Araştırma Makalesi
BibTex RIS Kaynak Göster

SDN Tabanlı SCADA Sistemlerinde Makine Öğrenmesi Tabanlı DDoS Saldırı Tespiti

Yıl 2023, Cilt: 9 Sayı: 3, 596 - 611, 01.01.2024

Öz

Kritik altyapılardaki süreçleri izlemek ve denetlemek için Denetleyici Kontrol ve Veri Toplama (SCADA) sistemleri kullanılmaktadır. SCADA sistemleri gelişen siber saldırılar karşısında yeterli tespit ve savunma mekanizmalarına sahip değildir ve birçok güvenlik açıklığı barındırmaktadır. Ulusal ve uluslararası öneme sahip kritik altyapılarda SCADA sistemlerinin kullanılması kötü niyetli saldırganlar için yeni hedefler anlamına gelmektedir. Ayrıca SCADA sistemlerinin yeni teknolojilerle birlikte kullanılması güvenlik dünyasına yeni bakış açıları kazandırmaktadır. SDN gibi teknolojiler SCADA sistemleriyle bütünleştirildiğinde, sisteme yönetilebilirlik ve programlanabilirlik konularında avantajlar kazandırmaktadır. Bunun yanı sıra DDoS gibi saldırılara karşı güvenlik sorunları da barındırmaktadır. Bu sebeplerden dolayı SCADA sistemlerinin siber güvenliğinin sağlanması zorunlu hale gelmiştir. Bu çalışmada SDN tabanlı SCADA sistemlerinin DDoS saldırılarına maruz kalması durumu ele alınmıştır. Saldırı tespitinin yapılması için Logistic Regression, K-Nearest Neighbors, Random Forest ve Support Vector Machine sınıflandırma algoritmaları kullanılmıştır. Hazır bir veriseti üzerinde çalışılmış ve buna göre en doğru tespiti gerçekleştiren model çalışmamızda önerilmiştir. Sonuçlar önerilen SVM sınıflandırıcı modelinin (%97.2 oranında doğruluk), SDN tabanlı SCADA sistemlerine yönelik DDoS saldırılarını etkili bir şekilde tespit ettiğini göstermiştir.

Kaynakça

  • [1] I. Elfaleh, F., Abbasi, M., Habibi, F., Ahmad, M., Guedri, N., Mondher, and C., Garnier, “A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials,” Results in Engineering, vol. 19, pp. 1–31, Sep. 2023, doi:10.1016/j.rineng.2023.101271.
  • [2] A. K. Kaw, Kompozit Malzeme Mekaniği, 1st ed. Ankara: Efil Yayınevi, 2014.
  • [3] Y. Şahin, Kompozit Malzemelere Giriş, 4th ed. Ankara: Seçkin Yayıncılık, 2022.
  • [4] P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering, Advanced Composite Materials for Aerospace Engineering, S. Rana and R. Fangueiro, Ed., Woodhead Publishing, 2016, pp. 365–383. doi:10.1016/B978-0-08-100037-3.00012-2.
  • [5] J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term memory for machine remaining life prediction,” Journal of Manufacturing Systems, vol. 48, pp. 78–86, Jul. 2018, doi:10.1016/j.jmsy.2018.05.011.
  • [6] G. Sjöberg, “Aircraft Engine Structure Materials,” North Atlantic Treaty Organization Science and Technology Organization, pp. 1–24, January 2012, doi:10.14339/RTO-EN-AVT-207-13-pdf
  • [7] N. R. Muktinutalapati, Materials for Gas Turbines – An Overview, Advances in Gas Turbine Technology, IntechOpen, 2011, pp. 293–314. doi:10.5772/20730.
  • [8] E. Akca and A. Gürsel, “A review on superalloys and IN718 nickel-based INCONEL superalloy,” Periodicals of Engineering and Natural Sciences, vol. 3, no. 1, pp. 1-13 , Jun. 2015, doi:10.21533/pen.v3i1.43.
  • [9] T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” Journal of Propulsion and Power, vol. 22, no. 2, pp. 361–374, Mar. 2006, doi:10.2514/1.18239.
  • [10] B. Beşergil, “Karbon-Karbon Kompozitler; Üretim Prosesler (production processes).” bilsenbesergil.blogspot.com. Jun. 15, 2019. [Online]. Available: http://bilsenbesergil.blogspot.com/p/blog-page_90.html. [Accessed: Nov. 12, 2023]
  • [11] S. Kesarwani, “Polymer Composites in Aviation Sector,” International Journal of Engineering Research and Technology, vol. 6, no. 6, pp. 518–525, June 2017, doi:10.17577/IJERTV6IS060291.
  • [12] NASA, “Polyimide Boosts High-Temperature Performance,” ntrs.nasa.gov, September 1, 2008. [Online]. Available: https://ntrs.nasa.gov/citations/20090002513. [Accessed: Nov. 12, 2023].
  • [13] K. J. Bowles and G. Nowak, “Thermo-Oxidative Stability Studies of Celion 6000/PMR-15 Unidirectional Composites, PMR-15, and Celion 6000 Fiber,” Journal of Composite Materials, vol. 22, no. 10, pp. 966–985, October 1988, doi:10.1177/002199838802201005.
  • [14] K. Bowles, L. McCorkle, and L. Ingrahm, “Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures,” Journal of Advanced Materials, pp. 1–29, February 1998.
  • [15] D. L. McDanels, T. T. Serafini, and J. A. DiCarlo, “Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications,” Journal of Materials for Energy Systems, vol. 8, no. 1, pp. 80–91, June 1986, doi:10.1007/BF02833463.
  • [16] D. Wilson, “PMR-15 processing, properties and problems—a review,” British Polymer Journal, vol. 20, no. 5, pp. 405–416, November 1988, doi:10.1002/pi.4980200505.
  • [17] R. D. Vannucci, “Properties of PMR Polyimide composites made with improved high strength graphite fibers,” Twelfth National SAMPE Technical Conference Seattle, January 1980, pp. 1–19. [Online]. Available: https://ntrs.nasa.gov/citations/19800019943. [Accessed: Nov. 12, 2023].
  • [18] J. Dominy, “Structural composites in civil gas turbine aero engines,” Composites Manufacturing, vol. 5, no. 2, pp. 69–72, June 1994, doi:10.1016/0956-7143(94)90057-4.
  • [19] Y. Uzunonat, “Uçak Motoru Uygulamalarında Alternatif Çözümler: MoSi2 Esaslı Malzemelerin Yapısal Eleman Olarak Kullanımı,” Mühendis ve Makina, vol. 57, no. 679, pp. 44-52, August 2016.
  • [20] B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers, vol. 14, no. 22, pp. 1-32, Jan. 2022, doi:10.3390/polym14225007.
  • [21] E. Nas, H. Gökkaya, and G. Sur, “Sıcak Presleme Yöntemi Kullanılarak Kompozit Malzemelerin Üretilebilirliği Üzerine Bir Değerlendirme,” Karaelmas Fen ve Mühendislik Dergisi, vol. 3, no. 2, pp. 56-65, Jun. 2013.
  • [22] D. Sciti, S. Guicciardi, and A. Bellosi, “Properties of Si3N4 – MOSi2 Composites with a Nanostructured Matrix,” 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, January 13-18, 2002, Florida, USA, Volume 23, H. T. Lin, M. Singh, Eds., 2002, pp. 673–679. doi:10.1002/9780470294758.ch74
  • [23] J. A. DiCarlo, “Advances in SiC/SiC Composites for Aero-Propulsion,” nasa.gov, NASA/TM-2013-217889, Jul. 2013. [Online]. Available: https://ntrs.nasa.gov/citations/20140000988. [Accessed: Nov. 12, 2023].
  • [24] M. Jinsheng, S. Liwei, and H. Yongxiang, “Application of Composite Materials in Engine,” Materials Science: Advanced Composite Materials, pp. 1–9, 2017, doi:10.18063/msacm.v1i1.499.
  • [25] G. Karadimas and K. Salonitis, “Ceramic Matrix Composites for Aero Engine Applications—A Review,” Applied Sciences, vol. 13, no. 5, pp.1-42, Jan. 2023, doi:10.3390/app13053017.
  • [26] T. M. Besmann, D. P. Stinton, R. A. Lowden, and W. Y. Lee, Chemical Vapor Deposition (CVD) and Infiltration (CVI), Carbide, Nitride and Boride Materials Synthesis and Processing, A. W. Weimer, Ed., Dordrecht: Springer Netherlands, 1997, pp. 547–577. doi:10.1007/978-94-009-0071-4_22.
  • [27] A. Lazzeri and M. B. Coltelli, Chemical vapour infiltration of composites and their applications, Chemical Vapour Deposition (CVD), CRC Press, 2019, pp. 1–28. doi:10.1201/9781315117904-8.
  • [28] K. U. Kainer, Basics of Metal Matrix Composites, Metal Matrix Composites, John Wiley & Sons, Ltd, 2006, pp. 1–54. doi:10.1002/3527608117.ch1.
  • [29] C. T. Salemme and G. C. Murphy, “Metal spar/superhybrid shell composite fan blades,” ntrs.nasa, NASA-CR-159594, Aug. 1979. [Online]. Available: https://ntrs.nasa.gov/citations/19790022124. [Accessed: Nov. 12, 2023]
  • [30] Z. Ali, Y. Gao, B. Tang, X. Wu, Y. Wang, M. Li, X. Hou, L. Li, N. Jiang and J. Yu, “Preparation, Properties and Mechanisms of Carbon Fiber/Polymer Composites for Thermal Management Applications,” Polymers, vol. 13, 169, pp. 1-22, Jan. 2021, doi:10.3390/polym13010169.
  • [31] D. D. L. Chung, Ed., Composite Materials, Springer, London, 2010, pp. 1–34, doi:10.1007/978-1-84882-831-5.
  • [32] M. Roosta, H. Baharvandi, and H. Abdizade, “An experimental investigation on the fabrication of W-Cu composite through hot-press,” International Journal of Industrial Chemistry, vol. 3, 10, pp.1-6, Jul. 2012, doi:10.1007/978-1-84882-831-5_1
  • [33] E. Tejado, A. v. Müller, J.-H. You, and J. Y. Pastor, “The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content,” Journal of Nuclear Materials, vol. 498, pp. 468–475, Jan. 2018, doi:10.1016/j.jnucmat.2017.08.020.
  • [34] Y. Zhang, Y. Li, Y. Li, M. Song, X. Zhang, and W. Zhang, “TMOs@Gr/Cu composites: Microstructure and properties,” Materials & Design, vol. 182, pp. 1-7, 30, Nov. 2019, doi:10.1016/j.matdes.2019.108030.
  • [35] A. R. Shelke, J. Balwada, S. Sharma, A. D. Pingale, S. U. Belgamwar, and J. S. Rathore, “Development and characterization of Cu-Gr composite coatings by electro-co-deposition technique,” Materials Today: Proceedings, vol. 28, pp. 2090–2095, Jan. 2020, doi:10.1016/j.matpr.2020.03.244.
  • [36] C. Hou, X. Song, F. Tang, Y., Li, L. Cao, J. Wang and N. Zouren, “W–Cu composites with submicron- and nanostructures: progress and challenges,” NPG Asia Materials, vol. 11, no. 74, pp. 1-20, Dec. 2019, doi:10.1038/s41427-019-0179-x.

Machine Learning-Based DDoS Attack Detection on SDN-Based SCADA Systems

Yıl 2023, Cilt: 9 Sayı: 3, 596 - 611, 01.01.2024

Öz

Supervisory Control and Data Acquisition (SCADA) systems are used to monitor and control processes in critical infrastructures. SCADA systems do not have adequate detection and defense mechanisms against developing cyber attacks and contains many security vulnerabilities. The use of SCADA systems in critical infrastructures of national and international importance means new targets for malicious attackers. In addition, the use of SCADA systems with new technologies brings new perspectives to the security world. When technologies such as SDN are integrated with SCADA systems, it brings advantages to the system in terms of manageability and programmability. However security problems also occur against attacks such as DDoS. For these reasons, it is imperative to ensure the cyber security of SCADA systems. In this study, the case of SDN-based SCADA systems exposed to DDoS attacks is discussed. Logistic Regression, K-Nearest Neighbors, Random Forest, and Support Vector Machine classification algorithms have been used for attack detection. A ready-made dataset has been studied, and accordingly, the model that makes the most accurate determination has been proposed in our study. The results show that the proposed SVM classifier model (97.2% accuracy rate) effectively detects DDoS attacks against SDN-based SCADA systems.

Kaynakça

  • [1] I. Elfaleh, F., Abbasi, M., Habibi, F., Ahmad, M., Guedri, N., Mondher, and C., Garnier, “A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials,” Results in Engineering, vol. 19, pp. 1–31, Sep. 2023, doi:10.1016/j.rineng.2023.101271.
  • [2] A. K. Kaw, Kompozit Malzeme Mekaniği, 1st ed. Ankara: Efil Yayınevi, 2014.
  • [3] Y. Şahin, Kompozit Malzemelere Giriş, 4th ed. Ankara: Seçkin Yayıncılık, 2022.
  • [4] P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering, Advanced Composite Materials for Aerospace Engineering, S. Rana and R. Fangueiro, Ed., Woodhead Publishing, 2016, pp. 365–383. doi:10.1016/B978-0-08-100037-3.00012-2.
  • [5] J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term memory for machine remaining life prediction,” Journal of Manufacturing Systems, vol. 48, pp. 78–86, Jul. 2018, doi:10.1016/j.jmsy.2018.05.011.
  • [6] G. Sjöberg, “Aircraft Engine Structure Materials,” North Atlantic Treaty Organization Science and Technology Organization, pp. 1–24, January 2012, doi:10.14339/RTO-EN-AVT-207-13-pdf
  • [7] N. R. Muktinutalapati, Materials for Gas Turbines – An Overview, Advances in Gas Turbine Technology, IntechOpen, 2011, pp. 293–314. doi:10.5772/20730.
  • [8] E. Akca and A. Gürsel, “A review on superalloys and IN718 nickel-based INCONEL superalloy,” Periodicals of Engineering and Natural Sciences, vol. 3, no. 1, pp. 1-13 , Jun. 2015, doi:10.21533/pen.v3i1.43.
  • [9] T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” Journal of Propulsion and Power, vol. 22, no. 2, pp. 361–374, Mar. 2006, doi:10.2514/1.18239.
  • [10] B. Beşergil, “Karbon-Karbon Kompozitler; Üretim Prosesler (production processes).” bilsenbesergil.blogspot.com. Jun. 15, 2019. [Online]. Available: http://bilsenbesergil.blogspot.com/p/blog-page_90.html. [Accessed: Nov. 12, 2023]
  • [11] S. Kesarwani, “Polymer Composites in Aviation Sector,” International Journal of Engineering Research and Technology, vol. 6, no. 6, pp. 518–525, June 2017, doi:10.17577/IJERTV6IS060291.
  • [12] NASA, “Polyimide Boosts High-Temperature Performance,” ntrs.nasa.gov, September 1, 2008. [Online]. Available: https://ntrs.nasa.gov/citations/20090002513. [Accessed: Nov. 12, 2023].
  • [13] K. J. Bowles and G. Nowak, “Thermo-Oxidative Stability Studies of Celion 6000/PMR-15 Unidirectional Composites, PMR-15, and Celion 6000 Fiber,” Journal of Composite Materials, vol. 22, no. 10, pp. 966–985, October 1988, doi:10.1177/002199838802201005.
  • [14] K. Bowles, L. McCorkle, and L. Ingrahm, “Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures,” Journal of Advanced Materials, pp. 1–29, February 1998.
  • [15] D. L. McDanels, T. T. Serafini, and J. A. DiCarlo, “Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications,” Journal of Materials for Energy Systems, vol. 8, no. 1, pp. 80–91, June 1986, doi:10.1007/BF02833463.
  • [16] D. Wilson, “PMR-15 processing, properties and problems—a review,” British Polymer Journal, vol. 20, no. 5, pp. 405–416, November 1988, doi:10.1002/pi.4980200505.
  • [17] R. D. Vannucci, “Properties of PMR Polyimide composites made with improved high strength graphite fibers,” Twelfth National SAMPE Technical Conference Seattle, January 1980, pp. 1–19. [Online]. Available: https://ntrs.nasa.gov/citations/19800019943. [Accessed: Nov. 12, 2023].
  • [18] J. Dominy, “Structural composites in civil gas turbine aero engines,” Composites Manufacturing, vol. 5, no. 2, pp. 69–72, June 1994, doi:10.1016/0956-7143(94)90057-4.
  • [19] Y. Uzunonat, “Uçak Motoru Uygulamalarında Alternatif Çözümler: MoSi2 Esaslı Malzemelerin Yapısal Eleman Olarak Kullanımı,” Mühendis ve Makina, vol. 57, no. 679, pp. 44-52, August 2016.
  • [20] B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers, vol. 14, no. 22, pp. 1-32, Jan. 2022, doi:10.3390/polym14225007.
  • [21] E. Nas, H. Gökkaya, and G. Sur, “Sıcak Presleme Yöntemi Kullanılarak Kompozit Malzemelerin Üretilebilirliği Üzerine Bir Değerlendirme,” Karaelmas Fen ve Mühendislik Dergisi, vol. 3, no. 2, pp. 56-65, Jun. 2013.
  • [22] D. Sciti, S. Guicciardi, and A. Bellosi, “Properties of Si3N4 – MOSi2 Composites with a Nanostructured Matrix,” 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, January 13-18, 2002, Florida, USA, Volume 23, H. T. Lin, M. Singh, Eds., 2002, pp. 673–679. doi:10.1002/9780470294758.ch74
  • [23] J. A. DiCarlo, “Advances in SiC/SiC Composites for Aero-Propulsion,” nasa.gov, NASA/TM-2013-217889, Jul. 2013. [Online]. Available: https://ntrs.nasa.gov/citations/20140000988. [Accessed: Nov. 12, 2023].
  • [24] M. Jinsheng, S. Liwei, and H. Yongxiang, “Application of Composite Materials in Engine,” Materials Science: Advanced Composite Materials, pp. 1–9, 2017, doi:10.18063/msacm.v1i1.499.
  • [25] G. Karadimas and K. Salonitis, “Ceramic Matrix Composites for Aero Engine Applications—A Review,” Applied Sciences, vol. 13, no. 5, pp.1-42, Jan. 2023, doi:10.3390/app13053017.
  • [26] T. M. Besmann, D. P. Stinton, R. A. Lowden, and W. Y. Lee, Chemical Vapor Deposition (CVD) and Infiltration (CVI), Carbide, Nitride and Boride Materials Synthesis and Processing, A. W. Weimer, Ed., Dordrecht: Springer Netherlands, 1997, pp. 547–577. doi:10.1007/978-94-009-0071-4_22.
  • [27] A. Lazzeri and M. B. Coltelli, Chemical vapour infiltration of composites and their applications, Chemical Vapour Deposition (CVD), CRC Press, 2019, pp. 1–28. doi:10.1201/9781315117904-8.
  • [28] K. U. Kainer, Basics of Metal Matrix Composites, Metal Matrix Composites, John Wiley & Sons, Ltd, 2006, pp. 1–54. doi:10.1002/3527608117.ch1.
  • [29] C. T. Salemme and G. C. Murphy, “Metal spar/superhybrid shell composite fan blades,” ntrs.nasa, NASA-CR-159594, Aug. 1979. [Online]. Available: https://ntrs.nasa.gov/citations/19790022124. [Accessed: Nov. 12, 2023]
  • [30] Z. Ali, Y. Gao, B. Tang, X. Wu, Y. Wang, M. Li, X. Hou, L. Li, N. Jiang and J. Yu, “Preparation, Properties and Mechanisms of Carbon Fiber/Polymer Composites for Thermal Management Applications,” Polymers, vol. 13, 169, pp. 1-22, Jan. 2021, doi:10.3390/polym13010169.
  • [31] D. D. L. Chung, Ed., Composite Materials, Springer, London, 2010, pp. 1–34, doi:10.1007/978-1-84882-831-5.
  • [32] M. Roosta, H. Baharvandi, and H. Abdizade, “An experimental investigation on the fabrication of W-Cu composite through hot-press,” International Journal of Industrial Chemistry, vol. 3, 10, pp.1-6, Jul. 2012, doi:10.1007/978-1-84882-831-5_1
  • [33] E. Tejado, A. v. Müller, J.-H. You, and J. Y. Pastor, “The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content,” Journal of Nuclear Materials, vol. 498, pp. 468–475, Jan. 2018, doi:10.1016/j.jnucmat.2017.08.020.
  • [34] Y. Zhang, Y. Li, Y. Li, M. Song, X. Zhang, and W. Zhang, “TMOs@Gr/Cu composites: Microstructure and properties,” Materials & Design, vol. 182, pp. 1-7, 30, Nov. 2019, doi:10.1016/j.matdes.2019.108030.
  • [35] A. R. Shelke, J. Balwada, S. Sharma, A. D. Pingale, S. U. Belgamwar, and J. S. Rathore, “Development and characterization of Cu-Gr composite coatings by electro-co-deposition technique,” Materials Today: Proceedings, vol. 28, pp. 2090–2095, Jan. 2020, doi:10.1016/j.matpr.2020.03.244.
  • [36] C. Hou, X. Song, F. Tang, Y., Li, L. Cao, J. Wang and N. Zouren, “W–Cu composites with submicron- and nanostructures: progress and challenges,” NPG Asia Materials, vol. 11, no. 74, pp. 1-20, Dec. 2019, doi:10.1038/s41427-019-0179-x.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Esra Söğüt 0000-0002-0051-2271

Adem Tekerek 0000-0002-0880-7955

O. Ayhan Erdem 0000-0001-7761-1078

Yayımlanma Tarihi 1 Ocak 2024
Gönderilme Tarihi 3 Ağustos 2023
Kabul Tarihi 28 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 3

Kaynak Göster

IEEE E. Söğüt, A. Tekerek, ve O. A. Erdem, “Machine Learning-Based DDoS Attack Detection on SDN-Based SCADA Systems”, GMBD, c. 9, sy. 3, ss. 596–611, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg