Araştırma Makalesi
BibTex RIS Kaynak Göster

FPP'DEN CPP'YE DÖNÜŞTÜRÜLEN BİR PERVANENİN HİDRODİNAMİK PERFORMANSININ SAYISAL İNCELENMESİ

Yıl 2023, Cilt: 19 Sayı: 2, 113 - 132, 29.12.2023
https://doi.org/10.56850/jnse.1325575

Öz

Bu makale, sabit hatveli pervane (FPP) olarak tasarlanmış bir pervane üzerinde uygulanan geometrik modifikasyonlarla oluşturulan Kontrol Edilebilir Hatveli Pervanenin (CPP) hidrodinamiğini incelemektedir. Çalışmanın amacı, FPP olarak tasarlanmış bir pervane modelinin CPP prensipleriyle çalışan yeni bir pervaneye dönüştürülmesinin pratikte uygulanabilirliğini incelemektir. Pervane modelleri etrafındaki akış hesaplamalı akışkanlar dinamiği ile çözülmüş ve yeni oluşturulan modelin sonuçları ana geometrisi ile karşılaştırmalı olarak sunulmuştur. İyi bilinen KP505 pervane modeli test vakası olarak seçilmiştir. İlk sonuçlar, geometrik değişikliklerin pervane verimliliği üzerindeki etkisinin esas olarak pervane yüküne ve kanat hatve açısına bağlı olduğunu göstermektedir. Yeni tasarım modeli için optimum verimlilik noktası J=0.8 olarak belirlenmiştir. Bu noktanın altındaki J değerleri için, negatif hatve açısı değişiklikleri FPP modeline kıyasla verimliliği artırmaktadır. J değerinin yukarıda belirtilen değeri aşması durumunda, verimlilik artışı elde etmek için pozitif hatve açısı değişikliklerine ihtiyaç duyulmaktadır. Sonuçlar, bir FPP'yi CPP'ye dönüştürmenin mümkün olduğu, ancak verimli çalışma için kanat hatve açısının dikkatlice kontrol edilmesi gerektiği sonucuna varmamızı sağladı

Kaynakça

  • Farkas, A., Degiuli, N., Martic, I., Dejhalla, R. (2020). “Impact of Hard Fouling on the Ship Performance of Different Ship Forms”. Journal of Marine Science and Engineering, Vol 8, pp. 748; doi:10.3390/jmse8100748
  • Funeno, I, Pouw, C., Bosman, R. (2013). “Measurements and Computations for Blade Spindle Torque of Controllable Pitch Propellers in Open Water”, Third International Symposium on Marine Propulsors smp’13, Launceston, Tasmania, Australia, May 2013
  • Kolakoti, A., Bhanuprakash, T.V.K., Das, H.N. (2013). “Cfd Analysis Of Controllable Pitch Propeller Used In Marine Vehicle”. Global Journal of Engineering, Design and Technology, G.J.E.D.T.,Vol 2(5): pp. 25-33
  • Lungu, A. (2018). “Numerical simulation of the cavitating KP505 propeller working in open water conditions”. IOP Conf. Series: Materials Science and Engineering Vol 400: pp. 042035 doi:10.1088/1757-899X/400/4/042035
  • Nguyen, C.C., Luong, N.L., Ngo, V.H. (2018). “A Study on Effects of Blade Pitch on the Hydrodynamic Performances of a Propeller by Using CFD”. Journal of Shipping and Ocean Engineering Vol 8, pp. 36-42, doi:10.17265/2159-5879/2018.01.005
  • Ozturk, D., Delen, C., Belhenniche, S.B., Kinaci, O.K. (2022). “The Effect of Propeller Pitch on Ship Propulsion”. Transactions On Maritime Science, Vol 01: pp. 133-155
  • Rhee, S.H., Joshi, S. (2003). “Cfd Validation for A Marine Propeller Using an Unstructured Mesh Based Rans Method”, 4TH ASME-JSME Joint Fluids Engineering Summer Conference Honolulu, Hawaii, USA, July 6-11, 2003
  • Turnbull, W. (1931). “Controllable-Pitch Propeller”, The Journal of the Royal Aeronautical Society, Vol 35 (243),pp. 231-244. doi:10.1017/S0368393100115810
  • Wang, Y., Cao, L., Zhao, G., Liang, N., Wu, R., Wu, D. (2022). “Experimental investigation of the effect of propeller characteristic parameters on propeller singing”. Ocean Engineering Vol 256, pp. 111538
  • Xiong, Y., Wang, Z., Qi, W., (2013), “Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller”. Journal of Marine Science and Application., vol 12: pp. 13-20, Doi: 10.1007/s11804-013-1166-9
  • Yurtseven, A., Aktay, K. (2023), “The numerical investigation of spindle torque for a controllable pitch propeller in feathering maneuver”. Brodogradnja/Shipbuilding, vol 74(2): pp. 95-108

NUMERICAL INVESTIGATION OF THE HYDRODYNAMIC PERFORMANCE OF A PROPELLER CONVERTED FROM FPP TO CPP

Yıl 2023, Cilt: 19 Sayı: 2, 113 - 132, 29.12.2023
https://doi.org/10.56850/jnse.1325575

Öz

Present paper investigates the hydrodynamics of a Controllable Pitch Propeller (CPP) which is generated by geometrical modifications applied on a benchmark propeller designed as a fixed pitch propeller (FPP). The aim of the study is to examine the practical feasibility of converting a propeller model designed as a FPP to a new one operating with CPP principles. The flow around propeller models is solved via computational fluid dynamics and the results of the new generated model are presented in comparison with its parent geometry. The well-known KP505 propeller model is chosen as test case. The primary results show that the effect of the geometrical modifications on the propeller efficiency mainly depends on the propeller load and the blade pitch angle. The optimum efficiency point is determined as J=0.8, for the new design model. For the J values below this point, negative pitch angle changes improve the efficiency compared to FPP model. If the J exceeds the above mentioned value, positive pitch angle changes are needed to gain efficiency increase. The results led us to conclude that, it’s possible to convert a FPP to a CPP, but the blade pitch angle should be carefully controlled, for efficient operation

Kaynakça

  • Farkas, A., Degiuli, N., Martic, I., Dejhalla, R. (2020). “Impact of Hard Fouling on the Ship Performance of Different Ship Forms”. Journal of Marine Science and Engineering, Vol 8, pp. 748; doi:10.3390/jmse8100748
  • Funeno, I, Pouw, C., Bosman, R. (2013). “Measurements and Computations for Blade Spindle Torque of Controllable Pitch Propellers in Open Water”, Third International Symposium on Marine Propulsors smp’13, Launceston, Tasmania, Australia, May 2013
  • Kolakoti, A., Bhanuprakash, T.V.K., Das, H.N. (2013). “Cfd Analysis Of Controllable Pitch Propeller Used In Marine Vehicle”. Global Journal of Engineering, Design and Technology, G.J.E.D.T.,Vol 2(5): pp. 25-33
  • Lungu, A. (2018). “Numerical simulation of the cavitating KP505 propeller working in open water conditions”. IOP Conf. Series: Materials Science and Engineering Vol 400: pp. 042035 doi:10.1088/1757-899X/400/4/042035
  • Nguyen, C.C., Luong, N.L., Ngo, V.H. (2018). “A Study on Effects of Blade Pitch on the Hydrodynamic Performances of a Propeller by Using CFD”. Journal of Shipping and Ocean Engineering Vol 8, pp. 36-42, doi:10.17265/2159-5879/2018.01.005
  • Ozturk, D., Delen, C., Belhenniche, S.B., Kinaci, O.K. (2022). “The Effect of Propeller Pitch on Ship Propulsion”. Transactions On Maritime Science, Vol 01: pp. 133-155
  • Rhee, S.H., Joshi, S. (2003). “Cfd Validation for A Marine Propeller Using an Unstructured Mesh Based Rans Method”, 4TH ASME-JSME Joint Fluids Engineering Summer Conference Honolulu, Hawaii, USA, July 6-11, 2003
  • Turnbull, W. (1931). “Controllable-Pitch Propeller”, The Journal of the Royal Aeronautical Society, Vol 35 (243),pp. 231-244. doi:10.1017/S0368393100115810
  • Wang, Y., Cao, L., Zhao, G., Liang, N., Wu, R., Wu, D. (2022). “Experimental investigation of the effect of propeller characteristic parameters on propeller singing”. Ocean Engineering Vol 256, pp. 111538
  • Xiong, Y., Wang, Z., Qi, W., (2013), “Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller”. Journal of Marine Science and Application., vol 12: pp. 13-20, Doi: 10.1007/s11804-013-1166-9
  • Yurtseven, A., Aktay, K. (2023), “The numerical investigation of spindle torque for a controllable pitch propeller in feathering maneuver”. Brodogradnja/Shipbuilding, vol 74(2): pp. 95-108
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gemi Ana ve Yardımcı Makineleri, Gemi Hareketleri ve Kontrolü, Gemi İnşaatı
Bölüm Makaleler
Yazarlar

Ahmet Yurtseven 0000-0003-2561-1783

Erken Görünüm Tarihi 18 Eylül 2023
Yayımlanma Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 19 Sayı: 2

Kaynak Göster

APA Yurtseven, A. (2023). NUMERICAL INVESTIGATION OF THE HYDRODYNAMIC PERFORMANCE OF A PROPELLER CONVERTED FROM FPP TO CPP. Journal of Naval Sciences and Engineering, 19(2), 113-132. https://doi.org/10.56850/jnse.1325575