In this paper, generalized Fermi derivative, generalized Fermi parallelism, and generalized non-rotating frame concepts are given along any curve on any hypersurface in Eⁿ⁺¹ Euclidean space. The generalized Fermi derivative of a vector field and being generalized non-rotating conditions are analyzed along the curve on the surface in Euclidean 3-space. Then a correlation is found between generalized Fermi derivative, Fermi derivative, and Levi-Civita derivative in E³. Then we examine generalized Fermi parallel vector fields and conditions of being generalized non-rotating frame with the tensor field in E⁴. Generalizations have been made in Eⁿ.
generalized Fermi derivative generalized Fermi parallelism generalized non-rotating frame Fermi frame tangent space
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 3 Temmuz 2022 |
Yayımlanma Tarihi | 30 Haziran 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 10 Sayı: 1 |
Manas Journal of Engineering