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FRACTIONAL DIRAC SYSTEMS WITH MITTAG–LEFFLER

KERNEL
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Abstract. In this paper, we study some fractional Dirac-type systems with
the Mittag–Leffler kernel. We extend the basic spectral properties of the ordi-

nary Dirac system to the Dirac-type systems with the Mittag–Leffler kernel.

First, this problem was handled in a continuous form. The self-adjointness
of the operator produced by this system, the reality of its eigenvalues, and

the orthogonality of the eigenfunctions have been investigated. Later, similar

results were obtained by considering the discrete state.

1. Introduction

In recent years, the subject of fractional differential equations has become very
popular among mathematicians. The investigation of all kinds of problems in the
theory of differential equations under the framework of fractional has revealed a
very wide field of study. The Dirac equation, which is one of the important equa-
tions in the history of physics, should also be investigated. Although fractional
Sturm–Liouville problems have been investigated a lot, research on fractional Dirac
equivalents is less. Contributing to the gap in this area in the literature is the main
motivation of this research.

There are many types of fractional derivatives. One of them is the one based
on the Mittag–Leffler function. Atangana and Baleanu introduced a new fractional
derivative with the Mittag–Leffler kernel [4]. In [1], Abdeljawad and Belanau de-
fined integration with the part formula using the right fractional derivative and
the right fractional integral corresponding to the Mittag–Leffler kernel. In [5], the

2020 Mathematics Subject Classification. 34A08, 26A33, 34L40.
Keywords. Fractional differential equations, Mittag–Leffler kernel, Dirac systems.
1 bilenderpasaoglu@gmail.com; 0000-0002-9315-4652
2 hustuna@gmail.com-Corresponding author; 0000-0001-7240-8687.
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2 B.P. ALLAHVERDİEV, H. TUNA

authors studied the discrete versions of these fractional derivatives. In [12], Mert
et al. studied fractional Sturm–Liouville operators with the Mittag–Leffler kernels.
With the help of the Laplace transform, Ercan is obtained the representation of so-
lutions for fractional Dirac system with the Mittag–Leffler kernel ( [8]). Yalçınkaya
handled some Dirac systems with exponential kernel in [13]. In [7], the authors
studied a fractional Sturm–Liouville problem with exponential and Mittag-Leffler
kernels.

In this study, we will investigate this type of fractional version of the Dirac
system. Some basic features will be obtained for such systems. In the first chapter,
the basic concepts and theorems that will be used in the study are given. In the
following sections, the Dirac system with the Mittag–Leffler kernel in a continuous
and discrete cases is discussed. This type of fractional Dirac system turns into the
classical Dirac system by taking α → 1. It is transformed into a Riemann-Liouville
type fractional Dirac system with a Laplace transform method. In this way, we
examine these two systems under a single system. According to the knowledge
of the authors, since there is no study on this subject in the literature, it will
contribute to researchers working on this subject.

2. Preliminaries

This section covers the definitions and properties of fractional derivatives with
the Mittag–Leffler kernel.

Definition 1. ( [1]) Let u ∈ H1(a, b) ( the usual Sobolev space ), a < b, α ∈ [0, 1].
Then the definition of the left Caputo fractional derivative with the Mittag–Leffler
kernel is given by

ABC
a Dαu (ξ) =

B(α)

1− α

∫ ξ

a

Eα

(
−α

1− α
(ξ − t)α

)
d (u (t)) , (1)

where B(α) > 0 is a normalization function with B(0) = B(1) = 1;

Eα,β (t) =

∞∑
k=0

tk

Γ (αk + β)
, (2)

and Eα (t) = Eα,1 (t) . The convergence condition of infinite series (2) is Reα > 0
and Reβ > 0 ( [9]). Similarly, the left Riemann–Liouville fractional derivative with
the Mittag–Leffler kernel has the following form

ABR
a Dαu (ξ) =

B(α)

1− α

d

dξ

∫ ξ

a

Eα

(
−α

1− α
(ξ − t)α

)
u(t)dt. (3)

The associated fractional integral is given by

AB
a Iαu (ξ) =

1− α

B(α)
u(ξ) +

α

B(α)Γ(α)

∫ ξ

a

(ξ − t)
α−1

u(t)dt.
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The right Caputo fractional derivative with the Mittag–Leffler kernel is given by

ABCDα
b u (ξ) = −B(α)

1− α

∫ b

ξ

Eα

(
−α

1− α
(t− ξ)α

)
u(t)dt, (4)

and the right Riemann–Liouville derivative with the Mittag–Leffler kernel is defined
by the formula

ABRDα
b u (ξ) = −B(α)

1− α

d

dξ

∫ b

ξ

Eα

(
−α

1− α
(t− ξ)α

)
u(t)dt.

Moreover, the corresponding fractional integral is given by

ABIαb u (ξ) =
1− α

B(α)
u(ξ) +

α

B(α)Γ(α)

∫ b

ξ

(t− ξ)
α−1

u(t)dt.

Proposition 1. ( [1]) Let α > 0, p ≥ 1, q ≥ 1, and 1
p + 1

q ≤ 1 + α (p ̸= 1 and

q ̸= 1 when 1
p + 1

q = 1 + α).

(1) If u ∈ Lp(a.b) and v ∈ Lq(a.b), then∫ b

a

u(ξ)AB
a Iαv(ξ)dξ =

∫ b

a

v(ξ)ABIαb u(ξ)dξ.

(2) If u ∈AB Iαb (Lp) and v ∈AB
a Iα(Lq), then∫ b

a

u(ξ)ABR
a Dαv(ξ)dξ =

∫ b

a

v(ξ)ABRDα
b f(ξ)dξ,

where
ABIαb (Lp) =

{
u : u =AB Iαb v, v ∈ Lp(a.b)

}
,

and
AB
a Iα(Lq) =

{
u : u =AB

a Iαv, v ∈ Lq(a.b)
}
.

Theorem 1. ( [1]) Let u, v ∈ H1(a, b), a < b and α ∈ (0, 1) . Then we have

(1) ∫ b

a

u(ξ)ABC
a Dαv(ξ)dξ =

∫ b

a

v(ξ)ABRDα
b u(ξ)dξ

+
B(α)

1− α
v(ξ)Eα,1, −α

1−α ,b−u(ξ)|
b
a,

where

Eα,β,w,b−u (ξ) =

∫ b

ξ

(t− ξ)
β−1

Eα,β (w (t− ξ)
α
)u (t) dt, ξ < b.
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2. ∫ b

a

u(ξ)ABCDα
b v(ξ)dξ =

∫ b

a

v(ξ)ABR
a Dαu(ξ)dξ

− B(α)

1− α
v(b)Eα,1, −α

1−α ,a+u(b)

+
B(α)

1− α
v(a)Eα,1, −α

1−α ,a+u(a),

where

Eα,β,w,a+u (ξ) =

∫ ξ

a

(ξ − t)
β−1

Eα,β (w (ξ − t)
α
)u (t) dt, ξ > a.

Let

Na = {a, a+ 1, a+ 2, ...},

bN = {..., b− 2, b− 1, b},

Na,b = {a, a+ 1, a+ 2, ..., b},
where a, b ∈ R and b− a is a positive integer.

Definition 2. ( [5,6,10]) Let u : Na → R and α ∈ (0, 1/2). Then the nabla discrete
left Caputo difference with the Mittag–Leffler kernel is defined by

ABC
a ▽αu(ξ) =

B(α)

1− α

ξ∑
i=a+1

▽iu (i)Eα(
−α

1− α
, ξ − ρ(i)), ξ ∈ Na+1,

and the left Riemannn–Liouville one by

ABR
a ▽αu(ξ) =

B(α)

1− α
▽ξ

ξ∑
i=a+1

u (i)Eα(
−α

1− α
, ξ − ρ(i)), ξ ∈ Na+1,

where ρ(i) = i − 1; and the discrete the Mittag–Leffler kernel is defined by the
formula

Eα (λ, z) =

∞∑
i=0

λi ziα

Γ(iα+ 1)
,

where ziα =

iα−1∏
i=0

(t+ i) , z0 = 1, t ∈ R. Moreover, the associated fractional sum

function
AB
a ▽−αu(ξ) =

1− α

B(α)
u(ξ) +

α

B(α)
▽−α

a u(ξ), ξ ∈ Na+1,
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where

▽−α
a u(ξ) =

1

Γ(α)

ξ∑
i=a+1

(ξ − ρ(i))
α−1

u(i), ξ ∈ Na+1 (see [2,3]).

Definition 3. ( [5]) Let u :b N → R and α ∈ (0, 1/2). Then the nabla discrete
right Caputo difference with the Mittag–Leffler kernel is defined by

ABC▽α
b u(ξ) =

−B(α)

1− α

b−1∑
i=ξ

∆u (i)Eα(
−α

1− α
, i− ρ(ξ)), ξ ∈b−1 N,

and the right Reimann–Liouville one by

ABR▽α
b u(ξ) =

−B(α)

1− α
∆ξ

b−1∑
i=ξ

u (i)Eα(
−α

1− α
, i− ρ(ξ)), ξ ∈b−1 N.

Further, the associated fractional sum is defined by

AB▽−α
b u(ξ) =

1− α

B(α)
u(ξ) +

α

B(α)
▽−α

b u(ξ), ξ ∈b−1 N,

where

▽−α
b u(ξ) =

1

Γ(α)

b−1∑
i=ξ

(i− ρ(ξ))
α−1

u(i), ξ ∈b−1 N ( see [2, 3]).

Theorem 2. ( [5]) Let u, v : Na,b → R and α ∈ (0, 1/2). Then we have

b−1∑
ξ=a+1

v(ξ)AB
a ▽−αu(ξ) =

b−1∑
ξ=a+1

u(ξ)AB▽−α
b v(ξ),

b−1∑
ξ=a+1

v(ξ)ABR
a ▽αu(ξ) =

b−1∑
ξ=a+1

u(ξ)ABR▽α
b v(ξ),

and

b−1∑
ξ=a+1

u(ξ)ABC
a ▽αv(ξ) =

b−1∑
ξ=a+1

v(ξ − 1)ABR▽α
b u(ξ − 1)

+ v(b− 1)
B(α)

1− α
E1

α,1, −α
1−α ,b−

u(b− 1)

− v(a)
B(α)

1− α
E1

α,1, −α
1−α ,b−

u(a),
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where

E1
ρ,µ,w,b−u(ξ) =

b−1∑
a=ξ

(a− ρ (ξ))
µ−1

Eρ,µ (w, a− ρ (ξ))u(ξ), ξ ∈b N.

3. The Continuous Case

Let us consider the below continuous fractional Dirac system

Lu := Bu+Qu = λu, a ≤ x ≤ b < ∞, (5)

where

Q =

(
p 0
0 r

)
, u :=

(
u1

u2

)
, B =

(
0 ABC

a Dα

ABRDα
b 0

)
,

α ∈ (0, 1) , λ ∈ C; p, r ∈ C [a, b] ; p (x) > 0, r (x) > 0, ∀x ∈ [a, b] . We also consider
the following boundary conditions

κ11E
1
α,1, −α

1−α ,b−
u1 (a) + κ12u2 (a) = 0, (6)

κ21E
1
α,1, −α

1−α ,b−
u1 (b) + κ22u2 (b) = 0, (7)

with κ2
11 + κ2

12 ̸= 0 and κ2
21 + κ2

22 ̸= 0.
Now let’s define the inner product suitable for this system. Let L2((a, b);R2) denotes

the Hilbert space with the following inner product

(u, v) :=

∫ b

a

u1v1dx+

∫ b

a

u2v2dx, (8)

where

u =

(
u1

u2

)
, v =

(
v1
v2

)
,

ui and vi (i = 1, 2) are real-valued continuous functions defined on [a, b] .

Theorem 3. The operator L defined by (5)-(7) is formally self-adjoint on L2
(
(a, b) ;R2

)
.

Proof. Using (8), we get

(Lu, v)− (u, Lv) =

∫ b

a

(
ABC
a Dαu2 + p (x)u1

)
v1dx

+

∫ b

a

(
ABRDα

b u1 + r (x)u2

)
v2dx

−
∫ b

a

u1

(
ABC
a Dαv2 + p (x) v1

)
dx
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−
∫ b

a

u2

(
ABRDα

b v1 + r (x) v2
)
dx

=

∫ b

a

(
ABC
a Dαu2v1

)
dx+

∫ b

a

ABRDα
b u1v2dx

−
∫ b

a

u1(
ABC
a Dαv2)dx−

∫ b

a

u2

(
ABRDα

b v1
)
dx,

where u, v ∈ L2
(
(a, b) ;R2

)
. From Proposition 1 and Theorem 1, we obtain

(Lu, v)− (u, Lv) = [u, v]b − [u, v]a (9)

where

[u, v]x = v2(x)
B(α)

1− α
E1

α,1, −α
1−α ,b−

u1(x)− u2(x)
B(α)

1− α
E1

α,1, −α
1−α ,b−

v1(x).

By conditions (6)-(7), we get the desired result. □

Corollary 1. The eigenvalues of Eq. (5) subject to the boundary conditions (6)-(7)
are real. The eigenfunctions corresponding to different eigenvalues of the system
(5)-(7) are orthogonal.

Let us define the Wronskian of u and v by

W (u, v) (x) =

(
B(α)

1− α
E1

α,1, −α
1−α ,b−

u1 (x)

)
v2 (x)−

(
B(α)

1− α
E1

α,1, −α
1−α ,b−

v1 (x)

)
u2 (x) ,

where

u =

(
u1

u2

)
, v =

(
v1
v2

)
∈ L2((a, b);R2).

Theorem 4. Let v1 and v2 be two solutions of Eq. (5). Then W (v1, v2) is inde-
pendent of x.

Proof. By (9), we obtain

(λv1, v2)− (v1, λv2) = [v1, v2]b − [v1, v2]a ,

since Lv1 = λv1 and Lv2 = λv2. Hence

[v1, v2]b = [v1, v2]a = W (v1, v2)(a).

□

Theorem 5. Any two solutions of the Eq. (5) are linearly dependent if and only
if their Wronskian is zero.
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Proof. Assume v1 and v2 be two linearly dependent solutions of Eq. (5). Then
there exists a constant η > 0 such that v1 = ηv2. Hence

W (v1, v2)(x) =

∣∣∣∣∣∣
v11(x)

B(α)
1−α E1

α,1, −α
1−α ,b−

v12(x)

v21(x)
B(α)
1−α E1

α,1, −α
1−α ,b−

v22(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ηv21(x) ηB(α)

1−α E1
α,1, −α

1−α ,b−
v22(x)

v21(x)
B(α)
1−α E1

α,1, −α
1−α ,b−

v22(x)

∣∣∣∣∣∣ = 0.

On the other hand, if the Wronskian W (v1, v2)(x) is zero for some x in [a, b], then

we obtain
v1 = ηv2

i.e., v1 and v2 are linearly dependent on [a, b]. □

Let us now give an example to illustrate our results.

Example 1. If we take α → 1− in (5), we obtain the ordinary Dirac system ( [11])
defined as (

0 1
1 0

)
du

dx
+Qu = λu, a ≤ x ≤ b < ∞,

where

Q =

(
p 0
0 r

)
and u :=

(
u1

u2

)
.

In fact, for α ∈ (0, 1], the ABR and ABC fractional operators become well-defined
due to the Mittag-Leffler kernel (2) doesn’t have a convergence problem.

4. The Discrete Case

Let us consider the nabla discrete fractional Dirac systems

L1u = Cu+Qu = λu, x ∈ Na,b−1, (10)

Q =

(
p 0
0 r

)
, u :=

(
u1

u2

)
, C =

(
0 ABC

a ▽α

ABR▽α
b 0

)
,

where α ∈ (0, 1/2) , λ ∈ C; p and r are real-valued functions on Na,b−1; p (x) >
0, r (x) > 0, ∀x ∈ Na,b−1. We consider the following conditions

κ11

(
ABR▽α

b − B(α)

1− α
E1

α,1, −α
1−α ,b−

)
u1 (a) + κ12u2 (a) = 0, (11)

κ21

(
ABR▽α

b − B(α)

1− α
E1

α,1, −α
1−α ,b−

)
u1 (b− 1) + κ22u2 (b− 1) = 0, (12)

where κ2
11 + κ2

12 ̸= 0 and κ2
21 + κ2

22 ̸= 0.
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Let L2
∇(Na,b−1;R2) denotes the Hilbert space with the following inner product

⟨u, v⟩ :=
b−1∑

x=a+1

u1(x)v1(x) +

b−1∑
x=a+1

u2(x)v2(x),

where

u =

(
u1

u2

)
, v =

(
v1
v2

)
,

ui and vi (i = 1, 2) are real-valued functions defined on Na,b−1.

Theorem 6. The operator L1 defined by (10)-(12) is formally self-adjoint on
L2
∇(Na,b−1;R2).

Proof. Let u, v ∈ L2
∇(Na,b−1;R2). Then we see that

⟨L1u, v⟩ − ⟨u, L1v⟩ =
b−1∑

x=a+1

(
ABC
a ▽αu2 + p (x)u1

)
v1 +

b−1∑
x=a+1

(
ABR▽α

b u1 + r (x)u2

)
v2

−
b−1∑

x=a+1

u1

(
ABC
a ▽αv2 + p (x) v1

)
−

b−1∑
x=a+1

u2

(
ABR▽α

b v1 + r (x) v2
)

=

b−1∑
x=a+1

ABC
a ▽αu2v1 +

b−1∑
x=a+1

p(x)u1(x)v1(x) +

b−1∑
x=a+1

ABR▽α
b u1v2

+

b−1∑
x=a+1

r(x)u2(x)v2(x)−
b−1∑

x=a+1

u1(
ABC
a ▽αv2)−

b−1∑
x=a+1

p(x)u1(x)v1(x)

−
b−1∑

x=a+1

u2

(
ABR▽α

b v1
)
−

b−1∑
x=a+1

r(x)u2(x)v2(x)

=

b−1∑
x=a+1

ABC
a ▽αu2 v1 +

b−1∑
x=a+1

ABR▽α
b u1v2

−
b−1∑

x=a+1

u1(
ABC
a ▽αv2)−

b−1∑
x=a+1

u2

(
ABR▽α

b v1
)

=
b−1∑

x=a+1

u2 (x− 1)
ABR ▽α

b v1 (x− 1) +
B(α)

1− α
u2(x)E

1
α,1, −α

1−α ,b−
v1(x)|b−1

a

+

b−1∑
x=a+1

(
ABR▽α

b u1

)
v2 −

b−1∑
x=a+1

v2 (x− 1)
CFR ▽α

b u1 (x− 1)

− B(α)

1− α
v2(x)E

1
α,1, −α

1−α ,b−
u1(x)|b−1

a −
b−1∑

x=a+1

u2

(
ABR▽α

b v1
)
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= u2 (a)
ABR ▽α

b v1 (a)− u2 (b− 1)
ABR ▽α

b v1 (b− 1)

+
B(α)

1− α
u2(b− 1)E1

α,1, −α
1−α ,b−

v1(b− 1)− B(α)

1− α
u2(a)E

1
α,1, −α

1−α ,b−
v1(a)

+ v2 (b− 1)
ABR ▽α

b u1 (b− 1)− v2 (a)
ABR ▽α

b u1 (a)

+
B(α)

1− α
v2(a)E

1
α,1, −α

1−α ,b−
u1(a)−

B(α)

1− α
v2(b− 1)E1

α,1, −α
1−α ,b−

u1(b− 1)

= z2 (b− 1)

(
CFR▽α

b − B(α)

1− α
E1

α,1, −α
1−α ,b−

)
y1 (b− 1)

− y2 (b− 1)

(
CFR▽α

b − B(α)

1− α
E1

α,1, −α
1−α ,b−

)
z1(b− 1)

−

 v2 (a)

(
ABR▽α

b − B(α)
1−α E1

α,1, −α
1−α ,b−

)
u1(a)

−u2 (a)

(
ABR▽α

b − B(α)
1−α E1

α,1, −α
1−α ,b−

)
v1 (a)

 .

It follows from (11) and (12) that

⟨L1u, v⟩ − ⟨u, L1v⟩ = 0.

□

Corollary 2. All eigenvalues of the problem (10)-(12) are real. Eigenfunctions
corresponding to different eigenvalues are orthogonal.

Theorem 7. Let

W (u, v) (x) =

∣∣∣∣∣∣∣∣
(

ABR▽α
b − B(α)

1−α E1
α,1, −α

1−α ,b−

)
u1 (x) u2 (x)(

ABR▽α
b − B(α)

1−α E1
α,1, −α

1−α ,b−

)
v1 (x) v2 (x)

∣∣∣∣∣∣∣∣ ,
where

u =

(
u1

u2

)
, v =

(
v1
v2

)
∈ L2

∇(Na,b−1;R2)

and let θ1 and θ2 be two solutions of Eq. (5). Then W (θ1, θ2) is independent of
x. Moreover, any two linearly independent solutions φ1, φ2 of Eq. (10) are linearly
dependent if and only if W (φ1, φ2) = 0.
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Proof. The proof is as in Theorem 4 and Theorem 5. □

5. Conclusion

In this work, we have considered some fractional Dirac systems with Mittag–
Leffler kernel. Firstly, a continuous fractional Dirac system with Mittag–Leffler
kernel is studied. Its spectral properties are investigated. Later, the nabla discrete
fractional Dirac system with Mittag–Leffler kernel is constructed. Similar proper-
ties are studied. Since Dirac systems have an important place in quantum physics,
the properties of such systems are studied intensively. In this context, investigating
fractional Dirac systems with Mittag–Leffler kernel will contribute to researchers
working in this field. In the future, Green’s function can be created for this system
and eigenfunction expansions can be investigated.
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Abstract. The fundamental goal of our paper is to study θ−convex contrac-

tive mappings in metric spaces. We demonstrate some fixed point results for

such mappings. Also, we give an application to integral equations of our re-
sults. Consequently, our results encompass numerous generalizations of the

Banach contraction principle on metric space.

1. Introduction and Preliminaries

Banach [1] initially gave the Banach contraction principle which is an outstanding
result in fixed point theory. Due to its significance, over the years, abounding
researchers extended and generalized this contraction in many ways.

The notion of almost contraction was introduced by Berinde [2]. Also almost
contraction was compared with other contractions and Berinde [2], [3], [4] demon-
strated some fixed point theorems related to almost contraction.

Firstly Jleli [5] gave an attractive contraction called θ−contraction and researched
the uniqueness and existence of these mappings in complete metric spaces. After
Jleli’s first article [5], some different fixed point theorems were introduced Jleli [6],
Hussain [7] and Imdad [8] by changing and relaxing the conditions of ℧.

In recent years, a remarkable generalization of the Banach contraction principle
is the theorem by Istratescu [9]. Again, Istarescu studied convex contractions in [9],
[10], [11]. Since Istratescu’s fixed point theorems, many authors studied numerous
generalizations and applications of the result of Istratescu (see [12]- [24]).
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Ciric [25] used the concept of orbitally continuous for proving the uniqueness
and existence of the fixed point mappings. Afterwards, Bisht [15] proved some
fixed point theorems by replacing the continuity condition with orbital continuity.

Merging the ideas of Istratescu [9] and Jleli [5], we introduce a generalization
of convex type contractions. The goal of our paper is to introduce generalized
θ−convex contractive mappings and to demonstrate some fixed point theorems.
Theorems that have been demonstrated in our paper are generalizations of a variety
of results in the literature.

Now, at first we mention some fundemental definitions and notions related to
our work.

F (h) = {t ∈ W : ht = t} is fixed point of h.
Bisht [15] gave the following definition instead of continuity condition to be used

their theorems.

Definition 1. [15] Let (W,ϱ) be a metric space and h be a self mapping on W .
We say that h is orbitally continuous at a point u ∈ W if lim

j→∞
hnj t = u implies

that lim
j→∞

hnj t = hu.

Berinde [2], [3], [4] gave the concepts of almost contraction, multivalued almost
contraction and the continuity of almost contractions.

Definition 2. [2] Let (W,ϱ) be a metric space and h be a self mapping on W. h
is called an almost contraction if there exists a constant ζ ∈ (0, 1) and L ≥ 0 such
that

ϱ(ht, hs) ≤ ζϱ(t, s) + Lϱ(s, ht)

for all t, s ∈ W .

Firstly, Jleli [5] gave the concept of θ−contraction mappings and the following
family.

Let ℧ denotes the set of all mappings θ : (0,∞) → (1,∞) which hold the
following conditions:

(1) θ is strictly increasing;
(2) for all sequence {ηn} ⊂ (0,∞), limn→∞ θ (ηn) = 1 if and only if limn→∞ ηn =

0;

(3) there exist ℓ ∈ (0,∞] and r ∈ (0, 1) such that limn→∞
θ(η)−1
(η)r = ℓ.

Υ be the set of nondecreasing functions ς : [0,+∞) → [0,+∞) such that
+∞∑
j=1

ςj (η) < +∞ for each η > 0, where ςj is the j−th iterate of ς.

Remark 1. Each function ς ∈ Υ satisfies limn→∞ ςn (η) = 0 and ς (η) < η for all
η > 0.

Firstly, Jleli [5] gave the definition of θ−contraction as follows.
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Definition 3. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called θ−contraction if there exist κ ∈ (0, 1) such that

θ(ϱ(ht, hs)) ≤ [θ(ϱ(t, s))]
κ

for all t, s ∈ W , with ht ̸= hs.

Istratescu [9], [10] gave the following definitions.

Definition 4. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called convex contraction of order 2 if there exist d1, d2 ∈ (0, 1) such that
d1 + d2 < 1 and

ϱ(h2t, h2s) ≤ d1ϱ(ht, hs) + d2ϱ(t, s)

for all t, s ∈ W .

Definition 5. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called two-sided convex contraction mappings if there exist d1, d2, d3, d4 ∈
(0, 1) such that d1 + d2 + d3 + d4 < 1 and

ϱ(h2t, h2s) ≤ d1ϱ(t, ht) + d2ϱ(ht, h
2t) + d3ϱ(s, hs) + d4ϱ(hs, h

2s)

for all t, s ∈ W .

2. Main Results

In this chapter, we give concept of generalized θ−convex contractions in metric
spaces. We demonstrate some fixed point results for such contractions on metric
spaces. The following Theorem’s hypothesis are basically weaker than the set of
contraction type mappings.

Now, we will give the definition of generalized θ−convex contractive mappings.

Definition 6. Let (W,ϱ) be a metric space and h : W → W be a self-mapping.
Then h is called generalized θ−convex contraction if there exist L ≥ 0, ς ∈ Υ and
κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ
(
ϱ(h2t, h2s)

)
≤ [θ (ς(MI(t, s)))]

κ
+ LNI(t, s) (1)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

NI (t, s) = min
{
ϱ(t, ht), ϱ(s, hs), ϱ(t, hs), ϱ(s, ht), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W .

Remark 2. Every convex contraction of order 2 and two-sided convex contraction
are a generalized θ−convex contraction. Also, every θ−contraction is a generalized
θ−convex contraction. But the reverse doesn’t have to be true.

Since, our novel class of contractive type mappings is more general, it will be
more advantageous to work using this new class.

The following theorem is our first result related to generalized θ−convex con-
tractive mappings.
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Theorem 1. Let (W,ϱ) be a complete metric space and h : W → W be a generalized
θ−convex contraction. If h is either orbitally continuous on W or h is continuous,
then h has a unique fixed point.

Proof. Starting at the point t0 ∈ W, the sequence {tn} is constructed by tn =
htn−1 = hnt0, n ≥ 1. If tn0+1 = tn0

for any n0 ∈ N ∪ {0}, then it is clear that, tn0

is a fixed point of h. Consequently, assume that tn0+1 ̸= tn0 for all n0 ∈ N ∪ {0}.
Setting m = max {ϱ (t0, t1) , ϱ (t1, t2)}. First of all, we show that {ϱ (tn, tn+1)} is a
strictly nonincreasing sequence inW . Since h is a generalized θ−convex contraction,
using Remark 1 and from the first axiom of θ, we have

θ (ϱ (t2, t3)) = θ
(
ϱ
(
h2t0, h

2t1
))

≤
[
θ

(
ς

(
max

{
ϱ (t0, t1) , ϱ (ht0, ht1) , ϱ (t0, ht0) ,

ϱ
(
ht0, h

2t0
)
, ϱ (t1, ht1) , ϱ

(
ht1, h

2t1
) }))]κ

+Lmin

{
ϱ (t0, ht0) , ϱ (t1, ht1) , ϱ (t0, ht1) ,

ϱ (t1, ht0) , ϱ
(
ht0, h

2t0
)
, ϱ

(
ht1, h

2t1
) }

= [θ (ϱ (max {ϱ (t0, t1) , ϱ (t1, t2) , ϱ (t2, t3)}))]κ

≤ [θ (max {m, ϱ (t2, t3)})]κ .

If max {m, ϱ (t2, t3)} = ϱ (t2, t3), then we have

θ (ϱ (t2, t3)) ≤ [θ (ϱ (t2, t3))]
κ
.

If we take ln two both sides of the inquality, then we have

ln θ (ϱ (t2, t3)) ≤ κ ln [θ (ϱ (t2, t3))]

which is a contradiction. Hence, we get

max {m, ϱ (t2, t3)} = m = max {ϱ (t0, t1) , ϱ (t1, t2)} .

Since ς (η) < η for all η > 0, we have

θ (ϱ (t3, t4)) ≤
[
θ

(
ς

(
max

{
ϱ (t1, t2) , ϱ (ht1, ht2) , ϱ (t1, ht1) ,

ϱ(ht1, h
2t1), ϱ (t2, ht2) , ϱ

(
h2, h

2t2
) }))]κ

+Lmin

{
ϱ (t1, ht1) , ϱ (t2, ht2) , ϱ (t1, ht2) ,

ϱ (t2, ht1) , ϱ(ht1, h
2t1), ϱ

(
ht2, h

2t2
) }

≤ [θ (max {ϱ (t1, t2) , ϱ (t2, t3) , ϱ (t3, t4)})]κ .

If max {ϱ (t1, t2) , ϱ (t2, t3) , ϱ (t3, t4)} = ϱ (t3, t4), then we obtain

θ (ϱ (t3, t4)) ≤ [θ (ϱ (t3, t4))]
κ
.

If we take ln two both sides of the inequality, then we have

ln θ (ϱ (t3, t4)) ≤ κ ln [θ (ϱ (t3, t4))] .

This is one more contradiction, from which it is concluded that max {ϱ (t1, t2) , ϱ (t2, t3)} >
ϱ (t3, t4). Thus, m > ϱ (t2, t3) > ϱ (t3, t4). Hence, by induction one can get
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{ϱ (tn, tn+1)} is a strictly nonincreasing sequence in W . This implies that

θ (ϱ (tn, tn+1)) ≤
[
θ

(
ς

(
max

{
ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn−2, tn−1) ,

ϱ (tn−1, tn) , ϱ (tn−1, tn) , ϱ (tn, tn+1)

}))]κ
+Lmin

{
ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn−2, tn) ,
ϱ (tn−1, tn−1) , ϱ (tn−1, tn) , ϱ (tn, tn+1)

}
≤ [θ (max {ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn, tn+1)})]κ .

If max {ϱ (tn−2, tn−1) , ϱ (tn−1, tn) , ϱ (tn, tn+1)} = ϱ (tn, tn+1) then we get

θ (ϱ (tn, tn+1)) ≤ [θ (ϱ (tn, tn+1))]
κ
,

which is once again contradiction. Therefore, we have

θ (ϱ (tn, tn+1)) ≤ [θ (max {ϱ (tn−2, tn−1) , ϱ (tn−1, tn)})]κ

and

θ (ϱ (tn, tn+1)) ≤ [θ (ϱ (tn−1, tn))]
κ

≤ [θ (ϱ (tn−2, tn−1))]
κ2

...

≤ [θ (m)]
κl

,

whenever l = 2n or l = 2n+ 1, for l ≥ 1. Hence, we have

1 ≤ θ (ϱ (tn, tn+1)) ≤ [θ (m)]
κl

, for all l ≥ 1. (2)

Letting n → ∞, following two cases arise.

Case 1. 1 ≤ θ (ϱ (tn, tn+1)) ≤ [θ (m)]
κn

, for all n ≥ 2 and n is even.

Case 2. 1 ≤ θ (ϱ (tn, tn+1)) ≤ [θ (m)]
κn−1

, for all n ≥ 3 and n is odd.
From Case 1 and Case 2 we get lim

n→∞
θ (ϱ (tn, tn+1)) = 1. By the second axiom

of θ, we get lim
n→∞

ϱ (tn, tn+1) = 0. From the third axiom of θ, there exist ℓ ∈ (0,∞]

and r ∈ (0, 1)

lim
n→∞

θ (ϱ (tn, tn+1))− 1

[ϱ (tn, tn+1)]
r = ℓ.

Assume that ℓ < ∞ and ⊤ = ℓ
2 > 0. From the limit definition, there exists n0 ∈ N

such that ∣∣∣∣θ (ϱ (tn, tn+1))− 1

[ϱ (tn, tn+1)]
r − ℓ

∣∣∣∣ ≤ ⊤ for all n ≥ n0

which implies that

θϱ (tn, tn+1)− 1

[ϱ (tn, tn+1)]
r ≤ ℓ−⊤ = ⊤ for all n ≥ n0.

Therefore, we have

n [ϱ (tn, tn+1)]
r ≤ kn [θ (ϱ (tn, tn+1))− 1] for all n ≥ n0
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where k = 1
⊤ . Assume that ⊤ > 0 is an arbitrary number and ℓ = ∞. From the

limit definition, there exists n0 ∈ N such that

θ (ϱ (tn, tn+1))− 1

[ϱ (tn, tn+1)]
r ≥ ⊤ for all n ≥ n0

which implies that

n [ϱ (tn, tn+1)]
r ≤ kn [θ (ϱ (tn, tn+1))− 1] for all n ≥ n0 (3)

where k = 1
⊤ . Therefore, in two cases there exists n ≥ n0 and k > 0 such that (2.3)

is satisfied. Using (2.2), we get

n [ϱ (tn, tn+1)]
r ≤ kn

(
[θ (m)]

kl

− 1
)

for all l ≥ 2n0 + 1 or l ≥ 2n0.

Letting n → ∞, we get lim
n→∞

n [ϱ (tn, tn+1)]
r
= 0. Hence, there exists n1 ∈ N such

that

ϱ (tn, tn+1) ≤
1

n
1
r

for all n ≥ n1.

Now, we will demostrate that {tn} is a Cauchy sequence. For all p > q ≥ n1, we
get

ϱ (tp, tq) ≤ ϱ (tp, tp−1) + ϱ (tp−1, tp−2) + · · ·+ ϱ (tq+1, tq)

≤
p−1∑
j=q

ϱ (tj , tj+1)

<

∞∑
j=q

ϱ (tj , tj+1)

≤
∞∑
j=q

1

j
1
r

.

Since
∑∞

j=q
1

j
1
r

is convergent, lim
p,q→∞

ϱ (tp, tq) = 0. Hence, we get that {tn} is a

Cauchy sequence in W . Since (W,ϱ) is a complete metric space, there exists u ∈ W
such that tn → u. Assume that h is continuous. Since tn → u ∈ W and W is
complete metric space, we get

ϱ (u, hu) = lim
n→∞

ϱ (tn, htn) = lim
n→∞

ϱ (tn, tn+1) = 0.

Therefore u ∈ F (h). Again, assume that h is orbitally continuous on W , then

tn+1 = htn = h (hnt0) → hu as n → ∞.

Since W is complete metric space, hu = u that is u ∈ F (h). Now, assume that u
and v are arbitrary two fixed point of h. Then we get

θ (ϱ (u, v)) = θ
(
ϱ
(
h2u, h2v

))
≤ [θ (ς (MI (u, v)))]

κ
+ LNI (u, v)
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≤
[
θ

(
ς

(
max

{
ϱ (u, v) , ϱ (hu, hv) , ϱ (u, hu) , ϱ (v, hv) ,

ϱ
(
hu, h2u

)
, ϱ

(
hv, h2v

) }))]κ
+Lmin

{
ϱ (u, hu) , ϱ (v, hv) , ϱ (u, hv) , ϱ (v, hu) ,

ϱ
(
hu, h2u

)
, ϱ

(
hv, h2v

) }
≤ [θ (ϱ (u, v))]

κ
.

Thus we get

θ (ϱ (u, v)) ≤ [θ (ϱ (u, v))]
κ
.

If we take ln two both sides of the inquality, then we obtain

ln θ (ϱ (u, v)) ≤ κ ln θ (ϱ (u, v)) .

Since κ ∈ (0, 1), it is a contradiction. Hence u = v, that is, h has a unique fixed
point in W . □

Now, we shall give an example to illustrate the generality of Theorem 1.

Example 1. Let (W,ϱ) be a metric space, h be a self mapping on W and θ(t) = e
√
t

for t > 0, that is, θ ∈ ℧. Assume that h is a convex contraction of type−2 for all
t, s ∈ W with ϱ(h2t, h2s) > 0, B =

∑6
j=1 dj < 1 and dj ≥ 0 for all j = 1, 2, . . . , 6.

ϱ(h2t, h2s) ≤ d1ϱ(t, s) + d2ϱ(ht, hs) + d3ϱ(t, ht) + d4ϱ(s, hs)

+d5ϱ(ht, h
2t) + d6ϱ(hs, h

2s)

≤
6∑

j=1

dj max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
≤ Bmax

{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

where t, s ∈ W with ϱ(h2t, h2s) > 0. We obtain that

ϱ
(
h2t, h2s

)
≤ BMI(t, s).

Taking ς(t) = B
1
2 t, we have

e
√

ρ(h2t,h2s) ≤ eB
1
4
√

MI(t,s) =
[
e
√

ϱ(MI(t,s))
]κ

where κ = B
1
4 . Since θ(t) = e

√
t for t > 0, we deduce that

θ
(
ϱ(h2t, h2s

)
≤ [θ (ς (MI(t, s)))]

κ

≤ [θ (ς (MI(t, s)))]
κ
+ LNI(t, s),

where L ≥ 0. This shows that, h is a generalized θ−convex contractive mapping.

Remark 3. Above example show that our contraction condition generalizes Is-
tratescu’s contraction conditions [9], [10].
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Definition 7. Let (W,ϱ) be a metric space. A self-mapping h : W → W is called
an almost θ−convex contraction if there exist L ≥ 0 and κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ(ϱ(h2t, h2s) ≤ [θ(MI(t, s))]
κ
+ LNI(t, s)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

NI (t, s) = min
{
ϱ(t, ht), ϱ(s, hs), ϱ(t, hs), ϱ(s, ht), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W .

Definition 6 and Definition 7 generalize and merge the results derived by Jleli [5]
and Istratescu [9], [10], and some other connected results in the literature. Also,
our novel contractions can be considered as an attracted generalization of Darbo’s
fixed point problem [26], [27].

Corollary 1. Let (W,ϱ) be a complete metric space and h : W → W be an almost
θ−convex contraction. If h is either orbitally continuous on W or h is continuous,
then h has a unique fixed point that is u = hu, u ∈ W .

If we take L = 0 in Theorem 1, then we obtain the following corollary.

Corollary 2. Let (W,ϱ) be a metric space and h : W → W be a self-mapping. If
there exist ς ∈ Υ and κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ(ϱ(h2t, h2s)) ≤ [θ (ς(MI(t, s)))]
κ

(4)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W . Also, assume that h is either orbitally continuous on W or h is
continuous, then u = hu, u ∈ W .

By taking L = 0 and not considering ς ∈ Υ in Theorem 1, we deduce the
following corollary.

Corollary 3. Let (W,ϱ) be a metric space and a self-mapping h on W . If there
exist κ ∈ (0, 1) such that

ϱ(h2t, h2s) > 0 ⇒ θ(ϱ(h2t, h2s)) ≤ [θ (MI(t, s))]
κ

(5)

where θ ∈ ℧ and

MI (t, s) = max
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
,

for all t, s ∈ W . Also, assume that h is either orbitally continuous on W or h is
continuous, then u = hu, u ∈ W .

We get the following results as shown in Example 1.
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Corollary 4. Let (W,ϱ) be a metric space and a self-mapping h on W . For all
t, s ∈ W,

ϱ(h2t, h2s) ≤ Bmax
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
where B ∈ [0, 1). Also, assume that h is either orbitally continuous on W or h is
continuous, then u = hu, u ∈ W .

Corollary 5. Let (W,ϱ) be a metric space and h is a convex contraction of type−2
on W . Also, assume that h is either orbitally continuous on W or h is continuous,
then u = hu, u ∈ W .

3. Application

Now, we give an application of our result for nonlinear integral equations.

t (u) = ϑ (u) +

∫ f

e

K (u, v, t (v)) dv (6)

where e, f ∈ R, C [e, f ] = {h : [e, f ] → R continuous functions}, t ∈ C ([e, f ] ,R),K :
[e, f ]× [e, f ]× R → R and ϑ : [e, f ] → R.

Theorem 2. Consider the integral equation (3.1). Assume that the following con-
ditions satisfy:

(i) K : [e, f ]× [e, f ]× R → R and ϑ : [e, f ] → R are continuous functions;
(ii) there exists γ ∈ [0, 1) such that

|K (u, v, ht (v))−K (u, v, hs (v))| ≤ γ

max


|t(v)− s (v)| , |ht(v)− hs (v)| ,
|t(v)− ht (v)| ,

∣∣ht(v)− h2t (v)
∣∣ ,

|s(v)− hs (v)| ,
∣∣hs(v)− h2s (v)

∣∣


f − e

for all t, s ∈ C ([e, f ] ,R) and u, v ∈ [e, f ].

Then nonlinear integral equation (3.1) has a unique solution.

Proof. W = C [e, f ], ϱ(h, g) = |h− g| = maxt∈[e,f ] |ht− gt|, for all h, g ∈ W, and
(W,ϱ) is a complete metric space. h : W → W be a continuous operator defined by

ht (u) = ϑ (u) +

∫ f

e

K (u, v, t (v)) dv.

Starting at the point t0 ∈ W, the sequence {tn} is constructed by tn = htn−1 = hnt0,
n ≥ 1. From (3.1), we get

tn+1 = htn (u) = ϑ (u) +

∫ f

e

K (u, v, tn (v)) dv.
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Now, we will demonstrate that h is a generalized θ−convex contractive mapping.
We can write∣∣h2t(u)− h2s (u)

∣∣ =

∣∣∣∣∣
∫ f

e

K (u, v, ht (v)) dv −
∫ f

e

K (u, v, hs (v)) dv

∣∣∣∣∣
≤

∫ f

e

|K (u, v, ht (v))−K (u, v, hs (v))| dv

≤ γ

f − e

∫ f

e

max


|t(v)− s (v)| , |ht(v)− hs (v)| ,
|t(v)− ht (v)| ,

∣∣ht(v)− h2t (v)
∣∣ ,

|s(v)− hs (v)| ,
∣∣hs(v)− h2s (v)

∣∣
 dv

and

ϱ
(
h2t, h2s

)
= max

u∈[e,f ]

∣∣h2t(u)− h2s (u)
∣∣

≤ γ

f − e
max
u∈[e,f ]

∫ f

e

max


|t(v)− s (v)| , |ht(v)− hs (v)| ,
|t(v)− ht (v)| ,

∣∣ht(v)− h2t (v)
∣∣ ,

|s(v)− hs (v)| ,
∣∣hs(v)− h2s (v)

∣∣
 dv

≤ γ

f − e
max

 max
c∈[e,f ]


|t(c)− s (c)| , |ht(c)− hs (c)| ,
|t(c)− ht (c)| ,

∣∣ht(c)− h2t (c)
∣∣ ,

|s(c)− hs (c)| ,
∣∣hs(c)− h2s (c)

∣∣

∫ f

e

dv

≤ γmax
{
ϱ(t, s), ϱ(ht, hs), ϱ(t, ht), ϱ(s, hs), ϱ(ht, h2t), ϱ(hs, h2s)

}
≤ γMI(t, s).

Thus

ϱ
(
h2t, h2s

)
≤ γMI(t, s).

Define θ(t) = e
√
t for t > 0 and ς(t) = γ

1
2 t. We have

e
√

ρ(h2t,h2s) ≤ eγ
1
4
√

MI(t,s) =
[
e
√

ϱ(MI(t,s))
]κ

where κ = γ
1
4 . Thus, we get

θ
(
ϱ(h2t, h2s

)
≤ [θ (ς (MI(t, s)))]

κ
+ LNI(t, s)

where L ≥ 0. This shows that, h is a generalized θ−convex contractive mapping.
That is, the conditions of Theorem 1 are hold. Thus, h has a unique fixed point in
W, and so, the nonlinear integral equation (3.1) has a unique solution. □

4. Conclusion

We present generalized θ−convex contractive mappings in this paper. This con-
tractive condition not only extends several existing contraction definitions but also
merge some existing contractions. Afterward, we investigate the existence of a fixed
point for our novel type contraction, we state some consequences. Our results gen-
eralize and merge the results derived by Istratescu [9], [10] and Jleli [5], and some
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other connected results in the literature. Our new contraction can be considered as
an interesting generalization of Darbo’s fixed point problem [26], [27]. As well as
the corollaries in this paper, to underline the novelty of our given results, we show
an example that shows that Theorem 1 is a genuine generalization of Istratescu’s
results [9]. Moreover, as a possible application, we applied our main results to
study the existence of a solution for a nonlinear integral equation. The new concept
allows for further studies and applications. By choosing the appropriate auxiliary
function such as simulation function and others, one can get several more results.
Also, one can get the analogue of our result in the set-up of cyclic mappings.
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Abstract. Through this paper, via the operators (·)⋆ and Ψ, we presented

notion of ⋆-Locally set in an ideal topological space ζI as a new stronger form

of locally closed set, and considered relations with various existing weak form
of locally closed set. Preservations of direct images as well as inverse images

of (·)⋆, Ψ, ⋆-perfect and various weak forms of locally closed set including

⋆-Locally closed set are important investigating part. Besides, we pointed out
that consideration of ‘bijectivity’ in Lemma 3.1 of [24] is sufficient, and the

Lemma 3.3 of [24] is wrong. We demonstrated two modifications of the last

one.

1. Introduction

Locally closed set and its study is not a new idea in topology. This notion
was disclosed by Bourbaki [3], and after that it has been extensively studied by a
good number of mathematicians (see [7,12,20,21]). This study has been interesting
because it generalizes both open and closed sets. But the study of a locally closed set
relative to an ideal (see [13]) is a new idea, and this has been introduced through this
paper. The authors Jeyanthi et al. [12] and the author Dontchev [6] have studied
locally closed sets in terms of ideal, but these locally closed sets differ somewhat
from the current one.

We now consider some preliminary concepts from literature for developing the
paper.

Consider a topological space (Z,T) (henceforth, in this paper we shall denote
it by ζ), and suppose I is an ideal on Z. The set-valued map (·)⋆ : ℘(Z) → ℘(Z)
associated by the formula ‘H⋆ = {a ∈ Z : Ga ∩H /∈ I for every Ga ∈ Ta} for every
H ⊆ Z’ is designated as the local function [11] w.r.t. the ideal I and the topology T,
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where Ta = {G ∈ T : a ∈ G} and ℘(Z) stands for power set of Z. Other notations
used instead of H⋆ are H⋆(I,T) and H⋆(I). For the trivial ideals {∅} and ℘(Z),
values of (·)⋆ are H⋆({∅}) = Cl(H) (closure operator) and H⋆(℘(Z)) = ∅ (zero
operator), respectively. An interesting ideal on Z is In consisting of all nowhere
dense sets of ζ, and H⋆(In) = Cl(Int(Cl(H))) (see [11]), where ‘Int’ stands for
interior operator. Further, for the ideals If = {I ⊆ Z : I is finite} and Ic = {I ⊆
Z : I is countable}, H⋆(If ) = Hω (collection of all ω-accumulation point of H) and
H⋆(Ic) = Hcd (collection of all condensation point of H) (see [11]). Thus one can
think the local function (·)⋆ as a generalization of closure operator.

An important set-operator familiar to researchers as a complement of the local
function (·)⋆ : ℘(Z) → ℘(Z) is Ψ : ℘(Z) → ℘(Z), and its value acting on H ⊆ Z
is calculated by the formula Ψ(H) = Z \ (Z \ H)⋆ [22]. Note that (·)⋆ (resp.,
Ψ) is not necessarily a closure (resp., interior) operator. However, the operator
Cl⋆ : ℘(Z) → ℘(Z) given by the formula Cl⋆(H) = H∪H⋆ determines Kuratowski’s
closure operator [2, 11, 13, 27], and henceforth Z gets a new topology, named ⋆-
topology [1,2,8–10,16,23], induced by Cl⋆. Let’s name this topology as T⋆. Clearly,
T ⊆ T⋆ (see [11]). The interior operator of the space ζ⋆ = (Z,T⋆) is given by
Int⋆(H) = Z \ Cl⋆(Z \H).

Moreover, if H ⊆ H⋆, then H is known as ⋆-dense in itself [10], and if H = H⋆,
then H is termed as ⋆-perfect [10].

2. L⋆ Operator

We are beginning this section with an example to draw interest to the fact that
through idealizing a space ζ by way of a proper ideal I (i.e., Z /∈ I), one can find
an H ⊆ Z for which H⋆ intersects Ψ(H) i.e., the assertion ‘K⋆ ∩ Ψ(K) = ∅ for
every K ⊆ Z’ need no longer be correct. The notations ζI and ζ⋆I will be used to
recognize respectively the triplets (Z,T, I) and (Z,T⋆, I), ideal topological spaces,
in this write-up.

Example 1. Consider T = {∅, {ℓ1},Z} and I = {∅, {ℓ2}} on Z = {ℓ1, ℓ2, ℓ3}.
Then for H = {ℓ1, ℓ2}, H⋆ = Z, Ψ(H) = {ℓ1} and H⋆ ∩Ψ(H) ̸= ∅.

Definition 1. We define the L⋆ operator on ζI as a set-valued map L⋆ : ℘(Z) →
℘(Z) by the equation L⋆(H) = H⋆ ∩Ψ(H) for every H ⊆ Z.

Remark 1. As, we know from [11] that H⋆(I,T) = H⋆(I,T⋆), so L⋆ values of
every H ⊆ Z w.r.t. ζI and ζ⋆I are same.

We shall now discuss the value of L⋆(H) for different ideals on a topological
space.

• I = {∅} implies L⋆(H) = Cl(H) ∩ (Z \ Cl(Z \ H)) = Cl(H) ∩ Int(H) =
Int(H).

• I = ℘(Z) implies L⋆(H) = ∅ ∩Ψ(H) = ∅.
• I = In implies L⋆(H) = Cl(Int(Cl(H)))∩Int(Cl(Int(H))) = Int(Cl(Int(H))).
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• I = If implies L⋆(H) = Hω ∩ (Z \ (Z \H)ω) ⊆ Hω.
• I = Ic implies L⋆(H) = Hcd ∩ (Z \ (Z \H)cd) ⊆ Hcd.

Study of the L⋆ operator will be therefore fascinating if we are deal with a
non-trivial ideal (non-trivial means other than {∅} and ℘(Z)).

Theorem 1. For H, K ⊆ Z, the followings are true in ζI:

(1) L⋆(∅) = ∅,
(2) L⋆(Z) = Z⋆,
(3) L⋆(Z) = Z if and only if I ∩ T = {∅},
(4) L⋆(H) = Ψ(H) \Ψ(Z \H),
(5) L⋆(H) = H⋆ \ (Z \H)⋆,
(6) Z \ L⋆(H) = (Z \H)⋆ ∪ (Z \H⋆),
(7) L⋆(Z \H) = Z \ (Ψ(H) ∪H⋆),
(8) For H ⊆ K, L⋆(H) ⊆ L⋆(K),
(9) L⋆(H) ∪ L⋆(K) ⊆ L⋆(H ∪K),
(10) L⋆(H ∩K) ⊆ L⋆(H) ∩ L⋆(K),
(11) L⋆(H) ⊆ H⋆,
(12) L⋆(H) ⊆ Ψ(H),
(13) H ∩ L⋆(H) = H⋆ ∩ Int⋆(H),
(14) H ∩ L⋆(H) ⊆ Int⋆(H),
(15) L⋆(H) ⊆ H⋆ ⊆ Cl⋆(H) ⊆ Cl(H),
(16) For H ∈ T⋆, H ∩H⋆ ⊆ L⋆(H) ⊆ H⋆,
(17) For H ∈ T, H ∩H⋆ ⊆ L⋆(H) ⊆ H⋆,
(18) For a regular open H [25], L⋆(H) = H ∩H⋆,
(19) Int(L⋆(H)) = Ψ(H) ∩ Int(H⋆),
(20) Int⋆(L⋆(H)) ⊇ Ψ(H) ∩ Int⋆(H⋆),
(21) Cl(L⋆(H)) ⊆ Cl(Ψ(H)) ∩H⋆,
(22) Cl⋆(L⋆(H)) ⊆ Cl⋆(Ψ(H)) ∩H⋆,
(23) Int⋆(H⋆) ∩Ψ(H) ⊆ Int⋆(L⋆(H)) ⊆ Cl⋆(L⋆(H)) ⊆ H⋆ ∩ Cl⋆(Ψ(H)),
(24) For a ⋆-perfect set H, L⋆(H) = H ∩Ψ(H) = Int⋆(H),
(25) For a ⋆-dense in itself set H, L⋆(H) ⊇ Int⋆(H).

Proof. (1) L⋆(∅) = ∅⋆ ∩Ψ(∅) = ∅.
(2) L⋆(Z) = Z⋆ ∩Ψ(Z) = Z⋆ ∩ Z = Z⋆.
(3) Follows from the fact Z⋆ = Z if and only if I ∩ T = {∅}.
(4) L⋆(H) = H⋆ ∩Ψ(H) = (Z \Ψ(Z \H)) ∩Ψ(H) = Ψ(H) \Ψ(Z \H).
(5) L⋆(H) = H⋆ ∩Ψ(H) = H⋆ ∩ (Z \ (Z \H)⋆) = H⋆ \ (Z \H)⋆.
(6) Z\L⋆(H) = Z\(H⋆∩Ψ(H)) = (Z\H⋆)∪(Z\Ψ(H)) = (Z\H⋆)∪(Z\H)⋆.
(7) Obvious.
(8) Obvious.
(9) Follows from 8.

(10) Follows from 8.
(11) Obvious.
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(12) Obvious.
(13) H ∩ L⋆(H) = H ∩ (H⋆ ∩Ψ(H)) = H⋆ ∩ Int⋆(H).
(14) From 10, L⋆(H) ⊆ Ψ(H). Therefore, H ∩ L⋆(H) ⊆ H ∩Ψ(H) = Int⋆(H).
(15) Obvious from the fact H⋆ ⊆ H⋆ ∪H = Cl⋆(H) ⊆ Cl(H).
(16) H ∈ T implies H ⊆ Ψ(H). Now L⋆(H) = H⋆ ∩ Ψ(H) implies H⋆ ∩ H ⊆

L⋆(H).
(17) Obvious from the fact T ⊆ T⋆.
(18) SinceH is regular open, soH = Ψ(H) [2,8,18]. Now, L⋆(H) = H⋆∩Ψ(H) =

H⋆ ∩H.
(19) Int(L⋆(H)) = Int(Ψ(H) ∩H⋆) = Int(Ψ(H)) ∩ Int(H⋆) = Ψ(H) ∩ Int(H⋆).
(20) Int⋆(L⋆(H)) = Int⋆(H⋆ ∩ Ψ(H)) = [H⋆ ∩ Ψ(H)] ∩ Ψ[H⋆ ∩ Ψ(H)] = [H⋆ ∩

Ψ(H)] ∩ [Ψ(H⋆) ∩ Ψ(Ψ(H))] ⊇ [H⋆ ∩ Ψ(H)] ∩ [Ψ(H⋆) ∩ Ψ(H)] = [H⋆ ∩
Ψ(H⋆)] ∩Ψ(H) = Int⋆(H⋆) ∩Ψ(H).

(21) Similar to 19.
(22) Similar to 19.
(23) Follows from 20.
(24) Trivial.
(25) Trivial.

□

Inequality of the result (9) of Theorem 1 is highlighted in next example.

Example 2. Take Z = R (set of reals) with usual topology and I = {∅}. Pick
H = [0, 2021) and K = [2021, 2022). Then L⋆(H) = Int(H) = (0, 2021), L⋆(K) =
Int(K) = (2021, 2022) and L⋆(H ∪ K) = L⋆([0, 2022)) = (0, 2022). Evidently,
L⋆(H) ∪ L⋆(K) ̸= L⋆(H ∪K).

Theorem 2. Suppose I is an ideal on ζ and H ⊆ Z. If a ∈ L⋆(H), then there
exists at least one Ka ∈ Ta such that Ka /∈ I but Ka \H ∈ I.

Proof. a ∈ L⋆(H) gives a ∈ H⋆ but a /∈ (Z \H)⋆. Now, a /∈ (Z \H)⋆ assures the
existence of a Ka ∈ Ta such that Ka ∩ (Z \H) = Ka \H ∈ I. On the other hand,
a ∈ H⋆ tells that Ka ∩H /∈ I. This directs that Ka /∈ I, since I is an ideal. Hence,
Ka /∈ I but Ka \H ∈ I, as aimed. □

We talk about the validation of the converse part of Theorem 2 in next example.

Example 3. Take T = {∅, {ℓ1}, {ℓ2},Z} and I = {∅, {ℓ1}} on Z = {ℓ1, ℓ2}. Let
H = {ℓ2}. Then H⋆ = {ℓ2} and Ψ(H) = Z and hence L⋆(H) = {ℓ2}. Now, pick up
the point ℓ1 and choose Kℓ1 = Z ∈ Tℓ1 . Evidently, Kℓ1 /∈ I, Kℓ1 \H = {ℓ1} ∈ I but
ℓ1 /∈ L⋆(H). Therefore, the reverse direction of Theorem 2 will usually not work.

3. ⋆-Locally Closed Sets

Definition 2. We call an H ⊆ Z as ⋆-Locally closed in ζI if there is a K ⊆ Z such
that H = L⋆(K), and use the symbol L⋆(ζI) to mean {H ⊆ Z : H is ⋆-Locally closed}.
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Example 4. Topologize Z = R by considering T = {∅,Q,R} and I = ℘(Q), where
Q is the set of all rationals. Then for any H ⊆ Z,

H⋆ =

{
∅, if H ∩ (R \Q) = ∅
R \Q, if H ∩ (R \Q) ̸= ∅.

Take L = R \ Q. We observe that L = L⋆ ∩ Ψ(L). So, R \ Q is a ⋆-Locally closed
set.

Example 5. Consider ζI discussed in Example 1, and take H = {ℓ1}, K = {ℓ1, ℓ2}.
Since H = K⋆ ∩Ψ(K), so H is ⋆-Locally closed in ζI.

Definition 3. An L ⊆ Z of a space ζ is familiar with the name locally closed
[7] (resp., semi-locally closed [26], λ-locally closed [20]) if we can give the form
L = H ∩K, where H is open (resp., semi-open [14], λ-open [20]) and K is closed
(resp., semi-closed, closed).

Definition 4. An L ⊆ Z is addressed as I-locally closed [6] (resp., semi-I-locally
closed [12]) if we can present L as L = H ∩ K, where H ∈ T and K is ⋆-perfect
(resp., L = H ∩ L⋆, where H is semi-open). An equivalent definition of L to be
I-locally closed is L = H ∩ L⋆, where H ∈ T (see [12]).

Remark 2. As we know from [11], H⋆ is closed, and from [22], Ψ(H) is open,
it is derived that ⋆-Locally closed sets are locally closed. For reverse direction, we
consider next example.

Example 6. Take T = {∅, {ℓ1}, {ℓ2}, {ℓ4}, {ℓ1, ℓ2}, {ℓ1, ℓ4}, {ℓ2, ℓ4}, {ℓ1, ℓ2, ℓ4},Z}
and I = {∅, {ℓ1}, {ℓ3}, {ℓ1, ℓ3}} on Z = {ℓ1, ℓ2, ℓ3, ℓ4}. Different values of K ⊆ Z
under the operators Cl, Int, (·)⋆ and Ψ are considered in TABLE 1.

Table 1. Values of K ⊆ Z under various operators

K Cl(K) Int(K) Cl(Int(K)) K⋆ Ψ(K) L⋆(K)

∅ ∅ ∅ ∅ ∅ {ℓ1} ∅
{ℓ1} {ℓ1, ℓ3} {ℓ1} {ℓ1, ℓ3} ∅ {ℓ1} ∅
{ℓ2} {ℓ2, ℓ3} {ℓ2} {ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ3} {ℓ3} ∅ ∅ ∅ {ℓ1} ∅
{ℓ4} {ℓ3, ℓ4} {ℓ4} {ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ4}

{ℓ1, ℓ2} {ℓ1, ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ1, ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ1, ℓ3} {ℓ1, ℓ3} {ℓ1} {ℓ1, ℓ3} ∅ {ℓ1} ∅
{ℓ1, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ4}
{ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ2} {ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ2, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}
{ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ4} {ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ4}

{ℓ1, ℓ2, ℓ3} {ℓ1, ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ1, ℓ2, ℓ3} {ℓ2, ℓ3} {ℓ1, ℓ2} {ℓ2}
{ℓ1, ℓ2, ℓ4} Z {ℓ1, ℓ2, ℓ4} Z {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}
{ℓ1, ℓ3, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ1, ℓ4} {ℓ1, ℓ3, ℓ4} {ℓ3, ℓ4} {ℓ1, ℓ4} ℓ4
{ℓ2, ℓ3, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ4} {ℓ2, ℓ3, ℓ4} {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}

Z Z Z Z {ℓ2, ℓ3, ℓ4} Z {ℓ2, ℓ3, ℓ4}
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We observe that {ℓ3} is locally closed but not ⋆-Locally closed. Also, {ℓ2} is ⋆-
Locally closed but not ⋆-perfect whereas {ℓ2, ℓ3} is ⋆-perfect but not ⋆-Locally closed.
Further, {ℓ3, ℓ4} is I-locally closed but not ⋆-Locally closed; {ℓ2, ℓ4} is semi-I-locally
closed but not ⋆-Locally closed. Here, ⋆-Locally closed sets are precisely ∅, {ℓ2},
{ℓ4} and {ℓ2, ℓ3, ℓ4}, and these are also I-locally closed and hence, they are semi-
⋆-locally closed (as we know from [12] that I-locally closed implies semi-I-locally
closed). Because {ℓ4} is ⋆-Locally closed is locally closed and hence, λ-locally closed
(since locally closed implies λ-locally closed [20]), whereas {d} in Example 2.3 of [20]
λ-locally closed but not ⋆-Locally closed.

Following diagram will provide a transparent idea regarding different local ver-
sions of sets just discussed above:

λ− locally closed

⋆− Locally closed locally closed semi− locally closed

⋆− perfect I− locally closed semi− I− locally closed

Figure 1. Implication Diagram

Theorem 3. If H be ⋆-dense in itself and ⋆-Locally closed in ζI, then H is I-locally
closed.

Proof. Straightforward. □

Corollary 1. If H be ⋆-dense in itself and ⋆-Locally closed in ζI, then H is semi-
I-locally closed.

Theorem 4. An L ⊆ Z is ⋆-Locally closed in ζI if and only if L = H⋆ \ (Z \H)⋆

for some H ⊆ Z.

Proof. Immediate from Theorem 1(5). □

Theorem 5. An L ⊆ Z is ⋆-Locally closed in ζI if and only if L = Ψ(H)\Ψ(Z\H)
for some H ⊆ Z.

Proof. Immediate from Theorem 1(4). □

Theorem 6. An L ⊆ Z is ⋆-Locally closed in ζI if and only if Z \ L = (Z \H)⋆ ∪
(Z \H⋆) for some H ⊆ Z.

Proof. Obvious from Theorem 1(6). □
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It is known that in ζ, open as well as closed sets are locally closed whereas in
ζI, this occurrence need not longer be true in case of ⋆-Locally closedness. For this
purpose, consider the next example.

Example 7. Think about Example 3, and pick {ℓ1}, a clopen set. Since no H ⊆ Z
satisfies {ℓ1} = H⋆ ∩Ψ(H), {ℓ1} is not ⋆-Locally closed in ζI.

Theorem 7. If I ∩ T = {∅}, then every regular open set is ⋆-Locally closed in ζI.

Proof. Pick a regular open set H. So H = Ψ(H). Now, I∩T = {∅} yields H ⊆ H⋆.
Evidently, H⋆ ∩Ψ(H) = H. This allows that H ∈ L⋆(ζI). □

Example 8. Following facts are observed in a ζI:

• In Example 3, {ℓ2} is ⋆-Locally closed but its complement {ℓ1} is not.
• In Example 3, {ℓ2} is ⋆-Locally closed but its super set {ℓ2, ℓ3} is not.
• In Example 6, {ℓ2, ℓ3, ℓ4} is ⋆-Locally closed but its subset {ℓ2, ℓ3} is not.
• In Example 6, for the subset {ℓ2, ℓ3, ℓ4}, L⋆({ℓ2, ℓ3, ℓ4}) is not open.
• In Example 6, for the subset {ℓ4}, L⋆({ℓ4}) is not closed.
• In Example 6, {ℓ2} and {ℓ4} are ⋆-closed but their union {ℓ2, ℓ4} is not.

Remark 3. From above example, we say that the compilation L⋆(ζI) usually does
not form a topology, boolean algebra, generalized topology [15], ideal, filter [4] and
grill [5, 17].

4. Homeomorphisms

Though this entire section, an ideal I is considered as proper, ϑ as (W,O) and
ϑ⋎(I) as (W,O,⋎(I)).

Lemma 1. [24] If an ideal I on Z be proper and ⋎ : Z → W bijective, then the
ideal ⋎(I) = {⋎(I) : I ∈ I} is proper on W.

Below, we now disclose that ‘bijectivity’ of ⋎ in Lemma 1 is sufficient to carry a
(proper) ideal to a (proper) ideal.

Lemma 2. Suppose ⋎ : Z → W is a map, and I an ideal on Z. Then ⋎(I) defined
in Lemma 1 is an ideal on W. Moreover, injectivity of ⋎ preserves ‘properness’ of
I.

Proof. Firstly, ∅ ∈ I (since an ideal) implies ⋎(∅) ∈ ⋎(I). But ⋎(∅) = ∅. So,
∅ ∈ ⋎(I). Secondly, pick E1, E2 ∈ ⋎(I). Then, by the definition of ⋎(I), choose
I1, I2 ∈ I such that E1 = ⋎(I1) and E2 = ⋎(I2). Now, E1 ∪E2 = ⋎(I1) ∪⋎(I2) =
⋎(I1 ∪ I2) = ⋎(I3), where I3 = I1 ∪ I2 ∈ I (since I is ideal). This permits that
E1∪E2 ∈ ⋎(I). Lastly, take F1 ⊆ F2 and F2 ∈ ⋎(I). So, there is an I ∈ I such that
F2 = ⋎(I). Now, F1 ⊆ ⋎(I) = {⋎(u) : u ∈ I} knocks us to construct an I0 ⊆ Z as:
‘Pick those u ∈ I whose images under ⋎ goes to F1, and keep such u in I0’. Thus,
I0 = {u ∈ I : ⋎(u) ∈ F1}. Clearly, ⋎(I0) = F1 and I0 ⊆ I. Because I is an ideal,
I ∈ I implies I0 ∈ I. This again implies ⋎(I0) ∈ ⋎(I) i.e., F1 ∈ ⋎(I). Thus, we
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finally present that ⋎(I) is an ideal on W.
For second part, suppose I is proper and ⋎ injective. Claim: ⋎(I) is proper i.e.,
W /∈ ⋎(I). If not, there exists I ∈ I such that ⋎(I) = W. Now, I ⊆ Z implies W =
⋎(I) ⊆ ⋎(Z) ⊆ W whence ⋎(I) = ⋎(Z). This yields ⋎−1(⋎(I)) = ⋎−1(⋎(Z))
implies I = Z (since ⋎ is injective). So, Z ∈ I, a contradiction. □

As consequences of the Lemma 1 we have following:

Theorem 8. Let ⋎ : ζI → ϑ is a homeomorphism. Then, for every H ⊆ Z, we
have

(1) ⋎[H⋆(I)] = [⋎(H)]⋆(⋎(I)),
(2) ⋎[Ψ(H)(I)] = Ψ[⋎(H)](⋎(I)).

Proof. (1) Assume v /∈ [⋎(H)]⋆(⋎(I)). Pick an E ∈ O such that v ∈ E and
E ∩ ⋎(H) ∈ ⋎(I). Draw an I ∈ I such that ⋎(I) = E ∩ ⋎(H). Because
⋎ is injective, ⋎−1(E) ∩H = ⋎−1(E) ∩ ⋎−1(⋎(H)) = ⋎−1(E ∩ ⋎(H)) =
⋎−1(⋎(I)) = I ∈ I, where ⋎−1(E) ∈ T⋎−1(v) (by continuity of ⋎). This

tells that ⋎−1(v) /∈ H⋆(I), and we have v /∈ ⋎[H⋆(I)]. So, ⋎[H⋆(I)] ⊆
[⋎(H)]⋆(⋎(I)). Reversely, pick u ∈ W such that u /∈ ⋎[H⋆(I)]. Then,
⋎−1(u) /∈ H⋆(I). There is G ∈ T⋎−1(u) such that G ∩H ∈ I. So, ⋎(G) ∩
⋎(H) = ⋎(G ∩ H) ∈ ⋎(I), where ⋎(G) ∈ Ou. This highlights that u /∈
[⋎(H)]⋆(⋎(I)). Therefore, [⋎(H)]⋆(⋎(I)) ⊆ ⋎[H⋆(I)]. Hence, the result.

(2) ⋎[Ψ(H)(I)] = ⋎[Z \ (Z \ H)⋆(I)] = W \ ⋎[(Z \ H)⋆(I)] = W \ [⋎(Z \
H)]⋆(⋎(I)) (by first part) = W \ [W \⋎(H)]⋆(⋎(I)) = Ψ[⋎(H)](⋎(I)).

□

Theorem 9. For a homeomorphism ⋎ : ζI → ϑ⋎(I), followings are well fulfilled:

(1) if H be ⋆-perfect in ζI, then ⋎(H) is ⋆-perfect in ϑ⋎(I),
(2) if H be I-locally closed in ζI, then ⋎(H) is ⋎(I)-locally closed in ϑ⋎(I),
(3) if H be semi-I-locally closed in ζI, then ⋎(H) is semi-⋎(I)-locally closed in

ϑ⋎(I).

Proof. First two results are straightforward from Theorem 8 (1), and third one
follows from Theorem 8 (1) and the fact that ‘E is semi-open implies ⋎(E) is
semi-open’. □

For more homeomorphic image regarding (·)⋆ and Ψ operators interested readers
can see [19].

Theorem 10. For a homeomorphism ⋎ : ζI → ϑ⋎(I) and for H ⊆ Z, we have

(1) ⋎[L⋆(H)(I)] = L⋆[⋎(H)](⋎(I)),
(2) H ∈ L⋆(ζI) implies ⋎(H) ∈ L⋆(ϑ⋎(I)).

Proof. First one is derived from Theorem 8, and second one is a consequence of
first part. □
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Lemma 3. [24] If an ideal J on W be proper and ⋎ : Z → W surjective, then the
ideal ⋎−1(J) := {⋎−1(J) : J ∈ J} is proper on Z.

Below, by presenting a sophisticated counterexample, we will show the Lemma
3 is wrong.

Example 9. Consider the map ⋎ : Z → N ∪ {0} as x 7→ |x|. Here, Z and N
denote the set of all integers and the set of all positive integers, respectively, and
| · | is the modulus function. Note that ⋎ is surjective. Consider the subset O of
all odd positive integers, and take J = ℘(O). Then, J is a proper ideal on N ∪ {0}.
Now, {1} ∈ J implies ⋎−1({1}) = {−1,+1} ∈ ⋎−1(J). Though {−1} ⊆ {−1,+1},
{−1} /∈ ⋎−1(J). Thus, ⋎−1(J) is not an ideal on Z.

A modification of Lemma 3 is presented below:

Lemma 4. Let ⋎ : Z → W be a map, and J an ideal on W. Then

⋎←(J) := {E ⊆ Z : E ⊆ ⋎−1(J), J ∈ J}

is an ideal on Z. In addition, surjectivity of ⋎ preserves ‘properness’ of J.

Proof. Firstly, ∅ ⊆ ⋎−1(∅), where ∅ ∈ J (since an ideal) implies ∅ ∈ ⋎←(J).
Secondly, take E1 ⊆ E2 and E2 ∈ ⋎←(J). There is a J ∈ J such that E2 ⊆
⋎−1(J), and so, E1 ⊆ ⋎−1(J) implies that E1 ∈ ⋎←(J). Thirdly, consider E1,
E2 ∈ ⋎←(J). Then, pick J1, J2 ∈ J such that E1 ⊆ ⋎−1(J1) and E2 ⊆ ⋎−1(J2).
Now, E1 ∪ E2 ⊆ ⋎−1(J1) ∪ ⋎−1(J2) = ⋎−1(J1 ∪ J2), where J1 ∪ J2 ∈ J (since J is
an ideal). Therefore, E1 ∪ E2 ∈ ⋎←(J). Thus, we demonstrate that ⋎←(J) is an
ideal on Z.
For second part, consider ⋎ is surjective and J proper. Claim: ⋎←(J) is proper. If
not so, Z ∈ ⋎←(J). Choose J ∈ J such that Z ⊆ ⋎−1(J). Because ⋎ is surjective,
W = ⋎(Z) ⊆ ⋎(⋎−1(J)) = J ⊆ W implies W = J ∈ J, a contradiction. □

We demonstrate another modification of Lemma 3 in next corollary:

Corollary 2. If ⋎ be bijective, then ⋎−1(J) of Lemma 3 coincides with ⋎←(J),
and hence, becomes an ideal.

Proof. It is transparent from the fact ‘for each J ∈ J, ⋎−1(J) ⊆ ⋎−1(J)’ that
⋎−1(J) ⊆ ⋎←(J). For backward part, let’s pick an E ∈ ⋎←(J). Then, E ⊆ ⋎−1(J)
for some J ∈ J. Because ⋎ is surjective, ⋎(E) ⊆ ⋎(⋎−1(J)) = J implies ⋎(E) ∈ J.
Because ⋎ is injective, E = ⋎−1(⋎(E)) ∈ ⋎−1(J). Thus, ⋎←(J) ⊆ ⋎−1(J), as
aimed. □

As an application of Corollary 2, we have following important result:

Theorem 11. For a homeomorphism ⋎ : ζ⋎−1(J) → ϑJ, and for K ⊆ W, we have

(1) ⋎−1[K⋆(J)] = [⋎−1(K)]⋆(⋎−1(J)),
(2) ⋎−1[Ψ(K)(J)] = Ψ[⋎−1(K)](⋎−1(J)).
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Proof. (1) Assume u /∈ [⋎−1(K)]⋆(⋎−1(J)). Select an E ∈ Tu for which E ∩
⋎−1(K) ∈ ⋎−1(J). Draw a J ∈ J such that E∩⋎−1(K) = ⋎−1(J). Because
⋎ is bijective, ⋎(E) ∩ K = ⋎(E) ∩ ⋎(⋎−1(K)) = ⋎(E ∩ ⋎−1(K)) =
⋎(⋎−1(J)) = J ∈ J, where continuity of ⋎−1 implies ⋎(E) ∈ O⋎(u).

This states that ⋎(u) /∈ K⋆(J), and this again implies u /∈ ⋎−1[K⋆(J)].
Therefore, ⋎−1[K⋆(J)] ⊆ [⋎−1(K)]⋆(⋎−1(J)). For reverse part, pick v /∈
⋎−1[K⋆(J)]. Then, ⋎(v) /∈ K⋆(J). Choose F ∈ O⋎(v) such that F ∩K ∈ J.
Continuity of ⋎ assures ⋎−1(F ) ∈ Tv, and ⋎−1(F ) ∩ ⋎−1(K) = ⋎−1(F ∩
K) ∈ ⋎−1(J). This indicates v /∈ [⋎−1(K)]⋆(⋎−1(J)), and consequently
[⋎−1(K)]⋆(⋎−1(J)) ⊆ ⋎−1[K⋆(J)].

(2) ⋎−1[Ψ(K)(J)] = ⋎−1[W \ (W \ K)⋆(J)] = Z \ ⋎−1[(W \ K)⋆(J)] = Z \
[⋎−1(W \ K)]⋆(⋎−1(J)) (by first part) = Z \ [Z \ ⋎−1(K)]⋆(⋎−1(J)) =
Ψ[⋎−1(K)](⋎−1(J)).

□

Theorem 12. For a homeomorphism ⋎ : ζ⋎−1(J) → ϑJ, followings are well fulfilled:

(1) if K be ⋆-perfect in ϑJ, then ⋎−1(K) is ⋆-perfect in ζ⋎−1(J),

(2) if K be J-locally closed in ϑJ, then ⋎−1(K) is ⋎−1(J)-locally closed in
ζ⋎−1(J),

(3) if K be semi-J-locally closed in ϑJ, then ⋎−1(K) is semi-⋎−1(J)-locally
closed in ζ⋎−1(J).

Proof. First two results are straightforward from Theorem 11 (1), and third one
follows from Theorem 11 (1) and the fact that ‘F is semi-open implies ⋎−1(F ) is
semi-open’. □

Theorem 13. For a homeomorphism ⋎ : ζ⋎−1(J) → ϑJ, and for K ⊆ W, we have

(1) ⋎−1[L⋆(K)(J)] = L⋆[⋎−1(K)](⋎−1(J)),
(2) K ∈ L⋆(ϑJ) implies ⋎−1(K) ∈ L⋆(ζ⋎−1(J)).

Proof. First one is derived from Theorem 11, and second one is a consequence of
first part. □

5. Conclusion

Kuratowski’s local function ‘(·)⋆’ is a generalized operator of the classic closure
operator ‘Cl’, and ‘Ψ’ operator is a generalized operator of the classic interior op-
erator ‘Int’. On the other side, one can think Bourbaki’s locally closed sets are
applications of the operators ‘Cl’ and ‘Int’. Replacing these classic operators by
the updated generalized operator ‘(·)⋆’ and ‘Ψ’, we derived a new version of locally
closed set, and named ⋆-Locally closed. Example 6 and FIGURE 1 show that our
⋆-Locally closed version is a stronger form of locally closed set.
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Abstract. The Hybrid numbers are generalizations of complex, hyperbolic

and dual numbers. In recent years, studies related with hybrid numbers have
been increased significantly. In this paper, we introduce the generalized bivari-

ate conditional Fibonacci and Lucas hybrinomials. Also, we present the Binet

formula, generating functions, some significant identities, Catalan’s identities
and Cassini’s identities of the generalized bivariate conditional Fibonacci and

Lucas hybrinomials. Finally, we give more general results compared to the

previous works.

1. Introduction

The Fibonacci and Lucas numbers are defined by

Fn =

 0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n ⩾ 2

and Ln =

 2 if n = 0
1 if n = 1
Ln−1 + Ln−2 if n ⩾ 2

, (1)

respectively. For more information about the Fibonacci and Lucas numbers, we
refer to book [9]. Until now, there have been interesting generalizations and appli-
cations of the Fibonacci and Lucas numbers [5–7,12,16]. For example, Falcon and
Plaza found the general k−Fibonacci sequence {Fk,n}∞n=0 by studying the recursive
application of two geometrical transformations used in the well-known 4−triangle
longest-edge (4TLE) partition [7]. Furthermore, Edson and Yayenie [6] proposed
the bi-periodic Fibonacci sequence. Also they gave generating function, the gener-
alized Binet formula and some basic identities for qn. By analogy to the studies [6]
and [16], Bilgici [5] defined the bi-periodic Lucas numbers and he gave generating
functions, the Binet formulas and some special identities for these sequences. Later,
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Yılmaz et al. [18] presented generalized of Fibonacci and Lucas polynomials. Also
they obtained some new algebraic properties on these numbers and polynomials.
Yazlık et al. introduced a novel extension of the Fibonacci and Lucas p−numbers
and demonstrated that these generalized Fibonacci and Lucas p−sequences can be
simplified into various other number sequences [17]. Ait-Amrane and Belbachir pre-
sented the bi-periodic r−Fibonacci sequence and its related family of companion
sequences. They also explored the bi-periodic r−Lucas sequence of type s, where s
ranges from 1 to r, extending the classical Fibonacci and Lucas sequences. [1]. Bel-
bachir and Bencherif [4] have generalized to bivariate polynomials of the Fibonacci
and Lucas, properties obtained for Chebyshev polynomials. Ait-Amrane et al. pre-
sented a novel extension of hybrid polynomials, which combine elements of both
Fibonacci and Lucas polynomials and studied various fundamental characteristics
of these polynomials, including recurrence relations, generating functions, Binet for-
mulas, summation formulas, and a matrix representation [2]. Panwar and Singh [11]
introduced a generalized bivariate Fibonacci-Like polynomials sequence. Bala and
Verma [15] presented the generalized Bivariate bi-periodic Fibonacci polynomials.

For any nonzero real numbers a, b, c and d, the generalization of bivariate bi-
periodic Fibonacci polynomial is defined as [15],

Bn(x, y) =

{
axBn−1(x, y) + cyBn−2(x, y), if n is even

bxBn−1(x, y) + dyBn−2(x, y), if n is odd
, n ≥ 2 (2)

where B0(x, y) = 0, B1(x, y) = 1. Also, the authors obtained Catalan’s identity,
Cassini’s identity, d’Ocagne identity and Gelin Cesaro identity along with Generat-
ing function and Binet’s formula for the bivariate bi-periodic Fibonacci polynomial.
The authors presented the generating function of the bivariate bi-periodic Fibonacci
polynomial as:

G(t) =
t+ axt2 − cyt3

1− (abx2 + (c+ d)y)t2 + cdy2t4
. (3)

Moreover, they obtained Binet’s formula for the bivariate bi-periodic Fibonacci
polynomial as:

Bn(x, y) =
(ax)1−ξ(n)

(abx2)⌊
n
2
⌋

(
β
⌊n

2
⌋

1 (β1 + (d− c)y)n−⌊n
2
⌋ − β

⌊n
2
⌋

2 (β2 + (d− c)y)n−⌊n
2
⌋

β1 − β2

)
. (4)

Then, Bala and Verma [3] defined the bivariate bi-periodic Lucas polynomials as
follows:

For any nonzero real numbers a1 and a2, the generalization of bivariate bi-
periodic Lucas polynomial is defined as [3],

ln(x, y) =

{
a1xln−1(x, y) + yln−2(x, y), if n is even

a2xln−1(x, y) + yln−2(x, y), if n is odd
n ≥ 2 (5)

where, l0(x, y) = 2, l1(x, y) = a2x.
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Özdemir [10] introduced the hybrid numbers as a new generalization of complex,
hyperbolic and dual numbers. The set of hybrid numbers, denoted by K, is defined
as

K =
{
a+ bi+ cε+ dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0,h2 = 1, ih = −hi = ε+ i

}
. (6)

The following table presents products of i, ε, and h.

Table 1. Products of i, ε, and h

× 1 i ε h
1 1 i ε h
i i −1 1− h ε+ i
ε ε h+ 1 0 −ε
h h −ε− i ε 1

This table shows that the multiplication operation in the hybrid numbers is
not commutative, but associative. Liana [13] presented the special kind of hybrid
numbers, namely Horadam hybrid numbers. Then, Kızılateş [8] obtained a new
generalization of Fibonacci hybrid and Lucas hybrid numbers. He gave some alge-
braic properties of q−Fibonacci hybrid numbers and the q−Lucas hybrid numbers.
Finally, Liana and Wloch [14] introduced the Fibonacci and Lucas hybrinomials,
which can be considered as a generalization of the Fibonacci hybrid numbers and
the Lucas hybrid numbers. Sevgi [12] defined the generalized Lucas hybrinomials
with two variables. Also, he obtained the Binet formula, generating function and
some properties for the generalized Lucas hybrinomials.

In the light of the above–cited recent works, some natural questions are that: can
we define the bivariate conditional Fibonacci and Lucas Hybrinomials? Moreover,
can we find the generating function, Binet formulas and some important identities
for the bivariate conditional Fibonacci and Lucas Hybrinomials? In this study, we
will investigate the answer to these questions.

This paper is structured in four section. First section includes preliminaries and
literature review. In the second section, we define bivariate conditional Fibonacci
hybrinomials and we give generating functions, Binet formulas and some impor-
tant identities of these hybrinomials. In the third section, we discuss bivariate
conditional Lucas polynomials and the bivariate conditional Lucas hybrinomials.

2. Generalized Bivariate Conditional Fibonacci Hybrinomials

In this section we give some identities of the generalized bivariate conditional
Fibonacci hybrinomials. The next definition presents the bivariate conditional Fi-
bonacci Hybrinomials.

Definition 1. For any variables x, y and nonzero real numbers a, b, c and d, we
have

BHn(x, y) = Bn(x, y) + iBn+1(x, y) + εBn+2(x, y) + hBn+3(x, y), (7)
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where Bn(x, y) was given in (2) and the initial conditions are BH0(x, y) = i+εax+
h(abx2 + dy) and BH1(x, y) = 1 + iax+ ε(abx2 + dy) + h(a2bx3 + adxy + acxy).

We can see from the following table that the generalized bivariate conditional
Fibonacci hybrinomials are the generalization of many works for different values of
a, b, c and d.

Table 2. The generalized bivariate conditional Fibonacci hybrinomials

a b c d Generalized Bivariate Conditional Fibonacci Hybrinomials

1 1 1 1 Bivariate Fibonacci Hybrinomials

a b 1 1 Bivariate Conditional Fibonacci Hybrinomials

2 2 1 1 Bivariate Pell Hybrinomials

1 1 2 2 Bivariate Jacobsthal Hybrinomials
...

...
...

... ...

Lemma 1. For the generalized bivariate conditional Fibonacci hybrinomials
{BHn(x, y)}∞n=0, we have

BH2n(x, y) =
(
abx2 + (c+ d)y

)
BH2n−2(x, y)− cdy2BH2n−4(x, y)

BH2n+1(x, y) =
(
abx2 + (c+ d)y

)
BH2n−1(x, y)− cdy2BH2n−3(x, y).

Proof. By using the definition of the generalized bivariate conditional Fibonacci
hybrinomials, we obtain

BH2n(x, y) = B2n(x, y) + iB2n+1(x, y) + εB2n+2(x, y) + hB2n+3(x, y)

= (axB2n−1(x, y) + cyB2n−2(x, y)) + i (bxB2n(x, y) + dyB2n−1(x, y))

+ ε(axB2n+1(x, y) + cyB2n(x, y))

+ h(bxB2n+2(x, y) + dyB2n+1(x, y))

= [ax (bxB2n−2(x, y) + dyB2n−3(x, y)) + cyB2n−2(x, y)]

+ i [bx (axB2n−1(x, y) + cyB2n−2(x, y)) + dyB2n−1(x, y)]

+ε [ax (bxB2n(x, y) + dyB2n−1(x, y)) + cyB2n(x, y))]

+ h [bx (axB2n+1(x, y) + cyB2n(x, y)) + dyB2n+1(x, y)]

= [
(
abx2 + cy

)
B2n−2(x, y) + dy (axB2n−3(x, y))]

+ i[
(
abx2 + dy

)
B2n−1(x, y) + cy (bxB2n−2(x, y))]

+ ε[
(
abx2 + cy

)
B2n(x, y) + dy (axB2n−1(x, y))]

+ h[
(
abx2 + dy

)
B2n+1(x, y) + cy (bxB2n(x, y))]
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= [
(
abx2 + cy

)
B2n−2(x, y) + dy (B2n−2(x, y)− cyB2n−4(x, y))]

+ i[
(
abx2 + dy

)
B2n−1(x, y) + cy (B2n−1(x, y)− dyB2n−3(x, y))]

+ ε[
(
abx2 + cy

)
B2n(x, y) + dy (B2n(x, y)− cyB2n−2(x, y))]

+ h[
(
abx2 + dy

)
B2n+1(x, y) + cy (B2n+1(x, y)− dyB2n−1(x, y))]

= [
(
abx2 + (c+ d) y

)
B2n−2(x, y)− cdy2B2n−4(x, y)]

+ i[
(
abx2 + (c+ d) y

)
B2n−1(x, y)− cdy2B2n−3(x, y)]

+ ε[
(
abx2 + (c+ d) y

)
B2n(x, y)− cdy2B2n−2(x, y)]

+ h[
(
abx2 + (c+ d) y

)
B2n+1(x, y)− cdy2B2n−1(x, y)]

=
(
abx2 + (c+ d) y

)
[B2n−2(x, y) + iB2n−1(x, y) + εB2n(x, y) + hB2n+1(x, y)]

− cdy2[B2n−4(x, y) + iB2n−3(x, y) + εB2n−2(x, y) + hB2n−1(x, y)]

=
(
abx2 + (c+ d) y

)
BH2n−2(x, y)− cdy2BH2n−4(x, y).

Similar to the above steps, we can obtain

BH2n+1(x, y) =
(
abx2 + (c+ d)y

)
BH2n−1(x, y)− cdy2BH2n−3(x, y).

Thus, the proof is completed. □

Next, we give the generating function of the bivariate conditional Fibonacci
hybrinomial BHn(x, y).

Theorem 1. The generating function for the bivariate conditional Fibonacci hy-
brinomial BHn(x, y) is

G(t) =

∞∑
n=0

BHn(x, y)t
n =

BH0(x, y) +BH1(x, y)t

1− (abx2 + (c+ d) y) t2 + cdy2t4

+

[
BH2(x, y)−

(
abx2 + (c+ d)y

)
BH0(x, y)

]
t2

1− (abx2 + (c+ d) y) t2 + cdy2t4

+

[
BH3(x, y)−

(
abx2 + (c+ d) y

)
BH1(x, y)

]
t3

1− (abx2 + (c+ d) y) t2 + cdy2t4
.

(8)

Proof. We define

G0(t) =

∞∑
n=0

BH2n(x, y)t
2n

G1(t) =

∞∑
n=0

BH2n+1(x, y)t
2n+1.

So that

G(t) = G0(t) +G1(t).
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We have

G0(t) =

∞∑
n=0

BH2n(x, y)t
2n

=

∞∑
n=0

BH2n(x, y)t
2n = BH0(x, y)t

0 +BH2(x, y)t
2 +

∞∑
n=2

BH2n(x, y)t
2n

= BH0(x, y) +BH2(x, y)t
2

+

∞∑
n=2

[(
abx2 + (c+ d)y

)
BH2n−2(x, y)− cdy2BH2n−4(x, y)

]
t2n

= BH0(x, y) +BH2(x, y)t
2 +

(
abx2 + (c+ d)y

)
t2

∞∑
n=2

BH2n−2(x, y)t
2n−2

− cdy2t4
∞∑

n=2

BH2n−4(x, y)t
2n−4

= BH0(x, y) +BH2(x, y)t
2

+
(
abx2 + (c+ d)y

)
t2

×

[ ∞∑
n=2

BH2n−2(x, y)t
2n−2 +BH0(x, y)t

0 −BH0(x, y)t
0

]
− cdy2t4G0(t)

= BH0(x, y) +BH2(x, y)t
2 +

(
abx2 + (c+ d)y

)
t2G0(t)

−
(
abx2 + (c+ d)y

)
t2BH0(x, y)− cdy2t4G0(t).

Thus, we get

G0(t) =
BH0(x, y) +

(
BH2(x, y)−

(
abx2 + (c+ d)y

)
BH0(x, y)

)
t2

1− (abx2 + (c+ d)y) t2 + cdy2t4
. (9)

Similarly, we find

G1(t) =

∞∑
n=0

BH2n+1(x, y)t
2n+1

=

∞∑
n=0

BH2n+1(x, y)t
2n+1

= BH1(x, y)t+BH3(x, y)t
3 +

∞∑
n=2

BH2n+1(x, y)t
2n+1
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= BH1(x, y)t+BH3(x, y)t
3

+

∞∑
n=2

[(
abx2 + (c+ d)y

)
BH2n−1(x, y)− cdy2BH2n−3(x, y)

]
t2n+1

= BH1(x, y)t+BH3(x, y)t
3 +

(
abx2 + (c+ d)y

)
t2

∞∑
n=2

BH2n−1(x, y)t
2n−1

− cdy2t4
∞∑

n=2

BH2n−3(x, y)t
2n−3

= BH1(x, y)t+BH3(x, y)t
3

+
(
abx2 + (c+ d)y

)
t2

[ ∞∑
n=2

BH2n−1(x, y)t
2n−1 +BH1(x, y)t−BH1(x, y)t

]
− cdy2t4G1(t)

= BH1(x, y)t+BH3(x, y)t
3 +

(
abx2 + (c+ d)y

)
t2G1(t)

−
(
abx2 + (c+ d)y

)
t3BH1(x, y)− cdy2t4G1(t).

Therefore, we get

G1(t) =
BH1(x, y)t+

(
BH3(x, y)−

(
abx2 + (c+ d)y

)
BH1(x, y)

)
t3

1− (abx2 + (c+ d)y) t2 + cdy2t4
. (10)

By virtue of (9) and (10), we can obtain

G(t) = G0(t) +G1(t)

=

∞∑
n=0

BHn(x, y)t
n

=
BH0(x, y) +BH1(x, y)t+

[
BH2(x, y)−

(
abx2 + (c+ d)y

)
BH0(x, y)

]
t2

1− (abx2 + (c+ d) y) t2 + cdy2t4

+

[
BH3(x, y)−

(
abx2 + (c+ d) y

)
BH1(x, y)

]
t3

1− (abx2 + (c+ d) y) t2 + cdy2t4
.

Hence, the proof is completed. □

Now we give the Binet formula of the bivariate conditional Fibonacci hybrinomial
BHn(x, y).

Theorem 2. The nth term of the generalized bivariate conditional Fibonacci hy-
brinomial BHn(x, y) is

BHn(x, y) =
α̂ξ(n)β

⌊n
2
⌋

1 (β1 + (d− c)y)⌊
n
2
⌋+ξ(n) − γ̂ξ(n)β

⌊n
2
⌋

2 (β2 + (d− c)y)⌊
n
2
⌋+ξ(n)

(abx2)⌊
n
2
⌋ (β1 − β2)

. (11)
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where β1 and β2 roots of the characteristic equation λ2−(abx2+(c−d)y)λ−abdx2y =
0. Also,

α̂ξ(n) = (ax)
ξ(n+1)

+ i
(ax)

ξ(n)
β
ξ(n)
1

(abx2)
ξ(n)

(β1 + (d− c)y)
ξ(n+1)

+ ε
(ax)

ξ(n+1)
β1

(abx2)
(β1 + (d− c)y)

+ h
(ax)

ξ(n)
β
ξ(n)+1
1

(abx2)
ξ(n)+1

(β1 + (d− c)y)
ξ(n+1)+1

and

γ̂ξ(n) = (ax)
ξ(n+1)

+ i
(ax)

ξ(n)
β
ξ(n)
2

(abx2)
ξ(n)

(β2 + (d− c)y)
ξ(n+1)

+ ε
(ax)

ξ(n+1)
β2

(abx2)
(β2 + (d− c)y)

+ h
(ax)

ξ(n)
β
ξ(n)+1
2

(abx2)
ξ(n)+1

(β2 + (d− c)y)
ξ(n+1)+1

.

Proof. We use the following properties throughout the proof:

• β1 + β2 = abx2 + (c− d)y
• β1 · β2 = −abdx2y
• (β1 + dy) (β2 + dy) = cdy2

• (β1 + dy)
(
abx2

)
= β1 (β1 + (d− c)y)

• (β2 + dy)
(
abx2

)
= β2 (β2 + (d− c)y).

Note that β1(x, y) = β1 and β2(x, y) = β2. By using (4), we have

BH2n(x, y) = B2n(x, y) + iB2n+1(x, y) + εB2n+2(x, y) + hB2n+3(x, y)

=
(ax)

(abx2)
n

[
βn
1 (β1 + (d− c)y)

n − βn
2 (β2 + (d− c)y)

n

β1 − β2

]
+ i

1

(abx2)
n

[
βn
1 (β1 + (d− c)y)

n+1 − βn
2 (β2 + (d− c)y)

n+1

β1 − β2

]

+ ε
(ax)

(abx2)
n+1

[
βn+1
1 (β1 + (d− c)y)

n+1 − βn+1
2 (β2 + (d− c)y)

n+1

β1 − β2

]

+ h
1

(abx2)
n+1

[
βn+1
1 (β1 + (d− c)y)

n+2 − βn+1
2 (β2 + (d− c)y)

n+2

β1 − β2

]
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=
βn
1 (β1 + (d− c)y)n

(abx2)n (β1 − β2)

×

[
ax+ i (β1 + (d− c)y) + ε

ax

abx2
β1 (β1 + (d− c)y) + h

1

abx2
β1 (β1 + (d− c)y)2

]

− βn
2 (β2 + (d− c)y)n

(abx2)n (β1 − β2)

×

[
ax+ i (β2 + (d− c)y) + ε

ax

abx2
β2 (β2 + (d− c)y) + h

1

abx2
β2 (β2 + (d− c)y)2

]

Here, we choose the α̂0 and γ̂0 as follows:

α̂0 =

[
ax+ i (β1 + (d− c)y) + ε

ax

abx2
β1 (β1 + (d− c)y) + h

1

abx2
β1 (β1 + (d− c)y)2

]
γ̂0 =

[
ax+ i (β2 + (d− c)y) + ε

ax

abx2
β2 (β2 + (d− c)y) + h

1

abx2
β2 (β2 + (d− c)y)2

]
.

Finally, the following equation is obtained:

BH2n(x, y) =
α̂0β

n
1 (β1 + (d− c)y)

n − γ̂0β
n
2 (β2 + (d− c)y)

n

(abx2)
n
(β1 − β2)

. (12)

In a similar way, by using (4), we have

BH2n+1(x, y) = B2n+1(x, y) + iB2n+2(x, y) + εB2n+3(x, y) + hB2n+4(x, y)

=
1

(abx2)n

[
βn
1 (β1 + (d− c)y)n+1 − βn

2 (β2 + (d− c)y)n+1

β1 − β2

]
+ i

(ax)

(abx2)n+1

[
βn+1
1 (β1 + (d− c)y)n+1 − βn+1

2 (β2 + (d− c)y)n+1

β1 − β2

]
+ ε

1

(abx2)n+1

[
βn+1
1 (β1 + (d− c)y)n+2 − βn+1

2 (β2 + (d− c)y)n+2

β1 − β2

]
+ h

(ax)

(abx2)n+2

[
βn+2
1 (β1 + (d− c)y)n+2 − βn+2

2 (β2 + (d− c)y)n+2

β1 − β2

]
=

βn
1 (β1 + (d− c)y)n+1

(abx2)n (β1 − β2)

×

[
1 + i

ax

abx2
β1 + ε

1

abx2
β1 (β1 + (d− c)y) + h

ax

(abx2)2
β2
1 (β1 + (d− c)y)

]

− βn
2 (β2 + (d− c)y)n+1

(abx2)n (β2 − β2)

×
[
1 + i

ax

abx2
β2 + ε

1

abx2
β2 (β2 + (d− c)y) + h

ax

(abx2)2
β2
2 (β2 + (d− c)y)

]
.
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Here, we choose the α̂1 and γ̂1 as follows;

α̂1 =

[
1 + i

ax

abx2
β1 + ε

1

abx2
β1 (β1 + (d− c)y) + h

ax

(abx2)2
β2
1 (β1 + (d− c)y)

]
γ̂1 =

[
1 + i

ax

abx2
β2 + ε

1

abx2
β2 (β2 + (d− c)y) + h

ax

(abx2)2
β2
2 (β2 + (d− c)y)

]
.

Finally, the following equation is obtained.

BH2n+1(x, y) =
α̂1β

n
1 (β1 + (d− c)y)

n+1 − γ̂1β
n
2 (β2 + (d− c)y)

n+1

(abx2)
n
(β1 − β2)

(13)

By virtue of (12) and (13), we can obtain the following equation.

BHn(x, y) =
α̂ξ(n)β

⌊n
2
⌋

1 (β1 + (d− c)y)⌊
n
2
⌋+ξ(n) − γ̂ξ(n)β

⌊n
2
⌋

2 (β2 + (d− c)y)⌊
n
2
⌋+ξ(n)

(abx2)⌊
n
2
⌋ (β1 − β2)

.

where β1 and β2 roots of the characteristic equation λ2 − (abx2 + (c − d)y)λ −
abdx2y = 0. Also,

α̂ξ(n) = (ax)
ξ(n+1)

+ i
(ax)

ξ(n)
β
ξ(n)
1

(abx2)
ξ(n)

(β1 + (d− c)y)
ξ(n+1)

+ ε
(ax)

ξ(n+1)
β1

(abx2)
(β1 + (d− c)y)

+ h
(ax)

ξ(n)
β
ξ(n)+1
1

(abx2)
ξ(n)+1

(β1 + (d− c)y)
ξ(n+1)+1

and

γ̂ξ(n) = (ax)
ξ(n+1)

+ i
(ax)

ξ(n)
β
ξ(n)
2

(abx2)
ξ(n)

(β2 + (d− c)y)
ξ(n+1)

+ ε
(ax)

ξ(n+1)
β2

(abx2)
(β2 + (d− c)y)

+ h
(ax)

ξ(n)
β
ξ(n)+1
2

(abx2)
ξ(n)+1

(β2 + (d− c)y)
ξ(n+1)+1

.

□

Now, we give the Catalan’s identity of the bivariate conditional Fibonacci hy-
brinomial BHn(x, y).
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Theorem 3. For any integers n and r and n ⩾ r ⩾ 0, we have

BH2(n+r)+ξ(i)(x, y)BH2(n−r)+ξ(i)(x, y) −
(
BH2n+ξ(i)(x, y)

)2
=

1

(abx2)2n (β1 − β2)2

×
[
α̂ξ(i)γ̂ξ(i)β1

nβ2
n (β1 + (d− c)y)n+ξ(i) (β2 + (d− c)y)n+ξ(i)

[
1 −

(
β1 (β1 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
+

1

(abx2)2n (β1 − β2)2

×
[
γ̂ξ(i)α̂ξ(i)β2

nβ1
n (β2 + (d− c)y)n+ξ(i) (β1 + (d− c)y)n+ξ(i)

[
1 −

(
β2 (β2 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
,

where α̂ξ(i) and γ̂ξ(i) are defined in Theorem(2) and i ∈ {0, 1}.

Proof. In order to prove Catalan’s identity, we will examine in two different cases.
Case i = 0:

BH2(n+r)(x, y) =
α̂ξ(2n+2r)β

⌊ 2n+2r
2 ⌋

1 (β1 + (d− c)y)
⌊ 2n+2r

2 ⌋+ξ(2n+2r)

(abx2)
⌊ 2n+2r

2 ⌋
(β1 − β2)

−
γ̂ξ(2n+2r)β

⌊ 2n+2r
2 ⌋

2 (β2 + (d− c)y)
⌊ 2n+2r

2 ⌋+ξ(2n+2r)

(abx2)
⌊ 2n+2r

2 ⌋
(β1 − β2)

=
α̂0β

n+r
1 (β1 + (d− c)y)

n+r − γ̂0β
n+r
2 (β2 + (d− c)y)

n+r

(abx2)
n+r

(β1 − β2)

(14)

BH2(n−r)(x, y) =
α̂ξ(2n−2r)β

⌊ 2n−2r
2 ⌋

1 (β1 + (d− c)y)
⌊ 2n−2r

2 ⌋+ξ(2n−2r)

(abx2)
⌊ 2n−2r

2 ⌋
(β1 − β2)

−
γ̂ξ(2n−2r)β

⌊ 2n−2r
2 ⌋

2 (β2 + (d− c)y)
⌊ 2n−2r

2 ⌋+ξ(2n−2r)

(abx2)
⌊ 2n−2r

2 ⌋
(β1 − β2)

=
α̂0β

n−r
1 (β1 + (d− c)y)

n−r − γ̂0β
n−r
2 (β2 + (d− c)y)

n−r

(abx2)
n−r

(β1 − β2)

(15)

BH2n(x, y) =
α̂ξ(2n)β

⌊ 2n
2 ⌋

1 (β1 + (d− c)y)
⌊ 2n

2 ⌋+ξ(2n−2r)

(abx2)
⌊ 2n

2 ⌋
(β1 − β2)

−
γ̂ξ(2n)β

⌊ 2n
2 ⌋

2 (β2 + (d− c)y)
⌊ 2n

2 ⌋+ξ(2n)

(abx2)
⌊ 2n

2 ⌋
(β1 − β2)

=
α̂0β

n
1 (β1 + (d− c)y)

n − γ̂0β
n
2 (β2 + (d− c)y)

n

(abx2)
n
(β1 − β2)

.

(16)



48 S. KÖME, Z. KUMTAS DALLAROĞLU

By virtue of (14), (15) and (16), we have

BH2(n+r)(x, y)BH2(n−r)(x, y)− (BH2n(x, y))
2

=
1

(abx2)2n (β1 − β2)
2

×
[
α̂0γ̂0β1

nβ2
n (β1 + (d− c)y)n (β2 + (d− c)y)n

[
1−

(
β1 (β1 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
+

1

(abx2)2n (β1 − β2)
2

×
[
γ̂0α̂0β2

nβ1
n (β2 + (d− c)y)n (β1 + (d− c)y)n

[
1−

(
β2 (β2 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
.

Case i = 1

BH2(n+r)+1(x, y) =
α̂1β

n+r
1 (β1 + (d− c)y)n+r+1 − γ̂1β

n+r
2 (β2 + (d− c)y)n+r+1

(abx2)n+r (β1 − β2)
(17)

BH2(n−r)+1(x, y) =
α̂1β

n−r
1 (β1 + (d− c)y)n−r+1 − γ̂1β

n−r
2 (β2 + (d− c)y)n−r+1

(abx2)n−r (β1 − β2)
(18)

BH2n+1(x, y) =
α̂1β

n
1 (β1 + (d− c)y)n+1 − γ̂1β

n
2 (β2 + (d− c)y)n+1

(abx2)n (β1 − β2)
. (19)

By virtue of (17), (18) and (19), we have

BH2(n+r)+1(x, y)BH2(n−r)+1(x, y)− (BH2n+1(x, y))
2

=
1

(abx2)2n (β1 − β2)
2

×
[
α̂1γ̂1β1

nβ2
n (β1 + (d− c)y)n+1 (β2 + (d− c)y)n+1

[
1−

(
β1 (β1 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
+

1

(abx2)2n (β1 − β2)
2

×
[
γ̂1α̂1β2

nβ1
n (β2 + (d− c)y)n+1 (β1 + (d− c)y)n+1

[
1−

(
β2 (β2 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
.

Finally, we get

BH2(n+r)+ξ(i)(x, y)BH2(n−r)+ξ(i)(x, y) −
(
BH2n+ξ(i)(x, y)

)2
=

1

(abx2)2n (β1 − β2)2

×
[
α̂ξ(i)γ̂ξ(i)β1

nβ2
n (β1 + (d− c)y)n+ξ(i) (β2 + (d− c)y)n+ξ(i)

[
1 −

(
β1 (β1 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
+

1

(abx2)2n (β1 − β2)2

×
[
γ̂ξ(i)α̂ξ(i)β2

nβ1
n (β2 + (d− c)y)n+ξ(i) (β1 + (d− c)y)n+ξ(i)

[
1 −

(
β2 (β2 + (d− c)y)

β2 (β2 + (d− c)y)

)r]]
.

□
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Now, we give the Cassini’s identity of the bivariate conditional Fibonacci hybri-
nomial BHn(x, y).

Corollary 1. For n ≥ 0, we get

BH2(n+1)+ξ(i)(x, y)BH2(n−1)+ξ(i)(x, y) −
(
BH2n+ξ(i)(x, y)

)2
=

1

(abx2)2n (β1 − β2)2

×
[
α̂ξ(i)γ̂ξ(i)β1

nβ2
n (β1 + (d− c)y)n+ξ(i) (β2 + (d− c)y)n+ξ(i)

[
1 −

(
β1 (β1 + (d− c)y)

β2 (β2 + (d− c)y)

)]]
+

1

(abx2)2n (β1 − β2)2

×
[
γ̂ξ(i)α̂ξ(i)β2

nβ1
n (β2 + (d− c)y)n+ξ(i) (β1 + (d− c)y)n+ξ(i)

[
1 −

(
β2 (β2 + (d− c)y)

β2 (β2 + (d− c)y)

)]]
.

where α̂ξ(i) and γ̂ξ(i) are defined in Theorem(2) and i ∈ {0, 1}.

Proof. Taking r = 1 in Catalan’s identity the proof is completed. □

3. Generalized Bivariate Conditional Lucas Hybrinomials

In this section we give some identities of the generalized bivariate conditional
Lucas hybrinomials. We start with the following definition.

Definition 2. For any four numbers a, b, c and d belonging to R− {0}, the gener-
alization of bivariate conditional Fibonacci polynomial is defined as,

Ln(x, y) =

{
bxLn−1(x, y) + dyLn−2(x, y), if n is even

axLn−1(x, y) + cyLn−2(x, y), if n is odd
n ≥ 2, (20)

where L0(x, y) = 2, L1(x, y) = ax.

Lemma 2. For the generalized bivariate conditional Lucas polynomials
{Ln(x, y)}∞n=0,we have

L2n(x, y) =
(
abx2 + (c+ d)y

)
L2n−2(x, y)− cdy2L2n−4(x, y)

L2n+1(x, y) =
(
abx2 + (c+ d)y

)
L2n−1(x, y)− cdy2L2n−3(x, y).

Proof. By using the definition of the generalized bivariate conditional Lucas poly-
nomials, we have

L2n(x, y) = (bxL2n−1(x, y) + dyL2n−2(x, y))

= [bx (axL2n−2(x, y) + cyL2n−3(x, y)) + dyL2n−2(x, y)]

= [
(
abx2 + dy

)
L2n−2(x, y) + cy (bxL2n−3(x, y))]

= [
(
abx2 + dy

)
L2n−2(x, y) + cy (L2n−2(x, y)− dyL2n−4(x, y))]

= [
(
abx2 + (c+ d) y

)
L2n−2(x, y)− cdy2L2n−4(x, y)].

Similar to above steps, we can obtain

L2n+1(x, y) =
(
abx2 + (c+ d)y

)
L2n−1(x, y)− cdy2L2n−3(x, y).
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Thus, the proof is completed. □

Next we give the generating function for the bivariate conditional Lucas polyno-
mial Ln(x, y).

Theorem 4. The generating function for the bivariate conditional Lucas polyno-
mial Ln(x, y) is

E(t) =

∞∑
n=0

Ln(x, y)t
n =

2 + axt−
(
abx2 + 2cy

)
t2 + adxyt3

1− (abx2 + (c+ d) y) t2 + cdy2t4
. (21)

Proof. We define

E0(t) =

∞∑
n=0

L2n(x, y)t
2n

E1(t) =

∞∑
n=0

L2n+1(x, y)t
2n+1.

So that

E(t) = E0(t) + E1(t).

We have

E0(t) =

∞∑
n=0

L2n(x, y)t
2n

=

∞∑
n=0

L2n(x, y)t
2n = L0(x, y)t

0 + L2(x, y)t
2 +

∞∑
n=2

L2n(x, y)t
2n

= L0(x, y) + L2(x, y)t
2

+

∞∑
n=2

[(
abx2 + (c+ d)y

)
L2n−2(x, y)− cdy2L2n−4(x, y)

]
t2n

= L0(x, y) + L2(x, y)t
2 +

(
abx2 + (c+ d)y

)
t2

∞∑
n=2

L2n−2(x, y)t
2n−2

− cdy2t4
∞∑

n=2

L2n−4(x, y)t
2n−4

= 2 +
(
abx2 + 2dy

)
t2

+
(
abx2 + (c+ d)y

)
t2

[ ∞∑
n=2

L2n−2(x, y)t
2n−2 + L0(x, y)t

0 − L0(x, y)t
0

]
− cdy2t4E0(t)
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= 2 +
(
abx2 + 2dy

)
t2 +

(
abx2 + (c+ d)y

)
t2E0(t)

− 2
(
abx2 + (c+ d)y

)
t2 − cdy2t4E0(t)

E0(t)[1 −
(
abx2 + (c+ d)y

)
t2 + cdy2t4

]
= 2−

(
abx2 + 2cy

)
t2.

Thus, we get

E0(t) =
2−

(
abx2 + 2cy

)
t2

1− (abx2 + (c+ d)y) t2 + cdy2t4
. (22)

Similarly, we find

E1(t) =

∞∑
n=0

L2n+1(x, y)t
2n+1

=

∞∑
n=0

L2n+1(x, y)t
2n+1 = L1(x, y)t

1 + L3(x, y)t
3 +

∞∑
n=2

L2n+1(x, y)t
2n+1

= L1(x, y)t+ L3(x, y)t
3

+

∞∑
n=2

[(
abx2 + (c+ d)y

)
L2n−1(x, y)− cdy2L2n−3(x, y)

]
t2n+1

= L1(x, y)t+ L3(x, y)t
3

+
(
abx2 + (c+ d)y

)
t2

∞∑
n=2

L2n−1(x, y)t
2n−1

− cdy2t4
∞∑

n=2

L2n−3(x, y)t
2n−3

= axt+
(
a2bx3 + 2adxy + acxy

)
t3

+
(
abx2 + (c+ d)y

)
t2

[ ∞∑
n=2

L2n−1(x, y)t
2n−1 + L1(x, y)t− L1(x, y)t

]
− cdy2t4E1(t)

= axt+
(
a2bx3 + 2adxy + acxy

)
t3 +

(
abx2 + (c+ d)y

)
t2E1(t)

− ax
(
abx2 + (c+ d)y

)
t3 − cdy2t4E1(t)

E1(t)[1 −
(
abx2 + (c+ d)y

)
t2 + cdy2t4

]
= axt+ adxyt3.

Therefore, we get

E1(t) =
axt+ adxyt3

1− (abx2 + (c+ d)y) t2 + cdy2t4
. (23)
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By virtue of (22) and (23), we can obtain

E(t) = E0(t) + E1(t)

=

∞∑
n=0

Ln(x, y)t
n =

2 + axt−
(
abx2 + 2cy

)
t2 + adxyt3

1− (abx2 + (c+ d) y) t2 + cdy2t4
.

Hence, the proof is completed. □

Now we give the Binet formula of the bivariate conditional Lucas polynomial
Ln(x, y).

Theorem 5. The nth term of the generalized of bivariate conditional Lucas poly-
nomial Ln(x, y) is

Ln(x, y) =
(−ax)ξ(n)

β1 − β2

×

[(
ξ(n+ 1)β1 + (−1)ξ(n+1)β2

)
(β2 + dy)

⌊n
2 ⌋

+
(
(−1)ξ(n+1)(2)ξ(n)dy + ξ(n+ 1)cy

)
(β2 + dy)

⌊n
2 ⌋

−
(
ξ(n+ 1)β2 + (−1)ξ(n+1)β1

)
(β1 + dy)

⌊n
2 ⌋

−
(
(−1)ξ(n+1)(2)ξ(n)dy + ξ(n+ 1)cy

)
(β1 + dy)

⌊n
2 ⌋

]
(24)

where β1 and β2 roots of the characteristic equation λ2−(abx2+(c−d)y)λ−abdx2y =
0.

Proof. We use the following properties throughout the proof:

• β1 + β2 = abx2 + (c− d)y
• β1 · β2 = −abdx2y
• (β1 + dy) (β2 + dy) = cdy2

• (β1 + dy)
(
abx2

)
= β1 (β1 + (d− c)y)

• (β2 + dy)
(
abx2

)
= β2 (β2 + (d− c)y)

Note that β1(x, y) = β1 and β2(x, y) = β2. Since
β1+dy
cdy2 and β2+dy

cdy2 are roots of

1− (abx2 + (c+ d)y)t2 + cdy2t4 = 0.

If we assume

E0(t) =

∞∑
n=0

L2n(x, y)t
2n

E1(t) =

∞∑
n=0

L2n+1(x, y)t
2n+1.
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Then,

E(t) = E0(t) + E1(t).

By using Maclaurin’s series expansion

Az −B

z2 − C
=

∞∑
n=0

BC−n−1Z2n −
∞∑

n=0

AC−n−1Z2n+1

and above-mentioned identities, we simplify both E0(t) and E1(t) as follows:

E0(t) =
1

cdy2 (β1 − β2)

[
2cdy2 −

(
abx2 + 2cy

)
· (β1 + dy)

t2 −
(

β1+dy
cdy2

)
−

2cdy2 −
(
abx2 + 2cy

)
(β2 + y)

t2 −
(

β2+dy
cdy2

) ]

=
1

cdy2 (β1 − β2)

∞∑
n=0

[(
(abx2 + 2cy)(β1 + dy)− 2cdy2

)(β1 + dy

cdy2

)−n−1
]
t2n

− 1

cdy2 (β1 − β2)

∞∑
n=0

[(
(abx2 + 2cy)(β2 + dy)− 2cdy2

)(β2 + dy

cdy2

)−n−1
]
t2n

=
1

cdy2 (β1 − β2)

∞∑
n=0

[(
(abx2 + 2cy)(β1 + dy)(β2 + dy)

− 2cdy2(β2 + dy)

)
(β2 + dy)

n

]
t2n

− 1

cdy2 (β1 − β2)

∞∑
n=0

[(
(abx2 + 2cy)(β2 + dy)(β1 + dy)

− 2cdy2(β1 + dy)

)
(β1 + dy)

n

]
t2n

=
1

(β1 − β2)

∞∑
n=0

[
(abx2 − 2β2 + 2cy − 2dy) (β2 + dy)

n

− (abx2 − 2β1 + 2cy − 2dy) (β1 + dy)
n

]
t2n

=
1

(β1 − β2)

∞∑
n=0

[
(β1 − β2 − (d− c)y) (β2 + dy)

n

− (β2 − β1 − (d− c)y) (β1 + dy)
n

]
t2n.
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We solve E1(t) with the same approach used in E0(t) and we get the value of

E1(t) =
−ax

(β1 − β2)

∞∑
n=0

[(β2 + 2dy) (β2 + dy)
n − (β1 + 2dy) (β1 + dy)

n
] t2n+1.

We know that E(t) = E0(t) + E1(t). So we find

E(t) =

∞∑
n=0

(−ax)ξ(n)

β1 − β2

[(
ξ(n+ 1)β1 + (−1)ξ(n+1)β2

+ (−1)ξ(n+1)(2)ξ(n)dy + ξ(n+ 1)cy

)
(β2 + dy)⌊

n
2
⌋

−

(
ξ(n+ 1)β2 + (−1)ξ(n+1)β1

+ (−1)ξ(n+1)(2)ξ(n)dy + ξ(n+ 1)cy

)
(β1 + dy)⌊

n
2
⌋

]
.

Thus,

Ln(x, y) =
(−ax)ξ(n)

β1 − β2

[(
ξ(n+ 1)β1 + (−1)ξ(n+1)β2

+ (−1)ξ(n+1)(2)ξ(n)dy + ξ(n+ 1)cy

)
(β2 + dy)⌊

n
2
⌋

−

(
ξ(n+ 1)β2 + (−1)ξ(n+1)β1

+ (−1)ξ(n+1)(2)ξ(n)dy + ξ(n+ 1)cy

)
(β1 + dy)⌊

n
2
⌋

]
.

□

In the following definition, we give bivariate conditional Lucas Hybrinomials.

Definition 3. For any variable x, y and nonzero real numbers a, b, c and d, we have

LHn(x, y) = Ln(x, y) + iLn+1(x, y) + εLn+2(x, y) + hLn+3(x, y) (25)

where Ln(x, y) was given in (20) and the initial conditions are with LH0(x, y) =
2+ iax+ ε(abx2 +2dy) + h(a2bx3 +2adxy+ acxy) and LH1(x, y) = ax+ i(abx2 +
2dy)++ε(a2bx3+2adxy+acxy)+h(a2b2x4+2bcdx2y+abcx2y+abdx2y+2d2y2).

We can see from the following table that the generalized bivariate conditional
Fibonacci hybrinomials are the generalization of many works for different values of
a, b, c and d.
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Table 3. The generalized bivariate conditional Lucas hybrinomials

a b c d Generalized Bivariate Conditional Lucas Hybrinomials

1 1 1 1 Bivariate Lucas Hybrinomials

a b 1 1 Bivariate Conditional Lucas Hybrinomials

2 2 1 1 Bivariate Pell Lucas Hybrinomials

1 1 2 2 Bivariate Jacobsthal Lucas Hybrinomials
...

...
...

... ...

Lemma 3. For the generalized bivariate conditional Lucas hybrinomials
{LHn(x, y)}∞n=0, we have

LH2n(x, y) =
(
abx2 + (c+ d)y

)
LH2n−2(x, y)− cdy2LH2n−4(x, y)

LH2n+1(x, y) =
(
abx2 + (c+ d)y

)
LH2n−1(x, y)− cdy2LH2n−3(x, y).

Proof. By using the definition of the generalized bivariate conditional Lucas hybri-
nomials, we obtain

LH2n(x, y) = L2n(x, y) + iL2n+1(x, y) + εL2n+2(x, y) + hL2n+3(x, y)

= (bxL2n−1(x, y) + dyL2n−2(x, y)) + i (axL2n(x, y) + cyL2n−1(x, y))

+ ε(bxL2n+1(x, y) + dyL2n(x, y)) + h(axL2n+2(x, y) + cyL2n+1(x, y))

= [bx (axL2n−2(x, y) + cyL2n−3(x, y)) + dyL2n−2(x, y)]

+ i [ax (bxL2n−1(x, y) + dyL2n−2(x, y)) + cyL2n−1(x, y)]

+ε [bx (axL2n(x, y) + cyL2n−1(x, y)) + dyL2n(x, y))]

+ h [ax (bxL2n+1(x, y) + dyL2n(x, y)) + cyL2n+1(x, y)]

= [
(
abx2 + dy

)
L2n−2(x, y) + cy (bxL2n−3(x, y))]

+ i[
(
abx2 + cy

)
L2n−1(x, y) + dy (axL2n−2(x, y))]

+ ε[
(
abx2 + dy

)
L2n(x, y) + cy (bxL2n−1(x, y))]

+ h[
(
abx2 + cy

)
L2n+1(x, y) + dy (axL2n(x, y))]

= [
(
abx2 + dy

)
L2n−2(x, y) + cy (L2n−2(x, y)− dyL2n−4(x, y))]

+ i[
(
abx2 + cy

)
L2n−1(x, y) + dy (L2n−1(x, y)− cyL2n−3(x, y))]

+ ε[
(
abx2 + dy

)
L2n(x, y) + cy (L2n(x, y)− dyL2n−2(x, y))]

+ h[
(
abx2 + cy

)
L2n+1(x, y) + dy (L2n+1(x, y)− cyL2n−1(x, y))]

= [
(
abx2 + (c+ d) y

)
L2n−2(x, y)− cdy2L2n−4(x, y)]

+ i[
(
abx2 + (c+ d) y

)
L2n−1(x, y)− cdy2L2n−3(x, y)]

+ ε[
(
abx2 + (c+ d) y

)
L2n(x, y)− cdy2L2n−2(x, y)]

+ h[
(
abx2 + (c+ d) y

)
L2n+1(x, y)− cdy2L2n−1(x, y)]
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=
(
abx2 + (c+ d) y

)
[L2n−2(x, y) + iL2n−1(x, y) + εL2n(x, y) + hL2n+1(x, y)]

− cdy2[L2n−4(x, y) + iL2n−3(x, y) + εL2n−2(x, y) + hL2n−1(x, y)]

=
(
abx2 + (c+ d) y

)
LH2n−2(x, y)− cdy2LH2n−4(x, y)

Similar to above, we can obtain

LH2n+1(x, y) =
(
abx2 + (c+ d)y

)
LH2n−1(x, y)− cdy2LH2n−3(x, y).

Thus, the proof is completed. □

Next we give the generating function of the bivariate conditional Lucas hybrino-
mial LHn(x, y).

Theorem 6. The generating function for the bivariate conditional Lucas hybrino-
mial LHn(x, y) is

Ω(t) =

∞∑
n=0

LHn(x, y)t
n

=
LH0(x, y) + LH1(x, y)t+

[
LH2(x, y)−

(
abx2 + (c+ d)y

)
LH0(x, y)

]
t2

1− (abx2 + (c+ d) y) t2 + cdy2t4

+

[
LH3(x, y)−

(
abx2 + (c+ d) y

)
LH1(x, y)

]
t3

1− (abx2 + (c+ d) y) t2 + cdy2t4
.

Proof. We define

Ω0(t) =
∞∑

n=0

LH2n(x, y)t
2n

Ω1(t) =

∞∑
n=0

LH2n+1(x, y)t
2n+1.

So that

Ω(t) = Ω0(t) +Ω1(t).
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We have

Ω0(t) =

∞∑
n=0

LH2n(x, y)t
2n

=

∞∑
n=0

LH2n(x, y)t
2n = LH0(x, y)t

0 + LH2(x, y)t
2 +

∞∑
n=2

LH2n(x, y)t
2n

= LH0(x, y) + LH2(x, y)t
2

+

∞∑
n=2

[(
abx2 + (c+ d)y

)
LH2n−2(x, y)− cdy2LH2n−4(x, y)

]
t2n

= LH0(x, y) + LH2(x, y)t
2 +

(
abx2 + (c+ d)y

)
t2

∞∑
n=2

LH2n−2(x, y)t
2n−2

− cdy2t4
∞∑

n=2

LH2n−4(x, y)t
2n−4

= LH0(x, y) + LH2(x, y)t
2

+
(
abx2 + (c+ d)y

)
t2

[ ∞∑
n=2

LH2n−2(x, y)t
2n−2 + LH0(x, y)t

0 − LH0(x, y)t
0

]
− cdy2t4Ω0(t)

= LH0(x, y) + LH2(x, y)t
2 +

(
abx2 + (c+ d)y

)
t2Ω0(t)

−
(
abx2 + (c+ d)y

)
t2LH0(x, y)− cdy2t4Ω0(t).

Thus, we get

Ω0(t) =
LH0(x, y) +

(
LH2(x, y)−

(
abx2 + (c+ d)y

)
LH0(x, y)

)
t2

1− (abx2 + (c+ d)y) t2 + cdy2t4
. (26)

Similarly, we find

Ω1(t) =

∞∑
n=0

LH2n+1(x, y)t
2n+1

=

∞∑
n=0

LH2n+1(x, y)t
2n+1 = LH1(x, y)t+ LH3(x, y)t

3

+

∞∑
n=2

LH2n+1(x, y)t
2n+1

= LH1(x, y)t+ LH3(x, y)t
3

+

∞∑
n=2

[(
abx2 + (c+ d)y

)
LH2n−1(x, y)− cdy2LH2n−3(x, y)

]
t2n+1
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= LH1(x, y)t+ LH3(x, y)t
3

+
(
abx2 + (c+ d)y

)
t2

∞∑
n=2

LH2n−1(x, y)t
2n−1 − cdy2t4

∞∑
n=2

LH2n−3(x, y)t
2n−3

= LH1(x, y)t+ LH3(x, y)t
3

+
(
abx2 + (c+ d)y

)
t2

[ ∞∑
n=2

LH2n−1(x, y)t
2n−1 + LH1(x, y)t− LH1(x, y)t

]
− cdy2t4Ω1(t)

= LH1(x, y)t+ LH3(x, y)t
3 +

(
abx2 + (c+ d)y

)
t2Ω1(t)

−
(
abx2 + (c+ d)y

)
t3LH1(x, y)− cdy2t4Ω1(t).

Therefore, we get

Ω1(t) =
LH1(x, y)t+

(
LH3(x, y)−

(
abx2 + (c+ d)y

)
LH1(x, y)

)
t3

1− (abx2 + (c+ d)y) t2 + cdy2t4
. (27)

By virtue of (26) and (27), we can obtain

Ω(t) = Ω0(t) +Ω1(t)

=

∞∑
n=0

LHn(x, y)t
n

=
LH0(x, y) + LH1(x, y)t+

[
LH2(x, y)−

(
abx2 + (c+ d)y

)
LH0(x, y)

]
t2

1− (abx2 + (c+ d) y) t2 + cdy2t4

+

[
LH3(x, y)−

(
abx2 + (c+ d) y

)
LH1(x, y)

]
t3

1− (abx2 + (c+ d) y) t2 + cdy2t4
.

Hence, the proof is completed. □

Now we give the Binet formula of the bivariate conditional Lucas hybrinomial
LHn(x, y).

Theorem 7. The nth term of the generalized of bivariate conditional Lucas hybri-
nomial LHn(x, y) is

LHn(x, y) =
ω̂ξ(n) (β2 + dy)

⌊n
2 ⌋ − σ̂ξ(n) (β1 + dy)

⌊n
2 ⌋

β1 − β2

. (28)
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where β1 and β2 roots of the characteristic equation λ2−(abx2+(c−d)y)λ−abdx2y =
0. Also,

ω̂ξ(n) = (−ax)ξ(n)
(
ξ(n + 1)β1 + (−1)ξ(n+1)β2 + (−1)ξ(n+1)(2)ξ(n)dy + ξ(n + 1)cy

)
+ i (−ax)ξ(n+1)

(
ξ(n)β1 + (−1)ξ(n)β2 + (−1)ξ(n)(2)ξ(n+1)dy + ξ(n)cy

)
(β2 + dy)ξ(n)

+ ε (−ax)ξ(n)
(
ξ(n + 1)β1 + (−1)ξ(n+1)β2 + (−1)ξ(n+1)(2)ξ(n)dy + ξ(n + 1)cy

)
(β2 + dy)

+ h (−ax)ξ(n+1)
(
ξ(n)β1 + (−1)ξ(n)β2 + (−1)ξ(n)(2)ξ(n+1)dy + ξ(n)cy

)
(β2 + dy)ξ(n)+1

and

σ̂ξ(n) = (−ax)ξ(n)
(
ξ(n + 1)β2 + (−1)ξ(n+1)β1 + (−1)ξ(n+1)(2)ξ(n)dy + ξ(n + 1)cy

)
+ i (−ax)ξ(n+1)

(
ξ(n)β2 + (−1)ξ(n)β1 + (−1)ξ(n)(2)ξ(n+1)dy + ξ(n)cy

)
(β1 + dy)ξ(n)

+ ε (−ax)ξ(n)
(
ξ(n + 1)β2 + (−1)ξ(n+1)β1 + (−1)ξ(n+1)(2)ξ(n)dy + ξ(n + 1)cy

)
(β1 + dy)

+ h (−ax)ξ(n+1)
(
ξ(n)β2 + (−1)ξ(n)β1 + (−1)ξ(n)(2)ξ(n+1)dy + ξ(n)cy

)
(β1 + dy)ξ(n)+1 .

Proof. Firstly, by using (24), we have

LH2n(x, y) = L2n(x, y) + iL2n+1(x, y) + εL2n+2(x, y) + hL2n+3(x, y)

=
(β2 + dy)

n

β1 − β2

[
(β1 − β2 − dy + cy) + i(−ax) (β2 + 2dy)

+ ε (β1 − β2 − dy + cy) (β2 + dy)

+ h(−ax) (β2 + 2dy) (β2 + dy)
]

− (β1 + dy)
n

β1 − β2

[
(β2 − β1 − dy + cy) + i(−ax) (β1 + 2dy)

+ ε (β2 − β1 − dy + cy) (β1 + dy)

+ h(−ax) (β1 + 2dy) (β1 + dy)
]
.

Here, we choose the ω̂0 and σ̂0 as follows;

ω̂0 =
[
(β1 − β2 − dy + cy) + i(−ax) (β2 + 2dy) + ε (β1 − β2 − dy + cy) (β2 + dy)

+ h(−ax) (β2 + 2dy) (β2 + dy)
]

σ̂0 =
[
(β2 − β1 − dy + cy) + i(−ax) (β1 + 2dy) + ε (β2 − β1 − dy + cy) (β1 + dy)

+ h(−ax) (β1 + 2dy) (β1 + dy)
]
.

Finally, the following equation is obtained:

LH2n(x, y) =
ω̂0 (β2 + dy)

n − σ̂0 (β1 + dy)
n

β1 − β2

. (29)
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In similar way, by using (24), we have

LH2n+1(x, y) = L2n+1(x, y) + iL2n+2(x, y) + εL2n+3(x, y) + hL2n+4(x, y)

=
(β2 + dy)

n

β1 − β2

[
(−ax) (β2 + 2dy) + i (β1 − β2 − dy + cy) (β2 + dy)

+ ε(−ax) (β2 + 2dy) (β2 + dy)

+ h (β1 − β2 − dy + cy) (β2 + dy)
2 ]

− (β1 + dy)
n

β1 − β2

[
(−ax) (β1 + 2dy) + i (β2 − β1 − dy + cy) (β1 + dy)

+ ε(−ax) (β1 + 2dy) (β1 + dy)

+ h (β2 − β1 − dy + cy) (β1 + dy)
2 ]

.

Here, we choose the ω̂1 and σ̂1 as follows;

ω̂1 =
[
(−ax) (β2 + 2dy) + i (β1 − β2 − dy + cy) (β2 + dy)

+ ε(−ax) (β2 + 2dy) (β2 + dy) + h (β1 − β2 − dy + cy) (β2 + dy)
2 ]

σ̂1 =
[
(−ax) (β1 + 2dy) + i (β2 − β1 − dy + cy) (β1 + dy)

+ ε(−ax) (β1 + 2dy) (β1 + dy) + h (β2 − β1 − dy + cy) (β1 + dy)
2 ]

.

Finally, the following equation is obtained.

LH2n+1(x, y) =
ω̂1 (β2 + dy)

n − σ̂1 (β1 + dy)
n

β1 − β2

. (30)

By virtue of (29) and (30), we can obtain the following equation

LHn(x, y) =
ω̂ξ(n) (β2 + dy)

⌊n
2 ⌋ − σ̂ξ(n) (β1 + dy)

⌊n
2 ⌋

β1 − β2

.

where β1 and β2 roots of the characteristic equation λ2 − (abx2 + (c − d)y)λ −
abdx2y = 0. □

Now, we give the Catalan’s identity of the bivariate conditional Lucas hybrino-
mial LHn(x, y).

Theorem 8. For any integers n and r and n ⩾ r ⩾ 0, r ≥ 0, we have

LH2(n+r)+ξ(i)(x, y)LH2(n−r)+ξ(i)(x, y)−
(
LH2n+ξ(i)(x, y)

)2
=

ω̂ξ(i)σ̂ξ(i) (β2 + dy)
n
(β1 + dy)

n
[
1−

(
β2+dy
β1+dy

)r]
(β1 − β2)

2

+
σ̂ξ(i)ω̂ξ(i) (β1 + dy)

n
(β2 + dy)

n
[
1−

(
β1+dy
β2+dy

)r]
(β1 − β2)

2 .

where ω̂ξ(i) and σ̂ξ(i) are defined in Theorem(7) and i ∈ {0, 1}.
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Proof. In order to prove Catalan’s identity, we will examine two different cases.
Case i = 0:

LH2(n+r)(x, y) =
ω̂ξ(2n+2r) (β2 + dy)

⌊ 2n+2r
2 ⌋ − σ̂ξ(2n+2r) (β1 + dy)

⌊ 2n+2r
2 ⌋

β1 − β2

=
ω̂0 (β2 + dy)

n+r − σ̂0 (β1 + dy)
n+r

β1 − β2

(31)

LH2(n−r)(x, y) =
ω̂ξ(2n−2r) (β2 + dy)

⌊ 2n−2r
2 ⌋ − σ̂ξ(2n−2r) (β1 + dy)

⌊ 2n−2r
2 ⌋

β1 − β2

=
ω̂0 (β2 + dy)

n−r − σ̂0 (β1 + dy)
n−r

β1 − β2

(32)

LH2n(x, y) =
ω̂ξ(2n) (β2 + dy)

⌊ 2n
2 ⌋ − σ̂ξ(2n) (β1 + dy)

⌊ 2n
2 ⌋

β1 − β2

=
ω̂0 (β2 + dy)

n − σ̂0 (β1 + dy)
n

β1 − β2

(33)

By virtue of (31), (32) and (33), we have

LH2(n+r)(x, y)LH2(n−r)(x, y)− (LH2n(x, y))
2

=
ω̂0σ̂0 (β2 + dy)

n
(β1 + dy)

n
[
1−

(
β2+dy
β1+dy

)r]
(β1 − β2)

2

+
σ̂0ω̂0 (β1 + dy)

n
(β2 + dy)

n
[
1−

(
β1+dy
β2+dy

)r]
(β1 − β2)

2 .

Case i = 1:

LH2(n+r)+1(x, y) =
ω̂1 (β2 + dy)

n+r − σ̂1 (β1 + dy)
n+r

β1 − β2

(34)

LH2(n−r)+1(x, y) =
ω̂1 (β2 + dy)

n−r − σ̂1 (β1 + dy)
n−r

β1 − β2

(35)

LH2n+1(x, y) =
ω̂1 (β2 + dy)

n − σ̂1 (β1 + dy)
n

β1 − β2

(36)
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By virtue of (34), (35) and (36), we have

LH2(n+r)+1(x, y)LH2(n−r)+1(x, y)− (LH2n+1(x, y))
2

=
ω̂1σ̂1 (β2 + dy)

n
(β1 + dy)

n
[
1−

(
β2+dy
β1+dy

)r]
(β1 − β2)

2

+
σ̂1ω̂1 (β1 + dy)

n
(β2 + dy)

n
[
1−

(
β1+dy
β2+dy

)r]
(β1 − β2)

2 .

Thus, the proof is completed. □

Now, we give the Cassini’s identity of the bivariate conditional Lucas hybrinomial
LHn(x, y).

Corollary 2. For n ≥ 0, we get

LH2(n+1)+ξ(i)(x, y)LH2(n−1)+ξ(i)(x, y)−
(
LH2n+ξ(i)(x, y)

)2
=

σ̂ξ(i)ω̂ξ(i) (β1 + dy)
n
(β2 + dy)

n
[
1−

(
β1+dy
β2+dy

)]
(β1 − β2)

2

+
σ̂ξ(i)ω̂ξ(i) (β1 + dy)

n
(β2 + dy)

n
[
1−

(
β1+dy
β2+dy

)]
(β1 − β2)

2

where ω̂ξ(i) and σ̂ξ(i) are defined in Theorem(7) and i ∈ {0, 1}.

Proof. Taking r = 1 in Catalan’s identity the proof is completed. □

4. Conclusion

The Fibonacci and Lucas numbers are well–known numbers, which have been
studied by many researchers for years. These numbers arise in the applications of
mathematics, computer science, physics, biology and statistics [9]. In this paper,
by combining the Fibonacci and Lucas numbers with hybrid numbers, we present
the generalized bivariate conditional Fibonacci and Lucas hybrinomials which are
generalization of many works in the literature. Moreover, we derive many proper-
ties of generalized bivariate conditional Fibonacci and Lucas hybrinomials such as
Binet’s formulas, Catalan’s identity, Cassini’s identity of the hybrinomials.
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TRAJECTORY CURVES AND SURFACES: A NEW

PERSPECTIVE VIA PROJECTIVE GEOMETRIC ALGEBRA

Ferhat TAŞ

Department of Mathematics, Faculty of Science, İstanbul University, İstanbul 34134, TÜRKİYE

Abstract. The aim of this work is to define quaternion curves and surfaces

and their conjugates via operators in Euclidean projective geometric algebra

(EPGA). In this space, quaternions were obtained by the geometric product
of vector fields. New vector fields, which we call trajectory curves and sur-

faces, were obtained by using this new quaternion operator. Moreover, dual

quaternion curves are determined by a similar method and then their generated
motion is studied. Illustrative examples are given.

1. Introduction

Understanding what complex numbers indicate geometrically has always been a
matter of curiosity. Since the problem of finding the roots of a quadratic equation,
we use a combination of a complex unit and real numbers, or their ordered binary
representation, to show complex numbers. So what does this imaginary part show
geometrically? Common usage is an axis orthogonal to the real axis. Thus, it shows
the 2-dimensional real space in binary terms. However, complex numbers seem to
contain more than that.

While working on the algebra of complex numbers of the form a + bi, Argand
noticed that when the complex number is multiplied by the imaginary unit i, i.e.
i(a + bi) = −b + ai represents the rotation of this point, a geometric indicator of
the complex number, about the origin in the plane by 90◦ [1,2]. Hamilton thought
that this rotational property of complex numbers might also have a counterpart in
3-dimensional space. So he predicted that an ordered 3 with two complex units
could show the rotation in 3-dimensional space. However, it was not that easy
to establish the algebra. An undesirable complex expression was coming from the
product of two triplets. He used a combination of three imaginary numbers and

2020 Mathematics Subject Classification. 15A66, 16H05, 53A04, 53A05, 14J26.
Keywords. Quaternions, geometric algebra, rotation, projective geometric algebra.
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a real number to overcome this problem, and thus multiplication must be closed.
Therefore, he invented the quaternions [3]:

A (real) quaternion is represented by q = a+ bi+ cj+ dk (general assumption)
where a, b, c, d ∈ R and the conditions for units

i2 = j2 = k2 = ijk = −1

held.
Thanks to quaternion algebra, one can obtain information about the rotation of

any rigid body in space. Especially, in computer graphics, there are two options
to rotate an object: use a rotation matrix (3x3 matrix) or a quaternion. Besides,
there are some advantages to using quaternion like memory space, speed, and not
showing gimbal locks as matrices do.

One can assume coefficients of the quaternion as dual numbers and then get the
dual quaternion, i.e. A,B,C,D ∈ D [4–6].
Dual quaternions store both rotation and translation information about a rigid
body in space. A similar operation can be done with 4x4 matrices. It is used quite
often in the theory of mechanisms. This type of quaternion pair (called a dual
quaternion) stores the same type of information but in two different quaternions.
While the dual part of the dual quaternion represents translation information, the
real one represents information about rotation. When mentioned together with
these features, it is understood that it is a tool for software in robotics. Rather
than its usual general definitions, it will be given here in accordance with projective
geometric algebra.

Geometric algebra has very useful content to determine objects, especially com-
plex ones geometrically, and transform one to another in space. Generally, geomet-
ric algebra over n-dimensional vector space is represented by the set G(n, 0) where
n is the dimension of vector space and the second part is the grade of the inner
product. Since the vector space studied here is real, the grade of the inner product
is 0. Basically, geometric algebra allows us to symbolize scalars, vectors, areas,
and volumes using a simple and consistent notation. Such items are closed under
the algebraic operation. It is not difficult to see that many variables of this type
are closed under addition. However, the product is somewhat unusual. So these
expressions can be tough to visualize. Furthermore, the orientation of an object in
space is important in physics research, for instance, spinors occupy an important
place in quantum mechanics. Geometric algebra tools also provide the orientation
of objects.

There are two expansions of this algebra: Conformal geometric algebra (CGA)
and projective geometric algebra (PGA).

EPGA is based on duality: that is, we can represent work (wedge) done in one
(exterior algebra) to be equivalent (join- ∨) in the other (dual exterior algebra).
Similar to this situation, the meet (∧) operator is also defined. The reason we
work in dual space is because all of the Euclidean operations can be represented.
Working in a projective dual space also prevents special cases from occurring.
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In this paper, we use Euclidean curves to generate quaternion curves via geo-
metric product. Thus, we describe what a quaternion operator looks like visually.
Bearing this motivation, we wonder about the motion that will occur around a mov-
ing (dual) quaternion rather than around a fixed (dual) quaternion in the EPGA
language.

2. Fundamentals

In this section, we try to explain the properties of GA and PGA. There are
some operators. We explore how these operators lead to rotations just as complex
numbers do.

One of the most remarkable works on quaternion algebra in the literature is
Aslan and Yaylı, [22], where they define quaternion operators on curves and surfaces
in Euclidean 3-space using geometric algebra. These operators generate motions
that have orbits along the generated curve or surface and can be expressed as
1-parameter or 2-parameter homothetic motions. Besides, Shoemake presents a
new kind of spline curve suitable for smoothly interpolating sequences of arbitrary
rotations. The motion generated is smooth and natural, without quirks found in
earlier methods, [23].

Since geometric algebra is a very broad topic from kinematics [7–9] to robot
dynamics [10], from neuroscience [17] to modeling [11], our aim here is not to
explain all the basic topics of geometric algebra. For more details, see [12, 15–21].
Only definitions required in the article will be given.

2.1. Geometric algebra. Let R2, 2D-real space, be spanned by two linear in-
dependent orthonormal vectors: {e1, e2}. The inner and outer product of these
elements produces new bases for geometric algebra:

< e1, e1 >=< e2, e2 >= 1 and e1 ∧ e2

Bearing with these elements we have the following bases for geometric algebra
G(2, 0):

{1(scalar), e1, e2(vectors), e1 ∧ e2(pseudo-scalar)} .
The algebra has also general elements called multivectors like that: a1 + be1 +

ce2 + de1 ∧ e2, where a, b, c, d ∈ R. Partially, x1 + ye1 ∧ e2 = x + iy, represent a
complex number.

R3, 3D-real space, is spanned by three independent vectors: {e1, e2, e3}. New
basis for geometric algebra over R3 are:

< e1, e1 >=< e2, e2 >=< e3, e3 >= 1

and
e1 ∧ e2, e1 ∧ e3, e2 ∧ e3.

So vector spaces of the geometric algebra G(3, 0) are
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{ 1︸︷︷︸
scalars

, e1, e2, e3︸ ︷︷ ︸
vector space

, e1 ∧ e2, e2 ∧ e3, e3 ∧ e1︸ ︷︷ ︸
bivector space

, e1 ∧ e2 ∧ e3︸ ︷︷ ︸
trivector space.

}

All geometric algebra has
∑3

k=0

(
3
k

)
= 23 = 8 elements where the number of

k-blades of geometric algebra over R3 is computed by

(
3
k

)
combination. So any

multi-vector is of the form: a1+ be1 + ce2 + de3 + ee1 ∧ e2 + fe1 ∧ e3 + ge2 ∧ e3 +
he1 ∧ e2 ∧ e3, where a, b, c, d, e, f, g, h ∈ R.

Operations are important for the derivation of elements in a mathematical struc-
ture such as vector space or algebra. These processes should always show the fea-
ture of closure. The next definition gives the fundamental operator for geometric
algebra.

Definition 1. Clifford defined the geometric product of two vectors, u and v, as
follows [9]: Let u =

∑n
i=1 uiei and v =

∑n
i=1 viei then

uv =< u,v > +u ∧ v =

n∑
i=1

uivi +

n∑
i,j=1

uivjeiej . (1)

where ei are unit bases of Rn. Here we use eij = eiej = ei ∧ ej for simplicity.

Proposition 1. Let u, v and w are vectors in Rn then following rules are provided

(i) Associativity:

u(vw) = u(v)w = uvw

(ii) Distributivity:

u(v +w) = uv + uw

and

(v +w)u = vu+wu

(iii) Modulus:

∥u∥2 = uu =< u,u >.

Products of fundamental elements of geometric algebra are given as follows,

eiei = 1, eiej = ei ∧ ej = −ej ∧ ei = −ejei

(ei ∧ ej) (ei ∧ ej) = eiejeiej = −eiei = −1

(e1e2e3) (e1e2e3) = −e1e2e3e2e1e3 = −1

where i, j = 1, 2, 3 (for i ̸= j).
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Definition 2. In geometric algebra, there is a Hodge duality for elements and
defined as follows [18]: Let I = e1e2e3 be the pseudo-scalar then,

1∗ = −1I = −I,

So, scalar and pseudo-scalar are Hodge dual of each other (Hodge duality generally
represented by ∗). Similarly, vectors and blades are Hodge dual of each other:

e∗1 = −e1I = −e1e1e2e3 = −e2e3,

e∗2 = −e2I = −e2e1e2e3 = e1e3,

e∗3 = −e3I = −e3e1e2e3 = −e1e2.

Definition 3. Let w be a vector and B = u ∧ v be a 2-vector, then

wB = ⟨w,B⟩+w ∧ B = (wB)1 + (wB)3.

where (.)k represent the grade of element.

2.2. Projective geometric algebra. Although affine transformations of geomet-
ric objects can be achieved with vector algebra, this can cause some difficulties
in 3D computer graphics, such as the algebraic separation of point and vector.
For this, it is the algebraic structure that we call homogeneous coordinates and
allows us to represent n-dimensional real space in (n+1)-dimensional space. Let
x = x1e1 + x2e2 + x3e3 be a point in Euclidean 3-space then X = x + e0 be a
homogeneous point in 4D geometric algebra.

This space can also be defined in geometric algebra by adding an explicit extra
basis: e0, satisfying e20 = 0, which corresponds to a null vector providing only
linear terms expansion of an exponential function. So the metric structure would
be ei.ej = δij for i, j = 1, 2 and ei.e0 = 0. Since this metric structure is the
same as the Euclidean metric, it also preserves isometry. There are also other bases
like e2 = −1 or 1 and generate higher dimensional projective geometric algebra.
In general, these unusual bases are called geometric numbers. Summing up, its
general notation in this point-based structure is P (Rp,n,z) where p, n, z stand for
positive, negative and zero, respectively. Besides, plane-based model, for instance,
the algebra P

(
R∗

2,0,1

)
represents the proper 2D Euclidean space. As far as we

know from linear algebra, if V is a vector space then there is a dual vector space
V ∗. So each geometric object in the exterior algebras in P(V ) and P(V ∗) has a
representation in both. This is the Poincaré duality [13,14].

P
(
R∗

3,0,1

)
provides coordinate-free, uniform representation for Euclidean ele-

ments: points, lines, and planes.
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∧ e0 e1 e2 e3
e0 0 e01 e02 e03
e1 e10 0 e12 e13
e2 e20 e21 0 e23
e3 e30 e31 e32 0

Although it has degenerate metric we can explain the reason why this algebra
shows Euclidean isometries as follows: The basic elements in geometric algebra do
not actually have Euclidean representations. Therefore, we can understand what
they are geometrically by looking at their dual structure. However, dual PGA
performs its operations directly with Euclidean elements. So we can call it EPGA
for short. The basic linear elements of this algebra are planes (1-vector), and they
are defined as follows,

a =

3∑
i=0

aiei.

It also includes meet and join operators. These operators decrease and increase
of grades of elements of algebra, respectively. Thus, the union and intersection op-
erations of points, lines, and planes in PGA can be done with wedge and progressive
product, respectively.

Quaternions are also even subalgebra (zero and two graded) of projective geo-
metric algebra P

(
R∗

3,0,1

)
and a quaternion is represented by

q = a+ be12 + ce31 + de23

where a, b, c, d ∈ R.

3. Quaternion Curves and Surfaces

Grounded in the elegant framework of geometric algebra, quaternion curves and
surfaces stand as a cornerstone in the field of 3D geometry and computer graphics.
In this chapter, we enter a world where advanced mathematics meets practical
applications, exploring the profound implications of quaternions in representing
and manipulating curves and surfaces.

As a hyper-complex extension of complex numbers, quaternions offer a concise
and efficient way to handle 3D rotations and orientations, finding extensive applica-
tions in fields ranging from computer graphics and robotics to physics simulations.
Represented by geometric algebra, these quaternions are not just abstract mathe-
matical constructs, but powerful tools that allow us to describe the complex motion
of objects in space with remarkable precision and flexibility.

Definition 4. Let a(t),b(t) be vector fields then

q(t) = a(t)b(t) =< a(t),b(t) > +a(t) ∧ b(t)
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is a quaternion curve and its conjugate is given by reverse order product

q̃(t) = b(t)a(t) =< b(t),a(t) > +b(t) ∧ a(t).

Definition 5. Let a(t),b(s) be vector fields then

q(t, s) = a(t)b(s) =< a(t),b(s) > +a(t) ∧ b(s)

is a quaternion surface.

To see the behavior of these quaternion curves in 3-dimensional space, it is
necessary to apply them to a point. Let us now formulate here the rotation of a
point through a quaternion operator generated by the meeting of two unit vectors
in space:

Let ∥u∥ = ∥v∥ = 1, q = uv = cos(θ) + sin(θ)B and its conjugate q̃ = vu =
cos(θ)− sin(θ)B. Take a point in EPGA as P = e123 + PE then the rotated point
Pr is as follows;

Pr = qP q̃ = e123 + qPE q̃ (2)

Thus, applying real quaternion operators to EPGA elements gives the same result
as in EGA.

3.1. Trajectory curves. The concept of trajectories generated by quaternion
curves involves representing rotations in 3D space using quaternions and under-
standing how these rotations affect the orientation of objects over time.

In the context of trajectories, quaternions are used to smoothly interpolate be-
tween different orientations of an object, creating a continuous curve that describes
the object’s rotation over time. Quaternions have certain advantages over other
rotation representations (such as Euler angles) because they do not suffer from
gimbal lock and provide smooth interpolation without singularities.

Corollary 1. Let q(t) be a quaternion curve and P be a point in P
(
R∗

3,0,1

)
then

α(t) = q(t)P q̃(t) (3)

is a trajectory curve.

Example 1. Let u(t) = cos(t)e1 + sin(t)e2, v(t) = cos(t)e1 + sin(t)e3, P = e123 +
e032 be unit vector fields and a point in ∈ P

(
R∗

3,0,1

)
, respectively. Then

q(t) = u(t)v(t)

=< cos(t)e1 + sin(t)e2, cos(t)e1 + sin(t)e3 >

+ (cos(t)e1 + sin(t)e2) ∧ cos(t)e1 + sin(t)e3

= cos(t)2 + cos(t) sin(t)e1e3 − cos(t) sin(t)e1e2

+ sin2(t)e2e3.
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Figure 1. The curve that is generated by the quaternion curve.

So the curve of quaternion rotation is (see Fig.1)

α(t) =q(t)P q̃(t)

=e123 + cos(2t)2e230 +
sin(4t)

2
e301 − sin(2t)e012.

This curve is also called Viviani’s curve.

3.2. Trajectory surfaces. Similar situations to the trajectory curves can also be
done for surfaces. The only difference here is that the parameters of the vector
fields forming the quaternion are different from each other.

Corollary 2. Let q(t, s) be a quaternion surface and P be a point in P
(
R∗

3,0,1

)
then

X(t, s) = q(t, s)P q̃(t, s) (4)

is a trajectory surface.

Corollary 3. Let qθ be a quaternion, where θ is the angle between vectors that are
constructing the quaternion, and α(t) be a regular curve in P

(
R∗

3,0,1

)
then

β(t, θ) = qθα(t)q̃θ (5)

is a rotational surface. This is also a special case of trajectory curves.
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Corollary 4. Let q(t) be a quaternion curve α(s) be a regular curve in P
(
R∗

3,0,1

)
then

β(t, s) = q(t)α(s)q̃(t) (6)

is a trajectory surface.

Let’s define some surfaces as trajectory surfaces with the tool we have generated.

3.2.1. Sphere as a trajectory surface. This example can be used for surfaces (one
can take a different parameter for the second vector field as we defined in Def 3.2).
The resulting trajectory surface is this time, a 2-sphere. This is just like the product
of two curves in the topological sense: S2 ≃ S1 × S1.

3.2.2. Cone as a trajectory surface. It is easy to obtain a cone surface using this
tool. As is well known, a cone is formed by a line passing through two points in
space, one of the points being fixed and the other orbiting on a circle. We can
make this imaginary geometric idea as it is with the help of geometric algebra. The
flexibility in the choice of the vector fields that make up the quaternion and the
object to be rotated in this tool offers us different ways and offers us the opportunity
to create the geometric object to be created in different ways. Everything depends
on your imagination. For example, for this cone surface, we can choose one of
the vector fields forming the quaternion as a unit circle and the other as a point
perpendicular to the plane in which this circle is located. The geometric object to
be rotated is then a line.

3.3. Dual quaternions and rigid motions. The projective 4D analog of a quater-
nion is called a dual quaternion. This is where the real difference of EPGA comes
into play. So all Euclidean motions can be described in this space and we can
assume the dual number unit ϵ as a pseudo-scalar e0123, i.e. provide the mystique
properties of its: e20123 = 0. Thus, we define the dual element as an algebraic basis.

Let q = x0 + x1e2e3 + x2e3e1 + x3e1e2, r = y0 + y1e2e3 + y2e3e1 + y3e1e2 be two
quaternions. Then we can construct the dual quaternions in geometric algebra way
as follows [10]:

Q = q + re0123 = q − r∗

= x0 + x1e2e3 + x2e3e1 + x3e1e2

+ y0e0e1e2e3 + y1e1e0 + y2e2e0 + y3e3e0

Therefore, Pm = QPQ represents a rigid transformation of a point in the space.

Definition 6. Let q(t), r(t) be quaternion curves, then

Q(t) = q(t) + r(t)e0123

is a dual quaternion curve.
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Figure 2. Trajectory curves that are generated by the dual quaternion.

Corollary 5. Let Q(t) be dual quaternion curve and P be a point in P
(
R∗

3,0,1

)
then

X(t) = Q(t)PQ(t)

is a trajectory curve.

Example 2. For the most basic situation, let Q(t) = cos(t)e12 + sin(t)e23 + e01 +
e0123 be a dual quaternion curve, then for points Px = e123+e032, Py = e123+e013,
Pz = e123 + e102 there are three trajectory curves, see Fig.2.

An argument similar to the one above can be constructed with the basis (1-
vectors) of EPGA. At this time, one can get a line that does not pass through the
origin by meeting the two 1-vectors: Let a,b be two 1-vectors and at least one of
them is not passing through the origin, then their geometric product is

ab = q0 + L.
where q0 and L are scalar and plücker coordinates of the line, respectively. This
operator generates a trajectory (orbit) of a point around a moving line in space.

It is decided whether a quaternion operator formed by the geometric multipli-
cation of two 1-vectors is real or dual, by looking at whether its first terms (zeroth
index) are zero. In other words, the line obtained from the intersection (i.e., the
meet operator) of two planes passing through the origin represents the quaternion
operator that represents a rotation around this line passing through the origin. On
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the other hand, if one of the first terms is nonzero, the resulting quaternion will
represent a screw motion. Therefore, this quaternion acts like a dual quaternion
operator.

4. Conclusion

Geometric algebra has lately garnered significant attention due to its profound
applications for both imaging and performing fine operations on geometric objects.
The field has seen remarkable progress, particularly in enhancing our capability to
fantasize about complex geometric generalities. In this study, we embarked on a dis-
quisition that extended the operation of geometric algebra from traditional vector-
ground representations of curves and surfaces in classical figures to the realm of
quaternions. Our purpose is to demonstrate the unique capabilities of quaternions
as an important fine driver, shedding light on their part in generating topological
structures when applied to classical 3D geometric objects.

The implications of our findings extend far beyond the realm of classical Eu-
clidean geometry. While our study primarily focused on classical 3D geometric ob-
jects, the inherent flexibility of quaternions suggests that similar investigations can
be carried out in the domain of non-Euclidean geometries. This exciting prospect
hints at a wealth of fascinating results waiting to be uncovered, as the interplay
between quaternions and non-Euclidean geometries promises to yield profound in-
sights and applications in various scientific and engineering disciplines.

In summary, our research represents a pivotal contribution to the field of geo-
metric algebra by showcasing the remarkable utility of quaternions as operators in
transforming classical geometric objects and elucidating the emergence of topolog-
ical structures. This work not only deepens our understanding of the relationship
between algebra and geometry but also opens up a tantalizing avenue for future
research, where quaternions can be harnessed to explore the rich landscapes of non-
Euclidean geometries, potentially revolutionizing how we perceive and interact with
the mathematical underpinnings of the physical world.

Declaration of Competing Interests The author has no competing interests to
declare.
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EXPONENTIATED GENERALIZED RAMOS-LOUZADA

DISTRIBUTION WITH PROPERTIES AND APPLICATIONS
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Abstract. In this paper, we propose a new generalization of Ramos-Louzada

(RL) distribution based on two additional shape parameters. Along with the
genesis of its distributional form, the derivation of cumulative density function

(cdf), survival and hazard rate functions, the quantile function (qf), moments,

moment generating function (mgf), Shannon and Renyi entropies, order sta-
tistics and a linear representation of the proposed distribution are inspected.

Several estimation methods of the model parameters are discussed throughout
two comprehensive simulation studies conducted to compare its performance

against some lifetime distributions. Application of a real dataset is presented

to illustrate the potentiality of this distribution in line with the simulation
studies.

1. Introduction

Lifetime modeling of complex studies has created a growing interest in the gen-
eration of flexible distributions that can provide solutions to certain problems of
lifetime systems. Ramos-Louzada is such a distribution recently proposed by Ramos
and Louzada ( [24]) to take instantaneous failures into account that can inevitably
occur in many lifetime applications. It is announced to be a worthwhile alternative
to the Exponential and Lindley ( [19]) distributions and take the forms of both
with a shape parameter λ ≥ 2. That is, the distribution becomes the exponential
distribution for large values of λ and it resembles to the Lindley distribution as λ
decreases towards 2.
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Let the random variable X follows the RL distribution with the rate parameter
θ = 1

λ , λ ≥ 2;

g(x) =
(θ2x− 2θ + 1)θ

1− θ
e−θx, (1)

where x ≥ 0 and 0.5 ≥ θ > 0. The cdf of X ∼ RL(θ) is defined as

G(x) = 1− (θ2x− θ + 1)

1− θ
e−θx. (2)

Although the RL distribution is attractive for its simplicity, it fails to provide
precise evaluation of many lifetime datasets, since it contains only one parameter.
Many researchers benefit from generalizing baseline (stated otherwise parent or tar-
get) distributions by adding one or more parameters into the model to increase the
model fit and overcome the absence of sufficient flexibility in modeling the data. In
this respect, Al-Mofleh et al. ( [3]) recently proposed a two-parameter generaliza-
tion of the RL distribution by inserting a power parameter into the model. They
showed that the generalized Ramos-Louzada (GRL) distribution performs better
than some well-known distributions such as Marshall-Olkin ( [21]), exponentiated
exponential ( [11]) and generalized Lindley ( [23]) distributions with respect to some
bias and accuracy measures.

This paper proposes a new three-parameter model as a competetive extension
for this generalization of the RL distribution, namely the exponentiated generalized
Ramos-Louzada (EGRL) distribution. The new distribution relies on the class of
distributions established by Corderio et al. ( [7]). The usual definition of the
probability density function (pdf) of this family of distributions is

f(x) = αβg(x)

[
1−G(x)

]α−1(
1−

[
1−G(x)

]α)β−1

, (3)

where α > 0 and β > 0 are two shape parameters and g(x) and G(x) are the pdf
and cdf of the baseline distribution, respectively. The shape parameters α and β
in equation (3) provide better flexibility in the tails of the data and increase the
entropy in the center ( [7, p. 2]). The cdf of the family of distributions is of the
form

F (x) =

(
1−

[
1−G(x)

]α)β

. (4)

Our basic motivation for such generalization is to provide a better fit of RL
distribution to the wider range of problems in statistics. It is also of our goal
to achieve reliable estimation of model parameters considering various estimation
methods. This is particularly important as it affects the model selection process.
Evaluation of model fit via goodness of fit statistics is a usual practice in the
literature. Al-Mofleh et al. ( [3]) consider only the minus log likelihood (-ℓ),
Cramer-von Mises (C*; [9]) and Kolmogorov-Smirnov (KS*; [16, 31]) goodness of
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fit statistics. The assessment of model fit via these goodness of fit statistics might
produce biased results, since they do not take the model complexity into account
when choosing the best distribution in a set of distributions. The distributions
under consideration should also be compared to each other by means of using
information criteria.

Incorporating additional adequate parameter(s) into the model improves the
model fit and provides more flexibility in analyzing datasets. However, caution
should be taken when generalizing baseline distributions using more parameters in
the model. Achieving a good model fit requires taking into account the balance
between the sample size and the number of parameters in the model (bias versus
variance tradeoff as used in the literature). The information criteria such as Akaike
information criterion (AIC; [1, 2]) and Bayesian information criterion (BIC; [29])
are originally developed for solving this problem as they do not only rely on log
likelihood values, but also on penalty values. The log likelihood represents the fit
of a model to the data at hand as the penalty value penalizes the model depending
on (a function of) the number of parameters in the model. Thus, we compare the
EGRL distribution against a set of alternative distributions by means of not only
using model fit statistics, but also different types of information criteria.

The outline of the paper is as follows. In Section 2, we derive various statistical
and reliability properties of the EGRL distribution. In Section 3, we elaborate on
the methods of maximum likelihood estimation (MLE), least squares estimation
(LSE), weighted least squares estimation (WLSE), and Cramer-von Mises estima-
tion (CVME) to obtain the estimates of model parameters and their standard errors
for the EGRL distribution. In Section 4, we perform two simulation studies. In the
first simulation study, we evaluate the performance of the methods in estimating
the parameters of the EGRL distribution with respect to bias, precision, and accu-
racy measures. In the second simulation study, we compare the performance of the
EGRL distribution to that of a set of other lifetime distributions with respect to
some goodness of fit statistics and information criteria for each estimation method.
In Section 5, we exemplify the applicability of EGRL distribution for a real life
problem. We illustrate that the goodness of fit statistics may not be able to detect
the best distribution in a set of distributions and information criteria should be
used instead when comparing the performance of distributions. The paper will be
concluded with a short discussion.

2. The EGRL Distribution

2.1. Probability density and cumulative density functions. Incorporating
equations (1) and (2) into the general definition in equation (3), we obtain the pdf
of EGRL distribution which is given by

f(x) = αβ
(θ2x− 2θ + 1)θ

1− θ
e−θx

[
(θ2x− θ + 1)

1− θ
e−θx

]α−1
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×
(
1−

[
(θ2x− θ + 1)

1− θ
e−θx

]α)β−1

. (5)

For α = β = 1, the distribution reduces to the RL distribution. Similarly, by
replacing G(x) in equation (4) with the cdf of RL distribution in equation (2), we
obtain the cdf of EGRL distribution as

F (x) =

(
1−

[
(θ2x− θ + 1)e−θx

1− θ

]α)β

. (6)
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Figure 1. The pdf and cdf plots of EGRL distribution with vary-
ing values of α, β and θ parameters.

Figure 1 displays the plots for the pdf and cdf of EGRL distribution using differ-
ent values of α, β and θ parameters. As can be seen on the left panel of the figure,
the EGRL distribution is flexible in the sense that it can be positively skewed with
or without reversed-J shape. The plots on the right panel of the figure show that
the cdf of EGRL distribution increases towards one with increasing values of the
random variable X for varying values of parameters α, β and θ.

2.2. Survival and hazard rate functions. The survival function (stated other-
wise reliability function) is commonly used for lifetime datasets which often rep-
resents the probability of a patient’s survival or an object’s resistance until a pre-
determined time point. The survival function of EGRL distribution indicating the
complement of the cdf in equation (6) is given by

S(x) = 1−
(
1−

[
(θ2x− θ + 1)e−θx

1− θ

]α)β

. (7)
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Figure 2. The survival and hazard rate plots of EGRL distribu-
tion with varying values of α, β and θ parameters.

Another widely used tool that can serve to characterize the EGRL distribution
is the hazard rate function which indicates the probability of the occurence of an
event. The values of hazard rate function for the EGRL distribution can easily be
obtained by

H(x) =
f(x)

S(x)
, (8)

where f(x) is the pdf in equation (5) and S(x) is the survival function in equation
(7).

Figure 2 displays the plots of survival and hazard rate functions for the EGRL
distribution. These plots exhibit increasing, decreasing, and reversed-J shaped
hazard rate functions and decreasing survival functions with increasing values of
random variable X.

2.3. The quantile function. The quantile function (qf) of EGRL distribution is
the inverse of the cdf in equation (6). By applying w = −θx− 1−θ

θ transformation
and using w in Lambert form wew for u = G(x) in equation (2), we obtain

wew =
(1− θ)(u− 1)e1−

1
θ

θ
. (9)

This means that w can be defined as a Lambert function of the real argument wew.
The real argument wew ∈ (− 1

e , 0) for u ∈ (0, 1). Thus,

QEGRL(u) =

−θW−1

[
(θ−1)

[
(1−u

1
β )

1
α

]
e1−

1
θ

θ

]
+ θ − 1

θ2
, (10)
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where W−1 is the negative branch of the Lambert function, 0 < θ ≤ 0.5, and
0 < u < 1 (see [7, p. 2]). The values of the negative branch of Lambert function
W−1 can easily be obtained using lambertWm1 subroutine of lamW package in R

statistical software.
The Bowley skewness ( [15]) and Moorsis kurtosis ( [22]) measures for EGRL

distribution are defined by

B =
QEGRL(3/4) +QEGRL(1/4)− 2QEGRL(2/4)

QEGRL(3/4)−QEGRL(1/4)
(11)

and

M =
QEGRL(3/8)−QEGRL(1/8) +QEGRL(7/8)−QEGRL(5/8)

QEGRL(6/8)−QEGRL(2/8)
, (12)

where, for example, QEGRL(3/4) is the third quartile and QEGRL(5/8) is the fifth
octile of the qf for the EGRL distribution. Table 1 shows how these measures
behave with varying values of parameters α, β and θ. In line with the pdf plots
in Figure 1, increasing values of Moorsis kurtosis measure are associated with the
pdfs with heavier tails. Positive values of the Bowley skewness measure in this table
indicate that the distributions are right skewed.

Table 1. The Bowley skewness and Moorsis kurtosis measures
with varying values of α, β, and θ parameters.

α β θ Bowley skewness Moorsis kurtosis
0.1 1.0 0.5 0.23 1.25
0.5 1.0 0.5 0.19 1.30
1.0 1.0 0.5 0.17 1.32
1.5 1.0 0.5 0.15 1.33
2.0 1.0 0.5 0.15 1.34
1.0 0.1 0.5 0.77 2.49
1.0 0.5 0.5 0.24 1.16
1.0 1.5 0.5 0.14 1.46
1.0 2.0 0.5 0.13 1.56
2.0 2.0 0.1 0.18 1.31
2.0 2.0 0.2 0.17 1.32
2.0 2.0 0.3 0.15 1.33
2.0 2.0 0.4 0.13 1.41
2.0 2.0 0.5 0.12 1.61

2.4. Moments. We follow an analogous procedure to the one given in the previous
subsection with a slightly different transformation

v = 1−G(x) =
(θ2x− θ + 1)

1− θ
e−θx, (13)
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where 0 < v < 1. The mth moment of EGRL distribution is given by

E(Xm) =

∫ ∞

0

xmf(x)dx = αβ

∫ 1

0

(−1)m+1
[
z(v)

]m
vα−1(1− vα)β−1dv, (14)

where

z(v) =

−θW−1

[
(1−θ)ve1−

1
θ

θ

]
+ θ − 1

θ2
.

The next subsection recalls some useful definitions and power series expansions
that can be used to obtain the moments, mgf, Shannon and Renyi entropies, and
order statistics of EGRL distribution.

2.5. Useful definitions and power series expansions. Let T be a random
variable from the exponentiated exponential distribution which has the following
pdf

r(t) = αβe−αt(1− e−αt)β−1, (15)

and cdf

R(t) = (1− e−αt)β , (16)

where α, β, t > 0 ( [11]). The pdf of a random variable from the exponentiated
generalized family of distributions can also be defined as

f(x) =
g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
, (17)

where T = −log
[
1−G(X)

]
follows the exponentiated exponential distribution ( [4]).

By using equation (17), u = G(x), and the power series expansion

−log(1− u) =

∞∑
i=0

ui+1

i+ 1
, (18)

the pdf r

(
−log

[
1−G(x)

])
becomes

r

(
−log

[
1−G(x)

])
= r

( ∞∑
i=0

ui+1

i+ 1

)
= αβe−αD(1− e−αD)β−1, (19)

where D =
∑∞

i=0
ui+1

i+1 . Similarly, by using equation (18), u = G(x), and the power
series expansion above, the corresponding cdf is defined as

R

(
−log

[
1−G(x)

])
= R

( ∞∑
i=0

ui+1

i+ 1

)
= (1− e−αD)β . (20)

By applying another useful power series expansion

(1− y)a =

∞∑
k=0

(
a

k

)
(−1)k|y|, |y| < 1,
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we obtain

[1− F (x)]n−r =

n−r∑
j=0

(
n− r

j

)
(−1)jF j(x), (21)

which in turn will be used particularly to establish the order statistics for the EGRL
distribution.

2.6. Moments using power series expansions and quantile function. By
using equations (19) and (21), the mth moment of EGRL distribution can also be
defined as follows:

E(Xm) =

∫ ∞

0

xm g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
dx =

∫ 1

0

Qm(u)
1

1− u
r

( ∞∑
i=0

ui+1

i+ 1

)
du

=αβ

∫ 1

0

Qm(u)
1

1− u
e−αD(1− e−αD)β−1du, (22)

where D =
∑∞

i=0
ui+1

i+1 . Here, Q(u) = G−1(u) = x is the quantile function (i.e., the

inverse of the cdf) in equation (9), so that u = G(x) and du = g(x)dx.

2.7. Moment generating function. Following the procedure used to obtain the
moments in the previous subsection, the mgf of EGRL distribution can be obtained
as

E(ebX) =

∫ ∞

0

ebx
g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
dx =

∫ 1

0

ebQ(u) 1

1− u
r

( ∞∑
i=0

ui+1

i+ 1

)
du

=αβ

∫ 1

0

ebQ(u) 1

1− u
e−αD(1− e−αD)β−1du. (23)

2.8. Shannon entropy. The Shannon entropy ( [30]) is a measure to ascertain the
information provided by a random variable. The Shannon entropy for the random
variable X from the EGRL distribution is given by

ηS = −E

(
log

[
g(x)r(t)

1−G(x)

])
, (24)

where r(t) is used as a generator to attain the family of distributions in equation
(3).

The association between the Shannon entropy for the generator variable T which
has the support [0,∞] and the variableX from the beta-exponential-X family of dis-
tributions can be defined by using T = −log

[
1−G(X)

]
, and thus,X = G−1(1−e−T )

( [4]). This association also applies to our case for which the variable T is from the
exponentiated exponential distribution which has the support [0,∞] and the vari-
able X is from the EGRL distribution, since the exponentiated generalized family
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of distributions is a special case of the beta-exponential-X family of distributions.
Thus, the Shannon entropy above is defined as

ηS =− E

(
logf

[
G−1(1− e−T )

])
+ ηT − µT ,

=− E

(
logf

[
G−1(1− e−T )

])
+log

[
(αβ)−1

]
+ βΨ(β + 1)− (β − 1)Ψ(β)−Ψ(1)

+
Ψ(β + 1)−Ψ(1)

α
, (25)

where ηT = log
[
(αβ)−1

]
+ βΨ(β+1)− (β− 1)Ψ(β)−Ψ(1) is the Shannon entropy

for random variable T, µT = Ψ(β+1)−Ψ(1)
α is its mean and Ψ(.) is the digamma

function [4, p. 68].

2.9. Renyi entropy. The Renyi entropy ( [26]) is another widely used measure to
quantify the information in random variables. The Renyi entropy is an extension
of the Shannon entropy. The Renyi entropy of order γ for the random variable X
from the EGRL distribution is given by

ηR =
1

1− γ
log

∫ ∞

0

fγ(x)dx =
1

1− γ
log

∫ ∞

0

gγ(x)

1−Gγ(x)
rγ
(
−log

[
1−G(x)

])
dx

=
1

1− γ
log

∫ 1

0

gγ−1
[
Q(u)

]
1− uγ

rγ
( ∞∑

i=0

ui+1

i+ 1

)
du

=
αγβγ

1− γ
log

∫ 1

0

gγ−1
[
Q(u)

]
1− uγ

e−αγD(1− e−αD)γ(β−1)du, (26)

where g(x) is the pdf of RL distribution and D =
∑∞

i=0
ui+1

i+1 . The value of order γ
influences the information obtained from random variable X. The Renyi entropy
recovers the minimum entropy if γ = ∞, the maximum entropy if γ = 0, and
Shannon’s entropy if γ → 1 ( [27]).

2.10. Order statistics. Let X(1) = min{X1, X2, ..., Xn} and X(n) = max{X1, X2,
..., Xn} are the smallest and largest values of a random sample X1, X2, ..., Xn,
respectively. In line with Arnold et al. ( [5]), the pdf of the rth order statistic (i.e,
the rth smallest value) is defined by

f(r)(x) =

(
n

r

)
F r−1(x)[1− F (x)]n−rf(x). (27)

By applying the power series expansion in equation (23), the pdf of the rth order
statistic is defined by

f(r)(x) =

(
n

r

)
F r−1(x)[1− F (x)]n−rf(x)
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=
n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)jF j+r−1(x)f(x)

=
n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)jRj+r−1

(
−log

[
1−G(x)

])

× g(x)

1−G(x)
r

(
−log

[
1−G(x)

])
=

n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)jRj+r−1

( ∞∑
i=0

ui+1

i+ 1

)

× g(x)

1−G(x)
r

( ∞∑
i=0

ui+1

i+ 1

)

=
n!

(r − 1)!(n− r)!

n−r∑
j=0

(
n− r

j

)
(−1)j(1− e−D)β(j+r−1)

× g(x)

1−G(x)
e−αD(1− e−αD)β−1, (28)

where g(x) and G(x) are the pdf and cdf of RL distribution and D =
∑∞

i=0
ui+1

i+1 .

2.11. Linear representation. Corderio and Lemonte ( [8]) produce the linear
representations of equations (3) and (4). We summarize their procedure here by
using G(x) as the cdf of the baseline RL distribution. By applying the general-
ized binomial expansion in equation (23) twice in equation (4), the cdf of EGRL
distribution is defined as

F (x) =

(
1−

[
1−G(x)

]α)β

=

∞∑
k=0

(−1)k
(
β

k

)[
1−G(x)

]αk

=

∞∑
k=0

(−1)k
(
β

k

)
∞∑
j=0

(−1)j
(
αk

j

)
Gj(x) =

∞∑
j=0

∞∑
k=1

(−1)j+k+1

(
β

k

)(
αk

j + 1

)
Gj+1(x),

where Gj+1(x) is the cdf of RL distribution with a power parameter j+1. In other
words, the cdf of EGRL distribution can be defined as a linear combination of the
cdfs of RL distributions. By taking the derivative of Gj+1(x) with respect to x ≥ 0,
we obtain the linear representation of the pdf of EGRL distribution which is given
by

f(x) =

∞∑
j=0

∞∑
k=1

(−1)j+k+1

(
β

k

)(
αk

j + 1

)
(j + 1)g(x)Gj(x),

where g(x) is the pdf and G(x) is the cdf of the baseline RL distribution.
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3. Parameter Estimation

In this section, we present the parameter estimation procedure by means of
four methods: maximum likelihood estimation (MLE), least squares estimation
(LSE), weighted least squares estimation (WLSE), and Cramer von Mises estima-
tion (CVME). The LSE, WLSE, and CVME methods are included in the study as
an alternative to MLE due to their ease of use.

3.1. Maximum likelihood estimation. The log likelihood function of a random
sample X = (X1, X2, ..., Xn) from the EGRL distribution is given by

ℓ =nlog(α) + nlog(β) + nlog(θ)− nαlog(1− θ) +

n∑
i=1

log(θ2xi − 2θ + 1)

−αθ

n∑
i=1

xi + (α− 1)

n∑
i=1

log(θ2xi − θ + 1)

+(β − 1)

n∑
i=1

log

(
1−

[
(θ2xi − θ + 1)

1− θ
e−θxi

]α)
. (29)

The elements of score vector ( ∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂θ ) containing the first derivatives (stated

otherwise the gradients) of the log likelihood function with respect to parameters
α, β and θ are given below.

∂ℓ

∂α
=
n

α
− nlog(1− θ)− θ

n∑
i=1

xi +

n∑
i=1

log(θ2xi − θ + 1)

+(1− β)

n∑
i=1

ζαi
(
log(ζi)− θxi

)
eαθxi − ζαi

,

∂ℓ

∂β
=
n

β
+

n∑
i=1

log

(
1−

(
ζie

−θxi
)α)

,

∂ℓ

∂θ
=
n

θ
+

nα

1− θ
+

n∑
i=1

2(θxi − 1)

θ2xi − 2θ + 1
− α

n∑
i=1

xi + (α− 1)

n∑
i=1

2θxi − 1

θ2xi − θ + 1

+(1− β)

n∑
i=1

αxiζ
α
i

[
θ3xi − θ2(xi + 2) + 4θ − 1

]
(1− θ)(θ2xi − θ + 1)(eαθxi − ζαi )

. (30)

where ζi =
(θ2xi−θ+1)

1−θ .

Maximum likelihood estimates (MLEs) are described analytically by setting the
elements of the score vector equal to zero and solving for each parameter. The
resulting equations ∂ℓ

∂α = 0, ∂ℓ
∂β = 0 and ∂ℓ

∂θ = 0 need to be solved simultaneously.

Maximizing the log likelihood function with respect to parameters α, β and θ can
be performed using a reliable non-linear optimization technique such as Nelder and
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Mead (NM) or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Maxi-
mizing the log likelihood (or minimizing minus the log likelihood) function can be
achieved by using maxLik and optim subroutines of maxLik and stats packages in
R statistical software.

When maximizing the log likelihood function above, the initials of α, β, and θ
parameters must be specified. To easily obtain the initial for parameter θ by means
of using the usual RL distribution in equation (1), the initials of parameters α and
β were set to 1. The initial of parameter θ was obtained by taking the inverse of

the root obtained in µ = λ2

λ−1 (see [24, p. 250]), where parameter µ was replaced by

the sample mean x̄. The resulting initial for this parameter is θinit =
2

x̄+
√
x̄2−4x̄

.

We do not provide the analytical expressions of the entries of Hessian matrix for
the log likelihood function of EGRL distribution which are too complicated. The
standard errors of model parameters can be obtained by an approximate Hessian
matrix using the default option (i.e., the finite-difference approach) in the maxLik

package. The square root of diagonals for the inverse of minus the Hessian matrix
gives the standard errors of parameter estimates. However, the same standard
errors can be obtained by using summary function in the maxLik package. Note
that this approximation technique does not always converge for the standard errors
of model parameters. In such a case, nonparametric bootstrapping (NB; [10]) is a
reasonable alternative to estimate the standard errors of parameters. The NB can
also be used to obtain an estimate of bias to compare the performance of estimation
methods presented in this paper, which will be evaluated in the application section.

The estimates of model parameters and their standard errors can also be obtained
by maximizing a function of the cdf of EGRL distribution or a weighted form of
this function known as the method of (weighted) least squares estimation which
will be presented in the next subsection.

3.2. The method of (Weighted) Least-squares estimation. Based on Swain
et al. ( [33]), the least squares estimates of model parameters and their standard
errors can be attained by maximizing

−
n∑

i=1

[
F (x(i))−

i

n+ 1

]2
, (31)

where F (x(i)) is the cdf of the ordered random variables x(1) < x(2) < ... < x(n),
see also [28, p. 181]. Thus, the least squares estimates for the EGRL distribution
are obtained by maximizing

−
n∑

i=1

[(
1−

[
1−G(x(i))

]α)β − i

n+ 1

]2
, (32)

where F (x(i)) in equation (33) is replaced by the cdf of the ordered random variables
for the EGRL distribution. Here, G(x(i)) represents the cdf of the ordered random
variables for the baseline RL distribution in equation (2).
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The weighted least squares estimation (WLSE) can be more reliable than the
usual least squares estimation (LSE) when the data involve heteroscedasticity which
often occurs in the presence of outlier(s). The WLSE incorporates an additional
weight factor into the function above to quantify the importance of each observation
in the data when estimating model parameters. The WLSE is (often) less sensitive
to outliers when compared to the usual LSE1. The weighted least squares estimates
can be obtained by maximizing

−
n∑

i=1

w(i)

[
F (x(i))−

i

n+ 1

]2
, (33)

where w(i) = (n+1)2(n+2)
i(n−i+1) is the value of weight factor of the ith observation for

the data in increasing order, [28, p. 181]. Similar to the least squares estimates,
the weighted least squares estimates for the EGRL distribution are obtained by
maximizing

−
n∑

i=1

w(i)

[(
1−

[
1−G(x(i))

]α)β − i

n+ 1

]2
. (34)

Another popular estimation method that can easily be applied to estimate model
parameters for the EGRL distribution is the method of Cramer-Von-Mises estima-
tion (CVME), which will be detailed in the next subsection.

3.3. The method of Cramer-von-Mises estimation. The estimates of model
parameters using the Cramer-von-Mises estimation (CVME; [20]) is obtained by
maximizing another function of the cdf of EGRL distribution which is given by

− 1

12n
−

n∑
i=1

[
F (x(i))−

2i− 1

2n

]2
. (35)

Similar to equations (34) and (36), this function for the EGRL distribution can be
defined as

− 1

12n
−

n∑
i=1

[(
1−

[
1−G(x(i))

]α)β − 2i− 1

2n

]2
. (36)

The gradients and analytical expressions of Hessian matrices with respect to the
maximized functions using LSE, WLSE, and CVME methods are not presented
here, but, would be made available upon request.

4. Simulation Studies

This section presents two simulation studies, first of which aims to investigate
the performances of MLE, LSE, WLSE, and CVME methods for the EGRL distri-
bution with respect to the bias, precision, and accuracy measures given in Walther
and Moore ( [34]). The second simulation study is however set up to illustrate

1The estimates obtained by the WLSE are not always resistant to outliers. For more details
on the situations in which these estimates are sensitive to outliers, see Sohn et al. ( [32]).
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the potentiality of the new EGRL distribution in comparison to the some other
lifetime distributions listed in Table 2. In this simulation, we show that model

Table 2. Some selected lifetime distributions.

Distribution Author(s)
Rayleigh Rayleigh ( [25])
Exponentiated generalized Normal (EGN) Corderio et al. ( [7])
Exponentiated generalized Gumbel (EGGu) Corderio et al. ( [7])
Exponentiated generalized Ramos-Louzada (EGRL) (New)

fit indices should be used in conjunction with information criteria to detect the
best distribution in a set of distributions when analyzing the data. For the selec-
tion of best fitting models, the Cramer-von Mises (C*; [9]), Watson (W*; [35]),
Kuiper (K*; [17]) and Kolmogorov-Smirnov (KS*; [16,31]) goodness of fit statistics
and the log likelihood (ℓ), Akaike information criterion (AIC; [1, 2]), Consistent
Akaike information criterion (CAIC; [6]), Corrected Akaike information criterion
(AICc; [14]), Bayesian information criterion (BIC; [29]), and Hannan-Quinn infor-
mation criterion (HQIC; [12]) are used. The goodness of fit statistics are given
by

C∗ =
1

12n
+

n∑
k=1

[
2k − 1

2n
− F (X(k))

]2
,

W∗ =

√√√√C∗ − n

([ 1
n

n∑
k=1

F (X(k))
]
− 1

2

)2

,

K∗ =max
[k
n
− F (x(k))

]
+max

[
F (X(k))−

k − 1

n

]
,

KS∗ =max

[
F (X(k))−

k − 1

n
,
k

n
− F (X(k))

]
, (37)

where n is the sample size and F (x) is the cdf of the distribution under consideration
for which the values of random variable X are in increasing order, namely, x(1) <
x(2) < ... < x(n). The small values of these information criteria and test statistics
above imply better model fits. Similarly, the information criteria are given by

AIC =− 2ℓ+ 2p,

AICc =− 2ℓ+
2pn

n− p− 1
,

CAIC =− 2ℓ+ p
[
log(n) + 1

]
,
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BIC =− 2ℓ+ plog(n),

HQIC =− 2ℓ+ 2plog
[
log(n)

]
, (38)

where n is the sample size and p is the number of parameters in the model.
The simulation studies for two sets of population values of parameters for the

EGRL distribution comprise the following steps.

(1) (a) For the first simulation: Set α = 1, β = 1, and θ = 0.3 as the popula-
tion values of parameters for the EGRL distribution.

(b) For the second simulation: Set α = 1.2, β = 1.3, and θ = 0.3 as the
population values of parameters for the EGRL distribution.

(2) Set the sample size as N = 20, 100, or 500.
(3) Generate the values of EGRL distribution based on the population values

in Step 1 and the sample size in Step 2. The data generation from the
EGRL distribution is performed by using the automatic nonuniform ran-
dom variate generation process presented in Hörmann et al. ( [13]). This
procedure can easily be implemented using tdr.new and ur subroutines of
Runuran package in R statistical software.

(4) Obtain the estimates of model parameters using MLE, LSE, WLSE, and
CVME methods for the EGRL distribution in the first simulation and for
the distributions in Table 2 in the second simulation.

(5) Perform Steps 3-4 for S = 1000 times.
(6) (a) For the first simulation: For the EGRL distribution and each esti-

mation method, calculate the bias, precision, and accuracy measures
given in Walther and Moore ( [34]).

(b) For the second simulation: For each distribution and estimation method,
calculate the log likelihood value, the values of goodness of fit statistics,
and information criteria in equations (31), (39) and (40), respectively.

Notably, the measures in Step 6 (a) are obtained for each parameter of EGRL
distribution in S = 1000 simulations. For example, the bias, precision, and accuracy
measures for parameter α are given by

Bias(α) =
1

S

S∑
s=1

(α̂s − α), (39)

Precision(α) =
1

S

S∑
s=1

(α̂s − ᾱ)2, (40)

Accuracy(α) =
1

S

S∑
s=1

(α̂s − α)2, (41)

where α = 1 is the population value of α in Step 1 (a), α̂s is the estimate of param-

eter α in the sth simulation, and ᾱ = 1
S

∑S
s=1 α̂s for s = 1, 2, ..., 1000. Analogous

calculations are performed for parameters β and θ. These values are displayed in
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Table 3. Similarly, the values obtained in Step 6 (b) are presented in Tables 4, 5,
6, and 7 in each of which one of the estimation methods concerned are displayed in
turn.

In the first and second simulation studies, parameter estimation over the data
sets was performed by NM and BFGS algorithms, respectively. A data set was not
accepted for inclusion in S = 1000 simulation trials if at least one of the following
conditions occured. (1) The initial of parameter θ was not in the range of 0 and 0.5
or sample mean is smaller than 4 in line with θinit =

2
x̄+

√
x̄2−4x̄

(see page 11). (2)

The estimates of parameters were obtained outside the parameter space. For exam-
ple, when the estimate of parameter α > 0 for the EGN distribution is obtained as
α̂ < 0. (3) When the convergence criterion was not obtained for any of the distri-
butions under consideration. (4) When the log likelihood value for any distribution
in the set was obtained as minus infinity. Note that this last condition only applies
to the second simulation study. If at least one of the conditions above occurs in the
simulation, a different data was generated for the corresponding simulation trial.

Table 3 shows the values of bias, precision, and accuracy measures for each pa-
rameter of the EGRL distribution obtained from S = 1000 random datasets using
MLE, LSE, WLSE, and CVME methods with NM algorithm. A small value in
the table represents a small bias, a high precision, or a high accuracy measure.
This table displays that increasing the sample size eventually reduces the bias and
increases the precision and accuracy for parameters α, β, and θ of the EGRL distri-
bution using each estimation method. The performance of each estimation method
improves as the sample size increases. It is concluded that MLE outperforms other
estimation methods in terms of bias, precision, and accuracy measures.

Tables 4, 5, 6, and 7 show the average values of the (minus) log likelihood, good-
ness of fit statistics, and information criteria for each distribution under evaluation
using MLE, LSE, WLSE, and CVME methods with BFGS algorithm, respectively.
Based on these tables, one-parameter Rayleigh distribution does not provide enough
flexibility in modeling the data. Because model fit statistics and (minus) log likeli-
hood values for this distribution are larger than other distributions. It seems that
the EGRL distribution often has smaller, and thus, better model fit statistics and
(minus) log likelihood values when compared to other distributions. However, note
that, these goodness of fit statistics are biased themselves, since they do not take
the model complexity into account when choosing the best distribution in a set of
distributions. The information criteria like the AIC and BIC reduce this bias by
penalizing model complexity (i.e., penalizing the models containing unnecessarily
more parameters). For example, when estimating model parameters using MLE
for n = 20 in Table 4, the best distribution in the set according to the values of
model fit statistics is the EGGu distribution, while it is the second best distribu-
tion after the EGRL distribution based on the values of all the information criteria
under consideration. Sample size plays a crucial role for information criteria when
detecting the best distribution in a set. Because small samples tend to support
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Table 3. Bias, precision and accuracy measures for the parame-
ters of EGRL distribution

MLE LSE
α̂ Bias(α) Precision(α) Accuracy(α) α̂ Bias(α) Precision(α) Accuracy(α)

n = 20 0.968 -0.032 0.300 0.301 0.685 -0.315 0.045 0.144

n = 100 0.991 -0.009 0.267 0.267 0.838 -0.162 0.048 0.075

n = 500 1.011 0.011 0.102 0.103 0.952 -0.048 0.059 0.061

β̂ Bias(β) Precision(β) Accuracy(β) β̂ Bias(β) Precision(β) Accuracy(β)

n = 20 1.027 0.027 0.081 0.081 0.853 -0.147 0.060 0.082

n = 100 0.958 -0.042 0.030 0.031 0.892 -0.108 0.019 0.031

n = 500 0.966 -0.034 0.014 0.015 0.941 -0.059 0.012 0.016

θ̂ Bias(θ) Precision(θ) Accuracy(θ) θ̂ Bias(θ) Precision(θ) Accuracy(θ)

n = 20 0.336 0.036 0.006 0.007 0.368 0.068 0.005 0.009

n = 100 0.339 0.039 0.007 0.009 0.360 0.060 0.005 0.009

n = 500 0.317 0.017 0.006 0.007 0.326 0.026 0.006 0.006

WLSE CVME
α̂ Bias(α) Precision(α) Accuracy(α) α̂ Bias(α) Precision(α) Accuracy(α)

n = 20 0.689 -0.311 0.042 0.139 0.788 -0.212 0.053 0.098

n = 100 0.843 -0.157 0.046 0.071 0.868 -0.132 0.049 0.067

n = 500 0.953 -0.047 0.055 0.057 0.959 -0.041 0.058 0.059

β̂ Bias(β) Precision(β) Accuracy(β) β̂ Bias(β) Precision(β) Accuracy(β)

n = 20 0.849 -0.151 0.054 0.077 0.977 -0.023 0.088 0.089

n = 100 0.895 -0.105 0.019 0.030 0.921 -0.079 0.021 0.027

n = 500 0.946 -0.054 0.011 0.014 0.948 -0.052 0.012 0.015

θ̂ Bias(θ) Precision(θ) Accuracy(θ) θ̂ Bias(θ) Precision(θ) Accuracy(θ)

n = 20 0.378 0.078 0.004 0.010 0.362 0.062 0.005 0.008

n = 100 0.364 0.064 0.005 0.009 0.356 0.056 0.005 0.008

n = 500 0.327 0.027 0.005 0.006 0.325 0.025 0.006 0.006

more parsimonious (stated otherwise simple) models, while large samples tend to
support more complex models. The performance of EGRL distribution increase
better than that of other distributions in the set as the sample size increases. The
EGRL distribution in these tables is associated with the smallest (average) values
of information criteria for n = 500, regardless of the type of information criterion or
estimation method. Moreover, the EGRL distribution performs better than other
exponentiated generalized distributions, namely, the EGN and EGGu distributions,
in all cases where the sample size is n = 100 or n = 500.
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Table 4. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using MLE method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.44 0.43 0.37 0.28 57.00 115.99 116.21 117.99 116.99 116.18

EGRL 0.06 0.23 0.23 0.14 51.33 108.67 111.04 114.66 111.66 109.25

EGN 0.12 0.30 0.28 0.17 54.69 117.38 119.12 125.36 121.36 118.16

EGGu 0.06 0.22 0.23 0.13 51.57 111.14 113.81 119.13 115.13 111.92

100 Rayleigh 1.69 0.79 0.27 0.22 276.01 554.02 554.07 557.63 556.63 555.08

EGRL 0.06 0.22 0.10 0.06 251.62 509.23 509.63 520.05 517.05 512.40

EGN 0.38 0.52 0.20 0.12 268.78 545.57 545.84 559.99 555.99 549.78

EGGu 0.07 0.25 0.11 0.07 253.58 515.16 515.59 529.58 525.58 519.38

500 Rayleigh 7.74 1.66 0.24 0.20 1369.52 2741.03 2741.04 2746.25 2745.25 2742.68

EGRL 0.05 0.21 0.05 0.03 1255.06 2516.11 2516.19 2531.76 2528.76 2521.08

EGN 1.33 0.97 0.16 0.09 1328.86 2665.72 2665.77 2686.58 2682.58 2672.33

EGGu 0.15 0.35 0.07 0.04 1265.08 2538.17 2538.25 2559.03 2555.03 2544.78

Table 5. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using LSE method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.17 0.38 0.34 0.20 59.43 120.85 121.08 122.85 121.85 121.05

EGRL 0.04 0.21 0.22 0.12 51.14 108.27 110.65 114.26 111.26 108.86

EGN 0.06 0.23 0.24 0.13 60.90 129.81 131.54 137.79 133.79 130.59

EGGu 0.04 0.19 0.20 0.11 52.29 112.58 115.25 120.57 116.57 113.36

100 Rayleigh 0.63 0.77 0.26 0.14 288.01 578.01 578.05 581.62 580.62 579.07

EGRL 0.04 0.19 0.10 0.05 251.20 508.39 508.79 519.21 516.21 511.56

EGN 0.14 0.35 0.16 0.10 285.02 578.05 578.32 592.47 588.47 582.26

EGGu 0.04 0.18 0.09 0.05 256.61 521.23 521.65 535.65 531.65 525.44

500 Rayleigh 2.89 1.68 0.23 0.12 1437.51 2877.03 2877.03 2882.24 2881.24 2878.68

EGRL 0.04 0.18 0.04 0.02 1255.46 2516.92 2516.99 2532.56 2529.56 2521.88

EGN 0.54 0.70 0.13 0.08 1391.44 2790.87 2790.92 2811.73 2807.73 2797.49

EGGu 0.04 0.20 0.05 0.03 1286.80 2581.61 2581.69 2602.46 2598.46 2588.22

5. Application

This data contain N = 116 observations representing a mean ozone in parts per
billion at Rosevelt Island. These observations are obtained from the airquality

dataset in datasets package of R statistical software (version 4.2.2). Table 8 shows
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Table 6. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using WLSE method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.17 0.38 0.33 0.20 59.04 120.09 120.31 122.08 121.08 120.28

EGRL 0.05 0.21 0.22 0.12 50.92 107.83 110.21 113.82 110.82 108.42

EGN 0.06 0.24 0.24 0.13 60.61 129.22 130.96 137.21 133.21 130.00

EGGu 0.04 0.19 0.20 0.11 52.24 112.48 115.15 120.47 116.47 113.26

100 Rayleigh 0.63 0.76 0.26 0.15 286.51 575.02 575.06 578.62 577.62 576.07

EGRL 0.04 0.20 0.10 0.05 250.92 507.83 508.23 518.65 515.65 510.99

EGN 0.16 0.38 0.16 0.09 372.13 752.26 752.53 766.68 762.68 756.48

EGGu 0.04 0.18 0.09 0.05 256.45 520.91 521.33 535.33 531.33 525.12

500 Rayleigh 2.91 1.66 0.23 0.12 1428.25 2858.50 2858.51 2863.71 2862.71 2860.15

EGRL 0.04 0.19 0.04 0.02 1255.35 2516.69 2516.77 2532.34 2529.34 2521.65

EGN 0.56 0.72 0.15 0.10 3498.90 7005.81 7005.86 7026.67 7022.67 7012.42

EGGu 0.04 0.20 0.05 0.03 1286.84 2581.68 2581.76 2602.54 2598.54 2588.29

Table 7. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution un-
der evaluation using CVME method.

Sample
size (n)

Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC

20 Rayleigh 0.18 0.39 0.34 0.20 59.83 121.66 121.88 123.65 122.65 121.85

EGRL 0.04 0.20 0.21 0.11 51.28 108.55 110.93 114.54 111.54 109.14

EGN 0.05 0.22 0.23 0.13 62.26 132.52 134.25 140.50 136.50 133.30

EGGu 0.03 0.18 0.19 0.10 52.73 113.45 116.12 121.44 117.44 114.23

100 Rayleigh 0.63 0.77 0.26 0.14 288.11 578.21 578.25 581.82 580.82 579.27

EGRL 0.04 0.19 0.09 0.05 251.28 508.57 508.96 519.38 516.38 511.73

EGN 0.14 0.35 0.16 0.09 283.67 575.33 575.61 589.75 585.75 579.55

EGGu 0.04 0.18 0.09 0.05 257.24 522.47 522.90 536.90 532.90 526.69

500 Rayleigh 2.89 1.68 0.23 0.12 1437.64 2877.29 2877.29 2882.50 2881.50 2878.94

EGRL 0.04 0.18 0.04 0.02 1255.44 2516.88 2516.95 2532.52 2529.52 2521.84

EGN 0.54 0.70 0.13 0.08 1391.87 2791.74 2791.79 2812.60 2808.60 2798.36

EGGu 0.04 0.20 0.05 0.02 1286.81 2581.61 2581.69 2602.47 2598.47 2588.23

the data and its descriptives. This dataset is heavily right skewed. The Q-Q plot in
Figure 3 and Shapiro-Wilk normality test results (W = 0.879, p < 0.001) show that
the dataset is not normally distributed. The boxplot in Figure 3 displays that the
dataset contains outliers. Table 9 shows the estimates of model parameters for the
Ozone data using each of the estimation methods. We provide the R code on how
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to obtain the estimates of model parameters using MLE in Appendix. The R code
for other estimation methods and distributions are not presented in Appendix, but,
would be made available upon request.

Table 8. The Ozone data and its descriptives.

Data: 41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30,
11, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37, 20, 12,
13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79,
63, 16, 80, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122,
89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 21, 9, 45, 168, 73, 76, 118,
84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13,
46, 18, 13, 24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20

Std. Trimmed Median Std.
Mean deviationMedian mean abs. deviation Min Max Range Skewness Kurtosis error
42.13 32.99 31.50 37.80 25.95 1.00 168.00 167.00 1.21 1.11 3.06

Table 9. The estimates of model parameters using MLE, LSE,
WLSE, and CVME for the Ozone data.

MLE LSE

Models α β µ θ α β µ θ
Rayleigh 37.774 – – – 28.295 – – –

EGRL 1.423 1.795 – 0.024 1.061 1.514 – 0.030

EGN 1.542 123.522 -114.284 84.077 3.237 115.191 -56.913 111.820

EGGu 0.182 0.602 16.227 7.177 0.115 0.648 12.322 5.188

WLSE CVM

Models α β µ θ α β µ θ
Rayleigh 28.735 – – – 28.288 – – –

EGRL 2.999 1.654 – 0.011 1.893 1.551 – 0.017

EGN 0.452 218.532 -179.939 47.622 3.306 109.547 -51.712 110.068

EGGu 0.131 0.761 10.899 5.250 0.114 0.661 12.198 5.031

Figure 4 shows the pdfs, cdfs and survival and hazard rate functions for each
distribution using MLE. This figure shows that the EGRL and EGGu distributions
fit the data better than the Rayleigh and EGN distributions. Table 10 shows that
the distribution of the observed Ozone data does not deviate significantly from the
EGRL and EGGu distributions, but the distribution of the data differs from the
Rayleigh and EGN distributions. This can be tested by the values of Kolmogorov-
Smirnov (KS∗) test statistics. For doing this, the critical value for the KS test
is determined for α = 0.05, that is, KSt = 1.36√

n
= 1.36√

116
= 0.126. Therefore, for

example, KS∗ = 0.085 < KSt = 0.126 and KS∗ = 0.065 < KSt = 0.126 indicate
that the distribution of the Ozone data is not significantly different from the EGRL
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Figure 3. The Q-Q plot and box plot for the Ozone data.
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Figure 4. The pdf, cdf, survival and hazard rate functions for the
Ozone data.

and EGGu distributions, respectively, when parameter estimation is performed by
MLE. However, KS∗ = 0.248 > KSt = 0.126 and KS∗ = 0.214 > KSt = 0.126
mean that the distribution of the data significantly different from the Rayleigh and
EGN distributions, respectively, when parameter estimation is performed by MLE.
Table 10 also shows that the EGGu distribution provides the smallest goodness of
fit statistics, regardless of the method used for parameter estimation. However, as
noted in the introduction, these goodness of fit statistisc are biased as they do not
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take the model complexity into account. Information criteria reduce this bias by
considering both the fit and complexity of the model being evaluated. In Table 10,
the values of information criteria indicate that the EGRL distribution has a better
balance between the model fit and complexity when compared to Rayleigh, EGN,
and EGGu distributions. Thus, we conclude that the EGRL distribution can be
considered as an alternative distribution in the exponential generalized family of
distributions when analyzing positively skewed data using MLE, LSE, WLSE, and
CVME for parameter estimation.

Table 10. The values of the goodness of fit statistics, (minus)
log likelihood, and information criteria for each distribution under
evaluation using MLE, LSE, WLSE, and CVME for the Ozone
data.

MLE
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 2.17 1.03 0.31 0.25 561.99 1125.97 1126.01 1129.73 1128.73 1127.09

EGRL 0.12 0.33 0.14 0.09 541.40 1088.79 1089.01 1100.05 1097.05 1092.15

EGN 0.51 0.66 0.21 0.14 556.53 1121.06 1121.42 1136.08 1132.08 1125.53

EGGu 0.06 0.24 0.12 0.07 540.46 1088.91 1089.27 1103.93 1099.93 1093.39

LSE
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 0.87 0.93 0.31 0.18 585.69 1173.38 1173.41 1177.13 1176.13 1174.50

EGRL 0.08 0.28 0.12 0.06 542.15 1090.30 1090.52 1101.56 1098.56 1093.65

EGN 0.32 0.55 0.20 0.11 558.28 1124.56 1124.92 1139.57 1135.57 1129.03

EGGu 0.03 0.18 0.08 0.04 540.99 1089.98 1090.34 1105.00 1101.00 1094.45

WLSE
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 0.87 0.94 0.31 0.17 582.99 1167.98 1168.01 1171.73 1170.73 1169.10

EGRL 0.09 0.30 0.13 0.07 541.58 1089.15 1089.37 1100.41 1097.41 1092.51

EGN 0.39 0.62 0.22 0.12 556.00 1120.00 1120.35 1135.01 1131.01 1124.46

EGGu 0.03 0.18 0.10 0.05 540.28 1088.56 1088.92 1103.57 1099.57 1093.03

CVME
Models C∗ W∗ K∗ KS∗ -ℓ AIC AICc CAIC BIC HQIC
Rayleigh 0.87 0.93 0.31 0.18 585.74 1173.48 1173.51 1177.23 1176.23 1174.59

EGRL 0.08 0.28 0.12 0.06 541.96 1089.92 1090.14 1101.18 1098.18 1093.28

EGN 0.32 0.55 0.20 0.11 558.29 1124.59 1124.95 1139.60 1135.60 1129.06

EGGu 0.03 0.17 0.08 0.04 540.98 1089.96 1090.32 1104.98 1100.98 1094.43

Goodness of fit statistics and information criteria are originally created to com-
pare the performance of models, but not to compare the performance of estimation
methods. Therefore, we do not recommend using the results in Table 10 to compare
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the performance of the methods in estimating the parameters of the EGRL distri-
bution. For doing this, we used a bootstrap estimate of bias presented in Efron and
Tibshirani ( [10]).

Let η = (α, β, θ) be the vector containing the parameters of EGRL distribution.
Then, the bootstrap estimate of bias for each estimation method is calculated as
follows:

(1) Create B = 1000 bootstrap samples by resampling with replacement from
the original data.

(2) Obtain the estimate of parameter vector η for each of the bootstrap samples.
(3) Obtain the overall bootstrap estimate of parameter vector η, that is, η∗,

by averaging the estimates among the bootstrap samples. The standard
errors of parameter estimates (i.e., SE∗

B) are obtained by taking the square
root of diagonals of the covariance matrix for the estimates in the bootstrap
samples.

(4) Calculate the bootstrap estimate of bias for parameter vector η, that is,
BiasB = |η∗ − η̂|, where η̂ is the vector of the usual estimates obtained for
the original data using MLE, LSE, WLSE, or CVME.

Table 11 shows the performance evaluation of each estimation method in esti-
mating the parameters of the EGRL distribution for the Ozone data. Efron and
Tibshirani ( [10]) state that the bias can be ignored if BiasB

SE∗
B

≤ 0.25. Therefore,

based on the results in Table 11, CVME outperforms other estimation methods
for this particular example as it has the ratios smaller than 0.25 when estimating
parameters α, β, and θ. In line with Efron and Tibshirani ( [10]), the bias-adjusted
estimates (BAEs) are also provided for each estimation method using 2η̂−η∗. How-
ever, caution should be taken when using the bias-adjusted estimates in place of
the usual estimates, as biases are more difficult to estimate than standard errors
and correcting bias may produce higher standard errors [10, p. 138]. While the
bias-adjusted estimates are reasonably close to the usual estimates for MLE and
CVME, these estimates are not close to the usual estimates for LSE and WLSE.
The WLSE even produces a negative bias-adjusted estimate for parameter θ.

In summary, it is concluded that CVME performs better than other estimation
methods in analyzing the Ozone data based on nonparametric bootstrapping bias
assessment. In this sense, MLE also provides a reasonable set of parameter esti-
mates. However, LSE and WLSE do not perform well when compared to MLE and
CVME for analyzing the Ozone data using the EGRL distribution.

6. Discussion

In this study, we introduced a new distribution called the exponentiated gen-
eralized Ramos-Louzada distribution involving three parameters. We used four
estimation methods (i.e., the MLE, LSE, WLSE, and CVME) for estimation. We
assess the performance of these methods for the EGRL distribution by means of
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Table 11. Performance evaluation of the estimation methods for
the Ozone data in terms of the bias measure using nonparametric
bootstrapping.

Method α β θ
MLE (η̂) 1.423 1.795 0.024
NB (η∗) 1.016 1.830 0.046
SE∗

B 0.411 0.231 0.035
BiasB = |η∗ − η̂| 0.407 0.035 0.022
Ratio = BiasB

SE∗
B

0.990 0.152 0.629

BAE = 2η̂ − η∗ 1.830 1.760 0.002
LSE (η̂) 1.061 1.514 0.030
NB (η∗) 1.783 1.564 0.020
SE∗

B 0.431 0.225 0.012
BiasB = |η∗ − η̂| 0.722 0.050 0.010
Ratio = BiasB

SE∗
B

1.675 0.222 0.833

BAE = 2η̂ − η∗ 0.339 1.464 0.040
WLSE (η̂) 2.999 1.654 0.011
NB (η∗) 2.060 1.735 0.023
SE∗

B 0.836 0.217 0.023
BiasB = |η∗ − η̂| 0.939 0.081 0.012
Ratio = BiasB

SE∗
B

1.123 0.373 0.522

BAE = 2η̂ − η∗ 3.938 1.573 -0.001
CVME (η̂) 1.893 1.551 0.017
NB (η∗) 1.792 1.602 0.020
SE∗

B 0.439 0.233 0.013
BiasB = |η∗ − η̂| 0.101 0.051 0.003
Ratio = BiasB

SE∗
B

0.230 0.219 0.231

BAE = 2η̂ − η∗ 1.994 1.500 0.014

using bias, precision, and accuracy measures, the goodness of fit statistics, and in-
formation criteria. To attain this objective, we first generate the datasets from the
EGRL distribution in two simulations with varying values of sample size. Then,
in the first simulation, we evaluate the performance of each estimation method for
the EGRL distribution by means of using bias, precision, and accuracy measures.
We obtain smaller bias and better precision and accuracy measures for each pa-
rameter of EGRL distribution as the sample size increases. It is concluded that
MLE outperforms other estimation methods as the sample size increases. Second
simulation study is conducted to evaluate the performance of a set of distributions
for each estimation method separately. It is concluded that the performance of
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EGRL distribution increase better than that of other distributions as the sample
size increases when the data in fact follow the EGRL distribution.

The EGRL distribution is a flexible distribution that can be used to improve
the model fit when compared to other exponentiated generalized distributions such
as EGN and EGGu distributions. However, caution should be taken when using
this distribution to analyze datasets in some certain circumstances. We are com-
pelled to highlight two main limitations of the EGRL distribution when using it in
conjunction with the estimation methods and information criteria presented in this
paper. First, the performance of the EGRL distribution on modeling the data de-
pends on the method utilized for estimation. For example, the methods presented
in this paper might produce biased parameter estimates and their standard errors
in the case of the data contain many missing values and/or outliers. In such cases,
a different estimation method dealing with missing values and/or outliers better
should be preferred over these estimation methods. Second, the AIC is prone to
overfitting, that is, falsely choosing more complicated distributions containing more
parameters over the simpler (stated otherwise more parsimonious) distributions for
small samples. We do not suggest the use of the EGRL distribution for small sam-
ples, since it contains relatively more parameters when compared to the usual RL
distribution. In the same sense, the AIC should not be used as a decision crite-
rion when the set of distributions contains the EGRL distribution for small samples.
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Appendix

The R (version 4.2.2) code used to estimate the parameters of the EGRL distri-
bution using MLE is given below.

library(maxLik)

set.seed(111)

# The Ozone data

xi <- c(41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34,

6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37,

20, 12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35,

61, 79, 63, 16, 80, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35,

66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 21, 9, 45, 168, 73,

76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28,

9, 13, 46, 18, 13, 24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20)

# Sample size

n <- length(xi)

# Determining the initials for the parameters, respectively.

alphainit <- 1

betainit <- 1

thetainit<-2/(mean(xi)+sqrt(mean(xi)^2-4*mean(xi)))

# Maximizing the log likelihood function.

logLik <- function(param) {

alpha <- param[1]

beta <- param[2]
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theta <- param[3]

# The four lines below are used to ensure that the estimates updated

# in the BFGS algorithm are in line with the parameter spaces.

if (alpha < 0) {alpha <- 0.0001}

if (beta < 0) {beta <- 0.0001}

if (theta < 0) {theta <- 0.0001}

if (theta > 0.5) {theta <- 0.5}

gx <- (((1+theta^2*xi-2*theta)*(theta))/(1-theta))*(exp(-theta*xi))

Gx <- 1-((1+theta^2*xi-theta)/(1-theta))*(exp(-theta*xi))

ll <- n*log(alpha)+n*log(beta)+sum(log(gx))+(alpha-1)*(sum(log(1-Gx)))+

(beta-1)*sum(log(1-((1-Gx)^(alpha))))

}

# Obtaining the results of the BFGS algorithm. Here,

# control = list(iterlim = 100000) is used to ensure successfull

# convergence of the BFGS algorithm.

model <- maxLik(logLik, start = c(alphainit, betainit, thetainit),

method = "BFGS", control = list(iterlim = 100000))

# Displaying the results

summary(model)

--------------------------------------------

Maximum Likelihood estimation

BFGS maximization, 44 iterations

Return code 0: successful convergence

Log-Likelihood: -541.3966

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 1.42313 2.40164 0.593 0.553

[2,] 1.79495 0.24685 7.271 3.56e-13 ***

[3,] 0.02424 0.04196 0.578 0.563

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------
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Abstract. In this paper, we introduce the notion of generalized weakly con-
tractive type multi-valued mapping with respect to a single-valued mapping

and prove the existence of PPF dependent coincidence points in Banach spaces.

Further, we introduce the notion of generalized weakly contractive type multi-
valued mappings for a pair of multi-valued mappings and prove the existence

of PPF dependent common fixed points in Banach spaces. We draw some

corollaries and provide nontrivial examples to illustrate our results.

1. Introduction

The Banach contraction principle is one of the fundemental and useful result in
fixed point theory and it plays an important role in solving problems related to
non-linear functional analysis. In 1969, Nadler [20] extended Banach contraction
principle to the context of set valued mapping. For more works on the existence of
fixed points of multi-valued maps, we refer Kaneko [16] and Mizoguchi and Taka-
hashi [19]. In 1997, Alber and Gurre-Delabriere [1] introduced weakly contractive
map which is a generalization of contraction map and obtained fixed point results in
the setting of Hilbert spaces. Rhoades [22] extended this concept to metric spaces
and Bae [6] considered these type of multi-valued mappings. Bose and Roychowd-
hury [9,10] considered some generalized versions of these mappings and proved some
fixed point theorems.
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Let (X, d) be a metric space and K(X), the family of all non-empty compact
subsets of X and H represents the Hausdorff distance induced by the metric d. i.e.,

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

for any A,B ∈ K(X), where d(a,B) = inf
b∈B

d(a, b) and d(A, b) = inf
a∈A

d(a, b).

Definition 1. [6] A point x ∈ X is said to be a fixed point of a multi-valued
mapping T : X → K(X) if x ∈ Tx.

Definition 2. A point x ∈ X is said to be a coincidence point of two mappings
f, g : X → X if f(x) = g(x).

Definition 3. [9] A mapping T : X → X is said to be a generalized weakly con-
tractive map with respect to f : X → X if

ψ(d(Tx, Ty)) ≤ ψ(d(fx, fy))− ϕ(d(fx, fy))
for all x, y ∈ X, where ψ, ϕ : [0,∞) → [0,∞) are both continuous such that
ψ(t), ϕ(t) > 0 for t ∈ (0,∞) and ψ(0) = 0 = ϕ(0). In addition, ϕ is non-decreasing
and ψ is monotonically increasing (strictly).

If ψ(t) = t for all t ∈ [0,∞), and f is the identity map in Definition 3 then we
say that T : X → X is said to be a weakly contractive map.

Definition 4. [9] A multi-valued mapping T : X → K(X) is said to be a general-
ized weakly contractive map with respect to f : X → X if

ψ(H(Tx, Ty)) ≤ ψ(d(fx, fy))− ϕ(d(fx, fy)),
for all x, y ∈ X, where ψ, ϕ : [0,∞) → [0,∞) are both continuous such that
ψ(t), ϕ(t) > 0 for t ∈ (0,∞) and ψ(0) = 0 = ϕ(0). In addition, ϕ is non-decreasing
and ψ is monotonically increasing (strictly).

If f is the identity mapping then the multi-valued mapping T : X → K(X) is
said to be generalized weakly contractive. If ψ(t) = t for all t ∈ [0,∞), then the
multi-valued mapping T : X → K(X) is said to be weakly contractive with respect
to f .

In 1977, Bernfeld, Lakshmikantham and Reddy [8] introduced the concept of
fixed point for mappings that have different domains and ranges which is called PPF
(Past, Present and Future) dependent fixed point. Furthermore, they introduced
the notation of Banach type contraction for a non-self mappings and proved the
existence of PPF dependent fixed points of Banach type contractive mappings in the
Razumikhin class. Several mathematicians proved the existence of PPF dependent
fixed points of single-valued mapppings and multi-valued mappings, for more details
we refer to [2–5,7,13,15,18]. In 2016, Farajzadeh, Kaewcharoen and Plubtieng [14]
introduced the concept of PPF dependent fixed point of multi-valued mappings
which is an extension of PPF dependent fixed point of single valued mapping and
proved the existence of PPF dependent fixed point for multi-valued mappings.

Motivated by the research work of Bose and Roychowdhury [9] on weakly con-
tractive maps, we extend the above said results for the case of PPF dependent
coincidence points and PPF dependent common fixed points.
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In this paper, we introduce the notion of generalized weakly contractive type
multi-valued mapping with respect to a single-valued mapping and prove the exis-
tence of PPF dependent coincidence points in Banach spaces. Further, we introduce
the notion of generalized weakly contractive type multi-valued mappings for a pair
of multi-valued mappings and prove the existence of PPF dependent common fixed
points in Banach spaces. We draw some corollaries and provide examples to illus-
trate our main results.

2. Preliminaries

In this paper, we denote the real line by R, R+ = [0,∞), the set of all nat-
ural numbers by N. Let (E, ||.||E) be a Banach space and we denote it by sim-
ply by E. Let I = [a, b] ⊆ R and E0 = C(I, E), the set of all continuous
functions on I equipped with the supremum norm ||.||E0

and we define it by

||ϕ||E0
= sup

a≤t≤b
||ϕ(t)||E for ϕ ∈ E0.

In our discussion, let CB(E) be the collection of all non-empty closed and
bounded subsets of E. Then the Hausdorff metric HE on CB(E) induced by the
norm ||.||E is defined by

HE(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

for any A,B ∈ CB(E), where d(a,B) = inf
b∈B

||a− b||E and d(A, b) = inf
a∈A

||a− b||E .
For a fixed c ∈ I, the Razumikhin class Rc of functions in E0 is defined by

Rc =
{
ϕ ∈ E0 | ||ϕ||E0

= ||ϕ(c)||E
}

and Rc(c) = {ϕ(c) | ϕ ∈ Rc}. Clearly every
constant function from I to E belongs to Rc so that Rc is a non-empty subset of
E0 .

Definition 5. [8] Let Rc be the Razumikhin class of continuous functions in E0.
Then, we say that

(i) the class Rc is algebraically closed with respect to the difference if ϕ−ψ ∈ Rc

whenever ϕ, ψ ∈ Rc.
(ii) the class Rc is topologically closed if it is closed with respect to the topology

on E0 by the norm ||.||E0
.

The Razumikhin class of functions Rc has the following properties.

Theorem 1. [2] Let Rc be the Razumikhin class of functions in E0. Then

(i) for any ϕ ∈ Rc and α ∈ R, we have αϕ ∈ Rc.
(ii) the Razumikhin class Rc is topologically closed with respect to the norm

defined on E0.
(iii) ∩Rc

c∈[a,b]
= {ϕ ∈ E0 | ϕ : I → E is constant} .

Definition 6. [8] Let T : E0 → E be a mapping. A function ϕ ∈ E0 is said to be
a PPF dependent fixed point of T if Tϕ = ϕ(c) for some c ∈ I.
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Definition 7. [8] Let T : E0 → E be a mapping. Then T is called a Banach type
contraction if there exists a constant k ∈ [0, 1) such that

||Tϕ− Tψ||E ≤ k ||ϕ− ψ||E0

for any ϕ, ψ ∈ E0.

Theorem 2. [8] Let T : E0 → E be a Banach type contraction. Let Rc be an
algebraically closed with respect to the difference and topologically closed. Then, T
has a unique PPF dependent fixed point in Rc.

Farajzadeh, Kaewcharoen and Plubtieng [14] introduced the concept of PPF
dependent fixed points of multi-valued mappings as follows.

Definition 8. [14] Let T : E0 → CB(E) be a multi-valued mapping. A point
ϕ ∈ E0 is said to be a PPF dependent fixed point of T if ϕ(c) ∈ Tϕ for some c ∈ I.

Definition 9. [14] Let f : E0 → E0 be a single-valued mapping and
T : E0 → CB(E) be a multi-valued mapping. A point ϕ ∈ E0 is said to be a PPF
dependent coincidence point of f and T if fϕ(c) ∈ Tϕ for some c ∈ I.

Here we observe that fϕ is not a composition of ϕ and f .

Definition 10. [14] Let S, T : E0 → E be two single-valued mappings. A point
ϕ ∈ E0 is said to be a PPF dependent common fixed point of S and T if
Sϕ = Tϕ = ϕ(c) for some c ∈ I.

We denote
Ψ = {ψ : R+ → R+ | ψ is continuous, monotonically increasing and

ψ(t) = 0 ⇐⇒ t = 0}
and

Φ = {ϕ : R+ → R+ | ϕ is continuous and ϕ(t) = 0 ⇐⇒ t = 0}.
We use the following results in our subsequent discussions.

Proposition 1. If {an} and {bn} are two real sequences, {bn} is bounded, then
lim inf(an + bn) ≤ lim inf an + lim sup bn.

Lemma 1. [20] Let A and B be two non-empty compact subsets of a metric space
X. If a ∈ A then there exists b ∈ B such that d(a, b) ≤ H(A,B).

Lemma 2. [3] Let {ϕn} be a sequence in E0 such that
∣∣∣∣ϕn − ϕn+1

∣∣∣∣
E0

→ 0 as

n → ∞. If {ϕn} is not a Cauchy sequence, then there exists an ϵ > 0 and two
subsequences {ϕmk

} and {ϕnk
} of {ϕn} with mk > nk > k such that∣∣∣∣ϕnk

− ϕmk

∣∣∣∣
E0

≥ ϵ,
∣∣∣∣ϕnk

− ϕmk−1

∣∣∣∣
E0

< ϵ and

(i) lim
k→∞

∣∣∣∣ϕnk
− ϕmk+1

∣∣∣∣
E0

= ϵ,

(ii) lim
k→∞

∣∣∣∣ϕnk+1 − ϕmk

∣∣∣∣
E0

= ϵ,

(iii) lim
k→∞

∣∣∣∣ϕnk
− ϕmk

∣∣∣∣
E0

= ϵ,

(iv) lim
k→∞

∣∣∣∣ϕnk+1 − ϕmk+1

∣∣∣∣
E0

= ϵ.
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3. Existence of PPF Dependent Coincidence Points

In this section, we introduce the concept of PPF dependent coincidence point of
f : E → E and T : E0 → E.

Definition 11. Let f : E → E and T : E0 → E be two mappings. A point ϕ ∈ E0

is said to be a PPF dependent coincidence point of f and T if Tϕ = (f ◦ ϕ)(c) for
some c ∈ I, where f ◦ ϕ denotes the composition of ϕ and f .

We observe that if f is the identity mapping then PPF dependent coincidence
point of f and T becomes PPF dependent fixed point of T .

Motivated by this idea, in the following, we now introduce the concept of PPF
dependent coincidence point of f : E → E and T : E0 → CB(E).

Definition 12. Let f : E → E be a single-valued mapping and T : E0 → CB(E) be
a multi-valued mapping. A point ϕ ∈ E0 is said to be a PPF dependent coincidence
point of f and T if (f ◦ ϕ)(c) ∈ Tϕ for some c ∈ I, where f ◦ ϕ denotes the
composition of ϕ and f .

We observe that, if f is an identity mapping then ϕ is a PPF dependent fixed
point of the multi-valued mapping T .

Notation: Let c ∈ I. Let f : E → E and ϕ ∈ E0. We denote (f ◦ ϕ)(c) by
fϕ(c).

In the following, we introduce the notion of generalized weakly contractive type
multi-valued mappings.

Definition 13. Let T : E0 → CB(E). Let f : E → E be a continuous function.
Then, T is said to be a generalized weakly contractive type multi-valued mapping
with respect to f if there exist ψ ∈ Ψ and ϕ ∈ Φ such that

ψ(HE(Tα, Tβ)) ≤ ψ(||fα− fβ||E0
)− ϕ(||fα− fβ||E0

) (1)

for any α, β ∈ E0.

We observe the following:

(i) if f is the identity mapping in (1) then the mapping T : E0 → CB(E) is
said to be generalized weakly contractive type multi-valued mapping;

(ii) if ψ(t) = t for any t ∈ R+ in (1) then the mapping T : E0 → CB(E) is said
to be weakly contractive type multi-valued mapping with respect to f ;

(iii) if both f is the identity mapping and ψ(t) = t for any t ∈ R+ in (1)
then the mapping T : E0 → CB(E) is said to be weakly contractive type
multi-valued mapping.

Theorem 3. Let T : E0 → CB(E) and f : E → E be functions that satisfy the
following conditions:

(i) T is a generalized weakly contractive type multi-valued mapping with respect
to f ,
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(ii) Tϕ ⊆ f(Rc)(c) = {fϕ(c) | ϕ ∈ Rc} for any ϕ ∈ E0,
(iii) Rc is algebraically closed with respect to the difference,
(iv) f(Rc) is complete and
(v) f(Rc) ⊆ Rc.

Then, T and f have a PPF dependent coincidence point in Rc.

Proof. Let ϕ0 ∈ Rc. Then, Tϕ0 ⊆ E. Let x1 ∈ E be such that x1 ∈ Tϕ0.
Since Tϕ0 ⊆ f(Rc)(c), we choose ϕ1 in Rc such that x1 = fϕ1(c) ∈ Tϕ0.
From (1), we have

ψ(HE(Tϕ0, Tϕ1)) ≤ ψ(||fϕ0 − fϕ1||E0
)− ϕ(||fϕ0 − fϕ1||E0

).
Since x1 ∈ Tϕ0, by Lemma 1 there exists x2 ∈ Tϕ1 such that

||x1 − x2||E ≤ HE(Tϕ0, Tϕ1). (2)

Since x2 ∈ Tϕ1 and Tϕ1 ⊆ f(Rc)(c), we choose ϕ2 in Rc such that
x2 = fϕ2(c) ∈ Tϕ1.
If ϕ1 = ϕ2 then ϕ1 is a PPF dependent coincidence point of f and T .
Suppose that ϕ1 ̸= ϕ2.
From (2), we have

||fϕ1(c)− fϕ2(c)||E ≤ HE(Tϕ0, Tϕ1).
Since Rc is algebraically closed with respect to the difference, we have

||fϕ1 − fϕ2||E0
≤ HE(Tϕ0, Tϕ1). (3)

From (1), we have
ψ(HE(Tϕ1, Tϕ2)) ≤ ψ(||fϕ1 − fϕ2||E0

)− ϕ(||fϕ1 − fϕ2||E0
).

Since x2 ∈ Tϕ1, by Lemma 1 there exists x3 ∈ Tϕ2 such that

||x2 − x3||E ≤ HE(Tϕ1, Tϕ2). (4)

Since x3 ∈ Tϕ2 and Tϕ2 ⊆ f(Rc)(c), we choose ϕ3 in Rc such that
x3 = fϕ3(c) ∈ Tϕ2.
If ϕ2 = ϕ3 then ϕ2 is a PPF dependent coincident point of f and T .
Suppose that ϕ2 ̸= ϕ3.
From (4), we have

||fϕ2(c)− fϕ3(c)||E ≤ HE(Tϕ1, Tϕ2).
Since Rc is algebraically closed with respect to the difference, we have

||fϕ2 − fϕ3||E0 ≤ HE(Tϕ1, Tϕ2). (5)

On continuing this process, we get a sequence {fϕn} in Rc such that

xn = fϕn(c) ∈ Tϕn−1, ||fϕn − fϕn+1||E0 ≤ HE(Tϕn−1, Tϕn) for all n ∈ N. (6)

Clearly,
ψ(||fϕn − fϕn+1||E0

) ≤ ψ(HE(Tϕn−1, Tϕn)

≤ ψ(||fϕn−1 − fϕn)||E0
)− ϕ(||fϕn−1 − fϕn||E0

) (7)
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< ψ(||fϕn−1 − fϕn||E0
).

Since ψ is monotonically increasing function, we have
||fϕn − fϕn+1||E0 ≤ ||fϕn−1 − fϕn||E0 .

Therefore, the sequence {||fϕn − fϕn+1||E0
} is a decreasing sequence in R+ and

hence it is convergent.
Let

∣∣∣∣fϕn − fϕn+1

∣∣∣∣
E0

→ r as n→ ∞.

From (7), we have
ψ(||fϕn − fϕn+1||E0

) ≤ ψ(||fϕn−1 − fϕn||E0
)− ϕ(||fϕn−1 − fϕn||E0

).
On applying limits as n→ ∞ on both sides, we get

ψ(r) ≤ ψ(r)− ϕ(r) and hence r = 0.
Therefore,

lim
n→∞

∣∣∣∣fϕn − fϕn+1

∣∣∣∣
E0

= 0. (8)

We now show that {fϕn} is a Cauchy sequence.
Suppose that {fϕn} is not a Cauchy sequence. Then, there exists an ϵ > 0 and two
subsequences {fϕmk

} and {fϕnk
} of {fϕn} such that for any k ∈ N,mk > nk > k

such that

||fϕnk
− fϕmk

||E0 ≥ ϵ. (9)

Let mk be the smallest positive integer greater than nk satisfying (9).
Then, ||fϕnk

− fϕmk
||E0

≥ ϵ and ||fϕnk
− fϕmk−1||E0

< ϵ.
By Lemma 2 we have
lim
k→∞

∣∣∣∣fϕnk+1 − fϕmk

∣∣∣∣
E0

= ϵ = lim
k→∞

∣∣∣∣fϕnk
− fϕmk+1

∣∣∣∣
E0

= lim
k→∞

∣∣∣∣fϕnk
− fϕmk

∣∣∣∣
E0
.

Now, we show that lim
k→∞

||fϕnk+l1 − fϕmk+l2 ||E0
= ϵ for any l1, l2 ∈ N.

Let l1, l2 ∈ N. Now we consider
||fϕnk+l1−fϕmk+l2 ||E0

≤ ||fϕnk+l1−fϕnk+l1−1||E0
+||fϕnk+l1−1−fϕnk+l1−2||E0

+ ...+ ||fϕnk+1 − fϕnk
||E0 + ||fϕnk

− fϕmk+1||E0

+||fϕmk+1−fϕmk+2||E0
+...+||fϕmk+l2−1−fϕmk+l2 ||E0

.
On applying limit superior as k → ∞ on both sides, we get

lim sup
k→∞

||fϕnk+l1 − fϕmk+l2 ||E0 ≤ ϵ. (10)

Now, we consider
||fϕnk

− fϕmk+1||E0
≤ ||fϕnk

− fϕnk+1||E0
+ ||fϕnk+1 − fϕnk+2||E0

+ ...
+ ||fϕnk+l1−1 − fϕnk+l1 ||E0

+ ||fϕnk+l1 − fϕmk+l2 ||E0

+||fϕmk+l2−fϕmk+l2−1||E0+...+||fϕmk+2−fϕmk+1||E0 .
Now, by applying Proposition 1 with ak = ||fϕnk+l1 − fϕmk+l2 ||E0

and
bk = (||fϕnk

−fϕnk+1||E0
+||fϕnk+1−fϕnk+2||E0

+...+||fϕnk+l1−1−fϕnk+l1 ||E0
+

||fϕmk+l2 − fϕmk+l2−1||E0 + ...+ ||fϕmk+2 − fϕmk+1||E0) we have
ϵ ≤ lim inf

k→∞
||fϕnk+l1 − fϕmk+l2 ||E0

+ lim sup
k→∞

(||fϕnk
− fϕnk+1||E0

+||fϕnk+1−fϕnk+2||E0+...+||fϕnk+l1−1−fϕnk+l1 ||E0+||fϕmk+l2−fϕmk+l2−1||E0

+ ...+ ||fϕmk+2 − fϕmk+1||E0
).
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Hence

ϵ ≤ lim inf
k→∞

||fϕnk+l1 − fϕmk+l2 ||E0 . (11)

From (10) and (11), we get

lim
k→∞

||fϕnk+l1 − fϕmk+l2 ||E0 = ϵ for any l1, l2 ∈ N. (12)

We choose l1, l2 ∈ N such that (mk + l2)− (nk + l1) = 1.
From (7), we have

ψ(||fϕnk+l1 − fϕmk+l2 ||E0
) ≤

ψ(||fϕnk+l1−1 − fϕmk+l2−1||E0)− ϕ(||fϕnk+l1−1 − fϕmk+l2−1||E0).

On applying limits as k → ∞ on both sides and by using (12), we get

ψ(ϵ) ≤ ψ(ϵ)− η(ϵ),

a contradiction.
Therefore, {fϕn} is a Cauchy sequence in f(Rc). Since f(Rc) is complete, we have
fϕn → η as n → ∞ for some η ∈ f(Rc) and hence there exists ϕ∗ ∈ Rc such that
η = fϕ∗ and lim

n→∞
fϕn = fϕ∗.

Now, for any n ∈ N
d(fϕn+1(c), Tϕ

∗) ≤ HE(Tϕn, Tϕ
∗),

and hence
ψ(d(fϕn+1(c), Tϕ

∗)) ≤ ψ(HE(Tϕn, Tϕ
∗))

≤ ψ(||fϕn − fϕ∗||E0
)− ϕ(||fϕn − fϕ∗||E0

).
On applying limits as n→ ∞ on both sides, we get

ψ(d(fϕ∗(c), Tϕ∗)) ≤ ψ(0)− ϕ(0) and hence ψ(d(fϕ∗(c), Tϕ∗)) = 0.
Therefore, fϕ∗(c) ∈ Tϕ∗ and hence T and f have a PPF dependent coincidence
point in Rc. □

4. Existence of PPF Dependent Common Fixed Points

In this section, we introduce the concept of PPF dependent common fixed points
for a pair of multi-valued mappings.

Definition 14. Let S, T : E0 → CB(E) be two multi-valued mappings. A point
ϕ ∈ E0 is said to be a PPF dependent common fixed point of S and T if ϕ(c) ∈ Sϕ
and ϕ(c) ∈ Tϕ for some c ∈ I.

In the following we define generalized weakly contractive type mappings for a
pair of multi-valued mappings.

Definition 15. Let S, T : E0 → CB(E) be two multi-valued functions. The pair
(S, T ) is said to be a pair of generalized weakly contractive type multi-valued map-
pings on E0 if there exist ψ ∈ Ψ and ϕ ∈ Φ such that

ψ(HE(Tα, Sβ)) ≤ ψ(M(α, β))− ϕ(M(α, β)) (13)
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for any α, β ∈ E0, where
M(α, β) = max{||α− β||E0 , d(α(c), Tα), d(β(c), Sβ),

1
2 [d(β(c), Tα) + d(α(c), Sβ)]}.

Theorem 4. Let S, T : E0 → CB(E) be two multi-valued mappings such that:

(i) the pair (S, T ) is a pair of generalized weakly contractive type multi-valued
mappings on E0,

(ii) Rc is algebraically closed with respect to the difference and
(iii) Tϕ ⊆ Rc(c) and Sϕ ⊆ Rc(c) for any ϕ ∈ E0.

Then, S and T have a PPF dependent common fixed point in Rc.

Proof. Let ϕ0 ∈ Rc. Then, Tϕ0 ⊆ E. Let x1 ∈ E be such that x1 ∈ Tϕ0.
Since Tϕ0 ⊆ Rc(c), we choose ϕ1 in Rc such that x1 = ϕ1(c) ∈ Tϕ0.
From (13), we have

ψ(HE(Tϕ0, Sϕ1)) ≤ ψ(M(ϕ0, ϕ1))− ϕ(M(ϕ0, ϕ1)).
If M(ϕ0, ϕ1) = 0 then ϕ0 = ϕ1 and hence ϕ0 is a PPF dependent common fixed
point of S and T .
Suppose that M(ϕ0, ϕ1) > 0. By Lemma 1 there exists x2 ∈ Sϕ1 such that

||x1 − x2||E ≤ HE(Tϕ0, Sϕ1). (14)

Since x2 ∈ Sϕ1 and Sϕ1 ⊆ Rc(c), we choose ϕ2 in Rc such that x2 = ϕ2(c) ∈ Sϕ1.
From (13), we have

ψ(HE(Sϕ1, Tϕ2)) = ψ(HE(Tϕ2, Sϕ1)) ≤ ψ(M(ϕ2, ϕ1))− ϕ(M(ϕ2, ϕ1)).
If M(ϕ2, ϕ1) = 0 then ϕ1 = ϕ2 and hence ϕ1 is a PPF dependent common fixed
point of S and T .
Suppose that M(ϕ2, ϕ1) > 0. By Lemma 1 there exists x3 ∈ Tϕ2 such that

||x2 − x3||E ≤ HE(Sϕ1, Tϕ2). (15)

Since x3 ∈ Tϕ2 and Tϕ2 ⊆ Rc(c), we choose ϕ3 in Rc such that x3 = ϕ3(c) ∈ Tϕ2.
Again from (13), we have

ψ(HE(Tϕ2, Sϕ3)) ≤ ψ(M(ϕ2, ϕ3))− ϕ(M(ϕ2, ϕ3)).
If M(ϕ2, ϕ3) = 0 then ϕ2 = ϕ3 and hence ϕ2 is a PPF dependent common fixed
point of S and T .
Suppose that M(ϕ2, ϕ3) > 0. On continuing this process, we get a sequence {ϕn}
in Rc such that

ϕ2n+1(c) ∈ Tϕ2n, ϕ2n+2(c) ∈ Sϕ2n+1 (16)

and

M(ϕn, ϕn+1) > 0 (17)

with ||ϕ2n+1(c)− ϕ2n+2(c)||E ≤ HE(Tϕ2n, Sϕ2n+1)
and ||ϕ2n+2(c)− ϕ2n+3(c)||E ≤ HE(Sϕ2n+1, Tϕ2n+2) for all n ∈ N ∪ {0}.
Since Rc is algebraically closed with respect to the difference, for all n ∈ N ∪ {0}
we have

||ϕ2n+1 − ϕ2n+2||E0 ≤ HE(Tϕ2n, Sϕ2n+1) (18)
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and

||ϕ2n+2 − ϕ2n+3||E0
≤ HE(Sϕ2n+1, Tϕ2n+2) = HE(Tϕ2n+2, Sϕ2n+1). (19)

We consider
M(ϕ2n, ϕ2n+1) = max{||ϕ2n − ϕ2n+1||E0 , d(ϕ2n(c), Tϕ2n), d(ϕ2n+1(c), Sϕ2n+1),

1
2 [d(ϕ2n+1(c), Tϕ2n) + d(ϕ2n(c), Sϕ2n+1)]},

≤ max{||ϕ2n−ϕ2n+1||E0
, ||ϕ2n(c)−ϕ2n+1(c)||E , ||ϕ2n+1(c)−ϕ2n+2(c)||E ,

1
2 [0 + ||ϕ2n(c)− ϕ2n+2(c)||E}

= max{||ϕ2n − ϕ2n+1||E0 , ||ϕ2n+1 − ϕ2n+2||E0 ,
1
2 [||ϕ2n − ϕ2n+2||E0 ]}

≤ max{||ϕ2n − ϕ2n+1||E0
, ||ϕ2n+1 − ϕ2n+2||E0

,
1
2 [||ϕ2n − ϕ2n+1||E0

+ ||ϕ2n+1 − ϕ2n+2||E0
]}

= max{||ϕ2n − ϕ2n+1||E0 , ||ϕ2n+1 − ϕ2n+2||E0},
and hence

M(ϕ2n, ϕ2n+1) ≤ max{||ϕ2n − ϕ2n+1||E0 , ||ϕ2n+1 − ϕ2n+2||E0}. (20)

Suppose that max{||ϕ2n − ϕ2n+1||E0
, ||ϕ2n+1 − ϕ2n+2||E0

} = ||ϕ2n+1 − ϕ2n+2||E0
.

Now, from (20), we have
M(ϕ2n, ϕ2n+1) ≤ ||ϕ2n+1 − ϕ2n+2||E0 ,

and hence
ψ(M(ϕ2n, ϕ2n+1)) ≤ ψ(||ϕ2n+1 − ϕ2n+2||E0

).
Now, from (18), we have

||ϕ2n+1 − ϕ2n+2||E0
≤ HE(Tϕ2n, Sϕ2n+1),

and hence
ψ(||ϕ2n+1 − ϕ2n+2||E0) ≤ ψ(HE(Tϕ2n, Sϕ2n+1))

≤ ψ(M(ϕ2n, ϕ2n+1))− ϕ(M(ϕ2n, ϕ2n+1)) (21)

≤ ψ(||ϕ2n+1 − ϕ2n+2||E0)− ϕ(M(ϕ2n, ϕ2n+1)).
Therefore, f(M(ϕ2n, ϕ2n+1)) = 0 and hence M(ϕ2n, ϕ2n+1) = 0,
a contradiction.
Therefore,

max{||ϕ2n − ϕ2n+1||E0
, ||ϕ2n+1 − ϕ2n+2||E0

} = ||ϕ2n − ϕ2n+1||E0
. (22)

Now, from (20), we have

M(ϕ2n, ϕ2n+1) ≤ ||ϕ2n − ϕ2n+1||E0
. (23)

Now, from (18), we have
||ϕ2n+1 − ϕ2n+2||E0

≤ HE(Tϕ2n, Sϕ2n+1),
and hence

ψ(||ϕ2n+1 − ϕ2n+2||E0) ≤ ψ(HE(Tϕ2n, Sϕ2n+1))
≤ ψ(M(ϕ2n, ϕ2n+1))− ϕ(M(ϕ2n, ϕ2n+1))
< ψ(M(ϕ2n, ϕ2n+1)) (by using (17)
≤ ψ(||ϕ2n − ϕ2n+1||E0

). (by using (23))
Since ψ is monotonically increasing function, we have

||ϕ2n+1 − ϕ2n+2||E0
≤M(ϕ2n, ϕ2n+1) ≤ ||ϕ2n − ϕ2n+1||E0

. (24)
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Similarly we have ||ϕ2n+2 − ϕ2n+3||E0
≤M(ϕ2n+2, ϕ2n+1) ≤ ||ϕ2n+2 − ϕ2n+1||E0

= ||ϕ2n+1 − ϕ2n+2||E0
. (25)

From (24) and (25), we have ||ϕn+1 − ϕn||E0 ≤ ||ϕn − ϕn−1||E0 for all n ∈ N.
Therefore, the sequence {||ϕn+1−ϕn||E0

} is a decreasing sequence in R+, and hence
convergent.
Let lim

n→∞
||ϕn+1 − ϕn||E0

= r(say).

From (24), we have
||ϕ2n+1 − ϕ2n+2||E0 ≤M(ϕ2n, ϕ2n+1) ≤ ||ϕ2n − ϕ2n+1||E0 .

On applying limits as n→ ∞, we get
r ≤ lim

n→∞
M(ϕ2n, ϕ2n+1) ≤ r and hence lim

n→∞
M(ϕ2n, ϕ2n+1) = r.

From (21), we have
ψ(||ϕ2n+1 − ϕ2n+2||E0

) ≤ ψ(M(ϕ2n, ϕ2n+1))− ϕ(M(ϕ2n, ϕ2n+1)).
On applying limits as n → ∞, we get ψ(r) ≤ ψ(r) − ϕ(r) and which implies that
r = 0.
Therefore,

lim
n→∞

||ϕn+1 − ϕn||E0
= 0. (26)

Now, we show that {ϕn} is a Cauchy sequence.
From (26), to prove {ϕn} is a Cauchy sequence it is enough to prove that {ϕ2n} is
a Cauchy sequence.
Suppose that {ϕ2n} is not a Cauchy sequence.
Then, there exists ϵ > 0 and two subsequences {ϕ2mk

} and {ϕ2nk
} of {ϕ2n} such

that for any k ∈ N,mk > nk > k such that

||ϕ2nk
− ϕ2mk

||E0 ≥ ϵ. (27)

Let mk be the smallest positive integer greater than nk that is satisfying (27).
Then, ||ϕ2nk

− ϕ2mk
||E0

≥ ϵ and ||ϕ2nk
− ϕ2mk−2||E0

< ϵ.
We now show that lim

k→∞
||ϕ2nk

− ϕ2mk+1||E0 = ϵ.

Clearly
ϵ ≤ ||ϕ2nk

− ϕ2mk
||E0

≤ ||ϕ2nk
− ϕ2mk+1||E0

+ ||ϕ2mk+1 − ϕ2mk
||E0

.
Now, by applying Proposition 1 with ak = ||ϕ2nk

− ϕ2mk+1||E0 and
bk = ||ϕ2mk+1 − ϕ2mk

||E0 we have
ϵ ≤ lim inf

k→∞
||ϕ2nk

− ϕ2mk+1||E0
+ lim sup

k→∞
||ϕ2mk+1 − ϕ2mk

||E0
,

and hence

ϵ ≤ lim inf
k→∞

||ϕ2nk
− ϕ2mk+1||E0

. (28)

Clearly
||ϕ2nk

− ϕ2mk+1||E0
≤ ||ϕ2nk

− ϕ2mk−2||E0 + ||ϕ2mk−2 − ϕ2mk−1||E0

+ ||ϕ2mk−1 − ϕ2mk
||E0 + ||ϕ2mk

− ϕ2mk+1||E0

< ϵ+ ||ϕ2mk−2 − ϕ2mk−1||E0
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+ ||ϕ2mk−1 − ϕ2mk
||E0

+ ||ϕ2mk
− ϕ2mk+1||E0

.
On applying limit superior as k → ∞ on both sides, we get

lim sup
k→∞

||ϕ2nk
− ϕ2mk+1||E0

≤ ϵ. (29)

From (28) and (29), we get

lim
k→∞

||ϕ2nk
− ϕ2mk+1||E0 = ϵ. (30)

We now show that lim
k→∞

||ϕ2nk+l1 − ϕ2mk+l2 ||E0 = ϵ for any l1, l2 ∈ N.
Let l1, l2 ∈ N.
We now consider
||ϕ2nk+l1 − ϕ2mk+l2 ||E0 ≤ ||ϕ2nk+l1 − ϕ2nk+l1−1||E0 + ||ϕ2nk+l1−1 − ϕ2nk+l2−2||E0

+ ...+ ||ϕ2nk+1 − ϕ2nk
||E0

+ ||ϕ2nk
− ϕ2mk+1||E0

+ ||ϕ2mk+1 − ϕ2mk+2||E0
+ ...+ ||ϕ2mk+l2−1 − ϕ2mk+l2 ||E0

.
On applying limit superior as k → ∞ on both sides, we get

lim sup
k→∞

||ϕ2nk+l1 − ϕ2mk+l2 ||E0 ≤ ϵ. (31)

We now consider
||ϕ2nk

− ϕ2mk+1||E0 ≤ ||ϕ2nk
− ϕ2nk+1||E0 + ||ϕ2nk+1 − ϕ2nk+2||E0 + ...

+ ||ϕ2nk+l1−1 − ϕ2nk+l1 ||E0
+ ||ϕ2nk+l1 − ϕ2mk+l2 ||E0

+ ||ϕ2mk+l2 − ϕ2mk+l2−1||E0
+ ...+ ||ϕ2mk+2 − ϕ2mk+1||E0

.
Now, by applying Proposition 1 with ak = ||ϕ2nk+l1 − ϕ2mk+l2 ||E0 and
bk = (||ϕ2nk

−ϕ2nk+1||E0
+ ||ϕ2nk+1 −ϕ2nk+2||E0

+ ...+ ||ϕ2nk+l1−1 −ϕ2nk+l1 ||E0 +
||ϕ2mk+l2 − ϕ2mk+l2−1||E0

+ ...+ ||ϕ2mk+2 − ϕ2mk+1||E0
)

we have
ϵ ≤ lim inf

k→∞
||ϕ2nk+l1 − ϕ2mk+l2 ||E0 + lim sup

k→∞
(||ϕ2nk

− ϕ2nk+1||E0

+ ||ϕ2nk+1 − ϕ2nk+2||E0 + ...+ ||ϕ2nk+l1−1 − ϕ2nk+l1 ||E0

+ ||ϕ2mk+l2 − ϕ2mk+l2−1||E0
+ ...+ ||ϕ2mk+2 − ϕ2mk+1||E0

).
Hence

ϵ ≤ lim inf
k→∞

||ϕ2nk+l1 − ϕ2mk+l2 ||E0 . (32)

From (31) and (32), we get that for any l1, l2 ∈ N

lim
k→∞

||ϕ2nk+l1 − ϕ2mk+l2 ||E0
= ϵ. (33)

Now, we choose l1, l2 ∈ N such that 2nk + l1 is even, 2mk + l2 is odd and
(2mk + l2)− (2nk + l1) = 1.
From (24), we have

||ϕ2nk+l1+1−ϕ2mk+l2+1||E0
≤M(ϕ2nk+l1 , ϕ2mk+l2) ≤ ||ϕ2nk+l1−ϕ2mk+l2 ||E0

.
On applying limits as k → ∞ , we get

ϵ ≤ lim
k→∞

M(ϕ2nk+l1 , ϕ2mk+l2) ≤ ϵ and hence lim
k→∞

M(ϕ2nk+l1 , ϕ2mk+l2) = ϵ.

From (21), we have
ψ(||ϕ2nk+l1+1−ϕ2mk+l2+1||E0) ≤ ψ(M(ϕ2nk+l1 , ϕ2mk+l2))−ϕ(M(ϕ2nk+l1 , ϕ2mk+l2)).
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On applying limits as k → ∞ we get,
ψ(ϵ) ≤ ψ(ϵ)− ϕ(ϵ) and hence ϵ = 0,

a contradiction.
Therefore, the sequence {ϕn} is a Cauchy sequence in Rc.
Since E0 is complete, we have ϕn → ϕ∗ as n→ ∞ for some ϕ∗ ∈ E0.
Since Rc is topologically closed, we have ϕ∗ ∈ Rc.
Now, we show that ϕ∗ is a PPF dependent common fixed point of S and T .
We now consider,
d(ϕ∗(c), Sϕ∗) ≤M(ϕ2k, ϕ

∗)
= max{||ϕ2k − ϕ∗||E0

, d(ϕ2k(c), Tϕ2k), d(ϕ
∗(c), Sϕ∗),

1
2 [d(ϕ

∗(c), Tϕ2k) + d(ϕ2k(c), Sϕ
∗)]}

≤ max{||ϕ2k−ϕ
∗||E0

, ||ϕ2k(c)−ϕ2k+1(c)||E+d(ϕ2k+1(c), Tϕ2k), d(ϕ
∗(c), Sϕ∗),

1
2 [||ϕ

∗(c)− ϕ2k+1(c)||E + d(ϕ2k+1(c), Tϕ2k)
+ ||ϕ2k(c)− ϕ∗(c)||E + d(ϕ∗(c), Sϕ∗)]}

= max{||ϕ2k − ϕ∗||E0
, ||ϕ2k − ϕ2k+1||E0

, d(ϕ∗(c), Sϕ∗),
1
2 [||ϕ

∗ − ϕ2k+1||E0 + ||ϕ2k − ϕ∗||E0 + d(ϕ∗(c), Sϕ∗)]}.
On applying limits as k → ∞, we get

d(ϕ∗(c), Sϕ∗) ≤ lim
k→∞

M(ϕ2k, ϕ
∗)

≤ max{0, 0, d(ϕ∗(c), Sϕ∗), 12 [d(ϕ
∗(c), Sϕ∗)]}

= d(ϕ∗(c), Sϕ∗).
Hence lim

k→∞
M(ϕ2k, ϕ

∗) = d(ϕ∗(c), Sϕ∗).

Now,
d(ϕ∗(c), Sϕ∗)) ≤ ||ϕ∗(c)− ϕ2k+1(c)||E + d(ϕ2k+1(c), Sϕ

∗)
≤ ||ϕ∗ − ϕ2k+1||E0

+HE(Tϕ2k, Sϕ
∗).

Applying limits as k → ∞ , we get
d(ϕ∗(c), Sϕ∗)) ≤ lim

k→∞
HE(Tϕ2k, Sϕ

∗),

and hence
ψ(d(ϕ∗(c), Sϕ∗)) ≤ lim

k→∞
ψ(HE(Tϕ2k, Sϕ

∗))

≤ lim
k→∞

ψ(M(ϕ2k, ϕ
∗))− lim

k→∞
ϕ(M(ϕ2k, ϕ

∗))

= ψ(d(ϕ∗(c), Sϕ∗))− ϕ(d(ϕ∗(c), Sϕ∗)).
Therefore, ϕ(d(ϕ∗(c), Sϕ∗)) = 0 and hence ϕ∗(c) ∈ Sϕ∗.
Similarly we can prove that ϕ∗(c) ∈ Tϕ∗.
Therefore, ϕ∗ is a PPF dependent common fixed point of S and T . □

5. Corollaries and Examples

Corollary 1. Let T : E0 → CB(E) and f : E → E be a function that satisfy the
following conditions:

(i) T is weakly contractive type multi-valued mapping with respect to f ,
(ii) Tϕ ⊆ f(Rc)(c) for any ϕ ∈ E0,
(iii) Rc is algebraically closed with respect to the difference,
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(iv) f(Rc) is complete and
(v) f(Rc) ⊆ Rc.

Then, T and f have a PPF dependent coincidence point in Rc.

Proof. Follows from Theorem 3 by choosing ψ(t) = t, t ∈ R+ in the inequality
(1). □

By choosing f = I, I the identity map in Theorem 3, we get the following
corollary.

Corollary 2. Let T : E0 → CB(E) be a multi-valued mapping. Assume that T
satisfy the following conditions:

(i) T is a generalized weakly contractive type multi-valued mapping,
(ii) Tϕ ⊆ Rc(c) for any ϕ ∈ E0,
(iii) Rc is algebraically closed with respect to the difference.

Then, T has a PPF dependent fixed point in Rc.

The following corollary follows by choosing ψ(t) = t, t ∈ R+ in Corollary 2.

Corollary 3. Let T : E0 → CB(E) be a mapping satisfy the following conditions:

(i) T is weakly contractive type multi-valued mapping,
(ii) Tϕ ⊆ Rc(c) for any ϕ ∈ E0,
(iii) Rc is algebraically closed with respect to the difference.

Then, T has a PPF dependent fixed point in Rc.

Corollary 4. Let T : E0 → CB(E) be a mapping satisfiy the following conditions:

(i) suppose that there exists k ∈ [0, 1) such that
HE(Tα, Tβ)) ≤ k ||α− β||E0

for all α, β ∈ E0,

(ii) Tϕ ⊆ Rc(c) for any ϕ ∈ E0,
(iii) Rc is algebraically closed with respect to the difference.

Then, T has a PPF dependent fixed point in Rc.

Proof. Follows by choosing ϕ(t) = (1− k)t, t ∈ R+ in Corollary 3. □

Corollary 5. Let S, T : E0 → CB(E) be two multi-valued mappings such that

(i) HE(Tα, Sβ)) ≤ kmax{||α−β||E0 , d(α(c), Tα), d(β(c), Sβ),
1
2 [d(β(c), Tα)+

d(α(c), Sβ)]}
for any α, β ∈ E0,

(ii) Rc is algebraically closed with respect to the difference and
(iii) Tα ⊆ Rc(c) and Sα ⊆ Rc(c) for all α ∈ E0.

Then, S and T have a PPF dependent common fixed point in Rc.

Proof. Follows by choosing ψ(t) = t and ϕ(t) = (1 − k)t for t ∈ R+ in Theorem
4. □

If S = T in Theorem 4 and Corollary 5, we get the following corollaries.
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Corollary 6. Let T : E0 → CB(E) be a multi-valued mapping. Assume that:

(i) there exist two functions ψ ∈ Ψ and ϕ ∈ Φ such that

ψ(HE(Tα, Tβ)) ≤ ψ(M(α, β))− ϕ(M(α, β)) (34)

for all α, β ∈ E0, where
M(α, β) = max{||α−β||E0

, d(α(c), Tα), d(β(c), Tβ), 12 [d(β(c), Tα)+d(α(c), Tβ)]},
(ii) Rc is algebraically closed with respect to the difference and
(iii) Tϕ ⊆ Rc(c) for any ϕ ∈ E0.

Then, T has a PPF dependent fixed point in Rc.

Corollary 7. Let T : E0 → CB(E) be two multi-valued mappings such that

(i) HE(Tα, Tβ)) ≤ kmax{||α−β||E0
, d(α(c), Tα), d(β(c), Tβ), 12 [d(β(c), Tα)+

d(α(c), Tβ)]}
for all α, β ∈ E0,

(ii) Rc is algebraically closed with respect to the difference and
(iii) Tα ⊆ Rc(c) for any α ∈ E0.

Then, T has a PPF dependent fixed point in Rc.

Example 1. Let E = R, c = 1 ∈ I = [ 12 , 2] ⊆ R, E0 = C(I, E).
Let k ≥ 1. We define f : E → E by f(x) = kx for any x ∈ E.
Clearly, f is a continuous function.
By definition, Rc(c) = {ϕ(c) | ϕ ∈ Rc} and
f(Rc)(c) = {(f ◦ ϕ)(c) | ϕ ∈ Rc} = {f(ϕ(c)) | ϕ ∈ Rc} = {kϕ(c) | ϕ ∈ Rc}.

First we show that f(Rc) = Rc.
Let α ∈ Rc. Then α = β for some β ∈ Rc.
Clearly, α = k 1

kβ = kη (by Theorem 1, η = 1
kβ ∈ Rc) so that

α(x) = kη(x) = f(η(x)) = (f ◦ η)(x) for any x ∈ I.
Therefore, α = f ◦ η ∈ f(Rc) and hence

Rc ⊆ f(Rc). (35)

Now, let α ∈ f(Rc). Then α = f ◦ β for some β ∈ Rc.
Clearly, α(x) = (f ◦ β)(x) = f(β(x)) = kβ(x) = (kβ)(x) for any x ∈ I.
Therefore, α = kβ ∈ Rc and hence

f(Rc) ⊆ Rc. (36)

From (35) and (36), we get f(Rc) = Rc.
Since E0 is complete and Rc is topologically closed we have f(Rc) = Rc is complete.
For any γ ∈ R, we define ϕγ : I → E by

ϕγ(x) =

{
γx2 if x ∈ [ 12 , 1]
γ
x2 if x ∈ [1, 2].

Clearly ϕγ ∈ E0, ||ϕγ ||E0
= ||ϕγ(c)||E and hence ϕγ ∈ Rc for any γ ∈ R.

Let F0 = {ϕγ | γ ∈ R}.
Then, F0 is algebraically closed with respect to the difference and F0 ⊆ Rc.
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We observe that R = {ϕγ(c) | γ ∈ R} = F0(c) ⊆ Rc(c).
Clearly, Rc(c) ⊆ R and hence f(Rc)(c) = Rc(c) = R.
We define T : E0 → CB(E) by Tϕ = [0, k

4 ||ϕ(c)||E ] for any ϕ ∈ E0.
Clearly, Tϕ ⊆ R = Rc(c) = f(Rc)(c).

We define ψ, ϕ : R+ → R+ by ψ(t) = t2

2 and

ϕ(t) =

{
15 t3

32 if t ∈ [0, 1]
15 t
32 if t ≥ 1.

Clearly, ψ ∈ Ψ and ϕ ∈ Φ.
From the definition of Hausdorff distance, it follows that, for any α, β ∈ E0

HE(Tα, Tβ) =
k

4

{
||α(c)||E − ||β(c)||E if ||α(c)||E ≥ ||β(c)||E
||β(c)||E − ||α(c)||E if ||β(c)||E ≥ ||α(c)||E

= k
4 | ||α(c)||E−||β(c)||E | = 1

4 | ||kα(c)||E−||kβ(c)||E |
≤ 1

4 |kα(c)− kβ(c)| = 1
4 |(f ◦ α)(c)− (f ◦ β)(c)|

= 1
4 ||(fα− fβ)(c)||E

≤ 1
4 ||fα− fβ||E0 .

Therefore,
ψ(HE(Tα, Tβ)) ≤ ψ( 14 ||fα− fβ||E0

) = 1
32 [ ||fα− fβ||E0

]2

≤ ψ(||fα− fβ||E0
)− ϕ(||fα− fβ||E0

).
Therefore, T and f satisfy all the hypotheses of Theorem 3 and ϕ0 ∈ Rc is a PPF
dependent coincidence point of T and f .

Example 2. Let E = R, c = 1 ∈ I = [ 12 , 2] ⊆ R, E0 = C(I, E).
On continuing the same procedure as in the Example 1, we get Rc(c) = R.
We define T : E0 → CB(E) by Tϕ = [0, 1

5 ||ϕ(c)||E ] for any ϕ ∈ E0.
Clearly Tϕ ⊆ Rc(c).
We define ψ, ϕ : R+ → R+ by ψ(t) = 2t and ϕ(t) = 6t

5 for any t ∈ R+.
Clearly, ψ ∈ Ψ and ϕ ∈ Φ.
Clearly, for any α, β ∈ E0, we have

HE(Tα, Tβ) ≤ 1
5 ||α− β||E0

≤ 1
5 max{||α − β||E0

, d(α(c), Tα), d(β(c), Tβ), 12 [d(β(c), Tα) +
d(α(c), Tβ)]}

= 1
5M(α, β).

Therefore,
ψ(HE(Tα, Tβ)) ≤ ψ( 15M(α, β)) = 2

5M(α, β)

≤ 2M(α, β)− 6
5M(α, β)

= ψ(M(α, β))− ϕ(M(α, β)).
Therefore, T satisfies all the hypotheses of Corollary 6 and ϕ0 ∈ Rc is a PPF
dependent fixed point of T .
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Abstract. In this study, we introduce two new classes Sk[E,F ;µ; γ] and

Tk(θ, µ, γ) of analytic functions using the general integral operator. For these

two classes, we study the majorization properties. Some applications of the
results are discussed in the form of corollaries.

1. Introduction and Definitions

The Majorization for two analytic functions u and v is defined as follows
(see [17])

u(ξ) ≺≺ v(ξ); (ξ ∈ D),

if there is an analytic function ψ(ξ), such that

|ψ(ξ)| ≤ 1 and u(ξ) = ψ(ξ) v(ξ); (ξ ∈ D), (1)

where D = {ξ ∈ C : |ξ| < 1} is an open unit disk.
The function u is subordinate to v and defined as u(ξ) ≺ v(ξ), if there is a schwarz
function w, that is analytic in D with |w(ξ)| < 1, w(0) = 0, ξ ∈ D such that
u(ξ) = v(w(ξ)), ξ ∈ D.

Thus, by combining subordination and majorization, we may define quasi-subordination
as follows:
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We say that the function u is quasi-subordinate relative to ϕ(z) to the function
v and defined as

(
See [19]

)
u(ξ) ≺q v(ξ); (ξ ∈ D).

If there are two analytic functions ψ(ξ) and w(ξ) in D such that u(ξ)
ψ(ξ) is analytic

and subordinate to v(ξ) in D and

|ψ(ξ)| ≤ 1 and w(0) = 0, |w(ξ)| ≤ 1; (ξ ∈ D),

satisfying
u(ξ) = ψ(ξ) v

(
w(ξ)

)
; (ξ ∈ D). (2)

Remark 1. (i) We have the conventional definition of subordination if we put
ψ(ξ) = 1 in (2).
(ii) We have the conventional definition of majorization if we put w(ξ) = ξ in (2).

Let A be the class of all functions of the form

f(ξ) = ξ +

∞∑
K=2

aK ξ
K ; (ξ ∈ D), (3)

which are analytic in open unit disk D, and consider Hs : A → A be an operator

such that
ξH′

s+1 (f)(ξ)

Hs+1 (f)(ξ) is analytic in D with

ξH ′
s+1 (f)(ξ)

Hs+1 (f)(ξ)

∣∣∣∣∣
ξ=0

= β + k + γ.

and satisfies

ξH ′
s+1 (f)(ξ) = kHs+1 (f)(ξ) +mHs (f)(ξ), ∀f ∈ A. (4)

for some γ, m, k ∈ C, and β is a real number with β > 0 (See [2]).

Remark 2. (i) If we take k = −n, m = n + 1, β = 1 − η, and γ = η + n for
some integers n > −1 and 0 ≤ η < 1, then the operator Hs reduced into the integral
operator In introduced by Liu and Noor in [16].
(ii) If we take k = −b, m = 1+b, µ = 1−α and γ = α+b, for b ∈ C\Z−

0 , 0 ≤ α < 1,
then the operator Hs reduced into the Srivastava-Attiya operator Js,b, (see [12]
and [20]).

Now, using the operatorHs, we express the following classes of analytic functions.

Definition 1. The function f ∈ A is stated to be in the class Sk[E,F ;µ; γ] if and
only if

1 +
1

µ

(
ξ
(
Hsf(ξ)

)′
Hsf(ξ)

− k − γ

)
≺ 1 + E ξ

1 + F ξ
, (5)

with k, γ ∈ C, µ ∈ C \ {0} and −1 ≤ F < E ≤ 1.
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If we take the value of k, m, β and γ as defined in Remark (1.2)(i), then this
class becomes Sn[E,F ;µ; η] which is defined by Liu and Noor in [16].
Again if we take the value of k, m, µ and γ as defined in Remark (1.2)(ii), then
this class becomes Hs, b, α(E, F ) which is defined by Kutbi and Attiya in [12].

Definition 2. The function f ∈ A is stated to be in the class Tk(θ, µ, γ) if and
only if

eiθ

µ+ k + γ

(
ξ
(
Hsf(ξ)

)′
Hsf(ξ)

)
≺ eξcosθ + isinθ; (ξ ∈ D), (6)

where k, γ ∈ C, µ ∈ C \ {0} and −Π
2 < θ < Π

2 .
If we take the value of k, m, β and γ as defined in Remark (1.2)(i), then this class
become as Tn[θ;µ; η].
If we take the value of k, m, µ and γ as defined in Remark (1.2)(ii), then this class
becomes Tb, α.

Numerous mathematicians have recently investigated various majorization prob-
lems for univalent and multivalent functions as well as meromorphic and multivalent
comprising distinct operators and different groups,

(
see [1], [6], [7], [8], [9], [10], [21],

[22]
)
.

The majorization problems of the classes Sk[E,F ;µ; γ] and Tk(θ, µ, γ) are ex-
plored in this study as follows:

2. Main Results

Theorem 1. Assume the function f ∈ A and that g ∈ Sk[E,F ;µ; γ]. If Hsf(ξ) is
majorized by Hsg(ξ) in D, then

|Hs−1 f(ξ)| ≤ |Hs−1 g(ξ)|, for |ξ| ≤ ϵ0, (7)

where the least positive root of following equation is ϵ0.

|µ(E − F ) + γ F |ϵ3 − (2|F |+ |γ|)ϵ2 −
[
2 + |µ(E − F ) + γ F |

]
ϵ

+ |γ| = 0, (8)

and −1 ≤ F < E ≤ 1, k, γ, m ∈ C, µ ∈ C \ {0}.

Proof. Since g ∈ Sk[E,F ;µ; γ] then, from (5) and definition of majorization

1 +
1

µ

(
ξ
(
H ′
sg(ξ)

)
Hsg(ξ)

− k − γ

)
=

1 + E w(ξ)

1 + F w(ξ)
,

with w(0) = 0 and |w(ξ)| ≤ |ξ| < 1, ∀ξ ∈ D.
Now, from the above equality

ξ
(
H ′
sg(ξ)

)
Hsg(ξ)

=
(k + γ) + (µ (E − F ) + (k + γ)F )w(ξ)

1 + F w(ξ)
. (9)
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Using the relation (4), that is,

ξ
(
H ′
sg(ξ)

)
= kHS g(ξ) +mHS−1 g(ξ),

for k, m ∈ C, we have from (9) as

HS−1 g(ξ)

Hs g(ξ)
=
γ +

(
µ(E − F ) + γ F

)
w(ξ)

m
(
1 + F w(ξ)

) ,

which implies that

|Hs g(ξ)| ≤
|m| (1 + |F | |ξ|) |HS−1 g(ξ)|
|γ| −

∣∣µ(E − F ) + γ F
∣∣ |ξ| . (10)

As Hs f(ξ) is majorized by HS g(ξ) in open unit disk D, then

Hsf(ξ) = ψ(ξ)Hsg(ξ). (11)

Multiplying (11) by ξ after differentiating with respect to ξ, we get

ξ
(
H ′
s f(ξ)

)
= ξ ψ(ξ)

(
H ′
s g(ξ)

)
+ ξ ψ

′
(ξ)Hs g(ξ),

on using relation (4), we have

m Hs−1 f(ξ) = ξ ψ
′
(ξ)Hs g(ξ) +mψ(ξ)Hs−1 g(ξ)

that implies

|m| |Hs−1 f(ξ)| ≤ |ξ| |ψ
′
(ξ)| |Hs g(ξ)|+ |m| |ψ(ξ)| |Hs−1 g(ξ)|. (12)

As a consequence, considering that the ψ (Schwarz function) meets the inequality,
(see [18])

|ψ
′
(ξ)| ≤ 1− |ψ(ξ)|2

1− |ξ|2
; (ξ ∈ D), (13)

on using (10) and (13) in (12), we have

|Hs−1 f(ξ)| ≤

[
|ξ|(1− |ψ(ξ)|2)(1 + |F | |ξ|)

(1− |ξ|2)
(
|γ| − |µ(E − F ) + γ F | |ξ|

) + |ψ(ξ)|

]
|Hs−1 g(ξ)|. (14)

Setting |ξ| = ϵ, |ψ(ξ)| = κ, then inequality (14) leads to

|Hs−1 f(ξ)| ≤
ζ(ϵ, κ) |Hs−1 g(ξ)|

(1− ϵ2)
(
|γ| − |µ(E − F ) + γ F | ϵ

) , (15)

where

ζ(ϵ, κ) = ϵ(1− κ2)(1 + |F |ϵ) + κ(1− ϵ2)
[
|γ| − |µ(E − F ) + γ F |ϵ

]
.

Then, from (15)

|Hs−1 f(ξ)| ≤ T(ϵ, κ) |Hs−1 g(ξ)|, (16)
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where

T(ϵ, κ) =
ζ(ϵ, κ)

(1− ϵ2)
(
|γ| − |µ(E − F ) + γ F | ϵ

) , (17)

from relation (16), in an attempt to prove our result, we have to specify

ϵ0 = max
{
ϵ ∈ [0, 1); T(ϵ, κ) ≤ 1; ∀κ ∈ [0, 1]

}
= max

{
ϵ ∈ [0, 1); G(ϵ, κ) ≥ 0; ∀κ ∈ [0, 1]

}
,

where

G(ϵ, κ) =(1− ϵ2)(1− κ)
[
|γ| − |µ(E − F ) + γ F | ϵ

]
− ϵ(1− κ2)(1 + |F |ϵ).

A simple calculation shows that the G(ϵ, κ) ≥ 0 inequality is equivalent to

u(ϵ, κ) =
[
|γ| − |µ(E − F ) + γ F |ϵ

]
(1− ϵ2)

− ϵ(1 + κ)(1 + |F |ϵ) ≥ 0,

while the function u(ϵ, κ) has a least value at κ = 1, i.e.
min{u(ϵ, κ) : κ ∈ [0, 1]} = u(ϵ, 1) = v(ϵ),
where

v(ϵ) =|µ(E − F ) + γ F |ϵ3 − (2|F |+ |γ|)ϵ2

−
[
2 + |µ(E − F ) + γ F |

]
ϵ+ |γ| = 0,

it follows that v(ϵ) ≥ 0; ∀ϵ ∈ [0, ϵ0], where ϵ0 = ϵ0(µ, γ,E, F ) is the least positive
root of equation (8), which proves the conclusion of (7). □

Theorem 2. Assume the function f ∈ A and that g ∈ Tk(θ, µ, γ). If Hsf(ξ) is
majorized by Hsg(ξ) in D, therefore

|Hs−1f(ξ)| ≤ |Hs−1g(ξ)| for |ξ| ≤ ϵ1, (18)

where the least positive root of following equation is ϵ1.

ϵ2
(
|µ+k+γ| eϵ−|k|−|µ+γ||tanθ|

)
+2ϵ|secθ|−

(
|µ+k+γ| eϵ−|k|−|µ+γ||tanθ|

)
= 0,
(19)

and γ, k ∈ C, −Π
2 < θ < Π

2 , µ ∈ C \ {0}.

Proof. Since, g ∈ Tk(θ, µ, γ) then, from (1) and the subordination relation

eiθ

µ+ k + γ

(
ξ
(
H ′
s g(ξ)

)
Hsg(ξ)

)
= ew(ξ)cosθ + isinθ, (20)

with w(0) = 0 and |w(ξ)| ≤ 1 ∀ξ ∈ D.
From (20), we have

ξ H ′
s g(ξ)

Hsg(ξ)
= (µ+ k + γ)

(
ew(ξ) + itanθ

1 + itanθ

)
. (21)
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Now, using (4) in (21), for γ, m, k ∈ C and µ ∈ C \ {0}, we have the following.

Hs−1 g(ξ)

Hsg(ξ)
=

(µ+ k + γ) ew(ξ) − k + (γ + µ)itanθ

m(1 + itanθ)

which implies that

|Hsg(ξ)| ≤
|m| |secθ|(

|µ+ k + γ| e|ξ| − |k| − |µ+ γ||tanθ|
) |Hs−1 g(ξ)|. (22)

Now, since Hs f(ξ) is majorized by Hs g(ξ) in D, we have

Hsf(ξ) = ψ(ξ)Hsg(ξ). (23)

Multiplying (23) by ξ after differentiating with respect to ξ, we get

ξ
(
H ′
s f(ξ)

)
= ξ ψ(ξ)

(
H ′
s g(ξ)

)
+ ξ ψ

′
(ξ)Hs g(ξ),

on using relation (4), we have

m Hs−1 f(ξ) = ξ ψ
′
(ξ)Hs g(ξ) +mψ(ξ)Hs−1 g(ξ)

that implies

|m| |Hs−1 f(ξ)| ≤ |ξ| |ψ
′
(ξ)| |Hs g(ξ)|+ |m| |ψ(ξ)| |Hs−1 g(ξ)|. (24)

As a consequence, considering that the ψ (Schwarz function) meets the inequality,
(see [18])

|ψ
′
(ξ)| ≤ 1− |ψ(ξ)|2

1− |ξ|2
; (ξ ∈ D), (25)

using (22) and (25) in (24), we have

|Hs−1 f(ξ)| ≤

(
|ξ|(1− |ψ(ξ)|2)|secθ|

(1− |ξ|2)
(
|µ+ k + γ| e|ξ| − |k| − |µ+ γ||tanθ|

)+|ψ(ξ)|

)
|Hs−1 g(ξ)|.

(26)
Setting |ξ| = ϵ, |ψ(ξ)| = κ (0 ≤ κ ≤ 1), then inequality (26) leads to

|Hs−1 f(ξ)| ≤
ζ1(ϵ, κ)

(1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

) |Hs−1 g(ξ)|, (27)

where

ζ1(ϵ, κ) = ϵ(1− κ2)|secθ|+ κ(1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
.

Then, from (27)

|Hs−1 f(ξ)| ≤ T1(ϵ, κ) |Hs−1 g(ξ)|, (28)

where

T1(ϵ, κ) =
ζ1(ϵ, κ)

(1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

) , (29)

From relation (28), in order to prove our result, we have to specify

ϵ1 = max
{
ϵ ∈ [0, 1); T1(ϵ, κ) ≤ 1 ∀κ ∈ [0, 1]

}
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= max
{
ϵ ∈ [0, 1); G1(ϵ, κ) ≥ 0 ∀κ ∈ [0, 1]

}
,

where

G1(ϵ, κ) = (1− ϵ2)(1− κ)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
− ϵ(1− κ2)|secθ|.

A quick calculation illustrates that the inequality G1(ϵ, κ) ≥ 0 is equivalent to

u1(ϵ, κ) = (1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
− ϵ(1 + κ)|secθ| ≥ 0,

while the function u1(ϵ, κ) takes its lowest value at κ = 1, that is,

min{u1(ϵ, κ) : κ ∈ [0, 1]} = u1(ϵ, 1) = v1(ϵ),

where

v1(ϵ) = (1− ϵ2)
(
|µ+ k + γ| eϵ − |k| − |µ+ γ||tanθ|

)
− 2ϵ|secθ| = 0,

It follows that v2(ϵ) ≥ 0 ∀ϵ ∈ [0, ϵ1], where ϵ1 = ϵ1(θ, γ, µ, k) is the least positive
root of equation (19), which proves the conclusion of (18). □

3. Corollaries and Consequences

Corollary 1. Assume the function f ∈ A and that g ∈ Sn[E,F ;µ; η]. If In f(ξ) is
majorized by In g(ξ) in D, then

|In−1 f(ξ)| ≤ |In−1 g(ξ)| for |ξ| ≤ ϵ2, (30)

where the least positive root of following equation is ϵ2.∣∣µE+(n+η−µ)F
∣∣ϵ3−(2|F |+|n+η|

)
ϵ2−

(
2+|µE+(η+n−µ)F |

)
ϵ+|η+n| = 0, (31)

and −1 ≤ F < E ≤ 1, µ ∈ C \ {0}, n > −1, 0 ≤ η < 1,.

Corollary 2. Assume the function f ∈ A and that g ∈ Tn[θ;µ; η]. If In f(ξ) is
majorized by In g(ξ) in D, then

|In−1 f(ξ)| ≤ |In−1 g(ξ)| for |ξ| ≤ ϵ3, (32)

where the least positive root of following equation is ϵ3.

(|µ+η|eϵ−|n|−|µ+η+n||tanθ|)ϵ2−2|secθ|ϵ−(−|n|−|µ+η+n||tanθ|+|µ+η|eϵ) = 0,
(33)

and n > −1, 0 ≤ η < 1, −π
2 < θ < π

2 ..

Corollary 3. Assume the function f ∈ A and that g ∈ Hs, b, α(E, F ). If Js,b f(ξ)
is majorized by Js,b g(ξ) in D, then

|Js−1,b f(ξ)| ≤ |Js−1,b g(ξ)| for |ξ| ≤ ϵ4, (34)

where the least positive root of following equation is ϵ4.∣∣(1− α)E + (2α+ b− 1)
∣∣ϵ3 − (2|F |+ |α+ b|

)
ϵ2 −

(
2 + |(1− α)E + (2α+ b− 1)F |

)
ϵ

+ |α+ b| = 0, (35)

and −1 ≤ F < E ≤ 1, b ∈ C \ Z−
0 , 0 ≤ α < 1.
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Corollary 4. Assume the function f ∈ A and that g ∈ Tb, α. If Js,b f(ξ) is ma-
jorized by Js,b g(ξ) in D, then

|Js−1,b f(ξ)| ≤ |Js−1,b g(ξ)| for |ξ| ≤ ϵ5, (36)

where the least positive root of following equation is ϵ5.(
eϵ − |1 + b||tanθ| − |b|

)
ϵ2 + 2|secθ| ϵ−

(
eϵ − |b| − |1 + b||tanθ|

)
= 0, (37)

and b ∈ C \ Z−
0 , 0 ≤ α < 1, −π

2 < θ < π
2 .
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CHOLESKY ALGORITHM OF A LUCAS TYPE MATRIX

Semih YILMAZ1 and Betül ERDOĞAN2

1Department of Actuarial Sciences, Kırıkkale University, Kırıkkale, TÜRKİYE
2Department of Mathematics, Kırıkkale University, Kırıkkale, TÜRKİYE

Abstract. Many generalizations have been made for Fibonacci and Lucas

number sequences and many properties have been found about these sequences.
In the article [13], the authors obtained many features of these sequences with

the Cholesky decomposition algorithm, using the 2 x 2 matrix belonging to a
generalization of the Fibonacci sequence. In this study, it is shown that many

different features can be found by using a 2 x 2 matrix belonging to the Lucas

number sequence with the same method.

1. Introduction

Most identities for the Fibonacci number sequence Fn and the Lucas number se-
quence Ln are obtained by changing the recursion relations and/or initial conditions
of the sequences and making sequence generalizations ( [2]- [5], [9]- [15], [17], [19]-
[27]).

The Fibonacci numbers Fn are defined by a quadratic recurrence relation:

Fn+2 = Fn+1 + Fn, n ≥ 0 (1)

with initial conditions F0 = 0 and F1 = 1, see [15]. Binet formula for the numbers
Fn is

Fn =
αn − βn

α− β
(2)

where α = 1+
√
5

2 and β = 1−
√
5

2 . From here, it can be noted that and

αβ = −1,

α+ β = 1,

α− β =
√
5.
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We also recall [15] that

Fn =

⌊(n−1)/2⌋∑
j=0

(
n− j − 1

j

)
,

where ⌊·⌋ denotes the greatest integer function. Using the Binet formula, we can
write the following equation for negative indices:

F−n := (−1)n+1Fn.

Analogously, the numbers Ln are defined by a quadratic recurrence relation:

Ln+2 = Ln+1 + Ln, n ≥ 0

with initial conditions L0 = 2, L1 = 1, see [17]. Binet formula for the numbers Ln

is
Ln = αn + βn. (3)

Also the Fn and Ln numbers satisfied following identity

Ln = Fn−1 + Fn+1. (4)

Morever, from above equalities we have that

L−n = (−1)nLn.

In [8] and [28], the Cholesky decomposition (Cholesky factorization) is defined
as: If A ∈ Rn

n is symmetric positive definite matrix, then there exists a unique
lower triangular matrix G ∈ Rn

n with positive diagonal entries such that A = GGT .
Here GT is the transpose matrix of the G. The calculation of G and GT matrices
is called the Cholesky algorithm.

Matrix method is also very useful method to obtain the properties of Fibonacci
and Lucas sequences, see [6], [13], [16], [18], [22], [24], [26]. In particular, Horadam
and Flipponi obtained some new features for Fibonacci and Lucas sequences by
using the matrix Mk which is created by the Cholesky matrix decomposition algo-
rithm [13]. While doing this work they used the k-Fibonacci generalized sequence
and the M matrix belonging to this sequence.

We observed that the application of the same method for the M matrix con-
stituting the Lucas sequence creates different sequence properties. In this study,
the matrix functions of the xMn

k matrix sequence, which was created by using the

M =

[
3 1
1 2

]
matrix that produced the Lucas sequence, were examined and new

results were obtained.

2. Main Results

From [16] let’s consider the 2× 2 symmetric matrix

M =

[
3 1
1 2

]
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which has eigenvalues α+ 2 and β + 2. For a positive integer n,

Mn =


5

n−1
2

[
Ln+1 Ln

Ln Ln−1

]
, if n is odd,

5
n
2

[
Fn+1 Fn

Fn Fn−1

]
, if n is even,

(5)

see [16]. Now let us define the matrix sequence Mk in the following steps.
Let M1 := M , therefore

M1 = M =

[
3 1
1 2

]
and Cholesky decomposition of M1 is obtained as

M1 = T1T
T

1 =

[
a1 0
c1 b1

] [
a1 c1
0 b1

]
,

where T1 is a lower triangular matrix and T
T

1 is the transpose matrix of T1. So TT
1

is an upper triangular matrix. The a1, b1 and c1 components of T1 easily obtained
with the matrix equation above. In fact, the system

a21 = 3,

a1c1 = 1,

b21 + c21 = 2

can be written, whose solution is

a1 = ±
√
3

c1 =
1

a1

b1 = ±
√
2− c21

Any of the four solutions obtained creates a Cholesky decomposition of the sym-
metric matrix M1.

We also know that the product of a lower triangular matrix and an upper trian-
gular matrix is generally not commutative, so it is known that the inverse product

T
T

1 T1 gives a symmetric matrix M2 similar to but different from M1 [7]. If we

consider the b1 =
√

5
3 solution, we get

M2 =
1

3

[
10

√
5√

5 5

]
,

when b1 = −
√

5
3 the off-diagonal components of M2 are negative.
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In contrast, M2 can be decomposed similarly so that

M2 = T2T
T

2 =

[
a2 0
c2 b2

] [
a2 c2
0 b2

]
,

where

a2 = ±
√

10

3
,

c2 =

√
5

a2
= ±

√
6

6
,

b2 = ±
√
6

2
.

The inverse product T
T

2 T2 gave rise to a matrix M3 with the sign of the off-diagonal
entries based on b2.

If we repeat such a procedure indefinitely, we get the sequence (Mk)
∞
1 of the 2×

2 symmetric matrices. Henceforth Mk be called the k-order Lucas-type Cholesky
algorithm matrix.

Due to the unclear sign of Cholesky decomposition, the above matrix sequence
is not the only possible result of applications of the Cholesky algorithm to M .
However, other possible outcomes may differ only in the sign of the off-diagonal
components of the above matrix sequence, in any term of the sequence except the
first term. However, from now on we will only consider the positive definite (Mk)
matrix sequence.

Since the matrices Mk are similar, they have the same eigenvalues. Mk tends to
a diagonal matrix containing these eigenvalues as k tends to infinity.

The following Lemma can be easily obtained from [15] and [27]

Lemma 1. Let k be a positive integer, then
i) If k is odd, then Lk−1Lk+1 = 5F 2

k + 1.

ii) If k is even, then 5Fk+1 = L2
k
2+1

+ L2
k
2

.

iii) If k is even, then L2
k + 1 = Fk+1

(
L2

k
2−1

+ L2
k
2

)
.

Theorem 1. Let k be positive integer, then

Mk =


1
Fk

[
Lk+1 1
1 Lk−1

]
, if k is odd,

1
Lk

[
L2

k
2+1

+ L2
k
2

√
5

√
5 L2

k
2

+ L2
k
2−1

]
, if k is even.

Proof. From the M1 and M2 matrices we found earlier, it can be seen that the
equality is achieved in the case of k = 1 and k = 2.
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If k is odd:

Mk =
1

Fk

[
Lk+1 1
1 Lk−1

]
= TkT

T

k

hence, using Lemma 1, we obtain

Tk =

 √
Lk+1√
Fk

0
1√

FkLk+1

√
5

√
Fk√

Lk+1

 .

Therefore

Mk+1 = T
T

k Tk =


√

Lk+1√
Fk

1√
FkLk+1

0
√
5

√
Fk√

Lk+1


 √

Lk+1√
Fk

0
1√

FkLk+1

√
5

√
Fk√

Lk+1


=

1

Lk+1

[
L2

k+1+1

Fk

√
5√

5 5Fk

]
.

Here, using the Lemma 1

Mk+1 =
1

Lk+1

[
L2

k+1
2 +1

+ L2
k+1
2

√
5

√
5 L2

k+1
2

+ L2
k−1
2

]
is obtained.

If k is even:

Mk =
1

Lk

[
L2

k
2+1

+ L2
k
2

√
5

√
5 L2

k
2

+ L2
k
2−1

]
hence, using Lemma 1, we obtain

Tk =

 √
5

√
Fk+1√
Lk

0
1√

Lk

√
Fk+1

√
Lk√
Fk+1

 .

Therefore

Mk+1 = T
T

k Tk =

 √
5

√
Fk+1√
Lk

1√
Lk

√
Fk+1

0
√
Lk√
Fk+1


 √

5

√
Fk+1√
Lk

0
1√

Lk

√
Fk+1

√
Lk√
Fk+1


=

1

Fk+1

[
5F 2

k+1+1

Lk
1

1 Lk

]

=
1

Fk+1

[
Lk+2 1
1 Lk

]
.

Here, the equation Lk+2 Lk = 5F 2
k+1+1 obtained from L2m L2n = 5F 2

m+n+L2
m−n

in [15, p.109] is used. □
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Theorem 2. If we apply the Cholesky algorithm to Mn, we obtain the followings:

(Mn)k =



5
n−1
2

Fk

[
Ln+k Ln

Ln Ln−k

]
, if k is odd and n is odd,

5
n
2

Fk

[
Fn+k Fn

Fn Fn−k

]
, if k is odd and n is even,

5
n
2

Lk

[
Ln+k Fn

√
5

Fn

√
5 Ln−k

]
, if k is even and n is even,

5
n−1
2

Lk

[
5Fn+k Ln

√
5

Ln

√
5 5Fn−k

]
, if k is even and n is odd.

We can also see that the equation (Mk)
n = (Mn)k and for simplicity we will use

the notation Mn
k := (Mk)

n = (Mn)k.

Proof. It can be easily seen by induction using Theorem 1 and equation (5) . □

Here, suppose the above power equation is true for some value of n, say N .
In this case, (Mk)

N = (MN )k. From this, it can be easily seen that (Mk)
N+1 =

Mk(Mk)
N = Mk(M

N )k = (MN+1)k so if the above power equation is true for N ,
it is also true for N + 1.

2.1. Functions of the Matrix xMn
k . From the theory of functions of matrices [7],

if the function f is a function defined on the spectrum of a 2× 2 matrix A = [aij ]
with distinct eigenvalues λ1 and λ2, then

f(A) = X = [xij ] = c0I + c1A, (6)

where I is the 2× 2 identity matrix and the coefficients c0 and c1 are given by the
solution of the system

c0 + c1λ1 = f(λ1),

c0 + c1λ2 = f(λ2).

Therefore

[
x11 x12

x21 x22

]
= c0

[
1 0
0 1

]
+ c1

[
a11 a12
a21 a22

]
,

=

[
c0 + c1a11 c1a12

c1a21 c0 + c1a22

]
·

From the last equation, we get

x11 = c0 + c1a11,

x12 = c1a12,
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x21 = c1a21,

x22 = c0 + c1a22.

In equation (6), let us write λ1 and λ2 instead of A and find c0 and c1 values

c0 =
(β + 2)nf(x(α+ 2)n)− (α+ 2)nf(x(β + 2)n)

(β + 2)n − (α+ 2)n
,

c1 =
f(x(β + 2)n)− f(x(α+ 2)n)

(β + 2)n − (α+ 2)n

and then

x11 = [(a11 − λ1)f(λ2)− (a11 − λ2)f(λ1)]/(λ2 − λ1),

x12 = a12[f(λ2)− f(λ1)]/(λ2 − λ1),

x21 = a21[f(λ2)− f(λ1)]/(λ2 − λ1),

x22 = [(a22 − λ1)f(λ2)− (a22 − λ2)f(λ1)]/(λ2 − λ1).

Lemma 2. Let k and n be arbitrary positive integers. For x an arbitrary quantity,
let us consider the matrix xMn

k having eigenvalues

λ1 = x(α+ 2)n,

λ2 = x(β + 2)n.

Proof. It is easily seen by induction. □

To express the yij components of Y = [yij ] = f(xMn
k ) in separate formulas, we

can give the following theorem with

λ :=
(β + 2)nf(x(α+ 2)n)− (α+ 2)nf(x(β + 2)n)

(β + 2)n − (α+ 2)n

and

ϕ :=
f(x(β + 2)n)− f(x(α+ 2)n)

(β + 2)n − (α+ 2)n
.

Theorem 3. Let k and n be arbitrary positive integers.
i) If n is even and k is odd, then

Y =
5

n
2

Fk

[
λFk + ϕFn+k ϕFn

ϕFn λFk + ϕFn−k

]
.

ii) If n is odd and k is odd, then

Y =
5

n−1
2

Fk

[
λFk + ϕLn+k ϕLn

ϕLn λFk + ϕLn−k

]
.
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iii) If n is odd and k is even, then

Y =
5

n−1
2

Lk

[
λLk + 5ϕFn+k

√
5ϕLn√

5ϕLn λLk + 5ϕFn−k

]
.

iv) If n is even and k is even, then

Y =
5

n
2

Lk

[
λLk + ϕLn+k

√
5ϕFn√

5ϕFn λLk + ϕLn−k

]
.

Proof. Taking xMn
k as matrix A in equation (6) and applying the above steps using

Lemma 2 the desired result is obtained. □

Theorem 4. If f is the matrix inversion function then

(xMn
k )

−1 =



5
−n−1

2

xFk

[
Ln−k −Ln

−Ln Ln+k

]
, if k is odd and n is odd,

5
−n
2

xFk

[
Fn−k −Fn

−Fn Fn+k

]
, if k is odd and n is even,

5
−n
2

xLk

[
Ln−k −Fn

√
5

−Fn

√
5 Ln+k

]
, if k is even and n is even,

5
−n−1

2

xLk

[
5Fn−k −Ln

√
5

−Ln

√
5 5Fn+k

]
, if k is even and n is odd.

Proof. It can be easily seen using the identity (xMn
k )

−1 = 1
xM

−n
k , (x ̸= 0) . □

3. Relations with Some Finite Series

In this section, sums of some finite series containing Fn and Ln are found using
some properties of the Lucas-type Cholesky algorithm matrix Mk.

Lemma 3. If k is a positive integer, then

M2
k = 5Mk − 5I, (7)

and

M−1
k = I − 1

5
Mk. (8)

Proof. Using equation (1), it easily be obtained from equations Theorem 1 and
Theorem 2. □
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Lemma 4. If x is an arbitrary quantity with the constraints x ̸= 1

αn
and x ̸= 1

βn

then

(xMn
k − I)−1 =


(
5

n+1
2 Fnx− 1

)
I − xMn

k

5nx2 − 5
n+1
2 Fnx+ 1

, if n is odd,(
5

n
2 Lnx− 1

)
I − xMn

k

5nx2 − 5
n
2 Lnx+ 1

, if n is even.

Proof. It can be easily seen using equations (2), (3), (4) and Lemma 3 and the
following equations

Lk+n − 5FnFk = −Ln−k if k is odd and n is odd [15, p. 111, 83.],

Fk+n − FkLn = −Fn−k if k is odd and n is even [15, p. 118, 58.],

Lk+n − LnLk = −Ln−k if k is even and n is even [15, p. 111, 83.],

Fk+n − LkFn = −Fn−k if k is even and n is odd [15, p. 118, 58.].

□

Lemma 5. For positive numbers k and n the following equality holds

Mn
k =

n∑
j=0

5−j

(
n

j

)
M2j

k .

Proof. From equation (7) we can write (M2
k +5I)n = (5Mk)

n, from which the proof
can be obtained by using the binomial expansion. □

Theorem 5. i) Let n be a nonnegative even integer and k be an arbitrary positive
integer. Then we have

Fn∓k = 5−
n
2

n∑
j=0

(
n

j

)
F2j∓k,

Ln∓k = 5−
n
2

n∑
j=0

(
n

j

)
L2j∓k.

ii) Let n be a nonnegative odd integer and k be an arbitrary positive integer. Then
we have

Fn∓k = 5
−n−1

2

n∑
j=0

(
n

j

)
F2j∓k,

Ln∓k = 5
−n+1

2

n∑
j=0

(
n

j

)
L2j∓k.
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Proof. If n is even positive integer and k is odd positive integer, then from Theorem
2 and Lemma 5,

Mn
k =

5
n
2

Fk

[
Fn+k Fn

Fn Fn−k

]
=

n∑
j=0

5−j

(
n

j

)
5j

Fk

[
F2j+k F2j

F2j F2j−k

]
,

hence,

5
n
2

[
Fn+k Fn

Fn Fn−k

]
=


n∑

j=0

(
n
j

)
F2j+k

n∑
j=0

(
n
j

)
F2j

n∑
j=0

(
n
j

)
F2j

n∑
j=0

(
n
j

)
F2j−k

 ,

therefore,

Fn∓k = 5−
n
2

n∑
j=0

(
n

j

)
F2j∓k.

Other equations are obtained in a similar way. □

Lemma 6. For positive integers k, n, s the following equality holds

M2n+s
k = 5n

n∑
j=0

(−1)n+j

(
n

j

)
Ms+j

k .

Proof. From equation (7), we can write

(5Mk − 5I)nMs
k = M2n+s

k (9)

from which the proof can be obtained by using the binomial expansion. □

Theorem 6. For positive integers n and s the following equality holds

L2n+s =

n∑
j=0

(
n

j

){
(−1)n+15

j+1
2 Fs+j , if j is odd,

(−1)n5
j
2Ls+j , if j is even,

,

F2n+s =

n∑
j=0

(
n

j

){
(−1)n+15

j−1
2 Ls+j , if j is odd,

(−1)n5
j
2Fs+j , if j is even.

.

Proof. It can be easily seen with Lemma 6 and Theorem 2. □
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Theorem 7. For positive integers k and n the followings holds

Ln±k =



n∑
j=0

(
n
j

){ −5
n−j
2 Lj∓k, if j is odd,

5
n−j+1

2 Fj∓k, if j is even,
if k is odd and n is odd,

n∑
j=0

(
n
j

){ 5
n−j
2 Lj∓k, if j is odd,

−5
n−j+1

2 Fj∓k, if j is even,
if k is even and n is odd,

n∑
j=0

(
n
j

){ 5
n−j+1

2 Fj∓k, if j is odd,

−5
n−j
2 Lj∓k, if j is even,

if k is odd and n is even,

n∑
j=0

(
n
j

){ −5
n−j+1

2 Fj∓k, if j is odd,

5
n−j
2 Lj∓k, if j is even,

if k is even and n is even,

Fn±k =



n∑
j=0

(
n
j

){ 5
n−j
2 Fj∓k, if j is odd,

−5
n−j−1

2 Lj∓k, if j is even,
if k is odd and n is odd,

n∑
j=0

(
n
j

){ −5
n−j
2 Fj∓k, if j is odd,

5
n−j−1

2 Lj∓k, if j is even,
if k is even and n is odd,

n∑
j=0

(
n
j

){ −5
n−j−1

2 Lj∓k, if j is odd,

5
n−j
2 Fj∓k, if j is even,

if k is odd and n is even,

n∑
j=0

(
n
j

){ 5
n−j−1

2 Lj∓k, if j is odd,

−5
n−j
2 Fj∓k, if j is even,

if k is even and n is even.

Proof. Using equation (8) we can write (I − 1
5Mk)

n = (Mn
k )

−1. Here,

(I − 1

5
Mk)

n =

n∑
j=0

(
n

j

)
(−1)

j 1

5j
M j

k = (Mn
k )

−1.

Let n, k be odd positive integers.

n∑
j=0
j odd

(
n

j

)
(−1)

j 1

5j
5

j−1
2

Fk

[
Lj+k Lj

Lj Lj−k

]
+

n∑
j=0

j even

(
n

j

)
(−1)

j 1

5j
5

j
2

Fk

[
Fj+k Fj

Fj Fj−k

]

=
5

−(n+1)
2

Fk

[
Ln−k −Ln

−Ln Ln+k

]
,

hence,

[
Ln−k −Ln

−Ln Ln+k

]
=

n∑
j=0

(
n

j

)
(−1)

j


5

n−j
2

[
Lj+k Lj

Lj Lj−k

]
, if j is odd,

5
n−j+1

2

[
Fj+k Fj

Fj Fj−k

]
, if j is even,

,
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from which the following result is obtained

Ln−k =

n∑
j=0

(
n

j

){
−5

n−j
2 Lj+k, if j is odd,

5
n−j+1

2 Fj+k, if j is even,

Ln+k =

n∑
j=0

(
n

j

){
−5

n−j
2 Lj−k, if j is odd,

5
n−j+1

2 Fj−k, if j is even.

Other equations are obtained in a similar way. □

Theorem 8. Let h, k and n be positive integers and

θ(n) := 5
n+1
2 Fnx− 1, ϑ(n) := 5

n
2 Lnx− 1.

i) If n is odd, then

h∑
j=0

xjMnj
k =

θ(n)I − xMn
k

5nx2 − θ(n)

(
xh+1M

n(h+1)
k − I

)
= −

xh+2M
n(h+2)
k − xMn

k − θ(n) (xMn
k )

h+1
+ θ(n)I

5nx2 − θ(n)
.

ii) If n is even, then

h∑
j=0

xjMnj
k =

ϑ(n)I − xMn
k

5nx2 − ϑ(n)

(
xh+1M

n(h+1)
k − I

)
= −

xh+2M
n(h+2)
k − xMn

k − ϑ(n) (xMn
k )

h+1
+ ϑ(n)I

5nx2 − ϑ(n)
.

Proof.

(xAn − I)

h∑
j=0

xjAnj = xh+1An(h+1) − I, (10)

is valid for every square matrix A. Using equation (10) and Lemma 4, i) and ii) can
easily be shown. □

Theorem 9. Let n and s be arbitrary integers where x ̸= 1

αn
and x ̸= 1

βn , the

following equations are satisfied:
i)

h∑
j=0

xjFnj+s =
(−1)n−1xh+2Fnh+s + xh+1Fn(h+1)+s − (−1)sxFn−s − Fs

(−1)n−1x2 + Lnx− 1
,
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ii)

h∑
j=0

xjLnj+s =
(−1)n−1xh+2Lnh+s + xh+1Ln(h+1)+s + (−1)sxLn−s − Ls

(−1)n−1x2 + Lnx− 1
.

Proof. The equation i) can be obtained by using the Lemma 4 and Theorem 2. By
substitute s± 1 for s in equation i) we obtained ii). □

4. Relationships with Some Infinite Series

In this section, we consider a method using functions of the matrix xMn
k to find

sums of infinite series containing Fn and Ln. Under certain restrictions, some sum
formulas can be computed using the results given in Section 3.

Theorem 10. If

− 1

αn
< x <

1

αn

then,

∞∑
j=0

xjFnj+s =
(−1)s−1xFn−s − Fs

(−1)n−1x2 + Lnx− 1
,

∞∑
j=0

xjLnj+s =
(−1)sxLn−s − Ls

(−1)n−1x2 + Lnx− 1
.

Proof. If the limits of i) and ii) in Theorem 9 are taken on both sides as h goes to
infinity, we get the equations. □

4.1. Calculation of Certain Functions of xMn
k . In [7] and [13] we see that the

authors obtain some identity with the matrix functions. Similarly, we can examine
some series of Fibonacci and Lucas sequences using the xMn

k matrices.

Theorem 11. For positive numbers k, n the following equality holds

Y = exp(xMn
k ) =

∞∑
j=0

xjM jn
k

j!
.

Proof. If we take A = xMn
k in the equation given in [7, p. 113] for the exponential

function of a matrix A, we get the result. □

Theorem 12. For positive integers k and n the following identities holds

∞∑
j=0

xjLjn+k

j!
= αk exp(xαn) + βk exp(xβn),
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∞∑
j=0

xjLjn

j!
= exp(xαn) + exp(xβn),

∞∑
j=0

xjLjn−k

j!
= (−1)k[αk exp(xαn) + βk exp(xβn)],

∞∑
j=0

xjFjn+k

j!
=

αk exp(xαn)− βk exp(xβn)

α− β
,

∞∑
j=0

xjFjn

j!
=

exp(xαn)− exp(xβn)

α− β
,

∞∑
j=0

xjFjn−k

j!
= (−1)k−1

[
αk exp(xβn)− βk exp(xαn)

α− β

]
.

Proof. When f is an exponential function, if we replace Y in Theorem 3 by its
equivalent given in Theorem 11, we obtain these identities from the matrix equation.

□

The technique presented above allows us to consider a very large number of
infinite series involving Fn and Ln by considering power series expansions ( [1], [7],
[21]) of other functions of the matrix xMk

n . Finally, let us examine the expansion
of tan−1 y.

Theorem 13. Under the constraint

− 1

αn
≤ x ≤ 1

αn

we have
∞∑
j=1

(−1)j+1x2j−1Ln(2j−1)+s

2j − 1
= αs tan−1(xαn) + βs tan−1(xβn).

5. Conclusion

In this work, many identities for Fibonacci and Lucas sequences have been ob-
tained. Although some of these are identities that can be obtained more simply in
different ways, they are not found in the literature. What we really want to do here
is to show how productive the Cholesky decomposition method is.
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NORMAL AUTOMORPHISMS OF FREE METABELIAN LEIBNIZ

ALGEBRAS

Zeynep ÖZKURT

Department of Mathematics, Çukurova University, Adana, TÜRKİYE

Abstract. Let M be a free metabelian Leibniz algebra with generating set

X = {x1, ..., xn} over the field K of characteristic 0. An automorphism ϕ of

M is said to be normal automorphism if each ideal of M is invariant under
ϕ. In this work, it is proven that every normal automorphism of M is an

IA-automorphism and the group of normal automorphisms coincides with the

group of inner automorphisms.

1. Introduction

Leibniz algebras were discovered in 1965 by A. Bloh [2] and forgotten for nearly
thirty years. In the early 1990s Leibniz algebras were rediscovered by Loday as
a generalization of Lie algebras [8]. In 1993, Loday and Pirashvili studied these
algebras and they described the free Leibniz algebras [9]. In 2001, Mikhalev and
Umirbaev obtained some important results on subalgebras of free Leibniz algebras
[11]. Then automorphisms of free Leibniz algebras of rank two were described
by Abdykhalykov at.al. [1]. In [13], the author studied on automorphic orbits of
free Leibniz algebras of rank two. In [16], Hall bases of free Leibniz algebras were
defined by Shahryari. In 2002, it was given a description of free metabelian Leibniz
algebras by Drensky and Cattaneo [3]. Let M be a free metabelian Leibniz algebra
of rank n. Denote by M′, the commutator ideal of M. We write Aut(M) for the
automorphism group of M. Let

π : Aut(M) → Aut(M/M′)

be the canonical homomorphism with kernel consisting of automorphisms that in-
duce the identity mapping onM/M′. The kernel of π is called the IA-automorphism
group and denoted by IAut(M). In [17,18], the author and Taş Adıyaman described
a generating set for IAut(M) of rank three and n, respectively. Recently, symmetric
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polynomials of M were considered in [7]. An automorphism θ of M is said to be
a normal automorphism if θ(I) = I for each ideal I of M. Normal automorphism
group Aut(N) is a normal subgroup of Aut(M). For an element u of M′ the adjoint
operator

adu : M −→ M

defined by adu(v) = [v, u], for every v ∈ M is nilpotent since ad2u = 0. Hence
exp(adu) = 1 + adu is an automorphism of M called an inner automorphism.
Denote by Inn(M), the inner automorphism group of M. It is known that Aut(N)
contains Inn(M). There exist many groups whose normal automorphisms are inner.
See the papers [5, 10, 14, 15, 19]. In [4], Endimioni studied normal automorphisms
of a free metabelian nilpotent group. Normal automorphisms are important for
algebras. In [6], normal automorphisms of free metabelian nilpotent Lie algebras

were considered. In [12], Öğüşlü proved that each normal automorphism of the
metabelian product of abelian Lie algebras is an IA-automorphism and acts identi-
cally on the commutator algebra. It is natural to generalize results of Lie algebras
to Leibniz algebras.

In this work, an analogue of the result in [12] is established for Leibniz algebras
over a field of characteristic 0 and it is proven that each normal automorphism of
M is an IA-automorphism. Then it is proven that Aut(N) = Inn(M).

2. Preliminaries

Let K be a field of characteristic 0. The vector space L over K equipped with a
bilinear map [, ] : L × L −→ L is called a Leibniz algebra if it satisfies the Leibniz
identity

[x, [y, z]] = [[x, y] , z]− [[x, z] , y]

for all x, y, z ∈ L. In the general case a Leibniz algebra L is a non-associtive and
non-commutative algebra. If the condition [x, x] = 0 for all x ∈ L is satisfied,
then L is a Lie algebra. Every commutator is reduced to a linear combination of
left normed commutators by the Leibniz identity. Denote by Ann(L), the ideal
of L generated by elements {[a, a] : a ∈ L}. It is known (see [9]) that rz = 0 ⇔
z ∈ Ann(L), where rz = adz.

Let F be the free Leibniz algebra with a generating set {x1, . . . , xn} over the field
K of characteristic 0 (see [9]) and let F′ and F′′ be the commutator subalgebras of F
and F′, respectively. Then F/F′ and F′/F′′ are abelian Leibniz algebras over K. We
fix the notation M = F/F′′ for the free metabelian Leibniz algebra over the field K.
Then M′ = F′/F′′. Denote by ⟨S⟩, the ideal of M generated by a set S.

The generators of Aut(M) are given in the following theorem from [18].

Theorem 1. Let M be the free metabelian Leibniz algebra with a generating set
{x1, . . . , xn}. Then Aut(M) is generated by the general linear group together with
the inner automorphisms and the following IA-automorphisms

ϕ : x1 → x1 + [z, x1]



NORMAL AUTOMORPHISMS 149

xj → xj − [xj , z]

where z ∈ M′ and z ∈ ⟨x2⟩ ⊕ . . .⊕ ⟨xn⟩,
σ : xj → xj + [z, xj ]

where z is generated by the elements of the form [x, y]−[y, x] where x, y ∈ {x1, . . . , xn},
τ : x1 → x1 + u

xi → xi

where i ̸= 1, u ∈ Ann(M) depends on xt
′s, t ∈ {2, . . . , n},

ψ : x1 → x1 + v

xi → xi

where v ∈ ⟨[xj , xk]⟩, j ̸= k ̸= 1,i ̸= 1.

3. Normal Automorphisms

Theorem 2. Let θ ∈ Aut(N). Then θ ∈ IAut(M).

Proof. LetM be a free metabelian Leibniz algebra with the generating set {x1, . . . , xn}.
Every automorphism θ of M is defined by

θ : xi → ki1x1 + ki2x2 + ...+ kinxn + ui,

where the linear part is invertible, ui ∈ M′, i = 1, . . . , n, kij ∈ K [18]. Let θ ∈
Aut(N). Consider the ideal ⟨xi⟩ of M. We have θ(xi) ∈ ⟨xi⟩. Then ki1x1 + . . . +
kiixi+ . . .+kinxn+ui ∈ ⟨xi⟩. By grading ki1x1+ . . .+kiixi+ . . .+kinxn ∈ ⟨xi⟩ and
ui ∈ ⟨xi⟩ are obtained. Since x1, x2, . . . , xn are free generators, we obtain kij = 0
for i ̸= j. Hence we have

θ : xi → kiixi + ui,

where kii ∈ K. Consider the ideal ⟨
∑n

i=1 xi⟩ of M. We obtain θ(
∑n

i=1 xi) ∈
⟨
∑n

i=1 xi⟩. Clearly
θ(x1 + x2 + ...+ xn) = k11x1 + k22x2 + . . .+ knnxn + u1 + u2 + . . .+ un

and

k11x1 + k22x2 + . . .+ knnxn + u1 + u2 + . . .+ un ∈ ⟨x1 + x2 + . . .+ xn⟩.
By grading we have

k11x1 + k22x2 + . . .+ knnxn = k(x1 + x2 + . . .+ xn)

for a coefficient k ∈ K. It implies

(k11 − k)x1 + (k22 − k)x2 + . . .+ (knn − k)xn = 0,

by the linearly independence kii − k = 0, and kii = k for i = 1, 2, . . . , n. Therefore,

θ : xi → kxi + ui.
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Consider the ideal ⟨xi + [xi, xi]⟩ of M,

θ(xi + [xi, xi]) = kxi + k2[xi, xi] + ui + k[ui, xi] + k[xi, ui] ∈ ⟨xi + [xi, xi]⟩.

By Theorem 1, ui ̸= [xi, xi]. Clearly it yields

kxi + k2[xi, xi] + ui + k[ui, xi + k[xi, ui] = c(xi + [xi, xi]) + z

where c ∈ K, z ∈ ⟨xi + [xi, xi]⟩. By this equality, we obtain k = c, k2 = c. Then we
see that k = k2 and 0 = k − k2 = k(1− k). Hence k = 1. □

Theorem 3. Aut(N) = Inn(M).

Proof. Let θ ∈ Aut(N). Then θ is an IA-automorphism by Theorem 2. Hence, it
can be defined by

θ : xi → xi + ui

where ui ∈ M′. Using the generating set of IA-automorphisms by Theorem 1, we
can write the elements ui, i = 1, 2, . . . , n as in the following forms;
Case 1. ui = [xi, w] for i = 1, 2, . . . , n and w ∈ M′. In this form, θ is an inner
automorphism.
Case 2. u1 = [w, x1], uj = −[xj , w], for j = 2, . . . , n, where w ∈ M′ and w ∈
⟨x2⟩ ⊕ . . . ⊕ ⟨xi⟩ ⊕ . . . ⊕ ⟨xn⟩, i ̸= 1. Now take [x1, x2] ∈ M′. Consider the ideal
⟨[x1, x2]⟩ of M. Then

θ([x1, x2]) = [x1, x2] + [u1, x2] + [x1, u2] = [x1, x2] + [[w, x1], x2]− [x1, [x2, w]].

Since [[w, x1], x2] − [x1, [x2, w]] /∈ ⟨[x1, x2]⟩, then θ([x1, x2]) /∈ ⟨[x1, x2]⟩. This is a
contradiction.
Case 3. ui = [w, xi], for i = 1, 2, . . . , n, where w is generated by the elements of
the form [x, y] − [y, x], for x, y ∈ {x1, ..., xn}. Consider the ideal ⟨[x1, x2]⟩ of M.
Then

θ([x1, x2]) = [x1, x2] + [u1, x2] + [x1, u2] = [x1, x2] + [[w, x1], x2] + [x1, [w, x2]].

Since [[w, x1], x2] + [x1, [w, x2]] /∈ ⟨[x1, x2]⟩, then θ([x1, x2]) /∈ ⟨[x1, x2]⟩. This is a
contradiction.
Case 4. u1 ∈ Ann(M) depends on xt

′s, t ∈ {2, . . . , n}, and uj = 0 for j = 2, . . . , n.
We have

θ([x1, x2]) = [x1, x2] + [u1, x2].

Since [u1, x2] /∈ ⟨[x1, x2]⟩, this automorphism is not a normal automorphism.
Case 5. u1 = ⟨[xj , xk]⟩, j ̸= k ̸= 1, and uj = 0, for j = 2, . . . , n. We obtain

θ([x1, x2]) = [x1, x2] + [u1, x2].

Since the element [u1, x2] /∈ ⟨[x1, x2]⟩, then θ([x1, x2]) /∈ ⟨[x1, x2]⟩. This is a contra-
diction.

Therefore, the elements ui are only as in Case 1. Hence θ is an inner automor-
phism. □
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[7] Fındık, Ş., Özkurt, Z., Symmetric polynomials in Leibniz algebras and their inner automor-

phisms, Turkish Journal of Mathematics, 44 (2020), 2306-2311. https://doi.org/10.3906/mat-
2006-44

[8] Loday, J. L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz,
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AFFINE MAPPINGS AND MULTIPLIERS FOR WEIGHTED

ORLICZ SPACES OVER THE AFFINE GROUP R+ × R
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Abstract. Let A = R+ × R be the affine group with a right Haar measure

µ, ω be a weight function on A and Φ be a Young function. We characterize

the affine continuous mappings on the subsets of LΦ(A, ω). Moreover we show
that there exists an isometric isomorphism between the multiplier of the pair

(L1(A) ∩ LΦ(A), L1(A)) and the space of bounded measures M(A).

1. Introduction

Orlicz spaces are an important concept in analysis and applications (see [19,
23, 24]). This concept extends the classical concept of Lp Lebesgue spaces for
p ≥ 1. A convex function Φ(x) is used in place of the function xp appearing in the
definition of Lp spaces. This function Φ is called a Young function. In addition to
Lp spaces, several function spaces can be considered as Orlicz spaces; for example
L log+ L Zygmund spaces, which are Banach spaces related to Hardy-Littlewood
maximal functions. Moreover, Sobolev spaces can be also considered as subspaces of
Orlicz spaces (see [5]). Most of the features of Orlicz spaces have been investigated
thoroughly (see [23], for example), especially, Orlicz spaces determined on measure
spaces (see for example [12, 14, 17, 23]). In recent years, Orlicz spaces and their
weighted cases are examined as Banach algebras over locally compact groups (lcg).
Moreover their several properties are also studied (see [1, 20–22,27,28]).

On the other hand one of the basic problems in harmonic analysis is the de-
scription of multipliers. Multipliers have been considered in several contexts, for
example Banach algebras and Banach modules theories, partial differential equa-
tions, the existence of invariant means, etc. Our aim in this paper is to investigate
the affine continuous mappings for the weighted Orlicz space LΦ(A, ω) over the
affine group A and study the multiplier problem for LΦ(A) ∩ L1(A). The affine
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group chosen is a prime example of a nonabelian group on which harmonic analysis
and even more applied time-frequency analysis questions are studied (see [8, 9]).

For Lp spaces, in [16], Lau studied the affine mappings T between the subsets of

Lebesgue spaces. In [27], Üster and Öztop studied continuous affine mappings on
the subsets of Orlicz spaces. On the other hand the characterization of multipliers
for weighted Lebesgue spaces has been given by Gaudry [10]. (See also [7].) In
[10], Gaudry showed that the multiplier space of L1(G,ω) can be characterized by

M(G,ω). Moreover in [28], Üster characterized the compact mulipliers of LΦ(G,ω).
Here G denotes a lcg. (See Section 2 for notation.)

The paper is organized as follows. In Section 2, we recall some basic definitions
and notions on Orlicz and weighted Orlicz spaces. In Section 3, we study contin-
uous affine mappings on subsets of weighted Orlicz space LΦ(A, ω) and we give a
characterization for the multipliers of LΦ(A) ∩ L1(A).

2. Preliminaries

We start this section by introducing some basic facts for an affine group and
essential constructions on it.

Let A := (R+ × R, ·A) be the affine group equipped with the multiplication

(s, t) ·A (x, y) = (sx, sy + t), (1)

for (s, t), (x, y) ∈ A. Note that (1, 0) ·A (s, t) = (s, t) ·A (1, 0) = (s, t) and
(s, t) ·A (s−1,−s−1t) = (s−1,−s−1t) ·A (s, t) = (1, 0). Thus A, endowed with the
multiplication (1), becomes a group and this group is called the affine group.

Since a mapping of the real line can be defined by Fs,t : R → R such that

Fs,t(x) = (s, t) · x = sx+ t, x ∈ R

for any (s, t) ∈ A, the affine group is also called the sx+ t group. Fs,t is the affine
mapping of the real line R and this operation is coherent with (1).

We can represent the affine group A in matrix form as

A :=

{(
s t
0 1

)
: s > 0, t ∈ R

}
.

The inverse and the identity elements are given by(
s−1 −s−1t
0 1

)
, I =

(
1 0
0 1

)
.

The operations of the inversion and multiplication are continuous in the product
topology. Thus the affine group A is a locally compact group and

dν(x, y) =
dx

x2
dy

dµ(x, y) =
dx

x
dy
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are the left and right Haar measures, respectively (for more details see [13]). Now
since

dν(x, y) =
dx

x2
dy =

1

x
dµ(x, y),

the affine group is not unimodular. The modular function on the affine group is
∆(x, y) = x−1.

Throughout this work we use the right Haar measure dµ on A.
Let f : A → C and (s, t) ∈ A. We use L(s,t) for the left translation and R(s,t) for

the right translation given by

(L(s,t)f)(x, y) := f((s, t)−1 ·A (x, y)) and (R(s,t)f)(x, y) := f((x, y) ·A (s, t)−1).

Next we give some notions regarding Orlicz spaces, weighted Orlicz spaces and
Young functions. Our main references are [12] and [23].

Definition 1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is
convex, Φ(0) = 0 and lim

t→∞
Φ(t) = +∞.

For a Young function Φ, its conjugate function Ψ is given by

Ψ(t) = sup{st− Φ(s) : s ≥ 0} (t ≥ 0).

The pair (Φ,Ψ) of Young functions Φ,Ψ is said to be (Young) conjugate and we
have

st ≤ Φ(s) + Ψ(t) (∀s, t ≥ 0). (2)

In this paper we only consider the real-valued Young functions. Clearly Φ is
continuous and limt→∞ Φ(t) = ∞. Note that the continuity of Φ may not imply
the continuity of Ψ.

Let us recall the following facts about Orlicz spaces. Let (Φ,Ψ) be conjugate
Young functions. Then the Orlicz space LΦ(A) is defined to be

LΦ(A) = {f : A → C :

∫
A

Φ(α|f(x, y)|) dx
x
dy < ∞ for some α > 0}.

Here f and g in LΦ(A) are equivalent if f = g a.e. Recall that an Orlicz space is a
Banach space with respect to (Orlicz) norm which is defined by

∥f∥Φ = sup

{∫
A

|f(x, y)ν(x, y)| dx
x
dy :

∫
A

Ψ(|ν(x, y)|) dx
x
dy ≤ 1

}
for f ∈ LΦ(A). Here (Φ,Ψ) are conjugate Young functions.

Another norm on an Orlicz space is the Luxemburg norm NΦ(f) defined by

NΦ(f) = inf

{
λ > 0 :

∫
A

Φ

(
|f(x, y)|

λ

)
dx

x
dy ≤ 1

}
.

Note that the Orlicz and Luxemburg norms are equivalent; that is,

NΦ(·) ≤ ∥ · ∥Φ ≤ 2NΦ(·).
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We shall use the following definition in the last section. In [4] and [29], the main
motivation to use this definition is to estimate the norm of the dilation operator.
Here we use a result of Lemma 3.3 given in [29].

Given γ > 0 one can define

NΦ,γ(f) := inf{λ > 0 :

∫
A

Φ

(
|f(x, y)|

λ

)
dx

x
dy ≤ γ}.

Here NΦ,1 = NΦ and these norms are equivalent on LΦ(A):
γ1

γ2

NΦ,γ1
(f) ≤ NΦ,γ2

(f) ≤ NΦ,γ1
(f)

for 0 < γ1 ≤ γ2.
For Orlicz spaces an important notion is the ∆2-condition. Let us recall the

following definition.

Definition 2. Let Φ : [0,∞) → [0,∞] be a Young function. Then Φ is said to
satisfy ∆2-condition (globally), if

Φ(2x) ≤ MΦ(x) (x ≥ 0)

for some absolute constant M > 0.

Note that if Φ ∈ ∆2, then LΦ(A)∗ ∼= LΨ(A), here ∗ denotes the dual [23,
Corollary 3.4.5]. Moreover if Ψ ∈ ∆2, then LΦ(A) is a reflexive Banach space
(see [14,23] for more general cases.)

On the other hand, the weighted Orlicz space LΦ(G,ω) is defined by Osançlıol

and Öztop in [20] over a lcg G and they consider the Banach algebra structure for
LΦ(G,ω).

A weight function ω is a positive, locally integrable function on A. In this paper
we assume that ω is continuous (see [25, Section 3.7]). The space LΦ(A, ω) is defined
by {f : fω ∈ LΦ(A)}. We also set

Nω
Φ (f) = NΦ(fω) (3)

for f ∈ LΦ(A, ω). Then Nω
Φ (·) defines a norm on LΦ(A, ω) and LΦ(A, ω) is a

Banach space with respect to this norm. Moreover, LΨ(A, ω−1) is the dual space
of (LΦ(A, ω), Nω

Φ (·)) if Φ fulfills the ∆2-condition. Here the duality is given by

⟨f, h⟩ =
∫
A

f(x, y)h(x, y)
dx

x
dy (f ∈ LΦ(A, ω), h ∈ LΨ(A, ω−1)),

where (Φ,Ψ) are conjugate Young functions and the space LΨ(A, ω−1) is endowed

with the norm Nω−1

Ψ (f) = NΨ(
f
ω ). So if Φ,Ψ fulfill the ∆2-condition then LΦ(A, ω)

is a reflexive Banach space (for the general case see [20]).

For Φ(x) = xp

p , 1 < p < ∞, the conjugate Young function is Ψ(y) = yq

q , where
1
p + 1

q = 1. Then LΦ(A, ω) and its norm are equal to the Lebesgue space Lp(A, ω)
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and its norm. For p = 1 and Φ(x) = x the conjugate Young function is

Ψ(y) =

{
0, 0 ≤ y ≤ 1
∞, otherwise

and we have LΦ(A, ω) = L1(A, ω). Note that for p = 1, the Banach algebra L1(A, ω)
always has a bounded approximate identity.

As usual, M(A, ω) is the set of all complex bounded regular Borel measures λ
on A with

∥λ∥ω =

∫
A

ω(s, t)dλ(s, t) < ∞.

We denote the space of all continuous functions f on A vanishing at infinity
by C0(A, ω−1) with the norm ∥f∥∞,ω−1 = ∥ f

ω∥∞. Then M(A, ω) is realized as

(C0(A, ω−1))∗ by

⟨λ, f⟩ =
∫
A

f(x, y)dλ(x, y)

(for the general case see [11]). If λ ∈ M(A, ω) and f ∈ LΦ(A, ω) the convolution of
λ and f is defined by

(λ ∗ f)(x, y) =
∫
A

f((s, t)−1 ·A (x, y))dλ(s, t).

Moreover if f, g are measurable functions on A the convolution of f and g is defined
by

(f ∗ g)(x, y) =
∫
A

f(s, t)g((s, t)−1 ·A (x, y))
ds

s
dt ((x, y) ∈ A).

For each (s, t) ∈ A, let δ(s,t)(E) = 1E(s, t), where 1E is the characteristic function
of E ⊆ A. Then

(δ(s,t) ∗ f)(x, y) = f((s, t)−1 ·A (x, y)) = L(s,t)f(x, y) ((s, t) ∈ A)

where L(s,t)−1 is the left translation operator. For a function f on A, we use f̃

defined by f̃(x, y) = f((x, y)−1) for each (x, y) ∈ A.
Throughout the paper we study LΦ(A, ω) with the weight ω and the ∆2-condition

on a Young function Φ.

3. Main Results

In this section we characterize the affine continuous mappings for LΦ(A, ω) over
the affine gorup A and we study the multiplier problem for the space LΦ(A, ω) ∩
L1(A, ω). Let us first give the following definitions.

Definition 3. Let C ⊆ LΦ(A, ω). Then C is called left invariant if L(x,y)f ∈ C
for each f ∈ C and (x, y) ∈ A.
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Notice that for f ∈ LΦ(A, ω) and (x, y) ∈ A we have L(x,y)f ∈ LΦ(A, ω) and
Nω

Φ (L(x,y)f) ≤ ω(x, y)Nω
Φ (f) (for the general lcgs see [20, Lemma 2.3]).

Definition 4. Let X and Y be normed spaces and C, D be convex subsets of X
and Y respectively. Then a mapping f : C → D is called affine if

f(αx+ (1− α)y) = αf(x) + (1− α)f(y)

for each x, y ∈ C and α ∈ [0, 1].

For the subset K of LΦ(A, ω), we use coK for the convex hull of K. In addition
to the norm topology on LΦ(A, ω), we will take the weak topology w and the weak∗

topology w∗ for the pair (LΦ(A, ω), LΦ(A, ω)∗) where (Φ,Ψ) is a conjugate pair.
Moreover, we make use of the following subsets of M(A, ω):
(i) P (A, ω) = {µ ∈ M(A, ω) : ∥µ∥ω = 1 and µ ≥ 0},

(ii) P1(A, ω) = {h ∈ L1(A, ω) : ∥h∥1,ω = 1 and h ≥ 0},

(iii) E(A, ω) = { δ(x,y)

ω(x,y) : (x, y) ∈ A}.
We omit the proof of the following Lemma which appears in [28] for general locally
compact abelian groups. One can get the same result for nonabelian groups in a
similar way.

Lemma 1. We have P (A, ω) = P1(A, ω)
w∗

= coE(A, ω)
w∗

. Here · w∗
indicates

weak∗ closure.

Lemma 2. The following are true.

(i) Let f ∈ LΦ(A, ω). Then the mapping µ 7→ µ ∗ f is continuous from
(M(A, ω), w∗) to (LΦ(A, ω), w).

(ii) Let f ∈ L1(A, ω). Then the mapping h 7→ f ∗ h is continuous from
(LΦ(A, ω), w) to (LΦ(A, ω), w).

Proof. (i) Let {µα}α ⊆ M(A, ω) be a net that is weak* convergent to µ, (Φ,Ψ)
a conjugate Young pair and f ∈ LΦ(A, ω). Since LΦ(A, ω) is M(A, ω)-module
the mapping µ ∗ f is well defined (see [20]). Let T ∈ (LΦ(A, ω))∗, so there exists
g ∈ LΨ(A, ω−1) such that

T (f) =

∫
A

f(x, y)g(x, y)
dx

x
dy = ⟨f, g⟩.

Thus we obtain that

T (µα ∗ f) = ⟨µα ∗ f, g⟩

=

∫
A

(µα ∗ f)(x, y)g(x, y) dx
x
dy
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=

∫
A

∫
A

f((s, t)−1 ·A (x, y)) dµα(s, t)g(x, y)
dx

x
dy

=

∫
A

∫
A

f̃((x, y)−1 ·A (s, t))g(x, y)
dx

x
dy dµα(s, t)

=

∫
A

(g ∗ f̃)(s, t) dµα(s, t)

= ⟨g ∗ f̃ , µα⟩.

Since f ∈ LΦ(A, ω) and g ∈ LΨ(A, ω−1), we have g∗f̃ ∈ C0(A, ω−1) (for the general

case see [20].) This implies that T (µα ∗ f) = ⟨g ∗ f̃ , µα⟩ → ⟨g ∗ f̃ , µ⟩ = ⟨µ ∗ f, g⟩ =
T (µ ∗ f), i.e., µα ∗ f weakly converges to µ ∗ f in LΦ(A, ω).

(ii) Let {hα}α ⊆ LΦ(A, ω) be a net that is weakly convergent to h and f ∈
L1(A, ω). We have limα⟨hα, g⟩ = ⟨h, g⟩ for all g ∈ (LΦ(A, ω))∗. Thus we obtain
that

⟨hα ∗ f, g⟩ =
∫
A

(hα ∗ f)(x, y)g(x, y)dx
x
dy

=

∫
A

∫
A

hα(s, t)f((s, t)
−1 ·A (x, y))g(x, y)

ds

s
dt

dx

x
dy

=

∫
A

∫
A

hα(s, t)f̃((x, y)
−1 ·A (s, t))g(x, y)

ds

s
dt

dx

x
dy

=

∫
A

hα(s, t)(g ∗ f̃)(s, t)
ds

s
dt

= ⟨hα, g ∗ f̃⟩.

This gives that ⟨hα ∗ f, g⟩ = ⟨hα, g ∗ f̃⟩ → ⟨h, g ∗ f̃⟩ = ⟨h ∗ f, g⟩. □

Theorem 1. Let C,D be convex, closed, left invariant subsets of LΦ2(A, ω) and
LΦ1(A, ω) respectively. If T : C → D is a continuous and affine mapping then the
following are equivalent.

(i) T (L(x,y)f) = L(x,y)(Tf) for each (x, y) ∈ A and f ∈ C.
(ii) T (ν ∗ f) = ν ∗ T (f) for each ν ∈ P1(A, ω) and f ∈ C.

Proof. (i ⇒ ii) Let f ∈ C and assume that T (L(x,y)f) = L(x,y)(Tf) for each
(x, y) ∈ A and ν ∈ P1(A, ω). Using Lemma 1, there exists a net {να}α in coE(A, ω),

να =
nα∑
i=1

λi
α δ(sα

i
,tα

i
)

ω(sαi ,tαi ) and να weak* converges to ν. Then by Lemma 2, {να ∗ f}α
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weakly converges to ν ∗ f for each f ∈ C. Thus we have

να ∗ f =

(
nα∑
i=1

λi
α

δ(sαi ,tαi )

ω(sαi , t
α
i )

)
∗ f =

nα∑
i=1

λα
i

ω(sαi , t
α
i )

L(sαi ,tαi )−1f.

As C is convex and left invariant, the net {να ∗ f}α is contained in C. Now using
Lemma 2 it follows that ν ∗ f ∈ C.

On the other hand since C and D are convex and closed they are weakly closed.
Moreover since T is continuous and affine T is weakly continuous when C and D
have their respective weak topologies (see [6, 26]). Then we get that

T (ν ∗ f) = lim
α

T (να ∗ f)

= lim
α

T

(( nα∑
i=1

λα
i

δ(sαi ,tαi )

ω(sαi , t
α
i )

)
∗ f
)

= lim
α

T

( nα∑
i=1

λα
i

ω(sαi , t
α
i )

(
δ(sαi ,tαi ) ∗ f

)

= lim
α

T

( nα∑
i=1

λα
i

ω(sαi , t
α
i )

(L(sαi ,tαi )−1f)

)

= lim
α

nα∑
i=1

λα
i

ω(sαi , t
α
i )

T (L(sαi ,tαi )−1f)

= lim
α

nα∑
i=1

λα
i

ω(sαi , t
α
i )

L(sαi ,tαi )−1T (f)

= lim
α

( nα∑
i=1

λα
i

δ(sαi ,tαi )

ω(sαi , t
α
i )

)
∗ T (f)

= lim
α

να ∗ T (f)

= ν ∗ T (f).

(ii ⇒ i) Conversely let (x, y) ∈ A. Using Lemma 1 there exists a net {να}α ⊆
P1(A, ω) such that {να}α converges to δ(x,y)−1 in the weak* topology. If T (ν ∗f) =
ν ∗ T (f) for each ν ∈ P1(A, ω) and f ∈ C we have that

T (L(x,y)f) = T (δ(x,y)−1 ∗ f)

= lim
α

T (να ∗ f)

= lim
α

να ∗ T (f)

= δ(x,y)−1 ∗ T (f)

= L(x,y)T (f).
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This completes the proof. □

Theorem 2. Let B be a weakly compact, bounded, left invariant, closed subset
of LΦ(A, ω) and T be a continuous affine mapping from P1(A, ω) to B. Then T
commutes with all left translations if and only if there exists an f ∈ B such that
T (g) = g ∗ f for each g ∈ P1(A, ω).

Proof. Let (x, y) ∈ A and assume that T (L(x,y)g) = L(x,y)(Tg) for each g ∈
P1(A, ω). Using Theorem 1 we have T (k ∗ g) = k ∗ T (g) for k, g ∈ P1(A, ω).
Let {uα}α ⊆ P1(A, ω) be a bounded approximate identity for L1(A, ω). Since B is
weakly compact and T (uα) ∈ B is bounded, there exists f ∈ B such that {T (uα)}α
converges to f weakly. Thus

T (g) = lim
α

T (g ∗ uα)

= lim
α

g ∗ T (uα)

= g ∗ f

and the result follows.
For the converse let (x, y) ∈ A and assume that f ∈ B such that T (g) = g ∗ f

for all g ∈ P1(A, ω). Then

L(x,y)T (g) = L(x,y)(g ∗ f)
= δ(x,y)−1 ∗ (g ∗ f)
= (δ(x,y)−1 ∗ g) ∗ f
= L(x,y)g ∗ f
= T (L(x,y)g)

which gives the required result. □

Now our purpose is to obtain a characterization for the multipliers of LΦ(A) ∩
L1(A). We observe that the following result does not work for the weighted case
and we give the result for the unweighted case.

We start with the definition of the left multiplier of LΦ(A).

Definition 5. Let T be a bounded linear operator from LΦ1(A) to LΦ2(A). Then
T is said to be a left multiplier for (LΦ2(A), LΦ1(A)) if T (L(x,y)f) = L(x,y)(Tf) for

all f ∈ LΦ2(A) and (x, y) ∈ A. We write M(LΦ2(A), LΦ1(A)) for the set of left
multipliers of (LΦ2(A), LΦ1(A)).

Remark 1. Observe that the normed space L1(A)∩LΦ(A) is a Banach space with
the norm

|||f ||| = ∥f∥1 +NΦ(f)

and dense in L1(A).
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The following lemma is important to us for our last result (for the proof see [29,
Lemma 3.3].)

Lemma 3. Let Φ be a Young function satisfying the ∆2 condition. If f ∈ LΦ(A)
then lim(a,b)→(+∞,+∞) NΦ(f + L(a,b)f) = NΦ, 12

(f).

Now we have the tools to give a characterization of the multipliers of LΦ(A) ∩
L1(A).

Theorem 3. Let T : L1(A) ∩ LΦ(A) → L1(A) be a linear mapping. Then the
following are equivalent.

(i) T ∈ M(L1(A) ∩ LΦ(A), L1(A)).
(ii) There exists a unique measure µ ∈ M(A) such that Tf = µ ∗ f for each

f ∈ L1(A) ∩ LΦ(A).
Furthermore the correspondence between T and µ defines an isometric iso-
morphism of M(L1(A) ∩ LΦ(A), L1(A)) onto M(A).

Proof. Assume that T ∈ M(L1(A) ∩ LΦ(A), L1(A)). Then for each f ∈ L1(A) ∩
LΦ(A) we obtain that

∥Tf∥1 ≤ ∥T∥(∥f∥1 +NΦ(f)). (4)

By Lemma 3 we have lim(s,t)→(∞,∞) NΦ(f + L(s,t)f) = NΦ, 12
(f). Using this fact

together with (4) we have that

2∥Tf∥1 = lim
(s,t)→(∞,∞)

∥Tf + L(s,t)Tf∥1

= lim
(s,t)→(∞,∞)

∥T (f + L(s,t)f)∥1

≤ lim
(s,t)→(∞,∞)

∥T∥(∥f + L(s,t)f∥1 +NΦ(f + L(s,t)f))

= ∥T∥(2∥f∥1 +NΦ, 12
(f))

for each f ∈ L1(A) ∩ LΦ(A). Therefore we obtain

∥Tf∥1 ≤ ∥T∥(∥f∥1 + 2−1NΦ, 12
(f)).

Applying this step n times we obtain

∥Tf∥1 ≤ ∥T∥(∥f∥1 + 2−nNΦ, 12
(f))

for f ∈ L1(A) ∩ LΦ(A). Since limn→∞ 2−n = 0 we deduce that ∥Tf∥1 ≤ ∥T∥∥f∥1.
Thus T defines a linear continuous mapping from L1(A)∩LΦ(A) to L1(A) com-

muting with left translations. Moreover since L1(A) ∩ LΦ(A) is dense in L1(A), T
determines a unique map S ∈ M(L1(A)) and ∥S∥ ≤ ∥T∥. Moreover there exists
a unique µ ∈ M(A) such that Sf = µ ∗ f for each f ∈ L1(A) and ∥µ∥ = ∥S∥
(see [30]). Therefore Tf = µ ∗ f for each f ∈ L1(A) ∩ LΦ(A) and ∥µ∥ ≤ ∥T∥.

Conversely, if µ ∈ M(A) and Tf = µ ∗ f for each f ∈ L1(A) ∩ LΦ(A) we obtain

∥Tf∥1 = ∥µ ∗ f∥1 ≤ ∥µ∥∥f∥1 ≤ ∥µ∥ |||f |||.
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Therefore T ∈ M(L1(A) ∩ LΦ(A), L1(A)) and ∥T∥ ≤ ∥µ∥.
This gives to equivalence of (i) and (ii).
It is clear that the correspondence between T and µ defines an isometric isomor-

phism from M(L1(A) ∩ LΦ(A), L1(A)) onto M(A). □
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[12] Harjulehto, P., Hästö, P., Orlicz Spaces and Generalized Orlicz Spaces, Lecture notes in

mathematics, 2236, Springer, 2019. https://doi.org/10.1007/978-3-030-15100-3
[13] Kaniuth, E., Taylor, K. F., Induced Representations of Locally Compact Groups, Cambridge

University Press, 197, 2013. https://doi.org/10.1017/CBO9781139045391
[14] Krasnosel’skii, M. A., Rutickii, Ja. B., Convex Functions and Orlicz Spaces, Noordhoff,

Graningen, 1961.

[15] Larsen, R., An Introduction to the Theory of Multipliers, Die Grundlehren der mathe-

matischen Wissenschaften, 175, Springer-Verlag, Berlin, Heidelberg and New York, 1971.
https://doi.org/10.1007/978-3-642-65030-7

[16] Lau, A. T., Closed convex invariant subsets of Lp(G), Transactions of the American Mathe-
matical Society, 232 (1977), 131-142. https://doi.org/10.2307/1998929

[17] Luxemburg, W. A. J., Banach function spaces, PhD Dissertation, 1955.



164 R.ÜSTER
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Abstract. In this article, generating curves of translation surfaces are paired
with some special curve pairs. With the results obtained from these pairings,

the developable and minimal translation surfaces are characterized. In ad-
dition, the surface curvatures of the translation surface are obtained. For a

better understanding of the results, examples are given and their drawings are

made with the help of Mathematica.

1. Introduction

The main purpose of differential geometry is to understand and characterize
the mathematical properties of any geometric object defined in space. The most
important of these objects are curves and surfaces. Researchers working on this
subject often have to characterize the curve and the surface in a certain way in order
to understand it. One of the most important ways to characterize the curve is to
use Frenet vectors. For example, Bertrand pairs of curves were characterized by J.
Bertrand in 1850 as curves whose reciprocal normal vectors are linearly dependent
[1]. Similarly, the Mannheim curve pairs were characterized by the normal vector
of one of the curves and the binormal vector of the other as linearly dependent
by A. Mannheim in 1878 [2]. In addition, the involute-evolute curve pairs are
characterized as curve pairs whose mutual tangent vectors are perpendicular [3].

The study of surfaces is one of the most captivating subjects in the field of
differential geometry. Consequently, researchers have extensively investigated vari-
ous types of surfaces [4–6]. Much like curves, researchers endeavor to characterize
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surfaces. Moreover, another significant aspect that piques researchers’ interest is
whether a surface is developable or minimal [7,8]. One of the interesting surfaces in
Euclidean space is the translation surface produced by the two curves. The general
form of translation surface is the surface that can be generated from two arbitrary
space curves by translating either of them parallel to itself. In such a way that each
of its points describes a curve that is a translation of the other curve. A generalized
type of translation surface parameterized by

χ(u, v) = x(u) + y(v) (1)

where x : I ⊂ R → E3 and y : J ⊂ R → E3 are arbitrary generating curves
of χ according to the parameters u and v (may be the arc-length parameters),
respectively. Let {tx,nx,bx} be the Frenet frame field of x with curvature κx and
torsion τx. Also, let {ty,ny,by} be the Frenet frame field of y with curvature κy

and torsion τy. A translation surface has the property that the translations of a
parametric curve u = c by y(v) remain in χ (similarly for the parametric curves
v = c) [9–11]. Translation surfaces are the basic modeling surfaces commonly used
in computer aided geometric design and geometric modeling [12]. Also, translation
surfaces are common in descriptive geometry and architecture because they can be
easily modeled [13,14]. Many studies are carried out on translation surfaces so far:
L. Verstraelen et al. have studied minimal translation surfaces in n-dimensional
Euclidean spaces [15]. H. Liu has studied Gaussian curvature and mean curvature
of translation surfaces in 3-dimensional space [16]. D. W. Yoon has studied the
differential geometric properties of translation surfaces by applying the Laplace
operator to the Gauss transform [17]. Additionally, numerous studies have been
conducted on translation surfaces [18–22].

In this study, generating curves of translation surfaces are associated with some
special curve pairs. The article investigates the conditions necessary for these trans-
lation surfaces to be both developable and minimal surface, while also characterizing
the conditions that make this possible.

2. Preliminaries

In this section, for parametrized curves and surface elements some basics defini-
tions and theorems are given.

A regular naturally parametrization of class Ck, with k ≥ 1 of a curve in R3 is
a vector function x : I ⊂ R → E3, s 7→ x(s) = (x1(s),x2(s),x3(s)) defined on an
interval I which satisfies x is of class Ck and x′(s) ̸= 0 for all s ∈ I. A curve x
is continuously differentiable if x′(s) exists for all s ∈ I and the derivative x′(s) is
a continuous function; thinking dynamically, the vector x′(s) is the velocity of the
curve at time s. We call x(s) naturally parametrized curve if xi(s) (i = 1, 2, 3) is of
class Ck and ∥x′(s)∥ = 1, for each s ∈ I [23].
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Let x(s) be biregular, that is, x′(s) × x′′(s) ̸= 0, for each s ∈ I. We consider a
trihedron {t(s),n(s),b(s)} along x(s), so-called Frenet frame, where [23]

t(s) = x′(s), n(s) =
t′(s)

∥t′(s)∥
, b(s) = t(s)× n(s).

The curvature κ, a non-negative scalar field, is defined by setting κ(s) = ∥t′(s)∥
and torsion is defined by setting τ(s) = ⟨n′(s),b(s)⟩. If the naturally parametrized
curve x has unit speed and strictly positive curvature, then the following equations
hold [23] t′n′

b′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

tn
b

 .

where κ ̸= 0 for the Frenet frame to be defined.
Let x and y be naturally parametrized curves in E3 with parameter u and v, re-

spectively. Let {tx(u), nx(u), bx(u), κx(u), τx(u)} and {ty(v), ny(v), by(v), κy(v), τy(v)}
be Frenet elements of x and y, respectively. Some special curve pairs is studied by
S. Yuce and A. Sabuncuoglu and the following results are given [24,25].

Let’s assume that (x,y) curve pair is Bertrand curve pair. In this sitation, since
the normal vectors of the x and y have the same direction, they are written as

tx(u) = cos θty(v)− sin θby(v), (2)

nx(u) = ny(v), (3)

bx(u) = sin θty(v) + cos θby(v) (4)

and

κx(u) = κy(v) cos θ + τy(v) sin θ, (5)

τx(u) = −κy(v) sin θ + τy(v) cos θ, (6)

where θ is the constant angle between the mutually tangent vectors.
Let’s assume that (x,y) curve pair is Mannheim curve pair. Since the normal

vector of the x and binormal vector of the curve y have the same direction, they
are written as

tx(u) = cos θty(v) + sin θny(v), (7)

nx(u) = by(v), (8)

bx(u) = − sin θty(v) + cos θny(v) (9)

and

κx(u) = τy(v) sin θ
dv

du
, (10)

τx(u) = −τy(v) cos θ
dv

du
, (11)

where θ is the constant angle between the mutually tangent vectors.
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Let’s assume that (x,y) curve pair be involute-evolute partner curve. Since
the mutual tangent vectors of the x and y curves are perpendicular, the following
equations are available

tx(u) = ny(v), (12)

nx(u) = cos θty(v) + sin θby(v), (13)

bx(u) = − sin θty(v) + cos θby(v) (14)

where θ is the constant angle between tx and ny, and

κx(u) =

√
κ2
y + τ2y

(c− s)κy
. (15)

Let M be a regular surface in R3 parameterized by χ(u, v). Some basic concepts
of M surface is studied by M.P. Do Cormo and these concepts are given below [3].

The standart unit normal vector field n on surface M can be defined by

n =
χu × χv

∥χu × χv∥
. (16)

Also, the first and second fundamental forms of the surface M are as follows

I = Edu2 + 2Fdudv +Gdv2,

II = edu2 + 2fdudv + gdv2,

where the E,F and G components are called the coefficients of the first fundemental
form of the surface, and the e, f and g components are called the coefficients of the
second fundemental form, respectively. The following equations are given for the
first and second fundamental form coefficients of the surface

E = ⟨χu, χu⟩ , F = ⟨χu, χv⟩ , G = ⟨χv, χv⟩ (17)

and
e = ⟨χuu,n⟩ , f = ⟨χuv,n⟩ , g = ⟨χvv,n⟩ . (18)

On the other hand, the Gaussian curvature K and the mean curvature H of the
surface M are as follows

K =
eg − f2

EG− F 2
(19)

and

H =
Eg +Ge− 2Ff

2(EG− F 2)
. (20)

Theorem 1. Let M be a regular surface in R3. If the Gaussian curvature of the
surface M is zero, the surface is called the developable surface [26] .

Theorem 2. Let M be a regular surface in R3. If the mean curvature of the surface
M is zero, the surface is called the minimal surface [26].
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3. Translation Surfaces Created with Curve Pairs

Translation surfaces are formed by the sum of the two curves, from Eq. (1),
translation surface is as follows

χ(u, v) = x(u) + y(v) (21)

where x and y are generating curves. If the partial derivatives of the translation
surface given above are taken according to u and v, we have

χu = tx, (22)

χv = ty, (23)

χuu = κxnx, (24)

χvv = κyny, (25)

χuv =
d

dv
tx. (26)

The unit normal of the translation surface from Eqs. (16), (22) and (23), we get

n =
tx × ty
∥tx × ty∥

. (27)

The coefficients of the first and second fundamental forms of the translation surface
are obtained from Eqs. (17), (18) and Eqs. (22)-(26), as

E = ⟨χu, χu⟩ = 1, (28)

F = ⟨χu, χv⟩ = ⟨tx, ty⟩, (29)

G = ⟨χv, χv⟩ = 1 (30)

and

e = ⟨χuu,n⟩ =
κx

∥tx × ty∥
⟨nx, tx × ty⟩, (31)

f = ⟨χuv,n⟩ =
1

∥tx × ty∥
⟨ d

dv
tx, tx × ty⟩, (32)

g = ⟨χvv,n⟩ =
κy

∥tx × ty∥
⟨ny, tx × ty⟩. (33)

3.1. Let x and y Bertrand partner curves. Let the curves x and y, which are
the generating curves of the translation surface parameterized by Eq. (1), be the
Bertrand partner curve. In this case, from Eq. (2) and (27) the unit normal of the
translation surface is

n =
(cos θty − sin θby)× ty
∥(cos θty − sin θby)× ty∥

= −ny. (34)

Since the principal normal vector fields of Bertrand curve pairs are linearly depen-
dent, at the same time n = −nx.
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The coefficients of the first fundamental form from Eq. (2) and Eqs. (28)-(30),
are obtained as

E = ⟨χu, χu⟩ = 1,

F = ⟨χu, χv⟩ = ⟨(cos θty − sin θby), ty⟩ = cos θ,

G = ⟨χv, χv⟩ = 1.

The coefficients of the second fundamental form from Eqs. (2),(5) and Eqs. (31)-
(33), are as follows

e = ⟨κxnx,−nx⟩ = −κx,

f = ⟨(κy cos θ + τy sin θ)ny,−ny⟩ = −κx,

g = ⟨κyny,−ny⟩ = −κy.

The Gaussian and mean curvatures of translation surfaces, whose generating curves
are Bertrand partner curves from Eqs. (19) and (20), are calculated as

K =
eg − f2

EG− F 2
=

κx(κy − κx)

sin2 θ
(35)

and

H =
Eg +Ge− 2Ff

2(EG− F 2)
=

−κx − κy + 2 cos θκx

2 sin2 θ
. (36)

Theorem 3. Let χ(u, v) = x(u) +y(v) be a translation surface where x and y are
generating curve. For translation surfaces, whose generating curves are Bertrand
partner curves to be developable surfaces the necessary and sufficient condition is
that this y is helix.

Proof. Considering that κx ̸= 0, from Eqs. (5), (35) and Theorem 1, it becomes

κx = κy

and
κy cos θ + τy sin θ = κy.

So, we get
τy
κy

=
1− cos θ

sin θ
.

Since θ is a constant angle,
τy

κy
=constant. So generating curve y is helix. □

Theorem 4. Let χ(u, v) = x(u) + y(v) be a translation surface where x and y
are generating curves. Suppose that the generating curves are a pair of Bertrand
curves. The necessary and sufficient condition for the surface χ to be a minimal
surface is that the curve x is a helix.
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Proof. From Eqs. (5) and (6), we can easily see that

κy = κx(v) cos θ − τx(v) sin θ. (37)

Using Eqs. (36), (37) and Theorem 2, the following equation can be given

κx − cos θκx = τx sin θ

and
τx
κx

=
1− cos θ

sin θ
.

Since θ is a constant angle, τx

κx
=constant. So generating curve x is helix. □

Example 1. Let x : I ⊂ R → E3 be naturally parametrized curve in R3 parame-
terized by

x(u) =

(
cos

u

5
, sin

u

5
,

√
24

5
u

)
.

The naturally parametrized curve y which is the Bertrand partner curve of the x
curve is as follows

y(v) =

(
24

25
cos

v

5
,
24

25
sin

v

5
,

√
24

5
v

)
.

The translation surface generating by the x and y Bertrand partner curves is pa-
rameterized as follows

χ(u, v) =

(
cos

u

5
+

24

25
cos

v

5
, sin

u

5
+

24

25
sin

v

5
,

√
24

5
u+

√
24

5
v

)
.

In Fig. (1), we present the graph of the above translation surface and its generating
Bertrand partner curves x and y.

Figure 1. Translation surface and its generating curves x(Red)
and y(Blue) for Bertrand partner curve.
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3.2. Let x and y Mannheim partner curves. Let the curves x and y, which
are the generating curves of the translation surface parameterized by Eq. (1), be
the Mannheim partner curves. In this case, from Eq. (7) and (27), the unit normal
of the translation surface is

n =
(cos θty + sin θny)× ty
∥(cos θty + sin θny)× ty∥

= −by. (38)

Since the principal normal vector and binormal vector fields of Mannheim curve
pairs are linearly dependent, at the same time n = −nx. The coefficients of the
first fundamental form from Eq. (7) and Eqs. (28)-(30), are as follow

E = ⟨χu, χu⟩ = 1,

F = ⟨χu, χv⟩ = ⟨(cos θty + sin θny), ty⟩ = cos θ,

G = ⟨χv, χv⟩ = 1.

The coefficients of the second fundamental form from Eqs. (7),(10) and Eqs. (31)-
(33), are obtained as

e = ⟨κxnx,−nx⟩ = −κx,

f = ⟨−κy sin θty + κy cos θny + τy sin θby,−by⟩ = −τy sin θ,

g = ⟨κyny,by⟩ = 0.

If we calculate the Gaussian and mean curvatures of translation surfaces, whose
generating curves are Mannheim partner curves, from Eqs. (19) and (20), we have

K =
eg − f2

EG− F 2
= −τ2y (39)

and

H =
Eg +Ge− 2Ff

2(EG− F 2)
=

−κx + τy sin 2θ

2 sin2 θ
. (40)

Theorem 5. Let χ(u, v) = x(u) +y(v) be a translation surface where x and y are
generating curve. For translation surfaces, whose generating curves are Mannheim
partner curves to be developable surfaces, the necessary sufficient condition is that
the curve y is a planar curve.

Proof. It is easily seen from Eq. (39) and Theorem 1 that τy = 0. This means that
the curve y is a planar curve. □

Theorem 6. Let χ(u, v) = x(u) +y(v) be a translation surface where x and y are
generating curve. For translation surfaces, whose generating curves are Mannheim
partner curves to be minimal surfaces, the necessary sufficient condition is that the
curve y is a planar curve or v = c1u+ c2, c1, c2 ∈ R.

Proof. From Eqs. (10), (40) and Theorem 2, the following equation can be given

τy sin 2θ = τy sin θ
dv

du
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and

2τy cos θ = τy
dv

du
.

Here τy = 0 is an obvious solution. So y is a planar curve. Let τy ̸= 0 then, we get

2 cos θ

∫
du =

∫
dv.

If 2 cos θ = c1, c1 ∈ R is selected here, we obtain

v = c1u+ c2, c1, c2 ∈ R.
□

Example 2. Let x : I ⊂ R → E3 be arbitrary parametrized curve in R3 parame-
terized by

x(u) =

(
8

5
cosu,

8

5
sinu,

4

5
u

)
.

The arbitrary parametrized curve y which is the Mannheim partner curve of the
curve x is as follows

y(v) =

(
−8

5
(sin v + cos v),

8

5
(sin v + cos v),

4

5
v

)
.

The translation surface generating by the x and y Mannheim partner curves is
parameterized as follows

χ(u, v) =

(
8

5
cosu− 8

5
(sin v + cos v),

8

5
sinu+

8

5
(sin v + cos v),

4

5
u+

4

5
v

)
.

In Fig. (2), we present the graph of the above translation surface and its generating
Mannheim partner curves x and y.

3.3. Let x and y involute-evolute partner curves. Let the curves x and y,
which are the generating curves of the translation surface parameterized by Eq.
(1), be the involute-evolute partner curves. So, from Eq. (12) and (27), the unit
normal of the translation surface is

n =
ny × ty

∥ny × ty∥
= −by. (41)

The coefficients of the first fundamental form from Eq. (12) and Eqs. (28)-(30),
are as follows

E = ⟨χu, χu⟩ = 1,

F = ⟨χu, χv⟩ = ⟨ny, ty⟩ = 0,

G = ⟨χv, χv⟩ = 1.

If we calculate the coefficients of the second fundamental form from Eqs. (12),(13),(15)
and Eqs. (31)-(33), we can easily see that

e = ⟨κxnx,−by⟩ = −κx sin θ,
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Figure 2. Translation surface and its generating curves x(Red)
and y(Blue) for Mannhiem partner curve.

f = ⟨−κyty + τyby,−by⟩ = −τy,

g = ⟨κyny,by⟩ = 0.

The Gaussian and mean curvatures of translation surfaces, whose generating curves
are involute-evolute partner curves are obtained from Eqs. (19) and (20), as follows

K =
eg − f2

EG− F 2
= −τ2y (42)

and

H =
Eg +Ge− 2Ff

2(EG− F 2)
=

−κx sin θ

2
. (43)

Theorem 7. Let χ(u, v) = x(u) + y(v) be translation surface where x and y
are generating curves. Suppose that the generating curves are the involute-evolute
partner curves. The necessary and sufficient condition for the surface χ to be
developable surface is that the curve y is a planar curve.

Proof. It is easily seen from Eq. (42) and Theorem 1 that τy = 0. This means that
the curve y is a planar curve. □

Theorem 8. Let χ(u, v) = x(u) + y(v) be translation surface where x and y
are generating curves. Suppose that the generating curves are the involute-evolute
partner curves. In this case, the translation surface χ cannot be a minimal surface.
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Proof. Since κx ̸= 0, considering Eq. (43), it is seen that H ̸= 0. Therefore, such
translation surfaces cannot be minimal. □

Example 3. Let x : I ⊂ R → E3 be arbitrary parametrized curve in R3 parame-
terized by

x(u) =

(
8

5
cosu,

8

5
sinu,

4

5
u

)
.

The arbitrary parametrized curve y involute partner curve of the x curve is as
follows

y(v) =

(
8

5
cos v − 2

5
sin v +

2

5
v sin v,

8

5
sin v +

2

5
cos v − 2

5
v cos v,

3

5
v

)
.

The translation surface generating by the x and y involute-evolute partner curves
is parameterized as follows

χ(u, v) =
(
8
5 cosu+ 8

5 cos v −
2
5 sin v +

2
5v sin v,

8
5 sinu+ 8

5 sin v +
2
5 cos v2

2
5v cos v,

4
5u+ 3

5v
)
.

In Fig. (3), we present the graph of the above translation surface and its generating
involute-evolute partner curves x and y.

Figure 3. Translation surface and its generating curves x(Red)
and y(Blue) for involute-evolute partner curves.
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Abstract. In this paper, we deal with the compositions of the integers. We

present the decompositions for both the composition sets and the odd compo-

sition sets of the integers. Thus the decompositions provide us to have not only
an alternative proof of some well known identies but also many new identities

for Fibonacci numbers and Lucas numbers. Thus we investigate the generating

functions for the product sum of the odd composition sets of the integers and
attain some functional equations.

1. Introduction

Fibonacci numbers and compositions of a positive integer are simply expressed
concepts but has many important features with many applications. Since these
concepts were defined, these concepts have attracted the attention of many scientists
and the results have made incredible contributions to almost all fields of sciences.
These discoveries further increased the importance of mathematical analysis and
number theory.

The Fibonacci numbers are numbers in which each number is the sum of the two
preceding ones, denoted by fn with the initial conditions, f0 = 0, f1 = 1. That is,
fn = fn−1 +fn−2 for n > 1. Moreover, in literature, there are many generalizations
of Fibonacci numbers and the other special numbers with many applications.

A composition of an integer n is a way of writing n as a sum of positive integers.
The individual summands of a composition called its parts. In the combinatorics,
a classical result about the number of compositions of n with an integer k parts is

given by the coefficient of xn of the polynomial or power series

( ∞∑
i=1

xi

)k

where
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|x| < 1. These coefficients exhibit fascinating mathematical properties, closely
resembling Binomial coefficients and have many useful applications ( [12], [17], [20],
[21], [22]).

By using Binomial properties, Hoggart and Lind ( [22]) showed the relationship
between a composition of an integer and Fibonacci numbers and proved that

(i) fn is the number compositions of an integer n into odd parts
(ii) f2n is the sum of the products of the parts over all compositions of an integer

n, i.e.

f2n =
∑

a1+a2+...+ak=n

a1a2...ak. (1)

Recently, there has been interested n–color compositions of an integer m is
defined as composition of m for which a part of size n can take on n colors
( [1], [2], [27]). Then by the identity 1, it is clear that the number of n–color
compositions of an integer m is f2m the 2mth Fibonacci number. Therefore,
we wonder about the sequence of the sum of the products of the parts over all
compositions whose parts are either odd or even. The main purpose of this paper
is to investigate what the sum of the products of the parts over all compositions
with odd parts is and interpret the relations among the generating functions, the
set theory, compositions of an integer, Fibonacci numbers and Lucas numbers.

At first, we decompose the set of compositions of an integer and so give some
very useful interpretations of the decompositions. Then we obtain an alternative
proof of the above result and well- known identity by using these decompositions
and reconstruct the connections between the composition of an integer and the
Fibonacci numbers. These decompositions also provide us to derive some new
identities and relations including the Fibonacci numbers and Lucas numbers. Next,
we investigate some generating functions for the sequence of the sum of the products
of the parts over all compositions whose parts are odd, the even term of the sequence
and the odd term of the sequence.

Then we acquire the sequence of the sum of the products of the parts over
all compositions whose each part is odd. Therefore, we focus on the generating
functions for the numbers of n–color compositions with odd parts and so we work
out their properties.

2. Decompositions of the Composition Sets of the Integers

In this section, we focus on decomposing the composition sets and the composi-
tion sets whose all parts are either odd or even. Then we find out some recurrence
relations and also obtain an alternative proof for some well know results by using
this decompositions.

We denote the composition set of an integer n as follows

Pn =
{
(a1, a2, ..., at) : a1 + a2 + ...+ at = n, ai, t ∈ Z+

}
.

It is well known that the number of elements of Pn is 2n−1.
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Now we recall the following operations for the element a = (a1, a2, ..., at) ∈ Pn

and an integer j;

(j ⊙ a) = (j, a1, a2, ..., at) ,

(j ⊕ a) = (a1 + j, a2, ..., at) .

Then we use the notations j ⊕ Pn and j ⊙ Pn for the following sets,

j ⊕ Pn = {j ⊕ a : a ∈ Pn},
j ⊙ Pn = {j ⊙ a : a ∈ Pn}.

Theorem 1. [6]Let n, r be positive integers (r ≤ n). Then the set Pn is disjoint
union of the sets (r ⊕ Pn−r) and (i⊙ Pn−i) for all i ∈ {1, . . . , r},

Pn = (r ⊕ Pn−r) ∪ (∪r
i=1(i⊙ Pn−i)) .

Proof. It is sufficient to prove the inclusion Pn ⊆ (r ⊕ Pn−r) ∪ (∪r
i=1(i⊙ Pn−i)).

Let x = (a1, . . . , am) ∈ Pn. If a1 ≤ r then x ∈ ∪r
i=1 (i⊙ Pn−i). Now assume

that r < a1. Then b = a1 − r and so define the element y = (b, a2, a3, . . . , am) ∈
Pn−r. Then it is clear that x = r ⊕ y ∈ (r ⊕ Pn−r).

It is also clear that (r ⊕ Pn−r) ∩ (i⊙ Pn−i) = ∅ for all i ∈ {1, . . . , r}. □

Corollary 1. [3]For a positive integer n, we have

Pn+1 = (1⊕ Pn) ∪ (1⊙ Pn).

Let n be a positive integer. It is clear that the number of the elements of
both (1 ⊕ Pn) and (1 ⊙ Pn) are equal, i.e. |1⊕ Pn| = |1⊙ Pn| and it follows that
|Pn+1| = 2 |1⊙ Pn| since these sets are disjoint. On the other hand, by |P2| = 2,
we have that |Pn| = 2n−1 by induction method. Therefore we have completed an
alternative proof by using the set theory for the well-known result as a result of the
Corollary 1.

Now we point out our attention to the composition sets whose parts are even or
odd. Let us use the notions

On = {(a1, ..., at) : a1 + ...+ at = n and ai is positive odd integer}
E2n = {(2a1, ...2at) : 2a1 + ...+ 2at = 2n and ai is positive integer}

and we call the set as an odd composition set On (even composition set En) of an
integer n. It is clear that the even composition set of an even integer 2n involved
to the composition set of an integer n and so the number of elements of the even
composition set of 2n is 2n−1.

At this moment, we focus on to decompose the odd composition set as union of
subset of odd combinations set of integers.

Theorem 2. For a positive integer n, we decompose the odd composition set of an
integer n as a disjoint union of subset of odd combinations set of integers;

O2n+1 = {(2n+ 1)} ∪
n−1⋃
i=0

(
(2i+ 1)⊙O2(n−i)

)
(2)
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O2n =
n−1⋃
i=0

(
(2i+ 1)⊙O2(n−i)−1

)
. (3)

Proof. Let n be a positive integer. It is enough to show one side inclusion for the
odd number 2n+ 1.

Let x = (2a1 + 1, ..., 2at + 1) and assume that t is different from 1. Then
n− 2a1 − 1 = 2m for an integer even and so the element b = (2a2 + 1, ...2at + 1) is
O2m. Therefore x = (2a1 + 1)⊙O2n−2a2

and this complete the proof. □

With the decomposition in Theorem 2, we prove again a well-known result using
set theory.

Corollary 2. The number of element of the odd composition set of an integer n is
the n.th Fibonacci number.

Proof. Let kn be the number of element of the odd composition set of an integer n.
Since the sets in Theorem 2 are disjoint, it is easy to prove that kn+1 = kn + kn−1

and k1 = 1, k2 = 1. □

As a conclusion of Theorem 2, we can reprove the well known identities [25, page
92]

f2n+1 = 1 +

n∑
i=1

f2i

f2n =
n−1∑
i=0

f2i+1

for both the even and odd Fibonacci number.

3. Product Sum Function

By the motivation of the identity 1, we interested in the sequence of the sum of
the products the parts over all compositions. In this section, we define function from
compositions set to integer to obtain some number sequences and then interpret the
relations among the set theory, the compositions of an integer, Fibonacci numbers
and Lucas numbers. Thus we attain an alternative proof for the identity 1.

3.1. The composition set of the integers. Now we establish the function from
the composition sets to positive integers defined by

Tn := T (Pn) =
∑
a∈Pn

ā.

We call Tn = T (Pn) as the product sum of the composition set Pn (or the
product sum of the integer n). For n = 0, we may assume that T0 = 1.

We give an easy numeric example with the new notions;
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Example 1. Let n = 4. Then it follows that

P4 = {(4), (1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2), (3, 1), (1, 3)}
and T4 = T (P4) = 21.Moreover, it follows

1⊙P4 = {(1, 4), (1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (1, 2, 2), (1, 3, 1), (1, 1, 3)}

1⊕ P4 = {(5), (2, 1, 1, 1), (2, 1, 2), (2, 2, 1), (2, 3), (3, 1, 1), (3, 2), (4, 1)}
and so P5 = (1⊙ P4) ∪ (1⊕ P4). Then T5 = T (P5) = 55.

By using Theorem 1, we develop a recurrence for the product sum of the com-
position sets.

Theorem 3. For a positive integer n, we have

Tn+1 = Tn +

n∑
i=0

Tn−i. (4)

Proof. For an element a ∈ Pn+1, there is b = (b1, b2, ..., bl) ∈ Pn such that either
a = 1⊙ b = b or a = 1⊕ b and so a = 1⊙ b = b or a = 1⊕ b = (b2....bl) + b. Hence
we have that

T (1⊙ Pn) =
∑

1⊙b∈1⊙Pn

b = Tn.

Moreover, it follows that

T (1⊕ Pn) =
∑
a∈Pn

(1 + a1).a2.a3...at

=
∑
a∈Pn

(a1.a2.a3...at) +

n∑
i=1

∑
(a2.a3...at)∈Pn−i

(a2a3...at)

= Tn +

n∑
i=1

Tn−i =

n∑
i=0

Tn−i.

Therefore, we have that

Tn+1 = T (Pn+1) = T (1⊙ Pn) + T (1⊕ Pn) = Tn +

n∑
i=0

Tn−i.

Hence we have completed the proof. □

By using the recurrence relation Identity 4, we gain the generating function
for the product sum of the positive integers. From [25], we recall the generating
function for even Fibonacci numbers is that

f(x) =
x

1− 3x+ x2
=

∞∑
n=1

f2nx
n

Thus we give an alternative proof of the result of Hoggart and Lind in [22].
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Theorem 4. The generating function of the product sum of the positive integer is
∞∑

n=1

Tnx
n =

x

1− 3x+ x2
.

i.e. The product sum of the positive integer n is nth even Fibonacci number

Proof. Let h(x) =
∑∞

n=1 Tnx
n. Then

h(x) = x+
∑
n=1

Tn+1x
n+1

= x+ x
∑
n=1

(
Tn +

n∑
i=0

Tn−i

)
xn

= x+ xh(x)− x2h(x) + 2xh(x).

Thus we get the function as

h(x) =
x

1− 3x+ x2
.

□

As a result of Theorem 3 and Theorem 4, we obtain the known identity [25, Page
92- Identity 5.3] for odd Fibonacci numbers and also prove a new identities for
Fibonacci numbers in the following;

Theorem 5. Let n,m be positive integers. Then we have

f2n+1 = 1 +

n∑
i=1

f2i (5)

f2n = n+

n−1∑
i=1

(n− i)f2i. (6)

Proof. By Theorem 3, we have the recurrence

Tn+1 = Tn +

n∑
i=0

Tn−i. (7)

and it follows that Tn+1 = T0 + Tn +

n∑
i=1

Ti. Thus we gain that

f2(n+1) = 1 + f2n +

n∑
i=0

f2(n−i)

Since f2n+1 = f2n+2 − f2n, we have proved the identity 5.
Now we decompose Pn to get some new equations for the Fibonacci numbers.

For an integer i, we define the set

(i⊙ Pn−i) = {(i, a1, a2, ..., at) : a1 + a2 + ...+ at = n− i, ai, t ∈ Z+}.
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Then it is easy to check that

Pn = ∪n
i=1 (i⊙ Pn−i)

and also for all i, j with i ̸= j, it follows that (i⊙ Pn−i)∩(j ⊙ Pn−j) = ∅. Therefore
it follows that

T (i⊙ Pn−i) =
∑

(a1,a3...at)∈Pn−i

i.a1.a3...at = iT (Pn−i) = iTn−i

and so

Tn = T (Pn) =

n∑
i=1

T (i⊙ Pn−i) =

n∑
i=1

iTn−i =

n−1∑
i=0

(n− i)Ti. (8)

Thus the we complete the proof. □

Theorem 6. Let n,m be positive integers (m ≤ n). Then we have

f2n − f2m =

n−m∑
i=1

if2(n−i) + (n−m)

m∑
i=1

f2(n−i) (9)

f2n−1 − f2m−1 =

n−m∑
i=1

f2(n−i). (10)

Proof. For any integers n, r we get that

f2n − f2(n−r) =

r∑
i=1

if2(n−i) + r

n−r∑
i=1

f2(n−i)

and so substituting m = n− r, we acquire the identity 9.
By Theorem 3, we have the recurrence

Tn+1 = Tn +

n∑
i=0

Tn−i. (11)

and it follows that
n−m∑
i=1

Tn−i =

n−1∑
i=m

Tn +

m−1∑
i=1

Tn −
m−1∑
i=1

Tn

=

n−1∑
i=1

Tn −
m−1∑
i=1

Tn = f2n−1 − f2m−1

Thus we achieve the identity 10. □

By by Theorem 5 we have the following equation

f2n+2 = 1 + n+ f2n +

n−1∑
i=1

(n− i+ 1)f2i
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and we also obtain

f2n+3 = n+ 2 + 2f2n +

n−1∑
i=1

(n− i+ 2)f2i.

For an integer r, we have

f2n+r = (f2n + 1)fr + nfr−1 +

[
fr−1

n−1∑
i=1

(n− i)f2i + fr

n−1∑
i=1

f2i

]
= frf2n+1 + fr−1f2n.

Therefore we just gain the combinatorial proof of the Honsberger’s formula by using
the compositions of an integer.

Corollary 3. For positive integers n,m, we have

f2n+2m = f2mf2n+1 + f2m−1f2n

f2n+2m+1 = f2m+1f2n+1 + f2mf2n.

Corollary 4. Let n be positive integer. Then we have

f4n = f2nf2n−1 + f2nf2n+1 (12)

f4n+1 = f2
2n + f2

2n+1 (13)

f4n+2 = f2nf2n+1 + f2n+1f2n+2

f4n+3 = f2nf2n+2 + f2n+1f2n+3

Proof. It is clear from Corollary 3. □

Let ln be the n th term of Lucas sequence, defined by l0 = 2, l1 = 1, and ln
= ln−1 + ln−2, n > 3. Also, one of the well-known relation between Fibonacci
numbers and Lucas numbers is

ln = fn−1 + fn+1. (14)

Thus by using the identity 13 and Cassini’s formula, we obtain

f4n+1 = f2
2n + 1 + f2nf2n+2

= f2nl2n+1 + 1

and it follows that

f4n+2 = f4n + f4n+1 = f2n(l2n + l2n+1) + 1

= f2nl2n+1 + f2.

Therefore, we just gain the following identity which is the general form of the well
known result ( [25, page 90]).

Corollary 5. For positive integers r, n, we have the equality

f4n+r = f2nl2n+r + fr.
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Theorem 7. For a positive integer n, we have the identities for Lucas numbers

l2n+1 = 2n+ 1 +

n−1∑
i=1

l2i+1(n− i), (15)

l2n = 3n+ 1 + f2n−2 +

n−2∑
i=1

(2f2i + (n− 1− i)l2i+1) . (16)

Proof. By Theorem 5, we get the following result

f2n = n+

n−1∑
i=1

(n− i)f2i.

Thus,

l2n+1 = f2n + f2n+2

=

[
n+

n−1∑
i=1

(n− i)f2i

]
+

[
n+ 1 +

n−1∑
i=0

(n− i)f2(i+1)

]
and so we have proved the identity 15.

For the second the identity, it is known that

f2n−1 = 1 +

n−1∑
i=1

f2i. (17)

and

l2n−2 = f2n−3 + f2n−1 . (18)

Then we gain the equation

l2n−2 = 2

[
1 +

n−2∑
i=1

f2i

]
+ f2n−2.

On the other hand, by the identity 15, we get

l2n = 2n+ 1 + f2n−2 +

n−2∑
i=1

(2f2i + (n− 1− i)l2i+1)

= 3n+ 1 + 2f2n−2 +

(
n−2∑
i=2

(2n+ 1− 2i)f2i

)
.

□

Corollary 6. Let n, r be positive integers. Then we have

l4n+r = f2nl2n+(r−1) + f2n+1l2n+r
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3.2. The odd composition set of the integers. Now we focus on the combi-
nations of an integer whose each part is either odd nor even and we reach to the
main goal of the paper which is to investigate the product sum of both an odd and
even composition of an integer n.

Let us define the number sequence such as

on : =
∑
a∈On

ā (19)

en : =
∑
a∈En

ā. (20)

One may compute the sequence as

o1 = 1, o2 = 1, o3 = 4, o4 = 7, o5 = 15, o6 = 32, o7 = 65, o8 = 137

e2 = 2, e4 = 16, e6 = 48.

By using the decomposition of an odd composition of an integer n, we figure out
a recurrence relations for the product sum of an odd composition of an integer n.

Theorem 8. For a positive integer n ≥ 1, we have the recurrence relations for
both an even and an odd term of the product sum of an odd composition of an
integer

o2n+2 = o2n+1 + 2o2n + o2n−1 − o2n−2 (21)

o2n+3 = 3o2n + 3o2n+1 − o2n−2. (22)

Proof. Let n be an positive integer. Then we apply the the definition of the product
sum function to the decomposition in Theorem 2 and so we get

o2n+1 = 2n+ 1 +

n−1∑
i=0

∑
b∈O2(n−i)

(2i+ 1)b

= 2n+ 1 +

n−1∑
i=0

(2i+ 1)o2(n−i)

and it also follows that

o2n+3 = 2 + o2n+2 +

(
2n+ 1 +

n−1∑
i=0

(2i+ 1)o2(n−i)

)
+ 2

n−1∑
i=0

o2(n−i)

= 2 + o2n+2 + o2n+1 + 2

n∑
i=1

o2i.

When we compute the difference between o2n+3 and o2n+1, we get the recurrence
for the odd term of the product sum of an odd composition of an integer n

o2n+3 = o2n+2 + 2o2n+1 + o2n − o2n−1. (23)
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On the other hand, by the decomposition in Theorem 2, we point out the recurrence
for the even term of the product sum of an odd composition of an integer n as

o2n =

n−1∑
i=0

(2i+ 1)o2(n−i)−1.

Then we compute

o2n+2 = o2n+1 +

n−1∑
i=0

(2i+ 1 + 2)o2(n−i)−1

o2n+2 = o2n+1 + o2n + 2

n∑
i=1

o2i−1.

By the difference between o2n+2 and o2n+2, we obtain the recurrence for the even
terms

o2n+2 = o2n+1 + 2o2n + o2n−1 − o2n−2.

By substituting o2n+2 in the identity 23, we figure out

o2n+3 = 3o2n + 3o2n+1 − o2n−2

This completes the proof. □

Theorem 9. The generating function for the product sum of an odd composition
sets is

U(x) = 1 + x2 (x+ 1)
−2x+ x2 − 1

x+ 2x2 + x3 − x4 − 1
,

where |x| < 1.

Proof. For an integer n, we have the recurrence relations for either an even or an
odd term of the product sum of an odd composition of an integer

o2n+3 = 3o2n + 3o2n+1 − o2n−2

o2n+2 = o2n+1 + 2o2n + o2n−1 − o2n−2.

Let U(x) =
∞∑

n=1
onx

n = 1 +
∞∑

n=1
o2nx

2n +
∞∑

n=1
o2n+1x

2n+1 be the generating

function for the product sum of an odd composition of integers and so it is enough
to investigate

A(x) =
∑
n=1

o2nx
2n

B(x) =
∞∑

n=1
o2n+1x

2n+1.

By using the recurrence identity 22, it is easy to compute that

(1− 3x2)B(x) = x3(3− x2)A(x) + 4x3. (24)
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Similarly it is also easy to compute

A(x) =
x
(
x2 + 1

)
(x2 − 1)

2 B(x) +
x2
(
x2 + 1

)
(x2 − 1)

2 , (25)

due to the recurrence identity 21. Then combining the equations 24 and 25, we
figure out both A and B and so it follows that

B(x) = −x3 5x2 − 6x4 + x6 − 4

(x+ 2x2 + x3 − x4 − 1) (x− 2x2 + x3 + x4 + 1)

A(x) = x2

(
x2 + 1

)2
(x− 2x2 + x3 + x4 + 1) (−x− 2x2 − x3 + x4 + 1)

.

Therefore we investigate the generating function

U(x) = 1 + x2 (x+ 1)
−2x+ x2 − 1

x+ 2x2 + x3 − x4 − 1
.

□

Moreover, we study out the generating function for either an odd or even term
of product sum of an odd composition.

Theorem 10. The generating function for the either an odd or an even term of
product sum of an odd composition sets are

O(x) = −x
5x− 6x2 + x3 − 4

x4 − 5x3 + 4x2 − 5x+ 1
,

E(x) = x
(x+ 1)

2

x4 − 5x3 + 4x2 − 5x+ 1
,

where |x| < 1.

Proof. Let

E = E(x) =
∞∑

n=1
o2nx

n

O = O(x) =
∞∑

n=1
o2n+1x

n.

be the generating function for the either an odd or an even term of product sum
of an odd composition sets. Then by using the recurrence identity 21 and 22, we
compute

(1− 3x)O = x(3− x)E + 4x

and due to the recurrences, we compute

E =
x (x+ 1) (O + 1)

(x− 1)
2 =

(
x2 + x

)
(x− 1)

2 O +

(
x2 + x

)
(x− 1)

2 .

Therefore we figure out the generating function for the either an odd or even term
of product sum of an odd composition and this completes the proof. □
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Abstract. In this article, we study the fractional-order SEIR mathematical

model of Lumpy Skin Disease (LSD) in the sense of Caputo. The existence,
uniqueness, non-negativity and boundedness of the solutions are established

using fixed point theory. Using a next-generation matrix, the reproduction

number R0 is determined for the disease’s prognosis and durability. Using
the fractional Routh-Hurwitz stability criterion, the evolving behaviour of the

equilibria is investigated. Generalized Adams–Bashforth–Moulton approach is

applied to arrive at the solution of the proposed model. Furthermore, to vi-
sualise the efficiency of our theoretical conclusions and to track the impact

of arbitrary-order derivative, numerical simulations of the model and their

graphical presentations are carried out using MATLAB(R2021a).

1. Introduction

Lumpy skin disease mainly spread to ruminants such as cattle and water buf-
faloes (Bubalus bubalis), making it a non-zoonotic viral disease that develop and
reproduce entirely in non-human hosts via arthropod vectors such as biting flies,
mosquitoes, and ticks. Contagious sustenance such as contaminated fodder, wa-
ter and animal semen during artificial insemination are also responsible for the
spread. It is a trans-boundary disease brought on by the Lumpy skin disease virus
(LSDV) which go by names Pseudo-urticaria, Neethling viral disease belonging to
the Poxviridae family, and genus Capripoxvirus ([6], [19], [28], [51], [59]).

Zambia marked the presence of LSD in 1929 [38], propagating to Zimbabwe
and South Africa in 1949, Ethiopia in 1983, Israel in 1989, and then spreading
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throughout the Middle East, West Asia, and Europe. It produced a massive eco-
nomic calamity in South Africa for about 30 years (1950-1980) [3], [30]. The year
2018-19 recorded infections in Greece, Georgia, and Russia. Cattle in various Asian
nations are currently suffering from LSD including Nepal [4], Thailand [7], [37],
Malaysia, Laos, Cambodia [8], Mynmar [18], Bangladesh [25], India [23], China
[32], Sri Lanka, Bhutan and Vietnam [58].

Though cattle are the prime species to be infected by LSD but experimental
infections show that the virus can also infect sheep, goat, giraffe, gazalles and im-
palas [23]. The name LSD is attributed to the fact that lymph nodes of the infected
animal grows and resemble lumps on the skin. Large cutaneous nodules emerge on
the head, neck, arms, legs, udder, abdomen, and private parts of the infected cattle
subsequently evolve into ulcers and finally convert into skin scabs [51]. According
to the FAO [24], it is a high morbidity(2-45 percent) and low mortality disease (less
than 10 percent). The disease evolve in 4 to 14 days.

August 2019 marked the initial outbreak of LSD in the Indian states of Odisha
and West Bengal [56]. Within a few months, other LSD outbreaks were recorded
across the country causing the dairy industry to incur significant financial losses.
With the most cow and buffalo in the world, India is the largest milk producer
and ranks first in the world, producing twenty-four percent of global milk output
in 2021-22. According to government data, lumpy skin disease has infected millions
of cattle and killed more than 1,84,000 in India, causing less milk production due
to weakness and appetite loss caused by mouth ulcers, inadequate development,
decreasing draught power, and reproductive difficulties such as abortions, infertility,
and a lack of sperm for artificial insemination. As a result, LSD has been identified
in India as a potentially lethal disease for cattle.

1.1. Motivation and Research Background. Modelling of epidemic diseases is
of utmost importance to understand the behaviour of the ailment across time and to
devise appropriate safeguards for the same. Numerous epidemic models have been
developed for various diseases, including dengue and chikungunya [1], typhoid [2],
cholera [10], HIV/AIDS [11], Covid-19 [14], [15], [57], leptospirosis, H1N1, measles
[17], and others. But to our surprise there is not enough research on transmission
dynamics and LSD control using a compartmental modelling technique; by the time
this study was completed, there had only been one work [46], to examine the effects
of vaccination on LSD and the spread of the illness in Ethiopia. Butt et al. [15] had
also researched the SVEIR epidemic model and examined it for the presence of a
unique positive and bounded solution at the end of initial revision. The authors of
both of these studies, however, relied on the traditional integer-order derivatives,
which are frequently unable to foresee the remembrance and inheritance character-
istics of substances and phenomenons, leading to erroneous depictions of dynamic
real-world events. Due to the significant amount of unidentified, uncertainties, and
misinformation, developing a mathematical model that accurately captures LSD
using classical differentiation is a difficult task. The use of non-local operators is
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encouraged by coincidences and diminishing retention effects, the argument being
supported by plenty of scholarly articles [12], [13], [42], [43], [60].

Fractional derivatives come in a wide range of forms, both with and without sin-
gular kernels. For singular kernels, we’ve got the derivatives of Caputo, Riemann-
Liouville, and Katugampola [27], [53]. The Caputo-Fabrizio fractional derivative
[16], which has an exponential kernel, and the Atangana-Baleanu fractional deriva-
tive [9], which has a Mittag-Leffler kernel, are the two types of fractional derivatives
without singular kernels. It is crucial to work with fractional-order derivatives be-
cause they provide a more accurate way to describe LSD outbreaks, even while
memory and genetic features are implicated. We offer and examine the fractional
order SEIR mathematical model in Caputo sense in light of the recent research
to comprehend the evaluation, existence, stability, and control of LSD and to the
best of our knowledge, this is the first paper to use fractional order derivative for
modeling the transmission dynamics of LSD, which is critical for understanding the
epidemiology and dynamic nature of exotic disease for timely disease management
and planning because of the global character of the fractional derivatives which
improves the system’s consistency domain. The Caputo derivative serves best as a
base model and is preferred over Riemann–Liouville fractional derivative for formu-
lating epidemiological models for the obvious reasons concerning the use of initial
and boundary conditions and the differentiation of a constant being zero. For more
details one can refer to the following researches [4], [7], [8], [18], [20], [23], [25], [26],
[36], [40], [47], [52], [54], [58], [62].

1.2. Structure of the Paper. The following is how rest of the paper is set up:
Section 2 presents auxiliary results and essential notions from fractional calculus.
The LSD propagation model is devised in Section 3, along with a schematic diagram
for the same. Section 4 provides us with the insights of the model by providing
the existence, uniqueness, positivity, and feasible region for the proposed system’s
solution, along with the analysis of the equilibrium points, reproduction number,
and stability of the proposed model. Computational simulations are executed in
Section 5 to backup the qualitative analysis results of the model. The findings and
discussions required for the policy implications are covered in Section 6.

2. Auxiliary Results

Definition 1 ([31]). The Caputo fractional derivative of a continuous function g
on [0, T ] is defined as:

Dαg(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1 dn

dsn
g(s)ds,

where 0 < α ≤ 1, n = [α] + 1, and [α] represents the integer part of α.
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Definition 2 ([31]). The fractional integral of a continuous function g on L1([0, T ],R)
of order 0 < α ≤ 1 corresponding to t is defined as:

Iαg(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds.

Definition 3 ([29]). The Laplace transform is defined by

F (s) = L[f(t)] =

∫ ∞

0

e−stf(t)dt,

where f(t) is n-dimensional vector-valued function.

Definition 4 ([49]). The Mittag-Leffler function in two parameters is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0, β > 0, C denotes the complex plane.

Lemma 1 ([29]). Let C be a complex plane, for any α > 0, β > 0 and A ∈ Cn×n,

L[tβ−1Eα,β(Atα)] =
sα−β

sα −A

holds for Re(s) > ∥A∥ 1
α , where Re(s) represents the real part of the complex number

s.

Lemma 2 ([39]). Let F (s) be the Laplace transform of the function f(t), n being
an integer then the Laplace transform of the Caputo fractional derivative of order
α is given by

L(Dαf(t)) = sαF (s)−
n∑

k=1

sα−kf (k−1)(0), n− 1 < α ≤ n.

Lemma 3 ([44], Generalized Mean Value Theorem). Let g(t) ∈ C[a, b] and Dαg(t) ∈
C[a, b] for 0 < α ≤ 1, then

g(t) = g(a) +
1

Γ(α)
(Dαg)(s)(t− a)α

with 0 ≤ s ≤ t, ∀ t ∈ (a, b]. Thus, we can deduce that for g(t) ∈ C[0, b] and Caputo
fractional derivative Dαg(t) ∈ C[0, b] for 0 < α ≤ 1, if Dαg(t) ≥ 0, ∀ t ∈ [0, b],
then the function g(t) is non-decreasing and if Dαg(t) ≤ 0, ∀ t ∈ [0, b], then the
function g(t) is non-increasing ∀ t ∈ [0, b].

Theorem 1 ([55]). Consider the fractional differential equation:

Dαx(t) = f(t,x(t)),

x(k)(t0) = x
(k)
0 , k = 0, 1, . . . , n− 1, (1)
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where Dα represents the Caputo fractional derivative. Let L > 0 and f : [0, L] ×
R → R is continuous and suppose that there exists a real number l > 0 such that
|f(t, x) − f(t, y)| ≤ l|x − y| for t ∈ [0, L] and x, y ∈ R. Then, the initial value
problem has a unique solution in AC[0, L].

Theorem 2 ([48]). Consider the following fractional-order system:

DαX(t) = F(X); (2)

with 0 < α < 1, X(t) = [x1(t), x2(t), . . . , xn(t)] and F(X) : [t0,∞) → Rn×n.
The equilibrium points of system (2) are evaluated by solving system of equations
F(X) = 0. These equilibrium points are locally asymptotically stable if each eigen-
value λ of the Jacobian matrix J(X) calculated at the equilibrium points satisfies
|arg(λi)| > απ

2 .

3. LSD Propagation Model

A lumpy skin disease propagation model is proposed by categorising the entire
cattle population N into system four different classes: S, E , I and R suscepti-
ble, exposed, infected and recovered cattle population respectively. S reflects the
cattle population that is prone to infection, E displays livestock that have previ-
ously been exposed to disease-causing germs (LSDV), I comprises of those cattle
who have been identified and confirmed positive for LSD, and finally, the recov-
ered cattle are placed in the category R. According to the model, cattle enter the
susceptible population at the rate of Ξ either by migration from some other state
or by birth. Susceptible cattle become infected by interacting with the diseased
cattle at a contact rate of β per cattle per time(morbidity rate). η, ρ, σ denotes the
incubation, recovery, mortality rate of the disease respectively.

Dα
t St = Ξ− βStIt − σSt ,

Dα
t Et = βStIt − (σ + η)Et , (3)

Dα
t It = ηEt − (ρ+ σ)It ,

Dα
t Rt = ρIt − σRt

along with the initial conditions St=0 = S0, Et=0 = E0, It=0 = I0, Rt=0 = R0.
Here, Dα

t is the Caputo fractional derivative of order α; 0.5 < α < 1.

Table 1. Meaning of various parameters

Parameter Significance
Ξ influx rate or birth/migration rate
β morbidity rate/number of bites
η incubation rate
ρ recovery rate
σ death rate
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Figure 1. An illustration of the model’s scheme.

4. Model Analysis

This section marks the discussion about the uniqueness of the solution along with
its non-negative and bounded nature, the equilibrium points and basic reproduction
number are also obtained for the model.

Theorem 3. There is a unique solution U(t) = [S(t), E(t), I(t),R(t)]T for the
initial value problem given by the system of equations in (3) on t ≥ 0 in (0, θ) and
the solution will remain in R4

+. Furthermore, the solutions are all bounded.

Proof. Here, Lemma 2 is used to establish the uniqueness of solution for the given
system of initial value problems on (0,∞). Firstly, we shall establish the non-
negativity and boundedness of solution. From model (3), we find

Dα
t St|S=0 = Ξ > 0 ,

Dα
t Et|E=0 = βStIt ≥ 0 ,

Dα
t It|I=0 = ηEt ≥ 0 ,

Dα
t Rt|R=0 = ρIt ≥ 0 .

The vector field on each hyperplane enclosing the non-negative orthant points into
R4

+. Furthermore, from system (3)

DαN (t) = Ξ− σN (t) ≥ 0 ,

i.e. DαN (t) + σN (t) ≤ Ξ . (4)

Thus, from equation (4) and deduction of Lemma 3, in the case of LSD infection,
the total population and hence the sub populations are all bounded. Consequently,
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the IVP’s biologically viable region (3) is

Ω =

{
(St, Et, It,Rt) ∈ R4

+ : S, E , I,R ≥ 0; 0 ≤ St + Et + It +Rt ≤
Ξ

σ

}
. (5)

The next step is to demonstrate the uniqueness of solution in Ω ∀ t ≥ 0. As we
know, N (t) is the sum S(t), E(t), I(t), R(t) populations. The Caputo fractional
derivative of order α of this equation, gives

DαN (t) = DαSt +DαEt +DαIt +DαRt

which gives

DαN (t) = Ξ− σN (t).

Now, by taking Laplace transformation using Lemma 2, we have

N (s) =
Ξ s−1 + sα−1N (0)

sα + σ
.

Using Lemma 1 to obtain inverse Laplace transformation, we get

N (t) =
Ξ

σ
[1− Eα(−σtα)] +N (0)Eα(−σtα) .

From the complete monotonicity of Eα(−t) for t > 0 and 0 ≤ Eα(−σtα) ≤ 1 on
0 < α ≤ 1 [35], [50], we obtain

N(t) ≤ Ξ

σ
. (6)

To explore the presence of unique solution, we assume the model (3), where all
the functions on right hand side of system of equation (3) are continuous and
bounded for t ≥ 0 as S(t), E(t), I(t), R(t) bounded by equation (6). Also, they
satisfy Lipschitz condition. Thus, there exists a bounded and unique solution of the
proposed model on (0,∞) owing to Theorem 1. □

4.1. Equilibrium Points.

4.1.1. LSD-free equilibrium. When there are no infected cattle i.e. It = 0. The
LSD-free equilibrium point (E0) is attained when we take E = 0, I = 0, R = 0.
Thus, the steady state for LSD-free equilibrium is

(
Ξ
σ , 0, 0, 0

)
.

4.1.2. Reproduction Number: The number of cattle infected by a single sick cattle
throughout the course of the incubation period in the population of entirely sus-
ceptible cattle is known as the reproduction number (R0). The largest eigenvalue

of F∗V∗−1

at E0 is used to calculate the reproduction number (R0) of the given
model [61]. [

DαSt,D
αEt,DαIt,DαRt

]T
= F(t)− V(t) , (7)

where F represents the rate at which new infections appear in different classes, V−

is the pace of shifting individual cattle into various classes using all other methods,
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and V+ is the pace at which individual cattle are transferred between classes. Also,
V(t)=V−(t)− V+(t) such that

F(t) =


0

βStIt
0
0

 , V+(t) =


Ξ
0
ηEt
ρIt

 , V−(t) =


βStIt + σSt

(σ + η)Et
(ρ+ σ)It

σRt

 .

At E0, the Jacobian matrix of F(t) is given by

F∗(t) =


0 0 0 0

0 0 β Ξ
σ 0

0 0 0 0
0 0 0 0

 .

The Jacobian matrix of V(t) is

V∗(t) = V∗−(t)− V∗+(t) =


σ 0 β Ξ

σ 0
0 (σ + η) 0 0
0 −η (ρ+ σ) 0
0 0 −ρ σ

 .

F∗V∗−1 is the next generation matrix for the model. And, R0 is the spectral radius
of this matrix. Now, the eigenvalues of F∗V∗−1 are 0, 0, 0 and β Ξ η

σ(σ+η)(σ+ρ) . Thus,

the reproduction number is given by

R0 =
β Ξ η

σ(σ + η)(σ + ρ)
. (8)

Analyzing R0:
To determine how sensitive each of R0’s parameters is,

∂R0

∂β
=

Ξ η

σ(σ + η)(σ + ρ)
> 0, (9)

∂R0

∂Ξ
=

βη

σ(σ + η)(σ + ρ)
> 0, (10)

∂R0

∂η
=

β Ξ σ

σ(σ + η)2(σ + ρ)
> 0, (11)

∂R0

∂ρ
=

−β Ξ σ

σ(σ + η)(σ + ρ)2
< 0, (12)

∂R0

∂σ
=

−β Ξ η

σ(σ + η)(σ + ρ)

{
1

σ
+

1

(σ + η)
+

1

(σ + ρ)

}
< 0. (13)

Thus, R0 is increasing with β, Ξ, η and decreasing with ρ and σ.
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4.1.3. LSD-Persistent Equilibrium. When the number of infected cattle i.e. It ̸= 0.
The LSD-persistent equilibrium point (E1) is attained when the number of infected
cattle is not zero i.e (I ≠ 0). Therefore, the disease persistent equilibrium point is
given by (S1, E1, I1,R1), where

S1 =
(σ + η)(σ + ρ)

βη
, E1 =

β Ξ η − σ(σ + η)(σ + ρ)

βη(σ + η)
,

I1 =
σ(R0 − 1)

β
and R1 =

ρ(R0 − 1)

β

which implies (S1, E1, I1,R1) > 0 iff R0 > 1. So, the LSD-persistent steady state
exists iff R0 > 1. For R0 = 1, LSD-persistent steady state becomes LSD-free steady
state.

4.2. Stability Analysis.

Theorem 4. LSD-free equilibrium point E0 =
(
Ξ
σ , 0, 0, 0

)
of the system is locally

asymptotically stable when R0 < 1, unstable otherwise.

Proof. The Jacobian matrix at E0 is
−σ 0 −β Ξ

σ 0

0 −(σ + η) β Ξ
σ 0

0 η −(ρ+ σ) 0
0 0 ρ −σ

 .

Now, two of the eigenvalues are −σ. The characteristic equation for finding the
remaining two eigenvalues is given by

P (λ) = λ2 + P1λ+ P2 , (14)

where

P1 = (2σ + η + ρ),

P2 = (η + σ)(ρ+ σ)− β Ξ η

σ
= (η + σ)(ρ+ σ)[1−R0].

Now, P1 > 0 always and P2 > 0 for R0 < 1. Thus, for R0 < 1, by using Routh-
Hurwitz criteria [5], all the eigenvalues of the Jacobian matrix at E0 have negative
real parts, it implies from Theorem 2 that the LSD-free equilibrium point is locally
asymptotically stable when R0 < 1 and unstable otherwise. □

Theorem 5. The LSD-persistent equilibrium point E1 = (S1, E1, I1,R1) exists and
is locally asymptotically stable iff R0 > 1.

Proof. The Jacobian matrix at E1 is
−σR0 0 − (η+σ)(ρ+σ)

η 0

σ(R0 − 1) −(σ + η) (η+σ)(ρ+σ)
η 0

0 η −(ρ+ σ) 0
0 0 ρ −σ

 .
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Thus, on observation we see that one of the eigenvalues is −σ. The characteristic
equation to obtain the remaining eigenvalues is

P (λ) = λ3 + P1λ
2 + P2λ+ P3 ,

where

P1 = (σ(R0 + 2) + η + ρ) ,

P2 = σR0(2σ + η + ρ) ,

P3 = (R0 − 1)σ(η + σ)(ρ+ σ) .

Clearly, P1 > 0 and P3 > 0 whenever R0 > 1. Also, P1P2 − P3 > 0. Thus, by
Routh-Hurwitz criterion, all the eigenvalues of the Jacobian matrix of the system of
equations defining the model have negative real parts at LSD-persistent equilibrium
point E1 for R0 > 1, which ensures the locally asymptotic stability of the LSD-
persistent equilibrium point for R0 > 1 and unstable elsewhere using Theorem 2.

□

5. Numerical Simulations

Computing findings that highlight the fluctuating nature of the lumpy skin dis-
ease propagation model and to verify the analytical outcomes for multiple deriva-
tive orders are presented in this section. Using a MATLAB programme supplied by
Roberto Garappa in [22], the proposed model is solved using the Adams-Bashforth-
Moulton predictor-corrector method. Table 2 carries the variables and parameters
used for simulation. According to 19th livestock census-2012 and 20th livestock
census-2019 all India report the total Cattle population in the country was 190.90
and 192.50 million respectively [41]. This shows that there has been an approxi-
mate increase of 0.0114 percent per year giving us the birth rate or the influx rate
(Ξ). The morbidity rate (β) can be retrieved from [43] by making a few necessary
changes to it. As per the 20th livestock census-2019, the total cattle population
in the state of Gujarat is 10,165,000. Therefore, the total susceptible cattle pop-
ulation is 10,165,000/232. Similarly as in the case of COVID-19 (there it was 250
for the Wuhan city with a population of 11 million), the denominator was chosen
early in the epidemic and later proven to be a reasonable figure. It is a suitable
parameter for limiting the movement of cattle that were imposed by the respective
state governments on different dates between July to September, 2022 as reported
by various newspapers [34]. Now, assuming the average number of bites per cattle
per day to be 5, this gives us β = 5 ∗ 10, 165, 000/232 [43]. The incubation period is
between 4 to 14 days [33]. Since, there is no or a little information available about
the mortality rate and recovery period(reciprocal of the recovery rate), we assume
them to be 0.0057 (half of the birth rate) and 7 days (keeping a positive view),
respectively.
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Table 2. Parameter Values

Parameter Value Source

Ξ 0.0114 [41]

β 1.1412× 10−4 [43]

η 1/6 [33]

ρ 1/7 Assumed

σ 0.0057 Assumed

Population S E I R

Initial Values 43815 1 1 0

For the initial populations, the initial susceptible population along with restricted
cattle movement is assumed to be S0 = 10, 165, 000/232, we assume that initially
exposed and infected cattle are 1 each, no recovered cattle. In the event that R0 > 1,
the cattle population cannot be free of disease. Following the start of the pandemic,
the number of susceptible cattle continued to decline, while the exposed and infected
cattle classes show a rapid rise in population density, as seen by Figures 2, 3 and
4, respectively. The rapid rise in the number of recovered cattle population in
Figure 5 can be attributed to the massive vaccination drive in the state of Gujarat,
steps were made to control disease causing vectors and restrict bovine movement.
Regardless of the order, the plots in Figure 6 for each class of cattle population
indicates that the proposed model is asymptotically stable for the LSD-persistent
equilibrium points the population swiftly approaches its equilibria when we increase
the value of α. Since the susceptible and infected cattle populations are reduced to
negative populations, which is something we all know is not conceivable, we can
plainly state that the fractional order models are far superior than the conventional
integer order model with α = 1. The equations (9), (10) and (13) support the
findings of Figure 7(a), (b)and (c), respectively. Equation (11) demonstrates that
R0 rises with an increase in the incubation rate, η, and falls with an increase in
the incubation duration (1/η), as shown by Figure 8(a). In a similar vein, equation
(12) reveals that R0 drops as the recovery rate, (ρ) rises. The recovery period (1/ρ)
grows as R0 does, as shown by Figure 8(b).
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Figure 2. Graphical display of the susceptible class at various
fractional orders.

Figure 3. Graphical display of the exposed class at various frac-
tional orders.

Figure 4. Graphical display of the infected class at various frac-
tional orders.
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Figure 5. Graphical display of the recovered class at various frac-
tional orders.

(a) α = 0.6 (b) α = 0.7

(c) α = 0.8 (d) α = 0.9

Figure 6. Variations of susceptible, exposed, infected and recov-
ered cattle populations with different values of α
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(a) R0 increases with increase in mor-
bidity rate (β)

(b) R0 increases with increase in birth
rate (Ξ)

(c) R0 decreases with increase in death
rate (σ)

Figure 7. Variation of R0 with β, Ξ, σ

(a) R0 increases with increase in incu-
bation rate (η)

(b) R0 decreases with increase in recov-
ery rate (ρ)

Figure 8. Variation of R0 with η and ρ
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6. Concluding Remarks And Future Strategy

For R0 < 1, the diffusion of the virus can be controlled, and the equilibrium free
of LSD can be preserved across Gujarat. The susceptible cattle population keeps
on decreasing with time. The exposed and infected cattle population regularly rises
over time until it reaches a peak, after which it starts to decline until it attains
equilibrium. We can see that the best results are shown by taking α = 0.5 as it shows
the infected cases reach an all-time high in 56 days following the discovery of the first
case on April 23 of this year in the hamlet of Kaiyari, located on the Indo-Pak border
in the Kutch district’s Lakhpat taluka. Mosquito and housefly infestations continue
at their peak during the monsoon season, and veterinary scientists and government
officials blame a very wet July for the infection’s quick spread in Gujarat this year.
So far, Gujarat has experienced 1010 mm of rain, which is 20 percent higher than
the state normal of 850 mm. The four-month south-west monsoon season began in
June and ended in September. There is also an issue with feral cattle in Gujarat,
a state where cow slaughter is outlawed, and experts believe these free-roaming
cattle may be a factor in the quick spread of LSD. The dearth of knowledge about
the sickness may also contribute to the rapid spread of LSD. As can be seen, the
peak does not last long, which might be attributed to the state animal husbandry
department treating diseased cattle and administering goat pox vaccine to healthy
animals in surrounding regions.

This current investigation suggests the following policy changes to assist, iso-
late, and stop the further spread: import restrictions on domestic cattle and water
buffaloes, as well as their products; surveillance beyond the containment zone of
goods, trash, and disease spreading vectors; restriction on movement of cattle; pest
control measures; incineration; and cleaning and disinfection of the surroundings.

Effective LSD treatment with complete coverage is required. Given that LSD is
in close relation to the sheep pox and goat pox viruses, vaccine against same is
used to treat LSD. New animals should be inoculated before being introduced to
the afflicted farm. Calves reared from vaccinated or naturally infected moms should
be inoculated at the age of 3 to 4 months. Bulls used for breeding and pregnant
cows can both receive annual vaccinations [21]. The R0 may be used to calculate
the amount of vaccine needed to suppress an epidemic (i.e. to reduce R0 below one).
The study also emphasised the need of starting immunisation efforts ahead of viral
entrance.
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SEMIREGULAR, SEMIPERFECT AND SEMIPOTENT MATRIX

RINGS RELATIVE TO AN IDEAL

Meltem ALTUN ÖZARSLAN
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Abstract. This paper investigates relative ring theoretical properties in the

context of formal triangular matrix rings. The first aim is to study the semireg-

ularity of formal triangular matrix rings relative to an ideal. We prove that
the formal triangular matrix ring T is T ′-semiregular if and only if A is I-

semiregular, B is K-semiregular and N = M for an ideal T ′ =
(

I 0
N K

)
of

T =
(

A 0
M B

)
. We also discuss the relative semiperfect formal triangular matrix

rings in relation to the strong lifting property of ideals. Moreover, we have

considered the behavior of relative semipotent and potent property of formal
triangular matrix rings. Several examples are provided throughout the paper

in order to highlight our results.

1. Introduction

The celebrated work of Wedderburn and Artin gave a key insight into the struc-
ture of a semisimple artinian ring, which makes it an attractive structure to study.
Moreover, for a right artinian ring R, the Jacobson radical is nilpotent, and the ring
R/J(R) is semisimple, so a main problem would be to “lift” the structure of the
factor ring R/J(R) onto the ring R itself. As a consequence of this, we are led to
the concept of lifting idempotents and, consequently, to the notion of a semiperfect
ring.

Let I be an ideal in a ring R. Recall that an element a ∈ R is an idempotent
modulo I if a+ I ∈ R/I is an idempotent. In this case, we say that a can be lifted
to an idempotent (modulo I) if there exists an idempotent e ∈ R with e − a ∈ I.
Note that the ideal I in R is called idempotent lifting if, whenever a+ I ∈ R/I is
an idempotent, then there exists an idempotent e ∈ R such that e− a ∈ I.
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Lifting of idempotents is a key method in transferring some structural properties
of a factor ring of a ring R up to the ring itself. Several classes of rings are described
in terms of the idempotent lifting property of ideals. For example, semiperfect rings
are those rings R for which R/J(R) is semisimple and the Jacobson radical J(R) of
R is idempotent lifting. Some nontrivial generalizations of semiperfect rings, such
as semiregular rings and potent rings may be considered as further examples.

As it has been pointed out above, the idempotent lifting property of the Jacob-
son radical J(R) of R is prominent in the study of semiregular and semiperfect
rings. A stronger property than the idempotent lifting property, namely, strong
lifting property of ideals, gives rise to a natural generalization of semiregular and
semiperfect rings. Semiregular rings relative to an ideal first emerged in a paper [8]
by Nicholson and Yousif. Then, Yousif and Zhou [10] studied further semiperfect
and perfect rings relative to an ideal in connection with relative semiregular rings.
Later, Nicholson and Zhou worked on a natural extension of this work together
with strongly lifting ideals to characterize I-semiregular and I-semiperfect rings for
an ideal I of a ring R in [9]. Recall that an ideal I of a ring R is called strongly
lifting if, whenever a+ I ∈ R/I is an idempotent, then there exists an idempotent
e ∈ aR such that a− e ∈ I. In this work, Nicholson and Zhou further showed that
the ring R is I-semiregular (semiperfect) if and only if R/I is regular (semisimple)
and I is strongly lifting.

Recall that a ring R is called semipotent if each one-sided ideal of R that is not
contained in its Jacobson radical J(R) contains a nonzero idempotent. A semipo-
tent ring R is called potent if, in addition, J(R) is an idempotent lifting ideal of
R. Semipotent rings has been generalized to semipotent rings relative to an ideal
by Nicholson and Zhou in [9]. It is also important to consider the strong lifting
properties of ideals in this setting, and relative potent rings are defined in relation
to these ideals as well as relative semipotent rings.

One of important constructions in ring theory is the triangular ring construction.
Let A,B be rings and M be a B-A bimodule. A formal triangular matrix ring is a
ring of the form(

A 0
M B

)
=

{(
a 0
m b

)
| a ∈ A, b ∈ B, and m ∈ M

}
under the usual matrix operations. There are a number of important examples
in this class, including lower (upper) triangular matrices over a known ring R.
Moreover, many surprising examples and counterexamples have emerged via the
triangular ring construction in literature by varying the choices of A,B and M .
By using formal triangular matrix rings, Herstein in [5] provided a counterexample
to the Jacobson conjecture, one of the oldest and most well-known conjectures in
noncommutative ring theory. In [3], these rings were studied in detail, and in [4],
various ring theoretic properties of formal triangular matrix rings were investigated.

This paper aims to unify all these relative properties in the framework of formal
triangular matrix rings. In Section 2, we completely give a description of the
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semiregularity and semiperfectness of formal triangular matrix rings relative to
an ideal, proving that T is T ′-semiregular (resp. semiperfect) if and only if A
is I-semiregular (resp. semiperfect), B is K-semiregular (resp. semiperfect) and
N = M for an ideal T ′ = ( I 0

N K ) of T = ( A 0
M B ) (Theorem 1 and Theorem 2).

Then, we highlight our results by providing several examples, in particular we show
that the “if” part of the above theorems are not in general true if we omit the
condition N = M . We have further considered the behavior of relative semipotent
property of formal triangular matrix rings. Since being a semipotent or a potent
ring passes over to formal triangular matrix rings by a result due to Haghany and
Varadarajan [4], it is natural to suspect that it may also pass over in the relative
case.

Throughout this paper, all rings will be associative rings with an identity element
1 ̸= 0, not necessarily commutative. We will denote by J(R) the Jacobson radical
of a ring R.

2. Results

Recall that a formal triangular matrix ring T is a ring of the form

T =

{(
a 0
m b

)
| a ∈ A, b ∈ B, m ∈ M.

}
under the usual matrix addition and multiplication where A,B are two rings and
M is a left B right A bimodule. For simplicity, we write

T =

(
A 0
M B

)
for the formal triangular matrix ring. The construction of examples and counterex-
amples for asymmetric ring-theoretic properties is among the major applications
of such rings in noncommutative ring theory. In particular, [4] provides a compre-
hensive resource for various ring-theoretic properties of formal triangular matrix
rings.

Moreover, Goodearl covered formal triangular matrix rings in his classic book
“Ring Theory: Nonsingular rings and modules” [3]. In order to better understand
the ideal structure of a ring of such a type, we must first recall the following fact.

Proposition 1. [3] If I is a two-sided ideal of A, K a two-sided ideal of B, and
N a B-A subbimodule of M which contains MI +KM , then ( I 0

N K ) is a two-sided
ideal of T . Conversely, every two-sided ideal of T has this form.

We will begin by simplifying the following notation: T denotes the formal tri-
angular matrix ring ( A 0

M B ), while T ′ refers to an ideal of the form ( I 0
N K ) with the

additional properties outlined above.

Now we continue with a lemma that is implicit in [8] and proved in [10, Lemma
1.1] and leads us to a number of significant ring-theoretic properties relative to an
ideal of a ring R.
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Lemma 1. [10, Lemma 1.1] Let I be an ideal of the ring R. The following condi-
tions are equivalent for a right ideal I ′ of R:

(1) There exists e2 = e ∈ I ′ with (1− e)I ′ ⊆ I.
(2) There exists e2 = e ∈ I ′ with I ′ ∩ (1− e)R ⊆ I.
(3) I ′ = eR⊕ S where e2 = e and S ⊆ I.

According to Nicholson and Zhou [9] an ideal I of the ring R respects a right
ideal I ′ of R if the conditions in Lemma 1 are satisfied. Similarly, I respects a left
ideal L ⊆ R if L = Re ⊕ S where e2 = e and S ⊆ I. It is worth noting that this
definition is left-right symmetric, i.e., if I ◁ R and a ∈ R, then I respects aR if and
only if I respects Ra.

Right (left) I-semiregular elements and rings first emerged in a paper [8] by
Nicholson and Yousif and then were studied in [10] by Yousif and Zhou. Later,
Nicholson and Zhou [9] dealt with these elements in terms of respecting a right
(left) ideal as defined above and demonstrated that it is not necessary to distinguish
between “right I-semiregular” and “left I-semiregular”. Let I be an ideal of the
ring R. Recall that an element a ∈ R is called I-semiregular if I respects aR, i.e.,
if e2 = e ∈ aR exists with (1− e)a ∈ I, or alternatively, if f2 = f ∈ Ra exists with
a(1 − f) ∈ I. As expected, when all elements of the ring R are I-semiregular, the
ring R is called a I-semiregular ring.

It is well known that the topic of lifting of idempotents is a crucial method
for identifying the structure of semiregular and semiperfect rings. Nicholson and
Zhou studied a natural extension of these notions in connection with strongly lifting
ideals in [9]. Recall that an ideal I of a ring R is called strongly lifting if, for some
a ∈ R, whenever a2−a ∈ I, then there exists an idempotent e ∈ aR with a− e ∈ I.
It is possible to replace the conclusion e ∈ aR by e ∈ Ra or e ∈ aRa since this
notion is left-right symmetric [9, Lemma 1]. In this work, Nicholson and Zhou
further showed that the ring R is I-semiregular if and only if R/I is regular and
I is strongly lifting. A recent work [1] has shed new light on the question: “What
can be said about relative semiregular ideals of the the formal triangular matrix
ring?”. The author has provided a criterion to decide if a given ideal T ′ of the
formal triangular matrix ring T is strongly lifting.

Our first Theorem is motivated by the above-mentioned results and characterizes
the semiregularity of formal triangular matrix rings relative to an ideal.

Theorem 1. Let T ′ be an ideal of T . Then T is T ′-semiregular if and only if A is
I-semiregular, B is K-semiregular and N = M .

Proof. First recall the fact that T is T ′-semiregular if and only if T/T ′ is regular and
T ′ is strongly lifting. Now if T is T ′-semiregular, then T/T ′ is regular, and so A/I
and B/K regular. Further, J(T/T ′) = 0 implies that M/N = 0, that is N = M .
Moreover, Corollary 2.8 in [1] states that strongly lifting ideals T ′ of T are those
ideals for which I and K are strongly lifting in A and B, respectively. Combining
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these two results with the above-mentioned fact, we get A is I-semiregular, B is
K-semiregular, as desired.

For the converse, first note that T/T ′ =
(

A/I 0
0 B/K

)
∼= A/I ×B/K. Hence, the

regularity of A/I and B/K implies the regularity of T/T ′. Now, the result is easily
seen by again using Corollary 2.8 in [1]. □

As an application, we continue with an illustrative example.

Example 1. Let A = Z30, B = Z9 and M = Z3 ⊕Z3. Let us begin by considering
the following ring:

T =

(
Z30 0

Z3 ⊕ Z3 Z9

)
.

It is our aim to determine all ideals T ′ of T with the property that T is T ′-
semiregular by using Theorem 1. To do this, we first need to specify the strongly
lifting ideals I (K) of A (B) for which A/I (B/K) is von Neumann regular, respec-
tively. Since A and B are exchange rings, all ideals of these two rings are strongly
lifting and an easy computation shows that all factors of the form A/I and B/K
are von Neumann regular except for the case K = 0 in B.

Taking into account the ideal structure of T described in Proposition 1 and
letting N = M , the following ideals T ′ are those for which T is T ′-semiregular:

•
(

0 0
M Z9

)
,

(
15Z30 0
M Z9

)
,

(
10Z30 0
M Z9

)
,

(
6Z30 0
M Z9

)
;

•
(
5Z30 0
M Z9

)
,

(
3Z30 0
M Z9

)
,

(
2Z30 0
M Z9

)
,

(
Z30 0
M Z9

)
;

•
(

0 0
M 3Z9

)
,

(
15Z30 0
M 3Z9

)
,

(
10Z30 0
M 3Z9

)
,

(
6Z30 0
M 3Z9

)
;

•
(
5Z30 0
M 3Z9

)
,

(
3Z30 0
M 3Z9

)
,

(
2Z30 0
M 3Z9

)
,

(
Z30 0
M 3Z9

)
.

Remark 1. Note that the “if” part of the above theorem is not in general true if
we omit the condition N = M as shown in the following example.

Let A = Z4, B = Z2 and M = Z2 ⊕ Z2. Consider the formal triangular matrix
ring

T =

(
Z4 0

Z2 ⊕ Z2 Z2

)
.

We wish to find an ideal T ′ of T for which A is I-semiregular, B is K-semiregular,
but T is not T ′-semiregular due to the fact that N ̸= M . For this, we first observe
that the ideals I = 2Z4 of Z4 and K = 0 of Z2 are strongly lifting, respectively.
Further, A/I ∼= B/K ∼= Z2 is clearly von Neumann regular. Hence, these two
together imply that A is I-semiregular and B is K-semiregular.
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Taking into account the ideal structure of T described in Proposition 1, we let
N = Z2 ⊕ 0 a (B,A)-subbimodule of M and

T ′ =

(
2Z4 0

Z2 ⊕ 0 0

)
.

Then the ring T is not T ′-semiregular since the ring

T/T ′ ∼=
(
Z2 0
Z2 Z2

)
is not von Neumann regular.

It should be noted that the Jacobson radical J(R) of a ring R is not necessarily
idempotent lifting. However, if it is idempotent lifting, it is also strongly lifting.
In fact, as is well-known, a ring R is semiregular if and only if R/J(R) is regular
and J(R) is idempotent lifting. Hence, the J(R)-semiregular rings are just the
semiregular rings and we get the following immediate corollary to the above result.

Corollary 1. T is semiregular if and only if A and B are semiregular.

A right I-semiperfect ring is one in which every right ideal M of R fulfills the
equivalent conditions as stated in Lemma 1. Left I-semiperfect rings can be defined
in a similar vein. A short proof of the right-left symmetry of this notion appears
in [9] by showing the following equivalence

R is I-semiperfect ⇔ R/I is semisimple and I is strongly lifting.

We now determine a necessary and sufficient condition for the triangular matrix
ring T to be T ′-semiperfect.

Theorem 2. If T ′ is an ideal of T , then the following conditions are equivalent:

(i) T is T ′-semiperfect;
(ii) A is I-semiperfect, B is K-semiperfect and N = M .

Proof. To begin with, let us recall that T is T ′-semiperfect if and only if T/T ′

is semisimple and T ′ is strongly lifting. Now if T is T ′-semiperfect, then T/T ′ is
semisimple, and so are A/I and B/K. Further, J(T/T ′) = 0 implies that M/N = 0,
that is N = M . Moreover, Corollary 2.8 in [1] states that strongly lifting ideals
T ′ of T correspond to those ideals for which I and K are strongly lifting in A
and B. Combining these two results with the above-mentioned fact, we get A is
I-semiperfect, B is K-semiperfect, as desired.

For the converse, consider the ring isomorphism T/T ′ =
(

A/I 0
0 B/K

)
∼= A/I ×

B/K. Hence, the semisimplicity of A/I and B/K implies the semisimplicity of
T/T ′. We get our assertion by putting these and Corollary 2.8 in [1] together. □
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Example 2. Let Z(p) be the localization of the ring of integers Z at a prime ideal

pZ, Zp∞ be the Prüfer group and let Ẑp be p-adic integers.
Consider the formal triangular matrix ring

T =

(
Z(p) 0

Zp∞ Ẑp

)
.

Our goal is to determine all ideals T ′ of T with the property that T is T ′-
semiperfect by using Theorem 2. For this, it is enough to identify all strongly lifting
ideals of Z(p) and Ẑp for which every factor ring of these two rings is semisimple

Artinian. Since Z(p) and Ẑp are exchange rings, all ideals of these two rings are
strongly lifting. It is not difficult to see that factor rings are semisimple Artinian
for the ideals pZ(p) and Z(p) and the ideals pẐp and Ẑp of the uniserial rings Z(p)

and Ẑp, respectively.
Hence, the ring T is T ′-semiperfect for the following list of ideals T ′:(

pZ(p) 0

Zp∞ pẐp

)
,

(
pZ(p) 0

Zp∞ Ẑp

)
,

(
Z(p) 0

Zp∞ pẐp

)
,

(
Z(p) 0

Zp∞ Ẑp

)
.

In the example below, it can be seen that the assumption“N = M” in the “if”
part of Theorem 2 cannot simply be dropped.

Example 3. As an example of an ideal T ′ of T for which A is I-semiperfect, B is
K-semiperfect, but T is not T ′-semiperfect, we would like to recall an example of
Berberian that was discussed in detail in [2, Example 1].

Let C be the complex field and H = R + Ri + Rj + Rk be the division ring of
real quaternions.

Take A = C, B = H and M = H. Let us begin by considering the following ring

T =

(
C 0
H H

)
.

The ring T is an exchange ring due to the fact that the rings C and H are all
exchange rings [6, Proposition 2.1].

We further observe that the ideals I = 0 of C and K = H of H are strongly
lifting as exchange rings are precisely the rings that every one-sided ideal is strongly
lifting. Furthermore, A/I and B/K are clearly semisimple. Hence, we have A is
I-semiperfect and B is K-semiperfect.

On the other hand, for the ideal

T ′ =

(
0 0
0 H

)
of the ring T , T is not T ′-semiperfect since the ring

T/T ′ ∼=
(
C 0
H 0

)
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is not semisimple Artinian.

A ring R is called semipotent if each right ideal of R that is not contained in
its Jacobson radical J(R) contains a nonzero idempotent. Note that this notion
is left-right symmetric. A semipotent ring R is called potent if, in addition, J(R)
is an idempotent lifting ideal of R. Examples of these rings include exchange
rings (see [7, Proposition 1.9]). It is well known that a formal triangular matrix
ring T is semipotent (respectively, potent) if and only if A and B are semipotent
(respectively, potent) [4, Theorem 6.4].

Semipotent rings has been generalized to semipotent rings relative to an ideal
based on the following lemma proposed by Nicholson and Zhou [9].

Lemma 2. [9, Lemma 19] The following are equivalent for I ◁ R:

(1) If I ′ ⊈ I is a right ideal, then there exists e2 = e ∈ I ′ − I.
(2) If a /∈ I, then there exists e2 = e ∈ aR− I.
(3) If a /∈ I there exists x ∈ R such that xax = x /∈ I.

Following Nicholson and Zhou, for an ideal I in a ring R, R is said to be I-
semipotent if the above conditions in Lemma 2 are fulfilled, and is said to be I-
potent if it is I-semipotent and I is strongly lifting in R. In other words, the semipo-
tent (potent) rings are simply the J(R)-semipotent (J(R)-potent) rings. Since the
property of being a semipotent or a potent ring transfers to formal triangular matrix
rings by the above-mentioned result due to Haghany and Varadarajan [4, Theorem
6.4], it is natural to suspect that it may also transfer in the relative case.

We now interpret this notion in the language of formal triangular matrix rings.
We mimic the proof of Haghany and Varadarajan [4, Theorem 6.4].

Theorem 3. Let T ′ be an ideal of T . If T is T ′-semipotent then A is I-semipotent
and B is K-semipotent, respectively.

Proof. Assume that T is T ′-semipotent. We first claim that A is I-semipotent. Let

I ′ ⊈ I be a right ideal in A. Then I ′′ =

(
I ′ 0
0 0

)
is a right ideal not contained in

T ′. Hence there exists e ∈ I ′ with ( e 0
0 0 ) (

e 0
0 0 ) = ( e 0

0 0 ) ∈ I ′′ − T ′. This implies that
e2 = e ∈ I ′−I, as desired. Secondly, we claim that B is K-semipotent. Let K ′ ⊈ K

be a right ideal in B. Then K ′′ =

(
0 0

K ′M K ′

)
is a right ideal of T not contained

in T ′. Since T is T ′-semipotent, there exists a nonzero element
(

0 0
m f

)
∈ K ′′ − T ′

with
(

0 0
m f

) (
0 0
m f

)
=

(
0 0
m f

)
∈ K ′′ − T ′. This implies that f2 = f and fm = m.

Since
(

0 0
m f

)
is nonzero, we get f ̸= 0 or m ̸= 0. By considering fm = m, we get

f ̸= 0. Thus, 0 ̸= f with f2 = f ∈ K ′ −K, as desired. □

The converse of Theorem 3 does not hold in general, as can be seen in the
following example.
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Example 4. There exist a formal triangular ring T and an ideal T ′ of T such that
A is I-semipotent, B is K-semipotent, but T is not T ′-semipotent.

Let R = Z×Z2×Z2×· · · be the direct product of rings. Take into consideration
the following subring of R:

A = {(n, n̄2, n̄3, · · · , n̄k, n̄, · · · )|n, ni ∈ Z, k ⩾ 2}.
Putting I = {(2m, 0̄, 0̄, · · · ) | m ∈ Z}, it follows that A is I-semipotent by [9,

Example 23].
Now, take B = Z4 and M = Z2 ⊕ Z2. Consider the formal triangular matrix

ring

T =

(
A 0
M B

)
.

We further consider the ideal K = 2Z4 of B = Z4. Since B is K-semiregular by
Remark 1, it is K-semipotent, too.

On the other hand, for the ideal

T ′ =

(
I 0

Z2 ⊕ 0 K

)
of the ring T , T is not T ′-semipotent. To show the last statement, consider the
following ideal of the ring T

T̃ =

(
I 0

0⊕ Z2 K

)
.

Then T̃ is clearly not contained in the ideal T . On the other hand, an easy compu-
tation shows that the ideal T̃ of T doesn’t contain any nonzero idempotent. Thus,
there do not exist any idempotent in T̃ which is not in T ′. By Lemma 2, T is not
T ′-semipotent, as desired.

As we mentioned above, relative potent rings is a proper subclass of the class
of relative semipotent rings with the additional strongly lifting condition on the
relative ideal. Due to the fact that strongly lifting ideals T ′ of T are those ideals
for which I and K are strongly lifting in A and B, respectively [1, Corollary 2.8],
Theorem 3 implies the the following immediate corollary.

Corollary 2. Let T ′ be an ideal of T . If T is T ′-potent, then A is I-potent and B
is K-potent, respectively.

The converse of Theorem 3 is not true in general, it is natural to ask the question
what additional conditions are required for this to happen. We will show below that
this question has an affirmative answer for ideals of the form ( I 0

M K ) in the formal
triangular matrix ring T .

Theorem 4. Let T ′ be an ideal of the form ( I 0
M K ) in T . If A is I-semipotent and

B is K-semipotent, then T is T ′-semipotent.
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Proof. Assume that A is I-semipotent and B is K-semipotent. We will show that
T is T ′-semipotent. Let T̃ be a right ideal of T with T̃ ⊈ T ′. Then there exists an

element t = ( a 0
m b ) ∈ T̃ −T ′. This implies that either a /∈ I or b /∈ K. First, assume

that a /∈ I. Then there exist a non-zero idempotent e in aA − I. Set e = ar for
some r ∈ A. Then are = e2 = e ̸= 0. Note that

( e 0
mre 0 ) = ( are 0

mre 0 ) = ( a 0
m b ) (

re 0
0 0 ) ,

and so ( e 0
mre 0 ) ∈ tT ⊆ T̃ . Also

( e 0
mre 0 ) (

e 0
mre 0 ) = ( e 0

mre 0 ) .

Thus ( e 0
mre 0 ) is a non-zero idempotent in tT −T ′. If b /∈ K, there exists a non-zero

idempotent f ∈ bB and
(
0 0
0 f

)
is a non-zero idempotent in tT − T ′. This proves

that T is T ′-semipotent. □

Considering the definition of a relative potent (resp. semipotent and potent)
ring we end the paper with the following corollaries of Theorem 3 and Theorem 4.

Corollary 3. Let T ′ be an ideal of of the form ( I 0
M K ) in T . If A is I-potent and

B is K-potent, then T is T ′-potent.

Corollary 4. [4, Theorem 6.4] Let T be the formal triangular matrix ring of the
form ( A 0

M B ). Then T is semipotent (resp. potent) if and only if A and B are
semipotent (resp. potent).
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Abstract. In this study, our examination centers around the numerical res-

olution of non-coercive issues using a multi-grid approach. Our particular
emphasis is directed towards employing multi-grid methodologies to tackle

non-linear variational inequalities. Our primary goal involves confirming the

consistent convergence of the multi-grid algorithm. To attain this objective,
we make use of fundamental sub-differential calculus and glean insights from

the convergence principles of non-linear multi-grid techniques.

1. Introduction

Contemporary literature showcases a diverse array of computational technique
that are harnessed to address intricate real-world challenges spanning various scien-
tific and engineering domains. These methodologies have been crafted and utilized
to confront demanding problems, yielding efficient resolutions within their respec-
tive fields. Many researchers have explored these computational strategies to tackle
a number of applied problems, propelling comprehension and advance understand-
ing and progress in many scientific fields.
Commonly used numerical methods for solving boundary problems generally lead,
after discretisation, to the solution of systems of algebraic equations. These nu-
merical techniques, encompassing iterative methods like Jacobi, Gauss-Seidel iter-
ation, and relaxation methods, are frequently chosen due to their conventional na-
ture.However, they may show a slow convergence of fine mesh sizes and complexity
when applied to general ellipticity problems. In contrast, multi-grid methods offer
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a clear advantage. These algorithms exhibit linear expenses based on the number of
discretization points. These algorithms exhibit linear expenses based on the num-
ber of discretization points, regardless of the problem’s dimensions. Particularly,
these methods are adept at resolving linear and non-linear partial differential equa-
tions (PDEs) as well as linear V.Is (Variational inequalities)[12, 10, 7]. Their linear
complexity makes them powerful tools for large problems, greatly reducing compu-
tational requirements while ensuring accurate solutions. Multi-grid techniques are
widely praised as a fast approach to tackling various forms of variational equations
and inequalities [11], particularly in the area the discretized elliptic problems that
leads to an M -matrix [6].
Through a conforming finite element method P1 [4], we will be providing an overview
of non-linear variational inequalities (N.V.I) problems and their discretization in the
following section. Additionally, The Hoppe multi-grid method [14, 9] served as an
inspiration for our algorithm, which views the V.I as stationary Hamilton-Jacobi-
Bellman(H.J.B) equations. The iteration matrices are provided for an algorithm
known as the M.G.H.J.B, or multi-grid Hierarchy Jacobi.
First, we present original results on the approximation and smoothness proper-
ties within the L∞ norm. We then demonstrate the consistent convergence of the
M.G.H.J.B algorithm. Finally, we apply the numerical method to a specific scenario
where the operator is linear and unconstrained, and the second element is indepen-
dent of the solution. In this context, we implemented the Gauss-Seidel method and
the multigrid method V and W cycles. Numerical experiments are performed to
evaluate the efficiency and performance of these methods in solving the proposed
problem.

2. Multigrid Method

2.1. Assumptions and Notations. Suppose that Ω is an open in RN with a
sufficiently regular border ∂Ω .
We define second order operators with u, v ∈ H1(Ω),

A =
∑

1≤j,k≤N

⅁jk(x)
∂2

∂xj∂xk
+

N∑
k=1

bk(x)
∂

∂xk
+ b0(x),

where ⅁jk(x), bk(x), b0(x) are sufficiently regular coefficients such that:

⅁kj(x) = ⅁jk(x), b0(x) ≥ β > 0; (x ∈ Ω).

Also, we define the associated bilinear non-coercive forms

a(u, v) =

∫
Ω

 ∑
1≤j,k≤N

⅁jk
∂u

∂xj

∂v

∂xk
+

N∑
k=1

bk
∂u

∂xk
v + b0(x)uv

 dx,
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and the operators

B =
∑

1≤j,k≤N

⅁jk(x)
∂2

∂xj∂xk
+

N∑
k=1

bk(x)
∂

∂xk
+ (b0(x) + λ) , (1)

we choose λ > 0 is sufficiently large so that B = A + λI are strongly elliptic on
H1(Ω) and

b(u, v) = a(u, v) + λ(u, v). (2)

Additionally, we consider f a second member as following:

f ∈ L∞(Ω); f ≥ 0

and obstacle ψ ∈W 2,∞, where ψ > 0.

2.2. Problem Continuous. The aim is to find u the solution of the problem
presented by the following V.Is:
Find u solution of:{

b(u, v − u) ≥ (f + λu, v − u), ∀v ∈ H1(Ω),
u ≤ ψ; v ≤ ψ.

(3)

It has been confirmed that this issue has a singular solution, as demonstrated by
the theorem of fixed point and from the aforementioned assumptions (see [1]).

2.3. Discretization. In order to build a multi-grid loop, we create a sequence of
discretization steps referred to as 0 < hk+1 < hk < 1 such that the grids are nested

hk+1 = hk

2 .
Subsequently, we delineate Ωk = Ωhk

, Vk = Vhk
,Ak = Ahk

and we establish a series
of uniform regular triangulations referred to as {Tk, k ∈ N0}. For all Tk,we have

Ωk ⊂ Ωk+1 ⊂ Ω ,
dist (∂Ωk, ∂Ω) ≤ c0h

2
k,

hkhk+1 ≤ c1.

We introduce Vhk
=

{
vhk

∈ C(Ω) ∩H1 ;vhk
/T ∈ P1}, for simplicity we write:

Vk =
{
vk ∈ C(Ω) ∩H1; vk/r ∈ P1

}
.

The shape function φi
k, i ∈ (1, . . . .,m (hk)) of the usual basis is defined as: φi

k

(
xjk

)
=

δij , where x
j
k be a node of the Tk triangulation .

So, the ordinary restriction operator rk is defined like:

rkv(x) =

m(hk)∑
i=1

v
(
M i

k

)
φi
k(x). (4)
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If we suppose Uk = Rmk . Then, rk : Uk → Vk is a bijection.
Uk is equipped with the scalar product

< u, v >= h2k

m(hk)∑
i=1

uivi, ∥u∥k =< u, v >
1/2
k .

The maximum norms in Uk and Vk are equivalent, we denote them ∥ · ∥∞. We
have the following lemma (see [2]).

Lemma 1. There exists C1, C2 independent of k such that

∥rk(u)∥∞ = ∥u∥∞, ∀u ∈ Uk.
C1∥v∥∞ ≤ ∥r∗k(v)∥∞ ≤ C2∥ v∥∞, ∀v ∈ Vk.

(5)

2.4. Problem Discrete. Continuing in a logical sequence, we present the dis-
cretization matrices Bk and the bilinear form b

(
φ1
k, φ

s
k

)
, where φs the shape func-

tions. With these descriptions established. Now, we are positioned to formulate
the discrete problem in the subsequent manner:
Find uk ∈ Vk solution of:{

< Bkuk, vk − uk >≥< fk + λuk, vk − uk >, ∀vk ∈ Vk
uk ≤ rkψ, vk ≤ rkψ

(6)

We make the assumption that the matrices Bk are M -matrices.(see [3] ).

2.5. H.J.B form. The correspondence between the finite-dimensional V.I (3) and
a representation in Hamilton-Jacobi-Bellman (H.J.B) form is easily discernible (see
[10]). We detail the selected numerical technique for resolving the stationary H.J.B
equations.
In the traditional framework, we recollect certain convergence outcomes that will
play a crucial role in affirming the M.G.H.J.B algorithm’s convergence expounded
in the following:
Iterative diagram:

Step 1: Choose u0k ∈ Rnk as initial vector.

Step 2 : Calculate the solution uν+1
k ∈ Rnk of the following recurrence equation

Bν
ku

ν+1
k − Zν

k = 0, (7)

such that

Zν
k = F ν

k + λuνk

where

Bν
k,i =

{
Bk,i (uk) if Bk,iu

ν
k,i − Zk,i > uνk,i − ψk,i,

uk,i if 1 ≤ i ≤ N,
(8)

Zν
k,i =

{
Zk,i if Bk,iu

ν
k,i − Zk,i > uνk,i − ψk,i,

uk,i if 1 ≤ i ≤ N.
(9)
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Let the discrete H.J.B equation where u∗k be the unique solution

max
1≤i≤N

(
Bk,iu

∗
k − Zk,i, u

∗
k,i − ψk,i

)
= 0. (10)

We will formulate the subsequent theorem and introduce our problem derived
from the (H.J.B) equation, drawing inspiration from Hoppe’s [10].

Theorem 1. Let uνk be the solution in the iteration defined and it satisfies the
H.J.B equation. Furthermore, We make that Bk is continuously differentiable then
the sequence (uνk)ν≥0 converges and approaches u∗k.

Previously moving forward with presenting the findings, it is relevant to revisit
the subsequent theorem:

Theorem 2. (see [1] , [5]) If the previous notations and assumptions are satisfies.
So , we have:

∥u− u∗k∥∞ ≤ Ch2k |log hk|
2 ∥g(u)∥∞. (11)

2.6. Multi-grid ( M.G.H.J.B) algorithm for V.Is. For the multi-grid method
we choose an iteration uνk, ν > 0.So, we obtain ūνk, by using an iterative method to
solve the system (7) by α

ūνk = Sα
k (uνk) (12)

where Sk is the smoothing operator and α is the number performed of iterations.
The solution of (7) is denoted by u∗k. The error setting eνk = ūνk − u∗k, and the

residual d
(ν)
k = Zν

k − Bν
k ū

ν
k, the equation (7) can be write as

Bν
k (ū

ν
k + eνk) = Zν

k .

This leads to the residual equation

Bν
ke

ν
k = Zν

k − Bν
k ū

ν
k = dνk.

After the relaxation on Bν
k ū

ν
k = Zν

k on the fine grid, the error will display a contin-
uous nature. However, the error on the coarse grid appears to be more oscillatory,
leading to the relaxation. At the (k − 1) level, we need to compute eνk−1 for deter-
mine eνk, where e

ν
k−1 is the solution of the coarse grid system

Bν
k−1e

ν
k−1 = dνk−1. (13)

We can interpret eνk−1

(
respBν

k−1, d
ν
k−1

)
and eνk (respBν

k , d
ν
k) as approximation op-

erator at level (k−1) and (k) respectively. Additionally, we have Rk the restriction
operator and Pk its reverse .
consecquently, at the (k) level we identify an improved iteration

uν+1
k = ūνk + Pk

(
eνk−1

)
. (14)

Because of the nested structure, we employ the well-defined identity operator

π : Vk−1 −→ Vk; πv = v,

the operators of extension and restriction define like

Pk = r−1
k rk−1, Rk = Pt

k. (15)



MULTIGRID METHODS FOR NON COERCIVE VARIATIONAL INEQUALITIES 227

2.7. Matrix of the M.G.H.J.B Algorithm. For each iteration, The matrix of
the two-grid method with α1 pre-smoothing and α2 post-smoothing iterations at
the (k) level is given by

TGk (α1, α2) = Sα2

k

(
(Bν

k)
−1 − Pk

(
Bν
k−1

)−1 Rk

)
(Bν

k)S
α1

k . (16)

Theorem 3. (see [13] )The multi-grid technique embodies a linear iterative ap-
proach, with the iteration matrix referred to as MGk

MG0 = 0,

MGk = Sα2

k

(
Ik − Pk (Ik −MGk−1)

(
Bν
k−1

)−1 Rk

)
(Bν

k)S
α1

k ,

= TGk + Sα2

k PkMGk−1

(
Bν
k−1

)−1 Rk (Bν
k)S

α1

k , k = 1, 2, ..

(17)

3. Convergence of the Multi-grid algorithm in L∞-norm

This section is devoted to presenting a unified convergence analysis of multi-grid
algorithm. To prove the convergence, we need the following proprieties

3.1. Approximation property.

Theorem 4. (see [8] ) The matrix Υk =
[
(Bν

k)
−1 − Pk

(
Bν
k−1

)−1 Rk

]
has the ap-

proximation property

∥Υk∥∞ ≤ Ch2k |lnhk|
2
. (18)

Proof. The proof was proposed by Arnold in [14] on Theorem 1. □

3.2. Property of Smoothing. To prove the smoothness property, we consider
the decomposition Bν

k = Ek −Nk and using the following assumptions:
for all k

Ek is regular and
∥∥E−1

k Nk

∥∥
∞ ≤ 1, . (19)

∥Ek∥∞ ≤ Ch−2
k , with C independent of k. (20)

In the process of smoothing, we utilize a relaxation method with an iterative
matrix

Sk = Ik − ωE−1
k Nk, ω ∈ (0, 1).

For the following theorem, the concept of Arnold Reusken [14] is relevant to our
work.

Theorem 5. Under the previous assumptions, there exists a constant C, which is
independent of both k and α. Such that:

∥(Bν
k)S

α
k ∥∞ ≤ C

1√
α
h−2
k . (21)

(smoothness properties)
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By switching to the norm in (14), from (18) and (21) we can proving the following
estimation:

∃Cs : ∥Sα
k ∥∞ ≤ Cs, for all k and α. (22)

From the equation (16) with two lattices iterate (two-grid) and α2 = 0, we have
the following estimate:

∥TGk(α1, 0)∥∞ =
∥∥∥((Bν

k)
−1 − Pk

(
Bν
k−1

)−1 Rk

)
(Bν

k)S
α1

k

∥∥∥
∞

≤
∥∥∥((Bν

k)
−1 − Pk

(
Bν
k−1

)−1 Rk

)∥∥∥
∞

∥(Bν
k)S

α1

k ∥∞ .

Typically, we choose a hierarchy of more than two-grids. in this case, we can define
the iterative matrices (17) by the recurrence of (16) for all (k) levels.

Theorem 6. ( [13] ) Consider a multi-grid method for a given iterative matrix
(17). Then under the previous assumption, for the parameter value α2 = 0, α1 =
α > 0, τ ≥ 2. For each ζ ∈ (0, 1) there is aα∗such that for all α ≥ α∗

∥MGk∥∞ ≤ ζ, k = 0, 1, ... (23)

hold.

Proof. If the previous properties are related with (22), then we can stratify the
same steps as in [ [13] , Theorem 7.20]. □

The main result of our study was in the following theorem.

Theorem 7. For two meshes (k) and (k − 1) and the previous given the iterated
uνk, ν ≥ 0 satisfy: ∥∥uν+1

k − u∗k
∥∥
∞ ≤

(
C√
α
|Loghk|

2

)
∥uνk − u∗k∥∞ . (24)

Proof. We have∥∥uν+1
k − u∗k

∥∥
∞ =

∥∥∥((Ik − Pk (Ik −MGk−1)
(
Bν
k−1

)−1 Rk

)
(Bν

k)S
α1

k

)
(uνk − u∗k)

∥∥∥
∞

≤
∥∥∥(Ik − Pk (Ik −MGk−1)

(
Bν
k−1

)−1 Rk

)∥∥∥
∞

∥Bν
kS

α1

k ∥∞ ∥uνk − u∗k∥∞

≤
(
C2√
α
h−2
k

)(
C1h

2
k |log hk|

2
)
∥(uνk − u∗k)∥∞

≤
(
C1C2√
α

)
|log hk|2 ∥uνk − u∗k∥∞

□
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4. Numerical Simulation

In this part, we applied this method to the numerical example of a non-linear
variational inequality.
We suppose that the problem to be sufficiently smooth data and we apply the
dynamic programming principle of Bellman, then we solve (3) as we discussed
before, using the following datas:

• Mixed operator 
Bu ≥ f, in Ω = [0, 1]2

⟨Bu− f, u− ψ⟩ = 0,

u ≤ ψ,

u = 0, in ∂Ω.

(25)

Where

Bu = −∆u− 0.02
∂2u

∂x∂y
+ 0.15∂u

∂x + 0.1∂u
∂y + (1 + λ)u,

f = sin(πx) sin(2πy)sin(π(x+ y)) + λu,
λ = 2,
ψ = 0.

We are constrain ourselves to the discretization of finite element method
with a uniform triangulation and P1 shape functions. For the domain, we
have decretized by Matlab PDE toolbox (Matlab R2017b) for mesh gen-
eration. We solve the equation (25) by the M.G with 64 triangle and 41
nodes in the domain. This numerical illustration is performed to showcase
the high efficiency of the M.G method. For the pre/post-smoothing of the
M.G, we choose the Gauss-Seidel (G.S) method. The degrees of freedom
chooses lower than 5 ( recursion number of M.G method). Figure 1 illus-
trates the convergence behaviour of the M.G solver (green and red curves of
M.G (V and W cycle)) with respect to the number of iterations performed.
For comparison, the convergence behavior of Gauss-Seidel ( blue curves)
are included.

Norm of residual obtained after 100 iterations :

by Gauss Seidel method by multi-grid V-cycle by multi-grid W-cycle
4.058087199609872e−12 4.440892098500626e−16 4.440892098500626e−16

We have applied the Matlab-backslash-operator(M.B.O), G.S and the M.G
(V and W-cycle) are carried out on the finest grid (41 grids) and on the
coarsest one (4 nodes) then we get the solutions in figures 2.

Norm of residual obtained after 20 iterations :

by Gauss Seidel method by multi-grid V-cycle by multi-grid W-cycle
0.001165086612534 4.440892098500626e−16 4.440892098500626e−16



230 N. E. H. NESBA, M. BEGGAS

Figure 1. Comparison between the convergence of maximum
residual norm by M.G and G.S.

• Simple operator
Bu ≥ f, in Ω = [0, 1]2

⟨Bu− f, u− ψ⟩ = 0,

u ≤ ψ,

u = 0, in ∂Ω.

(26)

Where

Bu = −∆u+ 0.5x
∂u

∂x
+ 0.5y ∂u

∂y + (0.045 + λ)u,

f = sin(2πx) sin(2πy) + λu,
λ = 1,
ψ = 0.

With the same steps,we have:
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Figure 2. Solution of (25) on fine grid using M.B.O, G.S, M.G
V-cycle and W-cycle after 100 iterations.

Figure 3. Comparison between the convergence of maximum
residual norm by M.G and G.S.
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Norm of residual obtained after 100 iterations :
by Gauss Seidel method by multi-grid V-cycle by multi-grid W-cycle
1.076361222374089e−11 2.220446049250313e−16 2.220446049250313e−16

Figure 4. Solution of (26) on fine grid using M.B.O, G.S, M.G
V-cycle and W-cycle after 100 iterations.

Norm of residual obtained after 10 iterations :
by Gauss Seidel method by multi-grid V-cycle by multi-grid W-cycle

0.020709274936256 4.884981308350689e−15 2.220446049250313e−16

Remark 1. Should we conduct more than 10 iterations, the M.G approach emerges
as the optimal method.

4.1. Conclusion. Discretizing elliptic V.I. via efficient iterative solutions is the
main focus of our study, employing algebraic M.G. The goal is to tackle loop do-
mains’ discretization using adaptive finite element approximation. Once discretiza-
tion is complete, we successfully apply M.G to address the discrete problems at
hand. Our main objective is to establish uniform convergence through our ap-
proach, and our research demonstrates the M.G’s significant reduction in iteration
count compared to the maximum norm method.
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By means of numerical experimentation, we have constructed an example of a vari-
ational inequality. Our results indicate that the G.S. method, despite a substantial
number of iterations, is unsuccessful in producing satisfactory outcomes. On the
other hand, through the use of an error-damping mechanism that reduces high-
frequency errors and transfers low-frequency errors to a coarser grid for alleviation,
M.G. significantly enhances convergence and achieves it within a limited number of
iterations. Our team recognizes the exceptional potential for further development
using these methodologies.
Our numerical solution could be even more efficient and scalable if we explore the
prospect of applying a parallel full M.G to surmount unconstrained elliptical in-
equalities. This avenue presents an interesting opportunity to cater to a broader
range of problem domains.
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Abstract. This article is set to push new boundaries with leading-edge in-

novations in statistical distribution for generating up-to-the-minute contem-

porary distributions by a mixture of the second record value of the Gompertz
distribution and the classical Gompertz model (weighted Gompertz model)

using T-X characterization, especially used for two-sided schemes that provide
an accurate model. The quantile, ordinary, and complete moments, order sta-

tistics, probability, and moments generating functions, entropies, probability

weighted moments, Lin’s condition random variable, reliability in multicompo-
nent stress strength system, reversed, and moments of residuals life and other

reliability characteristics in engineering, actuarial, economics, and environmen-

tal technology were derived in their closed form. To investigate and test the
flexibility, viability, tractability, and performance of the proposed Weighted

Gompertz-G (WGG) generated model, the shapes of some sub-models of the

WGG model were examined. The shapes of the sub-models indicated J-shapes,
increasing, decreasing, and bathtub hazard rate functions. The maximum like-

lihood estimation of the WGG-generated model parameters was examined.

An illustration with simulation and real-life data analysis indicated that the
WGG-generated model provides consistently better goodness-of-fit statistics

than some competitive models in the literature.

1. Introduction

Modeling real-life data set requires a distribution that has a true reflection of the
character of that data. However, to unravel the interest of some important Poisson
scenarios, a parsimonious statistical distribution is required. Hence, new statistical
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models are often introduced to harness salient factors responsive for good decision
making.

Oftentimes, change-point models are characterized by abrupt behavioural struc-
tures that may be very complicated to handle by the usual classical statistical
distributions. These events are but not limited to macroeconomic events charac-
terized by abrupt increases interest rates and inflation. The abrupt behavioural
shift might also be the case in extreme events like the storm and rainfall events
that have ravaged some countries in recent time. The advent of the novel epidemic
COVID 19 is also not exempted. Another example is the lifetime scenario that
are subjected to unexpected and rapid shocks. Hence, this study is proposed to
deal with such change-point by constructing an appropriate weighted generated dis-
tribution called Weighted Gompertz-G (WGG) distribution that can address the
differentials. Though the method of generating new distribution is not new, using
the weighted generator concept to generate new models is a new approach targeted
at change-point problems. Thus, this article will use the weighted Gompertz gener-
ator approach to generate new continuous distributions that are more flexible, and
viable in their goodness-of-fit test statistics.

The Gompertz model has played a vital role in modeling scenarios that deal with
survival times, reliability, human mortality, and actuarial data with exponential in-
crease outcomes. Thus, it has received considerable attention from demographers,
economics, and actuaries. This includes [13], and [12] who proposed the shifted
Gompertz-G and alpha power Teissier distributions. A flexible alpha power Gom-
pertz distribution was proposed in [14]. [27] emphasised on some applications of
the Gompertz distribution in Poisson process. A negative rate of aging parameter
with Gompertz distribution was proposed in [22]. [8] proposed the Teissier distribu-
tion. [16] proposed the Marshall-Olkin Teissier distribution. The gamma–Gompertz
distribution was proposed in [29]. [15] developed the alpha power Marshall-Olkin-G
model. [23]developed the Topp-Leone Gompertz distribution with application to
glass data. The reliability properties and applications of the alpha power Topp-
Leone-G distribution was considered in [17]. However, some researches have been
contributed to generating newer classical statistical distributions include [5] and [2]
who proposed exponentiated T-X and T-X family of distributions. The type I
half-logistic family of distributions proposed by [10]. The beta and generalized
gamma-generated distributions by [30]. A tetration distribution developed by [11].
Odd Truncated Inverse Exponential Weibull Exponential by [1]. [24] proposed a
New Member from the T-X Family of distribution. A New Odd Log-Logistic Lind-
ley Distribution was proposed in [3]. The Bivariate Lack-of-Memory Distributions
was developed in [21]. [20] proposed the U family of distributions. A new estended
Weibull distribution was developed in [26]. [18] proposed the alpha power Teissier-
G Distribution and its Applications in reliability analysis. Exponentiated Gumbel
Weibull Logistic model was developed in [25]. Weighted Weibull-G was introduced
by [19].
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Let T be a nonnegative random variable with a probability density function (pdf)
f(t) such that for a suppose t > 0, weight function w(t) = β + exp(βt) − 1 ,and

expectation E[w(t)] = βλ+1
λ . Then, [7] defined the pdf and cumulative distribution

function (cdf) F (t) of the weighted Gompertz distribution as

f(t) =
βλ2

(1 + βλ)
(β − 1 + eβt)e(βt−λ(eβt−1), t > 0 β , λ > 0, (1)

and

F (t) = 1−
[
1 +

λ(eβt − 1)

(1 + βλ)

]
e−λ(eβt−1), t > 0 β , λ > 0, (2)

with λ and β as the shape and scale parameters.
Modeling abrupt behavioural structure and scenarios has become more com-

plicated as a result of their change-point. Though the method of generating new
distribution is not new, using the weighted generator concept to generate new mod-
els is a new approach. Hence, this study is motivated to propose a model with a
true reflection of the character of the data obtained. Thus, the WGG generated
model tends to improve the goodness-of-fit, and the test statistics of the existing
distributional models using weighted distribution characterization.

The study aim at introducing a class of generator with the aid of the weighted
Gompertz model called the weighted Gompertz generator. This generated model
will improve the performance, flexibility and the viability of the goodness-of-fit of
the abrupt behaviourial change-point scenarios in lifetime modeling.

2. The Weighted Gompertz-G Distribution

Suppose a nonnegative random variable T is defined on the interval T ∈ [m,n]
for −∞ < m < n < ∞ with pdf r(G(t)) such that r(G(t)) = − log[1 − G(t)] is
monotonically non-decreasing; r(G(t)) is closed in the interval [m,n]; and r(G(t))
approaches m as t tends to negative infinity, and r(G(t)) approaches n as t tends
to positive infinity. Thus, by [4] the cdf and the pdf of the WGG generated class
of distribution can be expressed as

F (t) = 1−
[
1 +

λ[(1−G(t))−β − 1]

1 + βλ

]
e−λ[(1−G(t))−β−1] t > 0, λ, β > 0, (3)

and

f(t) =
λ2β

(1 + βλ)(1−G(t))(1+β)
g(t)((1−G(t))−β + β − 1)e−λ[(1−G(t))−β−1], (4)

for t > 0, λ, β > 0, where g(t), and G(t) are the parents pdf and cdf.
The WGG generated reliability model can be expressed as

SWGG(t) =

[
1 +

λ[(1−G(t))−β − 1]

1 + βλ

]
e−λ[(1−G(t))−β−1] t > 0, λ, β > 0. (5)
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The hazard rate function that corresponds to the WGG generated model is defined
as

hWGG(t) =

λ2β
(1+βλ)(1−G(t))(1+β) g(t)((1−G(t))−β + β − 1)[

1 + λ[(1−G(t))−β−1]
1+βλ

] t > 0, λ, β > 0. (6)

The reversed hazard rate function is obtained as

rWGG(t) =

λ2β
(1+βλ)(1−G(t))(1+β) g(t)((1−G(t))−β + β − 1)e−λ[(1−G(t))−β−1]

1−
[
1 + λ[(1−G(t))−β−1]

1+βλ

]
e−λ[(1−G(t))−β−1]

, (7)

for t > 0, λ, β > 0.
The cumulative hazard rate function of the WGG generated function is give as:

HWGG(t) = log(1+βλ)−log([1+βλ]+λ[(1−G(t))−β−1])+λ([1−G(t)]−β−1). (8)

3. The Quantile Function

Quantile is fundamental for the simulation and estimation of a distribution pa-
rameter(s). Hence, it is a function that associates the probability distribution
function of the WGG generated model of a random variable T such that the prob-
ability of the variable being less than or equal to that value equals the probability
for a uniform interval q ∈ (0, 1) is defined as

t = G−1

[
1−

[
W−1((q − 1)(1 + βλ)e(1+βλ))− (1 + βλ)

λ
+ 1

]− 1
β
]
, (9)

where W−1 is the Lambert-W or omega function as defined in [13] and [16] such
that W (t) = e(W (t)) = t ∈ [−1,∞).

In particular, the median is obtained when q = 0.5.

Theorem 1. The shape, characteristics, and behaviour of the WGG generated
model can be examined by investigating the first and second derivatives of the log
of the WGG generated pdf model. Thus, for f ′(t) < 0. Then, then cdf F (t) will
be decreasing monotonically for all values of t. The WGG generated model will be
bimodal if f ′′(t) changes its signs from negative to non-negative, viz-a-viz.

Proof. The log f(t) is give as

log f(t) =2 log λ+ log β − log(1 + βλ) + log g(t)− (1 + βλ) log(1−G(t))

+ log([1−G(t)]−β + β − 1)− λ([1−G(t)]−β − 1).

Thus, taking the derivative with respect to the variable,we have

∂ log f(t)

∂t
=
g′(t)

g(t)
+ (1 + βλ)

g(t)

S(t)
+
βg(t)S−β−1(t)

Sβ(t) + β − 1
− λg(t)S−β−1(t),

where S(t) = 1−G(t). Hence, f ′(t) < 0 if g(t) < 0.
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The second derivative was implemented to determine if the model was bimodal.
Thus, the second derivative is given as

∂2 log f(t)

∂t2
=
g′′(t)

g(t)
− 1

g′(t)
+ (1 + βλ)[

g′(t)

S(t)
+
g2(t)

S2(t)
]− λg′(t)

S(β+1)(t)

+ λ(1 + βλ)
g2(t)

S(β+2)(t)
+
βg′(t)S−β−1(t)

Sβ(t) + β − 1

+β(β + 1)
g2(t)S−(β+2)(t)

Sβ(t) + β − 1
+
β2g2(t)S−2(β+1)(t)

(Sβ(t) + β − 1)2
.

□

4. Order statistics

Order statistics are useful tools to improve the robustness of sampling plans by
variables, and shorten test times of Poisson processes.

Let T(1), T(2), T(3), . . . , T(k) be the order statistics for a random variable T1, T2, T3, . . . , Tk
with WGG distribution. Then, the WGG density of the uth order statistics is given
as

fu(t) =
k!

(u− 1)!(k − u)!
Fu−1(t)Sk−u(t)f(t) −∞ < t <∞. (10)

However, using the binomial expansion, and noting that S = 1−G(t), we have the
order statistics as

fu(t) =
βλ2S−(β+1)k!

(u− 1)!(k − u)!
(S−β + β − 1)

u−1∑
j=0

(−1)u−j−1

(
u− 1

j

)

×
[
(1 + βλ) + λ(S−β − 1)

]k+j−u+1

e−λ(S−β−1)(k+j−u+1).

(11)

The minimum order statistics is obtained when u = 1, and the maximum order
statistics is obtained when u = k respectively.

4.1. Record value distributions of the WWG model. Let Ti for i = 1, 2, 3, . . . , k
be a finite sequence of independently identically distributed random variables with
WGG generated cdf F (t) and a record times given as U(1) = 1 and U(k + 1) =
min{j > U(k); Tj > Tu(k)}; k ∈ N with the random variable Tu(k) (k ∈ N) as the
upper record values. Then, the pdf of the i upper record value URi = Tu(k) with a
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special case of UR1 = T1 is given as

fURi
(t) =

f(t)

Γ(i)
{− log[1− F (t)]}i−1

=
λ2βg(t)((1−G(t))−β + β − 1)e−λ[(1−G(t))−β−1]

(1 + βλ)(1−G(t))(1+β)Γ(i)

×
{
− log

[[
1 +

λ[(1−G(t))−β − 1]

1 + βλ

]
e−λ[(1−G(t))−β−1]

]}i−1

(12)

5. Sub-models

Some special sub-models were considered for flexibility, viability, and tractability
using the proposed WGG generated model. We present some special cases of the
WGG generated family of distributions since it extends several useful distributions
in the literature. For all cases listed next, we consider t, λ, β > 0. Especially sub-
models with increasing, decreasing shaped data with or without a flat region in
modeling. These special sub-models include Burr-XII, Lomax, and Frechet distri-
butions.

5.1. Weighted Gompertz-G Burr-XII (WGG-B) distribution. Consider the
Burr XII distribution with positive parameters θ and ρ, and cdf and pdf given as
G(t) = 1 − (1 + tθ)−ρ and g(t) = θρtθ−1(1 + tθ)−ρ−1 . Then, inserting these
expressions into Equations (3) and (4) gives the WGG-B density function with the
cdf and pdf given as

F (t) = 1−
[
1 +

λ[(1 + tθ)βρ − 1]

1 + βλ

]
e−λ[(1+tθ)βρ−1], t > 0, λ, β, θ, ρ > 0, (13)

and

f(t) =
λ2β(1 + tθ)ρ(1+β)

(1 + βλ)
((1 + tθ)βρ + β − 1)e−λ[(1+tθ)βρ−1]

×θρtθ−1(1 + tθ)−ρ−1, t > 0, λ, β, θ, ρ > 0.

(14)

Plots of the WGG-B density function for the selected parameter values are dis-
played in Figure 1a. Figure 1b displays the corresponding hazard rate function
(hrfs) for particular values of the parameters. The shapes of the hazard rate func-
tion indicated increasing, and decreasing.

5.2. Weighted Gompertz-G Lomax (WGG-L) distribution. Consider the
Lomax distribution with positive shape parameters θ and scale parameter ρ, and
cdf and pdf given as G(t) = 1 − (1 + t

ρ )
−ρ and g(t) = θ

ρ [1 + t
ρ ]

−(θ+1) . Then,

inserting these expressions into Equations (3) and (4) gives the WGG-L density
function with the cdf and pdf given as
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Figure 1. The plots WGG-B model for selected values of parameters

F (t) = 1−
[
1 +

λ[(1 + t
ρ )

βρ − 1]

1 + βλ

]
e−λ[(1+ t

ρ )
βρ−1], t > 0, λ, β, θ, ρ > 0, (15)

and

f(t) =
λ2β(1 + t

ρ )
ρ(1+β)

(1 + βλ)
((1 +

t

ρ
)βρ + β − 1)e−λ[(1+ t

ρ )
βρ−1],

×θ
ρ
[1 +

t

ρ
]−(θ+1), t > 0, λ, β, θ, ρ > 0.

(16)

Plots of the WGG-L density function for the selected parameter values are dis-
played in Figure 2a. Figure 2b displays the corresponding hrfs for some particular
values of the parameters. The shapes of the hazard rate function indicated increas-
ing, and decreasing.

5.3. Weighted Gompertz-G Frechet (WGG-F) distribution. Consider the
Frechet distribution with positive shape parameters θ and scale parameter ρ, and

cdf and pdf given as G(t) = e−( θ
t )

ρ

and g(t) = ρθρt−ρ−1e−( θ
t )

ρ

. Then, inserting
these expressions into Equations (3) and (4) gives the WGG-F density function
with the cdf and pdf given as
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F (t) = 1−
[
1 +

λ[(1− e−( θ
t )

ρ

)−β − 1]

1 + βλ

]
e−λ[(1−e−( θ

t
)ρ )−β−1], t > 0, λ, β, θ, ρ > 0,

(17)
and

f(t) =
λ2β

(1 + βλ)(1− e−( θ
t )

ρ
)(1+β)

((1− e−( θ
t )

ρ

)−β + β − 1)e−λ[(1−e−( θ
t
)ρ )−β−1]

×ρθρt−ρ−1e−( θ
t )

ρ

, t > 0, λ, β, θ, ρ > 0.

(18)

Plots of the WGG-F density function for the selected parameter values are dis-
played in Figure 3a. Figure 3b displays the corresponding hrfs for some particular
values of the parameters. The shapes of the hazard rate function indicated an
increase.

6. Mathematical Expression

To examine the productivity of the WGG generated model, mathematical ex-
pansion of the pdf and cdf is carried out. The exponential term in (3) and (4) can
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be expressed as

e−λ((1−G(t))−β−1) =

∞∑
w=0

(−1)wλw((1−G(t))−β − 1)w

w!
.

Also, by binomial expansion, we have

((1−G(t))−β − 1)w =

w∑
u=0

(−1)w−u

(
w

u

)
(1−G(t))−uβ .

Hence, the WGG generated pdf can be expressed as power function as

f(t) =
∞∑

i,w=0

w∑
u=0

αµ(i,w,u)g(t)G
i(t), (19)

where

α =
Γ(uβ + 2β + i+ 1)

Γ(uβ + 2β + 1)
+ (β − 1)

Γ(uβ + β + i+ 1)

Γ(uβ + β + 1)
,

and

µ(i,w,u) = (−1)2w−u+i

(
w

u

)
λw+2

i!w!

β

(1 + βλ)
,

where Γ(·) is a gamma function.
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7. Statistical Properties

The viability and performance of the proposed model will be investigated by
examining some general statistical properties of the WGG generated model in this
section.

Oftentimes, the expectation, variance, and moments of random variables can be
obtained from some characteristics of the distribution function. Some of these func-
tions are the probability generating function and the moment generating function.

Lin’s condition random variable The Lin’s function for a pdf f of a random
variable T with a support t > 0 is defined as

Lf(t) = −tf
′(t)

f(t)
= −t

∞∑
i,w=0

w∑
u=0

αµ(i,w,u)

ig2(t)Gi−1(t) + g′(t)Gi(t)

g(t)Gi(t)
.

Incomplete moments
The incomplete moments of the WGG generated model allow the shape of the

moments of WGG generated distribution, which is of interest for many areas, in-
cluding econometrics, finance, and reliability, to be visible.

The kth incomplete moment, say τk(t) of the WGG generated moment is given
as

τk(y) =

∞∑
i,w=0

w∑
u=0

αµ(i,w,u)ηk,i(y),

where ηk,i =
∫ y

0
tkg(t)Gi(t)dt.

Probability generating function
This is a useful mechanism for characterizing the distribution of the random

variable T with the WGG generated model. It can succinctly be used to describe the
sequence of the probability of the random variable T with the WGG distribution.
Hence, a random variable T with a WGG distribution has the probability generating
function defined as

P (z) =

∞∑
i,w=0

w∑
u=0

∫ ∞

0

ztαµ(i,w,u)g(t)G
i(t)dt

=

∞∑
i,w,a=0

w∑
u=0

(log z)aαµ(i,w,u)

a!

∫ ∞

0

tag(t)Gi(t)dt

=

∞∑
i,w,a=0

w∑
u=0

(log z)aαµ(i,w,u)

a!
p(z),

(20)

where

p(z) =

∫ ∞

0

tag(t)Gi(t)dt |z| ≤ 1.

Moment generating function
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The probability density function of the random variable T can be identified
using the moment generating function instrument. This is, however, possible since
the moment generating function is a non-negative integral of measurable function.
Thus, for a random variable T with a WGG distribution, the moment generating
function is given as

MT (z) =

∞∑
i,w=0

w∑
u=0

∫ ∞

0

eztαµ(i,w,u)g(t)G
i(t)dt

=

∞∑
i,w,a=0

w∑
u=0

zaαµ(i,w,u)

a!

∫ ∞

0

tag(t)Gi(t)dt

=

∞∑
i,w,a=0

w∑
u=0

zaαµ(i,w,u)

a!
p(z)

(21)

Probability weighted moments
One of the widely used characteristics of a distribution is called L-moments or

probability weighted moments. This characteristic is used in hydrology to estimate
the parameters of flood distributions. This might be because it is less sensitive to
outliers, lower sampling variability, and fast convergence to asymptotic normality.
The shape of the WGG generated probability distribution can also be summarized
using the L-moments. Thus, L-moments are defined as:

Pwm(w, v) =

∫ ∞

0

twF v(t)f(t)dt. (22)

However, F v can be expressed as

F v =

∞∑
i,w=0

w+p∑
u=0

v∑
p=0

(−1)2w+v+i−u

(
v

p

)(
w + p

u

)
λw+ppwΓ(kβ + i)

w!i!Γ(kβ)(1 + βλ)p
Gi(t)

where Γ(·) is a gamma function. Hence, L-moments is given as

Pwm(w, v) =

∞∑
i,w=0

w+p∑
u=0

v∑
p=0

R(i,w,u,p)αµ(i,w,u)Ti (23)

where

Ti =

∫ ∞

0

twg(t)G2i(t)dt

and

R(i,w,u,p) = (−1)2w+v+i−u

(
v

p

)(
w + p

u

)
λw+ppwΓ(kβ + i)

w!i!Γ(kβ)(1 + βλ)p
.

Entropies
The heterogeneity or impurity of the target variable of Poisson process can be

measured by the amount of uncertainty associated in the value of a random variable.
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Thus, the Shannon entropy of WGG generated random variable T is defined as

Se(T ) = E

[
−

∞∑
i,w=0

w∑
u=0

(
logµ(i,w,u) + log µ+ log g(t) + i logG(t)

)]
(24)

The Renyi entropy is a measure that increasingly weighs all WGG generated
random events with nonzero probability. As θ approaches zero, the WGG generated
Renyi entropy is given as

Rθ =
1

(1− θ)
log

∫ ∞

0

fθ(t)dt θ > 0, θ ̸= 0. (25)

This implies

Rθ =
1

(1− θ)
log

∫ ∞

0

( ∞∑
i,w=0

w∑
u=0

µ(i,w,u)αg(t)G
i(t)

)θ

dt

=
1

(1− θ)
log

[( ∞∑
i,w=0

w∑
u=0

µ(i,w,u)α

)θ ∫ ∞

0

g(t)θGi(t)θ
]
dt

=
1

(1− θ)
log

[( ∞∑
i,w=0

w∑
u=0

µ(i,w,u)αDi

)θ]
,

(26)

where

Di =

∫ ∞

0

g(t)Gi(t)dt. i = 1, 2, 3, . . .

Moment of the residual In reliability theory, and life testing scenarios, the addi-
tional lifetime a process or a product that a component or chain has survived up to
time t is called the vitality function or residual life function or truncated moment.
It can also be used to obtain the distribution function F (t). Thus, the kth moment
of the residual life defined as Mrs(x) = E[(T − x)k | T ≥ t]. Hence, it is expressed
as

Mrs(x) =
1

1− F (x)

∫ ∞

x

(T − x)kf(t)dt =
1

1− F (x)

k∑
a=1

(−1)k−axk−a

∫ ∞

x

taf(t)dt

=
α

1− F (x)

∞∑
i,w=0

w∑
u=0

k∑
a=1

(−1)k−axk−aµ(i,w,u)ℑi,

(27)

where

ℑi =

∫ ∞

x

tag(t)Gi(t)dt.

Theorem 2. Let T be a random variable with a WGG generated probability distri-
bution function F (t). Let S(t) = 1−F (t) and Mk(y) = E[(T −y)k | T > y], y ≥ 0.
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Then,

M ′
k(y) + kMk(y)

Mk(y)
=
M ′

k−1(y) + (k − 1)Mk−1(y)

Mk−1(y)
or

equivalently,

M ′
k−1(y) = −(k − 1)M ′

k−2(y) +
M ′

k(y)

Mk(y)
Mk−1(y) +

kM2
k−1(y)

Mk(y)
.

Proof. Let

Mk(y) =
1

S(y)

∫ ∞

y

k(t− y)k−1S(t)dt.

Then,

logMk(y) = log

∫ ∞

y

k(t− y)k−1S(t)dt− logS(y).

Thus, differentiating with respect to y, we have

M ′
k(y)

Mk(y)
=

∫∞
y

−k(k − 1)(t− y)k−2S(t)dt∫∞
y
k(t− y)k−1S(t)dt

− S′(y)

S(y)
=

−kMk−1(y)

Mk(y)
− S′(y)

S(y)
.

Hence,

M ′
k(y) + kMk−1(y)

Mk(y)
= −S

′(y)

S(y)
=
M ′

k−1(y) + (k − 2)Mk−2(y)

Mk−1(y)
.

□

8. Parameter Estimation

It is intuitive to note that the parameters of the WGG generated model are
descriptive measures of the entire population that determine the shape and location
of the curve on the plot of the WGG generated distribution. Hence, for a better
forecasting and regression analysis of the proposed WGG model to be efficient,
there is a need to obtain the parameter estimates of the WGG generated model.
Thus, in this section, the parameters of the WGG generated model are estimated
using the maximum likelihood estimation (MLE) method.

8.1. Maximum Likelihood. Let T = (T1, T2, . . . , Tk) be a random sample ob-
tained from the WGG generated distribution with unknown parameter vector Θ =
(β, λ, ψ)T . Let t = (t1, t2, . . . , tk) be a sample value of a random sample T. Then,
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we can obtain the log-likelihood as

ℓ =2k log λ+ k log β +

k∑
a=1

log g(ta, ψ)− k log(1 + βλ)

− (1 + βλ)

k∑
a=1

log(1−G(ta, ψ)) +

k∑
a=1

log((1−G(ta, ψ))
−β + β − 1)

−
k∑

a=1

λ((1−G(ta, ψ))
−β − 1).

(28)

The parameters of the WGG generated model are obtained by taking the first
partial derivative of the log-likelihood of the WGG model with respect to each of
the parameters and equate to zero. Thus, we have

∂ℓ

∂λ
=

2k

λ
− kβ

1 + βλ
−β

k∑
a=1

log(1−G(ta, ψ))−
k∑

a=1

((1−G(ta, ψ))
−β − 1) = 0, (29)

∂ℓ

∂ψ
=

k∑
a=1

g′(ta, ψ)

g(ta, ψ)
+ β

k∑
a=1

g(ta, ψ)(1−G(ta, ψ))
−β−1

((1−G(ta, ψ))−β + β − 1)

+ (1 + βλ)

k∑
a=1

g(ta, ψ)

1−G(ta, ψ)
− βλ

k∑
a=1

g(ta, ψ)(1−G(ta, ψ))
−β−1 = 0,

(30)

and

∂ℓ

∂β
=
k

β
− λ

k∑
a=1

log(1−G(ta, ψ)) +

k∑
a=1

(1−G(ta, ψ))
−β log(1−G(ta, ψ))

(1−G(ta, ψ))−β + β − 1

− kλ

1 + βλ
− λ

k∑
a=1

(1−G(ta, ψ))
−β log(1−G(ta, ψ)) = 0.

(31)

However, the solutions to the nonlinear equations (29), (30), and (31) are ob-
tained in closed form using numerical methods. These numerical methods are
beyond the scope of this article.

9. Applications

The viability, tractability, and performance of the WGG generated model is ex-
amined by first performing a Monte Carlo simulation of some sub-models of the
proposed model. The real-life applications of some of the sub-models of the pro-
posed model were investigated and compared to some competitive-related models
in the literature. The WGG sub-models were compared with some existing models
based on their mean squared errors in the simulation cases and goodness-of-fit test
statistics in life applications.
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9.1. Simulation study. A Monte Carlo simulation was carried out to test the
flexibility and efficiency of the proposed distribution. The simulation was achieved
using the quantile function in (9) to generate random data for the proposed model
with 0 < q < 1 for various values of λ = 1.0, β = 1.0, θ = 0.2 and ρ = 1.0 for
the Burr XII sub-model. λ = 0.9, β = 2.3, θ = 0.1 and ρ = 0.01 for the Lomax
sub-model, and λ = 0.1, β = 0.1, θ = 0.3 and ρ = 0.8 for the Frechet sub-model for
1000 replicated trials.

The sample size n are taken as n = 5, 10, 20, 50, 100, 150, 200, 250,300, 350, 400, 450,
and 500 The simulation studied the mean estimated (ME), biases, and mean squared
errors (MSE). The result of the simulation is as shown in Table 1. In Table one, we
observed that the biases converge to zero as sample sizes increase. The estimated
mean also converges to the true value as the sample sizes increases. The mean
square errors converge to zero.

The bias is obtained for (W = λ, β, θ, ρ) as

ˆBiasW =
1

1000

1000∑
i=1

(
Ŵi −W

)
.

Also, the MSE is obtained as

ˆMSEW =
1

1000

1000∑
i=1

(
Ŵi −W

)2

.

9.2. Life applications. In most cases of statistical modeling, the interest is to
estimate the model parameters and evaluate their test statistics goodness-of-fit.
Thus, in this section, the viability, tractability, and effectiveness of the proposed
model is investigated with the illustration of real-life data sets. The measures of
the test statistics’ goodness-of-fit were examined with some existing neighbourhood
models in the literature. These models in the literature include, but are not limited
to, the class of Weibull, Gompertz, Kumaraswamy, and Frechet distributions. The
test statistics considered include the Akaike information criterion (AIC), Anderson-
Darling (A), Cramer-von Mises (W), Kolmogrov-Smirnov (KS), and p-value (p-val).
The larger the p-value and the smaller the test statistics the better the model fits
the data.

9.2.1. Obesity Data. The first data consist of 22 obesity among children and adoles-
cents aged 12-19 by selected characteristics: United States, selected between 2015
- 2018 as reported by [9]. The data are available in https://www.cdc.gov/nchs/hus
/contents.htm-Table-027. The data were measured based on height and weight.
The data are as follows:

18.9,15.1,23.1,9.8,25.7,26.9,19.8,16.0,19.2,12.0,28.0,29.2,
17.9,14.2,27.0,7.4,23.3,24.6,23.9,21.7,18.4,10.6.
The descriptive statistics of the data are given in Table 2.
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Table 1. The mean estimates (ME), biases and mean squared
errors (MSE) for λ, β, θ and ρ with WGG generated sub-models

Distribution Parameters n ME Bias MSE
Burr XII 05 1.0602 0.8288 0.1762 1.0033 0.3603 0.3288 0.8306 0.7033 0.3597 0.1811 0.6907 0.6271

10 1.1340 0.8115 0.1718 0.9558 0.3592 0.3157 0.2286 0.6779 0.3544 0.1581 0.6873 0.5358
20 1.1951 0.7708 0.1694 0.9466 0.3592 0.3157 0.1285 0.6740 0.3474 0.1303 0.1871 0.5326

λ = 1.0 50 1.1601 0.7416 0.1715 0.9556 0.2284 0.1115 0.1283 0.0667 0.3349 0.1255 0.0370 0.5226
100 1.0615 0.7558 0.1724 0.9740 0.1244 0.0192 0.1283 0.0648 0.1345 0.0240 0.0269 0.4176

β = 1.0 150 1.0219 0.7796 0.1714 0.9648 0.1159 0.0178 0.1282 0.0582 0.0400 0.0221 0.0269 0.3150
200 0.9716 0.7961 0.1717 0.9779 0.1089 0.0130 0.0278 0.0575 0.0331 0.0211 0.0261 0.2107

θ = 0.2 250 0.9756 0.7893 0.1729 0.9582 0.0181 0.0101 0.0176 0.0418 0.0317 0.0180 0.0256 0.1012
300 0.9397 0.8078 0.1722 0.9667 0.0028 0.0098 0.0173 0.0406 0.0259 0.0164 0.0152 0.0196

ρ = 1.0 350 0.9408 0.8157 0.1717 0.9575 0.0021 0.0096 0.0101 0.0466 0.0158 0.0149 0.0148 0.0190
400 0.9408 0.8157 0.1717 0.9575 0.0010 0.0078 0.0062 0.0298 0.0028 0.0142 0.0134 0.0106
450 0.9841 0.8092 0.1727 0.9269 0.0001 0.0058 0.0058 0.0269 0.0009 0.0084 0.0127 0.0094
500 0.9911 0.8030 0.1742 0.9152 0.0001 0.0016 0.0038 0.0152 0.0006 0.0063 0.0101 0.0092

Lomax 05 1.0055 2.1054 0.0956 0.0143 0.7055 0.4735 1.3044 0.0918 0.7714 0.4765 1.3050 0.0919
10 0.9631 2.1852 0.0959 0.0109 0.6631 0.4724 1.3041 0.0917 0.7078 0.4740 1.3046 0.0917
20 0.9085 2.2429 0.0963 0.0098 0.6085 0.4718 1.3037 0.0916 0.6287 0.4727 1.3042 0.0917

λ = 0.9 50 0.8801 2.2735 0.0951 0.0084 0.6071 0.1010 1.3049 0.0416 0.1091 0.1720 0.1043 0.0216
100 0.8806 2.2724 0.0958 0.0082 0.0232 0.0208 0.0142 0.0391 0.0254 0.0420 0.0138 0.0116

β = 2.3 150 0.8870 2.2708 0.0977 0.0083 0.0196 0.0192 0.0123 0.0313 0.0238 0.0300 0.0125 0.0113
200 0.8870 2.2718 0.0991 0.0084 0.0133 0.0184 0.0109 0.0212 0.0147 0.0292 0.0114 0.0112

θ = 0.1 250 0.8896 2.2710 0.0987 0.0084 0.0132 0.0181 0.0093 0.0211 0.0136 0.0198 0.0111 0.0111
300 0.8962 2.2692 0.1010 0.0087 0.0096 0.0173 0.0082 0.0210 0.0122 0.0180 0.0092 0.0110

ρ = 0.01 350 0.8993 2.2684 0.1020 0.0088 0.0070 0.0159 0.0080 0.0199 0.0100 0.0166 0.0082 0.0109
400 0.9016 2.2681 0.1028 0.0089 0.0030 0.0129 0.0072 0.0195 0.0097 0.0121 0.0073 0.0098
450 0.9002 2.2673 0.1014 0.0090 0.0006 0.0057 0.0066 0.0191 0.0055 0.0089 0.0067 0.0094
500 0.9001 2.2659 0.1005 0.0091 0.0001 0.0054 0.0055 0.0157 0.0038 0.0075 0.0056 0.0069

Frechet 05 0.0488 0.3418 0.0439 1.0031 0.1515 0.4418 0.1193 0.8031 0.1978 0.6305 0.1201 0.9035
10 0.0485 0.3282 0.0472 0.9886 0.1512 0.4282 0.1191 0.7886 0.1899 0.6233 0.1195 0.8846
20 0.0556 0.2775 0.0467 0.9320 0.1444 0.3775 0.1185 0.7320 0.1740 0.5772 0.1193 0.8254

λ = 0.1 50 0.0830 0.1931 0.0453 0.8610 0.1170 0.2931 0.1183 0.0610 0.1355 0.2597 0.1189 0.1302
100 0.0973 0.1332 0.0384 0.8298 0.1027 0.2332 0.1175 0.0435 0.0227 0.0289 0.0188 0.0141

β = 0.1 150 0.1020 0.1129 0.0352 0.8287 0.0980 0.2129 0.1174 0.0423 0.0205 0.0269 0.0182 0.0113
200 0.1054 0.1054 0.0334 0.8234 0.0946 0.2024 0.1166 0.0402 0.0191 0.0225 0.0179 0.0104

θ = 0.3 250 0.1069 0.1046 0.0326 0.8244 0.0935 0.1976 0.1148 0.0368 0.0177 0.0138 0.0176 0.0094
300 0.1084 0.1036 0.0325 0.8352 0.0916 0.2036 0.1116 0.0352 0.0154 0.0131 0.0167 0.0083

λ = 0.8 350 0.1102 0.1024 0.0317 0.8068 0.0898 0.2024 0.1061 0.0298 0.0124 0.0110 0.0160 0.0074
400 0.1041 0.1016 0.0315 0.8012 0.0889 0.2036 0.1047 0.0287 0.0113 0.0102 0.0153 0.0066
450 0.1021 0.1014 0.0309 0.8003 0.0879 0.2037 0.1033 0.0244 0.0100 0.0099 0.0137 0.0053
500 0.1006 0.1007 0.0307 0.8005 0.0874 0.2034 0.1028 0.0234 0.0092 0.0091 0.0127 0.0029

Table 2. The Descriptive statistics of obesity among children and
adolescents data set to 2 decimal points

Mean Median σ IQR Variance Kurtosis Skewness 25% 75% 99%
19.67 19.50 6.30 9.10 39.66 -1.12 -0.29 15.33 24.43 28.95

We observed from Table 2 that the a negative kurtosis and skewness were ob-
tained. This implies that the distribution of the obesity data is flatter than a
normal curve with the same mean and standard deviation. Hence, the data are left
skewed.
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Table 3 shows the test statistics of the goodness-of-fit measure of comparison
adopted for comprehensive comparison.

Table 3: The goodness-of-fit measure of obesity among children
and adolescents data set (standard errors in parentheses)

Distribution p-value AIC KS W A Estimates

WGG-B 0.9997 97.9173 0.0219 0.0012 0.0528 λ̂ = 0.2201(0.1022)

β̂ = 1.2315(0.0898)
ρ̂ = 0.0872(0.0098)

θ̂ = 0.2124(0.0252)

WGG-L 0.9390 102.3145 0.1071 0.0278 0.2021 λ̂ = 0.0075(0.0020)

β̂ = 1.2912(0.0125)
ρ̂ = 0.1142(0.0967)

θ̂ = 0.8494(0.3254)

WGG-F 0.9324 109.8906 0.2095 0.0452 0.3183 λ̂ = 0.0022(0.0004)

β̂ = 2.4857(0.8351)
ρ̂ = 0.8792(0.2743)

θ̂ = 1.0516(0.2778)
KB 0.7640 153.2259 0.1356 0.0811 0.5349 α̂ = 33.4661(17.9125)

β̂ = 47.4488(46.2083)
ρ̂ = 0.0331(1.8429)

θ̂ = 21.8947(7.1942)
KL 0.6961 154.7281 0.1443 0.1006 0.6475 α̂ = 14.5201(14.8943)

β̂ = 1.3267(1.7158)
ρ̂ = 0.0079(0.0030)

θ̂ = 20.3753(16.9103)
KF 0.7788 152.0259 0.1336 0.0642 0.4347 α̂ = 5.1639(6.2917)

β̂ = 166.4803(246.7566)
ρ̂ = 0.6187(0.1771)

θ̂ = 20.9740(34.9274)
KW 0.6844 147.3603 0.0915 0.0194 0.1346 α̂ = 0.2099(0.2886)

β̂ = 1.1818(1.3944)
ρ̂ = 0.0356(0.0084)

θ̂ = 12.5159(17.5384)
APG 0.6866 147.2333 0.0901 0.0296 0.2029 α̂ = 1.8905(2.7086)

β̂ = 0.0051(0.0037)
ρ̂ = 0.1627(0.0287)

GB 0.2511 156.8906 0.2095 0.0452 0.3183 α̂ = 0.0022(0.0004)

β̂ = 2.4857(0.8351)
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Table 3 – Continued from previous page

Distribution p-value AIC KS W A Estimates

ρ̂ = 0.8792(0.2743)

θ̂ = 1.0516(0.2778)
GF 0.5457 148.5009 0.1055 0.0249 0.1808 α̂ = 0.7959(3.4859)

β̂ = 6.7388(13.2331)
ρ̂ = 1.0350(0.8096)

θ̂ = 27.6166(54.6914)
GL 0.5390 149.3145 0.1071 0.0278 0.2021 α̂ = 0.0075(0.0080)

β̂ = 6.2912(4.8123)
ρ̂ = 0.1142(0.0967)

θ̂ = 0.8494(0.7254)
WL 0.4568 146.4643 0.1024 0.0245 0.1779 α̂ = 1.0199(2.1532)

β̂ = 7.5745(3.4940)
ρ̂ = 31.1218(20.4511)

θ̂ = 5.2402(0.7263)
WF 0.8703 149.7794 0.1203 0.0348 0.2507 α̂ = 0.0413(0.2325)

β̂ = 7.7834(2.0028)
ρ̂ = 7.7834(8.9362)

θ̂ = 3.4925(4.9272)
WB 0.7543 149.9324 0.1228 0.0371 0.2652 α̂ = 0.0073(0.0079)

β̂ = 6.9216(3.2352)
ρ̂ = 0.3107(0.5863)

θ̂ = 1.1514(2.4617)
GE 0.4868 147.0767 0.0900 0.0284 0.1958 α̂ = 0.0093(0.0111)

β̂ = 0.5355(0.6937)
ρ̂ = 0.3373(0.4140)

GW 0.6824 148.0124 0.0926 0.0226 0.1569 α̂ = 0.0335(0.1008)

β̂ = 0.0745(0.1903)
ρ̂ = 0.1381(0.1830)

θ̂ = 2.4173(0.3935)
TF 0.5892 149.5043 0.0883 0.0293 0.2053 α̂ = 0.0086(0.0091)

β̂ = 0.3939(2.0093)
ρ̂ = 0.6124(1.6391)

θ̂ = −0.0118(0.0251)

Figure 5 shows the empirical histogram and cdfs of the obesity real-life data
applications.

9.2.2. Precipitations in Karachi city, Pakistan Data. The second data examined
comprises 59 annual maximum precipitations in Karachi city, Pakistan, for the
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Figure 4. The Empirical densities and cdfs of obesity among chil-
dren and adolescents data set

years 1950-2009 as used in [6]. The precipitation records help water management
studies and flood defense systems to predict floods and droughts. The precipitation
data also help to minimize the risk of large hydraulic structures. The values of the
data are:

11.8, 6.5, 54.9, 39.9, 16.8, 30.2, 38.4, 76.9, 73.4, 117.6, 157.7, 148.6, 11.4, 5.6,
63.6, 62.4, 85, 256.3, 24.9, 148.6, 160.5, 131.3, 77, 155.2, 217.2, 105.5, 166.8, 157.9,
73.6, 291.4, , 30, 270.4, 160, 96.3, 185.7, 429.3, 184.9, 262.5, 80.6, 138.2, 28, 39.3,
210.3, 315.7, 107.7, 33.3, 302.6, 159.1, 78.7, 33.2, 52.2, 92.7,150.4, 43.7, 68.3, 20.8,
179.4, 245.7, 19.5.

The descriptive statistics of the data are given in Table 4.

Table 4. The Descriptive statistics of annual maximum precipi-
tations in Karachi city, Pakistan data set to 2 decimal points

Mean Median σ IQR Variance Kurtosis Skewness 25% 75% 99%
118.40 92.70 93.21 120.65 8688.99 0.64 0.99 39.60 160.25 363.41

We observed from Table 4 that the a positive kurtosis and skewness indicated
that distribution is peaked and possesses thick tails, and most values are clustered
around the left tail of the distribution while the right tail of the distribution is
longer.
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Table 5: The goodness-of-fit measure of maximum precipitations
in Karachi city, Pakistan data set (standard errors in parentheses)

Distribution p-value AIC KS W A Estimates

WGG-B 0.9470 383.7050 0.0961 0.0454 0.2577 λ̂ = 0.0951(0.1763)

β̂ = 1.2401(0.1875)
ρ̂ = 1.7186(0.2943)

θ̂ = 1.9784(0.6677)

WGG-L 0.9376 391.7440 0.0968 0.0461 0.2616 λ̂ = 0.1689(0.0778)

β̂ = 1.2239(0.0682)
ρ̂ = 1.0199(0.0332)

θ̂ = 1.5536(0.0941)

WGG-F 0.8617 401.1031 0.0989 0.0688 0.3093 λ̂ = 1.4858(0.4944)

β̂ = 1.2023(0.7353)
ρ̂ = 1.1434(0.1052)

θ̂ = 1.3496(0.9372)
KB 0.2911 691.8905 0.1276 0.1372 0.8463 α̂ = 8.3342(2.2157)

β̂ = 56.1819(92.7683)
ρ̂ = 0.0182(0.0000)

θ̂ = 11.1408(1.0780)
KL 0.4207 687.9069 0.1145 0.0848 0.4997 α̂ = 1.7166(0.2951)

β̂ = 3.3847(2.8572)
ρ̂ = 0.0040(0.0010)

θ̂ = 1.5341(1.0421)
KF 0.3786 687.6918 0.1185 0.0883 0.5257 α̂ = 6.8464(2.1692)

β̂ = 161.821(229.22)
ρ̂ = 0.2188(0.0564)

θ̂ = 30.025(31.898)
KW 0.7467 684.7171 0.0883 0.0467 0.2692 α̂ = 0.8755(0.4893)

β̂ = 0.5662(0.6176)
ρ̂ = 0.0112(0.0098)

θ̂ = 1.3454(0.3905)
APG 0.8959 682.9092 0.0748 0.0438 0.2641 α̂ = 1.5772(2.1911)

β̂ = 0.0073(0.0040)
ρ̂ = 0.0023(0.0022)

GB 0.6326 684.8519 0.0972 0.0491 0.2803 α̂ = 0.0075(0.0045)

β̂ = 2.7856(1.9958)
ρ̂ = 0.3543(0.3103)

θ̂ = 1.2401(0.9676)
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Table 5 – Continued from previous page

Distribution p-value AIC KS W A Estimates

GF 0.6774 683.6124 0.0937 0.0435 0.2460 α̂ = 0.1587(0.4962)

β̂ = 1.8235(2.5702)
ρ̂ = 0.7248(0.7488)

θ̂ = 22.8034(61.9942)
GL 0.7704 685.1274 0.0864 0.0488 0.2849 α̂ = 0.1380(2.0119)

β̂ = 1.7962(38.1464)
ρ̂ = 0.0437(0.3829)

θ̂ = 0.7748(16.8750)
WF 0.7042 681.9136 0.0916 0.0434 0.2462 α̂ = 0.0358(0.0180)

β̂ = 0.2947(0.1467)
ρ̂ = 4.1927(2.0935)

θ̂ = 8.6209(1.7749)
WB 0.5757 684.6917 0.1016 0.0519 0.2954 α̂ = 0.0073(0.0049)

β̂ = 2.4377(1.0282)
ρ̂ = 0.4476(0.4885)

θ̂ = 0.9901(1.3096)
WL 0.1985 751.7122 0.1398 0.0730 0.4267 α̂ = 3.6920(0.7601)

β̂ = 0.0923(0.0253)
ρ̂ = 0.6424(0.0600)

θ̂ = 0.1421(0.5247)
GE 0.3220 682.9042 0.0717 0.0420 0.2562 α̂ = 0.0857(0.0178)

β̂ = 0.0438(0.0473)
ρ̂ = 0.0707(0.6964)

GW 0.4824 687.6262 0.0604 0.0582 0.3764 α̂ = 0.0341(0.0082)

β̂ = 0.0787(0.0160)
ρ̂ = 0.3342(0.0000)

θ̂ = 0.7105(0.0072)
TF 0.3617 701.1031 0.1201 0.2688 1.6393 α̂ = 28.4858(29.4944)

β̂ = 31.2023(13.7353)
ρ̂ = 1.1434(0.1052)

θ̂ = 0.9372(4.2815)

Figure 6 shows the empirical histogram and cdfs of the obesity real-life data
applications.

9.3. Discussion. In Tables 3 and 5, we observed that the p-values of the WGG
generated models are the highest with the lowest AIC test statistic in Burr XII,
Lomax, and Frechet sub-models. Hence, the WGG model has provided a better
alternative to making statistical distributions more flexible, and viable compared
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Figure 5. The Empirical densities and cdfs of maximum precipi-
tations in Karachi city, Pakistan data set

to the model generated by Gompertz, Weibull, Kumaraswamy, and Alpha power
models.

10. Conclusion

Intuitively, a two-parameter weighted Gompertz-G generated distribution was
examined and introduced by making use of a weighted Gompertz and the T-X
characterizations. The newly developed model has found its uses in cases where
two-sided abrupt changes schemes occurred in applications. The WGG model has
provided a better alternative to making statistical distributions more flexible, and
viable compared to the model generated by Gompertz, Weibull, Kumaraswamy,
and Alpha power models. The statistical properties and estimations of the model
parameters were obtained. The viability and flexibility of the WGG-generated
model were demonstrated by illustration of a simulation and real data sets using
their goodness-of-fit statistics. The outcomes of the WGG-generated test statistics
indicated a better viable, tractable, flexible, and parsimonious generator compared
to some competitive models in the literature. Hence, it can be used as a better
alternative in reliability theory and extreme value theory.

Author Contribution Statements The authors contributed equally to this
paper. All authors read and approved this paper’s final form.

Declaration of Competing Interests The authors wish to state clearly that
there is no conflict of interest.



WGG GENERATED DISTRIBUTION 257

References

[1] Abd-AL-Motalib, R. S., Abed AL-Kadim, K., The odd truncated inverse exponential Weibull
exponential distribution, Journal of Positive School Psychology , 6(2) (2022), 5361-5375.

[2] Aljarrah, M. A., Lee, C., Famoye, F., On generating T-X family of distributions using

quantile functions, Journal of Statistical Distributions and Applications, 1(1) (2014), 1-17.
https://doi.org/10.1186/2195-5832-1-2

[3] Alizadeh, M., Altun, E., Ozel, G., Afshari, M., Eftekharian, A., A new odd log-logistic

Lindley distribution with properties and applications, Sankhya A, 81 (2019), 323-346.
https://doi.org/10.1007/s13171-018-0142-x

[4] Alzaatreh, A., Famoye, F., Lee, C., A new method for generating families of continuous
distributions, Metron, 71 (2013), 63-79. https://doi.org/10.1007/s40300-013-0007-y

[5] Alzaghal, A., Famoye, F., Lee, C., Exponentiated T-X family of distributions with

some applications, International Journal of Statistics and Probability, 2(3) (2013), 31–49.
https://doi.org/10.5539/ijsp.v2n3p31

[6] Arshad, M. Z., Iqbal, M. Z., Mutairi, A. A., A comprehensive review of datasets for statistical

research in probability and quality control, Journal of Mathematical and Computational
Science, 11(3) (2021), 3663-3728. https://doi.org/10.28919/jmcs/5692

[7] Bakouch, S. H., Ahmed, M. T., El-Bar, A., A new weighted Gompertz distribution

with applications to reliability data, Applications of Mathematics, 3 (2017), 269–296.
https://doi.org/10.21136/AM.2017.0277-16

[8] Bemmaor, A. C., Modelling the Diffusion of New Durable Goods: Word-of-mouth Ef-

fect Versus Consumer Heterogeneity: In G. Laurent, G.L. Lilien, B. Pras eds., Re-
search 98Traditions in Marketing. Boston, Kluwer Academic Publishers, 1, 201-229, 1992.

https://doi.org/10.1007/978-94-011-1402-8-6
[9] CDC, Obesity among children and adolescelent between the aged 2- 19 years by selected

characteristics, https://www.cdc.gov/nchs/hus/contents.htm-Table-027, (2020).

[10] Cordeiro, G. M., Alizadeh, M., Diniz Marinho, P. R., The type I half-logistic family of
distributions, Journal of Statistical Computation and Simulation, 86(4) (2016), 707-728.

https://doi.org/10.1080/00949655.2015.1031233

[11] Dijoux, Y., Construction of the tetration distribution based on the continuous iteration of the
exponential-minus-one function, Applied Stochastic Models in Business and Industry, (2020),

1-26. https://doi.org/10.1002/asmb.2538

[12] Eghwerido, J. T., The alpha power Teissier distribution and its applications, Afr. Stat., 16(2)
(2021), 2731-2745. http://dx.doi.org/10.16929/as/2021.2731.181

[13] Eghwerido, J. T., Agu, F. I., The shifted Gompertz-G family of distributions: properties, and

applications, Mathematica Slovaca, 71(5) (2021a), 1291-1308. http://dx.doi.org/10.1515/ms-
2021-0053

[14] Eghwerido, J. T., Nzei, L. C, Agu, F. I., Alpha power Gompertz distribution: properties

and applications, Sankhya A - The Indian Journal of Statistics, 83(1) (2021b), 449-475.
http://dx.doi.org/10.1007/s13171-020-00198-0

[15] Eghwerido, J. T., Oguntunde, P. E., Agu, F. I., The alpha power Marshall-Olkin-G
family of distributions: properties, and applications, Sankhya A, 85 (2023), 172-197.

http://dx.doi.org/10.1007/s13171-020.00235-y
[16] Eghwerido, J. T., The Marshall-Olkin Teissier generated model for lifetime data, Jour-

nal of the Belarusian State University: Mathematics and Informatics, 1 (2022), 46-65.

https://doi.org/10.33581/2520-6508-2022-1-46-65

[17] Eghwerido, J. T., Agu, F. I., The statistical properties and applications
of the alpha power Topp-Leone-G distribution, Heliyon, 8(6) (2020a), 1-10.

https://doi.org/10.1016/j.heliyon.2022.e09775



258 J. T. EGHWERIDO, L. C. NZEI

[18] Eghwerido, J. T., Agu, F. I., The alpha power Muth-G distribution and its applications in

survival and reliability analyses, Mathematica Slovaca, 73(6) (2023), 1-18.

[19] Hassana, A. S., Shawkia, A. W., Muhammeda, A. H., Weighted Weibull-G family of distribu-
tions: theory and application in the analysis of renewable energy sources,Journal of Positive

School Psychology, 6(3) (2022), 9201-9216.

[20] Jamal, F., Chesneau, C., Saboor, A., Aslam, M., Tahir, M. H., Mashwani, W. K., The U
family of distributions: properties and applications, Mathematica Slovaca, 72(1) (2022), 217-

240. https://doi.org/10.1515/ms-2022-0015

[21] Lin, G. D., Dou, X., Kuriki, S., The bivariate lack-of-memory distributions, Sankhya A, 81
(2019), 273-297. https://doi.org/10.1007/s13171-017-0119-1

[22] Marshall, A., Olkin, I., Life Distributions. Structure of Nonparametric, Semiparametric, and

Parametric Families. Springer Series in Statistics, Springer, New York, 2007.
[23] Nzei, L. C., Eghwerido, J. T., Ekhosuehi, N., Topp-Leone Gompertz distribu-

tion: properties and application, Journal of Data Science, 18(4) (2020), 782-794.
https://doi.org/10.6339/JDS.202010-18(4)-0012

[24] Osatohanmwen, P., Oyegue, F. O., Ogbonmwan, S. M., A new member from the T-X family

of distributions: the Gumbel-Burr XII distribution and its properties, Sankhya A, 81 (2019),
298-322. https://doi.org/10.1007/s13171-017-0110-x

[25] Osatohanmwen, P., Efe-Eyefia, E., Oyegue, F. O., Osemwenkhae, J. E., Ogbonmwan, S.

M., Afere, B. A., The exponentiated Gumbel-Weibull(logistic) distributions with applica-
tion to Nigeria’s COVID-19 infections data, Annal of Data Science, 9 (2022), 909-943.

https://doi.org/10.1007/s40745-022-00373-0

[26] Peng, X., Yan, Z., Estimation and application for a new extendedWeibull distribution, Reliab.
Eng. Syst. Saf., 121 (2014), 34-42. https://doi.org/10.1016/j.ress.2013.07.007

[27] Pollard, J. H., Valkovics, E. J., The Gompertz distribution and its applications, Genus, 48

(1992), 15-28. https://doi.org/10.2307/29789100
[28] Rastogi, M. K., Merovci, F., Bayesian estimation for parameters and reliability characteristic

of the Weibull Rayleigh distribution, Journal of King Saud University-Science, 30 (2018),
472-478. https://doi.org/10.1016/j.jksus.2017.05.008

[29] Shama,M. S., Dey, S., Altun, E., Afify, A. Z., The gamma–Gompertz distribution: the-

ory and applications, Mathematics and Computers in Simulation, 193 (2022), 689-712.
https://doi.org/10.1016/j.matcom.2021.10.024

[30] Zografos, K., Balakrishnan, N., On families of beta and generalized gamma-generated

distributions and associated inference, Statistical Methodology, 6(4) (2009), 344–362.
https://doi.org/10.1016/j.stamet.2008.12.003



Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 73, Number 1, Pages 259–273 (2024)
DOI:10.31801/cfsuasmas.1316623
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received:June 19, 2023; Accepted: October 6, 2023

FRACTIONAL APPROACH FOR DIRAC OPERATOR

INVOLVING M-TRUNCATED DERIVATIVE

Ahu ERCAN

Department of Mathematics, Firat University, 23119 Elazig, TÜRKİYE

Abstract. In this study, we examine the basic spectral information for sys-

tems governed by the Dirac equation with distinct boundary conditions, uti-

lizing a modified form of local derivatives known as M-truncated derivative
(MTD). The spectral information discussed includes the representation of so-

lutions in the form of integral equations, the asymptotics vector-valued eigen-

functions and eigenvalues, and their normalized forms, all within the context of
the MTD method that incorporates truncated Mittag-Leffler functions. This

type of MTD provides the features of integer-order operator theory. Also, by

virtue of the parameters α and γ , we analyze and compare the solutions with
graphs in terms of different potentials, different eigenvalues and different or-

ders. Thus, the aim of this article is to consider spectral structure of Dirac
system in frame of M-truncated derivative by proping with visual analysis.

1. Introduction

Studies related to several types of differential equations are always attracted by
scientists. Because the differential equations have the speciality to model more com-
plex natural systems. Also, the main advantage of fractional derivatives is that it
allows us to achieve better results in modeling. Many fractional integral and deriva-
tives like Liouville-Caputo, Riemann-Liouville, Hilfer, Atangana-Baleanu, Caputo-
Fabrizio, etc. has been introduced and studied by scientists in [4, 12, 13, 28]. In
recently, Khalil et al. has described the local derivative, which is also referred
to as the conformable derivative depending on the basic limit definitions of the
derivative firstly in [20]. The conformable derivative is very useful in applied math-
ematics because it shows parallel features to the ordinary derivative like quotient
of two functions and the derivative of the product. Also it enables changing of
order between 0 < α ≤ 1. Because of this reason, many scientists have applied this
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derivative to their studies like [1–3,5, 6, 8, 9, 16–18,20]. Proportional α− derivative
has similar features with conformable derivative but it differs in its limit definition
which presented by Katugampola [19] . It was studied in [6, 7]. In recently, M-
fractional derivative containing a Mittag-Leffler function with one parameter has
been introduced by Sousa and Oliveira in [25–27]. Benefiting from the definition
of these four local derivatives as mentioned above, M-truncated derivative is intro-
duced by Sousa and Oliveira in [25] and it represents a generalization of the other
four local derivatives because of the additional parameter inside definition. All
other definitions of local derivative such as Katugampola, M-truncated derivative
are adaptations of conformable derivative. In these derivatives, basic formulas such
as quotient of two function, derivative of the product, chain rule, Leibniz rule etc.
shares similarities with conformable derivatives. Spectral analysis of M-truncated
derivative for Sturm-Liouville problem and some applications containing truncated
Mittag- Leffler function are studied in [24,29–31].

Dirac equation has a big importance in the modern field of atomic physics.
The deepest meaning of the Dirac equation was that any relative definition of a
particle necessarily includes not only the wave function of a single particle, but also
multiple wave functions representing the potential of other particles. Dirac equation
systems have applications in many branches of science like electrical engineering,
mathematics and physics. New applications of conclusions and opinions from this
topic shed light on future problems such as inverse problems of spectral theory. A
first-order matrix linear differential equation whose solution is a 4-component wave
function (a spinor) is so important in physics and mathematics [10,14,15].

Let L be a matrix operator defined by(
V (x) +m 0

0 V (x)−m

)
where V (x) is a potential function,m is the mass of a particle and y (x) denote a two

component vector function y (x) =

(
y1 (x)
y2 (x)

)
. Then let’s consider the equation(

B
d

dx
+ L− λI

)
y = 0

where λ is a parameter and

B =

(
0 1
−1 0

)
, I =

(
1 0
0 1

)
is equivalent to a system

dy2 (x, λ)

dx
+ (V (x) +m) y1 (x, λ) = λy1 (x, λ) ,

−dy1 (x, λ)
dx

+ (V (x)−m) y2 (x, λ) = λy2 (x, λ) .
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The basic analysis of the spectral structure for the Dirac operator means that
finding asymptotic behaviors of the eigenvalues, the vector-valued eigenfunctions
and the norming constants and showing the reality of the eigenvalues and the or-
togonality of the eigen-vector-functions, etc. This type of analysis is called a direct
problem. In this article, the reality of the eigenvalues, and the orthogonality of
the eigenfunctions have been shown and the asymptotic formulas for the eigenval-
ues, eigen-vector-functions, the normalized eigen-vector-functions and the norming
constants have been obtained in terms of M-truncated derivative for Dirac system
having separated boundary conditions. The studies on the direct and inverse eigen-
value problems can be viewed from [11, 21–23]. Basic spectral features of linear
differential operators including conformable derivatives, which inspired our work,
were studied by [2,3,5,6,25]. Authors have established an existence and uniqueness
theorem for a conformable fractional Dirac system in study [2]. Also they have ad-
dresses the existence of a spectral function for a singular conformable Dirac system
in [3]. The M-truncated derivative can be employed in studies related to eigenvalue
problems and spectral analysis. It is particularly beneficial in such analyses related
to Dirac operators based on fractional derivatives. Our primary reason for selecting
this particular local derivative is its inclusivity of other local derivatives, owing to
the presence of an additional parameter associated with the Mittag-Leffler func-
tion. Differing from the literature, our results are more comprehensive compared
to other local derivatives due to the presence of the parameter associated with the
Mittag-Leffler function.

The layout of this research is presented in the following way: in section 2, we
present to definitions and fundamental properties of MTD. In section 3, the spectral
structure of Dirac system is studied. This main part of our study involves the reality
of the eigenvalues, the orthogonality of the eigenvector-functions, and asymptotic
formulas for the vector-valued eigen-functions, the eigenvalues, the norming con-
stants and their normalized forms. Section 4 prerents detailed discussion about
simulation anaysis by supporting with the graphs for different values of α, γ and λ.
In part 5, the remarks of main results close the paper.

2. Preliminaries

In this part, we assign some necessary definitions, theorems and lemmas related
to MTD.

Definition 1. [25] The concept of the truncated Mittag-Leffler function with a
single parameter is introduced through,

iEγ (z) =

i∑
k=0

zk

Γ (γk + 1)
. (1)
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Definition 2. [25] Let f : [0,∞) → R be a function for t > 0, then MTD of f with
order 0 < α ≤ 1 is defined by

iT
α,γ
M f (t) = lim

ε→0

f (tiEγ (εt
−α))− f (t)

ε
(2)

where iEγ (.) is the truncated Mittag-Leffler function defined in (1) for γ > 0.

Definition 3. [25] The M- integral is defined as follows

(MI
α,γ
a f) (τ) =

τ∫
a

f (t) dα,γt = Γ (γ + 1)

τ∫
a

f (t)

t1−α
dt

where γ > 0, α ∈ (0, 1], and f is defined in (a, τ ] .

Lemma 1. [25] Let α ∈ (0, 1] , γ > 0 and f, g be α−differentiable at a point t > 0.
Then,

1. iT
α,γ
M (af + bg) = aiT

α,γ
M f + biT

α,γ
M (g) for a, b ∈ R;

2. iT
α,γ
M (tn) = ntn−α for all n ∈ R;

3. iT
α,γ
M (fg) = fiT

α,γ
M (g) + giT

α,γ
M (f) ;

4. iT
α,γ
M

(
f

g

)
=
giT

α,γ
M (f)− fiT

α,γ
M (g)

g2
;

5. iT
α,γ
M (c) = 0, c is a constant;

6. iT
α,γ
M (fog) (t) = f ′ (g (t))i T

α,γ
M g (t) , for f is differentiable at g (t);

7. If f is differentiable, thus iT
α,γ
M (f) (t) = t1−α

Γ(γ+1)
df(t)
dt .

Theorem 1. Assume that f ,g : [a, b] → R and fg is differentiable. Then, we have

Γ (γ + 1)

b∫
a

sα−1f (s)i T
α,γ
M g (s) ds = f (t) g (t)|ba−Γ (γ + 1)

b∫
a

sα−1g (s)i T
α,γ
M f (s) ds.

The L2
α,γ (0, π) is a Hilbert space with inner product

(y, z) =

π∫
0

yT (x, λ1) z (x, λ2) dα,γx,

where yT = (y1, y2) and dα,γx = Γ (γ + 1)xα−1dx.
In the next section, we will analyze the Dirac systems in terms of the MTD and

we are able to obtain general representations of solutions that involve parameters α
and γ. Additionally, using the MTD approach, we can also present asymptotic for-
mulas for eigen-vector-functions and eigenvalues. The general results which found
in main results correspond to classical Dirac systems when α = 1 and γ = 1.
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3. Main Results

Let us consider Dirac system containing M-tuncated derivative as follows:

iT
α,γ
M y2 (x) + p (x) y1 (x) = λy1 (x) , 0 < α ≤ 1, x ∈ [0, π]

− iT
α,γ
M y1 (x) + r (x) y2 (x) = λy2 (x) ,

(3)

where iT
α,γ
M is MTD operator, p (x) and r (x) are continuous and real-valued func-

tions on [0, π] , y (x) is 2α−continuously differentiable on [0, π], iT
α,γ
M y (x) is con-

tinuous on [0, π] . Deal with the system (3) subject to boundary conditions

y1 (0) sin a+ y2 (0) cos a = 0, (4)

y1 (π) sin b+ y2 (π) cos b = 0, (5)

where a and b are real constants.

Let symbolize the solution of (3) by φ (x, λ) =

(
φ1 (x, λ)
φ2 (x, λ)

)
satisfying the

following initial conditions

φ1 (0, λ) = cos a, φ2 (0, λ) = − sin a. (6)

Theorem 2. Let λ1 and λ2 be two distinct eigenvalues of the problem (3)− (5).
Then the corresponding eigen-vector-functions y (x, λ1) and z (x, λ2) are orthogonal
on L2

α,γ (0, π) Hilbert space, that is,

π∫
0

yT (x, λ1) z (x, λ2) dα,γx = 0, λ1 ̸= λ2. (7)

Proof. Since the y (x, λ1) and z (x, λ2) satisfy the system (3), we have

iT
α,γ
M y2 (x, λ1) + p (x) y1 (x, λ1) = λ1y1 (x, λ1) ,

−iT
α,γ
M y1 (x, λ1) + r (x) y2 (x, λ1) = λ1y2 (x, λ1) ,

iT
α,γ
M z2 (x, λ2) + p (x) z1 (x, λ2) = λ2z1 (x, λ2) ,

−iT
α,γ
M z1 (x, λ2) + r (x) z2 (x, λ2) = λ2z2 (x, λ2) .

If we multiply these equations by z1 (x, λ2) , z2 (x, λ2) , −y1 (x, λ1) and −y2 (x, λ1),
respectively, and sum together, we get

(λ1 − λ2) (z1 (x, λ2) y1 (x, λ1) + z2 (x, λ2) y2 (x, λ1))

= iT
α,γ
M {z1 (x, λ2) y2 (x, λ1)− z2 (x, λ2) y1 (x, λ1)} .

Applying the integral MI
α,γ
0 from 0 to π on both side of the last equality, one can

find

(λ1 − λ2)

π∫
0

yT (x, λ1) z (x, λ2) dα,γx = (z1 (x, λ2) y2 (x, λ1)− z2 (x, λ2) y1 (x, λ1))|π0 .
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By virtue of boundary conditions (4) and (5) , one can obtain

(λ1 − λ2)

π∫
0

yTλ1
(x) zλ2

(x) dα,γx = 0.

□

Theorem 3. All eigenvalues of the problem defined by (3)− (5) are real.

Proof. Let λ1 = a + ib be an eigenvalue with eigenfunction y (x, λ1). Since p (x)
and r (x) real-valued functions, λ2 = λ̄1 = a − ib is also an eigenvalue with the
eigenfunctions ȳ (x, λ2) . By considering Theorem 2, we have

(
λ− λ̄

) π∫
0

yT (x, λ1) ȳ (x, λ2) dα,γx = 0,

(
λ− λ̄

) π∫
0

{
y21 (x, λ1) + y22 (x, λ1)

}
dα,γx = 0,

and since y(x) ̸= 0 , we have λ = λ̄. □

Theorem 4. The solution of the system (3) satisfying the initial conditions (6)
provides the following integral equation system,

φ1 (x, λ) = cos

(
λΓ (γ + 1)xα

α
− a

)
−

x∫
0

sin

(
λΓ (γ + 1)

(
tα − xα

α

))
p (t)φ1 (t, λ) dα,γt

+

x∫
0

cos

(
λΓ (γ + 1)

(
tα − xα

α

))
r (t)φ2 (t, λ) dα,γt, (8)

φ2 (x, λ) = sin

(
λΓ (γ + 1)xα

α
− a

)
−

x∫
0

cos

(
λΓ (γ + 1)

(
tα − xα

α

))
p (t)φ1 (t, λ) dα,γt

−
x∫

0

sin

(
λΓ (γ + 1)

(
tα − xα

α

))
r (t)φ2 (t, λ) dα,γt. (9)

Proof. By using the variation of parameters method given in [17], we express the
representation of the solutions as follow:

φ1 (x, λ) = −c1 (x) y1 (x) + c2 (x) y2 (x)

φ2 (x, λ) = c1 (x) y2 (x) + c2 (x) y1 (x)
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where

c1 (x) = −
x∫

0

(p (t) y1 (t)φ1 (t, λ)− r (t) y2 (t)φ2 (t, λ)) dα,γt+ c1,

c2 (x) =

x∫
0

(p (t) y1 (t)φ2 (t, λ) + r (t) y2 (t)φ1 (t, λ)) dα,γt+ c2,

y1 (x) = sin
λΓ (γ + 1)xα

α
and y2 (x) = cos

λΓ (γ + 1)xα

α
.

If we benefit from the initial conditions (6), it can be easily seen (8) and (9). □

Theorem 5. As |λ| → ∞, the estimates are provided as follows:

φ1 (x, λ) = cos (ξ (x, λ)− a) +O

(
1

λ

)
, (10)

φ2 (x, λ) = sin (ξ (x, λ)− a) +O

(
1

λ

)
, (11)

∂φ1 (x, λ)

∂λ
= −Γ (γ + 1)

xα

α
sin (ξ (x, λ)− a) +O (1) , (12)

∂φ2 (x, λ)

∂λ
= Γ (γ + 1)

xα

α
cos (ξ (x, λ)− a) +O (1) , (13)

for 0 ≤ x ≤ π where

ξ (x, λ) =
λΓ (γ + 1)

α
xα +

1

2

x∫
0

(p (t) + r (t)) dα,γt. (14)

Proof. Let us introduce by φ (x, λ) the solution of the system (3) satisfying the
initial conditions (6). If the problem (3), (6) is considered for p (x) = r (x) ≡ 0, the
solution of this problem stand for ψ (x, λ) . Therby, one can easily obtain that

ψ1 (x, λ) = cos

(
λΓ (γ + 1)

α
xα − a

)
, (15)

ψ2 (x, λ) = sin

(
λΓ (γ + 1)

α
xα − a

)
. (16)

If the solution of the problem (3), (6) is applied to the transformation matrix
operator, we have [22]

φ (x, λ) = R (x)ψ (x, λ) +

x∫
0

K (x, s)ψ (s, λ) da,γs (17)
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in here R (x) and K (x, s) are matrices of second-order that can be continuously
differentiated twice,

R (x) =

(
γ (x) β (x)
−β (x) γ (x)

)
(18)

and γ (x) and β (x) can be computed as below:

γ (x) = cos

1

2

x∫
0

(p (t) + r (t)) dα,γt

 ,

β (x) = − sin

1

2

x∫
0

(p (t) + r (t)) dα,γt

 ,

for κ = 1. Thereby considering by (17) and (18), we find the formulas

φ1 (x, λ) = cos (ξ (x, λ)− a) +
x∫
0

K11 (x, s) cos
(

λΓ(γ+1)
α sα − a

)
dα,γs

+
x∫
0

K12 (x, s) sin
(

λΓ(γ+1)
α sα − a

)
dα,γs

φ2 (x, λ) = sin (ξ (x, λ)− a) +
x∫
0

K11 (x, s) cos
(

λΓ(γ+1)
α sα − a

)
dα,γs

+
x∫
0

K12 (x, s) sin
(

λΓ(γ+1)
α sα − a

)
dα,γs

(19)

where Kij (x, s) are the components of the matrix K (x, s) for i, j = 1, 2 from (17).
To gain the asymptotics in (10) and (11), it is enough to integrate by parts the
integrals including in (19), because of the differentiability of the functionsKij (x, s) .
In a similar manner, if we differentiate (19) in terms of λ, we obtain the asymptotics
in (12) and (13).

Additionally, we demonstrate the asymptotic behaviors of the eigenvalues using
the MTD approach, enabling us to observe how the formulas change as α and γ
vary.

□

Theorem 6. The eigenvalues of the problem outlined by equations (3) to (5) in
their asymptotic forms are given as follows:

λ±n =
α

Γ (γ + 1)πα
(±nπ + c) +O

(
1

n

)
, (20)

where

c = a− b− 1

2

x∫
0

(p (t) + r (t)) dα,γt.
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Proof. The eigenvalues of the given problem overlap with the roots of the charac-
teristic function

△ (λ) = φ1 (π, λ) sin b+ φ2 (π, λ) cos b.

If we put asymptotics of the eigen-vector-functions φ1 (π, λ) and φ2 (π, λ) from the
estimates (11) into △ (λ) , we obtain

cos (ξ (x, λ)− a) sin b+ sin (ξ (x, λ)− a) cos b+O
(
λ−1

)
= 0.

After some calculation with the aid of trigonometric functions, we reach

sin

(
λΓ (γ + 1)πα

α
+ c

)
+O

(
λ−1

)
= 0. (21)

It is clearly seen that the equation (21), for large |λ|, has solutions in the form

λΓ (γ + 1)πα

α
+ c = nπ + δn,

it is obvious that sinδn = O
(
n−1

)
, i.e. δn = O

(
n−1

)
. Therefore the asymptotic

formula for eigenvalues is obtained in (20). □

Theorem 7. The asymptotic formula for the norming constants is given by

ρn =

√
παΓ (γ + 1)

α
+O

(
1

n

)
.

Proof. By utilizing the asymptotic formula for eigenvalues given in (20), we can
reobtain the asymptotics for eigen-vector-functions as follows:

φ1 (x, λn) = cos (ξn − a) +O
(
n−1

)
(22)

φ2 (x, λn) = sin (ξn − a) +O
(
n−1

)
(23)

where ξ (x, λn) = ξn = λnΓ(γ+1)
α xα + 1

2

x∫
0

(p (t) + r (t)) dα,γt.

To reach at the asymptotic expression for the norming constants, take in con-
sideration the following integral

ρ2n =

π∫
0

{
φ2
1 (x, λn) + φ2

2 (x, λn)
}
dα,γx,

=

π∫
0

{
cos2 (ξn − a)x+ sin2 (ξn − a)

}
dα,γx+O

(
1

n

)
,

=
παΓ (γ + 1)

α
+O

(
1

n

)
.

Hence, the proof is completed. □
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Theorem 8. Asymptotic expression of the normalized vector-valued eigenfunctions
is given in the form,

φ̃ (x, λn) =


√

α

παΓ (γ + 1)
cos (ξn − a) +O

(
n−1

)
√

α

παΓ (γ + 1)
sin (ξn − a) +O

(
n−1

)
 .

Proof. The proof can be easily seen with the help of Theorem 7.
□

4. Illustrative Results

In the current section, the representation of the solutions y1 (x) and y2 (x) for
Dirac equation is offered by means of MTD under different orders of α, different
potentials and different values of λ. If the values of α increases while the value of
γ is constant, Figure 1 (a) and (b) have showed a right-sided shift for the solution
curves. If the values of γ increases while the value of α is constant, Figure 2 (a) and
(b) have showed a smaller right-sided shift in the solutions than Figure 1. Figure 3
demonstrates the acting for the solutions when q = 0, 1, 2, 3. Also, the roots of the
characteristic function are computed detailed under different values of α in Table
1. If one pays attention to Figure 4 (a), (b) and (c), it can be easily seen that the
value of α increases which is equal to 0.1, 0.3, 0.5, respectively, the frequency of
the oscillation interval decreases. That is as the value of α decreases the number of
eigenvalues of considered problem increases. Thereby α is changed the mobility of
the solutions curves increases and it provides important advantage in applications
of spectral analysis. Lastly, in Figure 5 (a) and (b), the graphs of eigenfunctions
corresponding to different eigenvalues were plotted according to the changing the
value of α and γ, respectively. Also Figure 5 (b) shows that eigenfunctions overlap
for different values of γ. The main purpose in drawing graphs with different values
is that one can observe the behavior of representations of solutions curves for Dirac
equation in light of MTD. Also the approximate eigenvalues are given for different
orders of α and γ in Table 1. Assume that a = 1, b = π

4 for all figures.

Table 1. The roots of △ (λ) for x = π

α λ1 λ2
0.1 −0.2945 0.0215

0.3 −0.7028 0.0515

0.5 −0.9316 0.0683

0.7 −1.0374 0.0760

0.9 −1.0609 0.0777

0.99 −1.0527 0.0771

γ λ1 λ2
0.1 −0.8679 0.0636

0.3 −0.9200 0.0674

0.5 −0.9316 0.0683

0.7 −0.9087 0.0666

0.9 −0.8585 0.0629

0.99 −0.8291 0.0607
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Figure 1. Comparative analysis for different orders of α, λ =
10, p(x) = r(x) = 0, γ = 0.5
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Figure 2. Comparative analysis for different orders of γ, λ =
10, p(x) = r(x) = 0, α = 0.5.
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Figure 3. Comparative analysis for different values of the poten-
tials, λ = 10, p(x) = r(x) = q, γ = 0.5, α = 0.5
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Figure 4. Comparisons of the roots of the characteristic function
under different orders, λ = 10, p(x) = r(x) = 0, γ = 0.5
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Figure 5. Comparisons of the eigenfunctions benefit from Table
1 under different order of α and γ
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5. Conclusion

In here, we analyzed spectral structure of Dirac systems which has been studied
by Levitan and Sargsjan [22] for integer order case in light of MTD. For one-
dimensional Dirac operator in sense of MTD, its fundamental spectral theory is
given systematically and behaviours of eigen-vector-functions are observed with
graphics under different orders, potentials and eigenvalues. We obtain the repre-
sentations of the solutions and asymptotics for the norming constants, the eigen-
values, eigen-vector-functions, and the normalized eigen-vector-functions. To gain
these important results, certain calculations like variation of parameters method,
Leibniz rule, and so forth are made in sense of MTD. The most important advan-
tage of MTD is that this definition offers the features of the integer-order calculus.
MTD give us the change to examine derivatives of infinite order . Also, we give
comparative analysis of the solutions by graphs with different orders α and γ, dif-
ferent eigenvalues and different potentials. Thereby, we observe the behaviours of
the mobility of the solutions. Thus, we have supplied a large amount of spectral
theory for the considered problem in terms of MTD.
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Abstract. In this manuscript, the strain wave equation, which plays an im-
portant role in describing different types of wave propagation in microstruc-

tured solids and the (2+1) dimensional Bogoyavlensky Konopelchenko equa-
tion, is defined in fluid mechanics as the interaction of a Riemann wave prop-

agating along the y-axis and a long wave propagating along the x-axis, were

studied. The generalized Kudryashov method (GKM), which is one of the so-
lution methods of partial differential equations, was applied to these equations

for the first time. Thus, a series of solutions of these equations were obtained.

These found solutions were compared with other solutions. It was seen that
these solutions were not shown before and were presented for the first time

in this study. The new solutions of these equations might have been useful

in understanding the phenomena in which waves are governed by these equa-
tions. In addition, 2D and 3D graphs of these solutions were constructed by

assigning certain values and ranges to them.

1. Introduction

Nonlinear evolution equations (NLEEs) have been utilized to make mathematical
models of encountered problems in various scientific circles. A number of solution
methods have been developed by various scientists to solve NLEEs, which have
very important areas of use [1–10]. In this study, one of these methods, GKM, has
been taken into consideration and applied to the strain wave and (2+1)-dimensional
Bogoyavlensky-Konopelchenko (BK) equations.
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Strain wave equation is given as [11]:

utt − uxx − ϵα1(u
2)xx − kα2uxxt + δα3uxxxx

−(δα4 + k2α7)uxxtt + kδ(α5uxxxxt + α6uxxttt) = 0, (1)

where u(x, t) is the micro-strain wave function. ϵ indicates elastic strain, δ shows the
elastic stresses and the rate between the wavelength and size of the microstructure,
k reflects the dissipative effect and α1, α2, α3, α4, α5, α6, α7 are arbitrary constants.
Assuming δ = O(ϵ) on Eq. (1), an equilibration takes place between dispersion
and nonlinearity. If k = 0 is selected in this equation, the undistributed state
of the micro-stress wave is obtained. In this way, the following equation for the
bi-dispersion in microstructured solids is obtained [12–16]:

utt − uxx − ϵ(α1(u
2)xx − α3uxxxx + α4uxxtt) = 0. (2)

Recently, the solutions of strain wave equation investigated by various researchers
with different methods. Seadawy et al. used the modified extended mapping
method for strain wave equation [11]. Ayati et al. applied the functional vari-
able method and Kudryashov method to strain wave equation [12]. Arshad et al.
practiced the modified direct algebraic method to strain wave equation [13]. Gao et
al. used the F-expansion method for strain wave equation [14]. Irshad et al. prac-
ticed the generalized Jacobi elliptic function method to strain wave equation [15].
Kumar et al. used the generalized exponential rational function method for strain
wave equation [16]. Joseph implemented the new rational F-expansion method to
strain wave equation [17].

(2+1)-dimensional BK equation is given as [18]:

uxt + h1uxxxx + h2uxxxy + h3uxxux + h4(uxyux + uxxuy) = 0, (3)

where h1, h2, h3 and h4 are arbitrary constants. If h1 = a, h2 = β, h3 = 6a, h4 = 4β
values are selected for the h1, h2, h3, h4 constants in Eq. (3), Eq. (3) can be written
as.

uxt + αuxxxx + βuxxxy + 6αuxxux + 4βuxyux + 4βuxxuy = 0. (4)

The resulting Eq. (4) is handled as a two-dimensional generalization of the KdV
equation, and under favorable conditions, it can be converted to the KdV equation
[19]. This equation provides the Calogero-Bogoyavlensky-Schiff equation for α = 0
and is also defined as the interplay of a Riemann wave spreading along the y-axis
and a long wave spreading along the x-axis in fluid mechanics [20,21]. For Eq. (4)
uy = vx is transformed and integrated, and the following equation is found:

ut + αuxxx + βvxxx + 3α(ux)
2 + 4βuxvx = 0. (5)

Accordingly, Eq. (4) can be expressed as a system as follows:



276 S. TULUCE DEMIRAY, U. BAYRAKCI, V. YILDIRIM

ut + αuxxx + βvxxx + 3α(ux)
2 + 4βuxvx = 0,

uy = vx. (6)

When looking at the past works on (2+1)-dimensional BK equation. Zhou et al.
gave based on its bilinear form, the N th-order breather solutions of the (2+1)-
dimensional generalized BK equation [21]. Ray got infinitesimal generators of
(2+1)-dimensional BK equation by using Lie group analysis method and inves-
tigated symmetry analysis and similarity reduction of (2+1)-dimensional BK equa-
tion [18,22]. Chen and Ma obtained the symbolic solutions of the (2+1)-dimensional
BK equation that own a Hirota bilinear form [23].

The purpose of this article is to detect soliton solutions of strain wave equation
and (2+1)-dimensional BK equation using GKM [24–27]. First of all, the features of
GKM, which is the method we used in our study, are explained. Subsequently, some
soliton solutions of the strain wave equation and (2+1)-dimensional BK equation
were found using this method.

2. Analysis of the Method

Consider a general nonlinear partial differential equation for a function v that
depends on three variables, as follows:

K(v, vt, vy, vx, vxx, ...) = 0. (7)

Step 1: First, the traveling wave transform is discussed in the following form;

v(x, y, t) = v(η), η = x+ y −mt. (8)

Eq. (7) is transformed into an ordinary differential equation using the transforma-
tions in Eq. (8) as follows:

L(t, y, x, v, v
′
, v

′′
, · · · ) = 0, (9)

where superscripts demonstrate ordinary derivatives according η
Step 2: Assume that the solutions of Eq. (9) are treated as follows:

v(η) =

∑σ
i=0 aiQ

i(η)∑ρ
j=0 bjQ

j(η)
=

P [Q(η)]

S[Q(η)]
, (10)

where Q is 1
1±eη . It is stated that Q is the solution of the following equation

Qη = Q2 −Q. (11)

Step 3: The solution of Eq. (9) is sought according to this method as follows:

v(η) =
a0 + a1Q+ a2Q

2 + · · ·+ aσQ
σ

b0 + b1Q+ b2Q2 + · · ·+ bρQρ
. (12)

The values of σ and ρ in Eq. (10) can be determined through the homogeneous
balance principle. For this, a balance is established between the highest-order
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derivative and the highest-order nonlinear term in Eq. (9).
Step 4: Eq. (10) is inserted into Eq. (9). Thus, a polynomial R(Q) of Q is
obtained. Thereafter all coefficients of R(Q) are set equal to zero, to obtain a
system of algebraic equations. Solving the resulting system determines c and the
coefficients a0, a1, a2, . . . , aσ, b0, b1, b2, . . . , bρ. Finally, the soliton solutions of Eq.
(9) are obtained.

3. Application of GKM to the equations

Example 1. Initially, the following transformation is considered.

u(x, t) = u(η), η = x− ct. (13)

Substituting Eq. (13) into Eq. (2) yields the following equation.

(c2 − 1)u− ϵα1u
2 + ϵ(α3 − c2α4)u

′′ = 0. (14)

If the balance principle is applied to Eq. (14), the following equation is obtained

σ = ρ+ 2

If ρ = 1, then σ = 3. Thus the following equations are found.

u(η) =
a0 + a1Q+ a2Q

2 + a3Q
3

b0 + b1Q
, (15)

u′(η) =
(
Q2 −Q

)
×

[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3
)

(b0 + b1Q)2

]
,

u′′(η) =
(Q2 −Q)(2Q− 1)

(b0 + b1Q)2

×
[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3)]

+
(Q2 −Q)2

(b0 + b1Q)3
[
(2a2 + 6a3Q)(b0 + b1Q)2 − 2b1(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)
]

+
(Q2 −Q)2

(b0 + b1Q)3
[
2b21

(
a0 + a1Q+ a2Q

2 + a3Q
3)] .

The soliton solutions of the strain wave equation are obtained in different cases as
follows;

Case 1.

a0 = 0, a1 =
6b0(α3 − α4)

α1(−1 + ϵα4)
, a3 =

6b1(−α3 + α4)

α1(−1 + ϵα4)
,

a2 =
6(−b0 + b1)(α3 − α4)

α1(−1 + ϵα4)
, c = −

√
−1 + ϵα3√
−1 + ϵα4

.
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By substituting the above equalities into Eq. (15), the following solution of Eq. (2) is
found.

u1(x, t) =
3(α3 − α4)(

1 + cosh
[
x+ t

√
−1+ϵα3√
−1+ϵα4

])
α1(−1 + ϵα4)

. (16)

Figure 1. 3D and 2D plots of u1(x, t) solution.

Case 2.

a0 =
b0(α3 − α4)

α1(1 + ϵα4)
, a1 =

(−6b0 + b1)(α3 − α4)

α1(1 + ϵα4)
,

a2 =
6(b0 − b1)(α3 − α4)

α1(1 + ϵα4)
,

a3 =
6b1(α3 − α4)

α1(1 + ϵα4)
, c =

√
1 + ϵα3√
1 + ϵα4

.

By substituting the above equalities into Eq. (15), the following solution of Eq. (2) is
found.

u2(x, t) =

(
−2 + cosh

[
x− t

√
1+ϵα3√
1+ϵα4

])
(α3 − α4)(

1 + cosh
[
x− t

√
1+ϵα3√
1+ϵα4

])
α1(1 + ϵα4)

. (17)
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Figure 2. 3D and 2D plots of u2(x, t) solution.

Example 2. First, he following transformation is taken into account.

u(x, y, t) = u(η), v(x, y, t) = v(η), η = kx+my − ct. (18)

Substituting Eq. (18) into system (6) yields the following equation.

−cu′ + (αk3 +mβk2)u′′′ + (3αk2 + 4mβk)(u′)2 = 0. (19)

The following equation is obtained by transformation u′ = g in Eq. (19).

−cg + (αk3 +mβk2)g′′ + (3αk2 + 4mβk)g2 = 0. (20)

As a result of applying (18) transformation to this system,
v = m

k
u equality is obtained. If the balance principle is applied to Eq. (20), the following

equation is obtained.

σ = ρ+ 2

If ρ = 1, then σ = 3. Thus the following equations are found.

u(η) =
a0 + a1Q+ a2Q

2 + a3Q
3

b0 + b1Q
, (21)

u′(η) =
(
Q2 −Q

)
×

[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3
)

(b0 + b1Q)2

]
,

u′′(η) =
(Q2 −Q)(2Q− 1)

(b0 + b1Q)2

×
[
(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)− b1
(
a0 + a1Q+ a2Q

2 + a3Q
3)]

+
(Q2 −Q)2

(b0 + b1Q)3
[
(2a2 + 6a3Q)(b0 + b1Q)2 − 2b1(a1 + 2a2Q+ 3a3Q

2)(b0 + b1Q)
]

+
(Q2 −Q)2

(b0 + b1Q)3
[
2b21

(
a0 + a1Q+ a2Q

2 + a3Q
3)] .
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The soliton solutions of the (2+1)-dimensional BK equation are obtained in different
cases as follows;;

Case 1.

a0 = 0, a1 = −a2

6
, a3 = −a2, b0 = 0, c =

k2mβa2

3a2 − 6kb1
,

α = −2mβ (2a2 − 3kb1)

3k (a2 − 2kb1)
.

Replacing the above equations in Eq. (21), the following solution of system (6) is reached.

u1(x, y, t) =
a2

2b1

(
tanh

[
kx

2
+

my

2
− k2mtβa2

6a2 − 12kb1

]
− kx

3
− my

3
+

k2mtβa2

9a2 − 18kb1

)
. (22)

v1(x, y, t) =
ma2

2kb1

(
tanh

[
kx

2
+

my

2
− k2mtβa2

6a2 − 12kb1

]
− kx

3
− my

3
+

k2mtβa2

9a2 − 18kb1

)
.

Figure 3. 3D and 2D plots of u1(x, y, t) solution.

Case 2.

a0 = 0, a1 = −k (kα+mβ) b1
3kα+ 4mβ

, a2 =
6k (kα+mβ) b1

3kα+ 4mβ
,

a3 = −6k (kα+mβ) b1
3kα+ 4mβ

, b0 = 0, c = −k2 (kα+mβ) .

Replacing the above equations in Eq. (21), the following solution of system (6) is reached.

u2(x, y, t) = −
k (kα+mβ)

(
kx+my + k2t (kα+mβ)− 3tanh

[
1
2

(
kx+my + k2t (kα+mβ)

)])
3kα+ 4mβ

(23)

v2(x, y, t) = −
m (kα+mβ)

(
kx+my + k2t (kα+mβ)− 3tanh

[
1
2

(
kx+my + k2t (kα+mβ)

)])
3kα+ 4mβ
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Figure 4. 3D and 2D plots of u2(x, y, t) solution.

4. Results and Discussion

In this study, strain wave and (2+1)-dimensional BK equations are studied. Hyperbolic
solutions for the strain wave equation and dark soliton solutions for the (2+1)-dimensional
BK equation are obtained. When these solutions are compared with previous studies in
the literature, it is seen that the solutions are new and presented for the first time in this
study. The graphical representations of the obtained solutions are made for the following
values.
Figure 1, depicts singular kink soliton for 3D plot of solution (16) for α1 = 2, α3 = 3, α4 =
0.5, ϵ = 4,−25 ≤ x ≤ 25 values with −5 ≤ t ≤ 5 range and 2D plot of solution for t = 2.5
with these values. Figure 2, shows singular kink soliton for 3D plot of solution (17) for
α1 = 1.5, α3 = 2, α4 = 0.2, ϵ = 1.5,−20 ≤ x ≤ 20 values with −4 ≤ t ≤ 4 range and
2D plot of solution for t = 3 with these values. Figure 3, represents soliton solution for
3D plot of solution (22) for a2 = 2, b1 = 1, k = 0.05,m = 1, β = 1, y = 1,−40 ≤ x ≤ 40
values with −3 ≤ t ≤ 3 range and 2D plot of solution for t = 2 with these values. Figure
4, depicts smooth soliton for 3D plot of solution (23) for k = 1,m = 0.2, α = 0.2, β =
0.5, y = 2,−25 ≤ x ≤ 25 values with −5 ≤ t ≤ 5 range and 2D plot of solution for t = 3
with these values.

5. Conclusions

In this study, GKM was considered. GKM was applied to the strain wave equation and
(2+1)-dimensional BK equations. Thus, hyperbolic soliton solutions of the strain wave
equation and dark soliton solutions of the (2+1)-dimensional BK equation were obtained
using this method. These solutions were different from the found solutions in other stud-
ies and were presented for the first time in this study. The accuracy of the results was
confirmed by putting the obtained solutions back into the original equation. The new
solutions of these equations studied could have helped to understand the phenomena in
which waves are governed by these equations. In addition, some special values and inter-
vals were given to the results obtained using Wolfram Mathematic 2D and 3D graphical
representations of the solutions were made.
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The considered method can also be applied to other nonlinear partial differential equa-
tions. The most important advantage of this method is that all solutions are obtained
from a single algebraic equation. This means that it is sufficient to set up a single algo-
rithm and there is no unnecessary computational overhead.
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Abstract. In this paper, we propose to study a SEIR model of fractional
order with an incidence and a treatment function. The incidence and treatment

functions included in the model are general nonlinear functions that satisfy

some meaningful biological hypotheses. Under these hypotheses, it is shown
that the disease free equilibrium point of the proposed model is locally and

globally asymptotically stable when the reproduction number R0 is smaller

than 1. When R0 > 1, it is established that the endemic equilibrium of the
studied system is uniformly asymptotically stable. Finally, some numerical

simulations are provided to illustrate the theory.

1. Introduction

Studying the spread process of infectious diseases has been a very important
and popular topic since outbreaks have serious impacts on the economy, daily lives
and the future. For finding intervention strategies or treatments and reducing the
deaths understanding this mechanism is very important. Mathematical models help
us understand the dynamics of epidemiological diseases and talk about the future of
the epidemics. Until today, a vast number of mathematical models have been devel-
oped for diseases such as rabies, measles, malaria, chickenpox, tuberculosis, cancer,
HIV/AIDS and COVID-19 [1, 7–9, 16, 18, 26, 36–38,40, 46]. When modeling disease
transmission, compartmental models such as SIR (Suscepted-Infected-Recovered),
SIS, SEIR and SEIS models are mostly used in the literature (for more detail,
see [8]). The general idea behind these compartmental models is to divide the total
population into compartments and describe the transfer from one compartment to
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another under some meaningful assumptions [21]. For example, for an SIR model,
the population is divided into three compartments: susceptible individuals S who
are not infected yet, infected individuals I who are infectious and can spread the
disease to the susceptible class and recovered (removed) individuals R who recov-
ered the infection and already gained the immunity.

In epidemic models, incidence functions are used in the transmission progress
between the susceptible population and the infected or exposed population. In lit-
erature, there are different incidence rates and using different incidence rates can
affect the dynamic behaviour of the system [27, 31]. The most common incidence
rates are the bilinear incidence rate βSI [45,50], where β is the average number of
contacts per individual per day, the standard incidence rate βSI/N [14, 25] where
N = S + I + R, the saturated incidence rate βSI/(1 + α1S + α2I) [16, 19] where
α1, α2 are positive constants. Even though it is very hard to fit real data values
in infectious disease transmission, nonlinearity is inevitable in the incidence rates.
These nonlinear incidence rates seem more realistic because they may include sat-
uration effects, heterogeneous mixing populations, environmental factors, media
effects or behavioural changes of individuals, etc. [23]. In 2005, Korobeinikov and
Maini [24] studied the stability properties of infectious disease models with a gen-
eral, arbitrary nonlinear incidence rate f(S, I,N) and obtained the global stability
by constructing a Lyapunov function under a more specific incidence rate of the
form g(I)h(S). Following this work, Korobeinikov studied the global dynamics of
infectious disease models with nonlinear incidence rates in [22] and [23], respectively.
In 2014, Li et al. [27] considered an SIR epidemic model with a nonlinear arbitrary
incidence function f(S, I) and they improved their model by incorporating a time
delay representing the latent period. Recently, in [48], the authors analyzed the
stability of a fractional order SEIR model with general incidence rate F (S)G(I)
and in [20], the authors studied the local and global stability of the disease free
and endemic equilibrium points of a fractional SIR model with a general incidence
function f(S, I).

Treatment is an important strategy to reduce the number of infected people
during outbreaks. Vaccination can be thought one form of treatment to protect
against infection before the outbreak [6]. One of the most efficient methods of
treatment is, of course, hospitalisation, but sometimes the resources of countries are
not adequate as in the COVID-19 pandemic. In mathematical models, to reflect and
analyse the effect of treatment, scientists have incorporated another treatment class
into the SIR model [6,42,47], or they used some treatment functions in the models
[11,15,28]. In 1991, Anderson and May [4] proposed that the treatment function is
proportional to the number of infectious people. Following this work, some different
modified treatment functions are used in order to reflect the treatment capacity of
communities (For further details, see [11,28]).

In recent decades, fractional differential equations (FDEs) have gained great at-
tention in the stability analysis of ecological or epidemiological models. Besides
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FDEs being generalizations of classical differential equations, using FDEs in epi-
demiology helps to model in a more realistic way since they reflect history (mem-
ory) [16, 39]. There are different kinds of fractional operators in the literature and
these operators may answer distinct real world problems [32]. Moreover, because of
the memory effect, FDEs will be more suitable for epidemic models. For example,
in 2020, Naik et al. [32], proposed and studied the stability of a FDE system that
models COVID-19 pandemic with Atangana-Baleanu or Caputo derivative. They
divided the total population into eight groups such as suspected, exposed, symp-
tomatic (infected), asymptomatic, quarantined, treated classes etc. and used the
real data from Pakistan. In 2020, Yavuz and Sene [49] studied the stability anal-
ysis of a fractional predator–prey model with a harvesting rate. In another paper,
Naik et al. [33] has established the global dynamics of a fractional order model for
the transmission of HIV epidemic with optimal control in 2020. In 2023, Joshi et
al. [16] studied COVID-19 pandemic with Atangana-Baleanu derivative. They used
an SIR model with nonlinear Beddington-DeAngelis infection rate and Holling type
II treatment rate in their paper. Recently, a vast number of papers containing FDEs
for different research areas have been published in the literature [5,16,17,32,34,41].

Motivated by the aforementioned works [20, 23, 27], in this paper, we have pro-
posed an SEIR model including FDEs with a general nonlinear incidence function
f(S, I) and a treatment function T (I):

Dα
t S(t) = λ− f(S, I)− µS,

Dα
t E(t) = f(S, I)− (β + µ+ r)E + pT (I),

Dα
t I(t) = βE − (θ + µ)I − T (I),

Dα
t R(t) = rE + qT (I)− µR,

(1)

where Dα
t u represents Caputo fractional derivative of the function u with the fol-

lowing initial conditions:

S(0) = S0 > 0, E(0) = E0 > 0,

I(0) = I0 > 0 and R(0) = R0 > 0. (2)

In this model (1), S, E, I and R denote the suscepted, exposed, infected, and
recovered individuals, respectively. To the best of the author’s knowledge, a frac-
tional SEIR model with a general incidence function and treatment function has
not been studied yet. We have chosen this model with exposed individuals com-
partment, as most infectious diseases have an incubation period. Before explaining
parameters, we need to emphasize that the originality of this paper comes from
the choice of the incidence and treatment functions, f(S, I) and T (I) functions in
model (1), respectively. These functions have not been determined specifically so
that depending on the studied disease, one may choose his/her function accord-
ing to the spread of the disease and treatment type. Moreover, considering these
functions in a general way increases the complexity of the proofs.
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In model (1), parameter λ is the recruitment rate which represents the total
change in the population and assumed as a positive number, β is the rate at which
exposed individuals become infectious (incubation rate), µ is the natural death rate,
θ is the death rate depending on the infection, and r is the recovery rate of exposed
individuals. The function T (I) represents the general treatment function. In the
model, it is assumed that unsuccessfully treated infectious individuals re-enter the
exposed compartment proportional to parameter p and the parameter q denotes
the fraction of infectious individuals whose treatments are successful (p = 1 − q).
The flowchart for the model (1) is given in Figure 1.

Figure 1. The flowchart for the model (1)

The paper is organised as follows: In Section 2, the definition of Caputo fractional
derivative is presented and some lemmas are given for the proofs needed for stability
analyses. In Section 3, the properties of the incidence function and the treatment
function are analysed and the positivity of the solution of system (1) is proved.
After that, in Section 4, the equilibrium points of system (1) are determined and the
global stability analysis of disease free equilibrium point and the uniform asymptotic
stability of endemic equilibrium point are established. Following these theorems,
some numerical simulations are carried out to show some examples in Section 5.
Finally, we finish this paper with a conclusion part in Section 6.

2. Preliminaries on the Caputo Fractional Calculus

We begin by introducing the definition of Caputo fractional derivative.



STABILITY ANALYSIS OF A FRACTIONAL ORDER EPIDEMIC MODEL 289

Definition 1 ( [39]). Let t0 > 0, t > t0, α, t0, t ∈ R. The Caputo fractional
derivative of order α of a function f ∈ Cn is given by

Ct0D
α
t =

1

Γ(n− α)

∫ t

t0

f (n)(s)

(t− s)α+1−n
ds, (3)

where 0 < n− 1 < α < n and Γ is the Gamma function.

To prove the nonnegativity of the solutions of model (1) we will need the following
lemma.

Lemma 1 (Generalized Mean Value Theorem [35]). Suppose that f ∈ C[0, a] and
Dαf ∈ (0, a], 0 < α ≤ 1. Then one has

f(x) = f(0) +
1

Γ(α)
(Dαf)(ξ)xα, (4)

with 0 ≤ ξ ≤ x, ∀x ∈ (0, a].

Corollary 1 ( [35]). Suppose that f ∈ C[0, a] and Dαf ∈ C(0, a] for 0 < α ≤ 1.
If Dαf(x) ≥ 0 ∀x ∈ (0, a), then f(x) is non-decreasing for each x ∈ [0, a]. If
Dαf(x) ≤ 0 ∀x ∈ (0, a), then f(x) is non-increasing for each x ∈ [0, a].

Lemma 2 ( [44]). Let x(t) ∈ R+ be a continuous and derivable function. Then,
for any time instant t ≥ t0

Ct0D
α
t

[
x(t)− x∗ − x∗ln

x(t)

x∗

]
≤

(
1− x∗

x(t)

)
Ct0D

α
t x(t),

x∗ ∈ R+, ∀α ∈ (0, 1).

3. Basic Properties of the Model

In model (1), we assume that the functions S, E, I and R and their Caputo
fractional derivatives are continuous when t > 0.

The general nonlinear incidence function f(S, I) and the treatment function T (I)
are considered positive, continuously differentiable functions and they satisfy the
following hypotheses:

H1) f(S, I) > 0, f(0, I) = 0, f(S, 0) = 0 for all S, I > 0.

H2)
∂f(S, I)

∂S
> 0 and

∂f(S, I)

∂I
> 0 for all S, I > 0.

H3)
∂f(S, 0)

∂S
= 0 and

∂f(S, 0)

∂I
> 0 for all S > 0.

H4)
f(S, I)

I
≤ ∂f(S, 0)

∂I
for all I > 0.

H5) T (0) = 0 and T ′(I) > 0 for I ≥ 0.

H6) The function
T (I)

I
is monotone increasing function, that is,

T (I)

I
− T ′(I) ≤ 0. (See [11])
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These conditions are consistent with biological assumptions and in accordance
with literature (see [11,20,23]). For example, for (H1 ),we can think that there will
be no transmission when there are no susceptible or infected people. For (H2 ), we
understand that the incidence function is a monotonically growing function for all
S, I > 0. In the absence of an infected person, susceptible individuals will become
stagnant and transmission will begin to increase in the case of an infected person.
In addition, in the absence of an infected person, there is no need for treatment.
When there is an increase in the rate of transmission, that is, the number of infected
people increases, we need to apply more treatment strategies (H5 ).

Now, let R4
+ = {(x1, x2, x3, x4) ∈ R4 : xi ≥ 0 for all i = 1, 2, 3, 4}. We will prove

the existence, uniqueness and positivity of the solutions with the following theorem.

Theorem 1. There exists a unique solution of the model (1) with initial conditions
under the hypothesis (H1) is satisfied. Moreover, the solution will remain in R4

+

for all t ≥ 0.

Proof. From Theorem 3.1 and Remark 3.2 of [29], one can see the existence and
uniqueness of the solution of system (1) with the initial conditions (2). Now, we
will prove that R4

+ is a positively invariant region. For this, let

Dα
t S(t)|S=0 = λ ≥ 0,

Dα
t E(t)|E=0 = f(S, I) + pT (I) ≥ 0,

Dα
t I(t)|I=0 = βE ≥ 0.

We can make a similar discussion as in Theorem 2 of [3] and with the help of
Corollary 1, one can observe that the solution will remain in R4

+ for all t ≥ 0. □

4. Equilibrium Points and Their Stability

In this section, we study the stability of the equilibrium points of system (1).
Since the right hand sides of the first three equations of model (1) do not include
R(t) we will deal with the first three variables S, E and I. System (1) has two
possible equilibrium points. There is always a disease-free equilibrium point E0 =

(S0, 0, 0) where S0 =
λ

µ
provided that (H1) and (H5) is satisfied.

Using the notations in [43], the matrices F and V for system (1) are given as
follows:

F =

[
0 fI(S0, 0)
0 0

]
,

V =

[
(β + µ+ r) −pT ′(0)

−β (θ + µ) + T ′(0)

]
.

The basic reproduction number can be found as

R0 =
βfI(S0, 0)

η(θ + µ) + (βq + µ+ r)T ′(0)
, (5)

where η = β + µ+ r.
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Lemma 3. Consider a function g as g(I) = λβ − ηF (I) + βpT (I). The equation
g(I) = 0 has a unique positive solution I0 where F (I) = (θ + µ)I + T (I).

Proof. One can observe that g(0) = λβ > 0 under the condition T (0) = 0 and for

the positive value
λβ

η(θ + µ)
, we find g

(
λβ

η(θ + µ)

)
= −(µ+ r + q)T (

λβ

η(θ + µ)
) < 0

since T (I) is an increasing function. Moreover,

g′(I) = −η(θ + µ)− (βq + µ+ r)T ′(I) < 0.

Clearly, the equation λβ−ηF (I)+βpT (I) = 0 has a unique positive solution I0. □

Theorem 2. When R0 > 1, the system (1) has a unique endemic equilibrium point.

Proof. For finding an equilibrium point, let
Dα

t S(t) = 0, Dα
t E(t) = 0 and Dα

t I(t) = 0. Now, we need to solve the following
system

λ− f(S, I)− µS = 0,

f(S, I)− ηE + pT (I) = 0,

βE − (θ + µ)I − T (I) = 0.

(6)

It is easy to see that E0 = (S0, 0, 0) where S0 =
λ

µ
is always disease-free equilibrium

point of system (1). From system (6), we have

λ− µS = f(S, I) = ηE − pT (I) (7)

and

E =
F (I)

β
(8)

where F (I) is defined as in Lemma 3. By using the equations (7) and (8) one can
obtain S as in the following form

S =
λ

µ
− η

βµ
F (I) +

p

µ
T (I). (9)

On the other hand, we need to find a positive root for the equation f(S, I) =
ηE − pT (I). Let us define the continuous function

H(I) = f

(
λ

µ
− η

βµ
F (I) +

p

µ
T (I), I

)
− η

β
F (I) + pT (I). (10)

Clearly, H(0) = 0 under the hypotheses (H1) and (H5). By using Lemma 3, one
can calculate a positive I0 value such that λβ − ηF (I0) + βpT (I0) = 0. At this
positive I0 value, H(I0) = −λ < 0 is obtained.

Moreover, if we look at the derivative of the function H(I), we can see that

H ′(I) = fI(
λ

µ
− η

βµ
F (I) +

p

µ
T (I), I)− η

β
F ′(I) + pT ′(I) (11)
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and

H ′(0) =
[η(θ + µ) + (βq + µ+ r)T ′(0)]

β
(R0 − 1) > 0, (12)

which implies that there exist some I∗ ∈ (0, I0) such that H(I∗) = 0. Also, at

this positive I∗ value, S∗ =
1

µ

(
λ− η

β
F (I∗) + pT (I∗)

)
> 0 since

µ

β
(θ + µ)I∗ +

µ+ r

β
T (I∗) + qT (I∗) <

µ

β
(θ + µ)I0 +

µ+ r

β
T (I0) + qT (I0) = λ and T (I) is an

increasing function and E∗ =
F (I∗)

β
> 0. This guarantees the existence of a pos-

itive endemic equilibruim point Σ∗ = (S∗, E∗, I∗). For uniqueness of the endemic

equilibrium point, assume that we have another positive equilibrium point Ĩ. On
the other hand, one can observe H ′(I∗) < 0 which says that at every root of the
function H(I), the function is strictly decreasing. But, this will be a contradiction.
This completes the proof. Next, we will prove the local and global asymptotic
stability of the disease-free equilibrium point E0. □

Theorem 3. The disease-free equilibrium point E0 = (S0, 0, 0) is locally asymp-
totically stable if R0 < 1.

Proof. The disease-free equilibrium point E0 is locally asymptotically stable if all
of the eigenvalues λi of the Jacobian matrix evaluated at the equilibrium point E0,
that is J(E0), satisfy the Matignon’s conditions [30], that is,

|arg(λi)| >
απ

2
. (13)

The Jacobian matrix J(E0) can be evaluated as

J(E0) =

 −µ 0 −fI(S0, 0)
0 −η fI(S0, 0) + pT ′(0)
0 β −(θ + µ+ T ′(0))

 . (14)

The eigenvalues of the Jacobian matrix J(E0) are λ1 = −µ and

λ2,3 =
−(η + σ)±

√
(η + σ)2 − 4(ησ − γ)

2
where σ = θ + µ + T ′(0) and γ =

β(fI(S0, 0) + pT ′(0)). It is easy to see that all the eigenvalues are real and if

ησ − γ > 0 all the eigenvalues λi will be negative. Hence, |arg(λi)| >
απ

2
. Also,

note that the inequality ησ − γ > 0 implies that R0 < 1. Therefore, if R0 < 1 the
disease-free equilibrium point E0 is locally asymptotically stable and if R0 > 1 the
trivial equilibrium E0 becomes unstable. □

Theorem 4. Let

lim
I 7→0+

f(S0, I)

f(S, I)
> 1 for S ∈ [0, S0). (15)
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The disease-free equilibrium point E0 = (S0, 0, 0) is globally asymptotically stable
if R0 < 1.

Proof. To establish the global stability of the disease-free equilibrium point, con-
sider the following Lyapunov function

V (t) = βE(t) + ηI(t). (16)

Calculating the time fractional order derivative in Caputo sense of both sides of
Eq. 16 and using the hypothesis of this theorem and (H4) we get

Dα
t V (t) = βDα

t E(t) + ηDα
t I(t)

= βI

(
f(S, I)− ηE + pT (I)

I

)
+ η(βE − (θ + µ)I − T (I)

≤ βI

(
fI(S, 0)−

ηE

I
+

pT (I)

I

)
+ η(βE − (θ + µ)I − T (I)

= I (βfI(S, 0)− η(θ + µ)) + (βp− η)T (I)

≤ I(βfI(S
0, 0)− η(θ + µ)) + (βp− η)T (I)

≤ I(η(θ + µ) + (βq + µ+ r)T ′(0))(R0 − 1)

(17)

Clearly, if R0 < 1 then Dα
t V (t) is negative. Therefore, the equilibrium point E0 is

globally asymptotically stable. This completes the proof. □

Theorem 5. Let α ∈ (0, 1) and R0 > 1. Then the unique endemic equilibrium point
Σ∗ = (S∗, E∗, I∗) of system (1) is uniformly asymptotically stable if the following
conditions hold

f(S, I)

f(S∗, I∗)
< 1 for S < S∗,

f(S, I)

f(S∗, I∗)
> 1 for S > S∗

(18)

and
E

E∗ <
f(S, I)

f(S∗, I∗)
< 1 for E < E∗,

E

E∗ >
f(S, I)

f(S∗, I∗)
> 1 for E > E∗

(19)

and
E

E∗ ≤ T (I)

T (I∗)
for

E

E∗ ≤ I

I∗
,

E

E∗ ≥ T (I)

T (I∗)
for

E

E∗ ≥ I

I∗
.

(20)
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Proof. We consider the following Lyapunov function

L(t) = L1(S(t)) + L2(E(t)) + pL3(I(t)), (21)

where

L1(S(t)) = S(t)− S∗ − S∗ln
S(t)

S∗ ,

L2(E(t)) = E(t)− E∗ − E∗ln
E(t)

E∗ ,

L3(I(t)) = I(t)− I∗ − I∗ln
I(t)

I∗
.

Function L is defined, continuous and positive definite for all S(t) > 0, E(t) > 0
and I(t) > 0. With the help of Lemma 2, we have

Ct0D
α
t L(t) ≤

(
1− S∗

S

)
Ct0D

α
t S(t) +

(
1− E∗

E

)
Ct0D

α
t E(t)

+ p

(
1− I∗

I

)
Ct0D

α
t I(t).

Using the equations in system (1), one has

Ct0D
α
t L(t) ≤

(
1− S∗

S

)
(λ− f(S, I)− µS)

+

(
1− E∗

E

)
(f(S, I)− ηE + pT (I))

+ p

(
1− I∗

I

)
(βE − (θ + µ)I − T (I)).

By the equilibrium conditions
λ = f(S∗, I∗) + µS∗, ηE∗ = f(S∗, I∗) + pT (I∗) and βE∗ = (θ + µ)I∗ + T (I∗) one
can write

Ct0D
α
t L(t) ≤

(
1− S∗

S

)
f(S∗, I∗)

−
(
1− S∗

S

)
f(S, I) + µS∗

(
2− S

S∗ − S∗

S

)
+

(
1− E∗

E

)(
f(S, I)− f(S∗, I∗)

E

E∗

)
+

(
1− E∗

E

)(
−pT (I∗)

E

E∗ + pT (I)

)
+ p

(
1− I∗

I

)
((θ + µ)I∗ + T (I∗))

E

E∗

− p

(
1− I∗

I

)
(θ + µ)I − p

(
1− I∗

I

)
T (I).
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After some computations, we obtain

Ct0D
α
t L(t) ≤ f(S∗, I∗)

(
(1− S∗

S
)− (1− S∗

S
)
f(S, I)

f(S∗, I∗)

)
+ f(S∗, I∗)

(
(1− E∗

E
)
f(S, I)

f(S∗, I∗)

)
− f(S∗, I∗)

(
(1− E∗

E
)
E

E∗

)
+ µS∗

(
2− S

S∗ − S∗

S

)
−
(
1− E∗

E

)
pT (I∗)

E

E∗ +

(
1− E∗

E

)
pT (I)

+ p

(
1− I∗

I

)
((θ + µ)I∗ + T (I∗))

E

E∗

− p

(
1− I∗

I

)
(θ + µ)I − p

(
1− I∗

I

)
T (I).

Moreover, we get

Ct0D
α
t L(t) ≤ f(S∗, I∗)

(
1− S∗

S

)(
1− f(S, I)

f(S∗, I∗)

)
+ f(S∗, I∗)

(
1− E∗

E

)(
f(S, I)

f(S∗, I∗)
− E

E∗

)
+ µS∗

(
2− S

S∗ − S∗

S

)
+ pT (I∗)

(
E∗

E
− I∗

I

)(
E

E∗ − T (I)

T (I∗)

)
+ p(θ + µ)I∗

(
2− I

I∗
− I∗

I

)
.

By Theorem hypotheses,(
1− S∗

S

)(
1− f(S, I)

f(S∗, I∗)

)
≤ 0

and (
1− E∗

E

)(
f(S, I)

f(S∗, I∗)
− E

E∗

)
≤ 0,

where strict equality holds when S = S∗, E = E∗. Moreover,(
E∗

E
− I∗

I

)(
E

E∗ − T (I)

T (I∗)

)
≤ 0
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is satisfied under the assumptions of the theorem. On the other hand,(
2− S

S∗ − S∗

S

)
≤ 0

and (
2− I

I∗
− I∗

I

)
≤ 0,

for all S, I > 0, since the arithmetic mean-geometric mean inequality is satisfied.
So, by Theorem 3.1 in [10], the positive endemic equilibrium point Σ∗ = (S∗, E∗, I∗)
of system (1) is uniformly asymptotically stable. □

5. Numerical Simulations

In this section, we perform some numerical simulations to observe the results
obtained in Section 4. We study system (1) for different values of the noninteger
order derivative α. For the numerical simulations, the Adams-Bashforth-Moulton
scheme [12] is used in Matlab. The following Table 1 shows the parameters that are
used in system (1). The assumed values p and q have been chosen randomly. The
value of r has taken as small due to the recovery rate of an exposed person should
be small. The death rate is again randomly selected that one of the 5 patients died
from the disease. The value of the parameter w is also considered as small and
variable in our numerical examples.

Table 1. Parameter values used in numerical simulations

Parameter Explanation Value
λ Recruitment rate 792.8571 [47]
µ Natural death rate 1/70 [47]
β Incubation rate 0.00368 [47]
r Recovery rate of exposed individuals 0.01 (Assume)
p Unsuccessfully treated individuals 0.8 (Assume)
q Successfully treated individuals 0.2 (Assume)
θ Death rate depending on the infection 0.2 (Assume)
w Transmission coefficient 5× 10−3 (Assume)
r1 Treatment function coefficient 0.5 [11]
r2 Treatment function coefficient 0.1 [11]
γ Transmission coefficient 0.1 [19]
α1 Incidence function parameter 0.01 [19]
α2 Incidence function parameter 0.01 [19]

As a first example, we have chosen bilinear incidence function f(S, I) = wSI and

the treatment function T (I) =
r1I

2

1 + r2I
where w, r1 and r2 are positive parameters.

The chosen incidence and treatment functions satisfy our hypotheses. The bilinear
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(a) S(t). (b) E(t).

Figure 2. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 50000, E(0) = 10000,
I(0) = 0 and R(0) = 0.

(a) I(t). (b) R(t).

Figure 3. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 50000, E(0) = 10000,
I(0) = 0 and R(0) = 0.

incidence function is mostly common in literature and it indicates that the rate
of transmission increases as the number of infected people increases, that is, as
the connection between the susceptible population and the infected population
increases. On the other hand, the chosen treatment function is a monotonically
increasing function for I > 0. On the next page, the readers can see another

numerical example with a saturated treatment function T (I) =
r1I

1 + r2I
.
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To obtain the value of R0 smaller than one, first we choose the transmission
coefficient w = 5 × 10−6 and find R0 = 0.1704 < 1. In this case, the disease-
free equilibrium point E0 = (S0, 0, 0) where S0 = 55500 is globally asymptotically
stable which is depicted in Figure 2 and 3.

(a) S(t). (b) E(t).

Figure 4. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 5000, E(0) = 20000,
I(0) = 0 and R(0) = 0.

(a) I(t). (b) R(t).

Figure 5. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 5000, E(0) = 20000,
I(0) = 0 and R(0) = 0.

If we choose w = 5× 10−3, we calculate R0 = 170.4087 > 1. Then, with respect
to the calculations in Theorem 2, one can find the approximate value of I0 as
29.368 and the root of the function H(I) as I∗ = 27.0856. After that, S∗ = 5335.5
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(a) S(t). (b) E(t).

Figure 6. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 50000, E(0) = 2000,
I(0) = 0 and R(0) = 0.

(a) I(t). (b) R(t).

Figure 7. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 50000, E(0) = 2000,
I(0) = 0 and R(0) = 0.

and E∗ = 28455 can be easily obtained. According to Theorem 5 conditions the
equilibrium point Σ∗ = (S∗, E∗, I∗) of system (1) is uniformly asymptotically stable
which can be seen in Figure 4 and 5.

As a second example, we have changed the incidence function as the Beddington-

DeAngelis infection rate, that is, f(S, I) =
γSI

1 + α1S + α2I
. The parameters γ, α1

and α2 can be found in Table 1. As in the paper [16], the parameters γ, α1 and α2

can be thought as the transmission rate of the disease, a measure of inhibition for
the susceptible population, and a measure of inhibition for the infected population,



300 E. KARAOĞLU

respectively. In this example, using these parameters, the positive equilibrium point
is evaluated as Σ∗ = (S∗, E∗, I∗) = (53221, 1278.8, 3.26) with R0 = 6.1298 > 1. The
trajectories can be seen in Figure 6 and 7.

(a) S(t). (b) E(t).

Figure 8. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 50000, E(0) = 2000,
I(0) = 0 and R(0) = 0.

(a) I(t). (b) R(t).

Figure 9. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 50000, E(0) = 2000,
I(0) = 0 and R(0) = 0.

Additionally, let us take the saturated treatment function, T (I) =
r1I

1 + r2I
in

model (1) with the Beddington-DeAngelis infection function. In this case, the pa-
rameters r1 and r2 represent the treatment rate of disease and the limitation in
treatment availability. This treatment function has a horizontal asymptote which
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shows the limitations in the capacity of treatment facilities. The numerical sim-
ulations can be found in Figure 8 and 9. Due to limited medical resources, after
a while there will be almost no susceptible individuals left, and almost all people
can be exposed, infected, or recovered from the disease. (Remember that we have
a unique positive equilibrium point and in Figure 8 case (a), S(t) values are ap-
proximately 115 not zero.) If we increase the r2 parameter, i.e., the limitations of
medical resources, we can see that the number of infected people increases as we
expected in Figure 10.

Figure 10. Trajectories for system (1) with parameters given in
Table 1 and the initial conditions S(0) = 50000, E(0) = 2000,
I(0) = 0 and R(0) = 0.

Following this second example, we also wondered the effect of the treatment
success. As we expect, if the rate of successfully treated individuals q increase, we
observe a decrease in the number of the exposed and infected individuals in Figure
11.

Finally, we need to mention our observation about the parameter α. If we look
carefully at all the figures, we will see that the system will be stable over a longer
period of time if the parameter α decreases.

6. Concluding Remarks

In this paper, we have introduced a fractional order SEIR model with a general
incidence function f(S, I) and a general treatment function T (I). By analysing the
equilibrium points of system (1), we have shown that the disease free equilibrium
point is locally asymptotically stable if the basic reproduction number R0 < 1
and globally asymptotically stable if the inequality (15) is satisfied when R0 <
1. We have also constructed a Lyapunov function and found that the endemic
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(a) E(t). (b) I(t).

Figure 11. Trajectories for system (1) with parameters given in
Table 1 and changing parameters p and q and the initial conditions
S(0) = 50000, E(0) = 2000, I(0) = 0 and R(0) = 0.

equilibrium point is uniformly asymptotically stable under the conditions (18)-
(20). Moreover, in our model, based on the treatment model in [43], unsuccessfully
treated infectious individuals re-enter the exposed compartment proportional to
parameter p. Changing these parameters p and q, we also have a chance to compare
treatment success.

To the best of the author’s knowledge, a fractional SEIR model with a general in-
cidence function and treatment function has not been studied yet. In 2017, Elkhaiar
et al. [11] studied the stability analysis of an ordinary differential equation system
of the SEIR model with treatment. In that paper, they used a general incidence
function and a general treatment function T ∗(I). In our paper, if the parameters
are changed as µ = d, p = 0, q = 1, r = 0, β = σ, θ = 0 and T (I) = γI + T ∗(I),
then system (1) becomes to the SEIR model studied in [11] when α = 1. Another
paper including a stability analysis of a fractional order SEIR model is published
in 2020 by Yang et. al. [48]. In our system, if the parameters are chosen as λ = Λα,
µ = dα, r = 0, β = σα, θ = 0 and qT (I) = γαI, f(S, I) = βαF (S)G(I) then system
(1) turns into the system that studied in [48]. In 2018, analysis of a fractional order
SEIR model with treatment is established by Almeida [2]. If the parameters in our
system (1) is chosen as λ = bN (N is assumed as fixed population size), µ = b,

r = 0, β = σ, p = 0, q = 1, θ = 0 and f(S, I) =
βIS

N
and T (I) = (µ+ q)I (µ and q

are the parameters used in [2]) then again system (1) turns into that system used
in [2]. Finally, the last example studied in [13] is related to outbreaks of influenza
A(H1N1). In [13], the authors proposed a fractional order SEIR model to explain
and understand the outbreaks of ifluenza A(H1N1). They used real data values and
tested and simulated these data values for their model and chose the best fitted
order α of fractional differentiation. In system (1), if the parameters are changed
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as λ = µα, µ = µα, β = Ωα, p = q = θ = 0, q = 1, f(S, I) = βαSI and T (I) = ραI,
then one can obtain the system studied in this paper.

As a conclusion, the proposed model in this paper is rather general and as pointed
out in [13], in the applications, one can choose the best fitted order of α depending
on the real data values. If we look carefully at all the figures, we will see that the
system will be stable over a longer period of time if the parameter α decreases.

Declaration of Competing Interests The author has no competing interests to
declare.
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