Nondifferentiable Desirability Functions: Derivative Free Optimization with MATLAB/NOMAD
Year 2025,
Volume: 7 Issue: 1, 28 - 39, 30.06.2025
Başak Öztürk
Abstract
Nondifferentiable Desirability functions are one of the most preferred multi-response optimiza-
tion methods in nonlinear robust parameter design. Their nondifferentiability makes the optimization prob-
lem hard to solve and researchers and scientists look for new softwares and new desirability function
structures to overcome this problem. In this study, we suggest a new implementation of derivative free
mash adaptive direct search algorithm (MADS) with MATLAB/NOMAD to nondifferentiable desirability
functions. For doing this, we need to model the optimization problem of desirability functions as a mixed-
integer nonlinear optimization program (MINLP) by introducing a new binary variable to the model. This
integer shows the side of the two-sided desirability function which is active. Hence, the model of our
problem becomes nondifferentiable nonconvex MINLP. We show our implementation on three well-known
optimization problem from the multi-response optimization literature. We finally conclude with an outlook
and future research projects.
References
-
B. Akteke-O¨ ztu¨rk, G. Ko¨ksal, G. W. Weber, Nonconvex Optimization Desirability Functions, Quality Engineering 30(2) (2017) 293–310.
-
B. Akteke-O¨ ztu¨rk, G. W. Weber, G. Ko¨ksal, Optimization of Generalized Desirability Functions under
Model Uncertainty, Optimization, 66(12) (2017) 2157–2169.
-
Akteke-O¨ ztu¨rk, B., Weber, G.-W., Ko¨ksal, G. (2015). Desirability Functions in Multiresponse Optimization.
In: Plakhov A., Tchemisova T., Freitas A. (Eds.) Optimization in the Natural Sciences. EmC-ONS 2014. Communications in Computer and Information Science, 499: 129-146. Springer.
-
B. Akteke-O¨ ztu¨rk, G. W. Weber, G. Ko¨ksal, Generalized Desirability Functions: A Structural and Topological
Analysis of Desirability Functions, Optimization 69(1) (2019) 115–130.
-
B. Akteke-O¨ ztu¨rk, Mixed-Integer Linear Programming Approaches for Nonlinear Robust Parameter Design
Problems: A Study, submitted.
-
BARON (2010). www.gams.com/solver, v. 8.1.5.
-
P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, A. Mahajan, Mixed-integer nonlinear optimization,
Acta Numerica 22 (2013) 1–131.
-
G.E.P. Box, D.W. Behnken, Some new three-level designs for the study of quantitative variables, Technometrics
2 (1960): 455-475.
-
E. Del Castillo, D. C. Montgomery, D. R. McCarville, Modified desirability functions for multiple response
optimization, Journal of Quality Technology, 28(3) (1996) 337–345.
-
A. R. Conn, K. Scheinberg, L. N. Vicente, Introduction to derivative free optimization, MOS-SIAM Series
on Optimization (2009).
-
CONOPT (2010). www.gams.com/solver, v. 3.14S.
-
CPLEX (2012). www.gams.com/solver, v. 12.4.
-
G. Derringer, R. Suich, Simultaneous optimization of several response variables, Journal of Quality Technology, 12 (1980) 214–219.
-
G. Derringer, A balancing act, Optimizing a products properties, Quality Progress, 27 (1994) 51–57.
-
GAMS (2012). www.gams.com, v. 23.8.2.
-
E.C.Jr. Harrington, The desirability function, Industrial Quality Control, 21 (1965) 494–498.
-
Z. He, P.F. Zhu, S.H. Park, A robust desirability function method for multi-response surface optimization
considering model uncertainty. European Journal of Operational Research 221 (1) (2012) 241–247.
-
I.J. Jeong, K.J. Kim, An interactive desirability function method to multiresponse optimization. European
Journal of Operational Research, 195 (2) (2008) 412-426.
-
I.J. Jeong, K.J. Kim, D-STEM: a modified step method with desirability function concept, Computers and
Operations Research 32 (2005) 3175–3190.
-
A.I. Khuri, Multiresponse surface methodology, In: Ghosh, A., and Rao, C.R. (Eds.). Handbook of Statistics:
Design and Analysis of Experiments, 13 (1996) 377–406.
-
K. Kim, D. Lin, Simultaneous optimization of multiple responses by maximizing exponential desirability
functions. Applied Statistics, 49(C) (2000) 311-3-25.
-
O. K¨oksoy, Dual response optimization: The desirability approach, International Journal of Industrial
Engineering, 12(4) (2005) 335–342.
-
D.H. Lee, K.J. Kim, M. K¨oksalan, A posterior preference articulation approach to multiresponse surface
optimization, European Journal of Operational Research, 210 (2011) 301–309.
-
D.H. Lee, K.J. Kim, M. K¨oksalan, An interactive method to multiresponse surface optimization based on
pairwise comparisons, IIE Transactions, 44(1) (2012) 13–26.
-
R.T. Marler, J.S. Arora, Survey of multi-objectivee optimization methods for engineering, Structural and
Multidisciplinary Optimization, 26(6) (2004) 369–395.
-
the Mathworks Inc. (2025). www.mathworks.com. v. R2025a.
-
K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers (1999).
-
G. Nemhauser, L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley and Sons, New York
(1988).
-
S. L. Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM Transactions
on Mathematical Software, 37(4): 44:1-44:15.
-
K.S. Park, K.J. Kim, Optimizing multi-response surface problems: How to use multi-objective optimization
techniques, IIE Transactions 37(6) (2005) 523–532.
-
R. P¨orn, K.M. Bj¨ork, T. Westerlund, Global solution of optimization problems with signomial parts, Discrete
Optimization, 5 (2008) 108–120.
-
G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes, Kraus,
White Plains, NY (1986).
-
G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost,
UNIPUB/Kraus International, White Plains, NY (1987).
-
H.P. Williams, Model Building in Mathematical Programming, fifth edition, Wiley (2013).
-
O. P. Yadav, G. Thambidorai, B. Nepal, L. Monplaisir, A robust framework for multi-response surface
optimization methodology, Quality Reliability Engineering International. 30 (2014) 301–311.