Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye'nin Farklı Lokasyonlarından Toplanan Tuber aestivum ve Tuber borchii’nin Aroma Bileşenlerinin Araştırılması

Yıl 2023, Cilt: 14 Sayı: 2, 82 - 91, 30.10.2023

Öz

Trüf, sağlıklı bir ormanın belirtisi, yabani hayvanların besin kaynağı olmaları yönüyle, ekosistemin önemli bir parçası ve eşsiz aromalarıyla insanlar için önemli bir besin kaynağıdır. Tuber'in saldığı uçucu maddeler, sadece koku alma duyumuza hitap etmenin ötesinde çeşitli biyolojik aktivitelere de katkı sağlamaktadır. Farklı aromalar farklı tada sahiptir, dolayısıyla aroma, yer mantarlarının organoleptik özelliklerini ve kalitesini tanımlamada esastır. Bu araştırmada, Güney Batı Anadolu’da ve Marmara’da doğal olarak yetişen yaz trüfü Tuber aestivum Vittad. ve beyaz trüf Tuber borchii Vittad.’nin yayılış gösterdiği habitat, mikorizal olarak yetiştiği ağaç türü dikkate alınarak aromanın yüzdesine göre kimyasal bileşenlerin araştırılması amaçlanmıştır. Bu amaçla, iki farklı bölgeden toplanılan T. aestivum ve T. borchii’nin aroma bileşenleri HS-SPME-GC/MS sisteminde analiz edildi. Buna göre, farklı sınıflarda T. aestivum’da; Muğla’da 20, Kırklareli’de 13, T. borchii’de; Muğla’da 44 ve Kırklareli’de 33 aroma bileşeni (uçucu organik bileşik) olmak üzere her iki trüfte birbirinden farklı toplam 59 bileşik belirlendi. Muğla’dan toplanılan T. aestivum’da limonen (%37.62), p-simen (% 4.79) ve β-pinen (%4.12) gibi terpenlerin majör bileşikler olmasına karşılık Kırklareli’ndeki T. aestivum’da 2- okten-1-ol (%46.78), 1-okten-3-ol (%40.44) ve 3-oktanol (%2.62) aromanın çok büyük bir kısmını oluşturmaktadır. Tuber türlerinde yaygın olarak bulunan karakteristik kükürt bileşikleri; Kırklareli’den toplanılan T. borchii’de %42.19 oranında bulunurken, Muğla’da %12.15 oranında bulunmaktadır. Kırklareli ve Muğla’da yetişen T. borchii karşılaştırıldığında; 3-metil-4,5-dihidrotiyofen (%29.53 ve %6.73), p-metiltiyobenzaldehid (%2.75 ve %5.42) ve metiyonin Kırklareli’de %9.91 oranında iken Muğla’da tespit edilmemiştir. Bu veriler dikkate alınarak her iki Tuber türünün coğrafi kökene dayalı sınıflandırılması hiyerarşik küme analizi (HCA) kullanılarak belirlenmiştir. Buna göre Tuber türlerinin aromasının kimyasal bileşenlerin oluşumuna katkı sağlayan ekolojik şartların ve simbiyotik yaşam sağladıkları bitkilerin türlerine göre aroma bileşenleri bakımından optimize edildikten sonra kültüre alınması gerektiğini göstermektedir.

Kaynakça

  • Adams, R.P. (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. USA, Allured Publishing Corporation, Illinois.
  • Akata, I., Sevindik, M. and Şahin, E. (2020). Tuber fulgens Quél., A New Record for Turkish Truffles. Turkish Journal of Agriculture-Food Science and Technology, 8(11), 2472-2475.
  • Beara, I.N., Lesjak, M.M., Cetojevic-Simin, D.D., Marjanovic, Z.S., Ristic, J.D., Mrkonjic, Z.O. and Mimica-Dukic, N.M. (2014). Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) ve white (Tuber magnatum Pico) truffles, Food Chemistry 165 (2014) 460–466.
  • Bellesia, F., Pinetti, A., Tirillini, B. and Bianchi, A. (2001). Temperature-dependent evolution of volatile organic compounds in Tuber borchii from Italy. Flavour Frag. J., 16, 1–6.
  • Büntgen, U., Bagi, I., Fekete, O., Molinier, V., Peter, M., Splivallo, R., Vahdatzadeh, M., Richard, F., Murat, C. and Tegel, W. (2017). New insights into the complex relationship between weight and maturity of Burgundy truffles (Tuber aestivum). Plos ONE, 12.
  • Castellano, M.A and Türkoğlu, A. (2012). New Records of Truffle Taxa in Tuber and Terfezia from Turkey. Turk J Bot, 36: 295 – 298.
  • Costa, R., Fanali, C., Pennazza, G., Tedone, L., Dugo, L., Santonico, M., D., Sciarrone, F., Cacciola, L., Cucchiarini, Dacha M. and Mondello, L. (2015). Screening of volatile compounds composition of white truffle during storage by gcxgc-(FID/MS) and gas sensor array analyses. LWT-Food Science and Technology, 60(2), 905- 913.
  • Cullere, L., Ferreira, V., Chevret, B., Venturini, M.E., Sanchez-Gimeno, A.C., Blanco, D. (2010). Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry, Food Chemistry 122: 300–306.
  • Doğan, H.H. (2021). A new truffle species addition, Tuber macrosporum Vittad., to Turkish mycota. Trakya University Journal of Natural Sciences, 22(2), 139-146.
  • Duru, M. E., Taş, M., Çayan, F., Küçükaydın, S. and Tel-Çayan, G. (2021). Characterization of volatile compounds of Turkish pine honeys from different regions and classification with chemometric studies. European Food Research and Technology, 247, 2533-2544.
  • Elliot T.F., Türkoğlu A., Trappe, M.T. and Yaratanakul Güngör, M. (2016). Turkish Truffles 2: Eight New Records from Anatolia. Mycotaxon, 131: 439 – 453.
  • Feng,T., Shui, M., Song, S., Zhuang, H., Sun, M.I. and Yao, L. (2019). Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach”, Molecules 2019, 24, 3305. Gezer, K., Kaygusuz, O., Çelik, A. and Işıloğlu M. 2014. Ecological Characteristics of Truffles Growing In Denizli Province, Turkey. Journal of Food, Agriculture & Environment, 12: 1105–1109
  • Gioacchini, A.M., Menotta, M., Guescini, M., Saltarelli, R., Ceccaroli, P., Amicucci, A., Barbieri, E., Giomaro, G. and Stocchi, V. (2008). Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun. Mass Spectrom., 22, 3147–3153.
  • Kaya A. (2009). Macromycetes of Kahramanmaraş Province (Turkey). Mycotaxon, 108: 31 – 34.
  • Lee, H., Nam, K., Zahra, Z. and Farooqi, M. Q. U. (2020). Potentials of truffles in nutritional and medicinal applications: a review. Fungal biology and biotechnology, 7(1), 1-17.
  • March, R. E., Richard, D. S. and Ryan, R. W. (2006). Volatile compounds from six species of truffle – head-space analysis and vapor analysis at high mass resolution, Int. J. Mass Spectrom. 249–250:60–67.
  • Mello, A., Murat, C. and Bonfante, P. (2006). Truffles: Much more than a prized and local fungal delicacy. FEMS Microbiol. Lett. 2006, 260, 1–8.
  • Molinier, V., Murat, C., Frochot. H., Wipf. D. and Splivallo, R. (2015) Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability. Environ Microbiol 17(8):3039–3050.
  • Mustafa, A. M., Angeloni, S., Nzekoue, F. K., Abouelenein, D., Sagratini, G., Caprioli, G., Torregiani, E. (2020). An overview on truffle aroma and main volatile compounds. Molecules, 25(24), 5948.
  • Niimi, J., Deveau, A. and Splivallo, R. (2021). Geographical‐based variations in white truffle Tuber magnatum aroma is explained by quantitative differences in key volatile compounds. New Phytologist, 230(4), 1623-1638.
  • Öztürk, C., Kaşık, G. and Toprak, E. (1997). Ascomycetes Makrofunguslarından Türkiye İçin İki Yeni Kayıt. Ot Sistematik Botanik Dergisi 4: 53–56.
  • Piloni, M., Tat, L., Tonizzo, A. and Battistutta, F. (2005). Aroma characterisation of white truffles by GC – MS and GC – O, Italian Journal of Food Science, 4(17), 463–468.
  • Sesli, E., Asan, A. and Selçuk, F. (edlr.) Abacı Günyar, Ö., Akata, I., Akgül, H., Aktaş, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H.H., Erdoğdu, M., Ergül, C.C., Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu.,Yoltaş, A. (2020). Türkiye Mantarları Listesi. İstanbul: Ali Nihat Gökyiğit Foundation Publications.
  • Schmidberger, P. C. and Schieberle, P. (2017). Characterization of the key aroma compounds in white Alba truffle (Tuber magnatum Pico) and Burgundy truffle (Tuber uncinatum) by means of the sensomics approach. Journal of Agricultural and Food Chemistry, 65(42), 9287-9296.
  • Šiškovič, N., Strojnik, L., Grebenc, T., Vidrih, R. and Ogrinc, N. (2021). Differentiation between species and regional origin of fresh and freeze-dried truffles according to their volatile profiles. Food Control, 123, 107698.
  • Spanier, A.M., Shahidi, F., Parliment, T.H, Mussinan, C., Ho, C-H. and Contis E.T. (2000). Food Flavors and Chemistry: Advances of the New Millennium, RS.C, Royal Society of Chemistry, Paros, Greece, Special publishing no.274, e book ISBN 0-85404-875-8 649p.
  • Splivallo, R., Ottonello, S., Mello, A. and Karlovsky, P. (2011). Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol.;189:688–99.
  • Splivallo, R., Valdez, N., Kirchhoff, N., Ona, M.C., Schmidt, J.P., Feussner, I. and Karlovsky, P. (2012). Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194(3):823–835.
  • Splivallo, R. and Ebeler, S. E. (2015). Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Applied microbiology and biotechnology, 99(6), 2583-2592
  • Strojnik, L., Grebenc, T. and Ogrinc, N. (2020). Species and geographic variability in truffle aromas. Food Chem. Toxicol. 111434.
  • Taş, M., Küçükaydın, S., Tel-Çayan, G., Duru, M. E., Öztürk, M. and Türk, M. (2021). Chemical constituents and their bioactivities from truffle Hysterangium inflatum. Journal of Food Measurement and Characterization, 15(5), 4181-4189.
  • Trappe, J.M. and Maser, C. (1977). Ectomycorrhizal fungi: Interactions of mushrooms and truffles with beasts and trees. In, Walters, T. (ed.). Mushrooms and Man, an Interdisciplinary Approach to Mycology. Linn-Benton Community College, Albany, Oregon. Pp. 165-179.
  • Trappe, J.M. (1979). The orders, families, and genera of hypogeous Ascomycotina (truffles and their relatives). Mycotaxon 9: 297–340.
  • Türkoğlu, A., and Castellano, M. A. (2014). New records of some Ascomycete truffle fungi from Turkey. Turkish Journal of Botany, 38(2), 406-416.
  • Vahdatzadeh M. and Splivallo R. (2018). Improving truffle mycelium flavour through strain selection targeting volatiles of the Ehrlich pathway, Scıentıfıc Reports 8:9304.
  • Vahdatzadeh, M., Deveau, A. Ve Splivallo, R. (2015). The role of the microbiome of truffles in aroma formation: a meta-Analysis approach, Appl. Environ. Microbiol. 81, 6946–6952.
  • Vita, F., Taiti, C., Pompeiano, A., Bazihizina, N., Lucarotti, V., Mancuso, S. and Alpi, A. (2015). Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons, Scientific Reports, 5:12629.
  • Wang, S. and Marcone, M.F. (2011). The biochemistry and biological properties of the world's most expensive underground edible mushrooms: truffles, Food Res. Int. 44: 2567– 2581.
  • Zambonelli, A., Lotti, M. and Murat, C. (2016). True True (Tuber spp.) İn the World., Springer International Publishing, Cham. SOILBIOL, Switzerland, volume 47, p.p 401.(ebook)
  • Zeppa, S., Gioacchini, A.M., Guidi, C., Guescini, M., Pierleoni, R., Zambonelli, A. and Stocchi, V. (2004). Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography ⁄ mass spectrometry. Rapid Communications in Mass Spectrometry 18: 199–205.
  • Zhang, N., Chen, H., Sun, B., Mao, X., Zhang, Y. and Zhou, Y. (2016). Comparative analysis of volatile composition in Chinese truffles via GC x GC/HR-TOF/MS and electronic nose, International Journal of Molecular Sciences, 17(4), 412.

Investigation of Aroma Components of Tuber aestivum and Tuber borchii Collected From Different Location in Türkiye

Yıl 2023, Cilt: 14 Sayı: 2, 82 - 91, 30.10.2023

Öz

Truffle is an important food source for wild animals and a significant part of the ecosystem, indicating a healthy forest. With their unique aromas, truffles are also a crucial food source for humans. The volatile substances released by Tuber not only appeal to our sense of smell but also contribute to various biological activities. Different aromas result in different tastes; therefore, aroma is essential in defining the organoleptic properties and quality of underground fungi. This research aims to investigate according to the percentage the chemical components considering the habitat and mycorrhizal host tree species of naturally occurring summer truffle Tuber aestivum Vittad. and white truffle Tuber borchii Vittad. in Southwest Anatolia and Marmara regions. For this purpose, the aroma components of T. aestivum and T. borchii collected from two different regions were analyzed using the HS-SPME-GC/MS system. Accordingly, a total of 59 different compounds (volatile organic compounds) were identified, including 20 compounds in T. aestivum from Muğla, 13 compounds in T. aestivum from Kırklareli, 44 compounds in T. borchii from Muğla, and 33 compounds in T. borchii from Kırklareli, belonging to different classes of compounds. While terpenes such as limonene (37.62%), p-cymene (4.79%), and β-pinene (4.12%) were major compounds in T. aestivum collected from Muğla, 2-octen-1-ol (46.78%), 1-octen-3-ol (40.44%), and 3-octanol (2.62%) predominantly constituted the aroma in T. aestivum from Kırklareli. The characteristic sulfur compounds commonly found in Tuber species were present in 42.19% of T. borchii collected from Kırklareli and 12.15% from Muğla. When comparing T. borchii grown in Kırklareli and Muğla, 3-methyl-4,5-dihydrothiophene (29.53% and 6.73%) p-methyl thiobenzaldehyde (2.75% and 5.42%), and methionine (9.91% in Kırklareli, not detected in Muğla) were found in different percentage rates. Based on the data obtained in this study, the classification of both Tuber species, with respect to their geographical origin, was determined using hierarchical cluster analysis (HCA). Accordingly, it is show that of the aroma of Tuber species of the chemical components and the aroma components to the formation should be cultivated after optimizing the ecological conditions that contribute to the symbiotic life of the plant species they provide.

Destekleyen Kurum

TUBITAK and YOK 100/2000

Teşekkür

The authors would like to thanks the TUBITAK, Presidency of Scientist Support Programs (BIDEB) and the «YOK 100/2000 Natural and Herbal Products/Cosmetic» programs for their PhD scholarships support to Cansu Korkmaz for the realisation of this study.

Kaynakça

  • Adams, R.P. (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. USA, Allured Publishing Corporation, Illinois.
  • Akata, I., Sevindik, M. and Şahin, E. (2020). Tuber fulgens Quél., A New Record for Turkish Truffles. Turkish Journal of Agriculture-Food Science and Technology, 8(11), 2472-2475.
  • Beara, I.N., Lesjak, M.M., Cetojevic-Simin, D.D., Marjanovic, Z.S., Ristic, J.D., Mrkonjic, Z.O. and Mimica-Dukic, N.M. (2014). Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) ve white (Tuber magnatum Pico) truffles, Food Chemistry 165 (2014) 460–466.
  • Bellesia, F., Pinetti, A., Tirillini, B. and Bianchi, A. (2001). Temperature-dependent evolution of volatile organic compounds in Tuber borchii from Italy. Flavour Frag. J., 16, 1–6.
  • Büntgen, U., Bagi, I., Fekete, O., Molinier, V., Peter, M., Splivallo, R., Vahdatzadeh, M., Richard, F., Murat, C. and Tegel, W. (2017). New insights into the complex relationship between weight and maturity of Burgundy truffles (Tuber aestivum). Plos ONE, 12.
  • Castellano, M.A and Türkoğlu, A. (2012). New Records of Truffle Taxa in Tuber and Terfezia from Turkey. Turk J Bot, 36: 295 – 298.
  • Costa, R., Fanali, C., Pennazza, G., Tedone, L., Dugo, L., Santonico, M., D., Sciarrone, F., Cacciola, L., Cucchiarini, Dacha M. and Mondello, L. (2015). Screening of volatile compounds composition of white truffle during storage by gcxgc-(FID/MS) and gas sensor array analyses. LWT-Food Science and Technology, 60(2), 905- 913.
  • Cullere, L., Ferreira, V., Chevret, B., Venturini, M.E., Sanchez-Gimeno, A.C., Blanco, D. (2010). Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry, Food Chemistry 122: 300–306.
  • Doğan, H.H. (2021). A new truffle species addition, Tuber macrosporum Vittad., to Turkish mycota. Trakya University Journal of Natural Sciences, 22(2), 139-146.
  • Duru, M. E., Taş, M., Çayan, F., Küçükaydın, S. and Tel-Çayan, G. (2021). Characterization of volatile compounds of Turkish pine honeys from different regions and classification with chemometric studies. European Food Research and Technology, 247, 2533-2544.
  • Elliot T.F., Türkoğlu A., Trappe, M.T. and Yaratanakul Güngör, M. (2016). Turkish Truffles 2: Eight New Records from Anatolia. Mycotaxon, 131: 439 – 453.
  • Feng,T., Shui, M., Song, S., Zhuang, H., Sun, M.I. and Yao, L. (2019). Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach”, Molecules 2019, 24, 3305. Gezer, K., Kaygusuz, O., Çelik, A. and Işıloğlu M. 2014. Ecological Characteristics of Truffles Growing In Denizli Province, Turkey. Journal of Food, Agriculture & Environment, 12: 1105–1109
  • Gioacchini, A.M., Menotta, M., Guescini, M., Saltarelli, R., Ceccaroli, P., Amicucci, A., Barbieri, E., Giomaro, G. and Stocchi, V. (2008). Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun. Mass Spectrom., 22, 3147–3153.
  • Kaya A. (2009). Macromycetes of Kahramanmaraş Province (Turkey). Mycotaxon, 108: 31 – 34.
  • Lee, H., Nam, K., Zahra, Z. and Farooqi, M. Q. U. (2020). Potentials of truffles in nutritional and medicinal applications: a review. Fungal biology and biotechnology, 7(1), 1-17.
  • March, R. E., Richard, D. S. and Ryan, R. W. (2006). Volatile compounds from six species of truffle – head-space analysis and vapor analysis at high mass resolution, Int. J. Mass Spectrom. 249–250:60–67.
  • Mello, A., Murat, C. and Bonfante, P. (2006). Truffles: Much more than a prized and local fungal delicacy. FEMS Microbiol. Lett. 2006, 260, 1–8.
  • Molinier, V., Murat, C., Frochot. H., Wipf. D. and Splivallo, R. (2015) Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability. Environ Microbiol 17(8):3039–3050.
  • Mustafa, A. M., Angeloni, S., Nzekoue, F. K., Abouelenein, D., Sagratini, G., Caprioli, G., Torregiani, E. (2020). An overview on truffle aroma and main volatile compounds. Molecules, 25(24), 5948.
  • Niimi, J., Deveau, A. and Splivallo, R. (2021). Geographical‐based variations in white truffle Tuber magnatum aroma is explained by quantitative differences in key volatile compounds. New Phytologist, 230(4), 1623-1638.
  • Öztürk, C., Kaşık, G. and Toprak, E. (1997). Ascomycetes Makrofunguslarından Türkiye İçin İki Yeni Kayıt. Ot Sistematik Botanik Dergisi 4: 53–56.
  • Piloni, M., Tat, L., Tonizzo, A. and Battistutta, F. (2005). Aroma characterisation of white truffles by GC – MS and GC – O, Italian Journal of Food Science, 4(17), 463–468.
  • Sesli, E., Asan, A. and Selçuk, F. (edlr.) Abacı Günyar, Ö., Akata, I., Akgül, H., Aktaş, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H.H., Erdoğdu, M., Ergül, C.C., Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu.,Yoltaş, A. (2020). Türkiye Mantarları Listesi. İstanbul: Ali Nihat Gökyiğit Foundation Publications.
  • Schmidberger, P. C. and Schieberle, P. (2017). Characterization of the key aroma compounds in white Alba truffle (Tuber magnatum Pico) and Burgundy truffle (Tuber uncinatum) by means of the sensomics approach. Journal of Agricultural and Food Chemistry, 65(42), 9287-9296.
  • Šiškovič, N., Strojnik, L., Grebenc, T., Vidrih, R. and Ogrinc, N. (2021). Differentiation between species and regional origin of fresh and freeze-dried truffles according to their volatile profiles. Food Control, 123, 107698.
  • Spanier, A.M., Shahidi, F., Parliment, T.H, Mussinan, C., Ho, C-H. and Contis E.T. (2000). Food Flavors and Chemistry: Advances of the New Millennium, RS.C, Royal Society of Chemistry, Paros, Greece, Special publishing no.274, e book ISBN 0-85404-875-8 649p.
  • Splivallo, R., Ottonello, S., Mello, A. and Karlovsky, P. (2011). Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol.;189:688–99.
  • Splivallo, R., Valdez, N., Kirchhoff, N., Ona, M.C., Schmidt, J.P., Feussner, I. and Karlovsky, P. (2012). Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194(3):823–835.
  • Splivallo, R. and Ebeler, S. E. (2015). Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Applied microbiology and biotechnology, 99(6), 2583-2592
  • Strojnik, L., Grebenc, T. and Ogrinc, N. (2020). Species and geographic variability in truffle aromas. Food Chem. Toxicol. 111434.
  • Taş, M., Küçükaydın, S., Tel-Çayan, G., Duru, M. E., Öztürk, M. and Türk, M. (2021). Chemical constituents and their bioactivities from truffle Hysterangium inflatum. Journal of Food Measurement and Characterization, 15(5), 4181-4189.
  • Trappe, J.M. and Maser, C. (1977). Ectomycorrhizal fungi: Interactions of mushrooms and truffles with beasts and trees. In, Walters, T. (ed.). Mushrooms and Man, an Interdisciplinary Approach to Mycology. Linn-Benton Community College, Albany, Oregon. Pp. 165-179.
  • Trappe, J.M. (1979). The orders, families, and genera of hypogeous Ascomycotina (truffles and their relatives). Mycotaxon 9: 297–340.
  • Türkoğlu, A., and Castellano, M. A. (2014). New records of some Ascomycete truffle fungi from Turkey. Turkish Journal of Botany, 38(2), 406-416.
  • Vahdatzadeh M. and Splivallo R. (2018). Improving truffle mycelium flavour through strain selection targeting volatiles of the Ehrlich pathway, Scıentıfıc Reports 8:9304.
  • Vahdatzadeh, M., Deveau, A. Ve Splivallo, R. (2015). The role of the microbiome of truffles in aroma formation: a meta-Analysis approach, Appl. Environ. Microbiol. 81, 6946–6952.
  • Vita, F., Taiti, C., Pompeiano, A., Bazihizina, N., Lucarotti, V., Mancuso, S. and Alpi, A. (2015). Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons, Scientific Reports, 5:12629.
  • Wang, S. and Marcone, M.F. (2011). The biochemistry and biological properties of the world's most expensive underground edible mushrooms: truffles, Food Res. Int. 44: 2567– 2581.
  • Zambonelli, A., Lotti, M. and Murat, C. (2016). True True (Tuber spp.) İn the World., Springer International Publishing, Cham. SOILBIOL, Switzerland, volume 47, p.p 401.(ebook)
  • Zeppa, S., Gioacchini, A.M., Guidi, C., Guescini, M., Pierleoni, R., Zambonelli, A. and Stocchi, V. (2004). Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography ⁄ mass spectrometry. Rapid Communications in Mass Spectrometry 18: 199–205.
  • Zhang, N., Chen, H., Sun, B., Mao, X., Zhang, Y. and Zhou, Y. (2016). Comparative analysis of volatile composition in Chinese truffles via GC x GC/HR-TOF/MS and electronic nose, International Journal of Molecular Sciences, 17(4), 412.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekoloji (Diğer)
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Cansu Korkmaz 0000-0003-3027-7687

Mehmet Emin Duru 0000-0001-7252-4880

Yayımlanma Tarihi 30 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 14 Sayı: 2

Kaynak Göster

APA Korkmaz, C., & Duru, M. E. (2023). Investigation of Aroma Components of Tuber aestivum and Tuber borchii Collected From Different Location in Türkiye. Mantar Dergisi, 14(2), 82-91. https://doi.org/10.30708/mantar.1299554

Uluslararası Hakemli Dergi

Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır 

Creative Commons Lisansı

Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.