Araştırma Makalesi
BibTex RIS Kaynak Göster

On the Analysis of Secrecy Outage Probability Using Average Channel Capacity

Yıl 2020, Cilt: 24 Sayı: 1, 248 - 256, 01.02.2020
https://doi.org/10.16984/saufenbilder.655465

Öz

In this article, we analyze the outage probability of physically secure wireless signal transmission in fading envi-ronments where both primary and eavesdropper channels are subject to generalized fading. We propose a novel approach using the average channel capacity of the primary channel and that of the eavesdropper channel to the outage probability of physically secure wireless signaling.

Destekleyen Kurum

YILDIZ TECHNICAL UNIVERSITY

Teşekkür

This work was supported by YILDIZ TECHNICAL UNIVERSITY.

Kaynakça

  • A. D. Wyner, “The wire‐tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.
  • I. Csiszár, and J. Körner, “Broadcast channels with confidential messages,” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 339–348, 1978.
  • S. Leung-Yan-Cheong, and M. Hellman. “The Gaussian wire-tap channel,” IEEE Transactions on Information Theory, vol. 24, no. 4, pp. 451–456, (1978).
  • M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2515–2534, 2008.
  • M. Z. I. Sarkar, T. Ratnarajah, and M. Sellathurai, “Secrecy capacity of Nakagami-𝑚 fading wireless channels in the presence of multiple eavesdroppers,” in Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, USA, Nov. 2009, pp. 829–833.
  • X. Liu, “Outage probability of secrecy capacity over correlated log–normal fading channels,” IEEE Communications Letters, vol. 17, no. 2, pp. 289–292, Feb. 2013.
  • D.-B. Ha, T. Q. Duong, D.-D. Tran, H.–J. Zepernick, and T. T. Vu, “Physical layer secrecy performance over Rayleigh/Rician fading channels,” in International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, Oct. 2014, pp. 113–118.
  • S. Belmoubarik, G. Aniba, and B. Elgraini, “Secrecy capacity of a Nakagami-m fading channel in the presence of cooperative eavesdroppers,” in IEEE Mediterranean Microwave Symposium (MMS), Marrakech, Morocco, Dec. 2014, pp. 1–6.
  • H. Lei, C. Gao, Y. Guo, and G. Pan, “On physical layer security over generalized gamma fading channels,” IEEE Communications Letters, vol. 19, no. 7, pp. 1257–1260, July 2015.
  • L. Kong, H. Tran, and G. Kaddoum, “Performance analysis of physical layer security over α–μ fading channel,” Electronics Letters, vol. 52, no. 1, pp. 45–47, 2016.
  • H. Lei, H. Zhang, I. S. Ansari, C. Gao., Y. Guo, G. Pan, and K. A. Qaraqe, “Performance analysis of physical layer security over generalized–𝐾 fading channels using a mixture gamma distribution,” IEEE Communications Letters, vol. 20, no. 2, pp. 408–411, Feb. 2016.
  • N. Bhargav, S. L. Cotton, and D. E. Simmons, “Secrecy capacity analysis over κ–μ fading channels: Theory and applications,” IEEE Transactions on Communications, vol. 64, no. 7, pp. 3011–3024, July 2016.
  • S. Iwata, T. Ohtsuki, and P. Y. Kam, “Secure outage probability over κ–μ fading channels,” in IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1–6.
  • G. C. Alexandropoulos, and K. P. Peppas, “Secrecy outage analysis over correlated composite Nakagami–m/Gamma fading channels,” IEEE. Communications Letters, vol. 22. no. 1, pp. 77–80, Jan. 2018.
  • L. Kong and G. Kaddoum, “On physical layer security over the Fisher-Snedecor F wiretap Fading Channels,” IEEE Access, vol. 6, pp. 39466–39472, 2018.
  • L. Kong, S. Vuppala, and G. Kaddoum, “Secrecy analysis of random MIMO wireless networks Over α–μ Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11654–11666, 2018.
  • H. Zhao, Y. Liu, A. Sultan-Salem, and M.–S. Alouini, “A simple evaluation for the secrecy outage probability over generalized-K fading channels,” IEEE Communications Letters, vol. 23, no. 9, pp. 1479-1483, 2019.
  • D. Zwillinger, CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, FL: Chapman & Hall/CRC, 2003.
  • Wolfram Research, Mathematica Edition: Version 8.0. Champaign, Illinois: Wolfram Research, Inc., 2010.
  • F. Yilmaz, “On the relationships between average channel capacity, average bit error rate, outage probability and outage capacity over additive white Gaussian noise channels,” arXiv preprint arXiv:1907.06634, 2019.
  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover Publications, 1972
  • F. Yilmaz, and M.-S. Alouini, “A unified MGF-based capacity analysis of diversity combiners over generalized fading channels,” IEEE Transactions on Communications, vol. 60, no. 3, pp. 862-875, 2012.
  • F. Yilmaz, and M.-S. Alouini, “Extended generalized-K (EGK): A new simple and general model for composite fading channels,” arXiv preprint arXiv:1012.2598, 2010.
  • F. Yilmaz, and M.-S. Alouini, “A new simple model for composite fading channels: Second order statistics and channel capacity,” in International Symposium on Wireless Communication Systems (ISWCS), York, UK, Sep. 2010, pp. 676-680.
  • M. A. Chaudhry and S. M. Zubair, On a Class of Incom-plete Gamma Functions with Applications. Boca Raton-London-New York Washington, D.C.: Chapman & Hall/CRC, 2002.
  • A. Kilbas and M. Saigo, H-Transforms: Theory and Applications. Boca Raton, FL: CRC Press LLC, 2004.
  • A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, 1st ed. Dordrecht, Heidelberg, London, New York: Springer Science, 2009.
  • A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral and Series: Volume 3, More Special Functions. CRC Press Inc., 1990.
  • N. C. Sagias, G. S. Tombras, and G. K. Karagiannidis, “New results for the Shannon channel capacity in generalized fading channels,” IEEE Communications Letters, vol. 9, no. 2, pp. 97–99, Feb. 2005.
Yıl 2020, Cilt: 24 Sayı: 1, 248 - 256, 01.02.2020
https://doi.org/10.16984/saufenbilder.655465

Öz

Kaynakça

  • A. D. Wyner, “The wire‐tap channel,” Bell System Technical Journal, vol. 54, no. 8, pp. 1355–1387, 1975.
  • I. Csiszár, and J. Körner, “Broadcast channels with confidential messages,” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 339–348, 1978.
  • S. Leung-Yan-Cheong, and M. Hellman. “The Gaussian wire-tap channel,” IEEE Transactions on Information Theory, vol. 24, no. 4, pp. 451–456, (1978).
  • M. Bloch, J. Barros, M. R. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2515–2534, 2008.
  • M. Z. I. Sarkar, T. Ratnarajah, and M. Sellathurai, “Secrecy capacity of Nakagami-𝑚 fading wireless channels in the presence of multiple eavesdroppers,” in Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, USA, Nov. 2009, pp. 829–833.
  • X. Liu, “Outage probability of secrecy capacity over correlated log–normal fading channels,” IEEE Communications Letters, vol. 17, no. 2, pp. 289–292, Feb. 2013.
  • D.-B. Ha, T. Q. Duong, D.-D. Tran, H.–J. Zepernick, and T. T. Vu, “Physical layer secrecy performance over Rayleigh/Rician fading channels,” in International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, Oct. 2014, pp. 113–118.
  • S. Belmoubarik, G. Aniba, and B. Elgraini, “Secrecy capacity of a Nakagami-m fading channel in the presence of cooperative eavesdroppers,” in IEEE Mediterranean Microwave Symposium (MMS), Marrakech, Morocco, Dec. 2014, pp. 1–6.
  • H. Lei, C. Gao, Y. Guo, and G. Pan, “On physical layer security over generalized gamma fading channels,” IEEE Communications Letters, vol. 19, no. 7, pp. 1257–1260, July 2015.
  • L. Kong, H. Tran, and G. Kaddoum, “Performance analysis of physical layer security over α–μ fading channel,” Electronics Letters, vol. 52, no. 1, pp. 45–47, 2016.
  • H. Lei, H. Zhang, I. S. Ansari, C. Gao., Y. Guo, G. Pan, and K. A. Qaraqe, “Performance analysis of physical layer security over generalized–𝐾 fading channels using a mixture gamma distribution,” IEEE Communications Letters, vol. 20, no. 2, pp. 408–411, Feb. 2016.
  • N. Bhargav, S. L. Cotton, and D. E. Simmons, “Secrecy capacity analysis over κ–μ fading channels: Theory and applications,” IEEE Transactions on Communications, vol. 64, no. 7, pp. 3011–3024, July 2016.
  • S. Iwata, T. Ohtsuki, and P. Y. Kam, “Secure outage probability over κ–μ fading channels,” in IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1–6.
  • G. C. Alexandropoulos, and K. P. Peppas, “Secrecy outage analysis over correlated composite Nakagami–m/Gamma fading channels,” IEEE. Communications Letters, vol. 22. no. 1, pp. 77–80, Jan. 2018.
  • L. Kong and G. Kaddoum, “On physical layer security over the Fisher-Snedecor F wiretap Fading Channels,” IEEE Access, vol. 6, pp. 39466–39472, 2018.
  • L. Kong, S. Vuppala, and G. Kaddoum, “Secrecy analysis of random MIMO wireless networks Over α–μ Fading Channels,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11654–11666, 2018.
  • H. Zhao, Y. Liu, A. Sultan-Salem, and M.–S. Alouini, “A simple evaluation for the secrecy outage probability over generalized-K fading channels,” IEEE Communications Letters, vol. 23, no. 9, pp. 1479-1483, 2019.
  • D. Zwillinger, CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, FL: Chapman & Hall/CRC, 2003.
  • Wolfram Research, Mathematica Edition: Version 8.0. Champaign, Illinois: Wolfram Research, Inc., 2010.
  • F. Yilmaz, “On the relationships between average channel capacity, average bit error rate, outage probability and outage capacity over additive white Gaussian noise channels,” arXiv preprint arXiv:1907.06634, 2019.
  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover Publications, 1972
  • F. Yilmaz, and M.-S. Alouini, “A unified MGF-based capacity analysis of diversity combiners over generalized fading channels,” IEEE Transactions on Communications, vol. 60, no. 3, pp. 862-875, 2012.
  • F. Yilmaz, and M.-S. Alouini, “Extended generalized-K (EGK): A new simple and general model for composite fading channels,” arXiv preprint arXiv:1012.2598, 2010.
  • F. Yilmaz, and M.-S. Alouini, “A new simple model for composite fading channels: Second order statistics and channel capacity,” in International Symposium on Wireless Communication Systems (ISWCS), York, UK, Sep. 2010, pp. 676-680.
  • M. A. Chaudhry and S. M. Zubair, On a Class of Incom-plete Gamma Functions with Applications. Boca Raton-London-New York Washington, D.C.: Chapman & Hall/CRC, 2002.
  • A. Kilbas and M. Saigo, H-Transforms: Theory and Applications. Boca Raton, FL: CRC Press LLC, 2004.
  • A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, 1st ed. Dordrecht, Heidelberg, London, New York: Springer Science, 2009.
  • A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral and Series: Volume 3, More Special Functions. CRC Press Inc., 1990.
  • N. C. Sagias, G. S. Tombras, and G. K. Karagiannidis, “New results for the Shannon channel capacity in generalized fading channels,” IEEE Communications Letters, vol. 9, no. 2, pp. 97–99, Feb. 2005.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makalesi
Yazarlar

Ferkan Yılmaz 0000-0001-6502-8280

Yayımlanma Tarihi 1 Şubat 2020
Gönderilme Tarihi 6 Aralık 2019
Kabul Tarihi 26 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 1

Kaynak Göster

APA Yılmaz, F. (2020). On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. Sakarya University Journal of Science, 24(1), 248-256. https://doi.org/10.16984/saufenbilder.655465
AMA Yılmaz F. On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. SAUJS. Şubat 2020;24(1):248-256. doi:10.16984/saufenbilder.655465
Chicago Yılmaz, Ferkan. “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”. Sakarya University Journal of Science 24, sy. 1 (Şubat 2020): 248-56. https://doi.org/10.16984/saufenbilder.655465.
EndNote Yılmaz F (01 Şubat 2020) On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. Sakarya University Journal of Science 24 1 248–256.
IEEE F. Yılmaz, “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”, SAUJS, c. 24, sy. 1, ss. 248–256, 2020, doi: 10.16984/saufenbilder.655465.
ISNAD Yılmaz, Ferkan. “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”. Sakarya University Journal of Science 24/1 (Şubat 2020), 248-256. https://doi.org/10.16984/saufenbilder.655465.
JAMA Yılmaz F. On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. SAUJS. 2020;24:248–256.
MLA Yılmaz, Ferkan. “On the Analysis of Secrecy Outage Probability Using Average Channel Capacity”. Sakarya University Journal of Science, c. 24, sy. 1, 2020, ss. 248-56, doi:10.16984/saufenbilder.655465.
Vancouver Yılmaz F. On the Analysis of Secrecy Outage Probability Using Average Channel Capacity. SAUJS. 2020;24(1):248-56.