Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluating compost for hydrogen and methane rich gas production via supercritical water gasification

Yıl 2023, Cilt: 6 Sayı: 3, 189 - 195, 30.09.2023
https://doi.org/10.35208/ert.1210384

Öz

The compost produced from organic wastes (MSW, city market’s wastes and wood dust) was selected to be processed via supercritical water gasification (SCWG) in order to produce gas product consisting of hydrogen and methane mainly. The effects of parameters such as temperature, reaction time and KOH as an additive were determined and around 55 vol.% of H2 and CH4 in the gas product was found after 30 min reaction time together with KOH, at 500 oC. The red mud catalysts did not improve the gasification yields even though they increased the calorific value of the product gas.

Kaynakça

  • S. Kaza, L. Yao, P. Bhada-Tata, and F. Van Woerden, “What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050,” The World Bank, 2018. [CrossRef]
  • Türkiye İstatistik Kurumu, “Tarımsal Gübre İstatistikleri,” 2019. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 Accessed on May 27, 2020.
  • J. Domínguez, C. A. Edwards, and S. Subler, “A comparison of vermicomposting and composting methods to process animal wastes,” Biocycle, 57–59, 1997.
  • F. Zuccconi, and M. Bertoldi, “Compost specifications for the production and characterization of compost from municipal solid wastes,” In: M. de Bertoldi, M. P. Ferranti, P. L'Hermite, and F. Zucconi, (Eds.), Compost: Production, Quality and Use. Elsevier Applied Science Publishers, pp. 3051, 1987.
  • C. Tognetti, F. Laos, M. J. Mazzarino, and M.T. Hernández, “Composting vs. vermicomposting: A comparison of end product quality,” Compost Science & Utilization, Vol. 13, pp. 6–13, 2005. [CrossRef]
  • B. R. Eastman, P. N. Kane, C. A. Edwards, L. Trytek, B. Gunadi, A. L. Stermer, and J. R. Mobley, “The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization”, Compost Science & Utilization, Vol. 9, pp. 38–49, 2001. [CrossRef]
  • T. Güngören Madenoğlu, E. Yıldırır, M. Sağlam, M. Yüksel, and L. “Ballice, Improvement in hydrogen production from hard-shell nut residues by catalytic hydrothermal gasification,” The Journal of Supercritical Fluids, Vol. 95, pp. 339–347, 2014. [CrossRef]
  • E. Yildirir, J. A. Onwudili, and P. T. “Williams, catalytic supercritical water gasification of refuse derived fuel for high energy content fuel gas,” Waste and Biomass Valorization, Vol. 8, pp. 359–367, 2017. [CrossRef]
  • L. Jasiūnas, T. H. Pedersen, S. S. Toor, and L. A. Rosendahl, “Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust,” Renewable Energy, Vol. 111, pp. 392–398, 2017. [CrossRef]
  • T. Carballo, A. E. Ma, V. Gil, A. E. Xiomar, G. Ae, F. González, A. Ae, and A. Morán, “Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis,” Vol. 19, pp. 815830, 2008. [CrossRef]
  • E. Yildirir, N. Cengiz, M. Sağlam, M. Yüksel, and L. Ballice, “Valorisation of vegetable market wastes to gas fuel via catalytic hydrothermal processing,” The Journal of the Energy Institute, Vol. 93, pp. 2344–2354, 2020. [CrossRef]
  • E. Yildirir, and L. Ballice, “Supercritical water gasification of wet sludge from biological treatment of textile and leather industrial wastewater,” The Journal of Supercritical Fluids, Vol. 146, pp. 100–106, 2019. [CrossRef]
  • A. Kruse, and E. Dinjus, “Hot compressed water as reaction medium and reactant 2. Degradation reactions,” The Journal of Supercritical Fluids, Vol. 41, pp. 361–379, 2007. [CrossRef]
  • J. A. Okolie, R. Rana, S. Nanda, A. K. Dalai, and J. A. Kozinski, “Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis,” Sustainable Energy & Fuels, Vol. 3, pp. 578–598, 2019. [CrossRef]
  • A. Kruse, and E. Dinjus, “Hot compressed water as reaction medium and reactant The Journal of Supercritical Fluids, Vol. 39, pp. 362–380, 2007. [CrossRef]
  • R. Saliger, N. Decker, and U. Prüße, “D-Glucose oxidation with H2O2 on an Au/Al2O3 catalyst,” Applied Catalysis B: Environmental, Vol. 102, pp. 584–589, 2011. [CrossRef]
  • P. Alvarenga, C. Mourinha, M. Farto, T. Santos, P. Palma, J. Sengo, M.-C. Morais, and C. Cunha-Queda, “Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors,” Waste Management, Vol. 40, pp. 44–52, 2015. [CrossRef]
Yıl 2023, Cilt: 6 Sayı: 3, 189 - 195, 30.09.2023
https://doi.org/10.35208/ert.1210384

Öz

Kaynakça

  • S. Kaza, L. Yao, P. Bhada-Tata, and F. Van Woerden, “What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050,” The World Bank, 2018. [CrossRef]
  • Türkiye İstatistik Kurumu, “Tarımsal Gübre İstatistikleri,” 2019. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001 Accessed on May 27, 2020.
  • J. Domínguez, C. A. Edwards, and S. Subler, “A comparison of vermicomposting and composting methods to process animal wastes,” Biocycle, 57–59, 1997.
  • F. Zuccconi, and M. Bertoldi, “Compost specifications for the production and characterization of compost from municipal solid wastes,” In: M. de Bertoldi, M. P. Ferranti, P. L'Hermite, and F. Zucconi, (Eds.), Compost: Production, Quality and Use. Elsevier Applied Science Publishers, pp. 3051, 1987.
  • C. Tognetti, F. Laos, M. J. Mazzarino, and M.T. Hernández, “Composting vs. vermicomposting: A comparison of end product quality,” Compost Science & Utilization, Vol. 13, pp. 6–13, 2005. [CrossRef]
  • B. R. Eastman, P. N. Kane, C. A. Edwards, L. Trytek, B. Gunadi, A. L. Stermer, and J. R. Mobley, “The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization”, Compost Science & Utilization, Vol. 9, pp. 38–49, 2001. [CrossRef]
  • T. Güngören Madenoğlu, E. Yıldırır, M. Sağlam, M. Yüksel, and L. “Ballice, Improvement in hydrogen production from hard-shell nut residues by catalytic hydrothermal gasification,” The Journal of Supercritical Fluids, Vol. 95, pp. 339–347, 2014. [CrossRef]
  • E. Yildirir, J. A. Onwudili, and P. T. “Williams, catalytic supercritical water gasification of refuse derived fuel for high energy content fuel gas,” Waste and Biomass Valorization, Vol. 8, pp. 359–367, 2017. [CrossRef]
  • L. Jasiūnas, T. H. Pedersen, S. S. Toor, and L. A. Rosendahl, “Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust,” Renewable Energy, Vol. 111, pp. 392–398, 2017. [CrossRef]
  • T. Carballo, A. E. Ma, V. Gil, A. E. Xiomar, G. Ae, F. González, A. Ae, and A. Morán, “Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis,” Vol. 19, pp. 815830, 2008. [CrossRef]
  • E. Yildirir, N. Cengiz, M. Sağlam, M. Yüksel, and L. Ballice, “Valorisation of vegetable market wastes to gas fuel via catalytic hydrothermal processing,” The Journal of the Energy Institute, Vol. 93, pp. 2344–2354, 2020. [CrossRef]
  • E. Yildirir, and L. Ballice, “Supercritical water gasification of wet sludge from biological treatment of textile and leather industrial wastewater,” The Journal of Supercritical Fluids, Vol. 146, pp. 100–106, 2019. [CrossRef]
  • A. Kruse, and E. Dinjus, “Hot compressed water as reaction medium and reactant 2. Degradation reactions,” The Journal of Supercritical Fluids, Vol. 41, pp. 361–379, 2007. [CrossRef]
  • J. A. Okolie, R. Rana, S. Nanda, A. K. Dalai, and J. A. Kozinski, “Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis,” Sustainable Energy & Fuels, Vol. 3, pp. 578–598, 2019. [CrossRef]
  • A. Kruse, and E. Dinjus, “Hot compressed water as reaction medium and reactant The Journal of Supercritical Fluids, Vol. 39, pp. 362–380, 2007. [CrossRef]
  • R. Saliger, N. Decker, and U. Prüße, “D-Glucose oxidation with H2O2 on an Au/Al2O3 catalyst,” Applied Catalysis B: Environmental, Vol. 102, pp. 584–589, 2011. [CrossRef]
  • P. Alvarenga, C. Mourinha, M. Farto, T. Santos, P. Palma, J. Sengo, M.-C. Morais, and C. Cunha-Queda, “Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors,” Waste Management, Vol. 40, pp. 44–52, 2015. [CrossRef]
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Research Articles
Yazarlar

Eyüp Yıldırır 0000-0003-1292-1926

Nihal Üremek 0000-0002-6572-7046

Levent Ballice 0000-0002-3137-1352

Yayımlanma Tarihi 30 Eylül 2023
Gönderilme Tarihi 26 Kasım 2022
Kabul Tarihi 1 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 3

Kaynak Göster

APA Yıldırır, E., Üremek, N., & Ballice, L. (2023). Evaluating compost for hydrogen and methane rich gas production via supercritical water gasification. Environmental Research and Technology, 6(3), 189-195. https://doi.org/10.35208/ert.1210384
AMA Yıldırır E, Üremek N, Ballice L. Evaluating compost for hydrogen and methane rich gas production via supercritical water gasification. ERT. Eylül 2023;6(3):189-195. doi:10.35208/ert.1210384
Chicago Yıldırır, Eyüp, Nihal Üremek, ve Levent Ballice. “Evaluating Compost for Hydrogen and Methane Rich Gas Production via Supercritical Water Gasification”. Environmental Research and Technology 6, sy. 3 (Eylül 2023): 189-95. https://doi.org/10.35208/ert.1210384.
EndNote Yıldırır E, Üremek N, Ballice L (01 Eylül 2023) Evaluating compost for hydrogen and methane rich gas production via supercritical water gasification. Environmental Research and Technology 6 3 189–195.
IEEE E. Yıldırır, N. Üremek, ve L. Ballice, “Evaluating compost for hydrogen and methane rich gas production via supercritical water gasification”, ERT, c. 6, sy. 3, ss. 189–195, 2023, doi: 10.35208/ert.1210384.
ISNAD Yıldırır, Eyüp vd. “Evaluating Compost for Hydrogen and Methane Rich Gas Production via Supercritical Water Gasification”. Environmental Research and Technology 6/3 (Eylül 2023), 189-195. https://doi.org/10.35208/ert.1210384.
JAMA Yıldırır E, Üremek N, Ballice L. Evaluating compost for hydrogen and methane rich gas production via supercritical water gasification. ERT. 2023;6:189–195.
MLA Yıldırır, Eyüp vd. “Evaluating Compost for Hydrogen and Methane Rich Gas Production via Supercritical Water Gasification”. Environmental Research and Technology, c. 6, sy. 3, 2023, ss. 189-95, doi:10.35208/ert.1210384.
Vancouver Yıldırır E, Üremek N, Ballice L. Evaluating compost for hydrogen and methane rich gas production via supercritical water gasification. ERT. 2023;6(3):189-95.