, 37]).

Definition 1.1. [37] Let n € N and X be a real vector space of dimension d > n (d may be infinite). A real-valued

function (X, ||e, e, ..., e|) on X" satisfying the following properties for all y, z, z1, z2, - -+ , Tp—1,2n € X
(i) ||z1, 22, - ,x,|| = 0if and only if z1, 22 - - - , x,, are linearly dependent,
(ii) ||x1, 2, - ,xy| is invariant under any permutation of 1, 2, -+ , Zp,
(iii) ||x1,22, *  ZTpn_1, x| = |a|||x1, 22, Tp_1, x| for all & € R,
(i) ||zy, @2, ne1,y + 2| < [lzy, 22, a1yl + g, @2, 201, 2|
is called an n—norm on X, and the pair (X, ||e, e, ... ||) is called an n—normed space.

An example of an n—normed space is X = R" equipped with the followig Euclidean n—norm:

Example 1.1.
T11... ZTin
|1, @2 Tp_1, Tn|| 5 =| det(zi;) |= abs Zo1... Top
Tnl--- Tpn
where z; = (241, - ,x) € R" foreachi=1,2,--- n.

In this study, we suppose X to be an n—normed space having dimension d; where 2 < d < oo.

Definition 1.2. [37] A sequence (z) in n—normed space (X, ||e, e, ..., o|) is said to be convergent to L in X if
lim ||J,‘k — L,Zg, e ,Z»,LH =0
k— o0
for every 2z, -+, z, € X. Insuch a case, we write klim zr = L and call L the limit of (x).
—00

Example 1.2. [23] Let z = (v},) = (kLJr17 +,..,%), L =(1,0,...,0) and z = (21, 22, ..., 2,). It is clear that (z}) is
convergent to L = (1,0,...,0) in n—normed space (X, ||o,0,...,0]).

Definition 1.3. [37] A sequence (x}) in n—normed space (X, ||e, e, ... o|) is said to be a Cauchy sequence in X if
for every € > 0, there exists a K. € N such that

ek — Tm, 22,23, ..., 20| <€
forall k,m > K, and every 2, 23, ..., 2, € X.
Definition 1.4. [23] Let (z1) be a sequence in n—normed linear space (X, ||e, e, ..., o||) and r be a non-negative real

number. (z) is said to be rough convergent (r-convergent) to L if
Ve>0,3K. eN: k> K. = |lag — L, 29, -+ , 25| <r+e

for every zs,--- , 2z, € X.
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Definition 1.5. [23] Let () be a sequence in n—normed space (X, ||e, e, ..., o||). (x)) is said to be a rough Cauchy
sequence satisfying

Ve>0,3K. e N:k,m > K. = || — T,y 22, ,20]| < p+e
for p > 0 and every 23, - - , 2z, € X. p is roughness degree of (xy).

Definition 1.6. (cf. [33]) A double sequence (z:) in (X, ||e, e, ..., ||) is said to be bounded if there exists a non-
negative real number M such that ||z, 22, -, 2n|| < M forall ¢,k € N.

Definition 1.7. [30] A double sequence () in n—normed space (X, ||e, e, ..., o|) is said to be convergent to L € X
if for each € > 0, there exists a K, € N such that

lxek — Lyzo, -+, 2] <€
forall t,k > K. and every 2z, - , 2, € X.
Definition 1.8. [30] A double sequence (z;;) in n—normed space (X, ||e, o, ..., o|) is said to be a Cauchy sequence
if for each € > 0, there exists a K. € N
Xt — Timw, 22,y 20| <€
forallt, k,m,v > K. and every zg,--- , 2z, € X.

2. Main results

We introduced the concepts of rough convergence, rough Cauchy double sequence and the set of rough limit
points set of a double sequence in this work and we obtained the rough convergence criteria associated with this
set in n-normed space. We later demonstrated that this set is both closed and convex. Finally, we investigated the
relationships between rough convergence and rough Cauchy double sequence in n-normed spaces.

Definition 2.1. Let (x¢) be a double sequence in n—normed space (X, ||e, 9, ..., o||) and r be a non-negative real

[|e,e,...,

number. (xy) is said to be rough convergent (r—convergent) to L denoted by z —>’°HT L if
Ve>0,3K. e N:t,k > K. = || — Lyza -+ 2| <7 +¢€ (2.1)
forevery za,--- , 2z, € X.

If (2.1) holds, L is an r—limit point of (x4 ), which is usually no more unique (for r > 0). So, we have to consider
the so-called r—limit set (or shortly »—limit) of (z) defined by

||@,0,...,0

LIM 2 o= {L € X sz 25" L} 2.2)

A double sequence () is said to be r—convergent if LIM] x4 # (. In this case, r is called the convergence degree
of the double sequence (z;,). For » = 0 we have the classical convergence in n—normed space again. But our proper
interest is the case » > 0. There are several reasons for this interest. For instance, since an originally convergent
double sequence (y;1) (with y;, — L) in n—normed space often cannot be determined (i.e., measured or calculated)
exactly, one has to do with an approximated double sequence (x) satisfying

Tk — Yer, 22, 20l <7

for all n and every zg, 23, . .., z, € X, where r > 0 is an upper bound of approximation error. Then, (x) is no more
convergent in the classical sense, but for every 2z, -- 2, € X,

||xtk - L5227' o 721'7,” S ||xtk — Ytk, 22, 7ZTL|| + ||ytk - L5227' o 7ZTL|| S r+ Hytk - L722a o 7Z7l||
implies that () is r—convergent in the sense of (2.1).

Example 2.1. The double sequence (z;) = ((—1)%,(=1)*,...,(~1)%*) is not convergent in n-normed space
(X, ||e,e,...,0|), butitis rough convergent to L = (0,0,...,0) for every zs,--- , z, € X. Itis clear that

0, if r<l1

LIM x4 =
et {[(r, =7y ..., =1), (r,ry...,7)], otherwise.
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Sometimes we are interested in the set of r—limit points lying in a given subset D C X, which is called r—limit
in D and denoted by

LIMD 2 i= {L € D s gy, "2 ). (2.3)

It is clear that
LIMX "2y = LIM" 2y and LIMZ "2, = D N LIM? 24y,

First, let us transform some properties of classical convergence to rough convergence in n—normed space
(X, ||e,0,...,0]). It is well known if a sequence converges then its limit is unique. This property is maintained for
rough convergence with roughness degree ~ > 0, but only has the following analogy.

Theorem 2.1. Let (X, ||e, o, ... o|) be an n—normed space and consider a double sequence (xx,) € X. We have diam (LIM; xyy,) <
2r. In general, diam(LIM, z) has no smaller bound.

Proof. We have to show that
diam(LIM] x) = sup {||z1 — x2, 22, , 2n|| : ®1, 22 € LIM] 2y, < 21}, (2.4)
where (X, ||o,0,...,0|)is an n—normed space and for every z3, - - , z, € X. Assume the contrary that
diam(LIM] xy) > 2r.

Then, there exist 21,z € LIM] zy, satisfying

d:=||z1 —22,22,..., 20| > 2r
for every 29, 23, - - , 2z, € X. For an arbitrary ¢ € (0, d_22’"), it follows from (2.1) and (2.2) that there is a K. € N such
thatfort, k > K.,
lxex — @1, 22, ..y 20|l <7+ € and ||xeg — @2, 22, ..., 25]| < T+ €
for every 22, 23, ..., zn, € X. This implies
lz1 — 22,22, s znll < |l — 21,22, 2l [|oee — 22,22, -+ 20|
< 2(r+eg)
d—2r

< 2r42( )

= d
for every zs, 23, ..., 2, € X, which conflicts with d = ||z1 — x2, 22, . .., z,||. Hence, (2.4) must be true. Consider a

convergent double sequence (x,)) with . llvim 2. = L. Then, for
Jk—00

By(L):={x1 € X :||w1 — L, 22,23,..., 2| < 7}
it follows from

|lzek — 21, 22, 23, - -+, 20| |z — Ly 20,23, ...y zn|| + [|1L — @1, 22, 23, - - -, 20|

INIA

lxex — Ly 20,23,y 20| + 7
for every zo,z23,...,2, € X and for z; € B, (L), from (2.1) and (2.2) that

LIM” 2 = B, (L).
Since diam(B,.(L)) = 2r, this shows that in general the upper bound 2r of the diameter of an r—limit set cannot be
decreased anymore. O

Obviously the uniqueness of limit (of classical convergence) can be regarded as a special case of latter property,
because if r = 0 then diam(LIM] z,;) = 2r = 0, that is, LIM] x, is either empty or a singleton.

The following property shows an analogy between boundedness and rough convergence of a double sequence
in n—normed space.
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Theorem 2.2. Let (X, |e, 0, ..., e|) be an n—normed space and consider a double sequence (z.) € X. If the double sequence
(x4 is bounded then there exists an r > 0, such that LIM] x4, # 0.

LIM@toka)rg, £,

Proof. For every z3,23,...,2, € X if
s := sup{|| Tk, 22, 23, - - -, 20| 1 t, k € N} < o0.
Then, LIM;, x4, contains the origin of X. So, LIM] x4, # 0. O

The converse of the previous theorem might not hold true since a convergent double sequence is not always
bounded. Let’s now introduce the notion of loosely boundedness for n—normed spaces, which is analogous to [33].

Definition 2.2. A double sequence () in X is said to be loosely bounded if there existan M € R anda K € N
such that ||z, 22, 23, . . ., 2n|| < M forall t, k > K.

Every bounded double sequence is obviously loosely bounded, but the converse is not true.

Theorem 2.3. Let (X, ||e, e, ..., 0|) be an n—normed space and consider a double sequence (x¢y,) € X. The double sequence
(241) is loosely bounded if and only if there exists an r > 0, such that LIM}, x4, # 0.

Proof. Let (z4;) be a loosely bounded double sequence. Then there exist an M € Rt and a K € N such that
lxek, 22, 23, - -+, 2| < M for all ¢,k > K. Then, LIMﬁlxtk contains the origin of X. So, LIM%o:tk # 0.

Conversely, let LIM; x4, # () for some r > 0. Let L € LIM], z4;,. We take ¢ = 1. Then there exists a K. € N such
that

|zt — Ly 2o, 23,... 20| <r+1lforallt, k > K..
So, (x4 ) is loosely bounded. O

Now let (¢;);en and (k) jen be two strictly increasing sequences of natural numbers. If (24 ): zen is a double
sequence in (X, ||e, e, ..., o||), then we can define (1, ), jen as a subsequence of (x4 )¢ xen. (See, [33]).

Proposition 2.1. Let (X, |[|e,e, ... e||) be an n—normed space and consider a double sequence (x1,) € X. If (v1,x,) is a
subsequence of (v, then,
LIM, 2 C LIM 4,1,

in n-normed space (X, ||e, e, ..., o||).
Proof. Let L € LIM] x1. Then for any € > 0, there exists a K. € N such that
lxek — Ly 22,23, .., 2a|l <7 +e

forall t,k > K. and every 2y, 23, ..., 2z, € X. Since (t;) and (k;) are strictly increasing sequences, so there exists a
ko € N such that t;, > K, and ki, > K.. Therefore, we get

lzen, — Ly 20, 23,..., 20| <7 +€
forall t;,k; > K. and every 23, 23,...,2, € X.S0, L € LIM; 24, . O
Theorem 2.4. Let (X, ||e, e, ... o|) be an n—normed space and consider a double sequence (xy,) € X. For all r > 0, the

r—limit set LIM x), of an arbitrary double sequence (xy,) is closed.

Proof. Let (ys,) be an arbitrary double sequence in LIM;, x;, which converges to some point L. For each ¢ > 0 and

every 2, z3,..., 2, € X, by definition there exist m. 5, k. /2 € N such that
3 €
||y7n5/2 - L,ZQ,Zg, s 7ZTL|| < 5 and ||Itk - ym/5/27227z3? e 7Zn|| <r-+ 5
whenever k > k. /5. Consequently for every 23, 23,..., 2, € X,
||xtk:_L7227~"7Z’n|| S ||‘rtk:_ym5/27227"'72n||+HymE/Q_L7227"‘72n||
< r+e¢

for k > k. /5. That means L € LIM, 24, too. Hence, LIM] 24, is closed. O
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Theorem 2.5. Let (X, |e, 0, ..., e|) be an n—normed space and consider a double sequence (xyy) € X. If
yo € LIM °x; and y1 € LIM]ayy,

then,
Yo := (1 — @)yo + ay; € LIMI™ 0Tz, for a € [0,1].

Proof. By definition, for every € > 0, g, 71 > 0 and every 29, 23, ..., 2, € X there exists a K. € Nsuch thatt,k > K.
implies

Ttk — Yo, 22, -+, 2nll <710+ and ||zw —y1,22,..., 2, <71+ ¢,
which yields also, for every 22, 23, ..., 2, € X,
Xtk — Yas 22, 23, -5 2nll < (L= Q)| Ttk — Yo, 225 23, - - - 2nll + | Ttk — Y1, 22, 23, - -+, 24|

< (I-a)(ro+e)+alri+e¢)
= (1I—-a)rg+ar +e.

Hence, we have
Yo € LIM{I-@rotary,

O
Theorem 2.6. Let (X, ||e, e, ..., e|) be an n—normed space and consider a double sequence (z41,) € X. LIM] xy, is convex.
Proof. In particular, for r = rg = r1, Theorem 2.5 yields immediately that LIM] z,; is convex. O

Theorem 2.7. If x, ”.’lf.u,, Ly and vy, l‘.7l>’.l‘r L. Then,

o ..o

() (o +y) "2 (Ly + Lo) and

llee,... 0]l

(i) a(xy) — . aly, (@ €R).

Proof. (i) By definition for every 22, 23,...,2, € X,
€
Ve >0,3K. e N:t,k > K. = ||xsr — L1, 22,23, ..., 20| < T1+§
and .
Ve >0,3J. e N:t,k > J. = |yt — Lo, 22,23, - - -, 20| <r2+§.
Let j = maz{K., J.} and r; + ro = r. Forevery ¢,k > j and every 2z, 23,...,2, € X we have
(@tr + yer) — (L1 + La), 20,23, .. zull = |lwex — L1, 20,23, -« oy 2ul| + [|ysr — L2, 22, 23, .. ., 20|
€ €
< r+ 3 +r2+ B
= r—+e
and so | |
(T +ysr) = (L1 + La).
(ii) It is obvious for o = 0. Let o # 0. Since
llo0,...ol
Ttk — rLl
for every e > 0 and every 29, 23, ..., 2, € X, 3K, € Nsuch that for every ¢,k > K., we have
r+e
thk — Ll, 22y R3y e ny ZnH <

o
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According to this, for V¢, k > K. and every z, 23, ..., 2z, € X, we can write
||Oé.’1/'t]€—OéL17ZQ,Z3,.--7Zn|| = |a||$tk_L17227233--'7Zn||
r+e
< o=
|al
= r+e.
So,

(quwyr) ”"L;'HT al;.

O

Following, we give some relations between convergence and rough convergence of double sequences in
n—normed space.

Theorem 2.8. Let (X, ||o, e, ..., o|) be an n—normed space and condiser a double sequence () in X. If ¢ is a cluster point
of (zek), then ||[L — ¢, 2o, -+ , 2 || < 7 for every L € LIM] xyy.

d—
Proof. Let L € LIM; xy. Assume the contrary thatd := ||L — ¢, z2,- -+ , z,|| > r. Lete = TT Since L € LIM], zy,
there exists a K. € N such that

|tk — Lyzo, -, zn]| <r+e
forallt,k > K. and every zs,- - , 2z, € X. Then we write
HL —C, 22, 7an S H-Ttk _La227' o 7an + ||$tk —Cy 22, 7Z’I’LH
forallt,k > K. and every 2, - - - , 2z, € X. If we rewrite the inequality, we get
||xtk707227"'aznu > HLfCaZQW";Zn”*”xtk*LvZQa"'>Zn||
d—r
> d—(r+ )
2
= ¢
forallt,k > K, and every z,- - - , z, € X which contradicts that c is a cluster point. So || L — ¢, z2, - - - , 2, || < r for
every L € LIM] x. O
Theorem 2.9. Let (X, ||e, e, ..., e|) be an n—normed space and condiser a double sequence () in X. Then (xyy,) converges

to L € X ifand only if LIM] z, = B,.(L).

Proof. The first part of the proof is obtained directly from the second part of Theorem 2.1, that is, if (z¢;) converges

to L € X, then LIM] 24, = B,(L). Let us now show the second part of the theorem.

Conversely, let LIM] x4, = B, (L). Now let’s show that () converges to L, that is, for every o > 0, there exists
a K, € Nsuch that ||x¢, — L, 22, -+ , z,|| < aforallt,k > K, and every zs,--- , z, € X. Now we can take a fixed
a > 0,such thatr + e < aforr > 0and € > 0. For L € LIM] x4, there exists a K, € N such that

lwte — Lyzo, -+ yzn|| <r4+e<a
forallt,k > K, and every 2y, - - , z, € X. Therefore (z4) converges to L € X. O
Definition 2.3. Let (z;4) be a double sequence in n—normed space (X, ||e, e, ..., o|). (x;) is said to be a rough

Cauchy double sequence with roughness degree p, if
Ve > 0,3K. e N:m,v,t,k > K. = ||Tmo — Ttk, 22,23, .-, 20| < p+ €

ishold for p > 0, L € X and every 22, 23, ..., 2, € X. pis also called a Cauchy degree of (z).
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Proposition 2.2. (i) Monotonicity: Assume p' > p. If p is a Cauchy degree of a given double sequence () in n—normed
space (X, ||e, e, ... 0], s0 o is a Cauchy degree of (xx).

(ii) Boundedness: A double sequence (x,) is loosely bounded if and only if there exists a p > 0 such that (x) is a p—
Cauchy double sequence in n—normed space (X, ||e, e, ... o).

Theorem 2.10. If () is rough convergent in n—normed space (X, ||e, e, ... o), ie., LIM] x4y, # 0 if and only if (x4y) is
a p-Cauchy double sequence for every p > 2r. This bound for the Cauchy degree cannot be generally decreased.

Proof. A Cauchy double sequence is loosely bounded. By Theorem 2.3, (z;) is rough convergent, that is, LIM, x4, #
(. So, it is sufficient to prove the first part of the theorem. Let L be any point in LIM], z;. Then, for all € > 0, there
exists a K. € Nsuch that m,v,t, k > K, implies

€ €
mev —L,23,23,... 7Zn|| <r+ 5 and thk —L,23,23,... 7zn|| <r+ 5
for every 23, 23, . . ., zn € X. Therefore, for m,v,t, k > K., we have
||-rmv _xtk7223Z37~-~7zn|| - ||-rmv _L+L_$tk7225Z37~'~7z’rL||
S ||xmv - L7227 23y ey an + ||L — Tthy B2, R3y o+ vy Zn”
€ €

< r+o+r+ 5

- 2 2

= 2r4c¢
for every 22, 23, ..., 2, € X. Hence, (z4) is a p-Cauchy double sequence for p > 2r. By Proposition 2.2, every p > 2r
is also a Cauchy degree of (z). It is clear that this bound 2 can not be generally decreased, similar to Proposition
5.11in [16]. O
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Abstract

By implying a-admissible mapping, this study expands and investigates generalized contraction map-
pings in quasi-metric spaces, aiming to establish the existence of fixed points. Moreover, we show that
the main outcomes of the paper encompass several previously reported results in the literature.
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1. Introduction and preliminaries

The Banach contraction principle, also known as the Banach fixed point theorem, is a fundamental result in
mathematics, specifically in the field of functional analysis. It is named after the Polish mathematician Stefan
Banach, who first stated and proved the theorem in 1922. The theorem provides conditions under which a mapping
using a complete metric space to itself has a unique fixed point. A fixed point of a mapping is a point in the
space that remains unchanged after applying the mapping. The proof of the Banach contraction principle typically
involves constructing a sequence of iterates using the contraction property and showing that it converges to the
fixed point. The completeness of the metric space is crucial for guaranteeing the convergence of the sequence.(see
[1-5]). But owing to the strict conditions of the metric space and the specific properties imposed, the necessity to
consider topological structures that have more flexible conditions than the metric space has emerged.Therefore,
many generalizations of the Banach fixed point theorem have been obtained in this space by defining the quasi
metric space. Furthermore, quasi-metric spaces are useful in numerous topics of mathematics, like optimization,
functional analysis and computer science. They provided a more general framework for studying approachs related
to distances and convergence, allowing for more flexible and adaptable notions of proximity. (see [6-11]). Now,
review the definitions and notations related to quasi-metric space:

A # () and p be a function p : A x A — R such that for each w,y,n € A:
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(w,w)
ii) p(w,v) < p(w,n) + p(n,7) (triangle inequality),
iii) p(w,7) = p(7,w) = 0 = w = v (asymmetry),
iv) p(w,7) =0=w=1y

If (i) and (ii) conditions are satisfied, then p it is called a quasi-pseudo metric(shortly q.-p.-m.), if (i), (ii) and (iii)
conditions are satisfied, then p is called quasi metric(shortly q.-m.), in addition if a q.-m. p satisfies (iv), then p is
called T1-q.-m.. It is evident that

¥V metric is a 7} quasi-metric,
VT quasi-metric is a quasi-metric,
V quasi-metric is a quasi-pseudo metric.

Then, the pair (A, p) is also said to be a quasi pseudo metric space(shortly q.-p.-m. s.). Moreover, each q.-p. m. p on
A generates a topology 7, on A the family of open balls as a base defined as follows:

{B,(w,e) :we Aand e > 0}

where B, (wg,e) = {v € A: p(wo,7) < €}

If pis a q.-m. on A, then 7, is a T topology, and if p is a T-q.-m., then 7, is a T topology on A.

If pis a q.-m. and 7, is T} topology, then p is T} -q.-m.. In this case, the mappings, p~ Y050 i Ax A— [0,00)
defines as

pHw,y) = plyw)
PP (w,y) = max{p(w,y),p " (w,7)}
pr(w,7) = plw,”)+p Hw,7)

are also q.-p.-metrics on A. If p is a q.-m., then p® and p, are (equivalent) metrics on A. To find the fixed point, the
most important part is to use the completeness of the metric space. But since there is no symmetry conditions in a
g.-m., there are many definitions of completeness in these spaces in the literature.(see [12-14] )

Let (A, p) be a q.-m. and the convergence of a sequence {w, } tow w. r. t.

7, called p — convergence and is defined w, %> w < p(w,w,) — 0,

1

,—1
7,-1 called p~* — convergence and is defined w, 5w e plwn,w) =0,

Tps called p® — convergence and is defined w, Lo o p(wn,w) = 0

for w € A. A more detailed explanation of some essential metric properties can be found in [15]. Also, a sequence
{wp} in A is called left(right) K —Cauchy if for every ¢ > 0,there exists ng € N such that Vn,k,n > k > ng(k > n >
no), p(wk, w,) < €. The left K-Cauchy property under p implies the right K-Cauchy property under p~!. Assuming

00
Z p(wm Wn-‘rl) < o0,
n=1

the sequence {w,, } in the quasi-metric space (A, p) is left K-Cauchy.

In a metric space, every convergent sequence is indeed a Cauchy sequence, but since this may not hold true in
g--m., and so there have been several definitions of completeness. Let (A, p) be a q.-m.. Then (A, p) is said to be
left(right) K (resp. (M)(Smyth))- complete if every left(right) K -Cauchy sequence is p(resp. (p~1)(p*)) -convergent.

Indeed, now explain the approach of a-admissibility as constructed by Samet et al. [16].

Let A # 0, Y be a self-mapping (a mapping from A to itself), and o : A x A — [0,00) be a function. In this
context, T is said to be a-admissible if it satisfies the following condition:

If o(w,y) > 1, then a(YTw,Ty) > 1.
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By introducing the approach of a-admissibility, Samet et al. [16] were able to establish some general fixed point
results that encompassed many well-known theorems of complete metric spaces. These fixed point results provide
a framework for studying the existence and properties of fixed points for self-mappings on a complete metric space,
using the approach of a-admissibility.(see [17-23])

In addition to these, in the study conducted by Jleli and Samet in [24], they they led to the introduction of a new
type of contractive mapping known as a #-contraction. This f-contraction serves as an attractive generalization
within the field. To better understand this approach, let’s review some notions and related results concerning
f-contraction.

The family of 8 : (0, 00) — (1, c0) functions that satisfy the following conditions can be denoted by the set ©.

(01) 6 is nondecreasing;

(62) Considering every sequence {s,} C (0,00), lim,_ o 5, = 07 if only if lim,, o0 0(3,) = 1;

(03) There exist 0 < p < 1 and S € (0, oo} such that lim,,_,o+ 0(’2,_1 = 8.

If we define (5) = eV* for s < 1 and 0(3) = 9 for » > 1,then § € ©.

Let 0 € © and (A, p) be a metric space. Then T : A — A is said to be a §-contraction if there exists 0 < § < 1 such
that

0(p(Ye, 7)) < [0(p(w ) (1.1)
for each w,y € A with p(Tw, Tv) > 0.

By choosing appropriate functions for 6, such as 6, () = eV* and 0y () = eY*¢”, it is possible to obtain different
types of nonequivalent contractions using (1.1).

Indeed, Jleli and Samet proved that every §-contraction on a complete metric space possesses a unique fixed
point. This result provides a valuable insight into the uniqueness and existence of fixed points for a wide range of
contractive mappings. If you are interested in exploring more papers and literature related to §-contractions, there
are several resources available (see [25, 26]).

2. The results

Our basic results are based on a novel approach that we have developed.
Let (A, p) beaq.-m., T : A — A be a given mapping and o : A x A — [0, 00) be a function. We will consider the
following set
To ={(w,7) €A X A:a(w,y)>1and p(Tw, Tv) > 0}. (2.1)

Let (A, p) beaq-m. and T : A — A be a mapping satisfying
p(w,7) = 0= p(Yw, Tv) = 0. (2.2)

a:AxA—[0,00)and § € O© be two functions. Then we say that T is a generalized (o — 6,)-contraction(shortly g.
(ov — 8,)-c. ) if there exists a constant 0 < § < 1 such that

0(p(Yw, T7)) < [B(M(w,7))]’, (2.3)

for each w, v € Y, where

[p(Twr,) + p(T%w)]} |

N | =

M(w,7) = max {p<w,w,p<rw,w>,p<mw,

Before presenting our main results, let us recall some important remarks:
o If (A, p)is a T1-q.--m., then every mapping T : A — A satisfies the condition (2.2).
e Itis clear from (2.1), (2.2) and (2.3) that if T is an (¢, 8,,)-contraction on a q.-m. (A, p), then
p(Tw, 1) < p(w,7),
for each w,y € A with a(w,v) > 1.

By utilizing the approach of g. (o — 6,)-c., we will now present the following theorem.

Theorem 2.1. Let (A, p) be a Hausdorff right K-complete T\-q.-m., and let T : A — Abea g. (o — 0,)-c.. Presume that
T,-continuous and Y is a-admissible. If there exists wy € A such that o(Ywo,wo) > 1, then Y has a fixed point in A.
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Proof. Let wy € A be a such that a(Ywp,wp) > 1. Define a sequence {w, } in A by w,,+1 = Yw,, for each n in N. Since
T is a-admissible then a(w;,11,wy,) > 1 for each n in N. If there exist k € N with p(w,, Yw,) = 0 then w,, = Tw,,
ssince p is 11 q.-m.. Hence, wy, is a fixed point of T. Presume p(w,,, Tw,) > 0 for each n in N. In this case the pair
(Wn41,wn) for each n in N belongs to T,. Since T is g. (o — 8,)-c. and (61), we obtain

0(p(wni1,wn)) < [O(M(wn,wn-1))]’

e e v i vl

< [a(maX {P(Wn+1a Cdn), p(w’ru wn—l)}]é . (24)

If max {p(wn+1,wn), p(Wn, wWn—1)} = p(Wnt1,wn), using (2.4), we get

O(p(wny1,wn)) < [0(p(w,1+1,wn)]5 < O(p(wWnt1,wn)),

which is a contradiction. Thus, max {p(wnt1,wn), P(Wn,wn—1)} = p(wn,wn—1), and then we obtain

0(p(wns1,wn)) < [0(p(wn,wn-1))]° , (2.5)

for each n in N. Denote f,, = p(wp+1,ws,) for nin N. Then f,, > 0 for each n in N and repeating this process with
using (2.5), we have

0(f) < 10(fo))”

ie.

1< 0(fa) < [6(f0))"" (2.6)
for each n in N. When taking the limit as n — oo in (2.6), we obtain
lim 6(f,) = 1. (2.7)
n—oo

Using (f2), we can deduce that lim,,_, f,, = 0T, thus using (63), there exist p € (0,1) and 3 € (0, oc] such that

e(fn) -1

O A

Presume that 8 < oco. In this case, let F' = g > 0. Using the definition of the limit, there exists ny in N such that, for
eachng <n,

—_ < F.
‘(nv o=
This implies that, for each ng < n
o(fn) -1
— L >3 -F=F.
G ="

Then, for each ng < n ,
n(fa)? < Dnl0(fn) —1],

where D = 1/F.
Presume now that 8 = co. Let I' > 0 be an arbitrary positive number. Using the definition of the limit, there
exists ng in N such that, for each ng < n,
9(f n) —1 >F

(fa)r —

This implies that, for each ng < n

where D = 1/F.
Thus, in all cases, there exist D > 0 and ng in N such that

nlfal” < Dnlf(fn) — 1],
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for each ng < n . Using (2.6), we obtain

nlfa)” < Dn [[0(f0)" ~ 1],
for each ng < n . Letting n — oo from the given inequality, we have

lim n[f,]" =0.

n—oo
Thus, there exists n; in N such that n [f,,]’ < 1 for each n > ny, so we have, for each n > ny,

1

f =

(2.8)

In order to show that {w,} is a left K-Cauchy sequence, consider m, n in N such that m > n > n;. Using the
triangular inequality for p and using (2.8), we have

N

pwm,wn) < p(Wim, Wim—1) + pP(Wr—1,Wm—2) + -+ + p(Wnt1,wn)
= fomatfmt+t+fa

m—1

Zfz<zfz—z 1/p

By the convergence of the series Z 75, We get p(wm,wy) — 0as n — oo. This yields that {w,, } is a right K-Cauchy

sequence in the q--m. (A, p). Smce (A, p) is a right K-complete, there exists € A such that the sequence {w, } is
p-converges to n € A; that is, p(1,w,) — 0 as n — oco. Since T is 7,-continuous then p(Tn, Yw,) = p(Tn,wp41) = 0
as n — oo. Since A is Hausdorff, we get Tn) = n. O

In Theorem 2.1, if we consider the approach of 7,-1-continuity, we can derive the following theorem.

Theorem 2.2. Let (A, p) be a right M-complete T1-q.-m. such that (A, 7,-1) is Hausdorffand T : A — Abeag. (o —0,)-c..
Presume that Y is 7,-1-continuous and c-admissible. If there exists wy € A such that o(Ywo,wo) > 1, then Y has a fixed
point in A.

Proof. Similar to the proof of Theorem 2.1, we can take iterative sequence {w, } right K-Cauchy. Since (A, p) right
M-complete, there exists n € A such that {w,} is p~!-converges to 7, that is, p(w,,n) — 0 as n — oo. Using
T,-1-continuity of T, we get p(Yw,,Tn) = p(wns1,Tn) — 0asn — oo. Since (A, 7,-1) is Hausdorff, we get
n="_n. O

Theorem 2.3. Let (A, p) be a right Smyth complete Ty q.-m. and Y : A — Abea g. (o — 8,)-c.. Presume that Y is 7, or
T,-1-continuous and a-admissible. If there exists wy € A such that a(Ywo,wo) > 1, then Y has a fixed point in A.

Proof. Similar to the proof of Theorem 2.1, we can take iterative sequence {w, } right K-Cauchy. Since (A, p) is right
Smyth complete, there exists 7 € A such that {w, } is p*-converges to n € A; that is, p*(w,,n) — 0asn — oo. If T is
T,-continuous, then

p(Tn, Ywy,) = p(Tn,wpt1) — 0asn — oc.

Therefore we get,
p(Ln,n) < p(Tn,wni1) + p(wnt1,m) = 0asn — oo.

If T is 7,-1-continuous, then
p(Ywy,, Tn) = p(wnt1, Tn) — 0as n — oo.

Therefore we have,
p(n, Tn) < p(n, wnt1) + p(Ywni1, Tn) — 0 as n — oo.

Since T is 11-q.-m., we obtain Y7 = 1. O

Based on Theorem 2.1, we can derive the following corollaries.
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Corollary 2.1. Let (A, p) be a Hausdorff right K-complete Ty-q.-m. and Y : A — A be given a mapping that satisfies

0(p(Yw, T7)) < [B(t1p(w,7) + tap(Tw,w) + t3p(T,7), ta [p(Tw, ) + p(Tv,w)]))’, (2.9)

foreach w,y € A, where 0 < § < 1, t1,ta,t3,ta > 0, and t1 + to + t3 + 2t4 < 1. Presume that Y is 7,-continuous and
a-admissible . If there exists wy € A such that a(Two,wo) > 1, then Y has a fixed point in A.

Proof. for each w,~y € A, we have

tlp(wa ’V) + t2p(T°‘)a UJ) + t3p(T73 ’Y)v t4 [p(Twa ’V) + p(T’y, UJ)}

1
< (1 +tp +t3 + 2t4) max {p(w, ) p(Yw,w), p(T7,7), 5 [p(Tw,7) + p(T%w)]}
< M(w,7).
Then using (61) we see that (2.3) is a consequence of (2.9). Therefore, the proof is concluded. O

Corollary 2.2. Let (A, p) be a Hausdorff right K-complete Ty-q.-m. and T : A — A be given a mapping that satisfies
p(Yw, Tv) < tip(w,7) + t2p(Yw,w) + t3p(L,7),

foreach w,vy € A, where t| + to +t3 > 0and t1 + ta + t3 < 1. Presume that Y is 7,-continuous or c-admissible. If there
exists wo € A such that a(Ywo,wo) > 1, then Y has a fixed point in A.

Proof. 1f 6(5) = eV*and § =/t + {2 + 13, since p(Yw, Yv) < (t1 + ta + t3) M (w, ), using Theorem 2.1, then the
proof is concluded. O

Corollary 2.3. Let (A, p) be a Hausdorff right K-complete Ty-q.-m. and Y : A — A be given a mapping that satisfies
p(Tw, Tv) < Lmax{p(Yw,w), p(Tv,7)}

for each w,~y € A, where L € [0,1). Presume that Y is 7,-continuous or a-admissible. If there exists wy € A such that
a(Ywo,wo) > 1, then Y has a fixed point in A.

Proof. If 6(3) = eV* and § = V'L, since p(Yw, Tv) < AM (w, ), using Theorem 2.1, then the proof is concluded. [

Remark 2.1. By considering the notion of left completeness in the sense of K, M and Smyth, we can extend similar
fixed point results to the setting of q.- m. spaces.
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In this paper, we defined the concepts of lacunary Z*-convergence and strongly lacunary Z*-convergence.
We investigated the relations between strongly lacunary Z-convergence and strongly lacunary Z*-
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1. Introduction and definitions

Throughout the paper N and R denote the set of all positive integers and the set of all real numbers, respectively.
The concept of convergence of a sequence of real numbers has been extended to statistical convergence indepen-
dently by Fast [1] and Schoenberg [2]. The concept of Z-convergence in a metric space, which is a generalized
from of statistical convergence, was introduced by Kostyrko et al. [3]. Later it was further studied many others.
Nabiev et al. [4] studied on Z-Cauchy sequence and Z*-Cauchy sequence with some properties. Recently, Das et
al. [5] introduced new notions, namely Z-statistical convergence and Z-lacunary statistical convergence by using
ideal. Also, Yamanci and Giirdal [6] introduced the notions lacunary Z-convergence and lacunary Z-Cauchy in
the topology induced by random n-normed spaces and prove some important results. Debnath [7] studied the
notion of lacunary ideal convergence in intuitionistic fuzzy normed linear spaces as a variant of the notion of ideal
convergence. Tripathy et al. [8] introduced the concept of lacunary Z-convergent sequences. A lot of development
have been made about the statistical convergence and ideal convergence defined in different setups [9-11].

In this paper, we defined the concepts of lacunary Z*-convergence and strongly lacunary Z*-convergence. We
investigated the relations between strongly lacunary Z-convergence and strongly lacunary Z*-convergence. Also,
we defined the concept of strongly lacunary Z*-Cauchy sequence and investigated the relations between strongly
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lacunary Z-Cauchy sequence and strongly lacunary Z*-Cauchy sequence.

Now, we recall some basic concepts and definitions (see [3, 4, 6-8, 12-21]).
A family of sets Z C 2" is called an ideal if and only if

(i) 0 € T,

(i) If A,BeZ,then AUB €T,

(tit) f A€ Tand B C A, then B € 7.

An ideal is called non-trivial if N ¢ 7 and non-trivial ideal is called admissible if {n} € Z for each n € N.
A family of sets F C 2V is a filter if and only if

()0 ¢ F,

(i) If A,Be F,then ANB € F,

(1)) If A€ Fand B D A, then B € F.

7 is a non-trivial ideal in N, then the set

F(I)={M c X : BA e IT)(M = X\A)}

is a filter in N, called the filter associated with Z.

An admissible ideal Z C 2" is said to satisfy the property (AP) if for every countable family of mutually disjoint
sets { A1, Aa, - - - } belonging to Z there exists a countable family of sets { By, B, - - - } such that A;AB; is a finite set
forjeNand B= |J B; € 1.

j=1

Let Z C 2" be an admissible ideal. A sequence (z,,) of elements of R is said to be Z-convergent to L € R if for

eache >0
A)={neN: |z, - L| >¢c} €T.

Let Z C 2" be an admissible ideal. A sequence (z,,) of elements of R is said to be Z-Cauchy sequence if for each

€ > 0 there exists a number N = N(¢) such that

A()={neN: |z, —zn| >} €T

A sequence (z,,) is said to be Z*-convergent to L if and only if there exists a set M = {m; < mg < --- <my, <
--} CN, M € F(Z) such that

lim z,,, = L.
k—o00

A sequence (z,,) is said to be Z*-Cauchy sequence if and only if there exists a set M = {m; < mg < --- <my <
.-} € N, M € F(T) such that the subsequence z); = (z,,) is an ordinary Cauchy sequence, that is,

kggoo |2y, = Zm, | = 0.

By a lacunary sequence we mean an increasing integer sequence 6 = {k, } such that
k‘o = 0and hr = k‘,- — k'r—l — 0
as r — oo. Throughout this paper the intervals determined by 6 will be denoted by

Ir = (kr—h kr}

and ratio kfil will be abbreviated by g,.

Throughout the paper, we take § = {k,.} be a lacunary sequence and Z C 2 be an admissible ideal.
A sequence (x,,) of elements of R is said to be strongly lacunary convergent to L € R if

A sequence () is said to be a strongly lacunary Z-convergent to L, if for every ¢ > 0 such that

1
{rEN:hZ|xn—L|ZE}EZ.

r nel,
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In this case, we write x,, — L[Z].
A sequence (z,,) is said to be a strongly lacunary Z-Cauchy if for every € > 0 there exists a number N = N (¢)

such that .
{rEN:hZ xn—a:Nza}EI.

r nel,

Lemma 1.1. [4] Let {P;}5° be a countable collection of subsets of N such that P; € F(Z) for each i, where F'(I) is a filter
associate with an admissible ideal T with property (AP). Then there exists a set P C N such that P € F(T) and the set P\ P,
is finite for all i.

2. Main results

In this section, firstly, we gave the concepts of lacunary Z*-convergence and strongly lacunary 7*-convergence.
We investigated the relations between strongly lacunary Z-convergence and strongly lacunary Z*-convergence.
Then after, we gave the concept of strongly lacunary Z*-Cauchy sequence and investigated the relations between
strongly lacunary Z-Cauchy sequence and strongly lacunary Z*-Cauchy sequence.

Definition 2.1. [12]. A sequence (z,,) is said to be lacunary Z*-convergent to L if and only if there exists a set
M={m; <mg <---<my <---} C Nsuch that for theset M’ = {r e N: my, € I,} € F(Z) we have

In this case, we write z,, — L(Z}).

Definition 2.2. A sequence (z,,) is said to be strongly lacunary Z*-convergent to L if and only if there exists a set
M={m; <mg <---<my <---} C Nsuch that for the set M’ = {r e N: my, € I,} € F(Z) we have

In this case, we write x,, — L[Z;].
Theorem 2.1. If a sequence (x,) is strongly lacunary T*-convergent to L, then it is lacunary Z*-convergent to L.

Proof. Let z, — L[Z;]. Then, there exists aset M = {m; < my < --- < my < ---} C N such that for the set
M ={reN:myel.}eFZ)(ie.H=N\M €I)and for every ¢ > 0 thereis a ry = ro(¢) € N such that for all
r > rg we have

1
W > Jam, — L <e, (reM).
r kel,

Then, we have

< oYl L

" kel
< g (reM)

%Zwmk—[/

kel,

for every e > 0 and all 7 > ry = r¢(¢) and so z,, — L(Zj). O
Theorem 2.2. If a sequence (x,) is strongly lacunary I*-convergent to L, then it is strongly lacunary T-convergent to L.

Proof. Let x,, — L[Z}]. Then, there exists a set M = {m; < my < --- < my < ---} C N such that for the set
M ={reN:myel.} e F(Z)(ie.H=N\M € I)and for every ¢ > 0 thereis a ry = ro(¢) € N such that for all
r > ro we have

1
e > |wm, — LI <&, (reM).
kel,
Then,
1
Ae) = {TGN: " > [@m, — I Zs} CHU{1,2,--- ,ro}.

" kel
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Since 7 is an admissible ideal, we have
HU{1,2,--- 1o} €T

and so A(e) € Z. Hence, x,, — L[Zy]. O

Theorem 2.3. Let T be a admissible ideal with property (AP). If (x,,) is strongly lacunary I-convergent to L, then it is
strongly lacunary T*-convergent to L.

Proof. Assume that z,, — L[Zy]. Then, for every ¢ > 0,

T(e):{reN:hlecn—Mzs}eI.

Put

Tl{TGN}ijnL|21} andTp{TEN:;S}ijTLL|<1}’

r nel,

for p > 2and p € N. Itis clear that 7; N T; = () for i # j and T; € T for each ¢ € N. By property (AP) there is a
sequence {V}, },en such that T;AV; is a finite set for each j € N and

V:fjvjez.

Jj=1

We prove that,

1
for M’ = N\V € F(ZI). Let § > 0 be given. Choose ¢ € N such that p < 0. Then,

1 ot
{reN:h_an—L>5}cHTj.

" nel,

Since T;AVj is a finite set for j € {1,2,--- , ¢ — 1}, there exists ry € N such that

q—1 qg—1
UTj N{reN:r>nr}= UVJ N{reN:r>nr}.
Jj=1 j=1

If r > rgand r ¢ V, then

qg—1 q—1
ré¢ UVj and so r ¢ UTJ
j=1 j=1

We have 1 )
nel,
This implies that
. 1
(T’GM’) r nel,
Hence, we have x,, — L[Z;]. This completes the proof. O

Definition 2.3. [12]. A sequence () is said to be lacunary Z*-Cauchy sequence if and only if there exists a set
M={m; <mg <---<my <---} CNsuch that for the set M/ = {r e N: my, € I.} € F(Z) we have

1
lim — Z (Tmy, — Tm,) = 0.

r—00 hr
(T‘E]W ) k,pel,
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Definition 2.4. A sequence (z,,) is said to be strongly lacunary Z*-Cauchy sequence if and only if there exists a set
M={m; <mg <---<my <---} C Nsuch that for theset M’ = {r e N: my, € I,} € F(Z) we have

D e, = om,| =0
(reM’) k,pel,.

Theorem 2.4. If the sequence (x,,) is strongly lacunary T*-Cauchy sequence, then (x,,) is lacunary T*-Cauchy sequence.
Proof. Suppose that (z,) is strongly lacunary Z*-Cauchy sequence. Then, for every ¢ > 0, there exists a set
M={m; <mg <---<my <---} C Nsuch that for theset M’ = {r e N: my, € I,.} € F(I)
1 /!
— Z | T, — Tm, | <&, (reM)
" kpel,

for every e > 0 and all » > ry = (). Then, we have

hi Z (Tmy — Zm,)| < hi Z |Zmy, — Tm,

" k,pel, " k,pel,
< g (reM)
for every e > 0 and all 7 > ry = r¢(¢) and so (x,,) is lacunary Z*-Cauchy sequence. O

Theorem 2.5. If the sequence (x,) is strongly lacunary T*-Cauchy sequence, then (x,,) is strongly lacunary Z-Cauchy
sequernce.

Proof. Suppose that (z,,) is strongly lacunary Z*-Cauchy sequence. Then, for every ¢ > 0, there exists a set
M ={m; <mg <---<my <---} C Nsuch that for theset M' = {r e N:my, € .} € F(I)
1 !/
— Z [Ty, — Zm, | <&, (re M)
r k,p€l,
forevery e > 0and all r > ro = r¢(g). Let N = N(¢) € I,,41. Then, for every ¢ > 0 and all » > r¢o = r¢(e)
1
W Z |Tm, —zN| <e, (reM).
" kel

Now, let H = N\ M. Ttis clear that H € Z. Then,

1
A(é?){TENZhZh:nxN|25}CHU{1a2a"'7TO}'

r nel,

Since 7 is an admissible ideal, we have
HuU{1,2,--- 1m0} €T

and so A(e) € Z. Hence, (z,,) is strongly lacunary Z-Cauchy sequence. O

Theorem 2.6. If T admissible ideal with property (AP). The sequence (x,,) is strongly lacunary Z-Cauchy sequence, then
(xy,) is strongly lacunary T*-Cauchy sequence.

Proof. Assume that (z,,) is strongly lacunary Z-Cauchy sequence. Then, for every ¢ > 0 there exists an N = N (¢)

such that
1
A(s)_{reN:hZ |zn—a:Nza}eI.

r nel,
Let

1 1 )
B:{TENMZ |x7l_$77li|2i}5 Z:1727"'7

nel,
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where m; = N <1) It is clear that P; € F(Z) fori = 1,2,---. Since Z has the (AP) property, then by Lemma 1.1
i

there exists a set P C N such that P € F(Z) and P \ P, is finite for all .. Now, we show that

. 1
rll>n<}o hi § |$n - l‘m‘ =0.
(repP) r n,mel,

2
To prove this let e > 0, j € N such that j > - If r € P then P\ P, is a finite set, so there exists 7y = 7(j) such that
r € Pj for all r > ry(j). Therefore, for all r > 74(j)

—Z|xn xm1\<fand—2\xm me|<
T nel, " mel,
Hence, for all 7 > r((j) it follows that

1

hi Z |xn - l‘m = h Z |In $7n]| + Z |xm xm;
" n,mel, nel, " mel,
1 1
< -+ =<e
J J

Thus, for any ¢ > 0 there exists 79 = 7(¢) such that for all > ry(¢) and r € P € F(I)
1
7w Z [T — x| < €.
r n,mel,
This shows that the sequence (x,,) is strongly lacunary Z*-Cauchy sequence. O
Theorem 2.7. If a sequence (x,) is strongly lacunary Z*-convergent to L, then (xy,) is strongly lacunary Z-Cauchy sequence.

Proof. Let z,, — L[Z}]. Then, there exists aset M = {my; < mg < --- <my < ---} C N, M € F(Z) such that for the
set M' ={r e N:my, € I,} € F(Z) we have

It shows that there exists 7o = ro(¢) such that

—Z|xmk— 7, (reM)

" kel,

for every e > 0 and all r > ry. Since

Fl=
M
)
5
H
el
IA

= Z |Zm, — L|+— > fam, -

k.pEl, " kel, " pel,

+5=c (reM)

N ™

for all » > rg, so we have

1
Jim, = Y fom = 2m, | =0
(reM") " k,pel,

ie., (z,) is a strongly lacunary Z*-Cauchy sequence. Then, by Theorem 2.5 (x,,) is a strongly lacunary Z-Cauchy
sequence. 0

Conclusions and future work

We investigated the concepts of strongly lacunary Z*-convergence and strongly lacunary Z*-Cauchy sequence.
These concepts can also be studied for the double sequence in the future.
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Abstract

A composition law, inspired by the Farey addition, is introduced on the set of Pythagorean triples. We
study some of its properties as well as two symmetric matrices naturally associated to a given Pythagorean
triple. Several examples are discussed, some of them involving the degenerated Pythagorean triple (1,0, 1).
The case of Eisenstein triples is also presented.
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1. The Farey composition law on Pythagorean triples
Fix the set N?(<) := {(p, ¢) € N* x N*; p < ¢} and the map:
P:N*(<) = (N")?, P(p,q) = (¢* — p*, 2pq,p” + ¢°).

It is well-known that P provides a parametrization (up to a strictly positive multiplicative factor) of the set of
Pythagorean triples PT := {(a,b,c) € (N*)3;2|b,a® 4+ b*> = ¢%}. If, in addition ged(p, ¢) = 1 with 2 4 (¢ — p) then
(a, b, c) is a primitive (i.e. ged(a, b) = 1) Pythagorean triple.

The aim of this short note is to study the transport of a natural sum from N?(<) to PT. Namely, defining
(p,q)® @, ¢) = (p+p,q+ )it follows the pair (PT, &) with:

(a,b,¢,) @ (a0, ¢) i= (a", 0", ¢") = (g + ) = (0+1)? 20+ D) a+d), (p+ 1) + (g + ).
More precisely, we have:
a":=a+d +2(q¢d —pp), V' :=b+V+20pd +q), " =c++2(qqd +pp). (1.1)
Remark 1.1. If the initial pair (p, ¢) from N?(<) is considered as the ratio £ € (0,1) then the sum:

/

p 0P _ptr
q+q

¢ ¢
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(Cite as "M. Crasmareanu, The Farey Sum of Pythagorean and Eisenstein Triples, Math. Sci. Appl. E-Notes, 12(1) (2024), 28-35")



https://doi.org/10.36753/mathenot.1316554

The Farey sum of Pythagorean and Eisenstein triples 29

is called the mediant in [1] due to the double inequality:

9 q+4q q

s

+l /
p<pp p

But we prefer to use the name of Farey sum after [2, p. 209] although, obviously, the initial sum on N 2(<) is the
restriction of the additive law of the real 2-dimensional linear space R?; another source for the applications of the
Farey sequences in hyperbolic dynamics is [3]. Our choice for this name is also inspired by the very nice picture of
page 23 from the book [4] illustrating a relationship between the circular Farey diagram and the Pythagorean triples.
We point out that a group structure on the subset of primitive Pythagorean triples is considered in [5]. O

Properties 1.1. 1) The composition law @ on PT is commutative but without a neutral element.
2) The height of the Pythagorean triple pt := (a, b, c) is h(pt) := ¢ — b = (g — p)?. For our triple of Pythagorean triples
it follows:
h((pt)") = h((pt)") + h(pt) — 2(q — p)(¢" = P') < h((pt)") + h(pt).
3) The usual CBS inequality provides an upper bound for the resulting Pythagorean triple in terms of the given
(a,b,c,),(a',b,c) € PT:
' <a+d+2Ved, B <b+b +2Ved, V' <o+ (1.2)

with equality in the last relation if and only if ¢ = ¢/ which, in turn, yields ¢’ = 4c = 4¢’ as consequence of the
relation:
(a,b,c) @ (a,b,c) = 4(a,b,c).

O

Example 1.1. 1) Since (1, 3) @ (2,3) = (3,6) we have 2(4,3,5) @ (5,12,13) = 9(3,4, 5).

2) The sum (1,2) & (1,3) = (2,5) gives (3,4, 5) $ 2(4,3,5) = (21,20, 29).

3) The restriction of the complex multiplication to the unit circle S! gives a group multiplication on the set of all
Pythagorean triples:

(a,b,c) ® (a/,b,¢) = (ad’ — b, ab' +a'b,cc’), (a,b,c) ® (a,b,c) = (a® — b*,2ab, ¢* = a® + b*)

having as neutral element the degenerate Pythagorean triple (1,0, 1) which can be considered as the image through
the map P of the pair (p,¢) = (0, 1). For our sum we have:

(a,b,¢) ®(1,0,1) = (a+2¢+ 1,0+ 2p,c+2¢+1), (3,4,5) @ (1,0,1) =2(4,3,5).
4) Fix k € N* and a triangle A. Then we call A as being a k-triangle if its area A is k times its semi-parameter
s = 1(a+b+ c). Let us find the k-rectangular triangles for a prime number k. From ab = k(a + b + c) it results:
plg—p) =k
with only two solutions:

=k+1), (pt)1=(k(k+2),2(k+1),k*+2k+2), A =k(k+1)(k+2),
E+1), (pt)2=(2k+1,2k(k+1),2k> +2k+1), Ay =k(k+1)(2k+1)

Hence, their Farey sum is:
(pt)r @ (pt)2 = (k+1)%(3,4,5).
Also concerning the area there exist pairs of Pythagorean triples sharing it; for example the area A = 210 is provided

by:
(p1=2,¢1=5) (pt)1 =(21,20,29), (p2=1,2=6), (pt)2=(35,12,37)

and their Farey sum is:
(p=3,¢=11), pt=2(56,33,65).

5) Let (F},)nen be the Fibonacci sequence and let p = p,, := F,,41 < ¢ = ¢, := Fy42. It results the n-Fibonacci-
Pythagorean triple (Fpt), = (an,bn, cn):

an = FnFn+3a bn = 2Fn+1Fn+27 Cp = F7%+1 + F3+2
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for which we have the Farey sum of Fibonacci type:

(Fpt)n S2) (Fpt)n-‘,-l = (Fpt)n—i-Q-

6) Fix c a hypotenuse which as natural number has only two representations as sum of different squares; for example
65 =12 4+ 82 = 42 + 7% or 145 = 12 + 122 = 8% + 92. Then we call the corresponding Pythagorean triples (a1, by, ¢),
(az,ba, c) as being hypotenuse — related and we can perform their Farey sum. For our examples above we have:

M=10=8)®(p=4,¢2=T7)=(p=5,q=15),(63,16,65) @ (33,56,65) = 50(4, 3,5),
(pr=1,q1=12)® (ps = 8,¢2 = 9) = (p = 9,q = 21), (143,24, 145) & (17, 144, 145) = 18(20, 21, 29).

The class of these c is provided by the expression ¢ = p}*p3? with p; < ps prime numbers of the form 4k + 1; recall
also that any prime number of the form 4% + 1 is a sum of two squares. Related to this discussion we recall that a
positive integer k is a sum of two triangular numbers:

u(u+1)  wvw+1)
2 + 2

k= (1.3)

if and only if 4k + 1 is a sum of squares; namely (1.3) implies 4k + 1 = (v — u)? + (u + v + 1). Hence this k with
u < v provides the Pythagorean triple:

p=v—u<qg=u+v+1l), a=Qu+1)2v+1), b=2v—u)lut+v+1), c=4k+1. (1.4)
As example, ¢ = 65 is provided by k = 16 which is generated by two triangular numbers:
up =3 < vy =4, (al,bhc) = (63, 16,65), U =1<wy =35, (CL27527C) = (33, 56,65).

7) Fix 2N an even number and ask the given triangle has the perimeter 2s = 2. It follows the quadratic Diophantine
equation:
qglp+q) =N

which for some value of N has only two solutions; namely N € {120, 180, 240, 252, 336, ...}. Then we call the
corresponding Pythagorean triples (a1, b1, ¢), (az, b2, ¢) as being perimeter — related and we can perform their Farey
sum. For the example of N = 120 we have (p; =2 < ¢; = 10) and (p1 = 7 < p2 = 8) and then:

23(12,5,13) @ (15,112, 113) = 3%(3, 4, 5).

Returning to the last inequality (1.2) the right-hand-side of it can be interpreted in terms of a quasi-arithmetic mean.
Fix an open real interval [ and M : I x I — I amean i.e. for any pair (z,y) € I x I we have the double inequality:

min{z,y} < M(z,y) < max{z,y}.
Recall also that M is called quasi-arithmetic if there exists a continuous and strictly monotonic function f : I — R

such that:
fl@)+f (y)> _

M(z,y) = My(z,y) = f‘l( 5
Hence, with I = R*, := (0, +00) the last inequality (1.2) reads:

" <4AM s (¢, ).

2. Two symmetric matrices associated to a given Pythagorean triple

In the following we provide a matrix formalism associated to a given Pythagorean triple. Namely, the relations
(1.1) can be put into the form:

" !/

a a a / -P q
v = o |+ v | +or. < P > , T=| ¢ p | €M)
o’ c ¢ q P q

The matrix I and its transpose I' provides two new matrices.
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I) a symmetric 2 x 2 one:
20°+¢>  pq ) <c+p2 L )
A::FtI‘:( = 2 € Sym(2,N*), det A = 2¢* > 0.
pg P+ 24 g c+¢? ym( )

Allowing the pair (p, q) to be a point in the Euclidean plane R? then the map P is a regular parametrization from
R?\ {(0,0)} of the cone C : z? + y? — z? = 0 (which can be called the Pythagorean cone) and hence A is exactly the
first fundamental form of this quadric in R3. Its coefficients of the fundamental forms are in the Gauss notation:

E=4(2p +¢%), F=4dpg(=2b), G=4(p*+2¢%)
L= 22 <2V2, M= V/2pg (: ?sinB< %), N =220 <23,

p2+q? p2+q?
Returning to the matrix A, recall after [6] that any symmetric 2 x 2 matrix has two Hermitian parameters, one
real being half of its trace, and one complex, called Hopf invariant, which for our A is:

2 2

HA) =22 ()i = (g € C".

Let us remark that if p and ¢ share the same parity (which means that (a, b, ¢) is not a primitive Pythagorean triple
since 2 divides also @) then H(A) is a Gaussian integer. Recall also that a proof of the fact that the map P is a

parametrization of the set PT is based exactly on the complex number (p + iq)* = 2H (A) since ¢ = [2H(A)|. The
eigenvalues and associated eigenvectors of the matrix A are:

M=c<Al=2c v =(-q,p)=—q+ip=i-\/2H(A), 2= (p,q) =p+iqg=1/2H(A).

So, the invertible matrix making A a diagonal one is:

S = ;q 5 ) € GL(2,Z)N Sym(2), S~'=1S5¢e GL(2,Q) N Sym(2),
S=1.A-S =diag(c,2c), H(S)=—q—pi, detS=—c<O.

For example:

A(1,o,1):<(1) g) 5(1,0,1)=<_01 (1))

Recall that a matrix U € GL(n,R) can be consider as corresponding to a mathematical game G(U) of two

persons, both having n strategies; then the value of this game is ([7, p. 449]) v(G(U)) = ﬁ where s(U~!) means

the sum of all elements of U~". For the matrix A the value of its corresponding game is:

22 50
WGA) = 25 <o w(Clp=10=2) = 2.
O
II) a symmetric 3 x 3 one:
c 0 a
B:=T-T'=[ 0 ¢ b | €Sym(3,N¥),
a b c
1 0 sin(ZA) @1
iB = 0 1 sin(£B) = cos(ZA) | € Sym(3) = Sym(3,R).
sin(ZA) sin(£B) = cos(£LA) 1

Again, its eigenvalues and associated eigenvectors are:

AM=0<X=c<A3=2¢ v = (—a, —b, C), Uy = (—b,a,O), U3 = (a,b, C).
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Hence, the invertible matrix making the matrix B a diagonal one is:

—a —-b a
S=| -b a b | €GLB,Z) detS=-2c<0,
c 0 ¢
—a —-b c
S~ = ﬁ -2b 2a 0 | € GL(3,Q), S~ ! -B-S=diag(0,c,2c).
a b ¢

Recall also that a matrix from Sym(3) represents geometrically a conic, see for example [8]. The conic associated to
the matrix B reduces to the double point (—%,—2) € S*. For example:

-1

0 1 0
B(1,0,1) = 1 0], Sgmo=[ o 1
0 1 1 0

—_ o
—_ o

Let us remark that the second matrix from the relation (2.1) yields the function:

- 1 0 sint
f:(0,§>—>Sym(3)\GL(3,R), fH=1 0 1 cost

sint cost 1

as restriction to (the first quadrant of) the unit circle S of the map F : R? — Sym(3):

2% 4+ 92 0 Yy
F(z,y) == 0 92 z , det Fx,y) = (2 +y*)*(2® +y* — 1),
y x 2% 4y

T 0 sin
Flcx : (z,y) = r(cosp,sing), F(r,@) :=r 0 r o cosp |,det F(r,o) =7rt(r? —1).
sing cose r

The matrix S € GL(3,R) making diagonal the symmetric matrix f(t) is:

—sint —cost 1 —sint — ‘;f’rff sint
S(t):=1| —sin2t 2sin’t 0 |, S7'(t):=[ —cost 1 cost |,
sint cost 1 1 0 1

S(t) - f(t) - S7(t) = diag(0,1,2)

while the matrix S € GL(3,R) making diagonal the symmetric matrix F|c~ is:

) —yr 7%27” 72 -5 - ¢
S('Tvy) =92 —2$y 2y 0 ) Sil(xyy) = _% 1 % )
yr xr 7l 1 0 1

S(t) - F(r,e) - S7L(t) = diag(r* — r,r%, 72 +1).

From a differentiable point of view F is an immersion of R? into R® = Sym(3) since the rank of the Jacobian matrix
of F is 2. With the notation v = 22 + y? the equation det F' = 1, i.e. F(z,y) € SL(3,R), means the cubic equation:

1\° 1 1 29
3 2
1
v <u 3> 3<u 3> 27 0

which admits only one real (and positive) solution u; ~ 1.4656. Naturally, we can associate the cubic (in fact elliptic)
plane curve:
C:viP=u?—-u?—-1

whose details can be found on: https://www.Imfdb.org/EllipticCurve/Q/496/e/1. O

Returning to the case of 2 x 2 matrices let us remark that the first part of relations (1.4) gives an affine map:

()= ()= (D)) e (W)
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The eigenvalues of C and the square matrix S making C' a diagonal one are:

with S~1CS = diag(—v/2,v/2).

We finish this section by introducing a composition law on R* = (0, +-00), inspired by the equality case discussed
in the Property 1.2.3):

zopy = (Vr+y)>

Apart from commutativity and = @ = = 4z we note the property cos? t @ sin® ¢t = 1 + sin 2t.

3. The Farey sum of a class of Eisenstein triples

For the sake of completeness we present now the case of Eisenstein triples. Recall that an Eisenstein triangle has
an angle of 60°. By supposing this angle to be ZC' it results:

a® —ab+b* =c?

and hence, a Eisenstein triple is a triple of positive integers satisfying this Diophantine equation; then min{a, b} <
¢ < max{a, b}. We point out that recently, the Eisenstein triples are used in [9] to characterize the bijective digitized
rotations on the hexagonal grid. Contrary to the Pythagorean case we have only a partial parametrization:

a=a(p,q):==q¢*—p*>, b=0bp,q) =2pq—p*, c=clp,q):=p"+q¢*—pq=(q3—p)*+pg (3.1)

and the limit case p = ¢ gives the degenerate Eisenstein triple p*(0, 1, 1). Then we can define a Farey sum on the
class of (3.1) (p, q)-Eisenstein triples:

a,b,e,)® (a0, = (a", b, ") =
(777) (77 »1 Yo

=((qg+d)? =+ 20+P)a+d) =+ p+P)+(@+d) = +0)a+d)) (3.2)

Example 3.1. 1) Since (p = 1, ¢ = 2) yields the equilateral triangle 3(1,1,1) and (p = 1, ¢ = 3) gives the Eisenstein
triple (8,5, 7) we have:
(3,3,3) @ (8,5,7) = (21,16,19), (" =2,¢" = 5).

2) Again (a,b,¢)® (a,b,c) = 4(a,b,c) and (a,b,¢) ®(0,1,1) = (a+2(¢ —p), b+2¢+1, c+p+ g+ 1) with the example
3(1,1,1) @ (0,1,1) = (5,8,7).
The matrix expression of the Farey sum (3.2) is:
a” a a , —2p 2q
'l = b |+ ¥ | +T- ( p/ ) , T:==1 2(¢g—p) 2p € Ms5(Z).
' c d 2p—q 2q—p

The associated symmetric matrices are:

D
12(p* — pg) + 5¢°  —6p* + 5pq — 2¢° )

A:=T!.T = € Sym(2,Z

( —6p® +5pg — 2¢°  5p® + 4(2¢* — pq) ym(2,2)
with:

TrA =17p? — 16pq + 13¢%, det A = 12(2p* — 4p3q + 10p*¢® — 8pq® + 3¢%).
1)
4(p* + ¢*) 4p? —4p® + 6pq — 2¢°
B:=T-Tt= 4p? 4(2p% — 2pq + q*)  —6p® +10pg —2¢> | € Sym(3,7)
—4p® 4+ 6pg — 2¢> —6p? + 10pg — 2¢®>  5p? — 8pq + 5g>

with:

TrB = 17p? — 16pq + 13¢%, det B = 48¢(2p° — 6p*q + 10p>°¢*> — T°¢® + ¢°).
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To the equilateral triangle 3(1, 1, 1) corresponds the matrices:

D)

8 —4 37 — /505 37 4+ /505
A(p_l,q_Q)_<_4 29)esym(2,2), /\1:#<)\2:f

with TrA = 37, det A = 63, Hopf invariant H(A) = —2] + 4i and:

sev

S é13( 21 + /505 21 — /505 ) € GL2.R), S 1 ( 8 /505 — 21 )

8 8 T 2v505 \ —8 /505 + 21
1))
20 4 0
B(p=1,q=2) = 4 8 6 | € Sym(3
0 6 9
Al >~ 1.98 < Ay >~ 13.51 < A3 ~ 21.50, det B = 576 = 242.
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Abstract

The source of the primeness texture is a skeleton that generalizes traditional prime rings. In this context,
our primary aim in this study is to describe the source of I'-primeness in I'-rings not included in the
literature. This work’s purpose is to generalize the concept of the source of primeness to a I'-ring. In this
study, the characteristics provided by the defined concept are also discussed, and the results achieved are
exemplified.
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1. Introduction

The structure of the I'-ring was first proposed by Nobusawa in 1964 as a generalization of the ring [1]. The author
determined the notion of the I'-ring under certain conditions and obtained some significant results. Afterward,
Barnes [2], inspired by Nabusawa, introduced and analyzed some concepts for I'-rings. Many studies have extended
important results on the structure of rings to I'-rings [3-8].

Prime and semiprime ideals contribute extremely to important results in ring theory. Some properties of prime
and semiprime ideals are studied in ring theory and generalized to I'-rings. Recently, Aydin et al. [9] and Camc1
[11] suggested the concept of the source of semiprimeness for a ring and described three ring types that were
not previously included in the literature. Next, Arslan and Diizkaya [10] generalized the set of the source of
semiprimeness defined for a ring to the I'-ring and inquired about the properties of the set. Motivated by the set of
the source of semiprimeness, Yesil and Camci [12] characterized the concept of the source of primeness for a ring.
The authors regarded the relation between a ring’s idempotent, nilpotent, and zero divisor elements and the set of
the source of primeness and described new ring types.

This study set one’s sights on generalizing the set of the source of primeness of a ring to the I'-ring. Moreover, in
this paper, the characteristics of the concept of the source of I'-primeness of a I'-ring and the different results created
by idempotent, strongly nilpotent, nilpotent, and zero divisor elements in the set of the source of I'-primeness are
mentioned. The relationship between the source of semiprimeness and the source of I'-primeness in the I'-ring was
also observed.
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2. Preliminaries

In this section, basic definitions previously lay one’s laid in the literature are presented [1, 2, 8, 10, 13-16].

Definition 2.1. Let R and I" be two additive abelian groups. If there exists a mapping (a,v,b) = aybof RxI'xR — R
satisfies the following conditions:

1. avbe R
2. (a+ b)ye = aye+ bye, ay(b+ ¢) = ayb+ aye, and a(8 + v)b = afb + avb
3. (ayb)Be = ay(bBe) = aybBe

foralla,b,c € Rand 8,y € T, then R is called a I'-ring.

Definition 2.2. Let A be an additive subgroup of a I'-ring R. If ayb € A, foralla,b € Aand v € I, then A is called a
I'-subring of R.
Equivalently; if AT A C A, then A is called a I-subring of R.

Definition 2.3. Let A be an additive subgroup of a I'-ring R. If rya € A (left ideal), ayr € A(right ideal), for all
r€ R,yv€T,and a € A, then A is called a I'-ideal of R.
Equivalently; if ATR C Aand RI'A C A, then A is called a I'-ideal of R.

Definition 2.4. Let P be a proper I'-ideal of R. If AT'B C P implies that A C P or B C P, for I'-ideals A and B of
R, then P is called a prime I'-ideal of R.

Definition 2.5. For a,b € R, if aI'RT'0 = (0) implies that a = 0 or b = 0, then R is called a prime I'-ring.

Definition 2.6. Let R be a I''ring and e € R. If v € I exists such that eye = ¢, then the element e € R is called an
idempotent element.

Definition 2.7. Let R be a I'-ring. R is called a Boolean I'-ring if mym = m, forallm € Rand v € I.

Definition 2.8. An element « of a I'-ring R is called nilpotent element if for some v € T, there exists a positive
integer n such that (zvy)"x = 0.

Definition 2.9. An element x of a I'-ring R is called strongly nilpotent if there exist a positive integer n such that
(zT)"z = 0.

Definition 2.10. If there exist 1 € R and «y € I such that 1yr = ry1 = r, for all r € R, then R is called a I'-ring with
unit.

Definition 2.11. An element 0 # a € R is called a zero divisor if there exists b # 0 such that ayb = bya = 0.

Definition 2.12. Let R and S be I';-ring and I';-ring respectively. An ordered (¢, ¢) is called a I-homomorphism if
the following conditions are satisfied:

1. ¢ : R — S is a group homomorphism
2. ¢ : 'y = I'y is a group homomorphism
3. ¢(zvy) = d(2)v(7)d(y)

forallz,y € Rand y € T.

Remark 2.1. Let R and S be I'y-ring and I';-ring respectively. The product R x S'is aI'; x I'y-ring with the following
operation:
(a,0) + (c;d) = (a +¢,b+d)

(@, 0) +(8,7) = (e + 5,6 +7)
(a, b) (67 7)(07 d) = (aﬁc, b’}/d)
forall (a,b), (¢,d) € R x Sand (8,7), («,0) € Ty x T's.

Definition 2.13. Let A be a subset of a I'-ring R. The source of semiprimeness of A is defined as Sp(A) = {b € R :
bI'AT'b = (0)}. When A = R, Sg is adopting instead of Si(R).
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3. Results

In this section, the concept of the source of I'-primeness is characterized for the I'-ring. To understand the
concept better, the basic characteristics of the set are first inspected. Furthermore, the relationship between a ring
with unit, zero divisor, idempotent, and nilpotent elements, and the set of the source of I'-primeness is discoursed.

Definition 3.1. Let A be a non-empty subset of the I'-ring R and @ € R. The set described as
{be R:al’'AT'b = (0)}

is denoted by S%_(A). The intersection of sets S% (A) is demonstrated by Pr..(A), and Pg,.(A) is called the source
of I-primeness of A in R. When A = R, the S% notation will be operated instead of S (R). Therefore, the source
of I'-primeness of the R is

Pr. = () Sk,

The primary and necessary features are stated below to comprehend the concept of I'-primeness’s source.

1. Let Rbe aT-ring. Pr.(A) = ,cr Sk.(A) # 0 because of al' AT0 = (0), for all a € R.

2. 8% (A)=R.

3. Let Abe aI'-subring of R. If z € 59, thenz € Aand al'Al'z = (0). Since AC R,z € St (A). Therefore,
S4,. € Sk.(A).

Remark 3.1. Let K = {b € R : aI'AT'b = (0), Ya € R}, for a non-empty subset A of a I'-ring R. If x € Pr,(A), then
al’AT'z = (0), for all € R. Hence, Pr,(A) C K. Similarly, K C Pg.(A). In line with this explanation, the source of
I'-primeness of A in R is expressed as

Pr.(A)={be R: RTATb = (0)}
Proposition 3.1. Let A and B be two non-empty subsets of a I'-ring R. Then,
Prx Ry (A x B) = Pr.(A) x Pr.(B)

Proof. Let (z,y) € P(rxpr).(A x B). Then, (R x R)(I' x T')(A x B)(I' x I')(z,y) = (0,0). Thus, (RT AT'z, RT' BT'y) =
(0,0). From here, RTAT'z = (0) and RT'BT'y = (0). This means that © € Pg.(A4) and y € Pg.(B). Hence,
(7,y) € Pr.(A) X Pp.(B). The converse is similar. Therefore, P(rx r). (A x B) = Pr.(A) x Pr.(B).

O

Example 3.1. Let R = Z4 and S = Zg be Z4-ring and Zg-ring respectively, and A = {0,2} C Rand B = {0,3} C S.
Then, R x Sisa Z4 x Zg-ringand A x B C R x S.

P(RXS)Z4><26 (A X B) = {(E,g) ERxS: (R X S)(Z4 X ZG)(A X B)(Z4 X ZG)(E78) = (6,6)}

(©,d) € Prx )z, 1z, (A X B) (R x S)(Zy4 x Zg)(A x B)(Z4 x Zg)(¢,d) = (0,0)
(RZ4AZ4¢, SZeBZegd) = (0,0)
RZ4AZ4¢ = (0) and SZgBZgd = (0)

¢ € {0,2} and d € {0,2}

4l

Therefore, S
P(RXS)Z4><ZG (A X B) = {(0,0), (05 2)7 (2a0)7 (272)}

Let (a,b) € Pry,, (A) x Ps,_ (B). Then, RZ4AZ4a = (0) and SZgBZgb = (0). From here, @ € {0,2} and b €
{0,2}. Thus,
PRy, (A) x Ps, (B) ={(0,0),(0,2),(2,0),(2,2)}
Proposition 3.2. Let R be a I'-ring with unit. Then, Pr, C {z € R: zT'z = (0)}.
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Proof. Let M = {z € R: zT'x = (0)}. If x € Pg,, then RT' R’z = (0). Since R is a I'-ring with unit, (0) = 2zI'1l'x =
xzI'x. Hence, x € M. O

Proposition 3.3. Let A and B be two non-empty subsets of a I'-ring R. Then, the following holds.
1. If A C B, then Pg.(B) C Pr.(A). In particular, Pr,. C Pg,(A) is provided.
2. If Ais a T-subring of R, then AN Pr.(A) C Pa,.

Proof. 1. Let AC B.Ifz € Pg.(B), then RI'BI'zx = (0). Since A C B, R AT'z = (0). Therefore, x € Pg.(A).
2. Letz € AN PL(A). Since z € Aand RT'AT'z = (0), 7 € Pa,.

Proposition 3.4. Let A be a nonempty subset of a I'-ring R. Then, Pr.(A) C Sr(A).
Proof. If x € Pg.(A), then RT'AT'z = (0). Thus, zT'AT'z = (0). Hence, z € Sr(A4). O
Lemma 3.1. Let R beaT-ringand O # I C R. Then,

1. S§.(I)is a right T-ideal of R.

2. If I'is a right T'-ideal, then S§,_(I) is a I'-ideal of R. In addition, S¢_ is a I'-ideal of R.

Proof. 1. If z,y € S% (I), then al'IT'z = (0) and aI'ITy = (0), for all a € R. Thus, 2I'R C S% (I) and
Rr‘ RF
r —y € S§_(I) because of
alIT(z —y) = al'ITz — aT'ITy = (0)

and
al'IT(2T'R) = (al'IT2)TR = 0T'R = (0)

Accordingly, S, ([) is a right I'-ideal of R.
2. From 3.1, S§_(I) is a right I'-ideal of R. In addition
al'IT(RTz) = (aT'ITR)I'z C al'ITz = (0).

Thus, RT'z C S%_(I). Consequently, S%,_(I) is a '-ideal of R. Moreover, since R is its ideal, S%_ is a I'-ideal of
R.
O

Theorem 3.1. Let R beaT-ring and O # I C R. Then,
1. Pg.(I) is a right T-ideal of R.
2. If Iis a right T'-ideal of T'-ring R, then Pr, (I) is a I'-ideal of R. Specially, Pg,. is a I'-ideal of R.

Proof. 1. Ifz,y € Ppe(I) =\, Sk.(I), thenz,y € S§ (1), for all a € R. From Lemma 3.1, S%_(I) is a right
I-ideal of R. As aresult, 2I'R C (), Sk.(I) = Pp.(I) and xz —y € S§ _(I) = Pgr.(I), for all z € S% ().
Therefore, Pr,.(I) is a right I'-ideal of R.

2. From 1, Pr,.(I) is a right T-ideal of R. Moreover, if I is a right I'-ideal, then by Lemma 3.1, S (/) is a I'-ideal
of R. Thence, RT'x C (,cp Sh. (1) = Pi(I), forall z € S _(I). Therefore, Pj(I) is I'-ideal of R. Furthermore,
since R is its ideal, P},S is a I'<ideal of R.

O
Example 3.2. Let R = Msy2(R) = {(Z z) ta,b,x,y € R} and I’ = M1 (Z) = {(]g 2) 1k, h e R}. Then, R
is a I'-ring according to the addition and multiplication operations in matrices. Let I = 8 i ite R}. Here,

I is a subset of R but is not a right or left I'-ideal. Hence, when the set Pg. (1) is observed, it is concluded that

Pr.(I) = { <8 £> e, f e R}. Evidently, Pr,.(I) is a right I'- ideal but not a left I'-ideal of R.
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Theorem 3.2. Let R be a I'-ring. The following are provided.
1. If R is a prime I'-ring, then Pg. = {0}.
2. The source of I'-primeness Pg,. is contained by every prime I'-ideal of the R.

Proof. 1. Let R be a prime I''ring and x € Pr. =)
hypothesis, = 0. Therefore, Pr,. = {0}.

wcr Sk Then, bI'RI'z = (0), for all 0 # b € R. From the

2. Let I be a prime I'-ideal of R and x € Pg,.. Then, RI'RT'z = (0) C I. Since [ is a prime I'-ideal, R C I or z € I.
Accordingly, Pr,. C I.
O

k
0
straightforward to verify that R is a prime I'-ring. Further, it can be examined that Pr. = {(0 0)}.

Example 3.3. Let R = M1, 2(R) = {(a a):a€R}andT = Myy1(Z) = :k € Z ;. Then, Ris a I'-ring. Itis

The following example can be donated to signalize that the reverse does not work.

Example 3.4. Let R = Z4 and I = Z. Then, R is a -ring. Precisely, Pgr. = {0}. However, since zZT'RT'y = 0, for
T =y = 2, Ris not a prime I'-ring.

Proposition 3.5. Let R be a I'-ring. The followings are satisfied.
1. If R is a Boolean T-ring, then Pg. = {0}.
2. If a € Pgy, then a is a zero divisor element of R.
3. If R is a I'-ring with unit, then Pgr. = {0}.
Proof. 1. If x € Pg,., then RT'RT'z = (0). Thus, (0) = 2T'2I'x = . Hence, Pr. = {0}.

2. If 0 # a € Pg,, then RT'RT'a = (0). Thus, al'al'a = (0). If it is stated that this equality is aI'(aI'a) = (0) or
(aT'a)T'a = (0), then al'a = (0) or al'a # (0) since a # 0. If al'a = (0), then a is a zero divisor element. If
al'a # (0), a is a zero divisor element because of al'(al'a) = (0).

3. If a € Pg,., then RT'RT'a = (0). Thus, (0) = 1I'lT'a = a. Consequently, Pg,. = {0}.

As a result of the above proposition, the following corollary is acquired.
Corollary 3.1. Let R be a I'-ring. Then,

1. There is no idempotent element other than zero in Pg,.

2. Ifx € Pg,, then x is a strongly nilpotent element of R.

3. Every element in Ppg,. is a nilpotent element.

Proof. 1. Letz € Pg,. be anidempotent element. Then, RT'RT'z = (0). Thus, zI'zI'z = 0. Since x is an idempotent
element, x = 0.

2. If z € Pg,, then RT RT'z = (0). Therefore, (0) = 2Tz = (aT)%x.

3. Since every strongly nilpotent element is nilpotent, every element of Pg,. is a nilpotent.
O

Theorem 3.3. Let R and S be I'i-ring and I's-ring, respectively. If ordered pair (f, ) is a IT-homomorphism, then f(Pg.) C
Py gy, If [ is an injective, then f(Pr..) = P(r);-
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Proof. Since (f,) is a I'-ring homomorphism, f(R) is a ¢(I'y)-ring with multiplication

fla)p(7)f(b) = f(anb).
Let z € f(Pg,). Then, there exists a € Pg,. such that z = f(a). Since a € P, RT'RT'a = (0). From here,

(0) = f(RTRTa) = f(R){(T) f(R)$(T) f(a)
Thence, » = f(a) € Pyr),-
Let f be an injective function and a € Py(g),.. Then, f(R)y/(T) f(R)y(I")a = (0). Since
f(RTRIz) = f(R)$(T)f(R)y(T)a = (0)
RTRTx = (0) is obtained. This means x € Pg,.. Accordingly, a = f(z) € f(Pg,.)- O
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