Derleme
BibTex RIS Kaynak Göster

Physiological and Biochemical Responses to Heavy Metals Stress in Plants

Yıl 2024, Cilt: 11 Sayı: 1, 169 - 190, 05.02.2024
https://doi.org/10.21448/ijsm.1323494

Öz

Heavy metal (HM) toxicity is a severe abiotic stress that can cause significant harm to plant development and breeding, posing a challenge to sustainable agriculture. Various factors, including cellular toxicity, oxidative stress, osmotic stress, imbalance in the membrane, and metabolic homeostasis cause negative impacts on plant molecular, physiology and biochemistry. Some heavy metals (HMs) are essential micronutrients that play important roles in various plant processes, while excessive amounts can be harmful and have negative impacts on plant growth, metabolism, physiology, and senescence. Phytotoxicity with HMs and the deposition of reactive oxygen species (ROS) and methylglyoxal (MG), can lead to lipid peroxidation, protein oxidation, enzyme inactivation, DNA damage, and harm to other vital components of plant cells. Generally, HM toxicity as environmental stress led to response of plant with different mechanisms, first, the stimulus to external stress, secondly all signals transduction to plant cell and finally it beginning to find appropriate actions to mitigate the adverse stress in terms of physiological, biochemical, and molecular in the cell to survive plant. The purpose of this review is to better understand how plants respond physiologically and biochemically to abiotic HM stress.

Kaynakça

  • Ali, H.M.M., & Perveen, S. (2020). Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: A study of changes in growth, yield, and photosynthetic characteristics. Physiology and Molecular Biology of Plants, 26, 1215-1224.
  • Al-Jobori, K.M., & Kadhim, A.K. (2019). Evaluation of sunflower (Helianthus annuus L.) for phytoremediation of lead contaminated soil. Journal of Pharmaceutical Sciences and Research, 11, 847–854.
  • Angulo-Bejarano, P.I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants, 10(4), 635. https://doi.org/10.3390/plants10040635
  • Anjitha, K.S., Sameena, P.P., & Puthur, J.T. (2021). Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology. Plant Stress, 2, 100038.
  • Arnao, M.B., & Hernández-Ruiz, J. (2009). Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research., 46, 58-63.
  • Bali, A.S., & Sidhu, G.P.S. (2021). Arsenic acquisition, toxicity, and tolerance in plants-from physiology to remediation: A review. Chemosphere 283, 131050.
  • Barceló, J., & Poschenrieder, C.H. (1999). Structural and ultrastructural changes in HM exposed plants. In: Prasad, M.N.V. and Hagemeyer, J. (Eds.), HM stress in plants, Molecules to Ecosystem. Springer, pp. 183-205. https://doi.org/10.1007/978-3-662-07745-0_9
  • Barker, W.G. (1972). Toxicity levels of mercury, lead, copper, and zinc in tissue culture systems of cauliflower, lettuce, potato, and carrot. Canadian Journal of Botany, 50, 973-976.
  • Barouchas, P.E., Akoumianaki-Ioannidou, A., Liopa-Tsakalidi, A., & Moustakas, N.K. (2019). Effects of vanadium and nickel on morphological characteristics and on vanadium and nickel uptake by shoots of Mojito (Mentha × villosa) and Lavender (Lavandula anqustifolia). Notulae Botanicae Horti Agrobotanici Cluj Napoca, 47, 487 492. https://doi.org/10.15835/nbha47111413
  • Bindu, Y., Abhimanyu, J., Lal, S.K., Nita, L., Sahil, M., Nitzan, S., & Narayan, O.P. (2021). Plant mineral transport systems and the potential for crop improvement. Planta, 253,1-30.
  • Boonyapookana, B., Upatham, E.S., Kruatrachue, M., Pokethitiyook, P., & Singhakaew, S. (2002). Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. International Journal of Phytoremediation, 4, 87 100. https://doi.org/10.1080/15226510208500075
  • Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173, 677-702.
  • Cakmak, I., & Marschner, H. (1993). Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow N. J. (Ed.), Plant Nutrition—From Genetic Engineering to Field Practice: Proceedings of the twelfth international plant nutrition colloquium, Perth, Western Australia, Springer Netherlands, pp. 133-136. https://doi.org/10.1007/978-94-011-1880-4_21
  • Cenkci, S., Cigerci, I.H., Yildiz, M., Ozay, C., Bozdag, A., & Terzi, H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67, 467-473.
  • Chaudhary, K., Agarwal, S., & Khan, S. (2018). Role of phytochelatins (PCs), metallothioneins (MTs), and HM ATPase (HMA) genes in HM tolerance, In: Prasad, R. (Eds.), Mycoremediation and Environmental Sustainability, Springer INdAM, pp. 39-60. https://doi.org/10.1007/978-3-319-77386-5_2
  • Chen, K., Li, G.-J., Bressan, R.A., Song, C.P., Zhu, J.-K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62, 25-54.
  • Chen, Z., Zhu, D., Wu, J., Cheng, Z., Yan, X., Deng, X., & Yan, Y. (2018). Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Scientific Reports, 8, 7790.
  • Chibuike, G.U., & Obiora, S.C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 752708, http://dx.doi.org/10.1155/2014/752708
  • Choudhary, A., Kumar, A., Kaur, H., Singh, M., Suri, G.S., Kaur, G., & Mehta, S. (2022). Effect of elevated CO2 conditions on medicinal plants, in: Husan, A. (Eds.), A relatively unexplored aspect. Environmental Pollution and Medicinal Plants. CRC Press, pp. 95-111.
  • Clemens, S. (2000). Molecular mechanisms of plant metal tolerance and homeostasis. Plant, 212, 475-486.
  • Costa, G., & Morel, J. (1994). Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiology and Biochemistry, 32, 561-570.
  • de Vries, W., Lofts, S., Tipping, E., Meili, M., Groenenberg, J. E., & Schütze, G. (2007). Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects. Reviews of Environmental Contamination and Toxicology. Springer, New York, NY, pp.47 89. https://doi.org/10.1007/978-0-387-69163-3_3
  • Dos Reis, R.A., Keunen, E., Mourato, M.P., Martins, L.L., Vangronsveld, J., & Cuypers, A. (2018). Accession-specific life strategies affect responses in leaves of Arabidopsis thaliana plants exposed to excess Cu and Cd. Journal of Plant Physiology, 223, 37-46.
  • Dreyer Parr, P., & Taylor, F.G. (1982). Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environment International, 7, 197-202. https://doi.org/10.1016/0160-4120(82)90105-2
  • Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense systems in plants: A concise overview. Frontiers in Plant Science, 11, 552969.
  • Ebbs, S.D., & Kochian, L.V. (1997). Toxicity of zinc and copper to Brassica species: Implications for Phytoremediation. Journal of Environmental Quality, 26, 776-781. https://doi.org/10.2134/jeq1997.00472425002600030026x
  • El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E., Bolan, N., Tack, F., Sebastian, A., Majeti, P., & Rinklebe, J. (2020). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52, 675-726. https://doi.org/10.1080/10643389.2020.1835435
  • Emamverdian, A., Ding, Y., Hasanuzzaman, M., Barker, J., Liu, G., Li, Y., & Mokhberdoran, F. (2023). Insight into the biochemical and physiological mechanisms of nanoparticles-induced arsenic tolerance in bamboo. Frontiers in Plant Science, 14, 1020.
  • Fatemi, H., Esmaiel Pour, B., Rizwan, M. (2021). Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Journal of Environmental science and Pollution science. 28, 1417-1425.
  • Fattahi, B., Arzani, K., Souri, M.K., & Barzegar, M. (2019). Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Industrial Crops and Products, 138, 111584.
  • Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9, 303-321.
  • Ghasemi, B., Hosseini, R., & Nayeri, F.D. (2015). Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turkish Journal of Botany, 39(5), 769-777.
  • Ghorbanpour, M. (2015). Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian Journal of Plant Physiology, 20(3), 249-256. https://doi.org/10.1007/s40502-015-0170-7
  • Groppa, M.D., Benavides, M.P., & Tomaro, M.L. (2003). Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Science, 164(2), 293-299.
  • Gruenhage, L., & Jaeger, H.J. (1985). Effect of HMs on growth and HM content of Allium porrum L. and Pisum sativum L. Angewandte Botanik (Germany, F.R.). 59.
  • Guan, H., Dong, L., Zhang, Y., Bai, S., & Yan, L. (2022). GLDA and EDTA assisted phytoremediation potential of Sedum hybridum ‘Immergrunchen’for Cd and Pb contaminated soil. International Journal Phytoremediation. 24, 1395-1404.
  • Gunes, A., Pilbeam, D.J., & Inal, A. (2009). Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant and Soil, 314, 211-220.
  • Guo, J., Dai, X., Xu, W., & Ma, M. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 72(7), 1020–1026. https://doi.org/10.1016/j.chemosphere.2008.04.018
  • Haap, T., Schwarz, S., & Köhler, H.R. (2016). Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress. Aquatic Toxicology (Amsterdam, Netherlands), 170, 112–119. https://doi.org/10.1016/j.aquatox.2015.11.008
  • Hadia-e-Fatima, A. A. (2018). Heavy metal pollution–A mini review. Journal of Bacteriology and Mycology, 6(3), 179-181.
  • Hafeez, A., Rasheed, R., Ashraf, M.A., Qureshi, F.F., Hussain, I., & Iqbal, M. (2023). Effect of heavy metals on growth, physiological and biochemical responses of plants. In Plants and their Interaction to Environmental Pollution (pp. 139-159). Elsevier.
  • Haritash, A.K. (2023). Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: A critical review. Horticulture, Environment, and Biotechnology, 1-26.
  • Hatami, M., Naghdi Badi, H., & Ghorbanpour, M. (2019). Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review., Journal of Medecinal of Plants 71,1836.
  • Hernandez, L.E., Carpena‐Ruiz, R., & Gárate, A. (1996). Alterations in the mineral nutrition of pea seedlings exposed to cadmium. Journal of Plant Nutrition, 19(12), 1581-1598. https://doi.org/10.1080/01904169609365223
  • Hewitt, E.J. (1953). Metal Interrelationships in Plant Nutrition: Effects of some metal toxicities on Sugar beet, tomato, oat, potato, and marrow stem kale grown in sand culture. Journal of Experimental Botany, 4(1), 59-6. https://doi.org/10.1093/jxb/4.1.59
  • Hoque, M.N., Tahjib-Ul-Arif, M., Hannan, A., Sultana, N., Akhter, S., Hasanuzzaman, M., Akter, F., Hossain, M. S., Sayed, M. A., & Hasan, M. T. (2021). Melatonin modulates plant tolerance to heavy metal stress: Morphological responses to molecular mechanisms. International Journal of Molecular Sciences, 22(21), 11445.
  • Huang, F., Luo, J., Ning, T., Cao, W., Jin, X., Zhao, H., Wang, Y., & Han, S. (2017). Cytosolic and Nucleosolic Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of Arabidopsis Seedlings. Frontiers in Plant Science, 8, 1648. https://doi.org/10.3389/fpls.2017.01648
  • Iqbal, N., Nazir, N., Nauman, M., & Hayat, M.T. (2020). Agronomic crop responses and tolerance to metals/metalloids toxicity. Agronomic Crops: Volume 3: Stress Responses and Tolerance, 191-208.
  • Islam, M.M., Hoque, Md., A., Okuma, E., Banu, Mst. N.A., Shimoishi, Y., Nakamura, Y., & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166(15), 1587-1597. https://doi.org/10.1016/j.jplph.2009.04.002
  • Jalmi, S.K., Bhagat, P.K., Verma, D., Noryang, S., Tayyeba, S., Singh, K., Sharma, D., & Sinha, A.K. (2018). Traversing the links between heavy metal stress and plant signaling. Frontiers in Plant Science, 9, 12.
  • Janeeshma, E., Rajan, V.K., & Puthur, J.T. (2021). Spectral variations associated with anthocyanin accumulation; an apt tool to evaluate zinc stress in Zea mays L. Chemistry and Ecology, 37(1), 32-49.
  • Juwarkar, A.S., & Shende, G.B. (1986). Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Indian Journal of Environmental Health, 28, 235-243.
  • Karakas, F.P.(2020). Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiololgy and Biochemistry. 146, 384-391.
  • Kaya, C., Ashraf, M., Alyemeni, M.N., & Ahmad, P. (2020). Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiologia Plantarum, 168(2), 345-360.
  • Khan, M.I.R., Jahan, B., AlAjmi, M. F., Rehman, M.T., Iqbal, N., Irfan, M., Sehar, Z., & Khan, N.A. (2021). Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicology and Environmental Safety, 222, 112535.
  • Khare, S., Singh, N.B., Singh, A., Hussain, I., Niharika, K.M., Yadav, V., Bano, C., Yadav, R.K., & Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63, 203-216.
  • Kısa, D., Elmastaş, M., Öztürk, L., & Kayır, Ö. (2016). Responses of the phenolic compounds of Zea mays under heavy metal stress. Applied Biological Chemistry, 59, 813-820.
  • Kochian, L.V., Piñeros, M.A., Liu, J., &Magalhaes, J.V. (2015). Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biology. 66, 571-598.
  • Lee, C.W., Choi, J.M., & Pak, C.H. (1996). Micronutrient Toxicity in Seed Geranium (Pelargonium × hortorum Bailey). Journal of the American Society for Horticultural Science, 121(1), 77-82. https://doi.org/10.21273/JASHS.121.1.77
  • Li, L., Huang, X., Borthakur, D., & Ni, H. (2012). Photosynthetic activity and antioxidative response of seagrass Thalassia hemprichii to trace metal stress. Acta Oceanol. Sin., 31(3), 98-108.
  • Li, M.Q., Hasn, Md. K., Li, C.X., Ahammed, G.J., Xia, X.J., Shi, K., Zhou, Y.H., Reiter, R., Yu, J.Q., Xu, M.X., & Zhou, J. (2016). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research, 61. https://doi.org/10.1111/jpi.12346
  • López-Bucio, J., Hernández-Madrigal, F., Cervantes, C., Ortiz-Castro, R., Carreón-Abud, Y., & Martínez-Trujillo, M. (2014). Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake. BioMetals, 27(2), 363 370. https://doi.org/10.1007/s10534-014-9718-7
  • Ma, W., Zhao, B., Lv, X., & Feng, X. (2022). Lead tolerance and accumulation characteristics of three Hydrangea cultivars representing potential lead-contaminated phytoremediation plants. Horticulture, Environmental and Biotechnology. 63, 23-38.
  • Maleva, M.G., Nekrasova, G.F., Borisova, G.G., Chukina, N.V., & Ushakova, O.S. (2012). Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Russian Journal of Plant Physiology, 59, 190-197.
  • Malik, N.J., Chamon, A., Mondol, M., Elahi, S.F., & Faiz, S.M.A. (2011). Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). Journal of the Bangladesh Association of Young Researchers, 1(1), Article 1. https://doi.org/10.3329/jbayr.v1i1.6836
  • Martellini, F., Giorni, E., Colzi, I., Luti, S., Meerts, P., Pazzagli, L., & Gonnelli, C. (2014). Can adaptation to metalliferous environments affect plant response to biotic stress? Insight from Silene paradoxa L. and phytoalexins. Environmental and Experimental Botany, 108, 38-46.
  • Mashabela, M.D., Masamba, P., & Kappo, A.P. (2023). Applications of metabolomics for the elucidation of abiotic stress tolerance in plants: A special focus on osmotic stress and heavy metal toxicity. Plants, 12(2), 269.
  • Meharg, A.A., & Macnair, M.R. (1992). Suppression of the High Affinity Phosphate Uptake System: A Mechanism of Arsenate Tolerance in Holcus lanatus L. Journal of Experimental Botany, 43(4), 519-524. https://doi.org/10.1093/jxb/43.4.519
  • Mizukami, H., Konoshima, M., & Tabata, M. (1977). Effect of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry, 16(8), 1183-1186.
  • Mohanpuria, P., Rana, N.K., & Yadav, S.K. (2007). Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environmental Toxicology, 22(4), 368-374. https://doi.org/10.1002/tox.20273
  • Nakos, G. (1979). Fate of lead in the soil and its effects on Pinus halepensis. Plant and Soil, 53(4), 427-443. https://doi.org/10.1007/BF02140715
  • Niu, H., Leng, Y., Li, X., Yu, Q., Wu, H., Gong, J., Li, H., & Chen, K. (2021). Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation. Chemosphere, 269, 128765. https://doi.org/10.1016/j.chemosphere.2020.128765
  • Pacenza, M., Muto, A., Chiappetta, A., Mariotti, L., Talarico, E., Picciarelli, P., Picardi, E., Bruno, L., & Bitonti, M.B. (2021). In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Scientific Reports, 11, 10965. https://doi.org/10.1038/s41598-021-90528-5
  • Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. https://doi.org/10.1016/j.envc.2021.100197
  • Pavlíková, D., Pavlík, M., Zemanová, V., Novák, M., Doležal, P., Dobrev, P.I., Motyka, V., & Kraus, K. (2023). Accumulation of toxic arsenic by Cherry Radish Tuber (Raphanus sativus var. Sativus Pers.) and its physiological, metabolic and anatomical stress responses. Plants. 12, 1257.
  • Pedler, J.F., Kinraide, T.B., & Parker, D.R. (2004). Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture. Plant and Soil, 259, 191-199.
  • Peng, W., Li, X., Xiao, S., & Fan, W. (2018). Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments, 18, 1701-1719
  • Pehlivan Karakas, F., & Bozat, B.G. (2020). Fluctuation in secondary metabolite production and antioxidant defense enzymes in in vitro callus cultures of goat’s rue (Galega officinalis) under different abiotic stress treatments. Plant Cell, Tissue Organ Culture. 142, 401-414.
  • Pehlivan Karakas, F., Sahin, G., Ucar Turker, A., & Kumar Verma, S. (2022). Impacts of heavy metal, high temperature, and UV radiation exposures on Bellis perennis L. (common daisy): Comparison of phenolic constituents and antioxidant potential (enzymatic and non-enzymatic). South African Journal of Botany. 147, 370-379.
  • Peralta, J.R., Gardea-Torresdey, J.L., Tiemann, K.J., Gomez, E., Arteaga, S., Rascon, E., & Parsons, J.G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in Alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 727-734. https://doi.org/10.1007/s001280069
  • Pommerrenig, B., Diehn, T.A., Bernhardt, N., Bienert, M.D., Mitani-Ueno, N., Fuge, J., Bieber, A., Spitzer, C., Bräutigam, A., & Ma, J.F. (2020). Functional evolution of nodulin 26-like intrinsic proteins: From bacterial arsenic detoxification to plant nutrient transport. New Phytologist, 225(3), 1383-1396.
  • Prasad, M.N.V., Greger, M., & Landberg, T. (2001). Acacia nilotica L. Bark Removes Toxic Elements from Solution: Corroboration from Toxicity Bioassay Using Salix viminalis L. in Hydroponic System. International Journal of Phytoremediation, 3(3), 289-300. https://doi.org/10.1080/15226510108500060
  • Prasad, M.N.V., & Hagemeyer, J. (1999). Heavy Metal Stress in Plants. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07745-0
  • Rahman, S.U., Li, Y., Hussain, S., Hussain, B., Riaz, L., Ashraf, M.N., Khaliq, M.A., Du, Z., & Cheng, H. (2023). Role of phytohormones in heavy metal tolerance in plants: A review. Ecological Indicators, 146, 109844.
  • Rahul, R., & Sharma, P. (2022). Identification of cadmium tolerant and sensitive genotypes of castor and their contrasting responses to cadmium treatment. Environmental Science and Pollution Research, 1–14.
  • Rai, R., Pandey, S., & Rai, S.P. (2011). Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology, 20(8), 1900-1913. https://doi.org/10.1007/s10646-011-0728-8
  • Ramalho, J.C., Pelica, J., Lidon, F.C., Silva, M.M., Simões, M.M., Guerra, M., & Reboredo, F.H. (2023). Soil arsenic toxicity impacts on the growth and C-assimilation of Eucalyptus nitens. Sustainability. 15, 6665.
  • Reeves, R.D., Baker, A.J.M., Jaffré, T., Erskine, P.D., Echevarria, G., & Ent, A. van der. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. The New Phytologist, 218(2), 407-411.
  • Romero-Puertas, M.C., Rodríguez-Serrano, M., Corpas, F.J., Gómez, M., Del Río, L. A., & Sandalio, L.M. (2004). Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant, Cell & Environment, 27(9), 1122-1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x
  • Rout, G.R., Samantaray, S., & Das, P. (2000). Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere, 40(8), 855-859. https://doi.org/10.1016/S0045-6535(99)00303-3
  • Rucińska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38, 1-13.
  • Saffari, V.R., & Saffari, M. (2020). Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil. International Journal of Phytoremediation, 22(11), 1204-1214.
  • Sahi, S.V., Bryant, N.L., Sharma, N.C.,& Singh, S.R. (2002). Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environmentl Science of Technology. 36(21), 4676-4680.
  • Salt, D.E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology. 13(5), 468-474. https://doi.org/10.1038/nbt0595-468
  • Sameena, P.P., & Puthur, J.T. (2021). Heavy metal phytoremediation by bioenergy plants and associated tolerance mechanisms. Soil and Sediment Contamination: An International Journal, 30(3), 253-274.
  • Sardar, R., Ahmed, S., & Yasin, N.A. (2022). Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. International Journal of Phytoremediation, 24(9), 955-962.
  • Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232, 1-44.
  • Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S.A., Sharma, A., Song, H., ur Rehman, S., & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147, 935-944.
  • Sharma, P., & Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35-52. https://doi.org/10.1590/S1677-04202005000100004
  • Sharma, P., & Kumar, S. (2021). Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresource Technology, 339, 125589. https://doi.org/10.1016/j.biortech.2021.125589
  • Sharma, S.S., & Dietz, K.J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in plant science, 14(1), 43-50.
  • Shi, W.G., Liu, W., Yu, W., Zhang, Y., Ding, S., Li, H., Mrak, T., Kraigher, H., & Luo, Z.B. (2019). Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. Journal of Hazardous Materials, 362, 275-285. https://doi.org/10.1016/j.jhazmat.2018.09.024
  • Sidhu, G.S. (2016). Heavy metal toxicity in soils: Sources, remediation technologies and challenges. Advances in Plants & Agriculture Research, 5(1), 445-446.
  • Somashekaraiah, B.V., Padmaja, K., & Prasad, A.R.K. (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorphyll degradation. Physiologia Plantarum, 85(1), 85 89. https://doi.org/10.1111/j.1399-3054.1992.tb05267.x
  • Tang, G., Ma, J., Hause, B., Nick, P., & Riemann, M. (2020). Jasmonate is required for the response to osmotic stress in rice. Environmental and Experimental Botany, 175, 104047. https://doi.org/10.1016/j.envexpbot.2020.104047
  • Tao, Q., Jupa, R., Dong, Q., Yang, X., Liu, Y., Li, B., Yuan, S., Yin, J., Xu, Q., & Li, T. (2021). Abscisic acid-mediated modifications in water transport continuum are involved in cadmium hyperaccumulation in Sedum alfredii. Chemosphere, 268, 129339.
  • Tiwari, K.K., Singh, N.K., & Rai, U.N. (2013). Chromium Phytotoxicity in Radish (Raphanus sativus): Effects on Metabolism and Nutrient Uptake. Bulletin of Environmental Contamination and Toxicology, 91(3), 339-344. https://doi.org/10.1007/s00128-013-1047-y
  • Tkalec, M., Štefanić, P.P., Cvjetko, P., Šikić, S., Pavlica, M., & Balen, B. (2014). The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLOS ONE, 9(1), e87582. https://doi.org/10.1371/journal.pone.0087582
  • Tsonev, T., & Cebola Lidon, F.J. (2012). Zinc in plants-an overview. Emirates Journal of Food & Agriculture (EJFA), 24(4).
  • ul Hassan, S.S., Jin, H., Abu-Izneid, T., Rauf, A., Ishaq, M., & Suleria, H.A.R. (2019). Stress-driven discovery in the natural products: A gateway towards new drugs. Biomedicine & Pharmacotherapy, 109, 459–467.
  • van Assche, F., & Clijsters, H. (1983). Multiple Effects of Heavy Metal Toxicity on Photosynthesis. In R. Marcelle, H. Clijsters, & M. van Poucke (Eds.), Effects of Stress on Photosynthesis: Proceedings of a conference held at the ‘Limburgs Universitair Centrum’ Diepenbeek, Belgium, 22–27 August 1982 (pp. 371–382). Springer Netherlands. https://doi.org/10.1007/978-94-009-6813-4_39
  • Vega, A., Delgado, N., & Handford, M. (2022). Increasing heavy metal tolerance by the exogenous application of organic acids. International Journal of Molecular Sciences, 23(10), 5438.Warne, M. St. J., Heemsbergen, D., Stevens, D., McLaughlin, M., Cozens, G., Whatmuff, M., Broos, K., Barry, G., Bell, M., Nash, D., Pritchard, D., Penney, N., 2008. Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environmental Toxicology and Chemistry, 27, 786-792. https://doi.org/10.1897/07-294.1
  • Wu, M., Luo, Q., Liu, S., Zhao, Y., Long, Y., & Pan, Y. (2018). Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicology and Environmental Safety, 162, 35-41.
  • Xiao, F., Gu, Z., Sarkissian, A., Ji, Y., RuonanYang, Yang, L., ... & Chen, H. (2021). Phytoremediation of potentially toxic elements in polluted industrial soil using Poinsettia. Physiology and Molecular Biology of Plants, 27, 675-686.
  • Xu, L., Zhang, F., Tang, M., Wang, Y., Dong, J., Ying, J., Chen, Y., Hu, B., Li, C., & Liu, L. (2020). Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. Journal of Pineal Research, 69(1), e12659. https://doi.org/10.1111/jpi.12659
  • Yaashikaa, P.R., Kumar, P.S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, 301, 119035. https://doi.org/10.1016/j.envpol.2022.119035
  • Ye, Y., Li, Z., & Xing, D. (2013). Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant, Cell & Environment, 36(1), 1–15. https://doi.org/10.1111/j.1365-3040.2012.02543
  • Yuan, H.M., & Huang, X. (2016). Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant, Cell & Environment, 39(1), 120–135. https://doi.org/10.1111/pce.12597
  • Zanganeh, R., Jamei, R., & Rahmani, F. (2021). Response of maize plant to sodium hydrosulfide pretreatment under lead stress conditions at early stages of growth. Cereal Research Communications, 49, 267-276.
  • Zeid, I.M. (2001). Responses of Phaseolus Vulgaris Chromium and Cobalt Treatments. Biologia Plantarum, 44(1), 111–115. https://doi.org/10.1023/A:1017934708402
  • Zemanová, V., Pavlíková, D., Hnilička, F., & Pavlík, M. (2021). Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 10, 2009. https://doi.org/10.3390/plants10102009
  • Zhang, F., Liu, M., Li, Y., Che, Y., & Xiao, Y. (2019). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Science of the Total Environment, 655, 1150-1158.
  • Zhu, Y.G., Pilon-Smits, E.A.H., Zhao, F.J., Williams, P. N., & Meharg, A. A. (2009). Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 14(8), 436-442. https://doi.org/10.1016/j.tplants.2009.06.006
  • Zia, Z., Bakhat, H.F., Saqib, Z.A., Shah, G.M., Fahad, S., Ashraf, M.R., Hammad, H.M., Naseem, W., & Shahid, M. (2017). Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and Environmental Safety, 144, 11-18.

Physiological and Biochemical Responses to Heavy Metals Stress in Plants

Yıl 2024, Cilt: 11 Sayı: 1, 169 - 190, 05.02.2024
https://doi.org/10.21448/ijsm.1323494

Öz

Heavy metal (HM) toxicity is a severe abiotic stress that can cause significant harm to plant development and breeding, posing a challenge to sustainable agriculture. Various factors, including cellular toxicity, oxidative stress, osmotic stress, imbalance in the membrane, and metabolic homeostasis cause negative impacts on plant molecular, physiology and biochemistry. Some heavy metals (HMs) are essential micronutrients that play important roles in various plant processes, while excessive amounts can be harmful and have negative impacts on plant growth, metabolism, physiology, and senescence. Phytotoxicity with HMs and the deposition of reactive oxygen species (ROS) and methylglyoxal (MG), can lead to lipid peroxidation, protein oxidation, enzyme inactivation, DNA damage, and harm to other vital components of plant cells. Generally, HM toxicity as environmental stress led to response of plant with different mechanisms, first, the stimulus to external stress, secondly all signals transduction to plant cell and finally it beginning to find appropriate actions to mitigate the adverse stress in terms of physiological, biochemical, and molecular in the cell to survive plant. The purpose of this review is to better understand how plants respond physiologically and biochemically to abiotic HM stress.

Kaynakça

  • Ali, H.M.M., & Perveen, S. (2020). Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: A study of changes in growth, yield, and photosynthetic characteristics. Physiology and Molecular Biology of Plants, 26, 1215-1224.
  • Al-Jobori, K.M., & Kadhim, A.K. (2019). Evaluation of sunflower (Helianthus annuus L.) for phytoremediation of lead contaminated soil. Journal of Pharmaceutical Sciences and Research, 11, 847–854.
  • Angulo-Bejarano, P.I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants, 10(4), 635. https://doi.org/10.3390/plants10040635
  • Anjitha, K.S., Sameena, P.P., & Puthur, J.T. (2021). Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology. Plant Stress, 2, 100038.
  • Arnao, M.B., & Hernández-Ruiz, J. (2009). Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research., 46, 58-63.
  • Bali, A.S., & Sidhu, G.P.S. (2021). Arsenic acquisition, toxicity, and tolerance in plants-from physiology to remediation: A review. Chemosphere 283, 131050.
  • Barceló, J., & Poschenrieder, C.H. (1999). Structural and ultrastructural changes in HM exposed plants. In: Prasad, M.N.V. and Hagemeyer, J. (Eds.), HM stress in plants, Molecules to Ecosystem. Springer, pp. 183-205. https://doi.org/10.1007/978-3-662-07745-0_9
  • Barker, W.G. (1972). Toxicity levels of mercury, lead, copper, and zinc in tissue culture systems of cauliflower, lettuce, potato, and carrot. Canadian Journal of Botany, 50, 973-976.
  • Barouchas, P.E., Akoumianaki-Ioannidou, A., Liopa-Tsakalidi, A., & Moustakas, N.K. (2019). Effects of vanadium and nickel on morphological characteristics and on vanadium and nickel uptake by shoots of Mojito (Mentha × villosa) and Lavender (Lavandula anqustifolia). Notulae Botanicae Horti Agrobotanici Cluj Napoca, 47, 487 492. https://doi.org/10.15835/nbha47111413
  • Bindu, Y., Abhimanyu, J., Lal, S.K., Nita, L., Sahil, M., Nitzan, S., & Narayan, O.P. (2021). Plant mineral transport systems and the potential for crop improvement. Planta, 253,1-30.
  • Boonyapookana, B., Upatham, E.S., Kruatrachue, M., Pokethitiyook, P., & Singhakaew, S. (2002). Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. International Journal of Phytoremediation, 4, 87 100. https://doi.org/10.1080/15226510208500075
  • Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173, 677-702.
  • Cakmak, I., & Marschner, H. (1993). Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow N. J. (Ed.), Plant Nutrition—From Genetic Engineering to Field Practice: Proceedings of the twelfth international plant nutrition colloquium, Perth, Western Australia, Springer Netherlands, pp. 133-136. https://doi.org/10.1007/978-94-011-1880-4_21
  • Cenkci, S., Cigerci, I.H., Yildiz, M., Ozay, C., Bozdag, A., & Terzi, H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67, 467-473.
  • Chaudhary, K., Agarwal, S., & Khan, S. (2018). Role of phytochelatins (PCs), metallothioneins (MTs), and HM ATPase (HMA) genes in HM tolerance, In: Prasad, R. (Eds.), Mycoremediation and Environmental Sustainability, Springer INdAM, pp. 39-60. https://doi.org/10.1007/978-3-319-77386-5_2
  • Chen, K., Li, G.-J., Bressan, R.A., Song, C.P., Zhu, J.-K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62, 25-54.
  • Chen, Z., Zhu, D., Wu, J., Cheng, Z., Yan, X., Deng, X., & Yan, Y. (2018). Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Scientific Reports, 8, 7790.
  • Chibuike, G.U., & Obiora, S.C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 752708, http://dx.doi.org/10.1155/2014/752708
  • Choudhary, A., Kumar, A., Kaur, H., Singh, M., Suri, G.S., Kaur, G., & Mehta, S. (2022). Effect of elevated CO2 conditions on medicinal plants, in: Husan, A. (Eds.), A relatively unexplored aspect. Environmental Pollution and Medicinal Plants. CRC Press, pp. 95-111.
  • Clemens, S. (2000). Molecular mechanisms of plant metal tolerance and homeostasis. Plant, 212, 475-486.
  • Costa, G., & Morel, J. (1994). Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiology and Biochemistry, 32, 561-570.
  • de Vries, W., Lofts, S., Tipping, E., Meili, M., Groenenberg, J. E., & Schütze, G. (2007). Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects. Reviews of Environmental Contamination and Toxicology. Springer, New York, NY, pp.47 89. https://doi.org/10.1007/978-0-387-69163-3_3
  • Dos Reis, R.A., Keunen, E., Mourato, M.P., Martins, L.L., Vangronsveld, J., & Cuypers, A. (2018). Accession-specific life strategies affect responses in leaves of Arabidopsis thaliana plants exposed to excess Cu and Cd. Journal of Plant Physiology, 223, 37-46.
  • Dreyer Parr, P., & Taylor, F.G. (1982). Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environment International, 7, 197-202. https://doi.org/10.1016/0160-4120(82)90105-2
  • Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense systems in plants: A concise overview. Frontiers in Plant Science, 11, 552969.
  • Ebbs, S.D., & Kochian, L.V. (1997). Toxicity of zinc and copper to Brassica species: Implications for Phytoremediation. Journal of Environmental Quality, 26, 776-781. https://doi.org/10.2134/jeq1997.00472425002600030026x
  • El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E., Bolan, N., Tack, F., Sebastian, A., Majeti, P., & Rinklebe, J. (2020). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52, 675-726. https://doi.org/10.1080/10643389.2020.1835435
  • Emamverdian, A., Ding, Y., Hasanuzzaman, M., Barker, J., Liu, G., Li, Y., & Mokhberdoran, F. (2023). Insight into the biochemical and physiological mechanisms of nanoparticles-induced arsenic tolerance in bamboo. Frontiers in Plant Science, 14, 1020.
  • Fatemi, H., Esmaiel Pour, B., Rizwan, M. (2021). Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Journal of Environmental science and Pollution science. 28, 1417-1425.
  • Fattahi, B., Arzani, K., Souri, M.K., & Barzegar, M. (2019). Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Industrial Crops and Products, 138, 111584.
  • Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9, 303-321.
  • Ghasemi, B., Hosseini, R., & Nayeri, F.D. (2015). Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turkish Journal of Botany, 39(5), 769-777.
  • Ghorbanpour, M. (2015). Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian Journal of Plant Physiology, 20(3), 249-256. https://doi.org/10.1007/s40502-015-0170-7
  • Groppa, M.D., Benavides, M.P., & Tomaro, M.L. (2003). Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Science, 164(2), 293-299.
  • Gruenhage, L., & Jaeger, H.J. (1985). Effect of HMs on growth and HM content of Allium porrum L. and Pisum sativum L. Angewandte Botanik (Germany, F.R.). 59.
  • Guan, H., Dong, L., Zhang, Y., Bai, S., & Yan, L. (2022). GLDA and EDTA assisted phytoremediation potential of Sedum hybridum ‘Immergrunchen’for Cd and Pb contaminated soil. International Journal Phytoremediation. 24, 1395-1404.
  • Gunes, A., Pilbeam, D.J., & Inal, A. (2009). Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant and Soil, 314, 211-220.
  • Guo, J., Dai, X., Xu, W., & Ma, M. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere, 72(7), 1020–1026. https://doi.org/10.1016/j.chemosphere.2008.04.018
  • Haap, T., Schwarz, S., & Köhler, H.R. (2016). Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress. Aquatic Toxicology (Amsterdam, Netherlands), 170, 112–119. https://doi.org/10.1016/j.aquatox.2015.11.008
  • Hadia-e-Fatima, A. A. (2018). Heavy metal pollution–A mini review. Journal of Bacteriology and Mycology, 6(3), 179-181.
  • Hafeez, A., Rasheed, R., Ashraf, M.A., Qureshi, F.F., Hussain, I., & Iqbal, M. (2023). Effect of heavy metals on growth, physiological and biochemical responses of plants. In Plants and their Interaction to Environmental Pollution (pp. 139-159). Elsevier.
  • Haritash, A.K. (2023). Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: A critical review. Horticulture, Environment, and Biotechnology, 1-26.
  • Hatami, M., Naghdi Badi, H., & Ghorbanpour, M. (2019). Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review., Journal of Medecinal of Plants 71,1836.
  • Hernandez, L.E., Carpena‐Ruiz, R., & Gárate, A. (1996). Alterations in the mineral nutrition of pea seedlings exposed to cadmium. Journal of Plant Nutrition, 19(12), 1581-1598. https://doi.org/10.1080/01904169609365223
  • Hewitt, E.J. (1953). Metal Interrelationships in Plant Nutrition: Effects of some metal toxicities on Sugar beet, tomato, oat, potato, and marrow stem kale grown in sand culture. Journal of Experimental Botany, 4(1), 59-6. https://doi.org/10.1093/jxb/4.1.59
  • Hoque, M.N., Tahjib-Ul-Arif, M., Hannan, A., Sultana, N., Akhter, S., Hasanuzzaman, M., Akter, F., Hossain, M. S., Sayed, M. A., & Hasan, M. T. (2021). Melatonin modulates plant tolerance to heavy metal stress: Morphological responses to molecular mechanisms. International Journal of Molecular Sciences, 22(21), 11445.
  • Huang, F., Luo, J., Ning, T., Cao, W., Jin, X., Zhao, H., Wang, Y., & Han, S. (2017). Cytosolic and Nucleosolic Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of Arabidopsis Seedlings. Frontiers in Plant Science, 8, 1648. https://doi.org/10.3389/fpls.2017.01648
  • Iqbal, N., Nazir, N., Nauman, M., & Hayat, M.T. (2020). Agronomic crop responses and tolerance to metals/metalloids toxicity. Agronomic Crops: Volume 3: Stress Responses and Tolerance, 191-208.
  • Islam, M.M., Hoque, Md., A., Okuma, E., Banu, Mst. N.A., Shimoishi, Y., Nakamura, Y., & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166(15), 1587-1597. https://doi.org/10.1016/j.jplph.2009.04.002
  • Jalmi, S.K., Bhagat, P.K., Verma, D., Noryang, S., Tayyeba, S., Singh, K., Sharma, D., & Sinha, A.K. (2018). Traversing the links between heavy metal stress and plant signaling. Frontiers in Plant Science, 9, 12.
  • Janeeshma, E., Rajan, V.K., & Puthur, J.T. (2021). Spectral variations associated with anthocyanin accumulation; an apt tool to evaluate zinc stress in Zea mays L. Chemistry and Ecology, 37(1), 32-49.
  • Juwarkar, A.S., & Shende, G.B. (1986). Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Indian Journal of Environmental Health, 28, 235-243.
  • Karakas, F.P.(2020). Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiololgy and Biochemistry. 146, 384-391.
  • Kaya, C., Ashraf, M., Alyemeni, M.N., & Ahmad, P. (2020). Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiologia Plantarum, 168(2), 345-360.
  • Khan, M.I.R., Jahan, B., AlAjmi, M. F., Rehman, M.T., Iqbal, N., Irfan, M., Sehar, Z., & Khan, N.A. (2021). Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicology and Environmental Safety, 222, 112535.
  • Khare, S., Singh, N.B., Singh, A., Hussain, I., Niharika, K.M., Yadav, V., Bano, C., Yadav, R.K., & Amist, N. (2020). Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology, 63, 203-216.
  • Kısa, D., Elmastaş, M., Öztürk, L., & Kayır, Ö. (2016). Responses of the phenolic compounds of Zea mays under heavy metal stress. Applied Biological Chemistry, 59, 813-820.
  • Kochian, L.V., Piñeros, M.A., Liu, J., &Magalhaes, J.V. (2015). Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biology. 66, 571-598.
  • Lee, C.W., Choi, J.M., & Pak, C.H. (1996). Micronutrient Toxicity in Seed Geranium (Pelargonium × hortorum Bailey). Journal of the American Society for Horticultural Science, 121(1), 77-82. https://doi.org/10.21273/JASHS.121.1.77
  • Li, L., Huang, X., Borthakur, D., & Ni, H. (2012). Photosynthetic activity and antioxidative response of seagrass Thalassia hemprichii to trace metal stress. Acta Oceanol. Sin., 31(3), 98-108.
  • Li, M.Q., Hasn, Md. K., Li, C.X., Ahammed, G.J., Xia, X.J., Shi, K., Zhou, Y.H., Reiter, R., Yu, J.Q., Xu, M.X., & Zhou, J. (2016). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research, 61. https://doi.org/10.1111/jpi.12346
  • López-Bucio, J., Hernández-Madrigal, F., Cervantes, C., Ortiz-Castro, R., Carreón-Abud, Y., & Martínez-Trujillo, M. (2014). Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake. BioMetals, 27(2), 363 370. https://doi.org/10.1007/s10534-014-9718-7
  • Ma, W., Zhao, B., Lv, X., & Feng, X. (2022). Lead tolerance and accumulation characteristics of three Hydrangea cultivars representing potential lead-contaminated phytoremediation plants. Horticulture, Environmental and Biotechnology. 63, 23-38.
  • Maleva, M.G., Nekrasova, G.F., Borisova, G.G., Chukina, N.V., & Ushakova, O.S. (2012). Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Russian Journal of Plant Physiology, 59, 190-197.
  • Malik, N.J., Chamon, A., Mondol, M., Elahi, S.F., & Faiz, S.M.A. (2011). Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). Journal of the Bangladesh Association of Young Researchers, 1(1), Article 1. https://doi.org/10.3329/jbayr.v1i1.6836
  • Martellini, F., Giorni, E., Colzi, I., Luti, S., Meerts, P., Pazzagli, L., & Gonnelli, C. (2014). Can adaptation to metalliferous environments affect plant response to biotic stress? Insight from Silene paradoxa L. and phytoalexins. Environmental and Experimental Botany, 108, 38-46.
  • Mashabela, M.D., Masamba, P., & Kappo, A.P. (2023). Applications of metabolomics for the elucidation of abiotic stress tolerance in plants: A special focus on osmotic stress and heavy metal toxicity. Plants, 12(2), 269.
  • Meharg, A.A., & Macnair, M.R. (1992). Suppression of the High Affinity Phosphate Uptake System: A Mechanism of Arsenate Tolerance in Holcus lanatus L. Journal of Experimental Botany, 43(4), 519-524. https://doi.org/10.1093/jxb/43.4.519
  • Mizukami, H., Konoshima, M., & Tabata, M. (1977). Effect of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry, 16(8), 1183-1186.
  • Mohanpuria, P., Rana, N.K., & Yadav, S.K. (2007). Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environmental Toxicology, 22(4), 368-374. https://doi.org/10.1002/tox.20273
  • Nakos, G. (1979). Fate of lead in the soil and its effects on Pinus halepensis. Plant and Soil, 53(4), 427-443. https://doi.org/10.1007/BF02140715
  • Niu, H., Leng, Y., Li, X., Yu, Q., Wu, H., Gong, J., Li, H., & Chen, K. (2021). Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation. Chemosphere, 269, 128765. https://doi.org/10.1016/j.chemosphere.2020.128765
  • Pacenza, M., Muto, A., Chiappetta, A., Mariotti, L., Talarico, E., Picciarelli, P., Picardi, E., Bruno, L., & Bitonti, M.B. (2021). In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Scientific Reports, 11, 10965. https://doi.org/10.1038/s41598-021-90528-5
  • Pasricha, S., Mathur, V., Garg, A., Lenka, S., Verma, K., & Agarwal, S. (2021). Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environmental Challenges, 4, 100197. https://doi.org/10.1016/j.envc.2021.100197
  • Pavlíková, D., Pavlík, M., Zemanová, V., Novák, M., Doležal, P., Dobrev, P.I., Motyka, V., & Kraus, K. (2023). Accumulation of toxic arsenic by Cherry Radish Tuber (Raphanus sativus var. Sativus Pers.) and its physiological, metabolic and anatomical stress responses. Plants. 12, 1257.
  • Pedler, J.F., Kinraide, T.B., & Parker, D.R. (2004). Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture. Plant and Soil, 259, 191-199.
  • Peng, W., Li, X., Xiao, S., & Fan, W. (2018). Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments, 18, 1701-1719
  • Pehlivan Karakas, F., & Bozat, B.G. (2020). Fluctuation in secondary metabolite production and antioxidant defense enzymes in in vitro callus cultures of goat’s rue (Galega officinalis) under different abiotic stress treatments. Plant Cell, Tissue Organ Culture. 142, 401-414.
  • Pehlivan Karakas, F., Sahin, G., Ucar Turker, A., & Kumar Verma, S. (2022). Impacts of heavy metal, high temperature, and UV radiation exposures on Bellis perennis L. (common daisy): Comparison of phenolic constituents and antioxidant potential (enzymatic and non-enzymatic). South African Journal of Botany. 147, 370-379.
  • Peralta, J.R., Gardea-Torresdey, J.L., Tiemann, K.J., Gomez, E., Arteaga, S., Rascon, E., & Parsons, J.G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in Alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 727-734. https://doi.org/10.1007/s001280069
  • Pommerrenig, B., Diehn, T.A., Bernhardt, N., Bienert, M.D., Mitani-Ueno, N., Fuge, J., Bieber, A., Spitzer, C., Bräutigam, A., & Ma, J.F. (2020). Functional evolution of nodulin 26-like intrinsic proteins: From bacterial arsenic detoxification to plant nutrient transport. New Phytologist, 225(3), 1383-1396.
  • Prasad, M.N.V., Greger, M., & Landberg, T. (2001). Acacia nilotica L. Bark Removes Toxic Elements from Solution: Corroboration from Toxicity Bioassay Using Salix viminalis L. in Hydroponic System. International Journal of Phytoremediation, 3(3), 289-300. https://doi.org/10.1080/15226510108500060
  • Prasad, M.N.V., & Hagemeyer, J. (1999). Heavy Metal Stress in Plants. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07745-0
  • Rahman, S.U., Li, Y., Hussain, S., Hussain, B., Riaz, L., Ashraf, M.N., Khaliq, M.A., Du, Z., & Cheng, H. (2023). Role of phytohormones in heavy metal tolerance in plants: A review. Ecological Indicators, 146, 109844.
  • Rahul, R., & Sharma, P. (2022). Identification of cadmium tolerant and sensitive genotypes of castor and their contrasting responses to cadmium treatment. Environmental Science and Pollution Research, 1–14.
  • Rai, R., Pandey, S., & Rai, S.P. (2011). Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology, 20(8), 1900-1913. https://doi.org/10.1007/s10646-011-0728-8
  • Ramalho, J.C., Pelica, J., Lidon, F.C., Silva, M.M., Simões, M.M., Guerra, M., & Reboredo, F.H. (2023). Soil arsenic toxicity impacts on the growth and C-assimilation of Eucalyptus nitens. Sustainability. 15, 6665.
  • Reeves, R.D., Baker, A.J.M., Jaffré, T., Erskine, P.D., Echevarria, G., & Ent, A. van der. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. The New Phytologist, 218(2), 407-411.
  • Romero-Puertas, M.C., Rodríguez-Serrano, M., Corpas, F.J., Gómez, M., Del Río, L. A., & Sandalio, L.M. (2004). Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant, Cell & Environment, 27(9), 1122-1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x
  • Rout, G.R., Samantaray, S., & Das, P. (2000). Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere, 40(8), 855-859. https://doi.org/10.1016/S0045-6535(99)00303-3
  • Rucińska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38, 1-13.
  • Saffari, V.R., & Saffari, M. (2020). Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil. International Journal of Phytoremediation, 22(11), 1204-1214.
  • Sahi, S.V., Bryant, N.L., Sharma, N.C.,& Singh, S.R. (2002). Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environmentl Science of Technology. 36(21), 4676-4680.
  • Salt, D.E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology. 13(5), 468-474. https://doi.org/10.1038/nbt0595-468
  • Sameena, P.P., & Puthur, J.T. (2021). Heavy metal phytoremediation by bioenergy plants and associated tolerance mechanisms. Soil and Sediment Contamination: An International Journal, 30(3), 253-274.
  • Sardar, R., Ahmed, S., & Yasin, N.A. (2022). Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. International Journal of Phytoremediation, 24(9), 955-962.
  • Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232, 1-44.
  • Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S.A., Sharma, A., Song, H., ur Rehman, S., & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147, 935-944.
  • Sharma, P., & Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35-52. https://doi.org/10.1590/S1677-04202005000100004
  • Sharma, P., & Kumar, S. (2021). Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresource Technology, 339, 125589. https://doi.org/10.1016/j.biortech.2021.125589
  • Sharma, S.S., & Dietz, K.J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in plant science, 14(1), 43-50.
  • Shi, W.G., Liu, W., Yu, W., Zhang, Y., Ding, S., Li, H., Mrak, T., Kraigher, H., & Luo, Z.B. (2019). Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. Journal of Hazardous Materials, 362, 275-285. https://doi.org/10.1016/j.jhazmat.2018.09.024
  • Sidhu, G.S. (2016). Heavy metal toxicity in soils: Sources, remediation technologies and challenges. Advances in Plants & Agriculture Research, 5(1), 445-446.
  • Somashekaraiah, B.V., Padmaja, K., & Prasad, A.R.K. (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorphyll degradation. Physiologia Plantarum, 85(1), 85 89. https://doi.org/10.1111/j.1399-3054.1992.tb05267.x
  • Tang, G., Ma, J., Hause, B., Nick, P., & Riemann, M. (2020). Jasmonate is required for the response to osmotic stress in rice. Environmental and Experimental Botany, 175, 104047. https://doi.org/10.1016/j.envexpbot.2020.104047
  • Tao, Q., Jupa, R., Dong, Q., Yang, X., Liu, Y., Li, B., Yuan, S., Yin, J., Xu, Q., & Li, T. (2021). Abscisic acid-mediated modifications in water transport continuum are involved in cadmium hyperaccumulation in Sedum alfredii. Chemosphere, 268, 129339.
  • Tiwari, K.K., Singh, N.K., & Rai, U.N. (2013). Chromium Phytotoxicity in Radish (Raphanus sativus): Effects on Metabolism and Nutrient Uptake. Bulletin of Environmental Contamination and Toxicology, 91(3), 339-344. https://doi.org/10.1007/s00128-013-1047-y
  • Tkalec, M., Štefanić, P.P., Cvjetko, P., Šikić, S., Pavlica, M., & Balen, B. (2014). The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLOS ONE, 9(1), e87582. https://doi.org/10.1371/journal.pone.0087582
  • Tsonev, T., & Cebola Lidon, F.J. (2012). Zinc in plants-an overview. Emirates Journal of Food & Agriculture (EJFA), 24(4).
  • ul Hassan, S.S., Jin, H., Abu-Izneid, T., Rauf, A., Ishaq, M., & Suleria, H.A.R. (2019). Stress-driven discovery in the natural products: A gateway towards new drugs. Biomedicine & Pharmacotherapy, 109, 459–467.
  • van Assche, F., & Clijsters, H. (1983). Multiple Effects of Heavy Metal Toxicity on Photosynthesis. In R. Marcelle, H. Clijsters, & M. van Poucke (Eds.), Effects of Stress on Photosynthesis: Proceedings of a conference held at the ‘Limburgs Universitair Centrum’ Diepenbeek, Belgium, 22–27 August 1982 (pp. 371–382). Springer Netherlands. https://doi.org/10.1007/978-94-009-6813-4_39
  • Vega, A., Delgado, N., & Handford, M. (2022). Increasing heavy metal tolerance by the exogenous application of organic acids. International Journal of Molecular Sciences, 23(10), 5438.Warne, M. St. J., Heemsbergen, D., Stevens, D., McLaughlin, M., Cozens, G., Whatmuff, M., Broos, K., Barry, G., Bell, M., Nash, D., Pritchard, D., Penney, N., 2008. Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environmental Toxicology and Chemistry, 27, 786-792. https://doi.org/10.1897/07-294.1
  • Wu, M., Luo, Q., Liu, S., Zhao, Y., Long, Y., & Pan, Y. (2018). Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation. Ecotoxicology and Environmental Safety, 162, 35-41.
  • Xiao, F., Gu, Z., Sarkissian, A., Ji, Y., RuonanYang, Yang, L., ... & Chen, H. (2021). Phytoremediation of potentially toxic elements in polluted industrial soil using Poinsettia. Physiology and Molecular Biology of Plants, 27, 675-686.
  • Xu, L., Zhang, F., Tang, M., Wang, Y., Dong, J., Ying, J., Chen, Y., Hu, B., Li, C., & Liu, L. (2020). Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. Journal of Pineal Research, 69(1), e12659. https://doi.org/10.1111/jpi.12659
  • Yaashikaa, P.R., Kumar, P.S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, 301, 119035. https://doi.org/10.1016/j.envpol.2022.119035
  • Ye, Y., Li, Z., & Xing, D. (2013). Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant, Cell & Environment, 36(1), 1–15. https://doi.org/10.1111/j.1365-3040.2012.02543
  • Yuan, H.M., & Huang, X. (2016). Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant, Cell & Environment, 39(1), 120–135. https://doi.org/10.1111/pce.12597
  • Zanganeh, R., Jamei, R., & Rahmani, F. (2021). Response of maize plant to sodium hydrosulfide pretreatment under lead stress conditions at early stages of growth. Cereal Research Communications, 49, 267-276.
  • Zeid, I.M. (2001). Responses of Phaseolus Vulgaris Chromium and Cobalt Treatments. Biologia Plantarum, 44(1), 111–115. https://doi.org/10.1023/A:1017934708402
  • Zemanová, V., Pavlíková, D., Hnilička, F., & Pavlík, M. (2021). Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants. 10, 2009. https://doi.org/10.3390/plants10102009
  • Zhang, F., Liu, M., Li, Y., Che, Y., & Xiao, Y. (2019). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Science of the Total Environment, 655, 1150-1158.
  • Zhu, Y.G., Pilon-Smits, E.A.H., Zhao, F.J., Williams, P. N., & Meharg, A. A. (2009). Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 14(8), 436-442. https://doi.org/10.1016/j.tplants.2009.06.006
  • Zia, Z., Bakhat, H.F., Saqib, Z.A., Shah, G.M., Fahad, S., Ashraf, M.R., Hammad, H.M., Naseem, W., & Shahid, M. (2017). Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and Environmental Safety, 144, 11-18.
Toplam 124 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyoteknolojisi
Bölüm Makaleler
Yazarlar

Sarah Jorjani 0000-0002-9101-7689

Fatma Pehlivan Karakaş 0000-0001-5245-6294

Yayımlanma Tarihi 5 Şubat 2024
Gönderilme Tarihi 10 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 1

Kaynak Göster

APA Jorjani, S., & Pehlivan Karakaş, F. (2024). Physiological and Biochemical Responses to Heavy Metals Stress in Plants. International Journal of Secondary Metabolite, 11(1), 169-190. https://doi.org/10.21448/ijsm.1323494
International Journal of Secondary Metabolite
e-ISSN: 2148-6905