Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 7 Sayı: 2, 77 - 82, 15.12.2023

Öz

Kaynakça

  • [1]Chowdhury A, Naz A. Waste to resource: Applicability of fly ashas landfill geoliner to control ground water pollution(2021). doi:10.1016/j.matpr.2021.10.367.
  • [2]Hughes KL, Christy AD, Heimlich JE. Landfill Types and Liner Systems. Extension Fact Sheet: Ohio State University (2005).
  • [3]Xie H, Yan H, Feng S, Wang O,Chen P. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion and degradation. Environmental Science and Pollution Research(2016) 23(19):19362–19375. doi:10.1007/s11356-016-7147-6.
  • [4]Vaverková MD. Landfill Impacts on the Environment-Review. Geosciences(2019) 9(10):431. doi:10.3390/geosciences9100431.
  • [5]Yan H, Xie H, Wu J, Ding H, Qiu Z, Sun Z. Analytical model for transient coupled consolidation and contaminant transport in landfill liner system. Computers and Geotechnics(2021) 138:104345. doi:10.1016/j.compgeo.2021.104345.
  • [6]Aladin EA, Omoruyi DI, Odia-Oseghale JO. Impact of Heavy Metals on the Soil and Groundwater of Ariaria Waste Dumpsite, Aba, South-Eastern Nigeria. International Journal of Earth Sciences Knowledge and Applications4(3):365–374.
  • [7]Daniel DE. Geotechnical Practice for Waste Disposal. London: Chapman and Hall (1993).
  • [8]Kennay TC, Veen VA, Swallow MA, Sungalia MA. Hydraulic conductivity of compacted bentonite -sand mixtures. Canadian Geotechnical Journal(1992) 29:638–640. doi:10.1139/t92-04.
  • [9]Kalkan E, Akbulut S. The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Engineering Geology(2004) 73:145–156. doi:10.1016/j.enggeo.2004.01.001.
  • [10]Kalkan E. Oltu Clay Deposits (Erzurum, NE Turkey) and Their Possible Usage Areas. International Journal of Innovative Research and Reviews(2018) 2(1):25–30.
  • [11]Kalkan E. Freeze-Thaw Effect in Granular Soil Reinforced with Calcareous Portland Cement. International Journal of Innovative Research and Reviews(2021) 5(2):74–77.
  • [12]Fernandes A, Pacheco MJ, Ciríaco L, Lopes A. Review on the electrochemical processes for the treatment of sanitarylandfill leachates: present and future. Applied Catalysis B: Environmental(2015) 176-177:183–200. doi:10.1016/j.apcatb.2015.03.052.
  • [13]Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials(2008) 150:468–493.
  • [14]Li W, Hua T, Zhou O, Zhang S, Li F. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Deselination(2010) 264(1-2):56–62. doi:10.1016/j.desal.2010.07.004.
  • [15]Li W, Ding X, Liu M, Guo Y, Liu L. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation. Frontiers of Environmental Science & Engineering(2012) 6:892–900. doi:10.1007/s11783-012-0440-9.
  • [16]Nebbioso A, Piccolo A. Molecular characterization of dissolved organic matter (DOM): a critical review. Analytical and Bioanalytical Chemistry(2013) 405:109–124.
  • [17]Fernandez F, Quigley RM. Organic liquid sand hydraulic conductivity of barrier clays. Proc. Int.Con. Soil Mech. Found. Eng(1989) 3:1867–1870.
  • [18]Dabaghian Z, Peyravi M, Jahanshahi M, Rad AS. Potential of advanced nano-structured membranes for landfill leachate treatment: a review. Chembioeng Reviews(2018) 5(2):119–138.
  • [19]Carvajal-Flórez E, Cardona-Gallo S. Technologies applicable to the removal of heavy metals from landfill leachate. Environmental Science and Pollution Research(2019) 26:15725–15753.
  • [20]Iskander SM, Zhao R, Pathak A, Gupta A, Pruden A, Novak ZT, et al. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment. Water Research(2018) 145:297–311.
  • [21]Bhilatiya SP, Bhargava A, Nalawade P, Kulkarni R. Environmentally Sustainable Municipal Solid Waste Management -A Case Study of Kolhapur, India. International Journal of Earth Sciences Knowledge and Applications(2021) 3(2):117–123.
  • [22]Alayli A. Removal of Reactive Dye Types (Methylene Blue, Direct Blue 15 and Reactive Black 5) from Water with Different Methods: Removal of Reactive Dye Types from Water with Different Methods. International Journal of Innovative Research and Reviews5(2):15–18.
  • [23]Nami P, Kaya G, Karimdoust S, Kalkan E. Management and Evaluation of the Geological and Environmental Effects in Maragheh Landfill (North West of Iran. International Journal of Earth Sciences Knowledge and Applications(2021) 3(2):158–162.
  • [24]Omorogieva OM, Igberase VI. Comparative study of Leachate Characterization: Implication for Sustainable Environmental Management. International Journal of Earth Sciences Knowledge and Applications(2021) 3(3):305–313.
  • [25]Teng C, Zhou K, Peng C, Chen W. Characterization and treatment of landfill leachate: A review. Water Research(2021) 203:117525. doi:10.1016/j.watres.2021.117525.
  • [26]Bhattacharjee A, Kamble S, Kamal N, Golhar P, Kumari V, Bhargava A. Urban Heat Island Effect: A Case Study of Jaipur, India. International Journal of Earth Sciences Knowledge and Applications(2022) 4(1):133–139.
  • [27]Perpetual KN,Aladin EA. Lithostratigraphic Characterization of the Subsurface Soil and Lithological Identification Using Electrical Resistivity Method’ on Ovade Community of Oghara, Southern Nigeria. International Journal of Earth Sciences Knowledge and Applications(2023) 5(2):264–270.
  • [28]Kalkan E. Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology(2006) 87:220–229. doi:10.1016/j.enggeo.2006.07.002.
  • [29]Kalkan E, Yarbaşı N, Bilici Ö. The Effects of Quartzite on the Swelling Behaviors of Compacted Clayey Soils. International Journal of Earth Sciences Knowledge and Applications(2020) 2(2):92–101.
  • [30]Prashant JP, Sivapullaiah PV, Sridharan A. Pozzolanic fly ash as a hydraulic barrier in landfills. Engineering Geology(2001) 60:245–252. doi:10.1016/S0013-7952(00)00105-8.
  • [31]Prabakar J, Sridhar RS. Effect of random inclusion of sisal fibre on strength behavior of soil. Construction and Building Materials(2002) 16:123–131.
  • [32]Brandl H. Mineral liners for hazardous waste containment. Geotechnique(1992) 42:57–65. doi:10.1680/geot.1992.42.1.57.
  • [33]Touze-Foltz N, Duquennoi C, Gaget E. Hydraulic and mechanical behavior of GCLs in contact with leachate as part of a composite liner. Geotextiles and Geomembranes(2006) 24:188–197.
  • [34]Guyonnet D, Gaucher E, Gaboriau H, Pons C-H, Clinard C, Norotte V, et al. Geosynthetic clay liner interaction with leachate: correlation between permeability, microstructure, and surface chemistry. Journal of geotechnical and geoenvironmental engineering(2005) 131(6):740–749.
  • [35]Petrov RJ, Rowe RK, Quigley RM. factors influencing GCL hydraulic conductivity. Journal of geotechnical and geoenvironmental engineering(1997) 123(8):683–695.
  • [36]Kalkan E. Impact of wetting–drying cycles on swelling behavior of clayey soils modified by silica fume. Applied Clay Science(2011) 52:345–352. doi:10.1016/j.clay.2011.03.014.
  • [37]Kalkan E. Effects of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw. Cold Regions Sciences and Technology(2009) 58(3):130–135. doi:10.1016/j.coldregions.2009.03.011.
  • [38]Kalkan E. Preparation of scrap tires rubber fiber-silica fume mixtures for modification of clayey soils. Applied Clay Science(2013) 80-81:117–125. doi:10.1016/j.clay.2013.06.014.
  • [39]Kalkan E. Effects of waste material-lime additive mixtures on mechanical properties of granular soils. Bulletin of Engineering Geology and the Environment(2012) 71(1):99–103. doi:10.1007/s10064-011-0409-0.
  • [40]Goldman LJ, Greenfield LI, Damle AS, Kingsbury GL, Northeim CM, Truesdale RS. Design, Construction, and Evaluation of Clay Liners for Waste Management Facilities USEPA. Washington D.C (1998). 530 –89 007.
  • [41]Kayabali K. Engineering aspects of a novel landfill liner material: bentonite-amended natural zeolite. Engineering Geology(1997) 46(2):105–114. doi:10.1016/S0013-7952(96)00102-0.
  • [42]Kalkan E. Influence of silica fume on the desiccation cracks of compacted clayey soils. Applied Clay Science(2009) 43:296–302. doi:10.1016/j.clay.2008.09.002.
  • [43]Francisca FM, Glatstein DA. Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Applied Clay Science(2010) 49:187–193. doi:10.1016/j.clay.2010.05.003.
  • [44]Peirce JJ, Sallfors G, Peel TA, Witter KA. Effects of selected inorganic leachates on clay permeability. Journal of Geotechnical Engineering(1987) 113(8):915–919. doi:10.1061/(ASCE)0733-9410(1987)113:8(915).
  • [45]Arasan S. Effect of chemicals on geotechnical properties of clay liners: a review. Research Journal of Applied Sciences, Engineering and Technology(2010) 2(8):765–775.
  • [46]Yılmaz G, Yetimoglu T, Arasan S. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions. Waste Management & Research: The Journal for a Sustainable Circular Economy(2008) 26(5):646–473. doi:10.1177/0734242X08091.
  • [47]He J, Wang Y, Li Y, Ruan X-C. Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay. Water Science and Engineering(2015) 8(2):151–157. doi:10.1016/j.wse.2015.04.004.
  • [48]Bowders JJ, Daniel DE. Hydraulic conductivity of compacted clay to dilute organic chemicals. Journal of Geotechnical Engineering(1987) 113(12):1432–1448. doi:10.1061/(ASCE)0733-9410(1987)113:12(1432).
  • [49]Mitchell JK. Fundamentals of Soil Behavior. New York: John Wiley and Sons Inc (1993).
  • [50]Lin LC, Benson C. Effect of wet-dry cycling of swelling and hydraulic conductivity of GCLs. Journal of geotechnical and geoenvironmental engineering(2000) 126(1):40–49.
  • [51]Lee JM, Shackelford CD, Benson CH, Jo HY, Edil TB. Correlating index properties and hydraulic conductivity of geosynthetic clay liners. Journal of geotechnical and geoenvironmental engineering(2005) 131(11):1319–1329.
  • [52]Lee JM, Shackelford CD. Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners. Journal of geotechnical and geoenvironmental engineering(2005) 131(1):64–77. doi:10.1061/(ASCE)1090-0241(2005)131:1(64).
  • [53]Kolstad DC, Benson CH, Edil TB, Jo HY. Hydraulic conductivity of a dense prehydrated GCL permeated with aggressive inorganic solutions. Geosynthetics International(2004) 11 (3:233–241. doi:10.1680/gein.11.3.209.44488.
  • [54]Jo HY, Benson CH, Edil T. Hydraulic conductivity and cation exchange in no-prehydratedand prehydrated bentonite permeated with weak inorganic salt solutions. Clays and Clay Minerals(2004) 52(6):661–679.
  • [55]Egloffstein T. Natural bentonites-influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs. Geotextile and Geomembrans(2001) 19(7):427–444.
  • [56]Mishra AK, Ohtsubo M, Li L, Higashi T. Effect of salt concentrations on the permeability and compressibility of soil-bentonite mixtures. Journal of the Faculty of Agriculture Kyushu University(2005) 50(2):837–849. doi:10.5109/4692.
  • [57]Jo HY. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. Journal of geotechnical and geoenvironmental engineering(2005)131(4):405–417.
  • [58]Vasko SM, Jo HY, Benson CH, Edil TB, Katsumi T. Hydraulic conductivity of partially prehydrated geosynthetic clay liners permeated with aqueous calcium chloride solutions. Minn: Industrial Fabrics Association International, St. Paul (2001). 685–699.
  • 59]Jo HY, Katsumi T, Benso CH, Edil TB. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-speciessalt solutions. Journal of geotechnical and geoenvironmental engineering(2001) 127(7):557–567.
  • [60]James AN, Fullerton D, Drake R. Field performance of GCL under ion exchange conditions. Journal of geotechnical and geoenvironmental engineering(1997) 123(10):897–901.
  • [61]Gleason MH, Daniel DE, Eykholt GR. Calcium and sodium bentonite for hydraulic containment applications. Journal of geotechnical and geoenvironmental engineering(1997) 123(5):438–445.
  • [62]Daniel DE, Wu YK. Compacted clay liners and covers for sites. Journal of Geotechnical Engineering(1993) 119(2):223–237.
  • [63]Shackelford CD, Benson CH, Katsumi T, Ediland TB, Lin L. Evaluating the hydraulic conductivity of GCLs permeated with non-standart liquids. Geotextile and Geomembrans(2000) 18:133–161.
  • [64]Petrov R, Rowe R. Geosynthetic Clay Liner (GCL)-chemical compatibility by hydraulic conductivitytesting and factors impacting its performance. Canadian Geotechnical Journal(1997) 34:863–885.
  • [65]Kalkan E, Yarbaşı N, Bilici Ö. Strength performance of stabilized clayey soils with quartzite material. International Journal of Earth Sciences Knowledge and Applications(2019) 1(1):1–5.
  • [66]Kalkan E, Bayraktutan MS. Geotechnical evaluation of Turkish clay deposits: a case study in Northern Turkey. Environmental Geology(2008) 55:937–950.
  • [67]Kalkan E. The improvement of geotechnical properties of Oltu (Erzurum) clayey deposits for using them as barriers. Ph.D. Thesis (in Turkish). Ataturk University, Graduate School of Natural and Applied Science. Erzurum, Turkey (2003).
  • [68]Foreman DE, Daniel DE. Permeation of compacted clay with organic chemicals. Journal of Geotechnical Engineering(1986) 112 (7:669–681. doi:10.1061/(ASCE)0733-9410(1986)112:7(669).
  • [69]Pierle JJ, Witter AK. Termination criteria for clay permeability testing. Journal of Geotechnical Engineering, ASCE(1986) 112:841–853. doi:10.1061/(ASCE)0733-9410(1986)112:9(841).
  • [70]Ruhl JL, Daniel DE. Geosynthetic clay liners permeated with chemical solutions and leachates. Journal of geotechnical and geoenvironmental engineering(1997) 123(4):369–381.
  • [71]Yong RN, Taheri E, Khodadadi A. Evaluation of remediation methods for s oils contaminated with benzo [a] pyrene. International Journal of Environmental Research(2007) 1(4):341–346.
  • [72]Shan HY, Lai YJ. Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners. Geotextile and Geomembranes(2002) 20:19–38.
  • [73]Kayabalı K, Mollamahmutoglu M. The influence of hazardous liquid waste on the permeability of earthen liners. Environmental Geology(2000) 39(3-4):201–210.
  • [74]Park J, Vipulanandan C, Kim JW, Oh MH. Effects of surfactants and electrolyte solutions on the properties of soil. Environmental Geology(2006) 49:977–989.
  • [75]Anderson DC, Brown KW, Thomas JC. Conductivity of comp acted clay so ils to water a ndorganic liquids. Waste Management & Research(1985) 3(1):339–349. doi:10.1177/0734242X8500300142.
  • [76]Kaya A, Fang HY. Effects of organic fluids on physicochemical parameters offine-grained soils. Canadian Geotechnical Journal(2000) 37(5):943–950.
  • [77]Anandarajah A. Mechanism controlling permeability change in clays due to changes in porefluid. Journal of geotechnical and geoenvironmental engineering(2003) 129(2):163–172. doi:10.1061/(ASCE)1090-0241(2003)129:2(163).
  • [78]Quigley RM. Clay minerals against contaminant migration. Geotechnical News, NorthAmerican Geotechnical Community(1993) 11:44–46.
  • [79]Fukue M, Minato T, Horibe H, Taya N. Themicro-structures of clay given by resistivity measurements. Engineering Geology(1999) 54:43–53. doi:10.1016/S0013-7952(99)00060-5.
  • [80]Kaya A, Durukan S. Utilization of bentonite embedded zeolite as clay liner. Applied Clay Science(2004) 25:83–91. doi:10.1016/j.clay.2003.07.002.
  • [81]Olphen H. An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists and Soil Scientists. New York: Wiley (1977).
  • [82]Frenkel H, Levy G, Fey MV. Hydraulic conductivity and clay dispersion in clay-sand mixtures as affected by organic and inorganic anions. Clays and Clay Minerals(1992) 40:515–521. doi:10.1346/CCMN.1992.0400504.
  • [83]Smith DC, Fey MV. Chemical munipulation of soil for sealing landfills. Applied Geochemistry(1996) 11:325–329. doi:10.1016/0883-2927(95)00097-6.

Effects of Some Chemicals on the Permeability of Compacted Clayey Soil

Yıl 2023, Cilt: 7 Sayı: 2, 77 - 82, 15.12.2023

Öz

Clay soils are natural materials with generally low permeability properties. Due to their low permeability properties, they are preferred in impermeable barrier structure applications. Impervious base and cover mats are constructed in solid waste landfill areas using clay soils. These impermeable structures constructed with clay soils are exposed to liquids with different chemical compositions as well as natural water. Contaminated water and other liquids other than natural water adversely affect these impermeable structures. In this study, the permeability behavior of impermeable clayey soil material compacted using different chemical agents was investigated.Permeability tests were conducted on compacted clay soil samples using pure water, ferric chloride, acetic acid, kisilene and n-heptane. Permeability test results showed that the chemicals increased the permeability values of the clay soil samples. After pure water, the lowest permeability value was obtained in permeability tests with ferric chloride. The highest permeability value was obtained in permeability tests with n-heptane. The results show that fluids other than pure or natural waters have a high potential to have negative effects on the permeability properties of impermeable structures made of compacted clay soils.

Kaynakça

  • [1]Chowdhury A, Naz A. Waste to resource: Applicability of fly ashas landfill geoliner to control ground water pollution(2021). doi:10.1016/j.matpr.2021.10.367.
  • [2]Hughes KL, Christy AD, Heimlich JE. Landfill Types and Liner Systems. Extension Fact Sheet: Ohio State University (2005).
  • [3]Xie H, Yan H, Feng S, Wang O,Chen P. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion and degradation. Environmental Science and Pollution Research(2016) 23(19):19362–19375. doi:10.1007/s11356-016-7147-6.
  • [4]Vaverková MD. Landfill Impacts on the Environment-Review. Geosciences(2019) 9(10):431. doi:10.3390/geosciences9100431.
  • [5]Yan H, Xie H, Wu J, Ding H, Qiu Z, Sun Z. Analytical model for transient coupled consolidation and contaminant transport in landfill liner system. Computers and Geotechnics(2021) 138:104345. doi:10.1016/j.compgeo.2021.104345.
  • [6]Aladin EA, Omoruyi DI, Odia-Oseghale JO. Impact of Heavy Metals on the Soil and Groundwater of Ariaria Waste Dumpsite, Aba, South-Eastern Nigeria. International Journal of Earth Sciences Knowledge and Applications4(3):365–374.
  • [7]Daniel DE. Geotechnical Practice for Waste Disposal. London: Chapman and Hall (1993).
  • [8]Kennay TC, Veen VA, Swallow MA, Sungalia MA. Hydraulic conductivity of compacted bentonite -sand mixtures. Canadian Geotechnical Journal(1992) 29:638–640. doi:10.1139/t92-04.
  • [9]Kalkan E, Akbulut S. The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Engineering Geology(2004) 73:145–156. doi:10.1016/j.enggeo.2004.01.001.
  • [10]Kalkan E. Oltu Clay Deposits (Erzurum, NE Turkey) and Their Possible Usage Areas. International Journal of Innovative Research and Reviews(2018) 2(1):25–30.
  • [11]Kalkan E. Freeze-Thaw Effect in Granular Soil Reinforced with Calcareous Portland Cement. International Journal of Innovative Research and Reviews(2021) 5(2):74–77.
  • [12]Fernandes A, Pacheco MJ, Ciríaco L, Lopes A. Review on the electrochemical processes for the treatment of sanitarylandfill leachates: present and future. Applied Catalysis B: Environmental(2015) 176-177:183–200. doi:10.1016/j.apcatb.2015.03.052.
  • [13]Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials(2008) 150:468–493.
  • [14]Li W, Hua T, Zhou O, Zhang S, Li F. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Deselination(2010) 264(1-2):56–62. doi:10.1016/j.desal.2010.07.004.
  • [15]Li W, Ding X, Liu M, Guo Y, Liu L. Optimization of process parameters for mature landfill leachate pretreatment using MAP precipitation. Frontiers of Environmental Science & Engineering(2012) 6:892–900. doi:10.1007/s11783-012-0440-9.
  • [16]Nebbioso A, Piccolo A. Molecular characterization of dissolved organic matter (DOM): a critical review. Analytical and Bioanalytical Chemistry(2013) 405:109–124.
  • [17]Fernandez F, Quigley RM. Organic liquid sand hydraulic conductivity of barrier clays. Proc. Int.Con. Soil Mech. Found. Eng(1989) 3:1867–1870.
  • [18]Dabaghian Z, Peyravi M, Jahanshahi M, Rad AS. Potential of advanced nano-structured membranes for landfill leachate treatment: a review. Chembioeng Reviews(2018) 5(2):119–138.
  • [19]Carvajal-Flórez E, Cardona-Gallo S. Technologies applicable to the removal of heavy metals from landfill leachate. Environmental Science and Pollution Research(2019) 26:15725–15753.
  • [20]Iskander SM, Zhao R, Pathak A, Gupta A, Pruden A, Novak ZT, et al. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment. Water Research(2018) 145:297–311.
  • [21]Bhilatiya SP, Bhargava A, Nalawade P, Kulkarni R. Environmentally Sustainable Municipal Solid Waste Management -A Case Study of Kolhapur, India. International Journal of Earth Sciences Knowledge and Applications(2021) 3(2):117–123.
  • [22]Alayli A. Removal of Reactive Dye Types (Methylene Blue, Direct Blue 15 and Reactive Black 5) from Water with Different Methods: Removal of Reactive Dye Types from Water with Different Methods. International Journal of Innovative Research and Reviews5(2):15–18.
  • [23]Nami P, Kaya G, Karimdoust S, Kalkan E. Management and Evaluation of the Geological and Environmental Effects in Maragheh Landfill (North West of Iran. International Journal of Earth Sciences Knowledge and Applications(2021) 3(2):158–162.
  • [24]Omorogieva OM, Igberase VI. Comparative study of Leachate Characterization: Implication for Sustainable Environmental Management. International Journal of Earth Sciences Knowledge and Applications(2021) 3(3):305–313.
  • [25]Teng C, Zhou K, Peng C, Chen W. Characterization and treatment of landfill leachate: A review. Water Research(2021) 203:117525. doi:10.1016/j.watres.2021.117525.
  • [26]Bhattacharjee A, Kamble S, Kamal N, Golhar P, Kumari V, Bhargava A. Urban Heat Island Effect: A Case Study of Jaipur, India. International Journal of Earth Sciences Knowledge and Applications(2022) 4(1):133–139.
  • [27]Perpetual KN,Aladin EA. Lithostratigraphic Characterization of the Subsurface Soil and Lithological Identification Using Electrical Resistivity Method’ on Ovade Community of Oghara, Southern Nigeria. International Journal of Earth Sciences Knowledge and Applications(2023) 5(2):264–270.
  • [28]Kalkan E. Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology(2006) 87:220–229. doi:10.1016/j.enggeo.2006.07.002.
  • [29]Kalkan E, Yarbaşı N, Bilici Ö. The Effects of Quartzite on the Swelling Behaviors of Compacted Clayey Soils. International Journal of Earth Sciences Knowledge and Applications(2020) 2(2):92–101.
  • [30]Prashant JP, Sivapullaiah PV, Sridharan A. Pozzolanic fly ash as a hydraulic barrier in landfills. Engineering Geology(2001) 60:245–252. doi:10.1016/S0013-7952(00)00105-8.
  • [31]Prabakar J, Sridhar RS. Effect of random inclusion of sisal fibre on strength behavior of soil. Construction and Building Materials(2002) 16:123–131.
  • [32]Brandl H. Mineral liners for hazardous waste containment. Geotechnique(1992) 42:57–65. doi:10.1680/geot.1992.42.1.57.
  • [33]Touze-Foltz N, Duquennoi C, Gaget E. Hydraulic and mechanical behavior of GCLs in contact with leachate as part of a composite liner. Geotextiles and Geomembranes(2006) 24:188–197.
  • [34]Guyonnet D, Gaucher E, Gaboriau H, Pons C-H, Clinard C, Norotte V, et al. Geosynthetic clay liner interaction with leachate: correlation between permeability, microstructure, and surface chemistry. Journal of geotechnical and geoenvironmental engineering(2005) 131(6):740–749.
  • [35]Petrov RJ, Rowe RK, Quigley RM. factors influencing GCL hydraulic conductivity. Journal of geotechnical and geoenvironmental engineering(1997) 123(8):683–695.
  • [36]Kalkan E. Impact of wetting–drying cycles on swelling behavior of clayey soils modified by silica fume. Applied Clay Science(2011) 52:345–352. doi:10.1016/j.clay.2011.03.014.
  • [37]Kalkan E. Effects of silica fume on the geotechnical properties of fine-grained soils exposed to freeze and thaw. Cold Regions Sciences and Technology(2009) 58(3):130–135. doi:10.1016/j.coldregions.2009.03.011.
  • [38]Kalkan E. Preparation of scrap tires rubber fiber-silica fume mixtures for modification of clayey soils. Applied Clay Science(2013) 80-81:117–125. doi:10.1016/j.clay.2013.06.014.
  • [39]Kalkan E. Effects of waste material-lime additive mixtures on mechanical properties of granular soils. Bulletin of Engineering Geology and the Environment(2012) 71(1):99–103. doi:10.1007/s10064-011-0409-0.
  • [40]Goldman LJ, Greenfield LI, Damle AS, Kingsbury GL, Northeim CM, Truesdale RS. Design, Construction, and Evaluation of Clay Liners for Waste Management Facilities USEPA. Washington D.C (1998). 530 –89 007.
  • [41]Kayabali K. Engineering aspects of a novel landfill liner material: bentonite-amended natural zeolite. Engineering Geology(1997) 46(2):105–114. doi:10.1016/S0013-7952(96)00102-0.
  • [42]Kalkan E. Influence of silica fume on the desiccation cracks of compacted clayey soils. Applied Clay Science(2009) 43:296–302. doi:10.1016/j.clay.2008.09.002.
  • [43]Francisca FM, Glatstein DA. Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Applied Clay Science(2010) 49:187–193. doi:10.1016/j.clay.2010.05.003.
  • [44]Peirce JJ, Sallfors G, Peel TA, Witter KA. Effects of selected inorganic leachates on clay permeability. Journal of Geotechnical Engineering(1987) 113(8):915–919. doi:10.1061/(ASCE)0733-9410(1987)113:8(915).
  • [45]Arasan S. Effect of chemicals on geotechnical properties of clay liners: a review. Research Journal of Applied Sciences, Engineering and Technology(2010) 2(8):765–775.
  • [46]Yılmaz G, Yetimoglu T, Arasan S. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions. Waste Management & Research: The Journal for a Sustainable Circular Economy(2008) 26(5):646–473. doi:10.1177/0734242X08091.
  • [47]He J, Wang Y, Li Y, Ruan X-C. Effects of leachate infiltration and desiccation cracks on hydraulic conductivity of compacted clay. Water Science and Engineering(2015) 8(2):151–157. doi:10.1016/j.wse.2015.04.004.
  • [48]Bowders JJ, Daniel DE. Hydraulic conductivity of compacted clay to dilute organic chemicals. Journal of Geotechnical Engineering(1987) 113(12):1432–1448. doi:10.1061/(ASCE)0733-9410(1987)113:12(1432).
  • [49]Mitchell JK. Fundamentals of Soil Behavior. New York: John Wiley and Sons Inc (1993).
  • [50]Lin LC, Benson C. Effect of wet-dry cycling of swelling and hydraulic conductivity of GCLs. Journal of geotechnical and geoenvironmental engineering(2000) 126(1):40–49.
  • [51]Lee JM, Shackelford CD, Benson CH, Jo HY, Edil TB. Correlating index properties and hydraulic conductivity of geosynthetic clay liners. Journal of geotechnical and geoenvironmental engineering(2005) 131(11):1319–1329.
  • [52]Lee JM, Shackelford CD. Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners. Journal of geotechnical and geoenvironmental engineering(2005) 131(1):64–77. doi:10.1061/(ASCE)1090-0241(2005)131:1(64).
  • [53]Kolstad DC, Benson CH, Edil TB, Jo HY. Hydraulic conductivity of a dense prehydrated GCL permeated with aggressive inorganic solutions. Geosynthetics International(2004) 11 (3:233–241. doi:10.1680/gein.11.3.209.44488.
  • [54]Jo HY, Benson CH, Edil T. Hydraulic conductivity and cation exchange in no-prehydratedand prehydrated bentonite permeated with weak inorganic salt solutions. Clays and Clay Minerals(2004) 52(6):661–679.
  • [55]Egloffstein T. Natural bentonites-influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs. Geotextile and Geomembrans(2001) 19(7):427–444.
  • [56]Mishra AK, Ohtsubo M, Li L, Higashi T. Effect of salt concentrations on the permeability and compressibility of soil-bentonite mixtures. Journal of the Faculty of Agriculture Kyushu University(2005) 50(2):837–849. doi:10.5109/4692.
  • [57]Jo HY. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. Journal of geotechnical and geoenvironmental engineering(2005)131(4):405–417.
  • [58]Vasko SM, Jo HY, Benson CH, Edil TB, Katsumi T. Hydraulic conductivity of partially prehydrated geosynthetic clay liners permeated with aqueous calcium chloride solutions. Minn: Industrial Fabrics Association International, St. Paul (2001). 685–699.
  • 59]Jo HY, Katsumi T, Benso CH, Edil TB. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-speciessalt solutions. Journal of geotechnical and geoenvironmental engineering(2001) 127(7):557–567.
  • [60]James AN, Fullerton D, Drake R. Field performance of GCL under ion exchange conditions. Journal of geotechnical and geoenvironmental engineering(1997) 123(10):897–901.
  • [61]Gleason MH, Daniel DE, Eykholt GR. Calcium and sodium bentonite for hydraulic containment applications. Journal of geotechnical and geoenvironmental engineering(1997) 123(5):438–445.
  • [62]Daniel DE, Wu YK. Compacted clay liners and covers for sites. Journal of Geotechnical Engineering(1993) 119(2):223–237.
  • [63]Shackelford CD, Benson CH, Katsumi T, Ediland TB, Lin L. Evaluating the hydraulic conductivity of GCLs permeated with non-standart liquids. Geotextile and Geomembrans(2000) 18:133–161.
  • [64]Petrov R, Rowe R. Geosynthetic Clay Liner (GCL)-chemical compatibility by hydraulic conductivitytesting and factors impacting its performance. Canadian Geotechnical Journal(1997) 34:863–885.
  • [65]Kalkan E, Yarbaşı N, Bilici Ö. Strength performance of stabilized clayey soils with quartzite material. International Journal of Earth Sciences Knowledge and Applications(2019) 1(1):1–5.
  • [66]Kalkan E, Bayraktutan MS. Geotechnical evaluation of Turkish clay deposits: a case study in Northern Turkey. Environmental Geology(2008) 55:937–950.
  • [67]Kalkan E. The improvement of geotechnical properties of Oltu (Erzurum) clayey deposits for using them as barriers. Ph.D. Thesis (in Turkish). Ataturk University, Graduate School of Natural and Applied Science. Erzurum, Turkey (2003).
  • [68]Foreman DE, Daniel DE. Permeation of compacted clay with organic chemicals. Journal of Geotechnical Engineering(1986) 112 (7:669–681. doi:10.1061/(ASCE)0733-9410(1986)112:7(669).
  • [69]Pierle JJ, Witter AK. Termination criteria for clay permeability testing. Journal of Geotechnical Engineering, ASCE(1986) 112:841–853. doi:10.1061/(ASCE)0733-9410(1986)112:9(841).
  • [70]Ruhl JL, Daniel DE. Geosynthetic clay liners permeated with chemical solutions and leachates. Journal of geotechnical and geoenvironmental engineering(1997) 123(4):369–381.
  • [71]Yong RN, Taheri E, Khodadadi A. Evaluation of remediation methods for s oils contaminated with benzo [a] pyrene. International Journal of Environmental Research(2007) 1(4):341–346.
  • [72]Shan HY, Lai YJ. Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners. Geotextile and Geomembranes(2002) 20:19–38.
  • [73]Kayabalı K, Mollamahmutoglu M. The influence of hazardous liquid waste on the permeability of earthen liners. Environmental Geology(2000) 39(3-4):201–210.
  • [74]Park J, Vipulanandan C, Kim JW, Oh MH. Effects of surfactants and electrolyte solutions on the properties of soil. Environmental Geology(2006) 49:977–989.
  • [75]Anderson DC, Brown KW, Thomas JC. Conductivity of comp acted clay so ils to water a ndorganic liquids. Waste Management & Research(1985) 3(1):339–349. doi:10.1177/0734242X8500300142.
  • [76]Kaya A, Fang HY. Effects of organic fluids on physicochemical parameters offine-grained soils. Canadian Geotechnical Journal(2000) 37(5):943–950.
  • [77]Anandarajah A. Mechanism controlling permeability change in clays due to changes in porefluid. Journal of geotechnical and geoenvironmental engineering(2003) 129(2):163–172. doi:10.1061/(ASCE)1090-0241(2003)129:2(163).
  • [78]Quigley RM. Clay minerals against contaminant migration. Geotechnical News, NorthAmerican Geotechnical Community(1993) 11:44–46.
  • [79]Fukue M, Minato T, Horibe H, Taya N. Themicro-structures of clay given by resistivity measurements. Engineering Geology(1999) 54:43–53. doi:10.1016/S0013-7952(99)00060-5.
  • [80]Kaya A, Durukan S. Utilization of bentonite embedded zeolite as clay liner. Applied Clay Science(2004) 25:83–91. doi:10.1016/j.clay.2003.07.002.
  • [81]Olphen H. An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists and Soil Scientists. New York: Wiley (1977).
  • [82]Frenkel H, Levy G, Fey MV. Hydraulic conductivity and clay dispersion in clay-sand mixtures as affected by organic and inorganic anions. Clays and Clay Minerals(1992) 40:515–521. doi:10.1346/CCMN.1992.0400504.
  • [83]Smith DC, Fey MV. Chemical munipulation of soil for sealing landfills. Applied Geochemistry(1996) 11:325–329. doi:10.1016/0883-2927(95)00097-6.
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikro ve Nanosistemler
Bölüm Research Articles
Yazarlar

Ekrem Kalkan

Yayımlanma Tarihi 15 Aralık 2023
Gönderilme Tarihi 27 Ekim 2023
Kabul Tarihi 5 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 2

Kaynak Göster

APA Kalkan, E. (2023). Effects of Some Chemicals on the Permeability of Compacted Clayey Soil. International Journal of Innovative Research and Reviews, 7(2), 77-82.