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ON THE CURVES LYING ON PARALLEL-LIKE SURFACES OF

THE RULED SURFACE IN E3

Semra YURTTANCIKMAZ
Atatürk University, Faculty of Science, Department of Mathematics, Erzurum, TÜRKİYE

Abstract. In this paper, it has been researched curves lying on parallel-like

surfaces Mf of the ruled surface M in E3. Using the definition of parallel-like

surfaces it has been found parametric expressions of parallel-like surface of
the ruled surface and image curve of the directrix curve of the base surface.

Moreover, obtaining Darboux frames of curves lying on surfaces M and Mf ,

it has been compared the geodesic curvatures, the normal curvatures and the
geodesic torsions of these curves.

1. Introduction

Ruled surfaces are surfaces that attract the attention of many researchers, espe-
cially differential geometers, and make them work on these surfaces from past to
present. These surfaces have been obtained by the motion of a straight line on a
curve in space, also called the directrix of the surface. Since ruled surfaces have
a particularly simple structure, they are important for use in many fields such as
architecture, engineering, mechanics, kinematics and CAD computer aided design,
etc. as well as differential geometry [1, 3, 6, 7, 15].

Parallel-like surfaces are the surfaces obtained as a result of the generalization of
parallel surfaces. These surfaces were first described by Tarakcı and Hacısalihoğlu
in 2002 and named with surfaces at a constant distance from the edge of regression
on a surface [17]. The authors have obtained by considering a surface instead
of a curve in the paper written by Hans Vogler. He has defined notion of curve
at a constant distance from the edge of regression on a curve. In 2004, Tarakcı
and Hacısalihoğlu have computed for parallel-like surfaces some properties and
theorems given for parallel surfaces [16]. After this work, it’s made many articles
by different authors on parallel-like surfaces. In 2010, Sağlam and Kalkan have

2020 Mathematics Subject Classification. 53A04, 53A05.
Keywords. Ruled surface, parallel-like surface, Darboux frame.

semrakaya@atauni.edu.tr; 0000-0001-6712-3687.

©2023 Ankara University
Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

867



868 S. YURTTANCIKMAZ

searched parallel-like surfaces in E3
1 Minkowski space [12]. In 2015, Yurttançıkmaz

and Tarakcı have established a relationship between focal surfaces and parallel-like
surfaces. They have obtained focal surfaces using parallel-like surfaces, that is, an
alternative way of finding focal surfaces of any surface via parallel-like surfaces was
demonstrated [18]. From this point of view, the geometric structure of parallel-like
surfaces has an important place in the field of line congruence and therefore in the
field of visualization(see [5]). And finally, in 2023, Yurttançıkmaz and Tarakcı have
researced image curves on the parallel-like Surfaces in E3 [19].

In this study, the parametric expression of the parallel like surface of the ruled
surface was obtained and the differences between these surfaces were examined
in terms of differential geometric properties. In general, it has been shown that
the parallel like surface of the ruled surface is also not a ruled surface, but if the
directrix curve is selected as the parameter curve, this surface also preserves its
characteristics of being a ruled surface.

Since curves lying on the surface have an important place in terms of the theory
of curves, it has attracted the attention of many geometers [8, 10, 13, 14]. In the
theory of surfaces, the Darboux frame constructed at any non-umbilical point of
the surface can be viewed as an analog of the Frenet frame. In here, obtaining β
image curve lying on Mf parallel-like surface of M ruled surface, Darboux frames
of curve-surface pairs (α,M) and

(
β,Mf

)
have been calculated at any points P on

M and f(P ) on Mf . Finally, it has been compared the geodesic curvatures, the
normal curvatures, the geodesic torsions of reference curve α on M and its image
curve β on Mf and expressed the relationships between these two curves.

2. Preliminaries

Let α be a unit speed curve lying on a surface M in E3 and s be arc length of

the curve α, i.e.
∥∥∥α′

(s)
∥∥∥ = 1. Suppose that Z is a unit normal vector of the surface

M and T is unit tangent vector field of the curve α. Considering the vector field
Y defined by Y = Z × T, set of {T, Y, Z} create orthonormal frame which is called
Darboux frame for partner of curve-surface (α,M).

Thus, the geodesic curvature κg, the normal curvature κn, the geodesic torsion
tr of the curve α(s) can be calculated as follows

κg =
〈
α

′′
(s), Y

〉
(1)

κn =
〈
α

′′
(s), Zα(s)

〉
(2)

tr = −
〈
Z

′

α(s), Y
〉
. (3)

Besides, the derivative formulas of the Darboux frame of (α,M) is given by
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 T
′

Y
′

Z
′

 =

 0 κg κn
−κg 0 tr
−κn −tr 0

 T
Y
Z

 . (4)

In addition, given an arbitrary curve β(s) on the surface M under the condition∥∥∥β′
(s)

∥∥∥ = C, the geodesic curvature κg, the normal curvature κn, the geodesic

torsion tr of the curve β(s) can be calculated as follows

κg =
1

C2

〈
β

′′
(s), Y

〉
(5)

κn =
1

C2

〈
β

′′
(s), Zβ(s)

〉
(6)

tr = − 1

C

〈
Z

′

β(s), Y
〉
. (7)

Furthermore, in the differential geometry of surfaces, for a curve α(s) lying on a
surface M the followings are well-known

i) α(s) is a geodesic curve ⇐⇒ κg = 0,
ii) α(s) is an asymptotic curve ⇐⇒ κn = 0,
iii) α(s) is a principal line ⇐⇒ tr = 0 [2,9, 11].

3. Parallel-Like Surfaces

Definition 1. Let M and Mf be two surfaces in Euclidean space E3 and ZP be
a unit normal vector and TPM be tangent space at point P of the surface M and
{XP , YP } be an orthonormal bases of TPM. Take a unit vector EP = d1XP +
d2YP + d3ZP , where d1, d2, d3 ∈ R are constants and d21 + d22 + d23 = 1. If there is a
function f defined by,

f :M →Mf , f(P ) = P + rEP

where r ∈ R, then the surface Mf is called parallel-like surface of the surface M.

Here, if d1 = d2 = 0, then EP = ZP and so M and Mf are parallel surfaces.
Now, we represent parametrization for parallel-like surface of the surface M . Let
(ϕ,U) be a parametrization of M, so we can write that

ϕ : U ⊂ E2 7→M.

(u, v) 7→ ϕ(u, v)

In the case {ϕu, ϕv} is a bases of TPM , then we can write that EP = d1ϕu+d2ϕv+
d3ZP . Where, ϕu, ϕv are respectively partial derivatives of ϕ according to u and v.
Since Mf = {f(P ) : f(P ) = P + rEP } , a parametric representation of Mf is

ψ(u, v) = ϕ(u, v) + rE(u, v).

Thus, it’s obtained

Mf = {ψ(u, v) : ψ(u, v) = ϕ(u, v) + r (d1ϕu(u, v) + d2ϕv(u, v) + d3Z(u, v))}
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and if we get rd1 = λ1, rd2 = λ2, rd3 = λ3, then we have

Mf =

{
ψ(u, v) : ψ(u, v) = ϕ(u, v) + λ1ϕu(u, v) + λ2ϕv(u, v) + λ3Z(u, v),

λ21 + λ22 + λ23 = r2

}
Calculation of ψu and ψv gives us that

ψu = ϕu + λ1ϕuu + λ2ϕvu + λ3Zu

ψv = ϕv + λ1ϕuv + λ2ϕvv + λ3Zv.
(8)

Here ϕuu, ϕvu, ϕuv, ϕvv, Zu, Zv are calculated as like as [17]. Suppose that parameter
curves are curvature lines ofM and let u and v be arc length of these curves. Thus,
following equations are obtained

ϕuu = −κ1Z
ϕvv = −κ2Z
ϕuv = ϕvu = 0
Zu = κ1ϕu
Zv = κ2ϕv.

(9)

From 8 and 9, we find

ψu = (1 + λ3κ1)ϕu − λ1κ1Z

ψv = (1 + λ3κ2)ϕv − λ2κ2Z

and {ψu, ψv} be a bases of χ(Mf ). If we denote by Zf unit normal vector of Mf ,
then Zf is

Zf =
ψu × ψv

∥ψu × ψv∥
=
λ1κ1 (1 + λ3κ2)ϕu + λ2κ2 (1 + λ3κ1)ϕv + (1 + λ3κ1) (1 + λ3κ2)Z√

λ21κ
2
1 (1 + λ3κ2)

2
+ λ22κ

2
2 (1 + λ3κ1)

2
+ (1 + λ3κ1)

2
(1 + λ3κ2)

2

where, κ1, κ2 are principal curvatures of the surface M. If

A =

√
λ21κ

2
1 (1 + λ3κ2)

2
+ λ22κ

2
2 (1 + λ3κ1)

2
+ (1 + λ3κ1)

2
(1 + λ3κ2)

2

we can write

Zf =
λ1κ1 (1 + λ3κ2)

A
ϕu +

λ2κ2 (1 + λ3κ1)

A
ϕv +

(1 + λ3κ1) (1 + λ3κ2)

A
Z.

Here in case of κ1 = κ2 and λ3 = − 1
κ1

= − 1
κ2

since ψu and ψv are not linear

independent, Mf is not regular surface. We will not consider this case [17].

4. Parallel-Like Surfaces of Ruled-Surfaces

Ruled surfaces are surfaces formed by the movement of a straight line based on
a curve called the directrix curve in space. This moving straight line is called a
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”generator”. The parametric expression of the ruled surface M with the directrix
curve α (u) and the direction vector X(u) along the generator is

ϕ(u, v) = α (u) + vX(u). (10)

Considering the definition of the parallel-like surface, it is clear that parametrization
of the parallel-like surface of the ruled surface will be

ψ(u, v) = ϕ(u, v) + λ1ϕu(u, v) + λ2ϕv(u, v) + λ3Z(u, v) (11)

= α (u) + vX(u) + λ1

(
α

′
(u) + vX

′
(u)

)
+ λ2X(u) + λ3

ϕu × ϕv
∥ϕu × ϕv∥

.

Let’s assume that the directrix curve α of the ruled surface M is given by the arc
parameter and the tangent vector X on the directrix is the unit vector for any
parameter u. If the unit tangent vector of the directrix curve α is α

′
(u) = dα

du = T ,
the unit normal of the ruled surface M is Z and the curve α is chosen with the
condition ⟨T,X⟩ = 0, the triple {T,X,Z} becomes an orthonormal basis along
the directrix curve. In order to express the parameterization of the parallel-like
surface of the ruled surface more simply, we will find the variation of the triple
{T,X,Z} along the curve α, that is, the covariant derivatives of each tangent
vector with respect to T . If the covariant derivatives of both sides of the equations
⟨T, T ⟩ = ⟨X,X⟩ = ⟨Z,Z⟩ = 1 along the curve α is calculated with respect to T ,
it has been obtained the equations ⟨DTT, T ⟩ + ⟨T,DTT ⟩ = 0 ⇒ 2 ⟨DTT, T ⟩ =
0 ⇒ ⟨DTT, T ⟩ = 0 and similarly ⟨DTX,X⟩ = 0 and ⟨DTZ,Z⟩ = 0. Here, if
a = ⟨DTT,X⟩ , b = ⟨DTT,Z⟩ , c = ⟨DTX,Z⟩ , so it is achieved following matrix [4] DTT

DTX
DTZ

 =

 0 a b
−a 0 c
−b −c 0

 T
X
Z

 . (12)

If these equations are substituted in equation 12, parametric expression of parallel-
like surface of ruled surface is as follows

ψ(u, v) = α (u) + vX + λ1 (T + v (−aT + cZ)) + λ2X + λ3

−cvT + (1− av)Z√
c2v2 + (1− av)

2


= α (u) +

(1− av)λ1 −
cvλ3√

c2v2 + (1− av)
2

T

+(v + λ2)X +

cvλ1 + λ3 (1− av)√
c2v2 + (1− av)

2

Z
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and in other words

ψ(u, v) = α (u) +

X − aλ1T + cλ1Z − cλ3T + aλ3Z√
c2v2 + (1− av)

2

 v (13)

+λ1T + λ2X +
λ3√

c2v2 + (1− av)
2
Z

is obtained. Is equation 13 also a ruled surface? It will now be investigated whether
the parallel-like surface of the ruled surface is also a ruled surface or can be under
certain conditions.

Consider the ruled surface given by equation ϕ(u, v) = α (u) + vX(u). If the
directrix curve α of the ruled surfaceM is chosen as the first parameter curve, then
it is obtained that (see chapter 5)

ϕu = α
′
(u) = T. (14)

Moreover, when the partial derivative of the general equation of the ruled surface
given by eq.10 is calculated with respect to u, following expressions are found

ϕu = α
′
(u) + vX

′
(u)

= T + v (−aT + cZ)

= (1− av)T + cvZ. (15)

Here, if equations 14 and 15 are compared, it is concluded that a = 0, c = 0.
Substituting these results in the equation 13, then the parallel-like surface of the
ruled surface will be

ψ(u, v) = α (u) + λ1T + λ2X + λ3Z + vX(u). (16)

Considering that the image of a curve on a parallel-like surface is

αf (u) = β(u) = α(u) + λ1T + λ2X + λ3Z (17)

and substituting eq.17 in eq.16, so we get

ψ(u, v) = β(u) + vX(u). (18)

From here, it is clear that the equation 18 also denotes a ruled surface. Thus, the
following result can be written.

Corollary 1. If the directrix curve α of the ruled surface M is chosen as the first
parameter curve, then the parallel-like surface of this ruled surface is also ruled
surface.

Now, in case the vector EP in the definition of the parallel-like surface is chosen
more specifically, it will be investigated the change in the parametric expression of
the parallel-like surface of the ruled surface and in which cases the obtained surface
will also be the ruled surface.
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Proposition 1. In case λ1 = 0 in the definition of parallel-like surface, that is,
if the vector EP is lying in the plane Sp {ϕv, Z} , then parametric expression of
parallel-like surface of the ruled surface is

ψ(u, v) = α (u)− cvλ3√
c2v2 + (1− av)

2
T + (v + λ2)X +

λ3 (1− av)√
c2v2 + (1− av)

2
Z.

Proposition 2. In case λ2 = 0 in the definition of parallel-like surface, that is,
if the vector EP is lying in the plane Sp {ϕu, Z} , then parametric expression of
parallel-like surface of the ruled surface is

ψ(u, v) = α (u) +

(1− av)λ1 −
cvλ3√

c2v2 + (1− av)
2

T

+vX +

cvλ1 + λ3 (1− av)√
c2v2 + (1− av)

2

Z.

Proposition 3. In case λ3 = 0 in the definition of parallel-like surface, that is,
if the vector EP is lying in the plane Sp {ϕu, ϕv} , then parametric expression of
parallel-like surface of the ruled surface is

ψ(u, v) = α (u) + λ1 (1− av)T + (v + λ2)X + cvλ1Z.

Proposition 4. In case λ1 = λ2 = 0 in the definition of parallel-like surface, that
is, if the vector EP is in the direction of the normal vector Z, then parametric
expression of parallel-like surface of the ruled surface is

ψ(u, v) = α (u)− cvλ3√
c2v2 + (1− av)

2
T + vX +

λ3 (1− av)√
c2v2 + (1− av)

2
Z.

Proposition 5. In case λ2 = λ3 = 0 in the definition of parallel-like surface, that
is, if the vector EP is in the direction of the vector ϕu, then parametric expression
of parallel-like surface of the ruled surface is

ψ(u, v) = α (u) + λ1 (1− av)T + vX + cvλ1Z.

Proposition 6. In case λ1 = λ3 = 0 in the definition of parallel-like surface, that
is, if the vector EP is in the direction of the vector ϕv, then parametric expression
of parallel-like surface of the ruled surface is

ψ(u, v) = α (u) + (v + λ2)X.

5. Darboux Frame of Curves Lying on Parallel-Like Surfaces of the
Ruled Surfaces

Assuming that the directrix curve α of the ruled surfaceM given by the equation
ϕ(u, v) = α (u) + vX(u) is the first parameter curve, then

ϕu = (1− av)T + cvZ
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and since u and v are arc parameters of the parameter curves on the ruled surface,
ϕu = α

′
(u) = T and so, 1 − av = 1, cv = 0. As a result from here, a = c = 0,

that is, in case the directrix curve α of the ruled surface M is chosen as the first
parameter curve, it is seen that the directrix curve α is both the principal curvature
line and the geodesic curve. Thus, κg = 0 and tr = 0 for the directrix curve α.
Principal directions relating to different curvature lines of the ruled surface M
are orthogonal, thus we can take as ϕu = α

′
(u) = T and ϕv = X. Under these

conditions, we can use Darboux frame {T,X,Z} in place of orthonormal frame
{ϕu, ϕv, Z}. If we consider definition of parallel-like surface of the ruled surface M,
parametric representation of the curve β which is image of the curve α is

β(u) = α(u) + λ1T + λ2X + λ3Z. (19)

Now, we calculate Darboux frame
{
T f , Xf , Zf

}
for partner of curve-surface

(
β,Mf

)
.

It is clear that

T f =
β

′
(u)∥∥∥β′
(u)

∥∥∥
If we take derivative according to u of eq.19, we find

β
′
(u) = α

′
(u) + λ1T

′
+ λ2X

′
+ λ3Z

′

and if considering that α(u) is a principal line and so tr = 0 equations 4 are
substituted in this equation, we obtain

β
′
(u) = (1− κnλ3)T + κnλ1Z (20)

where
∥∥∥β′

(u)
∥∥∥ = C =

√
(1− κnλ3)

2
+ λ21κ

2
n. Thus, we find

T f =
(1− κnλ3)

C
T +

κnλ1
C

Z. (21)

Moreover, we know already that

Zf =
λ1κ1 (1 + λ3κ2)

A
T +

λ2κ2 (1 + λ3κ1)

A
X +

(1 + λ3κ1) (1 + λ3κ2)

A
Z. (22)

For orthonormal frame
{
T f , Xf , Zf

}
, if we consider that Xf = Zf × T f , we get

Xf =

[
κnλ1λ2 (κ2 + λ3K)

AC

]
T

+

[(
1 + λ3H + λ23K

)
(1− κnλ3)− κnλ

2
1 (κ1 + λ3K)

AC

]
X (23)

−
[
λ2 (κ1 + λ3K) (1− κnλ3)

AC

]
Z

where K = κ1κ2 , H = κ1 + κ2 are Gauss curvature and mean curvature of the
surface M , respectively.
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Now, we calculate the geodesic curvature κfg , the normal curvature κfn, the geo-

desic torsion tfr of the curve β(u).We will use to calculate these curvatures following
equations [11]

κfg =
1

C2

〈
β

′′
(u), Xf

〉
(24)

κfn =
1

C2

〈
β

′′
(u), Zf

〉
(25)

tfr = − 1

C

〈(
Zf

)′

, Xf
〉
. (26)

Firstly we find vector β
′′
(u). If we take derivative of eq.20 according to u and use

equations 4, we obtain

β
′′
(u) = −

(
λ3κ

′

n + λ1κ
2
n

)
T +

(
λ1κ

′

n + κn (1− κnλ3)
)
Z. (27)

Furthermore we find vector
(
Zf

)′

. If we take derivative of eq.22 according to u
and use equations 4, we obtain

(
Zf

)′

=
1

A


(
λ1

(
κ

′

1 + λ3K
′
)
−A−1Bλ1 (κ1 + λ3K)− κn

(
1 + λ3H + λ23K

))
T

+
(
λ2

(
κ

′

2 + λ3K
′
)
−A−1Bλ2 (κ2 + λ3K)

)
X

+
(
λ3H

′
+ λ23K

′ −A−1B
(
1 + λ3H + λ23K

)
+ κnλ1 (κ1 + λ3K)

)
Z


(28)

where

B = A
′
=

1

A
[λ21κ1κ

′

1 + λ22κ2κ
′

2 + λ3

(
λ21κ

′

1 + λ22κ
′

2

)
K + λ3

(
λ21κ1 + λ22κ2

)
K

′

+
(
λ21 + λ22

)
λ23KK

′
+
(
1 + λ3H + λ23K

) (
λ3H

′
+ λ23K

′
)
].

So, if we substitute equations 23 and 27 into eq.24, we obtain

κfg = − 1

AC3
{ κnλ2 (κ2 + λ3K)

(
(1− κnλ3)

2
+ λ1λ3κ

′

n

)
(29)

+λ21λ2κ
3
n (κ2 + λ3K)

+κ
′

nλ1λ2 (κ2 + λ3K) (1− κnλ3)}.

Also, if we substitute equations 22 and 27 into eq.25, we obtain

κfn =
1

AC2
{λ1 (κ1 + λ3K)

(
−λ3κ

′

n − λ1κ
2
n

)
+
(
λ1κ

′

n + κn (1− κnλ3)
) (

1 + λ3H + λ23K
)
}. (30)

And finally, if we substitute equations 23 and 28 into eq.26, we obtain

tfr =
1

A2C2
{ λ2 (κ2 + λ3K) (1− κnλ3)

(
κnλ1 (κ1 + λ3K) + λ3H

′
+ λ23K

′
)
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−λ21
(
κ

′

1 + λ3K
′
)
(κnλ2 (κ2 + λ3K))

−λ2
(
κ

′

2 + λ3K
′
) (

1 + λ3H + λ23K
)
(1− κnλ3) (31)

+λ1λ2κ
2
n (κ2 + λ3K)

(
1 + λ3H + λ23K

)
+κnλ

2
1λ2 (κ1 + λ3K)

(
κ

′

2 + λ3K
′
)
}.

Theorem 1. Let M be a ruled surface in E3 and Mf be parallel-like surface of the
ruled surface M that formed along directions of EP lying in plane Sp {X,Z} , i.e.
λ1 = 0. Recall that the curve β on the surface Mf is image curve of the curve α
lying on M, then curvatures of κfg , κ

f
n, t

f
r for partner of curve-surface

(
β,Mf

)
are

as follows

κfg = −λ2κn (κ2 + λ3K)

AC
(32)

κfn =
κn

(
1 + λ3H + λ23K

)
AC

(33)

tfr = − λ2
A2C

{
(
κ

′

2 + λ3K
′
) (

1 + λ3H + λ23K
)

(34)

− (κ2 + λ3K)
(
λ3H

′
+ λ23K

′
)
}.

Proof. If we substitute λ1 = 0 in equations 29, 30, 31, we can easily hold equations
32, 33, 34. □

Corollary 2. Providing λ1 = 0, the curve β which is image curve of the directrix
curve α is an asymptotic curve if and only if α is an asymptotic curve.

Corollary 3. Providing λ1 = 0, the curve β which is image curve of the directrix
curve α is a geodesic curve if and only if α is a asymptotic curve.

Theorem 2. Let M be a ruled surface in E3 and Mf be parallel-like surface of the
ruled surface M that formed along directions of EP lying in plane Sp {T,Z} , i.e.
λ2 = 0. Then curvatures of κfg , κ

f
n, t

f
r for partner of curve-surface

(
β,Mf

)
are as

follows

κfg = 0 (35)

κfn =
1

AC2
{λ1 (κ1 + λ3K)

(
−λ3κ

′

n − λ1κ
2
n

)
(36)

+
(
1 + λ3H + λ23K

) (
λ1κ

′

n + κn (1− κnλ3)
)
}

tfr = 0. (37)

Proof. If we substitute λ2 = 0 in equations 29, 30, 31, we can easily hold equations
35, 36, 37. □
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Corollary 4. Providing λ2 = 0, the curve β lying on Mf is both a geodesic curve
and a principal line.

Corollary 5. Providing λ2 = 0, the curve β which is image curve of the directrix
curve α is an asymptotic curve if and only if α is an asymptotic curve.

Theorem 3. Let M be a ruled surface in E3 and Mf be parallel-like surface of the
ruled surface M that formed along directions of EP lying in plane Sp {T,X} , i.e.
λ3 = 0. Then curvatures of κfg , κ

f
n, t

f
r for partner of curve-surface

(
β,Mf

)
are as

follows

κfg =
1

AC3
{−λ21λ2κ2κ3n − λ2κ2

(
λ1κ

′

n + κn

)
} (38)

κfn =
1

AC2
{−λ21κ1κ2n + λ1κ

′

n + κn} (39)

tfr = − 1

A3C2
{λ1λ2κnκ2

(
Aλ1κ

′

1 −Bλ1κ1 −Aκn

)
+
(
Aκ

′

2λ2 −Bκ2λ2

) (
1− κnκ1λ

2
1

)
(40)

−λ2κ2 (Aκnκ1λ1 −B)}.

Proof. If we substitute λ3 = 0 in equations 29, 30, 31, we can easily hold equations
38, 39, 40. □

Corollary 6. Providing λ3 = 0, the curve β which is image curve of the directrix
curve α is a geodesic curve if and only if α is an asymptotic curve.

Corollary 7. Providing λ3 = 0, the curve β which is image curve of the directrix
curve α is an asymptotic curve if and only if α is an asymptotic curve.

Theorem 4. Let M be a ruled surface in E3 and Mf be parallel-like surface of the
ruled surface M that formed along vector field Z, i.e. λ1 = λ2 = 0. Then curvatures
of κfg , κ

f
n, t

f
r for partner of curve-surface

(
β,Mf

)
are as follows

κfg = 0 (41)

κfn =
κn

1− κnλ3
(42)

tfr = 0. (43)

Proof. If we substitute λ1 = λ2 = 0 in equations 29, 30, 31, we can easily hold
equations 41, 42, 43. □

Corollary 8. Providing λ1 = λ2 = 0, the curve β lying on Mf is both a geodesic
curve and principal line.

Corollary 9. Providing λ1 = λ2 = 0, the curve β lying on Mf is an asymptotic
curve if and only if α lying on M is an asymptotic curve.
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Theorem 5. Let M be a ruled surface in E3 and Mf be parallel-like surface of the
ruled surface M that formed along vector field X, i.e. λ1 = λ3 = 0. Then curvatures
of κfg , κ

f
n, t

f
r for partner of curve-surface

(
β,Mf

)
are as follows

κfg =
−λ2κnκ2√
λ22κ

2
2 + 1

(44)

κfn =
κn√

λ22κ
2
2 + 1

(45)

tfr = − κ
′

2λ2(
λ22κ

2
2 + 1

) . (46)

Proof. If we substitute λ1 = λ3 = 0 in equations 29, 30, 31, we can easily hold
equations 44, 45, 46. □

Corollary 10. Providing λ1 = λ3 = 0, the curve β which is image curve of the
directrix curve α is a geodesic curve if and only if α is an asymptotic curve.

Corollary 11. Providing λ1 = λ3 = 0, the curve β which is image curve of the
directrix curve α is an asymptotic curve if and only if α is an asymptotic curve.

Theorem 6. Let M be a ruled surface in E3 and Mf be parallel-like surface of the
ruled surface M that formed along vector field T, i.e. λ2 = λ3 = 0. Then curvatures
of κfg , κ

f
n, t

f
r for partner of curve-surface

(
β,Mf

)
are as follows

κfg = 0 (47)

κfn =
1

AC2

{
κn + λ1κ

′

n − λ21κ1κ
2
n

}
(48)

tfr = 0. (49)

Proof. If we substitute λ2 = λ3 = 0 in equations 29, 30, 31, we can easily hold
equations 47, 48, 49. □

Corollary 12. Providing λ2 = λ3 = 0, the curve β which is image curve of the
directrix curve α is both a geodesic curve and a principal line.

Corollary 13. Providing λ2 = λ3 = 0, the curve β which is image curve of the
directrix curve α is an asymptotic curve if and only if α is an asymptotic curve.
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[14] Kızıltuğ, S., Yaylı, Y., Timelike curves on timelike parallel surfaces in Minkowski 3-space E3
1 ,

Math. Æterna, 2 (2012), 689-700.
[15] Sun, S., Yan, S., Jiang, S., Sun, Y., A high-accuracy tool path generation (HATPG)

method for 5-axis flank milling of ruled surfaces with a conical cutter based on

instantaneous envelope surface modelling, Comput.-Aided Des., 151 (2022), 103354.
https://doi.org/10.1016/j.cad.2022.103354
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[17] Tarakcı, Ö., Surfaces at a Constant Distance from the Edge of Regression on a Surface, PhD

thesis, Ankara University Institute of Science, 2002.
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ANOTHER APPLICATION OF SMARANDACHE BASED RULED

SURFACES WITH THE DARBOUX VECTOR ACCORDING TO

FRENET FRAME IN E3

Süleyman ŞENYURT1, Davut CANLI2, Elif ÇAN3 and Sümeyye GÜR MAZLUM4

1,2,3Department of Mathematics, Ordu University, Ordu, TÜRKİYE
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Abstract. In this study, we first define the Smarandache curves derived from

the Frenet vectors and the Darboux vector of any curve. Then, we construct
new ruled surfaces along these Smarandache curves with the direction vec-

tors obtained from the Frenet vectors and the Darboux vector, and give the

equations of these surfaces. In addition, we calculate the Gaussian and mean
curvatures of these surfaces separately and present the conditions to be min-

imal and developable for these surfaces. Finally, as an example, we obtain

ruled surfaces whose base curves are Viviani’s curves and plot the graphics of
these surfaces.

1. Introduction

A surface is defined to be the image of a function with two real variables in three-
dimensional space. Surfaces can be characterized by their curvatures and engaged
accordingly to many fields, especially in architecture and engineering. Research on
the surface curvature went through various stages starting from Ancient Greece.
After the studies of Descartes, Kepler, Fermat and Huygens, it gained momentum
with the calculations developed by Newton and Leibniz in the 17th century. The
curvature of curves and surfaces is an important topic in differential geometry,
today. The method of calculating the curvature of a surface was defined by Gauss
in the 19th century and therefore named Gaussian curvature. Gaussian curvature
is related to the dimension of the surface. The developability of a surface depends
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on its Gaussian curvature. A surface with zero Gaussian curvature at every point
is known to be a developable surface. Since the average curvature of the surface is
a ratio, it is independent of the size of the surface. Surfaces with a mean curvature
of zero at every point are minimal surfaces. Therefore, it is one of the most used
surfaces in architectural designs. There are numerous studies on surfaces, [5, 16,
17, 22, 24]. In surface theory, there are special surfaces of which one is named the
ruled surface. A ruled surface is formed by infinitely many lines that move along a
given curve. The basics related to this type of surfaces are given in [7,23,25]. And
there are various other studies on ruled surfaces, [2, 3, 10, 12, 13, 27, 33, 36]. On the
other hand, the theory of curves also occupies an important place in differential
geometry. There are many studies on various special curves, [7–9,11,14,15,21]. In
addition, studies with Smarandache curves are available in [1,4,6,24,26–31,34,35].
Recently, in [18–20], generating the way of new ruled surfaces have been given by
exploiting the idea of Smarandache geometry and using the Frenet, the Darboux
or the alternative frame. In the light of all these informations in this study, we
obtain the ruled surfaces from the direction vector obtained from the Frenet and
Darboux vectors of any curve and from the Smarandache base curve obtained in
the same way. And we study some properties of these surfaces. Finally, we show
all these results on an example and plot the graphs of the surfaces. This study is
another application of our previous paper: Smarandache based ruled surfaces with
the Darboux vector according to Frenet frame in E3, [32].

2. Preliminaries

α : I → E3 be a unit speed regular curve. The Frenet frame {T,N,B}, the
curvature κ, the torsion τ and the Frenet derivative formulae of the curve α are
given by

T = α′, N =
α′′

∥α′′∥
, B = T ∧N, κ = ∥α′′∥ , τ = ⟨N ′, B⟩ ,

and

T ′ = κN, N ′ = −κT + τB, B′ = −τN.

here T , N and B are the tangent, normal and binormal vectors of α, respectively, [7].
Also ⟨, ⟩ is the inner product, ∥ ∥ is the norm and ∧ is the vectorial product functions
in E3, [7]. The Darboux vector corresponding to the Frenet frame {T,N,B} is
defined by W = τT + κB . Thus, we write the unit form of Darboux vector as

C = sinω T + cosωB,

where ∠ (B,W ) = ω and
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cosω =
κ√

κ2 + τ2
, sinω =

τ√
κ2 + τ2

,

ω′ =
( τ
κ

)′
(
1 +

τ2

κ2

)
,

(1)

[6]. On the other hand, a unit vector based on the Frenet frame elements can be
defined by

γ =
aT + bN + cB√
a2 + b2 + c2

, (2)

where a, b, c are some real valued functions. For ∀s ∈ I, the locus of the endpoints
of the vector γ defines a differentiable curve. If γ is taken to be the position vector
then the generated curve is called as Smarandache curve, [25]. A ruled surface is
defined as a one parameter family of lines and it has the form

X (s, v) = α(s) + vr (s) , (3)

here α(s) is the base curve, r (s) is the direction vector of the ruled surface X (s, v)
and v is any real number, [9]. The normal vector field, the Gaussian and the mean
curvatures of X (s, v) are given by the relations [7]

NX =
Xs ∧Xv

∥Xs ∧Xv∥
, (4)

K =
eg − f2

EG− F 2
, H =

Eg − 2fF + eG

2 (EG− F 2)
, (5)

respectively. Here, the coefficients of the first and the second fundamental forms
are defined by [7]

E = ⟨Xs, Xs⟩ , F = ⟨Xs, Xv⟩ , G = ⟨Xv, Xv⟩ , (6)

e = ⟨Xss, NX⟩ , f = ⟨Xsv, NX⟩ , g = ⟨Xvv, NX⟩ . (7)

3. Another Application of Smarandache Based Ruled Surfaces with
the Darboux Vector According to Frenet Frame in E3

Let us remind the given expression (2). We consider some special cases to gen-
erate new kind of Smarandache curves by choosing appropriate a, b, c functions:

• For a = 1 + sinω, b = 0, c = cosω, we define TC– Smarandache curve

γ1 =
T + C√
2 + 2 sinω

, whose position vector is γ =
T + C√
2 + 2 sinω

,
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• For a = sinω, b = 1, c = cosω, we define NC– Smarandache curve

γ2 =
N + C√

2
, whose position vector is γ =

N + C√
2

,

• For a = sinω, b = 0, c = 1 + cosω, we define BC– Smarandache curve

γ3 =
B + C√
2 + 2 cosω

, whose position vector is γ =
B + C√
2 + 2 cosω

.

By this study, we define and consider the ruled surfaces where the base curve is
one of these Smarandache curves and the generator line is one of the given position
vectors. For each surface, we calculate the corresponding the Gaussian and mean
curvatures.

Definition 1. Let’s define a ruled surface generated by continuously moving the
vector T + C along the TC– Smarandache curve. Thus, we provide its parametric
form as

Σ (s, v) =
T + C√
2 + 2 sinω

+ v
T + C√
2 + 2 sinω

,

Σ (s, v) =
1 + v√

2

(√
1 + sinωT +

√
1− sinωB

)
.

The first and the second partial differentials of Σ (s, v) are

Σs =
1 + v

2
√
2

 ω′√1− sinωT + 2
(
κ
√
1 + sinω − τ

√
1− sinω

)
N

−ω′√1 + sinωB

 ,

Σv =
1√
2

(√
1 + sinωT +

√
1− sinωB

)
,

Σvv = 0,

Σsv =
1

2
√
2

 ω′√1− sinωT + 2
(
κ
√
1 + sinω − τ

√
1− sinω

)
N

−ω′√1 + sinωB

 ,

Σss =
1 + v

4
√
2



(
(2ω′′ + 4τκ)

√
1− sinω −

(
ω′2 + 4κ2

)√
1 + sinω

)
T

+
(
(2κω′ − 2τ ′)

√
1− sinω + (2κ′ + 2τω′)

√
1 + sinω

)
N

+
(
(−2ω′′ + 4τκ)

√
1− sinω −

(
ω′2 + 4τ2

)√
1 + sinω

)
B

 .
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And the vectorial product of the vectors Σs , Σv and its norm are

Σs ∧ Σv =
1 + v

2

((√
κ2 + τ2 − τ

)
T − ω′N − κB

)
,

∥Σs ∧ Σv∥ =
1 + v

2

√
2κ2 + 2τ2 + ω′2 − 2τ

√
κ2 + τ2.

If we denote the normal vector field of the surface by NΣ, then from the expression
(4), we have

NΣ =

(√
κ2 + τ2 − τ

)
T − ω′N − κB(

ω′2 + 2κ2 + 2τ2 − 2τ
√
κ2 + τ2

) 1
2

.

From the expressions (6) and (7), we compute the coefficients of the first and the
second fundamental forms as

EΣ =
(1 + v)

2

4

(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

)
,

FΣ = 0, GΣ = 1

and

eΣ =



(
(2ω′′ + 4τκ)

(√
κ2 + τ2 − τ

)
− ω′ (2κω′ − 2τ ′)− κ (−2ω′′ + 4τκ)

)
.
√
1− sinω

−
((

ω′2 + 4κ2
) (√

κ2 + τ2 − τ
)
+ ω′ (2κ′ + 2τω′)− κ

(
ω′2 + 4τ2

))
.
√
1 + sinω


4(1 + v)

−1(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

) 1
2

,

fΣ =
ω′ (√κ2 + τ2 + τ

)√
1− sinω − κω′√1 + sinω

4(1 + v)
−1(

ω′2 + 2κ2 + 2τ2 − 2τ
√
κ2 + τ2

) 1
2

,

gΣ = 0,
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respectively. Finally, by using the expression (5), we get the Gaussian and the mean
curvatures

KΣ = −

[
ω′ (√κ2 + τ2 + τ

)√
1− sinω − κω′√1 + sinω

2
(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

) ]2

,

HΣ =



(
(2ω′′ + 4τκ)

(√
κ2 + τ2 − τ

)
− ω′ (2κω′ − 2τ ′)− κ (−2ω′′ + 4τκ)

)
.
√
1− sinω

−
((

ω′2 + 4κ2
) (√

κ2 + τ2 − τ
)
+ ω′ (2κ′ + 2τω′)− κ

(
ω′2 + 4τ2

))
.
√
1 + sinω


2
(
ω′2 + 2κ2 + 2τ2 − 2τ

√
κ2 + τ2

) 3
2

,

respectively.

Corollary 1. If α(s) is a general helix, then Σ is a developable surface.

Definition 2. Let’s define a ruled surface generated by continuously moving the
vector N + C along the TC– Smarandache curve. Thus, we provide its parametric
form as

∆(s, v) =
1√

2 + 2 sinω
(T + C) +

v√
2
(N + C) ,

∆(s, v) =
1√
2

[(√
1 + sinω + v sinω

)
T + vN +

(√
1− sinω + v cosω

)
B
]
.

The first and the second partial differentials of ∆ (s, v) are

∆s =
1

2
√
2
(xT + yN + zB) ,

∆v =
1√
2
(sinωT +N + cosωB) ,

∆vv = 0,

∆sv =
1√
2

(
(−κ+ cosω)T +

(
κ
√
1 + sinω − τ

√
1− sinω

)
N + (τ − sinω)B

)
,

∆ss =
1

2
√
2
((x′ − yκ)T + (xκ− zτ + y′)N + (yτ + z′)B) .
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And the vectorial product of the vectors ∆s , ∆v and its norm are

∆s ∧∆v =
1

4
((−z + y cosω)T − (x cosω − z sinω)N + (x− y sinω)B) ,

∥∆s ∧∆v∥ =
1

4

(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

,

where the coefficients x, y, z are

x = ω′√1− sinω + 2v (−κ+ cosω) ,

y = 2κ
√
1 + sinω − 2τ

√
1− sinω,

z = −ω′√1 + sinω + 2v (τ − sinω) .

Thus, from the expression (4), the normal of the surface N∆ is given as

N∆ =
(−z + y cosω)T − (x cosω − z sinω)N + (x− y sinω)B(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

.

By following the expressions (6) and (7), the coefficients of the first and the second
fundamental forms are

E∆ =
1

8

(
x2 + y2 + z2

)
,

F∆ =
1

4
(x sinω + y + z cosω) ,

G∆ = 1

and

e∆ =

 (x′ − yκ) (−z + y cosω)− (xκ− zτ + y′) (x cosω − z sinω)

+ (yτ + z′) (x− y sinω)


2
√
2
(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

,

f∆ =

 zκ+ xτ − z cosω − x sinω + y
(
1−

√
κ2 + τ2

)
− (x cosω − z sinω)

(
κ
√
1 + sinω − τ

√
1− sinω

)


√
2
(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 1

2

,

g∆ = 0,
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respectively. Finally, from the expression (5), the Gaussian and mean curvatures
are obtained as

K∆ = −

8

 zκ+ xτ + y
(
1−

√
κ2 + τ2

)
− (z cosω + x sinω)

− (x cosω − z sinω)
(
κ
√
1 + sinω − τ

√
1− sinω

)
2

(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
)2 ,

H∆=



(x′ − yκ) (−z + y cosω)− (xκ− zτ + y′) (x cosω − z sinω)

+ (yτ + z′) (x− y sinω)− zκ+ xτ − z cosω − x sinω

+y
(
1−

√
κ2 + τ2

)
(x sinω + y + z cosω)

+ (x cosω − z sinω) (x sinω + y + z cosω)
(
κ
√
1 + sinω − τ

√
1− sinω

)


(
(−z + y cosω)

2
+ (x cosω − z sinω)

2
+ (x− y sinω)

2
) 3

2

,

respectively.

Definition 3. Let’s define a ruled surface generated by continuously moving the
vector B + C along the TC–Smarandache curve. Thus, we provide its parametric
form as

Υ(s, v) =
1√

2 + 2 sinω
(T + C) +

v√
2 + 2 cosω

(B + C),

Υ(s, v) =
1√
2

[(√
1 + sinω + v

√
1− cosω

)
T +

(√
1− sinω + v

√
1 + cosω

)
B
]
.

If we assign p (s, v) =
√
1 + sinω + v

√
1− cosω and

q (s, v) =
√
1− sinω + v

√
1 + cosω, then we can rewrite the surface in a simple

form as

Υ (s, v) =
1√
2
(pT + qB) .

Next, the first and the second partial differentials of Υ (s, v) are
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Υs =
1√
2
(psT + (κp− τq)N + qsB) ,

Υv =
1√
2
(pvT + qvB) ,

Υvv = 0,

Υss =
1√
2

 (
pss − κ2p+ τκq

)
T + (psκ− qsτ + (κp− τq)s)N

+
(
qss + κτp− τ2q

)
B

 ,

Υsv =
1√
2
(psvT + (κpv − τqv)N + qsvB) .

And the vectorial product of the vectors Υs , Υv and its norm are

Υs ∧Υv =
1

2
((κpqv − τqqv)T + (qspv − psqv)N − (κppv − τqpv)B) ,

∥Υs ∧Υv∥ =
1

2

√
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
.

From the expression (4), the normal of the surface NΥ is

NΥ =
qv (κp− τq)T + (pvqs − psqv)N − pv (κp− τq)B√

(κp− τq)
2
(pv2 + qv2) + (pvqs − psqv)

2

From the expressions (6) and (7) to compute the coefficients of fundamental forms,
we get

EΥ =
1

2

(
(ps)

2
+ (κp− τq)

2
+ (qs)

2
)
,

FΥ =
1

2
(pspv + qsqv) ,

GΥ = 1
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and

eΥ =

 (κp− τq)
(
qv

(
pss − κ2p+ τκq

)
− pv

(
qss + κτp− τ2q

))
+(pvqs − psqv) (psκ− qsτ + (κp− τq)s)


√
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
,

fΥ =
(κp− τq) (qvpsv − pvqsv) + (pvqs − psqv) (κpv − τqv)

√
2

√
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
,

gΥ = 0,

respectively. Finally, from the expression (5), we obtain the Gaussian and mean
curvatures as

KΥ = −

[
(κp− τq) (qvpsv − pvqsv) + (pvqs − psqv) (κpv − τqv)

(κp− τq)
2
(pv2 + qv2) + (pvqs − psqv)

2

]2

,

HΥ =


(κp− τq) (qvpss − pvqss − (κp− τq) (κqv + τpv))

+ (pvqs − psqv) (2psκ− 2qsτ + κ′p− τ ′q)

− (κp− τq) (pspv + qsqv) (psvqv − qsvpv + pvqs − psqv)


√
2
(
(κp− τq)

2
(pv2 + qv2) + (pvqs − psqv)

2
) 3

2

.

Definition 4. Let’s define a ruled surface generated by continuously moving the
vector T + C along the NC– Smarandache curve. Thus, we provide its parametric
form as

χ (s, v) =
1√
2
(N + C) +

v√
2 + 2 sinω

(T + C),

χ (s, v) =
1√
2

[(
sinω + v

√
1 + sinω

)
T +N +

(
cosω + v

√
1− sinω

)
B
]
.

If we assign m (s, v) = sinω+ v
√
1 + sinω and r (s, v) = cosω+ v

√
1− sinω , then

we can rewrite the surface in a simple form as

χ (s, v) =
1√
2
(mT +N + rB) .
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Next, the first and second partial differentials of χ (s, v) are

χs =
1√
2
((ms − κ)T + (mκ− rτ)N + (rs + τ)B) ,

χv =
1√
2
(mvT + rvB) ,

χvv = 0,

χsv =
1√
2
(msvT + (mvκ− rvτ)N + rsvB) ,

χss =
1√
2


(
mss −mκ2 − κ′ + rκτ

)
T

+
(
2κms − 2τrs − κ2 − τ2 +mκ′ − rτ ′

)
N

+
(
rss +mτκ+ τ ′ − rτ2

)
B

 .

And the vectorial product of the vectors χs , χv and its norm are

χs ∧ χv =
1

2
(rv (mκ− rτ)T + (mv (rs + τ)− rv (ms − κ))N −mv (mκ− rτ)B) ,

∥χs ∧ χv∥ =
1

2

(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 1

2

.

From the expression (4), the normal of the ruled surface χ (s, v) is

Nχ =
rv (mκ− rτ)T + (mv (rs + τ)− rv (ms − κ))N −mv (mκ− rτ)B(

(mv (rs + τ)− rv (ms − κ))
2
+ 2(mκ− rτ)

2
) 1

2

.

From the expression (6) and (7, the coefficients of the first and the second funda-
mental forms are

Eχ =
1

2

(
(ms − κ)

2
+ (mκ− rτ)

2
+ (rs + τ)

2
)
,

Fχ =
1

2
(mv (ms − κ) + rv (rs + τ)) ,

Gχ = 1

and
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eχ =

 (mκ− rτ)
(
rv

(
mss −mκ2 − κ′ + rκτ

)
−mv

(
rss +mτκ+ τ ′ − rτ2

))
+(mv (rs + τ)− rv (ms − κ))

(
2κms − 2τrs − κ2 − τ2 +mκ′ − rτ ′

)


√
2
(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 1

2

,

fχ =
(mκ− rτ) (rvmsv −mvrsv) + (mv (rs + τ)− rv (ms − κ)) (mvκ− rvτ)

√
2
(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 1

2

,

gχ = 0,

respectively. Finally, from the expression (5), we compute the Gaussian and mean
curvatures as

Kχ = −

[
(mκ− rτ) (rvmsv −mvrsv) + (mv (rs + τ)− rv (ms − κ)) (mvκ− rvτ)

(mv (rs + τ)− rv (ms − κ))
2
+ 2(mκ− rτ)

2

]2

,

Hχ =



(mκ− rτ)

 rvmss − rvmκ2 − rvκ
′ + rvrκτ −mvrss

−mvmτκ−mvτ
′ +mvrτ

2


− (mκ− rτ) (rvmsv −mvrsv) (mvms − κmv + rvrs + rvτ)

+ (mvrs +mvτ − rvms + rvκ)
(
2κms − 2τrs − κ2 − τ2 +mκ′ − rτ ′

)
− (mvrs +mvτ − rvms + rvκ) (mvms −mvκ+ rvrs + rvτ)

. (mvκ− rvτ)


√
2
(
(mv (rs + τ)− rv (ms − κ))

2
+ 2(mκ− rτ)

2
) 3

2

.

Definition 5. Let’s define a ruled surface generated by continuously moving the
vector N +C along the NC– Smarandache curve. Thus, we provide its parametric
form as

P (s, v) =
N + C√

2
+ v

N + C√
2

,

P (s, v) =
1 + v√

2
(sinωT +N + cosωB) .
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Next, the first and the second partial differentials of P (s, v) are

Ps =
1 + v√

2
((−κ+ ω′ cosω)T + (τ − ω′ sinω)B) ,

Pv =
1√
2
(sinωT +N + cosωB) ,

Pss =
1√
2
(1 + v)

 (−κ+ ω′ cosω)
′
T −

(
κ2 + τ2 − ω′ (κ cosω + τ sinω)

)
N

+ (τ − ω′ sinω)
′
B

 ,

Psv =
1√
2
((−κ+ ω′ cosω)T + (τ − ω′ sinω)B) ,

Pvv = 0.

And the vectorial product of the vectors Ps , Pv and its norm are

Ps ∧ Pv =
(1 + v)

2
[(ω′ sinω − τ)T + (κ cosω + τ sinω − ω′)N + (ω′ cosω − κ)B] ,

∥Ps ∧ Pv∥ =
(1 + v)

2

√
(ω′ sinω − τ)

2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2
.

If we denote the normal vector of the surface by NP, then from the expression (4),
we get

NP =
(ω′ sinω − τ)T + (κ cosω + τ sinω − ω′)N + (ω′ cosω − κ)B√

(ω′ sinω − τ)
2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2
.

By using the expressions (6) and (7), the coefficients of the first and the second
fundamental forms are given as

EP =
1

2

(
(1 + v)

2
(
(−κ+ ω′ cosω)

2
+ (τ − ω′ sinω)

2
))

,

FP = 0,

GP = 1

and
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eP =

(1 + v)

 (ω′ cosω − κ)
′
(ω′ sinω − τ) + (τ − ω′ sinω)

′
(ω′ cosω − κ)

+(κ cosω + τ sinω − ω′)
2


√
2
(
(ω′ sinω − τ)

2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2
) 1

2

,

fP = 0,

gP = 0,

respectively. Finally, from the expression (5), the Gaussian and mean curvatures
are obtained as:

KP = 0,

HP =

 (√
2 (1 + v)

)−1
(−κ+ ω′ cosω)

′
(ω′ sinω − τ)

+(τ − ω′ sinω)
′
(−κ+ ω′ cosω) + (κ cosω + τ sinω − ω′)

2




(
κ2 + τ2 + ω′2 − 2ω′ (κ cosω + τ sinω)

)
.

√
(ω′ sinω − τ)

2
+ (ω′ cosω − κ)

2
+ (κ cosω + τ sinω − ω′)

2


.

Corollary 2. The ruled surface P (s, v) is always developable.

Definition 6. Let’s define a ruled surface generated by continuously moving the
vector B +C along the NC– Smarandache curve. Thus, we provide its parametric
form as

δ (s, v) =
1√
2
(N + C) +

v√
2 + 2 cosω

(B + C) ,

δ (s, v) =
1√
2

[(
sinω + v

√
1 + cosω

)
T +N +

(
cosω + v

√
1− cosω

)
B
]
.

If we assign p∗ (s, v) = sinω+v
√
1 + cosω and q∗ (s, v) = cosω+v

√
1− cosω, then

we can rewrite the surface in a simple form as

δ (s, v) =
1√
2
(p∗T +N + q∗B) .

Next, the first and second partial differentials of δ (s, v) are
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δs =
1√
2
((−κ+ p∗s)T + (κp∗ − τq∗)N + (τ + q∗s )B) ,

δv =
1√
2
(p∗vT + q∗vB) ,

δvv = 0,

δsv =
1√
2
(p∗svT + (κp∗v − τq∗v)N + q∗svB) ,

δss =
1√
2

 (
−κ′ + p∗ss − κ2p∗ + τκq∗

)
T +

(
τ ′ + q∗ss + κτp∗ − τ2q∗

)
B

+
(
2κp∗s − 2τq∗s − τ2 − κ2 + κ′p∗ − τ ′q∗

)
N

 .

And the vectorial product of the vectors δs , δv and its norm are

δs ∧ δv =
1

2

 q∗v (κp
∗ − τq∗)T + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))N

−p∗v (κp
∗ − τq∗)B

 ,

∥δs ∧ δv∥ =
1

2

[(
q∗v

2 + p∗v
2
)
(κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
] 1

2

.

From the expression (4), we compute the normal of the surface denoted by Nδ as

Nδ =
q∗v (κp

∗ − τq∗)T + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))N − p∗v (κp
∗ − τq∗)B[

(q∗v
2 + p∗v

2) (κp∗ − τq∗)
2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
] 1

2

.

By the expressions (6) and (7), the coefficients of fundamental forms are given as

Eδ =
1

2

[
(−κ+ p∗s)

2
+ (κp∗ − τq∗)

2
+ (τ + q∗s )

2
]
,

Fδ =
1

2
[(−κ+ p∗s) p

∗
v + (τ + q∗s ) q

∗
v ] ,

Gδ = 1

and
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eδ =

 (κp∗ − τq∗)
[
q∗v

(
−κ′ + p∗ss − κ2p∗ + τκq∗

)
− p∗v

(
τ ′ + q∗ss + κτp∗ − τ2q∗

)]
+(p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

(
2κp∗s − 2τq∗s − τ2 − κ2 + κ′p∗ − τ ′q∗

)


√
2
(
(q∗v

2 + p∗v
2) (κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
) 1

2

,

fδ =
(q∗vp

∗
sv − p∗vq

∗
sv) (κp

∗ − τq∗) + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s)) (κp
∗
v − τq∗v)

√
2
(
(q∗v

2 + p∗v
2) (κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
) 1

2

,

gδ = 0,

respectively. Finally, from the expression (5), we compute the Gaussian and mean
curvatures as

Kδ = −2

[
(q∗vp

∗
sv − p∗vq

∗
sv) (κp

∗ − τq∗) + (p∗v (τ + q∗s )− q∗v (−κ+ p∗s)) (κp
∗
v − τq∗v)

(q∗v
2 + p∗v

2) (κp∗ − τq∗)
2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2

]2

,

Hδ =



(κp∗ − τq∗)
[
q∗v

(
−κ′ + p∗ss − κ2p∗ + τκq∗

)
− p∗v

(
τ ′ + q∗ss + κτp∗ − τ2q∗

)]
+(p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

(
2κp∗s − 2τq∗s − τ2 − κ2 + κ′p∗ − τ ′q∗

)
− (q∗vp

∗
sv − p∗vq

∗
sv) (κp

∗ − τq∗) ((−κ+ p∗s) p
∗
v + (τ + q∗s ) q

∗
v)

− (p∗v (τ + q∗s )− q∗v (−κ+ p∗s)) (p
∗
v (−κ+ p∗s) + q∗v (τ + q∗s )) (κp

∗
v − τq∗v)


2−

1
2

[
(q∗v

2 + p∗v
2) (κp∗ − τq∗)

2
+ (p∗v (τ + q∗s )− q∗v (−κ+ p∗s))

2
] 3

2

.

Definition 7. Let’s define a ruled surface generated by continuously moving the
vector T + C along the BC– Smarandache curve. Thus, we provide its parametric
form as

η (s, v) =
1√

2 + 2 cosω
(B + C) +

v√
2 + 2 sinω

(T + C),

η (s, v) =
1√
2

[((√
1− cosω

)
+ v

(√
1 + sinω

))
T

+
((√

1 + cosω
)
+ v

(√
1− sinω

))
B
]
.

If we assign m∗ (s, v) =
(√

1− cosω + v
√
1 + sinω

)
and

n∗ (s, v) =
(√

1 + cosω + v
√
1− sinω

)
, then we can rewrite the surface in a simple
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form as

η (s, v) =
1√
2
(m∗ (s, v)T (s) + n∗ (s, v)B (s)) .

Next, the first and the second partial differentials of η (s, v) are

ηs =
1√
2
(m∗

sT + (κm∗ − τn∗)N + n∗
sB) ,

ηv =
1√
2
(m∗

vT + n∗
vB) ,

ηvv = 0,

ηss =
1√
2

 (
m∗

ss − κ2m∗ + τκn∗
s

)
T + (κ′m∗ − τ ′n∗

s + 2κm∗
s − 2τn∗

s)N

+
(
n∗
ss + κτm∗ − τ2n∗

s

)
B

 ,

ηsv =
1√
2
(m∗

svT + (κm∗
v − τn∗

v)N + n∗
svB) .

And the vectorial product of the vectors ηs , ηv and its norm are

ηs ∧ ηv =
1

2
(n∗

v (κm
∗ − τn∗)T + (n∗

sm
∗
v −m∗

sn
∗
v)N −m∗

v (κm
∗ − τn∗)B) ,

∥ηs ∧ ηv∥ =
1

2

(
(κm∗ − τn∗)

2 (
m∗

v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

.

By using the expression (4), the normal vector field denoted by Nη can be computed
as:

Nη =
n∗
v (κm

∗ − τn∗)T + (n∗
sm

∗
v −m∗

sn
∗
v)N −m∗

v (κm
∗ − τn∗)B(

(κm∗ − τn∗)
2 (

m∗
v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

.

From the expressions (6) and (7), the coefficients of fundamental forms can be given
as:

Eη =
1

2

(
ms

∗2 + ns
∗2 + (κm∗ − τn∗)

2
)
,

Fη =
1

2
(ms

∗mv
∗ + ns

∗nv
∗) ,

Gη = 1

and
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eη =

 (κm∗ − τn∗)
(
n∗
v

(
m∗

ss − κ2m∗ + τκn∗
s

)
−m∗

v

(
n∗
ss + κτm∗ − τ2n∗

s

))
+(n∗

sm
∗
v −m∗

sn
∗
v) (κ

′m∗ − τ ′n∗
s + 2κm∗

s − 2τn∗
s)


√
2
(
(κm∗ − τn∗)

2
(m∗

v
2 + n∗

v
2) + (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

,

fη =
(κm∗ − τn∗) (n∗

vm
∗
v −m∗

vn
∗
v)

√
2
(
(κm∗ − τn∗)

2
(m∗

v
2 + n∗

v
2) + (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 1

2

,

gη = 0,

respectively. Finally, from the expression (5), the Gaussian and mean curvatures
are obtained as

Kη = − 2(κm∗ − τn∗)
2
(n∗

vm
∗
v −m∗

vn
∗
v)

2(
(κm∗ − τn∗)

2 (
m∗

v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
)2 ,

Hη =


(κm∗ − τn∗)

[
n∗
v

(
m∗

ss − κ2m∗ + τκn∗
s

)
−m∗

v

(
n∗
ss + κτm∗ − τ2n∗

s

)]
+(n∗

sm
∗
v −m∗

sn
∗
v) (κ

′m∗ − τ ′n∗
s + 2κm∗

s − 2τn∗
s)

− (κm∗ − τn∗) (n∗
vm

∗
v −m∗

vn
∗
v) (m

∗
sm

∗
v + n∗

sn
∗
v)


2−

1
2

(
(κm∗ − τn∗)

2 (
m∗

v
2 + n∗

v
2
)
+ (n∗

sm
∗
v −m∗

sn
∗
v)

2
) 3

2

.

Definition 8. Let’s define a ruled surface generated by continuously moving the
vector N +C along the BC– Smarandache curve. Thus, we provide its parametric
form as

φ (s, v) =
1√

2 + 2 cosω
(B + C) +

v√
2
(N + C) ,

φ (s, v) =
1√
2

((√
1− cosω + v sinω

)
T + vN +

(√
1 + cosω + v cosω

)
B
)
.

If we assign µ (s, v) =
(√

1− cosω + v sinω
)
and ρ (s, v) =

(√
1 + cosω + v cosω

)
,

then we can rewrite the surface in a simple form as

φ (s, v) =
1√
2
(µT + vN + ρB) .
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Next, the first and second partial differentials of φ (s, v) are

φs =
1√
2
((µs − vκ)T + (κµ− τρ)N + (ρs + vτ)B) ,

φv =
1√
2
(µvT +N + ρvB) ,

φvv = 0,

φsv =
1√
2
((µsv − κ)T + (κµv − τρv)N + (ρsv + τ)B) ,

φss =
1√
2


(
µss − vκ′ − κ2µ+ τκρ

)
T

+
(
2κµs − 2τρs + κ′µ− τ ′ρ− vκ2 − vτ2

)
N

+
(
ρss + vτ ′ + τκµ− τ2ρ

)
B

 .

And the vectorial product of the vectors φs , φv and its norm are

φs ∧ φv =
1

2

 (ρv (κµ− τρ)− (ρs + vτ))T + (µv (ρs + vτ)− ρv (µs − vκ))N

+((µs − vκ)− µv (κµ− τρ))B

 ,

∥φs ∧ φv∥ =
1

2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

.

From the expression (4), the normal of the surface φ (s, v) denoted by Nφ can then
be given as:

Nφ =

 (ρv (κµ− τρ)− (ρs + vτ))T + (µv (ρs + vτ)− ρv (µs − vκ))N

+((µs − vκ)− µv (κµ− τρ))B


 (ρv (κµ− τρ)− (ρs + vτ))

2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

.
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The coefficients of first and second fundamental form are calculated by using the
expressions (6) and (7) as:

Eφ =
1

2

(
(µs − vκ)

2
+ (κµ− τρ)

2
+ (ρs + vτ)

2
)
,

Fφ =
1

2
(µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ)) ,

Gφ = 1

and

eφ =


(ρv (κµ− τρ)− (ρs + vτ))

(
µss − vκ′ − κ2µ+ τκρ

)
+((µs − vκ)− µv (κµ− τρ))

(
ρss + vτ ′ + τκµ− τ2ρ

)
+(µv (ρs + vτ)− ρv (µs − vκ))

(
2κµs − 2τρs + κ′µ− τ ′ρ− vκ2 − vτ2

)


√
2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

,

fφ =


(ρv (κµ− τρ)− (ρs + vτ)) (µsv − κ)

+ ((µs − vκ)− µv (κµ− τρ)) (ρsv + τ)

+ (µv (ρs + vτ)− ρv (µs − vκ)) (κµv − τρv)


√
2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


1
2

,

gφ = 0,

respectively. Finally, from the expression (5), we have the Gaussian and mean
curvatures as in the following:
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Kφ = −


(ρv (κµ− τρ)− (ρs + vτ)) (µsv − κ)

+ ((µs − vκ)− µv (κµ− τρ)) (ρsv + τ)

+ (µv (ρs + vτ)− ρv (µs − vκ)) (κµv − τρv)


2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2

2 ,

Hφ =



(ρv (κµ− τρ)− (ρs + vτ))
(
µss − vκ′ − κ2µ+ τκρ

)
+((µs − vκ)− µv (κµ− τρ))

(
ρss + vτ ′ + τκµ− τ2ρ

)
+(µv (ρs + vτ)− ρv (µs − vκ))

(
2κµs − 2τρs + κ′µ− τ ′ρ− vκ2 − vτ2

)
− (ρv (κµ− τρ)− (ρs + vτ))

. (µsv − κ) (µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ))

− ((µs − vκ)− µv (κµ− τρ)) (ρsv + τ)

. (µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ))

− (µv (ρs + vτ)− ρv (µs − vκ)) (κµv − τρv)

. (µv (µs − vκ) + (κµ− τρ) + ρv (ρs + vτ))


√
2

 (ρv (κµ− τρ)− (ρs + vτ))
2
+ ((µs − vκ)− µv (κµ− τρ))

2

+(µv (ρs + vτ)− ρv (µs − vκ))
2


3
2

.

Definition 9. Let’s define a ruled surface generated by continuously moving the
vector B + C along the BC– Smarandache curve. Thus, we provide its parametric
form as

λ (s, v) =
B + C√
2 + 2 cosω

+ v
B + C√
2 + 2 cosω

,

λ (s, v) =
1 + v√

2

((√
1− cosω

)
T +

(√
1 + cosω

)
B
)
.
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Next, the first and second partial differentials of λ (s, v) are

λs =
1 + v√

2
(ω′ cosωT − τN − ω′ sinωB) ,

λv =
1√
2
(sinωT + (1 + cosω)B) ,

λvv = 0,

λsv =
1√
2
(ω′ cosωT − τN − ω′ sinωB) ,

λss =
1 + v√

2

(
(κτ + ω′ cosω)T +

(
ω′
√
κ2 + τ2 − τ ′

)
N −

(
τ2 + ω′ sinω

)
B
)
,

And the vectorial product of the vectors λs , λv and its norm are

λs ∧ λv =
1 + v

2
(−τ (1 + cosω)T − ω′ (1 + cosω)N + τ sinωB)

∥λs ∧ λv∥ =
1 + v

2

√(
τ2 + ω′2

)
(1 + cosω)

2
+ τ2sin2ω.

From the expression (4), the normal of this surface shown by Nλ is given

Nλ =
−τ (1 + cosω)T − ω′ (1 + cosω)N + τ sinωB√(

τ2 + ω′2
)
(1 + cosω)

2
+ τ2sin2ω

.

Next, from the expressions (6) and (7), the coefficients of the first and the second
fundamental forms can be calculated as

Eλ =
1

2

(
(1 + v)

2
(
ω′2 + τ2

))
,

Fλ = − 1√
2
(ω′ (1 + v) sinω) ,

Gλ = (1 + cosω)

and

eλ = −
τ2

(
κ+

√
κ2 + τ2

)
+ (τω′ + ω′) (1 + cosω)

(
ω′√κ2 + τ2 − τ ′

)
(1 + v)

−1√
2
√(

τ2 + ω′2
)
(1 + cosω)

2
+ τ2sin2ω

,

fλ = 0,

gλ = 0,
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respectively. Finally, from the expression (5), we have the Gaussian and mean
curvatures as

Kλ = 0,

Hλ =

(
−κτ2 − τ2

√
κ2 + τ2

)
(1 + cosω)− (τω′ + ω′) (1 + cosω)

2 (
ω′√κ2 + τ2 − τ ′

)
√
2 (1 + v)

((
ω′2 + τ2

)
(1 + cosω)− ω′2sin2ω

)
.
√(

τ2 + ω′2
)
(1 + cosω.)

2
+ τ2sin2ω


.

Corollary 3. The ruled surface λ(s, v) is always developable.

Example 1. Let us consider the famous Viviani’s curve whose parametric form is
given by α(s) =

(
cos2 (s) , cos (s) sin (s) , sin (s)

)
. The Frenet vectors T (s), N(s), B(s)

and the unit Darboux vector C(s) are given in respective order as

T (s) =

−2 cos (s) sin (s)√
cos (s)

2
+ 1

,
2 cos (s)

2 − 1√
cos (s)

2
+ 1

,
cos (s)√

cos (s)
2
+ 1

 ,

N(s) =


−

2
(
cos (s)

4
+ 2 cos (s)

2 − 1
)

√
3 cos (s)

2
+ 5

√
cos (s)

2
+ 1

,−
cos (s) sin (s)

(
2 cos (s)

2
+ 5

)
√

cos (s)
2
+ 1

√
3 cos (s)

2
+ 5

,

− sin (s)√
cos (s)

2
+ 1

√
3 cos (s)

2
+ 5



B(s) =


(
2 cos (s)

2
+ 1

)
sin (s)√

3 cos (s)
2
+ 5

,− 2 cos (s)
3√

3 cos (s)
2
+ 5

,
2√

3 cos (s)
2
+ 5

 ,
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C(s) =



(
−6 cos (s)

4
+ cos (s)

2
+ 5

)
sin (s)

√
cos (s)

2
+ 1√√√√√√√

(
36 cos (s)

8
+ 135 cos (s)

6
+ 243 cos (s)

4
+ 261 cos (s)

2
+ 125

)
.
(
cos (s)

2
+ 1

)
,

2
(
3 cos (s)

4 − 2 cos (s)
2 − 3

)
cos (s)

√
cos (s)

2
+ 1√√√√√√√

(
36 cos (s)

8
+ 135 cos (s)

6
+ 243 cos (s)

4
+ 261 cos (s)

2
+ 125

)
.
(
cos (s)

2
+ 1

)
,

2
(
3 cos (s)

4
+ 6 cos (s)

2
+ 5

)√
cos (s)

2
+ 1√√√√√√√

(
36 cos (s)

8
+ 135 cos (s)

6
+ 243 cos (s)

4
+ 261 cos (s)

2
+ 125

)
.
(
cos (s)

2
+ 1

)
.


The graphs of ruled surfaces, obtained using these vectors and definitions and given
the parametric equations below, are presented in FIGURE 1, 2 and 3, respectively.

Σ (s, v) =
1√
2
(T + C) +

v√
2
(T + C) , ∆(s, v) =

1√
2
(T + C) +

v√
2
(N + C) ,

Υ(s, v) =
1√
2
(T + C) +

v√
2
(B + C) , χ (s, v) =

1√
2
(N + C) +

v√
2
(T + C) ,

P (s, v) =
1√
2
(N + C) +

v√
2
(N + C) , δ (s, v) =

1√
2
(N + C) +

v√
2
(B + C) ,

η (s, v) =
1√
2
(B + C) +

v√
2
(T + C) , φ (s, v) =

1√
2
(B + C) +

v√
2
(N + C) ,

λ (s, v) =
1√
2
(B + C) +

v√
2
(B + C) .
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Figure 1. The ruled surfaces whose the base curve TC – Smaran-
dache curve and the direction vector TC, NC, BC, respectively.

Figure 2. The ruled surfaces whose the base curve NC – Smaran-
dache curve and the direction vector TC, NC, BC, respectively.

Figure 3. The ruled surfaces whose the base curve BC – Smaran-
dache curve and the direction vector TC, NC, BC, respectively.
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4. Conclusion

In this paper, Smarandache curves derived from Frenet vectors and Darboux
vector of any curve are described. Then, by considering the direction vectors ob-
tained from Frenet vectors and Darboux vectors, new ruled surfaces are obtained
along these curves. Finally, the Gaussian and mean curvatures of these surfaces
are given. This paper can also be studied by considering other frames defined on
the curve, additionally it can be examined in the spaces other than Euclidean space.
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[10] Gür Mazlum, S., Şenyurt S., Grilli, L., The dual expression of parallel equidistant ruled sur-
faces in Euclidean 3-space, Symmetry, 14 (2022), 1062. https://doi.org/10.3390/sym14051062
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[32] Şenyurt, S., Canlı, D., Çan, E., Smarandache-based ruled surfaces with the Dar-
boux vector according to Frenet frame in E3, J. New Theory, 39 (2022), 8–18.

https://doi.org/10.53570/jnt.1106331
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Abstract. Existence, uniqueness, and asymptotic stability of modulo peri-
odic Poisson stable solutions of dynamic equations on a periodic time scale

are investigated. The model under investigation involves a term which is con-
structed via a Poisson stable sequence. Novel definitions for Poisson stable

as well as modulo periodic Poisson stable functions on time scales are given,

and the reduction technique to systems of impulsive differential equations is
utilized to achieve the main result. An example which confirms the theoretical

results is provided.

1. Introduction and Preliminaries

Poisson stable motions, which were first introduced by Poincaré [29], include
the cases of oscillations such as periodic, quasi-periodic, almost periodic, almost
automorphic, recurrent, and pseudo-recurrent ones [8,9,14,21,37]. Results on Pois-
son stable solutions for stochastic differential equations and a class of fourth-order
dynamical systems can be found in the studies [13, 27, 28]. Recently, a new type
of flow called modulo periodic Poisson stable (MPPS) was introduced in paper [5],
where the authors also considered the presence of MPPS trajectories in quasilin-
ear systems of ordinary differential equations. In the interest of brevity, MPPS
trajectories are the ones which can be decomposed as the sum of periodic and
Poisson stable functions. Motivated by the importance of oscillations in real world
processes [12, 15, 18, 31, 36] and various application fields of dynamic equations on
time scales [23–26,32,34,35], in this study, we investigate the existence, uniqueness,
and asymptotic stability of MPPS solutions in such equations. To the best of our
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knowledge this is the first time in the literature that Poisson stable as well as MPPS
solutions are introduced and investigated for dynamic equations on time scales.

In the literature, the concept of dynamic equations on time scales has started
with Hilger [19]. This concept, in general, unifies the studies of differential and
difference equations. The basic definitions concerning dynamic equations on time
scales are as follows [1, 11, 22]. A time scale is a nonempty closed subset of R. On
a time scale T, the forward jump operator is defined by σ(t) = inf {s ∈ T : s > t},
whereas ρ(t) = sup {s ∈ T : s < t} is the backward jump operator. A point t ∈ T
is called right-dense if σ(t) = t and it is called right-scattered if σ(t) > t. Similarly,
t ∈ T is said to be left-dense, left-scattered if ρ(t) = t, ρ(t) < t, respectively. We say
that a function u : T → Rm is rd-continuous if it is continuous at each right-dense
point and its left-sided limit exists in each left-dense point. If t is a right-scattered
point of T, then the delta derivative u∆ of a continuous function u is defined to be

u∆(t) =
u(σ(t))− u(t)

σ(t)− t
. (1)

Additionally, we have

u∆(t) = lim
r→t,r∈T

u(t)− u(r)

t− r
(2)

at a right-dense point t, provided that the limit exists.
It was shown by Akhmet and Turan [6] that dynamic equations on time scales

which are union of disjoint closed intervals with positive length can be transformed
to systems of impulsive differential equations. In the present study we make use of
the technique introduced in [6] to investigate MPPS solutions of dynamic equations
on a periodic time scale. More precisely, we take into account the time scale

T0 =

∞⋃
k=−∞

[θ2k−1, θ2k] , (3)

where for each integer k the terms of the sequence {θk}k∈Z are defined by the
equations

θ2k−1 = θ + δ + (k − 1)ω, θ2k = θ + kω, (4)

in which θ is a fixed real number and ω, δ are positive numbers such that ω > δ.
The time scale T0 is periodic with period ω since t± ω ∈ T0 whenever t ∈ T0, and

θ2k+1 − θ2k = δ, k ∈ Z.

For details of periodic time scales the reader is referred to [20], and some appli-
cations of dynamic equations on such time scales can be found in [10, 16, 17]. It
is worth noting that for each k ∈ Z, the points θ2k are right-scattered and left-
dense, the points θ2k−1 are left-scattered and right-dense, and σ(θ2k) = θ2k+1,
ρ(θ2k+1) = θ2k.
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Our main object of investigation is the equation

y∆(t) = Ay(t) + f(t) + g(t), (5)

where t ∈ T0, A ∈ Rm×m is a constant matrix, f : T0 → Rm is an rd-continuous
function such that

f(t+ ω) = f(t) (6)

for each t ∈ T0, the function g : T0 → Rm is defined by

g(t) = γk (7)

for t ∈ [θ2k−1, θ2k], k ∈ Z, and {γk}k∈Z is a bounded sequence in Rm. In this paper
we rigorously prove that if the sequence {γk}k∈Z is positively Poisson stable [33],
then system (5) possesses a unique asymptotically stable MPPS solution.

It was shown in [5] that an MPPS function is Poisson stable if the corresponding
Poisson number is zero. However, in this study, the structure of the function g(t) in
(5), which is defined by means of the sequence {γk}k∈Z, allows us to make discussion
for the Poisson stability of the MPPS solution without taking into account the
Poisson number.

The rest of the paper is organized as follows. In Section 2, we utilize the technique
introduced in [6] to reduce (5) to an impulsive system. We investigate the presence
of bounded solutions of the reduced impulsive system and hereby the ones for (5)
in Section 3. The new definitions of positively Poisson stable and MPPS functions
defined on time scales are provided in Section 4. Moreover, in that section we
rigorously prove the existence and uniqueness of an asymptotically stable MPPS
solution of system (5). Section 5, on the other hand, is devoted to an example, which
confirms the theoretical results. Finally, some concluding remarks are provided in
Section 6.

2. Reduction to Impulsive Systems

In this section we make use of the ψ-substitution method introduced by Akhmet
and Turan [6,7] to reduce dynamic equation (5) to a system of impulsive differential
equations.

We assume without loss of generality that θ−1 < 0 ≤ θ0. On the set

T′
0 = T0 \ {θ2k−1 : k ∈ Z} ,

let us consider the ψ-substitution defined through the equation

ψ(t) = t− kδ, θ2k−1 < t ≤ θ2k (8)

for each integer k [6]. The function ψ : T′
0 → R is one-to-one and onto, ψ(0) = 0,

lim
t→∞, t∈T′

0

ψ(t) = ∞, and

ψ−1(s) = s+ kδ, sk−1 < s ≤ sk (9)
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for each integer k, where sk = ψ(θ2k). Equation (8) yields

sk = θ + k(ω − δ), (10)

and accordingly, we have sk+1 = sk + ω − δ for k ∈ Z.
The function ψ−1 : R → T′

0 defined by (9) is piecewise continuous, and it has
discontinuities of the first kind at the points sk, k ∈ Z, such that ψ−1(sk+) −
ψ−1(sk) = δ with ψ−1(sk+) = lim

s→s+k

ψ−1(s). Moreover, dψ(t)/dt = 1 for t ∈ T′
0 and

dψ−1(s)/ds = 1 for s ∈ R \ {sk : k ∈ Z} [6]. Since ψ(ω) = ω − δ, one can attain
by means of Corollary 12 [6] that the equality

ψ(t+ ω) = ψ(t) + ω − δ (11)

is fulfilled for each t ∈ T′
0.

In what follows Crd(T) stands for the set of all functions φ(t) : T → Rm which
are rd-continuous on a time scale T.

As a consequence of Lemma 13 and Lemma 14 mentioned in paper [6], we have
the following assertion.

Lemma 1. A function φ(t) ∈ Crd(T0) is periodic with period ω if and only if the
function φ(ψ−1(s)) is periodic on R with period ω − δ.

Utilizing the descriptions of the delta derivative at right-scattered and right-
dense points given respectively by (1) and (2), one can express system (5) in the
form

y′(t) = Ay(t) + f(t) + g(t), t ∈ T′
0,

y(θ2k+1) = y(θ2k) + δ (Ay(θ2k) + f(θ2k) + γk) . (12)

The substitution s = ψ(t), where ψ(t) is defined by (8), transforms (12) to the
impulsive system

x′(s) = Ax(s) + f
(
ψ−1(s)

)
+ g

(
ψ−1(s)

)
, s ̸= sk,

∆x
∣∣
s=sk

= δ
(
Ax(sk) + f

(
ψ−1(sk)

)
+ γk

)
, (13)

where x(s) = y
(
ψ−1(s)

)
, ∆x

∣∣
s=sk

= x(sk+)− x(sk), x(sk+) = lim
s→s+k

x(s), and the

sequence {sk}k∈Z of impulse moments is defined by (10).
It is worth noting that if a function x̃(s) : R → Rm is a solution of the impulsive

system (13), then the function ỹ(t) : T0 → Rm defined by ỹ(t) = x̃(ψ(t)) for t ∈ T′
0

with ỹ(θ2k+1) = x̃(sk+), k ∈ Z, is a solution of (5), and vice versa.
Existence, uniqueness, and asymptotic stability of the bounded solution for sys-

tem (5) is investigated in the next section.
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3. Bounded Solutions

In the remaining parts of the paper we will denote by i(J) the number of the
terms of the sequence {sk}k∈Z which take place in an interval J . One can confirm
using (10) that

i([r + ω − δ, s+ ω − δ)) = i([r, s)) (14)

for every s, r ∈ R with s > r.
Let us denote by U(s, r) the matriciant [2,30] of the linear homogeneous impul-

sive system

x′(s) = Ax(s), s ̸= sk,

∆x
∣∣
s=sk

= δAx(sk)

such that U(s, s) = I. The equation

U(s, r) = eA(s−r)(I + δA)i([r,s)) (15)

is fulfilled for s > r.
The following assumptions are required.

(A1) det(I + δA) ̸= 0, where I is the m×m identity matrix;
(A2) All eigenvalues of the matrix e(ω−δ)A(I + δA) lie inside the unit circle.

In the sequel we use the Euclidean norm for vectors and the spectral norm for
square matrices. Under the assumptions (A1) and (A2) there exist real numbers
N ≥ 1 and λ > 0 such that

∥U(s, r)∥ ≤ Ne−λ(s−r) (16)

for s ≥ r [30].
It is demonstrated in Theorem 87 [30] that the impulsive system (13) possesses

a unique solution ϕ(s) which is bounded on the real axis and satisfies the equation

ϕ(s) =

∫ s

−∞
U(s, r)

(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr

+ δ
∑

−∞<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

)
, (17)

provided that (A1) and (A2) hold. It can be verified that∥∥∥∫ s

−∞
U(s, r)

(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr
∥∥∥ ≤ N(Mf +Mγ)

λ
(18)

and ∥∥∥ ∑
−∞<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

) ∥∥∥ ≤ N(Mf +Mγ)

1− e−λ(ω−δ)
, (19)

where

Mf = sup
t∈T0

∥f(t)∥ (20)



912 F. TOKMAK FEN, M. O. FEN

and

Mγ = sup
k∈Z

∥γk∥ . (21)

The inequalities (18) and (19) imply that

sup
s∈R

∥ϕ(s)∥ ≤ N(Mf +Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)
.

Therefore, the function ϑ(t) : T0 → Rm defined by

ϑ(t) = ϕ(ψ(t)), t ∈ T′
0, (22)

and satisfying

ϑ(θ2k+1) = ϕ(sk+), k ∈ Z, (23)

is the unique solution of system (5) which is bounded on T0 such that

sup
t∈T0

∥ϑ(t)∥ ≤ N(Mf +Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)
.

The asymptotic stability of the bounded solution ϑ(t) is discussed in the following
assertion.

Lemma 2. If the assumptions (A1) and (A2) are valid, then the bounded solution
ϑ(t) of system (5) is asymptotically stable.

Proof. Let us consider a solution ϑ̃(t) of system (5) satisfying ϑ̃(t0) = ϑ0 for some

t0 ∈ T′
0 and ϑ0 ∈ Rm. We denote ϕ̃(s) = ϑ̃

(
ψ−1(s)

)
and define ϕ0 = ϕ (ψ(t0)). For

s > ψ(t0), using the equations

ϕ(s) = U (s, ψ(t0))ϕ0 +

∫ s

ψ(t0)

U(s, r)
(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr

+ δ
∑

ψ(t0)<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

)
and

ϕ̃(s) = U (s, ψ(t0))ϑ0 +

∫ s

ψ(t0)

U(s, r)
(
f
(
ψ−1(r)

)
+ g

(
ψ−1(r)

))
dr

+ δ
∑

ψ(t0)<sk<s

U(s, sk+)
(
f
(
ψ−1(sk)

)
+ γk

)
,

we obtain ∥∥ϕ(s)− ϕ̃(s)
∥∥ ≤ N ∥ϕ0 − ϑ0∥ e−λ(s−ψ(t0)).

Thus, ∥∥ϑ(t)− ϑ̃(t)
∥∥ ≤ N ∥ϕ0 − ϑ0∥ e−λ(ψ(t)−ψ(t0)), t > t0.
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The last inequality implies that the bounded solution ϑ(t) of (5) is asymptotically
stable. □

The main result of the present paper is provided in the next section.

4. Modulo Periodic Poisson Stable Solutions

The following definition is concerned with positively Poisson stable sequences
[33].

Definition 1. ( [33]) A bounded sequence {γk}k∈Z in Rm is called positively Pois-
son stable if there exists a sequence {ζn}n∈N of positive integers which diverges to

infinity such that
∥∥∥γk+ζn − γk

∥∥∥ → 0 as n → ∞ for each k in bounded intervals of

integers.

The definitions of positively Poisson stable and MPPS functions on time scales
are as follows.

Definition 2. Let T be a time scale such that supT = ∞. A bounded function
φ(t) ∈ Crd(T) is called positively Poisson stable if there exists a sequence {ηn}n∈N
which diverges to infinity such that ∥φ(t+ ηn)− φ(t)∥ → 0 as n → ∞ uniformly
on compact subsets of T.

Definition 3. Let T be a time scale such that there exists a positive number ω with
t ± ω ∈ T whenever t ∈ T. A function φ(t) ∈ Crd(T) is called a modulo periodic
Poisson stable function if φ(t) = φ1(t)+φ2(t) for every t ∈ T in which the function
φ1 ∈ Crd(T) is periodic and φ2 ∈ Crd(T) is positively Poisson stable.

The main result of the present study is mentioned in the following theorem.

Theorem 1. Suppose that the assumptions (A1) and (A2) are fulfilled. If the
sequence {γk}k∈Z is positively Poisson stable, then system (5) possesses a unique
asymptotically stable MPPS solution.

Proof. The bounded solution ϕ(s) of system (13), which is defined by (17), can be
expressed in the form

ϕ(s) = ϕ1(s) + ϕ2(s), s ∈ R,
where

ϕ1(s) =

∫ s

−∞
U(s, r)f

(
ψ−1(r)

)
dr + δ

∑
−∞<sk<s

U(s, sk+)f
(
ψ−1(sk)

)
(24)

and

ϕ2(s) =

∫ s

−∞
U(s, r)g

(
ψ−1(r)

)
dr + δ

∑
−∞<sk<s

U(s, sk+)γk. (25)

The bounded solution ϑ(t) of system (5), given by (22) and (23), satisfies the
equation

ϑ(t) = ϑ1(t) + ϑ2(t), (26)
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in which the functions ϑ1(t) : T0 → Rm and ϑ2(t) : T0 → Rm are respectively
defined by

ϑ1(t) = ϕ1(ψ(t))

and

ϑ2(t) = ϕ2(ψ(t))

such that the equations ϑ1(θ2k+1) = ϕ1(sk+) and ϑ2(θ2k+1) = ϕ2(sk+) are fulfilled
for each k ∈ Z.

The function ϑ(t) is an asymptotically stable solution of (5) by Lemma 2. In
the rest of the proof, we will show that ϑ(t) is an MPPS function by respectively
demonstrating the periodicity and Poisson stability of ϑ1(t) and ϑ2(t) in accordance
with Definition 3.

Firstly, let us discuss the periodicity of ϑ1(t). We attain by means of (24) that

ϕ1(s+ ω − δ) =

∫ s+ω−δ

−∞
U(s+ ω − δ, r)f

(
ψ−1(r)

)
dr

+ δ
∑

−∞<sk<s+ω−δ

U(s+ ω − δ, sk+)f
(
ψ−1(sk)

)
=

∫ s

−∞
U(s+ ω − δ, r + ω − δ)f

(
ψ−1(r + ω − δ)

)
dr

+ δ
∑

−∞<sk<s

U(s+ ω − δ, sk+1+)f
(
ψ−1(sk+1)

)
. (27)

Equations (14) and (15) yield U(s + ω − δ, r + ω − δ) = U(s, r) for s > r. In
accordance with (6), Lemma 1 implies that f

(
ψ−1(r + ω − δ)

)
= f

(
ψ−1(r)

)
for

r ∈ R and f
(
ψ−1(sk+1)

)
= f

(
ψ−1(sk)

)
for k ∈ Z. Therefore, ϕ1(s) is (ω − δ)-

periodic on R by (27). Utilizing Lemma 1 one more time we obtain that the function
ϑ1(t) is ω-periodic on T0.

Next, we will prove that ϑ2(s) is positively Poisson stable. For that purpose, let
us consider a fixed compact subset C of the time scale T0. There exist integers α and
β with β > α such that C ⊆ [θ2α, θ2β ] ∩ T0. Accordingly we have ψ(C) ⊆ [sα, sβ ].

Take an arbitrary positive number ε and a positive number τ0 with

τ0 ≤ 1

2N(1 + 2Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)−1

. (28)

Moreover, suppose that j is a sufficiently large positive integer satisfying

j ≥ 1

λ(ω − δ)
ln

(
1

τ0ε

)
. (29)

Because {γk}k∈Z is positively Poisson stable, there is a sequence {ζn}n∈N of positive

integers which diverges to infinity such that
∥∥∥γk+ζn − γk

∥∥∥ → 0 as n→ ∞ for each
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k in bounded intervals of integers. Thus, there exists a natural number n0 such
that for n ≥ n0 the inequality∥∥∥γk+ζn − γk

∥∥∥ < τ0ε (30)

holds for each k = α − j + 1, α − j + 2, . . . , β. Accordingly, if n ≥ n0, then the
inequality ∥∥g (ψ−1(s+ µn)

)
− g

(
ψ−1(s)

)∥∥ < τ0ε (31)

is satisfied for sα−j < s ≤ sβ , where µn = (ω − δ)ζn, n ∈ N.
Let us fix a natural number n such that n ≥ n0. Making benefit of (25) one can

obtain

ϕ2(s+ µn)− ϕ2(s) =

∫ s

−∞
U(s, r)

(
g
(
ψ−1(r + µn)

)
− g

(
ψ−1(r)

))
dr

+ δ
∑

−∞<sk<s

U(s, sk+)
(
γk+ζn − γk

)
.

Therefore, for sα−j ≤ s ≤ sβ , we have

∥ϕ2(s+ µn)− ϕ2(s)∥ ≤
∫ sα−j

−∞
Ne−λ(s−r)

∥∥g (ψ−1(r + µn)
)
− g

(
ψ−1(r)

)∥∥ dr
+

∫ s

sα−j

Ne−λ(s−r)
∥∥g (ψ−1(r + µn)

)
− g

(
ψ−1(r)

)∥∥ dr
+ δ

∑
−∞<sk≤sα−j

Ne−λ(s−sk)
∥∥∥γk+ζn − γk

∥∥∥
+ δ

∑
sα−j<sk<s

Ne−λ(s−sk)
∥∥∥γk+ζn − γk

∥∥∥ .
In compliance with (30) and (31), it can be verified that

∥ϕ2(s+ µn)− ϕ2(s)∥ ≤ 2NMγ

∫ sα−j

−∞
e−λ(s−r)dr +Nτ0ε

∫ s

sα−j

e−λ(s−r)dr

+ 2δNMγ

∑
−∞<sk≤sα−j

e−λ(s−sk)

+ δNτ0ε
∑

sα−j<sk<s

e−λ(s−sk)

< 2NMγ

(
1

λ
+

δ

1− e−λ(ω−δ)

)
e−λ(s−sα−j)

+ Nτ0ε

(
1

λ
+

δ

1− e−λ(ω−δ)

)(
1− e−λ(s−sα−j)

)
.
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For s ≥ sα, the inequality e−λ(s−sα−j) ≤ τ0ε is fulfilled since (29) is valid. Hence,
if sα ≤ s ≤ sβ , then

∥ϕ2(s+ µn)− ϕ2(s)∥ < (1 + 2Mγ)

(
1

λ
+

δ

1− e−λ(ω−δ)

)
Nτ0ε.

One can confirm using (28) that

∥ϕ2(s+ µn)− ϕ2(s)∥ <
ε

2
, s ∈ ψ(C). (32)

Now, let us denote

ηn = ωζn (33)

for each n ∈ N. The sequence {ηn}n∈N diverges to infinity since the same is true
for {ζn}n∈N. Equation (11) yields ψ(t) + µn = ψ(t+ ηn), n ∈ N. Hence, according
to (32) we have

∥ϑ2(t+ ηn)− ϑ2(t)∥ <
ε

2
, t ∈ C ∩ T′

0

and

∥ϑ2(θ2k+1 + ηn)− ϑ2(θ2k+1)∥ ≤ ε

2
, k ∈ Z.

Therefore,

sup
t∈C

∥ϑ2(t+ ηn)− ϑ2(t)∥ < ε. (34)

The last inequality ensures that ∥ϑ2(t+ ηn)− ϑ2(t)∥ → 0 as n → ∞ uniformly
on compact subsets of T0. In other words, the function ϑ2(t) is positively Poisson
stable. Thus, the bounded solution ϑ(t) of (5) is an MPPS function. □

In conformity with Theorem 1 we have the following remark.

Remark 1. Suppose that the conditions of Theorem 1 are valid. Using the equation

∥ϑ1(t+ ηn)− ϑ1(t)∥ = 0, t ∈ T0,

together with (34), one can obtain for an arbitrary compact subset C of T0 and an
arbitrary positive number ε that

sup
t∈C

∥ϑ(t+ ηn)− ϑ(t)∥ = sup
t∈C

∥ϑ2(t+ ηn)− ϑ2(t)∥ < ε, n ≥ n0

for some natural number n0, where {ηn}n∈N is the sequence defined by (33) and
ϑ(t) is the bounded solution of (5), which satisfies (26). For that reason ϑ(t) is
positively Poisson stable. In other words, system (5) admits a positively Poisson
stable solution, which is asymptotically stable.

In the next section, an example possessing an MPPS solution is provided.
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5. An Example

According to the result of Theorem 4.1 [3], the logistic map

zk+1 = 3.9zk(1− zk), (35)

where k ∈ Z, admits an orbit {z∗k}k∈Z inside the unit interval [0, 1] which is posi-
tively Poisson stable in the sense of Definition 1.

Let us take into account the time scale T0 =

∞⋃
k=−∞

[θ2k−1, θ2k], where θ2k−1 =

8k−4 and θ2k = 8k+1 for k ∈ Z. The equations (4) are satisfied for the time scale
T0 with ω = 8, δ = 3, and θ = 1.

We consider the system

y∆1 (t) = −2

5
y1(t) +

1

5
y2(t) + cos

(
πt

4

)
+ g1(t),

y∆2 (t) = −1

5
y1(t)−

2

5
y2(t) + sin

(
πt

2

)
+ g2(t), (36)

where t ∈ T0, and the functions g1(t) : T0 → R and g2(t) : T0 → R are respectively
defined by g1(t) = z∗k and g2(t) = 2z∗k for t ∈ [θ2k−1, θ2k], k ∈ Z. It is worth noting
that the sequence {γk}k∈Z given by γk = (z∗k, 2z

∗
k)
T is positively Poisson stable

according to Theorem 3.2 [4]. System (36) is in the form of (5) with

y(t) = (y1(t), y2(t))
T , A =

(
−2/5 1/5
−1/5 −2/5

)
,

f(t) =

(
cos

(
πt

4

)
, sin

(
πt

2

))T
, g(t) = (g1(t), g2(t))

T .

The matrix e5A(I + 3A), where I is the 2 × 2 identity matrix, admits a pair of
complex conjugate eigenvalues both of which are inside the unit circle, and det(I +
3A) = 2/5. The assumptions (A1) and (A2) are satisfied for system (36), and
therefore, it possesses a unique asymptotically stable MPPS solution by Theorem
1. Moreover, the MPPS solution is at the same time positively Poisson stable
according to Remark 1.

6. Conclusion

We take into account a periodic time scale which is the union of infinitely many
disjoint compact intervals with a positive length, and investigate the existence,
uniqueness as well as asymptotic stability of MPPS solutions for dynamic equation
on such time scales. In our discussions we make use of the reduction technique to
impulsive systems introduced in [6]. The Poisson stability in (5) is inherited from
the sequence {γk}k∈Z. The descriptions of positively Poisson stable and MPPS
functions on time scales are newly introduced in the present study. Moreover, it is
shown that the obtained MPPS solutions are at the same time positively Poisson
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stable. Even though in general MPPS functions are not necessarily positively Pois-
son stable [5], this is true in our case owing to the commensurability of the periods
of the time scale T0 and the function f(t) used in (5). In the future, our results
can be developed for differential equations on variable time scales [7].
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Abstract. In this study, we propose a new heavy-tailed distribution, namely,
the type I heavy-tailed odd power generalized Weibull-G family of distribu-

tions. Several statistical properties including hazard rate function, quantile

function, moments, distribution of the order statistics and Rényi entropy are
presented. Actuarial measures such as value at risk, tail value at risk, tail

variance and tail variance premium are also derived. To obtain the estimates

of the parameters of the new family of distributions, we adopt the maximum
likelihood estimation method and assess the consistency property via a Monte

Carlo simulation. Finally, we illustrate the usefulness of the new family of

distributions by analyzing four real life data sets from different fields such as
insurance, engineering, bio-medical and environmental sciences.

1. Introduction

Several researchers have developed probability models by adding one or more
parameter(s) to well known classical distributions in order to improve their fitting
power (flexibility). However, these extended distributions cannot model all real
life data sets. Thus, serious efforts are still needed to propose and develop new
flexible distributions. Several new generated distributions available in the literature
include: Topp-Leone odd Burr III-G family of distributions by [23], the Marshall-
Olkin exponentiated odd exponential half logistic-G family of distributions by [27],
exponentiated odd Lomax exponential distribution by [16], the Marshall-Olkin odd
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exponential half logistic-G family of distributions by [26], the shifted Gompertz-G
family of distributions by [17], type II half-logistic odd Fréchet class of distributions
by [7], generalized modified exponential-G family of distributions by [19], truncated
Cauchy power Weibull-G class of distributions by [6], modified alpha power family
of distributions by [20] and type II general exponential class of distributions by [18]
to mention a few.

Data sets in different fields, such as actuarial sciences, reliability, engineering,
bio-medical sciences, economic, risk management are usually positive, right-skewed,
unimodal with heavier tails. These data sets need to be modelled by heavy-tailed
distributions. Thus, there is need for development of heavy-tailed distributions.
Some heavy-tailed distributions available in the literature include among others;
the type-I heavy-tailed Weibull distribution by [30], heavy-tailed beta-power trans-
formed Weibull distribution by [31], heavy-tailed log-logistic distribution by [29],
heavy-tailed exponential distribution by [1], the logit slash distribution by [21], and
the LogPH class of distributions by [2].

The type-I heavy-tailed (TI-HT) family of distributions introduced by [30] have
the cumulative distribution function (cdf) and probability density function (pdf)
given by

G(x; θ, ξ) = 1−
(

1− F (x; ξ)

1− (1− θ)F (x; ξ)

)θ

, (1)

and

g(x; θ, ξ) =
θ2f(x; ξ) (1− F (x; ξ))

θ−1

(1− (1− θ)F (x; ξ))
θ+1

, (2)

for θ > 0, x ∈ R. [24] introduced the odd power generalized Weibull-G family of
distributions with the cdf and pdf given as

F (x;α, β, ξ) = 1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
, (3)

and

f(x;α, β, ξ) = αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

× exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
g(x; ξ)

(1−G(x; ξ))
2 , (4)

respectively, for α, β > 0 and parameter vector ξ.
The aim of this paper is to develop a new family of heavy-tailed distributions

namely, type I heavy-tailed odd power generalized Weibull-G (TI-HT-OPGW-G)
family of distributions by combining equations (1), (2), (3) and (4).
The general objectives of constructing this new family of distributions include the
following:
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• to generate distributions which are skewed, symmetric, J-shaped or reversed-
J shaped;

• to define new family of distributions that possesses various types of hazard
rate functions including monotonic as well as non-monotonic shapes;

• to construct new statistical distributions with better fits and properties
than other competitive distributions;

• to construct heavy-tailed distributions for modeling various real data sets.

The rest of the work is organized in the following manner. Section 2 present the
new TI-HT-OPGW-G family of distributions, reliability and hazard rate functions,
sub-families, linear representation and quantile function. In Section 3, moments,
moment generating function, the distribution of order statistics, and Rényi entropy
are presented. In Section 4, some special models from the TI-HT-OPGW-G family
of distributions are presented. Section 5 contains the estimation of the unknown
parameters of the TI-HT-OPGW-G family of distributions via the method of maxi-
mum likelihood and a Monte Carlo simulation study to examine the bias and mean
square error of the maximum likelihood estimators is given in Section 6. The results
verified that the estimates are consistent as the mean tend to the true parameters,
the root mean square error and average bias decreases when the sample size (n)
increases. Section 7 contains actuarial measures. Four real data applications are
given in Section 8, followed by some concluding remarks in Section 9.

2. The New Family of Distributions

This section present the type I heavy-tailed odd power generalized Weibull-G
(TI-HT-OPGW-G) family of distributions. The cdf and pdf of the TI-HT-OPGW-
G family of distributions are

F (x; θ, α, β, ξ) = 1−

 exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)
1− θ

[
1− exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)]


θ

, (5)

and

f(x; θ, α, β, ξ) = θ2αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

× exp

(
θ

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β))
g(x; ξ)

(1−G(x; ξ))
2

×

(
1− θ

[
1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)])−(θ+1)

,

(6)

respectively, for α, β, θ > 0 and parameter vector ξ. Note that θ = 1− θ.
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2.1. Reliability and Failure Rate Functions. The survival function, and haz-
ard rate function (hrf) of the TI-HT-OPGW-G family of distributions are given
respectively by

S(x; θ, α, β, ξ) =

 exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)
1− θ

[
1− exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)]


θ

, (7)

and

h(x; θ, α, β, ξ) = θ2αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

× exp

(
θ

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β))
g(x; ξ)

(1−G(x; ξ))
2

×

(
1− θ

[
1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)])−(θ+1)

×


 exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)
1− θ

[
1− exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)]


θ

−1

, (8)

for α, β, θ > 0, θ = 1− θ, and parameter vector ξ.

2.2. Sub-Families of TI-HT-OPGW-G Family of Distributions.

• When θ = 1, we obtain the odd power generalized Weibull-G (OPGW-G)
family of distributions (see [24]) with the cdf

F (x;α, β, ξ) = 1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)
,

for α, β > 0 and parameter vector ξ.
• When β = 1, we obtain the new type I heavy-tailed Weibull-G (TI-HT-W-
G) family of distributions with the cdf

F (x; θ, α, ξ) = 1−

 exp
(
−
(

G(x;ξ)
1−G(x;ξ)

)α)
1− θ

[
1− exp

(
−
(

G(x;ξ)
1−G(x;ξ)

)α)]
θ

,

for θ, α > 0 and parameter vector ξ. This is a new family of distributions.
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• When α = 1, we obtain the new type I heavy-tailed odd Nadarajah Haghighi-
G (TI-HT-ONH-G) family of distributions with the cdf

F (x; θ, β, ξ) = 1−

 exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)]β)
1− θ

[
1− exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)]β)]


θ

,

for θ, β > 0, θ = (1 − θ), and parameter vector ξ. This is a new family of
distributions.

• When θ = β = 1, we obtain the Weibull-G (W-G) family of distributions
(see [10]) with the cdf

F (x;α, ξ) = 1− exp

(
−
(

G(x; ξ)

1−G(x; ξ)

)α)
,

for α > 0, and parameter vector ξ.
• If θ = α = 1, we obtain the odd Nadarajah Haghighi-G (ONH-G) (see [25])
family of distributions with the cdf

F (x;β, ξ) = 1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)]β)
,

for β > 0, and parameter vector ξ.
• If θ = α = β = 1, we obtain the odd exponential-G (OE-G) family of
distributions with the cdf

F (x; ξ) = 1− exp

(
−
(

G(x; ξ)

1−G(x; ξ)

))
,

for parameter vector ξ. This is a new family of distributions.
• If θ = β = 1, α = 2 we obtain the odd Rayleigh-G (OR-G) family of
distributions with the cdf

F (x; ξ) = 1− exp

(
−
(

G(x; ξ)

1−G(x; ξ)

)2
)
,

for parameter vector ξ. This is a new family of distributions.

2.3. Linear Representation. Here, in this sub-section, we express the pdf of TI-
HT-OPGW-G family of distributions as an infinite linear combination of exponentia-
ted-G (Exp-G) family of distributions. Using the following generalized binomial and
Taylor series expansions

(1 + z)−a =

∞∑
k=0

(−1)k
(
a+ k − 1

k

)
zk for |z| < 1, and ez =

∞∑
i=0

zi

i!
,



926 T. MOAKOFI, B. OLUYEDE

respectively, we can write

f(x; θ, α, β, ξ) =

∞∑
p=0

φ
p+1

g
p+1

(x; ξ), (9)

where gp+1(x; ξ) = (p+1)[G(x; ξ)]pg(x; ξ) is the Exp-G pdf with the power param-
eter (p+ 1) and parameter vector ξ, and

φ
p+1

= θ2αβ

∞∑
h,i,j,k,l,m=0

θ
h
(
θ + h

h

)(
h

i

)(
j

k

)(
β(k + 1)− 1

l

)(
α(l + 1)− 1

m

)

×
(
α(l + 1)−m+ p

p

)
(θ + i)j(−1)i+k+m

j! (p+ 1)
.

(10)

Consequently, the mathematical and statistical properties of the TI-HT-OPGW-G
family of distributions follow directly from those of the Exp-G family of distribu-
tions. (See the Appendix for derivations).

2.4. Quantile Function. The quantile function is used in Monte Carlo simulations
to generate random numbers for a specified probability distribution. It is obtained
by inverting the cdf of a distribution. If the random variable X is from the TI-HT-
OPGW-G family of distributions, then the quantile function of X can be obtained
as follows:

F (x; θ, α, β, ξ) = 1−

 exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)
1− θ

[
1− exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)]


θ

= u, (11)

for 0 ≤ u ≤ 1, that is,

G(x; ξ) =

[(1− log

(
θ
[
(1− u)

−1
θ − θ

]−1
)) 1

β

− 1

]−1
α

+ 1

−1

. (12)

Therefore, the quantile function of the TI-HT-OPGW-G family of distributions is
given by

Q
X
(u) = G−1


[(1− log

(
θ
[
(1− u)

−1
θ − θ

]−1
)) 1

β

− 1

]−1
α

+ 1

−1
 . (13)

Consequently, variates of the TI-HT-OPGW-G family of distributions can be ob-
tained using equation (13) for specified baseline cdf G.
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3. Statistical Properties

In this section, we derived some statistical features of the TI-HT-OPGW-G
family of distributions, specifically the moments, moment generating function, dis-
tribution of order statistics and Rényi entropy. Let the pdf of the TI-HT-OPGW-G
family of distributions be denoted by f(x).

3.1. Moments and Generating Function. Let Yp+1 ∼ Exponentiated−G(p+
1, ξ), then the nth raw moment, µ′

n of the TI-HT-OPGW-G family of distributions
is given by

µ′
n = E(Xn) =

∫ ∞

−∞
xnf(x)dx =

∞∑
p=0

φ
p+1

E(Y n
p+1),

where E(Y n
p+1) is the nth moment of Yp+1 and φ

p+1
is given by equation (10). The

moment generating function (MGF), for |t| < 1, is given by:

MX(t) =

∞∑
p=0

φ
p+1

Mp+1(t),

where Mp+1(t) is the mgf of Yp+1 and φ
p+1

is given by equation (10).

3.2. Order Statistics. Order statistics have many applications in survival, reli-
ability, failure analysis, and it is a natural way to perform a reliability analysis
of a system. Suppose X1, X2, ...., Xn are independent and identically distributed
random variables from the TI-HT-OPGW-G family of distributions. The pdf of
the rth order statistic from the TI-HT-OPGW-G pdf f(x) can be written as

fr:n(x) =
n!f(x)

(r − 1)!(n− r)!

n−r∑
z=0

(−1)z
(
n− r

z

)
[F (x)]z+r−1. (14)

Using equations (5) and (6), we have

f(x)[F (x)]z+r−1 = θ2αβ

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

× exp

(
θ

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β))
g(x; ξ)

(1−G(x; ξ))
2

×

(
1− θ

[
1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)])−(θ+1)

×

1−
 exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)
1− θ

[
1− exp

(
1−

[
1 +

(
G(x;ξ)

1−G(x;ξ)

)α]β)]


θ

z+r−1
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= θ2αβ

∞∑
q=0

(
z + r − 1

q

)
(−1)q

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β−1(
G(x; ξ)

1−G(x; ξ)

)α−1

× exp

(
θ(q + 1)

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β))
g(x; ξ)

(1−G(x; ξ))
2

×

(
1− θ

[
1− exp

(
1−

[
1 +

(
G(x; ξ)

1−G(x; ξ)

)α]β)])−(θ(q+1)+1)

.

Now following the same steps leading to equation (9), we obtain

f(x)[F (x)]z+r−1 =

∞∑
p=0

ρ
p+1

g
p+1

(x; ξ), (15)

where gp+1(x; ξ) = (p+1)[G(x; ξ)]pg(x; ξ) is the Exp-G pdf with the power param-
eter (p+ 1) and parameter vector ξ, and

ρ
p+1

= θ2αβ

∞∑
h,i,j,k,l,m,q=0

θ
h
(
z + r − 1

q

)(
θ(q + 1) + h

h

)(
h

i

)(
j

k

)(
β(k + 1)− 1

l

)

×
(
α(l + 1)− 1

m

)(
α(l + 1)−m+ p

p

)
(θ(q + 1) + i)j(−1)q+i+k+m

j! (p+ 1)
.

Thus, by substituting (15) into (14), the pdf of the rth order statistic from the
TI-HT-OPGW-G family of distributions can be written as

fr:n(x) =
n!

(r − 1)!(n− r)!

∞∑
p=0

n−r∑
z=0

(−1)z
(
n− r

z

)
ρ

p+1
g
p+1

(x; ξ).

3.3. Rényi Entropy. Rényi entropy is a very important tool in information theory,
as a measure of randomness or uncertainty in the system. Rényi entropy is defined
to be

IR(v) =
1

1− v
log

(∫ ∞

0

[f(x; θ, α, β, ξ)]vdx

)
, v ̸= 1, v > 0. (16)

Rényi entropy for the TI-HT-OPGW-G family of distributions is given by

IR(v) =
1

1− v
log

[ ∞∑
h,i,j,k,l,m,p=0

θ
h
(
v (θ + 1) + h− 1

h

)(
h

i

)
(vθ + i)j(−1)i+k+m

j!

(
j

k

)

×
(
β(k + v)− v

l

)(
α(l + v)− v

m

)(
α(l + v) + v −m+ p− 1

p

)(
θ2αβ

)v[
1 + p

v

]v
×

∫ ∞

0

([
1 +

p

v

]
(G(x; ξ))

p
v (g(x; ξ))

)v
dx

]
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=
1

1− v
log

[ ∞∑
p=0

τ
p
exp ((1− v)I

REG
)

]
, (17)

for v > 0, v ̸= 1, where I
REG

= 1
1−v log

[ ∫∞
0

([
1 + p

v

]
(G(x; ξ))

p
v (g(x; ξ))

)v
dx

]
is

the Rényi entropy of Exp-G distribution with power parameter ( pv + 1) and

τ p =

∞∑
h,i,j,k,l,m=0

θ
h
(
v (θ + 1) + h− 1

h

)(
h

i

)
(vθ + i)j(−1)i+k+m

j!

(
j

k

)

×
(
β(k + v)− v

l

)(
α(l + v)− v

m

)(
α(l + v) + v −m+ p− 1

p

)(
θ2αβ

)v[
1 + p

v

]v .
Therefore, Rényi entropy of the TI-HT-OPGW-G family of distributions can be
obtained from those of the Exp-G family of distributions. (See the Appendix
for derivations).

3.4. Moment of Residual and Reversed Residual Life. Moments of the resid-
ual life distribution are used to obtain the mean, variance and coefficient of variation
of residual life which are extensively used in reliability analysis.

The sth moment of the residual life, say κs(t) of a random variable X is

κs(t) = E [(X − t)
s | X > t] =

1

F (t)

∫ ∞

t

(x− t)
s
f(x)dx.

Consequently, κs(t) for the TI-HT-OPGW-G family of distributions is given as
follows:

κs(t) =
1

F (t)

∞∑
p,u=0

(
s

u

)
(−t)s−uφ

p+1

∫ ∞

t

xugp+1(x; ξ)dx, (18)

where φ
p+1

is as defined in equation (10) and gp+1(x; ξ) denotes the Exp-G dis-

tribution with power parameter (p + 1). The mean excess function of the TI-HT-
OPGW-G family of distributions is obtained from the above formula with s = 1.
The sth moment of the reversed residual life, say ϑs(t) of a random variable X is

ϑs(t) = E [(t−X)
s | X ≤ t] =

1

F (t)

∫ t

0

(t− x)
s
f(x)dx.

Subsequently, ϑs(t) for the TI-HT-OPGW-G family of distributions is given as
follows:

ϑs(t) =
1

F (t)

∞∑
p,u=0

(
s

u

)
(−t)s−uφ

p+1

∫ t

0

xugp+1(x; ξ)dx,
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where φ
p+1

is as defined in equation (10) and g
p+1

(x; ξ) denotes the Exp-G dis-

tribution with power parameter (p + 1). The mean inactivity time of the TI-HT-
OPGW-G family of distributions is obtained from the above formula with s = 1.

4. Some Special Cases

In this section, we present some special cases of the TI-HT-OPGW-G family of
distributions. We considered cases when the baseline distributions are log-logistic,
Weibull, Rayleigh and standard half logistic distributions.

4.1. TI-HT-OPGW-Log-Logistic (TI-HT-OPGW-LLoG) Distribution. Given
the cdf and pdf of the log-logistic distribution as G(x; c) = 1 − (1 + xc)−1 and
g(x; c) = cxc−1(1 + xc)−2 for c > 0 and x > 0, we define the cdf and pdf of the
TI-HT-OPGW-LLoG distribution as follows

F (x; θ, α, β, c) = 1−

 exp

(
1−

[
1 +

(
1−(1+xc)−1

(1+xc)−1

)α]β)
1− θ

[
1− exp

(
1−

[
1 +

(
1−(1+xc)−1

(1+xc)−1

)α]β)]


θ

,

and

f(x; θ, α, β, c) = θ2αβ

[
1 +

(
1− (1 + xc)−1

(1 + xc)−1

)α]β−1(
1− (1 + xc)−1

(1 + xc)−1

)α−1

× exp

(
θ

(
1−

[
1 +

(
1− (1 + xc)−1

(1 + xc)−1

)α]β))
cxc−1(1 + xc)−2

((1 + xc)−1)
2

×

(
1− θ

[
1− exp

(
1−

[
1 +

(
1− (1 + xc)−1

(1 + xc)−1

)α]β)])−(θ+1)

,

respectively, for θ, α, β, c > 0, and θ = 1− θ. The hrf for the TI-HT-OPGW-LLoG
distribution is given by

h(x; θ, α, β, c) = θ2αβ

[
1 +

(
1− (1 + xc)−1

(1 + xc)−1

)α]β−1 (
1− (1 + xc)−1

)α−1

×

(
1− θ

[
1− exp

(
1−

[
1 +

(
1− (1 + xc)−1

(1 + xc)−1

)α]β)])−1

× cxc−1(1 + xc)−2

((1 + xc)−1)
α+1 ,

for θ, α, β, c > 0, and θ = 1 − θ. Figure 1 shows the 3D plots of skewness and
kurtosis of the TI-HT-OPGW-LLoG distribution. We observe that
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• When we fix the parameters θ and β, the skewness and kurtosis of the TI-
HT-OPGW-LLoG distribution changes from decreasing to increasing as α
and c increases.

• When we fix the parameters α and β, the skewness and kurtosis of the
TI-HT-OPGW-LLoG distribution increases as θ and c increases.

Figure 1. Plots of skewness and kurtosis for the TI-HT-OPGW-
LLoG distribution
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Figure 2 shows the plots of pdf and hazard functions of TI-HT-OPGW-LLoG dis-
tribution, respectively. The pdf can take several shapes including right-skewed,
left-skewed, unimodal, J and reverse-J shapes. The TI-HT-OPGW-LLoG hrf dis-
plays increasing, decreasing, bathtub, upside-down bathtub and bathtub followed
by upside-down bathtub shapes.

Figure 2. Plots of density and hazard rate function for TI-HT-
OPGW-LLoG distribution

4.2. TI-HT-OPGW-Weibull (TI-HT-OPGW-W) Distribution. Suppose the

cdf and pdf of the baseline distribution are given by G(x;λ) = 1 − e−xλ

, and

g(x;λ) = λxλ−1e−xλ

, x > 0, λ > 0, then, the cdf and pdf of the TI-HT-OPGW-W
distribution are given by

F (x; θ, α, β, λ) = 1−


exp

(
1−

[
1 +

(
1−e−xλ

e−xλ

)α]β)

1− θ

[
1− exp

(
1−

[
1 +

(
1−e−xλ

e−xλ

)α]β)]


θ

,

and

f(x; θ, α, β, λ) = θ2αβ

[
1 +

(
1− e−xλ

e−xλ

)α]β−1(
1− e−xλ

e−xλ

)α−1

× exp

θ

1−

[
1 +

(
1− e−xλ

e−xλ

)α]βλxλ−1e−xλ(
e−xλ

)2
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×

1− θ

1− exp

1−

[
1 +

(
1− e−xλ

e−xλ

)α]β−(θ+1)

,

respectively, for θ, α, β, λ > 0, and θ = 1− θ. The hrf for TI-HT-OPGW-W distri-
bution is given by

h(x; θ, α, β, λ) = θ2αβ

[
1 +

(
1− e−xλ

e−xλ

)α]β−1 (
1− e−xλ

)α−1

×

1− θ

1− exp

1−

[
1 +

(
1− e−xλ

e−xλ

)α]β−1

× λxλ−1e−xλ(
e−xλ

)α+1 ,

for θ, α, β, λ > 0, and θ = 1− θ.

Figure 3 shows the 3D plots of skewness andkurtosis of the TI-HT-OPGW-W dis-
tribution. We observe that

• When we fix the parameters θ and λ, the skewness and kurtosis of the TI-
HT-OPGW-W distribution decrease as α and β increases.

• When we fix the parameters β and λ, the skewness and kurtosis of the
TI-HT-OPGW-W distribution increases as θ and α increases.

Figure 4 shows the plots of pdf and hrf of TI-HT-OPGW-W distribution, respec-
tively. The pdf can take several shapes including right-skewed, left-skewed, uni-
modal, J and reverse-J shapes. The TI-HT-OPGW-W hrf displays increasing,
decreasing, bathtub, upside-down bathtub and bathtub followed by upside-down
bathtub shapes.

4.3. TI-HT-OPGW-Rayleigh (TI-HT-OPGW-R) Distribution. If the base-

line cdf and pdf are given by G(x;λ) = 1−exp
(
− x2

2λ2

)
and g(x;λ) = x

λ2 exp
(
− x2

2λ2

)
for x > 0, and λ > 0, then, the cdf and pdf of the TI-HT-OPGW-R distribution
are given by

F (x; θ, α, β, λ) = 1−


exp

1−

[
1 +

(
1−exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

) )α
]β

1− θ

1− exp

1−

[
1 +

(
1−exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

) )α
]β



θ

,

and
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Figure 3. Plots of skewness and kurtosis for the TI-HT-OPGW-
W distribution
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Figure 4. Plots of Density and Hazard Rate Function for TI-HT-
OPGW-W Distribution

f(x; θ, α, β, λ) = θ2αβ

1 +
1− exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

)
αβ−11− exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

)
α−1

× exp

θ

1−

1 +
1− exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

)
αβ

 x
λ2 exp

(
− x2

2λ2

)
(
exp

(
− x2

2λ2

))2

×

1− θ

1− exp

1−

1 +
1− exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

)
αβ




−(θ+1)

,

respectively, for θ, α, β, λ > 0, and θ = 1 − θ. The hrf for TI-HT-OPGW-R distri-
bution is given by

h(x; θ, α, β, λ) = θ2αβ

1 +
1− exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

)
αβ−1(

1− exp

(
− x2

2λ2

))α−1

×

1− θ

1− exp

1−

1 +
1− exp

(
− x2

2λ2

)
exp

(
− x2

2λ2

)
αβ




−1
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×
x
λ2 exp

(
− x2

2λ2

)
(
exp

(
− x2

2λ2

))α+1 ,

for θ, α, β, λ > 0, and θ = 1 − θ. Figure 5 shows the 3D plots of skewness and
kurtosis of the TI-HT-OPGW-R distribution.

Figure 5. Plots of skewness and kurtosis for the TI-HT-OPGW-
R distribution

We observe that
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• When we fix the parameters θ and β, the skewness and kurtosis of the
TI-HT-OPGW-R distribution decreases as α and λ increases.

• When we fix the parameters α and λ, the skewness and kurtosis of the
TI-HT-OPGW-R distribution decreases and increases as θ and β increases.

Figure 6. Plots of Density and Hazard Rate Function for TI-HT-
OPGW-R Distribution

Figure 6 shows the plots of pdf and hrf of TI-HT-OPGW-R distribution, respec-
tively. The pdf can take several shapes including right-skewed, left-skewed, uni-
modal, J and reverse-J shapes. The TI-HT-OPGW-R hrf displays increasing, de-
creasing, bathtub and upside-down bathtub shapes.

4.4. TI-HT-OPGW-Standard Half Logistic (TI-HT-OPGW-SHL) Distri-
bution. Suppose the cdf and pdf of the baseline distribution are given by G(x) =
1−e−x

1+e−x , and g(x) = 2e−x

(1+e−x)2
, x > 0, then, the cdf and pdf of the TI-HT-OPGW-SHL

distribution are given by

F (x; θ, α, β) = 1−


exp

1−

[
1 +

(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α]β
1− θ

1− exp

1−

[
1 +

(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α
]β



θ

,

and

f(x; θ, α, β) = θ2αβ

[
1 +

(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α]β−1(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α−1
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×

1− θ

1− exp

1−

[
1 +

(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α]β−(θ+1)

× exp

θ

1−

[
1 +

(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α]β 2e−x

(1+e−x)2(
1− 1−e−x

1+e−x

)2 ,

respectively, for α, β, θ > 0, and θ = 1− θ. The hrf for TI-HT-OPGW-SHL distri-
bution is given by

h(x; θ, α, β) = θ2αβ

[
1 +

(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α]β−1(
1− e−x

1 + e−x

)α−1

×

1− θ

1− exp

1−

[
1 +

(
1−e−x

1+e−x

1− 1−e−x

1+e−x

)α]β−1

×
2e−x

(1+e−x)2(
1− 1−e−x

1+e−x

)α+1 ,

for θ, α, β > 0, and θ = 1− θ.

Figure 7 shows the 3D plots of skewness and kurtosis of the TI-HT-OPGW-SHL
distribution. We observe that

• When we fix the parameters β, the skewness and kurtosis of the TI-HT-
OPGW-SHL distribution decreases as θ and α increases.

• When we fix the parameters α, the skewness and kurtosis of the TI-HT-
OPGW-SHL distribution increases as θ and β increases.

Figure 8 shows the plots of pdf and hrf of TI-HT-OPGW-SHL distribution,
respectively. The pdf can take several shapes including right-skewed, left-skewed,
unimodal, J and reverse-J shapes. The TI-HT-OPGW-SHL hrf displays increasing,
decreasing, bathtub, and upside-down bathtub followed by bathtub shapes.
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Figure 7. Plots for the skewness and kurtosis for the TI-HT-
OPGW-SHL distribution
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Figure 8. Plots of Density and Hazard Rate Functions for TI-
HT-OPGW-SHL Distribution

5. Parameter Estimation

In this section, we adopt the maximum likelihood estimation technique for
estimating the parameters of the TI-HT-OPGW-G family of distributions. Let
x1, x2.......xn be the realization from the TI-HT-OPGW-G family of distributions
with the vector of model parameters ∆ = (θ, α, β, ξ)T . Then, the corresponding
log-likelihood function ℓn = ℓn(∆) of this sample has the form

ℓn(∆) = n ln(θ2αβ) + (β − 1)

n∑
i=1

log

[
1 +

(
G(xi; ξ)

1−G(xi; ξ)

)α]

+ (α− 1)

n∑
i=1

log

(
G(xi; ξ)

1−G(xi; ξ)

)
+

n∑
i=1

log (g(xi; ξ))

+

n∑
i=1

(
θ

(
1−

[
1 +

(
G(xi; ξ)

1−G(xi; ξ)

)α]β))
− 2

n∑
i=1

log (1−G(xi; ξ))

− (θ + 1)
n∑

i=1

log

(
1− θ

[
1− exp

(
1−

[
1 +

(
G(xi; ξ)

1−G(xi; ξ)

)α]β)])
.

(19)

To obtain the maximum likelihood estimates of the unknown parameters, de-
noted by ∆̂, we set the nonlinear system of equations (∂ℓn∂θ , ∂ℓn

∂α , ∂ℓn
∂β , ∂ℓn

∂ξk
)T = 0,

and solve them simultaneously. However, since these equations are not in closed
form, the MLEs can be found by maximizing ℓn(∆) numerically with respect to
the parameters, using a numerical method such as Newton-Raphson procedure. We
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maximized the likelihood function using the function nlm in R. The partial deriva-
tives of the log-likelihood function with respect to each component of the parameter
vector are given in the appendix. The observed Fisher information matrix is given
by

J(∆̂) =


Jθ,θ(∆̂) Jθ,α(∆̂) Jθ,β(∆̂) Jθ,ξ(∆̂)

Jα,θ(∆̂) Jα,α(∆̂) Jα,β(∆̂) Jα,ξ(∆̂)

Jβ,θ(∆̂) Jβ,α(∆̂) Jβ,β(∆̂) Jβ,ξ(∆̂)

Jξ,θ(∆̂) Jξ,α(∆̂) Jξ,β(∆̂) Jξ,ξ(∆̂)

 , (20)

where Ji,j = −∂2ℓn(∆̂)
∂i∂j

for i, j = θ, α, β, ξ.

5.1. Standard error computation. The standard error of the estimate is a way
to measure the accuracy of the predictions made by a model. It is also useful when
calculating the confidence interval. It is given by

SE
(
∆̂
)
=

√(
J(∆̂)

)−1

, (21)

where
(
J(∆̂)

)−1

is the inverse of the observed Fisher information matrix.

6. Monte Carlo Simulation Study

In this section, we evaluate the efficiency and consistency property of the MLEs
of TI-HT-OPGW-W distribution via a Monte Carlo simulation based on the fol-
lowing: N=3000 samples of size n=50, 100, 200, 400, 800, 1600 generated from
the TI-HT-OPGW-W distribution for different parameter values. The process is
carried out as follows:

• 3000 random samples of size n=50, 100, 200, 400, 800, 1600 was generated
from the TI-HT-OPGW-W distribution.

• Different combinations for the true parameters are selected such as for Table
1: θ = 0.3, α = 1.8, β = 0.3, λ = 1.5; θ = 0.3, α = 1.8, β = 0.3, λ = 0.6, and
for θ = 1.5, α = 0.6, β = 0.3, λ = 0.3. For Table 2: θ = 1.8, α = 0.8, β =
1.0, λ = 1.0; θ = 0.5, α = 0.8, β = 1.0, λ = 1.0, and θ = 1.0, α = 0.8, β =
1.0, λ = 2.5. These values are unknown, hence chosen arbitrary and then
estimated using the TI-HT-OPGW-W distribution.

• Two statistical quantities (ABIAS and RMSE) are calculated to evaluate
the consistency of the MLEs.

The simulation results from the TI-HT-OPGW-W distribution are presented in
Tables 1 and 2. These tables report the average estimates (Mean), average bias
(ABIAS) and root mean squared errors (RMSEs). The ABIAS and RMSE for the
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Table 1. Monte Carlo Simulation Results 1

(0.3, 1.8, 0.3, 1.5 ) (0.3, 1.8, 0.3, 0.6 ) (1.5, 0.6, 0.3, 0.3 )
parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS Mean RMSE ABIAS

θ 50 0.4131 0.3320 0.1131 0.4025 0.3280 0.1025 1.9393 1.2849 0.4393
100 0.3709 0.2615 0.0709 0.3627 0.2634 0.0627 1.8984 1.2093 0.3984
200 0.3329 0.1659 0.0329 0.3323 0.1811 0.0323 1.8523 1.1403 0.3523
400 0.3138 0.1020 0.0138 0.3130 0.1066 0.0130 1.7255 0.8857 0.2255
800 0.3054 0.0655 0.0054 0.3038 0.0654 0.0038 1.7153 0.6723 0.2153
1600 0.3033 0.0413 0.0033 0.3010 0.0421 0.0010 1.5500 0.4883 0.0500

α 50 2.8345 4.2902 1.0345 2.7212 3.9147 0.9212 0.8534 0.5010 0.2534
100 2.1531 1.6306 0.3531 2.1017 1.6751 0.3017 0.7606 0.3709 0.1606
200 1.9319 0.8064 0.1319 1.9023 0.8054 0.1023 0.6981 0.2622 0.0981
400 1.8671 0.3683 0.0671 1.8506 0.3632 0.0506 0.6492 0.1579 0.0492
800 1.8460 0.2244 0.0460 1.8195 0.2293 0.0195 0.6227 0.0930 0.0227
1600 1.8287 0.1493 0.0287 1.8035 0.1513 0.0035 0.6227 0.0930 0.0227

β 50 0.2388 0.2563 -0.0611 0.3370 0.3062 0.0370 0.2218 0.1673 -0.0781
100 0.2858 0.2929 -0.0141 0.3244 0.2383 0.0244 0.2387 0.1480 -0.0612
200 0.3140 0.2744 0.0140 0.3152 0.1753 0.0152 0.2433 0.1306 -0.0566
400 0.3065 0.2098 0.0065 0.3064 0.1087 0.0064 0.2606 0.1106 -0.0393
800 0.3043 0.1543 0.0043 0.3034 0.0677 0.0034 0.2637 0.1009 -0.0362
1600 0.2963 0.0612 -0.0036 0.3006 0.0408 0.0006 0.2858 0.0782 -0.0141

λ 50 2.2032 1.2778 0.7032 0.7148 0.3051 0.1148 0.4404 0.3475 0.1404
100 1.9400 0.9330 0.4400 0.6682 0.2302 0.0682 0.3811 0.2420 0.0811
200 1.7680 0.6684 0.2680 0.6349 0.1569 0.0349 0.3441 0.1859 0.0441
400 1.6370 0.3791 0.1370 0.6156 0.0933 0.0156 0.3261 0.1673 0.0261
800 1.5583 0.2246 0.0583 0.6034 0.0581 0.0034 0.3166 0.1470 0.0166
1600 1.5143 0.0984 0.0143 0.6004 0.0386 0.0004 0.3035 0.1027 0.0035

estimated parameter, say, θ̂, are given by:

ABIAS(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
,

respectively.
From Tables 1 and 2, it can be verified that the mean tend to the true parameters,

the RMSEs and average bias decreases when n increases, thus showing that the
estimates are consistent.

7. Actuarial Measures

In actuarial sciences, actuaries need to evaluate the exposure of market risk in
a portfolio of instruments. This section introduces some important risk measures
for the TI-HT-OPGW-G family of distributions such as value-at-risk (VaR), tail-
value-at-risk (TVaR), tail variance (TV) and tail variance premium (TVP).

7.1. Value-at-Risk (VaR). Value-at-risk (VaR) is an important and well known
risk measure. It is also known as the quantile risk measure. The VaR of a random
variable X is the qth quantile of its cdf. If X is a random variable from TI-HT-
OPGW-G family of distributions, then
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Table 2. Monte Carlo Simulation Results 2

(1.0,0.8, 1.0, 1.0 ) (0.5, 0.8, 1.0, 1.0 ) (1.0, 0.8,1.0, 2.5 )
parameter Sample Size Mean RMSE ABIAS Mean RMSE ABIAS Mean RMSE ABIAS

θ 50 1.4765 1.2119 0.4765 0.9008 0.8341 0.4008 1.4641 1.1880 0.4641
100 1.3266 1.0090 0.3266 0.7723 0.6818 0.2723 1.2951 0.9814 0.2951
200 1.1939 0.6730 0.1939 0.6529 0.4772 0.1529 1.1603 0.7228 0.1603
400 1.0873 0.3151 0.0873 0.5586 0.2767 0.0586 1.0603 0.3698 0.0603
800 1.0480 0.2065 0.0480 0.5255 0.1497 0.0255 1.0305 0.1995 0.0305
1600 1.0343 0.1418 0.0343 0.5160 0.1074 0.0160 1.0176 0.1385 0.0176

α 50 0.6694 0.4028 -0.1305 0.7109 0.2963 -0.0890 0.6270 0.4801 -0.1729
100 0.7054 0.2882 -0.0945 0.7314 0.2234 -0.0685 0.6734 0.3882 -0.1265
200 0.7451 0.2180 -0.0548 0.7490 0.1776 -0.0509 0.7296 0.3072 -0.0703
400 0.7697 0.1535 -0.0302 0.7791 0.1314 -0.0208 0.7621 0.2162 -0.0378
800 0.7810 0.1067 -0.0189 0.7929 0.0878 -0.0070 0.7853 0.1568 -0.0146
1600 0.7890 0.0757 -0.0109 0.7955 0.0575 -0.0044 0.7915 0.1107 -0.0084

β 50 1.3852 0.9164 0.3852 0.7714 0.6878 -0.2285 1.3469 0.8878 0.3469
100 1.2787 0.7790 0.2787 0.8657 0.6477 -0.1342 1.2998 0.8349 0.2998
200 1.2316 0.5893 0.2316 0.9453 0.5986 -0.0546 1.2538 0.6952 0.2538
400 1.1744 0.4825 0.1744 1.0284 0.4209 0.0284 1.1921 0.5701 0.1921
800 1.1190 0.3480 0.1190 1.0134 0.3097 0.0134 1.1502 0.4588 0.1502
1600 1.0720 0.2444 0.0720 0.9976 0.1883 -0.0023 1.0938 0.3273 0.0938

λ 50 1.5395 0.9209 0.5395 1.4667 0.7605 0.4667 3.7769 2.2398 1.2769
100 1.3303 0.6322 0.3303 1.3161 0.5817 0.3161 3.2118 1.5261 0.7118
200 1.1754 0.4109 0.1754 1.1890 0.4010 0.1890 2.8540 0.9718 0.3540
400 1.0872 0.2718 0.0872 1.0970 0.2440 0.0970 2.6753 0.6612 0.1753
800 1.0468 0.1834 0.0468 1.0400 0.1368 0.0400 2.5916 0.4537 0.0916
1600 1.0246 0.1229 0.0246 1.0157 0.0936 0.0157 2.5420 0.3094 0.0420

V aRq = xq = G−1


[(1− log

(
θ
[
(1− q)

−1
θ − θ

]−1
)) 1

β

− 1

]−1
α

+ 1

−1
 ,

(22)
where q ∈ (0, 1) is a specified level of significance.

7.2. Tail-Value-at-Risk (TVaR). TVaR is used to measure the expected loss
given that an event outside a given probability level has occurred. Let X follows
from TI-HT-OPGW-G family of distributions, then TVaR of X is defined as

TV aRq =
1

1− q

∫ ∞

V aRq

xf(x)dx

=
1

1− q

∞∑
p=0

∫ ∞

V aRq

xφ
p+1

gp+1(x; ξ)dx, (23)

where gp+1(x; ξ) = (p+1)[G(x; ξ)]pg(x; ξ) is the Exp-G pdf with the power param-
eter (p + 1) and parameter vector ξ, and φ

p+1
is given by equation (10). Thus,

TVaR of TI-HT-OPGW-G family of distributions can be obtained from those of
Exp-G distribution.
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7.3. Tail Variance (TV). The tail variance is one of the most important actuarial
measures which looks at the variance beyond the VaR. The TV of the TI-HT-
OPGW-G family of distributions can be defined as

TV q = E(X2 | X > xq)− (TV aRq)
2

=
1

1− q

∫ ∞

V aRq

x2f(x)dx− (TV aRq)
2

=
1

1− q

∞∑
p=0

∫ ∞

V aRq

x2φ
p+1

g
p+1

(x; ξ)dx− (TV aRq)
2, (24)

where gp+1(x; ξ) = (p+1)[G(x; ξ)]pg(x; ξ) is the Exp-G pdf with the power param-
eter (p+1) and parameter vector ξ, and φ

p+1
is given by equation (10). Thus, TV

of TI-HT-OPGW-G family of distributions can be obtained from those of Exp-G
distribution.

7.4. Tail Variance Premium (TVP). The TVP is an important actuarial mea-
sure that plays an essential role in insurance sciences. The TVP of the TI-HT-
OPGW-G family of distributions takes the form

TV P q = TV aRq + δTV q, (25)

where 0 < δ < 1. The TVP of the TI-HT-OPGW-G family of distributions can be
obtained by substituting the equations (23) and (24) into equation (25).

7.5. Numerical Study for the Risk Measures. This sub-section deals with
the the numerical study of VaR, TVaR, TV and TVP for the TI-HT-OPGW-W
distribution for different sets of parameters. The VaR, TVaR, TV and TVP of the
TI-HT-OPGW-W distribution are compared with the type-I heavy-tailed Weibull
(TI-HT-W) distribution, the half logistic generalized Weibull (HLGW) and Weibull
distribution.
The process of obtaining the results is described as follows:

1. Random samples of size n = 100 are generated from each one of used distri-
butions and parameters have been estimated via maximum likelihood method.

2. 1000 repetitions are made to calculate the VaR, TVaR, TV and TVP for these
distributions.

Tables 3 and 4 present the simulated results of VaR, TVaR, TV and TVP of
the compared distributions. A model with higher values of VaR, TVaR, TV and
TVP is said to have a heavier tail. The simulated results provided in Tables 3 and
4 shows that the proposed TI-HT-OPGW-W distribution has higher values of the
risk measures than the TI-HT-W, HLGW, and Weibull distributions.
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Table 3. Simulation results 1 of VaR, TVaR, TV and TVP

Significance level 0.7 0.75 0.8 0.85 0.9 0.95 0.99
TI-HT-OPGW-W(θ = 0.9, α = 1.0, β = 1.0, λ = 0.5) VaR 1.9926 2.6118 3.4848 4.8008 7.0294 11.8902

TVaR 7.6930 8.7744 10.2127 12.2525 15.4771 21.8847
TV 73.5835 80.9009 90.1785 102.5321 120.3521 150.9723
TVP 59.2015 69.4501 82.3555 99.4047 123.7940 165.3084

TI-HT-W(θ = 0.9, α = 1.0, β = 1.0) VaR 1.3277 1.6403 2.0526 2.6306 3.5303 5.2882
TVaR 3.5823 4.0032 4.5450 5.2855 6.4073 8.5284
TV 8.1989 8.7637 9.4695 10.4026 11.7593 14.1829
TVP 9.3215 10.5760 12.1206 14.1278 16.9907 22.0022

HLGW(w = 0.9, λ = 1.0, γ = 1.0) VaR 1.8490 2.0965 2.3944 2.7727 3.2999 4.1968
TVaR 3.1698 3.4099 3.7023 4.0781 4.6077 5.5185
TV 1.8390 1.8495 1.8675 1.8971 1.9480 2.0518
TVP 4.4571 4.7971 5.1964 5.6907 6.3609 7.4678

W(λ = 0.5) VaR 1.4484 1.9202 2.5892 3.6011 5.3150 9.0315
TVaR 5.9073 6.7544 7.8846 9.4938 12.0546 17.2314
TV 51.1712 56.9057 64.4260 74.9502 91.3972 124.0315
TVP 41.7272 49.4338 59.4254 73.2015 94.3121 135.0614

Table 4. Simulation results 2 of VaR, TVaR, TV and TVP

Significance level 0.7 0.75 0.8 0.85 0.9 0.95 0.99
TI-HT-OPGW-W(θ = 1.1, α = 1.0, β = 0.7, λ = 0.85) VaR 1.9364 2.3451 2.8822 3.6337 4.8049 7.1085

TVaR 4.8986 5.4519 6.1648 7.1416 8.6279 11.4624
TV 16.0559 17.3282 18.9573 21.1721 24.5035 30.7003
TVP 16.1378 18.4481 21.3306 25.1379 30.6811 40.6277

TI-HT-W(θ = 1.1, α = 1.0, β = 0.7) VaR 1.3891 1.7162 2.1476 2.7523 3.6937 5.5329
TVaR 3.7480 4.1884 4.7553 5.5301 6.7037 8.9230
TV 8.9912 9.6105 10.3845 11.4077 12.8957 15.5534
TVP 10.0419 11.3964 13.0630 15.2267 18.3099 23.6987

HLGW(w = 1.0, λ = 1.0, γ = 1.7) VaR 1.0243 1.1469 1.2926 1.4750 1.7249 2.1408
TVaR 1.6523 1.7659 1.9030 2.0774 2.3201 2.7303
TV 0.3841 0.3812 0.3790 0.3781 0.3792 0.3856
TVP 1.9212 2.0518 2.2062 2.3988 2.6614 3.0967

W(λ = 0.85) VaR 1.2421 1.4647 1.7443 2.1149 2.6543 3.6157
TVaR 2.5691 2.8131 3.1167 3.5156 4.0910 5.1058
TV 2.0797 2.1306 2.1905 2.2641 2.3622 2.5175
TVP 4.0249 4.4111 4.8691 5.4401 6.2170 7.4974

8. Applications

In this section, we illustrate the fitting power of the new TI-HT-OPGW-W dis-
tribution by analyzing four real life data sets from different fields. The choice of
this special case is motivated by the applicability of the Weibull distribution in dif-
ferent fields as compared to other baseline distributions considered in defining other
presented special cases. The goodness-of-fit of the TI-HT-OPGW-W distribution
was compared to those of other well-known heavy-tailed distributions and some
generalizations of the Weibull distribution. These distributions are: alpha power
Topp-Leone Weibull (APTLW) distribution by [9], the type-I heavy-tailed Weibull
(TI-HT-W) distribution by [30], the heavy-tailed beta-power transformed Weibull
(HTBPT-W) distribution by [31], the half logistic generalized Weibull (HLGW) dis-
tribution by [8], odd generalized half-logistic Weibull-Weibull (OGHLW-W) by [14],
the Kumaraswamy-Weibull (KW) distribution by [15], and type II exponentiated
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half logistic Weibull (TIIEHLW) distribution by [4]. The pdf’s of these competing
models are given in the appendix.

For comparison purposes, we used well-known goodness-of-fit statistics such as
-2log-likelihood statistic (−2 ln(L)), Akaike Information Criterion (AIC = 2p −
2 ln(L)) by [3], Consistent Akaike Information Criterion (CAIC = AIC +2 p(p+1)

n−p−1 )

by [11], Bayesian Information Criterion (BIC = p ln(n)− 2 ln(L)) by [28], (n is the
number of observations, and p is the number of estimated parameters), Cramér-
von Mises (W ∗) statistic, and Anderson-Darling statistic (A∗) described by [13],
Kolmogorov-Smirnov (K-S) statistic by [12], and its p − value. It is known that
the smaller the values of all the goodness-of-fit statistics, except for the p−value of
K-S statistic, the better the model for fitting the data set.

For the probability plot, we plotted F (x(j)) = F (x(j); θ̂, α̂, β̂, λ̂) against
j − 0.375

n+ 0.25
,

j = 1, 2, · · · , n, where x(j) are the ordered values of the observed data. The mea-
sures of closeness are given by the sum of squares

SS =

n∑
j=1

[
F (x(j))−

(
j − 0.375

n+ 0.25

)]2
.

8.1. Biomedical Sciences Data. The data set is on remission times (months) of
128 bladder cancer patients by [22]. (See the data in the Appendix).

Table 5 gives the MLEs of the fitted distributions together with the standard
errors (in parenthesis). Table 6, gives the values of all considered goodness-of-fit
statistics. It is evident that the TI-HT-OPGW-W distribution provides the best
fit among the competitors since it has the lowest value of −2 ln(L), AIC, CAIC,
BIC, W ∗, A∗, K-S statistic, and larger p− value. From the plots in Figure 9, we
can see that the TI-HT-OPGW-W distribution follows the fitted histogram closely
and has the smallest sum of squares (SS) value from the probability plots. This
supports the conclusion made from Table 6.

The total test time (TTT) scaled plots, observed and the fitted Kaplan-Meier
survival curves, theoretical and empirical cumulative distribution function (ECDF)
and hazard rate function (HRF) plots of the TI-HT-OPGW-W distribution are
shown in Figure 10. From the Kaplan-Meier and ECDF plots, it is clear that the TI-
HT-OPGW-W distribution is a good candidate for modeling the biomedical data.
The TTT scaled plot demonstrates that the data follow an upside-down bathtub
hazard rate shape. Furthermore, the hazard rate function exhibit a non-monotonic
shape for the remission times data.

8.2. Insurance Data. This data set from the insurance field represents monthly
metrics on unemployment insurance from July 2008 to April 2013 from the de-
partment of labor, licensing and regulation. It consists of 58 observations and 21
variables, we studied the variable number 6.
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Table 5. Estimates of models for remission times data

Estimates
Model θ α β λ

TI-HT-OPGW-W 0.1575 4.6733 0.3432 0.2149
(0.0633) (2.6563) (0.2056) (0.0368)

θ α β λ
APTLW 0.3632 2.6272×1002 0.8610 0.1120

(0.1239) (4.8767×10−05) (0.1241) (0.0540)
α θ β

TI-HT-W 1.1030 1.2551 0.0564
(0.6049) (3.5043) (0.3501)

α γ β
HTBPT-W 1.0478 0.0938 0.9999

(0.0675) (0.0190) (0.7280)
w λ γ

HLGW 6.2967 0.5000 0.0516
(9.9402) (0.0776) (0.0804)

a b c λ
KW 8.8278 206.7178 0.1835 0.0301

(4.6441) (0.0352) (0.0580) (0.0679)
a λ δ γ

TIIEHLW 1.0297 ×1003 1.0759 ×1002 2.4004 0.0500
(1.8761×10−06) (1.9066×10−04) (2.1528×10−02) (3.2111×10−03)

α β λ γ
OGHLW-W 2.1269×10−05 0.6471 14.4550 0.0774

(3.4793×10−06) (4.2738×10−04) (1.9132×10−05) (4.3136×10−03)

Table 6. Goodness-of-fit statistics for remission times data

Statistics
Model −2 log L AIC AICC BIC W ∗ A∗ K − S P-value

TI-HT-OPGW-W 822.0841 830.0841 830.4093 841.4922 0.0507 0.3255 0.0488 0.9196
APTLW 827.4507 835.4507 835.7759 846.8588 0.1275 0.7620 0.0727 0.5065
TI-HT-W 826.9924 832.9924 833.1859 841.5485 0.1150 0.6940 0.0684 0.5863
HTBPT-W 828.1738 834.1738 834.3673 842.7298 0.1313 0.7864 0.0700 0.5570
HLGW 851.9690 857.9690 858.1626 866.5251 0.2699 1.5921 0.1647 0.0019
KW 823.5203 831.5204 831.8456 842.9285 0.0776 0.4738 0.0567 0.8036

TIIEHLW 823.0934 831.0934 831.4186 842.5015 0.0710 0.4392 0.0549 0.8351
OGHLW-W 838.0349 846.0347 846.3599 857.4428 0.2477 1.4603 0.0952 0.1962

It is available at: https://catalog.data.gov/dataset/ unemployment-insurance-data-
july-2008-to-april-2013. (See the data in the Appendix).

For these data, the MLEs, standard errors (in parenthesis) are given in Table 7.
From the goodness-of-fit statistics given in Table 8, we observe that the proposed
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Figure 9. Fitted densities and probability plots for remission
times data

Table 7. Estimates of models for insurance data

Estimates
Model θ α β λ

TI-HT-OPGW-W 0.3099 2.0529 0.0078 1.1668
(0.1775) (1.8481×10−05) (0.0109) (0.2846)

θ α β λ
APTLW 1.3112 2.3022 2.3222 7.6494×10−05

(2.3870×10−10) (5.1581×10−11) (2.4955×10−09) (8.0428×10−06)
α θ β

TI-HT-W 1.1963 0.1221 0.0916
(0.1374) (0.0537) (0.0567)

α γ β
HTBPT-W 1.2034 0.0262 7.1487×10−05

(0.1125) (0.01207) (6.8034×10−05)
w λ γ

HLGW 545.6400 1.0121 3.2890×10−05

(1.2046×10−13) (2.7123×10−10) (2.0129×10−06)
a b c λ

KW 1.2341×1002 9.4224×1003 0.1119 1.1220×1002

(2.0464×10−07) (3.0326×10−10) (6.1342×10−04) (6.9732×10−08)
a λ δ γ

TIIEHLW 1.4145×1004 2.3843×1003 4.4752 0.0500
(9.5420×10−08) (3.7577×10−05) (9.1240×10−02) (5.0324×10−03)

α β λ γ
OGHLW-W 0.0008 1.2387 1.7631 0.3265

(0.0004) (0.2632) (0.1435) (0.0490)
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Figure 10. Fitted TTT, Kaplan-Meier Survival, ECDF and HRF
plots for remission times data

Table 8. Goodness-of-fit statistics for insurance data

Statistics
Model −2 log L AIC AICC BIC W ∗ A∗ K − S P-value

TI-HT-OPGW-W 495.8290 503.8290 504.5838 512.0708 0.0578 0.3621 0.0719 0.9249
APTLW 496.5398 504.5398 505.2945 512.7816 0.1102 0.5583 0.1054 0.5394
TI-HT-W 525.6656 531.6656 532.1100 537.8469 0.3263 1.7175 0.2036 0.0162
HTBPT-W 505.3288 511.3291 511.7735 517.5104 0.2356 1.2313 0.1188 0.3853
HLGW 512.5666 518.5643 519.0087 524.7456 0.0841 0.4385 0.2242 0.0058
KW 498.6628 506.6629 507.4176 514.9047 0.1545 0.7836 0.1241 0.3328

TIIEHLW 498.9921 506.9921 507.7468 515.2338 0.1601 0.8126 0.1261 0.3145
OGHLW-W 496.0044 504.0044 504.7591 512.2462 0.0599 0.3634 0.0741 0.9069
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Figure 11. Fitted densities and probability plots for insurance
data

TI-HT-OPGW-W distribution is the best choice to implement for fitting the in-
surance data since it has the smallest values of goodness-of-fit statistics and larger
p-value compared to other fitted distributions. To support the results in Table 8,
a visual illustrations is provided in Figure 11.

Figure 12 shows the TTT scaled plots, observed and the fitted Kaplan-Meier
survival curves, ECDF and HRF plots. We can see that the TI-HT-OPGW-W
distribution follows the empirical cdf, and Kaplan-Meier survival curves very closely.
The TTT scaled plot shows an increasing hrf, allowing us to fit the heavy-tailed
insurance data using TI-HT-OPGW-W distribution. Furthermore, the estimated
hazard rate function for insurance data is an increasing shape.

8.3. Agriculture Data. This dataset represents the total factor productivity (TFP)
growth agricultural production for thirty-seven African countries from 2001-2010,
see https://dataverse.harvard.edu/dataset.xhtml?persistent\Id=doi:10.7910/
DVN/9IOAKR, accessed on 30 June 2022. (See the data in the Appendix).

The parameter estimates, standard error (in parentheses) are given in Table
9. The goodness-of-fit statistics: AIC, BIC, CAIC, W ∗, A∗, K-S statistic, and its
p-value are given in Table 10. The values in Table 10 shows that the TI-HT-OPGW-
W distribution gives the smallest values for the goodness-of-fit statistics and the
largest p-value of K-S statistic. Thus, the TI-HT-OPGW-W distribution provides
better fit than the rest of the distributions for the TFP growth data. Plots of the
fitted densities and the histogram, observed probability vs predicted probability are
given in Figure 13.

Figure 14 presents the TTT scaled plots, empirical and theoretical Kaplan-Meier
survival plots, cumulative frequency curve of the observed data with the fitted cdf

https://dataverse.harvard.edu/ dataset.xhtml?persistent\ Id=doi:10.7910 /DVN/9IOAKR
https://dataverse.harvard.edu/ dataset.xhtml?persistent\ Id=doi:10.7910 /DVN/9IOAKR
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Figure 12. Fitted TTT, Kaplan-Meier survival, ECDF and HRF
plots for insurance data

of the TI-HT-OPGW-W distribution and also, the HRF plot. It is visible that,
the fitted empirical and theoretical plots are close to each other, hence we conclude
that our model provide the better fit for the data. The TTT scaled plot clearly
demonstrates that the data fit the increasing hazard rate structure. Furthermore,
the estimated hazard rate function for TFP growth data is an increasing shape.

8.4. Failure Times Data. These data represent the failure time of a machine
from Babel tyres factory (Iraq) in hours. The data was obtained from [5]. (See
the data in the Appendix).

Table 11 and 12 presents numerical values of the MLEs with standard errors (in
parenthesis), −2 ln(L), AIC, CAIC, BIC, W ∗ , A∗, K-S statistic, and its p−value
for the failure times data. It can be seen that the TI-HT-OPGW-W distribution has
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Table 9. Estimates of models for TFP growth data

Estimates
Model θ α β λ

TI-HT-OPGW-W 73.8740 0.9815 7.6304×10−05 1.4386
(2.6403×10−11) (8.2976×10−10) (1.2706×10−05) (8.8095×10−10)

θ α β λ
APTLW 3.1266 12.1322 0.6406 1.0002

(5.8242) (29.4512) (0.5086) (1.0759)
α θ β

TI-HT-W 0.8309 0.2991 2.7494
(0.1212) (0.1187) (1.1363)

α γ β
HTBPT-W 0.6588 1.1740 0.0286

(0.1140) (0.2605) (0.0330)
w λ γ

HLGW 797.4800 0.5000 9.0808×10−04

(1.1333×10−07) (7.3374×10−02) (9.6790×10−05)
a b c λ

KW 0.1293 1.8134 7.4198 0.2015
(0.0446) (1.0046) (2.5729) (0.0385)

a λ δ γ
TIIEHLW 1.6908 3.9314 0.9271 0.6168

(1.5011) (4.8099) (0.8245) (0.4828)
α β λ γ

OGHLW-W 1.0774×10−04 0.6420 13.6300 0.1275
(1.2797×10−04) (8.7916×10−02) (3.5390×10−03) (2.3757×10−02)

Table 10. Goodness-of-fit statistics for TFP growth data

Statistics
Model −2 log L AIC AICC BIC W ∗ A∗ K − S P-value

TI-HT-OPGW-W 107.0129 115.0129 116.2629 121.4566 0.0293 0.1812 0.0798 0.9722
APTLW 107.9218 115.9218 117.1718 122.3655 0.0368 0.2264 0.1049 0.8098
TI-HT-W 111.3917 117.3918 118.1191 122.2246 0.0368 0.2240 0.1197 0.6635
HTBPT-W 115.7192 121.7192 122.4464 126.5519 0.0311 0.1928 0.1807 0.1781
HLGW 117.7719 123.7719 124.4991 128.6046 0.0325 0.2050 0.2142 0.0670
KW 109.6151 117.6158 118.8658 124.0595 0.0745 0.4569 0.1043 0.8151

TIIEHLW 109.7821 117.7821 119.0321 124.2258 0.0643 0.4020 0.1255 0.6043
OGHLW-W 108.3969 116.3967 117.6467 122.8403 0.0428 0.2752 0.0889 0.9316

the lowest value for all goodness-of-fit statistics and a larger p− value between all
fitted distributions which gives it the superiority for fitting the failure times data.
To support the best fitting power of the TI-HT-OPGW-W distribution, plots of the
fitted densities and the histogram, observed probability vs predicted probability are
given in Figure 15.
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Figure 13. Fitted densities and probability plots for TFP growth
data

Table 11. Estimates of models for failure times data

Estimates
Model θ α β λ

TI-HT-OPGW-W 0.1548 24.2130 0.0461 0.1683
(0.1132) (4.5574×10−05) (0.0239) (0.0168)

θ α β λ
APTLW 0.5500 0.0173 1.3216 0.0001

(0.0748) (0.0675) (0.0378) (0.0001)
α θ β

TI-HT-W 0.6980 0.1196 0.4071
(0.0756) (0.0486) (0.1391)

α γ β
HTBPT-W 0.8987 0.0125 1.0002

(0.0783) (0.0052) (0.4193)
w λ γ

HLGW 0.2370 0.9780 0.5827
(0.0500) (0.1847) (0.4439)

a b c λ
KW 15.4546 62.0537 0.0990 0.4869

(4.7782) (0.1384) (0.0165) (1.1236)
a λ δ γ

TIIEHLW 27.4140 109.6900 2.6706 0.0500
(3.2565×10−04) (7.7848×10−04) (8.9301×10−02) (6.7886×10−03)

α β λ γ
OGHLW-W 2.1083×10−05 0.4143 21.2990 0.0510

(8.5735×10−06) (6.8140×10−04) (1.3243×10−05) (5.8370×10−03)
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Figure 14. Fitted TTT, Kaplan-Meier survival, ECDF and HRF
plots for TFP growth data

Table 12. Goodness-of-fit statistics for failure times data

Statistics
Model −2 log L AIC AICC BIC W ∗ A∗ K − S P-value

TI-HT-OPGW-W 327.3327 335.3327 336.9994 340.8019 0.0660 0.3691 0.1344 0.6705
APTLW 328.3628 336.3628 338.0295 341.8320 0.0845 0.4480 0.1495 0.5353
TI-HT-W 332.8800 338.8801 339.8401 342.9819 0.0687 0.3736 0.2413 0.0682
HTBPT-W 333.4933 339.4933 340.4533 343.5952 0.1034 0.5659 0.2861 0.0173
HLGW 333.0898 339.0899 340.0499 343.1918 0.0598 0.3901 0.1786 0.3132
KW 327.7001 335.7001 337.3668 341.1693 0.0696 0.3815 0.1365 0.6518

TIIEHLW 327.5437 335.8219 337.4885 341.2911 0.0731 0.3973 0.1377 0.6409
OGHLW-W 331.0865 339.0866 340.7532 344.5557 0.1181 0.6422 0.1616 0.4348
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Figure 15. Fitted densities and probability plots for failure times
data

Figure 16 depicts the TTT scaled plots, observed and the fitted Kaplan-Meier
survival curves, theoretical and ECDF and HRF plots. The green line in the
Kaplan-Meier and ECDF plots illustrates the good fit to the data. The TTT
scaled plot demonstrates that the data follow a decreasing hazard rate shape. Fur-
thermore, the hazard rate function exhibit a decreasing shape for the failure times
data.

9. Concluding Remarks

We propose and study a new heavy-tailed family of distributions called type
I heavy-tailed odd power generalized Weibull-G (TI-HT-OPGW-G) distribution.
Many of its statistical properties such as quantile function, linear representation,
moments, moment generating function, distribution of order statistics and Rényi
entropy were derived. The maximum likelihood estimation method was derived and
evaluated via a simulation study. Actuarial measures for the proposed distribution
were also derived. Numerical comparisons of the actuarial measures with other
distributions was conducted. Finally, the superiority and importance of the TI-HT-
OPGW-G family of distributions was illustrated by using four real data sets from
different fields. The TI-HT-OPGW-W model as a special case to this new family
of distributions was applied to four datasets and from the results it is evident that
the new proposed model performs better than several heavy tailed distributions.
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Figure 16. Fitted TTT, Kaplan-Meier survival, ECDF and HRF
plots for failure times data

Appendix

Click the link below to access the appendix.
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QUASI HEMI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS
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Abstract. We introduce a new class of pseudo-Riemannian submersions which

are called quasi hemi-slant pseudo-Riemannian submersions from para-Kaehler
manifolds to pseudo-Riemannian manifolds as a natural generalization of slant

submersions, semi-invariant submersions, semi-slant submersions and hemi-

slant Riemannian submersions in our study. Also, we give non-trivial exam-
ples of such submersions. Further, some geometric properties with two types

of quasi hemi-slant pseudo-Riemannian submersions are investigated.

1. Introduction

A C∞−submersion ψ can be defined according to the following conditions. A
pseudo-Riemannian submersion ( [12], [16], [13], [17], [26]), an almost Hermitian
submersion ( [27], [29]), bi-slant submanifold ( [3], [5]), a slant submersion ( [7],
[11], [1], [19], [23]), bi-slant submersion ( [21]), an anti-invariant submersion ( [8],
[9], [10], [24]), a hemi-slant submersion ( [28], [22]), a quasi-bi-slant Submersion
( [20]), a semi-invariant submersion ( [18], [25]), etc. As we know, Riemannian
submersions were severally introduced by B. O’Neill ( [17]) and A. Gray ( [12])
in 1960s. In particular, by using the concept of almost Hermitian submersions,
B. Watson ( [30]) gave some differential geometric properties among fibers, base
manifolds, and total manifolds. Some interesting results concerning para-Kaehler-
like statistical submersions were obtained by G.E. Vı̂lcu ( [29]).
Motivated by the above studies, we presented quasi hemi-slant pseudo-Riemannian
submersions in para-complex geometry from para-Kaehler manifolds onto pseudo-
Riemannian manifolds. We organized our work in three sections. In section 2, we
gather basic concepts and definitions needed in the following parts. In section 3,
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We examined quasi hemi-slant pseudo-Riemannian submersions in para-complex
geometry that satisfies certain conditions. We give some non-trivial examples of
these submersions which satisfy the conditions of two types, while in we study the
decomposition theorem of two types of the distributions.

2. Preliminaries

By a para-Hermitian manifold we mean a triple (B,P, gB), where B is connected
differentiable manifold of 2n- dimensional , P is a tensor field of type (1,1) and a
pseudo-Riemannian metric gB on B, satisfying

P2E1 = E1, gB(PE1,PE2) = −gB(E1, E2) (1)

where E1, E2 are vector fields on B. Then we can say that B is a para-Kaehler
manifold such that

∇P = 0; (2)

where ∇ denotes the Levi-Civita connection on B ( [15]).

Let (B, gB) and (B̃, gB̃) be two pseudo-Riemannian manifolds. Being a pseudo-

Riemannian submersion ψ : B → B̃ provides the following three properties;
(i) ψ∗|p is onto for all p ∈ B,
(ii) the fibres ψ−1(q), q ∈ B̃, are r− dimensional pseudo-Riemannian submanifolds

of B, where r = dim(B)− dim(B̃),
(iii) ψ∗ preserves scalar products of vectors normal to fibres.

The vectors tangent to the fibres are called vertical and those normal to the
fibres are called horizontal. A vector field U on B is called basic if U is horizontal
and ψ- related to a vector field U∗ on B̃, i.e., ψ∗Up = U∗ψp

for all p ∈ B.We indicate
by V the vertical distribution, by H the horizontal distribution and by v and h the
vertical and horizontal projection. We know that (B, gB) is called total manifold

and (B̃, gB̃) is called base manifold of the submersion ψ : (B, gB) → (B̃, gB̃).
Now, let’s denote O’Neill’s tensors T and A:

TUW = h∇vUvW + v∇vUhW (3)

and
AUW = v∇hUhW + h∇hUvW (4)

for every U,W ∈ χ(B), on B where ∇ is the Levi-Civita connection of gB.

Further, a pseudo-Riemannian submersion ψ : B → B̃ has totally geodesic fibers
if and only if T ≡ 0. Also, if A vanishes then the horizontal distribution is inte-
grable(see [4], [6]). Using (3) and (4), we get

∇UW = TUW + ∇̂UW ; (5)

∇Uζ = TUζ + h∇Uζ; (6)

∇ζU = AζU + v∇ζU ; (7)
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∇ζη = Aζη + h∇ζη, (8)

for any ζ, η ∈ Γ((kerψ∗)
⊥), U,W ∈ Γ(kerψ∗). Also, if ζ is basic then h∇Uζ =

h∇ζU = AζU.

We can easily see that T is symmetric on the vertical distribution and A is
alternating on the horizontal distribution such that

TWU = TUW, W, U ∈ Γ(kerψ∗); (9)

AY V = −AV Y =
1

2
v[Y, V ], Y, V ∈ Γ((kerψ∗)

⊥). (10)

Also, it is easily seen that for any ℘ ∈ Γ(TB), T℘ and A℘ are skew-symmetric
operators on Γ(TB) , such that

gB(TWU,X ) = −gB(TWX , U) (11)

gB(AWU,X ) = −gB(AWX , U) (12)

Definition 1. Let ψ : (B, gB,P) → (B̃, gB̃) be a pseudo-Riemannian submersion.
Let us assume that the total manifold as an almost para-Hermitian manifold and
base manifold as a pseudo-Riemannian manifold. Then, there exists a pseudo-
Riemannian submersion ψ is an invariant pseudo-Riemannian submersion if the
vertical distribution is invariant with respect to P, i.e., P(kerψ∗) = (kerψ∗)( [10].

Definition 2. Let ψ : (B, gB,P) → (B̃, gB̃) be a pseudo-Riemannian submersion.
Let us assume that the total manifold as an almost para-Hermitian manifold and
base manifold as a pseudo-Riemannian manifold. Then, there exists a pseudo-
Riemannian submersion ψ such that kerψ∗ is anti-invariant with respect to P, i.e.,
P(kerψ∗) ⊆ (kerψ∗)

⊥. So, we can say ψ is an anti-invariant pseudo-Riemannian
submersion( [8]).

Definition 3. Let ψ : (B, gB,P) → (B̃, gB̃) be a pseudo-Riemannian submersion.
Let us assume that the total manifold as an almost para-Hermitian manifold and
base manifold as a pseudo-Riemannian manifold. Then, there exists a pseudo-
Riemannian submersion ψ is a semi-invariant pseudo-Riemannian submersion if
there is a distribution D1 ⊆ kerψ∗, such that

kerψ∗ = D1 ⊕ D2,

and

PD1 = D1,PD2 ⊆ (kerψ∗)
⊥

where D2 is orthogonal complementary to D1 in kerψ∗( [2]).

We know that µ is the complementary orthogonal subbundle to P(kerψ∗) in
(kerψ∗)

⊥.
Also we have;

(kerψ∗)
⊥ = PD2 ⊕ µ.
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From here we can say that µ is an invariant subbundle of (kerψ∗)
⊥ with respect to

the para-complex structure P.

For any non-null vector field U2 ∈ (kerψ∗), we get

PU2 = qU2 + rU2,

where qU2 is vertical part and rU2 is horizontal part.

If for non-null vector field U2 ∈ kerψ∗, the quotient gB(qU2,qU2)
gB(PU2,PU2)

is constant,

i.e., it is independent of the choice of the point q̄ ∈ B and choice of the non-null
vector field U2 ∈ Γ(kerψ∗), we can say that ψ is a slant submersion. So, the angle
is called the slant angle of the slant submersion ( [10]).

Let ψ : (B, gB,P) → (B̃, gB̃) be a proper slant submersion. Let us assume that
the total manifold as an almost para-Hermitian manifold and base manifold as a
pseudo-Riemannian manifold. Then, we have;
type ∼1 if for every space-like (time-like) vector field U2 ∈ Γ(kerψ∗), qU2 is time-

like (space-like), and ∥qU2∥
∥PU2∥ > 1,

type ∼ 2 if for every space-like (time-like) vector field U2 ∈ Γ(kerψ∗), qU2 is time-

like (space-like), and ∥qU2∥
∥PU2∥ < 1( [10]).

Theorem 1. ( [10]) Let ψ : (B, gB,P) → (B̃, gB̃) be a proper slant submersion. Let
us assume that the total manifold as an almost para-Hermitian manifold and base
manifold as a pseudo-Riemannian manifold. Then,
(a) ψ is slant submersion of type-1 if and only if for any space-like (time-like)
vector field U1 ∈ kerψ∗, qU1 is time-like (space-like) and there exists a constant
µ ∈ (1,+∞) such that

q2 = µId.

where Id is the identity operator. If ψ is a proper slant submersion of type-1, then
µ = cosh2 φ, with φ > 0.
(b) ψ is slant submersion of type-1 if and only if for any space-like (time-like)
vector field U1 ∈ kerψ∗, qU1 is time-like (space-like) and there exists a constant
µ ∈ (0, 1) such that

q2 = µId.

where Id is identity operator. If ψ is a proper slant submersion of type-1, then
µ = cos2 φ, with 0 < φ < π

2 .

Definition 4. Let (B, gB,P) be an almost para-Hermitian manifold and (B̃, gB̃) be a
pseudo-Riemannian manifold. A pseudo-Riemannian submersion ψ : (B, gB,P) →
(B̃, gB̃) is known a semi-slant submersion if there is a distribution D1 ∈ kerψ∗ such
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that

kerψ∗ = D1 ⊕ D2, P(D1) = D1

and the angle φ is known the semi-slant angle of the submersion where D2 is the
orthogonal complement of D1 in kerψ∗.

Definition 5. Let (B, gB,P) be an almost para-Hermitian manifold and (B̃, gB̃) be a
pseudo-Riemannian manifold. A pseudo-Riemannian submersion ψ : (B, gB,P) →
(B̃, gB̃) is known a hemi-slant submersion if the vertical distribution kerψ∗ of ψ

accepts two orthogonal complementary distribution Dφ and D⊥, such that Dφ is slant
and D⊥ is anti-invariant, i.e., we can show

kerψ∗ = Dφ ⊕ D⊥

Therefore, the angle φ is known the hemi-slant angle of the submersion.

ψ : B → B̃ is a differentiable map and (B, gB) and (B̃, gB̃) be pseudo-Riemannian
manifolds. Then, the second fundamental form of ψ is described by

(∇ψ∗)(ζ, V ) = ∇ψ
ζ ψ∗V − ψ∗(∇ζV ) (13)

for ζ, V ∈ Γ(B). When trace(∇ψ∗) = 0, we can say that ψ is harmonic and ψ is a
totally geodesic map when (∇ψ∗)(ζ, V ) = 0 for ζ, V ∈ Γ(TB) ( [14]). Recall that

∇ψ is the pullback connection.

3. Quasi Hemi-Slant Submersions

Definition 6. Let (B, gB,P) be an almost para-Hermitian manifold and (B̃, gB̃) be a
pseudo-Riemannian manifold. A pseudo-Riemannian submersion ψ : (B, gB,P) →
(B̃, gB̃) is known a quasi hemi-slant submersion if there are three orthogonal distri-

butions D, Dφand D⊥, such that

• kerψ∗ = D⊕ Dφ ⊕ D⊥,
• P(D) = D i.e., D is invariant,
• the angle φ between PU and Dφ is constant. Also, the angle φ is known

slant angle.
• D⊥ is anti-invariant, PD⊥ ⊆ (kerψ∗)

⊥.

We can say that φ is quasi hemi-slant angle of B.

Now, if we show the dimension of D, Dφand D⊥, by n1, n2 and n3, respectively,
we can easily notice the following situations:

(1) If n1 = 0, then B is a hemi-slant submersion
(2) If n2 = 0, then B is a semi-invariant submersion
(3) If n3 = 0, then B is a semi-slant submersion
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If we observe the three items above , we can say that also they are all examples of
quasi hemi-slant submersion.

Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant submersion with type-1 or 2.
Then, we obtain;

TB = kerψ∗ ⊕ (kerψ∗)
⊥ (14)

For any non-null vector field U ∈ (kerψ∗), we get

U = KU + LU +RU, (15)

where KU,LU and RU are projection morphisms of kerψ∗ onto D, Dφ and D⊥,
respectively.
We denote endomorphisms ϕ, the projection morphisms f on B. For non-null vector
field U ∈ (kerψ∗), we have

PU = ϕU + fU, (16)

where ϕU ∈ kerψ∗ and fU ∈ (kerψ∗)
⊥.

From (15) and (16) we get:

PU = P(KU) + P(LU) + P(RU),

= ϕ(KU) + f(KU) + ϕ(LU) + f(LU) + ϕ(RU) + f(RU).

Since P(D) = (D) and PD⊥ ⊆ (kerψ∗)
⊥ we obtain f(KU) = 0 and ϕ(RU) = 0.

Now, let us arrange the above equation

PU = ϕ(KU) + ϕ(LU) + f(LU) + f(RU). (17)

So, we have the following decomposition:

P(kerψ∗) = D⊕ ϕDφ ⊕ fDφ ⊕ PD⊥. (18)

Since, fDφ ⊆ (kerψ∗)
⊥ and PD⊥ ⊆ (kerψ∗)

⊥, we have;

(kerψ∗)
⊥ = fDφ ⊕ PD⊥ ⊕ µ

where µ is the orthogonal complementary distribution of fDφ ⊕ PD⊥ in (kerψ∗)
⊥.

In adittion, for any non-null vector field W ∈ (kerψ∗)
⊥ is decomposed as

PW = BW + CW (19)

where BW ∈ Γ(Dφ ⊕ D⊥) and CW ∈ Γ(µ).

Lemma 1. Let ψ : (B, gB,P) → (B̃, gB̃) is a quasi hemi-slant submersion with type
∼1 or 2. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. Then, we obtain the following
equations:
(a) ϕDφ = Dφ (b) ϕD⊥ = {0}
(c) BfDφ = Dφ (d) BfD⊥ = D⊥.
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Proof. For any non-null vector fieldW ∈ Γ(Dφ), by (16), we have PW = ϕW+fW .
On the other hand, with the help of (18), PW ∈ Γ(Dφ), i.e., fW = 0. Thus,
we obtain ϕDφ = Dφ. For any non-null vector field U ∈ Γ(D⊥), by (16), we have
PU = ϕU+fU . Beside this, by using (18), PW ∈ (kerψ∗)

⊥, i.e., ϕU = 0. Thus, we
obtain ϕD⊥ = {0}. To prove (c) and (d), the same method above can be used. □

Lemma 2. Let ψ : (B, gB,P) → (B̃, gB̃) is a quasi hemi-slant submersion with type
∼1 or 2. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. Then, we obtain the following
equations:
(a) ϕ2Z +BfZ = Z (b) C2U + fBU = U
(c) ϕBU + BCU = {0} (d) fϕZ + CfZ = {0} for all non-null vectors Z ∈
Γ(kerψ∗) and U ∈ Γ(kerψ∗)

⊥.

Proof. For any non-null vector field Z ∈ Γ(kerψ∗), by (1), we have P2Z = Z.
Using (16) and (19), we have Z = ϕ2Z + fϕZ + BfZ + CfZ. If this equation is
considered as decomposed into the vertical and horizontal parts, we obtain (a) and
(d). (b) and (c) can be proved with the same method above. □

Theorem 2. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant submersion with
type∼1. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. In this case, ψ is quasi-hemi-
slant submersion such that:

(a) ϕ2Z = cosh2 φZ
(b) gB(ϕZ, ϕY ) = − cosh2 φgB(Z, Y )
(c) gB(fZ, fY ) = sinh2 φgB(Z, Y )

for any space-like(time-like) vector field Z, Y ∈ Γ(Dφ).

Proof. (a) If ψ is a quasi hemi-slant submersion of type 1, for any space-like vector
field Z ∈ Γ(Dφ), ϕZ is timelike and by virtue of (1), PZ is time-like. Then, there
exists φ > 0 such that

coshφ =
∥ϕZ∥
∥PZ∥

=

√
−gB(ϕZ, ϕZ)√
−gB(PZ,PZ)

.

Using the above equation, (1) and (16), we get:

gB(ϕ
2Z,Z) = −gB(ϕZ, ϕZ) = − cosh2 φgB(PZ,PZ) = cosh2 φgB(P2Z,Z).

From the above equation and (1), we obtain ϕ2Z = cosh2 φZ.
Everything works in a similar way for any time-like vector field Z ∈ Γ(Dφ).

(b) For any space-like(time-like) vector field Z, Y ∈ Γ(Dφ), by virtue of (1),
we get gB(PZ, Y ) = −gB(Z,PY ). On the other hand, with the help of (16), we
get gB(ϕZ + fZ, Y ) = −gB(Z, ϕY + fY ). If we arrange the last equation, we
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obtain gB(ϕZ, Y ) = −gB(Z, ϕY ). Beside this, if Y = ϕY is accepted, we ob-
tain gB(ϕZ, ϕY ) = −gB(Z, ϕ2Y ). Using Theorem 2(a), we get gB(ϕZ, ϕY ) =
− cosh2 φgB(Z, Y )
To prove (c), the same method above can be used. □

Theorem 3. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant submersion with
type∼2. Let us suppose the total manifold as an almost para-Hermitian manifold
and base manifold as a pseudo-Riemannian manifold. In this case, ψ is quasi hemi-
slant submersion such that:

(a) ϕ2Z = cos2 φZ
(b) gB(ϕZ, ϕY ) = − cos2 φgB(Z, Y )
(c) gB(fZ, fY ) = − sin2 φgB(Z, Y )

for any space-like(time-like) vector field Z, Y ∈ Γ(Dφ).

Proof. This proof can be done using the techniques of the proof of Theorem 2.

Let’s consider para-complex structure on R2n
n :

P (
∂

∂y2i
) =

∂

∂y2i−1
, P (

∂

∂y2i−1
) =

∂

∂y2i
, g = (dy1)2−(dy2)2+(dy3)2− ...−(dy2n)2

here i ∈ {1, ..., n}. Also, (y1, y2, ..., y2n) denotes the cartesian coordinates over R2n
n .
□

We can easily present non-trivial examples of proper quasi hemi-slant pseudo-
Riemannian submersions of type∼1 and 2.

Example 1. Let’s determine map ψ : R10
5 → R5

2

ψ(y1, ..., y10) = (y2 sinhβ + y3 coshβ, y4, y6, y9, y10),

So, ψ is a proper quasi hemi-slant pseudo-Riemannian submersion with type ∼ 1.
By direct calculations, we have

D =< ∂
∂y7

, ∂
∂y8

>

Dφ =< coshβ ∂
∂y2

− sinhβ ∂
∂y3

, ∂
∂y1

>

D⊥ =< ∂
∂y5

>

with hemi-slant angle φ with ϕ2 = cosh2 βI.

Example 2. Let’s determine map ψ : R10
5 → R5

2

ψ(y1, ..., y10) = (y1 sinα+ y3 cosα, y2 sinβ + y4 cosβ, y6, y9, y10)
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So, ψ is a proper quasi hemi-slant pseudo-Riemannian submersion with type ∼ 2.
By direct calculations, we get

D =< ∂
∂y7

, ∂
∂y8

>

Dφ =< − cosα ∂
∂y1

+ sinα ∂
∂y3

,− cosβ ∂
∂y2

+ sinβ ∂
∂y4

>

D⊥ =< ∂
∂y5

> with hemi-slant angle φ with ϕ2 = cos2(α− β)I.

Lemma 3. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi hemi-slant pseudo-Riemannian
submersion with type ∼1 or 2. Let us suppose the total manifold as a para-Kaehler
manifold and base manifold as a pseudo-Riemannian manifold. So, we obtain the
following equations.

∇̂UϕW + TUfW = ϕ∇̂UW + BT UW (20)

TUϕW +H∇UfW = f∇̂UW + CT UW (21)

V∇XBY +AXCY = ϕAXY + BH∇XY (22)

AXBY +H∇XCY = fAXY + CH∇XY (23)

∇̂UBX + TUCX = ϕTUX + BH∇UX (24)

TUBX +H∇UCX = fTUX + CH∇UX , (25)

for any non-null vector fields U,W ∈ Γ(kerψ∗) and X ,Y ∈ Γ(kerψ∗)
⊥.

Proof. For any non-null vector fields U,W ∈ Γ(kerψ∗), using (2), we get

P∇UW = ∇UPW

Hence, using (5)∼(6)∼(16) and (19), we get

BT UW + CT UW + ϕ∇̂UW + f∇̂UW = TUϕW + ∇̂UϕW + TUfW +H∇UfW

Taking the vertical and horizontal parts of this equation, we get (20) and (21). The
other assertions can be obtained by using (7)∼(8)∼(16) and (19).

Now we can show

(∇Uϕ)W = ∇̂UϕW − ϕ∇̂UW

(∇Uf)W = H∇UfW − f∇̂UW,

(∇XB)ζ = ∇̂XBζ −BH∇Xζ

(∇XC)ζ = H∇XCζ − CH∇Xζ

for any non-null vector fields U,W ∈ kerψ∗ and X, ζ ∈ (kerψ∗)
⊥.

The above assertions can be obtained by using (20)∼(21)∼(22) and (23), respec-
tively. □
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Lemma 4. Let ψ : (B, gB,P) → (B̃, gB̃) be a quasi-hemi-slant pseudo-Riemannian
submersion with type ∼1 and type ∼ 2. Let us suppose the total manifold as a
para-Kaehler manifold and base manifold as a pseudo-Riemannian manifold. So,
we obtain the following equations.

(∇Uϕ)W = BT UW − TUfW (26)

(∇Uf)W = CT UW − TUϕW (27)

(∇XB)ζ = ϕAXζ −AXBζ (28)

(∇XC)ζ = fAXζ −AXCζ (29)

for any non-null vector fields U,W ∈ kerψ∗ and X, ζ ∈ (kerψ∗)
⊥.

Proof. The proof is simple.
If ϕ and f are parallel with respect to ∇ on B, from (26) and (27), we have

BT UW = TUfW and CT UW = TUϕW for any U,W ∈ Γ(TB). □

Theorem 4. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. The invariant distribution D is integrable if and only if

gB(TWϕU − TUϕW, fLζ + fRζ) = gB(V∇UϕW − V∇WϕU, ϕLζ) (30)

for any non-null vector fields U,W ∈ Γ(D) and ζ ∈ Γ(Dφ ⊕ D⊥).

Proof. For any non-null vector fields U,W ∈ Γ(D) and ζ ∈ Γ(Dφ ⊕ D⊥). Then using
(1),(2),(5) and (16) obtained:

gB([U,W ], ζ) = −gB(∇UPW,Pζ) + gB(∇WPU,Pζ)
= −gB(∇UϕW,Pζ) + gB(∇WϕU,Pζ)
= gB(TWϕU − TUϕW, fLζ + fRζ)

+ gB(V∇WϕU − V∇UϕW,ϕLζ). (31)

So, the proof is complete. □

Theorem 5. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. The slant distribution Dφ is integrable if and only if

gB(TUfϕW − TW fϕU,X ) = gB(TUfW − TW fU, ϕKX )

+ gB(H∇UfW −H∇W fU, fRX ) (32)

for any non-null vector fields U,W ∈ Γ(Dφ) and X ∈ Γ(D⊕ D⊥).
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Proof. We only give its proof ψ is type∼1. For any non-null vector fields U,W ∈
Γ(Dφ) and X ∈ Γ(D⊕ D⊥). Then using (1),(2),(6), (16) and Theorem 2(a), we get:

gB([U,W ],X ) = −gB(∇UPW,PX ) + gB(∇WPU,PX )

= −gB(∇UϕW,PX )− gB(∇UfW,PX )

+ gB(∇WϕU,PX ) + gB(∇W fU,PX )

= − cosh2 φgB([U,W ],X )

− gB(TUfϕW − TW fϕU,X )

+ gB(TUfW +H∇UfW, ϕKX + fRX )

− gB(TW fU +H∇W fU, ϕKX + fRX ).

Then, we have;

(1 + cosh2 φ)gB([U,W ],X ) = gB(TUfW − TW fU, ϕKX )

+ gB(H∇UfW −H∇W fU, fRX )

− gB(TUfϕW − TW fϕU,X )

which completes proof. □

Corollary 1. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. If for any non-null vector fields U,W ∈ Γ(Dφ) and X ∈
Γ(D⊕ D⊥)

H∇UfW −H∇W fU ∈ Γ(fDφ ⊕ µ)

TUfϕW − TW fϕU ∈ Γ(Dφ)

TUfW − TW fU ∈ Γ(D⊥ ⊕ Dφ)

Theorem 6. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. The slant distribution D⊥ is integrable.

Proof. The proof of Theorem 6 is similar to those given in ( [28]). Therefore we
skip its proof. □

Corollary 2. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, for any non-null vector fields U,W ∈ Γ(D⊥)
we get

TUPW = TWPU. (33)

Proof. Using Lemma 1(b), from (20), we obtain

TUfW = ϕ(∇̂UW ) + BT WU (34)

If we take U =W in (34) and subtracting it from (34), we get

TUfW − TW fU = ϕ [U,W ] (35)
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By Theorem 6 and Lemma 1(b), we get ϕ [U,W ] = 0 from (35). This gives (33),
since fU = PU for every non-null vector field U ∈ D⊥. □

Theorem 7. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the horizontal distribution (kerψ∗)

⊥ describes
a totally geodesic foliation on B if and only if

gB(AWZ,Kζ + cosh2 φLζ) = −gB(H∇WZ, fϕKζ + fϕLζ)

+gB(AWBZ +H∇WCZ, fζ) (36)

for any non-null vector fields W,Z ∈ (kerψ∗)
⊥ and ζ ∈ (kerψ∗).

Proof. For any non-null vectors W,Z ∈ (kerψ∗)
⊥ and ζ ∈ (kerψ∗), we get:

gB(∇WZ, ζ) = gB(∇WZ,Kζ + Lζ +Rζ)

Then using (1), (2), (7), (8), (16), (17) and Theorem 2(a), we get

gB(∇WZ, ζ) = −gB(∇WPZ,PKζ)− gB(∇WPZ,PLζ)
− gB(∇WPZ,PRζ)
= gB(AWZ,Kζ +BfKζ + cosh2 φLζ)

+ gB(H∇WZ, fϕKζ + fϕLζ)

− gB(AWBZ +H∇WCZ, fKζ + fLζ + fRζ).

Since fKζ = 0 and fKζ + fLζ + fRζ = fζ, we obtain;

gB(∇WZ, ζ) = gB(AWZ,Kζ + cosh2 φLζ)

+ gB(H∇WZ, fϕKζ + fϕLζ)

− gB(AWBZ +H∇WCZ, fζ)

which gives proof. □

Similarly, the following conclusion is obtained.

Theorem 8. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the vertical distribution (kerψ∗) describes a
totally geodesic foliation on B if and only if

gB(TUζ + cosh2 φTULζ,W) = gB(H∇UfϕKζ +H∇UfϕLζ,W)

+gB(TUfζ,BW) + gB(H∇Ufζ, CW). (37)

for any non-null vector fields U, ζ ∈ Γ(kerψ∗) and W ∈ Γ(kerψ∗)
⊥.

Using Theorem 7 and Theorem 8, we get the Theorem 9.
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Theorem 9. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the total space is a locally product Bkerψ∗ ×
Bkerψ⊥

∗
where Bkerψ∗ and Bkerψ⊥

∗
are leaves of (kerψ∗) and (kerψ∗)

⊥, respectively,

if and only if (36) and (37) are satisfied.

Theorem 10. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the invariant distribution D describes a totally
geodesic foliation on B if and only if

gB(TWϕZ, fLY + fRY ) = −gB(V∇WϕZ, ϕLY ) (38)

and

gB(TWϕZ, Cξ) = −gB(V∇WϕZ, Bξ) (39)

Proof. For all non-null vectors W,Z ∈ Γ(D) and Y ∈ Γ(Dφ1 ⊕ Dφ2) and ξ ∈
Γ(kerψ∗)

⊥. Then using (1),(2),(5),(16) and fZ = 0, we get:

gB(∇WZ, Y ) = −gB(∇WPZ,PY )

= −gB(∇WPZ,PLY + PRY )

= −gB(TWϕZ, fLY + fRY )− gB(V∇WϕZ, ϕLY )

Then, again using (1),(2),(5),(16),(19) and fZ = 0, we get:

gB(∇WZ, ξ) = −gB(∇WPZ,Pξ)
= −gB(∇WϕZ, Bξ + Cξ)

= −gB(TWϕZ, Cξ)− gB(V∇WϕZ, Bξ).
So, the proof is complete. □

Theorem 11. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the slant distribution Dφ describes a totally
geodesic foliation on B if and only if

gB(TUfϕV, Y ) = gB(TUfV, ϕKY ) + gB(H∇UfV, fRY ) (40)

and

gB(H∇UfϕV, ξ) = gB(H∇UfV,Cξ) + gB(TUfV,Bξ) (41)

for any non-null vector fields U, V ∈ Γ(Dφ) and Y ∈ Γ(D⊕D⊥) and ξ ∈ Γ(kerψ∗)
⊥.

Proof. We will show it when ψ is type∼1. For all non-null vectors U, V ∈ Γ(Dφ)
and Y ∈ Γ(D ⊕ D⊥) and ξ ∈ Γ(kerψ∗)

⊥. Then using (1),(2),(6),(16) and Theorem
2(a), we get:

gB(∇UV, Y ) = −gB(∇UϕV,PY )− gB(∇UfV,PY )

= cosh2 φgB(∇UV, Y ) + gB(TUfϕV, Y )
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− gB(TUfV, ϕKY )− gB(H∇UfV, fRY ).

Hence we obtain;

− sinh2 φ1gB(∇UV, Y ) = gB(TUfϕV, Y )− gB(TUfV, ϕKY )

− gB(H∇UfV, fRY ).

Similarly, using (1),(2),(6),(16),(19) and Theorem 3.4(a), we get:

gB(∇UV, ξ) = −gB(∇UϕV,Pξ)− gB(∇UfV,Pξ)
= cosh2 φ1gB(∇UV, ξ) + gB(H∇UfϕV, ξ)

− gB(H∇UfV,Cξ)− gB(TUfV,Bξ).
Hence, arrive at

− sinh2 φ1gB(∇UV, ξ) = gB(H∇UfϕV, ξ)− gB(H∇UfV,Cξ)

− gB(TUfV,Bξ)
which gives proof. □

Theorem 12. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi-hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the anti-invariant distribution D⊥ describes a
totally geodesic foliation on B if and only if

gB(AUζ, fϕKV + fϕLV ) = −gB(H∇Ufζ, fV ) (42)

and

gB(AUPζ,Bξ) = −gB(H∇UPζ, Cξ) (43)

for any non-null vector fields U, ζ ∈ Γ(D⊥) and V ∈ Γ(D⊕ Dφ) and ξ ∈ Γ(kerψ∗)
⊥.

Proof. We will show it when ψ is type∼1. For all non-null vectors U, ζ ∈ Γ(D⊥) and
KV + LV ∈ Γ(D⊕ Dφ) and ξ ∈ Γ(kerψ∗)

⊥. Then using (1),(16),(19) and Theorem
2(a), we get:

gB(∇Uζ, V ) = −gB(∇UPζ,PV ) = −gB(∇UPζ, ϕV )− gB(∇UPζ, fV )

= cosh2 φgB(∇Uζ, LV )− gB(∇Uζ,KV ) + gB(∇Uζ,BfKV )

− gB(∇Uζ, fϕKV )− gB(∇Uζ, fϕLV )

− gB(∇UPζ, fV ). (44)

We know that gB(∇Uζ, V ) = gB(∇Uζ,KV ) + gB(∇Uζ, LV ) and using (8) and (16)
from equation (44), we arrive at;

gB(∇Uζ,− sinh2 φLV −BfKV ) = −gB(AUζ, fϕKV + fϕLV )

− gB(H∇Ufζ, fV ) (45)

which gives (42). Similarly, using (8) and (19), we get:

gB(∇Uζ, ξ) = −gB(∇UPζ,Pξ) = −gB(AUPζ,Bξ)− gB(H∇UPζ, Cξ) (46)
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which gives (43). □

Now, from Theorem 10, Theorem 11 and Theorem 12 we arrive at the Theorem
13. This is decomposition theorem for the fiber:

Theorem 13. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi-hemi-slant pseudo-
Riemannian submersion with type∼1 or 2 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, the fibers of ψ are locally product BD×BDφ×BD⊥

are leaves of D, Dφ and D⊥ ,respectively, if and only if the conditions (38),(39),(40),
(41),(42) and (43) hold.

Theorem 14. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi hemi-slant pseudo-
Riemannian submersion with type∼1 from a para-Kaehler manifold to a pseudo-
Riemannian manifold. In this case, ψ is a totally geodesic map on B if and only
if

gB(cosh
2 φ∇ULW +H∇UfϕLW, Y )

= gB(V∇UPKW + TUfLW + TUfRW,PY )

+gB(TUPKW +H∇UfLW +H∇UfRW,CY ) (47)

and

gB(cosh
2 φ∇Y LU +H∇Y fϕLU,Z)

= gB(V∇Y PKU +AY fLU +AY PRU,BZ)
gB(AY PKU +H∇Y fLU +H∇Y fRU,CZ) (48)

For any non-null vector fields U,W ∈ Γ(kerψ∗) and Y,Z ∈ Γ(kerψ∗)
⊥.

Proof. For any non-null vector fields U,W ∈ Γ(kerψ∗) and Y, Z ∈ Γ(kerψ∗)
⊥.

Then, using (1),(2),(5),(16),(19) and Theorem 2(a) we get:

gB(∇UW,Y ) = −gB(∇UPW,PY )

= −gB(∇UPKW,PY )− gB(∇UPLW,PY )

− gB(∇UPRW,PY )

= −gB(V∇UPKW + TUfLW + TUfRW,PY )

+ gB(cosh
2 φ∇ULW +H∇UfϕLW, Y )

− gB(TUPKW +H∇UfLW +H∇UfRW,CY )

Then, again using (1),(7),(8),(16),(19) and Theorem 2(a), we get:

gB(∇Y U,Z) = −gB(∇Y PU,PZ)
= −gB(∇Y PKU,PZ)− gB(∇Y PLU,PZ)
− gB(∇Y PRU,PZ)
= −gB(V∇Y PKU +AY fLU +AY fRU,BZ)

− gB(cosh
2 φ∇Y LU +H∇Y fϕLU,Z)
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− gB(AY PKU +H∇Y fLU +H∇Y fRU,CZ).

Therefore, a pseudo-Riemannian submersion ψ is said to be totally umbilical if

TU1U2 = g(U1, U2)H, (49)

here H is the mean curvature vector field of the fibre in B for all non-null vector
fields U1, U2 ∈ Γ(kerψ∗). The fibre is said to be minimal if H = 0( [4]). □

Theorem 15. Let ψ : (B, gB,P) → (B̃, gB̃) be a proper quasi-hemi-slant pseudo-
Riemannian submersion from a para-Kaehler manifold to a pseudo-Riemannian
manifold with totally umbilical fibers. In that case, either the anti-invariant distri-
bution dim(D⊥) = 1 or the mean curvature vector field H of any fiber ψ−1(q̄), q̄ ∈ B
is perpendicular to PD⊥. Eventually, if ϕ is parallel, then H ∈ Γ(µ). Moreover, if
f is parallel, then T ≡ 0.

Proof. The proof is obtained by simple calculations. □
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Abstract. Tender selection is a fundamental issue for the success of construc-

tion projects since it contributes to the overall outline’s performance. In real-
life problems, the decision-makers cannot express certain crisp data, so there is

uncertainty and vagueness in the values. In this paper, a sustainable technique

is proposed to find desirable tenderers coherently and fairly under the needed
circumstances. This paper presents three methods of an algorithmic approach

to evaluate the tendering process and rank the tenderers. The attributes are
expressed as Linear Diophantine Multi-Fuzzy Soft numbers (LDMFSN) since

the existence of reference parameters makes the DM freely choose their grade

values. Some of the rudimentary properties of LDMFSN are presented. An
illustrative example is demonstrated to validate our proposed method. The

uniqueness of the result in all three algorithms shows the effectiveness of our

proposed approach.

1. Introduction

The tender selection process is one of the most vital processes in the construction
industry. Many of the selection processes are associated with the lowest bid price
method. But, the lower price bid does not assure the best outcomes. Hence, many
researchers have recognised the prominent criteria for the selection process. The
selection of an appropriate tenderer is directly correlated with the success of the
project. So, it is essential to explore a suitable tender for a successful outcome.
Many researchers studied the tender selection process using fuzzy theory.

The focus of research has been on bid evaluation models and indication sys-
tems. Researchers concentrate on various indicators in their studies of bid evalua-
tion systems [9, 16, 17]. In decision-making problems, there are a large number of
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uncertainties in the information. To solve such ambiguity, Zadeh [33] introduced
the idea of a fuzzy set. For the purpose of scoring contractors in the study of bid
assessment models, AHP [4], Fuzzy-AHP [8] and Fuzzy AHP-SMART [20] were
employed. Jamili [13] proposed a novel fuzzy approach for the tender selection
problem. Later, another fuzzy support desicion model [1] was constructed for selec-
tion of contractors. Membership grades are not sufficient to handle some problems
resulting in the origination of an intuitionistic fuzzy set [2].Using Intuitionistic fuzzy
information, many decision model [18,29] were established for bid selection. Later,
some generalizations like Pythagorean fuzzy set [32], q-rung orthopair fuzzy set [31]
are introduced. These fuzzy sets have immense applications in the tender selection
process. But, it has some limitations on their membership grades.

In order to relax these deficiencies, Riaz and Hashmi [24] introduced a Linear
Diophantine Fuzzy Set (LDFS) with the inclusion of reference parameters. The
existence of reference parameters extends the space of grade values. The practical
advantages of LDFS attracted the attention of several researchers in various scien-
tific fields, and a number of icon works were written as a result. A. Iampam [12]
addressed using LDFS with a variety of Einstein aggregation approaches for MCDM
issues. Later, S. Ayub [3] used decision-making to create LDF relations and related
algebraic characteristics. Kamac [14] created the intricate LDFS and provided a
description of the cosine similarity metric and its intended uses. By incorporat-
ing the concept of soft rough sets for use in material handling equipment, Riaz et
al. [25] extended the LDFS. The use of spherical linear Diophantine fuzzy sets with
modelling uncertainty in MCDM was addressed by Hashmi et al. Riaz et al. [23]
built prioritised AOs for linear Diophantine fuzzy numbers (LDFNs) and used them
to choose third-party logistic service providers.

Maji [19] investigated the fuzzy soft set theory, which got the boom in re-
cent times. Later, it was extended to the formulation of the hybrid models named
Fuzzy soft group [22], Intuitionistic Fuzzy soft group [26] Intuitionistic Fuzzy Soft
Set (IFSS) [7], Pythagorean Fuzzy Soft Set (PFSS) [21]. Hussain [10] investigated
q-Rung Orthopair Fuzzy Soft Set(q-ROFSS) with aggregation operators. Further,
the multi-fuzzy soft set [30] is a fusion of multi-fuzzy set [27] and fuzzy soft set,
which has a extensive application in many fields. The mixture of the multi-valued
approach and the parametric approach helps to express the problems that are not
able to be expressed in other existing fuzzy models. Begam [5, 6] introduced a
novel approach to lattice ordered multi-fuzzy soft set based decision-making. In
this paper, the implementation of a multi-fuzzy set in the LDFS is presented. The
hybrid concept of LDMFSS was initiated along with the LDMFSN and some of its
properties are discussed.

1.1. Motivation and Inspiration. The following is an explanation of the in-
tended objectives of this research:
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(1) A superior mathematical model beyond membership and non-membership
grades is LDFS, which does deal with these limitations. It helps the DM
select the grade values at their discretion. A general method for coping with
uncertainty is a soft set. Based on these benefits, this study introduces the
novel hybrid concept of linear Diophantine multi-fuzzy soft set(LDMFSS)
in order to fill the research gap.

(2) This theory was found to be more useful for dealing with uncertain values
in decision analysis. Our analysis of the literature revealed that there is
no research investigating tender selection employing LDF data. Hence, the
main intent of this paper is to apply the LDMFSS decision model to the
selection of tenders.

(3) This paper presents three different algorithms to solve the LDMFSS model
using a comparison matrix, score function, and threshold fuzzy. The illus-
trative example is presented, and the result is analysed using three different
algorithms to show the validity of our proposed method.

The outline that follows is the organisational structure of the manuscript: Section
2 focuses on several fundamental concepts, such as FS, IFS, PFS, and LDFS. In
Section 3, the new hybrid concepts of LDMFS and LDMFSS were established.
LDMFSN and some of its properties are discussed. Section 4 comprises a case
study for tender selection and three different algorithms. A comparative study
of the results of three proposed algorithms was initiated. In the end, Section 5
summarised the conclusion of this study.

2. Preliminaries

Throughout this paper ℶ is used as a universal set and Π is a parameter set.

Definition 1. [33] The fuzzy set F on ℶ is a mapping µ: ℶ → [0, 1] where µ(x)
represents the degrees of elements in ℶ and it is represented in the form

F ={(x, µ(x))/x ∈ ℶ}

Definition 2. [27] Let K ={1,2,...k} be the set of indices. The multi-fuzzy set M
with dimension k on ℶ is symbolized as follow:

M = {(x, µK(x))/x ∈ ℶ}
where µK = (µ1, µ2, µ3, ..., µk), µl : ℶ → [0, 1] for every l ∈ K ={1,2,...k} and the
collection of all multi-fuzzy set of dimension k over ℶ is represented by MkFS(ℶ).

Definition 3. [19] A pair (F,Π) is called a multi-fuzzy soft set of dimension k over
ℶ, where F is a mapping given by F : Π → MkFS(ℶ), where Π is a parameter set.

Definition 4. [2] The intuitionistic fuzzy set (IFS) on ℶ is represented as

I = {x, ⟨µI(x), νI(x)⟩ : x ∈ ℶ}
where µI(x), νI(x) are degrees of membership and non-membership which belongs
to [0,1] subject to the condition 0 ≤ µI(x) + νI(x) ≤ 1.
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Definition 5. [32] The Pythagorean fuzzy set (PFS) on ℶ is in the mathematical
form

P = {x, ⟨µP(x), νP(x)⟩ : x ∈ ℶ}
where µP(x), νP(x) are degrees of membership and non-membership which belongs
to [0,1] subject to the condition 0 ≤ µ2

P(x) + ν2P(x) ≤ 1.

Definition 6. [31] The q-rung orthopair fuzzy set (q-ROFS) on ℶ is in the math-
ematical form

R = {x, ⟨µR(x), νR(x)⟩ : x ∈ ℶ}
where µR(x), νR(x) are degrees of membership and non-membership which belongs
to [0,1] subject to the condition 0 ≤ µq

R(x) + νqR(x) ≤ 1.

Definition 7. [24] A linear Diophantine fuzzy set L on ℶ is a structure symbolized
as:

L = {(x, ⟨µL(x), νL(x)⟩, ⟨τL(x), ηL(x)⟩) : x ∈ ℶ}
where, µL(x), νL(x), τL(x), ηL(x) ∈ [0, 1] are degrees of membership, non-membership
and their reference parameters respectively. These grades satisfy the condition
0 ≤ τL(x)µL(x) + ηL(x)νL(x) ≤ 1 for all x ∈ ℶ with 0 ≤ τL(x) + ηL(x) ≤ 1.

3. Linear Diophantine Multi-Fuzzy Soft Set

Definition 8. [15,28] Let K be the set of indices. A linear Diophantine multi-fuzzy
set J on ℶ with dimension k is the set of ordered sequences in the form

J =
{
(x, ⟨µK

J (x), νKJ (x)⟩, ⟨τKJ (x), ηKJ (x)⟩) : x ∈ ℶ
}

where,

µK
J (x) =(µ1

J(x), µ
2
J(x), µ

3
J(x), ..., µ

k
J(x))

νKJ (x) =(ν1J(x), ν
2
J(x), ν

3
J(x), ..., ν

k
J(x))

τKJ (x) =(τ1J(x), τ
2
J(x), τ

3
J(x), ..., τ

k
J(x))

ηKJ (x) =(η1J(x), η
2
J(x), η

3
J(x), ..., η

k
J(x))

and µK
J (x), νKJ (x), τKJ (x), ηKJ (x) are collection of multi membership, multi non-

membership and multi reference parameters values respectively. Along that, it sat-
isfies the condition

0≤ µl
J(x)τ

l
J(x) + νlJ(x)η

l
J(x) ≤1

0 ≤ τ lJ(x) + ηlJ(x) ≤ 1

for every l ∈ K = {1, 2, 3..., k}.
The collection of all linear Diophantine multi-fuzzy set of dimension k over ℶ is
denoted by LDMkF (ℶ).
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Remark 1. The term µK(x) represents collection of memberships of k dimension
whereas µl(x) is the element of µK(x) and it represents the membership value of x
for the lth dimensional parameter.

Definition 9. Let Π be the set of parameters. Define a map J : Π → LDMkFS(ℶ).
Then the ordered pair (J, ω) is claimed to be linear Diophantine multi-fuzzy soft set
of dimension k and it is of the structure

{(ωi, J(ωi)) : ωi ∈ Π}
where J(ωi) is a LDMkFS(ℶ).

Definition 10. The linear Diophantine multi-fuzzy soft set

J = {
(
ωi, (x, ⟨µK

J(ωi)
(x), νKJ(ωi)

(x)⟩, ⟨τKJ(ωi)
(x), ηKJ(ωi)

(x)⟩) : ∀x ∈ ℶ, ωi ∈ Π
)
}

is claimed to be absolute linear Diophantine multi-fuzzy soft set if µK
J(ωi)

(x) =

1, νKJ(ωi)
(x) = 0, τKJ(ωi)

(x) = 1, ηKJ(ωi)
(x) = 0.

i.e, µl
J(ωi)

(x) = 1, νlJ(ωi)
(x) = 0, τ lJ(ωi)

(x) = 1, ηlJ(ωi)
(x) = 0, for every l ∈ K,

ωi ∈ Π.

Definition 11. The linear Diophantine multi-fuzzy soft set

J = {(ωi, (x, ⟨µK
J(ωi)

(x), νKJ(ωi)
(x)⟩, ⟨τKJ(ωi)

(x), ηKJ(ωi)
(x)⟩)) : ∀x ∈ ℶ, ωi ∈ Π}

is said to be null linear Diophantine multi-fuzzy soft set if µK
J(ωi)

(x) = 0, νKJ(ωi)
(x) =

1, τKJ(ωi)
(x) = 0, ηKJ(ωi)

(x) = 1.

i.e., µl
J(ωi)

(x) = 0, νlJ(ωi)
(x) = 1, τ lJ(ωi)

(x) = 0, ηlJ(ωi)
(x) = 1, for every l ∈ K,

ωi ∈ Π.

Definition 12. The linear Diophantine multi-fuzzy soft number(LDMkFSN) is
expressed as J(ωi) = ⟨µK

J(ωi)
(x), νKJ(ωi)

(x)⟩, ⟨τKJ(ωi)
(x), ηKJ(ωi)

(x)⟩ and it satisfies the

following conditions:
(i) 0≤ µl

J(ωi)
(x)τ lJ(ωi)

(x) + νlJ(ωi)
(x)ηlJ(ωi)

(x) ≤1 and

(ii) 0 ≤ τ lJ(ωi)
(x) + ηlJ(ωi)

(x) ≤ 1, where l = 1, 2, 3, ..., k

Definition 13. Considering two LDMFSN

J(ω1) =⟨µK
J(ω1)

(x), νKJ(ω1)
(x)⟨, ⟨τKJ(ω1)

(x), ηKJ(ω1)
(x)⟩

J(ω2) =⟨µK
J(ω2)

(x), νKJ(ω2)
(x)⟨, ⟨τKJ(ω2)

(x), ηKJ(ω2)
(x)⟩

and defined some operations as follows:

(i) J(ω1) ∪ J(ω2) =⟨max{µl
J(ω1)

, µl
J(ω2)

},min{νlJ(ω1)
, νlJ(ω2)

}⟩,

⟨max{τ lJ(ω1)
, τ lJ(ω2)

},min{ηlJ(ω1)
, ηlJ(ω2)

}⟩, for every l ∈ K

(ii) J(ω1) ∩ J(ω2) =⟨min{µl
J(ω1)

, µl
J(ω2)

},max{νlJ(ω1)
, νlJ(ω2)

}⟩,

⟨min{τ lJ(ω1)
, τ lJ(ω2)

},max{ηlJ(ω1)
, ηlJ(ω2)

}⟩ for every l ∈ K
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(iii) J(ω1)⊕ J(ω2) =⟨µl
J(ω1)

+ µl
J(ω2)

− µl
J(ω1)

µl
J(ω2)

, νlJ(ω1)
νlJ(ω2)

⟩,

⟨τ lJ(ω1)
+ τ lJ(ω2)

− τ lJ(ω1)
τ lJ(ω2)

, ηlJ(ω1)
ηlJ(ω2)

⟩ for every l ∈ K

(iv) J(ω1)⊗ J(ω2) =⟨µl
J(ω1)

µl
J(ω2)

, νlJ(ω1)
+ νlJ(ω2

)− νlJ(ω1)
νlJ(ω2)

⟩,

⟨τ lJ(ω1)
τ lJ(ω2)

, ηlJ(ω1)
+ ηlJ(ω2)

− ηlJ(ω1)
ηlJ(ω2)

⟩ for every l ∈ K

(v) J(ω1) ≤ J(ω2) iff µl
J(ω1)

≤ µl
J(ω2)

, νlJ(ω1)
≥ νlJ(ω2)

,

τ lJ(ω1)
≤ τ lJ(ω2)

, ηlJ(ω1)
≥ ηlJ(ω2)

for every l ∈ K

(vi) J(ω1)
c =⟨νlJ(ωi)

(x), µl
J(ωi)

(x)⟩, ⟨ηlJ(ωi)
(x), τ lJ(ωi)

(x)⟩ for every l ∈ K

(vii) αJ(ω1) =⟨1− (1− µl
J(ω1)

)α, (νlJ(ωi)
)α⟩,

⟨1− (1− τ lJ(ω1)
)α, (ηlJ(ωi)

)α⟩ for every l ∈ K

(viii) J(ω1)
α =⟨(µl

J(ωi)
)α, 1− (1− νlJ(ωi)

)α⟩,

⟨(τ lJ(ωi)
)α, 1− (1− ηlJ(ωi)

)α⟩ for every l ∈ K

Example 1. Let J(ω1) = ⟨(0.7, 0.6), (0.3, 0.5)⟩, ⟨(0.8, 0.7), (0.1, 0.2)⟩ and
J(ω2) = ⟨(0.8, 0.5), (0.1, 0.5)⟩, ⟨(0.8, 0.9), (0.1, 0.1)⟩ Then

(1) J(ω1) ∪ J(ω2) = ⟨(0.8, 0.6), (0.1, 0.5)⟩, ⟨(0.8, 0.9), (0.1, 0.1)⟩

(2) J(ω1) ∩ J(ω2) = ⟨(0.7, 0.5), (0.3, 0.5)⟩, ⟨(0.8, 0.7), (0.1, 0.2)⟩

(3) J(ω1)⊕ J(ω2) = ⟨(0.94, 0.8), (0.03, 0.25)⟩, ⟨(0.96, 0.97), (0.01, 0.08)⟩

(4) J(ω1)⊗ J(ω2) = ⟨(0.56, 0.30), (0.37, 0.75)⟩, ⟨(0.64, 0.63), (0.19, 0.28)⟩

(5) (0.2)J(ω1) = ⟨(0.21, 0.17), (0.79, 0.87)⟩, ⟨(0.30, 0.21), (0.63, 0.72)⟩

(6) J(ω1)
0.1 = ⟨(0.96, 0.95), (0.09, 0.07)⟩, ⟨(0.98, 0.96), (0.01, 0.02)⟩

Proposition 1. Let J(ω1), J(ω2) be two LDMFSNs. Then the following operations
holds.

(1) J(ω1)⊕ J(ω2) = J(ω2)⊕ J(ω1)
(2) J(ω1)⊗ J(ω2) = J(ω2)⊕ J(ω1)
(3) J(ω1)⊕ (J(ω2)⊕ J(ω3)) = (J(ω1)⊕ J(ω2))⊕ J(ω3)
(4) J(ω1)⊗ (J(ω2)⊗ J(ω3)) = (J(ω1)⊗ J(ω1))⊗ J(ω3)
(5) α(J(ω1)⊕ J(ω2)) = (αJ(ω1)⊕ αJ(ω2))
(6) (J(ω1)⊗ J(ω2))

α= J(ω1)
α ⊕ J(ω2)

α

(7) αJ(ω1)⊕ βJ(ω1) = (α+ β)J(ω1)

Proof. The proof follows from above definition. □

Definition 14. Comparison Matrix: The Comparison Matrix is a matrix having
the columns as a elements in universe and rows as a set of parameters. The elements
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in the matrix(αij) corresponding the element xi and the parameter ωj is defined by
the number

αij =
1
2 [(Γij − σij) + (γij − ϕij)]

where,

Γij =
∑k

l=1{how many times µl
K(ωj)

(xi) exceeds µl
K(ωj)

(xj)}
σij =

∑k
l=1{how many times νlK(ωj)

(xi) exceeds νlK(ωj)
(xj)}

γij =
∑k

l=1{how many times τ lK(ωj)
(xi) exceeds τ lK(ωj)

(xj)}
ϕij =

∑k
l=1{how many times ηlK(ωj)

(xi) exceeds ηlK(ωj)
(xj)}

Definition 15. Total Score of an Object:

The Score of an attribute xi is given by

Si =
∑

j αij

where αij is computed from the comparision matrix.

Definition 16. Score function for LDMFSN:

Let J(ωj) = (⟨µK
Jωj

, νKJωj
⟩, ⟨τKJωj

, ηKJωj
⟩) be a LDMFSN over ℶ. Then the score

function of LDMFSN Jωj
is characterized as

Ω(Jωj ) =

k∑
l=1

1

2
[(µl

Jωj
− νlJωj

) + (τ lJωj
− ηlJωj

)]

where l ∈ K = {1, 2, ..., k}.

4. Overview of Proposed Approach

The proposed approach is a fuzzy-based bid evaluation of tenders in order to
evaluate tenderers and obtain the optimal tenderer promptly under some instances.
The attributes of the tenderers are expressed as LDMFSNs. After analyzing the
literature, it was found that there are many criteria affecting the pre-evaluation
for selecting an appropriate tenderer. Those factors may vary in their importance
and strength of the effect in selecting process. Some may have a high effect and
some may have a low effect depending on the project and place. With the help of
some expertise, five important factors are identified which have high effects on our
selection process. The factors are listed below in the Figure 1.

4.1. Case study. A government tendering sector wants to select the most ap-
propriate tender for the building project. After pre-evaluation, four companies
{x1, x2, x3, x4} are remained as alternatives for further evaluation. Based on above
discussion, five criteria {ω1, ω2, ω3, ω4, ω5} were identified as the main factors af-
fecting tender selection.
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ω1 =Professional Activity

ω2 =Resource Availability

ω3 =Organizational Availability

ω4 =Quality

ω5 =Management capacity

Figure 1. Selection criteria

Figure 2. Flow chart diagram of algorithms 1, 2 and 3
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We proposed three new algorithms for LDMFSS for selecting best tender. The
graphical view of the algorithms are given in the Figure 2.

Algorithm 1: Algorithm based on comparison table

This novel and hybrid approach contains following steps:
Input:
(i) Define linear Diophantine multi-fuzzy soft values for each attributes {x1, x2, ..., xn}
with respect to the parameters {ω1, ω2, ..., ωk}.
(ii) Input the above defined values (J, ω) in the table.
Calculations:
(iii) Construct the comparison matrix for (J, ω) with the knowledge of the given
definition.
(iv)Evaluate the total score value of an object as defined in the previous section.
(v) Find the maximum score and rank the attributes.
Final decision:
(vi) An attribute with a high score is the required optimal solution.

Algorithm:2 Algorithm based on Score function:

Input:
(i) Define linear Diophantine multi-fuzzy soft values for each attributes {x1, x2, ..., xn}
with respect to the parameters {ω1, ω2, ..., ωk}.
(ii)Input LDMFSN for each attributes {x1, x2, ..., xn}.
Calculations:
(iii)Evaluate the score function value Ωij for each xi by using the definition.
(iv)Enumerate the total score value of each attribute.
(v)Rank the attributes based on score values and find the maximum.
Final decision:
(vi) An attribute with a high score is the required optimal solution.

Algorithm:3 Algorithm-based threshold fuzzy:

Input:
(i) Define linear Diophantine multi-fuzzy soft values for each attributes {x1, x2, ..., xn}
with respect to the parameters {ω1, ω2, ..., ωk}.
(ii) LDMFSS(J, ω) and parameter weights ϕ(ωi) are taken as input.
Calculations:
(iii)Induced fuzzy soft set ∆J [7, 19] is computed.
(iv) A threshold fuzzy set λ : A → [0, 1] which is the mid-level decision rule is
chosen for decision making.
(v) Evaluate the level soft set L(∆J, λ) with respect to threshold fuzzy.
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(vi) Enumerate the choice value ci for xi

(vii) Sort the attributes in regards to the choice value.
Final decision:
(viii) An attribute with a high score is the required optimal solution.

4.2. Solution for algorithm 1: According to the company and selection criteria
given in Figure ??, our expert team provides their preference for the attributes.
It can be converted in the form of LDMFSN. Defined values for each attributes
{x1, x2, x3, x4} are given in the Table 1.

Table 1. Linear Diophantine multi-Fuzzy soft set

(J, ω) ω1 ω2 ω3 ω4 ω5

x1 ⟨(0.71,0.68) ⟨(0.41,0.32) ⟨(0.52,0.73) ⟨(0.39,0.59) ⟨(0.56,0.67)
(0.30,0.39)⟩ (0.69,0.54)⟩ (0.41,0.29)⟩ (0.62,0.45)⟩ (0.45,0.35)⟩
⟨(0.80,0.92) ⟨(0.76,0.83) ⟨(0.96,0.92) ⟨(0.84,0.94) ⟨(0.79,0.80)
(0.17,0.04)⟩ (0.18,0.12)⟩ (0.01,0.02)⟩ (0.15,0.03)⟩

x2 ⟨(0.82,0.73) ⟨(0.59,0.72) ⟨(0.73,0.82) ⟨(0.49,0.52) ⟨(0.72,0.64)
(0.24,0.31)⟩ (0.45,0.33)⟩ (0.30,0.24)⟩ (0.53,0.51)⟩ (0.29,0.37)⟩
⟨(0.82,0.90) ⟨(0.76,0.80) ⟨(0.85,0.88) ⟨(0.91,0.94) ⟨(0.68,0.84)
(0.14,0.08)⟩ (0.22,0.13)⟩ (0.12,0.09)⟩ (0.07,0.04)⟩ (0.30,0.12)⟩

x3 ⟨(0.32,0.42) ⟨(0.92,0.84) ⟨(0.76,0.54) ⟨(0.41,0.22) ⟨(0.57,0.68)
(0.69,0.59)⟩ (0.11,0.20)⟩ (0.30,0.46)⟩ (0.52,0.73)⟩ (0.50,0.40)⟩
⟨(0.89,0.72) ⟨(0.96,0.82) ⟨(0.82,0.87) ⟨(0.79,0.85) ⟨(0.90,0.85)
(0.10,0.26)⟩ (0.03,0.14)⟩ (0.17,0.11)⟩ (0.20,0.17)⟩ (0.07,0.11)⟩

x4 ⟨(0.35,0.75) ⟨(0.60,0.75) ⟨(0.80,0.75) ⟨(0.32,0.67) ⟨(0.72,0.83)
(0.60,0.27)⟩ (0.40,0.30)⟩ (0.35,0.30)⟩ (0.70,0.39)⟩ (0.29,0.19)⟩
⟨(0.85,0.82) ⟨(0.80,0.72) ⟨(0.90,0.91) ⟨(0.91,0.87) ⟨(0.87,0.82)
(0.14,0.15)⟩ (0.19,0.26)⟩ (0.09,0.08)⟩ (0.07,0.11)⟩ (0.11,0.15)⟩

The comparison matrix is computed in the Table 2. Then, the score values for
each attributes are calculated. Ranking of the attributes are as follows: x2 > x3 >

Table 2. Comparision matrix

(J, ω) ω1 ω2 ω3 ω4 ω5 Score values
x1

5
2

−3
2

3
2 1 -3 1

2

x2 4 1 3 5
2 -1 19

2

x3 -1 5 0 −7
2

3
2 2

x4
−9
2

−9
2 -5 1

2
3
2 -12

x1 > x4. Clearly, it shows that the company x2 is most suitable for the selection.
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The graphical representation of the outcomes shown in the Figure 3

Figure 3. Graph of total score values using algorithm 1

4.3. Solution for algorithm 2: LDMFSN are taken as a input from the Table 1.
The score function values of all attributes are enumerated in the Table 3.
The total score values of each attributes are S(x1)= 4.252, S(x2)= 5.12, S(x3) =

Table 3. Score function value

Ωij ω1 ω2 ω3 ω4 ω5

x1 1.105 0.36 1.2 0.762 0.825
x2 1.25 0.85 1.265 0.855 0.9
x3 0.355 1.53 0.975 0.345 0.96
x4 0.175 0.21 0.545 0.75 1.25

4.165, S(x4)= 2.93. Ranking of the attributes are as follows: x2 > x1 > x3 > x4.
It is shown that the company x2 is the best company for our selection. The final
outcome of algorithm 2 is shown in the Figure 4.

4.4. Solution of algorithm 3: Taking the values from the Table 1 as a input. The
induced soft set is given in the Table 4. The mid values are obtained as follows:
mid∆ = {(ω1, 1.9905), (ω2, 1.9825), (ω3, 1.987), (ω4, 1.987), (ω5, 2.002)}. The mid-
level soft set with choice values is given in the Table 5.
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Figure 4. Graph of total score values using algorithm 2

Table 4. Induced fuzzy soft set

∆ ω1 ω2 ω3 ω4 ω5

ϕ(ω1)=(0.6,0.4) ϕ(ω2)=(0.5,0.5) ϕ(ω3)=(0.3,0.7) ϕ(ω4)=(0.6,0.4) ϕ(ω5)=(0.6,0.4)

x1 2 1.96 1.942 2.004 1.996
x2 2.02 2.02 2.021 2.004 1.982
x3 1.996 2.01 2.001 1.924 2.04
x4 1.946 1.94 1.983 2.016 1.99

Table 5. mid-level soft set with choice values

∆ ω1 ω2 ω3 ω4 ω5 choice value
x1 1 0 0 1 0 2
x2 1 1 1 1 0 4
x3 1 1 1 0 1 3
x4 0 0 0 1 0 1

Ranking of the attributes are as follows: x2 > x3 > x1 > x4. Likewise, x2 is the
required optimal solution. The Figure 5 shows the final outcomes for algorithm 3.

4.5. Discussion. The previously mentioned three findings demonstrate that the
bid x2 is the one that is economically most advantageous. The innovation and
robustness of our suggested methods are demonstrated by the distinctiveness of the
results of the three algorithms. The picture 6 displays a comparison of our three
suggested algorithm outcomes.
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Figure 5. Graph of total score values using algorithm 3

Figure 6. Comparision between Algorithm 1, 2 and 3

5. Conclusion

In this paper, the concept of LDMFSN is introduced. Some of the properties
are discussed. The main motive of this paper is to find the most suitable tender
for the government based on the same selection criteria. There are three different
algorithms, like those based on comparison matrix, score function, and threshold
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fuzzy, that are initiated. Our proposed methods are used to sort the tenderers and
select the optimal one among them. The illustrative example and the obtained re-
sults show the effectiveness of our proposed algorithms. In the future, the work will
be extended to similarity measures and entropy measures between two LDMFSS.
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Abstract. In this paper, we solve the equation
m∑

k=0

[2m+ 1

k

]
F

± Ft = Fn,

under weak assumptions. Here, Fn is nth Fibonacci number and
[.
.

]
F

denotes

Fibonomial coefficient.

1. Introduction

For n ≥ 2, the Fibonacci sequence {Fn} is defined by recurrence relation

Fn = Fn−1 + Fn−2

with F0 = 0 and F1 = 1.A few terms of Fibonacci sequence are 0, 1, 1, 2, 3, 5, 8, 13, ....
Its Binet formula is known as

Fn =
αn − βn

α− β

where α and β are the roots of the characteristic equation x2 − x− 1 = 0.
The Fibonacci companion sequence {Ln} is known as the Lucas sequence which

satisfies the same recurrence relations with Fibonacci sequence and the initials
L0 = 2, L1 = 1. A few terms of Lucas sequence are 2, 1, 3, 4, 7, 11, 18, 29, . . . . The
Binet formula of nth Lucas number is

Ln = αn + βn.
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Another concept of the paper is Fibonomial coefficient. For n ≥ k > 0, the
number

FnFn−1 . . . Fn−k+1

F1F2 . . . Fk

is known as Fibonomial coefficient inspired by the binomial coefficient and denoted
by

[
n
k

]
F
. Also, for k = 0, it is defined by

[
n
0

]
F

= 1. It is interesting that this

coefficient always gets integer values for n, k ∈ Z+.
The Diophantine equation

n! + 1 = m2 (1)

is known as Brocard-Ramanujan Diophantine equation. It is known that m = 4, 5
and 7 are the solutions of the this equation. These are not full solutions of the
equation (1). Berndt and Galway [1] showed that there are no further solutions
with m ≤ 109. The Brocard-Ramanujan equation is still open problem. A number
of mathematicians have contributed several generalizations and results regarding
this Diophantine equation. For example, Grossman and Luca [4] proved that the
equation

Fn = m1! +m2! + · · ·+mk!

has finitely many positive integers n for fixed k. Moreover, the case k ≤ 2 was
determined. The case k = 3 was solved by Bollman, Hernandez and Luca in
[2]. Luca and Siksek [9] found all factorials expressible as the sum of at least
three Fibonacci numbers. Marques handled the different versions of the Brocard-
Ramanujan equation including Fibonacci and Fibonomial coefficient (for the details
see [10], [11], [12]). In what follows, Szalay [13] solved the equation

Gn1
Gn2

. . . Gnk
+ 1 = G2

m

where the sequence {Gn} is either Fibonacci sequence or the Lucas sequence or the
sequence of balancing numbers, respectively. Recently, the author [5] proved that
the solutions of the equation

m∑
k=0

[
2m+ 1

k

]
F

± 1 = Fn (2)

are (m,n) = (1, 3) , (3, 14) according to the sign −. If the sing is +, then there is
no solution.

In this paper we focus on the generalization of the equation (2). Our result is
following,

Theorem 1. Let n and t are positive integers such that n ≡ t (mod 2) or n− t =
1, 3. The solutions of the equations

m∑
k=0

[
2m+ 1

k

]
F

± Ft = Fn (3)
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are
m 1 1 2 2
n 5 6 9 10
t 3 5 7 9

according to the sign +. If the sign is −, then the solutions are

m 1 1 2 2 4 4
n 3 1, 2 7 6 22 10
t 1, 2 3 6 7 10 22

.

2. Preliminary

Before going further, we give several lemmas to prove our theorem.

Definition 1. A primitive divisor p of Fn is a prime factor of Fn which does not

divide
n−1∏
j=1

Fj .

For example, we know that 29 | F14, but 29 ∤
∏13

j=1 Fj . Here, 29 is a primitive
divisor of F14. The following lemma guarantees the existence of a primitive divisor
for the Fibonacci sequence.

Lemma 1. A primitive divisor p of Fn exists whenever n ≥ 13 (see [3]).

We present several identities regarding Fibonacci and Lucas numbers that we
will use them later.

Lemma 2. We have the following
i. For any k ≥ 0, then FkLk = F2k.
ii. For any k ≥ 0, then Fk+3 − Fk = 2Fk+1 and Fk+3 + Fk = 2Fk+2.
iii. Let n and t are positive integers such that n ≡ t (mod 2). Then

Fn ∓ Ft =

{
Fn∓t

2
Ln±t

2
, if n ≡ t (mod 4)

Fn±t
2
Ln∓t

2
if n ̸≡ t (mod 4)

holds.
iv. For any k ≥ 0, then 3 | F4k.

Proof. (i) can be proven easily by using Binet formulas of the sequence Fibonacci
and Lucas. By the recurrence of Fibonacci sequence, we have Fn+3 −Fn = Fn+2 +
Fn+1 − Fn = 2Fn+1. This proves (ii).

iii. Assume that n ≡ t (mod 4), then we have followings,

Fn+t
2
Ln−t

2
=

α(n+t)/2 − β(n+t)/2

α− β
(α(n−t)/2 + β(n−t)/2)

=
1

α− β

(
αn − βn + (αβ)(n−t)/2(αt − βt)

)
= Fn + Ft.
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iv. We refer the book of Koshy [8] (Theorem 16.1, p. 196).
□

Lemma 3. Let m be a positive integer, then the identity
m∑

k=0

[
2m+ 1

k

]
F

=

m∏
k=1

L2k

holds (see [7]).

The proof of the following lemma is given in [6] as Lemma 2.3.

Lemma 4. For integers s > t > 1, the equation

Fr = Fs + Ft

is satisfied only for r − 1 = s = t+ 1.

3. Proof

Now, we will investigate the solutions of the equation (3) in two different cases
n ≡ t (mod 2) and n ̸≡ t (mod 2).

3.1. The case n ≡ t (mod 2). In this case, Lemma 2 (iii) yields the following
equations

m∑
k=0

[
2m+ 1

k

]
F

= Fn−t
2
Ln+t

2
(4)

or
m∑

k=0

[
2m+ 1

k

]
F

= Fn+t
2
Ln−t

2
. (5)

We will consider the equation (4). Lemma 3 yields that

L2L4 . . . L2m = Fn−t
2
Ln+t

2
.

If we multiply both sides with F2F4 . . . F2m and Fn+t
2
, then we have

(L2L4 . . . L2m)(F2F4 . . . F2m)Fn+t
2

= (F2L2)(F4L4) . . . (F2mL2m)Fn+t
2

= F4F8 . . . F4mFn+t
2

= (F2F4 . . . F2m)Fn−t
2
(Fn+t

2
Ln+t

2
)

= (F2F4 . . . F2m)Fn−t
2
Fn+t

where we use the fact FnLn = F2n that given in Lemma 2 (i). That is to say, we
get

F4F8 . . . F4mFn+t
2

= (F2F4 . . . F2m)Fn−t
2
Fn+t. (6)

Assume that m ≥ 5. Since 4m ≥ 20, we can use the Primitive Divisor Theorem
(PDT). If 4m > n + t, then there exists a prime p dividing F4m does not divide
F2, F4, . . .F2m, Fn−t

2
, Fn+t. So, the equation (6) does not hold. Similarly, if
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4m < n + t, then there exist a prime p such that p | Fn+t, but p ∤ Fi where
i = 4, 8, . . . 4m, n+t

2 . Since the inequalities 4m > n+ t and 4m < n+ t are not true,
then we get 4m = n+ t. After simplifying the equation (6), then the equation

F4F8 . . . F4m−4 = F2F4 . . . F2m−2F2m−t

follows where we use (n− t)/2 = 2m− t (because 4m = n+ t).
If m is even integer, then we have

F2mF2m+4 . . . F4m−4 = F2m−tF2F6 . . . F2m−6F2m−2. (7)

If m is odd integer, then

F2m+2F2m+6 . . . F4m−4 = F2m−tF2F6 . . . F2m−8F2m−4 (8)

follows. Since 4m − 4 ≥ 16, then we apply PDT again. If 2m − t ≥ 4m − 4, then
we have 4 − t ≥ 2m which is not possible as m ≥ 5 and t is positive integer. If
4m − 4 > 2m − t, then there exists a prime p dividing F4m−4. But p ∤ Fj where
j = 2, 6, . . . , 2m−6, 2m−2, 2m− t for the equation (7). Since we arrive at a similar
contradiction for the equation (8), we omit it. We get the similar calculations for
the equation (5).

Therefore, m ≤ 4. So, we have∑1
k=0

[
3
k

]
F
= 3 = Fn ∓ Ft,

∑4
k=0

[
9
k

]
F
= 17766 = Fn ∓ Ft∑2

k=0

[
5
k

]
F
= 21 = Fn ∓ Ft,

∑5
k=0

[
11
k

]
F
= 2185218 = Fn ∓ Ft.

Namely, we investigate the solutions of the equations

Fn ∓ Ft = 3 (9)

Fn ∓ Ft = 21 (10)

Fn ∓ Ft = 17766 (11)

and

Fn ∓ Ft = 2185218 (12)

Assume that the sign is −. We focus on the equations (9) and (10). Since F4 = 3
and F8 = 21, by Lemma 4 there is one solution of the equation Fn − Ft = F4 = 3
which is (n, t) = (5, 3). Similarly, the only solution of the equation Fn −Ft = F8 =
21 is (n, t) = (9, 7) . Consider the equation (11). By Lemma 2 (iii), we have

Fn − Ft = Fn∓t
2
Ln±t

2
= 17766 = 2 · 33 · 7 · 47.

Since 17766 is not the product of two Fibonacci and Lucas number, the equation
(11) has no solution. Similarly, there is no solution of the equation (12).

If the sign is + for the equations (9), (10), (11) and (12), then we obtain the
solutions given in the Table 1 below.
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Table 1. Solutions of the equations Fn + Ft = Fj

(n, t)
Fn + Ft = 3 (3, 2), (2, 3), (3, 1), (1, 3)
Fn + Ft = 21 (6, 7), (7, 6)

Fn + Ft = 17766 (22, 10), (10, 22)
Fn + Ft = 2185218 no solution

3.2. The case n ̸≡ t (mod 2). In this case, we will solve the equation (6) under
the conditions n− t = 1 or n− t = 3.

Firstly, we will deal with the case n− t = 1. This yields Fn ∓ Ft is a Fibonacci
number. Then the equation (3) turns to

m∑
k=0

[
2m+ 1

k

]
F

= Fx (13)

where Fn ∓ Ft = Fx and x ∈ Z+. After multiplying both sides with F2F4 . . . F2m,
we have

F4F8 . . . F4m = F2F4 . . . F2mFx.

Assume that m ≥ 4. Since 4m ≥ 16, we can use PDT which yields 4m = x. Then,

F4F8 . . . F4m−4 = F2F4 . . . F2m

follows which is a contradiction. Because left hand side of the equation is obviously
bigger than right hand side. Now, assume m ≤ 3.

If m = 1, then we have the equation Fx = Fn ∓ Ft = 3 = F4. We obtain
x = 4. So, the pairs (n, t) = (3, 2), (2, 3), (3, 1), (1, 3) are the solutions of the
equation Fn + Ft = 3. The pair (n, t) = (6, 5) is the only solution of the equation
Fn − Ft = 3 by Lemma 4.

If m = 2, then we get Fx = Fn ∓ Ft = 21 = F8. We get x = 8. The solutions of
Fn + Ft = 21 are (n, t) = (6, 7), (7, 6). The pair (n, t) = (10, 9) is the only solution
of the equation Fn − Ft = 21.

If m = 3, then we obtain L2L4L6 = 378 which is not a Fibonacci number. That
is, the equation (3.2) is not satisfied.

Now, assume that n− t = 3. Firstly, we handle the equation

m∑
k=0

[
2m+ 1

k

]
F

+ Ft = Fn.

By Lemma 2 (ii), we have

m∑
k=0

[
2m+ 1

k

]
F

= L2L4 . . . L2m = Fn − Ft = 2Fn−2.
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After multiplying both sides with F2F4 . . . F2m, we get

F4F8 . . . F4m = F2F4 . . . F2m2Fn−2. (14)

Assume that m ≥ 4. By PDT, there exists a primitive divisor p such that p | F4m.
If p = 2, then p can not be a primitive divisor since, at least, 2 | F6. This yields
that p ̸= 2. If 4m > n − 2, then p ∤ F2F4 . . . F2m2Fn−2 which is not possible. We
get the similar contradiction if n− 2 > 4m. So, we deduce 4m = n− 2. Then the
equation (14) reduces to

L2L4 . . . L2m−2 = 2F2m. (15)

where we use the fact F2n = FnLn. This is not possible for m ≥ 4. Because left
hand side of the equation (15) is greater than right hand side. Now, we assume
m ≤ 3. So, we have to solve the following equation

2Fn−2 = q

where q ∈ {L2 = 3, L2L4 = 21, L2L4L6 = 378}. Obviously, there is no solution. We
arrive at similar contradictions for the equation

m∑
k=0

[
2m+ 1

k

]
F

= L2L4 . . . L2m = Fn + Ft = 2Fn−1.

We do not give its details.
Finally, we complete the proof.
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Abstract. Let Sn−1 denote the unit sphere in Rn with the normalized Lebesgue
measure. Let Φ ∈ Lr(Sn−1) is a homogeneous function of degree zero and b is
a locally integrable function on Rn. In this paper we define the higher order
commutators of Marcinkiewicz integral [b, µΦ]

m and prove the boundedness of
[b, µΦ]

m under some proper assumptions on grand variable Herz-Morrey spaces
MK̇

α(·),β
u,v(·) (R

n).

1. Introduction

Function spaces with variable exponents are an essential tools in harmonic anal-
ysis, operator theory and have gained significant attention in recent years, some
instances of these works are in [3, 23]. The study of variable exponent function
spaces is closely related to operator theory, which deals with linear operators act-
ing on function spaces. In particular, the boundedness and compactness properties
of operators in variable exponent spaces are of great interest. Understanding these
properties is crucial for solving partial differential equations and analyzing various
problems in applied mathematics.

The first generalization of Herz spaces with variable exponents, along with the
proof of boundedness for sublinear operators in these spaces, was presented in [7].

2020 Mathematics Subject Classification. 46E30,47B38.
Keywords. BMO spaces, Marcinkiewicz integral operator, grand Herz-Morrey spaces, grand
Herz spaces.
1 babarsultan40@yahoo.com; 0000-0003-2833-4101
2 mehvishsultanbaz@gmail.com; 0009-0005-2379-0476
3 feritgurbuz@klu.edu.tr-Corresponding author; 0000-0003-3049-688X.

©2023 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

1000



GRAND HERZ-MORREY SPACES WITH VARIABLE EXPONENT 1001

Herz-Morrey spaces, on the other hand, are further generalization of Herz spaces
with variable exponents. The author in [6] introduced this class of function spaces.
Continual Herz spaces with variable exponents were defined and studied in [14].
Understanding the boundedness of sublinear operators is of particular interest, its
boundedness on continual Herz spaces can be seen in [14].

The concept of grand Morrey spaces, along with the boundedness of a class of
integral operators in these spaces, were introduced in [10]. The author established
the boundedness results for a specific class of integral operators, in newly defined
grand Morrey spaces.

The idea of grand Herz spaces was introduced in [12]. This work expanded upon
the classical Herz spaces by incorporating additional parameters. To explore the
boundedness properties of other operators in grand variable Herz spaces, [2,13,18,
21, 22] can be consulted. These works likely provide insights into the boundedness
of specific operators in the context of grand variable Herz spaces, enriching our
understanding of the behavior of operators in this framework.

Subsequently, in the context of Herz-Morrey spaces with variable exponents, the
concept of grand variable Herz-Morrey spaces were introduced in [17, 19]. These
function spaces further extended the framework of Herz-Morrey spaces by incorpo-
rating the variable exponent setting. The authors demonstrated the boundedness
of the Riesz potential operator in the newly defined grand variable Herz-Morrey
spaces. Finally, in the article mentioned, the authors demonstrated the bounded-
ness of higher-order commutators of the Marcinkiewicz integral operator in grand
variable Herz-Morrey spaces. This result further explores the behavior of commu-
tators in the context of grand variable Herz-Morrey spaces and contributes to the
broader understanding of these function spaces.

Dividing the article into different sections helps to organize and present the
material in a structured manner. Introduction provides an overview of the topic. A
section presents the necessary mathematical background, definitions and relevant
lemmas. Last section is dedicated to the main results of the article. It discusses
the boundedness of the higher order commutators of the Marcinkiewicz integral
operator in the context of grand variable Herz-Morrey spaces.

2. Preliminaries

It is worth noting that the Lebesgue space with variable exponent Lp(·)(H) in-
herits many properties from the classical Lebesgue spaces with constant exponents.
We can define the Lebesgue space with variable exponent Lp(·)(H) as the set of all
measurable functions f defined on a measurable set H such that the norm is finite.
Consider a measurable set H in Rn and a measurable function p(·) : H → [1,∞).

Definition 1. If H be a measurable set in Rn and p(·): H → [1,∞) be a measurable
function. We suppose that

1 ≤ p−(H) ≤ p(h) ≤ p+(H) < ∞, (1)
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where p− := ess inf
h∈H

p(h), p+ := ess sup
h∈H

p(h).

(a) Lebesgue space with variable exponent Lp(·)(H) is defined as

Lp(·)(H) =

{
f measurable :

∫
H

(
|f(y)|
γ

)p(y)

dy < ∞, where γ is a constant

}
.

Norm in Lp(·)(H) is defined as

∥f∥Lp(·)(H) = inf

{
γ > 0 :

∫
H

(
|f(y)|
γ

)p(y)

dy ≤ 1

}
.

(b) The space L
p(·)
loc (H) is defined as

L
p(·)
loc (H) :=

{
f : f ∈ Lp(·)(K) for all compact subsets K ⊂ H

}
.

In the sequel we use the well known log-condition

|p(x)− p(y)| ≤ C(p)

− ln |x− y|
, |x− y| ≤ 1

2
, x, y ∈ H, (2)

where C(p) > 0. And the decay condition: there exists a number p∞ ∈ (1,∞),
such that

|p(h)− p∞| ≤ C

ln(e+ |h|)
, (3)

and also decay condition

|p(h)− p0| ≤
C

− ln |h|
, |h| ≤ 1

2
, (4)

holds for some p0 ∈ (1,∞). (Note that: C > 0 & |h| ≤ 1
2 ⇒ C

ln |h| < 0 ).
We use these notations in this article:

(i) The set P(H) consists of all measuable functions p(·) satisfying (1).
(ii) P log = P log(H) consists of all functions p ∈ P(H) satisfying (1) and (2).
(iii) P∞(H) and P0,∞(H) are the subsets of P(H) and values of these subsets

lies in [1,∞) which satisfy the condition (3) and both conditions (3) and
(4) respectively.

(iv)

χl = χRl
, Rl = Bl \Bl−1, Bl = B(0, 2l) = {x ∈ Rn : |x| < 2l}

for all l ∈ Z.
C is a positive constant, its value can change from line to line and is independent
of main parameters involved.

Now we will define variable exponent Herz spaces.
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Definition 2. Let u, v ∈ [1,∞), α ∈ R, the norms of classical versions of non-
homogeneous and homogeneous Herz spaces are given below,

∥g∥Kα
u,v(Rn) := ∥g∥Lu(B(0,1)) +


∑
l∈N

2lαv

 ∫
R

2l−1,2l

|g(y)|udy


v
u


1
v

, (5)

where

∥g∥K̇α
u,v(Rn) :=


∑
l∈Z

2lαv

 ∫
R

2l−1,2l

|g(y)|udy


v
u


1
v

, (6)

respectively.

Definition 3. Let u ∈ [1,∞), v(·) ∈ P(Rn) and α ∈ R. The homogeneous version
of variable exponent Herz space K̇α,u

v(·)(R
n) can be defined as

K̇α,u
v(·)(R

n) =

{
g ∈ L

v(·)
loc (R

n \ {0}) : ∥g∥K̇α,u
v(·)(Rn) < ∞

}
, (7)

where

∥g∥K̇α,u
v(·)(Rn) =

 ∞∑
l=−∞

∥2lαgχl∥uLv(·)

 1
u

.

Definition 4. Let u ∈ [1,∞), α ∈ R and v(·) ∈ P(Rn). The non-homogeneous
version of variable exponent Herz space Kα,u

v(·)(R
n) can be defined as

Kα,u
v(·)(R

n) =
{
g ∈ L

v(·)
loc (R

n \ {0}) : ∥g∥Kα,u
v(·)(Rn) < ∞

}
, (8)

where

∥g∥Kα,u
v(·)(Rn) = ∥g∥Lv(·)(B(0,1)) +

 ∞∑
k=−∞

∥2kαgχk∥uLv(·)

 1
u

.

Definition 5. Let α(·) ∈ L∞(Rn), u ∈ [1,∞), q : Rn → [1,∞), θ > 0. A grand
variable Herz spaces K̇

α(·),u),θ
q(·) are defined by,

K̇
α(·),u),θ
q(·) =

{
g ∈ L

q(·)
loc (R

n \ {0}) : ∥g∥
K̇

α(·),u),θ

q(·)
< ∞

}
,

where

∥g∥
K̇

α(·),u),θ

q(·)
= sup

ϵ>0

ϵθ
∑
k∈Z

2kα(·)u(1+ϵ)∥gχk∥
u(1+ϵ)

Lq(·)

 1
u(1+ϵ)

.
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Now we will define variable Herz-Morrey spaces.

Definition 6. For α(·) : Rn → R, 0 < u < ∞, v(·) ∈ P(Rn) and 0 ≤ β < ∞. A
variable Herz-Morrey spaces MK̇

α(·),β
u,v(·) (R

n) are defined by,

MK̇
α(·),β
u,v(·) (R

n) =

{
g ∈ L

v(·)
loc (R

n \ {0}) : ∥g∥
MK̇

α(·),β
u,v(·) (Rn)

< ∞
}
,

where

∥g∥
MK̇

α(·),β
u,v(·) (Rn)

= sup
k0∈Z

2−k0β

 k0∑
t=−∞

2kα(·)u∥gχk∥uLv(·)(Rn)

 1
u

.

Definition 7. To define homogeneous version of GVHM spaces, let s : Rn →
[1,∞), u ∈ [1,∞), θ > 0, 0 ≤ λ < ∞, and α(·) ∈ L∞(Rn). The GVHM spaces are
given by:

MK̇
α(·),u),θ
λ,s(·) (Rn) =

{
g ∈ L

s(·)
loc (R

n \ {0}) : ∥g∥
MK̇

α(·),u),θ

λ,s(·) (Rn)
< ∞

}
,

where

∥g∥
MK̇

α(·),u),θ

λ,s(·) (Rn)
= sup

ϵ>0
sup
lo∈Z

2−l0λ

ϵθ
l0∑

k=−∞

2kα(·)u(1+ϵ)∥gχk∥
u(1+ϵ)

Ls(·)(Rn)

 1
u(1+ϵ)

.

Non-homogeneous version of GVHM spaces can be defined in the similar way.
As grand variable Herz-Morrey spaces is the generalization of grand variable Herz
spaces, λ = 0, grand variable Herz-Morrey spaces become grand variable Herz
spaces.

Definition 8 (BMO space). A BMO function is a locally integrable function u
whose mean oscillation given by 1

|B|
∫
B
|u(y)− uB |dy is bounded, i.e.

∥u∥BMO = sup
B

1

|B|

∫
B

|u(y)− uB |dy < ∞.

Lemma 1. [14] Let B > 1 and p ∈ P0,∞(Rn). Then
1

t0
s

n
p(0) ≤ ∥χRs,Bs

∥p(·) ≤ t0s
n

p(0) , for 0 < s ≤ 1 (9)

and
1

t∞
s

n
p∞ ≤ ∥χRs,Bs

∥p(·) ≤ t∞s
n

p∞ , for s ≥ 1, (10)

respectively, where t0 ≥ 1 and t∞ ≥ 1 and depending on B but independent of s.

Lemma 2. [23][Generalized Hölder’s inequality] Consider a measurable subset H
such that H ⊆ Rn, and 1 ≤ p−(H) ≤ p+(H) ≤ ∞. Then

∥fg∥Lr(·)(H) ≤ ∥f∥Lp(·)(H)∥g∥Lq(·)(H)
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holds, where f ∈ Lp(·)(H), g ∈ Lq(·)(H) and 1
r(x) =

1
p(x) +

1
q(x) for every x ∈ H.

Lemma 3. [8] Let k be a positive integer. Let b ∈ BMO(Rn) and choose w, l ∈ Z
with l < w,

1

C
∥b∥kBMO ≤ sup

B:ball

1

∥χB∥p(·)
∥(b− bB)

kχB∥p(·) (11)

≤C∥b∥kBMO, (12)

||(b− bBt)
kχBw

||p(·) ≤ C(w − t)k∥b∥kBMO||χBw
||p(·). (13)

Let Sn−1 denote the unit sphere in Rn with the normalized Lebesgue measure.
Let Φ ∈ Lr(Sn−1) is a homogeneous function of degree zero such that∫

Sn−1

Φ(y′)dσ(y′) = 0, (14)

where y′ = y/|y| and y is not zero. The Marcinkiewicz fractional operator is
introduced with Littlewood-Paley g-function as:

µΦ(f)(x) =

 ∞∫
0

|FΦ,s(f)(x)|2
ds

s3


1
2

,

where

FΦ,s(f)(x) =

∫
|x−y|≤s

Φ(x− y)

|x− y|n−1
f(y)dy.

Consider a locally integrable function b on Rn, now we can define higher order
commutators of Marcinkiewicz integral [b, µΦ]

m by using µΦ and b

[b, µΦ]
m(f)(x) =


∞∫
0

∣∣∣∣∣∣∣
∫

|x−y|≤s

Φ(x− y)

|x− y|n−1
[b(x)− b(y)]mf(y)dy

∣∣∣∣∣∣∣
2

ds

s3


1
2

.

Lemma 4. [11] Let a > 0, s ∈ [1,∞], 0 < d ≤ s and −n+ (n− 1)ds < u < ∞,
then  ∫

|y|≤a|x|

|y|u|Φ(x− y)|ddy


1/d

≤ |x|(u+n)/d∥Φ∥Ls(Sn−1).

It is easy to see that for m = 1, we get [b, µΦ]
m(f)(x) = [b, µΦ](f)(x) (commuu-

tator of Marcinkiewicz integral operator defined in [25]). When m = 0, the higher
order commutators of Marcinkiewicz integral operator will be simply Marcinkiewicz
integrals operator.
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It’s worth noting that the specific details and advancements in these works can
only be fully explored by referring to the papers [1, 4, 5, 9, 15,16,20,24].

3. BMO Estimate for the Higher Order Commutators of
Marcinkiewicz Integrals Operator

The main purpose of this paper is to establish the boundedness of higher order
commutators of Marcinkiewicz fractional operator on grand variable Herz-Morrey
spaces by using some properties of the variable exponent and BMO function. It is
easy to see that our results generalize the main results of [13]. Now, we will show
the boundedness of higher order commutators of Marcinkiewicz integrals operator
on grand variable Herz-Morrey spaces.

Theorem 1. Let 0 < v ≤ 1, α(·), q(·) ∈ P0,∞(Rn) with 1 < q− ≤ q+ < ∞, m ∈ Z,
1 ≤ u < ∞, 0 ≤ β < ∞ and b ∈ BMO(Rn). Let Φ be a homogeneous of degree
zero and Φ ∈ Ls(Sn−1), s > q′−. Let α be such that :

(i) − n
q(0) − v − n

s < α(0) < n
q′(0) − v − n

s

(ii) − n
q∞

− v − n
s < α∞ < n

q′∞
− v − n

s ,

then operator [b, µΦ]
m will be bounded on MK̇

α(·),u),θ
β,q(·) (Rn).

Proof. Let g ∈ MK̇
α(·),u),θ
β,q(·) (Rn), and g(x) =

∑∞
l=−∞ g(x)χl(x) =

∑∞
l=−∞ gl(x), for

k0 > 0 we have,∥∥[b, µΦ]
mg

∥∥
MK̇

α(·),u),θ

β,q(·) (Rn)
= sup

ϵ>0
sup
k0∈Z

2−k0β

×

ϵθ
k0∑

t=−∞
2tα(·)u(1+ϵ)∥χt[b, µΦ]

mg∥u(1+ϵ)

Lq(·)

 1
u(1+ϵ)

≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑

t=−∞
2tα(·)u(1+ϵ)

 ∞∑
l=−∞

∥χt[b, µΦ]
mgl∥u(1+ϵ)

Lq(·)




1
u(1+ϵ)

≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑

t=−∞
2tα(·)u(1+ϵ)

 t∑
l=−∞

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

+sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑

t=−∞
2tα(·)u(1+ϵ)

 ∞∑
l=t+1

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

=:E1 + E2.
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Apply Minkowski’s inequality to split E1.

E1 ≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

t=−∞
2tα(·)u(1+ϵ)

 t∑
l=−∞

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

+sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑
t=0

2tα(·)u(1+ϵ)

 t∑
l=−∞

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

:=E11 + E12.

We use the facts that, for each t ∈ Z and l ≤ t and a.e. x ∈ Rt, y ∈ Rl, we know
that |x− y| ≈ |x| ≈ 2t.

|µΦ(gχl)(x)| ≤


|x|∫
o

∣∣∣∣∣∣∣
∫

|x−y|≤t

Φ(x− y)

|x− y|n−1
[b(x− b(y))]mgl(y)dy

∣∣∣∣∣∣∣
2

dt

t3


1/2

+


∞∫

|x|

∣∣∣∣∣∣∣
∫

|x−y|≤t

Φ(x− y)

|x− y|n−1
[b(x− b(y))]mgl(y)dy

∣∣∣∣∣∣∣
2

dt

t3


1/2

=: I11 + I12.

By the virtue of mean value theorem we obtain,∣∣∣∣ 1

|x− y|2
− 1

|x|2

∣∣∣∣ ≤ |y|
|x− y|3

. (15)

For I11, by using Minkowski’s inequaltiy, generalized Hölder’s inequality, and in-
equality 15 we have

I11 ≤
∫
Rn

|Φ(x− y)|
|x− y|n−1

|b(x− b(y)|m|gl(y)|

 |x|∫
|x−y|

dt

t3


1/2

dy

≤
∫
Rn

|Φ(x− y)|
|x− y|n−1

|b(x− b(y)|m|gl(y)|
∣∣∣∣ 1

|x− y|2
− 1

|x|2

∣∣∣∣1/2 dy
≤
∫
Rn

|Φ(x− y)|
|x− y|n−1

|b(x− b(y)|m|gl(y)|
∣∣∣∣ |y|
|x− y|3

∣∣∣∣1/2 dy
≤ 2l/2

|x|n+1/2

∫
Rl

|Φ(x− y)||b(x− b(y)|m|g(y)|dy
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≤2(l−t)/22−tn

{
|b(x)− bBl

|m
∫
Rl

|Φ(x− y)||gl(y)|dy

+

∫
Rl

|b(y)− bBl
|m|Φ(x− y)||gl(y)|dy

≤2(l−t)/22−tn∥gl∥Lq(·)

{
|b(x)− bBl

|m∥Φ(x− ·)χl(·)∥Lq′(·)

+∥(b(·)− bBl
)m(Φ(x− ·)χl(·)∥Lq′(·)

}
.

Similarly, we can consider I12, we have

I12 ≤
∫
Rn

|Φ(z − 1− y)|
|x− y|n−1

|b(x− b(y)|m|gl(y)|

 ∞∫
|x|

dt

t3


1/2

dy

≤
∫
Rn

|Φ(x− y)|
|x− y|n

|b(x)− b(y)|m|gl(y)|dy

≤|x|−n

∫
Rl

|Φ(x− y)||b(x)− b(y)|m|gl(y)|dy

≤ 2−tn∥gl∥Lq(·)

{
|b(x)− bBl

|m∥Φ(x− ·)χl(·)∥Lq′(·)

+∥(b(·)− bBl
)m(Φ(x− ·)χl(·)∥Lq′(·)

}
.

So we have,

|µΦ(gχl)(x)|

≤ 2−tn∥gl∥Lq(·)

{
|b(x)− bBl

|m∥Φ(x− ·)χl(·)∥Lq′(·)

+∥(b(·)− bBl
)m(Φ(x− ·)χl(·)∥Lq′(·)

}
.

We define q(·) by the relation 1
q′(x) =

1
q(x)+

1
s . By using Lemma (4) and generalized

Hölder’s inequality we have

∥Φ(x− ·)χl(·)∥Lq′(·) ≤∥Φ(x− ·)χl(·)∥Ls(Rn)∥χl(·)∥Lq(·)

≤2−lv

 ∫
2l−1<|y|<2l

|Φ(x− y)|s|y|svdy


1/s

∥χBl
∥Lq(·)

≤2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·) .
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Similarly, by using Lemma (3) we have

∥(b(·)− bBl
)m(Φ(x− ·)χl(·)∥Lq′(·)

≤∥Φ(x− ·)χl(·)∥Ls(Rn)∥(b(·)− bBl
)mχl(·)∥Lq(·)

≤C∥b∥mBMO(Rn)∥χBl
∥Lq(·)∥Φ(x− ·)χl(·)∥Ls(Rn)

≤C∥b∥mBMO(Rn)2
−lv2t(v+

n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·) .

As a result we get

∥[b, µΦ(gl)]χt∥Lq(·)

≤ C2−tn∥gl∥Lq(·)

{
∥(b(·)− bBl

)mχt(·)∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)

+ ∥b∥mBMO(Rn)2
−lv2t(v+

n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)∥χt∥Lq(·)

}
≤ C2−tn∥gl∥Lq(·)

{
(t− l)m∥b∥mBMO(Rn)∥χBt

∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)

+ ∥b∥mBMO(Rn)2
−lv2t(v+

n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)∥χBt
∥Lq(·)

}
≤ C2−tn∥gl∥Lq(·)(t− l)m∥b∥mBMO(Rn)∥χBt

∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥χBl

∥Lq(·)

≤ C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
−tn2−lv2t(v+

n
s )∥χBt

∥Lq(·)∥χBl
∥Lq(·)∥gl∥Lq(·) .

Applying results to E11 we can get

E11 ≤ C sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ −1∑
t=−∞

2tα(0)u(1+ϵ)

( t∑
l=−∞

(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)

× 2(l−t)(n/q′(0)−v−n
s )∥gl∥Lq(·)

)u(1+ϵ)
] 1

u(1+ϵ)

≤C∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×
[
ϵθ

−1∑
t=−∞

( t∑
l=−∞

2α(0)l∥gl∥Lq(·)2b(l−t)(t− l)m
)u(1+ϵ)] 1

u(1+ϵ)

.

Let b = n
q′1(0)

− v− n
s −α(0) > 0, applying Hölder’s inequality, Fubini’s theorem for

series and 2−u(1+ϵ) < 2−u we get,

E11 ≤C∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ −1∑
t=−∞

 t∑
l=−∞

2α(0)u(1+ϵ)l∥gl∥u(1+ϵ)

Lq(·)
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× 2bu(1+ϵ)(l−t)/2
t∑

l=−∞

2b(u(1+ϵ))′(l−t)/2(t− l)m
(u(1+ϵ))′


u(1+ϵ)

(u(1+ϵ))′


1

u(1+ϵ)

≤C∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ
−1∑

t=−∞

t∑
l=−∞

2α(0)u(1+ϵ)l∥gl∥u(1+ϵ)

Lq(·) 2bu(1+ϵ)(l−t)/2

 1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ
−1∑

l=−∞

2α(0)u(1+ϵ)l∥gl∥u(1+ϵ)

Lq(·)

−1∑
t=l+2

2bu(1+ϵ)(l−t)/2

 1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ
−1∑

l=−∞

2α(0)u(1+ϵ)l∥gl∥u(1+ϵ)

Lq(·)

−1∑
t=l+2

2bu(1+ϵ)(l−t)/2

 1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

l=−∞

2α(0)u(1+ϵ)l∥gl∥u(1+ϵ)

Lq(·)

 1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑

l=−∞

2α(·)u(1+ϵ)l∥gl∥u(1+ϵ)

Lq(·)

 1
u(1+ϵ)

≤C∥b∥mBMO(Rn)∥g∥MK̇
α(·),u),θ

β,q(·) (Rn)
.

Now apply Minkowski’s inequality to split E12, we have

E12 ≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑
t=0

2tα(·)u(1+ϵ)

 −1∑
l=−∞

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

+sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑
t=0

2tα(·)u(1+ϵ)

t−2∑
l=0

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

:= A1 +A2.
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To obtain the estimate for A2, we can follow a similar approach as for E11, but
with some modifications. We will replace q′(0) with q′∞ and use the fact that
b = n

q′∞
− v − n

s − α∞ > 0.
For A1 we have

∥[b, µΦ]β(gχl)χt∥Lq(·)

≤C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
−tn2−lv2t(v+

n
s )∥χBt

∥Lq(·)∥χBl
∥Lq(·)∥gl∥Lq(·)

≤C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
l( n

q(0)
−v)2

t(v+n
s − n

q′∞
)∥gl∥Lq(·) .

Now by using the fact − n
q′∞

+ v + n
s + α∞ < 0 we have,

A1 ≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑
t=0

2tα∞u(1+ϵ)

 −1∑
l=−∞

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤ C∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ k0∑
t=0

2tα∞u(1+ϵ)

 −1∑
l=−∞

2l(
n

q(0)
−v)2

t(v+n
s − n

q′∞
)
(t− l)m∥gl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤ C∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ k0∑
t=0

2
t(α∞+v+n

s − n
q′∞

u(1+ϵ)

×(t− l)m
u(1+ϵ)

 −1∑
l=−∞

2l(
n

q(0)
−v)∥gl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤ C∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ

 −1∑
l=−∞

2l(
n

q(0)
−v)∥gl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤ C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ

 −1∑
l=−∞

2lα(0)∥gχl∥Lq(·)2
l( n

q(0)
−v−α(0))

u(1+ϵ)


1
u(1+ϵ)

.



1012 B. SULTAN, M. SULTAN, F. GÜRBÜZ

Now we can apply the Hölder’s inequality and we can also use the fact that n
q′(0) −

n
s − v − α(0) > 0. Here is

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ −1∑
l=−∞

2α(0)lu(1+ϵ)∥gl∥u(1+ϵ)

Lq(·)

×

 −1∑
l=−∞

2
l( n

q′(0)−v−α(0))(u(1+ϵ))′


u(1+ϵ)

(u(1+ϵ))′


1

u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ

 k0∑
l=−∞

2α(·)lu(1+ϵ)∥gl∥u(1+ϵ)

Lq(·)




1
u(1+ϵ)

≤C∥b∥mBMO(Rn)∥g∥MK̇
α(·),u),θ

β,q(·) (Rn)
.

Now we will find the estimate for E2. For each t ∈ Z and l ≥ t+1 and a.e. x ∈ Rt,
y ∈ Rl, we know that |x− y| ≈ |y| ≈ 2l, we consider

|µΦ(gχl)(x)| ≤


|y|∫
o

∣∣∣∣∣∣∣
∫

|x−y|≤t

Φ(x− y)

|x− y|n−1
gl(y)dy

∣∣∣∣∣∣∣
2

dt

t3


1/2

+


∞∫

|y|

∣∣∣∣∣∣∣
∫

|x−y|≤t

Φ(x− y)

|x− y|n−1
fl(y)dy

∣∣∣∣∣∣∣
2

dt

t3


1/2

=: I21 + I22.

By using similar arguments as used in estimating I11, we obtain

I21 ≤2(t−l)/22− ln∥gl∥Lq(·){
|b(x)− bBl

|m∥Φ(x− ·)χl(·)∥Lq′(·)∥b(·)− (bBl
)m(Φ(x− ·)χl(·)∥Lq′(·)

}
.

Similar to the arguments of I12, we have

I22 ≤2− ln∥gl∥Lq(·){
|b(x)− bBl

|m∥Φ(x− ·)χl(·)∥Lq′(·) + ∥b(·)− (bBl
)m(Φ(x− ·)χl(·)∥Lq′(·)

}
.

So, we have

|[b, µΦ]− (fl)(x)| ≤ 2− ln∥gl∥Lq(·)
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|b(x)− bBl

|m∥Φ(x− ·)χl(·)∥Lq′(·) + ∥b(·)− (bBl
)m(Φ(x− ·)χl(·)∥Lq′(·)

}
.

Consequently we will get

∥[b, µΦ(gl)]χt∥Lq(·)

≤ C2− ln∥gl∥Lq(·)

{
∥(b(·)− bBl

)mχt(·)∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)

+ ∥b∥mBMO(Rn)2
−lv2t(v+

n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)∥χt∥Lq(·)

}
≤ C2− ln∥gl∥Lq(·)

{
(t− l)m∥b∥mBMO(Rn)∥χBt

∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)

+ ∥b∥mBMO(Rn)2
−lv2t(v+

n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)∥χBt
∥Lq(·)

}
≤ C2− ln∥gl∥Lq(·)(t− l)m∥b∥mBMO(Rn)∥χBt

∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥χBl

∥Lq(·)

≤ C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
− ln2−lv2t(v+

n
s )∥χBt

∥Lq(·)∥χBl
∥Lq(·)∥gl∥Lq(·)

≤ C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
− ln2−lv2t(v+

n
s )2ln/q∞2tn/q∞∥gl∥Lq(·)

≤ C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
(t−l)m(v+n

s + n
q∞ )∥gl∥Lq(·) .

Now splitting E2 we have

E2 ≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑

t=−∞
2tα(·)u(1+ϵ)

 ∞∑
l=t+2

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

t=−∞
2tα(·)u(1+ϵ)

 ∞∑
l=t+2

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

+sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑
t=0

2tα(·)u(1+ϵ)

 ∞∑
l=t+2

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

:=E21 + E22.

For E22 we have

E22 ≤ C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ
k0∑
t=0

2tα∞u(1+ϵ)

 ∞∑
l=t+2

2(t−l)(v+n
s + n

q∞ )(t− l)m∥gl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)



1014 B. SULTAN, M. SULTAN, F. GÜRBÜZ

≤ C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ
k0∑
t=0

 ∞∑
l=t+2

2lα∞∥gl∥Lq(·)2(t−l)(v+n
s + n

q∞ )(t− l)m)

u(1+ϵ)


1
u(1+ϵ)

,

for d = n
q∞

+ v + n
s > 0. Then we can apply the Hölder’s inequality for series and

2−u(1+ϵ) < 2−u to get

E22 ≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ k0∑
t=0

 ∞∑
l=t+2

2lα∞u(1+ϵ)∥gl∥u(1+ϵ)

Lq(·) 2du(1+ϵ)(t−l)/2



×

 ∞∑
l=t+2

2d(u(1+ϵ))′(t−l)/2(t− l)m(u(1+ϵ))′


u(1+ϵ)

(u(1+ϵ))′


1

u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ
k0∑
t=0

∞∑
l=t+2

2lα∞u(1+ϵ)∥gl∥u(1+ϵ)

Lq(·) 2du(1+ϵ)(t−l)/2

 1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ
k0∑
t=0

∞∑
l=t+2

l∑
j=−∞

2jα∞u(1+ϵ)∥gj∥u(1+ϵ)

Lq(·) 2du(1+ϵ)(t−l)/2

 1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
k0∑
t=0

∞∑
l=t+2

2du(1+ϵ)(t−l)/2

 1
u(1+ϵ)

× ∥g∥
MK̇

α(·),u),θ

β,q(·) (Rn)

≤C∥b∥mBMO(Rn)∥g∥MK̇
α(·),u),θ

β,q(·) (Rn)
.

Now for E21 using Minkowski’s inequality we have

E21 ≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

t=−∞
2tα(·)u(1+ϵ)

 −1∑
l=t+2

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)
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+sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

t=−∞
2tα(·)u(1+ϵ)

 ∞∑
l=0

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

:=B1 +B2.

The estimate for B1 follows in a similar manner to E22 with q∞ replaced by q(0)
and using the fact that n

q(0) + v + n
s + α(0) > 0. For B2 we have

∥[b, µΦ](gl)χt∥Lq(·)

≤ C2− ln∥gl∥Lq(·)

{
∥(b(·)− bBl

)mχt(·)∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)

+ ∥b∥mBMO(Rn)2
−lv2t(v+

n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)∥χt∥Lq(·)

}
≤ C2− ln∥gl∥Lq(·)

{
(t− l)m∥b∥mBMO(Rn)∥χBt

∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)

+ ∥b∥mBMO(Rn)2
−lv2t(v+

n
s )∥Φ∥Ls(Sn−1)∥∥χBl

∥Lq(·)∥χBt
∥Lq(·)

}
≤ C2− ln∥gl∥Lq(·)(t− l)m∥b∥mBMO(Rn)∥χBt

∥Lq(·)2−lv2t(v+
n
s )∥Φ∥Ls(Sn−1)∥χBl

∥Lq(·)

≤ C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
− ln2−lv2t(v+

n
s )∥χBt

∥Lq(·)∥χBl
∥Lq(·)∥gl∥Lq(·)

≤ C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
−ln2−lv2t(v+

n
s )∥gl∥Lq(·)2ln/q∞2tn/q(0)

≤ C(t− l)m∥Φ∥Ls(Sn−1)∥b∥mBMO(Rn)2
−l(v+n

s + n
q∞ )2t(v+

n
q(0)

+n
s )∥gl∥Lq(·) .

B2 ≤ sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

k=−∞

2tα(0)u(1+ϵ)

 ∞∑
l=0

∥χt[b, µΦ]
mgl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

k=−∞

2tα(0)u(1+ϵ)

×

 ∞∑
l=0

2−l(v+n
s + n

q∞ )2t(v+
n

q(0)
+n

s )∥gl∥Lq(·)(t− l)m

u(1+ϵ)


1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ
−1∑

k=−∞

2t(v+
n

q(0)
+n

s +α(0))u(1+ϵ)(t− l)m
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×

 ∞∑
l=0

2−l(v+n
s + n

q∞ )∥gl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ

 ∞∑
l=0

2−l(v+n
s + n

q∞ )∥gl∥Lq(·)

u(1+ϵ)


1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ

 ∞∑
l=0

2α∞l∥gl∥Lq(·)2−l(v+n
s + n

q∞ +α∞)

u(1+ϵ)


1
u(1+ϵ)

≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

×

ϵθ

 ∞∑
l=0

l∑
j=−∞

2α∞j∥gj∥Lq(·)2−l(v+n
s + n

q∞ +α∞)

u(1+ϵ)


1
u(1+ϵ)

.

Now by applying Hölder’s inequality and using the fact that n
q(∞)+v+ n

s +α(∞) > 0

we have

B2 ≤C∥b∥mBMO(Rn) sup
ϵ>0

sup
k0∈Z

2−k0β

ϵθ

 ∞∑
l=0

2−l(v+n
s + n

q∞ +α∞)

u(1+ϵ)


1
u(1+ϵ)

× ∥g∥
MK̇

α(·),u),θ

β,q(·) (Rn)

≤∥b∥mBMO(Rn)∥g∥MK̇
α(·),u),θ

β,q(·) (Rn)
.

Combining the estimates for E1 and E2 yields∥∥[b, µΦ]
m(g)

∥∥
MK̇

α(·),u),θ

β,q(·) (Rn)
≤ ∥b∥mBMO(Rn)∥g∥MK̇

α(·),u),θ

β,q(·) (Rn)
,

which completes the proof. □
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DEMONSTRATION OF THE STRENGTH OF STRONG

CONVEXITY VIA JENSEN’S GAP
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Abstract. This paper demonstrates through a numerical experiment that

utilization of strongly convex functions strengthens the bound presented for
the Jensen gap in [4]. Consequently the improved result enables to present

improvements in the bounds obtained for the Hölder and Hermite-Hadamard

gaps and proposes such improvements in the results obtained for various en-
tropies and divergences in information theory.

1. Introduction

Being a part of analysis, the field of mathematical inequalities in the sense of
convexity has seen exponential growth in numerous domains of science, art, and
technology [1,3,5,7–9,14–16,22–24,26,27,29–31,36,37,40,41,43,45]. Among these
inequalities, the Jensen inequality is the most important inequality. Many other
well-known used inequalities such as Young’s, Hölder’s, the arithmetic-geometric,
the Hermite-Hadamard, and Minkowski’s inequality etc can be obtained from this
inequality by manipulating suitable substitutions. Furthermore, this inequality
is comprehensively used in distinct areas of science and technology for example
statistics [33], qualitative theory of differential and integral equations [32], engi-
neering [17], economics [34], finance [10], information theory and coding [6, 25]
etc. In addition, there are countless papers dealing with counterparts, refinements,
generalizations, improvements and converse results of Jensen’s inequality, (see, for
instance [11–13, 19, 20, 39]). In fact, this inequality generalizes the classical notion
of convexity and states that [28]:

Theorem 1. If φ : [σ1, σ2] → R is a convex function and ϑi ∈ [σ1, σ2], ki ≥ 0
for each i ∈ {1, 2, . . . , n} with

∑n
i=1 ki := Kn > 0, then for 1

Kn

∑n
i=1 kiϑi := ϑ̄, the

2020 Mathematics Subject Classification. 26A51, 26D15, 68P30.
Keywords. Jensen inequality, strongly convex function, Hölder inequality, Hermite-Hadamard

inequality, Taylor Formula.
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following inequality holds

φ
(
ϑ̄
)
≤ 1

Kn

n∑
i=1

kiφ (ϑi) .

In reference [2], the integral form of Theorem 1 can be seen, also here it is:

Theorem 2. Assume that [σ1, σ2] ⊂ R and ξ2, ξ1 : [ρ1, ρ2] → R are two functions
with the condition that ξ2(t) ∈ [σ1, σ2], ∀ t ∈ [ρ1, ρ2]. Further, assume that the
function φ : [σ1, σ2] → R is convex and ξ1, ξ2ξ1, (φ ◦ ξ2).ξ1 are integrable on
[ρ1, ρ2]. Furthermore, suppose that ξ1(t) ≥ 0 for all t ∈ [ρ1, ρ2] and

∫ ρ2

ρ1
ξ1(t)dt :=

D > 0, 1
D

∫ ρ2

ρ1
ξ2(t)ξ1(t)dt := ξ̄, then

φ
(
ξ̄
)
≤ 1

D

∫ ρ2

ρ1

(φ ◦ ξ2)(t)ξ1(t)dt.

Following is the definition of a strongly convex function while the next theorem
gives a criteria for checking the strong convexity of twice differentiable functions
[44]:

Definition 1. Let φ : [σ1, σ2] → R be a function, then with modulus λ > 0, it is
strongly convex, if the following inequality holds

φ(γϑ1 + (1− γ)ϑ2) ≤ γφ(ϑ1) + (1− γ)φ(ϑ2)− λγ(1− γ)(ϑ1 − ϑ2)
2,

for all ϑ1, ϑ2 ∈ [σ1, σ2] and γ ∈ [0, 1].

It is significant that every strongly convex function is convex but the converse is
not true generally.

Theorem 3. If the function φ is twice differentiable then it is strongly convex with
modulus λ > 0, if and only if φ′′(ϑ1) ≥ 2λ for all ϑ1 ∈ [σ1, σ2].

In this manuscript, we make use of the well-known Taylor formula and the con-
cept of strong convexity to improve an existing bound for the Jensen gap. Many
results may be found in the literature regarding Jensen’s inequality for strongly
convex functions (see for instance [21,35,38,42]).
Following is the Taylor Formula [4]:

Theorem 4. If ϑ2 ∈ [σ1, σ2] ⊆ R and φ : [σ1, σ2] → R is a function, then for a
point µ ∈ [σ1, σ2], the well-known Taylor’s formula is given by

φ(ϑ2) =

n−1∑
i=0

φ(i)(µ)

i!
(ϑ2 − µ)i +

1

(n− 1)!

∫ ϑ2

µ

φ(n)(t)(ϑ2 − t)n−1dt, (1)

provided that φn−1 is absolutely continuous for natural number n.
Setting n = 2 in Equation (1), we get

φ(ϑ2) = φ(µ) + φ
′
(µ)(ϑ2 − µ) +

∫ ϑ2

µ

φ
′′
(t)(ϑ2 − t)dt. (2)
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2. Main Results

The following theorem actually gives the improvement in an existing bound for
the classical Jensen gap through the concept of strong convexity:

Theorem 5. Let |φ′′| be a strongly convex function with modulus λ for twice dif-
ferentiable functions φ defined on [σ1, σ2]. Also, let µ, ϑi ∈ [σ1, σ2], ki ≥ 0 for
i = 1, 2, · · · , n with

∑n
i=1 ki := Kn > 0 and 1

Kn

∑n
i=1 kiϑi := ϑ, then∣∣∣∣∣ 1

Kn

n∑
i=1

kiφ(ϑi)− φ(ϑ)

∣∣∣∣∣
≤ 1

Kn

n∑
i=1

ki(ϑi − µ)2

[
|φ′′

(µ)|
3

+
|φ′′

(ϑi)|
6

+
µλ

12
(ϑi − µ)− ϑiλ

12
(ϑi − µ)

]

+(ϑ− µ)2

[
|φ′′

(µ)|
3

+
|φ′′

(ϑ)|
6

+
µλ

12
(ϑ− µ)− ϑλ

12
(ϑ− µ)

]
. (3)

Proof. Using (2) in 1
Kn

∑n
i=1 kiφ(ϑi) and φ(ϑ), then some calculations lead towards

the following identity

1

Kn

n∑
i=1

kiφ(ϑi)− φ(ϑ) =
1

Kn

n∑
i=1

ki

∫ ϑi

µ

(ϑi − t)φ
′′
(t)dt−

∫ ϑ

µ

(ϑ− t)φ
′′
(t)dt. (4)

Inequality (5) can be acquired by taking absolute value of both sides of (4) and
then applying triangle inequality∣∣∣∣∣ 1

Kn

n∑
i=1

kiφ(ϑi)− φ(ϑ)

∣∣∣∣∣
=

∣∣∣∣∣ 1

Kn

n∑
i=1

ki

∫ ϑi

µ

(ϑi − t)φ
′′
(t)dt−

∫ ϑ

µ

(ϑ− t)φ
′′
(t)dt

∣∣∣∣∣
≤ 1

Kn

n∑
i=1

ki

∫ ϑi

µ

(ϑi − t)
∣∣φ′′

(t)
∣∣dt+ ∫ ϑ

µ

(ϑ− t)
∣∣φ′′

(t)
∣∣dt. (5)

Change of the variable t = θµ+ (1− θ)ϑi for θ ∈ [0, 1] will give the following result∫ ϑi

µ

(ϑi − t)|φ
′′
(t)|dt = (ϑi − µ)

∫ 1

0

(ϑiθ − µθ)|φ
′′
(θµ+ (1− θ)ϑi)|dθ. (6)

Using the strong convexity of |φ′′ | in (6), the following result acquires∫ ϑi

µ

(ϑi − t)|φ
′′
(t)|dt

≤ (ϑi−µ)

∫ 1

0

(ϑiθ−µθ)×
(
θ|φ

′′
(µ)|+ (1− θ)|φ

′′
(ϑi)| − µθ(1− θ)(µ− ϑi)

2
)
dθ
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= (ϑi − µ)

∫ 1

0

(ϑiθ − µθ)
[
θ|φ

′′
(µ)|+ |φ′′(ϑi)| − θ|φ

′′
(ϑi)|

−λθ(µ− ϑi)
2 + λθ2(µ− ϑi)

2
]
dθ

= (ϑi − µ)

∫ 1

0

(
ϑiθ

2|φ
′′
(µ)| − µθ2|φ

′′
(µ)|+ ϑiθ|φ′′(ϑi)| − µθ|φ

′′
(ϑi)|

−ϑiθ
2|φ′′(ϑi)|+ µθ2|φ′′(ϑi)| − ϑiλθ

2(µ− ϑi)
2 + µλθ2(µ− ϑi)

2

+ϑiλθ
3(µ− ϑi)

2 − µλθ3(µ− ϑi)
2
)
dθ.

= (ϑi − µ)

[
(ϑi − µ)

(
|φ′′

(µ)|
3

+
|φ′′

(ϑi)|
6

)
+

µλ

12
(ϑi − µ)2 − ϑiλ

12
(ϑi − µ)2

]

= (ϑi−µ)2

[
|φ′′

(µ)|
3

+
|φ′′

(ϑi)|
6

+
µλ

12
(ϑi − µ)− ϑiλ

12
(ϑi − µ)

]
. (7)

Substitution of ϑi by ϑ in (7) gives the following inequality∫ ϑ

µ

(ϑ− t)|φ
′′
(t)|dt ≤ (ϑ− µ)2

[
|φ′′

(µ)|
3

+
|φ′′

(ϑ)|
6

+
µλ

12
(ϑ− µ)− ϑλ

12
(ϑ− µ)

]
.

(8)
From (5), (7) and (8) we get (3). □

Example 1. Let φ(t) = t4, t ∈ [0, 1], then φ
′′
(t) = 12t2 > 0, |φ′′ |′′(t) = 24 ≥ 2(12)

for all t ∈ [0, 1]. Which show that φ is convex and with modulus λ = 12 the

function |φ′′ | is strongly convex on [0, 1]. Now, let k1, k2, k3 = 0.2, 0.3, 0.5 and
υ1, υ2, υ3 = 0.5, 0.25, 0.2 respectively, then applying these values in (3) , we get

0 <

3∑
i=1

kiφ(ϑi)− φ

(
3∑

i=1

kiϑi

)
≤ 6µ4 − 2.2µ3 + 0.0001µ2 + 0.0202 = T (µ) (9)

Here at µ = 0.275 , T (µ) will reach towards its minimum value, which is 0.0086
and hence from (9) we have

0 <

3∑
i=1

kiφ(ϑi)− φ

(
3∑

i=1

kiϑi

)
≤ 0.0086. (10)

For |φ′′ | as a convex function and for the above values of k1, k2, k3 and υ1, υ2, υ3,
the following result has been obtained in [4].

0 <

3∑
i=1

kiφ(ϑi)− φ

(
3∑

i=1

kiϑi

)
≤ 0.0092. (11)

It is easy to understand that inequality (10) gives better result than the results
obtained in inequality (11) for the Jensen gap. Thus through this gap it is under-
standable that strongly convex functions actually strengthens the results.
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Proposition 1. Let (a1, . . . , an), and (b1, . . . , bn) be two positive n − tuples and
[σ1, σ2] be a positive interval. Then

1. for q > 1, p ∈ (1, 2)∪ (3, 4) such that 1
p +

1
q = 1 with µ,

∑n
i=1 aibi∑n
i=1 bqi

, aib
− q

p

i ∈ [σ1, σ2]

for i = 1, . . . , n, the following inequality holds(
n∑

i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

−
n∑

i=1

aibi

≤ p(p− 1)

24

1∑n
i=1 b

q
i

n∑
i=1

bqi

(
aib

− q
p

i − µ
)2

×
[
8µp−2 + 4ap−2

i b
q
p−1

i − (p− 2)(p− 3)σp−4
2

(
aib

− q
p

i − µ
)2]

+

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

− µ

)2

×

8µp−2 + 4

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

)p−2

− (p− 2)(p− 3)σp−4
2

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

− µ

)2
(12)

2. If the statement of part 1 satisfied, then the following inequality holds but this
time keeping the condition that p > 4(

n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

−
n∑

i=1

aibi

≤ p(p− 1)

24

1∑n
i=1 b

q
i

n∑
i=1

bqi

(
aib

− q
p

i − µ
)2

×
[
8µp−2 + 4ap−2

i b
q
p−1

i − (p− 2)(p− 3)σp−4
1 (aib

− q
p

i − µ)2
]

+

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

− µ

)2

×

8µp−2 + 4

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

)p−2

− (p− 2)(p− 3)σp−4
1

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

− µ

)2
(13)

Proof. 1. Let φ(t) = tp, t ∈ [σ1, σ2] then φ′′(t) = p(p− 1)tp−2 > 0, |φ′′|′′(t) = p(p−
1)(p−2)(p−3)tp−4, which show that the function φ is convex, and for the given value

of p, the function |φ′′ |′′(t) is decreasing while |φ′′ |′′(t) ≥ 2
(

p(p−1)(p−2)(p−3)σp−4
2

2

)
for all t ∈ [σ1, σ2]. Therefore the function |φ′′ | is strongly convex with λ =
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p(p−1)(p−2)(p−3)σp−4
2

2 , so using (3) for φ(t) = tp, ki = bqi and ϑi = aib
− q

p

i , we de-
rive( n∑

i=1

api

)(
n∑

i=1

bqi

)p−1

−

(
n∑

i=1

aibi

)p
 1

p

≤ p(p− 1)

24

1∑n
i=1 b

q
i

n∑
i=1

bqi

(
aib

− q
p

i − µ
)2

×
[
8µp−2 + 4ap−2

l b
q
p−1

i − (p− 2)(p− 3)σp−4
2

(
alb

− q
p

i − µ
)2]

+

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

− µ

)2

×

8µp−2 + 4

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

)p−2

− (p− 2)(p− 3)σp−4
2

(∑n
i=1 aib

− q
p

i∑n
i=1 b

q
i

− µ

)2
(14)

By applying the inequality αs − βs ≤ (α − β)s, β ∈ [0, α], s ∈ [0, 1] for α =

(
∑n

i=1 a
p
i )
(∑n

i=1 b
q

i

)p−1
, β = (

∑n
i=1 aibi)

p
and s = 1

p we obtain(
n∑

i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

−

(
n∑

i=1

aibi

)
≤

( n∑
i=1

api

)(
n∑

i=1

bqi

)p−1

−

(
n∑

i=1

aibi

)p
 1

p

(15)
From (14) and (15), we get (12)

2. We get λ =
p(p−1)(p−2)(p−3)σp−4

1

2 , as by applying the same proposed value of

p, the function |φ′′ |′′ become an increasing function. Now by applying the same
method of part 1 the inequality (13) can be obtained. □

Here in the following theorem, we present a generalized version of Theorem 5.

Theorem 6. Let φ ∈ C2[σ1, σ2] such that |φ′′ | is strongly convex function with mod-
ulus λ, and ξ1 ≥ 0 integrable function such that ξ1 : [ρ1, ρ2] → R with

∫ ρ2

ρ1
ξ1(t)dt =

D > 0. Also, assuming the integrable function ξ2 such that ξ2 : [ρ1, ρ2] → R
where ξ2(t) ∈ [σ1, σ2],∀ t ∈ [ρ1, ρ2]. Then the following inequality holds for
ξ = 1

D

∫ ρ2

ρ1
ξ2(t)ξ1(t)dt and µ ∈ [σ1, σ2].∣∣∣∣∣ 1D

∫ ρ2

ρ1

ξ1(t) (φ ◦ ξ2) (t)dt− φ(ξ)

∣∣∣∣∣
≤ 1

D

∫ ρ2

ρ1

ξ1(t) (ξ2(t)− µ)
2
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×
(
φ′′(µ)

3
+

φ′′(ξ2(t))

6
+

µλ

12
(ξ2(t)− µ)− λξ2(t)

12
(ξ2(t)− µ)

)
dt

+
(
ξ − µ

)2 [φ′′(µ)

3
+

φ′′(ξ)

6
+

µλ

12

(
ξ − µ

)
− ξλ

12
(ξ − µ)

]
. (16)

Proof. Using (2) in 1
D

∫ ρ2

ρ1
ξ1(t) (φ ◦ ξ2) (t)dt and φ(ξ), then some calculations lead

towards the following identity.

1

D

∫ ρ2

ρ1

ξ1(t) (φ ◦ ξ2) (t)dt− φ(ξ)

=
1

D

∫ ρ2

ρ1

(
ξ1(t)

∫ ξ2(t)

µ

(ξ2(t)− t)φ
′′
(t)dt

)
dt−

∫ ξ

µ

(ξ − t)φ
′′
(t)dt. (17)

From here, adopting the procedure of the proof of Theorem 5, we get the result. □

Remark 1. The integral form of Proposition 1 may be shown as an application of
Theorem 6.

Corollary 1. Let Φ : [ρ1, ρ2] → R be such that |Φ′′| is strongly convex function
with modulus λ and µ ∈ [ρ1, ρ2], then the following inequality can be obtained:∣∣∣∣∣ 1

ρ2 − ρ1

∫ ρ2

ρ1

Φ(t)dt− Φ

(
ρ1 + ρ2

2

)∣∣∣∣∣
≤ 1

6(ρ2 − ρ1)

∫ ρ2

ρ1

(t− µ)2Φ′′(t)dt+
1

24

∣∣∣∣Φ′′
(
ρ1 + ρ2

2

)∣∣∣∣ (ρ1 + ρ2 − 2µ)2

+
Φ

′′
(µ)

36

(
7ρ21 + 7ρ22 + 10ρ1ρ2 − 24µρ1 − 24µρ2 + 24µ2

)
+

µλ

48× 96

(
2 (ρ1 + ρ2)

(
ρ21 + ρ22

)
− 4

(
ρ21 + ρ22 + ρ1ρ2

)
− 4µ3

)
+ (ρ1 + ρ2 − 2µ)

3

− λ

12(ρ2 − ρ1)

(
ρ52 − ρ51

5
−

µ3
(
ρ22 − ρ21

)
2

− 3µ(ρ42 − ρ41)

4
+ µ2

(
ρ32 − ρ31

))

−λ(ρ1 + ρ2)

192
(ρ1 + ρ2 − 2µ)3. (18)

Proof. By utilizing (16) for Φ = φ, [σ1, σ2] = [ρ1, ρ2] and ξ1(t) = 1, ξ2(t) = t for all
t ∈ [ρ1, ρ2], we get (18). □
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3. Applications in Information Theory

In information theory, we study about the storage, quantification and communi-
cation of information about certain events in different aspects. In this field, various
such events may be practiced through different divergences, distances or entropies
for example Kullback-Leibler and Rényi-divergences, Hellinger distance, Shannon
and Zipf-Mandelbrot entropies etc, which are special cases of the Csiszár divergence.
In analysis, the Jensen inequality is one of the most important inequalities which
produces various results for Csiszár divergence by manipulating suitable substitu-
tions. Such practices are made in this section. Following is the Csiszár divergence
functional [18]:

Definition 2 (Csiszár divergence). Let [σ1, σ2] ⊂ R and T : [σ1, σ2] → R be a
function, then for h = (h1, . . . , hn) ∈ Rn and z = (z1, . . . , zn) ∈ Rn

+ such that
hi

zi
∈ [σ1, σ2], for i = 1, . . . , n, the Csiszár divergence is defined as:

C(h, z) =

n∑
i=1

ziT

(
hi

zi

)
.

Theorem 7. Let for the function T ∈ C2[σ1, σ2], such that with modulus λ, |T ′′|
is strongly convex function. Also, let h = (h1, . . . , hn) ∈ Rn and z = (z1, . . . , zn) ∈
Rn

+, such that µ,
∑n

i=1 hi∑n
i=1 zi

, hi

zi
∈ [σ1, σ2] ⊂ R, for i = 1, 2, . . . , n then,∣∣∣∣ 1∑n

i=1 zi
C(h, z)− T

(∑n
i=1 hi∑n
i=1 zi

)∣∣∣∣
≤ 1∑n

i=1 zi

n∑
i=1

zi

(
hi

zi
− µ

)2

×

 |T ′′(µ)|
3

+

∣∣∣T ′′
(

hi

zi

)∣∣∣
6

+
µλ

12

(
hi

zi
− µ

)
−

(
hi

zi

)
λ

12

(
hi

zi
− µ

)
+

(∑n
i=1 hi∑n
i=1 zi

− µ

)2
[
|T ′′(µ)|

3
+

∣∣∣T ′′
(∑n

i=1 hi∑n
i=1 zi

)∣∣∣
6

+
µλ

12

(∑n
i=1 hi∑n
i=1 zi

− µ

)

−

(∑n
i=1 hi∑n
i=1 zi

)
λ

12

(∑n
i=1 hi∑n
i=1 zi

− µ

)]
. (19)

Proof. Utilizing φ = T, ϑi =
hi

zi
and ki =

zi∑n
i=1 zi

in (3) we obtain (19). □

Definition 3 (Rényi-divergence). For two positive probability distributions h =
(h1, . . . , hn), z = (z1, . . . , zn) and η ≥ 0, η ̸= 1, the Rényi-divergence is defined as:

R(h, z) =
1

η − 1
log

(
n∑

i=1

hη
i z

1−η
i

)
.
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Corollary 2. Let h = (h1, . . . , hn), z = (z1, . . . , zn) be two positive probability

distributions and η > 1 such that µ,
∑n

i=1 zi

(
hi

zi

)η
,
(

hi

zi

)η−1

∈ [σ1, σ2] ⊆ R for

i = 1, 2 . . . , n then

R(h, z)− 1

η − 1

n∑
i=1

hi log

(
hi

zi

)η−1

≤ 1

η − 1

n∑
i=1

hi

(
hi

zi
− µ

)2
 1

3µ2

+
1

6

(
zi
hi

)2(η−1)

− 1

4σ4
2

((
hi

zi

)η−1

− µ

)2


+

(
n∑

i=1

hη
i z

η−1
i − µ

)2
 1

3µ2
+

1

6
(∑n

i=1 h
η
i v

1−η
i

)2 − 1

4σ4
2

(
n∑

i=1

hµ
i z

1−η
i − µ

)2
 .

(20)

Proof. Let φ(t) = − 1
η−1 log(t), t ∈ [σ1, σ2], then φ′′(t) = 1

(η−1)t2 and |φ′′|′′(t) =

6
(η−1)t4 ≥ 2

(
3

(η−1)σ4
2

)
which implies that φ is convex and with λ = 3

(η−1)σ4
2
, |φ′′ | is

strongly convex. Thus we get (20) by applying (3) for φ(t) = − 1
η−1 log(t), ki = hi

and ϑi =
(

hi

zi

)η−1

. □

Definition 4 (Shannon entropy). Let z = (z1, . . . , zn) be a positive probability
distribution , then the information divergence or shannon entropy is define as:

S(z) = −
n∑

i=1

zi log(zi).

Corollary 3. Suppose a positive probability distribution z = (z1, . . . , zn) and µ, 1
zi

∈
[σ1, σ2] ⊆ R+ for i = 1, . . . , n. then

log n− S(z) ≤
n∑

i=1

zi

(
1

zi
− µ

)2
[

1

3µ2
+

z2i
6

− 1

4σ4
2

(
µ− 1

zi

)2
]

+(n− µ)2
[

1

3µ2
+

1

6n2
− 1

4σ4
2

(n− µ)2
]
. (21)

Proof. Let φ(t) = − log t, t ∈ [σ1, σ2] then φ′′(t) = 1
t2 > 0 and |φ′′|′′(t) = 6

t4 ≥ 2 3
σ4
2
,

which presented that the function φ is convex and with λ = 3
σ4
2
, |φ′′| is strongly

convex . Therefore applying (19) for φ(t) = − log(t), (h1, . . . , hn) = (1, . . . , 1), we
get (21). □
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Definition 5 (Kullback-Leibler divergence). For two positive probability distribu-
tions, h = (h1, . . . , hn) and z = (z1, . . . , zn), the Kullback-Leibler divergence is
defined as:

KL(h, z) =

n∑
i=1

hi log

(
hi

zi

)
.

Corollary 4. Consider that [σ1, σ2] ⊆ R+ and h = (h1, . . . , hn), z = (z1, . . . , zn)
are two positive probability distributions, with µ, hi

zi
∈ [σ1, σ2], then

KL(h, z) ≤
n∑

i=1

zi

(
hi

zi
− µ

)2
[

1

3µ
+

zi
6hi

− 1

12σ3
2

(
hi

zi
− µ

)2
]

+(µ− 1)2
[
1

3µ
− 1

12σ3
2

(µ− 1)2
]
. (22)

Proof. Let φ(t) = t log t, t ∈ [σ1, σ2], then φ′′(t) = 1
t > 0, which conclude that φ

is convex function. Also, |φ′′|′′(t) = 2
t3 ≥ 2

(
1
σ3
2

)
, which implies, with λ = 1

σ3
2
> 0

the function |φ′′| is strongly convex. Thus we get (22) by applying (19) for φ(t) =
t log t. □

Definition 6 (Bhattacharyya coefficient). If z = (z1, . . . , zn) and h = (h1, . . . , hn)
are two positive probability distributions, then the mathematical form of Bhat-
tacharyya coefficient is given by:

B(h, z) =

n∑
i=1

√
hizi.

Corollary 5. Consider that h = (h1, . . . , hn) and z = (z1, . . . , zn) are some pos-
itive probability distributions with the following conditions µ, hi

zi
∈ [σ1, σ2] where

[σ1, σ1] ⊆ R+ and i = 1, 2, . . . , n then

1−B(h, z) ≤
n∑

i=1

zi

(
hi

zi
− µ

)2
[

1

12µ
3
2

+
1

24

(
zi
hi

) 3
2

− 5

128σ
7
2
2

]

+
(
1− µ

)2 [ 1

24
+

1

12µ
3
2

− 5

128σ
7
2
2

(
1− µ

)2]
. (23)

Proof. Let φ(t) = −
√
t, t ∈ [σ1, σ2] then φ′′(t) = 1

4t
3
2
> 0 and |φ′′|′′(t) = 15

16t
7
2
≥

2

(
15

32σ
7
2
2

)
. Which show that the function φ is convex and with λ = 15

32σ
7
2
2

, |φ′′ | is

strongly convex. Therefore by putting φ(t) = −
√
t, in (19), we can get (23). □
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Definition 7 (Hellinger distance). For two positive probability distributions z =
(z1, . . . , zn), h = (h1, . . . , h2), the Hellinger distance is define as:

H(h, z) =
1

2

n∑
i=1

(√
hi −

√
zi

)2
.

Corollary 6. let h = (h1, · · · , hn) and z = (z1, · · · , zn) be two positive probability
distributions, such that µ, hi

zi
∈ [σ1, σ2], where [σ1, σ1] ⊆ R+ and i = 1, 2, . . . , n

then

H(h, z) ≤
n∑

i=1

zi

(
hi

zi
− µ

)2

 1

12µ
3
2

+
1

24
(

hi

zi

) 3
2

− 5

128σ
7
2
2


+(1− µ)

2

[
1

24
+

1

12µ
3
2

− 5

128σ
7
2
2

(
1− µ

)2]
. (24)

Proof. Let φ(t) = 1
2 (1 −

√
t)2, t ∈ [σ1, σ2], then φ′′(t) = 1

4t
3
2
> 0 and |φ′′|′′(t) =

15

16t
7
2

≥ 2

(
15

32σ
7
2
2

)
. This shows that φ is convex and |φ′′| is strongly convex with

modulus λ = 15

32σ
7
2
2

. Hence we can obtained (24) by utilizing (19) for φ(t) =

1
2 (1−

√
t)2. □

Definition 8 (Triangular discrimination). Assume that h = (h1, . . . , hn) and z =
(z1, . . . , zn) are two positive probability distributions then the mathematical formula
for the Triangular discrimination is given by:

Td(h, z) =

n∑
i=1

(hi − zi)
2

(hi + zi)
.

Corollary 7. let z = (z1, . . . , zn) and h = (h1, . . . , hn) be two positive probability
distributions. Further assume that µ, hi

zi
∈ [σ1, σ2] where [σ1, σ1] ⊆ R+ and i =

1, 2, . . . , n then

Td(h, z) ≤
n∑

i=1

zi

(
hi

zi
− µ

)2
[

8

3(µ+ 1)3
+

4z3i
3(hi + zi)3

− 4

(σ2 + 1)5

(
hi

zi
− µ

)2
]

+(1− µ)
2

[
8

3(µ+ 1)3
− 4

(σ2 + 1)5
(1− µ)2

]
. (25)

Proof. Let φ(t) = (t−1)2

(t+1) , t ∈ [σ1, σ2], then φ′′(t) = 8
(t+1)3 > 0 and |φ′′|′′(t) =

96
(t+1)5 ≥ 2

(
48

(σ2+1)5

)
. This presented that φ is a convex function and with λ =

48
(σ2+1)5 , |φ

′′| is a strongly convex function. Therefore using (19) for such values we

may deduce (25). □
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4. Concluding Remarks

In fact, among the mathematical inequalities for convex functions, the Jensen
inequality is the most powerful inequality whose gap can be utilized for various pur-
poses specially in the approximation of certain parameters in optimization prob-
lems. In this regard, better estimates for its gap can be used to obtain better
results. The strongly convex functions are some tools to strengthen such estimates.
In this paper, it is demonstrated through a numerical experiment that replacing
convex functions by strongly convex functions actually strengthens the bound pre-
sented for the Jensen gap in [4]. Similarly the improved result enabled us to present
improvements in the bounds obtained for the Hölder and Hermite-Hadamard gaps
and proposed such improvements in the results obtained for various entropies and
divergences in information theory. The idea presented in the paper, further moti-
vates the mathematicians to establish such results in future.
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[12] Beesack, P. R., Pečarić, J., On Jessen’s inequality for convex functions, J. Math. Anal. Appl.,
110(2) (1985), 536-552. https://doi.org/10.1016/0022-247X(85)90315-4

[13] Bibi, R., Nosheen, A., Bano, S., Pečarić, J., Generalizations of the Jensen functional involving

diamond integrals via Abel-Gontscharoff interpolation, J. Inequal. Appl., 2022 (2022), Article
ID 15. https://doi.org/10.1186/s13660-021-02748-y
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ALGORITHM TO A SOLUTION OF THE MODIFIED

REGULARIZED LONG WAVE EQUATION
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Abstract. In this article, a Lie-Totter splitting algorithm, which is highly
reliable, flexible and convenient, is proposed along with the collocation finite

element method to approximate solutions of the modified regular long wave
equation. For this article, quintic B-spline approximation functions are used in

the implementation of collocation methods. Four numerical examples includ-

ing a single solitary wave, the interaction of two- three solitary waves, and a
Maxwellian initial condition are presented to test the closeness of the solutions

obtained by the proposed algorithm to the exact solutions. The solutions pro-

duced are compared with those in some studies with the same parameters that
exist in the literature. The fact that the present algorithm produces results as

intended is a proof of how useful, accurate and reliable it is. It can be stated

that this fact will be very useful the application of the presented technique
for other partial differential equations, with the thought that it may lead the

reader to obtain superior results from this study.

1. Introduction

Nonlinear partial differential equations play an important role in the modeling
of many disciplines. The generalized regularized long wave (GRLW), presented in
the form below, is among these equations

Ut + Ux − µUxxt + ϵUpUx = 0 (1)

in which p is positive integer, µ and ϵ non-negative constants. The solutions of this
equation, which have an important place in the propagation of nonlinear dispersion
waves, are among the solitary wave types, which are packets or pulses propagat-
ing in a nonlinear dispersion medium. They have shapes that are not affected by
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collisions. These waves preserve their stable wave form since the nonlinear and
dispersive effects have dynamical balance. Sometimes it is not easy to obtain ana-
lytical solutions of all partial differential equations. In this case, various numerical
methods have been developed to obtain approximate solutions to such problems.
Some authors have proposed various approaches to solve Eq.(1) numerically. A few
of them can be given as Petrov-Galerkin finite element method, Petrov-Galerkin
scheme and lumped Galerkin method based on cubic B-splines, respectively, by
Refs. [6, 37, 46], and a collocation method with cubic, septic and quintic B-splines,
respectively, by Refs. [10, 20, 47], and also Chebyshev-spectral collocation scheme
by Ref. [14], parabolic Monge-Ampere moving mesh and uniform by Ref. [2], an
approximate quasilinearization approach by Ref. [33], basis of reproducing kernel
space by Ref. [27], exponential B-spline collocation scheme by Ref. [28] and element-
free kp-Ritz method by Ref. [12]. When p = 1 in Eq.(1), it becomes the regularized
long wave (RLW) equation used to model a significant number of physical phenom-
ena with weak nonlinearity and dispersion waves containing longitudinal dispersive
waves in elastic rods, phonon packets in non-linear crystals, the transverse waves
in shallow water, a pressure wave in liquid’s gas bubbles, ion-acoustic waves and
magnetohydrodynamic wave in plasma. This equation was first introduced by [32]
then [5] worked. Many studies can be found in the literature for the approximate
solution of the RLW equation. Some of those can be given, Refs. [3, 8, 15, 23] with
the finite difference method, Refs. [9,24,41] with the Galerkin and Petrov Galarkin
methods and Refs. [7, 36, 39, 40, 44, 45] with the collocation algorithm as the finite
element method. Additionally, it were worked on methods explicit multistep by
Ref. [25] and Haar wavelet by Ref. [30] for RLW equation. In the present studied,
the modified regularized long wave equation will be discussed

Ut + Ux − µUxxt + 6U2Ux = 0 (2)

given with initial condition

U(x, 0) = g(x), xL ≤ x ≤ xR (3)

and boundary conditions

U(xL, t) = U(xR, t) = 0,

Ux(xL, t) = Ux(xR, t) = 0,

Uxx(xL, t) = Uxx(xR, t) = 0.

(4)

It can be seen that the approximate solutions of the MRLW equation have been
calculated by many methods in the literature. For example, as the finite el-
ement method, while the Galerkin and Petrov Galerkin approaches were stud-
ied by Refs. [16, 18, 37], the collocation algorithm with B-splines was studied by
Refs. [11,13,16,19,21,22,34,36], At the same time, [17] used finite difference scheme
for the MRLW, [1] solved the equation with mesh free collocation method using ra-
dial basis function and [38] acquired the solutions of the equation with the help of
Butcher’s fifth-order Runge-Kutta (BFRK) scheme.
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In this paper, the numerical algorithm of the MRLW equation has been obtained
by obtaining two numerical schemes with the help of the Lie-Trotter splitting algo-
rithm and the quintic B-spline collocation method has been applied to each scheme.
Thanks to this algorithm, the motion of a single solitary wave, the interaction of
two and three solitary waves and the Maxwell initial state have been examined
and thus numerical solutions produced with a hybrid approach have been obtained
as targeted. Furthermore, Linear stability analysis has been investigated with the
help of Von Neumann method.

2. The Splitting Algorithm

One of the developed methods to produce numerical solutions of partial differen-
tial equations is operator splitting methods. A time-dependent partial differential
equation, which usually represents complex physical phenomena such as convection,
diffusion, reaction in chemical phenomena, or diffusion, may consist of a combina-
tion of one or more operators. Although the computational power of computers
has increased rapidly in recent years, good results may not be obtained even if a lot
of time is spent in obtaining numerical solutions of a complex problem. Operator
splitting methods can be a good approach to numerical solution of such problems.
One of these methods is the first-order Lie-Trotter splitting method according to
time. This method is the simplest splitting method that reduces the solution of the
Cauchy problem given as below to the successive solution of two subproblems

dU(t)

dt
= ΛU(t), U(0) = U0, t ≥ 0, (5)

where operator Λ can be written as the sum of operators Â and B̂. In this case,
equation (5) can be written in the following form

dU(t)

dt
= ÂU(t) + B̂U(t), U(0) = U0, t ≥ 0, (6)

in which U0 ∈ X is the vector obtained from the initial condition, u(x, t) is solution

vector, the operators Λ, Â, B̂ are bounded or unbounded operators in a finite or
infinite Banach space X. To solve the equation (6) numerically, firstly splitting
technique split the equation into as follows

dU(t)

dt
= ÂU(t),

dU(t)

dt
= B̂U(t). (7)

Here, let ρ
[Â]
∆t and ρB̂∆t be the numerical solutions of the equations containing the

expressions Â and B̂ in expression (7), and let the exact solution of (6) be given as
ψ∆t. The simplest splitting methods are introduced as follows

ρ
[B̂]
∆t oρ

[Â]
∆t = e∆tB̂e∆tÂ or ρ

[Â]
∆toρ

[B̂]
∆t = e∆tÂe∆tB̂ .

and it is known as the Lie-Trotter splitting technique [42] in the literature. Using
the Taylor series, It can be stated that the following approximation for an initial
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value U0 is a first-order approximation to the solution of equation (6)

ψ∆t(U0) = (ρ
[Â]
∆toρ

[B̂]
∆t )(U0) + 0(∆t2).

Let the formal solution of (6) be given in the form

U(tn+1) = eΛ∆tU(tn) = e(Â+B̂)∆tU(tn). (8)

Unfolding Taylor series for this solution can be given in the following form

U(tn+1) = e∆t(Â+B̂)U(tn) =

∞∑
k=0

tk

k!

(
Â(u(t))

∂

∂U
+ B̂(u(t))

∂

∂U

)k
U(tn).

By calculating the sum of the operators Â and B̂ instead of Λ, a new approach to
Equation (6) can be obtained, presented in the form below

U(tn+1) = eÂ∆teB̂∆tU(tn). (9)

An error occurs if (9) is used instead of the equation (8). This is a local splitting
error given as follows

Te =
1

∆t
(e∆t(Â+B̂) − e∆tB̂e∆tÂ)U(tn)

=
1

∆t
[
∆t2

2
(ÂB̂ − B̂Â)U(tn) +O(∆t3)]

=
1

∆t
[Â, B̂)U(tn) +O(∆t2)]

To explain in more detail: Splitting technique splits the given original problem
into two parts according to the time. As a result, subproblems with a simpler
structure are obtained. Thus, the solution of the original problem is obtained
from the solution of the subproblems. In the Lie-Trotter schemes, the first sub-
problem with operator Â is solved using the original initial condition given with
the problem. Then, the solutions generated with the operator Â are utilized as the
initial condition for the solution of the second sub-problem given with the operator
B̂ and presented as the solution of the main problem in the first time step. In this
way, approximate solutions at the next time levels are obtained similarly to those in
the first time step. Algorithm of the mentioned technique with t0 = 0 and tN = T,

dU∗(t)

dt
= ÂU∗(t), U∗(tn) = U0

n , t ∈ [tn, tn+1],

dU∗∗(t)

dt
= B̂U∗∗(t), U∗∗(tn) = U∗(tn+1) , t ∈ [tn, tn+1].

where U0
n is the original initial condition given in (5), ∆t is the time step, ∆t =

tn+1 − tn, n = 0, 1, ..., N − 1. Thus, the targeted solutions are obtained with

U(tn+1) = u∗∗(tn+1). This scheme is called as (Â− B̂)-shaped splitting scheme.
It can be stated here that solving the sub-problems separately is more advantageous
in terms of computational cost rather than solving the whole problem [26,43].
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3. The Quintic B-splines

In order to make approximate calculations of the MRLW equation, the solution
region is limited to the interval xR ≤ x ≤ xN . This range is partitioned by nodes xj
into uniformly finite elements of length h such that xL = x0 ≤ x1 ≤ ... ≤ xN = xR
and h = xj+1 − xj . The set of quintic B-splines φj(x) for j = −2(1)N + 2 forming
a base on the interval [xL, xR] at nodes xj is presented as follows by [31]

φj(x) =
1

h5



p0 = (x− xj−3)
5, x ∈ [xj−3, xj−2]

p1 = p0 − 6(x− xj−2)
5, x ∈ [xj−2, xj−1]

p2 = p1 − 6(x− xj−2)
5 + 15(x− xj−1)

5, x ∈ [xj−1, xj ]

p3 = p2 − 6(x− xj−2)
5 − 20(x− xj)

5, x ∈ [xj , xj+1]

p4 = p3 − 6(x− xj−2)
5 + 15(x− xj+1)

5, x ∈ [xj+1, xj+2]

p5 = p4 − 6(x− xj−2)
5 − 6(x− xj+2)

5, x ∈ [xj+2, xmj3]

0, otherwise.

(10)
The numerical solution UN (x, t) corresponding to the exact solution U(x, t) is
searched in terms of quintic B-splines in the following form

UN (x, t) =

N+2∑
j=−2

φj(x)δj(t) (11)

Here, δj(t) are the unknown time parameters determined with both boundary and
collocation conditions. When the trial function (10) is substituted in the equation

(11), The knot values Uj , U
′

j , U
′′

j at nodes xj are acquired in terms of the parameter
δj(t) with form

Uj = δm−2 + 26δj−1 + 66δj + 26δj+1 + δj+2,

U
′

j =
5

h
(−δj−2 − 10δj−1 + 10δj+1 + δj+2),

U
′′

j =
20

h2
(δj−2 + 2δj−1 − 6δj + 2δ)j+1 + δj+2),

(12)

Here, the first and second derivatives with respect to x are denoted by the symbols
′ and ′′. The all of quintic B-spline base functions are zero outside of ϕj−2, φj−1, φj ,
φj+1, φj+2 and φj+3.

4. The Implementation of Collocation Method

In this section, firstly, the MRLW equation with the initial-boundary value prob-
lem is split. In an other saying, the main problem is divided into sub-equations
as follows to obtain two partial differential equations, one linear and the other
nonlinear, with respect to time

Ut − µUxxt + Ux = 0 (13)
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Ut − µUxxt + 6U2Ux = 0. (14)

When Uj and its first derivatives U
′

j and U
′′

j given in the (12) equation are substi-
tuted in equations (13) and (14), system of ordinary differential equations given in
the following form are obtained for j = 0(1)N in the entire solution region

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2

−µ20
h2

(δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2)

+
5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2) = 0, (15)

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2

−µ20
h2

(δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2)

+
5zj
h

(−δm−2 − 10δm−1 + 10δm+1 + δm+2) = 0 (16)

in which the first derivative according to time t is shown with symbol ′′.′′ and zj is
gotten as

zj = 6(δj−2 + 26δj−1 + 66δj + 26δj+1 + δj+2)
2

to linearize the (16) system. Then, by applying
δn+1
j + δnj

2
for spatial discretization

and
δn+1
j − δnj

∆t
for time discretization to these two systems, two numerical schemes

are obtained with form

k1δ
n+1
m−2 + k2δ

n+1
m−1 + k3δ

n+1
m + k4δ

n+1
m+1 + k5δ

n+1
m+2

= k6δ
n
m−2 + k7δ

n
m−1 + k8δ

n
m + k9δ

n
m+1 + k10δ

n
m+2, (17)

l1δ
n+1
m−2 + l2δ

n+1
m−1 + l3δ

n+1
m + l4δ

n+1
m+1 + l5δ

n+1
m+2

= l6δ
n
m−2 + l7δ

n
m−1 + l8δ

n
m + l9δ

n
m+1 + l10δ

n
m+2 (18)

in which ki, li(i = 1(1)10) and zj are zj = 6U2

k1 = 1− 20µ

h2
− 5∆t

2h
, k2 = 26− 40µ

h2
− 25∆t

h
, k3 = 66 +

120µ

h2
,

k4 = 26− 40µ

h2
+

25∆t

h
, k5 = 1− 20µ

h2
+

5∆t

h

k6 = 1− 20µ

h2
+

5∆t

2h
, k7 = 26− 40µ

h2
− 25∆t

h
, k8 = 66 +

120µ

h2
,

k9 = 26− 40µ

h2
+

25∆t

h
, k10 = 1− 20µ

h2
− 5∆t

h



1040 M. KARTA

l1 = 1− 20µ

h2
− 5zj∆t

2h
, l2 = 26− 40µ

h2
− 25zj∆t

h
, l3 = 66 +

120µ

h2
,

l4 = 26− 40µ

h2
+

25zj∆t

h
, l5 = 1− 20µ

h2
+

5zj∆t

2h
.

l6 = 1− 20µ

h2
+

5zj∆t

2h
, l7 = 26− 40µ

h2
+

25zj∆t

h
, l8 = 66 +

120µ

h2
,

l9 = 26− 40µ

h2
− 25zj∆t

h
, l10 = 1− 20µ

h2
− 5zj∆t

2h
.

(17) and (18) are systems consisting of (N + 1) equations with (N + 5) unknowns.
These systems contain four additional element parameters δ−2, δ−1, δN+1, δN+2 out-
side the solution region of the problem. To obtain the only solution of systems
(17) and (18), the parameters that are not in the solution region must be elim-

inated from these systems. For this purpose, the nodal values of Uj and (Uj)
′

in the equation (12) and the boundary conditions U(xL, t) = U(xR, t) = 0 and
Ux(xL, t) = Ux(xR, t) = 0 are used. Thus, systems (17) and (18) are reduced to
the (N + 1) x (N + 1) matrix system.
For approximate solutions of the (17) and (18) systems, it is necessary to find
the initial vector δ0j . This required initial vector is found by solving the sys-
tem of algebraic equations given in the following form, using the initial condition

U(xj , 0) = UN (xj , 0) = g0(xj), and the approach UN (x, 0) =
∑N+2

j=−2 φj(x)δ
0
j (0)

Um = δ0j−2 + 26δ0j−1 + 66δ0j + 26δ0j+1 + δ0j+2, j = 0(1)N,

U0 = δ0−2 + 26δ0−1 + 66δ00 + 26δ01 + δ02,

U1 = δ0−1 + 26δ00 + 66δ01 + 26δ02 + δ03,

.

.

.

UN−1 = δ0N−3 + 26δ0N−2 + 66δ0N−1 + 26δ0N + δ0N+1,

UN = δ0N−2 + 26δ0N−1 + 66δ0N + 26δ0N+1 + δ0N+2.

(19)

with unknown element parameters δ0j . By using the boundary conditions Ux(xL, t) =
Ux(xR, t) = 0 and Uxx(xL, t) = Uxx(xR, t) = 0 for these systems, δ−2, δ−1, δN+1, δN+2

are eliminated so that the following matrix equation is obtained

λb0 = d
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for the initial vector δ0j in which

λ =



54 60 6
25.25 67.5 26.25 1
1 26 66 26 1

. . .

1 26 66 26 1
1 26.25 67.5 25.25

6 60 54


,

b0 =
(
δ00, δ

0
1, δ

0
2...δ

0
N−2, δ

0
N−1, δ

0
N

)T
and

d =
(
U0, U1, U2, ..., UN−2, UN−1, UN

)T
.

Also, due to the non-linear zj term in system (18) to make numerical solutions
better, an inner iteration three or five times given in the following form throughout

computer work has been applied (δ∗)n = δn +
1

2
(δn − δn−1).

5. Stability Analysis of Numerical Algorithm

The stability analysis of the Lie-Trotter splitting algorithm applied to the MRLW
equation with the help of von Neumann theory is examined. In the previous section,
(17) and (18) systems were obtained by dividing the MRLW equation into linear
and non-linear sub-equations given as (13) and (14), and applying the collocation
method. For stability analysis based on Von Neumann theory of systems (17) and
(18), let the growth factors of a typical Fourier mode be defined as follows, with γ
a mode number and h the element size, and

δnj = ϱn1 e
ijγh, (20)

Ψn
j = ϱn2 e

ijγh, (21)

substitute 23 for scheme 17 and 20 for scheme 18. Since the system (18) contains
the nonlinear term 6U2Ux, the Fourier mode method cannot be applied to this
system, first of all, if the amount of 6U2 in the nonlinear term is taken as a local
constant like zj , the term 6U2Ux is linearized and after that Von Neumann method
is applied to the mentioned system. It can be stated Von Neumann analysis is
one of the most used techniques to analyze the stability analysis of approximate
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schemes for linear or linearized partial differential equations. Via the Euler formula
eiΦ = cosΦ+ isinΦ, growth factors ϱ1 and ϱ2 submitted as follows are acquired

ϱ1 =
A1 − iB1

A1 + iB1
, ϱ2 =

A1 − iC1

A1 + iC1
, (22)

A1 = (2− 40µ

h2
)cos(2γh) + (52− 80µ

h2
)cos(γh) + (66 +

120µ

h2
,

B =
5∆t

h
sin(2γh) +

50∆t

h
sin(γh),

and

C =
5zm∆t

h
sin(2γh) +

50zm∆t

h
sin(γh).

For k1, k2, ..., k9, k10 and l1, l2, ..., l9, l10 founded in section 3. |ϱ1| = |ϱ2| = 1 from
Equation (22) and hence, for the whole system with Lie Trotter-Splitting algorithm
can be written as |ϱ1|.|ϱ2| = 1. Because the conditions |ϱ1| ≤ 1, and |ϱ2| ≤ 1 ac-
cording to the von Neumann theory are satisfied, it can be clearly said that the
systems (17) and (18) are unconditionally stable.

6. Numerical Experiments and Discussion

For numerical calculations of main problem are considered to the movement of
single solitary wave, two and three solitary wave interactions and the Maxwellian
initial condition. The difference between the exact and approximate solutions is
calculated by choosing some specific times to match the studies in the literature.
For this, the following error norms are used

L2 = ||U − UN ||2 =

√√√√h

N∑
j=0

(U − UN )2,

and

L∞ = ||U − UN ||∞ = max
j

|U − UN |.

To check the conservation of numerical schemes during the simulation of solitary
wave motion, the invariants I1,I2 and I3 are calculated, which correspond to the
conservation of mass, momentum and energy proved by Olver [29] and presented
as follows

I1 =

∫ xR

xL

U(x, t)dx,

I2 =

∫ xR

xL

[U2(x, t) + µU2
x(x, t)]dx,

I3 =

∫ xR

xL

[U4(x, t)− µU2
x(x, t)]dx.
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6.1. Example I: The movement of a single solitary wave. This example
considers the MRLW equation by taking into accounting boundary condition U → 0
when x→ ±∞ and initial condition

U(x, 0) =
√
csech[s(x− x0)].

The exact solution for this problem is presented in the following form

U(x, t) =
√
csech[s(x− (c+ 1)t− x0)].

Here, c and x0 are arbitrary constants and s =
√

c
µ(c+1) . The exact values of the

conservation quantities of a single solitary wave with width s and amplitude
√
c as

in [11] are given as follows

I1 =

∫ xR

xL

U(x, t)dx =
π
√
c

s
,

I2 =

∫ xR

xL

[U2(x, t) + µU2
x(x, t)]dx =

2c

s
+

2µsc

3
,

I3 =

∫ xR

xL

[U4(x, t)− µU2
x(x, t)]dx =

4c2

3s
− 2µsc

3
.

(23)

For solitary wave motion with amplitude 1, All of calculations and comparisons in
Table 1-2 are done with µ = 1, x0 = 40, c = 1,∆t = 0.025 and h = 0.2 over [0, 100]
to match those in [11, 16, 21, 22, 36, 37]. Table 1 reports the invariant and error
norm amounts of the current approach from t = 0 to 10 with one increment value.
This table shows that the calculated invariants are compatible with each other and
gratifying because the error norms L2 and L∞ are quite small. Furthermore, it
can be seen from Table 1 that the the changing of invariants I1, I2, I3 are less than
0.8x10−7, 1.1x10−7, 1.26x10−5, respectively. The comparison of the ones of the
previously recorded methods with the results of the proposed technique is given in
Table 2 at time t = 10. Looking at the table, it can be easily seen that the current
approach produces the best results for error norms and the computed invariant
values are in agreement with the analytical ones I1 = 4.4428829, I2 = 3.2998316
and I3 = 1.4142135. The motion of a single solitary wave at various time levels
with parameters ∆t = 0.025, h = 0.2, c = 1 is plotted in Fig.1 and this figure shows
that the soliton shifts to the right at a constant velocity with an almost unchanged
amplitude even as time increases, as hoped. At t = 0, the amplitude is 1 which is
situated at x = 40 and x = 60.

For Table 3-4, the parameters µ = 1, x0 = 40, c = 0.3,∆t = 0.01 and h = 0.1
over [0, 100] are selected as in n Refs. [21]. Thus, The amplitude of the solitary
wave is 0.547723. Table 3 displays the invariant and error norm amounts of the
present approach from t = 0 to 20 with two increment value. From this table,
it can be observed that very small and pleasing solutions are obtained with the
Lie-Trotter splitting technique. Invariants I1, I3 are compatible with each other
and I2 remains constant. Furthermore, it can be seen from Table 3 that the the
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Table 1. The error norms and invariants of the single solitary
wave with ∆t = 0.025, h = 0.2, for c = 1 on the region [0, 100]

t I1 I2 I3 L2 x 103 L∞ x 103

0 4.44288294 3.29983161 1.41421360 0.00000000 0.00000000
1 4.44288293 3.29983161 1.41420559 1.56533150 1.02551887
2 4.44288292 3.29983159 1.41419884 2.41711399 1.40020924
3 4.44288292 3.29983158 1.41419842 2.67081261 1.22652109
4 4.44288291 3.29983157 1.41419926 2.68157587 1.04668636
5 4.44288290 3.29983156 1.41419995 2.62782252 1.10627938
6 4.44288289 3.29983155 1.41420040 2.56931532 1.11288942
7 4.44288289 3.29983153 1.41420067 2.52306335 1.07889684
8 4.44288288 3.29983152 1.41420084 2.49240521 1.02360259
9 4.44288287 3.29983151 1.41420094 2.47654106 0.95806880
10 4.44288286 3.29983150 1.41420100 2.47366508 0.89643465

Table 2. Comparisons of the error norms and invariants of the
single solitary wave with ∆t = 0.025, h = 0.2, for c = 1 on the
region [0, 100] at t = 10

method I1 I2 I3 L2 x 103 L∞ x 103

Exact 4.4428829 3.2998316 1.4142135 0 0
Present 4.4428829 3.2998315 1.4142010 2.47366508 0.89643465
[21] 4.4428661 3.2997108 1.4143165 2.58891 1.35164
[22] 4.44288 3.29983 1.41420 9.30196 5.43718
[16] 4.4431919 3.3003022 1.4146930 2.41750 1.08099
[36] 4.445176 3.302476 1.417411 0.8644 1.2475
[11]1 4.442 9.299 1.413 19.39 9.24
[11]2 4.440 3.296 1.411 20.3 11.2
[37] 4.44288 3.29981 1.41416 3.00533 1.68749

changing of invariants I1, I3 are less than 1.4x10−7, 0.9x10−7, respectively and
0 of I2 during the execution of the program. Table 4 presents a comparison of
the results of the proposed study and other registered ones by calculating error
norms L2 and L∞ and invariant values I1,I2 and I3. All comparisons are made for
time t=20. As a result of this comparison, it can easily be seen that the present
technique produces more satisfactory results. Invariant values are consistent with
those compared. The motion of a single solitary wave at various time levels with
parameters ∆t = 0.01, h = 0.1, c = 0.3 is plotted in Fig.2. Fig.3 shows the graphs of
the error distributions of the solitary wave with amplitude of 1 and 0.3 respectively,
at t = 10 and 20.
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Figure 1. Movement of a single solitary wave at t = 0(2)10 for
MRLW equation
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Figure 2. Movement of a single solitary wave at t = 0(5)20 for
MRLW equation
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Figure 3. Error distribution graphs for a) ∆t = 0.025, h =
0.2, c = 1 and b) ∆t = 0.01, h = 0.1, c = 0.3 over [0, 100].
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Table 3. The error norms and invariants of the single solitary
wave with ∆t = 0.01, h = 0.1, for c = 0.3 on the region [0, 100]

t I1 I2 I3 L2 x 103 L∞ x 103

0 3.58196673 1.34507649 0.15372303 0.00000000 0.00000000
2 3.58196674 1.34507649 0.15372299 0.17472238 0.09673881
4 3.58196675 1.34507649 0.15372294 0.28047087 0.14367750
6 3.58196676 1.34507649 0.15372293 0.32725879 0.14066701
8 3.58196677 1.34507649 0.15372293 0.34590142 0.13215052
10 3.58196678 1.34507649 0.15372293 0.35279733 0.13158877
12 3.58196678 1.34507649 0.15372294 0.35465095 0.13057054
14 3.58196679 1.34507649 0.15372294 0.35426140 0.12926338
16 3.58196678 1.34507649 0.15372294 0.35288262 0.12791317
18 3.58196674 1.34507649 0.15372294 0.35110940 0.12661543
20 3.58196659 1.34507649 0.15372294 0.34923321 0.12540476

Table 4. Comparisons of the error norms and invariants of the
single solitary wave with ∆t = 0.01, h = 0.1, for c = 0.3 on the
region [0, 100] at t = 20

method I1 I2 I3 L2 x 104 L∞ x 104

Present 3.58196659 1.34507649 0.15372294 0.34923321 0.12540476
[21] 3.5820204 1.3450974 0.1537250 0.8112594 0.3569076
[22] 3.58197 1.34508 0.153723 6.06885 2.96650
[16] 3.5820206 1.3450944 0.1537284 1.2273638 0.4472294
[36] 3.582265 1.345182 0.1538901 3.379583 7.672911
[1]MQ 3.5819665 1.3450764 0.153723 0.51498 0.22551
[1]TPS 3.5819663 1.3450759 0.153723 0.51498 0.26605
[13] 3.581967 1.345076 0.153723 0.5089274 0.2222848

6.2. Example II: Interaction of two solitary waves. This example considers
the problem of interaction of two solitary waves with various amplitudes and for
Eq.(2), the following initial conditions are written as the linear sum of two well-
separated solitary waves with different amplitudes

U(x, 0) =

2∑
i=1

aisech[si(x− xi)],
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in which ci and xi are arbitrary constants, ai =
√
ci, si =

√
ci

µ(ci+1) , i = 1(1)2. The

exact values of the conservation quantities are given as follows [11]

I1 =

2∑
i=1

π
√
ci

si
,

I2 =

2∑
i=1

2ci
si

+
2µsici

3
,

I3 =

2∑
i=1

4c2i
3si

− 2µsici
3

.

Numerical simulation is done on the [0, 250] region by selecting the parameters µ =
1, x1 = 25, x2 = 55, c1 = 4, c2 = 1,∆t = 0.025, h = 0.2 as in Ref. [21]. The exper-
imental results obtained by running the numerical experiments at t=0(2)20 times
are shown in Table 5. The exact values of the invariants are I1 = 11.467698,I2 =
14.629243 and I3 = 22.880466. Table 5 submits a comparison of the solutions in
the proposed method with those in the references [1,16,19,21,22,34,37,38] and this
table displays that the invariant quantities I1,I2 and I3 are quite conservative and
the values found are consistent with their exact values throughout the operation
of the computer program. Fig.4 reports the interactions of two solitary waves at
various time levels. It can be clearly seen from this figure that at t = 0, the wave
with the smaller amplitude is to the right of the wave with the larger amplitude.
Since the shorter wave moves slower than the longer one, the longer wave catches
the short wave at t = 12 and collides. Later, it fars away from the shorter one with
the advancing time. At t = 20, while the amplitude of the smaller wave becomes
1.014 at x = 84.2 the amplitude of the larger wave becomes 1.998 at x = 97.4.

6.3. Example III:Interaction of three solitary waves. This example deals
with the problem of interaction of three solitary waves with different amplitudes
and advancing in the same direction and for MRLW equation, the following initial
conditions are written as the linear sum of three well-separated solitary waves with
different amplitudes

U(x, 0) =

3∑
i=1

aisech[si(x− xi)],

in which ci and xi are arbitrary constants, ai =
√
ci, si =

√
ci

µ(ci+1) , i = 1(1)3.

The exact values of the conservation quantities obtained from Eq.(18) are given as
follows

I1 =

3∑
i=1

π
√
ci

si
,
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Table 5. Comparison of invariants of two solitary waves with
values ∆t = 0.025, h = 0.2, for x1 = 25, x2 = 55, c1 = 4, c2 = 1 on
the region [0, 250] at t = 0(2)20 with those in [13]

method [13]

t I1 I2 I3 I1 I2 I3

0 11.46769804 14.62924273 22.88046615 11.467698 14.629277 22.880432
2 11.46769804 14.62924273 22.88046615 11.467698 14.624259 22.860365
4 11.46769804 14.62924273 22.88046615 11.467698 14.619226 22.840279
6 11.46769804 14.62924273 22.88046615 11.467699 14.614169 22.820069
8 11.46769804 14.62924273 22.88046615 11.467700 14.606821 22.787857
10 11.46769804 14.62924273 22.88046615 11.467700 14.603687 22.771773
12 11.46788404 14.62924273 22.88046615 11.467699 14.603056 22.775766
14 11.46769804 14.62924273 22.88046615 11.467699 14.598059 22.756029
16 11.46769804 14.62924273 22.88046615 11.467700 14.593048 22.736127
18 11.46769804 14.62924273 22.88046615 11.467700 14.588061 22.716289
20 11.46769804 14.62924273 22.88046615 11.467701 14.583089 22.696510
20 [19]1 11.4676541 14.6292088 22.8803901
20 [19]2 11.4676452 14.6309639 22.8786025
20 [34] 11.4677 14.6299 22.8806
20 [38] 11.4676977 14.62927316 22.8804154
20 [21] 11.4691886 14.6331334 22.8764330
20 [16] 11.4662207 14.6253125 22.8650456
20 [37] 11.4677 14.6299 22.8806
20 [22] 11.4677 14.6292 22.8809
20 [1]MQ 11.467698 14.583052 22.696539
20 [1]TPS 11.467742 14.582424 22.694269
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Figure 4. The interactions of two solitary waves at various time
levels of MRLW equation
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I2 =

3∑
i=1

2ci
si

+
2µsici

3
,

I3 =

3∑
i=1

4c2i
3si

− 2µsici
3

.

During the numerical simulation, the calculation process is performed by taking
the parameters µ = 1, x1 = 15, x2 = 45, x3 = 60c1 = 4, c2 = 1, c3 = 0.25∆t =
0.025, h = 0.2 on the region [0, 250]. This process is carried out at times 0(5)45
and the exact values of the invariants here are I1 = 14.9801,I2 = 15.8218 and I3 =
22.9923. Table 6 presents a comparison of the solutions in the suggested method
with those in the references [1, 21, 22, 34] and this table displays that the invariant
quantities I1, I2 and I3 are quite conservative and the values found are consistent
with their exact values throughout the operation of the computer program. Here,
the interaction of solitary waves using various times is shown in Fig.5. This figure
indicates that the interaction started at approximately t = 10. there were overlaps
at time t = 40, and then the waves returned to their original state at t = 40.

Table 6. Comparison of invariants of three solitary waves with
values ∆t = 0.025, h = 0.2, for x1 = 15, x2 = 45, x3 = 60, c1 =
4, c2 = 1, c3 = 0.25 on the region [0, 250] at t = 0(5)45 with those
in [13]

method [13]

t I1 I2 I3 I1 I2 I3

0 14.97251076 15.82181232 22.99226955 14.980099 15.837528 23.008136
5 14.97251076 15.82181232 22.99226955 14.980105 15.837528 22.957891
10 14.97251076 15.82181232 22.99226955 14.980109 15.807025 22.877972
15 14.97251076 15.82181232 22.99226955 14.980106 15.807032 22.885947
20 14.97251076 15.82181232 22.99226955 14.980106 15.795022 22.837454
25 14.97251076 15.82181232 22.99226955 14.980107 15.782840 22.788852
30 14.97251076 15.82181232 22.99226955 14.980107 15.770634 22.740419
35 14.97251076 15.82181232 22.99226955 14.980108 15.758480 22.692279
40 14.97251076 15.82181232 22.99226955 14.980108 15.746389 22.644448
45 14.97251076 15.82181232 22.99226955 14.968030 15.734374 22.596591
20 [34] 14.930390 15.822500 22.964190
20 [21] 14.7145273 15.4927592 23.3529062
20 [22] 13.7043 15.6563 22.9303
20 [1]MQ 14.96814 15.73434 22.596625
20 [1]TPS 14.96824 15.73376 22.594494

6.4. Example IV: The Maxwellian initial condition. This last example exam-
ines the improvement of the following the Maxwell initial condition in the sequence
of solitary waves

U(x, 0) = exp(−(x− 40)2).

Here, the solution behavior for the Maxwellian condition presented above is evalu-
ated with the values of µ. Approximate values of invariants are shown in Table 7.
All figures are depicted in Fig. 6 at time 14.5. At the end of the study for values
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Figure 5. The interactions of three solitary waves at various time
levels of MRLW equation

µ = 0.1, 0.04, 0.015 and µ = 0.01., it is observed that only a single soliton move-
ment is followed for µ = 0.1 and this is pictured with a). When µ = 0.04, 0.015 are
taken, it is shown with b) and c) that two and three stable solitons are occured and
when the value µ = 0.01 is selected, the Maxwellian initial condition decomposes
into four solitary waves and it is plotted with d). In all the figures in this example,
the presence of a small oscillating tail formed behind the last wave is observed.
The peaks of the well-developed wave whose speeds are linearly dependent on their
amplitudes lie on a straight line.

7. Conclusion

In this article, Lie-trotter splitting algorithm with collocation finite element
method has been presented. Four experimental examples are given to measure



NUMERICAL APPROXIMATION OF THE MRLW EQUATION 1051

Table 7. Values of the invariants of the MRLW equation for the
Maxwellian initial condition

t µ I1 I2 I3 µ I1 I2 I3

0 0.1 1.77245385 1.37864519 0.76089588 0.015 1.77245385 1.27211379 0.86742727
3 1.77242409 1.37853754 0.66726850 1.74470267 1.23369811 0.72548127
6 1.77237678 1.37846448 0.66768464 1.71890317 1.17440856 0.73866510
9 1.77232940 1.37839090 0.66787415 1.70124953 1.13869004 0.74633211
12 1.77228192 1.37831554 0.66798301 1.68830339 1.11560302 0.75073526
15 1.77223441 1.37823955 0.66805774 1.68128767 1.11897777 0.74641698
0 0.01 1.77245385 1.26584724 0.87369382 0.04 1.77245385 1.30344656 0.83609451
3 1.71307229 1.14513104 0.76148916 1.77091565 1.30148045 0.69106562
6 1.68854075 1.12482375 0.75995674 1.76851865 1.29612046 0.69320291
9 1.66818971 1.08010404 0.76885908 1.76632858 1.29227683 0.69439710
12 1.65804755 1.07686486 0.76703741 1.76426994 1.28925313 0.69497936
15 1.64143143 1.02666184 0.77926968 1.76221840 1.28586712 0.69570702
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Figure 6. The interactions of two solitary waves at various time
levels of MRLW equation

the reliability and performance of the method in this study. The error norms L2

and L∞ are calculated to show that results are superior to those of the methods in
the literature and the results produced have been compared in tables and figures.
The error norms are, as hoped, smaller than the results in the literature and thus
closer to the analytic solution. The invariants I1,I2 and I3 are satisfactorily well
preserved throughout the entire computer run. The computed solutions displays it
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can be easily said that the current algorithm will be beneficial in applying to other
nonlinear equation types such as MRLW.

Declaration of Competing Interests The author declares that there is no com-
peting interest regarding the publication of this paper.
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AND ITS APPLICATION IN DECISION-MAKING PROBLEM
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Abstract. This study is designed with the renewed concept of neutrosophic

soft graph (briefly ns-graph) which is a combination of graphs and neutrosophic
soft sets. We re-define notions of ns-graphs and ns-subgraphs with the different

perspective from the study in [4]. Also, we introduce some new operations on

ns-graphs and detailed them with convenient examples. Moreover, we present
an application of ns-graphs to determine of optimal object by using given data

with the help of an algorithm. This algorithm we developed is new inventive-
ness domain for problems which are involving uncertainty, and effectively finds

the optimal result between the states where vagueness exists. We also provide

a comparative analysis with the existing method given in [4].

1. Introduction

It is clear that the uncertainty arising from different areas cannot be explained
and expressed with precise definitions. Different types of uncertainty are common
in many fields such as economics, biology, physics, engineering, medicine and so-
cial sciences. Since uncertainty is a complex and broad concept that is not clearly
defined, many fields dealing with uncertainty have failed to model this situation
successfully with classical mathematical methods. In valuing a phenomenon in real
life, we use intermediate values, that is, fuzzy values. For example, when evaluat-
ing the temperature of the air, we make ratings such as cold, slightly cold, warm,
slightly hot and hot. Therefore, classical set theory falls short of expressing inter-
mediate state values. This inadequate situation in classical set theory was first tried
to be overcome with fuzzy set theory [21]. A fuzzy set A is characterized with the
help of a membership function µA(x), a mapping from the universal set X to the
unit interval [0,1], where x in the fuzzy set A has a certain degree of membership.
Although a phenomenon can be represented with only one of 0 and 1 values in
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classical set theory, it can take infinite values in fuzzy logic. Thus, a phenomenon
can have uncertain values in the fuzzy approach. Fuzzy logic controllers have been
applied many areas from electrical household appliances to auto electronics, from
business machines we use daily to production engineering, from industrial control
technologies to automation. Atanassov [5] put forward the intuitionistic fuzzy set
theory which is a generalized type of the fuzzy set theory. In intuitionistic fuzzy
sets, unlike fuzzy sets, the elements have degrees of non-membership. However, in
these theories, the uncertainty of an element is not discussed, although the values
of an element such as whether it is a member or not. Based on this, Smarandache
[19] introduced the neutrosophic set theory which is an extended and special case
of fuzzy set theory. The neutrosophic sets are stated by three functions. These are
truth, indeterminacy and falsity membership function. The neutrosophic models
produce more suitable solutions for the complex systems. In addition, an individual
may not always be fully informed about a subject. In this case, the indeterminacy
membership function comes into play and it provides a very large place for model-
ing events involving many uncertainties. Maji [14] defined the neutrosophic soft set
concept and examined the properties of this concept. Broumi [7] worked on general-
ized netrosophic soft sets. Deli [11] gave the notion of interval-valued neutrosophic
soft set and also applied this concept to the a decision-making problem.

Some great scientific theories grew out of answers to simple questions. Graf
theory is one of them. Graf theory was first put forward by Euler [12]. Graph
theory which is an important mathematical tool for solving complicated problems
in many different fields. Graphs are used to put forth a rellevance between elements
in a given set, where every element can be expressed with the help of vertices and
their relation edges. Since graph theory provides conveniences in modeling compli-
cated systems, it has many number of applications. A simple graph is showed by
G∗ = (ν, ε) where ν and ε represents sets of vertices and edges, respectively. After
Euler’s introduction of the graph concept, Rosenfeld [17] introduced the fuzzy graph
theory. Bhattacharya [6] gave some properties of fuzzy graphs. Mordeson and Peng
[16] have defined some operations on fuzzy graphs. Later, many researchers dis-
cussed the concept of fuzzy sets on the graph theory and defined different structures.
Akram and Dudek [1] gave the concept of interval-valued fuzzy graphs and exam-
ined their related properties. Broumi et al. [9] gave the concept of interval valued
pentapartitioned neutrosophic graphs. Broumi et al. [8] defined interval-valued fer-
matean neutrosophic graphs and presented some operations on this. Thumbakara
and George [20] gave the concepts of soft graph and soft subgraph, and examined
the properties of these structures. Akram and Nawaz [2] described some new al-
gebraic operations on soft graphs. Mohinta and Samanta [15] defined the concept
of fuzzy soft graph. Later, Akram and Nawaz [3] studied different types of fuzzy
soft graphs. Zihni et al. [22] gave the concept of interval-valued fuzzy soft graph
and examined its basic properties. Çelik [10] gave the concept of bipolar fuzzy soft
graph and investigated some operations on this concept. Kandasamy et al. [13]
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gave the concept of neutrosophic graph and made various applications of neutro-
sophic graphs. Akram et al. [4] combined neutrosophic soft set concept and graph
theory, then define notion of neutrosophic soft graph (ns-graph). They also applied
the ns-graphs to the a decision-making problem. Shah and Hussain [18] gave new
features on ns-graphs.

In the current study, the renewed concept of ns-graphs is defined and some
new operations not previously defined such us extended union, restricted union,
extended intersection, restricted intersection and complement are presented. Also
illustrative examples related these operations are given. Hence an application of ns-
graphs for a decision-making problem is examined with the method we developed.
Moreover a comparative analysis between proposed method and existing method
given in [4] are revealed.

2. Preliminaries

Definition 1. [19] Let X ̸= ∅ be an universe. Then a neutrosophic set A on X
is given by A = {⟨x, TA(x), IA(x), FA(x)⟩, x ∈ X}, where the functions TA, IA and
FA are fuzzy sets on X under the conditions 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for
all x ∈ X. The family of all neutrosophic sets on X is denoted by N (X).

Definition 2. [14] Let X be an initial universe. Let E be a set of parameters. Then,
a pair (f,E) is called a neutrosophic soft set (briefly ns-set) over X representing a
mapping by f : E → N (X).

Definition 3. [14] Let (f,E) ∈ N (X). Then, for all e ∈ E and x ∈ X,

(a) (f,E) is called a null ns-set if Tf(e)(x) = 0, If(e)(x) = 1 and Ff(e)(x) = 1.
(b) (f,E) is called a whole ns-set if Tf(e)(x) = 1, If(e)(x) = 0 and Ff(e)(x) = 0.

Definition 4. [14] Let (f,E1) and (g,E2) be two ns-sets over X, then (f,E1) is
said to be a ns-subset of (g,E2) if

i. E1 ⊆ E2

ii. Tf(e)(x) ≤ Tg(e)(x), If(e)(x) ≥ Ig(e)(x), Ff(e)(x) ≥ Fg(e)(x) for all e ∈ E1 and
x ∈ X.

3. Renewed Structure of Ns-graphs with Some New Operations

Definition 5. A ns-graph is an order 4-tuple GN = (G∗, f, g, E) such that

i. G∗ = (ν, ε) is a simple graph
ii. E ̸= ∅ is a set of parameters
iii. (f,E) is a ns-set over ν
iv. (g,E) is a ns-set over ε
v. h(e) = (f(e), g(e)) is a neutrosophic graph for all e ∈ E. That is, for all e ∈ E

and xy ∈ ε,

Tge(xy) ≤ min{Tfe(x), Tfe(y)}
Ige(xy) ≥ max{Ife(x), Ife(y)}
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Fge(xy) ≥ max{Ffe(x), Ffe(y)}

Note that (f,E) is called a ns-vertex and (g,E) is called a ns-edge.

Example 1. Let G∗ = (ν, ε) be a simple graph with ν = {v1, v2, v3} and ε =
{v1v2, v1v3, v2v3}. Let E = {e1, e2, e3} be a set of parameters. Let consider ns-sets
f and g over ν and ε,
respectively, as given in Table 1.

Table 1. Ns-sets (f,E) and (g,E)

f v1 v2 v3
e1 (0.2,0.4,0.5) (0.4,0.5,0.6) (0,1,1)
e2 (0.2,0.7,0.8) (0.3,0.5,0.6) (0.5,0.6,0.7)
e3 (0.3,0.3,0.5) (0.2,0.2,0.3) (0.3,0.4,0.9)

g v1v2 v2v3 v1v3
e1 (0.1,0.6,0.7) (0,1,1) (0,1,1)
e2 (0.1,0.7,0.9) (0,1,1) (0.2,0.8,0.9)
e3 (0.2,0.4,0.6) (0.1,0.5,0.9) (0.3,0.5,0.9)

Clearly GN = (G∗, f, g, E) is a ns-graph over G∗.

Definition 6. Let G∗ = (ν, ε) be a simple graph. A ns-graph G
′

N = (G∗, f1, g1, E1)
is called a ns-subgraph of GN = (G∗, f, g, E2) if

i. E1 ⊆ E2

ii. f1
e ⊆ fe, that is Tf1e(x) ≤ Tfe(x), If1e(x) ≥ Ife(x), Ff1e(x) ≥ Ffe(x)

iii. g1e ⊆ ge, that is, Tg1e(x) ≤ Tge(x), Ig1e(x) ≥ Ige(x), Fg1e(x) ≥ Fge(x)

for all e ∈ E1, x ∈ ν.

Example 2. Let consider a ns-graph GN = (G∗, f, g, E) as taken in Example 1.

Let consider another ns-graph G
′

N = (G∗, f1, g1, E1) as in the Table 2 with the
parameter set E1 = {e1, e2}.

Table 2. Ns-sets (f1, E1) and (g1, E1)

f1 v1 v2 v3
e1 (0.2,0.5,0.6) (0.3,0.6,0.8) (0,1,1)
e2 (0.1,0.7,0.9) (0.1,0.5,0.7) (0.2,0.8,0.9)

g1 v1v2 v2v3 v1v3
e1 (0.1,0.7,0.8) (0,1,1) (0,1,1)
e2 (0.1,0.9,0.9) (0,1,1) (0.1,0.8,0.9)
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v1

(0.2, 0.4, 0.5)

v2

(0.4, 0.5, 0.6)
(0.1, 0.6, 0.7)

Neutrosophic graph h(e1) = (f(e1), g(e1))

v1

(0.2, 0.7, 0.8)

v2

(0.3, 0.5, 0.6)
(0.1, 0.7, 0.9)

v3

(0.5, 0.6, 0.7)

(0.2, 0.8, 0.9)

Neutrosophic graph h(e2) = (f(e2), g(e2))

v1

(0.3, 0.3, 0.5)

v2

(0.2, 0.2, 0.3)
(0.2, 0.4, 0.6)

v3

(0.3, 0.4, 0.9)

(0.3, 0.5, 0.9) (0.1, 0.5, 0.9)

Neutrosophic graph h(e3) = (f(e3), g(e3))

Figure 1. Ns-graph GN = (G∗, f, g, E)

v1

(0.2, 0.5, 0.6)

v2

(0.3, 0.6, 0.8)
(0.1, 0.7, 0.8)

Neutrosophic graph h′(e1)

v1

(0.1, 0.7, 0.9)

v2

(0.1, 0.5, 0.7)
(0.1, 0.9, 0.9)

v3

(0.2, 0.8, 0.9)

(0.1, 0.8, 0.9)

Neutrosophic graph h′(e2)

Figure 2. Ns-graph G
′

N = (G∗, f1, g1, E1)

It is evident that G
′

N = (G∗, f1, g1, E1) is a ns-subgraph of GN = (G∗, f, g, E).
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Definition 7. Let GN = (G∗, f, g, E) be a ns-graph over G∗ = (ν, ε). Then GN is
called strong ns-graph iff

Tge(xy) = min{Tfe(x), Tfe(y)}
Ige(xy) = max{Ife(x), Ife(y)}
Fge(xy) = max{Ffe(x), Ffe(y)}

for all e ∈ E and xy ∈ ε.

Example 3. Let G∗ = (ν, ε) be a simple graph with ν = {v1, v2, v3} and ε =
{v1v2, v1v3, v2v3}. Let E = {e1, e2, e3} be a set of parameters. Let consider ns-sets
f and g over ν and ε,
respectively, as given in Table 3.

Table 3. Ns-sets (f,E) and (g,E)

f v1 v2 v3
e1 (0.2,0.4,0.5) (0.4,0.5,0.6) (0,1,1)
e2 (0.2,0.7,0.8) (0.3,0.5,0.6) (0.5,0.6,0.7)
e3 (0.3,0.3,0.5) (0.2,0.2,0.3) (0.3,0.4,0.9)

g v1v2 v2v3 v1v3
e1 (0.2,0.5,0.6) (0,1,1) (0,1,1)
e2 (0.2,0.7,0.8) (0.3,0.6,0.7) (0.2,0.7,0.8)
e3 (0.2,0.3,0.5) (0.2,0.4,0.9) (0.3,0.4,0.9)

Clearly GN = (G∗, f, g, E) is strong ns-graph.

Definition 8. Let GN = (G∗, f, g, E) be a ns-graph over G∗ = (ν, ε). Then the
complement of GN = (G∗, f, g, E) is denoted by GN = (G∗, f̄ , ḡ, E) and is defined
by

i. Tf̄e(x) = Tfe(x), If̄e(x) = Ife(x), Ff̄e(x) = Ffe(x)
ii. Tḡe(x, y) = min{Tfe(x), Tfe(y)} − Tge(x, y)

Iḡe(x, y) = max{Ife(x), Ife(y)} − Ige(x, y)
Fḡe(x, y) = max{Ffe(x), Ffe(y)} − Fge(x, y)

for all e ∈ E and xy ∈ ε.

Definition 9. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two ns-

graphs over the simple graph G∗ = (ν, ε). The extended union of GN and G
′

N is

denoted by GN

⋃
G

′

N = (G∗, f, g, E), where E = E1 ∪E2. T , I and F membership

values of vertices and edges of GN

⋃
G

′

N are defined by as follow.
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v1

(0.2, 0.4, 0.5)

v2

(0.4, 0.5, 0.6)
(0.2, 0.5, 0.6)

Neutrosophic graph h(e1) = (f(e1), g(e1))

v1

(0.2, 0.7, 0.8)

v2

(0.3, 0.5, 0.6)
(0.2, 0.7, 0.8)

v3

(0.5, 0.6, 0.7)

(0.2, 0.7, 0.8) (0.3, 0.6, 0.7)

Neutrosophic graph h(e3) = (f(e3), g(e3))

v1

(0.3, 0.3, 0.5)

v2

(0.2, 0.2, 0.3)
(0.2, 0.3, 0.5)

v3

(0.3, 0.4, 0.9)

(0.3, 0.4, 0.9) (0.2, 0.4, 0.9)

Neutrosophic graph h(e3) = (f(e3), g(e3))

Figure 3. Strong ns-graph GN = (G∗, f, g, E)

i. For all e ∈ E and x ∈ ν

Tfe(x) =


Tf1

e
(x) e ∈ E1\E2

Tf2
e
(x) e ∈ E2\E1

max{Tf1
e
(x), Tf2

e
(x)} e ∈ E1 ∩ E2

Ife(x) =


If1

e
(x) e ∈ E1\E2

If2
e
(x) e ∈ E2\E1

min{If1
e
(x), If2

e
(x)} e ∈ E1 ∩ E2

Ffe(x) =


Ff1

e
(x) e ∈ E1\E2

Ff2
e
(x) e ∈ E2\E1

min{Ff1
e
(x), Ff2

e
(x)} e ∈ E1 ∩ E2
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ii. For all e ∈ E and xy ∈ ε

Tge(xy) =


Tg1

e
(xy) e ∈ E1\E2

Tg2
e
(xy) e ∈ E2\E1

max{Tg1
e
(xy), Tg2

e
(xy)} e ∈ E1 ∩ E2

Ige(xy) =


Ig1

e
(xy) e ∈ E1\E2

Ig2
e
(xy) e ∈ E2\E1

min{Ig1
e
(xy), Ig2

e
(xy)} e ∈ E1 ∩ E2

Fge(xy) =


Fg1

e
(xy) e ∈ E1\E2

Fg2
e
(xy) e ∈ E2\E1

min{Fg1
e
(xy), Fg2

e
(xy)} e ∈ E1 ∩ E2

Example 4. Let G∗ = (ν, ε) be a simple graph with ν = {v1, v2, v3, v4, v5}. Let
consider a ns-graph GN = (G∗, f1, g1, E1) with the parameter set E1 = {e1, e2, e3}
as in the Table 4.

Table 4. Ns-sets (f1, E1) and (g1, E1)

f1 v1 v2 v3 v4 v5
e1 (0.1,0.2,0.3) (0,1,1) (0.2,0.3,0.4) (0.2,0.5,0.7) (0,1,1)
e2 (0.1,0.3,0.7) (0,1,1) (0.4,0.6,0.7) (0.1,0.2,0.3) (0,1,1)
e3 (0.5,0.6,0.7) (0,1,1) (0.6,0.8,0.9) (0.3,0.4,0.6) (0,1,1)

g1 v1v2 v1v3 v1v4 v1v5 v2v3
e1 (0,1,1) (0.1,0.4,0.5) (0.1,0.6,0.7) (0,1,1) (0,1,1)
e2 (0,1,1) (0.1,0.7,0.8) (0.1,0.4,0.8) (0,1,1) (0,1,1)
e3 (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1) (0,1,1)

g1 v2v4 v2v5 v3v4 v3v5 v4v5
e1 (0,1,1) (0,1,1) (0.1,0.6,0.8) (0,1,1) (0,1,1)
e2 (0,1,1) (0,1,1) (0.1,0.8,0.9) (0,1,1) (0,1,1)
e3 (0,1,1) (0,1,1) (0.3,0.8,0.9) (0,1,1) (0,1,1)
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v1

(0.1, 0.2, 0.3)

v4

(0.2, 0.5, 0.7)
(0.1, 0.6, 0.7)

v3

(0.2, 0.3, 0.4)

(0.1, 0.4, 0.5) (0.1, 0.6, 0.8)

Neutrosophic graph h(e1)

v1

(0.1, 0.3, 0.7)

v4

(0.1, 0.2, 0.3)
(0.1, 0.4, 0.8)

v3

(0.4, 0.6, 0.7)

(0.1, 0.7, 0.8) (0.1, 0.8, 0.9)

Neutrosophic graph h(e2)

v1

(0.5, 0.6, 0.7)

v4

(0.3, 0.4, 0.6)
(0.2, 0.7, 0.9)

v3

(0.6, 0.8, 0.9)

(0.3, 0.8, 0.9)

Neutrosophic graph h(e3)

Figure 4. Ns-graph GN = (G∗, f1, g1, E1)

Now let consider another ns-graph G
′

N = (G∗, f2, g2, E2) with the parameter set
E2 = {e2, e4} as in the Table 5.

Table 5. Ns-sets (f2, E2) and (g2, E2)

f2 v1 v2 v3 v4 v5
e2 (0,1,1) (0.1,0.2,0.4) (0.2,0.3,0.4) (0,1,1) (0.4,0.6,0.7)
e4 (0,1,1) (0.3,0.6,0.8) (0.5,0.7,0.9) (0,1,1) (0.3,0.4,0.5)

g2 v1v2 v1v3 v1v4 v1v5 v2v3
e2 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.1,0.4,0.8)
e4 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9)

g2 v2v4 v2v5 v3v4 v3v5 v5v6
e2 (0,1,1) (0,1,1) (0,1,1) (0.2,0.8,0.9) (0,1,1)
e4 (0,1,1) (0.2,0.6,0.8) (0,1,1) (0.3,0.9,0.9) (0,1,1)
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v2

(0.1, 0.2, 0.4)

v3

(0.2, 0.3, 0.4)
(0.1, 0.4, 0.8)

v5

(0.4, 0.6, 0.7)

(0.2, 0.8, 0.9)

Neutrosophic graph h′(e2)

v2

(0.3, 0.6, 0.8)

v3

(0.5, 0.7, 0.9)
(0.2, 0.7, 0.9)

v5

(0.3, 0.4, 0.5)

(0.2, 0.6, 0.8) (0.3, 0.9, 0.9)

Neutrosophic graph h′(e4)

Figure 5. Ns-graph G
′

N = (G∗, f2, g2, E2)

The parameter set of GN

⋃
G

′

N = (G∗, f, g, E) is E = E1 ∪ E2 = {e1, e2, e3, e4}.
Moreover the ns-graph GN

⋃
G

′

N = (G∗, f, g, E) is obtained as in the Table 6 and
Table 7.

Table 6. Ns-set (f,E)

f v1 v2 v3 v4 v5
e1 (0.1,0.2,0.3) (0,1,1) (0.2,0.3,0.4) (0.2,0.5,0.7) (0,1,1)
e2 (0.1,0.3,0.7) (0.1,0.2,0.4) (0.2,0.4,0.4) (0.1,0.2,0.3) (0.4,0.6,0.7)
e3 (0.5,0.6,0.7) (0,1,1) (0.6,0.8,0.9) (0.3,0.4,0.6) (0,1,1)
e4 (0,1,1) (0.3,0.6,0.8) (0.5,0.7,0.9) (0,1,1) (0.3,0.4,0.5)

Table 7. Ns-set (g,E)

g v1v2 v1v3 v1v4 v1v5 v2v3
e1 (0,1,1) (0.1,0.4,0.5) (0.1,0.6,0.7) (0,1,1) (0,1,1)
e2 (0,1,1) (0.1,0.7,0.8) (0.1,0.4,0.8) (0,1,1) (0.1,0.4,0.8)
e3 (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1) (0,1,1)
e4 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9)

g v2v4 v2v5 v3v4 v3v5 v4v5
e1 (0,1,1) (0,1,1) (0.1,0.6,0.8) (0,1,1) (0,1,1)
e2 (0,1,1) (0,1,1) (0.1,0.8,0.9) (0.2,0.8,0.9) (0,1,1)
e3 (0,1,1) (0,1,1) (0.2,0.8,0.9) (0,1,1) (0,1,1)
e4 (0,1,1) (0.2,0.6,0.8) (0,1,1) (0.3,0.9,0.9) (0,1,1)
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v1

(0.1, 0.2, 0.3)

v3

(0.2, 0.3, 0.4)
(0.1, 0.4, 0.5)

v4

(0.2, 0.5, 0.7)

(0.1, 0.6, 0.7) (0.1, 0.6, 0.8)

Neutrosophic graph h′′(e1)

v1

(0.1, 0.3, 0.7)

v3

(0.2, 0.4, 0.4)
(0.1, 0.7, 0.8)

v2

(0.1, 0.2, 0.4)

v4

(0.1, 0.2, 0.3)

v5

(0.4, 0.6, 0.7)

(0.1, 0.4, 0.8) (0.1, 0.8, 0.9)

(0.1, 0.4, 0.8)

(0.2, 0.8, 0.9)

Neutrosophic graph h′′(e2)

v1

(0.5, 0.6, 0.7)

v3

(0.6, 0.8, 0.9)

v4

(0.3, 0.4, 0.6)

(0.2, 0.7, 0.9) (0.2, 0.8, 0.9)

Neutrosophic graph h′′(e3)

v2

(0.3, 0.6, 0.8)

v3

(0.5, 0.7, 0.9)
(0.2, 0.7, 0.9)

v5

(0.3, 0.4, 0.5)

(0.2, 0.6, 0.8)
(0.3, 0.9, 0.9)

Neutrosophic graph h′′(e4)

Figure 6. Ns-graph GN

⋃
G

′

N = (G∗, f, g, E)

Definition 10. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two

ns-graph over G∗ = (ν, ε). The restricted union of GN and G
′

N is denoted by

GN

⊔
G

′

N = (G∗, f, g, E), where E = E1 ∩ E2. T , I and F membership values of

vertices and edges of GN

⊔
G

′

N are defined by as follow.

i. For all e ∈ E and x ∈ ν

Tfe(x) = max{Tf1
e
(x), Tf2

e
(x)}

Ife(x) = min{If1
e
(x), If2

e
(x)}

Ffe(x) = min{Ff1
e
(x), Ff2

e
(x)}

ii. For all e ∈ E and xy ∈ ε

Tge(xy) = max{Tg1
e
(xy), Tg2

e
(xy)}

Ige(xy) = min{Ig1
e
(xy), Ig2

e
(xy)}
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Fge(xy) = min{Fg1
e
(xy), Fg2

e
(xy)}

Example 5. Let consider ns-graphs GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2)
as taken in Example 4. Clearly E = E1 ∩ E2 = {e2}. Also the restricted union of

GN and G
′

N is obtained as follow.

Table 8. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4 v5
e2 (0.1,0.3,0.7) (0.1,0.2,0.4) (0.4,0.3,0.4) (0.1,0.2,0.3) (0.4,0.6,0.7)

g v1v4 v3v4 v1v3 v2v3 v3v5
e2 (0.1,0.4,0.8) (0.1,0.8,0.9) (0.1,0.7,0.8) (0.1,0.4,0.8) (0.2,0.8,0.9)

v1

(0.1, 0.3, 0.7)

v3

(0.4, 0.3, 0.4)
(0.1, 0.7, 0.8)

v2

(0.1, 0.2, 0.4)

v4

(0.1, 0.2, 0.3)

v5

(0.4, 0.6, 0.7)

(0.1, 0.4, 0.8) (0.1, 0.8, 0.9)

(0.1, 0.4, 0.8)

(0.2, 0.8, 0.9)

Neutrosophic graph h′′(e2)

Figure 7. Ns-graph GN

⊔
G

′

N = (G∗, f, g, E)

Definition 11. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two ns-

graph over G∗ = (ν, ε). The extended intersection of GN and G
′

N is denoted by

GN

⋂
G

′

N = (G∗, f, g, E), where E = E1 ∪ E2. T , I and F membership values of

vertices and edges of GN

⋂
G

′

N are defined by as follow.

i. For all e ∈ E and x ∈ ν

Tfe(x) =


Tf1

e
(x), e ∈ E1\E2

Tf2
e
(x), e ∈ E2\E1

min{Tf1
e
(x), Tf2

e
(x)}, e ∈ E1 ∩ E2

Ife(x) =


If1

e
(x), e ∈ E1\E2

If2
e
(x), e ∈ E2\E1

max{If1
e
(x), If2

e
(x)}, e ∈ E1 ∩ E2
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Ffe(x) =


Ff1

e
(x), e ∈ E1\E2

Ff2
e
(x), e ∈ E2\E1

max{Ff1
e
(x), Ff2

e
(x)}, e ∈ E1 ∩ E2

ii. For all e ∈ E and xy ∈ ε

Tge(xy) =


Tg1

e
(xy) e ∈ E1\E2

Tg2
e
(xy) e ∈ E2\E1

min{Tg1
e
(xy), Tg2

e
(xy)}, e ∈ E1 ∩ E2

Ige(x) =


Ig1

e
(xy) e ∈ E1\E2

Ig2
e
(xy) e ∈ E2\E1

max{Ig1
e
(xy)Ig2

e
(xy)}, e ∈ E1 ∩ E2

Fge(xy) =


Fg1

e
(xy) e ∈ E1\E2

Fg2
e
(xy) e ∈ E2\E1

max{Fg1
e
(xy), Fg2

e
(xy)}, e ∈ E1 ∩ E2

Example 6. Let G∗ = (ν, ε) be a simple graph with V = {v1, v2, v3, v4} and
E = {v1v2, v1v4, v2v4}. Let E1 = {e1, e2} be a set of parameters. Consider a
ns-graph GN = (G∗, f1, g1, E1) over G∗ = (ν, ε) as taken in the Table 9.

Table 9. Ns-sets (f1, E1) and (g1, E1)

f1 v1 v2 v3 v4
e1 (0.1,0.2,0.3) (0.2,0.4,0.5) (0,1,1) (0.1,0.5,0.7)
e2 (0.2,0.3,0.7) (0.4,0.6,0.7) (0,1,1) (0.3,0.4,0.6)

g1 v1v2 v1v3 v1v4 v2v3 v2v4 v3v4
e1 (0.1,0.5,0.6) (0,1,1) (0.1,0.5,0.7) (0,1,1) (0,1,1) (0,1,1)
e2 (0.2,0.7,0.8) (0,1,1) (0.1,0.6,0,7) (0,1,1) (0.2,0.7,0.9) (0,1,1)
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v1

(0.1, 0.2, 0.3)

v2

(0.2, 0.4, 0.5)
(0.1, 0.5, 0.6)

v4

(0.1, 0.5, 0.7)

(0.1, 0.5, 0.7)

Neutrosophic graph h(e1)

v1

(0.2, 0.3, 0.7)

v2

(0.4, 0.6, 0.7)
(0.2, 0.7, 0.8)

v4

(0.3, 0.4, 0.6)

(0.2, 0.7, 0.9)(0.1, 0.6, 0.7)

Neutrosophic graph h(e2)

Figure 8. Ns-graph GN = (G∗, f1, g1, E1)

Now let consider another ns-graph G
′

N = (G∗, f2, g2, E2) with the parameter set
E2 = {e2, e3} as taken in the Table 10.

Table 10. Ns-sets (f2, E2) and (g2, E2)

f2 v1 v2 v3 v4
e2 (0,1,1) (0.3,0.5,0.6) (0.2,0.4,0.5) (0.4,0.5,0.9)
e3 (0,1,1) (0.2,0.4,0.5) (0.1,0.2,0.6) (0.1,0.5,0.7)

g2 v1v2 v1v3 v1v4 v2v3 v2v4 v3v4
e2 (0,1,1) (0,1,1) (0,1,1) (0.1,0.6,0.7) (0.2,0.6,0.9) (0.2,0.7,0.9)
e3 (0,1,1) (0,1,1) (0,1,1) (0.1,0.5,0.8) (0.1,0.7,0.8) (0.1,0.8,0.9)

v2

(0.3, 0.5, 0.6)

v3

(0.2, 0.4, 0.5)
(0.1, 0.6, 0.7)

v4

(0.4, 0.5, 0.9)

(0.2, 0.6, 0.9) (0.2, 0.7, 0.9)

Neutrosophic graph h′(e2)

v2

(0.2, 0.4, 0.5)

v3

(0.1, 0.2, 0.6)
(0.1, 0.5, 0.8)

v4

(0.1, 0.5, 0.7)

(0.1, 0.7, 0.8) (0.1, 0.8, 0.9)

Neutrosophic graph h′(e3)

Figure 9. Ns-graph G
′

N = (G∗, f2, g2, E2)
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Clearly the parameter set of GN

⋂
G

′

N is E = E1 ∪ E2 = {e1, e2, e3}. If the mem-

bership values of vertices and edges of GN

⋂
G

′

N are calculated, then the ns-graph

GN

⋂
G

′

N = (G∗, f, g, E) is obtained as in the Table 11.

Table 11. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4
e1 (0.1,0.2,0.3) (0.2,0.4,0.5) (0,1,1) (0.1,0.5,0.7)
e2 (0,1,1) (0.3,0.6,0.7) (0,1,1) (0.3,0.5,0.9)
e3 (0,1,1) (0.2,0.4,0.5) (0.1,0.2,0.6)) (0.1,0.5,0.7)

g v1v2 v1v3 v1v4 v2v3 v2v4 v3v4
e1 (0.1,0.5,0.6) (0,1,1) (0.1,0.5,0.7) (0,1,1) (0,1,1) (0,1,1)
e2 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1)
e3 (0,1,1) (0,1,1) (0,1,1) (0.1,0.5,0.8) (0.1,0.7,0.8) (0.1,0.8,0.9)

v1

(0.1, 0.2, 0.3)

v2

(0.2, 0.4, 0.5)
(0.1, 0.5, 0.6)

v4

(0.1, 0.5, 0.7)

(0.1, 0.5, 0.7)

Neutrosophic graph h′′(e1)

v2

(0.3, 0.6, 0.7)

v4

(0.3, 0.5, 0.9)
(0.2, 0.7, 0.9)

Neutrosophic graph h′′(e2)

v2

(0.2, 0.4, 0.5)

v3

(0.1, 0.2, 0.6)
(0.1, 0.5, 0.8)

v4

(0.1, 0.5, 0.7)

(0.1, 0.7, 0.8) (0.1, 0.8, 0.9)

Neutrosophic graph h′′(e3)

Figure 10. Ns-graph GN

⋂
G

′

N = (G∗, f, g, E)

Definition 12. Let GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2) be two ns-

graph over G∗ = (ν, ε). The restricted intersection of GN and G
′

N is denoted by

GNG
′

N = (G∗, f, g, E), where E = E1 ∩ E2. T , I and F membership values of

vertices and edges of GNG
′

N are defined by as follow.

i. For all e ∈ E and x ∈ ν

Tfe(x) = min{Tf1
e
(x), Tf2

e
(x)}

Ife(x) = max{If1
e
(x), If2

e
(x)}

Ffe(x) = max{Ff1
e
(x), Ff2

e
(x)}

ii. For all e ∈ E and xy ∈ ε

Tge(xy) = min{Tg1
e
(xy), Tg2

e
(xy)}

Ige(xy) = max{Ig1
e
(xy), Ig2

e
(xy)}
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Fge(xy) = max{Fg1
e
(xy), Fg2

e
(xy)}

Example 7. Let consider ns-graphs GN = (G∗, f1, g1, E1) and G
′

N = (G∗, f2, g2, E2)
as taken in Example 6. Clearly E = E1∩E2 = {e2}. Also the restricted intersection

of GN and G
′

N is obtained as follow.

Table 12. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4
e2 (0,1,1) (0.3,0.6,0.7) (0,1,1) (0.3,0.5,0.9)

g (v1v2) (v1v3) (v1v4) (v2v3) (v2v4) (v3v4)
e2 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0.2,0.7,0.9) (0,1,1)

v2

(0.3, 0.6, 0.7)

v5

(0.3, 0.5, 0.9)
(0.2, 0.7, 0.9)

Neutrosophic graph h′′(e2)

Figure 11. Ns-graph GNG
′

N = (G∗, f, g, E)

Definition 13. Let GN = (G∗, f, g, E) be an neutrosophic soft graph of G∗ = (ν, ε)
and E = {e1, e2, . . . , en} be a set of parameters. The ∨−union of subgraphs of GN

is denoted by h(e) = h(e1)∨h(e2)∨ . . .∨h(en) and for all xy ∈ ε

Th(e)(xy) = max{Tg(e1)(xy), Tg(e2)(xy), . . . , Tg(en)(xy)}
Ih(e)(xy) = min{Ig(e1)(xy), Ig(e2)(xy), . . . , Ig(en)(xy)}
Fh(e)(xy) = min{Fg(e1)(xy), Fg(e2)(xy), . . . , Fg(en)(xy)}

Definition 14. Let GN = (G∗, f, g, E) be an neutrosophic soft graph of G∗ = (ν, ε)
and E = {e1, e2, . . . , en} be a set of parameters. The ∧−intersection of subgraphs
of GN is denoted by h(e) = h(e1)∧h(e2)∧ . . .∧h(en) and for all xy ∈ ε

Th(e)(xy) = min{Tg(e1)(xy), Tg(e2)(xy), . . . , Tg(en)(xy)}
Ih(e)(xy) = max{Ig(e1)(xy), Ig(e2)(xy), . . . , Ig(en)(xy)}
Fh(e)(xy) = max{Fg(e1)(xy), Fg(e2)(xy), . . . , Fg(en)(xy)}
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4. An Application of Ns-Graphs in a Decision-Making Problem

Ns-graphs are important mathematical tool to cope with uncertainties occurs in
real life problems. In this section, we have applied the concept of ns-graph to a
decision-making problem and then we have gave an algorithm for optimal object
selection by using given data. Suppose that ν = {v1, v2, v3, v4, v5} be the set of five
mobile phones under consideration. A customer is going to purchase a mobile phone
on the basis certain parameters set E = {e1 = performance ,
e2 = material quality , e3 = price}. Let (f,E) and (g,E) be two neutrosophic
soft sets on ν and ε = {v1v2, v1v3, v1v4, v1v5, v2v3, v2v4, v2v5, v3v4, v3v5, v4v5}, re-
spectively, as in the table 13. Where (f,E) describes the value of mobile phones
according to given parameters, (g,E) describes the value obtained by comparing
two mobile phones based upon each parameter.

Table 13. Ns-sets (f,E) and (g,E)

f v1 v2 v3 v4 v5
e1 (0.1,0.5,0.3) (0.2,0.4,0.5) (0.5,0.6,0.1) (0.3,0.2,0.1) (0.5,0.7,0.1)
e2 (0.3,0.5,0.1) (0.3,0.2,0.1) (0.7,0.5,0.4) (0.2,0.1,0.8) (0.4,0.3,0.6)
e3 (0.2,0.3,0.2) (0.4,0.3,0.5) (0.6,0.4,0.3) (0.3,0.2,0.6) (0.1,0.4,0.5)

g v1v2 v1v3 v1v4 v1v5 v2v3
e1 (0.1,0.6,0.6) (0,1,1) (0,1,1) (0.1,0.8,0.4) (0.1,0.8,0.6)
e2 (0.2,0.5,0.3) (0,1,1) (0,1,1) (0.1,0.6,0.8) (0.3,0.6,0.5)
e3 (0.1,0.4,0.6) (0,1,1) (0,1,1) (0.1,0.5,0.6) (0.3,0.5,0.7)

g v2v4 v2v5 v3v4 v3v5 v4v5
e1 (0.2,0.7,0.7) (0.1,0.8,0.5) (0.2,0.7,0.2) (0.3,0.7,0.5) (0,1,1)
e2 (0,1,1) (0.3,0.4,0.7) (0.2,0.6,0.8) (0,1,1) (0,1,1)
e3 (0.2,0.4,0.8) (0.1,0.7,0.8) (0.1,0.6,0.6) (0,1,1) (0.1,0.5,0.7)

The matrice representations of neutrosophic graphs h(e1), h(e2) and h(e3) cor-
responding to the parameters e1, e2 and e3, respectively, are represented by as
follows.

h(e1) =


(0, 1, 1) (0.1, 0.6, 0.6) (0, 1, 1) (0, 1, 1) (0.1, 0.8, 0.4)

(0.1, 0.6, 0.6) (0, 1, 1) (0.1, 0.8, 0.6) (0.2, 0.7, 0.7) (0.1, 0.8, 0.5)

(0, 1, 1) (0.1, 0.8, 0.6) (0, 1, 1) (0.2, 0.7, 0.2) (0.3, 0.7, 0.5)

(0, 1, 1) (0.2, 0.7, 0.7) (0.2, 0.7, 0.2) (0, 1, 1) (0, 1, 1)

(0.1, 0.8, 0.4) (0.1, 0.8, 0.5) (0.3, 0.7, 0.5) (0, 1, 1) (0, 1, 1)
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h(e2) =


(0, 1, 1) (0.2, 0.5, 0.3) (0, 1, 1) (0, 1, 1) (0.1, 0.6, 0.8)

(0.1, 0.6, 0.6) (0, 1, 1) (0.3, 0.6, 0.5) (0, 1, 1) (0.3, 0.4, 0.7)

(0, 1, 1) (0.3, 0.6, 0.5) (0, 1, 1) (0.2, 0.6, 0.8) (0, 1, 1)

(0, 1, 1) (0, 1, 1) (0.2, 0.6, 0.8) (0, 1, 1) (0, 1, 1)

(0.1, 0.6, 0.8) (0.3, 0.4, 0.7) (0, 1, 1) (0, 1, 1) (0, 1, 1)



h(e3) =


(0, 1, 1) (0.1, 0.4, 0.6) (0, 1, 1) (0, 1, 1) (0.1, 0.5, 0.6)

(0.1, 0.4, 0.6) (0, 1, 1) (0.3, 0.5, 0.7) (0.2, 0.4, 0.8) (0.1, 0.7, 0.8)

(0, 1, 1) (0.3, 0.5, 0.7) (0, 1, 1) (0.1, 0.6, 0.6) (0, 1, 1)

(0, 1, 1) (0.2, 0.4, 0.8) (0.1, 0.6, 0.6) (0, 1, 1) (0.1, 0.5, 0.7)

(0.1, 0.5, 0.6) (0.1, 0.7, 0.8) (0, 1, 1) (0.1, 0.5, 0.7) (0, 1, 1)


If the operations ∨ and ∧ are applied, we get resultant neutrosophic graphs h(e)
and h′(e). Their incidence matrice are given by as follows.

h(e) =


(0,1,1) (0.2,0.4,0.3) (0,1,1) (0,1,1) (0.1,0.5,0.4)

(0.1,0.4,0.6) (0,1,1) (0.3,0.5,0.5) (0.2,0.4,0.7) (0.3,0.4,0.5)

(0,1,1) (0.3,0.5,0.5) (0,1,1) (0.2,0.6,0.2) (0.3,0.7,0.5)

(0,1,1) (0.2,0.4,0.7) (0.2,0.6,0.2) (0,1,1) (0.1,0.5,0.7)

(0.1,0.5,0.4) (0.3,0.4,0.5) (0.3,0.7,0.5) (0.1,0.5,0.7) (0,1,1)



h′(e) =


(0, 1, 1) (0.1, 0.6, 0.6) (0, 1, 1) (0, 1, 1) (0.1, 0.8, 0.8)

(0.1, 0.6, 0.6) (0, 1, 1) (0.1, 0.8, 0.7) (0, 1, 1) (0.1, 0.8, 0.8)

(0, 1, 1) (0.1, 0.8, 0.7) (0, 1, 1) (0.1, 0.7, 0.8) (0, 1, 1)

(0, 1, 1) (0, 1, 1) (0.1, 0.7, 0.8) (0, 1, 1) (0, 1, 1)

(0.1, 0.8, 0.8) (0.1, 0.8, 0.8) (0, 1, 1) (0, 1, 1) (0, 1, 1)


For a given neutrosophic set A = {

〈
x, TA(x), IA(x), FA(x)

〉
}, the possible member-

ship degree of an element x is calculated by S(x) = 1
3 [TA(x) + 1− IA(x) + 1− FA(x)].

Based on this formula, we construct the tabular representation of score value of
incidence matrices and calculate choice value for each mobile phone vk for k =
1, 2, 3, 4, 5 as follows.
If the arithmetic average of v′k and v′′k are calculated, we find the average score
values of h(e) and h′(e) as follow.
It is evident that the maximum score value is 1.150. Then the best choice for
customer is mobile phone v2.

Algorithm

1. Input the set E which express choice of parameters.
2. Determine the ns-sets (f,E) and (g,E).
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Table 14. Score value of incidence matrice h(e)

v1 v2 v3 v4 v5 v′k
v1 0.0 0.500 0.0 0.0 0.400 0.900
v2 0.367 0.0 0.434 0.366 0.467 1.634
v3 0.0 0.434 0.0 0.467 0.366 1.267
v4 0.0 0.366 0.467 0.0 0.300 1.500
v5 0.400 0.467 0.366 0.300 0.0 1.533

Table 15. Score value of incidence matrice h′(e)

v1 v2 v3 v4 v5 v′′k
v1 0.0 0.300 0.0 0.0 0.167 0.467
v2 0.300 0.0 0.200 0.0 0.167 0.667
v3 0.0 0.200 0.0 0.200 0.0 0.400
v4 0.0 0.0 0.200 0.0 0.0 0.200
v5 0.167 0.167 0.0 0.0 0.0 0.334

Table 16. Avarage score values of h(e) and h′(e)

v′k v′′k vk
v1 0.900 0.467 0.683
v2 1.634 0.667 1.150
v3 1.267 0.400 0.833
v4 1.500 0.200 0.850
v5 1.533 0.334 0.933

3. Construct the ns-graph GN = (G∗, f, g, E).
4. Compute the resultant neutrosophic graphs h(e) and h′(e) with h(e) = ∨

k∈Λ
h(ek)

and h′(e) = ∧
k∈Λ

h(ek), respectively, for all k ∈ Λ.

5. Construct incidence matrice forms of h(e) and h′(e).
6. Calculate the score Sk of vk for all k ∈ Λ.
7. Determine decision as vk if v

′

k = max vk.

5. Comparative Study and Discussion

In this section, for determining of optimal object, a comparative study based on
the results of numerical computation is discussed. For this, based on the applica-
tion discussed above, we present a comparative analysis between the our proposed
method and the existing method in [4]. The method given in [4] just takes into
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consideration “AND” or “OR” operations to obtain resultant ns-graph which is
used determine of optimal object. However if these two operations are applied sep-
arately, different results occur in the selection of the optimal object. So this leads
to uncertainty in determining the most appropriate choice. Our proposed approach
just takes into consideration both of ∧-intersection and ∨-union operations to ob-
tain resultant ns-graphs, because we observe that these two operations should be
interdependent in determining the possible choice. When the existing method given
in [4] is compared with the current proposed method, ranking orders both of them
are appeared as in Table 17.

Table 17. Comparison

Model Ranking order
Existing method given in [4] v1 > v3 > v2 > v4 > v5

v5 > v3 > v2 > v4 > v1

Proposed method v2 > v5 > v4 > v3 > v1

In existing method, the obtained ranking results are quite close where the first and
fifth ranking order are changed but the second, third and fourth ranks are consis-
tent. Nevertheless, obtaining two different rankings causes problems in decision-
making process. In proposed method, the obtained ranking result is unique and
more effective in determining the appropriate choice. Clearly, the proposed method
consider the problem in all aspects and reveals a final result although existing
method provides a set of alternatives as a final selection to consider the problem.

6. Conclusions

When compared with soft graph and fuzzy soft graph models, ns-graphs are more
useful mathematical tools. Ns-graphs can be used in many areas with uncertainty.
We have introduced the concept of ns-graphs of a simple graph with some new
notions such as union and intersection, and gave illustrative examples related to
these notions. Also we have applied the concept of ns-graph to a decision-making
problem, and then a case study has been given to show the application of the tech-
nique. Hence a comparative analysis is conducted to show the applicability and
validity of the proposed approach. The proposed method can be used in dealing
with decision making process involving uncertainty especially in solving the real
scientific and engineering problems. For future research, another algorithm can be
developed by incorporate the complement of ns-graphs. Therefore we will work for
the extension of the this method in different neutrosophic structures and decision-
making applications. We plan to extend this research work to (i) Vague ns-graphs,
(ii) Intuitionistic ns-graphs, and (iii) Bipolar ns-graphs.
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Abstract. In this study, we first consider the time-relaxation model, which

consists of adding the term κ (u− u) to the heat equation. Then, an explicit
discretization scheme for the model is introduced to find the finite difference

solutions. We first obtain the solutions by using the scheme and then investi-

gate the method’s consistency, stability, and convergence properties. We prove
that the method is consistent and unconditionally stable for any given value

of r and appropriate values of κ and δ. As a result, the method obtained

by adding the time relaxation term to the first-order finite-difference explicit
method behaves like the second-order implicit method. Finally, we apply the

method to some test examples.

1. Introduction

The heat equation has a fundamental importance in various scientific fields. Heat
is a form of energy that exists in any material. For example, the temperature in
an object changes with time and the position within the object. Furthermore, this
equation can be applied to solve the heat flow related to science and engineering.
The numerical and analytical methods can be used to solve the heat equation
problem in science or engineering fields. The finite difference method is one of
several techniques for numerical solutions to boundary value problems. Morton and
Mayers [16], and Cooper [5] provide a modern introduction to partial differential
equations theory by considering the development of finite difference methods and
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numerical methods in more detail. Fletcher [7] described the method to implement
finite differences to solve boundary value problems.

The time relaxation (based on spatial averaging) regularizations considered by
Rosenau [19], Schochet and Tadmor [20], Stolz et. al. [22] are often referred to as
”secondary regularization” or ”time relaxation” to regularize the flow. Stolz and
Adams [1] studied the approximate deconvolution model (ADM) for the large-eddy
simulation of incompressible flows and applied it to turbulent channel flow. Layton
and Neda [13] developed a time relaxation regularization of flow problems suggested
by Stolz and Adams. Ervin et al. [6] studied the numerical errors in finite elements
discretization of a time relaxation model of fluid motion. They showed that the
point of the relaxation term is to approach the unresolved fluctuations in a com-
putational simulation to zero exponentially fast by an appropriate and depending
on the problem choice of its coefficient; thus, they concluded that this relaxation
term is intermediate between a tunable numerical stabilization and a continuum
modeling term. Neda [17] investigated a high-order family of time relaxation mod-
els based on approximate deconvolution. This problem was also considered in [14]
to regularize the flow. They studied the analogous approach based on time scales,
time filtering, and damping of under-resolved temporal features and investigated
theoretical and practical aspects of temporally damped fluid-flow simulations. Isik
et al. [12] analysed the NSE time relaxation model which is obtained adding term
”κ (u− u)” where u denotes the time filter of u introduced by Pruet et al [18]. An
advantage of adding the term time-relaxation is that it provides a faster approach
to steady-state solutions [12], [10] [11]. In some problems obtained by adding this
term, the solutions can be achieved in some cases where the numerical solutions
can not be obtained [12]. Cibik et al. [4] introduced the backward Euler method
obtained by adding the time relaxation term to MHD flow. They proved that the
method improves the accuracy of the solution without a significant change in the
complexity of the system.

We know that leapfrog discretization time filter methods are applied to geophys-
ical fluid dynamics. While these methods decrease spurious oscillations to improve
estimations, they reduce numerical accuracy and excessively dampen the physical
model [2]. Williams proposed a successfully tuned model which reduces undesired
numerical damping of [2] with higher-order accuracy [23]. This model is also stud-
ied by others see; [15], [24]. Otherwise, it is often preferable to use the backward
Euler method for a steady-state problem in practice. This method is stable, but the
solutions are inefficient and time accurate transient [8]. Guzel and Layton stabi-
lized the backward Euler discretization using time filter for the classical numerical
ODE theory by improving solutions [9].

In this paper, we investigate the finite difference solution of the model, which is
obtained by adding the time relaxation term ”κδut” to the heat equation,

ut + κδut = uxx (1)
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where, u is the differential filter defined as [18],

ut =
u− u

δ
, u(0) = u(0).

Here, κ and δ are positive real constants. It is well known that the finite difference
solution of Eqn (1) obtained by the explicit method is stable for r ≤ 1

2 whereas
the implicit method is unconditionally stable for κ = 0. Also, the explicit method
is consistent and the convergence order for this method is O(k + h2) for κ = 0.
To obtain the finite difference solutions of eqn. (1) we will develop an algorithm
by using the explicit method. We analyze the consistency and stability of the
finite difference solution obtained by this algorithm. Thus, the proposed method
is consistent on an unbounded domain subset of κδ-plane. For any given value of
r, the method will be stable for some particular values of κ and δ. Although this
algorithm seems structurally explicit, the behavior of stability results is similar to
the implicit method. We applied the method to some numerical examples. We
found that the numerical results are consistent with the theoretical results. For
each example, we show that the convergence order for the method is 1 and 2, and
the method is stable for any given r. All computations are done using MATLAB
R2020b.

The paper is organized as follows. An algorithm that depends on the finite
difference method is introduced for Eqn (1) in Section 2. Then consistency and
stability of the finite difference method obtained by the algorithm are investigated,
and some properties are given in the same section. Some numerical examples are
given to verify the theoretical results in Section 3. It is seen that the numerical
results obtained by numerical examples are consistent with the theoretical results
in this section. While the solutions blow-up for κ = 0 and r = 5, convergence
results are obtained for appropriate values of κ and δ. Finally, the conclusions of
this study are given in Section 4.

2. Finite Difference Approximation

The finite difference method is a numerical method in which the solution of
a differential problem given on an interval at a point is approached with finite
differences. The methods generally generate the solutions that are either as accurate
as the data warrant or as accurate as is necessary for the technical purpose for which
the solutions are required. One of the finite difference approximations to the ”Heat
equation”,

∂U

∂t
=

∂2U

∂x2
, (2)

is

ui,j+1 = rui−1,j + (1− 2r)ui,j + rui+1,j , r =
k

h2
. (3)

where U is the exact solution of the heat equation and ui,j+1 is the unknown
temperature at the (i, j+1)th mesh point in terms of known ”temperatures” along
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the jth time-row. This method is referred as explicit method. The consistency
and stability results for explicit method can be found in any book involves finite
difference methods, i.e., [21].

Theorem 1. (Lax’s Equivalence Theorem) Given a properly posed linear initial-
value problem and a linear finite-difference approximation to it that satisfies the
consistency condition, then stability is the necessary and sufficient condition for
convergence [21].

We consider an explicit discretization of model (1):

Algorithm 1.

ui,j+1 − ui,j

k
+ κδ

(
ui,j+1 − ui,j

k

)
=

(
ui+1,j − 2ui,j + ui−1,j

h2

)
(4)

ui,j+1 − ui,j

k
=

ui,j+1 − ui,j+1

δ
(5)

where κ ≥ 0, δ > 0 and ui,j := u(xi, tj) is the known value of temperature at
the (i, j)th mesh point. Note that ui,j+1 and ui,j+1 can be written as

ui,j+1 =

(
1 +

δ

k

)
ui,j+1 −

δ

k
ui,j . (6)

and

ui,j+1 =

(
1 +

δ

k

)−1

ui,j+1 +
δ

k

(
1 +

δ

k

)−1

ui,j , (7)

respectively. Thus, by substituting Eqn (7) into Eqn (4), we obtain the following
explicit scheme

ui,j+1 =
1(

1 + kκδ
k+δ

) (rui+1,j + (1− 2r)ui,j + rui−1,j +
kκδ

k + δ
ui,j

)
(8)

ui,j+1 =

(
1 +

δ

k

)−1

ui,j+1 +
δ

k

(
1 +

δ

k

)−1

ui,j

Now, we will show the von-Neumann stability of Eqn (8).

Lemma 1. Let ui,j be the finite difference solution of model (1) obtained by Eqn
(8). Then, the method is unconditionally stable on an unbounded region in the
κδ−plane.

Proof. Substituting Eqn (6) into Eqn (8) yields(
1 +

δ

k

)
ui,j+1 −

δ

k
ui,j + κδui,j+1 = r

(
1 +

δ

k

)
ui+1,j − r

δ

k
ui+1,j−1

+ (1− 2r)

(
1 +

δ

k

)
ui,j
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− (1− 2r)
δ

k
ui,j−1 + r

(
1 +

δ

k

)
ui−1,j

− r
δ

k
ui−1,j−1 + κδui,j

or

(
1 +

δ

k
+ κδ

)
ui,j+1 = r

(
1 +

δ

k

)
ui+1,j +

(
(1− 2r)

(
1 +

δ

k

)
+

δ

k
+ κδ

)
ui,j

+ r

(
1 +

δ

k

)
ui−1,j − r

δ

k
ui+1,j−1 − (1− 2r)

δ

k
ui,j−1

− r
δ

k
ui−1,j−1.

Then, putting ui,j = eiβphξq into the finite difference scheme yields

(
1 +

δ

k
+ κδ

)
eiβphξq+1 = r

(
1 +

δ

k

)
eiβ(p+1)hξq

+

(
(1− 2r)

(
1 +

δ

k

)
+

δ

k
+ κδ

)
eiβphξq

+ r

(
1 +

δ

k

)
eiβ(p−1)hξq − r

δ

k
eiβ(p+1)hξq−1

− (1− 2r)
δ

k
eiβphξq−1 − r

δ

k
eiβ(p−1)hξq−1.

If we simplify ”eiβphξq” term from both sides, we get

(
1 +

δ

k
+ κδ

)
ξ = 2r

(
1 +

δ

k

)
cos θ +

(
(1− 2r)

(
1 +

δ

k

)
+

δ

k
+ κδ

)
− 2r

δ

k
ξ−1 cos θ − (1− 2r)

δ

k
ξ−1

Multiplying both sides with ”ξ” gives

(
1 +

δ

k
+ κδ

)
ξ2 −

[
2r

(
1 +

δ

k

)
cos θ −

(
(1− 2r)

(
1 +

δ

k

)
+

δ

k
+ κδ

)]
ξ

+ 2r
δ

k
cos θ + (1− 2r)

δ

k
= 0. (9)
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Then, we can find two solutions of Eqn (9):

ξ1 =
1

2k + 2δ + 2kκδ


k + 2δ − 2rδ −

√√√√√√√√√√√√√

6r2δ2 − 4k2r + 6k2r2 + k2

−8k2r2 cos θ − 4krδ − 8r2δ2 cos θ
+2k2r2 cos 2θ + 12kr2δ + 4k2r cos θ

+2r2δ2 cos 2θ + k2κ2δ2 + 2k2κδ
+4kr2δ cos 2θ + 4krδ cos θ0

+4krκδ2 − 4k2rκδ − 16kr2δ cos θ

−4krκδ2 cos θ + 4k2rκδ cos θ

−2kr + 2kr cos θ + kκδ + 2rδ cos θ



ξ2 =
1

2k + 2δ + 2kκδ


k + 2δ − 2rδ +

√√√√√√√√√√√√√√√

6r2δ2 − 4k2r + 6k2r2 + k2

−8k2r2 cos θ − 4krδ − 8r2δ2 cos θ
+2k2r2 cos 2θ + 12kr2δ + 4k2r cos θ

+2r2δ2 cos 2θ + k2κ2δ2

+2k2κδ + 4kr2δ cos 2θ

+4krδ cos θ + 4krκδ2 − 4k2rκδ

−16kr2δ cos θ − 4krκδ2 cos θ
+4k2rκδ cos θ

−2kr + 2kr cos θ + kκδ + 2rδ cos θ


Let us find the stability condition |ξ| ≤ 1 for ξ1.

6r2δ2 − 4k2r + 6k2r2 + k2 − 8k2r2 cos θ − 4krδ − 8r2δ2 cos θ + 2k2r2 cos 2θ + 12kr2δ

+ 4k2r cos θ + 2r2δ2 cos 2θ + k2κ2δ2 + 2k2κδ + 4kr2δ cos 2θ + 4krδ cos θ

+ 4krκδ2 − 4k2rκδ − 16kr2δ cos θ − 4krκδ2 cos θ + 4k2rκδ cos θ

≤
(
k + kκδ + 4kr sin2

θ

2
+ 4rδ sin2

θ

2

)2

If we simplify the above equation, we get

8kr (cos θ − 1) (k + δ + kκδ) ≤ 0

which is valid for all κ ≥ 0, δ > 0.
On the other hands, for the second root, we can use the same process:

6r2δ2 − 4k2r + 6k2r2 + k2 − 8k2r2 cos θ − 4krδ − 8r2δ2 cos θ + 2k2r2 cos 2θ + 12kr2δ

+ 4k2r cos θ + 2r2δ2 cos 2θ + k2κ2δ2 + 2k2κδ + 4kr2δ cos 2θ + 4krδ cos θ + 4krκδ2

− 4k2rκδ − 16kr2δ cos θ − 4krκδ2 cos θ + 4k2rκδ cos θ

≥ (−3k − 4δ − 3kκδ + 4kr sin2
1

2
θ + 4rδ sin2

1

2
θ)2

or
8 (k + δ + kκδ) (k + 2δ − 2rδ − kr + kr cos θ + kκδ + 2rδ cos θ) ≥ 0.
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Let us find κ and δ as

k + 2δ − 2rδ − kr + kr cos θ + kκδ + 2rδ cos θ ≥ 0.

Since

2rδ + kr − kr cos θ − 2rδ cos θ ≤ 4rδ + 2kr

and

k + 2δ − 2rδ − kr + kr cos θ + kκδ + 2rδ cos θ ≥ k + 2δ + kκδ − 4rδ − 2kr,

the term is k+2δ+kκδ−4rδ−2kr ≥ 0 for kκδ−4rδ−2kr ≥ 0. Hence, selecting

κ ≥ 4r

k
+

2r

δ
=

4

h2
+

2r

δ
(10)

yields the stability of the scheme. It can be said that the increased δ will give
stability for kκ− 4r > 0. □

2.1. Consistency. In this subsection, we deal with the consistency of the method
for various κ and δ. We will prove that the convergence order of the method is
O(δ k

2 + k
2 + κδ k

2 − 1). Specifically, we proved that for a constant δ and under the

condition κδ ≤ 2
k , the method is consistent and the convergence order is 1.

Proposition 1. Let k, h, κ and δ be fixed positive real numbers. If u = u(x, t)
is smooth enough, then the method is consistent and the convergence order of the
method is O(δ k

2 + k
2 + κδ k

2 − 1).

Proof. Firstly, when u(x, t) is expanded to Taylor polynomials at (x, t) = (xi, tj)
point and then these polynomials are substituted into Eqn (4), we can get following,

ui,j + kut(xi, tj) +
k2

2 utt − ui,j

k
+ κδ

(
ui,j + kut +

k2

2 utt − ui,j

k

)

=
ui,j + hux + h2

2 uxx + h3

6 uxxx + h4

24uxxxx

h2

+
−2ui,j + ui,j − hux + h2

2 uxx − h3

6 uxxx + h4

24uxxxx

h2
.

If necessary simplifications are done, we get

T (xi, tj) := ut +
k

2
utt + κδut + κδ

k

2
utt − uxx − h2

12
uxxxx +O(h4)

or

T (xi, tj) =
k

2
δuttt +

(
k

2
+ κδ

k

2
− 1

)
utt −

h2

12
δuttt +O(k2 + h4).

Hence, T (xi, tj) → 0 is satisfied for h, k → 0, so, the method is consistent with the

convergence order O(δ k
2 + k

2 + κδ k
2 − 1) in time. As a special case, we will prove
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the consistency for a constant δ and under the condition κδ ≤ 2
k . To show the

consistency, let us show the following inequality,

k

2
+ κδ

k

2
− 1 ≤ k (11)

Simplifying Eqn (11), we can get the following inequality

(
kδ

2
− 1 +

1

2
)k ≤ 1

or

k ≤ 1
kδ
2 − 1

2

. (12)

Finally, we can obtain the following inequality

κδ ≤ 2

k
(13)

which satisfies Eqn (11). It can be easily seen that lim(h,k)→(0,0) T (xj , tj) = 0 is

satisfied for a constant δ and under the condition κδ ≤ 2
k . Therefore, for a constant

δ and under the condition κδ ≤ 2
k , the method is consistent and the convergence

order for the method is 1. □

Note that it can come to the question to mind: Is it possible to get the conver-
gence order from 1 to 2 in time? A way of doing this can order 2 be found in time
for

k

2
+ κδ

k

2
− 1 ≤ k2. (14)

If necessary operations are performed here, we obtain

κ ≤ 2k2 − k + 2

kδ
=

2k

δ
+

2− k

kδ
.

By applying the stability condition (10) and (14), we get following inequality:

4r

k
+

2r

k
≤ κ ≤ 2k

δ
+

2− k

k2
=⇒ 6r

k
≤ κ ≤ 2 +

2− k

k2
. (15)

It means that the method is order of 2 for values of κ in this interval. In addition,
for any value of r and values of κ and δ satisfying the (15) condition under the
stability condition, the method is stable and the convergence order is 2.

Corollary 1. If the stability condition and the (15) condition are satisfied for a
given r value, a method that is convergent to the second order is obtained.

As an example, for r = 5, we obtain the following inequality

30

k
≤ κ ≤ 2 +

2− k

k2
. (16)

Then, there is a solution in κ if

30

k
≤ 2 +

2− k

k2
or =⇒ 2k2 − 31k + 2 ≥ 0
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which is valid for k ∈
(
0, 6. 478 7× 10−2

]
∪ [15,∞). Therefore, the method is

consistent and is of order 2 for k ≤ 0.065, r = 5, δ = k and κ satisfy (16).

3. Numerical examples

In this section, we give some numerical examples to illustrate the method. We use
MATLAB R2020b program for all computation. For the term ui,j+1, the following
relation can be used for each time step, so there is only one unknown term in time.

ui,j+1 =

(
1 +

δ

k

)−1

ui,j+1 +
δ

k

(
1 +

δ

k

)−1

ui,j .

Example 1. Let us consider the heat equation, [3]

∂U

∂t
=

∂2U

∂x2
, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

where

U(0, t) = U(1, t) = 0, U(x, 0) = sin(πx).

The exact solution is

u(x, t) = e−π2tsin(πx).

The results are given in Tables 1, 2, 3 and 4 and Figure 1.
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Figure 1. Stability region κδ-plane
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Table 1. Numerical results of Example 1, for 160010 ≤ κ ≤
10240010 in the domain satisfying the stability condition, δ =
0.0001 and r = 5

t k |ei,j | order

0.005 0.00125 blowup −

0.005 0.00125 0.0506 −

0.0025 3.1250e− 05 0.0250 1.0172

0.00125 7.8125e− 06 0.0124 1.0116

0.000625 1.9531e− 06 0.0062 1

Table 2. Numerical results of Example 1, for 62521 ≤ κ ≤
4000000 in the domain satisfying the stability condition, 0.0001 ≤ δ
and r = 10.4167

t k |ei,j | order

0.01 6.6667e− 04 blowup −

0.01 6.6667e− 04 0.1039 −

0.005 1.6667e− 04 0.0506 1.0380

0.0025 4.1667e− 05 0.0250 1.017

0.00125 1.0417e− 05 0.0124 1.0116

Table 3. Numerical results of Example 1, for 1590250 ≤ κ ≤
12790000 in the domain satisfying the stability condition, δ =
0.0001

t k r |ei,j | order

0.025 0.0125 11.25 blowup −

0.025 0.0125 11.25 1.8529 −

0.0125 0.0063 22.5 0.4722 1.9723

0.00625 0.0031 45 0.1218 1.9549

0.003125 0.0016 90 0.0322 1.9194
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Table 4. Numerical results of Example 1, for 5850 ≤ κ ≤ 3881.2
in the domain satisfying the stability condition, δ = 0.01

t k r |ei,j | order

0.025 0.0125 11.25 blowup −

0.025 0.0125 11.25 0.2881 −

0.0125 0.0063 5.6250 0.1366 1.0776

0.0063 0.0031 2.8125 0.0675 1.0170

0.0031 0.0016 1.4062 0.0471 0.5192

It can be seen from Table 1 that, for

κ = 0, k = 0.00125, r =
k

h2
= 5, T = 0.005,

the solution blows-up. However, for

r =
k

h2
= 5, 160010 ≤ κ ≤ 10240010, 0.0001 ≤ δ, T = 0.005,

the solutions do not blow-up. Moreover, we have obtained convergent solutions of
order 1. Similarly, Table 2 shows that for

κ = 0, k = 6.6667e− 04, T = 0.01

the solution blows-up. But, the solutions do not blow-up for

160010 ≤ κ ≤ 10240010, 0.0001 ≤ δ, r =
k

h2
= 10.4167, T = 0.01.

Otherwise, the solutions are convergent with the order of 1. Figure 1 shows the
κδ-stability domain which is unbounded subset of R2. The solutions are stable in
this domain. In other words, for r = 6 and any chosen κδ-pairs which are in this
region, the solutions do not blow-up.

It is seen in Table 3 that the solutions are convergent with the order of 2 in time
for the δ = 0.0001 and selected κ values. Although r increases, the solutions are
convergent with the order of 2.

It is shown in Table 4 that for different κ values the solutions are convergent
with the order of 1 in time. These κ values are satisfied to Eqn. 13.

Example 2. Consider the heat equation with boundary condition for 0 ≤ x ≤ 2π
and in time interval 0 ≤ t ≤ T = 0.5.

U(0, t) = e−t, U(π, t) = −e−t, 0 ≤ t ≤ T U(x, 0) = cos(x)

The exact solution is
u(x, t) = e−tcos(x).
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The results are given in Tables 5-10 and Figures 2 and 3.
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Figure 2. Stability region κδ-plane
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Table 5. Numerical results of Example 2, for 11599 ≤ κ ≤ 664800
in the domain satisfying the stability condition, δ = 0.01 and r =
6.4038

t k |ei,j | order

0.5 0.0025 blowup −

0.5 0.0025 0.3882 −

0.25 6.2500e− 04 0.2206 0.8154

0.125 1.5625e− 04 0.1174 0.9100

0.0625 3.9063e− 05 0.0606 0.9540

Table 6. Numerical results of Example 2, for 10439 ≤ κ ≤ 167040
in the domain satisfying the stability condition, 0.1 ≤ δ and r =
6.4441

t k |ei,j | order

0.5 0.0025 blowup −

0.5 0.0025 0.3929 −

0.25 6.2500e− 04 0.2211 0.8295

0.125 1.5625e− 04 0.1175 0.9120

0.0625 3.9063e− 05 0.0606 0.9553

Table 7. Numerical results of Example 2, for 14185 ≤ κ ≤ 269510
in the domain satisfying the stability condition, δ = 0.01 and r =
50.6606

t k |ei,j | order

0.5 0.05 blowup −

0.5 0.05 0.4919 −

0.25 0.0125 0.2194 1.1648

0.125 0.0031 0.1173 0.9034

0.0625 7.8125e− 04 0.0606 0.9528
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Table 8. Numerical results of Example 2, for 0.0079 ≤ κ ≤ 0.0639
in the domain satisfying the stability condition, δ = 10000

t k r |ei,j | order

0.05 0.025 25.0776 5.8580e− 04 −

0.025 0.0125 50.4076 1.4576e− 04 2.0068

0.0125 0.0063 101.0680 3.4952e− 05 2.0601

0.0063 0.0031 202.3891 7.8493e− 06 2.1547

Table 9. Numerical results of Example 2, for 0.0079 ≤ κ ≤ 0.0639
in the domain satisfying the stability condition, δ = 10000

t k r |ei,j | order

0.05 0.025 25.0776 5.8580e− 04 −

0.025 0.0125 12.5388 1.4422e− 04 2.0221

0.0125 0.0063 6.2694 3.3985e− 05 2.0853

0.0063 0.0031 3.1347 7.3399e− 06 2.2111

Table 10. Numerical results of Example 2, for κ = 4012.4 in the
domain satisfying the stability condition, δ = 10000

t k r |ei,j | order

0.05 0.025 25.0776 0.0485 −

0.025 0.0125 12.5388 0.0244 0.9911

0.0125 0.0063 6.2694 0.0122 1

0.0063 0.0031 3.1347 0.0060 1.0238

It can be concluded from Tables 5, 6, 7 that, for κ = 0, we get blow-up solutions
for values of

k = 0.0025, r =
k

h2
= 6.4038 and k = 0.05, r =

k

h2
= 50.6606
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respectively. Contrary to this, we can see in Tables 5 and 6 that the solutions do
not blow-up for

r =
k

h2
= 6.4038, 3842 ≤ κ ≤ 167040, δ = 0.01 and 2574.3 ≤ κ ≤ 167040, 0.1 ≤ δ,

respectively. Table 7 presents that for

r =
k

h2
= 6.4038, 14185 ≤ κ ≤ 269510, δ = 0.01

the solutions do not blow-up. Furthermore, these solutions are convergent of order
close to 1. Figures 2 and 3 show the κδ-stability domains which are unbounded
subsets of R2. The solutions are stable in these domains. Namely, for r = 6.4038
and r = 50.6606 and any chosen κδ-pairs which are in these domains, the solutions
do not blow-up.

It is seen in Table 8 that the solutions are convergent with the order of 2 in time
for the δ = 10000 and selected κ values. Although r increases, the solutions are
convergent with the order of 2. Table 9 shows that for a constant value of h the
solutions are almost convergent with the order of 2 in time. It is shown in Table 10
that for different κ values the solutions are convergent with the order of 1 in time.
These κ values are satisfied to Eqn. 13.

4. Conclusion

In this study, we present a model which is obtained by adding the time-relaxation
term κ (u− u) to the heat equation. We develop an algorithm using the explicit
method to find the solutions of this model. We analyze the consistency, stability
and convergence properties of the solution. We find that the method is consistent
on an unbounded domain subset of κδ-plane. Moreover, we see that for any given
value of r, the method is stable for some particular values of κ and δ which are
selected from an unbounded consistency region which is the subset of R2. The
algorithm seems structurally explicit. Besides, for any value of r, the behavior of
the stability results shows that this algorithm is similar to the implicit method, but
this method is still explicit. On the other hand, we obtain the convergence order of
convergence as 1 when stability condition holds. If the condition 15 is satisfied in
addition to the stability condition, the convergence order of the method is increased
from 1 to 2, which means that the convergence is accelerated. Consequently, the
presented model is an efficient model that stabilizes an unstable method by spec-
ifying unbounded κ − δ region. Moreover adding the term time-relaxation to the
heat equation in this presented model expands the stability range for the explicit
method. We give two examples to validate theoretical results and how the method
works. We observe that the blow-up solutions which is obtained by κ = 0 are
stabilized by selecting suitable pair of κ and δ as given in examples. This shows
that for any value of r, the convergence order for the method is 1 and 2 for the
appropriate values of κ and δ. As a result, the numerical results obtained by using
the algorithm are consistent with the theoretical results. As further works, the
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time-relaxation term will be added to elliptic or hyperbolic equations.
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Abstract. In this study, we examine the Berry’s phase equation for E-M

curves in the C − direction and W − direction throughout an optic fiber via

alternative moving frame in three dimensional space. Moreover, electromag-
netic curve’s C − direction and W − direction Rytov parallel transportation

laws are defined. Finally, we examine the electromagnetic curve with anholo-

nomic co-ordinates for Maxwellian evolution by Maxwell’s equation.

1. Introduction

Electromagnetic (E-M) theory and magnetic theory are very significant topics
for the scientific world. Mathematically, at first, it started to be researched in
terms of topology [20]. Then, it was noted that a geometric perspective could be
presented with this approach and Berry made a the publication leading the way in
this regard [16]. After that, Ross studied the rotational motion of the polarization
state together with the optical fiber geometrically and gave a relationship with the
most important branch of geometry, curves [11]. Haldane examined the geometric
phase of a light wave in tangential vector space [5]. Dandoloff, Zakrzewski and
Frins, Dultz researched parallel transport with Berry’s phase and correlated the
space curve with the trajectories of the light wave along the optical fiber [4,19]. On
the other hand, there has been a very important paper that has led to the study
of this subject for geometers recently. In that paper, the relationship between the
magnetic field and Killing vector field and the connection with the classical elastic
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theory and the Hall effect were given [12, 13]. Then, the magnetic flow and field
were studied in some geometric structures, thanks to the interest in the geometric
phase and the important publications written on this subject [7, 9, 10]. With this,
the geometrical phase shift of the angular momentum and their densities were re-
searched analytically so that Frenet-Serret coordinate system and the special curve
were associated [18]. Afterward, Özdemir [27] and Ceyhan [6] calculated magnetic
and electromagnetic trajectories and they presented some motivated examples of
motion of the polarization light wave. Finally, in [17, 21], Körpınar and Gürbüz
examined the connection between electromagnetic theory and Maxwell’s equations
from a geometric perspective.

Recently optical fiber is a very important field that come into prominence in
physics and geometry. Polarized light is generally thought of as the transport of an
electromagnetic wave and its appearances. When it is assumed to propagate within
the optical fiber, it is well-defined, owing to the Maxwell’s equations. The set of
Maxwell’s equations implicitly shows how electromagnetic field vectors propagate
and explicitly tell sources of the field. In the optical fiber configuration of uni-
form, isotropic, nonconducting, free-from charge, magnetic flux, and non-dispersive
etc. The evolution of the space curve is a very influential way to understand many
physical processes such as vortex filaments, dynamics of Heisenberg spin chain,
integrable systems, soliton equation theory, sigma models, relativity, water wave
theory, fluid dynamics, field theories, linear and nonlinear optics. We give example
publications of the applications mentioned above. Authors researched the relation-
ship between non-linear Schöndinger equation rogue soliton equivalent in the spin
system [2]. In [14], authors gave a sufficient conclusion by using Da Rios vortex
filament equation and the evolution equation for the torsion is the Viscous Burger’s
equation. Then in comprehensive paper [26], Banica and Miot investigated evolu-
tion, interaction and collisions of vortex filaments. Moreover, Körpinar and et. al.
studied Binormal Schöndinger system of Heisenberg ferromagnetic equation and
flux surface by using normal direction equations [23–25]. In [22], author studied
binormal direction with magnetic flows equations for Berry’s phase applications.

In this study, we analyze the geometric phase equation for E-M curves in the
C − direction and W − direction directions throughout an optic fiber via an alter-
native moving frame in three dimensional space. At the same time, we research the
electromagnetic curve’s via anholonomic co-ordinates for Maxwellian evolution by
Maxwell’s equation. The first section includes the historical background of the work
and a description of what has been done in this paper. In the second section, equa-
tions of alternative moving frame studied in this study and anholonomic coordinate
calculations to be used in other parts are given. The third section comprises evalu-
ation of directional derivative expressions for the alternative moving frame and the
S−direction, C−direction, W −direction derivatives of Serret-Frenet relations in

matrix form. The fourth section we calculate
−→
E c and

−→
Ew electric field, magnetic

field, electromagnetic matrix form and
−→
E c,

−→
Ew Rytov curves. Finally, in the last
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section, we give mathematical approach of Maxwell equations for electromagnetic
and magnetic waves via alternative moving frame.

2. Fundamental Background

Let γ = γ(s) be an arbitrary curve in 3D Riemannian manifolds. If ⟨−→γ ′(s),−→γ ′(s)⟩ =
0 for any s ∈ I, γ is called an arc-lenght parametrized curve where ⟨, ⟩ is defined
as;

⟨ , ⟩ = du2
1 + du2

2 + du2
3

that (u1, u2, u3) is a coordinate of E3.

Alternative frame’s fields as {−→t ,−→n ,
−→
b } Frenet frame are given as below;

−→
N,

−→
C =

−→
N ′

∥
−→
N ′∥

,
−→
W =

τt+ κb√
κ2 + τ2

where
−→
N is a unit principal normal vector field and

−→
W is a Darboux vector field.

The one-parameter derivative s, which is the arc-lenght parameter of the alter-
native moving frame’s fields is as follows;

−→
N ′(s) = f(s)

−→
C (s)

−→
C ′(s) = −f(s)

−→
N (s) + g(s)

−→
W (s)

−→
W ′(s) = −g(s)

−→
C (s)

which f(s) and g(s) are curvature of the curve γ (κ and τ are the curvature and
the torsion of the curve γ in terms of Frenet’s frame, respectively); are defined as;

f = κ
√
1 +H2 g = σf

where H = τ
κ is harmonic curvature and σ = κ2

(κ2+τ2)
3
2
( τκ )

′, ( [3]).

With
−→
A being an arbitrary vector field, the gradient and the curl of this vector

field are given respectively, as ( [1])

grad
−→
A =

−→
N
−→
N · grad

−→
A +

−→
C
−→
C · grad

−→
A +

−→
W

−→
W · grad

−→
A,

curl
−→
A =

−→
N × ∂

−→
A

∂s
+
−→
C × ∂

−→
A

∂s
+

−→
W × ∂

−→
A

∂s
.
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On the other hand, the directional derivatives of arbitrary scalar f , along the

vector
−→
N , vector

−→
C and Darboux vector

−→
W , are defined in the above expression as;

∂f

∂s
=

−→
N · gradf,

∂f

∂c
=

−→
C · gradf,

∂f

∂w
=

−→
W · gradf.

Assume that a directional derivative of an arbitrary vector
−→
A with respect to

direction η where η ∈ {
−→
N,

−→
C ,

−→
W} and considering the directional derivative

∂
−→
A

∂η
which calculated as follows; the divergence operator div acting on an arbitrary

vector
−→
A is written as;

div
−→
A =

−→
N · ∂

−→
A

∂η
+
−→
C · ∂

−→
A

∂η
+
−→
W · ∂

−→
A

∂η
.

The directional derivative of the vector
−→
N can be written in a general form as

follows;

∂
−→
N

∂s
= (

−→
N · ∂

−→
N

∂s
)
−→
N + (

−→
C · ∂

−→
N

∂s
)
−→
C + (

−→
W · ∂

−→
N

∂s
)
−→
W,

∂
−→
N

∂c
= (

−→
N · ∂

−→
N

∂c
)
−→
N + (

−→
C · ∂

−→
N

∂c
)
−→
C + (

−→
W.

∂
−→
N

∂c
)
−→
W,

∂
−→
N

∂w
= (

−→
N · ∂

−→
N

∂w
)
−→
N + (

−→
C · ∂

−→
N

∂w
)
−→
C + (

−→
W · ∂

−→
N

∂w
)
−→
W.


(1)

For the other directional derivatives of the vectors which are vector
−→
C and Dar-

boux vector
−→
W , we can use the same method. Here we give various interrelationships

between directional derivatives found by solving the following sets of equations;

∂

∂s
(
−→
N ·

−→
N ) = 2

−→
N

∂
−→
N

∂s
= 0

∂

∂s
(
−→
C ·

−→
C ) = 2

−→
C

∂
−→
C

∂s
= 0

∂

∂s
(
−→
W ·

−→
W ) = 2

−→
W

∂
−→
W

∂s
= 0



(2)
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∂

∂s
(
−→
N ·

−→
C ) =

−→
N · ∂

−→
C

∂s
+

−→
C · ∂

−→
N

∂s
= 0

−→
N · ∂

−→
C

∂s
= −

−→
C · ∂

−→
N

∂s
= f(s)


(3)

∂

∂s
(
−→
N ·

−→
W ) =

−→
N · ∂

−→
W

∂s
+

−→
W · ∂

−→
N

∂s
= 0

−→
N · ∂

−→
W

∂s
= −

−→
W · ∂

−→
N

∂s


(4)

∂

∂s
(
−→
C ·

−→
W ) =

−→
C · ∂

−→
W

∂s
+

−→
W · ∂

−→
C

∂s
= 0

−→
C · ∂

−→
W

∂s
= −

−→
W · ∂

−→
C

∂s
= g(s)


(5)

The equations obtained above for the ∂
∂s are also written in the same way for

the directional derivatives ∂
∂c and ∂

∂w .
And also in [15], defined four additional terms of the directional derivatives.

These are as follows

−→
C · ∂

−→
N

∂c
= −

−→
N · ∂

−→
C

∂c
= Ψcs

−→
W · ∂

−→
N

∂w
= −

−→
N · ∂

−→
W

∂w
= Ψws

−→
W · ∂

−→
N

∂c
= −

−→
N · ∂

−→
W

∂c

=
1

2
(Φs + Λs)

−→
C · ∂

−→
N

∂w
= −

−→
N · ∂

−→
C

∂w

=
1

2
(Φs − Λs)



(6)



ANHOLONOMIC CO-ORDINATES AND ELECTROMAGNETIC CURVES 1099

The symbol Ψcs represents the normal deformation of the vector tube in the

direction of the
−→
C , Ψws represents the normal deformation of the vector tube in

the direction of the
−→
W , Φs is called the abnormality parameter of the vector s−line,

Λs is the shear deformation in the normal plane (i.e. plane containing the
−→
N and

−→
W vectors).

Note that the abnormality parameter of the vectors
−→
N,

−→
C ,

−→
W are denoted by the

symbols Λs, Λc and Λw and defined as

Λc = −g(s)− 1

2
(Φs − Λs)

= −g(s) +
−→
N · δ

−→
C

δw
,

Λw = −g(s) +
1

2
(Φs + Λs)

= −g(s)−
−→
N · δ

−→
W

δc
,

Λs = −
−→
W · δ

−→
N

δc
+
−→
C · δ

−→
N

δw
,



(7)

respectively. The three abnormalities can be written as follows upon examining the
above expression as follows

curl
−→
N ·

−→
N = Λs

curl
−→
C ·

−→
C = Λc

curl
−→
W ·

−→
W = Λw

 (8)

The abnormality parameter of the vector s − line is obtained by setting the
torsion τ in (7) equal to each other, such that,

Φs = Λw − Λc

3. Evaluation of Directional Derivative Expressions for the
Alternative Moving Frame

Here we consider that γ(s, c, w) be a curve that exists in the 3D space. Via (1)-
(8) we can write the other geometric equations in terms of anholonomic coordinates
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respectively;

div
−→
N =

−→
N · ∂

−→
N

∂s
+

−→
C · ∂

−→
N

∂c
+

−→
W · ∂

−→
N

∂w
= Ψcs +Ψws,

div
−→
C =

−→
N · ∂

−→
C

∂s
+

−→
C · ∂

−→
C

∂c
+

−→
W · ∂

−→
C

∂w

= −f(s) +
−→
W · ∂

−→
C

∂w
,

div
−→
W =

−→
N · ∂

−→
W

∂s
+

−→
C · ∂

−→
W

∂c
+

−→
W · ∂

−→
W

∂w

=
−→
C

∂
−→
W

∂c
.

Furthermore,

curl
−→
N =

−→
N × ∂

−→
N

∂s
+
−→
C × ∂

−→
N

∂c
+

−→
W × ∂

−→
N

∂w

= Λs + f(s)
−→
W,

curl
−→
C =

−→
N × ∂

−→
C

∂s
+
−→
C × ∂

−→
C

∂c
+

−→
W × ∂

−→
C

∂w

= (−div
−→
W )

−→
N + (−g(s)− 1

2
(Φs − Λs))

−→
C +Ψcs ·

−→
W,

curl
−→
W =

−→
N × ∂

−→
W

∂s
+
−→
C × ∂

−→
W

∂c
+

−→
W × ∂

−→
W

∂w

= (div
−→
C + f(s))

−→
N + (−Ψws)

−→
C + (−g(s) +

1

2
(Φs + Λs)) ·

−→
W.

Thanks to the above equations, the Serret-Frenet formulas for each direction of
the frame together with the anholonomic coordinates of the {N,C,W} frame are
obtained as the following matrix forms;

∂

∂s


−→
N
−→
C
−→
W

 =

 0 f(s) 0
−f(s) 0 g(s)

0 −g(s) 0



−→
N
−→
C
−→
W

 ,

∂

∂c


−→
N
−→
C
−→
W

 =

 0 Ψcs Λw + g(s)

−Ψcs 0 −div
−→
W

−(Λw + g(s)) div
−→
W 0



−→
N
−→
C
−→
W

 ,

∂

∂w


−→
N
−→
C
−→
W

 =

 0 −(Λc + g(s)) Ψws

Λc + g(s) 0 f(s) + div
−→
C

−Ψws −(f(s) + div
−→
C ) 0



−→
N
−→
C
−→
W

 .

(9)
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4. Relationship between anholonomic coordinates and
Electromagnetic curves

Berry’s (geometric) phase in the directions throughout C − direction and W −
direction arises with the dissemination of an E-M wave along with the optical fiber
for the alternative moving frame of curve γ. Optical fiber can be defined as a curve
γ(s, c, w) via alternative moving frame in three dimensional space. The E-M wave

dissemination is in the direction of
−→
N = (s, c, w) the polarization of the E-M wave

is mentioned by the direction of the electric field vector
−→
E = (s, c, w) and magnetic

field is described as
−→
V = (s, c, w). Here basically the electric field will be shown

perpendicular to the direction of W will be examined.

Case 1 : The derivation of the
−→
E between any two points in the C − direction

for the alternative moving frame {N,C,W} of the curve γ(s, c, w) can be defined
as

∂

∂c

−→
E (s, c, w) = λ1

−→
N + λ2

−→
C + λ3

−→
W (10)

where λi(s, c, w), i = 1, 2, 3 are sufficiently smooth arbitrary functions along the

γ. The electric field is right angle to
−→
N and if we consider that because of the

absorption, there is no mechanism loss in the optical fiber, we can write the following
equations;

⟨
−→
N,

−→
E ⟩ = 0, ⟨

−→
E ,

−→
E ⟩ = c. (11)

Taking the derivative of (11) and using the Eqs. (9)-(11), we get

⟨∂
−→
N

∂c
,
−→
E ⟩ = −λ1.

Using Eqs. (10) and (11) we can calculate,

λ1 = −(ΨcsE
C + (Λw + g(s))EW ) (12)

where EC and EW are smooth components of the
−→
C and

−→
W . If we taking derivative

of the second one in (11), we can get

⟨∂
−→
E

∂c
,
−→
E ⟩ = 0.

Therefore, using (9), (11) and (12), we obtain

−→
E c = −(ΨcsE

C + (Λw + g(s))EW )
−→
N + λ(

−→
E ×

−→
N ) (13)

that λ is a constant term.
The last equation allows us to find the rotation of the electric field in the C −
direction around the −→n . Moreover, we can assume that λ = 0, with that we can
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finalize which
−→
E is a Rytov parallel transport in the C−direction by the conditions

given above
−→
E c = −(

−→
E ·Nc)N. (14)

Furthermore, the Fermi-Walker transportation law is given as
−→
BFW

c =
−→
B c ± (

−→
B ·

−→
N c)

−→
N + (

−→
B ·

−→
N )

−→
N c. (15)

Generally, we can write
−→
E = EC−→C +EW−→

W. (16)

Deriving (16) and combining with (9) we can write,

∂

∂c

−→
E = −(ΨcsE

C+(Λw+g(s))EW )
−→
N+(EC

c +div
−→
W ·EW )

−→
C +(EW

c −div
−→
W ·EC)

−→
W.

(17)
If the electric field is assumed to be Rytov parallel transported in C − direction,
then comparing (14) and (17) satisfies that;(

EC
c

EW
c

)
=

(
0 −div

−→
W

div
−→
W 0

)(
EC

EW

)
. (18)

Therefore, we can accomplish that (18) describes the motion of the polarization
plane in the C − direction along the optical fiber thus a Berry’s phase ρ = (s, c, w)
in the c direction is defined by;

∂

∂c
ρ = div

−→
W.

Using the information provided it is found the magnetic field vector in relation to
the ingredient of the electric field as ;

−→
V = EC−→W −EW−→

C (19)

that provides the following conditions;
−→
V ⊥

−→
E

−→
V ⊥

−→
N (20)

where
V C = −EW V W = EC .

Using (20) and (9), deriving (19), we get

∂
−→
V

∂c
= (EWΨcs−EC(Λw+g(s))

−→
N+(ECdiv

−→
W−EW

c )
−→
C +(EC

c +EW div
−→
W )

−→
W (21)

which satisfies

⟨∂
−→
V

∂c
,
−→
E ⟩+ ⟨∂

−→
E

∂c
,
−→
V ⟩ = 0

and

⟨∂
−→
V

∂c
,
−→
N ⟩+ ⟨∂

−→
N

∂c
,
−→
V ⟩ = 0.
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Within the results obtained, we can make the following inference, magnetic field
and electric field have alike Berry’s phase in the same conditions as follows

−→
V c = −(

−→
V ·

−→
N c)

−→
N. (22)

We show that if
−→
E is the Rytov parallel transported the C − direction if and only

if it is Fermi-Walker parallel transported in the C − direction throughout optical
fiber via alternative moving frame of the curve γ.
The Lorentz force is the force acting on a charged particle moving in electromagnetic
field in three dimensional space. At that time, the electromagnetic field in the
C−direction along with the curve γ via alternative moving frame with concerning

anholonomic coordinates help of Lorentz equation ϕ(
−→
E ) =

−→
X ×

−→
E where

−→
X is a

Killing magnetic field in three dimensional space and (9) is given as follows;

⟨ϕc(
−→
E ),

−→
N ⟩ = −⟨ϕ(

−→
N ),

−→
EC⟩ = ⟨∂

−→
E

∂c
,
−→
N ⟩ = −ΨcsE

C − (Λw + g(s)EW .

When necessary arrangements are made, we can write;

ϕc(
−→
N ) = ΨcsE

C + (Λw + g(s))EW + a1E
N

ϕc(
−→
C ) = −λEW + a2E

N

ϕc(
−→
W ) = λEC + a3E

N .

(23)

Taking (23) and (9) into account, Lorentz force in the C−direction throughout the
optical fiber that is determined curve γ for the alternative moving frame implies
the following matrix form;

ϕc(
−→
N )

ϕc(
−→
C )

ϕc(
−→
W )

 =

 0 Ψcs (Λw + g(s)
−Ψcs 0 −λ

−(Λw + g(s) λ 0

EN

EC

EW



Case 2 : The derivation of the electric field vector
−→
E between any two points in

theW−direction for the alternative moving frame {N,C,W} of the curve γ(s, c, w)
can be defined as

∂

∂w

−→
E (s, c, w) = λ1

−→
N + λ2

−→
C + λ3

−→
W (24)

where λi(s, c, w), i = 1, 2, 3 are sufficiently smooth arbitrary functions along the

γ. The electric field is right angle to
−→
N and if we consider that because of the

absorption, there is no mechanism loss in the optical fiber, we can write the following
equations;

⟨
−→
N,

−→
E ⟩ = 0, ⟨

−→
E ,

−→
E ⟩ = c. (25)



1104 H. CEYHAN, E. YANIK, Z. ÖZDEMİR

Taking derivative of (25) and using the Eqs. (9)-(25), we get

⟨∂
−→
N

∂w
,
−→
E ⟩ = λ1

Using Eqs. (24) and (25) we can calculate,

λ1 = ((Λc + g(s))EC −ΨwsE
W )

−→
N. (26)

If we taking derivative of the second one in (25), we can get

⟨∂
−→
E

∂w
,
−→
E ⟩ = 0.

After that we collect (9), (25) and (25) we obtain
−→
Ew = ((Λc + g(s))EC −ΨwsE

W )
−→
N + λ(

−→
E ×

−→
N ) (27)

that λ is a constant.
Considering the last equation we get the rotation of the

−→
E in the W − direction

around the
−→
N . Furthermore, we assume that λ = 0, in this manner we finalize that−→

E is a parallel transport in the W − direction with the above terms

−→
Ew = −(

−→
E ,

−→
Nw)

−→
N. (28)

Additionally, this motion can be defined through the Fermi-Walker transportation
law in three dimensional space is as follows;

−→
BFW

w =
−→
Bw ± (

−→
B ·

−→
Nw)

−→
N + (

−→
B ·

−→
N )

−→
Nw. (29)

Generally, we get
−→
E = EC−→C +EW−→

W (30)

where EC and EW are smooth components of the
−→
C and

−→
W . Deriving (30) and

combining with (9) we can write,

∂

∂w

−→
E = ((Λc + g(s))EC −ΨwsE

W )
−→
N + (EC

w − (div
−→
C + f(s))EW )

−→
C (31)

+ (EW
w + (f(s) + div

−→
C )EC)

−→
W.

If the electric field is presumed to be Rytov parallel transported in the direction
W , then comparing (28) and (31) implies that(

EC
w

EW
w

)
=

(
0 div

−→
C + f(s)

−(div
−→
C + f(s)) 0

)(
EC

EW

)
. (32)

Therefore, (32) describes the rotation of the polarization plane in the W−direction
along the optical fiber thus a Berry’s phase ρ = (s, c, w) in the W − direction
described by;

∂

∂w
ρ = div

−→
C + f(s).



ANHOLONOMIC CO-ORDINATES AND ELECTROMAGNETIC CURVES 1105

We can indicate the magnetic field vector in relation to the ingredient of the electric
field as;

−→
V = EC−→W −EW−→

C (33)

that ensures the following conditions;

−→
V ⊥

−→
E

−→
V ⊥

−→
N (34)

where

V C = EW V W = EC .

Using (9), (34) and deriving (33), we can get;

∂
−→
V

∂w
= (−ECΨws −EW (ΛC + g(s))

−→
N + (−EC(f(s) + div

−→
C )−EW

w )
−→
C (35)

+ (EC
w +EW (f(s) + div

−→
C ))

−→
W

which satisfies

⟨∂
−→
V

∂w
,
−→
E ⟩+ ⟨∂

−→
E

∂w
,
−→
V ⟩ = 0

and

⟨∂
−→
V

∂w
,
−→
N ⟩+ ⟨∂

−→
N

∂w
,
−→
V ⟩ = 0.

Consequently, we can say that magnetic field and electric field have Berry’s phase
in the same conditions as follows;

−→
V w = −(

−→
V ·

−→
Nw)

−→
N

if
−→
E is the Rytov parallel transported the W − direction if and only if it is Fermi-

Walker parallel transported in the W − direction along with optical fiber via alter-
native moving frame of the curve γ.
The electromagnetic field in the W − direction along with the curve γ via alterna-
tive moving frame with respect to anholonomic coordinates help of Lorentz equation
and (9) is given as follows;

⟨ϕw(
−→
E ),

−→
N ⟩ = −⟨ϕ(

−→
N ),

−→
EW ⟩ = ⟨∂

−→
E

∂w
,
−→
N ⟩ = (Λc + g(s)EC −ΨwsE

W . (36)

When necessary arrangements are made, we can write;

ϕw(
−→
N ) = ΨwsE

W − (Λc + g(s)EC + a1E
N

ϕw(
−→
C ) = −λEW + a2E

N

ϕw(
−→
W ) = λEC + a3E

N .

(37)
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Taking (37) and (9) into account, the Lorentz force in the direction W along with
the optical fiber that is determined curve γ for the alternative moving frame implies
the following matrix form;ϕw(

−→
N )

ϕw(
−→
C )

ϕw(
−→
W )

 =

 0 −(Λc + g(s)) Ψws

(Λc + g(s)) 0 −λ
−Ψws λ 0

EN

EC

EW

 (38)

5. Mathematical Approach of Maxwell equations for
Electromagnetic and Magnetic waves via Alternative Moving

frame

Maxwell’s equations consist of four main equations that are very important
for understanding electromagnetic theory. Maxwell’s equations, together with the
Lorentz force law, are a set of partial differential equations that form the basis
for the fields of classical electrodynamics and optics.These equations describe how
magnetic and electric fields are exchanged and produced by each other, by charges
and currents. Maxwell equations are given by,

∇ ·
−→
E = 0 (39)

∇ ·
−→
V = 0 (40)

∇×
−→
V = ϵv

∂E

∂u
(41)

∇×
−→
E = −∂V

∂u
(42)

where ϵ and v have the same values at all points and (s, c, w) and u space, time vari-
ables. If we assume that the electric field is perpendicular to the tangent direction
and (17), (31) and (39), we can obtain;

∇ ·
−→
E = (

−→
N · ∂

∂s
+

−→
C

∂

∂c
+
−→
W

∂

∂w
) ·

−→
E

=
−→
N · ∂

−→
E

∂s
+

−→
C · ∂

−→
E

∂c
+

−→
W · ∂

−→
E

∂w
= 0

that satisfies;

EC
c −EW

w = −ECdiv
−→
C +EW div

−→
W. (43)
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In the same way, we are aware that E is right angle to the tangent directional and
using (17), (31) and (40), we can compute that;

∇ ·
−→
V = (

−→
N · ∂

∂s
+

−→
C

∂

∂c
+
−→
W

∂

∂w
) ·

−→
V

=
−→
N · ∂

−→
V

∂s
+

−→
C · ∂

−→
V

∂c
−

−→
W · ∂

−→
V

∂w
= 0

which implies that,

EW
c −EC

w = ECdiv
−→
W −EW div

−→
C . (44)

If we think comprehensively (43) and (44), then it is calculated that Laplacian-like
equations through C − lines and W − lines of the electromagnetic waves are as
follows;

∂2

∂c2
EW − ∂2

∂w2
EW = EC((div

−→
W )c + (div

−→
C )w) +EW ((div

−→
W )w + (div

−→
C )c)

+ div
−→
W (EC

c +EW
w ) + div

−→
C (EW

c +EC
w)

∂2

∂c2
EC − ∂2

∂w2
EC = EC((div

−→
W )w − (div

−→
C )c) +EW ((div

−→
W )w − (div

−→
C )c)

+ div
−→
W (EC

w −EW
c ) + div

−→
C (EW

w −EC
c ).

If we consider that the electric field is right angle to the tangential direction and
(17), (31) and (41), we get;

∇×
−→
V = ϵv

∂
−→
E

∂u
= (

−→
N · ∂

∂s
+
−→
C

∂

∂c
+

−→
W

∂

∂w
)×

−→
V

= (
−→
N × ∂

∂s

−→
V +

−→
C × ∂

∂c

−→
V +

−→
W × ∂

∂w

−→
V )

which satisfies that;

ϵv
∂
−→
E

∂u
= −(EC

c +EW div
−→
W +EW

w +EC(f(s) + div
−→
C )

−→
N

+ (EC
s + ΛcE

W +ΨwsE
W )

−→
C + (−EW

s − ΛwE
C +ΨcsE

W )
−→
W.

In the same sense, we attention to the
−→
E is right angle to the tangent directional

and (17), (31) and (42), we can write that;

− ∂

∂u

−→
V = ∇×

−→
E = (

−→
N

∂

∂s
+

−→
C

∂

∂c
+

−→
W

∂

∂w
)×

−→
E

=
−→
N × ∂

∂s

−→
E +

−→
C × ∂

∂c

−→
E +

−→
W × ∂

∂w

−→
E
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which implies that,

− ∂

∂u

−→
V = (−EW

c +ECdiv
−→
W + EC

w −EW (f(s) + div
−→
C ))

−→
N

+ (−EC
s − ΛcE

C +ΨwsE
W )

−→
C + (−EW

s −ΨcsE
C − ΛwE

W )
−→
W.

6. Conclusion

In this study, we found the movement of polarized light along the optical fiber
by calculating the equations of the electric field and magnetic field in cases where
the frame of the space is at a right angle with respect to the alternative frame’s
vector fields. Thus, we had the opportunity to examine the motion of light in the
field of geometry. In this way, the relationship of the motion of light in space with
special curves, which is an important subject of geometry, can be investigated. At
the same time, we investigated the geometric phase issue and Maxwell’s equations
together. We have obtained two important cases. These situations gave us the
chance to examine the motion of light in the C − direction and in the direction
of the Darboux vector. We also give their connections with Fermi-Walker parallel
transportation laws via alternative moving frame. For further research, we aim to
study Maxwellian evolution equations relationship between spherical coordinates
to better understand the solutions of the equations.

Author Contribution Statements The authors contributed equally to this work.
All authors read and approved the final copy of this paper.

Declaration of Competing Interests The authors declare that they have no
known competing financial interest or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgements We are grateful to the referees for their very helpful com-
ments and suggestions.

References

[1] Marris, A., Passman, S., Vector fields and flows on developable surfaces, Arch. Ration. Mech.

Anal., 32(1) (1969), 29-86.

[2] Mukhopadhyay, A., Vyas, V., Panigrahi, P., Rogue waves and breathers in Heisenberg spin
chain, Eur. Phys. J. B., 88 (2015), 188. https://doi.org/10.1140/epjb/e2015-60229-8

[3] Uzunoglu, B., Gök, I., Yaylı, Y., A new approach on curves of constant precession, Appl.
Math. Comput., 27 (2016), 317-323.

[4] Frins, E. M., Dultz, W., Rotation of the polarization plane in optical fibers, J. Lightwave

Tech., 15 (1997), 144-147.

[5] Haldane, F. D. M., Path dependence of the geometric rotation of polarization in optical fibers,
Opt. Lett., 11 (1986), 730-732.
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NEW PROOFS OF FEJER’S AND DISCRETE
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Abstract. New proofs of the classical Fejer inequality and discrete Hermite-

Hadamard inequality (HH) are presented and several applications are given,

including (HH)-type inequalities for the functions, whose derivatives have in-
flection points. Morever, some estimates from below and above for the first mo-

ments of functions f : [a, b] → R about the midpoint c = (a+b)/2 are obtained

and the reverse Hardy inequality for convex functions f : (0,∞) → (0,∞) is
established.

1. Introduction

The famous Hermite-Hadamard inequality (HH) asserts that the integral mean
value of a convex function f : [a, b] → R can be estimated above and belove by its
values at the points a, b and (a+ b)/2. More precisely,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (HH)

Equality holds only for functions of the form f(x) = cx+d. Following Niculescu
and Persson [17], we denote the right and left sides of (HH) by (RHH) and (LHH),
respectively.

(HH) has many generalizations, extensions and refinements. There is an exten-
sive literature in this area, such as books by Niculescu and Persson [18]; Mitrinovic,
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Pecaric and Fink [16]; Dragomir and Pearce [6] and papers [1–5,7–12,15,17,19,21,
22], which are a small part of the relevant references.

The content of this article is organized as follows.
In Section 2 we give two new proofs of (HH). We first present a short proof of

Fejer’s inequality, from which (HH) follows immediately. The second proof includes
a discrete version of (HH), which, in our opinion, is of independent interest. As
an application, we give an estimation from below and above of the integral of the

convex function f : [0,∞) → (0,∞) via the series
∞∑
1
f(k) and

∞∑
1
f
(
k − 1

2

)
.

In Section 3, we give some new inequalities arising as a combination of (HH) with
Hardy’s inequality and iterated Hölder’s inequality. For example, as a consequence
we prove that, if f : (0,∞) → (0,∞) is convex and f ∈ Lp(0,∞), ∀p > 1, then

lim
p→∞

∥∥ 1
x

∫ x

0
f
∥∥
p

∥f∥p
= 1.

Moreover, we obtain a reverse Hardy inequality for some family of convex func-
tions on (0,∞).

Section 4 is devoted to the (HH)-type inequalities for the functions whose first
derivatives have an inflection point. As a particular case, we show that if f ′ is
concave on

[
a, a+b

2

]
and convex on

[
a+b
2 , b

]
, then

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx ≤ b− a

12
(f ′(b)− f ′(a)) .

In the last section we prove various inequalities for functions having convex
first or second order derivatives. According to the authors’ knowledge, there are
some inequalities for functions whose absolute values of the derivatives are convex,
see, e.g. [2, 5, 19]. In Theorems 7, 8, and 9 the convexity condition is imposed on
the derivatives themselves, not on their absolute values. One of the interesting
particular results obtained in this section is as follows.

Given f : [a, b] → R, let f ′ be convex. Then∫ b

a+b
2

f(x)dx−
∫ a+b

2

a

f(x)dx ≤ b− a

4
(f(b)− f(a)).

Another new result in this section is the estimation from below and above of the
first moment about the midpoint c = (a+ b)/2 of a function f : [a, b] → R, i.e. the
integral Mf =

∫ b

a

(
x− a+b

2

)
f(x)dx, when f ′ is convex.

2. New Proofs of Fejer’s Inequality and Discrete (HH)

At first, we give an auxiliary inequality that is satisfied by convex functions.

Lemma 1. (cf. [11] and Lemma 1.3 in [15]) Let f be a convex function on [a, b].
Then

f(a) + f(b) ≥ f(a+ b− x) + f(x), (∀x ∈ [a, b]). (1)
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By making use of (1) we give here a short proof of the (HH) ”without pulling
the pen on the paper”. More precisely, we give a short proof of a generalization of
Hermite-Hadamard’s inequality, which is named as the Fejer inequality and asserts
that if f is convex on [a, b] and the function g : [a, b] → [0,∞) is integrable and
symmetric with respect to the midpoint a+b

2 , i.e. g(a+ b− x) = g(x), (∀x ∈ [a, b]),
then

f

(
a+ b

2

)∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx. (2)

For g = 1, (2) turns into (HH).
To prove this inequality we will use of (1) and the following easily verifiable

equality: ∫ b

a

f(x)g(x)dx =
1

2

∫ b

a

[f(x) + f(a+ b− x)]g(x)dx. (3)

Now, we give a short proof of (2):
We have

f

(
a+ b

2

)∫ b

a

g(x)dx =

∫ b

a

f

(
a+ b

2

)
g(x)dx =

∫ b

a

f

(
x+ a+ b− x

2

)
g(x)dx

≤ 1

2

∫ b

a

[f(x) + f(a+ b− x)]g(x)dx
(3)
=

∫ b

a

f(x)g(x)dx

(3)
=

1

2

∫ b

a

[f(x) + f(a+ b− x)]g(x)dx

(1)

≤ f(a) + f(b)

2

∫ b

a

g(x)dx,

which is nothing but Fejer’s inequality (2).

Remark 1. Although the (HH) has several proofs, as far as we know the first
simple proof was given by Azbetia [3]; (see, also Niculescu and Persson [17], p.
664). Another simple proof and refinement was given by El Farissi [8].

The inequality given in the following theorem is a discrete version of (HH), and
classical (HH) can be obtained by passing to limit in this inequality.

Theorem 1. If f : [a, b] → R is convex and xk = a+ k b−a
n , (k = 1, 2, · · · , n), then

f

((
1− 1

n

)
a+

(
1 + 1

n

)
b

2

)
≤ 1

n

n∑
k=1

f(xk) ≤
1

2

[
f(a)

(
1− 1

n

)
+ f(b)

(
1 +

1

n

)]
.

(4)

Proof. Let xk = a+ k b−a
n , (k = 1, 2, · · · , n). Then writing xk as

xk =
b− xk

b− a
a+

xk − a

b− a
b
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and using

f(xk) ≤
b− xk

b− a
f(a) +

xk − a

b− a
f(b),

one has
n∑

k=1

f(xk) ≤ f(a)

b− a

n∑
k=1

(b− xk) +
f(b)

b− a

n∑
k=1

(xk − a)

=
1

2
[f(a)(n− 1) + f(b)(n+ 1)],

and therefore,

1

n

n∑
k=1

f(xk) ≤
1

2

[
f(a)

(
1− 1

n

)
+ f(b)

(
1 +

1

n

)]
. (5)

On the other hand, the Jensen inequality yields

1

n

n∑
k=1

f(xk) ≥ f

(
1

n

n∑
k=1

xk

)
= f

((
1− 1

n

)
a+

(
1 + 1

n

)
b

2

)
. (6)

By combining (5) and (6) we obtain (4). □

Corollary 1. After taking limit as n → ∞ in (4) and using the fact that the convex
function is continuous (maybe except the end-points a and b), we obtain (HH).

The following two theorems are the simple consequences of (HH).

Theorem 2 (a ”refinement” of (RHH)). Let f : [a, b] → R be convex. Then

1

b− a

∫ b

a

f(x)dx ≤ 1

b− a

∫ b

a

f(x)

[
ln

(b− a)2

(b− x)(x− a)
− 1

]
dx

≤ f(a) + f(b)

2
(7)

Proof. For any x ∈ (a, b] one has

f

(
a+ x

2

)
≤ 1

x− a

∫ x

a

f(t)dt ≤ f(a) + f(x)

2
.

Integrating over (a, b) we have∫ b

a

f

(
a+ x

2

)
dx ≤

∫ b

a

1

x− a

(∫ x

a

f(t)dt

)
dx ≤

∫ b

a

f(a) + f(x)

2
dx. (8)

After simple calculations, (8) leads to

2

∫ a+b
2

a

f(x)dx ≤
∫ b

a

f(x) ln
b− a

x− a
dx ≤ 1

2

[
f(a)(b− a) +

∫ b

a

f(x)dx

]
. (9)
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Similarly, integrating the inequality

f

(
x+ b

2

)
≤ 1

b− x

∫ b

x

f(t)dt ≤ f(x) + f(b)

2

over (a, b) we get∫ b

a

f

(
x+ b

2

)
dx ≤

∫ b

a

1

b− x

(∫ b

x

f(t)dt

)
dx ≤

∫ b

a

f(x) + f(b)

2
dx

which leads to

2

∫ b

a+b
2

f(x)dx ≤
∫ b

a

f(x) ln
b− a

b− x
dx ≤ 1

2

[
f(b)(b− a) +

∫ b

a

f(x)dx

]
. (10)

After summing up (9) and (10) we obtain (7). □

Theorem 3. Let f : [0,∞) → (0,∞) be a strictly convex function and
∞∑
k=1

f(k) <

∞. Then
∞∑
k=1

f

(
k − 1

2

)
<

∫ ∞

0

f(x)dx <
1

2
f(0) +

∞∑
k=1

f(k). (11)

Proof. For, 0 ≤ a < b < ∞, denote x0 = a and xk = a + k b−a
n , (k = 1, 2, · · · , n).

Since f is strictly convex, we have

f

(
xk−1 + xk

2

)
<

1

xk − xk−1

∫ xk

xk−1

f(x)dx <
f(xk−1) + f(xk)

2
, (k = 1, 2, · · · , n).

Taking into account the formulas

xk − xk−1 =
b− a

n
and

xk−1 + xk

2
= a+

(
k − 1

2

)
b− a

n

and summing the inequalities above we obtain
n∑

k=1

1

n
f

(
a+

(
k − 1

2

)
b− a

n

)
<

1

b− a

∫ b

a

f(x)dx

<
1

n

[
f(a) + f(b)

2
+

n−1∑
k=1

f

(
a+ k

b− a

n

)]
.

Setting now a = 0, b = n we have

n∑
k=1

f

(
k − 1

2

)
<

∫ n

0

f(x)dx <
f(0) + f(n)

2
+

n−1∑
k=1

f(k).

Taking limit as n → ∞ and using lim
n→∞

f(n) = 0 we obtain the desired formula

(11). □



NEW PROOFS OF FEJER’S AND DISCRETE HERMITE-HADAMARD INEQUALITIES1115

Remark 2. Since f : [0,∞) → (0,∞) is convex and lim
n→∞

f(n) is finite (actually,

zero), then f is monotonically decreasing and therefore the comparison of the areas
under graphics gives the following well-known inequalities

∞∑
k=1

f(k) <

∫ ∞

0

f(x)dx < f(0) +

∞∑
k=1

f(k). (12)

It is clear that, the inequalities (11) are better than (12).

Example 1. If f(x) = e−x then from (11) we have
√
e

e− 1
< 1 <

1

2
+

1

e− 1
and therefore,

√
e < e− 1 <

1

2
(e+ 1),

whereas the formula (12) gives the rougher estimate 1 < e− 1 < e.

3. Some inequalities arising as a combination of (HH) with the other
inequalities

Theorem 4. Let 1 < p < ∞ and αp > 1. Let further, f : (0,∞) → (0,∞) be
convex and such that∥∥x1−αf(x)

∥∥
p
≡
(∫ ∞

0

(
x1−αf(x)

)p
dx

)1/p

< ∞.

Then

21−α+ 1
p ≤

∥∥x−α
∫ x

0
f
∥∥
p

∥x1−αf(x)∥p
≤ 1

α− 1/p
. (13)

Corollary 2. (a) If α = 1, then

2
1
p ≤

∥∥ 1
x

∫ x

0
f
∥∥
p

∥f∥p
≤ 1

1− 1/p
. (14)

(b) Let, in addition, f ∈ Lp(0,∞), (∀p > 1). Then by taking the limit in (14)
as p → ∞ one has

lim
p→∞

∥∥ 1
x

∫ x

0
f
∥∥
p

∥f∥p
= 1. (15)

Proof of Theorem 4. We will use the classical weighted Hardy inequality, which
asserts that(∫ ∞

0

∣∣∣∣x−α

∫ x

0

f(t)dt

∣∣∣∣p dx)1/p

≤ c

(∫ ∞

0

∣∣x1−αf(x)
∣∣p dx)1/p

, (16)

where c = p
αp−1 , 1 < p < ∞, αp > 1.

Now, by (LHH) we have

f
(x
2

)
<

1

x

∫ x

0

f(t)dt ⇒ x1−αf
(x
2

)
< x−α

∫ x

0

f(t)dt,
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and therefore∫ ∞

0

(
x1−αf

(x
2

))p
dx ≤

∫ ∞

0

(
x−α

∫ x

0

f(t)dt

)p

dx

(16)

≤
(

p

αp− 1

)p ∫ ∞

0

(x1−αf(x))pdx. (17)

Since ∫ ∞

0

(
x1−αf

(x
2

))p
dx = 2p(1−α)+1

∫ ∞

0

(
x1−αf(x)

)p
dx,

we have from (17) the desired result (13) and its consequences (14) and (15). □

Remark 3. The left hand side of (13) shows that under the conditions of Theorem
4 the following reverse Hardy’s inequality is valid:∥∥∥∥x−α

∫ x

0

f

∥∥∥∥
p

≥ 21−α+ 1
p

∥∥x1−αf(x)
∥∥
p
.

Example 2. a) Let k > 0 and f(x) = e−kx. Then (15) yields

lim
p→∞

(∫ ∞

0

(
1− e−kx

x

)p

dx

)1/p

= k.

b) If f(x) = 1
x+1 , (0 < x < ∞), then from (15) we have

lim
p→∞

(∫ ∞

0

lnp(x+ 1)

xp
dx

)1/p

= 1.

In the next theorem we will make use of a combination of (RHH)

1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

and the inequality(∫ b

a

(
n∏

k=1

uk(x)

)
dx

)n

≤
n∏

k=1

(∫ b

a

un
k (x)dx

)
, (18)

where u1 ≥ 0, · · · , un ≥ 0.
Recall that the inequality (18) is a special case of the iterated Hölder inequality.
We need also the following

Lemma 2. If u : [a, b] → (0,∞) is convex, then un is convex as well for any n ∈ N.

This Lemma is actually a special case of the following more general proposition:
If u : [a, b] → (0,∞) is convex and f : (0,∞) → (0,∞) is increasing and convex,

then the composition f ◦u : [a, b] → (0,∞) is convex as well. Here, we get f(t) = tn,
(0 < t < ∞). Note that Lemma 2 can also be proved by induction.
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Remark 4. The convexity of the functions u1 ≥ 0, u2 ≥ 0, · · · , un ≥ 0 does not
guarantee the convexity of their product u1u2 · · ·un. Indeed, for example, although
the functions u1(x) = x2, u2(x) = x2, · · · , un−1(x) = x2 and un(x) = (2 − x)2n−2,
(n ≥ 2) are convex on [0, 2], their product u(x) = x2n−2(2 − x)2n−2 is not convex
because of u′′(1) = 4(2n− 2)(1− n) < 0.

Theorem 5. For given n ≥ 2, let the functions u1 ≥ 0, u2 ≥ 0, · · · , un ≥ 0 be
convex on [a, b]. Then

1

b− a

∫ b

a

(
n∏

k=1

uk(x)

)
dx ≤ 1

2

n∏
k=1

(un
k (a) + un

k (b))
1
n . (19)

Proof. Since uk, (k = 1, 2, · · · , n) is convex on [a, b], then un
k is also convex by

Lemma 2. Then the (RHH) yields

1

b− a

∫ b

a

un
k (x)dx ≤ 1

2
[un

k (a) + un
k (b)] , (k = 1, 2, · · · , n).

By multiplying these inequalities we have

1

(b− a)n

n∏
k=1

(∫ b

a

un
k (x)dx

)
≤ 1

2n

n∏
k=1

(un
k (a) + un

k (b)) . (20)

Here, by making use of the inequality (18), we get

1

(b− a)n

(∫ b

a

(
n∏

k=1

uk(x)

)
dx

)n

≤ 1

2n

n∏
k=1

(un
k (a) + un

k (b)) ,

from which the inequality (19) follows. □

Remark 5. For n = 2, the inequality (19) was proved by Amrahov [1]. Another
generalization of Amrahov’s result for the product of two functions was noted by D.
A. Ion [12]:

If u ≥ 0, v ≥ 0 are convex and 1
p + 1

q = 1, (1 < p, q < ∞), then

1

b− a

∫ b

a

u(t)v(t)dt ≤ 1

2
(up(a) + up(b))

1/p
(uq(a) + uq(b))

1/q
.

It should also be mentioned that, in the same paper [12] Ion gives some generaliza-
tion of Amrahov’s result for the product of two functions in Orlicz spaces.

4. (RHH)-type inequality for the functions whose derivatives have
an inflection point

Theorem 6. Given c ∈ [a, b] and f : [a, b] → R, let the derivative f ′ be concave on
[a, c] and convex on [c, b]. Then[

c− a

b− a
f(a) +

b− c

b− a
f(b)

]
− 1

b− a

∫ b

a

f(x)dx
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≤ 1

3

[
(b− c)2

b− a
f ′(b)− (c− a)2

b− a
f ′(a) +

(
a+ b

2
− c

)
f ′(c)

]
. (21)

Corollary 3. In case of c = a+b
2 we have

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx ≤ b− a

12
(f ′(b)− f ′(a))

Proof of Theorem 6. Integration by parts yields

c− a

b− a
f(a) +

b− c

b− a
f(b)− 1

b− a

∫ b

a

f(x)dx =
1

b− a

∫ b

a

(x− c)f ′(x)dx

=
1

b− a

∫ c

a

(x− c)f ′(x)dx+
1

b− a

∫ b

c

(x− c)f ′(x)dx

≡ A+B.

By changing variables as x = (1−λ)a+λc, (0 < λ < 1) in A and x = (1−λ)c+λb
in B and applying Jensen’s inequality, we have

A ≡ 1

b− a

∫ c

a

(x− c)f ′(x)dx =
(a− c)2

b− a

∫ 1

0

(λ− 1)f ′((1− λ)a+ λc)dλ

≤ (a− c)2

b− a

∫ 1

0

(λ− 1) [(1− λ)f ′(a) + λf ′(c)] dλ

= − (a− c)2

6 (b− a)
[2f ′(a) + f ′(c)] ; (22)

B ≡ 1

b− a

∫ b

c

(x− c)f ′(x)dx =
(b− c)2

(b− a)

∫ 1

0

λf ′((1− λ)c+ λb)dλ

≤ (b− c)2

(b− a)

∫ 1

0

(
λ(1− λ)f ′(c) + λ2f ′(b)

)
dλ

=
(b− c)2

6(b− a)
[f ′(c) + 2f ′(b)]. (23)

It follows from (22) and (23) that

A+B ≤ 1

3
f ′(b)

(b− c)2

b− a
− 1

3
f ′(a)

(a− c)2

b− a
+

1

6
f ′(c)(a+ b− 2c),

which completes the proof. □

Remark 6. A simple calculation shows that the equality in (21) holds for the
functions f(x) = k(x− c)2 +m, (k,m ∈ R).
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Remark 7. In the ”critical” cases c = a or c = b, i.e. in the cases when f ′ is
convex or concave on [a, b] we have from (21)

f(b)− 1

b− a

∫ b

a

f(x)dx ≤ b− a

6
[f ′(a) + 2f ′(b)]

and

f(a)− 1

b− a

∫ b

a

f(x)dx ≤ −b− a

6
[2f ′(a) + f ′(b)],

respectively.

5. Various inequalities for functions having convex first or second
order derivatives

The first moment of a function f about the center point c = (a + b)/2 is

defined by Mf =
∫ b

a

(
x− a+b

2

)
f(x)dx. In the following theorem we obtain some

estimation from above and below for Mf , when f ′ is convex.

Theorem 7. Suppose that the derivative f ′ of the function f : [a, b] → R is convex.
Then the first moment of f about the center point c = (a+b)/2 satisfies the following
inequality

A ≤
∫ b

a

(
x− a+ b

2

)
f(x)dx ≤ B, (24)

where

A =
(a− b)2

8
(f(b)− f(a))− (b− a)3

48
(f ′(a) + f ′(b))

and

B =
(b− a)3

24
(f ′(a) + f ′(b)).

Proof. Integration by parts leads to∫ b

a

(x− a)(b− x)f ′(x)dx =

∫ b

a

(x− a)(b− x)df(x)

= 2

∫ b

a

(
x− a+ b

2

)
f(x)dx.

Hence, ∫ b

a

(
x− a+ b

2

)
f(x)dx =

1

2

∫ b

a

(x− a)(b− x)f ′(x)dx

(set x = (1− t)a+ tb, (x− a)(b− x) = (b− a)2t(1− t), 0 ≤ t ≤ 1)

=
1

2
(b− a)3

∫ 1

0

t(1− t)f ′((1− t)a+ tb)dt

≤ 1

2
(b− a)3

∫ 1

0

t(1− t)[f ′(a)(1− t) + f ′(b)t]dt
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=
(b− a)3

24
(f ′(a) + f ′(b)).

This proved the right hand side of (24).
Further, again using integration by parts we have∫ b

a

(
x− a+ b

2

)2

f ′(x)dx =
(b− a)2

4
(f(b)− f(a))− 2

∫ b

a

(
x− a+ b

2

)
f(x)dx,

and therefore,∫ b

a

(
x− a+ b

2

)
f(x)dx =

(b− a)2

8
(f(b)− f(a))− 1

2

∫ b

a

(
x− a+ b

2

)2

f ′(x)dx.

(25)

Furhermore, setting x = (1 − t)a + tb,
(
x− a+b

2

)2
= (b − a)2

(
t− 1

2

)2
and dx =

(b− a)dt, (0 ≤ t ≤ 1), we get∫ b

a

(
x− a+ b

2

)2

f ′(x)dx = (b− a)3
∫ 1

0

(
t− 1

2

)2

f ′((1− t)a+ tb)dt

≤ (b− a)3
∫ 1

0

(
t− 1

2

)2

[(1− t)f ′(a) + tf ′(b)]dt

= (b− a)3

[
f ′(a)

∫ 1

0

(
t− 1

2

)2

(1− t)dt+ f ′(b)

∫ 1

0

t

(
t− 1

2

)2

dt

]

=
(b− a)3

24
(f ′(a) + f ′(b)).

Taking into account this in (25) we obtain the left hand side of inequality (24).
The proof is complete. □

A straightforward calculation shows that the equality in both sides of (24) is
attained for f(x) = k(x2− (a+ b)x)+n, where k and n are arbitrary real numbers.

Theorem 8. Given f : [a, b] → R, let f ′′ be convex. Then the following inequality
holds

A ≤ f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx ≤ B, (26)

where

A =
b− a

8
(f ′(b)− f ′(a))− (b− a)2

48
(f ′′(a) + f ′′(b))

and

B =
(b− a)2

24
(f ′′(a) + f ′′(b)).

Proof. Integration by parts twice gives∫ b

a

(x− a)(b− x)f ′′(x)dx = (b− a)(f(a) + f(b))− 2

∫ b

a

f(x)dx.
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Hence,

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx =
1

2(b− a)

∫ b

a

(x− a)(b− x)f ′′(x)dx

(Set x = (1− t)a+ tb, 0 ≤ t ≤ 1)

=
(b− a)2

2

∫ 1

0

t(1− t)f ′′((1− t)a+ tb)dt

≤ (b− a)2

2

∫ 1

0

t(1− t)[(1− t)f ′′(a) + tf ′′(b)]dt

=
(b− a)2

24
(f ′′(a) + f ′′(b)).

The right hand side of (26) is proved.
Straightforward calculations show that, integration by parts twice yields∫ b

a

(
x− a+ b

2

)2

f ′′(x)dx

=

(
b− a

2

)2

(f ′(b)− f ′(a))− 2(b− a)

[
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

]
.

Hence,

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

=
b− a

8
(f ′(b)− f ′(a))− 1

2(b− a)

∫ b

a

(
x− a+ b

2

)2

f ′′(x)dx. (27)

Setting x = (1− t)a+ tb, (0 ≤ t ≤ 1) and using the convexity of f ′′, we have∫ b

a

(
x− a+ b

2

)2

f ′′(x)dx = (b− a)3
∫ 1

0

(
t− 1

2

)2

f ′′((1− t)a+ tb)dt

≤ (b− a)3

[
f ′′(a)

∫ 1

0

(
t− 1

2

)2

(1− t)dt+ f ′′(b)

∫ 1

0

(
t− 1

2

)2

tdt

]

=
(b− a)3

24
(f ′′(a) + f ′′(b)).

By making use of this in (27) we obtain the left hand side of inequality (26).
The proof is complete. □

It is easy to verify that the equality in both sides of (24) is attained for the
functions f(x) = k(2x3 − 3(a+ b)x2) +mx+ n, with arbitrary real numbers k, m
and n.
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Remark 8. In the literature there are results of the type (24) and (26) under the
condition of the convexity of |f ′| or |f ′′| (see, e.g. [2, 5, 19]). As far as we know,
the conditions and assertions of the theorems 7 and 8 completely differ from those
known in the literature.

In the following theorem we give some estimations for the mean value of a func-
tion f whose first derivative is convex.

Theorem 9. Let f : [a, b] → R be differentiable and its derivative f ′ be convex.
Then

(a)

N ≤ 1

b− a

∫ b

a

f(x)dx ≤ M, (28)

where

N =
1

3
(f(a) + 2f(b))− 1

6
f ′(b)(b− a)

and

M =
1

3
(f(b) + 2f(a)) +

1

6
f ′(a)(b− a);

(b)

N ≤ 1

b− a

∫ b

a

f(x)dx ≤ M, (29)

where

N = f(a) + 2f

(
a+ b

2

)
− 4

b− a

∫ a+b
2

a

f(x)dx

and

M = f(b) + 2f

(
a+ b

2

)
− 4

b− a

∫ b

a+b
2

f(x)dx.

Corollary 4. ∫ b

a+b
2

f(x)dx−
∫ a+b

2

a

f(x)dx ≤ 1

4
(b− a)(f(b)− f(a)). (30)

Proof of Theorem 9. Since f ′ is convex, (HH) leads to

f ′
(
a+ x

2

)
≤ 1

x− a
(f(x)− f(a)) ≤ f ′(a) + f ′(x)

2
; (31)

f ′
(
x+ b

2

)
≤ 1

b− x
(f(b)− f(x)) ≤ f ′(x) + f ′(b)

2
. (32)

Multiplying the inequalities (31) by (x− a) and integrating over [a, b], after simple
calculations we obtain

2(b− a)f

(
a+ b

2

)
− 4

∫ a+b
2

a

f(x)dx ≤
∫ b

a

f(x)dx− f(a)(b− a)
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≤ 1

4
f ′(a)(b− a)2 +

1

2
(b− a)f(b)− 1

2

∫ b

a

f(x)dx.

The above inequalities can be written as two seperate inequalities:

1

b− a

∫ b

a

f(x)dx ≤ 1

3
(2f(a) + f(b)) +

1

6
f ′(a)(b− a) (33)

and
1

b− a

∫ b

a

f(x)dx+
4

b− a

∫ a+b
2

a

f(x)dx ≥ f(a) + 2f

(
a+ b

2

)
. (34)

In a similar way, multiplying inequalities (32) by (b−x) and integrating over [a, b],
after some calculations we have the following two inequalities:

1

b− a

∫ b

a

f(x)dx ≥ 1

3
(f(a) + 2f(b))− 1

6
f ′(b)(b− a) (35)

and
1

b− a

∫ b

a

f(x)dx+
4

b− a

∫ b

a+b
2

f(x)dx ≤ f(b) + 2f

(
a+ b

2

)
. (36)

Now, the inequalities (33) and (35) yields (28) and the inequalities (34) and (36)
yields (29). The Corollary follows by subtracting (34) from (36).

The proof is complete. □

Example 3. For f(x) = lnx, 0 < a < x < b < ∞, the inequality (30) yields

a
3a+b

4(a+b) · b
a+3b

4(a+b) ≤ a+ b

2
. (37)

Since α + β = 1 for α = 3a+b
4(a+b) and β = a+3b

4(a+b) , then by the generalized AM-GM

inequality we have

aα · bβ < α · a+ β · b = 3a+ b

4(a+ b)
· a+

a+ 3b

4(a+ b)
· b. (38)

A simple calculation shows that

a+ b

2
<

3a+ b

4(a+ b)
· a+

a+ 3b

4(a+ b)
· b,

and therefore, the inequality (37) is better than (38).

Remark 9. In our opinion, most of the results in this article can also be examined
for non-classical convexity types (abstract convexity, s-convexity, p-convexity, m-
convexity, etc.). Necessary information about the mentioned convexity types can be
found, for example, in [4,5, 7,13,14,20]
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Abstract. We presented some monotonicity properties for the k-generalized

digamma function ψk(h) and we established some new bounds for ψ
(s)
k (h), s ∈

N ∪ {0}, which refine recent results.

1. Introduction

The ordinary Gamma function is given by [1]:

Γ(h) = lim
s→∞

s! sh−1

h(h+ 1)(h+ 2) · · · (h+ (s− 1))
, h > 0

was discovered by Euler when he generalized the factorial function to non integer
values. The digamma function is the logarithmic derivative of the ordinary gamma
function and is given by [1]:

ψ(1 + h) = −γ +

∞∑
s=1

h

s(h+ s)
, h > −1

where γ = lim
m→∞

(
m∑
s=1

1
s − logm

)
≃ 0.577 is the Euler-Mascheroni constant. In

2006, Kirchhoff applied the polygamma functions in the field of physics [3] and
many series involving polygamma functions appeared in Feynman calculations [8].
In 2021, Wilkins and Hromadka [16] use the digamma function, as well as new
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variants of the digamma function, as a new family of basis functions in mesh-free
numerical methods for solving partial differential equations. polygamma functions
are used to approximate the values of many special functions and have many ap-
plications in physics, statistics and applied mathematics [14].

Many mathematicians studied the completely monotonic (CM) of some func-
tions including the digamma function to deduce some of its bounds. An infinitely
differentiable function L(h) on R+ is CM if (−1)sL(s)(h) ≥ 0 for s ∈ N ∪ {0}. A
theorem [15, Theorem 12b] stated the sufficient condition for L(h) being CM on
R+ as:

L(h) =

∫ ∞

0

e−hydv(y),

where v(y) is non-decreasing and the integral converges for h ∈ R+.

In 2006, Muqattash and Yahdi [10] presented the following inequality:

lnh < ψ(1 + h) < ln(1 + h), h ∈ R+. (1)

In 2011, Batir [2] presented the following inequalities:

ln
(
h2 + h+ e−2γ

)
≤ 2ψ(h+ 1) < ln

(
h2 + h+

1

3

)
, h ∈ [0,∞) (2)

ln
( 2h+ 2

e
2

h+1 − 1

)
< 2ψ(h+ 1) ≤ ln

(2h+ (e2 − 1)e−2γ

e
2

1+h − 1

)
, h ∈ [0,∞) (3)

and(1 + 2h

2

)
e−2ψ(1+h) < ψ′(1 + h) <

(π2 e−2γ + 6h

6

)
e−2ψ(h+1), h ∈ (0,∞). (4)

In 2014, Guo and Qi [5] refined the inequality (1) by

ln (h+ 1/2) < ψ(1 + h) < ln
(
e−γ + h

)
, h ∈ R+. (5)

Diaz and Pariguan [4] presented the k−generalized gamma function as:

Γk(h) = lim
s→∞

s! ks (sk)
h
k−1

h(k + h)(2k + h) · · · ((s− 1)k + h)
, k, h ∈ R+.

Mansour [7] determined the Γk by a combination of some functional equations. The
k-analogue of the digamma function is introduced by [11]

ψk(h) =
−1

k
(γ − ln k)− 1/h−

∞∑
s=1

(
1

sk + h
− 1

sk

)
, k, h ∈ R+

and it has the following relations for h, k ∈ R+ and s ∈ N ∪ {0}

kψk(h)−ψ

(
h

k

)
= ln k, ψ

(s)
k (k+ h) =

(−1)s s!

hs+1
+ψ

(s)
k (h) and ψ′

k(k) =
π2

6k2
. (6)
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In 2018, Nantomah, Nisar and Gehlot [12] introduced the following integral formu-
las:

ψk(h) =

∫ ∞

0

(
2e−y − e−ky

ky
− e−hy

1− e−ky

)
dy, h, k > 0 (7)

and

ψ
(s)
k (h) = (−1)s+1

∫ ∞

0

ys
(

e−hy

1− e−ky

)
dy, h, k > 0; s ∈ N. (8)

Yin, Huag, Song and Dou [19] deduced the following inequality:

0 ≤ ψ′
k(h)−

1

kh
≤ 1

h2
, h, k ∈ R+. (9)

In 2020, Yildrim [17] deduced the following inequality:

− k

12h2
< ψk(h+ k)− 1

k
lnh− 1

2h
< 0, h, k ∈ R+. (10)

In 2021, Moustafa, Almuashi and Mahmoud [9] presented the following asymp-
totic formulas for k > 0 :

ψk(h) ∼
1

k
lnh− 1

2h
−

∞∑
m=1

k2m−1 B2m

(2m) h2m
, h→ ∞ (11)

and for s ∈ N,

ψ
(s)
k (h) ∼ (−1)s−1(s− 1)!

khs
− (−1)ss!

2hs+1
+(−1)s+1

∞∑
m=1

(s+ 2m− 1)! k2m−1 B2m

(2m)! h2m+s
, h→ ∞

(12)
and they also deduced the inequalities:

1

k
lnh+

1

h
− k

2
ψ′
k(h) < ψk(k+h) <

lnh

k
+1/h− k

2
ψ′
k

(k + 3h

3

)
, h, k > 0 (13)

where the upper bound of (13) refines upper bound of (10) for all h > k
3 , and for

s ∈ N, h, k ∈ R+

(s− 1)!

khs
+

(−1)sk

2
ψ
(s+1)
k

(
h+

k

3

)
< (−1)s+1ψ

(s)
k (h) <

(s− 1)!

khs
+

(−1)sk

2
ψ
(s+1)
k (h).

(14)
Notes: All of the k−digamma function results allow us to make new conclusions
about the classical digamma function or new proofs for some of its established con-
clusions when k tends to one, and likewise for the k−gamma function [6, 18, 20].
For extra information about Γk and ψk functions, see [4, 7, 9, 19] and the related
references therein.

We will introduce two CM functions involving ψk(h) and ψ
′
k(h) functions. Some

new bounds for ψ
(s)
k (h) functions (s ∈ N ∪ {0}) will be deduced, which generalize

and refine some recent results. Also, we will study the monotonicity of two functions
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containing the k−generalized digamma function and consequently, we will deduce

some new best bounds for ψ
(s)
k (h) functions (s ∈ N ∪ {0}).

2. Auxiliary Results

In [13], the following corollary was introduced:

Corollary 1. Assume that S is a function defined on h > h0, h0 ∈ R with
lim
h→∞

S(h) = 0. Then for ω ∈ R+, S(h) > 0, if S(h + ω) < S(h) for h > h0

and S(h) < 0, if S(h+ ω) > S(h) for h > h0.

Using the monotonicity properties, we can conclude the following results:

Lemma 1.

ln

(
h2 + 3h+ 3

3

)
< h, ∀h ∈ R+, (15)

ln

(
1

e−γ + h
+ 1

)
<

1

1 + h
, ∀h > e2γ − eγ − 1

eγ
(
2− eγ

) ≃ 1.00313 (16)

and

2

1 + h
< ln

(
2(1 + h)

h2 + h+ e−2γ
+ 1

)
, ∀h > 1√

e2γ
(
− 3 + e2γ

) − 1 ≃ 0.352938.

(17)

Proof. Let the function L(h) = ln
(
h2+3h+3

3

)
− h and then L′(h) = −h(1+h)

3+3h+h2 < 0

for all h > 0 and then L(h) is decreasing on (0,∞) with lim
h→0+

Lk(h) = 0 and

then Lk(h) < 0 for all h > 0 which proves (15). Secondly, we let the function

C(h) = ln
(

1
e−γ+h + 1

)
− 1

1+h . Then

C ′(h) =
1 + eγ − e2γ + eγ

(
2− eγ

)
h

(1 + h)2
(
1 + eγh

)(
1 + eγ(1 + h)

) > 0, h > h1 =
−1− eγ + e2γ

eγ
(
2− eγ

) ≃ 1.00313.

Then C(h) is increasing on (h1,∞) with lim
h→∞

C(h) = 0 and this proves (16). By

the same way, we obtain (17). □

Lemma 2. For k ∈ R+, we have

kψk(k + h) < γ + ln

(
3

π2

)
+ ln(2h+ k), ∀h > k

2
. (18)
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Proof. Let the function Nk(h) = ln
(

3
π2

)
+ γ + ln(2h + k) − kψk(k + h). Then

N ′
k(h) =

2
k+2h − kψ′

k(k + h) and by using (6), we obtain

N ′
k(h)−N ′

k(k + h) =
k3

(3k + 2h)(k + 2h)(k + h)2
> 0, h, k > 0.

Using the asymptotic formula (12), we have lim
h→∞

N ′
k(h) = 0 and then Corollary 1

gives us that N ′
k(h) > 0 for h > 0 and k > 0. Then, we have Nk(h) is increasing on

R+ and by using (6) again, we get Nk(h) > Nk
(
k
2

)
≃ 0.0430254 > 0 for all h > k

2
and k > 0. □

Lemma 3. For k > 0, we have

ekψk(h+2k) < ekψk(h+k) + k, ∀h > 0. (19)

Proof. Set the function Bk(h) = ekψk(h+2k) − ekψk(h+k) − k. Then by using (6), we
get

Bk(h+ k)−Bk(h)

ekψk(h+k)
= e

k
h+k+ k

h+2k − 2e
k

h+k + 1 ≑ Dk(h).

Then
(h+ k)2

ke
k

h+k

D′
k(h) = 2− (5k2 + 6kh+ 2h2)e

k
h+2k

(2k + h)2
≑ fk(h).

Then f ′k(h) = k3e
k

h+2k

(2k+h)4 > 0 for all h, k > 0 and hence fk(h) is increasing on R+

with lim
h→∞

fk(h) = 0. Then fk(h) < 0 for h, k > 0 and then Dk(h) is decreasing

on R+ with lim
h→∞

Dk(h) = 0. Then Bk(h + k) − Bk(h) > 0 for h, k > 0. Using the

asymptotic formula (11), we have lim
h→∞

Bk(h) = 0 and then Corollary 1 gives us

that Bk(h) < 0 for all h, k > 0. □

Lemma 4. For k > 0, we have

e2kψk(h+2k) > e2kψk(h+k) + 2k(h+ k), ∀h > 0. (20)

Proof. Set the function mk(h) = e2kψk(h+2k) − e2kψk(h+k) − 2k(h+ k). Then

mk(h+ k)−mk(h) = e2kψk(h+3k) − 2e2kψk(h+2k) + e2kψk(h+k) − 2k2 ≑ tk(h).

Then by using (6), we get

tk(h+ k)− tk(h)

e2kψk(h+k)
= e

2k
h+k+ 2k

h+2k+ 2k
h+3k − 3e

2k
h+k+ 2k

h+2k + 3e
2k

h+k − 1 ≑ sk(h).

Then

(h+ k)2s′k(h)

2ke
2k

h+k

= − (49k4 + 96k3h+ 72k2h2 + 24kh3 + 3h4)e
2k

h+2k+ 2k
h+3k

(2k + h)2(3k + h)2

+
3(5k2 + 6kh+ 2h2)

(2k + h)2 e
−2k
h+2k

− 3 ≑ uk(h)
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Then

(2k + h)4u′k(h)

2k(3k2 + 3kh+ h2)e
2k

h+2k

=
379k6 + 959k5h+ 1049k4h2 + 626k3h3 + 213k2h4

(3k2 + 3kh+ h2)(3k + h)4 e
−2k
h+3k

+
39kh5 + 3h6

(3k2 + 3kh+ h2)(3k + h)4 e
−2k
h+3k

− 3 ≑ wk(h).

Then

w′
k(h) =

−2k5
(
129k4 + 240k3h+ 172k2h2 + 56kh3 + 7h4

)
e

2k
h+3k

(3k + h)6(3k2 + 3kh+ h2)2
< 0, h, k > 0

and hence wk(h) is decreasing on (0,∞) with lim
h→∞

wk(h) = 0. Then wk(h) > 0 for

h, k ∈ R+ and then uk(h) is increasing on R+ with lim
h→∞

uk(h) = 0. Then sk(h) is

decreasing on R+ with lim
h→∞

sk(h) = 0. Then tk(h + k) − tk(h) > 0 for h, k ∈ R+.

Using the asymptotic formula (11), we have lim
h→∞

tk(h) = 0 and then Corollary 1

gives us that tk(h) < 0 for all h, k ∈ R+. Then mk(h+k)−mk(h) < 0 for h, k ∈ R+

with lim
h→∞

mk(h) = 0 and then mk(h) > 0 for all h, k ∈ R+. □

3. Some CM Monotonic Functions

Theorem 1. Assume that h, k > 0. Then the function

Uβ,k(h) = ψ′
k(h)−

2

kh
+

2

k2
ln

(
1 +

βk

h

)
is CM on R+ if and only if β ≥ 1

2 .

Proof.

U ′
β,k(h) = ψ′′

k(h) +
2

kh2
+

2

k2

(
1

h+ βk
− 1

h

)
and by using (8) and the identity 1

hl = 1
(l−1)!

∫∞
0
yl−1e−hydy for h > 0, (see [1]),

we have

U ′
β,k(h) =

∫ ∞

0

2e−hy

k2(eky − 1)
ϕk(y)dy,

where

ϕk(y) = (eky − 1)(e−βky − 1) + ky
(
eky − 1

)
− (ky)2

2
eky.

Let β ≥ 1
2 . Then

e
ky
2 ϕk(y) ≤ eky − e

3ky
2 + e

ky
2 − 1 + ky

(
e

3ky
2 − e

ky
2

)
− 1/2(ky)2e

3ky
2

=

∞∑
m=1

n(m)

2m+2 (m+ 2)!
(ky)m+2
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where

n(m) = 2m+2 − 3m+2 + 1 + 2(m+ 2)
(
3m+1 − 1

)
− 2(m+ 2)(m+ 1)3m

= −2(m+ 2)
(
(m− 1)2m + 1

)
−

m∑
s=1

(m+ 2)(m+ 1)(m− s)

(m+ 2− s)
(ms ) 2m+1−s

< 0

and then−U ′
β,k(h) is CM on R+ and hence Uβ,k(h) is decreasing on R+. Using the

asymptotic formula (12), we have lim
h→∞

Uβ,k(h) = 0 and then Uβ,k(h) > 0. Then

Uβ,k(h) is CM on R+ for β ≥ 1
2 . On the other side, if Uβ,k(h) is CM, then by using

again the asymptotic formula (12), we get lim
h→∞

h Uβ,k(h) = 2β−1
k ≥ 0 and hence

β ≥ 1
2 . □

Theorem 2. Assume that h, k > 0 and λ ∈ R. Then the function

Fλ,k(h) = ψk(h+ k)− 1

k
ln(h+ λk)

is CM on R+ if and only if λ ≤ 1
2 . Also, the function −Fλ,k(h) is CM on R+ if

λ ≥ 1.

Proof.

F ′
λ,k(h) = − 1

k(h+ λk)
+ ψ′

k(h+ k) =

∫ ∞

0

e−hy

k(eky − 1)
φk(y)dy,

where

φk(y) = ky − e−λky
(
eky − 1

)
.

Let λ ≤ 1
2 , then we obtain

e
ky
2 φk(y) ≤ 1 + ky e

ky
2 − eky

= −
∞∑
l=2

(
2l − l − 1

)
(ky)1+l

2l (1 + l)!

= −
∞∑
l=2

( l∑
s=2

(
l
s

) )
(ky)1+l

2l (1 + l)!
< 0

and consequently, −F ′
λ,k(h) is CM on R+ for λ ≤ 1

2 and hence Fλ,k(h) is decreasing

on R+. Using the asymptotic formula (11), we obtain lim
h→∞

Fλ,k(h) = 0 and then

Fλ,k(h) > 0. Hence Fλ,k(h) is CM on R+ for λ ≤ 1
2 . On the other hand, if Fλ,k(h) is

CM, then by using again the asymptotic formula (11), we obtain lim
h→∞

h Fλ,k(h) =

1
2 − λ ≥ 0 and then λ ≤ 1

2 . Now for λ ≥ 1, we have ekyφk(y) ≥
∞∑
l=1

l (ky)l+1

(l+1)! > 0
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and consequently, F ′
λ,k(h) is CM on R+ for λ ≥ 1 and hence Fλ,k(h) is increasing

on R+ with lim
h→∞

Fλ,k(h) = 0 and then Fλ,k(h) < 0. Then −Fλ,k(h) is CM on R+

for λ ≥ 1. □

4. Some Inequalities for the ψk and ψ
(s)
k Functions

Let us mention some important consequences of Theorems 1 and 2.

Corollary 2. Let a ∈ (0,∞). Then we have

1

kh
− 1

k2
ln

(
ak + h

h

)
<
ψ′
k(h)

2
, k, h ∈ R+ (21)

with the best possible constant a = 1
2 .

Proof. The inequality (21) at a = 1
2 follows from U 1

2 ,k
(h) > 0 in Theorem 1 and

the inequality (21) is equivalent that h Ua,k(h) > 0 which yields a ≥ 1
2 as stated

when we proved Theorem 1. Then a = 1
2 is the best in (21), since the logarithmic

function is strictly increasing on R+. □

Remark 1. Using the identity ln (1 + h) < h for all h > −1, (see [1]) yields the
lower bound of (21) refines the lower bound of (9) for all h, k > 0.

Corollary 3. Let a ∈ (0,∞) and s = 1, 2, 3, · · · . Then we have

2 s!

khs+1
+

2 (s− 1)!

k2

( 1

(h+ ak)s
− 1

hs

)
< (−1)sψ

(s+1)
k (h), h, k ∈ (0,∞) (22)

with the best possible constant a = 1
2 .

Proof. The inequality (22) at a = 1
2 follows from (−1)sU

(s)
1
2 ,k

(h) > 0 in Theorem

1 and the inequality (22) is equivalent that hs+1 (−1)sU
(s)
a,k(h) > 0. Using the

asymptotic expansion (12), we have lim
h→∞

hs+1 (−1)sU
(s)
a,k(h) = s!

k

(
2a − 1

)
≥ 0

and hence a ≥ 1
2 . Using the decreasing property of the function 1

hs on (0,∞) for

s = 1, 2, 3, · · · , we deduce that a = 1
2 is the best possible constant in (22). □

Corollary 4. Let a ∈ [0,∞). Then we have

ln(h+ ak) < kψk(k + h) < ln(k + h), k, h ∈ R+ (23)

with the best possible constant a = 1
2 .

Proof. The inequality (23) at a = 1
2 is deduced from F 1

2 ,k
(h) > 0 and F1,k(h) < 0

in Theorem 2. The left-hand side of (23) is equivalent that h Fa,k(h) > 0 and
this gives a ≤ 1

2 as stated when we proved Theorem 2. Then a = 1
2 is the best in

(23). □

Remark 2. • Letting k = 1 and a = 0 in (23), we obtain (1).
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• Using (21), we deduce that the lower bound of (23) refines the lower bound
of (13) for every k, h ∈ R+.

Corollary 5. Let a ∈ [0,∞) and s = 1, 2, 3, · · · . Then we have

s!

hs+1
+

(s− 1)!

k (h+ k)s
< (−1)s+1ψ

(s)
k (h) <

s!

hs+1
+

(s− 1)!

k (h+ ak)s
, h, k ∈ (0,∞) (24)

with the best possible constant a = 1
2 .

Proof. The inequality (24) at a = 1
2 is deduced from (−1)sF

(s)
1
2 ,k

(h) > 0 and

(−1)sF
(s)
1,k (h) < 0 in Theorem 2. The right-hand side of (24) is equivalent that

h1+s (−1)sF
(s)
a,k(h) > 0. Using the asymptotic expansion (12), we have

lim
h→∞

hs+1 (−1)sF
(s)
a,k(h) = s!

(1
2
− a

)
≥ 0

and hence a ≤ 1
2 . Then a = 1

2 is the best possible constant in (24). □

Remark 3. Using (22), we deduce that the upper bound of (24) refines the upper
bound of (14) for every s ∈ N and h, k > 0.

Lemma 5. For k > 0, the function

Tk(h) = ekψk(h+k) − h (25)

is strictly decreasing convex on (−k,∞) with lim
h→∞

Tk(h) = k
2 and lim

h→0
Tk(h) =

ke−γ .

Proof. Using (6), we have lim
h→0

Tk(h) = ke−γ . Differentiating (25) yields

T ′
k(h) = −1 + kψ′

k(h+ k)ekψk(k+h)

and
T ′′
k (h)

k ekψk(k+h)
= k

[
ψ′
k(k + h)

]2
+ ψ′′

k(k + h) ≑ Sk(h).

Applying (6), we get

(k + h)2

2k

[
Sk(k + h)− Sk(h)

]
= −ψ′

k(k + h)− 2h2 + 4kh+ 2k2 − 1

2(h+ k)2
≑ Qk(h).

Applying (6) again, we get

Qk(k + h) = Qk(h) +
Ak(k + h)

2(k + h)2(2k + h)2
,

where
Ak(h) = k2 + 2kh+ 2h2 > 0, h, k ∈ R+

and then Qk(k + h) > Qk(h) for all h > −k and by using the asymptotic formula
(12), we have lim

h→∞
Qk(h) = 0 and then Corollary 1 gives us Qk(h) < 0 for every

h > −k. Consequently, we have Sk(k+ h) < Sk(h) for all h > −k and by using the
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asymptotic expansion (12), we have lim
h→∞

Sk(h) = 0 and then T ′′
k (h) > 0 for every

h > −k. Then T ′
k(h) is strictly increasing on (−k,∞). By using the asymptotic

formulas (11) and (12), we have

lim
h→∞

T ′
k(h) = 0 and lim

h→∞
Tk(h) = k/2.

Then T ′
k(h) < lim

h→∞
T ′
k(h) = 0 and this finishes the proof. □

And consequently, we have the following Corollary:

Corollary 6. Set a and b be positive real numbers. Then we have

ln(h+ ak) < kψk(h+ k) < ln(h+ bk), h, k ∈ R+ (26)

where a = 1
2 and b = 1

eγ ≃ 0.56 being the best.

Remark 4. • Letting k = 1 in (26), we obtain (5).
• The upper bound of (26) refines the upper bound of (23) for all h, k > 0.

Lemma 6. For h ≥ 0 and k ∈ R+,

ln
( c k

e
k

k+h − 1

)
≤ kψk(k + h) < ln

( d k

e
k

k+h − 1

)
, (27)

where the constants c = e−γ(e− 1) ≃ 0.965 and d = 1 are the best possible.

Proof. Set

fk(h) = Tk(k + h)− Tk(h) = −k + ekψk(k+h)
(
e

k
k+h − 1

)
, h ≥ 0 and k > 0.

Since T ′
k(h) is strictly increasing on (−k,∞), then fk(h) is strictly increasing on

[0,∞) and by using (6) and the asymptotic expansion (11), we get

fk(0) = −k + ke−γ(e− 1) ≤ −k + ekψk(k+h)
(
e

k
k+h − 1

)
< lim
h→∞

fk(h) = 0

and this gives (27). □

Remark 5. Using (16), we deduce that the upper bound of (27) refines the upper
bound of (26) for all h > 1.00313k and k > 0.

Lemma 7. For h > 0 and k > 0, we have

g e−kψk(h+k) < kψ′
k(k + h) < r e−kψk(k+h), (28)

where the constants g = π2 e−γ

6 ≃ 0.924 and r = 1 are the best possible.

Proof. By using the increasing property of T ′
k(h) on (−k,∞), we have

T ′
k(0) = −1 + kψ′

k(k)e
kψk(k) < −1 + kψ′

k(k + h)ekψk(k+h) < lim
h→∞

T ′
k(h) = 0.

Using (6) yields
π2 e−γ

6
< kψ′

k(k + h)ekψk(k+h) < 1,

which finishes the proof. □
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Remark 6. Using (23) yields e−kψk(k+h) < 2
2h+k for every h, k > 0 and then the

upper bound of (28) refines the upper bound of (24) at s = 1 for all h, k > 0.

Lemma 8. For h > 0 and k > 0,

1− e−
k

h+k +
k2

(h+ k)2
< k2ψ′

k(h+ k) < e
k

h+k − 1. (29)

Proof. By applying the mean value theorem to Tk on the interval [h, h + k], we
obtain

−Tk(h) + Tk(k + h)

k
= T ′

k(h+ αh), 0 < αh < k.

By using the increasing property of T ′
k(h) on (−k,∞), we obtain

T ′
k(h) < T ′

k(h+ αh) < T ′
k(k + h), 0 < αh < k.

Combining the last two relations yields

T ′
k(h) <

−Tk(h) + Tk(k + h)

k
< T ′

k(k + h)

and this gives us (29). □

Remark 7. Using (19), we deduce that the upper bound of (29) refines the upper
bound of (28) for every h, k ∈ R+.

Lemma 9. For k > 0, the function

Wk(h) = e2kψk(h+k) − h2 − hk (30)

is strictly increasing concave in (−k,∞) with lim
h→∞

Wk(h) =
k2

3 and lim
h→0

Wk(h) =

k2e−2γ .

Proof. Using (6), we have lim
h→0

Wk(h) = k2e−2γ . Differentiating (30) yields

W ′
k(h) = −2h− k + 2kψ′

k(h+ k)e2kψk(k+h),

1

2
W ′′
k (h) = −1 + ke2kψk(k+h)

[
ψ′′
k(k + h) + 2k

(
ψ′
k(k + h)

)2
]

and
1

2ke2kψk(k+h)
W ′′′
k (h) = ψ′′′

k (k+h)+6kψ′
k(k+h)ψ

′′
k(k+h)+4k2

(
ψ′
k(k+h)

)3

≑ Vk(h).

Applying (6), we get

(h+ k)2

2k

[
Vk(k + h)− Vk(h)

]
= −3ψ′′

k(k + h) +
6(h+ 2k)

(h+ k)2
ψ′
k(h+ k)

− 6k
(
ψ′
k(h+ k)

)2

− 11k2 + 12kh+ 3h2

k(h+ k)4
≑ Uk(h).
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Similarly, we get

(h+ k)2(h+ 2k)2

6k(3k2 + 3kh+ h2)

[
Uk(h+ k)− Uk(h)

]
= ψ′

k(h+ k)

− 114k5 + 298k4h+ 321k3h2

6k(k + h)2(2k + h)2(3k2 + 3kh+ h2)

− 178k2h3 + 51kh4 + 6h5

6k(k + h)2(2k + h)2(3k2 + 3kh+ h2)

≑ Hk(h).

And finally, we get

Hk(k+h)−Hk(h) = − k4Pk(k + h)

3(k + h)2(2k + h)2(3k + h)2(3k2 + 3kh+ h2)(7k2 + 5kh+ h2)

where

Pk(h) = 12k4 + 36k3h+ 46k2h2 + 28kh3 + 7h4 > 0, h, k ∈ R+

and then Hk(h + k) < Hk(h) for all h > −k and by using the asymptotic formula
(12), we have lim

h→∞
Hk(h) = 0 and then Corollary 1 gives usHk(h) > 0 for every h >

−k. Consequently, we obtain Uk(h+k) > Uk(h) for all h > −k with lim
h→∞

Uk(h) = 0

and then Uk(h) < 0 for every h > −k and similarly, we get Vk(h) > 0 for all h > −k.
Then W ′′

k (h) is strictly increasing on (−k,∞). By using the asymptotic formulas
(11) and (12), we have

lim
h→∞

W ′′
k (h) = lim

h→∞
W ′
k(h) = 0 and lim

h→∞
Wk(h) =

k2

3
.

Then W ′′
k (h) < 0 for all h > −k and then W ′

k(h) is strictly decreasing on (−k,∞).
Hence W ′

k(h) > lim
h→∞

W ′
k(h) = 0 and this completes the proof. □

And consequently, we have the following Corollary:

Corollary 7. Set a, b ∈ R+ and k > 0. Then we have

1

2k
ln
(
h2 + hk + ak2

)
≤ ψk(h+ k) <

1

2k
ln

(
h2 + hk + bk2

)
, h ∈ [0,∞) (31)

where the constants a = e−2γ ≃ 0.315 and b = 1
3 are the best possible.

Remark 8. • Putting k = 1 in (31) yields (2).
• Using (15), we deduce that the upper bound of (31) refines the upper bound
of (10) for h, k > 0.

• For k > 0, the upper and lower bounds of (31) refine the upper and lower

bounds of (26) for h >
(

1
3−e

−2γ

2e−γ−1

)
k ≃ 0.147224 k and h > 0 respectively.
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Lemma 10. For h ≥ 0 and k > 0, we have

1

2k
ln

(
2hk + ck2

e
2k

h+k − 1

)
< ψk(h+ k) ≤ 1

2k
ln

(
2hk + dk2

e
2k

h+k − 1

)
, (32)

where c = 2 and d = e−2γ(e2 − 1) ≃ 2.014 are the best possible.

Proof. Set

Mk(h) =Wk(k+h)−Wk(h) = e2kψk(k+h)
(
e

2k
h+k−1

)
−2hk−2k2, h ≥ 0, k > 0.

Since W ′
k(h) is strictly decreasing on (−k,∞), then Mk(h) is strictly decreasing on

[0,∞) and by using (6) and the asymptotic expansion (11), we get

Mk(0) = k2e−2γ(e2−1)−2k2 ≥ e2kψk(h+k)
(
e

2k
h+k −1

)
−2hk−2k2 > lim

h→∞
Mk(h) = 0

and this gives (32). □

Remark 9. • Letting k = 1 in (32), we obtain (3).
• Using (17), we deduce that the lower bound of (32) refines the lower bound
of (31) for h > 0.352938k.

Lemma 11. For h > 0 and k > 0, we have(h
k
+ a

)
e−2kψk(h+k) < ψ′

k(h+ k) <
(h
k
+ b

)
e−2kψk(h+k), (33)

where the constants a = 1
2 and b = π2 e−2γ

6 ≃ 0.519 are the best possible.

Proof. Using the decreasing property of W ′
k(h) on (−k,∞) yields

W ′
k(0) > 2kψ′

k(h+ k)e2kψk(h+k) − 2h− k > lim
h→∞

W ′
k(h) = 0.

Using(6), we have

π2 e−2γ k

3
> 2kψ′

k(h+ k)e2kψk(h+k) − 2h > k,

which finishes the proof.
□

Remark 10. • Putting k = 1 in (33) gives (4).
• Using (18), we deduce that the lower bound of (33) refine the lower bound
of (28) for h > k

2 and k > 0.

Lemma 12. For h > 0 and k > 0,

1

2k2

(
e

2k
h+k − 1− k2e−2kψk(h+k)

)
< ψ′

k(h+ k) (34)

<
1

2k2

( 2k2

(h+ k)2
+ 1− e−

2k
h+k + k2e−2kψk(h+2k)

)
.
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Proof. By applying the mean value theorem to Wk on the interval [h, h+k], we get

Wk(h+ k)−Wk(h)

k
=W ′

k(h+ βh), 0 < βh < k.

Using the decreasing property of W ′
k(h) on (−k,∞) yields

W ′
k(h+ k) <

Wk(h+ k)−Wk(h)

k
< W ′

k(h)

and this gives us (34). □

Remark 11. Using (20), we deduce that the lower bound of (34) refine the lower
bound of (33) for h, k ∈ R+.

5. Conclusion

The main conclusions of this paper are stated in Theorems 1 and 2 and Lemmas
5 and 9. The authors proved the CM and the monotonicity properties of four func-
tions containing the k−generalized digamma and polygamma functions, derived

some new bounds for ψ
(s)
k (h) functions (s ∈ N ∪ {0}). These bounds refine some

recent results.
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Abstract. The purpose of this paper is to investigate some properties of

multiplicative regular and periodic Sturm-Liouville problems given in general

form. We first introduce regular and periodic Sturm-Liouville (S-L) problems
in multiplicative analysis by using some algebraic structures. Then, we dis-

cuss the main properties such as orthogonality of different eigenfunctions of
the given problems. We show that the eigenfunctions corresponding to same

eigenvalues are unique modulo a constant multiplicative factor and reality of

the eigenvalues of multiplicative regular S-L problems. Finally, we present
some examples to illustrate our main results.

1. Introduction

Grossman and Katz established a new part of analysis by giving definitions
of new kinds of derivatives and integrals in the period between 1967 and 1970,
which is called non-Newtonian calculus [12, 13]. This calculus provides alterna-
tive approaches to the classical calculus developed by Newton and Leibniz. Non-
Newtonian calculus has many subbranches as multiplicative, anageometric, biogeo-
metric, quadratic, and harmonic calculus. One of the most popular of them is
multiplicative calculus. Arithmetics, which are a complete ordered field on a subset
of real numbers, play a substantial role in the construction of non-Newtonian calcu-
lus. It is well known that the system of real numbers is a classical arithmetic. Each
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arithmetic yields one generator, the opposite of this is also true, i.e., each genera-
tor yields one arithmetic. For instance, usual arithmetic and geometric arithmetic
are produced by the generators I (unit operator) and exp, respectively. Also, the

function σ(x) = ex−1
ex+1 is a generator for sigmoidal arithmetic which characterizes

sigmoidal curves that appear in the research of biological growth and population.
There is a useful relationship providing advantages to each other between ordinary
Newtonian calculus and multiplicative calculus. There are actually many reasons
to investigate multiplicative analysis. For instance, it is not easy to find solutions
of nonlinear differential equations in general, but this theory provides more ad-
vantages to get this kind of solutions [25]. The main difference of multiplicative
calculus from the classical analysis is that it moves the roles of subtraction and ad-
dition in ordinary Newtonian calculus to division and multiplication, respectively.
Since several events in the real world such as the magnitudes of earthquakes, the
levels of sound signals and the acidities of chemicals change exponentially, geomet-
ric calculus which is defined as multiplicative calculus provides a great benefit.
Multiplicative calculus is convenient for some problems, e.g., in applied math-
ematics [1, 3, 4, 6, 19, 28, 29], mathematical analysis [6, 15, 19, 21, 24, 30], spectral
analysis [11, 14, 31], physics [10, 22], biology [16, 17], economics and finance [7, 8],
medicine [9], pattern recognition in images [18] and signal processing [20]. In re-
cent years, multiplicative calculus has received a lot of attention, and most of the
published research has been interested in some problems of differential equation,
integral equation, spectral analysis, mathematical analysis. Sturm-Liouville equa-
tions lead to the development of many problems in mathematics and physics [32].
Important results have been obtained on Sturm-Liouville equations by many re-
searchers over the years. Recently, some spectral properties of Sturm-Liouville
problems in multiplicative calculus have been studied by many authors [11,14,31].
In [11], the author has moved a special S-L problem in the usual case to multi-
plicative calculus in the aspect of spectral analysis. He has investigated asymptotic
behaviors of eigenvalues and eigenfunctions of the given S-L problem.

General properties of multiplicative Sturm-Liouville problems which arise in
many problems of mathematics, physics, engineering have not been studied in mul-
tiplicative analysis yet. In this paper, we deal with multiplicative Sturm-Liouville
problems in general form. We give some general properties of multiplicative regular
and periodic Sturm-Liouville problems.

The paper is organized as follows. In Section 2, we recall some main definitions
and concepts in multiplicative analysis. In Section 3, we present orthogonality
of different eigenfuctions corresponding to different eigenvalues of multiplicative
Sturm-Liouville problems and we discuss the uniqueness with a constant factor
difference of eigenfunctions corresponding to same eigenvalues. Also, we find that
the eigenvalues of multiplicative regular S-L problems are real. Finally, we give
some applications of our main problems in the last section.
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2. Preliminaries

In this section, we will recall some well-known fundamental definitions and the-
orems of the multiplicative calculus given in [2, 12,13,23].
Non-Newtonian calculus use different types of arithmetic and their generators. Let
α be a bijection between subsets X and Y of the set of real numbers R, with
α : X → Y ⊂ R. α defines an arithmetic if the following operators are satisfied:

x⊕ y = α
(
α−1(x) + α−1(y)

)
x⊖ y = α

(
α−1(x)− α−1(y)

)
(1)

x⊙ y = α
(
α−1(x).α−1(y)

)
x⊘ y = α

(
α−1(x)/α−1(y)

)
.

If we choose α as identity function and X = R, then (1) reduces to standard
arithmetic and we get the ordinary Newtonian calculus.
Throughout the paper, we fix α(x) = ex, α−1(x) = ln(x), and X = R+. Then, it
follows from (1)

x⊕ y = x.y,

x⊖ y =
x

y
,

x⊙ y = xln(y),

x⊘ y = x
ln(

1

y
)

.

Let a, b, c ∈ R+. The operation ⊙ satisfies the following properties (cf. Proposition
2.1 of [5, 24])

i) a⊙ b = b⊙ a (commutativity)
ii) a⊙ (b⊙ c) = (a⊙ b)⊙ c (associativity)
iii) a⊙ e = a (Euler’s number e is the neutral element for ⊙)
iv) If a{−1} = e⊘ a, a ̸= 1, then a⊙ a{−1} = e (inverse element)
v) b⊙ a{−1} = b⊘ a

vi)
(
a{−1}){−1}

= a
vii) ln(a⊙ b) = ln(a)⊕ ln(b)
viii) (a⊙ b){−1} = a{−1} ⊙ b{−1}.

In view of the mentioned properties, (R+,⊕,⊙) is a field (see [5]).
Let A be a set of positive functions defined on a subset of R and let ⊕ : AxA→ A
be an operation satisfying the following properties:

f ⊕ g = fg

f ⊖ g =
f

g
(2)

f ⊙ g = f ln g = gln f .
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Then, the algebraic structure (A,⊕) is called a multiplicative group and (A,⊕,⊙)
is a multiplicative ring [2]. This situation allows us to define different structures.

Definition 1. Let S ⊂ A ̸= ∅ and <,>∗: S × S → R+ be a mapping such that the
following axioms are satisfied for each f, g, h ∈ S :

i) < f, f >∗≥ 1,
ii) < f, f >∗= 1 if f = 1,
iii) < f ⊕ g, h >∗=< f, h >∗ ⊕ < g, h >∗,
iv) < eα ⊙ f, g >∗= eα⊙ < f, g >∗, α ∈ R,
v) < f, g >∗=< g, f >∗.

This mapping is called multiplicative inner product on S and is denoted by <,>∗.
Also, the space (S,<,>∗) is called the ∗inner product space [11].

Definition 2 (see [2]). Let f : A ⊆ R → R+ be a positive function. The multi-
plicative derivative of the function f , which is denoted by f∗, is defined as

f∗ (x) = lim
h→0

[
f (x+ h)

f (x)

] 1
h
,

if the above limit exists. Note that the multiplicative derivative is also called geo-
metric derivative.

Since f is a positive function, we can write the multiplicative derivative in the
following form

f∗ (x) = e(ln ◦f)′(x)

by using the properties of the classical derivative. It is seen that there exists the
following relation between the classical derivative and multiplicative derivative

f ′ (x) = f (x) ln f∗ (x) ,

where f is a positive function. Moreover, the second order multiplicative derivative
of f is obtained by taking multiplicative derivative of the function f∗ and it is
represented by f∗∗. By taking n-times multiplicative derivative of the function f
consecutively, we get n-th order multiplicative derivative of the function f at the
point x as

f∗(n) (x) = e(ln ◦f)(n)(x).

Theorem 1 (see [2]). Assume that f ,g are multiplicative differentiable functions
and h is a classical differentiable function at the point x. Then, it follows

i) (cf)
∗
(x) = f∗ (x),

ii) (fg)
∗
(x) = f∗ (x) g∗ (x),

iii)
(
f
g

)∗
(x) = f∗(x)

g∗(x) ,

iv)
(
fh
)∗

(x) = f∗ (x)
h(x)

f (x)
h′(x)

,
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v) (f ◦ h)∗ (x) = f∗ (h (x))
h′(x)

,

vi) (f + g)
∗
(x) = f∗ (x)

f(x)/(f(x)+g(x))
g∗ (x)

g(x)/(f(x)+g(x))
,

where c is a positive constant.

Definition 3 (see [2]). Let f be a positive bounded function on [a, b] where
−∞ < a < b <∞. A multiplicative integral of the function f is defined by

b∫
a

f (x)
dx

= e

b∫
a

(ln f(x))dx

if f is Riemann integrable on [a, b].
On the other hand, the multiplicative integral of f on [a, b] shows that

b∫
a

f (x) dx = ln

b∫
a

(
ef(x)

)dx
.

This multiplicative integral has the following properties:

i)

b∫
a

[
f (x)

k
]dx

=

 b∫
a

f (x)
dx

k ,
ii)

b∫
a

[f (x) g (x)]
dx

=

b∫
a

f (x)
dx

b∫
a

g (x)
dx
,

iii)

b∫
a

[
f(x)
g(x)

]dx
=

b∫
a

f(x)dx

b∫
a

g(x)dx

,

iv)

b∫
a

f (x)
dx

=

c∫
a

f (x)
dx

b∫
c

f (x)
dx
,

where f, g are multiplicative integrable functions, k ∈ R is a constant and c ∈ [a, b].

Definition 4. Assume that y1, y2, . . . , yn functions are positive functions which are
multiplicative differentiable at least (n-1) times and a matrix M with dimension
n× n is defined as

M =


ln y1 ln y2 . . . ln yn
ln y∗1 ln y∗2 . . . ln y∗n
...

... . . .
...

ln y
∗(n−1)
1 ln y

∗(n−1)
2 . . . ln y

∗(n−1)
n

 .
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Then, the determinant Wn defined as

Wn (y1, y2, . . . , yn) = detM

is called the multiplicative Wronskian determinant of the functions {yi}ni=1 [26].

Note that the space L∗
2 [a, b] =

{
f :

∫ b

a

[f (x)⊙ f (x)]
dx
<∞

}
is an ∗inner product

space with multiplicative inner product

<,>∗: L
∗
2 [a, b]× L∗

2 [a, b] → R+, < f, g >∗=

∫ b

a

[f (x)⊙ g (x)]
dx
,

where f, g ∈ L∗
2 [a, b] are positive functions. It is clear that the space L∗

2 [a, b] is the
multiplicative analogue of the well-known L2 [a, b]. Since this space is a linear space
and the field that we study is a special field whose scalars are real numbers, it helps
us to find the properties of eigenvalues of the problems. Hence, it is important to
study in the field (R+,⊕,⊙) for our results.

Definition 5. i) The n-th order multiplicative linear differential expression
is given by

T (y) =
[
y∗(n)

]an(x) [
y∗(n−1)

]an−1(x)

...ya0(x).

Here an(x), an−1(x), ..., a0(x) are continuous exponents on [a, b] and
y(x) ∈ C∗(n), where C∗(n) is the set of the functions which are n-th order
multiplicative differentiable and continuous.

ii) A solution of T (y) = yλ which satisfies y ̸= 1 and y ∈ L∗
2 [a, b] is called a

multiplicative eigenfunction of the operator T and the corresponding value
of λ is called a multiplicative eigenvalue of the operator T [11].

3. Main Results

Let us start our discussion with the boundary value problem

L [y] =
(
(y∗)

p(x)
)∗
yq(x) = y−λs(x); p(x) > 0, s(x) > 0 (3)

defined on (a, b), which has the boundary conditions

(y (a))
a1 (y∗ (a))

a2 = 1

(4)

(y (b))
b1 (y∗ (b))

b2 = 1,

where ai, bi; i = 1, 2 are given constants, a21 + a22 ̸= 0, b21 + b22 ̸= 0, p(x), p∗(x),
q(x) and s(x) are to be assumed continuous for x ∈ [a, b]. This problem is called a
multiplicative regular Sturm-Liouville problem.
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Definition 6. Let {ψk} be a sequence of multiplicative integrable functions and s
be a positive function on [a, b]. If the following equation holds for k ̸= j∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx

= 1, (5)

then the sequence of functions {ψk} is orthogonal with respect to the weight function
s on [a, b]. In particular, the special case of this definition for s = 1 was given
in [11].

Theorem 2. Let ψj (x, λj) and ψk (x, λk) be multiplicative eigenfunctions of the
regular Sturm-Liouville problem (3)-(4) corresponding to different multiplicative
eigenvalues λj and λk, respectively. Then, ψj (x, λj) and ψk (x, λk) are orthogonal
with respect to the weight function s.

Proof. Since ψj (x, λj) and ψk (x, λk) are the solutions of the equation (3), we can
write (

ψ∗
j (x)

p(x)
)∗
ψj (x)

q(x)
= ψj (x)

−λjs(x) (6)(
ψ∗
k (x)

p(x)
)∗
ψk (x)

q(x)
= ψk (x)

−λks(x) . (7)

By using (6) and (7), we obtain(
ψ∗
j (x)

p(x)
)∗ lnψk(x)

(
ψ∗
k (x)

p(x)
)∗ lnψj(x)

=
ψj (x)

−λjs(x) lnψk(x)

ψk (x)
−λks(x) lnψj(x)

. (8)

On the other hand, we have(
ψ∗
j (x)

p(x)
)∗ lnψk(x)

(
ψ∗
k (x)

p(x)
)∗ lnψj(x)

=

(
ψ∗
j (x)

p(x) lnψk(x)
)∗

(
ψ∗
k (x)

p(x) lnψj(x)
)∗ =

(
ψ∗
j (x)

p(x) lnψk(x)

ψ∗
k (x)

p(x) lnψj(x)

)∗

. (9)

From (8) and (9), it follows(
ψ∗
j (x)

p(x) lnψk(x)

ψ∗
k (x)

p(x) lnψj(x)

)∗

=
ψj (x)

−λjs(x) lnψk(x)

ψk (x)
−λks(x) lnψj(x)

. (10)

By taking the multiplicative integral from a to b in (10) and using the properties of
multiplicative integrals given in previous section, the following equation is obtained

ψ∗
j (b)

p(b) lnψk(b)

ψ∗
k (b)

p(b) lnψj(b)

ψ∗
k (a)

p(a) lnψj(a)

ψ∗
j (a)

p(a) lnψk(a)
=

(∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx)λk−λj

. (11)

By the help of the boundary conditions in (4) and the equation (11), we find(∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx)λk−λj

= 1.



1148 G. B. ÖZNUR, G.G. ÖZBEY, Y. AYGAR, R. A. KARAMAN

Since λj ̸= λk, the proof of theorem is completed. □

Now, consider a multiplicative periodic Sturm-Liouville problem

L [y] =
(
(y∗)

p(x)
)∗
yq(x) = y−λs(x), x ∈ [a, b]

with the periodic boundary conditions

y (a) = y (b)

(12)

y∗ (a) = y∗ (b) ,

where p(a) = p(b).

Theorem 3. The multiplicative eigenfunctions of the multiplicative periodic Sturm-
Liouville problem (3)-(12) are orthogonal with respect to the weight function s on
[a, b].

Proof. Let ψj (x, λj) and ψk (x, λk) be multiplicative eigenfunctions corresponding
to distinct multiplicative eigenvalues λj and λk, respectively. Since ψj and ψk
satisfy the periodic boundary conditions, we have

ψj (a) = ψj (b) , ψ∗
j (a) = ψ∗

j (b)
ψk (a) = ψk (b) , ψ∗

k (a) = ψ∗
k (b) .

(13)

By using (3), we can easily find(
ψ∗
j (b)

lnψk(b)

ψ∗
k (b)

lnψj(b)

)p(b)(
ψ∗
k (a)

lnψj(a)

ψ∗
j (a)

lnψk(a)

)p(a)
=

(∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx)λk−λj

.

Since p (a) = p (b) is in the periodic Sturm-Liouville problem and by the help
of (13), by taking into account multiplicative algebraic operations given by (2) it
follows ∫ b

a

(
ψk (x)

s(x) lnψj(x)
)dx

= 1

for λj ̸= λk. □

Lemma 1. All multiplicative eigenvalues of the multiplicative regular Sturm-Liouville
problem (3)-(4) are real.

Proof. Let λj = α+ iβ be a complex multiplicative eigenvalue of the problem (3)-
(4) corresponding the eigenfunction ψj (x, λj). Then, λk = α − iβ, which is the
conjugate of the multiplicative eigenvalue of λj , is also the multiplicative eigenvalue
for (3)-(4) corresponding to eigenfunction ψk (x, λk). By means of Theorem 2(∫ b

a

(
ψk (x, λk)

s(x) lnψk(x,λk)
)dx)λk−λj

= 1, (14)

from rule (i) in Definition 3, it follows
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∫ b

a

((
ψk (x, λk)

s(x) lnψk(x,λk)
)λk−λj

)dx
= 1.

By definition of the multiplicative integral, we obtain

2iβ

∫ b

a

s (x) |lnψk (x, λk)|
2
dx = 0.

The last equation holds if and only if when β = 0. Because, s (x) is a positive
function and ψk (x, λk) can not be equal to 1 . This is a contradiction, i.e., all
multiplicative eigenvalues of (3)-(4) are real. □

Theorem 4. If the functions ψj (x) and ψk (x) are any two solutions of (3) on
[a, b], then the following equation is verified

p (x)W
(
x;ψj , ψk

)
= µ,

where W is Wronskian and µ is a constant.

Proof. Since the functions ψj (x, λ) and ψk (x, λ) are solutions of the following
equation on [a, b]

L [y] = y−λs(x),

it follows from (10) (
ψ∗
j (x)

p(x) lnψk(x)

ψ∗
k (x)

p(x) lnψj(x)

)∗

= 1. (15)

By taking the multiplicative integral from a to x in (15), we find(
ψ∗
j (x)

lnψk(x)

ψ∗
k (x)

lnψj(x)

)p(x)(
ψ∗
k (a)

lnψj(a)

ψ∗
j (a)

lnψk(a)

)p(a)
= 1. (16)

From the definition of Wronskian, we get

W
(
x;ψj , ψk

)
= lnψ∗

k (x)
lnψj(x) − lnψ∗

j (x)
lnψk(x)

= ln

(
ψ∗
k (x)

lnψj(x)

ψ∗
j (x)

lnψk(x)

)
. (17)

By using (16) and (17) the following can be easily seen

e−W(x;ψj ,ψk)p(x)eW(a;ψj ,ψk)p(a) = 1.

It is seen that
W
(
x;ψj , ψk

)
p (x) =W

(
a;ψj , ψk

)
p (a) .

By the help of the last equality, the proof is completed. □

Theorem 5. The multiplicative eigenfunction corresponding to any multiplicative
eigenvalue of the regular Sturm-Liouville problem given by (3)-(4) is unique with a
constant factor difference.
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Proof. Let ψj (x, λ) and ψk (x, λ) be multiplicative eigenfunctions of (3) correspond-
ing to multiplicative eigenvalue λ. From Theorem 4, we have

p (x)W
(
x;ψj , ψk

)
= µ,

where p > 0. It is clear from this equation that for each any point x0 ∈ [a, b] if
W
(
x0;ψj , ψk

)
= 0, then for all x0 ∈ [a, b] it should be W

(
x;ψj , ψk

)
≡ 0. On the

other hand, by using the boundary condition (4), we obtain

ψ∗
j (a)

a2 =
1

ψj (a)
a1 , ψ∗

k (a)
a2 =

1

ψk (a)
a1 . (18)

Since a1 and a2 should not be zero at once, it follows from the definition of Wron-
skian

e−W(a;ψj ,ψk) =
ψ∗
k (a)

lnψj(a)

ψ∗
j (a)

lnψk(a)
.

By using (18) and the last equality, we get

e−W(a;ψj ,ψk) =
ψj (a)

a1
a2

lnψk(a)

ψk (a)

a1
a2

lnψj(a)

= 1,

which gives W = 0 at the point x0 = a ∈ [a, b]. So, W ≡ 0 on [a, b]. This is a
sufficient condition for ψj and ψk to be linear dependent. Therefore, one of these
solution is a constant multiple of the other. □

4. Applications

In this section, we will give some examples of multiplicative Sturm-Liouville
problems defined by (3)-(4) and (3)-(12).

Example 1. Consider the multiplicative eigenvalue problem

y∗∗yλ = 1, 0 ≤ x ≤ π (19)

y (0) = y∗ (π) = 1.

Assume that λ ≤ 0. We get the solution of (19) as follow

y (x) = ec1e
√

−λx+c2e
−

√
−λx

,

where c1 and c2 are real numbers. Since y (0) = y∗ (π) = 1, c1 = c2 = 0 is found.
Since for λ ≤ 0 we have the trivial multiplicative eigenfunction y (x, λ) = 1 of the
problem (19), there is no eigenvalue for λ ≤ 0. Now, assume that λ > 0. We get
the solution of (19)

y (x) = el1 cos
√
λx+l2 sin

√
λx,
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where l1 and l2 are real numbers. Using the condition y (0) = y∗ (π) = 1, we obtain
the multiplicative eigenfunctions

yn (x) = el2 sin( 2n−1
2 )x

of (19) corresponding to eigenvalues

λn =

(
2n− 1

2

)2

; n = 1, 2, 3 . . .

Without loss of generality, by taking l2 = 1, we get the family of eigenfunctions

yn (x) = esin(
2n−1

2 )x.

Remark 1. Since different multiplicative eigenfunctions corresponding to different
eigenvalues of (3)-(4) are orthogonal as a consequence of Theorem 2, the following
result holds∫ π

0

(
yn (x)

ln ym(x)
)dx

=

∫ π

0

(
esin(

2n−1
2 x) sin( 2m−1

2 x)
)dx

= 1.

Example 2. Let us consider the following multiplicative periodic eigenvalue prob-
lem

y∗∗yλ = 1, 0 ≤ x ≤ π (20)

y (0) = y (π) , y∗ (0) = y∗ (π) .

Since we have trivial eigenfunction y (x) = 1 for λ < 0, there is no eigenfunction of
S-L problem for λ < 0. For λ = 0, the nontrivial solution of the problem is obtained
as y (x) = e. Now, suppose that λ > 0. Then, we find the solution of (20) as follow

y (x) = ek1 cos
√
λx+k2 sin

√
λx,

where k1 and k2 are real numbers. From y (0) = y (π) , y∗ (0) = y∗ (π) , we find

k2 = −k1 sin
√
λπ + k2 cos

√
λπ, k1 = k1 cos

√
λπ + k2 sin

√
λπ,

from which it gives k1 = k2 = 0. So, we get only a trivial eigenfunction of (20)
for λ > 0. Thus, it is seen that the nontrivial solution of the given multiplicative
periodic eigenvalue problem is y (x) = e corresponding to eigenvalue λ = 0.

Example 3. Consider the following multiplicative Sturm-Liouville problem

(y∗∗)
x2

(y∗)
x
yλ = 1 (21)

y (1) = 1, y (e) = 1.

It is known that the following equalities are provided when the substitution x = et

is applied [27](
D̃y
)x

= D̃1y and
(
D̃(2)y

)x2

=
(
D̃

(2)
1 y

)(
D̃1y

)−1

, (22)
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where D̃ is the multiplicative derivative operator of y with respect to x and D̃1 is
the multiplicative derivative operator of y with respect to t. By the help of (22), we
write

(y∗)
x
=
(
eD ln y

)x
= eD1 ln y = D̃1y

(y∗∗)
x2

=
(
eD

2(ln y)
)x2

= eD1(D1−1) ln y =
(
D̃

(2)
1 y

)(
D̃1y

)−1

, (23)

where D is the derivative operator of y with respect to x and D1 is the derivative
operator of y with respect to t. Then, from (21) and (23), we get

e(D1(D1−1)+D1+λ) ln y = 1,

from which it follows (D2
1 + λ) ln y = 0. If λ ≤ 0, then we get

y(x) = em1e
√

−λ ln x+m2e
−

√
−λ ln x

,

where m1 and m2 are real numbers. By using the condition y (1) = 1, y (e) = 1,
it is clear that m1 = m2 = 0. Since for λ ≤ 0 we have the trivial multiplicative
eigenfunction y (x, λ) = 1 of this example, there is no eigenvalue for λ ≤ 0. If
λ > 0, we find the solution of (21) as follow

y(x) = ev1 cos(
√
λ ln x)+v2 sin(

√
λ ln x),

where v1 and v2 are real numbers. From the boundary condition y (1) = 1,
y (e) = 1, we get the multiplicative eigenfunctions

yn (x) = ev2 sin(nπ ln x)

of (21) corresponding to eigenvalues

λn = (nπ)
2
,

where n = 1, 2, 3, . . ..
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[19] Özcan, S., Some integral inequalities of Hermite-Hadamard type for multi-

plicatively preinvex functions, AIMS Mathematics, 5(2) (2020), 1505-1518.
https://doi.org/10.3934/math.2020103.
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[27] Yalçın, N., Çelik, E., Multiplicative Cauchy-Euler and Legendre Differential Equa-
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Abstract. In comparison to conventional fuzzy sets, the idea of interval-
valued intuitionistic fuzzy sets provides a more accurate definition of uncer-

tainty. Defuzzification is the aspect of fuzzy control that requires the most

processing. It has numerous applications in fuzzy control. In this paper, the
concepts strength, length, distance, eccentricity, radius, diameter, centred, self-

centered, path cover, and edge cover of an interval-valued intuitionistic fuzzy

graph (IVIFG) are defined in this work. Further, we introduce the definition
of a self-centered IVIFG and the necessary and sufficient conditions for an

IVIFG to be self-centered are given. Moreover, we investigate some properties
of self-centered IVIFG with an illustration and we have discussed applications

in IVIFG.

1. Introduction

L.A. Zadeh [18] developed fuzzy sets in 1965 to solve the challenges of dealing
with ambiguity in fuzzy sets. Various scholars have since investigated fuzzy sets and
fuzzy logic in attempt to answer other real-world issues involving ambiguous and
uncertain situations. Interval-valued fuzzy sets are an extension of fuzzy sets that
the author first introduced in Turksen [16] in 1986. Instead than utilising numbers
as the membership function, it includes the values of number intervals to account
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for uncertainty. It is typically represented by the symbol [µ−
AL(x), µ

+
AU ]. Use the

equation 0 ≤ µ−
AL(x) + µ+

AU (x) ≤ 1 to represent the degree of membership of the
fuzzy set A. T. Atanassov added a non-membership function that is represented
by intuitionistic fuzzy sets as an additional component to fuzzy sets. Additionally,
he added interval valued intuitionistic fuzzy sets to the concept of intuitionistic
fuzzy sets [2]. It is preferable to depict uncertainty using interval-valued intu-
itionistic fuzzy sets as opposed to traditional fuzzy sets. Defuzzification, which
has several applications in fuzzy control, is the component that needs the most
processing. For the purpose of interpreting the degree of true and false mem-
bership functions, it is defined as a pair of intervals [µ−, µ+], 0 ≤ µ− + µ+ ≤ 1
and [λ−, λ+], 0 ≤ λ− + λ+ ≤ 1 with 0 ≤ µ+ + λ+ ≤ 1. Rosenfeld [13] created
fuzzy graph theory in 1975. examined the fuzzy graphs for which Kauffmann con-
ceived of the fundamental concept in 1973. The interval-valued neutrosophic sets
(IVNS) [14], an extension of the interval-valued intuitionistic fuzzy sets (IVIFS), of-
fer a more accurate representation of uncertainty when compared to ordinary fuzzy
sets. The list of components that make up IVIFS was expanded by the addition
of the indeterminate-membership function, which is represented by IVNS. Fuzzy
control uses it in a variety of ways. Only holding incomplete data is permitted by
the aforementioned limitations, but processing uncertain information is still neces-
sary. Let’s take a hypothetical situation where there are ten to seventeen patients
being tested for a pandemic. In that period, five to seven patients will have positive
results, three to six will have negative results, and two to four will still be awaiting
results. It can be written as x([0.5,0.7],[ 0.2, 0.4], [0.3,0.6]) using neutrosophic no-
tions. In this work, self-centered IVIFG analyses the proportion of interval-valued
true and false membership functions in our result. If the indeterminate-membership
function, which is represented by IVNG, is added to the result, the result can then
devolve into self-centered IVNG. Rashmanlou [ [9], [10], [11], [12]] researched fuzzy
graphs with irregular IVFGs. Furthermore, they defined balanced IVFGs, antipo-
dal IVFGs, and some properties of highly irregular IVFGs. The concept of an
interval valued fuzzy subset of a set was created by Zadeh [17] in 1975 as an ex-
tension of the idea of a fuzzy set, where the values of the membership degrees are
intervals of numbers rather than real numbers. Akram and Dudec [6] proposed
the concept IVFGs in 2011. In this article, we present the idea of an IVIFG and
analyse the concepts of strength, length, distance, eccentricity, radius, and diam-
eter as well as of self-centered and centered. We also investigate into some of the
properties of an illustration of a self-centered interval-valued intuitionistic fuzzy
graph. Moreover, IVIFG applications are used to identify instability in various
aspects of human life. These applications’ purpose is to enhance the country’s de-
fences to the degree of its vulnerabilities. We suggested reading this article so that
researchers could investigate this idea further using fuzzy graph theory to measure
centre point radius distance, eccentricity, radius, and diameter are analyses. An
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interval-based membership structure is offered by this set theory to handle interval-
valued intuitionistic fuzzy data. By recording their hesitation when determining
membership values, users are able to more accurately represent the ambiguity and
unpredictability of this data. This work advances various areas that are relevant
to fuzzy graph architectures across all types of graphs by utilising a number of
conceptual frameworks that include vertex point and edge will analysis. this can
be used in a wide variety of fuzzy set condition analysis domains. Applications of
this principle include spotting instability in all aspects of human life. The structure
of this paper is as follows: Introducing the concept is covered in Section 1 of the
lesson plan. Preliminaries provide the fundamental definitions required for Section
2. Section 3 important concepts An interval-valued intuitionistic fuzzy graph (IV-
IFG)’s strength, length, distance, eccentricity, radius, diameter, self-centeredness,
path coverage, and edge coverage are specified in this work.

2. Preliminaries

The discussion of some fundamental definitions and properties in this section
will help in the formulation of the research studies.[ [3], [8], [4], [7], [6]]
A graph is indeed an ordered pair G∗ = (Q,R), where Q is the collection of vertex
positions for G∗. If a, b are on an edge of G∗, then two vertices a and b are said
to be adjacent in G∗. To represent {a, b} in R, we write ab in R. A simple graph
is considered complete if an edge connects each pair of unique vertices in it. Path
P : a1a2....an+1(n > 0) in G∗ has a length of n. If a1 = an+1 and n ≥ 3, a
path P : a1a2....an+1 in G∗ is referred to as a cycle. It should be noted that any
edge in the cycle graph Cn can be removed to provide the path graph Pn, which
has n − 1 edges. An undirected graph G∗ is considered to be linked if there is a
path connecting every pair of distinct vertices. If every pair of different vertices
in a connected graph G∗ has a path between them, then the distance between
two vertices a, b is equal to the length of the shortest path that connects them.
Eccentricity e(a) = max{d(a, b)/a ∈ Q}. A connected graph’s radius is given by
the formula r(G) = min{e(a)/a ∈ Q}. The formula d(G) = max{e(a)/a ∈ Q} is
used to determine the diameter of a connected graph G∗. The set of eccentricities
in a graph is called the eccentric set (S). A graph’s C(G∗) centre is made up of
the collection of vertices with the least amount of eccentricity. If all of a graph’s
vertices are in the middle, the graph is said to be self-centered. As a result, the
eccentric set of a self-centered graph only includes one element, meaning that all
of the vertices are equally eccentric. A graph with a diameter equal to its radius is
equivalently said to be self-centered.
Map µ : X → [0, 1] is referred to as a fuzzy subset λ on a set X. Map λ : X ×X →
[0, 1] If λ(a, b) ≤ min{µ(a), µ(b)} for all a, b ∈ X, called a fuzzy relation on X. A
fuzzy relation λ is symmetric if λ(a, b) = λ(b, a) for all a, b ∈ X.
An interval number D is an interval [a−, a+] with 0 ≤ a− ≤ a+ ≤ 1. The interval



1158 S. A. K. RAJ, S. N. S. BATHUSHA AND S. S. HUSSAIN

[a, a] is identified with the number a ∈ [0, 1]D[0, 1] denotes the set of all interval
numbers.

Definition 1. [1] An IFS R in the universe of discourse X is characterized by
two membership functions given by λR : X → [0, 1] and µR : X → [0, 1] re-
spectively, such that λR(a) + µR(a) ≤ 1 for all a ∈ X. The IFS R denoted by
R = {(a, λR(a), µR(a))/a ∈ X}

Definition 2. [15] An IFG is of form G̃ = (µ, λ) which µ = (µ1, µ2) and λ =
(λ1, λ2) so that
(i) The function µ1 : Q → [0, 1] and µ2 : Q → [0, 1] denote the degree of membership
and non membership of the element a ∈ Q respectively, such that 0 ≤ µ1(a) +
µ2(a) ≤ 1 for all a ∈ Q
(ii) The function λ1 : Q×Q → [0, 1] and λ1 : Q×Q → [0, 1] are defined by
λ1(a, b) ≤ min{µ1(a), µ1(b)}, λ2(a, b) ≤ max{µ2(a), µ2(b)} such that 0 ≤ λ1(a, b)+
λ2(a, b) ≤ 1, ∀ ab ∈ R.

Table 1. Abbreviations

Notation Meaning

G̃ = (µ, λ) IVIFG
µ1 IVIF degree of membership
µ1 IVIF degree of non membership
λ1 IVIF degree of edge membership
λ2 IVIF degree of edge non membership
Sp Strength of the strongest path P

lλ1,λ2
λ1λ2-length of a path P

δλ1,λ2(ai, aj) λ1λ2-distance
eλ1,λ2(ai) eccentricity of ai
rλ1,λ2

(ai) radius of G̃

dλ1,λ2
(ai) diameter of G̃

3. Self Centered IVIFG

IVIFG is defined in this section, which also lists helpful terms for the concepts
which were used to create the main findings. We use illustrations to discuss some
of the self-centered IVIFG’s properties.

Definition 3. An IVIFG of the form G̃ = (µ, λ) which µ = (µ1, µ2) = ([µ−
1 , µ

+
1 ],

[µ−
2 , µ

+
2 ]) and λ = (λ1, λ2) = ([λ−

1 , λ
+
1 ], [λ

−
2 , λ

+
2 ]) So that

(1) The function µ1 : Q → [0, 1] and µ2 : Q → [0, 1] denote the degree of membership
and non membership of the element a ∈ Q respectively, such that 0 ≤ µ+

1 (a) +
µ+
2 (a) ≤ 1 for all a ∈ Q
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(2) The function λ1 : Q × Q → [0, 1] and λ2 : Q × Q → [0, 1] denote the degree of
interval-valued membership and interval-valued non-membership of the edge ab ∈ R,
respectively, are defined by
(i) λ−

1 (a, b) ≤ min{µ−
1 (a), µ

−
1 (b)} and λ+

1 (a, b) ≤ min{µ+
1 (a), µ

+
1 (b)}

(ii) λ−
2 (a, b) ≤ max{µ−

2 (a), µ
−
2 (b)} and λ+

2 (a, b) ≤ max{µ+
2 (a), µ

+
2 (b)} such that

0 ≤ λ+
1 (a, b) + λ+

2 (a, b) ≤ 1, ∀ ab ∈ R.

Definition 4. An IVIFG G̃ = (µ, λ) of a graph G∗ = (Q,R) is called a complete if
(i) λ−

1 (a, b) = min{µ−
1 (a), µ

−
1 (b)} and λ+

1 (a, b) = min{µ+
1 (a), µ

+
1 (b)}, (ii)λ

−
2 (a, b) =

max{µ−
2 (a), µ

−
2 (b)} and λ+

2 (a, b) = max{µ+
2 (a), µ

+
2 (b)}.

Example 1. An IVIFG G̃ = (µ, λ) of a graph G∗ = (Q,R) given figure-1 is a com-

plete IVIFG G̃ = (µ, λ) such that µ = {u1([0.3, 0.5][0.2, 0.4]), u2([0.4, 0.6][0.3, 0.4]),
u3([0.1, 0.3][0.3, 0.6]), u4([0.3, 0.4][0.4, 0.5])}.

Figure 1. G̃ = (µ, λ) is IVIFG of G∗
1 is complete

Definition 5. A path P in IVIFG G̃ = (µ, λ) of a graph G∗ = (Q,R) is a sequence
of distinct vertices a1, a2, ..., an such that either one of the following conditions is
satisfied:
(1) λ−

1 (a, b) > 0, λ−
2 (a, b) = 0 and λ+

1 (a, b) > 0, λ+
2 (a, b) = 0 for some a, b ∈ R

(2) λ−
1 (a, b) = 0, λ−

2 (a, b) > 0 and λ+
1 (a, b) = 0, λ+

2 (a, b) > 0 for some a, b ∈ R
(3) λ−

1 (a, b) > 0, λ+
1 (a, b) = 0 and λ−

2 (a, b) > 0, λ+
2 (a, b) = 0 for some a, b ∈ R

(4) λ−
1 (a, b) = 0, λ+

1 (a, b) > 0 and λ−
2 (a, b) = 0, λ+

2 (a, b) > 0 for some a, b ∈ R
A path P : a1a2...an+1 in G∗ is called a cycle if a1 = an+1 and n ≥ 3.

Definition 6. Let P : u1, u2, ..., un be a path in IVIFG G̃ = (µ, λ) of graph
G∗ = (Q,R). The λ−

1 −strength of all paths joining any two vertices and the expres-
sion ai, aj is represented by the symbol (λ−

1ij)
∞ and is defined as max(λ−

1 (ai, aj)) .

The λ+
1 −strength of all paths joining any two vertices and the expression ai, aj is

represented by the symbol (λ+
1ij)

∞ and is defined as max(λ+
1 (ai, aj)) . The λ−

2 −
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strength of all paths joining any two vertices and the expression ai, aj is rep-

resented by the symbol (λ−
2ij)

∞ and is defined as max(λ−
2 (ai, aj)) . The λ+

2 −
strength of all paths joining any two vertices and the expression ai, aj is rep-

resented by the symbol (λ+
2ij)

∞ and is defined as max(λ+
2 (ai, aj)) .If the same

edge possesses every value of λ1− − strength, λ1+ − strength, λ2− − strength,
λ2+ − strength, then it is the strength of the strongest path P and it is denoted by
SP = ([(λ−

1ij)
∞, (λ+

1ij)
∞], [(λ−

2ij)
∞, (λ+

2ij)
∞]) for all i, j = 1, 2, ..., k.

Definition 7. The IVIFG If any two vertices of G̃ = (µ, λ) are connected by a

path, they are said to be connected. That is, an IVIFG G̃ is connected if (λ−
1ij)

∞ >

0, (λ+
1ij)

∞ > 0 and (λ−
2ij)

∞ > 0, (λ+
2ij)

∞ > 0.

Example 2. Consider a IVIFG G̃ = (µ, λ) as shown in Figure-1 in Example-1.
The path u1u4 has a length of 1 and a strength of ([0.3, 0.4][0.4, 0.5]). The path
u1u2u4 has a length of 2 and a strength of ([0.3, 0.5][0.4, 0.5]). The path u1u2u3u4

has a length of 3 and a strength of ([0.3, 0.5][0.4, 0.6]).

Definition 8. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R).
The λ−

1 − length of a path P : a1a2...an in G∗, lλ−
1
(p), is defined as lλ−

1
(p) =∑n−1

i=1 λ−
1 (ai, ai+1) and the λ+

1 − length of a path P : u1u2...un in G, lλ+
1
(p), is

defined as lλ+
1
(p) =

∑n−1
i=1 λ+

1 (ai, ai+1). The λ−
2 − length of a path P : a1a2...an

in G∗, lλ−
2
(p), is defined as lλ−

2
(p) =

∑n−1
i=1 λ−

2 (ai, ai+1) and the λ+
2 − length of

a path P : u1u2...un in G, lλ+
2
(p), is defined as lλ+

2
(p) =

∑n−1
i=1 λ+

2 (ai, ai+1). The

λ1λ2 − length of a path P : u1u2...un in G, lλ1λ2(p), is defined as lλ1λ2(p) =
([lλ−

1
, lλ+

1
], [lλ−

2
, lλ+

2
]) .

Example 3. Consider a connected IVIFG G̃ = (µ, λ) as shown in Figure-1 in
Example-1. Here, u1u4 is a path of length 1 and lλ1λ2

= ([0.3, 0.4][0.4, 0.5]), u1u2u4

is a path of length 2 and lλ1λ2 = ([0.6, 0.9][0.7, 0.9]), u1u2u3u4 is a path of length 3
and lλ1λ2 = ([0.5, 1.1][1.0, 1.6]).

Definition 9. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R). The

λ−
1 −distance, δλ−

1ij
, is the smallest λ−

1 − length of any ai−aj path P in G̃, where

ai, aj ∈ Q. That is, δλ−
1ij

= δλ−
1
(ai, aj) = min(lλ−

1
(p)) and λ+

1 − distance, δλ+
1ij

, is

the smallest λ+
1 − length of any ai − aj path P in G̃, where ai, aj ∈ Q. That is,

δλ+
1ij

= δλ+
1
(ai, aj) = min(lλ+

1
(p)). The λ−

2 − distance, δλ−
2ij

, is the smallest λ−
2 −

length of any ai − aj path P in G̃, where ai, aj ∈ Q. That is, δλ−
2ij

= δλ−
2
(ai, aj) =

min(lλ−
2
(p)) and λ+

2 − distance, δλ+
2ij

, is the smallest λ+
2 − length of any ai − aj

path P in G̃, where ai, aj ∈ Q. That is, δλ+
2ij

= δλ+
2
(ai, aj) = min(lλ+

2
(p)). The

distance, δλ1,λ2
(ai, aj), is defined as δλ1,λ2

(ai, aj) = ([δλ−
1ij

, δλ+
1ij

], [δλ−
2ij

, δλ+
2ij

]).
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Example 4. Consider a connected IVIFG G̃ = (µ, λ) as shown in Figure-1 in
Example-1. Here, δλ−

1
(u1, u4) = 0.3, δλ+

1
(u1, u4) = 0.4 and δλ−

2
(u1, u4) = 0.4, δλ+

2
(u1, u4) =

0.5. That is δλ1,λ2
(u1, u4) = ([0.3, 0.4], [0.4, 0.5]). Similarly, we calculate

δλ1,λ2(u1, u2) = ([0.3, 0.5], [0.3, 0.4]), δλ1,λ2(u1, u3) = ([0.4, 0.7], [0.6, 1.0]),
δλ1,λ2(u2, u3) = ([0.1, 0.3], [0.3, 0.6]), δλ1,λ2(u2, u4) = ([0.2, 0.4], [0.4, 0.5]),
δλ1,λ2

(u3, u4) = ([0.1, 0.3], [0.4, 0.6])

Definition 10. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R).
For each ai ∈ Q, the λ−

1 − eccentricity of ai, denoted by eλ−
1
(ai), is defined as

eλ−
1
(ai) = max{δλ−

1
(ai, aj)/ui ∈ Q} and for each ai ∈ Q, the λ+

1 − eccentricity of

ai, denoted by eλ+
1
(ai), is defined as eλ+

1
(ai) = max{δλ+

1
(ai, aj)/ai ∈ Q}. For each

ai ∈ Q, the λ−
2 − eccentricity of ai, denoted by eλ−

2
(ai), is defined as eλ−

2
(ai) =

max{δλ−
2
(ai, aj)/ui ∈ Q} and for each ai ∈ Q, the λ+

2 − eccentricity of ai, de-

noted by eλ+
2
(ai), is defined as eλ+

2
(ai) = max{δλ+

2
(ai, aj)/ai ∈ Q}. For each

ai ∈ Q, the eccentricity of ai, denoted by eλ1,λ2
(ai), is defined as eλ1,λ2

(ai) =
([eλ−

1
(ai), eλ+

1
(ai)], [eλ−

2
(ai), eλ+

2
(ai)]).

Definition 11. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R). The

λ−
1 −radius of G̃ is denoted by rλ−

1
(G) and is defined as rλ−

1
(G) = min{eλ−

1
(ai)/ai ∈

Q} and the λ+
1 − radius of G̃ is denoted by rλ+

1
(G) and is defined as rλ+

1
(G) =

min{eλ+
1
(ai)/ai ∈ Q}. The λ−

2 − radius of G̃ is denoted by rλ−
2
(G) and is defined

as rλ−
2
(G) = min{eλ−

2
(ai)/ai ∈ Q} and the λ+

2 − radius of G̃ is denoted by rλ+
2
(G)

and is defined as rλ+
2
(G) = min{eλ+

2
(ai)/ai ∈ Q}. The radius of G̃ is denoted by

rλ1,λ2
(G) and is defined as rλ1,λ2

(G) = ([rλ−
1
(G), rλ+

1
(G)], [rλ−

2
(G), rλ+

2
(G)]).

Definition 12. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R). The

λ−
1 −diameter of G̃ is denoted by dλ−

1
(G) and is defined as dλ−

1
(G) = max{eλ−

1
(ai)/ai ∈

Q} and the λ+
1 − diameter of G̃ is denoted by dλ+

1
(G) and is defined as dλ+

1
(G) =

max{eλ+
1
(ai)/ai ∈ Q}. The λ−

2 − diameter of G̃ is denoted by dλ−
2
(G) and is de-

fined as dλ−
2
(G) = max{eλ−

2
(ai)/ai ∈ Q} and the λ+

2 −diameter of G̃ is denoted by

dλ+
2
(G) and is defined as dλ+

2
(G) = max{eλ+

2
(ai)/ai ∈ Q}. The diameter of G̃ is de-

noted by dλ1,λ1(G) and is defined as dλ1,λ1(G) = ([dλ−
1
(G), dλ+

1
(G)], [dλ−

1
(G), dλ+

1
(G)]).

Example 5. From the above Examples-1,3,4. using standard calculations, it is easy
to see that: eλ−

1
− eccentricity, eλ+

1
− eccentricity and eλ−

2
− eccentricity, eλ+

2
−

eccentricity of each vertex is
eλ−

1
(u1) = 0.4, eλ−

1
(u2) = 0.3, eλ−

1
(u3) = 0.4, eλ−

1
(u4) = 0.3, eλ+

1
(u1) = 0.7, eλ+

1
(u2) =

0.5, eλ+
1
(u3) = 0.7, eλ+

1
(u4) = 0.4 and eλ−

2
(u1) = 0.6, eλ−

2
(u2) = 0.4, eλ−

2
(u3) =

0.6, eλ−
2
(u4) = 0.4, eλ+

2
(u1) = 1.0, eλ+

2
(u2) = 0.6, eλ+

2
(u3) = 1.0, eλ+

2
(u4) = 0.6
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eccentricity of each vertex is
eλ1,λ2(u1) = ([0.4, 0.7], [0.6, 1.0]), eλ1,λ2(u2) = ([0.3, 0.5], [0.4, 0.6]),
eλ1,λ2(u3) = ([0.4, 0.7], [0.6, 1.0]), eλ1,λ2(u4) = ([0.3, 0.4], [0.4, 0.6])

radius of G̃ is rλ1,λ2
(G) = ([0.3, 0.4], [0.4, 0.6]) and

diameter of G̃ is dλ1,λ2
(G) = ([0.4, 0.7], [0.6, 1.0])

Definition 13. A vertex ui ∈ Q is called a central vertex of a connected IVIFG
G̃ = (µ, λ) of graph G∗ = (Q,R), if rλ−

1
(G) = eλ−

1
(ui), rλ+

1
(G) = eλ+

1
(ui) and

rλ−
2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui) and C(G̃) stands for the set of all central

vertices of an IVIFG.

Definition 14. IVIFG connected If every vertex in G̃ is a central vertex, then the
graph G̃ = (µ, λ) is a self-centered IVIFG, that is rλ−

1
(G) = eλ−

1
(ui), rλ+

1
(G) =

eλ+
1
(ui) and rλ−

2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui) ∀ ui ∈ Q.

Example 6. Consider a connected IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) such
that µ = {u1([0.2, 0.4], [0.3, 0.5]), u2([0.4, 0.5], [0.3, 0.4]),
u3([0.3, 0.4], [0.2, 0.5])} as shown in Figure-2 By routine computations, it is easy to

Figure 2. G̃ = (µ, λ) is self centered IVIFG of G∗

see that:
(i) Distance δλ1,λ2

(ui, uj) is
δλ1,λ2

(u1, u2) = ([0.2, 0.4], [0.3, 0.5]),
δλ1,λ2(u1, u3) = ([0.2, 0.4], [0.3, 0.5]),
δλ1,λ2(u2, u3) = ([0.2, 0.4], [0.3, 0.5])
(ii) Eccentricity eλ1,λ2

(ui) of each vertex is ([0.2, 0.4], [0.3, 0.5]) for i = 1, 2, 3

(iii) radius of G̃ is rλ1,λ2(G) = ([0.2, 0.4], [0.3, 0.5]) and

diameter of G̃ is dλ1,λ2
(G) = ([0.2, 0.4], [0.3, 0.5])

Hence, G̃ is self centered IVIFG

Definition 15. A path cover of an IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a

set P of paths such that every vertex of G̃ is incident to some path of P .
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Example 7. Consider a connected IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) such
that µ = {u1([0.1, 0.3], [0.2, 0.4]), u2([0.2, 0.4], [0.1, 0.3]), u3([0.2, 0.3], [0.3, 0.5]),
u4([0.3, 0.4], [0.2, 0.5]), u5([0.4, 0.5][0.2, 0.3]), u6([0.2, 0.4], [0.3, 0.5])} as shown in Figure-

3. In this example, the some path covers of an IVIFG G̃ = (µ, λ) are M1 =

Figure 3. G̃ = (µ, λ) is IVIFG of G∗

{u1u2u3u5, u4u5u6},
M2 = {u1u2u4u5, u3u5u6},
M3 = {u1u2u4u5u6, u5u3},
M4 = {u1u2u4u5u6, u2u3},
M5 = {u1u2u3u5u6, u5u4},
M6 = {u1u2u3u5u6, u2u3},
M7 = {u1u2u4, u2u3u5u6},
M8 = {u1u2u3, u2u4u5u6},
M9 = {u1u6, u2u3u5u4},
M10 = {u1u2, u3u5, u4u5u6},
M11 = {u1u2, u4u5, u3u5u6}

Definition 16. An edge covers of an IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a

set E of edge such that every vertex of G̃ is incident to some edge of E.

Example 8. In above Example-7, as shown in Figure-3. The some of the edge
covers of an IVIFG G̃ = (µ, λ) are
E1 = {(u1, u2), (u2, u3), (u4, u5), (u5, u6)},
E2 = {(u1, u6), (u2, u4), (u3, u5)},
E3 = {(u1, u2), (u2, u4), (u3, u5), (u5, u6)},
E4 = {(u1, u6), (u2, u3), (u4, u5)},
E5 = {(u1, u2), (u2, u3), (u2, u4), (u5, u6)},
E6 = {(u1, u6), (u3, u5), (u4, u5)}
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Theorem 1. Every complete IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a IVIFG
and rλ−

1
(G) = 1

µ−
1i

, rλ+
1
(G) = 1

µ+
1i

and rλ−
2

= 1
µ−
2i

, rλ+
2

= 1
µ+
2i

, where The lowest

vertex membership is µ−
1i and The largest vertex membership is µ+

1i and The lowest
vertex membership is µ−

2i and The largest vertex membership is µ+
2i.

Proof. Let G̃ = (µ, λ) be a complete IVIFG. To prove that G̃ is a self centered
IVIFG. Therefore, we must demonstrate that each vertex is a central vertex. First
we claim that G̃ is a µ1i-self centred IVIFG. Then rλ−

1
(G) = 1

µ−
1i

and rλ+
1
(G) = 1

µ+
1i

,

where The lowest vertex membership is µ−
1i and The largest vertex membership is

µ+
1i. Fix a vertex ui in Q so that µ−

1i is the value of G̃ is lowest vertex membership

and µ+
1i is the value of G̃ is largest vertex membership.

Case1: Consider all the ui − uj paths P of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
1ij = min{µ−

1i, µ
−
1j}. Therefore, λ

−
1 − length of P = lλ−

1
(P ) = 1

µ−
1i

and λ+
1ij = min{µ+

1i, µ
+
1j}. Therefore, λ

+
1 − length of P = lλ+

1
(P ) = 1

µ+
1i

.

(ii) (ii) One of the edges of P has the λ−
1 − strength of µ−

1i if n > 1 and hence,

λ−
1 − length of a ui−uj path will exceed 1

µ−
1i

. So that, λ−
1 − length of P = lλ−

1
(P ) >

1
µ−
1i

.

Hence, δλ−
1
(ui, uj) = min(lλ−

1
(p)) =

1

µ−
1i

, ∀uj ∈ Q. (1)

Also one of the edges of P possesses the λ+
1 −strength of µ+

1i and hence, λ+
1 −length

of P will exceed 1
µ+
1i

. that is, λ+
1 − length of P = lλ+

1
(P ) > 1

µ+
1i

.

Hence,δλ+
1
(ui, uj) = min(lλ+

1
(p)) =

1

µ+
1i

, ∀uj ∈ Q. (2)

Case 2: Let uk ̸= ui ∈ Q. Consider all uk−uj paths X of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
1kj = min{µ−

1k, µ
−
1j} ≥ µ−

1i, since µ−
1i is the least. Hence,

λ−
1 − length (Q) = lλ−

1
(X) = 1

λ−
1 (uk,uj)

≤ 1
µ−
1i

.

Also λ+
1kj = min{µ+

1k, µ
+
1j} ≤ µ+

1i, since µ
+
1i is the largest. Hence, λ+

1 − length (Q) =

lλ+
1
(X) = 1

λ+
1 (uk,uj)

≥ 1
µ+
1i

.

(ii) If n = 2, then lλ−
1
(X) = 1

λ−
1 (uk,uk+1)

+ 1
λ−
1 (uk+1,uj)

≤ 2
µ−
1i

, Since, µ−
1i is the lowest.

Also lλ+
1
(X) = 1

λ+
1 (uk,uk+1)

+ 1
λ+
1 (uk+1,uj)

≥ 2
µ+
1i

, Since, µ+
1i is the largest.

(iii) If n > 2, then lλ−
1
(X) ≤ n

µ−
1i

, since µ−
1i is the lowest.

Also lλ+
1
(X) ≥ n

µ+
1i

, since µ+
1i is the largest.

Hence, δλ−
1
(uk, uj) = min(lλ−

1
(X)) ≤ 1

µ−
1i

, ∀uk, uj ∈ Q. and

δλ+
1
(uk, uj) = min(lλ+

1
(X)) ≥ 1

µ+
1i

, ∀uk, uj ∈ Q. (3)
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From equation 1,2 and 3, we have,
eλ−

1
(ui) = min(δλ−

1
(ui, uj)) =

1
µ−
1i

, ∀ui ∈ Q and

eλ+
1
(ui) = min(δλ+

1
(ui, uj)) =

1

µ+
1i

, ∀ui ∈ Q. (4)

Hence, G̃ is a λ−
1 and λ+

1 self centered IVIFG.
Now, rλ−

1
(G) = min(eλ−

1
(ui)) =

1
µ−
1i

, since by 4 rλ−
1
(G) = 1

µ−
1i

, where µ−
1i(ui) is the

lowest and rλ+
1
(G) = min(eλ+

1
(ui)) =

1
µ+
1i

, since by 4 rλ+
1
(G) = 1

µ+
1i

, where µ+
1i(ui)

is the largest.
Next, we claim that G̃ is a µ2i-self centered IVIFG. Then rλ−

2
(G) = 1

µ−
2i

and

rλ+
2
(G) = 1

µ+
2i

, where µ−
2i is the lowest and µ+

2i is the largest. Now fix a vertex

ui ∈ Q such that µ−
2i is lowest vertex membership value of G̃ and µ+

2i is largest

vertex membership value of G̃.
Case 1: Consider all the ui − uj paths P of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
2ij = max{µ−

2i, µ
−
2j} = µ−

2i. Therefore, λ−
2 − length of P =

lλ−
2
(P ) = 1

µ−
2i

and λ+
2ij = max{µ+

2i, µ
+
2j} = µ+

2i. Therefore, λ+
2 − length of P =

lλ+
2
(P ) = 1

µ+
2i

.

(ii) If n > 1, then one of the edges of P possesses the λ−
2 − strength of µ−

2i and

hence, λ−
2 − length of a ui − uj path will exceed 1

µ−
2i

. So that, λ−
2 − length of

P = lλ−
2
(P ) > 1

µ−
2i

.

Hence, δλ−
2
(ui, uj) = max(lλ−

2
(p)) =

1

µ−
2i

, ∀uj ∈ Q. (5)

Also one of the edges of P possesses the λ+
2 −strength of µ+

2i and hence, λ+
2 −length

of P will exceed 1
µ+
2i

. that is, λ+
2 − length of P = lλ+

2
(P ) > 1

µ+
2i

.

Hence, δλ+
2
(ui, uj) = max(lλ+

2
(p)) =

1

µ+
2i

, ∀uj ∈ Q. (6)

Case 2: Let uk ̸= ui ∈ Q. Consider all uk−uj paths X of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
2kj = max{µ−

2k, µ
−
2j} ≥ µ−

2i, since µ−
2i is the least. Hence,

λ−
2 − length (Q) = lλ−

2
(X) = 1

λ−
2 (uk,uj)

≤ 1
µ−
2i

.

Also λ+
2kj = max{µ+

2k, µ
+
2j} ≤ µ+

2i, since µ
+
2i is the greatest. Hence, λ+

2 −length (Q) =

lλ+
2
(X) = 1

λ+
2 (uk,uj)

≥ 1
µ+
2i

.

(ii) If n = 2, then lλ−
2
(X) = 1

λ−
2 (uk,uk+1)

+ 1
λ−
2 (uk+1,uj)

≤ 2
µ−
2i

, Since, µ−
2i is the least.

Also lλ+
2
(X) = 1

λ+
2 (uk,uk+1)

+ 1
λ+
2 (uk+1,uj)

≥ 2
µ+
2i

, Since, µ+
2i is the greatest.

(iii) If n > 2, then lλ−
2
(X) ≤ n

µ−
2i

, since µ−
2i is the least.
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Also lλ+
2
(X) ≥ n

µ+
2i

, since µ+
2i is the greatest.

Hence, δλ−
2
(uk, uj) = max(lλ−

2
(X)) ≤ 1

µ−
2i

, ∀uk, uj ∈ Q. and

δλ+
2
(uk, uj) = max(lλ+

2
(X)) ≥ 1

µ+
2i

, ∀uk, uj ∈ Q. (7)

From equation 5,6and 7, we have,
eλ−

2
(ui) = max(δλ−

2
(ui, uj)) =

1
µ−
2i

, ∀ui ∈ Q and

eλ+
2
(ui) = max(δλ+

2
(ui, uj)) =

1

µ+
2i

, ∀ui ∈ Q. (8)

Hence, G̃ is a λ−
2 and λ+

2 self centered IVIFG.
Now, rλ−

2
(G) = min(eλ−

2
(ui)) = 1

µ−
2i

, since by 7 rλ−
2
(G) = 1

µ−
2i

, where µ−
2i is the

least and rλ+
2
(G) = max(eλ+

2
(ui)) =

1
µ+
2i

, since by 8 rλ+
2
(G) = 1

µ+
2i

, where µ+
2i is the

largest.
From equation 4 and 8, every vertex of G̃ is a central vertex. Hence G̃ is a self
centered IVIFG. □

Corollary 1. Every complete IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a self
centered IVIFG and rλ1,λ2(G) = ([ 1

µ−
1i

, 1
µ+
1i

], [ 1
µ−
2i

, 1
µ+
2i

]) where, µ−
1i is the lowest vertex

membership and µ+
1i is the largest vertex membership. µ−

2i is the lowest vertex
membership and µ+

2i is the largest vertex membership.

Proof. By above theorem-1, every complete IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R)
is a self centered IVIFG.
rλ1,λ2

(G) = (rλ1
(G), rλ2

(G)) = ([min{rλ−
1 (G)},min{rλ+

1 (G)}], [min{rλ−
2 (G)},

min{rλ+
2 (G)}]). rλ1,λ2(G) = ([ 1

µ−
1i

, 1
µ+
1i

], [ 1
µ−
2i

, 1
µ+
2i

]), since µ−
1i is the lowest member-

ship value and µ+
1i is the largest membership value. µ−

2i is the lowest membership
value and µ+

2i is the largest membership value. □

Remark 1. Converse of the above theorem-1 is not true. By Example-6. Then G̃
is self centered IVIFG but not complete.

Lemma 1. An IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a self centered IVIFG if
and only if rλ−

1
(G) = dλ−

1
(G), rλ+

1
(G) = dλ+

1
(G) and rλ−

2
(G) = dλ−

2
(G), rλ+

2
(G) =

dλ+
2
(G).

Theorem 2. Let G̃ = (µ, λ) is a connected IVIFG. Then for at least one edge
max(λ−

1 (ui, uj)) = λ−
1 (ui, uj), max(λ+

1 (ui, uj)) = λ+
1 (ui, uj) and max(λ−

2 (ui, uj)) =

λ−
2 (ui, uj), max(λ+

2 (ui, uj)) = λ+
2 (ui, uj)

Proof. If G̃ = (µ, λ) be a connected IVIFG. Consider a vertex ui whose least mem-
bership value µ−

1i and greatest membership value is µ+
1i and least membership value
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µ−
2i and greatest membership value is µ+

2i.
Case 1: Let µ−

1i be the least value and µ+
1i(ui) be the greatest value and µ−

2i be the
least value and µ+

2i be the greatest value and in the vertex ui ∈ Q. Let ui, uj ∈ Q,

then ([λ−
1ij , λ

+
1ij ], [λ

−
2ij , λ

+
2ij ]) = ([µ−

1i, µ
+
1i], [µ

−
2i, µ

+
2i]) and ([max(λ−

1ij),max(λ+
1ij)],

[max(λ−
2ij),max(λ+

2ij)]) = ([µ−
1i, µ

+
1i], [µ

−
2i, µ

+
2i]). The strength of all the edges which

are incident on the vertex ui is ([µ
−
1i, µ

+
1i], [µ

−
2i, µ

+
2i]). Since G̃ is a connected IVIFG.

Case 2: Let µ−
1k be the least value and µ+

1i be the greatest value and µ−
2k be

the least value and µ+
2i be the greatest value in the vertex ui, uk ∈ Q. Then

([λ−
1ik, λ

+
1ik], [λ

−
2ik, λ

+
2ik]) = ([µ−

1k, µ
+
1i], [µ

−
2k, µ

+
2i]). Since, it is a connected IVIFG,

there will be an edge between ui and uk, max(λ−
1ik) = µ−

1k, max(λ+
1ik) = µ+

1i and

max(λ−
2ik) = µ−

2k, max(λ+
2ik) = µ+

2i. □

Theorem 3. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R) with

paths covers P1 and P2 of G̃. Then the necessary and sufficient condition for an
IVIFG to be self centered IVIFG is δλ−

1ij
= rλ−

1
(G), ∀ (ui, uj) ∈ P1, δλ+

1ij
=

dλ+
1
(G), ∀ (ui, uj) ∈ P2, and

δλ−
2ij

= rλ−
2
(G), ∀ (ui, uj) ∈ P1, δλ+

2ij
= dλ+

2
(G), ∀ (ui, uj) ∈ P2. (9)

Proof. Necessary Condition: We now assume that G̃ = (µ, λ) is a self cen-
tered IVIFG and we have to prove that equation 9 holds. Suppose equation 9
does not holds. then we have, δλ−

1
(ui, uj) ̸= rλ−

1
(G), for some (ui, uj) ∈ P1 and

δλ+
1
(ui, uj) ̸= dλ+

1
(G), for some (ui, uj) ∈ P2 and δλ−

2
(ui, uj) ̸= rλ−

2
(G), for some

(ui, uj) ∈ P1 and δλ+
2
(ui, uj) ̸= dλ+

2
(G), for some (ui, uj) ∈ P2. By using Lemma-1,

the above inequality becomes δλ−
1
(ui, uj) ̸= rλ−

1
(G), for some (ui, uj) ∈ P1 and

δλ+
1
(ui, uj) ̸= dλ+

1
(G), for some (ui, uj) ∈ P2 and δλ−

2
(ui, uj) ̸= rλ−

2
(G), for some

(ui, uj) ∈ P1 and δλ+
2
(ui, uj) ̸= dλ+

2
(G), for some (ui, uj) ∈ P2. Then eλ−

1
(ui) ̸=

rλ−
1
(G), eλ+

1
(ui) ̸= rλ+

1
(G) and eλ−

2
(ui) ̸= rλ−

2
(G), eλ+

2
(ui) ̸= rλ+

2
(G) for some

ui ∈ Q, which implies G̃ is not self centered IVIFG, which is contradiction. Hence,
δλ−

1
(ui, uj) = rλ−

1
(G), ∀ (ui, uj) ∈ P1 and δλ+

1
(ui, uj) = dλ+

1
(G), ∀ (ui, uj) ∈ P2

and δλ−
2
(ui, uj) = rλ−

2
(G), ∀ (ui, uj) ∈ P1 and δλ+

2
(ui, uj) = dλ+

2
(G), ∀ (ui, uj) ∈

P2.
Sufficient Condition: We now assume that equation 9 holds and we have to
prove that G̃ is a self centered IVIFG. If equation 9 holds, then we’ve eλ−

1
(ui) =

δλ−
1
(ui, uj), for all (ui, uj) ∈ P1, eλ+

1
(ui) = δλ+

1
(ui, uj), for all (ui, uj) ∈ P2

and eλ−
2
(ui) = δλ−

2
(ui, uj), for all (ui, uj) ∈ P1, eλ+

2
(ui) = δλ+

2
(ui, uj), for all

(ui, uj) ∈ P2. Which implies eλ−
1
(ui) = rλ−

1
(G), eλ+

1
(ui) = rλ+

1
(G) and eλ−

2
(ui) =

rλ−
2
(G), eλ+

2
(ui) = rλ+

2
(G) for all ui ∈ Q. Hence, G̃ is not self centered IVIFG. □
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Corollary 2. If G̃ = (µ, λ) is a connected IVIFG of graph G∗ = (Q,R) with an

edge cover E of G̃. Then the necessary and sufficient condition for an IVIFG to
be self centered IVIFG is δλ−

1
(ui, uj) = rλ−

1
(G), ∀ (ui, uj) ∈ E1, δλ+

1
(ui, uj) =

dλ+
1
(G), ∀ (ui, uj) ∈ E2 and δλ−

2
(ui, uj) = rλ−

2
(G), ∀ (ui, uj) ∈ E1,

δλ+
2
(ui, uj) = dλ+

2
(G), ∀ (ui, uj) ∈ E2. (10)

Theorem 4. Embedding Theorem: Let H̃ = (µ
′
, λ

′
) is a connected self centered

IVIFG. Then there exist a connected IVIFG G̃ such that < C(G̃) > is isomorphic to

H̃. Also dλ−
1
(G) = 2rλ−

1
(G), dλ+

1
(G) = 2rλ+

1
(G) and dλ−

2
(G) = 2rλ−

2
(G), dλ+

2
(G) =

2rλ+
2
(G).

Proof. Given that H̃ = (µ
′
, λ

′
) is a connected self centered IVIFG. Let dλ−

1
(H) =

p1, dλ+
1
(H) = q1 and dλ−

2
(H) = p2, dλ+

2
(H) = q2. Then construct G̃ = (µ, λ) from

H̃ as follows:
Take two vertices ui, uj ∈ Q with µ−

1 (ui) = µ−
1 (uj) =

1
p1
, µ+

1 (ui) = µ+
1 (uj) =

1
2q1

and µ−
2 (ui) = µ−

2 (uj) = 1
p2
, µ+

2 (ui) = µ+
2 (uj) = 1

2q2
and join all the vertices of

H̃ to both ui and uj with λ−
1ik = λ−

1jk = 1
p1
, λ+

1ik = λ+
1jk = 1

2q1
and λ−

2ik =

λ−
2jk = 1

p2
, λ+

2ik = λ+
2jk = 1

2q2
for all uk ∈ Q

′
. Put µ−

1i = (µ−
1i)

′
, µ+

1i = (µ+
1i)

′
and

µ−
2i = (µ−

2i)
′
, µ+

2i = (µ+
2i)

′
for all vertices in H̃. and λ−

1ij = (λ−
1ij)

′
, λ+

1ij = (λ+
1ij)

′

for all edges in H̃ and λ−
2ij = (λ−

2ij)
′
, λ+

2ij = (λ+
2ij)

′
for all edges in H̃.

Claim: G̃ is an IVIFG. First note that µ−
1i ≤ µ−

1k, µ−
2i ≤ µ−

2k for all uk ∈ H̃.

If possible, let µ−
1i > µ−

1k and µ−
2i > µ−

2k for at least one vertex uk ∈ H̃. Then
1
p1

> µ−
1k,

1
p2

> µ−
2k, that is p1 < 1

µ−
1k

≤ 1
λ−
1kl

, p2 < 1
µ−
2k

≤ 1
λ−
2kl

, where the last

inequality holds for every ul ∈ Q
′
, since H̃ is an IVIFG. That is 1

λ−
1kl

> p1,
1

λ−
2kl

> p2

for all uk ∈ H̃ which contradicts that dλ−
1
(H̃) = p1, dλ−

2
(H̃) = p2. Therefore

µ−
1i ≤ µ−

1k, µ
−
2i ≤ µ−

2k for all uk ∈ Q
′
and λ−

1ik ≤ min{µ−
1i, µ

−
1k} = 1

p1
, λ−

2ik ≤
max{µ−

2i, µ
−
2k} = 1

p2
, similarly, λ−

1jk ≤ min{µ−
1j , µ

−
1k} = 1

p1
, λ−

2jk ≤ max{µ−
2j , µ

−
2k} =

1
p2

for all uk ∈ Q
′
. Note that µ+

1i ≤ µ+
1k, µ+

1j ≤ µ−
1k and µ+

2i ≤ µ+
2k, µ+

2j ≤ µ−
2k for

all uk ∈ Q
′
, since dλ+

1
(H) = q1 and dλ+

2
(H) = q2. Therefore λ

+
1ik ≤ min{µ+

1i, µ
+
1k} =

1
2q1

, λ+
2ik ≤ max{µ+

2i, µ
+
2k} = 1

2q2
, similarly, λ+

1jk ≤ min{µ+
1j , µ

+
1k} = 1

2q1
and λ+

2jk ≤
max{µ+

2j , µ
+
2k} = 1

2q2
. Hence, G̃ is an IVIFG. Also, eλ−

1
(uk) = p1, eλ−

1
(uk) = p2 for

all uk ∈ Q
′
and eλ−

1
(ui) = eλ−

1
(uj) =

1
λ−
1ik

+ 1
λ−
1kl

= 2p1, rλ−
1
(G) = p1, dλ−

1
(G) = 2p1

and eλ−
2
(ui) = eλ−

2
(uj) =

1
λ−
2ik

+ 1
λ−
2kl

= 2p2, rλ−
2
(G) = p2, dλ−

2
(G) = 2p2. Next,

eλ+
1
(uk) = q1, eλ+

2
(uk) = q2 for all uk ∈ Q

′
and eλ+

1
(ui) = eλ+

1
(uj) = 1

λ+
1lk

=

2q1, eλ+
2
(ui) = eλ+

2
(uj) = 1

λ+
2lk

= 2q2 for all uk ∈ Q
′
. Therefore, rλ+

1
(G) =
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q1, dλ+
1
(G) = 2q1 and rλ+

2
(G) = q2, dλ+

2
(G) = 2q2. Hence, < C(G̃) > is isomorphic

to H̃. □

Theorem 5. An IVIFG G̃ = (µ, λ) is a self centered if and only if δλ−
1
(ui, uj) ≤

rλ−
1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G) and δλ−

2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for

all ui, uj ∈ Q.

Proof. We assume that G̃ = (µ, λ) is a self centered IVIFG. That is, eλ−
1
(ui) =

eλ−
1
(uj), eλ+

1
(ui) = eλ+

1
(uj) and eλ−

2
(ui) = eλ−

2
(uj), eλ+

2
(ui) = eλ+

2
(uj) for all ui, uj ∈

Q, rλ−
1
(G) = eλ−

1
(ui), rλ+

1
(G) = eλ+

1
(ui) and rλ−

2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui)

for all ui ∈ Q. Now we wish to show that δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥

rλ+
1
(G) and δλ−

2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for all ui, uj ∈ Q. By

the definition of eccentricity, we obtain, δλ−
1
(ui, uj) ≤ eλ−

1
(ui), δλ+

1
(ui, uj) ≥

eλ+
1
(ui) and δλ−

2
(ui, uj) ≤ eλ−

2
(ui), δλ+

2
(ui, uj) ≥ eλ+

2
(ui) for all ui, vi ∈ Q. This

is possible only when eλ−
1
(ui) = eλ−

1
(uj), eλ+

1
(ui) = eλ+

1
(uj) and eλ−

2
(ui) =

eλ−
2
(uj), eλ+

2
(ui) = eλ+

2
(uj) for all ui, uj ∈ Q. Since, G̃ is a self centered IV-

IFG, the above inequality becomes δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G)

and δλ−
2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G).

Conversely, we now assume that δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G) and

δλ−
2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for all ui, uj ∈ Q. Then we have to

prove that G̃ is a self centered IVIFG. Suppose that G̃ is not self centered IV-
IFG. Then rλ−

1
(G) ̸= eλ−

1
(ui), rλ+

1
(G) ̸= eλ+

1
(ui) and rλ−

2
(G) ̸= eλ−

2
(ui), rλ+

2
(G) ̸=

eλ+
2
(ui) for some ui ∈ Q. Let us assume that eλ−

1
(ui), eλ+

1
(ui) and eλ−

2
(ui), eλ+

2
(ui)

is the least value among all other eccentricity. That is, rλ−
1
(G) = eλ−

1
(ui), rλ+

1
(G) =

eλ+
1
(ui) and

rλ−
2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui). (11)

where eλ−
1
(ui) < eλ−

1
(uj), eλ+

1
(ui) < eλ+

1
(uj) and eλ−

2
(ui) < eλ−

2
(uj), eλ+

2
(ui) <

eλ+
2
(uj) for some ui, uj ∈ Q and δλ−

1
(ui, uj) = eλ−

1
(uj) > eλ−

1
(ui), δλ+

1
(ui, uj) =

eλ+
1
(uj) > eλ+

1
(ui) and δλ−

2
(ui, uj) = eλ−

2
(uj) > eλ−

2
(ui),,

δλ+
2
(ui, uj) = eλ+

2
(uj) > eλ+

2
(ui) for some ui, uj ∈ Q. (12)

Hence, from equation 11 and 12, we have, δλ−
1
(ui, uj) > rλ−

1
(G), δλ+

1
(ui, uj) >

rλ+
1
(G), and δλ−

2
(ui, uj) > rλ−

2
(G), δλ+

2
(ui, uj) > rλ+

2
(G), for some ui, uj ∈ Q,

which is a contradiction to the fact that δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G)

and δλ−
2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for all ui, uj ∈ Q. Hence, G̃ =

(µ, λ) is a self centered IVIFG. □
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4. Application of IVIFG

Application in this paper are applied in detecting instability in human life and in
all fields. The findings of this study can be used to prevent crime and foster peace in
our nation. Using the security forces of our nation, we will defend the areas where
the majority of unlawful operations occur. In order to stop illicit operations in our
country, we will first deploy security forces there. Through the use of uncertainty
values, we will determine the extent of unlawful activity in the cities of our nation
and adjust the deployment of our security troops accordingly. Think of Q as the
country and u1, u2, u3, u4 as the cities within Q. We shall examine this study using
IVIFG.We define the most terrible terrorist crimes as µ−

1 , and let’s define the special
forces protecting the country from terrorist threats as µ+

1 . Other criminal activity
will be considered as µ−

2 by those involved. (Examples include the transfer of ill-
gotten gains, the smuggling of precious metals, the smuggling of endangered species,
and the illegal carrying of weapons). Let’s treat troops who guard against other
criminal actions as µ+

2 . Let’s have a look at the vertex set Q = {u1, u2, u3, u4} in

Table 2.

Cities [terrorist acts, protection] [other illegal acts, other protection]
u1 [0.3,0.5] [0.2,0.4]
u2 [0.4,0.6] [0.3,0.4]
u3 [0.1,0.3] [0.3,0.6]
u4 [0.3,0.4] [0.4,0.5]

IVIFG. Any two city-connected highway that borders G̃ is defined by R as G∗ =
(Q,R). Let us consider the edge set R = {u1u2, u2u3, u2u4, u3c4, c4c5} in G∗ as
shown in Figure-1. IVIFG calculates the value of the security forces, the value
of the unlawful activities, and the value of the security forces from terrorist acts
that take place on highways connecting two cities. used in the definition -9. We

Table 3.

highway [terrorist acts, protection] [other illegal acts, other protection]
u1u2 [0.3,0.5] [0.3,0.4]
u2u3 [0.1,0.3] [0.3,0.6]
u2u4 [0.3,0.4] [0.4,0.5]
u3u4 [0.1,0.3] [0.4,0.6]
u1u4 [0.3,0.4] [0.4,0.5]

can estimate the cost of terrorist attacks spreading to other cities by using the
symbols dλ−

1ij
and dλ+

1ij
, respectively. We can also estimate the cost of security

forces’ protection by using the symbols dλ−
2ij

and dλ+
2ij

. In the Example-1, we take
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into consideration that u1, u2, u3, u4 are cities in Q and R is any two-city connected
highway that is located on the boundaries of G̃. Let us consider the edge set
R = {u1u2, u2u3, u2u4, u3u4, u1u4} in G∗ as shown in Figure-1 in Example-1. We

Table 4.

One city relation to distance between others city ([dλ−
1ij

, dλ+
1ij

], [dλ−
2ij

, dλ+
2ij

])

u1u4 ([0.3,0.4],[0.4,0.5])
u1u2 ([0.3,0.5],[0.3,0.4])
u1u3 ([0.4,0.7],[0.6,1.0])
u2u3 ([0.1,0.3],[0.3,0.6])
u2u4 ([0.2,0.4],[0.4,0.5])
u3u4 ([0.1,0.3],[0.4,0.6])

can estimate the impacts and protections a city has on others by comparing it to
those cities. From the table-4,5 we find that dλ1,λ2(G) = ([0.4, 0.7], [0.6, 1.0]) has

Table 5.

eλ1,λ2
(ui) maximum value of impacts and protection

eλ1,λ2(u1) ([0.4,0.7],[0.6,1.0])
eλ1,λ2

(u2) ([0.3,0.5],[0.4,0.6])
eλ1,λ2

(u3) ([0.4,0.7],[0.6,1.0])
eλ1,λ2(u4) ([0.3,0.4],[0.4,0.6])

the highest number of vulnerabilities and defenses and from the table-4,5 above we
find that rλ1,λ2

(G) = ([0.3, 0.4], [0.4, 0.6]) has the lowest number of vulnerabilities
and defenses. The purpose of these applications is to strengthen our country’s
defenses to the extent of it’s vulnerabilities.

5. Conclusion

The researcher has developed the idea of an IVIFG in this study article. It has
an impact on a lot of different industries. It is common for some features of a
graph-theoretical problem to be unclear or ambiguous. This article analyses the
concepts of strength, length, distance, eccentricity, radius, and diameter as well as
self-centerednes and centeredness and introduces the idea of an IVIFG. We also
investigate into some of the properties of a self-centered IVIFG with illustration.
Finally, we investigated into an application in IVIFG.
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Abstract. The structures of symmetric connectedness and dually, antisym-

metric connectedness were described and studied before, especially in terms
of graph theory as the corresponding counterparts of the connectedness of a

graph and the connectedness of its complementary graph. By taking into con-

sideration the deficiencies of topological density in the context of symmetric
and antisymmetric connectedness, two special kinds of density in the theory

of non-metric T0-quasi-metrics were introduced in the previous studies under

the names symmetric density and antisymmetric density. In this paper, some
crucial and useful properties of these two types of density are investigated with

the help of the major results and (counter)examples peculiar to the asymmetric

environment. Besides these, many further observations about the structures
of symmetric and antisymmetric-density are dealt with, especially in the sense

of their combinations such as products and unions through various theorems

in the context of T0-quasi-metrics. Also, we examine the question of under
what kind of quasi-metric mapping these structures will be preserved.

1. Introduction

In [11], symmetrically connected and dually, antisymmetrically connected T0-
quasi-metric spaces were described and studied in detail. These theories were espe-
cially discussed in the sense of the notions peculiar to graph theory [1,4,10] as the
suitable counterparts of the connectedness for a graph and complementary graph
of it, respectively. In particular, it was shown that there were natural relationships
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between the theory of symmetrically connected - antisymmetrically connected T0-
quasi-metric spaces and the theory of connected graphs - connected complementary
graphs.

Following these theories, some new types of density specific to T0-quasi-metric
subspaces in the asymmetric environment due to the apparent inadequacy of topo-
logical density in the transfer of properties symmetric and antisymmetric connected-
ness to the subspaces or superspaces are described in [9] under the names symmetric
density and antisymmetric density.

As for the subject of this study, we observed some combinations of symmetrically
/ antisymmetrically-dense subspaces such as products, unions and intersections in
the context of T0-quasi-metrics. With this viewpoint, it is also natural to inquire
whether the images of symmetrically / antisymmetrically-dense subspaces under an
isometric isomorphism have the same property or not. Hereby, we will also obtain
some crucial and useful results within this framework.

In the light of all these considerations, the content of paper is as follows:

Some necessary background material for the remaining of paper is presented in
Section 2. After recalling the preliminary information, as one of the purposes of
the paper, in Section 3 we discussed some properties and new (counter)examples of
the symmetric density theory in the context of asymmetric topology. In addition,
we presented some observations about the products, unions, intersections... of the
symmetrically-dense T0-quasi-metric subspaces and their preservation under the
specific mappings peculiar to quasi-metrics.

Following these, in Section 4 some future properties and asymmetric aspects of
antisymmetrically-dense subspaces are investigated with the help of many useful
(counter)examples. The remainder of this section is devoted to discussing preser-
vation of antisymmetric density under the specific mappings in the context of
quasi-metrics as well as some combinations such as unions, products,... of the
antisymmetrically-dense T0-quasi-metric subspaces.

Consequently, Section 5 as the last part of the paper gives a conclusion about
the whole of the work.

2. Background

This section will present some background material on T0-quasi-metrics and par-
ticularly, it consists of the required information related to the theories of symmet-
rically connected and antisymmetrically connected spaces as well as antisymmetric
spaces which are a kind of opposite to metric spaces.

All preliminary information presented in this section is taken from the references
[3, 5–8,12].

T0-quasi-metrics:
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Definition 1. Let X be a set and d : X × X → [0,∞) be a function. Then d is
called a T0-quasi-metric on X if

(a) d(x, x) = 0
(b) d(x, y) = 0 = d(y, x) ⇒ x = y
(c) d(x, z) ≤ d(x, y) + d(y, z)

whenever x, y, z ∈ X. Thus, (X, d) is called T0-quasi-metric space.

Here the notation τds will be used to denote the topology induced by the sym-
metrization metric ds = d ∨ d−1 where d−1(x, y) = d(y, x).

Example 1. On R, take
u(x, y) = max{x− y, 0}

whenever x, y ∈ R.
It is easy to prove that u satisfies the conditions of Definition 1, and u is called

the standard T0-quasi-metric on R.

Now, let us recall some important notions and (counter)examples related to the
theories constructed in [11]:

Symmetrically connected spaces:

Definition 2. Let (X, d) be a T0-quasi-metric space.

i) A pair (x, y) ∈ X ×X is called symmetric pair if d(x, y) = d(y, x).
ii) A finite sequence of points in X, starting at x and ending with y, is called

a (finite) symmetric path Px,y = (x = x0, x1, . . . , xn−1, xn = y) (where
n ∈ N) from x to y provided that all the pairs (xi, xi+1) are symmetric
where i ∈ {0, . . . , n− 1}.

For a T0-quasi-metric space (X, d), we take

Zd = {(x, y) ∈ X ×X : d(x, y) = d(y, x)}
as the set of symmetric pairs in (X, d). Note that this relation is reflexive and
symmetric.

Incidentally, note that

ds(x, y) = d(x, y) = d−1(x, y)

for (x, y) ∈ Zd.

Also,
Zd(x) = {y ∈ X | (x, y) ∈ Zd}

is called symmetry set of x ∈ X.

Definition 3. If (X, d) is a T0-quasi-metric space and x, y ∈ X then x ∈ X
is symmetrically connected to y ∈ X whenever there is a symmetric path Px,y,
starting at the point x and ending at the point y.
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Clearly, “symmetric connectedness” is an equivalence relation on X, by defini-
tion.

Definition 4. The equivalence class of a point x ∈ X with respect to the symmetric
connectedness relation is called the symmetry component of x.

More clearly, if Cd denotes the symmetric connectedness relation then the sym-
metry component of x ∈ X is

Cd(x) = {y ∈ X : there is a symmetric path from x to y}.

We are now in a position to recall the following crucial notion:

Definition 5. A T0-quasi-metric space (X, d) such that Cd(x) = X for all x ∈ X,
is called symmetrically connected.

Therefore, (X, d) is symmetrically connected if and only if for all x, y ∈ X, x
and y are symmetrically connected by Definition 3, obviously.

At this stage, we will turn our attention to the dual counterparts of some notions
described above.

Antisymmetrically connected spaces:

Definition 6. Let (X, d) be a T0-quasi-metric space, and x, y ∈ X. Then

i) (x, y) ∈ X ×X is called antisymmetric pair if d(x, y) ̸= d(y, x)
ii) A finite sequence of points in X, starting at x and ending with y, is called

a (finite) antisymmetric path Px,y = (x = x0, x1, . . . , xn−1, xn = y) (where
n ∈ N) from x to y provided that all the pairs (xi, xi+1) are antisymmetric
where i ∈ {0, . . . , n− 1}.

Definition 7. In a T0-quasi-metric space (X, d), two points x, y ∈ X are called an-
tisymmetrically connected if there is an antisymmetric path Px,y = (x = x0, x1, . . . , xn−1, xn =
y), or x = y.

Now, if we consider the relation

Td := {(x, y) ∈ X ×X : x and y are antisymmetrically connected in (X, d)}
then Td describes an equivalence relation on X, trivially.

Let us recall some other notions from [11]:

Definition 8. i) The equivalence class of a point x ∈ X with respect to Td

is called the antisymmetry component and it is denoted by

Td(x) = {y ∈ X : there is an antisymmetric path from x to y}.
ii) If Td(x) = X for each x ∈ X, then the space (X, d) is called antisymmet-

rically connected.

Hence, (X, d) is antisymmetrically connected if and only if for all x, y ∈ X, x
and y are antisymmetrically connected by Definition 7.
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Example 2. The T0-quasi-metric space (R, u) given in Example 1 is antisymmet-
rically connected but not symmetrically connected.

Antisymmetric spaces:

The following notion is described in [11] as opposite to that of “metric” :

Definition 9. [11] A T0-quasi-metric space (X, d) is called antisymmetric if Zd =
{(x, x) : x ∈ X} = ∆X , that is, if d(x, y) = d(y, x) then x = y, for all x, y ∈ X.

Symmetric-Antisymmetric points:

Definition 10. Let (X, d) be a T0-quasi-metric space and x ∈ X.

i) x is called symmetric point if d(x, y) = d(y, x) for each y ∈ X.
ii) x is called antisymmetric point if d(x, y) ̸= d(y, x) for each y ∈ X \ {x}.

According to the above descriptions, the next statements will be obvious:

Proposition 1. a) A T0-quasi-metric space which has a symmetric point will
be symmetrically connected and not an antisymmetric space.

b) A T0-quasi-metric space which has an antisymmetric point will be anti-
symmetrically connected and not a metric space.

3. Some Further Properties and Examples of Symmetric Density

Firstly, let us recall the following notion from [9].

Definition 11. Let (X, d) be a T0-quasi-metric space and A ⊆ X. If for x ∈ X \A,
there exists ax ∈ A such that d(x, ax) = d(ax, x) then A is called symmetrically-
dense in (X, d).

Example 3. Let us define a T0-quasi-metric p on the set X = {1, 2, 3} via the
matrix

P =

 0 9 8
9 0 1
10 1 0

 .

That is, P = (pij) where p(i, j) = pij for i, j ∈ X. It is easy to prove that p is a
T0-quasi-metric on X. Specifically, now we will check the triangle inequality:

p(1, 2) = 9 ≤ 8 + 1 = p(1, 3) + p(3, 2), p(3, 1) = 10 ≤ 1 + 9 = p(3, 2) + p(2, 1)
p(1, 3) = 8 ≤ 9 + 1 = p(1, 2) + p(2, 3), p(2, 1) = 9 ≤ 1 + 10 = p(2, 3) + p(3, 1)
p(2, 3) = 1 ≤ 9 + 8 = p(2, 1) + p(1, 3), p(3, 2) = 1 ≤ 10 + 9 = p(3, 1) + p(1, 2).

Thus p satisfies the triangle inequality.
Here also note that p(1, 2) = p(2, 1). Therefore, the subset A = {2, 3} of X is

symmetrically-dense in X. In addition, the subset B = {1} is not symmetrically-
dense since p(3, 1) ̸= p(1, 3).
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Proposition 2. Let (X, d) be a T0-quasi-metric space with at least two-elements
and let x ∈ X be an antisymmetric point. Thus, the subsets {x} and X \ {x} are
not symmetrically-dense in X.

Proof. By Definition 10 ii), we have d(x, y) ̸= d(y, x) whenever y ∈ X \ {x}. Then,
{x} is not symmetrically-dense in X. Similarly, y = x whenever y ∈ X \ (X \ {x})
and since x is antisymmetric point, d(x, a) ̸= d(a, x) for a ∈ X \ {x}. That is,
X \ {x} is not symmetrically-dense. □

Example 4. Let Y = {0} ∪ { 1
2n : n ∈ N} and define f : Y → [0,∞) as follows:

f(x, y) =

 |x− y| ; x < y and (x, y) ̸= ( 1
2n+1 ,

1
2n ), ∀n ∈ N

2|x− y| ; otherwise

for x, y ∈ Y .

The fact that f is a T0-quasi-metric on Y is proved in [5].

Also, because of the inequality f(a, 0) ̸= f(0, a) for each a ∈ Y \{0} the point 0 is
antisymmetric point. Thus (Y, f) is antisymmetrically connected by Proposition 1.
Additionally, the space (Y, f) has symmetrically-dense subsets Tf (

1
2 ), Tf (

1
4 )... since

they are antisymmetry components.

At this stage, we can compute Cf (
1
2 ): For each n ∈ N, we have that 1

2n ∈ Cf (
1
2 ),

since ( 1
2n , . . . ,

1
2 ) is a symmetric path in (Y, f) from 1

2n to 1
2 . But 0 /∈ Cf (

1
2 ), since

f(0, 1
2k
) = 1

2k
, f( 1

2k
, 0) = 1

2(k+1) , for all k ∈ N. Thus, Cf (
1
2 ) = Y \ {0} = V ,

and so (Y, f) is not symmetrically connected. A similar argument shows that in V ,
CfV (x) = V for every x ∈ V , and so (V, fV ) will be symmetrically connected.

Moreover, the subsets {0} and V are not symmetrically-dense from Proposition 2.

Incidentally, we can recall from [9] the following characterization of the metrics
via symmetric density, in the context of T0-quasi-metrics:

Proposition 3. Each nonempty subset of a T0-quasi-metric space (X, d) is sym-
metrically-dense in X if and only if d is metric.

As a result of Proposition 3 the next corollary is obvious.

Corollary 1. Let (X, d) be a T0-quasi-metric space. If each nonempty subset of
(X, d) is symmetrically-dense in X then (X, d) is symmetrically connected.

The converse of Corollary 1 may not be true by virtue of the following space.

Example 5. Consider the Star Space (X, d) constructed in [5, Example 2.12], as
follows:

On X = [0,∞), take

d (x, y) =

{
x− y ; x ≥ y
x+ y ; x < y



VARIOUS RESULTS ON SOME ASYMMETRIC TYPES OF DENSITY 1179

for each x, y ∈ X. Trivially, 0 is symmetric point since d(x, 0) = d(0, x) for
all x ∈ X, according to Definition 10. Thus, (X, d) is symmetrically connected
by Proposition 1. Now consider the subset B = {1} of X. Then it is easy to
verify that B is not symmetrically-dense. Indeed, take 2 ∈ X \ B, and note that
d(1, 2) = 3 ̸= 1 = d(2, 1).

Incidentally, the fact that any subspace of an antisymmetric T0-quasi-metric
space is antisymmetric is trivial by Definition 9. Nevertheless, a T0-quasi-metric
space (X, d) may not be antisymmetric even though (X, d) has a symmetrically-
dense and antisymmetric subspace, as the following example shows:

Example 6. It can be easily shown that Star Space (X, d) given in Example 5 is
not antisymmetric by the fact that d(1, 0) = d(0, 1). It is also easy to see X \ {0}
is symmetrically dense since 0 is a symmetric point. Moreover, X \ {0} is an
antisymmetric subspace since x = y whenever d(x, y) = d(y, x) for all x, y ∈ (0,∞).

We are now in a position to recall a T0-quasi-metric function described on the
product of two T0-quasi-metric spaces:

Remark 1. Let (X, d) and (Y, q) be T0-quasi-metric spaces. The function defined
by

D((x, y), (a, b)) = d(x, a) ∨ q(y, b)

for each (x, y), (a, b) ∈ X × Y gives a T0-quasi-metric on the product set X × Y .

The fact that D is a T0-quasi-metric can be verified since d and q are T0-quasi-
metrics.

Proposition 4. Let (X, d), (Y, q) be T0-quasi-metric spaces and A ⊆ X, B ⊆ Y .
If A is symmetrically-dense in X and B is symmetrically- dense in Y then A×B
is symmetrically-dense in X × Y .

Proof. Take (x, y) ∈ (X × Y ) \ (A × B). Since A is symmetrically-dense in (X, d)
and B is symmetrically-dense in (Y, q), respectively there exist a ∈ A and b ∈ B
such that d(x, a) = d(a, x) and q(y, b) = q(b, y). Now by the definition of product
T0-quasi-metric D on X × Y , we have

D((x, y), (a, b)) = d(x, a) ∨ q(y, b) = d(a, x) ∨ q(b, y) = D((a, b), (x, y))

that is A×B is symmetrically-dense in X × Y . □

The following result will be trivial via induction by Proposition 4.

Corollary 2. For a T0-quasi-metric space (X, d), the finite product of symmetrically-
dense subsets of X is symmetrically-dense.

Even though Proposition 4, we have the following example which states that if
A is symmetrically-dense and B is not symmetrically-dense then A×B may not be
symmetrically-dense.
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Example 7. Let us consider Star Space (X, d) from Example 5. Clearly the
set A = {0} is symmetrically-dense, and the set B = {1} is not symmetrically-
dense in (X, d). If we take the product T0-quasi-metric D given in Remark 1 as
D((x, y), (a, b)) = d(x, a) ∨ d(y, b) on X × X then the product set A × B is not
symmetrically-dense since D((3, 5), (0, 1)) ̸= D((0, 1), (3, 5)) for (3, 5) ∈ (X ×X) \
(A×B) and (0, 1) ∈ A×B.

At this stage, let us turn our attention to the following natural question:

Under which mappings is the symmetric density property preserved in the context
of T0-quasi-metric spaces ?

Proposition 5. Let (X, d), (Y, e) be T0-quasi-metric spaces and f : X → Y an
isometric isomorphism. In this case, A ⊆ X is symmetrically-dense in X if and
only if f(A) is symmetrically-dense in Y .

Proof. Take y ∈ Y \ f(A). So we have x ∈ X \ A such that f(x) = y since f is
onto. By considering the symmetric density of A in X, there exists a ∈ A such that
d(x, a) = d(a, x). Clearly, f(a) ∈ f(A). Also, we have e(f(x), f(a)) = d(x, a) =
d(a, x) = e(f(a), f(x)) since f is an isometry. Thus, f(A) is symmetrically-dense
in Y .

Conversely, if a ∈ X \ A then f(a) /∈ f(A) as f is one-to-one. In this case,
there exists b ∈ f(A) satisfying the equality e(b, f(a)) = e(f(a), b) since f(A) is
symmetrically-dense. Thus, there exists z ∈ A such that f(z) = b via the fact
that f is onto. Now, by considering the isometry property of f the expression
d(z, a) = d(a, z) is obtained. This shows that A is symmetrically-dense. □

Proposition 6. Let (X, d) be a T0-quasi-metric space. If A is symmetrically dense
in X and B ⊆ X then A ∪B is symmetrically-dense in X.

Proof. If x ∈ X \ (A ∪B) then there exists a ∈ A such that d(x, a) = d(a, x) since
A is symmetrically-dense in X. Thus, A ∪B is also symmetrically-dense in X due
to A ⊆ A ∪B. □

As the consequence of Proposition 6 the following fact will be trivial.

Corollary 3. The union of all subsets of a T0-quasi-metric space which has at least
one symmetrically-dense subset is symmetrically-dense.

Despite the above fact, we have:

Remark 2. The intersection of two symmetrically-dense subsets of a T0-quasi-
metric space may not be symmetrically-dense.

Example 8. On the set X = { 1
2 , 1, 2, 3} consider the Sorgenfrey (bounded) T0-

quasi-metric b : R× R −→ [0,∞) as

b(x, y) =

{
min{1, x− y} ; x ≥ y
1 ; x < y

.



VARIOUS RESULTS ON SOME ASYMMETRIC TYPES OF DENSITY 1181

Now let us take A = { 1
2 , 1} ⊆ X. In this case, since b(x, 1) = b(1, x) for each

x ∈ X \ A the set A is symmetrically-dense in X. Similarly, b(x, 3) = b(3, x) for
each x ∈ X \B where B = { 1

2 , 3} ⊆ X, and so the set B is symmetrically-dense in

X. But the intersection set A ∩ B = { 1
2} is not symmetrically-dense in X because

of the facts that b(1, 1
2 ) ̸= b( 12 , 1) and 1 ∈ X \ (A ∩B).

4. Some Further Properties and Examples of Antisymmetric Density

Definition 12. [9] Let (X, d) be a T0-quasi-metric space and A ⊆ X. If for
x ∈ X \ A, there exists ax ∈ A such that d(x, ax) ̸= d(ax, x) then A is called
antisymmetrically-dense in (X, d).

Example 9. Consider a T0-quasi-metric on the set Y = {1, 2, 3, 4} by the matrix

Q =


0 8 4 1
9 0 6 7
4 6 0 5
3 7 5 0

 .

That is, Q = (qij) where q(i, j) = qij for i, j ∈ Y . The function q will be a
T0-quasi-metric on Y . Indeed, it satisfies the other conditions of Definition 1, so
we will prove just the triangle inequality:

q(1, 2) = 8 ≤ 4 + 6 = q(1, 3) + q(3, 2), q(1, 2) = 8 ≤ 1 + 7 = q(1, 4) + q(4, 2)
q(1, 3) = 4 ≤ 8 + 6 = q(1, 2) + q(2, 3), q(1, 3) = 4 ≤ 1 + 5 = q(1, 4) + q(4, 3)
q(1, 4) = 1 ≤ 8 + 7 = q(1, 2) + q(2, 4), q(1, 4) = 1 ≤ 4 + 5 = q(1, 3) + q(3, 4)
q(2, 3) = 6 ≤ 9 + 4 = q(2, 1) + q(1, 3), q(2, 3) = 6 ≤ 7 + 5 = q(2, 4) + q(4, 3)
q(2, 4) = 7 ≤ 9 + 1 = q(2, 1) + q(1, 4), q(2, 4) = 7 ≤ 6 + 5 = q(2, 3) + q(3, 4)
.
.
.

Other cases can be shown in a similar way.

Now, let us consider the subset B = {1, 2, 3} of Y . It is easy to verify that B is
antisymmetrically-dense in Y : For each y ∈ Y \ B we must find b ∈ B such that
q(y, b) ̸= q(b, y). Here, if y ∈ Y \ B then y = 4, and clearly q(1, 4) ̸= q(4, 1) for
1 ∈ B.

Proposition 7. Let (X, d) be a T0-quasi-metric space with at least two-elements
and x ∈ X a symmetric point. Then the subsets {x} and X \ {x} cannot be
antisymmetrically-dense in X.

Proof. By the definition of symmetric point (see Definition 10 i)), d(x, y) = d(y, x)
whenever y ∈ X\{x}. Then, {x} cannot be antisymmetrically-dense inX. In a sim-
ilar way, clearly y = x whenever y ∈ X \(X \{x}). Thus, d(x, a) = d(a, x) whenever
a ∈ X \ {x} since x is symmetric point. That is, X \ {x} is not antisymmetrically-
dense. □
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The following proposition will be very useful in this context.

Proposition 8. Let (X, d) be a T0-quasi-metric space. If each nonempty subset
of (X, d) is antisymmetrically-dense in X then (X, d) will be an antisymmetrically
connected space.

Proof. Assume that each nonempty subset of (X, d) is antisymmetrically-dense in
X. Now we can prove that (X, d) is indeed an antisymmetrically connnected space
by showing that, for x ∈ X, if y ∈ X and y /∈ Td(x) then y ∈ X \ Td(x) and
y ̸= x. Thus there exists a ∈ Td(x) such that d(y, a) ̸= d(a, y) since Td(x) is
antisymmetrically-dense in X. Now, if a = x then d(y, x) ̸= d(x, y), that is y ∈
Td(x) contradiction. If a ̸= x then x ∈ X \ {a}. Also, note that the subset {a}
is antisymmetrically-dense by the hypothesis. Thus d(x, a) ̸= d(a, x). In this case,
Px,y = (x, a, y) will be an antisymmetric path from x to y. That is, y ∈ Td(x)
which is a contradiction. Finally, Td(x) = X, so (X, d) will be antisymmetrically
connected. □

The converse of Proposition 8 is not true always. Example 10 below is a
counterexample. For it, first of all let us recall the notion asymmetric norm by
Cobzaş [2].

Definition 13. Let X be a real vector space equipped with a given map ∥ · | : X →
[0,∞) satisfying the conditions:

(a) ∥x| = ∥ − x| = 0 if and only if x = 0.
(b) ∥λx| = λ∥x| whenever λ ≥ 0 and x ∈ X.
(c) ∥x+ y| ≤ ∥x|+ ∥y| whenever x, y ∈ X.

Then ∥· | is called an asymmetric norm and (X, ∥· |) is said to be an asymmetrically
normed real vector space. (Here, 0 denotes the zero vector of the vector space X.)

Obviously, an asymmetric norm induces a T0-quasi-metric onX with the equality
d∥·|(x, y) = ∥x− y| for each x, y ∈ X, where (X, ∥ · |) is an asymmetrically normed
real vector space. But, naturally some T0-quasi-metrics may not be induced by an
asymmetric norm.

Note also that each norm is an asymmetric norm. However, the function ∥ · |
described by the equality ∥(x1, x2)| = x1∨x2∨0 on R2, satisfies the above conditions
and thus, it is an asymmetric norm which is not a norm.

Example 10. Consider the plane R2 with the T0-quasi-metric d induced by the
maximum asymmetric norm ∥(x, y)| = x ∨ y ∨ 0. It is easy to see that for each
(a1, a2) ∈ R2 the symmetry component Cd((a1, a2)) = {(x+a1,−x+a2) | x ∈ R} ≠
R2 where d = d∥·| and so the space (R2, d) is not symmetrically connected by Defi-

nition 5. In this case, (R2, d) is antisymmetrically connected from [11, Proposition
58] which states the fact that a T0-quasi-metric space is symmetrically connected or
antisymmetrically connected by virtue of graph theory.
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Now take the subset G = {(x,−x) | x ∈ R} ⊆ R2. Clearly, the subspace (G, dC)
is a metric space, and so symmetrically connected. But it is not antisymmetrically
connected. On the other hand, G is antisymmetrically-dense: if (x, y) ∈ R2 \ G
then (x, y) /∈ G and so y ̸= −x, that is x + y ̸= 0. Now, let us consider the point
(x,−x) ∈ G. In this case d((x,−x), (x, y)) = (x−x)∨(−x−y)∨0 = −(x+y)∨0 and
d((x, y), (x,−x)) = (x− x)∨ (x+ y)∨ 0, thus d((x,−x), (x, y)) ̸= d((x, y), (x,−x)).

In addition, note that the point (0, 0) is neither symmetric point nor antisym-
metric point. Morover, the singleton set {(0, 0)} is neither symmetrically-dense nor
antisymmetrically-dense in R2.

It is well-known that any subspace of an antisymmetric space is antisymmetric.
Nevertheless, a T0-quasi-metric space (X, d) may not be antisymmetric even though
(X, d) has an antisymmetrically-dense and antisymmetric subspace, as the following
example shows:

Example 11. Let us define a T0-quasi-metric on the set X = {1, 2, 3} via the
matrix

W =

 0 9 8
7 0 1
6 1 0

 .

That is, W = (wij) where w(i, j) = wij for i, j ∈ X. It is easy to prove that
w is a T0-quasi-metric on X. Because of the fact that w(2, 3) = w(3, 2), the space
(X,w) is not antisymmetric. Consider the subset B = {1, 3} of X. It is easy to
show that B is antisymmetric subspace w.r.t the induced T0-quasi-metric wB on B.
In addition, B is antisymmetrically-dense: If take x ∈ X \ B then x = 2. In this
case, for 1 ∈ B we have w(1, 2) = 9 and w(2, 1) = 7. That is, w(1, 2) ̸= w(2, 1).

Incidentally, there is an extension space which has an antisymmetrically-dense
subspace not antisymmetrically connected even though the space itself is antisym-
metrically connected.

Example 12. Take a metric space (X,m) with at least two-elements. By [5, Corol-
lary 3.4], (X,m) has an antisymmetrically connected T0-quasi-metric one-point ex-
tension (Y, v) such that Y = X ∪{∞}, and ∞ is antisymmetric point. In this case,
if we delete the added (antisymmetric) point, then the remaining metric space is no
longer antisymmetrically connected. Moreover, X is antisymmetrically-dense in Y :
if y ∈ Y \ X then y = ∞. Also, because X ̸= ∅ there is at least a ∈ X. Clearly,
a ̸= ∞ and v(∞, a) ̸= v(a,∞) since ∞ is an antisymmetric point in Y .

Now we can turn our attention to the following natural question:

Under which mappings is the antisymmetric density property preserved in the con-
text of T0-quasi-metric spaces ?

Proposition 9. Let (X, d), (Y, e) be T0-quasi-metric spaces and f : X → Y an
isometric isomorphism. Then A ⊆ X is antisymmetrically-dense in X if and only
if f(A) is antisymmetrically-dense in Y .
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Proof. If y ∈ Y \ f(A) then there exists x ∈ X \ A such that f(x) = y since f is
onto. On the other hand, there exists a ∈ A such that d(x, a) ̸= d(a, x) since A
is antisymmetrically-dense. Clearly, f(a) ∈ f(A). Also, we have e(f(x), f(a)) =
d(x, a) ̸= d(a, x) = e(f(a), f(x)) as f is an isometry. Thus, f(A) is antisymmetrically-
dense in Y .

Conversely, if a ∈ X \ A then f(a) /∈ f(A) as f is one-to-one. In this case,
there exists b ∈ f(A) satisfying the inequality e(b, f(a)) ̸= e(f(a), b) since f(A)
is antisymmetrically-dense. Thus, there exists z ∈ A such that f(z) = b via the
fact that f is onto. Now, by considering the isometry property of f the expression
d(z, a) ̸= d(a, z) is obtained. This shows that A is antisymmetrically-dense. □

In contrast to Proposition 4, we have the following remark for antisymmetric
density:

Remark 3. For any T0-quasi-metric spaces (X, d), (Y, q), the product of any
antisymmetrically-dense subsets of X and Y may not be antisymmetrically-dense
in X × Y .

Actually, we have a counterexample:

Example 13. Consider the standard T0-quasi-metric space (R, u) where u(x, y) =
max{x − y, 0}, given in Example 1 and the T0-quasi-metric space (R, d) with the
function

d(x, y) =

{
0 ; x ≤ y
1 ; y < x

on R.
If we take the subset A = {0} of R then A is antisymmetrically dense in (R, u)

because of the fact that u(x, 0) ̸= u(0, x) whenever x ∈ R \A.

Similarly, let us take the subset B = {1} of R. Clearly, B is antisymmetrically
dense in (R, d) since the inequality d(x, 1) ̸= d(1, x) holds whenever x ∈ R \B.

On the other hand, by taking into consideration the definition of product T0-
quasi-metric D given in Definition 1 we have the following fact:

If we consider the product T0-quasi-metric space (R × R, D) then for (1, 0) ∈
(R× R) \ (A×B) we have the equality

D((1, 0), (a, b)) = u(1, a) ∨ d(0, b) = 1 ∨ 0 = 1 = u(a, 1) ∨ d(b, 0) = D((a, b), (1, 0))

whenever a ∈ A, b ∈ B, that is a = 0 and b = 1. It means that the subset A×B is
not antisymmetrically-dense in (R×R, D) even though A is antisymmetrically-dense
in (R, u) and B is antisymmetrically-dense in (R, d).

Proposition 10. Let (X, d) be a T0-quasi-metric space. If A is antisymmetrically-
dense in X and B ⊆ X then A ∪B is antisymmetrically-dense in X.
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Proof. Take x ∈ X \ (A ∪ B). So, by the antisymmetric density of A, there exists
a ∈ A such that d(x, a) ̸= d(a, x). Thus, A ∪B is antisymmetrically-dense in X as
well, since A ⊆ A ∪B. □

Hence, the following result will be trivial as a consequence of Proposition 10.

Corollary 4. The union of all subsets of a T0-quasi-metric space which has at least
one antisymmetrically-dense subset is antisymmetrically-dense.

Despite the above result, we have:

Remark 4. The intersection of two antisymmetrically-dense subsets of a T0-quasi-
metric space may not be antisymmetrically-dense.

There is a counterexample:

Example 14. On the set X = {1, 2, 3, 4, 5} consider the Sorgenfrey T0-quasi-
metric as

s(x, y) =

{
x− y ; y ≤ x
1 ; y > x

.

Now let us take A = {1, 5}. In this case, since s(3, 1) ̸= s(1, 3), s(1, 4) ̸= s(4, 1)
and s(2, 5) ̸= s(5, 2), the set A is antisymmetrically-dense in X. Similarly, the set
B = {1, 4} is antisymmetrically-dense in X. But the intersection set A ∩ B = {1}
is not antisymmetrically-dense in X because of the facts that s(1, 2) = s(2, 1) and
2 ∈ X \ (A ∩B).

5. conclusion

As opposed to the negative result ( [5, Example 2.11]) which occurs in case
τds-density, a T0-quasi-metric space which has a symmetrically connected and
symmetrically-dense subspace will be symmetrically connected by [9, Theorem
2.15]. That is, it is possible to carry the symmetric connectedness of the subspace
to the space, provided that the subspace is symmetrically-dense in the space.

However, we have a counterexample in [9] showing that “any symmetrically-
dense subspace of a symmetrically connected space need not be symmetrically
connected”. Similarly, in this paper we have an example which shows that “any
antisymmetrically-dense subspace of an antisymmetrically connected space need
not be antisymmetrically connected”.

In the light of above considerations, for future work, let us state a few new
questions using the notions introduced in [6] and [12], as follows.

If (X, d) is locally symmetrically connected and it has a symmetrically-dense
subset A, then is the subspace (A, dA) locally symmetrically connected? If (X, d)
has a symmetrically-dense and locally symmetrically connected subspace then is
the space (X, d) locally symmetrically connected?
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Abstract. A new multidimensional Model II regression based on bisector
point of view (BRM-II) is introduced for multivariate problems that may con-

tain measurement error. The suggested method is constructed depending on

using the bisector of the minor angle between two hyperplanes identified by
linear regression. The performance of the proposed method are examined

by simulations up to ten variables for different sample sizes and distribution

types in terms of the Mean Square Error. Moreover, the BRM-II is applied
to two real problems with two and three variables, and compared with the

existing methods. The results indicate that the BRM-II is easy applicable

and offers relatively better accuracy. The relevant method can be easily coded
in any programming language provides convenience in its application. Thus,

the proposed method provide powerful tool for prediction of relevant real life

problems.

1. Introduction

Regression analysis is a statistical method used to determine the relationship
between two or more variables that have a cause and effect relation and to make
estimation or prediction about that subject by using this relationship [12]. The
regression method, which dates back to the 1800s, was first used in astronomical
events and social sciences. In classical regression, the regression model including
two variables is defined as

Ŷ = β0 + β1X + ei (1)
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while the model including more than two variables is given by

Ŷ = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βmXm + ei, (2)

where Ŷ represents dependent variable, ei are uncontrollable errors and βi are co-
efficients (i = 1, 2, . . . ,m). It is well-known that the regression analysis depends on
fundamental assumptions as follows: (i) the relationship between the variables is
linear, (ii) the variables have no measurement errors, (iii) the expected value of
error terms is zero, (iv) the error terms display the normal distribution, (v) there
is no relation between and the error terms, (vi) there is no autocorrelation between
error terms, (vii) the variance of error terms is constant for all values of the inde-
pendent variables [14]. In the analysis of classical regression, assumption (ii) is the
important one because of losing the validity of the model in case of not providing
this assumption. Besides, it is nonrealistic that the variables do not contain the
measurement error stemming from the measuring equipment, observer, incorrect
records, etc. in the real data sets. For this reason, the Model II regression methods
have been developed in cases where assumption (ii) may not be provided. Model
II regression methods are based on the idea of constituting a regression model that
regards the fact that all variables may contain errors. In the analysis of classical
regression, assumption (ii) is the important one because of losing the validity of
the model in case of not providing this assumption. Besides, it is nonrealistic that
the variables do not contain the measurement error stemming from the measuring
equipment, observer, incorrect records, etc. in the real data sets. Thus, the Model
II regression approach is derived, based on the idea of constructing a regression
model that regards the fact that all variables may contain errors. In Model I re-
gression, in order to determine the functional relationship between the variables
and to make prediction, linear regression is used while, in Model II, linear regres-
sions for each variable are constructed because assigning the variables as dependent
or independent could not be possible and corresponding regression equations are
evaluated depending on the nature of the problem.

The idea of Model II regression, which dates back to the early 1900s, has been
studied theoretically by Deming (1943) [5], York (1966) [29] and Passing and Bablok
(1983) [18]. Also, to estimate of the functional relationship, the line that bisects the
minor angle between the two model regressions is suggested by Sprent and Dolby
(1980) [23]. One of the important Model II regression called geometric mean Model
II has been used in the analysis of most field data by Laws and Archie (1981) [13]
while a linear regression method without particular assumptions, regarding the
distribution of the samples and the measurement errors, has been investigated by
Passing and Bablok (1983) [18]. In the next years, major axis and standardized
major axis, which are the most known Model II methods, have been discussed by
Warton et al. (2006) [27] to describe the key properties of line-fitting techniques
in order to estimate the relationship between two variables. While it is seen that
all of these mentioned studies focused on bivariate problems, a method for estimat-
ing multivariate functional relationships between sets of measured data in different
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fields is described for three or more variables in the studies of Stavn and Richter
(2008) [24] and Richter and Stavn (2014) [20]. Besides of these theoretical develop-
ments, there are many studies focused on the application of Model II methods in
the literature. A number of Model II methods have been examined in fishery studies
and reviewed in biomechanics by Ricker (1973) [21] and Rayner (1985) [19], respec-
tively. Isobe et al. (1990) [11] have discussed and applied five different methods to
bivariate data with measurement errors in astronomical problems. Some Model II
procedures have been reviewed comprehensively and compared the effectiveness of
the methods on clinical and biomedical chemistry by Ludbrook (2010, 2012) [15,16].
In several research areas such as natural sciences, biological researches, environmen-
tal sciences, fisheries, osteology and microbiology, etc., different types of Model II
methods have been used in the literature [1–4,6–10,17,25,28]. On the other hand,
when all model II regressions in the literature are examined, it is seen that all of
them are derived for two or three variable problems, except the study of Richter
and Stavn (2014) [20]. In their study, however, model II regression is defined only
theoretically for problems with more than three variables, but it has not been ap-
plied to any real data or simulation calculations. Therefore, the Model II regression
methods available in the literature are open to development when it is desired to
model a problem with four or more variables. Accordingly, the novelty of this study
is to develop a new Model II regression method for the problems with any number
of variables. This new method, called Bisector Regression Model II (BRM-II), is
constructed on the idea of computing the bisector of hyperplanes standing for the
multidimensional regression models. The BRM-II method has the flexibility to be
applied to many complex problems in the natural, medical, and social sciences since
real-life problems are represented by multivariate models.

In this paper, the organization is follows: in Section 2, a new multidimensional
BRM-II method is introduced in detail. Then, in order to demonstrate the validity
and efficiency of the method, the proposed method is applied for both simulations
which are up to ten variables for different sample sizes and distribution types and
real data sets with two and three variables in Section 3. Finally, the concluding
remarks are presented in the last section.

2. A New Multidimensional BRM-II Method

Let we have a data set with m variables such as Xi (i = 1, 2, . . . ,m) . For in-
stance, we decide X1 as a dependent variable and set a linear regression with other
(m− 1) variables

X1 = β0 + β1X2 + β2X3 + · · ·+ βm−1Xm.
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From this point of view each linear regression is obtained and expressed as a system
with the following form:

H1 : β0,1 + β1,1X1 + β2,1X2 + β3,1X3 + · · ·+ βm,1Xm = 0
H2 : β0,2 + β1,2X1 + β2,2X2 + β3,2X3 + · · ·+ βm,2Xm = 0
H3 : β0,3 + β1,3X1 + β2,3X2 + β3,3X3 + · · ·+ βm,3Xm = 0

...
Hm : β0,m + β1,mX1 + β2,mX2 + β3,mX3 + · · ·+ βm,mXm = 0


(3)

where Hi for i = 1, . . . ,m represent the hyperplanes geometrically, βi,j for i =
0, . . . ,m , j = 1, . . . ,m are unknown regression coefficients and βi,i = −1 for
i = 1, . . . ,m. A bisector-hyperplane (BH1) is found by considering the hyperplanes
H1 and H2 in system (3), and then a new bisector-hyperplane (BH2) is again found
by using BH1 and H3 and so on (see Figure 1). The geometric observations of the
bisector approach with two and three variables are given in Figure 2.

Figure 1. The schema of bisector hyperplanes

In order to carry out the bisector hyperplanes between each sequential hyper-
planes, finding the normal vectors of the hyperplanes is needed. The matrix of
normal vectors of the hyperplanes in the above system is defined by

A =


β1,1 β2,1 β3,1 · · · βm,1

β1,2 β2,2 β3,2 · · · βm,2

β1,3 β2,3 β3,3 · · · βm,3
...

...
...

. . .
...

β1,m β2,m β3,m · · · βm,m

 . (4)



A NEW MULTIDIMENSIONAL MODEL II REGRESSION 1191

(a)

(b)

Figure 2. The geometric observation of the bisector approach
with (a) two variables (the red line: β0,1 + β1,1X1 + β2,1X2 = 0,
the blue line: β0,2 + β1,2X1 + β2,2X2 = 0 and the green line is
the bisector line) and (b) three variables (the blue plane: β0,1 +
β1,1X1 + β2,1X2 + β3,1X3 = 0, the green plane: β0,2 + β1,2X1 +
β2,2X2 + β3,2X3 = 0 and the yellow plane is the bisector plane)

Let us now obtain the first bisector hyperplane BH1 using with the hyperplanes
H1 and H2. It is well-known that the equation of a bisector hyperplane is computed
by

∣∣β0,1 + β1,1X1 + β2,1X2 + · · ·+ βm,1Xm

∣∣
∥ñ1∥

=

∣∣β0,2 + β1,2X1 + β2,2X2 + · · ·+ βm,2Xm

∣∣
∥ñ2∥

(5)
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where ∥ · ∥ is Euclidean norm of the corresponding vector and ñ1, ñ2 are the
normal vectors of H1 and H2 as follows

ñ1 =
[
β1,1 β2,1 β3,1 · · · βm,1

]
, (6)

ñ2 =
[
β1,2 β2,2 β3,2 · · · βm,2

]
. (7)

Therefore, the matrix form of the normal vector of BH1 is obtained

ñBH1 =
ñ1

∥ñ1∥
∓ ñ2

∥ñ2∥
. (8)

As can be seen from Eq. (8) there are two cases to determine the normal vector
of BH1 since there are two bisector hyperplane arising from two angles called the
minor and major ones between the H1 and H2. The bisector hyperplane stemming
from the minor angle is preferred as BH1 because of representing the data set
meaningfully. The formulae of BH1 is written as

BH1 : β̃0,1 + ñBH1X = 0 , (9)

whereX =
[
X1 X2 X3 · · · Xm

]T
, ñBH1 =

[
β̃1,1 β̃2,1 β̃3,1 · · · β̃m,1

]
and β̃0,1 =

β0,1

∥ñ1∥ ∓ β0,2

∥ñ2∥ . In a similar manner, the normal vectors of BH1 and H3

are taken as

ñBH1
=

[
β̃1,1 β̃2,1 β̃3,1 · · · β̃m,1

]
, (10)

ñ3 =
[
β1,3 β2,3 β3,3 · · · βm,3

]
. (11)

and the matrix form of the normal vector of BH2 is obtained

ñBH2 =
ñBH1

∥ñBH1
∥
∓ ñ3

∥ñ3∥
. (12)

Use the minor angle point of view,

BH2 : β̃0,2 + ñBH2
X = 0 , (13)

whereX =
[
X1 X2 X3 · · · Xm

]T
, ñBH2

=
[
β̃1,2 β̃2,2 β̃3,2 · · · β̃m,2

]
and β̃0,2 =

β̃0,1

∥ñBH1∥
∓ β0,3

∥ñ3∥ . The computation process is continued as the similar

way, and the last bisector hyperplaneBHm−1 is obtained as

BHm−1 : β̃0,m−1 + ñBHm−1X = 0 (14)

where X =
[
X1 X2 X3 · · · Xm

]T
,

ñBHm−1
=

[
β̃1,m−1 β̃2,m−1 · · · β̃m,m−1

]
and β̃0,m−1 =

β̃0,m−2

∥ñBHm−2∥
∓ β0,m

∥ñm∥ .

Thus, the process is completed, and the BHm−1 is called as the BRM-II model.
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3. Computational Experiments

To demonstrate the applicability and efficiency of the multidimensional BRM-
II, various simulations which are up to ten variables for different sample sizes and
distribution types are performed in terms of the MSE

MSE =

n∑
i=1

(yi − ŷi)

n− k
,

where yi are real observation values, ŷi are estimated values, n is the sample size
and k is the number of parameters. In addition to the simulations, the BRM-II is
applied to two real problems with two and three variables, and compared with the
existing methods in the literature.

3.1. Simulations. It is well-known that simulation is defined as imitating some-
thing in an artificial environment depending on time. In this study, the performance
measurement of the BRM-II method is calculated on the computer by designing the
simulation conditions. The corresponding simulations are organized by randomly
selecting different sample sizes n such as 20, 30, 50, 100 and 200 from the data sets
with a population size N=5000 with different distributions t∼4, t∼10 and t∼30.
The MSE values of the simulations were calculated for up to 10 variables in this
study (the number of variables can be increased further if desired). The simulations
are repeated 100000/n times, and the arithmetic means of the results obtained are
calculated after the processes are completed. The produced results are listed in
Table 1 in details. According to these results, when the BRM-II method is ana-

Table 1. The MSE values of the BRM-II simulations using total
population N=5000

Number
of
Variables
(nv)

Sample
Size
(n)

The degrees of
freedom of the
distribution
(df )

Number
of
Variables
(nv)

Sample
Size
(n)

The degrees of
freedom of the
distribution
(df )

t ∼ 4 t ∼ 10 t ∼ 30 t ∼ 4 t ∼ 10 t ∼ 30
3 20 6.96 5.22 4.82 5 20 8.20 5.98 5.30

30 6.65 5.01 4.54 30 7.15 5.32 4.85
50 6.15 4.66 4.37 50 6.68 4.96 4.66
100 6.08 4.60 4.18 100 6.28 4.70 4.27
200 6.00 4.55 4.15 200 5.94 4.66 4.25

4 20 7.02 5.36 5.11 10 20 12.60 9.00 8.64
30 6.98 5.04 4.78 30 9.54 6.60 6.38
50 6.36 4.89 4.45 50 7.51 5.56 5.23
100 6.13 4.66 4.32 100 6.58 5.08 4.59
200 6.11 4.62 4.22 200 6.32 4.66 4.36

lyzed with 3 variables, the MSE decreases in all sample sizes when the degrees of
freedom of the distribution are increased. For instance, the MSE equals to 6.68 if
nv, n and df are taken as 5, 50 and 4, respectively, while the MSE decrease to 4.96
and 4.66 if df is increased to 10 and 30 without changing the other parameters.
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Besides, the MSE decreases as n is increased by keeping df and nv unchanged. It
can be seen that the same behaviour is valid as nv is 4, 5 and 10. Note that the
MSE is expected to increase as nv increases by keeping df and n unchanged. The
relationship between the sample sizes and the degrees of freedom of distribution for
different number of variables are shown in Figure 3.

Figure 3. The relationship between the sample sizes and the de-
grees of freedom of distribution for different number of variables

Consequently, the performance of the BRM-II method draws attention in terms
of supporting the theoretical expectation regarding the decreasing behaviour of
MSE. Therefore, the proposed method is a powerful tool among the regression
approaches.

3.2. Application to the real data sets. In this part, there are two real modeling
processes with two and three variables including the oceanographic data sets are
considered to demonstrate the performance of the BRM-II methods.

3.2.1. Example with two variables. As the first real application of proposed method
with two variables is used the data that including weights of unspawned female
cabezon (a California marine fish, Scorpaenichthys marmoratus) and the number
of eggs subsequently produced for 11 fish are given as [22]:

Table 2. The biological oceanographic data set

Weight (to nearest 100g):X1 14 17 24 25 27 33 34 37 40 41 42
Eggs (in thousands): X2 61 37 65 69 54 93 87 89 100 90 97
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It is desired to constitute a functional relationship between weight before spawn-
ing and number of egg produced because of both variables are subject to error.

In order to construct the BRM-II method, as the first step, the simple linear
regression is applied for each variable with respect to the data in Table 2 as follows:

β0,1 + β1,1X1 + β2,1X2 = 0 , (15)

β0,2 + β1,2X1 + β2,2X2 = 0 , (16)

where X1 and X2 are dependent variables in Eqs. (15) and (16), respectively. The
coefficients are computed as reported in Table 3.

Table 3. The coefficients of simple linear regressions

βi,j i = 0 i = 1 i = 2

j = 1 -1.5032 -1 0.4163
j = 2 19.7668 1.8700 -1

Then, the bisector line of these system is obtained by using the Eqs. (5)-(9) in
proposed method mentioned above

−10.7093 − 1.8050 X1 + 0.8559X2 = 0. (17)

The regression lines are illustrated in Figure 4. Moreover, in order to demonstrate
the efficiency of the BRM-II, the results of MSE are compared with some previous
studies in the literature, and given in Table 4. It can be seen from the results that
the BRM-II method is outstanding in comparison with the study of Richter and
Stavn (2014) [20]. Moreover, the MSE of our method is even better than the MSE
result in their study by using the standardized data.

Figure 4. The data set and the regression lines in Example 1 (the
red line: Eq. (3.1), the blue line: Eq. (16), and the green (bisector
) line: Eq. (17))
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Table 4. The results of MSE for the different regression models

Regression Model MSE
BRM-II 109.01
[20] 122.62
[20] (with Standardized data) 109.47
[26] 109.54

Table 5. The oceanographic field data set

PIM:X1 POM: X2 b555:X3

11.36 2.36 8.41
6.98 1.49 5.85
6.89 1.15 6.91
14.60 3.00 11.31
12.52 1.59 10.03
5.40 2.53 3.40
6.45 2.21 5.43
1.57 0.18 1.09
2.15 0.45 1.84
22.31 3.28 17.94
4.67 2.05 4.85
5.01 0.52 1.20

PIM:X1 POM: X2 b555:X3

5.33 1.94 4.99
5.46 2.16 5.05
9.98 2.87 9.11
5.67 1.81 8.39
6.89 3.11 7.57
3.21 3.32 4.38
4.56 1.69 3.78
6.56 1.06 4.91
4.63 1.05 3.09
5.48 0.69 3.66
3.88 0.71 2.41
2.80 0.48 1.77

3.2.2. Example with three variables. The second application of proposed method
with three variables is discussed the data sets that including the concentration of
particulate inorganic matter [PIM (gm−3 )], the particulate organic matter [POM
(gm−3 )] and the total scattering coefficient at a wavelength of 555 nm [b555 (m−1

)] for 24 field stations at Mobile Bay, Alabama are given in Table 5 [20]:
In order to constitute a functional relationship among PIM, POM and b555, the

simple linear regressions for each variable are written with respect to the data in
Table 4 similar to the previous example as follows:

β0,1 + β1,1X1 + β2,1X2 + β3,1X3 = 0, (18)

β0,2 + β1,2X1 + β2,2X2 + β3,2X3 = 0, (19)

β0,3 + β1,3X1 + β2,3X2 + β3,3X3 = 0, (20)

where X1, X2 and X3 are dependent variables in Eqs. (18), (19) and (20), respec-
tively. The coefficients are given in the following Table 6. The bisector line of these
system is obtained

1.0225− 0.8603 X1 − 1.2936 X2 + 1.2434X3 = 0. (21)
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The regression planes are illustrated in Figure 5, and the MSE result of the BRM-II
is compared with some previous studies in the literature (see Table 7).

Table 6. The coefficients of simple linear regression

βi,j i = 0 i = 1 i = 2 i = 3

j = 1 0.9066 -1 -0.6394 1.2322
j = 2 0.8042 -0.1404 -1 0.3310
j = 3 -0.4658 0.6897 0.8440 -1

Table 7. The results of MSE for the different regression models

Regression Model MSE
BRM-II 1.3336
[20] 2.2318
[20] (with standardized data) 1.3210

It can be said from the table that the BRM-II method is superior in comparison
with the study of Richter and Stavn (2014) [20]. Also, the MSE of our method is
competitive with the MSE of their study by using the standardized data.

4. Conclusion and Recommendation

In this study, a new multidimensional BRM-II method is introduced for mul-
tivariate problems that may contain measurement error. In order to demonstrate
the validity and efficiency, the proposed method is applied to simulations up to
ten variables for different sample sizes and distribution types in terms of the Mean
Square Error (MSE), and then implemented to two real problems with two and
three variables. By comparing with the methods in the literature, it is observed
that the BRM-II method is outstanding in comparison with the study of Richter
and Stavn (2014) for both original and standardized data. So it can be deduced
that the proposed method provides relatively higher accuracy. Besides, it is easy
applicable and versatile tool for prediction of relevant real life problems. For the
further studies, different forms of the BRM-II can be derived for more realistic
phenomena.
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(a)

(b)

(c)

(d)

Figure 5. The data set and the regression planes in Example 2 (a)
Eq. (18), Eq. (19) and the bisector-1; (b) Eq. (20), the bisector-1
and the bisector-2; (c) the final bisector plane: Eq. (21); (d) the
final bisector plane: Eq. (21) in (c) with different perspective.
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SHARP COEFFICIENT ESTIMATES FOR ϑ-SPIRALLIKE

FUNCTIONS INVOLVING GENERALIZED q-INTEGRAL

OPERATOR

Tuğba YAVUZ1 and Şahsene ALTINKAYA2

1,2Department of Mathematics, Istanbul Beykent University, Istanbul, TÜRKİYE

Abstract. The aim of this article is to identify a new subfamily of spirallike
functions and then to demonstrate necessary and sufficient conditions, sharp

coefficients estimates for functions in this subfamily.

1. Introduction

Stand by A the family of functions f(ζ) = ζ+
∑∞

k=2 akζ
k analytic in the open unit

disk D = {ζ ∈ C : |ζ| < 1} with the normalization condition f(0) = 0 = f ′(0) − 1.
A function f ∈ A is named univalent in D provided that it does not take the same
value twice. Stand by S the subfamily of A involving univalent functions. For
analytic functions f1 and f2 in D, we ensure that f1 is subordinate to f2, expressed
by f1 ≺ f2, for a Schwarz function

Λ(ζ) =

∞∑
k=1

κkζ
k (Λ (0) = 0, |Λ (ζ)| < 1) ,

analytic in D such that f1 (ζ) = f2 (Λ (ζ)) (ζ ∈ D).
Now, we shall deal with a subfamily of S which is of special interest in its own

right, namely the spirallike functions.
For −∞ < t < ∞ and ϑ ∈

(
−π

2 ,
π
2

)
, the logarithmic ϑ-spiral curve is expressed

by w = w0 exp(−e−iϑt), where w0 is a nonzero complex number. We must mention
here that 0-spirals are radial half-lines. For an analytic function, we can call it
ϑ-spirallike provided that its range is ϑ-spirallike. Stand by Sϑ the family of ϑ-
spirallike functions. Analytically, f ∈ A belongs to the family Sϑ iff
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ℜ
(
eiϑ ζf ′(ζ)

f(ζ)

)
> 0 [17]. Libera [10] used this approach to ϑ-spirallike functions of

order σ

ℜ
(
eiϑ

ζf ′(ζ)

f(ζ)

)
> σ cosϑ

and asserted by Sϑ(σ). Clearly, Sϑ(σ) ⊂ Sϑ. Further, the general coefficient bounds
for functions in Sϑ(σ) was proved:

|ak| ≤
k−2∏
j=0

(∣∣2 (1− σ) e−iϑ cosϑ+ j
∣∣

j + 1

)
(k ∈ N\ {1} , N = {1, 2, · · · }) .

This result is sharp. Finding sharp results for functions belonging to the differ-
ent families of analytic functions is of special interest because of the geometric
properties of such functions [12], [14], [20], [21].

The age of quantum calculus (q-calculus) is as old as calculus and because of
its applications to wider disciplines from physical sciences to social sciences, it was
revived during the last three decades. The first study on the q-calculus dates back
to 1908 [8]. On the other hand, q-calculus is connection with function theory.
The study of q-calculus in Geometric Function Theory was partially provided by
Srivastava [18]. This application is still among the most popular subject of many
mathematicians today [1], [2], [3], [5], [7], [15], [19].

In the course of the paper, suppose 0 < q < 1 and the definitions deal with the
complex-valued function f .

The q-derivative of f expressed by [8]:

Dqf(ζ) =


f(ζ)− f(qζ)

(1− q)ζ
, ζ ̸= 0

f ′(0), ζ = 0

. (1)

If f is differentiable at ζ, then limq→1− Dqf(ζ) = f ′(ζ).
The q-integral of f expressed by [9]:∫ ζ

0

f(u)dqu = ζ(1− q)

∞∑
k=0

qkf(ζqk),

provided the series converges.
Next, the q-gamma function is expressed by

Γq(u) = (1− q)1−u
∞∏
k=0

1− qk+1

1− qk+u
(u > 0),

which has the following properties

Γq(u+ 1) = [u]qΓq(u), Γq(u+ 1) = [u]q!, (2)
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where u ∈ N and

[u]q! =

{
[u]q[u− 1]q . . . [2]q[1]q, u ≥ 1

1, u = 0.

If we set q → 1−, we find Γq(u) → Γ(u) [8].
The q-beta function

Bq(u, s) =

∫ 1

0

ζu−1(1− qζ)s−1
q dqζ, (u, s > 0) (3)

is the q-analogue of Euler’s formula [9] with

Bq(u, s) =
Γq(u)Γq(s)

Γq(u+ s)
, (4)

Next, the q-binomial coefficients are expressed by [6](
k

n

)
q

=
[k]q!

[n]q![k − n]q!
. (5)

In a recent study [11], the generalized q-integral operator χα
β,qf : A → A is expressed

by

χα
β,qf(ζ) =

(
α+ β

β

)
q

[α]q

ζβ

∫ ζ

0

(
1− qu

ζ

)α−1

q

uβ−1f(u)dqu (α > 0, β > −1). (6)

From (2), (3), (4) and (5), they arrive

χα
β,qf(ζ) = ζ +

∞∑
k=2

Γq(β + n)Γq(α+ β + 1)

Γq(α+ β + n)Γq(β + 1)
akζ

k. (7)

For some special values, we find the following integral operators previously
known.

(i) If α = 1, the q-Bernardi integral operator Jβ,qf is obtained [13]

Jβ,qf(ζ) =
[1 + β]q

ζβ

∫ ζ

0

uβ−1f(u)dqu =

∞∑
k=1

[1 + β]q
[n+ β]q

akζ
k.

(ii) If α = 1, q → 1−, the Bernardi integral operator is obtained [4]

Jβf(ζ) =
1 + β

ζβ

∫ ζ

0

uβ−1f(u)du =

∞∑
k=1

1 + β

n+ β
akζ

k.

(iii) If α = 1, β = 0, q → 1−, the Alexander integral operator is obtained [16]

J0f(ζ) =

∫ ζ

0

f(u)

u
du = ζ +

∞∑
k=2

1

n
akζ

k.
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2. Main Results

Firstly, we introduce the new subfamily SCα
β,q (σ, ν) of ϑ−spirallike functions

inserting the function χα
β,qf .

Definition 1. A function f ∈ A is in SCα
β,q (σ, ν) if

ℜ

eiϑ
ζ
(
χα
β,qf(ζ)

)′
νζ
(
χα
β,qf(ζ)

)′
+ (1− ν)χα

β,qf(ζ)

 > σ cosϑ,

where |ϑ| < π
2 , 0 ≤ σ < 1, α > 0, β > −1, 0 ≤ ν ≤ 1.

Note that
1) Letting q → 1− and α = 1 in Definition 1, we arrive the class SCα

β,q (σ, ν) :=

SCβ (σ, ν) involving Bernardi integral operator given in (ii).
2) Letting q → 1−, α = 1 and β = 0 in Definition 1, we arrive the class

SCα
β,q (σ, ν) := SC (σ, ν) involving Alexander integral operator given in (iii).

This paper deals with the new class SCα
β,q (σ, ν) of ϑ−spirallike functions involv-

ing a generalized q−integral operator and its several properties.

Next, we get coefficient conditions and sharp bounds for functions in SCα
β,q (σ, ν).

Theorem 1. Assume χα
β,qf(ζ) ̸= 0 for ζ ∈ D \ {0}. Then, f is in SCα

β,q (σ, ν) if
and only if

∞∑
k=2

[
(k − 1)(1 + e2iϑ)(1− σν + i(1− ν)tanϑ)

+ 2(1− σ)e2iϑ − (k − 1)(1− e2iϑ)(1− σ)ν

]
× Γq(β + k)Γq(α+ β + 1)

Γq(α+ β + k)Γq(β + 1)
akζ

k ̸= 0.

Proof. Let us put

∆(ζ) = χα
β,qf(ζ) = ζ +

∞∑
k=2

Xkζ
k (ζ ∈ D),

where Xn =
Γq(β+k)Γq(α+β+1)
Γq(α+β+k)Γq(β+1)ak with X1 = 1. Now, consider the function

Σ(ζ) =

(
ζ∆′(ζ)

νζ∆′(ζ) + (1− ν)∆(ζ)

)
eiϑsecϑ− itanϑ− σ

1− σ
.

is an analytic, Σ(0) = 1 and ℜΣ(ζ) > 0, then f ∈ SCα
β,q (σ, ν) iff

Σ(ζ) ̸= 1− e2iϑ

1 + e2iϑ
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or, equivalently

eiϑsecϑζ∆′(ζ)− (σ + itanϑ)(νζ∆′(ζ) + (1− ν)∆(ζ))

(1− σ)(νζ∆′(ζ) + (1− ν)∆(ζ))
̸= 1− e2iϑ

1 + e2iϑ
.

Now, from the series expansion of ∆(ζ), we arrive∑∞
k=1 [(k − 1)(1− σν + i(1− ν)tanϑ) + (1− σ)]Xkζ

k

(1− σ)
∑∞

k=1(1 + (k − 1)ν)Xkζ
k

̸= 1− e2iϑ

1 + e2iϑ
,

which yields for ζ ̸= 0

∞∑
k=2

[
(k − 1)(1 + e2iϑ)(1− σν + i(1− ν)tanϑ) + 2(1− σ)e2iϑ

− (k − 1)(1− e2iϑ)(1− σ)ν
]
Xkζ

k ̸= 0.

□

Theorem 2. Let χα
β,qf(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SCα

β,q (σ, ν), then

|ak| ≤
Γq(α+ β + k)Γq(β + 1)

Γq(β + k)Γq(α+ β + 1)(k − 1)! (1− ν)
k−1

×
k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ , (8)

where k ∈ N \ {1} with a1 = 1. This result is sharp.

Proof. Since f ∈ SCα
β,q (σ, ν), we can use a Schwarz function Λ(ζ) such that ζ

(
χα
β,qf(ζ)

)′
νζ
(
χα
β,qf(ζ)

)′
+ (1− ν)χα

β,qf(ζ)

 eiϑsecϑ− itanϑ =
1 + (1− 2σ)Λ(ζ)

1− Λ(ζ)
.

If we put the function ∆(ζ), we find∑∞
k=1

[
keiϑsecϑ− (1 + itanϑ)(1 + (k − 1)ν)

]
Xkζ

k

=
(∑∞

k=1

[
keiϑsecϑ+ (1− 2σ − itanϑ)(1 + (k − 1)ν)

]
Xkζ

k
)
Λ(ζ).

Now, for k ∈ N, we can write∑m
k=1

[
keiϑsecϑ− (1 + itanϑ)(1 + (k − 1)ν)

]
Xkζ

k +
∑∞

k=m+1 bkζ
k

=
(∑m−1

k=1

[
keiϑsecϑ+ (1− 2σ − itanϑ)(1 + (k − 1)ν)

]
Xkζ

k
)
Λ(ζ).

(9)
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For m = 2, 3, · · · , the LHS of (9) is convergent in D. Since |Λ(ζ)| < 1, it is easy to
get by appealing to Parseval’s Theorem that∑m−1

k=1

∣∣keiϑsecϑ+ (1− 2σ − itanϑ)(1 + (k − 1)ν)
∣∣2 |Xk|2

≥
∑m

k=2

∣∣neiϑsecϑ− (1 + itanϑ)(1 + (k − 1)ν)
∣∣2 |Xk|2

or

m−1∑
k=1

4(1− σ)(1 + (k − 1)ν) (k − σ(1 + (k − 1)ν) |Xk|2 ≥ (m− 1)2(1− ν)2

cos2ϑ
|Xm|2 ,

(10)
where X1 = 1. Now, we claim that

|Xk| ≤
1

(k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ . (11)

For k = 2, we find from (10)

|X2| ≤
2(1− σ)cosϑ

1− ν
,

which is equivalent to (11). The equation (11) is found for larger k from (10) by
the principle of the mathematical induction.

Fix k, k ≥ 3 and let the equation (8) holds for n = 2, 3, ...,k − 1. From (10), we
arrive

|Xk|2 ≤ 4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2

{
1− σ +

k−1∑
n=2

X(n, j, σ)

}
, (12)

where

X(n, j, σ) =
(1 + (n− 1)ν)(n− σ(n− 1)ν)

((n− 1)! (1− ν)
n−1

)2

n−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2 .

Now, we will indicate that the square of RSH of (11) is equal to RSH of (12), that
is,

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

((k − 1)! (1− ν)
k−1

)2

=
4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2

{
1− σ +

k−1∑
n=2

X(n, j, σ)

}
(13)

for k = 3, 4, · · · . After further calculations, we indicate that (13) is true for k = 3
and prove the claim. Assume the equation (13) is valid for all n, 3 < n ≤ (k − 1).
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From (9) and (12), we find

|Xk|2 ≤ 4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2

{
1− σ +

k−2∑
n=2

X(n, j, σ) +X(k − 1, j, σ)

}

≤ 4(1− σ)cos2ϑ

(k − 1)2 (1− ν)
2 ×

{
1− σ +

k−2∑
n=2

(1 + (n− 1)ν)(n− σ(n− 1)ν)

((n− 1)! (1− ν)
n−1

)2

×
n−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

+
(1 + (k − 2)ν)(k − 1− σ(k − 2)ν)

((k − 2)! (1− ν)
k−2

)2

×
k−3∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2}

=

∏k−3
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

((k − 2)! (1− ν)
k−2

)2

×
{
(k − 2)2

(k − 1)2
+

4(1− σ)cos2ϑ(1 + (k − 2)ν)(k − 1− σ(k − 2)ν)

(k − 1)2 (1− ν)
2

}

=

∏k−3
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2

((k − 1)! (1− ν)
k−1

)2

×
{
(k − 2)2 (1− ν)

2
+ 4(1− σ)cos2ϑ(1 + (k − 2)ν)(k − 1− σ(k − 2)ν)

}
yields

|Xk| ≤
1

((k − 1)! (1− ν)
k−1

)2

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣2 .

Since

Xk =
Γq(β + k)Γq(α+ β + 1)

Γq(α+ β + k)Γq(β + 1)
ak (X1 = 1),

we obtain the desired result.
To prove the estimate is sharp, we need following equality

χα
β,qf(ζ) =

ζ

(1 +Kζ)
2(σ−1)e−iϑcosϑ

K

where K = (1− ν)− 2ν(1− σ)e−iϑcosϑ. □
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3. Conclusions

It is obvious that the link between q-calculus and Geometric Function Theory
presents original and interesting results. Hence, in the present work, we use a gen-
eralized q-integral operator to establish a new subfamily SCα

β,q (σ, ν) of ϑ-spiralike
functions. We also derive sharp upper bounds for Taylor Maclaurin coefficients of
functions in this family.

Letting α = 1, we have coefficients bounds for functions defined by q-Bernardi
integral operator.

Corollary 1. Let Jβ,qf(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SCβ,q (σ, ν), then

|ak| ≤
[β + k]q

[β + 1]q (k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ ,

where k ∈ N \ {1} with a1 = 1. This result is sharp.

Letting α = 1 and q → 1−, we obtain following coefficients bounds for functions
given by Bernardi integral operator.

Corollary 2. Let Jβf(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SCβ (σ, ν), then

|ak| ≤
(β + k)

(β + 1)(k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ ,

where k ∈ N \ {1} with a1 = 1. This result is sharp.

If α = 1, β = 0 and q → 1−, we have following result for functions given in terms
of Alexander integral operator.

Corollary 3. Let J0f(ζ) ̸= 0 for ζ ∈ D \ {0}. If f is in SC (σ, ν), then

|ak| ≤
k

(k − 1)! (1− ν)
k−1

k−2∏
j=0

∣∣j(1− ν) + 2(1− σ)eiϑcosϑ(1 + νj)
∣∣ ,

where k ∈ N \ {1} with a1 = 1. This result is sharp.

Our consequences are also applicable for various subfamilies of analytic functions.
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