Araştırma Makalesi
BibTex RIS Kaynak Göster

Chasing Light: How Dichromatic LEDs Affect the Elemental Profile of Gongolaria barbata

Yıl 2023, Cilt: 6 Sayı: 2, 147 - 157, 27.12.2023
https://doi.org/10.46384/jmsf.1368926

Öz

This study aims to investigate the influence of three different dichromatic LED light sources and varying photoperiod durations on the mineral content and trace element compositions in cultivated Gongolaria barbata under controlled culture conditions. During the experiment, red-blue (RB), blue-green (BG), red-green (RG) and fluorescent lights were examined at 16:16, 12:12, and 8:16 Light: Dark (L:D) photoperiods, and at 150 μmol photon m-2 s-1 intensity of light in all treatments. The elemental compositions of the thallus samples were analyzed for Mg, Ca, K, Na, P, Zn, Mo, Cu, Mn, Cr, Co, Cd, Fe, and As.. Our results showed that macro element and trace element compositions significantly varied among different experimental groups. Regarding the order of abundance, macroelements were ranked as follows: K > Na > Ca > Mg > P. Meanwhile, trace elements followed this order: As > Zn > Mn > Cr > Co > Cu > Cd > Mo > Fe. Among the experiment groups, the highest value of the macro elements was recorded as 1041.3±22.2 mg kg-1 for K, and the lowest value was 26.61±0.02 mg kg-1 for the P. Among the trace elements, for As, the highest value was recorded as 1339.86±5.27 µg kg -1, and the lowest was determined at 1.93±0.04 mg kg-1 for the Fe. The findings highlight that LED lighting conditions can significantly influence the elemental composition of G. barbata.

Proje Numarası

FHD-2021-3677

Kaynakça

  • Afonso, C., Cardoso, C., Ripol, A., Varela, J., Quental-Ferreira, H., Pousão-Ferreira, P., Ventura, M. S., Delgado, I. M., Coelho, I., Castanheira, I., & Bandarra, N. M. (2018). Composition and bioaccessibility of elements in green seaweeds from fish pond aquaculture. Food Research International, 105, 271-277. https://doi.org/10.1016/j.foodres.2017.11.015
  • Ak, İ., Çankırılıgil, E. C., Türker, G., Sever, O., & Abomohra, A. (2022). Enhancement of antioxidant properties of Gongolaria barbata (Phaeophyceae) by optimization of combined light intensity and salinity stress. Phycologia, 61(6), 584-594. doi:10.1080/00318884.2022.2099136
  • Akçalı I., & Küçükksezgin, F. (2011). A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas. Marine Pollution Bulletin, 62(3), 637-645. https://doi.org/10.1016/j.marpolbul.2010.12.021
  • Arıcı, E., Bat, L., & Yıldız, G. (2019). Comparison of metal uptake capacities of the brown algae Cystoseira Barbata and Cystoseira crinita (Phaeophyceae) collected in Sinop, Turkey. Pakistan Journal of Marine Sciences, 28(1), 5-17.
  • Aşıkkutlu, B., & Okudan, E. Ş. (2021). Macro and trace element levels of macroalgae Cystoseira foeniculacea ve Gongolaria montagnei species from Mediterranean region (Antalya/Turkey). Journal of Anatolian Environmental and Animal Sciences, 6(4), 757-764.
  • Australian and New Zealand Food Authority (ANZFA), 2005.Australia New Zealand Food Standards Code. Anstat Pty Ltd . https://www.foodstandards.gov.au/Pages/default. Aspx.
  • CEVA (Centre dEtudeet de valorization des Algues), 2014. Reglementation Algues Alimentaires. Ceva Synthese Regle. 2014 file:///C:/Users/Usuario/Downloads/r% C3%A9glementation%20algues%20MAJ%202014.pdf
  • Choi, Y.-K., Kumaran, R. S., Jeon, H. J., Song, H.-J., Yang, Y.-H., Lee, S. H., Song, K.-G., Kim, K. J., Singh, V., & Kim, H. J. (2015). LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 245-253. https://doi.org/10.1016/j.saa.2015.03.035
  • Circuncisão, A. R., Catarino, M. D., Cardoso, S. M., & Silva, A. M. S. (2018). Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs, 16(11), 400.
  • Codex Alimentarius Commission. (1995). Codex General Standard for Contamination and Toxins in Food and Feed. Codex Standard 193-1995.
  • EU Commission. (2008). Commission Regulation (EC) No. 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. J. Eur. Union, 173, 6-9.Procedures for Pesticide Residues Analysis in Food and Feed, Directorate General for Health and Food Safety, 1–42
  • EC (European Commission), 2017. Commission Regulation EC No. SANTE/11813/2017 (21–22 November 2017, Rev.0) for Analytical Quality Control and Method Validation
  • FAO (2019) Online query panels for aquaculture and capture production of seaweeds. Both accessed 13 August 2020. http:/ /www.fao.org/ fishery/ statistics /global- aquaculture- production / query/enhttp :// www .fao.org /fishery/statistics / global- capture –production /query/en
  • Farias, D. R., Hurd, C. L., Eriksen, R. S., Simioni, C., Schmidt, E., Bouzon, Z. L., & Macleod, C. K. (2017). In situ assessment of Ulva australis as a monitoring and management tool for metal pollution. Journal of Applied Phycology, 29(5), 2489-2502. doi:10.1007/s10811-017-1073-y
  • Figueroa, F., Bonomi Barufi, J., Malta, E., Conde-Álvarez, R., Nitschke, U., Arenas, F., Mata, M., Connan, S., Abreu, M., Marquardt, R., Vaz-Pinto, F., Konotchick, T., Celis-Plá, P., Hermoso, M., Ordoñez, G., Ruiz, E., Flores, P., de los Ríos, J., Kirke, D., Chow, F., Nassar, C., Robledo, D., Pérez-Ruzafa, Á., Bañares-España, E., Altamirano, M., Jiménez, C., Korbee, N., Bischof, K., & Stengel, D. (2014). Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition. Aquatic Biology, 22, 177-193. doi:10.3354/ab00610
  • Figueroa, F. L., Aguilera, J., & Niell, F. X. (1995). Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). European Journal of Phycology, 30(1), 11-18. doi:10.1080/09670269500650761
  • Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, 10(1), 25-28. https://doi.org/10.1016/S0924-2244(99)00015-1
  • Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23(3), 543-597. doi:10.1007/s10811-010-9632-5
  • Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222310/ doi: 10.17226/10026
  • Kim, J. K., Mao, Y., Kraemer, G., & Yarish, C. (2015). Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture, 436, 52-57. https://doi.org/10.1016/j.aquaculture.2014.10.037
  • Kravtsova, A., Milchakova, N., & Frontasyeva, M. (2014). Elemental accumulation in the black sea brown algae Cystoseira studied by neutron activation analysis. Ecological Chemistry and Engineering S, 21(1), 9-23. doi:10.2478/eces-2014-0001
  • Law R, Hanke G, Angelidis M, Batty J, Bignert A, Dachs J, Davies I, Denga Y, Duffek A, Herut B, Hylland K, Lepom P, Leonards P, Mehtonen J, Piha H, Roose P, Tronczynski J, Velikova V, & Vethaak D authors Piha H, editor (2010). Marine Strategy Framework Directive - Task Group 8 Contaminants and Pollution Effects. EUR 24335 EN. Luxembourg (Luxembourg): Publications Office of the European Union; JRC5808
  • Lourenço-Lopes, C., Fraga-Corral, M., Jimenez-Lopez, C., Pereira, A. G., Garcia-Oliveira, P., Carpena, M., Prieto, M. A., & Simal-Gandara, J. (2020). Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. 9(9), 101.
  • Lüning, K. (1991). Seaweeds: Their Environment, Biogeography, and Ecophysiology: Wiley. Manev, Z., Iliev, A., & Vachkova, V. (2013). Chemical characterization of brown seaweed - Cystoseira barbata. Bulgarian Journal of Agricultural Science, 19, 12-15.
  • Nordisk Metodikkomité for Næringsmidler – NMKL. (2007). Nordic Committee on Food Analysis: method no. 186. Lyngby, Denmark.
  • Okumura, C., Hamdan, N., Rahman, M., Hasegawa, H., Miki, O., & Takimoto, A. (2014). Economic Efficiency of Different Light Wavelengths and Intensities Using LEDs for the Cultivation of Green Microalga Botryococcus braunii (NIES-836) for Biofuel Production. Environmental Progress & Sustainable Energy, 34. doi:10.1002/ep.11951
  • Öztaşkent, C., & Ak, İ. (2021). Effect of LED light sources on the growth and chemical composition of brown seaweed Treptacantha barbata. Aquaculture International, 29(1), 193-205. doi:10.1007/s10499-020-00619-9
  • Roberts, D. A., Johnston, E. L., & Poore, A. G. B. (2008). Contamination of marine biogenic habitats and effects upon associated epifauna. Marine Pollution Bulletin, 56(6), 1057-1065. doi:https://doi.org/10.1016/j.marpolbul.2008.03.003
  • Rodrigues, D., Freitas, A. C., Pereira, L., Rocha-Santos, T. A. P., Vasconcelos, M. W., Roriz, M., Rodríguez-Alcalá, L. M., Gomes, A. M. P., & Duarte, A. C. (2015). Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chemistry, 183, 197-207. https://doi.org/10.1016/j.foodchem.2015.03.057
  • Sawidis T., Brown M.t, Zachariadis G., & Sratis I. (2001). Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea. Environment International, 27, 43-47
  • Schulze, P., Barreira, L., Pereira, H., Perales, J., & Varela, J. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in biotechnology, 32, 422-430. doi:10.1016/j.tibtech.2014.06.001
  • Szeląg-Sikora, A., Niemiec, M., & Sikora, J. (2012). Assessment of the content of magnesium, potassium, phosphorus and calcium in water and algae from the Black Sea in selected bays near Sevastopol. Journal of Elementology, 21.
  • Thibaut, T., Bottin, L., Aurelle, D., Boudouresque, C.-F., Blanfuné, A., Verlaque, M., Pairaud, I., & Millet, B. (2016). Connectivity of Populations of the Seaweed Cystoseira amentacea within the Bay of Marseille (Mediterranean Sea): Genetic Structure and Hydrodynamic Connections. 37 %J Cryptogamie, Algologie (4), 233-255, 223.
  • Tompkins, J., Deville, M. M., Day, J. G., & Turner, M. F. (1995). Catalogue of strains. Culture Collection of Algae and Protozoa, Ambleside, UK.
  • Yeh, N., & Chung, J.-P. (2009). High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 13(8), 2175-2180. https://doi.org/10.1016/j.rser.2009.01.027

Işığın peşinde: Dikromatik LED'ler Gongolaria barbata'nın Elementel Profilini Nasıl Etkiler?

Yıl 2023, Cilt: 6 Sayı: 2, 147 - 157, 27.12.2023
https://doi.org/10.46384/jmsf.1368926

Öz

Bu çalışmanın amacı, kontrol koşullarında yetiştirilen Gongolaria barbata’nın mineral içeriği ve iz element değişimleri üzerinde üç farklı dikromatik LED ışık ve değişen fotoperiyot sürelerinin etkisini araştırmaktır. Deneme aşamasında, kırmızı-mavi (RB), kırmızı-yeşil (RG), mavi-yeşil (BG) ve floresan (F) LEDler, sırasıyla 16:16, 12:12 ve 8:16 Aydınlık:Karanlık (L:D) fotoperiyotlarında, her biri 150 μmol photon m-2 s-1 yoğunluğunda incelenmiştir. Tallusların; Ca, K, Mg, Na, P, Zn, Mo, Mn, Fe, Cu, Cr, Co, Cd ve As kompozisyonları analiz edilmiştir. Sonuçlarımıza göre, makroelement ve iz element kompozisyonları farklı deney grupları arasında önemli varyasyonlar gösterdi. Türde bulunan makroelementlerin sıralaması şu şekildedir: K > Na > Ca > Mg > P, aynı zamanda iz elementler şu sırayı takip etmektedir: As > Zn > Mn > Cr > Co > Cu > Cd > Mo > Fe. Deneme grupları arasında, makro elementlerin en yüksek değeri K elementi için 1041.3±22.2 mg kg-1 olarak belirlenirken, en düşük değer P için 26.607±0.02 mg kg-1 olarak belirlendi. İz elementler arasında ise en yüksek değer As için 1339.86±5.27 µg kg-1 tespit edilirken, en düşük değer Fe için 1.930±0.04 mg kg-1 olarak belirlendi. Bulgular, LED aydınlatma koşullarının G. barbata türünün elementel kompozisyonunu önemli ölçüde etkileyebileceğini vurgulamaktadır.

Proje Numarası

FHD-2021-3677

Kaynakça

  • Afonso, C., Cardoso, C., Ripol, A., Varela, J., Quental-Ferreira, H., Pousão-Ferreira, P., Ventura, M. S., Delgado, I. M., Coelho, I., Castanheira, I., & Bandarra, N. M. (2018). Composition and bioaccessibility of elements in green seaweeds from fish pond aquaculture. Food Research International, 105, 271-277. https://doi.org/10.1016/j.foodres.2017.11.015
  • Ak, İ., Çankırılıgil, E. C., Türker, G., Sever, O., & Abomohra, A. (2022). Enhancement of antioxidant properties of Gongolaria barbata (Phaeophyceae) by optimization of combined light intensity and salinity stress. Phycologia, 61(6), 584-594. doi:10.1080/00318884.2022.2099136
  • Akçalı I., & Küçükksezgin, F. (2011). A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas. Marine Pollution Bulletin, 62(3), 637-645. https://doi.org/10.1016/j.marpolbul.2010.12.021
  • Arıcı, E., Bat, L., & Yıldız, G. (2019). Comparison of metal uptake capacities of the brown algae Cystoseira Barbata and Cystoseira crinita (Phaeophyceae) collected in Sinop, Turkey. Pakistan Journal of Marine Sciences, 28(1), 5-17.
  • Aşıkkutlu, B., & Okudan, E. Ş. (2021). Macro and trace element levels of macroalgae Cystoseira foeniculacea ve Gongolaria montagnei species from Mediterranean region (Antalya/Turkey). Journal of Anatolian Environmental and Animal Sciences, 6(4), 757-764.
  • Australian and New Zealand Food Authority (ANZFA), 2005.Australia New Zealand Food Standards Code. Anstat Pty Ltd . https://www.foodstandards.gov.au/Pages/default. Aspx.
  • CEVA (Centre dEtudeet de valorization des Algues), 2014. Reglementation Algues Alimentaires. Ceva Synthese Regle. 2014 file:///C:/Users/Usuario/Downloads/r% C3%A9glementation%20algues%20MAJ%202014.pdf
  • Choi, Y.-K., Kumaran, R. S., Jeon, H. J., Song, H.-J., Yang, Y.-H., Lee, S. H., Song, K.-G., Kim, K. J., Singh, V., & Kim, H. J. (2015). LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 245-253. https://doi.org/10.1016/j.saa.2015.03.035
  • Circuncisão, A. R., Catarino, M. D., Cardoso, S. M., & Silva, A. M. S. (2018). Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs, 16(11), 400.
  • Codex Alimentarius Commission. (1995). Codex General Standard for Contamination and Toxins in Food and Feed. Codex Standard 193-1995.
  • EU Commission. (2008). Commission Regulation (EC) No. 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. J. Eur. Union, 173, 6-9.Procedures for Pesticide Residues Analysis in Food and Feed, Directorate General for Health and Food Safety, 1–42
  • EC (European Commission), 2017. Commission Regulation EC No. SANTE/11813/2017 (21–22 November 2017, Rev.0) for Analytical Quality Control and Method Validation
  • FAO (2019) Online query panels for aquaculture and capture production of seaweeds. Both accessed 13 August 2020. http:/ /www.fao.org/ fishery/ statistics /global- aquaculture- production / query/enhttp :// www .fao.org /fishery/statistics / global- capture –production /query/en
  • Farias, D. R., Hurd, C. L., Eriksen, R. S., Simioni, C., Schmidt, E., Bouzon, Z. L., & Macleod, C. K. (2017). In situ assessment of Ulva australis as a monitoring and management tool for metal pollution. Journal of Applied Phycology, 29(5), 2489-2502. doi:10.1007/s10811-017-1073-y
  • Figueroa, F., Bonomi Barufi, J., Malta, E., Conde-Álvarez, R., Nitschke, U., Arenas, F., Mata, M., Connan, S., Abreu, M., Marquardt, R., Vaz-Pinto, F., Konotchick, T., Celis-Plá, P., Hermoso, M., Ordoñez, G., Ruiz, E., Flores, P., de los Ríos, J., Kirke, D., Chow, F., Nassar, C., Robledo, D., Pérez-Ruzafa, Á., Bañares-España, E., Altamirano, M., Jiménez, C., Korbee, N., Bischof, K., & Stengel, D. (2014). Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition. Aquatic Biology, 22, 177-193. doi:10.3354/ab00610
  • Figueroa, F. L., Aguilera, J., & Niell, F. X. (1995). Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). European Journal of Phycology, 30(1), 11-18. doi:10.1080/09670269500650761
  • Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, 10(1), 25-28. https://doi.org/10.1016/S0924-2244(99)00015-1
  • Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23(3), 543-597. doi:10.1007/s10811-010-9632-5
  • Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222310/ doi: 10.17226/10026
  • Kim, J. K., Mao, Y., Kraemer, G., & Yarish, C. (2015). Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture, 436, 52-57. https://doi.org/10.1016/j.aquaculture.2014.10.037
  • Kravtsova, A., Milchakova, N., & Frontasyeva, M. (2014). Elemental accumulation in the black sea brown algae Cystoseira studied by neutron activation analysis. Ecological Chemistry and Engineering S, 21(1), 9-23. doi:10.2478/eces-2014-0001
  • Law R, Hanke G, Angelidis M, Batty J, Bignert A, Dachs J, Davies I, Denga Y, Duffek A, Herut B, Hylland K, Lepom P, Leonards P, Mehtonen J, Piha H, Roose P, Tronczynski J, Velikova V, & Vethaak D authors Piha H, editor (2010). Marine Strategy Framework Directive - Task Group 8 Contaminants and Pollution Effects. EUR 24335 EN. Luxembourg (Luxembourg): Publications Office of the European Union; JRC5808
  • Lourenço-Lopes, C., Fraga-Corral, M., Jimenez-Lopez, C., Pereira, A. G., Garcia-Oliveira, P., Carpena, M., Prieto, M. A., & Simal-Gandara, J. (2020). Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. 9(9), 101.
  • Lüning, K. (1991). Seaweeds: Their Environment, Biogeography, and Ecophysiology: Wiley. Manev, Z., Iliev, A., & Vachkova, V. (2013). Chemical characterization of brown seaweed - Cystoseira barbata. Bulgarian Journal of Agricultural Science, 19, 12-15.
  • Nordisk Metodikkomité for Næringsmidler – NMKL. (2007). Nordic Committee on Food Analysis: method no. 186. Lyngby, Denmark.
  • Okumura, C., Hamdan, N., Rahman, M., Hasegawa, H., Miki, O., & Takimoto, A. (2014). Economic Efficiency of Different Light Wavelengths and Intensities Using LEDs for the Cultivation of Green Microalga Botryococcus braunii (NIES-836) for Biofuel Production. Environmental Progress & Sustainable Energy, 34. doi:10.1002/ep.11951
  • Öztaşkent, C., & Ak, İ. (2021). Effect of LED light sources on the growth and chemical composition of brown seaweed Treptacantha barbata. Aquaculture International, 29(1), 193-205. doi:10.1007/s10499-020-00619-9
  • Roberts, D. A., Johnston, E. L., & Poore, A. G. B. (2008). Contamination of marine biogenic habitats and effects upon associated epifauna. Marine Pollution Bulletin, 56(6), 1057-1065. doi:https://doi.org/10.1016/j.marpolbul.2008.03.003
  • Rodrigues, D., Freitas, A. C., Pereira, L., Rocha-Santos, T. A. P., Vasconcelos, M. W., Roriz, M., Rodríguez-Alcalá, L. M., Gomes, A. M. P., & Duarte, A. C. (2015). Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chemistry, 183, 197-207. https://doi.org/10.1016/j.foodchem.2015.03.057
  • Sawidis T., Brown M.t, Zachariadis G., & Sratis I. (2001). Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea. Environment International, 27, 43-47
  • Schulze, P., Barreira, L., Pereira, H., Perales, J., & Varela, J. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in biotechnology, 32, 422-430. doi:10.1016/j.tibtech.2014.06.001
  • Szeląg-Sikora, A., Niemiec, M., & Sikora, J. (2012). Assessment of the content of magnesium, potassium, phosphorus and calcium in water and algae from the Black Sea in selected bays near Sevastopol. Journal of Elementology, 21.
  • Thibaut, T., Bottin, L., Aurelle, D., Boudouresque, C.-F., Blanfuné, A., Verlaque, M., Pairaud, I., & Millet, B. (2016). Connectivity of Populations of the Seaweed Cystoseira amentacea within the Bay of Marseille (Mediterranean Sea): Genetic Structure and Hydrodynamic Connections. 37 %J Cryptogamie, Algologie (4), 233-255, 223.
  • Tompkins, J., Deville, M. M., Day, J. G., & Turner, M. F. (1995). Catalogue of strains. Culture Collection of Algae and Protozoa, Ambleside, UK.
  • Yeh, N., & Chung, J.-P. (2009). High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 13(8), 2175-2180. https://doi.org/10.1016/j.rser.2009.01.027
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji, Ekoloji (Diğer), Sucul Kültür
Bölüm Araştırma Makaleleri
Yazarlar

Melis Yılmaz 0000-0002-8776-2117

İlknur Ak 0000-0002-0233-0025

Proje Numarası FHD-2021-3677
Erken Görünüm Tarihi 27 Aralık 2023
Yayımlanma Tarihi 27 Aralık 2023
Gönderilme Tarihi 30 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Yılmaz, M., & Ak, İ. (2023). Chasing Light: How Dichromatic LEDs Affect the Elemental Profile of Gongolaria barbata. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 6(2), 147-157. https://doi.org/10.46384/jmsf.1368926