Araştırma Makalesi
BibTex RIS Kaynak Göster

Voltammetric Determination of Guaifenesin on Poly (Nile blue) Modified Glassy Carbon Electrode in Pharmaceutical Dosage Forms

Yıl 2018, Sayı: 2, 27 - 31, 30.06.2018

Öz

The electro-oxidation behavior of expectorant
drug guaifenesin (GUF) was studied on poly(Nile blue) modified glassy carbon electrode
by cyclic voltammetry and differential pulse voltammetry. Camsı karbon elektrot
was modified with electropolymerization of Nile blue for sensitive
determination of GUF with voltammetric methods. The current peaks for GUF
occurred at around 1.130 V for differential pulse voltammetry when the
potential was scanned in the positive direction. The oxidation process of GUF
has shown irreversible and diffusion controlled behavior. The linear response
has been obtained in the range from 6
× 10-7 to 1 × 10-4 M with the limit of detection 1.24 × 10-8 for
differential pulse voltammetry in 0.1 M phosphate buffer solution at pH 3.0.
Fully validated differential pulse voltammetry was successfully applied for the
determination of GUF from pharmaceutical dosage form and obtained satisfying
results.

Kaynakça

  • 1. Tapsobab, I., Belgaieda, J. E., Boujlel, K. Voltammetric assay of Guaifenesin in pharmaceutical formulation, Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 162-165. 2. Patil, H., Sonawane, S., Gide, P., Determination of guaifenesin from spiked human plasma using RP-HPLC with UV detection, Journal of Analytical Chemistry, 2014, 69, 390-394. 3. Maher, H. M., Al-Taweel, S. M., Alshehri, M. M., Alzoman, N. Z., Novel Stereoselective High-Performance Liquid Chromatographic Method for Simultaneous Determination of Guaifenesin and Ketorolac Enantiomers in Human Plasma, Chirality, 2014, 26, 629-639. 4. Saleh, O. A., Yehia, A. M., El-Azzouny, A. A.-E. S., Aboul-Enein, H. Y., A validated chromatographic method for simultaneous determination of guaifenesin enantiomers and ambroxol HCl in pharmaceutical formulation, RSC Adv., 2015, 5, 93749-93756. 5. Bankar, A. A., Lokhande, S. R., Sawant, R., Bhagat, A. R., Spectrophotometric estimation of guaifenesin and salbutamol in pure and tablet dosage form by using different methods, Der Pharma Chemica 2013, 5, 92-97.6. Patel, N. C., Patel, D. B., Chaudhari, P. K., Spectrophotometric estimation of Ambroxol Hydrochloride, Guaifenesin and Levosalbutamol Sulphatein syrup, AJRC, 2013, 6, 407-414. 7. Hadi, M., Electrochemical determination of guaifenesin in a pharmaceutical formulation and human urine based on an anodized nanocrystalline graphite-like pyrolytic carbon film electrode, Analytical Methods, 2015, 7, 8778-8785. 8. Gholivand, M. B., Khodadadian, M., Simultaneous Voltammetric Determination of Theophylline and Guaifenesin Using a Multiwalled Carbon Nanotube-Ionic Liquid Modified Glassy Carbon Electrode, Electroanalysis, 2014, 26, 1975-1983. 9. Gholivand, M. B., Azadbakht, A., Pashabadi, A., An Electrochemical Sensor Based on Carbon Nanotube Bimetallic Au-Pt Inorganic-Organic Nanofiber Hybrid Nanocomposite Electrode Applied for Detection of Guaifenesin, Electroanalysis, 2011, 23, 2771-2779. 10. Arcos, M. J., Alonso, M., Ortiz, M. C. Genetic-algorithm-based potential selection in multivariant voltammetric determination of indomethacin and acemethacin by partial least squares, Electrochimica Acta, 1988, 43, 479-485. 11. Karyakin, A. A., Karyakina, E. E., Schmidt, H. L., Electropolymerized Azines: A New Group of Electroactive Polymers, Electroanalysis, 1999, 11, 149-155. 12. Karyakin, A. A., Karyakina, E. E., Schuhmann, W., Schmidt, H. L., Electropolymerized Azines: Part II. In a Search of the Best Electrocatalyst of NADH Oxidation, Electroanalysis, 1999, 11, 553-557. 13. Pauliukaite, R., Ghica, M. E., Barsan, M. M., Brett, C. M. A., Phenazines and Polyphenazines in Electrochemical Sensors and Biosensors, Analytical Letters, 2010, 43, 1588-1608. 14. Benito, D., García-Jareño, J. J., Navarro-Laboulais, J., Vicente, F., Electrochemical behaviour of poly(neutral red) on an ITO electrode, Electroanalytical Chemistry, 1998, 446, 47-55. 15. Xu, J. Z., Zhu, J. J., Wu, Q., Hu, Z., Chen, H. Y., An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode, Electroanalysis, 2003, 15, 219-224. 16. Gao, Q., Wang, W., Ma, Y., Yang, X., Electrooxidative polymerization of phenothiazine derivatives on screen-printed carbon electrode and its application to determine NADH in flow injection analysis system, Talanta, 2004, 62, 477-482. 17. Zhou, D. M., Chen, H. Y., The electrochemical polymerization of redox dye-nile blue for the amperometric determination of hemoglobin, Electroanalysis, 1997, 9, 399-402. 18. Ju, H., Shen, H. C., Electrocatalytic Reduction and Determination of Dissolved Oxygen at a Poly(nile blue) Modified Electrode, Electroanalysis, 2001, 13, 789-793.19. Ni, F., Feng, H., Gorton, C., Cotton, T. M., Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, a mediator for NADH oxidation, Langmuir, 1990, 6, 66-73. 20. Santos, A. S., Gorton, L., Kubota, L.T., Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH, Electrochimica Acta, 2002, 47, 3351-3360. 21. Kul, D., Pauliukaite, R., Brett, C. M. A., Electrosynthesis and characterisation of poly(Nile blue) films, Journal of Electroanalytical Chemistry, 2011, 662, 328-333.22. Ghica, M. E., Brett., C. M. A., Poly(brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors. Journal of Electroanalytical Chemistry, 2009, 629, 35-42.
  • 23. Zeng,Q., Wei, T., Wang, M., Huang, X., Fang, Y., Wang, L., Polyfurfural film modified glassy carbon electrode for highly sensitive nifedipine determination, Electrochimica Acta, 2015, 186, 465-470.24. Gaber, A., Mersal, M., Electrochemical applications and computational studies on ephedrine drug, Voltammetric determination using a new pseudo-carbon paste electrode modified with poly(acrylic) acid, J. Solid State Electrochem., 2012, 16, 2031-2039. 25. Amare, M., Aklog, S., Electrochemical determination of caffeine content in ethiopian coffee samples using lignin modified glassy carbon electrode, Journal of Analytical Methods in Chemistry, 2017, Article ID 3979068, 1-8. 26. Riley, C. M., Rosanske, T. M., Development and Validation of Analytical Methods (1 st ed). New York; Elsevier; 1996:1-349.27. Swartz, M. E., Krull, S. I., Analytical Method Development and Validation, New York; Marcel Dekker; 1997:17-34.28. Ermer, J., Miller, H. M. B. Method Validation in Pharmaceutical. Weinheim; Wiley-VCH; 2005:21-120.29. Gumustas, M., Ozkan, S. A., The role of and the place of method validation in drug analysis using electroanalytical techniques. The Open Analytical Chemistry Journal, 2011, 5, 1-21.

Guaifenesinin Poli(Nil Mavisi) ile Modifiye Edilmiş Camsı Karbon Elektrot ile Voltametrik Analizi ve Farmasötik Dozaj Formundan Tayini

Yıl 2018, Sayı: 2, 27 - 31, 30.06.2018

Öz

Ekspektorant bir ilaç etken maddesi guaifenesin (GUF)
elektro-oksidasyon davranışı poli(Nil mavisi) modifiye camsı karbon elektrotta
dönüşümlü voltametri (DV) ve diferansiyel puls voltametri (DPV) ile çalışıldı.
Camsı karbon elektrot, GUF’un voltametrik metodlarla hassas tayini için, Nil
mavisinin elektropolimerizasyonu ile modifiye edildi. Potansiyel pozitif yönde
tarandığında GUF’un pik akımı 1.130 V civarinda DPV ile oluştu. GUF’un
oksidasyon prosesi tersinmez ve difüzyon kontrollü davranış gösterdi. DPV için
doğrusal cevaplar                        
    6 × 10-7- 1 × 10-4 M, 1.24 × 10-8 yakalama alt sınırı (YAS)
ile 0.1 M fosfat tamponu (FT) pH 3.0 içinde elde edildi. Tamamen valide edilmiş
DPV başarılı bir şekilde GUF’un farmasötik dozaj formundan miktar tayini için
uygulandı ve memnun edici sonuçlar elde edildi.

Kaynakça

  • 1. Tapsobab, I., Belgaieda, J. E., Boujlel, K. Voltammetric assay of Guaifenesin in pharmaceutical formulation, Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 162-165. 2. Patil, H., Sonawane, S., Gide, P., Determination of guaifenesin from spiked human plasma using RP-HPLC with UV detection, Journal of Analytical Chemistry, 2014, 69, 390-394. 3. Maher, H. M., Al-Taweel, S. M., Alshehri, M. M., Alzoman, N. Z., Novel Stereoselective High-Performance Liquid Chromatographic Method for Simultaneous Determination of Guaifenesin and Ketorolac Enantiomers in Human Plasma, Chirality, 2014, 26, 629-639. 4. Saleh, O. A., Yehia, A. M., El-Azzouny, A. A.-E. S., Aboul-Enein, H. Y., A validated chromatographic method for simultaneous determination of guaifenesin enantiomers and ambroxol HCl in pharmaceutical formulation, RSC Adv., 2015, 5, 93749-93756. 5. Bankar, A. A., Lokhande, S. R., Sawant, R., Bhagat, A. R., Spectrophotometric estimation of guaifenesin and salbutamol in pure and tablet dosage form by using different methods, Der Pharma Chemica 2013, 5, 92-97.6. Patel, N. C., Patel, D. B., Chaudhari, P. K., Spectrophotometric estimation of Ambroxol Hydrochloride, Guaifenesin and Levosalbutamol Sulphatein syrup, AJRC, 2013, 6, 407-414. 7. Hadi, M., Electrochemical determination of guaifenesin in a pharmaceutical formulation and human urine based on an anodized nanocrystalline graphite-like pyrolytic carbon film electrode, Analytical Methods, 2015, 7, 8778-8785. 8. Gholivand, M. B., Khodadadian, M., Simultaneous Voltammetric Determination of Theophylline and Guaifenesin Using a Multiwalled Carbon Nanotube-Ionic Liquid Modified Glassy Carbon Electrode, Electroanalysis, 2014, 26, 1975-1983. 9. Gholivand, M. B., Azadbakht, A., Pashabadi, A., An Electrochemical Sensor Based on Carbon Nanotube Bimetallic Au-Pt Inorganic-Organic Nanofiber Hybrid Nanocomposite Electrode Applied for Detection of Guaifenesin, Electroanalysis, 2011, 23, 2771-2779. 10. Arcos, M. J., Alonso, M., Ortiz, M. C. Genetic-algorithm-based potential selection in multivariant voltammetric determination of indomethacin and acemethacin by partial least squares, Electrochimica Acta, 1988, 43, 479-485. 11. Karyakin, A. A., Karyakina, E. E., Schmidt, H. L., Electropolymerized Azines: A New Group of Electroactive Polymers, Electroanalysis, 1999, 11, 149-155. 12. Karyakin, A. A., Karyakina, E. E., Schuhmann, W., Schmidt, H. L., Electropolymerized Azines: Part II. In a Search of the Best Electrocatalyst of NADH Oxidation, Electroanalysis, 1999, 11, 553-557. 13. Pauliukaite, R., Ghica, M. E., Barsan, M. M., Brett, C. M. A., Phenazines and Polyphenazines in Electrochemical Sensors and Biosensors, Analytical Letters, 2010, 43, 1588-1608. 14. Benito, D., García-Jareño, J. J., Navarro-Laboulais, J., Vicente, F., Electrochemical behaviour of poly(neutral red) on an ITO electrode, Electroanalytical Chemistry, 1998, 446, 47-55. 15. Xu, J. Z., Zhu, J. J., Wu, Q., Hu, Z., Chen, H. Y., An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode, Electroanalysis, 2003, 15, 219-224. 16. Gao, Q., Wang, W., Ma, Y., Yang, X., Electrooxidative polymerization of phenothiazine derivatives on screen-printed carbon electrode and its application to determine NADH in flow injection analysis system, Talanta, 2004, 62, 477-482. 17. Zhou, D. M., Chen, H. Y., The electrochemical polymerization of redox dye-nile blue for the amperometric determination of hemoglobin, Electroanalysis, 1997, 9, 399-402. 18. Ju, H., Shen, H. C., Electrocatalytic Reduction and Determination of Dissolved Oxygen at a Poly(nile blue) Modified Electrode, Electroanalysis, 2001, 13, 789-793.19. Ni, F., Feng, H., Gorton, C., Cotton, T. M., Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, a mediator for NADH oxidation, Langmuir, 1990, 6, 66-73. 20. Santos, A. S., Gorton, L., Kubota, L.T., Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH, Electrochimica Acta, 2002, 47, 3351-3360. 21. Kul, D., Pauliukaite, R., Brett, C. M. A., Electrosynthesis and characterisation of poly(Nile blue) films, Journal of Electroanalytical Chemistry, 2011, 662, 328-333.22. Ghica, M. E., Brett., C. M. A., Poly(brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors. Journal of Electroanalytical Chemistry, 2009, 629, 35-42.
  • 23. Zeng,Q., Wei, T., Wang, M., Huang, X., Fang, Y., Wang, L., Polyfurfural film modified glassy carbon electrode for highly sensitive nifedipine determination, Electrochimica Acta, 2015, 186, 465-470.24. Gaber, A., Mersal, M., Electrochemical applications and computational studies on ephedrine drug, Voltammetric determination using a new pseudo-carbon paste electrode modified with poly(acrylic) acid, J. Solid State Electrochem., 2012, 16, 2031-2039. 25. Amare, M., Aklog, S., Electrochemical determination of caffeine content in ethiopian coffee samples using lignin modified glassy carbon electrode, Journal of Analytical Methods in Chemistry, 2017, Article ID 3979068, 1-8. 26. Riley, C. M., Rosanske, T. M., Development and Validation of Analytical Methods (1 st ed). New York; Elsevier; 1996:1-349.27. Swartz, M. E., Krull, S. I., Analytical Method Development and Validation, New York; Marcel Dekker; 1997:17-34.28. Ermer, J., Miller, H. M. B. Method Validation in Pharmaceutical. Weinheim; Wiley-VCH; 2005:21-120.29. Gumustas, M., Ozkan, S. A., The role of and the place of method validation in drug analysis using electroanalytical techniques. The Open Analytical Chemistry Journal, 2011, 5, 1-21.
Toplam 2 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Fatma Ağın

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Sayı: 2

Kaynak Göster

APA Ağın, F. (2018). Guaifenesinin Poli(Nil Mavisi) ile Modifiye Edilmiş Camsı Karbon Elektrot ile Voltametrik Analizi ve Farmasötik Dozaj Formundan Tayini. Karadeniz Chemical Science and Technology(2), 27-31.
AMA Ağın F. Guaifenesinin Poli(Nil Mavisi) ile Modifiye Edilmiş Camsı Karbon Elektrot ile Voltametrik Analizi ve Farmasötik Dozaj Formundan Tayini. Karadeniz Chem. Sci. Tech. Haziran 2018;(2):27-31.
Chicago Ağın, Fatma. “Guaifenesinin Poli(Nil Mavisi) Ile Modifiye Edilmiş Camsı Karbon Elektrot Ile Voltametrik Analizi Ve Farmasötik Dozaj Formundan Tayini”. Karadeniz Chemical Science and Technology, sy. 2 (Haziran 2018): 27-31.
EndNote Ağın F (01 Haziran 2018) Guaifenesinin Poli(Nil Mavisi) ile Modifiye Edilmiş Camsı Karbon Elektrot ile Voltametrik Analizi ve Farmasötik Dozaj Formundan Tayini. Karadeniz Chemical Science and Technology 2 27–31.
IEEE F. Ağın, “Guaifenesinin Poli(Nil Mavisi) ile Modifiye Edilmiş Camsı Karbon Elektrot ile Voltametrik Analizi ve Farmasötik Dozaj Formundan Tayini”, Karadeniz Chem. Sci. Tech., sy. 2, ss. 27–31, Haziran 2018.
ISNAD Ağın, Fatma. “Guaifenesinin Poli(Nil Mavisi) Ile Modifiye Edilmiş Camsı Karbon Elektrot Ile Voltametrik Analizi Ve Farmasötik Dozaj Formundan Tayini”. Karadeniz Chemical Science and Technology 2 (Haziran 2018), 27-31.
JAMA Ağın F. Guaifenesinin Poli(Nil Mavisi) ile Modifiye Edilmiş Camsı Karbon Elektrot ile Voltametrik Analizi ve Farmasötik Dozaj Formundan Tayini. Karadeniz Chem. Sci. Tech. 2018;:27–31.
MLA Ağın, Fatma. “Guaifenesinin Poli(Nil Mavisi) Ile Modifiye Edilmiş Camsı Karbon Elektrot Ile Voltametrik Analizi Ve Farmasötik Dozaj Formundan Tayini”. Karadeniz Chemical Science and Technology, sy. 2, 2018, ss. 27-31.
Vancouver Ağın F. Guaifenesinin Poli(Nil Mavisi) ile Modifiye Edilmiş Camsı Karbon Elektrot ile Voltametrik Analizi ve Farmasötik Dozaj Formundan Tayini. Karadeniz Chem. Sci. Tech. 2018(2):27-31.