Araştırma Makalesi
BibTex RIS Kaynak Göster

Manyetik Kantilever ile IgG antikorlarının tespiti

Yıl 2023, Cilt: 8 Sayı: 2, 134 - 144, 28.12.2023
https://doi.org/10.33484/sinopfbd.1322953

Öz

Bu çalışmada, IgG antikorlarını algılamak için kantilever olarak Fe40Ni38Mo4B18 amorf ferromanyetik şerit kullanılmıştır. Sensör yüzeyi IgG dedektesi için fonksiyonel hale getirilmiş ve daha sonra yapılan ölçümlerde ppm ya da ng mertebesinde IgG algılaması yapılmışt

Destekleyen Kurum

inönü Üniversitesi

Proje Numarası

FDK-2022-2928

Kaynakça

  • Wang Q, Jing, J. Y., & Wang B.T. (2019). Highly sensitive SPR biosensor based on graphene oxide and staphylococcal protein a co-modified TFBG for human IgG detection. IEEE Transactions on Instrumentation and Measurement. 68, 3350-3357. https://doi.org/10.1109/TIM.2018.2875961
  • Liu H. C., Ponniah G., Zhang H. M., Nowak C., Neill A., Gonzalez-Lopez N., Patel R., Cheng G. L., Kita A. Z., & Andrien B. (2014). In vitro and in vivo modifications of recombinant and human IgG antibodies. Affiliated with the Antibody Society, 6, 1145-1154. https://doi.org/10.4161/mabs.29883
  • Valenzuela N. M., & Schaub, S. (2018). The biology of IgG subclasses and their clinical relevance to transplantation. Transplantation, 102, 7-13. https://doi.org/10.1097/TP.0000000000001816
  • Marchionatti, A., Woodhall, M., Waters, P. J., & Sato, D. K. (2020). Detection of MOG-IgG by cell-based assay: moving from discovery to clinical practice. Neurological Sciences, 42, 73-80. https://doi.org/10.1007/s10072-020-04828-1
  • Sharma, D., & Tripathi, N. (2017). Microcantilever: an efficient tool for biosensing applications. International Journal of Intelligent Systems and Applications, 10, 63-74. https://doi.org/10.5815/ijisa.2017.10.08
  • Noh, J. W. (2009). In-plane all-photonic transduction method for silicon photonic microcantilever. PhD Thesis, Brigham Young University.
  • Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930-934. https://doi.org/10.1103/PhysRevLett.56.930
  • Berger, R., Gerber, C., Gimzewski, J. K., Meyer, E., & Guntherodt, H. J. (1996). Thermal analysis using a micromechanical calorimeter, Applied Physics Letters, 69, 40-42. https://doi.org/10.1063/1.118111
  • Barnes, J. R., Stephenson, R. J., Welland, M. E., Gerber, C., & Gimzewski, J. K., (1994). Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature, 372. 79-81, https://doi.org/10.1038/372079a0
  • Arakawa, E. T., Lavrik, N. V., Rajic, S., & Datskos, P. G. (2003). Detection and differentiation of biological species using microcalorimetric spectroscopy. Ultramicroscopy, 97, 459-465. https://doi.org/10.1016/S0304-3991(03)00074-3
  • Dohn, S., Sandberg, R., Svendsen, W., & Boisen, A. (2005). Enhanced functionality of cantilever based mass sensors using higher modes. Applied Physics Letters, 86, 233501-233503. https://doi.org/10.1063/1.1948521
  • Hosaka, S., Chiyoma, T., Ikeuchi, A., Okano, H., Sone, H., & Izumi, T. (2006). Possibility of a femtogram mass biosensor using a self-sensing cantilever. Current Applied Physics, 6, 384-388. https://doi.org/10.1016/j.cap.2005.11.024
  • Spletzer, M., Raman, A., Wu, A. Q., Xu, X., & Reifenberger, R., (2006). Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Applied Physics Letters, 88, 254102-254103. https://doi.org/10.1063/1.2216889
  • Sharos, L. B., Raman, A., Crittenden, S., & Reifenberger, R., (2004). Enhanced mass sensing using torsional and lateral resonances in microcantilevers. Applied Physics Letters, 84, 4638-4640. https://doi.org/10.1063/1.1759379
  • Cowburn, R. P., Moulin, A. M., & Welland, M. E. (1997). High sensitivity measurement of magnetic fields using microcantilevers. Applied Physics Letters, 71, 2202-2204. https://doi.org/10.1063/1.119381
  • Ohmichi, E., & Osada, T. (2002). Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever, Review of Scientific Instruments, 73, 3022-3026. https://doi.org/10.1063/1.1491999
  • Liu, J., & Li, X. (2007). A piezoresistive microcantilever magnetic-field sensor with on-chip self-calibration function integrated. Microelectronics Journal, 38, 210-215. https://doi.org/10.1016/j.mejo.2006.11.015
  • Thundat, T., Wachter, E. A., Sharp, S. L., & Warmack, R. J. (1995). Detection of mercury-vapor using resonating microcantilevers. Applied Physics Letters, 66, 1695-1697. https://doi.org/10.1063/1.113896
  • Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Guumlntherodt, H.-J., Gerber, C., & Gimzewski, J. K. (2000). Translating biomolecular recognition into nanomechanics. Science, 288, 316-318. https://doi.org/10.1126/science.288.5464.316
  • Wu, G., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., & Majumdar, A., (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology, 19, 856-860. https://doi.org/10.1038/nbt0901-856
  • Bashir, R., Hilt, J. Z., Elibol, O., Gupta, A., & Peppas, N. A. (2002). Micromechanical cantilever as an ultrasensitive pH microsensor. Applied Physics Letters, 81, 3091-3093. https://doi.org/10.1063/1.1514825
  • Moulin, A. M., O'Shea, S. J., & Welland, M. E. (2001). Microcantilever-based biosensors. Ultramicroscopy, 82, 23-31. https://doi.org/10.1016/S0304-3991(99)00145-X
  • Hansen, K. M., & Thundat, T. (2005). Microcantilever biosensors, Methods, 37, 57-64.
  • Waggoner, P. S., & Craighead, H. G. (2007). Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip, 7, 1238-1255. https://doi.org/10.1039/B707401H
  • Raiteri, R., Grattarola, M., Butt, H.-J., & Skládal, P. (2001). Micromechanical cantilever-based biosensors. Sensors and Actuators B: Chemical, 79, 115-126. https://doi.org/10.1016/S0925-4005(01)00856-5
  • Zhang, J., Lang, H. P., Huber, F., Bietsch, A., Grange, W., Certa, U., McKendry, R., Guntherodt, H. J., Hegner, M., & Gerber, C. (2006). Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotechnology, 1, 214-220. https://doi.org/10.1038/nnano.2006.134
  • Fadel, L., Lochon, F., Dufour, I., & Francais, O. (2004). Chemical sensing: millimeter size resonant microcantilever performance. Journal of Micromechanics and Microengineering, 14, 23-30. https://doi.org/10.1088/0960-1317/14/9/004
  • Atalay, S., Kolat, V. S., Atalay, F. E., Bayri, N., Kaya, H., & Izgi, T. (2018). Magnetoelastic sensor for magnetic nanoparticle detection. Journal of Magnetism and Magnetic Materials, 465, 151-155. https://doi.org/10.1016/j.jmmm.2018.05.108

Detection of IgG Antibodies with Magnetic Cantilever

Yıl 2023, Cilt: 8 Sayı: 2, 134 - 144, 28.12.2023
https://doi.org/10.33484/sinopfbd.1322953

Öz

In this study, Fe40Ni38Mo4B18 amorphous ferromagnetic ribbon was used as cantilever to detect IgG antibodies. The sensor surface was functionalized for IgG detection, and IgG detection was performed at the level of ppm or ng.

Proje Numarası

FDK-2022-2928

Kaynakça

  • Wang Q, Jing, J. Y., & Wang B.T. (2019). Highly sensitive SPR biosensor based on graphene oxide and staphylococcal protein a co-modified TFBG for human IgG detection. IEEE Transactions on Instrumentation and Measurement. 68, 3350-3357. https://doi.org/10.1109/TIM.2018.2875961
  • Liu H. C., Ponniah G., Zhang H. M., Nowak C., Neill A., Gonzalez-Lopez N., Patel R., Cheng G. L., Kita A. Z., & Andrien B. (2014). In vitro and in vivo modifications of recombinant and human IgG antibodies. Affiliated with the Antibody Society, 6, 1145-1154. https://doi.org/10.4161/mabs.29883
  • Valenzuela N. M., & Schaub, S. (2018). The biology of IgG subclasses and their clinical relevance to transplantation. Transplantation, 102, 7-13. https://doi.org/10.1097/TP.0000000000001816
  • Marchionatti, A., Woodhall, M., Waters, P. J., & Sato, D. K. (2020). Detection of MOG-IgG by cell-based assay: moving from discovery to clinical practice. Neurological Sciences, 42, 73-80. https://doi.org/10.1007/s10072-020-04828-1
  • Sharma, D., & Tripathi, N. (2017). Microcantilever: an efficient tool for biosensing applications. International Journal of Intelligent Systems and Applications, 10, 63-74. https://doi.org/10.5815/ijisa.2017.10.08
  • Noh, J. W. (2009). In-plane all-photonic transduction method for silicon photonic microcantilever. PhD Thesis, Brigham Young University.
  • Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930-934. https://doi.org/10.1103/PhysRevLett.56.930
  • Berger, R., Gerber, C., Gimzewski, J. K., Meyer, E., & Guntherodt, H. J. (1996). Thermal analysis using a micromechanical calorimeter, Applied Physics Letters, 69, 40-42. https://doi.org/10.1063/1.118111
  • Barnes, J. R., Stephenson, R. J., Welland, M. E., Gerber, C., & Gimzewski, J. K., (1994). Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature, 372. 79-81, https://doi.org/10.1038/372079a0
  • Arakawa, E. T., Lavrik, N. V., Rajic, S., & Datskos, P. G. (2003). Detection and differentiation of biological species using microcalorimetric spectroscopy. Ultramicroscopy, 97, 459-465. https://doi.org/10.1016/S0304-3991(03)00074-3
  • Dohn, S., Sandberg, R., Svendsen, W., & Boisen, A. (2005). Enhanced functionality of cantilever based mass sensors using higher modes. Applied Physics Letters, 86, 233501-233503. https://doi.org/10.1063/1.1948521
  • Hosaka, S., Chiyoma, T., Ikeuchi, A., Okano, H., Sone, H., & Izumi, T. (2006). Possibility of a femtogram mass biosensor using a self-sensing cantilever. Current Applied Physics, 6, 384-388. https://doi.org/10.1016/j.cap.2005.11.024
  • Spletzer, M., Raman, A., Wu, A. Q., Xu, X., & Reifenberger, R., (2006). Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Applied Physics Letters, 88, 254102-254103. https://doi.org/10.1063/1.2216889
  • Sharos, L. B., Raman, A., Crittenden, S., & Reifenberger, R., (2004). Enhanced mass sensing using torsional and lateral resonances in microcantilevers. Applied Physics Letters, 84, 4638-4640. https://doi.org/10.1063/1.1759379
  • Cowburn, R. P., Moulin, A. M., & Welland, M. E. (1997). High sensitivity measurement of magnetic fields using microcantilevers. Applied Physics Letters, 71, 2202-2204. https://doi.org/10.1063/1.119381
  • Ohmichi, E., & Osada, T. (2002). Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever, Review of Scientific Instruments, 73, 3022-3026. https://doi.org/10.1063/1.1491999
  • Liu, J., & Li, X. (2007). A piezoresistive microcantilever magnetic-field sensor with on-chip self-calibration function integrated. Microelectronics Journal, 38, 210-215. https://doi.org/10.1016/j.mejo.2006.11.015
  • Thundat, T., Wachter, E. A., Sharp, S. L., & Warmack, R. J. (1995). Detection of mercury-vapor using resonating microcantilevers. Applied Physics Letters, 66, 1695-1697. https://doi.org/10.1063/1.113896
  • Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Guumlntherodt, H.-J., Gerber, C., & Gimzewski, J. K. (2000). Translating biomolecular recognition into nanomechanics. Science, 288, 316-318. https://doi.org/10.1126/science.288.5464.316
  • Wu, G., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., & Majumdar, A., (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology, 19, 856-860. https://doi.org/10.1038/nbt0901-856
  • Bashir, R., Hilt, J. Z., Elibol, O., Gupta, A., & Peppas, N. A. (2002). Micromechanical cantilever as an ultrasensitive pH microsensor. Applied Physics Letters, 81, 3091-3093. https://doi.org/10.1063/1.1514825
  • Moulin, A. M., O'Shea, S. J., & Welland, M. E. (2001). Microcantilever-based biosensors. Ultramicroscopy, 82, 23-31. https://doi.org/10.1016/S0304-3991(99)00145-X
  • Hansen, K. M., & Thundat, T. (2005). Microcantilever biosensors, Methods, 37, 57-64.
  • Waggoner, P. S., & Craighead, H. G. (2007). Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip, 7, 1238-1255. https://doi.org/10.1039/B707401H
  • Raiteri, R., Grattarola, M., Butt, H.-J., & Skládal, P. (2001). Micromechanical cantilever-based biosensors. Sensors and Actuators B: Chemical, 79, 115-126. https://doi.org/10.1016/S0925-4005(01)00856-5
  • Zhang, J., Lang, H. P., Huber, F., Bietsch, A., Grange, W., Certa, U., McKendry, R., Guntherodt, H. J., Hegner, M., & Gerber, C. (2006). Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotechnology, 1, 214-220. https://doi.org/10.1038/nnano.2006.134
  • Fadel, L., Lochon, F., Dufour, I., & Francais, O. (2004). Chemical sensing: millimeter size resonant microcantilever performance. Journal of Micromechanics and Microengineering, 14, 23-30. https://doi.org/10.1088/0960-1317/14/9/004
  • Atalay, S., Kolat, V. S., Atalay, F. E., Bayri, N., Kaya, H., & Izgi, T. (2018). Magnetoelastic sensor for magnetic nanoparticle detection. Journal of Magnetism and Magnetic Materials, 465, 151-155. https://doi.org/10.1016/j.jmmm.2018.05.108
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klasik Fizik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Orhan Orçun İnan 0000-0001-7351-203X

Gamze Dik 0000-0003-4798-8127

Ahmet Ulu 0000-0002-4447-6233

Burhan Ateş 0000-0001-6080-229X

Selçuk Atalay 0000-0002-8840-7766

Proje Numarası FDK-2022-2928
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 6 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 8 Sayı: 2

Kaynak Göster

APA İnan, O. . O., Dik, G., Ulu, A., Ateş, B., vd. (2023). Manyetik Kantilever ile IgG antikorlarının tespiti. Sinop Üniversitesi Fen Bilimleri Dergisi, 8(2), 134-144. https://doi.org/10.33484/sinopfbd.1322953