Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes

Yıl 2019, Cilt: 9 Sayı: 1, 113 - 133, 28.06.2019

Öz

In this study, microbial fuel cells were designed using E. aerogenes, an important proton producing bacterium, to determine energy efficiency. In the design of these fuel cells, nafion membrane is preferred as a proton permeable membrane. Potassium ferricyanide was used in the cathode section when the anode partition mediator was prefered as methylene blue. Within the scope of the study, the efficiency of the electrode route on the optimization and energy efficiency of fuel pellets prepared using E. aerogenes was determined. A comparative study was carried out using graphite, composite and copper electrodes as the electrode type. In the experiment with copper electrode, the highest voltage value was read as 0.23 V, 0.38 V on the composite electrode and 0.52 V on the carbon electrode. It is determined that the electrode giving the highest voltage is the carbon electrode. Furthermore, optimization of designed microbial fuel cell’s nutrient, pH and microorganism incubation time has been realized.

Kaynakça

  • [1] Andújar, J.M., Segura, F., Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 13 (9), 2309–2322, 2009.
  • [2] Mekhilef, S., Saidur, R., Safari, A., Comparative study of different fuel cell Technologies, Renewable and Sustainable Energy Reviews, 16 (1), 981–989, 2012.
  • [3] Mohan, Y., Kumar, S., Manoj Muthu, D.D., Electricity generation using microbial fuel cells, Int J Hydrogen Energy, 33, 423 – 426, 2008.
  • [4] Samrot, A.V., Senthilkumar, P., Pavankumar, K., Akilandeswari, G.C., Rajalakshmi, N., Dhathathreyan, K.S., Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell, Int J Hydrogen Energy, 35, 7723 – 7729, 2010.
  • [5] Du, Z., Li, H and Gu, T. A., State of art review on microbial fuel cells: A promisig technology for wastewater treatment and bioenergy, Biotechnology Advances, (25), 464-482, 2007.
  • [6] Xia, X,, Cao, X., Liang, P., Huang, X., Yang, S., Zhao, G., Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells, Bıoenergy and Bıofuels, Appl Microbiol Biotechnol, 87, 383–390, 2010.
  • [7] Aldrovandi, A., Marsili, E., Stante, L., Paganin, P., Tabacchioni, S., Giordano, A., Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell, Bioresource Technology, 100, 3252–3260, 2009.
  • [8] Sharma, V., Kundu, P.P., Biocatalysts in microbial fuel cells, Enzyme and Microbial Technology, 47, 179–188, 2010.
  • [9] Rabaey, K., Lissens, G., Siciliano, S.D., Verstraete, W.A., Microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett, 25, 1531–1535, 2003.
  • [10] Daniel, D.K., Mankidy, B.D., Ambarish, K., Manogari, R., Construction and operation of a microbial fuel cell for electricity generation from wastewater, Int J Hydrogen Energy, 34, 7555 – 7560, 2009.
  • [11] Guerrero, A., Larrosa, S.K., Head, I.M., Mateo, F., Ginesta, A., Godinez, C., Effect of temperature on the performance of microbial fuel cells, Fuel 89, 3985–3994 2010.
  • [12] He, Z., Angenent, L.T., Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18(19-20), 2009-2015, 2006.
  • [13] Min, B., Cheng, S., Logan, B.E., Electricity generation using membrane and salt bridge microbial fuel cells, Water Res, 39, 1675-1686, 2005.
  • [14] Hu, H., Liu, H., Fan, Y., Hydrogen production using single-chamber membrane-free microbial electrolysis cells, Water Res, 42 (15), 4172-4178, 2008.
  • [15] He, Z., Huang, Y., Manohar A.K., Mansfeld, F., Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell, Bioelectrochemistry, 74, 78–82, 2008.
  • [16] Hong, L., Stephen, G., Bruce, E.L., Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci.Technol, 39, 4317-4320, 2005.
  • [17] Tanisho, S., Wakao, N., Kosako, Y., Biological hydrogen-production by Enterobacter aerogenes, Journal of Chemical Engineering of Japan, 16, 529– 530, 1983.
  • [18] Richter, H., McCarthy, K., Nevin, K.P, Johnson, J.P., Rotello, V.M., Lovley, D.R., Electricity generation by Geobacter sulfurreducens attached to gold electrodes, Langmuir, 24, 4376–4379, 2008.
  • [19] Rezaei, F., Xing, D., Wagner, R., Regan, J.M., Richard, T.L., Logan, B.E., Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell, Appl. Environ. Microbiol, 75, 3673–3678, 2009.
  • [20] Watson, V.J., Logan, B.E., Power production in mfcs inoculated with Shewanella oneidensis MR-1 or mixed cultures, Biotechnol. Bioeng, 105, 489– 498, 2010.
  • [21] Nimje, V.R., Chen, C.Y., Chen, C.C., Jean, J.S., Reddy, A.S., Fan, C.W., Pan, K.Y., Liu, H.T., Chen, J.L., Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell, J. Power Sources, 190, 258–263, 2009.
  • [22] Lanthier, M., Gregory, K.B., Lovley, D.R., Growth with high planktonic biomass in Shewanella onseidenis fuel cells, FEMS Microbiol. Lett, 278, 29– 35, 2008.
  • [23] Kiely, P.D., Call, D.F., Yates, M.D., Regan, J.M., Logan, B.E., Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera, Appl. Microbiol. Biotechnol, 88, 371–380, 2010.
  • [24] Tanisho, S., A strategy for improving the yield of hydrogen by fermentation, Hydrogen Energy Progress, 1 (2), 370–375, 2000.
  • [25] Tanisho, S., Suzuki, Y., Wakao, N., Fermentative hydrogen evolution by Enterobacter aerogenes strain E-82005, International Journal of Hydrogen Energy, 12, 623–627, 1987.
  • [26] Zhang, C., Lv, F.X., Xing, X.H., Bioengineering of the Enterobacter aerogenes strain for biohydrogen production, Bioresource Technology, 102, 8344–8349, 2011.
  • [27] Erenler Özalp, Ş., L- Asparaginaz Geninin (ANSb) Farklı Gram-Negatif Bakterilere Klonlanması, İzolasyonu Ve Ekspresyonu, İnönü Üniversitesi- Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Doktora Tezi, 2007.
  • [28] Gould, J.L., Olağandışı yaşamlar, TÜBİTAK Popüler Bilim Kitapları, Ankara, 61-74, 1999.
  • [29] Zhang, Y., Yu, H., Shi, Y., Yang, S and Shen, Z., Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly(β- hydroxybutyrate) and fermentative parameters, FEMS Microbiology Letters, 214, 223-227, 2002.
  • [30] Li, Y., Zhuang, L., Zhou, S., Yuan, Y., Enhanced performance of air-cathode twochamber microbial fuel cells with high-pH anode and low-pH cathode, Bioresour. Technol, 101, 3514–3519, 2010.
  • [31] Sun, J., Hu, Y., Bi, Z., Cao, Y., Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single chamber microbial fuel cell, Bioresour. Technol, 100, 3185–3192, 2009.
  • [32] Liu, L., Li, F.B., Feng, C.H., Li, X.Z., Microbial fuel cell with an azo-dyefeeding cathode, Appl. Microbiol. Biotechnol, 85, 175–183, 2009.
  • [33] Li, Z., Zhang, X., Lin, J., Han, S., Lei, L., Azo dye treatment with simultaneous electricity production in an anaerobic–aerobic sequential reactor and microbial fuel cell coupled system, Bioresour. Technol, 101 (34), 4440–4445, 2010.
  • [34] Sun, J., Bi, Z., Hou, B., Cao, Y., Hu, Y., Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode, Water Res, 45, 283–291, 2011.
  • [35] Cao, Y., Hu, Y., Sun, J., Hou, B., Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell, Bioelectrochemistry, 79, 71–76, 2010.
  • [36] Erenler Özalp, Ş., Bakteri Hemoglobin Geninin Enterobacter aerogenes’in Fizyolojik Ve Metabolik Aktiviteleri Üzerine Etkileri, İnönü Üniversitesi- Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Yüksek Lisans Tezi, 2001.

vgb+ Rekombinant Enterobacter aerogenes Kullanılan Mikrobiyal Yakıt Pillerinde Enerji Verimliliği Üzerine Elektrot Türünün Etkisi

Yıl 2019, Cilt: 9 Sayı: 1, 113 - 133, 28.06.2019

Öz

Bu çalışma kapsamında önemli bir proton üreten bakteri türü olan E. aerogenes kullanılarak mikrobiyal yakıt hücreleri tasarımı gerçekleştirilerek enerji verimlilikleri belirlenmiştir. Bu yakıt hücrelerinin tasarımında proton geçirgen membrane olarak nafyon membran tercih edilmiştir. Anot bölmesi medyatörü metilen mavisi olarak tercih edilirken katot bölmesinde Potasyum ferrisiyanid kullanılmıştır. Çalışma kapsamında E. aerogenes kullanılarak hazırlanan yakıt pillerinin optimizasyonu ve enerji verimliliği üzerine elektrot türünün etkinliği belirlenmiştir. Elektrot türü olarak grafit, alaşım ve bakır elektrotlar kullanılarak kıyaslamalı bir çalışma gerçekleştirilmiştir. bakır elektrotla yapılan denemede en yüksek voltaj değeri 0.23 V, kompozit elektrotda 0.38 V, karbon elektrotta ise 0.52 V olarak okunmuştur. En yüksek voltaj miktarını veren elektrotun karbon elektrot olduğu saptanıştır. Ayrıca hazırlanan mikrobiyal yakıt pilinin, besiyeri, pH ve mikroorganizma inkübasyon süre optimizasyonları gerçekleştirilmiştir.

Kaynakça

  • [1] Andújar, J.M., Segura, F., Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews, 13 (9), 2309–2322, 2009.
  • [2] Mekhilef, S., Saidur, R., Safari, A., Comparative study of different fuel cell Technologies, Renewable and Sustainable Energy Reviews, 16 (1), 981–989, 2012.
  • [3] Mohan, Y., Kumar, S., Manoj Muthu, D.D., Electricity generation using microbial fuel cells, Int J Hydrogen Energy, 33, 423 – 426, 2008.
  • [4] Samrot, A.V., Senthilkumar, P., Pavankumar, K., Akilandeswari, G.C., Rajalakshmi, N., Dhathathreyan, K.S., Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell, Int J Hydrogen Energy, 35, 7723 – 7729, 2010.
  • [5] Du, Z., Li, H and Gu, T. A., State of art review on microbial fuel cells: A promisig technology for wastewater treatment and bioenergy, Biotechnology Advances, (25), 464-482, 2007.
  • [6] Xia, X,, Cao, X., Liang, P., Huang, X., Yang, S., Zhao, G., Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells, Bıoenergy and Bıofuels, Appl Microbiol Biotechnol, 87, 383–390, 2010.
  • [7] Aldrovandi, A., Marsili, E., Stante, L., Paganin, P., Tabacchioni, S., Giordano, A., Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell, Bioresource Technology, 100, 3252–3260, 2009.
  • [8] Sharma, V., Kundu, P.P., Biocatalysts in microbial fuel cells, Enzyme and Microbial Technology, 47, 179–188, 2010.
  • [9] Rabaey, K., Lissens, G., Siciliano, S.D., Verstraete, W.A., Microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett, 25, 1531–1535, 2003.
  • [10] Daniel, D.K., Mankidy, B.D., Ambarish, K., Manogari, R., Construction and operation of a microbial fuel cell for electricity generation from wastewater, Int J Hydrogen Energy, 34, 7555 – 7560, 2009.
  • [11] Guerrero, A., Larrosa, S.K., Head, I.M., Mateo, F., Ginesta, A., Godinez, C., Effect of temperature on the performance of microbial fuel cells, Fuel 89, 3985–3994 2010.
  • [12] He, Z., Angenent, L.T., Application of bacterial biocathodes in microbial fuel cells, Electroanalysis, 18(19-20), 2009-2015, 2006.
  • [13] Min, B., Cheng, S., Logan, B.E., Electricity generation using membrane and salt bridge microbial fuel cells, Water Res, 39, 1675-1686, 2005.
  • [14] Hu, H., Liu, H., Fan, Y., Hydrogen production using single-chamber membrane-free microbial electrolysis cells, Water Res, 42 (15), 4172-4178, 2008.
  • [15] He, Z., Huang, Y., Manohar A.K., Mansfeld, F., Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell, Bioelectrochemistry, 74, 78–82, 2008.
  • [16] Hong, L., Stephen, G., Bruce, E.L., Electrochemically assisted microbial production of hydrogen from acetate, Environ. Sci.Technol, 39, 4317-4320, 2005.
  • [17] Tanisho, S., Wakao, N., Kosako, Y., Biological hydrogen-production by Enterobacter aerogenes, Journal of Chemical Engineering of Japan, 16, 529– 530, 1983.
  • [18] Richter, H., McCarthy, K., Nevin, K.P, Johnson, J.P., Rotello, V.M., Lovley, D.R., Electricity generation by Geobacter sulfurreducens attached to gold electrodes, Langmuir, 24, 4376–4379, 2008.
  • [19] Rezaei, F., Xing, D., Wagner, R., Regan, J.M., Richard, T.L., Logan, B.E., Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell, Appl. Environ. Microbiol, 75, 3673–3678, 2009.
  • [20] Watson, V.J., Logan, B.E., Power production in mfcs inoculated with Shewanella oneidensis MR-1 or mixed cultures, Biotechnol. Bioeng, 105, 489– 498, 2010.
  • [21] Nimje, V.R., Chen, C.Y., Chen, C.C., Jean, J.S., Reddy, A.S., Fan, C.W., Pan, K.Y., Liu, H.T., Chen, J.L., Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell, J. Power Sources, 190, 258–263, 2009.
  • [22] Lanthier, M., Gregory, K.B., Lovley, D.R., Growth with high planktonic biomass in Shewanella onseidenis fuel cells, FEMS Microbiol. Lett, 278, 29– 35, 2008.
  • [23] Kiely, P.D., Call, D.F., Yates, M.D., Regan, J.M., Logan, B.E., Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera, Appl. Microbiol. Biotechnol, 88, 371–380, 2010.
  • [24] Tanisho, S., A strategy for improving the yield of hydrogen by fermentation, Hydrogen Energy Progress, 1 (2), 370–375, 2000.
  • [25] Tanisho, S., Suzuki, Y., Wakao, N., Fermentative hydrogen evolution by Enterobacter aerogenes strain E-82005, International Journal of Hydrogen Energy, 12, 623–627, 1987.
  • [26] Zhang, C., Lv, F.X., Xing, X.H., Bioengineering of the Enterobacter aerogenes strain for biohydrogen production, Bioresource Technology, 102, 8344–8349, 2011.
  • [27] Erenler Özalp, Ş., L- Asparaginaz Geninin (ANSb) Farklı Gram-Negatif Bakterilere Klonlanması, İzolasyonu Ve Ekspresyonu, İnönü Üniversitesi- Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Doktora Tezi, 2007.
  • [28] Gould, J.L., Olağandışı yaşamlar, TÜBİTAK Popüler Bilim Kitapları, Ankara, 61-74, 1999.
  • [29] Zhang, Y., Yu, H., Shi, Y., Yang, S and Shen, Z., Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly(β- hydroxybutyrate) and fermentative parameters, FEMS Microbiology Letters, 214, 223-227, 2002.
  • [30] Li, Y., Zhuang, L., Zhou, S., Yuan, Y., Enhanced performance of air-cathode twochamber microbial fuel cells with high-pH anode and low-pH cathode, Bioresour. Technol, 101, 3514–3519, 2010.
  • [31] Sun, J., Hu, Y., Bi, Z., Cao, Y., Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single chamber microbial fuel cell, Bioresour. Technol, 100, 3185–3192, 2009.
  • [32] Liu, L., Li, F.B., Feng, C.H., Li, X.Z., Microbial fuel cell with an azo-dyefeeding cathode, Appl. Microbiol. Biotechnol, 85, 175–183, 2009.
  • [33] Li, Z., Zhang, X., Lin, J., Han, S., Lei, L., Azo dye treatment with simultaneous electricity production in an anaerobic–aerobic sequential reactor and microbial fuel cell coupled system, Bioresour. Technol, 101 (34), 4440–4445, 2010.
  • [34] Sun, J., Bi, Z., Hou, B., Cao, Y., Hu, Y., Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode, Water Res, 45, 283–291, 2011.
  • [35] Cao, Y., Hu, Y., Sun, J., Hou, B., Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell, Bioelectrochemistry, 79, 71–76, 2010.
  • [36] Erenler Özalp, Ş., Bakteri Hemoglobin Geninin Enterobacter aerogenes’in Fizyolojik Ve Metabolik Aktiviteleri Üzerine Etkileri, İnönü Üniversitesi- Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Yüksek Lisans Tezi, 2001.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Biyoloji
Yazarlar

Ayşe Şebnem Erenler

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 17 Ekim 2018
Kabul Tarihi 26 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster

APA Erenler, A. Ş. (2019). The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. Adıyaman University Journal of Science, 9(1), 113-133.
AMA Erenler AŞ. The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. ADYU J SCI. Haziran 2019;9(1):113-133.
Chicago Erenler, Ayşe Şebnem. “The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using Vgb+ Recombinant Enterobacter Aerogenes”. Adıyaman University Journal of Science 9, sy. 1 (Haziran 2019): 113-33.
EndNote Erenler AŞ (01 Haziran 2019) The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. Adıyaman University Journal of Science 9 1 113–133.
IEEE A. Ş. Erenler, “The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes”, ADYU J SCI, c. 9, sy. 1, ss. 113–133, 2019.
ISNAD Erenler, Ayşe Şebnem. “The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using Vgb+ Recombinant Enterobacter Aerogenes”. Adıyaman University Journal of Science 9/1 (Haziran 2019), 113-133.
JAMA Erenler AŞ. The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. ADYU J SCI. 2019;9:113–133.
MLA Erenler, Ayşe Şebnem. “The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using Vgb+ Recombinant Enterobacter Aerogenes”. Adıyaman University Journal of Science, c. 9, sy. 1, 2019, ss. 113-3.
Vancouver Erenler AŞ. The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes. ADYU J SCI. 2019;9(1):113-3.

...