Araştırma Makalesi
BibTex RIS Kaynak Göster

Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method

Yıl 2024, Cilt: 28 Sayı: 1, 73 - 84, 29.02.2024
https://doi.org/10.16984/saufenbilder.1314703

Öz

The use of waste materials in alkali-activated material technologies is important in terms of sustainability. The production of alkali-activated composites (AAC) with hollow brick waste (HBW) as a binder may contribute to solving existing environmental problems related to the depletion of natural resources. In this study, mortars were produced using different concentrations (6 M, 8 M, and 10 M NaOH) and Alkaline Activator/Powder Material (AA/PM) ratios of 0.30, 0.35, and 0.40 through the alkali activation method. The hollow brick waste (HBW) powder was obtained by grinding inactive bricks in brick factories. The prepared mortars were cured separately for each mixture at 90°C for 24 hours. Compressive and flexural strength tests were performed on the prepared perforated hollow brick waste-based composites. The Taguchi method was used to determine the optimum mixing ratios by conducting compressive and flexural strength tests on the produced AAC. To optimize the parameters determined using the Taguchi method, the best mixing ratios were determined using the L9 (3^2) orthogonal index. The compressive and flexural strengths of the mixtures were evaluated considering the signal to noise ratio "larger the better" and the highest compressive strength value was 63.669 MPa and the highest flexural strength value was 6.629 MPa according to the optimum values. According to the obtained results, it was determined that the AAC produced at 6 M NaOH and 0.30 AA/PM ratio exhibited the highest compressive and flexural strength values.

Destekleyen Kurum

Tübitak-2218 Yurt İçi Doktora Sonrası Araştırma Burs Programı

Proje Numarası

121C378

Teşekkür

The author would like to thank Assoc. Prof. Dr. Mehmet EMİROĞLU for his contributions.

Kaynakça

  • [1] E. Özçelikci, “İnşaat yıkıntı atığı içeren jeopolimer beton tasarımlarının geliştirilmesi,” Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2020.
  • [2] E. Gartner, “Industrially interesting approaches to ‘low-CO2’ cements,” Cement and Concrete Research, vol. 34, no. 9, pp. 1489–1498, 2004.
  • [3] A. Petek Gürsel, Ç. Meral, “Türkiye’de çimento üretiminin karşılaştırmalı yaşam döngüsü analizi,” 2. Proje ve Yapım Yönetimi Kongresi, İzmir, 2012.
  • [4] A. Heath, K. Paine, M. McManus, “Minimising the global warming potential of clay based geopolymers”, Journal of Cleaner Production, vol. 78, pp. 75-83, 2014.
  • [5] I. K. Jeon, A. Azzam, H. Al Jebaei, Y. R. Kim, A. Aryal, J. C. Baltazar, “Effects of alkali-activated slag binder and shape-stabilized phase change material on thermal and mechanical characteristics and environmental impact of cementitious composite for building envelopes”, Journal of Building Engineering, vol. 76, 107296, 2023.
  • [6] J. Fořt, M. Mildner, M. Keppert, R. Černý, “Waste solidified alkalis as activators of aluminosilicate precursors: Functional and environmental evaluation”, Journal of Building Engineering, vol. 54, 104598, 2022.
  • [7] A. Palomo, O. Maltseva, I. Garcia-Lodeiro, A. Fernández-Jiménez, “Portland versus alkaline cement: continuity or clean break: a key decision for global sustainability”, Frontiers in Chemistry, vol. 9, 705475, 2021.
  • [8] J. Fort, E. Vejmelkova, D. Konakova, N. Alblova, M. Cachova, M. Keppert, P. Rovnanikova, R. Cerny, “Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects”, Journal of Cleaner Production, vol. 194, pp. 714–725, 2018.
  • [9] A. Komaei, A. Soroush, S. M. Fattahi, H. Ghanbari, “Influence of environmental stresses on the durability of slag-based alkali-activated cement crusts for wind erosion control”, Science of The Total Environment, vol. 902, 166576, 2023.
  • [10] G. Habert, J.B.D. de Lacaillerie, N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends”, Journal of Cleaner Production, vol. 19, no. 11, pp. 1229–1238, 2011.
  • [11] P. Ren, B. Li, J.-G. Yu, T.-C. Ling, “Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks,” Journal of Cleaner Production, vol. 267, 122115, 2020.
  • [12] N. Cristelo, A. Fernández-Jiménez, C. Vieira, T. Miranda, Á. Palomo, “Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash,” Construction and Building Materials, vol. 170, pp. 26–39, 2018.
  • [13] P. Zhu, M. Hua, H. Liu, X. Wang, C. Chen, “Interfacial evaluation of geopolymer mortar prepared with recycled geopolymer fine aggregates,” Construction and Building Materials, vol. 259, 119849, 2020.
  • [14] M. A. Nawaz, L. A. Qureshi, B. Ali, “Enhancing the performance of recycled aggregate mortars using alkali-activated fly ash,” KSCE Journal of Civil Engineering, vol. 25, no. 2, pp. 552–560, 2021.
  • [15] R. Cardoso, R. V. Silva, J. de Brito, R. Dhir, “Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review,” Waste Management, vol. 49, pp. 131–145, 2016.
  • [16] M. Sarıdemir, “Alkali ile aktive edilmiş öğütülmüş diatomitli harçların dayanım özellikleri,” Nigde University Journal of Engineering Sciences, vol. 5, no. 2, pp. 124–134, 2016.
  • [17] A. Aldemir, S. Akduman, O. Kocaer, R. Aktepe, M. Sahmaran, G. Yildirim, H. Almahmood, A. Ashour, “Shear behaviour of reinforced construction and demolition waste-based geopolymer concrete beams,” Journal of Building Engineering, vol. 47, 103861, 2022.
  • [18] S. Aydın, “Alkalilerle aktive edilmiş yüksek fırın cürufu bağlayıcılı lifli kompozit geliştirilmesi,” Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 2010.
  • [19] Ü. Yurt, “Kür sıcaklığının alkali aktivasyonlu lifli betonunun kırılma özelliklerine etkisi,” OKU Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 1, pp. 176–188, 2022.
  • [20] C. Luan, X. Shi, K. Zhang, N. Utashev, F. Yang, J. Dai, Q. Wang, “A mix design method of fly ash geopolymer concrete based on factors analysis,” Construction and Building Materials, vol. 272, 121612, 2021.
  • [21] P. Cong, Y. Cheng, “Advances in geopolymer materials: A comprehensive review,” Journal of Traffic and Transportation Engineering, vol. 8, no. 3, pp. 283–314, 2021.
  • [22] C. Arenas, C. Leiva, L. F. Vilches, F. Arroyo, R. Villegas, C. Fernández-Pereira, “Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers,” Construction and Building Materials, vol. 134, 433–442, 2017.
  • [23] B. A. Tayeh, A. M. Zeyad, I. S. Agwa, M. Amin, “Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete,” Case Studies in Construction Materials, vol. 15, e00673, 2021.
  • [24] H. İlcan, O. Sahin, A. Kul, G. Yildirim, M. Sahmaran, “Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing,” Construction and Building Materials, vol. 328, 127114, 2022.
  • [25] A. Sharma, P. Singh, K. Kapoor, “Utilization of recycled fine powder as an activator in fly ash based geopolymer mortar,” Construction and Building Materials, vol. 323, 126581, 2022.
  • [26] H. İlcan, “İnşaat yıkıntı atıkları kullanılarak tasarlanan jeopolimer bağlayıcılı harçların reolojik ve işlenebilirlik özelliklerinin incelenmesi,” Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2021.
  • [27] Ü. Yurt, “High performance cementless composites from alkali activated GGBFS,” Construction and Building Materials, vol. 264, 120222, 2020.
  • [28] G. Yıldırım, A. Kul, E. Özçelikci, M. Şahmaran, A. Aldemir, D. Figueira, A. Ashour, “Development of alkali-activated binders from recycled mixed masonry-originated waste,” Journal of Building Engineering, vol. 33, 101690, 2021.
  • [29] Ü. Yurt, M. Emiroğlu, “Zeolit ikameli geopolimer betonlarda kür şartlarının etkileri,” Academic Platform Journal of Engineering and Science, vol. 8–2, pp. 396–402, 2020.
  • [30] O. Mahmoodi, H. Siad, M. Lachemi, S. Dadsetan, M. Şahmaran, “Optimized application of ternary brick, ceramic and concrete wastes in sustainable high strength geopolymers,” Journal of Cleaner Production, vol. 338, 130650, 2022.
  • [31] M. N. Mısır, “Elazığ Ferrokrom cürufu ile alkali aktive edilmiş cam lifi ve atık mermer tozu katkılı harçların mühendislik özelliklerinin belirlenmesi,” Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, 2021.
  • [32] T. Yi, S. R. Liou, W. Y., Kuo, “Optimizing a hybrid mortar for an alkali-activated material using Taguchi–Grey relational analysis of paper production wastes,” Case Studies in Construction Materials, e02116, 2023.
  • [33] S. V. Dave, A. Bhogayata, “The strength oriented mix design for geopolymer concrete using Taguchi method and Indian concrete mix design code,” Construction and Building Materials, vol. 262, 120853, 2020.
  • [34] C. Y. Chang, R. Huang, P. C. Lee, T. L. Weng, “Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures,” Cement and Concrete Composites, vol. 33, no. 10, pp. 1038–1049, 2011.
  • [35] N. C. Sukmana, M. I. Khifdillah, A. S. Nurkholil, U. Anggarini, “Optimization of non-autoclaved aerated concrete using phosphogypsum of industrial waste based on the taguchi method,” IOP Conference Series: Materials Science and Engineering, vol. 509, 012095, 2019.
  • [36] H. J. Chen, H. C. Lin, C. W. Tang, “Application of the Taguchi method for optimizing the process parameters of producing controlled low-strength materials by using dimension stone sludge and lightweight aggregates,” Sustainability, vol. 13, no. 10, 5576, 2021.
  • [37] M. Alhawat, A. Ashour, G. Yildirim, A. Aldemir, M. Sahmaran, “Properties of geopolymers sourced from construction and demolition waste: A review”, Journal of Building Engineering, vol. 50, 104104, 2022.
  • [38] C. L, Wong, K. H. Mo, U. J. Alengaram, S. P. Yap, “Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder,” Journal of Building Engineering, vol. 32, pp. 1–11, 2020.
  • [39] N. Youssef, A. Z. Rabenantoandro, Z. Dakhli, C. Chapiseau, F. Waendendries, F.H. Chehade, Z. Lafhaj, “Reuse of waste bricks: A new generation of geopolymer bricks,” SN Applied Sciences, vol. 1, pp. 1–10, 2019.
  • [40] A. Uğur, E. Nas, H. Gökkaya, “Investigation of the machinability of SiC reinforced MMC materials produced by molten metal stirring and conventional casting technique in die-sinking electrical discharge machine,” International Journal of Mechanical Sciences, vol. 186, 105875, 2020.
  • [41] P. Delgado-Plana, A. García-Díaz, S. Bueno-Rodríguez, D. Eliche Quesada, “Influence of NaOH molarity and Portland cement addition on performance of alkali activated cements based in silicomanganese slags”, Construction and Building Materials, vol. 407, 133544, 2023.
  • [42] P. Delgado-Plana, A. García-Díaz, S. Bueno-Rodríguez, D. Eliche Quesada, “Influence of NaOH molarity and Portland cement addition on performance of alkali activated cements based in silicomanganese slags”, Construction and Building Materials, vol. 407, 133544, 2023.
  • [43] Z. Yahya, M. M. A. B. Abdullah, K. Hussin, K. N. Ismail, R. A. Razak, A. V. Sandu, “Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system”, Materials, vol. 8, pp. 2227-2242, 2015.
Yıl 2024, Cilt: 28 Sayı: 1, 73 - 84, 29.02.2024
https://doi.org/10.16984/saufenbilder.1314703

Öz

Proje Numarası

121C378

Kaynakça

  • [1] E. Özçelikci, “İnşaat yıkıntı atığı içeren jeopolimer beton tasarımlarının geliştirilmesi,” Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2020.
  • [2] E. Gartner, “Industrially interesting approaches to ‘low-CO2’ cements,” Cement and Concrete Research, vol. 34, no. 9, pp. 1489–1498, 2004.
  • [3] A. Petek Gürsel, Ç. Meral, “Türkiye’de çimento üretiminin karşılaştırmalı yaşam döngüsü analizi,” 2. Proje ve Yapım Yönetimi Kongresi, İzmir, 2012.
  • [4] A. Heath, K. Paine, M. McManus, “Minimising the global warming potential of clay based geopolymers”, Journal of Cleaner Production, vol. 78, pp. 75-83, 2014.
  • [5] I. K. Jeon, A. Azzam, H. Al Jebaei, Y. R. Kim, A. Aryal, J. C. Baltazar, “Effects of alkali-activated slag binder and shape-stabilized phase change material on thermal and mechanical characteristics and environmental impact of cementitious composite for building envelopes”, Journal of Building Engineering, vol. 76, 107296, 2023.
  • [6] J. Fořt, M. Mildner, M. Keppert, R. Černý, “Waste solidified alkalis as activators of aluminosilicate precursors: Functional and environmental evaluation”, Journal of Building Engineering, vol. 54, 104598, 2022.
  • [7] A. Palomo, O. Maltseva, I. Garcia-Lodeiro, A. Fernández-Jiménez, “Portland versus alkaline cement: continuity or clean break: a key decision for global sustainability”, Frontiers in Chemistry, vol. 9, 705475, 2021.
  • [8] J. Fort, E. Vejmelkova, D. Konakova, N. Alblova, M. Cachova, M. Keppert, P. Rovnanikova, R. Cerny, “Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects”, Journal of Cleaner Production, vol. 194, pp. 714–725, 2018.
  • [9] A. Komaei, A. Soroush, S. M. Fattahi, H. Ghanbari, “Influence of environmental stresses on the durability of slag-based alkali-activated cement crusts for wind erosion control”, Science of The Total Environment, vol. 902, 166576, 2023.
  • [10] G. Habert, J.B.D. de Lacaillerie, N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends”, Journal of Cleaner Production, vol. 19, no. 11, pp. 1229–1238, 2011.
  • [11] P. Ren, B. Li, J.-G. Yu, T.-C. Ling, “Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks,” Journal of Cleaner Production, vol. 267, 122115, 2020.
  • [12] N. Cristelo, A. Fernández-Jiménez, C. Vieira, T. Miranda, Á. Palomo, “Stabilisation of construction and demolition waste with a high fines content using alkali activated fly ash,” Construction and Building Materials, vol. 170, pp. 26–39, 2018.
  • [13] P. Zhu, M. Hua, H. Liu, X. Wang, C. Chen, “Interfacial evaluation of geopolymer mortar prepared with recycled geopolymer fine aggregates,” Construction and Building Materials, vol. 259, 119849, 2020.
  • [14] M. A. Nawaz, L. A. Qureshi, B. Ali, “Enhancing the performance of recycled aggregate mortars using alkali-activated fly ash,” KSCE Journal of Civil Engineering, vol. 25, no. 2, pp. 552–560, 2021.
  • [15] R. Cardoso, R. V. Silva, J. de Brito, R. Dhir, “Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review,” Waste Management, vol. 49, pp. 131–145, 2016.
  • [16] M. Sarıdemir, “Alkali ile aktive edilmiş öğütülmüş diatomitli harçların dayanım özellikleri,” Nigde University Journal of Engineering Sciences, vol. 5, no. 2, pp. 124–134, 2016.
  • [17] A. Aldemir, S. Akduman, O. Kocaer, R. Aktepe, M. Sahmaran, G. Yildirim, H. Almahmood, A. Ashour, “Shear behaviour of reinforced construction and demolition waste-based geopolymer concrete beams,” Journal of Building Engineering, vol. 47, 103861, 2022.
  • [18] S. Aydın, “Alkalilerle aktive edilmiş yüksek fırın cürufu bağlayıcılı lifli kompozit geliştirilmesi,” Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 2010.
  • [19] Ü. Yurt, “Kür sıcaklığının alkali aktivasyonlu lifli betonunun kırılma özelliklerine etkisi,” OKU Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 1, pp. 176–188, 2022.
  • [20] C. Luan, X. Shi, K. Zhang, N. Utashev, F. Yang, J. Dai, Q. Wang, “A mix design method of fly ash geopolymer concrete based on factors analysis,” Construction and Building Materials, vol. 272, 121612, 2021.
  • [21] P. Cong, Y. Cheng, “Advances in geopolymer materials: A comprehensive review,” Journal of Traffic and Transportation Engineering, vol. 8, no. 3, pp. 283–314, 2021.
  • [22] C. Arenas, C. Leiva, L. F. Vilches, F. Arroyo, R. Villegas, C. Fernández-Pereira, “Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers,” Construction and Building Materials, vol. 134, 433–442, 2017.
  • [23] B. A. Tayeh, A. M. Zeyad, I. S. Agwa, M. Amin, “Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete,” Case Studies in Construction Materials, vol. 15, e00673, 2021.
  • [24] H. İlcan, O. Sahin, A. Kul, G. Yildirim, M. Sahmaran, “Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing,” Construction and Building Materials, vol. 328, 127114, 2022.
  • [25] A. Sharma, P. Singh, K. Kapoor, “Utilization of recycled fine powder as an activator in fly ash based geopolymer mortar,” Construction and Building Materials, vol. 323, 126581, 2022.
  • [26] H. İlcan, “İnşaat yıkıntı atıkları kullanılarak tasarlanan jeopolimer bağlayıcılı harçların reolojik ve işlenebilirlik özelliklerinin incelenmesi,” Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2021.
  • [27] Ü. Yurt, “High performance cementless composites from alkali activated GGBFS,” Construction and Building Materials, vol. 264, 120222, 2020.
  • [28] G. Yıldırım, A. Kul, E. Özçelikci, M. Şahmaran, A. Aldemir, D. Figueira, A. Ashour, “Development of alkali-activated binders from recycled mixed masonry-originated waste,” Journal of Building Engineering, vol. 33, 101690, 2021.
  • [29] Ü. Yurt, M. Emiroğlu, “Zeolit ikameli geopolimer betonlarda kür şartlarının etkileri,” Academic Platform Journal of Engineering and Science, vol. 8–2, pp. 396–402, 2020.
  • [30] O. Mahmoodi, H. Siad, M. Lachemi, S. Dadsetan, M. Şahmaran, “Optimized application of ternary brick, ceramic and concrete wastes in sustainable high strength geopolymers,” Journal of Cleaner Production, vol. 338, 130650, 2022.
  • [31] M. N. Mısır, “Elazığ Ferrokrom cürufu ile alkali aktive edilmiş cam lifi ve atık mermer tozu katkılı harçların mühendislik özelliklerinin belirlenmesi,” Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, 2021.
  • [32] T. Yi, S. R. Liou, W. Y., Kuo, “Optimizing a hybrid mortar for an alkali-activated material using Taguchi–Grey relational analysis of paper production wastes,” Case Studies in Construction Materials, e02116, 2023.
  • [33] S. V. Dave, A. Bhogayata, “The strength oriented mix design for geopolymer concrete using Taguchi method and Indian concrete mix design code,” Construction and Building Materials, vol. 262, 120853, 2020.
  • [34] C. Y. Chang, R. Huang, P. C. Lee, T. L. Weng, “Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures,” Cement and Concrete Composites, vol. 33, no. 10, pp. 1038–1049, 2011.
  • [35] N. C. Sukmana, M. I. Khifdillah, A. S. Nurkholil, U. Anggarini, “Optimization of non-autoclaved aerated concrete using phosphogypsum of industrial waste based on the taguchi method,” IOP Conference Series: Materials Science and Engineering, vol. 509, 012095, 2019.
  • [36] H. J. Chen, H. C. Lin, C. W. Tang, “Application of the Taguchi method for optimizing the process parameters of producing controlled low-strength materials by using dimension stone sludge and lightweight aggregates,” Sustainability, vol. 13, no. 10, 5576, 2021.
  • [37] M. Alhawat, A. Ashour, G. Yildirim, A. Aldemir, M. Sahmaran, “Properties of geopolymers sourced from construction and demolition waste: A review”, Journal of Building Engineering, vol. 50, 104104, 2022.
  • [38] C. L, Wong, K. H. Mo, U. J. Alengaram, S. P. Yap, “Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder,” Journal of Building Engineering, vol. 32, pp. 1–11, 2020.
  • [39] N. Youssef, A. Z. Rabenantoandro, Z. Dakhli, C. Chapiseau, F. Waendendries, F.H. Chehade, Z. Lafhaj, “Reuse of waste bricks: A new generation of geopolymer bricks,” SN Applied Sciences, vol. 1, pp. 1–10, 2019.
  • [40] A. Uğur, E. Nas, H. Gökkaya, “Investigation of the machinability of SiC reinforced MMC materials produced by molten metal stirring and conventional casting technique in die-sinking electrical discharge machine,” International Journal of Mechanical Sciences, vol. 186, 105875, 2020.
  • [41] P. Delgado-Plana, A. García-Díaz, S. Bueno-Rodríguez, D. Eliche Quesada, “Influence of NaOH molarity and Portland cement addition on performance of alkali activated cements based in silicomanganese slags”, Construction and Building Materials, vol. 407, 133544, 2023.
  • [42] P. Delgado-Plana, A. García-Díaz, S. Bueno-Rodríguez, D. Eliche Quesada, “Influence of NaOH molarity and Portland cement addition on performance of alkali activated cements based in silicomanganese slags”, Construction and Building Materials, vol. 407, 133544, 2023.
  • [43] Z. Yahya, M. M. A. B. Abdullah, K. Hussin, K. N. Ismail, R. A. Razak, A. V. Sandu, “Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si + Ca) geopolymerisation system”, Materials, vol. 8, pp. 2227-2242, 2015.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mine Kurtay Yıldız 0000-0003-4629-3198

Proje Numarası 121C378
Erken Görünüm Tarihi 27 Şubat 2024
Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 14 Haziran 2023
Kabul Tarihi 9 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 1

Kaynak Göster

APA Kurtay Yıldız, M. (2024). Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method. Sakarya University Journal of Science, 28(1), 73-84. https://doi.org/10.16984/saufenbilder.1314703
AMA Kurtay Yıldız M. Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method. SAUJS. Şubat 2024;28(1):73-84. doi:10.16984/saufenbilder.1314703
Chicago Kurtay Yıldız, Mine. “Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method”. Sakarya University Journal of Science 28, sy. 1 (Şubat 2024): 73-84. https://doi.org/10.16984/saufenbilder.1314703.
EndNote Kurtay Yıldız M (01 Şubat 2024) Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method. Sakarya University Journal of Science 28 1 73–84.
IEEE M. Kurtay Yıldız, “Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method”, SAUJS, c. 28, sy. 1, ss. 73–84, 2024, doi: 10.16984/saufenbilder.1314703.
ISNAD Kurtay Yıldız, Mine. “Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method”. Sakarya University Journal of Science 28/1 (Şubat 2024), 73-84. https://doi.org/10.16984/saufenbilder.1314703.
JAMA Kurtay Yıldız M. Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method. SAUJS. 2024;28:73–84.
MLA Kurtay Yıldız, Mine. “Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method”. Sakarya University Journal of Science, c. 28, sy. 1, 2024, ss. 73-84, doi:10.16984/saufenbilder.1314703.
Vancouver Kurtay Yıldız M. Designing Hollow Brick Waste Based Alkali Activated Composites by Taguchi Method. SAUJS. 2024;28(1):73-84.

Sakarya University Journal of Science (SAUJS)